
 123

Transactions on
Large-Scale
Data- and Knowledge-
Centered Systems XIVLN

CS
 8

80
0

Abdelkader Hameurlain • Josef Küng • Roland Wagner
Editors-in-Chief

Jo
ur

na
l S

ub
lin

e

Lecture Notes in Computer Science 8800

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zürich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

More information about this series at http://www.springer.com/series/8637

http://www.springer.com/series/8637

Abdelkader Hameurlain · Josef Küng
Roland Wagner (Eds.)

Transactions on
Large-Scale Data- and
Knowledge-Centered
Systems XIV

ABC

Editors
Abdelkader Hameurlain
IRIT, Paul Sabatier University
Toulouse
France

Josef Küng
FAW, University of Linz
Linz
Austria

Roland Wagner
FAW, University of Linz
Linz
Austria

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-662-45713-9 ISBN 978-3-662-45714-6 (eBook)
DOI 10.1007/978-3-662-45714-6

Library of Congress Control Number: 2009932361

Springer Heidelberg New York Dordrecht London
c© Springer-Verlag Berlin Heidelberg 2014

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broad-
casting, reproduction on microfilms or in any other physical way, and transmission or information storage
and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known
or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer-Verlag GmbH Berlin Heidelberg is part of Springer Science+Business Media
(www.springer.com)

Preface

This volume is the fifth so-called regular volume of the TLDKS journal. It contains, 4
fully revised selected regular papers from 12 submitted papers in response to the call
for papers for this regular volume.

The content of this volume covers a wide range of different and hot topics in the field
of data and knowledge management systems, mainly: data stream systems, top-k query
processing, semantic web service (SWS) discovery, and XML functional dependencies.

We would like to express thanks to the editorial board for thoroughly refereeing the
submitted papers and ensuring the high quality of this volume.

Special thanks go to Gabriela Wagner for her availability and her valuable work in
the realization of this TLDKS volume.

October 2014 Abdelkader Hameurlain
Josef Küng

Roland Wagner

Editorial Board

Reza Akbarinia Inria, France
Bernd Amann LIP6 - UPMC, France
Dagmar Auer FAW, Austria
Stéphane Bressan National University of Singapore, Singapore
Francesco Buccafurri Università Mediterranea di Reggio Calabria, Italy
Qiming Chen HP-Labs, USA
Tommaso Di Noia Politecnico di Bari, Italy
Dirk Draheim University of Innsbruck, Austria
Johann Eder Alpen Adria University Klagenfurt, Austria
Stefan Fenz Vienna University of Technology, Austria
Georg Gottlob Oxford University, UK
Anastasios Gounaris Aristotle University of Thessaloniki, Greece
Theo Härder Technical University of Kaiserslautern, Germany
Andreas Herzig IRIT, Paul Sabatier University, France
Hilda Kosorus FAW, Austria
Dieter Kranzlmüller Ludwig-Maximilians-Universität München,

Germany
Philippe Lamarre INSA Lyon, France
Lenka Lhotská Technical University of Prague, Czech Republic
Vladimir Marik Technical University of Prague, Czech Republic
Mukesh Mohania IBM India, India
Franck Morvan IRIT, Paul Sabatier University, France
Kjetil Nørvåg Norwegian University of Science and Technology,

Norway
Gultekin Ozsoyoglu Case Western Reserve University, USA
Themis Palpanas Paris Descartes University, France
Torben Bach Pedersen Aalborg University, Denmark
Günther Pernul University of Regensburg, Germany
Klaus-Dieter Schewe University of Linz, Austria
David Taniar Monash University, Australia
A. Min Tjoa Vienna University of Technology, Austria
Chao Wang Oak Ridge National Laboratory, USA

External Reviewers

Claudette Cayrol Paul Sabatier University, France
Michele Gorgoglione Politecnico di Bari, Italy
Yoann Pitarch Paul Sabatier University, France
Sherif Sakr National ICT Australia, Australia
Shaoyi Yin Paul Sabatier University, France

Contents

Reliable Aggregation over Prioritized Data Streams 1
Karen Works and Elke A. Rundensteiner

Slicing the Dimensionality: Top-k Query Processing
for High-Dimensional Spaces . 26

Gheorghi Guzun, Joel Tosado, and Guadalupe Canahuate

SeeVa: A Model Based Framework for Semantic Web Service Discovery . . . 51
Roberto De Virgilio and Devis Bianchini

Maximal Set of XML Functional Dependencies for the Integration
of Multiple Systems . 83

Joshua Amavi and Mirian Halfeld Ferrari

Author Index . 115

Reliable Aggregation over Prioritized Data
Streams

Karen Works1(B) and Elke A. Rundensteiner2

1 Westfield State University, Westfield, MA, U.S.A.
kworks@westfield.ma.edu

2 Worcester Polytechnic Institute, Worcester, MA, U.S.A.
rundenst@cs.wpi.edu

Abstract. Under limited resources, targeted prioritized data stream
systems (TP) adjust the processing order of tuples to produce the most
significant results first. In TP, an aggregation operator may not receive
all tuples within an aggregation group. Typically, the aggregation oper-
ator is unaware of how many and which tuples are missing. As a conse-
quence, computed averages over these streams could be skewed, invalid,
and worse yet totally misleading. Such inaccurate results are unaccept-
able for many applications. TP-Ag is a novel aggregate operator for TP
that produces reliable average calculations for normally distributed data
under adverse conditions. It determines at run-time which results to
produce and which subgroups in the aggregate population are used to
generate each result. A carefully designed application of Cochran’s sam-
ple size methodology is used to measure the reliability of results. Each
result is annotated with which subgroups were used in its production.
Our experimental findings substantiate that TP-Ag increases the relia-
bility of average calculations compared to the state-of-the-art approaches
for TP systems (up to 91% more accurate results).

Keywords: Data Streaming · Aggregation · Prioritized Resource Allo-
cation

1 Introduction

1.1 Targeted Prioritized Data Stream Systems (TP)

Data stream systems process streams of tuples to answer continuous queries.
When CPU resources are limited, targeted prioritized data stream systems (TP)
cannot always process all incoming tuples [6] as motivated below by several
application examples. Yet in spite of such overloads, many DSMS must ensure the
production of results from certain critical objects. To address these contradicting
requirements, TPs utilize application-specific preference criteria to determine

This work is supported by GAANN and NSF grants: IIS-1018443 & 0917017 &
0414567 & 0551584 (equipment grant).
This work started during Karen’s Ph.D. study at WPI.

c© Springer-Verlag Berlin Heidelberg 2014
A. Hameurlain et al. (Eds.): TLDKS XIV, LNCS 8800, pp. 1–25, 2014.
DOI: 10.1007/978-3-662-45714-6 1

2 K. Works and E.A. Rundensteiner

which tuples should be allocated resources ahead of other tuples throughout the
query pipeline [2,9,26,36,42–44].

The state-of-the-art TP, Proactive Promotion [43,44], processes more sig-
nificant tuples ahead of less significant ones throughout the query pipeline. It
is a tuple level scheduling approach. Other TP systems use workload reduc-
tion approaches, i.e., shedding [2,9,36] and spilling [26,42]. These methodologies
remove less significant tuples at the incoming streams. The tuples not removed
are processed in FIFO order.

As shown below, the selection of which tuples are processed in TPs is contrary
to the production of reliable average calculations. However, in some systems
there can be a need to both ensure the production of results from certain critical
objects and to generate reliable average results.

1.2 Motivating Examples of TPs

Outpatient Health Care: TP systems track people with dementia [24]. It is
critical to monitor people located at improper locations (i.e., likely lost). While
monitoring people who live on their own (i.e., need help) may be reduced based
on whether or not resources remain after processing people likely to be lost. Until
enough resources are available, monitoring any other people could be temporarily
skipped. These systems are known to experience data overloads [19].
Military: TP systems track missiles [21]. It may be critical to ensure that each
and every object of a certain class is guaranteed to be monitored (e.g., nuclear
missiles). While the monitoring of other objects (e.g., missiles bound for unpop-
ulated areas) may be reduced based on whether or not processing resources
remain after processing more significant objects. In addition monitoring of cer-
tain objects could in the worst case be temporarily skipped altogether (e.g.,
missiles sent by our country) until all other objects can be processed within
their response time.
Law Enforcement: TP systems monitor prisoners assigned to home arrest [13].
They also get overloaded. In October 2010, an application monitoring released
sex offenders across 49 states shut down for 12 hours [32]. With the highest
level of urgency, violent prisoners (i.e., may cause harm) must be monitored.
Next, prisoners at an improper location (i.e., likely to be in violation) shall be
monitored. Finally, if resources permit, prisoners known to be flight risks ought
to be monitored.

1.3 Running TP Example: Stock Market

TP systems monitor stocks online [20]. Such applications can get overloaded. In
2012, the London Stock Exchange shut down after a rash of computer-generated
orders overwhelmed the system [30].

Consider a data stream application that monitors the average price of stocks
by their business sector that appear in recent news and blogs (Q1 below). Results
are formed when news tuples join with stock tuples based upon their business

Reliable Aggregation over Prioritized Data Streams 3

sector (op1). Then these join results are joined with blog tuples based upon their
business sector (op2). Finally, the average price for every business sector of these
join results are created (op3).

(Stock Market Query) /*Operators*/
Q1:SELECT AVG(S.price) /*op3*/

FROM Stock as S, News as N, StreetResearch as SR
WHERE contains(S.sector, News[10 min]) /*op1*/
AND contains(S.sector, StreetResearch[15 min]) /*op2*/
Group by S.sector
WINDOW 30 sec;

Mutual fund companies often invest in diverse stock portfolios. It is critical
to ensure that every tuple of a certain class (e.g., their aggressive investments) is
processed. While the processing of other tuples (e.g., their conservative invest-
ments) may be reduced based on what resources remain after processing the
more significant tuples. Until there are enough resources to process all impor-
tant tuples, monitoring of certain tuples can be temporarily skipped (e.g., stocks
under evaluation). When the Stock Market Application is extremely overloaded,
the scarce CPU resources will be dedicated only to the tuples most critical for
the application, namely, tuples from aggressive investments.

1.4 Running Example: Inaccurate Aggregation Results

Consider the Stock Market Aggregation Example in Figure 1. Tuples from the
stock, news and street research streams are respectively depicted by circles,
squares, and triangles. The significance of each tuple is represented by its color.
Black, grey, and white are respectively the most (i.e., level 1), the average (i.e.,
level 2), and least (i.e., NA) significance levels. In Figure 1 the system is over-
loaded. No tuples at level NA arrive at the aggregate operator op3. The state of
aggregate groups g1 and g4 thus only contain data from tuples at levels 1 and 2.

This may cause the average price per business sector produced by aggregate
operator op3 in query Q1 to be skewed. Clearly, under limited resources some
tuples may not be used to create the aggregate result. Rather in this case, the
aggregate result will be generated only from those most significant tuples that
reach operator op3. Unfortunately, this result may not match the aggregate result
that would have been produced if all tuples had been processed by the aggregate
operator. This makes the result unreliable and worst yet misleading. In our
particular example, a broker would thus not know which subset of tuples was
used to compute each aggregate value. Without such knowledge, a broker may
make poor trades, which may lead to investors losing money.

At the very least we would want to inform application users about which
tuples were used to create the result. Consider the example above. The aggre-
gate result should be annotated with the fact that it is formed from aggressive
investments only (i.e., a particular subgroup of the overall population) instead
of from all investments. However, sometimes there may not even be enough

4 K. Works and E.A. Rundensteiner

Fig. 1. Stock Market Aggregation Example

resources to process all tuples from a subgroup. That is, the subgroup may be
incomplete. Aggregate results produced from such subgroups may again risk to
be misleading and faulty. Thus, an aggregate operator must be designed to only
generate results from subgroups that reliably represents their actual population.

As shown below, state-of-the-art aggregation methods for TPs [4,39] do not
tackle this problem. This critical problem of reliable average calculation from
incomplete populations is now the focus of our work.

1.5 State-of-the-Art Aggregation Operators and Their
Shortcomings

The state-of-the-art aggregation methodologies [4,39] designed to produce reli-
able results in TPs address the problem by trying to solve the issue of system
overload. They adapt the selection of which tuples are processed and which are
not. [39] only processes tuples from windows where the population is guaranteed
to be complete. Tuples from other windows are not processed. [4] adapts how
many tuples are randomly dropped to ensure that all aggregate results produced
are bound by a given error rate. These approaches adapt which tuples are allo-
cated resources. By changing how resources are allocated, they may not abide
by the user defined resource allocation preferences. This adaption assumes that
accuracy is more important than the user-defined resource allocation preferences
which may not always be the case.

Olston et al. [31] proposed a system that creates an aggregate result from
cached results and the actual data set with the goal of creating an aggregate
result within a high confidence interval range as quickly as possible. They propose

Reliable Aggregation over Prioritized Data Streams 5

a methodology to determine which results to cache that considers the trade off
between precision and performance. Their algorithm delivers an answer that is
bound by a specified precision constraint. They do not address that the data
may be skewed by the set of tuples that are selected to be processed by the
TP. Their approach assumes that all tuples within a population are given equal
chance at reaching the aggregate operator.

It is challenging to construct reliable aggregate results from only the tuples
that arrive at the operator. Consider the stream aggregate operator op3 [10] in
a TP under duress that implements the Stock Market query Q1 above (Fig.
1). The average price for business sector group g4 could be produced from the
tuples at levels 1 and 2. There are only 3 tuples at level 2. Such few tuples may
not be representative of the actual population of tuples at level 2. TP requires
an aggregate operator than can selectively control which subgroups are used
to generate each result. This raises the question of how to determine which
subgroups best represent their actual populations.

1.6 Our Approach and Contributions

We propose the TP aggregate operator TP-Ag to address the issues described
above. TP-Ag produces reliable aggregate average results from incomplete sub-
groups. It uses an efficient estimation model to determine how representative
each subgroup is of their actual population. In addition, TP-Ag annotates each
aggregate result with the subgroup population(s) that the result is generated
from.

The design of an aggregate operator that meets the requirements above is
challenging. TPs pulls specific significant tuples ahead of other tuples. Some
TPs only identify significant tuples upon arrival at the data stream system
[2,9,26,36,42], while others can identify significant tuples at operators further
down the query pipeline [43,44]. This makes it more complicated to determine
which tuples from specific populations never reach the aggregate operator. It is
equally challenging to estimate what contribution these tuples would have had
on any aggregate result produced.

Our Contributions Include

– We formulate the TP aggregate operator problem of generating reliable anno-
tated aggregate results from incomplete populations.

– Wepropose a carefully designed estimationmodel andapplication ofCochran’s
sample size methodology to measure if any subset of the actual population is
large enough to generate a reliable aggregate result. This requires knowledge of
how many tuples fail to reach the aggregate operator due to limited resources.
We propose a method to track this information.

– We carefully outline the logical design of our novel TP-Ag operator, namely,
how TP-Ag generates reliable aggregate results by selectively controlling
which subsets in the aggregate group population are used to generate each
result.

6 K. Works and E.A. Rundensteiner

– We carefully outline the physical design of our novel TP-Ag operator. The
data structures and infrastructure behind our TP-Ag operator are designed
to allow efficient retrieval of subgroups within an aggregate population.

– Our experiments show that TP-Ag produces up to 90% more accurate aggre-
gate results compared to the state-of-the-art methodologies on a wide variety
of data sets and workloads.

2 TR Query Model and Plan Definitions

2.1 TP Queries

A query qj for a TP is a CQL query [3] extended to allow the specification
of multi-tiered monitoring criteria to identify significant tuples in TP systems.
Below is the Stock Market Query Q1 with the extension to support TPs.

(Stock Market Query with Extension) /*Operators*/
Q1:SELECT AVG(S.price) /*op3*/

FROM Stock as S, News as N, StreetResearch as SR
WHERE contains(S.sector, News[10 min]) /*op1*/
AND contains(S.sector, StreetResearch[15 min]) /*op2*/
Group by S.sector
WINDOW 30 sec; RANK 1 /* aggressive investments */
CRITERIA (S.ownedByCompany=TRUE) AND (S.aggressive=TRUE)
RANK 2 /* conservative investments */
CRITERIA (S.ownedByCompany=TRUE) AND (S.conservative=TRUE)
RANK 3 /* stocks under evaluation */
CRITERIA (S.underEvaluation= TRUE)

Monitoring levels qj .ML are predicates defined at compile-time that state the
user’s desired result production order. When resources are scarce, the monitoring
levels are used to identify which tuples will be processed (i.e., not shed). Each
monitoring level mk states mk’s rank mk.rnk and membership criteria mk.mem. The
rank mk.rnk denotes how significant monitoring level mk is compared to the other
monitoring levels. When resources are limited, TP optimizers [2,9,26,36,42–44]
identify which types of tuples to process based upon the monitoring levels. These
tuple are called significant tuples.

The query window denotes the finite set of tuples from stream sn used to
create results. Window bounds are specified as time (e.g., within a 30 second
time span) or count (e.g., last 30 tuples) ranges. In sliding windows, tuples from
consecutive windows may overlap. While we assume time-based sliding windows,
our proposed techniques equally apply to count-based window semantics.

2.2 TP Query Plans

A TP query plan is a directed acyclic graph composed of TP query operators
as nodes and data exchange interfaces that transfer tuples between operators as
edges. The data exchange interface transfers tuples between operators.

Reliable Aggregation over Prioritized Data Streams 7

TP operators include enhanced traditional operators and significance classi-
fiers. Traditional operators from the continuous query algebra [14] are enhanced
to allocate resources to incoming tuples in significance order and to propagate
significance properties assigned to tuples. Significance classifiers (or SCs) are
special-purpose operators that compute and assign significance properties to
tuples [43,44].

3 Background of Stream Aggregation

3.1 Basic Aggregate Operator

The Basic Aggregate Operator [8] computes a function over the set of tuples
that belong to the same aggregate group within the current query window wp of
the stream. In Stock Market Query Q1, the aggregate group is a business sector.
Incoming tuples are stored in the state and associated with their aggregate group.
When it is determined that no future incoming tuples for window wp will arrive
then the aggregate result(s) are generated for each aggregate group in wp.

3.2 Aggregate Operator Supporting Out-of-Order Data Streams

Some TPs [43,44] cause tuples to become out-of-order. TP aggregate operators
require special support to know when all tuples from a window have been pro-
cessed to produce their results. An aggregate operator should produce results for
window wp when no tuples from window wp remain to be processed. Prior out-of-
order work [23] proposed to use punctuations to trigger the creation of aggregate
results whenever a window is complete. To quickly identify tuples within a given
window, windows are divided into groups of tuples (a.k.a. panes) [22]. Each pane
pq is assigned a pane number. When a tuple arrives, it is associated with a pane
number which determines the windows the tuple will produce results for. Each
aggregate result is only generated from tuples whose panes compose its query
window. Each operator contains a punctuation queue that stores notifications
described below.

To discern when no tuples from pane pq remain to be processed, the progress
of tuples is tracked. Each leaf operator opo periodically sends a punctuation into
when it has processed all tuples from pane pq. To send a punctuation requires sim-
ply placing the punctuation into the punctuation queue of the next down stream
operator. Upon receiving such a notification, the aggregate operator produces
all results for the window that ends with pane pq. The Out-of-Order Aggregate
Operator assumes that tuples are processed. It can produce unreliable results.

3.3 State-Of-the-Art Aggregate Operator for TPs

The State-Of-the-Art TP Aggregate Operator (Sec. 1.5) also produces unreliable
results. The operator contains a punctuation queue that stores notifications (See
above) and incoming queues that store tuples by significance level (Sec. 2). It
works as follows.

8 K. Works and E.A. Rundensteiner

Producing Aggregate results: Aggregate results are created for the first notifica-
tion in the punctuation queue and are sent to the next operator (line 4). Finally,
tuples stored in the state within panes that will not produce any future results
are purged (line 5). This continues until either no resources or incoming punctu-
ations remain (line 1).
Processing tuples: If resources remain then starting from the most significant
incoming queue tuple ti is stored and associated with the proper aggregate group
and pane (line 11). After all tuples from one queue have been processed, tuples
in the next significant incoming queue are processed (lines 13-16). This continues
until either no resources remain or all queues are empty (line 8).

Algorithm State-Of-the-Art TP Aggregate Operator(
Qp /pane complete punct. queue/,
Cavail /avail. res./,
Qinc(s1) /queues for stream s1/)
Cavail /avail. res./,
Qinc(s1) /queues for stream s1/)

1: WHILE ((Cavail > 0) and (Qp is not empty))
2: Punc = first pane complete punctuation in Qp
3: create aggregate results that for window that ends with pane in Punc
4: place aggregate results into input queue of next query plan operator
5: purge state of tuples within panes that will not produce any future results
6: ENDWHILE
7: LevelProcessed= 1
8: WHILE((Cavail > 0) and (Qinc(s_1) is not empty))
9: IF(Qinc(s_1,LevelProcessed) contains a tuple)
10: Tup = first tuple in Qinc(s_1,LevelProcessed)
11: store Tup in state and associate with the aggregate group and pane
12: ELSE
13: LevelProcessed = LevelProcessed + 1
14: IF (LevelProcessed > max(Monitoring Level))
15: LevelProcessed= Insignificant Tuple
16: ENDIF
17: ENDIF
18: ENDWHILE

4 TP-Ag Problem Definition

Our TP-Ag operator must meet the following requirements.

1. It must produce the most reliable aggregate result from the tuples that
arrived at the aggregate operator and belong to selective subgroup popu-
lations. The set of tuples used to create each result must be estimated to
represent the actual selected subgroup populations of tuples that would have
arrived at the aggregate operator if resources were available.

2. It must annotate each aggregate result with the subgroup population(s) that
the result is generated from.

3. It cannot ignore the desired resource allocation order specified by the user
and adjust which tuples the TP optimizer chose to process (Sec. 2). It must
build reliable aggregate results from the significant tuples already pulled
forward. Data streams are often shared to efficiently produce more than
one output. Adjusting the desired resource allocation order specified by the
user assumes that the aggregate result is the most important query result
produced (which may not be the case).

Reliable Aggregation over Prioritized Data Streams 9

5 TP Aggregation Foundation

5.1 Aggregate Result Annotation

Per the requirements (Sec. 4), each aggregate result must be annotated with
which tuples it is generated from. In TP, tuples chosen to be processed satisfy the
membership criteria of an activated monitoring level (Sec. 2). Thus we propose
to logically divide the population of tuples within an aggregate group and pane
into subsets based upon their significance levels. Each population is divided into
subsets, namely, one subset for each significance level and one for insignificant
tuples.

Each aggregate result ai is associated with a population generation subset flag
or ssl that annotates which tuples the aggregate result ai is generated from. ssl is
represented as a bit vector with one bit for each monitoring level lvl1, lvl2, ..., lvln

and one bit for insignificant tuples. For instance, subsets flag ss1 = 100 signifies
that the aggregate result ai is generated from only tuples at significance level 1.
While subsets flag ss2 = 110 signifies that the aggregate result ai is generated from
only tuples at significance levels 1 and 2. Finally, subsets flag ss3 = 111 signifies
that the aggregate result ai is generated from all tuples (both significant and
insignificant).

Traditionally, aggregate operators produce a single aggregate result for each
group and window. It is possible for each subset of significant tuples in an aggre-
gate group and window to create an aggregate result. Given the limited resources,
we propose to follow the former method. The goal of TP-Ag is to produce the
single most reliable aggregate result from the largest number of subsets for an
aggregate group. To achieve this, TP-Ag selectively choses which of the available
subset(s) are used to create each aggregate result.

5.2 Evaluation Strategies for Sample Population

Result Accuracy: The actual population popm is the set of tuples in the aggre-
gate group gl and window wk that given adequate resources would have reached
aggregate operator opo. Aggregate answer a∗

i is generated from an actual popula-
tion popm. Aggregate result ai is generated from a sample population spopm, i.e.,
the set of tuples that reached aggregate operator opo. The sample population is
a subset of the actual population. Aggregate result ai may be incorrect, i.e., not
match the aggregate answer a∗

i . Reconsider Figure 1. A sample population spop1

for aggregate group g4 includes 987 tuples where 984 tuples have significance
level 1 and 3 tuples have significance level 2.

Determining Sample Population Accuracy: One method to determine if
a sample population accurately portrays the actual population is to compare
the mean of the sample and actual population via the Hoeffding equation [17].
Many aggregation operators [16,23,31] that process aggregate results from most
(if not all) tuples in a given query window (Sec. 8) use this approach. TP-
Ag seeks to build reliable aggregate results solely from the tuples processed by

10 K. Works and E.A. Rundensteiner

controlling which of the available subgroup(s) are used to create an aggregate
result. However, TP-Ag cannot use the Hoeffding equation to determine the
accuracy of the sample population. The Hoeffding equation requires that the
actual mean μ be precisely measured. TP cannot ensure that all tuples reach
TP-Ag opo. Thus to calculate the actual mean μ requires knowledge of which
tuples could have reached TP-Ag opo but did not. Such an evaluation amounts
to running the full query. Clearly, this is prohibitively costly.

Thus lead us to look at other statistics methods. One method to determine if
a sample population accurately portrays the actual population is to estimate the
sample size required to determine the actual mean within a given error threshold
via Cochran’s sample size formula [7]. If the size of sample population, denoted
by |spopm|, is less than the estimated required sample size |spopest|, then the sample
population spopm may not accurately represent the actual population popm. No
aggregate results should be generated from spopm. TP-Ag can use Cochran’s
sample size formula [7]. It determines the sample size by considering the limits
of the errors in the mean values of items in the sample population. |popm| is the
size of the actual population. ε is the user selected error rate. σ is the standard
deviation of the actual population. z is the user selected confidence level or the
estimated percentage of the values in the sample population within two standard
deviations of the mean of the actual population. The Cochran’s sample size
formula [7] is |spopest| = (z2 ∗ σ2 ∗ (|popm|/(|popm| − 1)))/(ε2 + ((z2 ∗ (σ2)/(|popm| − 1)))).
Roughly, z2 ∗ σ2 ∗ (|popm|/(|popm| − 1))) represents the percentage of tuples from the
sample population that are within the confidence interval of the estimated mean.
(ε2 + ((z2 ∗ (σ2)/(|popm| − 1)))) represents the percentage of tuples from the sample
population that per the error rate must be within the confidence interval of the
estimated mean.

This approach requires that the aggregate values in the population follow
a normal distribution. While not all data has this distribution, many practical
streams do. One example is stock market prices which can be mapped to the
normal distribution [11].

We must calculate the standard deviation of the actual population σ and the
size of the actual population |popm|. As common practice, we propose to calculate
the standard deviation of the actual population σ using the standard deviation
of the sample population and Bessel’s correction [18]. To estimate the actual
population size |popest

m |, we must measure the estimated number of expired tuple
or how many tuples would have reached TP-Ag operator opi if given adequate
resources. To calculate the estimated number of expired tuple the number of
tuples that expire at each operator in the query path before aggregate operator
opo (i.e., |exp(op, gl, lvlp)|) and the probability of expired tuples reaching aggregate
operator opo (i.e., P (op, opo, lvlp)) is tracked (Sec. 6). The estimated number of
expired tuple is the product of these two values (i.e., P (op, opo, lvlp)∗|exp(op, gl, lvlp)|).

5.3 Policy for Selecting the Sample Population

There are many ways of selecting which subgroup(s) are used to generate a result.
We propose to include the largest number of reliable subgroups in consecutive

Reliable Aggregation over Prioritized Data Streams 11

significance order in the sample population. For example, aggregate result ai

could be created from only tuples at significance level 1, at significance levels 1
or 2, or all levels.

Reconsider the aggregate operator op3 (Fig. 1). An aggregate result for aggre-
gate group g4 could be created from the two subgroups, namely, the 984 tuples at
significance level 1 and 3 tuples at significance level 2. Assume that the estimated
actual population size |popest

m | for this sample population is 1984 tuples. The esti-
mated standard deviation σ is 7.9. The error rate ε is .05. The critical standard
score z is 1.96 (95% confidence level). Then the estimated required sample size
|spopest| (i.e., = (1.962 ∗ 7.92 ∗ (1984/(1984 − 1)))/(.052 + ((1.962 ∗ (7.92)/(1984 − 1)))) is 1943
tuples. This sample population is not large enough to create a reliable aggregate
result.

However, an aggregate result could be created for group g4 that only using the
984 tuples at significance level 1. Assume that the estimated actual population
size |popest

m | for this sample population is 1000 tuples. The estimated standard
deviation σ is 5.9. The error rate ε is .05. The critical standard score z is 1.96
(95% confidence level). Then the estimated required sample size |spopest| (i.e.,
= (1.962 ∗ 5.92 ∗ (1000/(1000 − 1)))/(.052 + ((1.962 ∗ (5.92)/(1000 − 1)))) is 981 tuples. This
sample population is large enough to produce a reliable aggregate result.

insert tuple into State
Aggregate Values

State Agg. Values
0

48
Pane 0

Pane 48

Pane
Index

Pane Number(48)
group(A1) = Beverage
Significance Level(1)

attributes
A1 A2 PN SL

properties

Beverage $45.13 48 1

Technology

Beverage

Automotive

Group

Punctuation
P3

Pane Numbers (45,46,47,48)

PN

48

SL1

SL2

SLNA

= 1 =2 = NA

Significance level

Punctuation
P1

PN SL Cnt Group

48 1 6 Beverage

Est. num. tuples that
expire too early

Create Agg result

Produce Aggregate
Results

Count = 120 | Sum Prices = 1154.88 |…

Count = 23 | Sum Prices = 46.56 |…

Count = 2 | Sum Prices = 14.88 |…

Punctuation
P2

PN SL Cnt Group

48 2 40 Beverage

Fig. 2. TP-Ag State Example

6 Design of the TP Aggregation Operator

6.1 Tracking Expired Tuples

We designed the traditional operators (Sec. 2) to periodically send an expiration
count punctuation to the TP-Ag operator. The expiration count punctuation
contains the number of expired tuples for each aggregate group and significance
level. TP-Ag uses these values to estimate the actual population size (Sec. 5.2).

12 K. Works and E.A. Rundensteiner

Operators track the number of tuples that expire too early over a window by
aggregate group and significance level (Sec. 5.2) and send this count to the TR-
Ag operator. TR-Ag will use this count to estimate the actual population size
when deciding whether or not a sample population should produce a result. To
achieve this, TR-Ag uses an expiration count punctuation. Each operator tracks
the estimated number of tuples that expire too early by pane, aggregate group,
and significance level. When no tuples in a pane remain to be processed by an
operator, the operator sends an expiration punctuation for each aggregate group
and significance level where tuples expired. Upon receiving an expiration punc-
tuation, each operator adds on their estimated number of tuples that expire too
early. The expiration punctuation moves along the pipeline until it reaches the
TP-Ag (Sec. 6.2). When, the expiration punctuations reach the TP-Ag they con-
tain the number of tuples that expire too early over a window for each aggregate
group and significance level.

Considerexpirationpunctuationsp1< 48, 1, 6, Beverage >andp2< 48, 2, 40, Beverage >

in Figure 2. Expiration punctuation p1 states that 6 tuples from pane 48, sig-
nificance level 1, and group Beverage are estimated to have expired too early.
While expiration punctuation p2 states that 40 tuples from pane 48, significance
level 2, and group Beverage are estimated to have expired too early.

6.2 TP-Ag Physical Design

To support the production of aggregate results from certain subset(s) of the
sample populations, TP-Ag must support the efficient look-up and purging of
stored aggregate variables by pane (Sec. 3), group, and significance level. The
number of tuples within each pane is limited. Thus tuples maintained by the
operator are first grouped by the panes they belong to. Next, tuples are indexed
by their aggregate group. Lastly, tuples are stored by their significance level.

To support the production of aggregate results from certain subset(s) of the
sample populations, TP-Ag must support the efficient look-up and purging (Sec.
6.4) of stored aggregate variables by pane (Sec. 3), group, and significance level.
State Design: TP does not always process tuples in arrival time order (Sec. 3).
Thus, the state can contain tuples from more than one query window. That is,
a multitude of tuples with the same aggregate group and significance level are
likely to exist across multiple panes. However, the number of tuples within each
pane is limited. Thus stored tuples are first grouped by the panes they belong
to. Next, tuples are indexed by their aggregate group. Finally, tuples are stored
by their significance level.

Consider the insertion of stock tuple t1 < Beverages, $45.13 > with pane 48 and
significance level 1 into state aggregate values (Fig. 2). Stock tuple t1 is stored
in the state for pane 48, business sector Beverages, and significance level 1.

6.3 TP-Ag Operator

The major difference between TP-Ag and the State-Of-the-Art TP Aggregate
Operator is that TP-Ag upon receiving a notification punctuation (Sec. 3)

Reliable Aggregation over Prioritized Data Streams 13

determines the largest number of reliable subgroups in consecutive significance
order in the sample population that can produce a result (if any). Consider the
production of aggregate results triggered by punctuation p2 < 48 > (Fig. 2). p2

signals that all tuples from pane 48 that arrived at the operators that reside in
the query pipeline prior to the aggregate operator have been processed. First,
TP-Ag locates the group attributes for pane 48 which are Technology, Automo-
tive, ..., and Beverage. Then for each group attribute (e.g., Beverage), it creates
a sample population from all tuples from the window (composed of 4 panes)
that ends with pane 48 (i.e., pane 45 − 48). If the size of the sample population is
greater than or equal to the estimated required sample size then TP-Ag creates
an aggregate result for tuples from this sample population. Otherwise, TP-Ag
creates a new sample population by removing the least significant subset from
the current sample population. The process of testing the current sample pop-
ulation and creating a new sample population continues until either a result is
generated or the sample population is empty. In the latter case, no aggregate
result will be produced. Then TP-Ag moves to the next group for pane 48 (and
so on...).

It works as follows. First, the incoming punctuations are processed.
Processing Expiration Punctuations: Any incoming expiration punctuation is
stored in the state (lines 3-6).
Producing Aggregate Results: Any incoming notification punctuation is processed
as follows. First, the groups in the window pane are identified (line 7). Next, for
each group, we test to see if the sample population for all tuples represents the
actual populations (line 10). If so, results are created and sent to the next operator
(lines 11-12). Otherwise, the sample population is reduced by tuples that belong to
the least significant subset (line 14) and the test starts over (line 10). This continues
until either a result is produced or all sample populations have been explored
(line 8). Then, results for the next group are produced. This continues until either
no resources remain or there are no more incoming punctuations (line 1). Finally,
tuples stored in the state within panes that will not produce any future results
are purged (line 18).
Processing tuples: This is the same as the processing tuples logic for State-Of-
the-Art TP Aggregate Operator (Sec. 3) (lines 18-29)

Algorithm TP-Ag Operator(Qep /exp. punct. queue/,
Qnp /not. punct. queue/,
Cavail /avail. res./,
Qinc(s_1) /queues for stream s1/)

1: WHILE((Cavail > 0) and (Qnp is not empty))
2: Punc = first punctuation in Qnp
3: WHILE((Qep is not empty) and (first punctuation in Qep = pane in Punc))
4: ExpPunc = first punctuation in Qep
5: store the values in ExpPunc
6: ENDWHILE
7: FOR each group gl in defined by the pane in Punc
8: WHILE(no result has been produced) and (the sample population is not empty)
9: sample population = population defined by the pane in Punc and group gl
10: IF (sample population represents actual population)
11: create aggregate results for sample population
12: place aggregate results into input queue of next query plan operator
13: ELSE

14 K. Works and E.A. Rundensteiner

14: reduce the sample population by the least significant subgroup
15: ENDIF
16: ENDWHILE
17: ENDFOR
18: purge state of tuples within panes that will not produce any future results
19: ENDWHILE
18: LevelProcessed= 1
19: WHILE((Cavail > 0) and (Qinc(s_1) is not empty))
20: IF(Qinc(s_1,LevelProcessed) contains a tuple)
21: Tup = first tuple in Qinc(s_1,LevelProcessed)
22: store Tup in state and associate with the pane, aggregate group, and significance level
23: ELSE
24: LevelProcessed = LevelProcessed + 1
25: IF (LevelProcessed > max(Monitoring Level))
26: LevelProcessed = Insignificant tuples
27: ENDIF
28: ENDIF
29: ENDWHILE

6.4 Memory Resource Management

Beyond CPU resources, memory resources may also be limited.
State Management: To ensure complete results, tuples stored in states are not
purged if they may create aggregate results in the future (Sec. 3). However, this
purging method assumes that sufficient memory is available to store all tuples
that will create future aggregate results. This may not always be the case. In
the case of insufficient memory, we propose to purge tuples from the oldest
panes in the state first. Our approach is based upon the fact that the majority
of aggregate results generated from the oldest tuples would have already been
produced. Memory resources are allocated to storing the freshest tuples.
Queue Management: In the case of insufficient memory, the incoming queues
must also be purged. We also utilize the oldest pane method defined above to
purge the queues.

