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Abstract. Combining multiple classifiers to achieve better performance than any 
single classifier is one of the most important research areas in machine learning. In 
this paper, we focus on combining different classifiers to form an effective 
ensemble system. By introducing a novel framework operated on outputs of 
different classifiers, our aim is to build a powerful model which is competitive to 
other well-known combining algorithms such as Decision Template, Multiple 
Response Linear Regression (MLR), SCANN and fixed combining rules. Our 
approach is difference from the traditional approaches in that we use Gaussian 
Mixture Model (GMM) to model distribution of Level1 data and to predict the 
label of an observation based on maximizing the posterior probability realized 
through Bayes model. We also apply Principle Component Analysis (PCA) to 
output of base classifiers to reduce its dimension of what before GMM modeling.  
Experiments were evaluated on 21 datasets coming from University of California 
Irvine (UCI) Machine Learning Repository to demonstrate the benefits of our 
framework compared with several benchmark algorithms. 

Keywords: Gaussian mixture model (GMM) · Ensemble method · Multi-
classifier system · Combining classifiers · Classifier fusion · Stacking 
algorithm · Principle component analysis (PCA) 

1 Introduction and Recent Work 

Traditionally, single learning algorithm is usually employed to solve classification 
problems by training a classifier on a particular training set which contains hypothesis  
about the relationship between feature vectors and its class labels. A natural question 
that arises is: can we combine multiple classification algorithms to achieve higher 
performance than a single algorithm? This is the idea behind a class of methods called 
ensemble methods. Ensemble method is a method that combines models to obtain 
lower error rate than using a single model. “Models” in ensemble methods could 
include not only the implementation of many different learning algorithms, or the 
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creation of larger training set for the same learning algorithm, but also generating 
generic classifiers in combination to improve efficiency of classification task [13]. 

In this paper, we build an ensemble system where the prediction framework is 
formed by combining outputs of different classifiers (called meta-data or Level1 
data). One of the most popular ensemble methods is based on Stacking [1-3]. Output 
of the Stacking proces is posterior probability that each observation belongs to a class 
according to each classifier. The set of posterior probability of all observations is 
called meta-data or Level1 data. 

Le us  denote N  to be the number of observations, while K  is a number of base 
classifiers and M  stands for the number of classes. For an observation iX , 

(W | )k j iP X  is probability that iX  belongs to class Wj  given by thk  classifier. 

Level1 data of all observations, a N MK× -posterior probability matrix 

{ }(W | )k j iP X 1,j M= 1,k K=  1,i N=  is given by: 
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Based on stacking, various combining algorithms have been introduced. For 
example, Multiple Response Linear Regression (MLR) [3], Decision Template [2], 
SCANN [5] are well-known combining classifiers algorithm. Recently, Zhang and 
Zhou [6] used linear programming to find weight that each classifier puts wording 
on a particular class. Sen et al. [7] introduced a model inspired by MLR by applying 
hinge loss function to the combiner instead of using conventional least square loss. 
Stacking-based algorithms are called trainable algorithms since Level1data of 
training set is again exploited to discover latent knowledge during the second 
training process.  

On the other hand, fixed rule is simple and effective combining classifiers method 
in practice. Kittler et al. [4] presented six rules named Sum, Product, Vote, Min, Max 
and Average. A benefit of fixed rules is that no training on Level1 data is required. 
Sum and Vote rules are popular combining strategy. An issue related to fixed rule is 
that we cannot know a priori what rule is appropriate for a specific data source. 
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In this work, we focus on GMM as a classifier for Level1 data. Li et al. [11] 
proposed a GMM classifier based on low dimensional feature space for hyper-spectral 
image classification. Liu et al. [9] showed that when dimension of data is high, the 
effectiveness of GMM approximation is reduced. To address this problem, the 
dimension of data for GMM is reduced by: 

*

 
( ) ( ) ( ) ( ) ( )F F F

likelihood function

P P P P PΘ = Θ × Θ = Θ × Θx| x| x| y | x|  (3)

where Θ  is model for input data and *Θ  is another model for projected data y  

by applied PCA method on input data. F and F  in turn are principal subspace  
containing principal component and its orthogonal complement,  respectively. 

