
Chapter 7
Applications to Other Energy Systems

7.1 Consistent Conjectural Variations Equilibrium
in a Mixed Oligopoly in Electricity Markets

Results described in this section are based mainly upon paper of Kalashnikov et al.
[165], which also included applications to an oligopolistic market of electricity. Even
if the main models and tools developed in the paper are not directly related to Bilevel
Programming, they can be used to construct more complicated schemes involving
the Stackelberg equilibrium and other bilevel-type concepts.

Inmore detail, this section dealswith amodel ofmixed oligopolywith conjectured
variations equilibrium (CVE). The agents’ conjectures concern the price variations
dependingupon their productionoutput’s increase or decrease.Weestablish existence
and uniqueness results for the conjectured variations equilibrium (called an exterior
equilibrium) for any set of feasible conjectures. In order to introduce the notion of an
interior equilibrium, we develop a consistency criterion for the conjectures (referred
to as influence coefficients) and prove the existence theorem for the interior equilib-
rium (understood as a CVE with consistent conjectures). To prepare the base for the
extension of our results to the case of non-differentiable demand functions, we also
investigate the behavior of the consistent conjectures depending upon a parameter
that represents the demand function’s derivative with respect to the market price.

7.1.1 Introduction

In recent years, investigation of behavioral patterns of agents of mixed markets,
in which state-owned (public, domestic, etc.) welfare-maximizing firms compete
against profit-maximizing private (foreign) firms, has become more and more pop-
ular. For pioneering works on mixed oligopolies (see Merril and Schneider [225],
Ruffin [276], Harris and Wiens [139], and Bös [24, 25]). Excellent surveys can be
found in Vickers and Yarrow [308], De Frajas and Delbono [118], Nett [253].
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The interest in mixed oligopolies is high because of their importance to the
economies of Europe (Germany, England and others), Canada and Japan (see
Matsushima and Matsumura [224], for an analysis of “herd behavior” by private
firms in many branches of the economy in Japan). There are examples of mixed
oligopolies in the United States such as the packaging and overnight-delivery indus-
tries. Mixed oligopolies are also common in the East European and former Soviet
Union transitional economies, in which competition among public and private firms
existed or still exists in many industries such as banking, house loan, life insurance,
airline, telecommunication, natural gas, electric power, automobile, steel, educa-
tion, hospital, health care, broadcasting, railways and overnight-delivery. Moreover,
according to Bös [25], Fershtman [107], Matshumura and Kanda [222], in many
cases the government has held, or even still holds, a non-negligible proportion of
shares in privatized firms, and there are firms with a mixture of private and public
ownership. Since privatized firms with mixed ownership must respect the interests
of private shareholders, they cannot be pure domestic social surplus maximizers. At
the same time they must respect the interests of the government, so they cannot be
pure profit-maximizers. By controlling the shares that it holds, the government may
be able to indirectly control the activities of the privatized firm.

In the majority of the above-mentioned papers, the mixed oligopoly is studied in
the framework of classical Cournot,Hotelling or Stackelbergmodels (cf.Matsushima
and Matsumura [224], Matsumura [223], Cornes and Sepahvand [44]). It is well
known (cf. for instance, Figuières et al. [110]) that the Nash equilibrium (including
Cournot equilibrium as a particular case) is the outcome consistent with rational
agents who take rival decisions as given when they optimize. Alternately, in the
Stackelberg equilibrium there are two agents who take their decisions sequentially;
the first agent to move is referred to as the leader, whereas the second mover is
called the follower. The Stackelberg equilibrium is an outcome consistent with the
follower’s rational behavior given that he has observed the leader’s move, and the
leader’s rational behavior who can infer what will be the follower’s rational reaction
to his current decision.

Conjectural variations equilibria (CVE) were introduced by Bowleyl [26] and
Frisch [119, 120], as another possible solution concept in static games. According
to this concept, agents behave as follows: each agent chooses his/her most favorable
action taking into account that every rival’s strategy is a conjectured function of her
own strategy.

In theworks byBulavsky andKalashnikov [37, 38, 152], a new scale of conjectural
variations equilibria (CVE) was introduced and investigated, in which the conjec-
tural variations (represented via the influence coefficients of each agent) affected the
structure of the Nash equilibrium. In other words, we considered not only a classical
Cournot competition but also a Cournot-type model with influence coefficient values
different from 1 (as the influence coefficient 1 corresponds to the classical Cournot
model). Various equilibrium existence and uniqueness results were obtained in the
above-cited works.

For instance, in Isac et al. [152], the classical oligopoly model was extended to
the conjectural oligopoly as follows. Instead of the classical Cournot assumptions,
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all producers i = 1, 2, . . . , n, used the conjectural variations described below:

Gi (η) = G + (η − qi ) wi (G, qi ) .

Here, G is the current total quantity of the product cleared in the market, qi and η are,
respectively, the present and the expected supplies by the i th agent, whereas Gi (η) is
the total clearedmarket volume conjectured by the i th agent as a response to changing
his/her own supply from qi to η. The conjecture function wi was referred to as the
i th agent’s influence quotient (coefficient). Notice that the classical Cournot model
assumes wi ≡ 1 for all i . Under general enough assumptions concerning properties
of the influence coefficients wi = wi (G, qi ), cost functions fi = fi (qi ), and the
inverse demand (price) function p = p(G), new existence and uniqueness results
for the conjectural variations equilibrium (CVE) were obtained. This approach was
further developed in Kalashnikov et al. [168, 175] with application to the mixed
oligopoly model. Here again, all agents (both public and private companies) make
their decisions based upon the model’s data (inverse demand and cost functions) and
their influence coefficients (conjectures) wi = wi (G, qi ).

As is mentioned in Figuières et al. [110], Giocoli [130], the concept of conjectural
variations has been the subject of numerous theoretical controversies (see e.g. Lindhi
[204]). Nevertheless, economists have made extensive use of one form or the other
of the CVE to predict the outcome of non-cooperative behavior in several fields
of economics. The literature on conjectural variations has focused mainly on two-
player games (cf. Figuières et al. [110]). The central concept of the theory is the notion
of conjecture. The variational conjecture r j usually describes player j’s reaction,
as anticipated by player i , to an infinitesimal variation of player i’s strategy. This
mechanism leads to the notion of a conjectured reaction function of the opponent.
Given these conjectured reactions on part of the rivals, each agent optimizes his/her
perceived payoff. This leads to the concept of a conjectural best response function.
An equilibrium is obtained when no player has an interest in deviating from his/her
strategy, i.e., his/her conjectural best response to the strategies of the other player.

The consistency (or, sometimes, “rationality”) of the equilibrium is defined as the
coincidence between the conjectural best response of each agent and the conjectured
reaction function of the same. A conceptual difficulty arises when one considers
consistency in the case of many agents (see, Figuières et al. [110]). The strongest
notion of consistency requires that the conjectural best response of player i coincides
with what the other players have conjectured about his/her reaction, that is, with one
of their conjectured reaction functions. However, when n agents are present, there are
n best response functions and n(n −1) conjectures. Therefore, if n > 2, equilibrium
is consistent only if all players have the same conjectures about player i’s reaction.
This is the approach followed explicitly by Başar and Olsder [7]; this assumption can
be also found in Fershtman andKamien [108] dealing with conjectures in differential
games. In the literature on conjectural variations in static n-player games, the problem
is usually implicitly addressed by assuming a complete identity of all the agents
(cf. Laitner [198], Bresnahan [28] and references therein, Novshek [256]). Using
a bit different approach, Perry [263] for oligopoly, Cornes and Sandler [43] and
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Sugden [295] for public goods, consider a class of games where for each agent, the
contributions of all other players to her payoff are aggregated. It is as if each agent
plays against a unique (virtual) player representing the remaining agents.

To cope with this conceptual difficulty arising in many players models, Bulavsky
[36] proposed a completely new approach. Instead of assuming the identity of the
agents in the conjectural variation model of a homogeneous good market, it is sup-
posed that each player makes conjectures not about the (optimal) response functions
of the other players but only about the variations of the market price depending upon
his infinitesimal output variations. Knowing the rivals’ conjectures (called influence
coefficients), each agent can realize certain verification procedure and check out if his
influence coefficient is consistent with the others. Exactly the same verification for-
mulas were obtained independently in Liu et al. [206] establishing the existence and
uniqueness of consistent conjectural variation equilibrium in electricitymarket.How-
ever, they applied a much more difficult optimal control technique, searching only
steady states as a final result (a similar technique was used in Driskill andMcCafferty
[95]. Moreover, they restricted the inverse demand function to a linear one, and the
agents’ cost functions to quadratic ones in their model, whereas the approach in
Bulavsky [36] allows nonlinear and even non-differentiable demand functions and
arbitrary (twice continuously differentiable) convex cost functions of the agents.

In this section, we extend the results obtained in Bulavsky [36] to a mixed
oligopoly model. In the same manner as in Bulavsky and Kalashnikov [37, 38], we
consider a conjectural variations oligopolymodel, inwhich the degree of influence on
the whole situation by each agent is modeled by special parameters (influence coef-
ficients). However, in contrast to the models defined in Bulavsky and Kalashnikov
[37, 38] and Kalashnikov et al. [168, 175], here, we follow the ideology of Bulavsky
[35, 36] selecting the market clearing price p, rather than the producers’ output, as
an observable variable.

The section is organized as follows. In Sect. 7.1.2, we describe the mathemati-
cal model from Bulavsky [36] extended to the mixed oligopoly case and then, in
Sect. 7.1.3, we define the concept of exterior equilibrium, i.e., a conjectural varia-
tions equilibrium (CVE) with the influence coefficients fixed in an exogenous form.
The existence and uniqueness theorem for this kind of CVE ends the subsection.
Section7.1.4 deals with the more advanced concept of interior equilibrium, which
is defined as the exterior equilibrium with consistent conjectures (influence coef-
ficients). The consistency criterion, the consistency verification procedure, and the
existence theorem for the interior equilibrium are formulated in the same Sect. 7.1.4.
To provide the tools for the future research concerning the interrelationships between
the demand structure (with not necessarily smooth demand function) and the CVEs
with consistent conjectures (influence coefficients), the behavior of the latter as func-
tions of certain parameter (governed by the derivative by p of the demand function
G = G(p)) is studied in Theorem7.3 completing Sect. 7.1.4. Finally, Sect. 7.1.5 con-
tains the results of numerical experiments with a test model of an electricity market
from Liu et al. [206], with and without a public company among the agents.
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7.1.2 Model Specification

Consider a market of a homogeneous good (natural gas, oil, electricity, timber,
etc.) with no less than 3 producers/suppliers with cost functions fi = fi (qi ),
i = 0, 1, . . . , n, where n ≥ 2, and qi is the output/supply brought by producer i ,
i = 0, 1, . . . , n. Consumers’ demand is described by a demand function G = G(p),
whose argument p is the market clearing price. An active demand value D is nonneg-
ative and does not depend upon the price. We will reflect the equilibrium between
the demand and supply for a given (clearing) price p by the following balance
equality

n∑

i=0

qi = G(p) + D. (7.1)

We assume the following properties of the model’s data.
A1. The demand function G = G(p) ≥ 0 defined for the (clearing) price values
p ∈ (0,+∞) is non-increasing and continuously differentiable. �
A2. For each producer/supplier i = 0, 1, . . . , n, its cost function fi = fi (qi ) is
quadratic, i.e.,

fi (qi ) = 1

2
ai q

2
i + bi qi , (7.2)

with ai > 0, bi > 0, i = 0, 1, . . . , n. Moreover, we assume that

b0 ≤ max
1≤i≤n

bi . (7.3)

Each private (or, foreign) producer i , i = 1, . . . , n, chooses his/her output volume
qi ≥ 0 so as tomaximize his/her net profit functionπ(p, qi ) := p ·qi − fi (qi ). On the
other hand, the public (or, domestic) company number i = 0 selects its production
value q0 ≥ 0 so as to maximize domestic social surplus defined as the difference
between the consumer surplus, the private (foreign) companies’ total revenue, and
the public (domestic) firm’s production costs:

S (p; q0, q1, . . . , qn) =

n∑
i=0

qi
∫

0

p(x)d x − p ·
(

n∑

i=1

qi

)
− b0q0 − 1

2
a0q2

0 . (7.4)

Now we postulate that the agents (both public and private) assume that their
variation of production volumes may affect the price value p. The latter assumption
could be implemented by accepting a conjectured dependence of fluctuations of the
price p upon the variations of the (individual) output values qi . Having that done,
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the first order maximum condition to describe the equilibrium would have the form:
For the public company (with i = 0)

∂S

∂q0
= p −

(
n∑

i=1

)
∂p

∂q0
− f ′

0 (q0)

{
= 0, if q0 > 0;
≤ 0, if q0 = 0; (7.5)

and

∂πi

∂qi
= p + qi

∂p

∂qi
− f ′

i (qi )

{
= 0, if qi > 0;
≤ 0, if qi = 0,

for i = 1, . . . , n. (7.6)

Therefore, we see that to describe the behavior of agent i and treat the maximum
(equilibrium) conditions, it is enough to trace the derivative ∂p/∂qi = −vi rather
than the full dependence of p upon qi . (We introduce the minus here in order to
deal with nononegative values of vi , i = 0, 1, . . . , n.) Of course, the conjectured
dependence of p on qi must provide (at least local) concavity of the i th agent’s
conjectured profit as a function of its output. Otherwise, one cannot guarantee the
profit to be maximized (but not minimized). As we suppose that the cost functions
fi = fi (qi ) are quadratic and convex, then, for i = 1, . . . , n, the concavity of the
product p · qi with respect to the variation ηi of the current production volume will
do. For instance, it is sufficient to assume the coefficient vi (from now on referred
to as the i th agent’s influence coefficient) to be nonnegative and constant. Then the
conjectured local dependence of the agent’s net profit upon the production output ηi

has the form [p − vi (ηi − qi )] ηi − fi (ηi ), while the maximum condition at ηi = qi

is provided by the relationships

{
p = vi qi + bi + ai qi , if qi > 0;
p ≤ bi , if qi = 0.