7 Experimental Evaluation

7.1 Experimental Setup

Alternative Solutions. We compare TP-Ag (or TP w/ TP-Ag) to the state-
of-the-art aggregate operators in TPs. That is, we compare to the out-of-order
aggregate operator [23] implemented in the state-of-the-art TP tuple level
scheduling approach (or PP) [43,44] and the stream aggregation operator [8]
implemented the state-of-the-art TP workload reduction approaches, namely,
semantic (or sem) and random (or rand) [2] (Sec. 8). PP requires the out-of-
order aggregate operator (Sec. 3). We also compare TP w/ TP-Ag to state-of-
the-art aggregate operators for TPs [4,39] that limit which tuples are dropped
from specific windows (or Shed Window Ag). Finally, we compare to the tra-
ditional aggregate operator [8] implemented in a non-targeted prioritized data
stream systems (or trad). TP-Ag uses the critical standard score z = 1.96 (95%
confidence level). To ensure fairness, all systems are implemented in the same

Reliable Aggregation over Prioritized Data Streams 15

data stream system with appropriate extensions to implement the methods, in
our case, CAPE [34].

TP w/ TP-Ag, PP, and sem use the same criteria to select the tuples pro-
cessed. Rand randomly selects tuples to process in FIFO order based upon the
estimated number of tuples that can be processed within their lifespan. Trad
simply processes all tuples in FIFO order.
Data Streams and Query. Most experiments use Stock Market Query Q1
with the extension (Sec. 2) where the window size = 500 tuples.

The stock market stream was created from stock ticker information on the
S&P 500 stocks gathered over July 18, 2012 via Yahoo Finance [12].

News and blog data streams were created by randomly selecting sectors from
the global industry classification standard (GICS). GICS, developed by Morgan
Stanley Capital International (MSCI) and Standard & Poorś, contains 10 sectors
that categorize the S&P 500 stocks.

Data Set 1 (or DS1) mimics a financial company monitoring diversified
mutual funds. That is, the stocks chosen are distributed across different business
sectors and investment types (i.e., aggressive versus conservative investments).
In DS1, 5% of the 500 stocks (or 25 stocks) were randomly selected to be at each
of the three monitoring level (Sec. 2.2).
Hardware. All experiments are conducted on nodes in a cluster. Each host has
two AMD 2.6GHz Dual Core Opteron CPUs and 1GB memory.
Metrics and Measurements. TP w/ TP-Ag produces an aggregate result
from a subset of the tuples that arrive at the aggregate operator. The other
approaches generate aggregate results from all tuples that arrive at the aggregate
operator. To be able to validate whether or not the results are correct, each
aggregate result produced is annotated with the significant levels of the tuples
in the sample population. For each experiment, the actual aggregate answers
(Sec. 5.2) for each possible sample population was found.

The experiments were run 3 times for 10 minutes. The results are the aver-
age of these runs. Each aggregate answer produced is then compared to the
actual aggregate answer for the same group, window, and sample population.
Any result that is within 5% of the actual answer is considered to be correct.
Our experiments measure the percentage of correct aggregate results produced.

7.2 Experimental Methodology

We explore the following: 1) Is TP-Ag more effective at producing a larger per-
centage of correct significant aggregate results than the state-of-the-art solu-
tions? 2) What effect does the number of significant tuples that belong to each
aggregate group have on the effectiveness of the TP-Ag strategy compared to
the state-of-the-art solutions? 3) How do changes in the error rate (Sec. 5.2)
affect the percentage of correct results produced by TP-Ag? 4) What is TP-Ag’s
runtime CPU and memory overhead in the worst case scenario compared to the
state-of-the-art solutions?

We vary the number of significant tuples that belong to each aggregate group
and the error rate as they directly affect TP-Ag. When the number of significant

16 K. Works and E.A. Rundensteiner

tuples that belong to each aggregate group decreases, this reduces the number of
tuples in each sample population. The smaller the sample population is the more
likely that the result produced may be skewed. Consider a significant tuple ti

that expires before reaching the aggregate operator. Sample population spopm is
the sample population that tuple ti would have belonged to if tuple ti had not
expired. The aggregate result produced by sample population spopm will be more
affected if the sample population spopm contains few tuples (smaller population)
rather than many tuples (larger population). Decreasing the error rate increases
the accuracy in the estimated required sample size. This should increase the
percentage of correct aggregate results produced by TP-Ag. We varied these
variables as they affect TP-Ag’s ability to produce accurate results.

7.3 Experimental Findings

Effectiveness at Increasing the Percentage of Correct Aggregate
Results Produced. First, we compare the percentage of correct aggregate
results produced by each approach. This experiment uses DS1. Figure 3 a shows
the average difference between the number of the correct and incorrect aggregate
results produced at each minute. This measures whether more correct (positive
number) or incorrect results were produced (negative number). Overall TP w/
TP-Ag compared to sem, rand, and trad consistently produces more correct
aggregate results.

min

a
v

g
.
d

if
f.

 b
e
tw

e
e

n
 t

h
e

n

u
m

b
e

r
 o

f

 c
o

rr
e

c
t

a
n

d
 i
n

c
o

rr
e

c
t

re
s

u
lt

s

1 2 3 4 5 6 7 8 9 10
-2750

-2250

-1750

-1250

-750

-250

250

750

Trad
Sem

Rand
PP

TP w/ TP-Ag

0

20

40

60

80

100

% Results Correct % Results Incorrect

Trad
Sem
Rand
PP
TP w/ TP-Ag

a) Average difference between the number of b) Average % Correct Significant Results Over

correct and incorrect aggregate results produced 10 Min

Fig. 3. Effectiveness at Increasing the % of Correct Aggregate Results

PP produced more correct aggregate results than TP w/ TP-Ag at startup
(minutes 1 through 3). However, after the system start-up (minutes 4 through 10)
PP produced more incorrect than correct aggregate results. This is as expected.
Namely, PP has less overhead than TP w/ TP-Ag. In addition, the aggregate
results produced by PP will only be incorrect when the system is overloaded and
many significant tuples fail to reach the aggregate operator.

Reliable Aggregation over Prioritized Data Streams 17

As seen in Figure 3 b shows, compared to all alternative solutions, TP w/
TP-Ag produced a much higher percentage of correct aggregate results. Of all
the aggregate results produced by TP w/ TP-Ag, 91.5% were correct. Our results
support that TP w/ TP-Ag is effective at increasing the percentage of correct
aggregate results produced compared to competitor solutions.
TP w/ TP-Ag Versus State-of-the-art Reliable Aggregation Operators
for TPs. We now compare TP w/ TP-Ag to state-of-the-art aggregate operators
designed to produce reliable results in TPs [4,4,39] (Sec. 1.5). These systems
limit which tuples are dropped from specific windows. We refer to these systems
as Shed Window Ag. First, we compare the percentage of correct aggregate results
produced by each approach. This experiment also uses DS1.

min

C
u

m
u

la
ti

v
e
 T

h
ro

u
g

h
p

u
t

o
f

 c
o

rr
e

c
t

a
g

g
re

g
a

te
 r

e
s

u
lt

s

1 2 3 4 5 6 7 8 9 10
0

150

300

450
Shed Window Ag TP w/ TP-Ag

0

20

40

60

80

100

% Results Correct % Results Incorrect

Shed Window Ag
TP w/ TP-Ag

a) Cumulative Throughput of Correct Ag Results b) Average % Correct Significant Results

Over 10 Min

Fig. 4. TP w/ TP-Ag versus State-of-the-art

As the overall percentage of correct and incorrect significant results in Figure
4 b shows, all aggregate results produced by Shed Window Ag were correct.
While, of the aggregate results produced by TP w/ TP-Ag produced 91.5%
were correct. Clearly, Shed Window Ag will always produce correct aggregate
results. Recall that Shed Window Ag will ensure that no tuples from specific
windows are dropped or expire. As a result, Shed Window Ag will only produce
correct aggregate results. In contrast, TP w/ TP-Ag seeks to produce results
that are estimated to be correct from incomplete windows of tuples.

However, Shed Window Ag may not produce as many aggregate results as
TP w/ TP-Ag. As Figure 4 a shows, TP w/ TP-Ag produced roughly 2.9 fold
more correct aggregate results than Shed Window Ag. Shed Window Ag will
process all tuples (both significant and insignificant) from selected windows.
This requires a significant amount of CPU overhead. Hence, Shed Window Ag
will not produce as many correct aggregate results as TP w/ TP-Ag.

Clearly, Shed Window Ag and TP w/ TP-Ag have different goals. The goal
of Shed Window Ag is to produce correct aggregate results by adjusting how
resources are allocated. The goal of TP w/ TP-Ag is to build reliable aggregate
results from the significant tuples pulled forward by the TP. Thus, henceforth
we no longer compare TP w/ TP-Ag to Shed Window Ag.

18 K. Works and E.A. Rundensteiner

Varying the Sample Population Size. We now explore how the number
of the significant tuples in each aggregate group affects TP-Ag. All significant
tuples belong to two GICS sector groups. This experiment uses four Data Sets
(i.e., DS25, DS50, DS75, and DS100). Each Data Set adapts the percentage of
significant tuples that belong to the two GICS sector groups. In DS25, 25% of the
stocks in the two sectors are significant (75% of these tuples are insignificant).
Similarly, in DS50, DS75, and DS100, respectively 50%, 75% and 100% of the
tuples in the two sectors are significant. The sample population size increases
from DS25 to DS100.

0

20

40

60

80

100

% Results Correct % Results Incorrect

Trad
Sem
Rand
PP
TP w/ TP-Ag

0

20

40

60

80

100

% Results Correct % Results Incorrect

Trad
Sem
Rand
PP
TP w/ TP-Ag

a) Data Set DS25 b) Data Set DS50

0

20

40

60

80

100

% Results Correct % Results Incorrect

Trad
Sem
Rand

PP
TP w/
 TP-Ag

0

20

40

60

80

100

% Results Correct % Results Incorrect

Trad
Sem
Rand
PP
TP w/ TP-Ag

c) Data Set DS75 d) Data Set DS100

Fig. 5. Varying the Sample Population Size

Figures 5a-5d show the overall percentage of correct and incorrect aggregate
results respectively for DS25, DS50, DS75, and DS100. As can be seen, compared
to the alternative solutions, TP w/ TP-Ag produced the highest percentage of
correct aggregate results. The closest competitors were rand and PP. In DS25
(the smallest sample populations), TP w/ TP-Ag produced 100% and 84.0%
more correct aggregate results than rand and PP. In DS100 (the largest sample
populations), TP w/ TP-Ag produced 19.1% and 24.2% more correct aggregate
results than rand and PP. This is as expected. Namely, TP-Ag achieves the
highest gains when the fewest tuples in the sample population fail to reach the
aggregate operator. When the stream is saturated with significant tuples, more
significant tuples are likely to fail to reach the aggregate operator.

Reliable Aggregation over Prioritized Data Streams 19

Varying Error Rate. Now, we compare the percentage of correct aggregate
results produced by TP w/ TP-Ag when the error rate (i.e., the desired level of
precision ε of Cochran’s sample size formula (Sec. 5.2)) varies. This experiment
also uses DS1. We vary the error rate ε from 5%, 10%, to 20%. Figure 6 shows
the percentage of correct and incorrect aggregate results produced.

0

20

40

60

80

100

% Significant Correct % Significant Incorrect

TP w/ TP-Ag -
 Error rate 5%
TP w/ TP-Ag -
 Error rate 10%
TP w/ TP-Ag -
 Error rate 20%

Fig. 6. Varying the error rate

Overall the highest percentage of correct aggregate results was produced
when the error rate ε is 5%. While the lowest percentage was produced when the
error rate ε was 20%. The percentage of correct aggregate results produced by
TP w/ TP-Ag for the error rate ε from 5%, 10%, to 20% was respectively 93.9%,
91.5%, and 88.6%. As expected, decreasing the error rate (i.e., higher level of
precision of Cochran’s sample size formula) increases the percentage of correct
aggregate results achieved by TP w/ TP-Ag (vice versa).
Execution-Runtime CPU Overhead. To measure the runtime overhead we
evaluate the cumulative throughput using the worst case scenario for TP w/
TP-Ag. In the worst case scenario, there is adequate resources to process all
tuples (Fig. 7 c). As a consequence, for each aggregate result is produced from
a sample population that contains all tuples in a window and aggregate group.
The overhead of TP systems is the cost to gather and evaluate runtime statistics.
In addition, TP-Ag has the additional overhead of tracking statistics to estimate
the actual population, evaluating the required sample size (Sec. 5.2), and deter-
mining if there is a sample population for each group and window whose size is
comparable to the required sample size (Sec. 5.3). This experiment uses DS1.

As can be seen in our results, the difference between the throughput of TP
w/ TP-Ag and trad, sem, rand, and PP is respectively 40.2%, 37.9%, 39.1%, and
39.0%. For systems with extremely limited resources, TP w/ TP-Ag may not be
a good approach. However, TP w/ TP-Ag is a great fit for systems that require
a TP system and desire reliable accuracy in the aggregate results produced.
Memory Overhead. To measure the memory overhead we evaluated the aver-
age number of tuples in the state and input queue of the aggregate operator using
the worst case scenario outline above (Fig. 7 a & b). As our results demonstrate,
the memory overhead of TP w/ TP-Ag is higher than the current state-of-the-
art approaches. The state of the aggregate operators in trad, sem, rand, and PP

20 K. Works and E.A. Rundensteiner

0

50000

100000

150000

200000 Trad
Sem
Rand
PP
TP w/ TP-Ag

0

20000

40000

60000 Trad
Sem
Rand
PP
TP w/ TP-Ag

0

8000

16000

24000

32000
Trad
Sem
Rand

PP
TP w/ TP-Ag

a) Aggregate Operator b) Aggregate Operator c) Cumulative Throughput

State Size Queue Size

(in number of tuples) (in number of tuples)

Fig. 7. Memory & Execution-Runtime CPU Overhead

respectively have 74.0%, 83.0%, 84.2%, and 75.7% less tuples in their states than
TP w/ TP-Ag. While the queues of the aggregate operators in trad, sem, rand,
and PP respectively have 47.4%, 46.6%, 49.2%, and 70.6% less tuples in their
queues than TP w/ TP-Ag.

This is as expected. Namely, the TP-Ag design relies upon a memory-intensive
physical design to support the production of results from subsets of the actual
sample population. Again, TP w/TP-Ag is a great fit for systems that require a
TP system and desire reliable accuracy in the aggregate results produced. Ensur-
ing the production of reliable aggregate results however carries an overhead.

7.4 Summary of Experimental Findings

We now summarize our key findings.

– TP-Ag is effective at increasing the percentage of correct aggregate results
produced in TPs (TP-Ag produces up to 91% more correct aggregate results).

– Decreasing the error rate increases the percentage of correct aggregate results
achieved by TP w/ TP-Ag and vice versa.

– TP-Ag is best suited for environments where the stream is not saturated with
significant tuples. When the stream is saturated with significant tuples, more
significant tuples are likely to expire.

– TP w/TP-Ag is a great fit for systems that require a targeted prioritized
data stream system and desire reliable accuracy in the aggregate results
produced.

8 Related Work

Below are related works beyond those already covered in Sections 1.5 and 3.

Reliable Aggregation over Prioritized Data Streams 21

8.1 Aggregate Operators that Support Tuple Level Resource
Reduction and Reorder Systems

Some aggregation operators proposed to support data stream systems that uti-
lize tuple level resource allocation and reduction aim to only produce non-skewed
aggregate results (Sec. 1.5) by requiring that certain tuples from selective win-
dows are never shed. This is limiting in what tuples will and will not be processed.
It does not address the TP systems where the user selects which tuples will and
will not be processed. These approaches simplify aggregation because they force
a complete set of tuples from these windows to arrive at the aggregate operator.

Hellerstein et al. [16] proposed an online interface that allows users to both
observe the progress and halt the execution of their aggregation queries. In their
approach, load shedding is initiated by the end user. To help ensure the most
accurate aggregate results are produced, their approach returns the output in
random order, adjusts the rate at which different aggregates are computed, and
computes running confidence intervals. The running confidence intervals are dis-
played to the user.

Babcock et al. [4] proposed a system that supports load shedding. The goal
of the system is drop tuples such that accuracy of the aggregate results produced
are within certain limits. They consider the probability that dropping certain
tuples has on the accuracy of query answers produced by the multiple queries.

Longbo et al. [27] propose a load shedding system for continuous sliding
window join-aggregation queries over data streams. Their load shedding strategy
partitions the domain of the join attribute into certain sub-domains. Then they
filter out selected input tuples based on their join values.

Guo et al. [15] proposed a load shedding approach for aggregation queries
with sliding windows. They analyzed the characteristics of subset model and
deficiencies of current load shedding methods. Their load shedding algorithm is
based on the strategy of dropping tuples from certain window.

Senthamilarasu et al. [35] proposed load shedding techniques for queries con-
sisting of one or more aggregate operators with sliding windows. Their load
shedding method utilizes a window function that divides the input into por-
tions of the windows of the aggregate operators. It then utilizes this function to
probabilistically determine which tuple to shed.

Akin to these approaches, TP-Ag must also contend with the time versus
accuracy trade off. TPs require an aggregate operator that can creates a reliable
aggregate result using only the available tuples within the group population. The
approach should not adjust how the TP system is allocating resources. It should
not change which tuples are pulled forward.

8.2 Tuple Level Resource Reduction

There are many resource allocation approaches that reduce the workload. One
approach is load shedding. Load shedding drops less significant tuples. It only
allocates resources to the tuples not dropped. Once a tuple is chosen to be
processed, it will not be shed at any point along the query pipeline.

22 K. Works and E.A. Rundensteiner

Aurora [1,45] is a system to manage data streams for monitoring applications.
It supports real-time requirements. To achieve this, they proposed using load
shedding to reduce the system of less critical tuples. Their key idea was to
propose load shedding as a means to control the workload.

Tatbul et al. [38] explored a technique for dynamically inserting and removing
drop operators into query plans as required by the current load. They considered
both semantic and random shedding. Their cost model does not consider the cost
of the drop operators to evaluate tuples. It assumes that this cost is low.

Reiss et al. [33] proposed the Data Triage architecture. It supports systems
with bursty arrival rates that can fluctuate. During such bursts, Data Triage
captures an estimate of the query results that the system did not have time to
compute. They combined these results with the query results to generate more
accurate statistics. These statistics are used to evaluate which tuples should be
shed.

Tatbul et al. [37] proposed load shedding techniques for distributed stream
processing environments. They modeled the distributed load shedding problem
as a linear optimization problem. They proposed a distributed approach. It was
built for dynamic environments in large-scale deployments.

Nehme et al. [29] proposed a load shedding technique for spatio-temporal
stream data. Their load shedding model considered spatio-temporal properties
by grouping similarly moving objects into clusters. Then they shed selective
objects within each cluster. The locations of the objects shed are approximated
based upon their associated clusters.

Wang et al. [41] proposed a load shedding technique for real-time data stream
applications. The goal of their approach is to reduce the workload while at the
same time preserving the system timing constraints. They proposed different
modes. These modes define how the load on the stream is adjusted.

Ma et al. [28] proposed a semantic load shedding technique for real-time data
stream applications that utilizes a priority table. It considers both the execution
costs and tuple attribute values when deciding which tuples are shed.

Basaran et al. [5] proposed a load shedding method that applies distributed
fuzzy logic. It considers the per-stream backlog and selectivity of each query
operator. Their approach is event-driven. This allows it to react to bursty work-
loads.

Lin et al. [25] proposed a linear programming based load shedding method
for distributed data stream processing systems. It models the system load as a
simple query network with network constraints. It considers two factors. These
factors are the amount of available CPU and network resources.

Labrinidis et al. [40] proposed a load shedding strategy that manages the load
shedding without requiring any input from users, namely, any manually tuned
parameters. Their approach works with complex query networks containing joins,
aggregations or shared operators.

In contrast to these approaches, TP seeks to adaptively adjust how resource
allocation throughout the query pipeline. These approaches simply decide to
process a tuple or not and never revisit this decision. In TP, a tuple may be

Reliable Aggregation over Prioritized Data Streams 23

allocated resources for a portion of the query pipeline. Later on, if more sig-
nificant tuples are present then this same tuple may be denied resources. This
allows the more significant tuples to be processed.

9 Conclusions

This paper makes the following important contributions. Our TP-Ag operator
tackles the open problem of generating reliable average calculations for nor-
mally distributed data from incomplete aggregation populations resulting from
decisions made by TPs. TP-Ag produces non-skewed average calculations by
determining at run-time which combination of subset(s) of an aggregation pop-
ulation (if any) are used to generate a result. A carefully designed application
of Cochran’s sample size methodology is used to measure the accuracy of pos-
sible populations. Our experimental study confirms that TP-Ag is effective at
increasing the percentage of reliable results produced in TPs (TP-Ag produces
up to 91% more accurate results).

Acknowledgments. We thank our WPI peers for CAPE [34] and feedback. We also
thank GAANN and NSF grants: IIS-1018443, 0917017, 0414567, and 0551584 for their
support.

References

1. Abadi, D.J., Carney, D., Çetintemel, U., Cherniack, M., Convey, C., Lee, S.,
Stonebraker, M., Tatbul, N., Zdonik, S.: Aurora: A new model and architecture for
data stream management. The International Journal on Very Large Data Bases,
120–139 (2003)

2. Abadi, D.J., et al.: Aurora: A new model and architecture for data stream man-
agement. VLDB Journal, 120–139 (2003)

3. Arasu, A., et al.: The cql continuous query language: semantic foundations and
query execution. VLDB Journal, 121–142 (2006)

4. Babcock, B., et al.: Load shedding for aggregation queries over data streams. In:
ICDE, p. 350 (2004)

5. Basaran, C., Kang, K.-D., Zhou, Y., Suzer, M.H.: Adaptive load shedding via
fuzzy control in data stream management systems. In: 2012 5th IEEE International
Conference on Service-Oriented Computing and Applications (SOCA), pp. 1–8.
IEEE (2012)

6. Carney, D., et al.: Monitoring streams: A new class of data management applica-
tions. In: VLDB, pp. 215–226 (2002)

7. Cochran, W.G.: Sampling Techniques, 3 edn. John Wiley (1977)
8. Cormode, G., Korn, F., Tirthapura, S.: Time-decaying aggregates in out-of-order

streams. PODS, 89–98 (2008)
9. Das, A., et al.: Semantic approximation of data stream joins. IEEE, 44–59 (2005)

10. Dobra, A., et al.: Processing complex aggregate queries over data streams. In:
SIGMOD, pp. 61–72 (2002)

11. Fama, E.F.: The behavior of stock-market prices. The Journal of Business 38(1),
34–105 (1965)

24 K. Works and E.A. Rundensteiner

12. Finance, Y.: http://finance.yahoo.com/
13. Gainey, R.R., et al.: Understanding the experience of house arrest with electronic

monitoring: An analysis of quantitative and qualitative data. International Journal
of Offender Therapy and Comparative Criminology (2000)

14. Golab, L., et al.: Update-pattern-aware modeling and processing of cont. queries.
In: SIGMOD, pp. 658–669 (2005)

15. Guo, J.-F., He, C.-L.: Load shedding for sliding window aggregation queries over
data streams. Application Research of Computers, 1–23 (2009)

16. Hellerstein, J.M., Haas, P.J., Wang, H.J.: Online aggregation. SIGMOD 26(2),
171–182 (1997)

17. Hoeffding, W.: Probability Inequalities for Sums of Bounded Random Variables.
Journal of the American Statistical Association 58(301), 13–30 (1963)

18. Hoyle, S.: Use and abuse of statistics. ASLIB Proc. 40(11–12), 321–324 (1988)
19. Kang, H.G., Mahoney, D.F., Hoenig, H., Hirth, V.A., Bonato, P., Hajjar, I., Lipsitz,

L.A.: In situ monitoring of health in older adults: technologies and issues. Journal
of the American Geriatrics Society 58(8), 1579–1586 (2010)

20. Kargupta, H., Park, B.-H., Pittie, S., Liu, L., Kushraj, D., Sarkar, K.: Mobimine:
monitoring the stock market from a pda. SIGKDD Explor. Newsl. 3(2), 37–46
(2002)

21. Katopodis, P., et al.: A hybrid, large-scale wireless sensor network for missile
defense. IEEE, 1–5 (2007)

22. Li, J., et al.: No pane, no gain: efficient evaluation of sliding-window aggregates
over data streams. SIGMOD 34, 39–44 (2005)

23. Li, J., et al.: Semantics and evaluation techniques for window aggregates in data
streams. SIGMOD, 311–322 (2005)

24. Lin, C.-C., et al.: Wireless health care service system for elderly with dementia.
IEEE, 696–704 (2006)

25. Lin, O., Qin, Z., Jingjing, Q., Qiumei, P.: A new linear programming based load-
shedding strategy. In: 2012 11th International Symposium on Distributed Comput-
ing and Applications to Business, Engineering & Science (DCABES), pp. 260–263.
IEEE (2012)

26. Liu, B., et al.: Run-time operator state spilling for memory intensive long-running
queries. SIGMOD, 347–358 (2006)

27. Longbo, Z., Zhanhuai, L., Zhenyou, W., Min, Y.: Semantic load shedding for sliding
window join-aggregation queries over data streams. In: International Conference
on Convergence Information Technology, pp. 2152–2155 (2007)

28. Ma, L., Zhang, Q., Shi, N.: A semantic load shedding algorithm based on priority
table in data stream system. In: International Conference on Fuzzy Systems and
Knowledge Discovery, pp. 1167–1172 (2010)

29. Nehme, R.V., Rundensteiner, E.A.: Clustersheddy: Load shedding using moving
clusters over spatio-temporal data streams. In: Kotagiri, R., Radha Krishna, P.,
Mohania, M., Nantajeewarawat, E. (eds.) DASFAA 2007. LNCS, vol. 4443, pp.
637–651. Springer, Heidelberg (2007)

30. Network, M.: Where have all the investors gone? (February 2012). http://money.
msn.com

31. Olston, C., Widom, J.: Offering a precision-performance tradeoff for aggregation
queries over replicated data. Technical Report 2000–16, Stanford InfoLab (2000)

32. Press, A.: Officials lose track of 16,000 sex offenders after gps fails (2010). http://
www.foxnews.com

http://finance.yahoo.com/
http://money.msn.com
http://money.msn.com
http://www.foxnews.com
http://www.foxnews.com

Reliable Aggregation over Prioritized Data Streams 25

33. Reiss, F., Hellerstein, J.M.: Data triage: An adaptive architecture for load shedding
in telegraphcq. In: IEEE International Conference on Data Engineering, pp. 155–
156 (2005)

34. Rundensteiner, E.A., et al.: Cape: Continuous query engine with heterogeneous-
grained adaptivity. In: VLDB, pp. 1353–1356 (2004)

35. Senthamilarasu, S., Hemalatha, M.: Load shedding techniques based on windows
in data stream systems. In: 2012 International Conference on Emerging Trends in
Science, Engineering and Technology (INCOSET), pp. 68–73. IEEE (2012)

36. Tatbul, N.: QoS-driven load shedding on data streams. In: Chaudhri, A.B., Unland,
R., Djeraba, C., Lindner, W. (eds.) EDBT 2002. LNCS, vol. 2490, pp. 566–576.
Springer, Heidelberg (2002)

37. Tatbul, N., Çetintemel, U., Zdonik, S.: Staying fit: Efficient load shedding tech-
niques for distributed stream processing. In: International Conference on Very
Large Data Bases, pp. 159–170 (2007)

38. Tatbul, N., et al.: Load shedding in a data stream manager. In: VLDB, pp. 309–320
(2003)

39. Tatbul, N., Zdonik, S.: Window-aware load shedding for aggregation queries over
data streams. VLDB, 799–810 (2006)

40. Pham, T.N., Chrysanthis, P.K., Labrinidis, A.: Self-managing load shedding for
data stream management systems, 1–7 (2013)

41. Wang, H.-Y., Qin, Z.-D., Li, B.-Y., Cong, J., Wang, Z.-J., Du, M.: Novel load shed-
ding approach for real-time data stream processing. Journal of Chinese Computer
Systems, 1–4 (2010)

42. Wei, M., et al.: Achieving high output quality under limited resources through
structure-based spilling in xml streams. PVLDB, 1267–1278 (2010)

43. Works, K., Rundensteiner, E.: Preferential resource allocation in stream processing
systems. International Journal of Cooperative Information Systems (2014)

44. Works, K., Rundensteiner, E.A.: The proactive promotion engine. In: ICDE, pp.
1340–1343 (2011)

45. Zdonik, S.B., et al.: The aurora and medusa projects. IEEE, 3–10 (2003)

Slicing the Dimensionality: Top-k Query
Processing for High-Dimensional Spaces

Gheorghi Guzun(B), Joel Tosado, and Guadalupe Canahuate

Department of Electrical and Computer Engineering,
The University of Iowa, Iowa City, IA, USA

{gheorghi-guzun,joel-tosadojimenez,guadalupe-canahuate}@uiowa.edu
http://www.uiowa.edu

Abstract. Top-k (preference) queries are used in several domains to
retrieve the set of k tuples that more closely match a given query. For
high-dimensional spaces, evaluation of top-k queries is expensive, as data
and space partitioning indices perform worse than sequential scan. An
alternative approach is the use of sorted lists to speed up query eval-
uation. This approach extends performance gains when compared to
sequential scan to about ten dimensions. However, data-sets for which
preference queries are considered, often are high-dimensional. In this
paper, we explore the the use of bit-sliced indices (BSI) to encode the
attributes or score lists and perform top-k queries over high-dimensional
data using bit-wise operations. Our approach does not require sorting
or random access to the index. Additionally, bit-sliced indices require
less space than other type of indices. The size of the bit-sliced index
(without using compression) for a normalized data-set with 3 decimals
is 60 times smaller than the size of sorted lists. Furthermore, our exper-
imental evaluation shows that the use of BSI for top-k query processing
is more efficient than Sequential Scan for high-dimensional data. When
compared to Sequential Top-k Algorithm (STA), BSI is one order of
magnitude faster.

Keywords: Top-k queries · Preference queries · High-dimensional data

1 Introduction

Top-k processing techniques attempt to efficiently find the top k results from
data sources. Objects, or data items, pertaining to these data sources may
be described through multiple numerically-valued attributes, or dimensions. An
object’s numeric value for a specific attribute is its local score for that attribute.
Top-k techniques rely on ranking functions in order to determine an overall score
for each of the objects across all the relevant attributes being examined [1]. This
overall score may then be used to choose the top-k results. Top-k processing is
a crucial requirement across several applications or domains. In the multime-
dia domain numerically-valued feature vectors describe the multimedia objects.
An image, for example, may be described by thousands of feature vectors [2–4].
c© Springer-Verlag Berlin Heidelberg 2014
A. Hameurlain et al. (Eds.): TLDKS XIV, LNCS 8800, pp. 26–50, 2014.
DOI: 10.1007/978-3-662-45714-6 2

Slicing the Dimensionality: Top-k Query Processing 27

Users usually search for multimedia objects for which they only desire the best
matching result that derive from the overall grade of match, or overall score of
the features. [5,6].

In the domain of information retrieval, consider a search engine tasked in
retrieving the top-k results from various sources. In this scenario, the ranking
function considers scores based on word-based measurements, as well as hyper-
link analysis, traffic analysis, user feedback data, among others, to formulate its
top-k result [7,8].

Other domains and applications such as monitoring networks [9,10], P2P
systems [11], data stream management streams [12], restaurant selection systems
[13], among others, also rely on top-k processing techniques [14,15].

Data in these domains is often high-dimensional with over a hundred of
attributes. The curse of dimensionality relates to the negative impact the increase
of dimensionality has on query processing techniques. Top-k techniques express
their effects through either high time or space complexity as dimensionality
increases [16]. E.g. indexing structures are not efficient for dimensionality some-
times as low as 6 dimensions[17]. Moreover, this effect pervades to the extent
where the top-k techniques perform worse than sequential scan [17].

A popular top-k processing technique, the Threshold Algorithm (TA) [14],
and some of its optimizations [17–21] involve the use of sorted lists for each
attribute. The idea is that the collection of these sorted lists allow an efficient
computation of the top-k aggregated overall scores with as few accesses to the
data as possible. These sorted lists avoid scanning of the entire list of entries for
each of the attributes under consideration. Moreover, a threshold value is used to
determine when the algorithm should stop while guaranteeing the top-k results.
TA-based techniques extend the performance benefits to tens of dimensions.

In this paper, we explore the evaluation of top-k queries in high-dimensional
spaces without the use of sorted lists or hierarchical indices. We propose the
use of bit-sliced indices (BSI) to encode the score list and perform top-k queries
over these high-dimensional data. Since our index is not sorted, new data is just
appended to the end. The bit-slices are added and resulting in another BSI. From
this aggregate ranking a top-k result can be derived using bit-wise operations.

The primary contributions of this paper can be summarized as follows:

– We developed efficient algorithms to evaluate top-k queries over bit-sliced
indexing exclusively using bit-wise operations.

– We analyze the cost of the proposed algorithms in terms of algorithm com-
plexity.

– We evaluate three types of top-k queries: top-k queries, Boolean preference
queries, weighted preference queries.

– We evaluate the cost of the proposed approach in terms of index size and
also query time.

– We compare performance gains against Sequential Scan (SS), Threshold
Algorithm (TA), Sequential Top-k Algorithm(STA) and Best Position Algo-
rithms (BPA and BPA2).

– We perform experiments over both synthetic and real datasets.

28 G. Guzun et al.

Table 1. Notation Reference

Notation Description
n Number of rows in the data
m Number of attributes in the data
s, p Number of slices used to represent an attribute
w Computer architecture word size
Q Query vector
|q| Number of non-zero preferences in the query
b Number of bits used to represent a query preference

The rest of the paper is organized as follows. Section 2 presents background
and related work. Section 3 describes the problem formulation and the proposed
solution using bit-sliced indices. Section 4 presents the cost analysis of the pro-
posed algorithms. Section 5 shows experimental results. Finally, conclusions are
presented in Section 6.

2 Background and Related Work

This section presents background information for bit-sliced indices and related
work for top-k query processing. For clarity, we define the notations used further
in this paper in Table 1.

2.1 Bit-Sliced Indexing

BSI [22,23] can be considered a special case of the encoded bitmaps [24]. With
bit-sliced indexing, binary vectors are used to encode the binary representation
of the attribute value. Only �log2 values� vectors are needed to represent all
values. One BSI is created for each attribute.

Figure 1 shows an example of the BSIs for two attributes and their sum. Since
each attribute has three possible values, the number of bit-slices for each BSI is 2.
For the sum of the two attributes, the maximum value is 6, and the number of bit-
slices is 3. The first tuple t1 has the value 1 for attribute 1, therefore only the bit-
slice corresponding to the least significant bit, B1[0] is set. For attribute 2, since
the value is 3, the bit is set in both BSIs. The addition of the BSIs representing
the two attributes is done using efficient bit-wise operations. First, the bit-slice
sum[0] is obtained by XORing B1[0] and B2[0] i.e. sum[0] = B1[0]⊕B2[0]. Then
sum[1] is obtained in the following way sum[1] = B1[1]⊕B2[1] ⊕ (B1[0]∧B2[0]).
Finally sum[2] = Majority(B1[1], B2[1], (B1[0] ∧ B2[0])).

BSI arithmetic for a number of operations is defined in [23]. We adapt two
of these bit-sliced operations (sum and topK) as components in our top-k query
processing and define a new operation to multiply a BSI by the query preference.

