Chapter 11

Hubness-Aware Classification, Instance
Selection and Feature Construction:
Survey and Extensions to Time-Series

Nenad Tomasev, Krisztian Buza, Kristéf Marussy and Piroska B. Kis

Abstract Time-series classification is the common denominator in many real-world
pattern recognition tasks. In the last decade, the simple nearest neighbor classifier, in
combination with dynamic time warping (DTW) as distance measure, has been shown
to achieve surprisingly good overall results on time-series classification problems. On
the other hand, the presence of hubs, i.e., instances that are similar to exceptionally
large number of other instances, has been shown to be one of the crucial properties of
time-series data sets. To achieve high performance, the presence of hubs should be
taken into account for machine learning tasks related to time-series. In this chapter, we
survey hubness-aware classification methods and instance selection, and we propose
to use selected instances for feature construction. We provide detailed description
of the algorithms using uniform terminology and notations. Many of the surveyed
approaches were originally introduced for vector classification, and their application
to time-series data is novel, therefore, we provide experimental results on large
number of publicly available real-world time-series data sets.

Keywords Time-series classification - Hubs -+ Instance selection - Feature
construction

N. Tomasev

Institute JoZef Stefan, Artificial Intelligence Laboratory, Jamova 39,
1000 Ljubljana, Slovenia

e-mail: nenad.tomasev @ gmail.com

K. Buza (X)

Faculty of Mathematics, Informatics and Mechanics,

University of Warsaw (MIMUW), Banacha 2, 02-097 Warszawa, Poland
e-mail: chrisbuza@yahoo.com

K. Marussy

Department of Computer Science and Information Theory,

Budapest University of Technology and Economics, Magyar Tudésok Kirt. 2.,
Budapest 1117, Hungary

e-mail: marussy @cs.bme.hu

PB. Kis

Department of Mathematics and Computer Science, College of Dunadjvaros,
Tancsics M. u. 1/a, Dunadjvaros 2400, Hungary

e-mail: pbkism@yahoo.com

© Springer-Verlag Berlin Heidelberg 2015 231
U. Stariczyk and L.C. Jain (eds.), Feature Selection for Data

and Pattern Recognition, Studies in Computational Intelligence 584,

DOI 10.1007/978-3-662-45620-0_11

232 N. Tomaseyv et al.

11.1 Introduction

Time-series classification is one of the core components of various real-world
recognition systems, such as computer systems for speech and handwriting recog-
nition, signature verification, sign-language recognition, detection of abnormali-
ties in electrocardiograph signals, tools based on electroencephalograph (EEG)
signals (“brain waves”), i.e., spelling devices and EEG-controlled web browsers
for paralyzed patients, and systems for EEG-based person identification, see e.g.
[34, 35, 37, 45]. Due to the increasing interest in time-series classification, vari-
ous approaches have been introduced including neural networks [26, 38], Bayesian
networks [48], hidden Markov models [29, 33, 39], genetic algorithms, support
vector machines [14], methods based on random forests and generalized radial basis
functions [5] as well as frequent pattern mining [17], histograms of symbolic polyno-
mials [18] and semi-supervised approaches [36]. However, one of the most surprising
results states that the simple k-nearest neighbor (kNN) classifier using dynamic time
warping (DTW) as distance measure is competitive (if not superior) to many other
state-of-the-art models for several classification tasks, see e.g. [8] and the references
therein. Besides experimental evidence, there are theoretical results about the opti-
mality of nearest neighbor classifiers, see e.g. [12]. Some of the recent theoretical
works focused on a time series classification, in particular on why nearest neighbor
classifiers work well in case of time series data [10].

On the other hand, Radovanovié et al. observed the presence of hubs in time-
series data, i.e., the phenomenon that a few instances tend to be the nearest neighbor
of surprising lot of other instances [43]. Furthermore, they introduced the notion
of bad hubs. A hub is said to be bad if its class label differs from the class labels of
many of those instances that have this hub as their nearest neighbor. In the context of
k-nearest neighbor classification, bad hubs were shown to be responsible for a large
portion of the misclassifications. Therefore, hubness-aware classifiers and instance
selection methods were developed in order to make classification faster and more
accurate [9, 43, 50, 52-54].

