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Preface
Special Issue: Selected Papers from ADBIS 2013

Satellite Events

The 17th East-European Conference on Advances in Databases and Information
Systems (ADBIS 2013) took place in Genoa, Italy, from September 1 to 4, 2013. The
ADBIS series of conferences aims at providing a forum for the dissemination of
research accomplishments and at promoting interaction and collaboration between the
database and information systems research communities from Central and East Euro-
pean countries and the rest of the world. The ADBIS conferences provide an inter-
national platform for the presentation of research on database theory, development of
advanced DBMS technologies, and their advanced applications. As such, ADBIS has
meanwhile created a tradition: its 2013 edition continued the ADBIS series held in St.
Petersburg (1997), Poznań (1998), Maribor (1999), Prague (2000), Vilnius (2001),
Bratislava (2002), Dresden (2003), Budapest (2004), Tallinn (2005), Thessaloniki
(2006), Varna (2007), Pori (2008), Riga (2009), Novi Sad (2010), Vienna (2011),
Poznań (2012). The program of the 2013 edition included keynotes, research papers,
and five satellite events, consisting of a Big Data special session, three thematic
workshops, and a Doctoral Consortium.

In the present special issue, the extended and revised version of four papers out
of the twenty-five papers presented at ADBIS 2013 Satellite Events are included. The
papers cover various topics in large-scale data- and knowledge-centered systems,
including GPU-accelerated database systems and GPU-based compression for large
time series databases, design of parallel data warehouses, and schema matching.

The first two papers were presented at GID 2013 – Second International Workshop
on GPUs in Databases.

The first paper, by Sebastian Breß, Max Heimel, Norbert Siegmund, Ladjel Bel-
latreche, and Gunter Saake, is entitled “GPU-Accelerated Database Systems: Survey
and Open Challenges” and explores the design space of GPU-accelerated database
management systems. Based on the proposed survey, key properties and typical
challenges of GPU-aware database architectures are presented and open research
problems are formulated. Existing GPU-accelerated database management systems are
also surveyed and their architectural properties classified, with a special emphasis on
optimization issues. A reference architecture is finally proposed, indicating how GPU
acceleration can be integrated in existing DBMSs.

The second paper is entitled “Compression Planner for Time Series Database with
GPU Support” and is co-authored by Piotr Przymus and Krzysztof Kaczmarski. The
paper exploits GPU in designing a compression planner for time series databases.
Motivated by the fact that the growing volumes of time series data call for the definition
of efficient and innovative processing approaches, the paper presents a novel com-
pression method which is ultra fast and achieves the best possible compression ratio by
composing several lightweight algorithms dynamically tuned for incoming data. The
reported experimental results show that the proposed approach is a valid solution for
data intensive monitoring and analytic systems.



The third paper, presented at SoBI 2013 – First International Workshop on Social
Business Intelligence: Integrating Social Content in Decision Making, is entitled “A
Global Paradigm for Designing Parallel Relational Data Warehouses in Distributed
Environments” and is co-authored by Soumia Benkrid, Ladjel Bellatreche, and Alfredo
Cuzzocrea. The paper proposes a novel methodology for designing a Parallel Rela-
tional Data Warehouse, in which, differently from other existing proposals, all the main
design phases (i.e., fragmentation, allocation, and replication) are performed simulta-
neously, in a global fashion. The reported experimental results assess the performance
of the proposed methodology against a well-known data warehouse benchmark.

The fourth paper, by Alsayed Algergawy, Seham Moawed, Amany Sarhan, Ali
Eldosouky, and Gunter Saake, is entitled “Improving Clustering-Based Schema
Matching Using Latent Semantic Indexing” and was presented at OAIS 2013 – Second
International Workshop on Ontologies Meet Advanced Information Systems. The paper
focuses on the identification of semantically corresponding elements across heteroge-
neous and large datasets and proposes a clustering-based matching algorithm which
relies on a Latent Semantic Indexing-based approach in order to guarantee a high quality
yet efficient process. Such an approach allows the retrieval of the conceptual meaning
between clusters and the identification of the hidden semantic relationships among
clusters elements. Experimental results are also reported, showing that the proposed
approach is quite promising.

Several people have contributed to making this special issue possible. We are
grateful to Abdelkader Hameurlain, Josef Küng, and Roland Wagner, Editors-in-Chief
of the TLDKS journal, for accepting our proposal for this special issue. Special thanks
are due to Gabriela Wagner, for her valuable assistance during the preparation of this
special issue. We would also like to express our appreciation to the authors who
submitted their manuscripts to be considered for this special issue. Last but not least,
we would like to gratefully acknowledge the contribution of all the reviewers, who
worked within a very tight schedule and whose detailed and constructive feedback to
the authors contributed to improving the quality of the submitted manuscripts.

November 2014 Barbara Catania
Giovanna Guerrini
Themis Palpanas
Jaroslav Pokorný

Athena Vakali
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Abstract. The vast amount of processing power and memory bandwidth
provided by modern graphics cards make them an interesting platform for
data-intensive applications. Unsurprisingly, the database research com-
munity identified GPUs as effective co-processors for data processing sev-
eral years ago. In the past years, there were many approaches to make
use of GPUs at different levels of a database system. In this paper, we
explore the design space of GPU-accelerated database management sys-
tems. Based on this survey, we present key properties, important trade-offs
and typical challenges of GPU-aware database architectures, and identify
major open challenges. Additionally, we survey existing GPU-accelerated
DBMSs and classify their architectural properties. Then, we summarize
typical optimizations implemented in GPU-accelerated DBMSs. Finally,
we propose a reference architecture, indicating how GPU acceleration can
be integrated in existing DBMSs.

Keywords: GPU-accelerated database · Survey · Co-processing · Mod-
ern database architecture

1 Introduction

Over the last few years, the traditional performance drivers of modern proces-
sors – frequency and parallelism – started to hit physical limits. One reason for
this is that modern processors are constrained to a certain amount of power
they may consume (i.e., the power wall [12]) and further increasing frequency
and parallelism would make them overly power hungry. Therefore, hardware

This paper is a substantially extended version of an earlier work [17].

c© Springer-Verlag Berlin Heidelberg 2014
A. Hameurlain et al. (Eds.): TLDKS XV, LNCS 8920, pp. 1–35, 2014.
DOI: 10.1007/978-3-662-45761-0 1



2 S. Breß et al.

vendors are forced to create processors that are optimized for a certain applica-
tion field. These developments result in a highly heterogeneous hardware land-
scape, which is expected to become even more diverse in the future [12]. In order
to keep up with the performance requirements of the modern information society,
tommorow’s database systems will need to exploit and embrace this increased
heterogeneity.

In this article, we take a closer look at how today’s database engines manage
heterogeneous environments, demonstrated by systems that support Graphics
Processing Units (GPUs). The GPU is the pioneer of modern co-processors,
and – in the last decade – it matured from a highly specialized processing device
to a fully programmable, powerful co-processor. This development inspired the
database research community to investigate methods for accelerating database
systems via GPU co-processing. Several research papers and performance stud-
ies demonstrate the potential of this approach [7,21,29,32,48,49] – and the
technology has also found its way into commercial products (e.g., Jedox [1] or
ParStream [2]).

Using graphics cards to accelerate data processing is tricky and has several
pitfalls: First, for effective GPU co-processing, the transfer bottleneck between
CPU and GPU has to either be reduced or concealed via clever data placement
or caching strategies. Second, when integrating GPU co-processing into a real-
world Database Management System (DBMS), the challenge arises that DBMS
internals – such as data structures, query processing and optimization – are
traditionally optimized for CPUs. While there is ongoing research on building
GPU-aware database systems [22], no unified GPU-aware DBMS architecture
has emerged so far.

In this paper, we want to make the community aware of the lack of a unified
GPU-aware architecture and derive – based on a literature survey – a reduced
design space for such an architecture. In particular, we make the following con-
tributions:

1. We traverse the design space for a GPU-aware database architecture based
on results of prior work.

2. We derive research questions that should be investigated by the community
to develop GPU-aware database architectures.

Furthermore, as a substantial extension to a previous version of this paper [17],
we conducted an in-depth literature survey of eight GPU-accelerated database
management systems to validate and refine our theoretical discussions. This
complements our findings in proposing a reference architecture. In detail, we
make the following additional contributions:

1. We discuss eight GPU-accelerated DBMSs (GDBMSs) to review the state-
of-the-art, collect prominent findings, and complement our discussion on a
GPU-aware DBMS architecture.

2. We create a classification of required architectural properties of GDBMSs.
3. We summarize optimizations implemented by the surveyed systems and derive

a general set of optimizations that a GDBMS should implement.
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4. We propose a reference architecture for GDBMSs. This architecture provides
insights on how to integrate GPU acceleration in main-memory DBMSs.

5. We identify new open challenges compared to our earlier work [17].

We find that GDBMSs should be in-memory column stores, should use the block-
at-a-time processing model and exploit all available processing devices for query
processing by using a GPU-aware query optimizer. Thus, main memory DBMSs
are similar to GPU-accelerated DBMSs, and most in-memory, column-oriented
DBMSs can be extended to efficiently support co-processing on GPUs.

The paper is structured as follows: In Sect. 2, we provide necessary back-
ground information about GPUs and discuss related work. We explore the design
space for GPU-accelerated DBMSs w.r.t. functional and non-functional prop-
erties in Sect. 3. In Sect. 4, we survey a representative set of GPU-accelerated
DBMSs, classify their architectural properties, summarize possible optimizations
to speed up query processing, and propose a reference architecture for GDBMSs.
Finally, we identify open challenges for GDBMSs in Sect. 5 and summarize our
findings in Sect. 6.

2 Preliminary Considerations

In this section, we provide a brief overview over the architecture of graphics
cards, the applied programming model, and related work.

2.1 Graphics Card Architecture

Figure 1 shows the architecture of a modern computer system with a graph-
ics card. The figure shows the architecture of a graphics card from the Tesla
architecture of NVIDIA. While specific details might be different for other ven-
dors, the general concepts are found in all modern graphic cards. The graphics
card – henceforth also called the device – is connected to the host system via the
PCIExpress bus. All data transfer between host and device has to pass through
this comparably low-bandwidth bus.
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Fig. 1. Overview: Exemplary architecture of a system with a graphics card.
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The graphics card itself contains one or more GPUs and a few gigabytes
of device memory.1 Typically, host and device do not share the same address
space, meaning that neither the GPU can directly access the main memory nor
the CPU can directly access the device memory.

The GPU itself consists of a few multiprocessors, which can be seen as very
wide SIMD processing elements. Each multiprocessor packages several scalar
processors with a few kilobytes of high-bandwidth, on-chip shared memory,
cache, and an interface to the device memory.

2.2 Programming a GPU

Programs that run on a graphics card are written in the so-called kernel pro-
gramming model. Programs in this model consist of host code and kernels. The
host code manages the graphics card, initializing data transfer and scheduling
program execution on the device. A kernel is a simplistic program that forms the
basic unit of parallelism in the kernel programming model. Kernels are scheduled
concurrently on several scalar processors in a SIMD fashion: Each kernel invo-
cation - henceforth called thread - executes the same code on its own share of
the input. All threads that run on the same multiprocessor are logically grouped
into a workgroup.

One of the most important performance factors in GPU programming is to
avoid data transfers between host and device: All data has to pass across the
PCIexpress bus, which is the bottleneck of the architecture. Data transfer to
the device might therefore consume all time savings from running a problem
on the GPU. This becomes especially evident for I/O-bound algorithms: Since
accessing the main memory is roughly two to three times faster than sending
data across the PCIexpress bus, the CPU will usually have finished execution
before the data has even arrived on the device.

Graphics cards achieve high performance through massive parallelism. This
means, that a problem should be easy to parallelize to gain most from running
on the GPU. Another performance pitfall in GPU programming is caused by
divergent code paths. Since each multiprocessor only has a single instruction
decoder, all scalar processors execute the same instruction at a time. If some
threads in a workgroup diverge, for example due to data-dependent conditionals,
the multiprocessor has to serialize the code paths, leading to performance losses.
While this problem has been somewhat alleviated in the latest generation of
graphics cards, it is still recommended to avoid complex control structures in
kernels where possible.

Currently, two major frameworks are used for programming GPUs to acceler-
ate database systems, namely the Compute Unified Device Architecture (CUDA)
and the Open Compute Language (OpenCL). Both frameworks implement the
kernel programming model and provide API’s that allow the host CPU to man-
age computations on the GPU and data transfers between CPU and GPU. In
contrast to CUDA, which supports NVIDIA GPUs only, OpenCL can run on

1 Typically around 2–4 GB on mainstream cards and up to 16 GB on high-end devices.



GPU-Accelerated Database Systems: Survey and Open Challenges 5

a wide variety of devices from multiple vendors [24]. However, CUDA offers
advanced features such as allocation of device memory inside a running kernel
or Uniform Virtual Addressing (UVA), a technique where CPUs and GPUs share
the same virtual address space and the CUDA driver transfers data between CPU
and GPU transparently to the application [45].2

2.3 Related Work

To the best of our knowledge, there is no survey summarizing the state-of-
the-art of GPU-accelerated DBMSs. The only survey we are aware of is from
Owens and others, which discusses the state-of-the-art in GPGPU comput-
ing [46]. They cover a wide area of research, mainly GPGPU techniques (e.g.,
stream operations, data structures, and data queries) and GPGPU applications
(e.g., databases and data mining, physically-based simulation, and signal and
image processing). In contrast to Owens, we focus on recent trends in GPU-
accelerated data management to derive a GPU-aware database architecture and
open research questions.

3 Exploring the Design Space of a GPU-Aware DBMS
Architecture

In this section, we explore the design space of a GPU-accelerated database man-
agement system from two points of views: Non-functional properties (e.g., perfor-
mance and portability) and functional properties (e.g., transaction management
and processing model). Note that while we focus on relational systems, most of
our discussions apply to other data models as well.

3.1 Non-functional Properties

In the following, we discuss non-functional properties for which DBMSs are typ-
ically optimized for, namely performance and portability, and the introduced
problems when supporting GPUs. Tsirogiannis and others found that in most
cases, the configuration performing best is also the most energy efficient con-
figuration due to the large up-front power consumption in modern servers [59].
Therefore, we will not discuss energy efficiency separately, as energy efficiency
is already covered by the performance property.

Performance. Since the GPU is a specialized processor, it is faster on cer-
tain tasks (e.g., numerical computations) than CPUs, whereas CPUs outperform
GPUs for tasks that are hard to parallelize or that involve complex control flow
instructions. He and others observed that joins are 2–7 times faster on the GPU,
whereas selections are 2–4 times slower, due to the required data transfers [30].

2 We are aware that this features are included in OpenCL 2.0 but no OpenCL frame-
work supports this features yet.
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The same conclusion was made by Gregg and others, who showed that a GPU
algorithm is not necessarily faster than its CPU counterpart, due to the expen-
sive data transfers [27]. One major point for achieving good performance in a
GDBMS is therefore to avoid data transfers where possible.

Another problem is how to select the optimal processing device for a given
operation. For instance: While the GPU is well suited for easily parallelizable
operations (e.g., predicate evaluation, arithmetic operations), the CPU is the
vastly better fit when it comes to operations that require complex control struc-
tures or significant inter-thread communications (e.g., hash table creation or
complex user-defined functions). Selecting the optimal device for a given opera-
tion is a non-trivial operation, and – due to the large parameter space (e.g., Breß
and others [14] or He and others [29]) – applying simple heuristics is typically
insufficient. Breß and others argue that there are four major factors that need
to be considered for such a decision (1) the operation to execute, (2) the fea-
tures of the input data (e.g., data size, data type, operation selectivity, data
skew), (3) the computational power and capabilities of the processing devices
(e.g., number of cores, memory bandwidth, clock rate), and (4) the load on the
processing device (e.g., even if an operation is typically faster on the GPU, one
should use the CPU when the GPU is overloaded) [14]. Therefore, we argue
that a complex decision model, that incorporates these four factors, is needed to
decide on an optimal operator placement.

Portability. Modern DBMSs are tailored towards CPUs and apply traditional
compiler techniques to achieve portability across the different CPU architec-
tures (e.g., x86, ARM, Power). By using GPUs – or generally, heterogeneous co-
processors – this picture changes, as CPU code cannot be automatically ported
to run efficiently on a GPU. Also, certain GPU toolkits – such as CUDA – bind
the DBMS vendor to a certain GPU manufacturer.

Furthermore, processing devices themselves are becoming more and more
heterogeneous [55]. In order to achieve optimal performance, each device typi-
cally needs its own optimized version of the database operators [19]. However,
this means that supporting all combinations of potential devices yields an expo-
nential increase in required code paths, leading to a significant increase in devel-
opment and maintenance costs.

There are two possibilities to achieve portability also for GPUs: First, we
can implement all operators for all vendor-specific toolkits. While this has the
advantage that special features of a vendor’s product can be used to achieve
high performance, it leads to high implementation effort and development costs.
Examples for such systems are GPUQP [29] or CoGaDB [13], a column-oriented
and GPU-accelerated DBMS. Second, we can implement the operators in a
generic framework, such as OpenCL, and let the hardware vendor provide the
optimal mapping to the given GPU. While this approach saves implementation
effort and simplifies maintenance, it also suffers from performance degradation
compared to hand- tuned implementations frameworks. To the best of our knowl-
edge, the only system belonging to the second class is Ocelot [34], which extends
MonetDB with OpenCL-based operators.
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Summary. From the discussion, it is clearly visible that GPU acceleration
complicates the process of optimizing GDBMSs for non-functional properties
such as performance and portability. Thus, we need to take special care to achieve
comparable applicability with respect to traditional DBMSs.

3.2 Functional Properties

We now discuss the design space for a relational GDBMS with respect to func-
tional properties. We consider the following design decisions: (1) main-memory
vs. disk-based system, (2) row-oriented vs. column-oriented storage, (3) process-
ing models (tuple-at-a-time model vs. operator-at-a-time), (4) GPU-only vs.
hybrid device database, (5) GPU buffer management (column-wise or page-wise
buffer), (6) query optimization for hybrid systems, and (7) consistency and trans-
action processing (lock-based vs. lock free protocols).

Main-Memory vs. Hard-Disk-Based System. He and others demonstrated
that GPU-acceleration cannot achieve significant speedups if the data has to be
fetched from disk, because of the IO bottleneck, which dominates execution
costs [29]. Since the GPU improves performance only once the data has arrived
in main memory, time savings will be small compared to the total query runtime.
Hence, a GPU-aware database architecture should make heavy use of in-memory
technology.

Row-Stores vs. Column Stores. Ghodsnia compares row and column stores
with respect to their suitability for GPU-accelerated query processing [25].
Ghodsnia concluded that a column store is more suitable than a row store,
because a column store (1) allows for coalesced memory access on the GPU,
(2) achieves higher compression rates (an important property considering the
current memory limitations of GPUs), and (3) reduces the volume of data that
needs to be transfered. For example, in case of a column store, only those columns
needed for data processing have to be transferred between processing devices. In
contrast, in a row-store, either the full relation has to be transferred or a pro-
jection has to reduce the relation to the data needed to process a query. Both
approaches are more expensive than storing the data column wise. Bakkum and
others came to the same conclusion [6]. Furthermore, given that we already con-
cluded that a GPU-aware DBMS should be an in-memory database system, and
that current research provides an overwhelming evidence in favor of columnar
storage for in-memory systems [10]. We therefore conclude that a GPU-aware
DBMS should use columnar storage.

Processing Model. There are basically two alternative processing models that
are used in modern DBMS: the tuple-at-a-time model [26] and operator-at-a-
time bulk processing [42]. Tuple-at-a-time processing has the advantage that
intermediate results are very small, but has the disadvantage that it introduces



8 S. Breß et al.

a higher per tuple processing overhead as well as a high cache miss rate. In
contrast, operator-at-a-time processing leads to cache friendly memory access
patterns, making effective usage of the memory hierarchy. However, the major
drawback is the increased memory requirement, since intermediate results are
materialized [42].

Tuple-at-a-time approaches usually apply the so-called iterator model, which
applies virtual function calls to pass tuples through the required operators [26].
Since graphics cards lack support for virtual function calls – and are notoriously
bad at runing the complex control logic that would be necessary to emulate
them – this model is unsuited for a GDBMS. Furthermore, we identified in
prior work that tuple-wise processing is not possible on the GPU, due to lacking
support for inter-kernel communication [15]. We therefore argue that a GDBMS
should utilize an operator-at-a-time model.

In order to avoid the IO overhead of this model, multiple authors have sug-
gested a hybrid strategy that uses dynamic code compilation to merge multiple
logical operators, or even express the whole query in a single, runtime-generated
operator [20,44,60]. Using this strategy, it is not necessary to materialize inter-
mediate results in the GPU’s device memory: Tuples are passed between opera-
tors in registers, or via shared memory. This approach is therefore an additional
potential execution model for a GDBMS.

Database in GPU RAM vs. Hybrid Device Database. Ghodsnia pro-
posed to keep the complete database resident in GPU RAM [25]. This approach
has the advantage of vastly reducing data transfers between host and device.
Also, since the GPU RAM has a bandwidth that is roughly 16 times higher than
the PCIe Bus (3.0), this approach is very likely to significantly increase perfor-
mance. It also simplifies transaction management, since data does not need to
be kept consistent between CPU and GPU.

However, the approach has some obvious shortcomings: First, the GPU RAM
(up to ≈16 GB) is rather limited compared to CPU RAM (up to ≈2 TB), mean-
ing that either only small data sets can be processed, or that data must be
partitioned across multiple GPUs. Second, a pure GPU database cannot exploit
full inter-device parallelism, because the CPU does not any perform data process-
ing. Since CPU and GPU both have their corresponding sweet-spots for different
applications (cf. Sect. 3.1), this is a major shortcoming that significantly degrades
performance in several scenarios.

Since these problems outweigh the benefits, we conclude that a GDBMS
should make use of all available storage and not constrain itself to GPU RAM.
While this complicates data processing, and requires a data-placement strategy3,
we still expect the hybrid to be faster than a pure CPU- or GPU-resident system.
The performance benefit of using both CPU and GPU for processing was already

3 Some potential strategies include keeping the hot set of the data resident on the
graphics card, or using the limited graphics card memory as a low-resolution data
storage to quickly filter out non-matching data items [47].
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observed for hybrid query processing approaches (e.g., He and others [29] and
Breß and others [18]).

Effective GPU Buffer Management. The buffer-management problem in a
CPU/GPU system is similar to the one encountered in traditional disk-based or
in-memory systems. That is, we want to process data in a faster, and smaller
memory space (GPU RAM), whereas the data is stored in a larger and slower
memory space (CPU RAM). The novelty in this problem is, that – in contrast
to traditional systems – data can be processed in both memory spaces. In other
words: We can transfer data, but we do not have to! This optionality opens up
some interesting research questions, that have not been covered in traditional
database research.

Data structures and data encoding are often highly optimized for the special
properties of a processing device to maximize performance. Hence, different kinds
of processing devices use an encoding optimized for the respective device. For
example, a CPU encoding has to support effective caching to reduce the memory
access cost [41], whereas a GPU encoding has to ensure coalesced memory access
of threads to achieve maximal performance [45]. This usually requires trans-
coding data before or after the data transfer, which is an additional overhead
that can break performance.

Another interesting design decision is the granularity that should be used
for managing the GPU RAM: pages, whole columns, or whole tables? Since we
already concluded that a GPU-accelerated database should be columnar, this
basically boils down to comparing page-wise vs. column-based caching. Page-
wise caching has the advantage that it is an established approach, and is used
by almost every DBMS, which eases integration into existing systems. However,
a possible disadvantage is that – depending on the page size –, the PCIe bus
may be underutilized during data transfers. Since it is more efficient to transfer
few large data sets than many little datasets (with the same total data volume)
[45], it could be more beneficial to cache and manage whole columns.

Query Placement and Optimization. Given that a GPU-aware DBMS has
to manage multiple processing devices, a major problem is to automatically
decide which parts of the query should be executed on which device. This decision
depends on multiple factors, including the operation, the size & shape of the
input data, processing power and computational characteristics of CPU and
GPU as well as the optimization criterion. For instance: Optimizing for response
time requires to split a query in parts, so that CPU and GPU can process parts
of the query in parallel. However, workloads that require a high throughput,
need different heuristics. Furthermore, given that we can freely choose between
multiple different processing devices with different energy characteristics, non-
traditional optimization criteria such as energy-consumption, or cost-per-tuple
become interesting in the scope of GPU-aware DBMSs.

He and others were the first to address hybrid CPU/GPU query optimiza-
tion [29]. They used a Selinger-style optimizer to create initial query plans and
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then used heuristics and an analytical cost-model to split a workload between
CPU and GPU. In our previous work, we proposed a framework that can per-
form cost-based operation-wise scheduling and cost-based optimization of hybrid
CPU/GPU query plans, which is designed to be used with operator-at-a-time
bulk processing [15]. Przymus and others developed a query planner that is capa-
ble of optimizing for two goals simultaneously (e.g., query response time and
energy consumption) [51]. Heimel and others suggest using GPUs to acceler-
ate query optimization instead of query processing. This approach could help to
tackle the additional computational complexity of query optimization in a hybrid
system [33]. It should be noted that there is some similarity to the problem of
query optimization in the scope of distributed and federated DBMSs [39]. How-
ever, there are several characteristics that differentiate distributed from hybrid
CPU/GPU query processing:

1. In a distributed system, nodes are autonomous. This is in contrast to hybrid
CPU/GPU systems, because the CPU has to explicitly send commands to
the co-processors.

2. In a distributed system, there is no global state. By contrast, in hybrid
CPU/GPU systems the CPU knows which co-processor performs a certain
operation on a specific dataset.

3. The nodes in a distributed system are loosely coupled, meaning that a node
may loose network connectivity to the other nodes or might crash. In a hybrid
CPU/GPU system, nodes are tightly bound. That is, no network outages are
possible due to a high bandwidth bus connection, and a GPU does not go
down due to a local software error.

We conclude that traditional approaches for a distributed system do not take
into account specifics of hybrid CPU/GPU systems. Therefore, tailor-made co-
processing approaches are likely to outperform approaches from distributed or
federated query-processing.

Consistency and Transaction Processing. Keeping data consistent in a
distributed database is a widely studied problem. But, research on transaction
management on the GPU is almost non-existent. The only work we are aware of
is by He and others [31] and indicates that a locking-based strategy significantly
breaks the performance of GPUs [31]. They developed a lock-free protocol to
ensure conflict serializability of parallel transactions on GPUs. However, to the
best of our knowledge, there is no work that explicitly addresses transaction
management in a GDBMS. It is therefore to be investigated how the performance
characteristics of established protocols of distributed systems compare to tailor-
made transaction protocols.

Essentially, there are three ways of maintaining consistency between CPU
and GPU: (1) Each data item could be kept strictly in one place (e.g., using
horizontal or vertical partitioning). In this case, we would not require any repli-
cation management and would have to solve a modified allocation problem. (2)
We can use established replication mechanisms, such as read one write all or



GPU-Accelerated Database Systems: Survey and Open Challenges 11

Fig. 2. Design space of GPU-aware DBMSs

primary copy. (3) The system can perform updates always on one processing
device (e.g., the CPU) and periodically synchronize these changes to the other
devices.

