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Abstract. A web application expected to deal with XML documents
conceived on the basis of divers sets of (local) constraints would be
expected to test documents with respect to all non contradictory con-
straints imposed by these original (local) sources. The goal of this paper
is to introduce an optimized algorithm for computing the maximal set of
XML functional dependencies (XFD) over multiple systems. The basis
of our method is a sound and complete axiom system which is provided
for relative XFD allowing two kinds of equality: value or node equality.
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1 Introduction

This paper deals with the problem of exchanging XML (eXtensible Markup Lan-
guage) data in a multi-system environment where a global central system should
receive and process data coming from different local sources. Our global system
is a conservative evolution of local ones. It conserves the possibility of accept-
ing XML documents coming from any local (original) source. It extends local
systems since it has its own schema and integrity constraints (generated from a
merge of local ones) and may accept and deal with non-local XML documents
(possibly non locally valid ones).

Our work aims at enriching schema evolution proposals by taking into account
integrity constraints. Schema merging proposals are usually based on simple data
models. Schemas can be more expressive than DTD and XSD, associated to
integrity constraints (as in [6]) or expressed by a semantically richer data model
(as in [23]).

A conservative schema evolution algorithm that extends minimally regular
tree grammar is proposed in [9]. That approach for schema extension is inherently
syntactic: only structural aspects of XML documents are considered and new
grammars are built by syntactic manipulation of the original production rules.
This paper aims at enriching that model by offering the possibility of computing
from given local sets of XFD (XML Functional Dependencies), a cover of the
biggest set of XFD that does not violate any local document. This is a first
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step towards an extension of a schema evolution proposal which will take into
account integrity constraints. This extension intends to enrich schema evolution
but is conceived as an independent procedure. In this way it may be applied or
adapted to other schema evolution approaches.

Some applications of our work are: in the field of Digital Libraries, due to their
need of evolution when new sources of data become available or when merging
two libraries may be interesting [11]; in the construction of innovative services
with data coming from diverse organizations that manipulate similar (though not
identical) information, allowing us to envisage possible adaptations to big data
applications [7]. In these cases, it is important to have a non contradictory set of
integrity constraints (one that could be built from the original local constraints).

We suppose that S1, . . . , Sn are local (original) systems which deal with
sets of XML documents X1, . . . , Xn, respectively, and that inter-operate with
a global, integrated system S. System S integrates local systems and is seen as
an evolution of all of them. It can continue to receive information from any local
(original) system, but it can also deal with information coming from other non
local sources. Each set Xi conforms to schema constraints Di and to integrity
constraints F i and follows an ontology Oi. Our goal is to associate system S to
type and integrity constraints which represent a conservative evolution of local
constraints. More precisely, given different triples (D1,F1, O1), . . . , (Dn,Fn, On),
we are interested in generating (D, coverF ,A), where:
(i) D is an extended type that accepts any local document;
(ii) coverF is a set of XFD equivalent to F the biggest set of functional depen-
dencies (XFD), built from F1, . . . ,Fn, that can be satisfied by all documents in
X1, . . . , Xn and
(iii) A is an ontology alignment that guides the construction of D and F in
terms of semantics mapping. Notice that ontology issues are out of the scope
of this paper, but we suppose the existence of A which is the basis of a pre-
processing step where correspondence among tree paths (built on the different
Di) is established. The construction of this pre-processor is out of purpose in
this paper; we just consider that the output of such pre-processing is an input
of our algorithms.

This paper focus only on the generation of coverF which contains the XFD
for which no violation is possible when considering document sets X1, . . . , Xn.
It is important to notice that our algorithm is based on an axiom system and,
thus, obtains coverF from F1, . . . ,Fn, disregarding data.

The contribution of this paper is twofold. On one hand we introduce an
axiom system together with the proofs of its soundness and completeness. On
the other hand, we present an efficient way for computing, on the basis of our
axiom system, the set coverF . We prove that the obtained set coverF has good
properties and some experiments show the efficiency of our approach.

The rest of this paper is organized as follows. Section 2 comments on some
related work. Section 3 illustrates our goal with an example. Section 4 presents
some background while Section 5 introduces our XFD. Section 6 focuses on our
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axiom system. Section 7 introduces our method for computing coverF while
in Section 8 we discuss on some experiments. Finally, Section 9 concludes the
paper. We refer to [2] for the omitted proofs.

2 Related Work

Our motivation is to offer to a global system the capability of preserving the
biggest set of local non contradictory constraints. Since the objective is to work
only on constraint specification without any data involvement, we use an axiom
system. To the best of our knowledge no other work considers this scenario.

We refer to [3,13,16,19–21,24] as other proposals for defining XFD and
to [13,22] for a comparison among some of them. Different XFD proposals entail
different axiomatisation system, such as those in [13,15,21]. We adopt XFD pre-
sented in [4] for which we possess a validation tool (general algorithm in [6]). The
approach in [12] defines XFD as tree queries, which implies a complex imple-
mentation, and proposes static XFD validation w.r.t. updates.

To achieve our goal out first task is to propose an axiom system for the
adopted XFD, together with an efficient algorithm for computing the closure of
a set of paths. Our work on this axiom system is comparable to the one proposed
in [21]. The main differences are: (i) we propose a more powerful path language
allowing the use of a wild-card; (ii) our XFD are verified w.r.t. a context and
not only w.r.t. the root, i.e., XFD can be relative; (iii) our XFD can be defined
by taking into account two types of equality: value and node equality and (iv)
we use simpler concepts (such as branching paths, projection) which, we believe,
allow us to prove that our axiom system is sound and complete in a clearer way.

We use our axiom system in the development of a practical tool: to filter local
XFD in order to obtain a set containing only XFD that cannot be violated by
any local XML document. Our global system aims to deal with data coming from
any local source, but not to perform data fusion. Thus, our work presents an
original point of view, since we are not interested in putting together all the local
information, but just in manipulating them. Usually, schema integration proposal
comes together with the idea of data fusion. XML data fusion is considered in
papers such as [8,18]. Data exchange is considered in [10] that aims to construct
an instance over a target schema, based on the source and a given mapping, and
to answer queries against the target data, consistently with the source data.

Proposals concerning XML type evolution usually do not take into account
the evolution of associated integrity constraints which are extremely important in
the maintenance of consistent information. In [14] authors offer as a perspective
to apply to XML their proposal of adapting functional dependencies according
to schema changes. This is done in [19] where authors consider the problem
of constraint evolution in conformance with type evolution. The type evolution
in [9] is well adapted to our purposes; it seems possible to combine it with our
XFD filter in order to generate a set of constraints allowing interoperability.
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3 Motivating Example

We suppose universities or educational institutions, from the same region in
France, which want to implement a central data system to obtain and process
information concerning their courses and students, independently of local sys-
tems already in use. Their goal is to obtain a central system that ensures a
maximum number of the local non-contradictory integrity constraints.

Each educational institution has established, locally, its own constraints. For
instance, let the XML trees in Figure 1 be documents from two different uni-
versities. Each document is valid w.r.t. the functional dependencies presented in
Table 1, i.e., documents in X1 are valid w.r.t. F1, those in X2 are valid w.r.t.
F2. We recall that local schemas and concepts may be different.

undergraduate

univ

@domain courses

course 

codeC title C

codeC codeC

course 

@domain codeC nameC@level

univ

courses

... course 

course ...

codeC

prerequisitesC NbHours

prerequisitesC

(1) (2)

Fig. 1. Two XML documents from different local sources

In the XML domain, a functional dependency (XFD) is defined by paths over
a tree. Each path selects a node on a tree. Values or positions of the selected nodes
are gathered to build tuples that will be used to verify whether a given XML doc-
ument satisfies an XFD. For example, consider the XFD f: (univ, (undergradu-
ate/courses/course/codeC → undergraduate/courses/course/titleC)) on the first
document of Figure 1(1). It specifies that the context is univ, i.e., that the con-
straint should be verified on data below a node labelled univ. In this context,
f entails the construction of tuples composed by values obtained by follow-
ing the paths: univ/undergraduate/courses/course/codeC, univ/undergraduate/-
courses/course/titleC. As in the relational model, a document is valid w.r.t. f
if any two tuples agreeing on values obtained from univ/undergraduate/cour-
ses/course/codeC also agree on values obtained from univ/undergraduate/cour-
ses/course/titleC. Thus, in a university the code of a course determines its name.

Similarly, the XFD f1: (univ, (undergraduate/courses/course/codeC → under-
graduate/courses/course/prerequisitesC)) entails tuples where the path univ/un-
dergraduate/courses/course/prerequisitesC leads us to obtain sub-trees having
roots labelled prerequisitesC (i.e., sub-trees containing information about pre-
requisites). This constraint indicates that courses having the same code should
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have the same prerequisites. A document is valid w.r.t. f1 if any two tuples agree-
ing on values obtained from univ/undergraduate/courses/course/codeC also agree
on values obtained from univ/undergraduate/courses/course/prerequisitesC, i.e.,
obtained sub-trees are isomorphic.

Table 1. XFD in F1 and F2

F XFD
1 (univ, (undergraduate/courses/course/codeC → undergraduate/courses/course/titleC))
1 (univ, (undergraduate/courses/course/codeC → undergraduate/courses/course/prerequisitesC))
1 (univ, (undergraduate/courses/course/codeC → undergraduate/@domain))
2 (univ, (courses/course/codeC → courses/course/nameC))
2 (univ, (courses/course/codeC → courses/course/@domain))
2 (univ, (courses/course/codeC → courses/course/@level))
2 (univ, ({courses/course/nameC, courses/course/@level} → courses/course/NbHours))

Now consider the first three XFD in Table 1, concerning source 1. They
indicate that in a university, the code of a course determines its name, its domain
and its prerequisites. In other words, a course is identified by its code.

