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Abstract. It is known that the non-linear integral has been generally used as an 
aggregation operator in classification problems, because it represents the 
potential interaction of a group of attributes. The lower integral is a type of 
non-linear integral with respect to non-additive set functions, which represents 
the minimum potential of efficiency for a group of attributes with interaction. 
Through solving a linear programming problem, the value of lower integral could 
be calculated. When we consider the lower integral as a classifier, the difficult 
step is the learning of the non-additive set function, which is used in lower 
integral. Then, the Extreme Learning Machine technique is applied to solve  
the problem and the ELM lower integral classifier is proposed in this paper. The 
implementations and performances of ELM lower integral classifier and single 
lower integral classifier are compared by experiments with six data sets. 
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Possibility distribution  

1 Introduction 

Non-additive set functions have described well the potential interaction of a group of 
attributes. Then, several types of non-linear integrals with respect to non-additive set 
functions have been defined. In [1], Sugeno generally defined the concept of fuzzy 
measure and Sugeno integral. In [2], the Choquet integral, which is the extension of the 
Lebesgue integral, was proposed. And the upper and lower integrals, which are two 
extreme specified indeterminate integrals, were given by Wang et al. in [3].   

Many researchers have attempted to use non-linear integral as an aggregation 
operator in multi-attribute classification problems [4],[5],[6],[7],[8], and the results are 
very inspiring. In this kind of approaches, the decisions of different classifiers are fused 
into a final classification result by a non-linear integral with respect to a non-additive 
set function, which expresses the weights and the interactions of each classifier for a 
given class. In the nonlinear classification, Sugeno fuzzy integral and Choquet fuzzy 
integral have been used in [5],[6],[7]. The upper integral has been used in [13],[14]  
with the nonlinear classification, and the performance of upper integral classifier is 
competitive. 
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In this paper, we attempt to introduce ELM into the lower integral classifier. The 
lower integral is an extreme decomposition by which the least integration values can be 
obtained [3]. We know that the decision of non-additive set function is the difficult 
problem in fuzzy integral classification. As the efficiency and performance of Extreme 
Learning Machine, we will introduce ELM into the lower integral classifier. In our 
ELM lower integral classifier, the non-additive set functions are randomly generated 
and the huge task of learning non-additive set functions is avoided. However, due to the 
existence of weights jβ , we expect that ELM lower integral classifier has better 

performance than the single lower integral classifier.  
In the following we briefly present the basic firstly. And then the ELM lower 

integral is proposed. In the end, the comparison of ELM lower integral classifier and 
single lower integral classifier are provided by experimenting with some data sets. 

2 Fuzzy Measure and Integral 

Because the feature spaces which we deal with are usually finite, the definitions of 
fuzzy measure and integrals will be presented in the restrictive case of finite spaces.  

Fuzzy measures have been introduced by Sugeno [1]. 

Definition 1 Assume that X  is a non-empty finite set and ℘ is the power set of X . 

The fuzzy measure μ defined on the measurable space ( , )X ℘ is a set function

: [0,1]μ ℘→ , which verifies the following axioms: 

( ) 0, ( ) 1Xμ μΦ = =                               (1) 

( ) ( )A B A Bμ μ⊆  ≤                            (2) 

( , , )X μ℘  is said to be a fuzzy measure space. 

Definition 2 [11] Assume that ( , , )X μ℘ is a fuzzy measure space, and

1 2{ , , , }=  nX x x x . Assume that f is a measurable function from X to [0, 1], and 

without loss of generality, 1 20 ( ) ( ) ( ) 1≤ ≤ ≤ ≤ ≤ nf x f x f x , and 1{ , , , }+= i i i nA x x x . 

