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Abstract. A specific number of chains form alpha-helical membrane protein 
complexes in order to realize the biochemical function, i.e. as gateways to de-
cide whether specific substances can be transported across the membrane or 
not. However, few structures of membrane proteins have been solved. The 
knowledge of protein-protein binding residues can help biologists figure out 
how the function works and solve the 3D structures. 

We present a novel, sequence-based method to predict protein-protein bind-
ing residues from primary protein sequences by machine learning classifiers. 
We use a support vector regression model to predict relative solvent accessibili-
ty by features based on sequences, including position specific scoring matrix, 
conserved score, z-coordinate prediction, second structure prediction, physical 
parameter and sequence length. Afterwards, combining features mentioned 
above with the predicted solvent accessibility, we use ensemble support vector 
machines to predict protein-protein binding residues. To the best of our know-
ledge, there is no method to predict protein-protein binding residues in alpha-
helical membrane proteins. Our method outperforms MAdaBoost successfully 
used in predicting protein-ligand binding residues and random forest used in 
protein-protein binding residues from surface residues. We also assess the im-
portance of each individual type of features. PSSM profile and conserved score 
are shown to be more effective to predict protein-protein binding residues in  
alpha-helical membrane proteins. 

Keywords: Relative solvent accessibility, binding residues, alpha-helical mem- 
brane proteins. 

1 Introduction 

Alpha-helical transmembrane proteins (TMPs) are mostly present in the inner mem-
branes of bacterial cells and the plasma membrane of eukaryotes. They constitute the 
majority of all TMPs, especially in humans. They are estimated to account for 27% of 
all proteins [1]. Moreover alpha-helical TMPs are often regarded as the important 
drug targets, i.e. G protein-coupled receptor (GPCR). Hence many efforts have been 
made to solve the three-dimensional structures and to understand the functions of 
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TMPs. However little progress has been made during past two decades, from statistic-
al data in PDBTM database [2] by the end of 2014/05/16, there were only 2131 
solved TMP structures of which 1840 are alpha-helical and 283 beta-barrel TMPs. 
Because of this difficulty, computational methods (template-based or ab initio) have 
been developed for single chain structure prediction such as Membrane-Rosetta [3] 
and FILM3 [4] and for several easy multi-chain complexes such as BCL::MP-Fold 
[5]. Accurate protein-protein binding residue prediction in membrane can help mem-
brane complex structure prediction. 

Although there are many computational methods, generally speaking, structure-
based, sequenced-based methods and hybrid methods, for predicting protein-ligand 
binding site [6][7], only little progress have been made in protein-protein binding 
residue prediction in TMPs. To our knowledge the existing method proposed by And-
rew J Bordner employed a Random Forest with sequence-based and structure-based 
features to predict the binding residues from surface residues in membrane proteins 
and reported the AUC of 0.75 [8]. The definition of binding residues, also using struc-
ture information, is that the surface residue has contact with another chain in the  
complex structure (< 4 Å non-H atom separation). The definition of surface residues 
include: (1) relative solvent accessibility surface area (RSA) ≥ 0.2, (2) within the 
hydrophobic core of the membrane, in other words, the absolute number of the  

z-coordinates predicted from the real structures are no more than 15 A . All the sur-
face residues are included in the training dataset.  

With the development of machine learning methods, there have been many  
sequence-based methods using artificial neural networks (ANNS) and support vector 
machines (SVMs) to predict membrane protein structure information, i.e. relative 
solvent accessibility (RSA) [9][10]. Although structure-based method has proven 
effective in protein-protein binding residues prediction, there still exists several prob-
lems needed to solve: 

First, by the end of 2014/05/16, there were 101245 structures in PDB database, of 
which 2131 are TMPs and 1840 are alpha-helical TMPs. However the number of 
sequences grow rapidly contrast to the real structure considering the homology influ-
ence. So given a sequence of membrane proteins, if its real structure is not available, 
this structure-based method is not able to do the prediction. 

Second, the existing method only predicts binding residues from surface residues 
in membrane proteins, in other words, before predicting protein-protein binding resi-
dues in TMPs we need to know whether the residues are surface ones or not. 

