
Chapter 6
Dependency Analysis and Attribute
Reduction in the Probabilistic Approach
to Rough Sets

Wojciech Ziarko

Abstract Two probabilistic approaches to rough sets are discussed in this chapter:
the variable precision rough set model and the Bayesian rough set model, as they
apply to data dependencies detection, analysis and their representation. The focus
is on the analysis of data co-occurrence-based dependencies appearing in classifi-
cation tables and probabilistic decision tables acquired from data. In particular, the
notion of attribute reduct, in the framework of probabilistic approach, is of interest in
the chapter. The reduct allows for information-preserving elimination of redundant
attributes from classification tables and probabilistic decision tables. The chapter
includes two efficient reduct computation algorithms.

Keywords Variable precision rough set model ·Bayesian rough set model ·Depen-
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6.1 Introduction

The chapter reviews the basics of the variable precision rough set [2, 3, 7, 13, 15, 26,
28, 30, 32, 34, 35] and the Bayesian rough set [13] approaches to data dependencies
detection, analysis and their optimal representation. The variable precision rough set
and the Bayesian rough set theories are extensions of the rough set theory, as intro-
duced by Pawlak [10, 11]. They are among many extensions and generalizations of
the rough set approach, which inspired significant research interest worldwide (see,
for example [5, 12, 17, 18, 22]). The primary motivation behind the research aimed
at extending rough set approach is the imperfections of gathered practical applica-
tion data. In particular, application data often suffer from presence of measurement
noise, leading to lack of consistency and resulting difficulty to form data classifi-
cations and set approximations of the rough set model. In addition, the data often
are real-valued, for example in pattern recognition or control applications, requiring
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initial preprocessing via a discretization procedure to make it applicable to rough
set methodology. This pre-processing however leads to a loss of information and
introduces a subjective factor into the method.

The variable precision and Bayesian rough set models are focused on the recogni-
tion andmodelling of set overlap-based, also referred to as probabilistic, relationships
between sets, which are most useful when dealing with noisy data. In this approach,
the set-overlap relationships are used to construct approximations of undefinable sets
[11]. The primary application of the approach is to the analysis of data co-occurrence-
based dependencies in classification tables and probabilistic decision tables derived
from data, as discussed in the following sections. Both, the probabilistic decision
tables and classification tables are normally “learned” from data to represent some
inter-data item connections, typically for the purpose of their analysis or data value
prediction. The probabilistic decision tables can also be used as a basis of generalized
probabilistic rule induction algorithms [29], but this topic is outside the scope of this
chapter.

In practical applications of the data-acquired decision tables, one of the main
issues is the identification of a minimal subset of attributes, which are discrete func-
tions of measured features, to represent an identified data dependency without any
loss, or with minimal loss, of information. The original general idea of attribute
reduct, as introduced by Pawlak [10, 11], is applicable here. However, the original
specific notion of reduct is applicable only to functional, or partial functional, data
dependencies. In this chapter, we discuss an extended notion of reduct, as defined
in the contexts of variable precision and Bayesian rough set models. The notion of
reduct in these contexts allows for information-preserving identification of minimal
subsets of attributes, in the presence of probabilistic dependencies between attributes.

The chapter is organized as follows. In the next section, we review the fundamen-
tals of the variable precision rough set approach, which include the introduction of set
approximations and the presentation of the basics of the related Bayesian rough set
model. In Sect. 6.3, we discuss different kinds of probabilistic dependencies occur-
ring between a “target set” and a partition of the universe of interest. The partition
is assumed to represent our classification knowledge. The target set is our learning
goal, whose approximate classification in terms of the classification knowledge we
are trying to learn. The dependencies in question reflect our overall ability to cre-
ate such a classification. In Sect. 6.4, the probabilistic attribute value-based decision
tables are introduced, along with related classification tables. Both kinds of these
tables represent our classification knowledge with respect to the target set.

The probabilistic decision tables additionally represent rough approximations of
the target set, as defined in the framework of the variable precision rough set theory.
The inter-attribute dependencies occurring in both, the probabilistic decision tables
and classification tables, are subject of Sect. 6.5. All the discussed dependencies are
of probabilistic nature and are either defined in the contexts of variable precision or
Bayesian rough set models. They generalize and expand the attribute dependencies
introduced by Pawlak in the original rough set theory [11]. Attribute reduction with
respect to introduced dependencies is a subject of Sect. 6.6. The monotonicity prop-
erty of the introduced λ—dependencymeasure allows for a definition of the notion of
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information-preserving reduct with respect to this dependency. Couple of efficient,
linear-time algorithms for computing single attribute reducts, either in classification
tables or probabilistic decision tables, are presented. The ability to compute reducts
allows us also to determine the importance, or significance of attributes. This is the
subject of Sect. 6.7. Finally, in Sect. 6.8, we discuss the concept of generalized core
attributes, the extension of the original core attributes introduced by Pawlak [10, 11].
The core attributes are the fundamental ones, which are preserved in every attribute
reduction.