Slicing the Dimensionality: Top-k Query Processing 29

Raw Data Bit-Sliced Index (BSI) BSI SUM
Attrib 1 Attrib 2

Tuple Attrib 1 Attrib 2 B1[1] B1[0] B2[1] B2[0] sum[2]3 sum[1]2 sum[0]1

t1 1 3 0 1 1 1 1 0 0
t2 2 1 1 0 1 0 0 1 1
t3 1 1 0 1 0 1 0 1 0
t4 3 3 1 1 1 1 1 1 0
t5 2 2 0 1 1 0 1 0 0
t6 3 1 1 1 0 1 1 0 0

1sum[0]=B1[0] XOR B2[0], C0 = B1[0] AND B2[0]
2sum[1]=B1[1] XOR B2[1] XOR (C0)
3sum[2]=C1=Majority(B1[1],B2[1],(C0))

Fig. 1. Simple BSI example for a table with two attributes and three values per
attribute

2.2 Top-k Queries

Numerous techniques have been proposed to process top-k queries using a variety
of data and space partitioning indices. However, their performance degrades for
high-dimensional spaces [1,17,25].

The preferred algorithms for multi-dimensional spaces stem from the Thresh-
old Algorithm (TA). Thus, before addressing these optimizations, here we present
the TA algorithm [14].

1. Do sorted access in parallel to each of the m sorted lists Li. As an object R
is seen under sorted access in some list, do random access to the other lists
to find the grade xi of object R in every list Li. Then compute the grade
t(R) = t(x1, . . . , xm) of object R. If this grade is one of the k highest we have
seen, then remember object R and its grade t(R) (ties are broken arbitrarily,
so that only k objects and their grades need to be remembered at any time).

2. For each list Li, let xL
i be the grade of the last object seen under sorted

access. Define the threshold value τ to be t(xL
1 , . . . , xL

m). As soon as at least
k objects have been seen whose grade is at least equal to τ , then halt.

3. Return the top-k objects as the query answer.

Correctness of TA follows from the fact that the threshold value τ represents
the best possible score that any object not yet seen can have, and TA stops
when it can guarantee that no unseen object might have a better score than the
current top-k ones [1,21,26].

The Best Position Algorithms (BPA and BPA2) [15], were proposed as opti-
mizations of TA where the threshold condition is improved. It is determined from
the best positions from each of the lists above which all scores have been seen.
BPA2 further improves over BPA by avoiding accessing the same position several
times, by doing direct access to the position which is just after the best posi-
tion. The IO-Top-k technique [27] involves a balancing of seek time and transfer
rate by mixing the amount of sorted and random accesses performed. Moreover,

30 G. Guzun et al.

random accesses are controlled given the probability of a certain record to be in
the top-k.

While TA relies on sorted and random access, the NRA variant [14] has no
random access for applications where random access is overly expensive. The
approach consists of two phases, one where it extracts candidate objects grad-
ually from the top of the sorted lists. This will continue until the threshold
condition is met. The second phase will gradually establish that no remain-
ing candidates are better than the current top-k and will then terminate. The
Threshold Algorithm over Bucketized Sorted Lists with Bloom Filters (TBB)
[26] improves upon NRA by estimating the sequential scanning required and
thus reducing disk access. The 3-phased no random access algorithm (3P-NRA)
also improves upon NRA [28] by reducing the expensive probing of candidates
in the NRA algorithm. However, 3P-NRA and TBB generally incur the large
maintenance cost of the potential candidates and sorted lists [21].

Numerous other techniques have been developed for the top-k query process-
ing that also originate, or involve concepts, from the TA technique [18–20,29,30].
However, these and other top-k techniques such as view-based techniques do not
perform well for high dimensional data [1,17,21].

Recently, Sequential Top-k Algorithm (STA) was proposed to preprocess the
sorted lists in order to reduce the space complexity and allow for the early
termination feature, by a threshold value, as in TA. It eliminates the need to
store the object identifier for each attribute as is the case when using sorted
lists. Instead it stores a single identifier with all the attributes and a leaner
indicator attribute (1 byte to address 256 attributes). This indicator attribute
determines when an object is first seen, essentially capturing when a new object
is accessed as in the sorted access of TA. Additionally, the resulting table from
the preprocessing is sequentially accessed and used to dynamically update the
threshold element. Furthermore, STA also avoids random access, such as in NRA,
when evaluating top-k queries. In its paper, STA was compared against TA, 3P-
NRA, BPA, IO-Top-k, and TBB. The experimental results on synthetic data
sets for increasing dimensionality (up to 16) state a 1-2 order of magnitude
improvement over these other top-k processing techniques [21]. Thus, we compare
STA against our approach.

Note that our approach does not maintain sorted lists nor does it use a thresh-
old computation as a stopping condition. Bit-Sliced Indexing (BSI) is used to
compute the scores and then process the top-K query using fast logical opera-
tions supported by hardware. Since the scores are computed for all the tuples,
performance is not considerably affected by the value of k. This is in contrast
to both sequential scan and other list-based approaches (TA, STA, etc.) which
maintain an auxiliary data structure of size O (k). Additionally, the BSI index
being a variant of the bitmap index, can benefit from word-aligned compression
and can efficiently support other types of queries such as selection and aggrega-
tion queries.

Slicing the Dimensionality: Top-k Query Processing 31

3 Proposed Approach

In this section we first formulate the top-k queries supported in this paper and
then describe the query execution algorithm using bit-slice indexing.

3.1 Problem Formulation

Consider a relation R with m attributes or numeric scores and a preference
query vector Q = {q1, . . . , qm} with m values where 0 ≤ qi ≤ 1. Each data
item or tuple t in R has numeric scores {f1 (t) , . . . , fm (t)} assigned by numeric
component scoring functions {f1, . . . , fm}. The combined score of t is F (t) =
E (q1 × f1 (t) , . . . , qm × fm (t)) where E is a numeric-valued expression. F is
monotone if E (x1, . . . , xm) ≤ E (y1, . . . , ym) whenever xi ≤ yi for all i. In this
paper we consider E to be the summation function: F (t) =

∑m
i=1 qi × fi (t).

The k data items whose overall scores are the highest among all data items, are
called the top-k data items. We refer to the definition above as top-k weighted
preference query.

In this paper we also consider two special cases of query vectors:

– top-k baseline: the query vector is all 1s.
– top-k boolean: the query vector is either 0 or 1 for each attribute.

These two specializations of the top-k preference query are less expensive to
compute than the general top-k preference query but also have numerous applica-
tions in the literature, e.g. spatial searches with text constraints in geographical
collections [31].

The rest of this section describes the proposed approach for answering the
general top-k preference queries.

3.2 Top-k Preference Query Execution

Let us denote by Bi the bit-sliced index (BSI) over attribute i. A number of
slices s is used to represent values from 0 to 2s − 1. Bi[j] represents the jth

bit in the binary representation of the attribute value and it is a binary vector
containing n bits (one for each tuple). The bits are packed into words, the storage
requirement for each binary vector is n/w, where w is the computer architecture
word size (64 in our implementation).

In order to compute the score for each data point we first multiply the
attribute value by the query preference for that attribute using bit-wise oper-
ations. Given a query Q, the query vector is first converted to integer weights
based on the desired precision. Let us denote by b, the number of bits used to
represent a query preference. The preference query execution algorithm pseudo-
code is given in Algorithm 1.

We identify three main parts in our main algorithm 1:

1. For all non-zero weights, multiply the BSI for the attribute with the corre-
sponding query weight (Lines 3 and 6).

32 G. Guzun et al.

prefQuery (B,q,k)

1: if (k < 0)
2: Error (“k is invalid”)
3: S = Multiply (qj , Bj) where j is the first non-zero weight in q
4: for (i = j + 1; i ≤ m; i++)
5: if qi > 0
6: S = SUM BSI(S, Multiply (qi, Bi))
7: T = TopK (S, k)
8: return T

Algorithm 1. Preference query execution using bit-slices. B is the set of all BSIs, q
is the query vector, and k is the desired number of results.

2. Sum the partial scores produced by the Multiply algorithm into a BSI S
(Line 6).

3. Find the top k data points given the final BSI score S.

Algorithm 1 calls the Multiply function on line 3. Algorithm 2 shows the
pseudocode for multiplication of a query weight with the attribute values. It
follows the same logic as a sequential multiplier with the difference that the
multiplicand is a BSI, not a single number.

First, the three bit-arrays R, S and C are initialized to be all-zeros. R is the
product BSI, while S and C represent the sum, and carry bit-vectors for every
slice. When the multiplier’s least significant bit is set (Line 5), the multiplicand’s
BSI is shifted and added to the result (Lines 6-13). Otherwise the multiplicand’s
BSI is shifted until it finds its least significant bit set. If the final bit-array C,
representing the carry bits has at least one set bit (Line 14), then the number
of slices in the result R is incremented by one (Lines 15-16). The multiplier is
shifted before the next iteration of the loop (Line 17). The shift amount is stored
as an offset counter (Line 18).

The return BSI R represents the partial score of each tuple for a single
attribute. Shifting the bit-slices does not impact the performance cost of the
addition operation, as the shifting offset is simply passed along when accessing
the bit-slices.

Further, Algorithm 1 calls the SUM BSI function on line 6. Algorithm 3
shows the pseudocode for the addition of two BSIs, A and B, with a number of
slices s and p, respectively. The result is another BSI S with MAX(p, s)+1 slices.
A ”Carry” bit-slice C is used in Algorithm 3 whenever two or three bit-slices
are added to form Si, and a non-zero C must then be added to the next bit-slice
Si+1. Once the bit-slices in either A or B are exhausted, calculations of C are
likely to result in zero in very few iterations soon after. An example of a BSI
sum was shown earlier in Figure 1.

Finally, the top k tuples are selected by calling the top-k algorithm presented
in Algorithm 4 over the sum BSI representing the scores. The top-k algorithm

Slicing the Dimensionality: Top-k Query Processing 33

Multiply (qi, B)

1: R = ∅ //The product BSI
2: offset=0 //Shift factor
3: bitArray S = ∅,C = ∅ //Sum and carry bits
4: while (qi > 0)
5: if (number & 1 == 1) //if the last bit is set
6: for (i = 0; i < B.slices; i++) //Add the slices
7: S = B[i] XOR R[i+offset] XOR C
8: C = Majority(B[i],R[i+offset],C)
9: R[i+offset]=S;
10: for (j = i+offset; j < B.slices; j++) //Add C to the remaining slices
11: S = R[j] XOR C;
12: C = R[j] AND C;
13: R[j] = S; // add the slice S to the product
14: if (count(C) > 0)
15: R[B.slices]=C; // Carry bit
16: R.slices++;
17: qi >>= 1; // shift the query weight
18: offset++; //update the offset
19: return R;

Algorithm 2. Multiplication algorithm. qi is the integer representation of the query
weight for attribute i and B is the BSI representing attribute i.

starts evaluating the scores from the most significant bits. Variables used in
Algorithm 4 exist from one loop pass to the next. The bitArrays G, E and X,
and positive integer count are only temporary, used to hold results within a loop
pass for efficiency. The G bit-array represents the data points with larger values
seen so far, and the E bit-array represents the data points that are currently
tied. We initialize E to be an all 1s bit-array and G as an empty set.

In the first iteration, X gets the values from the most significant bit-slice.
If the number of set bits in this slice is greater than k then E is also assigned
S[i]. Otherwise E will store the tuples that do not have the most significant bit
set. For the next iteration X is assigned G OR (E AND S[i]) (the tuples in E
that also have set bits in S[i]). Then, if the number of set bits in X is greater
than k E = E AND S[i] otherwise E = E AND S[i]. Algorithm 4 will continue
iterating through the bit-slices of S until count equals to k and will return the
resulting k tuples in the form of a bit-vector (F).

Example: Putting It All Together. In this sub-section we explain how Algo-
rithms 1, 2, 3 and 4 work together through a simple example. The numbers in
parentheses reference to the numbers in Figure 2.

As an illustrative example, consider a table with two attributes where each
tuple represents a bag of white and black pebbles. Pebbles’ counts correspond to
attributes “White” and “Black”. Figure 2 shows an example of a top-k preference

34 G. Guzun et al.

SUM BSI(A,B)

1: S[0] = A[0] XOR B[0] // bit on in S[0] iff bit on either A[0] or B[0]
2: C = A[0] AND B[0] // C is ”Carry” bit-slice
3: for (i = 1; i <MIN(s, p); i++) // While there are bit-slices in A and B
4: S[i] = (A[i] XOR B[i] XOR C) // one (or three) bit on gives bit on in Si

5: C =Majority(A[i], B[i], C) // two (or more) bits on gives bit on in C
6: if (s > p) // if A has more bit-slices than B
7: for (i = p + 1; i ≤ s; i++) // continue loop until last bit-slice
8: S[i] = (A[i] XOR C) // 1 bit on gives bit on in S[i]; C might be ∅
9: C = (A[i] AND C) // two bits on gives bit on in C
10: else // B has at least as many bit-slices as A
11: for (i = s + 1; i ≤ p; i++) // continue loop until last bit-slice
12: S[i] = (B[i] XOR C) // one bit on gives bit on in S[i]
13: C = (B[i] AND C) // two bits on gives bit on in C
14: if (C is non-zero) // if still non-zero Carry after bit-slices end
15: S[MAX(s, p) + 1] = C // Put Carry into final bit-slice of S

Algorithm 3. Addition of BSIs. Given two BSIs, A and B, we construct a new sum
BSI, S = A + B, using the following pseudo-code. We must allow the highest order
slice of S to be S[MAX(s, p) + 1], so that a carry from the highest bit-slice in A or B
will have a place.

query over this table using the Bit-Sliced Index Arithmetic. The query asks for
the two bags, out of all of bags, that contain the most pebbles given a preference
query with weights 0.4, and 0.6 for the white and black pebbles, respectively.

Initially, the data is indexed using a BSI, and each column in the attribute
bitmap is saved as a bit-vector called bit-slice (the most significant bit-slice
of attribute “White” is shaded in Figure 2). Since this data has a low value
range, there are only three bit-slices per attribute. All the bit-slices form the
BSI index. Using the BSI index and Algorithm 1, the query will be performed
as illustrated in Figure 2. The weight multiplication is performed by shifting
and adding slices, as described in Algorithm 2. The query weights are treated
as integers, and thus 0.4 and 0.6 are scaled to 4 and 6 respectively. For every
set-bit in the transformed query weight, the BSI index is shifted to the left by
the number that describes the set-bit position in the query bit-string (offset in
Algorithm 2). For example, the query weight for the first attribute in the figure,
has only one set bit. Thus Algorithm 2 “shifts” the BSI for this attribute to the
left by two 2 (second rightmost is the position of the set-bit - starting from 0)
(1). This result is then added to a sum BSI using algorithm 3 (8). For the second
attribute, Algorithm 2 first shifts the BSI by 2 and keeps it as an intermediate
result (R in Algorithm 2) (3,4), then shifts it by 1 and adds it to R again (5,6).
Once Algorithm 2 completes the multiplication, its result is added to the sum
BSI, using Algorithm 3 (7,8).

After the multiplications and additions are complete for all the attributes,
Algorithm 4 is applied over the sum BSI (9). Algorithm 4 traverses the sum BSI

Slicing the Dimensionality: Top-k Query Processing 35

TopK(S,k)

1: G = ∅
2: E =All1s // Initialize an all ones bitVector
3: for (i = s − 1; i ≥ 0; i–) //While there are bit-slices in S
4: X = G OR (E AND S[i]) //X is trial set: G OR

//(rows in E with 1-bit in position i)
5: if ((count =COUNT(X))> k) //If more candidates than k
6: E = E AND S[i] //Intersection of E and current slice
7: else if (count < k)
8: G = X //G in next pass gets all rows in X
9: E = E AND NOT(S[i]) //E in next pass contains no rows r

//with bit i on in S(r)
10: else // count==k
11: E = E AND S[i] //all rows r with bit i on in

//S(r) will be in E
12: break
13: count =COUNT(G) //Update count
14: if count < k //if count is greater than k
15: E = pick(E,k − count) //Pick k-ncount candidates to break ties
16: else
17: E = ∅
18: F = G OR E
19: return F

Algorithm 4. Find k tuples with the largest values in S (ties are arbitrarily broken),
s is the number of slices in S.

starting from the most significant bit (from left to right), and finds the top-k
tuples by eliminating candidates. First it eliminates all the tuples that do not
have a set-bit in the left-most bit-slice, and saves the tuples that have a set-
bit in an intermediate result (X in Algorithm 4). Then it moves to the second
left-most bit-slice. In this example the number of tuples that have set-bits and
also had set-bits in the previous bit-slice is smaller than two (only one). This
single tuple is marked as to be saved in X. Everything else is also kept in G
(Algorithm 4). For the next bit-slice, there are two tuples with set-bits, that are
also in G. These tuples, plus the one in X are now saved to G. At this point the
intermediate result contains 3 tuples. Algorithm 4 will continue this way until
the desired number of tuples remains in the intermediate result. In Figure 2 the
goal is to extract top-2 tuples, and thus Algorithm 4 will stop once this number
is achieved. If the number of slices is exhausted and Algorithm 4 is not able
to discriminate between some tuples (i.e. their score is the the same), ties are
broken arbitrarily. Finally, the result is returned in form of a bit-slice, having
set-bits for the tuples that meet the user’s criteria (10).

36 G. Guzun et al.

ID White Black

1 7 2
2 1 4
3 4 3
4 3 5
5 6 4
...

1 1 1
0 0 1
1 0 0
0 1 1
1 1 0
… … …

0 1 0
1 0 0
0 1 1
1 0 1
1 0 0
… … …

0.4 0.6
Weighted Query

1 0 0 1 1 0

1 1 1 0 0
0 0 1 0 0
1 0 0 0 0
0 1 1 0 0
1 1 0 0 0
… … … … …

0 1 0 0
1 0 0 0
0 1 1 0
1 0 1 0
1 0 0 0
… … … …

0 1 0 0 0
1 0 0 0 0
0 1 1 0 0
1 0 1 0 0
1 0 0 0 0
… … … … …

Data and query in decimal

Data and query in binary

+ +

1 0 1 0 0 0
0 1 1 1 0 0
1 0 0 0 1 0
1 0 1 0 1 0
1 1 0 0 0 0
… … … … … …

=

Addition using BSA

1 0 1 0 0 0
0 1 1 1 0 0
1 0 0 0 1 0
1 0 1 0 1 0
1 1 0 0 0 0
… … … … … …

0
0
0
1
1
…

Top-2

Return result

0 1 0 0
1 0 0 0
0 1 1 0
1 0 1 0
1 0 0 0
… … … …

0 1 0 0 0
1 0 0 0 0
0 1 1 0 0
1 0 1 0 0
1 0 0 0 0
… … … … …

+

1 1 1 0 0
0 0 1 0 0
1 0 0 0 0
0 1 1 0 0
1 1 0 0 0
… … … … …

Accumulator

1

2

3

4

5

6

78

9

10

Fig. 2. Example of BSI Arithmetic applied for finding top-2 tuples given a weighted
preference query

4 Cost Analysis

In this section we analyze the cost of computing top-k preference queries using
the proposed BSI approach both in terms of index size and query execution time.

4.1 Index Size

The analysis is based on verbatim or uncompressed bit-sliced indexing (BSI). The
BSI size is independent of data distribution and only depends on the number of
rows n and the number of slices used to represent each attribute. Each bit slice
has n bits, which are packed into words. The number of slices per attribute can
be computed from the attribute cardinality ci (number of distinct values) as:
si = �log2 ci�. The index size (in bits) can then be computed as:

Slicing the Dimensionality: Top-k Query Processing 37

IndexSize =
m∑

i=1

sin (1)

where m is the number of attributes, n is the number of tuples, and si is
the number of slices used to represent the value of attribute i. For top-k queries
it makes sense to normalize the attribute values to avoid one attribute with
extremely large values to dominate the final score. Assuming the attributes are
normalized between 0 and 1, the same number of slices can be used for all the
attributes. The number of slices depends on the desired resolution to represent
the normalized attribute values. For approximations using 3, 4, or 6 decimals
the number of slices s would be 10, 14, or 20, respectively. In this case, the BSI
size formula can be simplified as:

IndexSize = m × s × n (2)

As long as the number of slices used is less than the computer word size, BSI
will always require less storage than the original data. The sorted lists, on the
contrary require at least double the storage space than the original data. The
reason is that each list stores the attribute value and the tuple id. BSI uses the
bit position as the tuple id and since the slices are not sorted, the same position
in all the slices always refer to the same tuple.

Note that the number of slices used to represent the attributes does not
bound the number of slices to represent the BSI summation of these attributes.
The resulting sum BSI is expected to have more slices, and since slices are added
as bitVectors, there is no overflow in the computation.

4.2 Query Execution

The top-k preference queries are processed using bit-wise operations over the
bit-slices. If the bit operations are performed on a computer with a 64-bit archi-
tecture, then the number of bit operations that we need to perform to operate
two bitmaps is given by n/64. In general, with a word size equal to w-bits, each
individual bit-wise operation would process w tuples simultaneously. The total
cost of the query execution using bit-sliced indices is determined by the number
of bitmaps that are operated together and the number of bit-wise operations
performed.

Top-k Weighted Preference Queries. Algorithm 1 performs the generic top-
k weighted preference query.The total cost of the preference query processing
defined in Algorithm 1 is given by:

O
(
|q|bs n

w

)
(3)

where |q| is the number of non-zero preferences in the query (m in the worst
case), b is the number of bits used to represent the preferences for each attribute

38 G. Guzun et al.

query weight, s is the number of slices used to represent each attribute, and n
is the number of tuples in the data set.

Algorithm 1 calls the Multiply Algorithm |q| times, the SUM BSI Algorithm
|q| − 1 times, and the top-k Algorithm once.

The cost of Algorithm 2 in the worst case can be expressed in terms of BSI
bit-wise operations O (bs), where b is the number of bits used to represent the
query preference and s is the number of slices used to represent each attribute.
To represent preferences with 1 or 3 decimals, the number of slices would be 4 or
10, respectively. We can expect the number of set bits in each preference to be
half the bits (on average). The cost of each bit-wise operation is O (n/w), which
allow us to express the cost of the multiply algorithm as:

O
(
bs

n

w

)
(4)

The number of slices in the result R is at most s + p slices. Note that the
number of slices per attribute depends on the value range of the attribute over
the entire data set. In the cases where less slices are needed than the number
of bits required to store the attribute data type, then our index is guaranteed
to be smaller than the raw data. This is the case for most real data sets, which
means that the BSI index size is usually smaller than the raw data even without
applying compression.

The cost of Algorithm 3 is dependent on the maximum number of slices
between A and B. The number of slices in B is (in the worst case) p + s, while
the number of slices in A (the partial score computed so far) is p + s + �log2 m�
(in the worst case). The cost of computing the sum BSI can then be expressed
as:

O
(
(b + s + �log2m�) n

w

)
(5)

Finally, the cost of computing the top-k scores is given by the number of
slices in S (p + s + �log2 m�):

O
(
(b + s + �log2m�) n

w

)
(6)

Equation 3 represents the upper bound for equations 4, 5, 6, and thus gives
the upper bound on the total running time for the generic top-k weighted pref-
erence query.

Note that the top-k algorithm 4 is the only algorithm that is affected by the
value of k. On the contrary, TA maintains a list of k elements. As k grows, the
pruning benefit of TA and its variants decreases, and these algorithms become
worst than sequential scan. Furthermore, since BSI computes and stores the
scores for all the data points, it is suitable for interactive queries where users
can increase the value of k to obtain immediate answers. It is also possible for
the user to exclude data points from the result set as a bitArray. This bitArray
can be used to initialized the E bitArray in the top-k Algorithm 4 to exclude
those results.

Slicing the Dimensionality: Top-k Query Processing 39

Top-k Boolean Preference Queries. For top-k Boolean preference queries,
Algorithm 2 does not need to be called, thus the cost of computing the top-k
preferences is lower and it is given by:

O
(
|q|s n

w

)
(7)

Top-k Baseline Preference Queries. In this case all the query weights are
equal to one. The number of non-zero query weights equals to the number of
data attributes: |q| = m. Again, in this case Algorithm 2 is not called. Thus the
cost of top-k preference queries is:

O
(
ms

n

w

)
(8)

5 Experimental Evaluation

In this section we evaluate our approach for executing top-k queries over bit-
sliced index structures. We first describe the experimental setup and the data
sets used, which include a set of synthetic data sets as well as four real data
sets. Then we show the benefits of using the BSI index structures in terms of
compression ratios when compared to sorted lists. We then conduct a set of
experiments, where we show the performance advantages of the BSI structures
when compared to Sequential Top-k Algorithm (STA) [21], Threshold Algorithm
(TA) [14], Best Position Algorithms (BPA, BPA2) [15], and Sequential Scan (SS).
Because STA has shown to outperform TA and its optimizations, we compare
BSI against STA in most of our experiments.

5.1 Experimental Setup

The synthetic data sets were generated using two different distributions: uniform
and zipf. The cardinality of the generated data is 1,000 unless otherwise stated.
The zipf distribution is representative for many real-world data sets, it is widely
assumed to be ubiquitous for systems where objects grow in size or are fractured
through competition [32]. These processes force the majority of objects to be
small and very few to be large. Income distributions are one of the oldest exem-
plars first noted by Pareto [33] who considered their frequencies to be distributed
as a power law. City sizes, firm sizes and word frequencies [32] have also been
widely used to explore the relevance of such relations while more recently, inter-
action phenomena associated with networks (hub traffic volumes, social contacts
[34], [35]) also appear to mirror power-law like behavior. The zipf distribution
generator uses a probability distribution of:

p(k, n, f) =
1/kf

∑n
i=1(1/if)

where n is the number of elements determined by cardinality, k is their rank,
and the coefficient f creates an exponentially skewed distribution. We generated

40 G. Guzun et al.

multiple data sets for f varying from 0 to 2. Further, we varied the number of
rows, number of attributes as well as their cardinality to cover a large number
of possible scenarios.

We also use four real data sets to support our results obtained with synthetic
data:

– coil20001. This data set used in the CoIL 2000 Challenge contains informa-
tion on customers of an insurance company. Information about customers con-
sists of 86 variables and includes product usage data and socio-demographic
data derived from zip area codes. The data was supplied by the Dutch data
mining company Sentient Machine Research and is based on a real world busi-
ness problem. It contains over 9,000 descriptions of customers, including the
information of whether or not they have a caravan insurance policy.

– internet2 This data comes from a survey conducted by the Graphics and
Visualization Unit at Georgia Tech October 10 to November 16, 1997. We
use a subset of the data that provides general demographics of Internet users.
It contains over 10, 000 rows and 72 attributes with categorical and numeric
values.

– kegg-metabolic3 This is the KEGG Metabolic Relation Network (Directed)
data set. It is a graph data, where Substrate and Product componds are
considered as Edges while enzyme and genes are placed as nodes. There are
53, 414 tuples in this data set, and 24 attributes, with real and integer values.

– poker-hand4 In this data set each record is an example of a hand consisting
of five playing cards drawn from a standard deck of 52. Each card is described
using two attributes (suit and rank), for a total of 10 predictive attributes,
plus one Class attribute that describes the “Poker Hand”. The data set
contains 1, 025, 010 instances and 11 attributes with categorical and numeric
values.

For the experiments we generated three types of queries:

• Boolean queries: Every attribute of the query has a Boolean value (0 or
1), meaning that from the user perspective an attribute can be relevant or
non-relevant.

• Baseline queries: Here every attribute is equally important for the user
and hence the query vector is an all-ones vector.

• Weighted queries: Every attribute of the query has a weight between 0
and 1. The query weights are applied to each attribute before applying the
top-k algorithm.

All experiments were executed over a machine with a 64-bit Intel Core i7-
2600 processor (8MB Cache, 3.20 GHz) and 8 GB of memory, running Windows

1 http://archive.ics.uci.edu/ml/machine-learning-databases/tic-mld/
2 http://www.cc.gatech.edu/gvu/user surveys/survey-1997-10
3 http://archive.ics.uci.edu/ml/machine-learning-databases/00220/
4 http://archive.ics.uci.edu/ml/datasets/Poker+Hand

http://archive.ics.uci.edu/ml/machine-learning-databases/tic-mld/
http://www.cc.gatech.edu/gvu/user_surveys/survey-1997-10
http://archive.ics.uci.edu/ml/machine-learning-databases/00220/
http://archive.ics.uci.edu/ml/data sets/Poker+Hand

Slicing the Dimensionality: Top-k Query Processing 41

7 Enterprise. Our code was implemented in Java. During the measurements, the
queries were executed six times, and the result for the first run was discarded
to prevent Java’s just-in-time compilation from skewing results. The times from
the other five runs were averaged and reported.

Query preferences are one decimal queries and follow a uniform random dis-
tribution. Each query set had 1,000 queries (unless otherwise noted). The query
times reported corresponds to the average query time per query.

5.2 Index Size

Minimizing the index size is very important. A smaller index size results in
less disk accesses and less main memory requirements. Often the index space
reduction translates into faster processing of the index.

Figure 3 shows the index size of the original/raw data (SS, STA), the sorted
lists (TA), and BSI using three different number of slices per attribute. For this
experiment we generated a data set with 10 million tuples and varying number
of attributes.

0

5000

10000

15000

20000

25000

30000

0 50 100 150 200

In
de

x
Si

ze
 (M

B)

Number of attributes

Sorted Lists

RawData

BSI (20 slices x attrib)

BSI (10 slices x attrib)

Fig. 3. Index size comparison for a data set with 10 million tuples and varying number
of attributes. BSI is generated using 10 and 20 slices per attribute to represent 3 and
6 decimal numbers, respectively.

The storage requirement for the sorted lists is at least 2 times larger than
the original data (assuming only the sorted lists are stored). The size further
increases if the position list for each tuple is stored. In contrast, the total BSI
size is smaller than the original data. If the normalized attribute values are
represented using 3 decimal positions, then the number of slices used to represent
each attribute is 10. In this case, for a 64-bit architecture, the BSI size is over
6 times smaller than the original data. When 6 decimals positions are used, 20
slices per attribute are generated but the index size is still one third the size of
the original data.

42 G. Guzun et al.

5.3 BSI Performance Evaluation

In this section we evaluate our top-k query processing method using bit-sliced
indices (BSI) by comparing it against the Sequential Top-k Algorithm (STA)
[21], Threshold Algorithm (TA) [14], Best Position Algorithms (BPA, BPA2)
[15], and Sequential Scan (SS). We designed a set of experiments that evaluate
the usage of our approach for different types of data and queries.

Query Time vs. Data Dimensionality. Most of the existing indexing struc-
tures have been evaluated and are known to perform efficiently for a small num-
ber of dimensions [26]. A more scalable approach is Sequential Top-k Algorithm
[21], it has been proven to outperform TA and its variants even for a higher
number of dimensions.

0.00

0.01

0.10

1.00

10.00

100.00

2 3 4 5 6 7 8 9 10

Q
ue

ry
 T

im
e

(m
s)

Number of attributes

BSI SS
STA TA
BPA BPA2

(a) Low-Dimensional Data

0.10

1.00

10.00

100.00

1000.00

10000.00

10 20 50 100

Q
ue

ry
 T

im
e

(m
s)

Number of attributes

BSI SS
STA TA
BPA BPA2

(b) High-Dimensional Data

Fig. 4. Query time for low and high-dimensional data. [Zipf-1, rows:100K, top-20].

Figures 4a and 4b show the query times for top-k preferences queries over a
synthetically generated data set, where we vary the number of attributes. Figure

Slicing the Dimensionality: Top-k Query Processing 43

4a shows the query times for STA, BPA, BPA2, TA, SS, and BSI over a small
number of attributes: varying from 2 to 10. For this experiment we extract top-20
candidates, and the data set has a Zipf-1 distribution.

STA performs slightly better than BSI when the number of attributes is 3
or smaller. Then, as the number of attributes grows STA query times grow at
a faster rate than the query times for BSI. Note that BSI is always faster than
sequential scan. TA, BPA and BPA2 are less scalable and their query times
are even slower than STA, with TA having a response time of 25 ms for 10
dimensions (aprox. 100 times slower than BSI!).

To go even further and demonstrate the scalability of our approach, we show
in Figure 4b the query times for up to 100 attributes, for the same data set. As
can be seen, as the dimensionality grows, STA, TA, and BPA are outperformed
by SS, while BSI remains over 3 times faster than SS.

One of the main advantages for using BSI is that it executes sequential scan
over bit-slices when performing Algorithms 2, 3 and 4. Thus, it only accesses
one data attribute at a time, and makes very efficient use of available memory
and cache. Furthermore, due to this property, our approach has the potential to
partition the BSI index and run Algorithms 2 and 3 in parallel.

Query Time vs. Number of Top Preferences. Figure 5 shows how the
value of k (the number of preferences) impacts the query time for the preference
query. The measurements were taken using a synthetically generated data-set
with 10 million rows, 20 attributes and zipf-1 data distribution. The queries
used have a 1-decimal precision. Because BSI and sequential scan compute the
score for all tuples regardless of the value of k, the time for computing top-k
preferences is not significantly affected when increasing k. However, the query
time for STA increases with the increase in the value of k as it takes longer to
meet the stopping the criteria.

Query Time vs. Number of Tuples. To show the scalability of our approach,
we present in Figure 6 the query times for a synthetically generated data set
with a Zipf-1 distribution. We vary the number of rows for this data set from 10
thousand to 10 million rows. The number of attributes is 20, and the data has
been normalized with 3 decimal precision. For this experiment we used a set of
100 weighted, 1-decimal, queries to extract top-20 candidates. In the results we
present the average time taken to process a single query.

As can be seen in Figure 6, not only BSI is faster than both STA and SS,
but also the query time per row remains constant for BSI (aprox. 7 ns/1K rows).
This is not the case for STA, where the query time per row increases by adding
more rows (45 ns/1K rows for a 10K rows data set , and 115 ns/1K rows for a
10M rows data set). Generally, as the number of rows grows, STA takes longer
to reach its stopping criteria and becomes slower.

Query Time vs. Data Skewness. To show the effect of data distribution
over BSI query processing, we vary the distribution of a data set from a uniform

44 G. Guzun et al.

0

500

1000

1500

2000

10 20 50 100 1000

Q
ue

ry
 T

im
e

(m
s)

K

BSI
SS
STA

Fig. 5. Query times comparison when varying Top-k preferences. [Zipf-1, 20-attributes,
10M-rows].

0.001

0.01

0.1

1

10

100

1000

10000

10K 100K 1M 10M

Q
ue

ry
 T

im
e

(m
s)

Number of rows

BSI
SS
STA

Fig. 6. Query times comparison when varying the number of rows. [Zipf-1, 20-attributes
top-20].

(zipf-0) distribution to a Zipfian distribution with the skew factor f = 2 (zipf-
2). The data set used in Figure 7 contains 100 thousand rows and 20 attributes
with 10 bit-slices per attribute. The skewness of the data is towards the smaller
values. For this experiment we use the same set of queries as in the previous one,
for finding top-20 candidates.

As seen in Figure 7, BSI and Sequential Scan (SS) have constant processing
times per query, irrespective of the data distribution, with BSI being more than
twice as fast as SS. On the other hand, STA is highly sensitive to the data
distribution and the query times are comparable to BSI only for highly skewed
data. However, most real data sets have a skew factor lower than two. Zipf’s
Law states that the frequency of terms in a corpus conforms to a power law
distribution where f is around 1 [36]. Also the same tendency has been observed
in network graph data [34].

Slicing the Dimensionality: Top-k Query Processing 45

0

5

10

15

20

uniform zipf-0.5 zipf-1 zipf-1.5 zipf-2

Q
ue

ry
 T

im
e

(m
s)

BSI

SS

STA

Fig. 7. Query time relative to data distribution. [100K-rows, 20-attributes, top-20].

Query Time vs. Attribute Cardinality. The cardinality of the data repre-
sents an important aspect for the BSI index. The higher the cardinality, the more
slices need to be created per attribute. Figure 8 shows the query times for a uni-
formly distributed, synthetically generated data set that varies the attribute car-
dinality from 10 to 1,000,000. The data set has 10 million rows and 5 attributes.
We used a set of 100 weighted queries to extract top-20 candidates. We use
1-decimal queries.

0

50

100

150

200

10 100 1000 10000 1000000

Q
ue

ry
 T

im
e

(m
s)

Cardinality

BSI
SS
STA

Fig. 8. Query time for varying data cardinality. [Uniform, 10M-rows, 5-attributes, top-
20].

Figure 8 shows that the query times for both, STA and BSI, are dependent on
the cardinality of the data. Both perform similarly with the increase in cardinal-
ity. However, for normalized data that is up to 6 decimals, BSI is still faster than
SS, while STA is more than 4 times slower than SS. For lower data cardinalities,
BSI multiplication algorithm 2 performs fewer iterations and thus translate to
faster query times.

