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A Geometric Approach to Feature Ranking
Based Upon Results of Effective Decision
Boundary Feature Matrix
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Abstract This chapter presents a new method of Feature Ranking (FR) that
calculates the relative weight of features in their original domain with an algorithmic
procedure. The method supports information selection of real world features and is
useful when the number of features has costs implications. The Feature Extraction
(FE) techniques, although accurate, provide the weights of artificial features whereas
it is important to weight the real features to have readable models. The accuracy of
the ranking is also an important aspect; the heuristics methods, another major family
of ranking methods based on generate-and-test procedures, are by definition approx-
imate although they produce readable models. The ranking method proposed here
combines the advantages of older methods, it has at its core a feature extraction
technique based on Effective Decision Boundary Feature Matrix (EDBFM), which
is extended to calculate the total weight of the real features through a procedure
geometrically justified. The modular design of the new method allows to include
any FE technique referable to the EDBFM model; a thorough benchmarking of the
various solutions has been conducted.

Keywords Feature ranking · Feature weight · Effective decision boundary feature
matrix · Classification

4.1 Introduction

The recent developments of information technology dramatically increased the capa-
bility of gathering information. This information is described by a high number of
attributes, observations or measures, generically called features. On the one hand this
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improves our ability to study real phenomena, but on the other hand huge amounts
of data produce an “informative overload”, raising data acquisition and processing
costs without effective exploitation of information. What is more, most of machine
learning techniques suffer from the so called “curse of dimensionality” effect, and
human interpretation of models generated by these techniques can be difficult on
high dimensional spaces. To address these issues, the adoption of Feature Selection
(FS) in processes is observing increasing interest and expansion.

Decision making and operations in the modern production contexts require a FS
methodwhich is generally valid for all applications, therefore robust andflexible, able
to operate interactively in a dynamic information environment, dealing effectively
with challenges posed by data heterogeneity, data bandwidth and real-time require-
ments. The large availability of information represents also a challenge because of
the exponential growth of data acquisition costs and, last but not least, energy con-
sumption by computers and acquisition sensor systems. The FS process represents a
complex decisional mechanism in which the accuracy of results is equally important
as usability, fastness, robustness and scalability. In the scientific literature, the cur-
rent approaches to FS in the machine learning process show distinct solutions which
address specific issues and highlight opposite vintages, though many practical issues
have arisen around applications in productive contexts that have never been consid-
ered on the whole. This is the context that inspires the invention and validation of
our novel Feature Ranking (FR) method that supports the FS. This chapter proposes
an innovative approach to FR that detains vintages otherwise dispersed over a vari-
ety of distinct methods. Our research is articulated over two main objectives, the
first is to obtain feature ranking leading to high accuracy in machine learning goals
achievement, the second is to provide an algorithm capable to actively consider cost
functions in supporting decision making. These issues have been studied in relation
to a machine learning process among the most known: the classification.

4.2 Feature Ranking for Classification:
The Background Picture

4.2.1 Intrinsic Discriminant Dimension
of a Classification Task

In the literature FS refers to the problem of selecting a subset of relevant features
for building robust learning models [19, 27]. The concept of optimal feature subset
has been refined during the years by the comprehension of the dataset properties that
condition the classification performance. As it happens in generic data collections,
many of the features are insignificant to reach a learning objective. A definition of
relevant feature is provided by [3]: a feature xi is strongly relevant to dataset X if
there exist examples A and B in X that differ only in their assignment to xi and
have different labels. A feature xi is weakly relevant to classification accuracy if it
is possible to remove a subset of the features so that becomes strongly relevant.
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In a classification task, the FS is used to predict the so called intrinsic discriminant
dimension of the dataset, which has been defined by Lee and Landgrebe [24] as
the smallest dimensional subspace wherein the same classification accuracy can be
obtained as could be obtained in the original space. Effects of FS on accuracy have
more recently been studied by Sima et al. [34]. In [21, 35], the problem of FS is
seen as trade-off between generalization and specialization or, equivalently, a trade-
off between bias and variance of the inductive process. A classification algorithm
partitions the instance space into regions; when the number of features is relatively
small, regions are too large, that causes the partitioning of the instances to be poor in
terms of generalization and therefore accuracy decreases, this phenomenon is called
bias. When the number of features is high, the probability that individual regions are
labeled with the wrong class is increased too. This effect is called variance. Deci-
sion tree and neural network classifiers are particularly sensible to variance. There
emerges the concept of irrelevant/redundant features that might cause the classifica-
tion algorithms loosing efficiency and accuracy, whereas the subset of features that
improves the performance of learning algorithms is defined optimal subset. All the
aspects of the learning algorithm sensitivity to the dataset dimensionality, have been
generally named as the curse of dimensionality by Kira and Rendell [20].

The optimal subset can be detected on a feature evaluation function [8]. When
doing classification, an Evaluation Function (EF) expresses for each feature subset
its ability to discriminate between classes. The effectiveness of the EF in highlighting
the relative importance of feature depends on the search strategy by which the space
of all possible subsets is explored, and it has measurable properties: accuracy (how
accurate is the prediction of the EF), generality (how suitable is the EF for different
classifiers) and time complexity (time taken to calculate the EF). A selection based
on classification accuracy can be considered effective if the classifier error rate does
not significantly decrease after selection. The authors indicate the 1NN classifier as
a convenient algorithm to build the evaluation function since it appears to always
provide a reasonable classification performance in most applications.

