
Chapter 7
Structure-Based Attribute
Reduction: A Rough Set Approach

Yoshifumi Kusunoki and Masahiro Inuiguchi

Abstract We provide an introduction to a rough set approach to attribute
reduction. Analyzed data sets consist of objects which are described by attributes and
partitioned into decision classes. Rough set theory deals with uncertainty decision
classes with respect to attributes by approximating them to precise sets. The aim of
attribute reduction is to remove redundant attributes as well as find important ones
for classification. Several types of attribute reduction have been proposed especially
according to preserving structures of approximated decision classes. We introduce
definitions and theoretical results about structures-based attribute reduction.
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7.1 Introduction

We provide an introduction to attribute reduction or feature selection based on rough
set theory [35, 36, 39]. Rough set theory approaches uncertainty or inconsistency
of membership for sets due to incomplete or granular information. In a rough set
approach for data analysis, data sets are usually given by decision tableswhich consist
of objects (items) described by attributes. Moreover, each object in decision tables is
classified into decision classes. Because of incompleteness of given attributes, some
objects are indiscernible to each other by the attributes, and that causes uncertainty
of decision classes. Such an uncertain decision class is approximated by two precise
sets, called lower and upper approximations. The difference of the upper and lower
approximations is called a boundary.
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One of the major topics for rough set based data analysis is (relative) attribute
reduction [37, 39]. Attribute reduction is a problem to delete redundant condition
(explanatory) attributes for the classification of the decision classes. Minimal sets
of attributes preserving a part of information of the classification are called reducts.
Reducts can be interpreted as important sets of attributes for the classification. Several
types of reducts have been proposed according to a part of the information which
should be preserved [23, 36, 43, 45]. Originally, Pawlak proposed reducts preserving
the positive region [36, 43],which is the union of all lower approximations of decision
classes, in other words, the set of all certainly classified objects. Ślȩzak proposed
ones preserving all boundaries of decision classes [45]. One of the authors also
proposed two types of reducts, which preserve all lower approximations and all
upper approximations of decision classes, and show that they are equivalent to reducts
preserving the positive region and all boundaries, respectively [23].

Inspired by the above studies, we provide a framework to discuss attribute reduc-
tion in the rough set theory. We regard attribute reduction as removing condition
attributes with preserving some part of the lower/upper approximations of the deci-
sion classes, because the approximations summarize the classification ability of the
condition attributes. Hence, we define several types of reducts according to structures
of the approximations [23, 24]. They are called “structure-based” reducts.

When several types of structure-based reducts are defined, we would be interested
in whether one reduct is stronger/weaker than another reduct, in other words, one
preserves more/less structure than the other. Therefore, we have investigated the
strong-weak relation among different types of structure-based reducts. As a result of
the investigation, we obtain a strong-weak hierarchy of structure-based reducts. The
strong-weak hierarchy is useful when we search the best reduct for an application,
because it provides a trade-off between the size (cost for precise classification) of a
reduct and its classification ability. It is an advantage of the variations of structure-
based reducts.

The rough set model is extended to apply to various kinds of data sets [12, 16,
22, 29, 38, 43, 47, 53, 54]. Two important extensions of the rough set model are
the variable precision rough set model [53, 54] and the dominance-based rough set
model [16]. The variable precision rough setmodel is a probabilistic extension.Given
precision parameters, requirements for lower and upper approximations are relaxed
to tolerate errors in decision tables. The dominance-based rough set model is applied
to decision tables with ordinal attributes, where decision classes are ordered and
monotonically depend on the ordinal attributes. It deals with inconsistency between
the classification of the ordinal decision classes and the monotonic dependence.
Instead of decision classes, upward unions and downward unions of decision classes
are approximated. In the extended rough set models, we have studied structure-based
reducts [20, 21, 25, 26, 31].

In the classical rough set model, it is well-known that reducts are associated
with prime implicants of a Boolean function [37, 43]. We can efficiently enumerate
reducts by converting it to enumerating prime implicants of the Boolean function.
Like that conversion, the methodology solving a problem by solutions of a Boolean
equation is called Boolean reasoning [37, 43]. In this chapter, we propose a unified
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formulation of several Boolean functions corresponding to several types of reducts
in the classical and extended rough set models.

In this chapter, we show our theoretical results of structure-based reducts in the
classical and extended rough set models, including definitions of reducts and their
strong-weak hierarchy. The results consist of our papers [20, 23, 25, 31]. Our main
contributions are to propose structure-based reducts, investigate strong-weak rela-
tions of reducts, and connect reducts with prime implicants of Boolean functions in a
unified formulation in the variable precision and dominance-based rough set models.
For the structure-based reducts in the variable precision rough set model, we revise
their definitions from our previous work [20]. Parts of the results were independently
developed by other authors [33, 45, 49, 52].

This chapter is organized as follows. In Sect. 7.2, we study structure-based reducts
in the classical rough set models. Firstly, we define a decision table and the rough set
model of the decision table. Then, we introduce several types of reducts including
structure-based reducts and others. We show that all types of reducts are reduced to
two different types. Finally, we connect all reducts of each type with the prime
implicants of a specific Boolean function. Sections7.3 and 7.4 are devoted to
structure-based reducts in the variable precision rough set model and those in the
dominance-based rough setmodel, respectively. Those sections have almost the same
organization as that of Sect. 7.2, namely, defining a rough set model and reducts,
investigating strong-weak relations of reducts, and connecting reducts with prime
implicants of Boolean functions. Concluding remarks are given in Sect. 7.5.

7.2 Structure-Based Attribute Reduction in Rough Set Models

7.2.1 Decision Tables

In rough set theory, analysed data sets form decision tables [36, 39]. A decision
table is defined by D = (U, AT = C ∪ {d}, {Va}a∈AT ).1 U is a finite set of objects.
AT is a finite set of attributes. V is a set of attribute values. Each attribute a ∈ AT
is a function a : U → Va , where Va ⊆ V is a set of values for a. For an object
u ∈ U and an attribute a ∈ AT , a(u) is the value of u with respect to a. For A =
{ai1 , ai2 , . . . , aik } ⊆ AT , VA is theCartesian product of {Vail

}l=1,2,...,k , namely, VA =
Πail∈AVail

= {(vi1, vi2 , . . . , vik ) | vil ∈ Vail
, l = 1, 2, . . . , k}. A(u) is the tuple of

the values of u with respect to A, namely, A(u) = (ai1(u), ai2(u), . . . , aik (u)). The
attribute set AT is divided into a condition attribute set C and a decision attribute d
to investigate the dependency of the decision attribute on condition attributes or
the causal effect of condition attributes on the decision attribute. Throughout this
chapter, we consider that the objects and the condition attributes are indexed by

1 A decision table is often defined by the finite set of objects U and the finite set of attributes AT ,
i.e., (U, AT), however we use that definition to clarify the sets of values for the attributes.
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U = {u1, u2, . . . , un} and C = {c1, c2, . . . , cm}, where n = |U | and m = |C |.
Moreover, we define the decision attribute values as Vd = {1, 2, . . . , p}.
Remark 1 Decision tables are identical to data sets or data tables for the classifi-
cation problem or the supervised learning in the data mining or machine learning
literature, in which condition attributes are called attributes or independent variables,
the decision attribute is a class attribute or dependent variable, and objects are tuples
or samples. In that literature, each object is given by a tuple of attribute values with
a class label (decision attribute value). However, we use the form of decision tables
in this chapter by two reason. One is that we often deal with subsets of the attributes,
so we prefer to let the symbols of the attributes be explicit. The other is to emphasise
the view that a relation (e.g. the equivalence relation) on the object set is induced
from a structure of the attribute value space (e.g. equivalence of values) through the
attributes (functions).

Example 1 Consider a decision table D = (U, C ∪ {d}, {Va}) about car evaluations
in Table7.1, where U = {u1, u2, . . . , u7}, C = {Pr,Ma,Sa} and d = Ev. The
attribute value sets are given by VPr = VMa = VSa = {low,med, high}, VEv =
{unacc, acc, good}. Condition attributes Pr, Ma, and Sa indicate price, maintenance
cost, and safety of a car, respectively, by values high, med (medium), and low.
Decision attribute Ev means evaluation of a car by some customer(s).

The value of u1 with respect to Pr is Pr(u1) = high, and that of u2 with respect
to Ev is Ev(u2) = unacc. The value tuple of u4 with respect to C = {Pr,Ma,Sa} is
C(u4) = (med, high, low).

Given an attribute subset A ⊆ AT , we define an indiscernibility relation on U
with respect to A, denoted by RA, as follows:

RA = {(u, u′) ∈ U 2 | a(u) = a(u′), for any a ∈ A}.

RA is the set of the object pairs each of which is indiscernible by the given attributes
A. Obviously, RA is an equivalence relation, which is reflexive, symmetric, and
transitive. From RA, we define the equivalence class of an object u ∈ U , denoted by
RA(u), as follows:

RA(u) = {u′ ∈ U | (u′, u) ∈ RA}.

Table 7.1 Decision table of
car evaluations

Car Pr Ma Sa Ev

u1 High High Low Unacc

u2 Med Med Med Unacc

u3 Med Med Med Acc

u4 Med High Low Acc

u5 Med Med High Acc

u6 Med Med High Good

u7 Low Med Med Good
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RA(u) is the set of objects which have the same values as u for all attributes in A. We
denote the set of all equivalence classes with respect to RA by U/RA = {RA(u) |
u ∈ U }. Every equivalence class with respect to the decision attribute d is called a
decision class. For each value of the decision attribute i ∈ Vd , we define the corre-
sponding decision class Xi = {u ∈ U | d(u) = i}. Clearly,X = {X1, X2, . . . , X p}
forms a partition of U .

Example 2 RememberD = (U, C∪{d}, {Va}) in Table7.1. Let A = {Pr,Ma} be an
attribute subset. The discernibility relation RA is described as the following matrix.
Symbol ∗ indicates that the corresponding object pair ui and u j is in the discernibility
relation, i.e., (ui , u j ) ∈ RA.

u1 u2 u3 u4 u5 u6 u7

u1 ∗
u2 ∗ ∗ ∗ ∗
u3 ∗ ∗ ∗ ∗
u4 ∗
u5 ∗ ∗ ∗ ∗
u6 ∗ ∗ ∗ ∗
u7 ∗
From the matrix, we can easily see that the equivalence classes by RA form a

partition of U , namely, U/RA = {{u1}, {u4}, {u7}, {u2, u3, u5, u6}}.
The decision classes of the decision table D are obtained as Xunacc = {u1, u2},

Xacc = {u3, u4, u5}, Xgood = {u6, u7}.

7.2.2 Rough Set Models

Let A be a subset of the attribute set AT and X be a subset of the object set U .
When X can be represented by a union of elements in U/RA, we can say that the
classification by X is consistent with the information of A. Such subsets of objects are
called definable setswith respect to A. On the other hand, considering an object subset
X which cannot be represented by any union of elements in U/RA, the classification
of X is inconsistent with A. The classical Rough Set Model (RSM) [35, 36, 39]
deals with the inconsistency by two operators for object sets, called lower and upper
approximations. For A ⊆ AT and X ⊆ U , the lower approximation LAA(X) and
the upper approximation UAA(X) of X with respect to A is defined by:

LAA(X) = {u ∈ U | RA(u) ⊆ X},
UAA(X) = {u ∈ U | RA(u) ∩ X 	= ∅}.

The difference between UAA(X) and LAA(X) is called the boundary of X with
respect to A, which is defined by:

BNA(X) = UAA(X) \ LAA(X).



118 Y. Kusunoki and M. Inuiguchi

LAA(X) is interpreted as the set of objects which are certainly classified to X in
view of A. While, UAA(X) is the set of objects which are possibly classified to X in
view of A. BNA(X) is a set of objects whose membership to X is doubtful.

The approximations are a definable set with respect to A, where a definable set
with respect to A is a set defined by the union of elements in U/RA:

LAA(X) =
⋃

RA(u)⊆X

RA(u) =
⋃

u∈LAA(X)

RA(u),

UAA(X) =
⋃

RA(u)∩X 	=∅
RA(u) =

⋃

u∈UAA(X)

RA(u).

The boundary is necessarily definable because U/RA is the partition of U .
In fact, LAA(X) and UAA(X) are “lower” and “upper” approximations of Xi :

LAA(X) ⊆ X ⊆ UAA(X). (7.1)

By the above inclusion relations and the definition of the boundary, it holds that

LAA(X) = X \ BNA(X), (7.2)

UAA(X) = X ∪ BNA(X). (7.3)

For B ⊂ A ⊆ AT , we have,

LAB(X) ⊆ LAA(X) and UAB(X) ⊇ UAA(X). (7.4)

When B is included in A, the approximations with respect to B are coarser that
those with respect to A. It means that dropping some attributes, i.e., information,
decline the accuracy of RSM.

So far, we have defined approximations of X from the lower and upper definable
sets. We can approximate the partition X and U \ X by three definable sets. They
are called positive, boundary, and negative regions of X with respect to A, denoted
by POSA(X), BNDA(X), and NEGA(X), respectively:

POSA(X) =
⋃

{E ∈ U/RA | E ⊆ X},
BNDA(X) =

⋃
{E ∈ U/RA | E ∩ X 	= ∅ and E ∩ U \ X 	= ∅},

NEGA(X) =
⋃

{E ∈ U/RA | E ⊆ U \ X}.

POSA(X) is the union of elements in U/RA which are completely included in X ,
while NEGA(X) is the union of elements in U/RA which are completely excluded
from X . BNDA(X) is the union of the rest of elements in U/RA. Clearly, POSA(X),
BNDA(X), and NEGA(X) form a partition of U . We can easily see the following
correspondence:



7 Structure-Based Attribute Reduction: A Rough Set Approach 119

POSA(X) = LAA(X),

BNDA(X) = BNA(X),

NEGA(X) = U \ UAA(X).