46 G. Guzun et al.

Query Time vs. Query Sparsity. Figure 9 compares the query time per-
formance for SS, STA and BSI using sparse and non-sparse weighted queries.
We vary the non-zero query attributes from 1% to 100%. For this measurement
we use a synthetically generated data set with uniform distribution. It contains
100, 000 rows and 1, 000 attributes with 3 decimal precision.

0
20
40
60
80

100
120
140
160
180
200

0 20 40 60 80 100

Q
ue

ry
 T

im
e

(m
s)

Percentage of Non-zero Query Weights

BSI (Q=1 dec) SS (Q=1 dec)
STA (Q=1 dec)

Fig. 9. Query time for sparse queries. [Uniform, 100K-rows, 1K-attributes, top-20].

Both, Sequential Scan (SS) and Sequential Top-k Algorithm (STA) scan
sequentially the table for extracting top-k preferences. This means that regard-
less of the sparseness of the query, the query time will still be dominated by
the scan of the table. On the other hand, TA and BSI are able to exploit the
query sparseness, however TA is about two orders of magnitude slower than BSI.
BSI query times increase only linearly-proportional with the number of non-zero
query attributes added. This is mostly due to the fact that BSI does not need
to load the entire index in memory when performing weight multiplication and
finding top-k. Thus it works with smaller data structures and can also better
exploit the availability of the main memory and the CPU cache. BSI Algorithms
2 and 3 are only invoked for non-zero query attributes. Hence, high-dimensional
data is treated as low dimensional data when the queries are sparse.

Query Time vs. Query Slices. The results in Figure 10 are obtained using the
same data set as in Figure 9. Here we look closer how BSI performs for different
types of preference queries. More precisely, we vary the number of non-zero query
attributes for Boolean queries, and for weighted queries with 1,2 and 3 decimal
weights. The Boolean queries become all-ones queries(Baseline preference) for
100% non-zero boolean query weights. As the figure shows, by increasing the
number of decimals for queries, the BSI Algorithm 2 will run slower, and this is
reflected in the query times. However, for the queries with 50% or less non-zero
attribute weights (500 attributes queried), BSI is still at least 50% faster than
SS and about 25% faster than STA for 3-decimal queries.

Slicing the Dimensionality: Top-k Query Processing 47

0

50

100

150

200

250

0 20 40 60 80 100

Q
ue

ry
 T

im
e

(m
s)

Percentage of Non-Zero Query Weights

BSI (Q=1 dec) SS (Q=1 dec)
BSI (Q=2 dec) BSI (Q=3 dec)
BSI (Boolean Q)

Fig. 10. Query time for different types of queries. [Uniform, 100K-rows, 1K-attributes,
top-20].

0

0.5

1

1.5

2

2.5

top-20 top-50 top-100 top-1K

Q
ue

ry
 T

im
e

(m
s)

K

BSI SS STA

(a) Top-k for the coil2000 data set.
[Rows: 9822, Attributes: 86]

0

0.5

1

1.5

2

2.5

top-20 top-50 top-100 top-1K

Q
ue

ry
 T

im
e

(m
s)

K

BSI SS STA

(b) Top-k for the internet data set.
[Rows: 10104, Attributes: 72]

0

1

2

3

4

5

top-20 top-50 top-100 top-1K

Q
ue

ry
 T

im
e

(m
s)

K

BSI SS STA

(c) Top-k for the kegg-metabolic data
set. [Rows: 53413, Attributes: 24]

0

20

40

60

80

100

120

top-20 top-50 top-100 top-1K

Q
ue

ry
 T

im
e

(m
s)

K

BSI SS STA

(d) Top-k for the poker-hand data set.
[Rows: 1,000,000; Attributes: 11]

Fig. 11. Top-k weighted query on real data (K= 20 - 1,000)

Results for Real Datasets. Figure 11 shows the query times for the four
real data sets described in section 5.1 as the number of query results increases
(increasing k). For querying these data sets we use a set of 1, 000 weighted
queries, uniformly generated, with 1-decimal query weights.

48 G. Guzun et al.

As the figure shows, increasing k when extracting top-k candidates, does not
impact significantly the query time for BSI. In fact, the query time increases by
only 0.01 - 0.03 ms when changing k = 10 to k = 1000 for all four data sets.

The reason is that the top K BSI algorithm is only invoked once after the
scores for all the tuples have been computed. As expected, SS and STA perfor-
mance increases linearly with k.

6 Conclusion

We have introduced a novel algorithm to perform top-k and preferences queries
using bit-sliced indices for high-dimensional data. With the proposed indexing
technique, there is no need to maintain a list of sorted attributes and it is easy
to combine top-k queries with other types of queries for which bitmap indices
have been traditionally recognized for, such as point and range queries. BSI uses
only the number of bit-slices required by data value-range, thus in general, the
index size is always smaller than, the size of the raw data.

In addition since attributes are indexed independently, our techniques can
take advantage of the columnar storage and have the potential to be executed
in parallel. We introduce several algorithms for processing top-k, and top-k
weighted queries while exploiting the fast bit-wise operations enabled by the
BSI index. This approach is robust and scalable for high dimensional data. In
our experimental evaluation we show that by increasing the dimensionality of
the data, BSI query times increase only linearly-proportional to the number of
attributes added. Moreover, the distribution of the data does not affect the query
performance for BSI, while TA and other threshold algorithms using sorted lists
are very sensitive to data distribution.

Since the index is not sorted, updates to the index are more efficient than
when keeping a sorted list. Also, since all the bits are sliced it is possible to
further control the precision of the result and the query time performance by
shedding the least significant bits. Further investigations are required for this
matter, and will be a future research direction. Another future work direction is
the exploration of bitmap compression for top-k queries. This can further reduce
the space requirement of the BSI indices and still allow for fast bit-wise logical
operations.

Acknowledgments. We would like to thank reviewers for their insightful comments
on the paper, as these comments led us to an improvement of the work.

References

1. Ilyas, I.F., Beskales, G., Soliman, M.A.: A survey of top-k query processing
techniques in relational database systems. ACM Comput. Surv. 40(4), 11:1–
11:58 (2008). doi:10.1145/1391729.1391730. http://doi.acm.org/10.1145/1391729.
1391730

2. Pagani, M.: Encyclopedia of Multimedia Technology and Networking, 2nd edn.,
Information Science Reference - Imprint of: IGI Publishing, Hershey (2008)

http://doi.acm.org/10.1145/1391729.1391730
http://doi.acm.org/10.1145/1391729.1391730

Slicing the Dimensionality: Top-k Query Processing 49

3. Böhm, C., Berchtold, S., Keim, D.A.: Searching in high-dimensional spaces: Index
structures for improving the performance of multimedia databases. ACM Comput.
Surv. 33(3), 322–373 (2001). doi:10:1145=502807:502809. http://doi.acm.org/10.
1145/502807.502809

4. Daoudi, I., Ouatik, S.E., Kharraz, A.E., Idrissi, K., Aboutajdine, D.: Vector
approximation based indexing for high-dimensional multimedia databases (2008)

5. Chaudhuri, S., Gravano, L., Marian, A.: Optimizing top-k selection queries over
multimedia repositories. IEEE Trans. on Knowl. and Data Eng. 16(8), 992–1009
(2004). doi:10.1109/TKDE.2004.30. http://dx.doi.org/10.1109/TKDE.2004.30

6. Fagin, R.: Combining fuzzy information from multiple systems (extended abstract).
In: Proceedings of the Fifteenth ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, PODS 1996, pp. 216–226. ACM, New York (1996).
doi:10.1145/237661.237715. http://doi.acm.org/10.1145/237661.237715

7. Long, X., Suel, T.: Optimized query execution in large search engines with global
page ordering. In: Proceedings of the 29th International Conference on Very Large
Data Bases, VLDB 2003, VLDB Endowment, vol. 29, pp. 129–140 (2003)

8. Persin, M., Zobel, J., Sacks-davis, R.: Filtered document retrieval with frequency-
sorted indexes. Journal of the American Society for Information Science 47, 749–
764 (1996)

9. Cao, P., Wang, Z.: Efficient top-k query calculation in distributed networks.
In: Proceedings of the Twenty-third Annual ACM Symposium on Principles
of Distributed Computing, PODC 2004, pp. 206–215. ACM, New York (2004).
doi:10.1145/1011767.1011798. http://doi.acm.org/10.1145/1011767.1011798

10. Wu, M., Xu, J., Tang, X., Lee, W.-C.: Top-k monitoring in wireless sen-
sor networks. IEEE Trans. on Knowl. and Data Eng. 19(7), 962–976 (2007).
doi:10.1109/TKDE.2007.1038

11. Balke, W.-T., Nejdl, W., Siberski, W., Thaden, U.: Progressive distributed top-k
retrieval in peer-to-peer networks. In: Proceedings of the 21st International Con-
ference on Data Engineering, ICDE 2005, pp. 174–185. IEEE Computer Society,
Washington, DC (2005). doi:10.1109/ICDE.2005.115. http://dx.doi.org/10.1109/
ICDE.2005.115

12. Metwally, A., Agrawal, D., Abbadi, A.E.: An integrated efficient solutionfor com-
puting frequent and top-k elements in data streams. ACM Trans. Database
Syst. 31(3), 1095–1133 (2006). doi:10.1145/1166074.1166084. http://doi.acm.org/
10.1145/1166074.1166084

13. Marian, A., Bruno, N., Gravano, L.: Evaluating top-k queries over web-
accessible databases. ACM Trans. Database Syst. 29(2), 319–362 (2004).
doi:10.1145/1005566.1005569. http://doi.acm.org/10.1145/1005566.1005569

14. Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithms for middleware.
In: PODS, pp. 102–113 (2001)

15. Akbarinia, R., Pacitti, E., Valduriez, P.: Best position algorithms for top-k queries.
In: Proceedings of the 33rd International Conference on Very Large Data Bases,
VLDB 2007, VLDB Endowment, pp. 495–506. http://dl.acm.org/citation.cfm?
id=1325851.1325909

16. Yu, A., Agarwal, P.K., Yang, J.: Topk preferences in high dimensions (2014)
17. Gurský, P., Vojtáš, P.: Speeding up the nra algorithm. In: Greco, S., Lukasiewicz,

T. (eds.) SUM 2008. LNCS (LNAI), vol. 5291, pp. 243–255. Springer, Heidelberg
(2008). http://dx.doi.org/10.1007/978-3-540-87993-0 20

18. Mamoulis, N., Cheng, K.H., Yiu, M.L., Cheung, D.W.: Efficient aggregation of
ranked inputs. In: ICDE. IEEE Computer Society, p. 72 (2006)

http://doi.acm.org/10.1145/502807.502809
http://doi.acm.org/10.1145/502807.502809
http://dx.doi.org/10.1109/TKDE.2004.30
http://doi.acm.org/10.1145/237661.237715
http://doi.acm.org/10.1145/1011767.1011798
http://dx.doi.org/10.1109/ICDE.2005.115
http://dx.doi.org/10.1109/ICDE.2005.115
http://doi.acm.org/10.1145/1166074.1166084
http://doi.acm.org/10.1145/1166074.1166084
http://doi.acm.org/10.1145/1005566.1005569
http://dl.acm.org/citation.cfm?id=1325851.1325909
http://dl.acm.org/citation.cfm?id=1325851.1325909
http://dx.doi.org/10.1007/978-3-540-87993-0_20

50 G. Guzun et al.

19. Natsev, A., Chang, Y.C., Smith, J.R., Li, C.-S., Vitter, J.S.: Supporting incremen-
tal join queries on ranked inputs. In: VLDB, pp. 281–290 (2001)

20. Güntzer, U., Balke, W.-T., Kießling, W.: Optimizing multi-feature queries for
image databases, pp. 419–428 (2000)

21. Jin, W., Patel, J.M.: Efficient and generic evaluation of ranked queries. In:
Proceedings of the 2011 ACM SIGMOD International Conference on Man-
agement of Data, SIGMOD 2011, pp. 601–612. ACM, New York (2011).
doi:10.1145/1989323.1989386. http://doi.acm.org/10.1145/1989323.1989386

22. O’Neil, P., Quass, D.: Improved query performance with variant indexes. In: Pro-
ceedings of the 1997 ACM SIGMOD International Conference on Management of
Data, pp. 38–49. ACM Press (1997). http://doi.acm.org/10.1145/253260.253268

23. Rinfret, D., O’Neil, P., O’Neil, E.: Bit-sliced index arithmetic. SIGMOD Rec. 30(2),
47–57 (2001). doi:http://doi.acm.org/10.1145/376284.375669

24. Wu, M.-C., Buchmann, A.P.: Encoded bitmap indexing for data warehouses. In:
ICDE 1998: Proceedings of the Fourteenth International Conference on Data Engi-
neering, pp. 220–230. IEEE Computer Society Washington, DC (1998)

25. Fagin, R., Kumar, R., Sivakumar, D.: Comparing top k lists. In: Proceedings of the
Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2003,
pp. 28–36. Society for Industrial and Applied Mathematics. Philadelphia (2003).
http://dl.acm.org/citation.cfm?id=644108.644113

26. Pang, H., Ding, X., Zheng, B.: Efficient processing of exact top-k queries
over disk-resident sorted lists. The VLDB Journal 19(3), 437–456 (2010).
doi:10:1007=s00778–009–0174–x. http://dx.doi.org/10.1007/s00778-009-0174-x

27. Bast, H., Majumdar, D., Schenkel, R., Theobald, M., Weikum, G.: Io-top-k: Index-
access optimized top-k query processing, In: Proceedings of the 32nd International
Conference on Very Large Data Bases, VLDB 2006, VLDB Endowment, pp. 475–
486 (2006). http://dl.acm.org/citation.cfm?id=1182635.1164169

28. Gurský, P., Vojtáš, P.: On Top-k search with no random access using
small memory. In: Atzeni, P., Caplinskas, A., Jaakkola, H. (eds.)
ADBIS 2008. LNCS, vol. 5207, pp. 97–111. Springer, Heidelberg (2008).
http://dx.doi.org/10.1007/978-3-540-85713-6 8

29. Chuan Chang, K.C., won Hwang, S.: Minimal probing: Supporting expensive pred-
icates for top-k queries. In: SIGMOD, pp. 346–357 (2002)

30. Das, G., Gunopulos, D., Koudas, N., Tsirogiannis, D.: Answering top-k queries
using views. In: Proceedings of the 32nd International Conference on Very Large
Data Bases, VLDB 2006, VLDB Endowment, pp. 451–462 (2006). http://dl.acm.
org/citation.cfm?id=1182635.1164167

31. Cong, G., Jensen, C.S., Wu, D.: Efficient retrieval of the top-k most relevant spatial
web objects

32. Clauset, A., Shalizi, C.R., Newman, M.E.J.: Power-law distributions in empirical
data (2009). doi:10.1137/ 070710111. http://dx.doi.org/10.1137/070710111

33. Pareto, V.: Manual of political economy (1906)
34. lászló Barabáasi, A., Albert, R.: Emergence of scaling in random networks, Science
35. Barabasi, A.-L.: The origin of bursts and heavy tails in human dynamics. Nature

435, 207 (2005). http://www.citebase.org/abstract?id=oai:arXiv.org:cond-mat/
0505371

36. Zipf, G.: Human behaviour and the principle of least-effort. Addison-Wesley, Cam-
bridge (1949). http://publication.wilsonwong.me/load.php?id=233281783

http://doi.acm.org/10.1145/1989323.1989386
http://doi.acm.org/10.1145/253260.253268
http://dl.acm.org/citation.cfm?id=644108.644113
http://dx.doi.org/10.1007/s00778-009-0174-x
http://dl.acm.org/citation.cfm?id=1182635.1164169
http://dx.doi.org/10.1007/978-3-540-85713-6_8
http://dl.acm.org/citation.cfm?id=1182635.1164167
http://dl.acm.org/citation.cfm?id=1182635.1164167
http://dx.doi.org/10.1137/070710111
http://www.citebase.org/abstract?id=oai:arXiv.org:cond-mat/0505371
http://www.citebase.org/abstract?id=oai:arXiv.org:cond-mat/0505371
http://publication.wilsonwong.me/load.php?id=233281783

SeeVa: A Model Based Framework for Semantic
Web Service Discovery

Roberto De Virgilio1(B) and Devis Bianchini2

1 Dipartimento di Ingegneria, Università Roma Tre, Rome, Italy
dvr@dia.uniroma3.it

2 Dipartimento di Ingegneria dell’Informazione, Università degli Studi di Brescia,
Brescia, Italy

bianchin@ing.unibs.it

Abstract. Semantic Web service (SWS) discovery has gained more and
more attention, leading to a great number of service matchmaking
approaches. Existing approaches are based on SWS descriptions expressed
according to a single specification (e.g., OWL-S, WSMO and SAWSDL).
In this paper we propose a service matchmaking algorithm based on a
SWS meta-model that abstracts the features of all the most common SWS
specifications. The algorithm performs SWS comparison by increasingly
relaxing matchmaking constraints, in order to maximize effectiveness of
the discovery procedure, in terms of precision and recall. Moreover, to
speed up algorithm performances, we provide SeeVa, an efficient repre-
sentation of the SWS meta-model on which the algorithm is based. SeeVa
is a storage system that includes a Datalog engine to enable language-
independent reasoning capabilities. We evaluate the algorithm on public
datasets containing SWS descriptions expressed using different specifica-
tions. Experiments demonstrate how the proposed approach outperforms
main existing service matchmaking solutions both in terms of precision
and recall and in terms of response time, thanks to the storage system
and the Datalog engine.

1 Introduction

Web services promote easy access to remote content and application function-
ality, independent of the provider’s platform and the service implementation.
Available Web services are made accessible by providers to (Web service)
requesters through the specification of their interface (i.e., the operations, input/
output and fault messages), their bindings (i.e., the networking details about
how the messages must be expressed to interact with the service) and the end-
points where a service is available, using the Web Service Description Language
(WSDL). Web service interface description is exploited by requesters to find Web
services, aggregate them as components to form composite services, and invoke
them according to the details provided within WSDL bindings.

Automatic Web service discovery becomes a crucial step to pursue the com-
position and invocation of Web services [34]. It enables the automatic retrieval

c© Springer-Verlag Berlin Heidelberg 2014
A. Hameurlain et al. (Eds.): TLDKS XIV, LNCS 8800, pp. 51–82, 2014.
DOI: 10.1007/978-3-662-45714-6 3

52 R. De Virgilio and D. Bianchini

of Web services, hereafter denoted with Web service advertisements, that match
a given Web service request (i.e., the description of a desired Web service as
formulated by the requester). Since requesters have access to the Web service
interface for performing search, service matchmaking is mainly based on com-
parison between interface elements. Performing keyword-based comparison to
find Web services is hampered by the inner ambiguity of keywords, such as
polisemy (i.e., the same term refers to different concepts) and synonymy (i.e.,
the same concept is pointed out using different terms). In Web resource discov-
ery in general, polisemy increases the number of false positives (i.e., non-relevant
services included among search results), while synonymy increases the number of
false negatives (i.e., relevant services not included among search results). False
positives negatively affect the search precision, while false negatives worsen the
search recall. To address these issues, Semantic Web technologies [32] have been
widely applied. Semantic Web technologies conceptualize semantics of Web ser-
vice descriptions with concepts explicitly defined in (domain) ontologies. When
automatic service discovery is based on Semantic Web technologies, we denote
is as Semantic Web Service (SWS) discovery. It has been widely addressed,
but it is still a challenging research topic [27]. Several semantic Web service
discovery approaches have been proposed in literature [2,21,24], based on differ-
ent ways to conceptualise service semantics [3,14,26] (see Section 2). Different
approaches also apply distinct techniques for determining the degree of match
between the request and the advertisement. Logic-based approaches [15,17,24]
use reasoning techniques based on Description Logics (that mainly rely on the
tableau algorithm [30]) to distinguish among exact matches and mismatches.
Similarity-based approaches [13,28] apply techniques from Information Retrieval
(IR) and concept distance over ontologies/thesauri. Hybrid approaches [2,19,21,
22] use reasoning techniques of logic-based ones, but also tolerate partial/ap-
proximate match through the application of similarity-based techniques. Hybrid
solutions add flexibility (thus increasing recall of search results) to the preci-
sion of the logic-based techniques. Our aim in this paper is to propose a hybrid
service matchmaking algorithm based on a semantic Web service meta-model
that abstracts the features of all the most common SWS specifications. The
meta-model is in turn built upon a meta-meta-model defined in [9] to repre-
sent the primitives of Semantic Web ontology languages (e.g., the Ontology
Web Language, OWL). This enables to provide an efficient representation of the
model within SeeVa1, a storage system based on a Datalog engine that includes
language-independent reasoning capabilities on a relational implementation of
the constructs used to represent both the semantic Web service descriptions
and the ontology used to conceptualise their semantics. We evaluate the algo-
rithm on public datasets containing SWS descriptions expressed using different
specifications.

In [8], we provided a first solution to the problem by relying on the repre-
sentation of the WSDL document using the constructs of the meta-meta-model.
We also proposed a service matchmaking approach that is purely based on logic
1 SeeVa is the sanskrit transliteration of the english word service.

SeeVa: A Model Based Framework for Semantic Web Service Discovery 53

reasoning on the meta-meta-model. Here we extended that work as follows: (i)
we define the semantic Web service meta-model; (ii) we describe the service
matchmaking algorithm; (iii) we formulate the algorithm using the constructs
of the meta-meta-model and we translate it as a set of Datalog programs and
rules, in order to efficiently perform service matchmaking.

The paper is organized as follows. Section 2 provides some preliminary defini-
tions and examples useful to understand the next sections of the paper. Section 3
describes the semantic Web service meta-model and how it is represented within
the SeeVa storage system. The hybrid service matchmaking algorithm is detailed
in Section 4. Section 5 provides implementation issues and the evaluation of the
algorithm, by means of: (i) a comparison with related work to clarify the cutting-
edge features of our approach compared to existing solutions, (ii) the description
of performed experiments. Finally, future work and concluding remarks are dis-
cussed in Section 6.

2 Background and Examples

Almost all the semantic Web service discovery approaches rely on semantic Web
service specifications like OWL-S (Ontology Web Language for Services) [26],
WSMO (Web Service Modeling Ontology) [3] and SAWSDL (Semantic Anno-
tations for WSDL) [14]. Although some solutions are based on ad-hoc semantic
Web service representations [2,17], they also extract such a representation from
semantic Web service descriptions expressed in OWL-S, WSMO or SAWSDL.
Therefore, we can consider the features of these three specifications for designing
our service meta-model without loss of completeness. The most widely adopted
solutions for semantic Web service description provide an upper level ontol-
ogy (OWL-S) and a conceptual model (WSMO) to represent Web services and
their semantic annotations or start from the WSDL specification and extend it
with semantic annotations with concepts taken from a domain-specific ontology
(SAWSDL).

Semantic Web Service Specifications. Specifically, semantic Web services
are Web service descriptions enriched with: (i) the specification of semantic
meaning of Web service elements (e.g., operations, input/output and fault mes-
sages), pursued through the semantic annotation of such elements with concepts
taken from domain ontologies (hereafter, ontologies); (ii) semantic constraints as
logical expressions to describe the state of the domain before the execution of
the Web service (pre-conditions) and after its execution (post-conditions). We
envision a registry where semantic Web service advertisements are made avail-
able to requesters. For introducing the examples of this section we defined an
ontology, TravelOnt, whose TBox is partially formalized in Fig. 1 using Descrip-
tion Logics. It is up to the community of Web service providers and requesters,
with the help of an expert in ontology representation formalisms, to create such
an ontology depending on their needs.

54 R. De Virgilio and D. Bianchini

Accomodation � ∃locatedIn.Destination � ∃reservedThrough.Booking �
∃hasActivity.Activity � ∃reservedBy.Reservation,

Bed&Breakfast � Accomodation, Hotel � Accomodation,

LuxuryHotel � Hotel, Lodge � Accomodation,

UrbanArea � Destination, Town � UrbanArea,

City � UrbanArea, Capital � City,

RuralArea � Destination, NationalPark � RuralArea, Beach � Destination,

B&BBooking � Booking, LodgeBooking � Booking,

Relax � Activity, Spa � Relax, Sauna � Relax, FinnishSauna � Sauna,

Sport � Activity, Surfing � Sport, Hiking � Sport,

Reservation � ∃totalAmount.Price � ∃payment.PaymentMethod �
∃includes.Service,

CreditCard � PaymentMethod, Breakfast � Service

Fig. 1. A portion of the TravelOnt.owl ontology (expressed using Description Logics),
used for the semantic annotation of Web services in the running example

OWL-S (Ontology Web Language for Services). The OWL-S proposal
defines an upper level OWL service ontology, where a semantic Web Service is
described by three properties: it presents a ServiceProfile, describing what the
service does, it is describedBy a ServiceModel, describing how the service works,
and it supports a ServiceGrounding for its invocation. The ServiceProfile con-
tains information about the functionality the service provides (functional descrip-
tion) and the service category within any classification systems (e.g., UNSPSC2),
which are used for Web service discovery purposes. The functional description
characterizes the service functionality in terms of the information transformation
(represented by Inputs and Outputs, IO) and the state change produced by the
execution of the service (represented by Preconditions and Effects, PE). The
OWL-S ServiceProfile does not contain a schema to describe IOPE: such a schema
is provided within the ServiceModel and represents the ontological concepts that
are associated to the IO and expressions associated to PE.

Example. The semantic Web service advertisement shown in Fig. 2 is expressed
using the OWL-S specification. The service has two inputs (City,CreditCard)
and three outputs (LuxuryHotel, Sauna and Spa), associated to concepts with
the same name defined in the travel ontology. OWL-S ontology also provides
means to organize service profiles in order to position a service within a classi-
fication or a broader array of services to further facilitate their discovery. The
most natural way to do this is to build a profile hierarchy, represented as an OWL
ontology (more details can be found in http://www.daml.org/services/owl-s/
1.0/ProfileHierarchy.html). For instance, in Fig. 3 the LuxuryHotel profile
is defined as a subclass of Booking services.

2 United Nations Standard Products and Services CodeR© (UNSPSCR©):
http://www.unspsc.org

http://www.unspsc.org

SeeVa: A Model Based Framework for Semantic Web Service Discovery 55

<rdf:RDF <!ENTITY travel "http :// localhost :8080/ TravelOnt.owl">
<Service rdf:ID="LuxuryHotel_Booking_service">
<presents rdf:resource="#LuxuryHotel_profile"/>
<describedBy rdf:resource="#LuxuryHotel_process"/>
<supports rdf:resource="#LuxuryHotel_grounding"/>

</Service >
<profile:Profile rdf:ID="LuxuryHotel_profile">
<profile:hasInput rdf:resource="#CITY"/>
<profile:hasInput rdf:resource="#CREDIT_CARD"/>
<profile:hasOutput rdf:resource="#LUXURY_HOTEL"/>
<profile:hasOutput rdf:resource="#SAUNA"/>
<profile:hasOutput rdf:resource="#SPA"/>

</profile:Profile >
<process:Input rdf:ID="CITY">
<process:parameterType rdf:datatype="anyURI">

&travel;#City
</process:parameterType >

</process:Input>
<process:Input rdf:ID="#CREDIT_CARD">
<process:parameterType rdf:datatype="anyURI">

&travel;# CreditCard
</process:parameterType >

</process:Input>
<process:Output rdf:ID="#LUXURY_HOTEL">
<process:parameterType rdf:datatype="anyURI">

&travel;# LuxuryHotel
</process:parameterType >

</process:Output>
<process:Output rdf:ID="SAUNA">
<process:parameterType rdf:datatype="anyURI">

&travel;#Sauna
</process:parameterType >

</process:Output>
<process:Output rdf:ID="SPA">
<process:parameterType rdf:datatype="anyURI">

&travel;#Spa
</process:parameterType >

</process:Output>
...

Fig. 2. An example of Semantic Web service description expressed using OWL-S

<rdf:RDF
<!ENTITY profile "http ://www.daml.org/services/

owl -s/1.0/ Profile.owl">
<!ENTITY travel "http :// localhost :8080/ TravelOnt.owl">

...
<owl:Class rdf:ID="&travel;# Booking">

<rdfs:subClassOf rdf:resource="&profile ;# Profile"/>
</owl:Class>
<owl:Class rdf:ID="LuxuryHotel_profile">

<rdfs:subClassOf rdf:resource="&travel;# Booking"/>
</owl:Class>

...
</rdf:RDF>

Fig. 3. An example of Web service profile hierarchy using OWL-S

56 R. De Virgilio and D. Bianchini

WSMO (Web Service Modeling Ontology). In the WSMO proposal a
semantic Web Service is described by four top-level elements: (i) ontologies, to
provide the terminology used by other WSMO elements to describe the relevant
aspects of the domain of interest; (ii) Web services, to describe the computational
entity that provides some values in the domain (they correspond to advertise-
ments); (iii) goals, to represent the Web service request; (iv) mediators, to deal
with interoperability problems between different WSMO elements. Goals and
Web services are described by capabilities, used for discovery purposes. Capa-
bilities define Web services by means of: pre-conditions and post-conditions (to
specify the information space of the Web service before and after its execution),
assumptions and effects (to describe the state of the domain before and after
the execution of the Web service). Pre-conditions and post-conditions are sim-
ple axioms to denote that IO are instances of given classes within the ontology
and correspond to IO semantic annotation. Assumptions and effects correspond
to OWL-S PE.

Example. Let us consider the semantic Web service advertisement shown in
Fig. 4. In the example, the travel ontology is imported and assigned to the
travel namespace prefix. The Web service presents two inputs, annotated with
the City and CreditCard concepts (using pre-condition axioms) and two out-
puts, annotated with the Accomodation and FinnishSauna concepts (using post-
condition axioms). Axioms are logical expressions represented in WSML (Web
Service Modeling Language) [20]. The notation ?x is used to denote variables.
The counterpart of OWL-S profile hierarchy in WSMO is achieved through medi-
ators, that can be used to link Web services, thus enabling to define new Web
services by refining existing ones. For instance, a new Web service can be defined
and a mediator can be used to state that it refines the Web service shown in
Fig. 4 by adding more constraints in terms of WSML axioms.

SAWSDL (Semantic Annotations for WSDL). According to the SAWSDL
proposal, semantic annotation is performed through a modelReference attribute

namespace travel: <<http://localhost:8080/TravelOnt.owl>>
webservice <<http://...Booking.wsml>>

importOntologies <<http://...TravelOntology.owl>>
capability
sharedVariables ?City, ?CreditCard, ?Accomodation, ?FinnishSauna
precondition definedBy

?City memberOf travel:City
precondition definedBy

?CreditCard memberOf travel:CreditCard
postcondition definedBy

?Accomodation memberOf travel:Accomodation
postcondition definedBy

?FinnishSauna memberOf travel:FinnishSauna

Fig. 4. An example of semantic Web service description expressed using WSMO

SeeVa: A Model Based Framework for Semantic Web Service Discovery 57

that associates a concept within an ontology to: (i) the wsdl:interface tag to
annotate the whole Web service (e.g., through a category taken from a service
categorization); (ii) the wsdl:operation tag to annotate an operation; (iii) any
element tag within the types part of the specification, to annotate Web service
IO. Semantic annotations obtained through the modelReference attribute are
used for semantic Web service discovery. PE can be added to the SAWSDL spec-
ification by referencing, through the modelReference attribute, external docu-
ments where conditions are defined, without any commitment on the adopted
logical formalism.

Example. For instance, in the semantic Web service description shown in Fig. 5,
expressed using the SAWSDL specification, the operation is annotated using the
LodgeBooking concept, presents two inputs, annotated with the concepts City
and Room, and only one output, annotated with the concept Lodge.

Web Service Matchmaking. Web service matchmaking is defined as a pro-
cess that requires a repository of Web service advertisements and a Web service
request as input, and returns all advertisements that may potentially match the
requirements specified in the Web service request [17]. Most Web service match-
makers use the IOPE model (Input-Output-Precondition-Effect) to represent
Web service advertisements and requests, since they rely on the OWL-S ontol-
ogy, the WSMO conceptual model or the SAWSDL specification. There can be
different kinds of match between a service advertisement S and a request R.
In literature, the kinds of match are formalized starting from the definition of
plug-in match defined in [36]. According to this definition, a Web service adver-
tisement plugs into the service request if, for each required output, the Web
service advertisement provides an equivalent or more specific output and, for
each input in the Web service advertisement, there is an equivalent or more
specific input in the request R. This definition ensures that the inputs specified
within the request R are enough to execute the advertisement S. Starting from
the definition of plug-in match, other kinds of match are defined. In Section 4
we will describe the kinds of match we considered in our service matchmaking
algorithm.

3 Semantic Web Service Model

The model we adopt to represent both Web service advertisements and requests
aims at summarizing the elements from OWL-S, WSMO and SAWSDL that are
commonly used for Web service discovery purposes.

Web Service Advertisements. Formally, we define a Web service advertise-
ment S as a set composed of the following elements opS :

opS = 〈Cop
S , INop

S , OUT op
S 〉 (1)

58 R. De Virgilio and D. Bianchini

<wsdl:description
xmlns:wsdl="http ://www.w3.org/ns/wsdl"
xmlns:xs="http ://www.w3.org /2001/ XMLSchema"
xmlns:sawsdl="http ://www.w3.org/ns/sawsdl"
xmlns:travel="http :// locahost :8080/ TravelOnt.owl">

<wsdl:types>
<xs:schema>
<xs:element name="BookingRequest">
<xs:complexType >
<xs:sequence >
<xs:element name="City"
sawsdl:modelReference="travel#City"/>
<xs:element name="Room"
sawsdl:modelReference="travel#Room"/>

</xs:sequence >
</xs:complexType >

</xs:element >
<xs:element name="BookingResponse">
<xs:complexType >
<xs:sequence >
<xs:element name="Lodge"
sawsdl:modelReference="travel#Lodge"/>

</xs:sequence >
</xs:complexType >

</xs:element >
</xs:schema>

</wsdl:types>

<wsdl:interface name="bookingInterface">
<wsdl:operation name="booking"
pattern="http ://www.w3.org/ns/wsdl/in-out"
sawsdl:modelReference="travel#LodgeBooking">

<wsdl:input element="BookingRequest"/>
<wsdl:output element="BookingResponse"/>

</wsdl:operation >
</wsdl:interface >

<wsdl:service name ="reservationService"
interface="bookingInterface">
...

</wsdl:service >
</wsdl:description >

Fig. 5. An example of semantic Web service description expressed using SAWSDL

Each opS element corresponds to: (i) an operation according to the SAWSDL
specification; (ii) a service profile according to the OWL-S ontology; (iii) a capa-
bility according to the WSMO conceptual model. Cop

S represents a set of onto-
logical concepts used to semantically characterize the whole opS element. These
concepts can be used to model: (a) the categories (common to all the opS within
the same advertisement S) if any Web service categorization schema exists within
the repository of service advertisements (e.g., by means of profile hierarchies in
the OWL-S ontology); (b) the concepts used to annotate interfaces according to
the SAWSDL specification (common to all the opS within the same advertise-
ment S); (c) the concepts used to annotate operations according to the SAWSDL
specification. The idea is that a semantic characterization of operations should
be considered as a first, coarse-grained criteria to identify candidate services.

SeeVa: A Model Based Framework for Semantic Web Service Discovery 59

Categories can be used to semantically characterize a Web service and, within
the same Web service, additional concepts, if any, can be considered to charac-
terize each single operation. More in-depth semantic description of Web service
advertisements is given on IO. INop

S (resp., OUT op
S) represents a set of concepts

used to annotate the (operation) inputs (resp., outputs). In Formula (1) we did
not include the logical expressions that represent the pre- and post-conditions
(according to the SAWSDL and OWL-S terminologies) or the assumptions and
effects (according to the WSMO terminology), since, to the best of our knowl-
edge, this holds for the hybrid matchmakers and there are no systems that
implement a real integrated IOPE matching. Actually, the inclusion of (com-
plex) logical expressions would require that semantic Web service providers are
experienced in their formulation. This requirement could be considered for ad-
hoc situations, that we will investigate as future work with a proper extension
of our work.