4.2.2 Classical Feature Selection Strategies

The FS process is divided generally into two phases: FR and FS in the strict sense. It is
necessary to rank the relative importance of features before proceeding to an optimal
selection and then learning a classification model, although these two phases can
be integrated in different modes as it will be discussed in this section. The progress
in scientific research almost coincides for ranking and selection. As in the survey
of [2, 15], the FS methods are categorized in two main categories: (i) methods that
explore the space of possible subsets, searching an optimal subset of features by
using heuristics to limit computational complexity, (ii) methods that rank features
individually based on properties that good features are presumed to have, such as
their contribution to class separability. In the classification learning process, input
dataset is arranged in a n by m matrix where each row, or record, represents an
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object belonging to a class, and each column represents a characterizing feature. In a
geometric sight, the objects can be thought as points positioned in an m-dimensional
space of features. The solution to a problem of classification can be thought as the
procedure that finds the hyperplanes that, in the feature space, separate the classes
of points.

A broad group of FS techniques is based on the construction and ranking of new
features [11, 16]. The Feature Extraction (FE) process is based on a transforma-
tion of the original set of real features by a linear combination of these, by which
the power to discriminate among classes is concentrated on a reduced number of
extracted features. The relevancy of each individual feature is evaluated, in fact the
set of eigenvalues, always associated with the transformation process, represents the
relative relevancy of each extracted feature and allows ranking them. It is impor-
tant to notice, however, that FE methodology was conceived primarily to do data
compression, therefore it effectively reduces the size of the initial volume of data,
but it implies the entire dataset to be available to construct each extracted feature;
clearly the FE approach is of no help in an application where the containment of data
acquisition costs is important. Furthermore the FE model is very application specific
since extracted features are uniquely associated with a dataset.

For FS, three modes of application have been identified by [6, 16, 29] in relation
to the dependence on the classification algorithm: in the wrapper mode, selection
and classification are iterated to refine the selection of features up to achieving an
optimal performance of the classification algorithm. The exploration of the solution
space can be conducted either with the brute force or the heuristic approaches. The
wrapper mode is supervised and is not suitable for applications in real-time, although
some solutions have been proposed that increase its performance whilst avoiding its
procedural complexity [28]. By contrast, in the filter mode the features that respond
to a general criterion of relevancy for a classification process are selected. The filter
method is applied in a unique step independently of the classification algorithm. In
the Embedded mode, FS is part of the model training process, and features relevancy
is obtained by analyzing their utility for optimizing the objective function of the
learning model; an application example is in [30]. From a productive point of view
these three methods represent different levels of trade-off between ease of execution
and accuracy of the results.

When heuristic methods are used in feature selection the search of the optimal
subset is done by attempts, bywhich there is built an evaluation function that provides
for each subset of real features its ability to discriminate between classes [8, 36]. The
results depend sensibly on the heuristic adopted and the amount of points effectively
explored of the solution space. Because of the underlying subjective assumption, the
heuristic approach is not fully reliable [1, 33], however it has the vintage to produce
a rank model for real world features, therefore retaining a human interpretability.
Among the heuristic strategies we would like to describe briefly the following: Gain
Ratio, One-Rule and Relief-F.

The Gain Ratio algorithm [32] uses information entropy to find out how well a
feature separates instances. The goodness of each individual feature depends of how
broadly and uniformly it splits the considered data. Features are sorted from the most
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relevant (the one with the highest gain ratio) to the least relevant (the one with the
lowest gain ratio). Then, a decision tree is created starting with the most relevant
feature. This method is computationally efficient because it tests at most a number
of cases equal to the number of features. The danger is that if none of the features
is significantly better than the others then the method may fail to find a good subset,
by contrast if there is a strongly relevant feature the method gives reasonably good
results.

The One-Rule algorithm [18] ranks the attributes according to the error rate. This
method is sensibly affected by overfitting.

The Relief algorithm uses a nearest-neighbor approach [20]. The algorithm
updates iteratively a relevance vector of length equal to the number of features,
initially set to zero. In a two-class problem, for a randomly chosen sample, one
nearest point is chosen in the same class and one in the opposite class. The squared
component distances of these two closest examples are component-wise subtracted
from (or added to) the relevance vector depending on whether the closest example
was in the same (or different) class. This procedure is repeated for m (a given para-
meter) times, and those features whose relevance weight, thus computed, are above
a certain threshold are selected. An improvement of the basic algorithm is Relief-F
[23] that uses M, instead of just one, nearest hits and ensures greater robustness of
the algorithm against noise.

The development in scientific research currently focuses on topics related to data
explosion phenomenon such as FS for ultrahigh dimensional data [30], and multi-
source FS [38]. In [13] there is a case study on feature selection techniques applied
to geographic information systems and geospatial decision support, an application
domain where the growing availability of data poses several challenges along with
important perspectives. There is a growing interest to consider the FS as something
more than just a routine to improve machine learning accuracy; the FR model is
by itself a knowledge model holding important semantic aspects of the information
environment. There have been attempts to further enrich the concept of relevant
featurewith semanticmeanings, such as the contribution of a feature to the knowledge
of the physical process underlying the generation of the data. The usefulness of the FR
in selecting the variables for modelling dynamic systems has been studied in [5]. A
causal feature selection is proposed in [17], where the FS is driven by the detection of
cause-effect relationships observed in time. This kind of selection process explicitly
associates the concept of relevant feature with the concept of control variable. One
step forward to the contribution of FS to themodelling of a real system is provided by
[12, 33], which in the selection process take into account the interaction of features,
acknowledging the fact that features exhibit group properties that cannot be detected
on individual features, as they were actual components of a system. More recently
there have been attempts to integrate the FS with preexisting basis of knowledge
such as ontologies and association rules [7].
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4.2.3 A Multiple-Challenge Case Study for Feature Ranking

The issues identified in the previous sections have been dealt in the scientific
literature in separate ways, but in reality they constitute a complex of challenges
to be addressed in an integrated manner, especially when pursuing goals of effi-
ciency and effectiveness as it is in real applications and in production environments.
The problem on which we focus our interest is to obtain a new model for rank-
ing features which combines effective FE methods to a representation model that is
humanly understandable and can be integrated in domain knowledge. It is also an
objective to explore how generalizable is the efficacy of this new method and how
it benefits from a modular architecture that allows to choose between alternative
methods of feature extraction depending on restrictions imposed by specific appli-
cations. In order to compare the quality of the new model, and its possible variants,
to the classical methods it is necessary to identify suitable performance metrics and
a benchmarking methodology that uses reference datasets. At the same time there
has to be explored the possibility to obtain cost-benefit functions of the features for
use in decision-making.