From the alignment of local ontologies we assume that Table 2 is available,
making the correspondence among paths on the different local sets of documents.
Thus, it is possible to conclude that, for instance, XFD f: (univ, (undergradu-
ate/courses/course/codeC → undergraduate/courses/course/titleC)) and (univ,
(courses/course/codeC → courses/course/nameC)) are equivalent, i.e., they rep-
resent the same constraint since they involve the same concepts: in a university,
the code of a course determines its name.

Table 2. Extract of the translation table

Paths from D1 Paths from D2

univ/undergraduate/courses/course/codeC univ/courses/course/codeC
univ/undergraduate/courses/course/titleC univ/courses/course/nameC
univ/undergraduate/courses/course/prerequisitesC univ/courses/course/prerequisitesC
univ/undergraduate/courses/course/prerequisitesC/codeC univ/courses/course/prerequisitesC/codeC
univ/undergraduate/@domain univ/courses/course/@domain

Assuming that we have only these two local sources, we want to obtain, from
F1 and F2, the biggest set of XFD F that does not contradict any document in
X1 and X2. To reach this goal, we should consider all XFD derivable from F1

and F2, which may result in very big sets of XFD. Indeed, the set F is, usually,
a very big one - too big to work with. A better solution consists of computing
coverF , a cover of F (i.e., a (usually) smaller set of XFD that is equivalent to
F), without computing all XFD derivable from F1 and F2. In this paper, we
propose an algorithm that generates this set of XFD.

In our example, the resulting coverF would contain XFD of Table 3. Let us
analyse this solution. In Table 3, the first and the fourth XFD are equivalent. They
are kept in coverF since all documents in X1 and X2 are valid w.r.t. it. The same
reasoning is applied for the second and third XFD in Table 3. The two last XFD
involve concepts that occur only in X2 and, thus, cannot be violated by documents
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Table 3. XFD in the resulting F
1 (univ, (undergraduate/courses/course/codeC → undergraduate/courses/course/titleC))
2 (univ, (undergraduate/courses/course/codeC → undergraduate/@domain))
3 (univ, (courses/course/codeC → courses/course/@domain))
4 (univ, (courses/course/codeC → courses/course/nameC))
5 (univ, (courses/course/codeC → courses/course/@level))
6 (univ, ({courses/course/nameC, courses/course/@level} → courses/course/NbHours))

in X1. Notice that the XFD (univ, (undergraduate/courses/course/codeC →
undergraduate/courses/course/prerequisitesC)) in F1, which states that
courses with the same code have the same set of prerequisites, is not in F . The rea-
son is that according to the ontology alignment, this XFD is equivalent to (univ,
(courses/course/codeC → courses/course/prerequisitesC)) in F2. However, as F2

does not contain this XFD, documents in X2 may violate it (since the involved
concepts exist in X2).

4 Preliminaries

Our work uses XFD such as those in [4,6]. An XML document is seen as a
tuple T = (t, type, value). The tree t is the function t: dom(t) → Σ where:
(A) Σ = Σele ∪ Σatt ∪ {data} is an alphabet; Σele is the set of element
names and Σatt is the set of attribute names and (B) dom(t) is the set of posi-
tions numbered according to Dewey encoding. Given a tree position p, function
type(t, p) returns a value in {data, element, attribute}. Similarly, value(t, p) ={

p if type(t, p) = element
val ∈ V otherwise

where V is an infinite recursively enumerable domain. �

univ

@nameUniv
0

@cityUniv
1

u n d e r g r a d u a t e
2

...
3

u n d e r g r a d u a t e
4

Universi té d’Orléans Or léans @ y e a r
2 .0

@doma in
2.1

s t u d e n t s
2 .2

c o u r s e s
2 .3

enroll
2 .4

...

2 0 1 2 Compute r  Sc ience s t u d e n t
2.2 .0

c o u r s e
2.3 .0

c o u r s e
2.3 .1

reg i s te r2 .4 .0

idSt2 .2 .0 .0n a m e S t
2.2 .0 .1

a d d S t
2 .2 .0 .2

d a t a d a t a d a t a

codeC
2.3.0 .0     

t i tleC
2.3 .0 .1

prerequis i tesC
     2 .3 .0 .2

d a t a d a t a codeC
2.3 .0 .2 .0

codeC

         2 .3.0.2.1

d a t a d a t a

codeC
2.3.1 .0     

t i tleC
2.3 .1 .1

prerequis i tesC
2.3 .1 .2

d a t a d a t a codeC
2.3 .1 .2 .0

codeC

         2 .3.1.2.1

d a t a d a t a

idSt
2.4.0 .0      

d e g r e e
2.4 .0 .1

codeC
    2 .4 .0 .2

d a t a d a t a d a t a

2 0 3 9 Alex 10 rue  co lombia 1 Java

3 4

2 SQL

4 3

2 0 3 9 1st  level 2

Fig. 2. XML document concerning the first degree (undergraduate) at a university
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As many other authors, we distinguish two kinds of equality in an XML tree,
namely, value equality and node equality. Two nodes are value equal when they
are roots of isomorphic sub-trees. Two nodes are node equal when they have the
same position number. To combine both equality notions we use the symbol E,
that can be represented by V for value equality, or N for node equality. Our
value equality definition does not take into account the document order. For
instance, in Figure 2, nodes in positions 2.3.0.2 and 2.3.1.2 are value equal, but
nodes 2.3.0 and 2.3.1 are not.

4.1 Linear Paths

Linear paths are used to address parts of an XML document. Let PL be the
language where a path is defined by ρ ::= [] | l | ρ/ρ |ρ//l where [] is
the empty path, l is a label in Σ, ”/” is the concatenation operation, ”//”
represents a finite sequence (possibly empty) of labels. Notice that l/[] = []/l = l
and []//l = //l. We distinguish between paths using the wild-card // and simple
paths (those with no wild-card) and we denote by IP the set of all possible rooted
simple paths that may occur in an XML tree t respecting a given schema D.

In this work we consider that the set IP is generated from a given schema
D. Notice that IP is a finite set of simple (top-down) paths and, in this way,
the schema from which it is obtained should ensure a limited depth of label
repetitions. In other words, the language L(D), obtained from a finite state
automaton D (which is built from a given type D), should be finite. Such kind
of schema can be expressed, for instance, by a non-recursive DTD. In this way,
we are more general than [4,6], where IP was the set containing only all possible
paths in one given tree.

It is important to notice that one path with wild-card can be associated to a
set of simple paths in IP. This set of simple paths is the language L(AP ), where
AP is a finite-state automaton (FSA) obtained on the basis of the two following
steps:

1. From the path language P we construct a finite-state automaton BP which
recognizes the expression P in PL and is similar to restricted regular expres-
sions.

2. AP = D∩BP . We retain in L(AP ) the paths which respect the path language
P and are simple paths in IP.

Example 1. We suppose a DTD concerning undergraduate course in a university
such that the document of Figure 2 is valid w.r.t. it. Let D be the FSA that
recognizes IP, the language of prefixes of the paths defined by this DTD. Let P =
univ/undergraduate//codeC and BP the FSA that recognizes P . The set L(BP )∩
IP contains only the simple paths in L(BP ) that trees respecting IP may have, i.e.,
{ univ/undergraduate/courses/course/codeC, univ/undergraduate/courses/cour-
se/prerequisitesC/codeC, univ/undergraduate/enroll/register/codeC}. �

A path P is valid if: (i) it conforms to the syntax of PL, (ii) L(AP ) �= ∅,
(iii) for all label l ∈ P , if l = data or l ∈ Σatt, then l is the last symbol in P .
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In this work, given a path P in PL we define the following functions:

– Last(P ) = ln where ln is the last label on path P .
– Parent(P ) = {l1/ . . . /ln−1 | l1/ . . . /ln−1/ln ∈ L(AP ) for n > 1}, the set of

simple paths starting at a node labelled by l1 and ending at the parent of ln
(where Last(P ) = ln).

– A path Q is a prefix of P (we note Q �PL P ) if L(AQ) ⊆ L(PREFIX(AP ))
where PREFIX(AP ) is the finite state automaton that accepts the language
containing all prefixes of L(AP ).

– The longest common prefix (or the intersection) of P and Q, denoted by
P ∩Q, describes the set of simple paths {P ′∩Q′ | P ′ ∈ L(AP )∧Q′ ∈ L(AQ)}.
The longest common prefix of two simple paths P ′ and Q′ (denoted P ′ ∩Q′)
is the simple path R where R � P ′ and R � Q′ and there is no path R′ such
that R ≺ R′, R′ � P ′ and R′ � Q′.

Example 2. Consider the XML document of Figure 2. The simple path univ/un-
dergraduate/courses is a prefix for univ/undergraduate/courses/course/codeC.
Given P ′ =univ/undergraduate/courses/course/codeC and Q′ = univ/undergra-
duate/courses/course/prerequisitesC/codeC, their longest common prefix is un-
iv/undergraduate/courses/course.
Given P = univ//codeC and Q = univ//idSt, the longest common prefix P ∩Q =
{ univ/undergraduate, univ/undergraduate/enroll/register} �

Now, let I = p1/ . . . /pn be a sequence of positions such that each pi is a
direct descendant of pi−1 in t. Then I is an instance of a path P over a
given tree t if and only if the sequence t(p1)/ . . . /t(pn) ∈ L(AP ). We denote by
Instances(P, t) the set of all instances of P over t. Functions Last, Parent, Prefix
and the longest common prefix are extended to path instances in the obvious
manner. Notice that the longest common prefix allows the identification of the
least common ancestor.

We now remark that, in this paper, we will only deal with complete trees
(i.e., documents with no missing information). Let IP be a set of simple paths
associated to an XML document T . We say that T is complete w.r.t. IP if
whenever there exists paths P and P ′ in the associated IP such that P ′ ≺ P and
there exist an instance I ′ for P ′ such that node v′ is the last node in I ′, then there
exists an instance I for P such that v is the last node in I and v′ is an ancestor
of v. For example, let IP be a set containing paths R/A/C, R/A/D, R/B and
their prefixes. Then, representing trees as terms, we notice that R(A(C,D), B),
R(A(C,D), A(C,D), B) are complete trees, while R(A(C), B), R(A(C,D)) are
no complete trees.

