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Abstract. Iterative Closest Point (ICP) is a popular rigid point set registration 
method that has been used to align two or more rigid shapes. In order to reduce 
the computation complexity and improve the flexibility of ICP algorithm, an ef-
ficient and robust subset-ICP rigid registration method is proposed in this paper. 
It searches for the corresponding pairs on subsets of the entire data, which can 
provide structural information to benefit the registration. Experimental results on 
2D and 3D point sets demonstrate the efficiency and robustness of the proposed 
method. 
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1 Introduction 

Point set registration is an important research topic in computer vision and image 
processing. It has been widely applied to pattern recognition, shape reconstruction, 
motion tracking and stereo matching, etc. The task of point set registration is to recover 
an optimal transformation according to the current locations of two point sets and map 
one point set onto another to make them overlap as much as possible. Simultaneously, 
the shapes described by the points are aligned very well as shown in Figure 1. 

Iterative Closest Point (ICP) algorithm [1, 2] is one of the most popular rigid point 
set registration methods. Expectation Maximization (EM) scheme [3] is often used as 
the alternating update procedure to search for the solution, whose E step and M step can 
be viewed as updating correspondences and recovering transformation of ICP respec-
tively. An EM-ICP [4] was proposed to handle Gaussian noise in rigid registration of 
large points set. It was a coarse-to-fine approach based on an annealing scheme to 
balance the robustness and the accuracy of ICP. Liu [5] combined the soft-assign and 
EM-ICP algorithms for the automatic registration of overlapping 3D point clouds. 
When the transformation (M step) is required to be determined with fix correspond-
ences, multiple layer feed-forward neural network [6] is an alternative rigid point set 
registration method. Combined with Principal Component Analysis (PCA) feature 
extraction, neural network can be used to align two rigid 2D gray images [7]. 



256 J. Chen and B. Belaton 

 
(a)                             (b) 

Fig. 1. Two registration results. (a) is successful because the distance measurement is small and 
the shapes are aligned. (b) is fail in spite of the smaller distance measurement but poor shape 
alignment. 

Point set registration can be considered as a probability density estimation problem. 
Many probabilistic methods, such as Gaussian Mixture Model (GMM) [8, 9] and 
Robust Point Matching (RPM) [10], are developed to acquire better registration result 
in the presence of noise and outliers at the cost of computation complexity. 

In this paper, an efficient and robust rigid point set registration method, named 
subset-ICP, is presented, which is an improved ICP method. In this method, a whole 
target set is divided into several subsets, and the same process is done to the source set. 
For each pair of the target subset and source subset, standard ICP is conducted to find 
the optimal transformation, which is used to map the entire source set to the target set.  

The proposed method can deal with larger rotation very well. Partial data instead of 
entire data set can implicitly provide structural information. Under the viewpoint of 
optimization, with basic matrix theory, the induction procedure of the rigid transfor-
mation parameters (scaling, rotation and translation) is provided in this paper. It is 
easier to understand the proof procedure than that of the quaternion method based on 
PCA. 

The rest of this paper is organized as follows. Fundamental knowledge is briefly 
described in section 2. Section 3 presents the proof of the unknown variables of rigid 
transformation, and introduces our subset-ICP method. Experiments are shown in 
section 4.  Finally, conclusions are given in section 5. 

2 Preliminary 

In this section, the fundamental steps of standard ICP is introduced firstly and then 
some basic concepts about matrix theory are recalled to easily understand the induction 
procedure of section 3. 

2.1 Standard ICP 

Given two point sets ܺ ൌ ሼxଵ, xଶ, ڮ , xMሽ and Y ൌ ሼyଵ, yଶ, ڮ , yNሽ, where x୧,  y୨ א R୬ 
(each element is defined in n-dimensional Euclidean space), M,N are the numbers of 
points in X  and Y  respectively. The main steps of the standard ICP are the  
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correspondences and the transformation, which are updated till the terminate conditions 
are satisfied. 

