
Chapter 25
The Heath–Jarrow–Morton Framework

Abstract Interest rate modelling can also be performed by starting from the
dynamics of the instantaneous forward rate. As we shall see the dynamics of all other
quantities of interest can then be derived from it. This approach has its origin in Ho
and Lee (J Finance XLI:1011–1029, 1986) but was most clearly articulated in Heath
et al. (Econometrica 60(1):77–105, 1992a), to which we shall subsequently refer
as Heath–Jarrow–Morton. In this framework, the condition of no riskless arbitrage
results in the drift coefficient of the forward rate dynamics being expressed in terms
of the forward rate volatility function. The major weakness in implementing the
Heath–Jarrow–Morton approach is that the spot rate dynamics are usually path
dependent (non-Markovian). We consider a class of functional forms of the forward
rate volatility that allow the model to be reduced to a finite dimensional Markovian
system of stochastic differential equations. This class contains some important
models considered in the literature.

25.1 Introduction

The interest rate derivative models developed in Chap. 23 took as their starting point
the dynamics of the instantaneous spot interest rate. The models we derived there
also had the characteristic that the market price of interest rate risk appears in the
pricing relationships. We saw in Sect. 23.8 that at least in principle it is possible to
remove this dependence of the models on preference related quantities. This can be
done by expressing terms involving the market price of interest rate risk in terms of
market observed quantities such as the currently observed yield curve and volatilities
of traded interest rate dependent instruments. However this procedure for rendering
spot rate models preference-free can be tedious and for some model specifications
may be computationally intensive.

An alternative interest rate modelling approach, originated by Ho and Lee
(1986), is the Heath–Jarrow–Morton approach which starts from the dynamics of
the forward rate and requires the specification of the initial term structure and the
volatility of the associated forward rate. The dynamics of the spot interest rate are
then developed from those of the forward rate. The spot interest rate is also an
important economic variable whose assessment determines the evolution of the
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530 25 The Heath–Jarrow–Morton Framework

bond prices. Heath et al. (1992b) describe how this framework can be used to
price and hedge the entire interest rate derivative book of a financial institution
thus offering a consistent approach in managing interest rate exposure. However,
the major shortcoming of the Heath–Jarrow–Morton approach is that the spot rate
dynamics are not path independent (i.e. it is non-Markovian) and the entire history
of the term structure has to be carried thus increasing the computational complexity.

The key unobserved input to this approach to term structure modelling is the
aforementioned volatility of the forward rates. Many of the forms of the volatility
functions reported in the literature have been chosen for analytical convenience
rather than on the basis of empirical evidence. In fact apart from the study of
Heath et al. (1990), Flesaker (1993), Amin and Morton (1994), Amin and Ng
(1993), Ho et al. (2001), and Bhar et al. (2004), there has not been a great deal
of empirical research into the appropriate form of the volatility function to be used
in the arbitrage free class of models. This is due to the fact that the non-Markovian
nature of the stochastic dynamical system makes difficult application of standard
econometric estimation procedures.

The non-Markovian feature also makes difficult the expression for prices of term-
structure contingent claims in terms of partial differential equations. In the Heath–
Jarrow–Morton approach these prices are expressed as expectation operators, under
the equivalent martingale measure, of appropriate payoffs. Nowhere in the existing
literature is it stated how to consistently turn this expectation operator into a partial
differential equation. It is important to be able to do so in order to apply to the
evaluation of interest rate sensitive contingent claims many useful computational
techniques, as outlined for example in Wilmott et al. (1993). These techniques are
the most appropriate to value various path dependent options such as American,
Asian etc., but require an expression of the contingent claim price in terms of partial
differential equation operators with appropriate boundary conditions.

The notation used in the original Heath–Jarrow–Morton paper allows for a very
general dependence of the forward rate volatility functions on path dependent
quantities. For the sake of definiteness we shall assume in this chapter that the path
dependence of the forward rate volatility functions arises from dependence on the
instantaneous spot interest rate and/or a set of discrete fixed-tenor forward rates. As
we shall see this specification allows us to develop a fairly broad class of interest
rate derivative models.

With such a specification, the instantaneous spot rate process in the Heath–
Jarrow–Morton framework can be expressed in terms of a finite dimensional
Markovian system. The dimension of the resultant system of stochastic differential
equations is dependent on the exact form of the volatility function and it usually
includes variables that at first sight seem not to be readily observable. But we shall
show how it is possible to express these in terms of forward rates or yields, which
may be observable.

The transformation to the Markovian form also allows easier comparison with
other approaches such as, Vasicek (1977), Cox et al. (1985a) and Hull and White
(1987, 1990, 1994). This is important in the sense that it allows us to easily reconcile
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many of the alternative approaches to the modelling of the term structure of interest
rates.

25.2 The Basic Structure

We denote as f .t; T / the instantaneous forward rate negotiated at time t for
instantaneous borrowing at time T .> t/. The starting point of the Heath–Jarrow–
Morton model of the term structure of interest rates is the stochastic integral
equation for the forward rate1

f .t; T / D f .0; T /C
Z t

0

˛.v; T; !.v//dvC
Z t

0

�.v; T; !.v//dW.v/; (25.1)

for 0 � t � T , where ˛.v; T; !.v// and �.v; T; !.v// are the instantaneous
drift and the volatility function at time v of the forward rate f .v; T /,
respectively. The instantaneous drift ˛.v; T; !.v// and volatility function
�.v; T; !.v// of the forward rate f .v; T / could depend through ! on path
dependent quantities, such as the instantaneous spot rate and/or a set of
discrete tenor forward rates. Thus the specifications in Eq. (25.1) allow for
functional forms of the type Ǫ .v; T; r.v/; f .v; �1/; f .v; �2/, � � � ; f .v; �m// and
O�.v; T; r.v/; f .v; �1/; f .v; �2/; � � � ; f .v; �m// where f .t; �i / is the instantaneous
forward rate at time t applicable at the fixed tenor �i .> t/ with m such tenors.
The noise term dW.v/ is the increment of a standard Wiener process generated
by a probability measure P. Note that for expositional simplicity in this section
we consider only one noise term affecting the evolution of the forward rate. The
stochastic integral equation (25.1), may alternatively be expressed as the stochastic
differential equation

df .t; T / D ˛.t; T; !.t//dt C �.t; T; !.t//dW.t/: (25.2)

It follows from Eq. (25.1) that the instantaneous spot rate r.t/.� f .t; t// is given
by the stochastic integral equation

r.t/ D f .0; t/C
Z t

0

˛.v; t; !.v//dv C
Z t

0

�.v; t; !.v//dW.v/: (25.3)

The corresponding stochastic differential equation for r.t/ [see Eq. (22.39)] is

dr D �r.t/dt C �.t; t; !.t//dW.t/; (25.4)

1We refer the reader to Sect. 22.5 for further discussion on the interpretation of (25.1).
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where

�r.t/ D f2.0; t/C ˛.t; t; !.t//C
Z t

0

˛2.v; t; !.v//dvC
Z t

0

�2.v; t; !.v//dW.v/;

(25.5)

where f2, ˛2 and �2 denote the partial derivative of f , ˛ and � respectively, with
respect to their second arguments. We recall that the bond price at time t is related
to the forward rate by

P.t; T / D exp

�
�

Z T

t

f .t; s/ds

�
; 0 � t � T: (25.6)

By the use of Fubini’s theorem for stochastic integrals and application of Ito’s
lemma (see Sect. 22.5.1) the bond price satisfies the stochastic differential equation

dP.t; T / D Œr.t/C b.t; T /�P.t; T /dt C �B.t; T /P.t; T /dW.t/; (25.7)

where

�B.t; T / � �
Z T

t

�.t; s; !.t//ds; (25.8)

and

b.t; T / � �
Z T

t

˛.t; s; !.t//ds C 1

2
�2B.t; T /: (25.9)

A quantity of interest is the money market account

A.t/ D exp

�Z t

0

r.y/dy

�
; (25.10)

which is the value at time t of a dollar continuously compounded from 0 to t at the
instantaneous spot rate r . This quantity may be used to define the relative bond price

Z.t; T / D P.t; T /

A.t/
; .0 � t � T /: (25.11)

The fact that dA D r.t/A.t/dt and application of the rule for the quotient of two
diffusions (see Sect. 6.6) yields the result that the relative bond price satisfies the
stochastic differential equation

dZ.t; T / D b.t; T /Z.t; T /dt C �B.t; T /Z.t; T /dW.t/: (25.12)
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25.3 The Arbitrage Pricing of Bonds

Bonds can be priced using exactly the same hedging portfolio as was used in
Chap. 23, namely we use bonds of two different maturities. We know from the
arbitrage arguments of Chap. 23 that in order that there not exist riskless arbitrage
opportunities between bonds of different maturities then the instantaneous excess
bond return, risk adjusted by its volatility must equal the market price of interest
rate risk; see Eq. (23.9). The relevant bond dynamics in the current context are given
by (25.7), so that here Eq. (23.9) becomes

Œr.t/C b.t; T /� � r.t/
�B.t; T /

D market price of
interest rate risk

� ��.t/; (25.13)

which simplifies to

b.t; T /C �.t/�B.t; T / D 0: (25.14)

Using expressions (25.8) and (25.9) this last equation may be written explicitly as

Z T

t

˛.t; s; !.t//ds � 1

2

�Z T

t

�.t; s; !.t//ds

�2
C �.t/

Z T

t

�.t; s; !.t//ds D 0:

Keeping t fixed and differentiating with respect to maturity T , the above equation
reduces to

˛.t; T; !.t// �
�Z T

t

�.t; s; !.t//ds

�
�.t; T; !.t//C �.t/�.t; T; !.t// D 0;

which may be rearranged to

˛.t; T; !.t// D ��.t; T; !.t//
�
�.t/�

Z T

t

�.t; s; !.t//ds

�
: (25.15)

Equation (25.15) is the forward rate drift restriction that was first reported by Heath–
Jarrow–Morton (Eq. (18) of Heath et al. 1992a). It states that if the bond market
is free of riskless arbitrage opportunities then the forward rate drift, the forward
rate volatility and the market price of interest rate risk must be tied together as
shown by this equation. Heath–Jarrow–Morton show that in fact this condition is
both necessary and sufficient for the absence of riskless arbitrage opportunities.