Given two valid paths P and Q over a tree t, we want to verify whether
two given path instances match on the longest common prefix of P and Q. To
this end we define the boolean function isInst lcp(P, I,Q, J) which returns
true when all the following conditions hold: (i) I ∈ Instances(P, t); (ii) J ∈
Instances(Q, t) and (iii) I ∩ J is an instance of a path in P ∩ Q; otherwise, it
returns false.
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4.2 Branching Paths

Now we introduce the notion of branching paths also called a pattern in the
literature [5,20]. A branching path is a non-empty set of simple paths having a
common prefix. The projection of a tree over a branching path determines the
tree positions corresponding to the given path. Thus, as defined below, this pro-
jection is a set of prefix closed simple path instances that respect some important
conditions.

Definition 1 (Branching path). A branching path is a finite set of prefix-
closed (simple) paths on a tree t. �

Definition 2 (Projection of a tree T over a branching path M). Let
M be a branching path over a tree T . Let LongM be the set of paths in M that
are not prefix of other paths in M . Let SetPathInst be the set of (simple) path
instances that verifies:

1. For all paths P ∈ LongM there is one and only one instance inst ∈ Instan-
ces(P, t) in the set SetPathInst.

2. For all inst ∈ SetPathInst there is a path P ∈ LongM such that inst ∈
Instances(P, t).

3. For all instances inst and inst′ in SetPathInst, if inst ∈ Instances(P, t)
and inst′ ∈ Instances(Q, t), then isInst lcp(P, inst,Q, inst′) is true.

A projection of T over M , denoted by ΠM (T ), is a tuple (ti, typei, valuei) where
typei(ti, p) = type(t, p), valuei(ti, p) = value(t, p) and ti is a function Δ → Σ
in which:

– Δ =
⋃

inst ∈ SetPathInst{p | p is a position in inst}
– ti(p) = t(p), ∀p ∈ Δ �

Given the projection of two branching paths, ΠM 1
(T ) and ΠM 2

(T ), the
union ΠM 1

(T ) ∪ ΠM 2
(T ) is naturally obtained by considering all the path

instances used to obtain each projection.

Example 3. Consider the XML document of Figure 2. Let M be a branching path
defined from the set {univ/undergraduate/courses/course/codeC, univ/undergra-
duate/courses/course/prerequisitesC}, i.e., M contains these paths and all their
prefixes. An example of a projection of T over M is the one where t(ε) = univ,
t(2) = undergraduate, t(2.3) = courses, t(2.3.0) = course, t(2.3.0.0) = codeC
and t(2.3.0.2) = preresquisitesC. However, if we take t(ε) = univ, t(2) =
undergraduate, t(2.3) = courses, t(2.3.0) = course, t(2.3.0.0) = codeC and
t(2.3.1.2) = preresquisitesC, we do not have a projection of T over M . Indeed,
in Definition 2, if we consider P = univ/undergraduate/courses/course/codeC
and its instance inst = ε/2/2.3/2.3.0/2.3.0.2 together with Q = univ/under-
graduate/courses/course/prerequisitesC and its instance inst′ = ε/2/2.3/2.3.1/-
2.3.1.2 we obtain isInst lcp(P, inst,Q, inst′) = false. Notice that the longest
common paths P ∩ Q is univ/undergraduate/courses/course. �
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From Definition 2, we remark that the projection of T over a branching path
M contains exactly one instance of every path in M . In the following, when
needed, we denote by ΠM (T )[P ] the unique instance of the simple path P in
ΠM (T ). Indeed, when we write ΠM (T )[P ] we restrict the projection of T over
M to the instance (in the projection) of one simple path P .

Lemma 1. Let ΠM (T ) be a projection of a tree T over a branching path M .
For each two simple paths P and Q in M if I = ΠM (T )[P ] and J = ΠM (T )[Q]
then we have isInst lcp(P, I,Q, J) = true. �

Now we are interested in building a relation where each tuple corresponds to
values determined by a given projection ΠM (T ).

Definition 3 (Tuple obtained from Projection). Let M be a branching
path and X = {P1, . . . , Pk} be a set of paths such that X ⊆ M . Let τ = ΠM (T ) =
(ti, typei, valuei) be a projection of the tree T on M . Let Ij = ΠM (T )[Pj ] be the
only instance of path Pj in ΠM (T ) where j ∈ [1, . . . , k]. The tuple corresponding
to X on τ , denoted by τ [X], is defined as1

τ [X] = (P1 : valuei(ti, Last(I1)), . . . , Pk : valuei(ti, Last(Ik))).
We denote by τ [Pj ] the result of Pj : valuei(ti, Last(Ij)). Two tuples τ1[X] and
τ2[X] are equal w.r.t. the equality list E = (E1, . . . , Ek), denoted by τ1[X] =E

τ2[X], iff ∀ j ∈ [1 . . . k], τ1[Pj ] =Ej
τ2[Pj ]. �

The tuple τ [X] is formed by the values or nodes found in an XML document
T from a projection on branching path M , and is constructed by following the
named perspective in relational database [1] where the name of attributes in the
tuples are known. Notice also that the equality between two tuples may involve
different kinds of equality, one for each path.

5 Functional Dependencies in XML

Usually, a functional dependency in XML (XFD) is denoted by X → Y (where X
and Y are sets of paths) and it imposes that for each pair of tuples (Definition 3)
t1 and t2 if t1[X] = t2[X] then t1[Y ] = t2[Y ]. In this paper, our XFD are defined
as those in [5,6], generalizing the proposals in [3,17,20,22]. As the dependency
can be imposed in a specific part of the document, we specify a context path.

Definition 4 (XML Functional Dependency). Given an XML tree t, an
XFD f is an expression of the form:

f = (C, ({P1 [E1], . . . , Pk [Ek]} → {Q1 [E′
1], . . . , Qm [E′

m]}))

where C is a path that starts from the root of t (context path) ending at the
context node; {P1, . . . , Pk}, {Q1, . . . , Qm} are non-empty sets of paths in t. Both
Pi (i ∈ [1, . . . , k]) and Qi (i ∈ [1, . . . ,m]) start at the context node. The set

1 If it is clear by the context, we omit the path when showing a tuple.
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{P1, . . . , Pk} is the left-hand side (LHS) or determinant of an XFD, and the set
{Q1, . . . , Qm} is the right-hand side (RHS) or the dependent paths. The symbols
E1, . . . , Ek, E

′
1, . . . , E

′
m represent the equality type associated to each dependency

path. When symbols E1, . . . , Ek or E′
1, . . . , E

′
m are omitted, value equality is the

default choice. �

Notice that in an XFD the set of paths {C/P1, . . . ,C/Pk, C/Q1, . . . , C/Qm}
defines branching paths and that, as in [22], our XFD definition allows the com-
bination of two kinds of equality.

Definition 5 (XFD Satisfaction). Let T be an XML document and f =
(C, ({P1 [E1], . . . , Pk [Ek]} → {Q1 [E′

1], . . . , Qm [E′
m]})) an XFD. Let M be a

branching path defined from f . We say that T satisfies f (noted by T |= f) if
and only if for all τ1 = Π1

M (T ) and τ2 = Π2
M (T ) that are projections of T on

M and that coincide at least on their prefix C, we have:
If τ1[C/P1, . . . , C/Pk] =E τ2[C/P1, . . . , C/Pk] then τ1[C/Q1, . . . , C/Qm] =E′

τ2[C/Q1, . . . , C/Qm] where E = (E1, . . . , Ek) and E′ = (E′
1, . . . , E

′
m). �

Example 4. Consider the following XFD on the document of Figure 2.

XFD1: univ//courses, ({course/codeC} → course/titleC)
Considering the set of courses of an undergraduate domain, courses having the
same code have the same title.

XFD2: univ, ({undergraduate//course/codeC} → undergraduate//course/ti-
tleC). Considering the set of all courses in a university, courses having the same
code have the same title.

XFD3: univ//students, ({student/idSt} → student[N ]). Considering the set of
students of an undergraduate domain, no two students have the same number
and each student appears once. �

An XML document T satisfies a set of XFD F , denoted by T |= F , if T |= f
for all f in F . Usually it is important to reason whether a given XFD f is
also satisfied on T when F is satisfied. The following definition introduces this
notion.

Definition 6 (XFD Implication). Given a set F of XFD we say that F
implies f , denoted by F |= f , if for every XML tree T such that T |= F then
T |= f . �

Based on the notion of implication we can introduce the definition of closure
for a set of XFD.

Definition 7 (Closure of a set of XFD). The closure of a set of XFD F ,
denoted by F+, is the set containing all the XFD which are logically implied by
F , i.e., F+ = {f | F |= f}. �

Notation: In the rest of this paper, given an XFD (C, (X → A)) where X =
{P1, . . . , Pn} is a set of paths and A is a path, we use C/X as a shorthand for
the set {C/P1, . . . , C/Pn}.
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6 Axiom System

To find which XFD f are also satisfied when a given set of XFD F is satisfied we
need inference rules that tell how one or more dependencies imply other XFD. In
this section we present our axiom system and prove that it is sound (we cannot
deduce from F any false XFD) and complete (from a given set F , the rules allow
us to deduce all the true dependencies). Our axiom system is close to the one
proposed in [21], but has two important differences: our XFD are defined w.r.t.
a context (and not always w.r.t. the root) and we use two kinds of equality.

Definition 8 (Inference Rules for XFD). Given a tree T and XFD defined
over paths in IP, our axioms are:

A1: Reflexivity (C, ({P1 [E1], . . . , Pn [En]} → Pi [Ei])), ∀i ∈ [1 . . . n].