In the rest of this section, we consider RSM for decision tables, namely, we only
deal with approximations of decision classes X = {X1, X2, . . . , X p} with respect
to subsets of condition attributes A ⊆ C .

Example 3 Remember the decision classes Xunacc = {u1, u2}, Xacc = {u3, u4, u5}
and Xgood = {u6, u7} of the decision table in Table7.1. The lower and upper approx-
imations with respect to C of Xunacc, Xcc and Xgood are obtained as follows:

LAC (Xunacc) = {u1}, UAC (Xunacc) = {u1, u2, u3},
LAC (Xacc) = {u4}, UAC (Xacc) = {u2, u3, u4, u5, u6},
LAC (Xgood) = {u7}, UAC (Xgood) = {u5, u6, u7}.
We can see that LAC (Xi ) ⊆ Xi ⊆ UAC (Xi ) for each i = unacc, acc, good.

Moreover, we can also see that each approximation is the union of equivalence
classes included in the approximation, e.g., UAC (Xacc) = {u2, u3}∪{u4}∪{u5, u6}.

We reduce condition attributes to A = {Pr}. The approximations become:

LAA(Xunacc) = {u1}, UAA(Xunacc) = {u1, u2, u3, u4, u5, u6},
LAA(Xacc) = ∅, UAA(Xacc) = {u2, u3, u4, u5, u6},
LAA(Xgood) = {u7}, UAA(Xgood) = {u2, u3, u4, u5, u6, u7}.
The approximations with respect to A are coarser than those with respect to C ,

namely, LAA(Xi ) ⊆ LAC (Xi ) and UAA(Xi ) ⊇ UAC (Xi ) for each
i = unacc, acc, good.

For every Xi , the lower approximation LAA(Xi ) and the boundary BNA(Xi )

can be represented using all upper approximations of decision classes UAA(X1),
UAA(X2), . . . ,UAA(X p):

LAA(Xi ) = UAA(Xi ) \
⋃

j∈Vd\{i}
UAA(X j ), (7.5)

BNA(Xi ) = UAA(Xi ) ∩
⋃

j∈Vd\{i}
UAA(X j ). (7.6)

All upper approximations form a cover of U :

U =
⋃

i∈Vd

UAA(Xi ). (7.7)

A positive region with respect to A ⊆ C is also defined for the decision attribute
d or equivalently for the decision table D. It is the union of all positive regions of
decision classes, i.e., the set of objects which are certainly classified to exactly one
of the decision classes:
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POSA(d) =
⋃

i∈Vd

POSA(Xi ).

A generalized decision function [1, 45] with respect to A ⊆ C , denoted by
∂A : U → 2Vd , provides a useful representation of RSM. For u ∈ U , ∂A(u) is a set
of decision attribute values or decision classes to which u is possibly classified:

∂A(u) = {i ∈ Vd | Xi ∩ RA(u) 	= ∅}.

The generalized decision function gives an object-wise view of RSM. The lower
and upper approximations can be expressed by the generalized decision function:

LAA(Xi ) = {u ∈ U | ∂A(u) = {i}},
UAA(Xi ) = {u ∈ U | ∂A(u) 
 i}.

Because ∂A(u) is defined based on RA(u), we have

∂A(u) = ∂A(u′) if (u, u′) ∈ RA,

and because each object u is included in at least one upper approximation, we have

∂A(u) 	= ∅.

The monotonic property of upper approximations is represented as:

B ⊆ A ⇒ ∂B(u) ⊇ ∂A(u) for all u ∈ U.

Example 4 Remember D = (U, C ∪ {d}, {Va}) in Table7.1. The generalized deci-
sion function ∂C is obtained as follows.

∂C (u1) = {unacc}, ∂C (u2) = ∂C (u3) = {unacc, acc},
∂C (u4) = {acc}, ∂C (u5) = ∂C (u6) = {acc, good},
∂C (u7) = {good}.
For A ⊆ C , a quality of classification (or quality of approximation) of the decision

attribute d with respect to A is defined by:

γA(d) = |POSA(d)|
|U | . (7.8)

It measures to what degree objects are correctly classified by RSM.
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7.2.3 Reducts in Rough Set Models

7.2.3.1 Preserving Positive Region, Quality, and Generalized Decisions

Attribute reduction is to find important subsets of condition attributes by dropping
as many as possible other condition attributes while preserving some specific infor-
mation of RSM for a decision table D. A minimal subset of condition attributes
preserving the information is called a relative (or decision) reduct. In this chapter,
we call it “reduct” for short. Reducts are originally defined to preserve the positive
region POSC (d) [36, 43].

Definition 1 ([36, 43]) A reduct is a minimal condition attribute subset A ⊆ C
satisfying the following condition:

POSA(d) = POSC (d). (P)

Here, the minimality is defined in terms of the set inclusion, i.e., there is no proper
subset A′ ⊂ A satisfying (P).

A condition attribute subset A satisfying (P) preserves the information of the
certain classification in the decision table. Generally, there exist more than one reduct
in a decision table. The intersection of all reducts is called the core. Every element in
the core is an essential condition attribute to preserve the information of POSC (d).
The core can be empty. On the other hand, the condition attributes which do not
belong to any reducts can be dropped without deterioration of the information. We
call the original reduct a P-reduct.

Remark 2 Condition (P) is monotonic with respect to the set inclusion of condition
attributes, i.e., for A′ ⊆ A ⊆ C we have POSA′(d) = POSC (d) implies POSA(d) =
POSC (d). Hence, the above minimality condition for A is equivalent to that there is
no condition attribute a ∈ A such that A \ {a} satisfies (P).
Example 5 Remember D = (U, C ∪ {d}, {Va}) in Table7.1. The set of all condition
attributesC obviously satisfies condition (P), but it is not a P-reduct because a proper
subset A = {Pr,Ma} satisfies (P). On the other hand, A is a P-reduct because all of
proper subsets of A do not preserve the positive region: POS{Pr}(d) = {u1, u7} and
POS{Ma}(d) = POS∅(d) = ∅.

We can define another kind of reducts preserving the quality of classification
[23, 39, 40].

Definition 2 ([40]) A Q-reduct is a minimal condition attribute subset A ⊆ C
satisfying the following condition:

γA(d) = γC (d). (Q)
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Clearly, condition (P) implies (Q). In RSM, the inverse is also true, because the
monotonic property of POS(d) holds, namely, for A′ ⊆ A, POSA′(d) ⊆ POSA(d).
We also call Q-reducts measure-based reducts, because it preserves a predefined
measure for information of RSM.

Bazan et al. [1] and Ślȩzak [45] proposed reducts preserving the generalized
decision function ∂ .

Definition 3 ([1, 45]) A G-reduct is a minimal condition attribute subset A ⊆ C
satisfying the following condition:

∂A(u) = ∂C (u) for all u ∈ U. (G)

As shown in the next section, condition (G) implies (P).

7.2.3.2 Structure-Based Reducts

Structure-based reducts, proposed by one of the authors [20, 23], are defined to pre-
serve families of object sets (structures) which are composed of lower and upper
approximations, or positive, boundary, and negative regions. Hence, reducts of con-
dition (P) can be seen as structure-based.

Now, we introduce structure-based reducts proposed in [23]. First, we define a
reduct preserving all lower approximations. The preservation of the lower approxi-
mations implies the sustenance of certain classification ability.

Definition 4 ([23]) An L-reduct is a minimal condition attribute subset A ⊆ C
preserving the following condition:

LAA(Xi ) = LAC (Xi ) for all i ∈ Vd . (L)

Clearly, condition (L) implies (P) as well as (Q). In RSM, the inverse is also
true, because the lower approximations LA(Xi ), i = 1, 2, . . . , p have the empty
intersection with each other, and they are monotonically decreasing with respect to
the set inclusion of condition attributes.

However, even if we preserve lower approximations LAC (Xi ), i = 1, 2, . . . , p,
we may lose the information of boundaries BNA(Xi ), i = 1, 2, . . . , p and the infor-
mation of upper approximations UAA(Xi ), i = 1, 2, . . . , p.

Ślȩzak [45] proposed a type of reducts preserving all boundaries.

Definition 5 ([45]) A B-reduct is a minimal condition attribute subset A ⊆ C pre-
serving the following condition:

BNA(Xi ) = BNC (Xi ) for all i ∈ Vd . (B)

The preservation of boundaries implies the protection against uncertainty expan-
sion. Ślȩzak [45] also showed that condition (B) is equivalent to (G). Hence, we have
that a B-reduct is a G-reduct and vice versa.

On the other hand, we proposed a reduct preserving all upper approximations [23].
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Definition 6 ([23]) A U-reduct is a minimal condition attribute subset A ⊆ C
preserving the following condition:

UAA(Xi ) = UAC (Xi ) for all i ∈ Vd . (U)

By definition, the classification ability of the upper approximations is equal to
that of the generalized decision function. Hence, condition (U) is equivalent to (G),
and we have that a U-reduct is a G-reduct and vice versa.

From Eqs. (7.2) and (7.5), we know that lower approximations are obtained from
upper approximations as well as from boundaries. This fact implies that each of the
preservation of all upper approximations or the preservation of all boundaries entails
the preservation of all lower approximations.

To sum up the above discussion, we have the next theorem.

Theorem 1 ([23, 45]) Let A be a subset of C. We have the following statements.

(a) A is a Q-reduct if and only if A is an L-reduct.
(b) A is a P-reduct if and only if A is an L-reduct.
(c) A is a G-reduct if and only if A is a U-reduct.
(d) A is a B-reduct if and only if A is a U-reduct.
(e) A is a U-reduct as well as B-reduct, then A satisfies condition (L).

All statements in the theorem can be easily proved by the equations which
appeared in Sect. 7.2.2. For example, to prove Theorem 1(d), we show that pre-
serving all boundaries implies preserving all upper approximations by Eq. (7.3), and
show the converse by Eq. (7.6).

From Theorem 1(e), if A is a U-reduct then there exists an L-reduct B ⊆ A. Note
that the converse is not always true, i.e., for an L-reduct B, there is no guarantee that
there exists a U-reduct A ⊇ B.

The relations of 6 types of reducts are depicted in Fig. 7.1. Reducts located in
the upper part of the figure preserve regions much more. Therefore, such reducts are
larger in the sense of the set inclusion than the other reducts located in the lower part.
A line segment connecting two types of reducts implies that, for each reduct of the
upper type say A satisfies the preserving condition of the reduct of the lower one.
From the figure, we know that there are 2 different types of reducts: U-reducts and
L-reducts, and U-reducts are stronger than L-reducts.

Remark 3 As shown in Theorem 1, the six types of reducts are reduced to two types.
However, it is important to define all possible types of reducts and organize them
because of two reasons. One is that when we should mention different definitions of

Fig. 7.1 Strong-weak
hierarchy of 6 types of
reducts in RSM

strong

weak
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reducts (e.g. different authors would give different definitions), we can easily quote
the equivalent of them from here. The other is that equivalent reducts (e.g. U-reducts
and B-reducts) in RSM could become different in an extended RSM (e.g. variable
precision RSM).

Remark 4 From the discussion above, we know that a U-reduct preserves more
information than an L-reduct. However, when p = 2, we have the following relation:

UAA(X1) = U \ LAA(X2), UAA(X2) = U \ LAA(X1).

Namely, we obtain upper approximations from lower approximations. Hence, in that
case, an L-reduct is a U-reduct.

Remark 5 From Theorem 1, we see that preserving the measure γ is equivalent to
preserving the lower approximations. Contrary, we can define a measure preserving
which is equivalent to preserving the upper approximations. For example [23], we
define,

σA(d) =
∑

i∈Vd
|U \ UAA(Xi )|

(p − 1)|U | ,

then σA(d) = σC (d) is same as condition (U).

7.2.4 Boolean Functions Representing Reducts

Boolean reasoning [37] is a methodology where solutions of a given problem is
associated with those of Boolean equations. In this section, we develop positive
(monotone) Boolean functions whose solutions are given by condition attribute sub-
sets satisfying the preserving conditions (L) or (U). Moreover, prime implicants of
the Boolean functions exactly correspond to L-reducts or U-reducts. The Boolean
functions are useful for enumerating reducts.

The results of this section are well-known and appeared in many papers e.g. [1,
43, 45, 50], but in slightly different expressions from ours. A unified formulation
of Boolean functions of different types of reducts is provided using the generalized
decision function.

Here, we briefly introduce Boolean functions and Boolean formulas [9, 14]. Let
q be a natural number. A Boolean function is a mapping f : {0, 1}q → {0, 1}, where
w ∈ {0, 1}q is called a Boolean vector whose i th component is wi . Let x1, x2, . . . , xq

be Boolean variables. A Boolean formula in the Boolean variables x1, x2, . . . , xq is
a composition of 0, 1, the variables and operators of conjunction ∧, disjunction ∨,
complementation ·, such as x1 ∧ (x2 ∨ x3), (x1 ∧ x2) ∨ x3, and so on (for complete
definition, see e.g. [9]). The Boolean formula is a Boolean function of the variables
x1, x2, . . . xq . Conversely, any Boolean function can be expressed by a Boolean
formula. For two Boolean functions f and g, g ≤ f means that f and g satisfy
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g(w) ≤ f (w) for all w ∈ {0, 1}q , and g < f means that g ≤ f and g 	= f . A
Boolean function f is positive or monotone, if w ≤ w′ implies f (w) ≤ f (w′) for
all w, w′ ∈ {0, 1}q .

