
Chapter 2
Linear Bilevel Optimization Problem

2.1 The Model and First Properties

The linear bilevel optimization problem illustrated in Example 1.1 is the problem of
the following structure

min
x,y

{a�x + b�y : Ax + By ≤ c, (x, y) ∈ gph Ψ }, (2.1)

where Ψ (·) is the solution set mapping of the lower level problem

Ψ (x) := Argmin
y

{d�y : Cy ≤ x}. (2.2)

Here, A is a (p, n)-, B a (p, m)- and C a (n, m)-matrix and all variables and vec-
tors used are of appropriate dimensions. Note that we have used here the so-called
optimistic bilevel optimization problem, which is related to problem (1.4).

We find so-called connecting constraints Ax + By ≤ c in the upper level problem.
Validity of such constraints is beyond the choice of the leader and can be verified only
after the follower has selected his/her possibly not unique optimal solution. Espe-
cially in the case when Ψ (x) does not reduce to a singleton this can be difficult. For
investigating the bilevel programming problem in the case thatΨ (x) does not reduce
to a singleton, Ishizuka andAiyoshi [153] introduced their double penaltymethod. In
general, connecting constraintsmay imply that the feasible set of the bilevel program-
ming problem is disconnected. This situation is illustrated by the following example:

Example 2.1 (Mersha and Dempe [227]). Consider the problem

min
x,y

−x − 2y

subject to
2x − 3y ≥ −12

x + y ≤ 14

and y ∈ Argmin
y

{−y : −3x + y ≤ −3, 3x + y ≤ 30}.
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Fig. 2.1 The problem with
upper level connecting
constraints. The feasible set
is depicted with bold lines.
The point C is global
optimal solution, point A is a
local optimal solution

Fig. 2.2 The problem when
the upper level connecting
constraints are shifted into
the lower level problem. The
feasible set is depicted with
bold lines. The global
optimal solution is point B

The optimal solution for this problem is point C at (x, y) = (8, 6) (see Fig. 2.1).
But if we shift the two upper level constraints to the lower level we get point B at
(̃x, ỹ) = (6, 8) as an optimal solution (see Fig. 2.2). From this example it can easily
be noticed that if we shift constraints from the upper level to the lower one, the
optimal solution obtained prior to shifting is not optimal any more in general. Hence
ideas based on shifting constraints from one level to another will lead to a solution
which may not be a solution prior to shifting constraints. �

In Example 2.1 the optimal solution of the lower level problem was unique for all
x . If this is not the case, feasibility of a selection of the upper level decision maker
possibly depends on the selection of the follower. In the optimistic case this means
that the leader selects within the set of optimal solutions of the follower’s problem
one point which is at the same time feasible for the upper level connecting constraints
and gives the best objective function value for the upper level objective function.

As we can see in Example 2.1 the existence of connecting upper level constraints
will lead in general to disconnected feasible sets in the bilevel programming problem.
Therefore, solution algorithms will live in one of the connected components of the
feasible set (i.e. a sequence of feasible points which all belong to one of the connected
parts is computed) or they need to jump fromone of the connected parts of the feasible
set to another one. This would use then ideas of discrete optimization.
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In the following we will avoid this additional difficulty in assuming that the upper
level constraints will depend on the upper level variables only. Hence, we consider
the linear bilevel optimization problem

min
x,y

{a�x + b�y : Ax ≤ c, (x, y) ∈ gph Ψ }, (2.3)

where Ψ (·) is the solution set mapping of the lower level problem

Ψ (x) := Argmin
y

{d�y : Cy ≤ x}. (2.4)

In this problem, parametric linear optimization (see e.g. Nožička et al. [257]) can be
used to show that the graph of the mapping Ψ (·) equals the connected union of faces
of the set {(x, y)� : Cy ≤ x}.

Here, a set M is connected if it is not contained in the union of two disjoint
open sets M ⊂ M1 ∪ M2, M1, M2 are open and not empty, M1 ∩ M2 = ∅, having
nonempty intersection with both of these sets: M ∩ Mi 
= ∅, i = 1, 2.

Hence, the convex hull of this set is a convex polyhedron implying that problem
(2.3) is a linear optimization problem. Thus, its optimal solution can be found at a
vertex of the set

{(x, y)� : Cy ≤ x, Ax ≤ c}.

Theorem 2.1 If problem (2.3) has an optimal solution, at least one global optimal
solution occurs at a vertex of the set

{(x, y)� : Cy ≤ x, Ax ≤ c}.

This theorem can be found in the article [40] by Candler and Townsley, it is the
basis of many algorithms using (implicit or not complete) enumeration to compute
a global optimum of problem (2.3) (see e.g. Bard [10]).

This property is lost if problem (2.1) with upper level connecting constraints is
considered.

As it can be seen in Fig. 2.2, the bilevel optimization problem is a nonconvex
optimization problem, it has a feasible set which is not given by explicit constraints.
As a result, besides a global optimal solution bilevel optimization problems can have
local extrema and stationary solutions which are not local optimal solutions.