A2: Augmentation If (C, ({P1 [E1], . . . , Pn [En]}→{Q1 [E′
1], . . . , Qm [E′

m]}))
then (C, ({R [Er], P1 [E1], . . . , Pn [En]} → {R [Er], Q1 [E′

1], . . . , Qm [E′
m]})).

A3: Transitivity If (C, ({P1 [E1], . . . , Pn [En]} → {Q1 [E′
1], . . . , Qm [E′

m]}))
and (C, ({Q1 [E′

1], . . . , Qm [E′
m]} → S [Es])) then (C, ({P1 [E1], . . . , Pn [En]}

→ S [Es])).

A4: Branch Prefixing If (C, ({P ′
1 [E′

1], . . . , P ′
n [E′

n]} → Pn+1 [En+1])) and
there exist paths C/P1, . . . , C/Pn (not necessarily distinct) such that
(i) P ′

i ∩ Pn+1 �PL Pi and

(ii) Pi �PL P ′
i or Pi �PL Pn+1

then (C, ({P1 [E1], . . . , Pn [En]} → Pn+1 [En+1])).

A5: Ascendency If Q is a prefix for P then (C, (P [N ] → Q [N ])).

A6: Attribute Uniqueness If Last(P ) ∈ Σatt then (C, (Parent(P ) [E] →
P [E])).

A7: Root Uniqueness (C, ({P1 [E1], . . . , Pn [En]} → [] [En+1])).

A8: Context Path Extension If (C, ({P1 [E1], . . . , Pn [En]} → Pn+1 [En+1]))
and there is a path Q such that P1 = Q/P ′

1, . . . , Pn+1 = Q/P ′
n+1 then (C/Q,

({P ′
1 [E1], . . . , P ′

n [En]} → P ′
n+1 [En+1])).

A9: Node Equality to Value Equality ∀P , (C, (P [N ] → P [V ])).

Example 5. A given university has one or more undergraduate specialities (first
degree) and, for each of them, we store its domain and year together with infor-
mation concerning students, courses and enrolment. Figure 2 shows a part of this
XML document over which we illustrate the intuitive meaning of axioms A4-A9.
The intuition of the three first axioms (A1-A3) is the same as in relational.

A4: If (univ, ({undergraduate/@domain, courses//codeC} → undergraduate/-
enroll//degree)) then we can say that: (univ, ({undergraduate/@domain,
undergraduate/courses}→undergraduate/enroll//degree)) or (univ, ({under-
graduate/@domain, undergraduate/courses/course} → undergraduate/enr-
oll//degree)) or (univ, (undergraduate → undergraduate/enroll//degree)).



XFD for the Integration of Multiple Systems 95

The initial XFD states that all courses having codeC in the same domain cor-
respond to the same degree. From this XFD, we can deduce, among others, the
XFD (univ, (undergraduate → undergraduate/enroll//degree)) stating that
an undergraduate speciality is associated to only one degree (e.g., Bachelor’s).

A5: Given a path P = undergraduate//register/idSt, we can derive
(univ, ({undergraduate//register/idSt} → undergraduate//register)).

A6: Given P = undergraduate/@year, we derive that
(univ, ({undergraduate[N ]} → undergraduate/ @year[N ])).

A8: If (univ/undergraduate, (students/student/idSt → students/student/na-
meSt)) then (univ/undergraduate/students, (student/idSt → student/name-
St)). If, in the context of an undergraduate domain, the idSt identifies the name
of a student; this is also true in the context of students.

A9: When we have a node equality, for instance, for univ/undergraduate//cour-
se, it means that we are considering a specific, uniquely referred, course in our
document. Thus, (univ, ({undergraduate//course[N ]} → undergraduate//-
course[V ])) is a valid XFD.

Notice that A5 does not hold when dealing with value equality. The tree on
Figure 2 violates the XFD (univ, ({undergraduate//course/prerequisitesC [V ]}
→ undergraduate//course [V ])). Indeed Last(2.3.0.2) =V Last(2.3.1.2) but
Last(2.3.0) �=V Last(2.3.1).

Remark that although we have value equality, the following rule (C, (P [V ] →
P/Q [V ])) does not hold. Let us consider the XFD (univ, ({undergraduate//pre-
requisitesC [V ]} → undergraduate//prerequisitesC/codeC [V ])). The tree on
Figure 2 does not satisfy this XFD because we have Last(2.3.0.2)=V Last(2.3.1.2)
but Last(2.3.0.2.0) �=V Last(2.3.1.2.0). �

The set of axioms in Definition 8 establishes an inference system with which
one can derive other XFD.

Definition 9 (XFD Derivation). Given a set F of XFD, we say that an XFD
f is derivable from the functional dependencies in F by the set of inference rules
in Definition 8, denoted by F 
 f , if and only if there is a sequence of XFD
f1, f2, . . . , fn such that (i) f = fn and (ii) for all i = 1, . . . , n the XFD fi is in
F or it is obtainable from f1, f2, . . . fi−1 by means of applying an axiom A1-A9
(from Definition 8). �

Our axiom system is sound and complete. The proofs are summarized in
Appendix A and B and in [2] one can find more detailed versions. Additional
inferences rules (Union, Decomposition, Pseudotransitivity and Subtree Unique-
ness) can be derived from axioms of Definition 8 as we show in [2]. Notice that
as we have the Union and Decomposition axioms, an important consequence is
that an XFD (C, ({P1 [E1], . . . , Pk [Ek]} → {Q1 [E′

1], . . . , Qm [E′
m]})) holds if

and only if (C, ({P1 [E1], . . . , Pk [Ek]} → {Qi [E′
i]})) holds for i ∈ [1, . . . , m].

Thus, having a single path on the right-hand side of an XFD is sufficient. Once
we have our axiom system, we can define the closure of a set of paths w.r.t. a
set of XFD.
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Definition 10 (Closure of a set of Paths). Let X be a set of paths and let C
be a path defining a context. Let E = (E1, . . . , En) be the equality list associated
to X. The closure of (C,X) with respect to F , denoted by (C,X[E])+F , is the set
of paths {C/P1[E′

1], . . . , C/Pm[E′
m]} such that (C, (X[E] → {P1[E′

1], . . . ,
Pm[E′

m]})) can be deduced from F by the axiom system in Definition 8. In other
words, (C,X[E])+F = {C/P [E′] | F 
 (C, (X[E] → P [E′]))}. When there is no
ambiguity about the set F being used, we just note (C,X[E])+. �

To compute (C,X[E])+ we start with a set T containing all the prefixes of the
paths in X. Then we build a set V containing all the paths ending on attributes
and having a path in T as its parent. Starting with X(0) = T ∪ V we compute
each X(i+1) from X(i) by applying the axiom system on F . At each step, new
sets T and V are computed and added to X(i). The loop ends when no new path
can be added to X(i). In [2] we present this algorithm together with the proof
of its soundness and completeness.

We also define two other functions, namely closure1Step and inverseClo-
sure1Step. Function closure1Step computes one step of the closure of a set of
paths. Its implementation consists in applying the same algorithm used to find
(C,X[E])+, in order to compute X(1). The result is a set of paths. Function
inverseClosure1Step considers XFD inversely and computes an ”inverse clo-
sure” one step backward. For instance, given a set of paths X the function finds
all sets of paths Z for which we have C/Z → C/X. The computed result is a set
S containing sets of paths.

These functions are going to be used in the following section in order to
compute coverF .

7 Computing Functional Dependencies for
Interoperability

7.1 Algorithm for Computing coverF
Given XFD sets F1, . . . ,Fn, let F = (F+

1 ∩· · ·∩ F+
n )∪(K1∪· · ·∪ Kn) where for

1 ≤ i ≤ n, F+
i is the closure of F i and Ki is a set of XFD containing all XFD

f which can be obtained from F i but that cannot be violated by documents
in Xj (for j �= i). In [2] we have proved that F is the biggest set of XFD that
are not in contradiction with any set F1, . . . ,Fn. In other words, all documents
in X1, . . . , Xn valid w.r.t. F1, . . . ,Fn should stay valid w.r.t. F . Our goal is
to propose an algorithm that computes a set coverF which is equivalent to F
(coverF ≡ F), and usually the number of XFD in coverF is much smaller than
the number of XFD in F .

Algorithm 1 generates coverF as expected. As input, the algorithm receives
the local sets of XFD together with the set of possible paths given by each local
schema. Notice that for the sake of simplicity, we suppose only two local sources,
but Algorithm 1 can be easily extended for n local sources. Translation functions
Φ1 and Φ2 are available. These functions work on the translation table (obtained
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from the ontology alignment A): given a path P from, for instance IP2, Φ1(P )
gives its equivalent path in IP1, if it exists; otherwise it returns the identity.
The function Φ2 works on a symmetric way. Indeed, we note i and ī to indicate
symmetric sources (e.g., when i = 1, ī = 2).

Algorithm 1 considers each local set F i. Then, each XFD f = (C, (X → B))
in F i is checked and added to coverF when one of the following properties holds:
(i) There is no path in the source ī equivalent to the right-hand side of f (line 5).
Thus, documents in ī do not violate f .
(ii) There is no set of paths in the source ī equivalent to the set on the left-hand
side of f (line 7). Since no set of paths in the source ī correspond to X, no
document in ī violates f .
(iii) In the source ī, there is a path equivalent to C/B that belongs to the closure
of a set of paths equivalent to C/X (line 9). Therefore, XFD f exists in both
sources and can be added to coverF .