Example. Let us consider the three examples of semantic Web service descriptions
given in Section 2. The OWL-S description shown in Fig. 2 and Fig. 3 is modeled
as a single-operation Web service S1:

opS1 = 〈Booking,{City,CreditCard},{LuxuryHotel,Sauna,Spa}〉
The WSMO description shown in Fig. 4 is modeled as a single-operation Web
service S2:

opS2 = 〈∅,{City,CreditCard},{Accomodation,FinnishSauna}〉
The SAWSDL description shown in Fig. 5 is modeled as a single-operation Web
service S3:

opS3 = 〈{LodgeBooking},{City,Room},{Lodge}〉
For clarity reasons, in these examples we referred to concepts using their names
only. Actually, each concept is uniquely identified by its name within the domain
ontology used for semantic annotation.

Web Service Request. A Web service request is defined as the set of require-
ments to find a given functionality. According to this vision, a request R is
represented as a set CR of concepts used for a coarse-grained semantic charac-
terization of the functionality to search for and two sets of inputs (INR) and
outputs (OUTR) to better specify the required Web service:

R = 〈CR, INR, OUTR〉 (2)

where each concept is uniquely identified by its name within the domain ontology.

Example. To find a Web service that enables to book an hotel with sauna
by specifying the city where the hotel is located and the credit card as pay-
ment method, R is formulated as follows, with reference to the TravelOnt.owl
ontology:

60 R. De Virgilio and D. Bianchini

R = 〈Booking,{City,CreditCard},{Hotel,Sauna}〉
During Web service matchmaking, R is matched against opS of available Web
service advertisements.

3.1 Model-Based Web Service Storage

We follow the approach proposed in [1] for the management of heterogeneous
data models in a uniform way, where a meta-model, composed of a set of generic
constructs, is defined to enable the representation of both meta-data and data
according to the semantic Web service description shown in Formula (1) and
primitives used in semantic Web specifications, such as the Resource Description
Framework Schema (RDFS) and OWL. The adoption of the meta-model presents
two main advantages: (i) it provides a framework in which different semantic Web
specifications can be handled in a uniform way and (ii) it allows the definition of
language-independent reasoning capabilities. In [9–11] we defined Nyaya, a sys-
tem for the management of Semantic-Web data, which couples a general-purpose
and extensible storage mechanism with efficient ontology reasoning and querying
capabilities. In particular, Nyaya exploits a profitable relational implementation
of the meta-model. This implementation enables to exploit indexing and parti-
tioning techniques to guarantee good performances when the tables become very
large. In this section we summarize the features of Nyaya. Our aim in this paper
is to exploit the meta-model and the Nyaya implementation to store both the
semantic Web service descriptions according to Formula (1) and the represen-
tation of ontologies used for Web service semantic annotation within the same
storage system. This would enable efficient reasoning capabilities on datasets of
semantic Web services expressed according to different languages. The innova-
tive service matchmaking algorithm discussed in the next section partially relies
on such a storage system, thus exploiting its reasoning capabilities.

The Meta-model. Nyaya proposes a simple meta-model M, that can be rep-
resented as M = {C1, C2, . . . , Cn}, where Ci are constructs with the following
structure:

Ci = (OIDi, attr1i , . . . , attrf
i , ref1

i , . . . , refm
i) (3)

where OIDi is the object identifier, attrj
i is the j-th property of the construct

Ci and refk
i is the k-th reference toward other constructs. In this section, we

first present the constructs of the meta-model and then we detail how elements
involved in the representation of both the Web Service interface (i.e. S) and
the semantic annotation (i.e. A) are mapped into the contructs of M. The
constructs of M are logical predicates, each of which represents a primitive
used in a Semantic Web language (e.g., RDFS and OWL) for describing the
domain of interest. Each construct is associated with an object identifier, a name,
a set of properties and a set of references to other constructs. The approach
is basically independent of the actual storage model (e.g., relational, object-
oriented, or XML-based). However, since the SeeVa storage system relies on a

SeeVa: A Model Based Framework for Semantic Web Service Discovery 61

Fig. 6. A fragment of the meta-model used to represent both the ontology and the
semantic Web service descriptions

relational implementation of the meta-model, in the following we assume that
each construct corresponds to a relational table.

In Fig. 6 we show an UML-like diagram representing a fragment of M con-
taining the main constructs of OWL-QL (OWL Query Language). Schema-level
constructs are distinguished from instance-level constructs. The rectangles rep-
resent constructs and the arrows references between them. Notice how the core
of M (enclosed in the dashed box) can serve to represent the facts of both OWL-
QL and RDFS(DL) ontologies, that contain the set of RDFS constructs that can
be expressed using Description Logics, and therefore are tractable. In particular
the DataProperty table has a reference to the Class it belongs to and has
the range data type (e.g., integer or string) as attribute. The ObjectProperty
relation is used to represent RDF statements between individuals and has two
references to the subject class and the object class involved in the statement.
In addition, it has attributes that specify notable features of the property. The
Individual relation is used to model resources that are instances of the class
specified by its ClassOID property. i-DataProperty and i-ObjectProperty
have been defined in a similar way. The full specification of the meta-model
embeds several others constructs; exploiting the notion of meta-model, a strong
point of the approach is the extendibility. If the meta-model is not recognized
as expressive enough for user’s purposes, new constructs (with references and

62 R. De Virgilio and D. Bianchini

Fig. 7. Semantic representation of the WSDL Schema elements

properties) and/or new properties can be added. However for our purposes, in
the following we will refer to the fragment shown in Fig. 6. The adoption of
a meta-model able to describe all the language constructs of interest has two
main motivations. On the one hand, it provides a framework in which Semantic
Web languages can be handled in a uniform way, enabling to switch between
the different languages and to define language-independent reasoning capabil-
ities [9,10]. On the other hand the separation of concerns, employed into the
approach, allows for modeling data and metadata at different layers (e.g., con-
ceptual, logical and physical).

The Meta-model in Action: Representing Semantic Web Services. We
characterize the set of basic constructs to describe a WSDL document, denoted
with MWSDL, we select the fragment of the meta-model M illustrated in Fig. 6,
denoted with Mfragment, and we define a mapping between the two collections
of constructs. This mapping represents a semantic representation of S. For-
mally, we define MWSDL at the conceptual layer through the following con-
tructs: Cdescription, Ctypes, Cinterface, Cbinding and Cservice.

Such model represents the core set of constructs to describe a WSDL doc-
ument. The main component is Cdescription, which presents the attribute tar-
getNamespace to identify the WSDL components occurring in the document.
Cdescription is related to four top-level elements: Ctypes describes the format of
messages used by the service as inputs and outputs; Cinterface describes the
abstract the functionality of the service; Cbinding specifies the implementation
details necessary to access the service, that is, a concrete message format and

SeeVa: A Model Based Framework for Semantic Web Service Discovery 63

communication protocols of the interface for each operation; finally, Cservice

describes where the service can be accessed. We enrich MWSDL adding other
constructs such as Coperation, Cmessage and so on.

The semantic representation of a WSDL document at the conceptual layer
results from the mapping between MWSDL and Mfragment. Fig. 7 shows the
resulting semantic representation of the elements in the abstract part of the
WSDL. We used a graph representation where nodes correspond to Class, red
edges to ObjectProperty, green edges to DataProperty and purple edges to
SubClass relations between classes. The semantic representation of the WSDL
Binding elements at schema level follows the same notation and has been omit-
ted, since our matchmaking approach does not rely on binding elements, as for
the other service matchmakers proposed in literature.

Fig. 8. Semantic representation of a sample service

Example. Let us consider the running example in Section 2. Fig. 8 shows the
resulting semantic representation of the service S1 at conceptual layer consider-
ing instance-level constructs, where nodes correspond to Individual and Class,
while edges correspond to I-ObjectProperty and I-DataProperty. At the
logical layer, we represent the constructs as illustrated in Fig. 9 (schema-level
constructs) and Fig. 10 (instance-level constructs). The figure provides the rela-
tional implementation of corresponding constructs in the meta-model. For the
sake of simplicity, we omitted some attributes.

Each table at instance-level presents the references to the corresponding
entries at schema level. In the figure we used short names as uriService or uri-
Interface to simplify the notation. To import the semantic annotation we follow
a similar procedure and we link the annotation with the corresponding WSDL.
Fig. 11 shows how the semantic annotation associated with S1 is imported in
our system. At schema level we introduced two entries Booking and City in
the Class table representing two ontological concepts and one entry linkTO
in ObjectProperty, representing the reference annotation between a WSDL

64 R. De Virgilio and D. Bianchini

Class
OID name
oid1 Service

oid2 InterfaceOperation

oid3 Interface

oid4 InputMessage

DATAPROPERTY
OID name type classOID
oid8 name interface xsd:string oid3

oid9 name service xsd:string oid1

OBJECTPROPERTY
OID name subjectOID objectOID
oid5 has operation oid3 oid2

oid6 implements oid1 oid3

oid7 has message oid2 oid4

Fig. 9. An example of relational implementation of schema-level constructs in the
SeeVa storage system

Individual
OID URI ClassOID
ind1 uriService oid1

ind2 uriOperation oid2

ind3 uriInterface oid3

ind4 uriMessage oid4

I-DATAPROPERTY
OID name value IndividualOID PropertyOID
data1 name service reservationService ind1 oid8

data2 name interface bookingInterface ind3 oid9

I-OBJECTPROPERTY
OID name subjectIndOID objectIndOID PropertyOID
obj1 has operation ind3 ind2 oid5

obj2 implements ind1 ind3 oid6

obj3 has message ind2 ind4 oid7

Fig. 10. An example of relational implementation of instance-level constructs in the
SeeVa storage system

Class
OID name
oid0 Thing

oid2 InterfaceOperation

oid4 InputMessage

oid11 Booking

oid12 City

Individual
OID URI ClassOID
ind2 uriOperation oid2

ind4 uriMessage oid4

ind5 uriAnnotation1 oid11

ind6 uriAnnotation2 oid12

OBJECTPROPERTY
OID name subjectOID objectOID
oid7 has message oid2 oid4

oid13 linkTO oid0 oid0

I-OBJECTPROPERTY
OID name subjectIndOID objectIndOID PropertyOID
obj3 has message ind2 ind4 oid7

obj4 linkTO ind2 ind5 oid13

obj5 linkTO ind4 ind6 oid13

Fig. 11. An example of relational implementation of semantic annotations in the SeeVa

storage system

SeeVa: A Model Based Framework for Semantic Web Service Discovery 65

component and a concept. In this case we introduced the entry Thing because
the domain and range of linkTO are generic (unknown). At instance level we
have two entries in the Individual table identified by OIDs ind5 and ind6, rep-
resenting instances (e.g., annotations) of Booking and City, respectively, and two
entries in I-ObjectProperty identified by OIDs obj4 and obj5, representing
instances of linkTO.

4 Model-Based Service Discovery

Different kinds of match between the Web service request and Web service adver-
tisements are checked according to seven steps, that are described in the follow-
ing. Hereafter, we consider semantic Web service descriptions with only one
operation. At the end of this section we will discuss how to extend the approach
to semantic Web service descriptions with more than one operation.

Coarse-grained Web Service Filtering. This step is performed by relying on
the set Cop

S of each advertisement S and the set CR of the Web service request
R as defined in Equation (2); this step filters out advertisements S that do not
satisfy the following condition: ∀cR∈CR ∃cS∈Cop

S such that cS≡cR or cS	cR.
This ensures that only Web service advertisements that provide operations/ca-
pabilities/profiles that are classified using the same or more specific concepts
compared with the ones specified in the request are considered. Among them,
more in-depth matching analysis based on the other kinds of match is checked.
In the running example, opS1 satisfies this condition (since Cop

S1
=CR), as well as

opS2 (since Cop
S2

is not specified) and opS3 (since MotelBooking	Booking).

Input Compatibility Checking. The input parameters of each Web service
advertisement that has not been filtered out during the previous step are anal-
ysed in order to state if they are compatible with the inputs specified in the
request R; compatibility in this case is recognized iff the following condition
holds: ∀inS∈INop

S ∃inR∈INR such that inR≡inS or inR	inS . This ensures that
the inputs specified within the request R are enough to execute S. We distinguish
among strong input compatibility (when inR≡inS holds) and weak input com-
patibility (when inR	inS holds) of S with respect to R. For instance, S1 and S2

present a strong input compatibility with respect to R since INop
S1

=INop
S2

=INR;
S3 does not present any kind of input compatibility, since there is no a corre-
sponding input in INR for the concept Room∈INop

S3
.

Exact Match Evaluation. Exact match between the Web service request and
a Web service advertisement S ensures that S and R represent exactly the same
service. An exact match is recognized iff S and R present a strong input com-
patibility and the following condition holds: ∀outR∈OUTR ∃outS∈OUT op

S such
that outS≡outR. This condition is very restrictive. For instance, in the running
example no Exact matches can be recognized. This ensures high precision, but
Exact match constraints must be relaxed to include more search results, thus
increasing the recall of the discovery process.

66 R. De Virgilio and D. Bianchini

Plug-in Match Evaluation. A Plug-in match between S and R is recog-
nized iff they present an input compatibility and the following condition holds:
∀outR∈OUTR ∃outS∈OUT op

S such that outS	outR. This kind of match derives
from the software engineering domain, where plug-in is used to check if a given
software component (the request) can be substituted by another component
(the advertisement). For instance, the service S1 presents a Plug-in match
with the request R since, among the outputs in OUT op

S1
, LuxuryHotel	Hotel

and Sauna≡Sauna. This still ensures high precision since all the requirements
are satisfied, but also includes additional matching results, thus increasing the
recall.

Relaxed Match Evaluation. A Relaxed match between S and R is recog-
nized iff they present an input compatibility and the following condition holds:
∀outR∈OUTR ∃outS∈OUT op

S such that outS	outR or outR is a direct less spe-
cific concept compared with outS , that is outR	outS , but there is only one
subclass relationship between them. In our approach, we rank different adver-
tisements S that present a Relaxed match with R by defining a match degree
Relaxeddeg(S,R) as follows:

Relaxeddeg(S,R) =

∑
i,j SimH(outiS , outjR)

|OUTR| ∈ [0, 1] (4)

where i, j are indexes ranging over the set of elements in OUT op
S and OUTR,

respectively, |·| denotes set cardinality and pairs 〈outS , outR〉 are the ones used
to check the Relaxed match. The similarity measure SimH∈[0, 1] between two
concepts c1 and c2 according to a given concept hierarchy is defined as follows:

SimH(c1, c2) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if c1 = c2
0.8L if there are L subClass relations

between c1 and c2
0 otherwise

(5)

The value 0.8 has been proved to be optimal in our past experiments on con-
cept affinity [2]. For instance, the service S2 presents a Relaxed match with the
request R since, among the outputs in OUT op

S2
, FinnishSauna	Sauna (SimH() =

0.8) and Accomodation
Hotel (SimH() = 0.8), therefore Relaxeddeg(S2,R) =
(0.8 + 0.8)/2 = 0.8.

Partial Match Evaluation. A Partial match may occur if: (i) neither a
strong nor a weak input compatibility holds; (ii) there exists a requested output
outR∈OUTR such that ∀outS∈OUT op

S outS�outR≡⊥; (iii) both (i) and (ii) are
satisfied. If an equivalence or a path of subClass relationships cannot be found
between two concepts, there can be several reasons: (i) the two concepts may have
only a common ancestor within the ontology (for instance, Hotel and Lodge);
(ii) they can be related concepts, but defined in different ontologies; (iii) the two
concepts are not related at all. In the first case, the following similarity measure
SimCA is adopted:

SeeVa: A Model Based Framework for Semantic Web Service Discovery 67

SimCA(c1, c2) = 0.8L1+L2 (6)

where L1 (resp., L2) is the number of subClass relations between c1 (resp., c2)
and the common ancestor. To check if two concepts are related, although they
are defined in different ontologies, we rely on term similarity techniques based
on WordNet, that have been successfully applied in the context of Web service
discovery, as extensively described in [2]. We use the names of concepts as terms.
In WordNet, the meaning of terms is defined by means of synsets. Synsets are
related by eighteen different kinds of relationships. In particular, hyponymy/hy-
pernymy relations are used to represent the specialization/generalization rela-
tionship between two terms. For instance, the concept Inn is not defined within
the reference ontology in our running example, but, within WordNet, it is among
the synonyms of the Lodge term and it is among the direct hyponyms of the
Hotel term. This means that there is a term similarity, denoted as Simt, both
between Inn and Hotel and between Inn and Lodge. The similarity between
two terms corresponding to the names of concepts c1 and c2 is maximum (that
is, equal to 1.0) if the terms belong to the same synset or coincide; otherwise, if
they belong to different synsets, a path of hyponymy/hypernymy relations that
connects the two synsets is searched: the highest the number of relationships
in this path, the lowest the term similarity. The overall Partial match degree
Partialdeg(S,R)∈[0, 1] is computed as follows

Partialdeg(S,R) =
1
2

∑
i,j Sim(outiS , outjR)

|OUTR| +
1
2

∑
h,k Sim(inh

R, ink
S)

|INop
S | (7)

where i, j are indexes ranging over the sets of elements in OUT op
S and OUTR,

respectively, h, k are indexes ranging over the sets of elements in INR and
INop

S , respectively, |·| denotes the set cardinality and Sim(c1, c2) corresponds
to one of the similarity measures among: (i) SimH , if c1	c2 within the same
ontology; (ii) SimCA, if c1 and c2 presents a common ancestors within the
same ontology; (iii) Simt, if c1 and c2 do not belong to the same ontology,
but the terms corresponding to their names are related within WordNet. For
instance, the service S3 presents a Partial match with respect to R since,
among the inputs within INop

S3
, Room is not provided in R (that is, there is

no input compatibility between R and S3). Moreover, if we consider OUTR and
OUT op

S3
, Hotel and Lodge have a common ancestor within the reference ontology,

that is, SimCA(Hotel,Lodge) = 0.82 = 0.64, therefore Partialdeg(S3,R) =
1/2·[1.0/2] + 1/2·[0.64/1] = 0.57. Relaxed and Partial matches constitute a
relaxation compared with the first two kinds of match since, when a required
output is not found, a more generic or semantically related output is searched for
within the Web service advertisement. In particular, in the Partial match eval-
uation, also the input compatibility check is relaxed. This ensures better recall,
while at the same time the precision is only slightly negatively affected, thanks to
the ontology-based computation of SimH and the WordNet-based computation
of SimCA, as confirmed by experimental results.

68 R. De Virgilio and D. Bianchini

Ranking and Filtering. The kinds of match explained above present a decreas-
ing level of precision and an increasing level of recall since each of them corre-
sponds to a relaxation of constraints compared with the previous one. Therefore,
we defined a ranking among them according to the ranking function ≺m, where
if m1≺mm2 then m1 is ranked better than m2:

Exact ≺m Plug-in ≺m Relaxed ≺m Partial

Within the last two kinds of match, ranking is based on Relaxeddeg and
Partialdeg evaluation, while no ranking is required among Exact and Plug-
in matches, since they all represent search results that completely satisfy the
request. Finally, a threshold-based filtering is performed, by including among
search results all Exact and Plug-in matches, all Relaxed matches such as
Relaxeddeg≥δ and Partial matches such as Partialdeg≥δ, where δ is the
threshold set by the requester.

Discussion. Till now, we considered Web service advertisements Si with only
one operation. If there are Si with more operations, the goal becomes to find a
Web service advertisement that is able to provide, in one of its operations, the
required INR and OUTR. In this case, Si is split into several advertisements
(one for each operation) and the discovery procedure is performed in the same
way (that is, additional operations provided by Si are ignored). This is the same
rationale behind match evaluation for what concerns requested outputs. If an
advertisement Si presents more operations that match against R, then the best
one (according to the ranking step) is chosen.

4.1 The Hybrid Matchmaking Algorithm

The hybrid matchmaking algorithm we designed relies on the Roman principle of
divide et impera to enable an iterative reduction of the search space Σ (identified
as the set of Web service advertisements that can potentially match the request
R) in order to accelerate the Web service discovery procedure. The pseudo-code
of the algorithm is shown in Algorithm 1. In the algorithm, an advertisement
is featured by three properties: the kind of input compatibility among strong,
weak or none (Si.IN comp, see row 5); the similarity degree Si.simDegree (see
row 18); the kind of match Si.match (see row 24).

Firstly, on row 1 some buffer variables are initialized: the set of discovery
results (Σ′), the sets that will contain the advertisements with a strong and a
weak input compatibility wrt the request (Σstrong and Σweak, respectively), the
set that will contain the partial matches (Σpartial). The instruction on row 2
concerns the exclusion from the search space Σ of all the advertisements that
have been filtered out during the coarse-grained Web service filtering step. A
second step concerns the input compatibility checking (rows 3-12). For each
advertisement in Σ, it is checked if |INop

S |≤|INR|: if it is false, neither the
strong nor the weak input compatibility conditions can be satisfied; otherwise
the input compatibility conditions are checked and the sets Σstrong and Σweak

are properly populated.

SeeVa: A Model Based Framework for Semantic Web Service Discovery 69

Algorithm 1. Hybrid matchmaking algorithm
Input : The set of Web service advertisements Σ, a Web service request R, a

similarity threshold δ.
Output: The ranked set Σ′ of advertisements that match against R.

Σ′ ← ∅; Σstrong ← ∅; Σweak ← ∅; Σpartial ← ∅;1

Σ ← coarseGrainedFilter(Σ,R);2

foreach Si ∈Σ do3

if (|INop
Si

|≤|INR|) then4

Si.IN comp ← checkInputComp(Si,R);5

if Si.IN comp == ’strong’ then Σstrong ← Σstrong ∪ {Si };6

else7

if Si.IN comp == ’weak’ then Σweak ← Σweak ∪ {Si };8

else Si.IN comp ← ’none’;9

Compute ΣExact on Σstrong;10

Σ′ ← Σ′ ∪ ΣExact;11

Compute ΣPlug-in and ΣRelaxed on Σstrong ∪ Σweak;12

Σ′ ← Σ′ ∪ ΣPlug-in;13

foreach Si ∈ΣRelaxed do Si.simDegree ← Relaxeddeg(Si,R);14

Rank ΣRelaxed wrt Si.simDegree;15

Σ′ ← Σ′ ∪ ΣRelaxed;16

foreach Si ∈Σ \ Σ′ do17

if (min(|OUT op
S |,|OUTR|)/|OUTR|+min(|INR|,|INop

S |)/|INop
S |≥ 2δ) then18

Check Partial match between Si and R;19

if Si.match == ’partial’ then20

Si.simDegree ← Partialdeg(Si,R);21

if Si.simDegree ≥ δ then Σpartial ← Σpartial ∪ {Si };22

Rank Σpartial wrt Si.simDegree;23

Σ′ ← Σ′ ∪ Σpartial;24

return Σ′;25

The advertisements that present an Exact match with the request R are
extracted as follows:

ΣExact =
|OUTR|⋂

j=1

ΣOUT (outjR) (8)

where ΣOUT (outjR), with j = 1, . . . |OUTR|, denotes the advertisements that
provide an output that has been semantically annotated with a concept
outjR∈OUTR or an equivalent one. The ΣExact set is computed on the adver-
tisements that belong to the Σstrong set only (rows 13-14). The advertisements
that present a Plug-in match with the request R are extracted as follows:

70 R. De Virgilio and D. Bianchini

ΣPlug-in =

⎡

⎣
|OUTR|⋂

j=1

(ΣOUT (outjR) ∪ Σ̂OUT (outjR))

⎤

⎦ − ΣExact (9)

where Σ̂OUT (outjR), with j = 1, . . . |OUTR|, denotes the advertisements that
provide an output that has been semantically annotated with a concept that is
more specific than outjR∈OUTR. The advertisements that present a Relaxed
match with the request R are extracted as follows:

ΣRelaxed = [
⋂|OUTR|

j=1 (ΣOUT (outjR)∪
Σ̂OUT (outjR) ∪ ΣOUT (outjR))]
−ΣPlug-in

(10)

where ΣOUT (outjR), with j = 1, . . . |OUTR|, denotes the advertisements that
provide an output that has been semantically annotated with a concept that
is more generic than outjR∈OUTR. The sets ΣPlug-in and ΣRelaxed are com-
puted on the advertisements that belong to the Σstrong and Σweak sets (rows
15-20). In the running example, ΣOUT (Hotel) = ∅, Σ̂OUT (Hotel) = {S1},
ΣOUT (Hotel) = {S2}, ΣOUT (Sauna) = {S1}, Σ̂OUT (Sauna) = {S2}, ΣOUT

(Sauna) = ∅. Therefore, ΣPlug-in = {S1} ∩ {S1,S2} = {S1} and ΣRelaxed =
{S1,S2} ∩ {S1,S2} − {S1} = {S2}.

Rows 21-29 show the partial match evaluation. Partial match evaluation is
not performed if the condition on row 22 is not satisfied. Consider R and S3 in
the running example. If the threshold is δ = 0.8, then the maximum possible
value for Partialdeg is the one expressed in the condition on row 22, that is,
0.75. This value can be obtained if all the Sim(c1, c2) values in the Partialdeg

are equal to 1.0. In this example, whatever are the IO of R and S3, Partialdeg

will be always below δ = 0.8 and S3 will be excluded from search results (that is,
Partial match evaluation can be avoided). The strong points of the algorithm
concern the instructions introduced to reduce the search space and speed up the
discovery procedure (see rows 2, 4, 13, 15, 22). Moreover, ranking and filtering of
results with respect to the similarity degree is always performed within a single
kind of match (see rows 19 and 28), thus reducing the computation time, as
confirmed by experimental results.

4.2 Exploitation of the SeeVa Storage System

Datalog± rules. Reasoning and querying in Nyaya are based on Datalog±

[4,5], a family of rule-based languages that extends Datalog [6]. In Datalog±

language, Datalog is extended by allowing features such as existential quan-
tifiers, the equality predicate, and the truth constant false to appear in rule
heads. At the same time, the resulting language is syntactically restricted, so
as to achieve decidability and in some relevant cases even tractability. This fea-
tures are required for an effective and efficient reasoning over data. Web Service
matchmaking is performed on top of Nyaya through the formulation of Datalog±

SeeVa: A Model Based Framework for Semantic Web Service Discovery 71

rules that use predicates, classes and roles presented in the previous section. In
Datalog± rules, a unary predicate corresponds to each class and a binary pred-
icate corresponds to each role. For instance, the atom Service(X) corresponds
to the class Service and the atom implements(X,Y) corresponds to the role
implements. Rules are combined to form Datalog± programs, which check the
different kinds of match. In particular, referring to the semantic representation
of the WSDL Schema elements in Fig. 7, the subset ΣOUT (outjR) is extracted
as follows:

OUT(?x,outiSR
) :- Service(?x), implements(?x,?y), Interface(?y),

has operation(?y,?z), interfaceOperation(?z), has message(?z,?o),
outputMessage(?o), elementContent message(?o,?e), Element(?e),
linkTO(?e,outiSR

)

The subset Σ̂OUT (outjR) is obtained as follows:

ÔP (?x,op) :- OP(?x,op)
ÔP (?x,op) :- ÔP (?x,?y), subClass(?y,op)

The subset ΣOUT (outjR) is obtained as follows:

ÔP (?x,op) :- OP(?x,op)
ÔP (?x,op) :- ÔP (?x,?y), subClass(?y,op)

Finally, the subset ΣC(cn
R) is computed as follows:

OP(?x,opSR
) :- Service(?x), implements(?x,?y), Interface(?y),

has operation(?y,?z), InterfaceOperation(?z),
linkTO(?z,opSR

)

Translation of Datalog± rules into storage programs. The Datalog± rules
are formulated as queries on the database. Therefore Nyaya provides a set of
storage-programs to map the entities involved in the query into the logical rep-
resentation of the database. For the sake of clearness, in the following example
programs we express, for each predicate, the name of attributes, their values
(constant or variable). Moreover we use the prefix TMP to indicate those pred-
icates that do not get materialized into the database, since at the moment we
do not want to incur into view maintenance problems. For instance the follow-
ing storage program is associated with the Datalog± rule corresponding to the
subset ΣC(cn

R):

TMP_OP(S: I1, op: C2) :- Class(OID: C1, Name: ’Service’),
Individual(OID: I1, Uri: U1, ClassOID: C1),
ObjectProperty(OID: O1, Name: ’implements’),
i-ObjectProperty(SubjIndOID: I1, ObjIndOID: I2,

PropertyOID: O1),
ObjectProperty(OID: O2,

Name: ’has_interfaceOperation’),
i-ObjectProperty(SubjIndOID: I2, ObjIndOID: I3,

PropertyOID: O2),
ObjectProperty(OID: O3, Name: ’linkTO’),

72 R. De Virgilio and D. Bianchini

i-ObjectProperty(SubjIndOID: I3, ObjIndOID: I4,
PropertyOID: O3),

Individual(OID: I4, ClassOID: C2),
Class(OID: C2, name: N)

Similarly we write the storage programs for the other Datalog± rules pro-
ducing the temporary predicate TMP OUT with attributes S and out (such as
we produce the temporary predicate TMP IN with attributes S and in). There-
fore, given Out1, ..., Outn output names and IN1, ..., INh input names,
we write the storage programs of the EXACT match rule r1 as follows:

TMP_EXACT(S: Y) :- TMP_OP(S: Y, op: N),
TMP_OUT(S: Y, out: W1), ...,
TMP_OUT(S: Y, out: Wn),
TMP_IN(S: Y, out: Z1), ...,
TMP_IN(S: Y, out: Zh)

where W1, ..., Wn (resp., Z1, ..., Zh) are OIDs in the table Class corre-
sponding to Out1, ..., Outn (resp., IN1, ..., INh) values for the attribute
name. Referring to the example in the previous sections, we can rewrite r1 using
the value Booking for N, Accomodation and Activity as Out1, ..., Outn and
City as IN1, ..., INh.

Finally we introduce a set of reasoning-level programs to provide the reason-
ing capabilities: the result is the final Datalog± program executed by Nyaya.
The reasoning-level program changes across different ontological formalisms. Cur-
rently, we exploit the inference rules for subsumption capabilities in DL − Lite
ontologies. For instance, referring to the previous section, the program p1 is
written as follows:

TMP_OP_V(S: I1, op: C2) :- TMP_OP(S: I1, op: C2)
TMP_OP_V(S: I1, op: C3) :- TMP_OP(S: I1, op: C2),

SubClass(ClassOID: C2, SubClassOID: C3)

where, if we want to instantiate p1, C2 corresponds to the OID in Class, where
the attribute name has value Booking. We can write in the same way the PLUGIN
rule r4 and the PARTIAL program p2.

5 System Validation

5.1 Implementation Issues

The architecture of the SeeVa framework is shown in Fig. 12. It is based on
the Nyaya architecture described in [9]. The main components are the Service
Manager, the Importer, the Storage System, the Reasoner and the MatchMaker.

The Service Manager (SM) is in charge of capturing the collection of semantic
Web service descriptions. Both the OWLS-MX [21] and the SAWSDL-MX [22]
matchmakers expose prototype tools to extract service descriptions both from
the WSDL and the corresponding semantic annotation. We imported the out-
puts of such tools into the SeeVa framework. SM also presents a Conformer

SeeVa: A Model Based Framework for Semantic Web Service Discovery 73

Fig. 12. The SeeVa framework architecture

to standardize the WSDL 1.1 representation into 2.03. Then a Semantic Anno-
tation Extractor extracts the semantic annotation associated with the service
description. We consider RDF, RDFS, and OWL as annotation models. However our
approach is extensible to other ontologies.

A Service Importer (SI) and an Annotation Importer (AI) parse the WSDL 2.0
document and the corresponding semantic annotation, respectively. The former
extracts elements and attributes from the WSDL document through our meta-
model describing the constructs of interest in the WSDL schema4. The latter
extracts the TBox (terminological) axioms and the ABox (assertional) facts from
the annotation.

The Storage System of Nyaya populates a relational database with the incom-
ing WSDL elements (data) and semantic annotations (meta-data). TheConverter
is in charge of associating each construct of the source model to the corresponding
3 The Conformer exploits the converter available at http://www.w3.org/2006/02/

WSDLConvert.html
4 http://www.w3.org/TR/2006/CR-wsdl20-primer-20060327/wsdl20-primer-diff.

html

WSDL
TBox
ABox
http://www.w3.org/2006/02/WSDLConvert.html
http://www.w3.org/2006/02/WSDLConvert.html
http://www.w3.org/TR/2006/CR-wsdl20-primer-20060327/wsdl20-primer-diff.html
http://www.w3.org/TR/2006/CR-wsdl20-primer-20060327/wsdl20-primer-diff.html

74 R. De Virgilio and D. Bianchini

primitive of the meta-model and storing the elements accordingly. The Reasoner
is composed of a rule-based engine and a basic set of inference rules defined by
means of a Rule Manager that dictates how new information can be inferred from
ground facts and ontological domain knowledge.

The MatchMaker implements the service matchmaking algorithm. It exploits
the Reasoner to perform logic-based reasoning and it also extracts semantic Web
service descriptions and annotations from the relational database to evaluate
Relaxeddeg and Partialdeg evaluation. The latter capabilities are implemented
within a Similarity Evaluator module, that is based on the WordNet lexical
system and has been implemented using the WordNet Java library. A Query
Front-End allows Web service requesters to submit Datalog± programs in a user
friendly way5.

5.2 Comparison with Related Work

Table 1 shows a comparison between SeeVa and some service matchmaking
approaches, that represent the features of similarity-based [13,28], logic-based
[15,17,24] and hybrid ones [2,12,19,21,22]. The comparison is based on: (i) the
different Web service specifications to which the approach can be applied; (ii)
the matching information that is returned by the matchmaking procedure (such
as the kind of match and the similarity measure); (iii) when the similarity eval-
uation is applied (if any).

Similarity-Based Approaches. Similarity-based approaches do not classify
discovery results using the kinds of match, but provide a quantitative evalua-
tion of the similarity degree between Web service request and advertisements,
that is, a numeric value computed by applying different techniques (data mining
techniques, structured graph matching, concept distance over ontologies/the-
sauri, content-based information retrieval metrics, etc.) to the elements in Web
service descriptions. These approaches are usually not based on semantic Web
service descriptions, but only applied to WSDL: WOOGLE (Web Service Search
Engine) [13] uses a clustering algorithm for identifying relationships among the
terms used within WSDL and evaluates operations, input and output similarities
based on the relationships; URBE (Uddi Registry By Example) [28] evaluates
the similarity degree fSim by taking into account the names of Web service ele-
ments (semantic analysis) and the number of operations and of their parameters
(structural analysis). URBE also has a semantic extension, where concepts used
to annotate operations and IO parameters according to the SAWSDL specifica-
tion are considered. Other similarity-based approaches present the same features
highlighted in Table 1 for [13,28]. Recent approaches [33,35] use clustering for
Web service discovery. Authors in [35] apply techniques to group Web services by
exploiting tags assigned by users. Tags are intended to provide additional contex-
tual and semantic information compared to WSDL-based Web service descrip-
tion, although their semantics is not as explicit as for semantic descriptions based
5 Look at www.nyaya.eu for a demo.

www.nyaya.eu

SeeVa: A Model Based Framework for Semantic Web Service Discovery 75

either on OWL-S, WSMO or SAWSDL. In [33] an information retrieval technique
known as latent semantic analysis is applied to the collection of WSDL files, to
cluster similar services, using WordNet as lexical database. No formal semantic
tools, such as ontologies, are applied here. Such approaches assume that seman-
tics of terms for Web service description is shared between service consumers
and providers and their success relies on this assumtpion, that constitutes their
main limitation.

Logic-Based Approaches. Logic-based approaches model both Web service
request and advertisements as a set of logical expressions or constraints (e.g.,
restrictions on the Web service input/output class, expressed as a simple or com-
plex ontological concept) [15–17,24]. In [17] the overall expression representing
an OWL-S service profile is mapped into a single SHIQ(D) expression and DL-
based deductive facilities are applied to check if a Web service advertisement
satisfies all the request constraints and only them (Exact match), satisfies all
the constraints but adds additional restrictions (Plug-in match) or satisfies only
a subset of the request constraints (Partial match). Similarly, in [15] partial
matches are checked investigating the compatibility between S and R in terms of
concept intersection or non-disjointness (S�R) with respect to a knowledge base
or ontology. Ontology-based service discovery approaches [7,29] can be classified
among logic-based ones. These efforts usually refer to a single ontology, which
can be a limitation in a decentralized environment, and are oriented towards
precision maximization; therefore, they are characterized by low recall values.