6.2 Variable Precision Rough Sets

In the rough set approach to data analysis, the crucial aspect is the existence of
an ability, or knowledge, to form the prior classification of the universe of objects
of interest into distinct classes. This ability, or classification knowledge, is usually
associated with an external agent, such as medical professional for example, who
is assumed to know how to classify objects (for example patients) into categories
(for example, into health condition groups). However, in automated systems such
an expert typically is not available. Instead, the system has to rely on measurements
taken by system sensors (for example, temperature, blood pressure etc.) to perform
the classification. In the rough set approach, the measurements are converted into
discrete features called attribute values, which are then used to classify objects. We
elaborate in detail about the attribute value-based classifications in Sect. 6.4.

The general variable precision rough set (VPRS) model does not make any
assumptions how the prior classification was performed. It just assumes that some
kind of prior knowledge exists and is represented in mathematical form by an equiv-
alence relation, referred to as an indiscernibility relation IND on the universe U, IND
⊆ U ×U . The relation is assumed to have a finite number of equivalence classes, i.e.
classification categories, called elementary sets. It should be noted that the assump-
tion of finite number of classes may not be satisfied in general, but in attribute-value
systems, which are the focus of this chapter, it is always the case. The collection of
elementary sets of the IND relation will be denoted as IND∗. The pair (U, IND) is
called an approximation space.

Let X be an arbitrary subset, referred to as the target set, of the universeU , X ⊆ U .
In practice, the universe is a finite non-empty collection of objects of interest, such
as medical patients, and the target set is our “goal” class, for example representing
the class of patients suffering from a specific disease. Our objective is to create a
system which would allow us to classify arbitrary objects into the “goal” class, or its
complement, with an error rate which we would consider acceptable in the context
of our criteria (which are domain-specific and, consequently, outside of the rough set
model), but lower, on average, than in the case of random classification. For exam-
ple, the objective may be to predict (diagnose) the presence, or absence, of a specific
disease based on the results of medical tests, which are supposed to increase the accu-
racy of such predictions (if tests are properly designed) in comparison to predictions
based solely on the frequency of occurrence of the disease in the population.
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In the VPRS approach, each equivalence class E of the indiscernibility relation
IND is assigned two measures which are: the relative “size” of the class E within
universe U , referred to as the probability P(E) of E , and the relative “size” of the
target set X within an elementary set E , referred to as the conditional probability
P(X |E). The conditional probability, in this context, is just a measure of the degree
of overlap between the target set X and the elementary set E . These two measures
can be approximated from data respectively by:

P(E) = card(E)

card(U )
(6.1)

and

P(X |E) = card(X ∩ E)

card(E)
(6.2)

where card denotes set cardinality.
The target set X may be undefinable [11], which informally means that, in gen-

eral, it cannot be expressed as a set union of some elementary sets forming our
classification knowledge. That is, in general, the set definability criterion:

X = ∪{E ∈ IND∗ : E ⊆ X} (6.3)

is not satisfied.
This lack of definability is more common than not in applications. The original

rough set theory, as introduced by Pawlak [10, 11], deals with this problem via the
notions of lower and upper set approximations. However, inmany applications, when
the target set is not definable, this approach is not sufficient due to the absence of
numeric assessments of the degree of association of elementary sets with the target
set X .

The VPRS approach extends the rough set model to make it more flexible, by
replacing the full inclusion relation with the overlap relation in the definitions of
set approximations. Two precision control parameters called lower limit l and upper
limit u are used in the definition of lower approximation of the target set X, or its
complement. In this way, one can control the process of computation of approxima-
tions of the target set to identify such approximations which satisfy user-imposed
criteria, such as for example, characterizing classes of patients with an elevated (or
reduced) risk of a disease.

