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Abstract. The traditional cross-validation usually selects an over-
smoothing bandwidth for kernel regression. The penalty function based
cross-validation (e.g., generalized cross-validation (CVGCV), the
Shibata’s model selector (CVS), the Akaike’s information criterion
(CVAIC) and the Akaike’s finite prediction error (CVFPE)) are intro-
duced to relieve the problem of selecting over-smoothing bandwidth
parameter by the traditional cross-validation for kernel regression prob-
lems. In this paper, we investigate the influence of these four different
penalty functions on the cross-validation based bandwidth selection in
the framework of a typical kernel regression method, i.e., the Nadaraya-
Watson kernel estimator (NWKE). Firstly, we discuss the mathematical
properties of these four penalty functions. Then, experiments are given
to compare the performance of aforementioned cross-validation methods.
Finally, we give guidelines for the selection of different penalty functions
in practical applications.
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1 Introduction

The kernel regression [1] is a non-parametric technique to construct the condi-
tional expectation of a given random variable in statistics and is one of the most
commonly used regression analysis methods. Its objective is to find a non-linear
mapping between the input variable X and the output Y [2]. The conditional
expectation of input X with respect to the output Y can be written as Eq. (1):

E (Y |X ) = g (X) , (1)

where g (X) is an unknown regression function that needs to be estimated [3].
Alternatively, we can rewrite Eq. (1) by the functional relation as follows:

Y = g (X) + ε, E(ε) = 0. (2)

c© Springer-Verlag Berlin Heidelberg 2014
X. Wang et al. (Eds.): ICMLC 2014, CCIS 481, pp. 88–96, 2014.
DOI: 10.1007/978-3-662-45652-1 10



Bandwidth Selection for Nadaraya-Watson Kernel Estimator 89

Let S = {(xi, yi) |xi ∈ R, yi ∈ R, i = 1, 2, · · · , N } be the given dataset, where
xi and yi are N observations of random variables X and Y . According to Eq.
(3), the kernel regression finds the estimation of function g [4]:

g̃ (x) =
N∑

i=1

wiyi, (3)

where g̃ (x) is the estimated regression function. wi is a function with respect to

the input x and denotes the weight of the output yi (wi > 0 and
N∑

i=1

wi = 1). The

target of kernel regression is to find an optimal weight set {w1, w2, · · · , wN} such
that the estimated regression function g̃ (x) can approximate the true regression
function g(x) [5]. There are three commonly used methods to determine the
output weight wi: the Nadaraya-Watson kernel estimator [6], the Priestley-Chao
kernel estimator [7] and the Gasser-Müller kernel estimator [8]. These three
estimators are all implemented based on the Parzen window method [9].

It is well known that [10–12] the selection of smoothing parameter or band-
width h is very important for the regression estimation performance of kernel
regression methods. There are many sophisticated methods to find the optimal
bandwidth, e.g., the cross-validation [13], penalizing functions [14], the plug-in
[14] and the bootstrap methods [15]. None of them constantly outperforms the
others. Therefore, we focus on studying the cross-validation based bandwidth
selection which uses the leave-one-out strategy to determine the optimal band-
width. In [14], some penalty functions are introduced to cross-validation to design
an alternative calculation paradigm for cross-validation. In this paper, we intro-
duce four different penalty functions based on cross-validation methods, i.e., the
generalized cross-validation (CVGCV) [16], the Shibata’s model selector (CVS)
[17], the Akaike’s information criterion (CVAIC) [17] and the Akaike’s finite pre-
diction error (CVFPE) [17]. We investigate the influence of these four different
penalty functions on the cross-validation based bandwidth selection in the frame-
work of the Nadaraya-Watson kernel estimator (NWKE). Firstly, mathematical
properties of different penalty functions are discussed. Then, experiments are
given to compare the performance of aforementioned cross-validation methods
and we give guidelines for the selections of different penalty functions for future
practical applications.