3.3 Summary

We summarize the results of our theoretical discussion in Fig. 2. A GPU-aware
database system should reside in-memory and use columnar storage. As process-
ing model, it should implement operator-at-a-time bulk processing model, poten-
tially enhanced by dynamic code compilation. The system should make use of
all available (co-)processors in the system (including the CPU!) by having a
locality-aware query optimizer, which distributes the workload across all avail-
able processing resources. In case the GPU-aware DBMS needs transaction sup-
port, it should use an optimistic transaction protocol, such as the timestamp
protocol. Finally, in order to reduce implementation overhead, the ideal GDBMS
would be hardware-oblivious, meaning all hardware-specific adaption is handled
transparently by the system itself.

While this theoretical discussion already gave us a good idea of how the
reference architecture for a GDBMS should look like, we will now take a closer
look at existing GDBMSs to refine our results.

4 A Survey of GPU-Accelerated DBMSs

In this section, we refine our theoretical discussion of the GDBMS design space
from Sect. 3 by conducting a survey on existing GPU-accelerated database sys-
tems. First, we describe our research methodology. Second, we discuss the archi-
tectural properties of all systems that meet our survey selection criteria. Third,
we classify the systems according to our design criteria (cf. Sect. 3). Based on
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our classification, we then discuss further optimization techniques used in the
surveyed systems. Then, we derive a reference architecture for GPU-accelerated
DBMSs based on our results. Finally, we will use this reference architecture
for GDBMSs to identify a set of extensions that is required to extend existing
main-memory DBMSs to support efficient GPU co-processing.

4.1 Research Methodology

In this section, we state the research questions that drive our survey. Then, we
describe the selection criteria to find suitable DBMS architectures in the field
of GPU-acceleration. Afterwards, we discuss the properties we focus on in our
survey. This properties will be used as base for our classification.

Research Questions

RQ1: Are there recurring architectural properties among the surveyed systems?
RQ2: Are there application-specific classes of architectural properties?
RQ3: Can we infer a reference architecture for GPU-accelerated DBMSs based

on existing GPU-accelerated DBMSs?
RQ4: How can we extend existing main-memory DBMSs to efficiently support

data processing on GPUs?

Selection Criteria. Since this survey should cover relational GDBMS, we only
consider systems that are capable of using the GPU for most relational oper-
ations. That is, we disregard stand-alone approaches for accelerating a certain
relational operator (e.g., He and others [30,32]), special co-processing techniques
(e.g., Pirk and others [49]), or other – non data-processing related – applications
for GPUs in database systems [33]. Furthermore, we will not discuss systems
using other data models than the relational model, such as graph databases (e.g.,
Medusa from Zhong and He [64,65]) or MapReduce (e.g., Mars from He and oth-
ers [28]). Also, given that publications, such as research papers or whitepapers,
often lack important architectural informations, we strongly preferred systems
that made their source code publicly available. This allowed us to analyze the
source code in order to correctly classify the system.

Comparison Properties. According to the design decisions discussed in Sect. 3,
we present for each GDBMS the storage system, the storage and processing model,
query placement and query optimization, and support for transaction process-
ing. The information for this comparison is taken either directly from analyzing
the source code – if available –, or from reading through published articles about
the system. If a properties is not applicable for a system, we mark it as not applica-
ble and focus on unique features instead.
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Fig. 3. Time line of surveyed systems.

4.2 GPU-Accelerated DBMS

Based on the discussed selection criteria, we identified the following eight acad-
emic4 systems that are relevant for our survey:

System Institute Year Open Source Ref.

CoGaDB University of Magdeburg 2013 yes [13,18]

GPUDB Ohio State University 2013 yes [62]

GPUQP Hong Kong University of Science and Technology 2007 yes [29]

GPUTx Nanyang Technological University 2011 no [31]

MapD Massachusetts Institute of Technology 2013 no [43]

Ocelot Technische Universität Berlin 2013 yes [34]

OmniDB Nanyang Technological University 2013 yes [63]

Virginian NEC Laboratories America 2012 yes [6]

In Fig. 3, we illustrate the chronological order in which the first publications
for each system were published. It is clearly visible that most systems were
developed very recently and only few systems are based on older systems. Hence,
we expect little influence on the concrete DBMS architecture between each other
and hence, a strong external validity of our results.

CoGaDB
Breß and others developed a column-oriented GPU-accelerated DBMS
(CoGaDB5) [13,18]. CoGaDB focuses on GPU-aware query optimization to
achieve efficient co-processor utilization during query processing (Fig. 4).

4 Note that we deliberately excluded commercial systems such as Jedox [1] or
Parstream [2], because they are neither available as open source nor have publi-
cations available that provide full architectural details.

5 Source code available at: http://wwwiti.cs.uni-magdeburg.de/iti db/research/gpu/
cogadb/.

http://wwwiti.cs.uni-magdeburg.de/iti_db/research/gpu/cogadb/
http://wwwiti.cs.uni-magdeburg.de/iti_db/research/gpu/cogadb/
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Fig. 4. The architecture of CoGaDB, taken from [16]

Storage System: CoGaDB persists data on disk, but loads the complete database
into main memory on startup. If the database is larger than the main memory,
CoGaDB relies on the operating system’s virtual memory management to swap
the least recently used memory pages on disk.

Storage Model: CoGaDB stores data in data structures optimized for in-memory
databases. Hence, it stores the data column-wise and compresses VARCHAR
columns using dictionary encoding [9]. Furthermore, the data has the same for-
mat when stored in the CPU’s or the GPU’s memory.

Processing Model: CoGaDB uses the operator-at-a-time bulk processing model
to make efficient use of the memory hierarchy. This is the basis for efficient query
processing using all processing resources.

Query Placement & Optimization: CoGaDB uses the Hybrid Query Processing
Engine (HyPE) as physical optimizer [13]. HyPE optimizes physical query plans
to increase inter-device parallelism by keeping track of the load condition on all
(co-)processors (e.g., the CPU or the GPU).

Transactions: Not supported.
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Fig. 5. GPUDB: Query engine architecture, taken from [62]

GPUDB
In order to study the performance behaviour of OLAP queries on GPUs, Yuan
and others developed GPUDB6 [62] (Fig. 5).

Storage System: GPUDB keeps the database in the CPU’s main memory to avoid
the hard-disk bottleneck. Yuan and others identified a crucial optimization for
main-memory DBMS with respect to GPU accelerated execution: In case data is
stored in pinned host memory, query execution times can significantly improve
(i.e., Yuan and others observed speedups up to 6.5x for certain queries of the
Star Schema Benchmark (SSB) [52]).

Storage Model: GPUDB stores the data column-wise because GPUDB is opti-
mized for warehousing workloads. Additionally, GPUDB supports common com-
pression techniques (run length encoding, bit encoding, and dictionary encoding)
to decrease the impact of the PCIe bottleneck and to accelerate data processing.

Processing Model: GPUDB uses a block-oriented processing model: Blocks are
kept in GPU RAM until they are completely processed. This processing model
is also known as vectorized processing [54]. Thus, the PCIe bottleneck can be
further reduced by overlapping data transfers with computation. For certain
queries, Yuan and others observed speedups up to 2.5x compared to no overlap-
ping of processing and data transfers.

GPUDB compiles queries to driver programs. A driver program executes a
query by calling pre-implemented GPU operators. Hence, GPUDB executes all
queries on the GPU and the CPU performs only dispatcher and post processing
tasks (i.e., the CPU is used less than 10 % of the time during processing SSB
queries [62]).

6 Source code available at: https://code.google.com/p/gpudb/.

https://code.google.com/p/gpudb/
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Fig. 6. Execution engine of GPUQP, taken from [29]

Query Placement & Optimization: GPUDB has no support for executing queries
on the CPU and GPU in parallel.

Transactions: Not supported.

GPUQP
He and others developed GPUQP7, a relational query processing system, which
stores data in-memory and uses the GPU to accelerate query processing [29].
In GPUQP, each relational operator can be executed on the CPU or the GPU
(Fig. 6).

Storage System: GPUQP supports in-memory and disk-based processing. Appar-
ently, GPUQP also attempts to keep data cached in GPU memory. Unfortu-
nately, the authors do not provide any details about the used data placement
strategy.

Storage Model: Furthermore, GPUQP makes use of columnar storage and query
processing, which fits the hardware capabilities of modern CPUs and GPUs.

Processing Model: GPUQP’s basic processing strategy is operator-at-a-time bulk
processing. However, GPUQP is also capable of partitioning data for one opera-
tor and execute the operator on the CPU and the GPU concurrently. Neverthe-
less, the impact on the overall performance is small [29].

Query Placement & Optimization: GPUQP combines a Selinger-style optimizer
[58] with an analytical cost model to select the cheapest query plan. For each
operator, GPUQP allocates either the CPU, the GPU, or both processors (parti-
tioned execution). The query optimizer splits a query plan to multiple sub-plans
containing at most ten operators. For each sub-query, all possible plans are
created and the cheapest sub-plan is selected. Finally, GPUQP combines the
sub-plans to a final physical query plan.

7 Source code available at: http://www.cse.ust.hk/gpuqp/.

http://www.cse.ust.hk/gpuqp/
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He and others focus on optimizing single queries and do not discuss multi-
query optimization. Furthermore, load-aware query scheduling is not considered
and there is no discussion of scenarios with multiple GPUs.

Transactions: Not supported.

GPUTx
In order to investigate relational transaction processing on graphics cards, He
and others developed GPUTx, a transaction processing engine that runs on the
GPU [31].

Storage System & Model: GPUTx keeps all OLTP data inside the GPU’s mem-
ory to minimize the impact of the PCIe bottleneck. It also applies a columnar
data layout to fit the characteristics of modern GPUs.

Processing Model: The processing model is not built on relational operators as
in GPUQP. Instead, GPUTx executes pre-compiled stored procedures, which
are grouped into one GPU kernel. Incoming transactions are grouped in bulks,
which are sets of transactions that are executed in parallel on the GPU.

Query Placement & Optimization: Since GPUTx performs the complete data
processing on the GPU, query placement approaches are not needed.

Transactions: GPUTx is the only system in our survey – and that we are aware
of – that supports running transactions on a GPU. It implements three basic
transaction protocols: Two-phase locking, partition-based execution and k -set-
based execution. The major finding of GPUTx is that locking-based protocols
do not work well on GPUs. Instead, lock-free protocols such as partition-based
execution or k-set should be used.

MapD
Mostak develops MapD, which is a data processing and visualization engine,
combining traditional query processing capabilities of DBMSs with advanced
analytic and visualization functionality [43]. One application scenario is the visu-
alization of twitter messages on a road map8, in which the geographical position
of tweets is shown and visualized as heat map.

Storage System: The data processing component of MapD is a relational DBMS,
which can handle data volumes that do not fit the main memory. MapD also
tries to keep as much data in-memory as possible to avoid disk accesses.

8 http://mapd.csail.mit.edu/tweetmap/.

http://mapd.csail.mit.edu/tweetmap/
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Storage Model: MapD stores data in a columnar layout, and further partitions
columns into chunks. A chunk is the basic unit of MapD’s memory manager.
The basic processing model of MapD is processing one operator-at-a-time. Due
to the partitioning of data into chunks, it is also possible to process on a per-
chunk basis. Hence, MapD is capable of applying block-oriented processing.

Processing Model: MapD processes queries by compiling a query to executable
code for the CPU and GPU.

Query Placement & Optimization: The optimizer tries to split a query plan in
parts, and processes each part on the most suitable processing device (e.g., text
search using an index on the CPU and table scans on the GPU). MapD does
not assume that an input data set fits in GPU RAM, and it applies a streaming
mechanism for data processing.

Transactions: Not supported.

Ocelot
Heimel and others develop Ocelot9, which is an OpenCL extension of MonetDB,
enabling operator execution on any OpenCL capable device, including CPUs
and GPUs [34] (Fig. 7).

Storage System: Ocelot’s storage system is built on top of the in-memory model
of MonetDB. Input data is automatically transferred from MonetDB to the GPU
when needed by an operator. In order to avoid expensive transfers, operator
results are typically kept on the GPU. They are only returned at the end of a
query, or if the device memory is too filled to fulfill requests. Additionally, Ocelot
implements a device cache to keep relevant input data available on the GPU.

MonetDB SQL Frontend

MonetDB Optimizer and Execution Layer

MonetDB Parallelization

MonetDB Operators

MonetDB Storage Layer and Data Layout

OpenCL Context
Management Query Rewriter

Memory Manager

Operators

MAL Binding

OpenCL

Ocelot

Context Management

Host CodeKernel

Fig. 7. The architecture of Ocelot, taken from [34]

9 Source code available at: http://goo.gl/GHeUv.

http://goo.gl/GHeUv
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Storage Model: Ocelot/MonetDB stores data column-wise in Binary Association
Tables (BATs). Each BAT consists of two columns: One (optional) head storing
object identifiers, and one (mandatory) tail storing the actual values.

Processing Model: Ocelot inherits the operator-at-a-time bulk processing model
of MonetDB, but extends it by introducing lazy evaluation and making heavy
use of the OpenCL event model to forward operator dependency information to
the GPU. This allows the OpenCL driver to automatically interleave and reorder
operations, e.g., to hide transfer latencies by overlapping the transfer with the
execution of a previous operator.

Query Placement & Optimization: In MonetDB, each query plan is represented
in the MonetDB Assembly Language (MAL) [35]. Ocelot reuses this infrastruc-
tures and adds a new query optimizer, which rewrites MAL plans by replacing
data processing MAL instructions of vanilla MonetDB with the highly parallel
OpenCL MAL instructions of Ocelot.

Query Placement & Optimization: Ocelot does not support cross-device process-
ing, meaning it executes the complete workload either on the CPU or on the GPU.

Transactions: Not supported.

OmniDB
Zhang and others developed OmniDB10, a GDBMS aiming for good code main-
tainability while exploiting all hardware resources for query processing [63]. The
basic idea is to create a hardware oblivious database kernel (qkernel), which
accesses the hardware via adaptors. Each adapter implements a common set of
operators decoupling the hardware from the database kernel (Fig. 8).

Execution engine Scheduler Other components

qKernel

Query

CPU 
Adapter

GPU 
Adapter

CPU-CPU 
Adapter

APU
Adapter

CPU GPU CPU-GPU APU

Cost model

...

Fig. 8. OmniDB: Kernel adapter design, taken from [63]

10 Source code available at: https://code.google.com/p/omnidb-paralleldbonapu/.

https://code.google.com/p/omnidb-paralleldbonapu/
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Storage System & Model: OmniDB is based on GPUQP, and hence, has similar
architectural properties to GPUQP. OmniDB keeps data in-memory in a column-
oriented data layout.

Processing Model: OmniDB schedules and processes work units, which can vary
in granularity (e.g., a work unit can be a query, an operator, or a chunk of
tuples). Although it is not explicitly mentioned in the paper [63], the fact that
OmniDB can process also chunks of tuples is a strong indicator that it supports
block-oriented processing.

Query Placement & Optimization: Regarding query placement and optimiza-
tion, OmniDB chooses the processing device with highest throughput for a work
unit. To avoid overloading a single device, OmniDB’s scheduler ensures that the
workload on one processing device may not exceed a certain percentage of the
average workload on all processing devices. The cost model relies on the adapters
to provide cost functions for the underlying processing devices.

Transactions: Not supported.

Virginian
Bakkum and others develop Virginian11, which is a GPU-accelerated DBMS
keeping data in main memory and supporting filter and aggregation operations
on all processing devices [6].

Storage System: Virginian uses no traditional caching of operators, but uniform
virtual addressing (UVA). This technique allows a GPU kernel to directly access
data stored in pinned host memory. The accessed data is transferred over the
bus transparently to the device and efficiently overlaps computation and data
transfers.

Storage Model: Virgnian implements a data structure called tablet, which stores
fixed size values column oriented. Additionally, tables can handle variable sized
data types such as strings, which are stored in a dedicated section inside the
tablet. Thus, Virginian supports strings on the GPU. This is a major difference
to other GDBMSs, which apply dictionary compression on strings first and work
only on compressed values in the GPU RAM.

Processing Model: Virginian uses operator-at-a-time processing as basic query-
processing model. It implements an alternative processing scheme. While most
systems call a sequence of highly parallel primitives requiring one new kernel
invocation per primitive, Virginian uses the opcode model, which combines all
primitives in a single kernel. This avoids writing data back to global memory and
reading it again in the next kernel ultimately resulting in block-wise processing
on the GPU.
11 Source code available at: https://github.com/bakks/virginian.

https://github.com/bakks/virginian
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Query Placement & Optimization: Virginian can either process queries on the
CPU or on the GPU. Thus, there is no mechanism splitting up the workload
between CPU and GPU processing devices and hence, no hybrid query optimizer
is available.

Transactions: Not supported.

4.3 Classification

We now classify the surveyed systems according to the architectural properties
discussed in Sect. 3.

Storage System: For all eight systems, it is clearly visible that they are
designed with main-memory databases in mind, keeping a large fraction of the
database in the CPU’s main memory (Table 1). GPUQP and MapD also sup-
port disk-based data. However, since fetching data from disk is very expensive
compared to transferring data over the PCIe bus [29], MapD and GPUQP also
keep as much data as possible in main memory. Therefore, we mark all systems
as main-memory storage and GPUQP and MapD additionally as disk-based
storage.

Storage Model: All systems store their data in a columnar layout, there is no
system using row-oriented storage (Table 1). One exception is Virginian, which
stores data mainly column-oriented, but also kepps complete rows inside a tablet
data structure. This representation is similar to PAX, which stores rows on one
page, but stores all records column-wise inside a page [3].

Processing Model: The processing model varies between the surveyed systems
(Table 2). The first observation is that no system uses a traditional tuple-at-a-
time volcano model [26], as was hypothesized in Sect. 3. Most systems support

Table 1. Classification of Storage System and Storage Model – Legend: � – Supported,
× – Not Supported, ◦ – Not Applicable

DBMS Storage System Storage Model

Main-Memory Storage Disk-based Storage Column Store Row Store

CoGaDB � × � ×
GPUDB � × � ×
GPUQP � � � ×
GPUTx � × � ×
MapD � � � ×
Ocelot � × � ×
OmniDB � × � ×
Virginian � × � ×
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operator-at-a-time bulk processing [42]. The only exception is GPUTx, which does
not support OLAP workloads, because it is an optimized OLTP engine. Hence,
we mark the processing model for GPUTx as not applicable. GPUDB, MapD,
OmniDB, and Virginian have basic capabilities for block-oriented processing. Addi-
tionally, GPUDB and MapD apply a compilation-based query processing strat-
egy.12 Virginian does not support query compilation. Instead, it uses a single GPU
kernel that implements a virtual machine, which calls other GPU kernels (the
primitives) in the context of the same kernel, efficiently saving the overhead of
reading and writing the result from the GPU’s main memory.

Query Placement and Optimization: We identify two major groups of sys-
tems: The first group performs nearly all data processing on one processing
device (GPUDB, GPUTx, Ocelot, Virginian), whereas the second group is capa-
ble of splitting the workload in parts, which are then processed in parallel on the
CPU and the GPU (CoGaDB, GPUQP, MapD, OmniDB) (Table 3). We mark
systems in the first group as systems that support only single-device processing
(SDP), whereas systems of the second group are capable of using multiple devices
and thereby allowing cross-device processing (CDP). Note that a system support-
ing CDP is also capable of executing the complete workload on one processing
device (SDP). The hybrid query optimization approaches of CoGaDB, GPUQP,
MapD, and OmniDB are mostly greedy strategies or other simple heuristics. It is
still an open question how to efficiently trade off between inter-processor paral-
lelization and costly data transfers to achieve optimal performance. For instance:
So far, there are no query optimization approaches for machines having multiple
GPUs.

Table 2. Classification of Processing Model – Legend: � – Supported, × – Not Sup-
ported, ◦ – Not Applicable

DBMS Processing Model

Operator-at-a-Time Block-at-a-Time Just-in-Time Compilation

CoGaDB � × ×
GPUDB � � �
GPUQP � × ×
GPUTx ◦ ◦ ◦
MapD � � �
Ocelot � × ×
OmniDB � � ×
Virginian � � ×

12 Note that both systems still apply a block-oriented processing model. This is due to
the nature of compilation-based strategies, as discussed in Sect. 3.
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Table 3. Classification of Query Processing – Legend: � – Supported, × – Not Sup-
ported, ◦ – Not Applicable

DBMS Query Processing

Single-Device Processing Cross-Device Processing

CoGaDB � �
GPUDB � ×
GPUQP � �
GPUTx � ×
MapD � �
Ocelot � ×
OmniDB � �
Virginian � ×

Transaction Processing: Apart from GPUTx, none of the surveyed GDBMSs
support transactions (Table 4). GPUTx keeps data strictly in the GPU’s RAM,
and needs to transfer only incoming transactions to the GPU and the result
back to the CPU. Since GPUTx achieved a 4–10 times higher throughput than
a comparable CPU-based OLTP engine, there is a need for further research in the
area of transaction processing in GDBMSs so that OLTP systems can also ben-
efit from GPU acceleration. Apparently, online analytical processing and online
transactional processing can be significantly accelerated by using GPU accelera-
tion. However, it is not yet clear which workload type is more suitable for which
processing device type. Furthermore, the efficient combination of OLTP/OLAP
workloads is still an active research field (e.g., Kemper and Neumann [38]). Thus,
it is an open question whether and under which circumstances GPU-acceleration
is beneficial for such hybrid OLTP/OLAP workloads.

Portability: The only GDBMSs having a portable, hardware-oblivious data-
base architecture are Ocelot and OmniDB. All other systems are either tailored
to a vendor specific programming framework or have no technique to hide the
details of the device-specific operators in the architecture. Ocelot’s approach
has the advantage that only a single set of parallel database operators has to
be implemented, which can then be mapped to all processing devices support-
ing OpenCL (e.g., CPUs, GPUs, or Xeon Phis). By contrast, OmniDB uses an
adapter interface, in which each adapter provides a set of operators and cost
functions for a certain processing-device type. It is unclear, which approach will
lead to the best performance/maintainability ratio, and how large the perfor-
mance loss is compared to a hardware-aware system. However, if portability can
be achieved with only a small performance degradation, it would substantially
benefit the maintainability and applicability of GDBMSs [63]. Hence, the trend
towards hardware-oblivious DBMSs is likely to continue.
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Table 4. Classification of Transaction Support and Portability – Legend: � – Sup-
ported, × – Not Supported, ◦ – Not Applicable

DBMS Transaction Support Portability

Hardware Aware Hardware Oblivious

CoGaDB × � ×
GPUDB × � ×
GPUQP × � ×
GPUTx � � ×
MapD × � ×
Ocelot × × �
OmniDB × × �
Virginian × � ×

4.4 Potential Optimizations for GDBMSs

We will now discuss and summarize potential optimizations, which a GDBMS may
implement to make full use of the underlying hardware in a hybrid CPU/GPU
system. Additionally, we briefly discuss existing approaches for each optimiza-
tion. As already discussed, data transfers have the highest impact on GDBMS per-
formance. Hence, every optimization avoiding or minimizing the impact of data
transfers are mandatory. We refer to these optimizations as cross-device optimiza-
tions. Based on our surveyed systems, we could identify the following cross-device
optimizations:

Efficient Data Placement Strategy: There are two possibilities to manage
the GPU RAM. The first possibility is an explicit management of data on
GPUs using a buffer-management algorithm. The second possibility is using
mechanisms such as Unified Virtual Addressing (UVA), which enables a GPU
kernel to directly access the main memory. Kaldewey and others observed a
significant performance gain (3-8x) using UVA for Hash Joins on the GPU
compared to the CPU [37]. Furthermore, data has not to be kept consistent
between CPU and GPU, because there is no “real” copy in the GPU RAM.
However, this advantage can also be a disadvantage, because caching data
in the GPU RAM can avoid the data transfer from the CPU to the GPU.

GPU-aware Query Optimizer: A GDBMS should make use of all processing
devices to maximize performance. Therefore, it should offload operations to
the GPU. However, offloading single operations of a query plan does not
necessarily accelerate performance. Hence, a GPU-aware optimizer has to
identify sub plans of a query plan, which it can process on the CPU or the
GPU [29]. Furthermore, the resulting plan should minimize the number of
copy operations [15]. Since optimizers are typically cost based, a GDBMS
needs for each GPU operator a cost model. The most common approach is to
use analytical models (e.g., Manegold and others for the CPU [40] and He and
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others for the GPU [29]). However, with the increasing hardware complexity,
machine-learning-based models become increasingly popular [14].

Data Compression: The data placement and query optimization techniques
attempt to avoid data transfers as much as possible. To reduce overhead
in case a GDBMS has to perform data transfers, the data volume can
be reduced by compression techniques. Thus, compression can significantly
decrease processing costs [62]. Fang and others discussed an approach, which
combines different lightweight compression techniques to compress data at
the GPU [23]. They developed a planner for cascading compression tech-
niques, which decides on a suitable subset and order of available compression
techniques. Przymus and Kaczmarski focused on compression for time-series
databases on the GPU [50]. Andrzejewski and Wrembel discussed compres-
sion of bitmap indexes on the GPU [4].

Overlap of Data Transfer and Processing: The second way to accelerate
processing, in case a data transfer needs to performed, is overlapping the
execution of a GPU operator with a data transfer operation [6,62]. This
optimization keeps all hardware components busy, and basically narrows
down the performance of the system to the PCIe bus bandwidth.

Pinned Host Memory: The third way to accelerate query processing in case
we have to perform a copy operation is keeping data in pinned host memory.
This optimization saves one indirection, because the DMA controller can
transmit data directly to the device [62]. Otherwise, data has to be copied
in pinned memory first, introducing additional latency in data transmission.
However, using pinned host memory has the drawback that the amount of
available pinned host memory is much smaller than the amount of unpinned
memory (i.e., memory that can be paged to disk by the virtual memory
manager) [56]. Therefore, a GDBMS has to decide which data it should keep
in pinned host memory. It is still an open issue how much memory should be
spent on a pinned host memory buffer for faster data transfers to the GPU.

Figure 9 illustrates the identified cross-device optimizations and the relationships
between them.

The second class of optimizations we identified, targets the efficiency of opera-
tor execution on a single processing device. We refer to this class of optimizations
as device-dependent optimizations. Since we focus on GPU-aware systems, we
only discuss optimizations for GPUs. Based on the surveyed systems, we sum-
marize the following GPU-dependent optimizations:

Cross-Device Optimizations

Avoid data 
transfers

Reduce cost of
data transfers

Data placement 
strategies

GPU-aware
optimizer

Compression Overlap transfer 
with processing

Use pinned
host memory

Fig. 9. Cross-device optimizations
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Block-oriented Query Processing: A GDBMS can avoid the overhead of
writing results of an operator back to a processing device’s main memory by
processing data on a per block basis rather than on a per operator basis. The
idea is to process data already stored in the cache (CPU) or shared memory
(GPU), which saves memory bandwidth and significantly increases perfor-
mance of query processing [11,62]. Additionally, block-oriented processing
is a necessary prerequisite for overlapping processing and data transfer for
single operations and allows for a more fine grained workload distribution on
available processing devices [63]. Note that traditional pipelining of blocks
between GPU operators is not possible, because inter-kernel communication
is undefined [15]. While launching a new kernel for each block is likely to be
expensive, query compilation and kernel fusion are promising ways to allow
block-oriented processing on the GPU as well.