In Sect. 1.2, the bilevel optimization problem has been interpreted as an hierar-
chical game of two players, the leader and the follower where the leader is the first
to make a choice and the follower reacts optimally on the leader’s selection. It has
been shown in the article [11] by Bard and Falk that the solution strongly depends
on the order of play: the leader may take advantage from having the first selection.

The following theorem shows that the (linear) bilevel optimization problem is
N P-hard in the strong sense which implies that it is probably not possible to find a
polynomial algorithm for computing a global optimal solution of it. For more results
on complexity theory the interested reader is referred to the monograph [126] by
Garey and Johnson.

http://dx.doi.org/10.1007/978-3-662-45827-3_1
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Theorem 2.2 (Deng [85]) For any ε > 1 it is N P-hard to find a solution of
the linear bilevel optimization problem (2.3) with not more than ε times the global
optimal function value of this problem.

In the next example we will see that the bilevel programming problem depends on
constraints being not active in the lower level problem. Hence, a global optimal
solution of the bilevel problem can loose its optimality if an inequality is added
which is not active at the global minimum. This behavior may be a bit surprising
since it is not possible in problems on continuous (nonsmooth) optimization.

Example 2.2 (Macal and Hurter [210]) Consider the unconstrained bilevel opti-
mization problem

(x − 1)2 + (y − 1)2 → min
x,y

,

where y solves (2.5)

0.5y2 + 500y − 50xy → min
y

.

Since the lower level problem is unconstrained and convex we can replace it by its
necessary optimality conditions. Then, problem (2.5) becomes

min
x,y

{(x − 1)2 + (y − 1)2 : y − 50x + 500 = 0}.

Theunique optimal solution of this problem is (x∗, y∗) = (50102/5002, 4100/5002)
with an optimal objective function value of z∗ = 81, 33.

Now, add the constraint y ≥ 0 to the lower level problemand consider the problem

(x − 1)2 + (y − 1)2 → min
x,y

,

where y solves (2.6)

y ∈ Argmin
y

{0.5y2 + 500y − 50xy : y ≥ 0}.

The unique global optimal solution of problem (2.6) is (x, y) = (1, 0). This point is
not feasible for (2.5). Its objective function value in problem (2.6) is 1 showing that
(x∗, y∗) is a local optimum but not the global optimal solution of problem (2.6). �
In the next theorem we need the notion of an inner semicontinuous mapping.

Definition 2.1 (Mordukhovich [241]) A point-to-set mapping Γ : Rn ⇒ R
m is said

to be inner semicontinuous at (z, α) ∈ gph Γ provided that, for each sequence
{zk}∞k=1 converging to z there is a sequence {αk}∞k=1, αk ∈ Γ (zk) converging to α.

Theorem 2.3 (Dempe and Lohse [68]) Let (x, y) be a global optimal solution of
the problem (1.4). Let Ψ be inner semicontinuous at (x, y). Then, (x, y) is a local
optimal solution of the problem

min
x,y

{F(x, y) : x ∈ X, (x, y) ∈ gph Ψ 1} (2.7)

http://dx.doi.org/10.1007/978-3-662-45827-3_1
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with
Ψ 1(x) := Argmin

y
{ f (x, y) : g(x, y) ≤ 0, h(x, y) ≤ 0}

with h : R
n × R

m → R provided that h(x, y) < 0 and that the function h is
continuous.

Proof A point y ∈ Ψ (x) is an optimal solution of the lower level problem of (2.7) if
it is feasible for this problem, y ∈ Ψ 1(x). Hence, the point (x, y) is feasible for (2.7).

Assume that (x, y) is not a local optimum of problem (2.7). Then, there exists
a sequence {(xk, yk)}∞k=1 converging to (x, y) such that xk ∈ X, yk ∈ Ψ 1(xk) and
F(xk, yk) < F(x, y). Note that (xk, yk) is feasible for problem (1.4) for large k.

Since Ψ is inner semicontinuous at (x, y) there exists a sequence ŷk ∈ Ψ (xk)

converging to y. By continuity of the function h, h(xk, ŷk) < 0 and ŷk ∈ Ψ 1(xk).
Hence, f (xk, ŷk) = f (xk, yk),

Ψ 1(xk) = {y : g(x, y) ≤ 0, h(x, y) ≤ 0, f (xk, y) = f (xk, ŷk)}
⊆ {y : g(x, y) ≤ 0, f (xk, y) = f (xk, ŷk)} = Ψ (xk)

and, hence,

min
y

{F(xk, y) : y ∈ Ψ (xk)} ≤ min
y

{F(xk, y) : y ∈ Ψ 1(xk)} ≤ F(xk, yk)< F(x, y)

for sufficiently large k. This contradicts global optimality of (x, y). �
In the article Dempe and Lohse [68] an example is given which shows that the

restrictive assumption of inner semicontinuity of the solution set mapping of the
lower level problem is essential.

