
A Scalable Approach for Vulnerability Discovery

Based on Security Patches

Hongzhe Li, Hyuckmin Kwon, Jonghoon Kwon, and Heejo Lee�

Dept. of Computer Science and Engineering, Korea University
{hongzhe,chasm,signalnine,heejo}@korea.ac.kr

Abstract. Software vulnerability has long been considered an impor-
tant threat to the system safety. A vulnerability often gets reproduced
due to the frequent code reuse by programmers. Security patches are
often not propagated to all code clones, however they could be lever-
aged to discover unknown vulnerabilities. Static auditing approaches are
frequently proposed to scan code for security flaws, unfortunately, they
often generate too many false positives. While dynamic execution anal-
ysis can precisely report vulnerabilities, they are in effective in path
exploration which limits them to scale to large programs. In this paper,
we propose a scalable approach to discover vulnerabilities in real world
programs based on released security patches. We use a fast and scalable
syntax-based way to find code clones and then, we verify the code clones
using concolic testing to dramatically decrease the false positives. Be-
sides, we mitigate the path explosion problem by backward data tracing
in concolic execution. We conducted experiments with real world open
source projects (Linux Ubuntu OS distributions and program packages)
and we reported 7 real vulnerabilities out of 63 code clones found in
Ubuntu 14.04 LTS. In one step further, we have confirmed more code
clone vulnerabilities in various versions of programs including Apache
and Rsyslog. Meanwhile, we also tested the effectiveness of vulnerability
verification with test cases from Juliet Test Suite. The result showed that
our verification method achieved 98% accuracy with 0 false positives.

1 Introduction

Programmers often make code reuse when they develop their software. These
code reuses are considered to be code clones which refer to the same or similar
code fragments in source code files. This usually causes the propagation of vul-
nerabilities when a piece of vulnerable code get reproduced. We call this kind of
vulnerability as “code clone vulnerability.”

Security patches are released to fix vulnerabilities. However, a patch of certain
vulnerability often fails to propagate to code clones at other locations which, very
possibly, present latent code clone vulnerability. Once a security patch is released,

� This research was supported by the MSIP(The Ministry of Science, ICT and Future
Planning), Korea and Microsoft Research, under IT/SW Creative research program
supervised by the NIPA(National IT Industry Promotion Agency)(H0503-13-1038).

L. Batten et al. (Eds.): ATIS 2014, CCIS 490, pp. 109–122, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

110 H. Li et al.

attackers could leverage patch information to dig out 0-day vulnerabilities and
make great damage to systems. Thus, there is an urgent need to detect them in
an effective and efficient way.

For a long time, software testing has been actively researched to detect security
vulnerabilities. Static code analysis [17] [6] [7] has been proposed to discover
vulnerabilities by analyzing source code or binary. The large coverage of code
and the access to the internal structures makes this approach very efficient to find
potential warnings of vulnerabilities. However, they often approximate or even
ignore runtime conditions, which makes them suffer from high false positives.

Dynamic analysis monitors program execution to discover security flaws [1] [2].
These tools detect software vulnerabilities by generating input test cases andmon-
itoring its run-time behavior. Although dynamic analysis reduces false alarms,
it requires the generation of actual bug triggering test inputs which often make
us cannot find critical security flaws in a reasonable time. Moreover, the cover-
age of the huge inputs space is either too much time costly or just impractical to
achieve. Symbolic execution [4] has been widely proposed to detect vulnerabilities.
However, as branches in programs increase, programpaths increase exponentially.
These approaches are either ineffective in path exploration or do not scale well to
large programs.

In order to gain both preciseness and scalability in vulnerability discovery, we
propose an approach which takes advantages of both static and dynamic analysis
to discover code clone vulnerability based on released security patches. We first
detect code clones in target source code by doing syntax-based pattern matching
in a scalable and efficient way. Second, we analyze the security sensitive data
in code clones and perform backward input tracing to instrument the program
source and prepare the testing object. Finally, we verify code clones to report
real vulnerabilities using concolic(CONCrete + symbOLIC) testing [8] [11] which
dramatically reduces false positives. We have conducted our experiments with
real world open source projects such as Ubuntu OS distributions. In the results,
there are 7 real vulnerabilities reported out of 63 code clones found in Ubuntu
14.04 LTS(recent release by then) within 7 hours to process nearly 260K source
files. In one step further, we have found more code clones and confirmed more
vulnerabilities in different versions of program packages. Meanwhile, we have
also tested our vulnerability verification phase of our mechanism with test cases
from Juliet Test Suite. The result shows that our verification method achieves
98% accuracy with no false positive and the average verification speed is 0.24s.

