
Improving Clustering-Based Schema Matching
Using Latent Semantic Indexing

Alsayed Algergawy1,2(B), Seham Moawed3, Amany Sarhan2,
Ali Eldosouky3, and Gunter Saake4

1 Institute of Computer Science, Friedrich Schiller University of Jena,
Jena, Germany

alsayed.algergawy@uni-jena.de
2 Department of Computer Engineering, Tanta University, Tanta, Egypt

3 Department of Computer Engineering, Mansoura University, Mansoura, Egypt
4 Department of Computer Science, University of Magdeburg, Magdeburg, Germany

Abstract. The increasing size and the widespread use of XML data and
different types of ontologies result in the big challenge of how to integrate
these data. A critical step towards building this integration is to identify
and discover semantically corresponding elements across heterogeneous
data sets. This identification process becomes more and more challenging
when dealing with large schemas and ontologies. Clustering-based match-
ing is a great step towards more significant reduction of the search space
and thus improving the matching efficiency. However, current methods
used to identify similar clusters depend on literally matching terms. To
keep high matching quality along with high matching efficiency, hidden
semantic relationships among clusters’ elements should be discovered.
To this end, in this paper, we propose a Latent Semantic Indexing-based
approach that allows retrieving the conceptual meaning between clusters.
The experimental evaluations reveal that the proposed approach permits
encouraging and significant improvements towards building large-scale
matching approaches.

Keywords: Schema matching · Large-scale matching · Latent semantic
indexing · Partitioning-based matching · Hierarchical clustering
method · Vector Space Model (VSM) · Document similarity

1 Introduction

Schema matching is the task of identifying and discovering correspondences
between semantically similar elements of two schemas or ontologies [31,33]. The
demand for schema matching is high in a diverse number of data application
scenarios, such as data integration [10,16] and web service discovery [4,20]. Due
to heterogeneities inherent in schemas, manual matching becomes expensive,
extremely tedious, and error prone. Therefore, efforts are invested in the develop-
ment of automated schema matching systems. Furthermore, the rapidly increas-
ing size and use of XML schemas and ontologies adds additional dimensions of
challenges to cope with the large matching problem [30].
c© Springer-Verlag Berlin Heidelberg 2014
A. Hameurlain et al. (Eds.): TLDKS XV, LNCS 8920, pp. 102–123, 2014.
DOI: 10.1007/978-3-662-45761-0 4

Improving Clustering-Based Schema Matching Using LSI 103

To deal with these challenges, several approaches have been designed to
improve the performance of the matching process for large-scale schemas involv-
ing both matching aspects: effectiveness and efficiency [5,14,19,21,32,35]. These
solutions include matching techniques that depend on the partition-based princi-
ple [2,14,21]. These partition-based matching techniques divide input schemas/
ontologies into a set of partitions and execute a partition-wise matching between
the two schemas. The partitioning is performed in such a way that each parti-
tion of the first schema is matched with only a small subset of the partitions
of the second schema (ideally, only with one partition) [30]. The entities of the
dissimilar partition pairs can be eliminated from further matching process thus
reducing the search space to achieve better efficiency. Space complexity of the
matching process is also reduced. Reducing the search space of the matching
process indeed achieves better matching efficiency, however, it does not guaran-
tee the matching quality. Determining and selecting similar clusters for further
matching plays an important role to keep high matching quality along with high
matching efficiency.

To partition input schemas/ontologies, COMA++ uses relatively simple
heuristic rules to partition the input schemas, often resulting in too few or too
many partitions [14]. Both MOM and Falcon have been applied only to cer-
tain ontology languages and cannot be applied to other data models [21,35].
Algergawy et al. use a bottom-up clustering scheme which utilizes the context-
based structural node similarities [2]. To determine similar partitions, COMA++
only uses limited information about the partition (only the root node of the par-
tition) to determine the similarity between partitions of the input schemas. On
the other hand, solutions, such as Falcon [21], fully evaluate the input ontologies
to assess the partition similarity. In Algergawy et al. [2], a light-weight similarity
measure is applied that considers all elements of each cluster pair and represents
each cluster as a cluster document. It uses the Vector Space Model and TF-IDF
to determine the similarity between cluster documents.

Unfortunately, the Vector Space Model (VSM) depends upon literally match-
ing document terms with those appearing in a query [8]. The inaccuracy of lexical
matching methods is coming from the inability to determine concepts between
documents and the query. So, the literal terms in a user’s query may not match
those of a relevant document (synonymy). In addition, most words have multiple
meanings (polysemy), so terms in a user’s query will literally match terms in irrel-
evant documents. Latent semantic indexing (LSI) is a more suitable approach
that allows retrieving information on the basis of a conceptual topic or meaning
of a document [12,22]. To this end, in this paper, we capture features introduced
by the latent semantic indexing technique in large-scale schema matching prob-
lems. In particular, we first represent input schemas as rooted labelled trees,
called schema trees. The use of a common data structure, schema tree, to model
input schemas, enables matching among different schemas and ontologies. We
then develop an agglomerative clustering algorithm to partition each schema tree
into a set of disjoint groups. The clustering algorithms depends on the structural
properties of the schema tree. To identify and determine similar clusters across

104 A. Algergawy et al.

two cluster sets representing two schema trees, we develop an LSI-based tech-
nique which is able to discover hidden semantic relationships between similar
clusters. Once having similar clusters, we finally apply a set of element match-
ers to get correspondences between their elements. To verify the performance of
the proposed approach, we conducted a set of experiments in order to prove its
superiority upon previous work.

To sum up, the main contributions of the paper can be stated as follows:

– addressing the problem of partitioning-based schema matching,
– developing and elaborating an XSOM-based parser to facilitate XML data

representation,
– proposing an LSI-based approach to determine similar clusters in the context

of schema matching, and
– conducting an intensive set of experiments to validate the proposed approach.

The rest of the paper is structured as follows. Related work is presented
in Sect. 2. We describe latent semantic indexing in Sect. 3. We then introduce
the proposed matching framework in Sect. 4, concentrating on similar clusters
identification. We report experiments conducted and analysis results in Sect. 5.
Section 6 concludes the paper.