Boolean variables x1, x2, . . . and the complements x1, x2, . . . are called literals.
A clause (resp., term) is a disjunction (resp., conjunction) of at most one of xi and xi

for each variable. The empty disjunction (resp., conjunction) is denoted by⊥ (resp.,
�). A clause c (resp., term t) is an implicate (resp., implicant) of a function f , if
f ≤ c (resp. t ≤ f ). Moreover, it is prime if there is no implicate c′ < c (resp.,
no implicant t ′ > t) of f . A conjunction normal form (CNF) (resp., disjunction
normal form (DNF)) of a function f is a Boolean formula of f which is expressed
by a conjunction of implicates (resp. disjunction of implicants) of the function, and
it is prime if all its members are prime. The complete CNF (resp. DNF) of f is the
conjunction of all prime implicates (resp. disjunction of all prime implicants) of f .
When f is positive, there is the unique CNF (resp. DNF) of f which is the complete
CNF (resp. DNF) of f .

First, we associate conditions (L) (or (P)) and (U) (or (B)) with the conditions
of the generalized decision function. As mentioned in the previous section, condi-
tion (U) is equivalent to (G).

Lemma 1 ([23, 50]) Let A be a subset of C. We have the following statements.

• Condition (L) is equivalent to:

∂A(u) = ∂C (u) for all u ∈ U such that |∂C (u)| = 1. (LG)

• Condition (U) is equivalent to (G), i.e.,

∂A(u) = ∂C (u) for all u ∈ U. (G)

The next lemma is the heart of theBoolean reasoning,which connects two notions:
“preserving” and “discerning”.

Lemma 2 For u ∈ U, the following assertions are equivalent.

• ∂A(u) = ∂C (u).
• ∀u′ ∈ U, (∂C (u′) 	= ∂C (u) ⇒ ∃a ∈ A, (u′, u) 	∈ R{a})

Hence, to preserve the generalized decision of an object u, we should discern u
from other objects u′ having different generalized decisions from that of u.

Using Lemmas 1 and 2, we define two Boolean formulas, called discernibility
functions. First, we define a discernibility matrix by M = (mi j )i, j=1,2,...,n , where
i j-entry mi j is a set of condition attributes which discern objects ui and u j ,

mi j = {c ∈ C | c(ui ) 	= c(u j )}.

Then, we define discernibility functions.
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Definition 7 Discernibility functions FU and FL are defined as follows:

FU(c̃1, . . . , c̃m) =
∧

i, j |∂C (u j ) 	=∂C (ui )

∨

c∈mi j

c̃,

FL(c̃1, . . . , c̃m) =
∧

i | |∂C (ui )|=1

∧

j |∂C (u j ) 	=∂C (ui )

∨

c∈mi j

c̃,

where c̃i is a Boolean variable corresponding to i th condition attribute ci .

For A ⊆ C , we consider a Boolean vector c̃A = (c̃A
1 , . . . , c̃A

m), where,

c̃A
i =

{
1 if ci ∈ A,

0 if ci 	∈ A.

Let FU(c̃A) = 1. Then, for each pair ui and u j such that ∂C (ui ) 	= ∂C (u j ),
the intersection of A and mi j should not be empty by the definition of FU. By
Lemma 2, in that case, ∂A(u) = ∂C (u) for each u holds. We have the simi-
lar consequence when FL(c̃A) = 1. Therefore, the following theorem holds. Let
φA = ∧{c̃|c ∈ A}.
Theorem 2 ([43, 45, 50])Let A be a subset of C. We have the following equivalences:

• A satisfies (G), i.e., (U) if and only if FU(c̃A) = 1. Moreover, A is a U-reduct in
RSM if and only if φA is a prime implicant of FU,

• A satisfies (LG), i.e., (L) if and only if FL(c̃A) = 1. Moreover, A is an L-reduct
in RSM if and only if φA is a prime implicant of FL.

Definition 7 shows CNFs of FU and FL. The prime CNFs of the functions can be
easily obtained. Because the functions are positive, the prime implicants of the prime
DNF of each function are all of the prime implicants of the function. Therefore, all
reducts of each type appear in the prime DNF of the corresponding function. The
problem which converts the prime CNF of a positive Boolean function to its prime
DNF is called the dualization problem [14]. We show an example for enumerating
reducts by solving the dualization problems of the discernibility functions.

Example 6 Remember the decision table D = (U, C ∪ {d}, {Va}) in Table7.1. In
Table7.2, we show again the decision table D with the generalized decision func-
tion ∂C .

The discernibility matrix is obtained as below. Sign ∗ attached to objects ui means
that the generalized decision of ui is a singleton, or equivalently, ui is in the positive
region POSC (d).
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Table 7.2 The decision
table in Table7.1 with the
generalized decision function

Car Pr Ma Sa Ev ∂C

u1 High High Low Unacc {unacc}

u2 Med Med Med Unacc {unacc, acc}

u3 Med Med Med Acc {unacc, acc}

u4 Med High Low Acc {acc}

u5 Med Med High Acc {acc, good}

u6 Med Med High Good {acc, good}

u7 Low Med Med Good {good}

u1 u2 u3 u4 u5 u6 u7

u∗1 ∅ C C {Pr} C C C
u2 C ∅ ∅ {Ma,Sa} {Sa} {Sa} {Pr}
u3 C ∅ ∅ {Ma,Sa} {Sa} {Sa} {Pr}
u∗4 {Pr} {Ma,Sa} {Ma,Sa} ∅ {Ma,Sa} {Ma,Sa} C
u5 C {Sa} {Sa} {Ma,Sa} ∅ ∅ {Pr,Sa}
u6 C {Sa} {Sa} {Ma,Sa} ∅ ∅ {Pr,Sa}
u∗7 C {Pr} {Pr} C {Pr,Sa} {Pr,Sa} ∅
The discernibility functions FL and FL for the decision table are calculated as:

FL(P̃r, M̃a, S̃a) =
∧

i=1,4,7

∧

j 	=i

∨

c∈mi j

c̃ = (P̃r) ∧ (M̃a ∨ S̃a) = (P̃r ∧ M̃a) ∨ (P̃r ∧ S̃a),

FU(P̃r, M̃a, S̃a) =
∧

i, j |i 	= j,(i, j) 	=(2,3),(3,2),(5,6),(6,5)

∨

c∈mi j

c̃ = (P̃r) ∧ (S̃a) = (P̃r ∧ S̃a).

Therefore, there are two L-reducts {Pr, Ma} and {Pr, Sa}, and one U-reduct {Pr, Sa}.
In this case, we would select the U-reduct {Pr, Sa}, because we obtain the same

size of reducts even if we select the other L-reduct.

7.3 Structure-Based Attribute Reduction in Variable
Precision Rough Set Models

7.3.1 Rough Membership Function

The reason why decision tables are inconsistent is not only lack of knowledge (con-
dition attributes) related to the decision attribute but also noise in observation of
attribute values. In the latter case, the classical RSMwould not be very useful because
it does not permit any errors in the classification of objects into the lower approxi-
mations.
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To overcome such shortcoming of the classical RSM, the variable precision rough
set model (VPRSM) was proposed [53, 54]. Let D = (U, AT = C ∪ {d}, {Va}a∈AT )

be a decision table. In definitions of lower and upper approximations in VPRSM,
the following rough membership function of an object u with respect to an object set
X ⊆ U and an attribute set A ⊆ AT plays an important role:

μA
X (u) = |RA(u) ∩ X |

|RA(u)| .

The valueμA
X (u) gives the degree to which the object u belongs to the set X under

the attribute set A. It can be interpreted as the conditional probability of u ∈ X under
u ∈ RA(u).

Because the rough membership function of an object is defined based not on
the object but its equivalence class, we define a rough membership function of an
equivalence class E ∈ U/RA for X :

μX (E) = |E ∩ X |
|E | .

An important property of the function is that given two equivalence classes
E, E ′ ∈ U/RA the rough membership of the union E ∪ E ′ falls between those
of E and E ′, namely,

min{μX (E), μX (E ′)} ≤ μX (E ∪ E ′) ≤ max{μX (E), μX (E ′)}. (7.9)

7.3.2 Variable Precision Rough Set Models

Given precision parameters 0 ≤ β < α ≤ 1, lower and upper approximations of X
with respect to A in VPRSM are defined as:

LAα
A(X) = {u ∈ U | μA

X (u) ≥ α},
UAβ

A(X) = {u ∈ U | μA
X (u) > β}.

The boundary of X is defined by BNα,β
A (X) = UAβ

A(X) \LAα
A(X). When α = 1

and β = 0, the approximations of X are the same as those of the classical RSM.
LAα

A(X) is the set of objects whose degrees of membership to X are not less than α.

On the other hand, UAβ
A(X) is the set of objects whose degrees of membership to X

are more than β. In this chapter, we restrict our discussion to the situation that α =
1− β and β ∈ [0, 0.5). Under that situation, we have the dual property LAα

A(X) =
U \UAβ

A(U \X), becauseμA
X (u) = 1−μA

U\X (u). We call β an admissible error rate.

We denote LA1−β
A (X) and BN1−β,β

A (X) by LAβ
A(X) and BNβ

A(X), respectively.
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Differently from (7.1) of RSM, we do not always have LAβ
A(X) ⊆ X and

UAβ
A(X) ⊇ X . However, we have

LAβ
A(X) ⊆ UAβ

A(X), (7.10)

because 1− β > β when β < 0.5. Moreover, we also have

LAβ
A(X) ∩ LAβ

A(X ′) = ∅, (7.11)

for any disjoint subsets X, X ′ ⊆ U , X ∩ X ′ = ∅, because β < 0.5. Because the
inclusion relation of (7.10), each of the lower and upper approximations, and the
boundary is represented by the other two sets:

UAβ
A(X) = LAβ

A(X) ∪ BNβ
A(X),

LAβ
A(X) = UAβ

A(X) \ BNβ
A(X).

Themonotonic property (7.4) does not hold either. It causes difficulties of defining
and enumerating reducts in VPRSM.

We can define positive, boundary, and negative regions in the same manner of the
classical RSM:

POSβ
A(X) =

⋃
{RA(u) | μA

X (u) ≥ 1− β},
BNDβ

A(X) =
⋃

{RA(u) | μA
X (u) ∈ [β, 1− β)},

NEGβ
A(X) =

⋃
{RA(u) | μA

X (u) > β}.

Clearly, we have,

POSβ
A(X) = LAβ

A(X),

BNDβ
A(X) = BNβ

A(X),

NEGβ
A(X) = U \ UAβ

A(X).

In the rest of this section, we consider VPRSM under a decision table D =
(U, C ∪ {d}, {Va}). For each decision attribute value i ∈ Vd , the decision class
Xi = {u ∈ U | d(u) = i}. The set of all decision classes are denoted by X =
{X1, X2, . . . , X p}.
Example 7 Consider a decision table D = (U, C ∪ {d}, {Va}) given in Table7.3.
The decision table composed of 40 objects with a condition attribute set C =
{c1, c2, c3, c4} and a decision attribute d. Each condition attribute takes a value bad
or good, i.e., Vci ={bad, good} for i = 1, 2, 3, 4. The decision attribute takes one
of three values: Vd ={bad, medium, good}. Then there are three decision classes
Xb, Xm and Xg whose objects take decision attribute value bad, medium and good,
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Table 7.3 An example of
decision table

c1 c2 c3 c4 d : (b, m, g)

P1 Good Good Bad Good (0, 2, 9)

P2 Good Good Good Bad (0, 19, 1)

P3 Bad Good Bad Good (1, 1, 2)

P4 Bad Bad Bad Good (0, 1, 1)

P5 Good Bad Good Good (1, 1, 1)

respectively. In Table7.3, objects are classified into 5 groups P1, P2, . . . , P5 by the
condition attributes C . For example, group P1 is composed of objects having a con-
dition attribute tuple (c1, c2, c3, c4) = (good, good, bad, good)∈ VC . The number
of objects in each class in each group is shown in column d : (b, m, g) in Table7.3.
For example, (0,2,9) of group P1 means that no object is in class Xb, 2 objects are
in class Xm and 9 objects are in class Xg.

The rough membership of an object u in each group Pi to each class Xk with
respect to C is the number of objects in Pi and Xk divided by the number of objects
in Pi . For example, μC

Xb
(P1) = 0/(0 + 2 + 9) = 0, μC

Xm
(P1) = 2/(0 + 2 + 9) =

0.1818 . . . , μC
Xg

(P1) = 9/(0 + 2 + 9) = 0.8181 . . . . Given a condition attribute
subset A = {c1, c2}, the objects in P1 and P2 are indiscernible to each other. Hence,
the rough membership of an object u in P1 and P2 with respect to A becomes
μA

Xb
(P1) = μA

Xb
(P2) = 0/(0 + 21 + 10) = 0, μA

Xm
(P1) = μA

Xm
(P2) = 21/(0 +

21+ 10) = 0.6774 . . . , μA
Xg

(P1) = μA
Xg

(P2) = 10/(0+ 21+ 10) = 0.3225 . . . .
Let β = 0.39. The lower approximations and the upper approximations with

respect to C and β are obtained as follows:

LAβ
C (Xb) = ∅, UAβ

C (Xb) = ∅,

LAβ
C (Xm) = {P2}, UAβ

C (Xm) = {P2, P4},
LAβ

C (Xg) = {P1}, UAβ
C (Xg) = {P1, P3, P4},

where we express approximations by means of groups, namely, all members of a
group P are members of an approximation X if P ∈ X .

InVPRSM, the properties corresponding to (7.5) and (7.6) are not always satisfied.
Consequently, L-reducts, U-reducts, and B-reducts become independent concepts in
VPRSM, and there are no strong-weak relations among them.

Additionally, property (7.7) only partially holds:

1

p
> β ⇒ U =

⋃

i∈Vd

UAβ
A(Xi ). (7.12)

The union of upper approximations of all decision classes does not always equal
to U but when 1/p > β. From this fact we define an unpredictable region of d with
respect to β and A, denoted by UNPβ

A(d), as follows:

UNPβ
A(d) =

⋂

i∈Vd

NEGβ
A(Xi ),
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equivalently,

UNPβ
A(d) = U −

⋃

i∈Vd

UAβ
A(Xi ).

The unpredictable region is the set of all objects which cannot be classified to any
decision class.

