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Abstract. This paper proposes a novel hyperspectral image (HSI) classification 
method based on sparse model, which incorporates the spectral and spatial in-
formation of the sparse coefficient. Firstly, a sparse dictionary is built by using 
the training samples and the sparse coefficient is obtained through the sparse 
representation method. Secondly, a probability map for each class is established 
by summing the sparse coefficients of each class. Thirdly, the mean filtering is 
applied on each probability map to exploit the spatial information. Finally, we 
compare the probability map to find the maximum probability for each pixel 
and then determine the class label of each pixel. Experimental results demon-
strate the effectiveness of the proposed method. 
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1 Introduction 

Hyperspectral image (HSI) is formed by tens to hundreds of continuous and subdivided 
spectral bands while reflecting interested target areas simultaneously. In HSI, different 
materials have different spectral information, which can be used for classification. 

Many multispectral image classification methods, such as support vector machines 
(SVMs) [1], [2], neural network [3], and adaptive artificial immune network [4], have 
been applied to HSI classification. Generally, these methods have obtained good per-
formance. 

Researchers show that HSI contains rich spatial information and the pixels in a 
small neighborhood have similar spectral characteristics. If the pixels are in a small 
neighbor, they should belong to the same material. Therefore, Some methods [5], [6], 
[7] have combined spectral information and spatial information, and the classification 
accuracy has been improved. In particular, the segmentation based method [8] first 
segment the HSI into many local region with similar spectral characteristics and then 
classify each region. After using the spatial information, the classifiers can obtain 
improved performance. 

Recently, sparse representation has become a powerful tool to solve some prob-
lems, such as face recognition [9], target detection [10], [11], remote sensing image 
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fusion [12] and medical image reconstruction [13], [14]. Recently, the sparse repre-
sentation method has also been extended to HSI classification [7], [15], [16]. Basical-
ly, the previous sparse representation based HSI classification methods utilize the 
reconstruction error for the classification. In this paper, we propose a novel method 
that can combines the spatial information and spectral information in the sparse coef-
ficients for the classification. Firstly, we use the training samples to construct the 
training dictionary and then utilize the simultaneous orthogonal matching pursuit 
(SOMP) to obtain the sparse coefficient of each spectral pixel. Differ from other 
sparse representation based methods which uses the residual to determine the pixel’s 
class, the proposed method first employs the coefficients to construct several proba-
bility maps. Subsequently, we exploit the spatial information by filtering every map 
and gain a probability map for each class.  Finally, we can determine the pixel’s 
class by comparing the probability maps. 

 The rest of this paper is constructed as follows. Section 2 introduces the proposed 
classification method. Section 3 shows the experimental results and conclusions are 
given in the section 4. 

2 The Proposed Classification Method 

Fig. 1 shows the schematic of the proposed classification method. It is constructed by 
four steps: Firstly, the sparse representation method is adopted to obtain the sparse 
coefficients. Then, the coefficients belonging to each class are summed to obtain 
probability map for each pixel. Subsequently, a mean filtering is conducted on each 
probability map to exploit the spatial information. Finally, classification is accom-
plished by comparing the maps. The details of each step are illustrated in the follows. 
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Fig. 1. The scheme of the proposed classification method 
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Step 1: In HSI, every spectral pixel can be regarded as a vector ix and the training 

pixels construct a matrix = 1 2 nD [d ,d , ...,d ] which is called dictionary. Every pixel can 

be represented by the dictionary. 

1 2
1 2 ... n

i i i n i iα α α= + + + =x d d d Dα                      (1) 

In the equation (1), 1 2, ,..., nd d d is called atom and 1 2[ , ,..., ]n
i i i iα α α=α is called 

sparse coefficient vector. The sparse coefficient vector can be obtained by solving the 
optimization problem. 

2 00
ˆ arg min subject toi i i i K= − ≤α x Aα α                 (2) 

where 0K is the maximum value of the sparsity level. This optimization problem is a 

NP-hard and cannot be solved directly. However, it can be solved by greedy algo-
rithms approximately, such as subspace pursuit (SP) [17], orthogonal matching pur-
suit (OMP) [18] and Simultaneous OMP (SOMP) [7]. In this paper, the SOMP is 
adopted to obtain the sparse coefficient vector ˆ iα for each spectral pixel ix . 

