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Abstract. As a fundamental tool, L0 gradient smoothing has found a flurry of ap-
plications. Inspired by the progress of research on hyper-Laplacian prior, we pro-
pose a novel model, corresponding to Lp-norm of gradients, for image smoothing, 
which can better maintain the general structure, whereas diminishing insignificant 
texture and impulse noise-like highlights. Algorithmically, we use augmented La-
grangian method (ALM) to efficiently solve the optimization problem. Thanks to 
the fast convergence rate of ALM, the speed of the proposed method is much faster 
than the L0 gradient method. We apply the proposed method to natural image 
smoothing, cartoon artifacts removal, and tongue image segmentation, and the ex-
perimental results validate the performance of the proposed algorithm. 

Keywords: Image smoothing, augmented Lagrangian method, hyper-Laplacian 
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1 Introduction 

Noise and blur usually are inevitable in real world images. In many image processing 
applications, e.g., edge detection [1], object segmentation [2], etc., it is necessary to 
enhance the well-structured components, whereas suppressing noise and unnecessary 
texture. As a conventional approach for image denoising and enhancement, image 
smoothing is a well-studied problem with quite a number of methods in literatures, 
such as bilateral filtering (BLF) [3], weighted least squares (WLS) [4], total variation 
(TV) [5], L0-norm smoothing [6].  

Recent studies on natural image statistics have shown that heavy-tailed image gra-
dient distribution [7] is an effective prior and can be well modeled by hyper-Laplacian 
with 0 < p < 1 [8, 9, 10], which has been applied in several applications, e.g., image 
deburring, leading to superior results. At the same time, many efforts have been de-
voted to research on the Lp optimization, e.g., iteratively reweighted least squares 
(IRLS) [11, 12], iteratively reweighted L1-minimization (IRL1) [13]. Recently, Zuo et 
al. proposed a generalized iterative shrinkage algorithm (GISA) [14]. 
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In this paper, we propose to model image prior as an Lp-norm of gradients, which 
can better maintain the general structure, whereas suppressing insignificant texture. 
Furthermore, we adopt the augmented Lagrangian method (ALM) to efficiently solve 
the optimization problem, resulting in an ALM-Lp algorithm. Compared with L0-
norm smoothing, ALM-Lp algorithm is more effective in removing more highlights 
and avoiding color distortion, leading to a better visual perception. 

 

(a) Input 

 

 
(b) BLF (c) WLS (d) TV (e) L0-norm 

 

 
(f) our result 

Fig. 1. The smoothing results on image pflower 

Fig. 1 compares the image smoothing results obtained using different approaches 
on a natural image pflower. From Fig. 1(b)-(d), one can see that BLF, WLS, and TV 
are valuable in wiping off noises, but are limited in removing detailed textures and 
preserving the salient edges. And the result of L0 smoothing is much better in the 
above aspects, but has color distortion to some extent. Besides, it performs poor in 
removing impulse noise-like highlights in the close-up. Compared with the competing 
methods, our result can obtain better smoothing result, which is effective in preserv-
ing the salient edges and removing noises and detailed textures. Moreover, thanks to 
the fast convergence rate of ALM, ALM-Lp is faster than L0 smoothing. 

The remainder of this paper is organized as follows. Section 2 presents a brief re-
view of L0 smoothing and the introduction of generalized shrinkage/thresholding 
(GST) algorithm. In Section 3, we present the Lp-norm smoothing model and the 
ALM-based optimization. Section 4 provides the experiment results. Finally, we end 
this paper with some concluding remarks in Section 5. 

2 Related Work and Prerequisites 

In this section, we first briefly review the L0 smoothing method, and then summarize 
the generalized shrinkage/thresholding (GST) function used in this paper. 

2.1 L0 Smoothing Method 

Xu et al. [6] proposed a smoothing model based L0 norm of gradients: 
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where y and x denote the input and smoothed image, respectively, μ is a smoothing 

weight, 
0

• denotes the L0 norm that counts the number of non-zero entries, and

[ , ]h v=D D D  denotes the gradient operator that includes the horizontal component 

Dh and vertical component Dv, respectively. Then, Xu et al. presented an alternating 
optimization strategy with half-quadratic splitting to tackle this problem. 

The proposed ALM-Lp method is different from L0 smoothing at two aspects. 
First, we adopt the Lp-norm gradient prior while L0 smoothing adopts the L0-norm 
gradient prior. Previous studies [7] indicated that image gradients typically follow 
hyper-Laplacian distribution with 0.5 0.8p≤ ≤ , which makes ALM-Lp more suitable 

for image smoothing. Second, ALM-Lp uses the augmented Lagrangian method 
(ALM) to solve the optimization, and is more efficient.  

