
Chapter 13
Option Pricing Under Jump-Diffusion Processes

Abstract This chapter extends the hedging argument of option pricing developed
for continuous diffusion processes previously to the situations when the underlying
asset price is driven by the jump-diffusion stochastic differential equations. By
constructing hedging portfolios and employing the capital asset pricing model,
we provide an option pricing integro-partial differential equations and a general
solution. We also examine alternative ways to construct the hedging portfolio and to
price option when the jump sizes are fixed.

13.1 Introduction

Now let us turn to the problem of developing the hedging argument under the
assumption that the underlying asset price x is driven by the jump-diffusion
stochastic differential equation (12.11). To develop a hedging argument we need
to know the dynamics of the option price. If the option price f is given by

f D f .x; t/;

then application of the results (12.26) implies that

df

f
D .�f � �kf /dt C �f dw C .Yf � 1/dN;

where1

f�f D � C .� � �k/x�C 1

2
�2x2� C �fkf ;

f �f D �x�;

fkf D E
QY Œf .xY; t/ � f .x; t/� D

Z
Œf .xY; t/ � f .x; t/�G.Y /dY;

1We recall the definitions � D @f

@t
, � D @f

@x
, � D @2f

@x2
.
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274 13 Option Pricing Under Jump-Diffusion Processes

and

Yf � 1 � .f .xY; t/ � f .x; t//=f .x; t/

is the random variable percentage change in the option price. If the Poisson event
for the asset occurs and the proportional jump size takes on the value Y , then the
Poisson event for the option occurs and the proportional jump size in the option
value is given by

Yf D f .xY; t/

f .x; t/
;

which is a nonlinear relationship connecting the random variables Yf and Y .

13.2 Constructing a Hedging Portfolio

Consider a portfolio which contains the asset, the option on the asset and the riskless
asset with return r per unit time in the proportions 	x , 	f , and 	r , so that

	x C 	f C 	r D 1:

If V is the value of the portfolio then the return dynamics of the portfolio are
given by

dV

V
D 	x

dx

x
C 	f

df

f
C 	rdr

D 	xŒ.� � �k/dt C �dw C .Y � 1/dN�

C	f Œ.�f � �kf /dt C �f dw C .Yf � 1/dN�C 	rrdt:

Collecting terms and using 	r D 1 � 	x � 	f we obtain

dV

V
D .�V � �kV /dt C �V dw C .YV � 1/dN; (13.1)

where

�V D 	x.� � r/C 	f .�f � r/C r;

�V D 	x� C 	f �f ; (13.2)

YV � 1 D 	x.Y � 1/C 	f Œf .xY ; t/ � f .x; t/�=f .x; t/;
kV D E

QY ŒYV � 1�:
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Here .YV � 1/ is the random variable percentage change in the portfolio’s value if
the Poisson jump event occurs.

When the asset price follows a diffusion process the hedging portfolio is rendered
riskless by choosing the portfolio proportions 	x , 	f such that

	x� C 	f �f D 0: (13.3)

However, this choice of portfolio weights in the case of a jump-diffusion process,
while eliminating the �V term will not eliminate the jump risk (i.e. the YV �1 term).
In fact, there is no choice of 	x and 	f which eliminates the jump risk term (i.e.
makes YV D 1).

Let us nevertheless determine the return characteristics of the portfolio when the
Black–Scholes hedge is followed. Letting 	�

x and 	�
f denote the values of 	x , 	f

satisfying (13.3) and V � the corresponding portfolio value we have from (13.1)

dV�

V � D .��
V � �k�

V /dt C .Y �
V � 1/dN: (13.4)

The portfolio return has thus been reduced to a pure jump process, and could also
be written

dV�

V � D
�

(��
V - �k�

V /dt, if the Poisson jump event does not occur,
(��

V - �k�
V /dt + .Y �

V � 1/ if the Poisson jump event occurs.
(13.5)

Equation (13.5) tells us that most of the time the portfolio return will be predictable
and earn .��

V � �k�
V /. However every .1=�/ units of time, on average, the portfolio

return takes an unexpected jump.
It is possible to say something about the qualitative characteristics of the portfolio

return. Note first of all that

Y �
V � 1 D 	�

f

f .xY; t/ � f .x; t/ � fx.x; t/.xY � x/

f .x; t/
:

Since the option price is a strictly convex function of the asset price it follows that

f .xY; t/ � f .x; t/
xY � x > fx.x; t/;

for Y > 1, and

f .xY; t/ � f .x; t/
xY � x < fx.x; t/;

for Y < 1. Thus for all values of Y , it follows that

f .xY; t/ � f .x; t/ � fx.x; t/.xY � x/ > 0:
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Hence

sign.Y �
V � 1/ D sign.	�

f /:

Suppose an investor is long the stock and short the option (i.e. 	�
f < 0) then most

of the time he or she would earn more than the expected return on the hedge ��
V ,

since k�
V < 0. The investor will however suffer losses when the asset price jumps

from time to time. These losses occur at such a frequency so as to, on average,
offset the excess return ��k�

V . If we define as a “quiet” period, that period in
between the arrival of Poisson jump events, and if we assume that the jump events
are related to asset specific information then the above argument shows that during
quiet periods writers of options will tend to make what appear to be positive excess
returns. Purchasers of options on the other hand would make negative excess returns
and therefore appear as “losers”. However, at the arrival (relatively infrequently) of
Poisson jump events, the options writers will suffer loss and the buyers appear as
“winners”. Since the arrival of the Poisson events is random, there is no systematic
way of exploiting this understanding of the dynamics. The reverse argument applies
when the investor is short the asset and long the option (i.e. 	�

f > 0).

13.3 Pricing the Option

The clue to pricing the option in the presence of jump-diffusion processes is the
alternative approach used by Black–Scholes employing the Capital Asset Pricing
model.

We have already stressed that the Poisson jump events are asset specific. It
follows that the jump component of the asset’s return represents non-systematic risk.
It also follows that, since the only uncertainty in the V � portfolio of the previous
section is the Poisson jump component, then its risk is uncorrelated with the market,
i.e. it contains only non-systematic risk. From modern portfolio theory we have the
result that portfolios containing only non-systematic risk have a beta factor of zero.
Furthermore, if the CAPM describes security returns then the return on a zero beta
portfolio must equal the riskless rate. It follows that

��
V D r;

or, from (13.2) that

	�
x .�� r/C 	�

f .�f � r/ D 0;

which when combined with

	�
x � C 	�

f �f D 0;



13.3 Pricing the Option 277

yields

� � r
�

D �f � r

�f
: (13.6)

After applying the definitions of �f and �f in the last equation, we obtain the
following equation for the option price

@f

@t
C .r ��k/x @f

@x
C 1

2
�2x2

@2f

@x2
� rf C�EQY Œf .xY ; t/�f .x; t/� D 0: (13.7)

Because of the expectation operator EQY , Eq. (13.7) is an integro-partial differential
equation and solution techniques for it require a degree of complexity beyond those
for the Black–Scholes partial differential equation.

We may use (13.6) to obtain a martingale representation of the price. Using an
argument familiar from Chaps. 8 and 10, if we use 
 to denote the market price of
risk associated with the risk factor dw then (13.6) may be interpreted as

� D r C 
�;

�f D r C 
�f :

Thus in the absence of riskless arbitrage opportunities the stochastic differential
equations for x and f may be written

dx

x
D .r � �k C 
�/dt C �dw C .Y � 1/dN;

df

f
D .r � �kf C 
�f /dt C �f dw C .Yf � 1/dN:

Or alternatively as

dx

x
D rdt C �d Qw C Œ.Y � 1/dN � �kdt�; (13.8)

df

f
D rdt C �f d Qw C Œ.Yf � 1/dN � �kf dt�; (13.9)

where

Qw.t/ D w.t/C
Z t

0


.s/ds:

Under the original measure P, Qw will not be a standard Wiener process, but
application of Girsanov’s theorem for processes involving jumps (see Bremaud
1981) allows us to assert that it is possible to obtain an equivalent measure QP under
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which Qw is a standard Wiener process and N remains a jump process with jump
intensity �.