6.2.1 Set Approximations in the VPRS Approach

The approximations of the target set in the VPRS approach are defined in terms of
unions of some elementary sets, as controlled by lower limit l and upper limit u
precision parameters.
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The notion of prior probability P(X) plays also an essential role in the definitions
of approximations, also called approximation regions: it represents the likelihood
that a random object e ∈ U is a member of the target set X in the absence of any
classification knowledge about the object. If the classification knowledge is available,
as represented by the equivalence relation IND, the likelihood of membership in the
set X of objects belonging to different elementary sets can either increase, or decrease,
or stay approximately the same as the prior probability P(X). These variations in
the set X membership likelihood across different elementary sets are reflected in the
definitions of set approximation regions, which characterize areas of the universe
U with significantly increased, significantly decreased, or approximately unchanged
target set X membership probability.

Each elementary set is classified either into one of approximation regions of the
set X , i.e. a positive region POSu , a negative region NEGl , or a boundary region
BND l,u . The upper limit u defines the positive region, or lower approximation, of
the target set X , with the constraint 0 < P(X) < u ≤ 1. It represents the least
acceptable degree of the conditional probability P(X |E), or the set overlap degree,
to include the elementary set E in the positive region. The positive region, or the
lower approximation of the target set X, denoted as POSu , is a collection of objects
for which the probability ofmembership in the target setX is significantly higher than
the prior probability P(X), where the term significantly higher is precisely specified
by the parameter u (as defined by some external criteria):

POSu(X) = ∪{E : P(X |E) ≥ u}. (6.4)

The lower limit l defines the negative region of the target set X , with the constraint
0 ≤ l < P(X) < 1. It is the highest acceptable degree of the conditional probability
P(X |E) to include the elementary set E in the negative region. The negative region
of the target setX, denoted asNEGl is a collection of objects for which the probability
of membership in the target set X is significantly lower than the prior probability
P(X), where the term significantly lower is precisely specified by the parameter l
(as defined by some external, application-related, criteria):

NEGl(X) = ∪{E : P(X |E) ≤ l}. (6.5)

The boundary region denoted as BND l,u , is a collection of remaining objects
which cannot be classified with sufficient certainty into either positive or negative
regions. For the boundary area objects, the probability of membership in the target
set X is not significantly different from the prior probability P(X), that is:

BNDl,u(X) = ∪{E : l < P(X |E) < u}. (6.6)

Regardless of the choice of lower and upper limit control parameters, the positive
and negative approximation regions are subsets of absolute approximation regions,
as described in the next subsection.
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In the Pawlak’s rough set model [11], the notion of upper approximation of a set
is defined as a union of all elementary sets which have non-empty intersection with
the set. The generalized definition of upper approximation UPP l(X) in the VPRS
approach, as in the original rough set model, is a set union of the positive region and
of the boundary region giving:

UPPl(X) = ∪{E : P(X |E) > l}. (6.7)

Note that the generalized definition coincideswith the Pawlak’s definition of upper
approximation when l = 0. In addition, when u = 1, it can be easily demonstrated
that the VPRSM definitions of positive, negative and boundary regions, become
equivalent to the original rough set model’s definitions of lower approximation,
negative and boundary regions [11].

One can also note that, in general, as opposed to Pawlak’s rough sets, it is not
true that POSu(X) ⊆ X and it is not true that X ⊆ U P Pl(X). Consequently, the
rough set cannot be defined in the VPRSM as a pair consisting of upper and lower
approximation, as it is done in Pawlak’s rough sets [11].

A frequently asked question is to how to set, or tune, the values of the precision
control parameters l and u. The author’s point of view is that apart from the general
constraint 0 ≤ l < P(X) < u ≤ 1, the settings of the parameters are entirely
dependent on the requirements of a practical application,while being likely subjective
or obtained via the cost-benefit analysis [27].

6.2.2 Absolute Set Approximation Regions

To describe the areas of the universe characterized by an unconstrained increase, or
decrease of the set X membership probability, the following definitions of absolute
approximation regions are applicable. It this case, no parameters to specify “suffi-
ciently” high increase, or decrease of the set membership probability in those areas
are used. We call these areas absolute approximation regions.

The absolute boundary region of the target set X is a definable region of the uni-
verseU consisting of those elementary setswhich are characterized by the unchanged
probability of membership in the target set X ⊆ U , that is:

BND∗(X) = ∪{E : P(X |E) = P(X)}. (6.8)

As it can be easily verified, in the absolute boundary region, each elementary set
E is probabilistically independent from the target set X, i.e. P(X ∩Y ) = P(X)P(Y ).
Consequently, the whole boundary region is independent from the target set X . In
other words, the objects in the absolute boundary regions can be considered entirely
unrelated with the target set.
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The region of the universe U that is characterized by an increased probabilistic
connection with the target set X ⊆ U , relative to the prior probability P(X), is called
the absolute positive region of the set X , denoted as POS ∗(X):

POS∗(X) = ∪{E : P(X |E) > P(X)}. (6.9)

In the absolute positive region of X , the likelihood of an object belonging to the
target set is higher than in the whole universe U , but in practice that increase may
be not sufficient from an application perspective.