(7.7)

Similarly, the public company conjectures the local dependence of domestic social
surplus on its production output η0 in the form

η0+
n∑

i=1
qi

∫

0

p(x)d x − [p − v0 (η0 − q0)] ·
(

n∑

i=1

qi

)
− b0 − a0q0, (7.8)

which allows one to write down the (domestic social surplus) maximum condition
at η0 = q0 as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

p = −v0
n∑

i=1
qi + b0 + a0q0, if q0 > 0;

p ≤ −v0
n∑

i=1
qi + b0, if q0 = 0.

(7.9)
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Were the agents’ conjectures given exogenously (like it was assumed in Bulavsky
and Kalashnikov [37, 38]), we would allow all the influence coefficients vi to be
functions of qi and p. However, we use the approach from the papers Bulavski [35,
36], where the (justified, or consistent) conjectures are determined simultaneously
with the equilibrium price p and output values qi by a special verification procedure.
In the latter case, the influence coefficients are the scalar parameters determined only
at the equilibrium. In what follows, such equilibrium is referred to as interior one and
is described by the set of variables and parameters (p, q0, q1, . . . , qn, v0, v1, . . . , vn).

7.1.3 Exterior Equilibrium

Before we introduce the verification procedure, we need an initial notion of equilib-
rium called exterior (cf. Bulavski [36]) with the parameters (influence coefficients)
vi , i = 0, 1, . . . , n given exogenously.

Definition 7.1 The collection (p, q0, q1, . . . , qn) is called exterior equilibrium for
given influence coefficients (v0, v1, . . . , vn), if the market is balanced, i.e., condition
(7.1) is satisfied, and for each i , i = 0, 1, . . . , n, the maximum conditions (7.7) and
(7.9) are valid. �

In what follows, we are going to consider only the case when the list of really
producing/supplying participants is fixed (i.e., it does not depend upon the values of
the model’s parameters). In order to guarantee this property, we make the following
additional assumption.
A3. For the price value p0 := max1≤ j≤n b j , the following (strict) inequality holds:

n∑

i=0

p0 − bi

ai
< G (p0) . (7.10)

Remark 7.1 The latter assumption, together with assumptions A1 and A2, guaran-
tees that for all nonnegative values of vi , i = 1, . . . , n, and for v0 ∈ [0, v0), where

0 < v0 =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

a0

⎡

⎢⎣
G (p0) − p0 − b0

a0∑n

i=1

pi − bi

ai

− 1

⎤

⎥⎦ , if
n∑

i=1

pi − bi

ai
> 0;

+∞, otherwise,

(7.11)

there always exists a unique solution of the optimality conditions (7.7) and (7.9)
satisfying the balance equality (7.1), i.e., the exterior equilibrium. Moreover, con-
ditions (7.1), (7.7) and (7.9) can hold simultaneously if, and only if p > p0, that
is, if and only if all outputs qi are strictly positive, i = 0, 1, . . . , n. Indeed, if
p > p0 then it is evident that neither inequalities p ≤ bi , i = 1, . . . , n, from (7.7),
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nor p ≤ −v0
∑n

i=1 qi + b0 from ((7.9) are possible, which means that none of qi ,
i = 0, 1, . . . , n, satisfying (7.7) and (7.9) can be zero.

Conversely, if all qi , satisfying (7.7) and (7.9) are positive (qi > 0, i =
0, 1, . . . , n), then it is straightforward from conditions (7.7) that

p = vi qi + bi + ai qi > bi , i = 1, . . . , n;

hence p > max1≤i≤n = p0. �

The following theorem is the main result of this subsection and a tool for the
introduction of the concept of interior equilibrium in the next subsection.

Theorem 7.1 Under assumptions A1, A2 and A3, for any D ≥ 0, vi ≥ 0,
i = 1, . . . , n, and v0 ∈ [0, v0), there exists a unique exterior equilibrium state
(p, q0, q1, . . . , qn), which depends continuously on the parameters (D, v0,
v1, . . . , vn). The equilibrium price p = p (D, v0, v1, . . . , vn) as a function of these
parameters is differentiable with respect to both D and vi , i = 0, 1, . . . , n. Moreover,
p = p (D, v0, v1, . . . , vn) > p0, and

∂p

∂ D
= 1

v0 + a0
a0

∑n

i=0

1

vi + ai
− G ′(p)

. (7.12)

Proof Due to assumptions A1–A3, for any fixed collection of conjectures v =
(v0, v1, . . . , vn) ≥ 0, the equalities in the optimality conditions (7.7) and (7.9)
determine the optimal response (to the existing clearing price) values of the pro-
ducers/suppliers as continuously differentiable (with respect to p) functions qi =
qi (p; v0, . . . , vn) defined over the interval p ∈ [p0,+∞) by the following explicit
formulas:

q0 := p − b0
a0

+ v0
a0

n∑

i=1

p − bi

vi + ai
, (7.13)

and

qi := p − bi

vi + ai
, i = 1, . . . , n. (7.14)

Moreover, the partial derivatives of the optimal response functions are positive:

∂q0
∂p

= 1

a0
+ v0

a0

n∑

i=1

1

vi + ai
≥ 1

a0
> 0, (7.15)

and
∂qi

∂p
= 1

vi + ai
> 0, i = 1, . . . , n. (7.16)
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Therefore, the total production volume function

Q (p; v0, v1, . . . , vn) =
n∑

i=0

qi (p; v0, v1, . . . , vn)

is continuous and strictly increasing by p. According to assumption A3, this func-
tion’s value at the point p = p0 is strictly less that G(p0). Indeed, from (7.13) and
(7.14) we have:

(A) If
n∑

i=1

p0 − bi

vi + ai
> 0, then

Q (p0; v0, v1, . . . , vn) =
n∑

i=0

qi (p0; v0, v1, . . . , vn)

= p0 − b0
a0

+ v0
a0

n∑

i=1

p0 − bi

vi + ai
+

n∑

i=1

p0 − bi

vi + ai

= p0 − b0
a0

+ v0 + a0
a0

n∑

i=1

p0 − bi

vi + ai

<
p0 − b0

a0
+ v0 + a0

a0

n∑

i=1

p0 − bi

ai

= p0 − b0
a0

+

⎡

⎢⎢⎣
G(p0) − p0 − b0

a0
∑n

i=1

p0 − bi

ai

⎤

⎥⎥⎦
n∑

i=1

p0 − bi

ai

= p0 − b0
a0

+ G(p0) − p0 − b0
a0

= G(p0).

(B) Otherwise, i.e., if
n∑

i=1

p0 − bi

vi + ai
= 0, one has:

Q (p0; v0, v1, . . . , vn) =
n∑

i=0

qi (p0; v0, v1, . . . , vn)

= p0 − b0
a0

+ v0
a0

n∑

i=1

p0 − bi

vi + ai
+

n∑

i=1

p0 − bi

vi + ai

= p0 − b0
a0

< G(p0)

for any vi ≥ 0, i = 1, . . . , n, and v0 ∈ [0, v0).
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On the other hand, the total output supply Q = Q (p; v0, v1, . . . , vn) clearly tends
to +∞ when p → +∞. Now define

p∗ := sup {p : Q (p; v0, v1, . . . , vn) ≤ G(p) + D} . (7.17)

Since both functions Q (p; v0, v1, . . . , vn) and G(p)+D are continuous with respect
to p, the former increases unboundedly and the latter, vice versa, is non-increasing
by p over the whole ray [p0,+∞), then, first, the value of p∗ is finite (p∗ < +∞),
and second, by definition (7.17) and the continuity of both functions,

Q (p∗; v0, v1, . . . , vn) ≤ G (p∗) + D.

Now we demonstrate that the strict inequality Q (p∗; v0, v1, . . . , vn) < G (p∗) +
D cannot happen. Indeed, suppose on the contrary that the latter strict inequality
holds. Then the continuity of the involved functions implies that for some values
p > p∗ sufficiently close to p∗, the same relationship is true: Q (p; v0, v1, . . . , vn) <

G (p) + D, which contradicts definition (7.17). Therefore, the exact equality holds

Q (p∗; v0, v1, . . . , vn) = G (p∗) + D, (7.18)

which, in its turn, means that the values p∗ and q∗
i = qi (p∗; v0, v1, . . . , vn),

i = 0, . . . , n, determined by formulas (7.13) and (7.14) form an exterior equilibrium
state for the collection of influence coefficients v = (v0, v1, . . . , vn). The uniqueness
of this equilibrium follows from the fact that the function Q = Q (p; v0, v1, . . . , vn)

strictly increases while the demand function G(p)+D is non-increasingwith respect
to p. Indeed, these facts combined with (7.18) yield that Q (p; v0, v1, . . . , vn) <

G (p) + D for all p ∈ (p0, p∗), whereas Q (p; v0, v1, . . . , vn) > G (p) + D when
p > p∗. To conclude, the equilibrium price p∗ and hence, the equilibrium outputs
q∗

i = qi (p∗; v0, v1, . . . , vn), i = 0, . . . , n, calculated by formulas (7.13) and (7.14),
are determined uniquely.

Nowwe establish the continuous dependence of the equilibrium price (and hence,
the equilibriumoutput volumes, too) upon the parameters (D, v0, . . . , vn). To do that,
we substitute expressions (7.13) and (7.14) for qi = (p; v0, . . . , vn) into the balance
equality (7.1) and come to the following relationship:

q0 +
n∑

i=1

qi − G(p) − D =
(

p − b0
a0

+ v0
a0

n∑

i=1

p − bi

vi + ai

)

+
n∑

i=1

p − bi

vi + ai
− G(p) − D

= p

(
1

a0
+ v0 + a0

a0

n∑

i=1

1

vi + ai

)
− b0

a0

− v0 + a0
a0

n∑

i=1

bi

vi + ai
− G(p) − D = 0. (7.19)
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Introduce the function

Γ (p; v0, v1, . . . , vn, D) = p

(
1

a0
+ v0 + a0

a0

n∑

i=1

1

vi + ai

)

− b0
a0

− v0 + a0
a0

n∑

i=1

bi

vi + ai
− G(p) − D

and rewrite the last equality in (7.19) as the functional equation

Γ (p; v0, v1, . . . , vn, D) = 0. (7.20)

As the partial derivative of the latter function with respect to p is (always) positive:

∂Γ

∂p
= 1

a0
+ v0 + a0

a0

n∑

i=1

1

vi + ai
− G ′(p) ≥ 1

a0
> 0,

one can apply Implicit Function Theorem and conclude that the equilibrium (clear-
ing) price p treated as an explicit function p = p (v0, v1, . . . , vn, D) is continuous
and, in addition, differentiable with respect to all the parameters v0, v1, . . . , vn, D.
Moreover, the partial derivative of the equilibrium price p with respect to D can be
calculated from the full derivative equality

∂Γ

∂p
· ∂p

∂ D
+ ∂Γ

∂ D
= 0,

finally yielding the desired formula (7.12)

∂p

∂ D
= 1

v0 + a0
a0

∑n

i=0

1

vi + ai
− G ′(p)

,

and thus completing the proof. �

7.1.4 Interior Equilibrium

Now we are ready to define the concept of interior equilibrium. To do that, we first
describe the procedure of verification of the influence coefficients vi as it was given in
Bulavski [36]. Assume that we have an exterior equilibrium state (p, q0, q1, . . . , qn)

that occurs for some feasible v = (v0, v1, . . . , vn) and D ≥ 0. One of the produc-
ers, say k, 0 ≤ k ≤ n, temporarily changes his/her behavior by abstaining from
maximization of the conjectured profit (or domestic social surplus, as is in case
k = 0) and making small fluctuations (variations) around his/her equilibrium output
volume qk . In mathematical terms, the latter is tantamount to restricting the model
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agents to the subset I−k := {0 ≤ i ≤ n : i 
= k} with the active demand reduced to
D−k := D − qk .

A variation δqk of the production output by agent k is then equivalent to the
active demand variation in form δD−k := −δqk . If we consider these variations
being infinitesimal, we assume that by observing the corresponding variations of the
equilibrium price, agent k can evaluate the derivative of the equilibrium price with
respect to the active demand in the reduced market, which clearly coincides with
his/her influence coefficient.

When applying formula (7.12) from Theorem8.1 to evaluate the player k conjec-
ture (influence coefficient) vk , one has to remember that agent k is temporarily absent
from the equilibriummodel, hence one has to exclude from all the sums the termwith
number i = k. Keeping that in mind, we come to the following consistency criterion.

