
Chapter 13
Improving the Recognition Performance
of Moment Features by Selection

George A. Papakostas

Abstract This chapter deals with the selection of the most appropriate moment
features used to recognize known patterns. This chapter aims to highlight the need
for selection of moment features subject to their descriptive capabilities. For this
purpose, some popular moment families are presented and their properties, making
them suitable for pattern recognition tasks, are discussed. Two different types of
feature selection algorithms, a simple Genetic Algorithm (GA) and the Relief algo-
rithm are applied to select the moment features that better discriminate human faces
and facial expressions, under several pose and illumination conditions. Appropriate
experiments using four benchmark datasets have been conducted in order to inves-
tigate the theoretical assertions. An extensive experimental analysis has shown that
the recognition performance of the moment features can be significantly improved
by selecting them from a predefined pool, relative to a specific application.

Keywords Moment descriptors · Pattern recognition · Feature selection · Genetic
algorithms · Relief algorithm

13.1 Introduction

Nowadays, many advanced intelligent systems take part into humans’ daily life
helping them to satisfy possible professional or entertainment needs. Thus, advanced
human computer/machine interaction [3], human identity authentication [10], bio-
metric authentication [30] and surveillance systems [28], have been developed and
proposed. Such systems mainly consist of a pattern recognition procedure, which
enables the system to interact with the surrounding environment.
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U. Stańczyk and L.C. Jain (eds.), Feature Selection for Data
and Pattern Recognition, Studies in Computational Intelligence 584,
DOI 10.1007/978-3-662-45620-0_13

305



306 G.A. Papakostas

The successful operation of the pattern recognition procedure is mainly based on
the representationmethod of the real patterns in a form suitable to bemanipulated and
managed by the recognition module (classifier). In the case of image based systems
the content of an image pattern has to be transformed in a compact numerical format
(or other) by applying a feature extraction method (FEM). The role of a FEM is
twofold; it performs a dimensionality reduction from the space of image pixels to a
small set of numbers and it captures the discriminative characteristics of the patterns
in order to distinguish them.

A popular feature extraction method for the case of image patterns is the method
of moments. Image moments have proved to be efficient descriptors of the images’
content, with many applications in pattern recognition [2, 22, 25, 36], computer
vision [12, 23], image analysis [33, 37], image watermarking [27] etc. Among the
several moment types, the orthogonal moments [4] constitute the most prominent
moment features (discrimination features based on moments) due to their minimum
redundancy and high reconstruction capabilities. Additionally, their inherent proper-
ties staying invariant under common geometrical transformations (rotation, scaling,
translation, flipping) or incorporating such invariances through coordinates transfor-
mation, give them all the desirable advantages for any invariant pattern recognition
task.

However, a common drawback is the absence of a prior knowledge regarding
the number and the suitability of the used moment features being controlled by
adjusting the order of the orthogonal polynomial used as kernel function. A common
practice is to compute all the moment features up to a certain order and to apply
the entire set of moments as discriminative features. This is an “ad hoc” practice in
some sense, since the significance of each moment component in discriminating the
patterns of the application is not taken into account. A possible solution to this issue
is the application of an additional process that selects, from a large pool, the moment
features that best perform in terms of recognition accuracy.

The aforementioned issue, of the used moments’ appropriateness, constitutes the
main subject of this chapter. Initially, the main properties of some representative
moment features and their representation capabilities are discussed in Sect. 13.2.
Section13.3 focuses on the justification of the need for selection of the moment
features that better describe the distinctive characteristics of the patterns. The selec-
tion of moment features by applying two different types of selection algorithms, a
Genetic Algorithm and the Relief algorithm, is presented in Sect. 13.4. An extensive
experimental study with four benchmark pattern recognition datasets and selected
moment features subsets aims to justify the initial assertions in Sect. 13.5. Finally,
Sect. 13.6 summarizes and discusses the main conclusions.

13.2 Image Moment Features

Geometric moments were the first type of moments introduced in image analysis and
pattern recognition [9]. These moments constitute the projection of the image on the
monomial xnym of (n + m)th order. However, the geometric moments suffer from
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high information redundancy making them less efficient in difficult problems where
more discriminative information needs to be captured, due to monomials’ lack of
orthogonality increasing their information redundancy.