We note that (13.9) may be written

d.fe�rt/ D e�rt�f fd Qw C e�rtf Œ.Yf � 1/dN � �kf dt�

so that under QP the quantity fe�rt, the option price measured in units of the money
market account ert, is a martingale, i.e.

f .x; t/ D e�r.T�t / QEt Œf .xT ; T /�;

where QEt is the expectation operator under QP.
We note that one way to calculate QEt would be to simulate the jump-diffusion

process (13.8) for x. Application of the Feynman–Kac formula for jump-diffusion
processes (see Appendix 12.1) would yield the integro-partial differential equa-
tion (13.7). Thus we have established the link between the martingale viewpoint
and the integro-partial differential equation viewpoint.

13.4 General Form of the Solution

Recall that in Eq. (13.7), t is the current time. If we switch the time variable to
� D T � t D time-to-maturity, then Eq. (13.7) becomes

� @f

@�
C .r � �k/x

@f

@x
C 1

2
�2x2

@2f

@x2
� rf C �EQY Œf .xY; �/ � f .x; �/� D 0:

(13.10)

To fully appreciate the nature of the pricing equation (13.10), recall thatG.Y / is the
probability density function for the random variable Y then (13.10) may be written

�@f
@�

C .r � �k/x
@f

@x
C 1

2
�2x2

@2f

@x2
� rf

C �

Z 1

�1
Œf .xY; �/ � f .x; �/�G.Y /dY D 0;

(13.11)

where

k D
Z 1

�1
YG.Y /dY � 1:
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This type of equation may be classed as a mixed integro-partial differential equation.
Whilst the solution of such equations is in general quite difficult, it turns out that the
general form of the solution may be expressed in a convenient form even before we
specify the density function G.Y /.

In the situation when the underlying asset is common stock equation (13.10) must
be solved subject to the boundary condition

f .0; �/ D 0; (13.12)

and the initial condition

f .x; 0/ D maxŒ0; x � E�; (13.13)

whereE is the exercise price of the option. LetM.x; � IE; �2; r/ denote the solution
to (13.10) in the absence of the jump component, i.e. when � D 0. ThusM would
be the Black–Scholes solution given by

M.x; � IE; �2; r/ D xN .d1/� Ee�r�N .d2/; (13.14)

where

d1 D ln.x=E/C .r C �2=2/�

�
p
�

; d2 D d1 � �
p
�:

Define the random variableXn D Qn
iD1 Yi as one having the same distribution as the

product of n independently identically distributed random variables, each identically
distributed as the random variable price change Y . It is assumedX0 D 1. Define En

to be the expectation operator over the distribution of Xn (Fig. 13.1).

Fig. 13.1 Constructing the random variable Xn
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We show in Appendix 13.1 that the solution to (13.10) subject to the boundary
and initial conditions (13.12), (13.13) can be written2

f .x; �/ D
1X
nD0

e��� .��/n

nŠ
E
nŒM.xXne

��k� ; � IE; �2; r/�: (13.15)

To apply the solution (13.15) we need to specify the probability distribution of
the random variable Y . Let us consider in particular the case when Y follows a
log-normal distribution lnY � 
.� � ı2=2; ı2/. It follows that

� D ln.1C k/;

and that Xn has a log-normal distribution with

E
nŒXn� D en� ; varŒlnXn� D nı2:

If we let

Mn.x; �/ D M.x; � IE; v2n; rn/;
where

v2n D �2 C nı2

�
; rn D r � �k C n�

�
;

then the solution (13.15) reduces to

f .x; �/ D
1X
nD0

e��0� .�0�/n

nŠ
Mn.x; �/;

where �0 D �.1C k/. The quantityMn.x; �/ is the value of the option, conditional
on knowing that exactly n Poisson jumps will occur during the life of the option.
The option price is then the expectation of all such values where the expectation
is taken over the Poisson distribution (with parameter �0�) that n jumps will occur
during the life of the option.

