
Reliable Aggregation over Prioritized Data
Streams

Karen Works1(B) and Elke A. Rundensteiner2

1 Westfield State University, Westfield, MA, U.S.A.
kworks@westfield.ma.edu

2 Worcester Polytechnic Institute, Worcester, MA, U.S.A.
rundenst@cs.wpi.edu

Abstract. Under limited resources, targeted prioritized data stream
systems (TP) adjust the processing order of tuples to produce the most
significant results first. In TP, an aggregation operator may not receive
all tuples within an aggregation group. Typically, the aggregation oper-
ator is unaware of how many and which tuples are missing. As a conse-
quence, computed averages over these streams could be skewed, invalid,
and worse yet totally misleading. Such inaccurate results are unaccept-
able for many applications. TP-Ag is a novel aggregate operator for TP
that produces reliable average calculations for normally distributed data
under adverse conditions. It determines at run-time which results to
produce and which subgroups in the aggregate population are used to
generate each result. A carefully designed application of Cochran’s sam-
ple size methodology is used to measure the reliability of results. Each
result is annotated with which subgroups were used in its production.
Our experimental findings substantiate that TP-Ag increases the relia-
bility of average calculations compared to the state-of-the-art approaches
for TP systems (up to 91% more accurate results).

Keywords: Data Streaming · Aggregation · Prioritized Resource Allo-
cation

1 Introduction

1.1 Targeted Prioritized Data Stream Systems (TP)

Data stream systems process streams of tuples to answer continuous queries.
When CPU resources are limited, targeted prioritized data stream systems (TP)
cannot always process all incoming tuples [6] as motivated below by several
application examples. Yet in spite of such overloads, many DSMS must ensure the
production of results from certain critical objects. To address these contradicting
requirements, TPs utilize application-specific preference criteria to determine

This work is supported by GAANN and NSF grants: IIS-1018443 & 0917017 &
0414567 & 0551584 (equipment grant).
This work started during Karen’s Ph.D. study at WPI.

c© Springer-Verlag Berlin Heidelberg 2014
A. Hameurlain et al. (Eds.): TLDKS XIV, LNCS 8800, pp. 1–25, 2014.
DOI: 10.1007/978-3-662-45714-6 1

2 K. Works and E.A. Rundensteiner

which tuples should be allocated resources ahead of other tuples throughout the
query pipeline [2,9,26,36,42–44].

The state-of-the-art TP, Proactive Promotion [43,44], processes more sig-
nificant tuples ahead of less significant ones throughout the query pipeline. It
is a tuple level scheduling approach. Other TP systems use workload reduc-
tion approaches, i.e., shedding [2,9,36] and spilling [26,42]. These methodologies
remove less significant tuples at the incoming streams. The tuples not removed
are processed in FIFO order.

As shown below, the selection of which tuples are processed in TPs is contrary
to the production of reliable average calculations. However, in some systems
there can be a need to both ensure the production of results from certain critical
objects and to generate reliable average results.

1.2 Motivating Examples of TPs

Outpatient Health Care: TP systems track people with dementia [24]. It is
critical to monitor people located at improper locations (i.e., likely lost). While
monitoring people who live on their own (i.e., need help) may be reduced based
on whether or not resources remain after processing people likely to be lost. Until
enough resources are available, monitoring any other people could be temporarily
skipped. These systems are known to experience data overloads [19].
Military: TP systems track missiles [21]. It may be critical to ensure that each
and every object of a certain class is guaranteed to be monitored (e.g., nuclear
missiles). While the monitoring of other objects (e.g., missiles bound for unpop-
ulated areas) may be reduced based on whether or not processing resources
remain after processing more significant objects. In addition monitoring of cer-
tain objects could in the worst case be temporarily skipped altogether (e.g.,
missiles sent by our country) until all other objects can be processed within
their response time.
Law Enforcement: TP systems monitor prisoners assigned to home arrest [13].
They also get overloaded. In October 2010, an application monitoring released
sex offenders across 49 states shut down for 12 hours [32]. With the highest
level of urgency, violent prisoners (i.e., may cause harm) must be monitored.
Next, prisoners at an improper location (i.e., likely to be in violation) shall be
monitored. Finally, if resources permit, prisoners known to be flight risks ought
to be monitored.

1.3 Running TP Example: Stock Market

TP systems monitor stocks online [20]. Such applications can get overloaded. In
2012, the London Stock Exchange shut down after a rash of computer-generated
orders overwhelmed the system [30].

Consider a data stream application that monitors the average price of stocks
by their business sector that appear in recent news and blogs (Q1 below). Results
are formed when news tuples join with stock tuples based upon their business

Reliable Aggregation over Prioritized Data Streams 3

sector (op1). Then these join results are joined with blog tuples based upon their
business sector (op2). Finally, the average price for every business sector of these
join results are created (op3).

(Stock Market Query) /*Operators*/
Q1:SELECT AVG(S.price) /*op3*/

FROM Stock as S, News as N, StreetResearch as SR
WHERE contains(S.sector, News[10 min]) /*op1*/
AND contains(S.sector, StreetResearch[15 min]) /*op2*/
Group by S.sector
WINDOW 30 sec;

Mutual fund companies often invest in diverse stock portfolios. It is critical
to ensure that every tuple of a certain class (e.g., their aggressive investments) is
processed. While the processing of other tuples (e.g., their conservative invest-
ments) may be reduced based on what resources remain after processing the
more significant tuples. Until there are enough resources to process all impor-
tant tuples, monitoring of certain tuples can be temporarily skipped (e.g., stocks
under evaluation). When the Stock Market Application is extremely overloaded,
the scarce CPU resources will be dedicated only to the tuples most critical for
the application, namely, tuples from aggressive investments.

1.4 Running Example: Inaccurate Aggregation Results

Consider the Stock Market Aggregation Example in Figure 1. Tuples from the
stock, news and street research streams are respectively depicted by circles,
squares, and triangles. The significance of each tuple is represented by its color.
Black, grey, and white are respectively the most (i.e., level 1), the average (i.e.,
level 2), and least (i.e., NA) significance levels. In Figure 1 the system is over-
loaded. No tuples at level NA arrive at the aggregate operator op3. The state of
aggregate groups g1 and g4 thus only contain data from tuples at levels 1 and 2.

This may cause the average price per business sector produced by aggregate
operator op3 in query Q1 to be skewed. Clearly, under limited resources some
tuples may not be used to create the aggregate result. Rather in this case, the
aggregate result will be generated only from those most significant tuples that
reach operator op3. Unfortunately, this result may not match the aggregate result
that would have been produced if all tuples had been processed by the aggregate
operator. This makes the result unreliable and worst yet misleading. In our
particular example, a broker would thus not know which subset of tuples was
used to compute each aggregate value. Without such knowledge, a broker may
make poor trades, which may lead to investors losing money.

At the very least we would want to inform application users about which
tuples were used to create the result. Consider the example above. The aggre-
gate result should be annotated with the fact that it is formed from aggressive
investments only (i.e., a particular subgroup of the overall population) instead
of from all investments. However, sometimes there may not even be enough

4 K. Works and E.A. Rundensteiner

Fig. 1. Stock Market Aggregation Example

resources to process all tuples from a subgroup. That is, the subgroup may be
incomplete. Aggregate results produced from such subgroups may again risk to
be misleading and faulty. Thus, an aggregate operator must be designed to only
generate results from subgroups that reliably represents their actual population.

As shown below, state-of-the-art aggregation methods for TPs [4,39] do not
tackle this problem. This critical problem of reliable average calculation from
incomplete populations is now the focus of our work.

1.5 State-of-the-Art Aggregation Operators and Their
Shortcomings

The state-of-the-art aggregation methodologies [4,39] designed to produce reli-
able results in TPs address the problem by trying to solve the issue of system
overload. They adapt the selection of which tuples are processed and which are
not. [39] only processes tuples from windows where the population is guaranteed
to be complete. Tuples from other windows are not processed. [4] adapts how
many tuples are randomly dropped to ensure that all aggregate results produced
are bound by a given error rate. These approaches adapt which tuples are allo-
cated resources. By changing how resources are allocated, they may not abide
by the user defined resource allocation preferences. This adaption assumes that
accuracy is more important than the user-defined resource allocation preferences
which may not always be the case.