4.3 Focus on Feature Extraction Based Ranking

4.3.1 Linear Models

Many known techniques of Feature Extraction (FE) differ in the principle underlying
the detection of an optimal new set of features. However, all of them show an under-
lying unity in the calculation of geometric transformation, algebraically expressed
as projection (or mapping) matrix.

In Linear Discriminant Analysis (LDA), where a linear separability of classes is
assumed, the principle underlying the detection of a new feature is that ofmaximising
the ratio of the between-class variance to the within-class variance on this feature.
Therefore a set of new features are obtained by maximizing the ratio of the between-
class covariance matrix Sb to the within-class covariance matrix Sw. The projection
matrix is the eigenvector matrix U obtained by solving the generalized eigenvalue
problem: Sb · U = Sw · U · Λ, where Λ is a diagonal matrix whose entries are the
eigenvalues of U. Each eigenvalue λi measures the relative capability of each new
feature ui of separating classes.

A limitation of the classic LDA algorithm is that both Sw and Sb matrices must be
non-singular in order to preserve the orthonormality of the mapping. For this reason
several variants of the classic algorithm have been proposed in order to overcome the
singularity problem. In particular in this work, we consider the Orthogonal Linear
Discriminant Analysis (OLDA) algorithm [37]. This algorithm uses Singular Value
Decomposition to obtain a non-singular approximation of Sw

−1 · Sb. When Sw and
Sb matrices are non-singular, OLDA and classic LDA give identical results.
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4.3.2 Feature Extraction Based on Decision Boundary

Another family of FE techniques is based on the properties of decision border [10].
Classes are statistically characterized by the class-conditional probability density
function (cpdf) pX|Y (x|yi), where the continuous random vector X takes values in
RN and the discrete random variable Y takes value in y. The cumulative probability
density function of the random vector X is:

pX(x) =
C∑

i=1

PY (yi)pX|Y (x|yi), (4.1)

where PY (yi) is the a-priori probability of class yi.
Therefore, a classification or decision rule is a mappingΨ : RN → Y that assigns

a class label to data on the basis of the observation of its feature vector.A classification
rule determines a partition of the feature space in C decision regions D1, . . . , DC

such that Di = {x ∈ RN | Ψ (x) = yi}. The boundary separating decision regions is
called the decision boundary. Figure4.1 illustrates an example of decision rule for
two Gaussian classes (symbolized by ‘∗’ and ‘o’). The straight line represents the
decision boundary: all points at the left of it are assigned by the decision rule to ‘∗’
class, and those at the right to ‘o’ class.

Among all possible classification rules, the rule achieving the minimum error
probability

ε =
∫ ∑

yi �=Ψ (x)

p(x|yi)P(yi)dx (4.2)

is the Bayes rule ΨB(x) = arg MAXyi [p(x|yi)P(yi)]. The corresponding decision
boundary is consistently called Bayes boundary, which is the theoretically optimal
solution that every classification method aims to achieve.

The geometry of the decision boundary has been used in the discriminative feature
extraction approach known as Decision Boundary Feature Extraction (DBFE) [25]
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Fig. 4.1 Examples of two-classes classification problems in a 2-dimensional space. aLinear bound-
ary. α and β represent the informative direction and the redundant direction respectively, b Closed
boundary, c Piecewise linear boundary
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to recognize those informative features allowing to achieve the same classification
accuracy as in the original space. The basic idea of DBFE is that moving along the
direction of the decision boundary, the classification of each observation will remain
unchanged (see Fig. 4.1a).Hence, the direction of the decision boundary is redundant.
In contrast, while moving along the direction normal to the decision boundary the
classification changes, hence it represents an informative direction. Moreover, the
effectiveness of a direction is directly proportional to the area of decision boundary
with the same normal vector. To discuss this statement, consider Fig. 4.1b. There,
the border is a rectangle parallel to the axes, so the informative directions defined by
normal vectors to the border are the x and y axes themselves. Although both directions
are informative, it is simple to see that the x-axis is more important since projecting
data on it results in less class overlapping than projecting data on the y-axis.

The idea is formalized by the notion of Effective Decision Boundary Feature
Matrix (EDBFM):

�EDBFM = 1∫
S′ p(x)dx

∫

S′
NT (x)N(x)p(x)dx, (4.3)

where N(x) is the normal vector at a point x, NT (x) denotes the transposed normal
vector and S′ is the portion of decision boundary containing most of the training data
(the effective decision boundary). It has been proved [25] that:

• the rank of the EDBFM represents the intrinsic discriminant dimension, that is
the minimum number of feature vectors needed to achieve the same Bayes error
probability as in the original space;

• the eigenvectors of EDBFM corresponding to nonzero eigenvalues are the neces-
sary feature vectors.

In order to construct a Bayes decision border, in [25] there has been proposed SVM
Decision Boundary Analysis, a method that combines DBFE principle and Support
Vector Machine algorithm. In [14] the use of Analytical Decision Boundary Feature
Extraction (ADBFE) is introduced, where the normal vectors are calculated analyt-
ically from the equations of the decision border. All methods produce an EDBFM
that represents a data projection matrix onto a new feature space.