Up to this point Heath–Jarrow–Morton have not done anything conceptually
different from the standard arbitrage approach of Chap. 23. However in the Heath–
Jarrow–Morton approach Eq. (25.14) is used in a different way. In the standard
arbitrage approach, Eq. (25.14) becomes a partial differential equation for the bond
price as a function of the assumed driving state variable (usually the instantaneous



534 25 The Heath–Jarrow–Morton Framework

spot rate). In the Heath–Jarrow–Morton approach, the condition (25.14) becomes
the forward rate drift restriction that is used, as we shall see below, to conveniently
express the bond price dynamics under an equivalent probability measure. By use
of (25.14), the stochastic differential equations (25.7) and (25.12) for P.t; T / and
Z.t; T / respectively become

dP.t; T / D Œr.t/ � �.t/�B.t; T /�P.t; T /dt C �B.t; T /P.t; T /dW.t/; (25.16)

dZ.t; T / D ��.t/�B.t; T /Z.t; T /dt C �B.t; T /Z.t; T /dW.t/: (25.17)

At the same time, by substituting (25.15) into (25.3)2 the stochastic integral equation
for r.t/ becomes

r.t/ D f .0; t/C
Z t

0

�.v; t; !.v//

Z t

v

�.v; s; !.v//dsdv

�
Z t

0

�.v; t; !.v//�.v/dvC
Z t

0

�.v; t; !.v//dW.v/:

(25.18)

The key advance in the Heath–Jarrow–Morton approach is that, by an application
of Girsanov’s theorem to (25.16), Eqs. (25.16)–(25.18), can be written in terms of a
different Wiener process generated by an equivalent martingale probability measure
QP. Thus if we define a new Wiener process QW .t/ under QP by

QW .t/ D W.t/ �
Z t

0

�.s/ds; (25.19)

or in differential form by

d QW .t/ D dW.t/ � �.t/dt; (25.20)

then Eqs. (25.16)–(25.18) become

dP.t; T / D r.t/P.t; T /dt C �B.t; T /P.t; T /d QW .t/; (25.21)

dZ.t; T / D �B.t; T /Z.t; T /d QW .t/; (25.22)

2Note that from (25.15) we have

Z t

0

˛.v; t; !.v//dv D �
Z t

0

�.v; t; !.v//�.v/dvC
Z t

0

�.v; t; !.v//

Z t

v

�.v; s; !.v//dsdv:
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and

r.t/Df .0; t/C
Z t

0

�.v; t; !.v//

Z t

v

�.v; s; !.v//dsdvC
Z t

0

�.v; t; !.v//d QW .v/:

(25.23)

Alternatively, Eq. (25.23) can be expressed as the stochastic differential equation

dr D
�
f2.0; t/C @

@t

�Z t

0

�.v; t; !.v//

Z t

v

�.v; s; !.v//dsdv

�

C
Z t

0

@�.v; t; !.v//

@t
d QW .v/

�
dt C �.t; t; !.t//d QW .t/:

(25.24)

It is at times convenient to deal with the ln of the bond price B.t; T / � lnP.t; T /.
This quantity, by Ito’s lemma, satisfies (under QP)

dB.t; T / D Œr.t/ � 1

2
�2B.t; T /�dt C �B.t; T /d QW .t/: (25.25)

Furthermore, the arbitrage free stochastic integral equation for the forward rate
under QP can be written,

f .t; T / D f .0; T /C
Z t

0

�.v; T; !.v//

Z T

v

�.v; s; !.v//dsdvC
Z t

0

�.v; T; !.v//d QW .v/;
(25.26)

and the corresponding stochastic differential equation as

df .t; T / D �.t; T; !.t//

Z T

t

�.t; s; !.t//dsdt C �.t; T; !.t//d QW .t/: (25.27)

The essential characteristic of the reformulated stochastic differential and integral
equations (25.21)–(25.27) expressed in terms of Brownian motion, under the
equivalent probability measure QP, is that the empirically awkward market price of
risk term, �.t/, is eliminated from explicit consideration. From the discussion of
Girsanov’s theorem in Sect. 8.2 [in particular Eqs. (8.38) and (8.42)] we obtain the
expression for the Radon–Nikodym derivative

d QP
dP

D exp

�
�1
2

Z t

0

�2.s/ds C
Z t

0

�.s/dW.s/

�
: (25.28)

If we write QEt to denote mathematical expectation with respect to the equivalent
probability measure (i.e. the one associated with d QW .t/) then from Eq. (25.22)

QEt ŒdZ.t; T /� D 0:
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This last equation implies that Z.t; T / is a martingale under QP, i.e.

Z.t; T / D QEt .Z.T; T //;

or, in terms of the bond price

P.t; T / D QEt
�
A.t/

A.T /

�
D QEt

�
exp

�
�

Z T

t

r.y/dy

��
: (25.29)

Equation (25.29) is the fundamental bond pricing equation of the Heath–Jarrow–
Morton framework, and it has the same discounted cash flow interpretation as

Eq. (23.21). Namely the quantity exp
�
� R T

t
r.y/dy

�
should be interpreted as the

stochastic discount factor under QP used to discount back to time t the $1 payoff
to be received at time T . We stress that the actual implementation of (25.29) will
depend on the form chosen from the forward rate volatility function. At the simplest
level, the expectation in Eq. (25.29) could be calculated by numerically simulating
Eq. (25.23). Note however that if the volatility function depends on discrete
tenor forward rates f .t; �1/; � � � ; f .t; �m/ then these would have be simulated at
the same time. Closed form analytical expressions for the bond price may be
obtained with appropriate assumptions on the volatility function as we shall see
below.

25.4 Arbitrage Pricing of Bond Options

Suppose we wish to price at time t an option on the bond, for example a European
call option on the bond, with the option maturing at Tc . As we saw in Chap. 21
this problem is relevant to the pricing of an interest rate cap. We know from the
discussion at the end of the previous section that under the risk-neutral measure
QP we can discount the payoff at Tc back to t using the stochastic discount
factor

exp

�
�

Z Tc

t

r.s/ds

�
: (25.30)

Multiplying the payoff by the discount factor we find that under one realisation of
the spot-rate process under QP the option value at t is given by

exp

�
�

Z Tc

t

r.s/ds

�
max ŒP.Tc; T / �X; 0� : (25.31)
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The value of the option, C.t; Tc/, is then obtained by taking the expectation of this
quantity under the risk-neutral measure QP (i.e. forming QEt ). Thus we obtain

C.t; Tc/ D QEt
�

exp

�
�

Z Tc

t

r.s/ds

�
maxŒP.Tc; T /� X; 0�

�
: (25.32)

In general, if we have some spot interest rate contingent claim with payoff at t D Tc
given by H.r.Tc/; Tc/,3 then its value at t is given by

U.t; Tc/ D QEt
�

exp

�
�

Z Tc

t

r.s/ds

�
H.r.Tc/; Tc/

�
: (25.33)

In order to obtain a pricing partial differential equation for U.t; Tc/ we need
to obtain the Kolmogorov backward equation associated with Eq. (25.24), the
stochastic differential equation for the spot rate process r.t/. It is difficult to do

this in general because of the non-Markovian term
Z t

0

@�

@t
d QW .v/ that appears in

the drift in Eq. (25.24). In Sect. 25.6 we discuss assumptions on � which allow
us to obtain Markovian representations for r.t/ and hence obtain pricing partial
differential equations.

The reader may wonder why in this section we have not mirrored the argument
of Sect. 23.6 and used the hedging argument approach to derive the bond option
pricing formula in the present context. The reason is that in Sect. 23.6 there was one
underlying factor, r.t/, driving the uncertainty of the market, so the option price
could be written in the formC.r; t/ and Ito’s Lemma applied to obtain its dynamics.
Similarly in Sect. 24.1 there were two underlying factors, r.t/ and h.t/, driving the
uncertainty of the market and we would write the option price as C.r; h; t/. Again
application of Ito’s Lemma gave us the dynamics for C . In both cases the dynamics
of the hedging portfolio could then be obtained. Here we have not so far been so
precise about the factors upon which the volatility function �.t; T; �/ depends, apart
from stating that it could depend on a vector of discrete tenor forward rates and the
instantaneous spot rate. In order to mirror the hedging argument approach used in
Chap. 23 we need to be more specific about the dynamics of these underlying rates
so that we could then obtain the option price dynamics by applying Ito’s lemma.
This we shall do in a later section, when we discuss the Markovianisation issue.
At this point we stress that the expressions (25.29) for the bond price and (25.33)
for the interest rate derivative hold for quite general specifications of the volatility
function. Of course if we want to implement these expressions, using for example
stochastic simulation, then we would need to specify the dynamics (under QP) of all
stochastic factors entering into the specification of �.t; T; �/.