This fact has motivated scientists to develop the orthogonal moments, which
use as kernel functions orthogonal polynomials that constitute orthogonal basis.
The property of orthogonality gives to the corresponding moments the feature of
minimum information redundancy, meaning that different moment orders describe
different image content.

Initially, the orthogonal moments defined in the continuous space were intro-
duced [26], such asZernike, Pseudo-Zernike, Fourier-Mellin andLegendremoments.
Although these moments were widely applied in many disciplines for a long time,
their performance is degraded by several approximation errors [32] generatedmainly
due to coordinates normalization and space granulation procedures.

Recently, enhanced orthogonal moments free from approximation errors and
directly defined inside the discrete coordinate system of the image, were proposed
to overcome the disadvantages of the continuous moments. The most representative
moment families of discrete form are the Tchebichef [19], Krawtchouk [34] and dual
Hahn [14, 37] moments.

It is worth noting that the main research directions across which most scientists
work with, in the field of image moments are the following: (1) the development
of new algorithms that accelerate the overall moments’ computation time, (2) the
improvement of the moments’ accuracy by reducing the quantization and approxi-
mation errors and (3) the embodiment of invariance capabilities into the moments’
computation regarding themajor linear image’s transformations (translation, rotation
and scaling). The last direction is relative to the capabilities of the moment features
to achieve high recognition rates exploiting invariant behaviour under the aforemen-
tioned three basic transformations. Herein, only the description capabilities of the
moment features in terms of recognition accuracy will be studied, without paying
any attention to the invariant versions of them.

The most representative orthogonal moment families of both continuous and dis-
crete coordinate space are hereafter described and analyzed experimentally.

13.2.1 Continuous Orthogonal Moments

In the previous section it has already been mentioned that the first type of orthogonal
moments for images (2-D) was defined in the continuous coordinate space of a
continuous intensity function f (x, y). However, in order to use those moments
with digital images, which are defined in the discrete domain, an approximation
was applied the so-called zeroth order approximation (ZOA). These two different
definitions are as follows:
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Mnm = NF1

∫∫

A

Kernelnm(x, y)f (x, y) dxdy (13.1)

where A is the computation coordinate space, Kernelnm (·) corresponds to the
moment’s kernel (product of two polynomials) consisting of specific orthogonal
polynomials of order n and m, which constitute the orthogonal basis and NF1 is a
normalization factor. The type ofKernel’s polynomials gives the name to themoment
family and thus a wide range of different moment types can be derived.

The zeroth order approximation of Eq. (13.1) for a N × N image having intensity
function f (x, y) has the form:

(ZOA) : Mnm = NF2

N−1∑
x=0

N−1∑
y=0

Kernelnm(x, y)f (x, y) (13.2)

where NF2 is a normalization factor and the double integral of Eq. (13.1) is sub-
stituted by a double summation, by incorporating some approximation error. The
minimization of this error has been the subject of many works [31], which try to
propose a discrete computation form that converges to the theoretical values. Three
representative moment families of this category will be described in details in the
next sections.

13.2.1.1 Zernike Moments

Zernikemoments are themostwidely used family of orthogonalmoments due to their
inherent property of being invariant to an arbitrary rotation of the image they describe.
The main characteristic of this moment family is the usage of a set of complex
polynomials as basis, which forms a complete orthogonal set over the interior of the
unit circle x2 + y2 = 1. These polynomials have the form:

Vnm(r, θ) = Rnm(r)ejmθ (13.3)

where n is a non-negative integer and m an integer subject to the constraints n − |m|
even and |m| ≤ n, r(r = √

x2 + y2) is the length of the vector from the origin to the
pixel and θ

(
θ = tan−1(y/x)

)
is the angle between the vector r and x-axis in counter-

clockwise direction. Rnm(r), are the Zernike radial polynomials [35], in (r, θ) polar
coordinates defined as:

Rnm (r) =
n−|m|

2∑
s=0

(−1)s (n − s)!
s!

