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Abstract. A graph is outer 1-planar if it admits a drawing where each vertex
is on the outer face and each edge is crossed by at most another edge. Outer 1-
planar graphs are a superclass of the outerplanar graphs and a subclass of the
partial 3-trees. We show that an outer 1-planar graph G of bounded degree Δ
admits an outer 1-planar straight-line drawing that uses O(Δ ) different slopes,
which extends a previous result by Knauer et al. about the planar slope number
of outerplanar graphs (CGTA, 2014). We also show that O(Δ 2) slopes suffice to
construct a crossing-free straight-line drawing of G; the best known upper bound
on the planar slope number of planar partial 3-trees of bounded degree Δ is O(Δ 5)
and is proved by Jelı́nek et al. (Graphs and Combinatorics, 2013).

1 Introduction

The slope number of a graph G is defined as the minimum number of distinct edge
slopes required to construct a straight-line drawing of G. Minimizing the number of
slopes used in a straight-line graph drawing is a desirable aesthetic requirement and an
interesting theoretical problem which has received considerable attention since its first
definition by Wade and Chu [21]. Let Δ be the maximum degree of a graph G and let m
be the number of edges of G, clearly the slope number of G is at least Δ

2 and at most m.
For non-planar graphs, there exist graphs with Δ ≥ 5 whose slope number is un-

bounded (with respect to Δ ) [3,19], while the slope number of graphs with Δ = 4 is
unknown, and the slope number of graphs with Δ = 3 is four [18].

Concerning planar graphs, the planar slope number of a planar graph G is defined
as the minimum number of distinct slopes required by any planar straight-line drawing
of G (see, e.g., [9]). Keszegh, Pach and Pálvölgyi [14] prove that O(2O(Δ )) is an upper
bound and that 3Δ − 6 is a lower bound for the planar graphs of bounded degree Δ .
The gap between upper and lower bound has been reduced for special families of planar
graphs with bounded degree. Knauer, Micek and Walczak [15] prove that an outerplanar
graph of bounded degree Δ ≥ 4 admits an outerplanar straight-line drawing that uses at
most Δ −1 distinct edge slopes, and this bound is tight. Jelı́nek et al. [13] prove that the
slope number of the planar partial 3-trees of bounded degree Δ is O(Δ 5), while in [17]
it is proved that all partial 2-trees of bounded degree Δ have O(Δ) slope number. Di
Giacomo et al. [7] show that planar graphs of bounded degree Δ ≤ 3 and at least five
vertices have planar slope number four, which is worst case optimal.
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The research in this paper is motivated by the following observations. The fact that
the best known upper bound on the slope number is O(Δ 5) for planar partial 3-trees
while it is O(Δ) for partial 2-trees suggests to further investigate the planar slope num-
ber of those planar graphs whose treewidth is at most three. Also, the fact that non-
planar drawings may require a number of slopes that is unbounded in Δ while the planar
slope number of planar graphs is bounded in Δ , suggests to study how many slopes may
be needed to construct straight-line drawings that are “nearly-planar” in some sense, i.e.
where only some types of edge crossing are allowed.

We study outer 1-planar graphs that are graphs which admit drawings where each
edge is crossed at most once and each vertex is on the boundary of the outer face (see,
e.g., [2,5,11]). In 2013, Auer et al. [2], and independently Hong et al. [11], presented
a linear-time algorithm to test outer 1-planarity. Both algorithms produce an outer 1-
planar embedding of the graph if it exists. Given an outer 1-planar graph G, we define
the outer 1-planar slope number of G, as the minimum number of distinct slopes re-
quired by any outer 1-planar straight-line drawing of G. We prove the following results.

1. The outer 1-planar slope number of outer 1-planar graphs with maximum degree Δ
is at most 6Δ +12 (Section 3). Since outerplanar drawings are a special case of the
outer 1-planar drawings, this result extends the above mentioned upper bound on
the planar slope number of outerplanar graphs [15].

2. Outer 1-planar drawings are known to be planar graphs and they have treewidth
at most three [2]. We study crossing-free straight-line drawings of outer 1-planar
graphs of bounded degree Δ and show an O(Δ 2) upper bound to the planar slope
number (Section 4). Hence, for this special family, we are able to reduce the general
O(Δ 5) upper bound [13].

Our results are constructive and give rise to linear-time drawing algorithms. Also, it
may be worth recalling that the study of the 1-planar graphs, i.e. those graphs that can
be drawn with at most one crossing per edge, has received a lot of interest in the recent
graph drawing literature (see, e.g., [1,4,8,10,12,16,20]).

In Section 2 we introduce preliminaries. Section 5 lists some open problems. For
reasons of space some proofs are sketched or omitted.

