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Preface

Bilevel optimization is a vital field of active research. Depending on its formulation
it is part of nonsmooth or nondifferentiable optimization, conic programming,
optimization with constraints formulated as generalized equations, or set-valued
optimization. The investigation of many practical problems as decision making in
hierarchical structures, or situations where the reaction of nature on selected actions
needs to be respected, initiated modeling them as bilevel optimization problems. In
this way, new theories have been developed with new results obtained.

A first attempt was the use of the Karush-Kuhn-Tucker conditions in situations
when they are necessary and sufficient optimality conditions for the lower level
problem, or dual problems in case strong duality holds to model the bilevel opti-
mization problem. The result is a special case of the mathematical program with
equilibrium constraints (MPEC), or complementarity constraints (MPCC). The
latter has motivated the investigation of optimality conditions and the development
of algorithms solving such problems. Unfortunately, it has been shown very
recently that stationary points of an MPEC need not be related to stationary solu-
tions of the bilevel optimization problem. Because of that, the solution algorithms
must select the Lagrange multipliers associated with the lower level problem very
carefully. Another option is to avoid the explicit use of Lagrange multipliers
resulting in the so-called primal KKT transformation, which is an optimization
problem with a generalized equation as the constraint. Violation of the constraint
qualifications, often used to verify the optimality conditions and convergence of the
solution algorithms, at every feasible point are other challenges for research.

The idea of using the optimal value function of the lower level problem to model
the bilevel optimization problem is perhaps self-explanatory. The result yet is a
nondifferentiable equality constraint. One promising approach here is based on
variational analysis, which is also exploited to verify the optimality conditions for
the MPCC. So, bilevel optimization initiated some advances in variational analysis,
too.

Applications often force the use of integer variables in the respective models.
Besides suitable formulations, mixed-integer bilevel optimization problems renew
the question of existence of an optimal solution, leading to the notion of a weak
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solution. Surprisingly, adding some constraints that are inactive at a global opti-
mum of the continuous bilevel problem, as well as replacing a discrete bilevel
problem with its continuous relaxation can destroy the global optimality of a fea-
sible point.

These and other questions are the topic of the first part of the monograph. In the
second part, certain applications are carefully investigated, especially a natural gas
cash-out problem, an equilibrium problem in a mixed oligopoly, and a toll
assignment problem. For these problems, besides the formulation of solution
algorithms, results of the first numerical experiments with them are also reported.

Bilevel optimization is a quickly developing field of research with challenging
and promising contributions from different topics of mathematics like optimization,
as well as from other sciences like economics, engineering, or chemistry. It was not
a possible aim of the authors to provide an overview of all the results available in
this area. Rather than that, we intended to show some interactions with other topics
of research, and to formulate our opinion about some directions for explorations in
the future.

Stephan Dempe
Vyacheslav Kalashnikov
Gerardo A. Pérez-Valdés
Nataliya Kalashnykova
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Chapter 1
Introduction

1.1 The Bilevel Optimization Problem

Since its first formulation by Stackelberg in his monograph on market economy in
1934 [294] and the first mathematical model by Bracken and McGill in 1972 [27]
there has been a steady growth in investigations and applications of bilevel optimiza-
tion. Formulated as a hierarchical game (the Stackelberg game), two decision makers
act in this problem. The so-called leader minimizes his objective function subject to
conditions composed (in part) by optimal decisions of the so-called follower. The
selection of the leader influences the feasible set and the objective function of the
follower’s problem, who’s reaction has strong impact on the leader’s payoff (and fea-
sibility of the leader’s initial selection). Neither player can dominate the other one
completely. The bilevel optimization problem is the leader’s problem, formulated
mathematically using the graph of the solution set of the follower’s problem.

The bilevel optimization has been shown to be N P-hard, even verification of
local optimality for a feasible solution is in general N P-hard, often used constraint
qualifications are violated in every feasible point. This makes the computation of an
optimal solution a challenging task.

Bilevel optimization problems are nonconvex optimization problems, tools of
variational analysis have successfully been used to investigate them. The results are
a larger number of necessary optimality conditions, some of them are presented in
Chap. 3 of this monograph.

A first approach to investigate bilevel optimization problems is to replace the
lower level problem by its (under certain assumptions necessary and sufficient) opti-
mality conditions, the Karush-Kuhn-Tucker conditions. This replaces the bilevel
optimization problem by a so-called mathematical program with complementarity
conditions (MPCC). MPCCs are nonconvex optimization problems, too. Algorithms
solving them compute local optimal solutions or stationary points. Recently it has
been shown that local optimal solutions of an MPCC need not to be related to local
optimal solutions of the corresponding bilevel optimization problem, new attempts

© Springer-Verlag Berlin Heidelberg 2015
S. Dempe et al., Bilevel Programming Problems, Energy Systems,
DOI 10.1007/978-3-662-45827-3_1

1

http://dx.doi.org/10.1007/978-3-662-45827-3_3


2 1 Introduction

for the development of solution approaches for the bilevel problem are necessary.
Some results can be found in different chapters of this monograph.

The existence of an optimal solution, verification of necessary optimality con-
ditions, and convergence of solution algorithms are strongly related to continuity
of certain set-valued mappings. These properties can often not be guaranteed for
mixed-discrete bilevel optimization problems. This is perhaps one reason for the
small number of references on those class of problems. But, applied problems do
often lead to mixed-integer bilevel problems. One such problem is investigated in
Chap. 6. Focus on mixed-discrete bilevel optimization including the notion of a weak
optimal solution and some ideas for solving these problems is in Chap. 5.

The solution set of an optimization problem does in general not reduce to a
singleton, leading to the task of selecting a “good” optimal solution. If the quality
of an optimal solution is measured by a certain function, this function needs to be
minimized on the solution set of a second optimization problem. This is the so-called
simple bilevel optimization problem, investigated in Chap. 4.

Interest in bilevel optimization is largely driven by applications. Two of them
are investigated in details in Chaps. 6 and 7. The gas cash-out problem is a bilevel
optimization problem with one Boolean variable, formulated using nondifferentiable
functions. Applying results of the previous chapters, after some transformations and
the formulation of an approximate problem, a model is obtained which can efficiently
be solved. The obtained solutions have successfully be used in practice.

Due to its complexity, the dimension of bilevel optimization models is of primar-
ily importance for solving them. Large-scale problems can perhaps not be solved in
reasonable time. But, e.g. the investigation of stochastic bilevel optimization prob-
lems using methods to approximate the probability distributions leads to large-scale
problems and not all data are deterministic ones on many applications. This makes
ideas to reduce the number of variables important. Such ideas are the topic of Chap. 8.

1.2 Possible Transformations into a One-Level Problem

Bilevel optimization problems are optimization problems where the feasible set is
determined (in part) using the graph of the solution set mapping of a second para-
metric optimization problem. This problem is given as

min
y

{ f (x, y) : g(x, y) ≤ 0, y ∈ T }, (1.1)

where f : Rn × R
m → R, g : Rn × R

m → R
p, T ⊆ R

m is a (closed) set.
Let Y : Rn ⇒ R

m denote the feasible set mapping:

Y (x) := {y : g(x, y) ≤ 0},

ϕ(x) := min
y

{ f (x, y) : g(x, y) ≤ 0, y ∈ T }

http://dx.doi.org/10.1007/978-3-662-45827-3_6
http://dx.doi.org/10.1007/978-3-662-45827-3_5
http://dx.doi.org/10.1007/978-3-662-45827-3_4
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1.2 Possible Transformations into a One-Level Problem 3

the optimal value function, and Ψ : R
n ⇒ R

m the solution set mapping of the
problem (1.1) for a fixed value of x :

Ψ (x) := {y ∈ Y (x) ∩ T : f (x, y) ≤ ϕ(x)} .

Let
gph Ψ := {

(x, y) ∈ R
n × R

m : y ∈ Ψ (x)
}

be the graph of the mapping Ψ . Then, the bilevel optimization problem is given as

“min
x

”{F(x, y) : G(x) ≤ 0, (x, y) ∈ gph Ψ, x ∈ X}, (1.2)

where F : Rn × R
m → R, G : Rn → R

q , X ⊆ R
n is a closed set.

Problem (1.1), (1.2) can be interpreted as an hierarchical game of two decision
makers (or players) which make their decisions according to an hierarchical order.
The first player (which is called the leader) makes his selection first and communi-
cates it to the second player (the so-called follower). Then, knowing the choice of the
leader, the follower selects his response as an optimal solution of problem (1.1) and
gives this back to the leader. Thus, the leader’s task is to determine a best decision,
i.e. a point x̂ which is feasible for the problem (1.2): G (̂x) ≤ 0, x̂ ∈ X , minimizing
together with the response ŷ ∈ Ψ (̂x) the function F(x, y). Therefore, problem (1.1)
is called the follower’s problem and (1.2) the leader’s problem. Problem (1.2) is the
bilevel optimization problem.

Example 1.1 In case of a linear bilevel optimization problem with only one upper and
one lower level variables, where all functions F, f, gi are (affine) linear functions,
the bilevel optimization problem is illustrated in Fig. 1.1. Here, G(x) ≡ 0 and the set
{(x, y) : g(x, y) ≤ 0} of feasible points for all values of x is the hatched area. If x is
fixed to x0 the feasible set of the lower level problem (1.1) is the set of points (x0, y)

above x0. Now, if the lower level objective function f (x, y) = −y is minimized on
this set, the optimal solution of the lower level problem on the thick line is obtained.
Then, if x is moved along the x-axis, the thick line as the set of feasible solutions
of the upper level problem arises. In other words, the thick line equals the gph Ψ

of the solution set mapping of the lower level problem. This is the feasible set of
the upper level (or bilevel) optimization problem. Then, minimizing the upper level
objective function on this set, the (in this case unique) optimal solution of the bilevel
optimization problem is obtained as indicated in Fig. 1.1. �

It can be seen in Fig. 1.1 that the bilevel optimization problem is a nonconvex
(since gph Ψ is nonconvex) optimization problem. Hence, local optimal solutions
and also stationary points can appear.

Example 1.2 Consider the problem

“min
x

”{x2 + y : y ∈ Ψ (x)},
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feasible points

xx0

feasible points lower level for fixed parameter

optimal solution lower level

feasible set bilevel problem

lower level objective function
upper level objective function

optimal solution bilevel problem

Fig. 1.1 Illustration of the linear bilevel optimization problem

x

y

0

1

optimal solution lower 
level problem

x

objective function value 
F(x,y(x))upper level

Fig. 1.2 Mapping to be “minimized” in Example 1.2

where
Ψ (x) := Argmin

y
{−xy : 0 ≤ y ≤ 1}.

Then, the graph of the mapping Ψ is given in the figure on the left hand side of Fig. 1.2
and the graph of the mapping x �→ F(x, Ψ (x)) of the upper level objective function
is plotted in the figure on the right-hand side. Note, that this is not a function and
that its minimum is unclear since its existence depends on the response y ∈ Ψ (x)

of the follower on the leader’s selection at x = 0. If the solution y = 0 is taken
for x = 0, an optimal solution of the bilevel optimization problem exists. This
is the optimistic bilevel optimization problem introduced below. In all other cases,
the minimum does not exist, the infimum function value of the upper level objective
function is again zero but it is not attained. If y = 1 is taken, the so-called pessimistic
bilevel optimization problem arises. �

Hence, strictly speaking, the problem (1.2) is not well-posed in the case that the
set Ψ (x) is not a a singleton for some x , the mapping x �→ F(x, y(x)) is not a
function. This is implied by an ambiguity in the computation of the upper level



1.2 Possible Transformations into a One-Level Problem 5

objective function value, which is rather an element in the set {F(x, y) : y ∈ Ψ (x)}.
We have used quotation marks in (1.2) to indicate this ambiguity. To overcome such
an unpleasant situation, the leader has a number of possibilities:

1. The leader can assume that the follower is willing (and able) to cooperate. In this
case, the leader can take that solution within the set Ψ (x) which is a best one with
respect to the upper level objective function. This leads then to the function

ϕo(x) := min{F(x, y) : y ∈ Ψ (x)} (1.3)

to be minimized on the set {x : G(x) ≤ 0, x ∈ X}. This is the optimistic
approach leading to the optimistic bilevel optimization problem. The function
ϕo(x) is called optimistic solution function. Roughly speaking, this problem is
closely related to the problem

min
x,y

{F(x, y) : G(x) ≤ 0, (x, y) ∈ gph Ψ, x ∈ X}. (1.4)

If the point x is a local minimum of the function ϕo(·) on the set

{x : G(x) ≤ 0, x ∈ X}

and y ∈ Ψ (x), then the point (x, y) is also a local minimum of problem (1.4). The
opposite implication is in general not correct, as the following example shows:

Example 1.3 Consider the problem of minimizing the function F(x, y) = x
subject to x ∈ [−1, 1] and y ∈ Ψ (x) := Argmin

y
{xy : y ∈ [0, 1]}. Then,

y(x) ∈
⎧
⎨

⎩

[0, 1] for x = 0,

{1} for x < 0,

{0} for x > 0.

Hence, the point (x, y) = (0, 0) is a local minimum of the problem

min
x,y

{x : x ∈ [−1, 1], y ∈ Ψ (x)}

since, for each feasible point (x, y) with ‖(x, y) − (x, y)‖ ≤ 0.5 we have
x ≥ 0. But, the point x does not minimize the function ϕo(x) = x on [−1, 1]
locally. �

For more information about the relation between both problems, the interested
reader is referred to Dempe [52].

2. The leader has no possibility to influence the follower’s selection neither he/she
has an intuition about the follower’s choice. In this case, the leader has to accept
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the follower’s opportunity to take a worst solution with respect to the leader’s
objective function and he/she has to bound the damage resulting from such an
unpleasant selection. This leads to the function

ϕp(x) := max{F(x, y) : y ∈ Ψ (x)} (1.5)

to be minimized on the set {x : G(x) ≤ 0, x ∈ X} :

min{ϕp(x) : G(x) ≤ 0, x ∈ X} (1.6)

This is the pessimistic approach resulting in the pessimistic bilevel optimization
problem. The function ϕp(x) is the pessimistic solution function. This problem is
often much more complicated than the optimistic bilevel optimization problem,
see Dempe [52].
In the literature there is also another pessimistic bilevel optimization problem. To
describe this problem consider the bilevel optimization problem with connecting
upper level constraints and an upper level objective function depending only on
the upper level variable x :

“min
x

”{F(x) : G(x, y) ≤ 0, y ∈ Ψ (x)}. (1.7)

In this case, a point x is feasible if there exists y ∈ Ψ (x) such that G(x, y) ≤ 0,
which can be written as

min
x

{F(x) : G(x, y) ≤ 0 for some y ∈ Ψ (x)}.

Now, if the quantifier ∃ is replaced by ∀ we derive a second pessimistic bilevel
optimization problem

min
x

{F(x) : G(x, y) ≤ 0 for all y ∈ Ψ (x)}. (1.8)

This problem has been investigated in Wiesemann et al. [316]. The relations
between (1.8) and (1.6) should to be investigated in future.

3. The leader is able to predict a selection of the follower: y(x) ∈ Ψ (x) for all x . If
this function is inserted into the upper level objective function, this leads to the
problem

min
x

{F(x, y(x)) : G(x) ≤ 0, x ∈ X}.

Such a function y(·) is called a selection function of the point-to-set mapping
Ψ (·). Hence, we call this approach the selection function approach. One special
case of this approach arises if the optimal solution of the lower level problem is
unique for all values of x . It is obvious that the optimistic and the pessimistic
problems are special cases of the selection function approach.
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Even under restrictive assumptions (as in the case of linear bilevel optimization or if
the follower’s problem has a unique optimal solution for all x), the function y(·) is in
general not differentiable. Hence, the bilevel optimization problem is a nonsmooth
optimization problem.

Definition 1.1 A point z ∈ Z is a local optimal solution of the optimization problem

min{w(z) : z ∈ Z}

provided that there is a positive number ε > 0 such that

w(z) ≥ w(z) ∀ z ∈ Z satisfying ‖z − z‖ ≤ ε.

z is a global optimal solution of this problem if ε can be taken arbitrarily large.

This well-known notion of a (local) optimal solution can be applied to the bilevel
optimization problems and, using e.g. Weierstraß Theorem we obtain that problem
(1.4) has a global optimal solution if the function F is continuous and the set Z :=
{(x, y) : G(x) ≤ 0, (x, y) ∈ gph Ψ, x ∈ X} is not empty and compact. If this set is
not bounded but only a nonempty and closed set and the function F is continuous and
coercive (i.e. F(x, y) tends to infinity for ‖(x, y)‖ tending to infinity) problem (1.4)
has a global optimal solution, too. For closedness of the set Z we need closedness
of the graph of the solution set mapping of the lower level problem. We will come
back to this issue in Chap. 3, Theorem 3.3.

With respect to problem

min{ϕ0(x) : G(x) ≤ 0, x ∈ X} (1.9)

existence of an optimal solution is guaranteed if the function ϕ0(·) is lower semi-
continuous (which means that lim infx→x0 ϕ0(x) ≥ ϕ0(x0) for all x0) and the set Z
is not empty and compact by an obvious generalization of the Weierstraß Theorem.
Again boundedness of this set can be replaced by coercivity. Lower semicontinu-
ity of the function is again an implication of upper semicontinuity of the mapping
x �→ Ψ (x), see for instance Bank et al. [8] in combination with Theorem 3.3. It is
easy to see that a function w(·) is lower semicontinuous if and only if its epigraph
epi w := {(z, α) : w(z) ≤ α} is a closed set.

Example 1.2 showed already that an optimal solution of the problem (1.6) does
often not exist. Its existence is guaranteed e.g. if the function ϕp(·) is lower semi-
continuous and the set Z is not empty and compact (Lucchetti et al. [207]). But, for
lower semicontinuity of the function ϕp(·) lower semicontinuity of the solution set
mapping x �→ Ψ (x) is needed which can often only be shown if the optimal solution
of the lower level problem is unique (see Bank et al. [8]).

If an optimal solution of problem (1.6) does not exist we can aim to find a weak
(global) optimum by replacing the epigraph of the objective function by its closure:
Let ϕ p be defined such that

http://dx.doi.org/10.1007/978-3-662-45827-3_3
http://dx.doi.org/10.1007/978-3-662-45827-3_3
http://dx.doi.org/10.1007/978-3-662-45827-3_3


8 1 Introduction

epi ϕ p = cl epi ϕp.

Then, a local or global optimal solution of the problem

min{ϕ p(x) : G(x) ≤ 0, x ∈ X} (1.10)

is called a (local or global) weak solution of the pessimistic bilevel optimization
problem (1.6). Note that ϕ p(x0) = lim inf x→x0 ϕp(x). The function ϕ p(·) is the
largest lower semicontinuous function which is not larger than ϕp(·), see Fanghänel
[105]. Hence, a weak global solution of problem (1.6) exists provided that Z = ∅ is
compact.

1.3 An Easy Bilevel Optimization Problem: Continuous
Knapsack Problem in the Lower Level

To illustrate the optimistic/pessimistic approaches to the bilevel optimization prob-
lem consider

“min
b

”{d�y + f b : bu ≤ b ≤ bo, . . . , y ∈ Ψ (b)}, (1.11)

where
Ψ (b) := Argmin

y
{c�y : a�y ≥ b, 0 ≤ yi ≤ 1 ∀ i = 1, . . . , n}

and a, c, d ∈ R
n+. Note that the upper level variable is called b in this problem.

Assume that the indices are ordered such that

ci

ai
≤ ci+1

ai+1
, i = 1, 2, . . . , n − 1.

Then, for fixed b ∈
{

b : ∑k−1
i=1 ai ≤ b ≤ ∑k

i=1 ai

}
, the point

yi =

⎧
⎪⎨

⎪⎩

1, i = 1, . . . , k − 1
b−∑k−1

j=1 a j

ak
, i = k

0, i = k + 1, . . . , n

(1.12)

is an optimal solution of the lower level problem. Its optimal function value in the
lower level is

ϕ(b) =
k−1∑

i=1

ci + ck

ak
(b −

k−1∑

j=1

a j ),
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which is an affine linear function of b. The function b �→ ϕ(b) is convex. The optimal
solution of the lower level problem is unique provided that ck

ak
is unique in the set

{
ci
ai

: i = 1, . . . , n
}

. Otherwise, the indices i ∈
{

j : ci
ai

= ck
ak

}
need to be ordered

such that

dt ≤ dt+1 : t, t + 1 ∈
{

j : ci

ai
= ck

ak

}

for the optimistic and

dt ≥ dt+1 : t, t + 1 ∈
{

j : ci

ai
= ck

ak

}

for the pessimistic approaches. As illustration consider the following example:

Example 1.4 The lower level problem is

10x1 + 30x2 + 8x3 + 60x4 + 4x5 + 16x6 + 32x7 + 30x8 + 120x9 + 6x10 → min
5x1 + 3x2 + 2x3 + 5x4 + x5 + 8x6 + 4x7 + 3x8 + 6x9 + 3x10 ≥ b
∀ i : 0 ≤ yi ≤ 1,

and the upper level objective function is

F(x, f ) = 20x1 + 15x2 − 24x3 + 20x4 − 40x5

+ 80x6 − 32x7 − 60x8 − 12x9 − 60x10 + f b.

This function is to be minimized subject to y ∈ Ψ (b) and b is in some closed interval
[bu, bo]. Note that the upper level variable is b and the lower level one is x in this
example.

Using the above rules we obtain the the following sequence of the indices in the
optimistic approach:

i = 10 1 6 5 3 7 8 2 4 9
ci
ai

= 2 2 2 4 4 8 10 10 12 20
di
ai

= −20 4 10 −40 −12 −8 −20 5 4 −2

Using the pessimistic approach we get

i = 6 1 10 3 5 7 2 8 4 9
ci
ai

= 2 2 2 4 4 8 10 10 12 20
di
ai

= 10 4 −20 −40 −12 −8 −20 5 4 −2
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Fig. 1.3 The optimistic and
pessimistic objective value
functions in Example 1.4,
see Winter [317]
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Now, the functions ϕo(b) and ϕp(b) are plotted in Fig. 1.3. The upper function is the
pessimistic value function, computed according to (1.5), the lower one the optimistic
value function, cf. (1.3).

Both functions are continuous, but not convex. Local optima of both functions
can either be found at b ∈ (bu, bo) or at points

b ∈
{

∑

i∈I

ai : I ⊆ {1, 2, . . . , n}
}

.

Note that local optima can be found at vertices of the set

{

(x, b) : bu ≤ b ≤ b0, 0 ≤ xi ≤ 1, i = 1, . . . , n,

n∑

i=1

ai xi = b

}

. �

1.4 Short History of Bilevel Optimization

The history of bilevel optimization dates back to H.v. Stackelberg who in 1934
formulated in the monograph [294] an hierarchical game of two players now called
Stackelberg game. The formulation of the bilevel optimization problem goes back
to Bracken and McGill [27], the notion “Bilevel Programming” has been coined
probably by Candler and Norton [39], see also Vicente [305]. With the beginning
of the 80s of the last century a very intensive investigation of bilevel optimization
started. A number of monographs, see e.g. Bard [10], Shimizu et al. [288] and Dempe
[52], edited volumes, see Dempe and Kalashnikov [57], Talbi [297] and Migdalas
et al. [231] and (annotated) bibliographies, see e.g. Vicente and Calamai [306],
Dempe [53] have been published in that field.

One possibility to investigate bilevel optimization problems is to transform them
into one-level (or ordinary) optimization problems. This will be the topic of Chap. 3.

http://dx.doi.org/10.1007/978-3-662-45827-3_3
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In the first years linear bilevel optimization problems (where all the problem functions
are affine linear and the sets X and T equals the whole spaces) have been transformed
using linear optimization duality or, equivalently, the Karush-Kuhn-Tucker condi-
tions for linear optimization. Applying this approach, solution algorithms have been
suggested, see e.g. Candler and Townsley [40]. The transformed problem is a special
case of a mathematical program with equilibrium constraints MPEC (now sometimes
called mathematical program with complementarity constraints MPCC). We can call
this the KKT transformation of the bilevel optimization problem. This approach is
also possible for convex parametric lower level problems satisfying some regularity
assumption.

General MPCC’s have been the topic of some monographs, see e.g. Luo et al.
[208] and Outrata et al. [259]. Solution algorithms for MPCC’s (see for instance
Outrata et al. [259], Demiguel et al. [48], Leyffer et al. [201], and many others) have
been suggested also for solving bilevel optimization problems.

Since MPCC’s are nonconvex optimization problems, solution algorithms will
hopefully compute local optimal solutions of the MPCCs. Thus, it is interesting
if a local optimal solution of an the KKT transformation of a bilevel optimization
problem is related to a local optimal solution of the latter problem. This has been the
topic of the paper [55] by Dempe and Dutta. We will come back to this in Chap. 3.

Later on, the selection function approach to bilevel optimization has been inves-
tigated in the case when the optimal solution of the lower level problem is uniquely
determined and strongly stable in the sense of Kojima [191]. Then, under some
assumptions, the optimal solution of the lower level problem is a PC1-function, see
Ralph and Dempe [265] and Scholtes [283] for the definition and properties of PC1-
functions. This can then be used to determine necessary and sufficient optimality
conditions for bilevel optimization (see Dempe [50]).

Using the optimal value function ϕ(x) of the lower level problem (1.1), the bilevel
optimization problem (1.4) can be replaced with

min
x,y

{F(x, y) : G(x) ≤ 0, g(x, y) ≤ 0, f (x, y) ≤ ϕ(x), x ∈ X}.

This is the optimal value transformation. Since the optimal value function is non-
smooth even under restrictive assumptions, this is a nonsmooth, nonconvex opti-
mization problem. Using nonsmooth analysis (see e.g. Mordukhovich [241, 242],
Rockafellar and Wets [274]), optimality conditions for the optimal value transfor-
mation can be obtained (see e.g. Outrata [260], Ye and Zhu [324], Dempe et al.
[56]).

Nowadays, a large number of PhD thesis have been written on bilevel optimization
problems, very different types of (necessary and sufficient) optimality conditions
can be found in the literature, the number of applications is huge and both exact and
heuristic solution algorithms have been suggested.

http://dx.doi.org/10.1007/978-3-662-45827-3_3
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1.5 Applications of Bilevel Optimization

1.5.1 Optimal Chemical Equilibria

In the monograph Dempe [52] the following application of bilevel optimization in
the chemical industry is formulated:

In producing substances by chemical reactions we have often to answer the ques-
tion of how to compose a mixture of chemical substances such that

• the substance we like to produce really arises as a result of the chemical reactions
in the reactor and

• the amount of this substance should clearly be as large as possible or some other
(poisonous or etching) substance is desired to be vacuous or at least of a small
amount.

It is possible to model this problem as a bilevel optimization problem where the first
aim describes the lower level problem and the second one is used to motivate the
upper level objective function.

Let us start with the lower level problem. Although the chemists are technically
not able to observe in situ the single chemical reactions at higher temperatures, they
described the final point of the system by a convex optimization problem. In this
problem, the entropy functional f (y, p, T ) is minimized subject to the conditions
that the mass conservation principle is satisfied and masses are not negative. Thus,
the obtained equilibrium state depends on the pressure p and the temperature T in
the reactor as well as on the masses x of the substances which have been put into the
reactor:

N∑

i=1
ci (p, T )yi +

G∑

i=1
yi ln yi

z → min
y

z =
G∑

j=1
y j , Ay = Ax, y ≥ 0,

where G ≤ N denotes the number of gaseous and N the total number of reacting
substances. Each row of the matrix A corresponds to a chemical element, each column
to a substance. Hence, a column gives the amount of the different elements in the
substances; y is the vector of the masses of the substances in the resulting chemical
equilibrium whereas x denotes the initial masses of substances put into the reactor; A
is a submatrix of A consisting of the columns corresponding to the initial substances.
The value of ci (p, T ) gives the chemical potential of a substance which depends
on the pressure p and the temperature T (Smith and Missen [291]). Let y(p, T, x)

denote the unique optimal solution of this problem. The variables p, T, x can thus
be considered as parameters for the chemical reaction. The problem is now that there
exists some desire about the result of the chemical reactions which should be reached
as best as possible, as e.g. the goal that the mass of one substance should be as large
or as small as possible in the resulting equilibrium. To reach this goal the parameters
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p, T, x are to be selected such that the resulting chemical equilibrium satisfies the
overall goal as best as possible (Oeder [258]):

〈c, y〉 → min
p,T,x

(p, T, x) ∈ Y, y = y(p, T, x).

1.5.2 Optimal Traffic Tolls

In more and more regions of the world, traffic on the streets is due to tolls. To model
such a problem, use a directed graph G = (V, E) where the nodes v ∈ V :=
{1, 2, . . . , n} stand for the junctions in some region and the directed edges (or arcs)
(i, j) ∈ E ⊂ V × V are used to implement the streets leading from junction i to
junction j . Then, the graph is used to model the map of the streets in a certain region.
The streets are modeled as one-way roads here. If a street can be passed in both
directions, there are opposite directed edges in the graph. The streets are assumed to
have certain capacities which are modeled as a function u : E → R and the cost (or
time) to pass one street by a driver is given by a second function c : E → R. We
assume here for simplicity that the costs are independent of the flow on the street.
Assume further that there is a set T of pairs of nodes (q, s) ∈ V × V for which there
is a certain demand dqs of traffic running from the origin q to the destination nodes
s, (q, s) ∈ T . Then, if xqs

e is used to denote the part of the traffic with respect to the
origin-destination pair (O-D pair in short) (q, s) ∈ T using the street e = (i, j) ∈ E ,
the problem of computing the system optimum for the traffic can be modeled as a
multicommodity flow problem (Ahuja et al. [1]):

∑

(q,s)∈T

∑

e∈E

cexqs
e −→ min (1.13)

xe +
∑

(q,s)∈T

xqs
e = ue ∀e ∈ E (1.14)

∑

e∈O( j)

xqs
e −

∑

e∈I ( j)

xqs
e =

⎧
⎨

⎩

dqs, j = q
0, j ∈ V \ {q, s}
−dqs, j = s

∀(q, s) ∈ T (1.15)

xe, xqs
e ≥ 0 ∀(q, s) ∈ T,∀e ∈ E . (1.16)

Here O( j) and I ( j) denote the set of arcs e having the node j as tail or as head,
respectively, and xe is a slack variable for arc e, x is used to abbreviate all the lower
level variables (including slack variables).

Now, assume that the cost for passing a street does also depend on toll costs ct
e

which are added to the cost ce for passing a street. Then, the objective function (1.13)
is changed to
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∑

(q,s)∈T

∑

e∈E

(ce + ct
e)xqs

e −→ min. (1.17)

Let Ψ (ct ) denote the set of optimal solutions of the problem of minimizing the
function (1.17) subject to (1.14)–(1.16), then the problem of computing best toll
costs is

f (ct , x) → min s.t. x ∈ Ψ (ct ), ct ∈ C. (1.18)

Here, C is a set of admissible toll costs and the objective function f (ct , x) can be
used to express different aims, as e.g.:

1. Maximizing the revenue. In this case it makes sense to assume that, for each
origin-destination pair (q, s) ∈ T there is one (directed) path from q to s in the
graph which is free of tolls (Didi-Biha et al. [88] and other references),

2. Reducing traffic in ecologically exposed areas (Dempe et al. [58]) or
3. Forcing truck drivers to use trains from one loading station to another one (Wagner

[310]).

1.5.3 Optimal Operation Control of a Virtual Power Plant

Müller and Rehkopf investigated in the paper [247] the optimal control of a vir-
tual power plant. This power plant consists of a number of decentralized micro-
cogeneration units located in the residential houses of their owners and use natural
gas to produce heat and electricity. This is a very efficient possibility for heat and
energy supply. Moreover, the micro-cogeneration units can produce much more elec-
tricity than used in the houses and the superfluous electricity is injected into the local
electricity grid. For that, the residents get a compensation helping them to cover
the costs of the micro-cogeneration units. To realize this, the decentralized micro-
cogeneration units are joined into a virtual power plant (VP) which collects the
superfluous electricity from the decentralized suppliers and sells it on the electricity
market. For the VP, which is a profit maximizing unit, it is sensible to sell the elec-
tricity to the market in time periods when the revenue on the market is high. Hence,
the owner of the VP wants to ask the decentralized suppliers to inject power into the
system when the national demand for electricity is large. For doing this he can apply
ideas from principal-agent theory establishing an incentive system to motivate the
suppliers to produce and inject power into the grid in the desired time periods. In this
sense, the owners of the decentralized units are the followers (agents) and the owner
of the VP is the leader (principal).

To derive a mathematical model for the VP consider the owners of the micro-
cogeneration units first. It is costly to switch the units on implying that it makes
sense to restrict the number of time units when the system is switched on. This and
failure probability imply that a producing unit should keep working for a minimum
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time length and the time the system is switched off is also bounded from below after
turning it off. To abbreviate these and perhaps other restrictions for the decentralized
systems (which are in fact linear inequalities), we use the system Ay ≤ b.

Under these conditions, the owner of the decentralized systems has to minimize
the costs for power and heat generation depending on the costs of the used natural
gas, the expenses for switching on the unit and the prices for buying and selling
power. Let this function be abbreviated as f (y).

Now, assume that the owners of the decentralized micro-cogeneration units sell
their superfluous electricity to the VP which establishes an incentive system to control
time and amount of the injected power. Let z denote the premium payed for the power
supply. This value is, of course, bounded from below by some values, depending
on the expenses of the decentralized units resulting from switching them on and
from additional costs of natural gas. Moreover, since the costs for power and heat
generation do also depend on the premium payed, the owner of the decentralized units
now minimizes a function f̃ (y, z) subject to the constraints Ay ≤ b and some (linear)
conditions relating the received bonuses to the working times of the power units. Let
Ψ (z) denote the set of solutions of the owners of the decentralized units (production
periods of the units, delivered amount of power) depending on the premium z.

Then, the upper level problem of the VP consists of maximizing the revenue from
the electricity market for the power supply minus the bonuses payed to the subunits.
This function is maximized subject to restrictions from the above conditions that the
bonus payed is bounded by some unit costs in the lower level.

1.5.4 Spot Electricity Market with Transmission Losses

In the paper Aussel et al. [5] deregulated spot electricity markets are investigated.
This problem is modeled as a generalized Nash equilibrium problem, where each
player solves a bilevel optimization problem. To formulate the problem assume that
a graph G = G(V, E) is given where each agent (or player) is located at one of the
nodes i ∈ V . The arcs E are the electricity lines. The demand Di at each node is
supposed to be known and also that the real cost for generating qi units of electricity
at node i equals Ai qi + Bi q2

i .
Now, assume that there is an independent system operator (ISO) in the electricity

network who is responsible for the trade of electricity. Moreover, each agent bids his
cost bi q2

i + ai qi of producing qi units of electricity and his demand to the ISO, who
distributes the electricity between the agents. The goal of the ISO is to minimize the
total bid costs subject to satisfaction of the demand of the agents. Assume that Li j t2

i j
are the thermal losses along (i, j) ∈ E which are covered equally between agents at
nodes i and j if ti j is the amount of electricity delivered along (i, j) ∈ E . Then, the
problem of the ISO reads as
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|V |∑

i=1

(
bi q2

i + ai qi
) → min

q,t

qi ≥ 0, i ∈ V
qi − ∑

k:(i,k)∈E

(
tik + 0.5Lik t2

ik

) + ∑

k:(k,i)∈E

(
tki − 0.5Lki t2

ki

) ≥ Di , i ∈ V

ti j ≥ 0, (i, j) ∈ E .

Let Q(a, b) denote the set of optimal solutions of this problem depending on the bid
vectors announced by the producers. Then, the agents intend to maximize their profit
which equals the difference between the real and the bid function for the production
subject to the decision of the ISO. This leads to the following problem:

(
bi q

2
i + ai qi

)
−

(
Bi q

2
i + Ai qi

)
→ max

ai ,bi ,q,t

Ai ≤ ai ≤ Ai

Bi ≤ bi ≤ Bi

(q, t) ∈ Q(a, b).

This is a bilevel optimization problem with multiple leaders where the leaders act
according to a Nash equilibrium.

1.5.5 Discrimination Between Sets

In many situations as e.g. in robot control, character and speech recognition, in certain
finance problems as bank failure prediction and credit evaluation, in oil drilling, in
medical problems as for instance breast cancer diagnosis, methods for discriminating
between different sets are used for being able to find the correct decisions implied
by samples having certain characteristics (cf. DeSilets et al. [86], Hertz et al. [144],
Mangasarian [215, 216], Shavlik et al. [286], Simpson [289]). In doing so, a mapping
T0 is used representing these samples according to their characteristics as points
in the input space (usually the n-dimensional Euclidean space), see Mangasarian
[215]. Assume that this leads to a finite number of different points. Now, these
points are classified according to the correct decisions implied by their originals.
This classification can be considered as a second mapping T1 from the input space
into the output space given by the set of all possible decisions. This second mapping
introduces a partition of the input space into a certain number of disjoint subsets
such that all points in one and the same subset are mapped to the same decision (via
its inverse mapping). For being able to determine the correct decision implied by a
new sample we have to find that partition of the input space without knowing the
mapping T1.

Consider the typical case of discriminating between two disjoint subsets A and
B of the input space R

n [215]. Then, for approximating this partition, piecewise
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Fig. 1.4 Splitting of R2 into
three subsets each containing
points of one of the sets A
respectively B only

affine surfaces can be determined separating the sets A and B (cf. Fig. 1.4 where
the piecewise affine surfaces are given by the bold lines). For the computation of
these surfaces an algorithm is given by Mangasarian [215] which starts with the
computation of one hyperplane (say G1) separating the sets A and B as best as pos-
sible. Clearly, if both sets are separable, then a separating hyperplane is constructed.
In the other case, there are some misclassified points. Now, discarding all subsets
containing only points from one of the sets, the remaining subsets are partitioned
in the same way again, and so on. In Fig. 1.4 this means that after constructing the
hyperplane G1 the upper-left half-space is discarded and the lower-right half-space
is partitioned again (say by G2). At last, the lower-right corner is subdivided by G3.

This algorithm reduces this problem of discriminating between two sets to that
of finding a hyperplane separating two finite sets A and B of points as best as
possible. Mangasarian [216] formulated an optimization problem which selects the
desired hyperplane such that the number of misclassified points is minimized. For
describing that problem, let A and B be two matrices the rows of which are given
by the coordinates of the s and t points in the sets A and B, respectively. Then, a
separating hyperplane is determined by an n-dimensional vector w and a scalar γ as
H = {x ∈ R

n : 〈w, x〉 = γ } with the property that

Aw > γ es, Bw < γ et

provided that the convex hulls of the points in the sets A and B are disjoint. Up to
normalization, the above system is equivalent to

Aw − γ es − es ≥ 0, −Bw + γ et − et ≥ 0. (1.19)
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Then, a point inA belongs to the correct half-space if and only if the given inequality
in the corresponding line of the last system is satisfied. Hence, using the step function
a∗ and the plus function a+ which are component-wise given as

(a∗)i =
{

1 if ai > 0
0 if ai ≤ 0

, (a+)i =
{

ai if ai > 0
0 if ai ≤ 0

we obtain that the system (1.19) is equivalent to the equation

es�(−Aw + γ es + es)∗ + et�(Bw − γ et + et )∗ = 0. (1.20)

It is easy to see that the number of misclassified points is counted by the left-hand side
of (1.20). For a, c, d, r, u ∈ R

l , Mangasarian [216] characterized the step function
as follows:

r = a∗, u = a+ ⇐⇒
⎧
⎨

⎩

(
r
u

)
=

(
r − u + a
r + u − el

)

+
and r is minimal in case of uncertainty

.

Hence,
c = d+ ⇐⇒ c − d ≥ 0, c ≥ 0, c(c − d) = 0.

Using both relations, we can transform the problem of minimizing the number of
misclassified points or, equivalently, the minimization of the left-hand side function
in (1.20) into the following optimization problem, see Mangasarian [216]

es�r + et�s → min
w,γ,r,u,p,v

u + Aw − γ es − es ≥ 0 v − Bw + γ et − et ≥ 0
r ≥ 0 p ≥ 0

r�(u + Aw − γ es − es) = 0 p�(v − Bw + γ et − et ) ≥ 0
−r + es ≥ 0 −p + et ≥ 0

u ≥ 0 v ≥ 0
u�(−r + es) = 0 v�(−p + et ) = 0.

This problem is an optimization problem with linear complementarity constraints, a
generalized bilevel optimization problem. Mangasarian has shown in [215] that the
task of training neural networks can be modeled by a similar problem.

1.5.6 Support Vector Machines

Closely related to the topic of Sect. 1.5.5 are support vector machines (SVM) (Cortes
and Vapnik [45], Vapnik [302]), kernel methods (Shawe-Taylor and Christianini
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[287]). Especially in kernel methods, the learning task is to construct a linear function
that minimizes a convex loss function. The resulting optimization problem is a convex
one, but typically it depends on hyper-parameters which needs to be selected by the
users. To select good values for the hyper-parameters, cross validation is usually
applied. Thus, an estimate of the out-of-sample generalization error is minimized.
Bennett et al. [19, 20, 195] formulated an optimization problem for more efficiently
selecting encouraging values for the hyper-parameters.

For that, assume that l points {(x1, y1), (x2, y2), . . . , (xl , yl)} ⊂ R
n+1 (n, l ∈ N)

are given and investigate the regression problem of finding a function f : Rn �→ R

among a given class of functions that minimizes the regularized risk functional

R( f ) = P( f ) + C

l

l∑

i=1

L(yi , f (xi )).

Here, L is a loss function of the observed data and the model output, P is a reg-
ularization operator and C a regularization parameter. One possibility is to use the
ε-insensitive loss function

L(y, f (x)) = max{|y − f (x)| − ε, 0}

for some ε > 0. For functions f in the class of linear functions f (x) = w�x
the regularization operator P( f ) = ‖w‖2 can be used. The result of the regression
problem depends on the hyper-parameters C, ε which are not easy to be estimated
since one does not know beforehand how accurately the data /(xi , yi ) are given.

To formulate an optimization problem for computing encouraging values for the
hyper-parameters, Bennett et al. [19] partition the l data points into T distinct parti-
tions Ωt , t = 1, . . . , T such that

T⋃

t=1

Ωt = {1, . . . , l}, Ω l = {1, . . . , l} \ Ωt .

Then, the following bilevel optimization problem can be used to find values for the
hyper-parameters C, ε:

1

T

T∑

t=1

1

|Ωt |
∑

i∈Ωi

|x�
i wt − yi | → min

C,ε,λ,wt ,w0,w,w

ε, C, λ ≥ 0

w ≤ w (1.21)

wt ∈ Ψt (C, ε, λ, w0, w, w),
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where

Ψt (C, ε, λ, w0, w, w) = Argmin
w≤w≤w

⎧
⎨

⎩
C

∑

j∈Ω i

max{|x�
j w − y j | − ε, 0}

+ 1

2
‖w‖2 + λ

2
‖w − w0‖2

⎫
⎬

⎭
.



Chapter 2
Linear Bilevel Optimization Problem

2.1 The Model and First Properties

The linear bilevel optimization problem illustrated in Example 1.1 is the problem of
the following structure

min
x,y

{a�x + b�y : Ax + By ≤ c, (x, y) ∈ gph Ψ }, (2.1)

where Ψ (·) is the solution set mapping of the lower level problem

Ψ (x) := Argmin
y

{d�y : Cy ≤ x}. (2.2)

Here, A is a (p, n)-, B a (p, m)- and C a (n, m)-matrix and all variables and vec-
tors used are of appropriate dimensions. Note that we have used here the so-called
optimistic bilevel optimization problem, which is related to problem (1.4).

We find so-called connecting constraints Ax + By ≤ c in the upper level problem.
Validity of such constraints is beyond the choice of the leader and can be verified only
after the follower has selected his/her possibly not unique optimal solution. Espe-
cially in the case when Ψ (x) does not reduce to a singleton this can be difficult. For
investigating the bilevel programming problem in the case thatΨ (x) does not reduce
to a singleton, Ishizuka andAiyoshi [153] introduced their double penaltymethod. In
general, connecting constraintsmay imply that the feasible set of the bilevel program-
ming problem is disconnected. This situation is illustrated by the following example:

Example 2.1 (Mersha and Dempe [227]). Consider the problem

min
x,y

−x − 2y

subject to
2x − 3y ≥ −12

x + y ≤ 14

and y ∈ Argmin
y

{−y : −3x + y ≤ −3, 3x + y ≤ 30}.
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Fig. 2.1 The problem with
upper level connecting
constraints. The feasible set
is depicted with bold lines.
The point C is global
optimal solution, point A is a
local optimal solution

Fig. 2.2 The problem when
the upper level connecting
constraints are shifted into
the lower level problem. The
feasible set is depicted with
bold lines. The global
optimal solution is point B

The optimal solution for this problem is point C at (x, y) = (8, 6) (see Fig. 2.1).
But if we shift the two upper level constraints to the lower level we get point B at
(̃x, ỹ) = (6, 8) as an optimal solution (see Fig. 2.2). From this example it can easily
be noticed that if we shift constraints from the upper level to the lower one, the
optimal solution obtained prior to shifting is not optimal any more in general. Hence
ideas based on shifting constraints from one level to another will lead to a solution
which may not be a solution prior to shifting constraints. �

In Example 2.1 the optimal solution of the lower level problem was unique for all
x . If this is not the case, feasibility of a selection of the upper level decision maker
possibly depends on the selection of the follower. In the optimistic case this means
that the leader selects within the set of optimal solutions of the follower’s problem
one point which is at the same time feasible for the upper level connecting constraints
and gives the best objective function value for the upper level objective function.

As we can see in Example 2.1 the existence of connecting upper level constraints
will lead in general to disconnected feasible sets in the bilevel programming problem.
Therefore, solution algorithms will live in one of the connected components of the
feasible set (i.e. a sequence of feasible points which all belong to one of the connected
parts is computed) or they need to jump fromone of the connected parts of the feasible
set to another one. This would use then ideas of discrete optimization.
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In the following we will avoid this additional difficulty in assuming that the upper
level constraints will depend on the upper level variables only. Hence, we consider
the linear bilevel optimization problem

min
x,y

{a�x + b�y : Ax ≤ c, (x, y) ∈ gph Ψ }, (2.3)

where Ψ (·) is the solution set mapping of the lower level problem

Ψ (x) := Argmin
y

{d�y : Cy ≤ x}. (2.4)

In this problem, parametric linear optimization (see e.g. Nožička et al. [257]) can be
used to show that the graph of the mapping Ψ (·) equals the connected union of faces
of the set {(x, y)� : Cy ≤ x}.

Here, a set M is connected if it is not contained in the union of two disjoint
open sets M ⊂ M1 ∪ M2, M1, M2 are open and not empty, M1 ∩ M2 = ∅, having
nonempty intersection with both of these sets: M ∩ Mi 
= ∅, i = 1, 2.

Hence, the convex hull of this set is a convex polyhedron implying that problem
(2.3) is a linear optimization problem. Thus, its optimal solution can be found at a
vertex of the set

{(x, y)� : Cy ≤ x, Ax ≤ c}.

Theorem 2.1 If problem (2.3) has an optimal solution, at least one global optimal
solution occurs at a vertex of the set

{(x, y)� : Cy ≤ x, Ax ≤ c}.

This theorem can be found in the article [40] by Candler and Townsley, it is the
basis of many algorithms using (implicit or not complete) enumeration to compute
a global optimum of problem (2.3) (see e.g. Bard [10]).

This property is lost if problem (2.1) with upper level connecting constraints is
considered.

As it can be seen in Fig. 2.2, the bilevel optimization problem is a nonconvex
optimization problem, it has a feasible set which is not given by explicit constraints.
As a result, besides a global optimal solution bilevel optimization problems can have
local extrema and stationary solutions which are not local optimal solutions.

In Sect. 1.2, the bilevel optimization problem has been interpreted as an hierar-
chical game of two players, the leader and the follower where the leader is the first
to make a choice and the follower reacts optimally on the leader’s selection. It has
been shown in the article [11] by Bard and Falk that the solution strongly depends
on the order of play: the leader may take advantage from having the first selection.

The following theorem shows that the (linear) bilevel optimization problem is
N P-hard in the strong sense which implies that it is probably not possible to find a
polynomial algorithm for computing a global optimal solution of it. For more results
on complexity theory the interested reader is referred to the monograph [126] by
Garey and Johnson.

http://dx.doi.org/10.1007/978-3-662-45827-3_1
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Theorem 2.2 (Deng [85]) For any ε > 1 it is N P-hard to find a solution of
the linear bilevel optimization problem (2.3) with not more than ε times the global
optimal function value of this problem.

In the next example we will see that the bilevel programming problem depends on
constraints being not active in the lower level problem. Hence, a global optimal
solution of the bilevel problem can loose its optimality if an inequality is added
which is not active at the global minimum. This behavior may be a bit surprising
since it is not possible in problems on continuous (nonsmooth) optimization.

Example 2.2 (Macal and Hurter [210]) Consider the unconstrained bilevel opti-
mization problem

(x − 1)2 + (y − 1)2 → min
x,y

,

where y solves (2.5)

0.5y2 + 500y − 50xy → min
y

.

Since the lower level problem is unconstrained and convex we can replace it by its
necessary optimality conditions. Then, problem (2.5) becomes

min
x,y

{(x − 1)2 + (y − 1)2 : y − 50x + 500 = 0}.

Theunique optimal solution of this problem is (x∗, y∗) = (50102/5002, 4100/5002)
with an optimal objective function value of z∗ = 81, 33.

Now, add the constraint y ≥ 0 to the lower level problemand consider the problem

(x − 1)2 + (y − 1)2 → min
x,y

,

where y solves (2.6)

y ∈ Argmin
y

{0.5y2 + 500y − 50xy : y ≥ 0}.

The unique global optimal solution of problem (2.6) is (x, y) = (1, 0). This point is
not feasible for (2.5). Its objective function value in problem (2.6) is 1 showing that
(x∗, y∗) is a local optimum but not the global optimal solution of problem (2.6). �
In the next theorem we need the notion of an inner semicontinuous mapping.

Definition 2.1 (Mordukhovich [241]) A point-to-set mapping Γ : Rn ⇒ R
m is said

to be inner semicontinuous at (z, α) ∈ gph Γ provided that, for each sequence
{zk}∞k=1 converging to z there is a sequence {αk}∞k=1, αk ∈ Γ (zk) converging to α.

Theorem 2.3 (Dempe and Lohse [68]) Let (x, y) be a global optimal solution of
the problem (1.4). Let Ψ be inner semicontinuous at (x, y). Then, (x, y) is a local
optimal solution of the problem

min
x,y

{F(x, y) : x ∈ X, (x, y) ∈ gph Ψ 1} (2.7)

http://dx.doi.org/10.1007/978-3-662-45827-3_1
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with
Ψ 1(x) := Argmin

y
{ f (x, y) : g(x, y) ≤ 0, h(x, y) ≤ 0}

with h : R
n × R

m → R provided that h(x, y) < 0 and that the function h is
continuous.

Proof A point y ∈ Ψ (x) is an optimal solution of the lower level problem of (2.7) if
it is feasible for this problem, y ∈ Ψ 1(x). Hence, the point (x, y) is feasible for (2.7).

Assume that (x, y) is not a local optimum of problem (2.7). Then, there exists
a sequence {(xk, yk)}∞k=1 converging to (x, y) such that xk ∈ X, yk ∈ Ψ 1(xk) and
F(xk, yk) < F(x, y). Note that (xk, yk) is feasible for problem (1.4) for large k.

Since Ψ is inner semicontinuous at (x, y) there exists a sequence ŷk ∈ Ψ (xk)

converging to y. By continuity of the function h, h(xk, ŷk) < 0 and ŷk ∈ Ψ 1(xk).
Hence, f (xk, ŷk) = f (xk, yk),

Ψ 1(xk) = {y : g(x, y) ≤ 0, h(x, y) ≤ 0, f (xk, y) = f (xk, ŷk)}
⊆ {y : g(x, y) ≤ 0, f (xk, y) = f (xk, ŷk)} = Ψ (xk)

and, hence,

min
y

{F(xk, y) : y ∈ Ψ (xk)} ≤ min
y

{F(xk, y) : y ∈ Ψ 1(xk)} ≤ F(xk, yk)< F(x, y)

for sufficiently large k. This contradicts global optimality of (x, y). �
In the article Dempe and Lohse [68] an example is given which shows that the

restrictive assumption of inner semicontinuity of the solution set mapping of the
lower level problem is essential.

A similar result to Example 2.2 can be shown if one variable is added in the lower
level problem: a global optimal solution can loose global optimality.

Consider the bilevel programming problem

min
x,y

{F(x, y) : x ∈ X, (x, y) ∈ gph ΨL}, (2.8)

with a linear lower level problem parameterized in the objective function

ΨL(x) := Argmin
y

{x�y : Ay = b, y ≥ 0}, (2.9)

where X ⊆ R
n is a closed set,

Let (x, y)be a global optimal solution of problem (2.8).Now, addone newvariable
yn+1 to the lower level problem with objective function coefficient xn+1 and a new
column An+1 in the coefficient matrix of the lower level problem, i.e. replace the
lower level problem with

ΨN L(x) := Argmin
y

{x�y + xn+1yn+1 : Ay + An+1yn+1 = b, y, yn+1 ≥ 0}
(2.10)

http://dx.doi.org/10.1007/978-3-662-45827-3_1
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and investigate the problem

min
x,y

{F̃(x, xn+1, y, yn+1) : (x, xn+1) ∈ X̃ , (x, xn+1, y, yn+1) ∈ gph ΨN L}.
(2.11)

Here X̃ ⊆ R
n+1 and X̃ ∩ R

n × {0} = X .

Example 2.3 (Dempe and Lohse [68]) Consider the following bilevel programming
problem with the lower level problem

ΨL(x) := Argmin
y

{x1y1 + x2y2 : y1 + y2 ≤ 2, −y1 + y2 ≤ 0, y ≥ 0} (2.12)

and the upper level problem

min{(x1 − 0.5)2 + (x2 − 0.5)2 − 3y1 − 3y2 : (x, y) ∈ gph ΨL}. (2.13)

Then, the uniqueglobal optimum is x = (0.5; 0.5), y = (1; 1)withoptimal objective
function value −6. Now, adding one variable to the lower level problem

ΨN L(x) := Argmin
y

{x1y1+ x2y2+ x3y3 : y1+ y2+ y3 ≤ 2, −y1+ y2 ≤ 0, y ≥ 0}
(2.14)

and investigating the bilevel optimization problem

min{(x1−0.5)2 + (x2 −0.5)2 + x23 −3y1 −3y2 −6y3 : (x, y) ∈ gph ΨN L} (2.15)

the point x = (0.5; 0.5; 0.5), y = (0; 0; 2) has objective function value −11.75.
Hence, global optimality of (x, y) is destroyed. But, the point ((x, 0), (y, 0)) remains
feasible and it is a strict local minimum. �

Theorem 2.4 (Dempe and Lohse [68]) Let (x, y) be a global optimal solution for
problem (2.8) and assume that the functions F, F̃ are concave, X, X̃ are polyhedra.
Let

x�
B B−1An+1 < 0 for each basic matrix B for y and x (2.16)

and (x, 0) be a local minimum of the problem

min{F̃((x, xn+1), (y, 0)) : (x, xn+1) ∈ X̃ , y ∈ ΨL(x)}.

Then, the point ((x, 0), (y, 0)) is a local optimal solution of problem (2.11).

Proof Assume that ((x, 0), (y, 0)) is not a local optimum. Then, there exists a
sequence ((xk, xk

n+1), (yk, yk
n+1)) converging to ((x, 0), (y, 0)) with

F((xk, xk
n+1), (yk, yk

n+1)) < F((x, 0), (y, 0)) for all k.
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Since ((xk, xk
n+1), (yk, yk

n+1)) is feasible for (2.11) and gph ΨN L equals the union
of faces of the set (see e.g. Dempe [52])

{(x, y) : x ∈ X̃ , Ay + An+1yn+1 = b, y, yn+1 ≥ 0},

then, since ((xk, xk
n+1), (yk, yk

n+1)) converges to ((x, 0), (y, 0)) there exists, without
loss of generality, one facet M of this set with ((xk, xk

n+1), (yk, yk
n+1)) ∈ M for all

k. Moreover, by upper semicontinuity of ΨN L(·), ((x, 0), (y, 0)) ∈ M . By Schrijver
[285] there exists c ∈ R

n+1 such that M equals the set of optimal solutions of the
problem

min{c�(y, yn+1)
� : Ay + An+1yn+1 = b, y, yn+1 ≥ 0}.

Since (y, 0) ∈ M there exists a basicmatrix for (y, 0) and c. Then, the assumptions of
the theorem imply that (x, 0) 
= c if xn+1 is a basic variable in (yk, yk

n+1) (since this
implies that c�

B B−1An+1−cn+1 = 0 by linear optimization). This implies that there is
an open neighborhood V of (x, 0) such thatΨN L(x, xn+1) ⊆ {(y, yn+1) : yn+1 = 0}
for (x, xn+1) ∈ V .

Hence, yk
n+1 = 0 for sufficiently large k.

By parametric linear optimization, ΨL(x) ⊆ ΨL(x) for x sufficiently close to x .
Hence, the assertion follows. �

Similar results are shown in the paper Dempe and Lohse [68] in the case when
the lower level problem is a right-hand side perturbed linear optimization problem.

2.2 Optimality Conditions

Consider the bilevel optimization problem

min
y,b,c

{F(y) : b ∈ B, c ∈ C , y ∈ Ψ (b, c)}, (2.17)

where
B = {b : Bb = b̃}, C = {Cc = c̃}

for some matrices B, C of appropriate dimension, c ∈ R
n, c̃ ∈ R

q and b ∈ R
m ,

b̃ ∈ R
p. Here, the function F : Rn → R depends only on the optimal solution of

the lower level problem. This makes the formulation of optimality conditions, which
can be verified in polynomial time, possible.

The mapping (b, c) �→ Ψ (b, c) is again the set of optimal solutions of a linear
optimization problem:

Ψ (b, c) = Argmin
y

{c�y : Ay = b, y ≥ 0}.
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We have ŷ ∈ Ψ (b, c) if and only if there is a vector ẑ such that (ŷ, ẑ) satisfies the
following system of equations and inequalities:

Ay = b, y ≥ 0,

A�z ≤ c,

y�(A�z − c) = 0.

Thus, the graph gph Ψ of the mapping Ψ equals the projection of the union of faces
of a certain polyhedron in R

n × R
m × R

m × R
n into the space R

n × R
m × R

m .
Hence, the tangent (Bouligand) cone

CM (̂u) :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

d : ∃{uk}∞k=1 ⊂ M , ∃ {tk}∞k=1 ⊂ R+

with lim
k→∞ tk = 0, lim

k→∞ uk = û, d = lim
k→∞

uk−û
tk

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

at a point (y, b, c) to the feasible set

M := {(y, b, c) : b ∈ B, c ∈ C , y ∈ Ψ (b, c)}

equals the union of convex polyhedra, too. Thus, to check local optimality of some
feasible point (y, b, c) ∈ M for problem (2.17) it is necessary to verify that there is no
direction of descent in any one of these convex polyhedra. Unfortunately, the number
of these polyhedra cannot be bounded by a polynomial in the number of variables.
This can be seen as a reason forN P-hardness of proving local optimality in general
bilevel optimization (see Hansen et al. [136] where an exact proof for this result is
given).

The following result can be found in the paper [67] by Dempe and Lohse. Let
for a moment B = {b} reduce to a singleton. Take an arbitrary vertex y of the set
{y : Ay = b, y ≥ 0}. Then, by parametric linear optimization, there exists ĉ such
that Ψ (b, c) = {y} for all c sufficiently close to ĉ, formally ∀ c ∈ U (̂c) for some
open neighborhood U (̂c) of ĉ. Hence, if U (̂c) ∩ C 
= ∅, there exists z satisfying
A�z ≤ c, y�(A�z − c) = 0 for some c ∈ U (̂c) ∩ C such that (y, z, b, c) is a local
optimal solution of the problem

F(y) → min
y,z,b,c

Ay = b, y ≥ 0,

A�z ≤ c,

y�(A�z − c) = 0 (2.18)

Bb = b̃,

Cc = c̃.
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Fig. 2.3 Definition of local
optimality c  x = const.

T
=xc =xc

c  x = const.T_

y
_

Theorem 2.5 (Dempe and Lohse [67]) Let B = {b}, {y} = Ψ (b, c) for all c in
an open neighborhood U (̂c) of ĉ with U (̂c) ∩ C 
= ∅. Then, (y, b, c, z) is a locally
optimal solution of (2.18) for some dual variables z and a certain c ∈ U (̂c) ∩ C .

Figure2.3 can be used to illustrate this fact. The points y satisfying the assumptions
of Theorem 2.5 are the vertices of the feasible set of the lower level problem given
by the dashed area in this figure. Theorem 2.5 implies that each vertex of the set
{y : Ay = b, y ≥ 0} is a local optimal solution of problem (2.17) which is not
desired. To circumvent this difficulty the definition of a local optimal solution is
restricted to variable y only:

Definition 2.2 (Dempe and Lohse [67]) A point y is a local optimal solution of
problem (2.17) if there exists an openneighborhoodU (y)of y such that F(y) ≥ F(y)

for all (y, b, c) with b ∈ B, c ∈ C and y ∈ U (y) ∩ Ψ (b, c).

To derive a necessary optimality condition for problem (2.17) according to this defi-
nition, a formula for a tangent cone to its feasible set depending only on y is needed.
Let (y, z, b, c) be a feasible solution for problem (2.18) and define the index sets

I (y) = {i : yi = 0},
I (z, c) = {i : (A�z − c)i > 0},
I (y) = {I (z, c) : A�z ≥ c, (A�z − c)i = 0 ∀i /∈ I (y), c ∈ C }
I 0(y) =

⋂

I∈I (y)

I.

Remark 2.1 If an index set I belongs to the family I (y) then I 0(y) ⊆ I ⊆ I (y).

This remark and also the following one are obvious consequences of the definitions
of the above sets.

Remark 2.2 We have j ∈ I (y)\ I 0(y), if and only if the system

(A�z − c)i = 0 ∀i /∈ I (y)

(A�z − c) j = 0

(A�z − c)i ≥ 0 ∀i ∈ I (y)\{ j}
Cc = c̃
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has a solution. Furthermore I 0(y) is an element of I (y) if and only if the system

(A�z − c)i = 0 ∀i /∈ I 0(y)

(A�z − c)i ≥ 0 ∀i ∈ I 0(y)

Cc = c̃

has a solution.

This result makes an efficient computation of the set I 0(y) possible.
Now, it turns out that the dual feasible solution z for the lower level problem as

well as the objective function coefficients c are not necessary for solving problem
(2.17), it is only necessary to consider possible index sets I ∈ I (y).

Theorem 2.6 (Dempe and Lohse [67]) y is a local optimum for (2.17) if and only
if y is a (global) optimal solution for all problems (AI ):

F(y) → min
y,b

Ay = b

y ≥ 0

yi = 0 ∀i ∈ I

Bb = b̃

with I ∈ I (y).

Proof Let y be a local optimal solution of (2.17) and assume that there is a set
I ∈ I (y) with y being not optimal for (AI ). Then there exists a sequence {yk}∞k=1
of feasible solutions of (AI ) with limk→∞ yk = y and F(yk) < F(y) for all k.
Consequently y can not be local optimal for (2.17) since I ∈ I (y) implies that all
yk are also feasible for (2.18).

Conversely, let y be an optimal solution for all problems (AI ) and assume that
there is a sequence {yk}∞k=1 of feasible points of (2.17) with limk→∞ yk = y and
F(yk) < F(y) for all k. For k sufficiently large the elements of this sequence satisfy
the condition yk

i > 0 for all i /∈ I (y) and due to the feasibility of yk for (2.17) there
are sets I ∈ I (y) such that yk is feasible for problem (AI ). BecauseI (y) consists
only of a finite number of sets, there is a subsequence {yk j } j∈N where yk j are all
feasible for a fixed problem (AI ). So we get a contradiction to the optimality of y
for this problem (AI ). �

Using the set I as a new variable in problem (AI ), the following problem is
obtained which is equivalent to problem (2.18) by Theorem 2.6:

F(y) → min
y,b,I

Ay = b
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y ≥ 0 (2.19)

yi = 0 ∀i ∈ I

Bb = b̃

I ∈ I (y)

The following tangent cone can be used to express the feasible set of problem (AI )

near a feasible point y for a fixed set I ∈ I (y):

TI (y) = {d| ∃r : Ad = r, Br = 0, di ≥ 0, ∀i ∈ I (y) \ I, di = 0, ∀i ∈ I }

Using Theorem 2.6 a necessary optimality condition is derived:

Corollary 2.1 If y is a local optimal solution of problem (2.17), and F is direction-
ally differentiable then F ′(y; d) ≥ 0 for all d ∈ T (y) := ⋃

I∈I (y) TI (y).

Since d ∈ conv T (y) is equal to a convex linear combination of elements in T (y),
∇F(y)d < 0 for some d ∈ conv T (y) only if ∇F(y)d < 0 for a certain d ∈ T (y).
This leads to the necessary optimality condition

∇F(y)d ≥ 0 ∀ d ∈ conv T (y)

provided that the objective function F is differentiable.
Consider the relaxed problem to (2.19):

F(y) → min
y,b

Ay = b

yi ≥ 0 ∀i /∈ I 0(y) (2.20)

yi = 0 ∀i ∈ I 0(y)

b ∈ B

and the tangent cone

TR(y) = {d : Ad = r, Br = 0, di ≥ 0, i ∈ I (y)\ I 0(y), di = 0, i ∈ I 0(y)}

to the feasible set of this problem at the point y again relative to y only.
Due to I 0(y) ⊆ I for all I ∈ I (y0) we derive

conv T (y) = cone T (y) ⊆ TR(y), (2.21)

where cone S denotes the conical hull of the set S, i.e. the set of all linear combinations
of elements in S with nonnegative coefficients. Let spanS denote the set of all linear
combinations of elements in S.
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Definition 2.3 The point y is said to satisfy the full rank condition (FRC), if

span({Ai : i 
∈ I (y)}) = R
m, (2.22)

where Ai denotes the i th column of the matrix A.

Example 2.4 All non degenerated vertices of Ay = b, y ≥ 0 satisfy the full rank
condition.

This condition allows us now to establish equality between the cones above.

Theorem 2.7 (Dempe and Lohse [67]) Let (FRC) be satisfied at the point y. Then
equality holds in (2.21).

Proof Let d be an arbitrary element of TR(y), that means there is a r with Ad =
r , Br = 0, di ≥ 0, i ∈ I (y)\ I 0(y), di = 0, i ∈ I 0(y).Without loss of generality
assume I (y) = {1, 2, . . . , l}.

We consider the following linear systems (S1)

Ad = r

d1 = d1

di = 0, i ∈ I (y) \ {1}

and (S j )

Ad = 0

d j = d j

di = 0, i ∈ I (y) \ { j}

for j = 2, . . . , l. These systems have all feasible solutions since y satisfies the full
rank condition.

Let d1, . . . , dl be (arbitrary) solutions of the systems (S j ) and define the direction
d = ∑l

j=1 d j . Then, di = di for i ∈ I (y) as well as Ad = Ad = r .

If d = d we are done since d ∈ cone T (y) = conv T (y). Assume that d 
= d.
(Fig. 2.4).

Define d̂1 := d1+ d−d. Since d1 is feasible for (S1) and di = di for i = 1, . . . , k
as well as Ad = Ad = r we obtain d̂1

i = 0 for all i = 2, . . . , k and

Ad̂1 = A(d1 + d − d) = r + r − r = r .

Hence d̂1 is also a solution of (S1).

Thus, d̂1 +
l∑

j=2
d j = d − d +

l∑

j=1
d j = d.

Due to the definition of I and of the tangent cones T (y) and TR(y) the conclusion
TR(y) ⊆ T (y) follows. �
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Fig. 2.4 Illustration (taken
from Dempe and Lohse [67])
of the proof of Theorem 2.7

Due to Remark 2.2 at most n systems of linear (in-) equalities need to be
investigated to compute the index set I 0(y). Hence, by Theorem 2.7, verification of
local optimality of a feasible point of problem (2.17) is possible in polynomial time.

2.3 Solution Algorithms

2.3.1 Computation of a Local Optimal Solution

We consider the linear bilevel optimization problem (2.3), (2.4). y0 is an optimal
solution of the lower level problem iff there exists u such that

C�u = d, u ≤ 0, u�(Cy − x) = 0.

Let the rank of the matrix C be equal to m: r(C) = m. An optimal solution of
problem (2.4) can be found at a vertex of the feasible set, which means that there are
m linearly independent rows Ci , i = 1, . . . , m (without loss of generality, these are
the first m rows) of the matrix C such that

Ci y = xi , i = 1, . . . , m

and
Ci y ≥ xi , i = m + 1, . . . , q.

Then, if the first m rows of C compose a matrix D, N is build up of the last q − m
rows, x = (xD xN ) is accordingly decomposed, we obtain C = (D N )� and
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y = D�−1xD is a solution of problem (2.4). A solution u0 of the dual problem is
given by u = (u D uN )� with u D = D� −1d, uN = 0. Then,

u D ≤ 0, Dy = xD, N y ≤ xN , uN = 0, N y ≤ x .

For D with D� −1d ≤ 0 the set

RD = {x : Dy = xD, N y ≤ xN for some y ∈ R
m}

is the so-called region of stability for thematrix D. It consists of all parameter vectors
x for which an optimal solution of the primal problem (2.4) can be computed using
the matrix D.

For other values of x , the basicmatrix D consists of other rows ofC . This, together
with basic matrices for the upper level constraints Ax ≤ c can be used to describe an
algorithm enumerating all these basicmatrices to find a global optimum of the bilevel
optimization problem. For this, Theorem 2.1 is of course needed. Many algorithms
for solving the linear bilevel optimization problem suggested in the last century used
this approach (see e.g. Bard [10]; Candler and Townsley [40]; Bard and Falk [11]).

The idea of the following algorithm can be found in Dempe [49]:
Descent algorithm for the linear bilevel problem:
Input: Linear bilevel optimization problem (2.3).
Output: A local optimal solution.

Algorithm: Start Select an optimal basic solution (x1, y) of
the problem

min{a�x + b�y : Ax ≤ c, Cy ≤ x}.

Compute an optimal basic solution y1 of the problem
(2.4) for x = x1. Setk := 1.

Step 1 Select a basic matrix D for yk, compute the
region of stability RD and solve the problem

min
x

{a�x + b�y : x = (xD xN )�, y = D�−1xD, x ∈ RD}.

Let (̂x, D�−1 x̂D) be an optimal solution.
Step 2 Set xk+1 = x̂ and compute an optimal basic solution

yk+1 of the problem

min
y

{b�y : y ∈ Ψ (xk+1)}

Stop if the optimal solution has not changed:

(xk+1, yk+1) = (xk , yk).

Otherwise goto Step 1.
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This algorithm computes a local optimal solution since either one of the problems
in Steps 1 or 2 of the algorithm would lead to a better solution. For a rigorous proof,
the interested reader is referred to the original paper Dempe [49].

2.3.2 A Global Algorithm

Consider the linear bilevel optimization problem

min
x,y

{a�x + b�y : Ax ≤ c, (x, y) ∈ gph Ψ 1} (2.23)

with
Ψ 1(x) = Argmin

y
{x�y : By ≤ d} (2.24)

and the optimization problem

min
x,y

{a�x + b�y : Ax ≤ c, By ≤ d, x�y ≤ ϕ1(x)}, (2.25)

where
ϕ1(x) = min

y
{x�y : By ≤ d}

is the optimal value function of problem (2.24). Both problems (2.23) and (2.25) are
fully equivalent. It follows from parametric linear optimization (see e.g. Dempe and
Schreier [77] and Beer [15]) that the function ϕ(·) is an in general nondifferentiable,
concave, piecewise affine-linear and Lipschitz continuous function. It is equal to

ϕ1(x) = min{x�y1, x�y2, . . . , x�y p},

where {y1, y2, . . . , y p} is the set of vertices of the convex polyhedron {y : By ≤ d}.
Strictly speaking, formula (2.25) is correct only on the set of all x for which
|ϕ1(x)| ≤ ∞. If ϕ1(̂x) = x̂�yk , then yk ∈ ∂Cl (̂x) is an element of the general-
ized derivative in the sense of Clarke [see (3.10)]. Using the results from convex
analysis (see Clarke [42] and Rockafellar [272]) we have

ϕ1(x) ≤ ϕ1(̂x) + ŷ�(x − x̂) ∀ x, ∀ ŷ ∈ ∂clϕ1(̂x).

Hence,

{(x, y) : Ax ≤ c, By ≤ d, x�y ≤ ϕ1(x)}
⊆ {(x, y) : Ax ≤ c, By ≤ d, x�y ≤ ŷ�x} (2.26)

http://dx.doi.org/10.1007/978-3-662-45827-3_3
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for ŷ ∈ Ψ 1(̂x). This implies that the problem

min
x,y

{a�x + b�y : Ax ≤ c, By ≤ d, x�y ≤ ŷ�x} (2.27)

cannot have a worse objective function value than problem (2.25).

A solution algorithm for the linear bilevel optimization problem (2.23), (2.24)

Algorithm: Start Select x0 satisfying Ax0 ≤ c, compute y0 ∈ Ψ (x0).
Set k := 1 and Y := {y0}.

Step 1 Solve problem

min
x,y

{a�x + b�y : Ax ≤ c, By ≤ d, x�y ≤ ŷ�x ∀ ŷ ∈ Y } (2.28)

globally and let (xk, yk) be an optimal solution.
Step 2 If yk ∈ Ψ (xk), stop: (xk, yk) is a global optimal solu-
tion of problem (2.23), (2.24). Otherwise, set

Y := Y ∪ {ŷk}

where ŷk ∈ Ψ (xk) and go to Step 1.

Theorem 2.8 (Dempe and Franke [60])Let {(x, y) : Ax ≤ c, By ≤ d} be bounded.
The above algorithm computes a global optimal solution of the linear bilevel opti-
mization problem (2.23), (2.24).

Proof If the algorithm stops in Step 2, the last point (xk, yk) is feasible for the linear
bilevel optimization problem. Hence, due to (2.26) it is also globally optimal.

Let {(xk, yk)}∞k=1 be an infinite sequence computed by the algorithm. Since the
setY is increasing, more and more constraints are added to problem (2.28) implying
that the sequence of its optimal objective function values is nondecreasing. On the
other hand, it is bounded from above by e.g. a�x1 + b�b1. Hence, this sequence
converges to, say, v∗. Let, without loss of generality (x∗, y∗) be a limit point of the
sequence {xk, yk}∞k=1. Continuity of the function ϕ(·) leads to

lim
k→∞ ϕ(xk) = lim

k→∞ xk � ŷk = x∗ � ŷ∗,

where ŷ∗ is again without loss of generality a limit point of the sequence {ŷk}∞k=1.
Then, we have

xk �yk ≤ xk � ŷk−1

by the formulae in the algorithm. Hence, by convergence of the sequences, we derive

x∗ �y∗ ≤ ϕ(x∗) = x∗ � ŷ∗.

Consequently, the point (x∗, y∗) is feasible and, thus, also globally optimal. �
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It is clear that the algorithm can be implemented such that it stops after a finite
number of iterations if the feasible set of the lower level problem is compact. The
reason for this is that the feasible set has only a finite number of vertices which
correspond to the vertices of the generalized derivative of the function ϕ1(·).

One difficulty in realizing the above algorithm is that we need to solve the opti-
mization problem (2.28) globally in each iteration. This is a nonconvex optimization
problem and usually solution algorithms compute only stationary or local optimal
solutions for such problems. Hence, it is perhaps more suitable to try to compute a
local optimal solution of problem (2.23) respectively its equivalent problem (2.25).
Often this is related to the use of a sufficient optimality condition. Since (2.25) is
a nonsmooth optimization problem we can use a sufficient optimality condition of
first order demanding that the directional derivative of the objective function is not
negative on a suitable tangent cone to the feasible set.

Let MR be the feasible set of problem (2.28) for some set Y ⊆ {y : By ≤ d}.
Then, the Bouligand (or tangent) cone to MR at some point (x∗, y∗) reads as

CMR (x∗, y∗) = {d ∈ R
2n : ∃ {(xk, yk)}∞k=1 ⊆ MR, ∃{tk}∞k=1 ⊆ R+\{0}

satisfying lim
k→∞(xk, yk) = (x∗, y∗), lim

k→∞ tk = 0 and

d = lim
k→∞

1

tk
((xk, yk) − (x∗, y∗))}.

The local algorithm solving problem (2.23) is identical with the algorithm on the
previous page with the only distinction that problem (2.28) in Step 1 of the algorithm
is solved locally.

Theorem 2.9 (Dempe and Franke [60]) Let the set {(x, y) : Ax ≤ c, By ≤ d}
be nonempty and compact. Assume that there is γ > 0 such that (a� b�)d ≥ γ

for all d ∈ CMR (xk, yk) and all sufficiently large k. Then, all accumulation points
of the sequences computed using the local algorithm are locally optimal for prob-
lem (2.23).

Proof The existence of accumulation points as well as their feasibility for problem
(2.23) follow analogously to the proof of Theorem 2.8. Let

MB := {(x, y) : Ax ≤ c, By ≤ d, x�y ≤ ϕ(x)}

denote the feasible set of problem (2.23). Then, MB ⊆ MR and CMR is a Bouligand
cone to a convex set. Hence, for (x, y) ∈ MB sufficiently close to (xk, yk) we have
dk := ((x, y) − (xk, yk))/‖(x, y) − (xk, yk)‖ ∈ CMR (xk, yk) and (a� b�)dk ≥ γ

for sufficiently large k. The Bouligand cone to MB is defined analogously to the
Bouligand cone to MR .

Let (x, y) be an arbitrary accumulation point of the sequence {(xk, yk)}∞k=1 com-
puted by the local algorithm. Assume that (x, y) is not a local optimal
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solution. Then there exists a sequence {xk, yk}∞k=1 ⊂ MB converging to (x, y) with
a�xk + b�yk < a�x + b�y for all k. Then, by definition, without loss of generality

lim
k→∞

(xk, yk) − (x, y)

‖(xk, yk) − (x, y)‖ = d ∈ CMB (x, y) ⊆ CMR (x, y)

and (a� b�)d ≤ 0. On the other hand, d is a limit point of a sequence {dk}∞k=1 with
dk ∈ CMR (xk, yk) with (a� b�)dk ≥ γ for all k by assumption.

This contradicts the assumption, thus proving the Theorem. �

The following example is presented in Dempe and Franke [60] to illustrate the algo-
rithm.

Example 2.5 Consider the bilevel optimization problem

min
x,y

2x1 + x2 + 2y1 − y2

s.t. |x1| ≤ 1
−1 ≤ x2 ≤ −0.75
y ∈ Ψ (x) := Argmin

y
{x�y : −2y1 + y2 ≤ 0, y1 ≤ 2, 0 ≤ y2 ≤ 2}.

The concave optimal value function ϕ(x) of the lower level problem reads

ϕ(x) =
{
2x1 + 2x2 if x1 ∈ [−1, 0] , x2 ∈ [−1,−0.75]
x1 + 2x2 if x1 ∈ ( 0, 1 ] , x2 ∈ [−1,−0.75]

The values of the upper level objective function over the feasible set are

a�x + b�y =
{−2 + 2x1 + x2 if x1 ∈ [−1, 0] , x2 ∈ [−1,−0.75]
2x1 + x2 if x1 ∈ ( 0, 1 ] , x2 ∈ [−1,−0.75]

with the optimal solution at x = (−1,−1) and the optimal function value 5. For
Y ⊆ {y : By ≤ d}, the problem (2.28) is

minx,y 2x1 + x2 + 2y1 − y2
s.t. |x1| ≤ 1

−1 ≤ x2 ≤ −0.75
x�y ≤ min

z∈Y
x�z

−2y1 + y2 ≤ 0
y1 ≤ 2
0 ≤ y2 ≤ 2.
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Now, the above algorithm works as follows.
Start Y := {(0, 0)}, k := 1.
Step 1 The optimal solution of (2.28) is (x11 , x12 , y11 , y12) = (−1,−1, 2, 0).
Step 2 The lower level with (x11 , x12) = (−1,−1) leads to (z11, z12) = (2, 2) which is
added to Y . Go to Step 1.
Step 1 The optimal solution of (2.28) is (x21 , x22 , y21 , y22 ) = (−1,−1, 2, 2).
Step 2 The lower level with (x21 , x22 ) = (−1,−1) leads to (z21, z22) = (2, 2) which
coincides with the solution of Step 1, hence the algorithm terminates with the optimal
solution (x21 , x22 , y21 , y22 ) = (−1,−1, 2, 2). �



Chapter 3
Reduction of Bilevel Programming
to a Single Level Problem

3.1 Different Approaches

The usually used approach to solve the bilevel optimization problem (1.1), (1.4) or
to formulate (necessary or sufficient) optimality conditions, is to transform it into a
one-level optimization problem. There are at least the following three possibilities
to realize this:

Primal KKT transformation: The lower level problem can be replaced with its
necessary (and sufficient) optimality conditions. This can only be done if the
lower level problem is (for a fixed value of the parameter x) convex. Otherwise,
the feasible set of the bilevel optimization problem is enlarged by local optimal
solutions and stationary points of the lower level problem. In this case, the global
optimal solution of the bilevel problem is in general not a stationary solution for
the resulting problem (Mirrlees [232]). Let

Y (x) := {y : g(x, y) ≤ 0}

denote the feasible set of the lower level problem and assume that Y (x) is a
convex set, y �→ f (x, y) is a convex function, and T ⊆ R

m is a convex set. Then,
y ∈ Ψ (x) if and only if

0 ∈ ∂y f (x, y)+ NY (x)∩T (y).

Here, ∂y f (x, y) is the subdifferential of the convex function y �→ f (x, y) and
NY (x)∩T (y) is the normal cone of convex analysis to the set Y (x)∩ T at the point
y ∈ Y (x) ∩ T :

NY (x)∩T (y) := {d ∈ R
m : d�(z − y) ≤ 0 ∀ z ∈ Y (x) ∩ T }.

Note that NY (x)∩T (y) = ∅ for y �∈ Y (x) ∩ T .
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The problem (1.4) is then equivalent to

min{F(x, y) : G(x) ≤ 0, 0 ∈ ∂y f (x, y)+ NY (x)∩T (y), x ∈ X}, (3.1)

see Dempe and Zemkoho [80]. This is the primal Karush-Kuhn-Tucker reformu-
lation (primal KKT reformulation).
Problem (3.1) is fully equivalent to the bilevel optimization problem (1.1), (1.4)
both if global and local optimal solutions of the problems are considered.

Classical KKT transformation: If T = R
m , and Y (x) = {y : g(x, y) ≤ 0}, the

function y �→ g(x, y) is convex for each fixed x , and a regularity condition, as e.g.

Slater’s condition: There exists ŷ with g(x, ŷ) < 0,

is fulfilled, then y ∈ Ψ (x) if and only if the Karush-Kuhn-Tucker conditions
(KKT conditions) are satisfied:

0 ∈ ∂y f (x, y)+ λ�∂y g(x, y), λ ≥ 0, λ�g(x, y) = 0.

This leads to a second reformulation of the bilevel optimization problem:

F(x, y) → min

G(x) ≤ 0

0 ∈ ∂y f (x, y)+ λ�∂y g(x, y) (3.2)

λ ≥ 0, g(x, y) ≤ 0, λ�g(x, y) = 0

x ∈ X.

This is the reformulation most often used. Problem (3.2) is a (nonsmooth) math-
ematical program with complementarity constraints (or better with a generalized
equation constraint). It can be called the classical KKT transformation. Using the
relation

NY (x)(y) = {d ∈ R
m : ∃ λ ≥ 0, λ�g(x, y) = 0, d = λ�∂y g(x, y)}

which is valid if Slater’s condition is satisfied at x (see e.g. Dhara and Dutta [87]),
problem (3.1) reduces to (3.2).
The introduction of additional variables λ causes that problems (3.2) and (1.1),
(1.4) are no longer fully equivalent. Clearly, each global optimal solution (x, y, λ)

of problem (3.2) is related to a global optimal solution (x, y) of (1.1), (1.4). Also,
a local optimal solution (x, y) of (1.1), (1.4) is related to a local optimal solution
(x, y, λ) for each

λ ∈ Λ(x, y) := {λ ≥ 0 : λ�g(x, y) = 0, 0 ∈ ∂y f (x, y)+ λ�∂y g(x, y)},

provided that Slater’s condition is satisfied. With respect to the opposite direction
we have
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Theorem 3.1 (Dempe and Dutta [55]) Let the lower level problem (1.1) be a
convex optimization problem and assume that Slater’s condition is satisfied for
all x ∈ X with Ψ (x) �= ∅. A feasible point (x, y) of problem (1.4) is a local
optimal solution of this problem iff (x, y, λ) is a local optimal solution of problem
(3.2) for each λ ∈ Λ(x, y).

Proof If (x, y) is a local optimal solution of problem (1.4) then, since the
Karush-Kuhn-Tucker conditions are sufficient and necessary optimality condi-
tions and the objective function of (3.2) does not depend on the Lagrange multi-
plier the point (x, y, λ) is a local optimum of (1.4) for all λ ∈ Λ(x, y).
Let (x, y, λ) be a local optimal solution of (3.2) for all λ ∈ Λ(x, y) and
assume that (x, y) is not a local optimal solution of (1.4). Then, there exists a
sequence {(xk, yk)}∞k=1 of feasible points for (1.4) converging to (x, y) such that
F(xk, yk) < F(x, y) for all k. Since the KKT conditions are necessary optimal-
ity conditions there exists a sequence {λk}∞k=1 with λk ∈ Λ(xk, yk). Obviously,
(xk, yk, λk) is feasible for (3.2) for all k. Since the mapping (x, y) �→ Λ(x, y) is
upper semicontinuous (Robinson [270]), the sequence {λk} has an accumulation
point λ̂ ∈ Λ(x, y) and (x, y, λ̂) is feasible for (3.2). This violates the assumption.
Hence, the theorem is proved. �

The following example shows that it is essential to consider all Lagrange
multipliers:

Example 3.1 (Dempe and Dutta [55]) Consider the linear lower level problem

min
y
{−y : x + y ≤ 1, −x + y ≤ 1} (3.3)

having the unique optimal solution y(x) and the set Λ(x, y) of Lagrange
multipliers

y(x) =
{

x + 1 if x ≤ 0
−x + 1 if x ≥ 0

, Λ(x, y) =
⎧
⎨

⎩

{(1, 0)} if x > 0
{(0, 1)} if x < 0

conv {(1, 0), (0, 1)} if x = 0

where conv A denotes the convex hull of the set A. This example is illustrated in
Fig. 3.1.
The bilevel optimization problem

min{(x − 1)2 + (y − 1)2 : (x, y) ∈ gph Ψ } (3.4)

has the unique optimal solution (x, y) = (0.5, 0.5) and no local optimal solutions.
The points (x, y, λ1, λ2) = (0.5, 0.5, 1, 0) and (x0, y0, λ0

1, λ
0
2) = (0, 1, 0, 1) are

global or local optimal solutions, resp., of problem (3.2). To see that the point
(x0, y0, λ0

1, λ
0
2) = (0, 1, 0, 1) is locally optimal remark that in a not too large

open neighborhood V of this point we have λ2 > 0 implying that the second

http://dx.doi.org/10.1007/978-3-662-45827-3_1
http://dx.doi.org/10.1007/978-3-662-45827-3_1
http://dx.doi.org/10.1007/978-3-662-45827-3_1
http://dx.doi.org/10.1007/978-3-662-45827-3_1
http://dx.doi.org/10.1007/978-3-662-45827-3_1
http://dx.doi.org/10.1007/978-3-662-45827-3_1
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Fig. 3.1 The considered stationary solution in Example 3.1

constraint in problem (3.3) is active, i.e. y = x + 1 which by feasibility implies
x ≤ 0. Substituting this into the upper level objective function gives

(x − 1)2 + (y − 1)2 = (x − 1)2 + x2 ≥ 1

for each feasible point of the mathematical program with equilibrium constraints
corresponding to the bilevel problem (3.4) in V . Together with F(0, 1) = 1 we
derive that (x0, y0, λ0

1, λ
0
2) is indeed a local optimum of the mathematical program

with equilibrium constraints corresponding to (3.4). �

If the upper level objective function is replaced with a linear function it can also
be shown that a local optimal solution of the MPEC corresponding to a linear
bilevel optimization problem needs not to be related to a local optimum of the
original problem.
The result in Theorem 3.1 is not correct if Slater’s conditions is violated at some
points, see Dempe and Dutta [55].