We can define the positive region of d with respect to β and A in the same manner
of RSM,

POSβ
A(d) =

⋃

i∈Vd

POSβ
A(Xi ).

The quality of classification of d can be also defined in the same manner,

γ
β
A (d) = |POSβ

A(d)|
|U | .

The generalized decision function in RSM can be extended in VPRSM. However,
differently from RSM, we define two functions. They are called lower and upper
generalized decision functions, denoted by λ and υ, respectively. For each u ∈ U ,

λ
β
A(u) = {i ∈ Vd | μA

Xi
(u) ≥ 1− β},

υ
β
A(u) = {i ∈ Vd | μA

Xi
(u) > β}.

The lower generalized decision of u is the set of the decision values to which the
membership degree of u is more than or equal to 1 − β. The upper generalized
decision of u is the set of the decision values to which the membership degree of u is
more than β. The upper generalized decision corresponds to the generalized decision
in RSM. By the definitions, the lower and upper generalized decision functions are
closely related to the lower and upper approximations,

i ∈ λ
β
A(u) ⇔ u ∈ LAβ

A(Xi ),

i ∈ υ
β
A(u) ⇔ u ∈ UAβ

A(Xi ).

So, they have the inclusion relation:

λ
β
A(u) ⊆ υ

β
A(u). (7.13)

Any two objects in the same equivalence class take the same values of generalized
decision functions.

For each (u, u′) ∈ RA, λ
β
A(u) = λ

β
A(u′) and υ

β
A(u) = υ

β
A(u′). (7.14)
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The lower generalized decision function is a singleton or the empty set,

|λβ
A(u)| ≤ 1. (7.15)

Unlike RSM, we may have the case that the upper generalized decision of u is
a singleton, i.e., υ

β
A(u) = {i} but u does not belong to the lower approximation

LAβ
A(Xi ). When the lower generalized decision is a singleton, the upper generalized

decision is also a singleton, and they are the same,

|λβ
A(u)| = 1 ⇒ υ

β
A(u) = λ

β
A(u). (7.16)

Property (7.12) can be expressed as:

1

p
> β ⇒ υ

β
A(u) 	= ∅. (7.17)

Hence, υβ
A(u) may be empty unless β is less than 1

p .

We define a function (υ\λ)
β
A(u) as:

(υ\λ)
β
A(u) = υ

β
A(u) \ λ

β
A(u).

By properties (7.13), (7.15), and (7.16), we have

(υ\λ)
β
A(u) = ∅ ⇒ υ

β
A(u) = ∅ or λ

β
A(u) 	= ∅, (7.18)

(υ\λ)
β
A(u) 	= ∅ ⇒ (υ\λ)

β
A(u) = υ

β
A(u). (7.19)

By that property, the following equivalence holds:

i ∈ (υ\λ)
β
A(u) ⇔ u ∈ BNβ

A(Xi ). (7.20)

Therefore, we call (υ\λ) a boundary generalized decision function.

Example 8 Remember the decision table D = (U, C ∪ {d}, {Va}) in Table7.3. Let
β = 0.39. The lower and upper generalized decision function with respect to C and
β are,

λ
β
C (P1) = {g}, λ

β
C (P2) = {m}, λ

β
C (P3) = ∅, λ

β
C (P4) = ∅, λ

β
C (P5) = ∅,

υ
β
C (P1) = {g}, υ

β
C (P2) = {m}, υ

β
C (P3) = {g}, υ

β
C (P4) = {m,g}, υ

β
C (P5) = ∅,

where λ
β
C (Pi ) and υ

β
C (Pi ) indicate the lower and upper generalized decisions of an

object in the group Pi .
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7.3.3 Structure-Based Reducts in Variable Precision
Rough Set Models

Before we define structure-based reducts in VPRSM, we firstly introduce Q-reducts.
They preserve the quality of classification with the parameter β.

Definition 8 ([4, 5]) Let β ∈ [0, 0.5) be an admissible error rate. A Q-reduct with
β in VPRSM is a minimal condition attribute subset A ⊆ C satisfying the following
conditions:

γ
β
A (d) = γ

β
C (d), (VPQ1)

B satisfies (VPQ1) for all B ⊇ A. (VPQ2)

Remark 6 In VPRSM, approximations are no longer monotonic with respect to the
set inclusion of condition attributes. Hence, condition (VPQ1) is not monotonic with
respect to condition attributes, namely, A satisfies (VPQ1) but B ⊃ A does not. In
that case, we modify the preserving condition of reducts by adding a condition like
(VPQ2). We notice that Beynon [4, 5] originally proposed Q-reducts (the author
called them β-reducts) using only (VPQ1).

We define 4 kinds of structure-based reducts in VPRSM [20], which are already
discussed in the classical RSM.

Definition 9 ([20, 33]) Let β ∈ [0, 0.5) be an admissible error rate.

• A P-reduct2 with β in VPRSM is a minimal condition attribute subset A ⊆ C
satisfying the following conditions:

POSβ
A(d) = POSβ

C (d), (VPP1)

B satisfies (VPP1) for all B ⊇ A. (VPP2)

• An L-reduct with β in VPRSM is a minimal condition attribute subset A ⊆ C
satisfying the following condition:

LAβ
A(Xi ) = LAβ

C (Xi ) for all i ∈ Vd . (VPL)

• A B-reduct with β in VPRSM is a minimal condition attribute subset A ⊆ C
satisfying the following conditions:

BNβ
A(Xi ) = BNβ

C (Xi ) for all i ∈ Vd , (VPB1)

B satisfies (VPB1) for all B ⊇ A. (VPB2)

2 Strictly speaking, P-reducts do not appear in [20].
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• A U-reduct with β in VPRSM is a minimal condition attribute subset A ⊆ C
satisfying the following condition:

UAβ
A(Xi ) = UAβ

C (Xi ) for all i ∈ Vd . (VPU)

Mi et al. [33] independently proposed L-reducts and U-reducts under the names
of lower and upper distribution reducts.

Additionally, we can define a reduct preserving the unpredictable region.

Definition 10 ([20]) Let β ∈ [0, 0.5) be an admissible error rate. A UN-reduct with
β in VPRSM is a minimal condition attribute subset A ⊆ C satisfying the following
conditions:

UNPβ
A(d) = UNPβ

C (d), (VPUN1)

B satisfies (VPUN1) for all B ⊇ A. (VPUN2)

Remark 7 We modify the definitions of B- and UN-reducts from our paper [20],
because there aremistakes inBoolean functions forB- andUN-reducts. By adding the
second condition, the preserving conditions of B- and UN-reducts becomemonotone
with respect to the set-inclusion of condition attribute sets.

By definitions, (VPL) and (VPU) obviously imply (VPP1,2) and (VPUN1,2),
respectively. Moreover, (VPP1,2) also implies (VPQ1,2). Hence, we have the fol-
lowing relations among different types of reducts.

Theorem 3 ([20]) Let A be a subset of C. We have the following statements in
VPRSM with a fixed parameter β ∈ [0, 0.5),
(a) A is an L-reduct then A satisfies (VPP1,2),
(b) A is a U-reduct then A satisfies (VPUN1,2),
(c) A is a P-reduct then A satisfies (VPQ1,2).

Contrary to the classical RSM, (VPB1,2) is not equivalent to (VPU). In RSM, pre-
serving boundaries implies preventing ambiguity expansion, namely upper approx-
imations. However, in VPRSM, the ambiguity expansion can be prevented not
only by preserving boundaries but by preserving them with the unpredictable
region. Furthermore, we can define other compositions of different types of
reducts.

Simply combining 5 types of structure-based reducts, we obtain 25 − 1 = 31
types of reducts (ignoring (a) and (b) of Theorem 3). To reduce the number, we first
investigate relationships of preserving conditions of reducts.

Theorem 4 ([20]) Let A be a subset of C. We have the following statements in
VPRSM with a fixed parameter β ∈ [0, 0.5),
• The conjunction of (VPB1) and (VPP1) is equivalent to that of (VPB1) and
(VPUN1),
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• The conjunction of (VPL) and (VPB1) is equivalent to that of (VPL) and (VPU),
• The conjunction of (VPU) and (VPP1) is equivalent to that of (VPL) and (VPU).

We define 4 different types of reducts.

Definition 11 ([20]) Let β ∈ [0, 0.5) be an admissible error rate.

• An LU-reduct with β in VPRSM is a minimal condition attribute subset A ⊆ C
satisfying the following condition:

LAβ
A(Xi ) = LAβ

C (Xi ) and UAβ
A(Xi ) = UAβ

C (Xi ) for all i ∈ Vd . (VPLU)

• An LUN-reduct with β in VPRSM is a minimal condition attribute subset A ⊆ C
satisfying the following conditions:

LAβ
A(Xi ) = LAβ

C (Xi ) for all i ∈ Vd , and UNPβ
A(d) = UNPβ

C (d),

(VPLUN1)

B satisfies (VPLUN1) for all B ⊇ A. (VPLUN2)

• A BUN-reduct with β in VPRSM is a minimal condition attribute subset A ⊆ C
satisfying the following conditions:

BNβ
A(Xi ) = BNβ

C (Xi ) for all i ∈ Vd , and UNPβ
A(d) = UNPβ

C (d),

(VPBUN1)

B satisfies (VPBUN1) for all B ⊇ A. (VPBUN2)

• A PUN-reduct with β in VPRSM is a minimal condition attribute subset A ⊆ C
satisfying the following conditions:

POSβ
A(d) = POSβ

C (d) and UNPβ
A(d) = UNPβ

C (d), (VPPUN1)

B satisfies (VPPUN1) for all B ⊇ A. (VPPUN2)

In Fig. 7.2, we show the relationships among 9 types of reducts. Names of reducts
are abbreviated to their first characters. Reducts located in the upper part of Fig. 7.2
preserve regions much more. Therefore, such reducts are larger in the sense of set
inclusion than the other reducts located in the lower part. A line segment connecting
two types of reducts implies that, for each reduct of the upper type say A satisfies
the preserving condition of a reduct of the lower one. From Fig. 7.2, we know that
LU-reducts preserve regions most. On the other hand, UN-reducts and P-reducts do
not preserve many regions.

The next proposition says that composite reducts such as LUN- or BUN-reducts
can be constructed from their base reducts such as L- and UN-reducts or B- and
UN-reducts. The proposition is useful to enumerate the composite reducts.
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Fig. 7.2 Strong-weak
hierarchy of 9 types of
structure-based reducts in
VPRSM

strong

weak

Proposition 1 Consider two types of reducts, ♥-reducts and ♠-reducts, and the
composition of them: ♥♠-reducts. Let H and S be the set of all ♥-reducts and
the set of all ♠-reducts, respectively. Then the set of all ♥♠-reducts is the set of all
minimal elements of {A ∪ B | A ∈ H and B ∈ S }.

7.3.4 Boolean Functions Representing Reducts

As shown above, L- and U-reducts in the classical RSM are characterized by prime
implicants of certainBoolean functions. In this section, we discuss Boolean functions
of 9 types of reducts in VPRSM. To do this, we focus on Boolean functions of reducts
pertaining to the lower approximations, the upper approximations, the boundaries,
the positive region, and the unpredictable region, since the others can be obtained by
taking conjunctions of those Boolean functions or using Proposition 1.

First,we represent the preserving conditions by the generalizeddecision functions.

Lemma 3 Let β ∈ [0, 0.5) be an admissible error rate, and A be a subset of C. We
have the following statements:

• Condition (VPL) with β is equivalent to:

λ
β
A(u) = λ

β
C (u) for all u ∈ U. (VPLG)

• Condition (VPU) with β is equivalent to:

υ
β
A(u) = υ

β
C (u) for all u ∈ U. (VPUG)

• Condition (VPB1) with β is equivalent to:

(υ\λ)
β
A(u) = (υ\λ)

β
C (u) for all u ∈ U. (VPBG1)

• Condition (VPP1) with β is equivalent to:

λ
β
A(u) = ∅ ⇔ λ

β
C (u) = ∅ for all u ∈ U. (VPPG1)
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• Condition (VPUN1) with β is equivalent to:

υ
β
A(u) = ∅ ⇔ υ

β
C (u) = ∅ for all u ∈ U. (VPUNG1)

The next lemma is the counterpart of Lemma 2 of RSM. However, only the
sufficient condition of the lemma holds in VPRSM.

Lemma 4 Let u ∈ U be an object, β ∈ [0, 0.5) be an admissible error rate, and A
be a subset of C.

• The following assertion is a sufficient condition of υ
β
A(u) = υ

β
C (u):

∀u′ ∈ U, (υ
β
C (u′) 	= υ

β
C (u) ⇒ ∃a ∈ A, (u′, u) 	∈ R{a}).

• The following assertion is a sufficient condition of λ
β
A(u) = λ

β
C (u):

∀u′ ∈ U, (λ
β
C (u′) 	= λ

β
C (u) ⇒ ∃a ∈ A, (u′, u) 	∈ R{a}).

This lemma holds due to property (7.9). Then, we have the following corollary.

Corollary 1 We have the following equivalences:

∀u ∈ U, υ
β
A(u) = υ

β
C (u)

⇔ ∀u, u′ ∈ U, (υ
β
C (u′) 	= υ

β
C (u) ⇒ ∃a ∈ A, (u′, u) 	∈ R{a}),

∀u ∈ U, λ
β
A(u) = λ

β
C (u)

⇔ ∀u, u′ ∈ U, (λ
β
C (u′) 	= λ

β
C (u) ⇒ ∃a ∈ A, (u′, u) 	∈ R{a}).

It says that all L-reducts and all U-reducts can be enumerated by discernibility
functions. The similar result is shown in [33]. However, we do not have the same
result for (υ\λ) and conditions (VPPG1) and (VPUNG1).

We introduce a discernibility matrix M = (mi, j )i j=1,2,...,n , where i j-entry mi j is
defined by:

mi j = {c ∈ C | a(ui ) 	= a(u j )}.