A similar result to Example 2.2 can be shown if one variable is added in the lower
level problem: a global optimal solution can loose global optimality.

Consider the bilevel programming problem

min
x,y

{F(x, y) : x ∈ X, (x, y) ∈ gph ΨL}, (2.8)

with a linear lower level problem parameterized in the objective function

ΨL(x) := Argmin
y

{x�y : Ay = b, y ≥ 0}, (2.9)

where X ⊆ R
n is a closed set,

Let (x, y)be a global optimal solution of problem (2.8).Now, addone newvariable
yn+1 to the lower level problem with objective function coefficient xn+1 and a new
column An+1 in the coefficient matrix of the lower level problem, i.e. replace the
lower level problem with

ΨN L(x) := Argmin
y

{x�y + xn+1yn+1 : Ay + An+1yn+1 = b, y, yn+1 ≥ 0}
(2.10)

http://dx.doi.org/10.1007/978-3-662-45827-3_1
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and investigate the problem

min
x,y

{˜F(x, xn+1, y, yn+1) : (x, xn+1) ∈ ˜X , (x, xn+1, y, yn+1) ∈ gph ΨN L}.
(2.11)

Here ˜X ⊆ R
n+1 and ˜X ∩ R

n × {0} = X .

Example 2.3 (Dempe and Lohse [68]) Consider the following bilevel programming
problem with the lower level problem

ΨL(x) := Argmin
y

{x1y1 + x2y2 : y1 + y2 ≤ 2, −y1 + y2 ≤ 0, y ≥ 0} (2.12)

and the upper level problem

min{(x1 − 0.5)2 + (x2 − 0.5)2 − 3y1 − 3y2 : (x, y) ∈ gph ΨL}. (2.13)

Then, the uniqueglobal optimum is x = (0.5; 0.5), y = (1; 1)withoptimal objective
function value −6. Now, adding one variable to the lower level problem

ΨN L(x) := Argmin
y

{x1y1+ x2y2+ x3y3 : y1+ y2+ y3 ≤ 2, −y1+ y2 ≤ 0, y ≥ 0}
(2.14)

and investigating the bilevel optimization problem

min{(x1−0.5)2 + (x2 −0.5)2 + x23 −3y1 −3y2 −6y3 : (x, y) ∈ gph ΨN L} (2.15)

the point x = (0.5; 0.5; 0.5), y = (0; 0; 2) has objective function value −11.75.
Hence, global optimality of (x, y) is destroyed. But, the point ((x, 0), (y, 0)) remains
feasible and it is a strict local minimum. �

Theorem 2.4 (Dempe and Lohse [68]) Let (x, y) be a global optimal solution for
problem (2.8) and assume that the functions F, ˜F are concave, X, ˜X are polyhedra.
Let

x�
B B−1An+1 < 0 for each basic matrix B for y and x (2.16)

and (x, 0) be a local minimum of the problem

min{˜F((x, xn+1), (y, 0)) : (x, xn+1) ∈ ˜X , y ∈ ΨL(x)}.

Then, the point ((x, 0), (y, 0)) is a local optimal solution of problem (2.11).

Proof Assume that ((x, 0), (y, 0)) is not a local optimum. Then, there exists a
sequence ((xk, xk

n+1), (yk, yk
n+1)) converging to ((x, 0), (y, 0)) with

F((xk, xk
n+1), (yk, yk

n+1)) < F((x, 0), (y, 0)) for all k.
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Since ((xk, xk
n+1), (yk, yk

n+1)) is feasible for (2.11) and gph ΨN L equals the union
of faces of the set (see e.g. Dempe [52])

{(x, y) : x ∈ ˜X , Ay + An+1yn+1 = b, y, yn+1 ≥ 0},

then, since ((xk, xk
n+1), (yk, yk

n+1)) converges to ((x, 0), (y, 0)) there exists, without
loss of generality, one facet M of this set with ((xk, xk

n+1), (yk, yk
n+1)) ∈ M for all

k. Moreover, by upper semicontinuity of ΨN L(·), ((x, 0), (y, 0)) ∈ M . By Schrijver
[285] there exists c ∈ R

n+1 such that M equals the set of optimal solutions of the
problem

min{c�(y, yn+1)
� : Ay + An+1yn+1 = b, y, yn+1 ≥ 0}.

Since (y, 0) ∈ M there exists a basicmatrix for (y, 0) and c. Then, the assumptions of
the theorem imply that (x, 0) 
= c if xn+1 is a basic variable in (yk, yk

n+1) (since this
implies that c�

B B−1An+1−cn+1 = 0 by linear optimization). This implies that there is
an open neighborhood V of (x, 0) such thatΨN L(x, xn+1) ⊆ {(y, yn+1) : yn+1 = 0}
for (x, xn+1) ∈ V .

Hence, yk
n+1 = 0 for sufficiently large k.