 For each point ݕ௝ ሺj ൌ 1,2, ڮ , Nሻ of set ܻ, search for its closest point ݔ௜ from 
set ܺ  to form the correspondences set NYሺXሻ ൌ ሼ x୧ | ݀൫ݕ௝, ௜൯ݔ ൌܽ݊݅݉݃ݎ௫א௑݀ሺݕ௝,  ;ሻሽݔ

 For sets ௒ܰሺXሻ andܻ, compute the rotation matrix R୩and translation vector t୩ 
using statistics technique PCA. 

 Apply transformation (R୩,  t୩) to update set Y and accumulate rotation matrix R and translation vector t. Y ൌ R୩ · Y ൅ t୩                                (1) R ൌ R୩ · R                                    (2) t ൌ R୩ · t ൅ t୩                                 (3) 

2.2 Basic Concepts About Matrix Theory 

Definition 2.1 (vector inner product and vector norm):  Given two n-dimensional 
vectors a ൌ ሺaଵ,  aଶ, ڮ ,  a୬ሻ  and b ൌ ሺbଵ, bଶ, ڮ , b୬ሻ , then the squared Euclidean 
distance between a and b is rewritten using the inner product and norm of vector as ||ܽ െ ܾ||ଶ ൌ ||ܽ||ଶ ൅ ||ܾ||ଶ െ 2ሺܽ, ܾሻ                 (4) 

It is easy to know (here, a, b are row vectors) 

① ||ܽ||ଶ ൌ ሺܽ, ܽሻ ൌ ඥܽଵଶ ൅ ܽଶଶ ൅ ڮ ൅ ܽ௡ଶ ൌ ்ܽܽ 
② ሺܽ, ܾሻ ൌ ሺܾ, ܽሻ 
③ ሺ݇ܽ, ܾሻ ൌ ሺܽ, ܾ݇ሻ ൌ ݇ሺܽ, ܾሻ ൌ ݇ · ்ܾܽ 

Definition 2.2 (orthogonal matrix): Square matrix A is called as an orthogonal matrix 
when AAT ൌ ATA ൌ I is satisfied, where I is an identity matrix. 

Definition 2.3 (matrix trace): Let A ൌ ൫a୧,୨൯୬ൈ୬ is a square matrix, the trace of A is 

defined as trሺAሻ ൌ ∑ ܽ௜௜௡௜ୀଵ                               (5) 

The properties of trace are included: 
ሻܣሺݎݐ ① ൌ  ሻ்ܣሺݎݐ
ሻܤܣሺݎݐ ② ൌ  ሻܣܤሺݎݐ

3 Subset-ICP Registration Method 

In this section, a proof of the unknown variables of rigid transformation is provided and 
then our subset-ICP method is introduced. 

3.1 Parameters of the Rigid Transformation 

The point set registration is to find an optimal mapping F to make ∑ ||x െ Fሺyሻ||ଶ as 
smaller as possible. When the rigid transformation is considered, the point set regis-
tration problem is transferred as a minimum optimization with constraints 
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                       (6) 

In order to obtain the closed form solution of (6), a lemma 1 [11] is described as 
follows:  

Lemma 1: Let ܴ஽ൈ஽ be an unknown rotation matrix and ܣ஽ൈ஽ be a known real square 
matrix. Let ்ܷܸܵ be a Singular Value Decomposition of A, where ்ܷܷ ൌ ்ܸܸ ൌ  ܫ
and ܵ ൌ ݀ሺݏ௜ሻ, with ݏଵ ൒ ଶݏ  ൒ ڮ ൒ ஽ݏ ൒ 0. Then, the optimal rotation matrix R that 
maximizes ݎݐሺ்ܴܣሻ is ܴ ൌ ܥ where ,்ܸܥܷ ൌ ݀ሺ1,1, ڮ ,1, det ሺ்ܷܸሻሻ. 

For simplicity, we assume ܺ ൌ ሼxଵ, xଶ, ڮ , xMሽ  and Y ൌ ሼyଵ, yଶ, ڮ , yNሽ , M ൌ N 
that denotes no outliers existing and the correspondences are established well. So the 
objective function is ܳሺݏ, ܴ, ሻݐ ൌ ∑ ௜ݔ|| െ ሺݕܴݏ௜ ൅ ሻ||ଶே௜ୀଵݐ . 