Our contributions could be described like this:
–Combination of static and dynamic analysis. We have developed a

novel mechanism which combines the advantage of static and dynamic analysis
to detect code clone vulnerability. Our mechanism suggests that the code clone
vulnerability detection is scalable and with low false positives.

–Backward data tracing. The backward data tracing enables our approach
perform concolic testing to do verification in a way that mitigates the path
explosion problem in conventional concolic execution approaches.

A Scalable Approach for Vulnerability Discovery 111

2 Related work

Previous researchers have proposed different approaches for static source code
auditing. Some of them focus on detecting code clones [9] [10]. Deckard [10] and
Deja vu [9] first parse the program to produce an abstract syntax tree(AST) to
represent the source program and then use the vector as a fingerprint for ASTs.
Similarity comparison is done among fingerprinting vectors. These approaches
require a very robust parser for the programming language and they are not
efficient and scalable enough in real large source code pools according to Rede-
bug [3]. Even though it can handle subtle code changes which may help them to
find more code clones, this approach may suffer from high false positive rate.

Redebug [3] tokenizes the source code into n-tokens and uses feature hash func-
tion to hash n-tokens. The code clone detection is performed bymembership check-
ing in bloom filter which stores the hash value of n-tokens. It is very practical and
can scale very well in real world usage in terms of code clone detection. However,
due to a lack of automatic verificationmechanism, most of un-patched code clones
they reported are turned out not to be real vulnerabilities which gives them a su-
per high false positive rate in terms of vulnerability detection.

Based on the shortness of the above discussion, we are looking into an auto-
matic and efficient way to do vulnerability verification. Symbolic execution has
been proposed to do program path verification and has shown good performance
in detecting some vulnerabilities [12]. Concolic testing [8] [11] was proposed later
to improve symbolic execution in order to make it more practical in real world
programs. KLEE [11] was developed to automatically generate high-coverage
test cases and to discover deep bugs and security vulnerabilities in a variety of
complex code. CREST-BV [8] has shown a better performance than KLEE in
branch coverage and the speed of test case generation. Nonetheless, the branch
coverage rate of CREST-BV was still below 25% with baseline testing strat-
egy and below 70% with the special designed testing strategy [8] which means,
for some vulnerabilities, it is either impossible or too much time consuming to
report them out. The greatest challenge for these approaches is the scalability
problem. They still could not handle the path explosion problem properly. More-
over, when detecting software bugs or vulnerabilities, they usually consider each
normal statement(such as memory copy, buffer access, arithmetic operations and
etc) as a potential bug. This makes the concolic testing very time and resource
wasting due to a huge input searching space, since only very small portion of the
potential bugs turn out to be real security vulnerabilities in real world programs.

In our mechanism, we do vulnerability verification using concolic testing after
a scalable process of code clone detection which reduces false positives. We also
propose backward data tracing to assist concolic testing so as to mitigate the
path explosion problem.

3 Proposed Mechanism

Discovery of vulnerabilities in a program is a key process to the development
and management of secure systems. Security patches are released to fix already

112 H. Li et al.

(1) Code clone detection (2) Backward data tracing (3) Vulnerability Verification

S

S

F

a=b
Sink(a)

Source:
 c= input

Entry function F

b=c

,

Vulnerable Safe
True

True

False

False

User input

Fig. 1. General overview of our approach

found security flaws and vulnerabilities. However, not all the patches are well
adopted and applied in all related programs. In a common case, released security
patches are often not propagated to all vulnerable programs due to the heavy
usage of the same piece of vulnerable code. To make things worse, attackers often
find more critical vulnerabilities based on the information learned from released
security patches. As security researchers, we had better move ahead of attackers
to identify those vulnerabilities related to un-patched code clones. In this paper,
we call these vulnerabilities as code clone vulnerabilities.