3Here we allow the payoff function to depend on the instantaneous spot rate. It could of course
depend on various other rates as well.



538 25 The Heath–Jarrow–Morton Framework

25.5 Forward-Risk-Adjusted Measure

We saw in Eq. (25.33) that the value of a spot interest rate contingent claim at time
t can be written

U.t; Tc/ D QEt
�

exp

�
�

Z Tc

t

r.s/ds

�
H.r.Tc/; Tc/

�
; (25.34)

where H.r.Tc/; Tc/ denotes the payoff on the claim at time Tc . Suppose P.t; Tc/
represents the price at time t of a pure discount bond maturing at time Tc . Then by
Eq. (25.29),

P.t; Tc/ D QEt
�

exp

�
�

Z Tc

t

r.s/ds

��
: (25.35)

We can use the results of Chap. 20 to express the value of the interest rate contingent
claim, using P.t; Tc/ as the numeraire. By forming the quantity Y D U=P we
would obtain [see Eq. (20.14)]

U.t; Tc/ D P.t; Tc/E
�
t

�
U.Tc; Tc/

P.Tc; Tc/

�
: (25.36)

But in the current notation U.Tc; Tc/ D H.r.Tc/; Tc/ and P.Tc; Tc/ D 1, hence

U.t; Tc/ D P.t; Tc/E
�
t ŒH.r.Tc/; Tc/� : (25.37)

The advantage of (25.37) over (25.34) is that the stochastic discounting term

exp
�
� R Tc

t
r.s/ds

�
which appears in the expectation operation of (25.34) is

replaced by the non-stochastic discounting term P.t; Tc/ which appears outside
the expectation operator of (25.37). The value of this method depends on how easy
(or difficult) it is to calculate E

�
t in (25.37). We saw how this change of measure

result was useful in obtaining Merton’s bond pricing formula in Sect. 20.3. The
measure associated with the E

�
t operation, which we shall denote as P

� is known
as the T -forward measure. The reason for this nomenclature is that under P� the
forward rate at time t is the expectation of the instantaneous spot rate at T i.e.

f .t; T / D E
�
t Œr.T /�: (25.38)

To see this result recall that

P.t; T / D QEt
�

exp

�
�

Z T

t

r.s/ds

��
:
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Differentiating this last equation with respect to T we obtain

@

@T
P.t; T / D QEt

�
@

@T
exp

�
�

Z T

t

r.s/ds

��

D QEt
�
� exp

�
�

Z T

t

r.s/ds

�
� @

@T

Z T

t

r.s/ds

�

D � QEt
�

exp

�
�

Z T

t

r.s/ds

�
� r.T /

�

D �P.t; T /E�
t Œr.T /�: (25.39)

The last line was obtained by applying (25.37) with H.r.T /; T / D r.T /:

Rearranging the last result we obtain

� @

@T
lnP.t; T / D E

�
t Œr.T /�: (25.40)

However f .t; T / D � @
@T

lnP.t; T / hence we have established the result in
Eq. (25.38).

For some later applications we need to clarify what form the Radon–Nikodym
derivative assumes for the forward risk-adjusted measure. To do this we simply
identify VT with P.T; T / and V0 with P.0; T / in Eq. (20.20), so that the Radon–
Nikodym derivative becomes

�.0; T / D P.T; T /

A.T /P.0; T /
D 1

A.T /P.0; T /
: (25.41)

25.6 Reduction to Markovian Form

The principal difficulty in implementing and estimating Heath–Jarrow–Morton
models arises from the non-Markovian noise term in the stochastic integral equa-
tion (25.23) for r.t/. This manifests itself in the third component of the drift term of
the stochastic differential equation (25.24). This component depends on the history
of the noise process from time 0 to current time t . Depending upon the specification
of the volatility function the second component of the drift term could also depend
on the path history up to time t .

Our aim in this section is to consider a class of functional forms of �.t; T; �/
that allow the non-Markovian representation of r.t/ and P.t; T / to be reduced
to a finite dimensional Markovian system of stochastic differential equations. We
investigate volatility functions of the forward rate which have the general form of
a deterministic function of time and maturity multiplied by a function of the path
dependent variable !, i.e.

�.t; T; !.t// D Q.t; T /G.!.t//; 0 � t � T; (25.42)



540 25 The Heath–Jarrow–Morton Framework

where G is an appropriately well-behaved function. A useful representation for
Q.t; T / would be

Q.t; T / D Pn.T � t/e��.T�t /; (25.43)

where Pn.u/ is the polynomial

Pn.u/ D a0 C a1u C : : :C anun:

This form would allow the term structure of the volatility to exhibit humps as
observed in implied forward rate volatilities from cap prices.4 We recall the
discussion of Sect. 22.5.2 when we considered forward rate volatility functions of
the form5

�.t; T; !.t// D N�e��.T�t /G.!.t//; (25.44)

for N� > 0 and � constant. This structure includes forward rate volatilities for a
number of important cases in the literature. Some of these models include

• � > 0;G.!.t// D 1 leads to a version of the extended Vasicek model of Hull–
White,

• � > 0;G.!.t// D g.r.t// leads to the generalised spot rate model of Ritchken
and Sankarasubramanian (1995).

• � > 0;G.!.t// D p
r.t/ leads to an extended version of the CIR model,

• � > 0;G.!.t// D g.r.t/; f .t; �// leads to a version of the model of Chiarella
and Kwon (1999).

Our aim is, under the volatility specification of (25.44), to express Eqs. (25.24) and
(25.27) as a Markovian system of stochastic differential equations. By considering
the drift term of the stochastic differential equation (25.27), under the volatility
specification of (25.44), we obtain

�.t; T; !.t//

Z T

t

�.t; s; !.t//ds D N�2G2.!.t//e��.T�t /
Z T

t

e��.s�t /ds

D N�2G2.!.t//e��.T�t /
�
e��.T�t / � 1

	
��

D �2.t; T; !.t//

�
e�.T�t / � 1

	
�

:

4Ritchken and Chuang (1999) assume Pn.u/ D P1.T � t / D .a0 C a1.T � t //.
5It is possible to carry through the discussion of this subsection with Eq. (25.44) generalised to

�.t; T; !.t// D N�e�

R T
t �.s/dsG.!.t//.
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Thus, we express the stochastic differential equation (25.27) for the forward rate as

df .t; T / D
�
�2.t; T; !.t//

e�.T�t / � 1

�

�
dt C �.t; T; !.t//d QW .t/: (25.45)

Similarly, we consider the stochastic differential equation (25.24) for r(t) and in
particular the first integral term

@

@t

�Z t

0

�.v; t; !.v//

Z t

v

�.v; s; !.v//dsdv

�

D
Z t

0

�
�2.v; t; !.v//

Z t

v

�.v; s; !.v//ds C �2.v; t; !.v//

�
dv;

(25.46)

where the notation �2 represents the partial derivative of � with respect to its second
argument. Given the expression for � in (25.44), we have that,

�2.v; t; !.v// D ���.v; t; !.v//: (25.47)

Thus, the right hand side of (25.46) reduces to

Z t

0

�
���.v; t; !.v//

Z t

v

�.v; s; !.v//ds C �2.v; t; !.v//

�
dv: (25.48)

By using (25.47) the other two terms of (25.24) can be expressed as

�Z t

0

�2.v; t; !.v//d QW .v/

�
dt C �.t; t; !.t//d QW .t/

D
�
��

Z t

0

�.v; t; !.v//d QW .v/

�
dt C �.t; t; !.t//d QW .t/:

Thus, the stochastic differential equation (25.24) becomes

dr D
�
f2.0; t/� �

Z t

0

�.v; t; !.v//

Z t

v

�.v; s; !.v//dsdv

C
Z t

0

�2.v; t; !.v//dv � �
Z t

0

�.v; t; !.v//d QW .v/

�
dt

C �.t; t; !.t//d QW .t/:

(25.49)
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We note from the stochastic integral equation (25.23) that

r.t/ � f .0; t/ D
Z t

0

�.v; t; !.v//

Z t

v

�.v; s; !.v//dsdv

C
Z t

0

�.v; t; !.v//d QW .v/:

(25.50)

Then by using (25.50), the stochastic differential equation (25.49) for the spot rate
is simplified to

dr D Œf2.0; t/C �f .0; t/C  .t/ � �r.t/� dt C �.t; t; !.t//d QW .t/; (25.51)

where we define the subsidiary variable  .t/ as

 .t/ D
Z t

0

�2.v; t; !.v//dv: (25.52)

The subsidiary variable  .t/ defined in Eq. (25.52) plays a central role in allowing
us to transform the original non-Markovian dynamics to Markovian form. Similar
subsidiary variables appear in the reduction to Markovian forms of Cheyette (1992),
Ritchken and Sankarasubramanian (1995), Bhar and Chiarella (1997a), Inui and
Kijima (1998), and Chiarella and Kwon (1999). It is clear from (25.52) that  .t/
may be interpreted as a variable summarising the path history of the forward rate
volatility.