In Figs. 13.2 and 13.3 we show the effect on the option price and on delta of
increasing values of �. Here we have used the parameter values T D 1, E D 1,
r D 0:05, � D 0:2, � D 0 and ı D 0:25.

2The forms of the solution given here are from the original Merton (1976) paper. He only
demonstrates that these solutions indeed satisfy the integro-partial differential equation (13.11) and
relevant boundary conditions. Theory on uniqueness of solutions guarantees that this is indeed “the
solution”. Appendix 13.1 reproduces (modulo some notational changes) Merton’s calculations.
However this approach gives us no systematic method to solve the integro-partial differential
equations encountered in the jump-diffusion case. In Chap. 14 we outline the use of the Fourier
transform technique as one such systematic approach.
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E S

Call

λ = 3

λ = 2

λ = 1

λ = 0 

Fig. 13.2 Effect of increasing values of � on the option price

E S

Delta

λ=0
λ=1
λ=2
λ=3

Fig. 13.3 Effect of increasing values of � on the delta
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13.5 Alternative Ways of Completing the Market

As we have seen in the previous sections the incorporation of jumps into the
diffusion process governing the dynamics of the asset price introduces an additional
source of risk. Namely the risk associated with the Poisson stochastic process
governing the jump part of the process followed by the asset price. In order
to successfully apply the hedging argument we need some way of hedging this
additional risk. The way proposed by Merton in Sect. 13.3 is one way to do this.
However other ways are also possible and these usually involve introducing some
additional hedging instruments into the hedging portfolio. Such a procedure of
introducing a sufficient number of traded instruments to hedge away the number
of risk factors is known as “completing the market”.

One way of completing the market is to introduce additional options into the
hedging portfolio, an approach which was developed by Jones (1984). It is also
possible to complete the market by using interest rate market instruments as in
Jarrow and Madan (1995).

Here we follow the approach of Jones (1984) and introduce several options into
the hedging portfolio (for example, options with different strike prices). For instance
we may introduce two options on the stock under consideration. Since we have a
finite number of hedging instruments we can only hedge a finite number of “jump
risks”. Hence in this approach we have to restrict the type of jumps that can occur.
In the case of the availability of two options as hedging instruments we allow jumps
to have only two amplitudes, as shown in Fig. 13.4.

Hence we write the stock price process as

dx

x
D �dt C �dw C k1dN1 C k2dN2; (13.16)

where

Pr.dNi D 1/ D �idt; Pr.dNi D 0/ D 1 � �idt

Fig. 13.4 A finite number of fixed jump sizes
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for i D 1; 2; and k1; k2 measure the proportional price jumps in the case of Poisson
events.

Let g and h represent the prices of two options written on the stock and assume
that the option dynamics contain the same kind of risks as the stock itself. Then the
option price dynamics may be written

dg

g
D �gdt C �gdw C kg1dN1 C kg2dN2; (13.17)

dh

h
D �hdt C �hdw C kh1dN1 C kh2dN2; (13.18)

where the coefficients �, � , k represent expected return, volatility and proportional
price jumps for each option. All coefficients are assumed to be functions of x; g; h
and time t .

We note from (13.16)–(13.18) that the unconditional expected returns are
given by

E

�
dx

x

�
D .�C k1�1 C k2�2/dt;

E

�
dg

g

�
D .�g C kg1�1 C kg2�2/dt;

E

�
dh

h

�
D .�h C kh1�1 C kh2�2/dt:

Let f be the price of any other option on the stock having an expiry date earlier
than that of options g and h. We form a hedging portfolio consisting of the three
options, the stock and the risk-free asset. We assume that the price of option f is a
function f .x; g; h; �/ of the stock price, the other two option prices and its time-to-
maturity � in general.