2 Related Work

Semantic heterogeneity is a key problem in different data sharing systems, be it
a federated database [6], a data integration system [15,16], a web service [20],
or a peer data management system [18]. Involved data sources are typically
designed independently, and hence use different schemas. To obtain meaningful
interoperation, one needs a semantic mapping between the schemas, i.e. a set of
expressions that specify how the data in one source corresponds to the data in
the other. Hence, the specific problem of schema matching has to be addressed
before mapping is constructed. To this aim, a set of correspondences among
similar elements in different schemas has to be identified. Manually constructing
a match is a very labor intensive task that requires complete knowledge of the
semantics of the data in the schemas being matched. Solutions that try to provide
some automatic support for schema matching have received steady attention over
the years [7,31,33].

Unfortunately, most of these systems severely lack performance when deal-
ing with large matching problems. Consequently, several approaches have been
proposed to address the problem of matching two large schemas [2,14,19,21,
30,32,35]. Promising areas for large-scale schema matching lie in four main
directions: reduction of search space for matching, parallel matching, self-tuning
match workflows and reuse of previous match results [30]. In this section, we pay
great attention to the approaches that perform reduction of the search space.
The standard approach of cross join evaluation for schema matching reduces
match efficiency and quality. In order to reduce the search space for match-
ing, two methods can be used: early pruning of dissimilar element pairs and
partition-based matching.

Improving Clustering-Based Schema Matching Using LSI 105

Quick ontology matching (QOM) was one of the first approaches to imple-
ment the idea of early pruning of dissimilar element pairs [17]. It iteratively
applies a sequence of matchers and can restrict the search space for every
matcher. Peukert et al. introduce a set of filter operators within match work-
flows to prune dissimilar element pairs (whose similarity is below some minimal
threshold) from intermediate match results [28]. They also propose a rule-based
approach to rewrite match workflows for improving efficiency, in particular by
placing filter operators within sequences of matchers [27].

COMA++ was one of the first systems to support partition-based schema
matching [14]. It depends on fragment matching which has two phases. The first
phase determines fragments of the two schemas and identifies the most similar
ones. Detecting similar fragments is some kind of light-weight matching via the
similarity of fragment roots. The second phase identifies corresponding elements
between each pair of similar fragments. Finally, the fragment-based match results
are merged to obtain the complete output mapping [14].

Another matching system that supports partition-based matching is Falcon-
AO [21]. It initially partitions the ontologies into relatively small disjoint blocks
by using structural clustering. Then, matching is applied to the most similar
blocks from the two ontologies. To determine block similarity, the algorithm
utilizes the so-called anchors. Anchors are highly similar element pairs that
are determined before partitioning by a combined name/comment matcher.
Dynamic partition-based matching is supported by AnchorFlood [32]. It avoids
the a-priori partitioning of the ontologies by utilizing anchors (similar concept
pairs). It takes them as a starting point to incrementally match elements in their
structural neighborhood until no further matches are found or all elements are
processed. Thus the partitions (segments) are located around the anchors.

Zhong et al. propose an unbalanced ontology matching approach, which con-
cerns matching a lightweight ontology with a more heavyweight one [36]. They
abstract the subontology (partition) from the heavyweight ontology that is most
similar to the smaller one and consider this sub-ontology for matching. To deter-
mine this sub-ontology, the approach needs to carry out a nested loop to deter-
mine the similarity values between concepts from the two ontologies. To this
end, name-based similarity measures such as Edit distance and WordNet have
been used. Concepts from the larger ontology with similarity values higher than
a predefined threshold are then selected. Finally, the subontology is determined
by evaluating the subgraphs around the similar elements found in the first step.
We observe that in order to determine a similar sub-ontology, whole concepts
from two ontologies have to be compared using name-based similarity measures,
which is not efficient for large matching problems.

Algergawy et al. uses a clustering-based matching approach that is based on
an agglomerative bottom-up hierarchical fashion [2]. It is generic and can be
applied to different data models including XML schemas. The clustering scheme
is performed based on the context-based structural node similarities. Then, a
light weight linguistic technique is used to find similar partitions to match.

106 A. Algergawy et al.

This technique makes use of the Vector Space Model (VSM) for computing the
similarity between clusters.

To sum up, partitioning-based matching techniques improve the matching
efficiency, however, they do not guarantee a high matching quality. Identifying
and selecting similar partitions for matching plays an important role in this
aspect. To the best of our knowledge, most of current matching techniques ignore
this role. Therefore and in order to address these challenges, we introduce a new
LSI-based approach to correctly identify and select the similar clusters.

3 Latent Semantic Indexing

One typical scenario of human machine interaction in information retrieval is
by natural language queries: the user formulates a request, e.g., by providing a
number of keywords or some free-form text, and expects the system to return the
relevant data in some amenable representation, e.g., in form of a ranked list of
relevant documents. Many retrieval methods are based on simple word matching
strategies to determine the rank of relevance of a document with respect to a
query. It is well known that literal term matching has severe drawbacks, mainly
due to the ambivalence of words and their unavoidable lack of precision as well
as due to personal style and individual differences in word usage.

A popular approach that depends on literal term matching is the Vector
Space Model (VSM) [8,12]. The vector space model procedure can be divided
into three stages. The first stage is the document indexing where content bearing
terms are extracted from the document text. The second stage is the weighting
of the indexed terms to enhance retrieval of document relevant to the user. The
last stage ranks the document with respect to the query according to a similarity
measure. The VSM considers the terms in documents as being independent from
each other, an assumption which is never satisfied by the human language. An
idea can be expressed in many ways (synonymy) and, moreover, many words
may have multiple meanings (polysemy).

Latent Semantic Indexing (LSI) [12,22] is a statistical technique which tries to
surpass some limitations imposed by the traditional Vector Space Model (VSM).
It exploits the dependencies between words by assuming that there is some
underlying or “latent” structure in word usage across documents that is par-
tially obscured by variability in word choice and this structure can be revealed
statistically.

LSI projects queries and documents into a space with “latent” semantic
dimensions. In the latent semantic space, a query and a document can have
high cosine similarity even if they do not share any terms. We can look at
LSI as a similarity metric that is an alternative to word overlap measures like
tf.idf [25]. LSI usually takes the (high dimensional) vector space representation
of documents based on term frequencies [14] as a starting point and applies
a dimension reducing linear projection. The specific form of this mapping is
determined by a given document collection and is based on a Singular Value
Decomposition (SVD) of the corresponding term/document matrix. The general

Improving Clustering-Based Schema Matching Using LSI 107

claim is that similarities between documents or between documents and queries
can be more reliably estimated in the reduced latent space representation than
in the original representation. The rationale is that documents which share fre-
quently co-occurring terms will have a similar representation in the latent space,
even if they have no terms in common. LSI thus performs some sort of noise
reduction and has the potential benefit to detect synonyms as well as words that
refer to the same topic. In many applications this has proven to result in more
robust word processing.