Olston et al. [31] proposed a system that creates an aggregate result from
cached results and the actual data set with the goal of creating an aggregate
result within a high confidence interval range as quickly as possible. They propose

Reliable Aggregation over Prioritized Data Streams 5

a methodology to determine which results to cache that considers the trade off
between precision and performance. Their algorithm delivers an answer that is
bound by a specified precision constraint. They do not address that the data
may be skewed by the set of tuples that are selected to be processed by the
TP. Their approach assumes that all tuples within a population are given equal
chance at reaching the aggregate operator.

It is challenging to construct reliable aggregate results from only the tuples
that arrive at the operator. Consider the stream aggregate operator op3 [10] in
a TP under duress that implements the Stock Market query Q1 above (Fig.
1). The average price for business sector group g4 could be produced from the
tuples at levels 1 and 2. There are only 3 tuples at level 2. Such few tuples may
not be representative of the actual population of tuples at level 2. TP requires
an aggregate operator than can selectively control which subgroups are used
to generate each result. This raises the question of how to determine which
subgroups best represent their actual populations.

1.6 Our Approach and Contributions

We propose the TP aggregate operator TP-Ag to address the issues described
above. TP-Ag produces reliable aggregate average results from incomplete sub-
groups. It uses an efficient estimation model to determine how representative
each subgroup is of their actual population. In addition, TP-Ag annotates each
aggregate result with the subgroup population(s) that the result is generated
from.

The design of an aggregate operator that meets the requirements above is
challenging. TPs pulls specific significant tuples ahead of other tuples. Some
TPs only identify significant tuples upon arrival at the data stream system
[2,9,26,36,42], while others can identify significant tuples at operators further
down the query pipeline [43,44]. This makes it more complicated to determine
which tuples from specific populations never reach the aggregate operator. It is
equally challenging to estimate what contribution these tuples would have had
on any aggregate result produced.

Our Contributions Include

– We formulate the TP aggregate operator problem of generating reliable anno-
tated aggregate results from incomplete populations.

– Wepropose a carefully designed estimationmodel andapplication ofCochran’s
sample size methodology to measure if any subset of the actual population is
large enough to generate a reliable aggregate result. This requires knowledge of
how many tuples fail to reach the aggregate operator due to limited resources.
We propose a method to track this information.

– We carefully outline the logical design of our novel TP-Ag operator, namely,
how TP-Ag generates reliable aggregate results by selectively controlling
which subsets in the aggregate group population are used to generate each
result.

6 K. Works and E.A. Rundensteiner

– We carefully outline the physical design of our novel TP-Ag operator. The
data structures and infrastructure behind our TP-Ag operator are designed
to allow efficient retrieval of subgroups within an aggregate population.

– Our experiments show that TP-Ag produces up to 90% more accurate aggre-
gate results compared to the state-of-the-art methodologies on a wide variety
of data sets and workloads.

2 TR Query Model and Plan Definitions

2.1 TP Queries

A query qj for a TP is a CQL query [3] extended to allow the specification
of multi-tiered monitoring criteria to identify significant tuples in TP systems.
Below is the Stock Market Query Q1 with the extension to support TPs.

(Stock Market Query with Extension) /*Operators*/
Q1:SELECT AVG(S.price) /*op3*/

FROM Stock as S, News as N, StreetResearch as SR
WHERE contains(S.sector, News[10 min]) /*op1*/
AND contains(S.sector, StreetResearch[15 min]) /*op2*/
Group by S.sector
WINDOW 30 sec; RANK 1 /* aggressive investments */
CRITERIA (S.ownedByCompany=TRUE) AND (S.aggressive=TRUE)
RANK 2 /* conservative investments */
CRITERIA (S.ownedByCompany=TRUE) AND (S.conservative=TRUE)
RANK 3 /* stocks under evaluation */
CRITERIA (S.underEvaluation= TRUE)

Monitoring levels qj .ML are predicates defined at compile-time that state the
user’s desired result production order. When resources are scarce, the monitoring
levels are used to identify which tuples will be processed (i.e., not shed). Each
monitoring level mk states mk’s rank mk.rnk and membership criteria mk.mem. The
rank mk.rnk denotes how significant monitoring level mk is compared to the other
monitoring levels. When resources are limited, TP optimizers [2,9,26,36,42–44]
identify which types of tuples to process based upon the monitoring levels. These
tuple are called significant tuples.

The query window denotes the finite set of tuples from stream sn used to
create results. Window bounds are specified as time (e.g., within a 30 second
time span) or count (e.g., last 30 tuples) ranges. In sliding windows, tuples from
consecutive windows may overlap. While we assume time-based sliding windows,
our proposed techniques equally apply to count-based window semantics.

2.2 TP Query Plans

A TP query plan is a directed acyclic graph composed of TP query operators
as nodes and data exchange interfaces that transfer tuples between operators as
edges. The data exchange interface transfers tuples between operators.

Reliable Aggregation over Prioritized Data Streams 7

TP operators include enhanced traditional operators and significance classi-
fiers. Traditional operators from the continuous query algebra [14] are enhanced
to allocate resources to incoming tuples in significance order and to propagate
significance properties assigned to tuples. Significance classifiers (or SCs) are
special-purpose operators that compute and assign significance properties to
tuples [43,44].

3 Background of Stream Aggregation

3.1 Basic Aggregate Operator

The Basic Aggregate Operator [8] computes a function over the set of tuples
that belong to the same aggregate group within the current query window wp of
the stream. In Stock Market Query Q1, the aggregate group is a business sector.
Incoming tuples are stored in the state and associated with their aggregate group.
When it is determined that no future incoming tuples for window wp will arrive
then the aggregate result(s) are generated for each aggregate group in wp.

3.2 Aggregate Operator Supporting Out-of-Order Data Streams

Some TPs [43,44] cause tuples to become out-of-order. TP aggregate operators
require special support to know when all tuples from a window have been pro-
cessed to produce their results. An aggregate operator should produce results for
window wp when no tuples from window wp remain to be processed. Prior out-of-
order work [23] proposed to use punctuations to trigger the creation of aggregate
results whenever a window is complete. To quickly identify tuples within a given
window, windows are divided into groups of tuples (a.k.a. panes) [22]. Each pane
pq is assigned a pane number. When a tuple arrives, it is associated with a pane
number which determines the windows the tuple will produce results for. Each
aggregate result is only generated from tuples whose panes compose its query
window. Each operator contains a punctuation queue that stores notifications
described below.

To discern when no tuples from pane pq remain to be processed, the progress
of tuples is tracked. Each leaf operator opo periodically sends a punctuation into
when it has processed all tuples from pane pq. To send a punctuation requires sim-
ply placing the punctuation into the punctuation queue of the next down stream
operator. Upon receiving such a notification, the aggregate operator produces
all results for the window that ends with pane pq. The Out-of-Order Aggregate
Operator assumes that tuples are processed. It can produce unreliable results.

3.3 State-Of-the-Art Aggregate Operator for TPs

The State-Of-the-Art TP Aggregate Operator (Sec. 1.5) also produces unreliable
results. The operator contains a punctuation queue that stores notifications (See
above) and incoming queues that store tuples by significance level (Sec. 2). It
works as follows.

8 K. Works and E.A. Rundensteiner

Producing Aggregate results: Aggregate results are created for the first notifica-
tion in the punctuation queue and are sent to the next operator (line 4). Finally,
tuples stored in the state within panes that will not produce any future results
are purged (line 5). This continues until either no resources or incoming punctu-
ations remain (line 1).
Processing tuples: If resources remain then starting from the most significant
incoming queue tuple ti is stored and associated with the proper aggregate group
and pane (line 11). After all tuples from one queue have been processed, tuples
in the next significant incoming queue are processed (lines 13-16). This continues
until either no resources remain or all queues are empty (line 8).