7.1.4.1 Consistency Criterion

At an exterior equilibrium (p, q0, q1, . . . , qn), the influence coefficients vk ,
k = 0, 1, . . . , n, are referred to as consistent if the following equalities hold:

v0 = 1
∑n

i=1

1

vi + ai
− G ′(p)

, (7.21)

and

vi = 1
v0 + a0

a0

∑n

j=0, j 
=i

1

v j + a j
− G ′(p)

, i = 1, . . . , n. (7.22)

Now we are in a position to define the concept of an interior equilibrium.

Definition 7.2 The collection (p, q0, . . . , qn, v0, . . . , vn) where vi ≥ 0, i = 0, 1,
. . . , n, is referred to as the interior equilibrium if, for the coefficients (v0, v1, . . . , vn)

the collection (p, q0, . . . , qn) is an exterior equilibrium state, and the consistency
criterion is satisfied for all k = 0, 1, . . . , n. �

Remark 7.2 If all the agents are profit-maximizing private companies, then formulas
(7.21)–(7.22) reduce to the uniform ones obtained independently in Bulavski [36]
and Lui et al. [206]:

vi = 1
∑

j∈I\{i}
1

v j + a j
− G ′(p)

, i ∈ I, (7.23)

where I is an arbitrary (finite) list of the participants of the model. �

http://dx.doi.org/10.1007/978-3-662-45827-3_8
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The following theorem is an extension of Theorem 2 in Bulavski [36] to the case
of a mixed oligopoly.

Theorem 7.2 Under assumptions A1, A2, and A3, there exists the interior
equilibrium.

Proof We are going to show that there exist v0 ∈ [0, v0); vi ≥ 0, i = 1, . . . , n;
qi ≥ 0, i = 0, 1, . . . , n, and p > p0 such that the vector (p; q0, . . . , qn; v0, . . . , vn)

provides for the interior equilibrium. In other words, the vector (p, q0, . . . , qn) is an
exterior equilibrium state, and in addition, equalities (7.21)–(7.22) hold. For a tech-
nical purpose, let us introduce a parameter α so that G ′(p) := α

1 + α
for appropriate

values ofα ∈ [−1, 0], and then rewrite the right-hand sides of formulas (7.21)–(7.22)
in the following (equivalent) form:

F0 (α; v0, . . . , vn) := 1 + α

(1 + α)
∑n

i=1

1

vi + ai
− α

, (7.24)

and

Fi (α; v0, . . . , vn) := 1 + α

(1 + α)
v0 + a0

a0

∑n

j=0, j 
=i

1

v j + a j
− α

, i = 1, . . . , n.

(7.25)

Since vi ≥ 0, ai > 0, i = 0, 1, . . . , n, and α ∈ [−1, 0], the functions Fi ,
i = 0, 1, . . . , n, are well-defined and continuous with respect to their arguments over
the corresponding domains. Now let us introduce an auxiliary functionΦ : [−1, 0]×
Rn+1+ as follows. For arbitrary α ∈ [−1, 0] and (v0, v1, . . . , vn) ∈ [0, v0)× Rn+, find
the (uniquely determined, according to Theorem8.1) exterior equilibrium vector
(p, q0, q1, . . . , qn) and calculate the derivative G ′(p) at the equilibrium point p.
Then define the value of the function Φ as below:

Φ (α; v0, v1, . . . , vn) := α̂ = G ′(p)

1 − G ′(p)
∈ [−1, 0]. (7.26)

When introducing this auxiliary function Φ, we do not indicate explicitly its depen-
dence upon D, because we are not going to vary D while proving the theorem. As the
derivative G ′(p) is continuous by p (see assumption A1), and the equilibrium price
p = p (v0, v1, . . . , vn), in its turn, is a continuous function (cf. Theorem8.1), then
the function Φ is continuous as a superposition of continuous functions. (We also
notice that its dependence upon α is fictitious.) To finish the proof, let us compose
a mapping H := (Φ, F0, F1, . . . , Fn) : [−1, 0] × Rn+1+ → [−1, 0] × Rn+1+ and
select a convex compact that is mapped by H into itself. The compact is constructed

http://dx.doi.org/10.1007/978-3-662-45827-3_8
http://dx.doi.org/10.1007/978-3-662-45827-3_8
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as follows: First, set s := max {v0, a0, a1, . . . , an}. Second, formulas (7.24)–(7.25)
yield the following relationships: If α = −1, then

F0 (−1, v0, v1, . . . , vn) = 0, (7.27)

Fi (−1, v0, v1, . . . , vn) = 0, i = 1, . . . , n, (7.28)

whereas for α ∈ (−1, 0] one has

0 ≤ F0 (α, v0, v1, . . . , vn) = 1 + α

(1 + α)
∑n

i=1

1

vi + ai
− α

≤ 1 + α

(1 + α)
∑n

i=1

1

vi + ai

= 1
∑n

i=1

1

vi + ai

≤ 1
∑n

i=1

1

vi + s

; (7.29)

and

0 ≤ Fi (α, v0, v1, . . . , vn) = 1 + α

(1 + α)
v0 + a0

a0

∑n

j=0, j 
=i

1

v j + a j
− α

≤ 1
v0 + a0

a0

∑n

j=0, j 
=i

1

v j + a j

≤ 1
∑n

j=0, j 
=i

1

v j + a j

≤ 1
∑n

j=0, j 
=i

1

v j + s

, i = 1, . . . , n. (7.30)

Relationships (7.27)–(7.30) clearly imply that for any α ∈ [−1, 0], if 0 ≤ v j ≤
s

n − 1 , j = 0, 1, . . . , n, then the values of Fj (α, v0, . . . , vn), j = 0, . . . , n, drop

within the same (closed) interval
[
0, s

n − 1

]
. Therefore, we have just established

that the continuous mapping H := (Φ, F0, F1, . . . , Fn) maps the compact convex

subset Ω := [−1, 0] ×
[
0, s

n − 1

]n+1
into itself. Thus, by Brouwer Fixed Point

Theorem, the mapping H has a fixed point (α, v0, . . . , vn), that is,

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Φ (α, v0, v1, . . . , vn) = α,

F0 (α, v0, v1, . . . , vn) = v0,

F1 (α, v0, v1, . . . , vn) = v1,
...

Fn (α, v0, v1, . . . , vn) = vn .

(7.31)
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Now, for the thus obtained influence coefficients v = (v0, v1, . . . , vn) ∈ [0, v0)×
Rn+, there exists (uniquely, by Theorem8.1) the exterior equilibrium (p, q0, q1, . . . ,
qn). Hence, we can immediately conclude (from (8.51) and the definition of func-
tion Φ) that G ′(p) = α

1 + α
, and therefore, the influence coefficients satisfy con-

ditions (7.21)–(7.22). So, according to Definition 7.2, the just constructed vec-
tor (p; q0, . . . , qn; v0, . . . , vn) is the desired interior equilibrium. The proof is
complete. �

7.1.4.2 Properties of Influence Coefficients

In our future research, we are going to extend the obtained results to the case of
non-differentiable demand functions. However, some of the necessary technique can
be developed now, in the differentiable case. To do that, we denote the value of
the demand function’s derivative by τ := G ′(p) and rewrite the consistency Eqs.
(7.21)–(7.22) in the following form:

v0 = 1
∑n

i=1

1

vi + ai
− τ

, (7.32)

and

vi = 1
v0 + a0

a0

∑n

j=0, j 
=i

1

v j + a j
− τ

, i = 1, . . . , n, (7.33)

where τ ∈ (−∞, 0]. When τ → −∞ then system (7.32)–(7.33) has the unique
limit solution v j = 0, j = 0, 1, . . . , n. For all the finite values of τ , we establish the
following result.

Theorem 7.3 For any τ ∈ (−∞, 0], there exists a unique solution of equations
(7.32)–(7.33) denoted by vk = vk(τ ), k = 0, 1, . . . , n, continuously depending upon
τ . Furthermore, vk(τ ) → 0 when τ → −∞, k = 0, . . . , n, and v0 = v0(τ ) strictly
increases until v0(0) if τ grows up to zero.

Proof Similar to the proof of Theorem7.2, we introduce the auxiliary functions

F0 (τ ; v0, . . . , vn) := 1
∑n

i=1

1

vi + ai
− τ

= v0, (7.34)

and

Fi (τ ; v0, . . . , vn) := 1
v0 + a0

a0

∑n

j=0, j 
=i

1

v j + a j
− τ

= vi , i = 1, . . . , n,

(7.35)

http://dx.doi.org/10.1007/978-3-662-45827-3_8
http://dx.doi.org/10.1007/978-3-662-45827-3_8
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and set s := max {a0, a1, . . . , an}. It is easy to check that for any fixed value of τ ∈
(−∞, 0], the vector-function d := (F0, F1, . . . , Fn) maps the n-dimensional cube

M :=
[
0, s

n − 1

]n
into itself. Now we show that subsystem (7.35) has a unique

solution v (v0, τ ) = (v1 (v0, τ ) , . . . , vn (v0, τ )) for any fixed τ ∈ (−∞, 0] and
v0 ≥ 0; moreover, the vector-function v = v (v0, τ ) is continuously differentiable
with respect to both variables v0 and τ . The Jacobi matrix of the mapping d =
(F0, F1, . . . , Fn), that is, the matrix J :=

(
∂ Fi
∂v j

)n, n

i=1, j=1
has the following entries:

∂ Fi

∂v j
=

⎧
⎪⎨

⎪⎩

0, for j = i;
v0 + a0

a0 · F2
i(

v j + a j
)2 , for j 
= i.

(7.36)

Thus, matrix J is nonnegative and non-decomposable. Now let us estimate the
sums of the matrix entries in each row i = 1, 2, . . . , n:

n∑

k=1

∂ Fi

∂vk
= v0 + a0

a0
F2

i ·
n∑

k=1,k 
=i

1

(vk + ak)
2 ≤

v0 + a0
a0

∑n

k=1,k 
=i

1

(vk + ak)
2

(
v0 + a0

a0

∑n

k=1,k 
=i

1

vk + ak

)2

= a0
v0 + a0

·

∑n

k=1,k 
=i

1

(vk + ak)
2

(∑n

k=1,k 
=i

1

vk + ak

)2 = Ri (v1, . . . , vn; v0) < 1. (7.37)

For anyfixed value v0 ≥ 0 (treated as a parameter), the above-mentioned functions
Ri (v1, . . . , vn; v0), i = 1, . . . , n, are defined on the cube M , continuously depend
upon the variables v1, . . . , vn , and take only positive values strictly less than 1.
Therefore, their maximum values achieved on the compact cube M are also strictly
lower than 1, which implies that the matrix (I − J ) is invertible (here, I is the
n-dimensional unit matrix), and the mapping d := (F1, . . . , Fn) defined on M is
a strictly contracting mapping in the cubic norm (i.e., ‖ · ‖∞-norm). The latter
allows to conclude that for any fixed values of τ ∈ (−∞, 0] and v0 ≥ 0, the equation
subsystem (7.35) has a unique solution v (v0, τ ) = (v1 (v0, τ ) , . . . , vn (v0, τ )). Since
det(I − J ) 
= 0 for any τ ∈ (−∞, 0], Implicit Function Theorem also guarantees
that v (v0, τ ) is continuously differentiable by both variables.

In order to establish the monotone increasing dependence of the solution v (v0, τ )

of subsystem (7.35) upon τ for any fixed value v0 ≥ 0, let us differentiate (7.35)
with respect to τ to yield
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∂vi

∂τ
= F2

i

⎡

⎣1 + v0 + a0
a0

n∑

k=1,k 
=i

∂vk
∂τ

(vk + ak)
2

⎤

⎦ , i = 1, . . . , n. (7.38)

Rewriting (7.38) in the vector form, we come to

v′
τ = Jv′

τ + F2, (7.39)

where

v′
τ :=

(
∂v1
∂τ

, . . . ,
∂vn

∂τ

)T

and F2 :=
(

F2
1 , . . . , F2

n

)T
> 0. (7.40)

Since all entries of the inverse of matrix (I − J ) are nonnegative (the latter is due to
the matrix (I − J ) being an M-matrix, cf. e.g. Berman and Plemmons [21]) and the
inverse matrix (I − J )−1 has no zero rows, then (7.39)–(7.40) imply

v′
τ = (I − J )−1F2 > 0, (7.41)

that is, each component of the solution vector v (v0, τ ) of subsystem (7.35) is a strictly
increasing function of τ for each fixed value of v0 ≥ 0.Moreover, the straightforward
estimates

vi (v0, τ ) ≤ −1

τ
, i = 1, . . . , n, (7.42)

bring about the limit relationships shown below:

vi (v0, τ ) → 0 as τ → −∞, i = 1, . . . , n, for any fixed v0 ≥ 0. (7.43)

To order to establish the monotone (decrease) dependence of the solution v (v0, τ )

of subsystem (7.35) upon v0 ≥ 0 for eachfixedvalueof τ ∈ (−∞, 0],wedifferentiate
(7.35) with respect to v0 to get:

∂vi

∂v0
= −F2

i

⎡

⎣ 1

a0

n∑

k=1,k 
=i

1

vk + ak
− v0 + a0

a0

n∑

k=1,k 
=i

∂vk
∂v0

(vk + ak)
2

⎤

⎦

= F2
i

v0 + a0
a0

n∑

k=1,k 
=i

∂vk
∂v0

(vk + ak)
2 − F2

i

a0

n∑

k=1,k 
=i

1

vk + ak
, i = 1, . . . , n.