Compilation-based Query Processing: Compiling queries to executable code
is a common optimization in main-memory DBMSs [20,44,60]. As already
discussed, query compilation allows for block-oriented processing on GPUs
as well and achieves a significant speedup compared to primitive-based query
processing (e.g., operator-at-a-time processing [29]). However, query compi-
lation introduces additional overhead, because compiling a query to
executable code typically is more expensive than building a physical query
execution plan. Yuan and others overcome this shortcoming by pre-compiling
operators. Thus, they only need to compile the query plan itself to a driver
program [62]. A similar approach called kernel weaver is used by Wu and
others [61]. They combine CUDA kernels for relational primitives into one
kernel. This has the advantage that the optimization scope is larger and
the compiler can perform more optimizations. However, the disadvantage
is the increased compilation time. Rauhe and others introduce in their app-
roach two processing phases: compute and accumulate. In the compute phase,
a number of threads are assigned to a partition of the input data and each
thread performs all operations of a query on one tuple and then, continues
with the next tuple, until the thread processed its partition. In the accumu-
late phase, the intermediate results are combined to the final result [53].

All-in-one Kernel: A promising alternative to compilation-based approaches
is to combine all relational primitives in one kernel [6]. Thus, a relational
query has to be translated to a sequence of op codes. An op code identifies the
next primitive to be executed. Therefore, it is basically an on-GPU virtual
machine, which saves the initial overhead of query compilation. However, the
drawback is a limited optimization scope compared to kernel weaver [61].

Portability: Until now, we mainly discussed performance optimizations. How-
ever, each of the discussed optimizations are mainly implemented device
dependent. This increases the overall complexity of a GDBMS. The problem
gets even more complex with new processing device types such as acceler-
ated processing units or the Intel Xeon Phi. Heimel and others implemented
a hardware oblivious DBMS kernel in OpenCL and still achieved a signif-
icant acceleration of query processing [34]. Zhang and others implemented
q-kernel, a hardware-oblivious database kernel using device adapters to the
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Fig. 10. Device-dependent optimizations: Efficient processing models

underlying processing devices [63]. It is still not clear which part of a kernel
should be hardware oblivious and which part should be hardware aware.
For the parts that have to be hardware aware, modern software engineering
methods such as software product lines can be used to manage the GDBMS’s
complexity [19].

Figure 10 illustrates the identified device-dependent optimizations and the
relationships between them.

4.5 A Reference Architecture for GPU-Accelerated DBMSs

Based on our in-depth survey of existing GDBMSs, we now derive a reference
architecture for GDBMSs. After careful consideration of all surveyed systems,
we decided to use the GPUQP [29]/OmniDB [63] architecture as basis for our
reference architecture, because they already include a major part of the common
properties of the surveyed systems. We illustrate the reference architecture in
Fig. 11.

We will describe the query-evaluation process in a top-down view. On the
upper levels of the query stack, a GPU-accelerated DMBS is virtually identical
to a “traditional” DBMS. It includes functionality for integrity control, parsing
SQL queries, and performing logical optimizations on queries. Major differences
between main-memory DBMSs and GDBMSs emerge in the physical optimizer.
While classical systems choose the most suitable access structure and algorithm
to operate on the access structure, a GPU-accelerated DBMS has to additionally
decide for each operator on a processing device. For this task, a GDBMS needs
refined13 cost models that also predict the cost for GPU and CPU operations.
Based on these estimates, a scheduler can allocate the cheapest processing device.
Furthermore, a query should make use of multiple processing devices to speed
up execution. Hence, the physical optimizer has to optimize hybrid CPU/GPU
query plans, which significantly increases the optimization space.

Relational operations are implemented in the next layer. These operators typ-
ically use access structures to process data. In GDBMSs, access structures have
to be reimplemented on GPUs to achieve a high efficiency. However, depending

13 Since these models need to be able to estimate comparable operator runtimes across
different devices, we and others [13] argue that dynamic cost models, which apply
techniques from Machine Learning to adapt to the current hardware, are likely
required here.
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Fig. 11. Layered architecture of GDBMSs

on the processing device chosen by the CPU/GPU scheduler, different access
structures are available. This is an additional dependency the query optimizer
needs to take into account.

Then, a set of parallel primitives can be applied to an access structure to
process a query. In this component, the massive parallelism of CPUs and GPUs
is fully used to speed up query processing. However, a GPU operator can only
work on data stored in GPU memory. Hence, all access structures are built on
top of a data-placement component, that caches data on a certain processing
device, depending on the access patterns of the workload (e.g., certain columns
for column scans or certain nodes of tree indexes [8,57]). Note that the data-
placement strategy is the most performance critical component in a GDBMS
due to the major performance impact of data transfers.

The backbone of a GDBMS is a typical in-memory storage, which frequently
stores data in a column-oriented format.14 Compression techniques are not only
beneficial in keeping the major part of a database in-memory, compression also
reduces the impact of the PCIe bottleneck.

14 We are aware that some in-memory DBMSs can also store data row-oriented, such
as HyPer [38]. However, in GDBMSs, row-oriented storage either increases the data
volume to be transfered or requires a projection operation before the transfer. A row-
oriented layout also makes it difficult to achieve optimal memory access patterns on
a GPU.
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4.6 Summary: Extension Points for Main-Memory DBMSs

In summary, we can extend most main-memory DBMSs supporting column-
oriented data layout and bulk processing to be GPU-accelerated DBMSs. We iden-
tify the following extension points: Cost models, CPU/GPU scheduler, hybrid
query optimizer, access structures and algorithms for the GPU, and a data place-
ment strategy.

Cost Models: For each processor, we need to estimate the execution time of an
operator. This can be either done by analytical cost models (e.g., Manegold
and others for CPUs [40] and He and others for GPUs [29]) or learning-based
approaches (e.g., Breß and others [14] or Ilić and Sousa [36]).

CPU/GPU Scheduler: Based on the cost models, a scheduler needs to allocate
processing devices for a set of operators (e.g., CHPS from Ilić and Sousa,
HyPE from Breß and others [14], or StarPU from Augonnet and others [5]).

Hybrid Query Optimizer: The query optimizer needs to consider the data
transfer bottleneck and memory requirements of operators to create a suit-
able physical execution plan. Thus, the optimizer should make use of cost
models, a CPU/GPU scheduler, and heuristics minimizing the time penalty
of data transfers (e.g., HyPE from Breß and others [14]).

Access structures and algorithms for the GPU: In order to support GPU-
acceleration, a DBMS needs to implement access structures on the GPU
(e.g., columns or B+-trees) and operators that work on them. Here, the
most approaches were developed [7,21,29,32,48,49].

Data Placement Strategy: A DBMS needs to keep track of which data is
stored on the GPU, and which access structure needs to be transferred to
GPU memory [29]. Aside from a manual memory management, it is also
possible to use techniques such as UVA and let the GPU driver handle the
data transfers transparently to the DBMS [62]. However, this may result in
less efficiency because a manual memory management can exploit knowledge
about the DBMS and the workload.

Implementing these extensions is a necessary precondition for a DBMS to sup-
port GPU co-processing efficiently.

5 Open Challenges and Research Questions

In this section, we identify open challenges for GPU-accelerated DBMSs. We
differentiate between two major classes of challenges, namely the IO bottleneck,
which includes disk IO as well as data transfers between CPU and GPU, and
query optimization.

5.1 IO Bottleneck

In a GDBMS, there are two major IO bottlenecks. The first is the classical disk
IO, and the second bottleneck is the PCIe bus. As for the latter bottleneck, we
can differ between avoiding and reducing the impact of the bottleneck.
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Disk-IO Bottleneck: GPU-accelerated operators are of little use for disk-
based database systems, where most time is spent on disk I/O. Since the
GPU improves performance only once the data is in main memory, time
savings will be small compared to the total query runtime. Furthermore,
disk-resident databases are typically very large, making it harder to find
an optimal data placement strategy. However, database systems can benefit
from GPUs even in scenarios where not the complete database fits into main
memory. As long as the hot data fits into main memory, GPUs can accelerate
data processing. It is still an open problem to which degree a database has
to fit into the CPU’s main memory, so GPU acceleration pays off.

Data Placement Strategy: GPU-accelerated databases try to keep relational
data cached on the device to avoid data transfer. Since device memory is
limited, this is often only possible for a subset of the data. Deciding which
part of the data should be offloaded to the GPU – finding a data placement
strategy – is a difficult problem that currently remains unsolved.

Reducing PCIe Bus Bottleneck: Data transfers can be significantly accel-
erated by keeping data in pinned host memory. However, the amount of
available pinned memory is much more limited compared to the amount of
available virtual memory. Therefore, a GDBMS has to decide which data to
keep in pinned memory. Since data is typically cached in GPU memory, a
GDBMS needs a multi-level caching technique, which is yet to be found.

5.2 Query Optimization

In GDBMSs, query processing and optimization have to cope with new challenges.
We identify as major open challenges a generic cost model, an increased complex-
ity of query optimization due to the larger optimization space, insufficient support
for using multi-processing devices for query-compilation approaches, and acceler-
ating different workload types.

Generic Cost Model: From the query-optimization perspective, a GDBMS
needs a cost model to perform cost-based optimization. In this area, two
basic cost-model classes have emerged. The first class consists of analytical
cost models and the second class makes use of machine-learning approaches
to learn cost models for some training data. While analytical cost models
excel in computational efficiency, learning-based strategies need no knowl-
edge about the underlying hardware and can adapt to changing data. It is
still open which kind of cost model is optimal for GDBMSs.

Increased Complexity of Query Optimization: Having the option of run-
ning operations on a GPU increases the complexity of query optimization:
The plan search space is significantly larger and a cost function that com-
pares run-times across architectures is required. While there has been prior
work in this direction [14,15,29], GPU-aware query optimization remains an
open challenge.

Query Compilation for Multiple Devices: With the upcoming trend of
query compilation, the basic problem of processing-device allocation remains
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the same as in traditional query optimization. However, as of now, the avail-
able compilation approaches only compile complete queries for either the
CPU or the GPU. It is still an open challenge how to compile queries to
code that uses more than one processing device concurrently.

Considering different Workload Types: OLTP as well as OLAP workloads
can be significantly accelerated using GPUs. Furthermore, it became com-
mon to have a mix of both workload types in a single system. It remains open,
which workload types are more suited for which processing-device type and
how to efficiently schedule OLTP and OLAP queries on the CPU and the
GPU.

6 Conclusion and Future Directions

The performance of modern processors is no longer bound primarily by transistor
density but by a fixed energy budget, the power wall [12]. Whereas CPUs often
spend additional chip space on more cache capacity, other processors spend most
of their chip space on light-weight cores, which omit heavy control logic and are
thus, more energy efficient. Therefore, future machines will likely consist of a
set of heterogeneous processors, having CPUs and specialized co-processors such
as GPUs, Multiple Integrated Cores (MICs), or FPGAs. Hence, the question
of using co-processors in databases is not why but how we can do this most
efficiently.

The pioneer of modern co-processors is the GPU, and many prototypes of
GPU-accelerated DBMSs have emerged over the past seven years implement-
ing new co-processing approaches and proposing new system architectures. We
argue that we need to take into account tomorrows hardware in today’s design
decisions. Therefore, in this paper, we theoretically explored the design space
of GPU-aware database systems. In summary, we argue that a GDBMS should
be an in-memory, column-oriented DBMS using the block-at-a-time processing
model, possibly extended by a just-in-time-compilation component. The system
should have a query optimizer that is aware of co-processors and data-locality,
and is able to distribute a workload across all available (co-)processors.

We validated these findings by surveying the implementation details of eight
existing GDBMSs and classifying them along the mentioned dimensions. Addi-
tionally, we summarized common optimizations implemented in GDBMSs and
inferred a reference architecture for GDBMSs, which may act as a starting point
in integrating GPU-acceleration in popular main-memory DBMSs. Finally, we
identified potential open challenges for further development of GDBMSs.

Our results are not limited to GPUs, but should also be applicable to other
co-processors. The existing techniques can be applied to virtually all massively
parallel processors having dedicated high-bandwidth memory with limited stor-
age capacity.
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54. Răducanu, B., Boncz, P., Zukowski, M.: Micro adaptivity in vectorwise. In: SIG-
MOD, pp. 1231–1242. ACM (2013)

55. Saecker, M., Markl, V.: Big data analytics on modern hardware architectures: a
technology survey. In: Aufaure, M.-A., Zimányi, E. (eds.) eBISS 2012. LNBIP, vol.
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val: beyond high-dimensional indexing à la carte. PVLDB 6(14), 1654–1665 (2013)

58. Selinger, P.G., Astrahan, M.M., Chamberlin, D.D., Lorie, R.A., Price, T.G.:
Access path selection in a relational database management system. In: SIGMOD,
pp. 23–34. ACM (1979)

59. Tsirogiannis, D., Harizopoulos, S., Shah, M.A.: Analyzing the energy efficiency of
a database server. In: SIGMOD, pp. 231–242. ACM (2010)

http://geops.csail.mit.edu/docs/mapd_overview.pdf
http://geops.csail.mit.edu/docs/mapd_overview.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf


GPU-Accelerated Database Systems: Survey and Open Challenges 35

60. Viglas, S.D.: Just-in-time compilation for SQL query processing. PVLDB 6(11),
1190–1191 (2013)

61. Wu, H., Diamos, G., Cadambi, S., Yalamanchili, S.: Kernel weaver: automat-
ically fusing database primitives for efficient GPU computation. In: MICRO,
pp. 107–118. IEEE (2012)

62. Yuan, Y., Lee, R., Zhang, X.: The yin and yang of processing data warehousing
queries on GPU devices. PVLDB 6(10), 817–828 (2013)

63. Zhang, S., He, J., He, B., OmniDB, M.L.: Towards portable and efficient query
processing on parallel CPU/GPU architectures. PVLDB 6(12), 1374–1377 (2013)

64. Zhong, J., He, B.: Medusa: simplified graph processing on gpus. IEEE Trans. Par-
allel Distrib. Syst. 99, 1–14 (2013)

65. Zhong, J., He, B.: Parallel graph processing on graphics processors made easy.
PVLDB 6(12), 1270–1273 (2013)



Compression Planner for Time Series
Database with GPU Support

Piotr Przymus1(B) and Krzysztof Kaczmarski2

1 Nicolaus Copernicus University, Toruń, Poland
eror@mat.umk.pl

2 Warsaw University of Technology, Warsaw, Poland
k.kaczmarski@mini.pw.edu.pl

Abstract. Nowadays, we can observe increasing interest in processing
and exploration of time series. Growing volumes of data and needs of effi-
cient processing pushed research in new directions. This paper presents
a lossless lightweight compression planner intended to be used in a time
series database system. We propose a novel compression method which is
ultra fast and tries to find the best possible compression ratio by compos-
ing several lightweight algorithms tuned dynamically for incoming data.
The preliminary results are promising and open new horizons for data
intensive monitoring and analytic systems.

Keywords: Time series database · Lightweight compression · Lossless
compression · GPU · CUDA · GPGPU · Compression optimization

1 Introduction

Background – Time Series Databases. Specialized time series databases
play important role in industry storing monitoring data for analytical purposes.
These systems are expected to process and store millions of data points per
minute, 24 h a day, seven days a week, reading terabytes of logs. Due to regres-
sion errors checking and early malfunction prediction these data must be kept
with fine grained resolution including all details. Solutions like OpenTSDB [17],
TempoDB [4] and others deal very well with these kind of tasks. Most of them
work on a clone of Big Table approach from Google [8], a distributed hash table
with mutual ability to write and read data in the same time.

Querying large volumes of time series may be time consuming and even in
case of big clusters leads to system slowdown. On the other hand monitoring of
any infrastructure requires real-time or near real-time response. What is more
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important it is hard to predict a priori what kind of queries may be needed.
Various problems may be only investigated by checking all possible correlations.
Therefore a system must perform random queries on large data sets. Classical
databases even using large computational clusters and map reduce approach can
hardly fulfil this requirement since time series processing not only requires large
volumes of data but also has computational demands: interpolation, integration
and aggregation of millions of time series.

The above problems may be easily handled by a database system equipped
with a GPU device used as a coprocessor [7]. An average internet service with
about 10 thousands of simultaneously working users may generate around 80 GB
of logs every day. If we consider an in-memory database system these data after
a compression could fit into two NVIDIA Tesla devices and an average query
may be processed within milliseconds compared to seconds or minutes in case of
standard systems.

GPU device has its own memory or a separate area in the CPU main memory.
CPU and GPU may only cooperate in a shared nothing architecture.Thus, the
data has to be explicitly transferred from the CPU main memory to the GPU
main memory and then back to CPU. Additional data transfer in the pipeline
of a query processing often introduces significant overhead which cannot be
mitigated. This cost is therefore an important component of the query execution
time prediction.

Time Series Compression. Big Table based systems compress data before
writing to a long-term storage. It is much more efficient to store data for some
time in memory or in a disk buffer and compress it before flushing to disk. This
process is known as a table row rolling. Systems like HBase [1], Casandra [10] and
others offer compression for entire column family. This kind of general purpose
compression is not optimized for particular data being stored (i.e. various time
series with different compression potential stored in one column family). Simi-
larly in-memory database systems based on GPU processing (like ParStream [3])
tend to pack as many data into GPU devices global memory as possible.

Compression not only improves overall system behaviour by optimizing data
transfer but also enables GPU co-processing by minimization of additional data
transfer costs. Figure 1 shows the influence of lightweight compression on query
processing time including input data reading, processing and creating output.
The bar on the left (CPU) presents the basic query processing pipeline with three
activities: reading, processing and creating output. (GPU) bar shows processing
time on GPU processing which additionally requires some time for data copying.
Processing time is much shorter but additional copying makes overall speed-up
not so impressive. The next column presents the same configuration but with
lightweight compression of the data. Now copying time is much shorter. Thanks
to GPU abilities data decompression time is not influencing the overall time
noticeably. In the contrary the same approach but run purely on CPU suffers
from long decompression time (the last column).

Our previous work on time series compression problems [19–21] and GPU uti-
lization in time series processing showed that GPU may be successfully introduced
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Fig. 1. General query processing time influenced by lightweight compression and GPU
processing.

as a database coprocessor if accompanied by a lightweight compression of the
stored data. We created a dynamic compression planner which was able to com-
bine several lightweight compression methods in order to achieve the best com-
pression results. However, the optimal compression may not always be acceptable
due to possibly long decompression time.

In this work we extend the previous findings by a new multi-objective com-
pression planner which may find a near-optimal1 multi objective compression
plan.

Section 2 presents a general view of the system including time series data
model and data flow. Section 3 describes used lightweight compression meth-
ods which are suitable for fast GPU processing. Sections 4, 5 and 6 contain the
main contribution of our work: the dynamically optimized compression system
including plans estimation and bi-objective plan selection. Experimental run-
time results are contained in Sect. 7 while Sect. 8 contains final remarks and
conclusions.

1.1 Motivation and Related Work

Compression of time series is an interesting and widely analysed computational
problem. Lossless methods often use some general purpose compression algo-
rithms with several modifications according to knowledge gathered from data. On
the other hand, lossy compression approximate data using, for instance, splines,
piecewise linear approximation or extrema extraction [14]. For industrial moni-
toring systems, lossy compression cannot be used due to possible degradation of
anomalies.

An important challenge is to improve compression factor with an acceptable
processing time in case of variable sampling periods. Interesting results in the
1 In this work we understand optimal compression as the best compression within

available lightweight algorithms.
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filed of lossless compression done on GPU were presented by Fang et al. [13].
Using a compression planner it was possible to achieve significant improvement
in overall query processing on GPU by reducing data transfer time from RAM
to global device’s memory space. The strategy applied in our work is based on
statistics calculated from inserted data and used to find an optimal cascaded
compression plan for the selected lightweight methods.

The GPU compression topic was raised in several studies. Interesting results
on GPU compression where presented by Andrzejewski et al. [5] where Word
Aligned Hybrid compression algorithm for GPU was presented. Wu et al. [24]
discussed implementation of Lempel-Ziv 77 (LZ77) algorithm on CUDA frame-
work and showed that time complexity of this algorithm was to high on GPU
processor when compared to CPU classical implementation. This was caused by
too many branches in the algorithm which are not suited well for CUDA model
of parallelism.

In a time series database we often observe data grouped into portions of very
different characteristics. Optimal compression should be able to apply different
compression plans for different time series and different time periods.

In case of lossless compression one can use common algorithms (ZIP, LZO)
which tend to consume lot of computation resources [6,26] or lightweight meth-
ods which are faster but not so effective. Dynamic composition of several com-
pression methods may improve this significantly by combination of properties of
both approaches: it is lossless but much faster than common algorithms, offers
acceptable compression ratios and may be computed incrementally. Selection
of an optimal strategy (among available lightweight compression algorithms) is
done upon data statistical information.

However, the challenge of multiprocessor and multi-GPU computational
nodes raise another question: is it possible to improve these methods further
including hardware specific information and estimated decompression time? In
this work we extend our previous findings by a new multi-objective compression
planner which may find an optimal compression plan under compression ratio
and decompression speed optimization objectives. A database system will be
able to benefit by better estimation of time constraints for query execution.

2 Time Series Database System with Compressed
Storage

A typical time series database consists of three layers: data insertion module,
data storage and querying engine. This section presents a general view of a
prototype heterogeneous time series database system developed as a test-bed
for our compression algorithms and optimization methods. It uses GPU as a
coprocessor for database operations and data compression. Optimal resources
(GPU and CPU) utilization requires a heterogeneous query planner which is
addressed in another paper [22]. Here, we shall only focus on assuring optimal
compression for this system.
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2.1 Time Series Data Model

The data acquisition from ongoing measurements, industrial processes moni-
toring [15], scientific experiments [23], stock quotes or any other financial and
business intelligence sources has got continuous characteristic. These discrete
observations T are represented by pairs of a timestamp and a numerical value
(ti, vi) with the following assumptions:

– number of data points (timestamps and their values) in one time series should
not be limited;

– each time series should be identified by a name which is often called a metric
name;

– each time series can be additionally marked with a set of tags describing
measurement details which together with metric name uniquely identifies time
series;

– observations may not be done in constant time intervals or some points may
be missing, which is probable in case of many real life data (Fig. 2).

(a) (b)

Fig. 2. Time series. (a) fixed time measurements (b) variable time measurements. Char-
acteristics of the plot (s1 – piecewise constant, s2 – piecewise linear) depends on the
interpretation of the measured data value.

The last assumption is important since industrial applications often cannot
guarantee either constant measurement period or correct measurement and data
transfer.

Our prototype system does not limit possible data which can be inserted
and analysed. The only requirement of our system is that data must have a
form of time series, which we understand as a collection of observations made
sequentially in time [9].

In the presented data model known from for example OpenTSDB [2] one time
series is uniquely identified with a metric name and a set of tags. Combination of
tags let a user express many different queries in a very simple way. For instance
for the input data (timestamp, metric name, value, tags):

1386806400 cpu.load 0.20 node=alpha type=system
1386806400 cpu.load 0.10 node=alpha type=user
1386806401 cpu.load 0.30 node=alpha type=system
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1386806401 cpu.load 0.20 node=alpha type=user
1386806400 cpu.load 0.05 node=beta type=system
1386806400 cpu.load 0.10 node=beta type=user
1386806401 cpu.load 0.05 node=beta type=system
1386806401 cpu.load 0.40 node=beta type=user

we could issue a query for an overall average system type processes processor
load for all known nodes for one day by:

q?start=2013-12-12:00:00&
end=2013-12-12:23:59&m=avg:cpu.load{type=system}

receiving:

1386806400 cpu.load 0.135 node=alpha type=system
1386806401 cpu.load 0.165 node=alpha type=system

or for a maximum processor load among all known nodes and processes types:

q?start=2013-12-12:00:00&
end=2013-12-12:23:59&m=max:cpu.load

receiving:

1386806400 cpu.load 0.20
1386806401 cpu.load 0.40

2.2 Data Insertion

In this section we briefly describe data flow in our system, which is composed of
three layers: data insertion, long term storage and data retrieval.

The insertion layer is preceded by a set of collectors which gather data from
sensors, probes or other sources. These collectors sending data to the data inser-
tion interface are considered external and beyond the scope of this paper.

The general view of our system’s basic components and data flow is not
different from other databases. The noticeable extension includes GPU and CPU
processing. The main data flow indicates: data collection, data buffering, data
storing and data querying. Data buffering may use compression on GPU or CPU
side. Obviously, CPU compression usually does not require any additional data
transfers since Data Buffer and CPU compression may be done by the same
device and within the same memory space. However, compression performed by
GPU requires extra time for data transferring between RAM and GPU device’s
global memory. After the data is compressed it may be sent to the database
daemon which inserts them into a long term storage.

Similar situation occurs during data retrieval and query evaluation. Frag-
ments of data required for particular query need to be decompressed, filtered
and transformed according to the query parameters. All these operations may
be done within CPU or with GPU used as an external coprocessor.
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Figure 3 indicated the possible transitions and data flow between components
in our database system. Each transition may have non zero data transfer time.
Each node may transform data changing their size but also consuming time.
A sample data insertion procedure could involve the following path: Data Col-
lector, Data Buffer, GPU Compression, Data Buffer, Database Daemon, Storage.
Data retrieval contains more nodes, transitions and possible paths. For example,
a path of a query evaluated on CPU but with data decompressed on GPU will
contain the sequence: Storage → Query Engine → GPU Decompression → Query
Engine → CPU Query Processing → Query Engine → Client. Selection of an
optimal query plan must involve distributed data processing on heterogeneous
devices which we addressed in [22].

Minimisation of data transfer time in a heterogeneous database system is the
main driver for the research presented in this paper. Our approach focuses on
finding the best possible compression method suited for certain incoming data
but from two points of view: compression ratio and decompression time. Both
these goals are crucial for current time series database systems.

Fig. 3. A simplified data flow diagram including data insertion (light grey), data
retrieval (dark grey) and storage (white) layers. Each transition may introduce addi-
tional data transfer cost. Each node may transform data influencing their size.

Time Series Storage. One of the most important properties of a time series
database system is high performance and scalability. In many industrial solu-
tions these assumptions lead to an architecture based on Big Table [8] and Map
Reduce [11] applications.In such case time series data are stored at two different
levels in the database:
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– Data buffer – acts as a buffer for new data which enter the database. Data
from the data buffer are periodically compacted, compressed and sent to the
data archive. The buffer is composed of two separated data blocks: first one
with timestamps and second one with values. This allows us to use different
compression plans for both blocks.

– Permanent Storage – works as a long term data archive based on key-value
table architecture. Metric name, tags and starting time are encoded in row
key and column key.

Flow of Input Data. The data acquisition from ongoing measurements, indus-
trial processes monitoring [15], scientific experiments [23], stock quotes or any
other financial and business intelligence sources has got continuous characteris-
tics. We assume that data collectors keep sending data to the system all the time
and the system must respond in the real-time. Tight efficiency constraints must
be met in order to assure that the data will not wait before being consumed for
unacceptably long time.

Due to optimization purposes, data sent to the data storage should be ordered
and buffered into portions, minimizing necessary disk operations but also min-
imizing the distributed storage nodes intercommunication. Buffering also pre-
pares data to be compressed and stored optimally in an archive. Simplicity of
data model imposed separated column families for compressed and raw data.
Time series are separately compacted into larger records (by a metric name and
tags) containing a specified period of time (e.g. 15 min, 2 h, 24 h – depending on
the number of observations). This step directly preceded dynamic compression
described in the next sections.

Finally, when a single record in a buffer is compressed and ready to be send to
the long term permanent storage it is flushed and delivered to a NoSQL database
which processes it according to its internal rules.

2.3 Data Retrieval

The last important part of the system is the query engine responsible for user-
database interactions.