Example 3.2 Consider the convex lower level problem

min{y1 : y2
1 − y2 ≤ x, y2

1 + y2 ≤ 0} (3.5)

Then, for x = 0, Slater’s condition is violated, y = 0 is the only feasible point
for x = 0. The optimal solution for x ≥ 0 is

y(x) =
{

(0, 0)� for x = 0
(−√x/2,−x/2

)� for x > 0
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The Lagrange multiplier is λ(x) with λ1(x) = λ2(x) = 1
4
√

x/2
for x > 0. For

x = 0, the problem is not regular and the Karush-Kuhn-Tucker conditions are not
satisfied.
Let us consider the bilevel optimization problem

min{x : x ≥ 0, y ∈ Ψ (x)} (3.6)

where Ψ (x) is the solution set mapping of problem (3.5).
Then, the unique (global) optimal solution of the bilevel optimization problem
(3.6) is x = 0, y = 0 and there do not exist local optimal solutions different from
the global solution.
Consider the corresponding MPEC. Then, (x, y(x), λ(x)) is feasible for the
MPEC for x > 0 and the objective function value converges to zero for x → 0.
However, an optimal solution of this problem does not exist, since for x = 0 the
only optimal solution of the lower level problem is y = 0 and there does not exist
a corresponding feasible solution of the MPEC.
Note that this example can be used to show that the MPEC need not to have any
global optimal solution even if its feasible set is not empty and bounded. �

The next result shows, that under a mild assumption the assertion in Theorem 3.1
is true iff (x, y) is globally optimal for problem (1.4).

Theorem 3.2 (Dempe and Dutta [55]) Let (x, y, λ) be a global optimal solu-
tion of problem (3.2), assume that the functions y �→ f (x, y), y �→ gi (x, y),

i = 1, . . . , p are convex and that Slater’s constraint qualification is satisfied for
the lower level problem (1.1) for each x ∈ X. Then, (x, y) is a global optimal
solution of the bilevel optimization problem.

The main part of the proof in Dempe and Dutta [55] is based on independence of
the optimal function value on the vector λ ∈ Λ(x, y).
The following example is borrowed from Dempe and Dutta [55]:

Example 3.3 Consider the lower level problem

ΨL(x) := Argmin
y,z

{−y − z : x + y ≤ 1, −x + y ≤ 1, 0 ≤ z ≤ 1}

and the bilevel optimization problem

min{0.5x − y + 3z : (y, z) ∈ ΨL(x)}.

Then, we derive ΨL(x) = {(y(x), z(x)) : z(x) = 1, x ∈ R} with

y(x) =
{

1− x if x ≥ 0
1+ x if x ≤ 0.

http://dx.doi.org/10.1007/978-3-662-45827-3_1
http://dx.doi.org/10.1007/978-3-662-45827-3_1
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Substituting this solution into the upper level objective function we obtain

0.5x − y(x)+ 3z(x) =
{

0.5x − 1+ x + 3 = 2+ 1.5x ≥ 2 if x ≥ 0
0.5x − 1− x + 3 = 2− 0.5x ≥ 2 if x ≤ 0.

Hence, (x, y, z) = (0, 1, 1) is the global (and unique local) optimal solution of
the problem. At this point, three constraints in the lower level problem are active
and the linear independence constraint qualification is violated.
Note that small smooth perturbations of the data of both the lower and the upper
level problems will have no impact on this property. To see this, consider e.g. the
case when the right-hand side of the first constraint x + y ≤ 1 in the follower’s
problem is perturbed and the new lower level problem reads as follows:

ΨL(x) := Argmin
y,z

{−y − z : x + y ≤ 1+ α, −x + y ≤ 1, 0 ≤ z ≤ 1}.

Then, the optimal solution of the lower level problem becomes z = 1 and

y(x) =
{

1− x + α if x ≥ 0.5α

1+ x if x ≤ 0.5α.

Substituting this solution into the upper level objective function gives

0.5x − y(x)+ 3z(x) = 0.5x − 1+ x − α + 3 = 2+ 1.5x − α ≥ 2− α/4

if x ≥ 0.5α and

0.5x − y(x)+ 3z(x) = 0.5x − 1− x + 3 = 2− 0.5x ≥ 2− α/4

if x ≤ 0.5α. The optimal objective function value is then 2 − α/4 with optimal
solution (x, y, z) = (α/2, 1 + α/2, 1) and again three constraints of the lower
level problem are active.
The other perturbations can be treated analogously. �

Generic properties of bilevel optimization problems and mathematical programs
with equilibrium constraints can be found in the papers Allende and Still [2],
Jongen et al. [158], Jongen and Shikhman [159], Jongen et al. [160].
Due to its importance with respect to solution algorithms for bilevel optimization
problems two main observations should be repeated:

1. Solution algorithms for mathematical programs with equilibrium constraints
compute stationary points as e.g. C-stationary or M-stationary points (see
page 64). Under additional assumptions these points are local minima of the
MPEC. Due to Theorem 3.1 such a solution needs not to be related to a local
optimum of the bilevel optimization problem if the Lagrangian multiplier of
the lower level problem is not unique.
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2. The last example shows that the linear independence constraint qualification
is not generically satisfied in the lower level problem at the (global) optimal
solution of the bilevel optimization problem. Hence, the Lagrange multi-
plier for the lower level problem needs not to be unique in general. This
is in general not related to the MPEC-LICQ defined on page 68. This is a
bit surprising since (LICQ) is generically satisfied at optimal solutions of
smooth optimization problems.

Optimal value transformation: Recall the definition of the optimal value func-
tion ϕ(x) on page 2. Then, a third reformulation is

F(x, y) → min

G(x) ≤ 0

f (x, y) ≤ ϕ(x) (3.7)

g(x, y) ≤ 0, y ∈ T,

x ∈ X.

This, again is a nonsmooth optimization problem since the optimal value func-
tion is in general not differentiable, even if all the constraint functions and the
objective function in the lower level problem are smooth. We call this the optimal
value transformation. Problem (3.7) is again fully equivalent to problem (1.4).

3.2 Parametric Optimization Problems

Dependence of optimal solutions and of the optimal function value of optimization
problems on perturbation of the functions describing it is an important issue. We will
need results of this type at different places.

Consider an optimization problem

min
y
{ f (x, y) : g(x, y) ≤ 0}, (3.8)

where f : Rn × R
m → R, g : Rn × R

m → R
p are sufficiently smooth functions

and let
Y (x) := {y : g(x, y) ≤ 0}

denote the feasible set mapping,

ϕ(x) := min
y
{ f (x, y) : g(x, y) ≤ 0}

be the optimal value function, and

Ψ (x) := {y ∈ Y (x) : f (x, y) = ϕ(x)}
be the solution set mapping.

http://dx.doi.org/10.1007/978-3-662-45827-3_1
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Note that the investigation of stability and sensitivity properties for optimization
problems can be done for more general problems as for instance in the monograph
Guddat et al. [133]. For the investigation of bilevel optimization problems it is suf-
ficient to investigate problem (3.8).

Definition 3.1 A point-to-set mapping Γ : Rn ⇒ R
m (mapping points x ∈ R

n to
subsets in R

m) is called upper semicontinuous at a point x0 ∈ R
n if, for each open

set V ⊇ Γ (x0) there is an open set U � x0 with Γ (x) ⊆ V for all x ∈ U.

Γ is called lower semicontinuous at x0, if for each open set V with Γ (x0)∩V �= ∅
there is an open set U � x0 such that Γ (x) ∩ V �= ∅ for all x ∈ U.

A slightly weaker condition than lower semicontinuity is inner semicontinuity.

Definition 3.2 (Mordukhovich [241]) A point-to-set mapping Γ : Rn ⇒ R
m is said

to be inner semicompact at z if, for each sequence {zk}∞k=1 converging to z there is a
sequence {αk}∞k=1, αk ∈ Γ (zk) that contains a convergent subsequence. It is called
inner semicontinuous at (z, α) ∈ gph Γ provided that, for each sequence {zk}∞k=1
converging to z there is a sequence {αk}∞k=1, αk ∈ Γ (zk) converging to α.

Clearly, if {(x, y) : g(x, y) ≤ 0} is not empty and compact, then the mappings
x → Y (x) and x → Ψ (x) are inner semicompact.

In the following theorem, basic continuity results of the mapping of Lagrange
multipliers

Λ(x, y) = {λ ∈ R
p
+ : 0 = ∇y f (x, y)+ λ�∇y g(x, y), λ�g(x, y) = 0},

the set of stationary points

SP(x) = {y : Λ(x, y) �= ∅},

and the optimal value function are shown assuming that the Mangasarian-Fromovitz
constraint qualification (MFCQ) is satisfied for problem (3.8) at the point (x, y):

(MFCQ) There exists d ∈ R
m with ∇y gi (x, y)d < 0 for all i : gi (x, y) = 0.

Theorem 3.3 (Bank et al. [8]; Robinson [270]) Consider problem (3.8) at x = x,
let {y : g(x, y) ≤ 0} �= ∅ be compact, the functions f, gi be at least continuously
differentiable for all i , and let (MFCQ) be satisfied at all points y ∈ Y (x). Then,
the point-to-set mappings (x, y) �→ Λ(x, y) and x �→ SP(x) are upper semicon-
tinuous at (x, y) = (x, y) respectively x = x. Moreover, the function x �→ ϕ(x) is
continuous at x = x.

Proof 1. First we show that the set Λ(·, ·) is locally bounded at (x, y) with y ∈
SP(x)which means that there exist an open neighborhood W (x, y) and a compact
set K such that

Λ(x, y) ⊆ K ∀ (x, y) ∈ W (x, y).
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Arguing from a contradiction and assuming that there is a sequence {λk}∞k=1 with
λk ∈ Λ(xk, yk), (xk, yk) converging to (x, y) such that limk→∞ ‖λk‖ = ∞ it
is not difficult to show that {λk/‖λk‖}∞k=1 converges without less of generality
to a point κ such that

lim
k→∞

{
∇y f (xk, yk)

‖λk‖ + λk

‖λk‖
�
∇y g(xk, yk)

}

= κ�∇y g(x, y) = 0

and κ ≥ 0, ‖κ‖ = 1. Then, since by (MFCQ) there exists a direction d such
that ∇y gi (x, y)d < 0 for all i with gi (x, y) = 0 we derive

0 = κ�∇y g(x, y)d < 0

which is not possible.
2. Now, if {(xk, yk)}∞k=1 converges to (x, y) and λk ∈ Λ(xk, yk), due to local bound-

edness of Λ(·, ·) and continuity of all functions involved, the sequence {λk}∞k=1
has an accumulation point λ ∈ Λ(x, y). This also implies that y ∈ SP(x). Hence,
both Λ(·, ·) and SP(·) are upper semicontinuous at x = x .

3. Let {(xk, yk)}∞k=1 be a sequence converging to (x, y) with yk ∈ Y (xk) and
ϕ(xk) = f (xk, yk). Then, by upper semicontinuity of SP(·), y ∈ SP(x) ⊆ Y (x),
and we derive

ϕ(x) ≤ f (x, y) = lim inf
x→x

ϕ(x).

On the other hand, if y ∈ Y (x) with ϕ(x) = f (x, y) then, due to validity of the
(MFCQ) the mapping x �→ Y (x) is lower semicontinuous (see Bank et al. [8])
and, for each sequence {xk}∞k=1 there exists a sequence {yk}∞k=1 with yk ∈ Y (xk)

converging to y. This implies

ϕ(x) = f (x, y) = lim
k→∞ f (xk, yk) ≥ lim sup

x→x
ϕ(x).

Hence, the function ϕ(·) is continuous at x = x . �

Remark 3.1 Since Ψ (x) ⊆ SP(x), it is possible to show that the solution set mapping
is upper semicontinuous, too.

Remark 3.2 Let the function f be continuous. If the problem

min
y
{ f (x, y) : y ∈ Y (x)}

is considered at some parameter value x where the feasible set mapping x �→ Y (x)

is only assumed to be upper semicontinuous, then the optimal value function

ϕ(x) := min
y
{ f (x, y) : y ∈ Y (x)}
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is lower semicontinuous. On the other hand, if x �→ Y (x) is lower semicontinuous
at x , then, ϕ(·) is upper semicontinuous at x . The lower semicontinuity assumption
can be weakened to inner semicontinuity at the point (x, y) ∈ gph Ψ .

Theorem 3.3 with the subsequent remarks has important implications concerning
the existence of optimal solutions of the bilevel optimization problem. For this note
that upper semicontinuity of the solution set mapping implies that the set {(x, y) :
G(x) ≤ 0, (x, y) ∈ gph Ψ, x ∈ X} is closed provided that the function G is
continuous and the set X is closed.

Theorem 3.4 Let the functions F, G be continuous and the functions f, g be con-
tinuously differentiable. Assume that the set {(x, y) : G(x) ≤ 0, g(x, y) ≤ 0}
is not empty and bounded, X = R

n, and let (MFCQ) be satisfied at all points
(x, y) ∈ gph Y . Then, problem (1.4) has an optimal solution.

Problem (1.4) is a nonconvex optimization problem. Under the assumptions of
Theorem 3.4 it has a global optimal solution. But, in general, it can also have local
optima.

If the point-to-set mapping Ψ is upper semicontinuous, the functions F, G are
continuous and the set {x : G(x) ≤ 0} is not empty and compact then, according
to Remark 3.2, the optimistic bilevel optimization problem (1.3) has an optimal
solution.

For existence of an optimal solution of the pessimistic bilevel optimization prob-
lem (1.6) we need lower semicontinuity (or at least inner semicontinuity at an optimal
solution) of the point-to-set mapping Ψ (see Lucchetti et al. [207]).

Definition 3.3 (Klatte and Kummer [189]) A point-to-set mapping Γ : Rn ⇒ R
m

is called pseudo-Lipschitz continuous at (x, y) if there are open neighborhoods U
and V of x and y and a finite number LΓ such that, given (x, y) ∈ (U ×V )∩gph Γ

and x ′ ∈ U
there exists y′ ∈ Γ (x ′) such that ‖y − y′‖ ≤ LΓ ‖x − x ′‖.

In other references this property is called Lipschitz-like or Aubin property. It can
also be written as

ρ(y, Γ (x ′)) := min
z
{‖y − z‖ : z ∈ Γ (x ′)} ≤ LΓ ‖x − x ′‖ ∀ y ∈ Γ (x) ∩ V

for each x, x ′ ∈ U . Here, ρ(·, Γ (·)) denotes the distance function.
It has been shown in Robinson [268] that the mapping {y : g(y) ≤ x1, h(y) = x2}

with continuously differentiable functions g, h is pseudo-Lipschitz continuous if and
only if the Mangasarian-Fromovitz constraint qualification is satisfied. The idea of
linear transformations (Rockafellar [273]) can be used to apply this result to mappings
defined with nonlinearly perturbed functions. One method for this is the following:

Consider the set
Y (x) = {y : g(x, y) ≤ 0}

http://dx.doi.org/10.1007/978-3-662-45827-3_1
http://dx.doi.org/10.1007/978-3-662-45827-3_1
http://dx.doi.org/10.1007/978-3-662-45827-3_1
http://dx.doi.org/10.1007/978-3-662-45827-3_1
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and relate it to the set

Ŷ (x) := {(y, z) : g(z, y) ≤ 0, z = x}.

Then, if the Mangasarian-Fromovitz constraint qualification is satisfied at y ∈ Y (x)

it is also satisfied at the point (z, y) ∈ Ŷ (x). Using the result of Robinson [268]
pseudo-Lipschitz continuity is derived for the mapping x �→ Ŷ (x) which then implies
pseudo-Lipschitz continuity for the mapping x �→ Y (x), too.

Theorem 3.5 (Klatte and Kummer [188]; Mordukhovich and Nam [244]) Consider
problem (1.1) at x = x with T = R

m, and let (MFCQ) be satisfied at every point
y ∈ Y (x), assume f, gi ∈ C1(Rn × R

m,R) for all i = 1, . . . , p and let {(x, y) :
g(x, y) ≤ 0} be nonempty and compact. Then, the function ϕ(·) is locally Lipschitz
continuous.

Proof Continuously differentiable functions are locally Lipschitz continuous, let
L f < ∞ be a Lipschitz constant for f . Take x, x ′ sufficiently close to x , y′ ∈
Ψ (x ′), y ∈ Ψ (x). Take y′′ ∈ Y (x ′) such that ‖y − y′′‖ ≤ LY ‖x − x ′‖ with finite
LY . Then, since f (x ′, y′) ≤ f (x ′, y′′) we have

ϕ(x ′)− ϕ(x) = f (x ′, y′)− f (x, y) ≤ f (x ′, y′′)− f (x, y) ≤
L f ‖(x ′, y′′)− (x, y)‖ ≤ L f (‖x − x ′‖ + ‖y − y′′‖) ≤

L f (1+ LY )‖x − x ′‖. �

Locally Lipschitz continuous functions have generalized derivatives and we will
need a formula for this in what follows.

Theorem 3.6 (Gauvin and Dubeau [127]) Consider problem (1.1) with T = R
m, let

the set {(x, y) : g(x, y) ≤ 0} be nonempty and compact, f, gi ∈ C1(Rn×R
m,R) for

all i = 1, . . . , p and assume that (MFCQ) is satisfied for x = x and all y ∈ Y (x).
Then, the function ϕ(·) is locally Lipschitz continuous at x and

∂Clϕ(x) ⊆ conv
⋃

y∈Ψ (x)

⋃

λ∈Λ(x,y)

∇x L(x, y, λ). (3.9)

Proof The function ϕ(·) is locally Lipschitz continuous by Theorem 3.5. By
Rademacher’s theorem (see e.g. Clarke [42])

∂Clϕ(x) = conv { lim
k→∞∇xϕ(xk) : lim

k→∞ xk = x,∇xϕ(xk) exists ∀k}. (3.10)

Using the upper Dini directional derivative

D+ϕ(x; r) := lim sup
t↓0

ϕ(x + tr)− ϕ(x)

t

http://dx.doi.org/10.1007/978-3-662-45827-3_1
http://dx.doi.org/10.1007/978-3-662-45827-3_1


52 3 Reduction of Bilevel Programming to a Single Level Problem

it can be shown (see e.g. Dempe [52, Theorem 4.15]) that

∇xϕ(xk)r = D+ϕ(xk; r) ≤ ∇x L(xk, yk, λk)r

for some yk ∈ Ψ (xk), λk ∈ Λ(xk, yk) provided that∇ϕ(xk) exists. By Theorem 3.3
the mappings x �→ Ψ (x) and (x, y) �→ Λ(x, y) are upper semicontinuous. For each
ζ ∈ ∂Clϕ(x) there exists y ∈ Ψ (x) and λ ∈ Λ(x, y) such that

ζr ≤ ∇x L(x, y, λ)r ≤ max{ηr : η ∈
⋃

y∈Ψ (x)

⋃

λ∈Λ(x,y)

∇x L(x, y, λ)}. (3.11)

Now, the result follows from the fact, that A ⊆ cl conv B ⊆ R
n if and only if

max{αr : α ∈ A} ⊆ max{βr : β ∈ B} ∀ r ∈ R
n,

Ψ (x) and Λ(x, y) are (locally) compact and, hence, the right-hand side set in (3.9)
is closed. �

Using the assumptions in Theorem 3.6, from Mordukhovich [242, Theorem 5.2]
it follows that

∂ Mϕ(x) ⊆
⋃

y∈Ψ (x)

⋃

λ∈Λ(x,y)

∇x L(x, y, λ).

3.3 Convex Quadratic Lower Level Problem

Vicente and Calamai investigate in [370] the bilevel optimization problem

F(x, y) → min
x,y

y ∈ Argmin
z

{qx (z) : Ax + By ≤ c} (3.12)

with F : Rn × R
m, qx (y) = 1

2 y�Qy + y�Rx + r�x , matrices A, B, Q, R and
vectors r of appropriate dimensions, c ∈ R

p. The matrix Q is assumed to symmetric
and positive definite. The lower level problem is in this case a strictly convex quadratic
optimization problem, its optimal solution exists and is unique whenever the feasible
set of this problem is not empty.

Denote ΨQ(x) = Argminz{qx (z) : Ax + By ≤ c}.
Let x , d ∈ R

n be given such that Y (x + td) := {y : A(x + td) + By ≤ c} �= ∅
for t > 0 sufficiently small. Then, since the objective function qx (·) is strictly
convex and quadratic, ΨQ(x + td) �= ∅ and the optimal solution is unique. Let
{y(x + td)} = ΨQ(x + td), y(x + td converges to y for t tending to zero. Since
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the constraints are linear, the Karush-Kuhn-Tucker conditions are necessary and
sufficient optimality conditions, i.e. there exist λ(x + td) ∈ Λ(x + td, y(x + td)).
Let λ(x + td) be a vertex of the set Λ(x + td, y(x + td)). λ(x + td) is a nonnegative
solution of the system of linear equations:

Qy(x + td)+ R(x + td)+ r + B�λ = 0, λ�(A(x + td)+ By(x + td)−c) = 0.

(3.13)

It follows that the rows Bi of the matrix B with λ(x + td)i > 0 are linearly inde-
pendent. Denote

I (x + td) := {i : λ(x + td)i > 0}.

By upper semicontinuity of the set of Lagrange multipliers Λ(·, ·), λ(x + td)

converges to a vertex λ0 ∈ Λ(x, y(x)) for t ↓ 0.
Let Î be the upper limit of the sets I (x + td):

Î := Î (x, d, λ0) = {i : ∃ {tk}∞k=1 ↓ 0 with λ(x + tkd)i > 0 ∀ k}. (3.14)

Clearly,
{i : λ0

i > 0} ⊆ Î ⊆ {i : (Ax + B y − c)i = 0}. (3.15)

Let BÎ be the matrix with rows Bi , i ∈ Î , of the matrix B and consider the
system

Qr + B�̂
I

γ = −Rd (3.16)

BÎ r = −AÎ d

Since the matrix (
Q B�̂

I
BÎ 0

)

is invertible, system (3.16) has a unique solution (r, γ ) and, hence, r equals the
directional derivative y′(x; d) of the solution function y(·) at x into direction d, see
Bigelow and Shapiro [22].

If some submatrix BI of B is used and the system (3.16) has a solution, this does
not need to be true since this system is not suitable to the direction. This means that
a wrong system of active constraints has been taken (see Theorem 3.10). A criterion
which can be used to verify if a solution of the system (3.16) equals (y′(x; d), γ ) for
some direction d is

Ai d + Bir ≤ 0 for i with Ai x + Bi y − ci = 0

and
γi ≥ 0 for i with λ0

i = 0.
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A careful investigation of the system (3.13) can be used to show that the solution
of the lower level problem in (3.12) is piecewise affine-linear. This implies that it is
a Lipschitz continuous function, its directional derivative

d �→ y′(x; d) = lim
t↓0

1

t
[y(x + td)− y(x)]

is also Lipschitz continuous.
Vicente and Calamai [307] call a direction (d, y′(x; d)) for which there exists

t > 0 such that (x + td, y(x)+ t y′(x; d)) ∈ gph ΨQ ∀ t ∈ [0, t] an induced region
direction. The set of all induced region directions is T (x, y = y(x)).

Let TÎ be the set of all pairs (d, y′(x; d)) computed by solving system (3.16) for
the index set of active constraints Î . This set is a convex cone. To find a formula
for the cone Tgph ΨQ (x, y) we use the union over all cones TÎ for sets Î satisfying
(3.15) and all λ ∈ Λ(x, y).

The number of cones used in this union is finite but can be arbitrarily large.
This result can now be used to derive necessary and sufficient optimality conditions.

Theorem 3.7 (Vicente and Calamai [307]) Consider the problem (3.12) and let the
function F be continuously differentiable. If (x, y) is a local optimal solution of this
problem, then

∇Fx (x, y)d +∇y F(x, y)r ≥ 0 ∀ (d, r) ∈ Tgph ΨQ (x, y).

If the assertion of this theorem is satisfied, the point (x, y) is called a stationary
solution.

Theorem 3.8 (Vicente and Calamai [307]) If F is a twice continuously differentiable
function, (x, y) is stationary and

(d r)∇2 F(x, y)

(
d�
r�
)

> 0 ∀ (d, r) ∈ Tgph ΨQ (x, y), ∇F(x, y)

(
d�
r�
)
= 0

then (x, y) is a strict local minimum of problem (3.12).

3.4 Unique Lower Level Optimal Solution

Assume throughout this section that T = R
m and that all the functions defining the

lower level problem are sufficiently smooth and convex with respect to the lower
level variables y. Then, we can use the notion of a strongly stable optimal solution of
problem (1.1) in the sense of Kojima [191] for which convexity is not necessary. But,
we use global optimal solutions in the lower level problem and without convexity
the global optimal solutions need not to be continuous mappings of the parameter
(Jongen and Weber [161]). Then, an optimal solution y∗ of problem (1.1) is called

http://dx.doi.org/10.1007/978-3-662-45827-3_1
http://dx.doi.org/10.1007/978-3-662-45827-3_1
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strongly stable at the parameter value x∗ provided there is an open neighborhood V
of x∗ such that problem (1.1) has a unique optimal solution y(x) for each x ∈ V with
y(x∗) = y∗ which is continuous at x∗. In this case, the bilevel optimization problem
(1.2) can be replaced with

min
x
{F (x) := F(x, y(x)) : G(x) ≤ 0, x ∈ X} (3.17)

locally around the point x∗. The objective function x �→ F(x, y(x)) of this problem
is only implicitly determined, in general not convex and not differentiable. Using
suitable assumptions it can be shown that this function is directionally differentiable
and locally Lipschitz continuous.

Here a function α : Rn → R is directionally differentiable at a point ẑ in direction
d provided the limit

α′(̂z; d) := lim
t↓0

1

t
[α(̂z + td)− α(̂z)]

exists and is finite. The function α is locally Lipschitz continuous at ẑ if there is an
open neighborhood V of ẑ and a number 0 ≤ L < ∞ such that

|α(z)− α(z′)| ≤ L‖z − z′‖ ∀ z, z′ ∈ V .

A subclass of directionally differentiable, locally Lipschitz continuous functions are
PC1-functions, which are the subject of the next subsection.

3.4.1 Piecewise Continuously Differentiable Functions

Definition 3.4 A function α : R
n �→ R

q is called PC1-function (or piecewise
continuously differentiable function) at ẑ if there are an open neighborhood V of
ẑ and a finite number of continuously differentiable functions αi : V �→ R

q , i =
1, . . . , k, such that α is continuous at ẑ and

α(z) ∈ {αi (z) : i = 1, . . . , k} ∀ z ∈ V .

Let the functions f, gi be sufficiently smooth. Recall that the Mangasarian-Fromovitz
constraint qualification (MFCQ) is satisfied for problem (1.1) at the point (x, y) if

(MFCQ) there exists d ∈ R
m with ∇y gi (x, y)d < 0 for all i : gi (x, y) = 0.

Clearly, the Mangasarian-Fromovitz constraint qualification is satisfied at any
point in the feasible set of a convex, differentiable optimization problem iff the
Slater’s condition is satisfied. Let

L(x, y, λ) = f (x, y)+ λ�g(x, y)

http://dx.doi.org/10.1007/978-3-662-45827-3_1
http://dx.doi.org/10.1007/978-3-662-45827-3_1
http://dx.doi.org/10.1007/978-3-662-45827-3_1
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denote the Lagrange function of problem (1.1) with T = R
m . The strong sufficient

optimality condition of second order (SSOSC) for problem (1.1) at the stationary
point (x, y) with Lagrange-multiplier

λ ∈ Λ(x, y) := {λ ≥ 0 : λ�g(x, y) = 0, ∇y L(x, y, λ) = 0}

reads as follows:

(SSOSC) For each direction d �= 0 with ∇gi (x, y)d = 0 for each i : λi > 0 we
have

d�∇2
yy L(x, y, λ)d > 0.

The last assumption we need here is the constant rank constraint qualification
(CRCQ):

(CRCQ) The constant rank constraint qualification (CRCQ) is satisfied at the
point (x, y) for the problem (1.1) if there exists an open neighborhood U of
(x, y) such that, for each subset I ⊆ {i : gi (x, y) = 0} the family of gradient
vectors {∇y gi (x, y) : i ∈ I } has constant rank on U .

Theorem 3.9 (Ralph and Dempe [265]) Consider problem (1.1) for parameter value
x at a stationary point y and assume that the assumptions (MFCQ), (SSOSC), and
(CRCQ) are satisfied there. Then, there exist open neighborhoods V ⊂ R

n of x and
U ⊂ R

m of y as well as a unique function y : V → R
m such that y(x) is the unique

(local) minimum of problem (1.1) in U for each x ∈ V . Moreover, this function is
a PC1-function, it is directionally differentiable at the point x and locally Lipschitz
continuous.

For convex lower level problems, y(x) is, of course, a global optimum. Then, the
transformation to (3.17) is possible and the objective function is at least directionally
differentiable if F ∈ C1(Rn × R

m,R). To use this, either a formula for computing
the directional derivative or the generalized derivative in Clarke’s sense is needed.

For a PC1-function α : Rn �→ R
q let

Supp(α, αi ) := {x : α(x) = αi (x)}

denote the set of all points, where the PC1-function coincides with one of its
members.

The result in Theorem 3.9 has been illustrated in Dempe [52] using the following
example:

Example 3.4 (Dempe [52]) Consider the problem

−y → min
y

y ≤ 1,

y2 ≤ 3− x2
1 − x2

2 ,

(y − 1.5)2 ≥ 0.75− (x1 − 0.5)2 − (x2 − 0.5)2,

http://dx.doi.org/10.1007/978-3-662-45827-3_1
http://dx.doi.org/10.1007/978-3-662-45827-3_1
http://dx.doi.org/10.1007/978-3-662-45827-3_1
http://dx.doi.org/10.1007/978-3-662-45827-3_1
http://dx.doi.org/10.1007/978-3-662-45827-3_1
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with two parameters x1 and x2. Then, y is a continuous selection of three contin-
uously differentiable functions y1 = y1(x), y2 = y2(x), y3 = y3(x) in an open
neighborhood of the point x0 = (1, 1)�:

y(x) =

⎧
⎪⎪⎨

⎪⎪⎩

y1 = 1, x ∈ Supp(y, y1),

y2 =
√

3− x2
1 − x2

2 , x ∈ Supp(y, y2),

y3 = 1.5−√0.75− (x1 − 0.5)2 − (x2 − 0.5)2, x ∈ Supp(y, y3),

where

Supp(y, y1) = {x : x2
1 + x2

2 ≤ 2, (x1 − 0.5)2 + (x2 − 0.5)2 ≥ 0.5},
Supp(y, y2) = {x : 2 ≤ x2

1 + x2
2 ≤ 3},

Supp(y, y3) = {x : (x1 − 0.5)2 + (x2 − 0.5)2 ≤ 0.5}.

The sets Y{i} = Supp(y, yi ) and the function y are illustrated in Figs. 3.2 and 3.3,
respectively. �

Using Rademacher’s theorem, the generalized derivative of a locally Lipschitz con-
tinuous function f : Rn �→ R can be defined as

∂Cl f (x) := conv { lim
k→∞∇ f (xk) : lim

k→∞ xk = x, ∇ f (xk) exists ∀ k}.

The same definition can be used for the generalized Jacobian of a locally Lipschitz
continuous function f : Rn �→ R

m . It has been shown in Kummer [194] and Scholtes
[283] that, under the assumptions of Theorem 3.9, we have

∂Cl y(x) = conv {∇ yi (x) : x ∈ cl int Supp(y, yi )}.

Fig. 3.2 The sets
Supp(y, yi ) in Example 3.4
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Fig. 3.3 The optimal
solution in Example 3.4
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Here int A denotes the set if inner points of some set A. Moreover, PC1-functions
are semismooth (Chaney [41]).

PC1-functions are directionally differentiable and it is easy to see that

α′(x; d) ∈ {∇αi (x)d : x ∈ cl int Supp(α, αi )}.

For the optimal solution function of a parametric optimization problem (1.1) the
directional derivative can be computed by solving a quadratic optimization problem.

Theorem 3.10 (Ralph and Dempe [265]) Consider problem (1.1) at a point x = x
and let y be a local optimal solution of this problem where the assumptions (MFCQ),
(SSOSC), and (CRCQ) are satisfied. Then the directional derivative of the function
y(·) at x in direction r coincides with the unique optimal solution of the convex
quadratic optimization problem QP(λ0, r)

0.5d�∇2
yy L(x, y, λ0)d + d�∇2

xy L(x, y, λ0)r → min
d

∇x gi (x, y)r +∇y gi (x, y)d

{= 0, if λ0
i > 0,

≤ 0, if gi (x, y) = λ0
i = 0

(3.18)

for an arbitrary Lagrange multiplier λ0 ∈ Λ(x, y) solving

∇x L(x, y, λ)r → max
λ∈Λ(x,y)

. (3.19)

The quadratic optimization problem (3.18) can be replaced equivalently with its
Karush-Kuhn-Tucker conditions. Using linear optimization duality it can be shown
that problem (3.18) has a feasible solution if and only if λ solves problem (3.19).

http://dx.doi.org/10.1007/978-3-662-45827-3_1
http://dx.doi.org/10.1007/978-3-662-45827-3_1
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3.4.2 Necessary and Sufficient Optimality Conditions

Applying the results in Sect. 3.4.1 to problem (3.17) necessary optimality conditions
for the bilevel optimization problem can be obtained.

Theorem 3.11 (Dempe [50]) Let (x, y) be a local optimal solution of the bilevel
optimization problem (1.1), (1.4) and assume that the lower level problem (1.1) is a
convex parametric optimization problem satisfying the conditions (MFCQ), (SSOC),
and (CRCQ) at (x, y). Then the following optimization problem has a nonnegative
optimal objective function value:

α → min
α,r

∇x F(x, y)r + ∇y F(x, y)y′(x; r) ≤ α

∇Gi (x)r ≤ α,∀ i : Gi (x) = 0
‖r‖ ≤ 1.

(3.20)

Moreover, if there exists a direction r such that ∇Gi (x)r < 0 for all i : Gi (x) = 0,
problem (3.20) can be replaced by

∇x F(x, y)r +∇y F(x, y)y′(x; r) → min
r

∇Gi (x)r ≤ 0, ∀ i : Gi (y) = 0
‖r‖ ≤ 1.

(3.21)

Proof Under the assumptions of this theorem, due to Theorem 3.9, the bilevel opti-
mization problem (1.4) can be replaced with (3.17). Then, using the definition of
the directional derivative, a necessary optimality condition is that the feasible set of
problem (3.20) with α < 0 is empty.

Applying the (MFCQ),

{r : ∇Gi (x)r ≤ 0, ∀ i : Gi (y) = 0} = cl S

with
S = {r : ∇Gi (x)r < 0, ∀ i : Gi (y) = 0}

and, for each r ∈ S we have F ′(x; r) ≥ 0 by the first part of the theorem. By
Theorem 3.9 and Bector et al. [14, Theorem 5.1.1] the mapping r �→ F ′(x; r)

is continuous and, hence, the optimal function value of problem (3.21) must be
nonnegative. �

If the condition ‖r‖ ≤ 1 in problem (3.21) is replaced with ‖r‖ = 1 and the resulting
problem has a strictly positive optimal objective function value v1 > 0, then the
feasible solution (x, y) is a strict local optimal solution of the bilevel optimization
problem (1.1), (1.4), see Dempe [50].

http://dx.doi.org/10.1007/978-3-662-45827-3_1
http://dx.doi.org/10.1007/978-3-662-45827-3_1
http://dx.doi.org/10.1007/978-3-662-45827-3_1
http://dx.doi.org/10.1007/978-3-662-45827-3_1
http://dx.doi.org/10.1007/978-3-662-45827-3_1
http://dx.doi.org/10.1007/978-3-662-45827-3_1
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3.4.3 Solution Algorithm

The optimization problem (3.17) is under the conditions of Theorem 3.9 a Lipschitz
continuous optimization problem with an implicitly determined objective function.
To solve this problem bundle-trust region algorithms (Outrata et al. [259], see also
Dempe [51]) can be used provided that G(x) ≡ 0. For the computation of elements
of the generalized gradient see Dempe and Vogel [79] or Dempe and Pallaschke [73],
see Theorem 3.12.

The following algorithm has been described in Dempe and Schmidt [76].
Descent algorithm for the bilevel problem:
Input: Bilevel optimization problem (3.17).
Output: A Clarke stationary solution.

Algorithm: Step 1: Select x0 satisfying G(x0) ≤ 0, set k := 0, choose
ε ∈ (0, 1).

Step 2: Compute a direction rk , ‖rk‖ ≤ 1, satisfying

F ′(xk; rk) ≤ sk ,∇Gi (xk)rk ≤ −Gi (xk)+ sk , i = 1, . . . , q,

and sk < 0.

Step 3: Choose a step-size tk such that

F (xk + tkrk) ≤ F (xk)+ εtksk , G(xk + tkrk) ≤ 0.

Step 4: Set xk+1 := xk + tkrk , compute the optimal solution yk+1 =
y(xk+1) ∈ Ψ (xk+1), set k := k + 1.

Step 5: If a stopping criterion is satisfied stop, else
goto step 2.

Using Theorem 3.9 and continuous differentiability of the function F we derive

F ′(x; r) = ∇x F(x, y(x))r +∇y F(x, y(x))y′(x; r),

where the directional derivative of the vector-valued function y(·) at the point x in
direction r can be computed solving the quadratic optimization problem (3.18) or,
alternatively, a system of quadratic equations. Note that, due to the complementarity
constraints, this is a combinatorial problem. This, mainly, is the reason for the fol-
lowing Theorem 3.13, where Clarke stationarity of the computed solution is claimed.

We need the assumption

(FRR) For each vertex λ0 ∈ Λ(x, y) the matrix

M :=
(∇2

yy L(x, y, λ0) ∇�y gJ (λ0)(x, y) ∇2
xy L(x, y, λ0)

∇y gI0(x, y) 0 ∇x gI0(x, y)

)

has full row rank m + |I0|.
Here I0 = {i : gi (x, y) = 0} and J (λ) = {i : λi > 0}.
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The following theorem completes the characterization of the generalized gradient
in the sense of Clarke of the optimal solution function y(x).

Theorem 3.12 (Dempe and Pallaschke [73]) Consider the lower level problem (1.1),
assume that it is a convex parametric optimization problem and that (FRR), (MFCQ),
(CRCQ), and (SSOC) are satisfied at a point (x, y) ∈ gph Ψ . Then, for any vertex
λ ∈ Λ(x, y) and each index set I satisfying J (λ) ⊆ I ⊆ I (x, y) such that the
gradients {∇y gi (x, y) : i ∈ I } are linearly independent, the matrix ∇ y I (x) with

(∇2
yy L(x, y, λ) ∇�y gI (x, y)

∇y gI (x, y) 0

)(∇ y I (x)

w

)
=
(−∇2

xy L(x, y, λ)

−∇x gI (x, y)

)
(3.22)

belongs to ∂Cl y(x).

The matrix w in formula (3.22) is related to a generalized gradient of a certain
Lagrange multiplier of problem (1.1).

An algorithm for computing elements of the generalized gradient of the PC1-
function y(·) can be found in Dempe and Vogel [79]. In this article the interested
reader can also find an example showing that the assumption (FRR) is essential.

Theorem 3.13 (Dempe and Schmidt [76]) Consider problem (3.17), where y(x) is
an optimal solution of the lower level problem (1.1) which is a convex parametric opti-
mization problem. Let T = R

m, assume that all functions F, f, G, g are sufficiently
smooth and the set {(x, y) : G(x) ≤ 0, g(x, y) ≤ 0} is nonempty and bounded.
Let the assumptions (FRR), (MFCQ), (CRCQ), and (SSOC) for all (x, y), y ∈
Ψ (x), G(x) ≤ 0 be satisfied for problem (1.1) and (MFCQ) is satisfied with respect
to G(x) ≤ 0 for all x. Then, each accumulation point (x, y) of the sequence of
iterates {(xk, yk)}∞k=1 computed with the above algorithms is Clarke stationary.

To motivate Theorem 3.13 we first see that the above descent algorithm is a real-
ization of the method of feasible directions (Bazaraa and Shetty [12]) in the modifica-
tion by Topkis and Veinott [301]. Then, using standard argumentation the algorithm
converges to a point (x, y), where the system

F ′(x; r) < 0

∇Gi (x) < 0, ∀ i : Gi (x) = 0

does not have a solution. Since y(·) is a PC1-function, this means that there is some
selection function y j (·) such that

F ′(xk; rk) = ∇x F(xk, yk)rk + ∇y F(xk, yk)∇ y j (xk)rk

and yk = y j (xk) for an infinite subsequence of the sequence {(xk, yk, rk, sk)}∞k=1
of points generated by the descent algorithm and some of the selection functions of
y(·) at x = x . Hence, the system

∇x F(x, y)r + ∇y F(x, y)∇ y j (x)r < 0

∇Gi (x) < 0, ∀ i : Gi (x) = 0

http://dx.doi.org/10.1007/978-3-662-45827-3_1
http://dx.doi.org/10.1007/978-3-662-45827-3_1
http://dx.doi.org/10.1007/978-3-662-45827-3_1
http://dx.doi.org/10.1007/978-3-662-45827-3_1


62 3 Reduction of Bilevel Programming to a Single Level Problem

Fig. 3.4 Convergence to a
Clarke stationary point at the
origin

has no solution. This implies that the point (x, y) is a Karush-Kuhn-Tucker point for
the problem

min
x
{F(x, y j (x)) : G(x) ≤ 0}.

Then,
0 ∈ ∂Cl

x F(x, y j (x))+ N Cl
M (x),

where M = {x : G(x) ≤ 0} and N Cl
M (x) is the Clarke normal cone to M in x . Since,

by (FRR), ∇ y j (x) ∈ ∂Cl y(x) (Dempe and Vogel [79]; Dempe and Pallaschke [73])
we derive

0 ∈ ∂ClF (x)+ N Cl
M (x)

implying that x is a Clarke stationary point.
Unfortunately, Clarke stationary points need not to be local optimal solutions.

This can be seen in the Fig. 3.4 borrowed from Dempe [52].
To circumvent the undesired convergence to a Clarke stationary point and guar-

antee convergence to a Bouligand stationary point, i.e. a point where there does not
exist a feasible direction of descent, a modification of the direction finding problem
in Step 2 of the above algorithm is needed. The interested reader is referred to the
paper Dempe and Schmidt [76] for the respective results.

3.5 The Classical KKT Transformation

3.5.1 Stationary Solutions

The classical KKT transformation is often used in literature. Assume for simplicity
throughout this subsection that T = R

m and X = R
n . Moreover, the lower level

problem needs to be convex throughout this subsection, and a regularity condition as
Slater’s condition (or, equivalently, the (MFCQ)) needs to be satisfied at all feasible
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points. If the lower level problem is not convex for fixed parameter value, the set of
feasible solutions is enlarged by adding local optimal as well as stationary solutions
of the lower level problem to it. This can imply that a local (or global) optimal solution
of the bilevel problem (1.4) needs not to be stationary for the resulting problem (3.2),
see Mirrlees [232]. Moreover, if Slater’s condition is violated at some feasible points
of problem (1.1) the set of feasible points for problem (3.2) needs not to be closed,
see Dempe and Dutta [55]. The classical KKT transformation reduces to the problem

F(x, y) → min

G(x) ≤ 0

0 ∈ ∂y f (x, y)+ λ�∂y g(x, y) (3.23)

λ ≥ 0, g(x, y) ≤ 0, λ�g(x, y) = 0.

This is a mathematical optimization problem with complementarity constraints
(MPEC or MPCC for short), see Luo et al. [208] and Outrata et al. [259]. The
following result is due to Scheel and Scholtes [280]:

Theorem 3.14 The Mangasarian-Fromovitz constraint qualification is violated at
every feasible point of the problem (3.23).

This makes the solution of the problem and also the formulation of (necessary and
sufficient) optimality conditions difficult. On the one hand this resulted in the for-
mulation of stationary solutions of different types. On the other hand, for solving
the problem both the application of adapted algorithms in nonlinear optimization as
well as regularization algorithms have been suggested.

Necessary optimality conditions can be defined for problem (3.2) as usual for
mathematical programs with complementarity constraints.

Assume in this subsection that all the functions F, f, gi , G j are sufficiently
smooth. Use the following sets:

1. IG(x) = { j : G j (x) = 0},
2. I−0(x, y, λ) = {i : gi (x, y) < 0, λi = 0},
3. I00(x, y, λ) = {i : gi (x, y) = 0, λi = 0},
4. I0+(x, y, λ) = {i : gi (x, y) = 0, λi > 0}.
If the set I00(x, y, λ) = ∅, problem (3.2) reduces to an optimization problem without
complementarity constraints and can be treated as a classical optimization problem
locally around the point (x, y, λ). This is a consequence of continuity. Hence, the
set I00(x, y, λ) is the interesting one. It is called the set of bi-active constraints.

To simplify the notation let L (x, y, λ) = ∇y f (x, y)+ λ�∇y g(x, y). Moreover,
∇xL (x, y, λ)γ = ∇x (L (x, y, λ)γ ) and ∇yL (x, y, λ)γ = ∇y(L (x, y, λ)γ ).

Main part of the optimality conditions are the following equations resulting from
Karush-Kuhn-Tucker conditions for problem (3.23):

∇x F(x, y)+ α�∇G(x)+ β�∇x g(x, y)+ ∇xL (x, y, λ)γ = 0, (3.24)

http://dx.doi.org/10.1007/978-3-662-45827-3_1
http://dx.doi.org/10.1007/978-3-662-45827-3_1
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∇y F(x, y)+ β�∇y g(x, y)+ ∇yL (x, y, λ)γ = 0, (3.25)

α ≥ 0, α�G(x) = 0, (3.26)

∇y gI0+(x,y,λ)(x, y)γ = 0, βI−0(x,y,λ) = 0, (3.27)

where tI = 0 for a system of inequalities ti ≥ 0 and an index set I means
{ti = 0 ∀ i ∈ I }.
Definition 3.5 A feasible solution (x, y, λ) for the problem (3.23) for which there
exists a vector (α, β, γ ) ∈ R

q × R
p × R

m such that

1. Conditions (3.24)–(3.27) are satisfied is called weakly stationary.
2. Conditions (3.24)–(3.27) together with

βi ≥ 0 or ∇y gi (x, y)�γ ≥ 0 ∀ i ∈ I00(x, y, λ)

are satisfied, is an A-stationary solution.
3. Equations (3.24)–(3.27) together with

βi∇y gi (x, y)�γ ≥ 0 ∀ i ∈ I00(x, y, λ)

hold, is C-stationary.
4. Equations (3.24)–(3.27) hold together with

(βi > 0 ∧ ∇y gi (x, y)�γ > 0) ∨ βi∇y gi (x, y)�γ = 0 ∀ i ∈ I00(x, y, λ),

is a M-stationary solution.
5. Conditions (3.24)–(3.27) and also

βi ≥ 0 and ∇y gi (x, y)�γ ≥ 0 ∀ i ∈ I00(x, y, λ)

hold, is a S-stationary solution.

Related results for mathematical programs with complementarity (equilibrium) con-
straints can be found in Flegel and Kanzow [112], the PhD thesis by Flegel [111],
the papers Pang and Fukushima [262] as well as Scheel and Scholtes [280].

As examples for necessary optimality conditions we will consider two results, one
for a M-stationary and one for a C-stationary solution. More results can be found
especially in the PhD thesis of Zemkoho [328] and in Ye [323], respective results for
MPEC’s have been developed in the PhD thesis of Flegel [111].

In the following theorem we need the (basic) normal cone in the sense of varia-
tional analysis, see Mordukhovich [241, 242]. Let A ⊆ R

p be a closed set and z ∈ A.
Then,

N̂A(z) := {d : d�(z − z) ≤ o(‖z − z‖) ∀ z ∈ A}

is the Fréchet normal cone to the set A at z. Here, o(t) is a function satis-
fying limt→0 o(t)/t = 0. The Mordukhovich normal cone to A at z is the
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Kuratowski-Painlevé upper limit of the Fréchet normal cone, i.e.

N M
A (z) = {r : ∃ {zk}∞k=1 ⊆ A, ∃{rk}∞k=1 with lim

k→∞ zk = z,

lim
k→∞ rk = r, rk ∈ N̂A(zk) ∀ k}.

The Mordukhovich subdifferential of a lower semicontinuous function f : Rn → R

at some point x ∈ dom f is

∂ M f (x) := {z∗ ∈ R
n : (z∗,−1) ∈ Nepi f (x, f (x))},

where epi f := {(x, α) : f (x) ≤ α} is the epigraph of the function f .
We also need the following theorem borrowed from Mordukhovich [240, Propo-

sition 2.10]:

Theorem 3.15 Let f : Rp → R
q be Lipschitz continuous around x and g : Rq →

R be Lipschitz continuous around y = f (x) ∈ dom g. Then,

∂ M (g ◦ f )(x) ⊆
⋃
{∂ M 〈w, f (x)〉 : w ∈ ∂ M g(y)}.

The following theorem can be found in Mordukhovich [238, Corollary 4.6]:

Theorem 3.16 Let the functions f, g : Rn → R be locally Lipschitz continuous
around z ∈ R

n. Then,

∂ M ( f + g)(z) ⊆ ∂ M f (z)+ ∂ M g(z).

Equality holds if one of the functions is continuously differentiable.

The last ingredient for the necessary optimality condition comes from Rockafellar
and Wets [274, Theorem 8.15]:

Theorem 3.17 Let f : Rn → R be a locally Lipschitz continuous function and
A ⊆ R

n a closed set. If z ∈ A is a local minimizer of the function f over A, then

0 ∈ ∂ M f (z)+ N M
A (z).

Theorem 3.18 (Dempe and Zemkoho [82]) Let (x, y, λ) be a local optimal solution
of problem (3.23) and assume that the constraint qualification

α�∇G(x)+ β�∇x g(x, y)+ ∇xL (x, y, λ)γ = 0,

β�∇y g(x, y)+∇yL (x, y, λ)γ = 0,

α ≥ 0, α�G(x) = 0,

∇y gI0+(x,y,λ)(x, y)γ = 0, βI−0(x,y,λ) = 0,

(βi > 0 ∧ ∇y gi (x, y)γ > 0) ∨ βi∇y gi (x, y)γ = 0
∀ i ∈ I00(x, y, λ)

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

⇒
⎧
⎨

⎩

α = 0
β = 0
γ = 0

(3.28)
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is satisfied there. Then, there exists (α, β, γ ) with ‖(α, β, γ )‖ ≤ r for some r < ∞
such that the point is a M-stationary solution.

Proof Let
Θ = {(a, b) ∈ R

2p : a ≥ 0, b ≥ 0, a�b = 0}.

Then, it can be shown, see Flegel and Kanzow [113], that

N M
Θ (u, v) =

⎧
⎨

⎩
(u∗, v∗) :

⎡

⎣
u∗i = 0, ∀ i : ui > 0 = vi

v∗i = 0, ∀ i : ui = 0 < vi

(u∗i < 0 ∧ v∗i < 0) ∨ u∗i v∗i = 0, ∀ i : ui = vi = 0

⎫
⎬

⎭
.

Let (x, y, λ) be a local optimal solution of problem (3.23).
Set

Γ (x, y, λ, v) = (G(x), g(x, y)+ v,L (x, y, λ))�,

Ξ = R
q
− × {0p+m}, Ω = R

n × R
m ×Θ.

Then, it is easy to see that there is a vector v such that (x, y, λ, v) is a local optimal
solution of the problem

min
x,y,λ,v

{F(x, y) : (x, y, u, v) ∈ Ω ∩ Γ −1(Ξ)}. (3.29)

In this case,

N M
Ω (x, y, λ, v) = {0m+n} × NΘ(u, v), (3.30)

N M
Ξ (Γ (x, y, λ, v)) = {(α, β, γ ) : α ≥ 0, α�G(x) = 0}, (3.31)

∇Γ (x, y, λ, v)(α, β, γ ) =
(

A(α, β, γ )

β

)
, (3.32)

where

A(α, η, γ ) =
⎛

⎝
α�∇G(x)+ β�∇x g(x, y)+∇xL (x, y, λ)γ

β�∇y g(x, y)+ ∇yL (x, y, λ)γ

∇y g(x, y)γ

⎞

⎠ .

Using Theorem 3.17 we derive

0 ∈ ∂ M F(x, y)× (0, 0)� + N M
W (x, y, λ, v),

where

W = {(x, y, λ, v) : (x, y, λ, v) ∈ Ω ∩ Γ −1(Ξ)}
= {(x, y, λ, v) ∈ Ω : Γ (x, y, λ, v) ∈ Ξ}.
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Assumption (3.28) implies the basic constraint qualification (Mordukhovich [239];
Rockafellar and Wets [274])

0 ∈ ∂ M 〈u∗, Γ (x, y, λ, v)〉 + N M
Ω (x, y, λ, v)

u∗ ∈ N M
Ξ (Γ (x, y, λ, v))

}
⇒ u∗ = 0

is satisfied. Hence,

N M
W (x, y, λ, v)

= {z∗ : ∃ u∗ ∈ N M
Ξ (Γ (x, y, λ, v) with

z∗ = ∂ M 〈u∗, Γ (x, y, λ, v)〉 + N M
Ω (x, y, λ, v)}.

Thus, there exists μ > 0 such that, for all r ≥ μ, we can find

u∗ ∈ N M
Ξ (Γ (x, y, λ, v)), ‖u∗‖ ≤ r,

with

0 ∈ ∂ M F(x, y)× (0, 0)+ ∂ M 〈u∗, Γ 〉(x, y, λ, v)+ N M
Ω (x, y, λ, v)

(Dempe and Zemkoho [80]). This implies the existence of a vector

(α, β, γ ), ‖(α, β, γ )‖ ≤ r

such that (3.24)–(3.26) together with

(−∇y g(x, y)γ,−β) ∈ NΘ(λ,−g(x, y)).

Here, we used that the upper level objective F does not depend on λ, v. The result
then follows from the formula for NΘ(λ,−g(x, y)). �

To derive optimality conditions using the approaches for mathematical programs
with equilibrium constraints (MPECs) we can adapt the corresponding regularity
conditions. For this, consider the tightened problem

F(x, y) → min

G(x) ≤ 0

0 = ∇y f (x, y)+ λ�∇y g(x, y) (3.33)

λi = 0, ∀ i ∈ I−0(x, y, λ) ∪ I00(x, y, λ)

gi (x, y) = 0, ∀ i ∈ I0+(x, y, λ) ∪ I00(x, y, λ)

λi ≥ 0, i ∈ I0+(x, y, λ)

gi (x, y) ≤ 0, i ∈ I−0(x, y, λ).

around the point (x, y, λ).
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Definition 3.6 The problem (3.23) is said to satisfy at the point (x, y, λ) the

1. (MPEC-LICQ) if the (LICQ) is satisfied for the problem (3.33).
2. (MPEC-MFCQ) if the (MFCQ) is satisfied for the problem (3.33).

It has been shown in Scholtes and Stöhr [284] that the (MPEC-LICQ) is a generic
regularity condition for MPEC’s which means, that, if it is not satisfied, then small
(but unknown) perturbations of the data of the problem can be used to transform it
into a problem where this condition is satisfied. The following theorem goes back to
Scheel and Scholtes [280] as well as Zemkoho [328].

Theorem 3.19 Let (x, y, λ) be a local optimal solution of problem (3.23) and
assume that the (MPEC-MFCQ) is satisfied there. Then, (x, y, λ) is a C-stationary
point of (3.23).

Proof Problem (3.23) can be written as

F(x, y) → min

G(x) ≤ 0

L (x, y, λ) = 0

min{λi ,−gi (x, y)} = 0, ∀ i = 1, . . . , p.

This is a Lipschitz optimization problem. Hence, there exist λ0 ≥ 0, α, β, γ , not all
vanishing, such that

0 ∈ λ0∇x F(x, y)+ α�∇G(x)−
p∑

i=1

βi∂
Cl
x si (x, y, λ)+∇xL (x, y, λ)γ, (3.34)

0 ∈ λ0∇y F(x, y)−
p∑

i=1

βi∂
Cl
y si (x, y, λ)+∇yL (x, y, λ)γ, (3.35)

α ≥ 0, α�G(x) = 0, (3.36)

0 ∈ −
p∑

i=1

βi∂
Cl
λ si (x, y, λ)+ ∇y g(x, y)γ, (3.37)

where si (x, y, λ) = min{λi ,−gi (x, y)} and ∂Cl
x f (x, y) is the Clarke generalized

derivative of the function f at (x, y) with respect to x .
The (MPEC-MFCQ) can be used to show that λ0 �= 0. Let λ0 = 1 without loss

of generality.
Moreover,

∂Clsi (x, y, λ) =
⎧
⎨

⎩

−(∇gi (x, y), 0), if i ∈ I0+(x, y, λ),

(0, ei�), if i ∈ I−0(x, y, λ),

conv {−(∇gi (x, y), 0), (0, ei�)}, if i ∈ I00(x, y, λ).



3.5 The Classical KKT Transformation 69

For i ∈ I0+(x, y, λ), Eq. (3.37) implies ∇y gi (x, y)γ = 0.

For i ∈ I−0(x, y, λ), ∂Cl
x si (x, y, λ) = 0 and ∂Cl

y si (x, y, λ) = 0. This implies that
βi = 0 can be taken in Eqs. (3.34) and (3.35).

If i ∈ I00(x, y, λ) then

∂Clsi (x, y, λ) = {ξi = −μ∇gi (x, y)×{0}+ (1−μ)({0}×{0}×ei�) : 0 ≤ μ ≤ 1}
and

βi (1− μ) = ∇y gi (x, y)γ

by Eq. (3.37). Hence,

β2
i (1− μ) = βi∇y gi (x, y)γ ≥ 0 for i ∈ I00(x, y, λ). �

It has been shown in Flegel [111] that (MPEC-MFCQ) even implies M-stationarity.

Theorem 3.20 (Scheel and Scholtes [280]; Dempe and Franke [59]) If a point
(x, y, λ) is a local optimal solution of problem (3.23) where the (MPEC-LICQ)
is satisfied then it is a S-stationary point.

3.5.2 Solution Algorithms

The difficulties in solving the bilevel optimization problem on the basis of the clas-
sical KKT reformulation result, on the first hand, from violation of mostly used
constraint qualifications (cf. Theorem 3.14). On the other hand, this is a result of
Theorem 3.1 showing that global optimal solutions need to be considered for equiva-
lence of problems (1.4) and (3.2). Problem (3.2) is a nonconvex optimization problem.
For such problems most algorithms compute stationary or local optimal solutions.
A number of different algorithms have been suggested for solving MPECs, some of
them are presented in the following. At least two can be used for solving the bilevel
optimization problem locally, too.

Algorithms to compute a global optimum of the MPEC and of bilevel optimization
problems can be based on enumeration plus approximation principles (Meyer and
Floudas [229]) or reverse convex optimization (Horst and Tuy [147]).

3.5.2.1 Reduction to a Mixed-Integer Nonlinear Optimization Problem

Using Boolean variables zi , i = 1, . . . , p, and a sufficiently large positive number
Q, the problem

F(x, y) → min
x,y

G(x) ≤ 0

0 ∈ ∂y f (x, y)+ λ�∂y g(x, y)

http://dx.doi.org/10.1007/978-3-662-45827-3_1
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λ ≥ 0, g(x, y) ≤ 0, λ�g(x, y) = 0

x ∈ X.

can be replaced by

F(x, y) → min
x,y

G(x) ≤ 0

0 ∈ ∂y f (x, y)+ λ�∂y g(x, y) (3.38)

0 ≤ λi ≤ Qzi , i = 1, . . . , p,

0 ≥ gi (x, y) ≥ −Q(1− zi ), i = 1, . . . , p,

x ∈ X, zi ∈ {0, 1}, i = 1, . . . , p.

The number Q is bounded if the Mangasarian-Fromovitz constraint qualification
is satisfied for the lower level problem (see the proof of Theorem 3.3) and the set
{(x, y) : g(x, y) ≤ 0, G(x) ≤ 0, x ∈ X} is compact. Problem (3.38) is a noncon-
vex mixed-integer optimization problem and can be solved using e.g. the approaches
in Fletcher and Leyffer [114] and Leyffer [200]. For linear bilevel optimization
problems this idea has been suggested in Hansen et al. [136]. Due to the nature of
approaches to mixed-integer optimization (as for instance branch-and-bound algo-
rithms) these methods aim to find global optimal solutions of the problem (3.38).
Hence, applying them the bilevel optimization problem can also be solved globally.

3.5.2.2 Metaheuristics

Over the years a large number of heuristic approaches such as genetic algorithm
(Hejazi et al. [142]), simulated annealing (Sahin and Ciric [278]), particle swarm
optimization (Jiang et al. [157]) and other approaches have been suggested for linear
bilevel optimization problems. Due to the nature of bilevel optimization problems,
in many cases, the metaheuristic algorithms (local perturbation, mutation, etc.) are
applied to the upper level variables only and the lower level variables are computed
by solving the lower level problem itself. A collection of recent metaheuristics can
be found in the edited volume Talbi [297].

3.5.2.3 Regularization of the Classical KKT Transformation

Due to failure of regularity conditions for the problem (3.2) (see Theorem 3.14)
finding a direct method solving this problem is in general not easy. However, the
problem can be regularized which has been done e.g. in Scholtes [282], Demiguel
et al. [48] and in Mersha [226]. For more regularization approaches as well as for
a numerical comparison of different approaches, the interested reader is referred to
Hoheisel et al. [146].
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An Exact Algorithm

Let T = R
m, X = R

n and assume that the functions f, gi are differentiable. Scholtes
[282] replaced problem (3.2) with

F(x, y) → min

G(x) ≤ 0

0 = ∇y f (x, y)+ λ�∇y g(x, y) (3.39)

λ ≥ 0, g(x, y) ≤ 0,

−λ�g(x, y) ≤ ε

and solved this problem for ε ↓ 0. Assume that the set M := {(x, y) : g(x, y) ≤ 0,

G(x) ≤ 0} is not empty and bounded. Let the lower level problem be a convex para-
metric optimization problem and suppose that Slater’s condition is satisfied for each
x with (x, y) ∈M for some y. Then, the feasible set of problem (1.4) is not empty
since there exists (̂x, ŷ) ∈M and {̂x}×Ψ (̂x) ⊂M . Due to Theorem 3.3, the feasible
set of problem (1.4) is compact and, thus, this problem has an optimal solution, see
Theorem 3.4. Then, due to Theorem 3.1, problem (3.2) has also a (global) optimal
solution (x, y, λ). Let {εk}∞k=1 be a sequence of positive numbers converging to zero
and let {(xk, yk, λk)}∞k=1 be a sequence of (global) optimal solutions of problem
(3.39). Then, comparing the feasible sets of problems (3.39) and (3.2) it is easy to
see that

F(xk, yk) ≤ F(x, y) ∀ k.

Moreover, the sequence {(xk, yk, λk)}∞k=1 has an accumulation point and each accu-
mulation point (x, y) is a global optimal solution of problem (1.4), cf. Theorem 3.2.

An Interior Point Method

Using a diffeomorphism as e.g. in Guddat et al. [133], the problem (3.2) can be
reduced to its essential form

min{ f (x) : c(x) = 0, x1 ≥ 0, x2 ≥ 0, x�1 x2 = 0, x0 ≥ 0} (3.40)

where x = (x0, x1, x2) ∈ R
p+n+n , f : Rp+2n → R, c : Rp+2n → R

m . Without
using a diffeomorphism this transformation is also possible with the aid of slack vari-
ables to replace inequalities by equations and introducing new variables (being equal
to the left-hand side of the equations). This problem has been considered in Demiguel
et al. [48]. We will only give a short description of main ideas of this approach and
ask the reader interested in details to consult the original work. The authors of the
article Demiguel et al. [48] apply a regularization approach to problem (3.40) which
is more general than the one in problem (3.39). This transforms problem (3.40) into

min{ f (x) : c(x) = 0, x1 ≥ −δ1, x2 ≥ −δ2, x�1 x2 ≤ δ0, x0 ≥ 0} (3.41)

http://dx.doi.org/10.1007/978-3-662-45827-3_1
http://dx.doi.org/10.1007/978-3-662-45827-3_1
http://dx.doi.org/10.1007/978-3-662-45827-3_1
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with δ0, δ1, δ2 > 0. Let
L (x, λ) := f (x)+ λ�c(x)

denote a certain Lagrangian function for problem (3.40), x be a feasible point for
problem (3.40) and let

X1(x) = { j : x1 j = 0 < x2 j },
X2(x) = { j : x1 j > 0 = x2 j },
B(x) = { j : x1 j = 0 = x2 j }.

A relaxed problem related to (3.41) is

f (x) → min

c(x) = 0

x0 ≥ 0

x1 j = 0, x2 j ≥ 0, j ∈X1(x) (3.42)

x1 j ≥ 0, x2 j = 0, j ∈X2(x)

x1 j ≥ 0, x2 j ≥ 0, j ∈ B(x).

The linear independence constraint qualification (LICQ) is satisfied for problem
(1.1) at the point (x, y) if:

(LICQ) the gradients∇y gi (x, y) are linearly independent for all i with gi (x, y) = 0.

Similarly, this assumption can be posed for problem (3.42). This condition is again
called (MPEC-LICQ), and is equivalent to the (MPEC-LICQ) on page 68. It has been
shown in Scheel and Scholtes [280] that, if (LICQ) is satisfied at x for (3.42), its
Karush-Kuhn-Tucker conditions are also necessary optimality conditions for (3.40).
This leads to the following stationarity concept for MPECs: A point (x, λ, z) is
strongly stationary for problem (3.40) if it satisfies the Karush-Kuhn-Tucker condi-
tions for a problem which is strongly related to problem (3.42):

∇xL (x, λ) = z,

c(x) = 0,

min{x0, z0} = 0, (3.43)

min{x1, x2} = 0,

x1 j z1 j = 0 ∀ j,

x2 j z2 j = 0 ∀ j,

z1 j , z2 j = 0 ∀ j with x1 j = x2 j = 0.

It satisfies the weak strict complementarity slackness condition (MPEC-WSCS) if
it is strongly stationary and max{x0 j , z0 j } > 0 for all j . Moreover, the strong

http://dx.doi.org/10.1007/978-3-662-45827-3_1
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second-order sufficient optimality condition (MPEC-SSOSC) is satisfied for problem
(3.40) at (x, λ, z) if

d�∇2
xxL (x, λ)d > 0

for all d �= 0 belonging to a certain tangent cone to the feasible set of problem (3.42).
If for problem (3.42) (LICQ), the weak strict complementarity slackness condition

and a sufficient optimality condition of second order [or (MPEC-LICQ), (MPEC-
WSCS) and (MPEC-SSOSC) for problem (3.40)] are satisfied, then an interior point
algorithm (see e.g. Nesterov and Nemirovskii [252]) can be applied to (3.42) to
compute a strongly stationary solution of problem (3.40). This has been done in
Demiguel et al. [48]. Moreover, if the solution algorithm starts in a sufficiently small
neighborhood of a strongly stationary solution w := (x, λ, z) of problem (3.40), this
algorithm converges Q-superlinearly to (x, λ, z), i.e. there exists a positive constant
σ such that

‖wk+1 − w∗‖ ≤ σ‖wk − w∗‖1+τ

for some small positive τ and all k.

Bouligand Stationary Solution

In the PhD thesis of Mersha [226] another regularization is developed guaranteeing
convergence to Bouligand stationary solutions under some appropriate assumptions,
see also Mersha and Dempe [228]. This approach uses the following regularization:

F(x, y) → min

G(x) ≤ 0

‖∇y L(x, y, λ)‖∞ ≤ ε (3.44)

λ ≥ 0, g(x, y) ≤ 0,

−λi gi (x, y) ≤ ε, i = 1, . . . , p,

x ∈ X,

where L(x, y, λ) = f (x, y)+ λ�g(x, y) is the Lagrangian of the lower level prob-
lem (1.1). Let {(xk, yk, λk)}∞k=1 be a sequence of globally optimal solutions of this
problem for ε = εk > 0 and {εk}∞k=1 converging to zero. Assume that T = R

m , the
set M := {(x, y) : x ∈ X, G(x) ≤ 0, g(x, y) ≤ 0} is not empty and compact, that
Slater’s condition is satisfied for all (x, y) ∈ M and the lower level problem (1.1)
is a convex parametric optimization problem. Then, using the same ideas as in the
preceding subsections we find that each accumulation point (x, y, λ) of the sequence
{(xk, yk, λk)}∞k=1 is a global optimal solution of problem (3.2).

But, since problem (3.44) is again a nonconvex optimization problem, assuming
that (xk, yk, λk) is a global optimal solution of this problem is too restrictive.

http://dx.doi.org/10.1007/978-3-662-45827-3_1
http://dx.doi.org/10.1007/978-3-662-45827-3_1
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In the next theorem we will see, that using a sequence {(xk, yk)}∞k=1 of local
optimal solutions of problem (3.44) for εk ↓ 0 we can compute local optimal solu-
tions of problem (1.4), provided that the optimal solution of the lower level problem
(1.1) is strongly stable in the sense of Kojima [191]. The main ideas of this approach
are again only shortly explained and the interested reader is referred to the original
paper [228] of Mersha and Dempe.

Theorem 3.21 (Mersha and Dempe [228]) Let (x, y, λ) be feasible for problem
(3.44) for ε = 0, assume that the lower level problem is convex with respect to y for
every fixed x, X = R

n, and that the assumptions (CRCQ) and (SSOSC) are satisfied
for the lower level problem (1.1) for all feasible points of (1.4). Assume that

⎧
⎨

⎩
(d, r)

∣
∣
∣
∣
∣
∣

∇x G j (x)d < 0, ∀ j : G j (x) = 0

∇gi (x, y)

(
d
r

)
< 0, ∀ i : gi (x, y) = 0

⎫
⎬

⎭
�= ∅.

If (x, y) is not a Bouligand stationary point of problem (1.4) then there exist a
direction d and a positive number δ > 0 such that

∇x Gi (x)d < 0 for all i with Gi (x) = 0

and
∇x F(x, y)d + ∇y F(x, y)∇ y j (x)d < 0,

for all (x, y) ∈ Bδ(x, y) and for some of the selection functions y j composing the
PC1 function {y(x)} = Ψ (x) locally around x.

Here, Bδ(x, y) is an open ball of radius δ > 0 around (x, y).

Proof Due to the assumptions and Theorem 3.9 there are an open neighborhood
Uγ (x) with γ > 0 and a PC1-function y : Uγ (x) �→ R

m such that Ψ (x) =
{y(x)} ∀ x ∈ Uγ (x). If (x, y) is not a Bouligand stationary point of problem (1.4),
then there exists a direction d such that

∇x Gi (x)d ≤ 0 for all i with Gi (x) = 0

and
∇x F(x, y)d +∇y F(x, y)y′(x; d) < 0,

cf. Theorem 3.11. Due to y′(x; d) ∈ {∇ y j (x)d : j ∈ Supp(y, y j ), j = 1, . . . , k},
there is some selection function y j (x) for the PC1-function y(·) such that

∇x Gi (x)d ≤ 0 for all i with Gi (x) = 0

and
∇x F(x, y)d + ∇y F(x, y)∇ y j (x)d < 0.

http://dx.doi.org/10.1007/978-3-662-45827-3_1
http://dx.doi.org/10.1007/978-3-662-45827-3_1
http://dx.doi.org/10.1007/978-3-662-45827-3_1
http://dx.doi.org/10.1007/978-3-662-45827-3_1
http://dx.doi.org/10.1007/978-3-662-45827-3_1
http://dx.doi.org/10.1007/978-3-662-45827-3_1
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Since the (MFCQ) is satisfied for the upper level constraints G(x) ≤ 0 at x = x the
direction d can be perturbed to d̂ such that

∇x Gi (x)d̂ < 0 for all i with Gi (x) = 0

and
∇x F(x, y)d̂ + ∇y F(x, y)∇ y j (x)d̂ < 0.

The proof now follows by smoothness of the functions Gi , y j , F . �

Now, let εk ↓ 0 be a sequence of positive numbers converging to zero and
{(xk, yk, λk)}∞k=1 be a sequence of feasible solutions of problem (3.44) for ε =
εk, k = 1, 2, . . ., converging to (x, y, λ). Assume that (x, y) is not a Bouligand
stationary solution of problem (1.4). Then, there exists a direction d such that

∇x Gi (x)d ≤ 0 for all i with Gi (x) = 0

and
∇x F(x, y)d +∇y F(x, y)y′(x; d) < 0.

If the assumptions of Theorem 3.21 are satisfied, due to Theorem 3.10, system

∇x F(x, y)d + ∇y F(x, y)r < 0

∇x Gi (x)d ≤ 0 for all i with Gi (x) = 0∥
∥
∥
∥
∥
∥
∇(∇y L(x, y, λ))

⎛

⎝
d
r
γ

⎞

⎠

∥
∥
∥
∥
∥
∥∞

= 0 (3.45)

∇x gi (x, y)d + ∇y gi (x, y)r ≤ 0 for all i with gi (x, y) = 0

γi ≥ 0 for all i with λi = 0

−∇(λi gi (x, y))

⎛

⎝
d
r
γ

⎞

⎠ = 0

has a solution (d, r, γ ). For instance, d = d, r = y′(x; d) and γ standing for a
“directional derivative of the multiplier” is one solution. Using again the assumptions
of Theorem 3.21 we obtain that the following system has a solution at each point
(x, y, λ) in an open neighborhood around (x, y, λ) for arbitrary small ε > 0:

∇x F(x, y)d +∇y F(x, y)r < 0

Gi (x)+∇x Gi (x)d < 0 for all i∥
∥
∥
∥
∥
∥
∇(∇y L(x, y, λ))

⎛

⎝
d
r
γ

⎞

⎠

∥
∥
∥
∥
∥
∥∞

≤ ε/2 (3.46)

http://dx.doi.org/10.1007/978-3-662-45827-3_1
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gi (x, y)+ ∇x gi (x, y)d +∇y gi (x, y)r < 0 for all i

λi + γi > 0 for all i

−∇(λi gi (x, y))

⎛

⎝
d
r
γ

⎞

⎠ ≤ ε/2

This implies the existence of a direction of descent within the tangent cone to the
feasible set of problem (3.44) at (x, y, λ) near (x, y, λ) and, therefore, the point
(x, y, λ) is not a stationary solution of problem (3.44) for ε > 0.

Theorem 3.22 (Mersha and Dempe [228]) Under the assumptions of Theorem 3.21,
if {(xk, yk, λk)}∞k=1 is a sequence of stationary solutions of problem (3.44) converging
to {x, y, λ} for {εk}∞k=1 tending to zero, then (x, y) is a Bouligand stationary solution
of problem (1.4).

3.5.2.4 Approaches Using NCP Functions

Another approach to solve the problem (3.2) is to replace the complementarity con-
straints

λ�g(x, y) = 0, g(x, y) ≤ 0, λ ≥ 0

by the help of nonlinear complementarity (NCP) functions. Using auxiliary functions
ai = −gi (x, y), i = 1, . . . , p and bi = λi , i = 1, . . . , p the complementarity
conditions can be reduced to

ai ≥ 0, bi ≥ 0, ai bi = 0, i = 1, . . . , p. (3.47)

These conditions can then be replaced using so called NCP functions, see Galántai
[122] where over 30 different NCP functions are formulated. In Kadrani [163], Kad-
rani et al. [164] and Hoheisel et al. [146] various NCP functions are used to solve
MPECs.

Fukushima and Pang [121] use the Fischer-Burmeister function

κi (a, b) = ai + bi −
√

a2
i + b2

i

and replace Eq. (3.47) with the equivalent conditions κi (a, b) = 0 respectively the
inequalities κi (a, b) ≤ 0 for all i .

Theorem 3.23 We have a ≥ 0, b ≥ 0, ab = 0 for a, b ∈ R if and only if
a + b −√a2 + b2 = 0.

Proof a + b−√a2 + b2 = 0 implies (a + b)2 = a2 + b2 or ab = 0. Hence, a = 0
or b = 0 which by a + b ≥ 0 leads to a ≥ 0, b ≥ 0. On the other hand, let without
loss of generality b = 0 and a ≥ 0. Then, this implies a = √

a2. �

http://dx.doi.org/10.1007/978-3-662-45827-3_1
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The function κi (a, b) is not differentiable at ai = bi = 0. The regularized function

κε
i (a, b) = ai + bi −

√
a2

i + b2
i + ε is differentiable for ε > 0.

It can be shown similar to the proof of Theorem 3.23 that

a + b −
√

a2 + b2 + ε = 0 ⇔ a > 0, b > 0, ab = ε/2.

Assume that the functions F, Gi , f, gi are sufficiently smooth, T = R
m, X = R

n .
Using the function κε

i (·, ·), Fukushima and Pang [121] replace problem (3.2) by

F(x, y) → min

G(x) ≤ 0,

∇y f (x, y)+ λ�∇y g(x, y) = 0, (3.48)

Φε(x, y, λ) = 0,

where

Φε(x, y, λ) =
⎛

⎜
⎝

κε
1 (λ,−g(x, y))

...

κε
p(λ,−g(x, y))

⎞

⎟
⎠ .

Problem (3.48) is solved for ε ↓ 0. For a practical realization of this, a sequence
{εk}∞k=1 is (carefully) selected, problem (3.48) is solved for ε = εk and all k. Thus,
a sequence of optimal solutions {(xk, yk, λk)}∞k=1 is computed. If this sequence has
an accumulation point (x, y, λ), properties of this accumulation point need to be
investigated. The formulation (xε, yε, λε) → (x, y, λ) is just an abbreviation for
such a process.

Theorem 3.24 (Fukushima and Pang [121]) Let (xε, yε, λε) be feasible for problem
(3.48) for ε > 0. If (xε, yε, λε) → (x, y, λ) for ε ↓ 0, then (x, y, λ) is feasible for
problem (3.2).

The proof follows from the properties of the function Φε(x, y, λ).
Let

F ε(x, y, λ, α, β, γ ) = F(x, y)+ α�G(x)+ β�L (x, y, λ)− γ�Φε(x, y, λ)

denote some Lagrangian function for problem (3.48) with

L (x, y, λ) = ∇y f (x, y)+ λ�∇y g(x, y).

If some regularity conditions are satisfied at a local optimal solution (xε, yε, λε) of
problem (3.48), then Lagrange multipliers (α, β, γ ) = (αε, βε, γ ε) exist such that
the following Karush-Kuhn-Tucker conditions are satisfied at this point:
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∇F ε(x, y, λ, α, β, γ ) = 0

Φε(x, y, λ) = 0 (3.49)

G(x) ≤ 0, α ≥ 0 α�G(x) = 0

L (x, y, λ) = 0.

The sufficient optimality condition of second order for problem (3.48) is:

d�∇2
x,y,λF (x, y, λ, α, β, γ )d > 0 ∀ d ∈ T ε(x, y, λ), (3.50)

where

T ε(x, y, λ) = {d : ∇Φε(x, y, λ)d = 0, ∇L (x, y, λ)d = 0,

(∇G Iε (x), 0, 0)d = 0}

with Iε = { j : G j (xε) = 0}.
We need one further assumption. Suppose that (xε, yε, λε) → (x, y, λ) for

ε ↓ 0. Then it follows from the formula of the generalized Jacobian ∂ClΦε(x, y, λ) of
locally Lipschitz continuous functions and Rademacher’s theorem (see Clarke [42])
that each accumulation point r i of∇Φε

i (xε, yε, λε) belongs to the set ∂ClΦ0
i (x, y, λ)

and is, hence, represented by

r i = ξi (0 0 ei�)− ηi (∇gi (x, y) 0),

where ei is the i th unit vector and (1− ξi )
2+ (1−ηi )

2 ≤ 1. We say that (xε, yε, λε)

is asymptotically weakly nondegenerate if neither ξi nor ηi vanishes for any accu-
mulation point r i . Clearly, (xε, yε, λε) is asymptotically weakly nondegenerate if
I00(x, y, λ) = ∅ (see page 63 for the definition of the set I00(x, y, λ)).

Theorem 3.25 (Fukushima and Pang [121]) Let (xε, yε, λε) together with multi-
pliers (αε, βε, γ ε) satisfy the Karush-Kuhn-Tucker conditions (3.49) and the suffi-
cient optimality conditions of second order (3.50) for problem (3.48). Furthermore,
let {(xε, yε, λε, αε, βε, γ ε)}ε↓0 converge to (x, y, λ, α, β, γ ) as ε ↓ 0. If (MPEC-
LICQ) holds at (x, y, λ) for problem (3.2) and (xε, yε, λε) is asymptotically weakly
nondegenerate, then (x, y, λ) is a B-stationary point of problem (3.2).

Proof First, using the Karush-Kuhn-Tucker conditions for problem (3.48) and the
formula for the generalized derivative in the sense of Clarke we obtain

(∇F(x, y) 0) + α�(∇G(x) 0 0)+ β�∇L (x, y, λ)

−
∑

i∈I00(x,y,λ)

ξiγi (0 0 ei�)+
∑

i∈I00(x,y,λ)

ηiγi (∇gi (x, y) 0)

−
∑

i∈I−0(x,y,λ)

γi (0 0 ei�)+
∑

i∈I0+(x,y,λ)

γi (∇gi (x, y) 0) = 0.
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Moreover, the point (x, y, λ) is feasible and the complementarity slackness condi-
tions with respect to the constraints G(x) ≤ 0 hold. Here, all gradients are taken
with respect to x, y, λ. To show that these conditions imply the Karush-Kuhn-Tucker
conditions of the relaxed problem

F(x, y) → min

G(x) ≤ 0

0 = ∇y f (x, y)+ λ�∇y g(x, y) (3.51)

λi = 0, ∀ i ∈ I−0(x, y, λ)

gi (x, y) = 0, ∀ i ∈ I0+(x, y, λ)

λi ≥ 0, i ∈ I0+(x, y, λ) ∪ I00(x, y, λ)

gi (x, y) ≤ 0, i ∈ I−0(x, y, λ) ∪ I00(x, y, λ)

we need to verify that νi = ηiγi ≥ 0 and ζi = ξiγi ≥ 0 for all i ∈ I00(x, y, λ).
This can be shown by contradiction using (LICQ) together with ξi > 0, ηi > 0 due
to asymptotical weak nondegeneracy of (xε, yε, λε). For details see Fukushima and
Pang [121].

B-stationarity of the point (x, y, λ) follows by Luo et al. [208, Proposition 4.3.7],
since this point is a Karush-Kuhn-Tucker point for the relaxed problem (3.51) and
the (MPEC-LICQ) is satisfied. �

3.5.2.5 Application of Algorithms for Smooth Nonlinear Optimization

Convergence of algorithms for smooth optimization problems is usually shown using
regularity assumptions. Unfortunately, as mentioned in Theorem 3.14 standard con-
straint qualifications in nonlinear optimization are violated in all feasible points
of the problem (3.2). Nevertheless, computational experiments and also theoreti-
cal investigations show encouraging convergence properties of some algorithms for
smooth optimization, see Fletcher et al. [115, 116]. Anitescu [3] applies a sequential
quadratic optimization algorithm to problem (3.2) and mentions that the direction
finding problems often have an empty feasible set if the Mangasarian-Fromovitz con-
straint qualification is not satisfied at the solution. Hence, this algorithm is applied
to a relaxation of problem (3.2). To explain this idea, consider again a problem with
simple complementarity constraints [cf. problem (3.40)]:

min{ f (x) : c(x) = 0, w(x) ≤ 0, x1 ≥ 0, x2 ≥ 0, x�1 x2 = 0}, (3.52)

where f : R2n → R, c : R2n → R
q and w : R2n → R

p are sufficiently smooth
functions throughout this subsection and x = (x1 x2)

�. It has been shown in Scheel
and Scholtes [280], that (MPEC-LICQ) at a local optimal solution x of (3.40) implies
(LICQ) at x in the relaxed problem (3.42) and, hence, this problem has then unique
Lagrange multipliers at x .
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To derive conditions guaranteeing these assumptions, Anitescu [3] applies a
penalty function approach to problem (3.52). Let

p∞(x) :=
p∑

i=1

max{0, wi (x)} +
q∑

i=1

|ci (x)| + |x�1 x2|

be this penalty function. Then, the penalty function approach for this problem consists
of solving

min{ f (x)+ ζ∞ p∞(x) : x ≥ 0} (3.53)

for 0 ≤ ζ∞ < ∞. A realization of this approach clearly means that a sequence
{ζk}∞k=1 is (carefully) selected and problem (3.53) is solved for each ζ∞ = ζk ,
k = 1, . . . ,∞. Thus, a sequence {xk}∞k=1 is computed. If this sequence has an
accumulation point x , properties of this accumulation point need to be investigated.
It will be shown in the following that (3.53) is an exact penalty function, which means
that ζk does not need to go to infinity, the sequence {xk}∞k=1 is finite.

Consider the following

Condition (A1) Let x̂ be an optimal solution of problem (3.52). The set
Λ̂(̂x) = {(λ, μ, γ ) : ∇ L̂ (̂x, λ, μ, γ ) = 0, λ ≥ 0, λ�w(̂x) = 0}
of Lagrange multipliers for problem (3.52) is not empty, where
L̂(x, λ, μ, γ ) = f (x)+ λ�w(x)+ μ�c(x)+ γ x�1 x2.

