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Preface

The sixth edition of the Indian Conference on Logic and Its Applications (ICLA)
was held during January 8–10, 2015, at the Indian Institute of Technology (IIT)
Bombay. This volume contains papers presented at the conference.

ICLA is a biennial conference organized under the aegis of the Association
for Logic in India. The aim of ICLA is to bring together researchers working on
pure and applied formal logic. Areas covered include relationships between logic
and other branches of knowledge, history of logic, and systems of logic in the
Indian tradition, especially in relation to modern logical studies.

We thank all who submitted papers to ICLA 2015. The contributions in this
volume are on varied themes, including proof theory, set theory, model-checking,
reasoning in the presence of uncertainty, and Indian systems. Each submission to
ICLA 2015 had at least three reviews by Program Committee (PC) members or
external experts. Several rounds of discussion (that included further reviews) by
the PC members followed, after which final decisions of acceptance were made.
We are immensely grateful to all the PC members for their efforts and support.
We thank all the external reviewers for their invaluable help. ICLA 2015 also
included three invited talks; we specially thank Steve Awodey, Michael Dunn,
and Emmanuel Filiot for kindly accepting our invitation, and writing for the
volume.

We used the EasyChair system to the hilt: from the submission stage, to the
preparation of the proceedings. It was of great help.

Thanks are due to the Department of Computer Science, IIT Bombay, the
Organizing Committee members in particular, and all the volunteers, for making
this edition of ICLA possible. Our special thanks go to Ganesh Narwane for en-
suring that several organizational issues that threatened to spiral out of control,
were eventually tamed in time. We would also like to thank Kamal Lodaya, for
helpful suggestions throughout.

We are grateful to the Editorial Board of Springer for agreeing to publish
this volume in the LNCS series.

Mohua Banerjee
Shankara Narayanan Krishna
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Homotopy Type Theory�

Steve Awodey

Carnegie Mellon University
awodey@cmu.edu

Abstract. Homotopy Type Theory is a new, homotopical interpretation
of constructive type theory. It forms the basis of the recently proposed
Univalent Foundations of Mathematics program. Combined with a com-
putational proof assistant, and including a new foundational axiom – the
Univalence Axiom – this program has the potential to shift the theoret-
ical foundations of mathematics and computer science, and to affect the
practice of working scientists. This talk will survey the field and report
on some of the recent developments.

Overview

– Homotopy Type Theory is a recently discovered connection between Logic
and Topology.

– It is based on an interpretation of intensional Martin-Löf type theory into
homotopy theory.

– Univalent Foundations is an ambitious new program of foundations of math-
ematics based on HoTT.

– New constructions based on homotopical intuitions are added as Higher In-
ductive Types, providing classical spaces, (higher) quotients, truncations,
etc.

– The new Univalence Axiom is also added. It implies that isomorphic struc-
tures are equal, in a certain sense.

– And a new “synthetic” style of axiomatics is used, simplifying and shortening
many proofs.

– A large amount of classical mathematics has been developed in this new
system: basic homotopy theory, higher category theory, real analysis, com-
mutative algebra, cumulative hierarchy of set theory, . . . .

– Proofs are formalized and verified in computerized proof assistants (e.g.
Coq).

– There is a comprehensive book containing the informal development.

Type Theory

Martin-Löf constructive type theory consists of:

– Types: X,Y, . . . , A×B, A→ B, . . .

� Partially supported by the U.S. Air Force Office of Sponsored Research.

M. Banerjee and S.N. Krishna (eds.): ICLA 2015, LNCS 8923, pp. 1–10, 2015.
c© Springer-Verlag Berlin Heidelberg 2015



2 S. Awodey

– Terms: x : A, b : B, 〈a, b〉, λx.b(x), . . .
– Dependent Types: x : A � B(x)

• x : A, y : B(x) � C(x, y)
•
∑

x:AB(x)
•
∏

x:AB(x)
– Equations s = t : A

It was originally intended as a foundation for constructive mathematics, but
is now used also in the theory of programming languages and as the basis of
computational proof assistants.

Propositions as Types

The system has a dual interpretation:

– once as mathematical objects: types are “sets” and their terms are “ele-
ments”, which are being constructed,

– once as logical objects: types are “propositions” and their terms are “proofs”,
which are being derived.

This is known as the Curry-Howard correspondence:

0 1 A+B A×B A→ B
∑

x:A B(x)
∏

x:A B(x)

⊥ T A ∨B A ∧B A⇒ B ∃x:AB(x) ∀x:AB(x)

Gives the system its constructive character.

Identity Types

It’s natural to add a primitive relation of identity between any terms of the
same type:

x, y : A � IdA(x, y)

Logically this is the proposition “x is identical to y”.
But what is it mathematically?

The introduction rule says that a : A is always identical to itself:

r(a) : IdA(a, a)

The elimination rule is a form of Lawvere’s law:

c : IdA(a, b) x : A � d(x) : R
(
x, x, r(x)

)
Jd(a, b, c) : R(a, b, c)

Schematically:
“ a = b & R(x, x) ⇒ R(a, b) ”
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The Homotopy Interpretation (Awodey-Warren)

Suppose we have terms of ascending identity types:

a, b : A

p, q : IdA(a, b)

α, β : IdIdA(a,b)(p, q)

. . . : IdIdId... (. . .)

Consider the following interpretation:

Types � Spaces

Terms � Maps

a : A � Points a : 1→ A

p : IdA(a, b) � Paths p : a⇒ b

α : IdIdA(a,b)(p, q) � Homotopies α : p � q

...

This extends the familiar topological interpretation of the simply-typed
λ-calculus:

types � spaces

terms � continuous functions

to dependently typed λ-calculus with Id-types, via the basic idea:

p : IdX(a, b) � p is a path from point a to point b in X

This forces dependent types to be fibrations, Id-types to be path spaces, and
homotopic maps to be identical.

The Fundamental Groupoid of a Type (Hofmann-Streicher)

Like path spaces in topology, identity types endow each type in the system with
the structure of a (higher-) groupoid:

•
a

•
a

•
b
��

p
•
a

•
b

p

��

q

����
α

��

α

��

β� ��
ϑ

•
a

•
b

p

�	

q
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The laws of identity are the groupoid operations:

r : Id(a, a) reflexivity a→ a

s : Id(a, b)→ Id(b, a) symmetry a � b

t : Id(a, b)× Id(b, c)→ Id(a, c) transitivity a→ b→ c

The groupoid equations only hold “up to homotopy”, i.e. up to a higher
identity term.

Homotopy n-types (Voevodsky)

The universe of all types is stratified by “homotopical dimension”: the level at
which the fundamental groupoid becomes trivial.

A type X is called:

contractible iff
∑

x:X

∏
y:X IdX(x, y)

A type X is a:

proposition iff
∏

x,y:X Contr(IdX(x, y)),
set iff

∏
x,y:X Prop(IdX(x, y)),

1-type iff
∏

x,y:X Set(IdX(x, y)),

(n+1)-type iff
∏

x,y:X nType(IdX(x, y)).

This gives a new view of the mathematical universe.

Higher Inductive Types (Lumsdaine-Shulman)

The natural numbers N are implemented as an (ordinary) inductive type:

N :=

{
0 : N

s : N→ N

The recursion property is captured by an elimination rule:

a : X f : X → X

rec(a, f) : N→ X

with computation rules:

rec(a, f)(0) = a

rec(a, f)(sn) = f(rec(a, f)(n))
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In other words, (N, 0, s) is the free structure of this type:

1
0


���
��
��
�

a

���
��

��
��

�

Ns � rec
�� X f�

The map rec(a, f) : N→ X is unique.

Theorem 1. N is a set (i.e. a 0-type).

Higher Inductive Types: The Circle S1

The homotopical circle S = S1 can be given as an inductive type involving a
“higher-dimensional” generator:

S :=

{
base : S

loop : base � base

where we write “base � base” for “IdS(base, base)”.

S :=

{
base : S

loop : base � base

The recursion property of S is given by its elimination rule:

a : X p : a � a

rec(a, p) : S→ X

with computation rules:

rec(a, p)(base) = a

rec(a, p)(loop) = p

In other words, (S, base, loop) is the free structure of this type:

1
base

����
��
��
�

a

���
��

��
��

�

baseloop �� S rec
�� X a p��

The map rec(a, p) : S→ X is unique up to homotopy.
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Here is a sanity check:

Theorem 2 (Shulman 2011). The type-theoretic circle S has the correct ho-
motopy groups:

πn(S) =

{
Z, if n = 1,

0, if n �= 1.

The proof combines classical homotopy theory with methods from constructive
type theory, and uses Voevodsky’s Univalence Axiom. It has been formalized in
Coq.

Corollary 1. There are 1-types. (This also uses univalence).

Higher Inductive Types: The Interval I

The unit interval I = [0, 1] is also an inductive type, on the data:

I :=

{
0, 1 : I

p : 0 � 1

again writing 0 � 1 for the type IdI(0, 1).

Slogan:

In topology, we start with the interval and use it to define the notion of a
path.
In HoTT, we start with the notion of a path, and use it to define the interval.

Higher Inductive Types: Conclusion

Many basic spaces and constructions can be introduced as HITs:

– higher spheres Sn, cylinders, tori, cell complexes, . . . ,

– suspensions ΣA,

– homotopy pullbacks, pushouts, etc.,

– truncations, such as connected components π0(A) and “bracket” types [A],

– quotients by equivalence relations and general quotients,

– free algebras, algebras for a monad,

– (higher) homotopy groups πn, Eilenberg-MacLane spacesK(G,n), Postnikov
systems,

– Quillen model structure,

– real numbers,

– cumulative hierarchy of sets.
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Univalence

Voevodsky has proposed a new foundational axiom to be added to HoTT: the
Univalence Axiom.

– It captures the informal mathematical practice of identifying isomorphic
objects.

– It is very useful from a practical point of view, especially when combined
with HITs.

– It is formally incompatible with the set-theoretic model of type theory, but
provably consistent with homotopy type theory.

– Its status as a constructive principle is the focus of much current research.

Isomorphism and Equivalence

In type theory, the usual notion of isomorphism A ∼= B is definable:

A ∼= B ⇔ there are f : A→ B and g : B → A
such that gfx = x and fgy = y.

Formally, there is the type of isomorphisms:

Iso(A,B) :=
∑

f :A→B

∑
g:B→A

(∏
x:A

IdA(gfx, x)×
∏
y:B

IdB(fgy, y)
)

Thus A ∼= B iff this type is inhabited by a closed term, which is then just an
isomorphism between A and B.

– There is also a more refined notion of equivalence of types,

A � B

which adds a further “coherence” condition relating the proofs of gfx = x
and fgy = y.

– Under the homotopy interpretation, this is the type of homotopy equiva-
lences.

– This subsumes categorical equivalence (for 1-types), isomorphism of sets (for
0-types), and logical equivalence (for (-1)-types).

Invariance

One can show that all definable properties P (X) of types X respect type equiv-
alence:

A � B and P (A) implies P (B)

In this sense, all properties are invariant.
Moreover, therefore, equivalent types A � B are indiscernable:

P (A)⇒ P (B), for all P

How is this related to identity of types A and B?
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Univalence

To reason about identity of types, we need a type universe U , with an identity
type,

IdU(A,B).

Since identity implies equivalence there is a comparison map:

IdU(A,B)→ (A � B).

The Univalence Axiom asserts that this map is an equivalence:

IdU(A,B) � (A � B) (UA)

So UA can be stated: “Identity is equivalent to equivalence.”

The Univalence Axiom: Remarks

– Since UA is an equivalence, there is a map coming back:

IdU (A,B)←− (A � B)

So equivalent objects are identical.
(isomorphic sets, groups, etc., can be identified.)

– In the system with a universes U , the UA is equivalent to the invariance
property:

A � B and P (A) implies P (B)

for all “properties” P (X), i.e. type families P : U �� U .
– UA implies that U , in particular, is not a set (0-type).
– The computational character of UA is still an open question.

The Univalence Axiom: How it Works

To compute the fundamental group of the circle S, we shall construct the uni-
versal cover: This will be a dependent type over S, i.e. a type family

cov : S �� U .

To define a type family
cov : S −→ U ,

by the recursion property of the circle, we just need the following data:

– a point A : U
– a loop p : A � A

For the point A we take the integers Z.
By Univalence, to give a loop p : Z � Z in U , it suffices to give an equivalence

Z � Z.
Since Z is a set, equivalences are just isomorphisms, so we can take the suc-

cessor function succ : Z ∼= Z.
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R

S

cov

base

0

1

2

Definition 1 (Universal Cover of S1). The dependent type cov : S �� U is
given by circle-recursion, with

cov(base) := Z

cov(loop) := ua(succ).

As in classical homotopy theory, we use the universal cover to define the
“winding number” of any path p : base � base by wind(p) = p∗(0). This gives a
map

wind : Ω(S) �� Z,

which is inverse to the map Z ��Ω(S) given by

z �→ loopz.

Formalization of Mathematics

– The idea of logical foundations of math has great conceptual and philosoph-
ical interest, but in the past this was too lengthy and cumbersome to be of
any use.

– Explicit formalization of math is finally feasible, because computers can now
take over what was once too tedious or complicated to be done by hand.

– Future historians of mathematics will wonder how Frege and Russell could
have invented formal logical foundations before there were any computers to
run them on!

– Formalization can provide a practical tool for working mathematicians and
scientists: increased certainty and precision, supports collaborative work, cu-
mulativity of results, searchable library of code, ... I think that mathematics
will eventually be fully formalized.

– UF uses a “synthetic” method involving high-level axiomatics and structural
descriptions; allows shorter, more abstract proofs; closer to mathematical
practice than the “analytic” method of ZFC. Use of UA is very powerful.
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Final Example: The Cumulative Hierarchy

Given a universe U , we can make the cumulative hierarchy V of sets in U as a
HIT:

– for any small A and any map f : A→ V , there is a “set”:

set(A, f) : V

We think of set(A, f) as the image of A under f , i.e. the classical set
{f(a) | a ∈ A}

– For all A,B : U , f : A→ V and g : B → V such that

(
∀a : A∃b : B f(a) = g(b)

)
∧
(
∀b : B ∃a : A f(a) = g(b)

)
we put in a path in V from set(A, f) to set(B, g).

– The 0-truncation constructor: for all x, y : V and p, q : x = y, we have p = q.

Membership x ∈ y is then defined for elements of V by:

(x ∈ set(A, f)) := (∃a : A. x = f(a)).

One can show that the resulting structure (V,∈) satisfies most of the axioms
of Aczel’s constructive set theory CZF.

Assuming AC for sets (0-types), one gets a model of ZFC set theory.
The proofs make essential use of UA.

References and Further Information

More Information:

www.HomotopyTypeTheory.org

The Book:

Homotopy Type Theory: Univalent Foundations of Mathematics
The Univalent Foundations Program,

Institute for Advanced Study, Princeton, 2013



The Relevance of Relevance to Relevance Logic�

J. Michael Dunn

School of Informatics and Computing, and Department of Philosophy,
Indiana University – Bloomington

Abstract. I explore the question of whether the concept of relevance
is relevant to the study of what Anderson and Belnap call “relevance
logic.” The answer should be “Of course!” But there are some twists and
turns, as is shown by the fact that it has taken over 50 years to get here.
Despite protests by R. K. Meyer that the concept of relevance is not
part of what he calls “relevant logic,” I suggest and defend interpreting
the Routley–Meyer ternary accessibility relation using information states
a, b, c, so Rabc means “in the context a, b is relevant to c.” Motivations
are provided from Sperber and Wilson’s work in linguistics on relevance.

1 Introduction

As the title suggests I will be looking at the question of whether the concept
of relevance is relevant to the study of what Anderson and Belnap have called
“relevance logic.” The reader might think that a short abstract of my paper, if
not the paper itself, would be “Of course!” After all Anderson and Belnap titled
their magnum opus Entailment: The Logic of Relevance and Necessity, and this
book (vol. I, p. xxii) opens with the claim that Wilhelm Ackermann’s system
of strenge Implikation “give us for the first time a mathematically satisfactory
way of grasping the elusive notion of relevance of antecedent to consequent in “if
. . . then —” propositions; such is the topic of this book.” Ackermann’s system
with a few important modifications became Anderson and Belnap’s system E of
entailment, which Anderson and Belnap promote as their system that captures
both relevance and necessity. It is at one and the same time both what they
term a relevance logic, and also a modal logic. They also present the system
R of relevant implication, which was intended to be E stripped of modality.
The system R has taken on a life of its own and in many ways has become the
focus of relevance logic, and of course, one can always add necessity. Maksimova
(1973) showed that one cannot get E back from R, defining entailment as a
necessary relevant implication by adding what would seem to be the appropriate
S4 type necessity operator. And when one sees how this breaks down, this can

� This is part of a larger joint project with Katalin Bimbó, supported by an Insight
Grant from the Social Sciences and Humanities Research Council of Canada: “The
Third Place is the Charm: The Emergence, the Development and the Future of the
Ternary Relational Semantics for Relevance and Some Other Non-classical Logics.”
I thank Kata for reading the manuscript and for her corrections/suggestions.

M. Banerjee and S.N. Krishna (eds.): ICLA 2015, LNCS 8923, pp. 11–29, 2015.
c© Springer-Verlag Berlin Heidelberg 2015
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be another ground for preferring the system R and just adding one’s favorite
necessity operator(s).

But prominent researchers, even within the Anderson and Belnap community,
havechallengedtheappropriatenessof thename“relevance logic.”RobertK.Meyer
in factpreferred to talkof“relevant logic.”Meyer (1978)containsanopening section
titled “Do relevant logics capture relevance.”1 He then says (p. 3): “The answer to
thequestionwithwhich this sectionopens is ‘No’.The relevant logics donot capture
relevance.Theydonotbegin to capture relevance. . . . Despite the sub-title ofEntail-
ment, there is no ‘Logic of relevance’.”Meyer (1985) has amore nuanced discussion
of the issues, and we discuss these below.

2 More of Meyer on Relevance

Setting aside the personal (consistency with his own early usage) and the gram-
matical reason (“relevant” is the adjectival form), Meyer has a variety of more
substantive reasons, none of which he thinks in themselves make the logics E
and R less interesting (though he does have other concerns with E in particu-
lar, hence his title “Farewell to Entailment”). He says (p. 607): “I argue rather
that capturing relevance does not have much to do with the nature or purposes
of Relevant Logics.” Meyer’s more substantive reasons include the elusiveness
of the notion of “relevance,” and the thought that (p. 610) “Relevance is not
an ingredient of a theory of logical entailment. Insofar as logical sense can be
assigned to the notion, it is a consequence of holding such a theory.”

Meyer goes on to examine Anderson and Belnap’s argument that Entailment
gives a “ ‘mathematically satisfactory way’ of isolating relevance as a component
of good argument,” saying that there are the “two main strings of its bow.” The
first string is what Anderson and Belnap have labeled the “Variable Sharing
Property,” that is if A→ B is a theorem, then there is some sentential variable
p that occurs in both A and B – thereby showing some connection of meaning, or
relevance. Both the logics E and R have this property. The second string is harder
to describe and depends on, as Meyer puts it, “tracking” the assumptions in a
natural-deduction argument to make sure that if A→ B is proven by assuming
the antecedent A and showing the consequent B, that A was actually used in
the derivation. This is supposed to show that A is relevant to B.

Both of these criteria have subtleties in their statement, and this might be
enough to undermine them as a criterion for “relevance.” To give one example,
[∼p ∧ (p ∨ q)] → q has the Variable Sharing Property. Also the argument ∼p ∧
(p ∨ q) ∴ q is classically valid (it is the notorious Disjunctive Syllogism, which
Anderson and Belnap rejected, at least as a relevant implication). And yet the

1 GregRestall (2006)explainswhyhecalls thesubject“relevant logic,”although“nothing
of substance hangs on this issue: Americans call our topic ‘relevance logic,’ and people
of Commonwealth countries (primarily Australia and Scotland) call it ‘relevant logic.’
The split comesdown toadisagreementbetweenNuelBelnapandRobertMeyer.Meyer
brought his favored terminology ‘relevant’ with him to Australia, where it has stuck.”
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implication [∼p∧ (p∨ q)]→ q is not provable in E or R. So the Variable Sharing
Property, even together with validity, do not suffice for a “relevant implication.”

The Tracking Criterion relies on some way of keeping track. Anderson and
Belnap present a variation of Fitch’s natural deduction system for classical logic,
but introduced subscripts to keep track of how assumptions are used. The idea is
that these subscripts are passed down from step to step and combined into a set
of subscripts when a two-premise rule is applied. Thus if one infers B from A
and A→ B where A has a set of subscripts α and A→ B has a set of subscripts
β, then B is inferred with subscripts α∪ β. The idea then is that if one assumes
A with subscript i, and one derives B with subscripts β, then in order to derive
A → B we must have i ∈ β, and then we can derive A → B with subscripts
β − {i}. This works beautifully with the pure implicational fragment of R (and
with a slight modification of E), and even stays nice when rules for negation are
added.

But things get complicated when we add conjunction, and really weird when
disjunction is added as well. The problem is that if we assume p with subscript
1 and then assume q with subscript 2, then one might think it would be natural
to infer p∧ q with subscripts {1, 2}. But then one could derive q → (p ∧ q) with
subscript {1}, and then prove p → (q → (p ∧ q)) as a theorem. From this one
can prove p → (q → p) (exercise). This is the notorious Positive Paradox of
Implication, and if one plugs any theorem B in for p and any sentence A for
q, then by modus ponens one can prove A → B, where A and B may well not
share a sentential variable.

Anderson and Belnap avoid this problem by not allowing the inference

A1

B2

A ∧B1,2

but instead only allow ∧-introduction when the premises have the same (set of)
subscripts.

This fixes the problem with conjunction (though the uninitiated might find
it ad hoc), but it creates another problem when we try to add disjunction. The
way that disjunction makes things even worse is that Anderson and Belnap want
to have as a theorem:

[A ∧ (B ∨ C)]→ [(A ∧B) ∨ (A ∧ C)] Distribution.

We will not bother to state the introduction and elimination rules for disjunc-
tion, but simply state that although they seem very natural, they give Anderson
and Belnap no better way to prove Distribution that to simply postulate it. For
more details please consult Dunn (1986), where you will also find a way to solve
the problem.

One thing Meyer has on his side is that the Anderson-Belnap “relevance log-
ics” do not have some relevance operation ρ in their vocabulary, so that one
might define “A relevantly implies B” as say “Relevantly, A materially implies
B”: ρ(A ⊃ B). Of course, the same kind of thing is true of formulations of modal
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logic that use strict (necessary) implication as a primitive and do not bother to
have a connective � for necessity. But at least for the standard normal modal
logics, strict implication can be defined as �(A ⊃ B). This kind of move is not
open for relevance logics.

3 Hilbert-Style Formulations for Relevance Logics

Anderson and Belnap have a basic formal language that contains the unary
connective ∼ of De Morgan negation, and the binary connectives of conjunction
∧, disjunction ∨, and (relevant) implication →.

The following sets of axioms (cf. Anderson and Belnap (1975) or Dunn (1986))
can be seen as forming various fragments of the relevance logic R: 1–4 the impli-
cational fragment R→, 1–4 with 10–12 the implication-negation fragment R∼→,
and 1–9 the positive fragment R+.

Implication:

A→ A Self-Implication (1)

(A→ B)→ [(C → A)→ (C → B)] Prefixing (2)

[A→ (A→ B)]→ (A→ B) Contraction (3)

[A→ (B → C)]→ [B → (A→ C)] Permutation (4)

Conjunction-Disjunction:

A ∧B → A, A ∧B → B Conjunction Elimination (5)

[(A→ B) ∧ (A→ C)]→ (A→ B ∧ C) Conjunction Introduction (6)

A→ A ∨B, B → A ∨B Disjunction Introduction (7)

[(A→ C) ∧ (B → C)]→ (A ∨B → C) Disjunction Elimination (8)

A ∧ (B ∨ C)→ (A ∧B) ∨ C Distribution (9)

Negation:

(A→ ∼A)→ ∼A Reductio (10)

(A→ ∼B)→ (B → ∼A) Contraposition (11)

∼∼A→ ∼A Double Negation (12)

A Hilbert-style axiom system is often taken to have only one rule of inference:
A,A → B ∴ B (modus ponens), and this is the only rule for R→ and R∼→.
However for R+ and R itself Anderson and Belnap have an additional rule of
inference: A,B ∴ A ∧B (adjunction).

The system E of Entailment can be obtained by replacing axiom 4 (Permuta-

tion) with Restricted Permutation: where
−→
B abbreviates B1 → B2,

[A→ (
−→
B → C)]→ [

−→
B → (A→ C)] Restricted-Permutation.
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There are a number of interesting axiom sets for R and E, as well as for
many lesser known relevance logics. The reader who want to learn more “axiom
chopping” is referred to Dunn (1986), as well as of course, Anderson and Belnap
(1975). It is worth pointing out that a kind of necessity can be defined in E
as �A = (A → A) → A, and it has roughly the structure of the Lewis modal
system S4. This gives us a way to obtain an axiom set for R from that of E by
simply adding

A→ �A Demodaliser

It is interesting that one obtains the classical propositional paradox (with
A → B provably equivalent to the material implication A ⊃ B) if one adds to
either R or E

A→ (B → A) Positive Paradox.

We introduced the axioms for E because of E’s historical importance, and
because Meyer rails against it, but in the sequel we will focus on the system R.

4 The Semantics of Relevance Logic

Any of us, not just Anderson and Belnap, can lay down a set of axioms, or maybe
even create a natural deduction system with nice rules. But what do they mean?
From the beginnings of relevance logic there has been much controversy about
its semantics. First there was complaint that it had none, and then there was
complaint that it had one, particularly the so-called “Routley–Meyer semantics”
for relevance logic – which used the novelty of a ternary accessibility relation.
We shall speak of the Routley–Meyer semantics even though a number of other
logicians produced similar semantics at about the same time.

Copeland, and van Benthem in his review of Copeland, raised questions about
whether this is a semantics in name only, or merely just a formal device. Similar
issues had of course already been raised in connection with the binary acces-
sibility relation in the so-called “Kripke semantics” for modal logic. But there
have actually been various interpretations made of both the binary and ternary
accessibility relations. The best recent place to read about interpretations of the
ternary accessibility relation is Beall et al. (2012).

We first must explain a little about relevance logic and the Routley–Meyer
semantics in particular. Routley and Meyer published “Semantics of Entailment
I, II, III” in the years 1972 and 1973.2 Routley and Meyer use a frame (K,R, ∗, 0).
K is a set, 0 ∈ K, R ⊆ K3, and ∗ is a unary operation on K. Routley and Meyer
call the members of K “set ups,” and put various constraints on a frame, but
we shall not explore these in detail now. We do though note that they defined

2 And “Semantics of Entailment IV” written in 1972 but published as an appendix
in Routley, Meyer, Plumwood, and Brady (1982). As with the “Kripke semantics,”
there were a lot of “competitors” in the early 1970’s with essentially the same, or
very similar ideas, including (in alphabetical order) Fine, Gabbay, Maksimova, and
Urquhart.
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a binary relation a ≤ b as R0ab, and gave R properties that assure that ≤ is a
quasi-order (reflexive and transitive).3

They take a valuation v to be a function that assigns to each pair (p, a) (p
an atomic sentence, x ∈ K) a member of {T, F}. They then inductively define
a function I that assigns to each pair (A, x) (A an arbitrary formula) a member
of {T, F}. We shall get to this inductive definition, but we shall write x |= A
rather than I(A, x) = T .

But there is an important restriction. Routley and Meyer require the Hered-
itary Condition on atomic sentences: if a ≤ b and a |= p, then b |= p. It can
then be shown by induction that this extends as well to compound formulas.
The Hereditary Condition is needed to show that 0 |= A→ A.

This is important because validity on a frame is defined by the condition that
a sentence holds at 0 for all valuations.4 Routley and Meyer show that a sentence
A is a theorem of R iff A is valid on all frames satisfying the following conditions:

p1. R0aa
p2. Raaa
p3. ∃x(Rabx and Rxcd) ⇒ ∃x(Racx and Rxbd). (They nicely write this as

R2abcd⇒ R2acbd.)
p4. R20bcd⇒ Rbcd 5

p5. Rabc⇒ Rac∗b∗

p6. a∗∗ = a

The Routley–Meyer valuation clauses can now be stated as follows:

(vp) x |= p iff x ∈ V (p) (Atomic)
(v∼) x |= ∼A iff not x∗ |= A (Negation)
(v∧) x |= A ∧B iff x |= A and x |= B (Conjunction)
(v∨) x |= A ∨B iff x |= A or x |= B (Disjunction)
(v→) x |= A→ B iff ∀a, b, if Rxbc and a |= A then b |= B (Relevant implication)

In the present paper we shall be examining an interpretation of relevant im-
plication in terms of, guess what? Relevance! Strangely while this is the most
naive or natural interpretation, it seems not to have been explored or even men-
tioned until now. The whole idea of a relevant implication A→ B is that there
is supposed to be some sort of relevance between the truth of the antecedent
A and the consequent B. What could be more natural than to interpret Rabc
as that in the context of the information a, the information b is relevant to the

3 They actually use the notation < but because the relation turns out to be reflexive
it has become standard to use ≤.

4 It is easy to miss this important point. Similar points hold for Urquhart’s and Fine’s
semantics, and I will share with you that when Urquhart first explained his semantics
to me back in 1970, I thought I had found a mistake since it seemed that A → A
was invalid.

5 There is a typo when this axiom is listed in Routley and Meyer (1973). They have
an “a” instead of a “0.” And of course spelled out it means R0bx and Rxcd imply
Rbcd.
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information c? That is a relevant implication A→ B is true in the context x just
when if we pick any other pieces of information y and z such that y is relevant
to z in the context x, then if y determines A, then z determines B.

5 What is Relevance?

The concept of relevance occurs in a number of contexts. The most relevant for
us (sorry for the pun) are commonsense reasoning, probability and statistics,
information retrieval (particularly, search of unstructured data bases such as
the WWW to take an extreme example), library science, the law, cognitive
science, epistemology, and linguistics and philosophy of language (particularly,
pragmatics). We cannot possibly run through these all (just google the word
“relevance” – I believe Google has a good relevancy algorithm) so I want to
jump to what I believe is the most relevant work for our purposes here, which
relates to the pragmatics of language.

Pragmatics is one of the three dimensions of natural language, as introduced
by Charles Morris (1946), the other two being syntax and semantics. Put quickly,
syntax has to do with grammar, semantics has to do with meaning, and prag-
matics has to do with use. Paul Grice in his famous John Locke Lectures at
Oxford (1967), printed in Grice (1989), introduced the idea of “conversational
maxims,” saying (p. 27) “Under the category of Relation I place a single maxim,
namely, ‘Be relevant.’ ” Grice goes on to say “Though the maxim itself is terse,
its formulation conceals a number of problems that exercise me a good deal:
questions about what different kinds and focuses of relevance there may be, how
these shift in the course of a talk exchange, how to allow for the fact that sub-
jects of conversation are legitimately changed, and so on.” Grice in fact does
offer anything, at least directly, to answer such questions, and in fact says. “I
find the treatment of such questions exceedingly difficult, and I hope to revert
to them in later work.” To the best of my knowledge Grice never published such
later work. But the linguists Deirdre Wilson and Dan Sperber (1986) turned to
the task of clarifying the concept of relevance, and they have carried on with it
for over a quarter of a century – see Wilson and Sperber (2012).

There is clearly much to be said about their Herculean task and the Herculean
response to it. But I content myself here with this quotation from Wilson and
Sperber (2004).

Intuitively, an input (a sight, a sound, an utterance, a memory) is rel-
evant to an individual when it connects with background information he
has available to yield conclusions that matter to him: say, by answering a
question he had in mind, improving his knowledge on a certain topic, set-
tling a doubt, confirming a suspicion, or correcting a mistaken impression.
In relevance-theoretic terms, an input is relevant to an individual when
its processing in a context of available assumptions yields a positive cog-
nitive effect. A positive cognitive effect is a worthwhile difference to the
individual’s representation of the world – a true conclusion, for example.
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False conclusions are not worth having. They are cognitive effects, but not
positive ones (Sperber & Wilson 1995: §3.1–2).The most important type
of cognitive effect achieved by processing an input in a context is a contex-
tual implication, a conclusion deducible from the input and the context
together, but from neither input nor context alone. For example, on seeing
my train arriving, I might look at my watch, access my knowledge of the
train timetable, and derive the contextual implication thatmy train is late
(which may itself achieve relevance by combining with further contextual
assumptions to yield further implications).

It is interesting that Sperber andWilson seem to barely mention Anderson and
Belnap’s work on relevance logic,6 and conversely Anderson and Belnap never
cite Sperber and Wilson’s work.7 Gabbay and Woods (2003) is the only work
I know of that makes a connection between them, present company excluded.
I should mention prominently, and that is why this is not just a footnote, that
Gabbay andWoods’ book deserves careful study, and is an interesting alternative
in many ways to the work of Sperber and Wilson and certainly the only work
comparable in extent and detail to theirs. I admit to coming across it only very
recently, and I have not had time to give it the careful study that it deserves.

The whole idea of a relevant implication A→ B is that there is supposed to be
some sort of relevance between the truth of the antecedent A and the consequent
B.What could bemore natural then that to interpretRabc as that in the context of
the information a, the information b is relevant to the information c. If one adopts
Fine’s hybrid approach to the ternary relation, thismight be symbolized asa•b≤ c.
In the words of Sperber andWilson, “an input is relevant to an individual when its
processing in a context of available assumptions yields a positive cognitive effect.”
“The most important type of cognitive effect achieved by processing an input in a
context is a contextual implication, a conclusion deducible from the input and the
context together, but from neither input nor context alone.”

6 Absolute Versus Contextual Relevance

Let us write a ≤ b to mean that the state of information a is relevant all by
itself to the state of information b. We shall call this absolute relevance, and will
get to relative relevance, where relevance depends on a context, in just a few

6 The only exception I know is Wilson and Sperber (1986), where in motivating their
own work to give an explicit account of relevance, they give a series of quotations
intended to demonstrate “considerable scepticism over whether any such account is
in principle possible.” They quote from p. xxi of Anderson and Belnap (1975): “The
difficulty of treating relevance with the same degree of mathematical sophistication
and exactness characteristic of extensional logic has led many influential philosopher-
logicians to believe that it was impossible to find a satisfactory treatment of the
topic.” This is ironic in that Anderson were clearly doing the same for their own
work.

7 They are not even in the extremely comprehensive bibliography by Robert G. Wolfe
in Entailment, vol. II.
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paragraphs. What are the formal properties of absolute relevance? Our choice
of notation suggests that it should be reflexive, transitive, and not generally
symmetric. It seems entirely plausible that an information state a should be
relevant to itself, and that if information state a is relevant to information state
b, and b is relevant to information state c, then a is relevant to c. Readers of
detective stories would surely agree on this.

Let us now review the Routley–Meyer conditions on R with relevance in mind.
For the sake of clarity, we give equivalents of the Routley–Meyer conditions as
they are in Dunn (1986).

R1. R0aa Reflexivity
R2. Raaa Total Reflexivity
R3. Rabc⇒ Rbac Commutativity
R4. ∃x(Rabx and Rxcd)⇒ ∃y(Rayd and Rbcy) (which can be written R2(ab)cd

⇒ R2a(bc)d) Associativity
R5. a′ ≤ a and Rabc ⇒ Ra′bc Monotony (in first position)

Note that because of Commutativity, we also have:

R5′ b′ ≤ b and Rabc ⇒ Rab′c Monotony (in second position)8

Let us first see if ≤ is reflexive and transitive, so it matches these properties of
absolute relevance. These are well-known properties of the Routley–Meyer se-
mantics, but we shall derive them anyway because of their importance here ((I
almost said “relevance”) and also strangely hard to find in the literature). Re-
flexivity is immediate, since by the definition of ≤, it is just R1. For transitivity,
assume (1) a ≤ b, i.e., R0ab, and (2) b ≤ c, i.e., R0bc. We must show a ≤ c, i.e.,
R0ac. This follows immediately using R5′.

Let us now discuss the Routley–Meyer conditions one by one.
R1: The first question to ask is what is the “0”? Let us call “0” the “null

context.” I assume as a degenerate case that even in a lack of context, an in-
formation state is relevant to itself. In Fine’s approach, this amounts to saying
that the null information state 0, when combined with any information state a,
is included in the information state a.

R2: This states that a is relevant to itself when taken as its own context.
This amounts to saying that the information state a when combined with itself
gives no more information than just a. This is a bit questionable as we shall see.

R3: This states that which of the information states a and b is taken as
context, and which as input, does not matter. To take Sperber and Wilson’s
example of the train, it doesn’t matter if I see the train arriving and look at my
watch, or vice versa.

R4: b is relevant to x (in context a) and c is relevant to d (in context x).
Then we must find some input y such that y is relevant to d in context a and c

8 Also if we had fusion ◦ as primitive (instead of defining it as ∼(B → ∼A)) we would
have to add R6′′: c ≤ c′ and Rabc ⇒ Rabc′.
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is relevant to y in context b. It is easiest to consider this in the Fine framework.
We have a • b ≤ x and x • c ≤ d. We need a y such that a • y ≤ d and b • c ≤ y.
The obvious answer is that x = a • b and that (a • b) • c ≤ a • (b • c). This last
means that it does not matter given three pieces of information in a given order,
which two we combine first – as long as we preserve their order.

R5: Let us suppose that a′ is absolutely relevant to a and that in the context
a, b is relevant to c. It then seems that, in the context a′, b should be relevant
to c. Note that canonically the information states a, b, c, . . . are certain sets of
sentences (“prime theories” – but we will not go into the details here – see e.g.,
Dunn (1986)) and that a ≤ b is just a ⊆ b, i.e., the theory a is included in the
theory b. Another way to look at this is that the information in a is included
in the information in state b. Honesty compels me to raise the question as to
whether this conforms to intuitions we might have about a being absolutely
relevant to b. Is a subtheory relevant to a theory? I believe the answer is ‘yes’.
Consider the example of the role of Peano arithmetic in the more general theory
of say the positive and negative integers. But what about the other way around?
The intuitions here are admittedly slippery, but while it seems to me that the
theory of the natural numbers is “integral” (absolutely relevant) to the theory
of the integers, this is no way holds the other way around.

Put quickly, for sets generally (not just for theories), if b ⊆ c, then if there is
any change in b, say in an extreme case that its members were to cease to exist,
then there is of course a change in c. This is a case of Absolute Relevance.

Contextual Relevance will be the way that we interpret the Routley–Meyer
accessibility relation R, but we need to be sensitive about how we define it. Union
(i.e., a ∪ b) is perhaps the first idea that springs to mind, and if we interpret
Rabc as a ∪ b ⊆ c then this interpretation does satisfy all of the requirements
R1–R5.9 But there are some definite peculiarities in understanding Contextual
Relevance using union. In order for a ∪ b ⊆ c, we must have b ⊆ c, and so
strangely Contextual Relevance implies Absolute Relevance, but not vice versa
(since maybe a � c). Note also that the context a ⊆ c, and so the context a is
also absolutely relevant to c. These are downright strange relationships.

But there are various natural ways to combine information states, and union
is only one of these. Let us denote a combination of the information states a
and b as a • b, and then general idea is that we can interpret the Routley–Meyer
ternary accessibility relation Rabc as something like a • b ≤ c, and there is no
reason to think that any of a, b, a ∪ b are included in c.

9 Food for thought. Propositions viewed as sets of information states (or possible
worlds) are disjunctive in character. Each member of a proposition p can be viewed
as a way that p might be true. If proposition p is included in proposition q, then p
entails q. Information states viewed as sets, say of sentences as with Urquhart, are
conjunctive in character. So if a ⊆ b, then b contains more information that a, and
viewing a and b as theories (or as sets of axioms for a theory), we can speak of b
“entailing” a.
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7 Ways of Combining Information

Here are three natural ways of combining information a • b:

1. Data Combining Interpretation: the piece of information a when combined
with b equals (or is included) in c. (Urquhart, Fine).

2. Program Applied to Data Interpretation: view information state a as “in-
put” (static) and view the information state b as a “program” (dynamic).
Information state c is a potential result of running the program on that
input. (Dunn).

3. Program Combining Interpretation: view a and b both as programs, and
view the result of composing these two programs as equal to (or included in)
c. (Dunn).

The kind of interpretation in 1 comes from Urquhart (1972) who talks of
combining pieces of information. Fine talks of theories instead of pieces of infor-
mation. Interpretations 2 and 3 can be found in various forms in Dunn (2001a,
2001b, 2001c, 2003). Mares (1997) contains another “informational” interpreta-
tion of the ternary accessibility relation.

Imagine pieces of information as piles of paper on your desk. Interpretation
1 has to do with viewing the pieces of paper as containing data and combining
them together into a single pile, and of course, this can be done in different
ways. The simplest being to just treat them as sets and not care about the
order in which they are placed, or whether there are duplicates. Another way
might be to regard them as multisets, and disregard the order while carefully
noting the number of duplicates. Maybe, the order could matter too as with
sequences. And maybe, the way the are grouped into files, say with file folders
could matter. We will not explore all of these here, but list them to provoke
thoughts. For interpretation 2, think of the pieces of paper in the first pile (a) as
a kind of program containing instructions about what to do with sentences on
pieces of paper, and the idea is just to apply those instructions to the sentences
in the other pile (b). For interpretation 3, the idea is to treat the sentences in
both piles as instructions, and to compose the instructions from the first pile (a)
with those in pile (b) so as to get new instructions.

Re 1, Urquhart (1972) took the simplest mode of combining pieces of in-
formation. He took pieces of information to be sets of sentence and took the
standard operation of set union to be the way of combining them. He did this
independently about the same time as Routley and Meyer came up with their
ternary relation, and in fact avoided the need for it by defining x |= A → B
iff for every a, if a |= A then x ∪ a |= B. The ternary relation is implicit and
can be defined as Rxab iff x ∪ a = b. Urquhart’s way of doing things is often
referred to as the “operational semantics” for relevance logic and is contrasted
with the Routley–Meyer “relational semantics.” There is only one thing wrong
with the operational semantics, and that is that it is not complete for any of
the well-known relevance logics, say R, and in fact it is not nicely axiomatizable
at all, as Fine showed. Fine produced his own semantics for the system R and
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other relevant logics, sometimes called the “relational-operational” semantics,
or as I like to think of it “best of both.” We will not go into the details of
the Fine semantics, but one way that Fine presents it is to compare it to the
Routley–Meyer semantics so there is a binary operation ◦ and a partial-order ≤
so that he can define x |= A→ B iff for every a, b, if x ◦ a ≤ b and a |= A then
b |= B. If you let your eyes go out of focus a bit, you will see, as Fine suggests,
that this is essentially the Routley–Meyer definition with x ◦ a ≤ b in place of
Rxab. Fine sometimes writes a ≤x b, which would serve perfectly for the notion
of contextual relevance.

8 Comparing the Fine and Urquhart Semantics for
Relevance Logic

Let us consider Fine’s and Urquhart’s two different ways of defining the truth
of a relevant implication using • to combine information states (we shall use
this term as an abstraction to cover Urquhart’s pieces of information and Fine’s
theories):

(F) x |= A→ B iff for ∀a, b, if x • a ≤ b and a |= A, then b |= B (Fine),
(U) x |= A→ B iff ∀a, if a |= A, then x • a |= B (Urquhart).

(U) kind of hides the contextual relevance, whereas (F) sticks it in your face.
But in fact they are equivalent. Indeed, (U) is a special case of (F), if we in-
stantiate b to x • a. But (U) can be seen conversely to imply (F). It suffices to
show that the right hand side of (U) implies the right hand side of (F). So let
us assume the right hand side of (U): ∀a, b, if a |= A then x • a |= B. We will
show the right-hand side of (F): ∀a, b,if x • a ≤ b and a |= A then b |= B. So
for this purpose further assume x • a ≤ b and a |= A. From a |= A and the right
hand side of (U), we derive x • a |= B. But from this and x • a ≤ b, by using the
Hereditary Condition, we can show that b |= B, as needed. Of course, we have
to show the Hereditary Condition, but this is routine.

There are clearly ways of combining pieces of information that do not have
all of the properties of ∪. What are the properties of ∪? It is well-known that
from an equational perspective these are:

a ◦ a = a (Idempotence)
a ◦ b = b ◦ a (Commutation)
a ◦ (b ◦ c) = (a ◦ b) ◦ c (Association).

These three properties characterize a semi-lattice, and any semi-lattice is iso-
morphic to a collection of sets closed under ∪.

Let’s start with idempotence: a ◦ a = a, and consider the inequality half:
a ◦ a ≤ a (Square decreasing). This is just the Routley–Meyer condition Raaa,
but that does not make it sacrosanct. If the pieces of paper I am combining are
dollar bills, there is more information in my hand (“I have two dollars”) when I
show two of them than when I show just one of them (“I have one dollar”). Girard
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(1987) uses similar examples to motivate his Linear Logic since the contraction
axiom depends on this property and linear logic lacks that. Another example
might be if we think of a as the code for a program and we apply that very same
program to itself as input. There is no reason to believe it will turn out that
code as output.

Another important property of ∪ is a◦b = b◦a (Commutation). The computer
program example destroys that too.

The third property of ∪ is a ◦ (b ◦ c) = (a ◦ b) ◦ c (Association). This is a little
harder to dismiss. Even if I have three bills in two different pockets (say a in
the left, and b and c in the right), and then rearrange them (both a, b in the
left, and c in the right) I still have the same documentation as to my wealth.
But again one can devise a programming counter-example (though interestingly
not when one interprets a, b, c all as the programs that they code and views • as
composition of programs).

Let us reexamine the three ways of combining information that we listed
above. Here is a simplified way to think about them.

For interpretation 1 (Data Combining Interpretation), imagine that a =
{p}, b = {q}. Then a • b = {p, q}.

For interpretation 2 (Program Applied to Data Interpretation), imagine that
a = {p}, b = {p→ q}. Then a • b = {q}.

For interpretation 3 (Program Combining Interpretation), imagine that a =
{p→ q}, b = {q → r}. Then a • b = {p→ r}.

The problem put quickly is that I may be in different kinds of mental states as
I acquire new cognitive input. If I am in a merely receptive state and I acquire
two pieces of information, say p and q, I may merely “file them away” into
a • b = {p, q}. This may be true even if I acquire p and p → q and my mind is
not very active and/or they are deeply buried with other pieces of information.
On the other hand, if my mind is very active (and confident of its powers) I
might conclude a • b = {q} and at the same time discard the premises p and
p → q that led to the information q. And of course a similar story may be told
about interpretation 3.

9 Negation

This is a bit of digression, but it is justified by the fact that treatment of negation,
not just implication, is critical in relevance logic. In classical logic, from the
premise A ∧ ∼A any other sentence B can be derived as a conclusion, because
in classical logic (A ∧∼A) ⊃ B is a theorem. In general (A ∧∼A)→ B is not a
theorem in the systems R, E, and other relevance logics, because of the Variable
Sharing Property. This has at least as much to do with negation as it does with
implication, and indeed even in the FDE (first-degree entailment) fragment of
E and R this is not provable.



24 J.M. Dunn

There are at least three treatments of what is standardly called “De Morgan”
negation in relevance logic, and there is also another negation entirely, classical,
or “Boolean” negation which Meyer and Routley showed could be conservatively
added to the system R. Put quickly:

(“Routley Star”) x |= ∼A iff not x∗ |= A

(Four-valued) x |=1 ∼A iff x |=0 A
x |=0 ∼A iff x |=1 A

(Perp) x |= ∼A iff ∀a ∈ A, a ⊥ x.

Depending on subtleties, the first two were both in my dissertation Dunn
(1966). I discussed various representations of De Morgan lattices (the algebraic
counterpart to first-degree entailments) and showed them all equivalent. The
“Routley Star” was in this context anticipated by Bia�lynicki and Rasiowa in their
representation of De Morgan lattices (they called them quasi-Boolean algebras).
The four-valued semantics was implicit in another representation of De Morgan
lattices using “topics” but was not made explicit until Dunn (1969) and not
published until Dunn (1976). Two important qualifications though – these did
not address the issue of nested implications. We will discuss this some more in
the next section. The Perp treatment of negation arose also in the representation
of De Morgan lattices, but much later. See Dunn (1993). We shall not discuss it
here. For a discussion of these in a more general setting see Dunn (1999).

The Routley Star should really be called the Routleys’ Star, since it was intro-
duced in Routley and Routley (1972) as a semantics for first degree entailments.
They required that it satisfy:

a∗∗ = a (Period two)

Routley and Meyer go further and combine it with their ternary accessibility
relation to provide a semantics for R, E, etc. and require that * satisfy in addition
to Period Two the following:

If Rabc then Rac∗b∗. (Antilogism)

x∗ can be understood as the sentences not denied by x, which helps us infor-
mally understand the validity of

(A→ B)→ (∼B → ∼A) (Contraposition),

which is formally determined by Antilogism. An informal understanding of Antil-
ogism in terms of contextual relevance goes something like this. Antilogism says
that if b is relevant to c in the context a, then c∗ is relevant to b∗ in the same
context a, that is, the information not denied by c is relevant to the information
not denied by b. Go figure!
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The “Routley-Star” has come under a lot of criticism both from those within
and outside of the relevance logic community, and was more of a focus of
Copeland’s (1979) critical review than the ternary accessibility relation.

The 4-valued approach (Dunn (1976)) assigns each sentence a subset of the
set of truth values {1, 0} instead of just a single one of the truth values 1, 0.10

There are clearly 4 such subsets, and hence 4 values: { {1}, {0}, { }, {1, 0} }.
Belnap (1977a, 1977b) labeled these T, F,N,B, for True, False, Neither, Both.

We can understand these as subsets of {1, 0}, which is the basic approach of Dunn
(1976). We then can do “double-entry bookkeeping” with x |=1 A meaning that
the information state a is assigning the sentence A at least the value 1, and
x |=0 A meaning that a is assigning A at least the value 0. We start with a
valuation v that assigns to each atomic sentence p some subset of {1, 0}. From
this we can define V1 = {x : 1 ∈ v(p)}, V0 = {x : 0 ∈ v(p)}. Then:

(vp) x |=1 p iff x ∈ V1(p) (Atomic)

x |=0 p iff x ∈ V0(p)

Clauses for ∼, ∧, ∨ then are as follows:

(v∼) x |=1 ∼A iff x |=0 A (Negation)

x |=0 ∼A iff x |=1 A

(v∧) x |=1 A ∧B iff x |=1 A and x |=1 B (Conjunction)

x |=0 A ∧B iff x |=0 A or x |=0 B

(v∨) x |=1 A ∨B iff x |=1 A or x |=1 B (Disjunction)

x |=0 A ∨B iff x |=0 A and x |=0 B.

This in fact gives a complete semantics for First Degree Entailments (FDE),
those formulas of R and E that do not contain nested implications, i.e., formulas
of the form A→ B where A and B do not contain →.

Plus, the sharp-eyed reader will have noticed, we need to have two clauses for
relevant implications as well. This gets complicated.

Of course we could just continue and write down:

(v→) x |=1 A→ B iff ∀a, b, if Rxab and a |=1 A then b |=1 B

x |=0 A→ B iff ∃a, b, Rxab and a |=1 A then b |=0 B.

This might be fine, except it does not seem to give a completeness theorem for
R. Fortunately, Mares (2004) has found a way to get a variant of it to work. But
it needs the complication of adding a “neighborhood semantics,” much like the
neighborhood semantics of various non-normal modal logics. We leave it as an
open problem whether sense can be made of this addition in terms of relevance.

10 Though an alternative was suggested of viewing a valuation as a relation of a sentence
to 1, 0 instead of a function taking just one of these.
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10 What is an Information State?

This is also a bit of a digression (no pun intended). Routley–Meyer, Urquhart,
and Fine, all have in their semantics a set of elements corresponding to Kripke’s
possible worlds in his semantics for modal logic (often called “possible worlds
semantics”). But these elements cannot be taken to be possible worlds, for they
are often incomplete and/or inconsistent. Thus, for some element a and sentence
A we may have neither a |= A nor a |= ∼A, and for another sentence we may
have both a |= A and a |= ∼A.

Routley–Meyer coined the name “set ups” for their elements. Urquhart used
the term “pieces of information,” and Fine used the term “theories.” We have
tended to use the term “information state.”11 This is clearly an abstraction, but
a concrete way to think of it is as the state of a storage system in a computer.
This can be visualized for an antique computer as the setting of switches (either
on or off), or for a hard drive as changes in direction of the magnetic field from
place to place. No matter the physical method of storage, an information state
may be thought of as a finite sequence of bits, either 1 or 0. Propositions can
be thought of as sets of information states, and each proposition P is true of
false in a given information state a depending on whether a ∈ P or a /∈ P , and
in principle, this goes back to Shannon. It is related to Carnap and his state
descriptions – see for example Dunn (2001a). In this setting the Routley–Meyer
valuation clause

(v∨) x |= A ∨B iff x |= A or x |= B

makes perfect sense.
But for a more ordinary conception of an information state the left-to-right

direction is problematic. I remember that I left my keys upstairs on the dresser,
or in the basement on the workbench, but I don’t remember which. Or suppose
I am about to throw a coin. I have the information that it will turn up heads or
tails, but I do not have the information as to which. Or suppose the dog knows
that his master took either the left fork of the path or the right fork, but does
not know which (he hasn’t yet sniffed). Or in playing the game Clue, figure out
that that the murder was committed by Miss Scarlet with a knife in the study,
or by Professor Plum with a candlestick in the dining room, etc.

Urquhart, calling the elements of his semantics “pieces of information,” runs
head on into this problem. Fine, calling his elements “theories” would seem
to also, for clearly theories can contain disjunctions without containing either
disjunct (look at the theories above about my keys, etc.). But Fine has a way
out. He has special kinds of theories. Besides the set T of ordinary theories
he has the subset S “of all theories that contain a disjunct of any contained

11 But back in the old days of Dunn (1976), I used the term “situation.” And Mares
(2004) with his “situated semantics” continues to use the term “situation,” partly to
build an alliance with the Barwise–Perry Situation Theory. Situations would seem
to provide plausible terminology for “situated relevance”: situation b is relevant to
situation c in the context of situation a.
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disjunction, that answer every either-or question they raise.” In the section he
wrote in Entailment II, he suggests (among other names) that these may be
called “prime,” and this is the name that we use. It derives from the notion
of a prime filter in lattice theory, and Routley–Meyer used the same notion in
constructing the canonical models used in proving their semantics complete.

This suggests that we generalize the notion of an information state so that it
is not just a finite sequence of 0’s and 1’s, but that we also let the notation N (for
neither) sometimes occur to indicate that the information state is not complete.
There are also circumstances where we might have conflicting information. In
a computer network, sites are sometime cloned for various purposes, good or
bad (e.g., safety backup, facilitating access, phishing). It is entirely possible that
the cloning introduces errors so that one site has 1 in a certain position in its
current state, and a supposedly duplicate site shows a 0 at the same time in the
same position. For that we might use the notation B (for both). Such a 4-valued
information state was described by Dunn (2008), and clearly is an abstraction
from the so-called Belnap–Dunn 4-valued logic.

11 (Tentative) Conclusion

I call this concluding section “tentative,” because I hope that this paper has opened
all kinds of doors to further research. You all are invited to walk through them.
All of the variations on the contextual relevance relation, handled in the right way,
give rise to different logics, some well-known, others new.12 I am tempted to follow
the example of Fermat here and say: “I have discovered a truly marvellous proof of
this, which this margin – I mean paper – is too narrow to contain.” But the truth
is I have barely begun to peak through many of the doorways.

This is an embarrassment of riches. We started out (at least according to
Meyer), with no logic of relevance, and now we have too many logics of relevance.
Will the real logic of relevance please stand up?

At any rate, we have given an interpretation of the Routley–Meyer accessibil-
ity relation Rabc in terms of contextual relevance that allows us to regard the
logic R of relevant implication as also a logic of relevance. Of course, we must
admit that there are various other uses of relevance outside of logic, but that
point is not relevant.

Suppose I were to claim that classical logic is the logic of the two truth-values
truth and falsity. It seems to me that this is correct even though truth and falsity
have many applications outside of logic.
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Abstract. Pioneered by Büchi, Elgot and Trakhtenbrot, connections
between automata and logics that define languages of words and trees
are now well-established. During the last decade, some of these powerful
connections have been extended to binary relations (transformations) of
words and trees. This paper is a survey of known automata-logic con-
nections for transformations.

1 Introduction

The connections between mathematical logics and computational models have a
long research history, which goes back to the foundations of theoretical computer
science and the seminal works of Church and Turing [12,43]. In particular, Turing
has shown how to express the behaviour of a universal machine in first-order
logic, and then proved that first-order logic is undecidable, as a consequence of
the undecidability of the halting problem. The Curry-Howard isomorphism is
another important example of connection that shows correspondences between
the formulas of a logic and the types of a computational model, and between
proofs and programs [17,29].

Further connections between mathematical logic and automata theory have
been discovered in the 60s by Büchi [10], Elgot [20] and Trakhtenbrot [42], who
have shown that the class of finite word languages definable in monadic second-
order logic corresponds, in an effective way, to the class of languages definable by
finite state automata, and thus to regular languages. While logical formalisms
have a high-level descriptive power, automata are easier to analyse algorith-
mically. For instance, checking whether the language defined by a finite state
automaton is empty can be decided in linear-time. Therefore, as an application
of Büchi-Elgot-Trakhtenbrot’s theorem, monadic second-order logic (interpreted
on finite words) has decidable satisfiability problem. Since this seminal result,
many other similar connections have been shown, most notably for regular lan-
guages of infinite words and trees [11,35,36] and first-order definable languages of
words [38]. More details can be found in the following survey: [41], [44] and [18].

A language of finite words over an alphabet Σ is a mapping from the set of
words Σ∗ to {0, 1}. A transformation of finite words is a binary relation R on
Σ∗, and therefore it generalises the concept of languages. It is functional if R
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is a function. Although transformations are as fundamental as languages, much
less is known on the relation between automata and logic for transformations.
Nevertheless, some important results have been obtained in the last decade. In
this paper, we survey some of them.

A transformation R of finite words over an alphabet Σ can be seen as a lan-
guage, for instance the language {u#v | (u, v) ∈ R}, where # �∈ Σ. However,
the formalisms from language theory, such as automata, are not well-suited to
describe transformations defined on this encoding and therefore, proper exten-
sions have been introduced to define transformations. Automata have been for
instance extended to automata with outputs, usually called transducers. Perhaps
the most studied transducer model is that of finite state transducers [31,37].
Finite state transducers (FST) extend finite state automata with an output
mechanism. Whenever an FST reads an input symbol, it moves to the next
symbol, updates its internal state, and write a partial output word. The final
output word is the concatenation, taken in order, of all the partial output words
produced while processing the whole input word.

The expressiveness of FST is limited and other, more powerful, state-based
models have been introduced and studied, such as two-way transducers and more
recently, streaming string transducers [2]. On the logic side, monadic-second or-
der logic has been extended in a natural way to MSO-transducers by B. Cour-
celle, to define transformations of logical structures [14,15]. The predicates of
the output structure are defined by MSO formulas interpreted over a fixed num-
ber of copies of the input structure. The first automata-logic connection, or one
should say transducer-logic connection, has been shown in [21] by J. Engelfriet
and H.J. Hoogeboom. They have extended Büchi-Elgot-Trakhtenbrot’s theorem
to functional transformations by showing that any transformation definable by a
deterministic two-way finite state transducer is definable by an MSO-transducer
(interpreted over finite words), and conversely. Moreover, this correspondence is
effective, i.e., an MSO-transducer can be effectively constructed from a determin-
istic two-way finite state transducer and conversely. An important consequence
of this result is the decidability of equivalence of MSO-transducers, since the
equivalence problem for deterministic two-way transducers is decidable [16].

Since then, other transducer-logic connections have been established for fi-
nite word transformations and other structures such as infinite words and finite
trees. Functional MSO-transformations of finite words have been shown to cor-
respond to transformations definable by streaming string transducers [2], and
this result has been extended to infinite words [3] and to non-functional MSO-
transformations [21,5]. Engelfriet-Hoogeboom’s theorem has been extended to
finite trees [8,22,23]. First-order definable transformations of finite words have
been considered in [26] and [32]. Some of these connections have been considered
under a stronger semantics, the origin semantics, in [9].

This paper surveys some of these important results. All the transducer-logic
connections presented in this paper are effective. The setting of functional trans-
formations of finite words is presented in details, in contrast to the other results,
which come nevertheless with the main bibliographic references. In Section 2, we
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present some preliminary notions. In Section 3, we define first-order and monadic
second-order logics interpreted on finite words, and define MSO-transducers, for
which we give several examples. In Section 4, we introduce the main state-based
models of transformations used in this paper. In Section 5, we present the main
transducer-logic connection for transformations of finite words. Finally in Section
6, we briefly survey some extensions of the finite word setting.

2 Word Transformations

We define the preliminary notions used all over this paper.

Words An alphabet Σ is a finite set of symbols, called letters. A word w over Σ is
a finite sequence of letters (σ1, . . . , σn), denoted w = σ1 . . . σn. The empty word
(empty sequence) is denoted by ε. The length of a non-empty word w = σ1 . . . σn

is defined by |w| = n, and |ε| = 0. We denote by dom(w) = {1, . . . , |w|} ⊆ N∗

the domain of w. In particular, dom(ε) = ∅. For all i ∈ dom(w), i is called a
position of w and w(i) denotes the i-th letter of w. The set of words over Σ is
denoted by Σ∗, while the set of non-empty words over Σ is denoted by Σ+.

Given two words w1 = σ1 . . . σn and w2 = β1 . . . βm, their concatenation,
denoted w1.w2 (or simply w1w2), is defined by w1.w2 = σ1 . . . σnβ1 . . . βm. In
particular, εw = wε = w for all words w ∈ Σ∗. For all w ∈ Σ∗ and n ∈ N, we
denote by wn the concatenation of w, n times. In particular, w0 = ε, w1 = w
and w2 = ww.

Transformations A transformation R of finite words over an alphabet Σ is a
binary relation over Σ∗, i.e. R ⊆ Σ∗ × Σ∗. For all words u ∈ Σ∗, we let R(u)
be the set of images of u by R, i.e. R(u) = {v ∈ Σ∗ | (u, v) ∈ R}. The word
u is usually called an input word while the words v such that (u, v) ∈ R are
called output words. We denote by dom(R) the domain of R, and by range(R)
its range, i.e. dom(R) = {u ∈ Σ∗ | R(u) �= ∅} and range(R) = {v ∈ Σ∗ | ∃u ∈
Σ∗, v ∈ R(u)}.

A transformation R is functional if R is a function, i.e. for all words u ∈ Σ∗,
the cardinality of R(u) is smaller than or equal to 1, i.e. |R(u)| ≤ 1. Functional
transformations are rather denoted by f, g, h . . . . For a functional transformation
f , we write f(u) = v instead of f(u) = {v}, for all (u, v) ∈ f .

Example 1. Let Σ = {a, b}. The following examples of (functional) transforma-
tions of finite words over Σ are running examples in this paper.

– The transformation fdel : Σ∗ → Σ∗ deletes all letters a, i.e. for all input
words u = σ1 . . . σn, fdel(u) = σi1 . . . σik such that {i1 < · · · < ik} = {i ∈
dom(w) | w(i) �= a}. E.g. fdel(abaabb) = bbb.

– The transformation fdouble doubles every input letter, i.e. for all u=σ1 . . . σn,
fdouble(u) = σ1σ1 . . . σnσn, e.g. fdouble(abaa) = aabbaaaa.
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– The transformation fcopy copies input words twice, i.e. for all u ∈ Σ∗,
fcopy(u) = uu.

– The transformation frev reverses input words, i.e. frev(σ1 . . . σn) = σn . . . σ1.
E.g. frev(abaa) = aaba.

– The transformation f1/2 is defined over a∗ by, for all n ≥ 0, f1/2(a
n) =

a�n/2�. E.g. f1/2(a8) = a4 and f1/2(a
3) = a.

– The transformation fexp exponentiates the number of a symbols in a word
of the form an, e.g. fexp(a

n) = a2
n

, and fexp(w) is undefined if w contains
at least one b.

3 Logical Transducers for Word Transformations

In this section, we introduce logical transducers, a logic-based formalism intro-
duced by B. Courcelle [14] to define transformations of logical structures. We
refer the reader to [15] for more details and results about logical transducers. Al-
though logical transducers can generally define transformations of arbitrary log-
ical structures, we specialise them to finite word transformations in this section.
We first introduce the notion of word logical structures, and then the classical
first-order and monadic second-order logics, interpreted over (logical structures
of) words.

3.1 Words as Logical Structures

A word w over an alphabet Σ can be seen as a logical structure1 w̃ over the
signature SΣ = {(La)a∈Σ ,�}, where (La)a∈Σ are monadic predicates that define
the labels of the positions in w, and � is a binary predicate that defines the order
on word positions. Formally, w̃ = (dom(w), (Lw̃

a )a∈Σ ,�w̃) is the logical structure
whose domain is dom(w), and such that the predicates are interpreted as follows:

Lw̃
a = {i ∈ dom(w) | w(i) = a} �w̃ = {(i, j) | i, j ∈ dom(w) ∧ i ≤ j}

When it is clear from the context, we rather write w instead of w̃.
A structure on SΣ is also called a SΣ-structure. We denote byM(SΣ) the set

of SΣ -structures. Note that a SΣ-structure may not be isomorphic to any word.
However for all w ∈ Σ∗, w̃ ∈ M(SΣ). Given a structure in M ∈ M(SΣ), we
denote by dom(M) its domain.

3.2 First-Order and Monadic Second-Order Logics on Words

Given an alphabet Σ, monadic second-order formulas (MSO formulas) over
the signature SΣ are built over first-order variables x, y . . . and second-order
variables X,Y . . . . They are defined by the following grammar:

φ ::= ∃X · φ | ∃x · φ | φ ∧ φ | ¬φ | x ∈ X | La(x) | x�y | (φ)

1 See for instance [19] or [40] for a definition of logical structures.
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Universal quantifiers and other Boolean connectives are defined naturally: ∀x ·
φ ≡ ¬∃x·¬φ, ∀X ·φ ≡ ¬∃X ·¬φ, φ1∨φ2 ≡ ¬(φ1∧φ2) and φ1 → φ2 ≡ ¬φ1∨φ2. We
also define the formulas true and false: � ≡ ∀x · (La(x) ∨ ¬La(x)) and ⊥ ≡ ¬�.
We do not define the semantics of MSO formulas, neither the standard notion of
free and bound variables, but rather give examples and refer the reader to [19]
or [40] for formal definitions.

Given an MSO formula φ, we write φ(x1, . . . , xn, X1, . . . , Xm) to emphasise
the fact that the free first-order variables of φ are exactly x1, . . . , xn, and its free
second-order variables are X1, . . . , Xm. Given a SΣ-structure M and an MSO
sentence φ, we write M |= φ when M satisfies φ. Let i1, . . . , in ∈ dom(M),
I1, . . . , Im ⊆ dom(M). For a formula φ(x1, . . . , xn, X1, . . . , Xm), we write M |=
φ(i1, . . . , in, I1, . . . , Im) to denote the fact that M together with the interpreta-
tion of xj by ij , j = 1, . . . , n and Xj by Ij , j = 1, . . . ,m, satisfy φ.

Given an MSO sentence φ, we write �φ� the set of words that satisfy φ, i.e.
�φ� = {w ∈ Σ∗ | w̃ |= φ}. Given a language L ⊆ Σ∗, if there exists an MSO
sentence φ such that �φ� = L, we say that L is MSO-definable, and that φ
defines L.

First-order logic First-order (FO) formulas over SΣ are MSO formulas in which
no second-order variable occurs.

Example 2. Let Σ = {a, b}. The formula ∃x · � defines the set of non-empty
words. The formula ∃x · La(x) define the set of words over Σ that contain at
least one position labelled a, i.e. the language Σ∗aΣ∗.

The formula S(x, y) ≡ x�y ∧ x �= y ∧ ∀z · (x�z�y → (x = z ∨ y = z) defines
the successor relation.

The formula ∀x∀y · (La(x) ∧ S(x, y) → Lb(y)) defines the set of words such
that any occurrence of the letter a is followed by the letter b. The formulas

first(x) ≡ ¬∃y · S(y, x) and last(x) ≡ ¬∃y · S(x, y)

are such that for all w ∈ Σ+ and i ∈ dom(w), w |= first(i) iff i = 1, and
w |= last(i) iff i = |w|.

The language a∗b∗ is definable by the following formula:

∀x∀y · (La(x) ∧ S(y, x)→ La(y))

More generally, it is known that the class of MSO-definable languages is the
class of regular languages [41]. The MSO formula

part(X1, . . . , Xn) ≡ (∀x ·
n∨

i=1

x ∈ Xi) ∧ ∀x ·
∧
i
=j

(x �∈ Xi ∨ x �∈ Xj)

holds true whenever X1, . . . , Xn defines a partition of the domain. Finally, one
can define the set of words of even length in MSO, but one needs second-order
variablesXo andXe to capture, respectively, odd and even positions of the word,
as defined by the formula

φo/e(Xo, Xe) ≡ part(Xo, Xe) ∧ ∀x · (first(x)→ x ∈ Xo)
∧∀x∀y · S(x, y)→ (x ∈ Xo → y ∈ Xe) ∧ (x ∈ Xe → y ∈ Xo)
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Then, the set of words of even length is defined by the sentence

∃Xo∃Xe · φo/e(Xo, Xe) ∧ ∀x · (last(x)→ x ∈ Xe).

3.3 Logical Transducers: Definition

Logical transducers define functional transformations from input to output word
structures. The output structure is defined by taking a fixed number k of copies
of the input structure domain. Some node of these copies can be filtered out by
formulas with one free first-order variable. In particular, the nodes of the c-th
copy are the input positions that satisfy some given formula φc

pos(x). The predi-
cates La and � of the output structure are defined by formulas with respectively
one and two free first-order variables, interpreted over the input structure. More
precisely, position labelled a of the c-th copy are defined by a given formula
φc
La

(x), interpreted over the input word. If this formula holds true, it means
that the c-th copy of x, if it exists, is labelled a in the output word. The order
relation between two output positions is defined by formulas with two free vari-
ables interpreted over the input word. For instance, the order relation between
positions of the c-th copy and the d-th copy (c and d can be equal) is defined by
a formula φ�(x, y)c,d interpreted over the input structure. If this formula holds
true, it means the the c-th copy of x occurs before the d-th copy of y in the
output word. Let us formally define logical transducers.