2 Preliminaries and Basic Definitions

A drawing Γ of a graph G = (V,E) is a mapping of the vertices in V to points of the
plane and of the edges in E to Jordan arcs connecting their corresponding endpoints but
not passing through any other vertex. Also, no two edges that share an endpoint cross.
Γ is a straight-line drawing if every edge is mapped to a straight-line segment. Γ is a
planar drawing if no edge is crossed; it is a 1-planar drawing if each edge is crossed at
most once. A planar graph is a graph that admits a planar drawing; a 1-planar graph is
a graph that admits a 1-planar drawing.

A planar drawing of a graph partitions the plane into topologically connected regions,
called faces. The unbounded region is called the outer face. A planar embedding of a
planar graph is an equivalence class of planar drawings that define the same set of faces.
The concept of planar embedding can be extended to 1-planar drawings as follows. In a
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Fig. 1. Illustration of Properties 2– 4. The pertinent graph of: (a) an R-node μ; (b) a P-node μ
(case (ii) of Property 3);. (c) a P-node μ that is AOS with respect to sμ ; (d) An S-node ν with a
child μ that is AOS with respect to sμ . Dashed edges cross in the embedding of the graph.

1-planar drawing Γ of a graph G each crossed edge is divided into two edge fragments.
Also in this case, Γ partitions the plane into topologically connected regions, which
we call faces. A 1-planar embedding of a 1-planar graph is an equivalence class of
1-planar drawings that define the same set of faces. An outer 1-planar drawing is a 1-
planar drawing with all vertices on the outer face. An outer 1-plane graph G is a graph
with a given outer 1-planar embedding.

The slope s of a line � is the angle that an horizontal line needs to be rotated counter-
clockwise in order to make it overlap with �. The slope of a segment representing an
edge in a straight-line drawing is the slope of the supporting line containing the segment.

Our drawing techniques use SPQR-trees, whose definition can be found in [6].

Properties of Outer 1-planar Graphs. The structural properties of outer 1-planar
graphs have been studied in [2,11]. In this paragraph we derive properties that hold
in the fixed outer 1-planar embedding setting and that easily follow from the results
in [11]. In Section 4 we will use the same properties explaining how to adapt them to
the planar embedding setting. The following property can be found as Lemma 1 in [11].

Property 1. Let G be an outer 1-plane graph. If G is triconnected, then it is isomorphic
to K4 and it has exactly one crossing.

In what follows we consider a biconnected outer 1-plane graph G and its SPQR-tree
T . Let μ be a node of T , the pertinent graph Gμ of μ is the subgraph of G whose SPQR-
tree (with respect to the reference edge e of μ) is the subtree of T rooted at μ . Notice
that the edge e is not part of Gμ . From now on we assume Gμ to be an outer 1-plane
graph using the embedding induced from G. We give the following definition [11].

Definition 1. A node μ of T is one sided with respect to its poles sμ and tμ , or simply
OS, if the edge (sμ , tμ) is on the outer face of Gμ .

Furthermore, we consider T to be rooted at a Q-node ρ whose (only) child is denoted
by ξ . In particular, we choose ρ to be associated with an edge that is not crossed and
that belongs to the boundary of the outer face of G. It can be shown that such an edge
always exists. This choice implies that ξ is OS by definition. The next property derives
from Lemma 5 in [11] and defines the structure of the skeleton of R-nodes, see also
Figure 1(a).

Property 2. Let μ be an R-node of T . Then: (i) The skeleton σ(μ) is isomorphic to K4

and it has one crossing; (ii) The children of μ are all OS; (iii) Two children of μ are
Q-nodes whose associated edges cross each other in Gμ .
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Observe that if μ is an R-node of T , then it is always OS. In order to handle P-nodes,
we first need to define a special kind of S-nodes [11].

Definition 2. Let μ be an S-node of T . Let η be the unique child of μ having sμ as a
pole, and let η ′ be the unique child of μ having tμ as a pole. Node μ has a tail at sμ
(tμ ), if η (η ′) is a Q-node.

The next property derives from Lemma 6 in [11], see also Figure 1(b).

Property 3. Let μ be an OS P-node of T . One of the following cases holds: (i) μ has
two children one of which is a Q-node and the other one is OS; (ii) μ has two children
and none of them is a Q-node. Then both are OS S-nodes, one of them has a tail at sμ ,
and the other one has a tail at tμ . Also, the two edges associated with these two tails
cross each other in G; (iii) μ has three children and one of them is a Q-node. For the
remaining two children case (ii) applies.

Property 3 is restricted to P-nodes that are OS. However, an internal P-node μ (dif-
ferent from ξ ) might not have the edge (sμ , tμ) on the outer face of Gμ [11], see also
Figure 1(c) for an illustration.