4.4 Feature Ranking Based on Effective Decision
Boundary Feature Matrix

4.4.1 Geometric Considerations

As it has been introduced in previous sections, it is desirable to obtain a ranking of
real features on the basis of information contained in EDBFM. The idea is intuitively
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explained by referring again to the examples in Fig. 4.1. Let us consider decision
boundaries formed by a unique line, like line β in Fig. 4.1a. In these cases none of
the features is redundant, however it is apparent that the relevance of a feature can be
stated in terms of the line slope. In order to apply the DBFE method, let us observe
that the decision boundary has the form y = mx + k, hence the normal vector is
N = [m,−1]. The calculus of equation (4.3) is straightforward since the normal
vector is constant along S′ and the equation becomes:

�EDBFM = NT N
∫

S′ p(x)dx∫
S′ p(x)dx

= NT N =
(

m2 −m
−m 1

)
. (4.4)

Eigenvalues and related eigenvectors are λ1 = 0, λ2 = m2 + 1, v1 = [1, m],
v2 = [−m, 1], and only the second eigenvector v2 is the informative direction. In
this case the eigenvector components define the relevance of the real features. For
instance, when m = 0 (boundary parallel to the x-axis) the only informative real
feature is the y-axis, when m = 1 (boundary y = x) both features are equally
important, finally as m → ∞ (boundary tends to the y-axis) the relevance of x-axis
grows. As a second case, let us consider the border in Fig. 4.1b. In this case, cpdfs
are taken constant along the boundary and EDBFM is

�EDBFM =
(
8 0
0 2

)
,

with λ1 = 8, λ2 = 2, v1 = [1, 0], v2 = [0, 1]. This case is somewhat complemen-
tary to the former: now, since new features coincide with the real ones, the relevance
of the latter is fully expressed by eigenvalues. From the analysis of these two cases
we can derive that in the DBFE approach the eigenvector components represent the
weight of every real feature locally to the new feature, whereas the eigenvalues rep-
resent the discriminative power of each new feature. Hence we can combine these
two characteristics in order to define a global ranking of the real features as it is in the
objective of the present work. Firstly eigenvectors are weighted by multiplying them
by the respective eigenvalues, and then the corresponding components of weighed
eigenvectors are summed (in the absolute values). Resulting values are the individual
contributions (or weights) of every real feature into the transformation, and represent
the discriminative power of each real feature and its relative position in a rank model.

Formally, let u1, u2, . . . , uN be the eigenvectors of the EDBFM matrix, λ1, λ2,
…, λN the corresponding eigenvalues, and uij the jth component of the eigenvector
ui. The weights of real features are computed as follows:

wj =
N∑

i=1

λi|uij|, j = 1, . . . , N, (4.5)

wj > wk ⇒ feature fj is more important than fk .
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As a numeric example, let us consider Fig. 4.1c. The equation of the border is
y = 2x for x ∈ [0, 1], y = x/8 + 15/8 for x ∈ [1, 9]. The cpdfs are taken constant
along the boundary. It turns out that

�EDBFM =
(

1.913 −1.887
−1.887 8.385

)
,

λ1 = 1.4, λ2 = 8.89, v1 = [0.965, 0.261], v2 = [−0.261, 0.965]. The ranking
method leads to the following weights: w1 = 3.68, w2 = 8.95, hence the real feature
y turns out to be more discriminant than x as the figure suggests, since the first piece
of boundary is shorter than the second one which is almost parallel to the x-axis.

4.4.2 The Algorithm

The presentedmethod is based on the calculus of the EDBFM,which in turn needs the
knowledge of the decision boundary. In order to apply it to real cases, where the deci-
sion boundary, as well as cpdfs are typically unknown, non-parametric approaches
will be considered. In non-parametric approaches we are given a set of instances of
the true phenomenon (training data) only, and no assumption on the form of cpdfs
is made. In this work we propose the use of Labeled Vector Quantizer (LVQ) archi-
tectures and the Bayes Vector Quantizer (BVQ) learning algorithm. The reason for
the choice of BVQ is twofold: (1) it has demonstrated to drive an LVQ toward a
(locally) optimal approximation of the Bayes boundary [10]; (2) the approximation
is piecewise linear, thus simplifying the calculus of the normal vectors.

An Euclidean nearest neighbor Vector Quantizer (VQ) of dimension N and order
Q is a function Ω : RN → M , M = {m1, m2, . . . , mQ}, mi ∈ RN , mi �= mj,
which defines a partition of RN into Q regions V1,V2, . . . ,VQ, such that

Vi = {x ∈ RN :‖ x − mi ‖2<‖ x − mj ‖2, j �= i}. (4.6)

Elements of M are called code vectors. The region Vi defined by (4.6) is called
the Voronoi region of the code vector mi. Note that the Voronoi region is completely
defined by M . In particular, the boundary of Voronoi region Vi is defined by the
intersection of a finite set of hyperplanes Si,j with equation

(mi − mj) · (x − mi + mj

2
) = 0,

where mj is a neighbor code vector to mi. The definition of normal vectors to these
hyperplanes is thus straightforward and it is Nij = mi − mj (see Fig. 4.2).

By associating with each code vector a class we can define a decision rule. A
Labeled Vector Quantizer (LVQ) is a pair LVQ =< Ω,L >, where Ω : RN → M
is a vector quantizer, and L : M → † is a labeling function, assigning to each
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Fig. 4.2 A piece of true decision boundary, its linear approximation and the local discriminative
direction Nij = mi − mj

code vector in M a class label. The classification rule associated with an LVQ is:
ΨLVQ : RN → y, x 
→ L (Ω(x)).

Note the Nearest Neighbor nature of this classification rule: each vector in RN

is assigned to the same class as its nearest code vector. Thus, decision regions are
defined by the union of Voronoi regions of code vectors with the same label. Note
also that the decision boundary is defined only by those hyperplanes Si,j such that
mi and mj have different labels.