To make the paper self-contained, in the following, we present main steps of
LSI [22]:

– Constructing Term Document Matrix. Each term is represented by a
row and each document is represented by a column. Initially, each cell aij
in the matrix A is represented by the number of times the associated term
appears in the indicated document, tfij . Once the matrix is created, local
and global weighting functions can be applied to each non-zero element in
the matrix. The weighting functions transform each cell, aij of A, to be the
product of a local term weight which describes the relative frequency of a term
in a document, and a global weight, gi, which describes the relative frequency
of the term within the entire collection of documents. The local weighting
function of log(tfif +1) decreases the effect of large differences in frequencies.
The global weighting function of Entropy, which is defined as 1+

∑
j

Pij log(Pij)
log(n)

where Pij = tfij
gfi

, is the total number of times the term appears in the entire
collection of n documents, gives less weight to terms occurring frequently in a
document collection. Therefore, each non-zero element in the term-document
matrix is represented as:

aij = (1 +
∑

j

Pij log(Pij)
log(n)

) × log(tfij + 1). (1)

– Decomposing the Term Document Matrix. LSI applies singular value
decomposition (SVD) to the matrix A. In SVD, a rectangular matrix is fac-
tored into the product of other three matrices as in

A = USV T (2)

where U is an m×m orthogonal matrix, UTU = Im, V is an n×n orthogonal
matrix, V TV = In, and S is a diagonal matrix of decreasing singular values
such that s1,1 ≥ s2,2... ≥ sr,r > 0, and si,j = 0 where i �= j. Im and In are the
identity matrices of orders m and n, respectively. The matrix U gives a vector
for each term in LSI space, while the matrix V represents each document as
a vector.

– Dimensionality Reduction. In LSI, it is not the intent to reproduce A.
The main goal is to retain the largest singular values. In the literature, this is
called dimensionality reduction. LSI computes a low rank approximation to
A using a truncated SVD [22]. Let k be an integer and k � min(m,n), Uk is

108 A. Algergawy et al.

defined to be the first k columns of U , and V T
k to be the first k rows of V T .

Let Sk = diag[s1, ..., sk] contain the first k largest singular values as in the
following equation:

Ak = UkSkV
T
k (3)

This is a new pseudo term-document matrix with reduced dimension. The
SVD operation, along with this reduction, has the effect of preserving the
most important semantic information in the text while reducing noise and
other undesirable artifacts of the original space of A.

– Incorporating the Query and Ranking the Documents. A query, sim-
ilar to a document, is a set of words which must be represented as a vector in
the k-dimensional space. It can be represented as:

q = qTUkS
−1
k (4)

where q is the vector of words in the users query, multiplied by the appropriate
term weights. The sum of these k−dimensional terms vectors is reflected by
the term = qTUk and the right multiplication by S−1

k differentially weights the
separate dimensions. Thus, the query vector is located at the weighted sum
of its constituent term vectors. The query vector can then be compared to all
existing document vectors, and the documents ranked by their similarity to
the query. A common similarity measure can be used to reflect the relationship
between the query vector and every document vector. Typically, the results are
ranked and top-k documents or documents exceeding some cosine threshold
are returned to the user.

4 The Matching Framework

In this section, we introduce the proposed schema matching framework. The
framework consists of four main steps, as shown in Fig. 1. In the following, we
describe each step focusing on the parsing and similar cluster determination
steps.

4.1 Data Model and Schema Preparation

XML is a flexible modeling language with self-explanatory tags that allow the
storage of information in semi-structured formats [1]. There are two types of
XML data: XML schema and XML document. An XML schema allows describ-
ing the structure and the legal building blocks for an XML document, while an
XML document (document instance) represents a snapshot of what the XML
document contains. Several XML schema languages have been proposed [23].
Among them, XML document type definition (DTD) and XML Schema Def-
inition (XSD) are commonly used. DTD has limited capabilities compared to
other schema languages, such as XSD. Moreover, XML schema definition (XSD)
aims to be more expressive than DTD and more usable by a wider variety of

Improving Clustering-Based Schema Matching Using LSI 109

Fig. 1. Schema matching steps.

applications such as XQuery1, SOAP, and web services2. Therefore, through the
paper, we use the term “schema” to denote XML schema (XSD).

An XML schema consists of a set of components. The XML schema compo-
nents can be broadly classified into three main groups as described below:

– Primary components may or must have names and include the following
components: simple type definitions, complex type definitions, element dec-
larations, and attribute declarations. The element and attribute declarations
must have names, while the type definitions may have names.

– Secondary components must have names. Attribute group definitions,
identify constraint definitions, model group definitions, notation declarations,
type alternatives, and assertions are examples of such components.

– Helper components provide small parts of other components, they are not
independent of their context and contain components such as annotations,
model groups, particles, wildcards, and attribute use.

To make the proposed approach more generic, the input XML schemas should
be internally represented using a common data model. The choice of which data
model should be used is an important step towards building a reasonable schema
matching system. The data model should be able to normalize schemas that
are represented by different schema languages, thus eliminating syntax differ-
ences between schemas. Most current schema matching systems choose graph
data structure as the internal representation [31,33]. The choice of graphs as
an internal representation for the schemas to be matched has many motiva-
tions. First, graphs are well-known data structures and have their algorithms
and implementations. Second, by using the graph as a common data model, the
schema matching problem is transformed into another standard problem; graph
matching. XML schemas can also be represented as trees by dealing with nesting
and repetition problems using a set of predefined transformation rules [24].

In our implementation, we represent XML schemas as rooted, labeled trees,
called schema trees, ST [5]. A schema tree consists of a finite set of nodes and
1 http://www.w3.org/TR/xquery/.
2 http://msdn.microsoft.com/en-us/library/ee265410(v=bts.10).aspx.

http://www.w3.org/TR/xquery/
http://msdn.microsoft.com/en-us/library/ee265410(v=bts.10).aspx

110 A. Algergawy et al.

Fig. 2. Schema tree, deptDB. Fig. 3. Schema tree, orgDB.

a finite set of edges. Each node is uniquely identified by an object identifier and
expresses the component’ features, such as element name and element datatype,
while each edge represents the relationship between every two nodes. Figures 2
and 3 present the schema tree representation of two XML schemas taken from [9].
Both deptDB and orgDB represent information about departments with their
employees and grants, as well as the projects for which grants are awarded.
The figures show the tree representation of the two schemas, wherein each node
is associated with the name label, such as grant and funds from deptDB and
orgDB, respectively.