(
n+|m|

2 − s
)
!
(

n−|m|
2 − s

)
!

rn−2s (13.4)

Note that Rn(−m)(r) = Rnm(r).
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The Zernike moment of order n with repetition m for a N × N pixels size
continuous image function f (x, y), that vanishes outside the unit disk, has the form:

Znm = n + 1

π

2π∫

0

1∫

0

V∗
nm(r, θ)f (r, θ)rdrdθ (13.5)

where the symbol (∗) corresponds to conjugate.
For a digital image, the integrals are replaced according to the zeroth order approx-

imation Eq. (13.2) by summations to get:

Znm = n + 1

π

N−1∑
i=0

N−1∑
j=0

V∗
nm(rij, θij)f (i, j). (13.6)

The above transformation from continuous to discrete form adds some approxi-
mation errors. For this reason, several attempts [32] to decrease these approximation
errors have been reported in the literature. Moreover, significant work has been done
[7] in the last years towards the fast computation of the radial polynomials (Eq. 13.4)
and the moments (Eq.13.6).

13.2.1.2 Legendre Moments

The (n+m)th order Legendre moment [6] of an intensity function f (x, y), is defined
in [−1,1] as:

Lnm = (2n + 1)(2m + 1)

4

1∫

−1

1∫

−1

Pn(x)Pm(y)f (x, y)dxdy (13.7)

where Pn(x) is the nth order Legendre polynomial defined as:

Pn(x) =
n∑

k=0

αk,nxk = 1

2nn!
(

d

dx

)n

(x2 − 1)n (13.8)

The above Legendre polynomials satisfy the following recursive equation:

Pn(x) = [
(2n − 1)xPn−1(x) − (n − 1)Pn−2(x)

]
/n

P0(x) = 1, P1(x) = x
(13.9)

The recursive formula of Eq. (13.10) permits the fast computation of the Legendre
polynomials by using polynomials of lower order. In case of computing the Legendre
moments of a N × N image, Eq. (13.7) takes the following discrete form:
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Lnm = (2n + 1)(2m + 1)

(N − 1)(N − 1)

N−1∑
x=0

N−1∑
y=0

Pn(x)Pm(y)f (x, y). (13.10)

The computation of the Legendre moments through Eq. (13.10) shows significant
approximation errors as discussed lately and the resulted Legendre moments do not
satisfy the properties of the theoretical ones, by affecting their ability to describe the
image in process. For this reason new algorithms ensuring the accurate computation
of the moments have been proposed [6].

13.2.1.3 Gaussian-Hermite Moments

Gaussian-Hermite moments are continuous moments that have been introduced in
image analysis quite recently by Yang and Dai [33]. The (n + m)th order Gaussian-
Hermite moment is defined in (−∞,+∞) and has the form:

GHnm =
∞∫

−∞

∞∫

−∞
Ĥn(x; σ)Ĥm(y; σ)f (x, y)dxdy (13.11)

where

Ĥn(x; σ) = 1√
2nn!σ√

π
e
(−x2/2σ 2

)
Hn(x; σ) (13.12)

is the weighted Hermite orthonormal polynomial of order n, derived by the ordinary
Hermite polynomial Hn(x; σ), modulated by a Gaussian function with σ variance.
The ordinary Hermite polynomial of order n is defined as:

Hn(x) = n!
�n/2�∑
k=0

(−1)k

k!(n − 2k)! (2x)n−2k (13.13)

The recursive computation of the aboveHermite polynomials is performed accord-
ing to:

Hn+1(x) = 2x Hn(x) − 2n Hn−1(x), for n ≥ 1

H0(x) = 1, H1(x) = 2x (13.14)

TheGaussian-Hermite moments have proved to be of higher image representation
ability [33], compared to some traditional moment families e.g. Legendre and thus
their usage has been rapidly increased in many applications of the engineering life.

Due to this popularity, a faster and more accurate computation algorithm has been
proposed recently [8].
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13.2.2 Discrete Orthogonal Moments

The aforementioned drawback of the continuous orthogonal moments, has motivated
scientists in the field of image moments to develop more accurate moment families.
This goal has been achieved by the introduction of the discrete orthogonal moments
being defined directly on the discrete image coordinates space. Some of the most
representative discrete moment families are discussed herein.