By parametric linear optimization, ΨL(x) ⊆ ΨL(x) for x sufficiently close to x .
Hence, the assertion follows. �

Similar results are shown in the paper Dempe and Lohse [68] in the case when
the lower level problem is a right-hand side perturbed linear optimization problem.

2.2 Optimality Conditions

Consider the bilevel optimization problem

min
y,b,c

{F(y) : b ∈ B, c ∈ C , y ∈ Ψ (b, c)}, (2.17)

where
B = {b : Bb = ˜b}, C = {Cc = c̃}

for some matrices B, C of appropriate dimension, c ∈ R
n, c̃ ∈ R

q and b ∈ R
m ,

˜b ∈ R
p. Here, the function F : Rn → R depends only on the optimal solution of

the lower level problem. This makes the formulation of optimality conditions, which
can be verified in polynomial time, possible.

The mapping (b, c) �→ Ψ (b, c) is again the set of optimal solutions of a linear
optimization problem:

Ψ (b, c) = Argmin
y

{c�y : Ay = b, y ≥ 0}.
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We have ŷ ∈ Ψ (b, c) if and only if there is a vector ẑ such that (ŷ, ẑ) satisfies the
following system of equations and inequalities:

Ay = b, y ≥ 0,

A�z ≤ c,

y�(A�z − c) = 0.

Thus, the graph gph Ψ of the mapping Ψ equals the projection of the union of faces
of a certain polyhedron in R

n × R
m × R

m × R
n into the space R

n × R
m × R

m .
Hence, the tangent (Bouligand) cone

CM (̂u) :=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

d : ∃{uk}∞k=1 ⊂ M , ∃ {tk}∞k=1 ⊂ R+

with lim
k→∞ tk = 0, lim

k→∞ uk = û, d = lim
k→∞

uk−û
tk

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

at a point (y, b, c) to the feasible set

M := {(y, b, c) : b ∈ B, c ∈ C , y ∈ Ψ (b, c)}

equals the union of convex polyhedra, too. Thus, to check local optimality of some
feasible point (y, b, c) ∈ M for problem (2.17) it is necessary to verify that there is no
direction of descent in any one of these convex polyhedra. Unfortunately, the number
of these polyhedra cannot be bounded by a polynomial in the number of variables.
This can be seen as a reason forN P-hardness of proving local optimality in general
bilevel optimization (see Hansen et al. [136] where an exact proof for this result is
given).

The following result can be found in the paper [67] by Dempe and Lohse. Let
for a moment B = {b} reduce to a singleton. Take an arbitrary vertex y of the set
{y : Ay = b, y ≥ 0}. Then, by parametric linear optimization, there exists ĉ such
that Ψ (b, c) = {y} for all c sufficiently close to ĉ, formally ∀ c ∈ U (̂c) for some
open neighborhood U (̂c) of ĉ. Hence, if U (̂c) ∩ C 
= ∅, there exists z satisfying
A�z ≤ c, y�(A�z − c) = 0 for some c ∈ U (̂c) ∩ C such that (y, z, b, c) is a local
optimal solution of the problem

F(y) → min
y,z,b,c

Ay = b, y ≥ 0,

A�z ≤ c,

y�(A�z − c) = 0 (2.18)

Bb = ˜b,

Cc = c̃.
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Fig. 2.3 Definition of local
optimality c  x = const.

T
=xc =xc

c  x = const.T_

y
_

Theorem 2.5 (Dempe and Lohse [67]) Let B = {b}, {y} = Ψ (b, c) for all c in
an open neighborhood U (̂c) of ĉ with U (̂c) ∩ C 
= ∅. Then, (y, b, c, z) is a locally
optimal solution of (2.18) for some dual variables z and a certain c ∈ U (̂c) ∩ C .

Figure2.3 can be used to illustrate this fact. The points y satisfying the assumptions
of Theorem 2.5 are the vertices of the feasible set of the lower level problem given
by the dashed area in this figure. Theorem 2.5 implies that each vertex of the set
{y : Ay = b, y ≥ 0} is a local optimal solution of problem (2.17) which is not
desired. To circumvent this difficulty the definition of a local optimal solution is
restricted to variable y only:

Definition 2.2 (Dempe and Lohse [67]) A point y is a local optimal solution of
problem (2.17) if there exists an openneighborhoodU (y)of y such that F(y) ≥ F(y)

for all (y, b, c) with b ∈ B, c ∈ C and y ∈ U (y) ∩ Ψ (b, c).

To derive a necessary optimality condition for problem (2.17) according to this defi-
nition, a formula for a tangent cone to its feasible set depending only on y is needed.
Let (y, z, b, c) be a feasible solution for problem (2.18) and define the index sets

I (y) = {i : yi = 0},
I (z, c) = {i : (A�z − c)i > 0},
I (y) = {I (z, c) : A�z ≥ c, (A�z − c)i = 0 ∀i /∈ I (y), c ∈ C }
I 0(y) =

⋂

I∈I (y)

I.