Hybrid Approaches. Hybrid matchmaking approaches apply in a combined
way logic-based and similarity-based techniques. In this way, they try to increase
both precision and recall of search results. OWLS-MX [21], WSMO-MX [19],
SAWSDL-MX [22] work in very similar ways: if logic-based comparison fails, an
approximate match is introduced (called nearest-neighbor match within OWLS-
MX and SAWSDL-MX or fuzzy similarity match within WSMO-MX) where ser-
vice matchmaking is evaluated through different IR metrics (loss-of-information
measure, extended Jacquard similarity coefficient, cosine similarity value, Jensen-
Shannon information divergence-based similarity value). In MAMAS [12], when
a constraint in the Web service request is not satisfied by any constraint in
the Web service advertisement, a penalty is assigned. The higher is the total
penalty, the lower is the compatibility between the request and the adver-
tisement. In FC(Functional Compatibility)-MATCH [2], a DL-based Web ser-
vice advertisement description S is extracted from SAWSDL specification and
described through sets of concepts representing categories, operations, inputs
and outputs. Matching degree is computed by considering both logic-based
subsumption between concepts and the text similarity between concept names
according to terminological relationships extracted from WordNet, thus enabling
a de-facto comparison across different ontologies. The only approach that
abstracts from the adopted specification is MDSM (Model-Driven Service Match-
maker) [23], which relies on existing hybrid solutions (OWLS-MX, WSMO-
MX and SAWSDL-MX) and invokes them depending on the semantic Web

76 R. De Virgilio and D. Bianchini

Table 1. Model-driven comparison of approaches for Web service matchmaking

Approach Web service model Kinds of match Similarity evaluation
WOOGLE [13] WSDL - Over the whole service
URBE [28] WSDL/SAWSDL - Over the whole service
Grimm [15] DL-based from OWL-S Exact, Plug-in, -

Subsumes, Intersection,
Disjoint

Horrocks and Li [17] DL-based from OWL-S Exact, Plug-in, -
Subsumes, Intersection,
Disjoint

Lausen et al. [24] WSMO Exact, Plug-in, -
Subsumes, Intersect,
Disjoint

FC-MATCH [2] DL-based from SAWSDL Exact, Plug-in, For intersection match
Subsumes, Intersection,
Mismatch

MAMAS [12] DL-based representation Exact, Plug-in, Penalties on the whole
Subsumes, Intersection, service
Disjoint

WSMO-MX [19] WSMO Equivalence, Plug-in, For fuzzy similarity match
Inverse-plug-in, Intersection,
Fuzzy similarity,
Neutral, Disjunction

OWLS-MX [21] OWL-S Exact, Plug-in, For nearest-neighbor match
Subsumes, Subsumed-by,
Nearest-neighbor, Fail

SAWSDL-MX [22] SAWSDL Exact, Plug-in, For nearest-neighbor match
Subsumes, Subsumed-by,
Nearest-neighbor, Fail

SeeVa OWL-S/WSMO/SAWSDL Exact, Plug-in, For Relaxed and Partial
Relaxed, Partial, match
Fail

service description specification. To address Web service discovery across dif-
ferent specifications, approaches like the one described in [23] rely on existing
language-specific solutions and invoke them depending on the specification used
for representing both the Web service advertisements (i.e., the descriptions of
available Web services) and the Web service request. Therefore, for each com-
parison they rely on the features and reasoning capabilities of each language-
specific matchmaker. Compared to existing solutions, SeeVa presents a Web
service model that integrates the features of existing semantic Web service spec-
ifications and provides an hybrid algorithm based on such a model where different
similarity measures are applied depending on the kind of match and enables Web
service comparison across different ontologies.

5.3 Experimental Results

We compared our framework against representative solutions among the related
work. Specifically, we performed a comparison against: (i) the logic-based ser-
vice matchmaker OWLS-M0 and its hybrid variant OWLS-MX [21], which uses
the cosine similarity if logic-based comparisons fail; (ii) another hybrid service
matchmaker, SAWSDL-MX [22], which computes the extended Jacquart simi-
larity coefficient if logic-based comparisons fail; (iii) the similarity-based match-
maker URBE [28], considering the semantic extension that extracts Web service
descriptions from their SAWSDL specifications.

SeeVa: A Model Based Framework for Semantic Web Service Discovery 77

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
Precision−Recall Curve

Recall

P
re

ci
si

on

SAWSDL−MX TextSim (eJAC)
OWLS−M0
OWLS−MX TextSim (Cos)
URBE
SeeVa

Fig. 13. Precision-Recall curve of the compared Web service matchmaking approaches

Datasets. For experimental comparison, we used the SME2 Semantic Web Ser-
vice Matchmaker Evaluation Environment v2.16. Within the SME2 environment,
we used two public available datasets. The first one is OWL-S Service Retrieval
Test Collection (OWLS-TC, version 4), a collection of 1083 OWL-S1.1 Web
services. The second dataset is the SAWSDL Service Retrieval Test Collection
(SAWSDL-TC, version 3), containing 1080 SAWSDL Web services. Each dataset
contains 42 queries used to perform the experiments. For each dataset, queries
have already been associated with relevant service advertisements, thus enabling
the evaluation of precision/recall for each matchmaking algorithm. OWLS-M0
and OWLS-MX have been applied on the OWLS-TC4, SAWSDL-MX and URBE
have been applied on SAWSDL-TC3. We applied our approach to the union set
of the two datasets and we verified that SeeVa outperforms the other approaches
in terms of precision and recall and query response time. All the experiments
were performed on a dual quad core 2.66GHz Intel Xeon, running Linux Gentoo,
with 8 GB of memory, 6 MB cache and a 2-disk 1Tbyte striped RAID array, and
on PostgreSQL 8.3.

Matchmaking Effectiveness. Precision P (i.e., the ratio of the number of
relevant retrieved Web services to the total number of retrieved Web services)
and recall R (i.e., the ratio of the number of relevant retrieved Web services to
the total number of relevant Web services in the dataset) have been adopted to
evaluate the performances of compared approaches. For each level rj of recall
we calculated the average max precision of queries in [rj , rj+1], i.e. P (rj) =
1

|Q| ·
∑

q∈Q maxrj≤r≤rj+1P (r), where Q is the set of queries and we used κ = 10
recall levels within the [0..1] range, that is, recall levels are at equidistant steps i

κ ,
where i = 1. . .κ. The graph in Fig. 13 shows the Precision-Recall curve for all the
6 http://projects.semwebcentral.org/projects/sme2/

http://projects.semwebcentral.org/projects/sme2/

78 R. De Virgilio and D. Bianchini

AP TOP−5 TOP−10
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

SAWSDL−MX TextSim (eJAC)
OWLS−M0
OWLS−MX TextSim (Cos)
URBE
SeeVa

Fig. 14. Comparison between service matchmaking approaches with respect to the
TOP-n precision Pn and the Average Precision AP metrics

compared matchmakers. The SeeVa framework shows good results compared to
hybrid solutions such as OWLS-MX and SAWSDL-MX and compared to URBE.
Good precision results of the URBE matchmaker are due to a semantic-based
evaluation of service similarity, which increases the precision values compared to
other kinds of similarity-based approaches, that perform text-based comparisons
and suffer from the presence of synonyms within the descriptions of compared
services, and makes URBE precision comparable to OWLS-M0 matchmaker.
Hybrid solutions maintain high precision and high recall values since they are
able to recognize relevant results also among matches that are neither Exact
not Plug-in, due to the evaluation of similarity degree. Recall of SeeVa is main-
tained high also for high precision values, compared to the other hybrid solutions,
thanks to the evaluation of Partialdeg among results that contain concepts rep-
resented within different ontologies (see Section 4).

Precision and recall do not take into account the ranking order in the result
set. Therefore, we also computed the TOP-n precision Pn and the Average Pre-
cision AP. The TOP-n precision Pn is the average precision at a given cutoff
point n, that is, the precision computed on the first n results

Pn =
1

|Q|
∑

q∈Q

|Σn
q ∩ Rq|

n
(11)

where Σn
q is the set of first n returned services for query q and Rq is the set of

relevant services in the dataset for query q. The Average Precision AP is defined
as follows

AP =
1

|Q|
∑

q∈Q

{
1

|Rq| |Σ
|Σq|
r=1 isrel(r)

count(r)
r

}

(12)

SeeVa: A Model Based Framework for Semantic Web Service Discovery 79

0 200 400 600 800 1000 1200
0

50

100

150

200

250

300

350

#Services

A
ve

ra
ge

 q
ue

ry
 r

es
po

ns
e

tim
e

(m
se

c)

OWLS−MX TextSim (Cos)
OWLS−M0
URBE
SAWSDL−MX TextSim (eJAC)
SeeVa v1
SeeVa v2

Fig. 15. Comparison service matchmaking approaches with respect to the average
response time

where Σq is the set of returned services for query q, isrel(r) = 1 if the result at
rank r is relevant and 0 otherwise and count(r) =

∑r
i=1 isrel(i). Fig. 14 shows

the AP , P 5 and P 10 values for the compared matchmakers. SeeVa again out-
performs the other solutions thanks to the differentiation between Relaxeddeg

and Partialdeg, that is not performed by the other hybrid solutions.

Performance Evaluation. Fig. 15 shows the average query response time
(msec) with respect to the increasing number of services to test the scalability
of the systems. The goal of this experiment is to demonstrate how our approach
does not pay its increased precision and recall in terms of worse query response
time, but its response time is in line with the other ones and does not signif-
icantly worsen as the number of compared services increases. To evaluate the
response time, we submitted all the queries in the datasets to the matchmak-
ers. For each submission, we calculated the time needed to finish the execution
of the matchmaking procedure (we did not consider preliminary operations of
matchmakers to load Web service descriptions, see for details the SME environ-
ment). We performed each evaluation ten times and we computed the average
time. In all cases, the maximal deviation from the average was no more than
3%. The results are very promising. For each kind of match the SeeVa average
query response time is always in the range [0, 200] msec. This is due both to
the internal data organization of our system and, in particular, to the optimiza-
tion heuristics implemented within the matchmaking algorithm (see Section 4.1).
SeeVa outperforms the other matchmakers. In particular, it outperforms SeeVa
v1, the preliminary version of the framework proposed in [8], where we did not
use the storage system introduced here and we did not implement any optimiza-
tion heuristics in the matchmaking algorithm.

80 R. De Virgilio and D. Bianchini

6 Concluding Remarks

The adoption of different SWS specifications impacts upon the scope of the
Web service discovery process. In this paper we propose a SWS model that
abstracts the elements of all the most common specifications and we provide an
efficient representation of the model within SeeVa, a storage system based on
a Datalog engine that enables language-independent reasoning capabilities. The
SWS model and its representation within SeeVa are the starting point for a new
hybrid service matchmaking algorithm, where we implemented new mechanisms
to speed up and improve the retrieval of relevant Web services that match a given
Web service request. Experimental results demonstrated the accuracy of the pro-
posal, in terms of precision and recall, and its efficiency. Following existing service
matchmakers, we did not include pre- and post-conditions within the model. This
choice has also been influenced by the lack of pre- and post-conditions examples
in the available benchmarks and datasets. These aspects must be investigated
as future extension of the model. Moreover, since the model has been studied
for Web service discovery purposes, its application for Web service composi-
tion deserves additional research. Finally, Quality of Service (QoS) is another
orthogonal perspective that should be considered after a functionality-based ser-
vice selection [18]. The integration of all these aspects is crucial to enable testing
of our approach in real world applications of semantic Web services, spanning
from Smart Grids [31] to service use in Industry 4.0 [25].

References

1. Atzeni, P., Cappellari, P., Torlone, R., Bernstein, P.A., Gianforme, G.: Model-
independent schema translation. VLDB Journal 17(6), 1347–1370 (2008)

2. Bianchini, D., Antonellis, V.D., Melchiori, M.: Flexible Semantic-based Service
Matchmaking and Discovery. World Wide Web Journal 11(2), 227–251 (2008)

3. Bussler, C., de Bruijn, J., Feier, C., Fensel, D., Keller, U., Lara, R., Lausen, H.,
Polleres, A., Roman, D., Stollberg, M.: Web Service Modeling Ontology. Applied
Ontology 1(1), 77–106 (2005)

4. Cal̀ı, A., Gottlob, G., Lukasiewicz, T.: A General Datalog-Based Framework for
Tractable Query Answering over Ontologies. In: PODS. pp. 77–86 (2009)

5. Cal̀ı, A., Gottlob, G., Pieris, A.: Advanced processing for ontological queries. In:
VLDB. pp. 554–565 (2010)

6. Ceri, S., Gottlob, G., Tanca, L.: What you always wanted to know about Datalog
(and never dared to ask). IEEE TKDE 1(1), 146–166 (1989)

7. Chhun, S., Moalla, N., Ouzrout, Y.: Ontology-based approaches for semantic ser-
vice selection in business process re-engineering. In: Enterprise Interoperability VI.
pp. 63–73 (2014)

8. De Virgilio, R., Bianchini, D.: A metamodel approach to flexible semantic web
service discovery. In: CIKM. pp. 1309–1312 (2010)

9. De Virgilio, R., Nostro, P.D., Gianforme, G., Paolozzi, S.: A scalable and extensible
framework for query answering over RDF. World Wide Web Journal 14, 599–622
(2011)

10. De Virgilio, R., Orsi, G., Tanca, L., Torlone, R.: Semantic data markets: a flexible
environment for knowledge management. In: CIKM. pp. 1559–1564 (2011)

SeeVa: A Model Based Framework for Semantic Web Service Discovery 81

11. De Virgilio, R., Orsi, G., Tanca, L., Torlone, R.: Nyaya: A system supporting
the uniform management of large sets of semantic data. In: ICDE. pp. 1309–1312
(2012)

12. Di Sciascio, E., Di Noia, T., Donini, F.: Semantic Matchmaking as Non-Monotonic
Reasoning: A Description Logic Approach. Journal of Artificial Intelligence
Research 29, 269–307 (2007)

13. Dong, X., Halevy, A.Y., Madhavan, J., Nemes, E., Zhang, J.: Similarity Search for
Web Services. In: VLDB. pp. 372–383. Toronto, Canada (2004)

14. Farrell, J., Lausen, H.: Semantic Annotations for WSDL and XML Schema. Tech.
rep., W3C (2007)

15. Grimm, S.: Semantic Web Services: Concepts, Technologies, and Applications,
chap. Discovery: Identifying Relevant Services, pp. 211–244. Springer (2007)

16. Hobold, G., Siqueira, F.: Discovery of Semantic Web Services compositions based
on SAWSDL annotations. In: IEEE 19th Int. Conference on Web services (2012)

17. Horrocks, I., Li, L.: A Software Framework for Matchmaking Based on Semantic
Web Technology. Int. Journal of Electronic Commerce (IJEC) 8(4), 331–339 (2004)

18. Iordache, R., Moldoveanu, F.: QoS-Aware Web Service Semantic Selection Based
on Preferences. In: Int. Symposium on Intelligent Manufacturing and Automation.
pp. 1152–1161 (2014)

19. Kaufer, F., Klusch, M.: WSMO-MX: A Logic Programming Based Hybrid Ser-
vice Matchmaker. In: Proc. of the 4th European Conference on Web Services
(ECOWS06). pp. 161–170. Zurich, Switzerland (2006)

20. Kifer, M., Lara, R., Polleres, A., Zhao, C., Keller, U., Lausen, H., Fensel, D.: A
logical framework for web service discovery. In: Proceedings of the ISWC 2004
Workshop on Semantic Web Services (2004)

21. Klusch, M., Fries, B., Sycara, K.: OWLS-MX: a hybrid Semantic Web service
matchmaker for OWL-S service. Journal of Web Semantics 7(2), 121–133 (2009)

22. Klusch, M., Kapahnke, P.: Semantic Web Service Selection with SAWSDL-MX.
In: Proc. of 2th Int. Workshop on Service Matchmaking and Resource Retrieval in
the Semantic Web (SMRR08). pp. 3–18. Germany (2008)

23. Klusch, M., Nesbigall, S., Zinnikus, I.: MDSM: Model-Driven Semantic Web Service
Matchmaking for Collaborative Business Processes. In: WI. pp. 612–618 (2008)

24. Stollberg, Michael, Keller, Uwe, Lausen, Holger, Heymans, Stijn: Two-Phase Web
Service Discovery Based on Rich Functional Descriptions. In: Franconi, Enrico,
Kifer, Michael, May, Wolfgang (eds.) ESWC 2007. LNCS, vol. 4519, pp. 99–113.
Springer, Heidelberg (2007)

25. Lee, J., An Kao, H., Shanhu, Y.: Service Innovation and Smart Analytics for
Industry 4.0 and Big Data Environment. In: Proc. of the 6th CIRP Conference
on Industrial Product-Service Systems (2014)

26. Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., McIlraith, S.,
Narayanan, S., Paolucci, M., Parsia, B., Payne, T., Sirin, E., Srinivasan, N., Sycara,
K.: OWL-S: Semantic Markup for Web Services, v1.1. Tech. rep., W3C (2004)

27. Ngan, L., Kanagasabai, R.: Semantic Web Service discovery: state-of-the-art and
research directions. Personal and Ubiquitous Computing 17, 1741–1752 (2013)

28. Plebani, P., Pernici, B.: URBE: Web Service Retrieval Based on Similarity Evalu-
ation. TKDE 21, 1629–1642 (2009)

29. Rodriguez-Garcia, M., Valencia-Garcia, R., Garcia-Sanchez, F., Samper-Zapater,
J.: Ontology-based annotation and retrieval of services in the cloud. Knowledge-
based Systems 56, 15–25 (2014)

30. Staab, S., Studer, R., (eds.): Handbook on Ontologies. Springer (2009)

82 R. De Virgilio and D. Bianchini

31. Stavropoulos, T., Gottis, K., Vrakas, D., Vlahavas, I.: aWESoME: a Web Service
Middleware for Ambient Intelligence. Journal of Expert Systems With Applications
40(11), 4380–4392 (2013)

32. Studer, R., Grimm, S., Abecker, A.: Semantic Web Services - Concepts, Technolo-
gies, and Applications. Springer (2007)

33. Vadivelou, G., Ilavarasan, E.: Performance evaluation of semantic approaches for
automatic clustering of similar Web Services. In: IEEE World Congress on Com-
puting and Communication Technologies. pp. 237–242 (2014)

34. Weise, T., Blake, M., Bleul, S.: Semantic Web Service Composition: The Web
Service Challenge Perspective. In: Web Services Foundations. pp. 161–187 (2014)

35. Wu, J., Chen, L., Zheng, Z., Lyn, M., Wu, Z.: Clustering Web services to facilitate
service discovery. Knowledge and Information Systems 38, 207–229 (2014)

36. Zaremski, A., Wing, J.: Specification Matching of Software Components. ACM
Transactions on Software Engineering and Methodology 6(4), 333–369 (1997)

Maximal Set of XML Functional Dependencies
for the Integration of Multiple Systems

Joshua Amavi(B) and Mirian Halfeld Ferrari

INSA Centre Val de Loire, Univ. Orléans, LIFO EA 4022 FR-45067, Orléans, France
{joshua.amavi,mirian}@univ-orleans.fr

Abstract. A web application expected to deal with XML documents
conceived on the basis of divers sets of (local) constraints would be
expected to test documents with respect to all non contradictory con-
straints imposed by these original (local) sources. The goal of this paper
is to introduce an optimized algorithm for computing the maximal set of
XML functional dependencies (XFD) over multiple systems. The basis
of our method is a sound and complete axiom system which is provided
for relative XFD allowing two kinds of equality: value or node equality.

Keywords: XML · Functional dependencies · XFD · Interoperability

1 Introduction

This paper deals with the problem of exchanging XML (eXtensible Markup Lan-
guage) data in a multi-system environment where a global central system should
receive and process data coming from different local sources. Our global system
is a conservative evolution of local ones. It conserves the possibility of accept-
ing XML documents coming from any local (original) source. It extends local
systems since it has its own schema and integrity constraints (generated from a
merge of local ones) and may accept and deal with non-local XML documents
(possibly non locally valid ones).

Our work aims at enriching schema evolution proposals by taking into account
integrity constraints. Schema merging proposals are usually based on simple data
models. Schemas can be more expressive than DTD and XSD, associated to
integrity constraints (as in [6]) or expressed by a semantically richer data model
(as in [23]).

A conservative schema evolution algorithm that extends minimally regular
tree grammar is proposed in [9]. That approach for schema extension is inherently
syntactic: only structural aspects of XML documents are considered and new
grammars are built by syntactic manipulation of the original production rules.
This paper aims at enriching that model by offering the possibility of computing
from given local sets of XFD (XML Functional Dependencies), a cover of the
biggest set of XFD that does not violate any local document. This is a first

Partially supported by CAPES-Stic/AmSud Project 052/2014 (SWANS).

c© Springer-Verlag Berlin Heidelberg 2014
A. Hameurlain et al. (Eds.): TLDKS XIV, LNCS 8800, pp. 83–113, 2014.
DOI: 10.1007/978-3-662-45714-6 4

84 J. Amavi and M. Halfeld Ferrari

step towards an extension of a schema evolution proposal which will take into
account integrity constraints. This extension intends to enrich schema evolution
but is conceived as an independent procedure. In this way it may be applied or
adapted to other schema evolution approaches.

Some applications of our work are: in the field of Digital Libraries, due to their
need of evolution when new sources of data become available or when merging
two libraries may be interesting [11]; in the construction of innovative services
with data coming from diverse organizations that manipulate similar (though not
identical) information, allowing us to envisage possible adaptations to big data
applications [7]. In these cases, it is important to have a non contradictory set of
integrity constraints (one that could be built from the original local constraints).

We suppose that S1, . . . , Sn are local (original) systems which deal with
sets of XML documents X1, . . . , Xn, respectively, and that inter-operate with
a global, integrated system S. System S integrates local systems and is seen as
an evolution of all of them. It can continue to receive information from any local
(original) system, but it can also deal with information coming from other non
local sources. Each set Xi conforms to schema constraints Di and to integrity
constraints F i and follows an ontology Oi. Our goal is to associate system S to
type and integrity constraints which represent a conservative evolution of local
constraints. More precisely, given different triples (D1,F1, O1), . . . , (Dn,Fn, On),
we are interested in generating (D, coverF ,A), where:
(i) D is an extended type that accepts any local document;
(ii) coverF is a set of XFD equivalent to F the biggest set of functional depen-
dencies (XFD), built from F1, . . . ,Fn, that can be satisfied by all documents in
X1, . . . , Xn and
(iii) A is an ontology alignment that guides the construction of D and F in
terms of semantics mapping. Notice that ontology issues are out of the scope
of this paper, but we suppose the existence of A which is the basis of a pre-
processing step where correspondence among tree paths (built on the different
Di) is established. The construction of this pre-processor is out of purpose in
this paper; we just consider that the output of such pre-processing is an input
of our algorithms.

This paper focus only on the generation of coverF which contains the XFD
for which no violation is possible when considering document sets X1, . . . , Xn.
It is important to notice that our algorithm is based on an axiom system and,
thus, obtains coverF from F1, . . . ,Fn, disregarding data.

The contribution of this paper is twofold. On one hand we introduce an
axiom system together with the proofs of its soundness and completeness. On
the other hand, we present an efficient way for computing, on the basis of our
axiom system, the set coverF . We prove that the obtained set coverF has good
properties and some experiments show the efficiency of our approach.

The rest of this paper is organized as follows. Section 2 comments on some
related work. Section 3 illustrates our goal with an example. Section 4 presents
some background while Section 5 introduces our XFD. Section 6 focuses on our

XFD for the Integration of Multiple Systems 85

axiom system. Section 7 introduces our method for computing coverF while
in Section 8 we discuss on some experiments. Finally, Section 9 concludes the
paper. We refer to [2] for the omitted proofs.

2 Related Work

Our motivation is to offer to a global system the capability of preserving the
biggest set of local non contradictory constraints. Since the objective is to work
only on constraint specification without any data involvement, we use an axiom
system. To the best of our knowledge no other work considers this scenario.

We refer to [3,13,16,19–21,24] as other proposals for defining XFD and
to [13,22] for a comparison among some of them. Different XFD proposals entail
different axiomatisation system, such as those in [13,15,21]. We adopt XFD pre-
sented in [4] for which we possess a validation tool (general algorithm in [6]). The
approach in [12] defines XFD as tree queries, which implies a complex imple-
mentation, and proposes static XFD validation w.r.t. updates.

To achieve our goal out first task is to propose an axiom system for the
adopted XFD, together with an efficient algorithm for computing the closure of
a set of paths. Our work on this axiom system is comparable to the one proposed
in [21]. The main differences are: (i) we propose a more powerful path language
allowing the use of a wild-card; (ii) our XFD are verified w.r.t. a context and
not only w.r.t. the root, i.e., XFD can be relative; (iii) our XFD can be defined
by taking into account two types of equality: value and node equality and (iv)
we use simpler concepts (such as branching paths, projection) which, we believe,
allow us to prove that our axiom system is sound and complete in a clearer way.

We use our axiom system in the development of a practical tool: to filter local
XFD in order to obtain a set containing only XFD that cannot be violated by
any local XML document. Our global system aims to deal with data coming from
any local source, but not to perform data fusion. Thus, our work presents an
original point of view, since we are not interested in putting together all the local
information, but just in manipulating them. Usually, schema integration proposal
comes together with the idea of data fusion. XML data fusion is considered in
papers such as [8,18]. Data exchange is considered in [10] that aims to construct
an instance over a target schema, based on the source and a given mapping, and
to answer queries against the target data, consistently with the source data.

Proposals concerning XML type evolution usually do not take into account
the evolution of associated integrity constraints which are extremely important in
the maintenance of consistent information. In [14] authors offer as a perspective
to apply to XML their proposal of adapting functional dependencies according
to schema changes. This is done in [19] where authors consider the problem
of constraint evolution in conformance with type evolution. The type evolution
in [9] is well adapted to our purposes; it seems possible to combine it with our
XFD filter in order to generate a set of constraints allowing interoperability.

86 J. Amavi and M. Halfeld Ferrari

3 Motivating Example

We suppose universities or educational institutions, from the same region in
France, which want to implement a central data system to obtain and process
information concerning their courses and students, independently of local sys-
tems already in use. Their goal is to obtain a central system that ensures a
maximum number of the local non-contradictory integrity constraints.

Each educational institution has established, locally, its own constraints. For
instance, let the XML trees in Figure 1 be documents from two different uni-
versities. Each document is valid w.r.t. the functional dependencies presented in
Table 1, i.e., documents in X1 are valid w.r.t. F1, those in X2 are valid w.r.t.
F2. We recall that local schemas and concepts may be different.

undergraduate

univ

@domain courses

course

codeC title C

codeC codeC

course

@domain codeC nameC@level

univ

courses

... course

course ...

codeC

prerequisitesC NbHours

prerequisitesC

(1) (2)

Fig. 1. Two XML documents from different local sources

In the XML domain, a functional dependency (XFD) is defined by paths over
a tree. Each path selects a node on a tree. Values or positions of the selected nodes
are gathered to build tuples that will be used to verify whether a given XML doc-
ument satisfies an XFD. For example, consider the XFD f: (univ, (undergradu-
ate/courses/course/codeC → undergraduate/courses/course/titleC)) on the first
document of Figure 1(1). It specifies that the context is univ, i.e., that the con-
straint should be verified on data below a node labelled univ. In this context,
f entails the construction of tuples composed by values obtained by follow-
ing the paths: univ/undergraduate/courses/course/codeC, univ/undergraduate/-
courses/course/titleC. As in the relational model, a document is valid w.r.t. f
if any two tuples agreeing on values obtained from univ/undergraduate/cour-
ses/course/codeC also agree on values obtained from univ/undergraduate/cour-
ses/course/titleC. Thus, in a university the code of a course determines its name.

Similarly, the XFD f1: (univ, (undergraduate/courses/course/codeC → under-
graduate/courses/course/prerequisitesC)) entails tuples where the path univ/un-
dergraduate/courses/course/prerequisitesC leads us to obtain sub-trees having
roots labelled prerequisitesC (i.e., sub-trees containing information about pre-
requisites). This constraint indicates that courses having the same code should

XFD for the Integration of Multiple Systems 87

have the same prerequisites. A document is valid w.r.t. f1 if any two tuples agree-
ing on values obtained from univ/undergraduate/courses/course/codeC also agree
on values obtained from univ/undergraduate/courses/course/prerequisitesC, i.e.,
obtained sub-trees are isomorphic.

Table 1. XFD in F1 and F2

F XFD
1 (univ, (undergraduate/courses/course/codeC → undergraduate/courses/course/titleC))
1 (univ, (undergraduate/courses/course/codeC → undergraduate/courses/course/prerequisitesC))
1 (univ, (undergraduate/courses/course/codeC → undergraduate/@domain))
2 (univ, (courses/course/codeC → courses/course/nameC))
2 (univ, (courses/course/codeC → courses/course/@domain))
2 (univ, (courses/course/codeC → courses/course/@level))
2 (univ, ({courses/course/nameC, courses/course/@level} → courses/course/NbHours))

Now consider the first three XFD in Table 1, concerning source 1. They
indicate that in a university, the code of a course determines its name, its domain
and its prerequisites. In other words, a course is identified by its code.

From the alignment of local ontologies we assume that Table 2 is available,
making the correspondence among paths on the different local sets of documents.
Thus, it is possible to conclude that, for instance, XFD f: (univ, (undergradu-
ate/courses/course/codeC → undergraduate/courses/course/titleC)) and (univ,
(courses/course/codeC → courses/course/nameC)) are equivalent, i.e., they rep-
resent the same constraint since they involve the same concepts: in a university,
the code of a course determines its name.

Table 2. Extract of the translation table

Paths from D1 Paths from D2

univ/undergraduate/courses/course/codeC univ/courses/course/codeC
univ/undergraduate/courses/course/titleC univ/courses/course/nameC
univ/undergraduate/courses/course/prerequisitesC univ/courses/course/prerequisitesC
univ/undergraduate/courses/course/prerequisitesC/codeC univ/courses/course/prerequisitesC/codeC
univ/undergraduate/@domain univ/courses/course/@domain

Assuming that we have only these two local sources, we want to obtain, from
F1 and F2, the biggest set of XFD F that does not contradict any document in
X1 and X2. To reach this goal, we should consider all XFD derivable from F1

and F2, which may result in very big sets of XFD. Indeed, the set F is, usually,
a very big one - too big to work with. A better solution consists of computing
coverF , a cover of F (i.e., a (usually) smaller set of XFD that is equivalent to
F), without computing all XFD derivable from F1 and F2. In this paper, we
propose an algorithm that generates this set of XFD.

In our example, the resulting coverF would contain XFD of Table 3. Let us
analyse this solution. In Table 3, the first and the fourth XFD are equivalent. They
are kept in coverF since all documents in X1 and X2 are valid w.r.t. it. The same
reasoning is applied for the second and third XFD in Table 3. The two last XFD
involve concepts that occur only in X2 and, thus, cannot be violated by documents

88 J. Amavi and M. Halfeld Ferrari

Table 3. XFD in the resulting F
1 (univ, (undergraduate/courses/course/codeC → undergraduate/courses/course/titleC))
2 (univ, (undergraduate/courses/course/codeC → undergraduate/@domain))
3 (univ, (courses/course/codeC → courses/course/@domain))
4 (univ, (courses/course/codeC → courses/course/nameC))
5 (univ, (courses/course/codeC → courses/course/@level))
6 (univ, ({courses/course/nameC, courses/course/@level} → courses/course/NbHours))

in X1. Notice that the XFD (univ, (undergraduate/courses/course/codeC →
undergraduate/courses/course/prerequisitesC)) in F1, which states that
courses with the same code have the same set of prerequisites, is not in F . The rea-
son is that according to the ontology alignment, this XFD is equivalent to (univ,
(courses/course/codeC → courses/course/prerequisitesC)) in F2. However, as F2

does not contain this XFD, documents in X2 may violate it (since the involved
concepts exist in X2).

4 Preliminaries

Our work uses XFD such as those in [4,6]. An XML document is seen as a
tuple T = (t, type, value). The tree t is the function t: dom(t) → Σ where:
(A) Σ = Σele ∪ Σatt ∪ {data} is an alphabet; Σele is the set of element
names and Σatt is the set of attribute names and (B) dom(t) is the set of posi-
tions numbered according to Dewey encoding. Given a tree position p, function
type(t, p) returns a value in {data, element, attribute}. Similarly, value(t, p) ={

p if type(t, p) = element
val ∈ V otherwise

where V is an infinite recursively enumerable domain. �

univ

@nameUniv
0

@cityUniv
1

u n d e r g r a d u a t e
2

...
3

u n d e r g r a d u a t e
4

Universi té d’Orléans Or léans @ y e a r
2 .0

@doma in
2.1

s t u d e n t s
2 .2

c o u r s e s
2 .3

enroll
2 .4

...

2 0 1 2 Compute r Sc ience s t u d e n t
2.2 .0

c o u r s e
2.3 .0

c o u r s e
2.3 .1

reg i s te r2 .4 .0

idSt2 .2 .0 .0n a m e S t
2.2 .0 .1

a d d S t
2 .2 .0 .2

d a t a d a t a d a t a

codeC
2.3.0 .0

t i tleC
2.3 .0 .1

prerequis i tesC
 2 .3 .0 .2

d a t a d a t a codeC
2.3 .0 .2 .0

codeC

 2 .3.0.2.1

d a t a d a t a

codeC
2.3.1 .0

t i tleC
2.3 .1 .1

prerequis i tesC
2.3 .1 .2

d a t a d a t a codeC
2.3 .1 .2 .0

codeC

 2 .3.1.2.1

d a t a d a t a

idSt
2.4.0 .0

d e g r e e
2.4 .0 .1

codeC
 2 .4 .0 .2

d a t a d a t a d a t a

2 0 3 9 Alex 10 rue co lombia 1 Java

3 4

2 SQL

4 3

2 0 3 9 1st level 2

Fig. 2. XML document concerning the first degree (undergraduate) at a university

XFD for the Integration of Multiple Systems 89

As many other authors, we distinguish two kinds of equality in an XML tree,
namely, value equality and node equality. Two nodes are value equal when they
are roots of isomorphic sub-trees. Two nodes are node equal when they have the
same position number. To combine both equality notions we use the symbol E,
that can be represented by V for value equality, or N for node equality. Our
value equality definition does not take into account the document order. For
instance, in Figure 2, nodes in positions 2.3.0.2 and 2.3.1.2 are value equal, but
nodes 2.3.0 and 2.3.1 are not.

4.1 Linear Paths

Linear paths are used to address parts of an XML document. Let PL be the
language where a path is defined by ρ ::= [] | l | ρ/ρ |ρ//l where [] is
the empty path, l is a label in Σ, ”/” is the concatenation operation, ”//”
represents a finite sequence (possibly empty) of labels. Notice that l/[] = []/l = l
and []//l = //l. We distinguish between paths using the wild-card // and simple
paths (those with no wild-card) and we denote by IP the set of all possible rooted
simple paths that may occur in an XML tree t respecting a given schema D.

In this work we consider that the set IP is generated from a given schema
D. Notice that IP is a finite set of simple (top-down) paths and, in this way,
the schema from which it is obtained should ensure a limited depth of label
repetitions. In other words, the language L(D), obtained from a finite state
automaton D (which is built from a given type D), should be finite. Such kind
of schema can be expressed, for instance, by a non-recursive DTD. In this way,
we are more general than [4,6], where IP was the set containing only all possible
paths in one given tree.

It is important to notice that one path with wild-card can be associated to a
set of simple paths in IP. This set of simple paths is the language L(AP), where
AP is a finite-state automaton (FSA) obtained on the basis of the two following
steps:

1. From the path language P we construct a finite-state automaton BP which
recognizes the expression P in PL and is similar to restricted regular expres-
sions.

2. AP = D∩BP . We retain in L(AP) the paths which respect the path language
P and are simple paths in IP.

Example 1. We suppose a DTD concerning undergraduate course in a university
such that the document of Figure 2 is valid w.r.t. it. Let D be the FSA that
recognizes IP, the language of prefixes of the paths defined by this DTD. Let P =
univ/undergraduate//codeC and BP the FSA that recognizes P . The set L(BP)∩
IP contains only the simple paths in L(BP) that trees respecting IP may have, i.e.,
{ univ/undergraduate/courses/course/codeC, univ/undergraduate/courses/cour-
se/prerequisitesC/codeC, univ/undergraduate/enroll/register/codeC}. �

A path P is valid if: (i) it conforms to the syntax of PL, (ii) L(AP) �= ∅,
(iii) for all label l ∈ P , if l = data or l ∈ Σatt, then l is the last symbol in P .