(7.44)

Again, rearrange these equalities into a system of equations

v′
v0 = Jv′

v0 − Q, (7.45)
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where

v′
v0 :=

(
∂v1
∂v0

, . . . ,
∂vn

∂v0

)T

, (7.46)

while Q ∈ Rn is the vector with the components

Qi := F2
i

a0

n∑

k=1,k 
=i

1

vk + ak
> 0, i = 1, . . . , n. (7.47)

Solving (7.45) for v′
v0 and making use of (7.47), one comes to the relationship

v′
v0 = −(I − J )−1Q < 0, (7.48)

which means that each component of v (v0, τ ) is a strictly decreasing function of
v0 ≥ 0 for each fixed value of τ ∈ (−∞, 0].

Now we are in a position to demonstrate the existence and smoothness of the
unique solution v(τ ) = (v0(τ ), v1(τ ), . . . , vn(τ )) of the complete system (7.34)–
(7.35) for every fixed value of τ ∈ (−∞, 0]. To do that, we plug in the above-
mentioned (uniquely defined for each fixed τ ∈ (−∞, 0] and v0 ≥ 0) solution of
subsystem (7.35) into (7.34) and arrive to the functional equation:

v0 = 1
∑n

i=1

1

vi (v0, τ ) + ai
− τ

. (7.49)

With the aim to prove the unique solvability of the latter equation, we fix an arbitrary
τ ∈ (−∞, 0] and introduce the function

Ψ (v0) := 1
∑n

i=1

1

vi (v0, τ ) + ai
− τ

. (7.50)

Since we know that

0 ≤ vi (v0, τ ) ≤ s

n − 1
, n = 1, . . . , n, where s = max{a0, a1, . . . , an},

(7.51)
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it brings us to the chain of relationships

Ψ (v0) ≤ 1
∑n

i=1

1

vi (v0, τ ) + ai

≤ 1
∑n

i=1

1

vi (v0, τ ) + s

≤ 1
∑n

i=1

1
s

n − 1
+ s

= 1
∑n

i=1

n − 1

ns

= s

n − 1
, (7.52)

which allows one to conclude that (for any fixed τ ∈ (−∞, 0]) the continuous

function Ψ = Ψ (v0) maps the closed interval
[
0, s

n − 1

]
into itself. Therefore,

according to Brouwer Fixed Point Theorem, there exists a fixed point v0 = Ψ (v0)
within this interval.

To finish the proof of the theorem, it is sufficient to establish that the above-
determined fixed point is unique for each fixed τ ∈ (−∞, 0] and, in addition, is
monotone increasing with respect to τ . First, (7.48) implies that (for every fixed
τ ∈ (−∞, 0]), the functions vi (v0, τ ), i = 1, . . . , n, are strictly decreasing by
v0 ≥ 0; hence, each ratio 1

vi (v0, τ ) + ai
, i = 1, . . . , n, strictly increases with

respect to v0 ≥ 0. Now we deduce from (7.53) below that the function Ψ = Ψ (v0),
in its turn, strictly decreases with respect to v0 ≥ 0, which means that the fixed point
v0 = Ψ (v0) exists uniquely.

Differentiability of the thus determined well-defined function v0 = v0(τ ) with
respect to follows from Implicit Function Theorem, because

∂Ψ

∂v0
= Ψ 2

n∑

i=1

∂vi
∂v0

(vi + ai )
2 < 0, for any τ ∈ (−∞, 0]. (7.53)

It is easy to see that the vector-function

v(τ ) := [v0(τ ), v1 (v0(τ ), τ ) , . . . , vn (v0(τ ), τ )]T

obtained by substituting the newly constructed function v0 = v0(τ ) into the previ-
ously described solution of subsystem (7.35) represents the uniquely determined and
continuously differentiable solution of the complete system (7.34)–(7.35).

In order to demonstrate the monotony of the above-described soluction’s first
component v0 = v0(τ ) by τ , we differentiate equation (7.49) by the chain rule and
make use of (7.50) to yield

dv0
dτ

=
⎡

⎣Ψ 2
n∑

i=1

∂vi
∂v0

(vi + ai )
2

⎤

⎦ · dv0
dτ

+ Ψ 2
n∑

i=1

∂vi
∂τ

(vi + ai )
2 + Ψ 2. (7.54)
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Now solving (7.54) for the derivative dv0
dτ

, one obtains:

dv0
dτ

= B

A
, (7.55)

where, owing to (7.53),

A = 1 − Ψ 2
n∑

i=1

∂vi
∂v0

(vi + ai )
2 > 0 (7.56)

while

B = Ψ 2

⎡

⎣
n∑

i=1

∂vi
∂τ

(vi + ai )
2 + 1

⎤

⎦ > 0, (7.57)

according to (7.41). Combining (7.55)–(7.57), we conclude that dv0
dτ

= B
A > 0;

hence, the function v0 = v0(τ ) strictly increases by τ . Moreover, by the evident
estimate

v0(τ ) ≤ −1

τ
,

which follows from (7.49), we deduce that v0 = v0(τ ) vanishes as τ → −∞.
Similarly, (7.43) implies that the same is valid for all the remaining influence coef-
ficients, i.e., vi (τ ) → 0, i = 1, . . . , n, as τ → −∞. The proof of the theorem is
complete. �

7.1.5 Numerical Results

In order to illustrate the difference between the mixed and classical oligopoly cases
related to the conjectural variations equilibrium with consistent conjectures (influ-
ence coefficients), we apply formulas (7.21)–(7.22) to the simple example of an
oligopoly in the electricity market from Liu et al. [206]. The only difference in our
modified example from the instance of Liu et al. [206] is in the following: in their
case, all six agents (suppliers) are private companies producing electricity and maxi-
mizing their net profits, whereas in our case, we assume that Supplier 0 (Supplier 5 in
some instances) is a public enterprise seeking to maximize domestic social surplus
defined by (7.4). All the other parameters involved in the inverse demand function
p = p(G) and the producers’ cost functions, are exactly the same.

So, following Liu et al. [206], we select the IEEE 6-generator 30-bus system to
illustrate the above analysis. The inverse demand function in the electricity market
is given in the form:
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Table 7.1 Cost functions’
parameters

Agent i bi ai

0 2.00000 0.02000

1 1.75000 0.01750

2 3.00000 0.02500

3 3.00000 0.02500

4 1.00000 0.06250

5 3.25000 0.00834

p(G, D) = 50 − 0.02(G + D) = 50 − 0.02
n∑

i=0

qi . (7.58)

The cost functions parameters of suppliers (generators) are listed in Table7.1.
Here, agents 0, 1, . . . , 5 will be combined in different ways in the examples listed
below. In particular, Oligopoly 1 is the classical oligopoly where each agent 0–5
maximizes its net profit; Oligopoly 2 will involve agent 0 (public one, who maxi-
mizes domestic social surplus) and 1, . . . , 5 (private),whereasOligopoly 3 comprises
agents 5 (public) and 0, 1, . . . , 4 (private).

To find the consistent influence coefficients in their classical oligopoly market
(Oligopoly 1), Liu et al. [206] use formulas (7.23) for all six suppliers, whereas for
our mixed oligopoly model (Oligopoly 2), we exploit formula (7.21) for Supplier
0 and formulas (7.22) for Suppliers 1 through 5. With the thus obtained influence
coefficients, the (unique) equilibrium is found for each of Oligopolies 1 and 2. The
equilibrium results (influence coefficients, production outputs in MWh, equilibrium
price, and the objective functions’ optimal values in $ per hour) are presented in
Table7.2 through 7.6. To make our conjectures vi comparable to those used in
Kalashnykova et al. [182], Kalashnikov et al. [165], and Liu et al. [206], we
divide them by [−p′(G)] = 0.02 and thus come to wi := −vi/p′(G) = 50vi ,
i = 0, 1, . . . , n, shown in all the tables.

As it could be expected, the equilibrium price in Oligopoly 1 (classical oligopoly)
turns out to be equal to p1 = 10.4304, whereas in Oligopoly 2 (mixed oligopoly), it

Table 7.2 Computation results in consistent CVE: wi , generation, profits

Agent i wi qi (MWh) Profits ($/h)

Oligopoly 1 Oligopoly 2 Oligopoly 1 Oligopoly 2 Oligopoly 1 Oligopoly 2

0 0.19275 0.18779 353.405 626.006 1727.4 595.77

1 0.19635 0.16674 405.120 358.138 2076.6 1550.04

2 0.18759 0.15887 258.463 220.451 1082.9 761.90

3 0.18759 0.15887 258.463 220.451 1082.9 761.90

4 0.17472 0.14761 142.898 125.462 707.5 538.37

5 0.22391 0.19270 560.180 488.905 2709.8 1917.98
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drops down to p2 = 9.2118. On the contrary, the total electricity power generation
is higher: G2 = 2039.412MWh—in the second case (mixed oligopoly), than in
Oligopoly 1, which is G1 = 1978.475MWh. Both results are more attractive for
consumers. Simultaneously, the private producers’ net profit values are observed to
be lower in the mixed oligopoly (Oligopoly 2) than those in the classical oligopoly
(Oligopoly 1.) In Oligopoly 2, profit is minimal in the cell of Agent 0, because its
real objective function is not the net profit but domestic social surplus defined by
(7.4); in this instance, it happens to reach S = $42, 187.80/h.

It is also interesting to compare the results in CVE with consistent conjectures
(Oligopolies 1 and2) against the production volumes andprofits obtained for the same
cases in the classical Cournot equilibrium (i.e., with all wi = 1, i = 0, 1, . . . , 5.)
Table7.3 illustrates the yielded results, with p1 = 14.760 in the classical oligopoly
(Oligopoly 1) much higher than the market equilibrium price p2 = 9.5349 in the
mixed oligopoly (Oligopoly 2).

Again, the total electricity power generation is higher: G2 = 2023.256MWh,—
in the second case (mixed oligopoly), than in Oligopoly 1: G1 = 1761.9MWh. Both
results are more propitious for consumers. Simultaneously, the private producers’
net profit values are observed to be much lower in the mixed oligopoly (Oligopoly 2)
than those in the classical oligopoly (Oligopoly 1). In Oligopoly 2, profit is even
negative in the cell of Agent 0, as its objective function is not the profit but domestic
social surplus defined by (7.4); in this example, it is equal to S = $35, 577.50/h.
The latter data, togetherwith themarket price values, suggest that themixedoligopoly
with consistent conjectures is preferable to consumers than the Cournot model.

Table 7.3 Computation results in the Cournot models: wi , generation, profits

Agent i wi qi (MWh) Profits ($/h)

Oligopoly 1 Oligopoly 2 Oligopoly 1 Oligopoly 2 Oligopoly 1 Oligopoly 2

0 1.00000 1.00000 319.060 1200.000 3054.0 −5358.14

1 1.00000 1.00000 347.000 207.597 3461.7 1239.02

2 1.00000 1.00000 261.390 145.220 2220.5 685.38

3 1.00000 1.00000 261.390 145.220 2220.5 685.38

4 1.00000 1.00000 166.820 103.453 1426.2 548.51

5 1.00000 1.00000 406.230 221.767 3988.5 1188.70

Table 7.4 Computation results in the perfect competition model: wi , generation, profits

Agent i wi qi (MWh) Profits ($/h)

Oligopoly 1 Oligopoly 2 Oligopoly 1 Oligopoly 2 Oligopoly 1 Oligopoly 2

0 0.00000 0.00000 348.43 348.43 1214.00 1214.00

1 0.00000 0.00000 412.49 412.49 1488.80 1488.80

2 0.00000 0.00000 238.74 238.74 712.47 712.47

3 0.00000 0.00000 238.74 238.74 712.47 712.47

4 0.00000 0.00000 127.50 127.50 507.98 507.98

5 0.00000 0.00000 685.68 685.68 1960.50 1960.50
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Of course, the perfect competitionmodel (see, Table7.4)withwi = vi = 0, i = 0,
1, . . . , 5, is the best for consumers in bothOligopoly 1 and 2:with p1 = p2 = 8.9685
and the total produce G1 = G2 = 2051.57MWh. Domestic social surplus is also
higher in this case than in all the previous ones: S = $43, 303.52/h.

It is curious to note (cf. Tables7.2, 7.3 and 7.4) that in the classical oligopoly
(Oligopoly 1), the Cournot model demonstrates to be the most profitable for the
producers, whereas it is not the case for the mixed oligopoly: here, the existence
of a public enterprise with domestic social surplus as its utility function makes
the consistent CVE more beneficial for the rest of suppliers than the Cournot one
(except for the weakest Agent 4, for which, on the contrary, the Cournot model is
most gainful).

Finally, we may compare the consistent CVEs (Table7.5), Cournot equilibria
(Table7.6) and the perfect competition for the above-defined Oligopoly 2 (mixed
oligopoly with Agent 0 being a public company) against a similar Oligopoly 3, in
which not Agent 0 but the (much stronger) Agent 5 is the public supplier.