2.2 The Generalized Shrinkage/Thresholding (GST) Function 

Lp -norm minimization problem is the key of many sparse coding problems. Here, we 
discuss the simplest Lp -minimization problem as follows, 
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Zuo et al. [14] introduced the generalized shrinkage/thresholding (GST) function 
which is a generalization of the soft-thresholding operator. Compared with the exist-
ing solvers for Lp-norm minimization, e.g., IRLS, LUT [7], and ITM-Lp [15], GST is 
very efficient and converges to the correct solution. The GST function is defined as, 
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which stands for the threshold-

ing value. Generally, if ( )GST
py τ λ≤ , the generalized soft-thresholding operator 

uses the thresholding rule to assign ( );GST
pT y λ  to 0; otherwise, uses the shrinkage 

rule to assign ( );GST
pT y λ   to ( )sgn( ) ;GST

py S y λ . ( );GST
pS y λ can be obtained by 

iteratively performing the following operation : 
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Then the overall algorithm was summarized as, 

( ); ( , , , ),GST
p GST y JT py λ λ=                       (5) 

where J is the number of iterations, generally 1 or 2. 
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3 Model and Algorithm 

In this section, we first present the proposed model, formulated as an Lp norm mini-
mization problem. For the non-convexity of the Lp norm, it is not trivial to directly 
optimize the proposed model. Thus, by adopting the variable splitting strategy, we 
employ augmented Lagrangian method (ALM) to solve it efficiently.  

The smoothing model with hyper-Laplaican gradient prior is formulated as, 
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By introducing auxiliary variable d= Dx, problem (6) can be reformulated as, 
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where [ , ]T T T
h v=d d d  with h vh v= =d dD x D x， . Then the augmented Lagrangian (AL) 

function of the problem in Eq. (7) is defined as, 
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where λ is the Lagrangian vector, and δ  is a positive penalty parameter. With minor 
algebra, the AL function can be rewritten as, 
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where δ=q λ and [ , ]T T T
h v=q q q . The AL function can be optimized using the alter-

nating direction method of multipliers, i.e, updating x while d is fixed, and vice-versa. 

3.1 The x-subproblem 

By fixing the variable d, the subproblem w.r.t. x is a quadratic optimization problem 
and the solution to x is 
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where 1 means the delta function, and the inversion operation can be efficiently com-
puted in the Fourier domain. Assuming circular boundary conditions, we can apply 
2D fast Fourier transform (FFT) which diagonalizes the derivative operators, and the 
close-form solution of x  is 
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where F  and 1−F  denote FFT and inverse FFT, respectively. The plus, subtract, 

multiplication and division are all component-wise. 

3.2 The d-subproblem 

The d subproblem can be formulated as, 
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which can be solved by  GST [14], 

( ) ( ), , , , .h h h v v vGST p,J GST p,Jμ μδ δ= =+ +d D q d qxDx ，         (13) 

Once obtaining x and d, q can be updated as follows 

( ) ( ) ( ) ( )1 1 1 .t t t t+ + += + −q q Dx d                          (14) 

For the updating of penalty parameter δ , we adopt the adaptive updating strategy 
proposed by Lin et al. [16] to accelerate the convergence speed, 
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where maxδ is the upper bound of δ , and the values of ρ is defined as, 
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where 0 1ρ > is a positive constant. 

Algorithm 1. ALM-Lp 

1. Input: image y , smoothing weight μ , parameters 0 max,δ δ  

2. Initialize: (0) (0), ,y qx = d , t=0 

3. Precompute: ( ) ( ) ( )( ), T T
h h v vδ= + +H I D D D DyF F F  

4. While not converged 
5. ( ) ( )t t

h h h= −s d q , ( ) ( )t t
v v v= −s d q  

6. ( ) ( ) ( )( )( ) ( )( )11 T T
h h v v

t δ−+ = + ∅Dx y s D s H+F F F F  

7. ( )( )( 1) ( ) , ,tt tGST p,Jμ δ+ = +d D qx  

8. ( ) ( )1 1( 1) ( ) t tt t + ++ = + −q q Dx d  

9. Update ( 1)tδ +  

10. t=t+1 
11. End while 
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We summarize the proposed ALM-Lp algorithm in Algorithm 1. Since the Fourier 

transform of ( ) ( ) ( ), ,T T
h vy D D ，F F F and ( )( )T T

h h v vδ+ +I D D D DF can be pre-

computed, the proposed algorithm requires 2 FFT operations per iteration. ALM-Lp 

involves several parameters, we empirically fix 0 4δ μ= , 5
max 10δ = and 210ε −=  in 

our experiments. 

4 Experimental Results 

In this section, we evaluate the proposed ALM-Lp method. We first evaluate the 
smoothing results of ALM-Lp obtained using different p values, and further compare 
ALM-Lp with several state-of-the-art smoothing methods, i.e., BLF, WLS, TV, and 
L0 smoothing. Then, we apply ALM-Lp to cartoon artifacts removal and tongue image 
segmentation. The programs in our experiments are all coded in MATLAB and ran on 
a computer with Intel(R) Xeon(R) CPU E3-1230 V2@3.30GHz and 16GB memory. 