It is the same as that of RSM. Then, we define discernibility functions corresponding
to L-reducts and U-reducts, which are denoted by FU

β and FL
β , respectively.

Definition 12 Let β ∈ [0, 0.5) be an admissible error rate. Discernibility functions
FU

β and FL
β are defined as follows:

FU
β (c̃1, c̃2, . . . , c̃m) =

∧

i, j | υ
β
C (ui ) 	=υ

β
C (u j )

∨

c∈mi j

c̃,
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FL
β (c̃1, c̃2, . . . , c̃m) =

∧

i, j | λ
β
C (ui ) 	=λ

β
C (u j )

∨

c∈mi j

c̃,

where, c̃i is a Boolean variable pertaining to a condition attribute ci ∈ C .

Function FU
β is true if and only if at least one variable c̃ inmi j of υ

β
C (ui ) 	= υ

β
C (u j )

is true. While function FL
β is true if and only if at least one variable c̃ in mi j of

λ
β
C (ui ) 	= λ

β
C (u j ) is true.

Remember thatwe associate A ⊆ C with aBoolean vector c̃A = (c̃A
1 , c̃A

2 , . . . , c̃A
m)

as follows:

c̃A
k =

{
1 ck ∈ A,

0 otherwise.

Then, we can prove the next theorem from Corollary 1. Remember that φA is the
term

∧{ã|a ∈ A}.
Theorem 5 ([20, 33]) Let A be the subset of C, and β ∈ [0, 0.5) be an admissible
error rate. We have the following equivalences:

• A satisfies (VPUG) as well as (VPU) with β if and only if FU
β (c̃A) = 1. Moreover,

A is a U-reduct with β if and only if φA is a prime implicant of FU
β ,

• A satisfies (VPLG) as well as (VPL) with β if and only if FL
β (c̃A) = 1. Moreover,

A is an L-reduct with β if and only if φA is a prime implicant of F L
β .

For the preservation of the boundaries, the positive region, and the unpredictable
region, we cannot use discernibility function approach. Because we cannot obtain a
preserving subset A ⊆ C by determining which pairs of objects should be discerned.
For example, consider a decision table below.

c1 c2 c3 X1 X2 X3

P1 0 0 0 4 0 0
P2 0 0 1 0 2 0
P3 0 1 0 0 0 1
P4 1 1 0 1 1 1

There are 3 condition attributes C = {c1, c2, c3} with the value set V = {0, 1},
and 3 decision classes X1, X2, X3. P1, P2, P3, P4 are sets of objects, wheremembers
of each set have the same condition attribute values. The distribution of the decision
classes on each set Pi is shown in the table, for instance the distribution on P1 forms
|X1 ∩ P1| = 4, |X2 ∩ P1| = 0, and |X3 ∩ P1| = 0. Consider P-reducts with β = 0.4.
The positive region of the table is POSβ

C (d) = P1 ∪ P2 ∪ P3. When we can make P1
and P2 be indiscernible and combine P1 ∪ P2, the positive region is still preserved.
Because the distribution on P1∪P2 is (X1, X2, X3) = (4, 2, 0), andμX1(P1∪P2) =
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2/3 ≥ 0.6. Similarly, we can make the pair of P1 and P3 and the pair of P2 and P3 be
indiscernible. However, when wemake all of P1, P2, and P3 indiscernible, and select
{c1} as a reduct, P1 ∪ P2 ∪ P3 falls outside of POS

β
{c1}(d), because the distribution

is (X1, X2, X3) = (4, 2, 1), and μX1(P1 ∪ P2 ∪ P3) = 4/7 ≤ 0.6.
To overcome that difficulty, for each type of reducts, we consider two approximate

discernibility functions F̂β and F̌β : F̂β characterizes a sufficient condition of the
preservation and F̌β characterizes a necessary condition.

First, we discuss discernibility functions characterizing sufficient conditions. By
Theorems 3 and 4, we know that FL

β , FU
β , and FLU

β = FL
β ∧ FU

β are discernibility
functions of sufficient conditions for B-reducts, P-reducts, and UN-reducts with β.

Definition 13 Let β ∈ [0, 0.5) be an admissible error rate. Discernibility functions
F̂B

β , F̂P
β , and F̂UN

β are defined as follows:

F̂B
β = FL

β ∧ FU
β , F̂P

β = FL
β , F̂UN

β = FU
β .

Clearly, we have the following proposition.

Proposition 2 ([20]) Let A be a subset of C, and β ∈ [0, 0.5) be an admissible
error rate. We have the following implications:

• If F̂B
β (c̃A) = 1 then A satisfies (VPB1) and (VPB2) with β,

• If F̂P
β (c̃A) = 1 then A satisfies (VPP1) and (VPP2) with β,

• If F̂UN
β (c̃A) = 1 then A satisfies (VPUN1) and (VPUN2) with β.

Next, let us discuss a discernibility function characterizing a necessary condition.
Consider necessary discernibility functions for P-reducts. In the sufficient discerni-
bility function F̂P

β = FL
β , pairs of objects included in the positive region are discerned

when they have different values of λ
β
C . However, such pairs are not necessarily dis-

cerned because theremay be a P-reduct such that some of pairs become indiscernible.
On the other hand, for each pair ui and u j , if they are excluded from the positive
region of the common condition attributes, i.e., C \ mi j , they should be discerned
because no subset A ⊆ C \ mi j satisfies (VPP1) and (VPP2). From this consider-
ation, discernibility functions characterizing necessary conditions for preservation
of the boundaries, the positive region, and the unpredictable region are obtained as
follows.

Definition 14 Let β ∈ [0, 0.5) be an admissible error rate. Moreover, let c̃i be a
Boolean variable pertaining to a condition attribute ci ∈ C . Discernibility functions
F̌B

β , F̌P
β , and F̌UN

β are defined as follows:

F̌B
β (c̃1, c̃2, . . . , c̃m) =

∧

(i, j)∈ΔB
β

∨

c∈mi j

c̃,

F̌P
β (c̃1, c̃2, . . . , c̃m) =

∧

(i, j)∈ΔP
β

∨

c∈mi j

c̃,
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F̌UN
β (c̃1, c̃2, . . . , c̃m) =

∧

(i, j)∈ΔUN
β

∨

c∈mi j

c̃,

where,

(i, j) ∈ ΔB
β ⇔

⎧
⎪⎨

⎪⎩

(υ\λ)
β
C (ui ) 	= (υ\λ)

β
C (u j ), or

(υ\λ)
β
C (ui ) = (υ\λ)

β
C (u j ) = ∅

and (υ\λ)
β
C\mi j

(ui ) = (υ\λ)
β
C\mi j

(u j ) 	= ∅,

(i, j) ∈ ΔP
β ⇔

⎧
⎪⎨

⎪⎩

λ
β
C (ui ) 	= ∅ and λ

β
C (u j ) = ∅, or

λ
β
C (ui ) = ∅ and λ

β
C (u j ) 	= ∅, or

λ
β
C (ui ) 	= ∅, λ

β
C (u j ) 	= ∅, and λ

β
C\mi j

(ui ) = λ
β
C\mi j

(u j ) = ∅,

(i, j) ∈ ΔUN
β ⇔

⎧
⎪⎨

⎪⎩

υ
β
C (ui ) 	= ∅ and υ

β
C (u j ) = ∅, or

υ
β
C (ui ) = ∅ and υ

β
C (u j ) 	= ∅, or

υ
β
C (ui ) 	= ∅, υ

β
C (u j ) 	= ∅, and υ

β
C\mi j

(ui ) = υ
β
C\mi j

(u j ) = ∅.

Proposition 3 Let A be a subset of C, and β ∈ [0, 0.5) be an admissible error rate.
We have the following implications:

• If F̌B
β (c̃A) = 0 then A does not satisfy (VPB1) or (VPB2) with β,

• If F̌P
β (c̃A) = 0 then A does not satisfy (VPP1) or (VPP2) with β,

• If F̌UN
β (c̃A) = 0 then A does not satisfy (VPUN1) or (VPUN2) with β.

From Proposition 3, we know that any prime implicant of each of F̌B
β , F̌P

β , and

F̌UN
β can be a subset of some reduct of the corresponding type.
Combining Propositions 2 and 3, we have the following theorem.

Theorem 6 Let A be a subset of C, and β ∈ [0, 0.5) be an admissible error rate.
Let P̂B

β , P̂P
β and P̂UN

β be the sets of condition attribute subsets corresponding to

the prime implicants of F̂B
β , F̂P

β , and F̂UN
β , respectively. Moreover, let P̌B

β , P̌P
β and

P̌UN
β be the sets of condition attribute subsets corresponding to the prime implicants

of F̌B
β , F̌P

β , and F̌UN
β , respectively. Then, we have the following implications:

• If A is a B-reduct with β then A ∈ {B ⊆ C | B ⊇ B ′ for some B ′ ∈ P̌B
β and

B 	⊃ B ′′ for any B ′′ ∈ P̂B
β },

• If A is a P-reduct with β then A ∈ {B ⊆ C | B ⊇ B ′ for some B ′ ∈ P̌P
β and

B 	⊃ B ′′ for any B ′′ ∈ P̂P
β },

• If A is a UN-reduct with β then A ∈ {B ⊆ C | B ⊇ B ′ for some B ′ ∈ P̌UN
β and

B 	⊃ B ′′ for any B ′′ ∈ P̂UN
β }.
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Table 7.4 Discernibility
functions related to 9 kinds of
reducts

Reduct Discernibility function(s) Exact/approximate

L FL
β Exact

U FU
β Exact

B (F̌B
β , FL

β ∧ FU
β ) Approximate

P (F̌P
β , FL

β ) Approximate

UN (F̌UN
β , FU

β ) Approximate

LU FL
β ∧ FU

β Exact

PUN (F̌P
β ∧ F̌UN

β , FL
β ∧ FU

β ) Approximate

LUN (FL
β ∧ F̌UN

β , FL
β ∧ FU

β ) Approximate

BUN (F̌B
β ∧ F̌P

β , FL
β ∧ FU

β ) Approximate

The obtained discernibility functions are shown in Table7.4. In the case of approx-
imate discernibility functions, the first function in the parenthesis characterizes
the necessary condition of the preservation and the second function characterizes
the sufficient condition. The discernibility functions related to LU-reducts, LUN-
reducts and BUN-reducts can be obtained by taking the conjunctions of discernibil-
ity functions related to L-reducts, U-reducts, B-reducts and UN-reducts. Note that
F̂B

β ∧ F̂UN
β = (FL

β ∧ FU
β ) ∧ FU

β = FL
β ∧ FU

β . This is why we have FL
β ∧ FU

β as
the discernibility function characterizing a sufficient condition for the preservation
of BUN-reducts.

Example 9 Remember the decision tableD = (U, C∪{d}, {Va}) in Table7.3. Let an
admissible error rate be β = 0.39. In Table7.5, we show the decision table with three
generalized decision functionsλ0.39C ,υ0.39

C , (υ\λ)0.39C with respect toC andβ = 0.39.
Now let us enumerate reducts as prime implicants of discernibility functions. First

let us discuss L-, U- and LU-reducts with β = 0.39. The discernibility matrix of the
decision table is shown as below.

P1 P2 P3 P4 P5

P1 ∅ {c3, c4} {c1} {c1, c2} {c2, c3}
P2 {c3, c4} ∅ {c1, c3, c4} C {c2, c4}
P3 {c1} {c1, c3, c4} ∅ {c2} {c1, c2, c3}
P4 {c1, c2} C {c2} ∅ {c1, c3}
P5 {c2, c3} {c2, c4} {c1, c2, c3} {c1, c3} ∅

Table 7.5 The decision table in Table7.3 with the generalized decision functions

c1 c2 c3 c4 d:(b,m,g) λ
β
C υ0.39

C (υ\λ)0.39C

P1 Good Good Bad Good (0,2,9) {g} {g} ∅
P2 Good Good Good Bad (0,19,1) {m} {m} ∅
P3 Bad Good Bad Good (1,1,2) ∅ {g} {g}

P4 Bad Bad Bad Good (0,1,1) ∅ {m,g} {m,g}

P5 Good Bad Good Good (1,1,1) ∅ ∅ ∅
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From the table, we obtain FL
0.39 and FU

0.39 as follows:

FL
0.39(c̃1, c̃2, c̃3, c̃4) =

∧

i=1,2, j=3,4,5

∨

c∈mi j

c̃ ∧
∨

c∈m12

c̃

= (c̃1) ∧ (c̃2 ∨ c̃3) ∧ (c̃2 ∨ c̃4) ∧ (c̃3 ∨ c̃4)

= (c̃1 ∧ c̃2 ∧ c̃3) ∨ (c̃1 ∧ c̃2 ∧ c̃4) ∨ (c̃1 ∧ c̃3 ∧ c̃4),

FU
0.39(c̃1, c̃2, c̃3, c̃4) =

∧

(i, j)∈{(k,l)|k 	=l}\{(1,3),(3,1)}

∨

c∈mi j

c̃

= (c̃2) ∧ (c̃1 ∨ c̃3) ∧ (c̃3 ∨ c̃4) = (c̃2 ∧ c̃3) ∨ (c̃1 ∧ c̃2 ∧ c̃4).

We obtain FLU
0.39 as:

FLU
0.39(c̃1, c̃2, c̃3, c̃4) = FL(c̃1, c̃2, c̃3, c̃4) ∧ FU(c̃1, c̃2, c̃3, c̃4)

= (c̃1) ∧ (c̃2) ∧ (c̃3 ∨ c̃4) = (c̃1 ∧ c̃2 ∧ c̃3) ∨ (c̃1 ∧ c̃2 ∧ c̃4).