Remark 2.1 If an index set I belongs to the family I (y) then I 0(y) ⊆ I ⊆ I (y).

This remark and also the following one are obvious consequences of the definitions
of the above sets.

Remark 2.2 We have j ∈ I (y)\ I 0(y), if and only if the system

(A�z − c)i = 0 ∀i /∈ I (y)

(A�z − c) j = 0

(A�z − c)i ≥ 0 ∀i ∈ I (y)\{ j}
Cc = c̃
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has a solution. Furthermore I 0(y) is an element of I (y) if and only if the system

(A�z − c)i = 0 ∀i /∈ I 0(y)

(A�z − c)i ≥ 0 ∀i ∈ I 0(y)

Cc = c̃

has a solution.

This result makes an efficient computation of the set I 0(y) possible.
Now, it turns out that the dual feasible solution z for the lower level problem as

well as the objective function coefficients c are not necessary for solving problem
(2.17), it is only necessary to consider possible index sets I ∈ I (y).

Theorem 2.6 (Dempe and Lohse [67]) y is a local optimum for (2.17) if and only
if y is a (global) optimal solution for all problems (AI ):

F(y) → min
y,b

Ay = b

y ≥ 0

yi = 0 ∀i ∈ I

Bb = ˜b

with I ∈ I (y).

Proof Let y be a local optimal solution of (2.17) and assume that there is a set
I ∈ I (y) with y being not optimal for (AI ). Then there exists a sequence {yk}∞k=1
of feasible solutions of (AI ) with limk→∞ yk = y and F(yk) < F(y) for all k.
Consequently y can not be local optimal for (2.17) since I ∈ I (y) implies that all
yk are also feasible for (2.18).

Conversely, let y be an optimal solution for all problems (AI ) and assume that
there is a sequence {yk}∞k=1 of feasible points of (2.17) with limk→∞ yk = y and
F(yk) < F(y) for all k. For k sufficiently large the elements of this sequence satisfy
the condition yk

i > 0 for all i /∈ I (y) and due to the feasibility of yk for (2.17) there
are sets I ∈ I (y) such that yk is feasible for problem (AI ). BecauseI (y) consists
only of a finite number of sets, there is a subsequence {yk j } j∈N where yk j are all
feasible for a fixed problem (AI ). So we get a contradiction to the optimality of y
for this problem (AI ). �

Using the set I as a new variable in problem (AI ), the following problem is
obtained which is equivalent to problem (2.18) by Theorem 2.6:

F(y) → min
y,b,I

Ay = b
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y ≥ 0 (2.19)

yi = 0 ∀i ∈ I

Bb = ˜b

I ∈ I (y)

The following tangent cone can be used to express the feasible set of problem (AI )

near a feasible point y for a fixed set I ∈ I (y):

TI (y) = {d| ∃r : Ad = r, Br = 0, di ≥ 0, ∀i ∈ I (y) \ I, di = 0, ∀i ∈ I }

Using Theorem 2.6 a necessary optimality condition is derived:

Corollary 2.1 If y is a local optimal solution of problem (2.17), and F is direction-
ally differentiable then F ′(y; d) ≥ 0 for all d ∈ T (y) := ⋃

I∈I (y) TI (y).

Since d ∈ conv T (y) is equal to a convex linear combination of elements in T (y),
∇F(y)d < 0 for some d ∈ conv T (y) only if ∇F(y)d < 0 for a certain d ∈ T (y).
This leads to the necessary optimality condition

∇F(y)d ≥ 0 ∀ d ∈ conv T (y)

provided that the objective function F is differentiable.
Consider the relaxed problem to (2.19):

F(y) → min
y,b

Ay = b

yi ≥ 0 ∀i /∈ I 0(y) (2.20)

yi = 0 ∀i ∈ I 0(y)

b ∈ B

and the tangent cone

TR(y) = {d : Ad = r, Br = 0, di ≥ 0, i ∈ I (y)\ I 0(y), di = 0, i ∈ I 0(y)}

to the feasible set of this problem at the point y again relative to y only.
Due to I 0(y) ⊆ I for all I ∈ I (y0) we derive

conv T (y) = cone T (y) ⊆ TR(y), (2.21)

where cone S denotes the conical hull of the set S, i.e. the set of all linear combinations
of elements in S with nonnegative coefficients. Let spanS denote the set of all linear
combinations of elements in S.
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Definition 2.3 The point y is said to satisfy the full rank condition (FRC), if

span({Ai : i 
∈ I (y)}) = R
m, (2.22)

where Ai denotes the i th column of the matrix A.

Example 2.4 All non degenerated vertices of Ay = b, y ≥ 0 satisfy the full rank
condition.

This condition allows us now to establish equality between the cones above.

Theorem 2.7 (Dempe and Lohse [67]) Let (FRC) be satisfied at the point y. Then
equality holds in (2.21).