Algorithm State-Of-the-Art TP Aggregate Operator(
Qp /pane complete punct. queue/,
Cavail /avail. res./,
Qinc(s1) /queues for stream s1/)
Cavail /avail. res./,
Qinc(s1) /queues for stream s1/)

1: WHILE ((Cavail > 0) and (Qp is not empty))
2: Punc = first pane complete punctuation in Qp
3: create aggregate results that for window that ends with pane in Punc
4: place aggregate results into input queue of next query plan operator
5: purge state of tuples within panes that will not produce any future results
6: ENDWHILE
7: LevelProcessed= 1
8: WHILE((Cavail > 0) and (Qinc(s_1) is not empty))
9: IF(Qinc(s_1,LevelProcessed) contains a tuple)
10: Tup = first tuple in Qinc(s_1,LevelProcessed)
11: store Tup in state and associate with the aggregate group and pane
12: ELSE
13: LevelProcessed = LevelProcessed + 1
14: IF (LevelProcessed > max(Monitoring Level))
15: LevelProcessed= Insignificant Tuple
16: ENDIF
17: ENDIF
18: ENDWHILE

4 TP-Ag Problem Definition

Our TP-Ag operator must meet the following requirements.

1. It must produce the most reliable aggregate result from the tuples that
arrived at the aggregate operator and belong to selective subgroup popu-
lations. The set of tuples used to create each result must be estimated to
represent the actual selected subgroup populations of tuples that would have
arrived at the aggregate operator if resources were available.

2. It must annotate each aggregate result with the subgroup population(s) that
the result is generated from.

3. It cannot ignore the desired resource allocation order specified by the user
and adjust which tuples the TP optimizer chose to process (Sec. 2). It must
build reliable aggregate results from the significant tuples already pulled
forward. Data streams are often shared to efficiently produce more than
one output. Adjusting the desired resource allocation order specified by the
user assumes that the aggregate result is the most important query result
produced (which may not be the case).

Reliable Aggregation over Prioritized Data Streams 9

5 TP Aggregation Foundation

5.1 Aggregate Result Annotation

Per the requirements (Sec. 4), each aggregate result must be annotated with
which tuples it is generated from. In TP, tuples chosen to be processed satisfy the
membership criteria of an activated monitoring level (Sec. 2). Thus we propose
to logically divide the population of tuples within an aggregate group and pane
into subsets based upon their significance levels. Each population is divided into
subsets, namely, one subset for each significance level and one for insignificant
tuples.

Each aggregate result ai is associated with a population generation subset flag
or ssl that annotates which tuples the aggregate result ai is generated from. ssl is
represented as a bit vector with one bit for each monitoring level lvl1, lvl2, ..., lvln

and one bit for insignificant tuples. For instance, subsets flag ss1 = 100 signifies
that the aggregate result ai is generated from only tuples at significance level 1.
While subsets flag ss2 = 110 signifies that the aggregate result ai is generated from
only tuples at significance levels 1 and 2. Finally, subsets flag ss3 = 111 signifies
that the aggregate result ai is generated from all tuples (both significant and
insignificant).

Traditionally, aggregate operators produce a single aggregate result for each
group and window. It is possible for each subset of significant tuples in an aggre-
gate group and window to create an aggregate result. Given the limited resources,
we propose to follow the former method. The goal of TP-Ag is to produce the
single most reliable aggregate result from the largest number of subsets for an
aggregate group. To achieve this, TP-Ag selectively choses which of the available
subset(s) are used to create each aggregate result.

5.2 Evaluation Strategies for Sample Population

Result Accuracy: The actual population popm is the set of tuples in the aggre-
gate group gl and window wk that given adequate resources would have reached
aggregate operator opo. Aggregate answer a∗

i is generated from an actual popula-
tion popm. Aggregate result ai is generated from a sample population spopm, i.e.,
the set of tuples that reached aggregate operator opo. The sample population is
a subset of the actual population. Aggregate result ai may be incorrect, i.e., not
match the aggregate answer a∗

i . Reconsider Figure 1. A sample population spop1

for aggregate group g4 includes 987 tuples where 984 tuples have significance
level 1 and 3 tuples have significance level 2.

Determining Sample Population Accuracy: One method to determine if
a sample population accurately portrays the actual population is to compare
the mean of the sample and actual population via the Hoeffding equation [17].
Many aggregation operators [16,23,31] that process aggregate results from most
(if not all) tuples in a given query window (Sec. 8) use this approach. TP-
Ag seeks to build reliable aggregate results solely from the tuples processed by

10 K. Works and E.A. Rundensteiner

controlling which of the available subgroup(s) are used to create an aggregate
result. However, TP-Ag cannot use the Hoeffding equation to determine the
accuracy of the sample population. The Hoeffding equation requires that the
actual mean μ be precisely measured. TP cannot ensure that all tuples reach
TP-Ag opo. Thus to calculate the actual mean μ requires knowledge of which
tuples could have reached TP-Ag opo but did not. Such an evaluation amounts
to running the full query. Clearly, this is prohibitively costly.

Thus lead us to look at other statistics methods. One method to determine if
a sample population accurately portrays the actual population is to estimate the
sample size required to determine the actual mean within a given error threshold
via Cochran’s sample size formula [7]. If the size of sample population, denoted
by |spopm|, is less than the estimated required sample size |spopest|, then the sample
population spopm may not accurately represent the actual population popm. No
aggregate results should be generated from spopm. TP-Ag can use Cochran’s
sample size formula [7]. It determines the sample size by considering the limits
of the errors in the mean values of items in the sample population. |popm| is the
size of the actual population. ε is the user selected error rate. σ is the standard
deviation of the actual population. z is the user selected confidence level or the
estimated percentage of the values in the sample population within two standard
deviations of the mean of the actual population. The Cochran’s sample size
formula [7] is |spopest| = (z2 ∗ σ2 ∗ (|popm|/(|popm| − 1)))/(ε2 + ((z2 ∗ (σ2)/(|popm| − 1)))).
Roughly, z2 ∗ σ2 ∗ (|popm|/(|popm| − 1))) represents the percentage of tuples from the
sample population that are within the confidence interval of the estimated mean.
(ε2 + ((z2 ∗ (σ2)/(|popm| − 1)))) represents the percentage of tuples from the sample
population that per the error rate must be within the confidence interval of the
estimated mean.

This approach requires that the aggregate values in the population follow
a normal distribution. While not all data has this distribution, many practical
streams do. One example is stock market prices which can be mapped to the
normal distribution [11].

We must calculate the standard deviation of the actual population σ and the
size of the actual population |popm|. As common practice, we propose to calculate
the standard deviation of the actual population σ using the standard deviation
of the sample population and Bessel’s correction [18]. To estimate the actual
population size |popest

m |, we must measure the estimated number of expired tuple
or how many tuples would have reached TP-Ag operator opi if given adequate
resources. To calculate the estimated number of expired tuple the number of
tuples that expire at each operator in the query path before aggregate operator
opo (i.e., |exp(op, gl, lvlp)|) and the probability of expired tuples reaching aggregate
operator opo (i.e., P (op, opo, lvlp)) is tracked (Sec. 6). The estimated number of
expired tuple is the product of these two values (i.e., P (op, opo, lvlp)∗|exp(op, gl, lvlp)|).

5.3 Policy for Selecting the Sample Population

There are many ways of selecting which subgroup(s) are used to generate a result.
We propose to include the largest number of reliable subgroups in consecutive

Reliable Aggregation over Prioritized Data Streams 11

significance order in the sample population. For example, aggregate result ai

could be created from only tuples at significance level 1, at significance levels 1
or 2, or all levels.