Execution of database queries is an example of a successful application of
GPU co-processors which may accelerate numerous database computations, e.g.
relational query processing, query optimization, database compression or sup-
porting time series databases [7,20,21].

Distribution of workload between numerous CPU and GPU devices require
careful planning of query execution strategy including not only data transfer
costs but also device load, its efficiency or even energy consumption. In our
previous publication we elaborated on bi-objective query planner which achieved
interesting results in case of a heterogeneous query planning [22].

For the purposes of this work we indicate that the influence of compression
methods used in a data storage on query evaluation is twofold. First, it may
dramatically reduce data transfer time between system components and second,
it may increase query evaluation time by additional decompression.
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2.4 Searching for Optimal Compression

In any database system the data transfer time between distributed nodes or
components significantly influences the overall performance of the system. This
situation may be partially improved by compression but only if its additional cost
is justified by gained speed up. Fine tuned lightweight compression methods offer
interesting compression ratio with acceptable performance, especially if used on
a GPU device [20,21].

In order to select an optimal compression method one must consider the
following factors:

– Predicted compressed buffer size
– Predicted compression and decompression time
– Computational resources needed
– Additional method’s properties.

Achieving best possible compression ratio and shortest possible working time
are two contradicting objectives. Thus, a definition of an optimum solution set
should be established. In this paper we use the predominant Pareto optimal-
ity [16].Given a set of choices and a way of valuing them, the Pareto set consists
of choices that are Pareto efficient. A set of choices is said to be Pareto efficient
if we cannot find a reallocation of those choices such that the value of a single
choice is improved without worsening values of others choices.As bi-objective
optimization is NP-hard, we need an approximate solution [18].

Our compression planner computes the best compression scheme upon all
available algorithms, knowing their properties and input data characteristics.

3 Lightweight Compression Algorithms

In this section we present the compression algorithms and their modifications for
the parallel execution on a GPU. Detailed description of presented compression
algorithms may be found in [12,13,20,26].

Patched Lightweight Compression. The main drawback of many light-
weight compression schemes is that they are prone to outliers in the data frame.
For example, consider following data frame {1, 2, 3, 2, 2, 3, 1, 1, 64, 2, 3, 1, 1}, one
could use the 2 bits fixed-length compression to encode the frame, but due to
the outlier (value 64) we have to use 6-bit fixed-length compression or more
computationally intensive 4-bit dictionary compression. Solution to the prob-
lem of outliers has been proposed in [26] as a modification to three lightweight
compression algorithms. The main idea was to store outliers as exceptions. Com-
pressed block consists of two sections: the first keeps the compressed data and
the second exceptions. Unused space for exceptions in the first section is used to
hold the offset of the following exceptions in the data in order to create linked
list, when there is no space to store the offset of the next exception, a compul-
sive exception is created [26]. For large blocks of data, the linked lists approach
may fail because the exceptions may appear sparse thus generate a large number
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of compulsory exceptions. To minimise the problem various solutions have been
proposed, such as reducing the frame size [26] or algorithms that do not generate
compulsive exceptions [12,25]. The algorithms in this paper are based largely on
those described by Yan [25]. In this version of the compression block is extended
by two additional arrays - exceptions position and exceptions remainders val-
ues (i.e. the remaining bits). Decompression involves extracting data using the
underlying decompression algorithm and then applying a patch (from excep-
tions remainders array) in the places specified by the exceptions positions. As
exceptions are separated, data patching can be done in parallel. During compres-
sion, each thread manages two arrays for storing exception values and positions.
After compression, each thread stores exceptions in the shared memory, simi-
larly exceptions from shared memory are copied to the global memory. Patched
version of algorithms are only selected if compression ratio improves. Otherwise
non patched algorithms are used. Therefore complex exceptions treatment may
be omitted speeding up the final compression.

Float to integer scaling (SCALE). Converts float values to integer values by
scaling. This solution can be used in case where values are stored with given
precision. For example, CPU temperature 56.99 can be written as 5699. The
scaling factor is stored in compression header.

Differential representation (DELTA). Stores the differences between suc-
cessive data points in frame while the first value is stored in the compression
header. Works well in case of sorted data, such as measurement times. For exam-
ple, let us assume that every 5 min the CPU temperature is measured starting
from 1367503614 to 1367506614 (Unix epoch timestamp notation), then this
time range may be written as {300, . . . , 300}.

(Patched) Fixed-length Minimum Bit Encoding (PFL and FL). Fl and
Pfl compression works by encoding each element in the input with the same
number of bits thus deleting leading zeros at the most significant bits in the bit
representation. The number of bits required for the encoding is stored in the
compression header. The main advantage of the Fl algorithm (and its variants)
is the fact that compression and decompression are highly effective on GPU
because these routines contain no branching-conditions, which decrease paral-
lelism of SIMD operations. For the best efficiency dedicated compression and
decompression routines are prepared for every bit encoding length with unrolled
loops and using only shift and mask operations.Our implementation does not
limit minimum encoding length to size of byte (as in [13]). Instead each thread
(de)compresses block of eight values, thus allowing encoding with smaller num-
ber of bits. For example, consider following data frame {1, 2, 3, 2, 2, 3, 1, 2, 3, 1, 1},
one could use the 2 bits fixed-length compression to encode the frame.

(Patched) Frame-Of-Reference (PFOR and FOR). Works similarly to Fl
and Pfl, except before compression it transforms each value into an offset
from the reference value (for example smallest value) in compression block.
Reference value is then stored in compression header. In this situation, we
need exactly �log2(max −min +1)� bits to encode each value in the frame.
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For example, this is useful when storing measurement times, consider time range
{1367503614, . . . , 1367506614}, then using for we only need �log2(1367506614 −
1367503614 + 1) = 12� bits to store each value in this range (as opposed to
31 bits without this transformation).

(Patched) Dictionary (DICT and PDICT). Dict is suitable for data that
have only a small number of distinct values. It uses a dictionary of distinct
values. For compression and decompression purposes, dictionary is loaded into
the shared memory. Binary search is used during compression to lookup values,
then an index of value is used to encode. Decompression simply retrieves values
at given index from dictionary. Dict writes indexes using byte-aligned types,
for better compression a combination with other compression algorithm should
be used. For example, consider data frame {0, 500, 1500, 100, 100, 1500000,
100, 15000} using Dict only 1 byte is needed to store each value (even less if
combined with other compression algorithm) in comparison to pure Fl where
more than 2 bytes would have been used.

Run-Length-Encoding (RLE) and Patched Constant (PCONST). Rle
encodes values with a pair: value and run length, thus using two arrays to com-
press data. Consider following data frame {1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3}, then Rle
would create two arrays: values {1, 2, 3} and run length {5, 4, 3}. Pconst is a
specialized version of Rle where almost whole data frame consist of one value
with some exceptions. This may be reconstructed using: frame length, constant
value and PATCH arrays. For example, let us assume that a measurement is done
every five minutes with some exceptions, then delta is almost always constant
and equals 300, any other value will be stored as exception.

4 Cascaded Compression Planner

The goal of this part of the system is to find suitable cascaded compression plans
for the data gathered in the input buffer. It is composed of three parts:

– selection of suitable cascaded compression plans – mainly based on the specifics
of the algorithms and the characteristics of the data set (see rest of this
Section).

– evaluation of selected cascaded compression plans – based on the dynamic
statistics generator and compressed data size estimation (see Sect. 5).

– bi-objective plan selector – which uses decompression time estimation and
compressed data size to choose the final one (see Sect. 6).

Cascaded compression can significantly improve the compression ratio. How-
ever, searching for the most efficient compression method even for relatively
short plans composed for several compression steps (i.e. using 6 compositions
out of 10 algorithms with repetitions) may generate a very large search space (in
our example

∑6
i=1 10i = 1, 111, 110). Due to tight time constraints we proposed

a reduction of this problem by static planner and hints system.
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Note that in fact, the situation is even more complicated, because of possi-
ble compression algorithms parametrization, e.g. (P)Fl and (P)For take as an
argument number of j bits used to encode each value, where 1 ≤ j ≤ 32. This
topic will be discussed with details in Sect. 5.

4.1 Reduction of Compression Plans Search Space: Static Planner

In the first static stage we determined acceptable transitions between compres-
sion algorithms which were divided into three categories: T – initial transforma-
tion, B – base compression, H – helper compression. The complete compression
schema is always composed of algorithms selected from these subsequent cate-
gories P̄ ⊆ P = {(t, b, h) : t ∈ T , b ∈ B, h ∈ H}, with the following purposes:

Transformation
Algorithms

Base
Compression

Algorithms

Helper
Algorithms

SCALE DELTA

/0 /0

PDICT

PFL

PFOR

PCONST

RLE

DICT

FL

FOR

[FL,FL,FL]

[FL F,0/, L]

[FL,FL]

[FL ]0/,

F,0/[ L]

]0/,0/[

[FOR,FOR]

[DICT,DICT]

[FL]

]0/[

Fig. 4. The composition graph of all available compression plans within the given
assumptions. Helper auxiliary algorithms are applied to additional arrays (from one to
three) returned by the base compression algorithms.
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1. T – Transformation algorithms (SCALE, DELTA). Improve properties
of data storage and prepare for better compression. All algorithms in this
section are optional but may be used together (if present must be applied in
the given order).

2. B – Base compression algorithms (PDICT, PFL, For, FL, DICT,
PFOR, RLE, PCONST). Only one algorithm may be selected as the base
algorithm. All algorithms in this section generate from one up to three result-
ing arrays. Some of the resulting arrays, may qualify for further compression
using Helper compression algorithms.

3. H – Helper compression algorithms (FOR, FL, DICT). The algorithms
used to compress selected arrays from the previous step. Each of the resulting
arrays can be compressed with only one algorithm. In order to minimize the
stages of decompression PATCH algorithms, which could create new arrays
for compression, are excluded. The base algorithm used may limit algorithms
in this section (Fig. 4).

Composition of all sensible paths between algorithms in these three categories
leaves only 76 suitable compression plans out of former one million. The longest
possible cascaded compression plan may be composed of six steps.

4.2 Manual Tuning of Compression Plans Search Space:
Hints System

Another reduction of possible compression plans generated in the first stage
can be done manually by a user speeding up further plan choosing. Number
and types of hints may vary in different situations. For example, in time series
systems timestamps are always sorted and if we consider separated compression
methods for timestamps and values we may find different and better plans for
them. A hint indicating sorted input may suggest using DELTA before base
algorithms. Additionally, for every metric additional features may be specified
or even specific compression algorithm may be enforced. Currently supported

Table 1. A sample set of hints for a time series compression planner.

Hints Meaning

Scale, (P)Fl, Rle, Delta,
(P)For, (P)Dict,
Pconst

Enforces a specific compression algorithm in the plan

DSORTED Specify whether the data is distinct and sorted. If true
eliminates following algorithms from compression
plan: Pconst, Rle, (P)Dict

TIMESTAMP Automatically added by system to timestamps. Sets
DSORTED to True and Scale to False

DATA Automatically added by the system to time series
values. If not specified otherwise it sets DSORTED
to False and Scale to False
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hints are located in Table 1. After this step we select a subset P ′ = P ′(D) ⊆ P̄
of compression plans, where D – is data set to be compressed, and P ′(D) is a
reduced subset of P̄ after using hints elimination.

5 Dynamic Statistics Generator

5.1 Finding the Optimal Parametrization and Compression
Size Estimation

In this step, a plan with possibly maximal compression ratio is selected. In
order to perform this task the system uses statistics and estimations computed
dynamically from incoming data stream, for each metric and rolled time period
separately. Pre-computing them and storing aside is not an optimal solution due
to necessity of constant update and allocation of additional memory. Please note
that if a plan contains an initial transformation algorithm it must be applied
before calculating statistics because it influences data (Fig. 5).

SCALE DELTA

/0 /0

Fig. 5. Possible transformation algorithms and their composition.

Estimation results heavily depend on compression algorithms parameters.
In [13] the choice of optimal parameters was straightforward, because the used
algorithms supported only compression of value to byte-aligned size (which
reduced number of parameters) and did not allow exceptions in data (only one
set of parameters was correct). However, in compression algorithms and compres-
sion plans which use patching mechanism, optimal parameter selection is more
complex. Factors such as the number of generated exceptions and estimated
exception compression size should be taken into account. For example, the fol-
lowing data frame {1, 2, 3, 2, 32, 3, 3, 1, 64, 2, 1, 1} could be compressed using Pfl
algorithm using 2 bits, 5 bits or 6 bits fixed-length, generating two exceptions
(32, 64), one exception (64) or no exceptions respectively. In this case, for each
compression plan (selected in previous stages) a satisfactory set of parameters
should be selected in order to correctly estimate compressed data size.

Recall that P ′(D) is a reduced subset of P after using static planner and
hints elimination. Let P ′(D) � p = (t, b, h) be a cascaded compression plan,
where t ∈ T , b ∈ B, h ∈ H are transformation, base and helper algorithms,
respectively. A compression plan may be also written in simplified notation, i.e.(
(Scale, Delta ), Pfl,(Fl,Fl )

)
.

Let us denote the data after applying the transformation algorithms by t(D)
where t ∈ T transforms data D. Now, let J(p,D) estimate compressed size of
data D after applying compression plan p, i.e.

J(p,D) := Jb(h, t(D)) (1)



50 P. Przymus and K. Kaczmarski

where P̄ � p = (t, b, h) is a compression plan from subset of compression plans
suitable for data D and Jb is estimation function for base algorithm b (see rest of
this Sections for details). A pseudo code of an optimal compression plan selection
is presented in listing SelectOptimalCompressionPlan. The rest of this section
presents functions Jb for b ∈ {(P )Fl,Rle,Delta, (P )For, (P )Dict,Pconst}.
This description is rather technical and not interested reader may skip to Sect. 6.

Procedure. SelectOptimalCompressionPlan(D)
Input: D
Result: Plan

1 P’ = P’(D) ; /* select reduced subset of P after using static planner

and hints elimination */

2 min size = size of data D;
3 p∗ = ∅;
4 for (t, b, h) = p in P ′(D) do
5 D’ = t(D);
6 if Jb(h,D

′) > min size then
7 min size = Jb(h,D

′);
8 p∗ = p;

9 end

10 end
11 return p∗, p∗ optimal parameters;

Table 2. Symbols used in the definition of parametrization optimization

Symbol Description

D Dataset

#D Dataset length

min(D) mind∈D d

tsub(m,D) Subtract m from each d ∈ D

Bdict Number of bits of type used to encode dictionary keys

Bbase Number of bits of base type (i.e. 8 bits, 16 bits, 32 bits, 64 bits)

bindex(D) The minimum number of bits required to store any number between 0
and #D

bminD) The minimum number of bits required to store any value d ∈ D

cin(j,D) Compressed data size (in bits) of patch index when using j bits Fl
coding to compress data D

cre(j,D) Compressed data size (in bits) of remainders values when using j bits
Fl coding to compress data D
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5.2 Notation

Most of the notation is gathered in Table 2. For example, Bdict represents number
of bits of type that is used to encode dictionary keys and Bbase number of bits
of base type (i.e. 8 bits, 16 bits, 32 bits, 64 bits). Please note that in order to
simplify the following formulas notation we deliberately omitted the fact that
the resulting data should be aligned to a byte.

5.3 Optimal Parametrization and Compression Size
Estimation for (P)FL and (P)FOR

For algorithms (P)Fl and (P)For it is crucial to determine the optimal number
of bits needed to compress data D. To estimate size of data compressed with
(P)Fl and (P)For algorithms we use Bit histogram statistic. Let us define Bit
histogram as sbit(j,D) = #{d ∈ D : j bits are sufficient to write d} for 1 ≤ j ≤
32 l. It is implemented on GPU using double buffering (registers and shared
memory) parallel histogram scheme (Fig. 6).

Now, let bmin be the minimum number of bits required to store any value
d ∈ D and let bindex(D) be the minimum number of bits required to store any
number between 0 and #D, i.e.

bmin(D) := max
1≤j≤32

{j : sbit(j,D) 	= 0}, (2)

bindex(D) := �log2 #D�. (3)

Consider a compression plan p = (t,Fl, h) ∈ P ′, i.e. a plan, where base
compression algorithm b is set to Fl. Since Fl algorithm uses exactly bmin(D)
bits to compress each value in D, thus estimated compression size equals to

JFL(h,D) := bmin(D) · #D, (4)

PFL

PFOR

FL

FOR

[FL,FL]

[FL ]0/,

F,0/[ L]

]0/,0/[

Fig. 6. Pfor, For, Pfl and Fl base algorithms and a possible composition with
auxiliary algorithms.

(in case of compression plans with b = Fl, helper algorithms are set to h = ∅).
Clearly,

jFL := bmin(D) (5)

is the optimal parameter for Fl.
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Let now p = (t,For, h) ∈ P ′. The estimation differs from the previous case,
as now a transformation must be applied to data D. Let us define

tsub(m,D) := {di − m : di ∈ D}, (6)

which subtracts the value m from all values d ∈ D. To estimate the size of data
after applying a compression plan p = (t,For, h), we use

JFOR(h,D) := JFL(h, tsub(min(D),D)), (7)

i.e. the reference value here is min(D) (in case of compression plans with b =
For, helper algorithms are again set to h = ∅). Similarly to the previous case

bmin(tsub(min(D),D)) (8)

is the optimal parameter for For.
Before we consider the cases of patching algorithms in compression plans, we

need to define helper functions cin and cre:

cin(hin,D) :=

{
bindex(D) if hin = FL,

Bbase otherwise,
(9)

cre(j, hre,D) :=

{
(bmin(D) − j) if hre = FL,

Bbase otherwise.
(10)

The returned values depend on the value of (hin, hre) = h ∈ {Fl, ∅}2, which
indicates whether a helper compression algorithm is used or not. If hin = Fl,
then cin returns the number of bits needed to store each element in position array
and if hre = Fl, then cre returns the number of bits needed to store remainders
values (i.e. the original value−j bits). Otherwise, in both cases Bbase is returned,
i.e. number of bits needed to represent base type.

Also, let cout(j,D) be the number of outliers generated when using j bits as
base bit encoding, defined as:

cout(j,D) =
32∑

l=j+1

sbit(l,D). (11)

Next, let us define a function that returns the estimated compression size for
compression plan p = (t,Pfl, h), depending on number of bits j used to encode
the values:

gPFL(j, h,D) := #D · j + cout(j,D) · (cin(hi,D) + cre(j, hr,D)), (12)

where h = (hin, hre). The number of used bits j, determines the number of
outliers, as each value that needs more then j bits to be written, will be treated as
an outlier. Having said that, the returned value depends on the base compression
array size (i.e. #D · j), on the number of outliers generated (i.e. cout(j,D)) and
the way how they will be stored (i.e. cin(hi,D) + cre(j, hr,D)).
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The function JPfl given by

JPFL(h,D) := min
1≤j≤32

gPFL(j, h,D) (13)

returns the estimated compression size for compression plan p = (t,Pfl, h).
Notice that the smaller j is, the smaller the size of the base compression array
becomes and the more outliers we have. This is why we need to minimize gPFL

over j. We call

jPFL := argmin JPFL(h,D) := min
1≤j≤32

{j : gPFL(j, h,D) = JPFL(h,D)} (14)

the optimal parameter for JPFL, helper algorithms h and data D.
Similarly, for a compression plan p = (t,Pfor, h) we define

JPFOR(h,D) := JPFL(h, tsub(min(D),D)), (15)

which returns the estimated compression size. Then

jPFOR := argmin JPFL(h, tsub(min(D),D)) (16)

is the optimal parameter for JPFOR, helper algorithms h and data D.

5.4 Optimal Parametrization and Compression Size
Estimation for (P)DICT

Pdict works on dictionary counter array and uses it to build an optimal dic-
tionary with exceptions (minimizing estimated compression size after applying
Pdict algorithm and using Fl helper algorithms). Therefore, Pdict generates
three output arrays: base, indexes and remainders while Dict generates only
two: base and indexes from which indexes may be further compressed with Fl.
For Pdict at least base and remainders arrays must be compressed using Fl
to improve compression ratio, compared to similar compression plan but with
Dict as base algorithm. Indexes array compression is optional.

To estimate size of data compressed with (P)Dict algorithm we use Dictio-
nary counter statistic. Let us define sdict(a,D) = #{i ∈ I : a = di ∈ D} as a
Dictionary counter. As a side effect this generates a dictionary for further usage
if needed. Implemented on GPU with sort and reduction operations. Mostly
constructed using thrust library.

Now, let dkeys be a set of unique values in D, i.e.

dkeys(D) := {a : sdict(a)(D) 	= 0, a ∈ D} (17)

and let dtop(k,D) ⊆ dkeys(D) be such that #dtop(k,D) = k and for a ∈
dtop(k,D), b /∈ dtop(k, topD) we have sdict(a) ≥ sdict(b) (if there are more sets
satisfying this condition, we pick one of them) (Fig. 7).

Let dhead returns size of dictionary header array (i.e. array that stores sorted
dkeys(D))

dhead(D) := Bdict · #dkeys(D). (18)
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PDICT

DICT

[FL,FL,FL]

[FL F,0/, L]

[FL]

]0/[

Fig. 7. Pdict and Dict base algorithms and possible composition with auxiliary algo-
rithms.

Let us define helper functions din, dba and dre:

dba(j, hba,D) :=

{
j if hba = FL,

Bdict otherwise,
(19)

din(hin,D) := cin(hin,D) (20)

dre(j, hre,D) :=

{
(bindex(#dkeys(D)) − j) if hre = FL,

Bdict otherwise.
(21)

The returned values depend on the value of h ∈ {Fl, ∅}3, which indicates
whether a helper compression algorithm is used or not. If hba = Fl, then dba
returns the number of bits needed to store each element in base compression
array position array, if hin = Fl returns the number of bits needed to store each
element in position (this is exactly the same as cin in the previous section) and
if hre = Fl, then dre returns the number of bits needed to store remainders’
values (i.e. the original value − j bits).

Consider a compression plan p = (t,Dict, h) ∈ P ′, i.e. a plan, where base
compression algorithm b is set toDict. Then estimated compression size equals to

JDICT (h,D) := dba(h,D) · #D + dhead(D), (22)

and includes size needed to store auxiliary dictionary table. Also in case of
compression plans with b = Dict, helper algorithms may appear so this is also
included.

The following formulas return estimated compression size for compression
plan p = (t,Pdict, h):

dout(i,D) :=
∑

a/∈dtop(2i,D)

sdict(a,D) (23)

GPdict(i, h,D) := dba(i, hba,D) · #D + dhead(D)

+ dout(i,D) ·
(
din(hin,D) + dre(i, hre,D)

)
(24)

JPdict(h,D) := min
1≤i≤log2Bdict

GPdict(i, h,D) (25)

where b = Pdict, h = (hb, hin, hre) and at least hba = Fl, hre = Fl (i.e.
any compression plan in this form (t,Pdict, (Fl, hin,Fl))). Without above
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assumption Pdict will not improve compression ratio compared to Dict. We
call

jPDICT := argmin JPdict(h,D) := min
1≤i≤log2Bdict

{i : gDICT (i, h,D) = JPdict(h,D)}
(26)

the optimal parameter for JPdict, helper algorithms h and data D.

5.5 Optimal Parametrization and Compression Size
Estimation for RLE and PCONST

To estimate size of data compressed with Rle algorithm we use Run length
counter. Let us define srle(D) = (ar, av) where ar and av are run-length and
values arrays generated from data D, respectively. This is implemented on GPU
with reduction operation on key-value pairs.

Let us define a function that returns the estimated compression size for com-
pression plan p = (t, RLE, h):

JRle(h,D) := Bbase · #ar + Bbase · #av

where (ar, av) = srle(D). Now, additional helper algorithms may be used on ar
and av arrays, this however requires additional statistic generation step (Fig. 8).

PCONST

RLE

[FL,FL]

]0/,0/[

[FOR,FOR]

[DICT,DICT]

Fig. 8. Rle and Pconst base algorithms and possible composition with auxiliary
algorithms.

Lastly, the Pconst algorithm, which in nature reminds Rle however, achiev-
ing the objective somewhat differently. In this algorithm a dominant value
dtop(1,D) is selected from dataset D (and stored in header), all other values
are stored as outliers in PATCH arrays (index and remainders arrays). Fol-
lowing formula returns estimated compression size for compression plan p =
(t,Pconst, h):

JPCONST (h,D) := Bbase +
∑

a/∈dtop(1,D)

sdict(a,D) · (cin(hin, D) + cre(0, hre, D)).

(27)

JPCONST (h,D) := Bbase + dout(0, D) · sdict(a,D) · (cin(hin, D) + cre(0, hre, D)).

(28)

Note that, we do not divide values when creating remainders array, instead we
whole value (without dividing). This is because we only create PATCH arrays
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in this algorithm. Decompression involves creation of constant data set using
dominant value and applying PATCH array afterwards.2

6 Bi-objective Compression Plan Selection

The lightweight compression algorithms, are primarily designed for applications
favouring compression/decompression speed over compression ratio. Unfortu-
nately decompression of cascaded compression plan is usually more computa-
tionally demanding then decoding a simple compression scheme. We are facing
a dilemma, how much of the processing speed may be sacrificed to gain better
compression ratio.

Since there is no clear right answer, we propose optimization model which
is designed to support compression plan selection in the presence of trade-offs
between decompression speed and compression ratio.

Section 5 describes how to estimate compressed data size according to a pre-
dicted compression plan. In Sect. 6.2 we will construct a function which estimates
decompression speed of cascaded compression plan. Finally, in Sect. 6.3 we will
discuss how to combine those two objectives.

6.1 Notation

Table 3 contains a summary of the notation used in this section. Assume a
set of units U , a decompression plan set P and a dataset D. The goal is to
choose such a compression plan that gives good compression ratio and yet
allows fast decompression (i.e. compressed data transfer time + decompression
time ≥decompressed data transfer time).

As a result Cascaded Compression Planner returns set P ′ ⊂ P . Let us define:

ft(p′
i,D) = T (u, p′

i,D), (29)
fr(p′

i,D) = J(p′
i,D) (30)

where p′
i ∈ P ′, and u is device on which time measurements where done.

6.2 Decompression Time Estimation

Compression ratio and decompression time are the input parameters to bi-
objective compression optimization. Therefore, all candidate compression plans
need to have their decompression time estimated. In this, section we will discuss
the problem of estimation of decompression time for compression plans.

Estimation of decompression time for the candidate compression plan is cal-
culated based on the estimated decompression time for each algorithm contained
in in the plan. Recall that P ′(D) � p = (t, b, h) is a cascaded compression plan,

2 Note that this is a certain simplification, i.e. instead cre(0, hre, D̄) where D̄ is dataset
after removing all instances of dominant value.
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Table 3. Symbols used in the definition of our optimisation model

Symbol Description

U = {u1, u2, . . . un} Set of computational units available to process data

D Dataset

pi ∈ P Decompression plan pi from set of decompression plans P

T (u, p,D) Estimated run time of the decompression plan p using device u
on the data D

ft Estimated maximal run time for decompression plan

fr Estimated compression ratio

fb Estimated decompression run time and compression ratio
bi-objective scalarization

where t ∈ T , b ∈ B, h ∈ H are transformation, base and helper algorithms,
respectively. One can treat t, h as vectors of operations to perform, where oper-
ations are lightweight compression algorithms or empty operation ∅.