From line 12 to 18, Algorithm 1 takes the fact into account that working
with F i, some XFD in F+

i may be neglected. To understand this problem, let us
consider sets F1 and F2 from which we can derive an XFD f = (C, (X → B))
by different derivation sequences. Suppose that in F1 we have f1, . . . , fk, . . . , f
while in F2 we have f ′

1, . . . , f
′
k, . . . , f . Moreover, we assume that, due to condi-

tions stated in lines 5, 7 and 9, the dependencies fk and f ′
k are not included in

F and, thus, the derivation of f is not possible from the new set coverF built
by Algorithm 1. This would be a mistake, since f is derived by both F1 and F2.
One solution would be to start with (in line 4) the closure of F1 and F2. How-
ever, this solution implies the generation of a too big and, thus, not manipulable
set of XFD. Algorithm 1 does better: when the test in line 9 fails, it computes
all XFD fj = (C, (Y → A)) such that:

(i) C/X ∈ (C, Y )+ and A = B or
(ii) C/Y = C/X and C/A ∈ (C,B)+ or
(iii) C/A = C/B and fj is obtained by using Axiom A4 on f or
(iv) Y = X ∪ Y1 and fj is obtained by using Axiom A2 on f to obtain f ′ =
(C, (X,Y1 → B, Y1)), and then using Axiom A3 on f ′ and f ′′ = (C, (B, Y1 →
A)) ∈ G.

Tests from lines 12-18 are then performed on these computed XFD. In this
way, we do not compute the entire closure of a set F i but, when necessary,
we calculate a part of it. This computation is done by using closure1Step and
inverseClosure1Step. The following example illustrates the computation per-
formed in lines 12-18 of Algorithm 1.

Example 6. Let F1 = {(C, (A → B)), (C, (B → M)), (C, (M → D)), (C, (D →
E)), (C, (O → Z))} and let F2 = {(C, (A → B)), (C, (B → M)), (C, (B →
O)), (C, (O → E)), (C, (D → N))}. Without lines 12-18 in Algorithm 1, the
XFD (C, (A → E)), derivable from both F1 and F2, would not be derived from
coverF .
Let us consider part of the execution of Algorithm 1. Table 4 shows the XFD
we obtain when considering each XFD in F1 (line 3 of Algorithm 1). The first
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Algorithm 1. Computation of coverF (set of XFD ensuring the interoperability
of S w.r.t. S1 and S2)
Input:

– A set of XFD F1 for schema D1

– A set of XFD F2 for schema D2

– The set of paths IP1, IP2 specified by D1 and D2

– Translation functions Φ1 and Φ2

Output: The set of XFD coverF for the integrated system
1: coverF = ∅
2: for i = 1 to 2 do
3: G = F i

4: for each (C, (X → B)) ∈ G do
5: if Φī(C/B) �∈ IPī then
6: coverF = coverF ∪ {(C, (X → B))}
7: else if Φī(C/X) �⊆ IPī then
8: coverF = coverF ∪ {(C, (X → B))}
9: else if Φī(C/B) ∈ Φī(C, X)+F ī

then

10: coverF = coverF ∪ {(C, (X → B))}
11: else
12: H = closure1Step(C, B, F i) \ {C/B}
13: G = G ∪ {(C, (X → D)) | C/D ∈ H}
14: K = inverseClosure1Step(C, X, F i) \ {C/X}
15: G = G ∪ {(C, (Y → B)) | C/Y ∈ K}

% Recall that C/Y is a shorthand for {C/A1, . . . , C/An} and that K is
a set of paths sets.

16: G = G ∪ {(C, (Z → B)) | (C, (Z → B)) is obtained by using Axiom A4
on (C, (X → B))}

17: % Notice that Z is a set of prefixes of paths in X or B

18: G = G ∪ {(C, (X, W → V )) | (C, (X, W → V )) is obtained by using
the Axioms A2, A3 on (C, (X → B)) and (C, (B, W → V )) where
(C, (B, W → V )) ∈ G}

19: end if
20: end for
21: end for
22: return coverF

column of this table shows the XFD in G being verified. The second column
indicates XFD that are added to G due to lines 12-18. Finally the last column
shows XFD that are inserted in coverF .

Table 4 is obtained by following the execution of Algorithm 1. For instance,
let us consider the third line in Table 4: the case when the XFD (C, (M → D))
in F1 is taken in line 4 of Algorithm 1. This XFD does not verify any condition
among conditions in lines 5, 7 and 9. When line 12 is executed, the set H =
{C/E} is computed, since closure1Step(C, D, F1) gives {C/D,C/E}. Thus,
the XFD (C, (M → E)) is added to G (line 13). When line 14 is executed,
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Table 4. Computation of (part) of coverF : XFD obtained when considering F1

G (XFD being considered) Add to G XFD added to coverF
(C, (A → B)) (C, (A → B)) (cond. line 9)

(C, (B → M)) (C, (B → M)) (cond. line 9)

(C, (M → D)) (C, (M → E))
(C, (B → D))
(C, ([ ] → D))

(C, (D → E)) (C, (M → E))
(C, ([ ] → E))

(C, (O → Z)) (C, (O → Z)) (cond. line 5)

(C, (M → E)) (C, (B → E))
(C, ([ ] → E))

(C, (B → D)) (C, (B → E))
(C, (A → D))
(C, ([ ] → D))

(C, (B → E)) (C, (B → E)) (cond. line 9)

(C, (A → D)) (C, (A → E))
(C, ([ ] → D))

(C, (A → E)) (C, (A → E)) (cond. line 9)

the set K = {{C/B}} is computed, since inverseClosure1Step(C,M,F1) gives
{{C/B}, {C/M}}. Thus, the XFD (C, (B → D)) is added to G (line 15). When
line 16 is executed, the XFD (C, ([] → D)) is added to G. Notice that these
three XFD are analysed later (lines 6 and 7 of Table 4). They are not included
in coverF , but generate other XFD as, for instance, (C, (A → E)), which is
finally added to coverF . �

7.2 Properties of coverF
In this section we prove that Algorithm 1 works correctly, and fulfills our goals.
First we introduce Lemma 2, telling us which XFD should be added to the
set F \ {f} in order to ensure the derivation of F+, except for f . Indeed, the
derivation of f from the new set G is neither guaranteed nor proscribed.

Lemma 2. Let F be a set of XFD such that (C, (X → Y )) ∈ F . Let (C, (Z1 →
Z2)) be an XFD different from (C, (X → Y )). If F 
 (C, (Z1 → Z2)) then
G 
 (C, (Z1 → Z2)) where G is obtained from F as follows:

G = F ∪ F1 ∪ F2 ∪ F3 ∪ F4 \ {(C, (X → Y ))}

where F1 = {(C, (X → V )) | V ∈ closure1Step(C, Y,F)},
F2 = {(C, (W → Y )) | W ∈ inverseClosure1Step(C,X,F)},
F3 = {(C, ({P ′

1, . . . , P
′
n} → Y )) | {P ′

1, . . . , P
′
n} respects conditions for applying

Axiom A4 on (C, (X → Y ))},
F4 = {(C, (X,W → V )) | (C, (Y,W → V )) ∈ F}. �
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Sketch of proof: Since F 
 (C, (Z1 → Z2)), there exists a sequence α of XFD
containing XFD in F such that α derives (C, (Z1 → Z2)). The crucial point
of the proof is when we suppose that α contains (C, (X → Y )). Thus, α has
sub-sequences for which one of the following conditions holds:

– it derives the set of paths X in one step or
– it derives the paths Y1, . . . , Yn ∈ closure1Step(C, Y,F) or
– it derives path Y in one step by using Axiom A4 on (C, (X → Y )) or
– it derives path V from X,W where (C, (Y,W → V )) ∈ F .

The proof consists in replacing the XFD (C, (X → Y )) and all sub-sequences
of α respecting the above conditions, by some of the new XFD which are added to
F for obtaining G. By considering G and the new derivation sequence (obtained
after replacing XFD in α) we can derive (C, (Z1 → Z2)). �

Now, given two sets of XFD, F i and F ī, we define set Ki of XFD which
contains all the XFD f which can be obtained from F i but that cannot be
violated by documents in Xī due to one of the two reasons:
(a) the right-hand side of f is a path B which belongs to IPi but not to IPī or
(b) the left-hand side of f is a set of paths X which is included in IPi but not
in IPī.

Formally, we have Ki = {X → A | X → A ∈ F+
i and [((X ⊆ IPi) and (X �⊆

IPī)) or (A ∈ (IPi \ IPī)]}.
In [2] we show an algorithm, starting with F+

1 and F+
2 , instead of F1 and

F2, that computes the set F = (F+
1 ∩F+

2 )∪K1 ∪K2. We prove some properties
of F . This set F is the biggest set of XFD that does not violate any document
in Xi and Xī.

Theorem 1. The set coverF , returned by Algorithm 1, is equivalent to (or is a
cover of) the set of XFD F = (F+

1 ∩ F+
2 ) ∪ K1 ∪ K2 (coverF ≡ F). �

Sketch of proof: For proving that coverF ≡ F , we will prove that: (A1) ∀f ∈
coverF , F 
 f and (A2) ∀f ∈ F , coverF 
 f .

(A1) By the following Algorithm 1, we can easily prove that each XFD added
to coverF is also in F . Thus, we have coverF ⊆ F which is stronger than just
proving that F 
 f for any XFD f ∈ coverF .

(A2) Let f = (C, (Y → A)) be an XFD in F+
1 ∩F+

2 . Thus, we know that C/A ∈
(C, Y )+F1

and C/A ∈ (C, Y )+F2
. Since C/A ∈ (C, Y )+F1

, there is a derivation
sequence α = f1, . . . , fn which derives f . If coverF contains all the XFD of F1

taking part in α then we have coverF 
 f . Otherwise there is at least one XFD
of F1 (denote it by fk) that takes part in α but does not belong to coverF . Since
fk �∈ coverF then from lines 12-16, we know that fk is deleted from G and that
some other XFD h is inserted in G. By using Lemma 2, we have G 
 f . If all
new functional dependencies h satisfy conditions in lines 5, 7, 9 they are added
to coverF . Otherwise, they are analysed in lines 12-16 and the process goes on
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until f is added to G and, thus, to coverF . With the same arguments we can
prove that f ∈ coverF+ when f ∈ K1 or f ∈ K2. �

7.3 Complexity of Our Method

Algorithm 1 depends on the algorithm that computes the closure of a set of
paths ((C,X[E])+), and on the algorithm that computes just one step of the
inverse closure of a set of paths.