In view of the above-mentioned two problems, we proposed a sequence-based pro-
tein-protein binding residue predictor for entire membrane proteins. First, we con-
structed a relative solvent accessibility predictor for TMP complexes with support 
vector regression (SVR) models. Second, protein conserved matrix (both PSSM and 
rate4site), predicted secondary structure matrix, predicted z-coordinate matrix, and 
predicted relative solvent accessibility matrix consist of the final feature set; consider-
ing the imbalance of positive (unbinding residues) and negative (binding residues) 
samples in our experiments, under-sampling technique was used to balance the data-
set, afterwards, ensemble SVM was chosen to train the final model. 
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2 Material and Methods 

2.1 Benchmark Dataset of Alpha-Helical Membrane Protein Complex 
Structures 

In order to predict solvent accessibility of both single- or multiple-chain in membrane 
proteins, we used the same dataset as originally used in MPRAP [10]. In this dataset, 
the sequence identity cutoff was set to 20% and length cutoff 0.9, fragments, low-
resolution structures and structures with second structure or membrane boundary 
problems were excluded. Thus there are 52 complexes including 80 chains in the final 
dataset. In order to avoid high homology in different folds, chains from the same su-
per family were put in the same fold. The dataset was finally divided into 5 folds in 
advance. This dataset was also used as a benchmark dataset to predict protein-protein 
binding residues. It is available at http://mprap.cbr.su.se/dataset_MPRAP_feb2010.fa. 
All the results showed in this paper are calculated after 5-fold cross-validation. 

2.2 Calculation of Relative Solvent Accessibility 

In this study, the RSA of each residue was calculated by Naccess 2.1.1 [11]. In our 

experiments we set the probe size 1.4 A for that 2.0 did not perform well and the 
combination would bring error when calculating RSA intramembrane and outside 
separately. During the calculation for RSA of complexes, all chains in the complex 
were included.  

2.3 Definition of Binding Residues 

In Andrew J Bordner’s work, the definition of binding residues was that (1) relative 
solvent accessibility surface area (SASA) ≥ 0.2 and the residues lied in the mem-
brane core; (2) residues in one chain had contact with another chain in the complex 
structure. Contacts were defined that the atom-atom (except H-atom) distance be-

tween different residues was less than 4 . However Arne Elofsson’s definition was 
that (1) relative solvent accessibility surface area (rSASA) was lower than a certain 
cutoff in protein complexes; (2) SASA was not lower than that certain cutoff in sin-
gle-chain protein. The cutoff was set to 0.25 in Arne’s work. 

In our work, we define that residues in one chain contact with another chain in the 
complex structure are binding residues. 

2.4 Feature Extraction 

In previous work, several common features have been used successfully in the field of 
either solvent accessibility prediction or binding residue prediction. In this paper, we 
extracted 6 types of sequence-based features, including position specific scoring ma-
trix (PSSM), conserved score by rate4site (R4S), z coordinate predictions, predicted 
secondary structure (SS) information, representative physical parameters (PP) and 
sequence length. 

A
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Position Specific Scoring Matrix. (PSSM) is generated by PSI-BLAST [12] to 
search against the UniRef90 database with 3 iterations and an E-value cutoff of 
0.00001. All elements in PSSM are normalized by the following logistic function. 

xe
xf −+

=
1

1
)(                          (1) 

where x is the original score. 

Conserved Score is generated by Rate4Site [13] from the multiple sequence align-
ment (MSA). According to Arne Elofsson et.al’s work, exposed residues evolved 
slowly and were considered to be conserved, and buried residues evolved rapidly and 
were considered to be active. Thus a conclusion that the relative substitution rate was 
almost linearly related to the solvent accessibility in membrane protein complexes 
was obtained. The conserved score of each residue is normalized by subtracting the 
average score and dividing by the standard deviation. 

Z-coordinate Prediction is generated by Zpred [14]. Zpred predicted the absolute z-

coordinate and few predicted numbers were no more than 25 Abased on our statistics, 
so we normalized the predictions by dividing 25. Then the normalized numbers were 
added into the final feature set. 