Definition 3. Let μ be a P-node of T different from ξ . Node μ is almost one sided with
respect to sμ (tμ ), or simply AOS with respect to sμ (tμ ), if μ has 2 ≤ k ≤ 4 children,
one of them is an S-node with a tail at sμ (tμ ), and for the remaining children one of
the following cases applies: (i) If k = 2, then the other child is OS; (ii) If k > 2, all and
only the cases in Property 3 can apply for the remaining k− 1 children.

Let μ be AOS with respect to sμ (tμ ), then, in order to guarantee that the graph is outer
1-planar, the edge associated with the tail at sμ (tμ ) crosses another edge, represented
by a Q-node ψ in T , having tμ (sμ ) as an end-vertex. This implies that in fact, μ and ψ
are two children of an S-node ν in T [11] (see also Figure 1(d)). This observation will
be used in Section 3 and in the next property, that is derived from Lemma 7 in [11].

Property 4. Let μ be an S-node of T . Let η1,η2, . . . ,ηk be the k children of μ in T , such
that tηi−1 = sηi , for i = 2, . . . ,k. For each 1 ≤ i ≤ k, one of the following cases applies:
(i) ηi is OS; (ii) ηi is AOS with respect to sηi and ηi+1 (i < k) is a Q-node; (iii) ηi is
AOS with respect to tηi and ηi−1 (i > 1) is a Q-node.

An immediate observation from these properties is that every node μ of T different
from ξ is OS if it is an S- or R-node, while it is either OS or AOS if it is a P-node.

3 The Outer 1-planar Slope Number

In this section we first present an algorithm, called BO1P-DRAWER, that takes as input
a biconnected outer 1-plane graph G with maximum degree Δ , and returns a straight-
line drawing Γ of G that uses at most 6Δ slopes. This result is then extended to simply
connected graphs with a number of slopes equal to 6Δ + 12.
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A Universal Set of Slopes. We define a universal set of slopes used by algorithm
BO1P-DRAWER to draw every biconnected outer 1-plane graph G with maximum de-
gree Δ . Let α = π

2Δ and observe that 0 < α ≤ π
6 when Δ ≥ 3. We call blue slopes

the set of slopes defined as bi = (i − 1)α , for i = 1,2, . . . ,2Δ . For each of the 2Δ
blue slopes, we also define two red slopes as r−i = bi − ε and r+i = bi + ε , for i =
1,2, . . . ,2Δ , where the value of ε only depends on Δ . The union of the blue and red
slopes defines the universal set of slopes SΔ of size 6Δ . We choose ε as follows:

ε = α − arctan
(

tan(α)
1+2 tan(2α) tan(α)−2 tan(α) tan(α)

)
. The reason of this choice will be clari-

fied in the proof of Lemma 3. Clearly, ε depends only on Δ and it is possible to see that
it is a positive value.

Algorithm Overview. Algorithm BO1P-DRAWER exploits SPQR-trees and the struc-
tural properties presented in Section 2. It takes as input a biconnected outer 1-plane
graph G with maximum degree Δ and returns a straight-line drawing Γ of G that uses
only slopes in SΔ . We first construct the SPQR-tree T rooted at a Q-node ρ , whose
(only) child is denoted by ξ . Moreover, the edge associated with ρ is not crossed and
belongs to the boundary of the outer face of G. Then we draw G by visiting T bottom-
up, handling ρ and ξ together as a special case. At each step we process an internal
node μ of T and compute a drawing Γμ of its pertinent graph Gμ by properly combin-
ing the already computed drawings of the pertinent graphs of the children of μ . Let sμ
and tμ be the poles of μ . With a slight overload of notation for the symbol Δ , we denote
by Δ(sμ) and Δ(tμ) the degree of sμ and tμ in Gμ , respectively. For each drawing Γμ we
aim at maintaining the following three invariants. I1. Γμ is outer 1-plane with respect to
the embedding of Gμ . I2. Γμ uses only slopes in SΔ . I3. Γμ is contained in a triangle τμ
such that sμ and tμ are placed at the corners of its base. Also, βμ < (Δ(sμ)+ 1)α and
γμ < (Δ(tμ)+ 1)α , where βμ and γμ are the internal angles of τμ at sμ and tμ .