By an application of Ito’s Lemma in several variables (see Sect. 6.5) and Ito’s
Lemma for jump processes (Sect. 12.3) the dynamics of the option f are given by

df

f
D �f dt C �f dw C kf1dN1 C kf2dN2;

where

�f � 1

f

�
Df C �x

@f

@x
C �gg

@f

@g
C �hh

@f

@h
� @f

@�

�
; (13.19)

Df � 1

2
�2x2

@2f

@x2
C 1

2
�2gg

2 @
2f

@g2
C 1

2
�2hh

2 @
2f

@h2
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C �x�gg
@2f

@x@g
C �x�hh

@2f

@x@h
C �gg�hh

@2f

@g@h
; (13.20)

�f � 1

f

�
�x
@f

@x
C �gg

@f

@g
C �hh

@f

@h

�
; (13.21)

kfi � 1

f
Œf .xY i ; gYgi ; hYhi ; �/ � f .x; g; h; �/�; .i D 1; 2/; (13.22)

where,

Yi D .ki C 1/; Ygi D kgi C 1; Yhi D khi C 1; .i D 1; 2/:

We note that all coefficients are functions of the stock price, the first two option
prices and time. The dynamics of x; g; h and f each contain the three risk terms dz,
dN1 and dN2. The stock x and options g; h span the three risk dimensions that they
have in common with the option f . Hence by forming a hedge of x; g and h we can
cancel any risk due to f . This reflects the redundancy of f since it can be viewed
as an instrument which duplicates a return pattern already available via a dynamic
portfolio strategy.

Consider the hedging portfolio and suppose that the weights of the risky asset
x, options g; h; f and riskless asset r are 	 , 	g , 	h, 	f , 	r respectively (so that
	r � �.	 C 	h C 	g C 	f / since the weights sum to zero). If V denotes the value
of the hedging portfolio then

dV

V
D �

	.� � r/C 	g.�g � r/C 	h.�h � r/C 	f .�f � r/
�

dt

C Œ	� C 	g�g C 	h�h C 	f �f �dw

C Œ	k1 C 	gkg1 C 	hkh1 C 	f kf1 �dN1

C Œ	k2 C 	gkg2 C 	hkh2 C 	f kf2 �dN2 :

The portfolio will be riskless if

	� C 	g�g C 	h�h C 	f �f D 0; (13.23)

	k1 C 	gkg1 C 	hkh1 C 	f kf1 D 0; (13.24)

	k2 C 	gkg2 C 	hkh2 C 	f kf2 D 0: (13.25)

The return on the hedging portfolio would then be

dV

V
D �

	.� � r/C 	g.�g � r/C 	h.�h � r/C 	f .�f � r/
�

dt:
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Following a now standard argument, this return must be zero so that

	.� � r/C 	g.�g � r/C 	h.�h � r/C 	f .�f � r/ D 0: (13.26)

The four simultaneous Eqs. (13.23)–(13.26) in the weights .	; 	g; 	h; 	f / may be
written in matrix form as

2
664
� � r �g � r �h � r �f � r

� �g �h �f
k1 kg1 kh1 kf1
k2 kg2 kh2 kf2

3
775

2
664
	

	g
	h
	f

3
775 D

2
664
0

0

0

0

3
775 : (13.27)

Using standard results in linear algebra (13.27) implies that there must exist
quantities 
, �1, �2 such that

� � r D 
� C �1k1 C �2k2; (13.28)

�g � r D 
�g C �1kg1 C �2kg2 ; (13.29)

�h � r D 
�h C �1kh1 C �2kh2 ; (13.30)

�f � r D 
�f C �1kf1 C �2kf2 : (13.31)

Making use of (13.31) and substituting (13.28)–(13.30) and (13.21), we find that the
option price f must satisfy

Df C .r C �1k1 C �2k2/x
@f

@x
C .r C �1kg1 C �2kg2/g

@f

@g

C .r C �1kh1 C �2kh2/h
@f

@h
� .r C �1kf1 C �2kf2 /f � @f

@�
D 0:

(13.32)

Note that Eqs. (13.28)–(13.31) extend the familiar interpretation of the no-riskless
arbitrage condition. First we interpret 
 as the market price of risk associated with
the uncertainty due to the continuous diffusion part of the asset price process
and �i as the market price of risk associated with the i th jump component. Then
Eqs. (13.28)–(13.31) assert that in equilibrium the expected return on each risky
asset equals the risk free rate plus the sum of the market price of each risk
component times the amount of associated risk.