Before we go into detail of our approach, the general process is illustrated
in figure 1. We are first trying to find code clones by doing static syntax-based
pattern matching in a scalable and efficient way and then we perform backward
data tracing to prepare testing object. At last, we verify the code clones to report
real code clone vulnerability using concolic testing in a way that mitigates the
path explosion problem in conventional concolic testing domain which helps us
dramatically reduce false alarms in terms of vulnerability detection.

3.1 Finding Code Clones

Code clones could be described like this: if a same piece of vulnerable code occurs
in any other locations or programs released. We call them as un-patched code
clones. Figure 2 shows the concept and possible scenarios of code clones(e.g.,
CC@SP@S means code clone vulnerability at same program,at same location).
In figure 3, we could see that in some cases, after patch release, the vulnerability
may not be patched until several versions later or the same vulnerability reoccurs
in the later program versions. This, if leveraged by attackers, may cause serious
damages to our systems.

In order to find accurate code clones in an efficient and scalable way, we
would first like to make our detection engine scale well to large code bases such
OS distributions. Second, we want to report code clones with minimum false
positives. By doing this way, we will find more precise code clones which will
greatly help us to identify real code clone vulnerability later. The main steps of
our code clone detection phase are as follows.

Normalization of each file. We do normalization by removing all non-
ASCII character, redundant whitespaces, converting all characters to lower cases
and braces.

A Scalable Approach for Vulnerability Discovery 113

Code cloneCode clone

Program x
Version 2.0

Program x
Version 2.1

Vulnerable code Code clone

V 2.2 V 2.3

CC@SP@S: Code clone Vul.,
@Same Program @ Same location

Code clone
Code clone

Program x
Version 2.0

Program x
Version 2.

1

Vulnerable code
Code clone

V 2.2
V 2.3

CC@SP@D: Code clone Vul.,
@Same Program @ Different location

Code clone
Code clone

Program y
Version 3.0

Program z
Version 1.0

Vulnerable code Code clone

V 1.1
V 1.2

…

CC@DP: Code clone Vul.,
@ Different Programs

Code clone
Code clone

Program y
Version 3.0 Program Y-A

Version 4.0

Vulnerable code Code clone

V 4.1
V 4.2

CC@DeP : Code clone Vul.,
@ Derivate Programs

…

…

…

Fig. 2. Code clone vulnerability

…

…

Time line

Program A, V1.0
vulnerability

reported
Patch

released

Program A,
V1.1 released

unpatched

Program A,
V1.2

unpatched

Program A,
V1.3

unpatched

Program A,
V1.4

patched

Program B, V1.0
vulnerability

reported

Patch
released

Program B,
V1.1

patched

Program B,
V1.2

patched

Program B,
V1.3

unpatched

Program B,
V1.4

unpatched

Time line

Fig. 3. Code clone vulnerability in the same
program but different versions

Tokenization of each file. After normalization, each file is tokenized by
each line. We define each line as one ‘t’ (token).

N-tokens. We slide a window of n length over the tokenized file. Each n-
tokens are considered a basic unit to compare. We define this basic unit as u.
Figure 4 shows a 4-token window sliding.

4-tokens

Window sliding

Fig. 4. Window sliding of 4-tokens

strcpy(buf,src);

S
 a=b

Sink(a)

Source:
c= input

Entry function F

 b=c

S
F

Fig. 5. Instrumentation of program
source

Hence a file f(t1,t2,t3,...,tl) could be represented as f(u1,u2,u3,...,ux), where
x = l − n (l is the number of lines in a certain file).

Checking definition for code clones.We extract original buggy code from
a security patch basically by removing lines prefixed by ‘+’ and adding lines
prefixed by ‘-’. Then we regard this original piece of buggy code as a single file
called fv. A code clone is reported when fv is contained in any file f from target
source code pool. Then, how can we define this containment? From the above
steps, we get a N-token set for each file and we define this n-token set for each
file as S ={u1,u2,u3,...,ux}. We say fv is contained in f when Sv ⊆ S.

Fast membership checking. Since, in practice, there are tons of files that
we need to deal with. So, to do membership checking in an extremely fast way
is really necessary. Bloom filter [13] is well known as fast membership checking

114 H. Li et al.

which could be a very good choice to perform our task. Suppose there is a data
set S, eg, a set of n-tokens. A bloom filter represents set S as a vector of m
bits initially all set to 0. To store data into the bloom filter(add an element x
of S to the Bloom filter), We first apply k independent hash functions with the
value range of [1,m] on the n-tokens for files in source code pool, in our case,
Hash(u1), Hash(u2), ..., Hash(ux). For each hash h(x) = i, we set the i’th bit
of the bit vector to 1. To check the membership in a bloom filter, we again apply
k independent hash functions on the target n-tokens data set. In our scenario,
similarly, we apply k hash functions on n-tokens from fv. Then we check if all
the corresponding bits are set to 1. If at least one of the hashed bits is 0, then
we return a non-existence result.