This assumption is satisfied e.g. under (MPEC-LICQ), see Scheel and Scholtes
[280].

Theorem 3.26 (Anitescu [3]) If condition (A1) is satisfied, problem (3.53) is an
exact penalty function approach to problem (3.52), i.e. there exists ζ 0∞ < ∞ such
that, for each ζ∞ ≥ ζ 0∞, each optimal solution of problem (3.52) is also an optimal
solution of problem (3.53).

Proof Let x̃ be an optimal solution of problem (3.53), take (λ, μ, γ ) ∈ Λ̂(̂x) and

ζ 0∞ ≥ max{λ1, . . . , λp, |μ1|, . . . , |μq |, |γ |}

as well as μi = |μi |. Then,

f (̃x)+ ζ∞ p∞(̃x) ≤ f (̂x) = L̂ (̂x, λ, μ, γ ) ≤ L̂(x, λ, μ, γ )

= f (x)+ λ�w(x)+ μ�c(x)+ γ x�1 x2

≤ f (x)+ λ�w(x)+ μ�|c(x)| + |γ ||x�1 x2|
≤ f (x)+ ζ 0∞ p∞(x) ≤ f (x)+ ζ∞ p∞(x)

for all optimal solutions x̂ of problem (3.52), x ∈ R
2n . �
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Problem (3.53) can equivalently be written as

f (x)+ ζ∞θ → min

wi (x) ≤ θ, i = 1, . . . , p

|ci (x)| ≤ θ, i = 1, . . . , q (3.54)

|x�1 x2| ≤ θ

x, θ ≥ 0.

Consider the quadratic growth condition

(QGC) There exists σ such that

max{ f (x)− f (x), p∞(x)} ≥ σ‖x − x‖2, ∀ x sufficiently close to x

is satisfied at each (local) optimal solution x of problem (3.52).

For smooth problems the quadratic growth condition is equivalent to a sufficient
optimality condition of second order, see e.g. Bonnans and Shapiro [23].

Theorem 3.27 (Anitescu [3]) Let assumption (A1) together with the quadratic
growth condition be satisfied for problem (3.52) at an optimal solution x. Then,
(x, 0) is an isolated local minimum of problem (3.54) and (MFCQ) as well as the
quadratic growth condition are satisfied there.

Problem (3.54) can be solved using sequential quadratic optimization.
The sequential quadratic optimization algorithm for an optimization problem with

equality and inequality constraints

min{ f̃ (x) : g̃(x) ≤ 0, h̃(x) = 0} (3.55)

with sufficiently smooth functions f̃ : Rn → R, g̃ : Rn → R
p, h̃ : Rn → R

q

solves quadratic direction finding problems

∇ f̃ (xk)(x − xk)+ 1

2
(x − xk)�Hk(x − xk) → min

g̃i (xk)+∇ g̃i (xk)(x − xk) ≤ 0, i = 1, . . . , p (3.56)

h̃i (xk)+∇ h̃i (xk)(x − xk) ≤ 0, i = 1, . . . , q

in all iterations. Here, Hk is in general a quadratic, positive definite matrix approxi-
mating the Hessian matrix of the Lagrangian of problem (3.55). This algorithm can
be formulated as follows, if Hk = ∇2

xx L̃(xk, λk, μk) is used (see e.g. Geiger and
Kanzow [128]):
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Algorithm: [SQP algorithm solving problem (3.55)]

Step 0: Select (x0, λ0, μ0) ∈ R
n × R

p × R
q , set k := 0.

Step 1: If (xk , λk , μk) satisfies the Karush-Kuhn-Tucker
conditions of problem (3.55), stop.

Step 2: Solve problem (3.56). Let (xk+1, λk+1, μk+1) be a KKT
point of this problem.
If this problem has more than one KKT point take one
whose distance

‖(xk+1, λk+1, μk+1)− (xk , λk , μk)‖

is minimal.
Step 4: Set k := k + 1, goto Step 1.

If this algorithm is applied to problem (3.55) we obtain

Theorem 3.28 (Geiger and Kanzow [128]) Let (x, λ, μ) be a KKT point of problem
(3.55) and let the following assumptions be satisfied:

1. We have g̃i (x)+ λi �= 0, i = 1, . . . , p (strict complementarity slackness),
2. (LICQ) is satisfied,
3. The sufficient optimality condition of second order is valid at x.

Then there is ε > 0 such that the following conditions are satisfied, provided
‖(x0, λ0, μ0)− (x, λ, μ)‖ ≤ ε:

1. The sequence {(xk, λk, μk)}∞k=1 converges superlinearly to (x, λ, μ), i.e. there
exists a sequence {εk}∞k=1 converging to zero from above such that

‖(xk+1, λk+1, μk+1)− (x, λ, μ)‖ ≤ εk‖(xk, λk, μk)− (x, λ, μ)‖

for all k.
2. If the Hessian matrices of all functions f̃ , g̃i , h̃ j are locally Lipschitz continuous,

the convergence rate is quadratic, which means that there exists 0 < C < ∞
such that

‖(xk+1, λk+1, μk+1)− (x, λ, μ)‖ ≤ C‖(xk, λk, μk)− (x, λ, μ)‖2

for all k.

The difficulty in applying this result to solving mathematical programs with equi-
librium constraints is that the assumptions cannot be satisfied, because the linear
independence constraint qualification is violated in every feasible point. To circum-
vent this difficulty, Anitescu [3] suggests solving the penalized problem (3.53) or
an equivalent problem (3.54). The direction finding problem for problem (3.53) is
(3.57):
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0.5 d�Ŵ d +∇ f (x)d + ζ∞(θ + dθ ) → min
d,dθ

,

|ci (x)+ ∇ci (x)d| ≤ θ + dθ , i = 1, . . . , q, (3.57)

wi (x)+∇wi (x) ≤ θ + dθ , i = 1, . . . , p

x2t + d2t ≥ 0, t = 1, . . . , n,

x1t + d1t ≥ 0, t = 1, . . . , n,

x�1 d2 + x�2 d1 + x�1 x2 ≤ θ + dθ ,

θ + dθ ≥ 0.

The direction finding problem for problem (3.52) reads as

∇ f (x)d + 1

2
d�Ŵ d → min

wi (x)+∇wi (x)d ≤ 0, i = 1, . . . , p,

ci (x)+ ∇ci (x)d = 0, i = 1, . . . , q (3.58)

x1t + d1t ≤ 0, t = 1, . . . , n

x2t + d2t ≤ 0, t = 1, . . . , n

x�1 x2 + x�1 d2 + x�2 d1 ≤ 0.

This direction finding problem can be used whenever it has a feasible solution.
Then, the idea in Anitescu [3] is to use the following algorithm:

Algorithm: Start with x0, ζ∞ < ∞, k = 1.
1. Compute a KKT point of problem (3.58).
2. If the norm of the multipliers is not larger than

the penalty parameter and problem (3.58) has a KKT
point, set xk+1 = xk + dk , k := k + 1 and goto Step 1.

3. Otherwise compute a KKT point of problem (3.57), set
xk+1 = xk + dk , θk+1 = θk + dk

θ , k := k + 1.

4. If the norm of (dk , dk
θ ) is not too large, enlarge ζ∞.

Goto Step 3.

For constructing the matrices Ŵ either the Hessian of the Lagrangian of the
respective optimization problem or an estimate (which needs to be a positive definite
matrix) of it (using an estimate of the Lagrange multiplier of this problem) can be
used. Step 3 is called the elastic mode in the following theorem.

The sufficient optimality condition of second order for an MPEC (MPEC-SOSC)
demands that the Hessian matrix of the Lagrangian function of the relaxed MPEC
problem (where the complementarity constraint is dropped) with respect to x is
positive definite (which means d�∇2

xxL (x, λ, μ)d > 0) for all directions d in the
critical cone of this problem.
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Theorem 3.29 (Anitescu [3]) Let (MPEC-LICQ) and (MPEC-SOSC) be satisfied
as well as strict complementarity slackness (i.e. μ1t > 0 and μ2t > 0 for all
t ∈ {1, . . . , n} with x1t = x2t = 0 where μi t are the multipliers to xit and wi (x)+
λi �= 0 for all i = 1, . . . , p) be satisfied near a solution x of problem (3.40). Assume
that the starting point x0 is sufficiently close to x, the Lagrange multipliers used
for computing Ŵ are sufficiently close to (λ, μ, γ ), and θ > 0 is sufficiently small.
Then, {xk}∞k=1 converges to x superlinearly if the elastic mode is never used and
{(xk, θk)}∞k=1 converges superlinearly to (x, 0) in the other case, when the elastic
mode is used in all iterations beginning at iteration k0.

The application of the elastic mode SQP algorithm is closely related to the use of
problem (3.44) to solve the bilevel optimization problem. The condition

∇y L(x, y, λ) = ∇y f (x, y)+ λ�∇y g(x, y) = 0

is a nonlinear equation in the classical KKT transformation of the bilevel optimization
problem (3.2). In problem (3.40) it is part of the constraints c(x) = 0. The use of
descent algorithms as the feasible directions method in the Paragraph “Bouligand
stationary solution” starting on page 73 or the SQP algorithm can lead to direction
finding problems which do not have a solution or to convergence of the computed
sequence {xk, yk, λk}∞k=1 to a point (x, y, λ) which is a stationary solution for the
MPEC but is not related to a stationary point of the bilevel optimization problem. The
constraint ∇y L(x, y, λ) = 0 was relaxed to ‖∇y L(x, y, λ)‖ ≤ ε in the Paragraph
“Bouligand stationary solution” to circumvent this situation. The same is done in the
elastic mode SQP in this section. Hence, the use of the elastic mode SQP approach
is also possible for solving the bilevel optimization problem. Applied at the same
point both direction finding problems will compute a direction of descent at the same
time. Under the used assumptions both approaches avoid convergence to a stationary
solution of the MPEC which is not related to a stationary solution of the bilevel
optimization problem.

In Coulibaly and Orban [46] an elastic interior point algorithm is suggested con-
verging to a strongly stationary solution of problem (3.40) under certain assumptions.
As a special feature the algorithm detects if the (MPEC-MFCQ) is violated at the
limit point of the sequence of points generated.

3.6 The Optimal Value Transformation

In this section the optimal value function

ϕ(x) := min
y
{ f (x, y) : g(x, y) ≤ 0, y ∈ T }

is used to transform the bilevel optimization problem (1.4) into problem (3.7):

http://dx.doi.org/10.1007/978-3-662-45827-3_1
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F(x, y) → min

G(x) ≤ 0

f (x, y) ≤ ϕ(x)

g(x, y) ≤ 0, y ∈ T,

x ∈ X.

Recall that both formulations (1.4) and (3.7) are fully equivalent and that problem
(3.7) is a nonsmooth, nonconvex optimization problem.

Theorem 3.30 (Ye and Zhu [325]; Pilecka [264]) If the function ϕ(·) is locally
Lipschitz continuous and the functions F, G, f, g are at least differentiable, T ⊆ R

n

is convex, then the (nonsmooth) Mangasarian-Fromovitz constraint qualification is
violated at every feasible point of the problem (3.7).

Proof Problem (3.7) is a Lipschitz optimization problem and we can apply necessary
optimality conditions from Lipschitz optimization, see Clarke [42]. Let (x0, y0) be
any feasible point of problem (3.7). Then, this point is a global optimal solution of
the problem

min
x,y
{ f (x, y)− ϕ(x) : g(x, y) ≤ 0, y ∈ T },

since, by definition of the optimal value function ϕ(·) of the lower level optimization
problem, the optimal function value of this problem is zero. This value is attained by
feasibility of the point (x0, y0) to (1.2). Thus, there exist λ0 ≥ 0, λ ∈ R

p
+ such that

0 ∈ λ0∇ f (x0, y0)+ λ�∇g(x0, y0)+ {0} × NT (y0).

Hence, there exists an abnormal Lagrange multiplier for problem (3.7) which is
equivalent to violation of the (nonsmooth) Mangasarian-Fromovitz constraint qual-
ification, see Ye and Zhu [325]. �

3.6.1 Necessary Optimality Conditions

Problem (3.7) can be transformed into an optimization problem where the nonsmooth
function appears in the objective if it is partially calm.

Definition 3.7 (Ye and Zhu [325]) Let (x0, y0) be a (local) optimal solution of
problem (3.7). Then, this problem is called partially calm at (x0, y0) if there exists
κ > 0 and an open neighborhood W (x0, y0, 0) ⊂ R

n × R
m × R such that the

following condition is satisfied: For each feasible solution (x ′, y′) of the problem

http://dx.doi.org/10.1007/978-3-662-45827-3_1
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F(x, y) → min

G(x) ≤ 0

f (x, y)− ϕ(x)+ u = 0 (3.59)

g(x, y) ≤ 0, y ∈ T,

x ∈ X.

for u = u′ with (x ′, y′, u′) ∈ W (x0, y0, 0) the inequality

F(x ′, y′)− F(x0, y0)+ κ|u′| ≥ 0

is satisfied.

Using partial calmness it is easy to see that the (local) optimal solution (x0, y0) is
also a (local) optimal solution of the problem

F(x, y)+ γ ( f (x, y)− ϕ(x)) → min
x,y

G(x) ≤ 0 (3.60)

g(x, y) ≤ 0, y ∈ T,

x ∈ X.

for some finite γ > 0.
This problem can now be used to derive necessary conditions for a local optimal

solution of the optimistic bilevel optimization problem (1.4).

Theorem 3.31 (Ye and Zhu [325]) Assume that all the functions F, G, f, g are
sufficiently smooth, the sets T = R

m, X = R
n and that the Mangasarian-Fromovitz

constraint qualification is satisfied for the sets {x : G(x) ≤ 0} and {y : g(x0, y) ≤ 0}
at all points in these sets, where x0 with G(x0) ≤ 0 is arbitrary. Let problem (3.7)
be partially calm at a local optimal solution (x, y) and let the set {(x, y) : g(x, y) ≤
0, G(x) ≤ 0} be compact. Then, there exist γ > 0, α ∈ R

p
+, β ∈ R

q
+ such that

0 ∈ ∇F(x, y)+ γ (∇ f (x, y)− ∂Clϕ(x)× {0})+ α�∇g(x, y)+ β�∇G(x)× {0}
0 = α�g(x, y) (3.61)

0 = β�G(x).

Proof Due to partial calmness, (x, y) is a local optimal solution of problem (3.60)
for some γ > 0. By Theorem 3.5, this problem is a Lipschitz optimization problem.
Due to the Mangasarian-Fromovitz constraint qualifications, there does not exist an
abnormal multiplier. Then the result follows by applying the necessary optimality
conditions for Lipschitz optimization problems as given in Clarke [42]. �

Using Theorem 3.6 it is possible to formulate optimality conditions using the
functions F, G, f, g only. Necessary for local optimality of the point (x, y) is the

http://dx.doi.org/10.1007/978-3-662-45827-3_1


3.6 The Optimal Value Transformation 87

existence of γ > 0, α ∈ R
p
+, β ∈ R

q
+, ζ ∈ R

n+1+ ,
∑n+1

k=1 ζk = 1 and yk ∈
Ψ (x), λk ∈ Λ(x, yk), k = 1, . . . , n + 1 such that the following conditions are
satisfied:

∇x F(x, y)+ γ (∇x f (x, y)−
n+1∑

k=1

ζk∇x L(x, yk , λk))+ α�∇x g(x, y)+ β�∇x G(x) = 0

∇y F(x, y)+ γ∇y f (x, y)+ α�∇y g(x, y) = 0

α�g(x, y) = 0

β�G(x) = 0.

Here we used Caratheodory’s theorem to treat the convex hull on the right-hand side
of the inclusion (3.9).

If Ψ (x) reduces to a singleton {y} = Ψ (x) then we need only one multiplier
ζ = 1 since the set Λ(x, y) is convex. Then, the first equation of the last system of
equations reduces to

∇x F(x, y)+ (α − γ λ)�∇x g(x, y)+ β�∇x G(x) = 0. (3.62)

This result has been shown in Dempe et al. [56] under the weaker assumption of
inner semicontinuity of the solution set mapping Ψ (·) at the point (x, y).

In the case when the functions f, gi are jointly convex in both x and y the optimal
value function ϕ(·) is also convex. Then the union over all optimal solutions in the
lower level problem (1.1) is not necessary in the formula (3.9) for the generalized
gradient of ϕ(·), see e.g. Shimizu et. al [288]. Since an arbitrary optimal solution of
the lower level problem can then be used in the formula (3.9) an analogous result to
(3.62) can be obtained.

3.6.2 Solution Algorithms

3.6.2.1 Jointly Convex Lower Level Problem

First consider the case when the functions f, gi in the lower level problem (1.1)
are jointly convex and T = R

m . The optimal value function ϕ(x) = miny{ f (x, y) :
g(x, y) ≤ 0} is also convex in this case. Let X be a polytop, i.e. a bounded polyhedron
and let X = {xi : i = 1, . . . , s} be the set of its vertices:

X = convX .

For each x ∈ X there exist μi ≥ 0,
∑s

i=1 μi = 1 such that x =∑s
i=1 μi x i and we

can apply a variable transformation substituting the variables x in problem (1.4) by
μ. Moreover, by convexity,

http://dx.doi.org/10.1007/978-3-662-45827-3_1
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ϕ(x) ≤
s∑

i=1

μiϕ(xi ).

Note that for a fixed x the vector μ with x =∑s
i=1 μi x i is in general not unique and

that this formula is correct for all μ ≥ 0,
∑s

i=1 μi = 1. The best bound for ϕ(·) is
the function

ξ(x) = min
μ

{
s∑

i=1

μiϕ(xi ) : μ ≥ 0,

s∑

i=1

μi = 1, x =
s∑

i=1

μi x i

}

. (3.63)

This implies that the feasible set of problem (3.7) is a subset of the feasible set of
the following optimization problem:

F(x, y) → min
x,y

G(x) ≤ 0 (3.64)

f (x, y) ≤ ξ(x)

g(x, y) ≤ 0

x ∈ X.

Thus, the optimal objective function value of problem (3.64) is not larger than the
optimal objective function value of problem (3.7). If (x0, y0) is an optimal solution
of problem (3.64) it is also optimal for problem (3.7) provided it is feasible for this
problem. In the opposite case, adding x0 to the set X we obtain a better approxima-
tion of the function ϕ(·) and can, hence, proceed with solving problem (3.64) using
an updated function ξ(·).

This leads to the following

Algorithm for bilevel optimization problems with jointly convex lower level
problems:

Algorithm: Start Compute the set X of all vertices of the
set X, compute the function ξ(·), t := 1.

Step 1 Solve problem (3.64). Let (xt , yt ) be a global optimal
solution.

Step 2 If yt ∈ Ψ (xt ), stop, (xt , yt ) is the solution of the
problem (3.7). Otherwise, set X :=X ∪ {xt }, compute
ϕ(xt ), update ξ(·), set t := t + 1 and goto Step 1.

Theorem 3.32 Assume that the above algorithm computes an infinite sequence
{(xt , yt )}∞t=1, that the set {(x, y) : G(x) ≤ 0, g(x, y) ≤ 0, x ∈ X} is not empty and
compact and that ∀ x̃ ∈ X there exists a point (̃x, ỹ) such that g(̃x, ỹ) < 0. Then,

1. the sequence {(xt , yt )}∞t=1 has accumulation points (x, y),
2. each accumulation point of this sequence is a globally optimal solution of prob-

lem (3.7).
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Proof The assumed existence of the point (̃x, ỹ) means that the Slater’s condition
is satisfied for all x ∈ X with G(x) ≤ 0 for the convex lower level problem.
This implies that the optimal value function ϕ(·) is Lipschitz continuous due to the
compactness assumption. Hence, the set M := {(x, y) : G(x) ≤ 0, g(x, y) ≤ 0,

f (x, y) ≤ ϕ(x), x ∈ X} is also compact and the sequence {(xt , yt )}∞t=1 ⊂ M has
accumulation points.

Denote the set X in iteration t of the algorithm by X t and let st be the number
of its elements.

Let (x, y) be an accumulation point of this sequence and let

ξ t (x) = min
μ

⎧
⎨

⎩

st∑

i=1

μiϕ(xi ) : μi ≥ 0, i = 1, . . . , st ,

st∑

i=1

μi = 1,

st∑

i=1

μi x i = x

⎫
⎬

⎭

(3.65)

denote the approximation of the function ϕ(x) in iteration t of the algorithm. Then,
the sequence {ξ t (x)} converges uniformly to ξ(x) and ϕ(xt ) = ξ(xt ) = f (xt , yt )

for all t , where yt is computed in Step 2 of the algorithm as an optimal solution of
the lower level problem. Using the same idea as in the proof of Theorem 2.8 we
can show that the point (x, y) is feasible for problem (3.7). Thus, this point is also a
global optimal solution of this problem. This implies that the proof of the theorem
is complete. �

Problem (3.65) is a linear optimization problem and for each x there is a set of
basic variables μi , i ∈ B(x) ⊆ {1, . . . , st } such that x = ∑

i∈B(x) μi x i with
ξ(x) = ∑

i∈B(x) μiϕ(xi ). Consider the sets V (x) = {xi : i ∈ B(x)} ⊆ X t . By
parametric linear optimization, the convex hull convV (x) is the so-called region of
stability, i.e. the set of all points x for which the set of basic variables in an optimal
solution of problem (3.65) remains constant. ξ t (·) is affine linear over convV (x). If
we consider all x ∈ X , a finite number of subsets of the set X t arises, the union if
which equals X t . Denote these sets as Vkt , k = 1, . . . , wt .

Using the sets Vkt and linear parametric optimization, problem (3.64) can be
decomposed into a number of problems

F(x, y) → min
μ,y

G(x) ≤ 0 (3.66)

f (x, y) ≤ ξ(x)

g(x, y) ≤ 0

x =
|Vkt |∑

i=1

μi xki ∈ convVkt := conv {xkti , i = 1, . . . , |Vkt |}

ξ(x) =
|Vkt |∑

i=1

μiϕ(xkti )

http://dx.doi.org/10.1007/978-3-662-45827-3_2


90 3 Reduction of Bilevel Programming to a Single Level Problem

with Vkt = {xkti , i = 1, . . . , |Vkt |}. Here, clearly, x and ξ(x) are computed using
the same values for μi . Then, an optimal solution of problem (3.64) is one of the
optimal solutions of the problems (3.66), especially the best one. If it is an optimal
solution of problem (3.66) with k = k, then only the set Vkt needs to be updated and
decomposed into some subsets.

Summing up, this leads to an enumerative algorithm which can be improved to
an algorithm of branch-and-bound type if upper bounds of the optimal objective
function value of problem (3.7) in form of function values for feasible solutions
(e.g. obtained by computing yt ∈ Ψ (xt ) and F(xt , yt )) are used.

The following example illustrates this algorithm.

Example 3.5 Consider the lower level problem

Ψ (x) = Argmin
y

{−y : x + y ≤ 2, −x + y ≤ 2, y ≥ 0}

and the bilevel optimization problem

(x − 1)2 + y2 → min

−2 ≤ x ≤ 2

y ∈ Ψ (x)

The feasible set and local and global optimal solutions of this problem are depicted
in Fig. 3.5 In the first step of the algorithm we need to compute a global optimal
solution of the problem

(x − 1)2 + y2 → min

−2 ≤ x ≤ 2

x + y ≤ 2,

−x + y ≤ 2,

y ≥ 0

Fig. 3.5 Feasible set and
optimal solutions of the
example

2

2-2

feasible set
bilevel problem

Level sets upper level objective function

(x ,y )* *
global solution

(x ,y )1 1
local solution
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2

2-2

feasible set first problem

Level sets upper level objective function
global solution

Fig. 3.6 Feasible set and optimal solutions of the first subproblem

The optimal solution of this problem is x = 1, y = 0, see Fig. 3.6 Then, the first
approximation of the optimal value function ϕ(x) := miny{−y : x + y ≤ 2, −x +
y ≤ 2, y ≥ 0} is

ξ(x) = min{−2

3
x − 1

3
, x − 2}

and we have to solve the problem

(x − 1)2 + y2 → min

−2 ≤ x ≤ 2

x + y ≤ 2,

−x + y ≤ 2,

y ≥ 0

−y ≤ min{−2

3
x − 1

3
, x − 2}

globally. This is depicted in Fig. 3.7. The global optimal solution of this problem is
also globally optimal for the bilevel optimization problem. �

3.6.2.2 A Discontinuous Approximation of the Optimal Value Function

Mitsos et al. consider in [234] an algorithm which is able to approximate a global
optimal solution of the bilevel optimization problem even if the lower level prob-
lem is not a convex parametric optimization problem. This is possible using the
optimal value function of the lower level problem and a piecewise, yet discontinu-
ous, approximation of the function ϕ(·).
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Fig. 3.7 Feasible set and
optimal solutions of the
second subproblem

2

2-2

feasible set second problem

Level sets upper level objective function

global solution

First approximation
optimal value function

For that, consider the optimistic bilevel optimization problem (1.1), (1.4) with
T = R

m in its transformation using the optimal value function of the lower level
problem (3.7). Let (x, y) ∈ X×R

m be a feasible point for problem (3.7) and ŷ1 ∈ R
m

be such that gi (x, ŷ1) < 0 for i = 1, . . . , p and f (x, ŷ1) ≤ ϕ(x)+ε for some (fixed)
small ε > 0.

Such a point exists e.g. if the Mangasarian-Fromovitz constraint qualification is
satisfied at (x, y) for the lower level problem, all functions f, gi are sufficiently
smooth and

W := {(x, y) : g(x, y) ≤ 0, G(x) ≤ 0, x ∈ X}
is not empty and compact. Then, there is a neighborhood V1 of x with

x ∈ int V1 ∩ {x ∈ X : G(x) ≤ 0}
such that

ŷ1 ∈ Y (x) := {y : g(x, y) ≤ 0}, ∀ x ∈ V1. (3.67)

To find the point ŷ1, the problem

min
z,u
{u : gi (x, z) ≤ u, i = 1, . . . , p, f (x, z) ≤ ϕ(x)+ ε + u} (3.68)

can be solved. Then, since ϕ(·) is continuous under the above assumptions (see The-
orem 3.3) around x , the set V1 exists. Mitsos et al. [234] compute an inner approxi-
mation of the largest possible set V1. Denote this set again by V1. Hence, the optimal
function value of the problem

F(x, y) → min
x,y

G(x) ≤ 0

x ∈ V1 ⇒ f (x, y) ≤ f (x, ŷ1) (3.69)

g(x, y) ≤ 0

x ∈ X

http://dx.doi.org/10.1007/978-3-662-45827-3_1
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is not larger than that of problem (3.7). Note that the second constraint in this problem
is an implication: if x ∈ V1, then f (x, y) ≤ f (x, ŷ1). It is not a constraint which
needs to be satisfied for all x ∈ V1. If an optimal solution of problem (3.69) is feasible
for problem (3.7), then it is globally optimal for this problem. Otherwise let (x, ŷ2)

be an optimal solution of problem (3.69) and use ŷ2 to construct the next set V2 as
above. In that case the implication

x ∈ V2 ⇒ f (x, y) ≤ f (x, ŷ2)

is added to problem (3.69) and the process is repeated.
This implies that a sequence of problems

F(x, y) → min
x,y

G(x) ≤ 0

x ∈ Vk ⇒ f (x, y) ≤ f (x, ŷk), k = 1, . . . , q (3.70)

g(x, y) ≤ 0

x ∈ X

needs to be solved globally, where the points ŷk are computed as solutions of the
problems (3.68) and the sets V k satisfy the respective assumption in (3.67).

Assume that the algorithm computes infinite sequences of points {(xk, yk)}∞k=1 as
global optimal solutions of the problem (3.70) and {(xk, ỹk)}∞k=1 with ỹk ∈ Ψ (xk)

for all k. Then, since (xk, yk) ∈ W, (xk, ỹk) ∈ W and the set W is compact, both
sequences have accumulation points (x, y) and (x, ỹ). Moreover, the point (x, ỹ) is
feasible for problem (3.7) by continuity of the function ϕ(·).

The feasible set of problem (3.70) needs not to be closed. Due to boundedness of
the feasible set of problem (3.70) the infimal objective function value ξq is finite and
it is possible to compute points (xq , yq) which are feasible for this problem having
an objective function value close to ξq :

F(xq , yq) ≤ ξq + εBL .

Moreover, since the feasible set of problem (3.70) becomes smaller and smaller
during the iterations, the sequence {ξq}∞q=1 is not decreasing.

It is also possible to compute the sequence of best objective function values
{θq}∞q=1 obtained for feasible solutions for problem (3.7):

θq = min{F(xk, ỹk) : k = 1, . . . , q}.

This sequence is not increasing. Moreover,

ξq ≤ θq ∀ q.
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If both sequences tend to the common limit κ then, κ equals the global optimal func-
tion value of the problem (3.7) and each accumulation point (̃x, ỹ) of the sequence
{(xq , ỹq)}∞q=1 with F(xq , ỹq) = θq for all q is a global optimum. Feasibility of this
point is a consequence of continuity of the optimal value function ϕ(·). This algorithm
is investigated in Mitsos et al. [234], where it is shown that the algorithm computes
an almost global optimal solution of the bilevel optimization problem within a finite
number of iterations.

Theorem 3.33 (Mitsos et al. [234]) Consider the bilevel optimization problem (1.4)
with sufficiently smooth functions F, f, G, g and a closed set X. Let the set W be
nonempty and compact, assume that the Mangasarian-Fromovitz constraint quali-
fication is satisfied for the lower level problem for all x ∈ X with G(x) ≤ 0 and
y ∈ Y (x). Let εBL > 0, ε > 0 be sufficiently small. Then, the described algorithm
converges to an ε-feasible, εBL-optimal solution.

Proof We first show that the sets Vk have nonempty interior and their diameter
max{‖x − x‖ : x, x ∈ Vq} does not tend to zero. Indeed, by continuity of gi , f, ϕ
and ε > 0, compactness of W and continuity of the optimal value function of problem
(3.68) with respect to x the optimal function value of this problem is strictly less
than zero. Hence, again by boundenness of W there is u < 0 such that this optimal
function value is not larger than u for all x . This implies that the set

{x : gi (x, ŷ1) ≤ 0, f (x, ŷ1) ≤ ϕ(x)+ ε, G(x) ≤ 0}

contains x + {z : ‖z‖ ≤ δ1} and δ1 does not depend on x .
Consider an infinite sequence {(xk, yk)}∞k=1 of global optimal solutions of prob-

lem (3.70). Using a compactness argument it can then be shown that the infinite
subsequence of {xq}∞q=1 has the property that all its elements belong to one of the
sets Vq . Let, without loss of generality, {xq}∞q=1 ⊂ Vq . This implies that

f (xq+1, yq+1) ≤ f (xq+1, ŷq) ≤ ϕ(xq)+ ε

by problems (3.68), (3.69). Thus,

f (x, y) ≤ ϕ(x)+ ε.

Let LB = lim
q→∞ ξq . Then,

LB ≥ F(x, y)− εBL.

This implies that (x, y) is a ε-feasible and εBL optimal solution of the bilevel opti-
mization problem. �

In the paper Mitsos et al. [234] the algorithm is investigated under weaker assump-
tions and in combination with a branch-and-bound framework to accelerate the qual-
ity of the obtained solution. Moreover, a method of implementing the implication
constraint in problem (3.70) in algorithms is described.

http://dx.doi.org/10.1007/978-3-662-45827-3_1
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3.7 Primal KKT Transformation

Assume for simplicity throughout this section T = R
m , X = R

n and replace the
optimistic bilevel optimization problem (1.1), (1.4) with (3.1):

min{F(x, y) : G(x) ≤ 0, 0 ∈ ∂y f (x, y)+ NY (x)(y)}.

Following the remarks in Sect. 3.1 assume that the function y �→ f (x, y) is convex
and the feasible set mapping Y is convex-valued. For the existence of an optimal
solution of problem (3.1) we need at least that its feasible set is closed, which by
upper semicontinuity of the mapping (x, y) �→ ∂y f (x, y) (see Rockafellar [272]),
continuity of the functions Gi (x) and closedness of the set X is guaranteed if the
mapping (x, y) �→ Q(x, y) := NY (x)(y) is closed.

Definition 3.8 A point-to-set mapping Γ : Rn ⇒ R
m is called closed at a point

x0 ∈ R
n if for each sequence {xk, yk}∞k=1 ⊆ gph Γ converging to (x0, y0), y0 ∈

Γ (x0) follows.

Theorem 3.34 (Zemkoho [328]) If the mapping Y is convex-valued and lower semi-
continuous at (x0, y0), then Q is closed at this point.

Proof Let {(xk, yk, zk)}∞k=1 ⊆ gph Q converge to (x0, y0, z0). Since Y (xk) is con-
vex we have zk ∈ NY (xk )(yk) iff

zk�(uk − yk) ≤ 0 ∀ uk ∈ Y (xk).

Since Y is lower semicontinuous at (x0, y0), for each u0 ∈ Y (x0) there exists a
sequence {uk}∞k=1 converging to u0 with uk ∈ Y (xk) for all k. This implies z0�(u0−
y0) ≤ 0. Hence, the result follows. �

Note that Y is lower semicontinuous at x0 if the Mangasarian-Fromovitz constraint
qualification (MFCQ) is satisfied at each (x0, y) with y ∈ Y (x0) [see Bank et al. [8,
Theorem 3.1.5)]. Hence, under the assumptions in Theorem 3.34 an optimal solution
of problem (3.1) exists provided its feasible set is bounded.

Following Zemkoho [328] it is possible to derive necessary optimality condi-
tions for problem (3.1) using the coderivative for the mapping Q. One constraint
qualification which is often used in nonsmooth optimization for problems of the type

min
x,y
{F(x, y) : x ∈ X, ρ(x, y) = 0}

is the basic constraint qualification (Mordukhovich [237])

∂ Mρ(x, y) ∩ (−NX×Rm (x, y)) = ∅. (3.71)

To apply it to problem (3.1) set

http://dx.doi.org/10.1007/978-3-662-45827-3_1
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κ(x, y) = (x, y,−∇y f (x, y)), ρ(x, y) = dgph Q(κ(x, y)),

where dA(z) := inf{‖z − u‖ : u ∈ A} is the distance of the point z from the set A
and the equation ρ(x, y) = 0 is equivalent to κ(x, y) ∈ gph Q or −∇y f (x, y) ∈
NY (x)(y). Following Mordukhovich [240]

∂ M (ρ(x, y)) ⊆ ∪{∂ M (u�κ(x, y)) : u ∈ B ∩ Ngph Q(κ(x, y))}, (3.72)

provided that gph Q is locally closed. The next theorem shows that the basic
constraint qualification (3.71) fails for problem (3.1) at every feasible point under a
weak assumption.

Theorem 3.35 (Zemkoho [328]) Let (x, y) be feasible for problem (3.1), where the
lower level problem is a convex optimization problem. Assume that Slater’s condition
is satisfied at x and that equality holds in inclusion (3.72). Then, the Eq. (3.71) is
not satisfied.

Proof Slater’s constraint qualification guarantees local closedness of gph Q thus
validity of the inclusion (3.72). Since equality is assumed in this inclusion we derive
that 0 ∈ ∂ Mρ(x, y) since 0 ∈ Ngph Q(κ(x, y)). Using the same arguments we obtain
0 ∈ NX×Rm (x, y). Hence the result. �

As a constraint qualification we need the notion of a calm point-to-set mapping:

Definition 3.9 A point-to-set mapping Γ : Rn ⇒ R
m is called calm at a point

(x0, y0) ∈ gph Γ if there are neighborhoods U of x0 and V of y0 and a finite
constant L such that

Γ (x) ∩ V ⊆ Γ (x0)+ L‖x − x0‖B ∀ x ∈ U,

where B denotes the unit ball in R
m .

If V = R
m calmness reduces to the upper Lipschitz property used by Robinson in

[269].
Assume throughout this section that the functions f (x, y), gi (x, y) are continu-

ously differentiable. Reformulate problem (3.1) as

min
x,y
{F(x, y) : G(x) ≤ 0,−∇y f (x, y) ∈ Q(x, y)},

or, setting ξ(x, y) := (G(x), x, y,−∇y f (x, y)), Ω = R
q
− × gph Q, as

min
x,y
{F(x, y) : ξ(x, y) ∈ Ω} = min

x,y
{F(x, y) : (x, y) ∈ ξ−1(Ω)}. (3.73)

Theorem 3.36 (Zemkoho [328]) Let (x, y) be a local optimal solution of problem
(3.73), assume that the point-to-set mapping Ξ(u) := {(x, y) : ξ(x, y) + u ∈ Ω}
is calm at (0, x, y) and the function F is locally Lipschitz continuous. Then, there
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exists μ > 0 such that for all r ≥ μ we can find γ = (γ1, γ2, γ3, γ4) ∈ NΩ(ξ(x, y))

with ‖γ ‖ ≤ r such that

0 ∈ ∇F(x, y)+ ∇(γ�ξ)(x, y)+ D∗(x, y,−∇ f (x, y))(γ4).

The proof by Zemkoho in [328] is by verifying that (0, x , y) is a local optimal solution
of the problem

min
r,x,y

{F(x, y)+ r‖u‖ : (x, y) ∈ V, (u, x, y) ∈ gph Ξ} (3.74)

for r ≥ lV lF , where V is a set and lV a constant given by calmness of the mapping
Ξ , lF is the Lipschitz constant of F . Then, using Mordukhovich [242, Chap. 5),

0 ∈ rB× ∂ F(x, y)+ Ngph Ξ(0, x, y).

Here we used that (x, y) ∈ int V . Hence, there exist γ with ‖γ ‖ ≤ r and a point
(α, β) ∈ ∂ F(x, y) such that (−γ,−α,−β) ∈ Ngph Ξ(0, x, y). Using the notion of
the Mordukhovich coderivative

D∗Θ(a, b)(v) := {u : (u,−v) ∈ Ngph Θ(a, b)}

of a mapping Θ : Rp ⇒ R
q at (a, b) ∈ gph Θ and

D∗Ξ(0, x, y)(v) ⊆ {γ ∈ NΩ(ξ(x, y)) : −v ∈ ∂(γ�ξ)(x, y)}
+ D∗(x, y,−∇ f (x, y))(γ4),

see Zemkoho [328, Eq. 3.150), resulting from theorems in Mordukhovich [238], the
theorem follows.

Theorem 3.37 (Theorem 3.4.5 in Zemkoho [328]) Let (x, y) ∈ gph Ψ . If the lower
level problem (1.1) is a convex optimization problem for which the Mangasarian-
Fromovitz constraint qualification (MFCQ) is satisfied at every point (x, y) ∈ gph Y ,
then,

D∗(x, y,−∇y f (x, y))(γ ) ⊆
⋃

λ∈Λ(x,y)

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎜
⎜
⎝

p∑

i=1
λi∇2

xy gi (x, y)γ +
p∑

i=1
βi∇x gi (x, y)

p∑

i=1
λi∇2

yy gi (x, y)γ +
p∑

i=1
βi∇y gi (x, y)

⎞

⎟
⎟
⎠

∣
∣
∣
∣
∣
∣
∣
∣

∇y gI0+(x,y,λ)(x, y)γ = 0, βI−0(x,y,λ) = 0
(βi > 0 ∧ ∇y gi (x, y)γ > 0) ∨ βi∇y gi (x, y)γ = 0) ∀ i ∈ I00(x, y, λ)

⎫
⎪⎪⎬

⎪⎪⎭

http://dx.doi.org/10.1007/978-3-662-45827-3_1
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Proof Using Mordukhovich and Outrata [245] we obtain

D∗(x, y,−∇y f (x, y))γ

⊆
⋃

λ∈Λ(x,y)

{ p∑

i=1

λi∇∇y gi (x, y)γ + ∇y g(x, y)D∗N
R

p
−(g(x, y), λ)(∇y g(x, y)γ )

}

.

Now the result follows analogously to the application of Flegel and Kanzow’s result
in [113] in Theorem 3.18. �

Combining Theorems 3.36 and 3.37 we obtain that a local optimal solution of the
problem (3.1) is under the assumptions of Theorem 3.36 an M-stationary solution,
see page 64.

Henrion and Surowiec consider in their paper [143] the special bilevel optimiza-
tion problem where the upper level constraint functions gi do not depend on the
lower level variable: gi (x, y) = gi (y) for all i . Assume that the lower level problem
(1.1) is a convex parametric optimization problem and that the Slater’s condition is
satisfied for it. Let Gi (x) ≡ 0 for all i and X = R

n . Then, the bilevel optimization
problem (1.1), (1.4) can equivalently be replaced with

min
x,y
{F(x, y) : 0 ∈ ∇y f (x, y)+ NY (y)}. (3.75)

Note that this problem is fully equivalent to the bilevel optimization problem (1.1),
(1.4).

Applying the ideas from Sect. 3.6, the following necessary optimality condition
is derived:

Theorem 3.38 (Dempe et al. [56]) Consider the bilevel optimization problem (1.1),
(1.4), where the functions y �→ f (x, y) and y �→ gi (y), i = 1 . . . , p, are convex
and there exists a point ŷ satisfying gi (ŷ) < 0, i = 1, . . . , p. Let (x, y) be a local
optimal solution, and assume that the problem (3.7) is partially calm at (x, y). Let the
solution set mappingΨ (·)of the lower level problem be inner semicontinuous or inner
semicompact at (x, y). Then, there are real numbers α ≥ 0, λi ≥ 0, i = 1, . . . , p,

μi ≥ 0, i = 1, . . . , p, satisfying the following equations:

∇x F(x, y) = 0,

∇y F(x, y)+ α∇y f (x, y)+
p∑

i=1

μi∇gi (y) = 0,

∇y f (x, y)+
p∑

i=1

λi∇gi (y) = 0,

μ�g(y) = λ�g(y) = 0.

http://dx.doi.org/10.1007/978-3-662-45827-3_1
http://dx.doi.org/10.1007/978-3-662-45827-3_1
http://dx.doi.org/10.1007/978-3-662-45827-3_1
http://dx.doi.org/10.1007/978-3-662-45827-3_1
http://dx.doi.org/10.1007/978-3-662-45827-3_1
http://dx.doi.org/10.1007/978-3-662-45827-3_1
http://dx.doi.org/10.1007/978-3-662-45827-3_1
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Partial calmness is satisfied if the value function constraint qualification is satisfied:

Definition 3.10 The value function constraint qualification is satisfied for problem

min
x,y
{F(x, y) : y ∈ Y, f (x, y)− ϕ(x) ≤ 0} (3.76)

at a point (x, y) if the mapping

u �→ K (u) := {(x, y) : y ∈ Y, f (x, y)− ϕ(x) ≤ u}

is calm at (0, x, y).

Theorem 3.39 (Henrion and Surowiec [143]) If the value function constraint qual-
ification is satisfied for problem (3.76) at a local optimal solution (x, y) then, this
problem is partially calm.

Replacing the partial calmness assumption with a calmness condition for the
perturbed mapping

ν �→ M(ν) := {(x, y) : ν ∈ ∇y f (x, y)+ NY (y)}

a necessary optimality condition can be derived which uses second order derivatives
of the objective function and the constraint functions of the lower level problem.

Theorem 3.40 (Suroviec [296]; Henrion and Surowiec [143]) Let (x, y) be a local
optimal solution of problem (3.75), where the lower level problem is assumed to be a
convex parametric optimization problem. Assume that there exists ŷ with g(ŷ) < 0.
Let the constant rank constraint qualification be satisfied for the lower level at y.
Assume further that the mapping ν �→ M(ν) := {(x, y) : ν ∈ ∇y f (x, y)+ NY (y)}
is calm at (0, x, y). Then, there are multiplier vectors λ ≥ 0, v, w (of appropriate
dimension) such that the following equations are satisfied:

0 = ∇x F(x, y)+ v�∇2
xy f (x, y),

0 = ∇y F(x, y)+ v�∇2
yy f (x, y)+ λ�∇2

yy g(y)+ w�∇g(y),

0 = ∇gi (y)v ∀ i : gi (y) = 0, λi > 0

0 = λi ∀ i : gi (y) < 0

0 = wi ∀ i : gi (y) = 0, λi = 0, ∇gi (y)v < 0

0 ≤ wi ∀ i : gi (y) = 0, λi = 0, ∇gi (y)v > 0

0 = ∇y f (x, y)+ λ�∇g(y).
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An example is formulated by Henrion and Surowiec in [143] where partial calmness
is violated but the optimality conditions of Theorem 3.40 can be used to characterize
a local optimal solution.

It is also shown in [143] that the mapping ν �→ M(ν) := {(x, y) : ν ∈
∇y f (x, y)+ NY (y)} is calm at (0, x, y) in any of the following three cases:

1. The lower level constraint set Y is a polyhedron and the lower level objective
function is

f (x, y) = y�(Ay + Bx)

for matrices A, B of appropriate size.
2. The linear independence constraint qualification LICQ and the strong sufficient

optimality condition of second order (SSOSC) are satisfied at the local optimal
solution.

3. The matrix ∇2
xy f (x, y) is surjective (which is the so-called ‘ample parametri-

zation’).

3.8 The Optimistic Bilevel Programming Problem

3.8.1 One Direct Approach

Consider the optimistic bilevel optimization problem

min{ϕo(x) : G(x) ≤ 0} (3.77)

with
ϕo(x) := min{F(x, y) : y ∈ Ψ (x)}, (3.78)

where Ψ (x) is the set of optimal solutions of the lower level problem (1.1). As men-
tioned in Sect. 1.1 this problem is closely related to problem (1.4), but not equivalent.

Theorem 3.41 (Dempe et al. [71]) If x is a local optimal solution of problem (3.77)
and y ∈ Ψ (x), then (x, y) is a local optimal solution of problem (1.4). If (x, y) is a
local optimal solution of (1.4) and the mapping x �→ Ψo(x) with

Ψo(x) = {y ∈ Ψ (x) : F(x, y) ≤ ϕo(x)}
is inner semicontinuous at (x, y), then x is a local optimal solution of problem (3.77).

Proof Assume that the first assertion is not true, i.e. assume that there exists a
sequence {xk, yk}∞k=1 tending to (x, y) with yk ∈ Ψ (xk), G(xk) ≤ 0, F(xk, yk) <

ϕo(xk) for all k. By the definition of the optimistic optimal value function ϕo(x) we
have ϕo(xk) ≤ F(xk, yk) < ϕo(xk) which is not possible.

Now assume that the second assertion is not correct. Hence, a sequence {xk}∞k=1
converging to x exists with G(xk) ≤ 0 and ϕo(xk) < ϕo(x) for all k. Since Ψo(·)

http://dx.doi.org/10.1007/978-3-662-45827-3_1
http://dx.doi.org/10.1007/978-3-662-45827-3_1
http://dx.doi.org/10.1007/978-3-662-45827-3_1
http://dx.doi.org/10.1007/978-3-662-45827-3_1
http://dx.doi.org/10.1007/978-3-662-45827-3_1
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is assumed to be inner semicontinuous at (x, y) there is a sequence {yk}∞k=1 with
yk ∈ Ψ(xk) and F(xk, yk) ≤ ϕo(xk) < ϕo(x) ≤ F(x, y) for all k. The last inequality
comes from the definition of the function ϕo(x). This contradicts the assumption that
(x, y) is a local optimal solution of problem (1.4). �

Note that upper semicontinuity of the point-to-set mapping Ψ (x) and continuity of
the function F(x, y) imply that the function ϕo(x) is lower semicontinuous, see the
proof of Theorem 3.3. Hence, by the famous theorem of Weierstrass, problem (3.77)
has an optimal solution if the assumptions of Theorem 3.3 are satisfied at every
feasible point, the functions F(x, y), G j (x) are continuous for all j and the set
{x : G(x) ≤ 0} is not empty and compact.

Theorem 3.42 (Dempe et al. [71]) Consider the function ϕo given in (3.77) and
assume that the function F is sufficiently smooth and gph Ψ is a closed set. Then,
the following assertions hold:

1. If the mapping x �→ Ψo(x) is inner semicontinuous at (x, y) ∈ gph Ψo, then ϕo

is lower semicontinuous at x and we have

∂ M (x) ⊆ ∇x F(x, y)+ D∗Ψ (x)(∇y F(x, y)).

If x �→ Ψ (x) is Lipschitz-like around (x, y) then, the function x �→ ϕo(x) is
locally Lipschitz continuous.

2. If the mapping x �→ Ψo(x) is inner semicompact at (x, y) ∈ gph Ψo, then ϕo is
lower semicontinuous at x and we have

∂ M (x) ⊆
⋃

y∈Ψo(x)

{∇x F(x, y)+ D∗Ψ (x)(∇y F(x, y))
}
.

If x �→ Ψ (x) is Lipschitz-like around (x, y) then, the function x �→ ϕo(x) is
locally Lipschitz continuous.

The proof of this theorem follows from Mordukhovich [241, Corollary 1.109] and
[242, Theorem 5.2]. This theorem enables the formulation of necessary optimality
conditions.

For that let X = {x : G(x) ≤ 0}. Then, a necessary optimality condition for
x ∈ X being a local optimal solution of problem (3.77) is

0 ∈ ∂ Mϕo(x)+ NX (x)

provided that the assumptions of the Theorem 3.42 are satisfied. One difficulty is the
use of the coderivative D∗Ψ of the mapping Ψ . Using reformulations of the function
ϕo(x) this coderivative is also replaced.

Let
L (x, y, λ) = ∇y f (x, y)+ λ�∇y g(x, y).

http://dx.doi.org/10.1007/978-3-662-45827-3_1
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Theorem 3.43 (Dempe et al. [71]) Assume that the functions y �→ f (x, y), y �→
gi (x, y) are convex for all i and that (MFCQ) is satisfied for problem (1.1) for all
(x, y) ∈ gph Ψ with G(x) ≤ 0. Then,

ϕo(x) = min
y,λ
{F(x, y) : L (x, y, λ) = 0, λ ≥ 0, g(x, y) ≤ 0, λ�g(x, y) = 0}.

Proof On the one hand we have

ϕo(x) ≥ min
y,λ
{F(x, y) : L (x, y, λ) = 0, λ ≥ 0, g(x, y) ≤ 0, λ�g(x, y) = 0}

by the necessary optimality conditions for the lower level problem using (MFCQ).
On the other hand, for a global optimal solution x of the problem (3.78), we have

ϕ(x) = F(x, y)

≤ F(x, y) ∀ y ∈ Ψ (x)

= F(x, y) ∀ y with 0 ∈ ∇y f (x, y)+ NY (x)(y)

by convexity of y �→ f (x, y) y �→ gi (x, y) and regularity

≤ F(x, y) ∀ (y, λ) with L (x, y, λ) = 0, λ ≥ 0, g(x, y) ≤ 0, λ�g(x, y) = 0

by the normal cone representation for solutions of systems of convex inequalities
under regularity. Combining both inequalities we obtain the result. �

Hence, problem (1.1), (1.2) can be replaced by problem (3.77) of minimizing the
function ϕo(x) in Eq. (3.78) on the set {x : G(x) ≤ 0}. To investigate the proper-
ties of the function ϕo(x) we can use ideas related to mathematical programs with
equilibrium constraints.

To proceed use some abbreviations and assumptions:

Λ(x, y) = {λ : L (x, y, λ) = 0, λ ≥ 0, g(x, y) ≤ 0, λ�g(x, y) = 0},

Λem(x, y, λ, v) = {(β, γ ) : conditions (3.79)–(3.81) are satisfied},
where

v + ∇g(x, y)�β + ∇xyL (x, y, λ)�γ = 0, (3.79)

∇y gI0+(x,y,λ)(x, y)γ = 0, βI−0(x,y,λ) = 0 (3.80)

∀ i ∈ I00(x, y, λ) : (βi > 0 ∧ ∇y gi (x, y)γ > 0) ∨ βi∇y gi (x, y)γ = 0 (3.81)

and

Λem
y (x, y, λ, v) = {(β, γ ) : conditions (3.80), (3.81), (3.82) are satisfied},

where
v +∇y g(x, y)�β + ∇yL (x, y, λ)�γ = 0. (3.82)

http://dx.doi.org/10.1007/978-3-662-45827-3_1
http://dx.doi.org/10.1007/978-3-662-45827-3_1
http://dx.doi.org/10.1007/978-3-662-45827-3_1
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The following assumptions will be used:

(Am
1 ) (β, γ ) ∈ Λem(x, y, λ, 0) =⇒ β = 0, γ = 0.

(Am
2 ) (β, γ ) ∈ Λem

y (x, y, λ, 0) =⇒ ∇x g(x, y)�β +∇xL (x, y, λ)�γ = 0.

(Am
3 ) (β, γ ) ∈ Λem

y (x, y, λ, 0) =⇒ β = 0, γ = 0.

It is obvious that (Am
3 ) =⇒ (Am

1 ) and (Am
3 ) =⇒ (Am

2 ).

Theorem 3.44 (Dempe et al. [71]) Let the lower level problem (1.1) be convex and
let (MFCQ) be satisfied for the lower level problem at all points (x, y) ∈ gph Ψ .
Then, the following two assertions hold:

1. If the mapping

x �→ Sh
0 (x) := {(y, λ) : λ ∈ Λ(x, y), g(x, y) ≤ 0, F(x, y) ≤ ϕo(x)}

is inner semicontinuous at (x, y, λ) and if the assumption (Am
1 ) holds at this point

then

∂ Mϕo(x) ⊆
⋃

(β,γ )∈Λem
y (x,y,λ)

{
∇x F(x, y)+ β�∇x g(x, y)+ γ�∇xL (x, y, λ)

}

with Λem
y (x, y, λ) = Λem

y (x, y, λ,∇y F(x, y)).
Furthermore, if the assumption (Acm

2 ) is also satisfied at (x, y, λ), the function
ϕo is Lipschitz continuous around x.

2. If the mapping x �→ Sh
0 (x) is inner semicompact at (x, y, λ) and if the assumption

(Am
1 ) holds at all points (x, y, λ), (y, λ) ∈ Sh

0 (x) then

∂Mϕo(x) ⊆
⋃

(y,λ)∈Sh
0 (x)

⋃

(β,γ )∈Λem
y (x,y,λ)

{
∇x F(x, y)+β�∇x g(x, y)+γ�∇xL (x, y, λ)

}
.

Again, if the assumption (Acm
2 ) is also satisfied at all points (x, y, λ) with (y, λ) ∈

Sh
0 (x), the function ϕo is Lipschitz continuous around x.

Proof The main ideas of the proof of the first assertion in Dempe et al. [71] follow:
The task of computing a function value of ϕo(x) is reduced to solving an MPEC:

μc(x) = min
y
{F(x, y) : g(x, y) ≤ 0, h(x, y) = 0, G(x, y) ≥ 0, H(x, y) ≥ 0,

G(x, y)�H(x, y) = 0}

with the perturbed Lagrange multiplier set

Λcm(x, y, v) = {(α, β, γ, ζ ) : α ≥ 0, α�g(x, y) = 0,

βi = 0, ∀ i ∈ IH (x, y) := { j : Hj (x, y) = 0, G j (x, y) > 0},
ζi = 0, ∀ i ∈ IG(x, y) := { j : Hj (x, y) > 0, G j (x, y) = 0},
(βi > 0 ∧ ζi > 0) ∨ (βiζi = 0), ∀ i ∈ IG H (x, y) := { j : Hj (x, y) = 0, G j (x, y) = 0},
v + ∇g(x, y)�α + ∇h(x, y)�γ + ∇G(x, y)�β + ∇H(x, y)�ζ = 0}.

http://dx.doi.org/10.1007/978-3-662-45827-3_1
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Here, y = (y, λ), g(x, y, λ) ≡ 0, h(x, y, λ) = L (x, y, λ), G(x, y, λ) = λ and
H(x, y, λ) = −g(x, y) is used to obtain

Λcm(x, y, v) = {(β, γ, ζ ) : βi = 0, ∀ i ∈ I+0(x, y),

ζi = 0, ∀ i ∈ I0−(x, y),

(βi > 0 ∧ ζi > 0) ∨ (βiζi = 0), ∀ i ∈ I00(x, y),

v1 +∇xL (x, y, λ)�γ −∇x g(x, y)�β = 0,

v2 +∇yL (x, y, λ)�γ −∇y g(x, y)�β = 0,

v3 + ∇y g(x, y)γ + ζ = 0}.

Then, setting v3 = 0 in v3 + ∇y g(x, y)γ + ζ = 0 and ζ = −∇y g(x, y)γ , the
equation

Λcm(x, y, λ, 0) = {(β, γ,−∇y g(x, y)γ ) : (−β, γ ) ∈ Λem(x, y, λ, 0)}

is derived.
Now, assumption (Am

1 ) implies the condition

(β, γ, ζ ) ∈ Λcm(x, y, λ, 0) ⇒ β = 0, γ = 0, ζ = 0.

This regularity condition can be used to verify

∂ Mϕo(x) ⊆
⋃

(β,γ )∈Λcm
y (x,y,λ)

{
∇x F(x, y)−∇x g(x, y)�β + ∇xL (x, y, λ)�γ

}

using Theorem 3.2 (i) in Dempe et al. [71]. This implies the first assertion.
Now, assumption (Am

2 ) can be used to obtain

(β, γ, ζ ) ∈ Λcm(x, y, λ, 0) ⇒ −∇x g(x, y)�β +∇xL (x, y, λ)γ = 0.

Using again Theorem 3.2 (i) in Dempe et al. [71] this implies local Lipschitz conti-
nuity of the function ϕo(x).

The second assertion can similarly be shown. �

A related result for the pessimistic bilevel optimization problem (1.6) has been
derived by Dempe et al. in [72].

3.8.2 An Approach Using Set-Valued Optimization

Dempe and Pilecka considered in [74] the formulation of necessary optimality con-
ditions for the special case of the optimistic bilevel optimization problem

F(x, y) → min
x,y

(3.83)

y ∈ Ψ (x),

http://dx.doi.org/10.1007/978-3-662-45827-3_1
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where the mapping Ψ (x) = Argminy{ f (x, y) : g(x, y) ≤ 0}, cf. problem (1.1) with
T = R

m , is assumed to be upper semicontinuous, see Theorem 3.3. If the mapping
x �→ Ψ (x) is not locally Lipschitz continuous, (Lipschitz) continuity of the function
ϕo(·) is in general violated (cf. Theorem 3.42). A (directional) convexificator can
then be used to derive necessary optimality conditions.

Let z : Rn → R := R ∪ {∞} be a function, x, d ∈ R
n . Then, the lower and the

upper Dini directional derivative of the function z at x in direction d are defined as

D+z(x, d) = lim sup
t↓0

1

t
[z(x + td)− z(x)],

D−z(x, d) = lim inf
t↓0

1

t
[z(x + td)− z(x)].

Using these generalized directional derivatives the upper respectively lower convex-
ificator can be defined.

Definition 3.11 (Jeyakumar and Luc [155]) The function z admits an upper (lower)
convexificator ∂∗z(x) at the point x ∈ R

n if the set ∂∗z(x) ⊂ R
n is closed and for

each d ∈ R
n we have

D−z(x, d) ≤ sup
x∗∈∂∗z(x)

d�x∗, (D+z(x, d) ≥ inf
x∗∈∂∗z(x)

d�x∗).

A function having both an upper and a lower convexificator is said the have a convex-
ificator. The subdifferential of Clarke [42] is a convexificator and also the Michel-
Penot and the symmetric subdifferentials, see Babbahadda and Gadhi [6]. In general,
a convexificator needs not to be convex or bounded but most of the assertions have
been verified under those assumptions.

Definition 3.12 (Dutta and Chandra [96]) The function z admits an upper (lower)
semiregular convexificator ∂∗z(x) at the point x ∈ R

n if the set ∂∗z(x) ⊂ R
n is a

convexificator and for each d ∈ R
n we have

D+z(x, d) ≤ sup
x∗∈∂∗z(x)

d�x∗, (D−z(x, d) ≥ inf
x∗∈∂∗z(x)

d�x∗).

The new notion in Dempe and Pilecka [74] is that of a directional convexificator
which in general is an unbounded set.

Definition 3.13 (Dempe and Pilecka [74]) A vector d ∈ R
n is a continuity direction

of the function z : Rn → R at x if

lim
t↓0

z(x + td) = z(x).

http://dx.doi.org/10.1007/978-3-662-45827-3_1
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Let Dz(x) denote the set of all continuity directions of the function z at x . This set
is in general neither convex or closed. But 0 ∈ Dz(x).

Definition 3.14 (Dempe and Pilecka [74]) The function z : Rn → R admits a
directional convexificator ∂∗Dz(x) at x if the set ∂∗Dz(x) is closed and for each d ∈
Dz(x) we have

D−z(x, d) ≤ sup
x∗∈∂∗D z(x)

d�x∗ and D+z(x, d) ≥ inf
x∗∈∂∗D z(x)

d�x∗.

Directional convexificators can be used to obtain convexificators:

Theorem 3.45 (Dempe and Pilecka [74]) Let z : Rn → R be a lower semicontin-
uous function which admits a bounded directional convexificator ∂∗Dz(x) at x and
assume Dz(x) to be a closed and convex set. Then, the set

K (x) = ∂∗Dz(x)+ ND(0)

is a convexificator, where ND(0) := {v ∈ R
n : v�d ≤ 0 ∀ d ∈ Dz(x)} is the normal

cone to Dz(x) at d = 0.

Smaller (directional) convexificators make the formulation of more helpful necessary
optimality conditions possible. Unfortunately, the aim of deriving a minimal (with
respect to inclusion) convexificator is not an easy task. With respect to a directional
convexificator the following can be shown, see Dempe and Pilecka [74]:

If D̃ ⊂ Dz(x) is a closed and convex cone for which the directional convexificator
∂ ∗̃

D
z(x) of the lower semicontinuous function z : Rn → R at x exists and is bounded,

the set K (x) = ∂ ∗̃
D

z(x)+ ND̃(0) is an upper convexificator.
If the cone Dz(x) of continuity directions is itself convex and the lower semicon-

tinuous function z : Rn → R is convex with respect to all directions d ∈ Dz(x), i.e.,

z(λ(x + d1)+ (1− λ)(x + d2)) ≤ λz(x + d1)+ (1− λ)z(x + d2)

for all d1, d2 ∈ Dz(x) and λ ∈ [0, 1] then, for all closed and convex cones D̃ ⊂ Dz(x)

for which the function z admits a bounded directional convexificator, the set

K (x) = ∂ ∗̃
D

z(x)+ ND̃(0)

is a convexificator.
Convexity of the cone of continuity directions can be avoided as the following

remark shows.

Remark 3.3 (Dempe and Pilecka [74]) Let D1 ⊂ Dz(x) and D2 ⊂ Dz(x) be closed
convex cones with D1 ∪ D2 = Dz(x) and z : Rn → R. Suppose that the function
z admits bounded directional convexificators ∂∗D1

z(x), ∂∗D2
z(x) at the point x ∈ R

n .
Then the set ∂∗Dz(x) = ∂∗D1

z(x) ∪ ∂∗D2
z(x) is a directional convexificator of the
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function z at x . Moreover, the set K (x) = (∂∗D1
z(x)+ND1(0))∪(∂∗D2

z(x)+ND2(0))

is a convexificator of z at the point x .

To derive a chain rule for a directional convexificator the following assumption is
needed:

(A0) Let the function z : Rn → R be lower semicontinuous and the set Dz(x)

denote all continuity directions of z at x . Then

∃δ > 0 ∀d ∈ Dz(x) ∀x̂ ∈ (x, x+δd) : lim
t↓0

z(x̂+td) = lim
t↓0

z(x̂−td) = z(x̂).

Theorem 3.46 Let z : Rp → R
n be a vector valued function with the component

functions zi : Rp → R, i = 1, . . . , n. Assume that zi , i = 1, . . . , n are lower
semicontinuous and suppose that assumption (A0) is satisfied for each zi at x. Let
g : Rn → R be a continuous function. Assume that for each i = 1, . . . , n the function
zi admits a bounded directional convexificator ∂∗Di

zi (x) at x with the continuity
directions Di (x) = Dzi (x) while g admits a bounded convexificator ∂∗g(z(x)) at
z(x). Additionally, suppose that ∂∗g(·) is upper semicontinuous at z(x) and for
each i = 1, . . . , n the directional convexificator ∂∗Di

zi (·) is upper semicontinuous

at x on U (x) ∩ ({x} + D) where U (x) denotes an open neighborhood of x and
D =⋂n

i=1 Di (x) �= {0p}. Then the set

∂∗
D
(g ◦ z)(x) = ∂∗g(z(x))(∂∗D1

z1(x), . . . , ∂∗Dn
zn(x))

=
{

n∑

i=1

ai hi : a ∈ ∂∗g(z(x)), hi ∈ ∂∗Di
zi (x)

}
(3.84)

is a directional convexificator of g ◦ z at x.

Proof Let u ∈ D. Then, due to assumption A0 there exists δ > 0 such that z is
continuous on [x, x + δu]. Thus, using the mean value theorem for convexificators
(Jeyakumar and Luc [155]), we obtain

g(z(x̄ + tu))− g(z(x̄)) ∈ cl conv
{〈a, z(x̄ + tu)− z(x̄)〉 : a ∈ ∂∗g(ct )

}

for some ct ∈ (z(x̄), z(x̄ + tu)). In the same way we derive

zi (x̄ + tu)− zi (x̄) ∈ cl conv
{〈hi , tu〉 : hi ∈ ∂∗Di

zi (xt
i )
}

for each i ∈ {1, . . . , n} where xt
i ∈ (x̄, x̄ + tu), t ∈ (0, δ). Since the (directional)

convexificators are assumed to be upper semicontinuous, for each ε > 0 there exists
t0 > 0 with

∂∗g(ct ) ⊂ ∂∗g(z(x̄))+ εUn

∂∗Di
zi (xt

i ) ⊂ ∂∗Di
zi (x̄)+ εUp
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for t ∈ [0, t0] and all i = 1, · · · , n, where U
k denotes the open unit ball in R

k . This
implies that for each t ≤ t0 we have

(
[g(z(x̄ + tu))− g(z(x̄))] /t

)
∈ cl conv {〈v, u〉 : v ∈ S}

with

S =
{

n∑

i=1

(ai + εbi )(hi + εdi ) : a ∈ ∂∗g(z(x̄)), b ∈ U
n, hi ∈ ∂∗Di

zi (x̄), di ∈ U
p

}

.

Boundedness of the (directional) convexificators leads to

(g ◦ z)−(x̄, u) ≤ sup
{〈x∗, u〉 : x∗ ∈ ∂∗g(z(x̄))(∂∗D1

z1(x̄), . . . , ∂∗Dn
zn(x̄))

}

+ (ε + ε2)M.

for sufficiently large constant M < ∞ which implies

(g ◦ z)−(x̄, u) ≤ sup
{〈x∗, u〉 : x∗ ∈ ∂∗g(z(x̄))(∂∗D1

z1(x̄), . . . , ∂∗Dn
zn(x̄))

}
.

Since u ∈ D was chosen arbitrarily, we obtain that

∂∗
D
(g ◦ z)(x̄) = ∂∗g(z(x̄))(∂∗D1

z1(x̄), . . . , ∂∗Dn
zn(x̄))

is an upper directional convexificator of g ◦ z at the point x̄ with D =⋂n
i=1 Di (x̄).

Similar arguments can be used showing that ∂∗
D
(g ◦ z)(x̄) is a lower directional

convexificator, too. �

This result can now be applied to max or penalty functions, see (Dempe and Pilecka
[74]). Let f be the optimal objective function value of the optimization problem

min{ f0(x) : f (x) ≤ 0}

and x be a global optimal solution. Then, zero is the optimal function value of the
problem to minimize the function

α(x) = max{ f0(x)− f , f (x)}.

Hence, D−α(x, d) ≥ 0 for all directions d provided that the functions f0, f admit
a lower Dini derivative, see Demyanov [83]. This, obviously, is equivalent to 0 ∈
conv ∂∗α(x̄)) if the function α(·) has a convexificator at x .

In the next theorem a necessary optimality condition using convexificators is
given. For that we need the cl-property introduced by Dien [89, 90] for locally
Lipschitz continuous set-valued mappings.

Definition 3.15 A set-valued mapping H : Rn → 2R
m

has the cl -property if the
following holds true:
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∀x∗n → x∗ ∀z∗n → z∗ ∀xn → x : x∗n ∈ ∂∗CH (z∗n, ·)(xn)∀n

implies x∗ ∈ ∂∗CH (z∗, ·)(x),

where
CH (z∗, ·) = min

z∈H(·) z�z∗

denotes the support function of the mapping H in direction z∗.

Remark 3.4 (Dempe and Gadhi [61]) The cl-property can be interpreted as a sequen-
tial upper semicontinuity of ∂∗CH (z∗, ·) and can be established without difficulty in
some cases (see Example 3.6).

Example 3.6 (Dempe and Gadhi [61]) Let z∗ ∈ B
+
Rm = BRm ∩ {z ∈ R

m : zi >

0 i = 1, . . . , m} and H(x) = f (x) + B
+
Rm where f : B+

Rn → B
+
Rm is a locally

Lipschitz continuous mapping.
Suppose that x∗n ∈ ∂∗CH (z∗n, ·)(xn) with x∗n → x∗, z∗n → z∗ and xn → x .

Then we have CH (z∗n, xn) = 〈z∗n, f (xn)〉 for n sufficiently large as well as x∗n ∈
∂∗〈z∗n, f 〉(xn) and it follows that x∗ ∈ ∂∗〈z∗, f 〉(x).

Theorem 3.47 (Dempe and Pilecka [74]) Suppose that (x, y) is a local optimal
solution of the bilevel programming problem (1.4). The following assumptions are
satisfied:

1. Let the function F : Rn ×R
m → R admit a bounded convexificator ∂∗F(x, y) at

the point (x, y) which is upper semicontinuous at (x, y) and
0 /∈ conv (∂∗F(x, ·)(y)) .

2. There exists an open neighborhood U (x) of x such that for each z∗ ∈ Z∗Ψ (x),‖z∗‖ ≤ 1 the support function

CΨ (z∗, ·) = min
z∈Ψ (·) z�z∗

is lower semicontinuous on U (x), continuous at x only in directions d ∈ Dx �= {0}
and the assumption (A0) is satisfied for every

z∗ ∈ Z∗Ψ (x) := {z∗ ∈ R
m : CΨ (z∗, x) > −∞},

with ‖z∗‖ ≤ 1 at x.
3. The support function CΨ (z∗, ·) admits a bounded directional convexificator

∂∗
Dx

CΨ (z∗, ·)(x) on U (x) ∩ ({x} + Dx ), where

Dx =
⋂

z∗∈Z∗
Ψ (x̄)

DCΨ (z∗,·)(x̄) �= {0}.

http://dx.doi.org/10.1007/978-3-662-45827-3_1
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4. The images of the solution set mapping Ψ of the lower level problem be non-empty,
closed and convex for every fixed x ∈ U (x) and Ψ possess the cl -property with
respect to the convexificator and the directional convexificator.

5. G ≡ 0, T = R
m, X = R

n and there exists c < ∞ such that the set {(x, y) :
y ∈ Ψ (x), F(x, y) ≤ c} is not empty and bounded.

6. The distance function

ρ(y, Ψ (x)) = min{‖y − z‖ : z ∈ Ψ (x)} : Rm × 2R
m → R

is locally convex with respect to x in all its continuity directions at the point x.
7. For each sequence (xn, yn) → (x, y) with ρ(yn, Ψ (xn)) → 0 we have

CΨ (z∗n, xn) → CΨ (z∗, x) for any z∗n → z∗.

Then there exist a scalar α and a vector z∗ ∈ Z∗Ψ (x) with ‖z∗‖ = 1 such that
{

0 ∈ conv ∂∗F(x, y)+ α · conv
{
(∂∗

Dx
CΨ (z∗, ·) (x)+ NDx

(0))× {−z∗}
}

,

CΨ (z∗, x) = 〈z∗, y〉
with Dx =⋂z∗∈Z∗

Ψ (x)
DCΨ (z∗,·)(x) being convex and closed.

Proof We will outline the proof from (Dempe and Pilecka [74]). Let U (x) be a
sufficiently small open neighborhood of x and define the following functions:

Γ1(x, y) = F(x, y)− F(x, y)+ 1

n
, Γ2(x, y) = ρ(y, Ψ (x)),

hn(x, y) = max{Γ1(x, y), Γ2(x, y)}.

Since (x, y) is a local optimal solution of problem (1.4) we have

hn(x, y) ≤ 1

n
+ inf

(x,y)∈U (x)×Rm
hn(x, y).

Using Ekeland’s variational principle (Ekeland [299]) we obtain the existence of
points (xk, yk) ∈ U (x)× R

m satisfying

⎧
⎪⎨

⎪⎩

‖(xn, yn)− (x, y)‖ ≤ 1√
n

hn (xn, yn) ≤ hn (x, y)+ 1√
n
‖(x, y)− (xn, yn)‖ ∀ (x, y) ∈ U (x̄)× R

m .

for sufficiently large n. Hence, (xn, yn) is a local minimum of the function H(x, y) =
hn (x, y)+1/

√
n ‖(x, y)− (xn, yn)‖ and consequently, the following necessary opti-

mality condition is satisfied (see Jeyakumar and Luc [155]):

0 ∈ cl conv ∂∗H (xn, yn) .

http://dx.doi.org/10.1007/978-3-662-45827-3_1


3.8 The Optimistic Bilevel Programming Problem 111

or, equivalently,

0 ∈ cl conv ∂∗hn (xn, yn)+ 1√
n
BRn×Rm .

Using the formulae for convexificators from Dempe and Pilecka [74] and the assump-
tions of the theorem, we derive

∂∗hn(xn, yn) = cl conv
{
∂∗Γi (xn, yn) : i ∈ I (xn, yn)

}

where I (xn, yn) = {i : hn (xn, yn) = Γi (xn, yn)} (we need the closure on the right
hand side since the convexificator of the distance function may be unbounded).

Hence, we can find a λn ∈ [0, 1] such that:

0 ∈ λn · conv ∂∗Γ1 (xn, yn)+ (1− λn) · conv ∂∗Γ2 (xn, yn)+ 1√
n
BRn×Rm . (3.85)

Now we can show max {Γ1 (xn, yn) , Γ2 (xn, yn)} > 0 and also Γ2 (xn, yn) > 0. Oth-
erwise we would get a contradiction to local optimality of (x, y) or the assumptions
of the theorem. Then, using the assumptions of the theorem again, we derive from
(3.85) the existence of a sequence z∗n ∈ Z∗Ψ (x̄) such that

∥
∥z∗n
∥
∥ = 1 and

⎧
⎪⎨

⎪⎩

0 ∈ λn · conv ∂∗F (xn, yn)

+ (1− λn) · conv
{
(∂∗

Dx
CΨ

(
z∗n, ·

)
(xn)+ NDx

(0))× {−z∗n}
}
+ 1√

n
BRn×Rm ,

ρ (yn, Ψ (xn)) = CΨ

(
z∗n, xn

)− 〈z∗n, yn〉.

Tending n to infinity and using the cl -property, this leads to

0 ∈ λ · conv ∂∗F(x, y)

+ (1− λ) · conv
{
(∂∗

Dx
CΨ (z∗, ·) (x̄)+ NDx

(0))× {−z∗}
}

.

Since λ ∈ (0, 1) we find α > 0 such that

0 ∈ conv ∂∗F (x, y)+ α · conv
{
(∂∗

Dx
CΨ

(
z∗, ·) (x̄)+ NDx

(0))× {−z∗}
}

.

The second equation in the assertion follows again using Ekeland’s variational
principle and the assumptions of the theorem. �

The following example shows the usefulness of the introduced necessary optimality
conditions in terms of a bilevel programming problem with upper semicontinuous
solution set mapping of the lower level problem.

Example 3.7 (Dempe and Pilecka [74]) Consider the following optimistic bilevel
optimization problem:
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Fig. 3.8 The dashed area
illustrates the feasible set of
the bilevel programming
problem (3.86) and the
dashed line is the level set of
the objective function of the
upper level problem. The
uniquely determined global
optimal solution of this
problem is given by the point
(x̄, ȳ) = (0,−1) [there is
also a local optimal solution
at the point (− 2

3 , 0)]
x

y

1

1

feasible set

objective function

(x , y)

x + y −→ min
x,y

y ∈ Ψ (x) = arg min
y

{
max{0, xy} : (x − y − 1)3 ≤ 0,

x + y ≤ 0, −3x − y − 2 ≤ 0
}
.

(3.86)

The corresponding feasible set can be illustrated as in the Fig. 3.8. The support
function of the solution set mapping Ψ of the lower level problem as a function of x
for a fixed z∗ ≥ 0 is given by:

CΨ (z∗, x) =

⎧
⎪⎨

⎪⎩

z∗(−3x − 2) if x ∈ [−1,− 2
3 ),

0 if x ∈ [− 2
3 , 0),

z∗(x − 1) if x ∈ [0, 1
2 ],

and for z∗ < 0 we have CΨ (z∗, x) = −z∗x .
The continuity directions of the support function at the point x̄ = 0 with respect to
x are Dx = [0,+∞).
Let us now consider z∗ = 1, then CΨ is lower semicontinuous as a function of x and
Dini directional derivatives at x̄ = 0 are:

C+
Ψ (1, ·)(x̄, v) = C−

Ψ (1, ·)(x̄, v) =
{

v if v ≥ 0,

∞ if v < 0.
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Obviously, this support function admits the directional convexificator
∂∗

Dx
CΨ (1, ·)(x̄) = {1} at x̄ . Together with the normal cone to the set Dx at the

point d = 0, we obtain the following convexificator of the function CΨ (z∗, ·) as a
function of x at the point x̄ with z∗ = 1:

∂∗CΨ (1, ·)(x̄) = {1} + (−∞, 0] = (−∞, 1].

Definitely, this set is a convexificator of the function CΨ (z∗, ·) at the point x̄ since
we have:

C−
Ψ (1, ·)(x̄, v) =

{
v ≤ supx∗∈(−∞,1]〈x∗, v〉 = v if v ≥ 0

∞ ≤ supx∗∈(−∞,1]〈x∗, v〉 = ∞ if v < 0,

C+
Ψ (1, ·)(x̄, v) =

{
v ≥ infx∗∈(−∞,1]〈x∗, v〉 = −∞ if v ≥ 0

∞ ≥ inf x∗∈(−∞,1]〈x∗, v〉 = v if v < 0.

Now we can state that the necessary optimality conditions are satisfied with α = 1
because we obtain:

0 ∈ (1, 1)+ α · ((−∞, 1] × {−1}),

CΨ (1, 0) = −1 = 1 · (−1). �

3.8.3 Optimality Conditions Using Convexificators

A nonsmooth version of the Mangasarian-Fromovitz constraint qualification is used
in Kohli [190]:

Definition 3.16 Let y ∈ Y (x) = {y : g(x, y) ≤ 0}, where the functions gi are
assumed to be Lipschitz continuous. The point (x, y) is said to be lower-level regular
if ∑

i∈I (x,y)

λi vi = 0, λi ≥ 0, ∀ i ⇒ λi = 0, ∀ i ∈ I (x, y),

whenever (ui , vi ) ∈ ∂Cl gi (x, y), i ∈ I (x, y). A similar condition with respect to
the upper level constraints is called upper-level regularity.

The Abadie constraint qualification using the concept of convexificators and the
subdifferential of Clarke applied to problem (3.7) reads as

⎛

⎝
⋃

i∈I (x,y)

conv ∂∗gi (x, y) ∪
⋃

j∈J (x)

conv ∂∗G j (x)× {0} ∪ ∂Cl( f (x, y)− ϕ(x)× {0})
⎞

⎠

−

⊆ CM (x, y),
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where Z−(z) = NZ (z) denotes the normal cone to a set Z at z, CM (x, y) is the
tangent (Bouligand) cone to M at (x, y) and

M = {(x, y) : G(x) ≤ 0, f (x, y) ≤ ϕ(x), g(x, y) ≤ 0}

denotes the feasible set of problem (3.7) with T = R
m, X = R

n , I (x, y) and J (x)

denote the index sets of active constraints in the lower respectively the upper level
problem. The Abadie constraint qualification is a weaker constraint qualification than
the Mangasarian-Fromovitz constraint qualification and can be satisfied for bilevel
optimization problems.

Theorem 3.48 (Kohli [190]) Let (x, y) be a local optimal solution of the optimistic
bilevel optimization problem (1.1), (1.4) with T = R

m, X = R
n. Assume that the

functions F, f, gi are locally Lipschitz continuous and F has a bounded upper
semiregular convexificator ∂∗F(x, y). Let the functions gi and G j have upper con-
vexificators at (x, y). Assume that the Abadie constraint qualification is satisfied.
Let the mapping Ψ be inner semicompact at x and let all points (x, y) ∈ gph Ψ be
lower-level and upper-level regular. Then, there exist μ ≥ 0, λ ≥ 0, τi ≥ 0, λi ≥ 0
and y∗ ∈ Ψ (x) such that the following conditions are satisfied:

(0, 0) ∈ cl

⎡

⎣conv ∂∗F(x, y)−
⎧
⎨

⎩
λ(∂Cl f (x, y)− ∂Cl

x f (x, y∗)× {0} −
p∑

i=1

λi ∂
Cl
x gi (x, y∗))

+
p∑

i=1

μi conv ∂∗gi (x, y)+
q∑

j=1

τ j conv ∂∗G j (x)× {0},
⎫
⎬

⎭

⎤

⎦ (3.87)

0 ∈ ∂Cl
y f (x, y∗)+

p∑

i=1

λi ∂
Cl
y gi (x, y∗), (3.88)

λi gi (x, y∗) = 0, i = 1, . . . , p. (3.89)

Proof If (x, y) is a local optimal solution of problem (1.1), (1.4) then it is also a
local optimal solution of problem (3.7). Using the definition of the Bouligand cone
and local optimality we obtain (see Demyanov [83])

D+F((x, y), (dx , dy)) ≥ 0 ∀ (dx , dy)
� ∈ CM (x, y).

By upper semiregularity of the convexificator this implies

max
η∈∂∗F(x,y)

η�(dx , dy)
� ≥ 0 ∀ (dx , dy)

� ∈ CM (x, y),

which by the Abadie constraint qualification leads to

max
η∈∂∗F(x,y)

η�(dx , dy)
� ≥ 0 ∀ (dx , dy)

� ∈ (A )−, (3.90)

http://dx.doi.org/10.1007/978-3-662-45827-3_1
http://dx.doi.org/10.1007/978-3-662-45827-3_1
http://dx.doi.org/10.1007/978-3-662-45827-3_1
http://dx.doi.org/10.1007/978-3-662-45827-3_1
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A =
⋃

i∈I (x,y)

conv ∂∗gi (x, y)∪
⋃

j∈J (x)

conv ∂∗G j (x)×{0}∪∂Cl( f (x, y)−ϕ(x)×{0}).

By Theorem 16.3 in Dem’yanov and Rubinov [84] this implies that

(0, 0) ∈ cl conv
(
∂∗F(x, y)−A

)
.

Thus, there exists a sequence {(an, bn)}∞n=1 converging to zero with

(an, bn) ∈ conv
(
∂∗F(x, y)−A

) = conv ∂∗F(x, y)+ conv (−A ),

see Li and Zhang [202]. Using the convex hull property conv (−S) = −conv S we
get (an, bn) ∈ conv ∂∗F(x, y)− convA . Using the formula for A this implies

(0, 0) ∈ cl

⎡

⎣conv ∂∗F(x, y)−
⎧
⎨

⎩
λ(∂Cl f (x, y)− ∂Cl

x ϕ(x)× {0})

+
p∑

i=1

μi conv ∂∗gi (x, y)+
q∑

j=1

τ j conv ∂∗G j (x)× {0}
⎫
⎬

⎭

⎤

⎦ .

The proof then follows from the formula for the subdifferential in the sense of Clarke
for the optimal value function (see Mordukhovich et al. [243]). �



Chapter 4
Convex Bilevel Programs

4.1 Optimality Conditions for a Simple Convex Bilevel
Program

4.1.1 A Necessary but Not Sufficient Condition

A special case of a bilevel optimization problem arises if a convex function F :
R

n → R is minimized on the set of optimal solutions Ψ of a convex optimization
problem

min{ f (x) : x ∈ P}, (4.1)

where f : Rn → R is a convex, at least twice continuously differentiable function
and P a closed convex set. Then,

Ψ := Argmin
x

{ f (x) : x ∈ P}

is a convex set and the bilevel optimization problem

min{F(x) : x ∈ Ψ } (4.2)

is a convex optimization problem.
This problem is a generalization of a convex optimization problem: let Q = {x :

g(x) ≤ 0, Ax = b} with a convex function g : R
n → R

p, A be a matrix of
appropriate dimension and b ∈ R

m . Consider the convex optimization problem

min{F(x) : x ∈ Q}
with a convex function F . Then, problem (4.2) arises if

f (x) =
p∑

i=1

(max{0, gi (x)})2 + ‖Ax − b‖2

is a penalty function for the set Q and P = R
n .

© Springer-Verlag Berlin Heidelberg 2015
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In general, problem (4.2) is a convex optimization problem and we expect that
necessary optimality conditions are also sufficient. Let v be the optimal objective
function value of problem (4.1). Then, problem (4.2) can be replaced by

min{F(x) : f (x) ≤ v, x ∈ P} (4.3)

and, using the same ideas as in the proof to Theorem3.30, we find, that the standard
regularity conditions as (MFCQ) are violated for this problem.

A necessary and sufficient optimality condition for problem (4.1) is

0 ∈ ∇ f (x) + NP (x),

where NP (x) is the normal cone from convex analysis to the set P at x . Thus,

Ψ = {x ∈ P : (x,−∇ f (x)) ∈ gph NP }

and problem (4.2) can equivalently be replaced with

min{F(x) : x ∈ P, (x,−∇ f (x)) ∈ gph NP }. (4.4)

Using results from variational analysis (Mordukhovich [241, 242], Rockafellar and
Wets [274]) the following necessary optimality condition is obtained:

Theorem 4.1 (Dempe et al. [54]) Let x be an optimal solution of problem (4.2), the
function F be convex and differentiable, the function f is assumed to be convex and
at least twice continuously differentiable, P is a closed convex set. Suppose that the
(basic) constraint qualification

(v, w) ∈ N M
gph NP

(x,−∇ f (x))

0 ∈ w − ∇2 f (x)w + NP (x)

}

⇒ w = 0, v = 0.

Then, there is (v, w) ∈ N M
gph NP

(x,−∇ f (x)) such that

0 ∈ ∇F(x) + w − ∇2 f (x)w + NP (x).

Unfortunately, this optimality condition is not sufficient which is surprising since
(4.2) is a convex optimization problem.