A considerable simplification of the option pricing equation (13.32) is possible
if we assume that all parameters are functions of the stock price and time alone i.e.
f .x; g; h; �/ D f .x; �/: Then Eq. (13.32) reduces to

1

2
�2x2

@2f

@x2
C.rC�1k1C�2k2/x @f

@x
�.rC�1kf1 C�2kf2/f � @f

@�
D 0; (13.33)
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where we recall that

kfi D 1

f
Œf ..ki C 1/x; �/ � f .x; �/�; .i D 1; 2/:

If we assume that all parameters are constant then Eq. (13.33) may be solved in a
way similar to that used to solve Merton’s equation (13.11) and the solution turns
out to be

f .x; �/ D
1X
mD0

1X
nD0

�
e�.�Cı/� .�1�/m

mŠ

.�2�/
n

nŠ

�
�

MŒxYm1 Y
n
2 e

�.�1k1C�2k2/� ; � IE; �2; r�;
(13.34)

where Yi D ki C 1 for i D 1; 2. Suppose we maintain our assumption that all
parameters are functions of stock price and time only. Then in the argument leading
up to Eq. (13.34) the roles of f; g and h can be interchanged. It follows that g and h
must also satisfy an equation like (13.34).

If we assume knowledge of �; k1; k2 is already available, then we have
two unknown parameters �1; �2. Using market values of g; h we may solve
g.x; � I �1; �2/ D gmarket and h.x; � I �1; �2/ D hmarket to obtain b�1; b�2, which
may then be used to price the option f .

13.6 Large Jumps

In this section we restrict our attention to binomial jumps. That is we assume Y1 D
k1 C 1; Y2 D k2 C 1 satisfy Y1Y2 D 1. In this case, if we define

k2 D 1=Y1 � 1;

kf2 D 1

f
.f .x=Y1; �/ � f .x; �//;

then Jones (1984) shows that the option pricing formula (13.34) specialises to

f .x; �/ D
1X

nD�1
.�1=�2/

n=2e���In.2�
p
�1�2/M.xYn1; e

�� � ; � IE; �2; r/;

where

In.z/ D
1X
jD1

znC2

j Š.nC j /Š
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is a modified Bessel function of the first kind of integer order n,

v � �1 C �2 D the probability of a jump,

and

 � .�1k1 C �2k2/=v D the expected jump amplitude.

These last two results are derived in Feller (1966).
We wish to consider the limiting case in which the jump amplitude becomes

large, but at the same time the expected jump amplitude remains constant. In
such a case the expected returns on the stock remains finite. If we define � �
lnY1 D � lnY2, then we can define the conditional probabilities for upward versus
downward jumps as

�1=v D . C 1 � e��/=2 sinh�; �2=v D .e� �  � 1/=2 sinh�:

Note that

lim
�!1

�1

v
D 0;

whilst

lim
�!1

�2

v
D 1:

These results indicate that large positive jumps are “rare” compared to large negative
jumps.

The jump magnitude becoming large is captured by considering � ! 1. In this
case Jones (1984) shows that the conditional expected upward jump in the option
price satisfies

lim
�!1

h�1
v
.f .xe�; �/ � f .x; �//

i
D . C 1/x;

and that the conditional expected downward jump satisfies

lim
�!1

h�2
v
.f .xe�; �/ � f .x; �//

i
D f .0; �/ � f .x; �/ D �f:
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Note that in the present notation the partial differential equation (13.33) for f may
be written

1

2
�2x2

@2f

@x2
C .r � v�/x

@f

@x
� @f

@�

C �1Œf .xe�; �/ � f .x; �/�C �2Œf .x; e
��; �/ � f .x; �/� � rf D 0:

Taking the limit as � ! 1 we obtain the partial differential equation

1

2
�2x2

@2f

@x2
C .�� �/x

@f

@x
� �f C @f

@�
C �x D 0; (13.35)

where

� � r C v and � � v. C 1/:

The solution to (13.35) turns out to be

f .x; �/ D xŒ1 � e���N.�b1/�� Ed���N.b2/;

where

b1 � ln.x=E/C .� � � C 1
2
�2/�

�
p
�

; b2 � b1 � �
p
� :

13.7 Appendix

Appendix 13.1 The Solution of the Integro-Partial Differential
Equation

To simplify the notation put

Pn.�/ D e��� .��/n

nŠ
; Vn D xXne

��k� :

We note the derivatives

dPn.�/

d�
D ��e

��� .��/n

nŠ
C �

e��� .��/n�1

.n � 1/Š

D
� ��Pn.�/C �Pn�1.�/; .n > 0/;

��Pn.�/; .n D 0/;
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and

@Vn

@�
D ��kxXne

��k� D ��kVn:

Using the above notation the proposed solution (13.15) may be written

f .x; �/ D
1X
nD0

Pn.�/E
nfM.Vn; � IE; �2; r/g: (13.36)

We shall simply show that (13.36) satisfies the integro-partial differential equa-
tion (13.10) and the associated boundary and initial conditions (13.12) and (13.13).
Observe that

@f

@x
D

1X
nD0

Pn.�/E
n

�
@

@x
M.Vn; � IE; �2; r/

	

D
1X
nD0

Pn.�/E
n

�
@Vn

@x
M .1/.Vn; � IE; �2; r/

	

D
1X
nD0

Pn.�/E
nfXne��k�M .1/.Vn; � IE; �2; r/g: (13.37)

HereM.1/ indicates the first partial derivative ofM with respect to its first argument.
Upon multiplying through by x the last equation reads

x
@f

@x
D

1X
nD0

Pn.�/E
nfVnM .1/.Vn; � IE; �2; r/g:

Differentiating (13.37) again with respect to x we obtain

@2f

@x2
D

1X
nD0

Pn.�/E
n

˚
.Xne

��k� /2M .11/.Vn; � IE; �2; r/
 ;

which after multiplication by x2 becomes

x2
@2f

@x2
D

1X
nD0

Pn.�/E
nfV 2

n M
.11/.Vn; � IE; �2; r/g;
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where M.11/ indicates the second partial derivative of M with respect to its first
argument. Finally

@f

@�
D

1X
nD0

Pn.�/E
n

�
d

d�
M.Vn; � IE; �2; r/

	
C

1X
nD0

dPn.�/

d�
E
nfM.vn; � IE; �2; r/g:

(13.38)

Since

d

d�
M.Vn; � IE; �2; r/ D dVn

d�
M .1/.Vn; � IE; �2; r/CM.2/.Vn; � IE; �2; r/;

Eq. (13.38) becomes

@f

@�
D

1X
nD0

Pn.�/E
nf��kVnM

.1/ CM.2/g C
1X
nD0
.��/Pn.�/EnfM g

C
1X
nD1

�Pn�1.�/EnfM g;

where M , M.1/ and M.2/ are all evaluated at .Vn; � IE; �2; r/. Upon rearranging,
the last expression can be written as

@f

@�
D ��f � �k

1X
nD0

Pn.�/E
nfVnM .1/g C

1X
nD0

Pn.�/E
nfM.2/g

C�
1X
nD0

Pn.�/E
nfM.VnC1; � IE; �2; r/g:

Now

�@f
@�

C .r � �k/x
@f

@x
C 1

2
�2x2

@2f

@x2
� rf

D �f C
1X
nD0

Pn.�/E
nf�kVnM

.1/ CM.2/g C .r � �k/

1X
n�0

Pn.�/E
nfVnM .1/g

C
1X
nD0

Pn.�/E
n

�
1

2
�2V 2

n M
.11/

	
� r

1X
nD0

Pn.�/E
nfM g

��
1X
nD0

Pn.�/E
nC1fM.VnC1; � IE; �2; r/g
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D �f � �

1X
nD0

Pn.�/E
nC1fM.VnC1; � IE; �2; r/g

C
1X
nD0

Pn.�/E
n

�
M.2/ C rVnM

.1/ C 1

2
�2V 2

n M
.11/ � rM

	
: (13.39)