The rest of this paper is organized as followed.  Section 2 describes the  proposed 
GMM based combining classifiers model that operates on Level1 data. Experimental 
results on 21 common UCI datasets [12] are presented in Section 3. Finally, 
conclusion and future work are given.  

2 The Proposed Model 

2.1 Combining Classifiers Based on GMM  

In our knowledge, all GMM-based approaches are conducted on Level0 data (i.e. 
original data) in which they suffer from severe limitations in modeling various 
datasets. Attributes in Level0 data are frequently diverse in measurement unit and 
type. As a result, GMM may not approximate distribution of Level0 data well. Level1 
data, on the other hand, can be viewed as scaled result from feature domain to 
probability domain. Observations belonging to the same class would have nearly 
equal posterior probability from the base classifier. As a result, they would be located 
close to each other. Besides, in some situations, Level1 data has lower dimension than 
Level0 data. It is well known that the higher the dimension of data is, the lower the 
effectiveness of GMM approximation. Hence, GMM on Level1 data is expected to 
have better performance. 

This paper presents a classifier fusion technique that apply GMM on meta-data. 
The novel combining classifiers model is illustrated in Fig 1. First, Stacking is 
applied to the training set to generate Level1 data (1). Next, observations that 
belong to the same class are grouped together, and the class distribution is 
approximated by GMM.  

For thi  class, we propose a prediction framework based on the Bayes model 

( | ) ~ ( | ) ( )i i i
posteriror likelihood prior

P GMM P GMM P GMM×x x  (4)

 
 
 



6 T.T. Nguyen et al. 

 

 

Fig. 1. GMM-based approach on Level1 data 

Here likelihood function is GMM: 

 
(5)

where 

(6)

iP  is number of Gaussian components in iGMM   model, ipω , ipμ , ipΣ  are 

mixing coefficient, mean and covariance of thp  component in model for thi  class 

respectively. Prior probability in (4) of thi  class is defined by: 

     ( ) /i iP GMM N N=  (7)

where iN  is number of observations in thi  class. To find parameters of GMMs, 

we apply Expectation Maximization (EM) algorithm by maximize the likelihood 
function with respect to means, covariances of components and mixing coefficients 
[10].  

A question related to GMM is how to find the number of components. Frequently, 
it is user defined. Here, we propose applying Bayes Criterion Information (BIC) to 

find the optimal model [10]. Given a set of GMMs { }jF  with parameters jθ (which 

are means, covariances of components and mixing coefficients of GMM), to find best 
model by BIC, we compute: 

1
ln ( | ) ln ( | , ) ln

2j j MAP j iP F P F N≈ −x x θ θ  (8)
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where MAPθ  maximizes the posterior distribution and jθ  is number of parameters 

in jθ . Note that Level1 data conveys posterior information from each classifier about 

the amount of supports by a classifier for an observation belonging to a class. 
Sometimes, there are columns in Level1 data in which ,k m∃  such ( | )k m iP W X  is 

nearly constant for all i. In this case, the covariance matrix is singular and EM is 
unable to solve for GMM. To overcome this problem, we randomly choose several 
elements in such columns and perturb their values by a small quantity before EM is 
applied.  

Given the GMM model for each class, the class label of an observation XTest is 
given by: 

tXTest W∈  if 
1,

argmax ( | )
i M

t P GMM XTest
=

= i  (9)

 
Algorithm: GMM for combining classifiers  

 
Training process: 
Input: Training set: L0, K base classifiers, 
PiMax: maximum number of Gaussian component for 
thi  class.  
Output: Optimum GMM for each class. 
Step1: Applied Stacking to generate Level1 data. 
Step2: Group Level1 data into  M classes based 

on class information. Compute ( )iP GMM  (7), 

mean, and covariance for each class. 