The running time of the closure algorithm, in the worst (unlikely) case, is
O(|IP|2 ·(|f | · |F|+ |IP|)) where |F| is the cardinality of F and |f | is the size of the
longest XFD in F . The running time of the inverseClosure1Step algorithm is
O((|f |n · |F|)|X|) where |f | is the size of the longest XFD in F , n is the number
of paths on the left-hand side of f and |X| is the cardinality of the set of paths
X on which the function inverseClosure1Step is performed.

In the worst case, Algorithm 1 will treat about |F i|·|IPi| functional dependen-
cies for each set F i. The worst case occurs when for each XFD f = (C, (X → P ))
in F i, (C,X)+ contains |IPi| paths and just one path is added to (C,X)+ in
each step of the loop of the closure algorithm and no XFD is added to coverF .
Hence, in this case, lines 12-18 of Algorithm 1 will be executed |IPi| times for
each XFD in F i. The complexity of Algorithm 1 is O(|F i| · |IPi| · (g + h)) where
g is the complexity of the closure algorithm and h is the complexity of the
inverseClosure1Step algorithm. The variables that are determinants in the com-
plexity are the cardinality of F and IP. In practice |X| and n are not greater than
5 and, thus, have little importance when compared with the size of F and IP.

8 Experimental Results

In order to examine the performance of Algorithm 1, we run several experiments
on synthetic data. Algorithm 1 has as input two local systems S1 = (D1,F1, O)
and S2 = (D2,F2, O), and computes the set coverF which contains only the
XFD for which no violation is possible when considering document sets from S1

and S2. Recall that we assume the existence of a pre-processing step where the
correspondence among paths on the different local documents is established. This
pre-processing step is built on the basis of an ontology alignment but it is out
of purpose in this paper. In this section we assume that this correspondence has
already been done: paths are represented on the basis of a common ontology O.

We take into account two parameters in the experiments: (i) the number of
paths obtained from D1 and D2, and (ii) the number of XFD in | F1 | + | F2 |.

Tree T (Figure 3) guides the way we perform our experiments. T is built by
repeating the pattern tree in Figure 3 several times. To perceive the difference
between the sub-trees of T , we relabel the nodes of the pattern tree by adding
the index k (k ≥ 1). We say sub-tree k to refer to the kth tree pattern in T . For
example, in Figure 3, A1,1 refers to element A1 of subtree k = 1 while and A1,2

refers to element A1 of subtree k = 2.
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Our experiments consist in generating coverF from sets F1 and F2 which
increase at each test by assuming the existence of bigger sets of paths IP1 and IP2

and, therefore, larger trees T . In the text, we usually refer to tree T to indicate
the type of documents (the schema) we are dealing with. In this context, let us
define IPj

1 as the set of paths containing all the paths in the tree T except the
paths C/R1,k/G1,k (with k ≤ j), and IPj

2 as the set of paths containing all the
paths in the tree T except the paths C/R1,k/F1,k (with k ≤ j). We suppose that
the set of paths IPj

1 (respectively IPj
2) is generated from D1 (respectively D2).

n

Pattern tree

R1,1

D2,1B2,1

A1,1 B1,1 F1,1 G1,1 E1,1 D1,1

D3,1A2,1
E2,1

R1,n

D2,nB2,n

A1,n B1,n F1,n G1,n E1,n D1,n

D3,nA2,n
E2,n

. . .

C

Fig. 3. Tree T built by repeating n times the pattern tree

The set of XFD Fj
1 (respectively Fj

2) is defined over paths in IPj
1 (respectively

IPj
2). Table 5 shows the XFD in F j

1 and Fj
2. Sets Fj

1 and F j
2 contain both XFD

(1) and (2). However, XFD (3a), (4a) and (5a) are only in Fj
1 and XFD (3b), (4b)

and (5b) are only in Fj
2. With XFD (4a) and (5a), we can derive the XFD (6)

(C/R1,k, ({A1,k/A2,k, B1,k/B2,k} → E1,k/E2,k)) and with XFD (4b) and (5b), we
can also derive the XFD (6). Hence, Fj

1 and F j
2 derive XFD (6) but by different

ways. We can remark that |F1
1| = |F1

2| = 5, |F2
1| = |F2

2| = 10 and F1
1 ⊂ F2

1,
F1

2 ⊂ F2
2.

Table 5. Contents of the XFD sets Fj
1 and Fj

2 used in the experiments

Fj
1 Fj

2

(1) (C/R1,k, ({A1,k, B1,k} → D1,k)) (1) (C/R1,k, ({A1,k, B1,k} → D1,k))

(2) (C/R1,k, ({D1,k} → E1,k)) (2) (C/R1,k, ({D1,k} → E1,k))

(3a) (C/R1,k, ({E1,k} → F1,k)) (3b) (C/R1,k, ({E1,k} → G1,k))

(4a) (C/R1,k, ({A1,k/A2,k, B1,k/B2,k} → (4b) (C/R1,k, ({A1,k/A2,k, B1,k/B2,k} →
D1,k/D2,k)) D1,k/D3,k))

(5a) (C/R1,k, ({D1,k/D2,k} → E1,k/E2,k)) (5b) (C/R1,k, ({D1,k/D3,k} → E1,k/E2,k))
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The algorithm was implemented in Java and the tests have been done on an
Intel Quad Core i3-2310M with 2.10GHz and 8GB of memory. We have used
three scenarios for performing our tests.

In the first scenario we examine the influence of the size of F1 and F2 on
the execution time of Algorithm 1. We have used Fj

1 and F j
2, such that 1 ≤

j ≤ 45. Figure 4 shows reasonable execution time (approximately 2 minutes)
for computing coverF from sets of XFD F1 and F2 where |F1| + |F2| = 450.
Figure 4 also shows how coverF increases: at each step as we add 25 XFD to
|F1| + |F2|, set coverF has about 50 XFD more than its previous version.
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Fig. 4. Scenario 1: CPU time for the computing of coverF and the evolution of its size

In the second scenario we examine again the influence of the size of F1 and
F2 on the execution time of Algorithm 1. Notice that, in the first scenario, the
functional dependencies involving index k concerns only one subtree. In this
second scenario, we allow an XFD involving index k = 1 to derive an XFD
involving index k = 2, and so on. To do this, we add to Fj

1 (resp. F j
2) the

XFD of the form (7a) (C, ({R1,k/E1,k−1/E2,k−1} → R1,k/D1,k/D2,k)), resp.
(7b) (C, ({R1,k/E1,k−1/E2,k−1} → R1,k/D1,k/D3,k)), with 2 ≤ k ≤ j.

As shown in Figure 5, the execution time for computing coverF is more
important than the one obtained with the first scenario. For instance, for sets
F1 and F2 (such that |F1|+|F2| = 262) we need 53 minutes to compute coverF .
This behaviour is explained by two facts:
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– XFD of the form (7a) and (7b) are not added to coverF due to the condition
in line 9 of Algorithm 1. Checking this condition is an expensive task because
the computation of (C,R1,k/E1,k−1/E2,k−1)+Fi

involves many paths.
– For this example, lines 12-15 of Algorithm 1 generate many XFD dramati-

cally increasing the number of XFD in coverF . Indeed, |coverF| has about
10610 XFD when |Fj

1| + |Fj
2| is 262.
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Fig. 5. Scenario 2: CPU time for the computing of coverF and the evolution of its size

In the third scenario, we compare the algorithm built to compute F = (F+
1 ∩

F+
2 ) ∪ K1 ∪ K2 from F+

1 and F+
2 (presented in [2]) with Algorithm 1 (which

computes coverF). Recall that in Section 7, we have shown that coverF is
equivalent to F . Now, Table 6 compares these two algorithms. Line 1 in Table 6
shows the results with sets F1

1 and F1
2 while line 4 shows the result with F2

1 and
F2

2, and line 5 shows the result with F3
1 and F3

2, the same sets used in scenario
1. When computing the set F for sets F3

1 and F3
2 with the algorithm in [2],

we obtain an out-of-memory error after 5 minutes. For the same sets of XFD,
Algorithm 1 takes approximately 2.9 seconds and |coverF| = 92. Since the test
concerning line 5 does not produce a result for the algorithm in [2], we perform
tests of line 2 and 3 on a modified tree, i.e., on T without the leaves. In other
words, we delete nodes A2,2, B2,2, D2,2, D3,2 and E2,2 from a tree T with k = 2
sub-trees. The tree considered in line 3 contains nodes F1,2 and G1,2 in addition
to nodes in the tree considered in line 2. As expected, in all cases, Algorithm 1
is much more efficient than the algorithm in [2]. Moreover, the size of F grows
dramatically while the size of coverF increases slightly.
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Table 6. Comparison: t1 is the time needed to compute F and t2 is the time needed
to compute coverF

|IP1| + |IP2| |F1| |F2| |F+
1 | |F+

2 | |F| t1 (ms) |coverF| t2 (ms)

1 12 5 5 3 835 3 835 5 755 19 211 30 160

2 17 7 7 3 865 3 865 5 785 24 401 32 195

3 18 8 8 3 928 3 928 5 911 26 476 34 204

4 23 10 10 7 670 7 670 11 510 165 460 61 503

5 34 15 15 ? ? ? > 5min 92 2 949

Our experiments confirm the time complexity presented in Section 7.3, and
reinforce the importance of computing the smaller set coverF instead of the
equivalent set F considered in [2]. The worst case happens when documents
have many equivalent paths and derivations that involve a lot of paths. We
have used the closure algorithm to test, successfully, the equivalence between F
and coverF on several examples. These tests contribute to the validation of the
correctness of our method.

9 Conclusions

We are motivated by applications on a multiple system environment and we have
presented a method for establishing the biggest set of XFD that can be satisfied
by any document conceived to respect local XFD. One important originality
of our work is the fact that we do not deal with data, only with the available
constraints (XFD in our case). Our approach is not only interesting for multiple
system applications, but also in a conservative constraint evolution perspective.
To reach our goals, a new axiom system, built for XFD defined over a context
and two kinds of equality, was introduced and proved to be sound and complete.