Example 4.1 (Dempe et al. [54]) Consider the problem (4.2) with the function F :
R → R given by F(x) = x2 and the lower-level objective f : R → R given as
follows: f (x) = x3 when x ≥ 0 and f (x) = 0, x ≤ 0. The lower-level constraint
set is P = [−1,+1]. Observe that Ψ = [−1, 0]. Thus, x = 0 is the only solution
to the problem (4.2). However, the optimality condition given in Theorem 4.1 is
satisfied at the point x = −1 which obviously is not a solution of the problem (4.2).
This fact can be seen by noting that (−1, 0) ∈ gph NP and also observing that

http://dx.doi.org/10.1007/978-3-662-45827-3_3
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∇F(−1) = −2, ∇2 f (−1) = 0 and (4, 0) ∈ N M
gph NP

(−1, 0). Now the optimality

condition is satisfied by choosing the element −2 from NP (−1) = (−∞, 0]. �

4.1.2 Necessary Tools from Cone-Convex Optimization

The following material taken from Dempe et al. [54] is used to formulate another
problem which is equivalent to (4.2).

Consider a class of cone-convex programs given as:

min θ(x) subject to g(x) ∈ −D, and x ∈ C, (4.5)

where θ : Rn → R := (−∞,∞] is a proper, convex, lower semicontinuous (l.s.c.)
function with values in the extended real line R, g : R

n → R
m is a continuous

D−convex mapping with D is a closed convex cone in R
m and C ⊂ R

n is closed
and convex.

Here, a function g : R
n → R

m is D-convex to a closed and convex cone D
provided that

f (λx + (1 − λ)y) − λ f (x) − (1 − λ) f (y) ∈ −D ∀ x, y and ∀ λ ∈ [0, 1].

For a set C ⊂ R
n, the indicator function δC is defined as δC (x) = 0 if x ∈ C and

δC (x) = +∞ if x /∈ C . Let us recall that if C is nonempty, closed and convex, then
δC is a proper l.s.c. convex function.

Let A = {x ∈ C : g(x) ∈ −D}. Further, let D+ be thepositive dual coneof D, i.e.,

D+ := {s∗ ∈ R
m : 〈s∗, s〉 ≥ 0, ∀s ∈ D}.

Assume that dom θ ∩ A �= ∅, where dom θ := {x ∈ R
n| θ(x) < ∞}

Considering further an extended-real-valued function ξ : Rn → R, we always
assume that it is proper, i.e., ξ(x) �≡ ∞ onRn . The conjugate function ξ∗ : Rn → R

to ξ is defined by

ξ∗(x∗) := sup {〈x∗, x〉 − ξ(x) | x ∈ R
n }

= sup
{〈x∗, x〉 − ξ(x)

∣
∣ x ∈ dom ξ

}
.

(4.6)

We say that problem (4.5) satisfies the Farkas-Minkowski constraint qualification

(FM) if the cone

K :=
⋃

λ∈D+
epi (λ�g)∗ + epi δ∗

C (4.7)

is closed in the space Rn × R.
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It is important to note that the set
⋃

λ∈D+ epi (λg)∗ is a closed convex cone. This
was shown in Jeyakumar et al. [156].

We say that problem (4.5) satisfies the (CC) constraint qualification

(CC) if the set

epi θ∗ + K (4.8)

is closed in the space Rn × R where K is given in (4.7).

Remark 4.1 It is worth noting that if θ is continuous at one point in A ⊂ R
n then

(see Dinh et al. [91])

epi (θ + δA)∗ = cl
{
epi θ∗ + epi δ∗

A

} = epi θ∗ + epi δ∗
A = epi θ∗ + cl K .

So, if (FM) holds (i.e. K is closed) then (CC) holds.

Theorem 4.2 (Dinh et al. [92]) Let the qualification condition (CC) hold for the
convex program (4.5). Then x ∈ A ∩dom θ is a (global) solution to (4.5) if and only
if there is λ ∈ D+ such that

0 ∈ ∂θ(x) + ∂(λ�g)(x) + NC (x) (4.9)

λg(x) = 0. (4.10)

We are now going to apply this result to the equivalent reformulation (4.3) of prob-
lem (4.2).

Theorem 4.3 (Dempe et al. [54]) For the problem (4.3), assume that

{cone {(0, 1)} ∪ cone
[
(0, v) + epi f ∗]} + epi δ∗

P

is closed. Then x ∈ P is a (global) solution to (4.3) if and only if there is λ ∈ R+
such that

0 ∈ ∂ F(x) + λ∂ f (x) + NP (x) (4.11)

λ( f (x) − v) = 0. (4.12)

Proof First observe that problem (4.3) is of the type (4.5) with D = D+ = R+ and
C = P . Second, for each u∗ ∈ R

n , and μ ∈ R+

(μ( f (·) − v))∗(u∗) = μv + (μ f )∗(u∗).

Then it follows that

epi (μ( f (.) − v))∗ = (0, μv) + epi (μ f )∗.
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Now observe that when μ = 0 we have

epi (μ f )∗ = cone {(0, 1)},

and when μ > 0 we have

epi (μ f )∗ = μepi f ∗.

Thus, we obtain

epi (μ( f (.) − v))∗ = cone {(0, 1)} ∪
⎧
⎨

⎩

⋃

μ>0

μ[(0, v) + epi f ∗]
⎫
⎬

⎭
.

Noting that cone {(0, 1)} ∪ {(0, 0)} = cone {(0, 1)} we have

epi (μ( f (.) − v))∗ = cone {(0, 1)} ∪ cone [(0, v) + epi f ∗].

Now from the hypothesis of the theorem it is clear that the problem (4.3) satisfies
(FM) and hence, it satisfies (CC) since F is continuous (see Remark 4.1).

It now follows from Theorem 4.2 that there is λ ∈ R+ such that

0 ∈ ∂ F(x) + λ∂[ f (.) − v](x) + NP (x) (4.13)

λ( f (x) − v) = 0.

Since ∂( f (.) − v)(x) = ∂ f (x), the conclusion follows. �

The following example is used in Dempe et al. [54] to illustrate this result.

Example 4.2 Let us consider the bilevel problem of the model (4.5) where F(x) =
x2 + 1, P = [−1, 1], and f (x) = max{0, x}.

It is easy to see that epi δ∗
P = epi |.|, Ψ = [−1, 0], and v = 0. The optimization

problem reformulated from this bilevel problem is

min F(x) := x2 + 1 subject to f (x) = max{0, x} ≤ 0, x ∈ [−1, 1]. (4.14)

Note that for each u ∈ R,

f ∗(u∗) =
{+∞ if u∗ < 0 or u∗ > 1
0 if u∗ ∈ [0, 1].

We have
epi f ∗ = {(u∗, r) | u ∈ [0, 1], r ≥ 0} = [0, 1] × R+,

and
cone

{
epi f ∗} + epi δ∗

P = R
2+ ∪ {(u, r) | u ≤ 0, r ≥ −u}
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is a closed subset of R2. This shows that for the problem (4.14), (FM) holds since
cone {(0, 1)} ⊂ epi f ∗. Since F is continuous, (CC) holds as well (note that the
Slater’s condition fails to hold for (4.14)). It is easy to see that x = 0 is a solution
of the bilevel problem. Since NP (0) = {0}, ∂ F(0) = {0}, ∂ f (0) = [0, 1], and
(4.11)–(4.12) are satisfied with λ = 0. �

4.1.3 A Solution Algorithm

Consider problem (4.2), let the convex functions F, f be differentiable and ΠP :
R

n → R denote the projection on the convex and closed set P . For σ > 0 let

wσ (x) = σ F(x) + f (x).

In Solodov [292] a gradient type descent method solving problem (4.2) is suggested:

Algorithm: Initialization: Choose parameters α > 0, θ ∈ (0, 1) and η ∈
(0, 1). Take x0 ∈ P, σ0 > 0 and set k := 1.

Step: Given xk compute xk+1 = zk(αk) with αk = ηmk α, where

zk(α) = ΠP (xk − α∇wσk (xk))

and mk is the smallest nonnegative integer m such that

wσk (z
k(ηmα)) ≤ wσk (xk) + θ∇wσk (xk)(zk(ηmα) − xk). (4.15)

Choose 0 < σk+1 ≤ σk , set k := k + 1 and repeat the step.

The projection on a convex set is uniquely determined and, if xk = ΠP (xk −
α∇wσ (xk)) for some α > 0, then xk is a minimum of the function wσ (x) on P . In
this case, mk = 0, xk+1 = zk(α) = xk and the algorithm stops.

Let the functions F and f be bounded on P:

−∞ < F = inf{F(x) : x ∈ P}

and
−∞ < f = inf{ f (x) : x ∈ P}.

Theorem 4.4 (Solodov [292]) Let the set P be closed and convex and the functions
F, f be convex, differentiable with Lipschitz continuous gradients Lk locally around
some point xk ∈ P. Then, the step-size procedure in the above algorithm stops with
some finite number mk such that

αk = ηmk α ≥ min

{
α; 2(1 − θ)

(1 − σk)Lk

}
.
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Proof Using the necessary optimality conditions for convex optimization applied to
the projection problem in the above algorithm we obtain

(xk − α∇wσk (xk) − zk(α))�(xk − zk(α)) ≤ 0

for α > 0 implying

‖zk(α) − xk‖2 ≤ α∇wσk (xk)(xk − zk(α)). (4.16)

∇wσk (·) is locally Lipschitz continuous around xk with Lipschitz modulus (1 +
σk)Lk and, hence, assuming that α is small enough, zk(α) belongs to the respective
neighborhood for all α ≤ α. Then, using a Taylor series for wσ k (·) we derive

wσk (z
k(α)) ≤ wσk (xk) + ∇wσk (xk)(zk(α) − xk) + (1 + σk)Lk

2
‖zk(α) − xk‖2

≤ wσk (xk) + 1 − Lk(1 + σk)α

2
∇wσk (xk)(zk(α) − xk)

using (4.16). This implies (4.15) for 1−Lk (1+σk )α
2 ≤ θ and the assertion follows due

to αk ≤ α by construction. �

Theorem 4.5 (Solodov [292]) Let P ⊆ R
n be closed and convex, F, f : Rn → R

be convex and differentiable with locally Lipschitz continuous gradients and assume
that both functions are bounded from below on P by F respectively f . Assume that
the solution set S of problem (4.2) is not empty and bounded. Assume further that

lim
k→∞ σk = 0,

∞∑

k=0

σk = ∞.

Then
lim

k→∞ d(xk, S) = 0,

where {xk}∞k=1 is the sequence computed by the above algorithm and d(xk, S) :=
inf{‖xk − z‖ : z ∈ S} is the distance function for the set S.

Proof We will give only some main steps of the proof here, the complete proof can
be found in the paper Solodov [292].

By (4.15) we derive

θ∇wσk (xk)(xk − xk+1) ≤ wσk (xk) − wσk (xk+1)

= σk(F(xk) − F) − σk(F(xk+1) − F) + ( f (xk) − f )

− ( f (xk+1) − f ).
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Summing up these inequalities the inequality

θ

k∑

k=0

∇wσk (xk)(xk − xk+1)

≤ σ0(F(x0) − F) +
k−1∑

k=0

(σk+1 − σk)(F(xk+1) − F)

− σk(F(xk+1) − F) + ( f (x0) − f ) − ( f (xk+1) − f )

≤ σ0(F(x0) − F) + ( f (x0) − f )

is obtained since F(xk) ≥ F , f (xk) ≥ f by xk ∈ P and 0 < σk+1 ≤ σk for all k.
Hence,

lim
k→∞ ∇wσk (xk)(xk − xk+1) = 0. (4.17)

Take any sequence {xk}∞k=0 computed by the algorithm and assume that this set is
bounded, i.e. it has accumulation points x . We will first show that x ∈ Ψ . Let L
be a uniform Lipschitz constant for the functions F, f . Then, by Theorem 4.4, and
σk ≤ σ0 we obtain

αk ≥ min

{
α; 2(1 − θ)

(1 − σ0)L

}
∀ k. (4.18)

Hence, using (4.16) and (4.17) (xk − xk+1) → 0 for k → ∞ follows, i.e.

xk − ΠP (xk − αk(σk∇F(xk) + ∇ f (xk))) → 0 for k → ∞. (4.19)

Due to continuity of the projection operator, convergence of σk to zero and bound-
edness of αk from zero (by β > 0) we obtain

x = ΠP (x − α̂∇ f (x))

which implies x ∈ Ψ .
Take x̂ ∈ S. Then, by convexity of F, f and S ⊆ Ψ implying f (̂x) ≤ f (xk) we

derive

∇wσk (xk)(̂x − xk) ≤ σk(F (̂x) − F(xk)). (4.20)

Further

‖xk+1 − x̂‖2 = ‖xk − x̂‖2 − ‖xk+1 − xk‖2 + 2(xk+1 − xk)�(xk+1 − x̂)

by direct calculation.
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We have

(xk+1 − xk)�(xk+1 − x̂)

= (xk+1 − xk + αk∇wσk (xk))�(xk+1 − x̂) − αk∇wσk (xk)(xk+1 − x̂)

≤ −αk∇wσk (xk)(xk+1 − x̂)

= αk∇wσk (xk)(xk − xk+1) + αk∇wσk (xk)(̂x − xk)

≤ α∇wσk (xk)(xk − xk+1) + αkσk(F (̂x) − F(xk)),

where the first inequality comes from projection and the last one is (4.20). Combining
the last two inequalities gives

‖xk+1 − x̂‖2 ≤ ‖xk − x̂‖2 + 2α∇wσk (xk)(xk − xk+1) + 2αkσk(F (̂x) − F(xk)).

If F(xk) ≥ F (̂x) for all k (for the opposite case the interested reader is referred
to the original paper Solodov [292]) and using (4.17) this implies that the sequence
{‖xk − x̂‖2}∞k=1 converges to zero. Thus, {xk}∞k=1 is bounded. Using this it can be
shown that lim infk→∞ F(xk) = F (̂x). Repeating the above with an accumulation
point x̃ of the bounded sequence {xk}∞k=1 such that F (̃x) = F (̂x) we obtain that
the sequence {‖xk − x̃‖2}∞k=1 converges to zero. This then implies that the whole
sequence {xk}∞k=1 converges to x̃ ∈ S. �

4.2 A Penalty Function Approach to Solution of a Bilevel
Variational Inequality

In this section, an approach to the solution of amathematical programwith variational
inequality or nonlinear complementarity constraints is presented. It consists of a
variational re-formulation of the optimization criterion and looking for a solution
of the thus obtained variational inequality among the points satisfying the initial
variational constraints. The main part of this section is an extension of the previous
work of Kalashnikov and Kalashnikova [172].

4.2.1 Introduction

The problem of solving a mathematical program with variational inequalities or
complementarity conditions as constraints arises quite frequently in the analysis of
physical and socio-economic systems. According to a remark in the recent paper by
Harker and Choi [137], these problems are usually solved using heuristic methods.
The authors of the this paper [137] present an exterior-point penalty method based
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on Smith’s optimization formulation of the finite-dimensional variational inequality
problem (Smith [290]). Outrata in his paper [261] also studies this type of optimiza-
tion problems.

In Sect. 4.2.2, we examine conditions under which the set of the feasible points
is non-empty, and compare these conditions with those established previously in
Rockafellar [272]. Section4.2.3 describes a penalty function method to solve the
bilevel problemafter having reduced it to a single variational inequalitywith a penalty
parameter.

4.2.2 An Existence Theorem

Let X be a nonempty closed convex subset of Rn and h a continuous mapping from
X into Rn . Suppose that h is pseudo-monotone with respect to X , i.e.,

(x − y)�h(y) ≥ 0 implies (x − y)�h(x) ≥ 0 ∀x, y ∈ X, (4.21)

and that there exists a vector x0 ∈ X such that

h(x0) ∈ int (0+ X)+, (4.22)

where int X denotes the interior of the set X . Here 0+ X is the recession cone of the
set X , i.e., the subset of all directions s ∈ R

n such that X + s ⊂ X , at last, C+ is the
dual cone of C ⊆ R

n , i.e.

C+ = {y ∈ R
n : y�x ≥ 0 ∀x ∈ C}. (4.23)

Hence, condition (4.22) implies that the vector h(x0) lies in the interior of the dual
to the recession cone of the set X .

Under these assumptions, the following result is obtained:

Proposition 4.1 Assume that the mapping h is continuous, pseudo-monotone over
X and inclusion (4.22) holds. Then the variational inequality problem (VI):

Find a vector z ∈ X such that (x − z)�h(z) ≥ 0 ∀x ∈ X, (4.24)

has a nonempty, compact, convex solution set.

Proof It is well-known (Karamardian [184]) that pseudo-monotonicity (4.21) and
continuity of the mapping h imply convexity of the solution set

Z = {z ∈ X : (x − z)�h(z) ≥ 0 ∀x ∈ X}, (4.25)

of problem (4.24). Now we show the existence of at least one solution to problem
(4.24). In order to do that, we use the following result from Eaves [97]: if there exists
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a nonempty bounded subset D of X such that for every x ∈ X \ D there is a y ∈ D
with

(x − y)�h(x) > 0, (4.26)

then problem (4.24) has a solution. Moreover, the solution set (4.25) is bounded
because Z ⊂ D. Now, we select the set D as follows:

D = { x ∈ X : (x − x0)�h(x0) ≤ 0 } (4.27)

for an arbitrary fixed point x0 ∈ X . The set D is clearly nonempty, since it contains
the point x0. Now we show that D is bounded, even if X is unbounded. Suppose
on the contrary that a sequence {xk}∞k=1 ⊆ D exists with limk→∞ ‖xk − x0‖ = ∞.
Without loss of generality, assume that xk �= x0, k = 1, 2, . . . , and consider the
inequality

(xk − x0)�h(x0)

‖xk − x0‖ ≤ 0, k = 1, 2, . . . , (4.28)

which follows from definition (4.27) of the set D. Again not affecting gener-
ality, assume that the sequence (xk − x0)/‖xk − x0‖∞

k=1 converges to a vector
s ∈ R

n, ‖s‖ = 1. This implies s ∈ 0+ X (see Rockafellar [272, Theorem8.2]).
From (4.28), we deduce the limit relationship

s�h(x0) ≤ 0. (4.29)

Since 0+ X �= {0} (as X is unbounded and convex), we conclude that 0 is a boundary
point of the dual cone (0+ X)+, hence h(x0) �= 0.Now it is easy to see that inequality
(4.29) contradicts assumption (4.22). Indeed, the inclusion h(x0) ∈ int (0+ X)+
implies that s�h(x0) > 0 for any s ∈ 0+ X, s �= 0. This contradiction proves the
boundedness of the set D, and therewith the statement of Proposition 4.1. In effect,
for a given x ∈ X\D, one can pick y = x0 ∈ D with the inequality (x − y)�h(y) >

0 being valid. The latter inequality, together with the pseudo-monotonicity of the
mapping h, yields the required condition (4.24) and thus completes the proof. �

Remark 4.2 The assertion of Proposition 4.1 was obtained earlier in Harker and
Pang [138] under the same assumptions except for the inclusion (4.22), which is
obviously invariant with respect to an arbitrary translation of the set X followed
by the corresponding transformation of the mapping h. Instead of (4.22), Harker
and Pang [138] used another assumption h(x0) ∈ int(X+) which is clearly non-
translation-invariant. Moreover, it is easy to verify that for any convex and closed
subset X ⊆ R

n one has the inclusion

X+ ⊆ (0+ X)+, (4.30)

which clearly means that condition (4.22) is weaker than that in the paper [138] by
Harker and Pang.
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Now suppose additionally that the solution setΨ of problem (4.24) contains more
than one element, and consider the following variational inequality problem:

Find a vector z∗ ∈ Ψ such that (z − z∗)�H(z∗) ≥ 0 for all z ∈ Ψ. (4.31)

Here, the mapping H : X → R
n is continuous and strictly monotone over X , i.e.,

(x − y)� [H(x) − H(y)] > 0 ∀x, y ∈ X, x �= y. (4.32)

In this case, the compactness and convexity of the setΨ guarantees (cf. Eaves [97]) the
existence of a unique (due to strict monotonicity of H ) solution z of problem (4.31).
We refer to the combined problem (4.24), (4.25) and (4.31) as the lexicographical
variational inequality (LVI). This problem is similar to problem (4.2). In the next
subsection, we present a penalty function algorithm solving the LVI without an
explicit construction of the lower level solution set Ψ .

4.2.3 The Penalty Function Method

Let us fix a positive parameter value ε > 0 and consider the following parametric
variational inequality problem:

Find a vector xε ∈ X such that (x − xε)
� [h (xε) + εH (xε)] ≥ 0 ∀ x ∈ X. (4.33)

If we assume that the mapping h is monotone over X , i.e.

(x − y)�[h(x) − h(y)] ≥ 0 ∀x, y ∈ X, (4.34)

and keep intact all the assumptions from the previous section regarding h, H and Ψ ,
then the following result is obtained.Note the similarity to the algorithm inSect. 4.1.3.

Proposition 4.2 Let the mapping h in the lower level problem be continuous and
monotone over X, condition (4.22) be valid, whereas the (upper level) mapping H be
continuous and strictly monotone on X. Then, for each sufficiently small value ε > 0,
problem (4.33) has a unique solution xε. Moreover, xε converges to the solution z∗
of LVI (4.24), (4.25) and (4.31) when ε → 0.

Proof Since h is monotone and H is strictly monotone, the mapping Φε = G + εF
is strictly monotone on X for any ε > 0. It is also clear that, if some x0 ∈ X satisfies
(4.22), then the following inclusion holds

Φε(x0) = h(x0) + εH(x0) ∈ int (0+ X)+, (4.35)

whenever ε > 0 is small enough. Hence, Proposition 4.1 implies the validity of
the first assertion of Proposition 4.2, namely, for every ε > 0 satisfying (4.35), the
variational inequality (4.33) has a unique solution xε.
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From continuity of H and h it follows that each (finite) limit point x of the
generalized sequence Q = {xε}ε>0 (the net of solutions to problem (4.33)) solves
the variational inequality (4.24). That is, x ∈ Ψ . Now we prove that the point x
solves problem (4.31), too. In order to do that, we use the following relationships
valid for any z ∈ Ψ due to (4.25), (4.33) and (4.34):

(z − xε)
� [h(z) − h (xε)] ≥ 0, (4.36)

(z − xε)
� h(z) ≤ 0, (4.37)

(z − xε)
� h (xε) ≥ −ε (z − xε)

� H (xε) . (4.38)

Subtracting (4.38) from (4.37) and making use of (4.36), we obtain the following
inequalities

0 ≤ (z − xε)
� [h(z) − h (xε)] ≤ ε (z − xε)

� H (xε) . (4.39)

From (4.39) we have (z − xε)
� H (xε) ≥ 0 for all ε > 0 and z ∈ Ψ . Since H

is continuous, the following limit relationship holds: (z − x)� H (x) ≥ 0 for each
z ∈ Ψ , which means that x solves (4.31).

Thus,we have proved that every limit point of the generalized sequence Q (the net)
solves LVI (4.24), (4.25) and (4.31) and (since the mapping H is strictly monotone)
Q can have at most one limit point, i.e. the sequence Q converges to this solution
provided an accumulation point exists. To complete the proof it suffices to show that
the net Q is bounded. In order to do that, consider a sequence {xεk }∞k=1 of solutions to
the parametric problem (4.33) with ‖xεk ‖ → ∞where εk → 0 as k → ∞. Let x0 be
the vector from condition (4.22). Without loss of generality, suppose that xεk �= x0

for each k, and

lim
k→∞

(xεk − x0)

‖xεk − x0‖ = s ∈ R
n, ‖s‖ = 1.

Due to ‖xεk − x0‖ → ∞ this implies s ∈ 0+ X (see Rockafellar [272]). Since xεk is
the solution to the parametric variational inequality (4.33) with the strictly monotone
mapping Φε = h + εH , and x0 �= xεk , we obtain the following inequalities for all
k = 1, 2, . . .: (

xεk − x0
)� [

h
(
xεk

) + εk H
(
xεk

)] ≤ 0, (4.40)

and (
xεk − x0

)� [
h

(
x0

)
+ εk H

(
x0

)]
< 0. (4.41)

Dividing inequality (4.41) by ‖xεk − x0‖ �= 0 we derive

(
xεk − x0

)�

‖xεk − x0‖ ·
[
h

(
x0

)
+ εk H

(
x0

)]
≤ 0, k = 1, 2, . . . . (4.42)
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For k tending to infinity this yields s�h
(
x0

) ≤ 0. Since s �= 0, the latter inequality
contradicts assumption (4.22). This contradiction demonstrates that the net Q is
indeed bounded thus completing the proof of Proposition 4.2. �

4.2.4 An Example

Let Ω ⊆ R
m, Λ ⊆ R

n be subsets of two finite-dimensional Euclidean spaces and
f : Ω × Λ → R, h : Ω × Λ → R

n continuous mappings. Consider the follow-
ing mathematical program with variational inequality (or, equilibrium) constraint
(MPEC):

min
(u,v)∈Ω×Λ

f (u, v), (4.43)

s.t.
h(u, v)�(w − v) ≥ 0, ∀w ∈ Λ. (4.44)

If the function f is continuously differentiable, denote by H = H(u, v) the gra-
dient mapping of f , i.e., H(u, v) = ∇(u,v) f (u, v). Then problem (4.43)–(4.44) is
obviously tantamount to the following bilevel variational inequality (BVI):

Find z∗ = (u∗, v∗) ∈ Ω × Λ such that
(
z − z∗)�

H
(
z∗) ≥ 0,

∀z = (u, v) ∈ Ω × Λ, (4.45)

subject to v∗ ∈ Λ being a solution of the lower level variational inequality (4.44) for
u = u∗, that is,

h
(
u∗, v∗)�

(v − v∗) ≥ 0, ∀v ∈ Λ. (4.46)

It is clear that the bilevel variational inequality (BVI) (4.45)–(4.46) is equivalent
to the lexicographical variational inequality (LVI) (4.24), (4.25) and (4.31), in which
the gradient mapping ∇ f is used as H , while h(u, v) = [0; h(u, v)] for all (u, v) ∈
Ω ×Λ. It is interesting to notice that in this case, the penalty function approach also
may be useful to solve the bilevel variational inequality.

Example 4.3 As an example, consider the mathematical program with equilibrium
constraints (MPEC) where

f (u, v) = (u − v − 1)2 + (v − 2)2; h(u, v) = uv; Ω = Λ = R
1+. (4.47)

Then it can be readily verified that its optimal solution is unique: z∗ = (u∗, v∗) =
(1; 0), and the penalized mapping is described as follows:

Φε(u, v) = [
ε(2u − 2v − 2); uv + ε(−2u + 4v − 2)

]
. (4.48)
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Solving the variational inequality:

Find (uε, vε) ∈ R
2+ such that

[
(u, v) − (uε, vε)

]�
Φε(uε, vε) ≥ 0 ∀(u, v) ∈ R

2+,

(4.49)

we obtain

uε = vε + 1; vε = −1

2
− ε +

√(
1

2
+ ε

)2

+ 4ε. (4.50)

It is easy to check that (uε, vε) → z∗ when ε → 0. �

Unfortunately, this is not always the case, since themapping h(u, v) = [0; h(u, v)]
is in general not monotone with respect to (u, v), even if h = h(u, v) is monotone
with respect to v for each fixed u.



Chapter 5
Mixed-Integer Bilevel Programming
Problems

5.1 Location of Integrality Conditions in the Upper
or Lower Level Problems

Bilevel optimization problems may involve decisions in both discrete and continuous
variables. For example, a chemical engineering design problem may involve discrete
decisions regarding the existence of chemical process units besides to decisions
in continuous variables, such as temperature or pressure values. Problems of this
kind, dealing with both discrete and continuous decision variables, are referred to as
mixed-integer bilevel optimization problems (MIBLP).

A particular case of the mixed-integer bilevel program is presented by the real-
world problem of minimizing the cash-out penalty costs of a natural gas shipping
company (Dempe et al. [65]). This problem arises when a (gas) shipper draws a con-
tract with a pipeline company to deliver a certain amount of gas at several delivering
meters. What is actually shipped may be higher or lower than the amount that had
been originally agreed upon (this phenomenon is called an imbalance). When such an
imbalance occurs, the pipeline penalizes the shipper by imposing a cash-out penalty
policy. As this penalty is a function of the operating daily imbalances, an important
problem for the shippers is how to carry out their daily imbalances so as to minimize
the incurred penalty. On the other hand, the pipeline (the follower) tries to minimize
the absolute values of the cash-outs, which produce the optimal response function
taken into account by the leader in order to find the optimal imbalance operating
strategy. Here, integer variables are involved at the lower level problem. Various
solution algorithms for the natural gas cash-out problem are described e.g. in Dempe
et al. [65] or Kalashnikov et al. [117].

In general, mixed-integer BLPs can be classified into four classes (see Gümüş
and Floudas [134] and also Vicente et al. [304]):

(I) Integer upper, continuous lower: If the sets of inner (lower level) integer and
outer (upper level) continuous variables are empty, and on the contrary, the sets
of outer integer and inner continuous variables are nonempty, then the MIBLP
is of Type I.
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(II) Purely integer: If the sets of inner and outer integer variables are nonempty,
and the sets of inner and outer continuous variables are empty, then the problem
is a purely integer BLP.

(III) Continuous upper, integer lower: When the sets of inner continuous and outer
integer variables are empty, and vice versa, the sets of inner integer and outer
continuous variables are nonempty, then the problem is a MIBLP of Type III.

(IV) Mixed-integer upper and lower: If the sets of both inner and outer continuous
and integer variables are nonempty, then the problem is a MIBLP of Type IV.

Advances in the solution of the mixed-integer bilevel optimization problems
(MIBLP) of all four types can greatly expand the scope of decision making instances
that can be modeled and solved within a bilevel optimization framework. However,
little attention has been paid in the literature to both the solution and the application
of BLP governing discrete variables. This is mainly because these problems pose
major algorithmic challenges in the development of efficient solution strategies.

In the literature, methods developed for the solution of the MIBLP have so far
addressed a very restricted class of problems. For instance, for the solution of the
purely integer (Type II) linear BLP, a branch-and-bound type algorithm has been
proposed by Moore and Bard [236], whereas Nishizaki et al. [255] applied a kind of
genetic algorithm to the same problem. For the solution of the mixed-integer BLP of
Type I, another branch-and-bound approach has been developed by Wen and Yang
[314]. Cutting plane and parametric solution techniques have been elaborated by
Dempe [52] to solve MIBLP with only one upper level (outer) variable involved in
the lower level objective function. Bard [10] obtained upper bounds for the objec-
tive functions at both levels. Thus, he generated a non-decreasing sequence of lower
bounds for the objective function at the upper level, which, under certain conditions,
converges to the solution of the general BLPP with continuously differentiable func-
tions. Methods based upon decomposition technique have been proposed by Saharidis
and Ierapetritou [277] and Zhang and Wu [329]. Further solution algorithms can be
found in Domínguez and Pistikopoulos [94] and Mitsos [233].

Mixed-integer nonlinear bilevel optimization problems have received even less
attention in the literature. The developed methods include an algorithm making use of
parametric analysis to solve separable monotone nonlinear MIBLP proposed by Jan
and Chern [154], a stochastic simulated annealing method presented by Sahin and
Ciric [278], a global optimization approach based on parametric optimization tech-
nique published by Faísca et al. [103]. Additionally, Gümüş and Floudas [134] and
Floudas et al. [117] developed several algorithms dealing with global optimization
of mixed-integer bilevel optimization problems of both deterministic and stochastic
nature. The sensitivity analysis for MIBLPP was also considered by Wendel [315].
Xu and Wang [320] formulate a branch-and-bound algorithm solving mixed-integer
linear bilevel optimization problems.

In Dempe and Kalashnikov [62] and Dempe et al. [63], we already started con-
sidering and solving mixed-integer linear BLP of Type I. In particular cases, a BLP
can be reduced to solving a multiobjective optimization problem, which is efficiently
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processed by Liu and Wang in [205]. Bilevel optimization problems with discrete
variables are also examined by Hu et al. in [148].

The existence of an algorithm which solves the linear mixed-integer bilevel opti-
mization problem of type I has been shown by Köppe et al. in [192] under the
assumption that all data are integral and the lower level problem has parameters in
the right-hand side only. This algorithm runs in polynomial time when the number of
variables in the lower level is fixed. If the bilevel problem has feasible solutions, this
algorithm also decides if the infimal objective function value is attained. In the same
paper, the existence of a polynomial time algorithm has been shown for problems of
type II if the number of all variables in fixed.

If discrete bilevel optimization problems are investigated at least two new aspects
appear. Firstly, the feasible set mapping x �→ Y (x) is not upper semicontinuous in
general. To see this, consider an integer optimization in the lower level where the
right-hand side of the constraints depend on the parameter: Ay ≤ x . Then, if this
parameter x converges to x a new integer vector can become feasible. This violates
upper semicontinuity of the feasible set mapping Y . In Remark 3.2 this property was
used to show lower semicontinuity of the function ϕ(·) which in turn was an essential
assumption for existence of an optimal solution of the optimistic bilevel optimization
problem. Hence, an optimal solution of the optimistic bilevel optimization problem
need not to exist in the discrete case. To circumvent this difficulty, we need to define
a weak optimal solution in Sect. 5.3.

The second surprising fact is that global optimal solutions of continuous relax-
ations of the bilevel optimization problem need not to be global optimal solutions of
the discrete problem even if they are feasible. This is shown in the next example:

Example 5.1 (Moore and Bard [253]) Consider the problem

min
x

{−10y − x : y ∈ ΨD(x), x integer},

where the lower level problem is

ΨD(x) = Argmin
y

{y : 20y − 25x ≤ 30, 2y + x ≤ 10

− y + 2x ≤ 15, 10y + 2x ≥ 15, y integer}.

The feasible set of this problem as well as its continuous relaxation are shown in
Fig. 5.1.

The thick line in Fig. 5.1 is the graph of the solution set mapping of the contin-
uous relaxation of the lower level problem. The unique global optimal solution of
minimizing the objective function of the upper level problem on this set is the point
(̂x, ŷ) = (1, 8)�. This point is feasible for the discrete bilevel optimization problem
but it is not a global optimal solution of this problem. The unique global optimal
solution of the discrete bilevel problem is found at (x∗, y∗) = (2, 2)�. The upper
level objective function value of (̂x, ŷ) is F (̂x, ŷ) = −18 and that of (x∗, y∗) is
F(x∗, y∗) = −22. �

http://dx.doi.org/10.1007/978-3-662-45827-3_3
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*

Fig. 5.1 Feasible set in Example 5.1. Thick line is the feasible set of the continuous relaxation

After defining the weak optimal solution in Sect. 5.3 a first algorithm for computing
such a solution is formulated.

Optimality conditions for discrete bilevel optimization can be obtained using the
notion of a radial-directional derivative or a radial subdifferential. This is done in
Sect. 5.4. Later, Sect. 5.5 is devoted to the formulation of a solution algorithm using
an upper estimation of the optimal value function of the lower level problem as it
has also been done in Sect. 2.3.2. This idea will again be used in Sect. 5.6.4.

5.2 Knapsack Constraints

In Example 1.4 a linear bilevel optimization problem with a continuous knapsack
problem in the lower level has been considered. Now, let the parameterized zero-one
knapsack problem be the lower level problem:

Ψ (x) := Argmax
y

{ f (x, y) := c�y : a�y ≤ x, yi ∈ {0, 1}, i = 1, . . . , n} (5.1)

and consider the bilevel problem

“max
x

”{F(x, y) := d�y + t x : y ∈ Ψ (x), x ≤ x ≤ x}, (5.2)

where ai > 0, ci > 0 are integer coefficients, i = 1, . . . , n, 0 ≤ x < x ≤ ∑n
i=1 ai

have integer values and d ∈ R
n . This problem has been investigated by Dempe

and Richter in [75] and by Brotcorne et al. in [33]. Note that we consider here the
maximization problems since we will apply dynamic programming to solve them
which is an efficient algorithm for the solution of the N P-hard Boolean knapsack
problem. The Boolean knapsack problem can be solved by dynamic programming

http://dx.doi.org/10.1007/978-3-662-45827-3_2
http://dx.doi.org/10.1007/978-3-662-45827-3_1
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x

z(x)

x1

x2 x3 x4 x5

Fig. 5.2 The mapping x → ⋃
y∈Ψ (x){z(x)} with z(x) = d�y + t x

with a running time of O(nx) (Nemhauser and Wolsey [251]), since x ≤ x this leads
to an O(nx) running time algorithm for problem (5.1).

The point-to-set mapping x → ⋃
y∈Ψ (x){d�y + t x} is discontinuous, as can be

seen in see Fig. 5.2.
In Fig. 5.2, x1, . . . , x5 ∈ {∑

i∈I ai : I ⊆ {1, . . . , n}}, since the feasible set of
problem (5.1) changes at those points, and the slopes of the lines equals t . If Ψ (x)

does not reduce to a singleton then, the optimistic function value ϕo(x) is attained at
the top of the lines, the pessimistic one ϕp(x) at the bottom. If Ψ (x) is a singleton for
increasing x and z(·) is discontinuous there, the function value of z(x) is attained at
the line starting at point x in Fig. 5.2. This implies the existence of both an optimistic
and a pessimistic solution of problem (5.2) for t ≤ 0.

Theorem 5.1 (Dempe and Richter [75]) Let x ≤ ∑n
i=1 ai . Then, optimistic and

pessimistic solutions exist for problem (5.2) if t ≤ 0. If t > 0 then, problem (5.2)
has no (optimistic or pessimistic) solution or (x, y) with y ∈ Ψ (x) is optimistic or
pessimistic optimal.

Proof Note that {y : a�y ≤ x, yi ∈ {0, 1}, i = 1, . . . , n, y ∈ Ψ (x) for some x} is
a finite set and the region of stability R(y) is an interval for each such y.

1. First, let t ≤ 0. Let α = sup{d�y+t x : x ≤ x ≤ x, y ∈ Ψ (y)}. z(x) = d�y+t x
with y ∈ Ψ (x) is piecewise affine linear and there exist points xi ∈ [x, x] with
x = x1 < x2 < · · · < x p = x such that z(x) is affine linear and decreasing on
[xi , xi+1), i = 1, . . . , p − 1. R(y) = [xi , xi+1) or R(y) = [xi , xi+1] for some
Boolean vector y ∈ {0, 1}n . Hence, α = z(xi ). If |Ψ (xi )| = 1, then, ϕo(zi ) =
ϕp(xi ) = z(xi ) and the solution exists. If the optimal solution of problem (5.1)
is not unique for x = xi , then α = max{d�yk + t xi : yk ∈ Ψ (xi )} = ϕ0(xi ) and
the optimistic solution exists.

2. ϕp(·) is piecewise affine linear and decreasing on the intervals [xi , xi+1) where
it is continuous. For each interval [xi , xi+1) there is yi with ϕp(x) = d�yi + t x
and sup{ϕp(x) : x ∈ [xi , xi+1)} = ϕp(xi ). Hence, the solution exists in this
case, too.
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3. Now, assume t > 0. Then, all the functions x �→ d�y + t x with x ∈ R(y) are
increasing. If Ψ (x) is a singleton for all x , either ϕo(x) = ϕp(x) is increasing or
there exist points x̂ ∈ (x, x) with limx↑x̂ ϕo(x) > ϕo (̂x). In the first case, this is
the optimal solution. In the second case either (y, x) is a solution or the problem
does not have one.

4. At the end, let Ψ (x) contain more than one point for certain x and consider
the function ϕo(·) or ϕp(·). If this function is increasing on [x, x], the point
(x, y) is optimistic or pessimistic optimal. Otherwise, consider a point x̂ with
limx↑x̂ ϕo(x) ≥ ϕo (̂x). If ϕo(·) is not increasing around x̂ , Ψ (̂x)\Ψ (x) �= ∅ for
x < x̂ close to x̂ and we have a strict inequality limx↑x̂ ϕo(x) > ϕo (̂x). Then, we
can repeat part 3. The same is true for ϕp(·). �

Weak optimistic and pessimistic solutions exist for all t , see Sect. 5.3.
An example in Brotcorne et al. [33] can be used to show that an optimal solution

for the bilevel optimization problem with Boolean knapsack constraints need not to
exist.

Example 5.2 (Brotcorne et al. [33]) Consider the problem

max
x,y

{5y1 + y2 + y3 + y4 + x : 1 ≤ x ≤ 3, y ∈ Ψ (x)}

with

Ψ (x) = Argmax
y

{F(x, y) = 4y1 + 5y2 + 10y3 + 15y4 :
y1 + 2y2 + 3y3 + 4y4 ≤ x, yi ∈ {0, 1}, i = 1, 2, 3, 4}.

For x ∈ [1, 2) the optimal solution of the lower level problem is y = (1, 0, 0, 0)�,
and y = (0, 1, 0, 0)� is the optimal solution for x ∈ [2, 4). Hence, the leader’s
objective function value is

F(x, y) =
⎧
⎨

⎩

5 + x, x ∈ [1, 2),

1 + x, x ∈ [2, 3),

6, x = 3.

The upper level objective function is bounded from above by 7, but the value of 7 is
not attained. Hence, the problem does not have an optimal solution. �

For solving the problem (5.1), (5.2) in the optimistic case (maximization of the
objective function in problem (5.2) with respect to both x, y), and in the pessimistic
case a dynamic programming algorithm is applied. For this, the upper level problem
is replaced with
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max
x,y

{F(x, y) := d�y + t x : y ∈ Ψ (x), x ≤ x ≤ x, integer} (5.3)

or

max
x

min
y

{F(x, y) := d�y + t x : y ∈ Ψ (x), x ≤ x ≤ x, integer}, (5.4)

respectively. Let

ϕk(x) = max
y

{
k∑

i=1

ci yi :
k∑

i=1

ai yi ≤ x, yi ∈ {0, 1}, i = 1, . . . , k}

and

F̃k(x) = max
x

{
k∑

i=1

di yi : y ∈ Ψ (x)}.

Algorithm: (Solution of the bilevel optimization problem with 0–1 knapsack
problem in the lower level)

1. For all x, set

ϕk(x) =
{

0, if x ≤ a1 − 1,

c1, if a1 ≤ x ≤ x,
F̃k(x) =

{
0, if x ≤ a1 − 1,

d1, if a1 ≤ x ≤ x .

2. For k = 2 to n do
for x = 0 to x do
if x < ak then

ϕk(x) = ϕk−1(x), F̃k(x) = F̃k−1(x).

otherwise
ϕk(x) = max{ϕk−1(x), ϕk−1(x − ak) + ck}.

If ϕk−1(x) �= ϕk−1(x − ak) + ck set

F̃k(x) =
{

F̃k−1(x), if ϕk(x) = ϕk−1(x),

F̃k−1(x − ak) + dk , if ϕk(x) = ϕk−1(x − ak) + ck .

If ϕk−1(x) = ϕk−1(x − ak) + ck set

F̃k(x) = max{F̃k−1(x), F̃k−1(x − ak) + dk}

in the optimistic and

F̃k(x) = min{F̃k−1(x), F̃k−1(x − ak) + dk}
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in the pessimistic case.
end if, end for.

Theorem 5.2 (Brotcorns et al. [33]) If t ≤ 0, the point (x∗, y∗) with

F̃n(x∗) + t x∗ = max{F̃n(x) + t x : x ≤ x ≤ x, integer}

is an optimal solution for the optimistic or the pessimistic bilevel optimization prob-
lem, respectively.

Since ai are integer coefficients and (by t ≤ 0) the value of x is as small as possible,
it is also integral and we can restrict us to the fully discrete problem.

Example 5.3 Consider the problem

max
x,y

{3y1 + 5y2 + y3 + 9y4 − 2x : 0 ≤ x ≤ 6, y ∈ Ψ (x)},

where

Ψ (x) = Argmax
y

{y1+y2+y3+y4 : 5y1+3y2+2y3+y4 ≤ x, yi ∈ {0, 1}, i = 1, 2, 3, 4}.

Then, Table 5.1 is computed using the above algorithm.
Using Theorem 5.2, the optimal objective function value for the upper level prob-

lem is

max{0 − 0, 9 − 2, 9 − 4, 10 − 6, 14 − 8, 14 − 10, 15 − 12} = 7.

Hence, x∗ = 1, and y∗ = (0, 0, 0, 1)� and the optimal function values of the lower
and upper level problems are 1 and 7. �

Table 5.1 Realization of the
dynamic programming
algorithm

x k

y1 y2 y3 y4

F̃1 ϕ1 F̃2 ϕ2 F̃3 ϕ3 F̃4 ϕ4

0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 1 9

2 0 0 0 0 1 1 1 9

3 0 0 1 5 1 5 2 10

4 0 0 1 5 1 5 2 14

5 1 3 1 5 2 6 2 14

6 1 3 1 5 2 6 3 15



5.3 Weak Solution 141

5.3 Weak Solution

In this section, we investigate the bilevel optimization problem (1.1), (1.2) with
G(x) ≡ 0, some nonempty, compact set X ⊆ R

n and a nonempty and discrete set
T ⊆ R

k . I.e. there exists a number ω > 0 with ‖y1 − y2‖ > ω for all y1, y2 ∈ T .
Constraint G(x) ≤ 0 can be added to the upper level. The results presented in this
chapter are taken from Fanghänel and Dempe [106], see also Fanghänel [105].

Let
T := {y ∈ T : ∃x ∈ X with y ∈ Ψ (x)}. (5.5)

Throughout the section we need the following general assumptions:
(A1) There exists at least one optimal solution for the follower’s problem for all
parameter selections: Ψ (x) �= ∅ for all x ∈ X.

(A2) The set T is finite: card(T ) < ∞.

5.3.1 Regions of Stability

Regions of stability have been used in Sect. 2.3 for the formulation of a descent algo-
rithm to solve a linear bilevel optimization problem. They are sets of all parameters
for which a fixed feasible solution of the lower level problem is (global) optimal.
Here, they are formulated as follows:

Definition 5.1 The set

R(y) := {x ∈ X : y ∈ Ψ (x)}

is called region of stability for y ∈ T .

Consequently, R(y) �= ∅ if and only if y ∈ T . Assumption (A1) induces

X =
⋃

y∈T

R(y). (5.6)

The regions of stability have an equivalent formulation given in

Lemma 5.1 For all y ∈ T it holds

R(y) = {x ∈ X : g(x, y) ≤ 0, (g(x, y) �≤ 0 or f (x, y) ≤ f (x, y)) ∀y ∈ T }.

Proof Consider a point (x, y) with y ∈ T and x ∈ R(y). Then, by Definition 5.1,
y ∈ Ψ (x) and hence, g(x, y) ≤ 0. Further, no feasible point y ∈ T may have a
better function value than y, i.e. we have

R(y) ⊆ {x ∈ X : g(x, y) ≤ 0, (g(x, y) �≤ 0 or f (x, y) ≤ f (x, y))∀y ∈ T }.

http://dx.doi.org/10.1007/978-3-662-45827-3_1
http://dx.doi.org/10.1007/978-3-662-45827-3_1
http://dx.doi.org/10.1007/978-3-662-45827-3_2
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Now, consider a point (x, y) ∈ X × T satisfying

g(x, y) ≤ 0, (g(x, y) �≤ 0 or f (x, y) ≤ f (x, y))∀y ∈ T . (5.7)

We have to show x ∈ R(y). Due to assumption (A1), there exists ŷ ∈ T with
ŷ ∈ Ψ (x). Thus, the point ŷ ∈ T is feasible and f (x, ŷ) ≤ f (x, y). Furthermore,
due to the properties of (x, y) in Eq. (5.7), we have f (x, ŷ) ≥ f (x, y). Consequently,
f (x, ŷ) = f (x, y) and g(x, y) ≤ 0, g(x, ŷ) ≤ 0. Thus, if ŷ is global optimal, the
point y is global optimal, too. Hence, y ∈ Ψ (x) and thus x ∈ R(y). Consequently,
the lemma is true. �

Obviously, by the definition of the set T , the region of stability can also be written
in the form

R(y) = {x ∈ X : g(x, y) ≤ 0, (g(x, y) �≤ 0 or f (x, y) ≤ f (x, y)) ∀y ∈ T },
(5.8)

where the set T is replaced by T .
Unfortunately, the regions of stability are in general neither open nor closed nor

connected, they can be empty and can overlap. This is shown in the following three
examples.

Example 5.4 Let T = {0, 1, 2}, X = [0; 3], g(x, y) = y − x ≤ 0 and f (x, y) =
(y − x)2. Then, f (x, y) ≤ f (x, y) if and only if y2 − 2xy ≤ y2 − 2x y, i.e. if
2x(y − y) ≤ y2 − y2 holds. Thus, using formula (5.8) we obtain

R(0) = {x ∈ [0; 3] : x ≤ 0.5 or x < 1, x ≤ 1 or x < 2} = [0; 1),

R(1) = {x ∈ [1; 3] : x ≥ 0.5 or x < 0, x ≤ 1.5 or x < 2} = [1; 2),

R(2) = {x ∈ [2; 3] : x ≥ 1 or x < 0, x ≥ 1.5 or x < 1} = [2; 3]. �

Example 5.5 Let T = {−0.5, 0, 1}, X = [−1; 1], g(x, y) = y2 − x2 ≤ 0 and
f (x, y) = −y2. Then,

R(−0.5) = (−1;−0.5] ∪ [0.5; 1), R(0) = (−0.5, 0.5) and R(1) = {−1} ∪ {1}.

In this example the set R(0) is open, R(1) is closed and R(−0.5) is neither open
nor closed. Furthermore, R(1) and R(−0.5) are not connected. �

Example 5.6 Let T = {−1, 0, 1}, X = [−2; 1], g(x, y) = x + y ≤ 0 and f (x, y) =
−y2. Then, we obtain by (5.8)

R(−1) = [−2; 1], R(0) = ∅, R(1) = [−2;−1].

Thus, R(0) = ∅, i.e. 0 /∈ T and int R(−1) ∩ int R(1) = (−2;−1) �= ∅. �
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5.3.2 Properties of the Solution Sets

The regions of stability describe an inverse operation to the solution set mapping:

Ψ (x) = {y ∈ T : x ∈ R(y)}. (5.9)

Thus, knowing all regions of stability, it is easy to determine Ψ (x) for all x ∈ X .

Example 5.7 Consider Example 5.6 again. In this example the regions of stability
are R(−1) = [−2; 1], R(0) = ∅ and R(1) = [−2;−1]. Thus, Ψ (x) = {1,−1} for
all x ∈ [−2;−1] and Ψ (x) = {−1} for all x ∈ (−1; 1]. �

An often satisfied and useful property in bilevel optimization with continuous lower
level problems is the upper semicontinuity of the solution set mapping Ψ (·), see
Definition 3.1. This is used for the investigation of the existence of an optimal solution
of the bilevel optimization problem (cf. Dempe [52]). Since the set T has finitely
many elements in the discrete case, upper semicontinuity can be verified using the
following lemma.

Lemma 5.2 A point-to-set mapping Γ : X→2T is upper semicontinuous at x0 ∈ X
if and only if there exists some δ > 0 with

Γ (x0) ⊇ Γ (x) for all x ∈ X with ‖x − x0‖ < δ.

Proof Arguing by contradiction, assume that there does not exist δ > 0 withΓ (x0) ⊇
Γ (x) for all x ∈ X with ‖x − x0‖ < δ. Then there is a sequence {xk}∞k=1 ⊆ X with
limk→∞ xk = x0 and Γ (x0) �⊇ Γ (xk) for all k. This implies the existence of a
sequence {yk}∞k=1 ⊆ T with yk ∈ Γ (xk)\Γ (x0) for all k. Due to card(T ) < ∞, we
can assume w.l.o.g. that all yk coincide, i.e. y = yk for all k. This implies the existence
of an open set Ω ⊇ Γ (x0) with y /∈ Ω . Thus, Γ (·) is not upper semicontinuous at
x0 ∈ T .

Let an arbitrary δ > 0 be given and assume Γ (x0) ⊇ Γ (x) for all x ∈ X with
‖x − x0‖ < δ. Then, for each open set Ω with Ω ⊇ Γ (x0) it holds Ω ⊇ Γ (x0) ⊇
Γ (x) ∀ x ∈ X with ‖x − x0‖ < δ, i.e. Γ (·) is upper semicontinuous. �

As a result of this property, we obtain that the solution set mapping Ψ (·) is in general
not upper semicontinuous in parametric discrete optimization.

Example 5.8 Consider Example 5.4 again, i.e. let T = {0, 1, 2}, X = [0; 3],
g(x, y) = y − x ≤ 0 and f (x, y) = (y − x)2. Then it holds

R(0) = [0; 1), R(1) = [1; 2) and R(2) = [2; 3].

Thus, it is
Ψ (1) = {1} but Ψ (x) = {0} for all x ∈ [0; 1).

http://dx.doi.org/10.1007/978-3-662-45827-3_3
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There does not exist δ > 0 with Ψ (x) ⊆ Ψ (1) for all x ∈ X with ‖x − 1‖ < δ.
Consequently, the solution set mapping is not upper semicontinuous at x0 = 1. �

5.3.3 Extended Solution Sets

Since the solution set mapping Ψ (·) is not upper semicontinuous in general, the
existence of an optimal solution of the optimistic bilevel optimization problem cannot
be guaranteed. To obtain sufficient conditions for the existence of an optimal solution,
we introduce the so-called extended solution set mapping Ψ (·).
Definition 5.2 The set

Ψ (x) := {y ∈ T : x ∈ clR(y)}

is the extended solution set at the point x ∈ X . The mapping Ψ : X → 2T is called
extended solution set mapping.

Example 5.9 Let T = {0, 1, 2}, X = [0; 3], g(x, y) = y − x ≤ 0 and f (x, y) =
(y − x)2. Then, remembering Examples 5.4 and 5.8, we know

R(0) = [0; 1), R(1) = [1; 2) and R(2) = [2; 3].

Thus, it holds

clR(0) = [0; 1], clR(1) = [1; 2] and clR(2) = [2; 3].

Consequently, we obtain Ψ (1) = {0, 1} �= Ψ (1) = {1}. �

The point-to-set mapping Ψ (·) is an extension of the solution set mapping:

Ψ (x) ⊆ Ψ (x) for all x ∈ X. (5.10)

If the regions of stability are closed for all y ∈ T , then Ψ (x) = Ψ (x) for all x ∈ X .
The most important property of Ψ (·) is its upper semicontinuity.

Theorem 5.3 Ψ (·) is the smallest upper semicontinuous point-to-set mapping with
Ψ (x) ⊆ Ψ (x) for all x ∈ X.

Proof First we show the upper semicontinuity of Ψ (·). Assume on the contrary that
Ψ (·) is not upper semicontinuous at x0 ∈ X . Then, by Lemma 5.2, there exists
some sequence {xk}∞k=1 ⊆ X with limk→∞ xk = x0 and Ψ (xk) �⊆ Ψ (x0) for all k.
Because of card(T ) < ∞ and Ψ (xk) ⊆ T we can assume w.l.o.g. that there exists
some y ∈ T with

y ∈ Ψ (xk) ∀k and y /∈ Ψ (x0).
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Thus, we obtain
xk ∈ clR(y) ∀k and x0 /∈ clR(y).

But this is a contradiction to clR(y) being closed. Consequently, Ψ (·) is upper
semicontinuous.

Assume now that there exists another upper semicontinuous point-to-set mapping
Γ (·) with

Ψ (x0) ⊆ Γ (x0) ⊆ Ψ (x0)

for some x0 ∈ X and Ψ (x) ⊆ Γ (x) for all x ∈ X . Take an arbitrary point y ∈ Ψ (x0).
Then, x0 ∈ clR(y) and there exists a sequence {xk}∞k=1 ⊆ R(y) with limk→∞ xk =
x0. Consequently, y ∈ Ψ (xk) ⊆ Γ (xk) for all k. Using the upper semicontinuity of
Γ (·) we obtain y ∈ Γ (x0). Hence, Γ (x0) = Ψ (x0) and the theorem is true. �

5.3.4 Solution Functions

In general, Ψ (x) does not reduce to a singleton (see Example 5.7). This has been
used in Sect. 1.2 to formulate the optimistic and the pessimistic bilevel optimization
problems. The optimistic solution function ϕo : X → R defined in (1.3) and the
pessimistic solution function ϕp(·) : X → R defined in Eq. (1.5) are in general not
continuous. Thus, in the optimistic and the pessimistic bilevel optimization problems

min{ϕo(x) : x ∈ X}

and
min{ϕp(x) : x ∈ X},

discontinuous functions are minimized over the compact set X .
Let us introduce the following sets:

Definition 5.3 For a given point y ∈ T , let

O(y) := {x ∈ R(y) : ϕo(x) = F(x, y)} and

P(y) := {x ∈ R(y) : ϕp(x) = F(x, y)}

denote the set of all x ∈ X , for which y can be chosen using the optimistic and
pessimistic solution approaches, respectively.

These sets are in general neither open nor closed, they can be empty or not connected.

Example 5.10 Consider again the problem in Example 5.6, i.e. let T = {−1, 0, 1},
X = [−2; 1], g(x, y) = x + y ≤ 0 and f (x, y) = −y2. Then,

http://dx.doi.org/10.1007/978-3-662-45827-3_1
http://dx.doi.org/10.1007/978-3-662-45827-3_1
http://dx.doi.org/10.1007/978-3-662-45827-3_1
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R(1) = [−2,−1], R(0) = ∅ and R(−1) = [−2, 1].

Thus, Ψ (x) = {1,−1} for all x ∈ [−2,−1] and Ψ (x) = {−1} for all x ∈ (−1, 1].
Now let F(x, y) = xy. Then, it holds

ϕo(x) =
{

x for x ∈ [−2,−1]
−x for x ∈ (−1, 1] and ϕp(x) = −x for all x ∈ X.

Consequently,

O(−1) = (−1, 1], O(0) = ∅ and O(1) = [−2;−1],
P(−1) = [−2, 1], P(0) = ∅ and P(1) = ∅. �

If some lower semicontinuous function is minimized over a compact set local and
global minima always exist (cf. Rockafellar and Wets [274]). Unfortunately, the opti-
mistic and the pessimistic solution functions are in general not lower semicontinuous.

Example 5.11 Let f (x, y) = (y − x)2, g(x, y) = y − x , F(x, y) = 1 + y − x ,
T = {0, 1, 2} and X = [0; 2]. These are the data of Example 5.4 with modified set X .
Analogously to Example 5.4 it holds R(0) = [0; 1), R(1) = [1; 2) and R(2) = {2}.
Thus, card(Ψ (x)) = 1 for all x ∈ X , i.e. the optimistic and the pessimistic solution
functions coincide. It holds

ϕo(x) = ϕp(x) =
⎧
⎨

⎩

1 − x, x ∈ [0; 1)

2 − x, x ∈ [1; 2)

1, x = 2
.

Hence, the solution functions are not lower semicontinuous at the points x = 1 and
x = 2. In Fig. 5.3 we see that no local minimum exists. �

Thus, in general there do not exist local minima for the optimistic and pessimistic
solution functions, respectively. Therefore, the goal of computing an optimal solution
of the bilevel optimization problem needs to be replaced by the search for a “nearly”
optimal solution. For that reason we introduce the so-called weak solution functions.

Fig. 5.3 Local optima do
not exist in general

1 2 x

1
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5.3.5 Weak Solution Functions

If the function ϕo : X → R is not lower semicontinuous at some point x0 ∈ X it
holds ϕo(x0) > lim inf x→x0, x∈X ϕo(x). This motivates us to introduce the following
functions:

Definition 5.4 (Schmidt [281]) For x0 ∈ X , let

ϕo(x0) := lim inf
x→x0, x∈X

ϕo(x) (5.11)

and
ϕ p(x0) := lim inf

x→x0, x∈X
ϕp(x). (5.12)

Then ϕo(·) is called weak optimistic and ϕ p(·) is the weak pessimistic solution
function.

Definition 5.4 obviously implies

ϕo(x) ≤ ϕo(x) and ϕ p(x) ≤ ϕp(x) for all x ∈ X. (5.13)

In the next theorem we prove that both the weak optimistic and the weak pessimistic
solution functions are lower semicontinuous implying the existence of local and
global solutions of the optimistic and the pessimistic optimization problem.

Theorem 5.4 (Fanghänel and Dempe [106]) The functions ϕo(·) and ϕ p(·) are the
largest lower semicontinuous functions with ϕo(x) ≤ ϕo(x) and ϕ p(x) ≤ ϕp(x) for
all x ∈ X.

Proof We prove the theorem only for the weak optimistic solution function. For the
weak pessimistic solution function the proof is analogous.
Let an arbitrary point x0 ∈ X and an arbitrary sequence {xk}∞k=1 ⊆ X with
limk→∞ xk = x0 be given. Due to the definition of ϕo(·), there exist points zk ∈ X
for all k with ‖zk − xk‖ < 1/k and |ϕo(zk) − ϕo(xk)| < 1/k. Thus, it holds

0 ≤ lim
k→∞ ‖zk − x0‖ ≤ lim

k→∞(‖zk − xk‖ + ‖xk − x0‖) = 0,

i.e. the sequence {zk} ⊆ X converges to x0. Further, it is

ϕo(x0) = lim inf
x→x0, x∈X

ϕo(x) ≤ lim inf
k→∞ ϕo(z

k)

= lim inf
k→∞

[
(ϕo(z

k) − ϕo(xk)) + ϕo(xk)
]

≤ lim inf
k→∞ (1/k + ϕo(xk)) = lim inf

k→∞ ϕo(xk).
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Since {xk} was chosen arbitrarily, ϕo(·) is lower semicontinuous at x0. Since x0 ∈ X
was chosen arbitrarily ϕo(·) is lower semicontinuous.

It remains to show that there is no lower semicontinuous function between ϕo(·)
and ϕo(·). Arguing by contradiction, assume that there exists a lower semicontinuous
function π : T → Rwith π(x) ≤ ϕo(x) for all x ∈ X and ϕo(x0) ≤ π(x0) ≤ ϕo(x0)

for some x0 ∈ X . Let {xk} ⊆ X be an arbitrary sequence with limk→∞ xk = x0 and
ϕo(x0) = limk→∞ ϕo(xk). Then, due to lower semicontinuity of π(·) and π(x) ≤
ϕo(x) for all x ∈ X , it holds

ϕo(x0) = lim
k→∞ ϕo(xk) ≥ lim

k→∞ π(xk) ≥ π(x0).

Thus, it is ϕo(x) ≥ π(x) for all x ∈ X . �

Next, we intend to find alternative definitions of the weak optimistic and weak pes-
simistic solution functions, resp., which can easier be used in solution algorithms.
Therefore, we introduce the following sets:

Ψ̂o(x) := {y ∈ T : x ∈ cl O(y)} (5.14)

Ψ̂p(x) := {y ∈ T : x ∈ cl P(y)} (5.15)

Due to the fact, that O(y) ⊆ R(y) and P(y) ⊆ R(y), these sets are subsets of Ψ (x)

for all x ∈ X :

Ψ̂o(x) ⊆ Ψ (x) and Ψ̂p(x) ⊆ Ψ (x) for all x ∈ X. (5.16)

These sets define two point-to-set mappings Ψ̂o : X → 2T and Ψ̂p : X → 2T .

Theorem 5.5 (Fanghänel and Dempe [106]) The point-to-set mappings
Ψ̂o : X → 2T and Ψ̂p : X → 2T are upper semicontinuous.

Proof We prove the theorem for the point-to-set mapping Ψ̂o : X → 2T . For Ψ̂p :
X → 2T the proof is analogous.

Suppose that the conclusion of the theorem does not hold. Then, due to Lemma 5.2,
there exists x0 ∈ X and a sequence {xk}∞k=1 ⊆ X with limk→∞ xk = x0 and
Ψ̂o(xk) �⊆ Ψ̂o(x0) for all k. Due to card(T ) < ∞, we can assume that there exists a
point y ∈ T with y ∈ Ψ̂o(xk) for all k and y /∈ Ψ̂o(x0). Hence, xk ∈ cl O(y) for all k.
Since the set cl O(y) is closed, this implies x0 ∈ cl O(y). But this is a contradiction
to y /∈ Ψ̂o(x0). This proves the theorem. �

Now we use the mappings Ψ̂o(·) and Ψ̂p(·) to rewrite the functions ϕo : X → R and
ϕ p : X → R.

Theorem 5.6 (Fanghänel and Dempe [106]) For all x ∈ X it is

ϕo(x) = min
y∈Ψ̂o(x)

F(x, y) and ϕ p(x) = min
y∈Ψ̂p(x)

F(x, y).
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Proof We prove the theorem for the weak optimistic solution function. For the weak
pessimistic solution function the proof is analogous.

Let x ∈ X . Then, since (5.11), there exists a sequence {xk}∞k=1 ⊆ X with
limk→∞ xk = x and ϕo(x) = limk→∞ ϕo(xk). Further, because of card(T ) < ∞,
there exists w.l.o.g. some y ∈ T with xk ∈ O(y) for all k. Hence, x ∈ cl O(y), i.e.
y ∈ Ψ̂o(x). Thus, it holds

ϕo(x) = lim
k→∞ ϕo(xk) = lim

k→∞ F(xk, y) = F(x, y)

for this y ∈ Ψ̂o(x). This implies

ϕo(x) ≥ min
y∈Ψ̂o(x)

F(x, y).

Take an arbitrary y ∈ Ψ̂o(x). Then, x ∈ cl O(y), i.e. there exists some sequence
{xk}∞k=1 ⊆ O(y) with limk→∞ xk = x . This implies ϕo(xk) = F(xk, y) for all k.
Thus, it holds

ϕo(x) ≤ lim inf
k→∞ ϕo(xk) = lim inf

k→∞ F(xk, y) = F(x, y).

Consequently, we obtain
ϕo(x) ≤ min

y∈Ψ̂o(x)
F(x, y). �

Example 5.12 Let f (x, y) = −(y1 + y2), g(x, y) = y1 + 2y2 − x , F(x, y) =
y1 − y2 − x + 2, T = {0, 1}2 and X = [1; 3]. Using formula (5.8) we obtain the
following regions of stability

R(y1) = ∅, R(y2) = [1; 3), R(y3) = [2; 3) und R(y4) = {3}

with

y1 =
(

0

0

)
, y2 =

(
1

0

)
, y3 =

(
0

1

)
and y4 =

(
1

1

)
.

Next we consider the functions F(·, y) over the sets R(y).
Using the Fig. 5.4 we easily obtain

ϕo(x) =
⎧
⎨

⎩

3 − x, x ∈ [1; 2)

1 − x, x ∈ [2; 3)

−1, x = 3
and ϕp(x) =

{
3 − x, x ∈ [1; 3)

−1, x = 3
.

Thus, the optimistic solution function has no local minimum. Further, for all x ∈ X
we have
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Fig. 5.4 Objective function
value over regions of
stability

Ψ̂o(x) =

⎧
⎪⎪⎨

⎪⎪⎩

{y2}, x ∈ [1; 2)

{y2, y3}, x = 2
{y3}, x ∈ (2; 3)

{y3, y4}, x = 3

and Ψ̂p(x) =
{ {y2}, x ∈ [1; 3)

{y2, y4}, x = 3.

Hence,

ϕo(x) =
{

3 − x, x ∈ [1; 2)

1 − x, x ∈ [2; 3] and ϕ p(x) = ϕp(x).

The weak solution functions ϕo(·) and ϕ p(·) have at the point x = 3 a local and
global minimum, resp. �

5.3.6 Optimality Conditions

Focus in this subsection is on the formulation of necessary optimality conditions for
minimizing the optimistic and the pessimistic solution functions on the set X .

In the following let locmin{ϕ(x) : x ∈ X} denote the set of all local minima of
the function ϕ(·) over X . Using this, we denote by

locmin{ϕo(x) : x ∈ X} the set of all weak local optimistic solutions,
locmin{ϕ p(x) : x ∈ X} the set of all weak local pessimistic solutions,
locmin{ϕo(x) : x ∈ X} the set of all local optimistic solutions,
locmin{ϕp(x) : x ∈ X} the set of all local pessimistic solutions.

First we show, that the concepts of weak local optimistic and pessimistic solu-
tions are weaker than the concepts of local optimistic and pessimistic solutions,
respectively.
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Lemma 5.3 It holds

1. locmin{ϕo(x) : x ∈ X} ⊆ locmin{ϕo(x) : x ∈ X},
2. locmin{ϕp(x) : x ∈ X} ⊆ locmin{ϕ p(x) : x ∈ X}.
Proof We prove the theorem for the optimistic solution approach. For the pessimistic
solution approach, the proof is analogous.

Let x0 ∈ locmin{ϕo(x) : x ∈ X}. Then, there exists δ > 0 with ϕo(x0) ≤ ϕo(x)

for all x ∈ X satisfying ‖x −x0‖ < δ. Take x ∈ X with ‖x −x0‖ < δ and a sequence
{xk}∞k=1 ⊆ X with limk→∞ xk = x and

ϕo(x) = lim
k→∞ ϕo(xk).

Then, there is an index k0 such that ‖xk − x0‖ < δ and thus ϕo(x0) ≤ ϕo(xk) for all
k ≥ k0. Consequently,

ϕo(x) = lim
k→∞ ϕo(xk) ≥ ϕo(x0) ≥ ϕo(x0).

Since x was chosen arbitrarily, this implies x0 ∈ locmin{ϕo(x) : x ∈ X}. �

Thus, each local optimistic or local pessimistic solution is also a weak local optimistic
or weak local pessimistic solution, respectively. Before we can discuss optimality
conditions for weak local optimistic and weak local pessimistic solutions, we intro-
duce the following sets:

Lo(y) := locmin
x

{F(x, y) : x ∈ cl O(y)} (5.17)

L p(y) := locmin
x

{F(x, y) : x ∈ cl P(y)} (5.18)

Theorem 5.7 (Fanghänel and Dempe [106]) It holds

1. x0 ∈ locmin{ϕo(x) : x ∈ X} if and only if x0 ∈ Lo(y) for all y ∈ Ψ̂o(x0) with
ϕo(x0) = F(x0, y).

2. x0 ∈ locmin{ϕ p(x) : x ∈ X} if and only if x0 ∈ L p(y) for all y ∈ Ψ̂p(x0) with
ϕ p(x0) = F(x0, y).

Proof Again we prove the theorem only for the optimistic solution approach. For
the pessimistic solution approach the proof is analogous.

Assume that x0 /∈ Lo(y) for some y ∈ Ψ̂o(x0) with ϕo(x0) = F(x0, y). Then,
y ∈ Ψ̂o(x0) implies x0 ∈ cl O(y). Because of x0 /∈ Lo(y), there exists a sequence
{xk}∞k=1 ⊆ cl O(y) with limk→∞ xk = x0 and

F(xk, y) < F(x0, y) for all k.

Further, Theorem 5.6 implies ϕo(xk) ≤ F(xk, y) for all k because of xk ∈ cl O(y),
i.e. y ∈ Ψ̂o(xk). Thus, it holds
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ϕo(xk) ≤ F(xk, y) < F(x0, y) = ϕo(x0)

for all k. Consequently, x0 /∈ locmin{ϕo(x) : x ∈ X}.
Assume that x0 /∈ locmin{ϕo(x) : x ∈ X} for some x0 ∈ X . Then there exists a

sequence {xk}∞k=1 ⊆ X with limk→∞ xk = x0 and

ϕo(xk) < ϕo(x0) for all k.

Because of card(T ) < ∞, there exists w.l.o.g. some y ∈ T with y ∈ Ψ̂o(xk) and
ϕo(xk) = F(xk, y) for all k (see Theorem 5.6). This implies y ∈ Ψ̂o(x0) because of
the upper semicontinuity of Ψ̂o(·) (Theorem 5.5). Thus, it is

F(xk, y) = ϕo(xk) < ϕo(x0) ≤ F(x0, y). (5.19)

For k converging to infinity this yields ϕo(x0) = F(x0, y). Since y ∈ Ψ̂o(xk)

implies xk ∈ cl O(y), using (5.19) we obtain x0 /∈ Lo(y) for some y ∈ Ψ̂o(x0) with
ϕo(x0) = F(x0, y). �

Thus, using the sets Ψ̂o(x0) and Lo(x0) or Ψ̂p(x0) and L p(x0), Theorem 5.7 provides
us with a necessary and sufficient optimality condition. For many problems the
computation of these sets is maybe complicated. Hence, we are interested in obtaining
simpler optimality conditions. For that we introduce the set

L(y) := locmin
x

{F(x, y) : x ∈ clR(y)} (5.20)

for y ∈ T .

Lemma 5.4 Let x0 ∈ X. Then,

ϕo(x0) ≤ F(x0, y) for all x ∈ Ψ (x0)

and the following two statements are equivalent:

(a) x0 ∈ Lo(y) for all y ∈ Ψ̂o(x0) with ϕo(x0) = F(x0, y),
(b) x0 ∈ L(y) for all y ∈ Ψ (x0) with ϕo(x0) = F(x0, y).

Proof Let y ∈ Ψ (x0). Then, x0 ∈ clR(y) by definition. Thus, there exists a
sequence {xk}∞k=1 ⊆ R(y) with limk→∞ xk = x0. Then it follows y ∈ Ψ (xk)

and ϕo(xk) ≤ F(xk, y) for all k. Tending k → ∞, we obtain

ϕo(x0) ≤ lim inf
k→∞ ϕo(xk) ≤ lim

k→∞ F(xk, y) = F(x0, y).

Thus, the first statement of the lemma holds.
Next we investigate the equivalence statement. Assume statement (a) is not valid.

Then there exists some y ∈ Ψ̂o(x0) with F(x0, y) = ϕo(x0) and x0 /∈ Lo(y). This
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implies the existence of a sequence {xk}∞k=1 ⊆ cl O(x) with limk→∞ xk = x0 and
F(xk, y) < F(x0, y) for all k. Due to cl O(y) ⊆ clR(y), we obtain x0 /∈ L(y).
Moreover, y ∈ Ψ (x0) by (5.16). Thus, statement (b) is not valid, too.

Assume statement (b) is not valid. Then there exists some y ∈ Ψ (x0) with
ϕo(x0) = F(x0, y) and x0 /∈ L(y). This implies the existence of a sequence
{xk}∞k=1 ⊆ clR(y) with limk→∞ xk = x0 and F(xk, y) < F(x0, y) for all k.
The property {xk}∞k=1 ⊆ clR(y) is equivalent to y ∈ Ψ (xk) for all k. Using the first
statement of the lemma and because of F(x0, y) = ϕo(x0), we obtain

ϕo(xk) ≤ F(xk, y) < F(x0, y) = ϕo(x0) for all k.

Thus, x0 /∈ locmin{ϕo(x) : x ∈ X}. Then, because of Theorem 5.7, statement (a) is
not valid, too. �

Using Lemma 5.4 we obtain the following obvious corollary of Theorem 5.7:

Corollary 5.1 x0 ∈ locmin{ϕo(x) : x ∈ X} if and only if x0 ∈ L(y) for all
y ∈ Ψ (x0) with ϕo(x0) = F(x0, y).

Thus, in the optimistic case, we can check weak local optimality also by using
the extended solution sets and the sets L(y).

Next, we want to investigate optimality conditions for the optimistic and pes-
simistic solution functions.

Theorem 5.8 (Fanghänel and Dempe [106]) It holds

1. x0 ∈ locmin{ϕo(x) : x ∈ X} if and only if the following two conditions are
valid:

a. ϕo(x0) ≤ F(x0, y) for all y ∈ Ψ̂o(x0),
b. x0 ∈ Lo(y) for all y ∈ Ψ̂o(x0) with ϕo(x0) = F(x0, y).

2. x0 ∈ locmin{ϕp(x) : x ∈ X} if and only if the following two conditions are
valid:

a. ϕp(x0) ≤ F(x0, y) for all y ∈ Ψ̂p(x0),
b. x0 ∈ L p(y) for all y ∈ Ψ̂p(x0) with ϕp(x0) = F(x0, y).

Proof We prove the statements of the theorem for the pessimistic solution function.
For the optimistic solution approach the proof is analogous.

Let x0 ∈ locmin{ϕp(x) : x ∈ X}. Assume that condition (a) is not valid, i.e.,
there exists some y ∈ Ψ̂p(x0) with F(x0, y) < ϕp(x0). Then, y ∈ Ψ̂p(x0) implies
x0 ∈ cl P(y). Thus, there exists a sequence {xk}∞k=1 ⊆ P(y) with limk→∞ xk = x0.
Hence, F(xk, y) = ϕp(xk) for all k. Tending k to infinity, we obtain

lim
k→∞ ϕp(xk) = lim

k→∞ F(xk, y) = F(x0, y) < ϕp(x0).

But this is a contradiction to x0 ∈ locmin{ϕp(x) : x ∈ X}.
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Assume condition (a) holds, but condition (b) is not valid. Then there exists some
y ∈ Ψ̂p(x0) with F(x0, y) = ϕp(x0) and x0 /∈ L p(y). Further, condition (a) implies

ϕp(x0) ≤ inf
y∈Ψ̂p(x0)

F(x0, y) = ϕ p(x0),

i.e. ϕp(x0) = ϕ p(x0) = F(x0, y) [(see Eq. (5.13)]. Thus, using Theorem 5.7, we
obtain x0 /∈ locmin{ϕ p(x) : x ∈ X}. Consequently, x0 /∈ locmin{ϕp(x) : x ∈ X}
because of Lemma 5.3. Hence, x0 ∈ locmin{ϕp(x) : x ∈ X} implies the validity of
the conditions (a) and (b).

Assume x0 ∈ X is not a local pessimistic solution. Then there exists a sequence
{xk}∞k=1 ⊆ X with limk→∞ xk = x0 and

ϕp(xk) < ϕp(x0) for all k. (5.21)

Because of card(T ) < ∞, there exists w.l.o.g. some y ∈ Ψ (xk) with ϕp(xk) =
F(xk, y) for all k, i.e. xk ∈ P(y) for all k. This implies x0 ∈ cl P(y) and thus
y ∈ Ψ̂p(x0). Then, using the inequality (5.21), we obtain

F(xk, y0) = ϕp(xk) < ϕp(x0) for all k.

With k → ∞ this yields F(x0, y) ≤ ϕp(x0). Thus, if condition (a) is fulfilled, it
holds F(x0, y) = ϕp(x0). But then we obtain

F(xk, y) = ϕp(xk) < ϕp(x0) = F(x0, y) for all k,

i.e. condition (b) is not fulfilled. �

Corollary 5.2 We have

1. x0 ∈ locmin{ϕo(x) : x ∈ X} if and only if

ϕo(x0) = ϕo(x0) and x0 ∈ locmin{ϕo(x) : x ∈ X}.

2. x0 ∈ locmin{ϕp(x) : x ∈ X} if and only if both

ϕp(x0) = ϕ p(x0) and x0 ∈ locmin{ϕ p(x) : x ∈ X}.

Proof We prove the statements of the corollary for the pessimistic solution function.
For the optimistic solution approach the proof is analogous.

Assume x0 ∈ X is a local pessimistic solution. Then, x0 is also a weak local
pessimistic solution because of Lemma 5.3. Further it is ϕp(x0) ≤ F(x0, y) for
all y ∈ Ψ̂p(x0) (Theorem 5.8). Thus, applying Theorem 5.6, we obtain ϕp(x0) ≤
ϕ p(x0). Consequently, equality holds because of (5.13).



5.3 Weak Solution 155

Assume that both ϕp(x0) = ϕ p(x0) and x0 ∈ locmin{ϕ p(x) : x ∈ X} are
satisfied. Then,

ϕ p(x0) = min
y∈Ψ̂p(x0)

F(x0, y) = ϕp(x0).

Thus, we obtain ϕp(x0) ≤ F(x0, y) for all y ∈ Ψ̂p(x0). Consequently, condition (a)
of Theorem 5.8 is fulfilled. Furthermore, because of Theorem 5.7 it is x0 ∈ L p(y)

for all y ∈ Ψ̂p(x0) with F(x0, y) = ϕ p(x0). With ϕp(x0) = ϕ p(x0) this yields
condition (b) of Theorem 5.8. Hence, x0 is a local pessimistic solution. �

Example 5.13 Let f (x, y) = −(y1 + y2), g(x, y) = y1 + 2y2 − x , T = {0, 1}2

and X = [1; 3] as in Example 5.12 but F(x, y) = (y2 − y1)x + y1 − 3y2. Then the
regions of stability

R(y1) = ∅, R(y2) = [1; 3), R(y3) = [2; 3) and R(y4) = {3}

for the feasible points

y1 =
(

0

0

)
, y2 =

(
1

0

)
, y3 =

(
0

1

)
and y4 =

(
1

1

)

are unchanged. Because F(·, ·) was changed we obtain different solution functions.
These solution functions are sketched in the Figs. 5.5 and 5.6.

Fig. 5.5 The optimistic
solution function in Example
5.13

Fig. 5.6 The pessimistic
solution function in
Example 5.13
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We investigate local optimality at the point x0 = 2. Obviously it holds
Ψ (x0) = Ψ (x0) = {y2, y3}. The sets Ψ̂o(x0) and Ψ̂p(x0) are subsets of Ψ (x0).
Thus, because of F(x0, y2) = −1 = F(x0, y3), we obtain

Ψ̂o(x0) = Ψ̂p(x0) = {y2, y3}

and
ϕo(x0) = ϕp(x0) = ϕo(x0) = ϕ p(x0) = −1.

Consequently, at the point x0 = 2 condition (a) of Theorem 5.8 is fulfilled for both
the optimistic and the pessimistic solution approach. Now we check condition (b) of
Theorem 5.8. It holds

O(y2) = [1; 3), O(y3) = {2}, P(y2) = [1; 2] and P(y3) = [2; 3).

This yields

Lo(y2) = {3}, Lo(y3) = {2}, L p(y2) = {2} and L p(y3) = {2}.

Thus, we have ϕo(x0) = F(x0, y2) but x0 /∈ Lo(y2), i.e. x0 = 2 is not a (weak) local
optimistic solution. For the pessimistic solution approach, it holds x0 ∈ L p(x2) and
x0 ∈ L p(x3), i.e. x0 = 2 is a (weak) local pessimistic solution. �

5.3.7 Computation of Optimal Solutions

Knowing optimality conditions we are looking for a way to compute a weak local
optimistic and a weak local pessimistic solution.

Algorithm: Computation of a weak optimistic solution.

Input: x0 ∈ X (starting point)
0. Set k := 0.
1. Compute Ψ̂o(xk), ϕo(xk) and M(xk) := {y ∈ Ψ̂o(xk) : ϕo(xk) = F(xk , y)}.
2. If there exists yk ∈ M(xk) with xk /∈ Lo(yk) then choose

xk+1 ∈ Lo(yk), set k := k + 1 and proceed with step 1;
else stop.

Output: xk ∈ locmin{ϕo(x) : x ∈ X}.

Theorem 5.9 (Fanghänel and Dempe [106]) The above algorithm computes a weak
local optimistic solution in a finite number of steps.

Proof If the algorithm stops, the computed point is a weak local optimistic solution
because of Theorem 5.7. Thus, we only have to prove that the algorithm stops after
finitely many iterations. Assume this is not true. Then sequences {xk}∞k=1 ⊆ X and
{yk}∞k=1 ⊆ T are be computed with yk ∈ M(xk), xk /∈ Lo(yk) and xk+1 ∈ Lo(yk)
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for all k ≥ 0. Because of xk+1 ∈ Lo(yk) for all k, we obtain yk ∈ Ψ̂o(xk+1), i.e.
ϕo(xk+1) ≤ F(xk+1, yk) for all k. Thus, it holds

ϕo(xk) = F(xk, yk) > F(xk+1, yk) ≥ ϕo(xk+1) for all k.

Hence, ϕo(xk) > ϕo(xl) for all indices k < l. Because of card(T ) < ∞, there
exist two indices k, l with k < l and yk = yl . Then it holds yk = yl ∈ Ψ̂o(xl), i.e.
xl ∈ cl O(yk). Thus, using xk+1 ∈ Lo(yk) and xl /∈ Lo(yl) = Lo(yk), we obtain

F(xk+1, yk) < F(xl , yk) = F(xl , yl).

But this is a contradiction to

F(xk+1, yk) ≥ ϕo(xk+1) ≥ ϕo(xl) = F(xl , yl).

Thus, the algorithm stops after finitely many iterations. �
For weak local pessimistic solutions, there exists an analogous algorithm. Remark
that the choice of the starting point is very important with respect to the quality of
the computed solution. If we consider Example 5.13 we see that only with the choice
of x0 = 3 a global pessimistic solution is computed.

It is well-known that each global optimal solution of a mathematical optimization
problem is also a local optimal solution. Thus, it holds

Argmin{ϕo(x) : x ∈ X} ⊆ locmin{ϕo(x) : x ∈ X},
Argmin{ϕp(x) : x ∈ X} ⊆ locmin{ϕp(x) : x ∈ X}.

But the existence of a local optimal solution is not a guarantee for the existence of a
global optimal solution. Let

ϕ∗
o := min{ϕo(x) : x ∈ X} and ϕ∗

p := min{ϕ p(x) : x ∈ X}. (5.22)

Then, by lower semicontinuity of ϕo(·) and ϕp(·), there always exists x∗ ∈ X with
ϕo(x∗) = ϕ∗

o and ϕ p(x∗) = ϕ∗
p, respectively. Let

ϕ∗
o := inf{ϕo(x) : x ∈ X} and ϕ∗

p := inf{ϕp(x) : x ∈ X}. (5.23)

Then the following lemma holds.

Lemma 5.5 It is ϕ∗
o = ϕ∗

o and ϕ∗
p = ϕ∗

p.

Proof Because of (5.13), we have ϕ∗
o ≤ ϕ∗

o . Further, there exists some x∗ ∈ X
with ϕo(x∗) = ϕ∗

o. Due to Definition 5.4, there exists a sequence {xk}∞k=1 ⊆ X with
ϕo(x∗) = limk→∞ ϕo(xk). Thus, inequality

ϕ∗
o = ϕo(x∗) ≥ inf

x∈X
ϕo(x) = ϕ∗

o
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holds. For the pessimistic solution function, the proof is analogous. �

A point x0 is a global optimistic (pessimistic) solution if and only if it is a weak
global optimistic (pessimistic) solution with ϕo(x0) = ϕo(x0) (ϕp(x0) = ϕ p(x0)).

If there does not exist any global optimistic (pessimistic) solution, we are inter-
ested in finding some ε-optimal solution for the optimistic (pessimistic) case.

Definition 5.5 Let ε > 0. Some x0 ∈ X is called ε-optimal solution for the opti-
mistic (pessimistic) case if it holds ϕo(x0) < ϕ∗

o + ε (resp. ϕp(x0) < ϕ∗
p + ε).

For the computation of ε-optimal solutions we can use the following theorem.

Theorem 5.10 (Fanghänel and Dempe [106]) Let ε > 0. Further let there be
given some weak global optimistic (pessimistic) solution x0 ∈ X and some point
y0 ∈ Ψ̂o(x0) (resp. y0 ∈ Ψ̂p(x0)) with F(x0, y0) = ϕo(x0) (resp. F(x0, y0) =
ϕ p(x0)). Then each point x ∈ O(y0) (resp. x ∈ P(y0)) with F(x, y0) ≤
F(x0, y0) + ε is an ε-optimal solution for the optimistic (pessimistic) case.