Step3:For 
thi  class 

   For p=1 to PiMax 
      Apply EM algorithm to find GMM with p 
components and compute BIC (8). 
   End 
   Select p that resulted in max(BIC) and 
associated GMM. 
End  
 
Test process: 
Input: Unlabeled observation XTest.  
Output: Predicted label of XTest 
Step1: Compute Level1 data of XTest 
Step2: For each class 

Compute ( | )P XTest GMMi  (5) and then posterior 

( | )P GMM XTesti  

End 
Step3: Predict label of XTest from (9) 
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2.2 GMM-PCA Model 

When the number of observations is smaller than the dimension of data, GMM cannot 
be estimated by EM algorithm. Hence, the dimension of data needs to be reduced. We 
perform PCA on Level1 data and retain only the C largest eigenvalues which satisfies 
(10): 

1

1 1

1
C MK

c c
c c

λ λ ε
−

= =

    > −   
   
   (10)

Then, ( ) ~ ( )P GMM P GMMi ix | y | where y is the projection of x on principle 

subspace which contains the C selected eigenvectors. Given the GMM model for each 
class, the class label of an observation XTest is given by: 

tXTest W∈  if 
1,

argmax ( ) ( )
i M

t P YTest GMM P GMM
=

= ×i i|  (11)

3 Experimental Results 

In our experiments, we performed 10-fold cross validation on the dataset. Moreover, 
to ensure objectiveness, the test was run 10 times so we had 100 error rates result for 
each data file. Three base classifiers, namely Linear Discriminant Analysis (LDA), 
Naïve Bayes and K Nearest Neighbor (with K set to 5 denoted by 5-NN) were 
selected. As these classifiers are different to each other in their approach, the diversity 
of the ensemble system is ensured. To assess statistical significance, we used paired t-
test to compare two results (parameter α  is set by 0.05) 

In our assessment, we compared error rate of our model and five other methods: 
best result from the set of base classifiers, best result based on fixed combining rules, 
SCANN, MLR, Decision Template (with measure of similarity 1S  [2] defined as 

1

1( )
( 1( ), )  

1( )
i

i
i

Level X DT
S Level X DT

Level X DT

∩
=

∪
where iDT  is Decision Template of thi  

class and  α   is the relative cardinality of the fuzzy set α ), GMM on Level0 

data,. Here we used 6 fixed rules namely Sum, Product, Min, Max, Vote, Median to 
choose the best result based on their outcome on test set. Experimental results of 21 
UCI files are showed in Table 2, 3 and 4. 

In Table 2, we reported error rate of all 3 base classifiers and chose best result 
based on their performance on test set. We see that both GMM and GMMPCA-based 
approach on meta-data outperform any base classifiers. GMM posts 6 wins and only 3 
losses while  GMMPCA has 7 wins and 3 losses (Table 5).  

GMM and GMMPCA on Level1data are observed to perform better than GMM on 
Level0 data, posting up to 16 and 17 wins, respectively. Our model is only poorer 
than GMM on Level0 data on Ring files (2.09%). This is not surprising because the 
Ring dataset was drawn from multivariate Gaussian distributions [12], so GMM is the 
best to approximate Level0 distribution in that case. Clearly, GMM on Level0 reports 
higher error rates than those on Level1 data as well as Rules, Decision Template, 
MLR and SCANN.  
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Table 1. UCI data files used in our experiment (*) R: Real, C: Category, I: Integer 

File name 
# of 

attributes 
Attribute type (*) 