Therefore, L-reducts are obtained as {c1, c2, c3}, {c1, c2, c4} and {c1, c3, c4}.
U-reducts are obtained as {c2, c3} and {c1, c2, c4}. LU-reducts are obtained as
{c1, c2, c3} and {c1, c2, c4}. Note that {c2, c3} is not an L-reduct but a U-reduct.
This is very different from the relation between L- and U-reducts in the classical
RSM, i.e., in the classical RSM, a U-reduct includes an L-reduct but an L-reduct
never includes a U-reduct.

Now let us discuss B-, P-, UN-reducts with β = 0.39.We can obtain only approx-
imations of those reducts. To this end, let us get discernibility functions F̌B

0.39, F̌P
0.39,

and F̌UN
0.39. For B-reducts, considering the second condition of ΔB

0.39, check each pair
Pi and Pj such that (υ\λ)0.39C (Pi ) = ∅ and (υ\λ)0.39C (Pj ) = ∅.

(υ\λ)0.39C\m12
(P1) = (υ\λ)0.39C\m12

(P2) = ∅, (υ\λ)0.39C\m15
(P1) = (υ\λ)0.39C\m15

(P5) = ∅,

(υ\λ)0.39C\m25
(P2) = (υ\λ)0.39C\m25

(P5) = ∅.

For P-reducts, check each pair such that λ0.39C (Pi ) 	= ∅ and λ0.39C (Pj ) 	= ∅.

λ0.39C\m12
(P1) = λ0.39C\m12

(P2) = {medium}.

Finally, for UN-reducts, check each pair such that υ0.39
C (Pi ) 	= ∅ and υ0.39

C (Pj ) 	= ∅.

υ0.39
C\m12

(P1) = υ0.39
C\m12

(P2) = {medium}, υ0.39
C\m13

(P1) = υ0.39
C\m13

(P3) = {good},
υ0.39

C\m14
(P1) = υ0.39

C\m14
(P4) = {good}, υ0.39

C\m23
(P2) = υ0.39

C\m23
(P3) = {medium},

υ0.39
C\m24

(P2) = υ0.39
C\m24

(P4) = {medium}, υ0.39
C\m34

(P3) = υ0.39
C\m34

(P4) = {good}.
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Therefore, discernibility functions F̌B
0.39, F̌P

0.39, and F̌UN
0.39 are obtained as:

F̌B
0.39(c̃1, c̃2, c̃3, c̃4) =

∧

i=1,2,5, j=3,4

∨

c∈mi j

c̃ ∧
∨

c∈m34

c̃ = c̃1 ∧ c̃2,

F̌P
0.39(c̃1, c̃2, c̃3, c̃4) =

∧

i=1,2, j=3,4,5

∨

c∈mi j

c̃ = (c̃1) ∧ (c̃2 ∨ c̃3) ∧ (c̃2 ∨ c̃4)

= (c̃1 ∧ c̃2) ∨ (c̃1 ∧ c̃3 ∧ c̃4),

F̌UN
0.39(c̃1, c̃2, c̃3, c̃4) =

∧

i=1,2,3,4, j=5

∨

c∈mi j

c̃ = (c̃1 ∨ c̃3) ∧ (c̃2 ∨ c̃3) ∧ (c̃2 ∨ c̃4)

= (c̃1 ∧ c̃2) ∨ (c̃2 ∧ c̃3) ∨ (c̃3 ∧ c̃4).

Because F̂B
0.39 = FL

0.39 ∧ FU
0.39 = (c̃1 ∧ c̃2 ∧ c̃3) ∨ c̃1 ∧ c̃2 ∧ c̃4), the candidates

of B-reducts are,
{c1, c2}, {c1, c2, c3}, {c1, c2, c4}.

We can see that all of those satisfy (VPB1), hence, {c1, c2} is the unique B-reduct.
Because F̂P

0.39 = FL
0.39 = (c̃1 ∧ c̃2 ∧ c̃3) ∨ (c̃1 ∧ c̃2 ∧ c̃4) ∨ (c̃1 ∧ c̃3 ∧ c̃4), the

candidates of P-reducts are,
{c1, c2}, {c1, c2, c3}, {c1, c2, c4}, {c1, c3, c4}.

Also, in that case, all candidates satisfy (VPP1), hence, {c1, c2} and {c1, c3, c4} are
P-reducts. Similarly, the candidates of UN-reducts are,

{c1, c2}, {c2, c3}, {c3, c4}, {c1, c2, c4}, {c1, c3, c4},
and all candidates satisfy (VPUN1), hence, {c1, c2}, {c2, c3}, and {c3, c4} are
UN-reducts.

All reducts are arranged in Table7.6. We can observe that several kinds of reducts
are different. In this example, each L-reduct is also an LUN-reduct and vice versa.
Such an equivalence holds in this example but not always.

In this example, we would select {c1, c2, c3} or {c1, c2, c4} to preserve all struc-
tures. Additionally, c1 and c2 appear in many other reducts. Whereas, we would
select U-reduct {c2, c3} to reduce the size of the reduct.

Table 7.6 All obtained
reducts with β = 0.39 in
Table7.3

Type Reducts

L-reduct {c1, c2, c3}, {c1, c2, c4}, {c1, c3, c4}
U-reduct {c2, c3}, {c1, c2, c4}
LU-reduct {c1, c2, c3}, {c1, c2, c4}
B-reduct {c1, c2}
P-reduct {c1, c2}, {c1, c3, c4}
UN-reduct {c1, c2}, {c2, c3}, {c3, c4}
LUN-reduct {c1, c2, c3}, {c1, c2, c4}, {c1, c3, c4}
BUN-reduct {c1, c2}
PUN-reduct {c1, c2}, {c1, c3, c4}
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7.4 Structure-Based Attribute Reduction
in Dominance-Based Rough Set Models

7.4.1 Decision Tables Under Dominance Principle
and Dominance-Based Rough Set Models

InDominance-based Rough SetModel (DRSM), known asDominance-based Rough
Set Approach [16, 18, 49], decision tables with order relations are analyzed. Let
D = (U, AT = C ∪ {d}, {Va}a∈AT ) be a decision table. The attribute set AT is
partitioned into AT N and ATC , where AT N is the set of nominal attributes and ATC

is the set of criteria (ordinal attributes). For a criterion a ∈ ATC , we suppose a total
order≥ on its value set Va . Moreover, all criteria are of the gain-type, i.e., the greater
the better. We assume that the decision attribute d is a criterion.

In DRSM, it is supposed that if an object u is better than or equal to another
object u′ with respect to all condition attributes, then the class of u should not be
worse than that of u′. This is called the dominance principle [16].

Remark 8 The setting of DRSM is considered as the monotone or ordinal classifi-
cation problem [2, 3, 32], where classifiers are restricted to be monotonic. Let f be
a classifier, which assigns to each object u a class label (decision class value) f (u).
The classifier f is monotonic if for any object pair u and u′, we have u ≤ u′ implying
f (u) ≤ f (u′). In this chapter, however, we do not discuss classifiers nor algorithms
for building classifiers.

Remark 9 We assume the total order, i.e., antisymmetry, transitivity, and, compara-
bility, on the value set Va of each condition criteria a ∈ ATC∩C . However, regardless
of comparability, the result of this section can be applied without modification. Addi-
tionally, we assume that all criteria are of the gain-type. However, in applications, we
may encounter cost-type criteria, i.e., the smaller the better. For a cost-type criterion,
we can deal with it as the gain-type by reversing the order of its values.

Remark 10 Generally, there is more than one decision attribute in a decision table.
In such a case, the set of decision classes (the partition of objects by the decision
attributes) is partially ordered,while it is totally ordered in the case of a single decision
attribute. In this section, we focus on the case of a single decision attribute (more
generally, the case when the decision classes form a totally ordered set), however,
the results of this section could be straightforwardly extended to that of multiple
decision attributes.

For A ⊆ C , a dominance relation DA on U is defined by:

DA =
{
(u, u′)∈ U 2|a(u) ≥ a(u′),∀a ∈ ATC ∩ A

and a(u) = a(u′),∀a ∈ ATN ∩ A
}
.

DA satisfies reflexivity and transitivity. When (u, u′) ∈ DA, we say that u domi-
nates u′ with respect to A. The relation (u, u′) ∈ DA means “u is better than or equal
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to u′ with respect to criteria A”. For u ∈ U , its dominating set and its dominated set
with respect to A are defined, respectively, by:

D+
A (u) = {u′ ∈ U | (u′, u) ∈ DA},

D−
A (u) = {u′ ∈ U | (u, u′) ∈ DA}.

The dominating set D+
A (u) (resp. the dominated set D−

A (u)) is the set of the objects
dominating (resp. dominated by) u under A.

Since decision classes are ordered X1 < X2 < · · · < X p, one can define an
upward union of decision classes X≥

i and a downward union of decision classes X≤
i

with respect to each class Xi , i ∈ Vd , as follows:

X≥
i =

⋃

j≥i

X j , X≤
i =

⋃

j≤i

X j .

For convenience, X≤
0 = X≥

p+1 = ∅. We have X≥
i = U \ X≤

i−1.

Example 10 Consider a decision table D = (U, C ∪ {d}, {Va}) given in Table7.7.
This table shows student evaluation in a school. The objects are seven students, i.e.,
U = {u1, u2, . . . , u7}. The condition attributes are scores of mathematics (Ma),
physics (Ph) and literature (Li), while the decision attribute (d) is a comprehensive
evaluation (E). Namely, C ={Ma, Ph, Li} and d =E.Wemay assume that the better
scores in all subjects student takes, the better comprehensive evaluation he/she gets.

Let A ={Ma, Ph}. The dominance relation DA is described as the following
matrix. Symbol ∗ indicates that the corresponding row object ui and column object
u j is in the dominance relation, i.e., (ui , u j ) ∈ DA.

u1 u2 u3 u4 u5 u6 u7

u1 ∗ ∗ ∗ ∗ ∗ ∗ ∗
u2 ∗ ∗ ∗ ∗ ∗ ∗ ∗
u3 ∗ ∗ ∗ ∗ ∗
u4 ∗ ∗
u5 ∗ ∗ ∗
u6 ∗ ∗ ∗
u7 ∗

Table 7.7 A decision table
of student records

Student Ma Ph Li E

u1 Good Good Good Good

u2 Good Good Med Med

u3 Med Good Med Good

u4 Bad Med Good Med

u5 Med Bad Med Bad

u6 Med Bad Bad Med

u7 Bad Bad Bad Bad
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For each object ui ∈ U , symbols ∗ in the row of ui indicate the objects in
D−(ui ), while symbols ∗ in the column indicate the objects in D+(ui ). For example,
D−(u3) = {u3, u4, u5, u6, u7} and D+(u3) = {u1, u2, u3}.

There are three decision classes Xb = {u5, u7}, Xm = {u2, u4, u6} and Xg =
{u1, u3} for bad, med and good, respectively. The upward and downward unions of
those decision classes are,

X≥
b = U, X≥

m = {u1, u2, u3, u4, u6}, X≥
g = {u1, u3},

X≤
b = {u5, u7}, X≤

m = {u2, u4, u5, u6, u7}, X≤
g = U.

Given a decision table, the inconsistency with respect to the dominance principle
is captured by the difference between upper and lower approximations of the unions
of decision classes. Given a condition attribute set A ⊆ C , and i ∈ Vd , the lower
approximation LAA(X≥

i ) and the upper approximationUAA(X≥
i ) of X≥

i are defined,
respectively, by:

LAA(X≥
i ) = {u ∈ U | D+

A (u) ⊆ X≥
i },

UAA(X≥
i ) = {u ∈ U | D−

A (u) ∩ X≥
i 	= ∅}.

Similarly, the lower approximation LAA(X≤
i ) of X≤

i and upper approximation
UAA(X≤

i ) are defined, respectively, by:

LAA(X≤
i ) = {u ∈ U | D−

A (u) ⊆ X≤
i },

UAA(X≤
i ) = {u ∈ U | D+

A (u) ∩ X≤
i 	= ∅}.

If u belongs to LAA(X≥
i ) then all objects dominating u do not belong to X≤

i−1,
i.e., there exists no evidence for u ∈ X≤

t−1 in view of the monotonicity assumption.
Therefore,we can say that u certainly belongs to X≥

i . On the other hand if u belongs to
UAA(X≥

i ) then u is dominating an object belonging to X≥
i , i.e., there exists evidence

for u ∈ X≥
i in view of the monotonicity assumption. Therefore, we can say that u

possibly belongs to X≥
i . The similar interpretations can be applied to LAA(X≤

i ) and
UAA(X≤

i ).
The difference between the upper and lower approximations is called a boundary.

The boundaries of an upward union X≥
i and a downward union X≤

i , denoted by
BNA(X≥

i ) and BNA(X≤
i ), are defined by:

BNA(X≥
i ) = UAA(X≥

i ) \ LAA(X≥
i ),

BNA(X≤
i ) = UAA(X≤

i ) \ LAA(X≤
i ).

Objects in the boundary region of an upward or downward union are classified
neither to that union nor to the complement with certainty.
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Example 11 Remember the decision table D = (U, C ∪ {d}, {Va}) in Table7.7. Let
A ={Ma, Ph}. The lower and upper approximations of the upward and downward
unions with respect to A are obtained as follows.

LAA(X≥
b ) = U, LAA(X≥

m) = {u1, u2, u3, u4}, LAA(X≥
g ) = ∅,

LAA(X≤
b ) = {u7}, LAA(X≤

m) = {u4, u5, u6, u7}, LAA(X≤
g ) = U,

UAA(X≥
b ) = U, UAA(X≥

m) = U \ {u7}, UAA(X≥
g ) = {u1, u2, u3},

UAA(X≤
b ) = {u5, u6, u7}, UAA(X≤

m) = U, UAA(X≤
g ) = U.