Firstly, a partial derivative of ܳ with respect to ݐ is computed and makes it equal to 
zero ߲ܳሺݏ, ܴ, ݐሻ߲ݐ ൌ െ2 כ ෍ሺݔ௜ െ ௜ݕܴݏ െ ሻݐ ൌ 0ே

௜ୀଵ  

We can obtain ݐ ൌ ҧݔ െ  ത                                  (7)ݕܴݏ

where, the mean vector ݔҧ ൌ ଵே ∑ ௜ே௜ୀଵݔ തݕ , ൌ ଵே ∑ ௜ே௜ୀଵݕ . 

Based on formulae (7) and (4) 
 ∑ ௜ݔ|| െ ሺݕܴݏ௜ ൅ ሻ||ଶே௜ୀଵݐ ൌ ∑ ||ሺݔ௜ െ ҧሻݔ െ ௜ݕሺܴݏ െ തሻ||ଶ ே௜ୀଵݕ =  ∑ ො௜||ଶே௜ୀଵݔ|| ൅ݏଶ ∑ ො௜||ଶே௜ୀଵݕܴ|| െ ݏ2 ∑ ሺݔො௜, ො௜ሻே௜ୀଵݕܴ  =  ∑ ሺݔො௜்ݔො௜ሻே௜ୀଵ ൅ ଶݏ ∑ ሺݕො௜்்ܴܴݕො௜ሻே௜ୀଵ െ2ݏ ∑ ሺݔො௜ ො௜ሻே௜ୀଵݕ்ܴ  

 
The objective function is written with matrix trace form as follows: ܳሺݏ, ܴ, ሻݐ ൌ ൫ݎݐ ෠்ܺ ෠ܺ൯ ൅ ൫ݎݐଶݏ ෠்ܻ ෠ܻ൯ െ ሺݎݐݏ2 ෠்ܺ ෠்ܻܴሻ             (8) 

where, the following notations are used ݔො௜ ൌ ௜ݔ െ ҧݔ ො௜ݕ , ൌ ௜ݕ െ തݕ , ෠ܺ ൌ
ሾݔොଵ, ,ොଶݔ ڮ , ොே ሿݔ , ෠்ܺ ൌ ێێێۏ

ۑۑۑےොே்ݔڭොଶ்ݔොଵ்ݔۍ
ې

ேൈ௡
, ෠ܻ ൌ ሾݕොଵ, ,ොଶݕ ڮ , ොே ሿݕ , ෠்ܻ ൌ ێێێۏ

ۑۑۑےොே்ݕڭොଶ்ݕොଵ்ݕۍ
ې

ேൈ௡
, ݊  is the 

dimensional number of point. 
The first two terms of (8) are independent of rotation matrix R, we can denote them as 
a constant ܿଶ. In addition, according to the property of trace, the last term of (8) is 
calculated as tr൫X෡TY෡RT൯ ൌ tr൫ሺሺX෡TY෡ሻRTሻT൯ ൌ  tr൫RሺX෡TY෡ሻT൯ ൌ trሺሺX෡TY෡ሻTRሻ              (9) 

Thus, the objective function can be converted as 



 An Improved Iterative Closest Point Algorithm for Rigid Point Registration 259 

ܳሺݏ, ܴ, ሻݐ ൌ െܿଵݎݐሺሺ ෠்ܺ ෠ܻሻ்ܴሻ ൅ ܿଶ                      (10) 

Based on Lemma1, let A ൌ X෡TY෡, USVT ൌ svdሺAሻ, the optimal rotation R is ܴ ൌ ்ܸܥܷ                                    (11) 

where ܥ ൌ ݀ሺ1,1, ڮ ,1, det ሺ்ܷܸሻሻ. 
In order to solve scaling factor s, taking a partial derivative of (8) with respect to s 

and make it equal to zero, then we have ݏ ൌ ௧௥ሺ௑෠ ೅௒෠ோ೅ሻ௧௥൫௒෠ ೅௒෠൯                                 (12) 

3.2 The Subset-ICP Algorithm 

A simulated annealing combined with ICP scheme is used to improve the registration 
accuracy, at the same time, reduce the computation cost. The number of subsets is 
defined as a special temperature parameter T, where the increment is one for each 
iteration. Subset-ICP is implemented on two subsets to search for the closest points and 
to build the transformation mapping. The obtained mapping is employed to update the 
source data set Y. The pseudo-code of subset-ICP is described as follows in Figure 2: 

 

 

Fig. 2. The pseudo-code of subset-ICP algorithm 

4 Experiments 

In this section, the experiments were conducted to verify the effectiveness of the pro-
posed method in different kinds data including 2D fish clean points, 2D fish points with 
Gaussian noise, 3D bunny clean points, 3D bunny points with outliers points which can 
deteriorate the shape and 3D bunny data with missing data that means the incomplete 
data.  