# of 
observations 

# of classes # of attributes on Level1 

Bupa 6 C,I,R 345 2 6 

Pima 6 R,I 768 2 6 

Sonar 60 R 208 2 6 

Heart 13 C,I,R 270 2 6 

Phoneme 5 R 540 2 6 

Haberman 3 I 306 2 6 

Titanic 3 R,I 2201 2 6 

Balance 4 C 625 3 9 

Fertility 9 R 100 2 6 

Wdbc 30 R 569 2 6 

Australian 14 C,I,R 690 2 6 

Twonorm 20 R 7400 2 6 

Magic 10 R 19020 2 6 

Ring 20 R 7400 2 6 

Contraceptive 9 C,I 1473 3 6 

Vehicle 18 I 846 4 12 

Iris 4 R 150 3 9 

Tae 20 C,I 151 2 6 

Letter 16 I 20000 26 78 

Skin&NonSkin 3 R 245057 2 6 

Artificial 10 R 700 2 6 

Table 2. Classifying error rate of base classifiers 

File name 
LDA Naïve Bayes 5-NN Best result from base classifiers 

Mean Variance Mean Variance Mean Variance Mean Variance 
Bupa 0.3693 8.30E-03 0.4264 7.60E-03 0.3331 6.10E-03 0.3331 6.10E-03 

Artificial 0.4511 1.40E-03 0.4521 1.40E-03 0.2496 2.40E-03 0.2496 2.40E-03 

Pima 0.2396 2.40E-03 0.2668 2.00E-03 0.2864 2.30E-03 0.2396 2.40E-03 

Sonar 0.2629 9.70E-03 0.3042 7.40E-03 0.1875 7.60E-03 0.1875 7.60E-03 

Heart 0.1593 5.30E-03 0.1611 5.90E-03 0.3348 5.10E-03 0.1593 5.30E-03 

Phoneme 0.2408 3.00E-04 0.2607 3.00E-04 0.1133 2.00E-04 0.1133 2.00E-04 

Haberman 0.2669 4.50E-03 0.2596 4.40E-03 0.2829 3.80E-03 0.2596 4.40E-03 

Titanic 0.2201 5.00E-04 0.2515 8.00E-04 0.2341 3.70E-03 0.2201 5.00E-04 

Balance 0.2917 2.90E-03 0.2600 3.30E-03 0.1442 1.20E-03 0.1442 1.20E-03 

Fertility 0.3460 2.01E-02 0.3770 2.08E-02 0.1550 4.50E-03 0.1550 4.50E-03 
Skin&NonSki
n 

0.0659 2.74E-06 0.1785 6.61E-06 0.0005 1.68E-08 0.0005 1.68E-08 

Wdbc 0.0397 7.00E-04 0.0587 1.20E-03 0.0666 8.00E-04 0.0397 7.00E-04 

Australian 0.1416 1.55E-03 0.1297 1.71E-03 0.3457 2.11E-03 0.1297 1.71E-03 
Twonorm 0.0217 3.12E-05 0.0217 3.13E-05 0.0312 3.96E-05 0.0217 3.12E-05 
Magic 0.2053 6.85E-05 0.2255 7.33E-05 0.1915 4.81E-05 0.1915 4.81E-05 
Ring 0.2381 2.27E-04 0.2374 2.23E-04 0.3088 1.30E-04 0.2374 2.23E-04 
Tae 0.4612 1.21E-02 0.4505 1.22E-02 0.5908 1.37E-02 0.4505 1.22E-02 
Contraceptive 0.4992 1.40E-03 0.5324 1.42E-03 0.4936 1.70E-03 0.4936 1.70E-03 
Vehicle 0.2186 1.39E-03 0.5550 2.94E-03 0.3502 2.35E-03 0.2186 1.39E-03 
Iris 0.0200 1.40E-03 0.0400 2.30E-03 0.0353 1.50E-03 0.0200 1.40E-03 

Letter 0.2977 8.31E-05 0.4001 1.04E-04 0.0448 1.68E-05 0.0448 1.68E-05 

 
Besides, our approach is competitive with best result selected from fixed rules 

(Table 5). The files in which we  have superior performance are: Ring (11.31% vs. 
21.22%), Vehicle (21.66% vs. 26.45%) and Skin&NonSkin (0.04% vs. 0.06%), while 
on 4 files, best result from fixed rules is better than our algorithm. Note, however, that 
the optimal rule for a particular data source is usually not known in advanced.  
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Table 3. Classifying error rate of trainable combining algorithms 