90 J. Amavi and M. Halfeld Ferrari

In this work, given a path P in PL we define the following functions:

– Last(P) = ln where ln is the last label on path P .
– Parent(P) = {l1/ . . . /ln−1 | l1/ . . . /ln−1/ln ∈ L(AP) for n > 1}, the set of

simple paths starting at a node labelled by l1 and ending at the parent of ln
(where Last(P) = ln).

– A path Q is a prefix of P (we note Q �PL P) if L(AQ) ⊆ L(PREFIX(AP))
where PREFIX(AP) is the finite state automaton that accepts the language
containing all prefixes of L(AP).

– The longest common prefix (or the intersection) of P and Q, denoted by
P ∩Q, describes the set of simple paths {P ′∩Q′ | P ′ ∈ L(AP)∧Q′ ∈ L(AQ)}.
The longest common prefix of two simple paths P ′ and Q′ (denoted P ′ ∩Q′)
is the simple path R where R � P ′ and R � Q′ and there is no path R′ such
that R ≺ R′, R′ � P ′ and R′ � Q′.

Example 2. Consider the XML document of Figure 2. The simple path univ/un-
dergraduate/courses is a prefix for univ/undergraduate/courses/course/codeC.
Given P ′ =univ/undergraduate/courses/course/codeC and Q′ = univ/undergra-
duate/courses/course/prerequisitesC/codeC, their longest common prefix is un-
iv/undergraduate/courses/course.
Given P = univ//codeC and Q = univ//idSt, the longest common prefix P ∩Q =
{ univ/undergraduate, univ/undergraduate/enroll/register} �

Now, let I = p1/ . . . /pn be a sequence of positions such that each pi is a
direct descendant of pi−1 in t. Then I is an instance of a path P over a
given tree t if and only if the sequence t(p1)/ . . . /t(pn) ∈ L(AP). We denote by
Instances(P, t) the set of all instances of P over t. Functions Last, Parent, Prefix
and the longest common prefix are extended to path instances in the obvious
manner. Notice that the longest common prefix allows the identification of the
least common ancestor.

We now remark that, in this paper, we will only deal with complete trees
(i.e., documents with no missing information). Let IP be a set of simple paths
associated to an XML document T . We say that T is complete w.r.t. IP if
whenever there exists paths P and P ′ in the associated IP such that P ′ ≺ P and
there exist an instance I ′ for P ′ such that node v′ is the last node in I ′, then there
exists an instance I for P such that v is the last node in I and v′ is an ancestor
of v. For example, let IP be a set containing paths R/A/C, R/A/D, R/B and
their prefixes. Then, representing trees as terms, we notice that R(A(C,D), B),
R(A(C,D), A(C,D), B) are complete trees, while R(A(C), B), R(A(C,D)) are
no complete trees.

Given two valid paths P and Q over a tree t, we want to verify whether
two given path instances match on the longest common prefix of P and Q. To
this end we define the boolean function isInst lcp(P, I,Q, J) which returns
true when all the following conditions hold: (i) I ∈ Instances(P, t); (ii) J ∈
Instances(Q, t) and (iii) I ∩ J is an instance of a path in P ∩ Q; otherwise, it
returns false.

XFD for the Integration of Multiple Systems 91

4.2 Branching Paths

Now we introduce the notion of branching paths also called a pattern in the
literature [5,20]. A branching path is a non-empty set of simple paths having a
common prefix. The projection of a tree over a branching path determines the
tree positions corresponding to the given path. Thus, as defined below, this pro-
jection is a set of prefix closed simple path instances that respect some important
conditions.

Definition 1 (Branching path). A branching path is a finite set of prefix-
closed (simple) paths on a tree t. �

Definition 2 (Projection of a tree T over a branching path M). Let
M be a branching path over a tree T . Let LongM be the set of paths in M that
are not prefix of other paths in M . Let SetPathInst be the set of (simple) path
instances that verifies:

1. For all paths P ∈ LongM there is one and only one instance inst ∈ Instan-
ces(P, t) in the set SetPathInst.

2. For all inst ∈ SetPathInst there is a path P ∈ LongM such that inst ∈
Instances(P, t).

3. For all instances inst and inst′ in SetPathInst, if inst ∈ Instances(P, t)
and inst′ ∈ Instances(Q, t), then isInst lcp(P, inst,Q, inst′) is true.

A projection of T over M , denoted by ΠM (T), is a tuple (ti, typei, valuei) where
typei(ti, p) = type(t, p), valuei(ti, p) = value(t, p) and ti is a function Δ → Σ
in which:

– Δ =
⋃

inst ∈ SetPathInst{p | p is a position in inst}
– ti(p) = t(p), ∀p ∈ Δ �

Given the projection of two branching paths, ΠM 1
(T) and ΠM 2

(T), the
union ΠM 1

(T) ∪ ΠM 2
(T) is naturally obtained by considering all the path

instances used to obtain each projection.

Example 3. Consider the XML document of Figure 2. Let M be a branching path
defined from the set {univ/undergraduate/courses/course/codeC, univ/undergra-
duate/courses/course/prerequisitesC}, i.e., M contains these paths and all their
prefixes. An example of a projection of T over M is the one where t(ε) = univ,
t(2) = undergraduate, t(2.3) = courses, t(2.3.0) = course, t(2.3.0.0) = codeC
and t(2.3.0.2) = preresquisitesC. However, if we take t(ε) = univ, t(2) =
undergraduate, t(2.3) = courses, t(2.3.0) = course, t(2.3.0.0) = codeC and
t(2.3.1.2) = preresquisitesC, we do not have a projection of T over M . Indeed,
in Definition 2, if we consider P = univ/undergraduate/courses/course/codeC
and its instance inst = ε/2/2.3/2.3.0/2.3.0.2 together with Q = univ/under-
graduate/courses/course/prerequisitesC and its instance inst′ = ε/2/2.3/2.3.1/-
2.3.1.2 we obtain isInst lcp(P, inst,Q, inst′) = false. Notice that the longest
common paths P ∩ Q is univ/undergraduate/courses/course. �

92 J. Amavi and M. Halfeld Ferrari

From Definition 2, we remark that the projection of T over a branching path
M contains exactly one instance of every path in M . In the following, when
needed, we denote by ΠM (T)[P] the unique instance of the simple path P in
ΠM (T). Indeed, when we write ΠM (T)[P] we restrict the projection of T over
M to the instance (in the projection) of one simple path P .

Lemma 1. Let ΠM (T) be a projection of a tree T over a branching path M .
For each two simple paths P and Q in M if I = ΠM (T)[P] and J = ΠM (T)[Q]
then we have isInst lcp(P, I,Q, J) = true. �

Now we are interested in building a relation where each tuple corresponds to
values determined by a given projection ΠM (T).

Definition 3 (Tuple obtained from Projection). Let M be a branching
path and X = {P1, . . . , Pk} be a set of paths such that X ⊆ M . Let τ = ΠM (T) =
(ti, typei, valuei) be a projection of the tree T on M . Let Ij = ΠM (T)[Pj] be the
only instance of path Pj in ΠM (T) where j ∈ [1, . . . , k]. The tuple corresponding
to X on τ , denoted by τ [X], is defined as1

τ [X] = (P1 : valuei(ti, Last(I1)), . . . , Pk : valuei(ti, Last(Ik))).
We denote by τ [Pj] the result of Pj : valuei(ti, Last(Ij)). Two tuples τ1[X] and
τ2[X] are equal w.r.t. the equality list E = (E1, . . . , Ek), denoted by τ1[X] =E

τ2[X], iff ∀ j ∈ [1 . . . k], τ1[Pj] =Ej
τ2[Pj]. �

The tuple τ [X] is formed by the values or nodes found in an XML document
T from a projection on branching path M , and is constructed by following the
named perspective in relational database [1] where the name of attributes in the
tuples are known. Notice also that the equality between two tuples may involve
different kinds of equality, one for each path.

5 Functional Dependencies in XML

Usually, a functional dependency in XML (XFD) is denoted by X → Y (where X
and Y are sets of paths) and it imposes that for each pair of tuples (Definition 3)
t1 and t2 if t1[X] = t2[X] then t1[Y] = t2[Y]. In this paper, our XFD are defined
as those in [5,6], generalizing the proposals in [3,17,20,22]. As the dependency
can be imposed in a specific part of the document, we specify a context path.

Definition 4 (XML Functional Dependency). Given an XML tree t, an
XFD f is an expression of the form:

f = (C, ({P1 [E1], . . . , Pk [Ek]} → {Q1 [E′
1], . . . , Qm [E′

m]}))

where C is a path that starts from the root of t (context path) ending at the
context node; {P1, . . . , Pk}, {Q1, . . . , Qm} are non-empty sets of paths in t. Both
Pi (i ∈ [1, . . . , k]) and Qi (i ∈ [1, . . . , m]) start at the context node. The set

1 If it is clear by the context, we omit the path when showing a tuple.

XFD for the Integration of Multiple Systems 93

{P1, . . . , Pk} is the left-hand side (LHS) or determinant of an XFD, and the set
{Q1, . . . , Qm} is the right-hand side (RHS) or the dependent paths. The symbols
E1, . . . , Ek, E

′
1, . . . , E

′
m represent the equality type associated to each dependency

path. When symbols E1, . . . , Ek or E′
1, . . . , E

′
m are omitted, value equality is the

default choice. �

Notice that in an XFD the set of paths {C/P1, . . . ,C/Pk, C/Q1, . . . , C/Qm}
defines branching paths and that, as in [22], our XFD definition allows the com-
bination of two kinds of equality.

Definition 5 (XFD Satisfaction). Let T be an XML document and f =
(C, ({P1 [E1], . . . , Pk [Ek]} → {Q1 [E′

1], . . . , Qm [E′
m]})) an XFD. Let M be a

branching path defined from f . We say that T satisfies f (noted by T |= f) if
and only if for all τ1 = Π1

M (T) and τ2 = Π2
M (T) that are projections of T on

M and that coincide at least on their prefix C, we have:
If τ1[C/P1, . . . , C/Pk] =E τ2[C/P1, . . . , C/Pk] then τ1[C/Q1, . . . , C/Qm] =E′

τ2[C/Q1, . . . , C/Qm] where E = (E1, . . . , Ek) and E′ = (E′
1, . . . , E

′
m). �

Example 4. Consider the following XFD on the document of Figure 2.

XFD1: univ//courses, ({course/codeC} → course/titleC)
Considering the set of courses of an undergraduate domain, courses having the
same code have the same title.

XFD2: univ, ({undergraduate//course/codeC} → undergraduate//course/ti-
tleC). Considering the set of all courses in a university, courses having the same
code have the same title.

XFD3: univ//students, ({student/idSt} → student[N]). Considering the set of
students of an undergraduate domain, no two students have the same number
and each student appears once. �

An XML document T satisfies a set of XFD F , denoted by T |= F , if T |= f
for all f in F . Usually it is important to reason whether a given XFD f is
also satisfied on T when F is satisfied. The following definition introduces this
notion.

Definition 6 (XFD Implication). Given a set F of XFD we say that F
implies f , denoted by F |= f , if for every XML tree T such that T |= F then
T |= f . �

Based on the notion of implication we can introduce the definition of closure
for a set of XFD.

Definition 7 (Closure of a set of XFD). The closure of a set of XFD F ,
denoted by F+, is the set containing all the XFD which are logically implied by
F , i.e., F+ = {f | F |= f}. �

Notation: In the rest of this paper, given an XFD (C, (X → A)) where X =
{P1, . . . , Pn} is a set of paths and A is a path, we use C/X as a shorthand for
the set {C/P1, . . . , C/Pn}.

94 J. Amavi and M. Halfeld Ferrari

6 Axiom System

To find which XFD f are also satisfied when a given set of XFD F is satisfied we
need inference rules that tell how one or more dependencies imply other XFD. In
this section we present our axiom system and prove that it is sound (we cannot
deduce from F any false XFD) and complete (from a given set F , the rules allow
us to deduce all the true dependencies). Our axiom system is close to the one
proposed in [21], but has two important differences: our XFD are defined w.r.t.
a context (and not always w.r.t. the root) and we use two kinds of equality.

Definition 8 (Inference Rules for XFD). Given a tree T and XFD defined
over paths in IP, our axioms are:

A1: Reflexivity (C, ({P1 [E1], . . . , Pn [En]} → Pi [Ei])), ∀i ∈ [1 . . . n].

A2: Augmentation If (C, ({P1 [E1], . . . , Pn [En]}→{Q1 [E′
1], . . . , Qm [E′

m]}))
then (C, ({R [Er], P1 [E1], . . . , Pn [En]} → {R [Er], Q1 [E′

1], . . . , Qm [E′
m]})).

A3: Transitivity If (C, ({P1 [E1], . . . , Pn [En]} → {Q1 [E′
1], . . . , Qm [E′

m]}))
and (C, ({Q1 [E′

1], . . . , Qm [E′
m]} → S [Es])) then (C, ({P1 [E1], . . . , Pn [En]}

→ S [Es])).

A4: Branch Prefixing If (C, ({P ′
1 [E′

1], . . . , P ′
n [E′

n]} → Pn+1 [En+1])) and
there exist paths C/P1, . . . , C/Pn (not necessarily distinct) such that
(i) P ′

i ∩ Pn+1 �PL Pi and

(ii) Pi �PL P ′
i or Pi �PL Pn+1

then (C, ({P1 [E1], . . . , Pn [En]} → Pn+1 [En+1])).

A5: Ascendency If Q is a prefix for P then (C, (P [N] → Q [N])).

A6: Attribute Uniqueness If Last(P) ∈ Σatt then (C, (Parent(P) [E] →
P [E])).

A7: Root Uniqueness (C, ({P1 [E1], . . . , Pn [En]} → [] [En+1])).

A8: Context Path Extension If (C, ({P1 [E1], . . . , Pn [En]} → Pn+1 [En+1]))
and there is a path Q such that P1 = Q/P ′

1, . . . , Pn+1 = Q/P ′
n+1 then (C/Q,

({P ′
1 [E1], . . . , P ′

n [En]} → P ′
n+1 [En+1])).

A9: Node Equality to Value Equality ∀P , (C, (P [N] → P [V])).

Example 5. A given university has one or more undergraduate specialities (first
degree) and, for each of them, we store its domain and year together with infor-
mation concerning students, courses and enrolment. Figure 2 shows a part of this
XML document over which we illustrate the intuitive meaning of axioms A4-A9.
The intuition of the three first axioms (A1-A3) is the same as in relational.

A4: If (univ, ({undergraduate/@domain, courses//codeC} → undergraduate/-
enroll//degree)) then we can say that: (univ, ({undergraduate/@domain,
undergraduate/courses}→undergraduate/enroll//degree)) or (univ, ({under-
graduate/@domain, undergraduate/courses/course} → undergraduate/enr-
oll//degree)) or (univ, (undergraduate → undergraduate/enroll//degree)).

XFD for the Integration of Multiple Systems 95

The initial XFD states that all courses having codeC in the same domain cor-
respond to the same degree. From this XFD, we can deduce, among others, the
XFD (univ, (undergraduate → undergraduate/enroll//degree)) stating that
an undergraduate speciality is associated to only one degree (e.g., Bachelor’s).

A5: Given a path P = undergraduate//register/idSt, we can derive
(univ, ({undergraduate//register/idSt} → undergraduate//register)).

A6: Given P = undergraduate/@year, we derive that
(univ, ({undergraduate[N]} → undergraduate/ @year[N])).

A8: If (univ/undergraduate, (students/student/idSt → students/student/na-
meSt)) then (univ/undergraduate/students, (student/idSt → student/name-
St)). If, in the context of an undergraduate domain, the idSt identifies the name
of a student; this is also true in the context of students.

A9: When we have a node equality, for instance, for univ/undergraduate//cour-
se, it means that we are considering a specific, uniquely referred, course in our
document. Thus, (univ, ({undergraduate//course[N]} → undergraduate//-
course[V])) is a valid XFD.

Notice that A5 does not hold when dealing with value equality. The tree on
Figure 2 violates the XFD (univ, ({undergraduate//course/prerequisitesC [V]}
→ undergraduate//course [V])). Indeed Last(2.3.0.2) =V Last(2.3.1.2) but
Last(2.3.0) �=V Last(2.3.1).

Remark that although we have value equality, the following rule (C, (P [V] →
P/Q [V])) does not hold. Let us consider the XFD (univ, ({undergraduate//pre-
requisitesC [V]} → undergraduate//prerequisitesC/codeC [V])). The tree on
Figure 2 does not satisfy this XFD because we have Last(2.3.0.2)=V Last(2.3.1.2)
but Last(2.3.0.2.0) �=V Last(2.3.1.2.0). �

The set of axioms in Definition 8 establishes an inference system with which
one can derive other XFD.

Definition 9 (XFD Derivation). Given a set F of XFD, we say that an XFD
f is derivable from the functional dependencies in F by the set of inference rules
in Definition 8, denoted by F f , if and only if there is a sequence of XFD
f1, f2, . . . , fn such that (i) f = fn and (ii) for all i = 1, . . . , n the XFD fi is in
F or it is obtainable from f1, f2, . . . fi−1 by means of applying an axiom A1-A9
(from Definition 8). �

Our axiom system is sound and complete. The proofs are summarized in
Appendix A and B and in [2] one can find more detailed versions. Additional
inferences rules (Union, Decomposition, Pseudotransitivity and Subtree Unique-
ness) can be derived from axioms of Definition 8 as we show in [2]. Notice that
as we have the Union and Decomposition axioms, an important consequence is
that an XFD (C, ({P1 [E1], . . . , Pk [Ek]} → {Q1 [E′

1], . . . , Qm [E′
m]})) holds if

and only if (C, ({P1 [E1], . . . , Pk [Ek]} → {Qi [E′
i]})) holds for i ∈ [1, . . . , m].

Thus, having a single path on the right-hand side of an XFD is sufficient. Once
we have our axiom system, we can define the closure of a set of paths w.r.t. a
set of XFD.

96 J. Amavi and M. Halfeld Ferrari

Definition 10 (Closure of a set of Paths). Let X be a set of paths and let C
be a path defining a context. Let E = (E1, . . . , En) be the equality list associated
to X. The closure of (C,X) with respect to F , denoted by (C,X[E])+F , is the set
of paths {C/P1[E′

1], . . . , C/Pm[E′
m]} such that (C, (X[E] → {P1[E′

1], . . . ,
Pm[E′

m]})) can be deduced from F by the axiom system in Definition 8. In other
words, (C,X[E])+F = {C/P [E′] | F (C, (X[E] → P [E′]))}. When there is no
ambiguity about the set F being used, we just note (C,X[E])+. �

To compute (C,X[E])+ we start with a set T containing all the prefixes of the
paths in X. Then we build a set V containing all the paths ending on attributes
and having a path in T as its parent. Starting with X(0) = T ∪ V we compute
each X(i+1) from X(i) by applying the axiom system on F . At each step, new
sets T and V are computed and added to X(i). The loop ends when no new path
can be added to X(i). In [2] we present this algorithm together with the proof
of its soundness and completeness.

We also define two other functions, namely closure1Step and inverseClo-
sure1Step. Function closure1Step computes one step of the closure of a set of
paths. Its implementation consists in applying the same algorithm used to find
(C,X[E])+, in order to compute X(1). The result is a set of paths. Function
inverseClosure1Step considers XFD inversely and computes an ”inverse clo-
sure” one step backward. For instance, given a set of paths X the function finds
all sets of paths Z for which we have C/Z → C/X. The computed result is a set
S containing sets of paths.

These functions are going to be used in the following section in order to
compute coverF .

7 Computing Functional Dependencies for
Interoperability

7.1 Algorithm for Computing coverF
Given XFD sets F1, . . . ,Fn, let F = (F+

1 ∩· · ·∩ F+
n)∪(K1∪· · ·∪ Kn) where for

1 ≤ i ≤ n, F+
i is the closure of F i and Ki is a set of XFD containing all XFD

f which can be obtained from F i but that cannot be violated by documents
in Xj (for j �= i). In [2] we have proved that F is the biggest set of XFD that
are not in contradiction with any set F1, . . . ,Fn. In other words, all documents
in X1, . . . , Xn valid w.r.t. F1, . . . ,Fn should stay valid w.r.t. F . Our goal is
to propose an algorithm that computes a set coverF which is equivalent to F
(coverF ≡ F), and usually the number of XFD in coverF is much smaller than
the number of XFD in F .

Algorithm 1 generates coverF as expected. As input, the algorithm receives
the local sets of XFD together with the set of possible paths given by each local
schema. Notice that for the sake of simplicity, we suppose only two local sources,
but Algorithm 1 can be easily extended for n local sources. Translation functions
Φ1 and Φ2 are available. These functions work on the translation table (obtained

XFD for the Integration of Multiple Systems 97

from the ontology alignment A): given a path P from, for instance IP2, Φ1(P)
gives its equivalent path in IP1, if it exists; otherwise it returns the identity.
The function Φ2 works on a symmetric way. Indeed, we note i and ī to indicate
symmetric sources (e.g., when i = 1, ī = 2).

Algorithm 1 considers each local set F i. Then, each XFD f = (C, (X → B))
in F i is checked and added to coverF when one of the following properties holds:
(i) There is no path in the source ī equivalent to the right-hand side of f (line 5).
Thus, documents in ī do not violate f .
(ii) There is no set of paths in the source ī equivalent to the set on the left-hand
side of f (line 7). Since no set of paths in the source ī correspond to X, no
document in ī violates f .
(iii) In the source ī, there is a path equivalent to C/B that belongs to the closure
of a set of paths equivalent to C/X (line 9). Therefore, XFD f exists in both
sources and can be added to coverF .

From line 12 to 18, Algorithm 1 takes the fact into account that working
with F i, some XFD in F+

i may be neglected. To understand this problem, let us
consider sets F1 and F2 from which we can derive an XFD f = (C, (X → B))
by different derivation sequences. Suppose that in F1 we have f1, . . . , fk, . . . , f
while in F2 we have f ′

1, . . . , f
′
k, . . . , f . Moreover, we assume that, due to condi-

tions stated in lines 5, 7 and 9, the dependencies fk and f ′
k are not included in

F and, thus, the derivation of f is not possible from the new set coverF built
by Algorithm 1. This would be a mistake, since f is derived by both F1 and F2.
One solution would be to start with (in line 4) the closure of F1 and F2. How-
ever, this solution implies the generation of a too big and, thus, not manipulable
set of XFD. Algorithm 1 does better: when the test in line 9 fails, it computes
all XFD fj = (C, (Y → A)) such that:

(i) C/X ∈ (C, Y)+ and A = B or
(ii) C/Y = C/X and C/A ∈ (C,B)+ or
(iii) C/A = C/B and fj is obtained by using Axiom A4 on f or
(iv) Y = X ∪ Y1 and fj is obtained by using Axiom A2 on f to obtain f ′ =
(C, (X,Y1 → B, Y1)), and then using Axiom A3 on f ′ and f ′′ = (C, (B, Y1 →
A)) ∈ G.

Tests from lines 12-18 are then performed on these computed XFD. In this
way, we do not compute the entire closure of a set F i but, when necessary,
we calculate a part of it. This computation is done by using closure1Step and
inverseClosure1Step. The following example illustrates the computation per-
formed in lines 12-18 of Algorithm 1.

Example 6. Let F1 = {(C, (A → B)), (C, (B → M)), (C, (M → D)), (C, (D →
E)), (C, (O → Z))} and let F2 = {(C, (A → B)), (C, (B → M)), (C, (B →
O)), (C, (O → E)), (C, (D → N))}. Without lines 12-18 in Algorithm 1, the
XFD (C, (A → E)), derivable from both F1 and F2, would not be derived from
coverF .
Let us consider part of the execution of Algorithm 1. Table 4 shows the XFD
we obtain when considering each XFD in F1 (line 3 of Algorithm 1). The first

98 J. Amavi and M. Halfeld Ferrari

Algorithm 1. Computation of coverF (set of XFD ensuring the interoperability
of S w.r.t. S1 and S2)
Input:

– A set of XFD F1 for schema D1

– A set of XFD F2 for schema D2

– The set of paths IP1, IP2 specified by D1 and D2

– Translation functions Φ1 and Φ2

Output: The set of XFD coverF for the integrated system
1: coverF = ∅
2: for i = 1 to 2 do
3: G = F i

4: for each (C, (X → B)) ∈ G do
5: if Φī(C/B) �∈ IPī then
6: coverF = coverF ∪ {(C, (X → B))}
7: else if Φī(C/X) �⊆ IPī then
8: coverF = coverF ∪ {(C, (X → B))}
9: else if Φī(C/B) ∈ Φī(C, X)+F ī

then

10: coverF = coverF ∪ {(C, (X → B))}
11: else
12: H = closure1Step(C, B, F i) \ {C/B}
13: G = G ∪ {(C, (X → D)) | C/D ∈ H}
14: K = inverseClosure1Step(C, X, F i) \ {C/X}
15: G = G ∪ {(C, (Y → B)) | C/Y ∈ K}

% Recall that C/Y is a shorthand for {C/A1, . . . , C/An} and that K is
a set of paths sets.

16: G = G ∪ {(C, (Z → B)) | (C, (Z → B)) is obtained by using Axiom A4
on (C, (X → B))}

17: % Notice that Z is a set of prefixes of paths in X or B

18: G = G ∪ {(C, (X, W → V)) | (C, (X, W → V)) is obtained by using
the Axioms A2, A3 on (C, (X → B)) and (C, (B, W → V)) where
(C, (B, W → V)) ∈ G}

19: end if
20: end for
21: end for
22: return coverF

column of this table shows the XFD in G being verified. The second column
indicates XFD that are added to G due to lines 12-18. Finally the last column
shows XFD that are inserted in coverF .

Table 4 is obtained by following the execution of Algorithm 1. For instance,
let us consider the third line in Table 4: the case when the XFD (C, (M → D))
in F1 is taken in line 4 of Algorithm 1. This XFD does not verify any condition
among conditions in lines 5, 7 and 9. When line 12 is executed, the set H =
{C/E} is computed, since closure1Step(C, D, F1) gives {C/D,C/E}. Thus,
the XFD (C, (M → E)) is added to G (line 13). When line 14 is executed,

XFD for the Integration of Multiple Systems 99

Table 4. Computation of (part) of coverF : XFD obtained when considering F1

G (XFD being considered) Add to G XFD added to coverF
(C, (A → B)) (C, (A → B)) (cond. line 9)

(C, (B → M)) (C, (B → M)) (cond. line 9)

(C, (M → D)) (C, (M → E))
(C, (B → D))
(C, ([] → D))

(C, (D → E)) (C, (M → E))
(C, ([] → E))

(C, (O → Z)) (C, (O → Z)) (cond. line 5)

(C, (M → E)) (C, (B → E))
(C, ([] → E))

(C, (B → D)) (C, (B → E))
(C, (A → D))
(C, ([] → D))

(C, (B → E)) (C, (B → E)) (cond. line 9)

(C, (A → D)) (C, (A → E))
(C, ([] → D))

(C, (A → E)) (C, (A → E)) (cond. line 9)

the set K = {{C/B}} is computed, since inverseClosure1Step(C,M,F1) gives
{{C/B}, {C/M}}. Thus, the XFD (C, (B → D)) is added to G (line 15). When
line 16 is executed, the XFD (C, ([] → D)) is added to G. Notice that these
three XFD are analysed later (lines 6 and 7 of Table 4). They are not included
in coverF , but generate other XFD as, for instance, (C, (A → E)), which is
finally added to coverF . �

7.2 Properties of coverF
In this section we prove that Algorithm 1 works correctly, and fulfills our goals.
First we introduce Lemma 2, telling us which XFD should be added to the
set F \ {f} in order to ensure the derivation of F+, except for f . Indeed, the
derivation of f from the new set G is neither guaranteed nor proscribed.

Lemma 2. Let F be a set of XFD such that (C, (X → Y)) ∈ F . Let (C, (Z1 →
Z2)) be an XFD different from (C, (X → Y)). If F (C, (Z1 → Z2)) then
G (C, (Z1 → Z2)) where G is obtained from F as follows:

G = F ∪ F1 ∪ F2 ∪ F3 ∪ F4 \ {(C, (X → Y))}

where F1 = {(C, (X → V)) | V ∈ closure1Step(C, Y,F)},
F2 = {(C, (W → Y)) | W ∈ inverseClosure1Step(C,X,F)},
F3 = {(C, ({P ′

1, . . . , P
′
n} → Y)) | {P ′

1, . . . , P
′
n} respects conditions for applying

Axiom A4 on (C, (X → Y))},
F4 = {(C, (X,W → V)) | (C, (Y,W → V)) ∈ F}. �

100 J. Amavi and M. Halfeld Ferrari

Sketch of proof: Since F (C, (Z1 → Z2)), there exists a sequence α of XFD
containing XFD in F such that α derives (C, (Z1 → Z2)). The crucial point
of the proof is when we suppose that α contains (C, (X → Y)). Thus, α has
sub-sequences for which one of the following conditions holds:

– it derives the set of paths X in one step or
– it derives the paths Y1, . . . , Yn ∈ closure1Step(C, Y,F) or
– it derives path Y in one step by using Axiom A4 on (C, (X → Y)) or
– it derives path V from X,W where (C, (Y,W → V)) ∈ F .

The proof consists in replacing the XFD (C, (X → Y)) and all sub-sequences
of α respecting the above conditions, by some of the new XFD which are added to
F for obtaining G. By considering G and the new derivation sequence (obtained
after replacing XFD in α) we can derive (C, (Z1 → Z2)). �

Now, given two sets of XFD, F i and F ī, we define set Ki of XFD which
contains all the XFD f which can be obtained from F i but that cannot be
violated by documents in Xī due to one of the two reasons:
(a) the right-hand side of f is a path B which belongs to IPi but not to IPī or
(b) the left-hand side of f is a set of paths X which is included in IPi but not
in IPī.

Formally, we have Ki = {X → A | X → A ∈ F+
i and [((X ⊆ IPi) and (X �⊆

IPī)) or (A ∈ (IPi \ IPī)]}.
In [2] we show an algorithm, starting with F+

1 and F+
2 , instead of F1 and

F2, that computes the set F = (F+
1 ∩F+

2)∪K1 ∪K2. We prove some properties
of F . This set F is the biggest set of XFD that does not violate any document
in Xi and Xī.

Theorem 1. The set coverF , returned by Algorithm 1, is equivalent to (or is a
cover of) the set of XFD F = (F+

1 ∩ F+
2) ∪ K1 ∪ K2 (coverF ≡ F). �

Sketch of proof: For proving that coverF ≡ F , we will prove that: (A1) ∀f ∈
coverF , F f and (A2) ∀f ∈ F , coverF f .

(A1) By the following Algorithm 1, we can easily prove that each XFD added
to coverF is also in F . Thus, we have coverF ⊆ F which is stronger than just
proving that F f for any XFD f ∈ coverF .

(A2) Let f = (C, (Y → A)) be an XFD in F+
1 ∩F+

2 . Thus, we know that C/A ∈
(C, Y)+F1

and C/A ∈ (C, Y)+F2
. Since C/A ∈ (C, Y)+F1

, there is a derivation
sequence α = f1, . . . , fn which derives f . If coverF contains all the XFD of F1

taking part in α then we have coverF f . Otherwise there is at least one XFD
of F1 (denote it by fk) that takes part in α but does not belong to coverF . Since
fk �∈ coverF then from lines 12-16, we know that fk is deleted from G and that
some other XFD h is inserted in G. By using Lemma 2, we have G f . If all
new functional dependencies h satisfy conditions in lines 5, 7, 9 they are added
to coverF . Otherwise, they are analysed in lines 12-16 and the process goes on

XFD for the Integration of Multiple Systems 101

until f is added to G and, thus, to coverF . With the same arguments we can
prove that f ∈ coverF+ when f ∈ K1 or f ∈ K2. �

7.3 Complexity of Our Method

Algorithm 1 depends on the algorithm that computes the closure of a set of
paths ((C,X[E])+), and on the algorithm that computes just one step of the
inverse closure of a set of paths.

The running time of the closure algorithm, in the worst (unlikely) case, is
O(|IP|2 ·(|f | · |F|+ |IP|)) where |F| is the cardinality of F and |f | is the size of the
longest XFD in F . The running time of the inverseClosure1Step algorithm is
O((|f |n · |F|)|X|) where |f | is the size of the longest XFD in F , n is the number
of paths on the left-hand side of f and |X| is the cardinality of the set of paths
X on which the function inverseClosure1Step is performed.

In the worst case, Algorithm 1 will treat about |F i|·|IPi| functional dependen-
cies for each set F i. The worst case occurs when for each XFD f = (C, (X → P))
in F i, (C,X)+ contains |IPi| paths and just one path is added to (C,X)+ in
each step of the loop of the closure algorithm and no XFD is added to coverF .
Hence, in this case, lines 12-18 of Algorithm 1 will be executed |IPi| times for
each XFD in F i. The complexity of Algorithm 1 is O(|F i| · |IPi| · (g + h)) where
g is the complexity of the closure algorithm and h is the complexity of the
inverseClosure1Step algorithm. The variables that are determinants in the com-
plexity are the cardinality of F and IP. In practice |X| and n are not greater than
5 and, thus, have little importance when compared with the size of F and IP.

8 Experimental Results

In order to examine the performance of Algorithm 1, we run several experiments
on synthetic data. Algorithm 1 has as input two local systems S1 = (D1,F1, O)
and S2 = (D2,F2, O), and computes the set coverF which contains only the
XFD for which no violation is possible when considering document sets from S1

and S2. Recall that we assume the existence of a pre-processing step where the
correspondence among paths on the different local documents is established. This
pre-processing step is built on the basis of an ontology alignment but it is out
of purpose in this paper. In this section we assume that this correspondence has
already been done: paths are represented on the basis of a common ontology O.

We take into account two parameters in the experiments: (i) the number of
paths obtained from D1 and D2, and (ii) the number of XFD in | F1 | + | F2 |.

Tree T (Figure 3) guides the way we perform our experiments. T is built by
repeating the pattern tree in Figure 3 several times. To perceive the difference
between the sub-trees of T , we relabel the nodes of the pattern tree by adding
the index k (k ≥ 1). We say sub-tree k to refer to the kth tree pattern in T . For
example, in Figure 3, A1,1 refers to element A1 of subtree k = 1 while and A1,2

refers to element A1 of subtree k = 2.

102 J. Amavi and M. Halfeld Ferrari

Our experiments consist in generating coverF from sets F1 and F2 which
increase at each test by assuming the existence of bigger sets of paths IP1 and IP2

and, therefore, larger trees T . In the text, we usually refer to tree T to indicate
the type of documents (the schema) we are dealing with. In this context, let us
define IPj

1 as the set of paths containing all the paths in the tree T except the
paths C/R1,k/G1,k (with k ≤ j), and IPj

2 as the set of paths containing all the
paths in the tree T except the paths C/R1,k/F1,k (with k ≤ j). We suppose that
the set of paths IPj

1 (respectively IPj
2) is generated from D1 (respectively D2).

n

Pattern tree

R1,1

D2,1B2,1

A1,1 B1,1 F1,1 G1,1 E1,1 D1,1

D3,1A2,1
E2,1

R1,n

D2,nB2,n

A1,n B1,n F1,n G1,n E1,n D1,n

D3,nA2,n
E2,n

. . .

C

Fig. 3. Tree T built by repeating n times the pattern tree

The set of XFD Fj
1 (respectively Fj

2) is defined over paths in IPj
1 (respectively

IPj
2). Table 5 shows the XFD in F j

1 and Fj
2. Sets Fj

1 and F j
2 contain both XFD

(1) and (2). However, XFD (3a), (4a) and (5a) are only in Fj
1 and XFD (3b), (4b)

and (5b) are only in Fj
2. With XFD (4a) and (5a), we can derive the XFD (6)

(C/R1,k, ({A1,k/A2,k, B1,k/B2,k} → E1,k/E2,k)) and with XFD (4b) and (5b), we
can also derive the XFD (6). Hence, Fj

1 and F j
2 derive XFD (6) but by different

ways. We can remark that |F1
1| = |F1

2| = 5, |F2
1| = |F2

2| = 10 and F1
1 ⊂ F2

1,
F1

2 ⊂ F2
2.