We now explain how to compute a drawing Γμ of Gμ , by combining the drawings
Γη1 ,Γη2 , . . . ,Γηh of the pertinent graphs Gη1 ,Gη2 , . . . ,Gηh of the children η1,η2, . . . ,ηh

of μ . To this aim, the drawings Γη1 ,Γη2 , . . . ,Γηh are possibly manipulated. First, observe
that the triangle τη j (1 ≤ j ≤ h) can be arbitrarily scaled without modifying the slopes
used in Γη j . Furthermore, due to the symmetric choice of the blue and red slopes, if we
rotate τη j by an angle c ·α , with c integer, the resulting drawing maintains invariant
I2. Namely each blue slope bi, for i = 1,2, . . . ,2Δ , used in τη j will be transformed in
another blue slope bi+c = bi + c ·α = (i− 1+ c)α , where i+ c is considered modulo
2Δ . Similarly, any red slope will be transformed into another red slope. Moreover, let
η1 and η2 be two children of μ . When we draw Gη1 and Gη2 , although they may share
one or both the poles, we consider each graph to have its own copy of its poles. Then,
when computing Γμ , we say that we attach Γη1 to Γη2 if they share either two poles (this
is always true when μ is a P-node) or one pole (this may happen when μ is either an
S- or R-node), meaning that we may scale, shift and rotate Γη1 or Γη2 in such a way that
the points representing the shared poles on the drawing coincide.

As observed in Section 2, all the internal nodes of T are OS except for some P-nodes
which are AOS. Let μ be any of these P-nodes, we know that μ is one of the children
of an S-node, say ν , and it shares a pole with a Q-node, denoted by η (also a children
of ν). We replace μ and η in T with a new node ϕ , that, for the sake of description,
is called an S∗-node. Also, the children of μ become children of ϕ . If μ and η were
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Fig. 2. The drawing of the pertinent graph of: (a) an S-node; (b) a P-node with two children such
that one is a Q-node and the other one is an S-node; (c) a P-node with two children such that none
of them is a Q-node; (d) an S∗-node; (e) an R-node. Edges drawn with red slopes are dashed.

the only two children of ν , then we also replace ν with ϕ . The pertinent graph of ϕ is
Gϕ = Gμ ∪Gη , while the reference edge of ϕ is (sμ , tη ), if μ is AOS with respect to sμ ,
or (sη , tμ), if μ is AOS with respect to tμ . It is easy to see that ϕ is OS. By means of this
transformation we can consider only P-nodes that are OS. Similarly we can handle just
S-nodes whose children are OS. In what follows we distinguish between S-, P-, S∗-, and
R-nodes different from ξ .

Lemma 1. Let μ be an S-node different from ξ . Then Gμ admits a straight-line drawing
Γμ that respects Invariants I1., I2. and I3.

Proof sketch: The drawings of the pertinent graphs of the children η1,η2, . . . ,ηk of μ
are attached to each other as shown in Figure 2(a). Clearly all invariants hold. ��

Lemma 2. Let μ be a P-node different from ξ . Then Gμ admits a straight-line drawing
Γμ that respects Invariants I1., I2. and I3.

Proof sketch: Recall that, thanks to the definition of S∗-nodes, here we need to only
handle only P-nodes that are OS. By Property 3, one of the following cases applies: (i)
μ has two children one of which is a Q-node and the other one is OS. (ii) μ has two
children and none of them is a Q-node. Then both are OS S-nodes, one of them has a
tail at sμ , and the other one has a tail at tμ . Also, the two edges associated with these
two tails cross each other in G. (iii) μ has three children and one of them is a Q-node.
For the remaining two children case (ii) applies.

Case (i) can be easily handled as shown in Figure 2(b). Consider case (ii) and let η1

be the child of μ that is an S-node with a tail at tμ , and η2 be the child of μ that is an S-
node with a tail at sμ . Refer to Figure 2(c). Recall that sη1 = sη2 = sμ and tη1 = tη2 = tμ .
We modify the drawing Γη1 as follows. We first rotate Γη1 so that the segment sη1 tη1 uses
the blue slope b2. Then we redraw the tail of η1 using the red slope r+2Δ = b2Δ + ε and
so that sη1 and tη1 are horizontally aligned. Similarly, we modify the drawing Γη2 . We
rotate Γη2 so that the segment sη2tη2 uses the blue slope b2Δ and redraw the tail of η2
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using the red slope r−2 = b2 − ε and so that sη2 and tη2 are horizontally aligned. Finally,
we attach Γη1 and Γη2 (possibly scaling one of them). Invariants I1. and I2. hold by
construction. Also, Γμ is contained in a triangle τμ such that sμ and tμ are placed at the
corners of its base. Moreover, we have that Δ(sμ) = Δ(sη1)+ 1, and βμ = βη1 +α <
Δ(sη1 + 1)α +α = Δ(sη1 + 2)α = Δ(sμ + 1)α . Similarly, Δ(tμ) = Δ(tη2) + 1, and
γμ = γη2 +α < Δ(tη2 + 1)α +α = Δ(tη2 + 2)α = Δ(tμ + 1)α . Hence, Invariant I3.
holds. In case (iii) we can use the same construction as in case (ii). Notice that the edge
(sμ , tμ) can be safely drawn using the horizontal blue slope b1. All invariants hold. ��

Lemma 3. Let μ be an S∗-node different from ξ . Then Gμ admits a straight-line draw-
ing Γμ that respects Invariants I1., I2. and I3.