File name 
MLR 

Best result from 6 fixed 
rules 

SCANN Decision Template 

Mean Variance Mean Variance Mean Variance Mean Variance 
Bupa 0.3033 4.70E-03 0.2970 4.89E-03 0.3304 4.29E-03 0.3348 7.10E-03 
Artificial 0.2426 2.20E-03 0.2193 2.05E-03 0.2374 2.12E-03 0.2433 1.60E-03 
Pima 0.2432 2.30E-03 0.2365 2.10E-03 0.2384 2.06E-03 0.2482 2.00E-03 
Sonar 0.1974 7.20E-03 0.2079 8.16E-03 0.2128 8.01E-03 0.2129 8.80E-03 
Heart 0.1607 4.70E-03 0.1570 4.64E-03 0.1637 4.14E-03 0.1541 4.00E-03 
Phoneme 0.1136 1.75E-04 0.1407 1.95E-04 0.1229 6.53E-04 0.1462 2.00E-04 
Haberman 0.2428 3.30E-03 0.2392 2.39E-03 0.2536 1.74E-03 0.2779 5.00E-03 
Titanic 0.2169 4.00E-04 0.2167 5.00E-04 0.2216 6.29E-04 0.2167 6.00E-04 
Balance 0.1225 8.00E-04 0.1112 4.82E-04 X X 0.0988 1.40E-03 
Fertility 0.1250 2.28E-03 0.1270 1.97E-03 X X 0.4520 3.41E-02 
Skin&NonSkin 4.79E-04 1.97E-08 0.0006 2.13E-08 X X 0.0332 1.64E-06 
Wdbc 0.0399 7.00E-04 0.0395 5.03E-04 0.0397 5.64E-04 0.0385 5.00E-04 
Australian 0.1268 1.80E-03 0.1262 1.37E-03 0.1259 1.77E-03 0.1346 1.50E-03 
Twonorm 0.0217 2.24E-05 0.0216 2.82E-05 0.0216 2.39E-05 0.0221 2.62E-05 
Magic 0.1875 7.76E-05 0.1905 5.72E-05 0.2002 6.14E-05 0.1927 7.82E-05 
Ring 0.1700 1.69E-04 0.2122 1.62E-04 0.2150 2.44E-04 0.1894 1.78E-04 
Tae 0.4652 1.24E-02 0.4435 1.70E-02 0.4428 1.34E-02 0.4643 1.21E-02 
Contraceptive 0.4675 1.10E-03 0.4653 1.79E-03 0.4869 1.80E-03 0.4781 1.40E-03 
Vehicle 0.2139 1.40E-03 0.2645 1.37E-03 0.2224 1.54E-03 0.2161 1.50E-03 
Iris 0.0220 1.87E-03 0.0327 1.73E-03 0.0320 2.00E-03 0.0400 2.50E-03 
Letter 0.0427 1.63E-05 0.0760 3.94E-05 0.063 2.42E-05 0.1133 4.91E-05 