2 NWKE

NWKE [6] uses the following Eq. (4) to compute the output weight wi, i =
1, 2, · · · , N for yi:

wi = 1
Nh

K( x−xi
h )

p̃(x) , (4)

where, K (u) = 1√
2π

exp
(
−u2

2

)
is the Gaussian kernel function and p̃ (x) is

the estimated p.d.f. of random variable X based on the given observations
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x1, x2, · · · , xN . According to the Parzen window method [9], we can get the
expression of p̃ (x) as the following Eq. (5):

p̃ (x) = 1
Nh

N∑

i=1

K
(

x−xi

h

)
, (5)

where, h is the bandwidth parameter.
By bringing Eqs. (4) and (5) into Eq. (3), we can get the regression function

Eq. (6) with NWKRE:

g̃NWKE (x) =

N∑

i=1
[K( x−xi

h )yi]
N∑

i=1
K( x−xi

h )
. (6)

3 Cross-Validation Bandwidth Choice

NWKE is a more natural method for the data usage in the regression analysis.
The regression performance of NWKE in Eq. (6) mainly depends on the selection
of bandwidth parameter h. Cross-validation [13] is one of available bandwidth
selection schemes, which uses the following formulas to determine the optimal
bandwidth for NWKE:

hopt = arg min
h∈H

(CV (h)) , (7)

CV (h) =
N∑

i=1

{yi − g̃NWKE−i (xi)}2, (8)

where, H is the domain of discourse of bandwidth h, g̃NWKE−i (x) is NWKE
which is obtained without using the i-th instance (xi, yi).

The penalty function based cross-validation calculates the optimal bandwidth
according to the following Eqs. (9), (10) and (11):

h′
opt = arg min

h∈H
(CV ′ (h)) , (9)

CV ′ (h) =
N∑

i=1

{yi − g̃NWKE−i (xi)}2 π (W (xi)), (10)

W (x) = K(0)
N∑

i=1
K( x−xi

h )
, (11)

where, π (u) is the penalty function. In this paper, we select four different penalty
function based cross-validations as follows. Figure 1 gives the curve presentation
of these four penalty functions.

• generalized cross-validation-CVGCV:

π (u) = (1 − u)−2 ; (12)
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Fig. 1. 4 different penalty functions

• Shibata’s model selector-CVS:

π (u) = 1 + 2u; (13)

• Akaike’s information criterion-CVAIC:

π (u) = exp (2u) ; (14)

• Akaike’s finite prediction error-CVFPE:

π (u) = 1+u
1−u . (15)

4 The Experimental Comparison Among Different
Cross-Validations

In this section, we will conduct some experiments to compare the regression
performances of NWKE with different bandwidth selection schemes, i.e., tra-
ditional cross-validation (CV), CVGCV, CVS, CVAIC and CVFPE. We compare
the regression accuracy and method stability of above-mentioned five methods,
and the regression accuracy and method stability are calculated as the following
Eqs. (16) and (17) respectively:

• The fitting accuracy is measured by mean squared error between the real
output yi and the predicted output ỹi:

mse = 1
N

N∑

i=1

(ỹi − yi)
2
. (16)

• The stability is measured by the standard derivation of Q mses, i.e.,

std =

√

1
Q

Q∑

i=1

(msei − μ)2, μ = 1
Q

Q∑

i=1

msei. (17)
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For the preparation of experimental datasets, we select six testing functions:

y1 = 1 − x + exp
[
−200 (x − 0.5)2

]
+ ε,

x ∼ U(0, 1) , ε ∼ N(0, 0.1) ;
(18)

y2 = x +
4 exp(−2x2)√

2π
+ ε,

x ∼ U(−3, 3) , ε ∼ N(0, 1) ;
(19)

y3 = sin
[
2π (1 − x)2

]
+ x + 0.2ε,

x ∼ U(0, 1) , ε ∼ N(0, 1) ;
(20)

y4 = x + 2 sin (1.5x) + ε,
x ∼ U(0, 10) , ε ∼ N(0, 1) ; (21)

y5 =
[
sin

(
2πx3

)]3 + 0.2ε,
x ∼ U(0, 1) , ε ∼ N(0, 1) ;

(22)

y6 = sin (3πx) + 0.2ε,
x ∼ U(0, 1) , ε ∼ N(0, 1) .