As the presence of hubs is a general phenomenon characterizing many datasets, we
argue that it is of relevance to feature selection approaches as well. Therefore, in this
chapter, we will survey the aforementioned results and describe the most important
hubness-aware classifiers in detail using unified terminology and notations. As a first
step towards hubness-aware feature selection, we will examine the usage of distances
from the selected instances as features in a state-of-the-art classifier.

The methods proposed in [50, 52—-54] were originally designed for vector classi-
fication and they are novel to the domain of time-series classification. Therefore, we
will provide experimental evidence supporting the claim that these methods can be
effectively applied to the problem of time-series classification. The usage of distances
from selected instances as features can be seen as transforming the time-series into
a vector space. While the technique of projecting the data into a new space is widely
used in classification, see e.g. support vector machines [7, 11] and principal com-
ponent analysis [25], to our best knowledge, the particular procedure we perform is

11 Hubness-Aware Classification, Instance Selection and Feature Construction 233

novel in time-series classification, therefore, we will experimentally evaluate it and
compare to state-of-the-art time-series classifiers.

The remainder of this chapter is organized as follows: in Sect.11.2 we
formally define the time-series classification problem, summarize the basic nota-
tion used throughout this chapter and shortly describe nearest neighbor classification.
Section 11.3 is devoted to dynamic time warping, and Sect. 11.4 presents the hubness
phenomenon. In Sect. 11.5 we describe state-of-the-art hubness-aware classifiers, fol-
lowed by hubness-aware instance selection and feature construction approaches in
Sect. 11.6. Finally, we conclude in Sect. 11.7.

11.2 Problem Formulation and Basic Notations

The problem of classification can be stated as follows. We are given a set of instances
and some groups. The groups are called classes, and they are denoted as Cy, ..., Cy,.
Each instance x belongs to one of the classes.! Whenever x belongs to class C;, we
say that the class label of x is C;. We denote the set of all the classes by ¥, i.e.,
% = {Ci,...,Cp}. Let Z be a dataset of instances x; and their class labels y;, i.e.,
2D = {(x1,¥1) . .. (Xn, yu)}. We are given a dataset 2" called training data. The
task of classification is to induce a function f (x), called classifier, which is able to
assign class labels to instances not contained in 274",

In real-world applications, for some instances we know (from measurements
and/or historical data) to which classes they belong, while the class labels of other
instances are unknown. Based on the data with known classes, we induce a classifier,
and use it to determine the class labels of the rest of the instances.

In experimental settings we usually aim at measuring the performance of a classi-
fier. Therefore, after inducing the classifier using 27", we use a second dataset 2/,
called fest data: for the instances of 2", we compare the output of the classifier,
i.e., the predicted class labels, with the true class labels, and calculate the accuracy of
classification. Therefore, the task of classification can be defined formally as follows:
given two datasets 2" and 2'**', the task of classification is to induce a classifier
f () that maximizes prediction accuracy for 2. For the induction of f (x), however,
solely 2"%" can be used, but not 2!,

Next, we describe the k-nearest neighbor classifier (kNN). Suppose, we are given
an instance x* € 2" that should be classified. The kNN classifier searches for those
k instances of the training dataset that are most similar to x*. These k most similar
instances are called the k nearest neighbors of x*. The kNN classifier considers the k
nearest neighbors, and takes the majority vote of their labels and assigns this label to
x*:e.g.if k = 3 and two of the nearest neighbors of x* belong to class C;, while one

! In this chapter, we only consider the case when each instance belongs to exactly one class.
Note, however, that the presence of hubs may be relevant in the context of multilabel and fuzzy
classification as well.

234 N. Tomaseyv et al.

Table 11.1 Abbreviations used throughout the chapter and the sections where those concepts are
defined/explained

Abbreviation Full name Definition
AKNN Adaptive kNN Sect.11.5.5
BN (x) Bad k-occurrence of x Sect. 11.4
DTW Dynamic Time Warping Sect.11.3
GN(x) Good k-occurrence of x Sect. 11.4
h-FNN Hubness-based fuzzy nearest neighbor Sect.11.5.2
HIKNN Hubness information k-nearest neighbor Sect.11.5.4
hw-kNN Hubness-aware weighting for kNN Sect. 11.5.1
INSIGHT Instance selection based on graph-coverage and Sect. 11.6.1
hubness for time-series
kNN k-nearest neighbor classifier Sect. 11.2
NHBNN Naive hubness Bayesian k-nearest Neighbor Sect.11.5.3
Ny (x) k-occurrence of x Sect.11.4
Ni.c(x) Class-conditional k-occurrence of x Sect. 11.4
INe(x) Skewness of Nj(x) Sect.11.4
RImb Relative imbalance factor Sect.11.5.5

of the nearest neighbors of x belongs to class C», then this 3-NN classifier recognizes
x* as an instance belonging to the class Cj.