Definition 1. Let Σ be an alphabet. A logical MSO-transducer (MSOT) on the
signature SΣ is a tuple

T = (k, φdom, (φc
pos(x))1≤c≤k, (φ

c
La

(x))1≤c≤k,a∈Σ , (φc,d
� (x, y))1≤c,d≤k)

where k ∈ N and the formulas φdom, φc
pos, φ

c
La

and φc,d
� for all c, d ∈ {1, . . . , k}

and a ∈ Σ are MSO formulas over SΣ .

Semantics A logical MSO-transducer T defines a function from SΣ-structures
to SΣ -structures, denoted by �T � : M(SΣ) → M(SΣ). The domain of �T �
consists of all structures M such that M |= φdom. Given a structure M ∈
dom(�T �), the output structure N such that (M,N) ∈ �T � is defined by N =
(DN , (LN

a )a∈Σ ,�N) where:

– DN ⊆ dom(M)× {1, . . . , k} is defined by

DN = {(i, c) | i ∈ dom(M), c ∈ {1, . . . , k}, M |= φc
pos(i)}

We rather denote by ic the elements of DM .
– for all a ∈ Σ, the interpretation LN

a is defined by

LN
a = {ic | i ∈ dom(M), c ∈ {1, . . . , k}, M |= φc

La
(i)} ∩DN

– the interpretation �N is defined by

�N ={(ic, jd) | i, j ∈ dom(M), c, d ∈ {1, . . . , k}, M |=φc,d
� (i, j)}∩(DN×DN)



36 E. Filiot

Remark 1. Note that the size of the output structure N is linearly bounded by
the size of M , as it is at most k.|dom(M)|. We say that MSO-transducers define
linear-size increase transformations.

Logical transducers as word-to-word transformers Note that in general, an MSO-
transducer T over SΣ may not define a word-to-word transformation, as the
output structure of an input word structure may not be a word. We say that T
is an MSO-transducer of finite words over Σ if for all words w ∈ Σ∗ such that
w̃ ∈ dom(T ), �T �(w̃) is a word, i.e., there exists v ∈ Σ∗ such that �T �(w̃) is
isomorphic to ṽ. This property is decidable:

Proposition 1. It is decidable whether an MSO-transducer over SΣ is an MSO-
transducer of finite words over Σ.

Proof. Let T =(k, φdom, (φc
pos(x))1≤c≤k, (φ

c
La

(x))1≤c≤k,a∈Σ , (φc,d
� (x, y))1≤c,d≤k).

We construct a formula is wordT which is satisfiable in Σ∗ iff T is an MSO-
transducer of finite words over Σ. The result follows since MSO over finite words
is decidable, by Büchi-Elgot-Trakhtenbrot’s Theorem.

Before giving the construction, let us introduce the following useful shortcuts.
We write ∀xc ·φ instead of ∀x ·

∧k
c=1 φ and ∃xc ·φ instead of ∃x ·

∨k
c=1 φ. We also

write [∀xc] · φ instead of ∀xc · (φc
pos(x) → φ) to mean that xc is quantified over

output nodes that belong to the domain of the output structure. By xc = yd we
denote the formula x = y if c = d, and ⊥ if c �= d. Therefore, by xc �= yd we
denote the formula x �= y if c = d, and � if c �= d.

It is also convenient to define the output successor relation. For all c, d ∈
{1, . . . , k}, we let

φc,d
S (x, y) ≡ φc,d

� (x, y)∧xc �= yd∧∀ze ·(φc,e
� (x, z)∧φe,d

� (z, y)→ ze = xc∨ze = yd)

Finally, we can construct the expected formula:

is wordT ≡ φdom →
(1) [∀xc] ·

∧
a 
=b∈Σ ¬φi

La
(x) ∨ ¬φi

Lb
(x)

∧ (2) [∀xc] ·
∨

a∈Σ φc
La

(x)

∧ (3) [∀xc∀yd∀ze] · (φc,d
S (x, y) ∧ φc,e

S (x, z)→ yd = ze)

∧ (4) [∀xc∀yd∀ze] · (φd,c
S (y, x) ∧ φe,c

S (z, x)→ yd = ze)

∧ (5) [∀xc∀yd] · (xc �= yd)→ ([∃ze] · φe,c
S (z, x) ∨ [∃ze] · φe,d

S (z, y))

∧ (6) [∃xc∀yd] · ¬φd,c
S (y, x)

Subformula (1) ensures that each output node is labeled by at most one letter.
Subformula (2) ensures that each output node is labeled by at least one letter.
Subformula (3) ensures that the output successor relation is a function. Subfor-
mula (4) ensures that the inverse of the output successor relation is a function.
Finally, Subformulas (5) and (6) ensures that there is exactly one output node
without predecessor. �
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In the rest of this section, by MSO-transducer and MSOT we always mean
an MSO-transducer of finite words.

FO-transducers of finite words. An FO-transducer (FOT) T is defined as an
MSO-transducer, except that each formula of T is an FO formula over SΣ .

Definability. We say that a transformation R of finite words is definable by a
logical transducer T if R = �T �. We say that R is MSOT-definable (resp. FOT-
definable) if it is definable by an MSO-transducer (resp. FO-transducer) of finite
words.

3.4 Logical Transducers: Examples

In this section, we give several examples of transformations that can be defined
by MSO-transducers.

Example 3. We show that all transformations of Example 1 but fexp are MSOT-
definable. They are illustrated in Fig. 1. Only the successor relations are depicted.
Input nodes filtered out by formulas φc

pos(x) are represented by fuzzy nodes.
• The transformation fdel on Σ = {a, b} is definable by the transducer

Tdel=(1, φdom ≡ �, φ1
pos(x) ≡ ¬La(x), (φ

1
Lσ

(x) ≡ Lσ(x))σ∈Σ , φ1,1
� (x, y) ≡ x � y)

Given an input word u ∈ Σ∗, let v ∈ Σ∗ such that ṽ = �Tdel�(ũ). Then dom(ṽ) =
{i1 ∈ dom(u) | u(i) = b}, as defined by φ1

pos, and �ṽ= {(i1, j1) | i1, j1 ∈
dom(ṽ), i ≤ j}.
• To define transformation fdouble, one needs to take two copies of the input
structure. It is defined by the transducer Tdouble with k = 2 and for i ∈ {1, 2}:

φdom ≡ � φi
pos(x) ≡ � φi

La
(x) = La(x) φi

Lb
(x) = Lb(x)

φ1,1
� (x, y) ≡ x � y φ1,2

� (x, y) ≡ x � y φ2,1
� (x, y) ≡ x ≺ y φ2,2

� (x, y) ≡ x � y

Note that the output predicate � from copy 2 to copy 1 is only defined when x
occurs strictly before y. It implies that an output node yd is a successor of xd

iff one of the two following conditions hold: (i) c = 1 and d = 2 and x = y, or
(ii) c = 2 and d = 1 and y is a successor of x in the input word. If one wants
to restrict the domain of Tdouble to words in a∗, it suffices to define the domain
formula by φdom ≡ ∀x · La(x).
• Let us consider transformation fcopy. Again, one needs two copies of the input
structure. It is similar to Tdouble except the way the output order is defined:

φdom ≡ � φi
pos(x) ≡ � φi

La
(x) = La(x) φi

Lb
(x) = Lb(x)

φ1,1
� (x, y) ≡ x � y φ1,2

� (x, y) ≡ x � y φ2,1
� (x, y) ≡ ⊥ φ2,2

� (x, y) ≡ x � y

Note that compared to Tdouble, only the definition of φ2,1
� differs. We indeed

completely disallow a node from copy 2 to be smaller than a node from copy 1.
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input

word

copy 1

a b a a b b b a

1 2 3 4 5 6 7 8

a b a a b b b a
φ1,1
� φ1,1

� φ1,1
�

a b a a b b b a
φ1,1 φ1,1 φ1,1

(a) Transformation fdel defined by Tdel

input

word

copy 1

copy 2

a b a a b b b a

1 2 3 4 5 6 7 8

a b a a b b b a

a b a a b b b a

φ1,2
�

φ2,1
�

φ1,2
�

φ2,1
�

φ1,2
�

φ2,1
�

φ1,2
�

φ2,1
�

φ1,2
�

φ2,1
�

φ1,2
�

φ2,1
�

φ1,2
�

φ2,1
�

φ1,2
�

a b a a b b b a

a b a a b b b a

φ1,2
�

φφ2,1
�

φ1,2
�

φφ2,1
�

φ1,2
�

φφ2,1
�

φ1,2
�

φφ2,1
�

φ1,2
�

φφ2,1
�

φ1,2
�

φφ2,1
�

φ1,2
�

φφ2,1
�

φ

(b) Transformation fdouble defined by Tdouble

input

word

copy 1

copy 2

a b a a b b b a

1 2 3 4 5 6 7 8

a b a a b b b a

a b a a b b b a

φ1,1
� φ1,1

� φ1,1
� φ1,1

� φ1,1
� φ1,1

� φ1,1
�

φ1,2
�

φ2,2
� φ2,2

� φ2,2
� φ2,2

� φ2,2
� φ2,2

� φ2,2
�

a b a a b b b a

a b a a b b b a

φ1,1
� φ1,1

� φ1,1
� φ1,1

� φ1,1
� φ1,1

� φ1,1
�

φ1,2
�

φ2,2
� φ2,2

� φ2,2
� φ2,2

� φ2,2
� φ2,2

� φ2,2
�

(c) Transformation fcopy defined by Tcopy

input

word

copy 1

a b a a b b b a

1 2 3 4 5 6 7 8

a b a a b b b a
φ1,1
� φ1,1

� φ1,1
� φ1,1

� φ1,1
� φ1,1

� φ1,1
�

a b a a b b b a
φ1,1
� φ1,1

� φ1,1
� φ1,1

� φ1,1
� φ1,1

� φ1,1
�

(d) Transformation frev defined by Trev

input

word

copy 1

a a a a a a a a

1 2 3 4 5 6 7 8

a a a a a a a a
φ1,1
� φ1,1

� φ1,1
�

a a a a a a a a
φ11,11
� φ11,11

� φ11,11
�

(e) Transformation f1/2 defined by T1/2

Fig. 1. Transformations of Example 1 defined by MSO-transducers

• The transformation frev is defined by the transducer Trev: it suffices to take
only one copy of the input structure and to inverse the order relation. Formally,
Trev is defined by k = 1 and:

φdom ≡ � φi
pos(x) ≡ � φ1

La
(x)=La(x) φ1

Lb
(x) = Lb(x) φ1,1

� (x, y) ≡ y � x
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• To define with an MSO-transducer the transformation f1/2 : an �→ a�n/2�, one
takes one copy of the input domain, sets the domain formula to φdom ≡ ∀x·La(x),
and filters out all odd positions of the input word, which is possible by the MSO
formula φ1

pos(x) ≡ ∃Xo∃Xe ·φo/e(Xo, Xe)∧x ∈ Xe, where φo/e has been defined

in Example 2. Finally, the order relation is just defined by φ1,1
� (x, y) ≡ x � y.

• The transformation fexp : an �→ a2
n

is not MSOT-definable, because it is not
linear-size increase, while MSOT-definable transformations are, by Remark 1.

Remark 2. Let us mention an other, logic-based, transformation formalism,
called first-order translations, that has been introduced by N. Immerman in
[30], as a way to define reductions between problems. In first-order translations,
the domain of the output structure is a set of k-tuples of elements of the input
domain, for some k. It is defined by a first-order formula with k free variables.
Predicates of arity n of the output structure are defined, similarly to Courcelle’s
logical transducers, by formulas with kn free variables, interpreted over the in-
put structure. In contrast to logical transducers which are linear-size increase,
first-order translations can map a structure to a polynomially larger output
structure. First-order translations have been introduced as a logical way to de-
fine reductions between decision problems and nothing is known about their
expressiveness as a formalism to define transformations. In this paper, we rather
focus on (Courcelle) logical transducers, for which connections with state-based
formalisms have been established. Nevertheless, let us mention the two papers
[32] and [34], where the particular case of length-preserving FO-translations with
k = 1 has been studied, as well as their connections with finite state transducers.
See Section 5.2 for more details.

4 State-Based Models for Word Transformations

In this section, we introduce some of the main state-based models for defining
(finite) word transformations for which connections with logics are known. These
models are automata models extended with outputs, and are usually called trans-
ducers. We present three models: finite state transducers, two-way finite state
transducers, and streaming string transducers.

4.1 Finite State Transducers

Finite state transducers (FST) extend finite state automata with partial output
words on their transitions. Whenever an FST reads an input letter, it moves
deterministically to the next state and appends a word to the output tape.
Formally, an FST on an alphabet Σ is a tuple T = (Q, q0, F, δ) such that Q is a
finite set of states, q0 ∈ Q is the initial state, F ⊆ Q is a set of accepting states,
and δ : Q×Σ → Q×Σ∗ is the transition function.

A run of T is a sequence r = p0σ1p1 . . . σnpn ∈ (QΣ)∗Q such that p0 = q0
and for all i ∈ {1, . . . , n}, there exists vi ∈ Σ∗ such that δ(pi−1, σi) = (pi, vi).
Given u ∈ Σ∗, one says that r is a run on u if u = σ1 . . . σn. The output of r,
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q a | εb | b

(a) fdel

q a | aab | bb

(b) fdouble

qe qo

a | ε

a | a

(c) f1/2

Fig. 2. Examples of finite state transducers

denoted by O(r), is defined as the word O(r) = v1 . . . vn. The run r is accepting
if pn ∈ F .

An FST T realises a functional transformation �T � : Σ∗ → Σ∗ defined by

�T � = {(u, v) | there exists an accepting run r of T on u such that v = O(r)}

Note that indeed, since T is deterministic, �T � is a function. The extension of
FST with non-determinism allows one to define relations instead of functions.

A non-deterministic finite state transducer (NFT) over an alphabet Σ is a
tuple T = (Q, q0, F,Δ) where Q, q0, F are defined as for FST, and Δ : Q×Σ ×
Q→ Σ∗ is a (partial) function that defines the transitions2. A run of T is defined
similarly as a run of an FST, as a sequence r = p0σ1p1 . . . σnpn such that p0 = q0
and for all i ∈ {1, . . . , n}, δ(pi−1, σi, pi) exists and is equal to some vi ∈ Σ∗. The
output O(r) is defined by O(r) = v1 . . . vn. The other notions defined for FST
carry over to NFT. Note that �T � may not be a function, since there can be
several accepting runs on an input word. However, whether an NFT defines a
function is decidable in PTime (see, for instance, [7]). NFT defining functions
are known as functional NFT.

Example 4. Fig. 2 illustrates three FST that define the functions fdel, fdouble
and f1/2 respectively. On these figures, the vertical arrow represents the initial
state, the double circles the accepting states, and the arrows labelled σ | v the
transitions that read σ ∈ Σ and produce v ∈ Σ∗. The other functions, fcopy, frev
and fexp are not definable by finite state transducers (even NFT). As we will
see in Section 5.3, any NFT-definable functional transformation is definable by
an MSO-transducer. We define in Section 5.3 a restriction on MSO-transducer
that captures exactly NFT-definable functions.

4.2 Two-Way Finite State Transducers

Two-way finite state transducers (2FST) extend (one-way) finite state transducer
with a bidirectional input head. Depending on the current state and letter, a
2FST updates its internal state and moves its input head either left or right. In
order to detect the first and last positions of the input word, 2FST are assumed
to run on words that are nested with begin and end markers �,� respectively.

2 These NFT are sometimes called real-time NFT, in contrast to a more general class
of NFT that allow productive ε-transitions.
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Formally, a two-way finite state transducer (2FST) over an alphabet Σ is
a tuple T = (Q, q0, δ, δhalt) where Q is a finite set of states, q0 ∈ Q is the
initial state, and δ is the transition relation3, of type δ : Q× (Σ∪{�,�})→ Q×
{+1,−1}×Σ∗, such that δ(q,�) ∈ Q×{+1}×Σ∗, and δ(q,�) ∈ Q×{−1}×Σ∗, for
all q ∈ Q. Finally, δhalt is the halting function, of type δhalt : Q× (Σ∪{�,�})→
Σ∗. In order to ensure determinism, it is required that dom(δ)∩dom(δhalt) = ∅.

In order to see how a word u ∈ Σ∗ is evaluated by T , it is convenient to see
the input as a tape containing � u �. Initially the head of T is on the first cell in
state q0 (the cell labelled �). When T reads an input symbol, depending on the
transitions in δ, its head moves to the left (−1) if the head was not in the first
cell, or to the right (+1) if the head was not in the last cell, then it updates its
state, and appends a partial output word to the final output. T stops as soon
as it can apply the halting transition δhalt, and produces a last partial output
word.

A configuration of T is a pair (q, i) ∈ Q × N where q is a state and i is a
position on the input tape. A run r of T is a finite sequence of configurations.
Let u = σ1 . . . σn ∈ Σ∗, let σ0= � and let σn+1= �. A run r = (p1, i0) . . . (pm, im)
is accepting on u if (i) p1 = q0, i0 = 0; (ii) δhalt(pm, σim) is defined and equal
to vm for some vm ∈ Σ∗; (iii) for all k ∈ {0, . . . ,m − 1}, δ(pk, σik) is defined
and equal to (pk+1, ik+1 − ik, vk) for some vk ∈ Σ∗. The output of r is defined
by O(r) = v1 . . . vm. Like FST, the (functional) transformation defined by T ,
denoted by �T �, is the set of pairs (u, v) such that there exists an accepting run
r of T on u such that O(r) = v.

Example 5. Unlike FST, 2FST can define the functions fcopy and frev, as shown
in Fig. 3. Therefore, there are strictly more expressive than FST. However, check-
ing whether a 2FST is equivalent to some FST is decidable [25]. 2FST define
linear-size increase transformations, because it can be proved that due to de-
terminism, the number of times an input position can be visited is in O(|Q|).
Therefore, fexp is not 2FST-definable.

4.3 Streaming String Transducers

Recently, an appealing transducer model for word transformations, whose expres-
siveness is exactly the same as 2FST, has been proposed in [2], as an extension
of FST with registers, called streaming string transducers (SST). Partial output
words are stored in a fixed number of registers that can be concurrently updated
and combined in different ways to define the output word. Moreover, SST are de-
terministic and, unlike 2FST, are one-way (left-to-right), making them easier to
manipulate algorithmically. It is has been applied, for instance, to the automatic
verification of some important classes of list-processing programs [1].

3 In the literature, some definitions also include stay transition, i.e. transitions where
the input head does not move. In the deterministic case, these transitions can how-
ever be removed without loss of expressiveness.
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Fig. 3. Examples of two-way finite state transducers

q0

UU

q1

UU

a
∣∣U := aa

a
∣∣U := UU

Fig. 4. SST for fexp

Let X be a finite set of registers denoted by the cap-
ital letters U, V,W . . . and Σ be an alphabet. A sub-
stitution s is defined as a mapping s : X → (Σ ∪ X )∗.
A valuation is defined as a substitution v : X → Σ∗.
Let SX ,Σ be the set of all substitutions. Any substi-
tution s can be extended to ŝ : (Σ ∪X )∗ → (Σ ∪X )∗

in a straightforward manner. The composition s1s2 of
two substitutions s1 and s2 is defined as the standard
function composition ŝ1 ◦ s2.

A streaming string transducer (SST) over Σ is a
tuple T = (Q, q0, δ,X , ρ, O) where Q is a finite set of states with initial state q0;
δ : Q×Σ → Q is a transition function; X is a finite set of registers; ρ : δ → SX ,Σ

is a register update function; and O : Q ⇀ X ∗ is a (partial) output function.
Like FST, a run r of an SST T is an alternating sequence of states and letters

r = p0σ1p1 . . . σnpn such that p0 = q0 and for all i ∈ {0, . . . , n− 1}, δ(pi, σi+1) is
defined and equal to pi+1. The run r is accepting if pn ∈ dom(O). We let |r| = n
the length of r. In particular, a run of length 1 follows exactly one transition.
The sequence 〈sr,i〉0≤i≤|r| of substitutions induced by r is defined inductively
as: sr,0 is the identity function over X , and sr,i=sr,i−1ρ(pi−1, σi) for 1 ≤ i ≤ |r|.
We denote sr,|r| by sr.

If the run r is accepting, we can extend the output function O to the run r
by O(r) = sεsr(O(pn)), where sε substitutes all registers by their initial value ε.

As for FST and 2FST, the functional transformation �T � defined by an SST
T is the set of pairs (u, v) such that there exists an accepting run r of T on u
such that v = O(r).

Example 6. The definition of SST is best understood with some examples. Any
FST can be encoded as an SST with a single register. As an example, consider
the SST that defines the function f1/2 in Fig. 5(a). It has only one register
U . The register update substitutions are represented on the edges by the the
assignment operator :=, while the output function is represented by the ver-
tical arrows leading to an expression, here U . The function f1/2 can also be
defined with only one state, but using one additional register V , as depicted by
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q0
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a | U := U

a | U := Ua

(a) f1/2

q0

UU

a

∣∣∣∣U := V
V := Ua

(b) f1/2

q0

UVUV

σ ∈ Σ

∣∣∣∣U := Uσ
V := V σ

(c) fcopy

q0

UUUU

σ
∣∣U := Uσ

(d) fcopy

q0

UU

σ
∣∣U := σU

(e) frev

Fig. 5. Examples of streaming string transducers

Fig. 5(b). The function fcopy can be defined with one or two registers, as depicted
by Fig. 5(c) and Fig. 5(d). Finally, frev is defined by the SST of Fig. 5(e). Un-
like MSO-transformations, SST-definable transformations may not be linear-size
increase, as shown by the SST of Fig.4 which defines the transformation fexp.
To capture MSO-transformations, various syntactic restrictions on SST register
updates have been defined in several papers [2,3,4,6], which can be defined as
restrictions of a uniform notion of transition monoids for SSTs [26], as presented
in the next section.

4.4 Transition Monoids for Streaming String Transducers

The transition monoid of an SST is a set of matrices Mw, for all words w ∈ Σ∗,
that represent the state and variable flow of the SST over w [26]. Let T =
(Q, q0, δ,X , ρ, O) be an SST over an alphabet Σ, let two states q1, q2 ∈ Q , two
registers U1, U2 ∈ X , a word w ∈ Σ∗ and n ∈ N ∪ {⊥}. Intuitively, if n ≥ 0,
the pair (q1, U1) n-flows to (q2, U2) on reading w if there exists a run of T on w
from q1 to q2, on which the sequence of register updates makes U1 contributes
n times to the content of U2. The pair (q1, U1) ⊥-flow to (q2, U2) if there is no
run on w from q1 to q2. For example, for the SST of Fig. 5(a), (q0, U) 1-flows to
(q1, U) on reading a, as well as ak for all odd integers k. On Fig. 5(b), (q0, U)
1-flows to (q0, V ) on reading a. On Fig. 4, (q0, U) 2k-flows to (q0, U) on reading
ak for all k ≥ 0.

Formally, (q1, U1) n-flows to (q2, U2) on w (n ≥ 0), denoted (q1, U1)
w�n (q2, U2),

if there exists a run r of T on w, from state q1 to state q2, such that U1 occurs n
times in sr(U2), where sr is the substitution defined by r. The pair (q1, U2) ⊥-
flows to (q2, U2) if there is no run of T on w, from state q1 to state q2. We denote
by Mw the (N ∪ {⊥})-valued square matrices of dimension |Q|.|X | defined, for
all q1, q2 ∈ Q and all U1, U2 ∈ X , and all n ∈ N ∪ {⊥}, by

Mw[q1, U1][q2, U2] = n iff (q1, U1)
w�n (q2, U2)

Definition 2 (SST Transition Monoid). The transition monoid of an SST
T is the set of matrices M(T ) = {Mw | w ∈ Σ∗}.
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Note that M(T ) is indeed a monoid with matrix multiplication and Mε as
neutral element (Mε is equal to the identity matrix on Q × X ). Moreover, the
mapping w ∈ Σ∗ �→ Mw is a morphism, as it can be shown that Mw1w2 =
Mw1Mw2 for all w1, w2 ∈ Σ∗ [26].

Classes of transition monoids. We define several classes of transition monoids.
The transition monoid M(T ) of an SST T is copyless if for all M ∈ M(T ),
M is {⊥, 0, 1}-valued, and every row M [q, U ][.] contains at most one 1, for all
q ∈ Q and U ∈ X . In other words, U can be copied in at most one other
register (included itself). The monoidM(T ) is restricted copy if all M ∈M(T )
is {⊥, 0, 1}-valued. In other words, a register can be copied more than once, but
these copies must not be combined later on. Finally, we will also consider SST
whose transition monoid is finite. The registers with a finite transition monoid
can be copied, but not on loops. Note that any copyless transition monoid is
restricted copy, and any restricted copy transition monoid is finite. It has been
shown, as we will see, that the corresponding classes of SST are, however, of
equal expressive power.

Several restrictions on register updates that have been defined in several pa-
pers, with ad-hoc definitions, are nicely captured by these simple classes of tran-
sition monoids. The copyless restriction of [2] corresponds to SST with copyless
transition monoid. The restricted copy restriction of [6] corresponds to SST with
restricted copy transition monoids. Finally, the bounded copy restriction of [3]
corresponds to SST with finite transition monoid.

5 Automata-Logic Connections for Word Transformations

In this section, we present the main known automata-logic connections for word
transformations.

5.1 MSO Transformations

The first automata-logic connection for word transformations has been discov-
ered by J. Engelfriet and H.J. Hoogeboom [21]:

Theorem 1 (J. Engelfriet, H.J. Hoogeboom [21]). Let f : Σ∗ → Σ∗. The
function f is MSOT-definable iff it is 2FST-definable.

The proof of MSOT⇒2FST is based on intermediate models of 2FST which
can perform “MSO jumps” φ(x, y), where φ(x, y) is an MSO formula that defines
a function from x positions to y positions. Intuitively, the machine can move from
position x to position y providing φ(x, y) holds true. 2FST with MSO jumps are
then converted, based on Büchi-Elgot-Trakhtenbrot’s theorem, into 2FST with
regular look-around. These 2FST can move only to positions which are in the 1-
neighbourhood of the current position, but their move can be based on a regular
property of the current prefix and suffix of the word. Finally, it is shown that
2FST with regular look-around are equivalent to 2FST.
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The converse, 2FST⇒MSOT, is shown by first constructing an MSOT that
takes as input a word structure, and output an edge-labeled graph (edges are
labelled by words of bounded length) whose nodes are exactly the configurations
(q, i) in which the 2FST is successively (where q is a state and i a position in the
input word). This MSOT is then composed with an MSOT that transforms an
edge-labeled graph into a node-labeled graph (nodes are here labelled with letters
from Σ). The result follows as MSOT are closed under composition [15,14].

As we have seen in Fig. 4, SST can define functions which are exponential-
size increase (fexp), and therefore, not MSOT-definable. However, any MSOT-
definable transformation is SST-definable, and, by weakening the expressiveness
of SST, it is possible to capture exactly MSOT:

Theorem 2 (R. Alur, P. Černý [2], R. Alur, E. Filiot, A. Trivedi [3]).
Let f : Σ∗ → Σ∗. The following statements are equivalent:

1. f is MSOT-definable.
2. f is definable by an SST with copyless transition monoid.
3. f is definable by an SST with finite transition monoid.

The equivalence between (1) and (2) was shown in [2]. The proof of (1)⇒ (2)
of [2] goes through the intermediate model of 2FST and relies on Theorem 1.
More precisely, it is shown that any 2FST can be encoded as an SST, by ex-
tending to transducers the classical Sheperdson’s construction that transforms
a two-way finite automaton as a (one-way) finite automaton [39]. The resulting
SST may not be necessarily copyless, and the main challenge is to show that it
can be converted into a copyless SST. Conversely, it is shown how to directly
encode an SST as an MSO-transducer. In [3], it has been shown that SST with
finite transition monoid (called bounded copy) are equivalent to SST with copy-
less transition monoid. Although the proof of (1) ⇒ (2) in [2] relies on 2FST,
a direct construction was also given in [6], in which the states of the SST are
MSO-types of bounded quantifier rank.

5.2 FO Transformations

Recall that first-order transformations are transformations definable by FO-
transducers, which are defined as MSO-transducers, except that only first-order
formulas can be used. In automata theory for languages, first-order definable
languages are captured by aperiodic automata, i.e. finite automata whose transi-
tion monoid is aperiodic [40,18]. A survey on first-order definable languages can
be found in [18]. A monoid (M, ·, e) (with operator · and neutral element e) is
aperiodic if there exists k ∈ N such that for all m ∈M , mk = mk+1. Recall that
the language (aa)∗ is not FO-definable, while the language (ab)∗ is.

As we have seen, the functions fdel, fdouble, fcopy, and frev are FOT-definable.
However, the function f1/2 is not FOT-definable [26], although its domain,
a∗, is. So clearly, the FOT-definability of a function not only depends on the
FO-definability of its domain. It can be seen on an example. In Fig. 5(a),
the transition monoid of the underlying automaton of the SST defining f1/2
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(the automaton obtained by dropping the register updates) is not aperiodic.
Therefore, in order to get FOT-definable functions, a first restriction would be
to require that the underyling automaton of an SST is aperiodic. However, it is
not sufficient, as shown by the SST of Fig. 5(b), whose underlying automaton
has aperiodic transition monoid. However, the register flow, which alternates
between U and V registers on reading a, is not aperiodic. If one requires that
the transition monoid of an SST, which also speaks about the register flow, is
aperiodic, then one gets exactly FOT-definable functions:

Theorem 3 (E. Filiot, K. Shankara Narayanan and A. Trivedi [26]).
Let f : Σ∗ → Σ∗. The function f is FOT-definable iff it is definable by an SST
with aperiodic and restricted copy transition monoid.

This theorem should not be understood as an effective characterization of
FOT-definable functions. Indeed, it could be the case that an SST which de-
fines an FOT-definable function has not an aperiodic transition monoid. As an
example, consider an SST which alternates on reading the letter a between two
states, both accepting, and realizes the identity function with a single register. Its
transition monoid is not aperiodic, but the function it defines if FOT-definable.

It is also the case for automata: a non-aperiodic automaton may define a
first-order language. However for automata, FO-definable languages can be al-
gebraically characterised, as show by M.P. Schützenberger : a language L is
FO-definable iff its syntactic monoid is aperiodic [38]. This characterisation is
effective if L is given as a finite automaton, and decidable in PSPace [18].

Finally, like for automata, deciding whether the transition monoid of an SST
is aperiodic and restricted copy is PSPace-C [26].

FO-translations in one-free variable Let us mention another transducer-logic
connection that has been shown for a less expressive class of functions, namely
the FO-translations of [30] restricted to FO-formulas in one-free variable and
length-preserving functions. Such a translation assumes a total order < on Σ and
is defined by a tuple T of FO-formulas in one-free variable x, say T = (φσ(x))σ∈Σ ,

input

run

copy 1

copy 2

copy 3

a b a a b

q0 q1 q2 q3 q4 q5

a a a c

b a

c

a | a b | abc a | ε a | aa b | c

φ1,1
�

φ1,2
�

φ2,3
�

φ3,1
�

φ1,2
� φ2,1

�

a a a c

b a

c

φ1,1
�

φ1,2
�

φ2,3
�

φ3,1
�

φ1,2
� φ2,1

�

Fig. 6. Encoding of NFT by MSO-transducer
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such that φσm(x) =
∧

σ<σm
¬φσ(x), where σm is the maximal element of Σ.

Then, for all w ∈ Σ∗ of length n, T (w) = σ1 . . . σn such that for all i ∈ {1, . . . , n},
w |= φσi(i) ∧

∧
σ<σi

¬φσ(i). Note that T defines a total and length-preserving
function, which is actually definable by a one-copy (Courcelle) FO-transducer.
It is shown in [32] that a function is definable by an FO-translation in one-free
variable iff it is definable by an aperiodic NFT, where aperiodic NFT are the
NFT whose underlying automata is aperiodic (i.e. they have aperiodic transition
monoid). This result was later on, in [34], generalised to V -translations and NFT
whose transition monoid is in V , where V is a pseudovariety of (finite) monoids
(for instance, the pseudovariety of finite aperiodic monoids).

5.3 Order-Preserving MSO Transducers

An MSO-transducer T with k copies is order-preserving if for all words w ∈
dom(T ), all positions i, j ∈ dom(w), and copies c, d ∈ {1, . . . , k}, if w |= φc,d

� (i, j),
then i � j holds true. Note that this can be syntactically ensured by requiring
that formulas φc,d

� (x, y) are of the form x � y ∧ φ. We show in Theorem 4 that
order-preserving MSO-transducers characterise exactly the NFT-definable func-
tions. This theorem can also be obtained as a consequence of a result shown
in [9] for order-preserving transformations with origin semantics. However, we
give here a direct proof, which illustrates the techniques that are usually used
to derive automata-logic connections. Origin semantics is discussed later in Sec-
tion 5.4.

Theorem 4. A function f : Σ∗ → Σ∗ is NFT-definable iff it is definable by an
order-preserving MSO-transducer.

Proof. We first show the “only if” direction. Let T = (Q, q0, F,Δ) be an NFT
over Σ that defines a f . We construct an order-preserving MSO-transducer T ′

such that �T � = �T ′� = f . Since T defines a function, it is known that T is
equivalent to an unambiguous NFT [31], i.e. an NFT such that there exists at
most one accepting run on every input word. Therefore, we assume that T is
unambiguous.

Let K ∈ N be the maximal length of the words occurring on the transitions of
T , i.e. K = max{|w| | ∃p, q ∈ Q∃σ ∈ Σ, Δ(p, σ, q) = w}. Clearly, for all words
u ∈ dom(T ), |�T �(u)| ≤ K.|u|. In order to define �T � by an MSO-transducer,
one needs to take K copies of the input structure. Let us intuitively explain how
these copies will be used. Let u = σ1 . . . σn ∈ dom(T ) and r = q0σ1q1 . . . σnqn
be the accepting run of T on u, and let O(r) = v1 . . . vn, where each word vi is
produced by the i-th transition of r. Every position j ∈ dom(vi) will be encoded
by the j-th copy of the input position i, i.e., by the node ij. Of course, the j-th
copy exists since |vi| ≤ K. For all j such that |vi| < j ≤ K, one needs to filter
out all nodes ij , by the formula φj

pos(x). The encoding is illustrated on Fig. 6.
The definition of T ′ relies on the existence of MSO formulas φt(x), for all

tuples t = (p, σ, v, q) ∈ Q × Σ × Σ∗ × Q, such that for all words u ∈ Σ∗ and
all positions i ∈ dom(u), u |= φt(i) iff u ∈ dom(T ) and the run of T on u, say
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r = q0σ1q1 . . . σnqn, is such that qi−1 = p, σi = σ, qi = q and Δ(p, σ, q) = v.
We do not prove the existence of such formulas in this paper, it is obtained
as a direct consequence of Büchi-Elgot-Trakhtenbrot’s Theorem. Another direct
consequence of this theorem is the existence of an MSO formula φdom(T ) which
defines the domain of T (which is a regular language).

We define formally T ′ = (k, φdom, (φc
pos)1≤c≤k, (φ

c
Lσ

)1≤c≤k,σ∈Σ , (φc,d
� )1≤c,d≤k):

k = K
φdom ≡ φdom(T )

φc
pos(x) ≡

∧
{φt(x)→ |v| ≥ c | t := (p, σ, v, q) s.t. Δ(p, σ, q) = v}

φc
Lσ

(x) ≡
∧
{φt(x)→ (c ≤ |v| ∧ v(c) = σ) | t := (p, σ, v, q) s.t. Δ(p, σ, q) = v}

φc,d
� (x, y) ≡ (x = y ∧ c ≤ d) ∨ x ≺ y

where the subformulas |v| ≥ c, c ≤ |v| ∧ v(c) = σ and c ≤ d (which do not
actually belong to MSO syntax) are either defined by � or ⊥ depending on
whether the Boolean expressions they represent hold true or not. Finally, note
that T ′ is indeed order-preserving since clearly, if u |= φc,d

� (i, j), then i ≤ j.
Conversely, given an order-preserving MSO-transducer T , one shows how

to construct an equivalent NFT T ′. We start by a first observation. Let u =
σ1 . . . σn ∈ dom(T ) and v = �T �(u). Since T is order-preserving, there is no
backward edges in the output word structures produced by T . Therefore the
word v can be decomposed into v1 . . . vn such that each word vi is the subword
of v induced by the non-filtered copies of the input position i, i.e. the set Ni =
{i1, . . . , ik} ∩ {ij | u |= φj

pos(i)}. It can be seen on Fig. 6: each vertical block of
the output structure correspond to a partial output word, and the result output
word of the transformation is obtained by concatenating, in order, these partial
words. Let Σ∗

k be all the words over Σ of length at most k. For all w ∈ Σ∗
k , one

can define an MSO formula Ψw(x) such that u |= Ψw(i) iff u ∈ dom(T ) implies
that w = vi, where vi is defined by the decomposition explained before. Note
that the definition of order-preservation does not require that copies are ordered
according to ≤ (on integers), i.e., whenever formula φc,d

� (x, y) holds, it implies
that x � y, but not necessarily c ≤ d, unlike the example of Fig. 6. In other words,
it could be that the first position of vi corresponds to node i2 while the second
position corresponds to node i1 of the output structure. Therefore, in order to
define Ψw(x), one has to quantify, by a huge disjunction, over possible orders over
these copies. Formally, for all tuples t = (j1, . . . , j|w|) such that j� ∈ {1, . . . , k}
for all � ∈ {1, . . . , |w|}, and j�1 �= j�2 for all �1 �= �2 ∈ {1, . . . , |w|}, we define an

intermediate formula Ψ
(j1,...,j|w|)
w (x) which holds true whenever the x-th partial

output word is w, and each position of w correspond to nodes xj� . Then, Ψw(x)

is obtained as the disjunction of the formulas Ψ
(j1,...,j|w|)
w (x) for all tuples:

Ψ t
w(x)≡

|w|∧
�=1

φj�
pos(x) ∧ φj�

Lw(�)
(x) ∧

∧
j∈{1,...,k}\{j1,...,j|w|}

¬φj
pos(x)

∧|w|−1
�=1 φ

j�,j�+1

� (x, x)

Ψw(x) ≡
∨
{Ψ t

w(x) | t = (j1, . . . , j|w|) ∈ {1, . . . , k}|w|, j�1 �= j�2 , ∀�1 �= �2}
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In other words, for all u ∈ dom(T ), we have u |= Ψw(i) iff w is the i-the subword
of the output of u. This formula is of particular interest if we want to define
an NFT, because it tells us exactly what partial output word must be produced
while reading the i-th input letter.

The rest of the proof explains how one can construct an automaton A on the
alphabet Γ = Σ×Σ∗

k which accepts all words (σ1, v1) . . . (σn, vn) ∈ Γ ∗ such that
for all i ∈ {1, . . . , n}, vi is the (unique) word such that σ1 . . . σn |= Ψvi(i). The
final NFT T ′ is obtained from this automaton A by replacing every transition

(q, (σ, v), p) of A by the transition q
σ|v−−→ p of T ′. Clearly, T ′ is equivalent to T .

In order to construct A, we again apply Büchi-Elgot-Trakhtenbrot’s theorem,
since the language of A is MSO-definable, by the sentence (on SΓ )

φA ≡ [φdom]Γ ∧ ∀x ·
∧

(σ,v)∈Γ

L(σ,v)(x)→ [Ψv(x)]Γ

where [φdom]Γ (resp. [Ψv(x)]Γ ) is obtained from φdom (resp. Ψv(x)), which is on
the signature SΣ , by replacing every atom Lβ(y) by

∨
w∈Σ∗

k
L(β,w)(y). Clearly,

a word s = (σ1, v1) . . . (σn, vn) over Σ × Σ∗
k satisfies [φdom]Γ iff u = σ1 . . . σn |=

φdom. Similarly, s |= [Ψv(i)]Γ iff u |= Ψv(i), and therefore the correctness
follows. �

Again, the power of transducer-logic connections is illustrated by the follow-
ing definability problem. It is decidable whether a deterministic two-way finite
state transducer T is equivalent to a (one-way) functional finite state transducer
[25]. As a consequence of this result, the connection between 2FST and MSOT
(Theorem 1), and the previous theorem (Theorem 4), we obtain the following
corollary:

Corollary 1. Given an MSO-transducer T , it is decidable whether T is equiva-
lent to some order-preserving MSO-transducer.

Proof. It suffices to translate T into a deterministic two-way transducer T ′, by
applying the (effective) encoding of Theorem 1, then to apply the procedure
of [25] which decides whether T ′ is equivalent some NFT, and finally to apply
Theorem 4. �

5.4 Transformations with Origin

One of the difficulties in the theory of transducers is to deal with the asynchronic-
ity in the production of the output. For instance, two FST may not produce there
output letters at the same time when reading the same input position, but still,
they can be equivalent. This asynchronicity, which is implicitly present in the
Post correspondence problem (PCP), can even, in some cases, lead to undecid-
able problems. For instance, the equivalence problem of non-deterministic FST
is undecidable, and the undecidability proof is non surprisingly based on PCP
[28]. The asynchronicity between output words have been captured by a notion
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of output delay, which have been used, for instance, to make elegant proofs of
the decidability of equivalence of functional FST [7].

Recently introduced by M. Bojanczyk, a stronger semantics have been given
to transformations, that takes into account the origin of the output letters in
the input word. Several classical problems have been revisited and most of them
become trivial with this new semantics [9]. Some problems, still open in the
classical semantics, have also been solved in the origin semantics, such as getting
a machine-independent characterisation of MSO-transformations, as well as an
effective characterisation of first-order transformations. We present some of these
new results in this section.

Definition 3. Let Σ be an alphabet, and u, v ∈ Σ∗. An origin function for v in
u is a mapping o : dom(v) → dom(u). A word transformation with origin over
Σ is a set of pairs (u, (v, o)) such that u, v ∈ Σ∗ and o is an origin function for
v in u.

Intuitively, o(i) is the position in the input word at which the position i of
the output word has been produced. Origin semantics can be defined for the
transducer models we have seen so far. For instance, the origin transformation
(or o-transformation) defined by an FST T is the set of pairs, denoted by �T �o,
of the form (u, (v, o)) such that (u, v) ∈ �T �, and for all i ∈ dom(v), o(i) the
position of u where T has produced v(i), i.e. where T has triggered a transition
on reading u(o(i)) which has produced a partial word containing the letter v(i).

With this semantics, the origin equivalence problem for FST, i.e. deciding
whether two FST T1, T2 satisfy �T1�o = �T2�o , can be easily solved, because T1

and T2 can be seen respectively as two automata A1, A2 over Σ × Σ∗
k, where k

is the longest output word occurring on the transitions of T1 and T2. Indeed,
�T1�o = �T2�o iff the automata A1 and A2 are equivalent, i.e., define the same
language. This trick, however, cannot be used for two-way FST, making origin
semantics more interesting in this context.

It is also possible to give a natural origin semantics to transformations realised
by MSO-transducers T . In that case, (u, (v, o)) ∈ �T �o if (u, v) ∈ �T �o and, if ic

is the k-th node of v (wrt to �), where i ∈ dom(u) and c is a copy, then we let
o(k) = i.

In the origin world, it is possible to characterise algebraically first-order de-
finable transformations with origin, while this problem is open in the classical
setting. Moreover, this characterisation is effective when the transformation is
defined by, say, an MSO-transducer.

Let u ∈ Σ∗, o : dom(u)→ N, and X ⊆ N. The abstraction u/X of u by X is
the word over Σ⊥ := Σ ∪ {⊥} obtained by replacing in u each letter at position
i ∈ dom(u) by ⊥ if o(i) ∈ X , where ⊥ is a fresh symbol not in Σ. For instance,
if u = aba with origin o(1) = 3, o(2) = 2 and o(3) = 1, then u/{2,3} = ⊥⊥a.

We let ∼⊥ the equivalence relation on Σ∗
⊥ induced by the equation ⊥ = ⊥⊥.

E.g. ⊥a⊥b ∼⊥ ⊥⊥a⊥⊥⊥b, but a �∼⊥ ⊥a.
Given an o-transformation f , one defines its reverse rev(f). For all u ∈ Σ∗, if

(v, o) = f(u), then rev(f) = (frev(v), rev(o)), where rev(o)(i) = o(|v| − i+ 1).
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Similarly to the syntactic equivalence relation for languages, one can define
left- and right- equivalence relations for transformations with origin f , resp.
denoted by Lf and Rf .

Definition 4. Let f be a transformation with origin on Σ. Let v1, v2 ∈ Σ∗.
Then, v1Lfv2 if for all w ∈ Σ∗:

1. v1w ∈ dom(f) iff v2w ∈ dom(f)
2. if v1w ∈ dom(f), then f(v1w)/dom(v1) ∼⊥ f(v2w)/dom(v2).

Symmetrically, Rf = Lrev(f).

Example 7. For instance, consider the o-transformation g that maps any u ∈
Σ∗ to (frev(u)u, o), where, naturally, for all i ∈ {1, . . . , |u|}, o(i)=|u|−i+1 and
o(|u|+i)=i. Then, there are only two equivalence classes for both equivalence
relation: {ε} and Σ+. Indeed, for all w ∈ Σ∗,

f(v1w)/dom(v1) = (frev(w)frev(v1)v1w)/dom(v1) = frev(w)⊥2|v1|w.

Therefore f(v1w)/dom(v1) ∼⊥ frev(w)w if v1 = ε and f(v1w)/dom(v1) ∼⊥
frev(w)⊥w otherwise. A similar arguments applies for Rf .

It is then possible to characterise MSOT-definable o-transformations by a
Myhill-Nerode like theorem, and to give an effective characterisation of FOT-
definable o-transformations.

Theorem 5 (M. Bojanczyk [9]4). Let f be a transformation with origin over
Σ. The following two statements hold true:

1. f is MSOT-definable iff both Lf and Rf have finite index.
2. f is FOT-definable iff both Lf and Rf have finite index and for all u ∈ Σ∗,

the Lf -class of u and the Rf -class of u are FO-definable languages.

As shown in [9], if f is MSOT-definable, then the Lf - and Rf -equivalence
classes are regular languages that can be effectively represented by automata.
Characterization (2) is therefore effective, as it suffices to decide whether all
equivalence classes are FO-definable, which is decidable [18].

6 Beyond Functional Finite Word Transformations

In this section, we discuss other transducer-logic connections for non-functional
transformations and other structures (infinite words and trees).

6.1 Non-functional Finite Word Transformations

The state-based transducer models (FST, 2FST and SST) can all be extended
with non-determinism (leading to the classes NFT, 2NFT, and NSST resp.), and
rather define relations from word to words instead of functions. MSO-transducers
can, as well, be extended with non-determinism.

4 We adopt in this paper a slightly different, but equivalent, formalisation as in [9].
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Non-deterministic state-based models. We have already seen in Section 4.1 how
to extend FST with non-determinism. Similarly, 2FST can also be extended with
non-determinism, the transition relation Δ being of type Δ ⊆ Q × (Σ ∪ {�,�
})×Q× {+1,−1} ×Σ∗. Unlike FST, there can be infinitely many runs on the
same input word, leading to infinitely many outputs for that word. For instance,
2NFT can loop an arbitrary number of times between two input positions and
non-deterministically decide to apply the halting transition function. Their runs
can even be infinite but we consider only finite runs to define the transformation.

SST can, as well, be extended with non-determinism, with transition relation
Δ ⊆ Q × Σ × Q. Unlike 2NFT, there is alway a finite number (exponential in
the worst-case) of accepting runs on the same input word.

Non-deterministic MSO-transducers (NMSOT). MSO-transducers can be ex-
tended with non-determinism by allowing all the formulas (including the domain
formula) to use a finite set of second-order of variables X1, . . . , Xn. Given an in-
put word u, the outputs of u depend on the valuations of these second order
variables by subsets of dom(u). In particular, modulo a valuation of X1, . . . , Xn

by subsets of dom(u), the transformation becomes functional, and the outputs
of u are the set of output words defined for each valuation. For instance, it is
possible to define with an NMSO-transducer Tsub the tranformation Rsub which
maps any word u to all its subwords, using one second-order variable X and
only one copy, as follows: φdom ≡ �, φ1

pos(x,X) = x ∈ X , φ1
σ(x) = Lσ(x) for

all σ ∈ Σ, and φ1,1
� (x, y) ≡ x � y. If one wants to restrict all the subwords to

subwords generated by the even positions, it suffices to strengthen the domain
formula to φdom(X) ≡ ∃Y φo/e(Y,X), where φo/e has been defined in Example 2.

Transducer-Logic Connections. A transformation R is finitary if for all words
u ∈ Σ∗, R(u) is finite. It is clear that NFT, NSST and NMSOT define fini-
tary transformations. However, 2NFT does not define, in general, finitary trans-
formations. It turns out that 2NFT and NMSOT define incomparable classes
of transformations.To capture exactly NMSOT with a two-way device, Hennie
machines have been introduced in [21]. Hennie machine can rewrite their input
tape, but each input position must be visited a constant number of times. On
the one-way model side, it has been shown that NSTT corresponds exactly to
NMSOT [5].

q0 q1 UVUV

a, b

∣∣∣∣U := Ua
V := ε

a

∣∣∣∣U := U
V := b

b

∣∣∣∣U := U
V := V b

Fig. 7. Example of ω-SST defining fω, with output function O({q1}) = UV
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6.2 Infinite Word Transformations

An ω-word over Σ is a mapping w : N → Σ. The i-th letter of w is w(i).
An infinite words w over Σ is either a finite word or an ω-word. The set of
ω-words over Σ is denoted by Σω, and the set of infinite words by Σ∞. Note
that Σ∞ = Σ∗ ∪ Σω. A transformation R of infinite words over Σ is a binary
relation from Σω to Σ∞ (we assume indeed in this section that the input word
is an ω-word).

MSO-transducers can naturally be generalised to define functional infinite
word transformations, by seeing an ω-word as a structure over SΣ whose domain
is N. For an MSO-transducer T to be an MSO-transducer of infinite words, we
require that for all input words u ∈ Σω, the image �T �(u) is a structure that
corresponds to an infinite word. Although it is a semantical restriction, it is
decidable, similarly as in the proof of Proposition 1.

As an example, consider the transformation fω : Σω → Σω, where Σ = {a, b},
that maps any input word of the form uabω to a|u|bω, where u ∈ Σ∗. It is
definable by the following MSO-transducer with one copy and φdom ≡ ∃x·La(x),

φ1
pos(x) ≡ � φ1

a(x) ≡ ∃y  x · La(y) φ1
b(x) ≡ ¬φ1

a(x) φ1,1
� (x, y) ≡ x � y

(Deterministic) 2FST can be extended to define functional infinite word trans-
formations, by using for instance a Muller acceptance condition (they are called
ω-2FST). However, they cannot even define fω, because they can never decide
locally whether a b letter should be transformed into an a letter or kept un-
changed, because it depends on the existence of an a letter in the future. They
could use the two-wayness as a kind of look-ahead to check the existence of
such an a, but they cannot come back exactly to the position they were coming
from, because they get lost, due to the finite state device. One therefore needs
to extend ω-2FST with regular look-ahead: each transition of an ω-2FST with
regular look-ahead is extended with a finite state automaton over ω-words that
checks a property of the (infinite) suffix. Such transition can be triggered only if
the suffix belong to the look-ahead automaton. It should be clear that ω-2FST
with regular look-ahead strictly extend the expressive power of ω-2FST.

SST have been extended to define functional infinite word transformations,
with a Muller accepting condition (called ω-SST). They run on ω-words in a
deterministic way, and the (partial) output function O has type 2Q → X ∗.
Given a run r over an ω-word u, let P the set of states visited infinitely many
times in r. The output of r is defined only if O(P ) is defined, as the limit of the
sequence of finite words sεsr,i(O(P )) for i → ∞ (remind that sε and sr,i have
been defined in Section 4.3). In order to ensure the existence of that limit (and
to make sure that this limit is an infinite word), syntactic restrictions are put
on the SST: if P ∈ dom(O) and O(P ) = U1 . . . Un, it is required that on the
connected component induced by P in T , the registers U1, . . . , Un−1 are never
modified, and the register Un can only be modified by appending something (i.e.
updates are of the form Un := Unα for some α ∈ (Σ ∪ X )∗). The transition
monoid of an ω-SST is defined similarly as SST.
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As an example, consider the ω-SST of Fig. 7 that defines transformation fω. It
can loop an arbitrary number of steps in state q0 while replacing all symbols by
a, and storing the current output in register U . Non-deterministically, it guesses
the last occurrence of an input a symbol, and from that point on, never modifies
register U again, and always append b to register V . Register U is intended to
capture the word a|u| in the definition of fω, while V captures bω. The output is
then UV , and it is defined only for the singleton {q1}, which enforces that after
some time, only b symbols are read.

It has been shown in [3] that MSO-transducers of infinite words correspond ex-
actly to ω-2FST with regular look-ahead, to ω-SST with finite transition monoid,
and to ω-SST with copyless transition monoid.

6.3 Tree Transformations

We present a result that establishes a correspondence between MSO-transducers,
and a transducer model for functional transformations of finite ranked trees.
Recall that ranked trees are ordered trees over a ranked alphabet. Each symbol
f of the alphabet has a rank denoted by r(f) and, if some node α is labelled
f , this node has exactly r(f) successor nodes, called the children of α (see [13]
for a formal definition). We denote by TΓ the set of ranked trees over a ranked
alphabet Γ , and a (ranked) tree transformation is a binary relation over TΓ .

Tree transducers and their connection with term rewriting systems have been
deeply studied, see for instance [27]. More recent results on tree transducers can
be found in [15]. Like words, ranked trees over Γ can be seen as logical structures
over the signature S = {S1, . . . , Sn, (La)a∈Γ }, where n is the maximum arity in
Γ , Si are binary successor predicates interpreted by pairs of nodes (α, β) such
that β is the i-th child of α, and La are unary predicates for the node labels. An
MSO-transducer over the signature S defines a functional tree transformation
on TΓ , provided the output is a ranked tree structure (which is a decidable
property). For instance, consider a ranked alphabet Γ = {g, a} where g is a
binary symbol and a a constant, and the transformation trev which reverses a
tree, i.e., reverses the order relation between the children of any internal node.
The transformation trev is definable by the following one-copy MSO-transducer:

φdom ≡ φ1
pos(x) ≡ � φ1

Lγ
(x) ≡ Lγ(x) φ1,1

Si
(x, y) ≡

∨
γ∈Γ

Lγ(x)∧φSr(γ)−i+1
(x, y)

for γ ∈ Γ and i ∈ {1, 2}.
Correspondences between MSO-transducers on ranked trees and tree trans-

ducers has been first studied in [22,8,23] for attribute grammars and macro tree
transducers, and more recently in [4] for streaming tree transducers.

Macro tree transducers extend top-down tree transducers with parameters in
which to store partial output trees. They correspond to purely functional pro-
grams working on tree structures: states are mutually recursive functions and
can carry parameters. Due to lack of space, we do not define formally macro tree
transducers. MSO-transducers on ranked trees correspond exactly to (determin-
istic) macro tree transducers of linear-size increase, i.e. macro tree transducers
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that define functions whose output tree size depends linearly on the size of
the input tree. It is shown in [22,8] that functional MSOT-transformations of
ranked trees are definable by macro tree transducers. The other, more difficult
direction, which shows that macro tree transducers of linear-size increase are
effectively MSOT-definable was proved in [23]. A consequence of this effective
correspondence is the decidability of equivalence for linear-size increase macro
tree transducers. It was indeed shown in [24] that MSO-transducers of ranked
trees have decidable equivalence problem (see [33] for a survey on equivalence
problems for tree transducers).

Other connections between MSO-transducers and tree transducers have been
obtained, for an extension of streaming string transducers to trees [4], and for
some classes of tree walking transducers [15].

Acknowledgments. I warmly thank Jean-François Raskin and Jean-Marc Tal-
bot for reading preliminary versions of this paper, and Sebastian Maneth for his
helpful comments.
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11. Büchi, J.R.: On a decision method in restricted second-order arithmetic. In: Int.
Congr. for Logic Methodology and Philosophy of Science, pp. 1–11. Standford
University Press, Stanford (1962)



56 E. Filiot

12. Church, A.: An unsolvable problem of elementary number theory. Amer. J.
Math. 58, 345–363 (1936)

13. Comon-Lundh, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F., Lugiez,
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Abstract. There are three questions associated with Simpson’s paradox
(SP): (i) Why is SP paradoxical? (ii) What conditions generate SP? and
(iii) How to proceed when confronted with SP? An adequate analysis
of the paradox starts by distinguishing these three questions. Then, by
developing a formal account of SP, and substantiating it with a counter-
example to causal accounts, we argue that there are no causal factors at
play in answering questions (i) and (ii). Causality enters only in connec-
tion with action.
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1 Overview

In his recent book, Saving Truth from Paradox, Hartry Field discusses the philo-
sophical significance of paradoxes. According to him, “[a]ny resolution of the
paradoxes will involve giving up (or at least restricting) some very firmly held
principles:... [and] [t]he principles to be given up, are the ones to which the aver-
age person simply can’t conceive of alternatives. That’s why the paradoxes are
paradoxes.” [4, p.17]. Their significance and the firmly held principles which we
have to give up in resolving them is a recurring theme in philosophical logic.
We will illustrate this in the case of Simpson’s paradox (SP), which involves the
reversal of the direction of a comparison or the cessation of an association when
data from several groups are combined to form a single whole [17]. At least three
distinct questions are important in understanding the nature of the paradox: (i)
Why or in what sense, is SP a paradox? (ii) What are the conditions in which
the paradox arises? (iii) How should one proceed when confronted with a typi-
cal case of the paradox, hereafter to be called the “what-to-do” question?1 The
three questions are distinct: answering one of them does not entail answers to the

1 Daniel Hausman was perhaps the first philosopher who drew our attention to the
significance of these three types of questions (in an email communication).

M. Banerjee and S.N. Krishna (eds.): ICLA 2015, LNCS 8923, pp. 58–73, 2015.
� Springer-Verlag Berlin Heidelberg 2015
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others. Following these three questions, we distinguish two types of truth about
SP: the first-level truth and the second-level truth. The significance of the three
questions about the paradox is what we call the “first-level truth”, while the
significance of the first two questions in unlocking its paradoxical nature and
the conditions for its emergence is what we call the “second-level truth.” The
failure to appreciate the difference between these two levels of truth, we will
contend, is the source of its misdiagnosis. Tables 1 and 2 illustrate the two types
of SP. The data in both tables represent acceptance and rejection rates of male
and female applicants for graduate school in two departments of an imaginary
university in some year.

Table 1. Simpson’s Paradox (Type I)

Two
Groups

Dept 1 Dept 2
Acceptance

Rates Overall
Acceptance Rates

Accept Reject Accept Reject Dept 1 Dept 2

Females 180 20 100 200 90% 33% 56%

Males 480 120 10 90 80% 10% 70%

Table 2. Simpson’s Paradox (Type II)

Two
Groups

Dept 1 Dept 2
Acceptance

Rates Overall
Acceptance Rates

Accept Reject Accept Reject Dept 1 Dept 2

Females 90 1410 110 390 6% 22% 10%

Males 20 980 380 2620 2% 13% 10%

Table 1 represents an example of the paradox in which the association in the
sub-populations (Dept 1 and Dept 2) with higher acceptance rate for females is
reversed in the combined population, with overall higher rates for males. Table 2
is an example that shows the paradoxical effect when the association between
“gender” and “acceptance rates” in the sub-populations ceases to exist in the
combined population. Though the acceptance rates for females are higher in each
department, in the combined population, those rates cease to be different.

This paper is divided into eight sections. In section two, we will propose our re-
sponsetothefirsttwoquestions.Thenwewillbriefly introducetwoinfluential causal
accounts of SP proposed independently by Judea Pearl [9] andPeter Spirtes, Clark
Glymour andRichardScheines (hereafter called ‘SGS’) [15]. In section four, wewill
produce a counter-example to the causal accounts.The next sectionwill be devoted
to the “what-to-do”question. In section six, we evaluate causal accounts (with spe-
cial attention to Pearl’s) of the paradox and compare them with ours. In section
seven, we will discuss how our account affects the general notion of paradoxes and
their classification while providing a general definition of a paradox. We conclude
with some remarks in section eight.
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2 Formal Analysis of SP

2.1 Conditions of SP2

We begin with an analysis of the paradox in response to question (ii), “what
are the conditions in which the paradox arises?” Consider two groups, [A, B],
taken to be mutually exclusive and jointly exhaustive. The overall rates for each
group are [α, β] respectively. Each group is partitioned into categories [1, 2] and
the rates within each partition are [A1, A2, B1, B2]. Let’s assume that f1 = the
number of females accepted in D1, F1 = the total number of females applied
to D1, m1 = the number of males accepted in D1, M1 = the total number of
males applied to D1. Then A1 = f1/F1, and B1 = m1/M1. Defining f2, F2, m2

and M2 in a similar way, we get A2 = f2/F2 and B2 = m2/M2. Likewise, we
could understand α and β as representing the overall rates for females and males,
respectively. So the terms α = (f1+f2)/(F1+F2) and β = (m1+m2)/(M1+M2).
To help conceptualize these notations in terms of Table 1, we provide their
corresponding numerical values: A1 = 180/200 = 90%, A2 = 100/300 = 33%,
B1 = 480/600 = 80%, B2 = 10/100 = 10%, α = 280/500 = 56%, and finally
β = 490/700 = 70%. Since α, β, A1, A2, B1, and B2 are rates of some form,
they will range between 0 and 1 inclusive. We further stipulate the following
definitions where, “≡” means “is defined as”.

C1 ≡ A1 ≥ B1.

C2 ≡ A2 ≥ B2.

C3 ≡ β ≥ α.

C ≡ (C1&C2&C3).

In terms of Table 1, these definitions become C1: 90% > 80%, C2: 33% > 10%,
C3: 70% > 56% and thus C is satisfied. But C alone is not a sufficient condition
for SP. We could have a case where A1 = B1, A2 = B2 and β = α resulting in
no paradox, yet C being satisfied. Hence, we stipulate another definition:

C4 ≡ θ > 0.

where, θ = (A1 −B1) + (A2 −B2) + (β − α).

For the data in Table 1, θ equals 10% + 23% + 14%. Again, C4 alone is
not sufficient for SP since we could have a case where A1 > B1, B2 > A2 and
β > α resulting in no paradox (C is violated) and yet C4 being satisfied.3 Hence,

2 Some parts of this section are based on our previous work [1,2].
3 As a heuristic rule we take A1 to be that sub-group ratio which is the greater of
the two ratios and B1 as that which is the lesser of the two. In table 1, the ratio
of women admitted to department 1 is greater than that of men. Hence, the former
will be taken as A1 and the latter will be taken as B1. Similarly, since the ratio of
women admitted to department 2 is greater than that of men, the former is taken
as A2 and the latter as B2. This avoids the complexity of taking the absolute value
of their difference in the calculation of θ.
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a situation is a case of SP if and only if:

C ≡ (C1&C2&C3) (a)

C4 ≡ θ = (A1 −B1) + (A2 −B2) + (β − α) > 04 (b)

Both (a) and (b) are necessary conditions, but they jointly constitute sufficient
conditions for generating SP [1].5 Both conditions for the paradox generate two
key theorems which specify the relationship between the two acceptance rates
in both sub-populations. These are: 1. A1 �= A2, and 2. B1 �= B2. Table 3 shows
why the condition for Theorem 1 needs to hold. Since A1 = A2, i.e., 25% = 25%,
no paradox results. Similarly, in Table 4, since B1 = B2, i.e., 25% = 25%, the
paradox does not occur. Proofs of these theorems are provided in the appendix.

Table 3. No SP (A1 = A2)

Two
Groups

Dept 1 Dept 2
Acceptance

Rates Overall
Acceptance Rates

Accept Reject Accept Reject Dept 1 Dept 2

Females 75 225 75 225 25% 25% 25%

Males 10 90 20 80 10% 20% 15%

Table 4. No SP (B1 = B2)

Two
Groups

Dept 1 Dept 2
Acceptance

Rates Overall
Acceptance Rates

Accept Reject Accept Reject Dept 1 Dept 2

Females 10 90 20 80 10% 20% 15%

Males 75 225 75 225 25% 25% 25%

There are four points worth mentioning. First, Clark Glymour [5] would call our
account an application of the “Socratic method” in which we provide necessary
and sufficient conditions for the analysis of a concept.6 Second, the character-
ization of the puzzle in terms of our two conditions captures the paradoxical

4 See Blyth [3] for similar conditions. However, our conditions and notations are
slightly different from his.

5 See [6], [16]. The latter paper shows that SP reversal involves Boolean disjunction
of events in an algebra rather than being restricted to cells of a partition.

6 Glymour contrasts this method with what he calls the “Euclidean”-method based
theories where one could derive interesting consequences from them although
Euclidean-method based theories, according to him, are invariably incomplete. It
is interesting to note two very different points. First, although Glymour is not fond
of the Socratic-method on which, however, a large part of the western philosophical
tradition rests, our Socratic-method based logical account at the same time is also
able to generate some interesting logical consequences (See [1,2]). Second, it is not
only the Greeks who applied this method. In classical Indian philosophical tradi-
tion, the Socratic method is also very much prevalent where a definition of a term
is evaluated in terms of whether it is able to escape from being both “too narrow”
and “too wide.”
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nature of the data in the examples given, namely, the reversal or the cessation of
an association in the overall population; they are in no way ad hoc. Third, the
paradox is “structural” in character, in the sense that the reasoning that leads
to it is deductive. Consider our examples, which involve simple arithmetic. The
overall rates of acceptance for both females and males follow from their rates of
acceptance in two departments taken separately. Note that both conditions of
the paradox can be defined in terms of the probability theory, which is purely
deductive [3]. Fourth, unless someone uses the notion of causation trivially, for
example, believes that 2+2 “causes” 4, there is no reason to assume that there
are causal intuitions lurking in the background. We will return to the last point
in greater detail in the following sections.

2.2 Why is SP “Paradoxical”?

To answer question (i), “why is SP a paradox?” we now provide an explanation of
how the paradox arises in people’s minds and why it is found perplexing. In other
words, what is the reasoning that the “average person” follows that leads him/her
to a paradoxical conclusion? For our purposes, we have reconstructed our type
I version of SP in terms of its premises and conclusion to show how the paradox
arises. However, the point of the reconstruction will be adequately general to
be applicable to all types of SP. We introduce a numerical principle called the
collapsibility principle (CP) which plays a crucial role in the reconstruction. CP
says that relationships between variables that hold in the sub-populations (e.g.,
the rate of acceptance of females being higher than the rate of acceptance of
males in both sub-populations) must hold in the overall population as well (i.e.,
the rate of acceptance of females must be higher than the rate of acceptance of
males in the population). There are two versions of CP corresponding to the two
types of SP represented by Tables 1 and 2. The first version of CP (CP1) says
that a dataset is collapsible if and only if [(A1 > B1)&(A2 > B2) → (α > β)].
The second version of CP (CP2) states that a dataset is collapsible if and only if
[(A1 = B1)&(A1 = B2)→ (α = β)]. That CP1 and CP2 can lead to paradoxical
results demonstrates that both versions of the principle are not, in all their
applications, true. That is, CP → ∼SP, whether it is CP1 or CP2, where “→”
is to be construed as the implication sign. If f1, F2, m1, M2, A1, A2, B1, B2,
α, and β have the same meanings as given in section 2.1, then CP1 takes the
following form.

((
f1
F1

>
m1

M1

)
&

(
f2
F2

>
m2

M2

))
→

(
f1 + f2
F1 + F2

>
m1 +m2

M1 +M2

)

Likewise, CP2 says

((
f1
F1

=
m1

M1

)
&

(
f2
F2

=
m2

M2

))
→

(
f1 + f2
F1 + F2

=
m1 +m2

M1 +M2

)
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As we can see, CP is a numerical inference principle devoid of any causal
intuition. Here is the reconstruction of type I version of SP:
(1) Female and male populations are mutually exclusive and jointly exhaustive;
one can’t be a student of both departments and satisfy the two conditions of SP.
(2) The acceptance rate of females is higher than that of males in Department
1. (observed from data)
(3) The acceptance rate of females is higher than that of males in Department
2. (observed from data)
(4) If (2) and (3) are true, then the acceptance rate for females is higher than
that of males overall. (from CP1)
(5) Hence the acceptance rate for females is higher than that of males overall.
(from (2), (3) and (4))
(6) However, fewer females are admitted overall. (observed from data)
(7) Overall acceptance rate for females is both higher and lower than that of
males. (from (5) and (6))
In our derivation of the paradox, premise (4) plays a crucial role. In type I
version of SP, as given in Table 1, CP1 does not hold (A1 > B1 and A2 > B2,
but α < β). That CP1 is not generally true is shown by our derivation of a
contradiction. The same result can be obtained for Type II version of SP in
Table 2 where CP2 has to be given up if the paradox is to be avoided.

Our answer to the first question, (i), then, is simply that humans tend to
invoke CP uncritically, as a rule of thumb, and thereby make mistakes in certain
cases about proportions and ratios; they find it paradoxical when their usual
expectation that CP is applicable across the board, turns out to be incorrect.
And the reason we think people invoke CP uncritically, is its remarkable (formal)
resemblance with the two inference rules given below.7

1. In elementary algebra, the following truth holds for real numbers:

x1 > y1

x2 > y2

∴ (x1 + x2) > (y1 + y2)

While it is correct to substitute A1(f1/F1) for x1, B1(m1/M1) for y1, A2(f2/F2)
for x2 and B2(m2/M2) for y2, people might confuse (x1 + x2) and (y1 + y2) for
α((f1 + f2)/(F1 +F2)) and β((m1 +m2)/(M1 +M2)) respectively, leading them
to think that CP is also a mathematical truth. Thus, mistakes about proportions
and ratios could lead the average person to see a superficial resemblance between
CP and the above mathematical truth.
2. In propositional logic, the following rule is valid:

P1→ Q (A)

P2→ Q (B)

∴ (P1 ∨ P2)→ Q (C)

7 We are thankful to Joseph Hanna and John G. Bennett for helpful emails on this
point.
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In our case, let P1 = “A student applies to Department 1”, P2 = “A student
applies to Department 2” and Q = “The student has greater chance of being
accepted, if the gender of the student is female”. Now, (A) partially captures
the condition A1 > B1 whereas (B) partially captures A2 > B2. (C), which
reads, “If a student applied to Department 1 or Department 2 then, the student
has greater chance of being accepted if the gender of the student is female” re-
sembles the condition α > β. We do not suggest that propositional logic can
capture the essence of the paradox. The reasoning leading to SP involves proba-
bilistic considerations which, unlike propositional logic, is not truth-functional.
For example, the probability of a disjunction is not a function of the probability
of its disjuncts. Likewise, SP is a weighted average of probabilities, or, in other
words, averages of averages. No such concept of weighted average exists in truth-
functional logic. The above comparison of CP with a valid propositional rule no
more than suggests why people tend to use CP even in cases where it leads to
contradiction.