Let us denote by T (p,D) the estimated decompression execution time for
compression plan p and data D:

T (p,D) :=
∑

i=0,1

mti(#D) + Tb(h,D). (31)

In the next paragraphs we describe the details of time estimation functions
for different lightweight compression algorithms. Not interested readers may skip
to the Sect. 6.3 not loosing the main contribution of our work.

Decompression Time Estimation Details. Slightly abusing notation, by
m∅(l) := 0 and m∅(j, l) := 0 we denote execution time of empty operation used
in transform and helper algorithms sections, respectively.

Next, let us define functions which return estimated decompression time for
following algorithms Scale, Delta, Fl, For and Dict. Depending on algo-
rithm type estimation functions require different arguments. We have mScale(l),
mDelta(l), mFl(j, l), mFor(j, l), mDict(d, l), respectively, where l stands for data
size, j is the bit length used in Fl and For algorithms, d is the size of used
dictionary.

Now, we define decompression estimation functions Tb for compression plan
p = (t, b, h) and data D. For b ∈ {Fl,For,Dict} we have:

TFl(h,D) := mFl(jFl,#D) (32)
TFor(h,D) := mFor(jFor,#D) (33)
TDict(h,D) := mDict(#dkeys(D),#D) + mhba

(bmin(dkeys(D)),#D), (34)

where jFL, jFOR are number of bit used for base encoding (see Eqs. 5 and 8),
dkeys and bmin are defined in Eqs. 17 and 2, respectively, hba is a helper algorithm
for DICT.
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For b ∈ {Pfl,Pfor} we need to define auxiliary functions first. Recall that
for b ∈ {Pfl,Pfor}, helper algorithms are of the following form h = (hin, hre)
and functions cin, cre which return the number of necessary bits for helper algo-
rithms are given by Eqs. 9 and 10. Let

mPFL(j, o, h,D) := mhin

(
cin(hin,D), o

)
+ mhre

(
cre(j, hre,D), o

)
, (35)

mPFOR(j, h,D) := mPFL(j, h,D) (36)

where j is the number of bits used for base encoding, o is the number of outliers
and D represents data set.

Similarly for b = Pdict, helper algorithms are of the following form h =
(hba, hin, hre) and functions dba, din, dre which return the number of necessary
bits for helper algorithms are given by Eqs. 19, 20 and 21. Let

mPDICT (j, o, h,D) := mhba

(
dba(j, hba,D), o

)

+ mhin

(
din(hin,D), o

)
+ mhre

(
dre(j, hre,D), o

)
(37)

where j is the number of bits used for base encoding, o is the number of outliers
and D represents data set.

Then for any plan where b ∈ {PFL,PFOR,PDICT} we define:

TPfl(h,D) := mFl(jPfl,#D) + mPFL(jPFL, cout(j,D), h,D), (38)
TPfor(h,D) := mFor(jPfor,#D) + mPFOR(jPFOR, cout(j,D), h,D), (39)

TPdict(h,D) := mDict(2jPdict ,#D) + mPDICT (jPDICT , dout(j,D), h,D) (40)

where jPFL, jPfor, jPdict are optimal parameters for PFL, PFOR and PDICT
(see Eqs. 14, 16 and 26), cout and dout return the number of a outliers (see Eqs. 11
and 23).

Similarly for PCONST, define

TPconst(h,D) := mCONST (#D) + mPFL(0, dout(0,D), h,D). (41)

Decompression time of RLE depends only on data length [13], let function
mRle(l) return estimated decompression time for RLE:

TRle(h,D) := mRLE(D) + decompression time of helpers algorithms used.
(42)

6.3 Bi-objective Compression Planner

We will use a priori articulation of preference approach which is often applied
to multi-objective optimization problems. It may be realized as the scalarization
of objectives, i.e., all objective functions are combined to form a single function.
In this work we will use weighted product method, where weights express user
preference [16]. Let us define:

fb(u, p,D) = fr(p,D)wr · ft(u, p,D)wt
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where wt and wc are weights which reflect how important cost and time is (the
bigger the weight the more important the feature). It is worth to mention that
a special case with wt = wr = 1 (i.e., without any preferences) is equivalent to
Nash arbitration method (or objective product method) [16].

We can also extend this to handle a set of devices U . This allows us to consider
compression plans taking into account all devices on which the data may be
decompressed. Let us define function fm: fm(p,D) = (maxuk∈U tt(uk, p,D))wt +
fr(p,D)wr this function optimizes for the slowest device for each plan.

7 Preliminary Runtime Results

In this section we discuss effectiveness of the dynamic compression planner in
the context of the resulting compression ratio. To fully evaluate the proposed
compression framework, we still need to perform more experiments regarding
the context of decompression speed for many other data sets and devices. The
detailed processing time analysis including threads instruction throughput and
effectively achieved memory bandwidth needs a lot of runtime trials and will be
addressed in the next paper.

We compared effectiveness of a dynamic compression planner and a single
static plan within the same CF (Column Family – portion of data rolled in a
database) by running the prototype system on samples from a set of network
servers monitoring. The data included memory usage, the number of exceptions
reported, services occupancy time or CPU load. Data covered a sample of 20 days
of constant monitoring and contained about 91 K data points in a few time series
being a sample from a telecommunication monitoring system.

We used the following equipment: Nvidia R© Tesla C2070 (CC 2.0) with 2687 MB;
2 x Six-Core processor AMD R© OpteronTM with 31 GB RAM, Intel R© RAID Con-
troller RS2BL040 set in RAID 5, 4 drives Seagate R© Constellation ES ST2000NM0011

2000 GB, Linux kernel 2.6.38–11 with the CUDA driver version 5.0.

7.1 Evaluation of the Compression Planner

The evaluation was divided into two parts. The first measured efficiency of the
dynamic planner and was intended to prove the basic contribution of this work.
The second checked efficiency of GPU based statistics evaluation when compared
to CPU and proved contribution concerning time efficiency.

7.2 Dynamic Compression Planner Evaluation

Figure 9 shows compression ratio (original size/compressed size) using several
static plans (one compression plan for the whole column family) and a dynamic
plan (dynamically chosen compression plan for different metrics, tags and time
ranges). In case of timestamps, five static plans were generated using Delta
algorithm combined with five base compression methods (and helper compression
algorithms if suitable). Similarly, for data values five plans where selected except
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Fig. 9. Efficiency of the prototype dynamic compression system working on GPU for
sample time series. Compression ratio (original size/compressed size) for static (*SP)
and dynamic (*DP) plans. I stands for indices and V for values.

Scale was used instead of Delta. We may observe, that for timestamp arrays,
compression ratio of a dynamic compression plan was equivalent to best static
compression plan. This situation appeared because all time series were evenly
sampled in this case. Therefore one static plan for all metrics generated the same
results as a dynamic plan, selected for each time series separately. Note that in
real systems, some measurements may be event-driven and thus dynamic plan
could generate better results.

For data values, a dynamic compression plan almost doubles compression
ratio of the best static compression plan which means that dynamic tuning
was much better than selection of one static plan for the whole buffered column
family. Obviously, this is heavily data dependant, but as a general rule a dynamic
compression plan will never generate a compression plan worse than the best
static plan (as it always minimizes locally). Additionally hints system may be
used to enforce a static compression plan for cases when a dynamically generated
compression plan does not produce satisfactory profits.

Fig. 10. Statistics calculation speed-up on sample data with 8 millions values compared
to single threaded GPU. This includes GPU memory transfer (higher is better).
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7.3 Evaluation of Statistics Calculations and Bandwidth
of Compression Methods on GPU

In Fig. 10 on the right GPU statistic generator is compared to similar CPU
version (implemented as a single thread). Generated statistics are then used to
support the compression planner selection. A significant speed-up of factors from
10 to 70 was gained thus usage of GPU platform in statistics calculation step is
justified.

Furthermore, GPU platform allows to archive high compression bandwidth
for lightweight compression schemes (see Table 4 and results from [13]). We con-
clude that GPU may be used just as a kind of compression coprocessor even if
there are no other computations done on a GPU side.

Table 4. Achieved bandwidth of pure compression methods (no IO).

Algorithm Delta Scale (P)Dict (P)For (P)Fl Rle Pconst

GB/s 28.875 41.134 6.924 9.124 9.375 5.005 2.147

8 Conclusions and Future Research

Monitoring of complex computer infrastructure is already an important indus-
trial problem. Time series database system try to address many of the prob-
lems which may appear, like: scalability, robustness, safety and availability. Our
research focuses on a time series database system supported by GPU coproces-
sors which may be used for many purposes, from data compression to analysis
and aggregation.

In this paper, touching lightweight compression methods we successfully
extended results from [13,19]. We not only designed and implemented new
patched compression algorithms on GPU (i.e. Patched Dict, Patched Const.
and Patched Fixed Length) but also presented a dynamic compression planner.
Our novel prototype system was adapted to time series compression in a NoSQL
database. The compression method is composed of several nested algorithms.

Furthermore our compression planner uses dynamic data statistics calculated
on the fly using a GPU device for the best possible lightweight cascaded com-
pression plan selection. We believe that the resulting compression ratios and
algorithms bandwidth (please refer to Table 4) combined with ultra fast decom-
pression [13,19] on GPU are especially attractive for time series databases.

Our future work will concentrate on query optimization in hybrid CPU/GPU
environment, query execution on partially compressed data and extending
dynamic compression planner by introducing additional costs factors (i.e. decom-
pression execution time [13] or potential of query execution on compressed data)
leading to a full-flagged time series database system.
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Abstract. Designing a Parallel Relational Data Warehouse (PRDW)
consists of a set of tasks: (i) choosing the hardware architecture; (ii) frag-
menting the data warehouse schema; (iii) allocating the generated frag-
ments; (iv) replicating fragments in order to ensure high performance;
(v) defining the strategies for load balancing and query processing. The
major drawback of this life-cycle is the fact that it does not consider the
inter-dependency among sub-problems related to the design of PRDW,
and it makes use of heterogeneous metrics to evaluate the “quality” of
the final design. In previous research efforts, we introduced an analytical
cost model for parallel OLAP query processing in cluster environments.
In a second experience, we have taken into account the inter-dependency
existing between fragmentation and allocation. In this paper, we propose
a novel methodology, called F&A&R, which further extends previous
results, and defines an approach where the main PRDW design phases
(i.e., fragmentation, allocation, and replication) are performed simul-
taneously, in a global fashion. In particular, our approach determines
whether the fragmentation pattern currently generated is relevant to the
allocation process or not. An original method of supporting data replica-
tion, based on fuzzy k-means clustering, is also proposed and successfully
integrated within the whole design framework. Finally, we experimen-
tally assessed the performance of F&A&R against a well-known data
warehouse benchmark, with very promising results.

Keywords: Data warehouse · Distributed environment · Fragmenta-
tion · Allocation · Replication · Load balancing · Analytical cost model ·
Design methodology

1 Introduction

Today volumes of data are increasing more and more due to the rise of new
infrastructures, such as Clouds [1], and new devices, such as sensors [22]. On
the other hand, social networks (e.g., Facebook, Twitter and LinkedIn) collect
c© Springer-Verlag Berlin Heidelberg 2014
A. Hameurlain et al. (Eds.): TLDKS XV, LNCS 8920, pp. 64–101, 2014.
DOI: 10.1007/978-3-662-45761-0 3
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billions of data bytes, and predicting the behavior of users in order to improve
their services via analyzing so-collected large data volumes is becoming increas-
ingly hard. As a consequence, traditional Data Warehouses (DW) have become
obsolete and Parallel Relational Data Warehouses (PRDW), instead, have been
proposed as a robust and scalable platform for storing, processing and analyzing
large volumes of data within the layers of modern analytics infrastructures. Sim-
ilarly, a large number of software companies are positioned around the market
with the goal of providing Business Intelligence solutions on top of large volumes
of data, such as Teradata1, Netezza2, and so forth. In line with these major
trends, Small and Medium-sized Enterprises (SME) are defining new classes of
jobs dealing with so-called Big Data such as Data Architect, Data Visualizer,
Data Analyst etc., thus exposing a clear commercial demand. This despite Big
Data software platforms still remain costly for SME in terms of license fees and
costs of installation and maintenance (stirred-up by the current economic crisis).

Under a general view, designing a PRDW comprises the following main steps
(see Fig. 1): (1) choosing the hardware architecture, (2) partitioning the target
DW, (3) allocating the so-generated fragments over available nodes, (4) repli-
cating fragments for efficiency purposes, (5) defining efficient query processing
strategies, (6) defining efficient load balancing strategies. Currently, several types
of hardware architecture are available, such as Shared-Nothing, Shared-Disk,
massively parallel processors and Clusters of workstations. The Shared-Nothing
architecture has been proposed by DeWitt [31] as the reference architecture for
supporting high-performance data warehouses modeled in terms of relational
star schemas. As the choice of the hardware architecture is influenced by price,
high-performance features, extensibility and data availability [12], Clusters of
workstations are very often used as a valid alternative to Shared-Nothing archi-
tectures (e.g., [5]).

According to this low-cost technology solution, the target DW is divided
into disjoint units called partitions that do not introduce any loss or addition
of information with respect to the corresponding combination of partitions kept
in the original DW. Data partitioning can be done horizontally or vertically,
alternatively. Horizontal partitioning is essentially used to design PRDW. Data
allocation consists in placing generated fragments over nodes of a reference par-
allel machine. This allocation may be either redundant (with replication) or non
redundant (without replication). Once fragments are placed, global queries are
executed over the processing nodes according to parallel computing paradigms.

In more detail, parallel query processing on top of a PRDW (a critical task
within the family of parallel computing tasks) includes the following phases:
(i) rewriting the global query according to the fixed DW fragmentation schema;
(ii) scheduling the evaluation of so-generated sub-queries over the parallel
machine according to a suitable allocation schema. Generating and evaluat-
ing sub-queries such that the query workload is evenly balanced across all the
processing nodes is the most difficult task in the parallel processing above.
1 http://www.teradata.com/.
2 www.ibm.com/software/fr/data/netezza/.

http://www.teradata.com/
www.ibm.com/software/fr/data/netezza/
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Fig. 1. Life-cycle of the PRDW design process

Indeed, load imbalance can be caused by one or possibly a combination of the
following two phenomena: (i) data skew, which refers to the situation where data
are unevenly distributed across the local memories of different processors – it usu-
ally occurs when the current data partitioning function makes use of attributes
whose data value distributions are non-Uniform; (ii) processing skew, which is
caused by the unpredictable nature of the processing itself and it may be prop-
agated by the data skew at the beginning – it refers to the situation where
a significant part of the workload is executed by a few processors while other
processors are relatively idle.

Load balancing is usually performed by means of the so-called multi-
reordering process. According to this process, multiple processors that have small
average loads are selected in order to participate to the load balancing. Then,
each free processor is moved as to becoming adjacent (according to the node net-
work topology) to a high-loaded processor, the load of which is then shared with
the (newly-introduced) free processor. This so-determined data migration task
may cause high communication costs, which overall lower the global throughput
of the PRDW architecture. From active literature (e.g., [2]), it is well-understood
that communication cost is a factor that must be mastered depending on the
available infrastructure, and that most of data access must be local (for effi-
ciency purposes). Therefore, data replication has become a strict requirement of
PRDW architectures in order to guarantee avoiding bottlenecks and reducing
communication costs. To this end, replication aims at (i) ensuring data avail-
ability and fault tolerance, (ii) improving data locality by following the criterion
of placing a job at the same node where its data are located, and (iii) achieving
load balancing by distributing work across data replicas.

On the basis of the guidelines above, here we assert that PRDW design
can be modeled as the following tuple: 〈Arch,DP,DA,DR,LB〉, where Arch
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denotes the parallel architecture, DP the data partitioning schema, DA the data
allocation schema, DR the data replication schema and LB the load balancing
scheme, respectively. Unfortunately, each one of the sub-tended problem of the
main PRDW design problem is NP-hard [2,4,53].

1.1 Contributions of this Research

Under a broader vision, the PRDW design problem can be thought as a set
of services offered by actors which communicate and cooperate among them
in order to obtain a high throughput in the whole PRDW architecture. In our
research, by exploiting this metaphor, we particularly introduce five actors: Par-
titioner, Allocator, Replicator, LoadBalancer, ParallelQueryProcessor, each one
focusing on a particular PRDW design aspect. By inspecting the active litera-
ture, comprehensive surveys of state-of-the-art research on PRDW design issues
exist, but still researchers focus the attention on PRDW issues in an isolated
manner, without considering the inter-dependency among the different issues.
In fact, some focus on the data partitioning problem (e.g., [48,55,58]), others
on the data allocation problem (e.g., [2,4,47]), or the data replication problem
(e.g., [18,39,44]), or the parallel query processing problem (e.g., [3,42,43]). As
a consequence, two main limitations may penalize the PRDW design phase: (i)
neglecting the inter-dependency among the different-but-related PRDW design
issues, and (ii) adopting heterogeneous metrics in order to identify the “quality”
of the final solution (indeed, each one of the process led by the five actors above
is evaluated according to a different metrics to this end). As regards related
efforts, few initiatives have investigated the inherent dependencies of the dif-
ferent aspects of the main PRDW design problem. These approaches integrate
the fragmentation and allocation processes under the name of “data placement”
[19,29]. Recently, industrialists and academics make use of parallel processing as
a cost model to identify the quality of data placement schema [6]. On the other
hand, Stöhr et al. are the pioneers who re-visited the PRDW design problem on
a parallel shared-disk machine.

In order to fulfill the limitations of the main PRDW design problem high-
lighted above, in this paper we propose a novel method for designing PRDW
over parallel machines, where the basic idea consists in considering the interac-
tion among the different aspects of the main PRDW design problem in order to
use a unique cost model that smoothly unifies all phases, hence achieving a global
approach (see Fig. 2). The final goal consists in packaging the PRDW design
issues as a unified process that cements PRDW design phases and increases the
“omniscience” of the actors. Since data partitioning plays an important role
in the whole PRDW design, we consider it as the first important step in this
design. According to our design approach, during the fragmentation phase, the
Partitioner should consider that the target RDW to be partitioned as to make
it “good” for Allocator, Replicator, LoadBalancer and ParallelQueryProcessor.
The design quality is finally measured by the unified cost model. In other words,
each potential fragmentation solution is tested for allocation, replication, load
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balancing, and query processing, respectively. The solution having the minimum
cost is finally selected for the final PRDW design schema to be selected.

Fig. 2. Global approach to PRDW design

The main goal of this paper is to propose a cost model flexible enough to
(i) provide a generic way for designing PRDW, by also exploiting probabilistic
methods, (ii) reduce design cycle efforts, (iii) support of quick trade-off for eval-
uation purposes, (iv) integration of different PRDW design teams, (v) visibility
and transparency of the different design phases. Indeed, coupling high flexibility
and support for a wide number of functionalities as we argue in our proposal
can easily introduce high complexity. To reduce this complexity, less-expensive
algorithms are proposed and discussed in this paper.

The paradigm above converges in the PRDW design methodology F&A&R,
which follows and extends our previous proposals [6,10,11]. Summarizing, F&A&
R is a composite methodology where the main phases of PRDW design, i.e.
Fragmentation, Allocation and Replication, are performed simultaneously instead
that in an isolated manner, like in traditional approaches. This conveys in a num-
ber of methodological and system-oriented advantages as well as practical achieve-
ments that we prove in this paper. Another relevant contribution of this research
is represented by the special F&A&R query processing framework that defines an
innovative approach for effectively and efficiently supporting DW query processing
(e.g., OLAP-style) over distributed fragments that relies on a meaningful (query)
cost model.

1.2 Paper Organization

The rest of the paper is organized as follows. In Sect. 2, we provide an overview
of related work. Section 3 discusses four possible architectures for designing
PRDW, highlighting benefits and limitations for each one. In Sect. 4, we pro-
vide a rigorous formalization of the PRDW problem according to our notation
described in Sect. 1. Section 5 contains the details of the PRDW design methodol-
ogy F&A&R, which represents the main contribution of our research. In Sect. 6,
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we provide our query processing approach embedded in F&A&R, along with
its related cost model. Section 7 is focused on the experimental evaluation and
analysis of F&A&R, which clearly demonstrates the benefits deriving from our
proposal. Finally, in Sect. 8, we derive conclusions of our research, and outline
issues for future work.

2 Related Work

From active literature, we are not aware of any prior work that addresses the
problem studied in this paper. That said, there is a tremendous amount of work,
in both Parallel Data Warehouses and Replicated Data Partitioning. Both rep-
resent the background of our research, hence, in this Section, we survey relevant
works in these areas. In more detail, PRDW design is related to four issues: data
fragmentation, data allocation, data replication and load balancing.

Few studies on the issue of designing parallel data warehouses exist in liter-
ature. Noticeable ones are reported and discussed in the following.

2.1 Data Fragmentation

Fragmentation consists on the process oriented to decompose access objects (e.g.,
tables, materialized views, indexes) into a set of disjoint partitions. Fragmenta-
tion was introduced in the late 70s and early of 80s [16] as a logic design technique
of traditional, distributed [28,49,51] and parallel [30] databases. With the devel-
opment of Data Warehouses, fragmentation has become an optimization problem
focusing on efficiently representing and managing largest structures in the con-
text of physical design phase. In this Section, we outline main approaches in this
scientific area.

Zilio et al. [64] focus on data partitioning issues of Shared-Nothing databases.
More specifically, they addresses the problem of effectively selecting partition-
ing attributes, via proposing two specific algorithms: Independent-Relation and
Combined-Relation, which differently exploit structural properties of attributes.

Stöhr et al. [58] propose an approach called Multidimensional Hierarchical
Fragmentation for constructing and managing data warehouses on a disk-shared
parallel machine having K disks. The fragmentation process consists in virtu-
ally partitioning each dimension table using the interval mode on attributes
belonging to the lower levels of dimensional hierarchies, and consequentially
partitioning the fact table on the basis of so-partitioned dimension tables. To
speed-up queries, bitmap join indexes are selected via using attributes of dimen-
sion tables that belong to higher levels of dimensional hierarchies. To ensure a
high parallelism degree and efficient load balancing, a round-robin allocation of
fact fragments and associated bitmap indexes over the K disks is exploited.

Cuzzocrea et al. [23] propose an approach for fragmenting XML data ware-
houses characterized by three main steps: (i) extraction of selection predicates
from the target query-workload; (ii) predicate clustering via the well-known
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K-Means clustering algorithm; (iii) fragment construction on the basis of so-
determined predicate clusters.

Boukhalfa et al. [8] propose a methodology and suitable algorithms (namely:
genetic algorithm, Hill climbing, greedy algorithms) for partitioning relational
data warehouses. Here, the fact table is partitioned on the basis of the fragmen-
tation schemes of dimension tables. The criterion proposed to this end argues
that each dimension table involved in any selection predicate is a candidate to
referentially partition the fact table.

Bellatreche et al. [5] propose an innovative design methodology for Shared-
Nothing Data Warehouses where the fragmentation and the allocation processes
are done simultaneously. Here, the quality of the generated fragmentation schema
is decided on the basis of the allocation process. Authors formalize the problem in
terms of an optimization problem, and genetic algorithms are exploited to solve
it. In [6,10,11], authors propose a comprehensive methodology for designing and
querying PRDW over database clusters, called F&A (the precursor of F&A&R).
F&A assumes that cluster nodes are heterogeneous in processing power and
storage capacity, and fragmentation and allocation phases are (again) performed
in a simultaneous manner. Finally, in [6], the effectiveness of F&A on a real-life
parallel database machine (Teradata DBMS) is proven experimentally.

Nehme et al. [48] propose a tool that recommends the best partitioning con-
figuration in distributed environments, given the input data warehouse and a
reference query workload. The proposed tool recommends the set of tables to
be partitioned in order to minimize the overall cost of the workload. Also, the
proposed technique is embedded within the parallel query optimizer directly.

Pavlo et al. [53] propose a new approach for making automatic the partition-
ing of databases. To this end, they propose a cost model allowing us to estimate
the analytical execution cost of an input query workload on the basis of the
selected database partitioning schema. In more details, database design schema
selection is based on the exploration of the target search space via graph the-
ory. Experimental evaluation is provided by means of integrating the proposed
approach into an in-memory DBMS.

2.2 Data Allocation

In actual literature, data placement proposal can be classified into two main
classes: (1) papers where data allocation strategies are deployed on top of par-
allel platforms as round-robin, hash placement and range placement; (2) papers
where data allocation strategies are based on attributes and deployed on top of
distributed environments. Here, we describe the main works that have studied
this issue.

Furtado et al. discuss partitioning strategies for node-partitioned data ware-
houses. In [33], authors propose a strategy that partitions the fact table on
the basis of the larger dimension tables. Each large dimension table is hash-
partitioned on its primary keys, while small dimension tables are replicated over
all the processing nodes. The so-generated fragments are allocated in round-
robin and random ways. In [34,35], authors exploit data replication for dynamic
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load-balancing while data availability is also considered as a constraint of the
problem. Here, instead of node partitions, the target data set is divided into a
much larger set of chunks and those are in turn divided into nodes in alternative
ways that confer the desired load and availability balancing characteristics.

Karimi Adl et al. [41] use an ant colony optimization approach to solve the
data allocation problem. Their goal is to design an effective data allocation
schema which minimizes the total execution time of the workload and satisfied
the storage constraint. Experimental results show that the proposed algorithm
is capable of producing near-optimal solutions in a reasonable time.

Sarathy et al. [57] consider the fragment allocation problem as an integer
non-linear problem with constraints, which has been already proved to be NP-
hard. This formalization is further extended by [47] via adding more constraints
as storage and power processing and, at the same time, achieving a simplified
version of the general problem in terms of an integer programming problem.

Hababeh et al. [37] introduce a model that incorporates group sites in order to
achieve high performance. The objective here is to minimize number of I/Os and
communication cost between sites. A classification method is used to this end,
which consists in grouping clustered sites, as to achieve the first goal of reducing
the cost of communication between sites. After, availability and reliability are
achieved due to the fact that multiple copies of the fragments are allocated.

Maik Thiele et al. [61] focus the attention on data allocation problems for real-
time data warehouses. They consider a mixed workload (selection and update
queries), and two specialized metrics: Quality of Service (QoS) and Quality of
Data (QoD), respectively. The overall problem is formalized as a multi-objective
problem, which has the characteristics of a backpack problem with additional
inequality constraints. This so-formalized problem is finally solved by means of
a linear programming algorithm.

2.3 Data Replication

Data replication is related to two major problems: (1) replica creation and (2)
maintenance of materialized replicas. Our study focuses on the problem of cre-
ating replicas which is strongly influenced by the number of replicas and their
placement. Indeed, the reference Replica placement Problem (RPP) consists in
choosing the best replica placement on the distributed system in order to opti-
mize given performance criteria. The optimal replica placement problem has been
shown to be an NP-Hard problem [62]. Therefore, it is often solved by means of
approximate solutions in a feasible time, and a relevant amount of work has been
devoted to this paradigm in literature. Other solutions are based on hardware
like RAID storage [15], but these are not considered in this research.

On the parallel architectures, Borr [14] proposes a naive approach, called
Mirroring Declustering (MD), which maintains two copies of the same data, a
primary and a backup copy, on two separate nodes, and tries to obtain a “good”
load balancing. Along this line of research, Interleaved Declustering (ID) [60]
argues to split the secondary copy into several partitions that are stored on
disks. A further, interesting solution is represented by the an improved version
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called Chained Declustering (CD), by Hsiao et al. [39], according to which both
the primary and the backup copy are stored on two adjacent nodes.