Reconsider the aggregate operator op3 (Fig. 1). An aggregate result for aggre-
gate group g4 could be created from the two subgroups, namely, the 984 tuples at
significance level 1 and 3 tuples at significance level 2. Assume that the estimated
actual population size |popest

m | for this sample population is 1984 tuples. The esti-
mated standard deviation σ is 7.9. The error rate ε is .05. The critical standard
score z is 1.96 (95% confidence level). Then the estimated required sample size
|spopest| (i.e., = (1.962 ∗ 7.92 ∗ (1984/(1984 − 1)))/(.052 + ((1.962 ∗ (7.92)/(1984 − 1)))) is 1943
tuples. This sample population is not large enough to create a reliable aggregate
result.

However, an aggregate result could be created for group g4 that only using the
984 tuples at significance level 1. Assume that the estimated actual population
size |popest

m | for this sample population is 1000 tuples. The estimated standard
deviation σ is 5.9. The error rate ε is .05. The critical standard score z is 1.96
(95% confidence level). Then the estimated required sample size |spopest| (i.e.,
= (1.962 ∗ 5.92 ∗ (1000/(1000 − 1)))/(.052 + ((1.962 ∗ (5.92)/(1000 − 1)))) is 981 tuples. This
sample population is large enough to produce a reliable aggregate result.

insert tuple into State
Aggregate Values

State Agg. Values
0

48
Pane 0

Pane 48

Pane
Index

Pane Number(48)
group(A1) = Beverage
Significance Level(1)

attributes
A1 A2 PN SL

properties

Beverage $45.13 48 1

Technology

Beverage

Automotive

Group

Punctuation
P3

Pane Numbers (45,46,47,48)

PN

48

SL1

SL2

SLNA

= 1 =2 = NA

Significance level

Punctuation
P1

PN SL Cnt Group

48 1 6 Beverage

Est. num. tuples that
expire too early

Create Agg result

Produce Aggregate
Results

Count = 120 | Sum Prices = 1154.88 |…

Count = 23 | Sum Prices = 46.56 |…

Count = 2 | Sum Prices = 14.88 |…

Punctuation
P2

PN SL Cnt Group

48 2 40 Beverage

Fig. 2. TP-Ag State Example

6 Design of the TP Aggregation Operator

6.1 Tracking Expired Tuples

We designed the traditional operators (Sec. 2) to periodically send an expiration
count punctuation to the TP-Ag operator. The expiration count punctuation
contains the number of expired tuples for each aggregate group and significance
level. TP-Ag uses these values to estimate the actual population size (Sec. 5.2).

12 K. Works and E.A. Rundensteiner

Operators track the number of tuples that expire too early over a window by
aggregate group and significance level (Sec. 5.2) and send this count to the TR-
Ag operator. TR-Ag will use this count to estimate the actual population size
when deciding whether or not a sample population should produce a result. To
achieve this, TR-Ag uses an expiration count punctuation. Each operator tracks
the estimated number of tuples that expire too early by pane, aggregate group,
and significance level. When no tuples in a pane remain to be processed by an
operator, the operator sends an expiration punctuation for each aggregate group
and significance level where tuples expired. Upon receiving an expiration punc-
tuation, each operator adds on their estimated number of tuples that expire too
early. The expiration punctuation moves along the pipeline until it reaches the
TP-Ag (Sec. 6.2). When, the expiration punctuations reach the TP-Ag they con-
tain the number of tuples that expire too early over a window for each aggregate
group and significance level.

Considerexpirationpunctuationsp1< 48, 1, 6, Beverage >andp2< 48, 2, 40, Beverage >

in Figure 2. Expiration punctuation p1 states that 6 tuples from pane 48, sig-
nificance level 1, and group Beverage are estimated to have expired too early.
While expiration punctuation p2 states that 40 tuples from pane 48, significance
level 2, and group Beverage are estimated to have expired too early.

6.2 TP-Ag Physical Design

To support the production of aggregate results from certain subset(s) of the
sample populations, TP-Ag must support the efficient look-up and purging of
stored aggregate variables by pane (Sec. 3), group, and significance level. The
number of tuples within each pane is limited. Thus tuples maintained by the
operator are first grouped by the panes they belong to. Next, tuples are indexed
by their aggregate group. Lastly, tuples are stored by their significance level.

To support the production of aggregate results from certain subset(s) of the
sample populations, TP-Ag must support the efficient look-up and purging (Sec.
6.4) of stored aggregate variables by pane (Sec. 3), group, and significance level.
State Design: TP does not always process tuples in arrival time order (Sec. 3).
Thus, the state can contain tuples from more than one query window. That is,
a multitude of tuples with the same aggregate group and significance level are
likely to exist across multiple panes. However, the number of tuples within each
pane is limited. Thus stored tuples are first grouped by the panes they belong
to. Next, tuples are indexed by their aggregate group. Finally, tuples are stored
by their significance level.

Consider the insertion of stock tuple t1 < Beverages, $45.13 > with pane 48 and
significance level 1 into state aggregate values (Fig. 2). Stock tuple t1 is stored
in the state for pane 48, business sector Beverages, and significance level 1.

6.3 TP-Ag Operator

The major difference between TP-Ag and the State-Of-the-Art TP Aggregate
Operator is that TP-Ag upon receiving a notification punctuation (Sec. 3)

Reliable Aggregation over Prioritized Data Streams 13

determines the largest number of reliable subgroups in consecutive significance
order in the sample population that can produce a result (if any). Consider the
production of aggregate results triggered by punctuation p2 < 48 > (Fig. 2). p2

signals that all tuples from pane 48 that arrived at the operators that reside in
the query pipeline prior to the aggregate operator have been processed. First,
TP-Ag locates the group attributes for pane 48 which are Technology, Automo-
tive, ..., and Beverage. Then for each group attribute (e.g., Beverage), it creates
a sample population from all tuples from the window (composed of 4 panes)
that ends with pane 48 (i.e., pane 45 − 48). If the size of the sample population is
greater than or equal to the estimated required sample size then TP-Ag creates
an aggregate result for tuples from this sample population. Otherwise, TP-Ag
creates a new sample population by removing the least significant subset from
the current sample population. The process of testing the current sample pop-
ulation and creating a new sample population continues until either a result is
generated or the sample population is empty. In the latter case, no aggregate
result will be produced. Then TP-Ag moves to the next group for pane 48 (and
so on...).

It works as follows. First, the incoming punctuations are processed.
Processing Expiration Punctuations: Any incoming expiration punctuation is
stored in the state (lines 3-6).
Producing Aggregate Results: Any incoming notification punctuation is processed
as follows. First, the groups in the window pane are identified (line 7). Next, for
each group, we test to see if the sample population for all tuples represents the
actual populations (line 10). If so, results are created and sent to the next operator
(lines 11-12). Otherwise, the sample population is reduced by tuples that belong to
the least significant subset (line 14) and the test starts over (line 10). This continues
until either a result is produced or all sample populations have been explored
(line 8). Then, results for the next group are produced. This continues until either
no resources remain or there are no more incoming punctuations (line 1). Finally,
tuples stored in the state within panes that will not produce any future results
are purged (line 18).
Processing tuples: This is the same as the processing tuples logic for State-Of-
the-Art TP Aggregate Operator (Sec. 3) (lines 18-29)

Algorithm TP-Ag Operator(Qep /exp. punct. queue/,
Qnp /not. punct. queue/,
Cavail /avail. res./,
Qinc(s_1) /queues for stream s1/)

1: WHILE((Cavail > 0) and (Qnp is not empty))
2: Punc = first punctuation in Qnp
3: WHILE((Qep is not empty) and (first punctuation in Qep = pane in Punc))
4: ExpPunc = first punctuation in Qep
5: store the values in ExpPunc
6: ENDWHILE
7: FOR each group gl in defined by the pane in Punc
8: WHILE(no result has been produced) and (the sample population is not empty)
9: sample population = population defined by the pane in Punc and group gl
10: IF (sample population represents actual population)
11: create aggregate results for sample population
12: place aggregate results into input queue of next query plan operator
13: ELSE