Similarly, the absolute negative region, NEG∗(X), of the target set X is an area
of the universe U characterized by reduced likelihood of an object being a member
of the target set X :

NEG∗(X) = ∪{E : P(X |E) < P(X)}. (6.10)

The above definitions provide the basis of the Bayesian rough set model [13, 30].

6.3 Dependencies in Approximation Spaces

Theprobabilistic connections between elementary sets and the target set, and between
definable sets and the target set in the approximation spaces can be quantified by using
different dependencymeasures [24, 33]. Some of thesemeasures are reviewed below.

6.3.1 Absolute Certainty Gain

Absolute certainty gain, denoted as gabs, evaluates the degree of one-directional
dependency between any two sets. In the simplest case, it is a single-directional
dependency measure representing the degree of change of the probability of mem-
bership in the set X for an object belonging to the elementary set E. The absolute
certainty gain is defined by:

gabs(X |E) = |P(X |E) − P(X)|, (6.11)

where |.| is the absolute value function.
The above definition can be extended to any definable setY . The absolute certainty

gain between the subsets X and Y can be computed directly from the available
probabilistic knowledge based on the formula below, where the summation is over
all elementary sets forming the definable set Y :

gabs(X |Y ) = |ΣE⊆Y P(E)P(X |E) − P(X)ΣE⊆Y P(E)|
ΣE⊆Y P(E)

. (6.12)
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6.3.2 Absolute Dependency Gain

Another dependency measure is an absolute dependency gain, which is a bi-
directional dependency measure used to evaluate the degree of the two-way con-
nection between any two sets. Given two arbitrary subsets X and Y of the universe
U, the absolute dependency gain, denoted as dabs(X,Y), is defined by:

dabs(X, Y ) = |P(X ∩ Y ) − P(X)P(Y )|. (6.13)

The absolute dependency gain reflects the degree of probabilistic dependency
between sets X and Y by quantifying the amount of deviation from the probabilistic
independence between sets X and Y, as represented by the product P(X)P(Y ).

Similar to the absolute certainty gain, in an approximation space (U, IND), if a
subset Y is definable, then the absolute dependency gain between the subsets X and
Y can be computed directly from the available probabilistic knowledge based on the
following formula:

dabs(X, Y ) = |ΣE⊆Y P(E)P(X |E) − P(X)ΣE⊆Y P(E)|. (6.14)

The absolute boundary region of the target set X can alternatively be expressed
by the absolute dependency gain as:

BND∗(X) = ∪{E : dabs(X, E) = 0}. (6.15)

In other words, the absolute boundary region is an area with no dependency gain.

6.3.3 Average Dependency Gain

The average, or expected gain function, denoted as egabs(X |IND), is a measure
of the degree of probabilistic dependency between classification represented by the
indiscernibility relation IND and the classification (X,¬X) of the universeU induced
by the target set X, and its complement ¬X . It is a measure of dependency between
two partitions of the universe U :

egabs(X |IND) =
∑

E∈IND∗
|P(X ∩ E)− P(X)P(E)| =

∑

E∈IND∗
dabs(X, E). (6.16)

When the dependency is functional, i.e. when set X is definable in Pawlak’s sense
[11], we have:

egabs(X |IND) =
∑

E∈IND∗
|P(X ∩ E) − P(X)P(E)| (6.17)
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that is:

egabs(X |IND) =
∑

E∈IND∗
P(E)(1 − P(X)) = 1 − P(X) = P(¬X). (6.18)

Similarly, egabs(¬X |IND) = P(X) in the functional case.
In the casewhen egabs = 0, P(X∩E) = P(X)P(E), for every elementary set E .

This means that for every elementary set E , P(X |E) = P(X) and P(E |X) = P(E).
This is equivalent to saying that all elementary sets are probabilistically independent
from the target set X . In practical terms, it means that the occurrence of an object
belonging to any of the elementary sets does not affect in any way our ability to guess
whether the object is the member of the set X, or of its complement ¬X .

6.4 Probabilistic Decision Tables

Probabilistic decision tables describe classes of approximation space and their prob-
abilistic relations with a target set. They are composed of combinations of attribute
values, probability values and approximation region designations.