25.7 Some Special Models

At this point the stochastic differential equation (25.51) is still non-Markovian
because the integral in the drift term involves the history of the path dependent
forward rate volatility. To proceed any further we need to consider specific
functional forms for G.!.t// in the volatility specifications (25.44).

25.7.1 The Hull–White Extended Vasicek Model

If G.!.t// D 1 then the subsidiary variable (25.52) becomes a time function, i.e.

 .t/ D
Z t

0

�2.v; t; !.v//dv D
Z t

0

N�2e�2�.t�v/dv D N�2
2�
.1 � e�2�t /:
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Thus by setting

	.t/ D f2.0; t/C �f .0; t/C N�2
2�
.1 � e�2�t /; (25.53)

the stochastic differential equation (25.51) for r.t/ finally becomes

dr D Œ	.t/ � �r.t/�dt C N�d QW .t/; (25.54)

which is a sought Markovian representation. Clearly this is the extended Vasicek
model with the long run mean allowed to be time varying.

Furthermore, note that the expression we have obtained for 	.t/ is the same as
the one we obtained in Sect. 23.7 when we worked directly from the expression for
the bond price obtained from the continuous arbitrage approach—which takes the
spot rate process as the driving dynamics. It is also worth pointing out that by setting
� D 0 we obtain the continuous time specification of the Ho–Lee model. We have
already seen how to price European options in this framework in Sect. 23.7. To price
American options in this framework, the option pricing equation

1

2
N�2 @

2C

@r2
C Œ	.t/ � �r�@C

@r
C @C

@t
� rC D 0; (25.55)

must be solved subject to the boundary conditions for an American option, see
Chiarella and El-Hassan (1996) for details.

25.7.2 The General Spot Rate Model

If G.!.t// is a function of the spot interest rate r.t/, i.e. G.!.t// D g.r.t//,
then we need to separately handle the non-Markovian term appearing in the drift
of Eq. (25.51). The subsidiary variable (25.52) now becomes

 .t/ D
Z t

0

N�2e�2�.t�v/g2.r.v//dv: (25.56)

By differentiating (25.56) we have that

d D Œ N�2g2.r.t// � 2� .t/�dt: (25.57)

We are now dealing with the two-dimensional Markovian system

dr D Œf2.0; t/C �f .0; t/C  .t/ � �r.t/�dt C N� g.r.t//d QW .t/;

d D Œ N�2g2.r.t// � 2� .t/�dt:
(25.58)
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The representation (25.58) was obtained by Ritchken and Sankarasubramanian
(1995). If we define the partial differential operator K by

K D 1

2
N�2g2.r/ @

2

@r2
C Œf2.0; t/C �f .0; t/C ��r.t/� @

@r
C Œ N�2g2.r/�2� � @

@ 
;

then the Kolmogorov equation for the transition probability density 
 is

K 
 C @


@t
D 0;

and derivative instruments are priced according to the partial differential equation

K V C @V

@t
� rV D 0;

(note V D P for bond price, V D C for option price) subject to appropriate bound-
ary conditions, e.g. V.r; T; T / D 1; for bonds, V.r; Tc; T / D max Œ0; P.r; Tc; T /�
K�; for European call options, etc. To evaluate American options we need to employ
numerical methods. Chiarella and El-Hassan (1998) have found the method of lines
to be very effective in this context.

Note that in the special case of g.r.t// D p
r.t/, we are dealing with the

extended CIR model

dr D Œf2.0; t/C �f .0; t/C  .t/ � �r.t/�dt C N�
p
r.t/d QW .t/;

d D Œ N�2r.t/ � 2� .t/�dt:
(25.59)

25.7.3 The Forward Rate Dependent Volatility Model

In this case, we further generalise the form of the volatility function to include
forward interest rates. Here G.!.t// can be a function of the spot interest rate, r.t/,
and of the forward interest rate, f .t; �/ of a fixed maturity � , so that G.!.t// D
g.r.t/; f .t; �//. For example, f .t; �/ could be some long-term forward rate. The
intuition behind such a specification is that not only the spot interest rate but also a
fixed maturity forward interest rate influence the evolution of the term structure.
The particular forward rate to be used may depend on the application under
consideration. This approach may be considered to be equivalent in some sense
to the Brennan and Schwartz (1979) model where a short-term rate and a long-term
rate are used to explain the evolution of the term structure. We need to determine the
additional state variables necessary to make the system Markovian although with a
higher dimension. The associated subsidiary variable (25.52) is given by

 .t/ D
Z t

0

N�2e�2�.t�v/g2.r.v/; f .v; �//dv: (25.60)
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By differentiating (25.60), we obtain the stochastic differential equation for  .t/ as

d D Œ�2.t; t; !.t// � 2� .t/�dt

D Œ N�2g2.r.t/; f .t; �// � 2� .t/�dt (25.61)

We have now reduced the non-Markovian stochastic dynamics to a three
dimensional Markovian stochastic dynamical system consisting of the stochastic
differential equation for the spot rate r.t/ [recall (25.51)]

dr D Œf2.0; t/C �f .0; t/C  .t/ � �r.t/� dt C N�g.r.t/; f .t; �//d QW .t/;

(25.62)

the stochastic differential equation for the discrete forward rate f .t; �/

[recall (25.45)], namely,

df .t; �/ D �2.t; �; !.t//
.e�.��t / � 1/

�
dt C �.t; �; !.t//d QW .t/;

D N�2g2.r.t/; f .t; �//e�2�.��t / .e�.��t / � 1/

�
dt

C N�e��.��t /g.r.t/; f .t; �//d QW .t/; (25.63)

and the stochastic differential equations (25.61) for  .t/. Finally we recall that the
dynamics of the forward rate to any maturity T , f .t; T / is given by (25.45) and
so are determined once r.t/ and f .t; �/ are determined. These latter quantities are
driven by the three stochastic differential equations (25.61)–(25.63) which together
form the Markovian representation. The price of any derivative instrument would
then have to depend on r.t/ and f .t; �/. Thus a bond of maturity T would have
a price at time t denoted by P.t; T; r.t/; f .t; �//, and this price is also driven by
the three-dimensional Markovian stochastic differential equation system referred to
above.

25.7.3.1 Interpreting the Subsidiary Variable  .t/

However, it would perhaps be more satisfying to relate  .t/ to the market rates r.t/
and f .t; �/. Indeed it turns out that such a relationship does exist for the forward
rate volatility function assumed in Eq. (25.44) for the generalised case ofG.!.t// D
g.r.t/; f .t; �//.
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Proposition 25.1 The subsidiary integrated square variance quantity  .t/ defined
in Eq. (25.60) is related to the rates r.t/ and f .t; �/ via

 .t/ D �˛ .t; �/ Œr .t/ � f .0; t/� � �e��.t��/˛ .t; �/ Œf .t; �/ � f .0; �/� ;
(25.64)

where ˛.t; �/ � e��t

e��� � e��t .

For the proof of Proposition 25.1 see Appendix 25.1.
An important consequence of Proposition 25.1 is that it allows us to reduce

by one the dimension of the stochastic dynamic system (25.61)–(25.63) to the
two-dimensional one consisting of the stochastic differential equations (25.62)
and (25.63) with  .t/ being defined by Eq. (25.64). This reduction in dimension is
quite significant if we seek to solve for derivative prices in this framework by use of
partial differential equations or lattice based methods as in Bhar et al. (2000), since
then we need to deal only with two rather than three spatial variables in the partial
differential operator. The reduction is less significant, though still useful, when
using Monte-Carlo simulation. This is so since Monte Carlo simulation requires
the simulation of the one Wiener increment, d QW .t/. The generation of  .t/ by
Eq. (25.64) rather than discretising Eq. (25.61) should lead to some computational
efficiency.

A consequence of Proposition 25.1 is that we are able to express the forward rate
to any maturity T in terms of the two rates r.t/ and f .t; �/.

Proposition 25.2 The forward rate f .t; T / to any maturity T is given by

f .t; T /� f .0; T / D

� e�2�.T��/ ˛.�; t/
˛.T; t/

Œf .t; �/ � f .0; �/�C e�2�.T�t / ˛.t; �/
˛.T; �/

Œr.t/ � f .0; t/� :

(25.65)

For the proof of Proposition 25.2 see Appendix 25.2.