An LVQ can be trained to find an approximation of the Bayes boundary. LVQ
training algorithms have been originally proposed by Kohonen [22]. Here we use a
more recent algorithm known as Bayes VQ (BVQ), formally defined as a gradient
descent algorithm for the minimization of the error probability. It strongly resem-
bles Kohonen’s LVQ2.1, however, formal derivation introduces also some modifica-
tions that improve performances and robustness. The BVQ algorithm is an iterative
punishing-rewarding adaptation schema. At each iteration, the algorithm considers a
sample randomly picked from the training set. If the sample turns out to fall “on” the
decision boundary, then the position of the two code vectors determining the bound-
ary is updated, moving the code vector with the same label of the sample towards
the sample itself and moving away that with a different label. Since the decision
boundary is a null measure subspace of the feature space, we have zero probability
to get samples falling exactly on it. Thus, an approximation of the decision boundary
is made, considering those samples falling close to it. Due to lack of space we cannot
report the BVQ algorithm here. The algorithm is described in [9].

Having a trained LVQ, the calculus of the feature rank is straightforward and is
given by the following BVQ-based Feature Ranking (BVQ-FR) Algorithm 1.
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Algorithm 1 BVQ-FR algorithm

1: Train the LVQ {(m1, l1), . . . , (mQ, lQ)}, mi ∈ RN , li ∈ y by using the BVQ algorithm;
2: Set the elements of the matrix �BV QFM to 0;
3: wtot = 0;
4: For each training sample tk

1: Find the two code vectors mi, mj nearest to tk ;
2: If li �= lj and tk falls at a distance less than Δ from the border Sij then

1: Calculate the unit normal vector to the decision boundary as: Nij = (mi−mj)

‖mi−mj‖ ;
2: �BV QFM = �BV QFM + NT

ij ∗ Nij;
3: wtot = wtot + 1;

5: �BV QFM = �BV QFM
wtot

;
6: Calculate eigenvectors u1, u2, . . . , uN and related eigenvalues λ1, λ2, . . . , λN of �BV QFM ;

7: Set W =
N∑

z=1

λi|ui|;
8: Sort features with respect to W components.

The core of theBVQ-FRalgorithm is at point 4. There, finding the twonearest code
vectors to each training sample allows us to define the effective decision boundary of
the LVQ. As a matter of fact, testing whether labels are different guarantees that the
piece of Voronoi boundary Sij is actually a part of the decision boundary. Secondly,
incrementing the �BV QFM each time a pair of code vectors is selected, allows to
weight the normal vector Nij by the number of samples falling at a distance less than
Δ from Sij. It can be proved that this is equivalent to a Parzen estimate of the integral∫

Sij
p(x), while the final value of wtot represents the Parzen estimate of

∫
S′ p(x) in

Eq. (4.3) [10].
It should be noted that the algorithm BVQ-FR can be transformed by replacing

BVQ with other FE algorithm that produces a transformation matrix EDBFM-like.
For example there can be used OLDA, SVM and ADBFE algorithms. In the next
section an experimental comparison between these alternatives will be made.

4.5 Experiments

4.5.1 Experimental Setting

This section is devoted to experimental evaluation of the EDBFM-based feature
weighting method. In particular in the present subsection we propose a synthetic
experimentwhich allowsus to illustrate the properties of themethod.Wealsodescribe
both the experimental procedure and the evaluation criteria that will be used for
all subsequent experiments. In the next subsection various implementations of the
methodwill be tested over real-world datasets and comparedwithwell-known feature
weighting algorithms.
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As synthetic experiment we draw a dataset from a 22 dimensions two-class prob-
lem. The first two dimensions are drawn from the classical XOR problem, while
the remaining 20 dimensions are drawn from the normal distribution. The first two
dimensions are useful to classify the two classes (i.e. informative dimensions), while
the remaining dimensions are noise. The dataset contains 1,000 samples equally dis-
tributed over the two classes. In this experiment, as well as in all experiments of
the following subsection, we followed a 10-fold cross-validation procedure: in each
fold the 90% of the samples are used to build the EDBFM matrix and to weight the
original features; the remaining samples are used to evaluate the performance of the
method. In particular, for each fold a weight model is calculated on an incrementing
number of features taken in the rank order from the test set to extract a projection
along the first informative features. Hence we firstly obtain two datasets with the
most important feature, then two datasets with the first two most important features,
and so forth until the full-dimensional datasets (i.e. the original ones) are returned.
For each of these pairs of datasets the Nearest Neighbor algorithm is used to esti-
mate the accuracy. After the tenth fold repetition, the weights and the accuracies are
averaged by rank, and curves are built, which represent the average accuracy that the
method achieves over all folds as a function of the most informative features.

The experimental work-flow is depicted in Fig. 4.3a, it consists of two phases:
first the appliance of the EDBFM based ranking method to the multivariate dataset
in the filter mode of [26], and then the validation procedure. The process is sketched
in the following pseudocode.

Fig. 4.3 a General work-flow of feature selection techniques. b Example of two classes classifica-
tion problems. Piecewise lines represent the approximation of the Bayes boundary found by BVQ.
y1 and y2 represent the two most important extracted features
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Algorithm 2 First phase: a FE algorithm (BVQ in this example) is applied to the
training set, and then the feature ranking algorithm is executed
1: Let X = {x1, x2, ..., xm} be the m-dimensional normalized dataset.
2: Apply the BVQ algorithm to X. Let Y = {y1, y2, ..., yn} be the extracted eigenfeatures.
3: Compute the contributive weight wi of each feature xi to the eigenfeatures of Y.
4: Sort the features of X such that xa < xb if wa < wb. Let Xs = {xs

1, xs
2, ..., xs

m} be the sorted
dataset and m the rank index.

Algorithm 3 Second phase: on an incrementing number of features, taken in the
rank order from the test set, the 1NN classification process is run and the accuracy
calculated
1: The dataset Xs is input.
2: Apply 1NN to whole Xs, let Am be the returned accuracy.
3: For rank i=1 to m (where m = 22 for this dataset):

• let Xs
i = {xs

1, xs
2, ..., xs

i } be a subset of Xs with selected features up to rank i.
• compute accuracy Ai using 1NN with 10-fold cross-validation.