13.2.2.1 Tchebichef Moments

This moment family is the first proposed in the literature by Mukundan et al. [19].
The (n+m)th order Tchebichef moment of a N × N image having intensity function
f (x, y) is defined as:

Tnm = 1

ρ̃(n, N)ρ̃(m, N)

N−1∑
x=0

N−1∑
y=0

t̃n(x)t̃m(y)f (x, y) (13.15)

where t̃n(x) is the nth order normalized Tchebichef polynomial, introduced in order
to ensure numerical stability and moments’ limited dynamical range, defined as
follows:

t̃n(x) = tn(x)

β(n, N)
(13.16)

where the ordinary Tchebichef polynomial of n order has the form:

tn(x) = (1 − N)n 3F2(−n,−x, 1 + n; 1, 1 − N; 1)
=

n∑
k=0

(−1)n−k
(

N − 1 − k

n − k

)(
n + k

n

)(
x

k

)
. (13.17)

In the above formulas, 3F2, is the generalized hypergeometric function, n, x =
0, 1, 2, . . . , N −1, N is the image size and β(n, N) is a suitable constant independent
of x that serves as a scaling factor, such as Nn. Moreover, ρ̃(n, N) is the normalized
norm of the Tchebichef polynomials defined as:

ρ̃(n, N) = ρ(n, N)

β(n, N)2
(13.18)

with

ρ(n, N) = (2n)!
(

N + n

2n + 1

)
, n = 0, 1, . . . , N − 1. (13.19)
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The computation speed of Tchebichef moments can be accelerated by using the
following recursive formula:

nt̃n (x) = (2n − 1) t̃n−1 (x) − (n − 1)
(
1 − (n−1)2

N2

)
t̃n−2 (x)

t̃0 (x) = 1, t̃1 (x) = 2x+1−N
N

(13.20)

Tchebichefmoments haveproved to be superior toZernike andLegendremoments
in describing objects,while their robustness in the presence of high noise levelsmakes
them appropriate to real-time pattern classification and computer vision applications.

13.2.2.2 Krawtchouk Moments

The Krawtchouk orthogonal moments are the second type of discrete moments intro-
duced in image analysis by Yap et al. [34]. The (n + m)th order orthogonal discrete
Krawtchouk moment of a N × N image having intensity function f (x, y) is defined
as:

Knm =
N−1∑
x=0

N−1∑
y=0

Kn (x; p1, N − 1) Km (y; p2, N − 1) f (x, y) (13.21)

where

Kn (x; p, N) = Kn (x; p, N)

√
w (x; p, N)

ρ (n; p, N)
(13.22)

is the weighted Krawtchouk polynomial of n order, used to reduce the numerical
fluctuations presented in the ordinary Krawtchouk polynomials, defined as:

Kn (x; p, N) = 2F1

(
−n,−x;−N; 1

p

)
=

N∑
k=0

αk,n,pxk . (13.23)

In Eq. (13.22) ρ (n; p, N) is the norm of the Krawtchouk polynomials having the
form:

ρ (n; p, N) = (−1)n
(
1 − p

p

)n n!
(−N)n

, n = 1, . . . , N (13.24)

and w (x; p, N) is the weight function of the Krawtchouk moments,

w (x; p, N) =
(

N

x

)
px (1 − p)N−x (13.25)

In Eq. (13.24) the symbol (·)n is the Pochhammer symbol, which for the general
case is defined as (α)k = α (α + 1) . . . (α + k + 1).
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In practice, the computation of the weighted Krawtchouk polynomials is not per-
formed through Eq. (13.22), since this is a very time consuming procedure; instead,
a recursive algorithm [34] is applied:

p (N − n) Kn+1 (x; p, N) = A (Np − 2np + n − x) Kn (x; p, N)

− Bn (1 − p) Kn−1 (x; p, N) (13.26)

where

A =
√

p (N − n)

(1 − p) (n + 1)
, B =

√
p2 (N − n) (N − n + 1)

(1 − p)2 (n + 1) n
(13.27)

and

K0 (x; p, N) =
√

w (x; p, N)

ρ (0; p, N)
, K1 (x; p, N) =

(
1 − x

pN

)√
w (x; p, N)

ρ (1; p, N)

(13.28)
The Krawtchouk moments proved to be effective local descriptors, since they can

describe the local features of an image, unlike the other moment families, which
capture only the global features of the objects they describe. This locality property
is controlled by appropriate adjustment of the p1,p2 parameters of Eq. (13.21).