We use the XML Schema Object Model (XSOM) parser3 to parse input
XML schemas. XSOM is a Java library that allows applications to easily parse
XML schema documents and to inspect information in them. The library is
a simple and effective implementation of “schema components” as defined in
the XML schema. The parsing process starts by defining a new class using the
XSOM. Through the constructor, we create an empty tree which will be filled
with schema elements extracted through the parsing operation. As in [3,5], we
classify schema tree nodes into two kinds: atomic nodes and complex nodes.
Atomic nodes are the leaf nodes in the schema tree while complex nodes are
the internal nodes inside the tree. We then instantiate an object of the XSOM
parser through a defined class. This class enables us to get all constructs of the
schema and related schemas and put them into memory for further processing,
by using the defined object methods. Once the schema component is resolved,
we iterate through global declarations inside the root element to iteratively build
the corresponding schema tree.

4.2 Schema Clustering

Once a schema is parsed and internally represented as a schema tree, the next step
is to divide it into a set of disjoint sub-trees. By this step, we aim to simplify the
3 https://xsom.java.net.

https://xsom.java.net

Improving Clustering-Based Schema Matching Using LSI 111

matching processing, especially when dealing with large-scale schemas. To this
end, we make use of our clustering algorithm presented in [2]. To make the paper
self-contained, we briefly present the algorithm. Clustering is a useful technique
for grouping nodes such that nodes within a single cluster are structurally similar,
while nodes in different groups are dissimilar. First, we introduce the node context,
which is defined as the node surroundings. This means that the context of a node,
C(vi), is the combination of the node itself as well as all parents and children of
the node. Based on the node context, we then compute the structure similarity
between every pair of nodes in the schema tree.

The structure similarity between two nodes vi and vj which exist in the same
ST is computed based on the number of common nodes between their contexts,
|C(vi) ∩C(vj)|. Based on this structural similarity, we construct a link between
each node pair, containing the two nodes and their structural similarity. The set
of generated links constitutes a hash table called the links hash table. By using a
threshold value greater than 0 we can dramatically reduce the number of entries
in the links hash table. It should be noted that the similarity is assumed to be 0
if there is no pre-computed link. This table is used as an input for the clustering
algorithm.

We develop an agglomerative clustering algorithm, which produces a tree
representing the hierarchy of clusters in a bottom-up way. The algorithm mainly
consists of the following four steps:

1. Preparation. The structural similarity is computed and the links hash table
is then constructed.

2. Cluster initialization. In this step, the bottom level of the cluster hierarchy
is developed by representing each node as a cluster.

3. Cluster hierarchy construction. This is the main step of the clustering algo-
rithm. It is devoted to build the cluster hierarchy by merging elements from
different clusters to form one cluster based on specified merging criteria.

4. Best cluster selection. It selects the cluster solution. More information can be
found in [2].

Example 1. By applying the clustering algorithm to the two schema trees illus-
trated in Figs. 2 and 3, we get two cluster sets. CSet1 = {C11, C12} and CSet2 =
{C21} for deptDB and orgDB schemas, respectively, as shown in Fig. 4. The figure
indicates that deptDB is partitioned into two semantically structured clusters.
The first, C11, represents projects and their funds, while the second, C12, repre-
sents departments and employees working on these projects. Figure 4 also shows
that the orgDB schema is not partitioned since the structural organization of
the schema is not semantically clear like the deptDB schema. This example
shows the ability of the clustering algorithm to correctly cluster schema trees
into semantically structured partitions.

4.3 Similar Cluster Determination

The proposed approach focuses on 2-way or pairwise schema matching where two
related input schemas are matched with each other. As mentioned before, the

112 A. Algergawy et al.

(a) (b)

Fig. 4. Schema tree partitions

clustering algorithm divides each schema tree into a set of clusters. Each cluster
contains a set of nodes that are structurally similar. The task is to determine
which sets of clusters are similar. This information is used later as input for the
matching algorithm.

Latent semantic indexing aims to detect semantically similar partitions (clus-
ters) in the two schema trees. The motivation here is to reduce the match over-
head by applying matching on similar partitions only and ignoring the irrelevant
ones. Algorithm 1 is proposed to achieve this task. It accepts two sets of clusters
as input and processes them to determine similar clusters across the two sets.
The algorithm has the following main steps, as shown in Algorithm 1.

– Preparation of term-document matrix. The algorithm starts by initializing the
similar cluster set, Sim Clust, by setting it to the empty set, line 1. Then,
to construct the document term matrix, all elements in the first cluster set
(CSet1) are extracted and analyzed. A set of normalization processes has been
applied to the element names in order to obtain non-repeating terms in the
cluster set. The normalization process has the following steps:

• Tokenization. Each element name inside the cluster is parsed into a set of
tokens using delimiters, such as punctuation, uppercase or special symbols,
etc. For instance, deptDB → {dept, DB}.

• Elimination. Tokens that are neither letters nor digits are eliminated.
We have thus created the term vector by collecting the names of the nodes.
As a next step, the term-document matrix, A, is initially created with each
matrix cell representing the number of times the associated node name appears
in the indicated cluster document, line 2. Finally, we apply the log-entropy
weighting function, Eq. 1 on each entry in the document matrix, line 3. Thus,
the term-document matrix is ready for the next stage.
It should be noted that other normalization techniques are needed, such as
the expansion method, especially when schema element names are too short.
dno and pid are examples that are needed to be expanded.

– Applying singular value decomposition. To construct a semantic space wherein
the names of the nodes in the CSet1 and clusters that are closely associated are
placed near one another, we apply the singular value decomposition technique.