For the first fold, the decision boundary depicted by BVQ is reported in Fig. 4.3b,
altogether with features extracted on the basis of the DBFE method.

The BVQ setting: Optimal values for Δ and local region r have been found by a
manually conducted search assuming the classification error rate as objective func-
tion. The parameters were fixed to Δ = 0.4 and r = 0.5; 16 code vectors have been
detected. The choice of the classification algorithm is unimportant to our purpose
since we are interested only in study of the relative performance of ranking algo-
rithms. The 1NN is a non-parametric classifier among the simplest of all machine
learning algorithms, the object is simply assigned to the class of its nearest neigh-
bour on the basis of the Euclidean distance, it does not require settings. In [21] the
1NN classifier is indicated as a convenient algorithm to build the evaluation function,
since it appears to always provide a reasonable classification performance in most
applications.

For this experiment the resulting accuracies, in the order they were calculated, are
reported in Table4.1 and plotted aside. The curve shows a steep rise which expresses
the high contribution to classification accuracy by the two highest rank features.
Beyond a critical point, which in this example occurs on the second feature, the
curve tends to decrease because irrelevant features (low rank) are added, which only
cause curse of dimensionality. By a way of comparison, a random sorting of features
has been used, to which the same validation procedure is applied. The fifth column
of Table4.1 and the corresponding plot represent the average accuracy achieved by
20 different 1NN classifiers, where the features are selected according to 20 different
ranks obtained by means of trivial random permutations.

As a figure of merit to characterize the performance of the ranking method we
define an empirical Performance Index φ:

Performance Index(φ) = AreaFR − AreaRP

AreaMax − AreaRP
(4.7)
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Table 4.1 The features (first column) sorted by weight (second column); cumulative percentage of
weight (third column); the accuracy, by subset, of EDBFM method (fourth column); the accuracy,
by subset, on a random weight model (fifth column)

1NN Acc.% 1NN Acc.%

Rank Weight Weight Cum. Norm Cum. Norm

%Cum. (BVQ-FR) (rand. rank)

Feat. 1 0.557 27.41 6.08 51.79

1 to 2 0.461 50.10 100 57.27

1 to 3 0.081 54.07 99.09 56.57

1 to 4 0.075 57.76 97.40 57.82

1 to 5 0.063 60.82 95.94 56.26

1 to 6 0.062 63.88 95.15 59.22

1 to 7 0.058 66.74 91.54 59.16

1 to 8 0.057 69.53 90.30 59.54

1 to 9 0.055 72.18 90.41 58.88

1 to 10 0.054 74.83 88.61 58.66

… … … …

1 to 22 0.035 100.00 79.93 79.93

The accuracies of fourth and fifth columns, normalized to 100%, are also plotted aside

where AreaFR is the area underneath the accuracy curve relative to BVQ-FR,
obtained by summing the accuracy values at each feature subset, namely the accu-
racy value in the BVQ-FR column of Table4.1. Analogously AreaRP is the area
underneath the curve obtained by random permutation of features. The AreaMax is
the area underneath a theoretical curve reaching the 100% possible accuracy with
the top rank feature, thereafter remaining constant up to full dataset. The AreaFR
is expected to be geometrically bounded between the other two curves, mathemati-
cally 0 ≤ φ ≤ 1, where φ represents a relative area. When AreaFR approximates
AreaMax , φ = 1, the ranking model approximates an ideal order of the features,
where the first feature is the most significant and contains all the weight to discrim-
inate between classes. Conversely, when AreaFR approximates AreaRP, φ = 0, the
ranking model approximates to a random ordering of the features and is therefore
useless.

4.5.2 Benchmarking the EDBFM Ranking Method

In this section the EDBFM ranking method is tested on complex and real world
datasets and the rank models are compared to other methods. Testing includes two
phases:

• studying EDBFM performance when different FE algorithms are included;
• comparing EDBFM ranking and heuristic methods.
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As data testbed of the experiments, 13 multivariate datasets have been considered.
Eight of these datasets (Heart, HeartStat, Australian, Ionosphere, Waveform, Seg-
ment, CoverType, Letter) have been drawn from the UCI repository [31], selected
for their large number of instances, classes and features as it is appropriate when
testing ranking algorithms. Five more datasets (Urban, Wildfire, Landslide, Corine,
Gottigen) have been extracted from large geographic data collections. These datasets,
which include both discrete and continuous variables, are heterogeneous collections
of data, excellent to challenge the selective capability of our method and to high-
light the properties of the ranking model. The datasets: Urban, Wildfire, Landslide,
Corine originated from the same data collection, they differ from each other by a dif-
ferent feature chosen as class attribute. Urban, Wildfire and Landslide have balanced
classes, namely in these datasets all classes are represented by an equal number of
instances. The geographic dataset namedGottingen comes from a different collection
[4], its features correspond to Earth observation imagery from satellite on different
wavelength band. The characteristics of all the datasets are resumed in Table4.2,
where the datasets are sorted by number of classes, then by number of features, and
by number of instances. Such a sorting also represents an increasing complexity of
dataset, ranging from a simple two-class perfectly balanced dataset with relatively
few instances, such is the Urban, up to the Corine dataset which is a 26 class large
dataset. All datasets have gone through a common preprocessing step where each
feature has been normalized in the range [0; 1], to give equal importance to each
feature during learning.