The Sugeno integral and the Choquet integral of f with respect to the measure μ are 

defined as respectively 

1
( ) ( ( ) ( ))

n

i i
i

S fd f x Aμ μ
=

= ∨ ∧                           (3) 
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( ) ( ( ) ( )) ( )
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i i i
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C fd f x f x Aμ μ−
=

= −                      (4) 

where 0( ) 0=f x . 
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Definition 3 [3] Assume that 1 2{ , , , }nX x x x=  , and ℘ is the power set of X . In 

this case, any function defined on X  is measurable. The lower integral and the upper 
integral of f with respect to the set function μ can be defined as follows 

 
(5) 

 
 

(6) 
 

where some jλ may be zero and , 1,2, 2 1n
jE j = − are subsets of X  arranged in this 

way: the binary expression of j , ( ) ( ) ( ) ( )
1 12

j j j
n nj b b b−=  , is determined by 
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where,
1 1 2 2 3 1 2 4 3{ }, { }, { , }, { },E x E x E x x E x= = = = 5 1 3{ , },E x x= 6 2 3{ , },E x x= 7 1 2 3{ , , },E x x x=  . 

The evaluation of the upper and lower integral is essentially a linear programming 
problem, when the integrand f  and the set function μ  are known. 

Table 1. The values of set function μ in example 1 

Set Value of μ  

Φ 0 

{ }1x  5 

{ }2x  6 

{ }1 2,x x  14 

{ }3x  8 

{ }1 3,x x  7 

{ }2 3,x x  16 

{ }1 2 3, ,x x x  18 

 
Example 1 [3] There are three workers 1x , 2x , 3x  working for 1( ) 10f x = days, 

2( ) 15f x = days and 3( ) 7f x = days, respectively, to manufacture a kind of products. 

Their efficiencies of working alone are 5, 6 and 8 products per day, respectively. Their 
joint efficiencies are not the simple sum of the corresponding efficiencies given above, 
but are listed in table 1. 

It is equivalent to solve this following linear programming problem. 
 

2 1 2 1

1 1

( ) inf ( ) , 0
n n

jj j j E j
j j

L fd E fμ λ μ λ χ λ
− −

= =

  = = ≥ 
  
   

2 1 2 1

1 1

( ) sup ( ) , 0
n n

jj j j E j
j j

U fd E fμ λ μ λ χ λ
− −

= =

  = = ≥ 
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1 2 3 4 5 6 7

1 3 5 7

2 3 6 7

4 5 6 7

min 5 6 14 8 7 16 18

. . 10
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a a a a
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                (8) 

 

By running the program of the lower integral, we obtain 
 

( ) 154L fdμ =                                (9) 
 

with 1 2 3 4 5 6 73, 15, 0, 0, 7, 0, 0a a a a a a a= = = = = = = . It is the minimum value of the 

number of products made by these workers. The corresponding working schedule s 1x

and 3x work together for 7 days; then 1x works alone for 3 days and 2x works alone for 

15 days. 
As the length of the paper is limited, the properties of fuzzy integral are present in 

references [1],[2],[3],[4],[11]. 

3 Classification by Fuzzy Integral 

3.1 Possibility Theory 

Possibility theory, which is an extension of the theory of fuzzy sets and fuzzy logic, was 
proposed by L.A.Zadeh in 1978 [8]. It is an uncertainty theory and substitution of 
probability theory, which is used to deal with the incomplete information. Possibility 
theory has been used in a number of fields, such as interval analysis, database querying, 
data analysis, etc. 

Definition 4 [9] Let X is a variable, which takes values in the universe of discourse 
U , and a value of X denoted by u . Informally, a possibility distribution ΠX is a fuzzy 

relation inU , which acts as an elastic constraint on the values that may be assumed by
X , thus, if π X is the membership function of ΠX , we have 

{ } ( ),XPoss X u u u Uπ= = ∈                           (10) 

where the left-hand member denotes the possibility that X may take the value u  and 
( )X uπ is the grade of membership of u  in ΠX .When it is used to characterize ΠX , 

the function : [0,1]X Uπ →  is referred to as a possibility distribution function. 

Example 2 Let X  is the age of a chairman. Assume that X  is a real-valued variable 
and 55 70X≤ ≤ . Then, the possibility distribution of X  is the uniform distribution 
defined by  

                        


 ∈

=
elsewhere  0

]70,55[  1
)(x

u
uπ                        (11) 
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3.2 Extreme Learning Machine 

In the following we will briefly present Single hidden layer feedforward networks 
(SLFNs)[12]. 