25.7.3.2 The Term Structure of Interest Rates

We recall the Heath–Jarrow–Morton approach of defining a money market
account (25.10) and showing that the relative bond price

Z.t; T / D P.t; T /

A.t/
;

is a martingale, so that the bond price can be written

P.t; T / D QEt
�
A.t/

A.T /

�
D QEt

�
exp

�
�

Z T

t

r.y/dy

��
: (25.66)
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Here, QEt is the expectation taken with respect to the probability distribution
generated by the stochastic differential system (25.62) and (25.63). We use



�
r.t�/; f .t�; �/ j r.t/; f .t; �/	 ;

to denote the transition probability density function between t and t� (t � t�). This
quantity satisfies the Kolmogorov backward partial differential equation, which for
our case is given by,

K 
 C @


@t
D 0;

where the operator K is the infinitesimal generator of the diffusion process for
f .t; �/, r.t/ driven by the stochastic differential equations (25.62) and (25.63). It
turns out that K is given by (see Appendix 25.3),

K 
 � �21

�
e�.��t / � 1	

�

@


@f
C Œf2.0; t/C �f .0; t/C  � �r�

@


@r

C 1

2
�21
@2


@f 2
C 1

2
�2r
@2


@r2
C �1�r

@2


@f @r
;

(25.67)

where �1.t/ D �.t; �; !.t// and �r .t/ D �.t; t; !.t//. By application of the
Feynman–Kac formula to Eq. (25.66) we find that the bond price P.t; T; r; f /
satisfies the partial differential equation,

@P

@t
C K P � r.t/P D 0; (25.68)

subject to the terminal condition

P.T; T; r; f / D 1;

and the boundary conditions

P.t; T;1; f / D 0; .f � 0/;

P.t; T; r;1/ D 0; .r � 0/:

The further boundary conditions P.t; T; 0; f / and P.t; T; r; 0/ may be obtained
by an extrapolation procedure to be discussed in Bhar et al. (2000). Note that in
subsequent discussion we set

D.t/ � f2.0; t/C �f .0; t/:

A consequence of Proposition 25.2 is that it turns out to be possible to obtain
an analytical expression for the bond price. In fact we may state the following
proposition:
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Proposition 25.3 The price of bonds driven by the Markovian stochastic differen-
tial equation system (25.62) and (25.63) can be expressed as

P.t; T; r; f / D P.0; T /

P.0; t/
exp

�
�ˇ.t; T / .r.t/ � f .0; t//� 1

2
ˇ2.t; T / .t/

�
:

(25.69)

where ˇ.t; T / D 1

�

�
1 � e��.T�t /	 ; and  .t/ is defined in Eq. (25.64).

For the proof of Proposition 25.3 see Appendix 25.4.
The bond pricing equation (25.69) has precisely the same form as the one derived

by Ritchken and Sankarasubramanian (1995) who (in current notation) assumed
a form for the volatility function in Eq. (25.42) with G.!.t// D g.r.t// which
is independent of the forward rate f .t; �/. In fact the results in Propositions 25.2
and 25.3 can be considerably generalised. Chiarella and Kwon (1999) have shown
that (25.69) holds in precisely the same form even when the forward rate volatility
depends on a set of discrete forward rates f .t; �1/; f .t; �2/; : : : ; f .t; �r / where
t � �1 < �2 < � � � < �r � T . Of course, under these different specifications the
history variable  .t/ will evolve differently but the functional relationship remains
the same.

25.7.3.3 Pricing European Bond Options

Consider an option written on the bond of maturity T . We suppose the option
matures at time Tc(< T ) and denote its price by C.t; T; r; f /. This price satisfies
the partial differential equation

@C

@t
C K C � rC D 0; .0 � t � Tc/: (25.70)

If we are dealing with a European call option with strike price E then the terminal
condition for (25.70) is

C.Tc; T; r; f / D ŒP.Tc; T; r; f /� E�C :

The boundary conditions at infinity are

C.t; T;1; f / D 0; f � 0;

C.t; T; r;1/ D 0; r � 0:

We recall that the bond prices at option maturity for any given values of
r.Tc/; f .Tc; �/ can be obtained directly from Eq. (25.69) without the need to
solve the bond pricing partial differential equation (25.68). In Bhar et al. (2000),
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we discuss the solution of the partial differential equation (25.70) by means of the
alternating directions implicit (ADI) method.

An alternative approach to pricing the European option is to use the result (also
derived by Heath–Jarrow–Morton) that

C.t; T; r; f / D QEt
�

exp

�
�

Z Tc

t

r.y/dy

�
ŒP.Tc; T; r.Tc/; f .Tc; �//� E�C

�
:

(25.71)

The expectation in Eq. (25.71) could be approximated by simulating an appropriate
number of times the stochastic differential equation system (25.62) and (25.63) from
t to Tc .

25.8 Heath–Jarrow–Morton Multi-Factor Models

In our previous discussion, we focussed on the case where only one noise factor was
impinging on the forward rate curve. However Heath–Jarrow–Morton framework
allows for the possibility of multiple noise sources, i.e.,

f .t; T / D f .0; T /C
Z t

0

˛.v; T; �/dvC
nX
iD1

Z t

0

�i .v; T; �/dWi .v/; (25.72)

where the n noise terms dW i are the increments of independent Wiener processes
and the �i .t; T; �/ are the volatility functions associated with each noise term. The
manipulations leading to (25.15) in Sect. 25.2 are identical in the multiple noise case
and merely involve a little more algebra. Thus setting T D t in (25.72) we have

r.t/ D f .0; t/C
Z t

0

˛.v; t; �/dvC
nX
iD1

Z t

0

�i .v; t; �/dWi .v/: (25.73)

Substituting (25.72) into (25.6) and following the same procedure that yielded (25.7)
we find that the stochastic differential equation for the bond price now becomes

dP.t; T / D Œr.t/C b.t; T; �/�P.t; T /dt C
nX
iD1

ai .t; T; �/P.t; T /dWi .t/; (25.74)

where

ai .t; T; �/ D �
Z T

t

�i .t; v; �/dv; (25.75)
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and

b.t; T; �/ D �
Z T

t

˛.t; v; �/dvC 1

2

nX
iD1

a2i .t; T; �/: (25.76)

The process for the relative bond price

Z.t; T / D P.t; T /

A.t/
;

is easily found to be

dZ.t; T / D b.t; T; �/Z.t; T /dt C
nX
iD1

ai .t; T; �/Z.t; T /dWi .t/: (25.77)

Now by forming a portfolio of bonds of .nC1/ different maturities and holding these
in proportions that ensure the existence of no riskless arbitrage opportunities results
in the condition (for interpretation compare with (10.5) that gives the expected
excess return condition in the multi-factor case)

Œr.t/C b.t; T; �/�� r.t/ D �
nX
iD1

�i .t/ai .t; T; �/; (25.78)

where �i .t/ is the market price of risk associated with the i th noise factor. The term
on the left-hand side of Eq. (25.78) is the expected excess return on the bond, the
term on the right hand side is the sum of the risk-premia (�iai ) for bearing the risk
associated with each source of uncertainty (Wi.t/). Equation (25.78) simplifies to

b.t; T; �/C
nX
iD1

�i .t/ai .t; T; �/ D 0; (25.79)

which is the multifactor analogue of the forward rate drift restriction (25.14). By
use of (25.75) Eq. (25.79) reads

Z T

t

˛.t; v; �/dv D
nX
iD1

�
1

2
a2i .t; T; �/C �i .t/ai .t; T; �/

�
: (25.80)

Differentiating this last equation with respect to maturity T we find that

˛.t; T; �/ D �
nX
iD1

�i .t; T; �/
�
�i .t/ �

Z T

t

�i .t; v; �/dv
�
; (25.81)
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which is the forward rate drift restriction in the multi-factor case. Thus substitut-
ing (25.81) into (25.73), (25.74) and (25.77) the stochastic differential equations for
r.t/, P.t; T / and Z.t; T / become respectively, in the arbitrage free environment,

dr D
"
f2.0; t/C @

@t

nX
iD1

Z t

0
�i .v; t; �/

Z t

v
�i .v; y; �/dydvC

nX
iD1

Z t

0

@�i

@t
.v; t; �/dW i .v/

�
nX
iD1

�i .t/�i .t; t; �/�
nX
iD1

Z t

0
�i .v/

@�i

@t
.v; t; �/dv

#
dtC

nX
iD1

�i .t; t; �/dW i .t/

dP.t; T / D
"
r.t/�

nX
iD1

�i .t/ai .t; T; �/
#
P.t; T /dtC

nX
iD1

ai .t; T; �/P.t; T /dW i .t/;

dZ.t; T / D �
nX
iD1

�i .t/ai .t; T; �/Z.t; T /dtC
nX
iD1

ai .t; T; �/Z.t; T /dW i .t/:

We then form the new set of processes

QWi.t/ D Wi.t/ �
Z t

0

�i .s/ds; .i D 1; 2; � � � ; n/:

By use of Girsanov’s theorem these become Wiener processes under the equivalent
measure QP. Thus the forgoing set of equations become

dP.t; T / D r.t/P.t; T /dt C
nX
iD1

ai .t; T; �/P.t; T /d QWi.t/; (25.82)

dZ.t; T / D
nX
iD1

ai .t; T; �/Z.t; T /d QWi.t/; (25.83)

dr D
"
f2.0; t/C @

@t

nX
iD1

Z t

0

�i .v; t; �/
Z t

v

�i .v; y; �/dydv

C
nX
iD1

Z t

0

@�i

@t
.v; t; �/d QWi.v/

#
dt C

nX
iD1

�i .t; t; �/d QWi.t/: (25.84)

Again under QP the relative bond price Z.t; T / is a martingale, so that

Z.t; T / D QEt ŒZ.T; T /� ; (25.85)

which in terms of the bond price becomes

P.t; T / D QEt
�

exp

�
�

Z T

t

r.y/dy

��
; (25.86)
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which of course is the same as (25.29). The difference here is the QEt is generated
by (25.84) which in its turn is driven by the n independent noise terms QWi.t/. Thus
if we were to use simulation to directly evaluate (25.86) we would need to simulate
n independent sequences of normal random variables in order to simulate a path
for r.t/. Furthermore if the �i .t; T / depend on other factors, such as discrete tenor
forward rates, then the processes for these (under QP) would have to be simulated as
well.