Finally, as regards distributed platforms, greedy algorithms [17,63], meta-
heuristics [32] and data mining techniques [20] have been proposed in order to
find the optimal placement of replicas or identify the optimal number of replicas
[45] as well.

2.4 Load Balancing

Akal et al. [3] discuss OLAP parallel processing in a database cluster. They pro-
pose a virtual partitioning approach, called Simple Virtual Partitioning (SVP),
which consists in fully replicating a database along a set of sites and break-
ing each query in sub-queries by adding suitable range predicates. Each node
receives a sub-query and is forced to execute over a subset of fragments of the
virtual partition.

Lima et al. [42] improve the SVP approach by addressing the issue of effec-
tively determining the partition size. They introduce a novel approach, called
Adaptive Virtual Partitioning (AVP), which dynamically tunes partition size.
AVP starts by producing suitable sub-queries via adding range predicates over
the virtual partitioning attributes. Each cluster node receives the same para-
meterized query plus a different dimensional range to be processed, and splits
the range into sub-ranges assigned to sub-queries for processing purposes. Then,
AVP tries to raise the range size until there is no performance degradation. Such
proposal is further expanded in [43], where partial replication is used instead then
full database replication.

Phan et al. [54] propose a framework for coordination and optimization of
OLAP processing performance on a cluster database. The main objective here
is to find the optimal load distribution that minimizes the cost of constructing
materialized query tables, and the execution time associated to the sub-workload
of each processing node. However, this solution is complex because it involves
time to build materialized query tables, so that it impacts on the overall query
execution. Indeed, the construction of such tables must consider storage space
allocated to them, the computational power of processing nodes and the size
of the space of all possible combinations of configurations. This problem has
been formalized as a combinatorial problem whose search space is exponential
in the number of queries, materialized query tables and processing nodes. In
the authors’ solution, a genetic algorithm is exploited to select the best matches
among queries and processing nodes, and among materialized query tables and
processing nodes, respectively.

Märtens et al. [46] focus the attention on load balancing strategies for parallel
processing of star schemas equipped by bitmap join indices and deployed on
Shared Disk (SD) architecture. In particular, an integrated scheduling strategy
that simultaneously considers both processors and disks, regarding not only the
total workload on each resource but also the distribution of load over time, is
proposed. Gorla et al. [36] formalize the query allocation problem as a multi-
objective optimization problem, and make use of a genetic algorithm to solve it.
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Another line of research for improving the efficiency of load balancing is
represented by approximation/compression paradigms (e.g., [21,26,27]). In fact,
compressing replicas in some nodes may improve the load distribution as well as
query efficiency.

To summarize, by analyzing research efforts done in the context of PRDW
design, it emerges that most state-of-the-art approaches are mainly concentrated
on partitioning, allocation, replication and load balancing phases done iteratively
and they use simple cost models that ignore guidelines related to the data skew
and processing skew. In the area of replicated data partitioning, most existing
works have mainly used sequential placement as main approach, and they haven’t
used any specific cost model to find the optimal replica placement. Data repli-
cation is used only to improve the query processing over so-designed PRDW,
and interaction between data replication and data placement (i.e., data frag-
mentation and data allocation) is not considered, apart from the main F&A
approach that originates F&A&R. Figure 3 provides a summary of main issues
and related solutions to the PRDW design problem.

3 Alternative Architectures for Designing PRDW

In this Section, we describe and critically discuss four possible alternatives for
designing PRDW, by also highlighting benefits and limitations for each one.
First, Fig. 4 sketches a generic PRDW design methodology. Here, input to the
target PRDW design methodology consists of the following components: (i) the
data warehouse schema DWS; (ii) suitable statistics on the target data ware-
house (e.g., relation cardinalities, column cardinalities, and skew information
of columns); (iii) system information modeled in terms of: number of nodes
M , Processing Power Pi of the node Ni, Storage Capacity Si of the node Ni;
(iv) workload of input OLAP queries (e.g., star queries) Q = {Q1, . . . , QL} and,
for each query Qi in Q, its occurrence frequency fi; (v) other important thresh-
olds that provide the PRDW design methodology with additional information
that helps into the decision making process, such as: fragmentation threshold,
replication threshold, system skew threshold.

The generic PRDW design methodology above outputs the so-called data
placement schema, which includes: (1) the fragmentation schema represented by
a set of partitioning attributes; (2) the allocation schema represented by assign-
ment of fragments over nodes (the allocation schema may either be redundant).
The selected data placement schema is in charge of optimizing the execution
cost of the workload Q and balancing its cost with respect to the benefit it pro-
vides. Therefore, designing a parallel shared-nothing data warehouse consists of
three main steps: (i) fragmenting the data warehouse schema; (ii) allocating the
generated fragments; (iii) developing effective and efficient query processing and
optimization techniques.

Based on the challenges discussed above, it follows that our investigated
PRDW design problem leads to three main issues, namely data partitioning,
fragment allocation and fragment replication. Each one of the problems asso-
ciated with issues above is known to be NP-complete [4,9,62]. In order to deal
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Fig. 3. Issues and related solutions to the PRDW design problem

Fig. 4. Generic PRDW design methodology
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with such a PRDW design problem, two main classes of methodologies are possi-
ble: iterative design methodologies and combined design methodologies [6,10,11].
From this first classification, four possible alternative architectures derive, which
are depicted in Fig. 5.

Figure 5(a) shows an architecture where the basic idea consists in first frag-
menting the RDW using any partitioning algorithm (e.g., [7,33,48,55,56,58,65]),
then allocating the so-generated fragments by means of any allocation algorithm
(e.g., [2,4,47]), and finally determining how to allocate the replicated fragments
using any replication algorithm (e.g., [18,38,39,43,44]). According to this archi-
tecture, each partitioning, allocation and replication algorithm has its own cost
model. The main advantage coming from this traditional methodology is rep-
resented by the fact that they are straightforwardly suitable to a large number
of even-heterogeneous parallel and distributed environments (e.g., Peer-to-Peer
Databases). Contrary to this, their main limitation is represented by the fact that
they neglect the inter-dependency between the data partitioning, the fragment
allocation phase and data replication phase, respectively.

Figure 5(b) depicts an architecture where the basic idea consists in first par-
titioning the RDW using any partitioning algorithm and then determining how
fragments are allocated to the nodes by also determining replication of frag-
ments. The main advantage of this architecture is that it takes into account the
inter-dependency between allocation and replication, which are closely related
[6,10,11]. Their main limitation is instead represented by the fact that they
neglect the inter-dependency between the data partitioning and the fragment
allocation phase, respectively.

Figure 5(c) shows an architecture such that the RDW is first horizontally
partitioned into fragments, and then fragments are allocated to nodes within
the same phase as in [5,19,56]. After that, a replication algorithm is exploited
in order to determine how to allocate replicated fragments. The advantage of
this architecture consists in performing the allocation phase at fragmentation
time, in a simultaneous manner. However, the drawback of the architecture is
that it neglects of the closely-related dependency between the allocation and the
replication process.

Finally, Fig. 5(d) depicts an architecture such that fragmentation, allocation
and replication are combined into a unified process. This architecture is suitable
for designing PRDW from the scratch. In this context, three main issues play a
critical role: Data Partitioning (DP), Data Allocation (DA) and Data Replication
(DR). They are also closely inter-related among themselves as well. Discerning
between fragmentation and allocation issues is, indeed, conceptually relevant.
This because fragmentation issues deal with “local criteria” motivated by the
same, native requirement of fragmenting data warehouses for efficiency purposes,
while allocation issues deal with “physical placement” deriving from so-generated
fragments over nodes. However, this difference must be introduced with extreme
care as, generally speaking, it is not possible to determine the optimal fragmen-
tation and allocation schemes by solving the two problems independently, since
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Fig. 5. Alternative architectures for designing PRDW

they are strongly inter-related. The data allocation phase, indeed, is in charge
of deciding whether fragments will be replicated or not.

The basic difference among the four reference architectures depicted in Fig. 5
is indeed represented by the selection of partitioning attributes. The iterative
approach determines the partitioning attributes using a cost model that neglects
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the inter-dependency between partitioning, allocation and replication. As a solid
alternative, the joint approach decides the quality of the generated fragmentation
scheme on the basis of its allocation process. The allocation process itself is
combined with the replication. In other words, at partitioning time, a decision
on the actual quality of the allocation scheme is taken, yet being this scheme
susceptible of further changes, if needed.

4 PRDW Global Design Problem Formulation

In this Section, we formally introduce the PRDW design problem according to
the notion of global design described in Sect. 1, such that all the aspects (i.e.,
partitioning, allocation, replication, load balancing and query optimization) are
considered simultaneously within the main design phase. First, we provide the
background formal definitions (Sect. 4.1) and, then, the formal problem definition
(Sect. 4.2).

4.1 Formal Background

In the following, we provide formal definitions of main concepts and constructs
to be used in our research.

1. Attribute Skew Degree. Given an attribute A such that its range of values
is partitioned into S sub-domains (S > 1), the attribute skew degree of A,
denoted by SVA(A), represents the standard deviation of the distribution of
values (of A) among the S sub-domains. Let SEL(SDi) denote the selectivity
factor of a sub-domain SDi, SVA(A) is defined as follows:

SVA(A) =

√
√
√
√ 1

S
×

S∑

i=1

(

SEL(SDi) − 1
S

)2

(1)

It should be noted that our attribute skew degree is defined on top of the
popular standard deviation, which measures how data of a given data dis-
tribution are distributed around the mean value. Therefore, the standard
deviation indicates the degree of consistency among data. A big standard
deviation means that there is more heterogeneity in the target data set. Con-
versely, a more homogeneous data set, consisting of data relatively close to the
average value, exposes a smaller standard deviation value. This is a critical
aspect in our approach, as we require a complete understating of properties
of underlying data sets. To give an example on the attribute skew degree, let
us consider Fig. 6, where the table Customer is partitioned into three distinct
fragments, namely Customer1, Customer2 and Customer3, via the attribute
City and according to three disjoint sub-domains: Dom(City) = d1 ∪ d2 ∪ d3
with d1 = {Alger}, d2 = {Rome} and d3 = {Paris}. The selectivity factor
of there sub-domains is equal to 0.45, 0.1 and 0.45, respectively. By applying
the formula (1), we obtain: SVA(City) = 12%.
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Fig. 6. Fragmentation schema for the table Customer of the running example

2. Node Size. The size of a node Nj , denoted by Size(Nj), represents the sum of
the fragment size allocated on Nj . Let Size(Fi) denote the number of pages
of the fragment Fi and isStored(Fi, Nj) a boolean function that returns 1 if
Fi is allocated on Nj , 0 otherwise, Size(Fi) is defined as follows:

Size(Nj) =
NF∑

i=1

Size(Fi) × isStored(Fi, Nj) (2)

Focus again on the previous example of Fig. 6. Let us suppose that the frag-
ment Customer1 is allocated in the node N1 and the remaining fragments
(i.e., Customer2 and Customer3) are allocated in the node N2. As a conse-
quence, by applying the formula (2), we obtain: Size(N1) = 9, Size(N2) = 11.

3. Node Load. The load of a node Nj deriving from the evaluation of a star join
query Qk on Nj , denoted by Load(Nj , Qk), is the number of fragment tuples
processed on Nj to evaluate Qk. Formally:

Load(Nj , Qk) =
NF∑

i=1

Size(Fi) × isV alid(Fi, Nj , Qk) (3)

such that isV alid(Fi, Nj , Qk) is a boolean function that returns 1 if Fi is
allocated on Nj and used for the evaluation of Qk, 0 otherwise.

To give an example, consider again on the previous example of Fig. 6, and
the following query Q:

SELECT COUNT(*)
FROM Customer
WHERE City = ‘Alger’ or City = ‘Rome’
GROUP BY Cust_id

The rewriting of this query gives two sub-queries SQ1 and SQ2 whose syntax
is as follows. For SQ1:
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Fig. 7. Allocation schema for the table Customer of the running example

SELECT COUNT(*) FROM Customer_1 GROUP BY Cust_id

and, for SQ1:

SELECT COUNT(*) FROM Customer_2 GROUP BY Cust_id

respectively. In particular, Q can be obtained from SQ1 and SQ2 as follows:

SELECT COUNT(*) FROM Customer_1 GROUP BY Cust_id
UNION
SELECT COUNT(*) FROM Customer_2 GROUP BY Cust_id

According to the allocation scheme shown in Fig. 7, sub-query SQ1 is executed
on the node N1 and sub-query SQ2 on the node N2. As a consequence, the
load of the node N1 is Load(N1, SQ1) = 9 and the load of the node N2 is
Load(N2, SQ2) = 2.

4. Mean Node Size. Given a data warehouse DW partitioned into NF fragments
F = {F1, F2, . . . , FNF } stored over M nodes, and the data placement skew
factor3 θ, the Mean Node Size, denoted by MPS, is defined as follows [59]:

MPS =
1

∑M
j=1

1
jθ

×
NF∑

i=1

Size(Fi) (4)

Considering again the running example, if the data placement skew equals
0.6, we must place at least 12 tuples at each node. Figure 8 shows the corre-
sponding MPS for each data placement skew degree.

5. Replication Degree. The degree of replication, denoted by R = {1, . . . , M}
models the R physical copies of a fragment F allocated over the M nodes. In
particular, R = 1 models no replication, R = M models full replication, and
1 < R < M models the partial replication of every fragment for R times. For
the partial replication, the degree of replication may be expressed in terms of
percentage value, as follows:

3 In this article, we suppose that the data skew adopt a Zipf distribution model.
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Fig. 8. Mean node size for the running example

∀1 < R < M : CR(%) =
(R − 1) × 100

M
(5)

6. Load Balancing Skew Degree. Given data warehouse DW partitioned into
NF fragments F = {F1, F2, . . . , FNF } stored over the M nodes, we say that
a system is balanced if the distance between all the loads and the gravity
center4 is null. To obtain the value between 0 and 1, we use the Normalized
Euclidean Distance. Therefore, the Load Balancing Skew Degree of a star join
query Qj , denoted by LDLB(Qj), is defined as follows:

LBDS(Qj) =

√
√
√
√

M∑

i=1

(Load(Ni, Qj) − MeanLoad)2

σ2
(6)

where MeanLoad = ( 1
M

∑M
i=1 Load(Ni, Qj)) and σ is the standard deviation.

By applying the formula 6 on the running example, we obtain: LBDS(Q) =
20%.

4.2 Formal Problem Definition

In our global PRDW design approach, the fragmentation process is the core of
the PRDW design methodology, F&A&R, and, consequentially, the quality of
the PRDW design methodology itself strongly depends on the quality of the
fragmentation process. As a consequence, we connote the F&A&R methodol-
ogy as a fragment-driven PRDW design methodology. Formally, the subtended
fragment-driven PRDW design problem, which globally considers the different
4 The gravity center represents the point around which the mass is distributed sym-

metrically. In our study, the gravity center represents the average of loads.
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aspects of the PRDW design problem (i.e., partitioning, allocation, replication,
load balancing and query optimization) can be formalized in terms of a Con-
straint Optimization Problem, as follows.

Formally, given:

– a database cluster machine DBC with M nodes N = {N1, N2, . . . , NM};
– a relational data warehouse RDW modeled according to a star schema and

composed by one fact table F and d dimensional tables D={D1,D2, . . . , Dd} –
similarly to [43], we suppose that all dimensional tables are replicated over the
nodes of the database cluster and are in their main memory;

– a set of star join queries Q = {Q1, Q2, . . . , QL} to be executed over DBC,
being each query Ql characterized by an access frequency fl;

– the maintenance constraint W, such that W > N , representing the number
of fragments that the designer considers relevant for his/her target allocation
process (note that this number must be greater than the number of nodes, i.e.
W � M);

– the replication constraint R, such that R ≤ M, representing the number of
fragment copies that the designer considers relevant for his/her parallel query
processing;

– the attribute skewness constraint θ representing the degree of non-Uniform
value distributions of the attribute sub-domain chosen by the designer for the
selection of the fragmentation attributes;

– the data placement constraint α representing the degree of data placement
skew that the designer allows for the placement of data;

– the load balancing constraint δ representing the data processing skew that the
designer considers relevant for his/her target query processing;

the problem of designing a PRDW from DWS over the database cluster DBC
consists in fragmenting the fact table F into NF fragments and allocating them
and the replicated fragments over different DBC nodes such that the total cost
of executing all the queries in Q can be minimized while all constraints of the
problem are satisfied.

5 F&A&R: A Novel Methodology for Designing PRDW
According to a Global Approach

In this Section, we describe in detail our proposed PRDW design methodol-
ogy, F&A&R, which follows and extends our previous proposal [6,10,11]. As
highlighted in Sect. 1.1, the main idea of F&A&R consists in performing the
main phases of PRDW design (i.e., fragmentation, allocation, and replication)
simultaneously. Figure 9 sketches the flowchart of F&A&R.

In the following, we describe in details the two main phases of F&A&R, i.e.
partitioning and allocation. It should be noted here that replication is directly
related to the allocation phase, being these two latter phase performed within the
same main process (i.e., allocation). Overall, all these phases encompass steps
described by the flowchart in Fig. 9.
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Fig. 9. F&A&R’s flowchart.

5.1 F&A&R Partitioning Phase

To select a suitable horizontal partitioning schema, we adapt our genetic algo-
rithm proposed in [5]. Representing chromosomes that model candidate fragmen-
tation schemas is the most probing tasks when applying genetic algorithms to the
PRDW design problem. Each chromosome may be represented as a multidimen-
sional array that models the partitioning domain of a fragmentation attribute.
To identify the partitioning attribute candidate, we perform the following tasks.
(1) Extract all selection predicates exploited by the input queries. (2) Assign to
each dimension table Di, such that 1 ≤ i ≤ d, the set of selection predicates they
are involved to, denoted by SSPDi. (3) Ignore dimension tables Di having an
empty set SSPDi (i.e., they will not participate in the fact table fragmentation
process). (4) Identify the set of fragmentation attribute candidates. (5) Elim-
inate attributes having high skew and that do not satisfy the attribute skew
constraint. (6) Decompose domain values of each fragmentation attribute into
sub-domains (each sub-domain may be represented by a simple predicate along
with its selectivity factor defined on the fact table).

Once the set of fragmentation attributes is selected, our proposed genetic
algorithm generates a random population that contains several chromosomes. For
each chromosome, our algorithm checks if it satisfies the following maintenance
constraint:
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NFi ≤ W (7)

such that NFi represents the number of fragments on the node Ni. If it is the
case, the associated chromosome is kept in the population; otherwise, merges
operations are applied with the goal of reducing its number of fragments. Once
initial population is created, our genetic algorithm performs further operations,
such as crossover and mutation, in order to improve the quality of the actual
population. The application of these operators is monitored by an ad-hoc eval-
uation function that allocates the so-generated fragments of each valid chro-
mosome over the nodes of the target parallel machine. The allocation phase is
described in details in Sect. 5.2. Once allocation has been performed, the cost of
executing queries over nodes is estimated, and, the chromosome population that
allows the minimum query cost is finally selected as the reference fragmentation
schema.

5.2 F&A&R Allocation Phase

The data allocation problem consists in determining the best placement of a set
of fragments over database cluster nodes with the goal of minimizing the cost of
evaluating queries belonging to a given (query) workload Q. In distributed and
parallel databases, as well as data warehouses, this problem can be formalized
in terms of a clustering problem. This because clustering means to “place” a set
of entities into a given number of groups according to a given measure of their
tendency to be used together, yet conveying in a conceptual basis that is similar
to the one of the problem we investigate. This is illustrated by Fig. 10.

The fragment allocation process is closely related to the fragment replication
problem. In other words, the data allocation algorithm is in charge of deciding
whether fragments will be replicated or not. To this end, we propose using a fuzzy
clustering method, namely the fuzzy k-means clustering algorithm [13]. In fuzzy
clustering techniques, data points can belong to more than one cluster, and asso-
ciated with each of the points are so-called membership degrees, which represent
the degree at which data points belong to the different clusters. The underly-
ing principle in fuzzy clustering is represented by the criterion of assigning data
elements to multiple clusters, with varying degree of membership. In particular,
membership degrees between 0 and 1 are used instead of crisp assignments of
data in clusters. Fuzzy clustering is often better suited than classical clustering
techniques as there is often no sharp boundaries among clusters of data.

Based on this main evidence, in the context of the F&A&R methodology, we
propose a new allocation procedure that is based on fuzzy clustering of fragments.
Let us formulate the deriving fragment allocation problem as follows. Consider
a set of fragments F = {F1, F2, . . . , FNF } with dimensions in the Euclidean
space �d (i.e. Fj ∈ �d). The problem of fragment allocation via fuzzy clustering
consists is performing a partitioning of these fragments into M fuzzy sets with
respect to a given criterion, being M the number of DBC nodes (see Sect. 4.2).
The criterion is usually determined in terms of the optimization of a suitable
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Fig. 10. Conceptual similarity between allocation and clustering

objective function. The result of the fuzzy clustering can be expressed as a par-
titioning matrix U , such that U = [i][j] = uij , i = 1..M and j = 1..NF , where
uij is a value in {0, 1} which expresses the membership degree of the actual frag-
ment. Also, a further constraint states the total membership degrees of a given
fragment Fj ∈ F in all classes must be equal to 1, for all the nodes Ni ∈ N ,
with i = 1..M , and all the fragments Fj ∈ F , with j = 1..NF , i.e.:

M∑

i=1

uij = 1, ∀j = 1..NF (8)

The objective function fO to be minimized is defined as follows:

fO =
NF∑

k=1

M∑

i=1

um
ij ||Xk − Vi||2 (9)

wherein: (i) m > 1 models a degree of fuzziness that governs the influence of
membership degrees; (ii) Xk models a vector of data points; (iii) Vi models the
center of cluster Ci; (iv) ||Xk −Vi||2 models the Euclidean distance between Xk

and Vi.
Given the formal problem definition above, the F&A&R allocation phase

consists of the following steps:

1. construction of the Fragment Usage Matrix (FUM);
2. fragment representation in �2;
3. construction of the Fragment Membership Matrix (FMM);
4. fragment clustering;
5. construction of Fragment Placement Matrix (FPM).

The final FPM, of course, provides us with the solution of the allocation
problem.

In the following Sections, we describe the previously-listed steps of the
F&A&R allocation phase.
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Fig. 11. Fragment representation associated to the FUM of Table 1

Construction of the Fragment Usage Matrix (FUM). FUM models the
usage of fragments according to the set of queries in Q. FUM contains queries as
rows and fragments as columns. The value FUM [i][j], such that 1 ≤ i ≤ L and
1 ≤ j ≤ NF , is equal to 1 if the query Qi involves the fragment Fj ; otherwise,
it is equal to 0. An additional column is added to represent the access frequency
f of each query.

Example 1: Let F = {F1, F2, F3, F4, F5, F6, F7, F8} and Q = {Q1, Q2, Q3, Q4}
be the set of so-generated fragments and queries, respectively. A possible FUM
is shown in Table 1. �

Table 1. FUM of the running example

Queries F1 F2 F3 F4 F5 F6 F7 F8 f

Q1 1 1 1 0 1 0 1 0 20

Q2 1 1 1 1 0 0 0 0 35

Q3 0 0 1 0 1 1 1 1 30

Q4 1 1 1 1 1 1 1 1 15

Fragment Representation in �2. Each fragment Fi is represented in the
two-dimensional space �2 by suitable coordinates (x, y). Given a fragment Fi in
�2, these coordinates are based on the frequency of queries that do not involve
the fragment Fi.

Example 2: Figure 11 shows the fragment representation associated to the FUM
of Table 1. �
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Construction of the Fragment Membership Matrix (FMM). FMM
models the membership degree of each fragment Fi with respect to the clus-
ter Ci according to the set of queries in Q. FMM contains fragments as columns
and clusters as rows. The value FMM [j][i], such that 0 ≤ i ≤ NF − 1 and
0 ≤ j ≤ M − 1, ranges over [0, 1] and models the membership degree of Fi to
Ci, computed according to the fuzzy k-means clustering algorithm [13].

Example 3: Based on the fragment representation of Fig. 11, the associated FMM
is shown in Table 2. �

Table 2. FMM of the running example

C0 C1 C2 C3

F0 5,01E-03 2,79E-04 9,94E-01 4,35E-04

F1 5,92E-03 2,72E-04 9,93E-01 4,29E-04

F3 3,56E-09 1,00E+00 4,87E-09 1,53E-09

F4 6,66E-02 6,07E-03 3,75E-02 8,90E-01

F5 9,70E-01 7,97E-04 2,64E-02 2,84E-03

F6 5,28E-03 6,94E-04 3,27E-03 9,91E-01

F7 9,79E-01 7,83E-04 1,77E-02 2,82E-03

F8 1,37E-02 1,81E-03 8,28E-03 9,76E-01

Fragment Clustering. In order to generate groups of fragments into clusters,
we make use of the basic principle claiming that larger membership degrees indi-
cate higher confidence in the assignment of objects to the actual cluster. On the
basis of this main insight, we sort membership degrees in descending order and
we assign the fragment Fi to the R first clusters, being R the replication degree
(see Sect. 4.1), such as the data placement constraint α (see Sect. 4.2) is satisfied.
This step generates a set of clusters C = C0, . . . , CM−1, such that each cluster
Ci represents a sub-set of fragments.

Example 4: Figure 12 depicts the fragment clustering associated to the FMM of
Table 2. �

Construction of Fragment Placement Matrix (FPM). FPM models the
positions of a fragment across nodes (recall that fragment replicas may exist).
To this end, FPM rows model fragments, whereas FPM columns model nodes.
FPM [i][m] = 1, with 1 ≤ i ≤ NF and 1 ≤ m ≤ M , if the fragment Fi

is allocated on the node Nm in N , otherwise FPM [i][m] = 0. Our allocation
procedure considers clusters as “movable units” during allocation: clusters are
placed in a round-robin fashion over nodes.

Example 5: Clusters generated from the fragment clustering of Fig. 12 are placed
in a round-robin fashion over processing nodes: the associated FPM is shown in
Table 3. �
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Fig. 12. Fragment clustering associated to the FMM of Table 2

Table 3. FPM of the running example

F1 F2 F3 F4 F5 F6 F7 F8

N1 1 1 0 1 1 1 1 1

N2 0 0 1 0 0 0 0 0

N3 1 1 1 0 1 0 1 0

N4 0 0 0 1 0 1 0 1

6 F&A&R Query Processing Framework

In this Section, we provide the details on the F&A&R query processing frame-
work that, as highlighted in Sect. 1, relies on an innovative (query) cost model.

First, focus the attention on the query mechanism supported by a conven-
tional PRDW. Once the fragmentation schema is generated and the so-generated
fragments are placed, global queries posed to the data warehouse are then re-
written over fragments and evaluated on the database cluster DBC. The ideal
parallel query processing method optimizes a smaller set of queries and tries to
minimize the total execution cost for the entire set of queries. To evaluate a given
query, first valid fragments and their locations across nodes should be identified.