For l arbitrary distinct sample ( , )i ix t , where 1 2( , , , )T n
i i i inx x x x R= ∈ , and

1 2( , , , )T m
i i i imt t t t R= ∈ , standard single hidden layer feedforward networks with N

hidden nodes and activation function ( )g x  are mathematically modeled as 

1

( )
N

j j i j i
j

g W X b oβ
=

+ =                             (12) 

where jW  is the weight connecting the jth hidden node and the input nodes, 

1 2( , , , )T
j j j jmβ β β β=   is the weight vector connecting the jth hidden node and the output 

nodes. jb  is the threshold of the jth hidden node. jW  and jb  are randomly generated, 

and jβ  need to be learned. 

Theorem 1. Any continuous target function ( )f x can be approximated by SLFNs 

with adjustable hidden nodes. In other words, given any small positive value ε , for 
SLFNs with enough number of hidden nodes (L) we have 

( ) ( )Lf x f x ε− <                        (13) 

3.3 Learning Process 

Let us consider the learning process of ELM lower integral classifiers now. 
Assume that there are jl  samples 

1 , ,
j

j j
lX X  in class jC , and similarly for all 

classes 1, mC C . We denote 
1=

=m

jj
l l  as the total number of samples and use 

indices , ,i j k  to denote respectively a feature, a class and a sample. 

Let X  is an unknown sample. The function ( )jCΦ  is said to be the discriminant 

function, which is described by the possibility distribution ( | )jC Xπ . Similarly, the 

function ( )i jCφ , is called the partial matching degree of X  to class jC  with the 

attribute ix , which is described by the possibility distribution ( | )j iC xπ . Using Cox’s 

axioms for defining conditional measures, it is known that 

( | ) ( | ) ,j i i jC x x C i jπ π= ∀                       (14) 

So, we should assign all ( | )i jx Cπ  at first. 
 

Learning of the possibility distributions  
We will learn a known ( | )i jx Cπ as follows. And we use all the samples in class jC  

to construct a “possibilistic histogram”. At first, a classical histogram with h  boxes 
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1 , hp p , here r r jp n l= , with rn  the number of samples in box r , will be 

constructed from the samples, and the tightest possibility distribution 1, hπ π  having 

the same shape as the histogram will be searched. Without loss of generality, assuming 

that 1 hp p≥ ≥ , this is attained by 
h

r ss r
pπ

=
= . At last, we obtain the continuous 

shape of ( | )i jx Cπ by a linear interpolation of the values rπ . 

Learning of lower integral networks    
As we know, the determination of the set functions is the difficult problem of 

nonlinear integral classifiers. In this paper, the Extreme Learning Machine is applied in 
lower integral classifier to solve the problem. The scheme of ELM lower integral 
classifier could be briefly described as follows. D is the given training data, and T  is 
the testing data. 

(1) For each feature in class jC  samples, we determine the frequency histogram. 

With continuous feature i , determine h boxes and the corresponding frequencies ip . 

With nominal feature i , consider each value of feature i  as a box and the 
corresponding frequencies ip . 

(2)Rearrange the ip , and determine the possibility distribution i
jπ  of each feature. 

When the feature is continuous, the possibility distribution will be obtained by the 
linear interpolation. 

(3) For l  arbitrary distinct sample ( , )i ix t , where 1 2( , , , )T n
i i i inx x x x R= ∈ , and 

1 2( , , , )T m
i i i imt t t t R= ∈ , standard single hidden layer feedforward networks with N  

hidden nodes and activation function ( )g x  are mathematically modeled as 

( )
1

( ) ( )
N

j i j i
j

g L f x d oβ μ
=

=                         (15) 

where jμ  is the set function connecting the ith hidden node and the input nodes, 

1 2( , , , )β β β β=  T
j j j jm  is the weight vector connecting the ith hidden node and the 

output nodes.  
It is equivalent to minimize the cost function 

( )
1 1

( ) ( )
l N

j i j i
i j

E g L f x d tβ μ
= =

= −                      (16) 

where,  denotes the norm of the vector. 