3 Causal Accounts of SP

3.1 Pearl’s Account

Pearl argues that the arithmetical inferences in SP seem counter-intuitive only
because we commonly make two incompatible assumptions, that causal relation-
ships are governed by the laws of probability and that causal relationships are
more stable than probabilistic relationships [9, pp. 180, 25]. Once we reject ei-
ther of these assumptions, and he opts for rejecting the first, the “paradox” is no
longer paradoxical. On the other hand, when we fail to distinguish causal from
statistical hypotheses, the paradox results.

Pearl makes two basic points. One, SP is to be understood in causal terms
for its correct diagnosis. In the type I version, for example, the effect on “accep-
tance” (A) of the explanatory variable, “gender” (G), is hopelessly mixed up (or
“confounded”) with the effects on A of the other variable, “department” (D).
We are interested in the direct effect of G on A and not an indirect effect by
way of another variable like D. His other point is that causal hypotheses, which
support counterfactuals, often cannot be analyzed in statistical terms. Suppose
we would like to know Bill Clinton’s place in US history had he not met Monica
Lewinsky. The counterfactual for the causal hypothesis is “Clinton’s status in
the US history would be different had he not met Monica Lewinsky” [9, p. 34].
However, there is no statistical model one could construct that would provide
the joint occurrence of ‘Clinton’ and ‘no Lewinsky’. There simply are no appro-
priate data, as there are, for instance, in the fair coin-flipping experiments where
the model about flipping a coin and data about it are well known.

3.2 SGS Account

Spirtes, Glymour, and Scheines suggest a subject-matter-neutral automated
causal inference engine that provides causal relationships among variables from
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observational data using information about their probabilistic correlations and
assumptions about their causal structure. These assumptions are: 1. Causal
Markov Condition (CMC), 2. Faithfulness Condition (FC) and 3. Causal Suf-
ficiency Condition (CSC). According to CMC, a variable X is independent of
every other variable (except X’s effects) conditional on all of its direct causes. A
is a direct cause of X if A exerts a causal influence on X that is not mediated
by any other variables in a given graph. The FC says that all the conditional
independencies in the graph are only implied by CMC, while CSC states that
all common causes of measured variables are explicitly included in the model.
Since these theorists are interested in teasing out reliable causal relationships
from data, they would like to make sure that those probability distributions are
faithful in representing causal relations in them.

One reason for SP being causal, according to this account, is that (for the
example given in Table 1) applying to the school has a causal dimension in-
volving causal dependencies between “gender” and “acceptance rate”. More fe-
male students chose to apply to the departments where rates of acceptance are
significantly lower, causing their overall rates of acceptance to be lower in the
combined population. Similarly, with regard to Simpson’s own example in the
literature, Spirtes et al. write, “[t]he question is what causal dependencies can
produce such a table, and that question is properly known as “Simpson’s para-
dox”.” [15, p. 40].

4 Counter-Example to the Causal Account

It is not easy to come up with an example which precludes invoking some sort of
appeal to “causal intuitions” with regard to SP. But what follows is, we think,
such a case. It tests in a crucial way the persuasiveness of the causal accounts.8

Table 5. Simpson’s Paradox (Marble Example)

Marbles
of two
sizes

Bag 1 Bag 2
Rates of red
Marbles Overall rates for

red marbles
Red Blue Red Blue Bag 1 Bag 2

Big
marbles

180 20 100 200 90% 33% 56%

Small
Marbles

480 120 10 90 80% 10% 70%

Suppose, as in Table 5, we have two bags of marbles, all of which are either big or
small, and red or blue. Suppose in each bag, the proportion of big marbles that
are red is greater than the portion of small marbles that are red (Bag 1: 90% >
80% and Bag 2: 33% > 10%). Now suppose we pour all the marbles from both
bags into a box. Would we expect the portion of big marbles in the box that
are red to be greater than the portion of small marbles in the box that are red?
Most of us would be surprised to find that our usual expectation is incorrect.

8 This counter-example is due to John G. Bennett.
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The big marbles in the first bag have a higher ratio of red to blue marbles than
do the small marbles; the same is true about the ratio in the second bag. But
considering all the marbles together, the small marbles have a higher ratio of
reds to blues than the big marbles do (in the combined bag: 70% > 56%).

We argue that this marble example is a case of SP since it has the same math-
ematical structure as the type I version of SP. There are no causal assumptions
made in this example, no possible causal “confounding” and yet it seems para-
doxical. We believe this counter-example shows that at least sometimes, there is
a purely mathematical mistake about ratios that people customarily make. Some
causal theorists might be tempted to contend that even in this example there is
confounding between the effects of the marble size on the color with the effects
of the bag on the color. However, this confounding is not a causal confounding
since one cannot say that Bag 1 has caused big marbles to become more likely
to be red or that Bag 2 has caused big marbles to become more likely to be
blue. In short, one must admit that the above counter-example does not involve
causal intuitions, yet it is still a case of SP.

5 “What-To-Do” Question and Causal Accounts

In the case of SP, “what-to-do” questions arise when investigators are confronted
with choosing between two conflicting statistics. For example, in Table 1, the
conflict is between the uncombined statistics of the two departments and their
combined statistics. Which one should they use to act? It is evident that many
interesting cases of choosing actions arise when we infer causes/patterns from
proportions. The standard examples9 deal with cases in which “what-to-do”
questions become preeminent. But it should be clear in what follows that there
is no unique response to this sort of question for all cases of the paradox. Consider
Table 6 based on data about 80 patients. 40 patients were given the treatment,
T, and 40 assigned to a control, ∼T. Patients either recovered, R, or didn’t
recover, ∼R. There were two types of patients, males (M) and females (∼M).

Table 6. Simpson’s Paradox (Medical Example)

Two
Groups

M ∼M
Recovery
Rates Overall Recovery

Rates
R ∼R R ∼R M ∼M

T 18 12 2 8 60% 20% 50%

∼T 7 3 9 21 70% 30% 40%

One would think that treatment is preferable to control in the combined
statistics, whereas, given the statistics of the sub-population, one gathers the
impression that control is better for both men and women. Given a person of
unknown gender, would one recommend the control? The standard response is
clear: control is better for a person of unknown gender (since Pr(R| ∼T) >

9 These recommendations are standard because they are agreed upon by philosophers
[8], statisticians, and computer scientists [9].



Truths about Simpson’s Paradox: Saving the Paradox from Falsity 67

Pr(R|T)). Call this first example ‘the medical example’. In the second example,
call it ‘the agricultural example’, we are asked to consider the same data, but
now T and ∼T are replaced by the varieties of plants (white [W] or black variety
[∼W]), R and ∼R by the yield (high [Y] or low yield [∼Y]) and M and ∼M by
the height of plants (tall [T] or short [∼T]).

Table 7. Simpson’s Paradox (Agricultural Example)

Two
Groups

T ∼T
Yield
Rates

Overall
Yield
RatesY ∼Y Y ∼Y T ∼T

W 18 12 2 8 60% 20% 50%

∼W 7 3 9 21 70% 30% 40%

Given this new interpretation, the overall yield rate suggests that planting
the white variety is preferable since it is 10% better overall, although the white
variety is 10% worse among both tall and short plants (sub-population statistics).
Which statistics should one follow in choosing between which varieties to plant in
the future? The standard recommendation is to take the combined statistics and
thus recommend the white variety for planting (since Pr(Y|W) > Pr(Y|∼W)),
which is in stark contrast with the recommendation given in the medical example.
In short, both medical and agricultural examples provide varying responses to the
“what-to-do” question. There is no unique response regarding which statistics,
subpopulation or whole, to follow in every case of SP. We agree with standard
recommendations with a proviso, i.e., we need to use substantial background
information, which is largely causal in nature, to answer “what-to-do” questions,
as doing something means causing something to happen.

6 Truths about SP: An Evaluation of Causal Accounts

We argued that to understand the significance of SP as a whole, we need to
distinguish three types of questions (first-level truth) as well as divorce the first
two questions from the third to show that causality is irrelevant both in unlocking
the paradoxical nature of SP and providing conditions for its emergence (second-
level truth). Based on our discussion of the causal accounts, one realizes that
causal theorists have in fact addressed the “what-to-do” question. We don’t
deny that causal inference plays a crucial role in choosing the right statistic when
confronted with the paradox. Hence we agree with both Pearl and SGS about the
third question. However, as far as we know, SGS have not distinguished the three
questions about SP, and thereby failed to appreciate the first-level truth about
SP. Pearl on the other hand, does distinguish the three questions. But both
causal accounts fail to understand the second-level truth about the paradox.
Notice that one may, like Pearl, recognize the first-level truth and yet fail to
recognize the second-level truth. An examination of his responses to the first
two questions will reveal the reason behind this, showing how his causal account



68 P.S. Bandyopadhyay et al.

falls short of providing an adequate explanation for the first two questions and
thereby not being able to appreciate the full significance of SP.

In response to the first question, Pearl draws attention to the distinction
between what he calls “Simpson’s reversal”, which is merely an “arithmetic
phenomenon in the calculus of proportions” and “Simpson’s paradox” which is
“a psychological phenomenon that evokes surprise and disbelief” [10, p. 9]. He
thinks that the latter is the result of intuitions guided by causal considerations
and the fallacy of equating correlation with causation. While agreeing with him
about the fallacy, we pointed out, with the help of the marble counter-example,
that fundamentally, SP is devoid of any causal intuitions, although most day-to-
day examples of SP can be interpreted causally. We think that human puzzlement
about SP stems from the unexpected failure of CP which closely resembles valid
inference rules (section 2.2). With respect to the second question, Pearl identifies
“scenarios” in which one can expect a reversal. A scenario, according to him,
is “a process by which data is generated” [10, p. 10]. The causal calculus/models
which represent these causal scenarios are different from our formal conditions
which have been derived from the structure of the paradox (section 2.1). So our
conditions capture all cases of SP regardless of the causal process involved and
provide a more general account than either of the causal accounts.

7 Re-evaluating the Place of SP in Paradox Literature

Logicians tend to hold different views concerning what paradoxes are. Whether
SP is a paradox depends on how one defines and slices paradoxes. Priest [11],
for example, may not consider SP to be a paradox as it is neither a set-theoretic
paradox such as Russell’s nor a semantic one like the Liar Paradox. But, under
Sainsbury’s construal, SP could be regarded as a paradox since he understands
a paradox as “an apparently unacceptable conclusion derived by apparently ac-
ceptable reasoning from apparently acceptable premises.” [14, p. 1]. However,
this might not furnish a genuine rationale for what makes paradoxes paradoxical
since one might worry what an “apparently acceptable reasoning” is. In this re-
gard, we find a better explanation in W.V.Quine, who both defines and provides
a general rationale for the apparently paradoxical nature of paradoxes. A para-
dox, according to him, is “just any conclusion that at first sounds absurd but
that has an argument to sustain it” [12, p. 1]. SP can be treated as a paradox
in this Quinean sense.

Two points are to be noted here. First, Quine’s use of the word “absurd”
could be ambiguous since it lends itself to two interpretations: a) psychological
confusion and b) logical contradiction. Our analysis of SP suggests that SP
“sounds absurd” under both interpretations. Given the logical reconstruction of
SP (section 2.2), we see how it leads to a self-contradictory conclusion. And,
given our response to question (i), we find that people tend to apply CP across
the board and their psychological confusion results when they find out that
CP, in fact, cannot be so applied. Second, our research shows that the sharp
distinction Quine draws between “veridical paradox” and “falsidical paradox”
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does not necessarily hold about SP. Distinguishing between these two varieties
while justifying each, he writes, “[a] veridical paradox packs a surprise, but the
surprise quickly dissipates itself as we ponder the proof. A falsidical paradox
packs a surprise, but it is seen as a false alarm when we solve the underlying
fallacy.” [12, p. 9, emphasis is ours]. He argues that Gödel’s discovery and other
paradoxes in set theory are veridical paradoxes. We think that SP can be seen
as a case of veridical paradox as soon as we realize that the population data in
all tables follow necessarily from the sub-population data along with the proofs
we provided for the paradox to hold. To explore whether SP could fall under
the category of a falsidical paradox, consider Quine’s own example of the latter.
According to him, paradoxes of Zeno are instances of falsidical paradoxes since
they rest on the fallacious assumption that “an infinite succession of intervals
must add up to an infinite interval.” Once we note this, it becomes clear that
the initial surprise about them was unwarranted. The same reasoning can be
offered for SP being a falsidical paradox. Our analysis shows that the surprise
SP packs rests on holding the dubious assumption that CP is unconditionally
applicable. Once we realize this, the paradoxical nature of SP disappears. So,
the unique feature of SP is that it is a paradox in both veridical and falsidical
senses. Therefore, there need not be a sharp distinction between these two types
of paradoxes as Quine once argued.

Two issues emerge from the preceding discussion. First, we rely on Quine’s
definition of a paradox and how it fares with regard to SP; As we will see in
a moment Roy Sorensen thinks that Quine’s definition is flawed as, according
to him, it is neither necessary nor sufficient [13]. Second, whether it is possible
to advance a definition of a paradox which could include all types of paradoxes
including SP and the Liar paradox under its banner. The rest of this section will
be devoted to addressing these two issues.

Sorensen’s method is to turn the definition of a paradox against what he takes
to be Quine’s own “paradox” of radical translation. Quine sets out his “paradox”
by first assuming the possibility of a “radical translation” situation, in which nei-
ther speaker knows a word of the other’s language. Consider a group of linguists
interested in understanding what the native speakers’ utterances mean. Suppose
the speakers utter “gavagai.” The linguists observe the speakers, hear what they
utter, observe the conditions under which they utter a word or sentence, and de-
termine what they are looking at or pointing out when they utter. Armed with
such information, let’s assume these linguists make a hypothesis that “gavagai”
means “rabbit”. In the same way, it is possible that another group of linguists
having the same evidence as the first group translates “gavagai” as “undetached
rabbit part.” Which one is the correct translation of “gavagai”? Based on this
thought experiment, Quine contends that radical translation is not possible as
meaning, here understood as referent, is indeterminate or at least undermined
by the totality of empirical evidence that is available. There is no way to know
whether the translation of “gavagai” as “rabbit” or “undetached rabbit part”
is the correct hypothesis. But the conclusion seems absurd; at least most of the
time, we know what others in our language group (or outside it) are referring
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to when they utter sounds. Sorensen rejects Quine’s construal of paradoxes by
pointing out that, “ ‘What is the translation of ‘Gavagai’?’ has infinitely many
rival answers. According to Quine, the problem is that infinitely many of these
are equally good answers. Quine’s paradox of radical translation is a counterex-
ample to his own definition of paradox. In addition to showing that absurdity is
inessential to paradox, the paradox of radical translation shows that the paradox
can be free of arguments and conclusions. ‘What is the translation of ‘Gavagai’?’
has answers obtained by translation, not conclusions derived by arguments.”[13,
p. 560].

Even though we agree with Sorensen that actual, in contrast to merely ap-
parent, absurdity is not necessary for understanding the nature of paradoxes, we
disagree with his claim that it is not helpful to construe paradoxes in terms of
an argument consisting of premises and a conclusion. What Sorensen misses in
his criticism of Quine is that while a paradox need not present itself in canonical
forms, their canonical forms are useful tools in understanding them, just as the
canonical form of an argument (with numbered premises and designated conclu-
sion) is a useful tool for discussing arguments that, in real life, do not always
present themselves in that way. To force the paradox into the canonical form,
suppressed premises must be revealed and hidden assumptions made explicit. If
the radical translation claims are paradoxical, they can be fitted into the canon-
ical forms, though there may be different ways to do that. Here’s one version in
our favored canonical form:

(1) A correct translation of one natural language into another is one that is
entirely compatible with all the facts about usage.

(2) If two translations translate a given term in one language into incompatible
terms in another language, one of the translations is not correct.

(3) There are two correct translations of the native language word“gavagai”
into English; one translates it as “rabbit” and the other translates it as
“undetached rabbit part.”

(4) “Rabbit” and “undetached rabbit part” are incompatible terms in English
(in the sense that they do not have the same referent).

(5) The native language and English are natural languages.

Contrary to Sorensen, we find that it is possible to exhibit the paradox of radi-
cal translation in terms of an argument with premises and a conclusion, revealing
the assumption on which it rests. At the same time, we agree with Sorensen in
a different way when he holds that a paradox need not have a genuinely absurd
conclusion. We tend to think that “sounding absurd” lends a psychological air
to the issue of a paradox. In light of these two considerations, we propose a
general definition of a paradox. A paradox is an (apparently) inconsistent set
of sentences each of which seems to be true.10 The word “apparently” in this
account, as in Quine’s, is to allow for cases that depend on fallacious arguments,
as in the well-known “proofs” for 1=2. Another advantage of this account is that
one might make several arguments from a set of inconsistent sentences, but one

10 We owe this definition to John G. Bennett. Lycan [7] has also provided a similar
definition.
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would probably not want to call them distinct paradoxes. Any paradox worth the
name, including SP, should obey this definition. Simplifying our reconstruction
of SP as a paradox in section 2.2, we provide a rough schema for SP with the
(optional) false premise marked by an asterisk, for the type 1 version of the
paradox.
(1) Sub-population 1 has a positive correlation between two variables.
(2) Sub-population 2 has a positive correlation between two variables.

(*3) If each sub-population in a partition of a larger population exhibits a posi-
tive correlation between two variables, then the population as a whole will
also exhibit that same positive correlation between the same two variables

(4) Overall population has a negative correlation between the same two vari-
ables.

If *3 is included, the set is inconsistent, since premise *3 is false. If *3 is not
included, the set seems to be inconsistent, but is not. Whether to analyze the
paradox one way or the other may depend on the example and the context. We
think that our definition is adequately general to include even the Liar paradox.
Call “this sentence is false” the liar sentence. The following provides a canonical
reconstruction of the Liar paradox with two premises and a conclusion.

(1) The liar sentence is true.
(2) The liar sentence is false.
(3) A sentence is either true or false, but not both.

In this section, among other issues, we both discussed and evaluated different
views on paradoxes. As a result, we are able to provide a general framework to
understand paradoxes while showing that both SP and the Liar paradox satisfy
it even though the former has an apparently contradictory conclusion while the
latter has a genuinely contradictory one.

8 Conclusion

Unraveling paradoxes is crucial to philosophers of logic as they challenge our
deeply held intuitions in a fundamental way. While addressing SP, we distin-
guished three types of questions. We showed that answering one does not nec-
essarily lead to the answers of the rest. Although, admittedly, the “what-to-do”
question is the most important insofar as the practical side of SP is concerned,
some causal theorists have overlooked the need to distinguish these three ques-
tions, thus failing to appreciate the first-level truth about the paradox. Even if
they recognize this first-level truth, the importance of the “what-to-do” question
drives them to assume that the causal calculus needed to address this question
is the correct way to unlock the riddle about the paradox. We, however, showed
that the truth about the paradoxical nature of SP and conditions for its emer-
gence need to be isolated from the “what-to-do” question. This failure on the
part of the causal theorists leads to their failure in appreciating the second-level
truth about the paradox. Pivoting on the question “why is SP paradoxical?”,
we provide a general framework for understanding any paradox. Our analysis of



72 P.S. Bandyopadhyay et al.

SP also highlights the significant role played by CP in generating the paradox-
ical result. Such principles are what Field would suggest we jettison to escape
paradoxes.
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Appendix11

For proving theorems 1 and 2 we firstly assume that the conditions of SP (arrived
at in section 2.1) are satisfied. That is,

C ≡ (C1&C2&C3)
θ = (A1 −B1) + (A2 −B2) + (β − α) > 0

Further, we stipulate the following definitions:

a = (members of A in partition 1)/(total members of A)
b = (members of B in partition 1)/(total members of B)

α = aA1 +A2(1 − a)
β = bB1 +B2(1− b)

A1, A2, B1 and B2 have the same meanings defined in section 2.1. We have
defined α and β differently than what we had done in section 2.1 only to ease
the proofs of the following theorems; otherwise the two sets of definitions are
mathematically equivalent. To take an example, in Table 1 (Type I SP), A1 =
180/200,A2 = 100/300, B1 = 480/600,B2 = 10/100, a = 200/500, b = 600/700.
Hence, α = (180/500) + (100/500) = 280/500 = 56% and β = (480/700) +
(10/700) = 490/700 = 70%.

Theorem 1. Simpson’s paradox results only if A1 �= A2.

Proof: Let us assume that A1 = A2. Then, α = aA1 +A2(1− a) = aA1 +A2 −
aA2 = A1 = A2. Given this, there are three possible scenarios. (I) B1 > B2, or
(II) B1 < B2 or (III) B1 = B2.

(I) If B1 > B2, then [B1b+B1(1− b)] > [B1b+B2(1− b)]. Therefore, B1 > β.
Yet, if A1 ≥ B1, and α = A1, then α > β, which contradicts the assumption
that β ≥ α. Therefore, if A1 = A2, then it can’t be that B1 > B2.

(II) IfB1 < B2, then [B1b+B2(1−b) < [B2b+B2(1−b)] = B2. Therefore, β <
B2. Yet, A2 ≥ B2, A1 ≥ B2, and α ≥ B2 > β. This contradicts the assumption
that β ≥ α. Therefore, if A1 = A2, then it can’t be the case that B1 < B2.

(III) IfB1 = B2, then β = bB1+B2(1−b) = bB1+B1(1−b) = B1. Given that
A1 ≥ B1,A1 = α, andB1 = β, then α ≥ β. Yet, by assumption, β ≥ α. Therefore,
β = α. Since A1 = A2 = α, and B1 = B2 = β, it must be that A1 = B1, A2 = B2,
and α = β. That α = β contradicts the assumption that out case is paradoxical,
characterized by the reversal which we don’t find here. Therefore, if A1 = A2, it
can’t be the case thatB1 = B2. Therefore,A1 �= A2.WithoutA1 �= A2, Simpson’s
paradox cannot occur.

Theorem 2. Simpson’s paradox arises only if B1 �= B2.

Proof: Let us assume thatB1 = B2. Then β = bB1+B2(1−b) = bB1+B1(1−b) =
B1 = B2. Given that A1 > A2, it is true that [aA1 +A2(1− a)] > [aA2 +A2(1−
a)]. Given that A1 > A2, it follows that [aA1 + A2(1 − a)] > [aA2 + A2(1 −
a)]. Therefore, α > A2. Yet, A2 ≥ B2 = β. So α > β, which contradicts the
assumption. Therefore, B1 �= B2. Without B1 �= B2, Simpson’s paradox cannot
occur.
11 We are indebted to Davin Nelson for the following proofs.
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Abstract. This paper proposes some instances of graded consequence relation
where the object language formulae are interpreted by sub-intervals of [0, 1].
These instances represent different attitudes of decision making that may be
called conservative, liberal, and moderate.
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1 Introduction

The theory of graded consequence (GCT) [6, 7] was introduced as a general meta-theory
where for any set of formulae X and formula α, that a formula α follows from X is a
matter of grade. Let us explain two main features of the theory of graded consequence.

(i) Classically, X |= α iff for all states of affair Ti if X ⊆ Ti then α ∈ Ti. Formally
this meta-linguistic sentence turns out to be ∀Ti{(X ⊆ Ti)→ α ∈ Ti}, where X ⊆ Ti

is again a meta-level sentence representing ∀x∈F(x ∈ X → x ∈ Ti). In graded context,
Tis are fuzzy sets assigning values to the object level formulae; and the meta-linguistic
connective → and quantifier ∀, are computed by a fuzzy implication and the lattice
‘infimum’ operator respectively. Thus the sentence, ‘α (semantically) follows from X’
becomes graded; the grade is denoted by gr(X |≈ α). It is to be noted that following
and extending [20], {Ti}i∈I is taken to be any arbitrary collection of fuzzy sets over
formulae; that is considering the whole collection of Ti’s is not a necessity here. In [7],
a complete residuated lattice is considered for interpreting the meta-linguistic entities
of the notion of graded consequence. So, given any collection of fuzzy sets {Ti}i∈I , the
meta-linguistic sentence viz., X |≈ α gets the value,

gr(X |≈ α) = inf
i
{in fx∈X Ti(x)→ f Ti(α)},

where→ f is the residuum operator of the complete residuated lattice.
(ii) GCT, thus, proposes a meta-theoretic set up where derivation is a graded notion.

As a part of the programme of building the meta-theory, some of its areas of concern are
(a) axiomatizing the notion of consequence (|∼) (b) defining its semantic counterpart
(|≈), (c) studying their interrelations, and also (d) studying other meta-logical notions
and their interrelations.

M. Banerjee and S.N. Krishna (eds.): ICLA 2015, LNCS 8923, pp. 74–87, 2015.
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A graded consequence relation [7] is characterized as a fuzzy relation |∼ from P(F),
the power set of formulae, to F , the set of formulae, satisfying the following axioms.
These axioms are generalizations of that of the classical notion of consequence [21, 17].

(GC1) If α ∈ X then gr(X |∼ α) = 1.
(GC2) If X ⊆ Y then gr(X |∼ α)≤ gr(Y |∼ α).
(GC3) in fβ∈Z gr(X |∼ β)∗ gr(X ∪Z |∼ α) ≤ gr(X |∼ α).

For each set of formulae X and formula α, gr(X |∼ α), read as the degree to which α
is a consequence of X , is a member of the underlying set of the complete residuated lat-
tice. The monoidal operation ∗, of the residuated lattice, computes meta-level conjunc-
tion. In [7] a representation theorem is proved establishing the soundness-completeness
like connection between |∼ and |≈. There are several other papers [8, 9, 13, 14] where
GCT is developed considering other meta-logical notions, their interrelations, axiomatic
counterpart of graded consequence, its proof theory, and GCT in the context of fuzzy
sets of premises too. It may be mentioned that some other researchers have also dealt
with similar ideas and of them some contributed towards generalization of the above
mentioned notion of GCT [5, 18, 19].

Development of GCT, to date, assumes a semantic base which is an arbitrary collection
{Ti}i∈I of fuzzy sets assigning single values to the object language formulae. Each Ti may
be counted as an expert whose opinion, i.e., values assigned to the object language formu-
lae, forms the initial context or the database. Based on the collective database of {Ti}i∈I

decisions are made. The decision maker wants to decide whether a particular formula α
is a consequence of a set X of formulae, which is a matter of grade in GCT. In this paper
we shall consider interval-valued semantics for the notion of graded consequence. More
specifically, we shall consider that experts are allowed to assign an interval to the object
language formulae, and then based on themechanism ofGCT thevalue to which a formula
is a consequence of a set of formulae will be computed.

There are plenty of instances where it is impossible to claim precisely that an im-
precise concept applies to an object to a specific degree. As a result when an imprecise
concept is quantized by a single value, the inherent impreciseness of the concept is
somewhat lost. Assigning an interval-value, to some extent, manages to retain the un-
certainty of understading an imprecise concept as it only attaches a set of possible inter-
pretations to the concept. In this regard let us quote a few lines from [10]. “IVFS theory
emerged from the observation that in a lot of cases no objective procedure is available
to select the crisp membership degrees of elements in a fuzzy set. It was suggested to
alleviate that problem by allowing to specify only an interval . . . to which the actual
membership degree is assumed to belong. Thus interval mathematics and its applica-
tion in the context of imprecise reasoning is quite significant. GCT provides a general
set up for imprecise reasoning. So, developing GCT in the context of interval-valued
semantics is meaningful both from the angle of theory building and applications. In this
paper we shall present three different attitudes of decision making based on GCT. The
information coming from different sources, which may be counted as the collection
of Ti’s, as well as the attitude (conservative, liberal, moderate) of the decision maker
play roles in the process of decision making and in the final conclusion. Keeping this
practical motivation in mind we here propose three different notions for deriving con-
clusion which satisfy the graded consequence axioms [7]. In each of these cases, the
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object language formulae are interpreted by closed sub-intervals of [0, 1], but the no-
tion of consequence is made single-valued. This value assignment is done taking either
the left-hand end point or the right-hand end point or some value in between from the
final interval that is computed as an outcome. It is not completely unrealistic to think
that experts i.e., Ti’s are entitled to assign a range of values, but the decision maker is
constrained to conclude a single value, and such a practice of precisification in final re-
sult prevails in the literature of fuzzy set theory, especially in the area of application of
the theory. The meta-linguistic notions, e.g. consequence, consistency, inconsistency,
could also get interval-values, and this direction of research will be taken up in our
future work.

2 Interval Mathematics: Some Basic Notions

Assigning a specific grade to an imprecise sentence often pushes us into a situation
where from a range of possible values we are to choose a single one for the sake of the
mathematical ease of computation. Lifting the whole mathematics of fuzzy set theory
in the context of interval-valued fuzzy set theory, researchers [1–4, 10, 12, 11, 15, 16]
to a great extent could manage to resolve this problem. In this section we present some
part of the development [2–4, 10, 12, 11, 16] according to the purpose of this paper.

Let us consider U = {[a,b]/0 ≤ a ≤ b ≤ 1} along with two order relations ≤I and
⊆, defined by: [x1,x2]≤I [y1,y2] iff x1 ≤ y1 and x2 ≤ y2 and

[x1,x2]⊆ [y1,y2] iff y1 ≤ x1 ≤ x2 ≤ y2.
(U,≤I) forms a complete lattice, and (U,⊆) forms a poset. Let

∧
be the lattice meet

corresponding to the order relation ≤I .

Definition 2.1 [2]. An interval t-norm is a mapping T : U ×U �→ U such that T is
commutative, associative, monotonic with respect to ≤I and ⊆, and [1,1] is the identity
element with respect to T .

Definition 2.2. [16] Let T be an interval t-norm. T is called t-representable if there ex-
ists t-norms t1, t2 on [0,1] such that T ([x1,x2], [y1,y2]) = [t1(x1,y1), t2(x2,y2)].

Definition 2.3. [16] For any t-norm ∗ on [0,1] and a ∈ [0,1], T∗,a is defined below.
T∗,a([x1,x2], [y1,y2]) = [x1 ∗ y1,max((x2 ∗ y2)∗ a,x1 ∗ y2,x2 ∗ y1)].

In [11] it has been shown that for any t-norm ∗ on [0,1] and any a ∈ [0,1], T∗,a is
an interval t-norm. Moreover, for a = 1, T∗,a becomes a t-representable t-norm [16]; i.e.
T∗,1([x1,x2], [y1,y2]) = [x1 ∗ y1,x2 ∗ y2]. For the purpose of this paper we shall consider
such an T∗,1, and denote this interval t-norm based on ∗ as ∗I .

Definition 2.4. Given→, the residuum of ∗ on [0,1], and 1 ∈ [0,1],→I : U×U �→U is
defined by: [x1,x2]→I [y1,y2] = [min{x1 → y1,x2 → y2},min{(x2 ∗ 1)→ y2,x1 → y2}].

= [min{x1 → y1,x2 → y2},min{x2 → y2,x1 → y2}].

In [16] it is shown that →I is an interval fuzzy implication with the adjoint pair
(∗I,→I) on U. For I1, I2, I′ ∈U, the following properties of (∗I,→I) are of particular
interest here.
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(i) If I1 ≤I I2 then I2 →I I ≤I I1 →I I
(ii) If I1 ≤I I2 then I →I I1 ≤I I →I I2

(iii) I →I I′ ≥I I′

(iv) [1,1]→I I = I
(v) If I ≤I I′ then I →I I′ = [1,1]
(vi) (I1 →I I2)∗I ((I1

∧
I2)→I I)≤I (I1 →I I).

(vii)
∧

k(I
′ →I Ik) = (I′ →I

∧
k Ik)

(viii) I1 ∗I I2 ≤I I3 iff I2 ≤I I1 →I I3.

3 GCT in the Context of Interval-Valued Semantics

In this section we propose a few different definitions for the semantic notion of graded
consequence. These definitions incorporate different decision making attitudes from
practical perspectives, and when the semantics for the object language formulae is re-
stricted to the degenerate intervals, each of the notions yields the original notion of
graded consequence [7, 8].

3.1 Graded Consequence: Form (Σ)

Definition 3.1. Given a collection of interval-valued fuzzy sets, say {Ti}i∈I , the grade
of X |≈ α, i.e. gr(X |≈ α) = l([

∧
i∈I{

∧
x∈X Ti(x)→I Ti(α)}]), . . . (Σ)

where l([.]) represents the left-hand end point of an interval; that is, l([x1,x2]) = x1.

The similarity and the differences between the notions of gr(X |≈ α), given in Sec-
tion 1 and form (Σ), are quite visible from their respective forms. According to (Σ), to
find out the degree to which α follows from X one has to first find out the truth-interval
assignment to the formulae by a set of experts {Ti}i∈I . Then, the left-hand end point of
the least interval-value assigned to

∧
x∈X Ti(x)→I Ti(α) (if every member of X is true

then α is true) needs to be computed. In order to stick to a single value for the notion of
derivation, in this case, the left-hand end point of the resultant interval is taken.

One might think that value for (Σ) would be the same if before computing→I with
the component intervals, the left-hand end point of the concerned intervals are taken out,
and the corresponding implication operation for single-valued case is applied. In order
to show that (Σ) is not the same as computing infi[l(∧x∈X Ti(x))→ l(Ti(α)], let us con-
sider l([.3, .7]→I [.2, .3]), where→I is defined in terms of the ordinary Łukasiewicz im-
plication following the Definition 2.4. Then it can be checked that l([.3, .7]→I [.2, .3])
= .6, and l([.3, .7])→Ł l([.2, .3]) = .9.

Lemma 3.1. infi l({[xi,yi]}i∈K) = l(
∧

i{[xi,yi]}i∈K).

Lemma 3.2.
∧

i Ii ∗I
∧

i I′i ≤I
∧

i(Ii ∗I I′i ), where Ii, I′i are intervals.

Lemma 3.3.
∧

i
∧

j Ii j =
∧

j
∧

i Ii j.

Lemma 3.4. If ∗I is a t-representable t-norm with respect to an ordinary t-norm ∗ then
I1 ∗I I2 ≤I I3 implies l(I1)∗ l(I2)≤ l(I3).
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Representation Theorems with Respect to (Σ)

Theorem 3.1. For any {Ti}i∈I , |≈ in the sense of (Σ) is a graded consequence relation.

Proof. (GC1) For α ∈ X ,
∧

x∈X Ti(x)≤I Ti(α). So, using (v) we have gr(X |≈ α) = 1.
(GC2) For X ⊆ Y ,

∧
x∈Y Ti(x)≤I

∧
x∈X Ti(x). Hence by (i) GC2 is immediate.

(GC3) infβ∈Z gr(X |≈ β)∗ gr(X ∪Z |≈ α)
= infβ∈Z l[

∧
i∈I{

∧
x∈X Ti(x)→I Ti(β)}]∗ l[

∧
i∈I{

∧
x∈X∪Z Ti(x)→I Ti(α)}]

= l[
∧

β∈Z{
∧

i∈I(
∧

x∈X Ti(x)→I Ti(β))}]∗ l[
∧

i∈I{
∧

x∈X∪Z Ti(x)→I Ti(α)}] (Lemma 3.1)
= l[

∧
i∈I{

∧
β∈Z(

∧
x∈X Ti(x)→I Ti(β))}]∗ l[

∧
i∈I{

∧
x∈X∪Z Ti(x)→I Ti(α)}] (Lemma 3.3)

= l[
∧

i∈I(
∧

x∈X Ti(x)→I
∧

β∈Z Ti(β))}]∗ l[
∧

i∈I{
∧

x∈X∪Z Ti(x)→I Ti(α)}] (by (vii)) . . . (1)

Now for each Ti, {
∧

x∈X Ti(x)→I
∧

β∈Z Ti(β)} ∗I {
∧

x∈X∪Z Ti(x)→I Ti(α)}
= {∧x∈X Ti(x)→I

∧
β∈Z Ti(β)} ∗I {[(

∧
x∈X Ti(x))

∧
(
∧

x∈Z Ti(x))]→I Ti(α)}
≤I {

∧
x∈X Ti(x)→I Ti(α)}. (by (vi)).

Therefore,
∧

i∈I[{
∧

x∈X Ti(x)→I
∧

β∈Z Ti(β)} ∗I {
∧

x∈X∪Z Ti(x)→I Ti(α)}]
≤I

∧
i∈I [

∧
x∈X Ti(x)→I Ti(α)]. . . . (2)

Also,
∧

i∈I [{
∧

x∈X Ti(x)→I
∧

β∈Z Ti(β)}]∗I
∧

i∈I [{
∧

x∈X∪Z Ti(x)→I Ti(α)}]
≤I

∧
i∈I [{

∧
x∈X Ti(x)→I

∧
β∈Z Ti(β)} ∗I {

∧
x∈X∪Z Ti(x)→i Ti(α)}] (Lemma 3.2)

≤I
∧

i∈I [
∧

x∈X Ti(x)→I Ti(α)] (by (2))
l[
∧

i∈I(
∧

x∈X Ti(x)→I
∧

β∈Z Ti(β))}]∗ l[
∧

i∈I{
∧

x∈X∪Z Ti(x)→I Ti(α)}]
≤ l[

∧
i∈I{

∧
x∈X Ti(x)→I Ti(α)}] (Lemma 3.4 as ∗I is t-representable) . . . (3)

Hence from (1) and (3) we have, infβ∈Z gr(X |≈ β)∗ gr(X ∪Z |≈ α)≤ gr(X |≈ α).

Theorem 3.2. For any graded consequence relation |∼ there is a collection of interval-
valued fuzzy sets such that |≈ generated in the sense of (Σ) coincides with |∼.

Proof. Given |∼, a graded consequence relation, let us consider the collection{TX}X∈P(F)
of interval-valuedfuzzysetsoverformulaesuchthatTX(α)= [gr(X |∼α)]BIR,where [x]BIR

represents the best interval representation [3] of x, i.e. the interval [x,x].

We want to prove gr(X |∼ α) = l[
∧

Y∈P(F){
∧

x∈X TY (x)→I TY (α)}].
By (GC3) and Lemma 3.1, we have l(TY (β))≥ l(TX∪Y (β))∗ l(∧α∈XTY (α)).
As TY ’s are degenerate intervals by proposition 4.1 of [16] every true identity express-
ible in [0, 1] is expressible in U. So, TX∪Y (β)∗I ∧α∈X TY (α) ≤I TY (β). Then following
the proof in [7] we can show, TX (β)≤I ∧Y∈P(F)[∧α∈X TY (α)→I TY (β)] . . . (i)
∧Y∈P(F)[∧α∈X TY (α)→I TY (β)] ≤I ∧X⊆Y∈P(F)[∧α∈X TY (α)→I TY (β)] . . . (ii)
Now for X ⊆ Y , by (GC2), TX(α) ≤I TY (α). Then by (GC1) we have
[1,1] = ∧α∈X TX(α) ≤I ∧α∈X TY (α). i.e. ∧α∈X TY (α)→I TY (β) = TY (β).
Hence (ii) becomes∧Y∈P(F)[∧α∈X TY (α)→I TY (β)]≤I ∧X⊆Y∈P(F)TY (β) = TX(β) . . . (iii)
Combining (i) and (iii) we have gr(X |∼ β) = l[∧Y∈P(F){∧α∈X TY (α)→I TY (β)}].
Remark 1. In this new context the meta-level algebraic structure may be viewed as
〈U,∗I,→I , [0,0], [1,1], l〉, a complete residuated lattice with a function l : U �→ [0,1].
The structure 〈U,∗I,→I , [0,0], [1,1], l〉 is formed out of a complete residuated lattice
([0,1],∗,→,0,1). Specifically, the adjoint pair (∗I,→I) is defined in terms of the adjoint
pair (∗,→).
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Definition (Σ) endorses the minimum truth value assignment ensuring the limit, be-
low which none of the assignments for ‘if every member of X is true then α is true’ i.e.,∧

x∈X Ti(x)→I Ti(α), considering expert’s opinion, lie. As an instance let, out of two
experts the value assignment to

∧
x∈X Ti(x)→I Ti(α) following one’s opinion is [.1, .3]

and that of the other is [.7, .9]. Then following (Σ) the value for ‘α follows from X’ only
considers the left-hand end point of the least interval i.e. [.1, .3]. So, this value assign-
ment does not take care of the consensus of all. It only emphasises that the lower bound
of everyone’s point of agreeing is .1, no matter whether someone really has marked a
high grade.

3.2 Extension of ⊆ as a Lattice Order Relation

Let us now explore a method of assigning the value to ‘α follows from X’ in such a way
that it takes care of every individual’s opinion. That is, we are looking for an interval
which lie in the intersection of everyone’s opinion. For this we need a complete lattice
structure with respect to the order relation ⊆ on U. Let us extend the partially ordered
relation ⊆ into a lattice order by the following definition.

Definition 3.2. ⊆e is a binary relation on U defined as below.
[x1,x2]⊆e [y1,y2] if y1 ≤ x1 < x2 ≤ y2,
[x1,x1]⊆e [y1,y2] if x1 ≤ y2.

Proposition 3.1. If [x1,x2]⊆ [y1,y2] then [x1,x2]⊆e [y1,y2] .

Note 3.1. The converse of the above proposition does not hold. For the intervals [.2, .2]
and [.3, .7], [.2, .2]⊆e [.3, .7], but [.2, .2]� [.3, .7]. Also to be noted that for two intervals
[x1,x2] and [y1,y2], [x1,x2] ⊆e [y1,y2] does not hold if x1 < x2 and y1 = y2. Let [x1,x2]
⊆e [y1,y2] be such that x1 = x2 < y1 ≤ y2 holds. This pair of intervals are called non-
overlapping intervals under the relation ⊆e; other pairs of intervals under the relation
⊆e are known as overlapping intervals under the relation ⊆e.

Proposition 3.2. (U,⊆e) forms a poset.

Proposition 3.3. (U,⊆e) is a lattice where the greatest lower bound, say
⋂

, and the
least upper bound, say

⋃
are defined as follows.

[x1,x2]
⋂
[y1y2] = [max(x1,y1),min(x2,y2)] if max(x1,y1)≤min(x2,y2)

= [min(x2,y2),min(x2,y2)], otherwise.
[x1,x2]

⋃
[y1y2] = [max(x2,y2),max(x2,y2)], if x1 = x2, y1 = y2.

= [max(x1,y1),max(x2,y2)], if x1 = x2 < y1 < y2

= [min(x1,y1),max(x2,y2)], otherwise.
(i.e. either x1 = x2, y1 < y2, y1 ≤ x1, or x1 < x2, y1 < y2)

Proposition 3.4. (U,⊆e) forms a complete lattice.
Proof For arbitrary collection {[xi,yi]}i∈K ,

⋂
i∈K [xi,yi] = [supi xi, infi yi] if supi xi≤ infi yi

= [infi yi, infi yi], otherwise.
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⋃
i∈K [xi,yi] = [infi xi,supi yi], if infi xi < infi yi ≤ supi yi

= [supi xi,supi yi], if infi xi = infi yi ≤ supi yi.
Rest is straightforward as being a closed set, [0,1] contains infimum and supremum of
xi’s and yi’s.

3.3 Graded Consequence: Form (Σ′)

Now let us define an alternative definition for semantic graded consequence relation
which takes care of the common consensus zone.

Definition 3.3. Given any collection of interval-valued fuzzy sets, say {Ti}i∈I ,
gr(X |≈ α) = r([

⋂
i∈I{

∧
x∈X Ti(x)→I Ti(α)}]), where r([x1,x2]) = x2. . . . (Σ′)

So, in this definition for graded semantic consequence the value of ‘α follows from
X’ is the right-hand end point of the common interval-value assigned to the sentence
‘whenever every member of X is true α is also true’ taking care of every expert’s opin-
ion; that is, this method counts the maximum truth-value assignment where all the ex-
perts agree.

Lemma 3.5. infi r([xi,yi]i∈K) = r(
⋂

i∈K [xi,yi]).

Lemma 3.6.
⋂

l
⋂

k Ilk =
⋂

k
⋂

l Ilk for each Ilk ∈U.

Lemma 3.7. If ∗I is a t-representable t-norm with respect to an ordinary t-norm ∗ then
I1 ∗I I2 ≤I I3 implies r(I1)∗ r(I2)≤ r(I3).

Lemma 3.8. If {[x1
i ,x

2
i ]}i∈K and {[y1

i ,y
2
i ]}i∈K are two collections of intervals such that

[x1
i ,x

2
i ]≤I [y1

i ,y
2
i ] for each i ∈ K, then

⋂
i∈K [x

1
i ,x

2
i ]≤I

⋂
i∈K [y

1
i ,y

2
i ].

Proof. x1
i ≤ y1

i and x2
i ≤ y2

i for each i ∈ K.
Hence, sup{x1

i }i∈K ≤ sup{y1
i }i∈K and inf{x2

i }i∈K ≤ inf{y2
i }i∈K . . . . (1)

As x1
i ≤ x2

i for i∈K, there are two possibilities - (i) supi x1
i ≤ infi x2

i , (ii) supi x1
i > infi x2

i .
(i) supi x1

i ≤ infi x2
i ≤ x2

i ≤ y2
i for each i ∈ K. So, supi x1

i ≤ infi x2
i ≤ infi y2

i .
Here again two subcases arise. (ia) supi y1

i ≤ infi y2
i and (ib) supi y1

i > infi y2
i .

(ia) If supi y1
i ≤ infi y2

i , then
⋂

i∈K [y
1
i ,y

2
i ] = [supi y1

i , infi y2
i ].

Hence inequalities of (1) ensure that
⋂

i∈K [x
1
i ,x

2
i ]≤I

⋂
i∈K [y

1
i ,y

2
i ].

(ib) If supi y1
i > infi y2

i , then
⋂

i∈K [y
1
i ,y

2
i ] = [infi y2

i , infi y2
i ].

Again from (i) supi x1
i ≤ infi x2

i ≤ infi y2
i implies

⋂
i∈K [x

1
i ,x

2
i ]≤I

⋂
i∈K [y

1
i ,y

2
i ].

(ii) infi x2
i < supi x1

i implies infi x2
i < supi x1

i ≤ supi y1
i .

So,
⋂

i∈K [x
1
i ,x

2
i ] = [infi x2

i , infi x2
i ] ≤I

⋂
i∈K [y

1
i ,y

2
i ] since infi x2

i ≤ supi y1
i and

infi x2
i ≤ infi y2

i .

Lemma 3.9. For any collection {I j} j∈J of intervals,
∧

j∈J I j ≤I
⋂

j∈J I j.

Lemma 3.10. For any collection {I j} j∈J of intervals,
⋂

j∈J I j ⊆e
∧

j∈J I j.

Corollary 3.1. r[
⋂

j∈J
⋂

l∈L Il j]≤ r[
⋂

j∈J
∧

l∈L Il j].
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Representation Theorems with Respect to (Σ′)

Theorem 3.3. For any {Ti}i∈I , |≈ in the sense of (Σ′) is a graded consequence relation.

Proof. (GC1) is proved as in Theorem 3.1. (GC2) is obtained using (i) and Lemma 3.8.

(GC3) infβ∈Z gr(X |≈ β)∗ gr(X ∪Z |≈ α)
= infβ∈Z r[

⋂
i∈I{

∧
x∈X Ti(x)→I Ti(β)}]∗ r[

⋂
i∈I{

∧
x∈X∪Z Ti(x)→I Ti(α)}]

= r[
⋂

β∈Z{
⋂

i∈I(
∧

x∈X Ti(x)→I Ti(β))}]∗ r[
⋂

i∈I{
∧

x∈X∪Z Ti(x)→I Ti(α)}] (Lemma 3.5)
= r[

⋂
i∈I{

⋂
β∈Z(

∧
x∈X Ti(x)→I Ti(β))}]∗ r[

⋂
i∈I{

∧
x∈X∪Z Ti(x)→I Ti(α)}] (Lemma 3.6)

≤r[
⋂

i∈I{
∧

β∈Z(
∧

x∈X Ti(x)→I Ti(β))}]∗r[
⋂

i∈I{
∧

x∈X∪Z Ti(x)→I Ti(α)}](Corollary3.1)
= r[

⋂
i∈I(

∧
x∈X Ti(x)→I

∧
β∈Z Ti(β))}]∗r[

⋂
i∈I{

∧
x∈X∪Z Ti(x)→I Ti(α)}] (by (vii)) . . . (1)

Also we obtain, r[
⋂

i∈I [{
∧

x∈X Ti(x)→I
∧

β∈Z Ti(β)} ∗I {
∧

x∈X∪Z Ti(x)→I Ti(α)}]]
≤ r[

⋂
i∈I{

∧
x∈X Ti(x)→I Ti(α)}] (by (vi) and Lemma 3.8). . . . (2)

Now
∧

i∈I(
∧

x∈X Ti(x)→I
∧

β∈Z Ti(β))} ∗I
∧

i∈I{
∧

x∈X∪Z Ti(x)→I Ti(α)}
≤I

∧
i∈I [{

∧
x∈X Ti(x)→I

∧
β∈Z Ti(β)} ∗I {

∧
x∈X∪Z Ti(x)→I Ti(α)}] (Lemma 3.2)

≤I
⋂

i∈I [{
∧

x∈X Ti(x)→I
∧

β∈Z Ti(β)} ∗I {
∧

x∈X∪Z Ti(x)→I Ti(α)}]. (Lemma 3.9)
i.e., r[

∧
i∈I(

∧
x∈X Ti(x)→I

∧
β∈Z Ti(β))}]∗ r[

∧
i∈I{

∧
x∈X∪Z Ti(x)→I Ti(α)}]

≤ r[
⋂

i∈I [{
∧

x∈X Ti(x)→I
∧

β∈Z Ti(β)}∗I {
∧

x∈X∪Z Ti(x)→I Ti(α)}]]. (Lemma 3.7) . . . (3)⋂
i∈I(

∧
x∈X Ti(x)→I

∧
β∈Z Ti(β))} ⊆e

∧
i∈I(

∧
x∈X Ti(x)→I

∧
β∈Z Ti(β))}. (Lemma 3.10)

So, r[
⋂

i∈I(
∧

x∈X Ti(x)→I
∧

β∈Z Ti(β))}]≤ r[
∧

i∈I(
∧

x∈X Ti(x)→I
∧

β∈Z Ti(β))}].
Thus we have, r[

⋂
i∈I(

∧
x∈X Ti(x)→I

∧
β∈Z Ti(β))}]∗ r[

⋂
i∈I{

∧
x∈X∪Z Ti(x)→I Ti(α)}]

≤ r[
∧

i∈I(
∧

x∈X Ti(x)→I
∧

β∈Z Ti(β))}]∗ r[
∧

i∈I{
∧

x∈X∪Z Ti(x)→I Ti(α)}]
≤ r[

⋂
i∈I [{

∧
x∈X Ti(x)→I

∧
β∈Z Ti(β)} ∗I {

∧
x∈X∪Z Ti(x)→I Ti(α)}]] (by 3)

≤ r[
⋂

i∈I{
∧

x∈X Ti(x)→I Ti(α)}] (by (2)).

Hence (GC3) is proved.

Theorem 3.4. For any graded consequence relation |∼ there is a collection of interval-
valued fuzzy sets such that |≈ generated in the sense of (Σ′) coincides with |∼.
Proof. Given a graded consequence relation |∼, let {TX}X∈P(F) be such that TX(α) =
[gr(X |∼α)]BIR, and we want to show gr(X |∼α) = r[

⋂
Y∈P(F){

∧
x∈X TY (x)→i TY (α)}].

Arguing as Theorem 3.2 we have, TX(β) ≤I ∧Y∈P(F)[∧α∈X TY (α)→I TY (β)]
⊆e ∩Y∈P(F)[∧α∈X TY (α)→I TY (β)] (Lemma 3.9)

r(TX (β))≤r(∧Y∈P(F)[∧α∈X TY (α)→I TY (β)])≤r(∩Y∈P(F)[∧α∈X TY (α)→I TY (β)]) . . . (1)
∩Y∈P(F)[∧α∈X TY (α)→I TY (β)] ⊆e ∩X⊆Y∈P(F)[∧α∈X TY (α)→I TY (β)] . . . (2)
Following the proof of Theorem 3.2, for X ⊆Y , we have ∧α∈X TY (α)→I TY (β) = TY (β).
From (2) and Lemma 3.10, ∩Y∈P(F)[∧α∈X TY (α)→I TY (β)] ⊆e ∧X⊆Y TY (β) = TX(β).
Thus, r(TX (β)) = r(∩Y∈P(F)[∧α∈X TY (α)→I TY (β)]) = gr(X |∼ α).

Here the same structure 〈U,∗I ,→I, [0,0], [1,1],r〉, as mentioned in Remark 1, is
taken; only the differences are: (i) U is endowed with both the lattice order relations≤I

and ⊆e, and (ii) a function r : U �→ [0,1], different from l, is considered here.
Let us present, below, a diagram to visualize the beauty and purpose of dealing with

two lattice structures over the same domain. We consider a linear scale D and intervals
over D. We consider D = {3,5,7,9} and ID = {[a,b] : a≤ b and a,b ∈D}.
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Product order relation 

3 5 7 9

9, 9

7, 7

5, 5

3, 3

3, 5

3, 7

3, 9

5, 9

7, 9

5, 7

Inclusion order relation 

The diagram represents two lattice structures with respect to ≤I (product order re-
lation) and ⊆e (inclusion order relation) over ID. Let {T1,T2,T3} be the set of experts
who assign interval-value from ID to every formula. Assuming the ordinary t-norm ∧
on D, one can immediately obtain the corresponding residuum→ on D, and hence ∧ID ,
→ID on ID can be constructed. Given a set of formulae X and a formula α, to compute
gr(X |≈ α) in the sense of both (Σ) and (Σ′), first for each Ti (i = 1, 2, 3), the value∧

x∈X Ti(x)→ID Ti(α) needs to be computed. Let the respective values corresponding
to T1,T2,T3 be [3,5], [5,7], [7,7]. Then, for (Σ), the least interval [3,5] will be selected
and the left-hand end point 3 would be counted as the grade of X |≈ α. Following (Σ′),
[5,5] will be chosen as the interval included in all the intervals in the sense of ⊆e, and
its right-hand end point 5 would be counted as the grade of X |≈ α. The first method
pulls down one of the experts high opinion, which is here 7, drastically to 3; whereas the
second admits some room for adjustment between different opinions, and pulls down
the value to 5. Thus, (Σ′) provides a good sense of respecting individual’s opinion.

3.4 Graded Consequence: Form (Σ′′)

Among the above two forms of graded consequence, (Σ) is based on a conservative
attitude as it choses the left-hand end point of the interval lying below each expert’s
(Ti) opinion for computing the value of ∧x∈X Ti(x)→I Ti(α). On the other hand, form
(Σ′) admits very liberal attitude as it takes the right-hand end point of the interval-value
which lies at the common consensus zone of the values for ∧x∈X Ti(x)→I Ti(α) taking
care of every expert’s opinion. Both of these reflect two extremities of decision making
attitude. Below we would look for an approach where considering each expert’s opin-
ion first an interval for ∧x∈X Ti(x)→I Ti(α) is assigned. Then, a number of times the
assigned interval can be revised; the number being stipulated by different constraints.
Finally among these iterations for the values of ∧x∈X Ti(x)→I Ti(α) one would be cho-
sen, and from all such revised interval-values the common zone will be selected. This
idea of iterative revision of an interval-value assignment is taken care of in the follow-
ing series of definitions. Finally Theorem 3.8 of this section throws light on the fact that
the forms generated from iterative-revisions (Σ′′1, Σ′′2) retain a place between the two
extreme attitudes of decision making.

Definition 3.4. I[a,b] is a collection of iterated revisions [xi,yi]’s of [a,b], given by:
I[a,b] = {[xi,yi] : x0 = a,y0 = b, [xi,yi]⊆e [xi−1,yi−1] and [xi−1,yi−1] is non-degenerate}.
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Let I j
[a,b](⊆ I[a,b]) be a set containing iterated revisions of [a,b] upto j-th iterations.

Definition 3.5. CI is a choice function over {I j
[a,b] : j ≥ 0, [a,b] ∈U} such that

(i) CI (I j
[a,b]) ∈ I j

[a,b] and (ii) [a,b]≤I [c,d] implies CI (I j
[a,b]) ≤I CI (I j

[c,d]).

Let us present one such case of iterative-revision of intervals below.

Definition 3.6. For ε > 0, Cε: U �→U such that Cε([a,b]) = [a+ ε,b] if a+ ε < b
= [b,b], otherwise.

Cε: U �→U such that Cε([a,b]) = [a,b− ε] if a < b− ε
= [a,a], otherwise.

Cε: U �→U such that Cε([a,b]) = Cε([a,b]) ∩ Cε([a,b]).

Let us choose an arbitrarily fixed number n. Given [a,b], fixing ε ≥ b−a
n and ap-

plying Cε finite number of times on [a,b], one instance of I[a,b], we call I ε
[a,b], can be

obtained in the following way.

Definition 3.7. I ε
[a,b]={C i

ε([a,b]) : i≥ 0,C 0
ε ([a,b])=[a,b],C i−1

ε ([a,b]) is non-degenerate}.

Note 3.2. Taking ε = 1
2 we have I

1
2
[.3,.7] = {[.3, .7], [.3, .3]}, I

1
2
[.1,.9] = {[.1, .9], [.4, .4]}. It is

to be noted that as I
1
2
[.3,.7] contains only two iterations I

1
2
[.3,.7] = I

1
2 , j
[.3,.7] = {[.3, .7], [.3, .3]}

for any number of iterations j ≥ 2, where I
1
2 , j
[.3,.7] contains intervals upto j-th iterations.

Definition 3.8. CI (I ε, j
[a,b]) = ∩ I ε, j

[a,b], where j denotes the number of iterations.

Note 3.3. As I ε is obtained by finitely many iterations, CI (I ε
[a,b]) = ∩ I ε

[a,b], which is
a degenerate interval. Clearly, CI (of Definition 3.8) satisfies condition (i) of the Defi-
nition 3.5 as CI (I ε, j

[a,b]) = C j
ε ([a,b]) ∈ I ε

[a,b]. To check that CI also satisfies condition (ii)
of Definition 3.5 we need to prove a series of results below.

Proposition 3.5. Cε([a,b])⊆e [a,b].

Proof. Two cases arise. (i) a+ ε < b i.e. a < b− ε (ii) otherwise.
For all these cases the result is straightforward from the definitions of ⊆e and ∩.

Theorem 3.5. [a,b]≤I [c,d] implies Cε([a,b]) ≤I Cε([c,d]).

Proof. Let [a,b]≤I [c,d], then a≤ c, b≤ d, and a≤ b, c≤ d.
Now (i) Cε([a,b]) = [a+ ε,b] or (ii) Cε([a,b]) = [b,b].
(i) Let Cε([a,b]) = [a+ ε,b] i.e. a+ ε < b≤ d. Also a+ ε≤ c+ ε.
Now either c+ ε < d or d ≤ c+ ε. Both the cases yield Cε([a,b]) ≤I Cε([c,d]), as
for c+ ε < d, Cε([c,d]) = [c+ ε,d]. i.e., [a+ ε,b]≤I [c+ ε,d], and
for d ≤ c+ ε, Cε([c,d]) = [d,d] i.e., [a+ ε,b]≤I [d,d], since a+ ε < b≤ d.
(ii) Let Cε([a,b]) = [b,b], i.e. b≤ a+ ε≤ c+ ε and also b≤ d.
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Now either c+ ε < d or d ≤ c+ ε. If c+ ε < d, Cε([c,d]) = [c+ ε,d]. So,
[b,b] ≤I [c+ ε,d]. And if d ≤ c+ ε, then Cε([c,d]) = [d,d] i.e., [b,b] ≤I [c+ ε,d].
Hence [a,b]≤I [c,d] implies Cε([a,b]) ≤I Cε([c,d]).
Now we shall check the case for Cε. Let [a,b]≤I [c,d].
There are two cases. (a) Cε([a,b]) = [a,b− ε] (b) Cε([a,b]) = [a,a].
(a) If Cε([a,b]) = [a,b− ε], then a < b− ε < b≤ d and b− ε≤ d− ε.
Now either c < d− ε or d− ε≤ c.
If c < d− ε, Cε([c,d]) = [c,d− ε]. i.e., [a,b− ε]≤I [c,d− ε] as a≤ c, b≤ d.
If d− ε≤ c, Cε([c,d]) = [c,c], So, [a,b− ε]≤I [c,c] as a≤ c, b− ε≤ d− ε≤ c.
(b) Let Cε([a,b]) = [a,a]. Then b− ε≤ a≤ b≤ d, a≤ c.
Now either c < d− ε or d− ε≤ c.
If c < d− ε, Cε([c,d]) = [c,d− ε]. i.e., [a,a] ≤I [c,d− ε] since a≤ c < d− ε.
And if d− ε≤ c, Cε([c,d]) = [c,c]. So, [a,a] ≤I [c,c].
Therefore, [a,b]≤I [c,d] implies Cε([a,b]) ≤I Cε([c,d]).
Hence, Cε([a,b]) = Cε([a,b]) ∩ Cε([a,b]) ≤I Cε([c,d]) ∩ Cε([c,d]) = Cε([c,d]).

Corollary 3.2. [a,b]≤I [c,d] implies CI (I ε, j
[a,b]) ≤I CI (I ε, j

[c,d]).

Theorem 3.6. [a,b]≤I [c,d] implies CI (I ε
[a,b]) ≤I CI (I ε

[c,d]).

Proof. Let C i
ε([a,b]), C j

ε ([c,d]) be degenerate. Then either (i) i = j or (ii) i ≤ j, or (iii)
j ≤ i. (i) If i = j, by Theorem 3.5, CI (I ε

[a,b]) = C i
ε([a,b])≤I C i

ε([c,d]) = CI (I ε
[c,d]). (ii) By

Theorem 3.5, l(CI (I ε
[a,b])) = l(C i

ε([a,b])) ≤ l(C i
ε([c,d])) ≤ l(C j

ε ([c,d])) = l(CI (I ε
[c,d])).

That is, CI (I ε
[a,b]) ≤I CI (I ε

[c,d]). (iii) If j ≤ i, r(CI (I ε
[c,d])) = r(C j

ε ([c,d]))≥ r(C j
ε ([a,b])).

By Note 3.2, r(C j
ε ([a,b]))= r(C i

ε([a,b])) = r(CI (I[a,b])) i.e., CI (I ε
[a,b]) ≤I CI (I ε

[c,d]).

Thus we have shown existence of a CI which satisfies conditions of Definition 3.5.
Now we come back to the general context of the Definition 3.5 for CI .

Note 3.4. CI (I j
[a,b]), CI (I[a,b])⊆e [a,b], and CI (I j

[a,b]), CI (I[a,b]), [a,b] are mutually over-

lapping pairs of intervals. And for I ε, CI (I ε
[a,b]) ⊆e CI (I ε, j

[a,b]) ⊆e [a,b]

We now propose different notions of |≈ based on the notion of iterative revision.

Definition 3.9. Given any collection of interval-valued fuzzy sets {Ti}i∈I ,
(Σ′′1) gr(X |≈(Σ′′1) α) = r(∩i∈I{CI (I j

[∧x∈X Ti(x)→I Ti(α)]
)}) for an arbitrarily fixed j ≥ 0,

(Σ′′2) gr(X |≈(Σ′′2) α) = r(∩i∈I{CI (I ε
[∧x∈X Ti(x)→I Ti(α)]

)}) = l(∩i∈I{CI (I ε
[∧x∈X Ti(x)→ITi(α)]

)}).

Theorem 3.7. For any graded consequence relation |∼, there is a collection interval-
valued fuzzy sets such that |≈ generated in the sense of (Σ′′1), (Σ′′2) coincide with |∼.

Proof. Given |∼, a graded consequence relation, let us consider {TX}X∈P(F) such that TX

(α)=[gr(X |∼α)]BIR. We want to prove gr(X |∼α)=r[
⋂

Y∈P(F){CI (I i
[
∧

x∈X TY (x)→I TY (α)])}]
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considering (Σ′′1), and gr(X |∼α)= r[
⋂

Y∈P(F){CI (I ε
[
∧

x∈X TY (x)→I TY (α)]
)}]considering (Σ′′2).

As for α ∈ F and Y ⊆ F , TY (α) is a degenerate interval,
∧

x∈X TY (x)→I TY (α) is a de-
generate interval. Hence by the construction of I , I ε,

CI (I i
[
∧

x∈X TY (x)→I TY (α)]
) =

∧
x∈X TY (x)→I TY (α) = CI (I ε

[
∧

x∈X TY (x)→I TY (α)]
).

i.e. r(∩Y∈P(F){CI (I i
[∧x∈X Ti(x)→I Ti(α)]

)}) = r(∩Y∈P(F){CI (I ε
[∧x∈X Ti(x)→I Ti(α)]

)})
= r[

⋂
Y∈P(F)[

∧
x∈X TY (x)→I TY (α)]

Rest follows from the Theorem 3.4.

Let us distinguish the notions of graded semantic consequence by superscribing |≈
with their respective forms. So, we have |≈(Σ), |≈(Σ′), and |≈(Σ′′n), n = 1, 2.

Theorem 3.8. gr(X |≈(Σ) α)≤ gr(X |≈(Σ′′1) α)≤ gr(X |≈(Σ′) α)
and gr(X |≈(Σ) α)≤ gr(X |≈(Σ′′2) α)≤ gr(X |≈(Σ′) α).

Proof. Using Lemma 3.9 we have, l(∧i∈I [∧x∈X Ti(x)→I Ti(α)])
≤ l(∩i∈I [∧x∈X Ti(x)→I Ti(α)]) ≤ r(∩i∈I [∧x∈X Ti(x)→I Ti(α)]) . . . (i)

Also ∩i∈ICI (I[∧x∈X Ti(x)→I Ti(α)]), ∩i∈ICI (I j
[∧x∈X Ti(x)→I Ti(α)]

) ⊆e ∩i∈I [∧x∈X Ti(x)→I Ti(α)]

and they are overlapping. So, l(∩i∈I [∧x∈X Ti(x)→I Ti(α)])≤l(∩i∈ICI (I j
[∧x∈X Ti(x)→I Ti(α)]

))

≤ r(∩i∈ICI (I j
[∧x∈X Ti(x)→I Ti(α)]

))≤ r(∩i∈I [∧x∈X Ti(x)→I Ti(α)]) . . . (ii)

(i) and (ii) imply, gr(X |≈(Σ) α)≤ gr(X |≈(Σ′′1) α)≤ gr(X |≈(Σ′) α).
Also following Note 3.4, l(∩i∈I [∧x∈X Ti(x)→I Ti(α)])≤ r(∩i∈ICI (I ε

[∧x∈X Ti(x)→I Ti(α)]
))

≤ r(∩i∈I [∧x∈X Ti(x)→I Ti(α)]) . . . (iii).
Hence, combining (i) and (iii), gr(X |≈(Σ) α)≤ gr(X |≈(Σ′′2) α)≤ gr(X |≈(Σ′) α).

Note 3.5. If for (Σ′′1) I ε, j (of Definition 3.8) is chosen instead of I j then
gr(X |≈(Σ) α)≤ gr(X |≈(Σ′′2) α)≤ gr(X |≈(Σ′′1) α)≤ gr(X |≈(Σ′) α).

Theorem 3.9. Given {Ti}i∈I , |≈ in the sense of (Σ′′n) (n = 1, 2), satisfies (GC1), (GC2),
and a variant of (GC3).

Proof. (GC1) is immediate. If X ⊆Y , CI (I j
[∧x∈X Ti(x)→I Ti(α)]

)≤I CI (I j
[∧x∈Y Ti(x)→ITi(α)]

) and
CI (I ε

[∧x∈X Ti(x)→ITi(α)]
) ≤I CI (I ε

[∧x∈Y Ti(x)→I Ti(α)]
) are obtained by condition (ii) of Defini-

tion 3.5 and Theorem 3.6 respectively. Hence by Lemma 3.8, GC2 holds for (Σ′′1), (Σ′′2).
Now for each of (Σ′′n), n = 1, 2, we prove that a variant form of (GC3), i.e.
infβ∈Z gr(X |≈Σ′′n β)∗ gr(X ∪Z |≈Σ′′n α) ≤ gr(X |≈Σ′ α) holds.

infβ∈Z gr(X |≈Σ′′2 β)∗ gr(X ∪Z |≈Σ′′2 α)
= infβ∈Z [r{∩i∈ICI (I ε

[∧x∈X Ti(x)→I Ti(β)]
)}] ∗ r[∩i∈ICI (I ε

[∧x∈X∪Z Ti(x)→I Ti(α)]
)}].

= r[∩β∈Z{∩i∈ICI (I ε
[∧x∈X Ti(x)→I Ti(β)]

)}] ∗ r[∩i∈ICI (I ε
[∧x∈X∪Z Ti(x)→ITi(α)]

)}]. (Lemma 3.5)
= r[∩i∈I{∩β∈ZCI (I ε

[∧x∈X Ti(x)→ITi(β)]
)}] ∗ r[∩i∈ICI (I ε

[∧x∈X∪ZTi(x)→ITi(α)]
)}] (Lemma 3.6) . . . (i)

Using Note 3.4, ∩β∈Z CI (I ε
[∧x∈X Ti(x)→I Ti(β)]

) ⊆e ∩β∈Z {∧x∈X Ti(x)→I Ti(β)}
⊆e ∧β∈Z {∧x∈X Ti(x)→I Ti(β)} (Lemma 3.10).

Hence, r(∩i∈I [∩β∈Z CI (I ε
[∧x∈X Ti(x)→ITi(β)]

)]) ≤ r(∩i∈I [∧β∈Z {∧x∈X Ti(x)→I Ti(β)}]).
Similarly, r(∩i∈I [ CI (I ε

[∧x∈X∪Z Ti(x)→I Ti(α)]
)]) ≤ r(∩i∈I [{∧x∈X∪ZTi(x)→I Ti(α)}]).



