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Abstract. In pattern classification, when the feature space is of high dimen-
sionality or patterns are “similar” on a subset of features only, the traditional 
clustering methods do not show good performance. Biclustering is a class of 
methods that simultaneously carry out grouping on two dimensions and has 
many applications to different fields, especially gene expression data analysis. 
Because of simultaneous classification on both rows and columns of a data ma-
trix, the biclustering problem is inherently intractable and computationally 
complex. One of the most complex models in biclustering problem is linear co-
herent model. Several biclustering algorithms based on this model have been 
proposed in recent years. However, none of them is able to perfectly recognize all 
linear patterns in a bicluster. In this work, we propose a novel algorithm based on 
Hough transform that can find all linear coherent patterns. In the sequel we apply 
it to gene expression data. 
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1 Introduction 

DNA microarray technologies allow us to measure expression levels for thousands of 
genes in various biological conditions. The raw data of a microarray experiment is an 
image which is then converted into a numeric matrix called gene expression matrix. 
Each row and column of a gene expression matrix presents gene and condition, re-
spectively. We already knew that many genes have more than one function, and a group 
of genes can shows similar expression under several conditions but not the others. 
Therefore, traditional clustering methods do not perform well in these cases. 
Biclustering performs simultaneous grouping on two dimensions and is able to find 
subset of genes that show similar expression behavior over a subset of conditions. 

 Several models [1, 2] have been proposed in biclustering such as constant (values, 
rows, columns) models, additive model, multiplicative model, and linear model. For 
the constant models [3, 4], all elements of a sub-matrix are a constant value. In the 
additive [5, 6] or multiplicative model [7, 8, 9], one column is obtained by adding a 
value to other column or is a factor multiple of other column. The general linear model, 
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first proposed in [27], [11], represents the relationship between two columns as a linear 
equation and it can be considered the general form of the models mentioned above. So 
the complexity of the general linear model is also the highest. Several algorithms based 
on the general linear model have been proposed recently [2], [10, 11, 12, 13], [27]. 
Specifically, Gan et al. [27], [11] were the first to formulate the biclustering problem as 
the detection of hyperplanes in high-dimensional space, and they proposed to apply 
Hough transform to find biclusters. The attractiveness of this formulation is that it is 
theoretically possible to detect all biclusters of the general linear type in a dataset as 
Hough transform does not depend on iterative optimization. The major weakness, 
however, is the extremely high computation cost when Hough transform is performed 
in high dimension space. In [11], the computation cost is made manageable by parti-
tioning the data matrix into several smaller parts for biclustering, and the results are 
later merged to form the final biclusters. Later works proposed various strategies to 
address this shortcoming. For example,  Zhao [10] used Hough transform to detect 
genes satisfying general linear model in pair of columns (column space) and then 
divide them into different patterns using additive and multiplicative pattern plot before 
combining them; GSGBC [12] first used Hough transform to find 2D linear coherent 
biclusters in column space and then applied graph spectrum analysis to obtain larger 
biclusters; Wang [13] used Hough transform to find 2D linear coherent patterns in 
column space and merge small biclusters into larger ones using hypergraph tech-
nique[13].  

In gene expression data, the general linear model is biologically meaningful [2], [11]. 
Therefore, the number of biclustering algorithms based on the general linear model has 
increased significantly in recent years. In this study, we propose a two-phase algorithm 
that can find all linear coherent patterns. At the first phase, the proposed algorithm finds 
all linear relationships on a pair of columns. In the merging process, one creates larger 
sets of columns at the second phase. The paper is outlined as follow: the basic concepts 
and the proposed algorithm are described in Section 2; experiments and evaluations are 
given in Section 3 and finally, conclusions are drawn in Section 4. 

2 Method 

2.1 Hough Transform for Line Detection 

The Hough transform (HT) is a method that detects lines and curves in images through 
a voting process in the parameter space [28], [15]. In the Cartesian coordinate system, 
an equation of a line is given by 

 y = kx + b                                     (1) 

Given a set of point {(x1, y1), (x2, y2), …}, we would like to find a line (parameters k and 
b) that has the best fit to the given set of point. The basic idea of HT is dividing the 
range values of the parameters k and b into two dimensions grid (called accumulator). 
Therefore, each cell of accumulator corresponds with a pair values of (k, b) in the 
parameter space. For each point (xi, yi), the accumulator cell it falls into is computed 
and voted on. Hence, the value of each accumulator cell gives the number of points 
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being on the corresponding line. Cells that received enough votes denote lines that are 
present in the image.  
  To avoid the problem of parameterization of vertical line using (1), the polar coor-
dinate system is often used, i.e., the equation of a line in the polar coordinate system is 
defined as 

 r = x.cos(θ) + y.sin(θ)                             (2) 

where r is the distance from the origin to the line; θ is the angle between the line and the 
x-axis.  