4.1 ALM-Lp with Different p Values 

From Fig. 2, we can draw the similar conclusion with [7] that the gradient distribu-
tions of real-world images are well modeled by hyper-Laplacian prior, typically with 
0.5 0.8p≤ ≤ . Particularly, when p = 0.7, better tradeoff can be achieved in removing 
noise-like highlights and detailed textures and preserving salient edges. Thus we 
adopt  p = 0.7 for ALM-Lp in the following experiments. 
 

(a) p = 0.1 (b) p = 0.3 (c) p = 0.5 (d) p = 0.7
 

(e) p = 0.9 

Fig. 2. The smoothing result of ALM-Lp with different p values. This figure is best viewed in 
electronic form and zoomed. 

4.2 Comparison with Other Methods 

Using six natural images, we compare ALM-Lp with several state-of the art image 
smoothing methods, i.e., bilateral filter, weighted least-squares,  TV, and L0 smooth-
ing. Fig. 3 and Fig. 4 show the results on images beach and scenery. On the whole, 
ALM-Lp can maintain the general structure and is effective in smoothing insignificant 
details, whether the gravel in Fig. 3 or the grass in Fig. 4. 

We further compare the running time of ALM-Lp with that of L0 smoothing on the 
six natural images, as listed in Table 1. One can see ALM-Lp is more efficient than L0 

smoothing. 
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(a) Input (b) BLF

 
(c) WLS 

 
(d) TV (e) L0 smoothing

 
(f) Our result 

Fig. 3. The smoothing results on the image beach. As the red boxes show, our method can 
better smoothing insignificant textures. 

 
(a) Input (b) BLF 

 
(c) WLS 

 
(d) TV (e) L0 smoothing 

 
(f) Our result 

Fig. 4. The smoothing results on the image scenery 

Table 1. Speed (sec.) comparison of  L0 gradient smoothing and ALM-Lp method 

Image Size L0 smoothing ALM-Lp 
rock 800 × 533 4.19 1.58 

flower 800 × 533 2.99 1.99 

beach 800 × 533 3.02 1.70 
pflower 475 × 494 1.45 0.97 
scenery 481 × 321 1.11 0.54 

basketball 270 × 358 0.72 0.31 
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4.3 Artifact Removal for Cartoon Pictures 

Cartoon image compressed by conventional JPEG compression may contain some 
artifacts that severely damage the image structures. Thus, we need to remove artifacts 
while sharpening important salient edges. Fig. 5 shows the results obtained using 
ALM-Lp, from which we see the proposed method can effectively wipe off artifacts 
while preserving general structures, demonstrating its better property. 
 

  

  

 
(a) Input (b) Our result (c) Input 

 
(d) Our result 

Fig. 5. Cartoon pictures artifacts removal 

4.4 Tongue Images Segmentation 

For tongue body segmentation, the edge maps obtained by edge detectors, e.g.,  
Canny, often contain unnecessary textures, shown as Fig. 6(c), which makes it hard to 
correctly segment the tongue body. Thus, we first used ALM-Lp to enhance the edge 
of tongue body, whereas diminishing unnecessary details, and then the well-known 
gradient vector flow (GVF) snake [17] was adopted to perform the segmentation. 
From Fig. 6(c)(e), one can see that, wispy textures in the edge map of the original 
image make the snake curve converge to a wrong segmentation result, while the 
smoothed image using ALM-Lp has a remarkable improvement, in which unneces-
sary textures are diminished, leading to the satisfactory segmentation results shown as 
Fig. 6(d)(f).  

Furthermore, we validate the segmentation performance on three more tongue im-
ages, as shown in Fig. 7, from which we can draw the conclusion that it makes a sig-
nificant segmentation improvement to apply ALM-Lp as a preprocessing step.  
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(a) (c) 

 
(e) 

 
(b)  (d)   

 
(f) 

Fig. 6. Tongue image segmentation. (a) the original tongue image, (b) the result using ALM-
Lp, (c), (d) are edge maps, and (e), (f) are segmentation results, respectively. 

  

  

Fig. 7. More tongue images segmentation results. The top line presents the results on original 
images, and the bottom line presents the results on smoothed ones obtained using ALM-Lp. 

5 Conclusion 

In this paper, we studied the image smoothing problem and proposed an ALM-Lp  
method based on hyper-Laplacian gradient prior. An efficient augmented Lagrangian 
method (ALM) is developed to solve the proposed model. For natural image smoothing, 
ALM-Lp can obtain better smoothing results while compared with the state-of-the-arts. 
That is to say, ALM-Lp is effective in removing impulse noise-like highlights and de-
tailed textures and preserving salient edges. Compared with L0 smoothing, ALM-Lp is 
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more efficient. Moreover, ALM-Lp can also be applied to cartoon artifacts removal and 
tongue image segmentation. Since impulse noise-like reflection and highlights usually 
are inevitable in tongue images, ALM-Lp, as a preprocessing step, can significantly im-
prove tongue image segmentation results.  
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