Proof Let there be given some x ∈ O(y0) with F(x, y0) ≤ F(x0, y0) + ε. Then it
holds

ϕo(x) = F(x, y0) ≤ F(x0, y0) + ε = ϕ̄o(x0) + ε = ϕ∗
o + ε

because of the definition of O(y0), the assumptions of the theorem and Lemma 5.5.
Thus, the conclusion of the theorem holds for the optimistic case.

For the pessimistic case, the proof is analogous. �

5.4 Optimality Conditions Using a Radial-Directional
Derivative

Focus in the paper [104] of Fanghänel is on the application of the radial-directional
derivative and the radial subdifferential for describing optimality conditions for
bilevel optimization problems with discrete variables in the lower level problem.
This is a generalization of the approach used in the monograph [52] of Dempe for
linear bilevel optimization problems. It will be shown in this section that a simi-
lar approach can be used for discrete bilevel optimization problems. The following
material in this Section is taken from [104] of Fanghänel.

5.4.1 A Special Mixed-Discrete Bilevel Problem

Consider in this section the bilevel optimization problem

“ min ”{F(x, y) : x ∈ R
n, y ∈ ΨD(x)} (5.24)

with
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ΨD(x) = Argmin
y

{ f (x, y) : Ay ≤ b, y ∈ Z
n} (5.25)

and A ∈ R
m×n , b ∈ R

m , f (x, y) = h(y) − y�x where h : Rn → R is a differen-
tiable, strongly convex function with modulus θ (cf. Hiriart-Urruty and Lemarechal
[145]) and F(x, y) is continuous and continuously differentiable with respect to y.
Recall that a function h : Rn → R is strongly convex if there exists θ > 0 such that
for all z0 ∈ R

n the inequalities

h(z) ≥ h(z0) + ∇h(z0)(z − z0) + θ‖z − z0‖2 ∀ z ∈ R
n

hold. Let

YD := {y : Ay ≤ b, y ∈ Z
n}

denote the feasible set of the lower level problem in (5.24).
Thus, the problem under consideration is continuous in the upper level and discrete

with some special structure in the lower level, it is of type III.
The solution of the lower level problem is not unique, in general. This causes

some uncertainty in the definition of the upper level objective function, see Sect. 1.2.
Thus, instead of F(x, y), we will minimize the following functions

ϕo(x) = min
y∈ΨD(x)

F(x, y), (5.26)

ϕp(x) = max
y∈ΨD(x)

F(x, y). (5.27)

The function ϕo(x) is called optimistic solution function and ϕp(x) pessimistic solu-
tion function. A local minimum of the optimististic/pessimistic solution function is
called a local optimistic/pessimistic solution of (5.24).

In this section we will use the notation ϕ̂(y) if the statement holds for both ϕo(x)

and ϕp(x).
For our considerations, the so-called regions of stability are again very important.

Let y0 ∈ YD . Then the set

R(y0) = {x ∈ R
n : f (x, y0) ≤ f (x, y) for all y ∈ YD}

= {x ∈ R
n : y0 ∈ ΨD(x)}

is called region of stability for the point y0.
To make the subject more clear consider the following example.

http://dx.doi.org/10.1007/978-3-662-45827-3_1
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Example 5.14

min{sin(xy) : x ∈ R, y ∈ ΨD(x)},
ΨD(x) = Argmin

y

{
1

2
y2 − xy : 0 ≤ y ≤ 5, y ∈ Z

}

The regions of stability are

R(0) = (−∞, 0.5], R(1) = [0.5, 1.5], R(2) = [1.5, 2.5], R(3) = [2.5, 3.5],
R(4) = [3.5, 4.5] and R(5) = [4.5,∞).

Using the definitions of the optimistic and pessimistic solution functions, we
obtain

ϕo(x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 x ≤ 0.5
sin(x) 0.5 < x < 1.5
sin(2x) 1.5 ≤ x ≤ 2.5
sin(3x) 2.5 < x ≤ 3.5
sin(4x) 3.5 < x ≤ 4.5
sin(5x) x > 4.5

ϕp(x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 x < 0.5
sin(x) 0.5 ≤ x ≤ 1.5
sin(2x) 1.5 < x < 2.5
sin(3x) 2.5 ≤ x < 3.5
sin(4x) 3.5 ≤ x < 4.5
sin(5x) x ≥ 4.5 .

As it can be seen in Fig. 5.7, for 0 ≤ x ≤ 5, the local optimal solutions of ϕo are

x ∈ [0, 0.5], x = 3π

4
, x = 3.5, x = 11π

8
, x = 3π

2

and

x ∈ [0, 0.5), x = 3π

4
, x = 11π

8
, x = 3π

2

are the local optimal solutions of ϕp. �

In Example 5.14 the optimistic and the pessimistic solution functions are not con-
tinuous but rather selections of finitely many continuously differentiable functions.

Fig. 5.7 Solution function ϕ̂ for Example 5.14



5.4 Optimality Conditions Using a Radial-Directional Derivative 161

A special class of functions with that property is that of the so-called G PC1-
functions which have been investigated by Dempe [52] and in Dempe and Unger
[78]. Optimistic and pessimistic solution functions for problem (5.24) are in general
no G PC1-functions but they have many properties in common with them. One of
the most important property concerning this is that the solution functions are also
radial-directionally continuous and radial-directionally differentiable. Using these
concepts which where introduced by Recht in [266] we will obtain necessary and
sufficient optimality criteria.

5.4.2 Some Remarks on the Sets ΨD(x) and R( y)

The set of optimal solutions of the lower level problem ΨD(x) and the region of
stability R(y) have the following properties:

Lemma 5.6 (Fanghänel [104]) Consider problem (5.24). For each y0 ∈ YD the set
R(y0) is a closed convex set with ∇h(y0)� in its interior.

Proof Let y0 ∈ YD . Then for all x ∈ R(y0) it holds f (x, y0) ≤ f (x, y) for all
y ∈ YD and therefore

(y − y0)�x ≤ h(y) − h(y0) ∀y ∈ YD.

Thus, R(y0) corresponds to the intersection of (maybe infinitely many) halfspaces.
This implies that R(y0) is convex and closed.

Now we show that ∇h(y0)� ∈ int R(y0). Since h : Rn → R is strongly convex,
there exists some θ > 0 with h(y) ≥ h(y0)+∇h(y0)(y−y0)+θ‖y−y0‖2 ∀y ∈ R

n .
Consider x = ∇h(y0)� + αd with d ∈ R

n , ‖d‖ = 1 and α ∈ [0, θ ]. Then, for
all y ∈ YD , y �= y0, the following sequence of inequalities is valid by ‖y − y0‖ ≥ 1
for y �= y0:

h(y) ≥ h(y0) + ∇h(y0)(y − y0) + θ‖y − y0‖2

= h(y0) + x�(y − y0) − αd�(y − y0) + θ‖y − y0‖2

≥ h(y0) + x�(y − y0) − α‖y − y0‖ + θ‖y − y0‖2

≥ h(y0) + x�(y − y0) + (θ − α)‖y − y0‖
≥ h(y0) + x�(y − y0).

Thus, we obtain (∇h(y0)� + αd) ∈ R(y0) for all α ∈ [0, θ ], i.e. the assumption
holds. �

Lemma 5.7 (Fanghänel [104])

1. For each x ∈ R
n the set ΨD(x) has finite cardinality.

2. If x∗ ∈ int R(y∗), then ΨD(x∗) = {y∗}.
3. For x∗ ∈ R

n there exists δ > 0 such that ΨD(x) ⊆ ΨD(x∗) for all x ∈ Uδ(x∗)
with Uδ(x∗) := {x : ‖x − x∗‖ < δ}.
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Proof 1. If YD = ∅ the assumption obviously holds. Assume that YD �= ∅ and take
a point y∗ ∈ YD . Let an arbitrary x ∈ R

n be given. Then for all y ∈ ΨD(x) it
holds

h(y) − x�y ≤ h(y∗) − x�y∗

implying

h(y∗) + ∇h(y∗)(y − y∗) + θ‖y − y∗‖2 ≤ h(y∗) + x�(y − y∗)

for some θ > 0 since h is strongly convex. Thus,

θ‖y − y∗‖2 ≤ (x − ∇h(y∗)�)(y − y∗) ≤ ‖x − ∇h(y∗)�‖‖y − y∗‖,
‖y − y∗‖ ≤ 1

θ
‖x − ∇h(y∗)�‖

for all y ∈ ΨD(x). Therefore ΨD(y) ⊂ Z
n has finite cardinality.

2. The inclusion x∗ ∈ int R(y∗) implies {y∗} ⊆ ΨD(x∗) by definition. To prove
the opposite direction assume that there exists a point y ∈ ΨD(x∗), y �= y∗.
Then,

h(y) − x∗�y = h(y∗) − x∗�y∗

h(y) − h(y∗) = x∗�
(y − y∗) > ∇h(y∗)(y − y∗)

since h is strongly convex. Due to x∗ ∈ int R(y∗) there exists some ε > 0 such
that x := x∗ + ε(x∗ − ∇h(y∗)�) ∈ R(y∗). Now we obtain

f (x, y∗) = h(y∗) − x�y∗ = h(y) − x�y∗ − x∗�
(y − y∗)

= f (x, y) + (x − x∗)�(y − y∗)
= f (x, y) + ε(x∗� − ∇h(y∗))(y − y∗) > f (x, y)

which is a contradiction to x ∈ R(y∗).
3. Assume that the assertion does not hold. Then there exist sequences

{xk}∞k=1 with lim
k→∞ xk = x∗,

and
{yk}∞k=1 with yk ∈ ΨD(xk) but yk /∈ ΨD(x∗) for all k.

Thus, for fixed y∗ ∈ YD , it holds
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h(yk) − xk�
yk ≤ h(y∗) − xk�

y∗

h(y∗) + ∇h(y∗)(yk − y∗) + θ‖yk − y∗‖2 ≤ h(y∗) + xk�
(yk − y∗)

‖yk − y∗‖ ≤ ‖xk − ∇h(y∗)�‖
θ

.

This yields

‖yk − y∗‖ ≤ ‖xk − x∗‖
θ︸ ︷︷ ︸

→0

+‖x∗ − ∇h(y∗)�‖
θ

,

i.e. {yk} is bounded and has finitely many elements. Therefore, we can assume
that all yk are equal, i.e. ∃y ∈ YD with y ∈ ΨD(xk) ∀k but y /∈ ΨD(x∗).
That means xk ∈ R(y) ∀k but x∗ /∈ R(y). This is a contradiction to
Lemma 5.6. �

5.4.3 Basic Properties of ϕ̂(x)

In this section we will see that, locally around x∗ ∈ R
n , the optimistic/pessimistic

solution functions are a selection of finitely many continuously differentiable func-
tions. Let ε > 0 and consider the support set

Yy(x∗) := {x ∈ Uε(x∗) ∩ R(y) : F(x, y) = ϕ̂(x)}

and its Bouligand cone

CYy (x∗) :=
{

r : ∃{xs} ⊆ Yy(x∗) ∃{ts} ⊆ R+ : xs → x∗, ts ↓ 0, lim
s→∞

xs − x∗
ts

= r

}
.

That means, Yy(x∗) is the set of all x ∈ Uε(x∗) for which both y ∈ ΨD(x) and
F(x, y) = ϕ̂(x) hold for a fixed point y ∈ YD . Properties of these sets are essential
for the investigation of generalized PC1–functions in the paper [78] of Dempe and
Unger leading to optimality conditions for linear bilevel optimization problems in
the monograph [52] by Dempe. The following two theorems show that the objective
functions in the two auxiliary problems (5.26) and (5.27) have interesting properties.
But they are not generalized PC1–functions (as defined by Dempe in [52]), which
is shown by an example thereafter.

Theorem 5.11 (Fanghänel [104]) Consider problem (5.24). For the function ϕ̂ and
each x∗ ∈ R

n it holds:

1. There exists an open neighborhood Uε(x∗) of x∗ and a finite number of points
y ∈ ΨD(x∗) with
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ϕ̂(x) ∈ {F(x, y)}y∈ΨD(x∗) ∀x ∈ Uε(x∗).

2. int Yy(x∗) = Uε(x∗) ∩ int R(y) and Yy(x∗) ⊆ cl int Yy(x∗) for x∗, y ∈ R
n.

3. CYy (x∗) ⊆ cl int CYy (x∗) for x∗ ∈ R(y).

Proof Let an arbitrary x∗ ∈ R
n be given.

1. Because of Lemma 5.7, ΨD(x∗) has finite cardinality and there exists some ε > 0
with ΨD(x∗) ⊇ ΨD(x) for all x ∈ Uε(x∗). With ϕ̂(x) ∈ {F(x, y)}x∈ΨD(x) it
follows ϕ̂(x) ∈ {F(x, y)}y∈ΨD(x∗) ∀x ∈ Uε(x∗).

2. Let x̄ ∈ int Yy∗(x∗). Then there exists some δ > 0 with Uδ(x̄) ⊆ Yy∗(x∗). Thus,
x̄ ∈ Uε(x∗) and Uδ(x̄) ⊆ R(y∗), i.e. x̄ ∈ Uε(x∗) ∩ int R(y∗).
Let x̄ ∈ Uε(x∗)∩ int R(y∗). Then there exists some δ > 0 with Uδ(x̄) ⊆ Uε(x∗)
and Uδ(x̄) ⊆ int R(y∗). From Lemma 5.7, it follows ΨD(x) = {y∗} ∀x ∈ Uδ(x̄).
Thus, ϕ̂(x) = F(x, y∗) ∀x ∈ Uδ(x̄), i.e. x ∈ Yy∗(x∗) ∀x ∈ Uδ(x̄). Therefore,
x̄ ∈ int Yy∗(x∗). This implies the first equation of part 2.
Now let x̄ ∈ Yy(x∗). This means x̄ ∈ R(y), x̄ ∈ Uε(x∗) and ϕ̂(x̄) = F(x̄, y).
Since R(y) is convex with nonempty interior (cf. Lemma 5.6), there exists some
sequence {xk} ⊆ int R(y) with xk → x̄, k → ∞. W.l.o.g. we can further
assume that xk ∈ Uε(x∗) ∀k. Consequently, xk ∈ int Yy(x∗) ∀k and thus x̄ ∈
cl int Yy(x∗).

3. Let an arbitrary r ∈ CYy (x∗) be given. Then there exist sequences {xs} ⊆ Yy(x∗)
and {t s} ⊆ R+ with xs → x∗, t s ↓ 0 and lims→∞ xs−x∗

t s = r . We can assume
w.l.o.g. that ts < 1 ∀s.
Take any x̃ ∈ int Yy(x∗) and let x̂ s := t s x̃ + (1− t s)x∗ = x∗ + t s(x̃ − x∗). Then,
lims→∞ x̂ s = x∗ and x̂ s−x∗

t s = x̃ − x∗ =: r̃ ∀s. Since R(y) is convex it follows
easily that x̂ s ∈ int Yy(x∗) ∀s and r̃ ∈ int CYy (x∗).
Now consider a point zs

λ := λxs + (1 − λ)̂xs with λ ∈ (0, 1). Since R(y) is
convex it follows zs

λ ∈ int Yy(x∗) ∀λ ∈ (0, 1) ∀s. Then, zs
λ → x∗ for s → ∞

and lims→∞
zs
λ−x∗

t s = λr + (1 − λ)r̃ =: rλ ∈ CYy (x∗) ∀λ ∈ (0, 1). Moreover,
rλ → r for λ → 1.
Now, from zs

λ ∈ int Yy(x∗) it follows easily that zs
λ − x∗ ∈ int CYy (x∗) and thus

zs
λ−x∗

t s ∈ int CYy (x∗) ∀s ∀λ ∈ (0, 1).
Hence rλ ∈ cl int CYy (x∗) ∀λ ∈ (0, 1). This together with rλ → r for λ → 1
implies r ∈ cl cl int CYy (x∗) = cl int CYy (x∗). �

Theorem 5.12 (Fanghänel [104]) We have int CYy1 (x∗) ∩ int CYy2 (x∗) = ∅ if y1

�= y2.

Proof Let r ∈ CYy1 (x∗) ∩ CYy2 (x∗) be arbitrary. Due to r ∈ CYy1 (x∗) there exist

sequences {xs} ⊂ Yy1(x∗), xs → x∗ and {t s}, t s ↓ 0 with rs := xs−x∗
t s → r .

From xs ∈ Yy1(x∗) ∀s it follows xs ∈ R(y1) ∀s, i.e. h(y1) − xs�y1 ≤ h(y2) −
xs�y2. Since y1, y2 ∈ ΨD(x∗) it holds h(y1) − x∗�y1 = h(y2) − x∗�y2. Hence,
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xs�
(y1 − y2) ≥ h(y1) − h(y2) = x∗�

(y1 − y2)

(xs − x∗)�(y1 − y2) ≥ 0 ∀s

rs�
(y1 − y2) ≥ 0 ∀s.

With rs → r this yields r�(y1 − y2) ≥ 0.

From r ∈ CYy2 (x∗) it follows analogously (y1 − y2)�r ≤ 0. Therefore it holds

(y2 − y1)�r = 0 for all r ∈ CYy1 (x∗) ∩ CYy2 (x∗).

Assume that there exists some r ∈ int CYy1 (x∗) ∩ int CYy2 (x∗). Then ∀d ∈ R
n ,

‖d‖ = 1 there exists a real number δ > 0 with r + δd ∈ CYy1 (x∗) ∩ CYy2 (x∗), i.e.

(y2 − y1)�(r + δd) = 0

δ(y2 − y1)�d = 0

(y2 − y1)�d = 0 ∀d

and therefore y1 = y2. �

It is worth noting that ϕ̂ is not a GC P1-function in general (cf. Dempe [52];
Dempe and Unger [78]). In order that ϕ̂ is a G PC1-function one requires additionally
assumption compared with the results in Theorems 5.11 and 5.12. Namely, there
exists a number δ > 0 such that, for all r ∈ CYy1 (x∗)∩ CYy2 (x∗), ‖r‖ = 1, y1 �= y2,
a number t0 = t (r) ≥ δ can be found with x∗ + tr ∈ Yy1(x∗) or x∗ + tr ∈ Yy2(x∗)
∀t ∈ (0, t0) (see Dempe [52]).

We will see that the functions ϕ̂ usually do not have this property.

Example 5.15 Consider the lower level problem in (5.24) with the feasible set YD =
{y1 = (0, 0, 0)�, y2 = (1, 0, 0)�, y3 = (0, 1, 0)�} and f (x, y) = 1

2 y�y − y�x .
Then we obtain the following regions of stability:

R(y1) = {y ∈ R
3 : x1 ≤ 1/2, x2 ≤ 1/2}

R(y2) = {y ∈ R
3 : x1 ≥ 1/2, x2 ≤ x1}

R(y3) = {y ∈ R
3 : x2 ≥ 1/2, x2 ≥ x1}

Let F(x, y) = (1/2,−1, 0)�y be the objective function in the upper level problem.
Then,

ϕo(x) =
⎧
⎨

⎩

−1 x ∈ R(y3)

0 x ∈ R(y1)\R(y3)

1/2 else
.

Set r = (0, 0, 1)� and x∗ = (1/2, 1/2, 0)�.
The point x1(ε) := (1/2 − ε2, 1/2 − ε2, ε + ε2)� ∈ Yy1 ∀ε > 0. Then
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lim
ε→0

x1(ε) = (1/2, 1/2, 0)� = x∗,

lim
ε→0

x1(ε) − x∗

ε
= lim

ε→0
(−ε,−ε, 1 + ε)� = r, i.e. r ∈ CYy1 (x∗).

Analogously, x2(ε) := (1/2 + ε2, 1/2, ε + ε2)� ∈ Yy2 ∀ε > 0. Then

lim
ε→0

x2(ε) = (1/2, 1/2, 0)� = x∗,

lim
ε→0

x2(ε) − x∗

ε
= lim

ε→0
(ε, 0, 1 + ε)� = r, i.e. r ∈ CYy2 (x∗).

Therefore, r ∈ CYy1 (x∗) ∩ CYy2 (x∗), ‖r‖ = 1, y1 �= y2 but

ϕo(x∗ + tr) = −1 < F(x∗ + tr, yi ), i = 1, 2, ∀t > 0,

i.e. x∗ + tr /∈ Yy1(x∗) and x∗ + tr /∈ Yy2(x∗) ∀t > 0. �

5.4.4 The Radial-Directional Derivative

Definition 5.6 Let U ⊆ R
n be an open set, x0 ∈ U and ϕ̂ : U → R. We say that ϕ̂

is radial-continuous at x0 in direction r ∈ R
n , if there exists a real number ϕ̂(x0; r)

such that
lim
t↓0

ϕ̂(x0 + tr) = ϕ̂(x0; r).

If the radial limit ϕ̂(x0; r) exists for all r ∈ R
n , ϕ̂ is called radial-continuous at y0.

ϕ̂ is radial-directionally differentiable at x0, if there exists a positively homogeneous
function dϕ̂x0 : Rn → R such that

ϕ̂(x0 + tr) − ϕ̂(x0; r) = t · dϕ̂x0(r) + o(x0, tr)

with limt↓0 o(x0, tr)/t = 0 holds for all r ∈ R
n and all t > 0. Obviously, dϕ̂x0 is

uniquely defined and is called the radial-directional derivative of ϕ̂ at x0.

Theorem 5.13 (Fanghänel [104]) Consider problem (5.24). Then, both the opti-
mistic solution function ϕo and the pessimistic solution function ϕp are radial-
continuous and radial-directionally differentiable.

Proof Consider x0 and some direction r ∈ R
n , ‖r‖ = 1. Further let

Ir (x0) := {y ∈ ΨD(x0) : ∀ε > 0 ∃t ∈ (0, ε) with x0 + tr ∈ Yy(x0)}.

Since ΨD(x0) has finite cardinality and the sets R(y) are convex,
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ϕo(x0 + tr) = G(x0 + tr) := min
y∈Ir (x0)

F(x0 + tr, y)

for all sufficiently small reals t > 0. Since the function G(·) is the minimum function
of finitely many continuously differentiable functions, it is continuous and quasidif-
ferentiable (cf. Dem’yanov and Rubinov [84]) and thus directionally differentiable
in t = 0. Therefore, the limits

lim
t↓0

G(x0 + tr) = G(x0) and lim
t↓0

G(x0 + tr) − G(x0)

t
= G ′(x0; r)

exist. Moreover, since ∀y ∈ Ir (x0) ∃{tk} ↓ 0 : x0 + tkr ∈ Yy(x0) and

lim
t↓0

G(x0 + tr) = lim
k→∞ G(x0 + tkr) = lim

k→∞ F(x0 + tkr, y) = F(x0, y),

we derive

ϕo(x0; r) = lim
t↓0

G(x0 + tr) = G(x0) = F(x0, y) ∀y ∈ Ir (x0). (5.28)

Concerning the radial-directional derivative, we obtain

dϕox0(r) = lim
t↓0

ϕo(x0 + tr) − ϕo(x0; r)

t
= lim

t↓0

G(x0 + tr) − G(x0)

t

= ∇x F(x0, y)r ∀y ∈ Ir (x0) (5.29)

since g is continuously differentiable with respect to y.
For ϕp(x) we can prove the assertions analogously. �

Example 5.16 Consider problem (5.24) with the lower level feasible set YD = {y1 =
(0, 0)�, y2 = (0, 1)�, y3 = (−1, 0)�}, x ∈ R

2 and with the objective functions
f (x, y) = 1

2 y�y − x�y and

F(x, y) = y1 + y2 ·
{

x3
1 sin 1

x1
x1 > 0

0 x1 ≤ 0.

Then the function F(x, y) is continuously differentiable with respect to x . The
regions of stability are

R(y1) = {x ∈ R
2 : x1 ≥ −0.5, x2 ≤ 0.5}

R(y2) = {x ∈ R
2 : x1 + x2 ≥ 0, x2 ≥ 0.5}

R(y3) = {x ∈ R
2 : x1 ≤ −0.5, x1 + x2 ≤ 0}.
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Let x∗ = (0, 1
2 )� and r = (1, 0)�. Then Ir (x∗) = {y1, y2} for both the optimistic

and the pessimistic solution function. Thus, it holds

ϕo(x∗; r) = ϕp(x∗; r) = F(x∗, y1) = F(x∗, y2) = 0

and
dϕox∗(r) = dϕpx∗(r) = ∇x F(x, yi )(1, 0)�, i = 1, 2.

Further it holds ϕo(x∗) = ϕp(x∗) = 0. Remarkable in this example is the fact that
∀ε > 0 there exists some t ∈ (0, ε) with either

ϕ̂(x ∗ +tr) �= F(x∗ + tr, y1) or ϕ̂(x∗ + tr) �= F(x∗ + tr, y2).

Now let x̄ = (− 1
2 , 1

2 )� and r = (−1, 1)�. Then, for the optimistic solution
function it holds

Ir (x̄) = {y3} and ϕo(x̄) = ϕo(x̄; r) = −1

and for the pessimistic solution function it holds

Ir (x̄) = {y2} and ϕp(x̄) = ϕp(x̄; r) = 0.

Considering the direction r = (0, 1) we obtain Ir (x̄) = {y2} and ϕ̂(x̄; r) = 0 for
both the optimistic and the pessimistic case, but ϕo(x̄) = −1 �= 0 = ϕp(x̄). �

Lemma 5.8 For all x∗ ∈ R
n and for all r ∈ R

n it holds:

1. ϕo(x∗) ≤ ϕo(x∗; r)

2. ϕp(x∗) ≥ ϕp(x∗; r)

Proof Assume there exists some x∗ and some r with ϕo(x∗) > ϕo(x∗; r). Then
from Ir (x∗) ⊆ ΨD(x∗) and the proof of Theorem 5.13 it follows that there exists
some y ∈ ΨD(x∗) with ϕo(x∗; r) = F(x∗, y). Hence, ϕo(x∗) > F(x∗, y) for some
y ∈ ΨD(x∗). This is a contradiction to the definition of ϕo.

The proof for ϕp is similar. �

5.4.5 Optimality Criteria Based on the Radial-Directional
Derivative

Let locmin ϕ̂ denote the set of all local minima of the function ϕ̂(·). The lower
level problem of the bilevel optimization problem (5.24) has a fixed feasible set with
finitely many elements and a parameter in the objective function. As it is shown in the
next theorem, this implies that every pessimistic optimal solution is also optimistic
optimal.
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Theorem 5.14 (Fanghänel [104]) For problem (5.24) it holds

locmin ϕp ⊆ locmin ϕo .

Proof Arguing by contradiction, we assume that there is some x∗ with x∗ ∈
locmin ϕp but x∗ /∈ locmin ϕo. Then there exists some sequence {xk} with
limk→∞ xk = x∗ and ϕo(xk) < ϕo(x∗) ∀k. Since ΨD(x∗) has finite cardinality and
ΨD(x∗) ⊇ ΨD(x) for all x in a neighborhood of x∗, we can assume w.l.o.g. that there
exists some y ∈ ΨD(x∗) with xk ∈ Yy(x∗)∀k. Due to differentiability of F(·, y) with
respect to x and Yy(x∗) ⊆ cl int Yy(x∗), we can further assume that xk ∈ int Yy(x∗)
∀k. Thus, it holds ΨD(xk) = {y} ∀k, i.e. ϕo(xk) = ϕp(xk) = F(xk, y) ∀k. Conse-
quently,

ϕp(xk) = ϕo(xk) < ϕo(x∗) ≤ ϕp(x∗) ∀k.

This is a contradiction to x∗ ∈ locmin ϕp . �

Theorem 5.15 (Fanghänel [104]) Consider some point x0 ∈ R
n and let ϕ̂ :

R
n → R be the optimistic (5.26) or the pessimistic (5.27) solution function. Then

x0 /∈ locmin ϕ̂ if there exists a direction r ∈ R
n, ‖r‖ = 1, such that one of the

following conditions is satisfied:

1. dϕ̂y0(r) < 0 and ϕ̂(y0; r) ≤ ϕ̂(y0)

2. ϕ̂(y0; r) < ϕ̂(y0).

Proof Let the vector r0 with ‖r0‖ = 1 satisfy the first condition. That means

dϕ̂x0(r0) = lim
t↓0

t−1(ϕ̂(x0 + tr0) − ϕ̂(x0; r0)) < 0.

Then there exists some t0 > 0 such that ϕ̂(x0 + tr0) < ϕ̂(x0; r0) ∀t ∈ (0, t0).
Because of ϕ̂(x0; r0) ≤ ϕ̂(x0) we have ϕ̂(x0 + tr0) < ϕ̂(x0) for all these t , too.
Thus, x0 cannot be a local minimum of ϕ̂ since for each ε > 0 there exists some
0 < t < min{ε, t0} with ‖(x0 + tr0) − x0‖ < ε and ϕ̂(x0 + tr0) < ϕ̂(x0).

Now let the vector r0 with ‖r0‖ = 1 satisfy the second condition. Then it holds

ϕ̂(x0) − ϕ̂(x0; r0) = ϕ̂(x0) − lim
t↓0

ϕ̂(x0 + tr0) > 0.

Hence, there exists some t0 > 0 such that ϕ̂(x0) > ϕ̂(x0 + tr0) ∀t ∈ (0, t0). Thus,
x0 cannot be a local minimum of ϕ̂. �

Specifying the conditions of Theorem 5.15 by using Lemma 5.8 we obtain the
following necessary optimality conditions:

1. If x0 ∈ locmin ϕp, then

ϕp(x0) = ϕp(x0; r) and dϕpx0(r) ≥ 0 ∀r.
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2. If x0 ∈ locmin ϕo, then

ϕo(x0) < ϕo(x0; r) or dϕox0(r) ≥ 0 ∀r.

To prove the next theorem we will need the following lemma.

Lemma 5.9 Consider problem (5.24) and a point (x0, y0) ∈ R
n × R

n with y0 ∈
ΨD(x0) and ϕo(x0) = F(x0, y0). Then r ∈ CYy0 (x0) implies

ϕo(x0) = ϕo(x0; r).

Proof Since ϕo is radial-continuous and using Lemma 5.7, there exists ỹ ∈ ΨD(x0)

and a sequence {tk} ↓ 0 with ỹ ∈ ΨD(x0 + tkr), ϕo(x0 + tkr) = F(x0 + tkr, ỹ) and

ϕo(x0; r) = lim
k→∞ ϕo(x0 + tkr) = lim

k→∞ F(x0 + tkr, ỹ) = F(x0, ỹ).

Clearly, it holds r ∈ CYỹ (x0) ∩ CYy0 (x0). Then, from the proof of Theorem 5.12

it follows that r�(y0 − ỹ) = 0. Furthermore, we know that ỹ, y0 ∈ ΨD(x0) and
thus h(y0) − x0�

y0 = h(ỹ) − ỹ�x0. Consequently, h(y0) − (x0 + tkr)�y0 =
h(ỹ)− ỹ�(x0 + tkr) ∀k, i.e. y0 ∈ ΨD(x0 + tkr) ∀k. Thus, we obtain ϕo(x0 + tkr) ≤
F(x0 + tkr, y0) ∀k, i.e.

ϕo(x0; r) = lim
k→∞ ϕo(x0 + tkr) ≤ lim

k→∞ F(x0 + tkr, y0) = F(x0, y0) = ϕo(x0).

Now, from Lemma 5.8, it follows the equality. �

Theorem 5.16 (Fanghänel [104]) Consider problem (5.24) and let x0 be a point
which satisfies one of the following two conditions:

1. ϕ̂(x0) < ϕ̂(x0; r) ∀r ∈ R
n

2. ϕ̂(x0) ≤ ϕ̂(x0; r) ∀r ∈ R
n and dϕ̂x0(r) > γ ∀r : ϕ̂(x0) = ϕ̂(x0; r), ‖r‖ = 1

with γ = 0 in the optimistic case and γ > 0 in the pessimistic case.

Then, ϕ̂ achieves a local minimum at x0.

Proof Suppose x0 satisfies one of the two conditions of the theorem. Arguing by
contradiction, we assume that there is a sequence {xk}∞k=1 with limk→∞ xk → x0

and ϕ̂(xk) < ϕ̂(x0) ∀k. Since ΨD(x0) ⊇ ΨD(x) for all x in a neighborhood of
x0 and ΨD(x0) has finite cardinality, there exists some y0 ∈ ΨD(x0) such that
Yy0(x0) contains infinitely many of the points xk . In the following, we consider the
subsequence of points of the sequence {xk}∞k=1 belonging to the set Yy0(x0). Denote
this subsequence by {xk}∞k=1 again. Because of the continuity of F(·, y0), it follows
that

F(x0, y0) = lim
k→∞ F(xk, y0) = lim

k→∞ ϕ̂(xk) ≤ ϕ̂(x0).
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Now we define r0 := limk→∞ xk−x0

‖xk−x0‖ . Hence, r0 ∈ CYy0 (x0). Due to

CYy0 (x0) ⊆ cl int CYy0 (x0), there exists some r̂ ∈ int CYy0 (x0) arbitrarily close

to r0 with ‖̂r‖ = 1. Now let {tk}∞k=1 be any sequence of positive real numbers with
tk ↓ 0 for k → ∞. Remember that

CYy0
(x0) = cl{d : ∃ x ∈ Yy0(x0) ∃ α > 0 with d = α(x − x0)}

by convexity and closedness of Yy0(x0). Hence, since r̂ ∈ int CYy0 (x0), it holds

both x0 + tkr̂ ∈ Yy0(x0) ∀k and limk→∞ ‖(x0 + tkr̂) − xk‖ = 0. Continuity of g
with respect to x leads to

ϕ̂(x0; r̂) = lim
k→∞ ϕ̂(x0 + tkr̂) = lim

k→∞ F(x0 + tkr̂ , y0) = F(x0, y0) ≤ ϕ̂(x0).

Hence, the first condition of the theorem cannot be valid.
Thus, x0 satisfies the second condition of the theorem. Therefore, ϕ̂(x0) ≤

ϕ̂(x0; r) ∀r ∈ R
n . Because of Yy0(x0) ⊆ cl int Yy0(x0) for each k there exists

a neighborhood U 1(xk) with U 1(xk) ∩ int Yy0(x0) �= ∅. On the other hand, there
exists some neighborhood U 2(xk) with F(x, y0) < ϕ̂(x0) ∀x ∈ U 2(xk). Defin-
ing U (xk) := (U 1(xk) ∩ int Yy0(x0)) ∩ U 2(xk), it holds both U (xk) �= ∅ ∀k and
ϕ̂(x) = F(x, y0) < ϕ̂(x0) ∀x ∈ U (xk) due to |ΨD(x)| = 1 for x ∈ int R(x0). Now,
take a sequence {̂xk}∞k=1 with x̂ k ∈ U (xk) ∀k and x̂ k → x0 for k → ∞. Let r̂ be an

accumulation point of the sequence r̂ k = x̂ k−x0

‖x̂ k−x0‖ . Since x̂ k ∈ int Yy0(x0) ∀k and

Yy0(x0) is convex, there exists some t0 > 0 such that x0 + tr̂ k ∈ int Yy0(x0) ∀t ∈
(0, t0). Hence, ϕ̂(x0) = ϕ̂(x0; r̂ k) = F(x0, y0) ∀k. Because the second condition is
valid we have dϕ̂x0 (̂rk) > γ for all k. Consequently,

γ < dϕ̂x0 (̂rk) = lim
t↓0

ϕ̂(x0 + tr̂ k) − ϕ̂(x0; r̂ k)

t
= lim

t↓0

F(x0 + tr̂ k, y0) − F(x0, y0)

t

= ∇x F(x0, y0)̂rk .

Since F is continuously differentiable with respect to x , we have in the pessimistic
case ∇x F(x0, y0 )̂r ≥ γ > 0.

Since ϕo(x0) = F(x0, y0) and r̂ ∈ CYy0 (x0) because of int CYy0 (x0) � r̂ k → r̂

and CYy0 (x0) ⊆ cl int CYy0 (x0) it follows from Lemma 5.9 that, in the optimistic

case, we have ϕo(x0; r̂) = ϕo(x0) = F(x0, y0).
Thus, it holds

0 < dϕox0 (̂r) = lim
t↓0

ϕo(x0 + tr̂) − ϕo(x0; r̂)

t
≤ lim

t↓0

F(x0 + tr̂ , y0) − F(x0, y0)

t

= ∇x F(x0, y0 )̂r .
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Hence, we have for both the optimistic and the pessimistic case that

∇x F(x0, y0 )̂r > 0. (5.30)

On the other hand, it holds

ϕ̂(x0) > ϕ̂(̂xk) = F(x0, y0) + ‖x̂ k − x0‖∇x F(x0, y0 )̂rk + o(‖x̂ k − x0‖)

which together with F(x0, y0) = ϕ̂(x0) and limk→∞ o(‖x̂ k−x0‖)
‖x̂ k−x0‖ = 0 leads to

∇x F(x0, y0 )̂r ≤ 0.

This is a contradiction to inequality (5.30). �

Specifying the conditions of Theorem 5.16 by using Lemma 5.8, we obtain the
following sufficient optimality conditions:

If
ϕp(x0) = ϕp(x0; r) and dϕpx0(r) > γ > 0 ∀r,

then x0 ∈ locmin ϕp.
The condition

∀r ϕo(x0) < ϕo(x0; r) or dϕox0(r) > 0

implies x0 ∈ locmin ϕo.

Example 5.17 Consider the bilevel optimization problem

min{F(x, y) : x ∈ R
2, y ∈ ΨD(x)}

where

ΨD(x) = Argmin
y

{1

2
‖y‖2 − y�x : y1 ≤ 0, y2 ≥ 0,−y1 + y2 ≤ 1, y ∈ Z

2}

with F(x, y) = y2(x2 − (x1 +0.5)2 −0.5)+ (1− y2)(x1 − x2 +1)+ y1(3x1 +1.5).
We obtain

YD = {y1 =
(

0

1

)
, y2 =

(
0

0

)
, y3 =

(−1

0

)
} with

R(y1) = {x ∈ R
2 : x2 ≥ 0.5, x1 + x2 ≥ 0},

R(y2) = {x ∈ R
2 : x2 ≤ 0.5, x1 ≥ −0.5} and

R(y3) = {x ∈ R
2 : x1 ≤ −0.5, x1 + x2 ≤ 0}.
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Then we have

ϕp(x) =
⎧
⎨

⎩

x2 − (x1 + 0.5)2 − 0.5 if x2 > 0.5, x1 + x2 > 0
x1 − x2 + 1 if x2 ≤ 0.5, x1 ≥ −0.5

−2x1 − x2 − 0.5 if x1 + x2 ≤ 0, x1 < −0.5.

Let x0 = (−1/2, 1/2)�. Then it holds ϕp(x0) = ϕp(x0; r) = 0 ∀r ∈ R
2 and

0 < dϕpx0(r) =
⎧
⎨

⎩

r2 if r2 > 0, r1 + r2 > 0
r1 − r2 if r2 ≤ 0, r1 ≥ 0
−2r1 − r2 if r1 < 0, r1 + r2 ≤ 0 .

However x0 is no local minimum of ϕp since x(t) = (t − 0.5, 0.5(1 + t2))� → y0

for t ↓ 0 but ϕp(x(t)) = − 1
2 t2 < ϕp(x0) ∀t > 0. Remark that in difference to

Theorem 5.16 there does not exist any γ > 0 with γ < dϕpx0(r) ∀r . �

5.4.6 Optimality Criteria Using Radial Subdifferential

Definition 5.7 Let U ⊆ R
n , x0 ∈ U and ϕ̂ : U → R be radial-directionally

differentiable at x0. We say that d ∈ R
n is a radial subgradient of ϕ̂ at x0 if

ϕ̂(x0) + 〈r, d〉 ≤ ϕ̂(x0; r) + dϕ̂x0(r)

is satisfied for all r with ϕ̂(x0) ≥ ϕ̂(x0; r).
The set of all radial subgradients is called radial subdifferential and is denoted

by ∂rad ϕ̂(x0).

The following necessary criterion for the existence of a radial subgradient is valid:

Theorem 5.17 (Dempe and Unger [78]) If there exists some r ∈ R
n with

ϕ̂(x0; r) < ϕ̂(x0), then it holds ∂rad ϕ̂(x0) = ∅.

With this theorem we get the following equivalent definition of the radial subgra-
dient:

∂rad ϕ̂(x0) = {d ∈ R
n : 〈r, d〉 ≤ dϕ̂x0(r)∀r satisfying ϕ̂(x0) = ϕ̂(x0; r)}

if there is no direction such that the radial limit in this direction is less than the
function value.

Using Lemma 5.8 we obtain that for the pessimistic solution function either
∂radϕp(x0) = ∅ if there exists some r with ϕp(x0) > ϕp(x0; r) or ∂radϕp(x0) =
{d ∈ R

n : 〈d, r〉 ≤ dϕpx0(r) ∀r}.
For the optimistic solution function the assumption of Theorem 5.17 is never valid.
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Thus,

∂radϕo(x0) = {d ∈ R
n : 〈r, d〉 ≤ dϕx0(r)∀r satisfying ϕ(y0) = ϕ(y0; r)}.

Now we derive optimality criteria in connection with the radial subdifferential.

Theorem 5.18 (Fanghänel [104]) Let ϕ̂ denote the optimistic or pessimistic solution
function for the bilevel optimization problem (5.24). If x0 ∈ locmin ϕ̂ then 0 ∈
∂rad ϕ̂(x0).

Proof Suppose x0 ∈ locmin ϕ̂. Then from Theorem 5.15 it follows ϕ̂(x0) ≤
ϕ̂(x0; r) ∀r and dϕ̂x0(r) ≥ 0 for all r satisfying ϕ̂(x0) ≥ ϕ̂(x0; r). Due to the
first inequality this is equivalent to dϕ̂x0(r) ≥ 0 ∀r : ϕ̂(x0) = ϕ̂(x0; r) which means
0 ∈ ∂rad ϕ̂(x0). �
Theorem 5.19 (Fanghänel [104]) Let ϕ̂ denote the optimistic or pessimistic solution
function for the bilevel optimization problem (5.24). If 0 ∈ int ∂rad ϕ̂(x0) then ϕ̂

achieves at x0 a local minimum.

Proof From Theorem 5.17 it follows ϕ̂(x0) ≤ ϕ̂(x0; r) ∀r . Since 0 ∈ int ∂rad ϕ̂(x0)

there exists some ε > 0 with εr ∈ ∂rad ϕ̂(x0) ∀r : ‖r‖ = 1. This means

ϕ̂(x0) + 〈r, εr〉 = ϕ̂(x0) + ε‖r‖2 ≤ ϕ̂(x0; r) + dϕ̂x0(r)

for all r with ϕ̂(x0) ≥ ϕ̂(x0; r), ‖r‖ = 1. Thus, if for some ‖r‖ = 1 it holds
ϕ̂(x0) = ϕ̂(x0; r), it follows dϕ̂x0(r) ≥ ε > 0. Hence, all assumptions of
Theorem 5.16 are satisfied and we conclude x0 ∈ locmin ϕ̂. �

5.5 An Approach Using Monotonicity Conditions
of the Optimal Value Function

5.5.1 Introduction

In this section an approach is presented which is inspired by an application in com-
puting a best element for mean-variance models introduced by Markowitz [221]. For
given assets with its expected return ai and covariances qi j , the problem is to find
a portfolio of assets that has minimal variance by a given level of total return. The
mathematical model of integer quadratic optimization is of the form:

min
y

{yT Qy : e�y = 1, Ay ≥ d, y ∈ Z
m+}, (5.31)

where Q is the covariance matrix, d represents the lower bound of total return, and
e is a m-dimensional all-one vector. We will use this problem as the lower level
problem of a bilevel optimization problem (see Dempe et al. [70]).
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Aim of the section is to describe a computational algorithm for solving
mixed-integer bilevel problems of this kind. Since the assumptions for proving con-
vergence of this algorithm are very restrictive, we suggest to weaken them which
leads to the computation of a weak optimal solution, see Sect. 5.3.6. The results in
this Section are taken from the report [70] by Dempe et al.

5.5.2 Problem Formulation

We consider the optimistic version of a mixed-integer nonlinear bilevel optimization
problem:

min
x,y

{F(x, y) : x ∈ X, y ∈ Ψ (x)}, (5.32)

where X ⊆ R
n is a bounded polyhedron with the finite set x1, . . . , xq of vertices

and Ψ (x) is the solution-set mapping of the lower level parametric quadratic integer
optimization problem (PIQP):

Ψ (x) := Argmin
y

{ f (x, y) = y�Qy : Ay ≥ x, y ∈ Z
m+}. (5.33)

Here F, f : Rn ×R
m → R, Q is aRm ×R

m symmetric positive semidefinite matrix,
A is a R

n+ × R
m+ matrix, and y ∈ Z

m+, x ∈ R
n are unknown lower and upper level

variables.
Using the lower level optimal value function ϕ(x), the bilevel problem can be

replaced by a fully equivalent problem:

min
x,y

{F(x, y) : y�Qy ≤ ϕ(x), Ay ≥ x, y ∈ Z
m+, x ∈ X}, (5.34)

where the optimal value function of the lower level problem is denoted by

ϕ(x) := min
y

{y�Qy : Ay ≥ x, y ∈ Z
m+}. (5.35)

5.5.3 Parametric Integer Optimization Problem

5.5.3.1 Parametric Integer Optimization Problem with a Single
Parameter

We start with considering the (PIQP) with one parameter on the right-hand side, i.e.
n = 1:

ϕ(x) = min
y

{y�Qy : Ay ≥ x, y ∈ Z
m+}, (5.36)
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where A� ∈ R
m+ and Q ∈ R

m×m is a quadratic positive semidefinite matrix on the
set x ∈ [dl , du] ⊆ R+, dl and du are lower and upper bounds of x , respectively.

Theorem 5.20 For the parametric integer quadratic problem (5.36) with a single
parameter, the optimal value function ϕ(x) is piecewise constant.

Proof We consider the constraint set M(x) = {y ∈ Z
m+ : Ay ≥ x}, where

A� ∈ R
m+, x ∈ [dl , du] ⊆ R+. For A = (a1, . . . , an), we define the set of raster

points

h(A) := {h : h =
m∑

j=1

a j y j , y j ∈ Z+}, (5.37)

where a j , y j are components of A and y, respectively. We denote the elements of
the raster point set by hr , r = 1, . . . , q. Note, that, since dl , du are finite, we need
to consider only a finite number of raster points. For simplicity of the presentation,
in the following we will assume that the elements of the raster point set are sorted
according to increasing efficiencies: dl ≤ h1 ≤ h2 ≤ · · · ≤ hq ≤ du . It is easy to
see that for each x ∈ (hr , hr+1), M(x) is constant, which implies that the optimal
value function ϕ(x) is constant on (hr , hr+1). �

Proposition 5.1 The optimal value function ϕ is nondecreasing in x ∈ R+.

Proof Because of A� ∈ R
m+, y j ∈ Z+, if the parameter x increases, the feasible

region will become smaller. This implies the statement of the proposition. �

Our observation is that ϕ is piecewise constant, but it is not convex. The formulation
of a solution algorithm for problem (5.32) will follow the same lines as the one in
Sect. 2.3.2. For that we need an approximation ξ(x) of the optimal value function of
the lower level problem ξ(x) ≥ ϕ(x)∀x ∈ [dl , du].

An upper bound for the optimal value function at each fixed di , i = 1, . . . , p, is
the optimal value function itself. Let

ξi (x) := ϕ(di ) ∀x ≤ di . (5.38)

Algorithm: Step 0. Select any r ∈ R with ϕ(x) ≤ r ∀x ∈ [dl , du ]. Let
ξ(x) be a global upper approximation of the value
function ϕ(x). Set ξ(x) := r ∀x ∈ [dl , du ].

Step 1. Select some points di ∈ [dl , du], i = 1, . . . , p. Sort these
points according to d p ≤ d p−1 ≤ . . . ≤ d1. Compute ϕ(di )

∀ i = 1, . . . , p, and set ξi (x) = ϕ(di )∀ x ≤ di , ∀i = 1, . . . , p.
Step 2. For i = 1 to p, define the global upper bound

recursively via

ξ(x) :=
{

min{ξi (x), ξ(x)} ∀x ≤ di

ξ(x) else.

Figure 5.8 illustrates the optimal value function ϕ(x) = v(x) and its approximation
ξ(x) = G(x).

http://dx.doi.org/10.1007/978-3-662-45827-3_2
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G(x)

v(x)

G(x)

Fig. 5.8 Upper approximation ξ(x) = G(x) of the optimal value function ϕ(x) = v(x)

5.5.3.2 Upper Bounding Approximation of a General PIQP

In this section, we will go back to the general case. We extend the result to higher
dimensional spaces thus, we refer to (5.33) with n > 1.

Theorem 5.21 (Bank and Hansel [9]) If the matrix A has rational elements only,
then the optimal value function ϕ : [dl , du] → R defined by

ϕ(x) = min
y

{y�Qy : Ay ≥ x, y ∈ Z
m+} (5.39)

is lower semicontinuous.

Here x ∈ [dl , du] means dl ≤ x ≤ du or d1
i ≤ xi ≤ d2

i ∀ i = 1, . . . , n.
Recall that the optimal value function ϕ(x) is discontinuous only at some points,

which are linear combinations of non-negative integer parameters with the respective
columns of the matrix A thus, the optimal value function ϕ of PIQP is piecewise
constant.

Theorem 5.22 (Dempe et al. [70]) If the matrix A has rational elements only, then
the optimal value function is piecewise constant.

Proof We consider the constraint set M(x) := {y ∈ Z
m+ : Ay ≥ x}, where A ∈

R
n+ × R

m+, x ∈ [dl , du] ⊆ R
n+. For Ai = (ai1, . . . , aim), i ∈ 1, 2, . . . , n, we define

the set of raster points

h(A) := {h ∈ R
n : hi =

m∑

j=1

ai j y j , y j ∈ Z+, i ∈ 1, 2, . . . , n}, (5.40)

where ai j , y j are components of A and y, respectively. We denote the elements of
the raster point set by hr , r = 1, . . . , q.

Using these raster points, it is easy to find a finite number of (in general nonconvex,
neither open nor closed) sets Ξk, k = 1, . . . , κ of parameters x such that M(x) is
constant over each of the sets Ξk, k = 1, . . . , κ , see Fig. 5.9. Hence, the optimal
value function ϕ(x) is constant over Ξk . �
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Fig. 5.9 Level sets of the
function ξ

Now to extend the above algorithm to the general case, we define first the upper
bound for each fixed di , i = 1, . . . , p (di are again raster points) as

ξi (x) := ϕ(di ) ∀x � di . (5.41)

The steps of constructing a global upper approximation of the optimal value function
are now given in the following algorithm:

Algorithm: Step 0. Select any r ∈ R with ϕ(x) ≤ r ∀x ∈ [dl , du ]. Let
ξ(x) be a global upper approximation of the value
function ϕ(x): ξ(x) := r ∀x.

Step 1. Select some points di , i = 1, . . . , p.
Compute ϕ(di ) ∀i = 1, . . . , p, and set ξi (x) = ϕ(di ) ∀x � di.

Step 2. For i = 1 to p, define the global upper bound
recursively by

ξ(x) :=
{

min{ξi (x), ξ(x)} ∀x � di

ξ(x) else.

Figure 5.9 can be used to visualize the regions where the function ξ is constant. These
regions are used in the proof of Theorem 5.24.

The upper bounding function ξ(x) derived by the algorithm above is not unique
since the points di are not fixed. Adding new points, the quality of the approximation
ξ(x) is improved.
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5.5.4 An Approximation Algorithm

In this section, we will describe an approximation algorithm for problem (5.34) by
using the upper bound for the optimal value function of the lower level problem.
Applying the ideas from Sect. 5.3 we need
Assumptions (A) (cf. Fanghänel [105]):

1. The set {(x, y) : y ∈ Ψ (x), x ∈ X} is bounded and not empty.
2. For all x ∈ X , Ψ (x) �= ∅.
3. card(Ȳ ) < ∞, where Ȳ := {y ∈ Z

m+ : ∃ x ∈ X with y ∈ Ψ (x)}.
4. The matrix A has nonnegative, rational elements only.

If the matrix A has rational elements only, we can assume without loss of generality
that all elements of the matrix A are either zero or natural numbers. Hence, the
elements of the set h(A) in Theorem 5.22 are vectors h ∈ N

n .
Since

f (x, y) ≤ ϕ(x) ≤ ξ(x), (5.42)

we can approximate problem (5.34) by:

min
x,y

{F(x, y) : y�Qy ≤ ξ(x), Ay ≥ x, y ∈ Z
m+, x ∈ X}. (5.43)

We propose a global approximation algorithm based on the framework described
in Dempe et al. [63] which solves the bilevel problem by iteratively updating an
approximation of the lower level optimal value function.

Algorithm: Computation of a global solution of problem (5.32)

Step 0: Let V 0 = {x1, . . . , xq } be the set of vertices of the
set X. Set t := 0.

Step 1: Compute the function ξ(x) according to the
above algorithm. If a global optimal solution of
problem (5.43) exists, let (x̄ t , ȳt ) be a global optimal
solution of this problem. If no global optimal
solution exists, GOTO Step 3.

Step 2: If the point (x̄ t , ȳt ) is feasible for problem (5.34),
STOP. The point is a global optimal solution with
optimal function value F(x̄ t , ȳt ). Otherwise GOTO Step 3.

Step 3: Let (x̄ t , ȳt ) be a global optimal solution of problem

F(x, y) → min
x,y

(5.44)

(x, y) ∈ cl {(u, v) : v�Qv ≤ G(u), Av ≥ u, v ∈ Z
m+, u ∈ X}.

Compute a set W as large as possible such that
ξ(w) ≥ ȳt�Qȳt for all w ∈ W and select ŵ ∈ W with ŵ ≥ x̄ t and
ŵi ≥ x̄ t

i + 1 for at least one i ∈ {1, . . . , n}. Set V t+1 := V � ∪ {x̄ t , ŵ}.
Update ξ(x): First set
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ξ(x) :=
{

min{ξ(x), ϕ(ŵ)} if x � ŵ
ξ(x) else.

and then

ξ(x) :=
{

min{ξ(x), ϕ(x̄ t )} if x � x̄ t

ξ(x) else.

Set t := t + 1, GOTO Step 1.

Theorem 5.23 (Dempe and Khamisov [66]) Let (x ′, y′) be a global optimal solution
of (5.34) and (x̄, ȳ) be a global optimal solution of problem (5.43). Then F(x ′, y′) �
F(x̄, ȳ).

Proof We have {(x, y) : Ay ≥ x, f (x, y) ≤ ϕ(x), y ∈ Z
m+, x ∈ X} ⊆ {(x, y) :

Ay ≥ x, f (x, y) ≤ ξ(x), y ∈ Z
m+, x ∈ X}, due to ϕ(x) ≤ ξ(x) for all x . This

implies the statement of the theorem.

By construction, the feasible set of problem (5.43) needs not to be closed.

Theorem 5.24 Let assumptions (A) be satisfied, assume that the above algorithm
computes an infinite sequence {(xt , yt )}∞t=1, and that the set T := {(x, y) : y ∈
Z

m+, x ∈ X, Ay ≥ x} is compact. Assume that all stability regions (cf.Definition5.1)
are closed. Let (̂x, ŷ) be an accumulation point of the sequence {(xt , yt )}∞t=1. Then
the accumulation point (̂x, ŷ) is a global optimal solution of problem (5.34).

Proof (i) We assume that the set T := {(x, y) : y ∈ Z
m+, x ∈ X, Ay ≥ x} is

compact and not empty and for all xt ∈ X the lower level problem can be
solved. Let (x̄ t , ȳt ) be the solution taken in Step 1 of the algorithm in iteration
t . If the point (x̄ t , ȳt ) is a global optimal solution of problem (5.43) and it is
feasible for problem (5.34), it is a global optimal solution of problem (5.34) by
Theorem 5.23.

(ii) Assume that the point (x̄ t , ȳt ) is globally optimal for the problems (5.43) and
not feasible for problem (5.34). This is only possible if

ϕ(x̄ t ) < ȳt�Qȳt ≤ G(x̄ t ).

In this case,
x̄ t ∈ W := {x : ξ(x) = z}

for some z ∈ N by assumptions (A). Hence, by the structure of the level sets
of the function G (see Fig. 5.9), the set constructed in Step 3 of the algorithm
exists.

(iii) If problem (5.43) has no solution, but (x̄ t , ȳt ) is a global optimum of problem
(5.44), a sequence {vk}∞k=1 converging to x̄ t exists such that

lim
k→∞ G(vk) ≥ ȳt�Qȳt > G(x̄ t ) ≥ ϕ(x̄ t ).
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By the structure of the function G,

x̄ t ∈ cl W, W := {x : ξ(x) = z}

for some z ∈ N by assumptions (A). Hence, by the structure of the level sets of
the function G (see Fig. 5.9) the set constructed in Step 3 of the algorithm again
exists.
Then, the function G is updated as formulated in Step 3 of the algorithm and the
set {x : ϕ(x) = ξ(x)} is enlarged in each iteration. Hence, after a finite number
of iterations both functions coincide. Then, a global optimum of problem (5.43)
is also a global optimum of problem (5.34). Since the regions of stability are
closed, problem (5.34) has a solution. It should be mentioned that the feasible
set of problem (5.43) is closed if ϕ(x) = ξ(x) for all x since the stability regions
of the function R(y) are closed. This proves the Proposition. �

The assumption of the proposition that all regions of stability are closed is very
restrictive. It can be weakened to the assumption that all stability regions R(x) with
x̂ ∈ cl R(y) satisfy x̂ ∈ R(y). But this again is a very restrictive assumption. If for
some stability set R(y) with x̂ ∈ cl R(y) we have x̂ �∈ R(y), the function ϕ(x) has
a jump at the point x = x̂ .

5.5.4.1 Weak Solution

In this section, we will describe how to overcome the problem mentioned above
by replacing R(x̄) by its closure clR(x̄) to develop a weak solution for the bilevel
optimization problem, see Sect. 5.3.6.

Definition 5.8 The set Ψ (x) := {y ∈ Y : x ∈ clR(y)} is said to be an extended
solution set of the lower level problem, and Ψ (·) : Rn → 2R

m
denote the extended

solution-set mapping of the lower level problem.

It is shown in Fanghänel [105], that Ψ (x) is the smallest u.s.c. point-to-set mapping
with Ψ (x) ⊆ Ψ (x) for each x ∈ X , see also Sect. 5.3. Obviously, if R(y) is a closed
set, we have Ψ (x) = Ψ (x).

Definition 5.9 For all x ∈ X , the function

ϕ(x) := lim inf
x→x

ϕ(x) (5.45)

is said to be the extended optimal value function of the lower level problem.

Replacing ϕ by ϕ, we can solve the bilevel optimization problem by using the algo-
rithm discussed above to obtain a global weak solution. We need only to replace
the upper bound ξ(·) of ϕ(·) with ξ(·) bounding ϕ(·) from above. To compute this
function replace ϕ(x) in the algorithm on page xxx. Then, modify the algorithm on
page xxx in the same way using ξ(·) and ϕ(·) in place of ξ(·) and ϕ(·). Since the level
sets of the function ξ need not to be closed, problem (5.44) remains unchanged.
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Then, using the same proof as in Theorem 5.24 with the obvious modifications
we derive

Theorem 5.25 (Dempe et al. [70]) Let assumptions (A) be satisfied, assume that
the above algorithm computes an infinite sequence {(xt , yt )}∞t=1, and that the set
T := {(x, y) : y ∈ Z

m+, x ∈ X, Ay ≥ x} is compact. Let (̂x, ŷ) be an accumulation
point of the sequence {(xt , yt )}∞t=1. Then the accumulation point (̂x, ŷ) is a weak
global optimal solution of problem (5.34).

5.6 A Heuristic Algorithm to Solve a Mixed-Integer Bilevel
Program of Type I

In this section, we consider a mixed-integer bilevel linear optimization (or the
leader’s) problem with one parameter in the right-hand side of the constraints in
the lower level (or the follower’s) problem. Motivated by the application to a natural
gas cash-out problem (see Chap. 6), we consider a generalization of the particular
case that consists in minimizing the cash-out penalty costs for a natural gas ship-
ping company. The functions are linear at both levels, and the proposed algorithm is
based upon an approximation of the optimal value function using a branch-and-bound
method. Therefore, at every node of this branch-and-bound structure, we apply a new
branch-and-bound technique to process the integrality condition. This section is an
extension of the authors’ previous paper Dempe et al. [63].

5.6.1 Introduction

The main goal of this section is to propose an efficient algorithm to solve the mixed-
integer linear bilevel optimization problem of Type I. Knowing that this problem is
hard to solve, we propose an algorithm generating approximations that converge to
a global solution. The main novelty of the presented heuristic approach lies in the
combination of a branch-and-bound (B&B) technique with a simplicial subdivision
algorithm. The numerical experiments demonstrate the robust performance of the
developed method for instances of small and medium size.

The section is organized as follows. The general formulation of the problem
and the mathematical model is given in Sect. 5.6.2. The geometry of the problem
is described in Sect. 5.6.3, whereas the approximation algorithm is presented in
Sects. 5.6.4 and 5.6.5 illustrates the algorithm by a numerical example.

5.6.2 The Mathematical Model

The Mixed Integer Bilevel Linear Optimization Problem with a parameter in the
right-hand side of the lower level is formulated as follows:

http://dx.doi.org/10.1007/978-3-662-45827-3_6
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min
x,y

{
a�y + b�x : Gx = d, y ∈ Ψ (x), x ∈ Z

n+
}

, (5.46)

which represents the upper level, where a, y ∈ R
m , b, x ∈ R

n, G is an r ×n matrix,
d ∈ R

r . Note that we use here the optimistic version of the bilevel optimization prob-
lem (see Dempe [52]). For example, in the natural gas imbalance cash-out problem
(cf. Chap. 6), the objective function of the upper level (the Shipper’s problem) is the
production cost plus the penalty that the gas shipper tries to minimize. In general,
Ψ (x) is defined as follows:

Ψ (x) = Argmin
y

{
c�y : Ay = x, y ≥ 0

}
, (5.47)

which describes the set of optimal solutions of the lower level problem (the set of
rational reactions). Here c, y ∈ R

m , A is an n × m matrix with n ≤ m.
Let us determine the optimal value function of the lower level problem (in the

natural gas imbalance cash-out model, the latter is called the Pipeline’s problem, see
Chap. 6) as follows:

ϕ(x) = min
y

{
c�y : Ay = x, y ≥ 0

}
. (5.48)

We suppose that the feasible set of problem (5.47) is non-empty. Again, in the example
of the natural gas imbalance cash-out problem, x is the parameter vector that can
represent the values of different daily imbalances, the amount of gas, or the shipper’s
revenue. The lower level (the Pipeline’s problem), depending on our objectives, may
try to minimize the imbalance, the gas haul volumes, or the absolute value of the
leader-follower cash transactions.

In this section, we consider a reformulation of (5.46)–(5.48) based upon an
approach reported in the literature (see e.g. Ye and Zhu [325] or Dempe [52]) as
a classical nondifferentiable optimization problem. If we take into account the lower
level optimal value function (5.48), then problem (5.46)–(5.48) can be replaced
equivalently by:

min
x,y

{
a�y + b�x : Gx = d, c�y ≤ ϕ(x), Ay = x, y ≥ 0, x ∈ Z

n+
}

. (5.49)

Our technique is focused on the lower level objective value function (5.48). For this
reason, we recall some important characteristics (see Grygarová [132] or Dempe and
Schreier [77]) that will be helpful for solving problem (5.49).

5.6.3 The Problem’s Geometry

Consider the parametric linear optimization problem (5.48)

http://dx.doi.org/10.1007/978-3-662-45827-3_6
http://dx.doi.org/10.1007/978-3-662-45827-3_6
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ϕ(x) = min
y

{
c�y| Ay = x, y ≥ 0

}
.

In order to solve this problem, we can use the dual simplex algorithm, like in Dempe
and Schreier [77]. Let us fix x = x∗ and let y∗ be an optimal basic solution for
x = x∗ with the corresponding basic matrix B. The latter is a quadratic submatrix
of A having the same rank as A, and such that y∗ = (y∗

B, y∗
N )�, with y∗

B = B−1x∗
and y∗

N = 0. Then, we can say that y∗(x∗) = (y∗
B(x∗), y∗

N (x∗))� = (B−1x∗, 0)�
is an optimal basic solution of problem (5.48) for the fixed parameter x∗. And if the
following inequality holds:

B−1x ≥ 0,

then y∗(x) = (y∗
B(x), y∗

N (x))� = (B−1x, 0)� is also optimal for the parameter
vector x .

It is possible to perturb x∗ so that B remains a basic optimal matrix (Grygarová
[132]). We denote by R(B) a set that we call the region of stability of B, which is
defined as

R(B) =
{

x | B−1x ≥ 0
}

.

For all x ∈ R(B), the point y∗(x) = (y∗
B(x), y∗

N (y))� = (B−1x, 0)� is an optimal
basic solution of the problem (5.48). This region is nonempty because y∗ ∈ R(B).
Furthermore, it is closed but not necessarily bounded. If R(B) and R(B ′) are two
different stability regions with B �= B ′, then only one of the following cases is
possible.

1. R(B) ∩ R(B ′) = {0}.
2. R(B) ∩ R(B ′) contains the common border of the regions R(B) and R(B ′).
3. R(B) = R(B ′).

Moreover, R(B) is a convex polyhedral cone, on which the lower level optimal
value function is a finite and linear function. To determine an explicit description of
the function ϕ consider the dual problem to problem (5.48). If ϕ(x) is finite, then

ϕ(x) = max{x�u : A�u ≤ c}.

Let u1, u2, . . . , us denote the vertices of the polyhedral set {u : A�u ≤ c}. Then,

ϕ(x) = max{x�u1, x�u2, . . . , x�us},

whenever ϕ(x) is finite. This shows that the function ϕ(·) is piecewise affine-linear
and convex.

By duality, for some basic matrix Bi with x ∈ R(Bi ), we have B�
i u = cBi or

u = (
B�

i

)−1
cBi , and thus,

x�ui = x�(B�
i )−1cBi = c�

Bi
B−1

i x .
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Fig. 5.10 Optimal value
function ϕ(x) = v(x) in
linear optimization with
right-hand side parameter

x

v(x)

x xx x1 2 3 4

Setting yi (x) = ((Bi )
−1 x, 0)� we derive

ϕ(x) = max
{

c�y1(x), c�y2(x), . . . , c�yq(x)
}

.

As we can see in Fig. 5.10, the stability regions are represented by the segments on
the x-axis. The function ϕ is nonsmooth, which makes this kind of problems hard to
solve.

Recall the notion of a partially calm problem in Definition 3.7.

Theorem 5.26 Let (x∗, y∗) solve problem (5.46)–(5.48), then (5.49) is partially
calm at (x∗, y∗).

Proof Fix an arbitrary value of δ > 0 and assume that a vector

(x ′, y′, u) ∈ (x∗, y∗, 0) + δB(0, 1),

where B(0, 1) is the unit ball Rn+m+m centered at the origin, is feasible in problem
(5.49), i.e.

c�y′ − ϕ(x ′) + u = 0 (5.50)

Ay′ − x ′ = 0 (5.51)

Let y(x ′) be a solution to the linear lower level problem, i.e.

c�y(x ′) − ϕ(x ′) = 0 (5.52)

Ay(x ′) − x ′ = 0. (5.53)

Therefore (x ′, y(x ′)) is feasible in the bilevel linear optimization problem. By the
optimality of the solution (y∗, x∗) and by Cauchy-Schwarz-Buniakovski inequality,
we get:

a�y′ + b�x ′ − a�y∗ − b�x∗ ≥ a�y′ + b�x ′ − a�y(x ′) − b�x ′

http://dx.doi.org/10.1007/978-3-662-45827-3_3
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= a�y′ − a�y(x ′) ≥ −‖a‖∞
∥
∥y′ − y(x ′)

∥
∥∞ , (5.54)

where ‖ · ‖∞ represents the infinity norm, i.e., ‖v‖∞ = max{|vi |, i = 1, . . . , n}.
By the definition of the lower level optimal value function, and because (x ′, y′, 0)
is feasible in problem (5.49), u must be non-positive. If the optimal solution of the
lower level problem y = y(x ′) is not unique, we can select one solution closest to
the point y′, so that:

∥
∥y′ − y(x ′)

∥
∥∞ = min

ε,y
{ε : −εe ≤ y′ − y ≤ εe, c�y − ϕ(x ′) = 0, Ay − x ′ = 0, y ≥ 0}.

Here, e = (1, 1, . . . , 1)� ∈ R
n , and inequalities are valid component-wise.

Now consider the dual to the latter linear optimization problem:

w = max
ξ≥0

{
(ξ1 − ξ2)

�y′ − ξ3ϕ(x ′) − ξ�
4 x ′ :

ξ1 − ξ2 − ξ3c − A�ξ4 = 0, e�ξ1 + e�ξ2 = 1
}

= max{ξ3(c
�y′ − ϕ(x ′)) + ξ�

4 (Ay′ − x ′) :
e�ξ1 + e�ξ2 = 1, ξi ≥ 0, i = 1, 2, 3, 4

}
. (5.55)

According to duality theory for linear optimization one has:

∥
∥y′ − y(x ′)

∥
∥∞ = ξ3(x ′, y′, 0)

[
c�y′ − ϕ(x ′)

]
+ ξ4(x ′, y′, 0)�(Ay′ − x ′)

= ξ3(x ′, y′, 0)
[
c�y′ − ϕ(x ′)

]
,

where
(
ξ1(x ′, y′, 0), ξ2(x ′, y′, 0), ξ3(x ′, y′, 0), ξ4(x ′, y′, 0)

) ∈ R
n+×R

n+×R+×R
m+

is a solution of the maximization problem (5.55). Hence, the following relationships
hold:

∥
∥y′ − y

∥
∥∞ = ξ3(x ′, y′, 0)

[
c�y′ − ϕ(x ′)

]

= ξ3(x ′, y′, 0)(−u) = ξ3(x ′, y′, 0) |u| . (5.56)

Since ξ3(x ′, y′, 0) can be selected as a component of a vertex solution of the max-
imization problem (5.55), and because the feasible region is independent upon
(x ′, y′, 0) and has a finite number of vertices, we come to:

ξ3(x ′, y′, 0) ≤ L (5.57)

where L is equal to

max {ξ3| (ξ1, ξ2, ξ3, ξ4) is a vertex of the set defined by the constraints in (5.55)} .
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Finally, combining (5.54), (5.56) and (5.57), we conclude that problem (5.49) is
partially calm with μ = ‖a‖∞L , since

a�y′ + b�x ′ − a�y∗ − b�x∗ + μ|u| ≥ 0. �

5.6.4 An Approximation Algorithm

We describe the algorithm based upon the above-mentioned theoretical insights. It is
difficult to work with the objective value function (5.48) because we simply do not
have it in an explicit form. This algorithm tries to approximate function (5.48) with a
finite number of iterations. Additionally, the function ϕ in (5.48) is not differentiable:
cf. Dempe and Zemkoho [81], Ye and Zhu [325] working with subdifferential calculus
based upon the nonsmooth Mangasarian-Fromovitz constraint qualification.

The tools that we use in this section are mainly based on the fact that the function
ϕ(·) in (5.48) is piecewise affine-linear and convex. Also, the basis for developing a
good algorithm is provided by the following theorems, important for keeping on the
convexity at every level of approximation.

Definition 5.10 The intersection of all the convex sets containing a given subset
W ⊆ R

m is called the convex hull of W and is denoted by conv W .

Theorem 5.27 (Carathéodory’s Theorem) Let W be any set of points in R
m, and let

C = conv W . Then y ∈ C if and only if y can be expressed as a convex combination
of m + 1 (not necessarily distinct) points in W . In fact, C is the union of all the
generalized d-dimensional simplices whose vertices belong to W , where d equals
the dimension of the set C: d = dim C.

Corollary 5.3 Let {Ci |i ∈ I } be an arbitrary collection of convex sets in R
m, and

let C be the convex hull of the union of this collection. Then every point of C can be
expressed as a convex combination of m + 1 or fewer affinely independent points,
each belonging to a different set Ci .

The details and proofs of Theorems 5.27 and Corollary 5.3 can be found in
Rockafellar [272].

Main parts of the proposed algorithm are the following.
In the initial step, we compute a first approximation Φ(·) of the function ϕ(·)

satisfying ϕ(x) ≤ Φ(x) for all x ∈ X . Let

X = {x : Gx = d, x ≥ 0}

be a convex polyhedron containing all the leader’s strategies. Select m̂ + 1 affine
independent points xi such that

X ⊂ conv {x1, . . . , xm̂+1} ⊂ {x : |ϕ(x)| < ∞}.
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Here m̂ = m − rank(G), and x2 − x1, x3 − x1, · · · , xm̂+1 − x1 form a linearly
independent system. We denote this set of points as

V = {x1, . . . , xm̂+1}.

Then, we solve the lower level linear optimization problem (5.48) at each vertex, i.e.,
find

ϕ(x1), . . . , ϕ(xm̂+1)

and the corresponding solution vectors (x1, y1), . . . , (xm̂+1, ym̂+1).
Now we build the first approximation of the optimal value function ϕ(x):

Φ(x) =
m̂+1∑

i=1

λiϕ(xi ), (5.58)

defined over

x =
m̂+1∑

i=1

λi x i , (5.59)

with λi ≥ 0, i = 1, . . . , m̂ + 1, and

m̂+1∑

i=1

λi = 1. (5.60)

In (5.58), we have an expression with the variable λ that leads to variable x using
(5.59) and (5.60). Essentially, this means that we replace the variable x by λ. Now
since the function ϕ is convex, one has

c�y ≤ ϕ(x) ≤ Φ(x),

and problem (5.49):

min
x,y

{a�y + b�x : Gx = d, c�y ≤ ϕ(x), Ay = x, y ≥ 0, x ∈ Z
m+}

can be approximated by the approximate integer problem (AIP) as follows:

min
x,y

{a�y + b�x : Gx = d, c�y ≤ Φ(x), Ay = x, y ≥ 0, x ∈ Z
m+}. (5.61)

In the following algorithm we will add new points x̂ to the set {x1, . . . , xm̂+1} such
that the resulting set is affine dependent. This implies that the value for the function
Φ(·) in (5.58) in no longer uniquely determined. Hence, we use
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Φ(x) = min
λ

{
m̂+1∑

i=1

λiϕ(xi ) : x =
m̂+1∑

i=1

λi x i , λi ≥ 0, i = 1, . . . , m̂ + 1}. (5.62)

Using the ideas in Sect. 5.6.3, Φ(·) is a piecewise affine-linear and convex func-
tion. Moreover, the set conv {x1, . . . , xm̂+1} decomposes into a finite number p of
simplices Vi such that:

1. Φ(·) is affine-linear over Vi ,
2.

⋃p
i=1 Vi = conv {x1, . . . , xm̂+1},

3. int Vi ∩ int Vj = ∅, i �= j .

Then, problem (5.61) is replaced by

min
i=1,...,p

min
x,y

{a�y + b�x : Gx = d, c�y ≤ Φ(x), Ay = x, y ≥ 0, x ∈ Vi ∩ Z
m+},

(5.63)

the inner problems of which are again linear mixed-integer optimization problems.
Let M be a list of all the active inner problems in problem (5.63). Using ideas in
branch-and-bound algorithms, a problem is not active if it is solved.

Solving problem (5.63) (by solving each of the p inner problems using a certain
method from discrete optimization as branch-and-bound or a cutting plane method)
an optimal solution (x, y) is obtained. If this point is not feasible for the bilevel
optimization problem (5.49), which means that ϕ(x) < Φ(x), the point x is added
to the set {x1, . . . , xm̂+1}. Then, one of the sets Vi becomes affinely dependent.
Excluding one element of the resulting set, affine independence can eventually be
obtained (this is guaranteed if some correct element is dropped). When one uses this
approach, at most m̂ + 1 new affine independent sets arise, each corresponding to a
new linear approximation of the lower level objective function on the convex hull of
these points. Call these sets again Vi .

Let V̂ be an arbitrary of these sets of affinely independent points and Φ̂(·) the
respective approximation of the function ϕ(·) over conv V̂ , see (5.58).

Then, the resulting problem

min
x,y

{a�y + b�x : Gx = d, c�y ≤ Φ̂(x), Ay = x, y ≥ 0, x ∈ Z
m+ ∩ conv V̂ }

(5.64)

is added to the list of problems. In Step 4 of the subsequent algorithm all those
problems are computed and added to the list of problems.

If one such simplex T is a subset of some region of stability, T ⊂ R(Bi ), the
feasible points (x, y) of problem (5.64) are also feasible for problem (5.49).

Now, we describe the proposed algorithm:

Algorithm: Initialization. Pick a tolerance value ε > 0 and
compute the first approximation of the optimal value
function of the lower level problem as given in (5.58).
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Let t = 1, and zt = +∞, where zt is the incumbent objecti-
ve value. Put problem (5.61) into the problems list M.

Step 1. Termination criterion. Stop, if the problems list is
empty. Else select one problem (corresponding to a set
Vi) in the list M and delete this problem from that
list. If all the points (xi , yi ), yi ∈ Ψ (xi ), corresponding to
vertices of Vi are close enough:

max
1≤i �=k≤m̂+1

∥
∥
∥(xi , yi ) − (xk , yk)

∥
∥
∥ < ε

repeat Step 1.
Step 2. Solve the problem taken from the problems list

using typical methods for integer optimization. Denote
the set of optimal solutions as

S =
{(

x̃1, ỹ1
)

, . . .
}

and z̃ the objective function value. If the problem has
no feasible solution, or if its objective function
value is larger than zt, then fathom this problem: set

zt+1 := zt , t := t + 1

and go to Step 1. Otherwise go to Step 3.
Step 3. If the components x of all the solutions belonging

to S are elements of V, then store the solutions, set

zt+1 := z̃, t := t + 1

and go to Step 1 (for such values of x, the point (x, y)

is feasible for problem (5.49), their objective
function value is better than the best one obtained so
far). Otherwise, considering the solution

(
x̃ j , ỹ j

)
from S such

that the component x̃ j is different from all the
elements of V, we add x̃ j to Vi, set zt+1 := zt, t := t + 1 and go
to Step 4.

Step 4. Subdivision. Make a subdivision of the set Vi ∪ {x j }
corresponding to this problem. Construct all new
problems (5.64) as given above and add them to the
list of problems. Go to Step 1.

Another idea of how to solve problem (5.49) is to work with the exact penalty
function as described in Dempe and Kalashnikov [62], Dempe et al. [65], Dempe and
Zemkoho [81]. Namely, we deduce a new reformulation of (5.49) using the facts that
the objective value function (5.48) is piecewise affine-linear, convex and partially
calm, as we showed in Sect. 5.6.3.
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We suppose that there exists a k0 < ∞ such that a point (x0, y0) is locally optimal
for problem (5.49) if and only if it is locally optimal for the problem:

min
x,y

{a�y + b�x + k[c�y − ϕ(x)] : Gx = d, Ay = x, y ≥ 0, x ∈ Z
m+}, (5.65)

for all k ≥ k0.
The difficulty in dealing with (5.65) arises from the fact that the exact penalty

function:
a�y + b�x + k[c�y − ϕx)] (5.66)

is not explicit due to the nature of the lower level optimal value function (5.48).
Moreover, the penalty function (5.66) is also nonconvex. For this reason, we propose
to use the algorithms presented in Gao [124, 125].

5.6.5 A Numerical Example

We consider the following bilevel parametric linear optimization problem, where the
upper level is described as:

min
x,y

{3y1 + 2y2 + 6y3 + 2x1 : 4x1 + x2 = 10, y ∈ Ψ (x), x1, x2 ∈ Z+},

where

Ψ (x1, x2) = Argmin
y1,y2,y3

{−5y1 − 8y2 − y3 : 4y1 + 2y2 ≤ x1, 2y1 + 4y2 + y3 ≤ x2,

y1, y2, y3 ≥ 0}.

There the lower level optimal value function is given by:

ϕ(x1, x2) = min
y1,y2,y3

{−5y1 − 8y2 − y3 : 4y1 + 2y2 ≤ x1, 2y1 + 4y2 + y3 ≤ x2,

y1, y2, y3 ≥ 0}.

The optimal solution of this problem is (y∗
1 , y∗

2 , y∗
3 ; x∗

1 , x∗
2 ) = (1/3, 1/3, 0; 2, 2).

We start to solve the problem using the proposed algorithm.
Step 0. We choose the vertices x1 = (5/2, 0) and x2 = (0, 10) that belong to
the convex hull of the leader’s strategies at the upper level. Fix the tolerance value
ε = 0.1. Now, we calculate ϕ(x1) = 0 and ϕ(x2) = −10, set z1 := +∞, then the
first approximation is built as follows:

Φ(x) = −x2.
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The approximate integer problem (AIP) that we add to the problems’ list is given as
follows:

min
x,y

{3y1 + 2y2 + 6y3 + 2x1 : 4x1 + x2 = 10, 4y1 + 2y2 ≤ x1

2y1 + 4y2 + y3 ≤ x2,−5y1 − 8y2 − y3 ≤ −x2

y1, y2, y3 ≥ 0, x1, x2 ∈ Z+}

Iteration 1
Step 1. We select (AIP) from the problems list.
Step 2. We solve problem (AIP) and obtain the (unique) solution ( ỹ1, ỹ2, ỹ3; x̃1, x̃2) =
(0, 1/4, 0; 2, 2) with z̃ = 15/4. Because z̃ is less than +∞, we go to Step 3.
Step 3. As x̃ = (x̃1, x̃2) = (2, 2) is different from the elements of the set V , we add
x̃ = (2, 2) to V , set z2 := +∞, t := 2 and go to Step 4.
Step 4. Make a subdivision at x̃ = (2, 2) thus obtaining two new problems: the
first one corresponding to conv

{
x2 = (0, 10), x̃ = (2, 2)

}
, and the second one cor-

responding to conv
{

x̃ = (2, 2), x1 = (5/2, 0)
}
. Then we add these two new pro-

grams to the problems list, each one described as follows: the first one with the
approximation

Φ1(x) = −17x2/24 − 70/24,

and the second one with the approximation

Φ2(x) = −13x2/6.

Finally, the new problems can be specified as follows:

(P1) min
x,y

{3y1 + 2y2 + 6y3 + 2x1 | 4x1 + x2 = 10, 4y1 + 2y2 ≤ x1,

2y1 + 4y2 + y3 ≤ x2,−5y1 − 8y2 − y3 ≤ Φ1(x), y1, y2, y3 ≥ 0, x1, x2 ∈ Z+}.

(when removing x1 from V ), and

(P2) min
x,y

{3y1 + 2y2 + 6y3 + 2x1 | 4x1 + x2 = 10, 4y1 + 2x2 ≤ x1,

2y1 + 4y2 + y3 ≤ x2,−5y1 − 8y2 − y3 ≤ Φ2(x), y1, y2, y3 ≥ 0, x1, x2 ∈ Z+}.

(when removing x2 from V ). Go to Step 1.
Iteration 2
Step 1. We select (P1) from the problems list and go to Step 2.
Step 2. We solve (P1) yielding the (unique) solution

(ỹ1, ỹ2, ỹ3; x̃1, x̃2) = (1/3, 1/3, 0; 2, 2)
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with z̃ = 17/3. And because z̃ is less than z2, then we go to Step 3.
Step 3. As x̃ = (x̃1, x̃2) = (2, 2) coincides with one of the elements of V , we store
the solution (ỹ1, ỹ2, ỹ3; x̃1, x̃2) = (1/3, 1/3, 0; 2, 2), set z3 := 17/3, t := 3, and go
to Step 1.
Iteration 3
Step 1. We select (P2) from the problems list and go to Step 2.
Step 2. We solve (P2) obtaining the (unique) solution

(ỹ1, ỹ2, ỹ3; x̃1, x̃2) = (1/3, 1/3, 0; 2, 2)

with z̃ = 17/3. And as z̃ is equal to z3, then we go to Step 3.
Step 3. Because x̃ = (x̃1, x̃2) = (2, 2) coincides with one of the elements of V , we
store the solution (ỹ1, ỹ2, ỹ3; x̃1, x̃2) = (1/3, 1/3, 0; 2, 2), set z4 := 17/3, t := 4,
then go to Step 1.
Iteration 4
Step 1. The problems list is empty, so we finish the algorithm.

Therefore, the last stored solution (ỹ1, ỹ2, ỹ3; x̃1, x̃2) = (1/3, 1/3, 0; 2, 2) with
z = 17/3 is the solution obtained with our algorithm, and it coincides with the exact
solution of the problem. �



Chapter 6
Applications to Natural Gas Cash-Out
Problem

This chapter discusses severalmodels inwhich bilevel programming has been applied
to the natural gas industry. The analysis of done in the context of the US natural gas
markets, in which regulations in the last 20years have made it so that separations
between supply chain agents is compulsory, in order to avoid monopolistic practices.
As a result of this, natural gas shippers/traders and pipeline operators engage in
business in a way that can be modeled as a bilevel problem.

This chapter is divided as follows: Sect. 6.1 describes the background for the prob-
lems, Sect. 6.2 details the formulation of the bilevel model that abstracts the problem,
with an approximation to this given in Sect. 6.3. A preliminary direct solutionmethod
is sketched in Sect. 6.4, while Sect. 6.5 shows a penalty function approach to the solu-
tion of this model using a variational inequality. Section6.6 presents a way to expand
the problem and then solve it by first reformulating both levels with linear problems
thus, obtaining a linear bilevel optimization problem. Then, the techniques in this
chapter are used to provide numerical results in Sect. 6.7. Finally, in Sect. 6.8, one
possible stochastic formulation is suggested, building upon the deterministic models
presented before.

6.1 Background

During the early 1990s (Soto [293] and IHS Engineering [150]), several laws and
regulations were passed in the United States and in the European Union, dictating,
among other things, that some of the links of the Natural Gas Supply Chain were not
to be controlled by a single party. In particular, pipeline ownership and natural gas
shipping/trading activities, were not supposed to be performed by the same agent.
This was decided under the rationale that a Transmit System Operator (TSO), acting
also as a Natural Gas Shipping Company (NGSC), would have an unfair advantage
over other NGSPs, using his pipeline. Under the new rules, the TSO could not own
natural gas with the objective of selling it, whereas NGSCs were now required to
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employ the services of TSOs to move their natural gas through the Interstate Pipeline
System (Energy Information Administration [98]).

Typically, a day of operations in this TSO-NGSC system has the NGSCs injecting
natural gas at the production facilities (e.g. a wellhead, a refinery) and withdrawing
a volume of natural gas, reported in advance to the TSO, at one of several pool
zones, which are consumption points in which the fuel is sold to Local Distributing
Companies (LDCs) for its delivery to final costumers. The TSO has the responsibility
of guaranteeing that an amount of natural gas, equal in quantity and quality to the
booked amount, is available at each pool zone for the NGSCs take out.