With the market price p3 = 7.8751 even lower and domestic social surplus
= $44, 477.30/h even higher than those in the perfect competition model, this con-
sistent CVE may serve as a good example of the strong public company realizing
the implicit price regulation within an oligopoly.

A bit curious are the results reflected in Table7.6: comparing the Cournot
oligopoly in Oligopolies 1, 2, and 3, one may see that with a weaker public firm
(Oligopoly 2), the private producers may incline to the Cournot model of behavior
(cf. Table7.3). However, with a stronger public supplier, as it is in Oligopoly 3,

Table 7.5 Computation results in consistent CVE: wi , generation, profits

Agent i wi qi (MWh) Profits ($/h)

Oligopoly 2 Oligopoly 3 Oligopoly 2 Oligopoly 3 Oligopoly 2 Oligopoly 3

0 0.18779 0.13208 626.006 259.480 595.77 851.16

1 0.16674 0.13497 358.138 303.229 1550.04 1052.75

2 0.15887 0.12803 220.451 176.884 761.90 471.22

3 0.15887 0.12803 220.451 176.884 761.90 471.22

4 0.14761 0.11843 125.462 105.984 538.37 377.63

5 0.19270 0.21584 488.905 1083.785 1917.98 114.52

Table 7.6 Computation results in the Cournot models: wi , generation, profits

Agent i wi qi (MWh) Profits ($/h)

Oligopoly 2 Oligopoly 3 Oligopoly 2 Oligopoly 3 Oligopoly 2 Oligopoly 3

0 1.00000 1.00000 1200.000 122.612 −5358.14 451.01

1 1.00000 1.00000 207.597 137.452 1239.02 543.18

2 1.00000 1.00000 145.220 86.766 685.38 244.67

3 1.00000 1.00000 145.220 86.766 685.38 244.67

4 1.00000 1.00000 103.453 71.569 548.51 262.51

5 1.00000 1.00000 221.767 1649.612 1188.70 −5319.04
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private companies would rather select the consistent CVE: in the Cournot model, the
strong public company subdues all the rivals to the minimum levels of production
and profits. Nevertheless, the Cournot model with stronger public firm provides for
the very lowmarket price: p3 = 6.9045, even though at the cost of a somewhat lower
domestic social surplus: S = $41, 111.59/h.

As it could be expected, in the perfect competition model, both Oligopolies 2 and
3 give exactly the same results, albeit different domestic social surplus values: S =
$43, 303.52/h in Oligopoly 2 against a bit higher S = $44, 050.04/h in Oligopoly
3 with the stronger public company.

In this section, we have studied a model of mixed oligopoly with conjectural
variations equilibrium (CVE). The agents’ conjectures concern the price variations
depending upon their production output’s increase or decrease. We establish exis-
tence and uniqueness results for the conjectured variations equilibrium (called an
exterior equilibrium) for any set of feasible conjectures. To introduce the notion
of an interior equilibrium, we develop a consistency criterion for the conjectures
(referred to as influence coefficients) and prove the existence theorem for the interior
equilibrium (understood as a CVE with consistent conjectures). To prepare the base
for the extension of our results to the case of non-differentiable demand functions,
we also investigate the behavior of the consistent conjectures in dependence upon a
parameter representing the demand function’s derivative with respect to the market
price.

An interesting methodological question also arises: can the mixed oligopoly be
related to collaborative game theory? Formally speaking, the mixed oligopoly is
rather a cooperative than competitive game, as the public company’s and the private
firms’ interests are “neither completely opposed nor completely coincident” (Nash
[248]). At first glance, collaboration can be a worthwhile strategy in a cooperative
game. However, according to Zagal et al. [327], “because the underlying gamemodel
is still designed to identify a sole winner, cooperative games can encourage anti-
collaborative practices in the participants. Behaving competitively in a collaborative
scenario is exactly what should not happen in a collaborative game”.

7.2 Toll Assignment Problems

One of the most important problems concerning the toll roads is the setting of an
appropriate cost for traveling through private arcs of a transportation network. In the
section this problem is considered by stating it as a bilevel optimization (BLP)model.
At the upper level, one has a public regulator or a private company that manages the
toll roads seeking to increase its profits. At the lower level, several companies-users
try to satisfy the existing demand for transportation of goods and/or passengers, and
simultaneously, to select the routes so as to minimize their travel costs. In other
words, what is sought is a kind of a balance of costs that bring the highest profit to
the regulating company (the upper level) and are still attractive enough to the users
(the lower level).

With the aim of providing a solution to the bilevel optimization problem in
question, a direct algorithm based on sensitivity analysis is proposed in this section.
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In order to make it easier to move (if necessary) from a local maximum of the upper
level objective function to another, the well-known “filled function” method is used.
Most results in this section are taken from Kalashnikov et al. [167].

7.2.1 Introduction

During the early years of industrial development, the production facilities were
established near the consumers because the transportation was expensive, time-
consuming, and risky. When transportation systems appeared, they allowed the pro-
ducer to compete in distant markets, promoting economies of scale by increasing
sales volume.

Due to the complexity of products and globalization, supply and distribution
chains have grown enormously, therefore, logistics costs have “rocketed up” sharply.
According to the data from the IMF (International Monetary Fund), logistics costs
represent 12% of gross national product, and they range from 4 to 30% of the sales
at the enterprise level.

Because of this growth, many countries have attached great importance to the
development and modernization of the infrastructure to achieve greater participation
in the global economy. There are organizations that deal with the development of
communications and transportation infrastructure, building technologies to increase
the coverage, quality and competitiveness of the infrastructure. In Mexico, admin-
istration of new (private) roads is commonly conceded to private companies, state
governments, or financial institutions (banks, holdings, etc.), who set transportation
tolls in order to retrieve money from the road users.

It has been recently noticed that under the concession model, there is less traffic
flow using these tolled highways. One of the strategies taken to increase the use of
toll roads is the regulation of tolls (pass rates). However, what are the appropriate
criteria to assign these toll rates?

The problem here is how to assign optimal tolls to the arcs of a multicommodity
transportation network. The toll optimization problem (TOP) can be formulated as
a bilevel mathematical program where the upper level is managed by a firm (or a
public regulator) that raises revenues from tolls set on (some) arcs of the network,
and the lower level is represented by a group of users traveling along the cheapest
paths with respect to a generalized travel cost. The problem can be interpreted as
finding equilibrium among tolls generating high revenues and at the same time being
attractive for the users. Other possible aims of the upper level decision maker can be
found in Heilporn et al. [141], Didi-Biha et al. [88], Labbé et al. [196].

The problem in question has been extensively studied. In what follows, a literature
review related to the TOP is made. Almost thirty years ago, Magnanti and Wong
[212] presented a very complete theoretical basis for the uses and limitations of
network design based on integer optimization with several models and algorithms.
This provided a unification of network designmodels, as well as a general framework
for deriving network design algorithms. They noticed that researchers had been
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motivated to develop a variety of solution techniques such as linear approximation
methods and the search of vertices adjacent to the lowest cost flow problem threated
as a network design problem (NDP).

The network design issues were mentioned several years later by Yang and Bell
[322], who also provided a brilliant survey of the existing literature in this area. They
introduced the elasticity concept in travel demand and the reserve capacity notion
of the network in the NDP, which allowed them to obtain a network design problem
easier to solve when trying tomaximize an appropriate objective function.Moreover,
they proposed an approach to NDP involving mixed elections, i.e., simultaneously
adding links and improving the capabilities. The latter approach allowed the use of
formulas based upon the maximization of consumer surplus as the objective function
of the NDP. The authors mentioned that the challenge remained to develop a global
search algorithm that could guarantee the optimality of a solution derived with the
computationally efficient manner mentioned in [212].

Bell and Iida [17] sought a unification of the theoretical analysis of transportation
networks, focused primarily on the assignment of stochastic user equilibrium (SUE),
estimating trip tables and network’s reliability. They saw the network design as an
extension of the analysis of the transportation network, where the control of traffic
signals is made in terms of an NDP. The latter is considered a difficult task because
of its nonconvex nature and the complexity of the networks. They mentioned that the
NDP can be posed as a bilevel optimization problem, where the upper level focuses
on the network design to maximize certain goals, whereas the lower level determines
howusers react to changes in the network. In theirmonograph, they presented twodif-
ferent approaches to solve the problem of network design, one is the iterative method
of design-assignment, which is relatively simple in its application and appears to con-
verge quickly. The other is an iterative algorithm based on sensitivity analysis, which
usually consumes more computational time to converge. The authors conclude that
both methods provide different local optima, with slight differences in the objective
function but significantly distinct in the design structure. Finally, they mentioned
that in order to have a more satisfactory approach, it is necessary to combine bilevel
optimization tools (to find a local solution) and a probabilistic search method (for
comparing local solutions using simulated annealing), to come to a global solution.

Marcotte [218] mentioned that the NDP mainly deals with the optimal balance
either of the transportation, investment, or maintenance costs of the networks subject
to congestion. The network’s users behave according to Wardrop’s first principle of
traffic equilibrium. He also suggested that the NDP can be modeled as a multilevel
mathematical optimization problem.

Mahler et al. [213] dealt with the problem of congestion in road networks rep-
resented by two problems, namely, estimation of the trip matrix and optimization
of traffic signals. Both problems were formulated as bilevel programs with alloca-
tion of stochastic user equilibrium (SUE) as the problem of the lower level. The
authors presented an algorithm that gives a solution to the bilevel problem of estima-
tion of the trip matrix and optimization of signals, making use of the “logit-based”
model of assignment SUE at the lower level. The algorithm used applies standard
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routines to estimate the matrix at every iteration, and SUE assignment to find the
search direction. The authors stated that it had not been possible to demonstrate the
convergence results in general; however, in case that the optimal solution can be
found by direct search, they demonstrated that the algorithm is able to give a good
approximation of the optimal solution.

Lawphongpanich andHearn [199] also examined the problemof traffic congestion
as a problem of fixing the toll through a formulation with static demands. They
mentioned that this problem can be classified into two types: (i) the problem of
the first best solution, in which all the arcs of the network are tolled, and (ii) the
problem of the second best solution, where it is assumed that some roads may have
tolls and others not, which does not permit them to get the maximum benefit. The
authors noticed that the latter problem can be posed as a bilevel optimization model,
or as a mathematical program with equilibrium constraints (MPEC). They used the
results achieved for the MPEC to develop a formulation equivalent to the nonlinear
optimization problem for the second best solution. The latter is done in order to
establish the properties of the second-best solution, which are of a particular interest
to transport economists, and in its turn, help develop another algorithm to solve the
problem in the nonlinear optimization formulation.

The pricing of road systems has a long history in the literature of transportation
economics, as mentioned by Morrison [246], who worked with a theoretical frame-
work developed through the empirical evidence of viability in pricing and policy. One
can also find this concept in the engineering and road planning literature, as described
in Cropper and Oates [47], who talked about the implementation of environmental
economics in environmental policy design road systems; they focused on reducing
traffic congestion on the roads through pricing to reduce negative aspects such as
pollution. Other authors who treated the problem of traffic congestion were Arnott
et al. [4]; they mentioned that the allocation of a uniform toll significantly reduces
this problem by taking into account parameters of time (i.e., alternating departure
times for users).

Hearn and Ramana [140] worked over the definition and optimization of different
objectives under a given set of tolls that promote optimal traffic systems. Shifting a
focus, one findsViton’s paper [309], whichmakes a comparison between the viability
of private toll roads and highways free to users. The concept of maximizing profits
through an optimal toll system is examined by Beckmann in [13] and by Verhoef in
[303].

As mentioned before, bilevel optimization offers a convenient framework for
modeling the optimal toll problems, as it allows one to take into account the user’s
behavior explicitly. Unlike the aforementioned investigations, Labbé et al. [197]
considered the TOP as a sequential game between the owners of road systems (the
leaders) and road users (the followers), which fits the scheme of a bilevel optimization
problem. This approach is also implemented by Brotcorne [30] on the problem of
fixing tariffs on cargo transportation. In the latter case, the leader is formed by a
group of competing companies, and their earnings are determined by the total profits



270 7 Applications to Other Energy Systems

from the rates, while the follower is a carrier who seeks to reduce travel costs, taking
into account the tolls set by the leader.

One of the simplest instances was analyzed by Kalashnikov et al. [173], where
a TOP defined over a congestion-free, multicommodity transportation network was
considered. In this setting, a highway authority (the leader) sets tolls on a subset of
arcs of the network, while the users (the follower) assign themselves to the shortest
(in terms of a generalized time) paths linking their respective origin and destination
nodes. The goal of the leader in this context is to maximize the toll revenue. Hence,
it is not in its interest to set very high tolls, because in this case the users would
be discouraged from using the tolled sub-network. The problem can be stated as
a combinatorial program that subsumes NP-hard problems, such as the Traveling
Salesman Problem (see, Labbé et al. [196], for a reduction method). Following the
initial NP-hardness proof in [196], computational complexity and approximation
results were obtained by Marcotte et al. [220].

On the other hand, Dempe et al. [58] studied this problem designing a “fuzzy”
algorithm for the TOP. Next, Lohse and Dempe [69] based their studies on the
analysis of an optimization problem in some sense reverse to the TOP. In addition,
Didi-Biha et al. [88] developed an algorithm based on the calculation of lower and
upper bounds to determine the maximum gain from the tolls on a subset of arcs of a
network transporting various commodities.