To this end, DBC contains multiple Processing Nodes (PN), which are respon-
sible for processing only the data warehouse rows on its own disks. Each PN node
is modeled as a single CPU equipped with disks and a buffer pool. The execu-
tion of a query is managed by specialized nodes, called Coordinator Nodes (CN),
which are devoted to the following tasks: (i) re-writing queries, (ii) scheduling
queries, (iii) merging results and (iv) reporting them back to the client.
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The evaluation of a query can be briefly summarized by the following steps.
(1) When a CN node receives a query from the user, it re-formulates the query
and converts the query into a set of sub-queries such that each one executes on
a singleton fragment. The sub-queries are then added to the workload queue.
(2) The scheduler maintains a queue of queries that are to be evaluated. To this
end, the scheduler analyzes data requirements for the evaluation of queries and
determines a favorable assignment of queries to a PN node. (3) The PN node
passes queries to its data warehouse instance for evaluation. Answers to these
queries are asynchronously sent back to CN nodes. These queries are marked as
processed and removed from the workload queue. (4) Once all sub-queries have
been processed and the intermediate results submitted to CN nodes, CN nodes
merge different results and perform every appropriate aggregation processing
needed. (5) Finally, a suitable CN nodes composes the final result and delivers
it to the user.

Fig. 13. Query scheduler conceptual architecture

From our query evaluation mechanism, it clearly follows that, since our allo-
cation process is redundant (i.e., each fragment can have several placements by
means of replicas), we make use of a suitable Query Scheduler to find the best
allocation of each sub-queries. The conceptual architecture of our Query Sched-
uler is depicted in Fig. 13. It should be noted here that each valid fragment gives
rise to a sub-query.

Formally, the query processing of F&A&R can be formalized as follows.
Given:

– a set of fragments F = {F1, F2, . . . , FNF }, being each fragment Fi, with 1 ≤
i ≤ NF , characterized by its size Size(Fi);

– a database cluster machine DBC having M nodes N = {N1, N2, . . . , NM};
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– a set of star queries Q = {Q1, Q2, . . . , QL} to be executed over DBC, being
each query Ql, with 0 ≤ l ≤ L − 1, characterized by an access frequency fl;

– the processing skew constraint � representing the data processing skew that
the designer considers relevant for his/her target query allocation process;

determine the following state function:

isAllocated(Qi, Nj) =
{

1 Qi on Nj

0 otherwise
such that Qi denotes a query of the target query workload Q and Nj denotes a
node of the node set N , by minimizing the total query processing cost due to
evaluating all the queries in Q while maximizing the productivity of each node
in N , subject to the fixed processing skew constraint �.

The above-introduced query processing defines an NP-hard problem, which
is similar to a Dual Bin Packing Problem (DBPP) [40]. To provide sub-optimal
solutions to this problem, we propose a proper greedy algorithm that is in charge
of executing the query scheduling for supporting star query evaluation against
the parallel machine (see Algorithm 1).

Algorithm 1. Query Allocation(Qj , N )
1: Let ListFrag the list of valid fragments for Qj .
2: Let NumberFrag the number of fragments in ListFrag;
3: Let NumberValidNodes the number of valid nodes for the fragments in ListFrag;
4: Let ListSubQueries the sub-query list (of Qj); /**each valid fragment gives rise

to a sub-query**/
5: Estimate the number of IOs needed to evaluate Qj , Size(Qj);
6: Compute the MPS (4) of Qj , as follows:

MPS =
1

∑NumberV alidNodes
j=1

1
jδ

× Size(Qj) (10)

7: Sort ListFrag according to their size in descending order;
8: for i = 1 to NumberFrag do
9: Get the valid nodes for the ith fragment in ListFrag and store them in the list

ListNode;
10: Compute the load of each node from ListNode;
11: Assign Fi to the node with largest residual capacity;
12: end for

Focus the attention on Algorithm 1. First, we identify the valid fragments
and their associated sub-queries, the number of valid fragments and the set of
valid nodes needed for the evaluation of the sub-queries (of Qj – lines 1–4). Next,
we estimate the number of IOs needed to evaluate Qj (lines 5) and we compute
the processing bound MPS (line 6). We then sort valid fragments in descending
order (line 7) and, for each so-generated sub-query (line 8), we perform the
following steps: (1) select the valid nodes; (2) compute the load of each valid
node; (3) pick the sub-query at the node having the largest residual capacity
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(lines 9–12). This finally realizes the scheduling of sub-queries on fragments and
their replicas, so that giving the support for their evaluation.

Once the query allocation process has been performed, we compute the exe-
cution cost of Q over the M nodes of DBC in terms of number of IOs, according
to the following equation:

L∑

l=1

MAX1≤j≤M

(
NF∑

i=1

MUF [i][k] × MPF [i][j] × Size(Fi)

)

(11)

7 Experimental Evaluation and Analysis

This Section reports on the results of the experimental evaluation of our pro-
posed PRDW design methodology F&A&R. To this end, we first describe the
experimental framework, data sets and query workloads, and then we present
the obtained results.

Our simulation conducted on a computer with 2.8GHz Intel Pentium Core
Duo equipped with 3GB RAM. Algorithms were carried out in Java program-
ming language. For the hardware architecture, we simulate a homogeneous data-
base Cluster of 10–32 nodes.

In our experimental assessment, we use the dataset and queries defined in the
Star Schema Benchmark SSB (Fig. 14) [50], which is a derivative of the bench-
mark TPC-H2 [52]. In particular, we generated several instances of the SSB
benchmark data set by using the data generator supplied with SSB. The size of
each instance is controlled by a scale factor, denoted by SF . A value SF = X
results in a data set of size XGB, with 94% of the data stored in the fact table.

Fig. 14. SSB star schema
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Fig. 15. Performance of F&A&R against comparison PRDW design approaches

We limited the maximum value of SF to 100 (i.e., a 100GB data set) in order
to ensure the timely execution of the test workloads on our single experimental
machine.

The full set of SSB queries consists of 13 queries. We generated workloads of
star queries from the queries specified in the benchmark. We also excluded queries
Q1.1, Q1.2, and Q1.3 from the workload because of these queries contain selection
predicates on fact table attributes, and this functionality is not yet supported by
our prototype. This modification does not affect the generality and the reliabil-
ity of the generated query workloads. In more detail, as regards experiments pre-
sented in this Section, we augmented the query workload to be 4 times larger.
The so-obtained 36 queries are derived from the original 13 queries via varying the
target predicate values. Specifically, we first convert each benchmark query to a
template, by substituting each range predicate in the query with an abstract range
predicate, e.g. s region = ‘UNITED STATES’ is converted into s region = Reg,
where Reg is a parametric variable. To obtain a workload query, we simply sub-
stitute the abstract ranges in the query template with concrete predicates based
on parameters that controls the selectivity of the query itself. We have used 20
selection predicates defined on 8 different attributes: {s region, d year, s nation,
c city, c region, s city, p category, c nation}. The domains of these attributes are
split into: 7, 5, 7, 6, 5, 6, 3 and 8 sub-domains, respectively, to perform our pro-
posed PRDW design approach.

We performed several kinds of experiments by varying several important fac-
tors such as replication degree, data partitioning skew, attribute skewness factor
and data processing skew factor, to obtain a “rich” and reliable experimental
evaluation of F&A&R.
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7.1 F&A&R Performance Analysis

As a first experiment, we study the performance of our proposed methodology
F&A&R. We conducted two kinds of experiments, we set the fragmentation
threshold to 100; attribute skew was set to 0.5 and data partitioning skew has
been neglected.

In the first kind of experiments, we compared our proposed methodology
F&A&R against the three iterative PRDW design approaches: (1) partitioning,
allocation and replication are treated in isolation, (2) partitioning and allocation
are treated in joint manner and in isolation to replication, and (3) allocation and
replication are traited in joint manner and in isolation to replication. For each
PRDW design methodology, we measured the query execution time on a 10-node
database cluster machine versus the variation of the replication degree R over
the interval [1 : 10]. Figure 15 shows the results obtained and confirms to us
that the combined approach outperforms the iterative one significantly. From
derived results, we observe that an increase of the replication factor involves in
an increase of the whole system performance. Also, we observe that increasing
the replication factor involves the minimization of the system throughput, by
balancing the load among the DBC nodes.

The computational overhead of the four approaches is depicted in Fig. 16.
From Fig. 16, it clearly follows that F&A&R introduces a bigger computational
overhead than other comparison approaches. Therefore, in future work the per-
formance of actual algorithms must be improved.

The second kind of experiments focuses on checking whether the F&A&R
parallel processing is characterized by a linear speed-up. To this end, we consid-
ered a 32-node database cluster machine and we engineered four different scenar-
ios characterized by a proper replication factor R: 8(25%), 16(50%), 24(75%),
32(100%). We ranged the node number factor from 1 to 32 and, for each value,

Fig. 16. Computational overhead performance of F&A&R against comparison PRDW
design approaches
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Fig. 17. Effect of replication factor on the linear speed-up of F&A&R

we calculated the speed-up. The results shown in Fig. 17 confirm to us that an
increase of the replication factor results in raising the speed-up and making it
more linear. It should be noted that, in the case R = 100%, the speed-up is
approximately linear. This is due to the fact that the load balancing resulting
from the replication does not completely eliminate negative effect of data skews.

7.2 Inter-dependency Among PRDW Design Parameters

The second experiment that we conducted studies the dependence between the
F&A&R parameters. In the first test, we studied the dependence between
attribute skew and data partitioning. We fixed the fragmentation threshold to
100 and the node number to 10. We ranged the data attribute skew factor from
0.2 to 1 and, for each value, we calculated the data partitioning skew degree.
Figure 18 shows the obtained results, and confirms that the data partitioning
skew increases greatly when the attribute skew factor increases.

In the second assessment, we studied the effect of the replication degree
on the parallel processing. We ranged the replication factor from 1 to 10 and,
for each value, we calculated the processing skew degree. As shown in Fig. 19,
the increase of the replication factor may almost completely eliminate negative
effects of data skews with respect to the partitioning attributes. On the other
hand, the efficiency of the PRDW increases greatly when the replication factor
increases, as expected.

7.3 Effect of Attribute Skew Degree

The third experiment that we conducted studies the effect of data partitioning.
We fixed the attribute skew to 0.5 and the fragmentation threshold to 100. Exper-
iments were conducted with respect to four different scenarios characterized by
a proper replication factor R: 2, 5, 8, 10, on top of a 10-node database cluster
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machine. We ranged the data placement skew factor from 0.2 to 1 and, for each
value, we calculated the execution time. Figure 20 shows the obtained results,
and demonstrates that an increase of the partitioning skew factor degrades the
performance of the framework. This is because the framework imbalance degree
increases as the partitioning skew factor increases. We thus conclude that either
partitioning skew or attribute skew degrades the performance of parallel process-
ing, and that the performance of the framework increases greatly when the repli-
cation factor increases.

We also studied the effect of the attribute skew degree on the number of
fragments generated and the data partitioning skew degree. This experiment was
performed by setting three different values of attribute skew factor on top of a

Fig. 18. Dependency between attribute skew and data partitioning skew

Fig. 19. Dependency between replication degree and processing skew
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10-node database cluster machine, and by ranging the fragmentation threshold
from 100 to 350. For each of these values, we calculated the execution time.
Results are shown in Fig. 20. The obtained results show that the attribute
skew degree limits the number of generated fragments because our proposed
methodology eliminates attributes having a high skew degree from the list of
partitioning attribute candidates. Although the number of fragments is small,
the performance of the framework is good because the degree of load imbalance is
also small. This is confirmed by the Fig. 21, where the (corresponding) variation
of the query execution time is shown.

Fig. 20. Effect of attribute skew degree on query execution time

Fig. 21. Effect of attribute skew degree on fragmentation threshold
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7.4 Effect of Heterogeneity

In previous experiments, we have assumed that the cluster is homogeneous (i.e.,
all nodes have the same processing power). Here, we investigate the effect of het-
erogeneity. We devised an experimental environment where processing power of
each node have been generated according to a random distribution, thus obtain-
ing a totally heterogeneous database cluster environment. With this novel exper-
imental setting in mind, we first normalized the processing power of nodes, as
to obtain a truly homogenous database cluster environment. After, we adapted
our proposed PRDW design methodology as follows:

– allocation algorithm: we use our F&A-ALLOC algorithm [11], the core of
F&A [6,10,11], as to assign classes of fragments to nodes – it should be noted
that algorithm F&A -ALLOC runs on nodes characterized by heterogeneous
processing power and storage capability;

– query scheduling : we assign each sub-queries to the most powerful node that
can treat it.

Fig. 22. Effect of Heterogeneity

We kept the same experimental parameters as in the previous experiments,
and we studied the performance of our proposed approach via measuring the
average execution cost due to the load of a homogeneous cluster and the load of
a heterogeneous one, respectively. In more detail, the processing power of each
node in the homogeneous cluster is equal to the average processing power of
heterogeneous cluster. Results for this class of experiments are shown in Fig. 22,
where the advantages that derive from taking into account the heterogeneity of
cluster node characterise clearly emerges.
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8 Conclusions and Future Work

It is well-known that, in order to obtain high performance with PRDW, it is crit-
ical to introduce a suitable design methodology as this allows us to ensure the
effectiveness and efficiency of the system. Despite this, classical design approaches
for the related context of parallel databases have not changed for years, whereas
designing PRDW remains a difficult problem. Indeed, this problem includes a
set of sub-problems: (i) the choice of hardware architecture, (ii) data fragmenta-
tion, (iii) data allocation, (iv) data replication, (v) load balancing and (vi) query
processing. Each of these ones is known to be a NP-hard problem. Therefore, all
state-of-the-art approaches are likely to have limitations and drawbacks. Indeed,
these approaches do not consider the inter-dependency among sub-problems
related to the design of PRDW, and they exploit heterogeneous metrics for assess-
ing the “quality” of the final design (a different metrics for every different phase).

Contrary to this trend of classical approaches, in this paper we have pro-
posed a novel design approach called F&A&R, whose main benefit consists
in performing the major PRDW design phases (i.e., fragmentation, allocation
and replication) simultaneously. We demonstrated the advantage deriving from
interpreting the PRDW design problem as an unified problem, and, as a conse-
quence, we conferred to the fragmentation process the role of core method of the
whole PRDW design methodology. To this end, we exploited a genetic algorithm
for supporting the fragmentation process proposed by us in [5,6], plus an origi-
nal redundant data allocation process that is based on fuzzy k-means clustering.
Finally, our cost model, which significantly connotes our F&A&R query process-
ing framework integrates the concepts of all the design phases, and the deriving
query scheduling was formalized and solved in terms of a DBPP problem. As a
secondary contribution of our research, we have evaluated our approach over the
well-known SSB benchmark. Observed results are very promising.

Future work is oriented towards two different directions: (i) development of
advanced algorithms capable of parallelizing the various steps of our PRDW
design methodology; (ii) extending our query cost model by considering, in
addition to the actual parameters, even the interaction among target queries;
(iii) dealing with innovative characteristics of modern data warehouse applica-
tions, such as visualization (e.g., [24]) and security (e.g., [25]) issues.

References

1. Agrawal, D., Das, S., El Abbadi, A.: Data Management in the Cloud: Challenges
and Opportunities. Synthesis Lectures on Data Management. Morgan & Claypool
Publishers, San Rafael (2012)

2. Ahmad, I., Karlapalem, K., Ghafoor, R.A.: Evolutionary algorithms for allocating
data in distributed database systems. Distrib. Parallel Databases 11, 5–32 (2002)
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Abstract. The increasing size and the widespread use of XML data and
different types of ontologies result in the big challenge of how to integrate
these data. A critical step towards building this integration is to identify
and discover semantically corresponding elements across heterogeneous
data sets. This identification process becomes more and more challenging
when dealing with large schemas and ontologies. Clustering-based match-
ing is a great step towards more significant reduction of the search space
and thus improving the matching efficiency. However, current methods
used to identify similar clusters depend on literally matching terms. To
keep high matching quality along with high matching efficiency, hidden
semantic relationships among clusters’ elements should be discovered.
To this end, in this paper, we propose a Latent Semantic Indexing-based
approach that allows retrieving the conceptual meaning between clusters.
The experimental evaluations reveal that the proposed approach permits
encouraging and significant improvements towards building large-scale
matching approaches.

Keywords: Schema matching · Large-scale matching · Latent semantic
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1 Introduction

Schema matching is the task of identifying and discovering correspondences
between semantically similar elements of two schemas or ontologies [31,33]. The
demand for schema matching is high in a diverse number of data application
scenarios, such as data integration [10,16] and web service discovery [4,20]. Due
to heterogeneities inherent in schemas, manual matching becomes expensive,
extremely tedious, and error prone. Therefore, efforts are invested in the develop-
ment of automated schema matching systems. Furthermore, the rapidly increas-
ing size and use of XML schemas and ontologies adds additional dimensions of
challenges to cope with the large matching problem [30].
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To deal with these challenges, several approaches have been designed to
improve the performance of the matching process for large-scale schemas involv-
ing both matching aspects: effectiveness and efficiency [5,14,19,21,32,35]. These
solutions include matching techniques that depend on the partition-based princi-
ple [2,14,21]. These partition-based matching techniques divide input schemas/
ontologies into a set of partitions and execute a partition-wise matching between
the two schemas. The partitioning is performed in such a way that each parti-
tion of the first schema is matched with only a small subset of the partitions
of the second schema (ideally, only with one partition) [30]. The entities of the
dissimilar partition pairs can be eliminated from further matching process thus
reducing the search space to achieve better efficiency. Space complexity of the
matching process is also reduced. Reducing the search space of the matching
process indeed achieves better matching efficiency, however, it does not guaran-
tee the matching quality. Determining and selecting similar clusters for further
matching plays an important role to keep high matching quality along with high
matching efficiency.

To partition input schemas/ontologies, COMA++ uses relatively simple
heuristic rules to partition the input schemas, often resulting in too few or too
many partitions [14]. Both MOM and Falcon have been applied only to cer-
tain ontology languages and cannot be applied to other data models [21,35].
Algergawy et al. use a bottom-up clustering scheme which utilizes the context-
based structural node similarities [2]. To determine similar partitions, COMA++
only uses limited information about the partition (only the root node of the par-
tition) to determine the similarity between partitions of the input schemas. On
the other hand, solutions, such as Falcon [21], fully evaluate the input ontologies
to assess the partition similarity. In Algergawy et al. [2], a light-weight similarity
measure is applied that considers all elements of each cluster pair and represents
each cluster as a cluster document. It uses the Vector Space Model and TF-IDF
to determine the similarity between cluster documents.

Unfortunately, the Vector Space Model (VSM) depends upon literally match-
ing document terms with those appearing in a query [8]. The inaccuracy of lexical
matching methods is coming from the inability to determine concepts between
documents and the query. So, the literal terms in a user’s query may not match
those of a relevant document (synonymy). In addition, most words have multiple
meanings (polysemy), so terms in a user’s query will literally match terms in irrel-
evant documents. Latent semantic indexing (LSI) is a more suitable approach
that allows retrieving information on the basis of a conceptual topic or meaning
of a document [12,22]. To this end, in this paper, we capture features introduced
by the latent semantic indexing technique in large-scale schema matching prob-
lems. In particular, we first represent input schemas as rooted labelled trees,
called schema trees. The use of a common data structure, schema tree, to model
input schemas, enables matching among different schemas and ontologies. We
then develop an agglomerative clustering algorithm to partition each schema tree
into a set of disjoint groups. The clustering algorithms depends on the structural
properties of the schema tree. To identify and determine similar clusters across
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two cluster sets representing two schema trees, we develop an LSI-based tech-
nique which is able to discover hidden semantic relationships between similar
clusters. Once having similar clusters, we finally apply a set of element match-
ers to get correspondences between their elements. To verify the performance of
the proposed approach, we conducted a set of experiments in order to prove its
superiority upon previous work.

To sum up, the main contributions of the paper can be stated as follows:

– addressing the problem of partitioning-based schema matching,
– developing and elaborating an XSOM-based parser to facilitate XML data

representation,
– proposing an LSI-based approach to determine similar clusters in the context

of schema matching, and
– conducting an intensive set of experiments to validate the proposed approach.

The rest of the paper is structured as follows. Related work is presented
in Sect. 2. We describe latent semantic indexing in Sect. 3. We then introduce
the proposed matching framework in Sect. 4, concentrating on similar clusters
identification. We report experiments conducted and analysis results in Sect. 5.
Section 6 concludes the paper.

2 Related Work

Semantic heterogeneity is a key problem in different data sharing systems, be it
a federated database [6], a data integration system [15,16], a web service [20],
or a peer data management system [18]. Involved data sources are typically
designed independently, and hence use different schemas. To obtain meaningful
interoperation, one needs a semantic mapping between the schemas, i.e. a set of
expressions that specify how the data in one source corresponds to the data in
the other. Hence, the specific problem of schema matching has to be addressed
before mapping is constructed. To this aim, a set of correspondences among
similar elements in different schemas has to be identified. Manually constructing
a match is a very labor intensive task that requires complete knowledge of the
semantics of the data in the schemas being matched. Solutions that try to provide
some automatic support for schema matching have received steady attention over
the years [7,31,33].

Unfortunately, most of these systems severely lack performance when deal-
ing with large matching problems. Consequently, several approaches have been
proposed to address the problem of matching two large schemas [2,14,19,21,
30,32,35]. Promising areas for large-scale schema matching lie in four main
directions: reduction of search space for matching, parallel matching, self-tuning
match workflows and reuse of previous match results [30]. In this section, we pay
great attention to the approaches that perform reduction of the search space.
The standard approach of cross join evaluation for schema matching reduces
match efficiency and quality. In order to reduce the search space for match-
ing, two methods can be used: early pruning of dissimilar element pairs and
partition-based matching.
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Quick ontology matching (QOM) was one of the first approaches to imple-
ment the idea of early pruning of dissimilar element pairs [17]. It iteratively
applies a sequence of matchers and can restrict the search space for every
matcher. Peukert et al. introduce a set of filter operators within match work-
flows to prune dissimilar element pairs (whose similarity is below some minimal
threshold) from intermediate match results [28]. They also propose a rule-based
approach to rewrite match workflows for improving efficiency, in particular by
placing filter operators within sequences of matchers [27].

COMA++ was one of the first systems to support partition-based schema
matching [14]. It depends on fragment matching which has two phases. The first
phase determines fragments of the two schemas and identifies the most similar
ones. Detecting similar fragments is some kind of light-weight matching via the
similarity of fragment roots. The second phase identifies corresponding elements
between each pair of similar fragments. Finally, the fragment-based match results
are merged to obtain the complete output mapping [14].

Another matching system that supports partition-based matching is Falcon-
AO [21]. It initially partitions the ontologies into relatively small disjoint blocks
by using structural clustering. Then, matching is applied to the most similar
blocks from the two ontologies. To determine block similarity, the algorithm
utilizes the so-called anchors. Anchors are highly similar element pairs that
are determined before partitioning by a combined name/comment matcher.
Dynamic partition-based matching is supported by AnchorFlood [32]. It avoids
the a-priori partitioning of the ontologies by utilizing anchors (similar concept
pairs). It takes them as a starting point to incrementally match elements in their
structural neighborhood until no further matches are found or all elements are
processed. Thus the partitions (segments) are located around the anchors.

Zhong et al. propose an unbalanced ontology matching approach, which con-
cerns matching a lightweight ontology with a more heavyweight one [36]. They
abstract the subontology (partition) from the heavyweight ontology that is most
similar to the smaller one and consider this sub-ontology for matching. To deter-
mine this sub-ontology, the approach needs to carry out a nested loop to deter-
mine the similarity values between concepts from the two ontologies. To this
end, name-based similarity measures such as Edit distance and WordNet have
been used. Concepts from the larger ontology with similarity values higher than
a predefined threshold are then selected. Finally, the subontology is determined
by evaluating the subgraphs around the similar elements found in the first step.
We observe that in order to determine a similar sub-ontology, whole concepts
from two ontologies have to be compared using name-based similarity measures,
which is not efficient for large matching problems.

Algergawy et al. uses a clustering-based matching approach that is based on
an agglomerative bottom-up hierarchical fashion [2]. It is generic and can be
applied to different data models including XML schemas. The clustering scheme
is performed based on the context-based structural node similarities. Then, a
light weight linguistic technique is used to find similar partitions to match.
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This technique makes use of the Vector Space Model (VSM) for computing the
similarity between clusters.

To sum up, partitioning-based matching techniques improve the matching
efficiency, however, they do not guarantee a high matching quality. Identifying
and selecting similar partitions for matching plays an important role in this
aspect. To the best of our knowledge, most of current matching techniques ignore
this role. Therefore and in order to address these challenges, we introduce a new
LSI-based approach to correctly identify and select the similar clusters.

3 Latent Semantic Indexing

One typical scenario of human machine interaction in information retrieval is
by natural language queries: the user formulates a request, e.g., by providing a
number of keywords or some free-form text, and expects the system to return the
relevant data in some amenable representation, e.g., in form of a ranked list of
relevant documents. Many retrieval methods are based on simple word matching
strategies to determine the rank of relevance of a document with respect to a
query. It is well known that literal term matching has severe drawbacks, mainly
due to the ambivalence of words and their unavoidable lack of precision as well
as due to personal style and individual differences in word usage.

A popular approach that depends on literal term matching is the Vector
Space Model (VSM) [8,12]. The vector space model procedure can be divided
into three stages. The first stage is the document indexing where content bearing
terms are extracted from the document text. The second stage is the weighting
of the indexed terms to enhance retrieval of document relevant to the user. The
last stage ranks the document with respect to the query according to a similarity
measure. The VSM considers the terms in documents as being independent from
each other, an assumption which is never satisfied by the human language. An
idea can be expressed in many ways (synonymy) and, moreover, many words
may have multiple meanings (polysemy).

Latent Semantic Indexing (LSI) [12,22] is a statistical technique which tries to
surpass some limitations imposed by the traditional Vector Space Model (VSM).
It exploits the dependencies between words by assuming that there is some
underlying or “latent” structure in word usage across documents that is par-
tially obscured by variability in word choice and this structure can be revealed
statistically.

LSI projects queries and documents into a space with “latent” semantic
dimensions. In the latent semantic space, a query and a document can have
high cosine similarity even if they do not share any terms. We can look at
LSI as a similarity metric that is an alternative to word overlap measures like
tf.idf [25]. LSI usually takes the (high dimensional) vector space representation
of documents based on term frequencies [14] as a starting point and applies
a dimension reducing linear projection. The specific form of this mapping is
determined by a given document collection and is based on a Singular Value
Decomposition (SVD) of the corresponding term/document matrix. The general
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claim is that similarities between documents or between documents and queries
can be more reliably estimated in the reduced latent space representation than
in the original representation. The rationale is that documents which share fre-
quently co-occurring terms will have a similar representation in the latent space,
even if they have no terms in common. LSI thus performs some sort of noise
reduction and has the potential benefit to detect synonyms as well as words that
refer to the same topic. In many applications this has proven to result in more
robust word processing.

To make the paper self-contained, in the following, we present main steps of
LSI [22]:

– Constructing Term Document Matrix. Each term is represented by a
row and each document is represented by a column. Initially, each cell aij
in the matrix A is represented by the number of times the associated term
appears in the indicated document, tfij . Once the matrix is created, local
and global weighting functions can be applied to each non-zero element in
the matrix. The weighting functions transform each cell, aij of A, to be the
product of a local term weight which describes the relative frequency of a term
in a document, and a global weight, gi, which describes the relative frequency
of the term within the entire collection of documents. The local weighting
function of log(tfif +1) decreases the effect of large differences in frequencies.
The global weighting function of Entropy, which is defined as 1+

∑
j

Pij log(Pij)
log(n)

where Pij = tfij
gfi

, is the total number of times the term appears in the entire
collection of n documents, gives less weight to terms occurring frequently in a
document collection. Therefore, each non-zero element in the term-document
matrix is represented as:

aij = (1 +
∑

j

Pij log(Pij)
log(n)

) × log(tfij + 1). (1)

– Decomposing the Term Document Matrix. LSI applies singular value
decomposition (SVD) to the matrix A. In SVD, a rectangular matrix is fac-
tored into the product of other three matrices as in

A = USV T (2)

where U is an m×m orthogonal matrix, UTU = Im, V is an n×n orthogonal
matrix, V TV = In, and S is a diagonal matrix of decreasing singular values
such that s1,1 ≥ s2,2... ≥ sr,r > 0, and si,j = 0 where i �= j. Im and In are the
identity matrices of orders m and n, respectively. The matrix U gives a vector
for each term in LSI space, while the matrix V represents each document as
a vector.