The first set of experiments aims to highlight how the FR algorithm perfor-
mance varies when different FE built-in algorithms are used. As already men-
tioned, the algorithm BVQ-FR can be transformed by changing the FE algorithm,

Table 4.2 Testbed datasets

Origin Dataset name # Classes # Features # Instances

UCI HeartStat 2 13 270

UCI Heart 2 13 293

UCI Australian 2 14 690

GIS Urban 2 18 3,972

GIS Wildfires 2 18 5,359

GIS Landslides 2 18 23,663

UCI Ionosphere 2 34 351

UCI Waveform 3 40 5,000

UCI CoverType 7 12 58,104

UCI Segment 7 19 2,310

GIS Gottigen 14 8 28,083

UCI Letter 26 16 20,000

GIS Corine 26 18 48,379

Datasets are sorted by number of classes, by number of features, and finally by number of instances
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e.g. usingOLDA, SVM, ADB. In subsequent experimentswewill denote these variants
respectively with the acronyms OLDA-FR, SVM-FR, ADBFE-FR. These algorithms,
along with BVQ-FR, will be tested on the datasets listed above, following the exper-
imental procedure described in the previous section. Notice in the parameter setting
for BVQ-FR, the number of code vectors has been set to a multiple of the number
of classes in the dataset, with 200000 BVQ iterations, whereas Δ and r come from
a manual refinement in three steps. In SVM-FR, we employ a Gaussian radial basis
kernel to train the SVM, and we set r to 0.2.

In the Fig. 4.4, the accuracy curves are grouped by dataset to compare the perfor-
mance of EDBFMRanking algorithms. For each dataset the accuracy curve obtained
by means of random permutation of features is also displayed. Notice the curves of
EDBFM ranking are always located above the random ranking curve, that reveals the
general efficacy of EDBFM ranking. The qualitative comparison between the curves
is difficult because of the irregular pattern and their overlaps. The Performance Index
φ is of help in the analysis. In Table4.3 φ calculated for each curve is shown. Note
that missing values in the Table4.3 are due to the impossibility to perform compu-
tationally expensive algorithms, such as SVM and ADBFE, on datasets with large
number of classes and instances. We can observe in Table4.3, where rows are sorted
by increasing complexity of the dataset, OLDA-FR and BVQ-FR have, together,
a dominance in the values of φ when applied to datasets with two classes Heart-
Stat, Heart, Australian, Urban, Wildfire, Landslide whereas BVQ-FR has a relative
dominance on complex datasets Ionosphere, Waveform, CoverType, Segment, Got-
tigen, Letter, Corine. This is due to the fact that BVQ-FR, based on nonparametric
model, has a superior performance when working on non-linearly separable classes
of objects.

In the second set of experiments we compare the performance of OLDA-FR and
BVQ-FR with other ranking methods known in literature such as Relief, Gain Ratio
and One-Rule. Also heuristic methods calculate a weight for each individual real
feature, which allows to rearrange the features by decreasing weights and to submit
dataset to the 1NNclassification algorithmusing the sameprocedure as for themodels
based on EDBFM. Accuracies calculated in the previous experiment for OLDA-FR
and BVQ-FR are now compared with accuracies obtained using the Relief, Gain
Ratio and One Rule. The accuracy curves gathered by dataset are shown in Fig. 4.5.
The criterion of comparison of curves is the same than in the previous experiment.

The general picture of performances is rather complex, but trends are evidenced
by the analysis of the index φ. For each dataset the best ranker is highlighted in
the Table4.4; there are also reported some statistics of the Performance Index: the
mean value of φ for BVQ-FR is the highest, and the variance has the lowest value.
The statistics indicate a low dispersion of φ for BVQ-FR algorithm, that reveals a
relatively stable behaviour in comparison to Relief, GainRatio and One-Rule rankers
and OLDA-FR as well.

In the star plot (see Fig. 4.6) the index values are shown as a radial line from a
common centre point. Points corresponding to the same algorithm are connected by
a common-style line. In the clockwise direction the datasets are sorted by increas-
ing complexity. Notice in the part of the diagram where two-classes datasets are
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Fig. 4.4 Feature Ranking experiments. Comparing the performance of FE filter algorithms. On the
horizontal axis the features sorted by rank and in vertical the percentage of accuracy
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Table 4.3 EDBFM ranking: comparison of filter FE algorithms

OLDA-FR (φ) BVQ-FR (φ) ADBFE-FR (φ) SVM-FR (φ)

HeartStat 0.116 0.411 0.015 0.188

Heart 0.187 0.471 – 0.144

Australian 0.685 0.463 0.180 −0.298

Urban 0.543 0.465 0.502 0.075

Wildfires 0.474 0.354 0.277 0.265

Landslides 0.400 0.388 0.224 0.446

Ionosphere −0.096 0.207 0.019 0.017

Waveform 0.651 0.670 0.641 –

CoverType 0.125 0.373 – –

Segment 0.348 0.595 – –

Gottigen 0.445 0.456 – 0.447

Letter 0.133 0.287 – –

Corine 0.484 0.592 – –

The Performance Index (φ) for each of the accuracy curves in Fig. 4.4

concentrated, from Heart to Ionosphere, there is an evident superiority of One Rule
over the other rankers. By contrast where more complex datasets are concentrated,
from Waveform to Corine, BVQ-FR tends to outperform the other rankers whose
performance decreases more rapidly as the dataset complexity increases.

Another comparative indicator of performance is the number of features needed
to reach 90% of total accuracy, see Table4.5. This indicator represents a relative
measure of the steepness of the curve; it indicates the ranker’s ability to lead to higher
accuracies with relatively small subsets. On this indicator BVQ-FR outperforms all
other rankers.