3.2 Preparing Testing Source Object

In order to reduce the input search space of the whole program, we propose
backward sensitive data tracing to make a testing source object. The preparing
of testing source object is considered to be a preprocess for our concolic testing. It
is done by backward source code analyzing and program source instrumentation.
The stage mainly contains 2 steps: 1) make assertions 2)make symbolic inputs.

Assertions are to be made to set up security constraints before the potential
vulnerable statements and symbolic input are used to generate different test
cases for different execution paths. Before we expain how to actually do the
instrumentation, we talk about some concepts and definition. In software, data
flow can be thought as in water flow in aqueduct systems which starts from
natural sources and ends to sinks [14].

Security sinks: Sinks are meant to be the points in the flow where data
depending from sources is used in a potentially dangerous way. Several typical
types of security sinks are shown below.

– Memory copy: The sensitive data is used as argument to be copied in a des-
tination buffer (e.g.,strcpy,memcpy). When destination buffer cannot hold
the sensitive data, serious security problems may occur like buffer overflow.

– Memory allocation: Memory allocation: The sensitive data is used as ar-
gument in memory allocation functions (e.g., malloc,alloca) and it usually
causes insufficient memory allocation.

– Format string: The sensitive data is used improperly as argument in format
functions (e.g., printf, sprintf). Attacker can take use of this vulnerability
to take control of the system.

– Arithmetic operations: The arithmetic operations may cause integer over-
flow, underflow or divided by zero problems.

Sources: Sources are to be considered starting points where un-trusted input
data is taken by a program.

Sensitive data: Sensitive data are considered to be data depending on Sources
which are used in the security sinks.

Security Constraints(SC): Security constraints are clearly high-level se-
curity requirements. E.g., the length of the string copied to a buffer must not

A Scalable Approach for Vulnerability Discovery 115

Table 1. Security requirements for security-sensitive functions

Security-critical func. Security requirement

strcpy(dst,src) dst.space > src.strlen
strncpy(dst,src,n) (dst.space ≥ n) ∧ (n ≥ 0)
strcat(dst,src) dst.space > dst.strln + src.strlen
printf(format, ...) # formats = # parameters-1

exceed the capacity of the buffer. We need to define security requirements for
statements like security-sensitive function parameters, memory access, integer
arithmetic and etc(See Table 1).

Backward sensitive data tracing: We first identify security sinks and sen-
sitive data in the code clone source. Then, we backwardly trace the source from
the sensitive data to find the related input location. Afterwards, we instrument
the program source to make assertions based on security requirements right be-
fore the security sink and replace the input statement with symbolic values. We
could see this process from Figure 5.

Until now, we could prepare a testing source object logically from the program
input to the potential vulnerable sinks. This testing source object is usually a
small part of the whole program source which helps us to release the burden of
our next stage.

3.3 Code Clone Verification using Concolic Testing

Symbolic execution and concolic execution have been widely used in software
testing and some have shown good practical impact, such as KLEE [11], CUTE [1]
and DART [5]. However, they suffer from path explosion problem which makes
them cannot scale well to large real world programs. H.Li et al [15] has proposed
variable backward slicing to analyze a program. This approach helps us to con-
centrate on those paths only related to sensitive sinks which dramatically reduce
the number of paths to analyze. However, pure static symbolic execution does
not give us enough support on real world programs. Driven by the above con-
cerns, we are trying to apply concolic testing in our code clone verification phase
to help the verification of code clone vulnerabilities. The general principle of the
verification is to find an input which satisfy all the program constraints(PCs)
but violate the security constraints(SCs) as shown in figure 1. The concept of
PC and SC could be find in H.Li et at [15]. In our scenario, we focus on the
paths related to code clones rather than the countless number of paths in the
whole program which could help us to mitigate the path explosion problem to
a large extent. Our approach for concolic testing to verify code clones mainly
follows a general concolic testing procedure [8](Instrumentation,Concrete execu-
tion,Obtain a symbolic path formula,Select the next input values, Iterates back
to execution). However, the difference is that we are trying to generate an input
to execute the vulnerable branch instead of trying to generate inputs to traverse
every possible paths of the program. Our approach for concolic testing is target
branch oriented rather than branch coverage oriented. Hence, we are more time