Improving Clustering-Based Schema Matching Using LSI 113

Algorithm 1. Similar clustering determination
Require: Two sets of clusters, CSet1 = {C11, C12, ..., C1n} and CSet2 =

{C21, C22, ..., C2m}
Ensure: A set of similar clusters, Sim Clust = {(C1i, C2j)|C1i ∈ CSet1, C2j ∈

CSet2}
{// Step 1: Preparation}

1: Sim Clust ⇐ ∅;
2: A ⇐ analysis(CSet1);
3: Compute for each entry in A :aij

aij ⇐ (1 +
∑

j

Pij log(Pij)

log(n)
) × log(tfij + 1)

{// Step 2: Singular Value Decomposition & reduction}
4: Apply SVD to A : A = USV T

5: Dimensionality reduction: Ak = UkSkV
T
k

{// Step 3: Query incorporating and folding}
6: Q ⇐ analysis(CSet2);
7: Qk ⇐ QTUkS

−1
k ;

{// Step 4: Similarity calculating and ranking}
8: for columnj ∈ Qk do
9: qj ⇐ Qk(j);

10: for columni ∈ Ak do
11: di ⇐ Ak(i);
12: simMat[i][j] = sim(qj , di);
13: if simMat[i][j] ≥ threshold then
14: Sim Clust.put(C1i, C2j)
15: end if
16: end for
17: end for

The technique factorizes a term-document matrix into its left singular vectors,
right singular vectors, and singular values, line 4. Each node name within the
cluster set is now represented by a singular vector via matrix U . Additionally,
each cluster is represented by a singular vector via matrix V .

– Reduction. To reduce the noise and redundancy, LSI uses a truncated SVD,
line 5, which consists in retaining only the largest k singular values and delet-
ing the remaining ones which are smaller and thus considered unimportant.
The columns corresponding to the small singular values are also removed from
U and V . So, SVD allows the arrangement of the space to reflect the major
associative patterns in the data, and ignore the smaller, less important influ-
ences. As a result, terms that do not actually appear in a document may still
up close to the document, if that is consistent with the major patterns of
association in the data.

– Folding. The following step is to prepare a set of clusters in the second cluster
set CSet2. Each cluster is treated as a user query. First, we analyze the element
names of each cluster and we apply the same normalization process applied
before on elements of the first cluster set to the second cluster set elements.

114 A. Algergawy et al.

The query is then treated as an ordinary document and hence it should be
put with new coordinates in the reduced k − dimensional space, lines 6&7.

– Calculating similarities. Now, the two cluster sets have been prepared for
comparison: one as a set of vectors via the matrix V , the second as a set of
vector via the query matrix Q. Each vector in the two matrices represents
a cluster. The current task is to compute the similarity between two sets of
clusters and select similar clusters. As shown in the algorithm, lines 8 to 17, a
query vector is extracted and compared with all the other cluster set elements.
A cosine measure is used to compute the similarity between two vectors. If the
computed similarity exceeds a specified threshold, the two clusters constitute
a similar cluster pair to be then added to the final result, Sim Clust.

The computed similarities between cluster pairs of the two schemas are used
to construct a so-called cluster similarity matrix, line 12. If the computed sim-
ilarity between each two clusters exceeds a specific threshold, the two clusters
are put in the similar cluster set, lines 13&14.

4.4 Walk-Through Example

We provide an example that elaborates the proposed algorithms and gives more
details about how to determine similar clusters. In this example, we use two
schema trees illustrated in Figs. 2 and 3. We formulate the problem in this exam-
ple as follows: given two cluster sets CSet1 = {C11, C12} and CSet2 = {C21}
shown in Fig. 4, identify similar clusters across the two cluster sets.

– Step 1: We select the cluster set of larger number of clusters, CSet1, to con-
struct the term-document matrix. After applying the normalization process
on element names, we get the matrix A, as shown below. Each element in the
matrix shows the number of occurrences of each term in the associated cluster
(document). After getting the matrix A, we apply the log-entropy weighting
scheme to get Aentropy.

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

dept
DB
dno

dname
country
emps
emp
eid

ename
function
grant
amount

pid
project
pname
year

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1
0 1
2 1
1 0
1 0
1 0
1 0
1 0
1 0
1 0
0 1
0 1
0 2
0 1
0 1
0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⇒ Aentropy =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0
0 0.69

0.09 0.06
0.69 0
0.69 0
0.69 0
0.69 0
0.69 0
0.69 0
0.69 0
0 0.69
0 0.69
0 1.1
0 0.69
0 0.69
0 0.69

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Improving Clustering-Based Schema Matching Using LSI 115

– Step 2: The log-entropy matrix is then decomposed into three matrices as given
by Eq. 2, where U is an 16 × 16 orthogonal matrix, S is an 16 × 2 diagonal
matrix, and V is an 2 × 2 orthogonal matrix. Since S has only two eigenval-
ues, the SVD method should reserve only two columns in U and neglect the
rest, and S should be limited only to two rows, and its dimensions should
be truncated. After applying the SVD scheme, we get the following V and S
matrices (U is not presented to save space since it is an 16 × 2 matrix).

V =
[−0.007 −1

−1 0.007

]

S =
[

2.02 0
0 1.84

]

Low rank approximation to A, called Ak, can be created through the truncated
SVD, via Eq. 3. For truncation, we assume to truncate 98 % of the singular
values. In this example, there is no truncation and the matrices remain the
same.

– Step 3: Incorporating the query, we incorporate the clusters of the orgDB
schema into the new dimensional space created by SVD and its reduced form
processes. The schema is partitioned into one cluster according to the applied
threshold. Hence, we have one query which is analyzed and presented as an
m×1 matrix. This matrix is projected onto the reduced term-document space
via Eq. 4. The new coordinates of this query are represented in vector q, where
q = [−0.131 − 0.262].

– Step 4: The final step is applying cosine similarity function and ranking the
documents as follows.

sim(C11, C21) = sim(d1, q) = 0.897 and sim(C12, C21) = sim(d2, q) = 0.442

Solving the same example using VSM yields the following results:
simV SM (C11, C21) = 0.373 and simV SM (C12, C21) = 0.224. If we set a

threshold value of 0.3, then we get Sim Clust(C11, C21), (C12, C21) using the
LSI-based method, while the similar cluster set contains only one similar clus-
ter using the VSM-based method. From this example, it has been shown that
the computed similarities by LSI are higher than those computed by VSM due
to the ability of LSI to correlate semantically related terms that are latent
in the collection of documents. Furthermore, the documents as well as the
query vectors are represented by the new dimensions with semantic correla-
tion between them.

4.5 Match Similar Clusters

Once settling on the similar clusters of the two schemas, the next step is to fully
match similar clusters to obtain the correspondences between their elements.
Each pair of the similar clusters represents an individual match task that is
independently solved. Match results of these individual tasks are then combined
to a single mapping, which represents the final match result. Since the matching
part is not the main focus on the paper, we employ both name and type similarity
measures to quantify the similarity between two similar cluster elements [3]. We
simply introduce the two similarity measures (interested readers can refer to [3]
for more details).