Proof Let d be an arbitrary element of TR(y), that means there is a r with Ad =
r , Br = 0, di ≥ 0, i ∈ I (y)\ I 0(y), di = 0, i ∈ I 0(y).Without loss of generality
assume I (y) = {1, 2, . . . , l}.

We consider the following linear systems (S1)

Ad = r

d1 = d1

di = 0, i ∈ I (y) \ {1}

and (S j )

Ad = 0

d j = d j

di = 0, i ∈ I (y) \ { j}

for j = 2, . . . , l. These systems have all feasible solutions since y satisfies the full
rank condition.

Let d1, . . . , dl be (arbitrary) solutions of the systems (S j ) and define the direction
d = ∑l

j=1 d j . Then, di = di for i ∈ I (y) as well as Ad = Ad = r .

If d = d we are done since d ∈ cone T (y) = conv T (y). Assume that d 
= d.
(Fig. 2.4).

Definêd1 := d1+ d−d. Since d1 is feasible for (S1) and di = di for i = 1, . . . , k
as well as Ad = Ad = r we obtain ̂d1

i = 0 for all i = 2, . . . , k and

Âd1 = A(d1 + d − d) = r + r − r = r .

Hence ̂d1 is also a solution of (S1).

Thus, ̂d1 +
l

∑

j=2
d j = d − d +

l
∑

j=1
d j = d.

Due to the definition of I and of the tangent cones T (y) and TR(y) the conclusion
TR(y) ⊆ T (y) follows. �
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Fig. 2.4 Illustration (taken
from Dempe and Lohse [67])
of the proof of Theorem 2.7

Due to Remark 2.2 at most n systems of linear (in-) equalities need to be
investigated to compute the index set I 0(y). Hence, by Theorem 2.7, verification of
local optimality of a feasible point of problem (2.17) is possible in polynomial time.

2.3 Solution Algorithms

2.3.1 Computation of a Local Optimal Solution

We consider the linear bilevel optimization problem (2.3), (2.4). y0 is an optimal
solution of the lower level problem iff there exists u such that

C�u = d, u ≤ 0, u�(Cy − x) = 0.

Let the rank of the matrix C be equal to m: r(C) = m. An optimal solution of
problem (2.4) can be found at a vertex of the feasible set, which means that there are
m linearly independent rows Ci , i = 1, . . . , m (without loss of generality, these are
the first m rows) of the matrix C such that

Ci y = xi , i = 1, . . . , m

and
Ci y ≥ xi , i = m + 1, . . . , q.

Then, if the first m rows of C compose a matrix D, N is build up of the last q − m
rows, x = (xD xN ) is accordingly decomposed, we obtain C = (D N )� and
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y = D�−1xD is a solution of problem (2.4). A solution u0 of the dual problem is
given by u = (u D uN )� with u D = D� −1d, uN = 0. Then,

u D ≤ 0, Dy = xD, N y ≤ xN , uN = 0, N y ≤ x .

For D with D� −1d ≤ 0 the set

RD = {x : Dy = xD, N y ≤ xN for some y ∈ R
m}

is the so-called region of stability for thematrix D. It consists of all parameter vectors
x for which an optimal solution of the primal problem (2.4) can be computed using
the matrix D.

For other values of x , the basicmatrix D consists of other rows ofC . This, together
with basic matrices for the upper level constraints Ax ≤ c can be used to describe an
algorithm enumerating all these basicmatrices to find a global optimum of the bilevel
optimization problem. For this, Theorem 2.1 is of course needed. Many algorithms
for solving the linear bilevel optimization problem suggested in the last century used
this approach (see e.g. Bard [10]; Candler and Townsley [40]; Bard and Falk [11]).

The idea of the following algorithm can be found in Dempe [49]:
Descent algorithm for the linear bilevel problem:
Input: Linear bilevel optimization problem (2.3).
Output: A local optimal solution.

Algorithm: Start Select an optimal basic solution (x1, y) of
the problem

min{a�x + b�y : Ax ≤ c, Cy ≤ x}.

Compute an optimal basic solution y1 of the problem
(2.4) for x = x1. Setk := 1.

Step 1 Select a basic matrix D for yk, compute the
region of stability RD and solve the problem

min
x

{a�x + b�y : x = (xD xN )�, y = D�−1xD, x ∈ RD}.

Let (̂x, D�−1 x̂D) be an optimal solution.
Step 2 Set xk+1 = x̂ and compute an optimal basic solution

yk+1 of the problem

min
y

{b�y : y ∈ Ψ (xk+1)}

Stop if the optimal solution has not changed:

(xk+1, yk+1) = (xk , yk).

Otherwise goto Step 1.
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This algorithm computes a local optimal solution since either one of the problems
in Steps 1 or 2 of the algorithm would lead to a better solution. For a rigorous proof,
the interested reader is referred to the original paper Dempe [49].