Studies have been conducted with roads without congestion and capacity limits,
where it is assumed that congestion is affected by the introduction of tolls. This
radically changes themathematical nature of themodel, and algorithmsuse a different
approach. Such a model was presented by Yan and Lam in [321], but these authors
were limited only to a simple model with two arcs. A more extensive work on the
assumption of limited capacity arcs is presented byKalashnikov et al. in [166], which
studied four different algorithms to solve this problem.

The group of authors Brotcorne et al. [34] started investigating a bilevel model
for toll optimization on a multicommodity transportation network as long ago as
2001. Recently, Brotcorne et al. analyzed this problem in [32] with the difference
in that they allowed subsidies in the network; that is, they considered the tolls with-
out constraints. The authors designed an algorithm that generated paths and then
formed columns for determining the optimal toll values for the current path (the
lower bound). Thereafter, they adjusted the revenue upper bound and finally applied
a diversification phase. Also they validated their algorithm by conducting numeri-
cal experimentation and concluded that the proposed algorithm efficiently works in
networks with few toll arcs. The same authors continued their work on the same
problem in [31]. In the latter paper, they designed and implemented a tabu search
algorithm, and concluded that their heuristics had obtained better results than other
combinatorial methods. Dempe and Zemkoho [81] also studied the TOP and pro-
posed a reformulation based on the optimal value function. This restatement has
advantage over the KKT reformulation because it keeps on the information about the
congestion in the network. They obtained optimality conditions for this restatement
and established some theoretical properties for it.



7.2 Toll Assignment Problems 271

The aim of the present section is to propose an algorithm based on the allowable
ranges to stay optimal (ARSO) resulting from sensitivity analysis after solving the
lower level problem.With this powerful tool, one can analyze possible changes in the
coefficients of somevariables in the objective functionwhich do not affect the optimal
solution (cf. the region of stability in Sect. 3.6.2.1). It also permits one to examine
the effects on the optimal solution when the parameters take new values beyond the
ARSO.Thiswork is inspired by the previous research undertakenbyRoch et al. [271].

In addition to dealing with the allowable ranges, the proposed technique also uses
the concept of a “filled function” (see Renpu [267],Wan et al. [312],Wu et al. [318]),
which is applied under the assumption that a local maximum (in our case) has been
found. Then the “filled functions” technique helps one either to find another local
maximum, better than the previous ones, or to determine that we have found (approx-
imately) a best feasible or an optimal solution, according to certain parameters of
tolerance.

The validity and reliability of this technique are illustrated by the results of numer-
ical experiments with test examples used to compare the proposed approach with the
other ones. Finally, the numerical results also confirmed the robustness of the pre-
sented algorithm.

To resume, in this sectionwe propose and test two versions of a heuristic algorithm
to solve the Toll Optimization Problem (TOP) based upon sensitivity analysis for
linear optimization problems. The algorithm makes use of a sensitivity analysis
procedure for the linear optimization problem at the lower level, as well as of the
“filled functions” technicalities in order to reach a global optimum when “jammed”
at some local optimum. The two versions of the method differ only in the way of
selecting a new toll vector, namely, by changing only one toll value at a time, or by
varying several toll values applying thewell-known100% rule of sensitivity analysis.

The proposed heuristics aim at filling in a gap in a series of numerical approaches
to the solution of TOP problem listed in the Introduction. To our knowledge, no
systematic attempts to apply the sensitivity analysis tools to the toll assigned problem
have been made. Moreover, the combination of these powerful tools with the “filled
functions” techniques brings forward some new global optimization ideas.

Numerical experiments with a series of small and medium-dimension test prob-
lems show the proposed algorithm’s robustness and reasonable convergence charac-
teristics. In particular, while ceding in efficiency to other algorithms when solving
small problems, the proposed method wins in the case of medium (higher dimen-
sional) test models.

The rest of the section is organized as follows. Section7.2.2 contains the model
statement and the definition of parameters involved. Section7.2.3 describes the algo-
rithm to solve the toll optimization problem, with Sect. 7.2.3.1 presenting the algo-
rithm’s structure, Sect. 7.2.3.2 justifying the reduction of the lower level equilibrium
problem to a standard linear program, and Sect. 7.2.3.3 recalling the “filled func-
tions” technique. Section7.2.4 lists the results of numerical experiments obtained
for several test problems. Supplementary material (Sect. 7.2.5) describes the data of
all the test problems tested in the numerical experiments.

http://dx.doi.org/10.1007/978-3-662-45827-3_3
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7.2.2 TOP as a Bilevel Optimization Model

Themethodology developed to solve this problem takes themodel proposed byLabbé
et al. [196] as a basis. They proved that the TOP can be analyzed as a leader-follower
game that takes place on a multicommodity network G = (K , N , A) defined by
a set of origin-destination couples K , a node set N and an arc set A. The latter is
partitioned into the subset A1 of toll arcs and the complementary subset A2 of toll-
free arcs. We endow each arc a ∈ A with a fixed travel delay ca representing the
minimal unit travel cost. Each toll arc a ∈ A1 also involves a toll component ta , to
be determined. The latter is also expressed in time units, for the sake of consistency.
The toll vector t = {ta : a ∈ A1} is restricted by the vector tmax = {tmax

a : a ∈ A1
}

from above and by zero from below.
The demand side is represented by numbers nk denoting the demand for trans-

portation between the origin node o(k) and the destination node d(k) associated with
commodity k ∈ K , |K | = r . A demand vector bk is associatedwith each commodity.
Its components are defined for every node i of the network as follows:

bk
i =

⎧
⎪⎨

⎪⎩

nk, if i = d(k);
−nk, if i = o(k);
0, otherwise.

(7.59)

Let x = {
xk

a

}
a∈A denote the set of commodity flows along the arcs a ∈ A, and{

i+
} ⊂ A the set of arcs having i as their head (destination) node, while

{
i−
} ⊂ A

is the set of arcs having i as their tail (origin) node, for any i ∈ N . Based on the
notation introduced above, the toll optimization problem (TOP) can be stated as the
bilevel program (7.60)–(7.63):

max
t,x

F(t, x) =
∑

k∈K

∑

a∈A1

ta xk
a , (7.60)

subject to
0 ≤ ta ≤ tmax

a , (7.61)

∀k ∈ K

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕk(t) = min
xk

[∑
a∈A1

(ca + ta) xk
a +∑a∈A2

ca xk
a

]
,

subject to
∑

a∈{i+}
xk

a − ∑

a∈{i−}
xk

a = bk
a, ∀i ∈ N , k ∈ K ,

xk
a ≥ 0, ∀a ∈ A, k ∈ K ,

(7.62)

∑

k∈K

xk
a ≤ qa, ∀a ∈ A. (7.63)



7.2 Toll Assignment Problems 273

In this (optimistic) formulation, both the toll and flow variables are controlled
by the leader (the toll variables directly, the flow variables implicitly). On the other
hand, the lower level constraints reflect the followers’ intention tominimize their total
“transportation costs”, in terms of “time delay units”multiplied by the corresponding
flow values, under current toll levels, and subject to the supply-demand requirements.

In order to prevent the occurrence of trivial situations, the following conditions
are assumed in the same manner as in [88]:

1. For a certain amount of goods, demand from one node to another can be sent by
arcs or paths that may be toll-free, depend on tolls, or combinations of both.

2. There is a transportation cost associated with each arc that is expressed as a cost
at the lower level.

3. There is no profitable vector that induces a negative cost cycle in the network.
This condition is satisfied if, for example, all delays ca are nonnegative.

4. For each commodity, there exists at least one path composed solely of toll-free
arcs.

7.2.3 The Algorithm

Tofind a solution of the TOP,we develop an algorithmdealingwith the bilevelmathe-
matical optimization model (7.60)–(7.63) starting from initial values ta of tolls. With
any toll vector fixed, we may treat the lower level problem as a linear program. After
solving the latter by the simplex method, we perform sensitivity analysis for the
lower level objective function. In the TOP analyzed here, the sum of the objective
functions of all followers can be selected as the objective function in the lower level
problem, see, Kalashnikov et al. [166]. If the analysis tells us that the current solution
is a local maximum point for the upper level problem (this is so if sensitivity analysis
does not allow to increase the coefficients of the basic flows along the toll arcs), we
use the “filled functions” technique (described in Sect. 7.2.3.2; cf. e.g.Wu et al. [318,
319]) for the objective function of the leader. This allows us to make a “jump” to a
neighborhood of another possible local maximum point, if the latter exists.

Once we have a new set of tolls, we proceed to solve the problem of the followers
again and perform sensitivity analysis. If that does not allow more increases, we use
the “filled functions” method again.

This procedure allows one to get an increase in the toll if the next local maximum
is better; otherwise, after several fruitless attempts in a row, we stop with the last
solution as approximately optimal.

7.2.3.1 Description of the Heuristic Algorithm

In this algorithm,we are going to combine themain structure of themethod described
by Kalashnikov et al. [173] and a new idea consisting in the following: A direct
procedure may be represented as determination of the “fastest increase” direction
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for the upper level objective function in terms of the toll variables variations. The
“formal gradient” of this objective function F from (7.60) can be determined by the
current total flows along the toll arcs:

∂ F

∂ta
(t, x) =

∑

k∈K

xk
a , ∀a ∈ A1. (7.64)

We call it the “formal gradient” because the followers’ optimal response is not
taken into account in (7.64). However, as the fastest infinitesimal improvement direc-
tion, this vector can be used in our heuristic method. The possibility of solving a lin-
ear optimization problem at the lower level instead of the Nash equilibrium problem
(7.60)–(7.63) has been justified in the papers [166, 173] by Kalashnikov et al.

In what follows, we present a description of the heuristic method proposed first by
Kalashnikov et al. in [173] for solving the congestion-free case for the bilevel TOP,
i.e., qa = +∞, ∀a ∈ A. However, the same algorithm can be also applied to solve
the bilevel TOP problem with restricted capacities. This is justified by the following
theoretical result.

7.2.3.2 A Simple Method to Solve a Special Generalized Nash
Equilibrium Problem with Separable Payoffs

Consider amappingΦ : X → RN , where X = X1×X2×· · ·×X N is a direct product
of m subsets of Euclidean spaces: namely, Xi ⊂ Rni , i = 1, . . . , N . Assume that the
mapping Φ is separable in the sense that each of its components is restricted to its
own domain, i.e., Φi : Xi → R, i = 1, . . . , N . In other words, no two components
of the mapping Φ share common variables. Many applied problems boast the latter
property: cf. for example, the lower level of the Toll Optimization Problem, namely,
the (generalized) Nash equilibrium problem (7.62)–(7.63).

Let us also consider two other mappings G : X → Rn and H : X → Rm , which
are not necessarily separable like the mapping Φ. Finally, let Ω be a subset of X
defined as follows:

Ω = {x ∈ X : G(x) ≤ 0, H(x) = 0} . (7.65)

Now assume that we search for a generalized Nash equilibrium (GNE): Find a
vector x∗ = (

x∗
1 , . . . , x∗

i , . . . , x∗
N

) ∈ Ω such that for every player i = 1, . . . , N ,
the corresponding sub-vector x∗

i ∈ Xi provides a point of a (global) maximum of its
utility function (payoff) Φi over the subset Ωi

(
x∗−i

) ⊂ Xi defined as follows:

Ωi
(
x∗−i

) = {xi ∈ Xi such that
(
x∗
1 , . . . , x∗

i−1, xi , x∗
i+1, . . . , x∗

N

) ∈ Ω
}
. (7.66)

Here, x−i = (x1, . . . , xi−1, xi+1, . . . , xN ) ∈ X1 × · · · × Xi−1 × Xi+1 × · · · × X N

is the complement to the vector xi ∈ Xi in the direct product X . In mathematical
terms, what we seek is the following:

Φi
(
x∗

i

) = max
{
Φi (xi ) : xi ∈ Ωi

(
x∗−i

)}
, for all i = 1, . . . , N . (7.67)
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In what follows, we always suppose that

Ωi (x−i ) 
= ∅, i = 1, . . . , N , (7.68)

for any x ∈ Ω , i.e., each feasible solution of our GNE problem (7.65)–(7.67).
Now consider the following (scalar) mathematical optimization (MP) problem:

ϕ(x) ≡
N∑

i=1

Φi (xi ) −→ max
x∈Ω

. (7.69)

We are now in a position to state and prove the main result of this subsubsection:

Lemma 7.1 Any solution of MP problem (7.69) is a generalized Nash equilibrium
(GNE), i.e., a solution of problem (7.65)–(7.67).

