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Abstract. Image registration is an important topic in many fields including  
industrial image analysis systems, medical and remote sensing. To improve the 
registration accuracy, an image registration method that combines scale  
invariant feature transform and individual entropy correlation coefficient (SIFT-
IECC) is proposed in this paper. First, scale invariant feature transform algo-
rithm is applied to extract feature points to construct a transformation model. 
Then, a rough registration image is obtained according to the transformation 
model. The individual entropy correlation coefficient is used as the similarity 
measure to refine the rough registration image. Finally, the experimental results 
show the superior performance of the proposed SIFT-IECC registration method 
by comparing with the state-of-the-art methods. 
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1 Introduction 

Image registration is the process of spatially aligning two or more images of the same 
scene acquired with, for example, different sensors or the same sensors at different 
times [1, 2, 3]. The registration geometrically aligns two images called the reference 
and floating images, respectively. Image registration has important applications in 
many fields including remote sensing [4], medical [5], and industrial image analysis 
systems [6]. In the field of computer vision, image registration is a critical component 
of image processing, such as image mosaicking [7], image fusion [8], image recon-
struction [9] and so forth. Usually, image registration methods are generally catego-
rized into two classes [1, 2]: feature-based method [3] and intensity-based method [6]. 
In general, the feature-based method is preferably applied when images contain many 
salient and detectable features, while the intensity-based method is recommended 
when images contain not enough features or the features are similar. However, in 
feature-based method, the process of features extracting is sensitive to noise, which 
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can easily lead the result that features in both reference image and floating image are 
hard to be detected and/or unstable in time. Therefore, it is hard to make a correspon-
dence between the two feature sets in feature-based method. In intensity-based me-
thod, entire images have to be used during the registration steps which cause costly 
consumption of time and memory. Furthermore, nonlinear illumination changes exert 
negative effects on the registration result and therefore the intensity-based method 
does not perform well in stability which may lead to local extremum. 

To improve the accuracy and stability, scale invariant feature transform [10] and 
individual entropy correlation coefficient [11] (SIFT-IECC) are combined to register 
the reference image and the floating image in this paper. Scale invariant feature trans-
form (SIFT) is an algorithm to detect local features in images. The algorithm was first 
reported by David G. Lowe in 1999, it became a consummate algorithm till 2004. The 
SIFT algorithm has been applied in many fields like gesture recognition, object rec-
ognition, image stitching, video tracking, 3D modeling, matching moving and so on. 
In this paper, the SIFT algorithm is applied to extract the feature points that are used 
to construct a transformation model. A rough registration image is then obtained ac-
cording to this transformation model. The SIFT-based affine transformation can cor-
rect the translation, rotation and scale of the floating image, so we use it first .To get 
the refined image registration image, the individual entropy correlation coefficient 
(IECC) is used as the similarity measure. 

The flow chart of the proposed method is shown as in Fig. 1. The heavy line 
represents rough registration process, and thin line represents refining registration 
process. The corresponding steps of the proposed method are as follows. 1) Extract 
features of the reference and floating images using SIFT. 2) Match SIFT features of 
the reference and floating images. 3) Establish the affine transformation model based 
on the minimum mean square error (MMSE) method of matching feature points. 4) 
Obtain the rough registered image by transforming the floating image based on the 
affine transformation model. 5) Initialize the parameters of the IECC-based registra-
tion image. 6) Establish an affine transformation model by optimizing initializations 
or parameters, and then obtain the rough registered image by the affine transformation 
model. 7) Use IECC as the similarity measure to refine the rough registered image. 8) 
Output the refined registered image. 

2 SIFT-IECC Image Registration 

2.1 Feature Extraction Using SIFT 

The major stages of the SIFT algorithm are stated in the following. 

1. Scale-space extrema detection 

The Gaussian kernel has been proved to be the only possible kernel that can produce 
scale-space [12]. Therefore, the scale-space of an image is defined as a function pro-
duced from the convolution of a variable-scale Gaussian kernel with an input image. 

( ) ( ) ( ), , , , ,L x y σ G x y σ *I x y=                        (1) 
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Fig. 1. Flow chart of the proposed method 
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where L(x,y,σ) is the scale-space, G(x,y,σ) is the Gaussian kernel, I(x,y) is the input 
image, σ is the scale-space factor, and * is the convolution operation in x and y. 

Scale-space extreme is used in the difference-of-Gaussian function convolved with 
the image for the purpose of detecting stable keypoint locations in scale-space effi-
ciently. 

( ) ( ) ( )( ) ( ) ( ) ( ), , , , , , , , , , ,D x y σ G x y kσ G x y σ *I x y =L x y kσ L x y σ= − −     (3) 

where D(x,y,σ) is the difference-of-Gaussian function, k is a constant multiplicative 
factor. 