116 A. Algergawy et al.

– Name similarity measure: Element names are considered important informa-
tion sources for schema matching. Each element name should be normalized
into a set of tokens and a set of string similarity measures can be applied on these
tokens. Based on results presented in [3], we employ three string-based mea-
sures, namely, Levenstein distance, N-gram distance, and Jaro similarity [11].

– Type similarity measure: Although the element name is considered a neces-
sary source for determining the element similarity, the consideration for other
features also plays a different role. The element data type is another schema
information that makes a contribution in determining the element similarity.
The type similarity measure aids to prune some of the false positive matches
produced from the name similarity measure. XML schema data types are
divided into 12 communal types4. Therefore, in this paper, we build a data
type similarity table. We calculate the similarity value for each data type
pair based on the constraining facets of XML schema5. For more details, refer
to [34].

Once the similarity between elements from two similar clusters has been com-
puted using the name and type matchers, a weighted sum function is used to
aggregate these similarity values. Elements with similarity values higher than
a predefined threshold are selected as partial matching results. Finally, partial
results from all similar clusters are combined to produce the final matching
result.

5 Experimental Evaluation

To evaluate the effectiveness of the proposed approach, we conducted a set of
experiments utilizing real-world schemas and ontologies. We ran all our experi-
ments on 2.67 GHz Intel (R) Core i5 processor with 4 GB RAM running Windows
7. The proposed approach has been developed and implemented in Java.

5.1 Data Set

We collected data sets from different domains with different characteristics, as
shown in Table 1. The table illustrates that the collected schemas are from 8 dif-
ferent domains6 with different sizes ranging from small to large schemas. Within
each domain, we use two schemas in order to apply the proposed approach. We
choose these data sets to demonstrate the applicability of our approach to dif-
ferent data sources having different characteristics. More details about data sets
in Table 1 can be found in [14,29].

4 http://www.w3.org/TR/xmlschema-2/.
5 XML Schema - Data Types Quick Reference, http://www.xml.dvint.com/.
6 http://queens.db.toronto.edu/project/clio/index.php#testschemas.

http://www.w3.org/TR/xmlschema-2/
http://www.xml.dvint.com/
http://queens.db.toronto.edu/project/clio/index.php#testschemas

Improving Clustering-Based Schema Matching Using LSI 117

Table 1. Data set specification.

Domain Tested sources No. of elements

Spicy deptDB/orgDB 19/20

University Uni1/Uni2 11/11

Web Yahoo/ebay 37/37

TPC H TPC H1/TPC H2 43/17

Finance finan1/finan2 14/14

GeneX GeneX1/GeneX2 75/85

Mondial Mondial1/Mondail2 117/108

PO(large) OpenTran Invoice/OpenTran Order 1113/1162

5.2 Evaluation Criteria

In our implementation, we consider two levels of evaluations, which can help
answering the following two questions:

– Which is the better technique to determine similar clusters; LSI-based or
VSM-based?

– What is the effect of both LSI-based and VSM-based techniques on the overall
matching quality?

In order to answer these questions, we use the same criteria used in literature
in terms of precision, recall, and F-measure [8]. In general, precision P can be
defined as the degree of correctness of the result. In answering the first question,
the result means the similar clusters, while in the second question it means match
results (i.e., correspondences). It measures the ratio of correctly identified results
(true positives, tP) over the total number of identified results (true positives plus
false positives fP). It can be computed as: P = tP

tP+fP
. Recall, R, assesses the

degree of completeness of the system. It measures the ratio of correctly identified
results (true positives, tP) over the total number of correct results (true positives
plus false negatives fN). It can be computed as: R = tP

tP+fN
.

However, neither precision nor recall alone can accurately assess the matching
quality [13]. Precision evaluates the post-match effort that is needed to remove
false positives, while recall evaluates the post-match effort that is needed to add
true negatives to the final match result. Hence, it is necessary to consider a
trade-off between them. There are several methods to handle such a trade-off,
one of them is to combine both measures. The mostly used combined measure
is F-measure. F-measure is the weighted harmonic mean of precision and recall.
The traditional F-measure can be defined as:

F-measure = 2 × P × R

P + R
(5)

118 A. Algergawy et al.

5.3 Experimental Results

LSI-Based Approach Quality. We conducted two sets of experiments to
validate the performance of the proposed approach and to answer the mentioned
questions. The first set is devoted to answer the question “whether LSI-based or
VSM-based technique is better in determining similar clusters in the context of
partitioning-based schema matching”. We validated the proposed approach using
XML schemas illustrated in Table 1. Each XML schema is parsed and represented
as a schema tree. The clustering-based approach, in [2], is applied to partition
each schema tree into a set of clusters. To determine similar clusters among two
sets of clusters, we applied both our LSI-based approach and the VSM-based
approach [2]. The elements of cluster similarity matrix are ranked according to
their similarity to each other and the similar clusters have been selected when
their similarities exceed a predefined threshold. Results are summarized in Fig. 5.

Results represented in Fig. 5 can be classified into three main categories. The
first one considering the University (Spicy and Finance which are not drawn) and
TPC H schemas, as shown in Fig. 5(a,b), illustrates that F-measure has its best
values at low threshold and it decreases with increasing threshold values. The
LSI-based method has an F-measure of nearly 1 over threshold values ranging
between 0 and 0.5, and then the F-measure decreases to reach zero at threshold
of 0.6 (for University) and 0.9 (for TPC). However, the VSM-based method has
its best value at only two threshold values and it decreases to reach zero at a
threshold value of 0.4 (for both schemas). This can be explained as both the

F
-m

ea
su

re
F
-m

ea
su

re
F
-m

ea
su

re

F
-m

ea
su

re
F
-m

ea
su

re
F
-m

ea
su

re

(a) (b)

(c) (d)

(e) (f)

Fig. 5. Similar clusters quality

Improving Clustering-Based Schema Matching Using LSI 119

University (Spicy) and TPC H have higher name heterogeneities, which make
the VSM-based method fail to determine the correct similar clusters.

The second category considers the Web and Mondial schemas, as shown in
Fig. 5(c,d). These schemas have lower name heterogeneities, which give the VSM-
based method the chance to correctly identify similar clusters. The figures also
show that as the threshold increases, the F-measure increases. However, the
LSI-based method has higher F-measure values than the VSM-based method,
especially for the Mondial schema.