Table 4. Classfying error rate of GMM-Based approaches 

File name 
GMM on Level0 GMM on Level1 GMM PCA on Level1 

Mean Variance Mean Variance Mean Variance 

Bupa 0.4419 5.80E-03 0.3022 5.31E-03 0.3176 5.49E-03 

Artificial 0.4507 8.00E-03 0.2374 2.40E-03 0.2329 1.66E-03 
Pima 0.2466 2.40E-03 0.2432 2.60E-03 0.2158 8.70E-03 
Sonar 0.3193 1.26E-02 0.2009 6.20E-03 0.1974 6.90E-03 
Heart 0.1715 7.30E-03 0.1559 4.51E-03 0.1600 5.43E-03 
Phoneme 0.2400 4.00E-04 0.1165 2.01E-04 0.1161 1.72E-04 
Haberman 0.2696 2.00E-03 0.2458 3.36E-03 0.2491 2.40E-03 
Titanic 0.2904 2.01E-02 0.2167 5.91E-04 0.2183 7.83E-04 
Balance 0.1214 1.10E-03 0.0839 1.21E-03 0.0783 1.10E-03 
Fertility 0.3130 7.47E-02 0.1850 1.05E-02 0.1250 2.50E-03 
Skin&NonSkin 0.0761 2.21E-06 4.10E-04 1.53E-08 0.0004 1.60E-08 
Wdbc 0.0678 1.10E-03 0.0387 5.98E-04 0.0397 6.97E-04 
Australian 0.1980 1.80E-03 0.1222 1.30E-03 0.1233 1.20E-03 
Twonorm 0.0216 2.83E-05 0.0219 2.78E-05 0.0219 2.72E-05 
Magic 0.2733 5.06E-05 0.1921 8.34E-05 0.1923 7.93E-05 
Ring 0.0209 2.20E-05 0.1131 1.16E-04 0.1131 9.98E-05 
Tae 0.5595 1.39E-02 0.4365 1.36E-02 0.5132 1.67E-02 
Contraceptive 0.5306 1.80E-03 0.4667 1.30E-03 0.4671 1.70E-03 
Vehicle 0.5424 2.40E-03 0.2166 1.40E-03 0.2132 1.80E-03 
Iris 0.0453 2.50E-03 0.0360 2.10E-03 0.0400 3.02E-03 

Letter 0.3573 9.82E-05 0.0797 3.03E-05 0.0834 2.98E-05 

 

Our results also show that GMM on Level1 data outperforms Decision Template, 
posting 10 wins and 0 loss. Superior results are reported on Bupa (30.22% vs. 
33.48%), Haberman (24.58% vs. 27.79%), Fertility (18.5% vs. 45.2%), 
Skin&NonSkin (0.04% vs. 3.32%), Ring (11.31% vs. 18.94%) and Letter (7.97% vs. 
11.33%). 

GMM on Level1 data is also better than SCANN (5 wins and 1 loss). Likewise, 
GMMPCA is better than SCANN with 5 wins and 2 losses. We note that SCANN 
cannot be performed on 3 files, Skin, Balance and Fertility, due to the existence of 
equal column in the indicator matrix, which resulted in singular matrix [5].  
Compared with MLR, both our approaches are equally competitive since both GMM 
on Level1 data and GMMPCA have 4 wins and 4 losses. 



Combining Classifiers Based on Gaussian Mixture Model Approach to Ensemble Data 11 

Table 5. Statistical tests compare GMM, GMMPCA with the Benchmarks 

 Better Competitive Worse 

GMM PCA Level1 vs. SCANN 5 11 2 

GMM Level1 vs. SCANN 5 12 1 

GMM PCA Level1 vs. Decision Template 11 9 1 

GMM Level1 vs. Decision Template 10 11 0 

GMM PCA Level1 vs. MLR 4 13 4 

GMM Level1 vs. MLR 4 13 4 

GMM PCA Level1 vs. best result from fixed rules 6 11 4 

GMM Level1 vs. best result from fixed rules 5 13 3 

GMM PCA Level1 vs. best result from base classifiers 7 11 3 

GMM Level1 vs. best result from base classifiers 6 12 3 

GMM PCA Level1 vs. GMM Level0 17 3 1 

GMM Level1 vs. GMM Level0 16 4 1 

GMM Level1 vs. GMM PCA Level1 2 17 2 

 
Finally, we observe that the classification accuracy of GMM-PCA and GMM on 

Level1 data is comparable. However, since GMM-PCA can deal with situation when 
the number of observations is smaller than the dimension of data, it would be more 
applicable in many situations.  

4 Conclusion and Future Work 

We have introduced a novel approach which used GMM on Level1 data to combine 
results from base classifiers in a multi-classifier system. Experimental results on 21 
UCI files have demonstrated the superiority of our method compared with several 
state-of-art combining algorithms. Future work will be to apply classifier and feature 
selection methods to further increase the classification accuracy of our approach. 
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