Proof. Refer to Figure 2(d). Denote by η the child of μ that is an S-node with a tail
at either sμ or tμ . Suppose that η has a tail at tμ (the case when the tail is at sμ is
symmetric). Denote by ψ the child of μ that is a Q-node having tψ = sη and sψ = sμ
as poles. Finally denote by η1,η2, . . . ,ηk the remaining children of μ . Recall that sη1 =
sηi = sηk and that tη1 = tηi = tηk . If k = 1, we first rotate Γη1 so that the segment sη1tη1

uses the blue slope b2Δ . If k > 1, we combine the drawings Γη1 ,Γη2 , . . . ,Γηk with the
same technique described for P-nodes (recall that indeed they were children of a P-
node before the creation of the S∗-node), and, again, we rotate the resulting drawing so
that the base of its bounding triangle uses the blue slope b2Δ . Then we attach Γη to Γη1

(after Γη has been horizontally flipped). Also, we scale Γη so that its tail can be redrawn
by using the red slope r+2Δ and such that tη = tμ coincides with tη1 = tηk . Finally, we
redraw the edge associated with ψ , starting from the point representing tψ = sη , using
the red slope r−2 and stretch it enough that sψ = sμ and tμ are horizontally aligned.
See also Figure 2(d) for an illustration. Invariants I1. and I2. hold by construction.
Consider now Invariant I3.. By construction Γμ is contained in a triangle τμ such that
sμ and tμ are placed at the corners of its base. For the sake of description, in what
follow we still denote by Γη the drawing of Gη minus the tail of η (i.e., minus an
edge), and as τη the surrounding triangle of Γη . To prove the second part of Invariant
I3., we should prove that the line � passing through sμ with slope b3 = 2α does not
cross the drawing of Γη , i.e., is such that Γη is placed in the half-plane H defined
by � and containing the segment sμtμ . Denote by δx the horizontal distance between
the point where sμ is drawn and the leftmost endpoint of τη . Also, denote by hη the
height of τη . Our condition is satisfied if the following inequality holds tan(2α)δx ≥
tan(α)δx+ hη . Let wη be the length of the base of τη , in the worst case (the case that
maximizes hη ), we have that hη =

wη
2

1
tan (α) , which means that the degree of the two

vertices placed as endpoints of the base of τη is Δ . Moreover, it is possible to see that

wη = tan (α)δx−tan (α−ε)δx
tan (α−ε) . Substituting wη in hη and hη in the above inequality we have:

tan(2α) ≥ tan(α) +
tan (α)−tan (α−ε)
2 tan (α−ε) tan (α) . With some manipulation we get: tan (α − ε) ≥

tan (α)
2 tan(2α) tan (α)−2 tan(α) tan (α)+1 . Now, since the tangent function is strictly increasing in

(− π
2 ,

π
2 ), we have: ε ≤ α − arctan

(
tan (α)

2 tan(2α) tan (α)−2 tan (α) tan (α)+1

)
. Since the value of

ε has been chosen equal to the right-hand side of the above inequality, the inequality
holds. Hence, βμ < 2α = (Δ(sμ )+1)α (since Δ(sμ) = 1). With a symmetric argument
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one can prove that the line �′ passing through tμ with slope b2Δ−1 =
(Δ−1)π

Δ does not
cross the drawing of Γη . Since Δ(tμ) = Δ(tηk )+1, and γμ = γηk +α < (Δ(tηk )+1)α +
α = (Δ(tηk )+ 2)α = (Δ(tμ)+ 1)α , Invariant I3. holds. ��
Lemma 4. Let μ be an R-node different from ξ . Then Gμ admits a straight-line draw-
ing Γμ that respects Invariants I1., I2. and I3.

Proof. Refer to Figure 2(e). Recall that, by Property 2, (i) the skeleton σ(μ) is isomor-
phic to K4 and it has one crossing; (ii) the children of μ are all OS; (iii) two children
of μ are Q-nodes whose associated edges cross each other in Gμ . Hence, denote by
η1,η2,η3 the three children of μ whose associated virtual edges lie on the boundary of
the outer face of σ(μ) with sμ = sη1 , tη1 = sη2 , tη2 = sη3 , and tη3 = tμ . Also, denote by
η4 and η5 the two children of μ that are Q-nodes whose associated edges cross each
other in Gμ , and so that the poles of η4 coincides with tη1 and tη3 , while the poles of η5

coincides with tη2 and sη1 . We rotate Γη1 in such a way that the segment sν1 tν1 uses the
blue slope b2. Similarly, we rotate Γη3 in such a way that the segment sη3 tη3 uses the
blue slope b2Δ . Furthermore, we scale one of the two drawings so that tη1 and sη3 are
horizontally aligned. Moreover, we redraw the edge associated with η4 by using the red
slope r+2Δ and we redraw the edge associated with η5 by using the red slope r−2 . Observe
that, attaching η4 and η5 to η1 and η3, the length of the segment tη1sη3 is determined.
Thus, we attach Γη2 so that sη2 coincides with tη1 and that tη2 coincides with sη3 .