The expression in the curly bracket in the third term of (13.39) is zero since
M.Vn; � IE; �2; r/ is the solution of

M.2/ C rVnM
.1/ C 1

2
�2VnM

.11/ � rM D 0:

Thus (13.39) reduces to

�@f
@�

C .r � �k/x @f
@x

C 1

2
�2x2

@2f

@x2
� rf

D �f � �

1X
nD0

Pn.�/E
nC1fM.VnC1; � IE; �2; r/g:

(13.40)

The final step in the proof is to show that the term on the right-hand side of (13.40)
equals

�EQY Œf .x; �/ � f .xY; �/�;

where we writeQY to indicate clearly that expectations are being taken with respect
to the distribution of the random variable Y . Replacing x by xY in (13.36) and
applying the operator EQY we have

E
QY ff .xY; �/g D E

QY

" 1X
nD0

Pn.�/E
nfM.Y Vn; � IE; �2; r/g

#
: (13.41)

Given the definition of Xn as the product of n independent drawings from the
distribution of Y and E

n as the expectation operator over the distribution of Xn
it should be clear that

E
QY E

nM.Y Vn; : : : :/ D E
nC1M.VnC1; : : : :/:

Thus (13.41) becomes

E
QY ff .xY; �/g D

1X
nD0

Pn.�/E
nC1fM.VnC1; � IE; �2; r/g:



292 13 Option Pricing Under Jump-Diffusion Processes

The summation on the right-hand side above is the same as the summation in the
second term on the right-hand side of (13.41), so that this last equation may be
written

�@f
@�

C.r��k/x @f
@x

C 1

2
�2x2

@2f

@x2
�rf D �f .x; �/��EQY ff .xY; �/g; (13.42)

which may be rearranged to

�@f
@�

C .r � �k/x
@f

@x
C 1

2
�2x2

@2f

@x2
� rf C �EQY Œf .xY; �/ � f .x; �/� D 0;

which is Eq. (13.10).
We have thus shown that Eq. (13.15) is the general form of the solution. It

remains only to show that this form of the solution also satisfies the boundary and
initial conditions. Since x D 0, implies Vn D 0 and given that

M.0; � IE; �2; r/ D 0;

it follows that

f .0; �/ D 0;

indicating that the boundary condition (13.13) is satisfied by the solution (13.15).
To show that the initial condition (13.13) is satisfied requires a little more analysis.
Note first of all that

M.Vn; 0IE; �2; r/ D maxŒ0; Vn � E�;

and so

E
nfM.Vn; 0IE; �2; r/g D E

nfmaxŒ0; Vn � E�g
� E

nfVng D E
nfxXng D xEnfXng D x.1C k/n:

The last equality follows from the definition of k as k D E
QY .Y � 1/ and the fact

that En is the expectation over the distribution of n independent drawings from the
distribution of Y . Now

f .x; 0/ D lim
�!0

1X
nD0

Pn.�/E
nfM.Vn; � IE; �2; r/g

D P0.�/E
0fM.V0; 0 W E; �2; r/g C lim

�!0

1X
nD1

Pn.�/E
nfM.Vn; � IE; �2; r/g:
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Since P0.�/ D 1 and

E
0fM.V0; 0IE; �2; r/g D E

0fM.x; 0IE; �2; r/g D maxŒ0; x � E�;

we have

f .x; 0/ D maxŒ0; x � E�C lim
�!0

1X
nD1

Pn.�/E
nfM.Vn; � IE; �2; r/g:

Thus we need to show that the summation term on the right-hand side is zero. To
show this proceed as follows:

lim
�!0

1X
nD1

Pn.�/E
nfM.Vn; � IE; �2; r/g

� lim
�!0

xe���
1X
nD1

Œ.1C k/���n

nŠ
(using (13.43))

D lim
�!0

xe��� Œe.1Ck/�� � 1�

D 0:

Thus we have shown that f .x; 0/ D maxŒ0; x � E� which is the final step in the
demonstration that Eq. (13.15) is the general form of the solution.
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