Now, we remember properties of approximations [16, 18, 31]. By the boundary
conditions of X≥ and X≤,

UAA(X≥
1 ) = LAA(X≥

1 ) = U, UAA(X≤
p ) = LAA(X≤

p ) = U,

UAA(X≥
p+1) = LAA(X≥

p+1) = ∅, UAA(X≤
0 ) = LAA(X≤

0 ) = ∅. (7.21)

Let A ⊆ C and i ∈ Vd . Similarly to RSM, there exist inclusion relations between
each union of decision classes and its lower and upper approximations.

LAA(X≥
i ) ⊆ X≥

i ⊆ UAA(X≥
i ), LAA(X≤

i ) ⊆ X≤
i ⊆ UAA(X≤

i ). (7.22)

Approximations are expressed by unions of dominating or dominated sets,

LAA(X≥
i ) =

⋃

D+
A (u)⊆X≥

i

D+
A (u) =

⋃

u∈LAA(X≥
i )

D+
A (u),

UAA(X≥
i ) =

⋃

D−
A (u)∩X≥

i 	=∅
D+

A (u) =
⋃

u∈UAA(X≥
i )

D+
A (u),

LAA(X≤
i ) =

⋃

D−
A (u)⊆X≤

i

D−
A (u) =

⋃

u∈LAA(X≤
i )

D−
A (u),

UAA(X≤
i ) =

⋃

D+
A (u)∩X≤

i 	=∅
D−

A (u) =
⋃

u∈UAA(X≤
i )

D−
A (u).

There exists duality of lower and upper approximations.

UAA(X≥
i ) = U \ LAA(X≤

i−1), UAA(X≤
i ) = U \ LAA(X≥

i+1). (7.23)

So, the upper approximations of the pair of complementary unions of decision classes
form a cover of U :

UAA(X≥
i ) ∪ UAA(X≤

i−1) = U. (7.24)
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By the duality of lower and upper approximations, the boundaries of the pair of
complementary unions are the same,

BNA(X≥
i ) = BNA(X≤

i−1). (7.25)

Lower and upper approximations can be expressed by boundaries. That is useful
for investigating relations between different types of reducts:

UAA(X≥
i ) = BNA(X≥

i ) ∪ X≥
i , UAA(X≤

i ) = BNA(X≤
i ) ∪ X≤

i , (7.26)

LAA(X≥
i ) = X≥

i \ BNA(X≥
i ), LAA(X≤

i ) = X≤
i \ BNA(X≤

i ). (7.27)

Let A, B ⊆ C and i, j ∈ Vd . Then, we have the following monotonicity proper-
ties:

j ≥ i ⇒ LAA(X≥
j ) ⊆ LAA(X≥

i ), UAA(X≥
j ) ⊆ UAA(X≥

i ), (7.28)

j ≤ i ⇒ LAA(X≤
j ) ⊆ LAA(X≤

i ), UAA(X≤
j ) ⊆ UAA(X≤

i ), (7.29)

B ⊆ A ⇒ LAB(X≥
i ) ⊆ LAA(X≥

i ), LAB(X≤
i ) ⊆ LAA(X≤

i ), (7.30)

B ⊆ A ⇒ UAB(X≥
i ) ⊇ UAA(X≥

i ), UAB(X≤
i ) ⊇ UAA(X≤

i ). (7.31)

Those are important for defining and enumerating reducts.
Furthermore, the authors proposed lower and upper approximations and boundary

regions of decision classes [31]. For A ⊆ C and i ∈ Vd , lower and upper approxi-
mations of Xi and the boundary region of Xi are defined by:

LAA(Xi ) = LAA(X≥
i ) ∩ LAA(X≤

i ),

UAA(Xi ) = UAA(X≥
i ) ∩ UAA(X≤

i ),

BNA(Xi ) = UAA(Xi ) \ LAA(Xi ).

This definition is an analogy to Xi = X≥
i ∩ X≤

i .
Let A ⊆ C and i ∈ Vd . The upper approximations of X≥

i and X≤
i are represented

by upper approximations of decision classes:

UAA(X≥
i ) =

⋃

j≥i

UAA(X j ), (7.32)

UAA(X≤
i ) =

⋃

j≤i

UAA(X j ). (7.33)

The boundary of Xi is the union of the boundaries of X≥
i and X≤

i ,

BNA(Xi ) = BNA(X≥
i ) ∪ BNA(X≤

i ). (7.34)
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Approximations of decision classes have similar properties as those of unions of
decision classes:

LAA(Xi ) ⊆Xi ⊆ UAA(Xi ), (7.35)

UAA(Xi ) =BNA(Xi ) ∪ Xi , (7.36)

LAA(Xi ) =Xi \ BNA(Xi ). (7.37)

The next properties are analogies to (7.6) and (7.5) of the classical RSM.

BNA(Xi ) = UAA(Xi ) ∩
⋃

j 	=i

UAA(X j ), (7.38)

LAA(Xi ) = U \
⋃

j 	=i

UAA(X j ). (7.39)

We define the positive region for the decision table in DRSM:

POSA(d) =
⋃

i∈Vd

LAA(Xi ).

The complement of the positive region is exactly the union of all boundaries,

U \ POSA(d) =
⋃

i∈Vd

BNA(Xi ). (7.40)

Moreover, the approximations are also monotone with respect to the inclusion
relation between condition attribute sets. Let A, B ⊆ C and i ∈ Vd .

B ⊆ A ⇒ LAB(Xi ) ⊆ LAA(Xi ), UAB(Xi ) ⊇ UAA(Xi ). (7.41)

The generalized decision function proposed by Dembczyński et al. [10] also plays
an important role for Boolean reasoning in DRSM. It provides an object-wise view
of DRSM. Let A ⊆ C and u ∈ U , generalized decision of u with respect to A is
defined by δA(u) = 〈lA(u), u A(u)〉, where

lA(u) = min{i ∈ Vd | D+
A (u) ∩ Xi 	= ∅},

u A(u) = max{i ∈ Vd | D−
A (u) ∩ Xi 	= ∅}.

δA(u) shows the interval of decision classes to which x may belong. lA(u) and u A(u)

are the lower and upper bounds of the interval. Obviously, we have

lA(u) ≤ u A(u). (7.42)



150 Y. Kusunoki and M. Inuiguchi

lA(u) and u A(u) are monotone with respect to the inclusion relation between
condition attribute sets. Namely, for B, A ⊆ C and u ∈ U , we have

B ⊆ A ⇒ lB(u) ≤ lA(u), u B(u) ≥ u A(u). (7.43)

Let i ∈ Vd , using the generalized decision function, the lower and upper approx-
imations of unions are represented as:

LAA(X≥
i ) = {u ∈ U | lA(u) ≥ i}, UAA(X≥

i ) = {u ∈ U | u A(u) ≥ i}, (7.44)

LAA(X≤
i ) = {u ∈ U | u A(u) ≤ i}, UAA(X≤

i ) = {u ∈ U | lA(u) ≤ i}. (7.45)

We can represent approximations of classes using the generalized decision,

LAA(Xi ) = {u ∈ U | lA(u) = u A(u) = i}, (7.46)

UAA(Xi ) = {u ∈ U | lA(u) ≤ i ≤ u A(u)}, (7.47)

BNA(Xi ) = {u ∈ U | lA(u) ≤ i ≤ u A(u), lA(u) < u A(u)} . (7.48)

Example 12 Remember the decision table D = (U, C ∪ {d}, {Va}) in Table7.7. Let
A ={Ma, Ph}. The generalized decision function δA with respect to A is obtained
as follows:

δA(u1) = 〈med, good〉, δA(u2) = 〈med, good〉, δA(u3) = 〈med, good〉,
δA(u4) = 〈med,med〉, δA(u5) = 〈bad,med〉, δA(u6) = 〈bad,med〉,
δA(u7) = 〈bad, bad〉.

7.4.2 Structure-Based Reducts in Dominance-Based
Rough Set Models

Before defining structure-based reducts in DRSM, we introduce a notion of reducts
preserving the quality of sorting, proposed by Susmaga et al. [49]. For A ⊆ C , the
quality of sorting γA(d), which is the counterpart of the quality of classification in
the classical RSM, is defined by:

γA(d) = |U −⋃
i∈Vd

BNA(X≤
i )|

|U | = |U −⋃
i∈Vd

BNA(X≥
i )|

|U | .

By (7.34) and (7.40), we can see that γA(d) is related to the positive region of DRSM,

γA(d) = |U −⋃
i∈Vd

BNA(X≤
i )|

|U | = |U − ⋃
i∈Vd

BNA(Xi )|
|U | = |POSA(d)|

|U | .

We call this type of reducts Q-reducts.
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Definition 15 ([16, 49])AQ-reduct inDRSMis aminimal condition attribute subset
A ⊆ C satisfying the following condition:

γA(d) = γC (d). (DQ)

Now, we introduce structure-based reducts in DRSM. Lower and upper approx-
imations and boundary regions of upward and downward unions can be considered
as a structure over a given object setU . From this point, we define 7 union-structure-
preserving reducts. The following reducts are conceivable.

Definition 16 ([25, 52]) We define 7 types of reducts as follows.

• An L≥-reduct in DRSM is a minimal condition attribute subset A ⊆ C satisfying
the following condition:

LAA(X≥
i ) = LAC (X≥

i ) for all i ∈ Vd . (DL≥)

• An L≤-reduct in DRSM is a minimal condition attribute subset A ⊆ C satisfying
the following condition:

LAA(X≤
i ) = LAC (X≤

i ) for all i ∈ Vd . (DL≤)

• A U≥-reduct in DRSM is a minimal condition attribute subset A ⊆ C satisfying
the following condition:

UAA(X≥
i ) = UAC (X≥

i ) for all i ∈ Vd . (DU≥)

• A U≤-reduct in DRSM is a minimal condition attribute subset A ⊆ C satisfying
the following condition:

UAA(X≤
i ) = UAC (X≤

i ) for all i ∈ Vd . (DU≤)

• An L -reduct in DRSM is a minimal condition attribute subset A ⊆ C satisfying
the following condition:

LAA(X≥
i ) = LAC (X≥

i ) and LAA(X≤
i ) = LAC (X≤

i ) for all i ∈ Vd . (DL )

• A U -reduct in DRSM is a minimal condition attribute subset A ⊆ C satisfying
the following condition:

UAA(X≥
i ) = UAC (X≥

i ) and UAA(X≤
i ) = UAC (X≤

i ) for all i ∈ Vd . (DU )

• A B -reduct in DRSM is a minimal condition attribute subset A ⊆ C satisfying
the following condition:
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BNA(X≥
i ) = BNC (X≥

i ) for all i ∈ Vd , or equivalently,
BNA(X≤

i ) = BNC (X≤
i ) for all i ∈ Vd .

(DB )

Yang et al. [52] independently proposed four kinds of reducts in DRSM with
unknown attribute values, which are application of distribution reducts of Mi
et al. [33]. Those reducts preserve lower/upper approximations of upward/
downward unions. Hence, they correspond to L≥-, L≤-, U≥-, and U≤-reducts of
ours. However, Yang et al. did not consider boundaries and combinations of differ-
ent types of reducts.

From (7.23), we know that (DL≥) and (DU≤) are equivalent. Similarly, (DL≤)
and (DU≥) are also equivalent. Therefore, (DL ) is equivalent to (DU ). Moreover,
since condition (DL ) implies conditions (DL≥) and (DL≤), any L -reduct satisfies
(DL≥) and also (DL≤). Similarly, since condition (DU ) implies conditions (DU≥)
and (DU≤), any U -reduct satisfies (DU≥) and also (DU≤). Therefore, we have the
following theorem.

Theorem 7 ([25, 52]) Let A be a subset of C. The following statements hold.

• A is a U≥-reduct if and only if A is an L≤-reduct.
• A is a U≤-reduct if and only if A is an L≥-reduct.
• A is a U -reduct if and only if A is an L -reduct.
• A is a B -reduct if and only if A is an L -reduct.
• If A is an L -reduct then A satisfies (DL≥), (DL≤), (DU≥), and (DU≤).

As the result of the discussion, we obtain 3 different types of reducts based on
the structure induced from rough set operations on unions. They are represented by
L≥-reduct, L≤-reduct and L -reduct.

Now, we are ready to define other types of structure-based reducts, considering
approximations of decision classes. The first kind of reducts, called L-reduct, pre-
serves the lower approximations of decision classes, the second kind of reducts,
called U-reduct, preserves the upper approximations of decision classes, the third
kind of reduct, called B-reduct, preserves the boundary regions of decision classes,
and the fourth kind of reduct, called P-reduct, preserves the positive region. They are
parallel to L-, U-, B-, P-reducts discussion in the classical RSM.

Definition 17 ([31]) We define four types of reducts as follows.

• An L-reduct in DRSM is a minimal condition attribute subset A ⊆ C satisfying
the following condition:

LAA(Xi ) = LAC (Xi ) for all i ∈ Vd . (DL)

• AU-reduct in DRSM is a minimal condition attribute subset A ⊆ C satisfying the
following condition:

UAA(Xi ) = UAC (Xi ) for all i ∈ Vd . (DU)
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• A B-reduct in DRSM is a minimal condition attribute subset A ⊆ C satisfying the
following condition:

BNA(Xi ) = BNC (Xi ) for all i ∈ Vd . (DB)

• A P-reduct in DRSM is a minimal condition attribute subset A ⊆ C satisfying the
following condition:

POSA(d) = POSC (d). (DP)

From the properties of approximations of decision classes, we have the following
theorem.

Theorem 8 ([31]) Let A be a subset of C. We have the following assertions:

(a) A is a B-reduct if and only if A is a U-reduct,
(b) A is a P-reduct if and only if A is an L-reduct,
(c) If A is a U-reduct then A satisfies (DL).

Consequently, we have only 2 kinds of class-structure-based reducts: L-reducts
and U-reducts (or B-reducts). This result is also parallel to the result in RSM.

Let us discuss relations of the union-based reducts, the class-based reducts, the
Q-reducts. We have the following theorems.