116 H. Li et al.

Security patches
Diff format

Extract the Original
code segment
Including context

Tokenize/Normalization
Code replacement

Target program
source code

Hash n-tokens into
Bloom filter

DB
Bloom filters/file

Bloom filter membership
check

Code clone detection

Tokenize/Normalization
Code replacement

Preparing testing object

Code
clones

Patch
information

Security sink and sensitive
data identification

Backwardly tracing the
source

Program instrumentation

1.Make assertions
2.Make symbolic inputs

Security
requirements

Vulnerability verification

Instrumented
program

Concolic testing
executor

Random
initial input

Hit the
Vulnerability

Report/confirm
a vulnerability

Collect constraints
on current path

Search constraints
On a different path
Solve new constraints

Test cases
for a new path

yes

No

Iteration stops when
1. Vulnerability triggered
2. Execution threshold

Fig. 6. The mechanism architecture

cost efficient when doing concolic testing. The detailed process is described in
Figure 6.

In Figure 6, we can also see the detail mechanism architecture. Our mechanism
consists of 3 phases: Code clone detection, Preparation of testing source
object and Vulnerability verification. Our mechanism is used to discover
un-patched code clone vulnerabilities in real world projects. We choose CREST-
BV [9] as a basic concolic execution engine because of its good performance in
test case generation speed. In the next part, we are going to talk about the
implementation and experimental results.

4 Experimental Results

4.1 Implementation

Environment setup: We performed all experiments to discover code clone
vulnerabilities on a desktop machine running Linux ubuntu 12.04 LTS (3.2 GHz
Intel Core i7 CPU, 8GB memory, 512GB hard drive).

Dataset: For the security patches, we collected 106 security patches from 28
CVE [16] patch files (e.g., CVE-2010-0405.patch) related to Linux programs re-
leased from 2010 to 2014. We mainly collected patches related to buffer overflows
and integer overflows because these are most common types of vulnerabilities.
Table 2 shows the number of CVE patch files we collected on yearly base.

For the target testing programs, we collected the source of Linux Ubuntu
14.04 OS distribution to test our mechanism. Based on the results, in one step
further, we again collected various versions of linux packages in which code clones
vulnerabilities have been found in the previous test such as Rsyslog and Apache

A Scalable Approach for Vulnerability Discovery 117

Table 2. Yearly distribution of collected CVE patches

CVE patches 2010 2011 2012 2013 2014

Buffer overflow 0 1 2 6 4
Integer overflow 1 0 2 0 7
Buffer cased by IOS 0 0 3 1 0
Other 0 1 0 0 0

Total 28

Table 3. Code clone detection results

Target CVE patches Target src pool # of files
of reported Execution
code clones time

Src pool-1
CVE patch pool Ubuntu 14.04

259346 63
24812.5 sec

(2010-2014, for C code) OS distribution (7 hours)

Src pool-2
CVE patch pool Httpd-2.2.23

7820 14
738.6 sec

(2010-2014, for C code) to 2.4.6 (12.31 min)

Src pool-3
CVE patch pool Rsyslog-5.8.13

1692 7
274.7 sec

(2010-2014, for C code) to 8.2.1 (4.57 min)

trying to find more vulnerabilities in different program versions. What’s more, in
order to prove the efficiency of our vulnerability verification phase statistically,
we collected 100 test cases from Juliet Test Suite. Juliet Test Suite is created by
US National Security Agency’s (NSA) Center for Assured Software which has
been widely used to test the effectiveness of vulnerability detection tools.

4.2 Experimental Results

We have conducted our experiments with different target source pools.
Target source pool-1. Linux Ubuntu 14.04(latest version) OS distribution
We have found over 63 code clones in Linux Ubuntu 14.04(latest version) OS

distribution. Table 3 shows the number of files processed and the execution time
in detecting code clones

Our processing time is nearly 7 hours which means this experiment could be
conducted in daily base. Among the 63 code clones, we have reported 7 real world
vulnerabilities. Table 4 shows the detail information of the real vulnerabilities
that we verified.