The third category represents the PO schemas. It is the most difficult match
task, since these schemas are highly heterogeneous. Therefore, the quality of
similar cluster determination is lower compared to the other cases. However, the
LSI-based method keeps higher F-measure values than the VSM-based method.

To sum up, Fig. 5 shows that the LSI-based technique outperforms the VSM-
based technique across tested schemas. The figure also illustrates the capability
of the LSI-based method to cover the hidden semantic relationships between
cluster elements, which results in more accurate and quality similar clusters
determination.

Furthermore, we compared the LSI-based and the VSM-based method with
respect to the number of produced similar clusters. Based on results reported
in Fig. 5, we found that the “best” similar clusters occur at different threshold
values. Therefore, we decide to select a suitable threshold value to conduct this
comparison. To this end, we select the similar clusters produced at a threshold
value of 0.3. Results are reported in Table 2. The table represents the number
of generated clusters after applying the clustering algorithm, the number of real
similar clusters, the number of similar cluster (both correct and total numbers)
generated by both techniques and its quality (F-measure). The table also verifies
the results presented in Fig. 5. Table 2 illustrates that the LSI-based method
outperforms the VSM-based method. This is can be explained due to the ability

Table 2. Comparison between LSI-based and VSM-based techniques at threshold of 0.3

Domain No. of No. of real LSI-based VSM-based

clusters similar No. similar F-measure No. similar F-measure

clusters cluster cluster

correct/total correct/total

Spicy 2/1 2 2/2 1.0 1/1 0.67

University 1/2 2 2/2 1.0 1/1 0.67

Web 4/3 4 4/4 1.0 4/4 1.0

TPC H 6/1 4 3/3 0.867 1/1 0.4

Finance 1/2 2 2/2 1.0 2/2 1.0

GeneX 10/8 12 11/14 0.85 9/10 0.8

Mondial 10/10 11 11/13 0.92 11/81 0.23

PO(large) 57/56 80/112 100/112

120 A. Algergawy et al.

of the LSI-based method to discover the hidden semantic relationships between
schema element names.

Effect of LSI-Based on Matching Quality. The second set of experiments
has been conducted to study the effect of both LSI-based and VSM-based meth-
ods on the matching quality. After selecting the “best” similar clusters, we
first applied the name matcher on each matching task using data sets shown
in Table 1. We then applied both the name and type similarity measures on
the same matching task. Each task produces a subset of the match result.
These subsets are then combined to generate the final match result. The final
match result is evaluated using evaluation criteria, including precision, recall, and
F-measure. Results for the matching quality are reported in Fig. 6.

The figures show, in general, that the LSI-based method has higher matching
quality than the VSM-based method. This fact can be observed for the Univer-
sity, Spicy, TPC H, and PO schemas. This can be clarified as these schemas
have a high degree of semantic heterogeneity, and the LSI-based method has
the ability to discover hidden semantic relationships between schema elements.
However, the Web, Finance and Genex have less degree of heterogeneity, which
results in nearly equal matching quality by both methods. In the case of the Mon-
dial schema, which contains nearly no semantic heterogeneity, a large number
of false positives are produced by the VSM-based method. Therefore, the LSI-
based method produces higher matching quality than the VSM-based method
w.r.t. the Mondial schema. It should be noted that the name matcher is more
effective than the type similarity measure, and using the type measure makes a
slight improvement in the matching quality.

F
-m

ea
su

re

F
-m

ea
su

re

(a) (b)

Fig. 6. Match quality comparison.

6 Conclusions

Partitioning-based techniques have become well-known approaches to match
large schemas and ontologies. It has been proven that they improve the matching
efficiency, however, they do not guarantee the matching quality. Identifying sim-
ilar partitions of two schema trees is a crucial step before the matching process.
To this end, in this paper, we introduced a new approach to cope with the

Improving Clustering-Based Schema Matching Using LSI 121

problem of similar cluster determinations in the context of matching large-scale
schemas. The proposed approach captures the features introduced by the Latent
semantic indexing scheme to discover hidden semantic relationships between two
sets of clusters. We in particular developed a matching framework focusing on
the similar cluster determination step. Input schemas are first parsed and repre-
sented internally as schema trees to make the matching framework more generic.
We then applied a clustering algorithm to partition each schema tree into a set
of clusters. Further, we introduced a LSI-based algorithm to identify and deter-
mine similar clusters. To validate the performance of the proposed approach, we
conducted a set of experiments utilizing different data sets comparing it with
the classical vector space model (VSM)-based approach. The results proved that
the LSI-based method outperforms the VSM-based method in determining the
most similar clusters. It has the ability to discover hidden semantic relation-
ships between schemas’ elements. Therefore, the LSI-based method produces
better matching quality than the VSM-based method. In future work we plan to
extend the framework to explore the effect of the LSI-based method on match-
ing efficiency. We need to validate some optimization techniques to enhance the
LSI-based method.

Acknowledgments. This paper is a revised and extended version of the paper
presented in [26]. A. Algergawy partially worked on this paper while at Magdeburg
University.

References

1. Abiteboul, S., Suciu, D., Buneman, P.: Data on the Web: From Relations to Semi-
structed Data and XML. Morgan Kaufmann, San Francisco (2000)

2. Algergawy, A., Massmann, S., Rahm, E.: A clustering-based approach for large-
scale ontology matching. In: Eder, J., Bielikova, M., Tjoa, A.M. (eds.) ADBIS 2011.
LNCS, vol. 6909, pp. 415–428. Springer, Heidelberg (2011)

3. Algergawy, A., Nayak, R., Saake, G.: Element similarity measures in XML schema
matching. Inf. Sci. 180(24), 4975–4998 (2010)

4. Algergawy, A., Nayak, R., Siegmund, N., Köppen, V., Saake, G.: Combining schema
and level-based matching for web service discovery. In: Benatallah, B., Casati, F.,
Kappel, G., Rossi, G. (eds.) ICWE 2010. LNCS, vol. 6189, pp. 114–128. Springer,
Heidelberg (2010)

5. Algergawy, A., Schallehn, E., Saake, G.: Improving XML schema matching using
Prüfer sequences. DKE 68(8), 728–747 (2009)