25.9 Relating Heath–Jarrow–Morton to Hull–White
Two-Factor Models

We have already seen in Sect. 25.7.1 that the Hull–White extended Vasicek model
can be derived (far more simply) in the Heath–Jarrow–Morton framework once an
appropriate form for the volatility function is chosen. In this section we show that the
Hull–White two-factor model can be obtained as a special case of the multi-factor
Heath–Jarrow–Morton model.

First we recall the Hull–White two-factor model Hull and White (1994), as
summarised by Rebonato (1998). The instantaneous spot rate is assumed to follow
the process

dr D Œ	.t/C h.t/ � ar.t/�dt C �1dz1; (25.87)

where the additional term h.t/ in the drift satisfies

dh D �b h.t/dt C �2dz2: (25.88)

Here z1; z2 are correlated Wiener processes, i.e.

EŒdz1 dz2� D �dt:

First we note that we may reexpress (25.87) and (25.88) in terms of the independent
Wiener processes w1; w2 as

dr D Œ	.t/C h.t/ � ar.t/�dt C �1
p
1 � �2 dw1 C �1� dw2; (25.89)

dh D �b h.t/ dt C �2dw2: (25.90)

We consider a two-factor Heath–Jarrow–Morton model with volatility specifications

�i .t; T / D N�i e��i .T�t /; (25.91)
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where N�i and �i are constants, for i D 1; 2. Accordingly, the forward rate dynamics
are expressed as

f .t; T / D f .0; T /C
Z t

0

˛.v; T /dvC
Z t

0

�1.v; T /dW1.v/C
Z t

0

�2.v; T /dW2.v/;

which under the risk-neutral measure (see Sect. 25.8) becomes

f .t; T / D f .0; T /C
2X
iD1

Z t

0

�i .v; T /

Z T

v

�i .v; y/dy dvC
2X
iD1

Z t

0

�i .v; T /d QWi.v/:

The spot rate process under the risk-neutral measure satisfies

r.t/ D f .0; t/C
2X
iD1

Z t

0

�i .v; t/

Z t

v

�i .v; y/dy dvC
2X
iD1

Z t

0

�i .v; t/d QWi.v/;

(25.92)

or

dr D
"
f2.0; t/C @

@t

2X
iD1

Z t

0

�i .v; t/

Z t

v

�i .v; y/dy dv

C
2X
iD1

Z t

0

@�i

@t
.v; t/dfWi.v/

#
dt C

2X
iD1

�i .t; t/d QWi.t/:

(25.93)

The volatility functions (25.91) have the property

@�i .t; T /

@T
D ��i�i .t; T /:

Thus the stochastic differential equation (25.93) for the spot rate becomes

dr D
"
f2.0; t/C @

@t

2X
iD1

Si .t/ �
2X
iD1

�ixi .t/

#
dt C

2X
iD1

N�id QWi.t/; (25.94)

where we set

Si.t/ D N�2i
Z t

0

e��i .t�v/
Z t

v

e��i .y�v/dy dv;

and

xi .t/ D
Z t

0

N�ie��i .t�v/d QWi.v/;
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where i D 1; 2: The variables xi .t/ satisfy the stochastic differential equations

dxi D N�ie��i .t�t /d QWi.t/ �
Z t

0

�i N�ie��i .t�v/d QWi.v/dt

D ��ixi .t/dt C N�id QWi.t/: (25.95)

The system (25.94), (25.95) for r.t/; x1.t/, and x2.t/ is the Markovian system
that generates the probability distribution for QEt (i.e. this is the system we would
simulate if we use Monte-Carlo simulation to evaluate QEt ). To obtain the link with
the Hull–White two-factor model note that with the volatility functions (25.91) the
stochastic integral equation for r.t/, see Eq. (25.92), becomes

r.t/ D f .0; t/C
2X
iD1

Si .t/C x1.t/C x2.t/: (25.96)

This last equation may be used to eliminate x1.t/ in (25.94), thus

x1.t/ D r.t/ � f .0; t/ �
2X
iD1

Si .t/ � x2.t/;

which upon substitution into (25.94) yields

dr D Œf2.0; t/C �1f .0; t/C S.t/C .�1 � �2/x2.t/ � �1r.t/�dt C
2X
iD1

N�id QWi.t/;

(25.97)
where we have defined

S.t/ D
2X
iD1

�
@

@t
Si .t/C �1Si.t/

�
; (25.98)

and x2.t/ is driven by Eq. (25.95) with i D 2, viz

dx2 D ��2x2.t/dt C N�2d QW2.t/: (25.99)

To fully obtain the correspondence with the Hull–White two-factor model in
Eqs. (25.89), (25.90) set

	.t/ D f2.0; t/C �1f .0; t/C S.t/;

a D �1;

b D �2; (25.100)
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so that we are now dealing with the system

dr D Œ	.t/C .a � b/x2.t/ � ar.t/�dt C N�1d QW1.t/C N�2d QW2.t/; (25.101)

dx2 D �b x2.t/dt C N�2d QW2.t/: (25.102)

If we set

h.t/ D .a � b/x2.t/

then Eq. (25.102) becomes

dh D �bh.t/dt C .a � b/ N�2d QW2.t/: (25.103)

The system (25.101) and (25.103) for r.t/ and h.t/ is equivalent to the Hull–White
two-factor system (25.89), (25.90) if we set

N�1 D �1
p
1 � �2; N�2 D �1� and .a � b/ N�2 D �2; (25.104)

from which the parameters of the Hull–White two-factor model may be related to
the parameters of the two-factor Heath–Jarrow–Morton model via

� D N�2q
N�21 C N�22

; �1 D
q

N�21 C N�22 ; �2 D .�1 � �2/ N�2; b D �2: (25.105)

It is certainly instructive to understand how the Hull–White class of models can
be derived within the Heath–Jarrow–Morton framework. However, the biggest
advantage is that the 	.t/ function in the stochastic differential equation (25.101)
for r.t/ is automatically calibrated to the initially observed forward curve f .0; t/.

25.10 The Covariance Structure Implied
by the Heath–Jarrow–Morton Model

Another important issue to be considered is the analysis of the statistical properties
of the evolution of the forward rates and yields under the jump-diffusion framework.
As we have mentioned before one factor models allow for only parallel shifts of
the yield curve, so bond prices and forward rates of all maturities are perfectly
correlated. Multi dimensional models, on the other hand, impose a correlation
structure between forward rates of different maturities which based on empirical
studies shows an exponentially decaying behavior. Rebonato (1998) provides an
interesting discussion on forward rate correlations and examines the patterns
observed in financial markets. Here we seek to understand the effect on the forward
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rate correlation structure implied by the assumptions concerning in the forward rate
dynamics.

25.10.1 The Covariance Structure of the Forward Rate
Changes

Under the risk neutral measure, the changes of the forward rate follow the dynamics

df .t; T / D
nX
iD1

�i .t; T; !.t//i .t; T; !.t//dt C
nX
iD1

�i .t; T; !.t//d QWi.t/:

(25.106)

Thus

QE0Œdf .t; T /� D
nX
iD1

�i .t; T; !.t//i .t; T; !.t//dt: (25.107)

Denote T1 and T2 two different maturities, then the covariance of the changes on the
forward rate is calculated as

cov0Œdf .t; T1/; df .t; T2/�

D QE0Œ.df .t; T1/ � QE0Œdf .t; T1/�/.df .t; T2/� QE0Œdf .t; T2/�/�

D QE0
"

nX
iD1

�i .t; T1; !.t//d QWi.t/ �
nX
iD1

�i .t; T2; !.t//d QWi.t/

#
:

From the independence of the Wiener increments it readily follows that

cov0Œdf .t; T1/; df .t; T2/� D
nX
iD1

�i .t; T1; !.t//�i .t; T2; !.t//dt; (25.108)

and the variance of the forward rate changes df .t; Th/ (h D 1; 2) as

var0Œdf .t; Th/� D
nX
iD1

�2i .t; Th; !.t//dt: (25.109)

The correlation coefficient between the forward rates changes df .t; T1/ and
df .t; T2/ is then evaluated as

�.t; T1; T2/ D cov0Œdf .t; T1/; df .t; T2/�p
var0Œdf .t; T1/�

p
var0Œdf .t; T2/�

; (25.110)
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where cov0Œdf .t; T1/; df .t; T2/� and var0Œdf .t; Th/�; .h D 1; 2/ are defined above.
To demonstrate these results, we assume the volatility functions are of the form