13.2.2.3 Dual Hahn Moments

The (n + m)th order orthogonal dual Hahn moment [37] of a N × N image having
intensity function f (x, y) is defined as:

Wnm =
b−1∑
x=a

b−1∑
y=a

Ŵ (c)
n (x, a, b) Ŵ (c)

m (y, a, b) f (x, y) ,

n, m = 0, 1, . . . , N − 1 (13.29)

where − 1
2 < a < b, |c| < 1 + a, b = a + N and

Ŵ (c)
n (s, a, b) = W (c)

n (s, a, b)

√
ρ(s)

d2
n

[
Δx

(
s − 1

2

)]
(13.30)

is the nth order weighted dual Hahn polynomial used to reduce the numerical insta-
bilities caused by the ordinary dual Hahn polynomials, defined as:
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W (c)
n (s, a, b) = (a − b + 1)n (a + c + 1)n

n!
3F2 (−n, a − s, a + s + 1; a − b + 1, a + c + 1; 1) (13.31)

for n = 0, 1, . . . , N − 1, s = a, a + 1, . . . , b − 1, where 3F2 is the generalized
hypergeometric function given by:

3F2 (a1, a2, a3; b1, b2; z) =
∞∑

k=0

(a1)k (a2)k (a3)k

(b1)k (b2)k

zk

k! (13.32)

In the above formulas ρ (s) is the weighting function defined in terms of the
gamma function Γ (·) as:

ρ (s) = Γ (a + s + 1) Γ (c + s + 1)

Γ (s − a + 1) Γ (b − s) Γ (b + s + 1) Γ (s − c + 1)
(13.33)

and

d2
n = Γ (a + c + n + 1)

n! (b − a − n − 1)!Γ (b − c − n)
, n = 0, 1, . . . , N − 1. (13.34)

It is obvious from the above equations that the computation of dual Hahn polyno-
mials is a time consuming task, so efficient recursive algorithms need to be used [37].

13.2.3 Image Reconstruction by the Method of Moments

A significant and useful property of the orthogonal moments is their ability to recon-
struct the image they describe. The reconstruction of a N × N image by using
moment orders up to nmax and mmax is described by the following inverse formula
of Eq. (13.2):

f̂ (x, y) =
nmax∑
n=0

mmax∑
m=0

Kernelnm (x, y) Mnm (13.35)

where Mnm is the (n + m)th order moment and Kernelnm(x, y) the kernel function of
the used polynomial family, which is not always the same as Eq. (13.2), e.g. for the
case of the Zernike moments it is equal to the conjugate of Kernelnm(x, y).

It is worth to note that the reconstruction ability of each moment family is an
indication of its information compactness,which is highly connectedwith the amount
of image’s information enclosed by themoment coefficients. An extensive analysis of
the reconstruction performance of the orthogonal moments has been reported in [21].
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13.2.4 Moments Interpretation

The conventional characterization of the orthogonal image moments defines them as
the projections of an image to the orthogonal basis of the used polynomials. However,
this definition encloses more mathematical than engineering or computer science
oriented knowledge. According to a different perspective from an engineering and
computer science point of view, the orthogonal moments represent the similarity
between the image and a number of image patterns formed by the kernel function of
each moment family.

In order to better understand the latter proposition, the image patterns derived from
the kernels of the pre-analyzed moment families need to be calculated. These image
patterns are called basis images and they are computed by applying the following
formula:

Φnm = [
Polyn

]T Polym (13.36)

where Polyn and Polym are vectors with the values of the nth and mth order poly-
nomial for each image pixel. The computed basis images for the case of an 8 × 8
square image having constant intensity equal to 1, for the cases of the continuous
orthogonal moments (up to order 7) are depicted in Figs. 13.1, 13.2 and 13.3.

By examining the basis images of Figs. 13.1, 13.2 and 13.3 it is noticeable that the
patterns provided by each moment type are totally different. The Zernike moments
(Fig. 13.1) generate circular patterns due to the used radial polynomials Eq. (13.2),
while some images do not exist due to the constraints hold between the n and m
parameters.

Fig. 13.1 Basis images of the continuous orthogonal Zernike moments
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Fig. 13.2 Basis images of the continuous orthogonal Legendre moments

Fig. 13.3 Basis images of the continuous orthogonal Gaussian-Hermite (σ = 1) moments

Concerning the basis images of the rest continuous moments it can be noted that
the formed patterns include more details as the moment order increases, while for
low order these patterns are coarse.This observation deals with what is commonly
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Fig. 13.4 Basis images of the discrete orthogonal Tchebichef moments

stated regarding the description capabilities of different moment orders. The corre-
sponding basis images for the case of the discrete orthogonal moments are illustrated
in Figs. 13.4, 13.5 and 13.6.