As some future directions that follow from this work, we mention:

– By using the schema evolution method of [9] together with our computation
of coverF , the generation of a new type and a new set of integrity constraints
that will allow interoperability without abolishing constraint verification. We
are currently working on a platform that puts together these tools.

– The extension of our method to other kinds of integrity constraints such as
inclusion constraints.

– An incremental computation of coverF , following the evolution of local con-
straints or systems.

– The detection of local XFD that are not selected in coverF but that could
be included in it by correcting the associated documents that do not respect
them.

– The implementation of an XFD validator over the local systems, in a map-
reduce approach, by considering the set coverF as the set of constraints that
should be respected by the data of our multiple system.
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A Soundness of the Axiom System

In this section we prove that our axiom system is sound, i.e., our axioms always
lead to true conclusions when we deal with complete XML trees. We start by
proving some lemmas. The first one deals with properties concerning the longest
common prefix of paths. The following example illustrates the situation it con-
cerns.

Example 7. We consider the XML document in Figure 2 and the following paths:
PK = univ/undergraduate/@domain, PJ = univ/undergraduate/students/-
student/idSt and PI = univ/undergraduate/students/student/nameSt. In
this situation we have PI ∩ PJ = univ/undergraduate/students/student and
PJ∩PK = univ/undergraduate. Clearly, PJ∩PK � PI∩PJ . Then, consider path
instances where isInst lcp(PI , I, PJ , J) = true and isInst lcp(PI , I, PK ,K) =
true. For instance, let instance K = ε/2/2.1, instance J = ε/2/2.2/-
2.2.0/2.2.0.0 and I = ε/2/2.2/2.2.0/2.2.0.1. Notice that in this case we also
have: isInst lcp(PJ , J, PK ,K) = true. �

The above example suggests that a kind of transitivity property could be
established for the function isInst lcp. The following lemma proves that this is
actually possible.

Lemma 3. Let T be an XML document and IP its associated set of
simple paths. Let PI , PJ , PK be distinct paths in IP. If PJ ∩ PK �
PI ∩ PJ and isInst lcp(PI , I, PJ , J) = isInst lcp(PI , I, PK ,K) = true then
isInst lcp(PJ , J, PK ,K) = true. �

The next example illustrates a special situation where an XFD not satisfied
by a given document has at the left-hand side a path which is a prefix of the
path on the right-hand side.

Example 8. We consider the example in Figure 2, the XFD f = (univ/under-
gradute, ({courses//titleC, courses//prerequisitesC} → courses//pre-
requisitesC/codeC)) and the branching path M defined by f . The document of
Figure 2 does not satify f . Notice that P2=univ/undergradute/courses/course/
prerequisitesC in the left-hand side of f is a prefix for P = univ/undergradute/
courses/course/prerequisitesC/codeC in right-hand side of f . Also remark
that we can find two projections of the XML tree over M such that
Last(Π1

M (T )[C/P2]) =N Last(Π2
M (T )[C/P2]): the two projections ending on

node 2.3.0.2. �

The following lemma proves that in situations as the one illustrated by Exam-
ple 8 we can always find two projections of the XML tree over the branching
path M such that Last(Π1

M (T )[C/Pj ]) =N Last(Π2
M (T )[C/Pj ]), where Pj is

the path on the left-hand side which is a prefix of the one on the right-hand
side.
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Lemma 4. Let T be an XML document, f = (C, ({P1 [E1], . . . , Pn [En]} →
Pn+1 [En+1])) an XFD and let M be the branching path {C/P1, . . . , C/Pn+1}.
If T �|= f and there exists a j ∈ [1 . . . n] such that Pj � Pn+1 then we can find two
projections Π1

M (T ) and Π2
M (T ) for M in T such that Last(Π1

M (T )[C/Pj ]) =N

Last(Π2
M (T )[C/Pj ]). �

In this appendix we just show the soundness proof of axiom A4.

Theorem 2. Axiom A4 is sound for XFD on complete XML trees. �

Proof : We consider a complete XML document T = (t, type, value).
A4: Let f = (C, ({P ′

1 [E′
1], . . . , P ′

n [E′
n]} → Pn+1 [En+1])) and f ′ = (C, ({P1 [E1],

. . . , Pn [En]} → Pn+1 [En+1])). The proof is by contradiction. Suppose that
T |= f but T �|= f ′. From Axiom A1, we can assume that for all i ∈ [1 . . . n],
Pi �= Pn+1. From Definition 5, we can deduce that there exist two projections
Π1

M (T ) and Π2
M (T ) for the branching path M = {C/P1, . . . , C/Pn+1} in T

such that τ1[C/Pn+1] �=En+1 τ2[C/Pn+1] and τ1[C/P1, . . . , C/Pn] =Ei,i∈[1...n]

τ2[C/P1, . . . , C/Pn]. We now show that there exist two projections Π1
M ′(T ) and

Π2
M ′(T ), constructed from Π1

M (T ) and Π2
M (T ), for the branching path M ′ =

{C/P ′
1, . . . , C/P ′

n, C/Pn+1} in T such that:

u1[C/P ′
1, . . . , C/P ′

n] =E′
i,i∈[1...n] u2[C/P ′

1, . . . , C/P ′
n] and (1)

u1[C/Pn+1] �=En+1 u2[C/Pn+1]. (2)

However, from our hypothesis we know that for all two projections Π1
M ′(T ) and

Π2
M ′(T ) such that (1) is satisfied then we have u1[C/Pn+1] =En+1 u2[C/Pn+1].

If Π1
M ′(T ) and Π2

M ′(T ) really exist, we have a contradiction with (2) and the
axiom A4 will be satisfied.

The proof is by showing that it is possible to obtain two projections for M ′ sat-
isfying (1) and (2). We start by considering that Π1

M ′(T )[C/Pi] = Π1
M (T )[C/Pi]

and Π2
M ′(T )[C/Pi]) = Π2

M (T )[C/Pi] ∀ i ∈ [1 . . . n + 1].

1. If ∃ k ∈ [1 . . . n] such that Pk � Pn+1 (Figure 6(a)) then, from Lemma 4, we
can consider that :

Last(Π1
M ′(T )[C/Pk]) =N Last(Π2

M ′(T )[C/Pk]). (3)

Since t is complete there exist instances Ji such that ∀ i ∈ [1 . . . n],
Π1

M ′(T )[C/Pi] � Ji and Ji ∈ Instances(C/P ′
i , t) (see Figure 6(a)). Let

∀ i ∈ [1 . . . n], Π1
M ′(T )[C/P ′

i ] = Π2
M ′(T )[C/P ′

i ] = Ji. Then by considering
these instances Ji for paths C/P ′

i and by using Lemma 3, we can show that
∀ i, j ∈ [1 . . . n + 1] (recall that we consider that P ′

n+1=Pn+1):

isInst lcp(C/P ′
i ,Π

1
M ′(T )[C/P ′

i ], C/P ′
j ,Π

1
M ′(T )[C/P ′

j ]) = true (4)

and isInst lcp(C/P ′
i ,Π

2
M ′(T )[C/P ′

i ], C/P ′
j ,Π

2
M ′(T )[C/P ′

j ]) = true. (5)

Thus, in this case, it is possible to have projections Π1
M ′(T ) and Π2

M ′(T )
satisfying 1 and 2.
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Fig. 6. Graphical representation of paths and possible projections. Case (a) Path Pk ≺
Pn+1 where Pk is one of the paths in the left-handside of XFD f ′ and Pi 	 P ′

i . Case
(b): Node equality for last nodes in Pi. Both projections Π1

M′(T ) and Π2
M′(T ) have

the same instance for path P ′
i . Case (c) and (d): Value equality for last nodes in Pi. In

case (c) there is only one instance of P ′
i (Pi 	 P ′

i ). In case (d) there are two instances
of P ′

i (Pi 	 P ′
i ). �

2. Otherwise if ∀ i ∈ [1 . . . n], Pi �� Pn+1 and Pi � P ′
i we can have the following

situations:
(a) If we consider node equality, we have Last(Π1

M ′(T )[C/Pi]) =N

Last(Π2
M ′(T )[C/Pi]) (Figure 6(b)). Since t is complete there exists an

instance Ji such that Π1
M ′(T )[C/Pi] � Ji and Ji ∈ Instances(C/P ′

i , t).
Let Π1

M ′(T )[C/P ′
i ] = Π2

M ′(T )[C/P ′
i ] = Ji.

(b) If we consider value equality, we have Last(Π1
M ′(T )[C/Pi]) =V

Last(Π2
M ′(T )[C/Pi]). Since t is complete there exist instances J1

i , J2
i

such that Π1
M ′(T )[C/Pi] � J1

i , Π2
M ′(T )[C/Pi] � J2

i and J1
i , J2

i ∈ Ins-
tances(C/P ′

i , t).
– If Last(J1

i ) =V Last(J2
i ) then let Π1

M ′(T )[C/P ′
i ] = J1

i and
Π2

M ′(T )[C/P ′
i ] = J2

i (Figure 6(c)).
– Otherwise if Last(J1

i ) �=V Last(J2
i ) then, since Pi � P ′

i and
Last(Π1

M ′(T )[C/Pi]) =V Last(Π2
M ′(T )[C/Pi]), there exists two

instances J3
i , J4

i such that Π1
M ′(T )[C/Pi] � J3

i , Π2
M ′(T )[C/Pi] �

J4
i and J3

i , J4
i ∈ Instances(C/P ′

i , t), Last(J1
i ) =V Last(J4

i ) and
Last(J2

i ) =V Last(J3
i ). In this case, let Π1

M ′(T )[C/P ′
i ] = J1

i and
Π2

M ′(T )[C/P ′
i ] = J4

i (Figure 6(d)).
Then by considering these instances Ji for paths C/P ′

i and by using Lemma 3,
we can show (4) and (5) in each case. Since Π1

M ′(T ) and Π2
M ′(T ) exist and

conditions (1), (2) are satisfied, we can conclude that A4 is sound.