Table 4. Code clone vulnerabilities reported

program CVE patch Location of the vulnerability

Cmake-2.8.12.2 CVE-2010-0405.patch /Utilities/cmbzip2/decompress.c:381
Firefox-28.0+build2 CVE-2010-0405.patch /modules/libbz2/src/decompress.c:381
Thunderbird-24.4.0+build1 CVE-2010-0405.patch /plugins/pmrfc3164sd/pmrfc3164sd.c:381
rsyslog-7.4.4 CVE-2011-3200.patch /plugins/pmrfc3164sd/pmrfc3164sd.c:272
gegl-0.2.0 CVE-2012-4433.patch /operations/external/ppm-load.c:87
linux-3.13(Linux kernel) CVE-2014-2581.patch /net/ipv4/ping.c:250
httpd-2.4.7(Apache) CVE-2011-3368.patch /server/protocol.c:625

118 H. Li et al.

In terms of vulnerability detection, our approach reported no false positives
which is a huge improvement over other code clone detection approaches [3] [9] [10]
without automatic verification.

Target source pool-2 and 3. Source packages of different program ver-
sions(Rsyslog and Apache).

Based on the result of the previous experiment, we are trying to look into dif-
ferent versions of the affected programs to see code clone vulnerability in different
program versions. We collected different versions(released after the publication
time of the security patch) of Rsyslog and Apache and used them as target
source code pool-2 and source code pool-3 respectively. For the Apache case, we
collected 11 different versions from 2.2.23 to 2.4.6. Our mechanism processed
totally 7820 source files (3642170 code of lines) in nearly 12.3 minutes. As a
result, we have found 10 code clones and confirmed all of the 10 code clones to
be actually vulnerable. We could see the detail from Table 3 and Table 5.

Table 5. Code clone vulnerabilities reported with source pool-2 (Apache)

Version # LOC

of # of # of
reported vulnerability false

code clones found/verified positives

Httpd-2.2.23 350145 1 1 0
Httpd-2.2.24 350256 1 1 0
Httpd-2.3.6 209369 1 1 0
Httpd-2.3.8 210564 1 1 0
Httpd-2.3.11-beta 219427 1 1 0
Httpd-2.3.15-beta 226497 0 0 0
Httpd-2.4.1 223050 1 1 0
Httpd-2.4.2 223265 1 1 0
Httpd-2.4.3 223921 1 1 0
Httpd-2.4.4 226000 1 1 0
Httpd-2.4.6 233330 1 1 0

Actually, these code clones are detected from CVE-2011-3368.patch. From
the result, we could see that after the release time of the CVE-2011-3368.patch,
the Apache2 developers didn’t actually fix the vulnerability in the later release
versions. For some reason, it was fixed in Httpd-2.3.15-beta and then, the same
vulnerability occurred again in the later release versions. This case corresponds
to the code clone type–CC@SP@S as we have talked about in 3.1.

Similarly, we also collected different versions of Rsyslog and reported 7 affected
versions. Table 3 and Table 6 showed the results.

Ourmechanismprocessed totally 1692 sourcefiles(656708codeof lines) innearly
4.57 minutes. These reported code clones are related to CVE-2011-3200.patch.
After the release time of this security patch, the developing team fixed this vulner-
ability originally in the source file /syslogd.c. However, from the version Rsyslog-
5.8.13, this code clone vulnerability re-occurred in another file /pmrfc3164sd.c due
to the careless code re-use by developers. This case corresponds to the code clone

A Scalable Approach for Vulnerability Discovery 119

Table 6. Code clone vulnerabilities reported with source pool-3 (Rsyslog)

Version # LOC

of # of # of
reported vulnerability false

code clones found/verified positives

Rsyslog-5.8.13 78937 1 1 0
Rsyslog-5.10.0 78259 1 1 0
Rsyslog-5.10.1 77811 1 1 0
Rsyslog-6.6.0 92448 1 1 0
Rsyslog-7.4.0 105324 1 1 0
Rsyslog-7.6.3 111218 1 1 0
Rsyslog-8.2.1 112711 1 1 0