Second Structure Prediction is generated by PSIPRED [15]. Each residue in the 
sequence got the possibilities of three classes (coil (C), helix (H) and strand (E)). In 
our experiments, we take the three possibilities directly as the input features rather 
than converting to binary numbers. 

Representative Physical Parameters and Sequence Length are residue-based fea-
tures from statistical data. Representative physical parameters included a steric para-
meter, hydrophobicity, volume, polarity, isoelectric point, helix probability, strand 
probability, average accessible surface area (ASA), charge, acidity, occurrence, and 
average mass of twenty common amino acids. In addition to features mentioned 
above, sequence length was added in the feature set.  

2.5 Using Sliding Windows to Include Neighborhood Information into 
Feature Set 

Previous studies have indicated that the use of sliding windows can include more 
useful information and thus improve the prediction accuracy, i.e. second structure and 
relative solvent accessibility prediction [10]. In this study, we used sliding windows 
to cover neighborhood information in 4 types of features: (1) position specific scoring 
matrix (PSSM), (2) evolution rate, (3) z-coordinate prediction, (4) predicted second 
structure information. In our work, we found that the window size set to 9 seemed to 
be optimal.  
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2.6 Prediction of Solvent Accessibility 

In this section, in order to predict relative solvent accessibility a simple SVR model 
was used with the combination of 6 types of features. These features include: (1) 
PSSM; (2) Second structure prediction; (3) conserved score calculated by Rate4Site; 
(4) z-coordinate prediction calculated by Zpred; (5) representative physical parame-
ters; (6) sequence length. From (1) to (4), these 4 types of features are extracted using 
a sliding window of length 9. (5) and (6) these two are residue-based that the sliding 
window is not necessary. 

Afterwards, the predicted real value-RSA was also added into the binding residue-
specific feature set using a sliding window, the length is set to 9. 

2.7 Ensemble Classifier Approach to Predict Protein-Protein Binding 
Residues with Support Vector Machines 

In order to predict binding residues, we used ensemble classifiers with support vector 
machines to predict membrane protein-protein binding residues from sequence infor-
mation only. In our training dataset, 4629 binding residues were defined as negative 
samples and 16789 unbinding residues as positive samples. The ratio of positive and 
negative samples is about 3.6. To balance the dataset the under-sampling approach is 
used that positive samples with the same number of negative samples were randomly 
selected. Afterwards, in order to reduce the impact of under-sampling, we introduced 
ensemble classifiers. L different models were generated using SVMs followed by 
each samples, the prediction results are probabilities rather than binaries. Thus we 
added all the L predictions together and then divided by L. 

 

Fig. 1. The flowchart of protein-protein binding residue prediction 

Figure 1 illustrates the flowchart. There are 7types of features used in training  
dataset: (1) PSSM; (2) second structure prediction; (3) conserved score; (4) solvent 
accessibility prediction; (5) Z-coordinate prediction; (6) physical parameters; (7)  
sequence length. For a given sequence, we combined all the features together as the 
input to the ensemble SVM models. Finally, we got the predicted probability of bind-
ing and unbinding. In the training procedure, a certain cutoff was select to maximize 
the Matthems correlation coefficient. By using that certain threshold, real-valued 
probability was transformed to binary states (binding and unbinding). 
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3 Results and Discussions 

3.1 Performance of Relative Solvent Accessibility Prediction 

In section 2, the predicted RSA was added to the feature set so that the performance 
of RSA prediction is very important. The mean absolute error (MAE) and Pearson 
correlation coefficient (CC) of our predictor outperforms MPRAP. 

Table 1. Performance of different input types of features 

Features MAE CC MCC 
MPRAP 18.202 0.583 0.470 
MPRAP+SS 18.159 0.589 0.467 
MPRAP+SS+length 18.136 0.593 0.472 
MPRAP+SS+length+para 18.013 0.599 0.478 
 
In Table 1, MPRAP represents three features (PSSM rate4site and Zpred) used in 

that method, the results (MAE: 18.202 and CC: 0.583) run in local is comparable to 
that reported in literature (MAE: 18.4 and CC: 0.58). Matthems correlation coefficient 
(MCC) was calculated by transforming the predicted real values into binary states 
using a cutoff. The cutoffs were optimized to maximize MCC. We found that our 
predictor only added there features (SS length and parameters) improved MAE CC 
and MCC by 0.187 0.016 and 0.008 respectively when compared with MPRAP.  