Table 5. Contents of the XFD sets Fj
1 and Fj

2 used in the experiments

Fj
1 Fj

2

(1) (C/R1,k, ({A1,k, B1,k} → D1,k)) (1) (C/R1,k, ({A1,k, B1,k} → D1,k))

(2) (C/R1,k, ({D1,k} → E1,k)) (2) (C/R1,k, ({D1,k} → E1,k))

(3a) (C/R1,k, ({E1,k} → F1,k)) (3b) (C/R1,k, ({E1,k} → G1,k))

(4a) (C/R1,k, ({A1,k/A2,k, B1,k/B2,k} → (4b) (C/R1,k, ({A1,k/A2,k, B1,k/B2,k} →
D1,k/D2,k)) D1,k/D3,k))

(5a) (C/R1,k, ({D1,k/D2,k} → E1,k/E2,k)) (5b) (C/R1,k, ({D1,k/D3,k} → E1,k/E2,k))

XFD for the Integration of Multiple Systems 103

The algorithm was implemented in Java and the tests have been done on an
Intel Quad Core i3-2310M with 2.10GHz and 8GB of memory. We have used
three scenarios for performing our tests.

In the first scenario we examine the influence of the size of F1 and F2 on
the execution time of Algorithm 1. We have used Fj

1 and F j
2, such that 1 ≤

j ≤ 45. Figure 4 shows reasonable execution time (approximately 2 minutes)
for computing coverF from sets of XFD F1 and F2 where |F1| + |F2| = 450.
Figure 4 also shows how coverF increases: at each step as we add 25 XFD to
|F1| + |F2|, set coverF has about 50 XFD more than its previous version.

CPU Time Size of coverF

0 2 5 5 0 7 5 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450

|F1| + |F2|

0

5 000

10 000

15 000

20 000

25 000

30 000

35 000

40 000

45 000

50 000

55 000

60 000

65 000

70 000

75 000

80 000

85 000

90 000

95 000

100 000

105 000

110 000

115 000

120 000

125 000

130 000

135 000

T
im

e
 i

n
 m

s

0

5 0

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

850

900

950

1 000

1 050

1 100

1 150

1 200

1 250

1 300

1 350

1 400

|co
ve

rF
|

Fig. 4. Scenario 1: CPU time for the computing of coverF and the evolution of its size

In the second scenario we examine again the influence of the size of F1 and
F2 on the execution time of Algorithm 1. Notice that, in the first scenario, the
functional dependencies involving index k concerns only one subtree. In this
second scenario, we allow an XFD involving index k = 1 to derive an XFD
involving index k = 2, and so on. To do this, we add to Fj

1 (resp. F j
2) the

XFD of the form (7a) (C, ({R1,k/E1,k−1/E2,k−1} → R1,k/D1,k/D2,k)), resp.
(7b) (C, ({R1,k/E1,k−1/E2,k−1} → R1,k/D1,k/D3,k)), with 2 ≤ k ≤ j.

As shown in Figure 5, the execution time for computing coverF is more
important than the one obtained with the first scenario. For instance, for sets
F1 and F2 (such that |F1|+|F2| = 262) we need 53 minutes to compute coverF .
This behaviour is explained by two facts:

104 J. Amavi and M. Halfeld Ferrari

– XFD of the form (7a) and (7b) are not added to coverF due to the condition
in line 9 of Algorithm 1. Checking this condition is an expensive task because
the computation of (C,R1,k/E1,k−1/E2,k−1)+Fi

involves many paths.
– For this example, lines 12-15 of Algorithm 1 generate many XFD dramati-

cally increasing the number of XFD in coverF . Indeed, |coverF| has about
10610 XFD when |Fj

1| + |Fj
2| is 262.

CPU Time Size of coverF

0 2 5 5 0 7 5 100 125 150 175 200 225 250

|F1| + |F2|

0

200 000

400 000

600 000

800 000

1 000 000

1 200 000

1 400 000

1 600 000

1 800 000

2 000 000

2 200 000

2 400 000

2 600 000

2 800 000

3 000 000

3 200 000

T
im

e
 i

n
 m

s

0

500

1 000

1 500

2 000

2 500

3 000

3 500

4 000

4 500

5 000

5 500

6 000

6 500

7 000

7 500

8 000

8 500

9 000

9 500

10 000

10 500

|co
ve

rF
|

Fig. 5. Scenario 2: CPU time for the computing of coverF and the evolution of its size

In the third scenario, we compare the algorithm built to compute F = (F+
1 ∩

F+
2) ∪ K1 ∪ K2 from F+

1 and F+
2 (presented in [2]) with Algorithm 1 (which

computes coverF). Recall that in Section 7, we have shown that coverF is
equivalent to F . Now, Table 6 compares these two algorithms. Line 1 in Table 6
shows the results with sets F1

1 and F1
2 while line 4 shows the result with F2

1 and
F2

2, and line 5 shows the result with F3
1 and F3

2, the same sets used in scenario
1. When computing the set F for sets F3

1 and F3
2 with the algorithm in [2],

we obtain an out-of-memory error after 5 minutes. For the same sets of XFD,
Algorithm 1 takes approximately 2.9 seconds and |coverF| = 92. Since the test
concerning line 5 does not produce a result for the algorithm in [2], we perform
tests of line 2 and 3 on a modified tree, i.e., on T without the leaves. In other
words, we delete nodes A2,2, B2,2, D2,2, D3,2 and E2,2 from a tree T with k = 2
sub-trees. The tree considered in line 3 contains nodes F1,2 and G1,2 in addition
to nodes in the tree considered in line 2. As expected, in all cases, Algorithm 1
is much more efficient than the algorithm in [2]. Moreover, the size of F grows
dramatically while the size of coverF increases slightly.

XFD for the Integration of Multiple Systems 105

Table 6. Comparison: t1 is the time needed to compute F and t2 is the time needed
to compute coverF

|IP1| + |IP2| |F1| |F2| |F+
1 | |F+

2 | |F| t1 (ms) |coverF| t2 (ms)

1 12 5 5 3 835 3 835 5 755 19 211 30 160

2 17 7 7 3 865 3 865 5 785 24 401 32 195

3 18 8 8 3 928 3 928 5 911 26 476 34 204

4 23 10 10 7 670 7 670 11 510 165 460 61 503

5 34 15 15 ? ? ? > 5min 92 2 949

Our experiments confirm the time complexity presented in Section 7.3, and
reinforce the importance of computing the smaller set coverF instead of the
equivalent set F considered in [2]. The worst case happens when documents
have many equivalent paths and derivations that involve a lot of paths. We
have used the closure algorithm to test, successfully, the equivalence between F
and coverF on several examples. These tests contribute to the validation of the
correctness of our method.

9 Conclusions

We are motivated by applications on a multiple system environment and we have
presented a method for establishing the biggest set of XFD that can be satisfied
by any document conceived to respect local XFD. One important originality
of our work is the fact that we do not deal with data, only with the available
constraints (XFD in our case). Our approach is not only interesting for multiple
system applications, but also in a conservative constraint evolution perspective.
To reach our goals, a new axiom system, built for XFD defined over a context
and two kinds of equality, was introduced and proved to be sound and complete.

As some future directions that follow from this work, we mention:

– By using the schema evolution method of [9] together with our computation
of coverF , the generation of a new type and a new set of integrity constraints
that will allow interoperability without abolishing constraint verification. We
are currently working on a platform that puts together these tools.

– The extension of our method to other kinds of integrity constraints such as
inclusion constraints.

– An incremental computation of coverF , following the evolution of local con-
straints or systems.

– The detection of local XFD that are not selected in coverF but that could
be included in it by correcting the associated documents that do not respect
them.

– The implementation of an XFD validator over the local systems, in a map-
reduce approach, by considering the set coverF as the set of constraints that
should be respected by the data of our multiple system.

106 J. Amavi and M. Halfeld Ferrari

A Soundness of the Axiom System

In this section we prove that our axiom system is sound, i.e., our axioms always
lead to true conclusions when we deal with complete XML trees. We start by
proving some lemmas. The first one deals with properties concerning the longest
common prefix of paths. The following example illustrates the situation it con-
cerns.

Example 7. We consider the XML document in Figure 2 and the following paths:
PK = univ/undergraduate/@domain, PJ = univ/undergraduate/students/-
student/idSt and PI = univ/undergraduate/students/student/nameSt. In
this situation we have PI ∩ PJ = univ/undergraduate/students/student and
PJ∩PK = univ/undergraduate. Clearly, PJ∩PK � PI∩PJ . Then, consider path
instances where isInst lcp(PI , I, PJ , J) = true and isInst lcp(PI , I, PK ,K) =
true. For instance, let instance K = ε/2/2.1, instance J = ε/2/2.2/-
2.2.0/2.2.0.0 and I = ε/2/2.2/2.2.0/2.2.0.1. Notice that in this case we also
have: isInst lcp(PJ , J, PK ,K) = true. �

The above example suggests that a kind of transitivity property could be
established for the function isInst lcp. The following lemma proves that this is
actually possible.

Lemma 3. Let T be an XML document and IP its associated set of
simple paths. Let PI , PJ , PK be distinct paths in IP. If PJ ∩ PK �
PI ∩ PJ and isInst lcp(PI , I, PJ , J) = isInst lcp(PI , I, PK ,K) = true then
isInst lcp(PJ , J, PK ,K) = true. �

The next example illustrates a special situation where an XFD not satisfied
by a given document has at the left-hand side a path which is a prefix of the
path on the right-hand side.

Example 8. We consider the example in Figure 2, the XFD f = (univ/under-
gradute, ({courses//titleC, courses//prerequisitesC} → courses//pre-
requisitesC/codeC)) and the branching path M defined by f . The document of
Figure 2 does not satify f . Notice that P2=univ/undergradute/courses/course/
prerequisitesC in the left-hand side of f is a prefix for P = univ/undergradute/
courses/course/prerequisitesC/codeC in right-hand side of f . Also remark
that we can find two projections of the XML tree over M such that
Last(Π1

M (T)[C/P2]) =N Last(Π2
M (T)[C/P2]): the two projections ending on

node 2.3.0.2. �

The following lemma proves that in situations as the one illustrated by Exam-
ple 8 we can always find two projections of the XML tree over the branching
path M such that Last(Π1

M (T)[C/Pj]) =N Last(Π2
M (T)[C/Pj]), where Pj is

the path on the left-hand side which is a prefix of the one on the right-hand
side.

XFD for the Integration of Multiple Systems 107

Lemma 4. Let T be an XML document, f = (C, ({P1 [E1], . . . , Pn [En]} →
Pn+1 [En+1])) an XFD and let M be the branching path {C/P1, . . . , C/Pn+1}.
If T �|= f and there exists a j ∈ [1 . . . n] such that Pj � Pn+1 then we can find two
projections Π1

M (T) and Π2
M (T) for M in T such that Last(Π1

M (T)[C/Pj]) =N

Last(Π2
M (T)[C/Pj]). �

In this appendix we just show the soundness proof of axiom A4.

Theorem 2. Axiom A4 is sound for XFD on complete XML trees. �

Proof : We consider a complete XML document T = (t, type, value).
A4: Let f = (C, ({P ′

1 [E′
1], . . . , P ′

n [E′
n]} → Pn+1 [En+1])) and f ′ = (C, ({P1 [E1],

. . . , Pn [En]} → Pn+1 [En+1])). The proof is by contradiction. Suppose that
T |= f but T �|= f ′. From Axiom A1, we can assume that for all i ∈ [1 . . . n],
Pi �= Pn+1. From Definition 5, we can deduce that there exist two projections
Π1

M (T) and Π2
M (T) for the branching path M = {C/P1, . . . , C/Pn+1} in T

such that τ1[C/Pn+1] �=En+1 τ2[C/Pn+1] and τ1[C/P1, . . . , C/Pn] =Ei,i∈[1...n]

τ2[C/P1, . . . , C/Pn]. We now show that there exist two projections Π1
M ′(T) and

Π2
M ′(T), constructed from Π1

M (T) and Π2
M (T), for the branching path M ′ =

{C/P ′
1, . . . , C/P ′

n, C/Pn+1} in T such that:

u1[C/P ′
1, . . . , C/P ′

n] =E′
i,i∈[1...n] u2[C/P ′

1, . . . , C/P ′
n] and (1)

u1[C/Pn+1] �=En+1 u2[C/Pn+1]. (2)

However, from our hypothesis we know that for all two projections Π1
M ′(T) and

Π2
M ′(T) such that (1) is satisfied then we have u1[C/Pn+1] =En+1 u2[C/Pn+1].

If Π1
M ′(T) and Π2

M ′(T) really exist, we have a contradiction with (2) and the
axiom A4 will be satisfied.

The proof is by showing that it is possible to obtain two projections for M ′ sat-
isfying (1) and (2). We start by considering that Π1

M ′(T)[C/Pi] = Π1
M (T)[C/Pi]

and Π2
M ′(T)[C/Pi]) = Π2

M (T)[C/Pi] ∀ i ∈ [1 . . . n + 1].

1. If ∃ k ∈ [1 . . . n] such that Pk � Pn+1 (Figure 6(a)) then, from Lemma 4, we
can consider that :

Last(Π1
M ′(T)[C/Pk]) =N Last(Π2

M ′(T)[C/Pk]). (3)

Since t is complete there exist instances Ji such that ∀ i ∈ [1 . . . n],
Π1

M ′(T)[C/Pi] � Ji and Ji ∈ Instances(C/P ′
i , t) (see Figure 6(a)). Let

∀ i ∈ [1 . . . n], Π1
M ′(T)[C/P ′

i] = Π2
M ′(T)[C/P ′

i] = Ji. Then by considering
these instances Ji for paths C/P ′

i and by using Lemma 3, we can show that
∀ i, j ∈ [1 . . . n + 1] (recall that we consider that P ′

n+1=Pn+1):

isInst lcp(C/P ′
i ,Π

1
M ′(T)[C/P ′

i], C/P ′
j ,Π

1
M ′(T)[C/P ′

j]) = true (4)

and isInst lcp(C/P ′
i ,Π

2
M ′(T)[C/P ′

i], C/P ′
j ,Π

2
M ′(T)[C/P ′

j]) = true. (5)

Thus, in this case, it is possible to have projections Π1
M ′(T) and Π2

M ′(T)
satisfying 1 and 2.

108 J. Amavi and M. Halfeld Ferrari

nPi Pi

Pn+1 Pn+1

(d)

P ′
i P ′

i
P ′
i P ′

i

(c)

Pi
Pn+1

P ′
i

Pi
Pn+1P ′

i

Pi
Pn+1

P ′
i

(b)

Pi
Pn+1

Pk

P ′
i

(a)

Fig. 6. Graphical representation of paths and possible projections. Case (a) Path Pk ≺
Pn+1 where Pk is one of the paths in the left-handside of XFD f ′ and Pi 	 P ′

i . Case
(b): Node equality for last nodes in Pi. Both projections Π1

M′(T) and Π2
M′(T) have

the same instance for path P ′
i . Case (c) and (d): Value equality for last nodes in Pi. In

case (c) there is only one instance of P ′
i (Pi 	 P ′

i). In case (d) there are two instances
of P ′

i (Pi 	 P ′
i). �

2. Otherwise if ∀ i ∈ [1 . . . n], Pi �� Pn+1 and Pi � P ′
i we can have the following

situations:
(a) If we consider node equality, we have Last(Π1

M ′(T)[C/Pi]) =N

Last(Π2
M ′(T)[C/Pi]) (Figure 6(b)). Since t is complete there exists an

instance Ji such that Π1
M ′(T)[C/Pi] � Ji and Ji ∈ Instances(C/P ′

i , t).
Let Π1

M ′(T)[C/P ′
i] = Π2

M ′(T)[C/P ′
i] = Ji.

(b) If we consider value equality, we have Last(Π1
M ′(T)[C/Pi]) =V

Last(Π2
M ′(T)[C/Pi]). Since t is complete there exist instances J1

i , J2
i

such that Π1
M ′(T)[C/Pi] � J1

i , Π2
M ′(T)[C/Pi] � J2

i and J1
i , J2

i ∈ Ins-
tances(C/P ′

i , t).
– If Last(J1

i) =V Last(J2
i) then let Π1

M ′(T)[C/P ′
i] = J1

i and
Π2

M ′(T)[C/P ′
i] = J2

i (Figure 6(c)).
– Otherwise if Last(J1

i) �=V Last(J2
i) then, since Pi � P ′

i and
Last(Π1

M ′(T)[C/Pi]) =V Last(Π2
M ′(T)[C/Pi]), there exists two

instances J3
i , J4

i such that Π1
M ′(T)[C/Pi] � J3

i , Π2
M ′(T)[C/Pi] �

J4
i and J3

i , J4
i ∈ Instances(C/P ′

i , t), Last(J1
i) =V Last(J4

i) and
Last(J2

i) =V Last(J3
i). In this case, let Π1

M ′(T)[C/P ′
i] = J1

i and
Π2

M ′(T)[C/P ′
i] = J4

i (Figure 6(d)).
Then by considering these instances Ji for paths C/P ′

i and by using Lemma 3,
we can show (4) and (5) in each case. Since Π1

M ′(T) and Π2
M ′(T) exist and

conditions (1), (2) are satisfied, we can conclude that A4 is sound.

B Completeness of the Axiom System

Before tackling the completeness issue, it is important to show the central fact
about the closure of a set of paths. It enables us to tell on a glance whether an
XFD follows from a set F by the axiom system. The next lemma tells us how.

Lemma 5. Let X = {P1, . . . , Pn} and Y = {Pn+1, . . . , Pn+m} be two sets of
paths. Let E = (E1, . . . , En) and E′ = (En+1, . . . , En+m). We have F (C,
({P1 [E1], . . . , Pn [En]} → {Pn+1 [En+1], . . . , Pn+m [En+m})) iff C/Y [E′] ⊆
(C,X[E])+. �

XFD for the Integration of Multiple Systems 109

To prove the completeness of our axiom system, we would like to define
a special tree having two instances (except for the root node) for every path
P ∈ IP. However, the following examples show that depending on the conditions
imposed on paths, it is not possible to have two instances for every path P ∈ IP.

Example 9. We want to build a complete tree having exactly two instances for
each path in IP. Let us consider value equality and two paths P and Q such
that P ≺ Q. We denote by IP1 and IP2 the two instances of P on a tree t.
We denote by IQ1 and IQ2 the two instances of Q on a tree t. Suppose that
Last(IP1) =V Last(IP2) and Last(IQ1) �=V Last(IQ2). Based on this situation,
the functional dependency P → Q is not satisfied by this tree. Then, we can
apply Lemma 4, to conclude that there is an instance of P which is a prefix of
both (distinct) instances of Q. As we want just two instances for each path, to
have two instances of Q we should have Last(IP1) =N Last(IP2). In other words,
in this situation, we cannot have a tree with two instances for P . Indeed, Figure 7
illustrates that a tree having two instances of P and respecting the constraints
Last(IP1) =V Last(IP2) and Last(IQ1) �=V Last(IQ2) must have four instances
of Q.

Now let us consider that a node equality condition is imposed on the instances
of a path P . In this situation we have Last(IP1) =N Last(IP2). Clearly, in this
case, P has only one instance. �

r

v1p

v1q

1

v2q

2

v2p

v3q

2

v4q

1

IP1

IQ1
IQ2

IP2

IQ3
IQ4

Fig. 7. An XML tree with two instances value equal for the path P and four instances
for the path Q with IP1 prefix of IQ1 , IQ2 and IP2 prefix of IQ3 , IQ4

Based on Example 9, we introduce the definition of our special tree, having
at most two instances for each path in IP.

Definition 11 (Two-instance Tree)
Let F be a set of XFD. Let T = (t, type, value) be an XML document where
the tree t, built according to the construction properties below, is called two-
instance tree. Let IP be the set of paths associated to T , let X ⊆ IP, and let E =
(E1, . . . , En) be the equality list associated to X. We denote by |Instances(P, t)|
the number of instances of a path P in t.

110 J. Amavi and M. Halfeld Ferrari

construction properties:

1. For each P ∈ IP, |Instances(P, t)| is at most 2 (I1 or I2) and when
|Instances(P, t)| = 2:
(a) we have C/P [V] ∈ (C,X[E])+ iff Last(I1) =V Last(I2);
(b) we have C/P [E′] �∈ (C,X[E])+ iff Last(I1) �=E′ Last(I2)

2. For each P ∈ IP, |Instances(P, t)| = 2 except when:
(a) Last(P) is the root of t, or
(b) by considering value equality, |Instances(P, t)| = 2 provokes the viola-

tion of condition 1 for another path Q ∈ IP with P ≺ Q, or
(c) X[E] → P [N] or
(d) Last(P) ∈ Σatt and Parent(P) verifies condition 2a, or 2b or 2c. �

Lemma 6. Let F be a set of XFD. Let T = (t, type, value) be an XML document
where t is a two-instance tree. Let IP be the set of paths associated to T and let
X ⊆ IP. The following properties hold for t:

1. If C/P ∈ IP and |Instances(C/P, t)| = 1 then C/P [E′] ∈ (C,X[E])+.
2. If P,Q ∈ IP, P � Q and there is an instance IP ∈ Instances(P, t), and

instances IQ1 and IQ2 ∈ Instances(Q, t) such that IP � IQ1 and IP � IQ2

then |Instances(P, t)| = 1.
3. If C/P ∈ IP then C/P [E′] ∈ (C,X[E])+ iff T |= (C, (X[E] → P [E′])). �

We now prove that the axiom system introduced in Definition 8 is complete.
In other words, given a set of XFD F , by using our inference rules, we can derive
all XFD f such that F |= f .

Theorem 3. If F |= f then F f . �

Proof: The proof is by contrapositive: we show that if F � f then F �|= f .
Let f = (C, ({P1 [E1], . . . , Pn [En]} → {Pn+1 [En+1] . . . Pn+m[En+m]})). Then,
we consider that X = {C/P1, . . . , C/Pn}, Y = {C/Pn+1, . . . , C/Pn+m} and that
both X and Y are in a given IP. Let E = (E1, . . . , En).
If F �|= f then there must be an XML document that satisfies F but does not
satisfy f . The proof consists in showing the existence of such a document.

Let us suppose an XML document T = (t, type, value) where t is a two-instance
tree defined on the set of paths X = {C/P1, . . . , C/Pn}.

Fact 1: T |= F
The proof is by contradiction. We suppose that T �|= g, where g is an XFD
(C,({Q1 [E′

1], . . . , Qk [E′
k]} → Qk+1 [E′

k+1])) in F . From Definition 5, as T �|= g,
we can deduce that there exist two projections Π1

M (T) and Π2
M (T) for the

branching path M = {C/Q1, . . . , C/Qk+1} in T such that:

τ1[C/Q1, . . . , C/Qk] =E′
i,i∈[1...k] τ2[C/Q1, . . . , C/Qk] and (6)

τ1[C/Qk+1] �=E′
k+1

τ2[C/Qk+1]. (7)

XFD for the Integration of Multiple Systems 111

From (7) we have that Π1
M (T)[C/Qk+1] �= Π2

M (T)[C/Qk+1] and |Instances
(Qk+1, t)| = 2. From Definition 11(1), we obtain:

C/Qk+1[E′
k+1] �∈ (C,X[E])+. (8)

From Definition 2, we know that the instances of two paths belonging to the
same branching path match on their longest common prefix path. Formally, for
all combination of paths Qi and Qj such that 1 ≤ i ≤ k + 1 and 1 ≤ j ≤ k + 1,
we have:

Considering Π1
M (T):

isInst lcp(C/Qi,Π
1
M (T)[C/Qi], C/Qj ,Π

1
M (T)[C/Qj]) = true (9)

Considering Π2
M (T):

isInst lcp(C/Qi,Π
2
M (T)[C/Qi], C/Qj ,Π

2
M (T)[C/Qj]) = true (10)

and we can also determine the following special nodes for 1 ≤ i ≤ k:

v1
i,k+1 = Last(Π1

M (T)[C/Qi] ∩ Π1
M (T)[C/Qk+1]) and

v2
i,k+1 = Last(Π2

M (T)[C/Qi] ∩ Π2
M (T)[C/Qk+1])

(11)

From (9) and (10), together with the definition of isInst lcp we know that
positions v1

i,k+1 and v2
i,k+1 exist in t. We have to consider two cases:

(a) v1
i,k+1 = v2

i,k+1 (illustrated in Figure 8(a))

(b) v1
i,k+1 �= v2

i,k+1 (illustrated in Figure 8(b))

We can easily show that it is always possible to choose for each i ∈ [1 . . . k], a
path C/Ri ∈ IP respecting the following property:

C/Ri[E′
i] ∈ (C,X[E])+ and Qi ∩ Qk+1 � Ri � Qi (12)

Now from property (12), the XFD g =(C,({Q1 [E′
1], . . . , Qk [E′

k]} → Qk+1 [E′
k+1]))

in F , and the axiom Branch Prefixing (Definition 8, axiom A4) we deduce the
XFD g′ = (C,({R1 [E′

1], . . . , Rk [E′
k]} → Qk+1 [E′

k+1])). Next, we assume that if
C/{R1, . . . , Rk}[E′] ⊆ (C,X[E])+ then C/Qk+1[E′

k+1] ∈ (C,X[E])+. Indeed, by
Definition 10 we know that X[E] → {R1 [E′

1], . . . , Rk [E′
k]}. From this rule and

g′, we derive X[E] → Qk+1[E′
k+1] by using the axiom Transitivity (A3). Thus,

from Definition 10, we obtain C/Qk+1[E′
k+1] ∈ (C,X[E])+ which contradicts (8):

Qk+1[E′
k+1] �∈ (C,X[E])+. Thus, we conclude that T |= g for any g ∈ F . In other

words, T |= F .

Fact 2: T �|= f
Recall, from the beginning of our proof, that f is the XFD (C, (X[E] → Y [E′′])).
AsX[E] ⊆ (C,X[E])+,∀Pi∈X wehaveLast(Π1

M (T)[Pi])=Ei
Last(Π2

M (T)[Pi])
for two given projections ofM onT . Fromour hypothesis,F �f and soC/Y [E′′] �⊆

112 J. Amavi and M. Halfeld Ferrari

ρ

v1i,k+1 = v2i,k+1

v1i v1k+1 v2i v2k+1

Ri

Qi
Qk+1 Qi Qk+1

(a)

ρ

v1i,k+1

v1i v1k+1

v2i,k+1

v2i v2k+1

Qi = Ri

Qk+1

Qi = Ri
Qk+1

(b)

Fig. 8. Illustration of the two cases (a)v1
i,k+1 = v2

i,k+1 and (b)v1
i,k+1 �= v2

i,k+1

(C,X[E])+. Thus, there is at least one path P ∈ Y having instances I1 and I2 such
that Last(I1) �=E Last(I2). We deduce that T �|= f .

In conclusion we have built a tree T such that T |= F and T �|= f which
establishes the proof of Theorem 3. �

Acknowledgments. We would like to thank Françoise Gire, Hicham Idabal, Béatrice
Bouchou and Martin Musicante for initial discussions that gave rise to this work.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley Pub-
lishing Company (1995)

2. Amavi, J., Halfeld Ferrari, M.: An axiom system for XML and an algorithm for
filtering XFD. Tech. Rep. RR-2012-03, LIFO/Université d’Orléans (2012). http://
www.univ-orleans.fr/lifo/rapports.php?lang=fr&annee=2012

3. Arenas, M., Libkin, L.: A normal form for XML documents. ACM Transactions on
Database Systems (TODS) 29 No.1 (2004)

4. Bouchou, B., Cheriat, A., Halfeld Ferrari, M., Laurent, D., Lima, M.A., Musicante,
M.: Efficient constraint validation for updated XML databases. Informatica 31(3),
285–310 (2007)

5. Bouchou, B., Halfeld Ferrari, M., Lima, M.: Contraintes d’intégrité pour XML.
visite guidée par une syntaxe homogène. Technique et Science Informatiques 28(3),
331–364 (2009)

6. Bouchou, B., Halfeld-Ferrari, M., Lima, M.A.V.: A Grammarware for the Incre-
mental Validation of Integrity Constraints on XML Documents under Multiple
Updates. In: Hameurlain, A., Küng, J., Wagner, R., Liddle, S.W., Schewe, K.-D.,
Zhou, X. (eds.) Transactions on Large-Scale Data- and Knowledge-Centered Sys-
tems VI. LNCS, vol. 7600, pp. 167–197. Springer, Heidelberg (2012)

7. Castanier, E., Coletta, R., Valduriez, P., Frisch, C.: Public data integration with
websmatch. In: BDA 2012 (2012)

8. Cecchin, F., de Aguiar Ciferri, C.D., Hara, C.S.: XML data fusion. In: DaWak. pp.
297–308 (2010)

9. Chabin, J., Halfeld Ferrari, M., Musicante, M.A., Réty, P.: Conservative Type
Extensions for XML Data. In: Hameurlain, A., Küng, J., Wagner, R. (eds.) TLDKS
IX. LNCS, vol. 7980, pp. 65–94. Springer, Heidelberg (2013)

http://www.univ-orleans.fr/lifo/rapports.php?lang=fr&annee=2012
http://www.univ-orleans.fr/lifo/rapports.php?lang=fr&annee=2012

XFD for the Integration of Multiple Systems 113

10. Chirkova, R., Libkin, L., Reutter, J.L.: Tractable XML data exchange via relations.
In: Proceedings of the 20th ACM Conference on Information and Knowledge Man-
agement, CIKM 2011. pp. 1629–1638 (2011)

11. Crane, G.: What do you do with a million books? D-Lib Magazine 12(3) (March
2006)

12. Gire, F., Idabal, H.: Regular tree patterns: a uniform formalism for update queries
and functional dependencies in XML. In: EDBT/ICDT Workshops (2010)

13. Hartmann, S., Trinh, T.: Axiomatising Functional Dependencies for XML with
Frequencies. In: Dix, J., Hegner, S.J. (eds.) FoIKS 2006. LNCS, vol. 3861, pp.
159–178. Springer, Heidelberg (2006)

14. He, Q., Ling, T.W.: Extending and inferring functional dependencies in schema
transformation. In: Proceedings of the 2004 ACM CIKM International Conference
on Information and Knowledge Management. pp. 12–21 (2004)

15. Kot, �L., White, W.: Characterization of the Interaction of XML Functional Depen-
dencies with DTDs. In: Schwentick, T., Suciu, D. (eds.) ICDT 2007. LNCS, vol.
4353, pp. 119–133. Springer, Heidelberg (2006)

16. Li Lee, M., Ling, T.-W., Low, W.L.: Designing Functional Dependencies for XML.
In: Jensen, C.S., Jeffery, K., Pokorný, J., Šaltenis, S., Bertino, E., Böhm, K., Jarke,
M. (eds.) EDBT 2002. LNCS, vol. 2287, p. 124. Springer, Heidelberg (2002)

17. Liu, J., Vincent, M.W., Liu, C.: Functional dependencies, from relational to XML.
In: Ershov Memorial Conference. pp. 531–538 (2003)

18. Pankowski, T.: Reconciling Inconsistent Data in Probabilistic XML Data Integra-
tion. In: Gray, A., Jeffery, K., Shao, J. (eds.) BNCOD 2008. LNCS, vol. 5071, pp.
75–86. Springer, Heidelberg (2008)

19. Shahriar, M.S., Liu, J.: Preserving Functional Dependency in XML Data Trans-
formation. In: Atzeni, P., Caplinskas, A., Jaakkola, H. (eds.) ADBIS 2008. LNCS,
vol. 5207, pp. 262–278. Springer, Heidelberg (2008)

20. Vincent, M.W., Liu, J., Liu, C.: Strong functional dependencies and their applica-
tion to normal forms in XML. ACM Trans. Database Syst. 29(3), 445–462 (2004)

21. Vincent, M., Liu, J., Mohania, M.: The implication problem for ’closest node’
functional dependencies in complete XML documents. Journal of Computer and
System Sciences 78(4), 1045–1098 (2012)

22. Wang, J., Topor, R.: Removing XML data redundancies using functional and
equality-generating dependencies. In: ADC 2005: Proceedings of the 16th Aus-
tralasian database conference. pp. 65–74. Australian Computer Society Inc., Dar-
linghurst, Australia (2005)

23. Wu, X., Ling, T.W., Lee, M.L., Dobbie, G.: Designing semistructured databases
using ORA-SS model. In: Proceedings of the 2nd International Conference on Web
Information Systems Engineering, WISE (1) (2001)

24. Zhao, X., Xin, J., Zhang, E.: XML functional dependency and schema normal-
ization. In: HIS 2009: Proceedings of the 9th International Conference on Hybrid
Intelligent Systems. pp. 307–312 (2009)

Author Index

Amavi, Joshua 83

Bianchini, Devis 51

Canahuate, Guadalupe 26

De Virgilio, Roberto 51

Ferrari, Mirian Halfeld 83

Guzun, Gheorghi 26

Rundensteiner, Elke A. 1

Tosado, Joel 26

Works, Karen 1

	Preface
	Editorial Board
	Contents
	Reliable Aggregation over Prioritized Data Streams
	1 Introduction
	1.1 Targeted Prioritized Data Stream Systems (TP)
	1.2 Motivating Examples of TPs
	1.3 Running TP Example: Stock Market
	1.4 Running Example: Inaccurate Aggregation Results
	1.5 State-of-the-Art Aggregation Operators and Their Shortcomings
	1.6 Our Approach and Contributions

	2 TR Query Model and Plan Definitions
	2.1 TP Queries
	2.2 TP Query Plans

	3 Background of Stream Aggregation
	3.1 Basic Aggregate Operator
	3.2 Aggregate Operator Supporting Out-of-Order Data Streams
	3.3 State-Of-the-Art Aggregate Operator for TPs

	4 TP-Ag Problem Definition
	5 TP Aggregation Foundation
	5.1 Aggregate Result Annotation
	5.2 Evaluation Strategies for Sample Population
	5.3 Policy for Selecting the Sample Population

	6 Design of the TP Aggregation Operator
	6.1 Tracking Expired Tuples
	6.2 TP-Ag Physical Design
	6.3 TP-Ag Operator
	6.4 Memory Resource Management

	7 Experimental Evaluation
	7.1 Experimental Setup
	7.2 Experimental Methodology
	7.3 Experimental Findings
	7.4 Summary of Experimental Findings

	8 Related Work
	8.1 Aggregate Operators that Support Tuple Level Resource Reduction and Reorder Systems
	8.2 Tuple Level Resource Reduction

	9 Conclusions
	References

	Slicing the Dimensionality: Top-k Query Processing for High-Dimensional Spaces
	1 Introduction
	2 Background and Related Work
	2.1 Bit-Sliced Indexing
	2.2 Top-k Queries

	3 Proposed Approach
	3.1 Problem Formulation
	3.2 Top-k Preference Query Execution
	Example: Putting It All Together.

	4 Cost Analysis
	4.1 Index Size
	4.2 Query Execution
	Top-k Weighted Preference Queries.
	Top-k Boolean Preference Queries.
	Top-k Baseline Preference Queries.

	5 Experimental Evaluation
	5.1 Experimental Setup
	5.2 Index Size
	5.3 BSI Performance Evaluation
	Query Time vs. Data Dimensionality.
	Query Time vs. Number of Top Preferences.
	Query Time vs. Number of Tuples.
	Query Time vs. Data Skewness.
	Query Time vs. Attribute Cardinality.
	Query Time vs. Query Sparsity.
	Query Time vs. Query Slices.
	Results for Real Datasets.

	6 Conclusion
	References

	SeeVa: A Model Based Framework for Semantic Web Service Discovery
	1 Introduction
	2 Background and Examples
	3 Semantic Web Service Model
	3.1 Model-Based Web Service Storage

	4 Model-Based Service Discovery
	4.1 The Hybrid Matchmaking Algorithm
	4.2 Exploitation of the SeeVa Storage System

	5 System Validation
	5.1 Implementation Issues
	5.2 Comparison with Related Work
	5.3 Experimental Results

	6 Concluding Remarks
	References

	Maximal Set of XML Functional Dependencies for the Integration of Multiple Systems
	1 Introduction
	2 Related Work
	3 Motivating Example
	4 Preliminaries
	4.1 Linear Paths
	4.2 Branching Paths

	5 Functional Dependencies in XML
	6 Axiom System
	7 Computing Functional Dependencies for Interoperability
	7.1 Algorithm for Computing coverF
	7.2 Properties of coverF
	7.3 Complexity of Our Method

	8 Experimental Results
	9 Conclusions
	A Soundness of the Axiom System
	B Completeness of the Axiom System
	References

	Author Index