86 S. Dutta, B.R.C. Bedregal, and M.K. Chakraborty

(i) becomes, infβ∈Z gr(X |≈Σ′′2 β)∗ gr(X ∪Z |≈Σ′′2 α)

≤ r(∩i∈I [∧β∈Z {∧x∈X Ti(x)→I Ti(β)}]) ∗ r(∩i∈I [{∧x∈X∪ZTi(x)→I Ti(α)}])
= r(∩i∈I [ {∧x∈X Ti(x)→I ∧β∈ZTi(β)}]) ∗ r(∩i∈I [{∧x∈X∪ZTi(x)→I Ti(α)}])

Now following the steps below the inequality (1) of the proof of Theorem 3.3 we get:
infβ∈Z gr(X |≈Σ′′2 β)∗gr(X∪Z |≈Σ′′2 α)≤ r[∩i∈I{∧x∈X Ti(x)→I Ti(α)}] = gr(X |≈Σ′ α).
Similar is the argument for infβ∈Z gr(X |≈Σ′′1 β)∗ gr(X ∪Z |≈Σ′′1 α) ≤ gr(X |≈Σ′ α).

4 Conclusion

In this paper we have studied some possible ways of obtaining the notion of graded
consequence incorporating interval semantics for the object language only. One natural
direction is to extend the idea when both object language formulae and the notion of
consequence assume intervals. This step is yet to be developed in our further work, and
the attempt made in this paper would work as a basis for this future plan.

From the development made in this paper we observe that, in the context of interval
semantics, GCT is simultaneously exploiting two different lattice structures (≤I , ⊆e)
over the set of sub-intervals of [0,1]. This adds an important dimension. Having en-
dowed with both the notions of interval lying below a set of intervals (≤I) and interval
lying in the intersection of a set of intervals (⊆e) we manage to address different atti-
tudes of decision making. Given a databse based on a set of experts opinion, different
notions of |≈ are introduced to address the following aspects of decision making. (i)
(Σ) proposes a set up where the interval lying below all the experts’ opinion would be
counted. (ii) (Σ′) proposes a set up where the interval lying in the common consensus
zone would be counted. (iii) (Σ′′1) proposes a set up where the interval, considering ex-
pert’s opinion, can be revised equally (finitely) many times, and then the interval lying
in the common consensus zone would be counted. (iv) (Σ′′2) proposes a set up where the
interval, taking care of expert’s opinion, are revised (following a specific method viz.,
I ε) till they reach a concrete value, and then the common consensus zone is consid-
ered. We call the approach (i) as conservative, (ii) as liberal, and (iii), (iv) as moderate.
Thus this study provides a theoretical framework where a decision maker having some
of the above attitudes derives, with certain degree, a decision from a set of imprecise
information.
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Abstract. A formula is contingent, if it is possibly true and possibly
false; a formula is non-contingent, if it is not contingent, i.e., if it is
necessarily true or necessarily false. In this paper, we propose a neigh-
borhood semantics for contingency logic, in which the interpretation of
the non-contingency operator is consistent with its philosophical intu-
ition. Based on this semantics, we compare the relative expressivity of
contingency logic and modal logic on various classes of neighborhood
models, and investigate the frame definability of contingency logic. We
present a decidable axiomatization for classical contingency logic (the
obvious counterpart of classical modal logic), and demonstrate that for
contingency logic, neighborhood semantics can be seen as an extension
of Kripke semantics.

1 Introduction

Like necessity and possibility, contingency is a very important notion in philo-
sophical logic. This notion goes back to Aristotle, who develops a logic of state-
ments about contingency [2]. As first defined in [11], a formula is contingent, if
it is possibly true and possibly false; otherwise, it is non-contingent, i.e., if it
is necessarily true or necessarily false. (Non-)Contingency also arose in the area
of epistemic logic but with different terminology: ignorance [8, 14] and ‘know-
ing whether’ [6]; ‘a formula ϕ is non-contingent’ there means ‘the agent knows
whether ϕ’, and ‘ϕ is contingent’ there means ‘the agent is ignorant about ϕ’.

Non-contingency can be defined with necessity, namely as Δϕ =df �ϕ∨�¬ϕ.
But necessity is not always definable in terms of non-contingency [4, 5, 11].
Moreover, a known difficulty for contingency logic is the absence of axioms
characterizing Kripke frame properties, which makes it hard to find axiomat-
izations of contingency logic over various classes of Kripke frames (refer to [5]
and the reference therein). As shown in [6], contingency logic is not normal, since
Δ(ϕ→ ψ)→ (Δϕ→ Δψ) is invalid. This suggests that it may be interesting to
investigate neighborhood semantics for contingency logic.

Neighborhood semantics was proposed independently by Scott and Montague
in 1970 [10, 13]. Since it was introduced, neighborhood semantics has become a
standard semantics tool for studying non-normal modal logics [3]. To our know-
ledge, Steinsvold can be said to have been the first to have explored neighbor-
hood semantics for contingency logic [14]. He gave a topological semantics for
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the logic of ignorance (the epistemic counterpart of contingency), in which non-
contingency operator is interpreted essentially as �ϕ ∨ �¬ϕ. His topological
models correspond to S4 Kripke models. He did not refer to the tradition on
contingency logic in his work. In this paper, we present a neighborhood semantics
for contingency logic on a much wider range of model classes.

In Section 2, we define contingency logic and a neighborhood semantics for it.
Sections 3, 4, and 5 contain our main contributions. In Section 3 we compare the
relative expressivity of contingency logic and modal logic over various classes of
neighborhood models, and investigate the frame definability of contingency logic.
Section 4 completely axiomatizes a decidable contingency logic over the class of
all neighborhood frames. This logic is called classical contingency logic, which
is also characterized by another class of neighborhood frames. Section 5 deals
with the relationship between neighborhood semantics and Kripke semantics for
contingency logic. We conclude with some future work in Section 6.

2 Syntax and Neighborhood Semantics

Let us first recall the language of contingency logic, which is a fragment of
the following logical language with both the necessity operator and the non-
contingency operator as primitive modalities.

Definition 1 (Languages CML, ML and CL). Given a set P of proposi-
tional variables, the logical language CML is defined recursively as:

ϕ ::= � | p | ¬ϕ | (ϕ ∧ ϕ) | Δϕ | �ϕ

where p ∈ P.
Without the construct Δϕ, we obtain the languageML of modal logic; without

the construct �ϕ, we obtain the language CL of contingency logic.

We always omit the parentheses whenever convenient. Formula Δϕ is read as
“it is non-contingent that ϕ”, and �ϕ is read as “it is necessary that ϕ”. Other
operators are defined as usual; in particular, ∇ϕ is defined as ¬Δϕ, for which we
read “it is contingent that ϕ.” Note that ∇ is defined as the negation, rather than
the dual, of Δ, although we will see from the neighborhood semantics below that
¬Δϕ is equivalent to ¬Δ¬ϕ. In this paper, we will mainly focus on the language
CL which has Δ as the only primitive modality.

Definition 2 (Neighborhood Structure). A neighborhood model is a tuple
M = 〈S,N, V 〉, where S is a nonempty set of possible worlds called the domain,
N is a neighborhood function from S to P(P(S)), V is a valuation function
assigning a set of worlds V (p) ⊆ S to each p ∈ P. Given a world s ∈ S,
the pair (M, s) is a pointed model; we will omit these parentheses whenever
convenient. We also write s ∈ M to denote s ∈ S. A neighborhood frame is
a neighborhood model without valuation. Sometimes we write model and frame
without ‘neighborhood’.
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Definition 3 (Properties of Neighborhoods). Let F = 〈S,N〉 be a neigh-
borhood frame, M be a neighborhood model based on F . Let s ∈ S and let
X,Y ⊆ S. We define various properties of neighborhoods.

– (n): N(s) contains the unit, if S ∈ N(s).
– (r): N(s) contains its core, if

⋂
N(s) ∈ N(s).

– (i): N(s) is closed under intersections, if X,Y ∈ N(s) implies X∩Y ∈ N(s).
– (s): N(s) is supplemented, or closed under supersets, if X ∈ N(s) and

X ⊆ Y ⊆ S implies Y ∈ N(s).
– (c): N(s) is closed under complements, if X ∈ N(s) implies S\X ∈ N(s).
– (d): X ∈ N(s) implies S\X /∈ N(s).
– (t): X ∈ N(s) implies s ∈ X.
– (b): s ∈ X implies {u ∈ S | S\X /∈ N(u)} ∈ N(s).
– (4): X ∈ N(s) implies {u ∈ S | X ∈ N(u)} ∈ N(s).
– (5): X /∈ N(s) implies {u ∈ S | X /∈ N(u)} ∈ N(s).

The function N satisfies such a property, if N(s) has the property for all s ∈ S;
F has a property, if N has. Frame F is augmented, if F satisfies (r) and (s).
Model M is said to have a property, if F has it.

The conditions (d), (t), (b), (4), (5) are the neighborhood structural correspond-
ents of the relational properties of seriality, reflexivity, symmetry, transitivity,
and Euclidicity that are, as known, characterized by the axioms D, T , B, 4, and
5, respectively. This also explains their names.

In order to interpret the non-contingency operator Δ in the neighborhood
setting, we let ourselves be inspired by neighborhood semantics for ordinary
� modality. We recall a formula is non-contingent, if it is necessarily true or
necessarily false. We therefore propose to interpret Δ such that Δϕ↔ �ϕ∨�¬ϕ
is valid using neighborhood semantics for �. The same idea, but in the setting
of topological semantics, can be found in [14, Def. 3.2].

Definition 4 (Neighborhood Semantics). Let M = 〈S,N, V 〉 be a neigh-
borhood model and s ∈ S, the neighborhood semantics of CML is defined as
follows:

M, s � � iff true
M, s � p iff s ∈ V (p)
M, s � ¬ϕ iff M, s � ϕ
M, s � ϕ ∧ ψ iff M, s � ϕ and M, s � ψ
M, s � Δϕ iff ϕM ∈ N(s) or (¬ϕ)M ∈ N(s)
M, s � �ϕ iff ϕM ∈ N(s)

where ϕM denotes the truth set of ϕ in M, that is, ϕM = {s ∈ S | M, s � ϕ}.
We say a formula ϕ is true in (M, s), if M, s � ϕ, and sometime write s � ϕ

simply when M is clear from the context; we say ϕ is valid, if M, s � ϕ for
all M and all s ∈ M. We say ϕ is satisfiable, if there is a model (M, s) such
that M, s � ϕ. Given a set of formulas Γ, we say Γ is true in (M, s), notation:
M, s � Γ, if for all ψ ∈ Γ, M, s � ψ; Γ entails ϕ over a class of frames F,
notation: Γ �F ϕ, if for all F ∈ F, all M based on F and all s ∈ M, M, s � Γ
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implies M, s � ϕ. Formulas ϕ, ψ ∈ CML are equivalent over a class of models
M, notation: M � ϕ↔ ψ, if for all (M, s) ∈M, M, s � ϕ iff M, s � ψ.

Intuitively, N(s) means the set of propositions which are necessary at s. Thus
�ϕ says that the proposition expressed by ϕ is necessary at s, and Δϕ says that
at least one of the proposition expressed by ϕ and its denial is necessary at s.

Under this semantics, it is not hard to get the following validities and invalid-
ities, which were all shown to be valid under Kripke semantics [6].

Proposition 1 (Validities and Invalidities).

– � Δϕ↔ �ϕ ∨�¬ϕ, � Δϕ↔ Δ¬ϕ, � ϕ↔ ψ implies � Δϕ↔ Δψ
– � Δ(ϕ→ ψ) ∧Δ(¬ϕ→ ψ)→ Δψ, � Δϕ→ Δ(ϕ→ ψ) ∨Δ(¬ϕ→ χ)
– � ϕ does not imply � Δϕ

3 Expressivity and Frame Definability

In this section, we first compare the relative expressivity of contingency logicCL
and modal logic ML on various neighborhood models, and then we give some
negative results for frame correspondence of contingency logic.

3.1 Expressivity

Definition 5 (Expressivity). Let L1 and L2 be two logical languages that are
interpreted in the same class M of models,

– L2 is at least as expressive as L1, notation: L1 � L2, if for every formula
ϕ1 ∈ L1 there is an equivalent formula ϕ2 ∈ L2 over M.

– L1 and L2 are equally expressive, notation: L1 ≡ L2, if L1 � L2 and L2 �
L1.

– L1 is less expressive than L2, notation: L1 ≺ L2, if L1 � L2 and L2 �� L1.

Proposition 2. CL is less expressive than ML on the class of all models, mod-
els satisfying (r) or (i) or (s) or (d).

Proof. Since � Δϕ↔ �ϕ ∨�¬ϕ, CL �ML. To show CL ≺ML, consider the
following neighborhood models M = 〈S,N, V 〉 and M′ = 〈S′, N ′, V ′〉:
– S = {s, t}, S′ = {s′, t′}
– N(s) = {{t}, {s, t}}, N(t) = ∅, N ′(s′) = {{t′}, {s′, t′}}, N ′(t′) = ∅
– V (p) = {s}, V ′(p) = {s′, t′}

The two models can be visualized as follows. An arrow from a world s to a set
X means that X ∈ N(s).

{t} {s, t}

s : p

��������
��������
t : ¬p

M

{t′} {s′, t′}

s′ : p

�������
�������
t′ : p

M′
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Observe that M and M′ both satisfy (r), (i), (s), and (d).
We only need to show ML �� CL. First, (M, s) and (M′, s′) are distinguished

by an ML-formula �p: since pM = {s} /∈ N(s), we have M, s � �p; since
pM

′
= {s′, t′} ∈ N ′(s′), we get M′, s′ � �p. Therefore �p can distinguish

(M, s) and (M′, s′).
However, (M, s) and (M′, s′) cannot be distinguished by a CL-formula. That

is, we have that (�): for all ϕ ∈ CL, M, s � ϕ iff M′, s′ � ϕ.
The proof of (�) proceeds by induction on ϕ. The only non-trivial case is Δϕ.

By semantics, we have the following equivalences:

M, s � Δϕ ⇐⇒ ϕM ∈ N(s) or (¬ϕ)M ∈ N(s)
⇐⇒ ϕM ∈ {{t}, {s, t}} or (¬ϕ)M ∈ {{t}, {s, t}}
⇐⇒ ϕM = {t} or ϕM = {s, t} or (¬ϕ)M = {t} or (¬ϕ)M = {s, t}
⇐⇒ ϕM = {t} or ϕM = {s, t} or ϕM = {s} or ϕM = ∅
⇐⇒ true

M′, s′ � Δϕ⇐⇒ ϕM′ ∈ N ′(s) or (¬ϕ)M′ ∈ N ′(s)
⇐⇒ ϕM′ ∈ {{t′}, {s′, t′}} or (¬ϕ)M′ ∈ {{t′}, {s′, t′}}
⇐⇒ ϕM′

= {t′} or ϕM′
= {s′, t′} or (¬ϕ)M′

= {t′}
or (¬ϕ)M′

= {s′, t′}
⇐⇒ ϕM′

= {t′} or ϕM′
= {s′, t′} or ϕM′

= {s′} or ϕM′
= ∅

⇐⇒ true

In either case, the penultimate line of the proof merely states that ϕ can be
interpreted on the related model: its denotation must necessarily be one of all
possible subsets of the domain. Notice that the above proof of the inductive
case Δϕ does not use the induction hypothesis. We conclude thatM, s � Δϕ iff
M′, s′ � Δϕ.

Proposition 3. CL is less expressive than ML on the class of models satisfying
(n) or (b).

Proof. Consider the following models M = 〈S,N, V 〉 and M′ = 〈S′, N ′, V ′〉:
– S = {s, t}, S′ = {s′, t′}
– N(s) = {∅, {t}, {s, t}},N(t) = {∅, {s}, {t}, {s, t}},N ′(s′) = {∅, {t′}, {s′, t′}},

N ′(t′) = {∅, {s′}, {t′}, {s′, t′}}
– V (p) = {s}, V ′(p) = {s′, t′}

∅ {s}

s : p

����������

��		
		

		
�� {s, t} t : ¬p

��








��

�����
���

�
��

{t}

M

∅ {s′}

s′ : p

���������
��

��



{s′, t′} t′ : p
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�����
���

�
��

{t′}

M′
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We claim that M and M′ satisfy (n) and (b). Below we just show the claim
for model M; the proof for the case M′ is similar.

For (n): It is clear that S ∈ N(s) and S ∈ N(t).
For (b): As N(t) consists of all subsets of the domain, it is clear that (b) holds

for N(t). As for N(s), if s ∈ X , then X must be either {s} or {s, t}. Then S\X
must be either {t} or ∅, respectively. But ∅, {t} ∈ N(s), so {u ∈ M | S\X /∈
N(u)} = ∅ ∈ N(s).

We continue by demonstrating the expressivity result. Notice that {s} /∈ N(s)
and {s′, t′} ∈ N ′(s′). Similar to the proof of Prop. 2, we show that s � �p but
s′ � �p. Therefore (M, s) and (M′, s′) are distinguished by an ML-formula �p.

Moreover, also similar to the proof of Prop. 2, we can show that: for all
ϕ ∈ CL, M, s � ϕ iff M′, s′ � ϕ. Therefore (M, s) and (M′, s′) cannot be
distinguished by a CL-formula.

Proposition 4. CL is less expressive than ML on the class of models satisfying
(4) or (5).

Proof. Consider the following models M = 〈S,N, V 〉 and M′ = 〈S′, N ′, V ′〉:

– S = {s, t}, S′ = {s′, t′}
– N(s) = {∅, {s}, {s, t}}, N(t) = {{t}}, N ′(s′) = {{s′}, {s′, t′}}, N ′(t′) =
{{t′}, ∅}

– V (p) = ∅, V ′(p) = ∅

∅ {s, t} {s} {t} {s′, t′} {s′} {t′} ∅

s : ¬p

��������
�� �������

t : ¬p

��

s′ : ¬p

�������
��

t′ : ¬p

�� �������

M M′

Based on the three observations below, we obtain the statement.

– M and M′ satisfy (4) and (5). Below we just show the claim for model M;
the proof for the case M′ is similar.

• For (4): suppose that X ∈ N(s). Then X = ∅ or X = {s} or X = {s, t}.
Observe that {u | X ∈ N(u)} = {s} ∈ N(s). Similarly, we can show that
(4) applies to N(t).

• For (5): suppose that X /∈ N(s). Then X = {t}. Observe that {u | X /∈
N(u)} = {s} ∈ N(s). Similarly, we can show that (5) applies to N(t).

– (M, s) and (M′, s′) are distinguished by an ML-formula �p: since pM =
∅ ∈ N(s), we have M, s � �p; since pM

′
= ∅ /∈ N ′(s′), we get M′, s′ � �p.

Therefore �p can distinguish (M, s) and (M′, s′).
– (M, s) and (M′, s′) cannot be distinguished by anyCL-formulas. That is, for

all ϕ ∈ CL,M, s � ϕ iffM′, s′ � ϕ. The proof is similar to the corresponding
part of Prop. 2.
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However, on the class of neighborhood models satisfying (t), CL and ML are
equally expressive. This is as expected, as the results on Kripke semantics are
similar: once frames are reflexive, modal necessity is definable from contingency
[11]. Nevertheless, it is surprising that the same story goes with the class of
models satisfying (c).

Proposition 5. CL and ML are equally expressive on the class of neighborhood
models satisfying (t).

Proof. Define a translation t from CL to ML, and a translation t′ from ML
to CL, such that each translation preserves propositional variables and Boolean
connectives, and t(Δϕ) = �t(ϕ) ∨�¬t(ϕ) and t′(�ϕ) = Δt′(ϕ) ∧ t′(ϕ).

Due to Prop. 1, by induction on ϕ ∈ CL, we can show that � ϕ ↔ t(ϕ).
Therefore CL �ML.

Moreover, by induction, we show (�): for any ϕ ∈ ML, we have Mt � ϕ ↔
t′(ϕ), where Mt is the class of models satisfying (t). Given anyM = 〈S,N, V 〉 ∈
Mt and any s ∈ M. We only need to show the case for �ϕ, i.e., M, s � �ϕ iff
M, s � Δt′(ϕ) ∧ t′(ϕ).

First, suppose thatM, s � �ϕ, then ϕM ∈ N(s), by the induction hypothesis,
(t′(ϕ))M ∈ N(s), then (t′(ϕ))M ∈ N(s) or (¬t′(ϕ))M ∈ N(s), i.e., M, s �
Δt′(ϕ). From (t′(ϕ))M ∈ N(s) and condition (t), it follows that s ∈ (t′(ϕ))M,
that is, M, s � t′(ϕ), thereforeM, s � Δt′(ϕ) ∧ t′(ϕ).

Conversely, suppose that M, s � Δt′(ϕ) ∧ t′(ϕ). From M, s � Δt′(ϕ), it
follows that (t′(ϕ))M ∈ N(s) or (¬t′(ϕ))M ∈ N(s). If (¬t′(ϕ))M ∈ N(s), since
M satisfies (t), it follows that s ∈ (¬t′(ϕ))M, i.e.,M, s � ¬t′(ϕ), contrary to the
supposition M, s � t′(ϕ), thus (t′(ϕ))M ∈ N(s). By the induction hypothesis,
we have ϕM ∈ N(s), i.e., M, s � �ϕ.

We have thus shown (�), then ML � CL, and therefore CL ≡ ML on the
class of models satisfying (t).

Proposition 6. CL and ML are equally expressive on the class of neighborhood
models satisfying (c).

Proof. Define t and tr, respectively, as t and t′ in the proof of Prop. 5, except
that tr(�ϕ) = Δtr(ϕ).

Similar to the corresponding proof in Prop. 5, we can show that CL �ML.
Besides, by induction, we show (∗): for any ϕ ∈ML, we haveMc � ϕ↔ tr(ϕ),

where Mc is the class of models satisfying (c). Given any M = 〈S,N, V 〉 ∈ Mc

and any s ∈ M. We only need to show the case for �ϕ, i.e., M, s � �ϕ iff
M, s � Δtr(ϕ).

‘Only if’ can be shown easily due to � Δϕ↔ �ϕ ∨�¬ϕ.
Now suppose that M, s � Δtr(ϕ), that is, (tr(ϕ))M ∈ N(s) or (¬tr(ϕ))M ∈

N(s). If (¬tr(ϕ))M ∈ N(s), since M satisfies (c), it follows that (tr(ϕ))M ∈
N(s), thus we always have (tr(ϕ))M ∈ N(s). By the induction hypothesis, we
have ϕM ∈ N(s), i.e., M, s � �ϕ.

We have thus shown (∗), then ML � CL, and therefore CL ≡ ML on the
class of models satisfying (c).
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3.2 Frame Definability

Formulas from standard modal logic can be used to capture properties of neigh-
borhood frames, e.g., �p→ ♦p corresponds to the property (d) [12, Section 2.4].
It is therefore remarkable that there is no such correspondence in CL for most
of the properties of neighborhood frames. Similarly, many properties of Kripke
frames do not correspond to frame axioms in contingency logic [16].

Definition 6 (Frame Definability). Let Γ be a set of CL-formulas and F a
class of frames. We say that Γ defines F if for all frames F , F is in F if and
only if F � Γ. In this case we also say Γ defines the property of F. If Γ is a
singleton (e.g. {ϕ}), we usually write F � ϕ rather than F � {ϕ}. A class of
frames (or the corresponding frame property) is definable in CL if there is a set
of CL-formulas that defines it.

Proposition 7. The frame properties (n), (r), (i), (s), (c), (d), (t), (b), (4),
and (5) are not definable in CL.

Proof. Consider the following frames F1 = 〈S1, N1〉, F2 = 〈S2, N2〉, F3 =
〈S3, N3〉 and F4 = 〈S4, N4〉:

{s1}

s1

��

F1

{s2}

s2

��

��
∅

F2

{t3}

s3

��������

� ��
���

��
t3

��������

 !���
���

�

∅

F3

{s4, t4}

s4

���������

����
���

��
�� {s4} t4

���������

!"���
���

�
��

{t4}

F4

Observe that F1 satisfies (d) and (t) but F2 does not satisfy either (d) or (t);
F2 satisfies all of (n), (s), (c), (b), (4), and (5), while F3 does not satisfy any of
those; F3 satisfies (r) and (i), while F4 does not satisfy (r) or (i). For instance,
{s2} ∈ N2(s2) but ∅ = S2\{s2} ∈ N2(s2), thus F2 does not satisfy (d); t3 ∈ {t3},
but {u ∈ S3 | {s3} /∈ N3(u)} = {s3, t3} /∈ N3(t3), thus F3 does not satisfy (b);⋂

N4(s4) = ∅ /∈ N4(s4), thus F4 does not satisfy (r).
We next show that: for any ϕ ∈ CL, F1 � ϕ iff F2 � ϕ iff F3 � ϕ iff F4 � ϕ.
Suppose that F1 � ϕ, then there exists M1 = 〈F1, V1〉 such that M1, s1 � ϕ.

Define a valuation V2 on F2 as p ∈ V2(s2) iff p ∈ V1(s1) for all p ∈ P. By
induction on ϕ, we can show that M1, s1 � ϕ iff M2, s2 � ϕ, where the only
non-trivial case Δϕ is proved as the proof of Prop. 2. From this, it follows that
M2, s2 � ϕ, therefore F2 � ϕ. The converse is similar. Therefore F1 � ϕ iff
F2 � ϕ.

Similarly, we can show F2 � ϕ iff F3 � ϕ, and F3 � ϕ iff F4 � ϕ.
If (d) were to be defined by a set of CL-formulas, say Γ, then since F1 sat-

isfies (d), we have F1 � Γ. Then we should also have F2 � Γ, i.e., F2 satisfies
(d), contradiction. Thus (d) is not definable in CL. The undefinability of other
properties in question can be proved similarly.



96 J. Fan and H. van Ditmarsch

4 Classical Contingency Logic

In this section, we present an axiomatization for classical contingency logic,
which is sound and strongly complete with respect to both the class of all neigh-
borhood frames, and also the class of all neighborhood frames satisfying (c). And
we obtain decidability for this logic.

Definition 7 (Proof System CCL). The proof system CCL is the set of CL-
formulas including axioms TAUT and ΔEqu, and closed under the rule REΔ.

TAUT all instances of tautologies
ΔEqu Δϕ↔ Δ¬ϕ
REΔ

ϕ↔ ψ

Δϕ↔ Δψ

A derivation of ϕ from Γ, notation: Γ � ϕ, is a finite sequence of CL-formulas
such that each formula is either the instantiation of an axiom, or an element
in Γ, or follows from the prior formulas in the sequence by an inference rule. A
derivation of ϕ is a derivation of ϕ from the empty set ∅. We write � ϕ if there
is a derivation of ϕ in CCL.

We will show that CCL is sound and strongly complete with respect to the
class of all neighborhood frames, and also the class of all neighborhood frames
satisfying (c). For this, we introduce some definition and notation. Let Γ be a set
of CL-formulas. We say Γ is CCL-consistent, if Γ � ⊥; Γ is maximal, if for every
ϕ ∈ CL, ϕ ∈ Γ or ¬ϕ ∈ Γ; Γ is maximal CCL-consistent, if it is CCL-consistent
and maximal. Recall that every consistent set can be extended to a maximal
consistent set (Lindenbaum’s Lemma).

Definition 8 (Soundness, Strong Completeness). Let S be a logical sys-
tem, and let F be a class of frames.

– S is sound with respect to F, if for any ϕ, �S ϕ implies F � ϕ.
– S is strongly complete with respect to F, if for any set of formulas Γ and

any ϕ, Γ �F ϕ implies Γ �S ϕ.

Now we construct the canonical model of CCL.

Definition 9 (Canonical Model). The canonical neighborhoodmodel of CCL
is the tuple Mc = 〈Sc, N c, V c〉, such that

– Sc = {s | s is a maximal CCL-consistent set}
– N c(s) = {|ϕ| | Δϕ ∈ s}
– V c(p) = {s | s ∈ |p|}

where |ϕ| = {s ∈ Sc | ϕ ∈ s} is the proof set of ϕ in CCL.

Lemma 1 (Truth Lemma). For any s ∈ Sc and formula ϕ, Mc, s � ϕ iff
ϕ ∈ s. That is to say, ϕMc

= |ϕ|.
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Proof. By induction on ϕ. The base cases and Boolean cases are straightforward.
The non-trivial case is Δϕ.

Mc, s � Δϕ ⇐⇒semantics ϕMc ∈ N c(s) or (¬ϕ)Mc ∈ N c(s)
⇐⇒IH |ϕ| ∈ N c(s) or |¬ϕ| ∈ N c(s)
⇐⇒Def. Nc Δϕ ∈ s or Δ¬ϕ ∈ s
⇐⇒ΔEqu Δϕ ∈ s

We also need to prove that N c is well defined.

Lemma 2. If |ϕ| ∈ N c(s) and |ϕ| = |ψ|, then Δψ ∈ s.

Proof. Assume that the conditions hold, to show that Δψ ∈ s. From |ϕ| ∈ N c(s),
it follows that Δϕ ∈ s. By |ϕ| = |ψ|, we have � ϕ ↔ ψ: otherwise, ¬(ϕ ↔ ψ)
would be consistent, then by Lindenbaum’s Lemma, there exists s ∈ Sc such
that ¬(ϕ ↔ ψ) ∈ s, thus ϕ ∈ s �⇔ ψ ∈ s, contrary to |ϕ| = |ψ|. By REΔ we get
� Δϕ↔ Δψ, thus Δψ ∈ s.

Theorem 1. CCL is sound and strongly complete with respect to the class of
all neighborhood frames.

Proof. Soundness is clear from Prop. 1. For completeness, suppose that Γ � ϕ,
then Γ ∪ {¬ϕ} is consistent. By Lindenbaum’s Lemma, there exists s ∈ Sc such
that Γ ∪ {¬ϕ} ⊆ s. By Lemma 1, Γ � ϕ, as desired.

Thm. 1 indicates that CCL is the smallest contingency logic under neighbor-
hood semantics; this is why we call CCL classical contingency logic. Surprisingly,
the same logic is also characterized by the class of frames satisfying (c).

Theorem 2. CCL is sound and strongly complete with respect to the class of
frames satisfying (c).

Proof. Due to Thm. 1, it suffices to show that for each s ∈ Sc, N c(s) satisfies
(c).

Let s ∈ Sc. Assume that X ∈ N c(s). By definition of N c, X = |ϕ| ∈ N c(s)
for some ϕ, and then Δϕ ∈ s. By ΔEqu, we have Δ¬ϕ ∈ s. Using definition of
N c again, we obtain that |¬ϕ| ∈ N c(s), i.e., S\|ϕ| ∈ N c(s), thus S\X ∈ N c(s).

Due to � Δϕ ↔ �ϕ ∨ �¬ϕ, and the decidability of classical modal logic [3],
the logic CCL is also decidable.

Proposition 8 (Decidability of CCL). The logic CCL is decidable.

5 Neighborhood Semantics and Kripke Semantics

This section deals with the relationship between neighborhood semantics and
Kripke semantics for contingency logic. The result is: there is a one-to-one cor-
respondence between augmented neighborhood frames and Kripke frames for
CL. Thus neighborhood semantics for CL can be seen as an extension of Kripke
semantics for CL.
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Proposition 9. For every Kripke model MK = 〈S,R, V 〉 there exists an aug-
mented neighborhood model MN = 〈S,N, V 〉 such that for all s ∈ S and all ϕ ∈
CL, MK , s � ϕ⇐⇒MN , s � ϕ, i.e., ϕMK

= ϕMN

.

Proof. Let MK = 〈S,R, V 〉 be a Kripke model. Define a neighborhood model
MN = 〈S,N, V 〉 by stipulating N(s) = {X ⊆ S | R(s) ⊆ X} for each s ∈ S,
where R(s) = {t ∈ S | sRt}.

We first show that MN is augmented: if X ∈ N(s) and X ⊆ Y , then R(s) ⊆
X ⊆ Y , thus Y ∈ N(s). Given any X ∈ N(s), we have R(s) ⊆ X . From this
follows that R(s) ⊆

⋂
{X | X ∈ N(s)} =

⋂
N(s), therefore ∩N(s) ∈ N(s).

Next, we show that for all s ∈ S and all ϕ ∈ CL,MK , s � ϕ⇐⇒MN , s � ϕ.
The proof proceeds by induction on ϕ. The only non-trivial case is Δϕ.

MK , s � Δϕ ⇐⇒Kripke semantics R(s) ⊆ ϕMK

or R(s) ⊆ (¬ϕ)MK

⇐⇒IH R(s) ⊆ ϕMN

or R(s) ⊆ (¬ϕ)MN

⇐⇒Def. N ϕMN ∈ N(s) or (¬ϕ)MN ∈ N(s)
⇐⇒Nb. semantics MN , s � Δϕ

Proposition 10. For every augmented neighborhood model MN = 〈S,N, V 〉,
there exists a Kripke model MK = 〈S,R, V 〉 such that for all s ∈ S and all

ϕ ∈ CL, MN , s � ϕ⇐⇒MK , s � ϕ, i.e., ϕMN

= ϕMK

.

Proof. Let MN = 〈S,N, V 〉 be an augmented neighborhood model. Define a
Kripke model MK = 〈S,R, V 〉 by stipulating R(s) =

⋂
N(s) for each s ∈ S.

By induction on ϕ. The only non-trivial case is Δϕ.

MN , s � Δϕ⇐⇒Nh. semantics ϕMN ∈ N(s) or (¬ϕ)MN ∈ N(s)

⇐⇒augmentation of MN

⋂
N(s) ⊆ ϕMN

or
⋂

N(s) ⊆ (¬ϕ)MN

⇐⇒Def. R, IH R(s) ⊆ ϕMK

or R(s) ⊆ (¬ϕ)MK

⇐⇒Kripke semantics MK , s � Δϕ

The above two propositions have nice applications. For instance, by Prop. 9,
we get that Δ(ϕ ∧ ψ) → Δϕ is not valid on the class of augmented neighbor-
hood frames, because it is not valid on the class of Kripke frames. For another
example, consider the axiomatization CL of contingency logic, which is known
to be complete under Kripke semantics [6]. By Prop. 10, CL is sound on the
class of augmented frames, because it is sound on the class of Kripke frames.

6 Conclusion

We proposed to interpret contingency logic on neighborhood models. We showed
that contingency logic is less expressive than modal logic on various classes of
neighborhood models, but equally expressive on other classes of models, and that
most standard properties of neighborhood frames, which are definable in modal
logic, are undefinable in contingency logic. We further proposed a decidable
axiomatization for classical contingency logic and provided a correspondence
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between neighborhood semantics for contingency logic on augmented frames and
Kripke semantics for that logic.

For further research we leave the question whether the axiomatization CL is
strongly complete with respect to the class of augmented neighbourhood frames
(see Section 5 for soundness). We further wish to investigate the suitable notion
of bisimulation on neighborhood models for CL, and to characterize CL as
a fragment within modal logic and within first-order logic, where [1, 7] may
help. Finally, we wish to advance the investigation of dynamics on neighborhood
models and in substructural logics, as initiated in studies like [9, 15].
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Abstract. We study the expressive power of fragments of inclusion logic
under the so-called lax team semantics. The fragments are defined either
by restricting the number of universal quantifiers or the arity of inclusion
atoms in formulae. In case of universal quantifiers, the corresponding
hierarchy collapses at the first level. Arity hierarchy is shown to be strict
by relating the question to the study of arity hierarchies in fixed-point
logics.

1 Introduction

In this article we study the expressive power of inclusion logic (FO(⊆)) [1] in
the lax team semantics setting. Inclusion logic is a variant of dependence logic
(FO(=(. . .))) [2] which extends first-order logic with dependence atoms

=(x1, . . . , xn)

expressing that the values of xn depend functionally on the values of x1, . . . , xn−1.
Inclusion logic, instead, extends first-order logic with inclusion atoms

x ⊆ y

which express that the set of values of x is included in the set of the values of y.
We study the expressive power of two syntactic fragments of inclusion logic under
the lax team semantics. These two fragments, FO(⊆)(k∀) and FO(⊆)(k-inc), are
defined by restricting the number of universal quantifiers or the arity of inclusion
atoms to k, respectively. We will show that FO(⊆)(k∀) captures FO(⊆) already
with k = 1 and that the fragments FO(⊆)(k-inc) give rise to an infinite, strict
expressivity hierarchy.

Since the introduction of dependence logic in 2007, many interesting variants
of it have been introduced. One reason for this orientation is the semantical
framework that is being used. Team semantics, introduced by Hodges in 1997
[3], provides a natural way to extend first-order logic with many different kinds
of dependency notions. Although many of these notions have been extensively
studied in database theory since the 70s, with team semantics the novelty comes
from the fact that also interpretations for logical connectives and quantifiers are
provided.
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In expressive power FO(=(. . .)) is equivalent to existential second-order logic
(ESO) [2]. For some variants of FO(=(. . .)), the correspondence with ESO does
not hold or it can depend on which version of team semantics is being used. For
instance, FO(⊆) corresponds in expressive power to ESO if we use the so-called
“strict team semantics” [4]. Under the lax team semantics, FO(⊆) corresponds
to greatest fixed-point logic (GFP) [5] which captures PTIME over finite ordered
models. In FO(=(. . .)) no separation between the strict and the lax version of
team semantics exists since dependence atoms satisfy the so-called downward
closure property. In the following we briefly list some complexity theoretical
aspects of FO(=(. . .)) and its variants.

– FO(=(. . .)) extended with the so-called intuitionistic implication → (intro-
duced in [6]) increases the expressive power of FO(=(. . .)) to full second-order
logic [7].

– The model checking problem of FO(=(. . .)), and many of its variants, was
recently shown to be NEXPTIME-complete. Moreover, for any variant of
FO(=(. . .)) whose atoms are PTIME-computable, the corresponding model
checking problem is contained in NEXPTIME [8].

– The non-classical interpretation of disjunction in FO(=(. . .)) has the effect
that the model checking problems of φ1 := =(x, y) ∨ =(u, v) and φ2 :=
= (x, y) ∨ = (u, v) ∨ = (u, v) are already NL-complete and NP-complete,
respectively [9].

This article pursues the line of study taken in [10,4] where syntactical fragments
of dependence and independence logic (FO(⊥c)) were investigated, respectively.
FO(⊥c) extends first-order logic by conditional independence atoms

y ⊥x z

with the informal meaning that the values of y and z are independent of each
other, given any value of x. As FO(⊆), also FO(⊥c) does not have downward
closure and is sensitive to the choice between the lax and the strict version of
team semantics. For a set of atoms C, we use FO(C) (omitting the set parentheses
of C) to denote the logic obtained by adding the atoms of C to first-order logic.
FO(C)(k∀) denotes the sentences of FO(C) in which at most k variables are
universally quantified. In [10] it was shown that

FO(=(. . .))(k∀) ≤ ESOf (k∀) ≤ FO(=(. . .))(2k∀)

where ESOf (k∀) denotes the Skolem normal form ESO sentences in which at
most k universally quantified first-order variables appear. In [4] it was shown
that (under the lax team semantics)

– FO(⊥)(2∀) = FO(⊥) and
– FO(⊥,⊆)(1∀) = FO(⊥,⊆)

where FO(⊥) is the sublogic of FO(⊥c) allowing only so-called pure independence
atoms x ⊥ y. Moreover, it is known that FO(⊥) is equivalent in expressive power
to FO(⊥,⊆) and FO(⊥c) [1,11].
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Also different arity fragments were defined. By FO(C)(k-dep) we denote the
sentences of FO(C) in which only dependence atoms of the form =(x1, . . . , xn+1)
with n ≤ k may appear. FO(C)(k-ind) denotes the sentences of FO(C) in which
only independence atoms containing at most k+1 different variables may appear.
It was shown in [10,4] that (under the lax team semantics)

ESO(k-ary) = FO(=(. . .))(k-dep) = FO(⊥c)(k-ind)

where ESO(k-ary) denote the sentences of ESO in which the quantified functions
and relations have arity at most k. This yields a strict arity hierarchy for both
FO(=(. . .)) and FO(⊥c) since the property “R is even” is definable in ESO(k-ary)
but not in ESO(k − 1-ary), for k-ary R [12].

The main contribution of this article is to show that arity fragments of inclu-
sion logic also give rise to a strict expressivity hierarchy. We let FO(C)(k-inc)
denote the FO(C) sentences in which at most k-ary inclusion atoms (i.e. atoms
of the form x ⊆ y where |x| = |y| ≤ k) may appear. For proving the claim, we
define, for each k ≥ 2, a graph property which is definable in FO(⊆)(k-inc) but
not in FO(⊆)(k − 1-inc). The non-definability part of the proof will be based on
Martin Grohe’s work in fixed-point logics in [13] where analogous results were
proved for transitive closure logic (TC), least fixed-point logic (LFP), inflation-
ary fixed-point logic (IFP) and partial fixed-point logic (PFP). We will also give
a negative answer to the open question presented in [4]; that was, whether the
fragments FO(⊆)(k∀) give rise to an infinite expressivity hierarchy. This will
be done by showing that FO(⊆)(1∀) = FO(⊆). However, if the strict version
of team semantics is used, then we obtain that FO(⊆)(k∀) < FO(⊆)((k + 1)∀)
[14].

The article is organized as follows. In Sect. 2 we define inclusion logic and
present some of its basic properties. In Sect. 3 we show two results for inclusion
logic. First we prove that the universal hierarchy collapses at level 1, and then
we show that the arity hierarchy is strict (the full proof of this is in Appendix).
In Sect. 4 we relate these results to analogous results in dependence logic and
its variants, and conclude the section by presenting open problems.

2 Preliminaries

2.1 Notation

Unless otherwise stated, we use x1, x2, . . . to denote variables and t1, t2, . . .
to denote terms. Analogously, bold versions x1,x2, . . . and t1, t2, . . . are used
to denote tuples of variables and tuples of terms, respectively. For tuples a
and b, we write ab for the concatenation of the tuples. If f is a unary func-
tion and (x1, . . . , xn) is a sequence listing members of Dom(f), then we write
f(x1, . . . , xn) for (f(x1), . . . , f(xn)).

2.2 Inclusion Logic

The syntax of FO(⊆) is obtained by adding inclusion atoms to the syntax of
first-order logic.
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Definition 1. FO(⊆) is defined by the following grammar. Note that in an in-
clusion atom x1 ⊆ x2, the tuples x1 and x2 must be of the same length.

φ ::= x1 ⊆ x2 | t1 = t2 | ¬t1 = t2 | R(t) | ¬R(t) | (φ ∧ ψ) | (φ ∨ ψ) | ∀xφ | ∃xφ.

FO(=(. . .)) and FO(⊥c) are obtained from Definition 1 by replacing inclusion
atoms x1 ⊆ x2 with dependence atoms =(x1, x2) and conditional independence
atoms x2 ⊥x1

x3, respectively. Pure independence logic FO(⊥) is a fragment of
FO(⊥c) where only pure independence atoms x1 ⊥ x2 (i.e. atoms of the form
x1 ⊥∅ x2) may appear. Also, for any C ⊆ {⊆,=(. . .),⊥c,⊥}, we use FO(C)
(omitting the set parentheses of C) to denote the logic obtained from Definition
1 by replacing inclusion atoms with atoms of C.

In order to define semantics for these logics, we need to define the concept
of a team. Let M be a model with domain M . We assume that all our models
have at least two elements.1 An assignment overM is a finite function that maps
variables to elements ofM . A team X ofM with domain Dom(X) = {x1, . . . , xn}
is a set of assignments from Dom(X) into M . If X is a team of M and F : X →
P(M) \ {∅}, then we use X [F/x] to denote the team {s(a/x) | s ∈ X, a ∈ F (s)}
and X [M/x] for {s(a/x) | s ∈ X, a ∈ M}. Also one should note that if s is an
assignment, then M |=s φ refers to Tarski semantics and M |={s} φ refers to
team semantics.

Definition 2. For a model M, a team X and a formula in FO(⊆,=(. . .),⊥c),
the satisfaction relation M |=X φ is defined as follows:

– M |=X α if ∀s ∈ X(M |=s α), when α is a first-order literal,
– M |=X x1 ⊆ x2 if ∀s ∈ X∃s′ ∈ X

(
s(x1) = s′(x2)

)
,

– M |=X x2 ⊥x1
x3 if ∀s, s′ ∈ X

(
s(x1) = s′(x1)⇒

∃s′′ ∈ X(s′′(x1) = s(x1), s
′′(x2) = s(x2), s

′′(x3) = s′(x3))
)
,

– M |=X=(x1, x2) if ∀s, s′ ∈ X
(
s(x1) = s′(x1)⇒ s(x2) = s′(x2)

)
,

– M |=X φ ∧ ψ if M |=X φ and M |=X ψ,
– M |=X φ ∨ ψ if M |=Y φ and M |=Z ψ, for some Y ∪ Z = X,
– M |=X ∃xφ if M |=X[F/x] φ, for some F : X → P(M) \ {∅},
– M |=X ∀xφ if M |=X[M/x] φ.

If M |=X φ, then we say that X satisfies φ in M. If φ is a sentence and M |={∅}
φ2, then we say that φ is true in M, and write M |= φ.

Note that in Definition 2, we obtain the lax version of team semantics. The strict
version of team semantics is defined as in Definition 2 except that only disjoint
subteams are allowed to witness split disjunction and existential quantification
ranges overM instead of non-empty subsets ofM . (See [1] for more information.)

First-order formulae are flat in the following sense (the proof is a straightfor-
ward structural induction).

1 This assumption is needed in Theorem 3.
2 {∅} denotes the team that consists of the empty assignment.
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Theorem 1 (Flatness). For a model M, a first-order formula φ and a team
X, the following are equivalent:

– M |=X φ,
– M |={s} φ for all s ∈ X,
– M |=s φ for all s ∈ X.

By Fr(φ) we denote the set of variables that appear free in φ. If X is a team and
V a set of variables, then X 	 V denotes the team {s 	 V | s ∈ X} where s 	 V is
the restriction of the assignment s on V . Now, all formulae satisfy the following
locality property (note that this is not true under the strict team semantics).
The proof is a straightforward structural induction.

Theorem 2 (Locality). Let M be a model, X be a team, φ ∈ FO(⊆,=(. . .),⊥c)
and V a set of variables such that Fr(φ) ⊆ V ⊆ Dom(X). Then

M |=X φ⇔M |=X�V φ.

We say that formulae φ, ψ ∈ FO(⊆,=(. . .),⊥c) are logically equivalent, written
φ ≡ ψ, if for all models M and teams X such that Fr(φ) ∪ Fr(ψ) ⊆ Dom(X),

M |=X φ⇔M |=X ψ.

We obtain the following normal form theorem.

Theorem 3 ([4]). Any formula φ ∈ FO(⊆,=(. . .),⊥c) is logically equivalent to
a formula φ′ such that

– φ′ is of the form Q1x1 . . . Q
nxnψ where ψ is quantifier-free,

– any literal or dependency atom which occurs in φ′ occurred already in φ,
– the number of universal quantifiers in φ′ is the same as the number of uni-

versal quantifiers in φ.

For logics L and L′, we write L ≤ L′, if for every signature τ , every L[τ ]-sentence
is logically equivalent to some L′[τ ]-sentence. We write L ≤O L′ if L ≤ L′

is true in finite linearly ordered models. Equality and inequality relations are
obtained from≤ naturally. We end this section with the following list of theorems
characterizing the expressive powers of our logics.

Theorem 4 ([2,15,11,5]).

– FO(=(. . .)) = FO(⊥c) = FO(⊥) = ESO,
– FO(⊆) = GFP.

3 Hierarchies in Inclusion Logic

In this section we consider universal and arity fragments of inclusion logic. In
Subsect. 3.1 we define these fragments and also concepts of strictness and collapse
of a hierarchy. In Subsect. 3.2 and 3.3 we prove collapse of the universal hierarchy
and strictness of the arity hierarchy, respectively.
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3.1 Syntactical Fragments

Definition 3. Let C ⊆ {⊆,=(. . .),⊥c,⊥}. Then universal and arity fragments
of FO(C) are defined as follows:

– FO(C)(k∀) is the class of FO(C) formulae in which at most k universal quan-
tifiers may appear,

– FO(C)(k-inc) is the class of FO(C) formulae in which inclusion atoms of
the form x1 ⊆ x2 where x1 and x2 are sequences of length at most k, may
appear,

– FO(C)(k-dep) is the class of FO(C) formulae in which dependence atoms of
the form =(x1, x2) where x1x2 is a sequence of length at most k + 1, may
appear,

– FO(C)(k-ind) is the class of FO(C) formulae in which conditional indepen-
dence atoms of the form x2 ⊥x1 x3 where x1x2x3 is a sequence listing at
most k + 1 distinct variables, may appear.

For an increasing (with respect to ≤) sequence of logics (Lk)k∈N, we say that
the Lk-hierarchy collapses at level m if Lm =

⋃
k∈N

Lk. If the Lk-hierarchy does
not collapse at any level, then we say that the hierarchy is infinite. An infinite
Lk-hierarchy is called strict if Lk < Lk+1 for all k ∈ N.

As mentioned before, we show that the FO(⊆)(k∀)-hierarchy collapses already
at level 1 but FO(⊆)(k-inc) forms a strict hierarchy which holds already in finite
models.

3.2 Collapse of the Universal Hierarchy

We first show that the universal hierarchy of inclusion logic collapses. This is done
by introducing a translation where all universal quantifiers are removed, and new
existential quantifiers, new inclusion atoms and one new universal quantifier are
added. The translation holds already at the level of formulae.

Theorem 5. FO(⊆)(1∀) = FO(⊆).

Proof. Let φ ∈ FO(⊆) be a formula. We define a formula φ′ ∈ FO(⊆)(1∀) such
that φ ≡ φ′. By Theorem 3 we may assume that φ is of the form

Q1x1 . . .Q
nxnθ

where θ is quantifier-free. We let

φ′ := ∃x1 . . . ∃xn∀y(
∧

1≤i≤n
Qi=∀

zx1 . . . xi−1y ⊆ zx1 . . . xi−1xi ∧ θ)

where z lists Fr(φ). Let now M be a model and X a team such that Fr(φ) ⊆
Dom(X); we show that M |=X φ ⇔ M |=X φ′. By Theorem 2 we may assume
without loss of generality that Fr(φ) = Dom(X). Assume first that M |=X φ.
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Then we find, for 1 ≤ i ≤ n, functions Fi : X [F1/x1] . . . [Fi−1/xi−1] → P(M) \
{∅} such that Fi(s) = M if Qi = ∀, and M |=X′ θ where

X ′ := X [F1/x1] . . . [Fn/xn].

For M |=X φ′, it suffices to show that

M |=X′[M/y]

∧
1≤i≤n
Qi=∀

zx1 . . . xi−1y ⊆ zx1 . . . xi−1xi ∧ θ. (1)

By Theorem 2 M |=X′[M/y] θ, so it suffices to consider only the new inclusion
atoms of (1). So let 1 ≤ i ≤ n be such that Qi = ∀ and let s ∈ X ′[M/y]; we
need to find a s′ ∈ X ′[M/y] such that s(zx1 . . . xi−1y) = s′(zx1 . . . xi−1xi). Now,
since Qi = ∀, we note that s(s(y)/xi) ∈ X ′ 	 (Fr(φ) ∪ {x1, . . . , xi}). Therefore
we may choose s′ to be any extension of s(s(y)/xi) in X ′[M/y].

For the other direction, assume that M |=X φ′. Then for 1 ≤ i ≤ n, there are
functions Fi : X [F1/x1] . . . [Fi−1/xi−1] → P(M) \ {∅} such that (1) holds, for
X ′ := X [F1/x1] . . . [Fn/xn]. By Theorem 2 M |=X′ θ, so it suffices to show that,
for all 1 ≤ i ≤ n withQi = ∀, Fi is the constant function which maps assignments
to M . So let i be of the above kind, and let s ∈ X [F1/x1] . . . [Fi−1/xi−1] and
a ∈M . We need show that s(a/xi) ∈ X [F1/x1] . . . [Fi/xi]. First note that since
y is universally quantified, s(a/y) has an extension s0 in X ′[M/y]. Therefore,
by (1), there is s1 ∈ X ′[M/y] such that s0(zx1 . . . xi−1y) = s1(zx1 . . . xi−1xi).
Since now s1 agrees with s in Fr(φ)∪{x1, . . . , xi−1} and maps xi to a, we obtain
that

s(a/xi) = s1 	 (Fr(φ) ∪ {x1, . . . , xi}) ∈ X [F1/x1] . . . [Fi/xi].

()

3.3 Strictness of the Arity Hierarchy

In this section we show that the following strict arity hierarchy holds (already
in finite models).

Theorem 6. For k ≥ 2, FO(⊆)(k − 1-inc) < FO(⊆)(k-inc).

For proving this, we use the earlier work of Grohe in [13] where an analogous
result was proved for TC, LFP, IFP and PFP. More precisely, it was shown that,
for k ≥ 2,

TCk �≤ PFPk−1 (2)

where the superscript part gives the maximum arity allowed for the fixed-point
operator. Since TCk ≤ LFPk ≤ IFPk ≤ PFPk, a strict arity hierarchy is ob-
tained for each of these logics.

We start by fixing τ as the signature consisting of one binary relation symbol
E and 2k constant symbols b1, . . . , bk, c1, . . . , ck. Then the idea is to present a
FO(⊆)(k-inc)[τ ]-definable graph property, and show that it is not definable in
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FO(⊆)(k − 1-inc)[τ ]. This graph property will actually be a negated version of
the one that separates the fragments in (2). For this, we first define a first-order
formula indicating that the k-tuples x and y form a 2k-clique in a graph. Namely,
we define EDGEk(x,y) as follows:

EDGEk(x,y) :=
∧

1≤i,j≤k

E(xi, yj) ∧
∧

1≤i
=j≤k

(E(xi, xj) ∧ E(yi, yj)).

Using this we define the graph property. Let x,y be tuples of disjoint variables
and t,u tuples of terms, all of the same length. Then for a first-order formula
ψ(x,y), we write M |= ¬[TCx,yψ](t,u) if (tM,uM) is not in the transitive
closure of {(m1,m2) | M |= ψ(m1,m2)}. Note that by transitive closure of a
binary relation R we denote the smallest transitive relation containing R. Now,
given two k-ary tuples of disjoint constant terms b and c, the non-trivial part is
to show that ¬[TCx,yEDGEk](b, c) is not definable in FO(⊆)(k − 1-inc)[τ ]. It is
definable in FO(⊆)(k-inc)[τ ] by the following theorem.

Theorem 7 ([1]). Let ψ(x,y) be any first-order formula, where x and y are
k−ary tuples of disjoint variables, for some k ∈ N\{0}. Furthermore, let ψ′(x,y)
be the result of writing ¬ψ(x,y) in negation normal form. Then for all models
M containing the signature of ψ, and all pairs b, c of k-ary constant term tuples
of the model,

M |= φ⇔M |= ¬[TCx,yψ](b, c),

for φ defined as

∃z(b ⊆ z ∧ z �= c ∧ ∀w(ψ′(z,w) ∨w ⊆ z)).

Note that φ is not yet of the right form since Definition 1 does not allow terms to
appear in inclusion atoms. This is however not a problem since all the terms that
appear in inclusion atoms can be replaced by using new existentially quantified
variables and new identity atoms.

Hence, for Theorem 6, it suffices to prove that ¬[TCx,yEDGEk](b, c) is not
definable in FO(⊆)(k − 1-inc)[τ ]. In this part we follow the work in [13]. For
k, n ≥ 1, we first let Ck,n denote the set of all graphs A with universe

A := {1, . . . , n} × {−k, . . . ,−1, 1, . . . , k}.

The following theorem generates a graph A ∈ Ck,n which will be used in the
non-definability proof. It was originally proved by Grohe using a method of
Hrushovski [16] to extend partial isomorphisms of finite graphs.

Theorem 8 ([13]). Let k, n ≥ 2. Then there exists a graph A ∈ Ck,n such that:

1. There exists a mapping row : A→ {1, . . . , n} such that

∀a, b ∈ A : (EAab⇒ |row(b)− row(a)| ≤ 1).
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2. There exists an automorphism ε of A that is self-inverse and preserves the
rows i.e.

– ε−1 = ε,
– ∀a ∈ A : row(ε(a)) = row(a).

3. There exist tuples b, c ∈ Ak in the first and last row respectively
(i.e. ∀i ≤ k : (row(bi) = 1 ∧ row(ci) = n)) such that

A |= ¬[TCx,yEDGEk](b, c) and A �|= ¬[TCx,yEDGEk](b, ε(c)).
3

4. For all a1, . . . , ak−1 ∈ A there exists an automorphism f of A that is self-
inverse, preserves the rows, and maps a1, . . . , ak−1 according to ε, but leaves
all elements in rows of distance > 1 from row(a1), . . . , row(ak−1) fixed i.e.

– f−1 = f
– ∀a ∈ A : row(f(a)) = row(a),
– ∀i ≤ k − 1 : f(ai) = ε(ai),
– for each a ∈ A with ∀i ≤ k−1 : |row(a)−row(ai)| > 1 we have f(a) = a.

Using this theorem we can prove the following lemma.

Lemma 1. Let k ≥ 2 and let τ be a signature consisting of a binary relation
symbol E and 2k constant symbols b1, . . . , bk, c1, . . . , ck. Then
¬[TCx,yEDGEk](b, c) is not definable in FO(⊆)(k − 1-inc)[τ ].

The proof of Lemma 1 is in Appendix but the outline of the proof is listed below.

Step 1 First we assume to the contrary that there is a φ(b, c) ∈ FO(⊆)(k − 1-inc)
[τ ] which is equivalent to ¬[TCx,yEDGEk](b, c). By Theorem 3 we may
assume that φ is of the form Q1x1 . . .Q

mxmθ where θ is a quantifier free
formula from FO(⊆)(k − 1-inc)[τ ].

Step 2 We let n = 2m+2 and obtain a graph A ∈ Ck,n for which items 1-4 of
Theorem 8 hold. In particular, we find two k-ary tuples b and c such that
A |= ¬[TCx,yEDGEk](b, c) and A �|= ¬[TCx,yEDGEk](b, ε(c)). Then by
the assumption (A, b, c) |= φ, and hence we find, for 1 ≤ i ≤ m, functions

Fi : {∅}[F1/x1] . . . [Fi−1/xi−1]→ P(A) \ {∅}

such that Fi(s) = A if Qi = ∀, and

(A, b, c) |=X θ (3)

where X := {∅}[F1/x1] . . . [Fm/xm].
Step 3 From X we will construct a team X∗ such that

(A, b, ε(c)) |=X∗ θ. (4)

3 In [13], c and ε(c) are here placed the other way round. This is however not a
problem since ε is self-inverse and preserves the rows.
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Step 4 At last, we will show that X∗ can be constructed by quantifying the
prefix Q1x1 . . .Q

mxm in A over {∅}. Hence we will obtain that A |=
φ(b, ε(c)). But now, since

A �|= ¬[TCx,yEDGEk](b, ε(c)),

this contradicts the assumption that φ(b, c) defines ¬[TCx,yEDGEk]
(b, c). Hence the assumption is false and we obtain the result of Lemma 1.

The most difficult part of the proof is Step 3, and we will sketch this next.
The idea is that we define two operations auto and swap for teams Y of A
with Dom(Y ) = {x1, . . . , xm}. Then we let X∗ := swap(auto(X)) and show by
induction on the complexity of θ that (4) follows from (3). In the induction proof,
the only non-trivial case is the base case where θ is either a first-order literal or
an (at most k−1-ary) inclusion atom. Let us now explore this base case in more
detail and examine how the two operations arise from it.

Consider first the case where θ is a first-order literal. For this, we define the
operation swap. For a team Y of A with Dom(Y ) = {x1, . . . , xm}, swap(Y ) will
be defined as a team {s′ | s ∈ Y } where s′ maps each variable xi either to s(xi)
or ε◦ s(xi). Here ε is the automorphism introduced in item 2 of Theorem 8. The
idea is to define swap so that for all teams Y of A with Dom(Y ) = {x1, . . . , xm}
and all literals θ ∈ FO[τ ] we obtain that

(A, b, c) |=Y θ ⇒ (A, b, ε(c)) |=swap(Y ) θ.
4 (5)

Consider then the case where θ = y1 . . . yl ⊆ z1 . . . zl for l ≤ k − 1. First note
that in this case (5) does not necessarily hold. Since, assuming the left-hand side
of (5) and given any s0 ∈ Y , we first notice that there is an s1 ∈ Y such that
s0(yi) = s1(zi) for all i. Now, given s′0 of s0, a natural choice from swap(Y ) for
the inclusion atom would be s′1. However, this might not work since possibly
s′0(yi) = ε◦ s′1(zi) for some i. To overcome this, we again apply Theorem 8. This
time we compose assignments of teams with automorphisms obtained by item 4
of Theorem 8. Namely, we first let I consist of all i for which s′0(yi) = ε ◦ s′1(zi).
Then by item 4 of Theorem 8 we find an automorphism f which maps s′1(zi) to
ε◦s′1(zi) for i ∈ I, but leaves all elements in rows of distance > 1 from (s′1(zi))i∈I

fixed. Then for i ∈ I, we obtain that

s′0(yi) = ε ◦ s′1(zi) = f ◦ s′1(zi),

and for i �∈ I, we obtain that s′0(yi) = s′1(zi) = f ◦ s′1(zi).
4 A detailed definition of swap is in Appendix but it can be illustrated by using
Ehrenfeucht-Fräıssé games [17,18]. The point is that we have chosen n := 2m+2 so
that Duplicator has a winning strategy in the m-round Ehrenfeucht-Fräıssé game
EFm((A,b, c), (A, b, ε(c)). Then for each s ∈ Y , we let s′ correspond to Duplicator’s
choices in a single play of EFm((A,b, c), (A, b, ε(c)) where Spoiler picks members of
(A, b, c) according to s and Duplicator picks members of (A,b, ε(c)) according to her
winning strategy (see Fig. 1 in Appendix). Then we obtain that (5) holds.
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Using the above idea, we now define the operation auto. First we let F = (F, ◦)
be the group generated by the automorphisms fa where fa is obtained by item
4 of Theorem 8 for a sequence a listing a1, . . . , ak−1 ∈ A where no ai is located
in the first or the last row. For a team Y of A, we then let

auto(Y ) := {f ◦ s | f ∈ F , s ∈ Y }.

Finally, we will show that these two approaches can be combined. We let
X∗ := swap(auto(X)) and prove by structural induction that (4) follows from
(3). This concludes the sketch of Step 3.

By Theorem 7 and Lemma 1 we now conclude that Theorem 6 holds.

4 Conclusion

We have shown that the arity fragments of inclusion logic give rise to a strict ex-
pressivity hierarchy. Earlier, analogous results have been proved for dependence
logic and independence logic. We also observed that the FO(⊆)(k∀)-hierarchy
collapses at a very low level as it is the case with the FO(⊥c)(k∀)-hierarchy. How-
ever, the FO(=(. . .))(k∀)-hierarchy is infinite since it can be related to the strict
ESOf (k∀)-hierarchy. From the results of [10,4] and this article, we obtain the
following classification for syntactical hierarchies of dependence, independence
and inclusion logic under the lax semantics.

Arity of Dependency Atom Number of ∀
FO(=(. . .)) strict

FO(=(. . .))(k-dep) <
FO(=(. . .))(k + 1-dep)

infinite
FO(=(. . .))(k∀) <
FO(=(. . .))(2k + 2∀)

FO(⊥c) strict
FO(⊥c)(k-ind) <
FO(⊥c)(k + 1-ind)

collapse at 2
FO(⊥c)(2∀) = FO(⊥c)

FO(⊆) strict
FO(⊆)(k-inc) <
FO(⊆)(k + 1-inc)

collapse at 1
FO(⊆)(1∀) = FO(⊆)

Since FO(⊆) captures PTIME in finite ordered models, it would be interest-
ing to investigate syntactical fragments of inclusion logic in that setting. It ap-
pears that then the techniques used in this article would be of no use. Namely,
we cannot hope to construct two ordered models in the style of Theorem 8.
In fixed-point logics, this same question has been studied in the 90s. Imhof
showed in [19] that the arity hierarchy of PFP remains strict in ordered models
(PFPk <O PFPk+1) by relating the PFPk-fragments to the degree hierarchy
within PSPACE. For LFP and IFP, the same question appears to be more dif-
ficult, since both collapse and its negation have strong complexity theoretical
consequences. That is, for both IFP and LFP in ordered models, collapse of
arity hierarchy implies PTIME < PSPACE, and infinite arity hierarchy implies
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LOGSPACE < PTIME. It might be possible to prove similar results for inclusion
logic by relating the fragments FO(⊆)(k-inc) to arity fragments of fixed-point
logics. However, the translations between FO(⊆) and GFP provided in [5] do not
respect arities. It remains open whether collapse of the FO(⊆)(k-inc)-hierarchy
or its negation have such strong consequences or whether it is possible to relate
the FO(⊆)(k-inc)-fragments in ordered models to the degree hierarchy within
PTIME? Another line would be to find some other syntactical parameter that
would fit for this purpose.
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17. Fräıssé, R.: Sur une nouvelle classification des systmes de relations. Comptes Ren-
dus 230, 1022–1024 (1950)

18. Ehrenfeucht, A.: An application of games to the completeness problem for formal-
ized theories. Fundamenta Mathematicae 49, 129–141 (1961)

19. Imhof, H.: Computational aspects of arity hierarchies. In: van Dalen, D., Bezem,
M. (eds.) CSL 1996. LNCS, vol. 1258, pp. 211–225. Springer, Heidelberg (1997)

Appendix

The proof of Lemma 1 is presented in the following.

Proof (Lemma 1). We may start from Step 3 of the outline of the proof presented
after Lemma 1. Hence we have

(A, b, c) |=X θ, (6)

for X := {∅}[F1/x1] . . . [Fm/xm], and the first step is to construct a team X∗

such that
(A, b, ε(c)) |=X∗ θ. (7)

For this, we first define the operation auto. By item 4 of Theorem 8, for all a list-
ing a1, . . . , ak−1 ∈ A there exists an automorphism fa which maps a pointwise to
ε(a), but leaves all elements in rows of distance > 1 from row(a1), . . . , row(ak−1)
fixed. Let F = (F, ◦) be the group generated by the automorphisms fa where fa
is obtained from item 4 of Theorem 8 and a is a sequence listing a1, . . . , ak−1 ∈ A
such that 2 < row(ai) < n− 1, for 1 ≤ i ≤ k− 1. For a team Y of A, we then let

auto(Y ) := {f ◦ s | f ∈ F , s ∈ Y }.

Next we will define the operation swap. For this, we will first define mappings
mid and h. We let mid map m-sequences of {1, . . . , n} into {1, . . . , n} so that,
for any p := (p1, . . . , pm) and q := (q1, . . . , qm) in {1, . . . , n}m,

1. 1 < mid(p) < n,
2. ∀i ≤ m : mid(p) �= pi,
3. ∀l ≤ m: if p 	 {1, . . . , l} = q 	 {1, . . . , l}, then ∀i ≤ l : pi < mid(p) iff

qi < mid(q).
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This can be done by following the strategy illustrated in Fig. 1.5 We shall explain
this in detail in the following. Let p := (p1, . . . , pm) be a sequence listing natural
numbers of {1, . . . , n}. For mid(p), we first show how to choose M and N , for
each 0 ≤ i ≤ m, so that

β ε(β)

α

ε(c)

b

c

N
ε(x1) x1

x2

x3
M

Spoiler Duplicator

n

1

−k k

Fig. 1

5 A play of EFm((A, b, c), (A, b, ε(c)) where Spoiler picks members of (A,b, c) and Du-
plicator picks members of (A,b, ε(c)) according to her winning strategy is illustrated
in Fig. 1. The idea is that after each round i ≤ m, M and N are placed so that
N − M ≥ 2m+1−i. Also for each j ≤ i, yj = xj if row(xj) ≤ M , and yj = ε(xj) if
row(xj) ≥ N , where yj and xj represent Duplicator’s and Spoiler’s choices, respec-
tively. In the picture, α and β represent two alternative choices Spoiler can make
at the fourth round. If Spoiler chooses x4 := α, then Duplicator chooses y4 := α,
and M is moved to row(α). If Spoiler chooses x4 := β, then Duplicator chooses
y4 := ε(β), and N is moved to row(β). Proceeding in this way we obtain that at
the final stage m, (A, b, c, x1, . . . , xm) and (A,b, ε(c), y1, . . . , ym) agree on all atomic
FO[τ ] formulae.
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– N −M ≥ 2m+1−i,
– ∀j ≤ i : pj ≤M or pj ≥ N .

We do this inductively as follows. We let M := 1 and N := n, for i = 0. Since
n = 2m+2, clearly the conditions above hold. Assume that M and N are defined
for i so that the conditions above hold; we define M ′ and N ′ for i+1 as follows:

1. If pi+1 −M ≤ N − pi+1, then we let M ′ := max{M,pi+1} and N ′ := N .
2. If pi+1 −M > N − pi+1, then we let M ′ := M and N ′ := min{N, pi+1}.
Note that in both cases ∀j ≤ i+ 1 : pj ≤M ′ or pj ≥ N ′, and

N ′ −M ′ ≥
⌈
N −M

2

⌉
≥ 2m+1−(i+1).

Proceeding in this way we conclude that at the final stagem we have N−M ≥ 2
with no p1, . . . , pm stricly in between M and N . We then choose mid(p) as any
number in ]M,N [. Note that defining mid in this way we are able to meet the
conditions 1-3.

After this we define a mapping h : {x1,...,xm}A → {x1,...,xm}A. For an assign-
ment s : {x1, . . . , xm} → A, the assignment h(s) : {x1, . . . , xm} → A is defined
as follows:

h(s)(xi) =

{
s(xi) if row(s(xi)) < mid(row(s(x))),

ε ◦ s(xi) if row(s(xi)) > mid(row(s(x))),

where x := (x1, . . . , xm). For a team Z of A with Dom(Z) = {x1, . . . , xm}, we
now let

swap(Z) := {h(s) | s ∈ Z},
and define, for each Y ⊆ X ,

Y ∗ := swap(auto(Y )).

With X∗ now defined, we next show that (7) holds. Without loss of generality
we may assume that if a constant symbol bj (or cj) appears in an atomic subfor-
mula α of θ, then α is of the form xi = bj (or xi = cj) where xi is an existentially
quantified variable of the quantifier prefix. Hence and by (6), it now suffices to
show that for all Y ⊆ X and all quantifier-free ψ ∈ FO(⊆)(k − 1-inc)[τ ] with
the above restriction for constants,

(A, b, c) |=Y ψ ⇒ (A, b, ε(c)) |=Y ∗ ψ.