6.4.1 Attributes

In many applications, the information about objects is expressed in terms of values
of observations or measurements, often real-valued, referred to as features. For the
purpose of rough set-based analysis and classifier construction, the feature values are
typically mapped into finite-valued numeric or symbolic domains to form composite
mappings, referred to as attributes. A common kind of mapping is dividing the range
of values of a feature into a number of suitably chosen disjoint subranges via a
discretization procedure (see, for example, [9]). Formally, an attribute a is a function
on the universe U , a : U → a(U ) ⊆ Va , where Va is a finite set of values called the
domain of the attribute a.

Based on combinations of attributes and their values, a structure of approximation
space can be created and analyzed using general notions and results of rough set
theory and of the VPRSM. Each attribute defines a classification of the universe U
into classes corresponding to different values of the attribute. Each attribute value
v ∈ a(U ), corresponds to a set of objects Ea

v ⊆ U such that Ea
v = a−1(v) = {e ∈

U : a(e) = v}. The classes Ea
v , referred to as a-elementary sets, form a partition of

U . The equivalence relation corresponding to this partition will be denoted as INDa .
Similarly, an equivalence relation INDB , and the corresponding approximation space,
can be defined on the basis of any non-empty set of attributes B.
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6.4.2 Decision Tables

A knowledge representation system [11] is a pair (U, A), where U is a universe and
A is a nonempty and finite set of attributes defined on U. In the context of rough
set approach, decision tables are constructed in terms of knowledge representation
systems as follows.

Let C, D ⊂ A be two disjoint subsets of attributes, called condition and deci-
sion attributes, respectively. The condition attributes generate the partitioning of the
universe U into classes of objects having identical values of attributes belonging
to C , thus forming the structure of approximation space on U . The corresponding
collection of elementary sets of this approximation space is denoted by U/C. Simi-
larly, the decision attributes D induce a structure of approximation space on U , with
U/D denoting its elementary sets. The knowledge representation systemwith defined
condition and decision attributes is called a decision table [11]. Decision tables fall
into two broad groups: deterministic decision tables and non-deterministic decision
tables.

Deterministic decision tables describe the functional relation between a set of
observations (inputs, conditions) and the corresponding decisions (outcomes). In
practice, deterministic decision knowledge is not always available. When only some,
but not all, decisions can uniquely be determined by combinations of attribute values,
the decision table is called non-deterministic. In a non-deterministic decision table,
the relationship between conditions and decisions is only partially functional.

Compared to the previous two types of decision tables, which are based on the
original rough set theory, a probabilistic decision table is developedwithin the frame-
work of the variable precision rough set theory. It contains some built-in probabilistic
measures to help in the process of decisionmaking or prediction in non-deterministic
cases.

When defining the probabilistic decision tables, we focus on elementary sets (our
target sets) of the decision attribute D, X ∈ U/D, of the partition generated by the
decision attributes.

For a given target set X , the probabilistic decision table can be defined as a
mapping associating each combination of condition attribute values, corresponding
to an elementary set E ∈ U/C, with a triple of values representing:

1. the unique designation of the rough approximation region (positive, negative, or
boundary region),

2. the respective values of the elementary set probability P(E), and
3. the conditional probability P(X |E).

In practice, when deriving a probabilistic decision table, the measures of P(E)

and P(X |E) are usually computed based on available data. An example probabilistic
decision table is shown in Table6.1. It should be noted at this point, that while prob-
abilistic decision tables are containing information about set approximation regions
of the variable precision rough set model, and consequently depend on the settings of
the parameters l and u, similar decision tables can be constructed based on Bayesian
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Table 6.1 Probabilistic decision table

Ei a1 a2 a3 Region P(Ei ) P(X |Ei )

E0 1 1 1 BND 0.0520 0.78

E1 1 1 0 NEG 0.1354 0.02

E2 1 0 1 POS 0.1562 0.99

E3 1 0 0 BND 0.1562 0.36

E4 0 1 1 NEG 0.1406 0.11

E5 0 1 0 BND 0.1093 0.41

E6 0 0 1 NEG 0.1562 0.27

E7 0 0 0 POS 0.0941 0.85

rough set model, using absolute approximation regions. Another related issue is that
the probabilistic decision tables can be structured into parent-child linear hierarchies,
in which a parent boundary region provides a basis to form an approximation space
for the child decision table [31]. In this way, the exponential growth of decision
tables caused by the increase in the number of attributes can be effectively controlled
without reducing the quality of rough approximations.