In the end, one ELM lower integral network is produced for each class. In the 
method, the set functions are randomly generated and the huge task of learning set 
functions is avoided. However, due to the existence of weights jβ , the lower integral 

with the set functions can also show itself effectively and smoothly. 
(4) Test the classifier on some data sets. 
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4 Test on Real Data 

In order to investigate how well ELM lower integral classifier works, we conduct an 
experimental study on some UCI machine learning databases, which are extensively 
used in testing the performance of different kinds of classifiers. The information about 
data sets used in our experiments is listed in Table 2. 

Table 2. Data used in experiment 

Data Set 
Number of 
examples 

Number of 
classes 

Number of 
attributes 

Iris 150 3 5 

Pima 768 2 9 

Wine 178 3 14 

Hayes 132 3 6 

Ecoli 336 8 8 

Tic-tac-toe 958 2 9 

 

10-fold cross validation for 20 times worked at each data set in our experiments. 
Firstly, we construct the possibility histogram for each feature in the samples of class 

jC . The histogram is a graphical data analysis method, which has summarized the 

distributional information of a variable. If a feature is continuous, the feature is divided 
into equal sized h boxes (the value of h between 7~15 is appropriate. If the size of 
samples of class jC  is not large enough, the value is lower). And 1, hp p  are the 

frequencies in each box. If the feature is nominal, each feature value is considered as a 

box. Without loss of generality, assuming that 1 hp p≥ ≥  and 
h

r ss r
pπ

=
= , then 

( | )i jx Cπ  is given by a linear interpolation of the values rπ . 

The comparison of the accuracy between single lower integral and ELM lower 
integral are shown in table 3. 

Then, the ELM lower integral classifier is trained, in which the set functions 
( 1, 2, , )μ = j j N  are randomly generated and weights ( 1,2, , )j j Nβ =  are learned 

to minimize the cost function E . Due to the existence of weights jβ , the ELM lower 

integral classifier can also show itself effectively and smoothly. 

Table 3. Comparison of the accuracy between single lower integral and ELM lower integral 

Data Set 
Lower Integral ELM Lower Integral 

Mean Std Dev Mean Std Dev 
Iris 0.9517 0.0088 0.9701 0.0079 

Pima 0.7562 0.0122 0.7808 0.0094 

Wine 0.9517 0.0095 0.9687 0.0071 

Hayes 0.6420 0.0243 0.6671 0.0117 

Ecoli 0.7495 0.0156 0.7711 0.0110 

Tic-tac-toe 0.6501 0.0107 0.6861 0.0079 
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From Table 3, it can be seen that the ELM lower integral classifier works well for 
both nominal and continuous attributes. And a comparison of the accuracy between single 
lower integral and ELM lower integral is present. It is obvious that the performance of 
ELM lower integral classifier precede the single lower integral classifier. We know the 
decision of non-additive set function is the difficult problem of fuzzy integral 
classifiers. In our ELM lower integral classifier, the non-additive set functions are 
randomly generated. We can see that the computational complexity will be 
exponentially reduced. However, due to the existence of weights jβ , the ELM lower 

integral can also show itself effectively and smoothly. 

5 Conclusion 

In order to effectively use the information of each attribute, and motivated by the 
effectiveness of ELM, this paper we proposed ELM lower integral classifier. In this 
approach, the non-additive set functions are randomly generated and the huge task of 
learning set functions is avoided. So the learning speed of ELM lower integral classifier 
is very fast. As ELM lower integral classifier takes the weights of importance of 
individual attributes into account, it is able to model interaction between attributes in a 
flexible way. From the experimental results, we can see that the performance of ELM 
lower integral classifier is better than the single lower integral classifier. This paper has 
demonstrated that the effectiveness of the ELM lower integral classifier, but the 
relationship between the number of the boxes for continuous feature and the 
classification performance will be our future investigation. 
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