2.2 The Proposed Algorithm 

If the Hough transform is used to detect a straight line and the number of accumulator 
cells (grid) in each dimension is A, the complexity of the Hough transform is A2. In 
general, the complexity of Hough transform for n dimensional hyperplane is An. So, the 
computational time of Hough transform for n dimension space is infeasible because the 
complexity is exponentially increasing. In order to overcome this problem, Zhao et al. 
[10] used Hough transform to find all straight lines in column-pair space (n = 2) and 
then applied a union-intersection operation to merge sub-biclusters into larger 
biclusters. The difference between our algorithm and [10] is in the second phase. In our 
algorithm, instead of a union-intersection operation, we find all possible higher di-
mension spaces through intersection operation. 
  The proposed algorithm takes as input an expression matrix, A(m × n), where rows 
represent genes and columns describe conditions and output a set of biclusters that are 
linearly coherent. A bicluster is a sub-matrix (G, C) ⊆ A, where G and C are sets of 
genes (rows) and conditions (columns), respectively. The proposed algorithm is a 
two-phase process. In the first phase, the Hough transform is used to find all rows 
which have linear relationships on pairs of columns in matrix A. In the second phase, 
these pairs of columns are then merged to obtain larger set of columns on which the 
linear coherence occurs. 

2.2.1   Phase 1 
We apply Hough transform to find rows which have linear relationships in pairs of 
columns in matrix A. Besides counting the number of votes for an accumulator cell, we 
also keep a record of the points (rows) that contribute to the vote of a cell. The result of 
this phase is a set of pairs of columns and list of points on which the linear relationships 
occur: 

 {R1,2, R1,3, R1,4, …, R2,3, R2,4, …, Ri,j, …, Rn–1,n}              (3) 

where Ri,j = {points | their relationships are linear between columns i and j }. 
  The number of Hough transform required for this phase is n(n–1)/2. So, as the 
number of columns n in matrix A increases, the complexity of this phase is O(n2). As 
the Hough transform on pairs of columns is independently performed, parallel com-
puting can be applied to reduce the computational time at this phase. 
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2.2.2   Phase 2 
The 2nd phase is a merging process based on the results that Ri,j are set of points on the 
same lines. This process finds all points having linear relationships on at least three 
columns. The merging process is based on the two properties. 
  Property 1: If the two columns have linear relationship with another column at the 
same point, the relationship of the three columns is linear at this point. 
Proof: 
Given the linear relationship between columns ci and cj  

 ci = kijcj + bij                                    (4) 

and between columns ci and cl 

 ci = kilcl + bil                                                        (5) 

we can easily infer the linear model between columns cj and cl as 
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Property 2: Given a set of columns having linear relationship at the same point, all 
nonempty subsets of this set must have the linear relationship. 
  Proof: we use induction proofs to prove. 
  From the 1st phase we obtain Ri,j as the set of points on which two columns i and j are 
linearly related. 

Let n = 3 (we prove that the 2nd property holds with a set of 3 columns) 
  If the column h has the linear relationship with both columns i and j at the same 
points, the following set must be nonempty (Ri,j,h ≠ ∅): 

 hjijihjhi ,,,,, RRRR =∩∩                              (7) 

Because Ri,j,h is nonempty, all its subsets Ri,h , Rj,h and Ri,j are also nonempty. 
  Let n = 4: If the column l has the linear relationship with three columns {i, j, h} at the 
same points, the following set must be nonempty (Ri,j,h,l ≠ ∅): 

 lhjihjilhljli ,,,,,,,, RRRRR =∩∩∩                       (8) 

We can easily observe that all subsets of Ri,j,h,l are also nonempty. 
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Assume the 2nd property hold as n = k, we prove that it is also satisfied as n = k + 1. 
  Assume the set of columns {i, j, h, l, …, k} has the linear relationships at the same 
points. If the column (k+1) has the linear relationship with a set of columns {i, j, h, l, …, 
k} at the same points the following set must be nonempty (Ri,j,h,l,…,k, k+1 ≠ ∅): 
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 1,,,,,,,,,,1,1, RRRR +++ =∩∩∩ kklhjiklhjikkki              (10) 

and we easily obtain all subsets of Ri,j,h,l,…,k, k+1 are also nonempty. So, the 2nd property 
has just been proven. 
  Base on the two properties mentioned above, the 2nd phase can find all points having 
linear relationships on a set of columns. The pseudo-code of merging process is shown 
in Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Pseudo-code of merging process (|B| is cardinality of set B; bi is an element of set B) 

The 2nd phase is generally not a time-consuming task because it is based on inter-
section operation and linear coherent patterns are sparse. 

3 Experiments 

The two gene expression datasets, namely Yeast (Yeast Saccharomyces cerevisiae cell 
cycle) [16] and diffuse large-B-cell lymphoma [17] were used to evaluate the perfor-
mance of the proposed algorithm and the following biclustering methods such as 
FABIA [9], ISA 2 [18], xMOTIF [19], Cheng–Church [20], Spectral biclustering [21], 
Plaid Model [22] were also compared. The Yeast dataset contains 2884 genes measured 
at 17 instances and the diffuse large-B-cell lymphoma was used to predict the survival 
after chemotherapy and contains 180 samples of 661 genes. 