14 K. Works and E.A. Rundensteiner

14: reduce the sample population by the least significant subgroup
15: ENDIF
16: ENDWHILE
17: ENDFOR
18: purge state of tuples within panes that will not produce any future results
19: ENDWHILE
18: LevelProcessed= 1
19: WHILE((Cavail > 0) and (Qinc(s_1) is not empty))
20: IF(Qinc(s_1,LevelProcessed) contains a tuple)
21: Tup = first tuple in Qinc(s_1,LevelProcessed)
22: store Tup in state and associate with the pane, aggregate group, and significance level
23: ELSE
24: LevelProcessed = LevelProcessed + 1
25: IF (LevelProcessed > max(Monitoring Level))
26: LevelProcessed = Insignificant tuples
27: ENDIF
28: ENDIF
29: ENDWHILE

6.4 Memory Resource Management

Beyond CPU resources, memory resources may also be limited.
State Management: To ensure complete results, tuples stored in states are not
purged if they may create aggregate results in the future (Sec. 3). However, this
purging method assumes that sufficient memory is available to store all tuples
that will create future aggregate results. This may not always be the case. In
the case of insufficient memory, we propose to purge tuples from the oldest
panes in the state first. Our approach is based upon the fact that the majority
of aggregate results generated from the oldest tuples would have already been
produced. Memory resources are allocated to storing the freshest tuples.
Queue Management: In the case of insufficient memory, the incoming queues
must also be purged. We also utilize the oldest pane method defined above to
purge the queues.

7 Experimental Evaluation

7.1 Experimental Setup

Alternative Solutions. We compare TP-Ag (or TP w/ TP-Ag) to the state-
of-the-art aggregate operators in TPs. That is, we compare to the out-of-order
aggregate operator [23] implemented in the state-of-the-art TP tuple level
scheduling approach (or PP) [43,44] and the stream aggregation operator [8]
implemented the state-of-the-art TP workload reduction approaches, namely,
semantic (or sem) and random (or rand) [2] (Sec. 8). PP requires the out-of-
order aggregate operator (Sec. 3). We also compare TP w/ TP-Ag to state-of-
the-art aggregate operators for TPs [4,39] that limit which tuples are dropped
from specific windows (or Shed Window Ag). Finally, we compare to the tra-
ditional aggregate operator [8] implemented in a non-targeted prioritized data
stream systems (or trad). TP-Ag uses the critical standard score z = 1.96 (95%
confidence level). To ensure fairness, all systems are implemented in the same

Reliable Aggregation over Prioritized Data Streams 15

data stream system with appropriate extensions to implement the methods, in
our case, CAPE [34].

TP w/ TP-Ag, PP, and sem use the same criteria to select the tuples pro-
cessed. Rand randomly selects tuples to process in FIFO order based upon the
estimated number of tuples that can be processed within their lifespan. Trad
simply processes all tuples in FIFO order.
Data Streams and Query. Most experiments use Stock Market Query Q1
with the extension (Sec. 2) where the window size = 500 tuples.

The stock market stream was created from stock ticker information on the
S&P 500 stocks gathered over July 18, 2012 via Yahoo Finance [12].

News and blog data streams were created by randomly selecting sectors from
the global industry classification standard (GICS). GICS, developed by Morgan
Stanley Capital International (MSCI) and Standard & Poorś, contains 10 sectors
that categorize the S&P 500 stocks.

Data Set 1 (or DS1) mimics a financial company monitoring diversified
mutual funds. That is, the stocks chosen are distributed across different business
sectors and investment types (i.e., aggressive versus conservative investments).
In DS1, 5% of the 500 stocks (or 25 stocks) were randomly selected to be at each
of the three monitoring level (Sec. 2.2).
Hardware. All experiments are conducted on nodes in a cluster. Each host has
two AMD 2.6GHz Dual Core Opteron CPUs and 1GB memory.
Metrics and Measurements. TP w/ TP-Ag produces an aggregate result
from a subset of the tuples that arrive at the aggregate operator. The other
approaches generate aggregate results from all tuples that arrive at the aggregate
operator. To be able to validate whether or not the results are correct, each
aggregate result produced is annotated with the significant levels of the tuples
in the sample population. For each experiment, the actual aggregate answers
(Sec. 5.2) for each possible sample population was found.

The experiments were run 3 times for 10 minutes. The results are the aver-
age of these runs. Each aggregate answer produced is then compared to the
actual aggregate answer for the same group, window, and sample population.
Any result that is within 5% of the actual answer is considered to be correct.
Our experiments measure the percentage of correct aggregate results produced.

7.2 Experimental Methodology

We explore the following: 1) Is TP-Ag more effective at producing a larger per-
centage of correct significant aggregate results than the state-of-the-art solu-
tions? 2) What effect does the number of significant tuples that belong to each
aggregate group have on the effectiveness of the TP-Ag strategy compared to
the state-of-the-art solutions? 3) How do changes in the error rate (Sec. 5.2)
affect the percentage of correct results produced by TP-Ag? 4) What is TP-Ag’s
runtime CPU and memory overhead in the worst case scenario compared to the
state-of-the-art solutions?

We vary the number of significant tuples that belong to each aggregate group
and the error rate as they directly affect TP-Ag. When the number of significant

16 K. Works and E.A. Rundensteiner

tuples that belong to each aggregate group decreases, this reduces the number of
tuples in each sample population. The smaller the sample population is the more
likely that the result produced may be skewed. Consider a significant tuple ti

that expires before reaching the aggregate operator. Sample population spopm is
the sample population that tuple ti would have belonged to if tuple ti had not
expired. The aggregate result produced by sample population spopm will be more
affected if the sample population spopm contains few tuples (smaller population)
rather than many tuples (larger population). Decreasing the error rate increases
the accuracy in the estimated required sample size. This should increase the
percentage of correct aggregate results produced by TP-Ag. We varied these
variables as they affect TP-Ag’s ability to produce accurate results.

7.3 Experimental Findings

Effectiveness at Increasing the Percentage of Correct Aggregate
Results Produced. First, we compare the percentage of correct aggregate
results produced by each approach. This experiment uses DS1. Figure 3 a shows
the average difference between the number of the correct and incorrect aggregate
results produced at each minute. This measures whether more correct (positive
number) or incorrect results were produced (negative number). Overall TP w/
TP-Ag compared to sem, rand, and trad consistently produces more correct
aggregate results.

min

a
v

g
.
d

if
f.

 b
e
tw

e
e

n
 t

h
e

n

u
m

b
e

r
 o

f

 c
o

rr
e

c
t

a
n

d
 i
n

c
o

rr
e

c
t

re
s

u
lt

s

1 2 3 4 5 6 7 8 9 10
-2750

-2250

-1750

-1250

-750

-250

250

750

Trad
Sem

Rand
PP

TP w/ TP-Ag

0

20

40

60

80

100

% Results Correct % Results Incorrect

Trad
Sem
Rand
PP
TP w/ TP-Ag

a) Average difference between the number of b) Average % Correct Significant Results Over

correct and incorrect aggregate results produced 10 Min

Fig. 3. Effectiveness at Increasing the % of Correct Aggregate Results

PP produced more correct aggregate results than TP w/ TP-Ag at startup
(minutes 1 through 3). However, after the system start-up (minutes 4 through 10)
PP produced more incorrect than correct aggregate results. This is as expected.
Namely, PP has less overhead than TP w/ TP-Ag. In addition, the aggregate
results produced by PP will only be incorrect when the system is overloaded and
many significant tuples fail to reach the aggregate operator.