Step 2: In the sparse coefficient vector ˆ iα , there are only a few nonzero sparse 

coefficients. The larger the nonzero coefficients values in one specific class, the more 
probability the test pixel belongs to this class. We denote the nonzero coefficients in 
one class as the ,i mα , where {1,2,..., }m M∈ , and M is the total number of classes. 

Then, we sum the nonzero coefficients ,i mα for each class of each spectral pixel, 

( ), ,sum , {1,2,..., },and {1, 2,..., }sum
i m i m m M i N= ∈ ∈α α             (3) 

where N is the total number of spectral pixels in the HSI. In each class, the summed 
coefficients ,

sum
i mα for all the spectral pixels in the HSI can construct one probability 

map mz . 

Step 3: As discussed above, one coefficient in a class probability map mz can be re-

garded as the likelihood for the corresponding pixel belonging to this class. If the 
probability map mz is directly used for determining the class of each pixel, the spatial 

information in the probability map is not exploited. To exploit the spatial information, 
a mean filtering operation is conducted on each mz ,  

( )meanfiltering , {1,2,..., }meanf
m mz z m M= ∈

                  
(4) 

where the window for mean operation is selected to 3×3. 
Step 4: the class label of each pixel ix is obtained by comparing the coeffici

ents in the filtered probability maps, 

,
1,...,

ˆ max ( ), {1,2,..., }meanf
i m i i

m M
m z i N

=
= ∈x                      (5) 

where max is the operation to compute the max coefficient among different maps. 



154 D. Liu, S. Li, and L. Fang 

3 Experimental Results 

This section tests the effectiveness of the proposed classification method on two real 
HSIs (Indian pines and Salinas scene). The classification results of the proposed me-
thod are compared with those obtained by SVM [19], SVM-CK [20], OMP [7] and 
SOMP [7]. SVM [19] is designed for the classification of the spectral pixel without 
utilizing the spatial information. SVM-CK [20] is a method that incorporates spatial 
information via a composite kernel. OMP and SOMP are two sparse representation 
based methods.  

In our first experiment, we used Airborne Visible/Infrared Imaging Spectrometer 
(AVIRIS) image Indian pines as testing HSI. This image is a widely used data set and 
was taken over Indiana’s Indian Pine test site in June 1992. The Indian Pines has a 
size of 145×145×220, with 220 spectral bands. Because 20 bands is water absorp-
tion, these bands are removed. There are 16 ground-truth classes and the size is from 
20 to 2455 pixels (the total pixels are 10249).  

We chose 10% of the samples for each class as training sample and the remainder 
as testing samples. For each method, we did five experiments and averaged the re-
sults. The number of the training sample and the testing sample is presented in Table 
1.In this table, we can see the overall accuracy (OA), average accuracy (AA) and the 
kappa coefficient by using different methods (the SOMP-P is denoted as our method). 

Table 1. Training sets, testing sets and classification accuracy (%) obtained from different 
methods for the Indian Pines image 