Operations in a pipeline network must be planned in advance in order to maintain
proper operating conditions. This means the amount of gas that enters and leaves the
system, as well as its characteristics, like pressure and exact chemical composition,
must always remain within certain tolerance levels. For instance, withdrawing too
much gas from a pipelinemay cause a drop in pressure,whichmay impact operations;
the TSO would seek to avoid this as much as possible. Also, since typically more
than one NGSC use the same pipeline, the gas in there gets mixed and the POc must
guarantee all receive natural gas that is just as good as that which they injected.

Unfortunately, NGSCs face uncertain demands from their customers in a daily
basis. While they can more or less forecast the future consumption levels they will
have to satisfy, the actual volumes of natural gas they take out from the pipeline
network are often different from the amount they have initially injectedmiles away, at
the wellheads. In order to satisfy this varying demanded volumes, NGSCs require an
amount of flexibility when withdrawing natural gas. Imbalances, i.e. a difference in
the amount of gas declared to be extracted from a pool zone and the actual extraction,
are understood to occur. In fact, imbalance creation is a crucial part of the natural
gas network industry.

However imbalances create problems for the TSOs as well as the possibility of
unfair business practices like unjustified storages and speculation or hedging. Some
form of regulation by the TSOs is needed to avoid such issues.While several types of
regulatory options exist, this chapter focuses on penalization cash-out: a TSO charges
the NGSC money for any gas extracted in addition to the forewarned amounts. The
TSO will then use this money to pay for the costs of injecting gas to balance its
network. Conversely, the TSO will agree to buy the gas not extracted, usually at a
price lower than that the NGSC would get in the market.

Let us consider a situation in which one TSO and one NGSC engage in business
as described above. The NGSC controls the booking of capacity in the pipeline, as
well as the extraction at the pool zones. After several days of operation, the NGSC
will have created (final day) imbalances which will likely not be zero (i.e. there is an
imbalanced network). The TSO then takes over the control of the pipeline and the
gas there, rearranging the volumes so that the absolute sum of the imbalances over all
zones is as small as possible, charging theNGSC for this re-balancing procedure. The
result of this are the final imbalances. The NGSC utilities come from the revenues
of natural gas sold to its LDCs, considering that it has to pay the TSO for booked
capacity and imbalances created. On the other hand, the TSO will only have an
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interests in reducing the imbalances, trying to make the amount of money cash-out
is the smallest possible, regardless of whether he receives or delivers money.

Because of the nature of the process, the bilevel setting has the NGSC as the leader
or upper level decision maker. The TSO, consequently, is deemed the follower or
lower level decision maker. This does not mean that the TSO is of lesser value or
has less authority than the NGSC. As we have seen, it is the TSO whom enforces the
arbitrage over the NGSC. The designation of each level’s agents is merely due to the
timing of their decisions. Since the NGSC must create an imbalance configuration
before theTSOattempts to rebalance it, it is theNGSCwhoacts as leader in themodel.

One important (and complicating) factor is that, after re-arranging the NGSC
imbalances, the TSO must make sure that all imbalances are either non-negative, or
non-positive. A positive imbalance means that the NGSC is not taking all the natural
gas it stated or booked for withdrawal at a given pool zone and day. Conversely, a
negative imbalance happens when the NGSC has taken out more natural gas than
originally declared. While the NGSC has certain liberties when some imbalances
occur in the final configuration by the TSO, all imbalances must bear the same sign.

6.2 Formulation of the Natural Gas Cash-Out Model
as a Mixed-Integer Bilevel Optimization Problem

In this section we will show an initial attempt to model the TSO-NGSC problem.
This not only provides an introduction to the latter models presented in this chapter,
but is also useful in showing the way we treat integrality in the lower level by moving
it to the upper level, and the conditions under which this applies.

Table6.1 shows the notation that will be used throughout this section. Notice that
other sections in this chapter use equal or similar notation and symbols.

The original bilevel formulation in last section deals merely with modeling the
cash-out, disregarding the NGSC’s concern to maximize its profit. Because of its
simplicity this model is presented first, before adding the more complicating factors
we introduce in later sections. The preliminary upper level is a linear optimization
problem if we consider yg fixed; however, the lower level is considerably more
complex. It contains an absolute value in the objective function, the binary variable
θ , as well as logical operators such as max, min, and conditionals. Some of these
are reduced to linear constraints when the upper level decision is fixed, which is
important in some solution techniques. Others, however, require the model to be
approximated in order to be simplified.
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Table 6.1 Symbols for variables and parameters employed

Sets and indexes

D Maximum number of days in the contract period

Z Number of pool zones

D Set of days; D = {1, 2, . . . , D}
Z Set of pool zones; Z = {1, 2, . . . , Z}
Upper level parameters

I L , IU ∈ R
DZ+ Lower and upper bounds for daily imbalances at day t in zone i

I L
t , IU

t ∈ R
D+ Lower and upper bounds for the sum of the daily imbalances at day t

SL , SU ∈ R
DZ+ Bounds on imbalance swing from day t − 1 to day t in pool zone i

xI
0 ∈ R

Z+ Imbalance at the beginning of day one in pool zone i ∈ Z

Lower level parameters

L ∈ [0, 1]2Z Fraction of gas consumed when moving one unit from pool zone i to zone j

F ∈ R
2Z+ Forward haul unit cost for moving one unit of gas from pool zone i to pool

zone j

B ∈ R
2Z+ Backward haul credit for ‘returning’ a unit of gas from pool zone j to pool

zone i

R ∈ R
Z+ Linear imbalance penalization coefficient in pool zone i

δ ∈ R
Z+ Non-linear imbalance penalization coefficient in pool zone i

Upper level decision variables

xI ∈ R
DZ Imbalance at the end of day t in pool zone i

xs ∈ R
DZ Imbalance swing from day t − 1 to day t in pool zone i

Lower level decision variables

yI ∈ R
Z Final imbalance in zone i

y f ∈ R
Z(Z−1)/2 Volume of gas moved from zone i to zone j

yb ∈ R
Z(Z−1)/2 Volume of gas credited from zone j to zone i

yg ∈ R Total cash-out for the NGSC

Auxiliary variables

θ binary variable equal to 1 if all final imbalances yI ≥ 0 , and 0 if yI < 0

6.2.1 The NGSC Model

NGSC cash-out: This is the total cost the NGSC incurs from creating imbalances.
The TSO either charges or pays the NGSC for the balancing costs; this function is
dependent of the lower level decision and is the reason the NGSC must consider the
TSO’s decisions (represented by variables y = (yI , y f , yb, yg) and θ ) before taking
her own decision x = (xI , xs)

F1(x; y) = yg. (6.1a)
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Imbalance upper and lower bounds. While the NGSC enjoys certain liberties
when dealing with the imbalances she creates, there are operational or contractual
limits to this disruptions of the network balance.

I L
ti ≤ xI

ti ≤ IU
ti , t ∈ D, i ∈ Z. (6.1b)

Total imbalance upper and lower bounds. Not only the individual imbalances
in each pool zone are bounded, but also their sum, as a way to equalize the total
imbalance in the network caused by the NGSC.

I L
t ≤

∑

i∈Z

xI
ti ≤ IU

t , t ∈ D. (6.1c)

Imbalance swing definition. Naturally, the imbalance swing variables s are defined
as the difference between one day’s imbalance and the former’s at any given pool
zone:

xI
ti = xI

t−1,i + xs
ti , t ∈ D, i ∈ Z. (6.1d)

Imbalance swing upper and lower bounds. Just as the imbalances themselves are
bounded, so is the ability of the NGSC to change an imbalance from one day to
another. This means that the NGSC cannot switch from taking a large extra volume
from the pipeline one day, to leaving another very large amount the next day.

SL
ti ≤ xI

ti − xI
t−1,i ≤ SU

ti , t ∈ D, i ∈ Z. (6.1e)

It can bee seen that this upper level is rather simple; since all constraints are linear,
after some basic manipulations, one can define a matrix AU and a vector, CU such
that (6.1b)–(6.1e) can be expressed as G(x) ≤ 0, with G(x) = AU x − CU . In this
case, the upper level decision set is defined as

X := {x : G(x) ≤ 0}.

However, as Theorem2.2 has made clear, even with linear problems in each level, a
bilevel problem is considerably complex and hard to solve.

6.2.2 The TSO Model

The TSOs objective. The revenue the TSOobtains is exactly the negative of theNGSC
objective, that is,−yg . However, it is not the TSO’s objective to outrightly try to take
in as much money in the cash-out as possible. The TSO is interested in balancing its
network and it will do so trying to make the cash-out as little as possible for either
party. This is of course achieved by minimizing the absolute value of yg:

http://dx.doi.org/10.1007/978-3-662-45827-3_2
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f1(y, θ) = |yg|; (6.2a)

Final imbalance definition. The relationship between the final imbalances and the
final day imbalances is straightforward: a final imbalance is the result of any (final
day) imbalance already in the pool zone, plus the amount of gas moved toward there
from positive imbalance zones, minus the amount of gas moved from that pool zone
to another pool zone. Notice the factor (1− Li j ) in the received natural gas volumes
due to transportation costs that happens when the TSO moves gas downstream to
that zone (and only in that case).

yI
j = xI

Dj +
∑

i :i< j

[
(1 − Li j )y f

i j − yb
i j

]
+

∑

k:k> j

(
yb

jk − y f
jk

)
, j ∈ Z. (6.2b)

Gas conservation. This follows directly from summing up the latter equations.
This constraint indicates that no natural gas loss should occur.

∑

i∈Z

yI
j +

∑

(i, j):i< j

Li j y f
i j =

∑

i∈Z

xI
Di . (6.2c)

No cyclic movement of gas. The amount of gas the TSO can move from pool zone
i , either upstream or downstream, must be less or equal than the positive imbalance
initially in that pool zone.

∑

j : j>i

y f
i j +

∑

k:k<i

yb
ki ≤ max{0, xI

D,i }, i ∈ Z. (6.2d)

Forward haul bounds. For any given pair of pool zones (i, j) : i < j , natural gas
can only be moved downstream from i to j if the former pool zone bears a positive
imbalance, and the latter has a negative imbalance, and never more than the positive
imbalance in the originating pool zone. If the upper level variables have already been
fixed, these constraints become linear.

y f
i j ≤

{
xI

D,i if xI
D,i > 0 and xI

D, j < 0;
0 otherwise.

, i ∈ Z. (6.2e)

Backward credit bounds. Since gas cannot be moved upstream, only a credit is
given to the NGSC, with no physical movement occurring though otherwise identical
to a lossless forward gas haul. For any given pair of pool zones (i, j) : i < j , this
credit can only be given if the upstream pool zone j bears a positive imbalance, and
the downstream one has a negative one, also never more than the positive imbalance
in the originating pool zone. These constraints similarly become linear once the upper
level decision is made.
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yb
i j ≤

{
xI

D j
if xI

D, j > 0 and xI
D,i < 0;

0 otherwise.
, i ∈ Z. (6.2f)

Imbalance sign matching The final imbalances created by the TSO must bear the
same sign as the final day imbalances defined by the NGSC. Just as with the past
two sets of inequalities, these constraints become linear once the NGSC has fixed
her decision.

min{0, xI
Di } ≤ yI

i ≤ max{0, xI
Di }, i ∈ Z. (6.2g)

Signs across all pool zones. This constraint represents a business rule in which no
imbalance may bear a different sign than the others. The TSO must make sure that
all imbalances are either non-negative, or non-positive. If M1 is a very large scalar
(i.e. significantly larger than the largest possible absolute imbalance), then:

− M1(1 − θ) ≤ yI
i ≤ M1θ, i ∈ Z. (6.2h)

NGSC’s cash-out costs. The last constraint shows how the NGSC costs from the
penalization are calculated. Basically, it pays the TSO for any positive imbalance
created and for movements of natural gas downstream, and receives another amount
from negative imbalances and from natural gas credited upstream. The addition
of the term with δi is necessary to avoid the creation of pseudo-storage (Dempe
et al. [65]), its quadratic nature guarantees differentiability. Unfortunately, this adds
another nonlinearity in the model, one which cannot be as easily fixed as the past
ones (when the model is extended, as described later in Sect. 6.6.3, the nonlinear
term becomes non-essential and may be dropped.) If (yI

i )+ = max{0, yI
i }, then

yg = −
∑

i∈Z

[
Ri yI

i − δi (yI
i )

2+
]

+
∑

(i, j):i< j

[
Fi j

(
1 − Li j

)
y f

i j − Bi j yb
i j

]
. (6.2i)

Types of variables:

yI
i , yg free, i ∈ Z; (6.2j)

y f
i j , yb

i j ≥ 0, i, j ∈ Z; (6.2k)

θ ∈ {0, 1}. (6.2l)

Again, with an adequate selection of a matrices AL , BL and a vector C L , we can
summarize the constrains (6.2b)–(6.2h), (6.2j), (6.2k) as

g(y, θ, x) = AL x + BL
[

y
θ

]
− C L ≤ 0 (6.3)

Unfortunately, the nonlinearity caused by constraints (6.2i) and (6.2l) prevents us
from formulating a purely matrix-form definition of the feasible set as in the upper
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level. Therefore, setY(x) should be defined simply as the set of all points (y, θ) such
that the lower level constraints hold for a fixed upper level decision, i.e.

Y(x) := {(y, θ) : g(y, θ; x) ≤ 0, (6.2i), (6.2l)}. (6.4)

6.2.3 The Bilevel Model

Let ϕ : RDZ → R be the optimal value function of the lower level problem:

ϕ(xI ) := min
y,θ

{ f1(y, θ) : (y, θ) ∈ Y(x)} (6.5)

The solution set Ψ (x) for the lower level is therefore defined as

Ψ (x) := {(y, θ) ∈ Y (x)) : f1(y, θ) ≤ ϕ(xI )}; (6.6)

and the graph for this function is consequently

gph Ψ := {(x, y, θ) : (y, θ) ∈ Ψ (x)}. (6.7)

Using the above definitions, we can formulate the mixed integer bilevel optimiza-
tion problem for the NGSC-TSO model as

MIBP1 : min
x,y,θ

{F1(x, y, θ) : (x, y, θ) ∈ gph Ψ (x), x ∈ X}. (6.8)

6.3 Approximation to a Continuous Bilevel Problem

As discussed before, this model presents several complications. Some of them arise
frommodeling necessities, like the nonlinear δi (yI

i )
2+; others come from the abstrac-

tion itself, like the absolute value in f1.
The nonlinearities present can be addressed somewhat straightforwardly: either

by reformulating the problem, or by using specific solution methods that bypass
them. This will be addressed more thoroughly later in this chapter. Nevertheless,
one particularly important issue is the binary variable in the lower level. The TSO
optimizes a function that is, implicitly, a function of a binary variable. This turns
the lower level objective function into a piecewise continuous linear function which
is remarkably different from that in the upper level (Dempe et al. [65]). In order to
make this situation more tractable, the binary variable will be moved from the lower
to the upper level before proposing any solution technique.

With the binary variable out of the lower level, we redefine the TSO feasible
region as Yβ(x) := {(y) : (6.2b)–(6.2k) hold for θ = β}.
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The bilevel model discussed in the rest of this chapter will therefore be slightly
different from the original version. The new formulation requires calculating the
optimal solution for not one, but for two (albeit continuous) bilevel optimization
problems. Then, we simply need to chose the value of θ for which the NGSC’s
decision is optimal:

BP2(β) : min
x,y,θ

{F1(x, y, θ) : (x, y, θ) ∈ gph Ψ, x ∈ X, θ = β}. (6.9)

This newproblem is not equivalent toMIBP1. The optimal solution to the original
problem is inside an interval formed by the two solutions of the modified problem.
Specifically speaking, if the parameters Li, j are all zero, then the value of θ the TSO
chooses is implicitly determined by the NGSC’s final day imbalance configuration
(i.e., 1 if the sumof all the final day imbalances is positive, 0 otherwise.) However, the
lower level may chose between θ = 1 and θ = 0 if at least some Li j are positive. As
it is shown by Dempe et al. [65], this also implies that the final imbalances xI are all
close to zero. Unless the transportation costs y f , yb are remarkably disproportionate,
yg will be close to zero too, hence the error in the approximation is small, and may
be considered good enough for practical purposes. This can be interpreted as saying
that the penalization the TSO would impose to the NGSC is so small that it can be
disregarded.

6.4 A Direct Solution Approach

There are many ways to solve the (continuous) bilevel approximation BP2. Some
of these approaches are more refined, others take into account the structure of the
problem itself, etc. This is because bilevel programs, even those of the simplest kinds,
do not lend themselves well to general solution techniques.

The first solution method we propose is deemed a “direct approach”, because of
its arguably simple procedure. After initialization, we can summarize the approach
in two iterating steps:

• Find an upper level vector x ∈ X (e.g. using any non-gradient nonlinear optimiza-
tion method), and

• Evaluate the upper level objective function by minimizing the lower level, para-
meterized by x .

Notice how, using this approach, all the logical constraints in the TSO problem,
namely (6.2d)–(6.2h), become linear, since xI are all fixed at the times the lower
level is solved.

The direct method, simple as it is, faces fundamental difficulties. Due to the non-
convexity of the upper level objective function, and the disconnectedness of the
feasible region (both traits inherent to general bilevel optimization problems) there
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are risks that the proposed NGSC solution is not feasible (it voids the TSO’s feasible
region), or that the problem reaches a local optimum.

However, this direct method serves us well as a point of comparison to more
elaborated algorithms, like the one presented in Sect. 6.5. Before we move into that,
we can start applying some reformulations to the model, some of which will be
re-used later in the chapter.

6.4.1 Linear TSO Objective Function

The objective of the the TSO is to minimize the cash flow, whether the cash goes
from itself to the NGSC, or the other way around. This is naturally modeled with an
absolute value. To avoid this nonlinearity, we can easily add one more variable and
a pair of constraints. Let yd be an unconstrained, continuous variable, and consider
the inequalities

− yd ≤ yg ≤ yd . (6.10)

In the optimum, yd , being otherwise unrestricted, will force one of the constraints
to be active, hence yd will be positive, and equal to the absolute value of yg . It is
then possible to replace the objective function in (6.2a) with

f2(y) = f2(y, x, θ) = yd . (6.11)

6.5 A Penalty Function Approach to Solve the Natural Gas
Cash-Out Problem

This section presents a solution approach to problem BLP2, based mainly in model-
ing the TSO problem as a variational inequality and then introducing it as a penalty
function to the NGSC problem.

Let us represent the NGSC cost, yg , as function

F̂(y) = yg = −
∑

i∈Z

[
Ri yI

i − δi (yI
i )

2+
]

+
∑

(i, j):i< j

[
Fi j

(
1 − Li j

)
y f

i j − Bi j yb
i j

]
.

Then, for any vectors x ∈ X, yβ ∈ Y
β(x), the TSO reaction to the NGSC decision

is a solution to the equilibrium problem represented by the variational inequality

〈
F̂(yβ)∇ F̂(yβ), y − yβ

〉 ≥ 0, for all y ∈ Y
β(x), (6.12)

where ∇ F̂(yβ) is the usual gradient of the function F̂ .
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Using this variational inequality, we can reduce problem BLP2 to the generalized
bilevel program:

GBP3(β) : min
x,y,θ

{F̂(y) : x ∈ X, y ∈ Y
β(x), θ = β, and (6.12)}. (6.13)

While expression (6.12) in GBP3(β) makes it difficult to implement and solve,
there exists the possibility to ‘move’ the variational inequality constraint to the objec-
tive function as a penalty term. Thus, the TSO problem becomes:

Γ β
α (x, yβ) = max

y∈Yβ(x)
φ(x, yβ, y), (6.14)

where

φ(x, yβ, y) = 〈
F̂(yβ)∇ F̂(yβ), yβ − y

〉 − 1

2
α‖y − yβ‖2,

and α is a non-negative number (cf. Marcotte [217], Marcotte and Dussault [219]).
The gap function Γ

β
α is non-negative over its domain, and can only be 0 when the

vector yβ is a solution to the TSO problem (otherwise the variational inequality is not
satisfied and the penalty term is not zero, which makes the gap function negative).
Because of this, we can add

Γ β
α (x, yβ) ≤ 0

as a constraint to problem GBP3(β) and use Γ
β
α as a penalty term for the upper level.

This renders problem GBP3 into the standard nonlinear mathematical program

NLP4(β) : min{Qβ
α(x, yβ, μ) : x ∈ X, yβ ∈ Y

β(x), θ = β}, (6.15)

with Qβ
α(x, yβ, μ) = F̂(yβ) + μΓ

β
α (x, yβ).

The relations between problems NLP4(β) to GLP3(β) depend on the value of
the penalty weightμ, which needs to be large enough to lead to Γ (x, yβ) being zero.

The set of feasible values for problem NLP4(β), Cβ = {(x, y) : {x ∈ X, y ∈
Y

β(x)}, is clearly compact since

(a) all variables are bounded either implicitly or explicitly by I L , IU , and
(b) all bounds are closed expressions.

Therefore, we can define a sequence of iterations of problem NLP4(β) over increas-
ingly larger, unbounded weights μ that leads us to the global optimal solution of
problem GBP3(β).

Let (x(μ), y(μ)) be a global optimal solution to NLP4(β) (which always exists
thanks to the compactness of Cβ and the continuity of Qα) corresponding to weight
μ. Lemma 6.1 can be used to construct an inexact penalization algorithm to solve
GBP3(β) using NLP4(β).

Lemma 6.1 Let (x∗, yβ∗) be a global optimum solution to problem GBP3(β), and
denote F̂β∗ = F̂(x∗, yβ∗).
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Let {(xk, yβ,k)}∞k=1 be a sequence of iterated optimal solutions to problem
NLP4(β) corresponding to successively increasing weights μk , where xk , and yβ,k

are optimal vectors for each level and weight μk . Then the following is valid:

Qβ
α(xk, yβ,k, μk) ≤ Qβ

α(xk+1, yβ,k+1, μk+1); (6.16a)

Γ β
α (xk, yβ,k) ≤ Γ β

α (xk+1, yβ,k+1); (6.16b)

F̂(xk, yβ,k) ≤ F̂(xk+1, yβ,k+1); (6.16c)

Qβ
α(xk, yβk

, μk) ≤ F̂β∗. (6.16d)

Proof From the optimality of the iterated solutions of problem NLP4(β), and since
μk+1 ≥ μk , we have

Qβ
α(xk+1, yβ,k+1, μk+1) = F̂(xk+1, yβ,k+1) + μk+1Γ β

α (xk+1, yβ,k+1)

≥ F̂(xk+1, yβ,k+1) + μkΓ β
α (xk+1, yβ,k+1)

≥ F̂(xk, yβ,k) + μkΓ β
α (xk, yβ,k) = Qβ

α(xk, yβ,k, μk),

which implies (6.16a). Combining the above inequalities and the fact (again, due to
the optimality of the solutions in the corresponding problems) that

Qβ
α(xk+1, yβ,k+1, μk+1) ≤ Qβ

α(xk, yβ,k, μk+1),

we have (after simplifying and dividing by (μk+1 − μk)) line (6.16b):

Γ β
α (xk, yβ,k) ≤ Γ β

α (xk+1, yβ,k+1).

The latter inequality, together with the optimality of the solution (xk, yk, μk
2) for

problem NLP4(β), yields (6.16c):

F̂(xk+1, yβ,k+1) ≥ F̂(xk, yβ,k+1).

Once again, the optimality of (xk, yk, μk), combined with the fact that
Γ

β
α (xk, yβ,k) = 0 at (x∗, yβ∗), gives (6.16d):

F̂β∗ = Qβ
α(x∗, yβ∗, μk) ≥ Qβ

α(xk, yβ,k, μk)

thus completing the proof of the lemma. �

Using Lemma 6.1 and the compactness of the set C, we can easily prove the
following theorem:

Theorem 6.1 Let {(xk, yβ,k)}∞k=1 be a sequence corresponding to iterated optimal
solutions to problem NLP4(β), using unbounded, increasing large weights μk . Then
every limit point of the sequence {(xk, yβ,k)}∞k=1 is a solution to problem GBP3(β).
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Proof The compactness of the set C guarantees the existence of a subsequence
{(xk, yβ,k)}∞k=1 that converges to a limit point (x̄β, ȳβ). Without loss of generality,
assume that the sequence itself is converging. The continuity of function F̂ and
Lemma 6.1 yield

lim
k→∞ F̂(xk, yβ,k) = F̂(x̄β, ȳβ),

and
Qβ∗

α := lim
k→∞

[
Qβ

α(xk, yk, μk)
]

≤ F̂β∗.

Subtracting the limits above, and recalling the optimality of F̂β∗, we have

lim
k→∞ μkΓ β

α (xk, yβ,k) = Qβ∗
α − F̂(x̄β, ȳβ) ≤ F̂β∗ − F̂(x̄β, ȳβ) ≤ 0.

Remember that function Γ
β
α has non-negative values, which implies

lim
k→∞ Γ β

α (xk, yβ
k ) = 0.

SinceΓ
β
α is continuous, this limit indicates that the limit point (x̄β, ȳβ) is a feasible

solution for problem GBP3(β). This, together with (6.16d), leads to

F̂(x̄β, ȳβ) ≤ F̂β∗,

which proves the optimality of the limit point (x̄β, ȳβ) for problem P1(β). �

Solving GLP3(β) (and by extension, BLP2(β)), for both values of β, and taking
the best one for the NGSC delivers a good approximation to MIBP1. However, the
actual process of finding a solution vector is left open. Unlike the direct method in
Sect. 6.4, we must provide a solution vector for both levels at the same time in each
step, which causes the logical constraints in the TSO problem to remain nonlinear.
Later, in Sect. 6.7, we will provide a number of experimental results comparing these
and other approaches.

6.6 An Expanded Problem and Its Linearization

Up to this point, the programs we have dealt with have been solely focused in the
cash-out penalization the TSO charges the NGSC. However, the latter is clearly
interested in maximizing her profits, not just on the penalization costs. The TSO,
on the contrary, and because of the nature of its business, needs not to worry much
about its operation costs beyond the periodic re-balancing, since the network costs
are low and highly constant (Juris [162]).
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These facts compel us to expand the model in order to include additional vari-
ables, doing so in the upper level only. Interestingly, they have the added benefit of
discarding the model necessity for a nonlinear cash-out function in the lower level.

The addition of new items to the upper level will understandably complicate
the model. In order to remedy this, we will introduce later changes that render both
levels linear (once the other level is fixed), which delivers a bilevel linear optimization
problem, i.e. a more general and simpler type of multi-level optimization problem.

6.6.1 Upper Level Expansion

In this version of the NGSC-TSO bilevel model, the NGSC has a number of new
variables to consider. Basically, she has to fulfil a contract, delivering a minimum
amount of gas to her client, a LDC.

The upper level includes several new variables and constants, summarized in
Table6.2.

NGSC cash-out: The objective function for the NGSC consists now on the
negative revenues of the company. The cash-out costs are joined by the costs of
using the pipeline (Cb

ti x P
ti ,) as well as those for not meeting contractual obligations

(Cti max{0, Eti−x E
ti }). The NGSC also earns profits. These come from fulfilling

contractual obligations (Pti min{x E
ti , Eti },) as well as from extra gas sales she accom-

modates in each pool zone, beyond the contractual amounts (Pe
ti min{0, x E

ti −Eti }).
If we redefine x as (xI , x E , x P ), then:

Table 6.2 Symbols for variables and parameters in the expanded model

Upper level parameters

E ∈ R
Z D Expected demand at day t in pool zone i

E M ∈ R
Z D Maximum amount of gas that is possible to extract at day t in pool zone i

P ∈ R
Z D Unit price for the first Eti units of gas extracted/sold (contracted gas) at day t

in and pool zone i

Pe ∈ R
Z D Unit price for whatever units of gas extracted/sold beyond Eti at day t

in pool zone i

C ∈ R
Z D Cost for undelivered contracted gas unit on day t in pool zone i

Cb ∈ R
Z D Cost for reserved gas capacity on day t in pool zone i

Upper level decision variables

x E ∈ R
Z D Amount of gas extracted and sold by the NGSC at day t in pool zone i

x P ∈ R
Z D Amount of gas planned to be extracted (or equivalently, the booked capacity) by

the and NGSC at day t in pool zone i
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F2(x; yg) = yg −
∑

t∈D,i∈Z

[
Pti min{x E

ti , Eti } + Pe
ti min{0, x E

ti − Eti }
]

+
∑

t∈D,i∈Z

[
Cti max{0, Eti − x E

ti } + Cb
ti x P

ti

]
(6.17a)

Total Gas Volumes: The former formulation dealt with how large imbalances in
each zone are; yet it said nothing about the actual extraction, nor about the bookedvol-
umes. Oncewe introduce variables for these, the relationship is quite straightforward:
the imbalance equals the booked capacity minus the extraction in a given pool zone.

xI
ti = x P

ti − x E
ti (6.17b)

Extraction Limits: The NGSC cannot extract more gas from a given pool zone
than what is physically possible, and this extraction must be a non-negative number.

0 ≤ x E
ti ≤ E M

ti (6.17c)

Booking Limits: The NGSC cannot book more extraction privileges from a given
zone thanwhat is physically possible, and this booked volumemust be a non-negative
number.

0 ≤ x P
ti ≤ E M

ti (6.17d)

All other upper level constants remain the same, and so the matrix AU
L and the

vector CU
2 can be redefined to accommodate these new constrains, with a correspon-

dent function G2(x) = AU
2 x − CU

2 . Therefore, the upper level feasible set for the
expanded NGSC model can be defined as:

X2 = {x : G2(x) ≤ 0}

6.6.2 Lower Level Expansion

Since there are no changes in the abstraction of the TSO model, the lower level
remains highly the same as in Sect. 6.2. Nevertheless, there are two changes we do
introduce: first, the objective function will be that one described in Sect. 6.4.1, that
is, the one using the linear term yd . This is because, considering the work we will
be doing later linearizing the entire model, this expression is convenient for us now.

Secondarily, and arguably more interesting, we will drop the term δ(yI
i )

2+ from
the lower level penalization definition. As we stated before, this term serves a mere
modelling purpose. Without it, the NGSC may chose to create unjustifiably large
imbalances, consequently the solution of the problem would not be necessarily the
actual best decision for the NGSC, but rather the one that created the largest positive
imbalances.
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However, once we have added new terms to the lower level, there is no longer a
need for defining the penalization like this. If theNGSCwere to create extraordinarily
large imbalances, then either she would not be meeting her contracts, or she’d be
booking very large volumes. Both of these options convey a cost for theNGSC, so that
she has now to decide whether this cost is a good trade-off on each of the pool zones.

The penalization, without the quadratic auxiliary term, is

yg = −
∑

i∈Z

Ri yI
i +

∑

(i, j):i< j

[
Fi j

(
1 − Li j

)
y f

i j − Bi j yb
i j

]
. (6.18)

Taking into consideration these changes, we can now write the (all linear) lower
level constraints (6.2b)–(6.2h), (6.2j), (6.10), (6.18), as the matrices AL

2 , BL
2 , C L

2 ,
and have

g2(yθ) = AL
2 x + BL

2

[
y
θ

]
− C L

2 .

The lower level feasible set then becomes:

Y
β
2 (x) = {y : g2(x) ≤ 0, θ = β}. (6.19)

One could argue that, since the NGSC is paying the TSO Cb
ti x P

ti for using the
network, such termcould be included in the lower level objective function (as opposed
to listing it simply as yd ). Logically speaking, though, there is no relationship between
what the TSO controls (namely, the imbalance re-arrangement) and the amount it is
charged to the NGSC by the usage of the pipeline. Consequently, while a final report
of the TSO finances could include this term, it might in fact not be advantageous
trying to implement it at this point. The variables x P

ti are not controlled by the TSO,
as the cost Cb

ti is not subject to renegotiations at the time of the balancing procedure.
Now we can formulate a new bilevel problem. If we consider, as in past sections,

that the binary variable θ is moved to the upper level, then can define the following
series of expressions.

ϕ
β
2 (x) := min

y
{ f2(y) : y ∈ Y

β
2 (x)};

Ψ
β
2 (x) := {y ∈ Y β(x) : f2(y) ≤ ϕ

β
2 (x)};

gph Ψ
β
2 := {(x, y) : y ∈ Ψ

β
2 (x)}.

So the expanded bilevel optimization problem for the NGSC-TSO model is:

BP5(β) : min{F2(x) : (x, y) ∈ gph Ψ
β
2 , x ∈ X2}.
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Additionally, the individual problems for this formulation can be defined as

min{F2(x) : x ∈ X2} (6.20)

and
min{ f2(y) : y ∈ Y

β
2 (x)}. (6.21)

6.6.3 Linearization of the Expanded NGSC Model

Themodel for problemBP5(β),while havingmore explicative power, is considerably
more complex than any of the other problems presented, due to the existence of the
max and min operators in the objective of the NGSC.

This, however, gives us the chance to implement what we call “linearization”
techniques. In this and the next sections, we will make even further reformulations
to each level, obtaining in the end a bilevel linear optimization problem, the simplest
kind of bilevel programs (Bard [10], Dempe [52], Wen and Hsu [313]). The linear
model for the NGSC, as well as its equivalence to (6.20), is provided in Lemma 6.2
below. It does include an important hypothesis: basically, that the extra price the
NGSC can obtain for beyond-contract sales is not “very large”, at least not as large
as the sum of the contract prices and the booking costs. This is indeed a rather weak
requirement; if not fulfilled, the NGSC could simply overbook as much as she can,
since the extra prices would more than cover any booking costs.

The new model also contains two new sets of artificial variables, xa1 and xa2 .
These artificial variables are used to work around the min and max operators in the
objective function.

Lemma 6.2 Let Pti − Pe
ti + Cti > 0 ∀t, i . Consider the function

F3(x; y) = yg −
∑

t∈D,i∈Z

[
Pe

ti xa1
ti + (

Pti − Pe
ti

)
xa2

ti

]

+
∑

t∈D,i∈Z

[
Cti

(
Eti − xa2

ti

) + Cb
ti

(
x P

ti + x E
ti

)]
(6.22)

and the set of constraints

I L
ti ≤ xI

ti ≤ IU
ti , t ∈ D, i ∈ Z; (6.23a)

SL
ti ≤ xI

ti − xI
t−1,i ≤ SU

ti , t ∈ D, i ∈ Z; (6.23b)

I L
t ≤

∑

i∈Z

xI
ti ≤ IU

t , t ∈ D; (6.23c)

0 ≤ x E
ti ≤ E M

ti , t ∈ D, i ∈ Z; (6.23d)
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0 ≤ x P
ti + x E

ti ≤ E M
ti , t ∈ D, i ∈ Z; (6.23e)

xa1
ti ≤ x E

ti , t ∈ D, i ∈ Z; (6.23f)

0 ≤ xa2
ti ≤ Eti , t ∈ D, i ∈ Z; (6.23g)

0 ≤ xa2
ti ≤ xa1

ti , t ∈ D, i ∈ Z; (6.23h)

(a) Let (x∗
1 , yg∗) = (xI∗, xs∗, x E∗, x P∗, yg∗) be a feasible solution to problem

(6.20), where yg∗ solves (6.21). Then, there exist values xa1∗, xa2∗ for the new
variables such that (x∗

2 , yg∗) = (xI∗, x E∗, xa1∗, xa2∗, yg∗) is also feasible for
problem

min{F3(x; yg) : (6.23a)−(6.23h)}, (6.24)

and their objective function values are equal.
(b) Conversely, let (x∗∗

2 , yg∗∗) = (xI∗∗, x E∗∗, xa1∗∗, xa2∗∗, yg∗∗) be a feasible solu-
tion to problem (6.24), where yg∗∗ solves problem (6.21). Then there exist values
of xs∗∗ and x P∗∗ such that (x∗∗

1 , yg∗∗) = (xI∗∗, xs∗∗, x E∗∗, x P∗∗, yg∗∗) is a fea-
sible solution to problem (6.20), and their objective function values are equal.

(c) If (x∗
1 , yg∗) is an optimal solution to problem (6.20), then (x∗

2 , yg∗), is an optimal
solution to (6.24). Conversely, if (x∗∗

2 , yg∗∗) is an optimal solution to (6.24), then
(x∗∗

1 , yg∗∗) is an optimal solution to (6.20).

Proof (a) Let (x∗
1 , yg∗) be a feasible vector for problem (6.20). Lines (6.23a),

(6.23c), and (6.23d) are trivially satisfied by xI , x E . Combining (6.1e) and (6.1d),
we have that (6.23b) also holds. Similarly, (6.17b) together with (6.17d) make
xI∗, x E∗ satisfy (6.23e).
Define the auxiliary variables xa1∗, xa2∗ as:

xa2∗
ti = min{x E∗

ti , E∗
ti }, t ∈ D, i ∈ Z; (6.25)

xa1∗
ti = max{0, x E∗

ti − Eti } + xa2∗
ti

= max{0, x E∗
ti − Eti } + min{x E∗

ti , Eti }, t ∈ D, i ∈ Z. (6.26)

Then, if x E∗
ti ≥ Eti , xa1∗

ti = (x E∗
ti − Eti ) + Eti = x E∗

ti . Otherwise, x E∗
ti < Eti

and again xa1∗
ti = 0 + x E∗

ti = x E∗
ti . Therefore, we have that xa1∗ = x E∗. Thus,

constraint (6.23f) is satisfied by xa1∗.
The fact that Eti ≥ 0 ∀t, i ,means that the definition of xa1∗, xa2∗ makes these sat-
isfy (6.23g) and (6.23h). Hence (x∗

2 , yg∗) is a feasible solution to problem (6.24).
Let us now demonstrate the equality of the correspondent objective function
values. By definition, we can use xa1∗, xa2∗ in the first double sum in (6.17a) as
follows:

∑

t∈D,i∈Z

[
Pti xa2∗

ti + Pe
ti (xa1∗

ti − xa2∗
ti )

] =
∑

t∈D,i∈Z

[
Pe

ti xa1∗
ti + (Pti − Pe

ti )xa2∗
ti

]
.



6.6 An Expanded Problem and Its Linearization 213

Furthermore,

max{0, Eti − x E∗
ti } = −min{0, x E∗

ti − Eti } = Eti − min{Eti , x E∗
ti }, (6.27)

together with (6.17b), imply that the second sum in (6.17a) becomes:

∑

t∈D,i∈Z

[
Cti (Eti − xa2∗

ti ) + Cb
ti (xI∗

ti + x E∗
ti )

]
.

This means that both functions (6.17a) and (6.22) have the same value at their
corresponding feasible solutions (x∗

1 , yg∗) and (x∗
2 , yg∗).

(b) Consider now a feasible solution (x∗∗
2 , yg∗∗) to problem (6.24).

Lines (6.1b),(6.1c), and (6.17c) are trivially satisfied, for they are basically the
same as (6.23a), (6.23c), and (6.23d).
Define xs∗∗

ti = xI∗∗
ti − xI∗∗

t−1,i , and x P∗∗ = xI∗∗ + x E∗∗. Making use of (6.23b)
and (6.23e), we can see that constraints (6.1e), (6.1d), (6.17b), and (6.17d) hold
for x∗∗

1 . Therefore, vector (x∗∗
1 , yg∗∗) is feasible for (6.20).

Let us now prove the equality of both solutions’ objective function values.
The coefficient of variable xa1∗∗ in (6.22) is (−Pe), which is always non-positive.
This means that, when the problem is minimized, each of the components of the
variablewill grow asmuch as possible in order tominimize the objective function
value. Since this growth is solely constrained by the value of x E∗∗, the optimality
of the problem implies that we will have

xa1∗∗ = x E∗∗ = max{0, x E∗∗ − E} + min{E, x E∗∗}. (6.28)

In the same manner, the coefficients of variables xa2∗∗ in (6.22) are −(Pe −
Pe + C) which are, by hypothesis, negative. Hence, when we minimise the
problem, xa2∗∗

ti will grow as much as possible. The maximum growth for this
variable is bounded by constraints (6.23g) and (6.23h), and by (6.28) as follows:

xa2∗∗ = min{E, xa1∗∗} = min{E, x E∗∗}. (6.29)

Combining (6.28) and (6.29) with the objective function (6.22) we have:

∑

t∈D, i∈Z

[
Pe

ti

(
max{0, x E∗∗

ti − Eti } + min{x E∗∗
ti , Eti }

)]

+
∑

t∈D, i∈Z

[(
Pti − Pe

ti

)
min{Eti , x E∗∗

ti }
]

=
∑

t∈D, i∈Z

(
Pe

ti max{0, x E∗∗
ti − Eti } + Pti min{Eti , x E∗∗

ti }
)

.
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This corresponds to the first double sum in the objective function (6.17a) of the
nonlinear problem.
The second double sum of (6.22), put together with (6.27), (6.29), and the defi-
nition of x P∗∗, yields:

∑

t∈D,i∈Z

[
Cti

(
Eti − xa2∗∗

ti

) + Cb
ti

(
xI∗∗

ti + x E∗∗
ti

)]

=
∑

t∈D,i∈Z

(
Cti max{0, Eti − x E∗∗

ti } + Cb
ti x P∗∗

ti

)
.

When combined, the two latter equalities make it clear that both objective func-
tions have equal values at the corresponding feasible solutions (x∗∗

1 , yg∗∗) and
(x∗∗

2 , yg∗∗).
(c) Finally, we prove the optimality of the constructed solutions in the last two items.

Let (x∗
1 , yg∗) be an optimal solution for problem (6.20) with an optimal value

of F2(x∗
1 , yg∗) = F∗

2 . If the feasible solution (x∗
2 , yg∗), as given in item (a), is

not optimal for problem (6.24), then there exists a feasible vector (x∗∗
2 , yg∗∗)

such that
F3(x∗∗

2 , yg∗∗) = F∗∗
3 < F∗

2 .

Because of (b), (x∗∗
1 , yg∗∗), with x P∗∗ = xI∗∗ + x E∗∗, problem (6.20) has an

objective function value of F∗∗
2 = F∗∗

3 < F∗
2 , which contradicts the optimality

of F2. Therefore, for any optimal solution to the nonlinear problem, we can
construct an optimal solution to the linear problem such that their objective
functions’ optimal values are equal.
The same argument can be used for the converse statement. �

Lemma 6.3 For a given upper level vector x, a fixed θ , and the variable y =
(yI , y f , yb, yg, yd , ya1 , ya2), consider the function:

f3(y; xI , θ) = yd + M2

∑

i∈Z

(ya1
i + ya2

i ) (6.30)

and the set of constraints:

(
1 − Li j

)
y f

i j ≤ ya1
i , i, j ∈ Z, i < j; (6.31a)

y f
i j ≤ ya2

j , i, j ∈ Z, i < j; (6.31b)

yb
i j ≤ ya1

j , i, j ∈ Z, i < j; (6.31c)

yb
i j ≤ ya2

i , i, j ∈ Z, i < j; (6.31d)
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− ya2
i ≤ yI

i ≤ ya1
i , i ∈ Z; (6.31e)

ya1
i ≥ xI

D,i , i ∈ Z; (6.31f)

ya1
i ≥ 0, i ∈ Z; (6.31g)

ya2
j ≥ −xI

D,i , j ∈ Z; (6.31h)

ya2
j ≥ 0, j ∈ Z, (6.31i)

yI
j = xI

D, j +
∑

i :i< j

[
(1 − Li j )y f

i j − yb
i j

]
+

∑

k:k> j

(
y f

jk − yb
jk

)
, j ∈ Z. (6.31j)

yg = −
∑

i∈Z

Ri yI
i +

∑

(i, j):i< j

[
Fi j

(
1 − Li j

)
y f

i j − Bi j yb
i j

]
. (6.31k)

− M1(1 − θ) ≤ yI
i ≤ M1θ, i ∈ Z (6.31l)

− yd < yg < yd (6.31m)

yI
i , yg, yd free, i ∈ Z; (6.31n)

y f
i j , yb

i j ≥ 0, i, j ∈ Z; (6.31o)

where M2 is a sufficiently large scalar number.

(a) Let (y∗
1 ; xI , θ) = (

yI∗, y f ∗, yb∗, yg∗, yd∗; xI , θ
)

be a feasible solution the prob-
lem (6.21) for the fixed values xI , θ . Then there exists (ya1∗, ya2∗) such that

(y∗
2 ; xI , θ) =

(
yI∗, y f ∗, yb∗, yg∗, yd∗, ya1∗, ya2∗; xI , θ

)

is a feasible solution to

min
y

{ f3(y; xI , θ) : (6.31a)−(6.31o) hold for fixed xI , θ} (6.32)

(b) Let (y∗∗
2 ; xI , θ) = (yI∗∗, y f ∗∗, yb∗∗, yg∗∗, yd∗∗, ya1∗∗, ya2∗∗; xI , θ) be an opti-

mal solution to (6.32). Then (y∗∗
1 ; xI , θ) = (yI∗∗, y f ∗∗, yb∗∗, yg∗∗, yd∗∗; xI , θ)

is a feasible solution to problem (6.21).
(c) If (y∗

1 ; xI , θ) is optimal for (6.21), then (y∗
2 ; xI , θ) is optimal for (6.32) and

vice-versa.

Proof (a) Let
(
y∗
1

)
solve the nonlinear problem (6.21) for fixed xI , θ . If we define

ya1∗
i = max{xI

D,i , 0}, ya2∗
i = max{−xI

D,i , 0}, i ∈ Z, then it is clear that ya1∗
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and ya2∗ satisfy (6.31f)–(6.31i). Variables yI∗, y f ∗, yb∗, yg∗, yd∗ will trivially
satisfy the constraints (6.31j)–(6.31o) for θ .
If (6.2e) and (6.2f) hold true for y f ∗, yb∗, then the latter variables will also fulfil
(6.31a), (6.31c) and, as yI∗, y f ∗, yb∗ satisfy (6.2b) and (6.2g), then (6.31b),
(6.31d) are also valid for these y f ∗, yb∗.
With ya1∗, ya2∗ defined as above, constraint (6.2g) can be rewritten as (6.31e),
therefore, as yI∗ satisfies the former, so it will the latter.
The point (y∗

2 ; xI , θ) is then feasible for problem (6.32). The objective value of
the linear problem coincides with

f3(y∗
2 ; xI , θ)

= f2(y∗
1 ; xI , θ) + M2

∑

i∈Z

(
max{xI

D,i , 0} + max{−xI
D,i , 0}

)
. (6.33)

(b) Consider now an optimal solution (y∗∗
2 ; xI , θ) to problem (6.32) for fixed values

xI , θ . If M2 is large enough, a minimization process will force the variables
ya1∗∗, ya2∗∗ to take their minimum values in order to minimize their contribution
to the objective function. Thus, we will have

ya1∗∗
i = max{xI

D,i , 0}, ya2∗∗
i = max{−xI

D,i , 0}, i, j ∈ Z. (6.34)

The variables ya1
i represent the amount of gas that can be drawn from zone i ,

whereas variables ya2
j represent the amount of gas that can be deposited into

zone j . If ya1∗∗
i [resp., ya2∗∗

j ] is 0, then y f ∗∗
i j [resp., yb∗∗

i j ] will be equal to 0

because of (6.31a)–(6.31d). Hence y f ∗, yb∗ satisfy (6.2e) and (6.2f).
With ya1∗∗, ya2∗∗ defined in (6.34), constraint (6.31e) can be rewritten as (6.2g).
Therefore, if the former is true for x∗∗, the latter will also hold.
Let us now prove that y f ∗∗, yb∗∗ satisfy (6.2d). If xI

D,i ≥ 0, for any i ∈ Z, then
expression (6.31e) becomes

− ya2∗∗
i = 0 ≤ yI

i ≤ xI
D,i = ya1∗∗

i . (6.35)

Constraint (6.2b) can be transformed as follows:

∑

j : j>i

y f
i j +

∑

k:k<i

yb
ki = xI

D,i +
∑

j : j<i

(1−L ji )y ji +
∑

k:k>i

yb
ik − yI

i ; i ∈ Z. (6.36)

By (6.31b) and (6.31d), the sums in the right hand side of this equation become
0, which yields:

∑

j : j>i

y f
i j +

∑

k:k<i

yb
ki = xI

D,i − yI
i ≤ xI

D,i = ya1∗∗
i . (6.37)
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Now, on the contrary, suppose that ID,i < 0 for an arbitrary i ∈ Z. In this
case, the left-hand side sums in (6.36), when combined with (6.31a) and (6.31c),
become zero: ∑

j : j>i

y f
i j +

∑

k:k<i

wki = 0 = ya1∗∗
i . (6.38)

Lines (6.37), (6.38) show that constraint (6.2d) is valid and hence the values
(y∗

1 ; xI , θ) are feasible for problem (6.32). The objective value of the nonlinear
problem is

f2
(

y∗
1 ; xI , θ

)
= f3

(
y∗∗
2 ; xI , θ

)

− M2

∑

i∈Z

(
max{xI

D,i , 0} + max{−xI
D,i , 0}

)
. (6.39)

(c) We have shown that for any feasible solution for either problem, one can find a
corresponding feasible solution for the other problem with an explicit relation-
ship between both problems’ objective function values. It should also be clear
that, if a vector solves one problem, so does its counterpart to the other problem.
Indeed, let

κ = M2

∑

i∈Z

(max{xI
D,i , 0} + max{−xI

D,i , 0}),

then if the nonlinear problem has an optimal solution with an objective function
value σ ∗ strictly less than (τ ∗ − κ), where τ ∗ is the optimal objective function
value of the linearised problem, then by item (a), the linearised problem has a
feasible solution with the objective function value σ ∗ + κ < τ ∗, which contra-
dicts to the optimality of τ ∗. The same argument can be easily applied to the
converse statement. Hence, an optimal solution for any problem may be con-
structed from a likewise optimal solution to the other problem. This completes
the proof. �

Notice that, whereas Lemma 6.2 provides an exact reformulation of the NGSC’s
original nonlinear model, the same is not necessarily true for the TSO model (6.32).
The equivalence of models (6.21) and (6.32) depends on the value of M2 being large
enough to ’force’ variables ya1 and ya2 to take their minimum possible values at the
optimal solution. Luckily, just as we did with parameter M1, the boundedness of the
original TSO variables allows us to calculate a suitable lower bound for M2 using
Lemma 6.4.

Lemma 6.4 Consider problem (6.32). If

M2 � max
n∈Z

(

Rn + max

{
∑

i :i<n

Bin,
∑

i :i<n

Fin

})
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then any optimal solution to problem (6.32) is also an optimal solution to problem
(6.21).

Proof First, notice how the entire second term in the lower level objective function,
along with the usage of the artificial variables ya1 and ya2 , is an alternative to avoid
setting directly

ya1
i = max(xI

D,i , 0), (6.40a)

ya2
i = max(−xI

D,i , 0), (6.40b)

since the operators would break linearity whenever the upper level decisions xI
ti have

not been already fixed, as it is the case with the penalization algorithm in Sect. 6.5.
In order to make the latter equations hold true, it is imperative that the artificial

variables attain their lower bound value, as demanded by constraints (6.31f), (6.31i).
To achieve this, the value of M2 should be large enough so as to guarantee that the
optimization of f2 minimizes the second term of the function rather than the first
term. In other words, the maximum decrease of f2 after increasing one unit of ya1

or ya2 should be less than M2:

− dyd

dya1
n

<
d

[
M2

∑
i∈Z (ya1

i + ya2
i )

]

dya1
n

≤ M2,

and

− dyd

dya2
n

<
d

[
M2

∑
i∈Z (ya1

i + ya2
i )

]

dya2
n

≤ M2,

for n ∈ Z.

From (6.31b), (6.31e), (6.31n), and (6.31k), we get

−yg ≤
∑

i∈Z

Ri ya1
i +

∑

(i, j):i< j

Bi j ya1
j ;

which, together with (6.31m), delivers:

−d f yd

dya1
n

≤ − dyg

dya1
n

= Rn +
∑

i :i<n

Bin; n ∈ Z.

Furthermore, from (6.31e), (6.31b), (6.2k), (6.31i), and (6.31k) we can state

yg ≤
∑

i∈Z

Ri ya2
i +

∑

(i, j):i< j

Fi j ya2
j . (6.41)
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Combining the latter with (6.31m) yields

− dyd

dya2
n

≤ dyg

dya2
n

= Rn +
∑

i :i<n

Fin; n ∈ Z. (6.42)

Therefore, we need only set the value of scalar M2 to be larger than the maximum
over all n of the expressions in (6.41) and (6.42):

M2 � max
n∈Z

(

Rn + max

{
∑

i :i<n

Bin,
∑

i :i<n

Fin

})

= M2. (6.43)

If (6.43) holds, then so will (6.40a) and (6.40b). It is now easy to see, thanks to
Lemma 6.3, that the linear model (6.32) is completely equivalent to model (6.21),
which makes any optimal solution of the former an optimal solution to the latter. �

The three lemmas above, once put together,make it easy to formulate a newbilevel
linear optimization problem which can be used to solve BP5(β). Define AU

3 , CU
3 ,

such that
AU
3 x ≤ CU

3 ⇔ (6.23a)−(6.23h), (6.44)

hold, AL
3 , BL

3 , C L
3 such that

AL
3

[
x
θ

]
+ BL

3 y ≤ C L
3 ⇔ (6.31a)−(6.31o) (6.45)

is satisfied and take G3(x) = AU
3 x −CU

3 , g3(y; x, θ) = AL
3

[
x
θ

]
+ BL

3 y −CU
3 . Then

the feasible sets related to the new NGSC and TSO problems are:

X3 = {(x, θ) : G3(x) ≤ 0},
Y

β
3 (x) = {y : g3(y; x, θ) ≤ 0}.

Define the functions

ϕ
β
3 (x) := min

y
{ f3(y; xI ) : y ∈ Y

β
3 (x)},

Ψ
β
3 (x) := {y ∈ Y

β
3 (x) : f3(y; xI ) ≤ ϕ

β
3 (x)},

gph Ψ
β
3 := {(x, y) : y ∈ Ψ

β
3 (x)}.

Then, the bilevel linear optimization problem BLP6(β) is as follows:

BLP6(β) : min{F3(x) : (x, y) ∈ gph Ψ
β
3 , x ∈ X3}.
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The relationship between the solutions of problems BP5(β) and BLP6(β) are
summarized by Theorem 6.2. It is worth noticing that these problems are not exactly
equivalent: it is possible for problem BLP6(β) to have an optimal solution even
when the other problem is infeasible, due to the relaxation of the constraints on y.
Therefore, the equivalence is only guaranteed when an optimal solution exists for
BP5(β).

Theorem 6.2 Let P − Pe + C > 0, and M2 � M2. If there exists an optimal
solution to problem BP5(β), then an optimal solution to BLP6(β) is also an optimal
solution to BP5(β).

Proof The proof of the theorem follows directly from Lemmas 6.2, 6.3, and 6.4, as
well as the requirement that an optimal solution (for both levels) exists. �

The benefits from using problem BLP6 over BP5 are the ability to use the more
general techniques that are applicable to bilevel linear problems. Remember that,
due to their complexity (cf. Theorem2.2), there are no “generally good” algorithms
for bilevel problems. The performance, convergence, and global optimality of an
algorithm or solution method all depend on the particular structure of each level’s
models. However, since bilevel linear problems are the simplest kind, they are also
the most well studied. This, of course, leads to more robust and/or efficient solution
techniques for problems of this particular kind.

Linearization is not, of course, without it’s downsides. There are arguably more
variables and constraints involved, which could pose problems with large instances.
There’s also the possibility, mentioned above, that an optimal solution found is not
in fact an optimal to the original expanded problem. Ultimately, the benefits of
linearization versus lack thereof lie on the problem being solved and the solution
methods available.

Both the direct method and the inexact penalty approach (IPA) from Sect. 6.5
can be easily applied to problems BP5 and BLP6. The necessary proofs of the
convergence of the penalty approach are mostly identical to the ones in Lemma 6.1
and Theorem 6.1, so they will not be provided in this section. Further, using the dual
of problem (6.32), we can eliminate the lower level of BLP6 and instead use its KKT
conditions, and add all these to the upper level as regular constraints.

This technique has been repeatedly used in the past to solve general bilevel prob-
lems with “well-behaved” lower levels. It is not, however, immediately equivalent
to exactly solving BLP6, due to the inherent non-convexity of bilevel problems in
general (see also Dempe and Dutta [55]). Indeed, there are no a priori conditions
developed to guarantee that solving the primal-dual form will provide an optimal
solution to the lower problem in the bilevel setting (cf. Ben-Ayed [18]).

Nevertheless, because it’s cleanliness and simplicity (just use a non-gradient
method, like Nelder-Mead, or pattern search, to provide feasible points until an opti-
mum is reached), we use it in the next section to provide a benchmark against the IPA
in a numerical setting. Asmentioned here and in several sources, this is due to the lack
of a generally accepted “good” solution method for bilevel optimization problems.

http://dx.doi.org/10.1007/978-3-662-45827-3_2
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6.7 Numerical Results

For this section, we used a standard Intel Core i7 machine with four threads of
2.8GHz, 8Gb RAM, and Windows 7 Enterprise OS.

Thirty two test instances were randomly generated so that there were at least one
feasible solution for each instance. The KKT-based method applied to the nonlinear
expanded model BP5 was tested against the IPA applied to the linearized model
BLP6. Both methods were run twice for each instance, for both values of θ , and
the best of those solutions for the upper level was taken as the optimal one. The
KKT-based method was coded in GAMS (General Algebraic Modeling System, see
[123]) and solved with CONOPT (cf. http://www.conopt.com/), while the inexact
penalty algorithm was coded inMatlab� (The Language of Technical Computing,
see e.g. Gilat [129]) and solved with a combination of a modified Nelder-Mead
(Nelder andMead [250]) approach (to correct for infeasibilities) andMatlab’s own
“fmincon” nonlinear constraint optimization function.

As it’s clear from the second column in Table6.3, GAMSuses very little overhead,
so solving the instances proposedhappens very fast.Unfortunately, andgiven the non-
convexity of the model resulting from the KKT method, about half of the instances
result in either a null solution, or not a solution at all according to the reports of the
GAMS solver. However, in those cases in which GAMS finds a reasonable solution,
this solutions tends to be slightly better than that provided by our IPA. The latter takes
admittedly longer, specially in instances A301 and A302; in the latter, however, it
manages to provide a feasible solution while the KKT fails. From these experiments,
we can see that the IPA tends to be more stable than the other approach, and while
slower, the times are mostly in the same order, with some exceptions.

Different performances would be expected from combining the different formula-
tions presented here (linear/nonlinear constants, linear/nonlinear objective function)
and solution method (direct method, IPA, KKT-based). The contents of this chapter
should provide an example of how theoretical and algorithmic work can be used to
improve convergence and speed while solving a given bilevel problem.

For a more detailed explanation of the instances, and more results, the reader is
directed to check (Dempe et al. [64]).

6.8 Bilevel Stochastic Optimization to Solve an Extended
Natural Gas Cash-Out Problem

The models in Sects. 6.2–6.6 all have something in common: they are all determin-
istic. While deterministic models are invaluable in many real situations, we need
to remember that the world is not deterministic. Though sensitivity analysis may
provide a good view of variation in our assumptions when applied to a deterministic
model, it is often better to try to model the process as a stochastic problem if a lot of
variation occurs (Wallace [311]).

http://www.conopt.com/
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Table 6.3 KKT-based solution against the inexact penalty approach

Instance KKT IPA

Time Upper level Penalization g Time Upper level Penalization g

A021 0.02 −1732876.91 −7399.00 0.23 −1732175.28 −11197.9

A022 0.03 1423991.54 NaN 0.59 −947901.69 −1864.5

A023 0.02 −688228.53 0.00 0.51 −688196.80 −38.8

A024 0.03 −846331.21 −1310.00 0.44 −843493.43 −895.8

A025 0.02 6716433.75 NaN 0.51 −4301859.50 6021.7

A026 0.02 3181479.67 NaN 0.38 −2189394.74 6486.9

A027 0.05 3964042.92 NaN 0.47 −3534429.85 −771.7

A028 0.02 6330348.37 NaN 0.51 −4159144.27 6218.7

A029 0.02 3654144.99 NaN 0.36 −1890774.08 6570.5

A030 0.02 1563778.51 NaN 0.45 −992660.94 8673.1

A031 0.03 −4950817.74 −15350.00 0.53 −4951096.88 −15263.5

A032 0.02 5156668.74 NaN 1.23 −3506013.01 2336.2

A033 0.02 −5149180.62 −12690.00 1.08 −5147713.76 −12716.8

A034 0.02 −3309861.39 −14940.00 1.08 −3308604.79 −13514.4

A035 0.09 −1055856.56 −14800.00 0.47 −1055078.00 −14305.3

A101 0.03 −2436057.69 −1638.00 0.87 −2434302.30 −3634.5

A102 0.03 4733647.29 NaN 0.78 −4732726.12 −11575.7

A103 0.02 4282575.48 NaN 1.23 −3655038.82 −357.5

A104 0.03 −6376794.22 0.00 0.97 −6376327.84 −2894.9

A105 0.02 −6677906.32 0.00 0.92 −6678802.39 −3341.0

A106 0.02 −1977529.72 0.00 0.80 −1978414.41 3063.5

A107 0.02 −5502321.89 0.00 0.79 −5517531.56 −20614.7

A108 0.04 −43600099.58 −19980.00 0.97 −43598427.94 −14491.5

A109 0.03 2217355.24 NaN 0.38 −1408145.48 25176.1

A110 0.02 6271564.15 NaN 0.50 −5055304.10 29823.7

A201 0.07 8795017.68 NaN 2.11 −5990672.28 3892.8

A202 0.03 −47044633.40 0.00 2.39 −47044753.54 −1461.8

A203 0.05 8373035.70 NaN 1.91 −7039869.82 4209.6

A204 0.02 −7692828.91 0.00 1.95 −7694934.46 −3315.3

A205 0.03 7011056.70 NaN 1.00 −5222103.41 51416.1

A301 0.06 −40711017.38 −228600.00 8.52 −40702515.05 −220958.3

A302 0.08 71534756.18 NaN 13.02 −57524178.35 63006.2

The last two formulations we propose are based of on the idea of randomness
impacting the NGSC operations. Specifically, these newmodels allow for demanded
volumes, aswell as contract prices, to the LDCs to vary, so theNGSChas to somehow
obtain estimates for such figures and plan according to those estimates. The process
by which these forecasts are obtained, while an important aspect of every stochastic
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analysis, are not a direct concern to an optimizationmodel, so theywon’t be discussed
very thoroughly.

However, the TSO’s operations are not heavily affected by randomness. The costs
for operating the network are rather constant (Juris [162]), and occasional disruptions,
as discussed before, are resolved through imbalance-based cash-outs, whose costs
are based in mid-term contracts. Hence, the TSO in our models needs not to consider
randomness in its decision.

The stochastic bilevel nonlinear problem discussed in detail below borrows heav-
ily from problem BP5. The most noticeable modifications are in the upper level’s
objective function and on the way periods t relate to each other. As with the first
expanded model, we will later formulate linear versions for both levels, culminating
with an stochastic bilevel linear optimization problem.

Next, we present the upper level NGSCs stochastic model derived from (6.20).
It belongs to the class of stochastic models with recourse, that is, it contains both
variables that are set before any random outcome is known (non-recursive variables)
and variables that may be divided upon after some or all of the randomness is realized
(Kall and Wallace [183]).

The random parameters in this formulation are volumes demanded and prices
the NGSC faces. The data for this may either be already available from the same
sources from which the deterministic figures were retrieved, or it can be estimated
using for example forecasts (Brockwell and Davis [29]), regression analysis [99], or
simulation. It goes without saying that the quality of the stochastic estimations will
impact directly in the effectiveness of the model as a decision-making tool.

In order to model randomness, we make use of an scenario tree (Kall andWallace
[183]). Each branch of the tree represent a set of possible outcomes to the random
variables involved. We call a “node” the set variables and parameters that belong to
time periodswith identical estimates on all stochastic variables. The first node, or root
node of the tree, represents the period in which more certainty exists. In our case, the
root node contains the non-recursive variables. From the root node, one ormode child
nodes branch out, which in turn will sprawl more branched nodes. The farther from
the root node a node is, the less certain the estimations of the stochastic parameters
are in that node. This branch process continues until the nodes have covered all time
periods in the model; the final nodes in each branch, the ones without any branching
child nodes, are customarily called leaf nodes or simply leaves.

In the left figure in Fig. 6.1, we can see how a simple tree with two stages of recur-
sion looks like. The root node contains the parameters and variables that are deter-
ministic, i.e., they cannot be changed later, such as booked volumes. The first stage
of recursion represents, say, the first seven days of NGSC-TSO system operation.
There is arguably more certainty here than in future estimations, so just two nodes
are enough. We can think of these nodes as “high prices”, “mean prices” and “low
prices”, with projected demands reflecting a reaction to these prices.

For the second stage of recursion, there is more uncertainty, so more nodes are
branched out from the nodes in the first stages. This means that, for the second week,
we have accumulated nine different possible outcomes for the prices and demands in
the two week-long process. Each of these is a scenario, and each scenario’s recourse
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Fig. 6.1 A scenario tree and accompanying time series. As the number of nodes grow, so does the
uncertainty, implying that more time series are considered in the long run

variables (in our case, the imbalances created by theNGSC) are likely to take different
values, as shown at the right of Fig. 6.1. This implies that the last-day imbalances will
also differ among scenarios, and consequently each will create a different situation
for the TSO to react to.

Since each time periodmay be represented in several different nodes, likely a large
number as we approach the final stages of the process, it follows that this stochas-
tic model contains a considerable larger number of variables than its deterministic
counterpart. If each node has, in general, branched on more than one child, we will
have an exponentially growing scenario tree.

The notation for the variables used fromhere on in the upper level changes slightly,
in order to accommodate the newly added node scheme. This is specially true with
the indexing format. Taking into consideration Tables6.1 and 6.2, the meaning of
the variables is intuitive enough so as to not needing a new notation table.

Objective Function. The objective function in the stochastic model does away
with revenues from out-of-contract sales. This is done to emphasize the impact of
variability on the demands faced by the NGSC; being able to sell extra gas decreases
the likelihood that the NGSC will plan accordingly to the demands forecast. The
only other major change is the introduction of the probability of a particular node k
happening, symbolized by pk . Summarily, this new objective function is the expected
value of all nodes’ contributions, plus the expected value of all TSO responses to
each leaf node. Make x = (xI , x E , x P ); then

F4(x) =
∑

k∈KS

pk yg(xI
k) +

∑

k∈K

pk

∑

t∈Θk , i∈J

[
Ckti max{0, Ekti − x E

kti}

−Pkti min{ekti, Ekti} + Cb
ktix

P
kti

]
.

(6.46)
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There are many things to note here. Each node k ∈ K represents a set of time periods
which have a reasonably congruent estimation of the random variables; it might be
one week, or five days, or one month. The number of periods in a node needs not
to be equal among nodes in different stages, hence t represent now the t th day in a
given node. Nodes belonging to the same stagemust, however, have the same number
of days.

Counter-intuitively,
∑

k pk > 1. The root node always happens, so p1 = 1.
Indeed, one and only one node in the sth stage of recursion may occur, hence∑

k∈K s pk = 1. If we have exactly S stages, then K S represents the stage with
the leaf nodes, which explains the expected value for the TSO response, where
yg(xI

k) ∈ Ψ
β
3 (xI

k) at the kth node, which must be a leaf node.
The terms in the long sum are mostly analogous to the deterministic expanded

model.
Imbalance, Imbalance Totals, and Imbalance Swing Limits. These constraints

haven’t changed beyond the addition of the cluster indexing:

I L
kti ≤ xI

kti ≤ I L
kti , k ∈ K, t ∈ Dk, i ∈ J; (6.47a)

I L
kt ≤

∑

i∈J

xI
kti ≤ I L

kt , k ∈ K, t ∈ Dk; (6.47b)

SL
kti ≤ xs

kti ≤ SL
kti , k ∈ K, t ∈ Dk, i ∈ J; (6.47c)

Imbalance Swing Relationship. These constraints change a bit. Remember that the
nodes in a single stage represent different realizations of several stochastic variables,
and as such, Ik gives the chance to act in accord to that realizations. However, all
imbalances in the first day of each node are constrained, via the imbalance swing
limit, by the last day of the former period:

xI
kti =

⎧
⎪⎪⎨

⎪⎪⎩

xI
0i + skti if k = 1, t = 1; i ∈ J

xI
a(k),N a(k),i

+ xs
kti if k > 1, t = 1, i ∈ J

xI
k,t−1,i + skti otherwise.

(6.47d)

Here, a(k) is a node-to-node mapping that refers to the node from which k branched
(its parent node).

Imbalance Definition. Imbalances are the difference between the booked volumes
and the extracted volumes.

xI
kti = x P

kti − x E
kti , k ∈ K, t ∈ Dk, i ∈ J. (6.47e)

Non-recursion on Booked Volumes. The booked volumes p are common to all
nodes with an equal day t in a single stage. The NGSC decides upon them before
obtaining information about any stochastic outcome. Hence, all nodes k in a given
stage Ks must respond to the same booked volumes:
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x P
kti = x P

k′ti , k, k′ ∈ Ks, t ∈ Dk, i ∈ J, s ∈ S. (6.47f)

Sign of the Booked and Extracted Volumes. All volumes booked and sold by the
NGSC must be non-negative.

x E
kti , x P

kti ≥ 0, k ∈ K, t ∈ Dk, i ∈ J. (6.47g)

The lower level model remains unchanged, in the understanding that the variables
we formerly referred to as xI

Di are now xI
k Dki

, where k ∈ KS , due to the changes in
which the NGSC decides upon the nodes in the scenario tree.

One very important difference is, of course, that we now have KS lower levels
problems to solve; the expected responses of the TSO to each final stage node. For
a binary scenario tree with four stages of recursion, this means eight different lower
level problems have to be solved for each upper level vector.

Using the new set of constrains and the new equations, we define new upper level
matrices AU

4 , CU
4 , function G4(x; θ, y), and feasible set X4:

AU
4 x ≤ CU

4 ⇔ (6.47a)–(6.47g) hold; (6.48)

G4(x) := AU
4 x − CU

4 ; (6.49)

X4 := {x : G4(x) ≤ 0}. (6.50)

And its corresponding bilevel model, using the same lower level as in the original
deterministic expanded model, but adapting lower level feasible space to account for
the responses to each final stage node:

ϕ
β
4 (xI

k) := min
y

{ f3(yk; xI
k) : yk ∈ Y

β
3 (xk)};

Ψ
β
4 (x) :=

{
{yk}k∈KS , yk ∈ Y

β
3 (xk), f3(yk; xI

k, θ) ≤ ϕ
β
4 (xI

k)
}

;
gph Ψ

β
4 := {(x, y) : y ∈ Ψ

β
4 (xk)}.

This makes the stochastic bilevel optimization problem:

BP7(β) : min{F4(x) : (x, y) ∈ gph Ψ
β
4 , x ∈ X4}.

The last model in this chapter is the linear equivalent version of the stochastic
problemBP7(β). The formulation is analogous to the one donewith the deterministic
model, in which we use auxiliary variables to circumvent the max and min operators
in the upper level function, as explained in Lemma 6.5.

Lemma 6.5 Consider the objective function

F5(x) = F5(xI , x E , xa1) =
∑

k∈KS

pk yg(yI
k)
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+
∑

k∈K

pk

∑

t∈Θk ,i∈J

[
Ckti

(
Ekti − xa1

kti

)

− Pkti xa1
kti + Cb

kti

(
xI

kti + x E
kti

)]
, (6.51)

and the set of constraints

I L
kti ≤ xI

kti ≤ I L
kti , k ∈ K, t ∈ Dk, i ∈ J; (6.52a)

I L
kt ≤

∑

i∈J

xI
kti ≤ I L

kt , k ∈ K, t ∈ Dk; (6.52b)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

SL
11i ≤ xI

11i − xI
0i ≤ SL

11i if i ∈ J,

SL
kti ≤ xI

k1i − xI
a(k),N a(k),i

≤ SL
kti if i ∈ J,

SL
kti ≤ xI

k,t−1,i + xs
kti ≤ SL

kti if i ∈ J;
(6.52c)

xa1
kti ≤ Ekti , k ∈ K, t ∈ Dk, i ∈ J; (6.52d)

xa1
kti ≤ x E

kti , k ∈ K, t ∈ Dk, i ∈ J; (6.52e)

xI
kti + x E

kti = xI
k′ti + x E

k′ti , k, k′ ∈ Ks, t ∈ Dk, t ′ ∈ Dk′
, i ∈ J, s ∈ S; (6.52f)

x E
kti , xa1

kti ≥ 0, k ∈ K, t ∈ Dk, i ∈ J. (6.52g)

(a) Let (x∗
1 ; yg∗) = (xI∗, xs∗, x E∗, x P∗; yg∗) = (x∗; yg∗) be a feasible solution to

problem (6.48), where yg∗ is such that y ∈ Ψ
β
4 (x∗) for a given θ .

There exists xa1∗ such that (x∗
2 ; yg∗) = (xI∗, x E∗, xa1∗; yg∗) is also feasible for

problem
min{F5(x∗

2 ; yg) : (6.52a)−(6.52g) hold}, (6.53)

and their objective values are equal.
(b) Let (x∗∗

2 ; yg∗) = (xI∗∗, x E∗∗, xa1∗∗; yg∗∗) be a feasible solution to problem

(6.53), where yg∗∗ is such that y ∈ Ψ
β
4 (x) for a fixed θ . Then there exist values

of xs∗∗ and x P∗∗ such that (x∗∗
1 ; yg∗) = (xI∗∗, xs∗∗, x E∗∗, x P∗∗; yg∗∗) is a

feasible solution to problem (6.48), and their objective values are equal.
(c) If (x∗

1 ; yg∗) is an optimal solution to problem (6.48), then the corresponding
(x∗

2 ; yg∗), is an optimal solution to (6.53).
Conversely, if (x∗∗

2 ; yg∗∗) is an optimal solution to (6.48), then (x∗∗
1 ; yg∗∗) is an

optimal solution to (6.53).
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The proof of Lemma 6.5 ismostly analogous to that of the upper level linearization
of problem (6.24) given in Lemma 6.2 (once the leaf-node considerations are taken
into account) so it is not presented.

Using the newupper levelmodel (6.53), we can define oncemore a feasible set and
lower level equations to formulate the stochastic bilevel linear problem SBLP8(β):

AU
5 x ≤ CU

5 ⇔ (6.52a)−(6.52g) hold; (6.54)

G5(x) := AU
5 x − CU

5 ; (6.55)

X5 := {x : G5(x) ≤ 0}; (6.56)

SBLP8(β) : min{F5(x) : (x, y) ∈ gph Ψ
β
4 (x), x ∈ X5}. (6.57)

6.9 Natural Gas Market Classification Using Pooled
Regression

Econometric studies about natural gas emerged as an important research object since
natural gas may now be sold and traded in a number of stock markets, each one
responding to potentially different behavioral drives. In this section, we present a
method to differentiate sets of time series based on a regression model relating
price, consumption, supply, and other factors. Our objective is to develop a method
to classify different areas, regions or states into groups or classes that share similar
regression parameters.Once obtained, these groupsmaybeused tomake assumptions
about corresponding natural gas prices in further studies. This section is basedmainly
on the recently published paper [178] by Kalashnikov et al.

As was mentioned in the introduction of this chapter, in the early 1990s, several
regulations were passed in the US and the European Union [98, 100, 293] changing
the way natural gas was marketed and traded. Particularly, this liberalization [150]
effectively ended a period in which natural gas was a state-driven industry. The
liberalization has also created the emergent natural gas markets, as well as a strong
demand for models to better tackle the new problems and profit from this new setting
([101] and Midthun [230]).

Owing not only to this liberalization, but also to the new local conditions that
are more open to competition, new small players entered the natural gas industry,
especially at the local scale. Indeed, the US has over 80 interstate, long-distance
pipelines (see Doane and Spulber [93]), serving different regions with various cli-
matic, demographic, economic and political circumstances. Natural gas usage in
Alabama, for example, intuitively is not the same as in Oregon, thus the market
dynamics of the fuel are also different, and this, we presume, should be reflected in
some way in the econometric data of the states.

Not only macro-economic trends, however, are affected by this setting. When
doing cross-regions studies of various aspects of the supply chain, such as the fore-
casting of demand (Gutiérre [135] and Lyness [209]), the balancing of the pipelines
after imbalances have been created by the natural gas shippers (Dempe et al. [65],
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Kalashnikov and Ríos-Mercado [181], Keyaerts et al. [186]), or the dynamics of
interstate-intrastate systems (see Huntington [149]), one has to take into account the
existence of different markets.

The existence of a common relationship between price and consumption of natural
gas across several zones allows for strong claims of uniformity, which are useful
when, for example, we are building scenarios for a stochastic problem. Indeed, if we
manage to group the regions in clusterswith similar price and consumption functions,
we can reduce the number of variables needed in a scenario tree formulation (Midthun
[230] and Tomasgard et al. [300]).

As such, we specify a regression function that relates many of the most relevant
econometric figures for each of the 48 contiguous states of the American Union,
modeling price as a function of explicative variables such as natural gas consumption,
supply and storage levels, as well as population (number of costumers), oil prices,
temperatures, and production. The regression coefficients are then used to divide
the set of states into several subsets, or groups, obtaining a partition in which all the
states in a group share the same regression parameters, and thus can be classified as an
(implicit)market. Thepartition ismade consideringboth statistical andnon-statistical
characteristics of the obtained regression coefficients. The resulting partitions are
next comparedwith others in their similitude and statistical significance,whichwould
validate the goodness of the combination of the dendrogram and GRASP grouping
methods.

This section is organized as follows: themotivation and literature reviewonnatural
gas econometric regression is given in Sect. 6.9.1. Section6.9.2 describes the way
the regression function is derived, while Sect. 6.9.3 details the method for using the
said function to perform the classification. Section6.9.4 presents and discusses the
results of the study.

6.9.1 Natural Gas Price-Consumption Model

This work was motivated by our previous research in the natural gas supply chain,
specifically developing an optimization model that addresses issues in interstate
pipelines (see all the previous sections of this chapter). The data used in this model,
however, came from different regions, and therefore the time series involved did not
necessarily behave in the same way.

As an example, suppose we are trying to model a certain problem that involves
forecasting the residential consumption and price of natural gas in the states of
Washington and Oregon, i.e., four time series. If the robustness of the model is also a
concern, then we should additionally consider different forecasting scenarios. Even
with only two possible forecasting scenarios for each series (high/low consumption
or prices) this translates into 24 possible behaviors of the econometric parameters.
If consumption is expressed as a function of price, however, then the scenario tree
has only 22 branches. Furthermore, if the regression function for both states is the
same, then the number of scenarios can be reduced to just two. As the number of
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states being modeled scales up, i.e., there are more than two parameters of interest,
common assumptions like those mentioned above help reduce greatly the amount of
scenarios in a stochastic model, optimization or otherwise.

As we studied particular sets of data, it was noted that historical data of con-
sumption and price showed conspicuous properties that could be used for the sake
of our aims. Even though these data collections were taken from different states, all
pairs of time series showed elastic consumption/demand (Nelder [249] and [102]),
exponentially growing price averages (MacAvoy [211] and Nelder [249]) and both
series in every pair seemed to be highly correlated to each other.

Indeed, the possibility of characterizing one set of series as a (regression) function
of the other was interesting, as it would reduce the amount of data we needed to
consider when modeling optimization problems. It is, of course, a common practice
in economic and managerial sciences to do that since, for example, demand data
is simpler to work with than price data (Talluri and Van Ryzin [298]). The latter is
mainly because the demand is usually easier to predict, and its behavior is less chaotic
than that of prices. Such historical relationship between price and consumption is a
common topic of study in time series economic analysis (Keat and Young [185]),
which is mostly performed with the inclusion of other explicative variables, such as
the price of substitutes (electricity, coal), weather conditions, etc.

This is the case of several models where the calculation of elasticities is the
primary goal of the study by Gowdy [131]. Log-linear models (Beierlein [16], Lin
et al. [203], Krichene [193] and Yoo et al. [326]) are generally favored because of
the ease they provide when computing elasticity figures. However, linear models
also have applications in the natural gas industry, like the Short-Term Integrated
Forecasting system (STIFS) used by the United States Energy Information Agency
in order to estimate natural gas demand as a function of several types of important
variables related to the energy industry [99].

6.9.1.1 Former and Current Approaches

As explained in Kalashnikov’s previous work [174], a carefully designed regression
function can help to achieve the strong assumptions mentioned above. Neverthe-
less, the study of such relationships and the possibility of forming state clusters
based merely upon time series data analysis turned out to be interesting by itself,
and we developed two different approaches to partition the collection of states. As
we observed, neighboring states showed a large amount of diversity, yet different
methods of grouping seemed to place certain states consistently together.

Two major areas of opportunity discovered were the design of the regression
function, and the trade-off that each partition algorithm made use of.

Kalashnikov’s previous paper [174] aimed at a very definite objective regarding
the qualities of the regression model: it had to correlate consumption and price of
residential natural gas series, using the former as the explicative variable because of
the ease in its forecasting. The expression thus obtained served its purpose well, as
demonstrated in its application to the optimization models by Kalashnikov et al. in
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[169]; nevertheless, a more inclusive approach would involve series that comprise
more information. Following the examples found in the literature and our own expe-
rience, we revealed that including more explicative series provided very good results
in terms of regression fit. This has led to the model presented in the next subsection.

Coming back to the partitioning method, the two approaches presented before
were:

• the Dendrogram Grouping Method, which “cuts” a binary tree (whose nodes rep-
resent regression parameters) based on how close to each other the parameters are
with respect to a given metric function and a weight scheme for the entries. This
method proved replicative and fast, but it does not provide statistical significance
to the grouped states’ parameters (i.e., one state might find that temperature is a
significant regressor, whereas some other state in the same group may not).

• Another one is a greedy heuristic that starts with a number of states called “group
leaders”, and iteratively selects for each remaining state the group that suits the
state best, based on its regression coefficient R2. Because of the large amount
of regressions performed, this method was reported to be slower and subject to
accidental fluctuations, but the final results always guaranteed that all states in one
group shared the same significance in their parameters.

In the following subsections, we explain how we have improved over our latest
approach, adding explicative power and robustness to the partitioning method and,
ultimately, creating a better technique to identify similar regions based on their
econometric data.

6.9.2 Regression Analysis

6.9.2.1 Individual Multiple Linear Regression (IMLR)

Let n be the total number of states, m the number of observations per time series
(months, in this case), I = {1, 2, . . . , n} be the set of the 48 contiguous states of
the American Union, t ∈ Θ = {1, 2, . . . , m} the (discrete) time parameter, {P ′

i,t }
the differenced residential natural gas price in state i ∈ I at time t ∈ Θ , {T ′

i,t } the
differenced temperature, in Kelvin, shifted so that the minimum figure is e, {O ′

t } the
differenced average spot price of oil in the US at time t ∈ Θ , {N ′

i,t } the differenced
number of residential consumers of natural gas in state i ∈ I at time t ∈ Θ , and
{C ′

i,t } the differenced consumption of natural gas in state i at time t .
Notice that all these series are differenced, ormore precisely, lag-(−1)-differenced

from the original values. This is because the said original values all tested positive
for unit roots in the advanced Dickey-Fuller test. In contrast to the original series,
the differenced series prove to be stationary, hence we make use of the latter.

This is the linear model we devised to relate the above-described series:

Ĉ ′
i,t = α0,i + α1,i P ′

i,t + α2,i C ′
i,t−12 + α3,i T ′

i,t + α4,i O ′
t + α5,i N ′

i,t ; t ∈ Θ; i ∈ I.

(6.58)
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We choose aRobust RegressionAnalysis usingHuberweights to fit the series over
traditional least-squares method due to non-normality of the residuals experienced
with the latter. Furthermore, due to the steps described in the next sections, het-
eroskedasticity would likely appear in the residuals once the pooling regression is
carried on.

While most of the series were reasonably fit by (6.58), a couple of them showed
very erratic behavior in either their natural gas price or consumption series. This is
expected insofar economic forecasting is commonly subject to the large instability
at time t . As the driving force behind short term fluctuations in natural gas pricing is
consumer demand rather than production supply, price was shown to be a significant
factor when describing market consumption.

The selection of the descriptive variables was made considering other consump-
tion models in the literature, the available data, and the significance found in the
preliminary regression analysis. In particular, electricity prices, the natural gas sup-
ply and production, as well as a time index, were tested but found not to be significant
in most of the states. This was especially interesting in the case of electricity prices,
which certain sources cite as usual descriptors for the natural gas demand, but which
were found to be 0.05 significant in only 12 of the 48 cases, thus dropped from
the model.

The consumption and price of natural gas are endogenous variables as both are
correlated to system shocks, such as unstable governments or weather-related events.
As an alternative to the use of least squares regression to fit themodel given in (6.58), a
two-stage least squares approach could be employedwith such instrumental variables
as the number of gas producing wells, reserve estimates, and underground storage, to
name only a few.However, this approach is not considered here, because the response
(reaction) time of consumers’ consumption habits to the shocks is much longer than
that to the spot prices set by the market every day.

6.9.2.2 Pooled Multiple Linear Regression (PMLR)

Now we address the issue of how one can use the same regression formula for more
than one state, which would create several classes of states where demand responds
to changes in the descriptors in a similar mode.

Assume that we have split n collections of state time series into several classes,
with the members of each class sharing a common set of regression parameters. Then
the pooled data from the groups would be regressed at the same time, creating pooled
regressions.

Let I = {I1, I2, . . . , IK } be a partition of I , and consider the model:

Ĉ ′
i,t = β0,i + β1,k P ′

i,t + β2,kC ′
i,t−12 + β3,k T ′

i,t

+ β4,k O ′
t + β5,k N ′

i,t ; t ∈ T, ∀i ∈ Ik, k = 1, 2, . . . , K . (6.59)

Note that this model—called the Pooled Multiple Linear Regression (PMLR)
model—has K sets of parameters for each regressor variable, except for the intercepts
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ai
0, which we allow to be different for each state. In comparison, model (6.58) has n
sets of parameters.

How should one define the partition I of the set of states? A good partition is
expected to deliver groups of more or less congruent sizes, while maintaining a high
individualR2 value for each state. A good partitionmethod should also be replicative
(i.e., the same partition is obtained for the same group of states), fast enough, and
support the statistical significance.

6.9.3 Dendrogram-GRASP Grouping Method (DGGM)

In this subsection, a combinationof bothgroupingmethodsmentioned inKalashnikov
et al. [176] into a GRASP heuristic is proposed. The resulting technique inherits the
replicative property of the dendrogram method, while retaining the statistical signif-
icance of the heuristic algorithm.

6.9.3.1 Dendrograms

Dendrograms are binary trees in which two observation vectors a and b form the
(sub-)branches of a higher branch c, so that

(i) these two observation vectors are “closer” to each other than to any other
observation d, and

(ii) c is not an observation per se, but a new, artificial vector formed by some
linear combination of a and b.