We use 44 (x) to denote the set of k nearest neighbors of x. 4% (x) is also called
as the k-neighborhood of x.

Abbreviations used throughout this chapter are summarized in Table 11.1.

11.3 Dynamic Time Warping

While the kNN classifier is intuitive in vector spaces, in principle, it can be applied
to any kind of data, i.e., not only in case if the instances correspond to points of a
vector space. The only requirement is that an appropriate distance measure is present
that can be used to determine the most similar train instances. In case of time-series
classification, the instances are time-series and one of the most widely used distance
measures is DTW. We proceed by describing DTW. We assume that a time-series x
of length [is a sequence of real numbers: x = (x[0], x[1], ..., x[/ — 1]).

In the most simple case, while calculating the distance of two time series xj
and x», one would compare the kth element of x; to the kth element of x, and
aggregate the results of such comparisons. In reality, however, when observing the
same phenomenon several times, we cannot expect it to happen (or any characteristic
pattern to appear) always at exactly the same time position, and the event’s duration
can also vary slightly. Therefore, DTW captures the similarity of two time series’

11 Hubness-Aware Classification, Instance Selection and Feature Construction 235

shapes in a way that it allows for elongations: the kth position of time series xj is
compared to the k’th position of x, and k" may or may not be equal to k.

DTW is an edit distance [30]. This means that we can conceptually consider the
calculation of the DTW distance of two time series x; and x, of length /1 and I,
respectively as the process of transforming x; into x». Suppose we have already
transformed a prefix (possibly having length zero or /; in the extreme cases) of xj
into a prefix (possibly having length zero or /; in the extreme cases) of x,. Consider
the next elements, the elements that directly follow the already-transformed prefixes,
of x1 and x,. The following editing steps are possible, both of which being associated
with a cost:

1. replacement of the next element of x; for the next element of x», in this case, the
next element of x| is matched to the next element of x;, and

2. elongation of an element: the next element of x; is matched to the last element
of the already-matched prefix of x, or vice versa.

As result of the replacement step, both prefixes of the already-matched elements
grow by one element (by the next elements of x; and x; respectively). In contrast,
in an elongation step, one of these prefixes grows by one element, while the other
prefix remains the same as before the elongation step.

The cost of transforming the entire time series x| into x is the sum of the costs of
all the necessary editing steps. In general, there are many possibilities to transform
x1 into xp, DTW calculates the one with minimal cost. This minimal cost serves as
the distance between both time series. The details of the calculation of DTW are
described next.

DTW utilizes the dynamic programming approach [45]. Denoting the length of x;
by [1, and the length of x, by /5, the calculation of the minimal transformation cost is
done by filling the entries of an /1 x I, matrix. Each number in the matrix corresponds
to the distance between a subsequence of x; and a subsequence of x». In particular,
the number in the ith row and jth column,? d(l)) TW(i ,J) corresponds to the distance
between the subsequences x| = (x[0], ..., x[i]) and x5 = (x2[0], ..., x2[/]). This
is shown in Fig. 11.1.

When we try to match the ith position of x1 and the jth position of x;, there are
three possible cases: (i) elongation in xy, (ii) elongation in x>, and (iii) no elongation.

If there is no elongation, the prefix of x; up to the (i — 1)th position is matched
(transformed) to the prefix of x> up to the (j — 1)th position, and the ith position of
x1 is matched (transformed) to the jth position of x;.

Elongation in x; at the ith position means that the ith position of x; has already
been matched to at least one position of x», i.e., the prefix of x| up to the ith position
is matched (transformed) to the prefix of x» up to the (j — 1)th position, and the ith
position of xj is matched again, this time to the jth position of x,. This way the ith
position of x7 is elongated, in the sense that it is allowed to match several positions
of x». The elongation in x, can be described in an analogous way.

2 Please note that the numbering of the columns and rows begins with zero, i.e., the very-first
column/row of the matrix is called in this sense as the Oth column/row.