6. Aslan, G., McLeod, D.: Semantic heterogeneity resolution in federated databases
by metadata implantation and stepwise evolution. VLDB J. 8(2), 120–132 (1999)

7. Bellahsene, Z., Bonifati, A., Rahm. E.: Schema Matching and Mapping. Springer,
Heidelberg (2011).

8. Berry, M.W., Drmac, Z., Jessup, E.R.: Matrices, vector spaces, and information
retrieval. SIAM Rev. 41(2), 335–362 (1999)

9. Bonifati, A., Mecca, G., Pappalardo, A., Raunich, S., Summa, G.: Schema mapping
verification: the spicy way. In: EDBT 2008, France, pp. 85–96 (2008)

122 A. Algergawy et al.

10. Chiticariu, L., Hernández, M.A., Kolaitis, P.G., Popa, L.: Semi-automatic schema
integration in Clio. In: VLDB’07, pp. 1326–1329 (2007)

11. Cohen, W.W., Ravikumar, P., Fienberg, S.E.: A comparison of string distance
metrics for name-matching tasks. In: IIWeb, pp. 73–78 (2003)

12. Deerwester, S., Dumais, S.T., Harshman, R.: Indexing by latent semantic analysis.
J. Am. Soc. Inf. Sci. 41, 391–407 (1990)

13. Do, H.H., Melnik, S., Rahm, E.: Comparison of schema matching evaluations. In:
The 2nd International Workshop on Web Databases (2002)

14. Do, H.H., Rahm, E.: Matching large schemas: approaches and evaluation. Inf. Syst.
32(6), 857–885 (2007)

15. Doan, A., Halevy, A.: Semantic integration research in the database community:
a brief survey. AAAI AI Mag. 25(1), 83–94 (2005)

16. Doan, A., Halevy, A.Y., Ives, Z.G.: Principles of Data Integration. Morgan Kauf-
mann, San Francisco (2012)

17. Ehrig, M., Staab, S.: QOM – quick ontology mapping. In: McIlraith, S.A.,
Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 683–697.
Springer, Heidelberg (2004)

18. Halevy, A.Y., Ives, Z.G., Suciu, D., Tatarinov, I.: Schema mediation in peer data
management systems. In: 19th International Conference on Data Engineering,
pp. 505–516 (2003)

19. Hamdi, F., Safar, B., Reynaud, C., Zargayouna, H.: Alignment-based partition-
ing of large-scale ontologies. In: Guillet, F., Ritschard, G., Zighed, D.A., Briand,
H. (eds.) Advances in Knowledge Discovery and Management. SCI, vol. 292,
pp. 251–269. Springer, Heidelberg (2010)

20. Hao, Y., Zhang, Y.: Web services discovery based on schema matching. In: ACSC
2007, pp. 107–113 (2007)

21. Hu, W., Qu, Y., Cheng, G.: Matching large ontologies: a divide-and-conquer
approach. DKE 67, 140–160 (2008)

22. Landauer, T.: Handbook of Latent Semantic Analysis. Lawrence Erlbaum, Mahwah
(2007)

23. Lee, D., Chu, W.W.: Comparative analysis of six XML schema languages. SIGMOD
Rec. 9(3), 76–87 (2000)

24. Lee, M.L., Yang, L.H., Hsu, W., Yang, X.: Xclust: clustering XML schemas for
effective integration. In: CIKM’02, pp. 63–74 (2002)

25. Manning, C.D., Raghavan, P., Schutze, H.: Introduction to Information Retrieval.
Cambridge University Press, New York (2008)

26. Moawed, S., Algergawy, A., Sarhan, A., Eldosouky, A., Saake, G.: A latent seman-
tic indexing-based approach to determine similar clusters in large-scale schema
matching. In: Catania, B., et al. (eds.) New Trends in Databases and Information
Systems. AISC, vol. 241, pp. 267–276. Springer, Heidelberg (2014)

27. Peukert, E., Berthold, H., Rahm, E.: Rewrite techniques for performance optimiza-
tion of schema matching processes. In: EDBT, pp. 453–464 (2010)

28. Peukert, E., Eberius, J., Rahm, E.: A self-configuring schema matching system.
In: 28th International Conference on Data Engineering (ICDE), 2012, pp. 306–317
(2012)

29. Peukert, E., Massmann, S., Konig, K.: Comparing similarity combination methods
for schema matching. In: GI-Workshop, pp. 692–701 (2010)

30. Rahm, E.: Towards large-scale schema and ontology matching. In: Bellahsene, Z.,
Bonifati, A., Rahm, E. (eds.) Schema Matching and Mapping. Data-Centric Sys-
tems and Applications, pp. 3–27. Springer, Heidelberg (2011)

Improving Clustering-Based Schema Matching Using LSI 123

31. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching.
VLDB J. 10(4), 334–350 (2001)

32. Seddiquia, M.H., Aono, M.: An efficient and scalable algorithm for segmented
alignment of ontologies of arbitrary size. Web Semant. 7(4), 344–356 (2009)

33. Shvaiko, P., Euzenat, J.: Ontology matching: state of the art and future challenges.
IEEE Trans. Knowl. Data Eng. 25(1), 158–176 (2013)

34. Thuy, P.: Hybrid similarity measure for XML data integration and transformation.
Ph.D. thesis, Seoul, Korea (2012)

35. Wang, Z., Wang, Y., Zhang, S.-S., Shen, G., Du, T.: Matching large scale ontology
effectively. In: Mizoguchi, R., Shi, Z.-Z., Giunchiglia, F. (eds.) ASWC 2006. LNCS,
vol. 4185, pp. 99–105. Springer, Heidelberg (2006)

36. Zhong, Q., Li, H., Li, J., Xie, G.T., Tang, J., Zhou, L., Pan, Y.: A Gauss function
based approach for unbalanced ontology matching. In: ACM SIGMOD Interna-
tional Conference on Management of Data, (SIGMOD 2009), pp. 669–680 (2009)

	Improving Clustering-Based Schema Matching Using Latent Semantic Indexing
	1 Introduction
	2 Related Work
	3 Latent Semantic Indexing
	4 The Matching Framework
	4.1 Data Model and Schema Preparation
	4.2 Schema Clustering
	4.3 Similar Cluster Determination
	4.4 Walk-Through Example
	4.5 Match Similar Clusters

	5 Experimental Evaluation
	5.1 Data Set
	5.2 Evaluation Criteria
	5.3 Experimental Results

	6 Conclusions
	References