Reliable Aggregation over Prioritized Data Streams 17

As seen in Figure 3 b shows, compared to all alternative solutions, TP w/
TP-Ag produced a much higher percentage of correct aggregate results. Of all
the aggregate results produced by TP w/ TP-Ag, 91.5% were correct. Our results
support that TP w/ TP-Ag is effective at increasing the percentage of correct
aggregate results produced compared to competitor solutions.
TP w/ TP-Ag Versus State-of-the-art Reliable Aggregation Operators
for TPs. We now compare TP w/ TP-Ag to state-of-the-art aggregate operators
designed to produce reliable results in TPs [4,4,39] (Sec. 1.5). These systems
limit which tuples are dropped from specific windows. We refer to these systems
as Shed Window Ag. First, we compare the percentage of correct aggregate results
produced by each approach. This experiment also uses DS1.

min

C
u

m
u

la
ti

v
e
 T

h
ro

u
g

h
p

u
t

o
f

 c
o

rr
e

c
t

a
g

g
re

g
a

te
 r

e
s

u
lt

s

1 2 3 4 5 6 7 8 9 10
0

150

300

450
Shed Window Ag TP w/ TP-Ag

0

20

40

60

80

100

% Results Correct % Results Incorrect

Shed Window Ag
TP w/ TP-Ag

a) Cumulative Throughput of Correct Ag Results b) Average % Correct Significant Results

Over 10 Min

Fig. 4. TP w/ TP-Ag versus State-of-the-art

As the overall percentage of correct and incorrect significant results in Figure
4 b shows, all aggregate results produced by Shed Window Ag were correct.
While, of the aggregate results produced by TP w/ TP-Ag produced 91.5%
were correct. Clearly, Shed Window Ag will always produce correct aggregate
results. Recall that Shed Window Ag will ensure that no tuples from specific
windows are dropped or expire. As a result, Shed Window Ag will only produce
correct aggregate results. In contrast, TP w/ TP-Ag seeks to produce results
that are estimated to be correct from incomplete windows of tuples.

However, Shed Window Ag may not produce as many aggregate results as
TP w/ TP-Ag. As Figure 4 a shows, TP w/ TP-Ag produced roughly 2.9 fold
more correct aggregate results than Shed Window Ag. Shed Window Ag will
process all tuples (both significant and insignificant) from selected windows.
This requires a significant amount of CPU overhead. Hence, Shed Window Ag
will not produce as many correct aggregate results as TP w/ TP-Ag.

Clearly, Shed Window Ag and TP w/ TP-Ag have different goals. The goal
of Shed Window Ag is to produce correct aggregate results by adjusting how
resources are allocated. The goal of TP w/ TP-Ag is to build reliable aggregate
results from the significant tuples pulled forward by the TP. Thus, henceforth
we no longer compare TP w/ TP-Ag to Shed Window Ag.

18 K. Works and E.A. Rundensteiner

Varying the Sample Population Size. We now explore how the number
of the significant tuples in each aggregate group affects TP-Ag. All significant
tuples belong to two GICS sector groups. This experiment uses four Data Sets
(i.e., DS25, DS50, DS75, and DS100). Each Data Set adapts the percentage of
significant tuples that belong to the two GICS sector groups. In DS25, 25% of the
stocks in the two sectors are significant (75% of these tuples are insignificant).
Similarly, in DS50, DS75, and DS100, respectively 50%, 75% and 100% of the
tuples in the two sectors are significant. The sample population size increases
from DS25 to DS100.

0

20

40

60

80

100

% Results Correct % Results Incorrect

Trad
Sem
Rand
PP
TP w/ TP-Ag

0

20

40

60

80

100

% Results Correct % Results Incorrect

Trad
Sem
Rand
PP
TP w/ TP-Ag

a) Data Set DS25 b) Data Set DS50

0

20

40

60

80

100

% Results Correct % Results Incorrect

Trad
Sem
Rand

PP
TP w/
 TP-Ag

0

20

40

60

80

100

% Results Correct % Results Incorrect

Trad
Sem
Rand
PP
TP w/ TP-Ag

c) Data Set DS75 d) Data Set DS100

Fig. 5. Varying the Sample Population Size

Figures 5a-5d show the overall percentage of correct and incorrect aggregate
results respectively for DS25, DS50, DS75, and DS100. As can be seen, compared
to the alternative solutions, TP w/ TP-Ag produced the highest percentage of
correct aggregate results. The closest competitors were rand and PP. In DS25
(the smallest sample populations), TP w/ TP-Ag produced 100% and 84.0%
more correct aggregate results than rand and PP. In DS100 (the largest sample
populations), TP w/ TP-Ag produced 19.1% and 24.2% more correct aggregate
results than rand and PP. This is as expected. Namely, TP-Ag achieves the
highest gains when the fewest tuples in the sample population fail to reach the
aggregate operator. When the stream is saturated with significant tuples, more
significant tuples are likely to fail to reach the aggregate operator.

Reliable Aggregation over Prioritized Data Streams 19

Varying Error Rate. Now, we compare the percentage of correct aggregate
results produced by TP w/ TP-Ag when the error rate (i.e., the desired level of
precision ε of Cochran’s sample size formula (Sec. 5.2)) varies. This experiment
also uses DS1. We vary the error rate ε from 5%, 10%, to 20%. Figure 6 shows
the percentage of correct and incorrect aggregate results produced.

0

20

40

60

80

100

% Significant Correct % Significant Incorrect

TP w/ TP-Ag -
 Error rate 5%
TP w/ TP-Ag -
 Error rate 10%
TP w/ TP-Ag -
 Error rate 20%

Fig. 6. Varying the error rate

Overall the highest percentage of correct aggregate results was produced
when the error rate ε is 5%. While the lowest percentage was produced when the
error rate ε was 20%. The percentage of correct aggregate results produced by
TP w/ TP-Ag for the error rate ε from 5%, 10%, to 20% was respectively 93.9%,
91.5%, and 88.6%. As expected, decreasing the error rate (i.e., higher level of
precision of Cochran’s sample size formula) increases the percentage of correct
aggregate results achieved by TP w/ TP-Ag (vice versa).
Execution-Runtime CPU Overhead. To measure the runtime overhead we
evaluate the cumulative throughput using the worst case scenario for TP w/
TP-Ag. In the worst case scenario, there is adequate resources to process all
tuples (Fig. 7 c). As a consequence, for each aggregate result is produced from
a sample population that contains all tuples in a window and aggregate group.
The overhead of TP systems is the cost to gather and evaluate runtime statistics.
In addition, TP-Ag has the additional overhead of tracking statistics to estimate
the actual population, evaluating the required sample size (Sec. 5.2), and deter-
mining if there is a sample population for each group and window whose size is
comparable to the required sample size (Sec. 5.3). This experiment uses DS1.

As can be seen in our results, the difference between the throughput of TP
w/ TP-Ag and trad, sem, rand, and PP is respectively 40.2%, 37.9%, 39.1%, and
39.0%. For systems with extremely limited resources, TP w/ TP-Ag may not be
a good approach. However, TP w/ TP-Ag is a great fit for systems that require
a TP system and desire reliable accuracy in the aggregate results produced.
Memory Overhead. To measure the memory overhead we evaluated the aver-
age number of tuples in the state and input queue of the aggregate operator using
the worst case scenario outline above (Fig. 7 a & b). As our results demonstrate,
the memory overhead of TP w/ TP-Ag is higher than the current state-of-the-
art approaches. The state of the aggregate operators in trad, sem, rand, and PP

20 K. Works and E.A. Rundensteiner

0

50000

100000

150000

200000 Trad
Sem
Rand
PP
TP w/ TP-Ag

0

20000

40000

60000 Trad
Sem
Rand
PP
TP w/ TP-Ag

0

8000

16000

24000

32000
Trad
Sem
Rand

PP
TP w/ TP-Ag

a) Aggregate Operator b) Aggregate Operator c) Cumulative Throughput

State Size Queue Size

(in number of tuples) (in number of tuples)

Fig. 7. Memory & Execution-Runtime CPU Overhead

respectively have 74.0%, 83.0%, 84.2%, and 75.7% less tuples in their states than
TP w/ TP-Ag. While the queues of the aggregate operators in trad, sem, rand,
and PP respectively have 47.4%, 46.6%, 49.2%, and 70.6% less tuples in their
queues than TP w/ TP-Ag.

This is as expected. Namely, the TP-Ag design relies upon a memory-intensive
physical design to support the production of results from subsets of the actual
sample population. Again, TP w/TP-Ag is a great fit for systems that require a
TP system and desire reliable accuracy in the aggregate results produced. Ensur-
ing the production of reliable aggregate results however carries an overhead.

7.4 Summary of Experimental Findings

We now summarize our key findings.