There are two point sets extracted from an object image, one is called the target set 
and its shape is represented by red circle, another is called source set and its shape is 
described by blue pentagrams. The task is to find an optimal spatial transformation 
(rotation matrix R and translation vector t in our experiments) according to the current 
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locations of the target set and the source set. If these two sets can be aligned very well 
(overlapping totally), then the registration (matching) is successful. The performance 
measures are Mean Squared Error (MSE) and visual results of registered images.  

4.1 The Efficiency of Subset-ICP  

2D fish data [12]: Four source point sets are synthetically formed by different linear 
transformations, blurring and deformation of the target point set. The registration 
results are shown in Figure 3. We can know that the proposed method is efficient for 
different spatial positions of rigid source point set, involving the larger rotation data. It 
is also robust to the noise data but not very effective to the deformable shape. 

 

 
 

Fig. 3. The registration results of subset-ICP on 2D fish data. Red circle points form the target 
data1, black cross points are source data2 and the blue pentagram marks are the registered 
source data2 

3D bunny data: we test our method on the stanford bunny data set [13]. 305 points are 
located manually to get the profile of 3D frontal bunny to form the target data1. Figure 
4 demonstrates the qualitative registration results of subset-ICP on 3D bunny data, 
which validate the subset-ICP is an efficient rigid registration method.  

 

 
 

Fig. 4. The bunny data is registered by the subset-ICP. Left figure is a 2D result and the right 
figure is a 3D result 
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Missing data: The target bunny (red circle) and the source bunny (blue pentagram 
marks) are or/both with missing data in different parts respectively. The registration 
results are shown in Figure 5. We can see that the subset-ICP is robust to missing data. 

 
 

Fig. 5. The registration results of the subset-ICP when the missing data arising. The source data 
with missing ear data is in the left figure. The target data and the source data are both with 
missing data in different parts in the right figure 

Outliers: The target data with 40% Gaussian outliers, the matching result is displayed 
in the left part of Figure 6. The source data with 20% Gaussian outliers, the matching 
result is shown in the right part of Figure 6. It is easy to see that the target with outliers 
do not affect the matching result but a slight difference exists when the source shape is 
disturbed by outliers. According to the experimental observation, for either the target 
shape or the source shape, an ill-matching happens when the structure information of 
shape is deteriorated by the outliers. 

 

 

Fig. 6. The 2D matching results for the outliers. Target data with Gaussian outliers is shown in 
the left figure and the source data with Gaussian outliers is displayed in the right figure 

4.2 The Comparison with Standard ICP  

The comparisons between standard ICP algorithm and our method are displayed in 
Figure 7 and 8. The x-axis is the experiment times, that means ten pairs of the target sets 
and the source sets are generated to test the performances of subset-ICP and standard 
ICP algorithm. Y-axis of Figure7 is the MSE and y-axis of Figure8 is the speed (exe-
cution time (second)). Based on the experimental results, we can know that subset-ICP 
is faster and more efficient than standard ICP on 3D bunny data. 
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Fig. 7. The comparison of MSE on 3D bunny data 

 

Fig. 8. The comparison of execution speed on 3D bunny data 
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5 Conclusions 

In this paper, a subset-ICP rigid point set registration method is proposed, which is an 
improved version of standard ICP. Partial data instead of entire data can implicitly offer 
structural information that benefits the registration. Experiments are conducted on 2D 
and 3D synthetic data, and the matching results are analyzed and compared. All ex-
perimental results showed that the proposed method is efficient and robust. Under the 
viewpoint of optimization and matrix theory, the induction procedure of the rigid 
transformation parameters is also provided in this paper. 
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