Maxima and minima of the difference-of-Gaussian images are detected by compar-
ing each sample point to its eight neighbors in the current image and nine neighbors in 
the scale above and below. 

2. Keypoint localization 

Points those are sensitive to noise or poorly localized along an edge should be re-
jected to pinpoint the local extreme, enhance the matching stability and improve noise 
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immunity. D(x,y,σ) is approximated by the Taylor expansion  and it can be used to 
remove the unstable extrema with low contrast by discarding points whose offset is 
greater than an appropriate threshold. In order to eliminate edge responses, the ratio 
between the square of Hessian matrix’s trace and Hessian matrix’s determinant is 
used. An extremum with a large principal curvature across the edge but a small one in 
the perpendicular direction will be discarded. 

3. Orientation assignment 

Using local image properties to assign a consistent orientation to each extremum can 
guarantee invariance to image rotation. For each Gaussian smoothed image L(x,y), the 
gradient magnitude m(x,y) and the orientation θ(x,y) are pre-computed using pixel 
difference. 

( ) ( ) ( )( ) ( ) ( )( )2 2
, 1, 1, , 1 , 1m x y L x y L x y L x y L x y= + − − + + − −        (4) 

( ) ( ) ( )
( ) ( )

1 , 1 , 1
,

1, 1,

L x y L x y
θ x y tan

L x y L x y
− ⎛ ⎞+ − −

= ⎜ ⎟⎜ ⎟+ − −⎝ ⎠
                   (5) 

4. Keypoint descriptor 

Descriptors of the keypoints in both reference image and floating image are needed 
for matching. A keypoint descriptor is established by first calculating the gradient 
magnitude and orientation at every point in a region around the keypoint location, 
which means that the descriptor contains not only the keypoint’s information but also 
pixels’ information around the keypoint. These pixels around the keypoint are accu-
mulated into orientation histograms to summarize the contents over 4x4 subregions 
that can form a descriptor of 8 orientations. 16x16 pixels around a keypoint is used to 
form 4x4 descriptors of 128 dimensional SIFT feature vector that is used to describe 
the keypoint, which will achieve invariance to image rotation optimally. To reduce 
the effects of illumination change, the SIFT feature vector is further normalized. 

2.2 Feature Matching and Transformation Model Estimation 

1. Feature Matching 

Feature matching is used to establish an affine transformation model relying on the 
correspondences between features in both reference and floating image. An effective 
method to match feature points is to compare the distance of the nearest neighbor to 
that of the second nearest neighbor. More specially, with regard to each keypoint in 
the reference image, we can find the nearest keypoint with the shortest Euclidean 
distance, 1d , and the second nearest keypoint with second shortest Euclidean dis-

tance, 2d , in the floating image. If the ratio, 1 2d /d  is bigger than an appropriate 

threshold that can be confirmed by testing, the correspondence will be regarded as an 
incorrect match. K-d tree is used to improve the matching efficiency. 



132 G. Liu et al. 

 

2. Transformation Model Estimation 
 

After feature matching, we can get N matching point-pairs 

( ) ( ){ }, , , ,
1,2,3 ,

, , ,r i r i f i f i
i N

x y x y
= …

                      (6) 

where ( ), ,,r i r ix y  is the keypoint in the reference image and ( )f,i f,ix ,y  is the key-

point in the floating image. 
An affine transformation model can be defined as: 

( ) ( )
cos sin 0
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                 (7) 

where s is the scale factor, α is the rotation angle, xt  is the translation in the x-axis 

and yt  is the translation in the y-axis. 

In this paper, MMSE is used to calculate the parameters of the affine transforma-
tion model. 
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Once the parameters confirmed, a rough registered image is obtained by transform-
ing the floating image using affine transformation with bicubic interpolation. Now the 
rough registered image is regarded as the floating image so the next step is to register 
the reference image and the rough registered image. 

2.3 IECC-Based Similarity Measure 

In this paper, the similarity measure is IECC, which is a new similarity measure  
based on entropy. For two images R and F, we can calculate the marginal probability 
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distribution, ( )ip r  and ( )jp f , the joint probability distribution, ( )i jp r ,f , of im-

age R and F. The joint probability distribution ( )i jp r ,f  can be obtained simply by 

normalizing the 2D histogram. 

( ) ( )
( )1 1

,
,

,

i j
i j bin bin

i ji j

h r f
p r f

h r f
= =

=
∑ ∑

                      (12) 

where ir  is the intensity of image R, jf  is the intensity of image F, ( )i jh r ,f  is the 

2D histogram calculated from the two images R and F, bin is the size of the 2D 

histogram. The marginal probability ( )ip r  and ( )jp f  can be obtained by 

summing ( )i jp r ,f  over f and r, respectively. 
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IECC can be defined as: 

( )
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IECC is used to determine if the reference image and the floating image are regis-
tered. The maximum IECC is determined as the best registration between two images. 