236 N. Tomaseyv et al.

—_—
(a) >z (b)
il 5 3.8 2 1.30.8
| B — T T
Cost of | 118 |15(22 The mat'rix |
transforming 2| 9 |16]23]| is filled in
the marked 1 310117 this order.
\ parts of x1
4 > !and z2. va [11]18]--
[
1 11 512(19].--
— Cost of transforming
3 | the entire x; into 6113120
2 the entire z5. 711421
1 1 1 1 1 1

Fig. 11.1 The DTW-matrix. While calculating the distance (transformation cost) between two
time series x; and xp, DTW fills-in the cells of a matrix. a The values of time series x; =
(0.75,2.3,4.1,4, 1, 3, 2) are enumerated on the left of the matrix from top to bottom. Time series
X7 is shown on the fop of the matrix. A number in a cell corresponds to the distance (transformation
cost) between two prefixes of x; and xp. b The order of filling the positions of the matrix

Out of these three possible cases, DTW selects the one that transforms the prefix
x; = (x1[0], ..., x[7]) into the prefix x; = (x2[0], ..., x2[j]) with minimal overall
costs. Denoting the distance between the subsequences x| and x}, i.e. the value of
the cell in the ith row and jth column, as d(l))TW(i, J), based on the above discussion,
we can write:

dPTV i — 1) + TV

dP™V (i, j) = BTV (xy[il, xalj]) + min § dETV G — 1)+ DTV L (L)

0™V (i~ 1.~ 1)

In this formula, the first, second, and third terms of the minimum correspond to
the above cases of elongation in x1, elongation in x; and no elongation, respectively.
The cost of matching (transforming) the ith position of x; to the jth position of x,
is cP™W (x1[i], x2[j]). If x1[i] and x,[j] are identical, the cost of this replacement is
zero. This cost is present in all the three above cases. In the cases, when elongation
happens, there is an additional elongation cost denoted as c’e’lD ™.

According to the principles of dynamic programming, Formula (11.1) can be
calculated for all 7, j in a column-wise fashion. First, set d5" (0, 0) = 2™V (x[0],
x2[0]). Then we begin calculating the very first column of the matrix (j = 0), followed
by the next column corresponding to j = 1, etc. The cells of each column are
calculated in order of their row-indexes: within one column, the cell in the row
corresponding i = 0 is calculated first, followed by the cells corresponding to i = 1,
i = 2, etc. (see Fig. 11.1). In some cases (in the very-first column and in the very-
first cell of each row), in the min function of Formula (11.1), some of the terms are
undefined (when i — 1 or j — 1 equals —1). In these cases, the minimum of the other
(defined) terms are taken.

The DTW distance of x| and x», i.e. the cost of transforming the entire time series
x1 = (x1[0], x1[11, ..., x1[/1 — 1]) into xp = (x2[0], x2[11, ..., x2[lr — 1]) is

11 Hubness-Aware Classification, Instance Selection and Feature Construction 237

a T2 ——

® 1 1 3 4 38 1 (b)

z1 1 |0J0]2)5)7 7/—{\373|+min{2,3,4}:2‘
2 [1|1]|1]|3]4]5
3 |3|3|1|2]|294a (©)
3 [s5)s5]1]2]2]4 134 3 1
VAN
1 [8lslalals 12 3 3 4 1

Fig. 11.2 Example for the calculation of the DTW-matrix. a The DTW-matrix calculated with

chW(vA, vg) = |va —val, cZTW = 0. The time series x| and x, are shown on the /eft and fop of the

matrix respectively. b The calculation of the value of a cell. ¢ The (implicitly) constructed mapping
between the values of the both time series. The cells are leading to the minimum in Formula (11.1),
i.e., the ones that allow for this mapping, are marked in the DTW-matrix

dprw (x1,x2) =d¥™ 1y — 1,1 — 1). (11.2)

An example for the calculation of DTW is shown in Fig. 11.2.

Note that the described method implicitly constructs a mapping between the posi-
tions of the time series x; and x,: by back-tracking which of the possible cases leads
to the minimum in the Formula (11.1) in each step, i.e., which of the above discussed
three possible cases leads to the minimal transformation costs in each step, we can
reconstruct the mapping of positions between x; and x».