The term “closer” is interpreted with respect to some metric (e.g., the Euclidean
metric), while the artificial observations are produced by the weighted combination
method. Once the dendrogram is formed, it is cut down from the root thus generating
(sub-)dendrograms with the branches resulting from the cut. The height of the cut
is determined according to one of several criteria (the number of sub-dendrograms
produced, the maximum allowed membership for the sub-dendrogram, etc). The
leaves pertaining to a given sub-dendrogram will pool their regression data together
and form one group for the PMLR.

Previous experiments by Kalashnikov et al. [176] have shown that what is called
the “average Euclidean” metric [151] delivers satisfactorily high R

2 levels with a
better homogeneity in the resulting groups than other linkage function options.

6.9.3.2 GRASP Heuristics

GRASP stands for Greedy Randomized Adaptive Search Process; it is a meta-
heuristic, that is, a general method designed to provide good—but not necessarily
optimal—results in problems otherwise too complicated to find an optimal solution,
especially combinatorial problems, see Festa and Resende [109].
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Summarily, our GRASP approach will start with a seed formed by several one-
state-groups; then, for each state, it will identify those groups that deliver higher R2

values once the data for the current state is pooled with that of the group. This is
called the Restricted List of Candidates, or RLC. A group Ik from the RLC is chosen
at random, and the current state is added to Ik , pooling its data with those already in
the group. A number of swaps and movements are performed once the states are all
in place, in order to try to improve the values of the resulting statistics R2.

It is important to note that setting the values for the GRASP routine is rather
subjective, since there is no definite objective to be achieved. Indeed, one cannot
determine what number of groups is optimal, or which way is the best to define the
greedy function. For example, one could prefer to increase the grouped R

2 value in
each group rather than the average of the individual R2s in that group, or might do
vice-versa. This is exemplified by the function

Fw(Ik) = ωR2
Ik

+ 1 − ω

|Ik |
∑

i∈Ik

R2
i ,

where

R2
Ik

= 1 −
∑

t∈T,i∈Ik
(yit − ŷi t )

2

∑
t∈T,i∈Ik

(yit − ȳIk )
, R2

i = 1 −
∑

t∈T(yit − ŷi t )
2

∑
t∈T(yit − ȳi )

.

Here, yit = lnC ′
i t , and ȳι is understood as the average of all of the observations

belonging to ι if the latter is a state (e.g., ι = i), or as the average of the observations
of the states in ι, if the latter is a set of states (e.g., ι = Ik).

For the local search, we handle the improvement function Gτ (Ik, I�, Ii ), which is
used when deciding if it is convenient to move state i from group k to group �. It is
parameterized by the improvement weight τ .

Gτ (Ik, Il , Ii ) = (1 − τ)
R2

Ik
+ R2

I�

2
+ τ R2

i .

6.9.3.3 Dendrogram-GRASP Algorithm

The following algorithm is used to classify the set of 48 contiguous states of the
United States into groups that share a common regression function:

1. Initialize the values for each of the time series in each of the 48 states. Set a seed
size sSeed , a maximum number of groups sMax , a RLC size sRLC , an individ-
ual/grouped R2 weight ω ∈ [0, 1], an individual/grouped threshold ϕ ∈ (0, 1),
an improvement weight τ ∈ (0, 1), a relative improvement threshold ψ ∈ [0, 1],
and a maximum number of local search steps, sls.
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Seed Selection
2. Perform an IMLR on each of the 48 sets of time series, obtaining α j i , j =

0, . . . , 6, i ∈ I.
3. Form a dendrogram of 48 leaves with the vectors α, using the average Euclidean

mean as the linkage function, and cut it so that there are exactly sSeed sub-trees.
4. Select the state with the highest R2

i from each of the obtained groups and call it
the kth group’s leader. Define the one-state groups obtained as the partition Ik .
All the non-selected (spare) states form the set Active.

Greedy Process
5. For each state x in the set Active:

a. Pool the data of x with the data of each of the formed groups and perform a
pooled regression. Select a number of sRLC groups with the highest value of
the greedy function Fw and form the RLC.

b. Choose randomly one of the groups from the RLC, for example, Ia .
• If none of the candidate groups in the RLC delivers Fw(Ik) > ϕ, and
we haven’t yet reached the maximum number of groups sMax , create a
new group Ix = {x} containing only x , remove x from the active set, and
update all the parameters.

• Otherwise, assign x to Ia , remove x from the active set, and update all the
parameters.

6. All of the states are now partitioned into the groups, and we can begin the local
search.

Local Search
7. For l = i to l = sls, do

a. Randomly select one of the formed groups, Ia , and one state in that group, x .
Select another group, Ib. Compute g1 = Gτ (Ia, Ib, x)

b. Remove x’s data from Ia and pool the same data of x with Ib. Compute
g2 = Gτ (Ia, Ib, x).

c. If g1 ≥ (1+ ψ)g2, remove x from Ib and return it to Ia . Otherwise, continue.

8. Report the obtained groups as the desired partition.
9. End.

6.9.3.4 Partition Similarity

To determine the similitude of two partitions, we will use an expression that, roughly
speaking, counts the number of coincidences found in two partitions and divides it
by the number of total possible coincidences, given the sizes of the groups in each
partition. While there are many disputable ways to measure the similitude between
partitions with a different number of elements, this method was chosen because of
its normality. Indeed, it will always return 1 when both partitions are identical, and
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will always return 0 when there are no coincidences between two partitions, that is,
when no two states share a group in both partitions, and no state is single-grouped
in both partitions.

Let I = {I1, I2, . . . , IK }, J = {J1, J2, . . . , JL} be two arbitrary partitions of the
set of states, with Ii = {Ii

1, Ii
2, . . . , Ii

ki }, i = 1, . . . , K , and J j = {J j
1 , J j

2 , . . . , J j
l j },

j = 1, . . . , L .
The function aIJ defined by

aIJ(Ii ) =
{
1 if Ii = {m} = J for any J ∈ J,

0 otherwise,
(6.60)

for Ii ∈ I , assumes the value 1 if group Ii contains a single state in partition I and
this state also forms a group-singleton in partition J .

For every pair of states, we will asses if they share a group in a given partition
using the following function bJ :

bJ(m, n) =
{
1 if m, n ∈ J j , for any j;
0 otherwise,

(6.61)

for m, n ∈ I.
In case the function aIJ has the value of 1, we say that we have a (one-state)

coincidence, which means that the state has been found incompatible with other
states twice, no matter which method formed partitions I, J .

Similarly, if the function bJ returns 1 for two states in a group from the partition
I , we say that we have a (two-state) coincidence, that is in both partitions, the two
states are members of the same group.

To measure the number of coincidences between two partitions, we use the func-
tion:

Cq(Ii , IJ) = aIJ(Ii )+(1 − aIJ(Ii ))

⎛

⎝
∑

m∈Ii

∑

n∈Ii , n �=m

qbJ(m, n) + (1 − q)

2

⎞

⎠ , (6.62)

for Ii ∈ I, q = {0, 1}.
If the parameter q equals 1, then the function Cq counts the number of either type

of coincidences that couples of states reveal in the group Ii in comparison to the
groups they belong to in the partition J . Conversely, if q = 0, then we simply count
the total number of possible coincidences for the states in the group Ii ∈ I . Note that
the function Cq is not necessarily symmetric with respect to the pairs of partitions:
Cq(Ii , IJ) need not have the same value as Cq(Ii , JI).

The similitude function Sim used is defined as follows:

Sim(I, J) =
∑

Ii ∈I C1(Ii , IJ) + ∑
J j ∈J C1(J j , JI)

∑
Ii ∈I C0(Ii , IJ) + ∑

J j ∈J C0(J j , JI)
. (6.63)
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Notice that if there is at least one group in either partition containing more than
one element, then C0 for that group is at least 1, whereas if there does not exists
such group in either partition, then aIJ(a) = 1 and consequently C0(a, IJ) = 1 for
any a ∈ I ∩ J . Therefore, the denominator is never 0, which makes this function
well-defined.

Lemma 6.6 Let I and J be two partitions of the set I = {1, 2, . . . , n}, and let
function Sim be defined by (6.63). The following statements are true:

1. Sim(I, J) = Sim(J, I).
2. Sim(I, J) = 1 if and only if I = J.
3. Sim(I, J) = 0 if and only if there are neither one-state nor two-state coincidences

between I and J.
4. 0 ≤ Sim(I, J) ≤ 1.

Proof 1. This is easy to see from the structure of the function.

2. Let I = J . If Ii = {m} = Jk for some i and k, then C1(Ii , IJ) = C0(Ii , IJ).
Otherwise, if the order of Ii is greater than one, then the second term in (6.62)
(the definition of Cq ) assumes the same value no matter whether q = 1 or q = 0.
Therefore, the numerator and denominator in Sim are equal.
Conversely, if there exists one Ii such that Ii �= J ∀J ∈ J , thenC1(Ii , IJ) is strictly
less than C0(Ii , IJ). Since C1(Ji , IJ) ≤ C0(Ji , IJ), it follows that the numerator
in (6.63) (defining Sim) is strictly smaller than the denominator, and therefore
Sim(I, J) < 1.

3. If there is at least one one-state coincidence, or a two-state coincidence, then the
numerator in Sim is larger than 0, and therefore Sim(I, J) > 0.
Conversely, since Cq is nonnegative for every value of q, Sim(I, J) = 0 means
that both terms in the numerator are zero, which is only possible if aIJ(Ii ) =
aIJ(J j ) = 0 for every member of I and J , and bJ(m, n) = 0 for every m, n ∈ I,
whichmeans that there is no coincidence of any type between these two partitions.

4. The first inequality follows from the fact that both the numerator and denomi-
nator in (6.63) are positive. The second inequality comes from the same argu-
ment as in item 2, i.e., the numerator is either equal or strictly less than
the denominator. �

6.9.4 Experimental Results

This subsection presents the results of the numerical experimentation performed
on a number of times series pertaining to each of the 48 data sets. The values for
the historical natural gas prices, consumption, number of consumers, as well as
the oil spot prices were taken from the US Energy Information Agency, whereas
the temperature figures for each state were obtained from the US Department of
Commerce, National Oceanographic and Atmospheric Agency [279].
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6.9.4.1 IMLR Results

The first step was to perform the IMLR for the 48 sets of time series; this pro-
vided the regression parameters for the dendrogram formation. The five time series
corresponding to every state had 240 monthly observations each.

Individual regression models showed regression R2 coefficients with the average
of 0.77, and the minimum of 0.61. The normality and heteroskedasticity were not
tested due to the use of Robust Regression with Huber weights. Randomness of the
residuals was tested, and high p-values were found for many states.

6.9.4.2 Dendrogram-GRASP Grouping Results

There are two main aspects we wanted to consider when evaluating the effectiveness
of the Dendrogram-GRASP approach: how replicative it is, and how good a partition
is produced. The first issue is evaluated by examining how good and how similar
the partitions are that come from the same seed (as opposed to those that come
from randomly generated seeds). The goodness of one partition is measured with the
average group [state] coefficient of determination,R2

Ik
[R2

i ], calculated across all the
groups [states] of the partitions.

There are, however, a number of different design parameters that should be
included in the experimentation. Each experimental observation consists of the gen-
eration of 10 partitions, using the following parameters:

• A seed choice: the dendrogram seed (DDR), a random seed common to all 20
partitions (FIX), and a random seed for each partition (RND).

• The individual versus grouped R
2 weight, ω, which determines what is more

important when adding a new state to an existing group in the GRASP routine.
Values considered in the experimentation are ω = 0 (only the single states’ R2s
are considered), 0.5, and 1 (only the groups’ R2s are important).

• The new group threshold, ϕ: the closer to one it is, the more likely new single-
state groups will be created in the GRASP routine. The tested values are ϕ ∈
{0.90, 0.95}.

• The length of the restricted candidate list, sRCL . The values considered are sRLC ∈
{1, 5}.

• The number of local search moves, sls ∈ {0, 100}.
• The local search individual/grouped R

2 weight, τ . Considered values are τ ∈
{0, 0.66, 1}.
The starting number of groups was fixed at 10, and the maximum number of

groups allowed was set at 15. Each combination of levels was replicated 20 times.
This resulted in 5760 experimental observations.

In each observation, we calculated the average similitude between the various
partitions involved, as well as their similitude with a randomly created partition. The
compared similitudes were:



6.9 Natural Gas Market Classification Using Pooled Regression 239

• The average similitude of the dendrogram partition to each of the 20 GRASP
partitions (DG).

• The average similitude of a random partition and each of the 20 GRASP partitions
(GR).

• The average similitude of the 20 GRASP partitions among themselves (GG).

The first part of the analysis consisted in testing all the experimental observations.
After that, only the most convenient levels were kept.

Tables6.4 and 6.5 present a summary of the results of the experimental runs. The
first three data columns show the average similarities for each of the three compar-
isons of interest, whereas the last two columns show the average of the individual
and grouped coefficients of determination.

A quick look at this table suggests that the similitude figures are characteristi-
cally low: the average similarity of an arbitrary partition to a randomly formed one,
calculated using all the observations, is 0.0947. This will be called the partitions’
randomness. If columns 3 and (particularly) 5 approach the average randomness for
this experiment, the partition method is not very efficient. This especially concerns
the cases sls = 5, ω = 0, and τ = 1, whose similarity measures are fairly low.
Luckily enough, in all these cases the average GG similarities were found to be

Table 6.4 Experimental results I

Factor Level Av. similitude Av. R2 values

DG GR GG Av. R2
Ii

Av. R2
Ik

ϕ 0.90 0.145 0.079 0.178 0.503 0.535

0.95 0.149 0.079 0.177 0.499 0.537

Seed DDR 0.182 0.083 0.194 0.513 0.568

FIX 0.130 0.077 0.154 0.489 0.521

RND 0.128 0.077 0.184 0.501 0.520

ω 0 0.146 0.082 0.136 0.427 0.564

0.5 0.147 0.079 0.183 0.534 0.535

1 0.148 0.077 0.213 0.542 0.511

τ 0 0.160 0.080 0.232 0.699 0.502

0.66 0.141 0.079 0.150 0.455 0.554

1 0.140 0.079 0.149 0.349 0.553

Table 6.5 Experimental results II

Factor Level Av. similitude Av. R2 values

DG GR GG Max. R2
Ii

Max. R2
Ik

sRLC 1 0.160 0.082 0.247 0.879 0.862

5 0.134 0.076 0.107 0.879 0.871

sls 0 0.167 0.084 0.236 0.876 0.857

100 0.126 0.075 0.119 0.882 0.876
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statistically different (higher) than their respective GR similarities by making use of
the Wilcoxon signed-rank (WSR) α = 0.95 test.

The averageR2 values in columns 6 and 7 do not deviate much from the averages
across all the observations, 0.602 and 0.624, respectively, with the exception of the
grouped individual parameter R2

Ii
for τ = 1. It is clear that certain similarity values

for some levels are consistently lower than others. There is, for example, a very large
difference between the average DG similitude obtained using a DDR seed than using
a RND or FIX seed, and so on. Based on this, we decided to discard some of the
levels whose averages are not only considerably lower, but also the observations for
each level are determined to be different by a WSR test.

Now let us look at each of the level values we should consider to drop. The first
level, theGRASPnewgroup thresholdϕ, shows a very similarGGfigure, and equally
similar R2 values. We decide to keep the factor levels intact, in case these figures
change once other levels are removed.

Seeds are more difficult to assess. The FIX seed shows lower values than the
DDG one, but still higher than the RND. Weight τ shows much better numbers in all
but the grouped R

2 entry. Because of this, we pick it as the only label for the later
study. On the contrary, ω is better at value 1, except again in the groupedR2 column.
This result for ω is very counter-intuitive! However, the two values serve a similar
purpose at different parts of the process, so this behavior might indeed be justified.

The factors sRLC and sls were introduced to add variation in the GRASP routine,
and their results appear separated in Table6.5. This is because, while their simil-
itude values work in the same way as the other factors, the R

2 measurements per
observation are not the average across all 10 partitions in the observation, but rather
the maximum obtained. In a common GRASP routine, the process will be repeated
several times and the best solution will be adopted. For our case, this means that
we should choose the best of the 20 partitions in each observation, and this decision
becomes the result for that observation. Arguably, both the individual and grouped
average maximum coefficients of determination seem to show little difference. In
particular, the differences are deemed not large enough to justify the trade-off with
similarity in all cases. While this was expected from the extended RLC size, the poor
results obtained by the local search suggest that a better local search procedure could
be used.

Based on similarity alone, we decided to eliminate the poorest levels, and kept
only a single-group state list and a zero-swaps local search for the second part of
the analysis. After deciding to drop several levels, we will rewrite the results table
including only the accepted levels, to see how the figures change once the poorest
results are winnowed.

The much smaller Table6.6 is the consequence of fixing ω = 1, τ = 0, sRLC = 1,
and sls = 0, and eliminating the RND seed choice, which results in 100 observations.
Now the similitudes look much better: we have the sample average of 0.438, and
the maximum of 0.477, which means that, for the parameters chosen, the similitudes
obtained are remarkably higher than the average randomness.

For the first factor, ϕ, the similitudes are of little difference, same as the deter-
mination coefficients in all accounts. However, for the seed levels, the DDR seed



6.9 Natural Gas Market Classification Using Pooled Regression 241

Table 6.6 Experimental results III

Factor Level Av. similitude Av. R2 values

DG GR GG Av. R2
i Av. R2

Ik

ϕ 0.90 0.171 0.077 0.432 0.760 0.340

0.95 0.178 0.085 0.432 0.759 0.349

Seed DDR 0.238 0.090 0.454 0.757 0.432

FIX 0.143 0.074 0.365 0.760 0.299

RND 0.143 0.079 0.477 0.761 0.302

clearly favors similitude between the seed and the resulting partition. Similitude
among resulting partitions is also good at the RND partition, which could indicate
the particular FIX seed was initially a bad choice when compared to either an average
partition seed, or one selected in a methodical way.

The coefficients of determination R
2 present a rather interesting development.

The individual coefficients R2
i are decent enough when compared to the ones from

the dropped levels, but there is a dramatic drop in the group figures R
2
Ik
, which

decreased from an average of around 0.53 to as low as 0.299. This happens because,
while focusing on similitude, we chose in favor of sls = 0, which yields the mean
R
2
Ik
of only 0.366, as opposed to the 0.706 value obtained after fixing sls = 100.

In Table6.5, however, we see the greater max R
2
Ik
because it was relevant to that

table. If we were to remake Table6.6 using the value of sls = 100 for this level,
similitudes would fall around 10%, but the average group determination coefficients
R
2
Ik
would increase to roughly 0.43, which is much better than that with sls = 0.

Maximum values for the different R2s, correspondent to those in Table6.6, remain
mostly unchanged.

Summing up, in this section, we propose and justify a heuristic method to group
several zones based on a regression function that estimates several factors related to
the natural gas demand. The groups thus obtained share key information regarding
the behavior of natural gas-related historic econometric data.

We start by developing a linear regressionmodel that correlates natural gas historic
residential consumption and several explicative variables, such as the residential
price, number of consumers, temperature, and so on. This model, inspired by several
examples in the literature, fits well the time series employed and has good predictive
power, but it is by no means the only one that can be used, nor necessarily the best.

The results of each of the 48 regressions performed are then used to create
dendrogram-based partitions, which are in turn used as the starting point in a GRASP
routine. The latter, while tending to form rather dissimilar partitions (compared to
the dendrogram grouping), has the advantage of adding statistical significance to all
the regressions in all the groups formed.

We tested several parameters in an experimental design consisting of more than
4,300 observations, six factors, and two or three levels per factor. Using ad-hoc and
non-parametric selections, we tried to obtain a good combination of parameters,
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namely, one that delivers high similitude between partitions obtained from the same
seed, and a satisfactory goodness of the pooled regressions.

Similitude is measured by a standardized function which equals 0 if there are no
common groups between two partitions of a fixed set, and 1 if both partitions are
identical. We were able to obtain experimental conditions with similitudes (mostly)
above 0.43, which are deemed good considering that the average randomness of a
partition in the study is around 0.09.

It is encouraging that, using the regression function herein proposed, the GRASP
routine worked well by itself and also when combined with the dendrogram par-
titioning method. Unfortunately, the inclusion of randomness did not provide for
good results, as it offered no increase in goodness of the partitions but a consider-
able decrease in similitude when a long RLC was used. The proposed local search
approach was found to have a negative impact on the similitude values, though not
overly so. However, at the same time it did affect heavily the values of the grouped
coefficients of determination when the maximum values were considered in the
selection but the averaged values were looked into in the end results. The “good-
ness” of the regressions, as discussed, must then be judged with a more nuanced
approach.

The entire work frame summarized here is intended to provide a way to identify
individuals (states, in this case) with common econometric behavior among them-
selves by means of statistically significant information. Such results used to help
us in the past in the context of optimization theory (by greatly decreasing the num-
ber of variables in stochastic problems), and we believe this technique has other
applications in economic analysis.



Chapter 7
Applications to Other Energy Systems

7.1 Consistent Conjectural Variations Equilibrium
in a Mixed Oligopoly in Electricity Markets

Results described in this section are based mainly upon paper of Kalashnikov et al.
[165], which also included applications to an oligopolistic market of electricity. Even
if the main models and tools developed in the paper are not directly related to Bilevel
Programming, they can be used to construct more complicated schemes involving
the Stackelberg equilibrium and other bilevel-type concepts.

Inmore detail, this section dealswith amodel ofmixed oligopolywith conjectured
variations equilibrium (CVE). The agents’ conjectures concern the price variations
dependingupon their productionoutput’s increase or decrease.Weestablish existence
and uniqueness results for the conjectured variations equilibrium (called an exterior
equilibrium) for any set of feasible conjectures. In order to introduce the notion of an
interior equilibrium, we develop a consistency criterion for the conjectures (referred
to as influence coefficients) and prove the existence theorem for the interior equilib-
rium (understood as a CVE with consistent conjectures). To prepare the base for the
extension of our results to the case of non-differentiable demand functions, we also
investigate the behavior of the consistent conjectures depending upon a parameter
that represents the demand function’s derivative with respect to the market price.

7.1.1 Introduction

In recent years, investigation of behavioral patterns of agents of mixed markets,
in which state-owned (public, domestic, etc.) welfare-maximizing firms compete
against profit-maximizing private (foreign) firms, has become more and more pop-
ular. For pioneering works on mixed oligopolies (see Merril and Schneider [225],
Ruffin [276], Harris and Wiens [139], and Bös [24, 25]). Excellent surveys can be
found in Vickers and Yarrow [308], De Frajas and Delbono [118], Nett [253].
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The interest in mixed oligopolies is high because of their importance to the
economies of Europe (Germany, England and others), Canada and Japan (see
Matsushima and Matsumura [224], for an analysis of “herd behavior” by private
firms in many branches of the economy in Japan). There are examples of mixed
oligopolies in the United States such as the packaging and overnight-delivery indus-
tries. Mixed oligopolies are also common in the East European and former Soviet
Union transitional economies, in which competition among public and private firms
existed or still exists in many industries such as banking, house loan, life insurance,
airline, telecommunication, natural gas, electric power, automobile, steel, educa-
tion, hospital, health care, broadcasting, railways and overnight-delivery. Moreover,
according to Bös [25], Fershtman [107], Matshumura and Kanda [222], in many
cases the government has held, or even still holds, a non-negligible proportion of
shares in privatized firms, and there are firms with a mixture of private and public
ownership. Since privatized firms with mixed ownership must respect the interests
of private shareholders, they cannot be pure domestic social surplus maximizers. At
the same time they must respect the interests of the government, so they cannot be
pure profit-maximizers. By controlling the shares that it holds, the government may
be able to indirectly control the activities of the privatized firm.

In the majority of the above-mentioned papers, the mixed oligopoly is studied in
the framework of classical Cournot,Hotelling or Stackelbergmodels (cf.Matsushima
and Matsumura [224], Matsumura [223], Cornes and Sepahvand [44]). It is well
known (cf. for instance, Figuières et al. [110]) that the Nash equilibrium (including
Cournot equilibrium as a particular case) is the outcome consistent with rational
agents who take rival decisions as given when they optimize. Alternately, in the
Stackelberg equilibrium there are two agents who take their decisions sequentially;
the first agent to move is referred to as the leader, whereas the second mover is
called the follower. The Stackelberg equilibrium is an outcome consistent with the
follower’s rational behavior given that he has observed the leader’s move, and the
leader’s rational behavior who can infer what will be the follower’s rational reaction
to his current decision.

Conjectural variations equilibria (CVE) were introduced by Bowleyl [26] and
Frisch [119, 120], as another possible solution concept in static games. According
to this concept, agents behave as follows: each agent chooses his/her most favorable
action taking into account that every rival’s strategy is a conjectured function of her
own strategy.

In theworks byBulavsky andKalashnikov [37, 38, 152], a new scale of conjectural
variations equilibria (CVE) was introduced and investigated, in which the conjec-
tural variations (represented via the influence coefficients of each agent) affected the
structure of the Nash equilibrium. In other words, we considered not only a classical
Cournot competition but also a Cournot-type model with influence coefficient values
different from 1 (as the influence coefficient 1 corresponds to the classical Cournot
model). Various equilibrium existence and uniqueness results were obtained in the
above-cited works.

For instance, in Isac et al. [152], the classical oligopoly model was extended to
the conjectural oligopoly as follows. Instead of the classical Cournot assumptions,
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all producers i = 1, 2, . . . , n, used the conjectural variations described below:

Gi (η) = G + (η − qi ) wi (G, qi ) .

Here, G is the current total quantity of the product cleared in the market, qi and η are,
respectively, the present and the expected supplies by the i th agent, whereas Gi (η) is
the total clearedmarket volume conjectured by the i th agent as a response to changing
his/her own supply from qi to η. The conjecture function wi was referred to as the
i th agent’s influence quotient (coefficient). Notice that the classical Cournot model
assumes wi ≡ 1 for all i . Under general enough assumptions concerning properties
of the influence coefficients wi = wi (G, qi ), cost functions fi = fi (qi ), and the
inverse demand (price) function p = p(G), new existence and uniqueness results
for the conjectural variations equilibrium (CVE) were obtained. This approach was
further developed in Kalashnikov et al. [168, 175] with application to the mixed
oligopoly model. Here again, all agents (both public and private companies) make
their decisions based upon the model’s data (inverse demand and cost functions) and
their influence coefficients (conjectures) wi = wi (G, qi ).

As is mentioned in Figuières et al. [110], Giocoli [130], the concept of conjectural
variations has been the subject of numerous theoretical controversies (see e.g. Lindhi
[204]). Nevertheless, economists have made extensive use of one form or the other
of the CVE to predict the outcome of non-cooperative behavior in several fields
of economics. The literature on conjectural variations has focused mainly on two-
player games (cf. Figuières et al. [110]). The central concept of the theory is the notion
of conjecture. The variational conjecture r j usually describes player j’s reaction,
as anticipated by player i , to an infinitesimal variation of player i’s strategy. This
mechanism leads to the notion of a conjectured reaction function of the opponent.
Given these conjectured reactions on part of the rivals, each agent optimizes his/her
perceived payoff. This leads to the concept of a conjectural best response function.
An equilibrium is obtained when no player has an interest in deviating from his/her
strategy, i.e., his/her conjectural best response to the strategies of the other player.

The consistency (or, sometimes, “rationality”) of the equilibrium is defined as the
coincidence between the conjectural best response of each agent and the conjectured
reaction function of the same. A conceptual difficulty arises when one considers
consistency in the case of many agents (see, Figuières et al. [110]). The strongest
notion of consistency requires that the conjectural best response of player i coincides
with what the other players have conjectured about his/her reaction, that is, with one
of their conjectured reaction functions. However, when n agents are present, there are
n best response functions and n(n −1) conjectures. Therefore, if n > 2, equilibrium
is consistent only if all players have the same conjectures about player i’s reaction.
This is the approach followed explicitly by Başar and Olsder [7]; this assumption can
be also found in Fershtman andKamien [108] dealing with conjectures in differential
games. In the literature on conjectural variations in static n-player games, the problem
is usually implicitly addressed by assuming a complete identity of all the agents
(cf. Laitner [198], Bresnahan [28] and references therein, Novshek [256]). Using
a bit different approach, Perry [263] for oligopoly, Cornes and Sandler [43] and
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Sugden [295] for public goods, consider a class of games where for each agent, the
contributions of all other players to her payoff are aggregated. It is as if each agent
plays against a unique (virtual) player representing the remaining agents.

To cope with this conceptual difficulty arising in many players models, Bulavsky
[36] proposed a completely new approach. Instead of assuming the identity of the
agents in the conjectural variation model of a homogeneous good market, it is sup-
posed that each player makes conjectures not about the (optimal) response functions
of the other players but only about the variations of the market price depending upon
his infinitesimal output variations. Knowing the rivals’ conjectures (called influence
coefficients), each agent can realize certain verification procedure and check out if his
influence coefficient is consistent with the others. Exactly the same verification for-
mulas were obtained independently in Liu et al. [206] establishing the existence and
uniqueness of consistent conjectural variation equilibrium in electricitymarket.How-
ever, they applied a much more difficult optimal control technique, searching only
steady states as a final result (a similar technique was used in Driskill andMcCafferty
[95]. Moreover, they restricted the inverse demand function to a linear one, and the
agents’ cost functions to quadratic ones in their model, whereas the approach in
Bulavsky [36] allows nonlinear and even non-differentiable demand functions and
arbitrary (twice continuously differentiable) convex cost functions of the agents.

In this section, we extend the results obtained in Bulavsky [36] to a mixed
oligopoly model. In the same manner as in Bulavsky and Kalashnikov [37, 38], we
consider a conjectural variations oligopolymodel, inwhich the degree of influence on
the whole situation by each agent is modeled by special parameters (influence coef-
ficients). However, in contrast to the models defined in Bulavsky and Kalashnikov
[37, 38] and Kalashnikov et al. [168, 175], here, we follow the ideology of Bulavsky
[35, 36] selecting the market clearing price p, rather than the producers’ output, as
an observable variable.

The section is organized as follows. In Sect. 7.1.2, we describe the mathemati-
cal model from Bulavsky [36] extended to the mixed oligopoly case and then, in
Sect. 7.1.3, we define the concept of exterior equilibrium, i.e., a conjectural varia-
tions equilibrium (CVE) with the influence coefficients fixed in an exogenous form.
The existence and uniqueness theorem for this kind of CVE ends the subsection.
Section7.1.4 deals with the more advanced concept of interior equilibrium, which
is defined as the exterior equilibrium with consistent conjectures (influence coef-
ficients). The consistency criterion, the consistency verification procedure, and the
existence theorem for the interior equilibrium are formulated in the same Sect. 7.1.4.
To provide the tools for the future research concerning the interrelationships between
the demand structure (with not necessarily smooth demand function) and the CVEs
with consistent conjectures (influence coefficients), the behavior of the latter as func-
tions of certain parameter (governed by the derivative by p of the demand function
G = G(p)) is studied in Theorem7.3 completing Sect. 7.1.4. Finally, Sect. 7.1.5 con-
tains the results of numerical experiments with a test model of an electricity market
from Liu et al. [206], with and without a public company among the agents.
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7.1.2 Model Specification

Consider a market of a homogeneous good (natural gas, oil, electricity, timber,
etc.) with no less than 3 producers/suppliers with cost functions fi = fi (qi ),
i = 0, 1, . . . , n, where n ≥ 2, and qi is the output/supply brought by producer i ,
i = 0, 1, . . . , n. Consumers’ demand is described by a demand function G = G(p),
whose argument p is the market clearing price. An active demand value D is nonneg-
ative and does not depend upon the price. We will reflect the equilibrium between
the demand and supply for a given (clearing) price p by the following balance
equality

n∑

i=0

qi = G(p) + D. (7.1)

We assume the following properties of the model’s data.
A1. The demand function G = G(p) ≥ 0 defined for the (clearing) price values
p ∈ (0,+∞) is non-increasing and continuously differentiable. �
A2. For each producer/supplier i = 0, 1, . . . , n, its cost function fi = fi (qi ) is
quadratic, i.e.,

fi (qi ) = 1

2
ai q

2
i + bi qi , (7.2)

with ai > 0, bi > 0, i = 0, 1, . . . , n. Moreover, we assume that

b0 ≤ max
1≤i≤n

bi . (7.3)

Each private (or, foreign) producer i , i = 1, . . . , n, chooses his/her output volume
qi ≥ 0 so as tomaximize his/her net profit functionπ(p, qi ) := p ·qi − fi (qi ). On the
other hand, the public (or, domestic) company number i = 0 selects its production
value q0 ≥ 0 so as to maximize domestic social surplus defined as the difference
between the consumer surplus, the private (foreign) companies’ total revenue, and
the public (domestic) firm’s production costs:

S (p; q0, q1, . . . , qn) =

n∑

i=0
qi

∫

0

p(x)d x − p ·
(

n∑

i=1

qi

)

− b0q0 − 1

2
a0q2

0 . (7.4)

Now we postulate that the agents (both public and private) assume that their
variation of production volumes may affect the price value p. The latter assumption
could be implemented by accepting a conjectured dependence of fluctuations of the
price p upon the variations of the (individual) output values qi . Having that done,
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the first order maximum condition to describe the equilibrium would have the form:
For the public company (with i = 0)

∂S

∂q0
= p −

(
n∑

i=1

)
∂p

∂q0
− f ′

0 (q0)

{
= 0, if q0 > 0;
≤ 0, if q0 = 0; (7.5)

and

∂πi

∂qi
= p + qi

∂p

∂qi
− f ′

i (qi )

{
= 0, if qi > 0;
≤ 0, if qi = 0,

for i = 1, . . . , n. (7.6)

Therefore, we see that to describe the behavior of agent i and treat the maximum
(equilibrium) conditions, it is enough to trace the derivative ∂p/∂qi = −vi rather
than the full dependence of p upon qi . (We introduce the minus here in order to
deal with nononegative values of vi , i = 0, 1, . . . , n.) Of course, the conjectured
dependence of p on qi must provide (at least local) concavity of the i th agent’s
conjectured profit as a function of its output. Otherwise, one cannot guarantee the
profit to be maximized (but not minimized). As we suppose that the cost functions
fi = fi (qi ) are quadratic and convex, then, for i = 1, . . . , n, the concavity of the
product p · qi with respect to the variation ηi of the current production volume will
do. For instance, it is sufficient to assume the coefficient vi (from now on referred
to as the i th agent’s influence coefficient) to be nonnegative and constant. Then the
conjectured local dependence of the agent’s net profit upon the production output ηi

has the form [p − vi (ηi − qi )] ηi − fi (ηi ), while the maximum condition at ηi = qi

is provided by the relationships

{
p = vi qi + bi + ai qi , if qi > 0;
p ≤ bi , if qi = 0.

(7.7)

Similarly, the public company conjectures the local dependence of domestic social
surplus on its production output η0 in the form

η0+
n∑

i=1
qi

∫

0

p(x)d x − [p − v0 (η0 − q0)] ·
(

n∑

i=1

qi

)

− b0 − a0q0, (7.8)

which allows one to write down the (domestic social surplus) maximum condition
at η0 = q0 as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

p = −v0
n∑

i=1
qi + b0 + a0q0, if q0 > 0;

p ≤ −v0
n∑

i=1
qi + b0, if q0 = 0.

(7.9)
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Were the agents’ conjectures given exogenously (like it was assumed in Bulavsky
and Kalashnikov [37, 38]), we would allow all the influence coefficients vi to be
functions of qi and p. However, we use the approach from the papers Bulavski [35,
36], where the (justified, or consistent) conjectures are determined simultaneously
with the equilibrium price p and output values qi by a special verification procedure.
In the latter case, the influence coefficients are the scalar parameters determined only
at the equilibrium. In what follows, such equilibrium is referred to as interior one and
is described by the set of variables and parameters (p, q0, q1, . . . , qn, v0, v1, . . . , vn).

7.1.3 Exterior Equilibrium

Before we introduce the verification procedure, we need an initial notion of equilib-
rium called exterior (cf. Bulavski [36]) with the parameters (influence coefficients)
vi , i = 0, 1, . . . , n given exogenously.

Definition 7.1 The collection (p, q0, q1, . . . , qn) is called exterior equilibrium for
given influence coefficients (v0, v1, . . . , vn), if the market is balanced, i.e., condition
(7.1) is satisfied, and for each i , i = 0, 1, . . . , n, the maximum conditions (7.7) and
(7.9) are valid. �

In what follows, we are going to consider only the case when the list of really
producing/supplying participants is fixed (i.e., it does not depend upon the values of
the model’s parameters). In order to guarantee this property, we make the following
additional assumption.
A3. For the price value p0 := max1≤ j≤n b j , the following (strict) inequality holds:

n∑

i=0

p0 − bi

ai
< G (p0) . (7.10)

Remark 7.1 The latter assumption, together with assumptions A1 and A2, guaran-
tees that for all nonnegative values of vi , i = 1, . . . , n, and for v0 ∈ [0, v0), where

0 < v0 =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

a0

⎡

⎢
⎣

G (p0) − p0 − b0
a0∑n

i=1

pi − bi

ai

− 1

⎤

⎥
⎦ , if

n∑

i=1

pi − bi

ai
> 0;

+∞, otherwise,

(7.11)

there always exists a unique solution of the optimality conditions (7.7) and (7.9)
satisfying the balance equality (7.1), i.e., the exterior equilibrium. Moreover, con-
ditions (7.1), (7.7) and (7.9) can hold simultaneously if, and only if p > p0, that
is, if and only if all outputs qi are strictly positive, i = 0, 1, . . . , n. Indeed, if
p > p0 then it is evident that neither inequalities p ≤ bi , i = 1, . . . , n, from (7.7),
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nor p ≤ −v0
∑n

i=1 qi + b0 from ((7.9) are possible, which means that none of qi ,
i = 0, 1, . . . , n, satisfying (7.7) and (7.9) can be zero.

Conversely, if all qi , satisfying (7.7) and (7.9) are positive (qi > 0, i =
0, 1, . . . , n), then it is straightforward from conditions (7.7) that

p = vi qi + bi + ai qi > bi , i = 1, . . . , n;

hence p > max1≤i≤n = p0. �

The following theorem is the main result of this subsection and a tool for the
introduction of the concept of interior equilibrium in the next subsection.

Theorem 7.1 Under assumptions A1, A2 and A3, for any D ≥ 0, vi ≥ 0,
i = 1, . . . , n, and v0 ∈ [0, v0), there exists a unique exterior equilibrium state
(p, q0, q1, . . . , qn), which depends continuously on the parameters (D, v0,
v1, . . . , vn). The equilibrium price p = p (D, v0, v1, . . . , vn) as a function of these
parameters is differentiable with respect to both D and vi , i = 0, 1, . . . , n. Moreover,
p = p (D, v0, v1, . . . , vn) > p0, and

∂p

∂ D
= 1

v0 + a0
a0

∑n

i=0

1

vi + ai
− G ′(p)

. (7.12)

Proof Due to assumptions A1–A3, for any fixed collection of conjectures v =
(v0, v1, . . . , vn) ≥ 0, the equalities in the optimality conditions (7.7) and (7.9)
determine the optimal response (to the existing clearing price) values of the pro-
ducers/suppliers as continuously differentiable (with respect to p) functions qi =
qi (p; v0, . . . , vn) defined over the interval p ∈ [p0,+∞) by the following explicit
formulas:

q0 := p − b0
a0

+ v0
a0

n∑

i=1

p − bi

vi + ai
, (7.13)

and

qi := p − bi

vi + ai
, i = 1, . . . , n. (7.14)

Moreover, the partial derivatives of the optimal response functions are positive:

∂q0
∂p

= 1

a0
+ v0

a0

n∑

i=1

1

vi + ai
≥ 1

a0
> 0, (7.15)

and
∂qi

∂p
= 1

vi + ai
> 0, i = 1, . . . , n. (7.16)
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Therefore, the total production volume function

Q (p; v0, v1, . . . , vn) =
n∑

i=0

qi (p; v0, v1, . . . , vn)

is continuous and strictly increasing by p. According to assumption A3, this func-
tion’s value at the point p = p0 is strictly less that G(p0). Indeed, from (7.13) and
(7.14) we have:

(A) If
n∑

i=1

p0 − bi

vi + ai
> 0, then

Q (p0; v0, v1, . . . , vn) =
n∑

i=0

qi (p0; v0, v1, . . . , vn)

= p0 − b0
a0

+ v0
a0

n∑

i=1

p0 − bi

vi + ai
+

n∑

i=1

p0 − bi

vi + ai

= p0 − b0
a0

+ v0 + a0
a0

n∑

i=1

p0 − bi

vi + ai

<
p0 − b0

a0
+ v0 + a0

a0

n∑

i=1

p0 − bi

ai

= p0 − b0
a0

+

⎡

⎢
⎢
⎣

G(p0) − p0 − b0
a0

∑n

i=1

p0 − bi

ai

⎤

⎥
⎥
⎦

n∑

i=1

p0 − bi

ai

= p0 − b0
a0

+ G(p0) − p0 − b0
a0

= G(p0).

(B) Otherwise, i.e., if
n∑

i=1

p0 − bi

vi + ai
= 0, one has:

Q (p0; v0, v1, . . . , vn) =
n∑

i=0

qi (p0; v0, v1, . . . , vn)

= p0 − b0
a0

+ v0
a0

n∑

i=1

p0 − bi

vi + ai
+

n∑

i=1

p0 − bi

vi + ai

= p0 − b0
a0

< G(p0)

for any vi ≥ 0, i = 1, . . . , n, and v0 ∈ [0, v0).



252 7 Applications to Other Energy Systems

On the other hand, the total output supply Q = Q (p; v0, v1, . . . , vn) clearly tends
to +∞ when p → +∞. Now define

p∗ := sup {p : Q (p; v0, v1, . . . , vn) ≤ G(p) + D} . (7.17)

Since both functions Q (p; v0, v1, . . . , vn) and G(p)+D are continuous with respect
to p, the former increases unboundedly and the latter, vice versa, is non-increasing
by p over the whole ray [p0,+∞), then, first, the value of p∗ is finite (p∗ < +∞),
and second, by definition (7.17) and the continuity of both functions,

Q (p∗; v0, v1, . . . , vn) ≤ G (p∗) + D.

Now we demonstrate that the strict inequality Q (p∗; v0, v1, . . . , vn) < G (p∗) +
D cannot happen. Indeed, suppose on the contrary that the latter strict inequality
holds. Then the continuity of the involved functions implies that for some values
p > p∗ sufficiently close to p∗, the same relationship is true: Q (p; v0, v1, . . . , vn) <

G (p) + D, which contradicts definition (7.17). Therefore, the exact equality holds

Q (p∗; v0, v1, . . . , vn) = G (p∗) + D, (7.18)

which, in its turn, means that the values p∗ and q∗
i = qi (p∗; v0, v1, . . . , vn),

i = 0, . . . , n, determined by formulas (7.13) and (7.14) form an exterior equilibrium
state for the collection of influence coefficients v = (v0, v1, . . . , vn). The uniqueness
of this equilibrium follows from the fact that the function Q = Q (p; v0, v1, . . . , vn)

strictly increases while the demand function G(p)+D is non-increasingwith respect
to p. Indeed, these facts combined with (7.18) yield that Q (p; v0, v1, . . . , vn) <

G (p) + D for all p ∈ (p0, p∗), whereas Q (p; v0, v1, . . . , vn) > G (p) + D when
p > p∗. To conclude, the equilibrium price p∗ and hence, the equilibrium outputs
q∗

i = qi (p∗; v0, v1, . . . , vn), i = 0, . . . , n, calculated by formulas (7.13) and (7.14),
are determined uniquely.

Nowwe establish the continuous dependence of the equilibrium price (and hence,
the equilibriumoutput volumes, too) upon the parameters (D, v0, . . . , vn). To do that,
we substitute expressions (7.13) and (7.14) for qi = (p; v0, . . . , vn) into the balance
equality (7.1) and come to the following relationship:

q0 +
n∑

i=1

qi − G(p) − D =
(

p − b0
a0

+ v0
a0

n∑

i=1

p − bi

vi + ai

)

+
n∑

i=1

p − bi

vi + ai
− G(p) − D

= p

(
1

a0
+ v0 + a0

a0

n∑

i=1

1

vi + ai

)

− b0
a0

− v0 + a0
a0

n∑

i=1

bi

vi + ai
− G(p) − D = 0. (7.19)
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Introduce the function

Γ (p; v0, v1, . . . , vn, D) = p

(
1

a0
+ v0 + a0

a0

n∑

i=1

1

vi + ai

)

− b0
a0

− v0 + a0
a0

n∑

i=1

bi

vi + ai
− G(p) − D

and rewrite the last equality in (7.19) as the functional equation

Γ (p; v0, v1, . . . , vn, D) = 0. (7.20)

As the partial derivative of the latter function with respect to p is (always) positive:

∂Γ

∂p
= 1

a0
+ v0 + a0

a0

n∑

i=1

1

vi + ai
− G ′(p) ≥ 1

a0
> 0,

one can apply Implicit Function Theorem and conclude that the equilibrium (clear-
ing) price p treated as an explicit function p = p (v0, v1, . . . , vn, D) is continuous
and, in addition, differentiable with respect to all the parameters v0, v1, . . . , vn, D.
Moreover, the partial derivative of the equilibrium price p with respect to D can be
calculated from the full derivative equality

∂Γ

∂p
· ∂p

∂ D
+ ∂Γ

∂ D
= 0,

finally yielding the desired formula (7.12)

∂p

∂ D
= 1

v0 + a0
a0

∑n

i=0

1

vi + ai
− G ′(p)

,

and thus completing the proof. �

7.1.4 Interior Equilibrium

Now we are ready to define the concept of interior equilibrium. To do that, we first
describe the procedure of verification of the influence coefficients vi as it was given in
Bulavski [36]. Assume that we have an exterior equilibrium state (p, q0, q1, . . . , qn)

that occurs for some feasible v = (v0, v1, . . . , vn) and D ≥ 0. One of the produc-
ers, say k, 0 ≤ k ≤ n, temporarily changes his/her behavior by abstaining from
maximization of the conjectured profit (or domestic social surplus, as is in case
k = 0) and making small fluctuations (variations) around his/her equilibrium output
volume qk . In mathematical terms, the latter is tantamount to restricting the model
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agents to the subset I−k := {0 ≤ i ≤ n : i 
= k} with the active demand reduced to
D−k := D − qk .

A variation δqk of the production output by agent k is then equivalent to the
active demand variation in form δD−k := −δqk . If we consider these variations
being infinitesimal, we assume that by observing the corresponding variations of the
equilibrium price, agent k can evaluate the derivative of the equilibrium price with
respect to the active demand in the reduced market, which clearly coincides with
his/her influence coefficient.

When applying formula (7.12) from Theorem8.1 to evaluate the player k conjec-
ture (influence coefficient) vk , one has to remember that agent k is temporarily absent
from the equilibriummodel, hence one has to exclude from all the sums the termwith
number i = k. Keeping that in mind, we come to the following consistency criterion.

7.1.4.1 Consistency Criterion

At an exterior equilibrium (p, q0, q1, . . . , qn), the influence coefficients vk ,
k = 0, 1, . . . , n, are referred to as consistent if the following equalities hold:

v0 = 1
∑n

i=1

1

vi + ai
− G ′(p)

, (7.21)

and

vi = 1
v0 + a0

a0

∑n

j=0, j 
=i

1

v j + a j
− G ′(p)

, i = 1, . . . , n. (7.22)

Now we are in a position to define the concept of an interior equilibrium.

Definition 7.2 The collection (p, q0, . . . , qn, v0, . . . , vn) where vi ≥ 0, i = 0, 1,
. . . , n, is referred to as the interior equilibrium if, for the coefficients (v0, v1, . . . , vn)

the collection (p, q0, . . . , qn) is an exterior equilibrium state, and the consistency
criterion is satisfied for all k = 0, 1, . . . , n. �

Remark 7.2 If all the agents are profit-maximizing private companies, then formulas
(7.21)–(7.22) reduce to the uniform ones obtained independently in Bulavski [36]
and Lui et al. [206]:

vi = 1
∑

j∈I\{i}
1

v j + a j
− G ′(p)

, i ∈ I, (7.23)

where I is an arbitrary (finite) list of the participants of the model. �

http://dx.doi.org/10.1007/978-3-662-45827-3_8


7.1 Consistent Conjectural Variations Equilibrium in a Mixed Oligopoly … 255

The following theorem is an extension of Theorem 2 in Bulavski [36] to the case
of a mixed oligopoly.

Theorem 7.2 Under assumptions A1, A2, and A3, there exists the interior
equilibrium.

Proof We are going to show that there exist v0 ∈ [0, v0); vi ≥ 0, i = 1, . . . , n;
qi ≥ 0, i = 0, 1, . . . , n, and p > p0 such that the vector (p; q0, . . . , qn; v0, . . . , vn)

provides for the interior equilibrium. In other words, the vector (p, q0, . . . , qn) is an
exterior equilibrium state, and in addition, equalities (7.21)–(7.22) hold. For a tech-
nical purpose, let us introduce a parameter α so that G ′(p) := α

1 + α
for appropriate

values ofα ∈ [−1, 0], and then rewrite the right-hand sides of formulas (7.21)–(7.22)
in the following (equivalent) form:

F0 (α; v0, . . . , vn) := 1 + α

(1 + α)
∑n

i=1

1

vi + ai
− α

, (7.24)

and

Fi (α; v0, . . . , vn) := 1 + α

(1 + α)
v0 + a0

a0

∑n

j=0, j 
=i

1

v j + a j
− α

, i = 1, . . . , n.

(7.25)

Since vi ≥ 0, ai > 0, i = 0, 1, . . . , n, and α ∈ [−1, 0], the functions Fi ,
i = 0, 1, . . . , n, are well-defined and continuous with respect to their arguments over
the corresponding domains. Now let us introduce an auxiliary functionΦ : [−1, 0]×
Rn+1+ as follows. For arbitrary α ∈ [−1, 0] and (v0, v1, . . . , vn) ∈ [0, v0)× Rn+, find
the (uniquely determined, according to Theorem8.1) exterior equilibrium vector
(p, q0, q1, . . . , qn) and calculate the derivative G ′(p) at the equilibrium point p.
Then define the value of the function Φ as below:

Φ (α; v0, v1, . . . , vn) := α̂ = G ′(p)

1 − G ′(p)
∈ [−1, 0]. (7.26)

When introducing this auxiliary function Φ, we do not indicate explicitly its depen-
dence upon D, because we are not going to vary D while proving the theorem. As the
derivative G ′(p) is continuous by p (see assumption A1), and the equilibrium price
p = p (v0, v1, . . . , vn), in its turn, is a continuous function (cf. Theorem8.1), then
the function Φ is continuous as a superposition of continuous functions. (We also
notice that its dependence upon α is fictitious.) To finish the proof, let us compose
a mapping H := (Φ, F0, F1, . . . , Fn) : [−1, 0] × Rn+1+ → [−1, 0] × Rn+1+ and
select a convex compact that is mapped by H into itself. The compact is constructed

http://dx.doi.org/10.1007/978-3-662-45827-3_8
http://dx.doi.org/10.1007/978-3-662-45827-3_8
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as follows: First, set s := max {v0, a0, a1, . . . , an}. Second, formulas (7.24)–(7.25)
yield the following relationships: If α = −1, then

F0 (−1, v0, v1, . . . , vn) = 0, (7.27)

Fi (−1, v0, v1, . . . , vn) = 0, i = 1, . . . , n, (7.28)

whereas for α ∈ (−1, 0] one has

0 ≤ F0 (α, v0, v1, . . . , vn) = 1 + α

(1 + α)
∑n

i=1

1

vi + ai
− α

≤ 1 + α

(1 + α)
∑n

i=1

1

vi + ai

= 1
∑n

i=1

1

vi + ai

≤ 1
∑n

i=1

1

vi + s

; (7.29)

and

0 ≤ Fi (α, v0, v1, . . . , vn) = 1 + α

(1 + α)
v0 + a0

a0

∑n

j=0, j 
=i

1

v j + a j
− α

≤ 1
v0 + a0

a0

∑n

j=0, j 
=i

1

v j + a j

≤ 1
∑n

j=0, j 
=i

1

v j + a j

≤ 1
∑n

j=0, j 
=i

1

v j + s

, i = 1, . . . , n. (7.30)

Relationships (7.27)–(7.30) clearly imply that for any α ∈ [−1, 0], if 0 ≤ v j ≤
s

n − 1 , j = 0, 1, . . . , n, then the values of Fj (α, v0, . . . , vn), j = 0, . . . , n, drop

within the same (closed) interval
[
0, s

n − 1

]
. Therefore, we have just established

that the continuous mapping H := (Φ, F0, F1, . . . , Fn) maps the compact convex

subset Ω := [−1, 0] ×
[
0, s

n − 1

]n+1
into itself. Thus, by Brouwer Fixed Point

Theorem, the mapping H has a fixed point (α, v0, . . . , vn), that is,

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Φ (α, v0, v1, . . . , vn) = α,

F0 (α, v0, v1, . . . , vn) = v0,

F1 (α, v0, v1, . . . , vn) = v1,
...

Fn (α, v0, v1, . . . , vn) = vn .

(7.31)
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Now, for the thus obtained influence coefficients v = (v0, v1, . . . , vn) ∈ [0, v0)×
Rn+, there exists (uniquely, by Theorem8.1) the exterior equilibrium (p, q0, q1, . . . ,
qn). Hence, we can immediately conclude (from (8.51) and the definition of func-
tion Φ) that G ′(p) = α

1 + α
, and therefore, the influence coefficients satisfy con-

ditions (7.21)–(7.22). So, according to Definition 7.2, the just constructed vec-
tor (p; q0, . . . , qn; v0, . . . , vn) is the desired interior equilibrium. The proof is
complete. �

7.1.4.2 Properties of Influence Coefficients

In our future research, we are going to extend the obtained results to the case of
non-differentiable demand functions. However, some of the necessary technique can
be developed now, in the differentiable case. To do that, we denote the value of
the demand function’s derivative by τ := G ′(p) and rewrite the consistency Eqs.
(7.21)–(7.22) in the following form:

v0 = 1
∑n

i=1

1

vi + ai
− τ

, (7.32)

and

vi = 1
v0 + a0

a0

∑n

j=0, j 
=i

1

v j + a j
− τ

, i = 1, . . . , n, (7.33)

where τ ∈ (−∞, 0]. When τ → −∞ then system (7.32)–(7.33) has the unique
limit solution v j = 0, j = 0, 1, . . . , n. For all the finite values of τ , we establish the
following result.

Theorem 7.3 For any τ ∈ (−∞, 0], there exists a unique solution of equations
(7.32)–(7.33) denoted by vk = vk(τ ), k = 0, 1, . . . , n, continuously depending upon
τ . Furthermore, vk(τ ) → 0 when τ → −∞, k = 0, . . . , n, and v0 = v0(τ ) strictly
increases until v0(0) if τ grows up to zero.

Proof Similar to the proof of Theorem7.2, we introduce the auxiliary functions

F0 (τ ; v0, . . . , vn) := 1
∑n

i=1

1

vi + ai
− τ

= v0, (7.34)

and

Fi (τ ; v0, . . . , vn) := 1
v0 + a0

a0

∑n

j=0, j 
=i

1

v j + a j
− τ

= vi , i = 1, . . . , n,

(7.35)

http://dx.doi.org/10.1007/978-3-662-45827-3_8
http://dx.doi.org/10.1007/978-3-662-45827-3_8
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and set s := max {a0, a1, . . . , an}. It is easy to check that for any fixed value of τ ∈
(−∞, 0], the vector-function d := (F0, F1, . . . , Fn) maps the n-dimensional cube

M :=
[
0, s

n − 1

]n
into itself. Now we show that subsystem (7.35) has a unique

solution v (v0, τ ) = (v1 (v0, τ ) , . . . , vn (v0, τ )) for any fixed τ ∈ (−∞, 0] and
v0 ≥ 0; moreover, the vector-function v = v (v0, τ ) is continuously differentiable
with respect to both variables v0 and τ . The Jacobi matrix of the mapping d =
(F0, F1, . . . , Fn), that is, the matrix J :=

(
∂ Fi
∂v j

)n, n

i=1, j=1
has the following entries:

∂ Fi

∂v j
=

⎧
⎪⎨

⎪⎩

0, for j = i;
v0 + a0

a0 · F2
i(

v j + a j
)2 , for j 
= i.

(7.36)

Thus, matrix J is nonnegative and non-decomposable. Now let us estimate the
sums of the matrix entries in each row i = 1, 2, . . . , n:

n∑

k=1

∂ Fi

∂vk
= v0 + a0

a0
F2

i ·
n∑

k=1,k 
=i

1

(vk + ak)
2 ≤

v0 + a0
a0

∑n

k=1,k 
=i

1

(vk + ak)
2

(
v0 + a0

a0

∑n

k=1,k 
=i

1

vk + ak

)2

= a0
v0 + a0

·

∑n

k=1,k 
=i

1

(vk + ak)
2

(∑n

k=1,k 
=i

1

vk + ak

)2 = Ri (v1, . . . , vn; v0) < 1. (7.37)

For anyfixed value v0 ≥ 0 (treated as a parameter), the above-mentioned functions
Ri (v1, . . . , vn; v0), i = 1, . . . , n, are defined on the cube M , continuously depend
upon the variables v1, . . . , vn , and take only positive values strictly less than 1.
Therefore, their maximum values achieved on the compact cube M are also strictly
lower than 1, which implies that the matrix (I − J ) is invertible (here, I is the
n-dimensional unit matrix), and the mapping d := (F1, . . . , Fn) defined on M is
a strictly contracting mapping in the cubic norm (i.e., ‖ · ‖∞-norm). The latter
allows to conclude that for any fixed values of τ ∈ (−∞, 0] and v0 ≥ 0, the equation
subsystem (7.35) has a unique solution v (v0, τ ) = (v1 (v0, τ ) , . . . , vn (v0, τ )). Since
det(I − J ) 
= 0 for any τ ∈ (−∞, 0], Implicit Function Theorem also guarantees
that v (v0, τ ) is continuously differentiable by both variables.

In order to establish the monotone increasing dependence of the solution v (v0, τ )

of subsystem (7.35) upon τ for any fixed value v0 ≥ 0, let us differentiate (7.35)
with respect to τ to yield
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∂vi

∂τ
= F2

i

⎡

⎣1 + v0 + a0
a0

n∑

k=1,k 
=i

∂vk
∂τ

(vk + ak)
2

⎤

⎦ , i = 1, . . . , n. (7.38)

Rewriting (7.38) in the vector form, we come to

v′
τ = Jv′

τ + F2, (7.39)

where

v′
τ :=

(
∂v1
∂τ

, . . . ,
∂vn

∂τ

)T

and F2 :=
(

F2
1 , . . . , F2

n

)T
> 0. (7.40)

Since all entries of the inverse of matrix (I − J ) are nonnegative (the latter is due to
the matrix (I − J ) being an M-matrix, cf. e.g. Berman and Plemmons [21]) and the
inverse matrix (I − J )−1 has no zero rows, then (7.39)–(7.40) imply

v′
τ = (I − J )−1F2 > 0, (7.41)

that is, each component of the solution vector v (v0, τ ) of subsystem (7.35) is a strictly
increasing function of τ for each fixed value of v0 ≥ 0.Moreover, the straightforward
estimates

vi (v0, τ ) ≤ −1

τ
, i = 1, . . . , n, (7.42)

bring about the limit relationships shown below:

vi (v0, τ ) → 0 as τ → −∞, i = 1, . . . , n, for any fixed v0 ≥ 0. (7.43)

To order to establish the monotone (decrease) dependence of the solution v (v0, τ )

of subsystem (7.35) upon v0 ≥ 0 for eachfixedvalueof τ ∈ (−∞, 0],wedifferentiate
(7.35) with respect to v0 to get:

∂vi

∂v0
= −F2

i

⎡

⎣ 1

a0

n∑

k=1,k 
=i

1

vk + ak
− v0 + a0

a0

n∑

k=1,k 
=i

∂vk
∂v0

(vk + ak)
2

⎤

⎦

= F2
i

v0 + a0
a0

n∑

k=1,k 
=i

∂vk
∂v0

(vk + ak)
2 − F2

i

a0

n∑

k=1,k 
=i

1

vk + ak
, i = 1, . . . , n.

(7.44)

Again, rearrange these equalities into a system of equations

v′
v0 = Jv′

v0 − Q, (7.45)
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where

v′
v0 :=

(
∂v1
∂v0

, . . . ,
∂vn

∂v0

)T

, (7.46)

while Q ∈ Rn is the vector with the components

Qi := F2
i

a0

n∑

k=1,k 
=i

1

vk + ak
> 0, i = 1, . . . , n. (7.47)

Solving (7.45) for v′
v0 and making use of (7.47), one comes to the relationship

v′
v0 = −(I − J )−1Q < 0, (7.48)

which means that each component of v (v0, τ ) is a strictly decreasing function of
v0 ≥ 0 for each fixed value of τ ∈ (−∞, 0].

Now we are in a position to demonstrate the existence and smoothness of the
unique solution v(τ ) = (v0(τ ), v1(τ ), . . . , vn(τ )) of the complete system (7.34)–
(7.35) for every fixed value of τ ∈ (−∞, 0]. To do that, we plug in the above-
mentioned (uniquely defined for each fixed τ ∈ (−∞, 0] and v0 ≥ 0) solution of
subsystem (7.35) into (7.34) and arrive to the functional equation:

v0 = 1
∑n

i=1

1

vi (v0, τ ) + ai
− τ

. (7.49)

With the aim to prove the unique solvability of the latter equation, we fix an arbitrary
τ ∈ (−∞, 0] and introduce the function

Ψ (v0) := 1
∑n

i=1

1

vi (v0, τ ) + ai
− τ

. (7.50)

Since we know that

0 ≤ vi (v0, τ ) ≤ s

n − 1
, n = 1, . . . , n, where s = max{a0, a1, . . . , an},

(7.51)
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it brings us to the chain of relationships

Ψ (v0) ≤ 1
∑n

i=1

1

vi (v0, τ ) + ai

≤ 1
∑n

i=1

1

vi (v0, τ ) + s

≤ 1
∑n

i=1

1
s

n − 1
+ s

= 1
∑n

i=1

n − 1

ns

= s

n − 1
, (7.52)

which allows one to conclude that (for any fixed τ ∈ (−∞, 0]) the continuous

function Ψ = Ψ (v0) maps the closed interval
[
0, s

n − 1

]
into itself. Therefore,

according to Brouwer Fixed Point Theorem, there exists a fixed point v0 = Ψ (v0)
within this interval.

To finish the proof of the theorem, it is sufficient to establish that the above-
determined fixed point is unique for each fixed τ ∈ (−∞, 0] and, in addition, is
monotone increasing with respect to τ . First, (7.48) implies that (for every fixed
τ ∈ (−∞, 0]), the functions vi (v0, τ ), i = 1, . . . , n, are strictly decreasing by
v0 ≥ 0; hence, each ratio 1

vi (v0, τ ) + ai
, i = 1, . . . , n, strictly increases with

respect to v0 ≥ 0. Now we deduce from (7.53) below that the function Ψ = Ψ (v0),
in its turn, strictly decreases with respect to v0 ≥ 0, which means that the fixed point
v0 = Ψ (v0) exists uniquely.

Differentiability of the thus determined well-defined function v0 = v0(τ ) with
respect to follows from Implicit Function Theorem, because

∂Ψ

∂v0
= Ψ 2

n∑

i=1

∂vi
∂v0

(vi + ai )
2 < 0, for any τ ∈ (−∞, 0]. (7.53)

It is easy to see that the vector-function

v(τ ) := [v0(τ ), v1 (v0(τ ), τ ) , . . . , vn (v0(τ ), τ )]T

obtained by substituting the newly constructed function v0 = v0(τ ) into the previ-
ously described solution of subsystem (7.35) represents the uniquely determined and
continuously differentiable solution of the complete system (7.34)–(7.35).

In order to demonstrate the monotony of the above-described soluction’s first
component v0 = v0(τ ) by τ , we differentiate equation (7.49) by the chain rule and
make use of (7.50) to yield

dv0
dτ

=
⎡

⎣Ψ 2
n∑

i=1

∂vi
∂v0

(vi + ai )
2

⎤

⎦ · dv0
dτ

+ Ψ 2
n∑

i=1

∂vi
∂τ

(vi + ai )
2 + Ψ 2. (7.54)
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Now solving (7.54) for the derivative dv0
dτ

, one obtains:

dv0
dτ

= B

A
, (7.55)

where, owing to (7.53),

A = 1 − Ψ 2
n∑

i=1

∂vi
∂v0

(vi + ai )
2 > 0 (7.56)

while

B = Ψ 2

⎡

⎣
n∑

i=1

∂vi
∂τ

(vi + ai )
2 + 1

⎤

⎦ > 0, (7.57)

according to (7.41). Combining (7.55)–(7.57), we conclude that dv0
dτ

= B
A > 0;

hence, the function v0 = v0(τ ) strictly increases by τ . Moreover, by the evident
estimate

v0(τ ) ≤ −1

τ
,

which follows from (7.49), we deduce that v0 = v0(τ ) vanishes as τ → −∞.
Similarly, (7.43) implies that the same is valid for all the remaining influence coef-
ficients, i.e., vi (τ ) → 0, i = 1, . . . , n, as τ → −∞. The proof of the theorem is
complete. �

7.1.5 Numerical Results

In order to illustrate the difference between the mixed and classical oligopoly cases
related to the conjectural variations equilibrium with consistent conjectures (influ-
ence coefficients), we apply formulas (7.21)–(7.22) to the simple example of an
oligopoly in the electricity market from Liu et al. [206]. The only difference in our
modified example from the instance of Liu et al. [206] is in the following: in their
case, all six agents (suppliers) are private companies producing electricity and maxi-
mizing their net profits, whereas in our case, we assume that Supplier 0 (Supplier 5 in
some instances) is a public enterprise seeking to maximize domestic social surplus
defined by (7.4). All the other parameters involved in the inverse demand function
p = p(G) and the producers’ cost functions, are exactly the same.

So, following Liu et al. [206], we select the IEEE 6-generator 30-bus system to
illustrate the above analysis. The inverse demand function in the electricity market
is given in the form:
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Table 7.1 Cost functions’
parameters

Agent i bi ai

0 2.00000 0.02000

1 1.75000 0.01750

2 3.00000 0.02500

3 3.00000 0.02500

4 1.00000 0.06250

5 3.25000 0.00834

p(G, D) = 50 − 0.02(G + D) = 50 − 0.02
n∑

i=0

qi . (7.58)

The cost functions parameters of suppliers (generators) are listed in Table7.1.
Here, agents 0, 1, . . . , 5 will be combined in different ways in the examples listed
below. In particular, Oligopoly 1 is the classical oligopoly where each agent 0–5
maximizes its net profit; Oligopoly 2 will involve agent 0 (public one, who maxi-
mizes domestic social surplus) and 1, . . . , 5 (private),whereasOligopoly 3 comprises
agents 5 (public) and 0, 1, . . . , 4 (private).

To find the consistent influence coefficients in their classical oligopoly market
(Oligopoly 1), Liu et al. [206] use formulas (7.23) for all six suppliers, whereas for
our mixed oligopoly model (Oligopoly 2), we exploit formula (7.21) for Supplier
0 and formulas (7.22) for Suppliers 1 through 5. With the thus obtained influence
coefficients, the (unique) equilibrium is found for each of Oligopolies 1 and 2. The
equilibrium results (influence coefficients, production outputs in MWh, equilibrium
price, and the objective functions’ optimal values in $ per hour) are presented in
Table7.2 through 7.6. To make our conjectures vi comparable to those used in
Kalashnykova et al. [182], Kalashnikov et al. [165], and Liu et al. [206], we
divide them by [−p′(G)] = 0.02 and thus come to wi := −vi/p′(G) = 50vi ,
i = 0, 1, . . . , n, shown in all the tables.

As it could be expected, the equilibrium price in Oligopoly 1 (classical oligopoly)
turns out to be equal to p1 = 10.4304, whereas in Oligopoly 2 (mixed oligopoly), it

Table 7.2 Computation results in consistent CVE: wi , generation, profits

Agent i wi qi (MWh) Profits ($/h)

Oligopoly 1 Oligopoly 2 Oligopoly 1 Oligopoly 2 Oligopoly 1 Oligopoly 2

0 0.19275 0.18779 353.405 626.006 1727.4 595.77

1 0.19635 0.16674 405.120 358.138 2076.6 1550.04

2 0.18759 0.15887 258.463 220.451 1082.9 761.90

3 0.18759 0.15887 258.463 220.451 1082.9 761.90

4 0.17472 0.14761 142.898 125.462 707.5 538.37

5 0.22391 0.19270 560.180 488.905 2709.8 1917.98
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drops down to p2 = 9.2118. On the contrary, the total electricity power generation
is higher: G2 = 2039.412MWh—in the second case (mixed oligopoly), than in
Oligopoly 1, which is G1 = 1978.475MWh. Both results are more attractive for
consumers. Simultaneously, the private producers’ net profit values are observed to
be lower in the mixed oligopoly (Oligopoly 2) than those in the classical oligopoly
(Oligopoly 1.) In Oligopoly 2, profit is minimal in the cell of Agent 0, because its
real objective function is not the net profit but domestic social surplus defined by
(7.4); in this instance, it happens to reach S = $42, 187.80/h.

It is also interesting to compare the results in CVE with consistent conjectures
(Oligopolies 1 and2) against the production volumes andprofits obtained for the same
cases in the classical Cournot equilibrium (i.e., with all wi = 1, i = 0, 1, . . . , 5.)
Table7.3 illustrates the yielded results, with p1 = 14.760 in the classical oligopoly
(Oligopoly 1) much higher than the market equilibrium price p2 = 9.5349 in the
mixed oligopoly (Oligopoly 2).

Again, the total electricity power generation is higher: G2 = 2023.256MWh,—
in the second case (mixed oligopoly), than in Oligopoly 1: G1 = 1761.9MWh. Both
results are more propitious for consumers. Simultaneously, the private producers’
net profit values are observed to be much lower in the mixed oligopoly (Oligopoly 2)
than those in the classical oligopoly (Oligopoly 1). In Oligopoly 2, profit is even
negative in the cell of Agent 0, as its objective function is not the profit but domestic
social surplus defined by (7.4); in this example, it is equal to S = $35, 577.50/h.
The latter data, togetherwith themarket price values, suggest that themixedoligopoly
with consistent conjectures is preferable to consumers than the Cournot model.

Table 7.3 Computation results in the Cournot models: wi , generation, profits

Agent i wi qi (MWh) Profits ($/h)

Oligopoly 1 Oligopoly 2 Oligopoly 1 Oligopoly 2 Oligopoly 1 Oligopoly 2

0 1.00000 1.00000 319.060 1200.000 3054.0 −5358.14

1 1.00000 1.00000 347.000 207.597 3461.7 1239.02

2 1.00000 1.00000 261.390 145.220 2220.5 685.38

3 1.00000 1.00000 261.390 145.220 2220.5 685.38

4 1.00000 1.00000 166.820 103.453 1426.2 548.51

5 1.00000 1.00000 406.230 221.767 3988.5 1188.70

Table 7.4 Computation results in the perfect competition model: wi , generation, profits

Agent i wi qi (MWh) Profits ($/h)

Oligopoly 1 Oligopoly 2 Oligopoly 1 Oligopoly 2 Oligopoly 1 Oligopoly 2

0 0.00000 0.00000 348.43 348.43 1214.00 1214.00

1 0.00000 0.00000 412.49 412.49 1488.80 1488.80

2 0.00000 0.00000 238.74 238.74 712.47 712.47

3 0.00000 0.00000 238.74 238.74 712.47 712.47

4 0.00000 0.00000 127.50 127.50 507.98 507.98

5 0.00000 0.00000 685.68 685.68 1960.50 1960.50
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Of course, the perfect competitionmodel (see, Table7.4)withwi = vi = 0, i = 0,
1, . . . , 5, is the best for consumers in bothOligopoly 1 and 2:with p1 = p2 = 8.9685
and the total produce G1 = G2 = 2051.57MWh. Domestic social surplus is also
higher in this case than in all the previous ones: S = $43, 303.52/h.

It is curious to note (cf. Tables7.2, 7.3 and 7.4) that in the classical oligopoly
(Oligopoly 1), the Cournot model demonstrates to be the most profitable for the
producers, whereas it is not the case for the mixed oligopoly: here, the existence
of a public enterprise with domestic social surplus as its utility function makes
the consistent CVE more beneficial for the rest of suppliers than the Cournot one
(except for the weakest Agent 4, for which, on the contrary, the Cournot model is
most gainful).

Finally, we may compare the consistent CVEs (Table7.5), Cournot equilibria
(Table7.6) and the perfect competition for the above-defined Oligopoly 2 (mixed
oligopoly with Agent 0 being a public company) against a similar Oligopoly 3, in
which not Agent 0 but the (much stronger) Agent 5 is the public supplier.

With the market price p3 = 7.8751 even lower and domestic social surplus
= $44, 477.30/h even higher than those in the perfect competition model, this con-
sistent CVE may serve as a good example of the strong public company realizing
the implicit price regulation within an oligopoly.

A bit curious are the results reflected in Table7.6: comparing the Cournot
oligopoly in Oligopolies 1, 2, and 3, one may see that with a weaker public firm
(Oligopoly 2), the private producers may incline to the Cournot model of behavior
(cf. Table7.3). However, with a stronger public supplier, as it is in Oligopoly 3,

Table 7.5 Computation results in consistent CVE: wi , generation, profits

Agent i wi qi (MWh) Profits ($/h)

Oligopoly 2 Oligopoly 3 Oligopoly 2 Oligopoly 3 Oligopoly 2 Oligopoly 3

0 0.18779 0.13208 626.006 259.480 595.77 851.16

1 0.16674 0.13497 358.138 303.229 1550.04 1052.75

2 0.15887 0.12803 220.451 176.884 761.90 471.22

3 0.15887 0.12803 220.451 176.884 761.90 471.22

4 0.14761 0.11843 125.462 105.984 538.37 377.63

5 0.19270 0.21584 488.905 1083.785 1917.98 114.52

Table 7.6 Computation results in the Cournot models: wi , generation, profits

Agent i wi qi (MWh) Profits ($/h)

Oligopoly 2 Oligopoly 3 Oligopoly 2 Oligopoly 3 Oligopoly 2 Oligopoly 3

0 1.00000 1.00000 1200.000 122.612 −5358.14 451.01

1 1.00000 1.00000 207.597 137.452 1239.02 543.18

2 1.00000 1.00000 145.220 86.766 685.38 244.67

3 1.00000 1.00000 145.220 86.766 685.38 244.67

4 1.00000 1.00000 103.453 71.569 548.51 262.51

5 1.00000 1.00000 221.767 1649.612 1188.70 −5319.04
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private companies would rather select the consistent CVE: in the Cournot model, the
strong public company subdues all the rivals to the minimum levels of production
and profits. Nevertheless, the Cournot model with stronger public firm provides for
the very lowmarket price: p3 = 6.9045, even though at the cost of a somewhat lower
domestic social surplus: S = $41, 111.59/h.

As it could be expected, in the perfect competition model, both Oligopolies 2 and
3 give exactly the same results, albeit different domestic social surplus values: S =
$43, 303.52/h in Oligopoly 2 against a bit higher S = $44, 050.04/h in Oligopoly
3 with the stronger public company.

In this section, we have studied a model of mixed oligopoly with conjectural
variations equilibrium (CVE). The agents’ conjectures concern the price variations
depending upon their production output’s increase or decrease. We establish exis-
tence and uniqueness results for the conjectured variations equilibrium (called an
exterior equilibrium) for any set of feasible conjectures. To introduce the notion
of an interior equilibrium, we develop a consistency criterion for the conjectures
(referred to as influence coefficients) and prove the existence theorem for the interior
equilibrium (understood as a CVE with consistent conjectures). To prepare the base
for the extension of our results to the case of non-differentiable demand functions,
we also investigate the behavior of the consistent conjectures in dependence upon a
parameter representing the demand function’s derivative with respect to the market
price.

An interesting methodological question also arises: can the mixed oligopoly be
related to collaborative game theory? Formally speaking, the mixed oligopoly is
rather a cooperative than competitive game, as the public company’s and the private
firms’ interests are “neither completely opposed nor completely coincident” (Nash
[248]). At first glance, collaboration can be a worthwhile strategy in a cooperative
game. However, according to Zagal et al. [327], “because the underlying gamemodel
is still designed to identify a sole winner, cooperative games can encourage anti-
collaborative practices in the participants. Behaving competitively in a collaborative
scenario is exactly what should not happen in a collaborative game”.

7.2 Toll Assignment Problems

One of the most important problems concerning the toll roads is the setting of an
appropriate cost for traveling through private arcs of a transportation network. In the
section this problem is considered by stating it as a bilevel optimization (BLP)model.
At the upper level, one has a public regulator or a private company that manages the
toll roads seeking to increase its profits. At the lower level, several companies-users
try to satisfy the existing demand for transportation of goods and/or passengers, and
simultaneously, to select the routes so as to minimize their travel costs. In other
words, what is sought is a kind of a balance of costs that bring the highest profit to
the regulating company (the upper level) and are still attractive enough to the users
(the lower level).

With the aim of providing a solution to the bilevel optimization problem in
question, a direct algorithm based on sensitivity analysis is proposed in this section.
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In order to make it easier to move (if necessary) from a local maximum of the upper
level objective function to another, the well-known “filled function” method is used.
Most results in this section are taken from Kalashnikov et al. [167].

7.2.1 Introduction

During the early years of industrial development, the production facilities were
established near the consumers because the transportation was expensive, time-
consuming, and risky. When transportation systems appeared, they allowed the pro-
ducer to compete in distant markets, promoting economies of scale by increasing
sales volume.

Due to the complexity of products and globalization, supply and distribution
chains have grown enormously, therefore, logistics costs have “rocketed up” sharply.
According to the data from the IMF (International Monetary Fund), logistics costs
represent 12% of gross national product, and they range from 4 to 30% of the sales
at the enterprise level.

Because of this growth, many countries have attached great importance to the
development and modernization of the infrastructure to achieve greater participation
in the global economy. There are organizations that deal with the development of
communications and transportation infrastructure, building technologies to increase
the coverage, quality and competitiveness of the infrastructure. In Mexico, admin-
istration of new (private) roads is commonly conceded to private companies, state
governments, or financial institutions (banks, holdings, etc.), who set transportation
tolls in order to retrieve money from the road users.

It has been recently noticed that under the concession model, there is less traffic
flow using these tolled highways. One of the strategies taken to increase the use of
toll roads is the regulation of tolls (pass rates). However, what are the appropriate
criteria to assign these toll rates?

The problem here is how to assign optimal tolls to the arcs of a multicommodity
transportation network. The toll optimization problem (TOP) can be formulated as
a bilevel mathematical program where the upper level is managed by a firm (or a
public regulator) that raises revenues from tolls set on (some) arcs of the network,
and the lower level is represented by a group of users traveling along the cheapest
paths with respect to a generalized travel cost. The problem can be interpreted as
finding equilibrium among tolls generating high revenues and at the same time being
attractive for the users. Other possible aims of the upper level decision maker can be
found in Heilporn et al. [141], Didi-Biha et al. [88], Labbé et al. [196].

The problem in question has been extensively studied. In what follows, a literature
review related to the TOP is made. Almost thirty years ago, Magnanti and Wong
[212] presented a very complete theoretical basis for the uses and limitations of
network design based on integer optimization with several models and algorithms.
This provided a unification of network designmodels, as well as a general framework
for deriving network design algorithms. They noticed that researchers had been
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motivated to develop a variety of solution techniques such as linear approximation
methods and the search of vertices adjacent to the lowest cost flow problem threated
as a network design problem (NDP).

The network design issues were mentioned several years later by Yang and Bell
[322], who also provided a brilliant survey of the existing literature in this area. They
introduced the elasticity concept in travel demand and the reserve capacity notion
of the network in the NDP, which allowed them to obtain a network design problem
easier to solve when trying tomaximize an appropriate objective function.Moreover,
they proposed an approach to NDP involving mixed elections, i.e., simultaneously
adding links and improving the capabilities. The latter approach allowed the use of
formulas based upon the maximization of consumer surplus as the objective function
of the NDP. The authors mentioned that the challenge remained to develop a global
search algorithm that could guarantee the optimality of a solution derived with the
computationally efficient manner mentioned in [212].

Bell and Iida [17] sought a unification of the theoretical analysis of transportation
networks, focused primarily on the assignment of stochastic user equilibrium (SUE),
estimating trip tables and network’s reliability. They saw the network design as an
extension of the analysis of the transportation network, where the control of traffic
signals is made in terms of an NDP. The latter is considered a difficult task because
of its nonconvex nature and the complexity of the networks. They mentioned that the
NDP can be posed as a bilevel optimization problem, where the upper level focuses
on the network design to maximize certain goals, whereas the lower level determines
howusers react to changes in the network. In theirmonograph, they presented twodif-
ferent approaches to solve the problem of network design, one is the iterative method
of design-assignment, which is relatively simple in its application and appears to con-
verge quickly. The other is an iterative algorithm based on sensitivity analysis, which
usually consumes more computational time to converge. The authors conclude that
both methods provide different local optima, with slight differences in the objective
function but significantly distinct in the design structure. Finally, they mentioned
that in order to have a more satisfactory approach, it is necessary to combine bilevel
optimization tools (to find a local solution) and a probabilistic search method (for
comparing local solutions using simulated annealing), to come to a global solution.

Marcotte [218] mentioned that the NDP mainly deals with the optimal balance
either of the transportation, investment, or maintenance costs of the networks subject
to congestion. The network’s users behave according to Wardrop’s first principle of
traffic equilibrium. He also suggested that the NDP can be modeled as a multilevel
mathematical optimization problem.

Mahler et al. [213] dealt with the problem of congestion in road networks rep-
resented by two problems, namely, estimation of the trip matrix and optimization
of traffic signals. Both problems were formulated as bilevel programs with alloca-
tion of stochastic user equilibrium (SUE) as the problem of the lower level. The
authors presented an algorithm that gives a solution to the bilevel problem of estima-
tion of the trip matrix and optimization of signals, making use of the “logit-based”
model of assignment SUE at the lower level. The algorithm used applies standard
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routines to estimate the matrix at every iteration, and SUE assignment to find the
search direction. The authors stated that it had not been possible to demonstrate the
convergence results in general; however, in case that the optimal solution can be
found by direct search, they demonstrated that the algorithm is able to give a good
approximation of the optimal solution.

Lawphongpanich andHearn [199] also examined the problemof traffic congestion
as a problem of fixing the toll through a formulation with static demands. They
mentioned that this problem can be classified into two types: (i) the problem of
the first best solution, in which all the arcs of the network are tolled, and (ii) the
problem of the second best solution, where it is assumed that some roads may have
tolls and others not, which does not permit them to get the maximum benefit. The
authors noticed that the latter problem can be posed as a bilevel optimization model,
or as a mathematical program with equilibrium constraints (MPEC). They used the
results achieved for the MPEC to develop a formulation equivalent to the nonlinear
optimization problem for the second best solution. The latter is done in order to
establish the properties of the second-best solution, which are of a particular interest
to transport economists, and in its turn, help develop another algorithm to solve the
problem in the nonlinear optimization formulation.

The pricing of road systems has a long history in the literature of transportation
economics, as mentioned by Morrison [246], who worked with a theoretical frame-
work developed through the empirical evidence of viability in pricing and policy. One
can also find this concept in the engineering and road planning literature, as described
in Cropper and Oates [47], who talked about the implementation of environmental
economics in environmental policy design road systems; they focused on reducing
traffic congestion on the roads through pricing to reduce negative aspects such as
pollution. Other authors who treated the problem of traffic congestion were Arnott
et al. [4]; they mentioned that the allocation of a uniform toll significantly reduces
this problem by taking into account parameters of time (i.e., alternating departure
times for users).

Hearn and Ramana [140] worked over the definition and optimization of different
objectives under a given set of tolls that promote optimal traffic systems. Shifting a
focus, one findsViton’s paper [309], whichmakes a comparison between the viability
of private toll roads and highways free to users. The concept of maximizing profits
through an optimal toll system is examined by Beckmann in [13] and by Verhoef in
[303].

As mentioned before, bilevel optimization offers a convenient framework for
modeling the optimal toll problems, as it allows one to take into account the user’s
behavior explicitly. Unlike the aforementioned investigations, Labbé et al. [197]
considered the TOP as a sequential game between the owners of road systems (the
leaders) and road users (the followers), which fits the scheme of a bilevel optimization
problem. This approach is also implemented by Brotcorne [30] on the problem of
fixing tariffs on cargo transportation. In the latter case, the leader is formed by a
group of competing companies, and their earnings are determined by the total profits
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from the rates, while the follower is a carrier who seeks to reduce travel costs, taking
into account the tolls set by the leader.

One of the simplest instances was analyzed by Kalashnikov et al. [173], where
a TOP defined over a congestion-free, multicommodity transportation network was
considered. In this setting, a highway authority (the leader) sets tolls on a subset of
arcs of the network, while the users (the follower) assign themselves to the shortest
(in terms of a generalized time) paths linking their respective origin and destination
nodes. The goal of the leader in this context is to maximize the toll revenue. Hence,
it is not in its interest to set very high tolls, because in this case the users would
be discouraged from using the tolled sub-network. The problem can be stated as
a combinatorial program that subsumes NP-hard problems, such as the Traveling
Salesman Problem (see, Labbé et al. [196], for a reduction method). Following the
initial NP-hardness proof in [196], computational complexity and approximation
results were obtained by Marcotte et al. [220].

On the other hand, Dempe et al. [58] studied this problem designing a “fuzzy”
algorithm for the TOP. Next, Lohse and Dempe [69] based their studies on the
analysis of an optimization problem in some sense reverse to the TOP. In addition,
Didi-Biha et al. [88] developed an algorithm based on the calculation of lower and
upper bounds to determine the maximum gain from the tolls on a subset of arcs of a
network transporting various commodities.

Studies have been conducted with roads without congestion and capacity limits,
where it is assumed that congestion is affected by the introduction of tolls. This
radically changes themathematical nature of themodel, and algorithmsuse a different
approach. Such a model was presented by Yan and Lam in [321], but these authors
were limited only to a simple model with two arcs. A more extensive work on the
assumption of limited capacity arcs is presented byKalashnikov et al. in [166], which
studied four different algorithms to solve this problem.