2.3.2 A Global Algorithm

Consider the linear bilevel optimization problem

min
x,y

{a�x + b�y : Ax ≤ c, (x, y) ∈ gph Ψ 1} (2.23)

with
Ψ 1(x) = Argmin

y
{x�y : By ≤ d} (2.24)

and the optimization problem

min
x,y

{a�x + b�y : Ax ≤ c, By ≤ d, x�y ≤ ϕ1(x)}, (2.25)

where
ϕ1(x) = min

y
{x�y : By ≤ d}

is the optimal value function of problem (2.24). Both problems (2.23) and (2.25) are
fully equivalent. It follows from parametric linear optimization (see e.g. Dempe and
Schreier [77] and Beer [15]) that the function ϕ(·) is an in general nondifferentiable,
concave, piecewise affine-linear and Lipschitz continuous function. It is equal to

ϕ1(x) = min{x�y1, x�y2, . . . , x�y p},

where {y1, y2, . . . , y p} is the set of vertices of the convex polyhedron {y : By ≤ d}.
Strictly speaking, formula (2.25) is correct only on the set of all x for which
|ϕ1(x)| ≤ ∞. If ϕ1(̂x) = x̂�yk , then yk ∈ ∂Cl (̂x) is an element of the general-
ized derivative in the sense of Clarke [see (3.10)]. Using the results from convex
analysis (see Clarke [42] and Rockafellar [272]) we have

ϕ1(x) ≤ ϕ1(̂x) + ŷ�(x − x̂) ∀ x, ∀ ŷ ∈ ∂clϕ1(̂x).

Hence,

{(x, y) : Ax ≤ c, By ≤ d, x�y ≤ ϕ1(x)}
⊆ {(x, y) : Ax ≤ c, By ≤ d, x�y ≤ ŷ�x} (2.26)

http://dx.doi.org/10.1007/978-3-662-45827-3_3
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for ŷ ∈ Ψ 1(̂x). This implies that the problem

min
x,y

{a�x + b�y : Ax ≤ c, By ≤ d, x�y ≤ ŷ�x} (2.27)

cannot have a worse objective function value than problem (2.25).

A solution algorithm for the linear bilevel optimization problem (2.23), (2.24)

Algorithm: Start Select x0 satisfying Ax0 ≤ c, compute y0 ∈ Ψ (x0).
Set k := 1 and Y := {y0}.

Step 1 Solve problem

min
x,y

{a�x + b�y : Ax ≤ c, By ≤ d, x�y ≤ ŷ�x ∀ ŷ ∈ Y } (2.28)

globally and let (xk, yk) be an optimal solution.
Step 2 If yk ∈ Ψ (xk), stop: (xk, yk) is a global optimal solu-
tion of problem (2.23), (2.24). Otherwise, set

Y := Y ∪ {ŷk}

where ŷk ∈ Ψ (xk) and go to Step 1.

Theorem 2.8 (Dempe and Franke [60])Let {(x, y) : Ax ≤ c, By ≤ d} be bounded.
The above algorithm computes a global optimal solution of the linear bilevel opti-
mization problem (2.23), (2.24).

Proof If the algorithm stops in Step 2, the last point (xk, yk) is feasible for the linear
bilevel optimization problem. Hence, due to (2.26) it is also globally optimal.

Let {(xk, yk)}∞k=1 be an infinite sequence computed by the algorithm. Since the
setY is increasing, more and more constraints are added to problem (2.28) implying
that the sequence of its optimal objective function values is nondecreasing. On the
other hand, it is bounded from above by e.g. a�x1 + b�b1. Hence, this sequence
converges to, say, v∗. Let, without loss of generality (x∗, y∗) be a limit point of the
sequence {xk, yk}∞k=1. Continuity of the function ϕ(·) leads to

lim
k→∞ ϕ(xk) = lim

k→∞ xk � ŷk = x∗ � ŷ∗,

where ŷ∗ is again without loss of generality a limit point of the sequence {ŷk}∞k=1.
Then, we have

xk �yk ≤ xk � ŷk−1

by the formulae in the algorithm. Hence, by convergence of the sequences, we derive

x∗ �y∗ ≤ ϕ(x∗) = x∗ � ŷ∗.

Consequently, the point (x∗, y∗) is feasible and, thus, also globally optimal. �



2.3 Solution Algorithms 37

It is clear that the algorithm can be implemented such that it stops after a finite
number of iterations if the feasible set of the lower level problem is compact. The
reason for this is that the feasible set has only a finite number of vertices which
correspond to the vertices of the generalized derivative of the function ϕ1(·).

One difficulty in realizing the above algorithm is that we need to solve the opti-
mization problem (2.28) globally in each iteration. This is a nonconvex optimization
problem and usually solution algorithms compute only stationary or local optimal
solutions for such problems. Hence, it is perhaps more suitable to try to compute a
local optimal solution of problem (2.23) respectively its equivalent problem (2.25).
Often this is related to the use of a sufficient optimality condition. Since (2.25) is
a nonsmooth optimization problem we can use a sufficient optimality condition of
first order demanding that the directional derivative of the objective function is not
negative on a suitable tangent cone to the feasible set.