Class Train Test SVM SVM-CK OMP SOMP SOMP-P 

Alfalfa 6 40 77.73 91.25 55.12 92.26 95.04 

Corn-N 144 1284 77.35 92.79 61.60 93.46 97.77 

Corn-M 84 746 78.56 93.98 58.62 90.22 97.40 

Corn 24 213 68.75 87.28 42.21 87.32 95.11 

Grass-M 50 433 88.87 94.90 87.29 95.20 94.04 

Grass-T 75 655 89.12 99.51 95.30 96.12 96.57 

Grass-P 3 25 95.37 85.20 85.20 87.10 87.14 

Hay-W 49 429 95.09 99.91 96.44 99.10 99.87 

Oats 2 18 67.65 83.33 36.67 55.78 0 

Soybean-N 97 875 78.64 90.33 71.10 93.45 93.47 

Soybean-M 247 2208 81.19 96.25 74.11 95.10 99.20 

Soybean-C 62 531 79.74 89.04 51.05 87.49 97.61 

Wheat 22 183 92.26 99.07 96.85 88.20 97.76 

Woods 130 1135 92.72 98.63 91.85 99.00 100 

Buildings 38 348 69.79 92.64 41.67 83.05 97.72 

stone 10 83 97.96 90.24 91.90 91.51 99.35 

OA - - 82.91 94.82 73.38 93.66 97.49 

AA - - 83.17 92.77 71.06 89.83 91.01 

k - - 0.805 0.941 0.696 0.931 0.971 
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The Table 1 shows the training sets, testing sets and classification maps obtained 
by SVM, SVM-CK, OMP, SOMP and SOMP-P and the result is the average of five 
experiments. From the Table 1, we can see that our algorithm has the best perfor-
mance in terms of overall accuracy and kappa coefficient. As for its average accuracy, 
it is only a little worse than the classifier SVM-CK. 

（a） （b） （c） （d）

（e） （f） （g）
 

Fig. 2. Indian Pines: (a) Train samples, (b)Test samples, and the classification results obtained 
by (c) SVM, (d) SVM-CK, (e) OMP, (f) SOMP, (g) SOMP-P 

Table 2. Training sets, testing sets and classification accuracy (%)obtained from different 
methods for the Salinas scene image 

Class Train Test SVM OMP SOMP SOMP-P 

Weed_1 20 1989 99.88 98.68 100 100 

Weed_2 37 3689 98.52 98.78 99.72 99.95 

Fallow 20 1956 92.48 94.55 98.70 98.41 

Fallow plow 14 1380 97.46 99.35 96.93 99.69 

Fallow smooth 27 2651 97.19 93.26 97.45 99.24 

Stubble 40 3919 99.98 99.72 99.97 100 

Celery 36 3543 98.14 99.40 99.55 100 

Grapes 113 11158 76.11 72.83 84.50 94.12 

Soil 62 6141 98.63 97.41 99.37 100 

Corn 33 3245 89.29 88.14 95.24 98.04 

Lettuce 4wk 11 1057 92.82 96.18 99.26 100 

Lettuce 5wk 19 1908 96.16 99.77 96.73 99.73 

Lettuce 6wk 9 907 94.99 98.05 92.53 99.15 

Lettuce 7wk 11 1059 94.85 90.87 97.40 99.43 

Vineyard untrained 73 7195 71.90 57.77 85.24 83.15 

Vineyard trellis 18 1789 98.87 95.06 98.91 98.92 

OA - - 89.16 86.48 93.47 96.21 

AA - - 93.59 92.53 96.13 98.11 

k - - 0.890 0.849 0.9274 0.958 
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In the Fig. 3, (a) and (b) are an example of the training and testing samples. (c) is 
the classification map obtained from SVM, similarly, (d), (e), (f) are the classification 
maps of SVM-CK, OMP, SOMP and SOMP-P respectively. 

In our second experiment, we use the HSI Salinas scene which was collected by 
224-band over Salinas Valley and California. The size of the Salinas image is 
512×217×224.Also, because 20 bands is water absorption which is the same as 
Indian Pines, the number of bands is reduced to 204. There are 16 ground-truth 
classes containing vegetables, bare soils, and vineyard fields and the size is from 916 
to11271 pixels (the total pixels are 54129). 

We chose 1% of the samples for each class as training sample and the rest as test-
ing sample. The number of the training sample and the testing sample is presented in 
Table 2. In this table, we can see the overall accuracy (OA), average accuracy (AA) 
and the kappa coefficient by using different methods (the SOMP-P is our method). It 
is easy to see that the performance of the proposed methods is fine. The Fig. 2 shows 
the classification maps.  

 

Fig. 3. Salinas scene: (a) Train samples, (b) Test samples, and the classification results obtained 
by(c) SVM, (d) OMP, (e) SOMP, (f) SOMP-P 

4 Conclusions 

In this paper, we have proposed a novel HSI classification method base on sparse 
representation. Differ from other traditional sparse classification technologies which 
exploit the sparse coefficient and residual to classify directly, this method uses the 
sparse coefficient to construct probability maps and then exploits the spatial informa-
tion in the maps for classification. Experimental results show that the proposed me-
thod has better performance than several well-known classifiers.  
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