This can be done by induction on the complexity of the quantifier-free ψ. Since
Y ∗ ∪ Z∗ = (Y ∪ Z)∗, for Y, Z ⊆ X , it suffices to consider only the case where ψ
is an atomic or negated atomic formula. For this, assume that (A, b, c) |=Y ψ;
we show that

(A, b, ε(c)) |=Y ∗ ψ. (8)

Now ψ is either of the form xi = bj , xi = cj, xi = xj , ¬xi = xj , E(xi, xj),
¬E(xi, xj) or y ⊆ z where bj , cj are constant symbols and y, z are sequences of
variables from {x1, . . . , xm} with |y| = |z| ≤ k − 1.
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– Assume first that ψ is of the form xi = bj or xi = cj , and let s ∈ Y ∗ be
arbitrary. For (8), it suffices to show by Theorem 1 that

(A, b, ε(c)) |=s ψ. (9)

First note that s = h(f ◦ t) for some automorphism f ∈ F and assign-
ment t ∈ Y for which, by the assumption and Theorem 1, (A, b, c) |=t ψ.
Hence for (9), we only need to show that s(xi) = t(xi) in case t(xi) is listed
in b, and s(xi) = ε ◦ t(xi) in case t(xi) is listed in c. For this, first recall
that F is the group generated by automorphisms fa where fa is obtained
from item 4 of Theorem 8 and a is a sequence listing a1, . . . , ak−1 ∈ A
such that 2 < row(ai) < n− 1, for 1 ≤ i ≤ k − 1. Therefore f leaves all ele-
ments in the first and the last row fixed when f(b) = b and f(c) = c. On the
other hand, by the definition of mid, 1 < mid(row(f ◦ t(x)))) < n, and hence
h(f◦t)(xi) = f◦t(xi) if f◦t(xi) is in the first row, and h(f◦t)(xi) = ε◦f◦t(xi)
if f ◦ t(xi) is in the last row. Since tuples b and c are in the first and the last
row, respectively, we conclude that the claim holds. The case where ψ is of
the form xi = xj or ¬xi = xj is straightforward.

– Assume that ψ is of the form E(xi, xj) or ¬E(xi, xj). Again, let s ∈ Y ∗

when s = h(f ◦ t) for some f ∈ F and t ∈ Y . For (9), consider first the cases
where

row(t(xi)), row(t(xj)) < mid(row(t(x))), or (10)

row(t(xi)), row(t(xj)) > mid(row(t(x))). (11)

Since f is a row-preserving automorphism, we conclude by the definition of
h that s maps both xi and xj either according to f ◦t or according to ε◦f ◦t.
Since ε is also an automorphism, we obtain (9) in both cases. Assume then
that (10) and (11) both fail. Then by symmetry suppose we have

row(t(xi)) < mid(row(t(x)))) < row(t(xj)).

Since (A, b, c) |=t ψ, we have by item 1 of Theorem 8 that ψ is ¬E(xi, xj).
Since f and ε preserve the rows, we have

row(s(xi)) < mid(row(s(x)))) < row(s(xj)).

Therefore we obtain (A, b, c) |=s ¬E(xi, xj) which concludes this case.
– Assume that φ is y ⊆ z, for some y = y1 . . . yl and z = z1 . . . zl where

l ≤ k − 1. Let s ∈ Y ∗ be arbitrary. For (8), we show that there exists a
s′ ∈ Y ∗ such that s(y) = s′(z). Now s = h(f ◦ t) for some f ∈ F and t ∈ Y ,
and (A, b, c) |=Y ψ by the assumption. Hence there exists a t′ ∈ Y such that
t(y) = t′(z). Let now I list the indices 1 ≤ i ≤ l for which (i) or (ii) hold:6

6 An example where y := y1y2y3 and z := z1z2z3 is illustrated in Fig. 2. Note that
in the example, I = {2} since the index number 2 satisfies (ii). Then letting s0 :=
h(f ◦ t′), we obtain s(y1y3) = s0(z1z3) but only s(y2) = ε ◦ s0(z2). Fig. 3 shows that
choosing s′ := h(fa ◦ f ◦ t′), for a := f ◦ t′(z2), we obtain s(y) = s′(z).
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(i) row(t(yi)) < mid(row(t(x))) and row(t′(zi)) > mid(row(t′(x))),
(ii) row(t(yi)) > mid(row(t(x))) and row(t′(zi)) < mid(row(t′(x))).

{
M ′ := mid(row(t′(x)))

M := mid(row(t(x)))

{
s = h(f ◦ t)
s0 := h(f ◦ t′)

s
=

ε◦
f◦

t
s
=

f◦
t

s
0
=

ε◦
f◦

t ′
s
0
=

f◦
t ′

M ′

M

f
t(y3)

t′(z3)

ε
s(y3)

s0(z3)

f
t(y2)

t′(z2) s0(z2)

ε
s(y2)

f
t(y1)

t′(z1)

s(y1)

s0(z1)

Fig. 2

Since |I| ≤ k− 1, choosing a := (f ◦ t′(zi))i∈I we find by item 4 of Theorem
8 an automorphism fa that swaps f ◦ t′(zi) to ε◦f ◦ t′(zi), for each i ∈ I, but
leaves all elements in rows of distance > 1 from (row(f ◦ t′(zi)))i∈I fixed.
We now let s′ := h(fa ◦ f ◦ t′). Since

1 < mid(row(t(x))),mid(row(t′(x))) < n

by the definition, we have 2 < row(t′(zi)) < n− 1, for i ∈ I. Hence fa ∈ F
and s′ ∈ Y ∗. Moreover, for i ∈ I, we obtain that

(i) s(yi) = f ◦ t(yi) = f ◦ t′(zi) = ε ◦ fa ◦ f ◦ t′(zi) = s′(zi), or

(ii) s(yi) = ε ◦ f ◦ t(yi) = ε ◦ f ◦ t′(zi) = fa ◦ f ◦ t′(zi) = s′(zi).
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{
M ′ := mid(row(t′(x)))
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{
s = h(f ◦ t)
s′ := h(fa ◦ f ◦ t′), for a := f ◦ t′(z2)

M ′

M

ff
t(y3)

t′(z3)

fa
ε

s(y3)

s′(z3)

f
t(y2)

t′(z2)
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Fig. 3

For the first and last equalities note that fa and f preserve the rows. For (i)
recall also that ε is self-inverse.
Let then 1 ≤ j ≤ l be such that j �∈ I when both (i) and (ii) and fail for j.
Then we obtain

row(t(yj)) > mid(row(t(x))) and row(t′(zj)) > mid(row(t′(x))), or (12)

row(t(yj)) < mid(row(t(x))) and row(t′(zj)) < mid(row(t′(x))). (13)

Assume first that (12) holds and let i ∈ I. Then either

(i) row(t(yi)) < mid(row(t(x))) < row(t(yj)), or

(ii) row(t′(zi)) < mid(row(t′(x))) < row(t′(zj)).

Since t(yj) = t′(zj), t(yi) = t′(zi), and f preserves the rows, in both cases
we conclude that

|row(f ◦ t′(zj))− row(f ◦ t′(zi))| > 1.

Therefore fa leaves f ◦ t′(zj) fixed. By (12) we now have

s(yj) = ε ◦ f ◦ t(yj) = ε ◦ f ◦ t′(zj) = ε ◦ fa ◦ f ◦ t′(zj) = s′(zj).



118 M. Hannula

The case where (13) holds is analogous. Hence s(y) = s′(z). This concludes
the case of inclusion atom and thus the proof of (A, b, ε(c)) |=X∗ θ.

We have now concluded Step 3 of the outline of the proof. Next we show the last
part of the proof. That is, we show that X∗ can be constructed by quantifying
Q1x1 . . . Q

mxm in A over {∅}. For this, it suffices to show the following claim.

Claim. Let a ∈ A, p ∈ {1, . . . ,m} be such that Qp = ∀, and s ∈ X∗ 	
{x1, . . . , xp−1}. Then s(a/xp) ∈ X∗ 	 {x1, . . . , xp}.
Proof (Claim). Let a, p and s be as in the assumption. Then

s = h(f ◦ t) 	 {x1, . . . , xp−1},
for some f ∈ F and t ∈ X . Let a0 = f−1(a) and a1 = f−1 ◦ ε(a). Note that
both t(a0/xp) 	 {x1, . . . , xp} and t(a1/xp) 	 {x1, . . . , xp} are in X 	 {x1, . . . , xp}
since Qp = ∀. Let t0, t1 ∈ X extend t(a0/xp) 	 {x1, . . . , xp} and t(a1/xp) 	
{x1, . . . , xp}, respectively. It suffices to show that either h(f ◦ t0) or h(f ◦ t1)
(which both are in X∗) extend s(a/xp).

First note that since

t0 	 {x1, . . . , xp−1} = t1 	 {x1, . . . , xp−1} = t 	 {x1, . . . , xp−1}
we have by item 3 of the definition of mid that, for i ≤ p− 1, inequalities (14),
(15) and (16) are equivalent:

row(t0(xi)) < mid(row(t0(x))), (14)

row(t1(xi)) < mid(row(t1(x))), (15)

row(t(xi)) < mid(row(t(x))). (16)

Since also f preserves the rows, we have by the definition of h that h(f ◦ t0),
h(f ◦t1) and h(f ◦t) all agree in variables x1, . . . , xp−1. Note that also ε preserves
the rows, so have row(a0) = row(a1). Since then row(t0(xi)) = row(t1(xi)), for
i ≤ p, we have by item 3 of the definition of mid that

row(t0(xp)) < mid(row(t0(x))) iff row(t1(xp)) < mid(row(t1(x))).

Therefore, either

row(t0(xp)) < mid(row(t0(x))) or row(t1(xp)) > mid(row(t1(x))).

Then in the first case h(f ◦ t0)(xp) = f ◦ t0(xp) = a, and in the second case
h(f ◦ t1)(xp) = ε ◦ f ◦ t1(xp) = ε ◦ ε(a) = a. Hence s(a/xp) ∈ X∗ 	 {x1, . . . , xp}.
This concludes the proof of Claim. ()
We have now shown that X∗ can be constructed by quantifying Q1x1 . . . Q

mxm

in A over {∅}. Also previously we showed that (A, b, ε(c)) |=X∗ θ. Therefore,
since φ = Q1x1 . . .Q

mxmθ, we obtain that (A, b, ε(c)) |= φ. Hence the as-
sumption that φ(b, c) defines ¬[TCx,yEDGEk](b, c) is false. Otherwise A |=
¬[TCx,yEDGEk](b, c) would yield (A, b, c) |= φ from which (A, b, ε(c)) |= φ
follows. Therefore we would obtain A |= ¬[TCx,yEDGEk](b, ε(c)) which contra-
dicts the fact that A �|= ¬[TCx,yEDGEk](b, ε(c)) by Theorem 8. This concludes
the proof of Lemma 1. ()
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Abstract. In this article, we propose a modal logic for non-deterministic
information systems. A deductive system for the logic is presented and
corresponding soundness and completeness theorems are proved. The
logic is also shown to be decidable.

1 Introduction

Rough set theory, introduced by Pawlak in the early 1980s [17] offers an ap-
proach to deal with uncertainty inherent in real-life problems, more specifically
that stemming from inconsistency or vagueness in data. The notion of an ap-
proximation space, viz. a tuple (U,R), where U is a non-empty set and R an
equivalence relation, plays a crucial role in Pawlak’s rough set theory. A useful
natural generalization is where the relation R is not necessarily an equivalence
(cf. e.g. [20,23,12]). Any concept represented as a subset (say)X of the domain U
is approximated from within and outside, by its lower and upper approximations,
denoted as XR and XR respectively, and are defined as follows:

XR := {x ∈ U : R(x) ⊆ X}, XR := {x ∈ U : R(x) ∩X �= ∅},

where R(x) := {y ∈ U : (x, y) ∈ R}.
A practical realization of approximation space is a non-deterministic infor-

mation system [16], formally defined as follows.

Definition 1. A non-deterministic information system S := (U,A,
⋃

a∈A Va, F ),
written in brief as NIS, comprises a non-empty set U of objects, a non-empty
finite set A of attributes, a non-empty finite set Va of attribute-values for each
a ∈ A, and F : U ×A → 2

⋃
a∈A Va such that F (x, a) ⊆ Va.

In the special case when F (x, a) is singleton for each (x, a) ∈ U ×A, S is called
a deterministic information system.

One may attach different interpretations with ‘F (x, a) = V ’. For instance, as
exemplified in [4,5], if a is the attribute “speaking a language”, then F (x, a) =
{German, English} can be interpreted as (i) x speaks German and English and
no other languages, (ii) x speaks German and English and possibly other lan-
guages, (iii) x speaks German or English but not both, or (iv) x speaks German

M. Banerjee and S.N. Krishna (eds.): ICLA 2015, LNCS 8923, pp. 119–131, 2015.
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or English or both. Motivated by these interpretations, several relations are de-
fined on NISs (e.g. [16,21,22,5]). We list a few of them below. Consider a NIS
S := (U,A,

⋃
a∈A Va, F ) and an attribute set B.

Indiscernibility. (x, y) ∈ IndS
B if and only if F (x, a) = F (y, a) for all a ∈ B.

Similarity. (x, y) ∈ SimS
B if and only if F (x, a) ∩ F (y, a) �= ∅ for all a ∈ B.

Inclusion. (x, y) ∈ InS
B if and only if F (x, a) ⊆ F (y, a) for all a ∈ B.

Negative similarity. (x, y) ∈ NSimS
B if and only if ∼ F (x, a)∩ ∼ F (y, a) �=

∅ for all a ∈ B, where ∼ is the complementation relative to Va.
Complementarity. (x, y) ∈ ComS

B if and only if F (x, a) =∼ F (y, a) for all
a ∈ B.

Weak indiscernibility. (x, y) ∈ wIndSB if and only if F (x, a) = F (y, a) for
some a ∈ B.

Weak similarity. (x, y) ∈ wSimS
B if and only if F (x, a)∩F (y, a) �= ∅ for some

a ∈ B.
Weak inclusion. (x, y) ∈ wInS

B if and only if F (x, a) ⊆ F (y, a) for some a∈B.
Weak negative similarity. (x, y) ∈ wNSimS

B if and only if ∼ F (x, a)∩ ∼
F (y, a) �= ∅ for some a ∈ B.

Weak complementarity. (x, y) ∈ wComS
B if and only if F (x, a) =∼ F (y, a)

for some a ∈ B.

Each of the relations defined above gives rise to a generalized approximation
space, where the relation may not be an equivalence. Thus, one can approximate
any subset of the domain using the lower and upper approximations defined on
these generalized approximation spaces.

Search for a logic which can be used to reason about the approximations
of concepts remains an important area of research in rough set theory. For a
comprehensive survey on this direction of research, we refer to [6,2]. It is not
difficult to observe that in a logic for information systems, one would like to
have the following two features. (i) The logic should be able to describe aspects
of information systems such as attribute, and attribute-values. (ii) It should also
be able to capture concept approximations induced by different sets of attributes.
In literature, one can find logics with the first feature (e.g. [14,15,21,1]) as well
as logics with the second feature (e.g. [13,16,14,15,19,24,7,8]). But proposal for
a sound and complete modal logic of NIS having both feature is not known
to us. In [9], a sound and complete logic for deterministic information systems
with both of the above features was proposed. But recall that in the case of
NISs, an object takes a set of attribute-values instead of just one as in the case
of deterministic information system. Moreover, unlike deterministic information
system, many relations other than indiscernibility are relevant and studied in
the context of NISs. Therefore, in this article, our aim is to present a sound and
complete modal logic with semantics directly based on NIS, having both of the
above mentioned properties.

The remainder of this article is organized as follows. In Section 2, we in-
troduced the syntax and semantics of the logic LNIS of NISs. This logic can
capture the approximations relative to indiscernibilitry, similarity and inclusion
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relations. An axiomatic system of the logic LNIS is presented in Section 3, and
corresponding soundness and completeness theorems are proved. The decidabil-
ity of the logic is proved in Section 4. In Section 5, it is shown that the current
work can be extended to other types of relations defined on NISs as well. Section
6 concludes the article.

2 Logic for Non-deterministic Information Systems

In this section, we shall propose a logic LNIS (logic for non-deterministic infor-
mation systems) which can be used to reason about the rough set approximations
with respect to indiscernibility, similarity and inclusion relations induced from
NISs. Moreover, it can also talk about the attributes, attribute-values of the
objects.

2.1 Syntax

The language L of LNIS contains (i) a non-empty finite set A of attribute con-
stants, (ii) for each a ∈ A, a non-empty finite set Va of attribute-value constants,
(iii) a non-empty countable set PV of propositional variables, and (iv) the propo-
sitional constants �, ⊥.

The atomic well-formed formulae (wffs) are the propositional variables p from
PV, and the tuples of the form (a, v) where a ∈ A and v ∈ Va. The tuples (a, v)
are called descriptors [18]. The set of all descriptors will be denoted by D.

Using the atomic wffs, Boolean connectives ¬ (negation), ∧ (conjunction),
and the modal operators �1

B, �2
B and �3

B for each B ⊆ A, the wffs of L are
then defined recursively as:

α ::= p | (a, v) | ¬α | α ∧ β | �1
Bα | �2

Bα | �3
Bα.

For a ∈ A, we shall simply write �k
{a}, k ∈ {1, 2, 3}, as �k

a. Derived connectives

are the usual ones: ∨ (disjunction), → (implication), ♦1
B, ♦2

B , ♦3
B (diamonds).

We shall use the same symbol L to denote the set of all wffs of the language L.

2.2 Semantics

As we desired, the semantics of L will be based on NISs. Thus we have the
following definition of models. Recall that for an equivalence relation R on U ,
and for x ∈ U , [x]R denotes the equivalence class of x with respect to R.

Definition 2. A model of L is defined as a tuple M := (S, V ), where S :=
(W,A,

⋃
a∈A Va, F ) is a non-deterministic information system, and V : PV →

2W is a valuation function.

The satisfiability of a wff α in a model M := (S, V ), where S := (W,A,
⋃

a∈A Va,
F ), at an object w ∈ W , denoted as M, w |= α, is defined as follows. We omit
the cases of propositional constants and Boolean connectives.
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Definition 3

M, w |= (a, v), if and only if v ∈ F (w, a).

M, w |= α, if and only if w ∈ V (α), for α ∈ PV.

M, w |= �1
Bα, if and only if for all w′ ∈W with (w,w′) ∈ IndS

B, M, w′ |= α.

M, w |= �2
Bα, if and only if for all w′ ∈W with (w,w′) ∈ SimS

B, M, w′ |= α.

M, w |= �3
Bα, if and only if for all w′ ∈W with (w,w′) ∈ InS

B , M, w′ |= α.

Note that, unlike the logic in [9], the semantics of LNIS is directly based on
information systems. The extension of a wff α relative to a model M, denoted
as [[α]]M, is given by the set {w : M, w |= α}. A wff α is said to be valid in a
model M with domain U if [[α]]M = U . A wff α is called valid, denoted as |= α,
if α is valid in all models.

The following proposition shows that the operators �1
B, �2

B and �3
B capture

the lower approximations relative to the attribute set B with respect to indis-
cernibility, similarity and inclusion relations respectively, while ♦1

B,♦2
B and ♦3

B

respectively capture the corresponding upper approximations.

Proposition 1. Let M := (S, V ) be a model, where S := (U,A,
⋃

a∈A Va, F ).
Then the following hold.

1. [[�1
Bα]]M = [[α]]M

IndS
B

, [[♦1
Bα]]M = [[α]]MIndS

B
.

2. [[�2
Bα]]M = [[α]]M

SimS
B

, [[♦2
Bα]]M = [[α]]MSimS

B
.

3. [[�3
Bα]]M = [[α]]M

InS
B

, [[♦3
Bα]]M = [[α]]MInS

B
.

The presence of descriptors in the language helps LNIS to talk about the at-
tributes, attribute-values of the objects, and its effect on the approximation
operators. For instance, the wff (a, v) ∧

∧
u∈Va\{v} ¬(a, u) → �2

Bp represents a
decision rule according to which if an object x takes the value v for the at-
tribute a, then x is in the lower approximation of the set represented by p
with respect to similarity relation corresponding to the attribute set B. The
valid wff (b, v) ∧ �2

B∪{b}α → �2
B((b, v) → α) corresponds to the fact that

Y ∩ XSimS
B∪{b}

⊆ X ∪ Y c
SimS

B
, where Y = {y : v ∈ F (y, b)}, and Y c is the

set-theoretic complement of Y .

3 Axiomatic System

We now present an axiomatic system for LNIS, and prove the corresponding
soundness and completeness theorems.

We recall that D denotes the set of all descriptors. Consider the wffs which are
a conjunction of literals from the set

⋃
α∈D{α,¬α}, and which contain precisely

one of (a, v), or ¬(a, v) for each (a, v) ∈ D. Let Θ be the set of all such wffs.
Let M := (S, V ) be a model, where S := (W,A,

⋃
a∈A Va, F ). Then it is not

difficult to obtain the following.
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Proposition 2. (V1) W/ IndS
A ⊆ {[[i]]M : i ∈ Θ}.

(V2) {[[i]]M : i ∈ Θ} ⊆W/ IndS
A ∪{∅}.

(V3) [[i]]M ∩ [[j]]M = ∅, for i, j ∈ Θ, and i �= j.
(V4) For i, j ∈ Θ, if (x, y) /∈ IndS

A, [x]IndS
A

= [[i]]M and [y]IndS
A

= [[j]]M, then
i �= j.

From conditions (V1)-V(4), it is evident that the element of Θ are used as
nominals to name the equivalence classes of IndS

A such that different equivalence
classes are provided with different names. We use these nominals to give the
following deductive system. Let B ⊆ A, �B ∈ {�1

B,�2
B,�3

B}, and i ∈ Θ.

Axiom schema:

1. All axioms of classical propositional logic.
2. �B(α→ β)→ (�Bα→ �Bβ).
3. �1

∅α→ α.
4. α→ �1

∅♦1
∅α.

5. ♦1
∅♦1

∅α→ ♦1
∅α.

6. �m
∅ α↔ �n

∅α, where m,n ∈ {1, 2, 3}.
7. �Cα→ �Bα for C ⊆ B.
8. (a, v)→ �k

a(a, v) for k ∈ {1, 3}.
9. ¬(a, v)→ �1

a¬(a, v).
10. i→ �2

a

(∨
v∈Va

(
(a, v) ∧�1

∅(i→ (a, v))
))

.

11. i ∧�1
B∪{b}α→ �1

B

(∧
v∈Vb

(
(b, v)↔ �1

∅(i→ (b, v))

)
→ α

)
.

12. (b, v) ∧�2
B∪{b}α→ �2

B((b, v)→ α).

13. i ∧�3
B∪{b}α→ �3

B

(∧
v∈Vb

(
�1

∅(i→ (b, v))→ (b, v)

)
→ α

)
.

14. i ∧ (a, v)→ �1
∅(i→ (a, v)).

15. i ∧ ¬(a, v)→ �1
∅(i→ ¬(a, v)).

16.
∨

i∈Θ i.
17. ¬i ∨ ¬j for distinct elements i and j of Θ.
18. i→ �1

Ai.

Rules of inference:
N. α MP. α

�Bα α→ β
β

The notion of theoremhood is defined in the usual way, and we write � α to
indicate that α is a theorem of the above deductive system.

Axioms 7-13 relate attribute, attribute-values of the objects with the relations
corresponding to the modal operators �k

B, k ∈ {1, 2, 3}. For instance, let R2
B be

the relation corresponding to the modal operator �2
B, and let us see how the

axioms 7, 10 and 12 relate attribute, attribute-values of the objects with R2
B.

Axiom 7 for �2
B corresponds to the condition R2

B ⊆ R2
C for C ⊆ B. Axiom 10
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gives the condition that if (x, y) ∈ R2
{a}, then there exists a v ∈ Va such that

v ∈ F (x, a) ∩ F (y, a). Thus axiom 7 for �2
B and axiom 10 correspond to the

condition that if (x, y) ∈ R2
B, then F (x, a) ∩ F (y, a) �= ∅ for all a ∈ B. On the

other hand, axiom 12 corresponds to the condition that if (x, y) ∈ R2
B, and

v ∈ F (x, b) ∩ F (y, b), then (x, y) ∈ R2
B∪{b}. In particular, axiom 12 with B = ∅

gives the condition that if v ∈ F (x, b)∩F (y, b), then (x, y) ∈ R2
{b}. Thus, axiom

12 inductively imposes the condition that if F (x, a) ∩ F (y, a) �= ∅ for all a ∈ B,
then (x, y) ∈ R2

B. Hence axioms 10, 12 and axiom 7 for �2
B correspond to the

condition that (x, y) ∈ R2
B if and only if F (x, a)∩F (y, a) �= ∅ for all a ∈ B. Note

that this is the defining condition of similarity relation.
Axiom 6 says that relations corresponding to modal operators �1

∅, �2
∅ and

�3
∅ are all same. Axioms 14-18 capture the conditions (V 1)− (V 4) mentioned in

Proposition 2.
Observe that the wffs from the set Θ appear in the axioms 10, 11, 13-18 acting

as nominals. Such a use of nominals was not required for the axiomatic system
presented in [9] for deterministic information systems. We also note that unlike
hybrid logic (cf. [3]), nominals are not required to append to the language of
LNIS, and wffs from Θ are used for the purpose.

It is not difficult to obtain the following soundness theorem.

Theorem 1 (Soundness). If � α, then |= α.

3.1 Completeness Theorem

The completeness theorem is proved following the standard modal logic tech-
nique [3]. As in normal modal logic, we have the following result.

Proposition 3. Every consistent set of wffs has a maximally consistent exten-
sion.

Let W := {Γ : Γ is maximal consistent}. Consider the equivalence relation R1
∅

defined on W as follows.

(Γ,Δ) ∈ R1
∅ if and only if for all wff �1

∅α ∈ Γ, α ∈ Δ.

Let Σ be a given element of W and consider the equivalence class WΣ of Σ
with respect to relation R1

∅. We now describe the canonical model MΣ for LNIS
corresponding to the given Σ.

Definition 4 (Canonical Model). MΣ := (SΣ , V Σ), where

– SΣ := (WΣ ,A,∪a∈AVa, FΣ),
– FΣ(Γ, a) := {v ∈ Va : (a, v) ∈ Γ},
– V Σ(p) := {Γ ∈WΣ : p ∈ Γ} for p ∈ PV .

Note that, unlike the cases of standard modal logics and the logic presented
in [9], the canonical model of LNIS is based on a NIS SΣ , and therefore a nat-
ural question would be about the connections between the canonical relations
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obtained corresponding to the modal operators �k
B and the indiscernibility, sim-

ilarity and inclusion relations obtained from the information system SΣ . Next,
we capture this aspect, which will also lead us to the Truth Lemma.
We recall the following definition. For, B ⊆ A, and k ∈ {1, 2, 3}, we define
Rk

B ⊆WΣ ×WΣ such that

(Γ,Δ) ∈ Rk
B if and only if �k

Bα ∈ Γ implies α ∈ Δ. (1)

For a ∈ A, we again simply write Rk
{a} as Rk

a. For a Γ ∈ WΣ, and a ∈ A, let Γa

denote the set {(a, v) : (a, v) ∈ Γ}. Then we have the following.

Proposition 4. 1. Rk
B ⊆ Rk

C for C ⊆ B, k ∈ {1, 2, 3}.
2. Γa = Δa if and only if (Γ,Δ) ∈ R1

a.
3. Γa ∩Δa �= ∅ if and only if (Γ,Δ) ∈ R2

a.
4. Γa ⊆ Δa if and only if (Γ,Δ) ∈ R3

a.
5. If (Γ,Δ) ∈ R1

B and Γa = Δa , then (Γ,Δ) ∈ R1
B∪{a}.

6. If (Γ,Δ) ∈ R2
B and Γa ∩Δa �= ∅ , then (Γ,Δ) ∈ R2

B∪{a}.
7. If (Γ,Δ) ∈ R3

B and Γa ⊆ Δa , then (Γ,Δ) ∈ R3
B∪{a}.

8. Rk
B =

⋂
a∈B Rk

a, k ∈ {1, 2, 3}.

Proof. We provide the proofs of Items 2 and 3.
(2): First suppose Γa = Δa, and let �1

aα ∈ Γ . We need to show α ∈ Δ. From
axiom 16, we obtain i ∈ Γ for some i ∈ Θ. Therefore, i ∧ �1

aα ∈ Γ . Now using
axiom 11 for B = ∅, we obtain

�1
∅

( ∧
v∈Va

(
(a, v)↔ �1

∅(i→ (a, v))

)
→ α

)
∈ Γ.

Since (Γ,Δ) ∈ R1
∅, we obtain

∧
v∈Va

(
(a, v)↔ �1

∅(i→ (a, v))

)
→ α ∈ Δ.

If possible, let α /∈ Δ. Then there exists a v ∈ Va such that either (a, v) →
�1

∅(i → (a, v)) /∈ Δ, or �1
∅(i → (a, v)) → (a, v) /∈ Δ. First suppose, (a, v) →

�1
∅(i → (a, v)) /∈ Δ. Then (a, v) ∈ Δ, and �1

∅(i → (a, v)) /∈ Δ. Now using the
fact that Γa = Δa, we obtain (a, v) ∈ Γ , and hence i∧(a, v) ∈ Γ . Therefore, from
axiom 14, we obtain �1

∅(i→ (a, v)) ∈ Γ . Again using the fact that (Γ,Δ) ∈ R1
∅,

we obtain i → (a, v) ∈ Δ. Hence by axiom 14, we have �1
∅(i → (a, v)) ∈ Δ,

a contradiction. Similarly, �1
∅(i → (a, v)) → (a, v) /∈ Δ will also lead us to a

contradiction.
Conversely suppose (Γ,Δ) ∈ R1

a. We need to show (a, v) ∈ Γ if and only if
(a, v) ∈ Δ. First let (a, v) ∈ Γ . Then from axiom 8, we obtain �1

a(a, v) ∈ Γ , and
hence (a, v) ∈ Δ. Now suppose (a, v) ∈ Δ. If (a, v) /∈ Γ , then using axiom 9, we
obtain �1

a(¬(a, v)) ∈ Γ , and hence ¬(a, v) ∈ Δ, a contradiction.

(3): First suppose Γa ∩Δa �= ∅ and we show (Γ,Δ) ∈ R2
a. Let (a, v) ∈ Γa ∩Δa.

Let �2
aα ∈ Γ . We need to show α ∈ Δ. We have (a, v)∧�2

aα ∈ Γ , and hence by
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axiom 12, �2
∅((a, v)→ α) ∈ Γ . This gives �1

∅((a, v)→ α) ∈ Γ (due to axiom 6),
and therefore we obtain (a, v)→ α ∈ Δ as (Γ,Δ) ∈ R1

∅. This gives us α ∈ Δ as
(a, v) ∈ Δ.

Conversely, suppose (Γ,Δ) ∈ R2
a, and we prove Γa ∩ Δa �= ∅. Axiom 16

guarantees the existence of an i ∈ Θ such that i ∈ Γ . Therefore, by axiom 10, we
obtain �2

a

(∨
v∈Va

((a, v) ∧�1
∅(i→ (a, v)))

)
∈ Γ and hence

∨
v∈Va

((a, v)∧�1
∅(i→

(a, v))) ∈ Δ. Therefore, for some v ∈ Va, (a, v)∧�1
∅(i→ (a, v)) ∈ Δ. Since i ∈ Γ ,

we obtain (a, v) ∈ Γ ∩Δ and hence Γa ∩Δa �= ∅. ()

The following proposition relates the canonical relations corresponding to the
modal operators �k

B and the indiscernibility, similarity and inclusion relations

obtained from the information system SΣ . Let us use the notations IndΣ
B , Sim

Σ
B

and InΣ
B to denote the indiscernibility, similarity and inclusion relations relative

to the attribute set B induced from the NIS SΣ .

Proposition 5. 1. R1
B = IndΣ

B .
2. R2

B = SimΣ
B .

3. R3
B = InΣ

B .

Proof. We provide the proof for the indiscernibility relation. Since IndΣ
B =⋂

a∈B IndΣ
a and R1

B =
⋂

a∈B R1
a (by Item 8 of Proposition 4), it is enough

to prove the result for singleton B. So let B = {b}. Suppose (Γ,Δ) ∈ IndΣ
b .

Then, we obtain FΣ(Γ, b) = FΣ(Δ, b). This implies Γb = Δb, and hence by
Item (2) of Proposition 4, we obtain (Γ,Δ) ∈ R1

b , as desired. Conversely, let
(Γ,Δ) ∈ R1

b . Then by Item (2) of Proposition 4, we obtain Γb = Δb. This gives

FΣ(Γ, b) = FΣ(Δ, b) and hence (Γ,Δ) ∈ IndΣ
b . ()

Once we have the Proposition 5, giving the same argument as in normal modal
logic, we obtain

Proposition 6 (Truth Lemma). For any wff β and Γ ∈ WΣ,

β ∈ Γ if and only if MΣ , Γ |= β.

Using the Truth Lemma and Proposition 3 we have

Proposition 7. If α is consistent then there exists a maximal consistent set Σ
containing α such that MΣ , Σ |= α.

This gives the desired completeness theorem.

Theorem 2 (Completeness). For any wff α, if |= α, then � α.

4 Decidability

In this section we shall prove the following decidability result.

Theorem 3. We can decide for a given wff α, whether |= α.
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For this, we prove that LNIS has the finite model property (Proposition 11 be-
low). We will employ the standard filtration technique [3] with necessary mod-
ifications to prove this result. Let Σ denote a finite sub-formula closed set of
wffs.

Consider a model M := (S, V ), where S := (U,A,
⋃

a∈A Va, F ). We define a
binary relation ≡Σ on U as follows:

w ≡Σ w′, if and only if for all β ∈ Σ ∪ D, M, w |= β if and only if M, w′ |= β.

Definition 5 (Filtration model). Given a model M := (S, V ), where S :=
(U,A,

⋃
a∈A Va, F ) and Σ as above, we define a model Mf = (Sf , V f ), where

– Sf := (Uf ,A,
⋃

a∈A Va, F f )

– Uf := {[w] : w ∈ U}, [w] is the equivalence class of w with respect to the
equivalence relation ≡Σ;

– F f ([w], a) = F (w, a);
– V f (p) := {[w] ∈ Uf : w ∈ V (p)}

Mf is the filtration of M through the sub-formula closed set Σ.

First note that the definition of F f is well defined as for all w′ ∈ [w], F (w, a) =
F (w′, a). Moreover,

Proposition 8. For any model M, if Mf is a filtration of M through Σ, then
the domain Uf of Mf contains at most 2n elements, where |Σ ∪D| = n.

Proof. Define the map g : Uf → 2Σ∪D where g([w]) := {β ∈ Σ∪D : M, w |= β}.
Since g is injective, Uf contains at most 2n elements. ()

We also note the following fact.

Proposition 9. 1. ([w], [u]) ∈ IndSf

B if and only if (w, u) ∈ IndS
B .

2. ([w], [u]) ∈ SimSf

B if and only if (w, u) ∈ SimS
B.

3. ([w], [u]) ∈ InSf

B if and only if (w, u) ∈ InS
B.

Proof. ([w], [u]) ∈ IndSf

B ⇔ F f ([w], a) = F f ([u], a) for all a ∈ B ⇔ F (w, a) =
F (u, a) for all a ∈ B ⇔ (w, u) ∈ IndS

B.
For the similarity and inclusion relations, it can be done in the same way. ()

Once we have Proposition 9, it is not difficult to obtain the following.

Proposition 10 (Filtration Theorem). Let Σ be a finite sub-formula closed
set of wffs. For all wffs β ∈ Σ ∪ D, all models M, and all objects w ∈W ,

M, w |= β if and only if Mf , [w] |= β.

Finally, from Propositions 8 and 10 we have

Proposition 11 (Finite Model Property). Let α be a wff and Σ be the set
of all sub-wffs of α. If α is satisfiable, then it is satisfiable in a finite model with
at most 2|Σ∪D| elements.
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5 Logic for Other Types of Relations

Although the logic LNIS is confined to capture the approximations of concepts
relative to indiscernibility, similarity and inclusion relations only, but it can
easily be extended to capture other types of relations as well. In this section, we
briefly sketch the extensions to capture the indistinguishability relations defined
in Section 1. The syntax and semantics can be modified in a natural way to
accommodate these relations. As far as axiomatization is concerned, main task
is to come up with the axioms relating the relations with the attributes and
attribute-values of the objects. We list below the axioms for the relations defined
in Section 1. These axioms along with the axioms 1-6, 14-18 will give us the
desired sound and complete deductive system.

Negative Similarity Relation

– �Cα→ �Bα for C ⊆ B ⊆ A.
– i→ �a(

∨
v∈Va

(¬(a, v) ∧�∅(i→ ¬(a, v)))).
– ¬(b, v) ∧�B∪{b}α→ �B(¬(b, v)→ α).

Complementarity Relation

– �Cα→ �Bα for C ⊆ B ⊆ A.
– (a, v)→ �a(¬(a, v)).
– ¬(a, v)→ �a((a, v)).

– i ∧�B∪{b}α→ �B

(∧
v∈Vb

(
¬(b, v)↔ �∅(i→ (b, v))

)
→ α

)
.

Weak Indiscernibility Relation

– �Bα→ �Cα for ∅ �= C ⊆ B ⊆ A.
– i→ �B

(∨
b∈B

∧
v∈Vb

(
(b, v)↔ �1

∅(i→ (b, v))

))
, B �= ∅.

– �∅⊥.

Weak Similarity Relation

– �Bα→ �Cα for ∅ �= C ⊆ B ⊆ A.
– i→ �B

(∨
b∈B

∨
v∈Vb

(
(b, v) ∧�1

∅(i→ (b, v))

))
, B �= ∅.

– �∅⊥.

Weak Inclusion Relation

– �Bα→ �Cα for ∅ �= C ⊆ B ⊆ A.
– i→ �B

(∨
b∈B

∧
v∈Vb

(
�1

∅(i→ (b, v))→ d(b, v)

))
, B �= ∅.

– �∅⊥.
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Weak Negative Similarity Relation

– �Bα→ �Cα for ∅ �= C ⊆ B ⊆ A.
– i→ �B

(∨
b∈B

∨
v∈Vb

(
¬(b, v) ∧�1

∅(i→ ¬(b, v))
))

, B �= ∅.
– �∅⊥.

Weak Complementarity Relation

– �Bα→ �Cα for ∅ �= C ⊆ B ⊆ A.
– i→ �B

(∨
b∈B

∧
v∈Vb

(
¬(b, v)↔ �1

∅(i→ (b, v))

))
, B �= ∅.

– �∅⊥.

We sketch briefly how the three axioms of negative similarity relation given above
will give the corresponding completeness theorem. One can proceed similarly
for the other relations. Let RB be the canonical relation corresponding to the
modal operator �B for the negative similarity relation (cf. (1) of page 125). Then
corresponding to the Proposition 4, we will obtain the following:

1. RB ⊆ RC for C ⊆ B (using first axiom).
2. Γ c

a ∩Δc
a �= ∅ if and only if (Γ,Δ) ∈ Ra (using second axiom and third axiom

for B = ∅).
3. If (Γ,Δ) ∈ RB and Γ c

a ∩Δc
a �= ∅ , then (Γ,Δ) ∈ RB∪{a} (using third axiom).

As a consequence of these facts, we will obtain RB to be the negative similarity
relation induced from the canonical information system (cf. Definition 4) and
consequently we get the Truth Lemma, and hence completeness theorem.

6 Conclusions

In NISs, object-attribute pair is mapped to a set of attribute values. This repre-
sents uncertainty, in the sense that we know some possible attribute values that
an object can take for an attribute, but we do not know exactly which ones. In
this kind of situation, one could get information which reduces or removes this
uncertainty. In the line of work in [10,11], a natural question would be about the
proposal of an update logic for NISs, which can capture such an information and
its effect on the approximations of concepts. The current work has completed the
first step in this direction and given the static part of such an update logic. It
remains to extend the language of LNIS to obtain the update logic for NISs.
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Abstract. This paper presents a tableau calculus for two semantic interpretations
of public announcements over monotone neighbourhood models: the intersection
and the subset semantics, developed by Ma and Sano. We show that both calculi
are sound and complete with respect to their corresponding semantic interpre-
tations and, moreover, we establish that the satisfiability problem of this public
announcement extensions is NP-complete in both cases. The tableau calculi has
been implemented in Lotrecscheme.

1 Introduction

Public announcement logic (PAL; [7,21]) studies the effect of the most basic com-
municative action on the knowledge of epistemic logic agents (EL; [12,6]), and it has
served as the basis for the study of more complex announcements [3] and other forms of
epistemic changes [27,25]. Under the standard EL semantic model, relational models,
PAL relies on a natural interpretation of what the public announcement of a formula ϕ
does: it eliminates those epistemic possibilities that do not satisfy ϕ. Despite its sim-
plicity, PAL has proved to be a fruitful field for interesting research, as the characteri-
sation of successful formulas (those that are still true after being truthfully announced:
[28,14]), the characterisation of schematic validities [13] and many others [24].

However, relational models are not the unique structures for interpreting EL for-
mulas, and recently there have been approaches that, using the so called minimal or
neighborhood models [23,18,19,4], have studied not only epistemic phenomena but
also their dynamics [31,26,17,30]. The set of EL validities under neighborhood models
is smaller than that under relational models, so the agent’s knowledge has less ‘built-in’
properties, which allows a finer representation of epistemic notions and their dynamics
without resorting to ‘syntactic’ awareness models [5].

In [17], the authors presented two ways of updating (monotone) neighborhood mod-
els and thus of representing public announcements: one intersecting the current neigh-
borhoods with the new information (∩-semantics, already proposed in [31]), and
another preserving only those neighborhoods which are subsets of the new information
(⊆-semantics). The two updates behave differently, as their provided sound and com-
plete axiom systems show. The present work continues the study of such updates, first,
by extending the tableau system for monotone neighborhood models of [15] with rules
for dealing with its public announcement extensions, and second, by showing how the
satisfiability problem is NP-complete for both the intersection and the subset semantics.

M. Banerjee and S.N. Krishna (eds.): ICLA 2015, LNCS 8923, pp. 132–145, 2015.
c© Springer-Verlag Berlin Heidelberg 2015
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2 Preliminaries

This section recalls some basic concepts from [17]. We work on the single agent case,
but the results obtained can be easily extended to multi-agent scenarios.

Throughout this paper, let Prop be a countable set of atomic propositions. The lan-
guage LEL extends the classical propositional language with formulas of the form �ϕ,
read as “the agent knows that ϕ”. Formally,

ϕ ::= p | ¬ϕ | ϕ ∧ ψ | �ϕ

with p ∈ Prop. Other propositional connectives (∨,→ and↔) are defined as usual. The
dual of � is defined as �ϕ := ¬�¬ϕ.

A monotone neighborhood frame is a pair F = (W, τ) where W � ∅ is the domain, a
set of possible worlds, and τ : W → ℘(℘(W)) is a neighborhood function satisfying the
following monotonicity condition: for all w ∈ W and all X, Y ⊆ W, X ∈ τ(w) and X ⊆ Y
implies Y ∈ τ(w). A monotone neighborhood model (MNM)M = (F ,V) is a monotone
neighborhood frame F together with a valuation function V : Prop → ℘(W). Given a
M = (W, τ,V) and a LEL-formula ϕ, the notion of ϕ being true at a state w in the model
M (writtenM, w |= ϕ) is defined inductively as follows:

M, w |= p iff w ∈ V(p), M, w |= ϕ ∧ ψ iffM, w |= ϕ andM, w |= ψ,
M, w |= ¬ϕ iffM, w �|= ϕ, M, w |= �ϕ iff �ϕ�M ∈ τ(w).

where �ϕ�M := {u ∈ W | M, u |= ϕ} is the truth set of ϕ inM. SinceM is a MNM, the
satisfaction clause for � can be equivalently rewritten as follows:

M, w |= �ϕ iff X ⊆ �ϕ�M for some X ∈ τ(w).

The language LPAL extends LEL with the public announcement operator [ϕ], allow-
ing the construction of formulas of the form [ϕ]ψ, read as “ψ is true after the public
announcement of ϕ”. (Define 〈ϕ〉ψ := ¬[ϕ]¬ψ.) For the semantic interpretation, we re-
call the intersection and subset semantics of [17].

Definition 1. Let M = (W, τ,V) be a MNM. For any non-empty U ⊆ W, define the
function VU : Prop→ U by VU (p) := V(p) ∩ U for each p ∈ Prop.

– The intersection submodel ofM induced by U,M∩U = (U, τ∩U ,VU), is given by
τ∩U(u) := {P ∩U | P ∈ τ(u)}, for every u ∈ U.

– The subset submodel ofM induced by U,M⊆U=(U, τ⊆U ,VU), is given by τ⊆U(u):=
{P ∈ τ(u) | P ⊆ U}, for every u ∈ U.

IfM is monotone, then so areM∩U andM⊆U , as shown in [17].
Given a MNMM = (W, τ,V), formulas ϕ, ψ in LPAL, the notion of a formula being

true at a state of a model extends that for formulas in LEL with the following clauses:

– M, w |=∩ [ϕ]ψ iffM, w |=∩ ϕ impliesM∩ϕ, w |=∩ ψ,
– M, w |=⊆ [ϕ]ψ iffM, w |=⊆ ϕ impliesM⊆ϕ, w |=⊆ ψ;
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whereM∩ϕ abbreviatesM∩�ϕ�M andM⊆ϕ abbreviatesM⊆�ϕ�M . If we use the symbol
∗ ∈ {∩,⊆} to denote either semantics then, from 〈ϕ〉ψ’s definition,

– M, w |=∗ 〈ϕ〉ψ iffM, w |=∗ ϕ andM∗ϕ, w |=∗ ψ.

The subscript ∗ ∈ {∩,⊆} will be dropped from |=∗ when its meaining is clear from the
context. A sound and complete axiomatization for LPAL w.r.t. the provided semantics
under MNMs can be found in [17]. The purpose of this paper is to develop tableau sys-
tems for both logics. The following proposition is a generalization of the monotonicity
of � under MNMs (�ϕ�M ⊆ �ψ�M implies ��ϕ�M ⊆ ��ψ�M) to the public announce-
ments extensions and it will be key for providing �’s rules for both intersection and
subset semantics.

Proposition 1. Let ρi (1 ≤ i ≤ n), θ j (1 ≤ j ≤ m) and ϕ be LPAL-formulas andM =
(W, τ,V) be a MNM.

(i) �[ρ1] · · · [ρn]ϕ�M ⊆ �[θ1] · · · [θm]ψ�M implies ��ϕ�M∩ρ1 ;··· ;∩ρn ⊆ ��ψ�M∩θ1 ;··· ;∩θm

(ii) �〈ρ1〉 · · · 〈ρn〉ϕ�M ⊆ �〈θ1〉 · · · 〈θm〉ψ�M implies ��ϕ�M⊆ρ1 ;··· ;⊆ρn ⊆ ��ψ�M⊆θ1 ;··· ;⊆θm

Proof. For (i), assume �[ρ1] · · · [ρn]ϕ�M ⊆ �[θ1] · · · [θm]ψ�M. Now fix any w ∈ W
with M∩ρ1;··· ;∩ρn , w |=∩ �ϕ. By semantic interpretation, there is X ∈ τ∩ρ1;··· ;∩ρn(w)
s.t. X ⊆ �ϕ�M∩ρ1 ;··· ;∩ρn ; then, by the definition of τ∩ρ1;··· ;∩ρn (w), there is Y ∈ τ(w) s.t.
(Y ∩ �ρ1�M ∩ · · · ∩ �ρn�M∩ρ1 ;··· ;∩ρn−1 ) ⊆ �ϕ�M∩ρ1 ;··· ;∩ρn , i.e., Y ⊆ �[ρ1] · · · [ρn]ϕ�M and hence,
by assumption, Y ⊆ �[θ1] · · · [θm]ψ�M. Thus, Y ⊆ �ψ�M∩θ1 ;··· ;∩θm for Y ∈ τ∩θ1;··· ;∩θm (w) so
M∩θ1;··· ;∩θm , w |=∩ �ψ, as needed.

For (ii), assume �〈ρ1〉 · · · 〈ρn〉ϕ�M ⊆ �〈θ1〉 · · · 〈θm〉ψ�M. Now fix any w ∈ W with
M⊆ρ1;··· ;⊆ρn , w |=⊆ �ϕ. Then there is X ∈ τ⊆ρ1;··· ;⊆ρn (w) s.t. X ⊆ �ϕ�M⊆ρ1 ;··· ;⊆ρn and, by defi-
nition of τ⊆ρ1;··· ;⊆ρn(w), both X ∈ τ(w) and X⊆(�ρ1�M∩· · ·∩�ρn�M⊆ρ1 ;··· ;∩ρn−1∩�ϕ�M⊆ρ1 ;··· ;∩ρn ),
i.e., X⊆�〈ρ1〉 · · · 〈ρn〉ϕ�M and hence, by assumption, X⊆�〈θ1〉 · · · 〈θm〉ψ�M. Thus, X ∈
τ⊆θ1;··· ;⊆θm (w) and X⊆�ψ�M⊆θ1 ;··· ;⊆θm soM⊆θ1;··· ;⊆θm , w |=⊆ �ψ, as needed.

3 Tableaux for Non-normal Monotone (Static) Epistemic Logic

There are several works on tableau calculus of non-normal modal logic. Kripke [16]
proposed a calculus based on Kripke semantics which allow the notion of normal world,
and [8] constructed a uniform framework for tableau calculi for neighborhood seman-
tics employing labels for both a states and set of states. More recently, Indrzejczak [15]
avoided the label for set of states while presenting tableau calculi for several non-normal
logics over neighborhood semantics.

As a prelude to our contribution, here we recall the tableau method for non-normal
monotone modal logic of Indrzejczak [15], of which our proposal is an extension, as
well as the argument for soundness and completeness. Then we recall why the satisfia-
bility problem for non-normal monotone modal logic is NP-complete [29].

(σ : ϕ ∧ ψ)
(σ : ϕ)(σ : ψ)

(∧)
(σ : ¬(ϕ ∧ ψ))

(σ : ¬ϕ) | (σ : ¬ψ)
(¬∧)

(σ : ¬¬ϕ)
(σ : ϕ)

(¬¬)
(σ : �ϕ)(σ : ¬�ψ)

(σnew : ϕ)(σnew : ¬ψ)
(�)

Fig. 1. Tableau rules for non-normal monotone logic [15]
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The terms in the tableau rules (Figure 1), of the form (σ : ϕ), indicate that formula
ϕ is true in state (prefix) σ. Rules (∧), (¬∧) and (¬¬) correspond to propositional rea-
soning, and rule (�) is the prefix generating rule. There are two general constraints on
the construction of tableaus: (1) The prefix generating rule is never applied twice to the
same premise on the same branch; (2) A formula is never added to a tableau branch
where it already occurs.

As usual, a tableau is saturated when no more rules that satisfy the constraints can
be applied. A branch is saturated if it belongs to a saturated tableau, and it is closed if
it contains formulas (σ : ϕ) and (σ : ¬ϕ) for some σ and ϕ (otherwise, the branch is
open). A tableau is closed if all its branches are closed, and it is open if at least one of
its branches is open.

Rule (�) might surprise readers familiar with tableaux for normal modal logic, but it
states a straightforward fact: if both �ϕ and ¬�ψ hold in a world σ, then while �ϕ im-
poses the existence of a neighborhood in τ(σ) containing only ϕ-worlds, ¬�ψ imposes
a ¬ψ-world in every neighborhood in τ(σ). The world σnew denotes exactly that.

3.1 Soundness and Completeness

Definition 2. Given a branch Θ, Prefix(Θ) is the set of all its prefixes. We say that Θ is
faithful to a MNM M = (W, τ,V) if there is a mapping f : Prefix(Θ) → W such that
(σ : ϕ) ∈ Θ impliesM, f (σ) |= ϕ for all σ ∈ Prefix(Θ).

Lemma 1. Let Θ be any branch of a tableau andM = (W, τ,V) a MNM. If Θ is faithful
toM, and a tableau rule is applied to it, then it produces at least one extension Θ′ such
that Θ′ is faithful toM.

For the proof, see Appendix A.1.

Theorem 1 (Soundness). Given any formula ϕ, if there is a closed tableau for
(σinitial : ¬ϕ), then ϕ is valid in the class of all MNMs.

Proof. We show the contrapositive. Suppose that ¬ϕ is satisfiable, i.e., there is a MNM
M = (W, τ,V) and a w ∈ W s.t.M, w �|= ϕ. Then the initial tableauΘ = {(σinitial : ¬ϕ)} is
faithful toM and hence, by Lemma 1, only faithful tableau to MNM will be produced.
A faithful branch cannot be closed. Hence (σinitial : ¬ϕ) can have no closed tableau.

Lemma 2. Given an open saturated branch Θ, define the modelMΘ = (WΘ, τΘ,VΘ)
as WΘ := Prefix(Θ), VΘ(p) := {σ ∈ WΘ | (σ : p) ∈ Θ} and, for every σ ∈ WΘ,

X ∈ τΘ(σ) iff there is ϕ s.t.(σ : �ϕ) ∈ Θ and {σ′ ∈ WΘ | (σ′ : ϕ) ∈ Θ} ⊆ X

Then, for all formulas ϕ and all prefix σ, (i) (σ : ϕ) ∈ Θ impliesMΘ, σ |= ϕ and (ii)
(σ : ¬ϕ) ∈ Θ impliesMΘ, σ �|= ϕ.

Note that τΘ is clearly monotone and thus, if Θ is non-empty,MΘ is a MNM. For the
proof, see Appendix A.2.

Theorem 2 (Completeness). Given any formula ϕ, if there is an open saturated tableau
for (σinitial : ϕ), then ϕ is satisfiable in a MNM.

Proof. If there is an open saturated branch Θ containing (σinitial : ϕ), Lemma 2 yields
MΘ, σinitial |= ϕ so ϕ is satisfiable in a MNM.
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3.2 Complexity

Normal modal logics as K and KT are PSPACE-complete, and negative introspection
¬�p → �¬�p makes any modal logics between K and S4 NP-complete [11]. Tableau
systems for such logics have been given in [10].

The satisfiability problem (deciding whether a given ϕ is satisfiable) for non-normal
monotone modal logic is NP-complete [29]. A known method is to build a tableau from
{(σinitial : ϕ)}; at each step, the process adds non-deterministically a term of the form
(σ : ψ) with σ is a symbol and ψ is a subformula or a negation of a subformula of ϕ.

Proposition 2. When executing the tableau method from {(σinitial : ϕ)}, the number of
terms (σ : ψ) that can be added is polynomial in the length of ϕ.

Proof. As ψ is a subformula or a negation of a subformula of ϕ, the number of possible
ψ is linear in the size of ϕ. The number of possible world symbols σ is polynomial
in the size of ϕ, as they are created only for pairs of the form �ψ1, ¬�ψ2. Thus, the
number of such σ is bounded by |ϕ|2, and hence the number of possible terms (σ : ψ)
is bounded by |ϕ|3.

Corollary 1. The satisfiability problem in non-normal monotone modal logic is NP-
complete.

Proof. NP-hardnesscomesfrom the fact that thesatisfiabilityproblemforclassicalpropo-
sitional logic ispolynomially reducible to thesatisfiability problem fornon-normalmono-
tone modal logic. Now let us figure out why it is in NP. In the non-deterministic algorithm
shown below, the size of Θ is polynomial in the length of ϕ (Proposition 2). Testing that
Θ is saturated or non-deterministically applying a rule can be implemented in polynomial
time in the size ofΘ; then, these operations are polynomial in the length of ϕ. As we add
a term to Θ at each iteration of the while loop, there are at most a polynomial number of
iterations. Therefore, the tableau method can be implemented in polynomial time on a
non-deterministic machine.

procedure sat(ϕ)
Θ := {(σinitial : ϕ)}
while Θ is not saturated

Θ := result of the (non-deterministic) application of a rule on Θ
if Θ is closed then reject

accept

4 Tableaux for Non-normal Public Annoucement Logics

Tableaux for public announcements for normal modal logic already appeared in [2],
where the tableau formalism needed to represent the information of accessibility rela-
tion. Since we are concerned with non-normal modal logic characterized by neighbor-
hood models, our tableau calculus will not introduce any formalism for accessibility
relation. In this sense, our work is not a trivial generalization of [2]. For non-normal
monotone modal logic, this section adapts the tableau method of Section 3 to deal with
public announcements under both the∩- and the ⊆-semantics. Here, terms in the tableau
rules can be either
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– of the form (σ :L ϕ) with σ a world symbol, L a list of announced formulas (ε is
the empty list) and ϕ a formula, indicating that σ survives the successive announce-
ments of the elements of L and afterwards it satisfies ϕ, or

– of the form (σ :L ×), indicating that σ does not survive successive announcements
of the elements of L.

Figure 2 shows the tableau rules for non-normal public annoucement logics. We
define the rule set for the ∩-semantics as all the common rules plus (�∩), while the rule
set for the ⊆-semantics as all the common rules plus (�⊆).

Common rules:
(σ :L p)
(σ :ε p)

(↓ ε) (σ :L ¬p)
(σ :ε ¬p)

(↓ ε¬)
(σ :L;ϕ ×)

(σ :L ¬ϕ) | (σ :L ×)
(×Back)

(σ :L ϕ ∧ ψ)
(σ :L ϕ)(σ :L ψ)

(∧)
(σ :L ¬(ϕ ∧ ψ))

(σ :L ¬ϕ) | (σ :L ¬ψ)
(¬∧)

(σ :L ¬¬ϕ)
(σ :L ϕ)

(¬¬)

(σ :L;ϕ ψ)

(σ :L ϕ)
(Back)

(σ :L [ϕ]ψ)
(σ :L ¬ϕ) | (σ :L;ϕ ψ)

([·]) (σ :L ¬[ϕ]ψ)
(σ :L;ϕ ¬ψ)

(¬[·])

For ∩-semantics:
(σ :L �ϕ)(σ :L′ ¬�ψ)

(σnew :L ϕ)(σnew :L′ ¬ψ) | (σnew :L ×)(σnew :L′ ¬ψ)
(�∩)

For ⊆-semantics:
(σ :L �ϕ)(σ :L′ ¬�ψ)

(σnew :L′ ¬ψ)(σnew :L ϕ) | (σnew :L′ ×)(σnew :L ϕ)
(�⊆)

Fig. 2. Tableau rules for handling public announcements

Rules (∧), (¬∧) and (¬¬) deal with propositional reasoning. Rules (↓ ε), (↓ ε¬)
indicate that valuations do not change after a sequence of announcements. Rule (¬[·])
states that if ¬[ϕ]ψ holds in σ after a sequence of announcements L then ¬ψ must hold
in σ after the sequence of announcements L;ϕ. Rule ([·]) states that if [ϕ]ψ holds in
σ after a sequence of announcements L, then either ϕ fails in σ after a sequence of
announcements L or else ψ holds in σ after the sequence of announcements L;ϕ. Rule
(Back) deals with a world surviving a sequence of announcements, and rule (×Back)
deals with a world not surviving it.

The rule of (�∩) is a rewriting of the first item of Proposition 1 into the rule of
tableau calculus. For simplicity, let us assume that L ≡ ρ; ρ′ and L′ ≡ θ. By taking the
contrapositive implication of Proposition 1.(i), we obtain the following rule:

(σ :ρ;ρ′ �ϕ)(σ :θ ¬�ψ)

(σnew :ε [ρ][ρ′]ϕ)(σnew :ε ¬[θ]ψ)

While (σnew :ε ¬[θ]ψ) generates (σnew :θ ¬ψ) by the rule (¬[·]), we have two cases
for expanding (σnew :ε [ρ][ρ′]ϕ). First, assume that σnew survives after the successive
updates of ρ and ρ′. Then, we may add (σnew :ρ:ρ′ ϕ) to the branch. Second, sup-
pose that σnew does not survive after the successive updates of ρ and ρ′. Then, we add
(σnew :ρ;ρ′ ×) to the branch. This also explains the soundness of (�∩) for ∩-semantics.
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Rule (�⊆) can also be explained in terms of the second item of Proposition 1. Let
L and L′ as above. By taking the contrapositive implication of Proposition 1.(ii) and
rewriting the diamond 〈γ〉 in terms of the dual [γ], we obtain the following:

(σ :ρ;ρ′ �ϕ)(σ :θ ¬�ψ)

(σnew :ε ¬[ρ][ρ′]¬ϕ)(σnew :ε [θ]¬ψ)

By a procedure similar to the used for (�∩) we can justify the rule (�⊆).
As before, there are two constraints on the construction of tableaus: A prefix gener-

ating rule is never applied twice to the same premise on the same branch; A formula
is never added to a tableau branch where it already occurs. The notions of saturated
tableau and saturated branch are as before. In order to deal with terms of the form
(σ :L ×), the notion of closed branch is extended as follows: a branch of a tableau is
closed when (1) it contains terms (σ :L ϕ) and (σ :L ¬ϕ) for some σ, L and ϕ, or
(2) it contains (σ :ε ×) for some σ; otherwise, the branch is called open. The notions of
closed and open tableau are defined as before.

4.1 Soundness

We start with the ∩-semantics. As before, given a branch Θ, Prefix(Θ) denotes the set
of all prefixes in Θ.

Definition 3. Given a branch Θ and a MNMM = (W, τ,V), Θ is faithful toM if there
is a mapping f : Prefix(Θ)→ W such that, for all σ ∈ Prefix(Θ),

– (σ :ψ1;··· ;ψn ϕ) ∈ Θ impliesM∩ψ1;··· ;∩ψn , f (σ) |= ϕ, and
– (σ :ψ1;··· ;ψn ×) ∈ Θ implies that f (σ) is not inM∩ψ1;··· ;∩ψn ’s domain.

Lemma 3. Let Θ be any branch of a tableau andM = (W, τ,V) a MNM. If Θ is faithful
toM, and a tableau rule is applied to it, then it produces at least one extension Θ′ such
that Θ′ is faithful toM.

Proof. We only show the case for rule (�∩). For the cases of rules (↓ ε), ([·]), (×Back),
(Back), see Appendix A.3. Throughout this proof, let L≡ ρ1; · · · ; ρn. Let L′ ≡ θ1; · · · ; θm
in the rule (�∩) of Table 2. Since (σ :L �ϕ), (σ :L′ ¬�ψ) ∈ Θ, there is an f s.t.
f (σ) ∈ ��ϕ�M∩ρ1 ;··· ;∩ρn and f (σ) � ��ψ�M∩θ1 ;··· ;∩θm . Thus, ��ϕ�M∩ρ1 ;··· ;∩ρn � ��ψ�M∩θ1 ;··· ;∩θm

and hence, by Proposition 1, �[ρ1] · · · [ρn]ϕ�M � �[θ1] · · · [θm]ψ�M: there is u inM such
that u ∈ �[ρ1] · · · [ρn]ϕ�M but u � �[θ1] · · · [θm]ψ�M. From the latter it follows that u
survives the successive intersection updates of θ1, . . ., θn butM∩θ1;··· ;∩θm , u �|= ψ. From
the former, suppose (1) u is in the domain ofM∩ρ1;··· ;∩ρn ; thenM∩ρ1;··· ;∩ρn , u |= ϕ and
we can take Θ′ := Θ ∪ {(σnew :L ϕ), (σnew :L′ ¬ψ)} and extend the original f into
f ′ : Prefix(Θ′) → W by defining f ′(σnew) := u. It follows thatM∩ρ1;··· ;∩ρn , f (σnew) |= ϕ
andM∩θ1;··· ;∩θm , f (σnew) �|= ψ, and so Θ′ is faithful toM. Otherwise, (2) u is not in the
domain ofM∩ρ1;··· ;∩ρn , an a similar argument shows thatΘ′ = Θ∪{(σnew :L ×), (σnew :L′

¬ψ)} is faithful toM.

Theorem 3. Given any formula ϕ and any list L ≡ ρ1; · · · ; ρn, if there is a closed
tableau for (σinitial :L ¬ϕ), then ϕ is valid inM∩ρ1;··· ;∩ρn for all MNMsM.
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Proof. We show the contrapositive. Suppose that there is a MNM M = (W, τ,V) and
a w ∈ W such thatM∩ρ1;··· ;∩ρn , w �|= ϕ. Then the initial tableau Θ = {(σinitial :L ¬ϕ)} is
faithful toM and hence, by Lemma 3, only faithful tableau to MNM will be produced.
A faithful branch cannot be closed. Hence (σinitial :L ¬ϕ) can have no closed tableau.

Now, for the ⊆-semantics, we have the following.

Lemma 4. Let Θ be any branch of a tableau andM = (W, τ,V) a MNM. If Θ is faithful
toM, and a tableau rule is applied to it, then it produces at least one extension Θ′ such
that Θ′ is faithful toM.

Proof. We only show the case for the rule (�⊆). Let L ≡ ρ1; · · · ; ρn and L′ ≡ θ1; · · · ; θm
in the rule (�⊆) of Table 2. Since (σ :L �ϕ), (σ :L′ ¬�ψ) ∈ Θ, there is an f s.t.
f (σ) ∈ ��ϕ�M⊆ρ1 ;··· ;⊆ρn and f (σ) � ��ψ�M⊆θ1 ;··· ;⊆θm . Thus, ��ϕ�M⊆ρ1 ;··· ;⊆ρn � ��ψ�M⊆θ1 ;··· ;⊆θm

and hence, by Proposition 1, �〈ρ1〉 · · · 〈ρn〉ϕ�M � �〈θ1〉 · · · 〈θm〉ψ�M. Then, there is u in
M such that u ∈ �〈ρ1〉 · · · 〈ρn〉ϕ�M but u � �〈θ1〉 · · · 〈θm〉ψ�M. From the former it fol-
lows that u survives the successive subset updates of ρ1, . . . , ρn andM⊆ρ1;··· ;⊆ρn , u |= ϕ.
From the latter, suppose (1) u is in the domain ofM⊆θ1;··· ;⊆θm ; thenM⊆θ1;··· ;⊆θm , u |= ¬ψ
and we can take Θ′ := Θ ∪ {(σnew :L′ ¬ψ), (σnew :L ϕ)} and extend the original f into
f ′ : Prefix(Θ′)→ W by defining f ′(σnew) := u. It follows thatM⊆θ1;··· ;⊆θm , f (σnew) �|= ψ
and M⊆ρ1;··· ;⊆ρn , f (σnew) |= ϕ, and so Θ′ is faithful to M. Otherwise, (2) u is not in
the domain of M⊆θ1;··· ;⊆θm , and a similar argument shows that Θ′ := Θ ∪ {(σnew :L′

×), (σnew :L ϕ)} is faithful toM.

Theorem 4. Given any formula ϕ and any list L ≡ ρ1; · · · ; ρn, if there is a closed
tableau for (σinitial :L ϕ), then ϕ is valid inM⊆ρ1;··· ;⊆ρn for all MNMsM.

4.2 Completeness

We start with the ∩-semantics. Define the function len : LPAL ∪ {×, L} → N as

len(×) := 1, len(¬ϕ) := len(ϕ) + 1, len(ϕ ∧ ψ) := len(ϕ) + len(ψ) + 1,
len(p) := 1, len(�ϕ) := len(ϕ) + 1, len([ϕ]ψ) := len(ϕ) + len(ψ) + 1,

len(L) := len(ϕ1) + · · · + len(ϕn) for L ≡ ϕ1; · · · ;ϕn.

Lemma 5. Given an open saturated branch Θ, define the modelMΘ = (WΘ, τΘ,VΘ)
as WΘ := Prefix(Θ), VΘ(p) := {σ ∈ WΘ | (σ :ε p) ∈ Θ} and, for every σ ∈ WΘ,
X ∈ τΘ(σ) iff there are ϕ and L such that

(σ :L �ϕ) ∈ Θ and {σ′ ∈ WΘ | (σ′ :L ×) ∈ Θ or (σ′ :L ϕ) ∈ Θ} ⊆ X.

Then, for all lists L = ρ1; · · · ; ρn and all formulas ϕ,

(i) (σ :L ϕ) ∈ Θ implies (MΘ)∩ρ1;···∩ρn , σ |= ϕ
(ii) (σ :L ¬ϕ) ∈ Θ implies (MΘ)∩ρ1;···∩ρn , σ �|= ϕ

(iii) (σ :L ×) ∈ Θ implies σ is not in the domain of (MΘ)∩ρ1;···∩ρn .
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Proof. All of (i), (ii) and (iii) are proved by simultaneous induction on len(∗) + len(L),
where ∗ is a formula ϕ or ×. We show the cases (i) and (ii) for �γ. In Appendix A.4, the
reader can find arguments for case (iii) fully and the cases for ϕ of the form p, [ψ]γ.

Let ϕ ≡ �γ. For (i), assume (σ :ρ1;··· ;ρn �γ) ∈ Θ; we show that �γ�(MΘ)∩ρ1;··· ;∩ρn ∈
(τΘ)∩ρ1;··· ;∩ρn (σ) or, equivalently, �[ρ1] · · · [ρn]γ�MΘ ∈ τΘ(σ). It suffices to show both

– (σ :L �γ) ∈ Θ,
– {σ′ ∈ WΘ | (σ′ :L ×) ∈ Θ or (σ′ :L γ) ∈ Θ} ⊆ �[ρ1] · · · [ρn]γ�MΘ .

The first is the assumption; the second holds by induction hypothesis. For (ii), assume
(σ :L ¬�γ) ∈ Θ; we show that �γ�(MΘ)∩ρ1;··· ;∩ρn � (τΘ)∩ρ1;··· ;∩ρn (σ) or, equivalently,
�[ρ1] · · · [ρn]γ�MΘ � τΘ(σ), i.e., for all ϕ and L′,

(σ :L′ �ϕ) ∈ Θ implies {σ′∈WΘ | (σ′ :L′ ×)∈Θ or (σ′ :L′ ϕ) ∈ Θ} � �[ρ1] · · · [ρn]γ�MΘ

Thus, take any ϕ and L′ such that (σ :L′ �ϕ) ∈ Θ. By the saturatedness of Θ and rule
(�∩) we obtain, for some fresh σnew, either

(σnew :L′ ϕ), (σnew :L ¬γ) ∈ Θ or (σnew :L′ ×), (σnew :L ¬γ) ∈ Θ.