B Completeness of the Axiom System

Before tackling the completeness issue, it is important to show the central fact
about the closure of a set of paths. It enables us to tell on a glance whether an
XFD follows from a set F by the axiom system. The next lemma tells us how.

Lemma 5. Let X = {P1, . . . , Pn} and Y = {Pn+1, . . . , Pn+m} be two sets of
paths. Let E = (E1, . . . , En) and E′ = (En+1, . . . , En+m). We have F 
 (C,
({P1 [E1], . . . , Pn [En]} → {Pn+1 [En+1], . . . , Pn+m [En+m})) iff C/Y [E′] ⊆
(C,X[E])+. �
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To prove the completeness of our axiom system, we would like to define
a special tree having two instances (except for the root node) for every path
P ∈ IP. However, the following examples show that depending on the conditions
imposed on paths, it is not possible to have two instances for every path P ∈ IP.

Example 9. We want to build a complete tree having exactly two instances for
each path in IP. Let us consider value equality and two paths P and Q such
that P ≺ Q. We denote by IP1 and IP2 the two instances of P on a tree t.
We denote by IQ1 and IQ2 the two instances of Q on a tree t. Suppose that
Last(IP1) =V Last(IP2) and Last(IQ1) �=V Last(IQ2). Based on this situation,
the functional dependency P → Q is not satisfied by this tree. Then, we can
apply Lemma 4, to conclude that there is an instance of P which is a prefix of
both (distinct) instances of Q. As we want just two instances for each path, to
have two instances of Q we should have Last(IP1) =N Last(IP2). In other words,
in this situation, we cannot have a tree with two instances for P . Indeed, Figure 7
illustrates that a tree having two instances of P and respecting the constraints
Last(IP1) =V Last(IP2) and Last(IQ1) �=V Last(IQ2) must have four instances
of Q.

Now let us consider that a node equality condition is imposed on the instances
of a path P . In this situation we have Last(IP1) =N Last(IP2). Clearly, in this
case, P has only one instance. �

r
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Fig. 7. An XML tree with two instances value equal for the path P and four instances
for the path Q with IP1 prefix of IQ1 , IQ2 and IP2 prefix of IQ3 , IQ4

Based on Example 9, we introduce the definition of our special tree, having
at most two instances for each path in IP.

Definition 11 (Two-instance Tree)
Let F be a set of XFD. Let T = (t, type, value) be an XML document where
the tree t, built according to the construction properties below, is called two-
instance tree. Let IP be the set of paths associated to T , let X ⊆ IP, and let E =
(E1, . . . , En) be the equality list associated to X. We denote by |Instances(P, t)|
the number of instances of a path P in t.
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construction properties:

1. For each P ∈ IP, |Instances(P, t)| is at most 2 (I1 or I2) and when
|Instances(P, t)| = 2:
(a) we have C/P [V ] ∈ (C,X[E])+ iff Last(I1) =V Last(I2);
(b) we have C/P [E′] �∈ (C,X[E])+ iff Last(I1) �=E′ Last(I2)

2. For each P ∈ IP, |Instances(P, t)| = 2 except when:
(a) Last(P ) is the root of t, or
(b) by considering value equality, |Instances(P, t)| = 2 provokes the viola-

tion of condition 1 for another path Q ∈ IP with P ≺ Q, or
(c) X[E] → P [N ] or
(d) Last(P ) ∈ Σatt and Parent(P ) verifies condition 2a, or 2b or 2c. �

Lemma 6. Let F be a set of XFD. Let T = (t, type, value) be an XML document
where t is a two-instance tree. Let IP be the set of paths associated to T and let
X ⊆ IP. The following properties hold for t:

1. If C/P ∈ IP and |Instances(C/P, t)| = 1 then C/P [E′] ∈ (C,X[E])+.
2. If P,Q ∈ IP, P � Q and there is an instance IP ∈ Instances(P, t), and

instances IQ1 and IQ2 ∈ Instances(Q, t) such that IP � IQ1 and IP � IQ2

then |Instances(P, t)| = 1.
3. If C/P ∈ IP then C/P [E′] ∈ (C,X[E])+ iff T |= (C, (X[E] → P [E′])). �

We now prove that the axiom system introduced in Definition 8 is complete.
In other words, given a set of XFD F , by using our inference rules, we can derive
all XFD f such that F |= f .

Theorem 3. If F |= f then F 
 f . �

Proof: The proof is by contrapositive: we show that if F �
 f then F �|= f .
Let f = (C, ({P1 [E1], . . . , Pn [En]} → {Pn+1 [En+1] . . . Pn+m[En+m]})). Then,
we consider that X = {C/P1, . . . , C/Pn}, Y = {C/Pn+1, . . . , C/Pn+m} and that
both X and Y are in a given IP. Let E = (E1, . . . , En).
If F �|= f then there must be an XML document that satisfies F but does not
satisfy f . The proof consists in showing the existence of such a document.

Let us suppose an XML document T = (t, type, value) where t is a two-instance
tree defined on the set of paths X = {C/P1, . . . , C/Pn}.

Fact 1: T |= F
The proof is by contradiction. We suppose that T �|= g, where g is an XFD
(C,({Q1 [E′

1], . . . , Qk [E′
k]} → Qk+1 [E′

k+1])) in F . From Definition 5, as T �|= g,
we can deduce that there exist two projections Π1

M (T ) and Π2
M (T ) for the

branching path M = {C/Q1, . . . , C/Qk+1} in T such that:

τ1[C/Q1, . . . , C/Qk] =E′
i,i∈[1...k] τ2[C/Q1, . . . , C/Qk] and (6)

τ1[C/Qk+1] �=E′
k+1

τ2[C/Qk+1]. (7)



XFD for the Integration of Multiple Systems 111

From (7) we have that Π1
M (T )[C/Qk+1] �= Π2

M (T )[C/Qk+1] and |Instances
(Qk+1, t)| = 2. From Definition 11(1), we obtain:

C/Qk+1[E′
k+1] �∈ (C,X[E])+. (8)

From Definition 2, we know that the instances of two paths belonging to the
same branching path match on their longest common prefix path. Formally, for
all combination of paths Qi and Qj such that 1 ≤ i ≤ k + 1 and 1 ≤ j ≤ k + 1,
we have:

Considering Π1
M (T ):

isInst lcp(C/Qi,Π
1
M (T )[C/Qi], C/Qj ,Π

1
M (T )[C/Qj ]) = true (9)

Considering Π2
M (T ):

isInst lcp(C/Qi,Π
2
M (T )[C/Qi], C/Qj ,Π

2
M (T )[C/Qj ]) = true (10)

and we can also determine the following special nodes for 1 ≤ i ≤ k:

v1
i,k+1 = Last(Π1

M (T )[C/Qi] ∩ Π1
M (T )[C/Qk+1]) and

v2
i,k+1 = Last(Π2

M (T )[C/Qi] ∩ Π2
M (T )[C/Qk+1])

(11)

From (9) and (10), together with the definition of isInst lcp we know that
positions v1

i,k+1 and v2
i,k+1 exist in t. We have to consider two cases:

(a) v1
i,k+1 = v2

i,k+1 (illustrated in Figure 8(a))

(b) v1
i,k+1 �= v2

i,k+1 (illustrated in Figure 8(b))

We can easily show that it is always possible to choose for each i ∈ [1 . . . k], a
path C/Ri ∈ IP respecting the following property:

C/Ri[E′
i] ∈ (C,X[E])+ and Qi ∩ Qk+1 � Ri � Qi (12)

Now from property (12), the XFD g =(C,({Q1 [E′
1], . . . , Qk [E′

k]} → Qk+1 [E′
k+1]))

in F , and the axiom Branch Prefixing (Definition 8, axiom A4) we deduce the
XFD g′ = (C,({R1 [E′

1], . . . , Rk [E′
k]} → Qk+1 [E′

k+1])). Next, we assume that if
C/{R1, . . . , Rk}[E′] ⊆ (C,X[E])+ then C/Qk+1[E′

k+1] ∈ (C,X[E])+. Indeed, by
Definition 10 we know that X[E] → {R1 [E′

1], . . . , Rk [E′
k]}. From this rule and

g′, we derive X[E] → Qk+1[E′
k+1] by using the axiom Transitivity (A3). Thus,

from Definition 10, we obtain C/Qk+1[E′
k+1] ∈ (C,X[E])+ which contradicts (8):

Qk+1[E′
k+1] �∈ (C,X[E])+. Thus, we conclude that T |= g for any g ∈ F . In other

words, T |= F .

Fact 2: T �|= f
Recall, from the beginning of our proof, that f is the XFD (C, (X[E] → Y [E′′])).
AsX[E] ⊆ (C,X[E])+,∀Pi∈X wehaveLast(Π1

M (T )[Pi])=Ei
Last(Π2

M (T )[Pi])
for two given projections ofM onT . Fromour hypothesis,F �
f and soC/Y [E′′] �⊆
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ρ

v1i,k+1 = v2i,k+1

v1i v1k+1 v2i v2k+1

Ri

Qi
Qk+1 Qi Qk+1

(a)

ρ

v1i,k+1

v1i v1k+1

v2i,k+1

v2i v2k+1

Qi = Ri

Qk+1

Qi = Ri
Qk+1

(b)

Fig. 8. Illustration of the two cases (a)v1
i,k+1 = v2

i,k+1 and (b)v1
i,k+1 �= v2

i,k+1

(C,X[E])+. Thus, there is at least one path P ∈ Y having instances I1 and I2 such
that Last(I1) �=E Last(I2). We deduce that T �|= f .

In conclusion we have built a tree T such that T |= F and T �|= f which
establishes the proof of Theorem 3. �
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