6.4.3 Classification Tables

An intermediate step leading to the probabilistic decision table is the creation of
the classification table, as illustrated in Table6.2. The classification table associates
combinations of condition attribute values, for each elementary set E ∈ U/C , with
a pair of corresponding P(E) and P(X |E) probability measures. In the example
Table6.2, the partitioning of U is obtained in terms of conditional attributes C =
{a1, a2, a3}, with the connected probabilistic measures. The information contained
in the classification table can then be used to build rough approximations of any
target set X ∈ U/D, based on pre-set values of the precision control lower and upper
limit parameters l and u.

Table 6.2 Classification table

Ei a1 a2 a3 P(Ei ) P(X |Ei )

E0 1 1 1 0.0520 0.78

E1 1 1 0 0.1354 0.02

E2 1 0 1 0.1562 0.99

E3 1 0 0 0.1562 0.36

E4 0 1 1 0.1406 0.11

E5 0 1 0 0.1093 0.41

E6 0 0 1 0.1562 0.27

E7 0 0 0 0.0941 0.85
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Once the approximation region of each elementary set E was determined, the
classification table can be converted into a probabilistic decision table. The creation
of the probabilistic decision table involves adding an extra column, technically of a
newdecision attribute calledRegion, tomark the approximation region designation of
each elementary set. The decision table created in that way is fully deterministic with
respect to the new Region decision attribute which is representing the corresponding
three approximation regions: POS, NEG and BND. This is illustrated in the example
probabilistic decision Table6.1, derived from the classification Table6.2, with l =
0.3 and u = 0.8.

6.5 Dependencies in Decision Tables

In this section, dependencies between attributes occurring in classification tables and
probabilistic decision tables are discussed. Specifically, our interest is in the depen-
dencies occurring between condition attributes C, or their subset, and the two-class
classification (X,¬X) formed by the target set X and its complement¬X . This clas-
sification is numerically represented in both classification and probabilistic decision
tables, by values of the conditional probability P(X |E). Technically, the columns
P(E) and P(X |E) can be treated as extra “attributes” associating some real values
with elementary sets of the classification generated by condition attributes. In par-
ticular, the attribute P(X |E) describes the distribution of the degrees of association
across different elementary sets E with the target set X . Consequently, it can be used,
in conjunction with the attribute P(E), for computing the overall degree of associa-
tion of the set of condition attributes, or of its subset, with the binary classification
of the universe U , as defined by the target set X and its complement ¬X .

In our research, we identified two dependencies, called γ—dependency and λ—
dependency, which provide useful measures for evaluating probabilistic decision
tables. They also provide criteria for decision table optimization through reduction
of redundant condition attributes.

6.5.1 Functional and Partial Functional Dependencies

Functional dependencies and partially functional dependencies between attributes
of decision tables were originally explored in [11]. We will refer to them as γ—
dependencies. They capture the quality of approximation of the target set X ∈ U/D
in terms of the elementary sets of the approximation space induced by condition
attributes. We generalize them within the framework of the VPRS model by defining
the γ—dependencies [33] as a relative size of the positive region of the two class
partition (X,¬X), subject to prior setting of the values of the control parameters l
and u:
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γl,u(X |C) = P(POSu(X |C) ∪ NEGl(X |C)), (6.19)

where POSu(X |C) and NEGl(X |C), respectively are positive and negative regions
of X in the approximation space induced on U by the set of condition attributes C .
This dependency measure reflects the proportion of objects in the universe U that
can be classified as members of the target set X, or a complement of the target set X,
with sufficient certainty, as given by the parameters l and u.

The γl,u(X |C) measure was inspired by the partial functional dependency mea-
sure γ(D|C) introduced by Pawlak [11], which is given as a fraction of objects of
the universe U that can be uniquely classified, based on their condition attributes
value combinations, as members of some classes of the decision attribute D. More
precisely, in the VPRS model terms:

γ(D|C) =
∑

F∈U/D

P(POS1(F |C)). (6.20)

The above measures play useful role in decision table analysis and reduction of
condition attributes.

6.5.2 λ—Dependency Measure

Another kind of dependency, unrelated to the the γ—dependencies measure and
conveying different kind of information, is a parametric λ—dependency, denoted as
λl,u(X |C) [33]. It captures the average, or expected degree of the probabilistic con-
nection between elementary sets E (E ∈ U/C) and the binary classification (X,¬X)

corresponding to the target set X and its complement¬X . The dependency is defined
as a normalized expected degree of deviation of the conditional probability P(X |E)

from the prior probability P(X):

λl,u(X |C) =

∑

E⊆POSu(X |C)∪NEGl (X |C)

P(E)|P(X |E) − P(X)|

2P(X)(1 − P(X))
, (6.21)

where 2P(X)(1−P(X)) is a normalization factor equal to the theoreticallymaximum
value of the numerator summation, achievable only when X is definable in Pawlak’s
rough set’s sense, independent of settings of the parameters l and u. The higher the
deviation, the stronger the probabilistic connection between conditional attributes
C and the decision partition (X,¬X), and vice versa, with the total probabilistic
independence occurring at λl,u(X |C) = 0.