Proof Assume that a vector x∗ = (x∗
1 , . . . , x∗

i , . . . , x∗
N

) ∈ Ω solves problem (7.69).
On the contrary, suppose that it is not an equilibrium for model (7.65)–(7.67). The
lattermeans that for at least one player i ∈ {1, . . . , N }, there exists another sub-vector
x̄i ∈ Ωi

(
x∗−i

)
such that

Φi (x̄i ) > Φi
(
x∗

i

)
. (7.70)

Now the mapping Φ being separable immediately implies the relationships

ϕ (x̄) =
∑

j 
=i

Φ j

(
x∗

j

)
+ Φi (x̄i ) >

∑

j 
=i

Φ j

(
x∗

j

)
+ Φi

(
x∗

i

)

=
N∑

i=1

Φi
(
x∗

i

) = ϕ
(
x∗) , (7.71)

where x̄ = (
x∗
1 , . . . , x∗

i−1, x̄i , x∗
i+1, . . . , x∗

N

) ∈ Ω . However, (7.71) means that
ϕ (x̄) > ϕ (x∗), which contradicts the assumption that the above vector x∗ =(
x∗
1 , . . . , x∗

i , . . . , x∗
N

) ∈ Ω solves problem (7.69) and thus completes the proof. �

Remark 7.3 The result of Lemma7.1 was obtained by Kalashnikov et al. in [166] in
a bit more particular setting.

Now we return to the heuristic algorithm’s description. Lemma7.1 proved above
permits one to justify Step 1 of the algorithm in question.

Algorithm: Step 1. Set i = 0. Select t(i)a = tmin
a = 0 and minimize

the aggregate lower level objective function

hsum(x) =
∑

k∈K

⎡

⎣
∑

a∈A1

(
ca + t(i)a

)
xk

a +
∑

a∈A2

ca xk
a

⎤

⎦ , (7.72)
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subject to the flow conservation constraints and
nonnegativity restrictions listed in (7.62) as well as
the capacity constraints (7.63) in order to obtain the

lower level’s optimal response x
(

t(i)
)
. Compute the

leader’s objective function value

F
(

t(i), x
(
(t(i)

))
=
∑

k∈K

∑

a∈A1

t(i)a xk
a . (7.73)

If i ≥ 1 then compare the upper level objective function
value (7.73) with the same for the previous value of i,

and if F
(

t(i), x
(
(t(i)

))
> F

(
t(i−1), x

(
(t(i−1)

))
go to Step 2.

Otherwise, go to Step 4. If this return to Step 4 from
Step 1 occurs several times in a row (7 to 10), go to
Step 5.

Step 2. Considering the allowable ranges to stay optimal (ARSO)
given by the sensitivity analysis table obtained upon
having solved the problem presented in Step 1, select
the maximum increase parameters Δ

k,+
a for the (toll-arc)

variables xk
a

(
t(ia

)
, a ∈ A1. Denote

A+
1 =

⎧
⎨

⎩a ∈ A1 :
∑

k∈K

xk
a

(
t(ia

)
> 0

⎫
⎬

⎭ , (7.74)

that is, the toll arcs with a positive current flow.
According to (7.64) , these positive values are (nonzero)
components of the “formal gradient” vector of the
leader’s objective function. If A+

1 = ∅, then go to Step
4; otherwise, go to Step 3.

Step 3. The toll increment procedure can be implemented
in two different ways. The first (more precautious)
one consists in increasing the current toll value by
the maximum allowable increment Δ

k,+
a , a ∈ A+

1 , but not
exceeding the corresponding component of the “formal
gradient”. More precisely, we set

t(i+1)
a =

⎧
⎪⎪⎨

⎪⎪⎩

min

{
tmax
a , t(i)a + max

k∈K
min

{
∑

m∈K
xm

a

(
t(ia

)
, Δ

k,+
a

}}
, if a ∈ A+

1 ;

t(i)a , otherwise.

(7.75)

The second mode of computing the toll increment is
determined by the combination of the allowable
increase values:



7.2 Toll Assignment Problems 277

t(i+1)
a =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min

{
tmax
a , t(i)a + ∑

k∈K
βk min

{
∑

m∈K
xm

a

(
t(ia

)
, Δ

k,+
a

}}
, if a ∈ A+

1 ;

t(i)a , otherwise.

(7.76)

Here, the nonnegative coefficients βk ≥ 0, k ∈ K, and
such that

∑
k∈K

βk = 1, can be selected by the well-known

100-percent rule of sensitivity analysis. Next, if

t(i+1)
a > t(i)a for at least one a ∈ A+

1 , then update i := i + 1 and
close the loop by returning to Step 1 to minimize the
lower level aggregate objective function with the
updated toll values. Otherwise, i.e., if no toll has
been increased, go to Step 4.

Step 4. The current set of tolls
{

t(i)a

}

a∈A1
apparently

provides for a local maximum of the leader’s objective
function. In order to try to “jump” to some other
possible local maximum solution, apply the “filled
functions” technique described briefly in the next
subsection. Then return to Step 1 and minimize the
lower level aggregate objective function with the
updated toll values.

Step 5. If, after a number of Steps 4 repeated (in our
numerical experiments, we accepted this number as 7
to 10), one cannot improve the leader’s objective
function value, stop the algorithm, report the

current vectors
{

t(i)a

}

a∈A1
and x

(
t(i)
)
as an approximation

of a global optimum solution.

7.2.3.3 Application of the “Filled Functions” Technique

Our heuristic algorithm based upon sensitivity analysis also involves application of
the “filled function” technique first proposed by Renpu [267]. This method works,
according to the studies in [267], under the assumption that a local minimum of a
function, which is continuous and differentiable in Rn , has been found. So the aim is
to find another (better than the current) local minimum or determine that this is the
globalminimumof the functionwithin the closed (polyhedral) constraint set T ⊂ Rn .
Renpu [267] and Wu et al. [318, 319] defined “filled functions” for a minimization
problem. Here, we adapt several versions of the “filled function” definitions and
properties to deal with a maximization problem. For simplicity we assume that any
local maximum point of the objective function has a positive value. Of course, the
procedure is easily extended to the case where the value of the objective function
can be negative, too.
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Definition 7.3 Let t̄0 ∈ T satisfy t̄0 
= t∗ and f
(
t̄0
) ≥ 3

4 f (t∗). A continuously
differentiable function Pt∗(x) is said to be a “filled function” for the maximization
problem maxt∈T f (t) at a point t∗ with f (t∗) > 0, if

1. t∗ is a strict local minimizer of Pt∗(t) on T ;
2. any local maximizer t̄ of Pt∗(t) on T satisfies f

(
t̄
)

> 3
2 f (t∗) or t̄ is a vertex of T ;

3. any local maximizer t̂ of the optimization problem maxt∈T f (t) with f
(
t̂
) ≥

7
4 f (t∗) is a local maximizer of Pt∗(t) on T ;

4. any t̃ ∈ T with ∇ Pt∗
(
t̃
) = 0 implies f

(
t̃
)

> 3
2 f (t∗).

Now, define two auxiliary functions as follows: For any d = f
(
t∗k
)

> 0, and
w = f (t), let

gd(w) =

⎧
⎪⎪⎨

⎪⎪⎩

1, if w ≥ 1
2d;

5 − 48
d w + 144

d2 w2 + 128
d3 w3, if 1

4d ≤ w < 1
2d;

0, if w < 1
4d,

(7.77)

and

hd =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w − 1
4d, if w ≤ 1

4d;
(
16
d2 − 128

d3

)
w3 +

(
144
d2 − 20

d

)
w2 +

(
8 − 48

d

)
w + 5 − d, if 1

4d < w ≤ 1
2d;

1, if 1
2d < w ≤ 3

2d;
− 128

d3 w3 + 624
d2 w2 − 1008

d w + 541, if 3
2d < w ≤ 7

2d;
2, if w > 7

4d.

(7.78)

Given a t∗ ∈ T such that f (t∗) > 0, we define the following “filled function”:

Gq,t∗(t) = − exp
(
−‖t − t∗‖2

)
g f (t∗)

4
( f (t)) − qh f (t∗)

4
( f (t)) , (7.79)

where q > 0 is a parameter. This “filled function” will be used in our algorithm.
First, based on Wu et al. [318] we have the following result:

Theorem 7.4 Assume that the function f : Rn → R is continuously differentiable
and there exists a polyhedron T ⊂ Rn with t0 ∈ T such that f (t) ≤ 1

2 f (t0) for all
t ∈ Rn\int T . Let t̄0 
= t∗ be a point such that f (t∗) − (t̄0

) ≤ 1
4 f (t∗). Then:

1. there exists a q1
t∗ ≥ 0 such that when q > q1

t∗ , then any local maximizer t̄ of the
mathematical program maxt∈T Gq,t∗0 (t) obtained via the search starting from t̄0
satisfies t̄ ∈ int T ;

2. there exists a q2
t∗ > 0 such that if 0 < q ≤ q2

t∗ , then any stationary point t̃ ∈ T
with t̃ 
= t∗ of the function Gq,t∗0 (t) satisfies f

(
t̃
)

> 3
2 f (t∗).

Proof The proof is almost identical to that of Theorem2.2 in Wu et al. [318]. �
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Making use of the auxiliary function (7.79) we can detail the “jump” to a neigh-
borhood of another local maximum point of the upper level objective function F .

Algorithm: Step 1. Let our current toll iteration t(i) be
such that formulas (7.75) and (7.76) provide no increase
in the toll values. It can be shown that maximization
of the auxiliary function (7.79) instead of the original
upper level function F is equivalent to a (moderate)
increase of the toll parameters t(i) (one or several of
them, depending on the mode applied: (7.75) or (7.76)).

Step 2. If the new optimal response x
(

t(i+1)
)

is related to

new ARSO upper bounds distinct from zero, return to
Step 1 of the algorithm and continue increasing the
toll parameters according to formulas (7.75) or (7.76).

Step 3. Otherwise, i.e., if the new ARSO upper bounds are
all zero, double the increment of the toll parameters
and return to Step 2. If this happens several times
without success (i.e., the ARSO upper bounds continue
to be zero), go to Step 5 and finish the computational
algorithm.

After having defined the above procedures, we are going to illustrate the steps of the
combined proposed sensitivity analysis-“filled function” algorithm to solve the TOP.

In Fig. 7.1, we begin by assigning initial values of zero toll cost. After solving
the linear optimization problem of the follower to determine the flow in the arcs and
obtaining a value for the leader’s objective function, sensitivity analysis of the fol-
lower is performed, taking into account only toll-arc variables of the current solution.
Then having listed the possible increases in the coefficients of the objective function
of the follower derived from the sensitivity analysis data, and based upon the formal
gradient vector of the upper level objective function F , we update the present toll vec-

tor
{

t (i)a

}

a∈A1
. When positive increments of t cannot be obtained anymore based on

sensitivity analysis and the formal gradient of the function F , apply the “filled func-
tion” procedure. A new function is created based on the leader’s objective function
and a new toll vector is probed. Once there is a new toll vector, go to Step 1 and close
the loop. The algorithms stop if neither sensitivity analysis nor the “filled function”
method provide a better value for the leader’s objective function after several (say,

Fig. 7.1 Diagram of the combined method
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7–10) attempts in a row, which can mean that an approximate global optimum has
been reached, and the algorithm stops. The multicommodity flows corresponding to
the final toll values give approximate optimal solutions for the follower, too.

7.2.4 Results of Numerical Experiments

In order to verify the performance of the algorithm, we conducted experiments on
two different graphs, each with five different instances. In order to make valid com-
parisons of the efficiency and computational time of the proposed algorithm we
emulated the experimentation conducted by Kalashnikov et al. [166] with their four
different proposed algorithms. The following paragraphs describe the environment
under which the experimentation was carried out and then describe the methodology
used for the application of the algorithm.

In order to check the proposed heuristic sensitivity analysis algorithm combined
with the method of “filled functions” (FF), a personal computer was used. The char-
acteristics of the computer equipment used for the development and implementation
of the algorithm were: Intel (R) Atom (TM) CPU N455 with a speed 2.00 GHz and
1.67 GB of RAM memory. The coding algorithm was written in the Matlab math-
ematical software in its version MatLab R2010a. This software was used due to its
linear optimization tools in the “Optimization Toolbox”. One of the functions used
waslinprog because the lower level of theTOP can be replaced by a corresponding
linear optimization problem of the minimum cost flow.

The main parameters of the problems are the ones that define the size of the net-
work: the number of nodes |N |, arcs |A|, toll arcs |A1|, and commodities |K |. Each
toll-free arc and toll arc has been assigned a fixed time-delay value ca generated
pseudo-randomly. The problems involved are of small size with two commodities.
The graphs and the parameters of the tested instances can be found in the Supple-
mentary material in Sect. 7.2.5. As mentioned above, the sizes of the networks were:

Network 1: 7 nodes, 12 arcs, of which 7 are toll arcs.
Network 2: 25 nodes, 40 arcs, of which 20 are toll arcs.

The results for each example can be seen in the Tables7.7 to 7.18 below. The
first column (called SA + FF) in each table shows the data related to the proposed
algorithm, in which the increase in the tolls after sensitivity analysis is conducted in
the first mode (cf. 7.75). Analogously, the second column (with the heading SA +
FF 100%) involves the results generated with the developed algorithm, updating the
current tolls by formula (7.76). The next four columns show the results obtained after
emulating the algorithms proposed in Kalashnikov et al. [166], that is, the Nelder-
Mead (NM), Penalization (P), Quasi-Newton (QN), and Gradient (G) methods. The
best obtained result is marked in bold.



7.2 Toll Assignment Problems 281

Tables7.7 and 7.8 may be a base for the assertion that the approximate solution
obtained by all six methods applied to the test problems 1 and 2 are practically the
same, which could mean that they are indeed the desired global maximum solutions
for the leader.