In either case, it follows from (σnew :L ¬γ) ∈ Θ and induction hypothesis that γ is false
at σnew in (MΘ)∩ρ1;··· ;∩ρn , which is equivalent toMΘ, σnew �|= [ρ1] · · · [ρn]γ. This finishes
establishing our goal; {σ′ ∈ WΘ | (σ′ :L′ ×) ∈ Θ or (σ′ :L′ ϕ) ∈ Θ} � �[ρ1] · · · [ρn]γ�MΘ .

Theorem 5. Given any formula ϕ, if there is an open saturated tableau for (σinitial :ε ϕ),
then ϕ is satisfiable in the class of all MNMs for intersection semantics.

Proof. By assumption, there is an open saturated branch Θ containing (σinitial :ε ϕ).
By Lemma 5,MΘ, σinitial |= ϕ, which implies the satisfiability of ϕ in the class of all
MNMs for intersection semantics.

Now, let us move to the ⊆-semantics.

Lemma 6. Given an open saturated branch Θ, define the modelMΘ = (WΘ, τΘ,VΘ)
as in Lemma 5 except that, for every σ ∈ WΘ, X ∈ τΘ(σ) iff

(σ :L �ϕ) ∈ Θ and {σ′ ∈ WΘ | (σ′ :L ϕ) ∈ Θ} ⊆ X for some ϕ and L.

Then, for all lists L = ρ1; · · · ; ρn and all formulas ϕ,

(i) (σ :L ϕ) ∈ Θ implies (MΘ)⊆ρ1;··· ;⊆ρn , σ |= ϕ
(ii) (σ :L ¬ϕ) ∈ Θ implies (MΘ)⊆ρ1;··· ;⊆ρn , σ �|= ϕ
(iii) (σ :L ×) ∈ Θ implies σ is not in the domain of (MΘ)⊆ρ1;··· ;⊆ρn .

Proof. All of (i), (ii) and (iii) are proved by simultaneous induction on len(∗) + len(L),
where ∗ is a formula ϕ or ×. We show cases (i) and (ii) for ϕ of the form �γ.

For (i), assume(σ :L �γ) ∈ Θ;weshowthat (MΘ)⊆ρ1;··· ;⊆ρn , σ |= �γ, i.e., �γ�(MΘ)⊆ρ1 ;··· ;⊆ρn

∈ (τΘ)⊆ρ1;··· ;⊆ρn (σ) or, equivalently, �〈ρ1〉 · · · 〈ρn〉γ�M ∈ τΘ(σ). It suffices to show

(σ :L �γ) ∈ Θ and {σ′ ∈ WΘ | (σ′ :L γ) ∈ Θ} ⊆ �〈ρ1〉 · · · 〈ρn〉γ�MΘ
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The first conjunct is the assumption. For the second conjunct, suppose (σ′ :L γ) ∈ Θ;
we show thatMΘ, σ′ |= 〈ρ1〉 · · · 〈ρn〉γ, i.e.,

MΘ, σ′ |= ρ1, . . . , (MΘ)⊆ρ1;··· ;⊆ρn−1 , σ′ |= ρn and (MΘ)⊆ρ1;··· ;⊆ρn , σ′ |= γ.
These can be derived from (σ′ :L γ) ∈ Θ, the rule (Back) and induction hypothesis.
Therefore,MΘ, σ′ |= 〈ρ1〉 · · · 〈ρn〉γ, as required.

For (ii), assume (σ :L ¬�γ) ∈ Θ; we show that (MΘ)⊆ρ1;··· ;⊆ρn , σ �|= �γ, i.e.,
�〈ρ1〉 · · · 〈ρn〉γ�M � τΘ(σ). It suffices to show that, for all L′ and all ϕ,

(σ :L′ �ϕ) ∈ Θ implies {σ′ ∈ WΘ | (σ′ :L′ ϕ) ∈ Θ} � �〈ρ1〉 · · · 〈ρn〉γ�MΘ .
Thus, take any L′ and ϕ such that (σ :L′ �ϕ) ∈ Θ. Since (σ :L′ �ϕ), (σ :L ¬�γ) ∈ Θ,
Θ’s saturatedness and rule (�⊆) imply, for some fresh σnew, either

(σnew :L ¬γ), (σnew :L′ ϕ) ∈ Θ or (σnew :L ×), (σnew :L′ ϕ) ∈ Θ
In either case, it follows from induction hypothesis that eitherσnew is not in (MΘ)⊆ρ1;··· ;⊆ρn ,
or else (MΘ)⊆ρ1;··· ;⊆ρn , σnew �|= γ, which is equivalent withMΘ, σnew �|= 〈ρ1〉 · · · 〈ρn〉γ. This
finishes establishing our goal; {σ′ ∈ WΘ | (σ′ :L′ ϕ) ∈ Θ} � �〈ρ1〉 · · · 〈ρn〉γ�MΘ .

Theorem 6. Given any formula ϕ, if there is an open saturated tableau for (σinitial :ε ϕ),
then ϕ is satisfiable in the class of all MNMs for subset semantics.

Proof. Similar to Theorem 5, using Lemma 6 instead.

4.3 Termination and Complexity

The same argument works for both semantics. In order to check ϕ’s satisfiability, start
the tableau method from the set of terms {(σinitial :ε ϕ)} where σinitial is the initial sym-
bol. At each step, add non-deterministically at least one term of the form (σ :L ∗)
where σ is a symbol, L is a list of subformulas or negation subformulas of ϕ and ∗ is a
subformula or a negation of a subformula of ϕ or the symbol ×.

Proposition 3. When executing the tableau method from {(σinitial :ε ϕ)}, the number of
terms {(σ :L ∗)} that can be added is polynomial in the length of ϕ.

Proof. As ∗ is a subformula or a negation of a subformula of ϕ or the symbol ×, the
number of possible ∗ is linear in the size of ϕ. The number of possible L is linear in
the size of ϕ since each entry corresponds to an occurrence of an operator [ψ] in ϕ.
The number of possible σ is polynomial in the size of ϕ since new world symbols σ are
created for 4-tuple of subformulas of the form �ψ1, ¬�ψ2. Thus, the number of possible
terms (σ : ψ) is bounded by a polynomial in |ϕ|.
Corollary 2. The satisfiability problem in non-normal monotone public announcement
logic is NP-complete.

Proof. The proof is similar to the proof of Corollary 1 except that we use Proposition
3 instead of Proposition 2 and that we start with Θ := {(σinitial :ε ϕ)} instead of Θ :=
{(σinitial : ϕ)}.
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4.4 Implementation

We implemented the tableau method for both ∩-semantics and ⊆-semantics in Lotrec-
scheme [22]. The tool and the files for logics are available, respectively, at:

http://people.irisa.fr/Francois.Schwarzentruber/lotrecscheme/

http://people.irisa.fr/Francois.Schwarzentruber/publications/ICLA2015/

Appendix A.5 shows an output of Lotrecscheme.

5 Conclusion

We develop tableau system for both intersection and subset PAL based on monotone
modal logic. Here we present some problems for future work.

– We may generalize our tableau systems to the general dynamic epistemic logic set-
ting. Intersection DEL is already proposed in [31] and subset DEL is also proposed
in [17]. Our idea for developing tableau system for PALs is to take finite sequences
of public announcements into consider. In the DEL setting, we may consider his-
tories of actions in the action model. Thus we may develop the tableau rules for
operations as it is done in [1] for the DEL extension of modal logic K.

– It is well-known that modal formulas corresponds to conditions on neighborhood
frames ([19]). Thus we may consider how tableau systems can be developed for ex-
tensions of monotone modal logic with additional modal axioms, and then consider
their dynamics extensions. The problem is to take those special frame conditions
into account in the tableau rules for modal operations.

– As the satisfiability problems for both intersection and subset PAL are in NP, they
are reducible to the satisfiability problem for classical propositional logic [20]. We
aim at finding elegant reductions for obtaining efficient solvers for both intersection
and subset PAL.
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A Appendix

A.1 Proof of Lemma 1

Proof. We work only with (�). AssumeΘ is faithful toM; applying (�) to (σ : �ϕ) and
(σ : ¬�ψ) in Θ yieldsΘ′ := Θ∪{(σnew : ϕ), (σnew : ¬ψ)}. Since {(σ : �ϕ), (σ : ¬�ψ)} ⊆
Θ, the assumption implies both M, f (σ) |= �ϕ and M, f (σ) |= ¬�ψ; then f (σ) �
��ϕ → �ψ�M � W and hence �ϕ → ψ�M � W, so there is v ∈ W s.t. v ∈ �ϕ�M and
v � �ψ�M. Now, since Θ is faithful toM, there is f s.t.M, f (σ) |= γ for all (σ : γ) ∈ Θ.
The function f ′ : Prefix(Θ′) → W, extending f by defining f ′(σnew) := v (and thus
yieldingM, f ′(σnew) |= ϕ,M, f ′(σnew) |= ¬ψ), is a witness showing that Θ′ is faithful
toM.

A.2 Proof of Lemma 2

Proof. Both (i) and (ii) are proved by simultaneous induction on ϕ. We only check the
cases where ϕ is atomic and of the form �ψ. First, if ϕ is an atom p, (i) is immediate
from the definition of VΘ. For (ii), assume (σ : ¬p) ∈ Θ; since Θ is open, (σ : p) � Θ,
and hence it follows from VΘ’s definition thatMΘ, σ �|= p.

Second, suppose ϕ is �ψ. For (i), assume (σ : �ψ) ∈ Θ. In order to show �ψ�MΘ ∈
τΘ(σ), our candidate for a witness of �ψ�MΘ ∈ τΘ(σ) is, of course, ψ. Thus, it suffices
to show that {σ′ ∈ WΘ | (σ′ : ψ) ∈ Θ} ⊆ �ψ�MΘ , so suppose (σ′ : ψ) ∈ Θ; by induction
hypothesis, we obtain σ′ ∈ �ψ�MΘ .

For (ii), suppose (σ : ¬�ψ) ∈ Θ; we show that �ψ�MΘ � τΘ(σ), i.e., for all formulas
γ, (σ : �γ) ∈ Θ implies {σ′ ∈ WΘ | (σ′ : γ) ∈ Θ} � �ψ�MΘ . So take any γ such that
(σ : �γ) ∈ Θ. Since Θ is saturated, it follows from the rule (�) that there is a prefix
σnew ∈ WΘ such that (σnew : γ), (σnew : ¬ψ) ∈ Θ. Then σnew ∈ {σ′ ∈ WΘ | (σ′ : γ) ∈ Θ}
but, by induction hypothesis, σnew � �ψ�MΘ .

A.3 Proof of Lemma 3

Here we provide arguments for the remaining cases in the proof of Lemma 3.

(↓ ε): Since (σ :L p) ∈ Θ, we obtainM∩ρ1;··· ;∩ρn , f (σ) |= p so M, f (σ) |= p. Hence,
Θ ∪ { (σ :ε p) } is faithful toM.

([·]): Since (σ :L [ϕ]ψ) ∈ Θ, we obtain M∩ρ1;··· ;∩ρn , f (σ) |= [ϕ]ψ. Thus, either
M∩ρ1;··· ;∩ρn , f (σ) �|= ϕ or elseM∩ρ1;··· ;∩ρn;∩ϕ, f (σ) |= ψ, so either Θ∪ { (σ :L ¬ϕ) } or
else Θ ∪ { (σ :L;ϕ ψ) } is faithful toM.

(×Back): Since (σ :L;ϕ ×) ∈ Θ, f (σ) is not in the domain ofM∩ρ1;··· ;∩ρn;∩ϕ. If f (σ) is in
the domain ofM∩ρ1;··· ;∩ρn , then ϕ fails at f (σ) inM∩ρ1;··· ;∩ρn , so Θ ∪ {(σ :L ¬ϕ)} is
faithful toM. Otherwise, f (σ) is not in the domain ofM∩ρ1;··· ;∩ρn , so Θ∪{(σ :L ×)}
is faithful toM.

(Back): Since (σ :L;ϕ ψ) ∈ Θ, we obtain M∩ρ1;··· ;∩ρn;∩ϕ, f (σ) |= ψ, which implies
M∩ρ1;··· ;∩ρn , f (σ) |= ϕ. Hence, Θ ∪ {(σ :L ϕ)} is faithful toM.
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A.4 Remaining Proof of Lemma 5

Here we show case (iii) fully and the cases for ϕ of the form p, [ψ]γ of Lemma 5.
First consider the case (iii). If L is empty, the statement of (iii) becomes vacuously

true since Θ is open. Otherwise, L ≡ ρ1; · · · ; ρn, and the saturatedness of Θ and the rule
(×Back) imply either (σ :ρ1;··· ;ρn−1 ¬ρn) ∈ Θ or else (σ :ρ1;··· ;ρn−1 ×) ∈ Θ. By induction
hypothesis, either (MΘ)∩ρ1;···∩ρn−1 , σ �|= ρn or else σ is not in (MΘ)∩ρ1;···∩ρn−1 . In both
cases, σ is not in (MΘ)∩ρ1;···∩ρn .

Second, let ϕ ≡ p. For (i), suppose (σ :L p) ∈ Θ; since Θ is saturated, rule (↓ ε)
implies (σ :ε p) ∈ Θ so, by definition, σ ∈ VΘ(p). Moreover, rule (Back) and induction
hypothesis imply that σ is in (MΘ)∩ρ1;···∩ρn ; hence, (MΘ)∩ρ1;···∩ρn , σ |= p. For (ii), use a
similar argument now with (↓ ε¬) and (Back).

Third, let ϕ ≡ [ψ]γ. For (i), suppose (σ :ρ1;··· ;ρn [ψ]γ) ∈ Θ and, further, that
(MΘ)∩ρ1;···∩ρn , σ |= ψ; we show (MΘ)∩ρ1;···∩ρn;∩ψ, σ |= γ. Since Θ is saturated, rules ([·])
and (Back) imply either (σ :L ¬ψ) ∈ Θ or else both (σ :L ψ) ∈ Θ and (σ :L;ψ γ) ∈ Θ.
But from assumption and induction hypothesis, (σ :L ¬ψ) � Θ and thus (σ :L ψ) ∈ Θ
and (σ :L;ψ γ) ∈ Θ. Then, again by induction hypothesis, (MΘ)∩ρ1;···∩ρn;∩ψ, σ |= γ.
For (ii), suppose (σ :ρ1;··· ;ρn ¬[ψ]γ) ∈ Θ. Since Θ is saturated, rule (¬[·]) implies both
(σ :L ψ) ∈ Θ and (σ :L;ψ ¬γ) ∈ Θ. By induction hypothesis, both (MΘ)∩ρ1;···∩ρn , σ |= ψ
and (MΘ)∩ρ1;···∩ρn;∩ψ, σ �|= γ so (MΘ)∩ρ1;···∩ρn , σ �|= [ψ]γ.

A.5 Execution of the Tableau Method

When we run Lotrecscheme with the tableau method for intersection semantics for the
formula (p→ �[p]q) ∧ ¬[p]�q we obtain the following closed branch at some point:

The branch contains two world symbols (that are the two nodes above). As the node n1
contains lf () p means that the term (n1 :ε p) is in the current branch.
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Abstract. Every belief has a life that goes from the agent having the belief now, 
the transmission of the belief to other agents, and the persistence of the belief 
through time. In this article we propose the idea that the belief can be said to be 
successful in relation to any of these respects. We will call them, respectively, 
the first, second, and third person perspective on knowledge and investigate the 
requisite properties of these three perspectives. 

We do not base our approach on the notion of truth as is common, or on the 
notion of justification, which is another basis. Our concern is not with 
knowledge as corresponding to truth but knowledge as corresponding to stable 
belief. 

Keywords: Propositional Knowledge, Successful belief, Pragmatism. 

1 Introduction 

Imagine the following situation. A man and his daughter are at home with their dog 
Tim. The mother left early in the morning with her bike to buy some fruit. The father 
is cooking in the kitchen whose window faces the street. The girl is with Tim in the 
living room where the windows face the courtyard.  

Then just as a car is parking in front of the house, the mother arrives with her bike, 
and waves to her husband through the window. She heads to the garage (a room 
separated from the house) to leave the bike there. From the car alights Mike, a friend 
of the family who is going to have lunch with them.  

The daughter comes to the kitchen. - Look dad, she says, Tim is excited! He doesn't 
stop wagging his tail! - Ha ha ha, the dad answers, he knows that your mother has 
arrived.- Oh, is that right? Where is she?- In the garage, setting the bike. Then, 
someone knocks. - Open the door, says the father, it's Mike. The girl opens the door 
with Tim at her side, and Mike walks in. The dog at once stops wagging his tail, and 
goes to lie down in the living room apparently disappointed. - What is it dad? What is 
it with Tim now? - Mmmm, it seems that he actually didn't know before, that your 
mother had arrived. 

In the previous example we can appreciate two interesting and revealing uses of the 
verb 'to know'. In the first one, the father says that the dog "knows ..." because he 
observes that Tim acts in the way he would expect the dog to do if Tim were 
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this  ,  and ¬  are acceptable, since  X  and  Y , 
where X = {'the girl did not fall down'} and Y = {'b1 did not fall down', ..., 'b10 did 
not fall down'}. Observe also that given the similarity of the items in X and Y, either 
e(| | |Y|)  e(| | |X|) or e(| | |Y|)  e(| | |X|), so we have that in any case 

d( , ) < d(¬ , ).  is hence justified for (A) at the time it is uttered.  

Finally, the belief that  of an agent A at a time t is knowledge at t for A from the 

first person perspective if, and only if,  is acceptable for A at t, and ¬  is not 

acceptable for A at t, where the salient set of beliefs related to ¬  is assumed to be 

that of . Observe that when the evaluator, B, and the person having the belief, A, are 
different, the mechanism is very similar. In this case, A ascribes to B a belief-system, 
a salient set of beliefs and so on, and carries on the calculations there. 

The idea is that in order for the belief that  to be knowledge for A from the point 

of view of the first person perspective,  (but not ¬ ) should naturally follow from 

those salient elements of the current belief-system that are connected to . We have 
opted for an abductive approach (cf. Aliseda-Llera, 1997) because of the importance 
that we claim for the creative component. When I have a belief, in order for it to be 
acceptable for me, I need to be able to naturally imagine a context out of the 
constraints given by my current salient beliefs, from which  can be semantically 
inferred. The acceptable belief will be knowledge for me from the first person 
perspective if I cannot naturally imagine, out of the same constraints, a context in 
which its negation (¬ ) can also be semantically inferred. In the previous example, 
for instance, (A) believes that a boy has fallen down. It is perfectly possible for (A) 
though, to imagine also a context in which the girl would have been the one to fall 
down. The two scenarios are naturally possible, this being the reason why (A) finds it 
hard to say that he knows . He is considering the belief from the first person 
perspective. 

2.2 The Second Person Perspective 

Suppose that A has the belief that , and that A shares it with B at a time t. A's belief 
will be successful for B from the second person perspective if B is convinced at t that 
A will act in agreement with . Imagine, for instance, the following situation. We are 
in Spain. Today is the morning of December 22nd, the day of the Christmas lottery. 
Most people have the radio on, hoping for their numbers to be winners. (A) and (B) 
are respectively a woman and her boyfriend who are having a coffee in a cafeteria. 
(A) receives a call. After she hangs up the following dialog takes place: 

(A) We have won the lottery!! 
(B) What? How do you know that? 
(A) It was my father. He seemed quite excited. He said he has good news. He wants 

us to be at home in half an hour to tell us the news and celebrate. You see? I 
know it! We have won the lottery! 
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Would you call your boss right now and tell her that y
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express the situation in a ga
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To sum up, the belief that  of an agent A at a time t is knowledge at t for some 
agent B from the second person perspective if, and only if, B is convinced at t that A 

will behave according to . 

2.3 The Third Person Perspective 

The third person perspective is that of an observer who draws attention to the 
dynamic of an individual A's belief-system (i.e. what the salient set of beliefs related 
to a belief are at any time) given the evolution of the situation in which the particular 
belief is elicited. In particular, we have in mind two sort of contexts: one in which the 
observer has actually witnessed the evolution of the situation and the reactions of A 
(witness-case), and another in which the observer predicts what is going to happen 
(prediction-case). We say that A's belief that ϕ shows a successful behavior for B from 
the third person perspective at a time t if A's belief that ϕ is successful for B at t from 
the first person perspective (given the idea held by B of A's belief-system), and the 
evolution (witness-case) or natural evolution (prediction-case) of the situation does 
not present a challenge to it, that is, the situation evolves in a way in which none of 
the new items added to the set of salient beliefs undermines A's belief that ϕ. 

Let us introduce an example in order to clarify our proposal: 
A is a teacher in a school. He witnesses the following situation in the playground: 

At the corner of the main building is student S1. Running towards him is S2. After a 
couple of minutes S1 and S2 have moved out from the sight of the teacher who then 
hears someone crying. The teacher believes that 'S1 is crying' (ϕ).  

Suppose that the salient set of beliefs of A related to ϕ at the time the teacher sees 
the scene t0 is: γ = {'S2 was running towards S1', 'Someone is crying', 'S2 hates S1', 'S2 
is a violent boy', 'S1 has reported S2's bad behavior', 'if S2 heard about the report, he 
would hit S1', 'if S1 were hit, he would cry'}. In this case, on the one hand γ {'S2 

has heard about the report'} ϕ, and hence ϕ is acceptable (see section 2.1), and on 
the other hand,¬ ϕ is not acceptable for A at the same time t0 given γ. Thus the belief 
ϕ is knowledge for A at t0 from the first person perspective. But is A's belief also 
knowledge for A at t0 from the third person perspective?  

The situation evolves in such a way that, when A hears the cry, he runs towards it. 
Once there, at t1, A observes that S1 lies on the ground crying, while S2 is calmly 
talking to someone else. A is puzzled. The fact that S2 is calmly talking to another 
student causes the introduction into γ at t1 of at least two new beliefs: γ ' = γ  {'S2 
seems to be calmly talking to another student', 'after hitting a person one is excited'}. 
The teacher would have needed more credulity at t0 in order to get ϕ out of the new 
salient set of beliefs: γ  {'S2 has heard about the report', 'S2 is pretending to be 
calm'} ϕ. That is, d(ϕ, γ) < d(ϕ, γ ). In this case (witness-case) the belief that ϕ, 
was not knowledge at t0 for the teacher from the third person perspective. The teacher 
would not say at t1 that he knew at t0 that S1 was crying. 

The previous example is, as we have just pointed out, a witness-case example. Let 
us talk now for a while about the prediction-cases. In these cases the observer, the 
evaluator of the belief, predicts the evolution of the situation. So the question to raise 
is: What is the evolution which the observer will predict? When is a situation said to 
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evolve naturally? The answer seems to have clearly a social nature, which brings us 
to Harman's well known examples (1968), and Meeker's idea that "there seems to be 
an inescapably normative dimension to social defeaters" (Meeker, 2004, p.162). 
Imagine, for instance that in our previous example the observer is a friend of S2 who 
has witnessed how after hitting S1 and warning him against denouncing him again, S2 
goes to have a chat with another of his friends. Suppose also that while going away 
from there, the observer hears how the teacher says to a colleague 'Oh no, S1 is 
crying'. Observe that also in this case, for the observer the teacher does not know ϕ at 
t0 from the third person perspective, and the reason is that the situation naturally 
evolves in a way that will eventually undermine his belief that ϕ. The observer sees A 
as belonging to a particular community. This circumstance determines the natural 
evolution of the situation. The teacher ought to run towards the cry, but once he is 
there no one will tell him what has actually happened. The new information he will 
get there, according to the prediction the observer makes, will only have the effect of 
undermining his previous belief. Observe that from the observer's perspective it is the 
socially expected way in which the situation evolves, and not the actual way in which 
it does which is relevant.  

To sum up: The belief that ϕ of an agent A is knowledge for B at a time t from the 
third person perspective if, and only if, ϕ is knowledge for B at t from the first person 
perspective, and the situation in which ϕ was elicited does not evolve (witness-case) 
or naturally evolve (prediction-case) in a way in which the new items added to the set 
of salient beliefs undermine, from B's perspective, A's belief that ϕ. 

3 Conclusion 

We propose an approach to propositional knowledge based on the idea of successful 
behavior. Our pragmatistic approach finds truth, seen as transcendental, as too heavy 
a burden to knowledge. Because, how are we suppose to prove that we have attained 
the truth? We have no idea. Our intention, following Peirce, has been to show that we 
do not need to care. 
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Abstract. In applications of automata theory, one is interested in re-
ductions in the size of automata that preserve the recognised language.
For Büchi automata, two optimisations have been proposed: bisimulation
reduction, which computes equivalence classes of states and collapses
them, and α-balls reduction, which collapses strongly connected com-
ponents (SCCs) of an automaton that only contain one single letter as
edge label. In this paper, we present a formalisation of these algorithms
in Isabelle/HOL, providing a formally verified implementation.

1 Introduction

Model-checking is an important method for proving systems correct, and is ap-
plied in industrial practice [1]. In previous work [2], we present a reference im-
plementation for an LTL (linear temporal logic) model checker for finite-state
systems à la SPIN [5]. The model checker follows the well-known automata-
theoretic approach. Given a finite-state program P and an LTL formula φ, two
Büchi automata are constructed: the system automaton that recognises the ex-
ecutions of P , and the property or formula automaton expressing all potential
executions that violate φ, respectively. Then the product of the two automata is
computed and tested on-the-fly for emptiness. This implementation is realised
and verified using Isabelle/HOL [7].

One important part of automata-based model checking is the translation of an
LTL formula into a Büchi automaton. The standard algorithm for this problem
has been proposed by Gerth et al. [4]. Previously to [2], we have implemented
and verified this algorithm in Isabelle/HOL [8]. In this paper, we consider two
of the optimisations proposed by Etessami and Holzmann [3] to reduce the size
of the formula automaton.

In model checking, the system automaton is usually much larger than the
property automaton, but since the size of the property automaton is a mul-
tiplicative factor of the overall complexity, it is worthwhile to put substantial
effort into its optimisation [3].

The first optimisation is bisimulation reduction, which computes equivalence
classes of states and collapses them. The algorithm of [3] uses a so-called colouring.
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1: proc BasicBisimReduction(A) ≡
2: /* Init: ∀q ∈ Q. C−1(q) := 1, and ∀q ∈ F. C0(q) := 1, ∀q ∈ Q \ F. C0(q) := 2.*/
3: i := 0;
4: while |Ci(Q)| �= |Ci−1(Q)| do
5: i := i+ 1
6: foreach q ∈ Q do
7: Ci(q) := 〈Ci−1(q),∪(q,a,q′)∈δ{(Ci−1(q′), a)}〉
8: od
9: Rename colour set Cn(Q), with {1, . . . , |Ci(Q)|}, using lexicogr. ordering.
10: od
11: C := Ci; return A′ := 〈Q′ := C(Q), δ′, q′I := C(qI), F ′ := C(F )〉;
12: /* δ′ defined so that (C(q1), a, C(q2)) ∈ δ′ iff (q1, a, q2) ∈ δ for q1, q2 ∈ Q*/

Fig. 1. Basic Bisimulation Reduction Algorithm [3]

Our formalisation has revealed that there is a mistake in the initialisation of the
algorithm, which we have corrected in our implementation.

The second optimisation is α-balls reduction, which collapses strongly con-
nected components (SCCs) that only contain one single letter as edge label.

The rest of the paper is organised as follows: Section 2 gives some preliminar-
ies. Section 3 recalls the two optimisations of [3] in turn. Section 4 presents our
Isabelle formalisations of those algorithms, and Sec. 5 concludes.

2 Preliminaries

We recall the basic notions of automata as used by [3]; for more details see [10].
Usually, Büchi (or finite) automata have transitions labelled with characters

from an alphabet Σ. In [3], a generalisation of such labellings is considered, but
for our purposes, this is not necessary and so we assume simple characters. We
assume that a Büchi automaton A is given by 〈Q, δ, qI , F 〉. Here Q is a set of
states, δ ⊆ (Q×Σ×Q) is the transition relation, qI ∈ Q is the initial state, and
F ⊆ Q is the set of final states. The language L(A) is defined as the set of those
ω-words which have an accepting run in A, where a run on word w = a1a2 . . . is
a sequence q0q1q2 . . . such that q0 = qI and (qi, ai+1, qi+1) ∈ δ for all i ≥ 0, and
it is accepting if qi ∈ F for infinitely many i.

Isabelle/HOL [7] is an interactive theorem prover based on Higher-Order Logic
(HOL). You can think of HOL as a combination of a functional programming
language with logic. Isabelle/HOL aims at being readable by humans and thus
follows the usual mathematical notation, but still the syntax needs some expla-
nations which we provide when we come to the examples. In our presentation of
Isabelle code we have stayed faithful to the sources.

3 The Original Algorithms

3.1 The Bisimulation Reduction Algorithm

Fig. 1 shows the basic bisimulation reduction algorithm in pseudo-code. The let-
ter C with a superscript refers to the iterations of the computation of a colouring.
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Fig. 2. An automaton and its incorrect reduction according to [3]

The idea is that in the beginning (i = 0) accepting states have colour 1 and non-
accepting states have colour 2, and in each step, the colour of a state is obtained
by its old colour and a combination of the successor state colours and the cor-
responding edge labels. This means that if two states have the same colour but
they differ in the colours of their successors (taking into account the edge labels),
then those two states must be distinguished; we say that the colouring is refined.
In the end, states with the same colour can be joined.

The algorithm initialises not only C0 but also C−1 (we might call this “pre-
initialisation”) which is a trick making the formulation of the algorithm more
concise, by allowing for a loop condition that makes a comparison between the
current and the previous colouring, even for i = 0.

However, our formalisation of the reduction algorithm, to be shown later, has
revealed that there is a mistake in this pre-initialisation. This is illustrated in
Figure 2. Here we have Q = {q0, q1}, F = Q,C0(q0) = 1, C0(q1) = 1, C−1(q0) =
1, C−1(q1) = 1. Just before the while we have |C0(Q)| = |C−1(Q)| = 1; even
stronger, we have C0(Q) = C−1(Q) = {1}. What matters is that the loop
condition is false and hence the loop is not entered at all. Therefore the result
C = C0 is computed, yielding the automaton shown on the right in Figure 2.

Our explanation is as follows: The pre-initialisation ∀q ∈ Q. C−1(q) := 1 is
conceptually wrong. It expresses that “pre-initially” (i = −1), there is only one
colour. If by coincidence the input automaton has only accepting or only non-
accepting states, then “initially” (index i = 0), there is also just one colour. The
loop condition will then wrongly say “we have done enough refinement steps”.

The problem really manifests itself for the case that F = Q, i.e., all states are
accepting: each refinement step takes into account the edge labels and not just
whether a state is accepting or not. The initialisation however only considers
whether a state is accepting or not, and so not doing any refinement wrongly
results in identifying all states (q0 and q1 in the example).

The conceptual mistake happens to cause no harm in the case F = ∅, since
the initialisation of the algorithm establishes the property F = ∅ and trivially
maintains it since no refinement is done. The accepted language is then empty.

Our solution is to replace the condition |Ci(Q)| �= |Ci−1(Q)| with i ≤ 0 ∨
|Ci(Q)| �= |Ci−1(Q)| (in the actual formalisation: i > 0 −→ |Ci(Q)| �= |Ci−1(Q)|)
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so that the loop body will definitely be entered for i = 0 at least once. This is
shown in Fig. 3 and will be discussed in Sec. 4.1.

3.2 α-Balls Reduction

This optimisation may appear simple and rather specialised, but in fact, it is
quite effective in our context of model checking, more precisely, on Büchi au-
tomata that are the result of a translation from generalised Büchi automata
which in turn are the output of the formula translation [4]. Note also that the
reduction does not work for finite automata; it only works for Büchi automata.

The idea of the reduction is that, if in a Büchi automaton we are ever stuck
in a component, and the only transition labels in this component are α, and
there is some accepting state in the component, then we can treat the entire
component as a single accepting state with a self-transition labelled by α.

Definition 1. For α ∈ Σ, a fixed-letter α-ball1 inside a Büchi automaton A is
a set Q′ ⊆ Q of states such that:

1. α ∈ Σ is the unique letter which labels the transitions inside Q′;
2. the nodes of Q′ form an SCC of A;
3. there is no transition leaving Q′ , i.e., no (q′, b, q) ∈ δ where q′ ∈ Q′ and

q /∈ Q′.
4. Q′ ∩ F �= ∅.

Proposition 1. Given a Büchi automaton A = 〈Q, δ, qI , f〉, suppose Q′ ⊆ Q is
a fixed-letter α-ball of A. Let A′ = 〈(Q \Q′) ∪ {qnew}, δ′, q′I , (F \Q′) ∪ {qnew}〉
where

δ = {(q1, b, q2) | q1, q2 ∈ Q \Q′} ∪ {(q1, b, qnew ) | (q1, b, q2) ∈ δ, q1 ∈ Q, q2 ∈ Q′}
∪ {(qnew , α, qnew )},

and q′I = qnew if qI ∈ Q′, else q′I = qI . Then L(A) = L(A′).

4 Isabelle Formalisation

The work presented in this paper is a fragment of a bigger library being developed
on automata in the context of model checking, in particular the construction of
the property automaton (see Sec. 1). Modularity, generality and reuse are impor-
tant concerns in this project, which is why the Isabelle code chunks presented
here exhibit some aspects that we do not discuss in all detail.

Generally, automata are represented as record types that are parametrised by
the type of the states and the type of the alphabet, among others. E.g., in line 2
in Fig. 3, ′q is the type of the states. The fields of these records, mostly denoted
by calligraphic letters, refer to the states, the final states, etc. E.g., in line 5 in
Fig. 3, Q gives the state set, and in line 7, F refers to being accepting.

1 [3] defines more generally: a fixed-formula α-ball, i.e., α is a formula.
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1: definition LBA_bpr_C ::

2: "(’q, ’l, ’more) LBA_scheme ⇒ (’q ⇒ nat) nres"

3: where
4: "LBA_bpr_C A ≡ do {

5: let Q = Q A;

6: let C = (λq. 1);

7: let C’ = (λq. if F A q then 1 else 2);

8: let i = 0;

9: (_, C’, _) ←
10: WHILEIT

11: (LBA.LBA_bpr__whilei A Q)

12: (λ(C, C’, i). i>0 −→ card (C’ ‘ Q) �= card (C ‘ Q))

13: (λ(C, C’, i). do {

14: let i = Suc i;

15: let C = C’;

16: let f = (λq. (C q, L A q, C ‘ successorsA A q));

17: let R = f ‘ Q;

18: fi ← set_enum R;

19: let C’ = fi o f;

20: RETURN (C, C’, i)

21: }) (C, C’, i);

22: RETURN C’

23: }"

Fig. 3. BPR colouring

In the formalisation we present here, we use automata that follow [4] but
differ from the standard definition in one important aspect: we assume that
not the edges, but rather the states of automata are labelled. We call those
automata labelled Büchi automata (LBA), as opposed to BA. Moreover, in our
representation we have a set of initial states rather than a unique initial state.
Instead of a set of accepting states we use a predicate to express whether a state is
an accepting state or not. This kind of automata representation is suitable in our
context, since we formalise the algorithm in the context of the Büchi automaton
construction from an LTL formula according to [4], where the output automaton
corresponds to a state labelled rather than a transition labelled automaton.

Big parts of our library concern BAs, however, and technically, LBAs are
defined as an extension of the BA record type where labels for the states are
added and the labels for the edges are “disabled”.

4.1 The Bisimulation Reduction Algorithm

The Isabelle formalisation of the algorithm from Fig. 1 is shown in Figure 3.
The formalisation uses the Isabelle refinement framework [6] for writing what
resembles imperative code. We explain some of the syntactic constructs.

Lines 5 to 8 accomplish the initialisation. The let should be understood as
imperative assignment. We assign:Q is the state set of the input automatonA; C
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1: definition
2: "set_enum S ≡ do {

3: (_, m) ← FOREACHi

4: (set_enum__foreachi S)

5: S

6: (λx (k, m). RETURN (Suc k, m(x �→k)))

7: (1, empty);

8: RETURN (λx. case m x of None ⇒ 0 | Some k ⇒ k) }"

Fig. 4. Numbering of sets

is the (i−1)th colouring and is initialised to the function that colours each state
as 1; C′ is the ith colouring and is initialised to the function that colours each
accepting state as 1 and all others as 2. We need C and C′ in order to determine
whether the current iteration has actually refined the current colouring.

Line 9 performs a kind of nondeterministic assignment: the term following it
is essentially a set of values, and an element of this set is assigned to ( , C′, )
nondeterministically. The refinement framework allows us to specify algorithms
with such nondeterminism, prove theorems about them, and replace the nonde-
terminism by a deterministic implementation later and independently.

Back to the code: line 10 contains the while-construct in this language. Its
first argument (line 11) consists of a loop invariant that must be provided by the
programmer and that is used in correctness proofs. The second argument (line
12) is the loop condition corrected as explained in Sec. 3.1. The third argument
(lines 13 to 21) is the loop body which takes the form of a λ-term with an
abstraction over (C,C′, i), applied to the argument (C,C′, i) (line 21) which
corresponds to the initial values explained two paragraphs above.

During each iteration, a new colouring is computed in the form of a function
f that assigns a certain triple to each state; R is then defined as the image of f
on Q, i.e., R is the set of all the colours of the new colouring. In order to convert
those complicated triples into simple numbers, an auxiliary function shown in
Fig. 4 is used; fi , obtained by a nondeterministic assignment as in line 9, is then
the numbering of R. The new colouring is then the composition of fi and f . It
assigns a number to each state.

The function set enum computes the set of all unique numberings for a set
S, so that set enum S is the set of bijections between S and {1, . . . ,#S}. The
definition of the function starts with a foreach-construct (lines 3-7). In line 3
one possible result of the loop is chosen non-deterministically and is assigned
to ( ,m). In the following line a loop-invariant is provided in order to be able
to prove correctness properties of the definition. The second parameter in line 5
represents the iterated set. For each element of S the body of the loop (line 6) is
applied sequentially in an arbitrary order, where x is an element of S and (k,m)
an intermediate result of the loop, that is propagated through the iterations
starting with (1, empty). Such results correspond to a pair consisting of the next
number to assign and an already constructed mapping of numbers to elements
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of S. An empty mapping is denoted by empty and for an existing mapping m
a new mapping is constructed with m(x �→ k), that behaves like m with the
exception that it maps x to k. In the last line the above constructed mapping is
turned into a function: elements not in S are mapped to 0. The following lemma
states the correctness of the construction:

lemma set_enum_correct:

assumes "finite S"

shows "set_enum S ≤ SPEC (λf. bij_betw f S {1..card S})"

The term bij betw f S {1..card S} says “f is a bijection between S and
{1, . . . ,#S}”, and the entire lemma says that the results of set enum S in
terms of functions f fulfil the specification “f is a bijection between S and
{1, . . . ,#S}”.

Thus we have a bijection between f(Q) and C′(Q) in the actual procedure,
i.e., line 9 in the pseudo-code in Fig. 1 is correctly implemented.

Termination After each execution of the body of the loop, the number of colours
according to C′ increases compared to C, or the iteration stops after that execu-
tion of that loop body. At the same time, the number of possible colours in C′ is
bounded by the number of states in the input automaton. Hence the number of
colours cannot increase indefinitely and therefore the iteration stops eventually.

Correctness The proof of correctness of the procedure is based on the charac-
terisation of the ith colouring. For i > 0, we have the following loop invariant:

definition ( in LBA)

"LBA_bpr_C_inv Q ≡ λ(C, C’, i).

∀ q∈Q. ∀ q’∈Q. C’ q = C’ q’

←→ (C q = C q’

∧ L A q = L A q’

∧ C ‘ successors q = C ‘ successors q’)"

This invariant corresponds exactly to the modification of C′ after each iteration
and is thus simple to prove based on the bijectivity of f and C′. For the general
case, i.e., including i = 0, the following holds: whenever C′(q) = C′(q′) for two
states q, q′ ∈ Q, then either both q, q′ are in F or they are both not in F .

When the iteration of the loop stops, i.e., the number of colours in C′ does
not change anymore compared to C, we obtain a bijection between C and C′.
Considering that the invariant relates C to C′, we obtain that C and C′ yield the
same equivalence classes, i.e., for any states q, q′ ∈ Q, we have C′(q) = C′(q′) if
and only if C(q) = C(q′). In Fig. 5, we have defined the characteristics that are
needed in the subsequent proofs and that LBA bpr C indeed fulfils. We have
chosen to introduce a definition for this characterisation because it occurs in
several places in our development.

All in all, we obtain the characterisation of the resulting colouring shown
by the lemma in Figure 6. Indeed, we need to assume that the set of states is
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definition ( in LBA)

"LBA_bpr_C_char

≡ λC. ∀ q∈Q A. ∀ q’∈Q A.

C q = C q’ −→ (F A q ←→ F A q’)

∧ L A q = L A q’

∧ C ‘ successors q = C ‘ successors q’"

Fig. 5. Characterisation of the colouring

lemma ( in LBA) LBA_bpr_C_correct:

"LBA_bpr_C A ≤ SPEC LBA_bpr_C_char"

Fig. 6. Correctness property of the colouring

finite. Otherwise we could not apply the above shown properties about set enum.
Finiteness is given here by an implicit assumption denoted by “(in LBA)”.

This characterisation turns out to be a sufficient condition for proving the
correctness of the resulting coloured automaton. To obtain the automaton, we
apply a renaming function LBA rename which takes an LBA and a colouring
function C and returns the LBA where each state has been renamed using the
colouring function. The renaming function has properties shown in Figure 7.

For example the second line of the lemma states that the initial states of the
renamed automaton are exactly the renamings of the initial states of the original
automaton. The other lines state similarly that the transition function, the final
states, and the labels are preserved by the renaming.

The term inv into Q f q gives “the”2 inverse element of q under f in Q. In
the case that this inverse is unique, i.e., f is injective on Q, it is straightforward
to show that the renaming preserves language equivalence. However, the very
purpose of the colouring is to reduce the number of states, hence not to be injec-
tive! But even in this general case, language equivalence holds, as is expressed
by the following lemma:

lemma ( in LBA) LBA_bpr_C_rename_accept_iff:

assumes "LBA_bpr_C_char C"

shows "∀ w. LBA_accept (LBA_rename A C) w ←→ LBA_accept A w"

The proof of the lemma works constructively. The “←−” direction consists
of taking a run (sequence of states) r for word w of the input automaton and
colouring r componentwise using C, i.e., r is mapped to a run C ◦ r in the
coloured automaton.

The “−→” direction requires an auxiliary function:

2 This is the famous ε operator of HOL: It represents an arbitrary but fixed term
fulfilling a given property.
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lemma LBA_rename_simps:

"δ (LBA_rename A C) q a = C ‘ δ A (inv_into (Q A) C q) a"

"I (LBA_rename A C) = C ‘ I A"

"F (LBA_rename A C) q ←→ F A (inv_into (Q A) C q)"

"L (LBA_rename A C) q = L A (inv_into (Q A) C q)"

Fig. 7. Renaming function for LBAs

q1
a

q2
a

1
a

Fig. 8. An LBA and its colouring

fun bpr_run

where
"bpr_run A C r q0 0 = q0"

| "bpr_run A C r q0 (Suc k)

= (SOME q’. C q’ = C (inv_into (Q A) C (r (Suc k)))

∧ q’∈δL A (bpr_run A C r q0 k))"

This function is needed for the following reason: if we start from a run r for w
in the coloured automaton and use inv into Q f q to compute a corresponding
state in the input automaton for each state q in r, then these states do not
necessarily “fit together”, i.e., they may not form a run in the input automaton.

Example 1. Figure 8 shows an LBA accepting the word aaa . . . on the left, and
the simplified automaton obtained by colouring on the right. Obviously, the
state sequence in the coloured automaton is always simply a sequence of 1’s.
The inverse of “1” is either q1 or q2, so simply translating 11 . . . back into the
original LBA would give either q1q1 . . . or q2q2 . . .. In neither case this would
correspond to a run of the original LBA.

As the example shows, constructing a run in the original LBA, given a run
in the coloured LBA, is not so simple and has to be done step by step starting
from the initial state. This is what the function bpr run is good for. It starts by
taking an inverse of the initial state of the run r of the coloured automaton, and
then always picks an appropriate inverse for each next state in r. The existence
of such an inverse is guaranteed by the assumption that the colouring C fulfils
the characterisation according to Figure 5.

The entire procedure for constructing the coloured automaton is then given
in Figure 9. By the considerations given above, this construction is correct:

lemma ( in LBA) LBA_bpr_correct:

"LBA_bpr A
≤ SPEC (λAC. LBA AC ∧ (∀ w. LBA_accept AC w ←→ LBA_accept A w))"
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definition LBA_bpr :: "(’q, ’l, _) LBA_scheme ⇒ (nat, ’l) LBA nres"

where
"LBA_bpr A ≡ do {

C ← LBA_bpr_C A;

RETURN (LBA_rename A C)

}"

Fig. 9. Procedure for constructing the coloured automaton

In addition to language equivalence we also show that the coloured automaton
is well-formed, i.e. LBA AC holds.

4.2 α-Balls Reduction

Most of the Isabelle development on this topic uses in fact BA, not LBA, and the
formalisation of α-balls reduction for LBA is based on the one for BA. However,
we focus here on LBA because the use of LBA required certain adaptations that
partly make the contribution of our work.

An α-ball for LBA has, of course, an Isabelle definition. However, this is not
very readable and so we prefer to present the following characterisation:

lemma αballL_full_def:

"αballL A α Q ≡
G A � Q ∈ sccs A ∧ Q �= {}

∧ (∀ q∈Q. successors A q ⊆ Q)

∧ (∀ q∈Q. L A q = α)"

The lemma says that Q is an α-ball iff the following four conditions hold: (1)
the graph of A, restricted to Q, is an SCC of A; (2) Q �= ∅; (3) there is no edge
leading out of Q; (4) all states in Q are labelled with α.

Fig. 10 gives an auxiliary definition for balls reduction. There is a loop for
working through the SCCs. Trivial balls or balls without accepting states are
removed. One-element balls are left untouched. Finally, non-trivial balls are col-
lapsed to a single state. Based on the computation of SCCs according to Tarjan’s
algorithm [9] we obtain a function that computes the SCCs and then reduces,
as shown in Figure 11. The ball reduction on LBAs thus returns a well-formed
equivalent automaton and a set SCCsR representing its SCCs.

The correctness follows from the correctness of LBA reduce ball aux and
tarjan :

lemma ( in LBA) LBA_reduce_balls_correct:

"LBA_reduce_balls A ≤ SPEC(λ(AR, SCCsR).

LBA AR ∧ (∀ w. LBA_accept AR w ←→ LBA_accept A w)

∧ Q AR =
⋃

SCCsR

∧ pairwise_disjoint SCCsR

∧ (∀ Q∈SCCsR. G AR � Q∈sccs AR ∧ Q �= {})

)"
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definition LBA_reduce_balls_aux ::

"[(’q, ’l, ’more) LBA_scheme, ’q set set]

⇒ ((’q, ’l, ’more) LBA_scheme × ’q set set) nres"

where
"LBA_reduce_balls_aux A SCCs

≡ FOREACHi

(LBA_reduce_balls_aux_foreach_inv A SCCs)

SCCs

(λQ (AR, SCCsR).

if ¬ ballL AR Q then RETURN (AR, {Q} ∪ SCCsR)

else if scc_trivial AR (G AR � Q)

then RETURN (remove_states AR Q, SCCsR)

else if ∀ q∈Q. ¬ F AR q

then RETURN (remove_states AR Q, SCCsR)

else if (∃ q. Q = {q}) then RETURN (AR, {Q} ∪ SCCsR)

else

case ballL_get_α AR Q of

None ⇒ RETURN (AR, {Q} ∪ SCCsR)

| Some α ⇒
do { (AR, QR) ← LBA_remove_αball AR Q;

ASSERT (QR⊆Q ∧ QR �= {});

RETURN (AR, {QR} ∪ SCCsR) }

)

(A, {})"

Fig. 10. Auxiliary definition for α-balls reduction

definition LBA_reduce_balls ::

"(’q, ’l, ’more) LBA_scheme

⇒ ((’q, ’l, ’more) LBA_scheme × ’q set set) nres"

where
"LBA_reduce_balls A ≡ do {

SCCs ← tarjan A (I A);

(AR, SCCsR) ← LBA_reduce_balls_aux A SCCs;

RETURN (AR, SCCsR)

}"

Fig. 11. Ball reduction on LBAs

5 Conclusion

We have presented an Isabelle/HOL formalisation of two Büchi automata opti-
misations proposed by [3]. The context of this work is explained in detail in [2]:
implementing full-fledged model checkers verified in Isabelle/HOL. Within this
endeavour, it is worthwhile to invest effort in the optimisation of the property
automaton. While the optimisations are particularly relevant for model checking,
they are abstract enough to be applicable to Büchi automata in general.
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The difficulty lay in making the right design decisions for the formalisation.
We generally tried to model the Isabelle proofs on the paper-and-pencil proofs
of the literature, but especially for the colouring, it turned out to be better
to develop a new constructive proof from scratch. In that particular case, as
mentioned above, the original code contained a mistake, which we discovered
during our vain efforts to prove the code correct.

Concerning the first optimisation, there is also a more sophisticated algorithm
[3]. However this algorithm relies on the edge labels in an automaton and thus
it is not immediately possible to implement this algorithm in our scenario.

Our formalisation consists of around 1500 lines of code (approximately 3000
lines of code if the formalisation of Tarjan’s SCC algorithm is counted).
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Abstract. The logical debate in India of the first millennia AD revolved around 
the concept of pramāna. The term pramāna was taken to mean 'the criterion of 
knowledge'. Current researchers of Indian philosophy are certain that Indian  
logicians all agreed that pramāna is the sound operation of the mental processes 
which produce mental knowledge episodes. Conversely, according to my re-
search, Nyāya thinkers believed the criteria of knowledge are the rules of the 
use of things in everyday habitual behaviors. The issue which stood at the cen-
ter of the Indian logical debate, I wish to suggest, was the following: On the one 
hand, there were thinkers who believed the rules of logic were prior to and  
independent of habitual everyday human behaviors. On the other hand, there 
were the Naiyāyikas who believed the rules of logic were derived from habitual 
everyday human behaviors and the rules of usage they provided.  

Keywords: Syllogism, inference, criteria, pramāna, anumāna, upamāna,  
pratyaksa. 

1 Introduction 

My purpose in what follows is to present several points that came to my attention 
during the research I have conducted concerning one of Indian philosophy most im-
portant schools of thought – the Nyāya. Indian philosophical debate concerning logic 
revolved around the concept of pramān a. In colloquial usage, pramāna means a mea-
suring device, a criterion or a standard. The meaning of pramān a in the context of the 
Indian philosophical debate resembled greatly to its everyday usage. It was taken to 
mean 'criteria of knowledge'. 

It follows from the above that the philosophical debate concerning logic in India  
revolved around the question 'what the criteria of knowledge are?' Up until now, re-
searchers of Indian philosophy agreed that all Indian thinkers of the first millennia AD 
presupposed knowledge to be mental episodes which mental processes produce and ac-
cordingly, that the criteria of different types of knowledge are the sound operation of the  
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mental processes which produce them.1 These researchers were certain that the Indian  
philosophical debate concerning logic was conducted within the confines of the above 
conceptual framework. 

Conversely, my research shows that at least one Indian school of thought, the Nyāya, 
did not operate within the confines of the said framework. The criteria of knowledge 
Nyāya thinkers proposed were entirely different. Their proposed criteria were based on 
the following principle: The rules of grammar allow us to speak as objects of knowledge 
only of things we know how to use, things which play a role and fulfill a function in 
human life. The meaning of a tree is given to it by the various ways in which it is used. 
Tree is that thing we built stuff out of, that thing we use to warm our houses with, that 
thing the fruits of which we eat and under the shade of which we take refuge. The mean-
ing of things is given to them by the rules of their use or to state the same thing different-
ly, the rules of the use of things which we learn when we learn human behavior  
determine their meanings. The criteria of knowledge are then, according to Nyāya, the 
rules of the use of things in habitual behaviors. This means that according to Nyāya, it 
makes no sense to speak as objects of knowledge of things we don't know how to use, 
things there are no habitual behaviors in which they participate and accordingly, no rules 
for their use. 

It is important to note that Indian logic was not formal.2 Its subject matters were not 
abstract variables, logical symbols and propositions whose forms have been separated 
from their contents. The subject matters of Indian logic were everyday entities and con-
cepts. The issue which stood at the center of the Indian philosophical debate regarding 
the pramāna, I suggest, was the following: On the one hand, there were thinkers who 
believed the rules of logic were prior to and independent of habitual everyday human 
behaviors. On the other hand, there were the Naiyāyikas who believed the rules of logic 
were derived from habitual everyday human behaviors and the rules of usage they pro-
vided. Nyāya was and still is a school of thought that claims that arguments which are not 
grounded in well known, well familiar courses of action, are not logical, not rational. 
Since Nyāya logic was not formal, since its subject matters were everyday entities and 
concepts, it considered only arguments which were sound and meaningful, arguments 
which conformed to rules of usage in everyday life, to be strictly speaking, logical and 
rational.  

The main purpose of Nyāya philosophical project was to develop a logical model for 
ascertaining whether arguments were sound. This logical model was designed to deter-
mine whether arguments conformed to the rules of the use of things in everyday habitual 
behaviors. The model operated as follows: It examined whether arguments satisfied the 

                                                           
1 MATILAL 2002, pp. 368 – Matilal states that: "Prāman a is what 'makes' knowledge. Since 

knowledge is always an episode (an inner event in Indian philosophy, in fact, a sub-category 
of mental occurrence), prāmana has also a causal role to play. It is the "most efficient" cause 
of the knowledge episode. Knowledge yields determination of an object x or a fact that p (ar-
tha-parichchedda) as the result, and prāmana is "instrumental" in bringing about that result. 
This is the causal role of a prāman a. In MOHANTY 1992, pp. 229, a similar position is pre-
sented by Mohanty. He states that " A sort of causal theory of knowledge is built into the 
prāmana theory: a true cognition must not only be true to its object, but must also be generat-
ed in the right manner, i.e. by the appropriate causes. 

2 For further reading on the matter see MOHANTY, pp. 100-127,  MATILAL 1986,  
pp. 118-127 and MATILAL 1990, pp. 23 -28, MATILAL 1998, pp. 1-22 
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criteria of soundness. Arguments which satisfied all the required criteria were determined 
to be sound. Arguments which failed to satisfy the criteria were rejected, however con-
vincing they may have seemed. 

2 The Four Criterions of Knowledge, the Four Pramānas 

2.1 The Pratyaksa-pramāna, the Criterion of Perceptual Knowledge 

Uddyotakara, the author of the Nyāyavārtika, the second commentary of the Nyāyasūtra, 
which was composed probably during the 6th century AD, presents the outlines of his 
theory of pramāna already in the introduction of his work. The discussion in the intro-
duction is divided to three parts, each one of which is dedicated to the clarification of a 
key concept Vātsyāyana uses in the opening sentence of the Nyāya-bhāsya. The opening 
sentence of the Bhāsya states that "pramāna is useful and it is fully compatible with its 
objects (arthavat) because the capability to act (pravrrti-sāmarthya) reveals that the ob-
ject of perception was obtained by pramāna". Uddyotakara first turns to examine the 
relation between pramāna and samartha-pravrrti – meaningful, compatible and compe-
tent activity. It seems Uddyotakara considers the clarification of the relation between 
pramāna and samartha-pravi, which he takes to be a relation of mutual-interdependence, 
to be crucial to the understanding of Vātsyāyana's statement 'pramāna is arthavat'.  

Uddyotakara does not consider the relation between pramāna and samartha- 
pravrrti to be a causal relation. He makes this point perfectly clear in his response to the 
following objection: The pūrvapaksin notes that whereas it is perfectly reasonable to 
maintain that pramāna conditions samartha-pravrrti, it is senseless to maintain that sa-
martha-pravrrti conditions pramāna, since the latter temporally precedes the former.3 In 
causal relations, time plays a crucial role. If relata x conditions relata y it follow that rela-
ta x temporally precedes relata y; and if relata y is temporally posterior to relata x, it fol-
lows that it is impossible for relata y to condition relata x. Under such circumstances, it is 
indeed impossible for samartha-pravrrti to condition pramāna. Uddyotakara responds by 
saying that time plays no role in the analysis he presented of the relation between 
pramāna and samartha-pravrrti.4 If the relation between pramāna and samartha-pravrrti 
is a kind of relation in which time plays no role, it cannot be a causal relation, and if it is 
not a causal relation, there is no reason to withdraw the claim that pramāna and samar-
tha-pravrrti are mutually interdependent. If Uddyotakara holds time to have no bearing 
on the relation between pramāna and samartha-pravrrti, he must be holding pramāna 

                                                           
3 NV 1.1.1, pp. 3 line 4 - पर�परापेि��वादभुयािसि��रित चेत ् – न, अना�द�वात.् य�द 

�माणतोSथ��ितप�ौ �वृि�साम"य�म्, य�द वा �वृि�साम"या�त ् �माणतोSथ��ितपि�ः, %क पूव( %क वा 

प)ा�दित वा*यम्. य�द तावत ्�माणतः पूव�मथ��ितपि�ः, �वृि�साम"य�म+तरेण �किमित �ितप,त?े अथ 

पूव( �वृि�साम"य�मनवधाया�थ( �किमित �वत�ते? त�मात् �वृ�ेः �माणतोSथ��ितप�ेरवा पूवा�परभावो न 

क./यते इित. 
4 NV 1.1.1, pp. 3 line 9 -त1 नवैम्. क�मात?् अना�द�वात्. अना�दरयं संसार इित पूवा�4य�तस5ू े

�ितपादिय6यामः. आ�दमित च संसारे एष दोषः, %क पूव( �माणतोSथ��ितपि�ः, आहोि�वत् पूव( 

�वृि�साम"य�िमित. 
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and samartha-pravrrti to be logically, grammatically related. The purpose of his analysis 
must have been to provide an account of the grammatical relations between the concepts 
of pramāna and samartha-pravrrti and not an account of the causal relation between 
pramāna and samartha-pravrrti.  

Uddyotakara's analysis of the grammatical relations between pramān a and samar-
tha-pravrrti consists of three short passages. First, he points out that there is a  
grammatical relation between what we understand to be an 'object of interest' and the 
activity which accomplishes it - samartha-pravrrti. He states: 

When the thought I want to 'obtain that thing' propels a man to act, and 
he indeed 'obtains that thing', the activity (pravrrti) he performs is said 
to be fruitful (samartha). Similarly, when the thought I want to 'avoid 
that thing' propels a man to act, and he indeed 'avoids that thing', the ac-
tivity he performs is said to be fruitful. Otherwise, his activity is said to 
be non-fruitful.5    

The grammatical point Uddyotakara tries to turn our attention to in the above passage 
is as follows: The terms we use to express the things we are interested in pursuing are  
the same terms we use to express the activities which accomplish these things. One's 
desire to "drink coffee", to "climb a tree" or to "wear a coat", could be fulfilled only by 
him "drinking coffee", "climbing a tree" or "wearing a coat". This grammatical point can 
be formulated in the following manner: The thing p one is interest in pursuing can be 
accomplished only by the activity we describe as p and the activity we describe as p is 
the activity which is capable of accomplishing only the thing p one is interest in pursuing. 
It follows from the fact that the things we are interested in pursuing and the activities 
which accomplish them are expressed by the same terms, that for each activity p corres-
ponds one and only one object it accomplishes, i.e., the object p we are interested in pur-
suing; and that for each object p we are interested in pursuing corresponds one and only 
one activity, i.e., the activity p which accomplishes it. 

In the subsequent passage, Uddyotakara states that the classification of activities to 
samartha and asamartha corresponds to the classification of pramān a to real and 
unreal.6 The real pramāna, Uddyotakara explains, is that which correctly endows 
things with their meanings.7 A meaningful thing is by definition a thing which serves 
a purpose, a thing which plays a role and which people find interest in. Hence, saying 
that the real pramāna correctly determines the meaning of something to be p is tanta-
mount to saying that the real pramāna correctly identifies p as something people find 
interest in. Since the group of objects the real pramāna provides is the group of things 
people find interest in, and since for each such thing p corresponds one and only one 

                                                           
5 NV 1.1.1, pp. 2 line 17 - �वृ�ेरिप ;िैव<यं भवित समथा�समथ�भेदात्.  या खलु रागा�दम��वृि�ः सा 

समथा� चासमथ� च भवित. इ@मा/�यामीित �वत�मानो यदा �ाBोित तदा समथा�, अिन@ ं हा�यामीित 

�वत�मानो यदा जहित तदािप समथा�. यदा िवपय�य�तदासमथDित. 
6 NV 1.1.1, pp. 2 line 21 - तत् पुनः �वृ�े;Eिव<यं �माण�याथ�वदनथ�क�वात्. 
7 NV, pp. 2 line 21 -  �माणं तावदथ�प�र*छेदकम्. �माणसामा+यात् �माण�ितGपकमिप 

�माणिम�युपचय�ते. 



174 J. Schorr 

 

activity, i.e., the activity p which accomplishes it, the group of objects the real 
pramāna provides is logically equivalent to the group of fruitful activities. 

Uddyotakara concludes his analysis of the relation between pramān a and samar-
tha-pravrrti by noting that: 

When a man acts according to an object the real pramāna provides, the 
activity he performs is fruitful and the fact that it is fruitful reveals him 
to be a knower. On the other hand, when a man acts according to an ob-
ject the unreal pramān a provides the activity he performs is not fruitful 
(and the fact that it is not fruitful reveals him not to be a knower).8 

It follows from the fact that for every fruitful activity p corresponds one and only 
one meaningful thing p, that if there is a fruitful activity we express as p we can une-
quivocally determine that p is meaningful. It further follows from the fact that the 
group of all possible fruitful activities is logically equivalent to the group of all possi-
ble meaningful things, that we can determine a certain thing p to be meaningful only 
if there is a fruitful activity we describe as p. Fruitful activities are, then, that by 
which we can determine whether a certain thing p is meaningful and without which 
determining whether things are meaningful would have been impossible. In other 
words, fruitful activities determine the bounds of sense, they are the criteria of mean-
ing; and since knowing is nothing but grasping the correct meaning of a thing, fruitful 
activities are the criteria of knowledge, they are the pramān a. 

Further on in the introduction, Uddyotakara examines the issue of kāraka-śabdas. 
The term kāraka-śabda means 'word which expresses activity'. All the words which 
denote the agents, the instruments or the objects of activities fall under the category of 
kāraka-śabda. An account of the way kāraka-śabdas operate is, of course, of pivotal 
importance to a position which regards the linguistic expression of activities to be the 
criterion of meaningfulness and knowledge. Uddyotakara explains how he takes 
kāraka-śabdas to operate when he responds to an objection raised by the pūrvapaksin. 
The pūrvapaksin claims it to be inconceivable for kāraka-śabdas to derive their mean-
ing from something other than the on-going activity to which they refer and that 
kāraka-śabdas can obtain their meaning and become operative only after the on-going 
activity to which they refer is completed.9 To this Uddyotakara replies that if a 'cook' 
was a cook only while he was cooking, this would mean that he became a cook only 
once he began cooking and that he would cease to be a cook as soon as he completed 
cooking, which is preposterous.10 Similarly, if a 'stove' and a 'dish' were a stove and a 
dish only during a cooking session, it would mean that they became a stove and a dish 

                                                           
8 NV 1.1.1, pp. 2 line 2 - सोSयं �माता यदा �माणेनाथ�मवधाय� �वत�ते तदा�य �वृि�ः समथा� भवित. 

यदा पुनः �माणाभासेनावधाय� �वत�ते तदासमथा�. त�याः पुनरथ�वHवम् 
9 NV 1.1.1, p. 5 line 21 - न च कारकशJदाः �Kयासंब+धम+तरेणा�मानं लभ+त इित. न च MNमा5 ं

कारकम्, न च �Kयामा5िमित. कारकशJदो िह �वत�मानः �Kयासाधने �KयािवषेशयुOे �वत�ते. 

�मातृ�मेयशJदौ च कारकशJदौ ताव+तरेण �Kयां न �वतDयातािमित. 
10 NV 1.1.1, pp. 6, line 3 - न, पाचका�दशJदवत् ि5कालिवषय�वात्. न Pूमः �Kयासंब+धेनैव कारकशJदाः 

�वत�+त इित. अिप तु ि5कालिवषया एते. य�द �Kयासंब+धिनिम�ा �यःु, न �Kयाम+तरेण �वतDरन्. 

�Kयासंब+धम+तरेण तु �वत�+ते. 
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only once the cooking session began and that they would cease to be a stove and a 
dish as soon as the cooking session completed, which is equally preposterous.  

Kāraka-śabdas, Uddyotakara concludes, do not refer to the constituents of an on-
going activity but rather, they express the role a thing plays, the purpose it fulfills or 
the use we make of it in a habitual behavior. The word 'cook' expresses the role that 
the agent of cooking plays in the habitual behavior of 'cooking', the word 'stove' ex-
presses the function the instrument of cooking fulfills in 'cooking' and the word 'dish' 
expresses the thing which the activity of cooking produces. Kāraka-śabdas, the terms 
we use to describe the activity which accomplishes a thing p, express as a matter of 
fact the use we make of p in a certain habitual behavior. So, instead of saying that by 
pointing out an activity we describe as p and only by pointing out such activity, we can 
unequivocally determine that p is meaningful, we can now say that by pointing out a 
use we can make of p in a habitual behavior and only by pointing out such usage, we 
can unequivocally determine that p is meaningful. In other words, usage determines the 
meaning of things or, the meaning of things is their usage. The meaning of a tree is that 
which we can build staff out of, cut down and climb on. Knowing what a 'tree' is, 
grasping the true meaning of 'tree', depends on our acquaintance with the habitual 
behaviors in which trees are used. We become acquainted with the usage of things in 
habitual behaviors by learning these habitual behaviors - a process which requires 
much exercise, train and drill, the development of skills and techniques. The true 
meaning of things is given by their usage in habitual behavior and being acquainted 
with the usage of things in habitual behavior requires learning these behaviors.  

Uddyotakara reveals another important aspect of his theory of pramāna during a dis-
cussion in which he explains Vātsyāyana use of the term 'artha-pratipatti', 'perception of 
an object'. The pūrvaksin asks Uddyotakara to explain why Vātsyāyana uses the word 
artha, 'object'. Perception is always the perception of an object, so the explicit mention of 
the word 'object' seems to be redundant. The word artha is included in the statement, 
Uddyotakara replies, for the purpose of precluding the perception which has the pramāṇa 
as its object. The objects which pramāna provides, Uddyotakara explains, reveal purpos-
es that human beings are interested in pursuing. Contrarily, there can be no purpose in 
pursuing pramāṇa.11 Pramāna pertains to habitual ways in which things are used. These 
habitual ways are courses of action people fixed because they have repeatedly proven 
their capacity to accomplish the purposes they were supposed to accomplish. Doubting 
that things can be used in the ways they were over and over successfully used before is 
senseless. It is senseless for people who are capable of climbing trees or cutting trees 
down to question whether a tree can be climbed on or cut down. Someone who disagrees 
that a tree can be climbed on or cut down does not fully understand what a tree is. People 
do not doubt the habitual ways in which they use things because doubting the successful 
ways in which they use things is senseless. Since the habitual ways in which things  
are used are not doubted, no purpose can be achieved by pursuing the pramāna. The 
pramāna is, therefore, not fit to serve as an object of perception. More importantly, the 
fact that the habitual ways in which we use things are beyond doubt establishes them as 
pramāna.  
                                                           
11 NV 1.1.1, p.  7, line 1   -  अथ�Qहणं �माणिवषय�ितपि��ितषेधाथ�म्. यतो न �माणिवषया�ितपि�ः 

पुRषिमितकत�Nतायां �योजयित, %क �वथ��य तथाभाविवषया. यदायमथ��य तथाभाव ं �ितप,ते, अथ 

�वत�त इित. 
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2.2 The Anumāna-Pramāna, the Criterion of Inferential Knowledge 

The guiding principles which Uddyotakara presents in the introduction of the vārtika 
pertain to all forms of pramāna. The pratyaksa pramāna pertains to ways of usage which 
are immediately available to us as a result of our capability to follow habitual behaviors. 
This interpretation of the pratyaksa is in accord with its definition in sūtra 1.1.4: A habi-
tual way of using a thing is directly grasped, it can be grasped without the assistance of 
words and it is unerring and unequivocal. The anumāna-pramāna, is said to provide 
knowledge which is over and above the knowledge which pratyaksa provides.  
The obtainment of inferential knowledge is said be dependent on two conditions: Firstly, 
it depends on the perception of the paksa, the object of the inference, as qualified by the 
inferential sign, the liṅga. The question of whether 'the paksa as qualified by the liṅga' is 
meaningful, i.e., a case of knowledge, can be resolved by the pratyaksa-pramāsa. If there 
is a use we can make of 'the paksa as qualified by the liṅga' in a certain habitual  
behavior, then 'the paksa as qualified by the liṅga' is a case of knowledge. Secondly, 
inferential knowledge depends on the perception of avinabhāva, a relation of invariable 
concomitance between the liṅga and the sādhya.12 In order to figure out what Uddyota-
kara takes the avinabhāva relation to be, we must turn to an especially illuminating dis-
cussion he conducts with the pūrvapaksin in vārtika 1.1.5 

Uddyotakara and the pūrvapaksin attempt in this discussion to get to the bottom of 
the relation of invariable concomitance between fire and smoke which renders the 
inference of the former from the latter possible. Uddyotakara argues that fire and 
smoke are not causally related, inherently related or even generally related.13 Smoke, 
Uddyotakara points out, is sometimes perceived apart from fire - as when smoke rises 
from ember - and fire is sometimes perceived apart from smoke - as when no smoke 
is seen to arise from a modern gas stove (that is of course not Uddyotakara's example 
but mine). The unescapable conclusion, Uddyotakara proceeds to argue, is that  
there is no constant companionship between smoke and fire.14 Since there is no con-
stant companionship between smoke and fire, it is wrong to argue that 'wherever there 
is smoke there is fire' and since maintaining that 'wherever there is smoke there is fire' 
is impossible, it must be admitted that the presence of fire is not what is inferred from 
the perception of smoke! The pūrvapaksin responds by saying that this argument of 
Uddyotakara goes directly against a fact accepted by all men.  