Let MR be the feasible set of problem (2.28) for some set Y ⊆ {y : By ≤ d}.
Then, the Bouligand (or tangent) cone to MR at some point (x∗, y∗) reads as

CMR (x∗, y∗) = {d ∈ R
2n : ∃ {(xk, yk)}∞k=1 ⊆ MR, ∃{tk}∞k=1 ⊆ R+\{0}

satisfying lim
k→∞(xk, yk) = (x∗, y∗), lim

k→∞ tk = 0 and

d = lim
k→∞

1

tk
((xk, yk) − (x∗, y∗))}.

The local algorithm solving problem (2.23) is identical with the algorithm on the
previous page with the only distinction that problem (2.28) in Step 1 of the algorithm
is solved locally.

Theorem 2.9 (Dempe and Franke [60]) Let the set {(x, y) : Ax ≤ c, By ≤ d}
be nonempty and compact. Assume that there is γ > 0 such that (a� b�)d ≥ γ

for all d ∈ CMR (xk, yk) and all sufficiently large k. Then, all accumulation points
of the sequences computed using the local algorithm are locally optimal for prob-
lem (2.23).

Proof The existence of accumulation points as well as their feasibility for problem
(2.23) follow analogously to the proof of Theorem 2.8. Let

MB := {(x, y) : Ax ≤ c, By ≤ d, x�y ≤ ϕ(x)}

denote the feasible set of problem (2.23). Then, MB ⊆ MR and CMR is a Bouligand
cone to a convex set. Hence, for (x, y) ∈ MB sufficiently close to (xk, yk) we have
dk := ((x, y) − (xk, yk))/‖(x, y) − (xk, yk)‖ ∈ CMR (xk, yk) and (a� b�)dk ≥ γ

for sufficiently large k. The Bouligand cone to MB is defined analogously to the
Bouligand cone to MR .

Let (x, y) be an arbitrary accumulation point of the sequence {(xk, yk)}∞k=1 com-
puted by the local algorithm. Assume that (x, y) is not a local optimal
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solution. Then there exists a sequence {xk, yk}∞k=1 ⊂ MB converging to (x, y) with
a�xk + b�yk < a�x + b�y for all k. Then, by definition, without loss of generality

lim
k→∞

(xk, yk) − (x, y)

‖(xk, yk) − (x, y)‖ = d ∈ CMB (x, y) ⊆ CMR (x, y)

and (a� b�)d ≤ 0. On the other hand, d is a limit point of a sequence {dk}∞k=1 with
dk ∈ CMR (xk, yk) with (a� b�)dk ≥ γ for all k by assumption.

This contradicts the assumption, thus proving the Theorem. �

The following example is presented in Dempe and Franke [60] to illustrate the algo-
rithm.

Example 2.5 Consider the bilevel optimization problem

min
x,y

2x1 + x2 + 2y1 − y2

s.t. |x1| ≤ 1
−1 ≤ x2 ≤ −0.75
y ∈ Ψ (x) := Argmin

y
{x�y : −2y1 + y2 ≤ 0, y1 ≤ 2, 0 ≤ y2 ≤ 2}.

The concave optimal value function ϕ(x) of the lower level problem reads

ϕ(x) =
{

2x1 + 2x2 if x1 ∈ [−1, 0] , x2 ∈ [−1,−0.75]
x1 + 2x2 if x1 ∈ ( 0, 1 ] , x2 ∈ [−1,−0.75]

The values of the upper level objective function over the feasible set are

a�x + b�y =
{−2 + 2x1 + x2 if x1 ∈ [−1, 0] , x2 ∈ [−1,−0.75]
2x1 + x2 if x1 ∈ ( 0, 1 ] , x2 ∈ [−1,−0.75]

with the optimal solution at x = (−1,−1) and the optimal function value 5. For
Y ⊆ {y : By ≤ d}, the problem (2.28) is

minx,y 2x1 + x2 + 2y1 − y2
s.t. |x1| ≤ 1

−1 ≤ x2 ≤ −0.75
x�y ≤ min

z∈Y
x�z

−2y1 + y2 ≤ 0
y1 ≤ 2
0 ≤ y2 ≤ 2.
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Now, the above algorithm works as follows.
Start Y := {(0, 0)}, k := 1.
Step 1 The optimal solution of (2.28) is (x11 , x12 , y11 , y12) = (−1,−1, 2, 0).
Step 2 The lower level with (x11 , x12) = (−1,−1) leads to (z11, z12) = (2, 2) which is
added to Y . Go to Step 1.
Step 1 The optimal solution of (2.28) is (x21 , x22 , y21 , y22 ) = (−1,−1, 2, 2).
Step 2 The lower level with (x21 , x22 ) = (−1,−1) leads to (z21, z22) = (2, 2) which
coincides with the solution of Step 1, hence the algorithm terminates with the optimal
solution (x21 , x22 , y21 , y22 ) = (−1,−1, 2, 2). �
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