The possible ways of measuring the algorithms efficiency are: to compare, first,
the number of iterations required for each algorithm to reach an approximate solution
for a given tolerance value, and second, the average computational cost (the number
of iterations necessary on average) to decrease the error by one decimal order. This
metric is calculated by the following formula:

Costiter = #iter

log10 ε0 − log10 ε f
, (7.80)

where #i ter denotes the number of iterations needed to reach the optimal value, ε0
is the initial error computed as the difference between the initial leader’s objective
function value and the final one reached by the algorithm, this is, ε0 = |F0 − F∗|.
In a similar manner, ε f is the approximate final error calculated as the (absolute
value of the) difference of the leader’s objective function values evaluated at the last
two approximate solutions. Tables7.9 and 7.10 present the total number of iterations
required for each algorithm, and Tables7.11 and 7.12 shows the average cost of the
number of iterations required to reduce the error by one order.

Tables7.9 and 7.10 illustrate that the number of iterations the tested algorithms
needed to reach approximately optimal solutions in both test sample problems have

Table 7.7 Leader’s objective function value for Network 1

N1 SA + FF SA + FF NM P QN G

100%

1 161.9975 162.9989 162.9987 162.8215 162.9972 162.9134

2 274.9905 274.9979 274.9996 274.8320 274.9975 274.9321

3 57.98889 58.9998 58.9996 58.8719 58.9979 58.9229

4 155.9806 156.9980 156.9971 156.8504 156.9988 156.9057

5 136.9888 136.9984 136.9989 136.8408 136.9972 136.9750

Table 7.8 Leader’s objective function value for Network 2

N2 SA + FF SA + FF NM P QN G

100%

1 1761.488 1763.984 1763.876 1762.887 1763.963 1762.629

2 2758.542 2758.926 2758.804 2758.237 2758.924 2758.484

3 2364.98 2367.89 2365.45 2365.98 2367.82 2365.33

4 3785.41 3790.99 3789.24 3790.11 3790.99 3790.18

5 610.99 611.99 611.91 610.91 611.97 611.43
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Table 7.9 Number of iterations required to solve Network 1

N1 SA + FF SA + FF NM P QN G

100%

1 478 384 277 489 4 170

2 510 399 269 484 8 397

3 263 195 275 487 18 529

4 406 337 164 518 13 336

5 276 205 205 469 10 108

Table 7.10 Number of iterations required to solve Network 2

N2 SA + FF SA + FF NM P QN G

100%

1 592 479 1,412 787 581 745

2 636 546 1,587 685 496 812

3 734 411 1,464 633 374 596

4 586 497 1,286 549 324 893

5 556 418 1,698 591 309 650

Table 7.11 Average cost in the number of iteration to reduce the error for Network 1

N1 SA + FF SA + FF NM P QN G

100%

1 197.4995 131.8796 36.9995 348.9920 6.3082 41.9907

2 109.1328 80.7525 38.8531 284.6465 50.2147 122.6097

3 63.3016 55.5471 43.9853 275.8310 18.9017 185.9731

4 160.8014 168.6568 26.0900 236.0231 30.4811 108.9364

5 58.8175 42.5245 33.7262 301.8081 29.4384 35.7321

Table 7.12 Average cost in the number of iteration to reduce the error for Network 2

N2 SA + FF SA + FF NM P QN G

100%

1 440.6532 356.5420 915.1583 896.1183 285.9969 239.4804

2 266.6127 228.8844 876.7644 692.3814 277.0817 313.9064

3 465.8475 260.8492 774.8305 818.0137 186.8402 291.4508

4 314.3834 266.6357 464.7329 619.5010 159.6143 259.2267

5 326.4375 245.4152 944.1694 693.3167 360.4346 296.6317

the same order, with a single exception of the Nelder-Mead method. The latter is
known to need more iterations in general. The Nelder-Mead method is a derivative-
free algorithm, i.e., it does not use even the first derivatives of the upper level objective
function.
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Table 7.13 Number of objective function values evaluated to solve instances for Network 1

N1 SA + FF SA + FF NM P QN G

100%

1 1,563 1,174 3,249 492 127 4,506

2 1,633 807 3,860 487 231 10,347

3 544 398 3,948 490 507 13,713

4 1,821 1,495 2,367 521 398 7,993

5 565 416 2,939 472 284 2,142

It seems (fromTables7.11 and 7.12) that our sensitivity analysis-based algorithms
are quite competitive against the other methods when the dimension of the test
problem is larger. Such robustness of the procedure may help when dealing with
real-life problems, which are usually of larger dimensions.

In Tables7.13 to 7.16, we also measured the number of values of the upper level
objective function calculated during the performance of the algorithms and the aver-
age computational cost (measured in the number of objective function evaluations
necessary to reduce the error by one decimal order). The evaluation formula used in
Tables7.15 and 7.16 is:

Costobj = #obj

log10 ε0 − log10 ε f
, (7.81)

where #obj is the number of the leader’s objective function evaluations until the
algorithm stops.

Again, the proposed sensitivity analysis-based methods performed at a quite high
level of efficiency compared to the best (quasi-Newton) algorithm even when the
total number of objective function calculations is taken into account, but only for
larger problems (see Table7.14).

According to Tables7.15 and 7.16, with respect to the average cost in the number
of values of the leader’s objective function calculated to reduce the order of error
by 1, our sensitivity analysis-based methods performed better both for small and
medium-sized test problems, which is a promising feature.

The last measure we checked in order to compare the algorithms’ performance is
the computational time that they needed to reach a good approximate solution. It is

Table 7.14 Number of objective function values evaluated to solve instances for Network 2

N2 SA + FF SA + FF NM P QN G

100%

1 4,717 3,582 15,224 17,257 4,545 18,311

2 4,840 3,131 12,996 14,037 6,183 63,752

3 5,312 3,378 9,873 16,779 5,797 49,937

4 4,454 3,592 8,486 12,534 4,644 73,227

5 4,210 3,504 8,094 13,736 5,292 51,781
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Table 7.15 Average cost in the objective functions evaluations for the instances of Network 1

N1 SA + FF SA + FF NM P QN G

100%

1 396.7761 265.1142 529.5666 351.1331 200.2873 1113.0009

2 349.4392 163.3266 557.5213 286.4108 449.9496 3195.5751

3 130.9357 112.8034 631.4701 277.5302 532.3981 4820.8882

4 323.2002 342.1193 376.5560 237.3900 933.1916 2591.4543

5 120.4053 86.2937 483.5187 303.7387 836.0515 708.6885

Table 7.16 Average cost in the objective functions evaluations for the instances of Network 1

N2 SA + FF SA + FF NM P QN G

100%

1 1138.1844 864.3155 6969.9441 2013.1342 1813.1588 15966.7176

2 889.0858 575.1503 5949.9076 1403.6637 1876.7644 19564.7359

3 982.0206 624.4852 2820.4123 1397.8413 1774.8305 16041.0766

4 793.3171 639.7833 5228.1712 2474.2977 1730.7076 21256.8816

5 726.8940 604.9967 9441.2869 1151.3150 1810.6673 17110.1938

Table 7.17 Required computational time to solve the instances for Network 1 (in seconds)

N1 SA + FF SA + FF NM P QN G

100%

1 16.8807 13.4929 28.9564 23.4072 1.2825 136.8533

2 15.7290 12.2325 31.5437 24.6059 5.7874 131.3832

3 17.0548 13.5037 35.8244 22.2121 6.9523 111.3348

4 14.4474 11.7556 39.9163 24.4446 5.3806 145.5045

5 12.9696 10.2944 35.2639 23.2295 3.6844 124.4190

Table 7.18 Required computational time to solve the instances for Network 2 (in seconds)

N2 SA + FF SA + FF NM P QN G

100%

1 311.9787 263.3140 549.9019 297.6871 486.6073 657.8525

2 532.5229 444.5805 498.6304 306.3302 185.2478 627.73277

3 462.7594 391.2001 652.4052 588.3764 562.5629 595.5689

4 279.0327 238.9128 430.6348 255.2499 133.1982 751.8234

5 573.2400 488.5338 581.2160 575.3600 578.9995 507.3447

important to mention that we emulated the benchmark algorithms, so the required
time is going to be valid because we have run all the experiments on the same
computer. Tables7.17 and 7.18 present the time (in seconds) used for each instance
and each network.
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The corresponding two Tables7.17 and 7.18 again demonstrated that our
algorithms ceded the leading position only to the quasi-Newton method that was
proven to be extremely fast when applied to the low-dimensional problems. How-
ever, in the higher-dimensional examples, the sensitivity-analysis-based procedure
didn’t lag behind, even overwhelming all the other methods tested here.

7.2.5 Supplementary Material

In this supplementary material, we present the two networks considered during the
experimentations described. In Figs. 7.2 and 7.3, the dotted lines denote the toll arcs,
while the regular lines correspond to the toll-free arcs.

Also, we specify the parameters used in the two examples we solved in order to
compare the algorithms’ performance. Here, we list the travel costs ca , the demands
nk , the commodities’ origin-destination pairs p = {(o(k), d(k))}k∈K , where o(k)

represents the origin node, and d(k) denotes the destination node; k ∈ K , with
|K | = 2. It is important to mention that in these experiments, we do not restrict the
arc capacities.

Fig. 7.2 Network 1
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Fig. 7.3 Network 2
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Table 7.19 Parameters considered in the instances for Network 1

NN of inst. Parameters

1 c = (1, 2, 5, 4, 3, 3, 2, 7, 4, 3, 8, 12); p = {(1, 6), (2, 7)} ; nk = (10, 9)

2 c = (3, 4, 2, 2, 3, 3, 4, 9, 9, 5, 6, 15); p = {(1, 6), (2, 7)} ; nk = (15, 5)

3 c = (4, 3, 2, 1, 1, 3, 2, 5, 6, 3, 1, 5); p = {(1, 6), (2, 7)} ; nk = (5, 8)

4 c = (1, 3, 1, 2, 3, 1, 1, 5, 4, 2, 4, 13); p = {(1, 6), (2, 7)} ; nk = (5, 12)

5 c = (3, 4, 5, 3, 3, 6, 2, 7, 7, 8, 10, 9); p = {(1, 6), (2, 7)} ; nk = (10, 9)

Table 7.20 Parameters considered in the instances for Network 2

NN of
inst.

Parameters

1 c = (1, 3, 4, 2, 1, 2, 2, 2, 2, 2, 4, 5, 1, 7, 9, 2, 4, 8, 7, 4, 4, 10, 12, 11, 11, 12, 9, 11, 4, 10,

9, 13, 16, 12, 10, 13, 12, 10, 7, 9); p = {(1, 12), (2, 19), (2, 25)} ; nk = (12, 24, 30)

2 c = (9, 3, 7, 1, 5, 3, 4, 4, 4, 9, 1, 4, 6, 5, 6, 1, 6, 7, 7, 4, 6, 5, 2, 4, 7, 7, 8, 6, 10, 6,

5, 3, 8, 6, 11, 10, 9, 3, 5, 4); p = {(1, 12), (2, 19), (1, 25)} ; nk = (31, 41, 120)

3 c = (4, 8, 1, 7, 3, 9, 5, 5, 2, 7, 6, 6, 4, 9, 5, 5, 9, 5, 1, 4, 9, 5, 1, 4, 9, 3, 9, 1, 8, 4,

6, 3, 9, 1, 1, 1, 2, 5, 1, 10); p = {(2, 23), (2, 19), (1, 12)} ; nk = (48, 50, 31)

4 c = (1, 5, 2, 6, 3, 5, 2, 3, 7, 2, 5, 1, 6, 9, 3, 1, 3, 8, 1, 1, 10, 8, 9, 11, 6, 7, 10, 7, 2, 7,

7, 6, 9, 10, 6, 10, 5, 8, 5, 9); p = {(1, 25), (2, 19), (2, 25)} ; nk = (84, 45, 71)

5 c = (4, 3, 6, 4, 4, 3, 2, 3, 3, 2, 7, 3, 4, 5, 7, 1, 6, 4, 4, 5, 7, 3, 5, 10, 10, 9, 10, 10,

10, 7, 7, 8, 11, 10, 10, 8, 8, 9); p = {(1, 25), (2, 23), (2, 25)} ; nk = (10, 6, 8)

First, we show the topology of Network 1 represented with a graph with 12 arcs
and 7 nodes. For the two commodities transported within this network, we cite the
parameters of the TOP problem.

The values of parameters used in the instances for Network 1 are listed in
Table7.19.

Finally, we describe Network 2, which consists in 25 nodes, 40 arcs and 3 com-
modities in Fig. 7.3. Here, again, the dotted lines are toll arcs, the regular lines
represent toll-free highways. The values of parameters of the considered instances
are collected in Table7.20 (recall, that here |K | = 3).


	7 Applications to Other Energy Systems
	7.1 Consistent Conjectural Variations Equilibrium  in a Mixed Oligopoly in Electricity Markets
	7.1.1 Introduction
	7.1.2 Model Specification
	7.1.3 Exterior Equilibrium
	7.1.4 Interior Equilibrium
	7.1.5 Numerical Results

	7.2 Toll Assignment Problems
	7.2.1 Introduction
	7.2.2 TOP as a Bilevel Optimization Model
	7.2.3 The Algorithm
	7.2.4 Results of Numerical Experiments
	7.2.5 Supplementary Material