(23)

We firstly give the descriptions concerning the relationship between the dif-
ferent CVs and bandwidths. Then, we compare the regression performances of
NWKE with different optimal bandwidths hopt. The comparative results on six
testing functions are respectively summarized in Figures 2–7. For each testing
function in this experiment, 200 data points are randomly generated. The min-
imal CVs and corresponding optimal bandwidths hopt are listed in Table 1. We
find the optimal bandwidth found by CV is smaller in comparison with other
four CVs with different penalty functions. In other words, traditional CV in our
comparisons is easier to obtain a rough bandwidth. Then, we give a more detailed
comparison among aforementioned five methods (i.e., CV, CVGCV, CVS, CVAIC

and CVFPE) in terms of regression accuracy and stability. For each testing func-
tion, the final mse and std are respectively the average and standard derivation
of Q=10 repetitions. In every run, there are 200 data points which are generated
randomly. We compare the performance of NWKE with different optimal band-
widths solved by five CVs respectively. The comparative results are summarized
in Table 2. Through observing the experimental results, we can get the following
conclusions:

• The traditional CV obtains the better regression accuracy and stability. It
tells us that CV can select a more rough bandwidth for the smaller input
(e.g., x ∈ [0, 1], x ∈ [−3, 3] or x ∈ [0, 10] in the employed testing functions).

• CVS achieves a better regression accuracy compared with CVGCV, CVAIC

and CVFPE. However, its stability is worse on the testing functions y1, y2,
y4 and y5.

• CVAIC and CVFPE obtain the comparative regression accuracy, but the sta-
bility of CVAIC is better than CVFPE.
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Fig. 2. The kernel regression on y1 = 1 − x + exp
[−200 (x − 0.5)2

]
dataset
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Fig. 3. The kernel regression on y2 = x +
4 exp(−2x2)√

2π
dataset
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Fig. 4. The kernel regression on y3 = sin
[
2π (1 − x)2

]
+ x dataset
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Fig. 5. The kernel regression on y4 = x + 2 sin (1.5x) dataset
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Fig. 6. The kernel regression on y5 =
[
sin
(
2πx3

)]3
dataset
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Fig. 7. The kernel regression on y6 = sin (3πx) dataset
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Table 1. The minimal CV and corresponding optimal bandwidth hopt

CV y1 y2 y3 y4 y5 y6

methods CV hopt CV hopt CV hopt CV hopt CV hopt CV hopt

CV 1.042 0.012 119.364 0.330 5.115 0.029 102.400 0.218 4.685 0.021 6.224 0.029

CV+GCV 1.738 0.036 133.378 0.641 6.511 0.047 135.363 0.444 6.539 0.032 8.021 0.042

CV+S 1.474 0.023 132.633 0.620 6.313 0.043 131.399 0.414 6.176 0.029 7.749 0.038

CV+AIC 1.622 0.028 133.119 0.634 6.437 0.045 133.892 0.433 6.399 0.031 7.920 0.040

CV+FPE 1.656 0.031 133.126 0.634 6.443 0.046 133.994 0.434 6.413 0.031 7.928 0.041

Table 2. The regression performance of Nadaraya-Watson kernel estimator based on
different CV methods

CV Regression accuracy Method stability

methods y1 y2 y3 y4 y5 y6 y1 y2 y3 y4 y5 y6

CV 0.0074 0.8217 0.0307 0.8549 0.0323 0.0276 0.0030 0.1898 0.0126 0.1705 0.0102 0.0113

CV+GCV 0.0097 0.9959 0.0489 1.1222 0.0488 0.0432 0.0039 0.1564 0.0064 0.2021 0.0165 0.0118

CV+S 0.0087 0.9693 0.0437 1.0434 0.0401 0.0342 0.0037 0.1551 0.0068 0.1930 0.0163 0.0110

CV+AIC 0.0093 0.9853 0.0461 1.0902 0.0448 0.0380 0.0037 0.1549 0.0072 0.1901 0.0168 0.0110

CV+FPE 0.0093 0.9866 0.0468 1.0966 0.0458 0.0398 0.0036 0.2873 0.0098 0.2678 0.0115 0.0131

5 Conclusions

In this paper, we investigate the influence of four different penalty functions on
the cross-validation bandwidth selection in the framework of Nadaraya-Watson
kernel regression estimator. The derived conclusions from our experiments give
guidelines for the selection of different penalty functions for future applications.
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