CVE-2011-3200.patch: Rsyslog Buffer overflow
 i = 0;
- while(lenMsg > 0 && *p2parse != ':' && *p2parse != ' ' && i < CONF_TAG_MAXSIZE) {
+ while(lenMsg > 0 && *p2parse != ':' && *p2parse != ' '&& i < CONF_TAG_MAXSIZE - 2) {
 bufParseTAG[i++] = *p2parse++;
 --lenMsg;
 }

Code clone vulnerabiltiy: rsyslog-7.4.0/plugins/pmrfc3164sd/pmrfc3164sd.c
1 static rsRetVal parse(msg_t *pMsg)
2 {
3 uchar *p2parse;
4 [...]
5 i = 0;
6 while(lenMsg>0&& *p2parse!= ':' && *p2parse!=' '&& i < CONF_TAG_MAXSIZE){
7 bufParseTAG[i++] = *p2parse++;
8 --lenMsg;
9 }

10 if(lenMsg > 0 && *p2parse == ':') {
11 ++p2parse;
12 --lenMsg;
13 bufParseTAG[i++] = ':';
14 }
15
16 bufParseTAG[i] = '\0';
17 MsgSetTAG(pMsg, bufParseTAG, i);
18 }
19 [...]
20 CHKmalloc(pBuf = MALLOC(sizeof(uchar) * (lenMsg + 1)));

Fig. 7. Code clone vulnerability from Rsyslog.

type–CC@SP@D(see 3.1) and Figure 7 shows the code clone vulnerability in
Rsyslog-7.4.0 .

Comparison with conventional concolic testing: As we mentioned be-
fore, we apply backward sensitive data tracing to assist concolic testing for our
verification. We have compared our approach with CREST [18]. We have used
Rsyslog-7.4.0 for our testing target. Both approaches have generated a trigger-
ing input and successfully verified CVE-2011-3200(see Figure 7) vulnerability in
Rsyslog. However, Figure 8 has shown a performance comparison in terms of
number of branches covered and number functions reached when the triggering
input has been generated.

As we can see, in order to generate a triggering input for the vulnerability,
our approach(concolic testing with backward tracing) has reduced the number
of covered branches from 344 to 59 and has reduced the number of reached
functions from 48 to 9. What’s more, our approach only spent 1.2 secs to trigger

120 H. Li et al.

0

50

100

150

200

250

300

350

400

function reached # branch covered

Conventional concolic
testing(CREST)

Concolic testing with
Backward Tracing

Fig. 8. The comparison with conventional concolic testing

this vulnerability while CREST took 24 mins. This indicates that, with backward
data tracing, we can dramatically reduce the number of paths to traverse and
decrease the input searching space which mitigates the path explosion problem.

4.3 Evaluations of Vulnerability Verification Phase

In order to prove the efficiency of our vulnerability verification phase, we col-
lected 100 test cases from Juliet Test Suite. For every test case, there are “good”
functions and “bad” functions which provides the ground truth for our evalu-
ation. Our 100 test cases consist of different vulnerable types(see Table 7) and
there are totally 250 spot to verify(100 bad functions and 150 good functions).
We could see the results from Table 8.

Table 7. Distribution of test cases
number

Vulnerability type
Number of
test cases

Stack-based buffer overflow 25
Heap-based buffer overflow 25
Integer overflow 25
Format string 25

Table 8. Evaluation metrics of vulner-
ability verification on Juliet Test Suite
test cases

True False

Positive 95 0
Negative 150 5

As we can see, our verification system generates no false positive and we got
the verification accuracy of 98%. We also measured the average verification time
needed to verify each test case, average verification time = 0.24s. This proves
that our system has good verification accuracy and time cost effective.

5 conclusion

In this paper, we have developed a novel mechanism which combines the ad-
vantage of static and dynamic analysis to detect code clone vulnerability. Our

A Scalable Approach for Vulnerability Discovery 121

mechanism suggests a good performance for code clone vulnerability. What’s
more, by tracing the input from the sensitive data in code clones and preparing
the testing source object, our approach performs concolic testing to do verifica-
tion in a way that mitigates the path explosion problem. We conducted several
experiments with different target source pools. The results showed our approach
could find real world vulnerabilities with extremely low false positive rate within
reasonable amount of time.