Input: A = {R1,2, R1,3, R1,4, …, R2,3, R2,4, …, Ri,j, …, Rn–1,n} 
Output: RS: sets of points having linear relationships on at least 
three columns. 
 
B = A; 
RS = ∅; 
While B ≠ ∅ 
Begin 
 new_set = ∅; 
 For i = 1 to |B| 
 Begin 
  For j = i+1 to |B| 
  Begin 
   c = bi ∩ bj; 
   If c ≠ ∅ and c ∉ new_set then 
   Begin 
    Add c into new_set; 
   End 

  End 
 End 
 Add new_set into RS; 
 B = new_set; 
End 
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In Hough transform, each cell (ri, θi) that received enough votes denote lines. In 
other words, if the number of points in the cell (ri, θi) is greater than a predefined 
threshold, this is a line. In our experiments, this threshold was assigned to 12. Because 
the goal of the proposed algorithm is to find all linear biclusters, there are no limitations 
on bicluster size. These parameters were determined as optimal during processing of 
two gene expression datasets. 

In order to assess the bicluster results of the two above biological data, we applied 
Gene Ontology (GO) [23] and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway [24]. The goal of the Gene Ontology Consortium is to produce a dynamic, 
controlled vocabulary that can be applied to all eukaryotes even as knowledge of gene 
and protein roles in cells is accumulating and changing and three independent ontolo-
gies are being constructed: biological process, molecular function and cellular com-
ponent [23]. Among the existing tools for GO and KEGG pathway, we selected 
GO-TermFinder [25] and ClueGO [26]. 

All bicluster results found by the biclustering algorithms were enriched to three GO 
functional categories, namely biological process (GO BP), molecular function (GO 
MF), cellular component (GO CC), and KEGG pathway. For Yeast dataset, the 
biclusters obtained from the proposed algorithm and six existing biclustering methods 
that were enriched by three GO categories and KEGG pathway are shown in Tables 
1–5. In this dataset, Spectral biclustering and Plaid Model did not produce any 
biclusters. 

Table 1. Number of biclusters found by seven methods for yeast dataset 

Methods Number of biclusters 

The proposed algorithm 6 

xMOTIF 10 

Spectral biclustering 0 

Plaid Model 0 

Cheng–Church 10 

ISA 2 4 

FABIA 10 

Table 2. Number of biclusters enriched by GO BP 

Methods p-value = 0.05 p-value = 0.01 

The proposed algorithm 6 6 

xMOTIF 2 0 

Spectral biclustering 0 0 

Plaid Model 0 0 

Cheng–Church 1 1 

ISA 2 4 4 

FABIA 7 6 
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Table 3. Number of biclusters enriched by GO MF 

Methods p-value = 0.05 p-value = 0.01 

The proposed algorithm 6 6 

xMOTIF 1 0 

Spectral biclustering 0 0 

Plaid Model 0 0 

Cheng–Church 0 0 

ISA 2 4 4 

FABIA 7 6 

Table 4. Number of biclusters enriched by GO CC 

Methods p-value = 0.05 p-value = 0.01 

The proposed algorithm 6 6 

xMOTIF 1 1 

Spectral biclustering 0 0 

Plaid Model 0 0 

Cheng–Church 2 1 

ISA 2 4 4 

FABIA 6 6 

Table 5. Number of biclusters enriched by KEGG pathway 

Methods p-value = 0.05 p-value = 0.01 

The proposed algorithm 6 6 

xMOTIF 2 2 

Spectral biclustering 0 0 

Plaid Model 0 0 

Cheng–Church 0 0 

ISA 2 4 4 

FABIA 10 5 

 
The biclusters of diffused large-B-cell lymphoma dataset given by several 

biclustering methods are listed in Figures 2–5 and Table 6. For this dataset, xMOTIF 
did not give any biclusters, and Cheng–Church considered whole database as a 
bicluster. While spectral clustering and Plaid Model formed only a single bicluster that 
was not significantly enriched by GO and KEGG pathway. 

Table 6. Number of biclusters found by seven methods for lymphoma dataset 

Methods Number of biclusters 

The proposed algorithm 16 

xMOTIF 0 

Spectral biclustering 1 

Plaid Model 1 

Cheng–Church 0 

ISA 2 10 

FABIA 5 
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Fig. 2. Percentage of biclusters enriched by 
GO BP 

Fig. 3. Percentage of biclusters enriched by 
GO MF 

Fig. 4. Percentage of biclusters enriched by 
GO CC 

Fig. 5. Percentage of biclusters enriched by 
KEGG pathway 

4 Conclusions 

We have presented a geometric-based biclustering approach that is based on using the 
Hough transform. Our method finds all patterns, which have linear relationship on a 
pair of columns and then merge columns iteratively to obtain linear models on higher 
dimension spaces. The proposed algorithm was verified by two real gene expression 
datasets and was compared with several well-known biclustering methods. The results 
obtained from the proposed algorithm were found to be significantly enriched when 
evaluated using three GO categories and KEGG pathway. 
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