It is easy to see that Invariant I1. and I2. are respected by construction. Concerning
Invariant I3., again by construction Γμ is contained in a triangle τμ such that sμ and
tμ are placed at the corners of its base. Moreover, with the same argument used in
the proof of Lemma 3, one can show that βμ = βη1 +α and that γμ = γη3 +α . Since
Δ(sμ) = Δ(η1)+ 1 and Δ(tμ) = Δ(η3)+ 1, Invariant I3. holds. ��
Lemma 5. Let ρ be the root of T and let ξ be its unique child. Graph G = Gρ ∪Gξ
admits a straight-line drawing Γ that respects Invariants I1., I2. and I3.

Proof sketch: It is possible to prove that at least one edge (s, t) of the outer face of G is
not crossed. If we root T at the Q-node associated with (s, t), the root’s child ξ is OS
and a drawing of Gρ ∪Gξ can be computed as in Lemmas 1, 2, 3, and 4. ��

Lemma 6. Let G be a biconnected outer 1-plane graph with n vertices and with max-
imum degree Δ . G admits an outer 1-planar straight-line drawing that maintains the
given outer 1-planar embedding, and that uses at most 6Δ slopes. Also, this drawing
can be computed in O(n) time.

Proof sketch: By Lemmas 1, 2, 3, 4, and 5, G has an outer 1-planar straight-line drawing
that maintains the embedding, with at most 6Δ slopes. ��

A simply connected outerplane graph can be augmented (in linear time) into a bi-
connected outerplane graph by adding edges so that the maximum degree is increased
by at most two. This technique can be directly applied also to outer 1-plane graphs.

Theorem 1. Let G be an outer 1-plane graph with n vertices and with maximum degree
Δ . G admits an outer 1-planar straight-line drawing that maintains the given outer 1-
planar embedding, and that uses at most 6Δ + 12 slopes. Also, this drawing can be
computed in O(n) time.
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4 The Planar Slope Number

In this section we describe an algorithm, called BP-DRAWER, that computes a planar
drawing of an outer 1-planar graph G, using at most 4Δ 2−4Δ slopes. This result is then
extended to simply connected graphs with a number of slopes equal to 4Δ 2 + 12Δ + 8.

A Universal Set of Slopes. We start by defining a universal set of slopes that are used
by algorithm BP-DRAWER. Let θ = π

4Δ and observe that 0 < θ ≤ π
12 when Δ ≥ 3. We

call green slopes the set of slopes defined as gi = (i−1)θ , for i = 1,2, . . . ,4Δ . For each

green slope gi, we define Δ − 1 yellow slopes as yi, j = gi + arctan
(

tan(g4Δ ) tan(g3)
tan(g j)

)
with

j = 3Δ , . . . ,4Δ −2. The reason of this choice will be clarified in the proof of Lemma 10.
The union of the green and yellow slopes defines the universal set of slopes TΔ . It is
possible to see that gi < yi, j < gi+1, for each 1 ≤ i < 4Δ and 3Δ ≤ j ≤ 4Δ − 2.

Algorithm Overview. Algorithm BP-DRAWER takes as input a biconnected outer 1-
plane graph G with maximum degree Δ and returns a planar straight-line drawing Γ
of G that uses only slopes in TΔ . As in Section 3 we construct the SPQR-tree T of
G rooted at a Q-node associated with an edge that is not crossed and belongs to the
boundary of the outer face of G in the outer 1-planar embedding of G. Then we draw G
by visiting T bottom-up. At each internal node μ of T we compute a drawing Γμ of Gμ
by combining the already computed drawings of the pertinent graphs of the children
of μ . For each drawing Γμ we maintain the following three invariants: Ia. Γμ is planar.
Ib. Γμ uses only slopes in TΔ . Ic. Γμ is contained in a triangle τμ such that sμ and tμ
are placed at the corners of its base. Also, βμ < (Δ(sμ)− 1)θ and γμ < (Δ(tμ)− 1)θ ,
where βμ and γμ are the internal angles of τμ at sμ and tμ , respectively.

As in Section 3 the root ρ of T and its unique child ξ will be handled in a special
way. Also, in order to construct Γμ we may shift, scale and rotate the drawings of the
pertinent graphs of the children of μ . We observe that if we rotate τμ by an angle
c · θ , with c integer, the resulting drawing maintains invariant Ib. Namely each green
slope gi, for i = 1,2, . . . ,4Δ , used in τμ will be transformed in another green slope
gi+c = gi + c · θ = (i− 1+ c)θ , where i+ c is considered modulo 4Δ . Similarly, any
yellow slope yi, j will be transformed into another yellow slope yi+c, j.