                                                           
12 NV 1.1.5, pp. 41, line 10 - बुभु�सावतो ि;तीयात् िलSगदश�नात् सं�कारािभNT�यु�रकालं �मृितः, 

�मृ�यन+तरं च पुनUलSगदश�नमयं धूम इित. त�ददमि+तमं ��य�ं पूवा�4यां ��य�ा4यां �मृ�या चानुगृVमाणो 

िलSगपरामशWsनुमानं भवित. 
13 NV 1.1.5, pp. 47, line 9 – अ�तु तावत् पूव�ः काय�कारणभाव इित. तX, अतYवृि��वात्. न िह धूमोsZौ 

वत�ते ना/यिZधूमे, �वकारणवृि��वात्. अतो न काय�कारणभावः. नैकाथ�समवायोsिप, 

ता4याम+य�यानार[भात्. न िह िभXजातीया4यां MNमार4यत इित. न च ताव/य+य5 वतDते, 

�वकारणवृि��वा�द�युOम्. संब+धमा5ं त5 वत�त इित चेत?् तद/यनुमातुं न शTयते. कथम्? य�द तावदेवं 

कुRते अि�त संब+धोsिZधूमयो�रित – तX, अ�तीत�वात्. अनिZक�यािप धूम�य दश�नात् न संब+धानुमानम्. 
14 NV 1.1.5, p. 47, line 16 - न, उभयोN�िभचारो द@ृः. अनिZधूमो द@ृः, अधूम)ािZ�रित उभयं 

Nिभचा�र. त�मात् न साहचय�मिप. 
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The following examples may help us understand what Uddyotakara is driving at. 
Assume one sees smoke rising from her house. Assume, further, that in previous cases 
she rushed over to her house upon seeing smoke, she found out that no fire was burn-
ing there. Would this prevent her from rushing over to her house this time? The an-
swer is absolutely not. She would again rush over, most probably with the same sense 
of urgency. Now, assume one sees dark clouds approaching. Assume, further, that in 
some previous cases she saw dark clouds approaching, she rushed outside to take the 
laundry in, only to find out later that the clouds produced no rain. Would this prevent 
her from rushing to take the laundry in this time? The answer is probably not. She 
would again rush outside fearing that the coming rain would wet her clothes. 

What the above examples show is that we don't assume the presence of fire upon 
perceiving smoke because in previous cases we always perceived smoke alongside 
fire. Rather, we react to smoke as if we see fire because we were taught to act this 
way.15 Reacting to fire upon seeing only smoke has repeatedly proven itself useful in 
saving lives, property, time and effort. The inference of fire from smoke is a pattern 
of behavior we were taught to follow. It is this pattern of behavior from which the 
relation of avinabhāva between fire and smoke is derived from. A relation of 
avinabhāva is therefore, a relation of meaning. We have learned to associate the 
meaning of 'smoke' with the meaning of 'fire', we have learned that part of what 
'smoke' means is that it indicates 'fire', when we have learned habitual behaviors 
which involve 'smoke' and 'fire'. The invariable concomitance of fire and smoke is 
based on the fact that there is a use we can make of 'qualifying smoke by fire' and not 
on a relation between smoke and fire which is prior to and independent of habitual 
human behaviors. Generally speaking, the question whether maintaining that 'the 
liṅga' is invariably concomitant with the sādhya' is meaningful, whether it is a case of 
knowledge, can be resolved by the pratyaksa-pramān a. If there is a use we make of 
'the liṅga as invariably qualified by the sādhya' in habitual behaviors, then maintain-
ing that 'the liṅga is invariably concomitant with the sādhya' is meaningful, it is a case 
of knowledge.  

So, provided one is acquainted with the habitual behaviors in which the paksa, the 
liṅga and the sādhya are used, the fact that 'the paksa is qualified by the liṅga' and the 
fact that 'the liṅga is invariably qualified by the sādhya' are immediately given to him 
by the pratyaksa-pramān a. However, the inference 'the paksa is qualified by the 
sādhya' does not 'naturally' follow from the above two perceptual facts. For inference 
is also a form of habitual behavior that one needs to learn, by exercise, train and drill 
and by developing skills and techniques. Only one who knows how to infer would 
accept that 'the paksa is qualified by the sādhya' after he is presented with the facts 
that 'the paksa is qualified by the liṅga' and that 'the liṅga is invariably qualified by 
the sādhya'. It is possible that one would be presented with the facts that 'the paksa is 
qualified by the liṅga' and that 'the liṅga is invariably qualified by the sādhya' and 
yet, refuse to admit that 'the paksa is qualified by the sādhya'. What this refusal de-
monstrates, however, is this person's incapacity to infer. 

                                                           
15 My above interpretation of inference is inspired by Baker and Hacker commentary on Witt-

genstein's Philosophical investigations. See Baker, G. P. & Hacker P.M. S. (2009), p. 88-90. 
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2.3 The Upamāna-pramāna, the Criterion of Analogical Knowledge 

Uddyotakara clarifies best his position regarding the upamāna-pramāna in a discussion 
he conducts with the pūravpakśin in Vārtika 1.1.39. The question Uddyotakara and the 
pūravpakśin are in disagreement over is how the similarity of things is determined. The 
two things the similarity of which is examined in this particular discussion are 'the pro-
duction of dishes', on the one hand, and 'the production of sounds' on the other.  

The pūrvapaksain first rejects the possibility that 'the production of dishes' is similar  
to 'the production of sounds' because dishes and sounds are identical, for the obvious 
reason that dishes and sounds are very different things. Next, he rejects the possibility 
that 'the production of dishes' is similar to 'the production of sounds' because dishes and 
sounds are produced in the same way. Dishes are produced, for example, by putting  
vegetables, meat and spices in a casserole and by putting the casserole in the oven. 
Sounds, on the other hand, are produced, for example, by playing a music instrument or 
by using the vocal chords. Since the above two methods for determining similarity must 
be rejected, the pūrvapaksain concludes that the similarity between 'the production of 
dishes' and 'the production of sounds' must be the result of the following procedure: We 
abstract the property 'being a product' from actual cases in which dishes and sounds are 
produced, and conclude from the fact that this property qualifies both that 'the production 
of dishes' and 'the production of sounds' are similar.16 

Uddyotakara replies that there is no criterion for determining similarity irrespective 
of the habitual behaviors in which the two things whose similarity is examined are 
involved.17 Irrespective of the activity of playing chess, the actions of moving wooden 
pieces and tapping the computer's keyboard would seem different; in the context of 
playing chess, however, they could be regarded as similar – making a move in a game 
of chess. Contrarily, two identical actions of putting a piece of paper in an envelope 
may seem similar irrespective of the context in which they are performed. In  
the proper context, however, one action could be a vote placed during an election and 
the other, a love letter sent from a husband to his wife. There are no general rules 
prior to and independent of habitual behaviors for determining whether two things p 
and q are similar. Determining whether p and q are similar is possible only with re-
spect to the rules of a certain behavior.18 The upamāna-pramān a, the criterion of ana-
logical knowledge, is that p and q are similar if the rules of the habitual behavior in 
which they participate determine them to be similar. 

                                                           
16 NV 1.1.39, pp. 130, line 7 – यदिप, यथा तथे�युपसंहारे कृते �थे�यनेन शJदेन सव�सामा+यं वा, 

कृतक�वसामा+यं वािभधीयते? कृतक�व िवशेषो वा?  सव�सामा+यं तावत् न युOम्, तथेित 

NपदेशाशTय�वा�दित. कृतक�विवशेषोsिप न युOः, अ+यथा शJद�य कृतक�वात्. प�रशेषात ्

कृतक�वसामा+यम्. त1 हतेुनैवोOिमित – तद/ययुOम्, उपनय�योपमानाथ��वात्. 
17 NV 1.1.39, pp. 130, line 12 – कृतक�वसामा+यं तु शJदसिXधाविभधीयत इित िच5िमदम्.  

कृतक�वसिXधाविभधीयत इित. शJदेन च िविश6यमाणं कथं सामा+यं भिव6यित? 
18 The idea to interpret Uddyotakara's point thus I have taken from Baker's and Hacker's essay 

'Doing the right thing and doing the same thing' in BAKER-HACKER, pp.145 - 149 
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2.4 The Śabda-pramāna, the Criterion of Verbal Knowledge 

The śabda-pramāna, the criterion of verbal knowledge, would not concern us in the 
present paper. It is sufficed to say that an assertion p is a piece of verbal knowledge if it 
expresses the perceptual, inferential or analogical knowledge it is supposed to express in 
accord with the rules of everyday language and the rules of grammar. Similarly to the 
other pramānas, there are no general rules prior to and independent of habitual behaviors 
for determining whether an assertion is a piece of knowledge. An assertion is a piece of 
knowledge if what it expresses was provided by the pratyaksa, the anumāna or the 
upamāna-pramānas and if it expresses it in accord the rules of everyday language and 
the rules of grammar. 

3 Nyāya's Five-Limbs Logical Model for Ascertaining Sound 
Arguments 

The pramānas, the criteria of knowledge, are peculiar and specific rules of usage derived 
from habitual behaviors. There are no general rules prior to and independent of habitual 
behaviors for determining whether a piece of perceptual, inferential, analogical or verbal 
information is meaningful and can qualify as a piece of knowledge. However, the fact 
that the criteria of knowledge are particular and behavior-dependent, by no means rend-
ers them impractical. For, albeit being particular and behavior-dependent, they are well 
familiar and accepted by all. 

Let us try to illustrate the above point. Disputants may disagree whether the argument 
'ants are intelligent because they are capable of making decisions' is sound. But they must 
agree that 'humans are intelligent because they are capable of making decisions' and that 
there is 'nothing which is, one the hand, capable of making decisions and, on the other, not 
intelligent'. Disagreement by one of the disputants over one of the propositions presented 
above would entail that he does not fully understand what 'intelligence' and 'making deci-
sions' are; and it is impossible to conduct a fruitful discussion with someone who does not 
fully understand the meaning of the concepts he wish to discuss. On the other hand, an all-
embracing agreement by all the disputants over the above propositions establishes the 
avinabhāva relation between 'the capability of making decisions' and 'intelligence'.   

Similarly, disputants may disagree whether the argument 'penguins are birds because 
they have feathers' is sound. But they must agree that 'parrots are birds because they have 
feathers' and that 'nothing is known to have feathers and yet, not be a bird'. Disagreement 
by one of the disputants over the above propositions necessarily entails that he does not 
fully understand what 'birds' and 'feathers' are and it is impossible to conduct a fruitful 
discussion with someone who does not fully understand the meaning of the concepts he 
wishes to discuss. On the other hand, an all-embracing agreement by all the disputants 
over the above propositions establishes the avinabhāva relation, the relation of meaning 
between 'feathers' and 'birds'. 

The principle which underlies Nyāya's five-limbs logical model is, then, that argu-
ments are sound only if they accord with the criteria set by the pramān as. That is, 
arguments are sound only if the concepts they employ accord with the rules of the use 
of the things they denote in everyday life. If an argument fails to satisfy the said crite-
ria, it follows that it employs concepts contrary to the rules of their use, that is, it  
follows that the concepts it employs assign to the things they denote, meaning which 
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is in discord with their meaning as everyday life determines it to be. Such arguments 
which fails to satisfy the criteria of soundness must be dismissed as incoherent and 
nonsensical, however convincing they may seem.19  

To illustrate how the model he proposes operates, Uddyotakara chooses the philo-
sophically-loaded argument 'sound is not eternal'. Uddyotakara's choice of the argu-
ment 'sound is not eternal' is not incidental. Demonstrating beyond doubt that the 
above argument is sound, demonstrates ipso facto that the opposite argument 'sound is 
eternal' is nonsensical. The argument that 'sound is eternal' is an exceptionally impor-
tant and an entrenched position in Indian culture. Showing it to be nonsensical is a 
volatile and subversive move on behalf of Uddyotakara. 

Let us now observe how the five-limbs logical model operates: 

3.1 The Statement of the Proposition – 'Sound is Not Eternal'. 

This piece of verbal knowledge must satisfy the conditions set by the śabda-pramāna. 
These conditions are that the perceptual fact which the proposition expresses is sound 
and that is expresses it in accord with the rules of grammar. At this stage, the truthful-
ness of the proposition is known only to its proponent. The fact that its truthfulness is 
unknown at this stage to the other disputants does not mean that it does not satisfy the 
conditions set by the śabda-pramān a. For whether or not it satisfies these conditions 
depends solely on the truthfulness of the perceptual fact the propositions expresses 
and on the fact that it expresses it in accord with the rules of grammar. 

3.2 The Statement of the Reason – 'Sound is Not Eternal because it is Produced' 

The statement of the reason must satisfy the conditions set by the anumāna pramāna, the 
criterion of inferential knowledge. According to Uddyotakara's account of anumāna we 
have presented above, if the rules of habitual behaviors determine that sounds are pro-
duced and that whatever is produced is not eternal, the statement 'sound is not eternal' 
must be a piece of inferential knowledge. The purpose of the subsequent two stages of 
the logical model would be to provide conclusive evidence that sounds are produced and 
that whatever is produced is not eternal. If such conclusive evidence would be provided, 
inferring that 'sound is not-eternal' would be irresistible, for the following simple reason: 
if sound is shown beyond doubt to be the kind of thing which, if it is produced, it is non-
eternal, it makes no sense not to infer that sound is non-eternal.  

3.3 The Statement of a Familiar Instance – 'Dishes are Produced and are Not 
Eternal' 

The familiar instance depends on the pratyaksa-pramāna, the criterion of perceptual 
knowledge. The role of the familiar instance is first, to establish the existence of a group 
                                                           
19 The idea that assertions must be dismissed if they are incompatible with everyday known 

facts I have borrowed from Descombes. In DESCOMBES, pp.1 he states: "Phenomenon" 
here means whatever may contradict our speculations and lead us to correct out initial de-
scriptions. There are phenomena if there are facts that could result in the overthrow of even 
the most entrenched dogmas or in the rejection of the conclusions of even the soundest lines 
of reasoning. 
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of objects about which it makes sense to say that they are produced and non-eternal and 
second, to make sure that there is not even a single known object about which it makes 
sense to say that it is produced and yet, eternal. The familiar instance Uddyotakara sug-
gests is 'a dish is produced and not eternal'. The acceptance of the said familiar instance 
by all the disputants is a precondition for conducting the discussion. If a disputant disa-
grees that dishes are understood in habitual behaviors to be a kind of thing which is pro-
duced and non-eternal, this merely shows that he does not fully understand the meaning 
of the concepts 'produced' and 'non-eternal', the very concepts the discussion is about. On 
the other hand, if all the disputants agree that dishes are produced and non-eternal, the 
existence of a group of objects which are produced and non-eternal is established. If the 
disputants moreover fail to come up with an example of an object which is produced and 
yet, is eternal, the relation of avinabhāva between production and non-eternality is estab-
lished. The only question left now is whether the avinabhāva relation between production 
and non-eternality which pertains to dishes pertains also to sounds. 

3.4 The Statement of the Application – 'Like Dishes, Sounds are also 
Produced and are not Eternal'.  

The question whether the avinabhāva relation between production and non-eternality 
pertains to sounds can be answered by an appeal to the upamāna-pramāna, the criterion 
of analogical knowledge. The upamāna set one important condition: Two things are 
similar if they perform the same role in the context of a certain habitual behavior. In our 
particular case, dishes and sounds are similar if they are both produced, that is, if they 
did not exist prior to a certain point of time and began to exist since that point of time. 
Since sound is a kind of thing which does not exist prior to a certain point of time and 
begins to exist since that point of time, sounds are similar to dishes in this respect. Like 
dishes which are produced and not eternal, sounds are also produced and not eternal. 

At this stage, anyone who is capable of inferring cannot resist accepting the con-
clusion that 'sound is not eternal', for the conditions necessary for inference are fully 
met. It was demonstrated that the rules of the use of 'sound' in habitual behaviors de-
termine its meaning to be a kind of thing which is produced and non- eternal. The 
deeply entrenched position that 'the sounds of the vedas are eternal' is shown to be 
nonsensical when it is confronted with the meaning everyday habitual behaviors  
assign to 'sound'. The said traditional and deeply entrenched position is shown to  
employ the words 'sound' and 'eternality' contrary to the meaning determined to them 
by everyday parlance.   

3.5 The Statement of the Conclusion – 'Sound is not Eternal' 

The same statement that was presented in stage one is presented again now as a con-
clusion. The truthfulness of the proposition is now known not only to its proponent 
but also to the other disputants. 

To conclude, the purpose of the logical model described above is to confront philo-
sophical arguments with everyday facts, i.e., with the meaning which everyday habi-
tual behaviors determine to the things which constitute human experience. The logical 
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model of Nyāya determines that philosophical arguments are sound and meaningful, 
if the concepts they employ conform with the meaning that everyday usage determine 
to the things they denote. This is in accord with Nyāya position that only arguments 
which conform to the rules of everyday life are strictly speaking, logical and rational.  
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Abstract. Logical and semantical issues surrounding non-denoting terms have 
been investigated since ancient times, in both the Western and Indian philo-
sophical traditions. And in a more  applied formal setting, such issues have also 
gained importance in constructive mathematics, as well as computer science 
and software engineering. The paper first presents a strategic exploration of log-
ical treatments of reference failure in Western thought, and then goes on to pro-
vide a comparative examination of the issue in the Indian tradition, particularly 
with respect to the dispute between the Yogācāra-Sautrāntika school of Budd-
hism and the Nyāya school of Hinduism.  The paper concludes by advancing a 
formalization of the Buddhist apoha semantical theory in terms of a dual-
domain Free logic. 

1 The Analysis of Non-existence in Western Logic 

It is a distinctive feature of human language and thought that we can introduce terms 
purporting to designate some object or entity in the world, but where no such object 
or entity exists. And we can then go on to use such terms to make grammatically well 
formed assertions which appear to be meaningful, and indeed many of these meaning-
ful assertions about non-existent objects seem to be either true or false.  This pheno-
menon poses  some deep challenges for philosophy and logical theory which have 
been recognized and investigated since ancient times, in both the Western and Indian 
traditions. And in a more  applied formal setting, such issues have also gained impor-
tance in constructive mathematics, as well as computer science and software engi-
neering. In the context of ancient Greek philosophy, a well known version of the 
problem is articulated in Plato's riddle of non-being, often referred to as the predica-
ment of 'Plato's beard'. Let us suppose that Plato was always a clean shaven individual 
and never sported facial hair. In such a case, we would seem to be asserting a true 
proposition with the negative existential statement 'Plato's beard did not exist'.  But if 
Plato's beard did not exist, then exactly what are we talking about when we say that he 
didn't have one? And how can we make any coherent assertion involving the term 
'Plato's beard' when, by hypothesis, it fails to denote? Even the cogency of the see-
mingly innocent 'Plato did not have a beard' seems threatened.  
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1.1 Sense, Reference and Definite Descriptions 

Frege's [1] distinction between sense and reference provides a powerful and far reach-
ing response to scenarios such as Plato's beard. In accord with Kant's maxim that 
existence is not a predicate applying to individual objects, Frege analyzed assertions 
of existence in terms of the extensions of concepts.  Hence to say that aardvarks exist 
is, in effect, to say that the 'cognitive content' or sense (Sinn in Frege's terminology 
and intension in Carnap's) expressed by the  term 'aardvark' is true of at least one ob-
ject in the universe of discourse. So there are individuals in the range of the existential 
quantifier that satisfy or 'fall under' the concept  'aardvark'. And conversely, to say 
that unicorns do not exist is to say that no individuals in the range of the existential 
quantifier fall under this concept, and hence that its extension is empty. This makes 
existence a second order claim about concepts rather than objects. 'Aardvark' and 
'unicorn' are general terms to which singular terms can attach to form atomic state-
ments. Frege applies the distinction between sense and reference to singular terms as 
well, such as 'Pegasus' or 'Sherlock Holmes'.  To say that Pegasus does not exist is 
again to say that no individual in the domain of discourse falls under the 'Pegasus' 
concept. In other words, 'Pegasus' has a sense but no reference. 

This dual level analysis provides an elegant explanation of why terms with empty 
extensions can still contribute to meaningful discourse. At the level of intension or 
sense, there is still semantic content associated with terms such as 'Pegasus' and 
'unicorn'. According to Frege's principle of compositionality, the semantic value of a 
complex whole is a function of the semantic values of its respective parts and their 
mode of combination.  Propositions (or 'complete thoughts') are the intensions of 
declarative sentences, and the sense of a non-denoting term such as Pegasus can still 
contribute to the intensional level of sentences in which it occurs, to yield a meaning-
ful proposition. And indeed, this supplies a very elegant explanation of the semantic 
content conveyed by literature and other forms of fictional discourse.  

A proposition is the intension of a declarative sentence, while for Frege its exten-
sion or reference is a truth value. In accord with the above principle of compositional-
ity, failure of reference for singular terms must turn the method of designating the 
reference of a sentence involving such terms into a partial function on the range 
{True, False}. Since Pegasus has a sense but no reference, the sense can contribute to 
a proposition, while the lack of reference entails that functional combination at this 
level fails, and sentences involving Pegasus will lack a truth value. If 'Pegasus' has no 
referent then neither does the sentence 'Pegasus is winged', so that its truth value is 
undefined or 'u'. Bivalence must be sacrificed if genuinely non-denoting terms are 
allowed, and the principle of strict compositionality requires lack of reference to re-
cursively propagate in the manner of an infectious disease. If the referent of 'Pegasus 
is winged' is u, then the value of, e.g. 'Pegasus is winged or snow is white' must also 
be u, because if there is an input missing to the disjunctive truth function then there 
can be no output. This yields a version of Kleene's system of weak 3 valued logic.  

In Russell's [2] response to Frege the level of intension is not invoked,  and instead 
Russell focuses purely on referential considerations.  His 'logically proper name' is a 
pure indexical referring to immediate aspects of raw sensation, while standard and 
logically improper names are analyzed along the lines of definite descriptions. On 
Russell's account, expressions involving the definite article, such as 'the ϕ', are treated 
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according to the standard existence and uniqueness constraints, ∃x(ϕx ⁄ ∀y(ϕy ↔ y = 
x)). This analysis yields a formula rather than a singular term, and to make a further 
assertion about 'the ϕ', requires an appropriate augmentation of the base formula. 
Hence 'The ϕ is Ψ' is formalized as ∃x(ϕx ⁄ ∀y(ϕy ↔ y = x) ⁄ Ψx). If there is no 
object in the domain of discourse satisfying both the existence and uniqueness con-
straints, then 'the ϕ' is a vacuous description and the corresponding formula above 
will be false, as will any further formula attempting to assert something about 'the ϕ'. 
There is no present King of France, and if we let Kx symbolize the property in ques-
tion, then ∃x(Kx ⁄ ∀y(Ky ↔ y = x)) is rendered false by the falsity of the first con-
junct. Consequently 'The present King of France is just' and 'The present King of 
France is not just' both turn out false (on both narrow and wide readings of negation), 
and now uniform falsity, rather than lack of truth value, propagates through the ac-
count.  

But, contra both Frege and Russell, there is an intuitive sense in which we might 
want to make true assertions using non-denoting terms, such as those involving basic 
logical properties like self identity: 'The present King of France is identical to the 
present King of France', or statements using fictional names that affirm details of the 
literary context, like 'Sherlock Holmes was a brilliant detective'. It is also convenient 
to retain the logical form of a genuine singular term for both proper names and defi-
nite descriptions. But this won't work in classical logic for expressions that don't refer. 
If t is a singular term standing, say, for 'Plato's beard', then the negative existential 
mentioned above, viz., ¬∃x(x = t) is a contradiction in classical first-order logic with 
identity, since it's a basic requirement of the model theory that t be assigned some 
object in the domain. This highlights a crucial asymmetry in the classical approach, 
where general terms are allowed to have empty extensions while singular terms are 
not. 

1.2 Free Logic 

As Lambert [3] perspicuously observes, the branch of non-classical logic known as 
Free logic is largely motivated in response to this asymmetry. The traditional logic of 
general terms supposed that the inference from  ∀y(ϕy →Ψy) to ∃y(ϕy ⁄ Ψy) was 
valid, because the terms ϕ and Ψ were thought to have existential import. But this 
imposes an unwanted restriction on the range of applicability of formal reasoning, and 
on the modern and broader approach no such import is presupposed. The general 
terms ϕ and Ψ are allowed to be true of nothing, and hence the inference is invali-
dated. For example, since there are no unicorns, the actual world is a model of the 
sentence 'Every unicorn is an aardvark', formalized as ∀y(Uy →Ay), while it is false 
that ∃y(Uy ⁄ Ay), so the actual world serves as a counterexample to the inference. On 
the modern approach, an additional premise of the form ∃y(Uy) is required to restore 
existential import and yield the valid (but unsound) piece of reasoning: ∀y(Uy →Ay), ∃y(Uy)  ∴  ∃y(Uy ⁄ Ay).  

However,  classical first-order logic with identity retains a somewhat curious ex-
ception to the need for an additional premise. If the (potentially complex) 1-place 
predicate expression ϕy is replaced with the complex 1-place predicate y = t,  then the 
original inference pattern ∀y(y = t → Ψy)  ∴  ∃y(y = t ⁄ Ψy) goes through on its own. 
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The expression  ' = t' has existential import in the traditional sense, while in general 
the expressions ϕy and Ψy do not. This traditional residue derives from the asymme-
trical fact that singular terms are required to denote while general terms can be empty. ∃y(y = t) is a truth of classical logic for every singular term t in the language, and 
hence does not need to be introduced as an extra premise. This can itself be viewed as 
an undue restriction on the range of applicability of formal reasoning, since it is not 
possible to carry out intuitively plausible inferences concerning objects that do not or  
might not exist in the actual world. And in the same manner as above, the natural 
strategy is to devise a logic free of existence assumptions with respect to its terms, 
both singular and general (Lambert [4]).  

In Free logic, the quantifiers are interpreted in the normal way, as ranging over 
some domain of discourse D, normally construed as the set of 'existent objects'. But 
the singular terms may denote objects outside of D, or fail to denote altogether.  This 
de-coupling of singular reference from the range of the quantifiers undermines two 
fundamental inference patterns of classical logic, namely Universal Instantiation (UI) 
and Existential Generalization (EG). According to UI,  ∀yϕy  ∴  ϕt is a valid infe-rence. But it fails in Free logic because the quantifier ∀y only ranges over objects 
e ∈ D, whereas 't' may not refer to any such e. So from the fact that every e ∈ D has 
property ϕ, it does not follow that t does. And according to EG, ϕt ∴  ∃yϕy is a valid inference.  But similarly this fails in Free logic because, e.g., t may denote a 
nonexistent object not in the range of ∃y, thus allowing for the possibility of true pre-
mise and false conclusion. 

Analogous to the foregoing transition from traditional to modern logic in the case 
of general terms, now that singular terms are also free of existence presuppositions, an 
additional premise is required to restore validity.  Existential import with respect to 
singular terms is expressed via an existence predicate for individuals (in violation of 
Kantian notions), normally using Russell's 'E!' notation.  With the use of identity, the 
existence predicate can be defined as E!(t)  :=def ∃y(y = t). In the case of both UI and 
EG, E!(t) is the suppressed premise required to yield an inference pattern valid in the 
context of Free logic. Hence UIFree has the form  ∀yϕy, E!(t)  ∴  ϕt, and EGFree has the 
form ϕt, E!(t)  ∴  ∃yϕy. It is now possible to directly articulate the fact that Pegasus 
does not exist with the formula ¬E!(t), letting t denote the mythical flying horse.  And 
while it's true that neither Plato's beard nor Pegasus exist, it's nonetheless false that ∃x¬E!(x). 

1.3 Definite Descriptions Revisited 

As noted earlier, Russell's 1905 theory of definite descriptions analysed expression 
such as 'the ϕ' in terms of a formula rather than a singular term. However, it is often 
convenient to be able to render such expressions as genuine terms, and have a uniform 
treatment of simple terms such as individual constants or proper names, along with 
complex singular terms such as definite descriptions and function terms. In Principia 
Mathematica, Russell [5] introduced his variable-binding, term-forming 'iota' operator 
to do just that. If it's provable that the existence and uniqueness conditions are satis-
fied, then a Russellian  iota operator 'i' yields a complex singular term as follows: if ⊢ ∃x(ϕx ⁄ ∀y(ϕy ↔ y = x)) then ixϕx, read as 'the x such that ϕx', or simply 'the ϕ' is 
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defined (contextually) as that unique x. The definite description 'ixϕx' can then be 
used as a legitimate complex singular term for making assertions such as ∃y(y = 
ixϕx), Ψ(ixϕx), and the seemingly innocuous ϕ(ixϕx).  In the special case of definite 
descriptions, a 1-place predicate ϕx is used to define a 0-place function, i.e. a singular 
term. In the general case, an n-ary relation Rn(x1,..., xn‒1,y)  can be used to define an (n ‒ 1)-ary total function f n‒1, if Rn satisfies the corresponding existence and uniqueness 
constraints ∀x1 ... ∀xn‒1∃y ∀z[Rn(x1,...xn‒1,y) ⁄ (Rn(x1,...xn‒1,z) → z = y)] in which case 
f n‒1(x1,..., xn‒1) = y and the set of (n ‒ 1)-ary total functions can be viewed as a proper 
subset of the set of n-place relations.   

However, not all functions that we might wish to consider are total, and this can be 
due to a failure of  either constraint. Furthermore, such failures might not be known to 
us at the time the function term is introduced. For example, 0-place definite descrip-
tions are often vacuous,  as in 'the greatest prime number', although prior to Euclid's 
proof the semantic status of this description was not definitively known.  The function 
f(x) = x‒1 on the reals is partial, since it is not defined in the case of x = 0, and 
the description 'the x such that x2 = 2' fails the uniqueness constraint. Nonethe-
less it is often expedient to perform logical and mathematical manipulations 
involving partial functions, and thus in the general case Russell's constraints 
seem unduly restrictive. For example, on Russell's account, it is a logical truth 
that ∃y(y = ixϕx). However, it might be useful to be able to introduce the term ixϕx 
without first proving that the existence condition is satisfied,  a la Free logic, and then 
employ the term to articulate the discovery that ¬E!(ixϕx), if it's later found that no 
such object exists. 

In the context of providing a foundation for mathematics, Frege sought to avoid the 
truth value gaps mentioned above that result from descriptions that fail to denote, and 
his solution was to assign a 'dummy value' from the realm of existents. This is akin to 
the current strategy in computer science of assigning an 'error object' in such cases 
(see Gumb [6]). The (generic) Free logic approach is to dispense with existence as-
sumptions for such terms and use the existence predicate to preserve valid patterns of 
inference. This is also the intuitive strategy adopted by Troelstra and van Dalen [7] 
with their E-logics in the context of constructive mathematics. Within Free logic there 
are various choices regarding descriptions that fail to denote. Making all atomic for-
mulas containing empty descriptions false yields a 'negative' free description theory 
equivalent to Russell. In contrast, making all identities between empty descriptions 
true yields a 'positive' description theory analogous to Frege's solution above, al-
though instead of taking the 'dummy value' from the realm of existents, it is now more 
natural to use a nonextistent object, as per the semantics outlined below. So called 
'neutral' Free description theories constitute yet a third option, where bivalence is 
sacrificed and statements involving empty terms lack a truth value, as on Frege's 
strictly compositional approach.   

1.4 Inner and Outer Domains 

From the point of view of classical semantics, there are two distinct ways in which 
singular terms can fail to denote. First, a term can be genuinely empty, in the sense 
that it maps to nothing at all, in which case the semantical interpretation function on 
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the set of terms is itself partial. Second, it can map to something, but this 'something' 
is not in the realm of actual or proper existents, and hence is outside the range of the 
(classical) quantifiers. In this case the semantical interpretation function can be total, 
but with a range that exceeds the scope of the quantifiers. This is in broad accord with 
Meinong's [8] famous and influential distinction between existentent and subsistent 
objects. Subsistence is a wide ontological category that includes both concrete and 
abstract objects, where concrete objects both exist and subsist, while abstract entities 
merely subsist. Meinong's idea serves as an inspiration behind a standard version of 
Free logic in which the semantic structures have both an 'inner' and 'outer' domain, 
and where the inner domain Di specifies the universe of existent objects over which 
the quantifiers range.  There are technical choices to be made concerning the relation 
between Di and the outer domain Do, and it's possible to make them disjoint, or to 
adopt the Meinongian picture and let Di ⊆ Do. In the current exposition the latter op-
tion will be selected, and we will allow Di (although not Do) to be empty, thereby 
evading yet another philosophically dubious presupposition of classical logic, namely 
that at least one object must exist, which presupposition is embodied in the logical 
truth ∃y(y = y). A straightforward semantics for this type of dual-domain Free logic 
can be specified as a direct extension of the classical approach, where the objects not 
belonging to the inner domain cannot be accessed by the quantifiers, but where such 
objects can be accessed by the interpretation function, both to serve as the referents of 
singular terms, and to appear in the extensions of predicate expressions. 

A Free logic interpretation for the respective first-order language with identity L, is 
a triple < Di, Do, f >, where Di is a (possibly empty) set of existent objects, Do is a 
(non-empty) set of subsistent objects, and Di ⊆ Do.  f is an interpretation function 
such that for every individual constant c of L,  f (c) ∈ Do, and for every n-place predi-
cate Pn of L, f (Pn) ⊆ Do

n. Given an interpretation < Di, Do, f >, the valuation function 
V assigns truth values to formulas Ө of L in the following manner (truth functional 
combinations are evaluated as normal):  

 
(i) if Ө is of the form Pn c1,…, cn, then V(Ө) = True iff  < f (c1),…, f (cn) > ∈  f(Pn).  

 V(Ө) = False otherwise; 
(ii) if Ө is of the form c1 = c2 , then V(Ө) = True iff  f (c1)= f (c2). V(Ө) = False  oth-

erwise; 
(iii) if Ө is of the form E!(c), then V(Ө) = True iff f (c1) ∈ Di. V(Ө) = False other-

wise;     
(iv) if Ө is of the form ∀vϕv, then V(Ө) = True iff  for every e ∈ Di, Ve

a (Φv/a) = 1, 
where a is a new individual constant, Φv/a is the result of substituting a for 
every free occurrence of v in Φ, and Ve

a is the valuation function on the interpre-
tation < Di, Do, f * > which is exactly like < Di, Do, f > except that f *(a) = e. 
V(Ө) = False otherwise. 

 
In this 'positive' Free logic, predications involving nonexistent objects can be eva-

luated as true on the basis of set membership, in the typical Tarskian fashion. For 
example, suppose the merely subsistent Pegasus is an element of Do but not Di, the  
1-place predicate Wx stands for the property of 'being winged', f (c1) = Pegasus, and f 
(W) = {Pegasus, ... }. Then 'Pegasus is winged' is formalized as Wc1 and is evaluated 
as True, while E!( c1) comes out False. Leblanc and Thomason [9] provide a  
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7-schema axiomatization of Free logic with identity which is sound and complete 
with respect to this semantics. It incorporates the UIFree  rule previously discussed, as 
well as the axiom ∀xE!x.  

1.5 Actual versus Possible 

Another well developed framework for dealing with objects that can be referred to but 
do not actually exist is supplied by modal logic, and the discussion of Western logic 
will finish with a brief examination of possible world semantics. Although in the ac-
tual world Plato did not possess a beard, it's nonetheless possible that he could have 
grown one, say like Aristotle's, and so there's a plausible sense in which Plato's beard 
'exists' in alternative possible worlds. Similarly, there have never been flying horses in 
this world, but if biological evolution had taken a somewhat different course then 
there might have been. Indeed, the possibility of a winged horse seems no more out-
landish than the palaeontological fact of flying dinosaurs, and thus Pegasus is a possi-
ble though non-actual creature. 

There are a number of options and technical choices that must be made when pro-
viding a semantics for quantified modal logic, and Kripke's [10] groundbreaking work 
adopts some key choices that embody principles of Free rather than classical logic. 
The most distinctive of these concerns the extensions of predicates. Each world w in a 
modal structure has a domain Dw of objects that exist at that index. Let UD be the 
union of all domains Dw for worlds in the structure. Then the binary interpretation 
function I(w, Pn) can assign an object e to the extension of the predicate Pn at some 
world w, even though e ∉ Dw and hence e does not exist at that world. The only re-
striction is that I(w, Pn) ⊆ UDn. Conversely, a predication can turn out to be false in a 
world w, when evaluated with respect to an object e ∉ Dw, but where e does exist at 
another world w' which has access to w. In addition, Kripke upholds the principle that 
the quantifiers have existential import and are thereby restricted at each world to the 
set Dw. This combination of features is in harmony with the positive dual-domain 
semantics for Free logic described above, where UD corresponds to the outer domain 
Do, while Dw constitutes the inner domain Di of locally existent objects over which the 
quantifiers range. One of the prime advantages of this combination of choices is that it 
allows both the Barcan formula, ∀x□Ψx → □∀xΨx, and its equally implausible con-
verse to be refuted, thereby yielding the maximum degree of articulation with respect 
to scope interactions between the quantifiers and the modal operators. Neither the 
Barcan formula nor its converse are derivable in Free logic, whereas both are valid in 
straightforward modal extensions of classical logic (see Schweizer [11] for further 
discussion). 

2 The Analysis of Non-existence in Classical Indian Philosophy 

In classical Indian philosophy, the riddle of non-being was a historical focal point of 
controversy, particularly between rival Buddhist and Hindu schools. The remainder of 
the paper will explore the polemical exchange between the Yogācāra-Sautrāntika 
school of Buddhism and the orthodox Nyāya darśana of Hinduism. The exposition 
relies primarily on Matilal [12,13], Siderits [14,15] and Tillemans [16] as sources.  
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2.1 The Apoha Semantics of Dharmakīrti 

In the 7th century A.D. the Yogācāra-Sautrāntika philosopher Dharmakīrti provided 
an extended development of the nominalistic theory of his predecessor Dinnāga.  
Apoha nominalism emerged within an ontological framework of radical particularism, 
in which each existent is held to be absolutely unique and distinct from every other, 
and thus it is not strictly true to say that two objects have a property in common. Not 
only are there no universals or abstract entities crowding the metaphysical heavens, 
but there are not even genuine similarities or resemblances between distinct objects to 
underwrite our everyday use of property terms. On this beautifully self-consistent 
analysis, the conventional use of property terms is explained in purely negative fa-
shion. Every object differs absolutely from every other, but objects differ from each 
other in different ways, and these assorted modes of differing sustain, through two 
applications of negation, our use of ordinary language predicates.  

The  apoha  analysis is based on the idea that the conventionally correct use of a 
term is acquired through various learning episodes, where encounters with particular 
objects give rise to a mental paradigm which guides the language user's verbal beha-
vior. This paradigm serves as an internal representation or conceptual 'image', whose 
primary function is to exclude incompatible representations and thereby specify some 
portion of the term's anti-extension. For example, use of the term 'cow' is based on a 
particular mental paradigm, which does not encode the abstract features which all 
cows (are mistakenly supposed to) share, but rather which guides our ability to ex-
clude other objects, and hence judge that a given table or chair is a non-cow. So the 
particular paradigm or conceptual construct is first used to exclude non-cows, and the 
extension of the general term 'cow' is obtained through a second application of nega-
tion, as the set of all things which are not non-cows. In this manner, the extension of 
the general term is obtained without commitment to any genuine properties or posi-
tive similarities shared by members of the set of cows.  

Of course, this immediately leads to the question, 'On what basis does the para-
digm exclude some objects and not others, if not by tacit appeal to relevant similari-
ties?' Dharmakīrti's consistent, though semantically somewhat unsatisfying answer, is 
that exclusion is a causal property of the representation as an actual cognitive struc-
ture, so that incompatibility between representations is not a logical or semantical 
trait, but rather is more akin to a repulsive mechanical force.  Dharmakīrti's view is 
not an 'idea' theory of meaning, and the mental paradigm is not a type of pictorial 
image accessible to consciousness. According to Siderits [14], 'for the Buddhists the 
psychological machinery that explains our use of words to refer... is purely causal in 
nature and semantically invisible' (p. 99). Thus unlike the Fregean model,  apoha 
semantics is predominantly concerned with reference, and we discover nothing about 
sense or conceptual content when we discover that, say, two terms 'A' and 'B' are co-
extensive. Instead this is always a quasi-empirical finding. 

As one of the basic metaphysical tenants of Buddhism, the Yogācāra-Sautrāntika 
school embraced the principle that existence is purely momentary. On this view, the 
world is not materially preserved from one moment to the next, but rather consists of 
a series of discrete 'instants' (kṣaṇas) of existence, followed by complete annihilation 
before the next instant occurs. In combination with this view of reality as a kind of 
Heraclitean flux, the Yogācāra-Sautrāntikas also supported the widespread Indian 
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distinction between brute sensation (nirvikalpika) and determinate perception (savi-
kalpika). According to this distinction, the raw data supplied by sensory contact with 
the world must be ordered with respect to a verbal/conceptual scheme, before various 
objects can be perceived as members of their respective categories. This imposition of 
a conceptual framework on the chaotic field of raw sensation is required to provide 
the propositional content of ordinary perceptual experience, while the basal level of 
indeterminate sensation is strictly ineffable. Thus the ordinary objects which we expe-
rience in propositionally structured perception do not exist independently of our con-
ceptual activities. Only the instantaneous and ultimately unique particulars are real, 
and, for reasons quite analogous to Russell's arguments concerning logically proper 
names, are not referred to with ordinary singular terms, while the enduring and com-
posite objects which we perceive and talk about in everyday speech are diagnosed as 
conceptual constructs. 

2.2 Negative Existentials and Non-denoting Terms 

When the foregoing analysis of the objects of perception and reference is combined with 
apoha nominalism, the result is an elegant treatment of negative existentials, which the 
Yogācāra-Sautrāntikas defended against rivals, especially those of the Nyāya school. The 
Naiyāyikas held that some absences, viz. those which can be associated with existing 
counter-positive instances, are real and can be directly perceived. Thus when I say I can 
see that, for example, there is no gorilla in the doorway, this absence itself is said to be 
directly perceived, because there is a clearly defined counter-positive phenomenon, 
namely, the way the doorway would look if there were any particular gorilla standing in 
it. In contrast, the Yogācāra-Sautrāntikas maintain that absences are never perceived but 
only inferred. And the inferential mechanisms involved stem directly from the two-step 
negation of apoha semantics. 

On the Yogācāra-Sautrāntika view, my non-perception of the gorilla is nothing 
other than my perception of the actual doorway in question. When I judge that I see a 
doorway, this is an instance of determinate perception, and as such it necessarily in-
volves the mental paradigm governing my use of the term 'doorway'. This paradigm is 
a conceptual construction which enables me to apply the term under the correct asser-
tability conditions. Thus the perceptual data with which I am now presented must be 
such that it is not excluded by the doorway paradigm, i.e. it must be such that it is not 
a non-doorway. But since a gorilla is included in the non-doorway class, I can rightly 
judge that there is no gorilla present in my immediate visual field, simply on the basis 
of my determinate perception of this doorway. Because of the exclusionary machinery 
of apoha semantics, the perception of the doorway simplicitor is a sufficient condition 
for inferring the non-presence of a gorilla (or any other non-doorway construction). 

The apoha semantic analysis applies to singular as well as general terms (see, e.g., 
Tillemans [16]), and can be uniformly extended to cases where the subject of the as-
sertion has no counter-positive instance, either because the subject is purely fictional 
(but possible), or because it is impossible. The feature which distinguishes conceptual 
constructions which are 'actual' is that the assertability conditions for terms denoting 
actual objects are constrained by direct causal interactions with ultimately existing 
particulars, while in the case of fictional objects the assertability conditions are go-
verned purely by linguistic conventions.  Thus to make the statement 'Kripke exists' is 
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to hold that the conceptual construction designated by the term 'Kripke' (which we 
would normally take to be an actual individual in our naive, pre-theoretic belief that 
enduring and composite entities such as human individuals are real) is causally tied to 
the non-linguistic world of ultimate particulars, in such a way that stimuli from this 
world, combined with salient linguistic conventions, yield the result that the statement 
is at present correctly assertable, while at some undetermined future point it will not 
be. In a related vein, to assert that 'Pegasus does not exist' involves holding that the 
'Pegasus construction' is not directly tied to the world of ultimate particulars, and the 
rules governing its use are constrained purely by discourse conventions. In this case, 
even though Pegasus does not exist, the discourse conventions warrant the assertion 
that 'Pegasus is winged', since the Pegasus concept is psychologically generated in 
response to the story in which Pegasus is presented as a flying horse. This allows 
statements such as 'Pegasus is winged' to have the same type of subject as factually 
grounded assertions, since in both cases the subject is a conceptual construction. 
Thus, in a manner analogous with Meinong's view that 'being so' is independent of 
'being', the statement 'Pegasus is winged' is construed as both 'true' and about a ge-
nuine 'object'.  

In the vernacular of the dispute between the Buddhist and Nyāya schools, a 'horned 
hare' is a stock example of a fictitious object, and according to the Buddhists the pre-
dication 'The hare's horn is sharp' is a normal sentence that we may employ in our 
discourse for various purposes. In contrast, advocates of the realist Nyāya school such 
as Vācaspati argue that the subject term of a sentence must refer to something actual, 
and if not, then the sentence is in need of philosophical paraphrasing in a manner 
strikingly akin to Russell's 1905 view. In order to cogently assert that 'the hare's horn 
does not exist', this must be analysed as the claim that 'each thing that is a horn does 
not belong to a hare' (Matilal [12], p. 81).  As in Russell, this analysis (implicitly) 
relies on quantified variables rather than singular terms to express the lack of refer-
ence. So as in Russell, predications involving fictitious objects turn out uniformly 
false: both  'The hare's horn is sharp' and 'The hare's horn is not sharp' are evaluated as 
falsehoods. At this level there is nothing paradoxical about the analysis, and Russell's 
theory provides an explicit formalization of the basic idea. However, the Naiyāyikas 
did acknowledge a subtle but 'superficial' self-contradiction when expressed as the 
general principle that 'nothing can be truly affirmed or denied of a fictitious entity', 
since this is itself presumably intended as a true statement about fictitious entities.  

The Yogācāra-Sautrāntika analysis of statements involving possible but non-actual 
objects is then carried over to statements about impossible objects, where the stock 
example is 'Devadatta, the son of a barren woman'. The fact that the specification of 
such an object is not self-consistent does not prevent the formation of an attendant 
conceptual construct (since the construction itself does not possess the incompatible 
traits), and thus we can make comprehensible assertions about Devadatta, wherein 
these assertions will have a constructed subject in many ways comparable to Kripke 
or Pegasus. Attempted application of the 'Devadatta' concept will result in the discov-
ery of a null extension, since everything must be excluded. However, I would argue 
that the Yogācāra-Sautrāntika semantical theory does not seem to possess the re-
sources needed to distinguish merely possible but non-actual entities like a hare's horn 
or Meinong's Golden Mountain, from impossible objects such as the son of a barren 
woman. The impossibility and hence non-existence of the latter is due to the mutual 
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incompatibility of the meanings involved. Appeal to the level of sense or intension 
reveals that the description can perforce be satisfied by no object, and hence the pur-
ported individual is impossible. But the purely exclusionary mechanisms of the apoha 
account are not sufficient to distinguish cases of contingent non-existence from the 
analytically unsatisfiable, since the two are extensionally identical. To capture the 
definitional impossibility of 'the son of a barren woman' would require the introduc-
tion of something like Carnap's 'meaning postulates' to specify the salient natural lan-
guage content carried by these terms.  

2.3 Apoha Semantics and Free Logic 

Siderits contrasts the Yogācāra-Sautrāntika view with Meinong's account, and argues 
that the Buddhist view has all of the virtues of Meinongianism with none of its vices. 
Assertions about nonexistent objects are given subjects and truth conditions in accord 
with common sense (as in Meinong), but not at the price of an 'ontological slum', 
bloated with subsistent but nonexistent objects. This latter claim is far from clear 
however, since the objects of predication do exist qua 'conceptual constructions'. Thus 
according to Dharmakīrti, 'Pegasus' does not refer to some attenuated individual resid-
ing in the nether world of abstract entities, but rather designates a private mental ob-
ject of some kind. Furthermore, there is now not just one salient object of reference 
for the entire linguistic community, but instead there is one for every linguistic agent, 
just as there is an idiosyncratic Kripke concept, Everest concept, Zeus concept, etc. 
Thus the Buddhist view seems to constitute a type of psychologically instantiated 
Meinongianism, where the objects of reference are multiplied rather than decreased. 
This approach is perhaps more realistic than a logically idealized account with a sin-
gle semantical structure for an entire linguistic community, although the sense in 
which it is genuinely 'nominalist' is in need of clarification. From an externalist point 
of view it is nominalist, since terms do not refer to external, mind-independent enti-
ties. But from an internalist perspective, linguistics expressions are interpreted as 
referring to conceptual constructs, which are the psychological analogues of ordinary, 
everyday objects.  

Hence, I would propose a dual-domain Free logic as an appropriate way to formal-
ly model the individual nominalistic ideolects. In contrast to the division between 
existent and non-existent oblects underlying the Free logic domains, on the apoha 
view all cognitive representations exist as mental structures and hence are ontologi-
cally commensurate as such. So the demarcation between actual and 'non-actual' must 
be delineated as above ‒ the inner domain Di is comprised of the conceptual construc-
tions such as Kripke and Everest which are causally tied to the non-linguistic world of 
ultimate particulars, while the outer domain Do is comprised of conceptual constructs 
such as Pegasus and Zeus which are not directly tied to the world of particulars, and 
where the rules governing their use are constrained purely by linguistic conventions. 
On the apoha account, 'impossible objects' such as 'Devadatta' and Meinong's 'the 
round square' are countenanced as well, and should be mapped to constructs inhabit-
ing the outer domain. As noted above, the constructs themselves do not possess the 
incompatible attributes in question and hence are not themselves impossible. So it is 
both fitting and necessary to block the deducibility of the aforementioned and see-
mingly innocuous notion that ϕ(ixϕx), which in fact is not benign and will lead to 
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paradox in the case of inconsistent descriptions. This is achieved by adopting Lam-
bert's Law ∀y(y = ixϕx  ↔ ∀x(ϕx ↔ x = y)) as a basic principle of Free description 
theory. In terms of the semantics for definite descriptions, the following clause is 
added to the foregoing specification of a Free logic interpretation: 

(v) if  ∀x(ϕx ↔ x = c) is true, where c is an individual constant, then f (ixϕx) 
= f (c), and  if ¬∃x(∀yϕy ↔ y = x), then f (ixϕx) = e, where e ∈ Do \ Di, and 
where the interpretation function f on the set of individual constants must be 
surjective with respect to Do.  

The nominalism of the Buddhist view indicates that the predicate extensions given by 
the interpretation function f and the attendant set membership conditions used in the 
formal definition of truth for atomic formulas should not be seen as reflecting some 
literal correspondence theory of truth. Instead, they simply encode the internalized 
discourse conventions of the speaker's linguistic community. In this manner it is poss-
ible to provide the basics of a formal semantics for natural language that models the 
apoha view, and hence provides a structure that can reflect the conventional truth 
conditions for sentences involving non-denoting terms. 
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existing paraconsistent set theories. For each ordinal α of classical set
theory α-like elements are defined in the mentioned algebra-valued model
whose collection is not singleton. It is shown that two α-like elements
(for same α) may perform conversely to validate a given formula of the
corresponding paraconsistent set theory.

Keywords: non-classical set theory, ordinal numbers, paraconsistent
logic.

1 Introduction

Boolean-valued models of classical set theory were introduced by Dana Scott,
Robert M. Solovay and Petr Vopěnka in the 1960s. If B is a complete Boolean
algebra then V(B) is a model of Zermelo Fraenkel set theory with the Axiom of
Choice, ZFC (cf. [1]). If the complete Boolean algebra is replaced by a complete
Heyting algebra, H then essentially the same proof shows that V(H) becomes
a model of Intuitionistic Zermelo Fraenkel set theory, IZF [4]. Later Takeuti,
Titani, Kozawa and Ozawa generalised the development to some appropriate
lattice-valued model of quantum set theory or fuzzy set theory [6–8] [10, 11].
We describe the construction of these algebra-valued models and the notion of
validity of a formula in these models in §2.

It can be proved that for Heyting-valued models V(H), the validity of the
Axiom of Choice AC in V(H) is equivalent to the law of excluded middle a ∨
a∗ in H. This is a remarkable fact linking set theoretic properties in algebra-
valued models of set theories to algebraic properties of the corresponding algebra.
This observation was used in [5] to define a class of algebras 〈A,∧,∨,⇒,1,0〉
called reasonable implication algebras. An algebra 〈A,∧,∨,⇒,1,0〉 is called a
reasonable implication algebra if the following hold:
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1. 〈A,∧,∨,1,0〉 is a complete distributive lattice,
2. x ∧ y ≤ z implies x ≤ y ⇒ z,
3. x ≤ y implies z ⇒ x ≤ z ⇒ y, and
4. x ≤ y implies y ⇒ z ≤ x⇒ z.

A reasonable implication algebra is called deductive if

(x ∧ y)⇒ z = x⇒ (y ⇒ z).

If L is any first-order language then by NFF (the negation-free fragment) we
mean the closure of the atomic formulas of L under ∧, ∨, →, ∃, and ∀. The
elements of NFF will be called negation-free formulas.

For the axiom schemes in the axiom system for ZF (i.e., Separation and Re-
placement), we write NFF-Separation and NFF-Replacement for the subscheme
where we only allow instances of negation-free formulas in the scheme.

One of the main results in [5] is the following.

Theorem 1. Let A = 〈A,∧,∨,⇒,1,0〉 be a deductive reasonable implication
algebra. Then Extensionality, Pairing, Infinity, Union and Powerset and the
schemes NFF-Separation and NFF-Replacement are valid in V(A).

If A is a deductive reasonable implication algebra and LA is a logic that is
sound and complete with respect to A, then LA plays the role of the propositional
fragment of the logic of the set theoretic model V(A).

Below, we shall give an example PS3 of a deductive reasonable implication
algebra which is neither a Heyting nor a Boolean algebra. Its logic is a paracon-
sistent logic1 which then gives rise to a model of paraconsistent set theory.

The three-valued matrix PS3 = 〈{1, 1/2, 0},∧,∨,⇒〉 is a deductive reasonable
implication algebra, where the truth tables for the operators are given below:

∧ 1 1/2 0
1 1 1/2 0
1/2 1/2 1/2 0
0 0 0 0

∨ 1 1/2 0
1 1 1 1
1/2 1 1/2 1/2
0 1 1/2 0

⇒ 1 1/2 0
1 1 1 0
1/2 1 1 0
0 1 1 1

Let us now introduce a unary operator ∗ in PS3 having the following truth table:

∗

1 0
1/2 1/2
0 1

We use the symbol PS3 to refer to the augmented structure 〈PS3,∗ 〉. The des-
ignated set is {1, 1/2}. The logic which is sound and complete with respect to
PS3 is a paraconsistent logic [9] and we observed in [5] that V(PS3) is a model
of paraconsistent set theory. In [2] and [3] the same truth tables have appeared

1 A logic is called paraconsistent if there exist formulas ϕ and ψ such that {ϕ,¬ϕ} � ψ.
Semantically, the premises get the designated values but the conclusion does not.
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but along with these tables there is one more table for an unary operator called
the inconsistency operator. Also the approaches there are totally different from
[9] which was developed independently.

In this paper, we study the set theory of the model V(PS3), in particular
the notion of ordinals in this particular paraconsistent set theory. Ordinals have
been studied in non-classical set theories; e.g., Titani used a notion of ordinal
number in lattice-valued set theory [10] where the definition of ordinal is not
exactly the one used in classical set theory. On the other hand let us consider
the paraconsistenet set theory described by [12] where the classical definition of
ordinal is used.

In §4, we stick to the classical definition of ordinals. However, our paracon-
sistent set theory differs considerably from Weber’s (as noted in [5]) since the
axiom scheme of full comprehension is valid in Weber’s set theory and invalid in
V(PS3).2

Usually in the literature of paraconsistent set theory general comprehension
is taken as valid. In [5] it is proved that V(PS3) does not validate the general
comprehension axiom scheme. Also theorem 14 of this paper shows that there
does not exist a set of all ordinal numbers which disproves the general com-
prehension. One of the motivations of this paper in connection with the work
done in [5] is that without the comprehension axiom scheme a set theory may
behave well enough as a paraconsistent set theory. There is no need to think
that paraconsistent set theories are only built to deal with the set theoretic
paradoxes e.g., Russell’s paradox. Rather this paper will show a set theory being
paraconsistent may agree with important classical set theoretic results. This fact
is corroborated in Intuitionistic set theory as viewed in Heyting algebra-valued
models [4]. It may also be mentioned that the identity as used here is not exactly
the classical one. In future we shall deal with these issues in more detail.

2 Definitions and Preliminaries

2.1 Some Classical Definitions

We develop the classical theory of transitive sets, well-ordered sets, and ordi-
nal numbers in the setting of V(A). The following definitions 2–4 are stated in
classical metalanguage whereas the formalizations will take place in §4.

Definition 2. A set x is said to be transitive if every element of x is a subset
of x, or equivalently, if y ∈ z and z ∈ x implies y ∈ x.

Definition 3. A set A is said to be well-ordered by a relation R if R is a linear
order on A and any non-empty subset of A has a least element with respect to R.

Definition 4. An ordinal number is a transitive set well-ordered by ∈.
2 Comprehension axiom scheme: if P(x) is a property then {x : P(x) holds} is a set.
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2.2 The Algebra-Valued Model Construction and BQϕ

The following account is taken from [5] with the permission of the first author
of that paper.

We start with a model of classical set theory V and an algebra 〈A,∧,∨,⇒,
∗,1,0〉. A universe of names is constructed by transfinite recursion:

V(A)
α = {x ; x is a function and ran(x) ⊆ A

and there is ξ < α with dom(x) ⊆ V
(A)
ξ )} and

V(A) = {x ; ∃α(x ∈ V(A)
α )}.

Let L∈ be the language of set theory having the propositional connectives ∧,
∨, →, and ¬. LA stands for the extended language of L∈ extended by adding
constants corresponding to each element in V(A). Similar to the case in Boolean-
valued model (cf. [1]) the following (meta-)induction principle for V(A) will be
used in this paper whenever it is needed: for every property Φ of names, if for
all x ∈ V(A), we have

∀y ∈ dom(x)(Φ(y)) implies Φ(x),

then all names x ∈ V(A) have the property Φ.
Following the Boolean-valued model construction a map �·� is defined from the

class of all formulas in LA to the set A of truth values as follows. If u, v ∈ V(A)

and ϕ, ψ are any two formulas in LA then

�u ∈ v� =
∨

x∈dom(v)

(v(x) ∧ �x = u�),

�u = v� =
∧

x∈dom(u)

(u(x)⇒ �x ∈ v�) ∧
∧

y∈dom(v)

(v(y)⇒ �y ∈ u�),

�ϕ ∧ ψ� = �ϕ� ∧ �ψ�,

�ϕ ∨ ψ� = �ϕ� ∨ �ψ�,

�ϕ→ ψ� = �ϕ� ⇒ �ψ�,

�¬ϕ� = �ϕ�∗,

�∀xϕ(x)� =
∧

u∈V(A)

�ϕ(u)�, and

�∃xϕ(x)� =
∨

u∈V(A)

�ϕ(u)�.

Let D ⊆ A be a set of designated truth values (in short: designated set). A
formula ϕ of LA is said to be D-valid in V(A) if �ϕ� ∈ D and is denoted by
V(A) |=D ϕ. We omit D in the notation whenever it is clear from the context.

The following equations (for a formula ϕ of the language of set theory) played
a crucial role in the development of the theory in [5]:

�∀x(x ∈ u→ ϕ(x))� =
∧

x∈dom(u)

(u(x)⇒ �ϕ(x)�). (BQϕ)
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In order to show that an instance of bounded quantification over the formula ϕ
behaves properly in V(A), one needs the validity of the formula BQϕ in V(A).
Unfortunately, the fact that A is a deductive reasonable implication algebra is
not sufficient to prove this for all formulas ϕ; but it is sufficient to prove it for
all negation-free formulas ϕ. Details can be found in [5, § 3.1].3

2.3 Definition of α-like Elements

As in the theory of Boolean valued models, we can define the notion of a canonical
name:

Definition 5. For each x ∈ V,

x̂ = {〈ŷ, 1〉 : y ∈ x}

Let ORD refer to the class of all ordinal numbers in V. The main goal of
this paper is to identify elements in V(PS3) which behave almost similar to the
classical ordinal numbers. It will be shown that there are more than one such
elements in V(PS3) corresponding to each α ∈ ORD which will be named as α-
like elements. But the non-classical behaviour of these elements will be discussed
in §4.

For each α ∈ ORD the α-like names in V(PS3) are defined by transfinite
recursion as follows.

Definition 6. An element x ∈ V(PS3) is called

i) 0-like if for every y ∈ dom(x), we have that x(y) = 0; and
ii) α-like if for each β ∈ α there exists y ∈ dom(x) which is β-like and x(y) ∈

{1, 1/2}, and for any z ∈ dom(x) if it is not β-like for any β ∈ α then
x(z) = 0.

Clearly, the canonical name α̂ is an α-like name for every α ∈ ORD.

3 Properties of α-like Elements

For each α ∈ ORD, there are many α-like names as the following results show.

Lemma 7. For any x ∈ V(PS3) and α ∈ ORD, �x = α̂� = 1 if and only if x is
α-like.

Proof. The proof will be done by induction on the domain of α̂. We assume that
we have shown the result for all elements in the domain of α̂. We know

�x = α̂� =
∧

y∈dom(x)

(x(y)⇒ �y ∈ α̂�) ∧
∧

β̂∈dom(α̂)

(1⇒ �β̂ ∈ x�)

3 If A is a Boolean algebra or a Heyting algebra, then BQϕ can be proved for all ϕ.
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Hence �x = α̂� = 1 if and only if both of the conjuncts are 1. The second conjunct
is 1, i.e., ∧

β̂∈dom(α̂)

(1⇒ �β̂ ∈ x�) = 1;

if and only if for each β̂ ∈ dom(α̂), 1⇒ �β̂ ∈ x� = 1 i.e.,

1⇒
∨

y∈dom(x)

(x(y) ∧ �y = β̂�) = 1;

if and only if for each β̂ ∈ dom(α̂) there exists y ∈ dom(x) such that x(y) ∈
{1, 1/2} and �y = β̂� = 1; if and only if for each β̂ ∈ dom(α̂) there exists y ∈
dom(x) such that y is β-like (by the induction hypothesis) and x(y) ∈ {1, 1/2}.

Again, since the first conjunct is 1, we have,

∧
y∈dom(x)

(x(y)⇒ �y ∈ α̂�) = 1;

if and only if for each y ∈ dom(x), (x(y)⇒ �y ∈ α̂�) = 1, i.e.,

(x(y)⇒
∨

β̂∈dom(α̂)

�y = β̂�) = 1;

if and only if for each y ∈ dom(x), if y is not β-like for any β ∈ α then by
induction hypothesis it can be derived that x(y) = 0.

Hence combining the above results we get �x = α̂� = 1 if and only if x is
α-like and hence by the (meta-) induction the proof is done. �

Lemma 8. For any x ∈ V(PS3) and α ∈ ORD, �x ∈ α̂� = 1 if and only if x is
β-like for some β ∈ α.

Proof. Using Lemma 7, the following three statements are equivalent:

1. �x ∈ α̂� = 1 if and only if
∨

û∈dom(α̂)�x = û� = 1;

2. there exists β̂ ∈ dom(α̂) such that �x = β̂� = 1; and

3. x is β-like for some β ∈ α.

�
It is clear from the definition that for any α ∈ ORD, there are many α-like

names in V(PS3) in addition to α̂. Of course, we would desire that α-like names
are equal and that for β < α, β-like names are elements of α-like names (in the
formal sense of V(A)):

Theorem 9. Let x ∈ V(PS3) be α-like for some α ∈ ORD. For any y ∈ V(PS3),
�x = y� = 1 if and only if y is α-like.
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Proof. In [5], we proved that for any x, y, z ∈ V(PS3),

�x = y� ∧ �y = z� ≤ �x = z�.

Let x and y be two α-like elements in V(PS3). So �x = α̂� ∧ �α̂ = y� ≤ �x = y�.
By Lemma 7 we have �x = α̂� = 1 = �y = α̂�, which implies �x = y� = 1.

Conversely let �x = y� = 1. By similar argument we can write, �x = y�∧ �x =
α̂� ≤ �y = α̂� and hence �y = α̂� = 1. Again by Lemma 7 it can be concluded
that y is α-like. �

Theorem 10. Let x ∈ V(PS3) be α-like for some non-zero α ∈ ORD. For any
y ∈ V(PS3), �y ∈ x� ∈ {1, 1/2} if and only if y is β-like for some β ∈ α.

Proof. Let y be β-like for some β ∈ α. Now

�y ∈ x� =
∨

u∈dom(x)

(x(u) ∧ �u = y�)

≥ x(v) ∧ �v = y�,where v ∈ dom(x) is β-like and x(v) ∈ {1, 1/2}
≥ 1/2, by Theorem 9.

Conversely, let �y ∈ x� ∈ {1, 1/2}, i.e.,
∨

u∈dom(x)

(x(u) ∧ �u = y�) ∈ {1, 1/2}.

Hence there exists some β-like v ∈ dom(x) such that x(v) ∈ {1, 1/2} and �v =
y� = 1, where β ∈ α. So by Theorem 9, it follows that y is also β-like. �

Let a binary class relation ∼ be defined on V(PS3) by x ∼ y if and only
if V(PS3) |= x = y, i.e., �x = y� = 1. This relation is discussed in [5] where
it is mentioned that ∼ is an equivalence class relation. Theorem 9 shows for
each α ∈ ORD the collection of all α-like elements forms an equivalence class in
V(PS3)/∼. If x and y are two elements in the classes of α-like and β-like elements
in V(PS3)/∼ then α ∈ β is true in V implies x ∈ y is valid in V(PS3).

4 Ordinals in V(PS3)

We now rewrite the definitions of §2 in the language of set theory:

Trans(x) = ∀y∀z(z ∈ y ∧ y ∈ x→ z ∈ x)

LO(x) = ∀y∀z((y ∈ x ∧ z ∈ x)→ (y ∈ z ∨ y = z ∨ z ∈ y))4

WO∈(x) = LO(x) ∧ ∀y(y ⊆ x ∧ ¬(y = ∅)→ ∃z(z ∈ y ∧ z ∩ y = ∅))

ORD(x) = Trans(x) ∧WO∈(x)

4 LO(x) stands for the formula: x is a linear orderdered set with respect to ∈.
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where the following abbreviations are used in WO∈(x):

y ⊆ x := ∀t(t ∈ y → t ∈ x),

¬(y = ∅) := ∃z(z ∈ y),

(z ∩ y = ∅) := ¬ ∃w(w ∈ z ∧ w ∈ y).

Finally, we can connect the notion of α-like name to the set theoretic notion
of ordinals:

Lemma 11. Let α ∈ ORD and u be an α-like element in V(PS3). Then the
following hold:

i) V(PS3) |= Trans(u)
ii) V(PS3) |= LO(u)
iii) V(PS3) |= WO∈(u)

Proof. (i) We have to prove �∀y∀z(z ∈ y ∧ y ∈ u→ z ∈ u)� ∈ {1, 1/2}. Since the
truth table of ⇒ in PS3 does not contain 1/2 it is sufficient to show �∀y∀z(z ∈
y ∧ y ∈ u→ z ∈ u)� = 1.

Let us take any z ∈ V(PS3). Then,

�∀y(y ∈ u ∧ z ∈ y → z ∈ u)� =
∧

y∈V(PS3)

(�y ∈ u� ∧ �z ∈ y�⇒ �z ∈ u�)

=
∧

y∈V(PS3)

(�y ∈ u�⇒ (�z ∈ y�⇒ �z ∈ u�))

=
∧

y∈dom(u)

(u(y)⇒ (�z ∈ y�⇒ �z ∈ u�))

(since BQϕ hold in V(PS3) for all negation-free formulas ϕ.)

For any y ∈ dom(u) if u(y) �= 0 then y is β-like for some non-zero β ∈ α. Let
for such an y, �z ∈ y� ∈ {1, 1/2}. Therefore by Theorem 10, z is γ-like for some
γ ∈ β. Clearly, γ ∈ α. Therefore one more application of Theorem 10 provides
�z ∈ u� ∈ {1, 1/2}. Hence combining the above results we get

∧
y∈dom(u)

(u(y)⇒ (�z ∈ y�⇒ �z ∈ u�)) = 1

for any z ∈ V(PS3). This leads to the fact

�∀y∀z(y ∈ u ∧ z ∈ y → z ∈ u)� = 1, i.e., V(PS3) |= Trans(u).

(ii) Since for any α, β ∈ ORD exactly one of α ∈ β, α = β and β ∈ α holds
in V, the proof can be derived easily by applying Theorems 9 and 10.
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(iii) We already have V(PS3) |= LO(u) from (ii). So it is sufficient to prove
that

�∀y(y ⊆ u ∧ ¬(y = ∅)→ ∃z(z ∈ y ∧ z ∩ y = ∅))� = 1, 5

i.e., for any y ∈ V(PS3) if �y ⊆ u∧¬(y = ∅)� ∈ {1, 1/2} then �∃z(z ∈ y ∧ z ∩ y =
∅)� ∈ {1, 1/2}. Now by definition and the fact that BQϕ hold in V(PS3) for all
negation-free formulas ϕ,

�y ⊆ u� = �∀t(t ∈ y → t ∈ u)� =
∧

t∈dom(y)

(y(t)⇒ �t ∈ u�)

So, �y ⊆ u� ∈ {1, 1/2} if and only if for any t ∈ dom(y) if y(t) �= 0 then
�t ∈ u� �= 0, i.e., by Theorem 10 it can be concluded that t is β-like for some
β ∈ α. Again,

�¬(y = ∅)� = �∃z(z ∈ y)� =
∨

z∈V(PS3)

∨
t∈dom(y)

(y(t) ∧ �z = t�)

Therefore �¬(y = ∅)� ∈ {1, 1/2} if and only if there exists t ∈ dom(y) such that
y(t) ∈ {1, 1/2}.

Hence �y ⊆ u ∧ ¬(y = ∅)� ∈ {1, 1/2} if and only if there exists t ∈ dom(y)
such that y(t) ∈ {1, 1/2} and for each t ∈ dom(y) if y(t) ∈ {1, 1/2} then t is β-like
for some β ∈ α.