Fig. 13.5 Basis images of the discrete orthogonal Krawtchouk (p1 = p2 = 0.5) moments
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Fig. 13.6 Basis images of the discrete orthogonal dual Hahn (a = c = 0, b = 8) moments

The local behaviour of the Krawtchouk and dual Hahn moments is obvious from
the above basis images of the discrete orthogonal moments. This constitutes the most
advantageous property of these moments, since they localize the window of interest
in a specific image portion. The previous analysis considering the basis images of
the orthogonal moments highlights the different representation capabilities of each
moment type for different moment orders. According to this study each moment
carries different image’s content and therefore the selection of the moments that
better discriminate some patterns seems to be a reasonable and inevitable process.

13.3 Is There a Need for Moments’ Selection?

Apart from the previous analysis of moments’ representation capabilities, the exe-
cution of a certain experiment regarding moments’ description ability, would be
constructive to further highlight the need for selection of the most appropriate
moment sets.

For this purpose the well known Lena benchmark image with 64 × 64 pixels
size in grayscale format, is reconstructed with various sets of Tchebichef moments
having different orders. The reconstruction results for moment sets consisting of 10
different orders are depicted in Fig. 13.7. It has to be noted that in each reconstructed
image the intensities are normalized into the [0, 255] range for illustration purposes.

From the reconstructed images of Fig. 13.7, it can be deduced that as the
moment order increases more detailed information of the image’s content emerges.
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Fig. 13.7 Lena image reconstruction using several sets of Tchebichef moments of various orders:
a 0–9, b 0–19, c 0–29, d 0–39, e 0–49, f 0–9, g 10–19, h 20–29, i 30–39 and j 40–49

For example, the orders’ range 0–9 (1st row of Fig. 13.7) is able to reconstruct a quite
coarse image’s content,while by adding the next 10orders (0–19) somedetailed infor-
mation is incorporated. This observation is in agreement with the image’s content
described by each moment set (2nd row of Fig. 13.7), where it is obvious that the
higher order moments sets model the high frequency pixels variations.

Considering the above analysis, the moments of low orders are not so useful in
discriminating patterns which differ slightly, since their differences are described in
the highmoment orders. For example, if a second image of the aboveLena benchmark
is constructed with Lena having her eyes closed, the two image patterns could not
be discriminated by the low order moments but high orders are needed.

Therefore, it is evident that the appropriate set of moments, better discriminating
some specified patterns, depends on the application and thus a selection procedure
considering patterns’ modalities is inevitable.

13.4 Moment Features Selection

By examining the recent literature in the field of image moments, one can reach the
conclusion that little work has been done towards the moments’ selection [13, 20].

The main selection method applied to all the aforementioned works is the
Genetic Algorithm (GA), proved as an efficient wrapper selection technique [24]
taking into account the classificationmodel applied to recognize the patterns. Genetic
Algorithms are a great example of evolutionary computation mimicking the evolu-
tionary process that characterizes the evolution of living organisms [5]. However,
the main disadvantage of the GA-based selection is the high computation time need
to converge the algorithm to a suitable solution.
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The aforementioned drawback of theGA-based selectionmakes the filter selection
methods [24] an attractive alternative approach. Thesemethods do not use themining
model (they are independent of the classification model), instead the internal data
properties/characteristics (dependency, correlation etc.) are taken into consideration.

For the sake of the experiments presented in the next section, the GA-based
(wrapper) and the Relief [15] algorithm (filter) selection methods will be applied
for the selection of the proper moment subsets that better discriminate the patterns
of some benchmark pattern recognition datasets. These two algorithms are briefly
discussed in the next sections.

13.4.1 GA-Based Selection

The main operational element of a Genetic Algorithm is the chromosome. The chro-
mosome corresponds to a candidate solution to the problem at hand, consisting of the
set of variables appropriately coded. For the case of the GA-based moment selection
method, the chromosome consists of the indices (Fig. 13.8) of a predefined number of
moments. The indices correspond to the moment id belonging to the moment feature
vector, which is constructed by arranging the computing moments according to the
zigzag scanning operation [11].

Initially, a pool of 100 moment features is constructed by computing all the
moments up to a specific order. Considering that a number of n moments are required
to be selected, the kth chromosome structure of the GA is depicted in Fig. 13.8.

Furthermore, the objective function being minimized by the GA is equal to
the recognition error (Wrong Recognized Patterns/Total Patterns) derived when the
selected moment sets are fed to the classifier model.