– TP-Ag is effective at increasing the percentage of correct aggregate results
produced in TPs (TP-Ag produces up to 91% more correct aggregate results).

– Decreasing the error rate increases the percentage of correct aggregate results
achieved by TP w/ TP-Ag and vice versa.

– TP-Ag is best suited for environments where the stream is not saturated with
significant tuples. When the stream is saturated with significant tuples, more
significant tuples are likely to expire.

– TP w/TP-Ag is a great fit for systems that require a targeted prioritized
data stream system and desire reliable accuracy in the aggregate results
produced.

8 Related Work

Below are related works beyond those already covered in Sections 1.5 and 3.

Reliable Aggregation over Prioritized Data Streams 21

8.1 Aggregate Operators that Support Tuple Level Resource
Reduction and Reorder Systems

Some aggregation operators proposed to support data stream systems that uti-
lize tuple level resource allocation and reduction aim to only produce non-skewed
aggregate results (Sec. 1.5) by requiring that certain tuples from selective win-
dows are never shed. This is limiting in what tuples will and will not be processed.
It does not address the TP systems where the user selects which tuples will and
will not be processed. These approaches simplify aggregation because they force
a complete set of tuples from these windows to arrive at the aggregate operator.

Hellerstein et al. [16] proposed an online interface that allows users to both
observe the progress and halt the execution of their aggregation queries. In their
approach, load shedding is initiated by the end user. To help ensure the most
accurate aggregate results are produced, their approach returns the output in
random order, adjusts the rate at which different aggregates are computed, and
computes running confidence intervals. The running confidence intervals are dis-
played to the user.

Babcock et al. [4] proposed a system that supports load shedding. The goal
of the system is drop tuples such that accuracy of the aggregate results produced
are within certain limits. They consider the probability that dropping certain
tuples has on the accuracy of query answers produced by the multiple queries.

Longbo et al. [27] propose a load shedding system for continuous sliding
window join-aggregation queries over data streams. Their load shedding strategy
partitions the domain of the join attribute into certain sub-domains. Then they
filter out selected input tuples based on their join values.

Guo et al. [15] proposed a load shedding approach for aggregation queries
with sliding windows. They analyzed the characteristics of subset model and
deficiencies of current load shedding methods. Their load shedding algorithm is
based on the strategy of dropping tuples from certain window.

Senthamilarasu et al. [35] proposed load shedding techniques for queries con-
sisting of one or more aggregate operators with sliding windows. Their load
shedding method utilizes a window function that divides the input into por-
tions of the windows of the aggregate operators. It then utilizes this function to
probabilistically determine which tuple to shed.

Akin to these approaches, TP-Ag must also contend with the time versus
accuracy trade off. TPs require an aggregate operator that can creates a reliable
aggregate result using only the available tuples within the group population. The
approach should not adjust how the TP system is allocating resources. It should
not change which tuples are pulled forward.

8.2 Tuple Level Resource Reduction

There are many resource allocation approaches that reduce the workload. One
approach is load shedding. Load shedding drops less significant tuples. It only
allocates resources to the tuples not dropped. Once a tuple is chosen to be
processed, it will not be shed at any point along the query pipeline.

22 K. Works and E.A. Rundensteiner

Aurora [1,45] is a system to manage data streams for monitoring applications.
It supports real-time requirements. To achieve this, they proposed using load
shedding to reduce the system of less critical tuples. Their key idea was to
propose load shedding as a means to control the workload.

Tatbul et al. [38] explored a technique for dynamically inserting and removing
drop operators into query plans as required by the current load. They considered
both semantic and random shedding. Their cost model does not consider the cost
of the drop operators to evaluate tuples. It assumes that this cost is low.

Reiss et al. [33] proposed the Data Triage architecture. It supports systems
with bursty arrival rates that can fluctuate. During such bursts, Data Triage
captures an estimate of the query results that the system did not have time to
compute. They combined these results with the query results to generate more
accurate statistics. These statistics are used to evaluate which tuples should be
shed.

Tatbul et al. [37] proposed load shedding techniques for distributed stream
processing environments. They modeled the distributed load shedding problem
as a linear optimization problem. They proposed a distributed approach. It was
built for dynamic environments in large-scale deployments.

Nehme et al. [29] proposed a load shedding technique for spatio-temporal
stream data. Their load shedding model considered spatio-temporal properties
by grouping similarly moving objects into clusters. Then they shed selective
objects within each cluster. The locations of the objects shed are approximated
based upon their associated clusters.

Wang et al. [41] proposed a load shedding technique for real-time data stream
applications. The goal of their approach is to reduce the workload while at the
same time preserving the system timing constraints. They proposed different
modes. These modes define how the load on the stream is adjusted.

Ma et al. [28] proposed a semantic load shedding technique for real-time data
stream applications that utilizes a priority table. It considers both the execution
costs and tuple attribute values when deciding which tuples are shed.

Basaran et al. [5] proposed a load shedding method that applies distributed
fuzzy logic. It considers the per-stream backlog and selectivity of each query
operator. Their approach is event-driven. This allows it to react to bursty work-
loads.

Lin et al. [25] proposed a linear programming based load shedding method
for distributed data stream processing systems. It models the system load as a
simple query network with network constraints. It considers two factors. These
factors are the amount of available CPU and network resources.

Labrinidis et al. [40] proposed a load shedding strategy that manages the load
shedding without requiring any input from users, namely, any manually tuned
parameters. Their approach works with complex query networks containing joins,
aggregations or shared operators.

In contrast to these approaches, TP seeks to adaptively adjust how resource
allocation throughout the query pipeline. These approaches simply decide to
process a tuple or not and never revisit this decision. In TP, a tuple may be

Reliable Aggregation over Prioritized Data Streams 23

allocated resources for a portion of the query pipeline. Later on, if more sig-
nificant tuples are present then this same tuple may be denied resources. This
allows the more significant tuples to be processed.

9 Conclusions

This paper makes the following important contributions. Our TP-Ag operator
tackles the open problem of generating reliable average calculations for nor-
mally distributed data from incomplete aggregation populations resulting from
decisions made by TPs. TP-Ag produces non-skewed average calculations by
determining at run-time which combination of subset(s) of an aggregation pop-
ulation (if any) are used to generate a result. A carefully designed application
of Cochran’s sample size methodology is used to measure the accuracy of pos-
sible populations. Our experimental study confirms that TP-Ag is effective at
increasing the percentage of reliable results produced in TPs (TP-Ag produces
up to 91% more accurate results).

Acknowledgments. We thank our WPI peers for CAPE [34] and feedback. We also
thank GAANN and NSF grants: IIS-1018443, 0917017, 0414567, and 0551584 for their
support.

References

1. Abadi, D.J., Carney, D., Çetintemel, U., Cherniack, M., Convey, C., Lee, S.,
Stonebraker, M., Tatbul, N., Zdonik, S.: Aurora: A new model and architecture for
data stream management. The International Journal on Very Large Data Bases,
120–139 (2003)

2. Abadi, D.J., et al.: Aurora: A new model and architecture for data stream man-
agement. VLDB Journal, 120–139 (2003)

3. Arasu, A., et al.: The cql continuous query language: semantic foundations and
query execution. VLDB Journal, 121–142 (2006)

4. Babcock, B., et al.: Load shedding for aggregation queries over data streams. In:
ICDE, p. 350 (2004)

5. Basaran, C., Kang, K.-D., Zhou, Y., Suzer, M.H.: Adaptive load shedding via
fuzzy control in data stream management systems. In: 2012 5th IEEE International
Conference on Service-Oriented Computing and Applications (SOCA), pp. 1–8.
IEEE (2012)

6. Carney, D., et al.: Monitoring streams: A new class of data management applica-
tions. In: VLDB, pp. 215–226 (2002)

7. Cochran, W.G.: Sampling Techniques, 3 edn. John Wiley (1977)
8. Cormode, G., Korn, F., Tirthapura, S.: Time-decaying aggregates in out-of-order

streams. PODS, 89–98 (2008)
9. Das, A., et al.: Semantic approximation of data stream joins. IEEE, 44–59 (2005)