Let us observe inmore detail a rankingmodel to highlight its usefulness in support-
ing cost-benefit informed decision making. In Fig. 4.7 left, for the Wildfire dataset,
the curve of accuracy obtained for BVQ-FR is overlaid with the curve of cumulative
weights, the horizontal axis represents the features sorted by rank. Notice that the first
nine features, which are 50% of total, represent half the cost of the entire dataset, but
detain over 70% of the total weight and over 98% of the total accuracy achievable.
Analogously, in Fig. 4.7 right, for CoverType dataset, the first feature holds 17% of
the total weight of the features, whereas the first six features (50% of total features)
detain over 70% of the total weight and over 80% of the accuracy achievable on the
full dataset. If the individual costs of the features are given, it is possible to construct
a detailed cost function. As a consequence, it is evident that the proposed methodol-
ogy can guarantee the best ratio between cost of features acquisition and informative
power.

As it was described above, the index φ has been used to compare the relative
performance of ranking algorithms on a dataset. To assess the overall performance
for each algorithm the number of times that the algorithm has had the highest φ

was counted. These aleatory results, however, require a test of statistical significance
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Fig. 4.5 Feature Ranking experiments. Comparing the performance of Ranking Algorithms. On
the horizontal axis the features are sorted by rank and in vertical the percentage of accuracy
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Table 4.4 The EDBFM ranking is compared to other methods (Relief, Gain Ratio, OneRule); the
Performance Index (φ) is calculated for each of the accuracy curves in Fig. 4.5

Goal oriented ranking

OLDA-FR (φ) BVQ-FR (φ) Relief (φ) Gain-ratio (φ) One-rule (φ)

HeartStat 0.116 0.411 0.059 0.516 0.513

Heart 0.187 0.471 0.151 0.548 0.521

Australian 0.685 0.463 0.602 0.744 0.806

Urban 0.543 0.465 0.408 0.331 0.609

Wildfires 0.474 0.354 0.483 0.336 0.647

Landslides 0.400 0.388 0.292 0.251 0.402

Ionosphere −0.096 0.207 0.083 0.075 0.072

Waveform 0.651 0.670 0.654 0.614 0.621

CoverType 0.125 0.373 0.418 0.264 0.040

Segment 0.348 0.595 0.483 0.501 0.467

Gottigen 0.445 0.456 0.407 0.169 0.187

Letter 0.133 0.287 0.349 0.198 0.217

Corine 0.484 0.592 0.438 0.474 0.545

Mean 0.346 0.441 0.371 0.386 0.434

Variance 0.055 0.016 0.034 0.039 0.056

The two bottom rows are descriptive statistics of the Performance Index computed values

Fig. 4.6 Each piecewise line represents a method of ranking, each radial line represents a dataset.
Datasets are radially ordered by increasing complexity. The intersections represent the values of
performance index φ

to support the observations made. The probability of success of an algorithm over
another is calculated with the binomial distribution, from the count of victories and
defeats, or the number of times that the algorithm outperformed the others on the
basis of the index of performance. Assuming the null hypothesis is that the frequency
of success of the two algorithms is the same, with the two-tailed test it can be seen
how much we deviate from “null hypothesis” assumption.
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Table 4.5 Number of features needed to reach 90% of total accuracy

Rand rank Goal oriented ranking

OLDA-FR BVQ-FR Relief Gain-ratio One-rule

HeartStat 9 7 4 11 4 4

Heart 6 5 2 8 3 3

Australian 9 2 4 2 N/D N/D

Urban 6 3 3 3 3 3

Wildfires 8 4 6 3 5 3

Landslides 8 3 3 6 5 4

Ionosphere 4 4 3 3 4 4

Waveforms 24 6 6 6 8 8

Covertype 9 9 5 5 5 12

Segment 6 4 3 4 3 3

Gottingen 6 3 3 3 6 6

Letter 10 9 7 6 7 7

Corine 16 13 10 12 14 12

Dataset sorted by increasing complexity

Fig. 4.7 Performance Indices cost-benefit of features of EDBFM based ranking. Left Wildfire
dataset. Right CoverType dataset. On the horizontal axis the features sorted by rank and in vertical
the values in percentage normalized to 100%

In theTable4.6 (top), the significance test is performed on all ranking experiments.
The table does not allowus to assert the superiority of amethod over another; pointing
out that more experiments are needed. However, we have that BVQ-FR overcomes
Relief and Gain Ratio with statistical significance greater than 0.9, while there is
condition of parity with One Rule that is expressed by null statistic significance. It is
noteworthy that BVQ-FR results have been obtainedwithout stressing the parameters
setup of the BVQ algorithm.
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Table 4.6 Overall comparison of the five algorithms

Sign test—all datasets

φ BVQ-FR Relief G.Ratio Onerule

4/9 7/6 6/7 3/10 w/l

OLDA-FR 0.733 0.0 0.0 0.908 P

10/3 10/3 7/6 w/l

BVQ-FR 0.908 0.908 0.0 P

8/5 6/7 w/l

Relief 0.419 0.0 P

5/8 w/l

GainRatio 0.419 P

4.6 Conclusions

This chapter focuses on a novel ranking procedure. We considered that the premise
for integrating the feature ranking models into domain knowledge is their repre-
sentation in terms of real world features. This principle is the fundamental premise
of the study conducted which leads to a computational model that is accurate and
humanly understandable. A new approach to Feature Ranking (FR) based on fea-
tures extraction (FE) and properties of the decision border has been discussed. This
method uses Effective Decision Boundary Feature Matrix (EDBFM) to measure the
relevance of the real world features thus maintaining the readability of the knowl-
edge model extracted. The method has been tested on classification problems and
cost-benefit analysis of features. While maintaining the geometric procedure which
yields the ranking of features, this method allows to choose between alternative core
FE algorithms, such as BVQ, when extracting the EDBFM, that allows to optimize
the method application on datasets with different complexity. In particular BVQ-FR
has proven to be more effective in applications to dataset of non-linearly separable
points. Benchmarking tests, supported by the calculation of index of performance,
show that BVQ-FR and OLDA-FR are generally more effective than other solutions.
Furthermore, the comparison with known heuristic techniques of ranking confirms
the robustness and the superiority of the EDBFM based method on complex dataset.
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