�i .s; t/ D �0i e
���i .t�s/; i D 1; : : : ; n; (25.111)

where the �0i ; �� i are constant. Then the covariance (25.108) between df .t; T1/ and
df .t; T2/ is calculated as

cov0Œdf .t; T1/; df .t; T2/� D
nX
iD1

�20i e
���i .T1CT2�2t/; (25.112)

and the correlation coefficient between the forward rates changes df .t; T1/ and
df .t; T2/ is evaluated as

�.t; T1; T2/ D
Pn

iD1 �20i e���i .T1CT2�2t/p
var0Œdf .t; T1/�

p
var0Œdf .t; T2/�

; (25.113)

where the variance of the forward rate changes df .t; Th/ (h D 1; 2) is

var0Œdf .t; Th/� D
nX
iD1

�20i e
�2��i .Th�t /: (25.114)

25.10.2 The Covariance Structure of the Forward Rate

The forward rate under the risk neutral measure is given by

f .t; T / D f .0; T /C
nX
iD1

Z t

0

�i .s; T; !.s//i .s; T; !.s//ds

C
nX
iD1

Z t

0

�i .s; T; !.s//d QWi.s/:

(25.115)

Thus

QE0Œf .t; T /� D f .0; T /C
nX
iD1

Z t

0

�i .s; T; !.s//i .s; T; !.s//ds: (25.116)
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Denote T1 and T2 two maturities then the covariance of the forward rates f .t; T1/
and f .t; T2/ is calculated as

cov0Œf .t; T1/; f .t; T2/�

D QE0Œ.f .t; T1/� QE0Œf .t; T1/�/.f .t; T2/� QE0Œf .t; T2/�/�

D QE0
"

nX
iD1

Z t

0

�i .s; T1; !.s//d QWi.s/ �
nX
iD1

Z t

0

�i .s; T2; !.s//d QWi.s/

#
:

(25.117)

Using the result

E0Œ

Z t

0

�i .s; T1/d QWi.s/

Z t

0

�i .s; T2/d QWi.s/� D
Z t

0

�i .s; T1/�i .s; T2/ds;

and the covariance is given by

cov0Œf .t; T1/; f .t; T2/� D
nX
iD1

Z t

0

�i .s; T1/�i .s; T2/ds: (25.118)

Considering again the volatility functions of the form

�i .s; t/ D �0i e
���i .t�s/; i D 1; : : : ; n; (25.119)

then
Z t

0

�i .s; T1/�i .s; T2/ds D �20i e
���i .T1CT2/

2�� i
.e2��i t � 1/: (25.120)

The covariance between the forward rates f .t; T1/ and f .t; T2/ becomes

cov0Œf .t; T1/; f .t; T2/� D
nX
iD1

�20i e
���i .T1CT2/

2�� i
.e2��i t � 1/; (25.121)

and the correlation coefficient �.t; T1; T2/ between the forward rates f .t; T1/ and
f .t; T2/ is evaluated as

Pn
iD1

�20i e
���i .T1CT2/

2��i
.e2��i t � 1/p

var0Œf .t; T1/�
p

var0Œf .t; T2/�
; (25.122)

where the variance of the forward rate f .t; Th/ .h D 1; 2/ is

var0Œf .t; Th/� D
nX
iD1

�20i e
�2��i Th
2�� i

.e2��i t � 1/: (25.123)
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25.11 Appendix

Appendix 25.1 Proof of Proposition 25.1

Recall that r.t/ satisfies the stochastic integral equation (25.23) and f .t; �/ satisfies
the stochastic integral equation (25.26) with T set equal to � . We assume the forward
rate volatility specifications

� .v; t; !.v// D N�e��.t�v/g .r.v/; f .v; �//

and set

�� .v; t; !.v// D � .v; t; !.v//

Z t

v

� .v; s; !.v// ds

D N�2e��.t�v/g .r.v/; f .v; �//
Z t

v

e��.s�v/g .r.v/; f .v; �// ds

D N�2g2 .r.v/; f .v; �// e��.t�v/
�
1 � e��.t�v/

�

�
:

Note that the first integral term in Eq. (25.23) can be written

Z t

0

�� .v; t; !.v// dv D N�2
Z t

0

g2 .r.v/; f .v; �// e��.t�v/
�
1� e��.t�v/	

�
dv

D e��t N�2
�

Z t

0

g2.r.v/; f .v; �//e�vdv

� e�2�t N�2
�

Z t

0

g2.r.v/; f .v; �//e2�vdv

� e��t

�
I.t I�/� e�2�t

�
I.t I 2�/:

Next note that the second integral in Eq. (25.23) may be written as
Z t

0

� .v; t; !.v//d QW .v/ D N�
Z t

0

e��.t�v/g .r.v/; f .v; �//d QW .v/

D N�e��t
Z t

0

g .r.v/; f .v; �// e�vd QW .v/

� e��t J.t I�/:
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Similarly the first integral term in Eq. (25.26) can be written

Z t

0

�� .v; �; !.v// dv D N�2
Z t

0

g2 .r.v/; f .v; �// e��.��v/
�
1 � e��.��v/	

�
dv

D e���

�
I.t I�/ � e�2��

�
I.t I 2�/:

The second integral term in Eq. (25.26) may be similarly treated, so that
Z t

0

� .v; �; !.v//d QW .v/ D N�
Z t

0

e��.��v/g .r.v/; f .v; �//d QW .v/

D N�e���
Z t

0

e�vg .r.v/; f .v; �//d QW .v/

� e���J.t I�/:
We may thus write the stochastic integral equations for r.t/ and f .t; �/ in terms of
the integrals I.t I�/; I.t I 2�/ and J.t I�/ as

r.t/ D f .0; t/C e��t

�
I.t I�/ � e�2�t

�
I.t I 2�/C e��t J.t I�/; (25.124)

f .t; �/ D f .0; �/C e���

�
I.t I�/� e�2��

�
I.t I 2�/C e���J.t I�/: (25.125)

We note that Eqs. (25.124) and (25.125) can be re-expressed as

r.t/ � f .0; t/C e�2�t

�
I.t I 2�/ D e��t

�
I.t I�/
�

C J.t I�/
�
;

f .t; �/ � f .0; �/C e�2��

�
I.t I 2�/ D e���

�
I.t I�/
�

C J.t I�/
�
:

We may combine the above equations to express I.t I 2�/ as a function of r.t/ and
f .t; �/, i.e.,

I.t I 2�/ D �e��

e��t � e��� Œf .t; �/ � f .0; �/� � �e�t

e��t � e��� Œr.t/ � f .0; t/�

(25.126)

Finally we note that

 .t/ D
Z t

0

�2 .v; t; !.v// dv D N�2
Z t

0

e�2�.t�v/g2 .r.v/; f .v; �// dv

D N�2e�2�t
Z t

0

e2�vg2 .r.v/; f .v; �// dv D e�2�t I.t I 2�/:
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Thus we finally have

 .t/ D �˛.t; �/ Œr.t/ � f .0; t/� � �e��.t��/˛.t; �/ Œf .t; �/ � f .0; �/� ;
(25.127)

where we set

˛.t; �/ � e��t

e��� � e��t :

Appendix 25.2 Proof of Proposition 25.2

It is readily verified that the manipulations that led to Eq. (25.125) of Appendix 25.1
are equally valid for t set to a general maturity T . Thus (25.126) holds for t set to
T , i.e.,

I.t I 2�/ D �e�T

e��t�e��T Œf .t; T /�f .0; T /��
�e�t

e��t�e��T Œr.t/�f .0; t/�

D e2�t .t/:

Substituting the expression for  .t/ we find that

I.t I 2�/ D �e2�t
�
˛.t; �/Œr.t/ � f .0; t/� � e��.t��/˛.t; �/Œf .t; �/ � f .0; �/�	

D �

�
e�T

e��t � e��T Œf .t; T / � f .0; T /�� e�t

e��t � e��T Œr.t/ � f .0; t/�

�
:

On rearranging

e�T

e��t � e��T Œf .t; T /� f .0; T /� D e�t

e��t � e��T Œr.t/ � f .0; t/�

Ce2�t ˛.t; �/Œr.t/ � f .0; t/�

�e2�t e��.t��/˛.t; �/Œf .t; �/ � f .0; �/�;

from which

f .t; T /� f .0; T / D Œr.t/ � f .0; t/�
�
e�t

e�T
C e2�t .e��t � e��T /

e�T
˛.t; �/

�

� e2�t e��.t�T /

e�T
˛.t; �/.e��t � e��T /Œf .t; �/ � f .0; �/�:

(25.128)
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Consider the following:

(i)

e�t C e2�t .e��t � e��T /
e�T

˛.t; �/ D e�t

e�T
C e2�t .e��t � e��T /e��t

e�T .e��� � e��t /

D e�t .e��� � e��t /C e�t .e��t � e��T /
e�T .e��� � e��t /

D e�t .e��� � e��T /
e�T .e��� � e��t /

D e2�t

e2�T
e��t

e��� � e��t
e��� � e��T

e��T D e�2�.T�t / ˛.t; �/
˛.T; �/

(ii)

e2�t e��.t��/˛.t; �/
.e��t � e��T /

e�T
D e2�t��tC��˛.t; �/

.e��t � e��T /
e2�T e��T

D e�t e��e��t .e��t � e��T /
e2�T e��T .e��� � e��t /

D e2��

e2�T
e���

�.e��t � e��� /
.e��t � e��T /

e��T

D �e�2�.T��/ ˛.�; t/
˛.T; t/

:

Hence Eq. (25.128) can be rewritten

f .t; T /� f .0; T / D e�2�.T�t / ˛.t; �/
˛.T; �/

Œr.t/ � f .0; t/�

� e�2�.T��/ ˛.�; t/
˛.T; t/

Œf .t; �/ � f .0; �/�

where

˛.	1; 	2/ � e��	1
e��	2 � e��	1 :

We have thus proved Proposition 25.2.