10. Dobra, A., et al.: Processing complex aggregate queries over data streams. In:
SIGMOD, pp. 61–72 (2002)

11. Fama, E.F.: The behavior of stock-market prices. The Journal of Business 38(1),
34–105 (1965)

24 K. Works and E.A. Rundensteiner

12. Finance, Y.: http://finance.yahoo.com/
13. Gainey, R.R., et al.: Understanding the experience of house arrest with electronic

monitoring: An analysis of quantitative and qualitative data. International Journal
of Offender Therapy and Comparative Criminology (2000)

14. Golab, L., et al.: Update-pattern-aware modeling and processing of cont. queries.
In: SIGMOD, pp. 658–669 (2005)

15. Guo, J.-F., He, C.-L.: Load shedding for sliding window aggregation queries over
data streams. Application Research of Computers, 1–23 (2009)

16. Hellerstein, J.M., Haas, P.J., Wang, H.J.: Online aggregation. SIGMOD 26(2),
171–182 (1997)

17. Hoeffding, W.: Probability Inequalities for Sums of Bounded Random Variables.
Journal of the American Statistical Association 58(301), 13–30 (1963)

18. Hoyle, S.: Use and abuse of statistics. ASLIB Proc. 40(11–12), 321–324 (1988)
19. Kang, H.G., Mahoney, D.F., Hoenig, H., Hirth, V.A., Bonato, P., Hajjar, I., Lipsitz,

L.A.: In situ monitoring of health in older adults: technologies and issues. Journal
of the American Geriatrics Society 58(8), 1579–1586 (2010)

20. Kargupta, H., Park, B.-H., Pittie, S., Liu, L., Kushraj, D., Sarkar, K.: Mobimine:
monitoring the stock market from a pda. SIGKDD Explor. Newsl. 3(2), 37–46
(2002)

21. Katopodis, P., et al.: A hybrid, large-scale wireless sensor network for missile
defense. IEEE, 1–5 (2007)

22. Li, J., et al.: No pane, no gain: efficient evaluation of sliding-window aggregates
over data streams. SIGMOD 34, 39–44 (2005)

23. Li, J., et al.: Semantics and evaluation techniques for window aggregates in data
streams. SIGMOD, 311–322 (2005)

24. Lin, C.-C., et al.: Wireless health care service system for elderly with dementia.
IEEE, 696–704 (2006)

25. Lin, O., Qin, Z., Jingjing, Q., Qiumei, P.: A new linear programming based load-
shedding strategy. In: 2012 11th International Symposium on Distributed Comput-
ing and Applications to Business, Engineering & Science (DCABES), pp. 260–263.
IEEE (2012)

26. Liu, B., et al.: Run-time operator state spilling for memory intensive long-running
queries. SIGMOD, 347–358 (2006)

27. Longbo, Z., Zhanhuai, L., Zhenyou, W., Min, Y.: Semantic load shedding for sliding
window join-aggregation queries over data streams. In: International Conference
on Convergence Information Technology, pp. 2152–2155 (2007)

28. Ma, L., Zhang, Q., Shi, N.: A semantic load shedding algorithm based on priority
table in data stream system. In: International Conference on Fuzzy Systems and
Knowledge Discovery, pp. 1167–1172 (2010)

29. Nehme, R.V., Rundensteiner, E.A.: Clustersheddy: Load shedding using moving
clusters over spatio-temporal data streams. In: Kotagiri, R., Radha Krishna, P.,
Mohania, M., Nantajeewarawat, E. (eds.) DASFAA 2007. LNCS, vol. 4443, pp.
637–651. Springer, Heidelberg (2007)

30. Network, M.: Where have all the investors gone? (February 2012). http://money.
msn.com

31. Olston, C., Widom, J.: Offering a precision-performance tradeoff for aggregation
queries over replicated data. Technical Report 2000–16, Stanford InfoLab (2000)

32. Press, A.: Officials lose track of 16,000 sex offenders after gps fails (2010). http://
www.foxnews.com

http://finance.yahoo.com/
http://money.msn.com
http://money.msn.com
http://www.foxnews.com
http://www.foxnews.com

Reliable Aggregation over Prioritized Data Streams 25

33. Reiss, F., Hellerstein, J.M.: Data triage: An adaptive architecture for load shedding
in telegraphcq. In: IEEE International Conference on Data Engineering, pp. 155–
156 (2005)

34. Rundensteiner, E.A., et al.: Cape: Continuous query engine with heterogeneous-
grained adaptivity. In: VLDB, pp. 1353–1356 (2004)

35. Senthamilarasu, S., Hemalatha, M.: Load shedding techniques based on windows
in data stream systems. In: 2012 International Conference on Emerging Trends in
Science, Engineering and Technology (INCOSET), pp. 68–73. IEEE (2012)

36. Tatbul, N.: QoS-driven load shedding on data streams. In: Chaudhri, A.B., Unland,
R., Djeraba, C., Lindner, W. (eds.) EDBT 2002. LNCS, vol. 2490, pp. 566–576.
Springer, Heidelberg (2002)

37. Tatbul, N., Çetintemel, U., Zdonik, S.: Staying fit: Efficient load shedding tech-
niques for distributed stream processing. In: International Conference on Very
Large Data Bases, pp. 159–170 (2007)

38. Tatbul, N., et al.: Load shedding in a data stream manager. In: VLDB, pp. 309–320
(2003)

39. Tatbul, N., Zdonik, S.: Window-aware load shedding for aggregation queries over
data streams. VLDB, 799–810 (2006)

40. Pham, T.N., Chrysanthis, P.K., Labrinidis, A.: Self-managing load shedding for
data stream management systems, 1–7 (2013)

41. Wang, H.-Y., Qin, Z.-D., Li, B.-Y., Cong, J., Wang, Z.-J., Du, M.: Novel load shed-
ding approach for real-time data stream processing. Journal of Chinese Computer
Systems, 1–4 (2010)

42. Wei, M., et al.: Achieving high output quality under limited resources through
structure-based spilling in xml streams. PVLDB, 1267–1278 (2010)

43. Works, K., Rundensteiner, E.: Preferential resource allocation in stream processing
systems. International Journal of Cooperative Information Systems (2014)

44. Works, K., Rundensteiner, E.A.: The proactive promotion engine. In: ICDE, pp.
1340–1343 (2011)

45. Zdonik, S.B., et al.: The aurora and medusa projects. IEEE, 3–10 (2003)

	Reliable Aggregation over Prioritized Data Streams
	1 Introduction
	1.1 Targeted Prioritized Data Stream Systems (TP)
	1.2 Motivating Examples of TPs
	1.3 Running TP Example: Stock Market
	1.4 Running Example: Inaccurate Aggregation Results
	1.5 State-of-the-Art Aggregation Operators and Their Shortcomings
	1.6 Our Approach and Contributions

	2 TR Query Model and Plan Definitions
	2.1 TP Queries
	2.2 TP Query Plans

	3 Background of Stream Aggregation
	3.1 Basic Aggregate Operator
	3.2 Aggregate Operator Supporting Out-of-Order Data Streams
	3.3 State-Of-the-Art Aggregate Operator for TPs

	4 TP-Ag Problem Definition
	5 TP Aggregation Foundation
	5.1 Aggregate Result Annotation
	5.2 Evaluation Strategies for Sample Population
	5.3 Policy for Selecting the Sample Population

	6 Design of the TP Aggregation Operator
	6.1 Tracking Expired Tuples
	6.2 TP-Ag Physical Design
	6.3 TP-Ag Operator
	6.4 Memory Resource Management

	7 Experimental Evaluation
	7.1 Experimental Setup
	7.2 Experimental Methodology
	7.3 Experimental Findings
	7.4 Summary of Experimental Findings

	8 Related Work
	8.1 Aggregate Operators that Support Tuple Level Resource Reduction and Reorder Systems
	8.2 Tuple Level Resource Reduction

	9 Conclusions
	References