In the framework of the Bayesian rough set model, the parametric λ—dependency
reduces to non-parametric λ—dependency defined as:
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λ(X |C) =

∑

E∈U/C

P(E)|P(X |E) − P(X)|

2P(X)(1 − P(X))
. (6.22)

The non-parametric λ—dependency λ(X |C) is a normalized expected degree of
deviation of the conditional probability P(X |E) from the prior probability P(X).
Themain practical advantage of the non-parametric λ—dependency is the absence of
any external parameters,whichmay be difficult to obtain, to compute the dependency.
Another useful advantage is its monotonicity with respect to condition attributes, as
explained in the next section.

6.6 λ—Dependency-Based Reduct

The application of idea of reduct, introduced by Pawlak [10, 11], allows for opti-
mization of representation of classification knowledge by providing a technique
for removal of redundant attributes. The concept of reduct generated considerable
amount of research interest, primarily as a method for feature selection [1, 2, 6, 8,
12–14, 16, 19–21, 23–25]. The general notion of reduct is applicable to the optimiza-
tion of classification tables and probabilistic decision tables. The following theorem
[13] demonstrates that the λ—dependency measure is monotonic, which means that
expanding the set of condition attributes B ⊆ C will not result in the decrease of the
dependency level λ(X |B).

Theorem 1 Let B ⊆ C be a subset of condition attributes on U and let “a” be any
condition attribute. Then the following relation holds:

λ(X |B) ≤ λ(X |B ∪ {a}). (6.23)

As a consequence of the Theorem, the notion of the probabilistic reduct of
attributes RED ⊆ C can be defined as a minimal subset of attributes preserving
the λ—dependency with the target classification (X,¬X).

The reduct satisfies the following two important properties:

λ(X |RED) = λ(X |C) (6.24)

and for any attribute a ∈ RED:

λ(X |RED − {a}) < λ(X |RED). (6.25)

The probabilistic reducts, called λ—reducts, can be computed using any methods
available for reduct computation in the framework of the Pawlak’s original rough
set approach, and in particular, a single λ—reduct can be easily computed from a
classification table using the following λ—Reduction algorithm:
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Algorithm 1 λ—Reduction:
Step 1: Let Initial Dependency ← λ(X |C);
Step 2: Arrange condition attributes a ∈ C in descending order based on the

degree of λ—dependency measure λ(X |{a});
Step 3: Starting with the attribute with the lowest λ—dependency degree and

proceeding in ascending order, perform the following two steps for all condition
attributes:

Step 3.1: Test the condition Initial Dependency = λ(X |C − {a});
Step 3.2: If Initial Dependency = λ(X |C − {a}) then eliminate the attribute a

from the set of condition attributes C ;
Step 4: The remaining set of condition attributes at the end of the process is a

λ—reduct of the initial collection of condition attributes.

In the above algorithm, the condition attributes with the weakest connection with
the target classification are eliminated first. Although this technique does not guar-
antee finding the shortest reduct, it appears to be a reasonable heuristic to find best
attributes in the reduct. It should also be noted that the λ—reduct, in general, does not
preserve the approximation regions of a target set X . This means that after computing
the λ—reduct of a condition attributes, the approximation regions of a probabilistic
decision table have to be re-computed again.

If the preservation of the approximation regions of a probabilistic decision table
is of interest, the reduction of condition attributes can be conducted using γ—
dependencies measure (Eq.6.19), which is also monotonic. In this case, any reduct,
referred to as γ—reduct, of condition attributes preserving the functional dependency
between the condition attributes and the attribute Region indicating the approxima-
tion region of each elementary set, can be computed. A single γ—reduct can be
identified using a variant of λ—Reduction algorithm, referred to as γ—Reduction
algorithm:

Algorithm 2 γ—Reduction:
Step 1 Let Initial Dependency ← 1;
Step 2 Arrange condition attributes a ∈ C in descending order based on the

degree of λ—dependency measure λ(X |{a});
Step 3 Starting with the attribute with the lowest λ—dependency degree and

proceeding in ascending order, perform the following two steps for all condition
attributes:

Step 3.1 Test the condition Initial Dependency = γ(Region|C − {a});
Step 3.2 If Initial Dependency = γ(Region|C −{a}) then eliminate the attribute

a from the set of condition attributes C ;
Step 4 The remaining set of condition attributes at the end of the process equals to

a γ—reduct of the initial collection of condition attributes of a probabilistic decision
table.
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6.7 Probabilistic Decision Rules

Once the attribute reduct was computed, corresponding classification and decision
tables can be formed based on the reduced set of condition attributes. Each row of
either of such tables is a probabilistic decision rule with probabilistic “confidence
factor” given by P(X |Ei ) attached to it. The “strength” of such a rule is given by the
fraction of “supporting” cases, that is, P(Ei ). For example, the row for the elementary
set E2 of the classification Table6.2, can be interpreted as a rule:

if (a1 = 1)∧(a2 = 0)∧(a3 = 1) then X with confidence = 0.99 and strength =
0.1562.

The rule of this kind gives the likelihood that a new object matching the rule’s
preconditions will belong to the target set X .

Similarly, the probabilistic rules can be computed from probabilistic decision
tables. In this case, the target set X is replaced by either positive, negative or boundary
regions. For example, the row for the elementary set E2 of the classification Table6.2,
can be interpreted as a rule:

if (a1 = 1) ∧ (a2 = 0) ∧ (a3 = 1) then POS with confidence = 0.99 and
strength = 0.1562.

This rule specifies the likelihood that a new object matching the rule’s precondi-
tions will belong to the positive region of the target set X . Clearly, these rules are
dependent on the settings of the precision parameters l and u.

If required, the rules based on the probabilistic decision tables can be further sim-
plified (or “generalized”, using machine learning terminology) by removing some
unnecessary attribute-value pairs from their preconditions, without affecting their
confidence factors. This objective can be accomplished by computing a value reduct
of attributes [11]. Value reduct was used in some machine learning algorithms based
on the rough set theory [31]. However, we will not elaborate more about this com-
prehensive topic in this chapter as it deserves another chapter of its own.

6.8 Significance of λ—Reduct Attributes

The λ—Reduct provides a method for computing fundamental factors of the λ—
dependency.

The attributes appearing in a λ—reduct can be evaluated with respect to their
contribution to the dependency with the target classification by adopting the notion
of a significance factor. The significance factor sigRED(a) of an attribute a ∈ RE D
is a relative decrease of the dependency λ(X|RED) caused by removal of the attribute
“a” from the reduct:

sigRED(a) = λ(X |RED) − λ(X |RED − {a})
λ(X |RED)

. (6.26)

Similarly, the significance of attributes in a probabilistic decision table can be
assessed within any γ—reduct, using the approach given above.
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6.9 λ—Core Collection of Attributes

As in the original rough set approach [11], one can easily identify the set of most
essential condition attributes with respect to the λ—dependency. These attributes,
called the λ—core, are the ones which would never be eliminated in the process of
any λ—Reduct computation. They are included in all λ—reducts i.e. their collection
is equal to the intersection of all λ—reducts.

Any core attribute {a} satisfies the following inequality:

λ(X |C) > λ(X |C − {a}). (6.27)

The above inequality demonstrates that there is no need to compute allλ—reducts,
which isNP-hard, to identify theλ—core as the core attributes can be found by simple
linear testing procedure.

As in the case of λ—core attributes, γ—core attributes can also be computed in
a probabilistic decision table with respect to the dependency γ(Region|C) by testing
the effect of removal of each condition attribute.

6.10 Final Remarks

The chapter reviews results of our long-term research on data dependencies, within
the frameworks of the variable precision and Bayesian rough set models, occur-
ring in approximation spaces and in both, classification and decision tables. These
probabilistic dependencies are defined based on the degrees of overlap between
sets. The primary dependency measures discussed in the chapter are γ—dependency
and λ—dependency. They generalize and expand the attribute functional and partial
functional dependency measures introduced by Pawlak [10, 11]. The applicability
of the measures to creation, analysis and optimization of classification and deci-
sion tables, via the concept of attribute reduct, was also discussed and two reduct
computation algorithms were presented. The variable precision rough set approach
was used inmany applications since its introduction in 1990s. To our best knowledge,
the most comprehensive application, involving the use of hierarchies of probabilistic
decision tables and the attribute dependencymeasures presented in this chapter, were
the experiments with face recognition [4]. It is our belief that the theory and meth-
ods presented in the chapter will find additional useful applications in areas dealing
with large amounts of data such as, for example, in medicine, pattern classification,
market analysis and prediction, machine learning and data mining in general, just to
mention a few areas where in our opinion this theory is applicable.
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