Let us now find the value of �∃z(z ∈ y ∧ z ∩ y = ∅)� assuming �y ⊆ u∧¬(y =
∅)� ∈ {1, 1/2}. Let

γ = min{β ∈ ORD | there exists t ∈ dom(y) such that

y(t) ∈ {1, 1/2} and t is β-like}.

By our assumption, γ ≥ 1. There exists t′ ∈ dom(y) such that y(t′) ∈ {1, 1/2}
and t′ is γ-like.

�∃z(z ∈ y ∧ z ∩ y = ∅)�

= �∃z(z ∈ y ∧ ¬∃w(w ∈ z ∧ w ∈ y))�

≥ �t′ ∈ y ∧ ¬∃w(w ∈ t′ ∧ w ∈ y))�

=
∨

t∈dom(y)

(y(t) ∧ �t = t′�) ∧ (
∨

w∈dom(t′)

(t′(w) ∧ �w ∈ y�))∗

≥ (y(t′) ∧ �t′ = t′�) ∧ [
∨

w∈dom(t′)

(t′(w) ∧
∨

t∈dom(y)

(y(t) ∧ �w = t�))]∗

≥ 1/2 ∧ [
∨

w∈dom(t′)

(t′(w) ∧
∨

t∈dom(y)

(y(t) ∧ �w = t�))]∗.

5 Since PS3 satisfies the deductive principle: ((a ∧ b) ⇒ c) = (a ⇒ (b ⇒ c)).
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Claim 12. [
∨

w∈dom(t′)(t
′(w) ∧

∨
t∈dom(y)(y(t) ∧ �w = t�))]∗ = 1.

Proof. It is sufficient to prove that

∨
w∈dom(t′)

(t′(w) ∧
∨

t∈dom(y)

(y(t) ∧ �w = t�)) = 0.

Assume for some w ∈ dom(t′), t′(w) ∈ {1, 1/2}. If possible let there exist t ∈
dom(y) such that both y(t), �w = t� ∈ {1, 1/2}. By our assumption y(t) ∈ {1, 1/2}
implies t is β-like for some β ∈ α. Since �w = t� ∈ {1, 1/2} by Theorem 9 we have
w is β-like. Again since t′ is γ like and t′(w) ∈ {1, 1/2} therefore β ∈ γ which
contradicts the minimality of γ as y(t) ∈ {1, 1/2}. Hence the claim is proved. �

Therefore �∃z(z ∈ y ∧ z ∩ y = ∅)� ≥ 1/2 ∧ 1 = 1/2. This leads to the fact that
for any y ∈ V(PS3), if �y ⊆ u ∧ ¬(y = ∅)� ∈ {1, 1/2} then �∃z(z ∈ y ∧ z ∩ y =
∅)� ∈ {1, 1/2}; i.e.,

�∀y(y ⊆ u ∧ ¬(y = ∅)→ ∃z(z ∈ y ∧ z ∩ y = ∅))� = 1.

Hence we can conclude V(PS3) |= WO∈(u). �
Combining (i) and (iii) of lemma 11 the following theorem can be derived.

Theorem 13. Let α ∈ ORD and u be an α-like element in V(PS3). Then
V(PS3) |= ORD(u).

Theorem 13 shows any α-like element satisfies the classical definition of ordinal
number. It is proved in [5] that the general Comprehension axiom scheme is not
valid inV(PS3). On the other hand it is a theorem of the paraconsistent set theory
considered in [12]. As a consequence the collection of all ordinals becomes a set in
that model. This fact leads us to the important question, whether the collection
of elements which make the first order formula ORD(x) valid is a set in V(PS3).
The following theorem assures the answer is negative.

Theorem 14. There is no set of all ordinals:

V(PS3) � ∃O ∀x(ORD(x)→ x ∈ O).

Proof. Let O ∈ V(PS3) be arbitrarily chosen. Then by definition, dom(O) is a
set in V. By Theorem 9, if α �= β for any α, β ∈ ORD then for any α-like u
and β-like v, V(PS3) � u = v. Hence u and v are not equal as a set in V. We
conclude that if for each α ∈ ORD there exists an α-like u in dom(O) then
dom(O) cannot be a set in V as the collection of all ordinals is not a set in V.
Hence there exists an α′ ∈ ORD such that there is no α′-like element in dom(O).
Let u be an α′-like element. Then by Theorem 13, �ORD(u)� ∈ {1, 1/2} but

�u ∈ O� =
∨

x∈dom(O)

(O(x) ∧ �x = u�) = 0.



Ordinals in an Algebra-Valued Model of a Paraconsistent Set Theory 205

Hence �∀x(ORD(x)→ x ∈ O)� = 0. Since O is arbitrary we have

�∃O ∀x(ORD(x)→ x ∈ O)� = 0.

So the theorem is proved. �

Non-Classical Behavior of α-like Elements

Let us consider an α ∈ ORD and a formula ϕ(x) with one free variable x. One
may expect for any two α-like names u and v, they agree on whether the property
ϕ holds of them.

But the ordinal-like elements behave non-classically: there exists a formula
ϕ(x) such that for any given non-zero α ∈ ORD there exist two α-like elements u
and v such that V(PS3) |= ϕ(u) whereas V(PS3) � ϕ(v). For example, let ϕ(x) :=
¬ ∃y(y ∈ x) and choose any non-zero α ∈ ORD. Fix any two α-like elements
u and v as ran(u) = {1/2} and ran(v) = {1}. Then clearly �ϕ(u)� = 1/2, i.e.,
V(PS3) |= ϕ(u). But it is easy to calculate that �ϕ(v)� = 0, i.e., V(PS3) � ϕ(v).

In [5], it is stressed that Leibniz’s law of the indiscernibility of identicals

∀x∀y(x = y ∧ ϕ(x)→ ϕ(y))

is not necessarily valid in V(A) if A is a reasonable implication algebra. The
above formula ϕ(x) := ¬ ∃y(y ∈ x) is one instance of that claim.

On the other hand it is also proved that for any instantiations of Leibniz’s
law with NFF-formulas ϕ is valid in general, and so α-like names agree on the
validity of NFF-formulas.

5 Conclusion and Future Work

We have seen that the α-like names form equivalence classes in V(PS3)/∼. How-
ever, due to the failure of Leibniz’s law in V(PS3), elements in the same ∼-
equivalence class can instantiate different properties.

In future work, we plan to study the natural numbers, rational numbers, and
real numbers in V(A), together with their algebraic properties, as well as cardinal
numbers in V(A).
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5. Löwe, B., Tarafder, S.: Generalised Algebra-Valued Models of Set Theory. Review
of Symbolic Logic (accepted, 2014)

6. Ozawa, M.: Transfer Principle in Quantum Set Theory. Journal of Symbolic
Logic 72(2), 625–648 (2007)

7. Ozawa, M.: Orthomodular-Valued Models for Quantum Set Theory. Preprint,
ArXiv 0908.0367 (2009)

8. Takeuti, G., Titani, S.: Fuzzy Logic and Fuzzy Set Theory. Archive for Mathemat-
ical Logic 32(1), 1–32 (1992)

9. Tarafder, S., Chakraborty, M.K.: A Three-Valued Paraconsistent Logic Suitable
for a Paraconsistent Set Theory (preprint, 2014)

10. Titani, S.: A Lattice-Valued Set Theory. Archive for Mathematical Logic 38(6),
395–421 (1999)

11. Titani, S., Kozawa, H.: Quantum Set Theory. International Journal of Theoretical
Physics 42(11), 2575–2602 (2003)

12. Weber, Z.: Transfinite Numbers in Paraconsistent Set Theory. Review of Symbolic
Logic 3(1), 71–92 (2010)



Extending Carnap’s Continuum

to Binary Relations

Alena Vencovská�
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Abstract. We investigate a binary generalization of Carnap’s Contin-
uum of Inductive Methods based on a version of Johnson’s Sufficientness
Postulate for polyadic atoms and determine the probability functions
that satisfy it.

Introduction

The problem of drawing conclusions inductively has puzzled philosophers for
centuries: how to use the available evidence to support a hypothesis to a certain
degree, thus extending the classical deductive reasoning to allow us to reach less-
than-certain but probable conclusions. A substantial contribution to this topic
was made by logical positivism as represented by Rudolf Carnap and others
during the earlier parts of the 20th century. They developed a formal framework
in which rational assignments of probabilities to sentences could be studied,
aiming to capture our reasoning about the world which was assumed to combine
(just) elementary experiences and pure logic.

Carnap’s ambitious program has been subsequently largely seen as a failure
on the grounds that the framework cannot be made to correspond to the way
we interpret the world and reason about it (see [1], [2]). Still, the advent of
artificial reasoning agents justifies a re-examination of the purely formal and
uninterpreted aspect of Carnap’s proposal, a mode of reasoning which Carnap
himself referred to as Pure Inductive Logic.1

While Carnap experimented with various formal frameworks to investigate
this logic the most transparent seems to be when all statements are expressed
in first order logic with a language involving countably many individuals and
finitely many predicate or relation symbols, and principles are adopted for as-
signing belief values to these statements in a rational, logical fashion indepen-
dently of any intended interpretation.

There are good arguments for identifying belief with subjective probability,
and for identifying belief values based on some evidence with conditional proba-
bilities. So Pure Inductive Logic works with probability functions. More formally,

� Supported by a UK Engineering and Physical Sciences Research Council (EPSRC)
Research Grant R117181.

1 For Carnap’s approach, see for example [3], [4]. For more recent developments, see
for example [5], [6]. [6] also contains an extensive bibliography of related works.

M. Banerjee and S.N. Krishna (eds.): ICLA 2015, LNCS 8923, pp. 207–217, 2015.
c© Springer-Verlag Berlin Heidelberg 2015



208 A. Vencovská

let L be a language with finitely many predicate or relation symbols (without
equality) and with countably many constant symbols a1, a2, a3, . . .. We say that
a function w which assigns real numbers between 0 and 1 to sentences of L is a
probability function if for any sentences θ, φ and ∃xψ(x) the following conditions
hold:
• If θ is logically valid then w(θ) = 1.
• If θ and φ are mutually exclusive then w(θ ∨ φ) = w(θ) + w(φ).
• w(∃xψ(x)) = limn→∞ w(ψ(a1) ∨ ψ(a2) ∨ . . . ∨ ψ(an)).

The conditional probability of θ given φ is defined when w(φ) �= 0 as the ratio
w(θ∧φ)
w(φ) .

For any given language as above there are many probability functions, but
some of them are better for inductive reasoning then others: for example, it is
desirable that the conditional probability of a ‘new’ individual having some prop-
erties increases (or at least does not decrease) on the basis of another individual
found having these properties. Similarly, it is desirable that to start with w does
not code any unintended information about the individual constants, predicates
or relations; any particular information about them should be supplied by the
evidence on a case by case basis.

Accordingly, a number of arguably rational principles have been formulated
that can be imposed on w. Not all of them are compatible and the question
for Pure Inductive Logic is which combination(s) of these principles should be
chosen, what are the probability functions satisfying them and what inferences
they authorize.

Carnap and others in the 20th century studied the situation where there were
only unary predicate symbols and no relation symbols of higher arities in the
language. They independently identified a principle subsequently known as John-
son’s Sufficientness Postulate, see [7], which yields a particular one-parameter
family of probability functions cLλ for positive numbers λ (real or∞): the Carnap
Continuum of Inductive Methods. Their result is remarkable for its power and
elegance, apparently reducing the choice of a rational probability function down
to the choice of a single parameter λ, and it has long been seen as the corner
stone of unary Pure Inductive Logic. The recent development of Pure Inductive
Logic for languages containing relation symbols of higher arities therefore raises
the major question of whether, and if so how, this continuum can, or should be,
extended to these larger languages.

One possible answer to this is given in [8] where it is shown that for any
positive λ the family of probability functions cLλ as we vary the unary language
L has a natural continuation also to not necessarily unary L which preserves the
key property of Spectrum Exchangeability (for details see [8]).

In this paper however we shall propose an alternative extension of Carnap
Continuum (to binary languages) based on satisfying a natural generalization of
the original Johnson’s Sufficientness Postulate. In this sense then we would claim
that it comes closer to capturing Johnson’s and Carnap’s original intuitions and
insights.
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Preliminaries

The most fundamental and generally accepted principle is that of Constant
Exchangeability, Ex, which says that if θ(a1, . . . , am) is a sentence of L and
a′1, . . . , a

′
m is any other choice of distinct constant symbols from amongst the

a1, a2, . . . then θ(a1, . . . , am) and θ(a′1, . . . , a
′
m) should have the same probabil-

ity. We shall assume Ex. We will also need the Principle of Regularity, Reg, which
requires any consistent quantifier free sentence of L to have non-zero probability.

For the purpose of this article we will restrict our attention to languages
with finitely many unary predicate symbols R1, . . . , Rp, finitely many binary
relation symbols Q1, . . . , Qq and no relation symbols of higher arities. Sentences
Θ(a1, . . . , am) of the form

m∧
j=1

p∧
i=1

±Ri(aj) ∧
∧

〈j,l〉∈{1,...,m}2

q∧
i=1

±Qi(aj , al) (1)

where ±Ri(aj) denotes one of Ri(aj), ¬Ri(aj) and similarly for ±Qi(aj , al),
are called state descriptions for a1, . . . , am. Note that state descriptions for
a1, . . . , am are mutually exclusive and exhaustive (their disjunction is a tau-
tology).

Any probability function w is uniquely determined by its values on state
descriptions and in many situations it suffices to think of probability func-
tions as functions defined on state descriptions and such that probabilities of
state descriptions for a1, . . . , am sum to 1, and probabilities of state descriptions
for a1, . . . , am+1 which extend a given state description Θ(a1, . . . , am) sum to
w(Θ(a1, . . . , am)), see [5]. We shall use this in the present paper.

In the unary context, that is, when q = 0 and the language consists merely of
the unary predicatesR1, . . . , Rp, a state description for a1, . . . , am is any sentence∧m

j=1

∧p
i=1±Ri(aj). The formulae

∧p
i=1±Ri(x) are called atoms and denoted

α1(x), . . . , α2p(x). Unary state descriptions are usually written as
∧m

j=1 αhj (aj),
where hj ∈ {1, . . . , 2p}.

Johnson’s Sufficientness Postulate, JSP. w
(
αi(am+1) |

∧m
j=1 αhj (aj)

)
de-

pends only on m and mi, where mi is the number of times that i appears amongst
the hj.

The classical result discussed in the Introduction tells us that as long as the
language has at least two predicates (p ≥ 2), the only probability functions
satisfying Reg, Ex and JSP are the Carnap’s cLλ functions (0 < λ ≤ ∞) defined
as follows2

cLλ

⎛
⎝αi(am+1) |

m∧
j=1

αhj (aj)

⎞
⎠ =

mi + λ2−p

m+ λ

where mi is as above.

2 Note that the definition does yield the values of cLλ on all state descriptions and gives
a probability function.
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The Binary Case

When q �= 0, a state description (1) cannot be expressed as a conjunction of
sentences each involving only one constant as it is in the unary case with atoms,
but it is possible to define binary atoms and proceed similarly3.

For this purpose, we define β1(x), . . . , β2p+q (x) to be the formulae

p∧
i=1

±Ri(x) ∧
q∧

i=1

± Qi(x, x)

and δ1(x, y), . . . , δ2q (x, y) to be the formulae
∧q

i=1 ± Qi(x, y) . We define the
binary atoms to be the formulae

γ[k,c,h,d](x, y) = βk(x) ∧ βc(y) ∧ δh(x, y) ∧ δd(y, x)

where k, c ∈ {1, . . . , 2p+q} and h, d ∈ {1, . . . , 2q}.
The state description (1) can then be also expressed as

m∧
j=1

βvj (aj) ∧
∧

1≤j<l≤m

γhj,l
(aj , al)

where vj ∈ {1, . . . , 2p+q} and hj,l ∈ { [vj , vl, h, d] : h, d ∈ {1, . . . , 2q} } . There
is some redundancy in this expression but it is convenient for what follows.

We also need the concept of a partial state description which is a sentence
Δ(a1, . . . , am) of the form

m∧
j=1

βvj (aj) ∧
∧

〈j,l〉∈A

γhj,l
(aj , al) (2)

where vj and hj,l are as above and A ⊆ {〈j, l〉 : 1 ≤ j < l ≤ m}.
Clearly every state description is a partial state description. We define the

signature of the (partial) state description (2) to be �m�n such that

�m = 〈m1, . . . ,m2p+q 〉,

where mk is the number of j ∈ {1, . . . ,m} such that vj = k and

�n = 〈n[k,c,h,d] : k, c ∈ {1, . . . , 2p+q} and h, d ∈ {1, . . . , 2q}〉 ,

where n[k,c,h,d] is the number of 〈j, l〉 ∈ A such that

hj,l = [k, c, h, d] or hj,l = [c, k, d, h] . (3)

The atoms γ[k,c,h,d] and γ[c,k,d,h] are counted together because

γ[k,c,h,d](x, y) = γ[c,k,d,h](y, x) (4)

3 The concepts and results in this section come from [9].
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and hence (2) implies γ[k,c,h,d](aj , al) just when it implies γ[c,k,d,h](al, aj). Since
we wish the signature to record the numbers of (unordered) pairs of constants
with certain behaviour and the decision to write (2) using ordered pairs 〈aj , al〉
with j < l is merely a matter of convention, γ[k,c,h,d] and γ[c,k,d,h] should play
the same role. Note that n[k,c,h,d] = n[c,k,d,h] and that the sum of the mk is m.
We remark that �n uniquely determines �m.

Furthermore we define nk,c to be the number of 〈j, l〉 ∈ A such that (3) holds
for some h, d ∈ {1, . . . , 2q}. We have

nk,c =
∑

h,d∈{1,...,2q}
n[k,c,h,d] (k �= c), nk,k =

∑
h,d∈{1,...,2q}

h≤d

n[k,k,h,d] . (5)

It may seem that requiring a probability function to give state descriptions
with the same signature equal probability is equivalent to Ex. However, this is
not the case: the following principle is strictly stronger than Ex:

Binary Exchangeability, BEx. For a state description Θ(a1, . . . , am) of L
the probability w(Θ) depends only on the signature of Θ.

Even so many probability functions do satisfy BEx, and there is a represen-
tation theorem for them similar to the de Finnetti representation theorem for
probability function satisfying Ex, see [9]. We shall employ4 the following result
from [9]:

Theorem 1. Let w be a probability function and assume that w satisfies BEx.
Let Δ(a1, . . . , am) be a partial state description as in (2), s, t, r, g ∈ {1, . . . ,m},
s < t, r < g, 〈r, g〉 /∈ A and γ a binary atom such that Δ ∧ γ(ar, ag) ∧ γ(as, at)
is consistent. Then

w(γ(ar, ag) |Δ) ≤ w(γ(as, at) |Δ ∧ γ(ar, ag)) . (6)

An Example. Let p = q = 1 so L = {R,Q} where R is unary and Q is binary.
We have

β1(x) = R(x) ∧Q(x, x) δ1(x, y) = Q(x, y)
β2(x) = R(x) ∧ ¬Q(x, x) δ2(x, y) = ¬Q(x, y)
β3(x) = ¬R(x) ∧Q(x, x)
β4(x) = ¬R(x) ∧ ¬Q(x, x)

and the binary atom γ[2,3,1,2](x, y) is the formula

R(x) ∧ ¬Q(x, x) ∧ ¬R(y) ∧Q(y, y) ∧Q(x, y) ∧ ¬Q(y, x).

4 We remark that this theorem from a forthcoming paper is not essential for the result
presented here (Theorem 2) in the sense that only a special case of it is needed in
the proof and it could be added to the assumptions. Indeed the original Johnson’s
proof in [7] for the unary case introduces a corresponding postulate although it was
subsequently shown to be unnecessary. To be precise, we could replace the usage
of Theorem 1 by assuming that (6) from Theorem 1 holds when Δ(a1, a2, a3) =
βk(a1) ∧ βc(a2) ∧ βk(a3) (where 1 ≤ k ≤ c ≤ 2p+q).
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The sentence

β1(a1)∧β1(a2)∧β1(a3)∧β4(a4)∧
∧

1≤j<l≤3

γ[1,1,1,1](aj , al)∧
3∧

j=1

γ[1,4,1,2](aj , a4) (7)

is a state description for a1, a2, a3, a4 and the sentence

β1(a1) ∧ β1(a2) ∧ β1(a3) ∧ β3(a4) ∧ γ[1,1,1,1](a1, a2) ∧ γ[1,3,1,2](a1, a4) (8)

is a partial state description for a1, a2, a3, a4.
Imagine a simple situation where individuals a1, a2, . . . could do just two

things: think other individuals (also themselves) to be good cooks or not, and
like to eat fish or not. If we interpret each aj as aj, R(x) as ‘x likes to eat fish’
and Q(x, y) as ‘x thinks y is a good cook’, then (7) says that a1, a2, a3 all like
to eat fish and think everybody including themselves to be good cooks and that
a4 does not like to eat fish and does not think anybody including him/herself
to be a good cook; (8) says that a1, a2, a3 all like to eat fish and each thinks
him/herself to be a good cook, a4 does not like to eat fish but thinks him/herself
to be a good cook, a1 and a2 think each other to be good cooks and a1 also
thinks a4 to be a good cook but a4 does not think a1 to be a good cook.

Now consider in light of this example what a binary variant of Johnson’s
Sufficientness Postulate might be. It appears reasonable that for a partial state
description Θ(a1, . . . , am) as given by (2), the probability of an extension of it by
some βk(am+1) (how a new individual behaves in isolation) would depend only
on the βvj (how other individuals behave in isolation) rather than the γhj,l

, and
an extension of it by some γ[k,c,h,d](as, at) for 1 ≤ s < t ≤ m, 〈s, t〉 /∈ A (how as
and at relate to each other given how each of them behaves in isolation) would
depend only on those γhj,l

where aj and al behave in isolation just as as and at
do.

Taking this a step further along the lines of the unary Johnson’s Sufficient-
ness Postulate and using the notation from page 210, this appears to lead to
the requirement that the conditional probability of βk(am+1) given (2) should
depend only on mk and m, and for k = vs, c = vt the conditional probability of
γ[k,c,h,d](as, at) given (2) should depend only on n[k,c,h,d] and nk,c.

However, there is a little catch when k = c and h �= d for the following reason.
Assuming again that k = vs, c = vt, for k �= c the conditional probability
of γ[k,c,h,d](as, at) given (2) equals the probability of increasing n[k,c,h,d] by 1
using as, at since only γ[k,c,h,d](as, at), not γ[c,k,d,h](as, at), is consistent with
(2). Similarly when k = c and h = d because the two possibilities become the
same. But when h �= d, both γ[k,k,h,d](as, at), γ[k,k,d,h](as, at) can extend (2)
and hence increasing n[k,k,h,d] by 1 using as, at can be done in two ways; the
conditional probability of each should therefore arguably depend on n[k,k,h,d]

and nk,k differently than when k �= c or k = c, h = d.

Binary Carnap Continuum

Motivated by the above, we will say that the atoms γ[k,k,h,d] where h �= d double,
and we shall consider the following principle.
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Binary Sufficientness Postulate, BSP. For a partial state description Δ(a1,
. . . , am) with signature �m�n as on page 210:

w(βk(am+1)|Δ) depends only on mk and m,

and for 1 ≤ s < t ≤ m with 〈s, t〉 /∈ A and vs = k, vt = c,

w(γ[k,c,h,d](as, at)|Δ) depends only on n[k,c,h,d] and nk,c, and on whether or not
γ[k,c,h,d] doubles.

Note that BSP implies BEx.

Theorem 2. Let w be a probability function on L and assume p+ q ≥ 2, q ≥ 1.
Then w satisfies Ex, Reg and BSP just when there are μ, λ ∈ (0,∞] such that
for a partial state description Δ(a1, . . . , am) given by (2) with signature �m�n we
have

w(βk(am+1)|Δ) =
mk + μ

2p+q

m+ μ
, (9)

and for s, t ∈ {1, . . . ,m}, s < t, 〈s, t〉 /∈ A, h, d ∈ {1, . . . , 2q} and k = vs, c = vt
we have

w(γ[k,c,h,d](as, at)|Δ) =
n[k,c,h,d] +

λ
22q

nk,c + λ
[k �= c or (k = c and h = d)] , (10)

w(γ[k,k,h,d](as, at)|Δ) =

n[k,k,h,d]

2 + λ
22q

nk,k + λ
[k = c and h �= d] ) . (11)

Before proving the theorem, note that from (5) we can see that the above
formulae uniquely define a probability function CL

λ,μ satisfying Ex and Reg.
Explicitly, for Δ as above,

CL
λ,μ(Δ) =

∏
k

∏mk−1
j=0 (j + μ

2p+q )∏m−1
j=0 (j + μ)

∏
k<c

∏
h,d

∏n[k,c,h,d]−1

j=0 (j + λ
22q )∏nk,c−1

j=0 (j + λ)

×
∏
k

∏
h

∏n[k,k,h,h]−1

j=0 (j + λ
22q )∏nk,k−1

j=0 (j + λ)

∏
k

∏
h<d

∏n[k,k,h,d]−1

j=0 ( j2 + λ
22q )∏nk,k−1

j=0 (j + λ)

where k, c range through 1, . . . , 2p+q and h, d range through 1, . . . , 2q and the
empty product equals 1.

Proof of Theorem 2. Let w be a probability function satisfying Ex, Reg and
BSP. Define w1 on the unary language L1 = {R1, . . . , Rp, P1, . . . , Pq} by

w1(Θ) = w(ΘQ)

where Θ is a state description of L1 and ΘQ obtains from it by changing each
Pi(aj) to Qi(aj , aj). w1 extends to a probability function satisfying Ex, Reg and
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JSP so by the classical unary result it is equal to cLμ for some μ ∈ (0,∞]. It
follows that (9) holds for w.

Now fix k and c and assume k �= c. Then none of the 22q of the γ[k,c,h,d] double.
Let g(r, n) stand for w(γ[k,c,h,d](as, at)|Δ(a1, . . . , am)) where s, t ∈ {1, . . . ,m}
and Δ(a1, . . . , am) is as above with vs = k, vt = c, 〈s, t〉 /∈ A, n = nk,c and
r = n[k,c,h,d]. Using Theorem 1 we can argue just as in the classical unary
case (see [6, Chapter 17]) to obtain (10) for w with some λ ∈ (0,∞] for these
particular k, c. Note that by BSP it also follows that the λ obtained for other
pairs k �= c must be the same.

Adapting the same method we can also resolve the remaining case: Consider
some fixed k ∈ {1, . . . , 2p+q}. Let g(r, n) and h(r, n) stand for
w(γ[k,k,h,d](as, at)|Δ(a1, . . . , am)) (h �= d), w(γ[k,k,h,h](as, at)|Δ(a1, . . . , am)) re-
spectively where s, t ∈ {1, . . . ,m} and Δ(a1, . . . , am) is as above, with vs = vt =
k, s < t, 〈s, t〉 /∈ A, n = nk,k and r = n[k,k,h,d] or r = n[k,k,h,h] respectively.
Define χ = h(0, 0) and ξ = g(0, 0) and let ν be the (unique) element in (0,∞]
such that

h(1, 1) =
1 + χν

1 + ν
. (12)

Such a unique ν exists since 0 < χ = h(0, 0) ≤ h(1, 1) < 1 (by regularity and
Theorem 1) and the function x �→ 1+χx

1+x is decreasing from 1 to χ as x runs from
0 to ∞. From

w

⎛
⎝ 2q∨

h,d=1

γ[k,k,h,d](a1, a2) | (βk(a1) ∧ βk(a2))

⎞
⎠ = 1

we find that

2qχ+ (22q − 2q)ξ = 1. (13)

We shall first show that to conclude the proof it suffices to prove that for all
n ∈ N

h(r, n) =
r + χν

n+ ν
and g(r, n) =

r
2 + ξν

n+ ν
(r ∈ {0, 1, . . . , n}). (14)

This is because by BSP and the above result for k �= c, h(r, n) =
r+ λ

22q

n+λ for all

n ∈ N and r ∈ {0, 1, . . . , n} so (14) forces ν = λ and χ = 1
22q and hence by (13)

also ξ = 1
22q so (9) and (10) follow.

Hence it remains to prove (14). For n = 0 it follows by the definition of χ and
ξ. Considering e.g.

w
(
βk(a1) ∧ βk(a2) ∧ βk(a3) ∧ γ[k,k,h,d](a1, a2) ∧ γ[k,k,h,h](a1, a3)

)
we can see that g(0, 1)h(0, 0) = h(0, 1)g(0, 0), that is,

χ g(0, 1 ) = ξ h(0, 1) . (15)
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From

w

⎛
⎝∨

h,d

γ[k,k,h,d](a1, a3) |βk(a1) ∧ βk(a2) ∧ βk(a3) ∧ γ[k,k,h0,d0](a1, a2)

⎞
⎠ = 1

with h0 �= d0 and h0 = d0 respectively we obtain

2g(1, 1) + 2qh(0, 1) + (22q − 2q − 2)g(0, 1) = 1 (16)

and
h(1, 1) + (2q − 1)h(0, 1) + (22q − 2q)g(0, 1) = 1 . (17)

Using (12), (13) and (15) this yields

h(0, 1) =
νχ

1 + ν
, g(0, 1) =

νξ

1 + ν
, g(1, 1) =

1
2 + νξ

1 + ν

so (14) holds also for n = 1.
Now assume (14) holds for n. For any c, e, f ∈ N with c + e + f = n we find

by considering e.g.

w
(
γ[k,k,h1,d1](a2, a3) ∧ γ[k,k,h2,d2](a2, a4) |Δ

)
where Δ is the conjunction of

∧n+1
j=1 βk(aj) and

c+1∧
j=2

γ[k,k,h1,d1](a1, aj) ∧
c+e+1∧
j=c+2

γ[k,k,h2,d2](a1, aj) ∧
n+1∧

j=c+e+2

γ[k,k,h3,d3](a1, aj)

by taking distinct pairs 〈h1, d1〉, 〈h2, d2〉, 〈h3, d3〉 with (h1 = d1 and h2 = d2) or
(h1 = d1 and h2 �= d2) respectively that

h(c, n+ 1)h(e, n) = h(e, n+ 1)h(c, n), (18)

h(c, n+ 1)g(e, n) = g(e, n+ 1)h(c, n). (19)

With c running from 1 to n and e = 0 (18) yields

h(c, n+ 1) =
h(c, n)

h(0, n)
h(0, n+ 1) (c ∈ {1 . . . n}) (20)

and hence by the inductive hypothesis we have

h(c, n+ 1) =
c+ χν

χν
h(0, n+ 1) (c ∈ {1 . . . n}) . (21)

Considering 0 ≤ e, f ≤ n+1 with e+f = n+1 and taking distinct pairs 〈h1, d1〉,
〈h2, d2〉 with (h1 = d1 and h2 = d2) we find that

w

⎛
⎝∨

h,d

γ[k,k,h,d]

∣∣∣∣∣∣
n+2∧
j=1

βk(aj) ∧
e+1∧
j=2

γ[k,k,h1,d1](a1, aj) ∧
e+f+1∧
j=e+2

γ[k,k,h2,d2](a1, aj)

⎞
⎠
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equals 1 and hence

h(e, n+ 1) + h(f, n+ 1) + (2q − 2)h(0, n+ 1) + (22q − 2q)g(0, n+ 1) = 1 . (22)

From this and (21) (using some 0 < e, f < n+ 1), from (19) with c = e = 0 and
from the inductive hypothesis we have(

e+ χν

χν
+

f + χν

χν
+ (2q − 2) + (22q − 2q)

ξ

χ

)
h(0, n+ 1) = 1

so
( (n+ 1 + 2χν) + (2q − 2)χν + (22q − 2q) ξν) )h(0, n+ 1) = χν

and since 2qχ+ (22q − 2q) ξ = 1, it follows that h(0, n+ 1) = χν
n+1+ν . Hence by

(21) and (19),

h(c, n+ 1) =
c+ χν

n+ 1 + ν
and g(c, n+ 1) =

c
2 + ξν

n+ 1 + ν
(c ∈ {0, 1, . . . , n}) .

From (22) (with e = n+ 1, f = 0) we have

h(n+ 1, n+ 1) =
n+ 1 + χν

n+ 1 + ν
.

Finally considering some h1 �= d1, from

w

⎛
⎝∨

h,d

γ[k,k,h,d]

∣∣∣∣∣∣
n+1∧
j=1

βk(aj) ∧
n+2∧
j=2

γ[k,k,h1,d1](a1, aj)

⎞
⎠ = 1

we have

2g(n+ 1, n+ 1) + 2q h(0, n+ 1) + (22q − 2q − 2)g(0, n+ 1) = 1

which yields

g(n+ 1, n+ 1) =
n+1
2 + ξν

n+ 1 + ν

completing the proof.
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Representing Imperfect Information of Procedures
with Hyper Models
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Abstract. When reasoning about knowledge of procedures under imperfect in-
formation, the explicit representation of epistemic possibilities blows up the S5-
like models of standard epistemic logic. To overcome this drawback, in this paper,
we propose a new logical framework based on compact models without epistemic
accessibility relations for reasoning about knowledge of procedures. Inspired by
the 3-valued abstraction method in model checking, we introduce hyper models
which encode the imperfect procedural information. We give a highly non-trivial
2-valued semantics of epistemic dynamic logic on such models while validating
all the usual S5 axioms. Our approach is suitable for applications where procedu-
ral information is ‘learned’ incrementally, as demonstrated by various examples.

1 Introduction

Suppose there are four cities A, B, C, D which are connected by public transportation

as the following leftmost map shows (
b→ for bus and

t→ for train):

�������	A �� t ��
��

b
���

�

���
���

�������	B
��

b
��

�������	D �������	C��t��
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��

t
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���
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���
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��
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���

�

���
���

�������	B
��

b
��

�������	D �������	C��t��

We may view the map as a Kripke model and use various modal logics such as Propo-
sitional Dynamic Logic (PDL) [12] to describe routes or more complicated trip plans
from one city to others. Now suppose we are informed that A and D will also be con-
nected next year, but it is not clear whether it will be a bus line or a train connection or
even both. Then the new map can be any one of the three right-hand-side maps above.
Although the new information is imperfect, we still can know that city D will become
directly reachable from A since this is true in all the possible new maps, and it may be
possible to reach C from A by train via D, since this is true in some possible maps.

As we have seen, imperfect information about the connectivity of the states intro-
duces uncertainty. To encode such uncertainty, two-dimensional Kripke models are
often used, which not only have labelled transitions but also epistemic accessibility

� The author thanks Floris Roelofsen and Ciyang Qing for their helpful comments on earlier
versions of this paper. The research is partially supported by SSFC key project 12&ZD119.

M. Banerjee and S.N. Krishna (eds.): ICLA 2015, LNCS 8923, pp. 218–231, 2015.
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relations between states, such as the epistemic temporal models in [10,4,11,15] and the
models of imperfect information games in game theory (cf. e.g., [9]). In such epistemic
logical frameworks, a proposition is known on a state if it is true on all the possible
states linked with the current state by the epistemic relation.

However, explicitly representing possibilities as in the usual epistemic logical frame-
works leads to the problem of state space explosion even in very simple case, if there is
considerable ignorance. For example, if we have no idea how those four cities are con-
nected by possibly four transportation methods (e.g., train, bus, flight, boat), then there
are at least (24∗3)4 = 248 > 1014 possible maps, which is in the order of the number
of cells in a human body or the number of neuronal connections in a human brain. It is
clear that in reality we do not go through all these possibilities in our mind to acquire
knowledge. This leads to our first research question:

Can we have a compact alternative model of epistemic logic of procedures
without explicitly representing all the possibilities?

Moreover, it is important to incorporate new (imperfect) information about proce-
dures into the current model which allows us to incrementally build up the model even
from scratch. The new information may be given in a syntactic form which uses implicit
quantifiers, such as ‘there is a bus going from A to either B or C, but I am not quite
sure which due to the recent change of routes. On the other hand, from both B or C you
should be able to reach D by some public transportation.’ The imperfect information
may also be given by a complicated procedure which is not just one-step, e.g., ‘taking
a bus then a train will get you home’. However, the semantic way of incorporating new
information is usually done by essentially eliminating inconsistent possibilities accord-
ing to the new information in epistemic frameworks such as dynamic epistemic logic
[2], which again assumes that all the possibilities are represented in the model. Thus
the following question is another challenge:

How to incorporate new procedural information semantically in an incremen-
tal fashion?

The technical contribution of this paper is a new semantics-driven epistemic logical
framework aiming at solving the above questions. Note that we may alternatively rep-
resent all the imperfect information syntactically but in the case of procedural informa-
tion, the graphic models are more natural and compact for very complicated procedural
information between states. Moreover, doing model checking is in general computa-
tionally more efficient than theorem proving. In the rest of this introduction, we will
explain our main ideas.

Main Ideas

To handle the first question, we need a way to encode possibilities in a compact and
implicit way. Our approach is inspired by the 3-valued abstraction technique in model
checking (see [5] for an overview). To handle the problem of state space explosion in
model checking, the abstraction technique makes a Kripke model smaller by abstracting
away some information. Clearly, the smaller abstract model may not preserve the truth
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value of all the formulas in concern, but a suitable 3-valued semantics on abstractions
can make sure the following:

– formulas that are true in the abstraction are also true in the original model
– formulas that are false in the abstraction are also false in the original model

In our point of view, an abstraction can be indeed viewed as a compact representation
of potential concrete models which are consistent with the information represented in
the abstract model. The information of transitions in the abstract model is typically
encoded by two special kinds of transitions which are under- and over-approximations
of the ones in the actual model [13]. This inspired us to use similar abstract transitions
to encode imperfect procedural information. The final source of inspiration is from [3,1]
where the approximations of the transitions are labelled by regular expressions and this
helps us in dealing with arbitrarily complicated procedural information expressed by
regular expressions.

Based on these ideas, we propose hyper models to encode the imperfect procedural
information, and an epistemic PDL defined on such models, with the following features:

– Hyper models assemble possibilities in an implicit and compact way using abstract
transitions (labelled by regular expressions) but not epistemic accessibility rela-
tions.

– They incorporate new information incrementally by adding new transitions.
– The semantics of our language is defined on the hyper models directly, and there is

no need to unpack the hyper models into numerous possible Kripke models.
– The logic is still 2-valued and all the usual S5 axioms are valid, but not the neces-

sitation rule which may cause logical omniscience.

Of course, there is also a price to pay: not all the collections of Kripke models are
representable by hyper models, to which we will come back in Section 4. In the rest
of the paper, we first formalize imperfect procedural information in Section 2, and then
introduce and discuss simple and full hyper models in Section 3. Finally we show that
hyper models are indeed compact representations of Kripke models and point out future
directions in Section 4.

2 Preliminaries

Kripke models are used to represent how states are connected by atomic actions:

Definition 1 (Kripke Model). Given a set of basic propositional letters P, and a set of
atomic action symbols Σ, a Kripke modelM over P and Σ is a tuple (S,→, V ) where:

– S is a non-empty set of states.
– → ⊆ S ×Σ× S is a binary relation over S labelled by action symbols from Σ.
– V : S → 2P assigns to each state a set of basic propositional letters.

We write s
a→ t if (s, a, t) ∈→. Given w = a1a2 . . . an we write s

w→ t if there are
s0, s1, . . . , sn such that s0 = s and sn = t and sk

ak→ sk+1 for all 0 ≤ k < n.



Representing Imperfect Information of Procedures with Hyper Models 221

Note that M may not be deterministic in the sense that for some s ∈ SM and some
a ∈ Σ there may be more than one t such that s

a→ t. Intuitively this means that doing
a on state s may result in different states due to some external factors which are not
modelled inM.

The simplest procedure is a one-step atomic action a ∈ Σ, based on which more
complicated procedures are constructed as regular expressions:

π ::= a | π;π | π + π | π∗

where a ∈ Σ. Intuitively, ; is the sequential composition, + is the non-deterministic
choice, and ∗ is the iteration operation. Let ΠΣ denote the set of all regular expressions
based on Σ. The set of action sequences denoted by a regular expression π (notation:
L(π)) is defined as follows:

L(a) = {a}
L(π;π′) = {wv | w ∈ L(π) and v ∈ L(π′)}
L(π + π′) = L(π) ∪ L(π′)
L(π∗) = {ε} ∪

⋃
n>0(L(π; · · · ;π︸ ︷︷ ︸

n

))

where ε is the empty sequence. In the sequel, we abuse the notation by writing w ∈ π
for w ∈ L(π) and writing π ⊆ π′ for L(π) ⊆ L(π′).

We use the language of PDL to describe the procedures encoded in a Kripke model:

φ ::= � | p | ¬φ | φ ∧ φ | 〈π〉φ
where 〈π〉φ formulas are interpreted on pointed Kripke modelM, s as follows (cf. e.g.,
[7]):

M, s 
 〈π〉φ ⇐⇒ there exists a t such that s
w→ t for some w ∈ π and t 
 φ

We say s0, s1, . . . , sn is an execution of π if there exist w = a1, a2, . . . , an ∈ π such
that sk

ak+1→ sk+1 for 0 ≤ k < n. In another word, 〈π〉φ is true at s iff there is an
execution of π from s to a φ-state, i.e., a state where φ holds.

Now, we formalize a piece of imperfect procedure information as a Hoare-like triple
〈φ,X, ψ〉 where φ and ψ are PDL formulas and X is one of π∃ or π∀ where π ∈ ΠΣ. φ
and ψ denote the precondition (initial states) and the postcondition (goal states) of the
procedure respectively, and π denotes the procedure quantified by ∃ or ∀. Intuitively,
the quantifiers work as follows:

– 〈φ, π∃, ψ〉 says that if φ holds then there exists an execution of π which can make
ψ true, e.g., “One of these two buses will get you to the university from home.”

– 〈φ, π∀, ψ〉 says that if φ holds then all the executions of π will make sure ψ, e.g.,
“All the buses departing here will get you to the university.”

The correctness of a piece of information 〈φ,X, ψ〉 is defined below, given a Kripke
modelM:

– 〈φ, π∃, ψ〉 is correct iff (∀t 
 φ, ∃w ∈ π∃t′ : t w→ t′ and t′ 
 ψ) iff M 
 φ →
〈π〉ψ

– 〈φ, π∀, ψ〉 is correct iff (∀t 
 φ, ∀w ∈ π∀t′: if t
w→ t′ then t′ 
 ψ) iff M 
 φ→

[π]ψ
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3 Hyper Models

Here is an example to motivate our definition of hyper models:
You have no idea how four cities A,B,C,D are connected (by train or bus). Now

suppose that someone tells you that there is a bus going to either B or C from A, there
is a train connection from C to D, and all the buses departing from B are going to C.
Now what do you know about the route from A to D?

Again, let b denote the bus connections and let t denote the train connections. Let
px be the basic proposition denoting the location of town x for x ∈ {A,B,C,D}. The
imperfect procedural information can be formalized as:

〈pA, b∃, pB ∨ pC〉, 〈pC , t∃, pD〉, 〈pB, b∀, pC〉.

The simple-minded learning process is to add those information as special transitions
in the map, as illustrated below (note that the b∃ transition is from A to {B,C}):

�������	A �������	B

�������	D �������	C

=⇒ �������	A �������	B

b∀
�
�

��
�
�

�������	D �������	Ct∃������
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�
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�
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����

Given that the information is truthful, the real situation is still not yet determined,
for example, the following are three of the possible actual situations consistent with the
information available:
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��
��
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��

��

b ��
�������	B

b

��

�������	D �������	Ct��

However, the agent should know the following, which may help him to go to D
from A:

There is a bus from A to either B or C, and if it reaches C then D can be reached
by a train, otherwise take any bus (if available) from B to get C first in order to reach
D finally.

In the rest of this section, we will introduce hyper models formally, and a semantics
for epistemic PDL (EPDL) based on them to reason about knowledge of procedures.

3.1 Models with Simple Procedural Information

This subsection is a technical warm-up for the next one. We only consider simple proce-
dures (a∀ or a∃) based on singleton sets of initial states. To represent such information,
we introduce the simple hyper models based on Kripke models with extra transitions
labelled by a∀ or a∃ from a single state to a set of states:
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Definition 2 (Simple Hyper model). A simple hyper model is a tuple (S,→,→∃,
→∀, V ) where:

– (S,→, V ) is a Kripke model w.r.t. Σ.
– →∃ ⊆ S ×Σ× 2S is a labelled binary relation from a state to a set of states.
– →∀ ⊆ S ×Σ× 2S is a labelled binary relation from a state to a set of states.
– for all s ∈ S, T ⊆ S: s

a→∃ T implies that there exists t ∈ T such that s
a→ t.

– for all s ∈ S, T ⊆ S: s
a→∀ T implies that for all t ∈ S: s

a→ t implies t ∈ T .

In (simple) hyper models, → represents the actual transitions between the states, and
→∃ and →∀ represent the available imperfect procedural information to an agent. The
last two conditions are crucial to guarantee the correctness of procedural information
in the model. Note that this model is from the modeller’s point of view, and the agent’s
knowledge only depends on →∀ and →∃ but not →, as it will become clear in the se-
mantics of the logic. Here we include the actual transitions in order to validate whether
our logic, to be defined later, is a proper epistemic logic, e.g., whether everything the
agent knows is actually true. When representing the agent’s procedural information
only, we can simply leave out the actual transitions given →∀ and →∃ are reliable.
Note that s

a→∀ ∅ denotes ‘negative’ information: there is no a-transition from s. On
the other hand, it is impossible to have s

a→∃ ∅ due to the first correctness condition.
Note that, the transitions →∃ and →∀ are not defined by →. As an example, recall

the model we mentioned at the beginning of this section (now with the actual transi-
tions):
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where:

– S = {A,B,C,D},
– →= {(A, b,B), (A, t,D), (C, t,D)},
– →∃= {(A, b, {B,C}), (C, t, {D})},
– →∀= {(B, b, {C})},
– for all s, v ∈ {A,B,C,D}, ps ∈ V (v) iff s = v.

It is easy to verify that the last two correctness conditions are satisfied, e.g., for

A
b→∃ {B,C} we have A

b→ B. On the other hand, although A
t→ D, there is no

t→∃
nor

t→∀ from A to D.

Remark 1. Some readers may wonder whether further conditions on→∃ and→∀ should
apply, to which we will come back in Section 4. For now, let us keep everything simple
to understand the merit of the framework.

A fragment of EPDL is used to talk about the knowledge of a single agent on simple
hyper models:

Definition 3 (Epistemic Action Language EAL). Given a countable set of proposi-
tional variables P, a finite sets of atomic actions Σ, the formulas of EAL are given
by:

φ ::= � | p | ¬φ | (φ ∧ φ) | Kφ | 〈a〉φ
where p ∈ P and a ∈ Σ.
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As usual, we define ⊥, φ ∨ ψ, φ → ψ, K̂φ and [a]φ as the abbreviations of ¬�,
¬(¬φ ∧ ¬ψ), ¬φ ∨ ψ, ¬K¬φ and ¬〈a〉¬φ respectively.

Definition 4 (Semantics). The semantics of EAL on a simple hyper modelM=(S,→,
,→∃→∀, V ) is given by the following satisfaction relation w.r.t. a mode x ∈ {0, �, ♦}:

M, s � φ ⇔ M, s �0 φ
M, s �x p ⇔ p ∈ V (s)

M, s �x φ ∧ ψ ⇔ M, s �x φ and M, s �x ψ
M, s �x Kφ ⇔ M, s �� φ

M, s �x ¬φ ⇔
⎧⎨
⎩

M, s ��0 φ IF x = 0
M, s ��♦ φ IF x = �
M, s ��� φ IF x = ♦

M, s �x 〈a〉φ ⇔

⎧⎪⎨
⎪⎩

∃t ∈ S : s
a→ t and M, t �0 φ IF x = 0

∃T ⊆ S : s
a→∃ T and ∀t ∈ T : M, t �� φ IF x = �

∀T ⊆ S : s
a→∀ T implies ∃t ∈ T : M, t �♦ φ IF x = ♦

We say that φ is valid inM (M � φ) if for any s ∈ SM:M, s � φ. φ is valid if for any
M:M � φ.

Clearly, this clumsy-looking semantics needs a good explanation. First of all, ��
and �♦ are used as auxiliary semantics in order to define � (�0). 0, � and ♦ can
be viewed as contexts in evaluating the formulas. More precisely, 0 marks the factual
mode: evaluating formulas outside the scope of any knowledge operator, while � and
♦ denote the knowledge modes with the following intentions:

– �� φ: the agent thinks that φ is necessarily true, i.e., φ is true in all the actual
situations consistent with the procedural information that he has.

– �♦ φ: the agent thinks that φ is possibly true, i.e., φ is true in some of the actual
situations consistent with the procedural information that he has.

The alternations of ♦ and � are triggered by negations: according to the agent, if φ is
necessarily true then it is not possible to be not true, and if it is possible to be not true
then it is not necessarily true. The clause for Kφ says that the agent knows φ iff he
thinks φ is necessarily true. Careful readers may wonder about the fact that M, s �0

p ⇐⇒ M, s �� p ⇐⇒ M, s �♦ p, which means that a basic proposition is
true iff the agent thinks that it is necessarily true iff the agent thinks that it is possibly
true. This is because we assume the agent does not have any uncertainty about the basic
propositions on the states. There is only uncertainty about the transitions (“The agent
knows all the cities but does not know how they are connected”).1

Note that the above semantics coincides with the standard possible world semantics
on formulas without the K-operator. When evaluating epistemic formulas, things get
more complicated. Note that we have a non-standard semantics for negation, thus it is
worth working out the semantics for abbreviations, e.g., M, s �x φ → ψ may not be

1 Actually we can incorporate uncertainty about the basic propositions by adding over- and
under-approximations of the truth values of them. We leave it to future work.
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equivalent toM, s �x φ impliesM, s �x ψ depending on x. We summarize the results
as follows (the readers are strongly encouraged to work out these by themselves):

M, s �x φ ∨ ψ ⇔ M, s �x φ or M, s �x ψ

M, s �x φ → ψ ⇔
⎧⎨
⎩

M, s �0 φ implies M, s �0 ψ IF x = 0
M, s �♦ φ implies M, s �� ψ IF x = �
M, s �� φ implies M, s �♦ ψ IF x = ♦

M, s �x K̂ψ ⇔ M, s �♦ ψ

M, s �x [a]φ ⇔

⎧⎪⎨
⎪⎩

∀t : s a→ t implies M, t �0 φ IF x = 0

∃T ⊆ S : s
a→∀ T and ∀t ∈ T : M, t �� φ IF x = �

∀T ⊆ S : s
a→∃ T implies ∃t ∈ T : M, t �♦ φ IF x = ♦

Now we see clearly that the agent knows φ iff φ is necessarily true to him, and φ is
considered possible by the agent iff φ is possibly true to him. Let us also unravel the
cases for K〈a〉φ and K[a]φ to see the merit of the semantics more clearly:

M, s � K〈a〉φ ⇐⇒ ∃T ⊆ S : s
a→∃ T and ∀t ∈ T : M, t �� φ

M, s � K[a]φ ⇐⇒ ∃T ⊆ S : s
a→∀ T and ∀t ∈ T : M, t �� φ

M, s � K̂〈a〉φ ⇐⇒ ∀T ⊆ S : s
a→∀ T implies ∃t ∈ T : M, t �♦ φ

M, s � K̂[a]φ ⇐⇒ ∀T ⊆ S : s
a→∃ T implies ∃t ∈ T : M, t �♦ φ

The best way to understand the semantics is by looking at examples. Recall the model
we mentioned earlier, we can verify the formulas on the right-hand side:

M : �������	A b ��

t

��

�������	B

b∀
�
�
�

��
�
�
�

�������	D �������	C
t∃ ��� �
t��

��
�

��

�
��

�
�
�
�
�
�

�
�
�
�
�
��

�
� ��� �

�

b∃
���

�����

M � pA → 〈b〉(pB ∨ pC)
M � pB → [b]pC
M � pC → 〈t〉pD
M, A � 〈t〉pD ∧ ¬K〈t〉pD ∧ ¬K¬〈t〉pD
M, B � [b]¬pD ∧K[b]¬pD
M, C � 〈t〉pD ∧K〈t〉pD
M, A � K〈b〉((pC → 〈t〉pD) ∧ (pB → [b]pC))

Let us takeM, A � ¬K〈t〉pD ∧ ¬K¬〈t〉pD as an example:
M, A � ¬K〈t〉pD ∧ ¬K¬〈t〉pD

⇐⇒ M, A �0 ¬K〈t〉pD ∧ ¬K¬〈t〉pD
⇐⇒ M, A �0 ¬K〈t〉pD andM, A �0 ¬K¬〈t〉pD
⇐⇒ M, A �0 K〈t〉pD andM, A �0 K¬〈t〉pD
⇐⇒ M, A �� 〈t〉pD andM, A �� ¬〈t〉pD
⇐⇒ (not (∃T ⊆ S : A

t→∃ T and ∀v ∈ T :M, v �� pD)) andM, A �♦ 〈t〉pD
⇐⇒ (it is not the case that A

t→∃ {D}) and (∀T ⊆ S : A
t→∀ T implies

∃v ∈ T :M, v �♦ pD)

Since there are no
t→∃ nor

t→∀ transitions from A,M, A � ¬K〈t〉pD ∧ ¬K¬〈t〉pD .
In the above modelM, it seems thatM � Kφ→ φ, namely the knowledge is true.

This is not accidental. We will show that the usual S5 axioms are all valid. To prove it,
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we first show that if φ is necessarily true then it is true, and if it is true then it is possibly
true.

Lemma 1. For all the pointed simple hyper modelM, s, any φ the following two hold:

1. M, s �� φ impliesM, s �0 φ

2. M, s �0 φ impliesM, s �♦ φ

ThereforeM, s �� φ impliesM, s �♦ φ.

Proof. We prove the two claims simultaneously by induction on the structure of φ.
φ = p or φ = φ1 ∧ φ2: trivial. For φ = ¬ψ: Suppose M, s �� ¬ψ then according
to the semantics, M, s ��♦ ψ thus by IH (2nd claim), we have M, s ��0 ψ namely
M, s �0 ¬ψ. Similar for the second claim. For φ = Kψ: Suppose M, s �� Kψ
then M, s �� ψ thus according to the semantics M, s �0 Kψ. Similarly, suppose
M, s �0 Kψ thenM, s �� ψ, thusM, s �♦ Kψ according to the semantics.

For φ = 〈a〉φ: Suppose M, s �� 〈a〉ψ then there exists T ⊆ S s
a→∃ T and

T �� ψ. According to the definition of hyper models, there is a t ∈ T such that
s

a→ t and M, t �� ψ. By IH we have there is a t such that s
a→ t and M, t �0 ψ

thus M, s �0 〈a〉ψ. Now for the second claim, suppose M, s �0 〈a〉ψ then there is
a t0 such that s

a→ t0 and M, t0 �0 ψ. By IH, M, t0 �♦ ψ. In order to show that
M, s �♦ 〈a〉ψ, we prove that for all T ⊆ S : s

a→∀ T implies that there is a t ∈ T

such thatM, t �♦ ψ. Suppose not, then there exists a T0 such that s
a→∀ T0 and for all

t ∈ T0 : M, t ��♦ ψ. Since s
a→∀ T0, by the definition of hyper models we have for

all t : s
a→ t implies t ∈ T0. Since s

a→ t0, t0 ∈ T0 thus M, t0 ��♦ ψ, contradiction.
Therefore for all T ⊆ S : s

a→∀ T implies there is a t such that M, t �♦ ψ, namely,
M, s �♦ 〈a〉ψ.

Theorem 1. The following S5 axiom schemas are valid: DIST : K(φ→ ψ)→ (Kφ→
Kψ), T : Kφ→ φ, 4 : Kφ→ KKφ, 5 : ¬Kφ→ K¬Kφ

Proof. For DIST:
M, s � K(φ→ ψ)→ (Kφ→ Kψ)

⇐⇒ M, s �0 K(φ→ ψ) impliesM, s �0 (Kφ→ Kψ)
⇐⇒ M, s �� φ→ ψ implies

(M, s �� φ impliesM, s �� ψ)
⇐⇒ (M, s �♦ φ impliesM, s �� ψ) implies

(M, s �� φ impliesM, s �� ψ)
Now suppose (M, s �♦ φ impliesM, s �� ψ) and M, s �� φ. Since M, s �� φ
then by Theorem 1, we haveM, s �♦ φ. ThusM, s �� ψ.
For T:

M, s � Kφ→ φ
⇐⇒ M, s �0 Kφ impliesM, s �0 φ
⇐⇒ M, s �� φ impliesM, s �0 φ

From Theorem 1, it is clear thatM, s � Kφ→ φ.
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For 4:
M, s � Kφ→ KKφ

⇐⇒ M, s �0 Kφ impliesM, s �0 KKφ
⇐⇒ M, s �� φ impliesM, s �� φ

For 5:
M, s � ¬Kφ → K¬Kφ

⇐⇒ M, s ��0 Kφ implies M, s �0 K¬Kφ
⇐⇒ M, s ��� φ implies M, s �� ¬Kφ
⇐⇒ M, s ��� φ implies M, s ��♦ Kφ
⇐⇒ M, s ��� φ implies M, s ��� φ

Based on Lemma 1, we also have the following results:2

Proposition 1. For any pointed hyper modelM, s and any EAL formula φ the follow-
ing hold:

1. M, s ��� φ ∧ ¬φ, i.e., �� is consistent.
2. M, s �♦ φ ∨ ¬φ, i.e., �♦ is complete.
3. � is consistent and complete.

Proof. Lemma 1 says that for any M, s any formula EAL φ: M, s �� φ implies
M, s �♦ φ.

For (1): SupposeM, s �� ¬φ thenM, s ��♦ φ thereforeM, s ��� φ. ThusM, s ���
φ ∧ ¬φ.

For (2): (M, s �♦ φ orM, s �♦ ¬φ) ⇐⇒ (M, s �♦ φ orM, s ��� φ) ⇐⇒
(M, s �� φ impliesM, s �♦ φ). (3) is trivial by definition.

One way to interpret the above results is that the knowledge is consistent, and at least
one of φ and ¬φ is considered possible by the agent. On the other hand, �� is not
complete and �♦ is not consistent, which can be demonstrated by the following simple
example in which the agent has no information (

a→∃ and
a→∀ are empty):

s a �� t

According to the semantics,M, s �♦ 〈a〉�∧¬〈a〉�, and equivalently we haveM, s ���
¬〈a〉� and M, s ��� 〈a〉�. The “inconsistency” of �♦ does not cause the inconsis-
tency of � due to the semantics of the negation. Clearly, 〈a〉� ∨ ¬〈a〉� is valid but
K(〈a〉� ∨ ¬〈a〉�) is not valid in the above model, thus:

Proposition 2. The rule of necessitation (� φ infers � Kφ) is not valid.

On the other hand, our K operator is more constructive than the standard epistemic
operator, demonstrated by the fact that K operator actually distributes over both ∨ and
∧. In our setting, K(φ ∨ ψ) should be read as ‘the agent knows whether φ or ψ’. Cor-
respondingly, K̂(φ∧ψ) should be read as ‘ the agent considers both φ and ψ possible’.

Proposition 3. The following are valid:

DIST∧ : K(φ ∧ ψ)↔ Kφ ∧Kψ DIST∨ : K(φ ∨ ψ)↔ Kφ ∨Kψ

Since there is no uncertainty of basic propositions in the hyper models, the following
holds:

2 The use of the words consistent and complete are due to the convention in the abstraction
literature c.f. e.g., [3].
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Proposition 4. INV : (p→ Kp) ∧ (¬p→ K¬p) is valid.

To completely axiomatize the logic, it is also important to have axioms controlling the
interactions between K and [a]. Here we observe that the axiom of perfect recall (PR)
is valid: K[a]φ→ [a]Kφ while the converse (no learning) is invalid.3

Proposition 5. PR : K[a]φ→ [a]Kφ is valid.

We leave it for future work whether PR, INV, DIST∧, DIST∨, DIST, T, 5, 4 on top of
a propositional calculus are enough to completely axiomatize EAL over simple hyper
frames.

3.2 Models with Arbitrary Procedural Information

In this subsection, we consider arbitrary procedural information. Intuitively, the correct
information 〈φ, π∀, ψ〉 (〈φ, π∃, ψ〉) can be incorporated by adding to the model M a
transition labelled by π∀ (π∃) from {M, s | s � φ} to {M, t | t � ψ} and this
leads to the definition of unrestricted hyper models (recall that ΠΣ is the set of regular
expressions based on Σ):

Definition 5 (Hyper Model). An hyper model is a tuple (S,→,→∃,→∀, V ) where:

– (S,→, V ) is a Kripke model
– →∃ ⊆ 2S ×ΠΣ × 2S is a labelled binary relation from a set of states to a set of

states.
– →∀ ⊆ 2S ×ΠΣ × 2S is a labelled binary relation from a set of states to a set of

states.
– for all T, T ′ ⊆ S: T

π→∃ T ′ implies that for all t ∈ T there exists w ∈ π and
t′ ∈ T ′ such that t

w→ t′.
– for all T, T ′ ⊆ S: T

π→∀ T implies that for all t ∈ T all w ∈ π: t
w→ t′ implies

t′ ∈ T ′.

Again, the last two conditions guarantee that the information incorporated in the models
are correct. The class of simple hyper models can be viewed as a subclass of hyper
models, where the transitions are all in the shapes of {s} a→∃ T and {s} a→∀ T .

Now we can consider the full EPDL language.

Definition 6 (Epistemic PDL). Given a countable set of propositional variables P, a
finite set of action symbols Σ, the formulas of EPDL language are defined by:

φ ::= � | p | ¬φ | (φ ∧ φ) | Kφ | 〈π〉φ
π ::= a | π;π | π + π | π∗

where a ∈ Σ and p ∈ P.

3 Versions of these axioms appear in temporal epistemic logic and dynamic epistemic logic (cf.
[4,14]).
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Definition 7 (Semantics). The semantics of EPDL on hyper modelsM = (S,→,→∃
,→∀, V ) is defined similarly as the semantics of EAL on hyper models, with the follow-
ing clauses replacing the clauses for 〈a〉φ formulas in the case of EAL:

M, s �0 〈π〉φ ⇔ ∃t ∈ S : s
w→ t for some w ∈ π such that M, t �0 φ

M, s �� 〈π〉φ ⇔ ∃T0, . . . , Tk ⊆ S,∃π1, . . . , πk ∈ ΠΣ : (s ∈ T0, T0
π1→∃ · · · πk→∃ Tk, (π1; · · · ; πk) ⊆ π

and ∀t ∈ Tk : M, t �� φ)

M, s �♦ 〈π〉φ ⇔ ∀T0, . . . , Tk ⊆ S,∀π1, . . . , πk ∈ ΠΣ : ((s ∈ T0, T0
π1→∀ · · · πk→∀ Tk, π ⊆ (π1; · · · ;πk))

implies (∃t ∈ Tk : M, t �♦ φ))

It is not hard to see that on simple hyper models the above semantics coincides
with the semantics of EAL on 〈a〉φ formulas. This justifies our abuse of � for both
EPDL and EAL. The semantics says that the agent knows that 〈π〉φ at s if there is a
‘refinement’ of π ((π1; · · · ;πk) ⊆ π) such that each πi step can be realized by a

πi→∃
transition, and in the end it will certainly reach a φ-state. Note that it is not necessary
that π1; · · · ;πk = π, since we just need to guarantee there exists an execution of π.

We now prove the analogue of Lemma 1.

Lemma 2. For all the pointed hyper model M, s, any EPDL formula φ the following
two hold: (1) M, s �� φ implies M, s �0 φ; (2) M, s �0 φ implies M, s �♦ φ.
ThereforeM, s �� φ impliesM, s �♦ φ.

Proof. We only need to show the case of 〈π〉ψ. SupposeM, s �� 〈π〉ψ then:
∃T0, . . . , Tk ⊆ S,∃π1, . . . , πk ∈ Π : s ∈ T0, T0

π1→∃ · · · πk→∃ Tk, π1; · · · ;πk ⊆
π and ∀t ∈ Tk : M, t �� ψ.

Let t0 = s. By the definition of hyper model, there exist ti ∈ Ti and wi ∈ πi for
1 ≤ i ≤ k such that ti−1

wi→ ti. It is clear that w1 · · ·wk ∈ π1; · · · ;πk . Since
π1; · · · ;πk ⊆ π, w1 · · ·wk ∈ π. Thus by IH,M, s �0 〈π〉ψ.

Now for the second claim, supposeM, s �0 〈π〉ψ then there is a t◦ such that s
w→ t◦

for a w ∈ π andM, t◦ �0 ψ. By IH,M, t◦ �♦ ψ. Now suppose towards contradiction
thatM, s ��♦ 〈π〉ψ then according to the semantics we have:

∃T0, . . . , Tk ⊆ S,∃π1, . . . , πk ∈ Π : s ∈ T0, T0
π1→∀ · · · πk→∀ Tk, π ⊆ π1; · · · ;πk and ∀t ∈

Tk : M, t ��♦ ψ

Obviously, if we can show that t◦ ∈ Tk then a contradiction is derived. In the following
we prove that t◦ ∈ Tk. Since π ⊆ π1; · · · ;πk and w ∈ π, w ∈ π1; · · · ;πk. Therefore
there exist wi ∈ πi for 1 ≤ i ≤ k such that w = w1; · · · ;wk (wi can be an empty
string). According to the definition of hyper model, if s

w1···wi→ t then t ∈ Ti for all
1 ≤ i ≤ k. In particular if s

w1···wk→ t then t ∈ Tk. Now it is clear that t◦ ∈ Tk.

Based on this lemma and the proof of Theorem 1, the following theorem holds im-
mediately.

Theorem 2. DIST, T, 4, and 5 are valid for EPDL on hyper models.

It is easy to verify that the EPDL analogies of Proposition 1 and Proposition 2 also hold.

4 Discussion and Future work

So far, we have only laid out the basics of an alternative semantics for EPDL based
on hyper models where epistemic relations are replaced by two approximations of the
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actual transitions. In this section, we discuss some subtle issues about the semantics and
point out further directions.

First of all, we justify that hyper models are indeed compact representations of a col-
lection of Kripke models. On the one hand, each hyper modelM can be unfolded into
a set (call it Unf(M)) of Kripke models over the same set of states on which the im-
perfect information given by→∃ and→∀ transitions in the hyper model is correct, i.e.,
satisfying the last two conditions in the definition of hyper models. Based on Lemma 2,
we can easily show that the knowledge in any hyper modelM are truthful to Unf(M),
andM encodes all the possibilities in Unf(M):

Proposition 6. For every PDL formula φ and every s in any hyper modelM:

– ifM, s � Kφ then N , s � φ for everyN ∈ Unf(M)
– if N , s � φ for someN ∈ Unf(M) thenM, s � K̂φ

Note that even in very simple cases, |Unf(M)| may be exponential in the size of the
hyper model and Σ. For example, let S = {s, t}, V (p) = t, and let πΣ be the ‘sum’ of
all actions in Σ, then the hyper model with {s} πΣ→∀ {t} as the only transition has 2|Σ|

epistemically possible Kripke models to realize all the φΔ =
∧

a∈Δ〈a〉p∧
∧

b
∈Δ ¬〈b〉p
formulas at s for each Δ ⊆ Σ. If the hyper model does not provide any procedural
information (i.e., deleting the only transition) then |Unf(M)| = 2|S|·|Σ|·|S|.

On the other hand, we may ask: is every set of concrete models (over a given set of
states S) representable by a hyper model over S? Unfortunately, the answer is negative.

For example, take the set of two Kripke models over S = {s, t}: s a→ t and s
b→ t.

Let φ = (〈a〉� ∧ ¬〈b〉�) ∨ (〈b〉� ∧ ¬〈a〉�). It is clear that Kφ is true w.r.t. this set
of models and state s. However, over S, no matter how the →∀ and →∃ transitions
are chosen, we cannot make sure Kφ holds on s since it would imply the knowledge
of one of the disjunctions according to Proposition 3. The problem lies in the fact that
we treat disjunction in the scope of K as “knowing whether” due to the semantics for
Boolean connectives. We cannot really specify certain kinds of inter-dependency be-
tween the transitions. We may have a hyper model over s with the following transition

{s} (a+b)∃ �� {t} , but we cannot make sure
a→ and

b→ are mutually exclusive
between s and t. One potential solution is to make the labels of the transitions more ex-
pressive to specify conditional information, but we suspect a ‘satisfactory’ solution will
in turn introduce another kind of ‘state-explosion’ on the transitions in hyper models.
We need to find the balance between expressiveness and complexity.

Moreover, although the logic validates the T axiom, which makes sure everything
we know is truthful, it is not very clear how much information we can ‘know’ by the
semantics of EPDL on the hyper models. It seems that by requiring more conditions on
the hyper model we may get more from the hyper models. Let us illustrate this in the
simple hyper models. Below lists some intuitive closure properties that we may impose
and their corresponding logical properties:

(s
a→∀ T1 and s

a→∀ T2) implies s
a→∀ T1 ∩ T2 K[a]φ ∧K[a]ψ → K[a](φ ∧ ψ)

(s
a→∀ T1 and s

a→∃ T2) implies s
a→∃ T1 ∩ T2 K[a]φ ∧K〈a〉ψ → K〈a〉(φ ∧ ψ)

for each s each a, there exists T ⊆ S such that s
a→∀ T K[a]�
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In fact, we only need one and only one
a→∀ outgoing arrow from each state for each

a ∈ Σ since all the
a→∀ targeting sets can be intersected together, and the ‘default’

transition would be s
a→∀ S where S is the set of all possible states. Note that, in

general, the above requirements may help to bring back the missing reasoning power
within the scope of K , due to the lack of necessitation rule for K in the logic.

To conclude, our epistemic framework is more compact and constructive compared
to the standard possible-world approach of epistemic logic, in the sense that the hyper
model resembles a collection of Kripke models and we can incrementally extend the
model even from scratch by adding new imprecise information. At the same time, we
pay the price that we are not able to represent all the collections of Kripke models since
certain dependency of transitions is not encoded in the hyper models. To use the logic,
we may make use of the 3-valued model checking algorithms (e.g., [6]), we leave out
the exact complexity analysis to future work. Finally, it is also a natural next step to go
probabilistic, as probabilities can be seen as another form of abstraction of qualitative
information, as remarked in [8].
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