Appendix 25.3 Details of the Infinitesimal Generator K

We recall the following result from Sect. 5.4 concerning the infinitesimal generator
of an n dimensional Ito process. In our application we set

X1 � f .t; �/;

a1 � �2.t; �; !.t//
.e�.��t / � 1/

�
;
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�11 � �1 � �.t; �; !.t//;

X2 � r.t/;

a2 � f2.0; t/C �f .0; t/C  .t/ � �r.t/;

�21 � �r � �.t; t; !.t//:

Thus the matrix S assumes the form
�
�21 �1�r

�1�r �2r

�
:

Using the foregoing expression for S the expression for the operator K in
Eq. (25.67) is readily derived.

Appendix 25.4 Proof of Proposition 25.3

Using the relationship

P.t; T / D exp

�
�

Z T

t

f .t; s/ds

�

and Eq. (25.26) for the forward rate f .t; s/ we obtain for the bond price the
expression

P.t; T /DP.0; T /

P.0; t/
exp

�
�

�Z T

t

Z t

0

��.v; s; �/dvdsC
Z T

t

Z t

0

�.v; s; �/d QW .v/ds

��
;

where

�.v; T; �/ D N�e��.T�v/g.r.v/; f .v; �//

��.v; T; �/ D �.v; T; �/
Z T

v

�.v; s; �/ds

D N�2g2.r.v/; f .v; �//e��.T�v/
Z T

v

e��.s�v/ds:

Set

I D
Z T

t

Z t

0

��.v; s; �/dvds C
Z T

t

Z t

0

�.v; s; �/d QW .v/ds

� I1 C I2

D
Z t

0

Z T

t

��.v; s; �/dsdvC
Z t

0

Z T

t

�.v; s; �/dsd QW .v/;
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where we have interchanged the order of integration to obtain the last equality. Next
note that

Z T

t

��.v; s; �/dsD� .r.v/; f .v; �//
Z T

t

e��.s�v/
Z s

v

e��.y�v/� .r.v/; f .v; �// dyds

D� .r.v/; f .v; �//
Z T

t

e��.s�v/

Z t

v

e��.y�v/� .r.v/; f .v; �// dy

C
Z s

t

e��.y�v/� .r.v/; f .v; �// dy

�
ds

D N�2g2.r.v/; f .v; �//
Z T

t

e��.s�v/ds
Z t

v

e��.y�v/dy

C N�2g2.r.v/; f .v; �//
Z T

t

e��.s�v/
Z s

t

e��.y�v/dyds

D N�2g2.r.v/; f .v; �//e��.t�v/
�Z T

t

e��.s�t /ds

� Z t

v

e��.y�v/dy

C N�2g2.r.v/; f .v; �//e�2�.t�v/
Z T

t

e��.s�t /
Z s

t

e��.y�t /dyds

D ��.v; t; �/ˇ.t; T /C �2.v; t; �/˛.t; T /;

where

ˇ.t; T / D
Z T

t

e��.s�t /ds D 1

�

�
1� e��.T�t /	 ;

˛.t; T / D
Z T

t

e��.s�t /
Z s

t

e��.y�t /dyds D 1

2
ˇ2.t; T /;

i.e. we have shown that

Z T

t

��.v; s; �/ds D ˇ.t; T /��.v; t; �/C 1

2
ˇ2.t; T /�2.v; t; �/:

Next consider

Z T

t

�.v; s; �/ds D
Z T

t

e��.s�v/� .r.v/; f .v; �// ds

D � .r.v/; f .v; �// e��.t�v/
�Z T

t

e��.s�t /ds

�
;
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i.e. we have shown that
Z T

t

�.v; s; �/ds D �.v; t; �/ˇ.t; T /:

Returning to the expressions for I1, I2 we can now write

I1 D
Z t

0

�
ˇ.t; T /��.v; t; �/C 1

2
ˇ2.t; T /�2.v; t; �/

�
dv;

and

I2 D
Z t

0

ˇ.t; T /�.v; t; �/d QW .v/;

so that

I D 1

2
ˇ2.t; T /

Z t

0

�2.v; t; �/dv

Cˇ.t; T /
�Z t

0

��.v; t; �/dvC
Z t

0

�.v; t; �/d QW .v/
�
:

However we note from Eq. (25.23), for the instantaneous spot rate r.t/, that
Z t

0

��.v; t; �/dvC
Z t

0

�.v; t; �/d QW .v/ D r.t/ � f .0; t/:

Hence

I D 1

2
ˇ2.t; T /

Z t

0

�2.v; t; �/dvC ˇ.t; T / Œr.t/ � f .0; t/� :

Recalling the definition of the subsidiary stochastic variable  .t/ we can finally
write

I D 1

2
ˇ2.t; T / .t/C ˇ.t; T / Œr.t/ � f .0; t/� :

Hence the expression for the bond price may be written as in Proposition 25.3.

25.12 Problems

Problem 25.1 Show that the Hull–White model can be obtained within the Heath–
Jarrow–Morton framework by setting

�.t; T / D N�e�k.T�t /;

where N�; k are constants.
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Problem 25.2 The Heath–Jarrow–Morton model takes as its starting point a
stochastic differential equation for the instantaneous forward rate of the form

df .t; T / D ˛.t; T /dt C �.t; T /dW.t/;

and from this determines the stochastic dynamics of the instantaneous spot rate spot
rate r.t/ and pure discount bond price P.t; T /.

Suppose instead we take as the starting point a stochastic differential equation
for P.t; T / of the form

dP.t; T /

P.t; T /
D ˇ.t; T /dt C ı.t; T /dW.t/:

Determine the corresponding stochastic dynamics for r.t/ and f .t; T /.
Express in terms of ˇ.t; T / and ı.t; T / the Heath–Jarrow–Morton drift restric-

tion that guarantees no riskless arbitrage opportunities between bonds of different
maturities.

Problem 25.3 In Sect. 23.6 we considered the volatility function

�.t; T / D N�e��.T�t /

and showed how this allowed the system dynamics to be Markovianised.
Now consider the volatility function

�.t; T / D Œ�0 C �1.T � t/�e��.T�t /:

Show the system dynamics can be Markovianised in this case. In particular obtain
the stochastic differential equations for the bond price and the instantaneous spot
interest rate.

Hint: You will need to obtain a linked stochastic differential equation system for

Z1.t/ D
Z t

0

.t � v/e��.t�v/dW.v/;

and

Z0.t/ D
Z t

0

e��.t�v/dW.v/:

Problem 25.4 The Ho–Lee model is obtained within the Heath–Jarrow–Morton
framework by setting

�.t; T / D N�;
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where N� is a constant. Show that

f .t; T / D r.t/C f .0; T / � f .0; t/C N�2t.T � t/:

By obtaining the dynamics for r.t/ under the risk neutral measure, show also that

r.t/ D f .0; t/C 1

2
�2t2 C N� QW .t/:

Hence, show that for this model the bond price is given by

P.t; T / D expŒ�a.t; T / � .T � t/r.t/�;

where

a.t; T / D ln
P.0; t/

P.0; T /
� .T � t/f .0; t/C 1

2
N�2t.T � t/2:

Problem 25.5 Computational Problem—Consider the Heath–Jarrow–Morton
model with the volatility function

�.t; T / D �0e
��.T�t /:

We know in this case that the dynamics for the instantaneous spot rate are given by
[Eq. (25.54)].

Take �0 D 0:02 and � D 0:6. Assume also that the initial forward curve is
given by

f .0; T / D 0:08� 0:03e�1:5T :

Consider the bond pricing formula [Eq. (25.29)]. Write a program to calculate the
bond price by simulating the stochastic differential equation for r.t/ from 0 to t and
performing the QEt operation by simulating a large number of paths from t to T . This
will give the bond price conditional on the value of r.t/ that has been obtained.

You can check the accuracy of your algorithm (and hence choose appropriate�t
and number of paths) by using the fact that when t D 0 we have the exact solution

P.0; T / D exp

�
�

Z T

0

f .0; s/ds

�
:

Use this to check the accuracy for T D 0:5; 1:0; 1:5 and 2:0.
Then use the simulation procedure to calculate P.0:5; 1:0/, P.0:5; 1:5/ and

P.0:5; 2:0/.
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Note that the evaluation of �.t; T / will be conditional on the interest rate r.t/.
Obtain r.t/ by simulating from 0 to t and be sure to specify the value of r.t/ that
you are using.

Check the accuracy of these approximations by using the exact bond-pricing
formula (here you need to refer to Sect. 23.4.2, but use the 	.t/ that arises in the
Heath–Jarrow–Morton model).
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