Theorem 9 ([31]) Let A be a subset of C. We have the following assertions:

(a) A is an L -reduct if and only if A is a U-reduct,
(b) A is a Q-reduct if and only if A is an L-reduct.

Additionally, we propose two more types of reducts, which are compounds of
L- with L≥- and L≤-reducts, respectively.

Definition 18 We define two types of reducts as follows.

• An LL≥-reduct in DRSM is a minimal condition attribute subset A ⊆ C satisfying
the following condition:

LAA(Xi ) = LAC (Xi ) and LAA(X≥
i ) = LAC (X≥

i ) for all i ∈ Vd . (DLL≥)

• A LL≤-reduct in DRSM is a minimal condition attribute subset A ⊆ C satisfying
the following condition:

UAA(Xi ) = UAC (Xi ) and LAA(X≤
i ) = LAC (X≤

i ) for all i ∈ Vd . (DLL≤)

As a result, all types of reducts proposed in DRSM are arranged in Fig. 7.3.
Consequently, there exist six different kinds of reducts, i.e., U-reducts (B-reducts, L -
reducts, U -reducts, B -reducts), LL≥-reducts, LL≤-reducts, L-reducts (P-reducts),
L≥-reducts (U≤-reducts) and L≤-reducts (U≥-reducts) in DRSM.
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Fig. 7.3 Strong-weak hierar-
chy of reducts in DRSM

strong

weak

7.4.3 Boolean Functions Representing Reducts

Because Boolean reasoning is a popular approach to enumerate all reducts of each
type in rough set literature, some authors already showed Boolean functions repre-
senting their own types of reducts [49, 52]. On the other hand, the authors proposed
a unified formulation of Boolean functions for all types of reducts using the general-
ized decision function in [31]. We only discuss Boolean functions for L≥-, L≤- and
L-reducts, because U-reducts, LL≥-reducts, LL≤-reducts, and their equivalences can
be computed from L≥- and L≤-reducts or their Boolean functions.

We represent preserving conditions of reducts by those of the generalized decision
function.

Lemma 5 ([31]) Let A be a subset of C. We have the following assertions.

• Condition (DL≥) is equivalent to:

lA(u) = lC (u) for all u ∈ U. (DlG)

• Condition (DL≤) is equivalent to:

u A(u) = uC (u) for all u ∈ U. (DuG)

• Condition (DL) is equivalent to:

δA(u) = δC (u) for all u ∈ U such that lC (u) = uC (u). (DLG)

The next lemma is parallel to Lemma 2 of RSM. It also connects two notions:
“preserving” and “non-dominating”.

Lemma 6 ([31]) Let u ∈ U. The following assertions are equivalent.

• lA(u) = lC (u).
• ∀u′ ∈ U, (lC (u′) < lC (u) ⇒ ∃a ∈ A, (u′, u) 	∈ D{a}).

Moreover, the following assertions are also equivalent.

• u A(u) = uC (u).
• ∀u′ ∈ U, (uC (u′) > uC (u) ⇒ ∃a ∈ A, (u, u′) 	∈ D{a}).
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Now we are ready to define a non-domination matrix, instead of the discernibility
matrix of RSM. The non-domination matrix M = (mi j )i, j=1,2,...,n in DRSM is
defined as follows:

mi j = {c ∈ C | (u j , ui ) 	∈ D{c}}

Based on M , we define four non-domination functions.

Definition 19 Non-domination functions F≥, F≤ and FL are defined as follows.

F≥(c̃1, . . . , c̃m) =
∧

i, j |lC (u j )<lC (ui )

∨

c∈mi j

c̃,

F≤(c̃1, . . . , c̃m) =
∧

i, j |uC (u j )>uC (ui )

∨

c∈m ji

c̃,

FL(c̃1, . . . , c̃m) =
∧

i :lC (xi )=uC (xi )

⎛

⎝
∧

j |lC (u j )<lC (ui )

∨

c∈mi j

c̃ ∧
∧

j |uC (u j )>uC (ui )

∨

c∈m ji

c̃

⎞

⎠ ,

where c̃i is a Boolean variable corresponding to i th condition attribute ci .

From Lemma 6, we have the following theorem. Let A ⊆ C . Remember that c̃A

is a Boolean vector such that i th element c̃A
i is true iff ci ∈ A, and φA is the term∧{c̃|c ∈ A}.

Theorem 10 ([31, 49, 52]) Let A be a subset of C. We have the following equiva-
lences:

• A satisfies (DlG), i.e., (DL≥) if and only if F≥(c̃A) = 1. Moreover, A is an
L≥-reduct in DRSM if and only if φA is a prime implicant of F≥,

• A satisfies (DuG), i.e., (DL≤) if and only if F≤(c̃A) = 1. Moreover, A is an
L≤-reduct in DRSM if and only if φA is a prime implicant of F≤,

• A satisfies (DLG), i.e., (DL) if and only if FL(c̃A) = 1. Moreover, A is an L-reduct
in DRSM if and only if φA is a prime implicant of FL.

From Theorem 10, all L≥-, L≤- and L-reducts can be obtained as all prime impli-
cants of Boolean functions F≥, F≤ and FL, respectively.

The proposed non-domination matrices have an advantage when compared with
the previous ones. We need to calculate neither lower, upper approximations nor
boundary regions of unions but only the lower bounds lC and the upper bounds uC

of all objects. Namely, the computation of the proposed approach is free from the
number of decision classes.

Example 13 Remember the decision table givenD = (U, C∪{d}, {Va}) in Table7.7.
In Table7.8, we show again D with the lower bounds lC and the upper bounds uC of
the generalized decisions of the objects which appear in the rightmost two columns
of the table. To obtain lC (ui ) and uC (ui ), we search the minimum class in D+

C (ui )

and the maximum class in D−
C (ui ), respectively.
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Table 7.8 The decision table
in Table7.7 with the
generalized decision function

Student Ma Ph Li E δC = 〈lC , uC 〉
u1 Good Good Good Good 〈good, good〉
u2 Good Good Med Med 〈med, good〉
u3 Med Good Med Good 〈med, good〉
u4 Bad Med Good Med 〈med, med〉
u5 Med Bad Med Bad 〈bad, med〉
u6 Med Bad Bad Med 〈bad, med〉
u7 Bad Bad Bad Bad 〈bad, bad〉

Non-domination matrices M are obtained as follows.

u1 u2 u3 u4 u5 u6 u7

u∗1 ∅ {Li} {Ma,Li} {Ma,Ph} C C C
u2 ∅ ∅ {Ma} {Ma,Ph} {Ma,Ph} C C
u3 ∅ ∅ ∅ {Ma,Ph} {Ph} {Ph,Li} C
u∗4 ∅ {Li} {Li} ∅ {Ph,Li} {Ph,Li} {Ph,Li}
u5 ∅ ∅ ∅ {Ma} ∅ {Li} {Ma,Li}
u6 ∅ ∅ ∅ {Ma} ∅ ∅ {Ma}
u∗7 ∅ ∅ ∅ ∅ ∅ ∅ ∅
For example, the entry corresponding to row u1 and column u3 on M contains

Ma and Li, because u3 is worse than u1 with respect to Ma and Li but not worse
with respect to Ph. Symbol C at some entries means {Ma, Ph, Li}. The rows with
symbol ∗ show objects ui such that lC (ui ) = uC (ui ).

The Boolean function F≥ is obtained from M as

F≥(M̃a, P̃h, L̃i) =
∧

i=1, j=2,3,...,7

∨

c∈mi j

c̃ ∧
∧

i=2,3,4, j=5,6,7

∨

c∈mi j

c̃ = P̃h ∧ L̃i.

From the last equation, F≥(M̃a, P̃h, L̃i) = true only when P̃h = true and L̃i = true.
This implies that only {Ma, Ph, Li} and {Ph, Li} satisfy (DL≥) owing to Theorem 10.
An L≥-reduct is a minimal set of condition attributes that satisfies (DL≥). Therefore,
{Ph, Li} is a unique L≥-reduct. Moreover, the L≥-reduct corresponds to a unique
prime implicant of F≥, i.e., P̃h ∧ L̃i.

Similarly, Boolean functions F≤, FU and FL are

F≤(M̃a, P̃h, L̃i) =
∧

i=4,5,6,7, j=1,2,3

∨

c∈m ji

c̃ ∧
∧

i=7, j=1,2,...,6

∨

c∈m ji

c̃ = M̃a ∧ P̃h,

FL(M̃a, P̃h, L̃i) =
∧

i=1, j=2,3,...,7

∨

c∈mi j

c̃ ∧
∧

i=4, j=5,6,7

∨

c∈mi j

c̃ ∧
∧

i=4, j=1,2,3

∨

c∈m ji

c̃

∧
∧

i=7 j=1,2,...,6

∨

c∈m ji

c̃ = M̃a ∧ L̃i.
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Consequently, we obtain {Ph, Li} as the unique L≥-reduct, {Ma, Ph} as the
unique L≤-reduct and {Ma, Li} as the unique L-reduct. Moreover, {Ph, Li}∪ {Ma,
Ph} = {Ma, Ph, Li}= C is the unique U-reduct, {Ph, Li}∪ {Ma, Li} = {Ma, Ph,
Li} = C is the unique LL≥-reduct, and {Ma, Ph}∪{Ma, Li} = {Ma, Ph, Li}= C
is the unique LL≤-reduct.

7.5 Concluding Remarks

In this chapter, we have studied structure-based attribute reduction as a rough set
approach to the attribute selection/reduction problem. We have proposed several
concepts of structure-based reducts. In the rough set model, there are 2 different
types of reducts, U-reducts and L-reducts. U-reducts preserve generalized decisions
∂C (u) for all objects u ∈ U , while L-reducts do so for all certain classified objects u,
namely, |∂C (u)| = 1. The authors studied refinement of the hierarchy of structure-
based reducts (Fig. 7.1) by interpolating reducts which preserve objects u whose
generalized decisions are at most k, namely, |∂C (u)| ≤ k [24]. The parameter k
provides a trade-off between the size of a reduct and preserved information.

In VPRSM, because approximations may not be monotone with respect to the
set inclusion of condition attributes, classifications of some objects become precise
by reducing condition attributes. From that viewpoint, the authors have proposed
enhancing reducts [21], which do not preserve but make classification more precise
than that of all condition attributes.

Attribute reduction have been also studied in other extensions of the rough set
model, e.g. tolerance-based RSM [44], RSM for decision tables with missing val-
ues [29, 30], Bayesian RSM [47], fuzzy RSM [27, 28], and variable precision
DRSM [26]. However, in general, extensions of the rough set model drop some
important properties of approximations. Therefore, in such models, reducts may not
be represented by Boolean functions.

When a measure γ (e.g. Eq. 7.8) representing a part of consistency of a rough
set model is given, we can define approximate measure-based reducts as follows:
A ⊆ C is an approximate reduct if γA ≥ (1 − ε)γC or γA ≥ γC − ε for a small
ε ≥ 0. Several measures used for approximate measure-based reducts have been
proposed, e.g. based on the number of discerned object pairs or the information
entropy [45, 46, 51].Comparingwith structure-based reducts, approximatemeasure-
based approach can easily control size of reducts, but we cannot expect which parts
of the structure of the rough set model deteriorate by reduction.

We show that reducts are (approximately) represented by prime implicants of
Boolean functions (or pairs of Boolean functions). To compute all reducts of a par-
ticular type,we solve the dualization problem (more precisely, positiveDNF (orCNF)
dualization) of the corresponding Boolean function. It probably cannot be solved in
polynomial time (it can be solved in quasi-polynomial time with respect to the sizes
of the input and the output [9]).
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To apply attribute reduction of this chapter to real-world data sets, we notice the
following three points. Firstly, we need additional measures to select the best reducts
for applications, for example, minimizing the size of the reduct or the number of
the equivalence classes given by the reduct and so on [1, 13, 27, 42, 48, 50]. Such
an optimization problem cannot be generally solved in polynomial time. Therefore,
there are heuristic methods computing one or a number of reducts which are near to
optimal [1, 27, 42, 48]. It does not mean that the Boolean functions studied in this
chapter are useless for applications. They can be incorporated into heuristic methods.

Secondly, when data sets include numerical or continuous attribute values, the
approach of this chapter does not work well, because the order of values or the degree
of difference between values are not considered (except for criteria in DRSM). There
are two approaches to overcome the drawback. One is discretization [7, 15] where
the domain of a numerical attribute is partitioned to lower number of values. After
discretization, we can apply attribute reduction to the data set without modification.
The other is to use a similarity relation [12, 28] instead of the indiscernibility relation
or a fuzzy partition [12, 22, 27] instead of the equivalence classes and define exten-
sions of RSM. In that case, we can define structure-based reducts for the extended
RSMs in the same way as those of this chapter.

Thirdly, reducts could suffer from overfitting because of rigid definitions of their
preserving conditions. One technique to avoid overfitting is dynamic reducts [1],
where decision tables with object subsets of a given cardinality are randomly and
repeatedly selected, and reducts which appear in more decision tables than a given
threshold are chosen as dynamic reducts.

In this chapter, we did not discuss algorithms to compute reducts and numerical
experiments, whereas they are found in [5, 6, 8, 11, 13, 17, 19, 34, 41, 50, 51].
The references show how to select a desirable reduct or find an optimal reduct, and
how to use the selected reduct for building classifiers. Additionally, they also show
experimental results for benchmark or real-world data sets. The references do not
include some types of reducts of this chapter, especially most types of reducts in
VPRSM, however, from their results we hope that the proposed reducts would be
useful in applications.

Proofs of theoretical results of this chapter are not so difficult. Parts of proofs are
found in our papers [20, 23, 25, 31].
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45. Ślȩzak, D.: Various approaches to reasoning with frequency based decision reducts: a survey.
In: Polkowski, L., Tsumoto, S., Lin, T.Y. (eds.) Rough Set Methods and Applications, pp.
235–285. Physica-Verlag, New York (2000)
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