3.2 Comparison with Other Methods 

To the best of our knowledge, no work has been done to predict protein-protein bind-
ing residues in a-helical membrane proteins. Andrew J Bordner used random forests 
(RFs) to predict binding sites from surface residues in both a-helical and b-barrel 
membrane proteins. In order to do comparison, we use different methods, including 
(1) the MAdaBoost method used in TargetS to predict protein-ligand binding sites, (2) 
a simple SVM model to validate the effectiveness of the under-sampling method, (3) 
random forests used in Bordner’s method. 

In Table 2, specificity sensitivity accuracy and MCC are threshold-based, so we se-
lect the optimal threshold to maximize the MCC value. AUC is used to examine the 
predicted probabilities. Our method is shown to outperform other methods that it im-
proves the AUC and MCC by 0.006 and 0.006 when comparing with the MAdaBoost 
method used in TargetS. Also our method achieves the best sensitivity and accuracy 
among all the methods. However the specificity performs not very well comparing 
with simple and random forests. MAdaBoost performs very in protein-ligand binding 
sites prediction. In our experiments, this method performs slightly worse than our 
method. In MAdaBoost, the base classifier is SVM. In order to evaluate the error of 
each base classifier, an independent dataset extracted from the training dataset is set 
as the evaluation dataset. So the number of samples used to train the model in MAda-
Boost is less than our predictor. Considering that the number of samples is not very 
large, MAdaBoost is expected to achieve not very accurate result. Simple SVM and 
random forest achieve the high specificity and low sensitivity. These two methods 
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trained models in the original dataset directly. The imbalanced dataset could affect the 
performance of the prediction. The predictions prefer to the major class. In order to 
maximize the MCC value, the threshold is adjusted near the major class. This explains 
the high specificity and low sensitivity. Figure 2 shows the receiver operating charac-
teristic curves of these four methods. 

Table 2. Comparison between different methods 

Methods AUC SPE SEN ACC MCC 

Ensemble SVM 0.705 0.450 0.812 0.734 0.251 

MAdaBoost 0.699 0.467 0.794 0.723 0.245 

Simple SVM 0.668 0.690 0.573 0.598 0.217 

Random Forest 0.617 0.597 0.572 0.577 0.139 

 

Fig. 2. ROC curves for different methods 

3.3 Effectiveness of Individual Types of Input Features 

In this section, we will describe the effectiveness of different types of input features in 
our experiments. Table 3 shows the performance of different inputs and the corres-
ponding ROC curves are shown in Figure 3. Among the listed 5 types of features, 
PSSM outperforms others for that it achieves the highest AUC and MCC values,  
followed by Rate4Site and SS. It is expected that PSSM has proved to be the most 
important feature to predict protein-ligand binding residues and solvent accessibility 
and so on by using sequence-based methods. Rate4Site is used to calculate conserved 
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score and generated from the multiple sequence alignment (MSA), it performs 
slightly worse than PSSM and better than SS. These three features make a majority of 
contribution to the final prediction. RSA is obtained by our predictor directly, 
achieves the AUC value of 0.52 and MCC value of 0.033. By adding RSA prediction 
and z-coordinate prediction into feature dataset, the final results improve a little. 

 

Fig. 3. ROC curves for individual types of input features 

Table 3. Performance for individual type of features 

Features AUC SPE SEN ACC MCC 

PSSM 0.641 0.478 0.719 0.667 0.174 

Rate4Site 0.580 0.680 0.439 0.491 0.100 

RSA 0.520 0.387 0.651 0.594 0.033 

SS 0.525 0.629 0.451 0.490 0.067 

Zpred 0.497 0.695 0.360 0.432 0.048 

4 Conclusion 

We developed a novel sequence-based predictor to predict protein-protein binding 
residues in a-helical membrane proteins. Our predictor used under-sampling methods 
to balance the dataset and ensemble SVMs to get the final model and outperforms 
other methods. We hope that our predictor would have application in guiding the 
experiments of solving 3-dimensional structures in membrane protein complexes. 
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