Before describing how the drawing of the pertinent graph of each node μ is obtained
by combining the drawing of the pertinent graphs of its children, we observe that the
structural properties described in Properties 2, 3, or 4 hold, depending on the type of
μ . However, since we want to produce a planar drawing, our algorithm embeds each
pertinent graph in a planar way. One of the consequence of this fact is that we no longer
need to introduce S∗-nodes; namely, the P-nodes that are AOS in the outer 1-planar
embedding must be embedded in a planar way and therefore they do not need to be
handled in a special way anymore. On the other hand, we need to distinguish between
R-nodes whose poles are adjacent in G and R-nodes whose poles are not adjacent in G.
For this reason we introduce R∗-nodes. Let μ be an R-node; if the poles sμ and tμ of μ
are adjacent in G, then the parent ν of μ is a P-node that has (at least) another child η
that is a Q-node (the edge associated with η is (sμ , tμ)). We replace μ and η in T with
a new node ϕ , that, for the sake of description, is called an R∗-node. Also, the children
of μ become children of ϕ . If μ and η were the only two children of ν , then we also
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Fig. 3. The planar drawing of the pertinent graph of: (a) a P-node with two children such that none
of them is a Q-node; (b) a P-node with three children, one of which is a Q-node; (c) a P-node
that is AOS in the outer 1-planar embedding of G; (d) an R-node; (e) an R∗-node. (f) Illustration
for the proof of Lemma 10.

replace ν with ϕ . The pertinent graph of ϕ is Gϕ = Gμ ∪Gη , and the reference edge of
ϕ is (sμ , tμ). We now explain how the different types of node are handled.

The proof of next lemmas are omitted. An illustration of how Γμ is constructed is
shown in Figures 2(a) and 3.

Lemma 7. Let μ be an S-node different from ξ . Then Gμ admits a straight-line drawing
Γμ that respects Invariants Ia., Ib. and Ic.

Lemma 8. Let μ be a P-node different from ξ . Then Gμ admits a straight-line drawing
Γμ that respects Invariants Ia., Ib. and Ic.

Lemma 9. Let μ be an R-node different from ξ . Then Gμ admits a straight-line draw-
ing Γμ that respects Invariants Ia., Ib. and Ic.

Lemma 10. Let μ be an R∗-node different from ξ . Then Gμ admits a straight-line
drawing Γμ that respects Invariants Ia., Ib. and Ic.

Proof. Since μ is an R∗-node, it is obtained by merging an R-node μ ′ and a Q-node
representing the edge (sμ ′ , tμ ′). By Property 2, the skeleton σ(μ ′) of μ ′ is isomorphic to
K4 and two children of μ ′ are Q-nodes. The two edges corresponding to these Q-nodes
do not share an end vertex and each one of them is incident to a distinct pole of μ . Let
η1,η2,η3,η4, and η5 be the children of μ ′; we assume that η4 and η5 are the two Q-
nodes. Also, μ has a sixth child η6 that is a Q-node corresponding to the edge (sμ , tμ).
We assume that sμ = sη1 = sη4 , tμ = tη3 = tη5 , tη1 = tη2 = sη5 , and tη4 = sη2 = sη3 .
We construct a drawing of Gμ as follows (see Figure 3(e)). We rotate Γη3 so that the
segment sη3tη3 uses the green slope g4Δ , and draw the edge associated with η5 as a
segment whose slope is the green slope (4Δ −Δ(tη3))θ and whose length is such that
sη5 is vertically aligned with sη3 . We rotate Γη2 so that the segment sη2 tη2 uses the green
slope g2Δ+1 =

π
2 . We then attach Γη2 , Γη3 , and Γη5 (possibly scaling some of them). We

draw the edge corresponding to η6 with the horizontal slope g1 and stretch it so that
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sη6 = sμ belongs to the line with slope g2 passing through sη5 . We now rotate Γη1 so
that the segment sη1 tη1 uses the green slope g2 and attach it to Γη5 and Γη6 . Finally, the
edge corresponding to η4 is drawn as the segment sμsη3 . Invariant Ia. holds because the
drawings Γη1 , Γη2 , Γη3 , Γη4 , Γη5 , and Γη6 do not intersect each other except at common
endpoints. About this, let τ be the triangle defined by the three vertices sμ , sη3 , and
sη5 ; it is easy to see that Γη2 is completely contained inside τ except for the segment
sη3sη5 that Γη2 shares with τ . Namely the angle inside τ at sη3 is π