3 Experiments 

In this section, experiments are conducted to evaluate the performance of the pro-
posed image registration method. There are many similarity measures such as mu-
tual information (MI) [5], normalized mutual information (NMI) [5] and entropy 
correlation coefficient (ECC) [13]  that can be  combined with SIFT to register 
the image. The proposed SIFT-IECC image registration method is compared with 
the SIFT [14] method, the SIFT-MI method [15], the SIFT-NMI method and the 
SIFT-ECC method. The experiments are implemented in Matlab 2012a using a 
computer with a CPU of Inter Core i5 (2.5GHz) and 4GB memory. 
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Fig. 2. The image registration results of image 1. (a) Reference  image. (b) Floating image. (c) 
SIFT registration result. (d) SIFT-MI registration result. (e)  SIFT-NMI registration result. (f) 
SIFT-ECC registration result. (g) SIFT-IECC registration result. 

Table 1. The registration results of image 1 

Type of 
Method 

xt  

(pixel) 
yt  

(pixel) 

α 
(rad) 

s 
RMSE 
(pixel) 

Time 
(second) 

SIFT -137.2329 -39.3152 -0.4356 2.0006 1.6936 85.6430 

SIFT-MI -139.8706 -40.0927 -0.4327 2.0109 0.4917 112.3408 

SIFT-NMI -138.8549 -39.3212 -0.4340 2.0010 0.3272 174.1210 

SIFT-ECC -138.8549 -39.3212 -0.4340 2.0010 0.3272 180.9565 

SIFT-IECC -139.0405 -38.4798 -0.4372 2.0031 0.3192 162.1692 
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The registration efficiency is assessed by the computation time, and the registration 
accuracy is assessed by the root mean square error (RMSE) of the detected key points. 
The smaller RMSE indicates the better registration result. The RMSE between the 
reference image and the registered image can be defined as: 

( ) ( )2 2

1

1
i i i i

N

x x y y
i

RMSE R Reg R Reg
N =

⎛ ⎞= − + −⎜ ⎟
⎝ ⎠∑               (16) 

where N is the number of key points of the reference image and the registered image, 

ixR  and 
iyR  are key points coordinates of the reference image, 

ixReg  and 
iyReg  

are key points coordinates of the registered image. 

(g) 

(d) 

(c) 

(e) (f) 

(b) (a) 

 

Fig. 3. The image registration results of image 2. (a) Reference image. (b) Floating image.  
(c) SIFT registration result. (d) SIFT-MI registration result. (e) SIFT-NMI registration result. 
(f) SIFT-ECC registration result. (g) SIFT-IECC registration result. 
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Table 2. The registration results of image 2 

Type of 
Method 

xt  

(pixel) 
yt  

(pixel) 

α 
(rad) 

s 
RMSE 
(pixel) 

Time 
(second) 

SIFT -184.1715 -122.3788 -0.2228 2.1743 1.8006 54.2974 

SIFT-MI -185.9644 -122.1512 -0.2228 2.1751 0.3006 223.8533 

SIFT-NMI -185.9236 -122.1541 -0.2229 2.1752 0.2951 183.2656 

SIFT-ECC -185.9236 -122.1541 -0.2229 2.1752 0.2951 182.6300 

SIFT-IECC -185.9054 -122.0525 -0.2229 2.1741 0.2940 183.8825 
 

Two images obtained from www.prenhall.com/gonzalezwoods are used to test the 
above methods. The reference and floating images are re-sampled to 256x256 for 
computation convenience. The registration results are shown in Fig. 2, Fig. 3, Tab. 1 
and Tab. 2, respectively. In the table, xt  and t y  are the translations in x-axis and y-

axis respectively, α is the rotation angle and the s is the scale. 
The results demonstrate that the proposed SIFT-IECC image registration method 

provides a significant improvement in RMSE. Moreover, the processing time of the 
SIFT-IECC image registration method is comparable to the SIFT-MI method, the 
SIFT-NMI method and the SIFT-ECC method. It costs more time than the SIFT regis-
tration method, because it incorporates the IECC-based similarity measure. 

4 Conclusion 

In this paper, the SIFT-IECC registration method is proposed. The SIFT algorithm is 
used to obtain an affine transformation model and get a rough registered image. The 
reference image and the rough registered image are refined using IECC. The registra-
tion results demonstrate that the proposed SIFT-IECC registration method performs 
better than the SIFT method, the SIFT-MI method, the SIFT-NMI method and the 
SIFT-ECC method in terms of accuracy. Our future work will focus on improving the 
efficiency. 
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