13.4.2 Relief Algorithm

Relief algorithm [15] is a popular feature selection method due to its simplicity. It
is based on the computation of the relevance between pairs of feature vectors. The
relevance is measured by applying the L-dimensional Euclidean distance, where L
is the dimension of the feature vectors being compared. This algorithm selects those
features which are relevant subject to a defined threshold in linear time.

Fig. 13.8 Chromosome structure
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13.5 Experimental Study

A set of experiments were conducted in order to study the impact of the selected
moment subsets on the overall recognition performance in several pattern recognition
problems. For this purpose, appropriate software was developed in the MATLAB
2012b environment, while all experiments were executed in an Intel i5 3.3GHz
PC with 8GB RAM. Moreover, four well known benchmark datasets were used
to evaluate the initial assertion of the moments’ selection significance, towards the
improvement of the recognition accuracy.

13.5.1 Benchmark Datasets

Four benchmark datasets are used in order to investigate the selection performance
of the Relief and Genetic Algorithms in selecting moment subsets of various sizes.
The considered datasets are the Yale face recognition dataset [1], a subset [22] of
the Terravic thermal infrared face recognition [18], the JAFFE [17] and RADBOUD
[16] facial expressions datasets. Three sample images (different classes) from each
dataset are depicted in Fig. 13.9, while the properties of each dataset are summarized
in Table13.1.

13.5.2 Datasets Pre-processing

It is worth noting that before computing the moment features, the images need to
be pre-processed in order to remove irrelevant image information (background, hair,
ears, etc.) and to isolate the image’s part, which includes the main face information.
For this purpose, the Viola-Jones face detector [29] is applied being followed by
an ellipse masking [11], for the case of Yale, JAFFE and Radboud datasets. The
aforementioned face detector fails to detect faces in thermal infrared images and

Table 13.1 Benchmark datasets properties

Dataset Type Number of classes Samples/class Total samples

Yale Face recognition 15 11 165

Terravic Thermal infrared face
recognition

10 70 700

JAFFE Facial expression
recognition

7 30, 29, 32, 31, 30, 31, 30 213

Radboud – 8 67 536
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 13.9 Samples of the four benchmarks: a–c Yale, d–f Terravic, g–i JAFFE and j–l RADBOUD

thus the procedure proposed in [22] is applied for the Terravic dataset. The outcome
of this processing stage is a cropped image of 128 × 128 pixels size, which includes
the most relative information to the face image content.
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13.5.3 Simulations

A large scale experimental study has taken place in order to extract useful conclu-
sions towards the improvement of the moment features’ recognition performance
through the application of a selection mechanism. The Genetic Algorithm settings
are: population size 50, maximum generations 30, crossover with probability 0.8 and
2 points, mutation probability 0.01 and Stochastic Universal Approximation (SUS)
selection method. The k-NN classifier (k =1) is selected as the prediction model in
the case of the GA-based selection. Moreover, a 10-fold cross-validation technique
is applied in all datasets, while the moments are selected from a pool of the first 100
(up to 9 order for all moments, except Zernike computed up to 18 order) computed
moments for each moment family.

The corresponding mean recognition rates for each dataset are summarized in
Tables13.2, 13.3, 13.4 and 13.5. The bestmoment family alongwith the best selection
method is presented in these results.

By examining Tables13.2, 13.3, 13.4 and 13.5 it is deduced that in almost all
cases the selected moment features show better or equal, in the worst case, perfor-
mance than the non selected (NoSel.) moments. This outcome enforces the initial
assertion regarding the needs for moment features selection. Moreover, among the
two examined selection methods, the GA-based one seems to be more efficient for
small sized moment subsets (up to 25–30), while the Relief algorithm is superior for
larger subsets (greater than 30–40). This observation can be justified by the fact that
for large moment subsets (greater than 30) the optimization problem, which needs
to be solved by the GA, is quite difficult. One solution to this limitation is to use
more advanced versions of the algorithm, where adaptive crossover and/or mutation
operators could guide the algorithm to more optimum solutions.