However, there are several concerns as well. First of all, some CVE patches
patch in header files whose information is not enough to identify sensitive sinks.
Sometimes, several patches contribute to one vulnerability case. This also makes
us confused when we do verifications. Finally, due to the limitation of branch
coverage of the concolic testing, we will have some false negatives in verification
phase. In future research, we will look into classification of security patches and
study about the searching strategy of concolic testing for higher branch coverage.

References

1. Sen, K., Marinov, D., Agha, G.: Cute: a concolic unit testing engine for C. In: ACM
SIGSOFT International Symposium on Foundations of Software Engineering, pp.
263–272 (2005)

2. Haugh, E., Bishop, M.: Testing c programs for buffer overflow vulnerabilities. In:
Network and Distributed System Security Symposium, pp. 123–130 (2003)

3. Jang, J., Agrawal, A., Brumley, D.: ReDeBug: finding unpatched code clones in
entire os distributions. In: IEEE Symposium on Security and Privacy, pp. 48–62
(2012)

4. Ma, K.-K., Yit Phang, K., Foster, J.S., Hicks, M.: Directed symbolic execution. In:
Yahav, E. (ed.) Static Analysis. LNCS, vol. 6887, pp. 95–111. Springer, Heidelberg
(2011)

5. Godefroid, P., Klarlund, N., Sen, K.: Dart: directed automated random testing. In:
ACM Sigplan Conf. on Programming Language Design and Implementation (2005)

6. Wheeler, D.: Flawfinder (2011), http://www.dwheeler.com/flawfinder

7. Evans, D.: Splint, http://www.splint.org

8. Kim, M., Kim, Y., Jang, Y.: Industrial application of concolic testing on embedded
software: Case studies. In: IEEE Int’l Conf. on Software Testing, Verification and
Validation, pp. 390–399 (2012)

9. Gabel, M., Yang, J., Yu, Y., Goldszmidt, M., Su, Z.: Scalable and systematic
detection of buggy inconsistencies in source code. In: ACM Int’l Conf. on Object
Oriented Programming Systems Languages and Applications (2010)

10. Jiang, L., Misherghi, G., Su, Z., Glondu, S.: Deckard: Scalable and accurate tree-
based detection of code clones. In: Int’l Conf. on Software Engineering, pp. 96–105
(2007)

11. Cadar, C., Dunbar, D., Engler, D.: Klee: Unassisted and automatic generation of
high-coverage tests for complex systems programs. In: USENIX Symp. on Operat-
ing Systems Design and Implementation, vol. 8, pp. 209–224 (2008)

12. Zhang, D., Liu, D., Lei, Y., Kung, D., Csallner, C., Wang, W.: Detecting vul-
nerabilities in c programs using trace-based testing. In: IEEE/IFIP Int’l Conf. on
Dependable Systems and Networks, pp. 241–250 (2010)

http://www.dwheeler.com/flawfinder
http://www.splint.org

122 H. Li et al.

13. Broder, A., Mitzenmacher, M.: Network applications of bloom filters: A survey.
Internet Mathematics 1(4), 485–509 (2004)

14. Sinks, http://code.google.com/p/domxsswiki/wiki/Sinks
15. Li, H., Kim, T., Bat-Erdene, M., Lee, H.: Software vulnerability detection using

backward trace analysis and symbolic execution. In: Int’l Conf. on Availability,
Reliability and Security, pp. 446–454 (2013)

16. Vulnerabilities, C.: Exposures cve., http://cve.mitre.org
17. Yamaguchi, F., Wressnegger, C., Gascon, H., Rieck, K.: Chucky: exposing missing

checks in source code for vulnerability discovery. In: ACM SIGSAC Conference on
Computer & Communications Security, pp. 499–510 (2013)

18. Burnim, J., Sen, K.: Heuristics for scalable dynamic test generation. In:
IEEE/ACM Int’l Conf. on Automated Software Engineering, pp. 443–446 (2008)

http://code.google.com/p/domxsswiki/wiki/Sinks
http://cve.mitre.org

	A Scalable Approach for Vulnerability Discovery
Based on Security Patches

	1 Introduction
	2 Related work
	3 Proposed Mechanism
	3.1 Finding Code Clones
	3.2 Preparing Testing Source Object
	3.3 Code Clone Verification using Concolic Testing

	4 Experimental Results
	4.1 Implementation
	4.2 Experimental Results
	4.3 Evaluations of Vulnerability Verification Phase

	5 conclusion
	References