– Dimensionality Reduction. In LSI, it is not the intent to reproduce A.
The main goal is to retain the largest singular values. In the literature, this is
called dimensionality reduction. LSI computes a low rank approximation to
A using a truncated SVD [22]. Let k be an integer and k � min(m,n), Uk is
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defined to be the first k columns of U , and V T
k to be the first k rows of V T .

Let Sk = diag[s1, ..., sk] contain the first k largest singular values as in the
following equation:

Ak = UkSkV
T
k (3)

This is a new pseudo term-document matrix with reduced dimension. The
SVD operation, along with this reduction, has the effect of preserving the
most important semantic information in the text while reducing noise and
other undesirable artifacts of the original space of A.

– Incorporating the Query and Ranking the Documents. A query, sim-
ilar to a document, is a set of words which must be represented as a vector in
the k-dimensional space. It can be represented as:

q = qTUkS
−1
k (4)

where q is the vector of words in the users query, multiplied by the appropriate
term weights. The sum of these k−dimensional terms vectors is reflected by
the term = qTUk and the right multiplication by S−1

k differentially weights the
separate dimensions. Thus, the query vector is located at the weighted sum
of its constituent term vectors. The query vector can then be compared to all
existing document vectors, and the documents ranked by their similarity to
the query. A common similarity measure can be used to reflect the relationship
between the query vector and every document vector. Typically, the results are
ranked and top-k documents or documents exceeding some cosine threshold
are returned to the user.

4 The Matching Framework

In this section, we introduce the proposed schema matching framework. The
framework consists of four main steps, as shown in Fig. 1. In the following, we
describe each step focusing on the parsing and similar cluster determination
steps.

4.1 Data Model and Schema Preparation

XML is a flexible modeling language with self-explanatory tags that allow the
storage of information in semi-structured formats [1]. There are two types of
XML data: XML schema and XML document. An XML schema allows describ-
ing the structure and the legal building blocks for an XML document, while an
XML document (document instance) represents a snapshot of what the XML
document contains. Several XML schema languages have been proposed [23].
Among them, XML document type definition (DTD) and XML Schema Def-
inition (XSD) are commonly used. DTD has limited capabilities compared to
other schema languages, such as XSD. Moreover, XML schema definition (XSD)
aims to be more expressive than DTD and more usable by a wider variety of
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Fig. 1. Schema matching steps.

applications such as XQuery1, SOAP, and web services2. Therefore, through the
paper, we use the term “schema” to denote XML schema (XSD).

An XML schema consists of a set of components. The XML schema compo-
nents can be broadly classified into three main groups as described below:

– Primary components may or must have names and include the following
components: simple type definitions, complex type definitions, element dec-
larations, and attribute declarations. The element and attribute declarations
must have names, while the type definitions may have names.

– Secondary components must have names. Attribute group definitions,
identify constraint definitions, model group definitions, notation declarations,
type alternatives, and assertions are examples of such components.

– Helper components provide small parts of other components, they are not
independent of their context and contain components such as annotations,
model groups, particles, wildcards, and attribute use.

To make the proposed approach more generic, the input XML schemas should
be internally represented using a common data model. The choice of which data
model should be used is an important step towards building a reasonable schema
matching system. The data model should be able to normalize schemas that
are represented by different schema languages, thus eliminating syntax differ-
ences between schemas. Most current schema matching systems choose graph
data structure as the internal representation [31,33]. The choice of graphs as
an internal representation for the schemas to be matched has many motiva-
tions. First, graphs are well-known data structures and have their algorithms
and implementations. Second, by using the graph as a common data model, the
schema matching problem is transformed into another standard problem; graph
matching. XML schemas can also be represented as trees by dealing with nesting
and repetition problems using a set of predefined transformation rules [24].

In our implementation, we represent XML schemas as rooted, labeled trees,
called schema trees, ST [5]. A schema tree consists of a finite set of nodes and
1 http://www.w3.org/TR/xquery/.
2 http://msdn.microsoft.com/en-us/library/ee265410(v=bts.10).aspx.

http://www.w3.org/TR/xquery/
http://msdn.microsoft.com/en-us/library/ee265410(v=bts.10).aspx
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Fig. 2. Schema tree, deptDB. Fig. 3. Schema tree, orgDB.

a finite set of edges. Each node is uniquely identified by an object identifier and
expresses the component’ features, such as element name and element datatype,
while each edge represents the relationship between every two nodes. Figures 2
and 3 present the schema tree representation of two XML schemas taken from [9].
Both deptDB and orgDB represent information about departments with their
employees and grants, as well as the projects for which grants are awarded.
The figures show the tree representation of the two schemas, wherein each node
is associated with the name label, such as grant and funds from deptDB and
orgDB, respectively.

We use the XML Schema Object Model (XSOM) parser3 to parse input
XML schemas. XSOM is a Java library that allows applications to easily parse
XML schema documents and to inspect information in them. The library is
a simple and effective implementation of “schema components” as defined in
the XML schema. The parsing process starts by defining a new class using the
XSOM. Through the constructor, we create an empty tree which will be filled
with schema elements extracted through the parsing operation. As in [3,5], we
classify schema tree nodes into two kinds: atomic nodes and complex nodes.
Atomic nodes are the leaf nodes in the schema tree while complex nodes are
the internal nodes inside the tree. We then instantiate an object of the XSOM
parser through a defined class. This class enables us to get all constructs of the
schema and related schemas and put them into memory for further processing,
by using the defined object methods. Once the schema component is resolved,
we iterate through global declarations inside the root element to iteratively build
the corresponding schema tree.

4.2 Schema Clustering

Once a schema is parsed and internally represented as a schema tree, the next step
is to divide it into a set of disjoint sub-trees. By this step, we aim to simplify the
3 https://xsom.java.net.

https://xsom.java.net
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matching processing, especially when dealing with large-scale schemas. To this
end, we make use of our clustering algorithm presented in [2]. To make the paper
self-contained, we briefly present the algorithm. Clustering is a useful technique
for grouping nodes such that nodes within a single cluster are structurally similar,
while nodes in different groups are dissimilar. First, we introduce the node context,
which is defined as the node surroundings. This means that the context of a node,
C(vi), is the combination of the node itself as well as all parents and children of
the node. Based on the node context, we then compute the structure similarity
between every pair of nodes in the schema tree.

The structure similarity between two nodes vi and vj which exist in the same
ST is computed based on the number of common nodes between their contexts,
|C(vi) ∩C(vj)|. Based on this structural similarity, we construct a link between
each node pair, containing the two nodes and their structural similarity. The set
of generated links constitutes a hash table called the links hash table. By using a
threshold value greater than 0 we can dramatically reduce the number of entries
in the links hash table. It should be noted that the similarity is assumed to be 0
if there is no pre-computed link. This table is used as an input for the clustering
algorithm.

We develop an agglomerative clustering algorithm, which produces a tree
representing the hierarchy of clusters in a bottom-up way. The algorithm mainly
consists of the following four steps:

1. Preparation. The structural similarity is computed and the links hash table
is then constructed.

2. Cluster initialization. In this step, the bottom level of the cluster hierarchy
is developed by representing each node as a cluster.

3. Cluster hierarchy construction. This is the main step of the clustering algo-
rithm. It is devoted to build the cluster hierarchy by merging elements from
different clusters to form one cluster based on specified merging criteria.

4. Best cluster selection. It selects the cluster solution. More information can be
found in [2].

Example 1. By applying the clustering algorithm to the two schema trees illus-
trated in Figs. 2 and 3, we get two cluster sets. CSet1 = {C11, C12} and CSet2 =
{C21} for deptDB and orgDB schemas, respectively, as shown in Fig. 4. The figure
indicates that deptDB is partitioned into two semantically structured clusters.
The first, C11, represents projects and their funds, while the second, C12, repre-
sents departments and employees working on these projects. Figure 4 also shows
that the orgDB schema is not partitioned since the structural organization of
the schema is not semantically clear like the deptDB schema. This example
shows the ability of the clustering algorithm to correctly cluster schema trees
into semantically structured partitions.

4.3 Similar Cluster Determination

The proposed approach focuses on 2-way or pairwise schema matching where two
related input schemas are matched with each other. As mentioned before, the
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(a) (b)

Fig. 4. Schema tree partitions

clustering algorithm divides each schema tree into a set of clusters. Each cluster
contains a set of nodes that are structurally similar. The task is to determine
which sets of clusters are similar. This information is used later as input for the
matching algorithm.

Latent semantic indexing aims to detect semantically similar partitions (clus-
ters) in the two schema trees. The motivation here is to reduce the match over-
head by applying matching on similar partitions only and ignoring the irrelevant
ones. Algorithm 1 is proposed to achieve this task. It accepts two sets of clusters
as input and processes them to determine similar clusters across the two sets.
The algorithm has the following main steps, as shown in Algorithm 1.

– Preparation of term-document matrix. The algorithm starts by initializing the
similar cluster set, Sim Clust, by setting it to the empty set, line 1. Then,
to construct the document term matrix, all elements in the first cluster set
(CSet1) are extracted and analyzed. A set of normalization processes has been
applied to the element names in order to obtain non-repeating terms in the
cluster set. The normalization process has the following steps:

• Tokenization. Each element name inside the cluster is parsed into a set of
tokens using delimiters, such as punctuation, uppercase or special symbols,
etc. For instance, deptDB → {dept, DB}.

• Elimination. Tokens that are neither letters nor digits are eliminated.
We have thus created the term vector by collecting the names of the nodes.
As a next step, the term-document matrix, A, is initially created with each
matrix cell representing the number of times the associated node name appears
in the indicated cluster document, line 2. Finally, we apply the log-entropy
weighting function, Eq. 1 on each entry in the document matrix, line 3. Thus,
the term-document matrix is ready for the next stage.
It should be noted that other normalization techniques are needed, such as
the expansion method, especially when schema element names are too short.
dno and pid are examples that are needed to be expanded.

– Applying singular value decomposition. To construct a semantic space wherein
the names of the nodes in the CSet1 and clusters that are closely associated are
placed near one another, we apply the singular value decomposition technique.
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Algorithm 1. Similar clustering determination
Require: Two sets of clusters, CSet1 = {C11, C12, ..., C1n} and CSet2 =

{C21, C22, ..., C2m}
Ensure: A set of similar clusters, Sim Clust = {(C1i, C2j)|C1i ∈ CSet1, C2j ∈

CSet2}
{// Step 1: Preparation}

1: Sim Clust ⇐ ∅;
2: A ⇐ analysis(CSet1);
3: Compute for each entry in A :aij

aij ⇐ (1 +
∑

j

Pij log(Pij)

log(n)
) × log(tfij + 1)

{// Step 2: Singular Value Decomposition & reduction}
4: Apply SVD to A : A = USV T

5: Dimensionality reduction: Ak = UkSkV
T
k

{// Step 3: Query incorporating and folding}
6: Q ⇐ analysis(CSet2);
7: Qk ⇐ QTUkS

−1
k ;

{// Step 4: Similarity calculating and ranking}
8: for columnj ∈ Qk do
9: qj ⇐ Qk(j);

10: for columni ∈ Ak do
11: di ⇐ Ak(i);
12: simMat[i][j] = sim(qj , di);
13: if simMat[i][j] ≥ threshold then
14: Sim Clust.put(C1i, C2j)
15: end if
16: end for
17: end for

The technique factorizes a term-document matrix into its left singular vectors,
right singular vectors, and singular values, line 4. Each node name within the
cluster set is now represented by a singular vector via matrix U . Additionally,
each cluster is represented by a singular vector via matrix V .

– Reduction. To reduce the noise and redundancy, LSI uses a truncated SVD,
line 5, which consists in retaining only the largest k singular values and delet-
ing the remaining ones which are smaller and thus considered unimportant.
The columns corresponding to the small singular values are also removed from
U and V . So, SVD allows the arrangement of the space to reflect the major
associative patterns in the data, and ignore the smaller, less important influ-
ences. As a result, terms that do not actually appear in a document may still
up close to the document, if that is consistent with the major patterns of
association in the data.

– Folding. The following step is to prepare a set of clusters in the second cluster
set CSet2. Each cluster is treated as a user query. First, we analyze the element
names of each cluster and we apply the same normalization process applied
before on elements of the first cluster set to the second cluster set elements.
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The query is then treated as an ordinary document and hence it should be
put with new coordinates in the reduced k − dimensional space, lines 6&7.

– Calculating similarities. Now, the two cluster sets have been prepared for
comparison: one as a set of vectors via the matrix V , the second as a set of
vector via the query matrix Q. Each vector in the two matrices represents
a cluster. The current task is to compute the similarity between two sets of
clusters and select similar clusters. As shown in the algorithm, lines 8 to 17, a
query vector is extracted and compared with all the other cluster set elements.
A cosine measure is used to compute the similarity between two vectors. If the
computed similarity exceeds a specified threshold, the two clusters constitute
a similar cluster pair to be then added to the final result, Sim Clust.

The computed similarities between cluster pairs of the two schemas are used
to construct a so-called cluster similarity matrix, line 12. If the computed sim-
ilarity between each two clusters exceeds a specific threshold, the two clusters
are put in the similar cluster set, lines 13&14.

4.4 Walk-Through Example

We provide an example that elaborates the proposed algorithms and gives more
details about how to determine similar clusters. In this example, we use two
schema trees illustrated in Figs. 2 and 3. We formulate the problem in this exam-
ple as follows: given two cluster sets CSet1 = {C11, C12} and CSet2 = {C21}
shown in Fig. 4, identify similar clusters across the two cluster sets.

– Step 1: We select the cluster set of larger number of clusters, CSet1, to con-
struct the term-document matrix. After applying the normalization process
on element names, we get the matrix A, as shown below. Each element in the
matrix shows the number of occurrences of each term in the associated cluster
(document). After getting the matrix A, we apply the log-entropy weighting
scheme to get Aentropy.
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– Step 2: The log-entropy matrix is then decomposed into three matrices as given
by Eq. 2, where U is an 16 × 16 orthogonal matrix, S is an 16 × 2 diagonal
matrix, and V is an 2 × 2 orthogonal matrix. Since S has only two eigenval-
ues, the SVD method should reserve only two columns in U and neglect the
rest, and S should be limited only to two rows, and its dimensions should
be truncated. After applying the SVD scheme, we get the following V and S
matrices (U is not presented to save space since it is an 16 × 2 matrix).

V =
[−0.007 −1

−1 0.007

]

S =
[

2.02 0
0 1.84

]

Low rank approximation to A, called Ak, can be created through the truncated
SVD, via Eq. 3. For truncation, we assume to truncate 98 % of the singular
values. In this example, there is no truncation and the matrices remain the
same.

– Step 3: Incorporating the query, we incorporate the clusters of the orgDB
schema into the new dimensional space created by SVD and its reduced form
processes. The schema is partitioned into one cluster according to the applied
threshold. Hence, we have one query which is analyzed and presented as an
m×1 matrix. This matrix is projected onto the reduced term-document space
via Eq. 4. The new coordinates of this query are represented in vector q, where
q = [−0.131 − 0.262].

– Step 4: The final step is applying cosine similarity function and ranking the
documents as follows.

sim(C11, C21) = sim(d1, q) = 0.897 and sim(C12, C21) = sim(d2, q) = 0.442

Solving the same example using VSM yields the following results:
simV SM (C11, C21) = 0.373 and simV SM (C12, C21) = 0.224. If we set a

threshold value of 0.3, then we get Sim Clust(C11, C21), (C12, C21) using the
LSI-based method, while the similar cluster set contains only one similar clus-
ter using the VSM-based method. From this example, it has been shown that
the computed similarities by LSI are higher than those computed by VSM due
to the ability of LSI to correlate semantically related terms that are latent
in the collection of documents. Furthermore, the documents as well as the
query vectors are represented by the new dimensions with semantic correla-
tion between them.

4.5 Match Similar Clusters

Once settling on the similar clusters of the two schemas, the next step is to fully
match similar clusters to obtain the correspondences between their elements.
Each pair of the similar clusters represents an individual match task that is
independently solved. Match results of these individual tasks are then combined
to a single mapping, which represents the final match result. Since the matching
part is not the main focus on the paper, we employ both name and type similarity
measures to quantify the similarity between two similar cluster elements [3]. We
simply introduce the two similarity measures (interested readers can refer to [3]
for more details).



116 A. Algergawy et al.

– Name similarity measure: Element names are considered important informa-
tion sources for schema matching. Each element name should be normalized
into a set of tokens and a set of string similarity measures can be applied on these
tokens. Based on results presented in [3], we employ three string-based mea-
sures, namely, Levenstein distance, N-gram distance, and Jaro similarity [11].

– Type similarity measure: Although the element name is considered a neces-
sary source for determining the element similarity, the consideration for other
features also plays a different role. The element data type is another schema
information that makes a contribution in determining the element similarity.
The type similarity measure aids to prune some of the false positive matches
produced from the name similarity measure. XML schema data types are
divided into 12 communal types4. Therefore, in this paper, we build a data
type similarity table. We calculate the similarity value for each data type
pair based on the constraining facets of XML schema5. For more details, refer
to [34].

Once the similarity between elements from two similar clusters has been com-
puted using the name and type matchers, a weighted sum function is used to
aggregate these similarity values. Elements with similarity values higher than
a predefined threshold are selected as partial matching results. Finally, partial
results from all similar clusters are combined to produce the final matching
result.

5 Experimental Evaluation

To evaluate the effectiveness of the proposed approach, we conducted a set of
experiments utilizing real-world schemas and ontologies. We ran all our experi-
ments on 2.67 GHz Intel (R) Core i5 processor with 4 GB RAM running Windows
7. The proposed approach has been developed and implemented in Java.

5.1 Data Set

We collected data sets from different domains with different characteristics, as
shown in Table 1. The table illustrates that the collected schemas are from 8 dif-
ferent domains6 with different sizes ranging from small to large schemas. Within
each domain, we use two schemas in order to apply the proposed approach. We
choose these data sets to demonstrate the applicability of our approach to dif-
ferent data sources having different characteristics. More details about data sets
in Table 1 can be found in [14,29].

4 http://www.w3.org/TR/xmlschema-2/.
5 XML Schema - Data Types Quick Reference, http://www.xml.dvint.com/.
6 http://queens.db.toronto.edu/project/clio/index.php#testschemas.

http://www.w3.org/TR/xmlschema-2/
http://www.xml.dvint.com/
http://queens.db.toronto.edu/project/clio/index.php#testschemas
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Table 1. Data set specification.

Domain Tested sources No. of elements

Spicy deptDB/orgDB 19/20

University Uni1/Uni2 11/11

Web Yahoo/ebay 37/37

TPC H TPC H1/TPC H2 43/17

Finance finan1/finan2 14/14

GeneX GeneX1/GeneX2 75/85

Mondial Mondial1/Mondail2 117/108

PO(large) OpenTran Invoice/OpenTran Order 1113/1162

5.2 Evaluation Criteria

In our implementation, we consider two levels of evaluations, which can help
answering the following two questions:

– Which is the better technique to determine similar clusters; LSI-based or
VSM-based?

– What is the effect of both LSI-based and VSM-based techniques on the overall
matching quality?

In order to answer these questions, we use the same criteria used in literature
in terms of precision, recall, and F-measure [8]. In general, precision P can be
defined as the degree of correctness of the result. In answering the first question,
the result means the similar clusters, while in the second question it means match
results (i.e., correspondences). It measures the ratio of correctly identified results
(true positives, tP ) over the total number of identified results (true positives plus
false positives fP ). It can be computed as: P = tP

tP+fP
. Recall, R, assesses the

degree of completeness of the system. It measures the ratio of correctly identified
results (true positives, tP ) over the total number of correct results (true positives
plus false negatives fN ). It can be computed as: R = tP

tP+fN
.

However, neither precision nor recall alone can accurately assess the matching
quality [13]. Precision evaluates the post-match effort that is needed to remove
false positives, while recall evaluates the post-match effort that is needed to add
true negatives to the final match result. Hence, it is necessary to consider a
trade-off between them. There are several methods to handle such a trade-off,
one of them is to combine both measures. The mostly used combined measure
is F-measure. F-measure is the weighted harmonic mean of precision and recall.
The traditional F-measure can be defined as:

F-measure = 2 × P × R

P + R
(5)
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5.3 Experimental Results

LSI-Based Approach Quality. We conducted two sets of experiments to
validate the performance of the proposed approach and to answer the mentioned
questions. The first set is devoted to answer the question “whether LSI-based or
VSM-based technique is better in determining similar clusters in the context of
partitioning-based schema matching”. We validated the proposed approach using
XML schemas illustrated in Table 1. Each XML schema is parsed and represented
as a schema tree. The clustering-based approach, in [2], is applied to partition
each schema tree into a set of clusters. To determine similar clusters among two
sets of clusters, we applied both our LSI-based approach and the VSM-based
approach [2]. The elements of cluster similarity matrix are ranked according to
their similarity to each other and the similar clusters have been selected when
their similarities exceed a predefined threshold. Results are summarized in Fig. 5.

Results represented in Fig. 5 can be classified into three main categories. The
first one considering the University (Spicy and Finance which are not drawn) and
TPC H schemas, as shown in Fig. 5(a,b), illustrates that F-measure has its best
values at low threshold and it decreases with increasing threshold values. The
LSI-based method has an F-measure of nearly 1 over threshold values ranging
between 0 and 0.5, and then the F-measure decreases to reach zero at threshold
of 0.6 (for University) and 0.9 (for TPC). However, the VSM-based method has
its best value at only two threshold values and it decreases to reach zero at a
threshold value of 0.4 (for both schemas). This can be explained as both the
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Fig. 5. Similar clusters quality
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University (Spicy) and TPC H have higher name heterogeneities, which make
the VSM-based method fail to determine the correct similar clusters.

The second category considers the Web and Mondial schemas, as shown in
Fig. 5(c,d). These schemas have lower name heterogeneities, which give the VSM-
based method the chance to correctly identify similar clusters. The figures also
show that as the threshold increases, the F-measure increases. However, the
LSI-based method has higher F-measure values than the VSM-based method,
especially for the Mondial schema.

The third category represents the PO schemas. It is the most difficult match
task, since these schemas are highly heterogeneous. Therefore, the quality of
similar cluster determination is lower compared to the other cases. However, the
LSI-based method keeps higher F-measure values than the VSM-based method.

To sum up, Fig. 5 shows that the LSI-based technique outperforms the VSM-
based technique across tested schemas. The figure also illustrates the capability
of the LSI-based method to cover the hidden semantic relationships between
cluster elements, which results in more accurate and quality similar clusters
determination.

Furthermore, we compared the LSI-based and the VSM-based method with
respect to the number of produced similar clusters. Based on results reported
in Fig. 5, we found that the “best” similar clusters occur at different threshold
values. Therefore, we decide to select a suitable threshold value to conduct this
comparison. To this end, we select the similar clusters produced at a threshold
value of 0.3. Results are reported in Table 2. The table represents the number
of generated clusters after applying the clustering algorithm, the number of real
similar clusters, the number of similar cluster (both correct and total numbers)
generated by both techniques and its quality (F-measure). The table also verifies
the results presented in Fig. 5. Table 2 illustrates that the LSI-based method
outperforms the VSM-based method. This is can be explained due to the ability

Table 2. Comparison between LSI-based and VSM-based techniques at threshold of 0.3

Domain No. of No. of real LSI-based VSM-based

clusters similar No. similar F-measure No. similar F-measure

clusters cluster cluster

correct/total correct/total

Spicy 2/1 2 2/2 1.0 1/1 0.67

University 1/2 2 2/2 1.0 1/1 0.67

Web 4/3 4 4/4 1.0 4/4 1.0

TPC H 6/1 4 3/3 0.867 1/1 0.4

Finance 1/2 2 2/2 1.0 2/2 1.0

GeneX 10/8 12 11/14 0.85 9/10 0.8

Mondial 10/10 11 11/13 0.92 11/81 0.23

PO(large) 57/56 80/112 100/112
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of the LSI-based method to discover the hidden semantic relationships between
schema element names.

Effect of LSI-Based on Matching Quality. The second set of experiments
has been conducted to study the effect of both LSI-based and VSM-based meth-
ods on the matching quality. After selecting the “best” similar clusters, we
first applied the name matcher on each matching task using data sets shown
in Table 1. We then applied both the name and type similarity measures on
the same matching task. Each task produces a subset of the match result.
These subsets are then combined to generate the final match result. The final
match result is evaluated using evaluation criteria, including precision, recall, and
F-measure. Results for the matching quality are reported in Fig. 6.

The figures show, in general, that the LSI-based method has higher matching
quality than the VSM-based method. This fact can be observed for the Univer-
sity, Spicy, TPC H, and PO schemas. This can be clarified as these schemas
have a high degree of semantic heterogeneity, and the LSI-based method has
the ability to discover hidden semantic relationships between schema elements.
However, the Web, Finance and Genex have less degree of heterogeneity, which
results in nearly equal matching quality by both methods. In the case of the Mon-
dial schema, which contains nearly no semantic heterogeneity, a large number
of false positives are produced by the VSM-based method. Therefore, the LSI-
based method produces higher matching quality than the VSM-based method
w.r.t. the Mondial schema. It should be noted that the name matcher is more
effective than the type similarity measure, and using the type measure makes a
slight improvement in the matching quality.
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Fig. 6. Match quality comparison.

6 Conclusions

Partitioning-based techniques have become well-known approaches to match
large schemas and ontologies. It has been proven that they improve the matching
efficiency, however, they do not guarantee the matching quality. Identifying sim-
ilar partitions of two schema trees is a crucial step before the matching process.
To this end, in this paper, we introduced a new approach to cope with the
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problem of similar cluster determinations in the context of matching large-scale
schemas. The proposed approach captures the features introduced by the Latent
semantic indexing scheme to discover hidden semantic relationships between two
sets of clusters. We in particular developed a matching framework focusing on
the similar cluster determination step. Input schemas are first parsed and repre-
sented internally as schema trees to make the matching framework more generic.
We then applied a clustering algorithm to partition each schema tree into a set
of clusters. Further, we introduced a LSI-based algorithm to identify and deter-
mine similar clusters. To validate the performance of the proposed approach, we
conducted a set of experiments utilizing different data sets comparing it with
the classical vector space model (VSM)-based approach. The results proved that
the LSI-based method outperforms the VSM-based method in determining the
most similar clusters. It has the ability to discover hidden semantic relation-
ships between schemas’ elements. Therefore, the LSI-based method produces
better matching quality than the VSM-based method. In future work we plan to
extend the framework to explore the effect of the LSI-based method on match-
ing efficiency. We need to validate some optimization techniques to enhance the
LSI-based method.

Acknowledgments. This paper is a revised and extended version of the paper
presented in [26]. A. Algergawy partially worked on this paper while at Magdeburg
University.
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