2 +θ , while the angle
inside τ at sη5 is at least π

4 (because the angle inside τ at sμ is θ and 2θ < π
4 ). Since

βη2 <
π
4 and γη2 <

π
4 , the triangle τη2 is completely inside τ except for the vertical side

shared by the two triangles. Concerning Invariant Ib., we observe that Γη1 , Γη2 , Γη3 ,
Γη4 , and Γη5 are rotated by an angle that is a multiple of θ and therefore Ib. holds by
construction for each of them. We now show that the slope φ of the edge corresponding
to η4 is in fact either a green slope or a yellow one (refer to Figure 3(f)). Let δx1 be the
horizontal distance between sη3 and tμ and let δx2 be the horizontal distance between sμ
and sη3 . By simple trigonometry we have δx1 tan(g4Δ ) = δx2 tan(φ) and δx1 tan(g j) =
δx2 tan(g3), where g j is the slope of the segment representing the edge corresponding
to η5 (and therefore j = 4Δ − Δ(tη3)). From the two previous equations we obtain

tan(φ) = tan(g4Δ ) tan(g3)
tan(g j)

. Notice that 1 ≤ Δ(tη3) ≤ Δ and therefore 3Δ ≤ j ≤ 4Δ − 1. If

j = 4Δ −1, then tan(g3) =− tan(g j) and tan(φ) =− tan(g4Δ ) = tan(g2), hence φ = g2,

i.e., φ is a green slope. Otherwise φ = arctan
(

tan(g4Δ ) tan(g3)
tan(g j)

)
= and therefore φ is the

yellow slope y1, j (recall that g1 = 0). Concerning Invariant Ic., we have that Δ(sμ) =
Δ(sη1)+2 and Δ(tμ) = Δ(tη3)+2. Moreover, βμ = βη1 +2θ ≤ (Δ(sη1)−1)θ +2θ =
(Δ(sμ)− 1)θ . Finally, γμ = γη3 + 2θ ≤ (Δ(tη3)− 1)θ + 2θ = (Δ(tμ)− 1)θ . ��
Lemma 11. Let ρ be the root of T and let ξ be its unique child. Graph G = Gρ ∪Gξ
admits a straight-line drawing Γ that respects Invariants Ia., Ib. and Ic.

By Lemmas 7, 8, 9, 10, and 11, we can prove the following lemma.

Lemma 12. Let G be a biconnected outer 1-plane graph with n vertices and with max-
imum degree Δ . G admits a planar straight-line drawing that uses at most 4Δ 2 − 4Δ
slopes. Also, this drawing can be computed in O(n) time.

The result above can be extended to simply connected outer 1-planar graph with the
same technique described in Section 3. We obtain the following theorem.

Theorem 2. Let G be an outer 1-plane graph with n vertices and with maximum degree
Δ . G admits a planar straight-line drawing that uses at most 4Δ 2 + 12Δ + 8 slopes.
Also, this drawing can be computed in O(n) time.

5 Open Problems

An interesting open problem motivated by our result of Section 3 is whether the 1-
planar slope number of 1-planar straight-line drawable graphs (not all 1-planar graphs
admit a 1-planar straight-line drawing [12]), is bounded in Δ or not. A second problem
is whether the quadratic upper bound of Section 4 is tight or not. Finally, it could be
interesting to further explore trade-offs between slopes and crossings, e.g., can we draw
planar partial 3-trees with o(Δ 5) slopes and a constant number of crossings per edge?
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slope number of planar partial 3-trees of bounded degree. Graphs and Combinatorics 29(4),
981–1005 (2013)

14. Keszegh, B., Pach, J., Pálvölgyi, D.: Drawing planar graphs of bounded degree with few
slopes. SIAM Journal on Discrete Mathematics 27(2), 1171–1183 (2013)

15. Knauer, K.B., Micek, P., Walczak, B.: Outerplanar graph drawings with few slopes. Compu-
tational Geometry 47(5), 614–624 (2014)

16. Korzhik, V.P., Mohar, B.: Minimal obstructions for 1-immersions and hardness of 1-planarity
testing. Journal of Graph Theory 72(1), 30–71 (2013)

17. Lenhart, W., Liotta, G., Mondal, D., Nishat, R.: Planar and plane slope number of partial
2-trees. In: Wismath, S., Wolff, A. (eds.) GD 2013. LNCS, vol. 8242, pp. 412–423. Springer,
Heidelberg (2013)

18. Mukkamala, P., Pálvölgyi, D.: Drawing cubic graphs with the four basic slopes. In: van
Kreveld, M.J., Speckmann, B. (eds.) GD 2011. LNCS, vol. 7034, pp. 254–265. Springer,
Heidelberg (2011)

19. Pach, J., Pálvölgyi, D.: Bounded-degree graphs can have arbitrarily large slope numbers. The
Electronic Journal of Combinatorics 13(1) (2006)
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