The group of authors Brotcorne et al. [34] started investigating a bilevel model
for toll optimization on a multicommodity transportation network as long ago as
2001. Recently, Brotcorne et al. analyzed this problem in [32] with the difference
in that they allowed subsidies in the network; that is, they considered the tolls with-
out constraints. The authors designed an algorithm that generated paths and then
formed columns for determining the optimal toll values for the current path (the
lower bound). Thereafter, they adjusted the revenue upper bound and finally applied
a diversification phase. Also they validated their algorithm by conducting numeri-
cal experimentation and concluded that the proposed algorithm efficiently works in
networks with few toll arcs. The same authors continued their work on the same
problem in [31]. In the latter paper, they designed and implemented a tabu search
algorithm, and concluded that their heuristics had obtained better results than other
combinatorial methods. Dempe and Zemkoho [81] also studied the TOP and pro-
posed a reformulation based on the optimal value function. This restatement has
advantage over the KKT reformulation because it keeps on the information about the
congestion in the network. They obtained optimality conditions for this restatement
and established some theoretical properties for it.
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The aim of the present section is to propose an algorithm based on the allowable
ranges to stay optimal (ARSO) resulting from sensitivity analysis after solving the
lower level problem.With this powerful tool, one can analyze possible changes in the
coefficients of somevariables in the objective functionwhich do not affect the optimal
solution (cf. the region of stability in Sect. 3.6.2.1). It also permits one to examine
the effects on the optimal solution when the parameters take new values beyond the
ARSO.Thiswork is inspired by the previous research undertakenbyRoch et al. [271].

In addition to dealing with the allowable ranges, the proposed technique also uses
the concept of a “filled function” (see Renpu [267],Wan et al. [312],Wu et al. [318]),
which is applied under the assumption that a local maximum (in our case) has been
found. Then the “filled functions” technique helps one either to find another local
maximum, better than the previous ones, or to determine that we have found (approx-
imately) a best feasible or an optimal solution, according to certain parameters of
tolerance.

The validity and reliability of this technique are illustrated by the results of numer-
ical experiments with test examples used to compare the proposed approach with the
other ones. Finally, the numerical results also confirmed the robustness of the pre-
sented algorithm.

To resume, in this sectionwe propose and test two versions of a heuristic algorithm
to solve the Toll Optimization Problem (TOP) based upon sensitivity analysis for
linear optimization problems. The algorithm makes use of a sensitivity analysis
procedure for the linear optimization problem at the lower level, as well as of the
“filled functions” technicalities in order to reach a global optimum when “jammed”
at some local optimum. The two versions of the method differ only in the way of
selecting a new toll vector, namely, by changing only one toll value at a time, or by
varying several toll values applying thewell-known100% rule of sensitivity analysis.

The proposed heuristics aim at filling in a gap in a series of numerical approaches
to the solution of TOP problem listed in the Introduction. To our knowledge, no
systematic attempts to apply the sensitivity analysis tools to the toll assigned problem
have been made. Moreover, the combination of these powerful tools with the “filled
functions” techniques brings forward some new global optimization ideas.

Numerical experiments with a series of small and medium-dimension test prob-
lems show the proposed algorithm’s robustness and reasonable convergence charac-
teristics. In particular, while ceding in efficiency to other algorithms when solving
small problems, the proposed method wins in the case of medium (higher dimen-
sional) test models.

The rest of the section is organized as follows. Section7.2.2 contains the model
statement and the definition of parameters involved. Section7.2.3 describes the algo-
rithm to solve the toll optimization problem, with Sect. 7.2.3.1 presenting the algo-
rithm’s structure, Sect. 7.2.3.2 justifying the reduction of the lower level equilibrium
problem to a standard linear program, and Sect. 7.2.3.3 recalling the “filled func-
tions” technique. Section7.2.4 lists the results of numerical experiments obtained
for several test problems. Supplementary material (Sect. 7.2.5) describes the data of
all the test problems tested in the numerical experiments.

http://dx.doi.org/10.1007/978-3-662-45827-3_3
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7.2.2 TOP as a Bilevel Optimization Model

Themethodology developed to solve this problem takes themodel proposed byLabbé
et al. [196] as a basis. They proved that the TOP can be analyzed as a leader-follower
game that takes place on a multicommodity network G = (K , N , A) defined by
a set of origin-destination couples K , a node set N and an arc set A. The latter is
partitioned into the subset A1 of toll arcs and the complementary subset A2 of toll-
free arcs. We endow each arc a ∈ A with a fixed travel delay ca representing the
minimal unit travel cost. Each toll arc a ∈ A1 also involves a toll component ta , to
be determined. The latter is also expressed in time units, for the sake of consistency.
The toll vector t = {ta : a ∈ A1} is restricted by the vector tmax = {tmax

a : a ∈ A1
}

from above and by zero from below.
The demand side is represented by numbers nk denoting the demand for trans-

portation between the origin node o(k) and the destination node d(k) associated with
commodity k ∈ K , |K | = r . A demand vector bk is associatedwith each commodity.
Its components are defined for every node i of the network as follows:

bk
i =

⎧
⎪⎨

⎪⎩

nk, if i = d(k);
−nk, if i = o(k);
0, otherwise.

(7.59)

Let x = {
xk

a

}
a∈A denote the set of commodity flows along the arcs a ∈ A, and{

i+
} ⊂ A the set of arcs having i as their head (destination) node, while

{
i−
} ⊂ A

is the set of arcs having i as their tail (origin) node, for any i ∈ N . Based on the
notation introduced above, the toll optimization problem (TOP) can be stated as the
bilevel program (7.60)–(7.63):

max
t,x

F(t, x) =
∑

k∈K

∑

a∈A1

ta xk
a , (7.60)

subject to
0 ≤ ta ≤ tmax

a , (7.61)

∀k ∈ K

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕk(t) = min
xk

[∑
a∈A1

(ca + ta) xk
a +∑a∈A2

ca xk
a

]
,

subject to
∑

a∈{i+}
xk

a − ∑

a∈{i−}
xk

a = bk
a, ∀i ∈ N , k ∈ K ,

xk
a ≥ 0, ∀a ∈ A, k ∈ K ,

(7.62)

∑

k∈K

xk
a ≤ qa, ∀a ∈ A. (7.63)
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In this (optimistic) formulation, both the toll and flow variables are controlled
by the leader (the toll variables directly, the flow variables implicitly). On the other
hand, the lower level constraints reflect the followers’ intention tominimize their total
“transportation costs”, in terms of “time delay units”multiplied by the corresponding
flow values, under current toll levels, and subject to the supply-demand requirements.

In order to prevent the occurrence of trivial situations, the following conditions
are assumed in the same manner as in [88]:

1. For a certain amount of goods, demand from one node to another can be sent by
arcs or paths that may be toll-free, depend on tolls, or combinations of both.

2. There is a transportation cost associated with each arc that is expressed as a cost
at the lower level.

3. There is no profitable vector that induces a negative cost cycle in the network.
This condition is satisfied if, for example, all delays ca are nonnegative.

4. For each commodity, there exists at least one path composed solely of toll-free
arcs.

7.2.3 The Algorithm

Tofind a solution of the TOP,we develop an algorithmdealingwith the bilevelmathe-
matical optimization model (7.60)–(7.63) starting from initial values ta of tolls. With
any toll vector fixed, we may treat the lower level problem as a linear program. After
solving the latter by the simplex method, we perform sensitivity analysis for the
lower level objective function. In the TOP analyzed here, the sum of the objective
functions of all followers can be selected as the objective function in the lower level
problem, see, Kalashnikov et al. [166]. If the analysis tells us that the current solution
is a local maximum point for the upper level problem (this is so if sensitivity analysis
does not allow to increase the coefficients of the basic flows along the toll arcs), we
use the “filled functions” technique (described in Sect. 7.2.3.2; cf. e.g.Wu et al. [318,
319]) for the objective function of the leader. This allows us to make a “jump” to a
neighborhood of another possible local maximum point, if the latter exists.

Once we have a new set of tolls, we proceed to solve the problem of the followers
again and perform sensitivity analysis. If that does not allow more increases, we use
the “filled functions” method again.

This procedure allows one to get an increase in the toll if the next local maximum
is better; otherwise, after several fruitless attempts in a row, we stop with the last
solution as approximately optimal.

7.2.3.1 Description of the Heuristic Algorithm

In this algorithm,we are going to combine themain structure of themethod described
by Kalashnikov et al. [173] and a new idea consisting in the following: A direct
procedure may be represented as determination of the “fastest increase” direction
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for the upper level objective function in terms of the toll variables variations. The
“formal gradient” of this objective function F from (7.60) can be determined by the
current total flows along the toll arcs:

∂ F

∂ta
(t, x) =

∑

k∈K

xk
a , ∀a ∈ A1. (7.64)

We call it the “formal gradient” because the followers’ optimal response is not
taken into account in (7.64). However, as the fastest infinitesimal improvement direc-
tion, this vector can be used in our heuristic method. The possibility of solving a lin-
ear optimization problem at the lower level instead of the Nash equilibrium problem
(7.60)–(7.63) has been justified in the papers [166, 173] by Kalashnikov et al.

In what follows, we present a description of the heuristic method proposed first by
Kalashnikov et al. in [173] for solving the congestion-free case for the bilevel TOP,
i.e., qa = +∞, ∀a ∈ A. However, the same algorithm can be also applied to solve
the bilevel TOP problem with restricted capacities. This is justified by the following
theoretical result.

7.2.3.2 A Simple Method to Solve a Special Generalized Nash
Equilibrium Problem with Separable Payoffs

Consider amappingΦ : X → RN , where X = X1×X2×· · ·×X N is a direct product
of m subsets of Euclidean spaces: namely, Xi ⊂ Rni , i = 1, . . . , N . Assume that the
mapping Φ is separable in the sense that each of its components is restricted to its
own domain, i.e., Φi : Xi → R, i = 1, . . . , N . In other words, no two components
of the mapping Φ share common variables. Many applied problems boast the latter
property: cf. for example, the lower level of the Toll Optimization Problem, namely,
the (generalized) Nash equilibrium problem (7.62)–(7.63).

Let us also consider two other mappings G : X → Rn and H : X → Rm , which
are not necessarily separable like the mapping Φ. Finally, let Ω be a subset of X
defined as follows:

Ω = {x ∈ X : G(x) ≤ 0, H(x) = 0} . (7.65)

Now assume that we search for a generalized Nash equilibrium (GNE): Find a
vector x∗ = (

x∗
1 , . . . , x∗

i , . . . , x∗
N

) ∈ Ω such that for every player i = 1, . . . , N ,
the corresponding sub-vector x∗

i ∈ Xi provides a point of a (global) maximum of its
utility function (payoff) Φi over the subset Ωi

(
x∗−i

) ⊂ Xi defined as follows:

Ωi
(
x∗−i

) = {xi ∈ Xi such that
(
x∗
1 , . . . , x∗

i−1, xi , x∗
i+1, . . . , x∗

N

) ∈ Ω
}
. (7.66)

Here, x−i = (x1, . . . , xi−1, xi+1, . . . , xN ) ∈ X1 × · · · × Xi−1 × Xi+1 × · · · × X N

is the complement to the vector xi ∈ Xi in the direct product X . In mathematical
terms, what we seek is the following:

Φi
(
x∗

i

) = max
{
Φi (xi ) : xi ∈ Ωi

(
x∗−i

)}
, for all i = 1, . . . , N . (7.67)
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In what follows, we always suppose that

Ωi (x−i ) 
= ∅, i = 1, . . . , N , (7.68)

for any x ∈ Ω , i.e., each feasible solution of our GNE problem (7.65)–(7.67).
Now consider the following (scalar) mathematical optimization (MP) problem:

ϕ(x) ≡
N∑

i=1

Φi (xi ) −→ max
x∈Ω

. (7.69)

We are now in a position to state and prove the main result of this subsubsection:

Lemma 7.1 Any solution of MP problem (7.69) is a generalized Nash equilibrium
(GNE), i.e., a solution of problem (7.65)–(7.67).

Proof Assume that a vector x∗ = (x∗
1 , . . . , x∗

i , . . . , x∗
N

) ∈ Ω solves problem (7.69).
On the contrary, suppose that it is not an equilibrium for model (7.65)–(7.67). The
lattermeans that for at least one player i ∈ {1, . . . , N }, there exists another sub-vector
x̄i ∈ Ωi

(
x∗−i

)
such that

Φi (x̄i ) > Φi
(
x∗

i

)
. (7.70)

Now the mapping Φ being separable immediately implies the relationships

ϕ (x̄) =
∑

j 
=i

Φ j

(
x∗

j

)
+ Φi (x̄i ) >

∑

j 
=i

Φ j

(
x∗

j

)
+ Φi

(
x∗

i

)

=
N∑

i=1

Φi
(
x∗

i

) = ϕ
(
x∗) , (7.71)

where x̄ = (
x∗
1 , . . . , x∗

i−1, x̄i , x∗
i+1, . . . , x∗

N

) ∈ Ω . However, (7.71) means that
ϕ (x̄) > ϕ (x∗), which contradicts the assumption that the above vector x∗ =(
x∗
1 , . . . , x∗

i , . . . , x∗
N

) ∈ Ω solves problem (7.69) and thus completes the proof. �

Remark 7.3 The result of Lemma7.1 was obtained by Kalashnikov et al. in [166] in
a bit more particular setting.

Now we return to the heuristic algorithm’s description. Lemma7.1 proved above
permits one to justify Step 1 of the algorithm in question.

Algorithm: Step 1. Set i = 0. Select t(i)a = tmin
a = 0 and minimize

the aggregate lower level objective function

hsum(x) =
∑

k∈K

⎡

⎣
∑

a∈A1

(
ca + t(i)a

)
xk

a +
∑

a∈A2

ca xk
a

⎤

⎦ , (7.72)
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subject to the flow conservation constraints and
nonnegativity restrictions listed in (7.62) as well as
the capacity constraints (7.63) in order to obtain the

lower level’s optimal response x
(

t(i)
)
. Compute the

leader’s objective function value

F
(

t(i), x
(
(t(i)

))
=
∑

k∈K

∑

a∈A1

t(i)a xk
a . (7.73)

If i ≥ 1 then compare the upper level objective function
value (7.73) with the same for the previous value of i,

and if F
(

t(i), x
(
(t(i)

))
> F

(
t(i−1), x

(
(t(i−1)

))
go to Step 2.

Otherwise, go to Step 4. If this return to Step 4 from
Step 1 occurs several times in a row (7 to 10), go to
Step 5.

Step 2. Considering the allowable ranges to stay optimal (ARSO)
given by the sensitivity analysis table obtained upon
having solved the problem presented in Step 1, select
the maximum increase parameters Δ

k,+
a for the (toll-arc)

variables xk
a

(
t(ia

)
, a ∈ A1. Denote

A+
1 =

⎧
⎨

⎩
a ∈ A1 :

∑

k∈K

xk
a

(
t(ia

)
> 0

⎫
⎬

⎭
, (7.74)

that is, the toll arcs with a positive current flow.
According to (7.64) , these positive values are (nonzero)
components of the “formal gradient” vector of the
leader’s objective function. If A+

1 = ∅, then go to Step
4; otherwise, go to Step 3.

Step 3. The toll increment procedure can be implemented
in two different ways. The first (more precautious)
one consists in increasing the current toll value by
the maximum allowable increment Δ

k,+
a , a ∈ A+

1 , but not
exceeding the corresponding component of the “formal
gradient”. More precisely, we set

t(i+1)
a =

⎧
⎪⎪⎨

⎪⎪⎩

min

{

tmax
a , t(i)a + max

k∈K
min

{
∑

m∈K
xm

a

(
t(ia

)
, Δ

k,+
a

}}

, if a ∈ A+
1 ;

t(i)a , otherwise.

(7.75)

The second mode of computing the toll increment is
determined by the combination of the allowable
increase values:
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t(i+1)
a =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min

{

tmax
a , t(i)a + ∑

k∈K
βk min

{
∑

m∈K
xm

a

(
t(ia

)
, Δ

k,+
a

}}

, if a ∈ A+
1 ;

t(i)a , otherwise.

(7.76)

Here, the nonnegative coefficients βk ≥ 0, k ∈ K, and
such that

∑

k∈K
βk = 1, can be selected by the well-known

100-percent rule of sensitivity analysis. Next, if

t(i+1)
a > t(i)a for at least one a ∈ A+

1 , then update i := i + 1 and
close the loop by returning to Step 1 to minimize the
lower level aggregate objective function with the
updated toll values. Otherwise, i.e., if no toll has
been increased, go to Step 4.

Step 4. The current set of tolls
{

t(i)a

}

a∈A1
apparently

provides for a local maximum of the leader’s objective
function. In order to try to “jump” to some other
possible local maximum solution, apply the “filled
functions” technique described briefly in the next
subsection. Then return to Step 1 and minimize the
lower level aggregate objective function with the
updated toll values.

Step 5. If, after a number of Steps 4 repeated (in our
numerical experiments, we accepted this number as 7
to 10), one cannot improve the leader’s objective
function value, stop the algorithm, report the

current vectors
{

t(i)a

}

a∈A1
and x

(
t(i)
)
as an approximation

of a global optimum solution.

7.2.3.3 Application of the “Filled Functions” Technique

Our heuristic algorithm based upon sensitivity analysis also involves application of
the “filled function” technique first proposed by Renpu [267]. This method works,
according to the studies in [267], under the assumption that a local minimum of a
function, which is continuous and differentiable in Rn , has been found. So the aim is
to find another (better than the current) local minimum or determine that this is the
globalminimumof the functionwithin the closed (polyhedral) constraint set T ⊂ Rn .
Renpu [267] and Wu et al. [318, 319] defined “filled functions” for a minimization
problem. Here, we adapt several versions of the “filled function” definitions and
properties to deal with a maximization problem. For simplicity we assume that any
local maximum point of the objective function has a positive value. Of course, the
procedure is easily extended to the case where the value of the objective function
can be negative, too.
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Definition 7.3 Let t̄0 ∈ T satisfy t̄0 
= t∗ and f
(
t̄0
) ≥ 3

4 f (t∗). A continuously
differentiable function Pt∗(x) is said to be a “filled function” for the maximization
problem maxt∈T f (t) at a point t∗ with f (t∗) > 0, if

1. t∗ is a strict local minimizer of Pt∗(t) on T ;
2. any local maximizer t̄ of Pt∗(t) on T satisfies f

(
t̄
)

> 3
2 f (t∗) or t̄ is a vertex of T ;

3. any local maximizer t̂ of the optimization problem maxt∈T f (t) with f
(
t̂
) ≥

7
4 f (t∗) is a local maximizer of Pt∗(t) on T ;

4. any t̃ ∈ T with ∇ Pt∗
(
t̃
) = 0 implies f

(
t̃
)

> 3
2 f (t∗).

Now, define two auxiliary functions as follows: For any d = f
(
t∗k
)

> 0, and
w = f (t), let

gd(w) =

⎧
⎪⎪⎨

⎪⎪⎩

1, if w ≥ 1
2d;

5 − 48
d w + 144

d2 w2 + 128
d3 w3, if 1

4d ≤ w < 1
2d;

0, if w < 1
4d,

(7.77)

and

hd =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w − 1
4d, if w ≤ 1

4d;
(
16
d2 − 128

d3

)
w3 +

(
144
d2 − 20

d

)
w2 +

(
8 − 48

d

)
w + 5 − d, if 1

4d < w ≤ 1
2d;

1, if 1
2d < w ≤ 3

2d;
− 128

d3 w3 + 624
d2 w2 − 1008

d w + 541, if 3
2d < w ≤ 7

2d;
2, if w > 7

4d.

(7.78)

Given a t∗ ∈ T such that f (t∗) > 0, we define the following “filled function”:

Gq,t∗(t) = − exp
(
−‖t − t∗‖2

)
g f (t∗)

4
( f (t)) − qh f (t∗)

4
( f (t)) , (7.79)

where q > 0 is a parameter. This “filled function” will be used in our algorithm.
First, based on Wu et al. [318] we have the following result:

Theorem 7.4 Assume that the function f : Rn → R is continuously differentiable
and there exists a polyhedron T ⊂ Rn with t0 ∈ T such that f (t) ≤ 1

2 f (t0) for all
t ∈ Rn\int T . Let t̄0 
= t∗ be a point such that f (t∗) − (t̄0

) ≤ 1
4 f (t∗). Then:

1. there exists a q1
t∗ ≥ 0 such that when q > q1

t∗ , then any local maximizer t̄ of the
mathematical program maxt∈T Gq,t∗0 (t) obtained via the search starting from t̄0
satisfies t̄ ∈ int T ;

2. there exists a q2
t∗ > 0 such that if 0 < q ≤ q2

t∗ , then any stationary point t̃ ∈ T
with t̃ 
= t∗ of the function Gq,t∗0 (t) satisfies f

(
t̃
)

> 3
2 f (t∗).

Proof The proof is almost identical to that of Theorem2.2 in Wu et al. [318]. �
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Making use of the auxiliary function (7.79) we can detail the “jump” to a neigh-
borhood of another local maximum point of the upper level objective function F .

Algorithm: Step 1. Let our current toll iteration t(i) be
such that formulas (7.75) and (7.76) provide no increase
in the toll values. It can be shown that maximization
of the auxiliary function (7.79) instead of the original
upper level function F is equivalent to a (moderate)
increase of the toll parameters t(i) (one or several of
them, depending on the mode applied: (7.75) or (7.76)).

Step 2. If the new optimal response x
(

t(i+1)
)

is related to

new ARSO upper bounds distinct from zero, return to
Step 1 of the algorithm and continue increasing the
toll parameters according to formulas (7.75) or (7.76).

Step 3. Otherwise, i.e., if the new ARSO upper bounds are
all zero, double the increment of the toll parameters
and return to Step 2. If this happens several times
without success (i.e., the ARSO upper bounds continue
to be zero), go to Step 5 and finish the computational
algorithm.

After having defined the above procedures, we are going to illustrate the steps of the
combined proposed sensitivity analysis-“filled function” algorithm to solve the TOP.

In Fig. 7.1, we begin by assigning initial values of zero toll cost. After solving
the linear optimization problem of the follower to determine the flow in the arcs and
obtaining a value for the leader’s objective function, sensitivity analysis of the fol-
lower is performed, taking into account only toll-arc variables of the current solution.
Then having listed the possible increases in the coefficients of the objective function
of the follower derived from the sensitivity analysis data, and based upon the formal
gradient vector of the upper level objective function F , we update the present toll vec-

tor
{

t (i)a

}

a∈A1
. When positive increments of t cannot be obtained anymore based on

sensitivity analysis and the formal gradient of the function F , apply the “filled func-
tion” procedure. A new function is created based on the leader’s objective function
and a new toll vector is probed. Once there is a new toll vector, go to Step 1 and close
the loop. The algorithms stop if neither sensitivity analysis nor the “filled function”
method provide a better value for the leader’s objective function after several (say,

Fig. 7.1 Diagram of the combined method
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7–10) attempts in a row, which can mean that an approximate global optimum has
been reached, and the algorithm stops. The multicommodity flows corresponding to
the final toll values give approximate optimal solutions for the follower, too.

7.2.4 Results of Numerical Experiments

In order to verify the performance of the algorithm, we conducted experiments on
two different graphs, each with five different instances. In order to make valid com-
parisons of the efficiency and computational time of the proposed algorithm we
emulated the experimentation conducted by Kalashnikov et al. [166] with their four
different proposed algorithms. The following paragraphs describe the environment
under which the experimentation was carried out and then describe the methodology
used for the application of the algorithm.

In order to check the proposed heuristic sensitivity analysis algorithm combined
with the method of “filled functions” (FF), a personal computer was used. The char-
acteristics of the computer equipment used for the development and implementation
of the algorithm were: Intel (R) Atom (TM) CPU N455 with a speed 2.00 GHz and
1.67 GB of RAM memory. The coding algorithm was written in the Matlab math-
ematical software in its version MatLab R2010a. This software was used due to its
linear optimization tools in the “Optimization Toolbox”. One of the functions used
waslinprog because the lower level of theTOP can be replaced by a corresponding
linear optimization problem of the minimum cost flow.

The main parameters of the problems are the ones that define the size of the net-
work: the number of nodes |N |, arcs |A|, toll arcs |A1|, and commodities |K |. Each
toll-free arc and toll arc has been assigned a fixed time-delay value ca generated
pseudo-randomly. The problems involved are of small size with two commodities.
The graphs and the parameters of the tested instances can be found in the Supple-
mentary material in Sect. 7.2.5. As mentioned above, the sizes of the networks were:

Network 1: 7 nodes, 12 arcs, of which 7 are toll arcs.
Network 2: 25 nodes, 40 arcs, of which 20 are toll arcs.

The results for each example can be seen in the Tables7.7 to 7.18 below. The
first column (called SA + FF) in each table shows the data related to the proposed
algorithm, in which the increase in the tolls after sensitivity analysis is conducted in
the first mode (cf. 7.75). Analogously, the second column (with the heading SA +
FF 100%) involves the results generated with the developed algorithm, updating the
current tolls by formula (7.76). The next four columns show the results obtained after
emulating the algorithms proposed in Kalashnikov et al. [166], that is, the Nelder-
Mead (NM), Penalization (P), Quasi-Newton (QN), and Gradient (G) methods. The
best obtained result is marked in bold.
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Tables7.7 and 7.8 may be a base for the assertion that the approximate solution
obtained by all six methods applied to the test problems 1 and 2 are practically the
same, which could mean that they are indeed the desired global maximum solutions
for the leader.

The possible ways of measuring the algorithms efficiency are: to compare, first,
the number of iterations required for each algorithm to reach an approximate solution
for a given tolerance value, and second, the average computational cost (the number
of iterations necessary on average) to decrease the error by one decimal order. This
metric is calculated by the following formula:

Costiter = #iter

log10 ε0 − log10 ε f
, (7.80)

where #i ter denotes the number of iterations needed to reach the optimal value, ε0
is the initial error computed as the difference between the initial leader’s objective
function value and the final one reached by the algorithm, this is, ε0 = |F0 − F∗|.
In a similar manner, ε f is the approximate final error calculated as the (absolute
value of the) difference of the leader’s objective function values evaluated at the last
two approximate solutions. Tables7.9 and 7.10 present the total number of iterations
required for each algorithm, and Tables7.11 and 7.12 shows the average cost of the
number of iterations required to reduce the error by one order.

Tables7.9 and 7.10 illustrate that the number of iterations the tested algorithms
needed to reach approximately optimal solutions in both test sample problems have

Table 7.7 Leader’s objective function value for Network 1

N1 SA + FF SA + FF NM P QN G

100%

1 161.9975 162.9989 162.9987 162.8215 162.9972 162.9134

2 274.9905 274.9979 274.9996 274.8320 274.9975 274.9321

3 57.98889 58.9998 58.9996 58.8719 58.9979 58.9229

4 155.9806 156.9980 156.9971 156.8504 156.9988 156.9057

5 136.9888 136.9984 136.9989 136.8408 136.9972 136.9750

Table 7.8 Leader’s objective function value for Network 2

N2 SA + FF SA + FF NM P QN G

100%

1 1761.488 1763.984 1763.876 1762.887 1763.963 1762.629

2 2758.542 2758.926 2758.804 2758.237 2758.924 2758.484

3 2364.98 2367.89 2365.45 2365.98 2367.82 2365.33

4 3785.41 3790.99 3789.24 3790.11 3790.99 3790.18

5 610.99 611.99 611.91 610.91 611.97 611.43
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Table 7.9 Number of iterations required to solve Network 1

N1 SA + FF SA + FF NM P QN G

100%

1 478 384 277 489 4 170

2 510 399 269 484 8 397

3 263 195 275 487 18 529

4 406 337 164 518 13 336

5 276 205 205 469 10 108

Table 7.10 Number of iterations required to solve Network 2

N2 SA + FF SA + FF NM P QN G

100%

1 592 479 1,412 787 581 745

2 636 546 1,587 685 496 812

3 734 411 1,464 633 374 596

4 586 497 1,286 549 324 893

5 556 418 1,698 591 309 650

Table 7.11 Average cost in the number of iteration to reduce the error for Network 1

N1 SA + FF SA + FF NM P QN G

100%

1 197.4995 131.8796 36.9995 348.9920 6.3082 41.9907

2 109.1328 80.7525 38.8531 284.6465 50.2147 122.6097

3 63.3016 55.5471 43.9853 275.8310 18.9017 185.9731

4 160.8014 168.6568 26.0900 236.0231 30.4811 108.9364

5 58.8175 42.5245 33.7262 301.8081 29.4384 35.7321

Table 7.12 Average cost in the number of iteration to reduce the error for Network 2

N2 SA + FF SA + FF NM P QN G

100%

1 440.6532 356.5420 915.1583 896.1183 285.9969 239.4804

2 266.6127 228.8844 876.7644 692.3814 277.0817 313.9064

3 465.8475 260.8492 774.8305 818.0137 186.8402 291.4508

4 314.3834 266.6357 464.7329 619.5010 159.6143 259.2267

5 326.4375 245.4152 944.1694 693.3167 360.4346 296.6317

the same order, with a single exception of the Nelder-Mead method. The latter is
known to need more iterations in general. The Nelder-Mead method is a derivative-
free algorithm, i.e., it does not use even the first derivatives of the upper level objective
function.
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Table 7.13 Number of objective function values evaluated to solve instances for Network 1

N1 SA + FF SA + FF NM P QN G

100%

1 1,563 1,174 3,249 492 127 4,506

2 1,633 807 3,860 487 231 10,347

3 544 398 3,948 490 507 13,713

4 1,821 1,495 2,367 521 398 7,993

5 565 416 2,939 472 284 2,142

It seems (fromTables7.11 and 7.12) that our sensitivity analysis-based algorithms
are quite competitive against the other methods when the dimension of the test
problem is larger. Such robustness of the procedure may help when dealing with
real-life problems, which are usually of larger dimensions.

In Tables7.13 to 7.16, we also measured the number of values of the upper level
objective function calculated during the performance of the algorithms and the aver-
age computational cost (measured in the number of objective function evaluations
necessary to reduce the error by one decimal order). The evaluation formula used in
Tables7.15 and 7.16 is:

Costobj = #obj

log10 ε0 − log10 ε f
, (7.81)

where #obj is the number of the leader’s objective function evaluations until the
algorithm stops.

Again, the proposed sensitivity analysis-based methods performed at a quite high
level of efficiency compared to the best (quasi-Newton) algorithm even when the
total number of objective function calculations is taken into account, but only for
larger problems (see Table7.14).

According to Tables7.15 and 7.16, with respect to the average cost in the number
of values of the leader’s objective function calculated to reduce the order of error
by 1, our sensitivity analysis-based methods performed better both for small and
medium-sized test problems, which is a promising feature.

The last measure we checked in order to compare the algorithms’ performance is
the computational time that they needed to reach a good approximate solution. It is

Table 7.14 Number of objective function values evaluated to solve instances for Network 2

N2 SA + FF SA + FF NM P QN G

100%

1 4,717 3,582 15,224 17,257 4,545 18,311

2 4,840 3,131 12,996 14,037 6,183 63,752

3 5,312 3,378 9,873 16,779 5,797 49,937

4 4,454 3,592 8,486 12,534 4,644 73,227

5 4,210 3,504 8,094 13,736 5,292 51,781
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Table 7.15 Average cost in the objective functions evaluations for the instances of Network 1

N1 SA + FF SA + FF NM P QN G

100%

1 396.7761 265.1142 529.5666 351.1331 200.2873 1113.0009

2 349.4392 163.3266 557.5213 286.4108 449.9496 3195.5751

3 130.9357 112.8034 631.4701 277.5302 532.3981 4820.8882

4 323.2002 342.1193 376.5560 237.3900 933.1916 2591.4543

5 120.4053 86.2937 483.5187 303.7387 836.0515 708.6885

Table 7.16 Average cost in the objective functions evaluations for the instances of Network 1

N2 SA + FF SA + FF NM P QN G

100%

1 1138.1844 864.3155 6969.9441 2013.1342 1813.1588 15966.7176

2 889.0858 575.1503 5949.9076 1403.6637 1876.7644 19564.7359

3 982.0206 624.4852 2820.4123 1397.8413 1774.8305 16041.0766

4 793.3171 639.7833 5228.1712 2474.2977 1730.7076 21256.8816

5 726.8940 604.9967 9441.2869 1151.3150 1810.6673 17110.1938

Table 7.17 Required computational time to solve the instances for Network 1 (in seconds)

N1 SA + FF SA + FF NM P QN G

100%

1 16.8807 13.4929 28.9564 23.4072 1.2825 136.8533

2 15.7290 12.2325 31.5437 24.6059 5.7874 131.3832

3 17.0548 13.5037 35.8244 22.2121 6.9523 111.3348

4 14.4474 11.7556 39.9163 24.4446 5.3806 145.5045

5 12.9696 10.2944 35.2639 23.2295 3.6844 124.4190

Table 7.18 Required computational time to solve the instances for Network 2 (in seconds)

N2 SA + FF SA + FF NM P QN G

100%

1 311.9787 263.3140 549.9019 297.6871 486.6073 657.8525

2 532.5229 444.5805 498.6304 306.3302 185.2478 627.73277

3 462.7594 391.2001 652.4052 588.3764 562.5629 595.5689

4 279.0327 238.9128 430.6348 255.2499 133.1982 751.8234

5 573.2400 488.5338 581.2160 575.3600 578.9995 507.3447

important to mention that we emulated the benchmark algorithms, so the required
time is going to be valid because we have run all the experiments on the same
computer. Tables7.17 and 7.18 present the time (in seconds) used for each instance
and each network.
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The corresponding two Tables7.17 and 7.18 again demonstrated that our
algorithms ceded the leading position only to the quasi-Newton method that was
proven to be extremely fast when applied to the low-dimensional problems. How-
ever, in the higher-dimensional examples, the sensitivity-analysis-based procedure
didn’t lag behind, even overwhelming all the other methods tested here.

7.2.5 Supplementary Material

In this supplementary material, we present the two networks considered during the
experimentations described. In Figs. 7.2 and 7.3, the dotted lines denote the toll arcs,
while the regular lines correspond to the toll-free arcs.

Also, we specify the parameters used in the two examples we solved in order to
compare the algorithms’ performance. Here, we list the travel costs ca , the demands
nk , the commodities’ origin-destination pairs p = {(o(k), d(k))}k∈K , where o(k)

represents the origin node, and d(k) denotes the destination node; k ∈ K , with
|K | = 2. It is important to mention that in these experiments, we do not restrict the
arc capacities.

Fig. 7.2 Network 1
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Fig. 7.3 Network 2
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Table 7.19 Parameters considered in the instances for Network 1

NN of inst. Parameters

1 c = (1, 2, 5, 4, 3, 3, 2, 7, 4, 3, 8, 12); p = {(1, 6), (2, 7)} ; nk = (10, 9)

2 c = (3, 4, 2, 2, 3, 3, 4, 9, 9, 5, 6, 15); p = {(1, 6), (2, 7)} ; nk = (15, 5)

3 c = (4, 3, 2, 1, 1, 3, 2, 5, 6, 3, 1, 5); p = {(1, 6), (2, 7)} ; nk = (5, 8)

4 c = (1, 3, 1, 2, 3, 1, 1, 5, 4, 2, 4, 13); p = {(1, 6), (2, 7)} ; nk = (5, 12)

5 c = (3, 4, 5, 3, 3, 6, 2, 7, 7, 8, 10, 9); p = {(1, 6), (2, 7)} ; nk = (10, 9)

Table 7.20 Parameters considered in the instances for Network 2

NN of
inst.

Parameters

1 c = (1, 3, 4, 2, 1, 2, 2, 2, 2, 2, 4, 5, 1, 7, 9, 2, 4, 8, 7, 4, 4, 10, 12, 11, 11, 12, 9, 11, 4, 10,

9, 13, 16, 12, 10, 13, 12, 10, 7, 9); p = {(1, 12), (2, 19), (2, 25)} ; nk = (12, 24, 30)

2 c = (9, 3, 7, 1, 5, 3, 4, 4, 4, 9, 1, 4, 6, 5, 6, 1, 6, 7, 7, 4, 6, 5, 2, 4, 7, 7, 8, 6, 10, 6,

5, 3, 8, 6, 11, 10, 9, 3, 5, 4); p = {(1, 12), (2, 19), (1, 25)} ; nk = (31, 41, 120)

3 c = (4, 8, 1, 7, 3, 9, 5, 5, 2, 7, 6, 6, 4, 9, 5, 5, 9, 5, 1, 4, 9, 5, 1, 4, 9, 3, 9, 1, 8, 4,

6, 3, 9, 1, 1, 1, 2, 5, 1, 10); p = {(2, 23), (2, 19), (1, 12)} ; nk = (48, 50, 31)

4 c = (1, 5, 2, 6, 3, 5, 2, 3, 7, 2, 5, 1, 6, 9, 3, 1, 3, 8, 1, 1, 10, 8, 9, 11, 6, 7, 10, 7, 2, 7,

7, 6, 9, 10, 6, 10, 5, 8, 5, 9); p = {(1, 25), (2, 19), (2, 25)} ; nk = (84, 45, 71)

5 c = (4, 3, 6, 4, 4, 3, 2, 3, 3, 2, 7, 3, 4, 5, 7, 1, 6, 4, 4, 5, 7, 3, 5, 10, 10, 9, 10, 10,

10, 7, 7, 8, 11, 10, 10, 8, 8, 9); p = {(1, 25), (2, 23), (2, 25)} ; nk = (10, 6, 8)

First, we show the topology of Network 1 represented with a graph with 12 arcs
and 7 nodes. For the two commodities transported within this network, we cite the
parameters of the TOP problem.

The values of parameters used in the instances for Network 1 are listed in
Table7.19.

Finally, we describe Network 2, which consists in 25 nodes, 40 arcs and 3 com-
modities in Fig. 7.3. Here, again, the dotted lines are toll arcs, the regular lines
represent toll-free highways. The values of parameters of the considered instances
are collected in Table7.20 (recall, that here |K | = 3).



Chapter 8
Reduction of the Dimension of the Upper
Level Problem in a Bilevel Optimization
Model

This section deals with a problem of reducing the dimension of the upper level
problem in a bilevel optimization model, which is sometimes a crucial parameter
when applying stochastic optimization tools to solving such a bilevel problem with
uncertainty (cf. Sect. 6.8). Indeed, when a stochastic procedure is based upon gen-
erating scenario trees, the number of tree branches/nodes grows exponentially in
dependence upon the number of upper level variables and previewed outcomes. If
the number of upper level variables is large, then even when only three possible out-
comes is previewed, scenario trees grow so rapidly that after 5–6 stages, the solved
problems become numerically intractable.

In order to decrease the number of variables governed by the leader at the upper
level, we create an artificial follower (in addition to the first follower in the original
problem). The new follower is supplied with the objective function coinciding with
that of the leader, and part of the originally upper level variables are passed to be con-
trolled by the artificial follower at the lower level. Thus, the lower level problem as a
whole is also transformed to become a Nash equilibrium problem confronted by both
the original and the new follower.We search conditions to guarantee that themodified
and the original bilevel optimization problems share at least one optimal solution.

8.1 Introduction

Bilevel optimization modeling is a new and dynamically developing area of math-
ematical optimization and game theory. For instance, when we study value chains,
the general rule usually is: decisions are made by different parties along the chain,
and these parties have often different, even opposed goals. This raises the difficulty
of supply chain analysis, because regular optimization techniques (e.g., like linear
optimization) cannot be readily applied, so that tweaks and reformulations are often
needed (cf. Kalashnikov and Ríos-Mercado [180]).

The latter is the case with the Natural Gas Value Chain. From extraction at the
wellheads to the final consumption points (households, power plants, etc.), natural
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gas goes through several processes and changes ownership many a time. Bilevel
optimization is especially relevant in the case of the interaction between a Natural
Gas Shipping Company (NGSC) and a Pipeline Operating Company (POC). The first
one owns the gas since the moment it becomes a consumption-grade fuel (usually at
wellhead/refinement complexes, from now onward called the extraction points) and
sells it to Local Distributing Companies (LCD), who own small, city-size pipelines
that serve final costumers. Typically, NGSCs neither engage in business with end-
users, nor actually handle the natural gas physically.

Whenever the volumes extracted by the NGSCs differ from those stipulated in the
contracts, we say an imbalance occurs. Since imbalances are inevitable and necessary
in a healthy industry, the POC is allowed to apply control mechanisms in order to
avoid and discourage abusive practices (the so called arbitrage) on part of theNGSCs.
One of such tools is cash-out penalization techniques after a given operative period.
Namely, if a NGSC has created imbalances in one or more pool zones, then the POC
may proceed to “move” gas from positive-imbalanced zones to negative-imbalanced
ones, up to the point where every pool zone has the imbalance of the same sign,
i.e., either all non-negative or all non-positive thus, rebalancing the network. At this
point, the POC will either charge the NGSC a higher (than the spot) price for each
volume unit of natural gas withdrawn in excess from its facilities, or pay back a lower
(than the sale) price, if the gas was not extracted.

Prices as a relevant factor induce us into the area of stochastic optimization instead
of the deterministic approach. The formulated bilevel problem is reduced to another
bilevel one but with linear constraints at both levels (cf. Kalashnikov et al. [179]).
However, this reduction involves introduction of many artificial variables, on the one
hand, and generation of a lot of scenarios to apply the essentially stochastic tools, on
the other hand. The latter makes the dimension of the upper level problem a simply
unbearable burden even for the most modern and powerful PC systems.

The aim of this section is a mathematical formalization of the task of reduction
of the upper level problem’s dimension without affecting (if possible!) the optimal
solution of the original bilevel optimization problem. In its main part, we follow the
previous papers by Kalashnikov et al. [170, 171].

8.2 An Example

We start with an example. Consider the following bilevel (linear) optimization prob-
lem (P1):

F(x, y, z) = x − 2y + z → min
x,y,z

subject to

x + y + z ≥ 15,

0 ≤ x, y, z ≤ 10,

z ∈ Ψ (x, y) = Argmin
z

{ f2(x, y, z) = 2x − y + z : x + y − z ≤ 5, 0 ≤ z ≤ 10}.
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It is easy to check that problem (P1) has a unique optimal solution (x∗, y∗, z∗) =
(0, 10, 5), with F(x∗, y∗, z∗) = −15. By the way, the lower level optimal value
f2(x∗, y∗, z∗) = −5.
Now, let us construct a modified problem (MP1), which is a bilevel optimization

problem with two followers acting according to a Nash equilibrium between them:

F(x, y, z) = x − 2y + z → min
x,y,z

subject to

x + y + z ≥ 15,

0 ≤ x, y, z ≤ 10,

(y, z) ∈ Φ(x)

where Φ(x) = {
(y, z) solving the lower level equilibrium problem

Find a Nash equilibrium between two followers:

(1) Follower 1 has to solve the problem:

y ∈ Argmin
y

{ f1(x, y, z) = x − 2y + z : x + y − z ≤ 5, 0 ≤ y ≤ 10}
(2) Follower 2 has to solve the problem:

z ∈ Argmin
z

{ f2(x, y, z) = 2x − y + z : x + y − z ≤ 5, 0 ≤ z ≤ 10}}.

In other words, in problem (MP1), the leader controls directly only the variable
x , whereas the lower level is represented with an equilibrium problem. In the latter,
there are two decision makers: the second one is the same follower from problem
(P1), she/he controls the variable z, accepts the value of the leader’s variable x as a
parameter, and tries to reach a Nash equilibrium with the first follower, who actually
also aims at finding the equilibrium with the second follower by controlling only the
variable y and taking the value of the leader’s variable x as a parameter. In certain
sense, follower 1 is a “reflexion” of the leader, because her/his objective function is
the leader’s objective function’s projection onto the space R2 of the variables (y, z)
for each fixed value of the variable x .

Now it is not difficult to demonstrate that problem (MP1) is also solvable and
has exactly the same solution as problem (P1): (x∗, y∗, z∗) = (0, 10, 5) with opti-
mal objective function value F(x∗, y∗, z∗) = −15. By the way, the lower level
equilibrium problem has the optimal solution y∗ = y∗(x) = 10, z∗ = z∗(x) =
min{10, 5 + x} for each value 0 ≤ x ≤ 10 of the leader’s upper level variable. Of
course, the optimal value x∗ = 0 provides for the minimum value of the upper level
objective function F .
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8.3 Relations Between Bilevel Problems (P1) and (MP1)

Let us consider a more general form of the bilevel optimization problem under the
same name of (P1): Find a vector (x∗, y∗, z∗) ∈ X × Y × Z ⊂ R

n1 × R
n2 × R

n3

solving the following problem:

F(x, y, z) → min
x,y,z

(x, y) ∈ X × Y,

G(x, y, z) ≤ 0, (8.1)

z ∈ Ψ (x, y) = Argmin
z

{ f2(x, y, z) : z ∈ Z , g(x, y, z) ≤ 0.}

Here, F, f2 : Rn → R and G : Rn → R
m1 , g : Rn → R

m2 are continuous
functions with n = n1 + n2 + n3, where ni , i = 1, 2, 3 and m j , j = 1, 2, are
fixed natural numbers. As associated to the general problem (P1), let us define the
following auxiliary subset:

Φ = {(x, y) ∈ X × Y : ∃z ∈ Z such that g(x, y, z) ≤ 0} . (8.2)

Now we make the following assumption:

A1. The subset Φ1 ⊆ Φ comprising all the pairs (x, y) ∈ Φ such that there exists a
unique vector z = z(x, y) ∈ Ψ (x, y) satisfying the inequality G (x, y, z(x, y)) ≤ 0,
is nonempty, convex and compact. Moreover, assume that the thus defined mapping
z : Φ1 → Rn3 is continuous with respect to all variables x and y.

Next,we introduce another bilevel optimizationproblem:Find avector (x∗, y∗, z∗)
∈ X × Y × Z ⊂ R

n1 × R
n2 × R

n3 solving the problem (MP1) defined as follows:

F(x, y, z) → min
(x,y,z)∈X×Y×Z

(8.3)

(y, z) ∈ Λ(x), (8.4)

where Λ(x) is a collection of generalized Nash equilibrium (GNE) points of the two
person gamedescribed below.Namely, for any pair (x, z) ∈ X×Z , player 1 selects its
strategies from the set Y and minimizes its payoff function f1(x, y, z) ≡ F(x, y, z)
subject to the constraints G(x, y, z) ≤ 0 and g(x, y, z) ≤ 0. Player 2, in its turn
considering a pair (x, y) ∈ X ×Y as fixed, uses the set of strategies Z and minimizes
its payoff function f2(x, y, z) subject to the same constraints G(x, y, z) ≤ 0 and
g(x, y, z) ≤ 0.

Remark 8.1 It is evident that if a vector (y, z) ∈ Y × Z solves the lower level
equilibriumproblemof (MP1) for afixed x ∈ X , then z = z(x, y),where themapping
z := z(x, y) with z(x, y) ∈ Ψ (x, y) is defined in assumption A1. Conversely, if
(for a fixed x ∈ X ) a vector y minimizes the function f 1(y) ≡ f1 (x, y, z(x, y))
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over an appropriate set of vectors y, and in addition, G (x, y, z (x, y)) ≤ 0, then
(y, z) = (y, z (x, y)) solves the lower level equilibrium problem in (MP1).

We are interested in establishing relationships between the solutions sets of prob-
lems (P1) and (MP1). First, we can prove the following auxiliary result.

Theorem 8.1 Under assumption A1, there exists a nonempty convex compact subset
D ⊂ X such that for all x ∈ D, there is a generalized Nash equilibrium (GNE)
solution (y, z) ∈ Y × Z of the lower level equilibrium problem of problem (MP1).

Proof Consider a projection of the compact convex subset Φ1 onto the set X :

D1 := PrXΦ1 = {x ∈ X : ∃y such that (x, y) ∈ Φ1} . (8.5)

The subset D1 is clearly nonempty, compact, and convex. Indeed, by assumption A1,
one hasΦ1 �= ∅. Hence, there exists at least one pair (x, y) ∈ Φ1, which immediately
implies that x ∈ D1, i.e., the latter subset is not empty. Next, let {xn}∞n=1 ⊂ D1 be
an arbitrary sequence. By definition (8.5), there are yn ∈ Y such that (xn, yn) ∈ Φ1,
n = 1, 2, . . .. Again due to assumption A1, the subset Φ1 is compact, therefore,
one can select a convergent subsequence

(
xnk , ynk

) → (x, y) ∈ Φ1 when k → ∞.
Definition (8.5) of D1 implies that the limit point x of the sequence {xn} ⊂ D1 also
belongs to D1, whichmeans that the latter subset is compact. Finally, we demonstrate
that the subset D1 is convex. Indeed, consider two arbitrary points x1, x2 ∈ D1. By
definition (8.5), there exist points y1, y2 ∈ Y such that (x1, y1), (x2, y2) ∈ Φ1. The
latter subset’s convexity (assumed in A1) implies

λ (x1, y1) + (1 − λ) (x2, y2) ∈ Φ1 for all λ ∈ [0, 1].

This inclusion can be rewritten as

(λx1 + (1 − λ)x2, λy1 + (1 − λ)y2) ∈ Φ1 for all λ ∈ [0, 1],

which means by definition (8.5) that λx1+ (1−λ)x2 ∈ D1 for an arbitrary λ ∈ [0, 1]
and thus establishes the latter subset’s convexity.

Now select arbitrary x ∈ D1 and y ∈ Y such that (x, y) ∈ Φ1. According
to assumption A1, there exists the unique solution z = z(x, y) of the lower level
problem (LLP) of the bilevel program (P1), i.e., z = z(x, y) ∈ Ψ (x, y). In other
words, z = z(x, y) is the optimal response of the follower to the leader’s strategy
(x, y):

f2 (x, y, z(x, y)) = min
z∈Z

{ f2(x, y, z) : g(x, y, z) ≤ 0} . (8.6)

Moreover, by assumption A1, this optimal response also satisfies the upper level
constraints of problem (P1), i.e.

G (x, y, z(x, y)) ≤ 0. (8.7)
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Now consider a section of Φ1 induced by an arbitrary x ∈ D1:

T (x) = {y ∈ Y : (x, y) ∈ Φ1} . (8.8)

Again by definition (8.5) of the subset D1, section (8.8) is clearly nonempty, i.e.,
T (x) �= ∅. It is also easy to see that T (x) is a compact and convex subset of
Y , indeed, select an arbitrary sequence of vectors {yn}∞n=1 ⊂ Y . Since, accord-
ing to (8.8), this sequence paired with x belongs to the compact Φ1, that is,
{(x, yn)}∞n=1 ⊂ Φ1, then it is possible to find a subsequence of pairs converging
to an element of Φ1, i.e.,

(
x, ynk

) → (x, y) ∈ Φ1 as k → ∞. By (8.8), the latter
implies limk→∞ ynk = y ∈ T (x) and thus proves the compactness of T (x). It is also
not difficult to verify its convexity: select two arbitrary points y1, y2 ∈ T (x) and
consider their convex combination y = λy1 + (1 − λ)y2. Repeating the application
of definition (8.5), we note that two extended vectors (x, y1) and (x, y2) are elements
of the convex (by assumption A1) subset Φ1. Hence, their convex combination also
belongs toΦ1, that is, (x, y) = (x, λy1 + (1 − λ)y2) ∈ Φ1,which implies, according
to (8.8), y = λy1 + (1 − λ)y2 ∈ T (x) thus demonstrating the convexity of T (x).

Next, it is evident that if there exists an equilibrium strategy y = y(x) of follower
1 at the lower level GNE (general Nash equilibrium) problem in (MP1), it necessarily
belongs to the subset T (x). Because T (x) is a nonempty compact and the mapping
z = z(x, y) is continuous with respect to y (according to assumption A1), there
exists a solution y = y(x) to the mathematical optimization problem

f 1(y) ≡ f1 (x, y, z(x, y)) → min
y∈T (x)

. (8.9)

Now one can conclude (cf. Remark8.1) that the vector

(y(x), z (x, y(x))) ∈ T (x) × Ψ (x, y(x))

solves the lower level problemof themodified bilevel program (MP1). Therefore, one
can select the subset D1 as the desired set D to complete the proof of the theorem. �

8.4 An Equivalence Theorem

In this subsection, we establish relationships between the optimal solution sets of
problems (P1) and (MP1). We start with a rather restrictive assumption concerning
problem (MP1), having in mind to relax it in Sect. 8.5.

A2. Assume that the optimal response by follower 1 (as part of the generalized Nash
equilibrium (GNE) state) y = y(x), the existence of which for every x ∈ D follows
from Theorem8.1, is determined uniquely.
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Remark 8.2 In assumption A2, it would be redundant to demand the uniqueness
of the GNE state z = z(x) since this has been already required implicitly through
assumption A1. Indeed, if the optimal response y = y(x) of follower 1 is determined
uniquely, so is the follower 2’s optimal response z = z (x, y(x)) = z(x).

Theorem 8.2 Under assumptions A1 and A2, problems (P1) and (MP1) are
equivalent.

Proof First, assumption A1 clearly excludes the possibility for problem (P1) to have
a void solution set. In other words, a solution set Ω1 ⊂ X × Y × Z for problem (P1)
is nonempty. Denote by Ω2 ⊂ X × Y × Z the solution set for problem (MP1), then,
in order to prove the theorem, it suffices to show that

Ω1 = Ω2. (8.10)

We will do it in several steps.
(A) Let (x∗, y∗, z∗) ∈ Ω1 be an arbitrary solution of (P1). The definition of a solution
to (P1), together with Theorem8.1, imply that x∗ ∈ D = D1, (x∗, y∗) ∈ Φ1, and

F
(
x∗, y∗, z∗) = min

(x,y)∈Φ1
F (x, y, z(x, y)) . (8.11)

On the other hand, by assumption A2, there exists a unique optimal response of
follower 1 y = y (x∗) that is part of the lower level GNE state solving the lower
level GNE problem in (MP1). In other words, we have, first,

G
(
x∗, y

(
x∗) , z

(
x∗, y

(
x∗))) ≤ 0,

and second,

F
(
x∗, y

(
x∗) , z

(
x∗, y

(
x∗))) = f1

(
x∗, y

(
x∗) , z

(
x∗, y

(
x∗)))

= min
y∈T (x∗)

f1
(
x∗, y, z

(
x∗, y

))
. (8.12)

Since (x∗, y (x∗)) ∈ Φ1, the previous relationships (8.11) and (8.12) evidently yield
the inequality

F
(
x∗, y∗, z∗) = F

(
x∗, y∗, z

(
x∗, y∗)) ≤ F

(
x∗, y

(
x∗) , z

(
x∗, y

(
x∗))) . (8.13)

However, the strict inequality F (x∗, y∗, z (x∗, y∗)) < F (x∗, y (x∗) , z (x∗, y (x∗)))
is impossible as contradicting the definition ofGNE (8.12) because f1 ≡ F according
to the description of the bilevel problem (MP1). Therefore, (8.13) actually is a series
of equations

F
(
x∗, y∗, z∗) = F

(
x∗, y∗, z

(
x∗, y∗)) = F

(
x∗, y

(
x∗) , z

(
x∗, y

(
x∗))) ,
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which implies that the vector y∗ ∈ T (x∗) is also a GNE solution of the lower level
equilibrium problem in (MP1). However, by assumption A2 we have the identity
y = y (x∗) = y∗, that is, the collection (x∗, y∗, z∗) solves the bilevel problem
(MP1), i.e., (x∗, y∗, z∗) ∈ Ω2. The latter proves the inclusion

Ω1 ⊆ Ω2. (8.14)

(B) Conversely, let (x∗, y∗, z∗) be an arbitrary solution of the modified bilevel opti-
mization problem (MP1), in other words, (x∗, y∗, z∗)Ω2. By definition (8.3)–(8.4),
first, (y∗, z∗) ∈ Λ(x∗), and second, according to assumptions A1 and A2, one has

F
(
x∗, y∗, z∗) = min

x∈D
F (x, y(x), z (x, y(x)))

= F
(
x∗, y

(
x∗) , z

(
x∗, y

(
x∗))) . (8.15)

Here, D ⊂ X is the convex compact set whose existence is established in
Theorem8.1. Next, by assumption A1, (x∗, y (x∗)) ∈ Φ1. Let us now assume that
there exists a pair (x̃, ỹ) ∈ Φ1 such that

F (x̃, ỹ, z (x̃, ỹ)) = min
(x,y)∈Φ1

F (x, y, z(x, y))

< F
(
x∗, y

(
x∗) , z

(
x∗, y

(
x∗))) . (8.16)

Due to assumption A2, there exists uniquely a vector y (x̃) as part of the solution of
the lower level equilibrium problem in (MP1), that is,

F (x̃, y (x̃) , z (x̃, y (x̃))) = min
y∈T (x̃)

F (x̃, y, z (x̃, y))

= F (x̃, ỹ, z (x̃, ỹ))

< F
(
x∗, y

(
x∗) , z

(
x∗, y

(
x∗))) . (8.17)

Comparing the first and the last terms in the chain of relationships (8.17), we come
to a contradiction with the initial assumption about (x∗, y∗, z∗) ∈ Ω2. It means that
the strict inequality in (8.16) is impossible, which, owing to (8.15), yields

min
(x,y)∈Φ1

F (x, y, z(x, y)) = F
(
x∗, y

(
x∗) , z

(
x∗, y

(
x∗))) = F

(
x∗, y∗, z∗) .

The last equations immediately establish that (x∗, y∗, z∗) belongs to Ω1, which
provides the reverse inclusion Ω1 ⊇ Ω2 and, combined with (8.14), leads to the
desired equality (8.10) thus, completing the proof of the theorem. �
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8.5 Examples and Extensions

In this section,we examine linear bilevel programs andfind outwhen assumptionsA1
and A2 hold in this particular case. Moreover, we try to relax some of the restrictive
conditions in these assumptions.

8.5.1 The Nonlinear Case

In order to investigate the conditions under which assumption A1 holds, we first
prove the following auxiliary result.

Lemma 8.1 Consider a continuous function F : X × Z → R, where X ⊆ R
n and

Z ⊆ R
m are closed convex subsets. Assume that F is (strictly) monotone increasing

with respect to each of the variables z ∈ Z. In other words, for each component zk ,
k = 1, . . . , m, and any fixed x ∈ X and z−k := (z1, . . . , zk−1, zk+1, . . . , zm), one
has

F
(

x, z1k , z−k

)
≤ F

(
x, z2k , z−k

)
if and only if z1k ≤ z2k . (8.18)

Moreover, for each fixed x ∈ X, let the function ϕ(z) := F(x, z) attain its global
minimum over the (closed convex) subset Z at a unique point z = z(x). Then each
component zk = zk(x), k = 1, . . . , m, of the minimum point z = z(x) is a convex
function with respect to x ∈ X.

Proof Select an arbitrary k ∈ {1, . . . , m} and consider the corresponding component
of the minimum-point-mapping zk = zk(x) defined over X . Let x1 and x2 be two
arbitrary points of the latter subset X ⊆ R

n and λ ∈ [0, 1] an arbitrary parameter
value. Then, we are to establish that

zk

(
λx1 + (1 − λ)x2

)
≤ λzk

(
x1

)
+ (1 − λ)zk

(
x2

)
. (8.19)

In order to do that, we recall that according to its definition, the vector
z
(
λx1 + (1 − λ)x2

)
solves the minimization problem

F
(
λx1 + (1 − λ)x2, z

(
λx1 + (1 − λ)x2

))
= min

z∈Z
F

(
λx1 + (1 − λ)x2, z

)
.

(8.20)

The convexity of the subset Z implies that λz
(
x1

) + (1 − λ)z
(
x2

) ∈ Z . Therefore,
(8.20) yields the inequality

F
(
λx1 + (1 − λ)x2, z

(
λx1 + (1 − λ)x2

))

≤ F
(
λx1 + (1 − λ)x2, λzk

(
x1

)
+ (1 − λ)zk

(
x2

)
, z−k

(
λx1 + (1 − λ)x2

))
.
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Due to the mapping F being monotone non-decreasing with respect to the variable
zk , inequality (8.18), together with the latter, produce the desired inequality (8.19)
and thus complete the proof. �

Remark 8.3 The just obtained convexity of the components zk = zk(x) of the
minimum-point mapping z = z(x), according to the classical result in Rockafellar
[272], immediately guarantees that the said mapping z = z(x) is continuous over
the (relative) interior of the subset X .

It is not difficult to verify that for a solvable problem (P1) with a compact subset
Φ, assumption A1 always holds if all the components of the mappings G and g are
convex continuous functions, and in addition, the upper level constraints mapping G
is monotone non-decreasing, and the lower level objective function f2 = f2(x, y, z)
(strictly) monotone increasing with respect to all components of vector z for each
fixed pair of values of (x, y).

Lemma 8.2 Consider compact subsets X, Y, Z of the corresponding finite-dimen-
sional Euclidean spaces and assume that the subsetΦ defined in (8.2) is also compact.
If the constraints of the solvable bilevel problem (P1) are defined with the mappings
G and g having convex continuous components and, in addition, the upper level
constraints mapping G is monotone non-decreasing, and the lower level objective
function f2 = f2(x, y, z) strictly monotone increasing with respect to all components
of vector z for each fixed pair of values of (x, y), then assumption A1 holds.

Proof If problem (P1) is solvable, then the subset Φ defined by (8.2) is convex.
Indeed, for any vectors

(
x1, y1

)
and

(
x2, y2

)
from Φ, and the corresponding z1,

z2 ∈ Z such that

g
(

x1, y1, z1
)

≤ 0 and g
(

x2, y2, z2
)

≤ 0, (8.21)

and an arbitraryλ ∈ [0, 1] consider their convex combinations xλ := λx1+(1− λ)x2,
yλ := λy1 + (1 − λ)y2, and zλ := λz1 + (1 − λ)z2. Now the convexity of all
components of the mapping g and the subset Z , as well as relationships (8.21) allow
one to evaluate

g (xλ, yλ, zλ) ≤ λg
(

x1, y1, z1
)

+ (1 − λ)g
(

x2, y2, z2
)

≤ 0

thus having established the convexity of the subset Φ.
Hence, the subset

Γ (x, y) := {z ∈ Z : g(x, y, z) ≤ 0} (8.22)

is a nonempty, compact and convex subset. Because of that, for every fixed pair
(x, y) ∈ Φ, the continuous and strictly monotone increasing function ϕ(z) :=
f2(x, y, z) attains its (global) minimum over the subset Γ (x, y) at a unique point
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z = z(x, y) depending continuously upon the variables (x, y) ∈ X × Y . Next,
the subset Φ1 introduced in assumption A1 as the collection of pairs (x, y) ∈ Φ

such that the triple (x, y, z(x, y)) is feasible for the upper level problem, i.e.,
G (x, y, z(x, y)) ≤ 0, has the following properties. First, it is non-empty (otherwise,
problem (P1) would be unsolvable), second, it is compact due to the continuity of the
function G and the compactness of the set Φ, and third, it is convex. The latter prop-
erty is established similarly to the convexity of the subset Φ. Indeed, to show that, it
is enough to demonstrate that the mapping G̃(x, y) := G (x, y, z(x, y)) defined over
(x, y) ∈ Φ has all its components convex as functions G̃i : Φ → R, i = 1, . . . , m1.
Select again two arbitrary vectors

(
x1, y1

)
and

(
x2, y2

)
from Φ and the correspond-

ing z1 = z
(
x1, y1

)
, z2 = z

(
x2, y2

) ∈ PrZΦ defined (uniquely) as providing the
minimum value to the functions ϕ1(z) := f2

(
x1, y1, z

)
and ϕ2(z) := f2

(
x2, y2, z

)
,

respectively. Again, take an arbitrary λ ∈ [0, 1] to form their convex combinations
xλ := λx1 + (1 − λ)x2, yλ := λy1 + (1 − λ)y2, and zλ := λz1 + (1 − λ)z2. By
Lemma8.1, each component zk = zk(x, y) of the function z = z(x, y) is convex
over the subset Φ, k = 1, . . . , n3. Therefore, one can deduce the following chain of
inequalities based upon the monotony with respect to z and convexity by x, y, z of
the mapping G:

G̃ (xλ, yλ) ≡ G (xλ, yλ, z (xλ, yλ)) ≤ G (xλ, yλ, zλ) ≤ λ1G
(

x1, y1, z1
)

+ (1 − λ)G
(

x2, y2, z2
)

= λG̃
(

x1, y1
)

+ (1 − λ)G̃
(

x2, y2
)

. (8.23)

Now since the subset Φ1 is in fact the intersection of the (convex) set Φ and the
convex level set G (x, y, z(x, y)) ≡ G̃(x, y) ≤ 0, hence the subsetΦ1 is convex, too.

Finally, the convexity of the components of the function z = z(x, y) implies their
continuity over the subset Φ1 (possibly, except only its boundary points) and thus
completes the proof of the Lemma. �

Assumption A2 is much more restrictive than A1: the uniqueness of a generalized
Nash equilibrium (GNE) is indeed a quite rare case. In order to deal with assumption
A2, we have to suppose additionally that the upper and lower level objective functions
are (continuously) differentiable, and moreover, the combined gradient mapping(∇y F,∇z f2

) : Rn2+n3 → R
n2+n3 is strictlymonotone (for each fixed vector x ∈ X ).

In mathematical terms, the latter means that

〈(
∇y F

(
x, y1, z1

)
,∇z f2

(
x, y1, z1

))
−

(
∇y F

(
x, y2, z2

)
,∇z f2

(
x, y2, z2

))
,

(
y1, z1

)
−

(
y2, z2

)〉
> 0 (8.24)

for all
(
y1, z1

) �= (
y2, z2

)
from the (convex) set Ξ = Ξ(x) defined below:

Ξ = Ξ(x) = {(y, z) ∈ Y × Z : G(x, y, z) ≤ 0 and g(x, y, z) ≤ 0} , (8.25)
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which is assumed to be nonempty for some subset K ⊆ X . Then it is well-known
(cf. Kinderlehrer and Stampachhia [187]) that for every x ∈ K , there exists a unique
generalized Nash equilibrium (GNE) (y(x), z(x)) of the lower level problem (LLP)
in (MP1), which can be found as a (unique) solution of the corresponding variational
inequality problem: Find a vector (y(x), z(x)) ∈ Ξ(x) such that

(y − y(x))� ∇y F (x, y(x), z(x)) + (z − z(x))� ∇z f2 (x, y(x), z(x)) ≥ 0 (8.26)

for all (y, z) ∈ Ξ(x).

8.5.2 The Linear Case

In the linear case, when all the objective functions and the components of constraints
are linear functions, the situation with providing that assumptions A1 and A2 hold,
is a bit different. For assumption A1 to be valid, again, it is enough to impose
conditions guaranteeing the existence of a unique solution of the lower level LP
problem z = z(x, y) on a certain compact subset of Z . For instance, the classical
conditions will do (cf. Mangasarian [214]).

As for assumption A2, here in the linear case, the problem is much more compli-
cated. Indeed, the uniqueness of a generalized Nash equilibrium (GNE) at the lower
level of (MP1) is a much too restrictive demand. As was shown by Rosen [275],
the uniqueness of a so-called normalized GNE is a rather more realistic assumption.
This idea was further developed later by many authors (cf. Nishimura et al. [254]).

Beforewe consider the general case,we examine an interesting example (a slightly
modified example from Saharidis and Ierapetritou [277]), in which one of the upper
level variables accepts only integer values. In other words, the problem studied in
this example, is a mixed-integer bi-level linear optimization problem (MIBLP).

Let themixed-integer bilevel linear optimization problemhave the following form:

F(x, y, z) = −60x − 10y − 7z → min
x,y,z

(8.27)

subject to
x ∈ X = {0; 1} , y ∈ [0, 100], z ∈ [0, 100], (8.28)

and
f2(x, y, z) = −60y − 8z → min

z
(8.29)

subject to

g(x, y, z) :=
⎡

⎣
10 2 3
5 3 0
5 0 1

⎤

⎦

⎡

⎣
x
y
z

⎤

⎦ −
⎡

⎣
225
230
85

⎤

⎦ ≤
⎡

⎣
0
0
0

⎤

⎦ . (8.30)
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We select the mixed-integer bi-level linear program (MIBLP) (8.27)–(8.30) as
problem (P1). Its modification in comparison to the original example in Saharidis
and Ierapetritou [277] consists in moving the lower level variable y (in the original
example) up to the upper level in our example. (However, it is curious to notice that
the optimal solution of the original example coincides with that of the modified one:
(x∗, y∗, z∗) = (

1; 75; 212
3

)
in both cases).

It is easy to examine that assumption A1 holds in this problem: indeed, the lower
level problem (8.29)–(8.30) has a unique solution

z = z(x, y) = min

{
85 − 5x, 75 − 10

3
x − 2

3
y

}

for any pair of feasible values (x, y) ∈ Φ = {(x, y) : x ∈ {0; 1} , 0 ≤ y ≤ 100},
which goes in line with the predictions by Mangasarian [214]. However, not all
triples (x, y, z(x, y)) satisfy the lower level constraints g (x, y, z(x, y)) ≤ 0 thus,
the feasible subset Φ1 ⊂ Φ described in assumption A1 here becomes

Φ1 = {
(0, y) : 0 ≤ y ≤ 762

3

} ∪ {(1, y) : 0 ≤ y ≤ 55} , (8.31)

with the optimal reaction function

z = z(x, y) :=
{
75 − 2

3 y, if x = 0,

712
3 − 2

3 y, if x = 1.
(8.32)

Therefore, assumption A1 would hold completely if the variable x were continu-
ous. However, here the subset Φ1 ⊂ Φ is nonempty, composed of two compact and
convex parts, and the function z = z(x, y) is continuous with respect to the continu-
ous variable y over each of the connected parts of Φ1. Next, comparing the optimal
values of the upper level objective function F over both connected parts of the fea-
sible set Φ1, we come to the conclusion that the triple (x∗, y∗, z∗) = (

1; 75; 212
3

)

is the optimal solution of problem (P1). Indeed, F
(
1, y∗

1 , z∗
1

) = F
(
1; 75; 212

3

) =
−1, 0112

3 is strictly less than F
(
0, y∗

0 z∗
0

) = F
(
0; 72

3 ; 238
9

) = −9338
9 .

Now consider the modified problem:

F(x, y, z) = −60x − 10y − 7z → min
x,y,z

(8.33)

subject to
x ∈ X = {0; 1} , y ∈ [0, 100], z ∈ [0, 100], (8.34)
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and
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

f1(x, y, z) = −60x − 10y − 7z → min
0≤y≤100

, f2(x, y, z) = −60y − 8z → min
0≤z≤100

,

subject to

G(x, y, z) :=
⎡

⎢
⎣

10 2 3

5 3 0

5 0 1

⎤

⎥
⎦

⎡

⎢
⎣

x

y

z

⎤

⎥
⎦ −

⎡

⎢
⎣

225

230

85

⎤

⎥
⎦ ≤

⎡

⎢
⎣

0

0

0

⎤

⎥
⎦ .

(8.35)

We call problem (8.33)–(8.35) the modified problem (MP1). It is easy to see that
for each value of x , either x = 0 or x = 1, the lower level problem has a continuous
set of generalized Nash equilibria (GNE). Namely, if x = 0, then all the GNE points
(y, z) = (y(0), z(0)) belong to the straight-line interval described by the equation:

2y + 3z = 225 with 0 ≤ y ≤ 762
3 . (8.36)

In a similar manner, another straight-line interval of GNE vectors for x = 1, that
is (y, z) = (y(1), z(1)), can be represented by the linear equation

2y + 3z = 215 with 0 ≤ y ≤ 75. (8.37)

As it could be expected, the linear upper level objective function F attains its min-
imum value at the extreme points of the above intervals (8.36) and (8.37), corre-
sponding to the greater value of the variable y:

F∗
0 = F

(
x∗
0 , y∗

0 , z∗
0

) = F
(
0; 762

3 ; 238
9

) = −9338
9 ,

F∗
1 = F

(
x∗
1 , y∗

1 , z∗
1

) = F
(
1; 75; 212

3

) = −1, 0112
3 .

Since F∗
1 < F∗

0 , the global optimal solution of problem (MP1) coincides with that
of the original problem (P1): (x∗, y∗, z∗) = (

1; 75; 212
3

)
, although assumption A2

is clearly not valid in this example. �

8.5.3 Normalized Generalized Nash Equilibrium

Following the line proposed in Rosen [275], we consider the concept of a normalized
generalized Nash equilibrium (NGNE) defined below. First of all, we have to make
our assumptions more detailed:

A3. We assume that all components G j = G j (x, y, z), j = 1, . . . , m1, and gk =
gk(x, y, z), k = 1, . . . , m2, of the mappings G and g, respectively, are convex
functions with respect to the variables (y, z). Moreover, for each fixed and feasible
x ∈ X , there exists a vector

(
y0, z0

) = (
y0(x), z0(x)

) ∈ Y × Z such that
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G j

(
x, y0(x), z0(x)

)
< 0, and gk

(
x, y0(x), z0(x)

)
< 0, (8.38)

for every nonlinear constraint G j (x, y, z) ≤ 0 and gk(x, y, z) ≤ 0, respectively.

Remark 8.4 Inequalities (8.38) in assumption A3 describe a sufficient (Slater) con-
dition for the Karush-Kuhn-Tucker (KKT) constraint qualification.

Wewish to use the differential formof the necessary and sufficientKKTconditions
for a constrainedminimum.Therefore,wemake the following additional assumption:

A4. All components G j = G j (x, y, z), j = 1, . . . , m1, and gk = gk(x, y, z),
k = 1, . . . , m2, of the mappings G and g, respectively, possess continuous first
derivatives with respect to both y and z for all feasible (x, y, z) ∈ X × Y × Z . We
also assume that for all feasible points, the payoff function fi (x, y, z) for the i-th
player, i = 1, 2, has continuous first derivatives with respect to the corresponding
variables controlled by that player.

For our two scalar lower level objective functions in (MP1), namely, fi (x, y, z),
i = 1, 2, we denote by ∇y f1(x, y, z) and ∇z f2(x, y, z), respectively, their gradients
with respect to players’ control variables.

The KKT conditions equivalent to (8.4) can now be stated as follows: First,

G(x, y, z) ≤ 0, and g(x, y, z) ≤ 0, (8.39)

and there exist u = (u1, u2) ∈ R
m1+ ×R

m1+ , and v = (v1, v2) ∈ R
m2+ ×R

m2+ such that

uT
i G(x, y, z) = 0, and vT

i g(x, y, z) = 0, i = 1, 2 (8.40)

and finally,

{
f1(x, y, z) ≤ f1(x, w, z) + uT

1 G(x, w, z) + vT
1 g(x, w, z), ∀w ∈ Y,

f2(x, y, z) ≤ f2(x, y, s) + uT
2 G(x, y, s) + vT

2 g(x, y, s), ∀s ∈ Z .
(8.41)

Since fi , i = 1, 2, and the components of the mappings G and g are convex and
differentiable by assumptions A3 and A4, inequalities (8.41) are equivalent to

{∇y f1(x, y, z) + u�
1 ∇yG(x, y, z) + v�

1 ∇y g(x, y, z) = 0,

∇z f2(x, y, z) + u�
2 ∇zG(x, y, z) + v�

2 ∇zg(x, y, z) = 0.
(8.42)

We will also make use of the following relationships, which hold due to the
convexity of the components of G and g. More exactly, for every

(
y0, z0

)
,
(
y1, z1

) ∈
Y × Z and each fixed x ∈ X , we have
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⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

G j
(
x, y1, z1

) − G j
(
x, y0, z0

) ≥ (
y1 − y0, z1 − z0

)� ∇(y,z)G j
(
x, y0, z0

)

= (
y1 − y0

)� ∇yG j
(
x, y0, z0

) + (
z1 − z0

)� ∇zG j
(
x, y0, z0

)
, j = 1, . . . , m1,

gk
(
x, y1, z1

) − gk
(
x, y0, z0

) ≥ (
y1 − y0, z1 − z0

)� ∇(y,z)gk
(
x, y0, z0

)

= (
y1 − y0

)� ∇y gk
(
x, y0, z0

) + (
z1 − z0

)� ∇zgk
(
x, y0, z0

)
, k = 1, . . . , m2.

(8.43)

A weighted nonnegative sum of the functions fi , i = 1, 2, is defined as follows:

σ(y, z; x, r) := r1 f1(x, y, z) + r2 f2(x, y, z), ri ≥ 0, (8.44)

for each nonnegative vector r ∈ R
2. For every fixed r ∈ R

2+ and x ∈ X , a related
mapping p = p(y, z; x, r) fromR

n2+n3 into itself is defined in terms of the gradients
of the functions fi , i = 1, 2, by

p(y, z; x, r) =
[

r1∇y f1(x, y, z)

r2∇z f2(x, y, z)

]
. (8.45)

FollowingRosen [275],we shall call p(y, z; x, r) thepseudo-gradientofσ(y, z; x, r).
An important property of the latter function is given in the following

Definition 8.1 The function σ(y, z; x, r) is called uniformly diagonally strictly con-
vex for (y, z) ∈ Y × Z and fixed r ≥ 0, if for every fixed x ∈ X and for any(
y0, z0

)
,
(
y1, z1

) ∈ Y × Z , one has

(
y1 − y0

)� [
p

(
y1, z1; x, r

)
− p

(
y0, z0; x, r

)]
> 0. (8.46)

Repeating the arguments similar to those in Rosen [275], we will show later that a
sufficient condition for σ(y, z; x, r) to be uniformly diagonally strictly convex is that
the symmetric matrix

[
P(y, z; x, r) + P(y, z; x, r)�

]
is (uniformly with respect to

x from X ) positive definite for (y, z) ∈ Y × Z , where P(y, z; x, r) is the Jacobi
matrix with respect to (y, z) of the mapping p = p(y, z; x, r).

Again following Rosen [275], we consider a special kind of equilibrium points
such that each of the nonnegative multipliers involved in the KKT conditions (8.40)–
(8.41) is given by {

u1 = u0/r1 and v1 = v0/r1,

u2 = u0/r2 and v2 = v0/r2
(8.47)

for some r = (r1, r2) > 0 and u0 ≥ 0, v0 ≥ 0. Like Rosen in [275], we call this a
normalized generalized Nash equilibrium (NGNE) point. Now, by slightlymodifying
the proofs of Theorems 3 and 4 in Rosen [275], we establish the existence and
uniqueness results for the NGNE points involved in themodified bilevel optimization
problem (MP1).
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Theorem 8.3 Under assumptions A3 and A4, there exists a normalized generalized
Nash equilibrium point for the lower level equilibrium problem (8.4) in (MP1) for
every specified r = (r1, r2) > 0.

Proof For a fixed vector r = r > 0, let

ρ (x, y, z; w, s; r) := r1 f1(x, w, z) + r2 f2(x, y, s). (8.48)

Consider the feasible set of the equilibrium problem (8.4) for each (fixed) x ∈ X :

Θ(x) := {(y, z) ∈ Y × Z such that G(x, y, z) ≤ 0 and g(x, y, z) ≤ 0} (8.49)

and the point-to-set mapping Γ : Θ(x) ⇒ Θ(x) given by

Γ (y, z) :=
{
(w, s) ∈ Θ(x) : ρ (x, y, z; w, s; r) = min

(q,t)∈Θ(x)
ρ (x, y, z; q, t; r)

}
.

(8.50)

It follows (by assumptions A3 and A4) from the continuity of the function ρ =
ρ (x, y, z; q, t; r) and its convexitywith respect in (q, t) for a fixed (x, y, z), thatΓ is
an upper semi-continuous mapping that associates each point of the convex, compact
setΘ(x)with a closed compact subset of the sameΘ(x). Then by the Kakutani fixed
point theorem, there exists a point

(
y0, z0

) ∈ Θ(x) such that
(
y0, z0

) ∈ Γ
(
y0, z0

)
,

or, which is the same,

ρ
(

x, y0, z0; y0, z0; r
)

= min
(w,s)∈Θ(x)

ρ
(

x, y0, z0; w, s; r
)

. (8.51)

The fixed point
(
y0, z0

) ∈ Θ(x) is an equilibrium point solving problem (8.4).
Indeed, suppose on the contrary that this point is not an equilibrium. Then, for
example, for player 1, there would exist a vector y1 such that

(
y1, z0

) ∈ Θ(x) and
f1

(
x, y1, z0

)
< f1

(
x, y0, z0

)
. However, in this case, one has ρ

(
x, y0, z0; y1, z0; r

)

< ρ
(
x, y0, z0; y0, z0; r

)
, which contradicts (8.51).

Now by the necessity of the KKT conditions, (8.51) implies the existence of
u0 ∈ R

m1+ and v0 ∈ R
m2+ such that

(
u0

)T
G(x, y, z) = 0,

(
v0

)T
g(x, y, z) = 0, (8.52)

and
{

r1∇y f1(x, y, z) + (
u0

)� ∇yG(x, y, z) + (
v0

)� ∇y g(x, y, z) = 0,

r2∇z f2(x, y, z) + (
u0

)� ∇zG(x, y, z) + (
v0

)� ∇zg(x, y, z) = 0.
(8.53)
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But these are just conditions (8.40) and (8.42) with

{
u1 = u0/r1 and v1 = v0/r1,

u2 = u0/r2 and v2 = v0/r2,

which, together with (8.39), are sufficient to ensure that
(
y0, z0

) ∈ Θ(x) satisfies
(8.4). Therefore,

(
y0, z0

)
is a normalized generalized Nash equilibrium (NGNE)

point for the specified value of r = r . �

Theorem 8.4 Let assumptions A3 and A4 be valid, and σ(y, z; x, r) be (uniformly
with respect to x ∈ X ) diagonally strictly convex for every r ∈ Q, where Q is a
convex subset of the positive orthant R2+. Then for each r ∈ Q there exists a unique
normalized generalized Nash equilibrium (NGNE) point.

Proof The existence of at least one NGNE for any r ∈ Q is a consequence of
Theorem8.3. Assume that for some r = r ∈ Q there are two distinct NGNE points(
y0, z0

) �= (
y1, z1

)
both belonging to Θ(x). Then we have for t = 0, 1, first,

G
(
x, yt , zt) ≤ 0 and g

(
x, yt , zt) ≤ 0 (8.54)

and second, there are vectors ut ∈ R
m1+ , vt ∈ R

m2+ , such that

(
ut)T

G
(
x, yt , zt) = 0,

(
vt)T

g
(
x, yt , zt) = 0, (8.55)

and

{
r1∇y f1

(
x, yt , zt

) + (
ut

)� ∇yG
(
x, yt , zt

) + (
vt

)� ∇y g
(
x, yt , zt

) = 0,

r2∇z f2
(
x, yt , zt

) + (
ut

)� ∇zG
(
x, yt , zt

) + (
vt

)� ∇zg
(
x, yt , zt

) = 0.
(8.56)

Now multiply the first row in (8.56) by
(
y0 − y1

)
for t = 0 and by

(
y1 − y0

)
for

t = 1. In a similar manner, multiply the second row in (8.56) by
(
z0 − z1

)
for

t = 0 and by
(
z1 − z0

)
for t = 1. Finally, sum all these four terms. That yields the

expression β + γ = 0, where

β =
(

y1 − y0

z1 − z0

)� [
p

(
y1, z1; x, r

)
− p

(
y0, z0; x, r

)]
(8.57)
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and

γ =
(

u0
)� ∇y G

(
x, y0, z0

) (
y0 − y1

)
+

(
u1

)� ∇y G
(

x, y1, z1
) (

y1 − y0
)

+
(

v0
)� ∇y g

(
x, y0, z0

) (
y0 − y1

)
+

(
v1

)� ∇y g
(

x, y1, z1
) (

y1 − y0
)

+
(

u0
)� ∇zG

(
x, y0, z0

) (
z0 − z1

)
+

(
u1

)� ∇zG
(

x, y1, z1
) (

z1 − z0
)

+
(

v0
)� ∇z g

(
x, y0, z0

) (
z0 − z1

)
+

(
v1

)� ∇z g
(

x, y1, z1
) (

z1 − z0
)

≥
(

u0
)� [

G
(

x, y0, z0
)

− G
(

x, y1, z1
)]

+
(

u1
)� [

G
(

x, y1, z1
)

− G
(

x, y0, z0
)]

+
(

v0
)� [

g
(

x, y0, z0
)

− g
(

x, y1, z1
)]

+
(

v1
)� [

g
(

x, y1, z1
)

− g
(

x, y0, z0
)]

= −
(

u0
)T

G
(

x, y1, z1
)
−

(
u1

)T
G

(
x, y0, z0

)
−

(
v0

)T
g

(
x, y1, z1

)

−
(

v1
)T

g
(

x, y0, z0
)

≥ 0. (8.58)

Next, since σ(y, z; x, r) is (uniformly with respect to x ∈ X ) diagonally strictly
convex we have β > 0 by (8.46), which, together with (8.58) contradicts the equality
β + γ = 0 and thus proves the theorem. �

We complete this section by giving (similarly to Rosen in [275]) a sufficient
condition on the functions fi , i = 1, 2, that insures that σ(y, z; x, r) is (uni-
formly by x from X ) diagonally strictly convex. The condition is given in terms
of the (n2 + n3) × (n2 + n3)-matrix P(y, z; x, r), which is the Jacobi matrix of
p(y, z; x, r) with respect to (y, z) for a fixed r > 0. That is, the j th column of
P(y, z; x, r) is ∂p(y, z; x, r)/∂y j , if 1 ≤ j ≤ n2, and ∂p(y, z; x, r)/∂z j−n2 , if
n2 + 1 ≤ j ≤ n2 + n3, where the function p = p(y, z; x, r) is defined by (8.45).

Theorem 8.5 Under assumptions A3 and A4, a sufficient condition for
σ = σ(y, z; x, r) to be (uniformly with respect to x ∈ X ) diagonally strictly convex
for (y, z) ∈ Θ(x) and a fixed r = r > 0 is that the symmetric matrix

[
P (y, z; x, r) + P (y, z; x, r)�

]

is (uniformly with respect to x ∈ X) positive definite for (y, z) ∈ Θ(x).
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Proof Let
(
y0, z0

)
,
(
y1, z1

) ∈ Θ(x), with
(
y0, z0

) �= (
y1, z1

)
, be any two distinct

points inΘ(x), and define (y(α), z(α)) := α
(
y1, z1

)+ (1−α)
(
y0, z0

)
, so that (due

to the convexity of Θ(x)) one has (y(α), z(α)) ∈ Θ(x) for all 0 ≤ α ≤ 1. Now,
since P (y, z; x, r) is the Jacobi matrix for the mapping p (y, z; x, r) with respect
to the variables (y, z), one has

d p (y(α), z(α); x, r)

d α
= P (y(α), z(α); x, r)

d (y(α), z(α))

d α

= P (y(α), z(α); x, r)

(
y1 − y0

z1 − z0

)
, (8.59)

which implies

p
(

y1, z1; x, r
)

− p
(

y0, z0; x, r
)

=
1∫

0

P (y(α), z(α); x, r)

(
y1 − y0

z1 − z0

)
d α.

(8.60)

Left-multiplying both sides by

(
y1 − y0

z1 − z0

)�
brings one to

(
y1 − y0

z1 − z0

)� [
p

(
y1, z1; x, r

)
− p

(
y0, z0; x, r

)]

=
1∫

0

(
y0 − y1

z0 − z1

)�
P (y(α), z(α); x, r)

(
y0 − y1

z0 − z1

)
d α

= 1

2

1∫

0

(
y0 − y1

z0 − z1

)�[
P (y(α), z(α); x, r)+ P (y(α), z(α); x, r)�

]

×
(

y0 − y1

z0 − z1

)
d α > 0,

which proves that the relationship (8.46) is true. �
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