Table 13.2 Recognition performance of moment features subsets for the Yale dataset

Yale dataset

Number of moments Moment type Recognition rate (%) Selection method

5 Krawtchouk 76.00 GA

10 Krawtchouk 86.66 GA

15 Zernike 88.00 GA

20 Zernike 87.33 GA

25 Dual Hahn 84.66 GA

30 Krawtchouk 72.66 Relief

40 Krawtchouk 75.33 Relief

50 Krawtchouk 74.66 Relief

60 Krawtchouk 76.66 Relief

70 Dual Hahn 76.00 Relief
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Table 13.3 Recognition performance of moment features subsets for the Terravic dataset

Terravic dataset

Number of moments Moment type Recognition rate (%) Selection method

5 All 100.00 NoSel./GA

10 All 100.00 NoSel./GA

15 All 100.00 NoSel./GA

20 All 100.00 NoSel./GA

25 All 100.00 NoSel./GA

30 All 100.00 NoSel./Relief

40 All 100.00 NoSel./Relief

50 All 100.00 NoSel./Relief

60 All 100.00 NoSel./Relief

70 All 100.00 NoSel./Relief

Table 13.4 Recognition performance of moment features subsets for the JAFFE dataset

JAFFE Dataset

Number of moments Moment type Recognition rate (%) Selection method

5 Legendre 71.66 GA

10 Krawtchouk 79.90 GA

15 Legendre 78.90 GA

20 Krawtchouk 77.47 GA

25 Krawtchouk 69.33 GA

30 Krawtchouk 53.92 GA

40 Dual Hahn 47.35 Relief

50 Zernike 46.88 Relief

60 Gaussian-Hermite 46.80 Relief

70 Legendre 46.88 NoSel.

From the above results, it can be observed that the increase of the number of
moments used to discriminate the patterns does not always improve the recognition
accuracy. In almost all the cases a subset of 10–25 moment features is able to achieve
the highest recognition rate.

In order to draw a conclusion regarding the optimal settings, ensuring the best
solution to each dataset, the most effective configuration in each case is summarized
in Table13.6.

The results ofTable13.6 showagain the outperformanceof theGA-based selection
method over the Relief one, while its recognition accuracy is in agreement with the
state of the artmethods [11, 22, 25]. As far as the performance of themoment families
is concerned, it is obvious that Zernikemoments are themost efficient family, while a
moments’ subset of size lower than 25 is adequate to ensure an acceptable recognition



13 Improving the Recognition Performance of Moment Features by Selection 325

Table 13.5 Recognition performance of moment features subsets for the Radboud dataset

Radboud dataset

Number of moments Moment type Recognition rate (%) Selection method

5 Zernike 48.21 GA

10 Zernike 55.75 GA

15 Zernike 61.96 GA

20 Zernike 61.38 GA

25 Zernike 62.14 GA

30 Zernike 54.10 GA

40 Zernike 53.30 Relief

50 Zernike 53.66 Relief

60 Zernike 53.30 Relief

70 Zernike 51.47 No Sel./Relief

Table 13.6 Best configuration for each dataset

Dataset Number of moments Moment type Recognition rate (%) Selection method

Yale 15 Zernike 88.00 GA

Terravic 5 All 100.00 No Sel./GA

JAFFE 10 Krawtchouk 79.90 GA

Radboud 25 Zernike 62.14 GA

accuracy. However, Krawtchouk moments show a significant performance leading
to the conclusion that the locality property plays an important role to capture the
local characteristics of the patterns. More work has to be done in this direction of
describing the local information by the method of moments.

13.6 Conclusions

A detailed discussion of the main properties of the most representative image orthog-
onal moment families was presented in the previous sections. Through an in depth
analysis of the representation capabilities of the orthogonal moments, the need for
selection of moment features for improved recognition accuracy is highlighted.
Finally, an extensive experimental study on well known benchmark datasets has
resulted in useful conclusions regarding the initial assertion of moment’s selec-
tion and the description capability of each moment family. The GA-based selection
method has shown superior performance to the Relief algorithm, mainly for low
number of moments, while for high number of features the latter algorithm seems to
be the suitable choice.
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Moreover, the Zernike moments seem to be the most discriminant moment family
compared to other moments, since they recognized the patterns of the three datasets
with the highest rate. Also, one additional outcome of the experiments was the out-
performance of the Krawtchouk moments to the JAFFE dataset. This result set the
basis of a future study regarding the selection of moments belonging to different
moment families, in order to take advantage of the properties each family presents.

Conclusively, an initial claim was set and proved both theoretically and
experimentally, by establishing the selection of moment features as a mandatory
processing step of any modern pattern recognition system.
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