For the final result of the distance calculation, the values close to the diagonal
of the matrix are usually the most important ones (see Fig. 11.2 for an illustration).
Therefore, a simple, but effective way of speeding-up dynamic time warping is to
restrict the calculations to the cells around the diagonal of the matrix [45]. This
means that one limits the elongations allowed when matching the both time series
(see Fig. 11.3).

Restricting the warping window size to a pre-defined constant w”T% (see Fig. 11.3)

implies that it is enough to calculate only those cells of the matrix that are at most
wPTW positions far from the main diagonal along the vertical direction:

dB™V (i, j) is calculated < |i — j| < wPTW. (11.3)
The warping window size wPTV is often expressed in percentage relative to the
length of the time series. In this case, w?™" = 100 % means calculating the entire
matrix, while wP™W = 0 % refers to the extreme case of not calculating any entries
at all. Setting wP™V to a relatively small value such as 5 %, does not negatively affect
the accuracy of the classification, see e.g. [8] and the references therein.
In the settings used throughout this chapter, the cost of elongation, cflTW

to zero:

, 18 set

DTV = 0. (11.4)

238 N. Tomaseyv et al.

Fig. 11.3 Limiting the size of the warping window: only the cells around the main diagonal of the
matrix (marked cells) are calculated

The cost of transformation (matching), denoted as c?7%, depends on what value is
replaced by what: if the numerical value vy4 is replaced by vp, the cost of this step is:

2TV (4, vg) = [va — val. (11.5)

We set the warping window size to wPT" = 5 %. For more details and further recent
results on DTW, we refer to [8].

11.4 Hubs in Time-Series Data

The presence of hubs, i.e., some few instances that tend to occur surprisingly
frequently as nearest neighbors while other instances (almost) never occur as near-
est neighbors, has been observed for various natural and artificial networks, such as
protein-protein-interaction networks or the internet [3, 22]. The presence of hubs
has been confirmed in various contexts, including text mining, music retrieval and
recommendation, image data and time series [43, 46, 49]. In this chapter, we focus
on time series classification, therefore, we describe hubness from the point of view
of time-series classification.

For classification, the property of hubness was explored in [40—-43]. The prop-
erty of hubness states that for data with high (intrinsic) dimensionality, like most of
the time series data,> some instances tend to become nearest neighbors much more

3 In case of time series, consecutive values are strongly interdependent, thus instead of the length
of time series, we have to consider the intrinsic dimensionality [43].

11 Hubness-Aware Classification, Instance Selection and Feature Construction 239

frequently than others. Intuitively speaking, very frequent neighbors, or hubs, domi-
nate the neighbor sets and therefore, in the context of similarity-based learning, they
represent the centers of influence within the data. In contrast to hubs, there are rarely
occurring neighbor instances contributing little to the analytic process. We will refer
to them as orphans or anti-hubs.

In order to express hubness in a more precise way, for a time series dataset
2 one can define the k-occurrence of a time series x from &, denoted by N (x),
as the number of time series in & having x among their k nearest neighbors:

Ni(x) = [{xilx € A} (11.6)

With the term hubness we refer to the phenomenon that the distribution of N (x)
becomes significantly skewed to the right. We can measure this skewness, denoted
by #n,(x)» With the standardized third moment of Ny (x):

_ 3
Pty = E[(Nk(X)% N (x)] (11.7)

N ()

where () and oy, () are the mean and standard deviation of the distribution of
Ni(x). When Ay, () is higher than zero, the corresponding distribution is skewed to
the right and starts presenting a long tail. It should be noted, though, that the occur-
rence distribution skewness is only one indicator statistic and that the distributions
with the same or similar skewness can still take different shapes.

In the presence of class labels, we distinguish between good hubness and bad
hubness: we say that the time series x’ is a good k-nearest neighbor of the time
series x, if (i) x’ is one of the k-nearest neighbors of x, and (ii) both have the same
class labels. Similarly: we say that the time series x’ is a bad k-nearest neighbor of
the time series x, if (i) x” is one of the k-nearest neighbors of x, and (ii) they have
different class labels. This allows us to define good (bad) k-occurrence of a time
series x, GNi (x) (and BN (x) respectively), which is the number of other time series
that have x as one of their good (bad, respectively) k-nearest neighbors. For time
series, both distributions GN (x) and BNy (x) are usually skewed, as it is exemplified
in Fig. 11.4, which depicts the distribution of GN (x) for some time series data sets
(from the UCR time series dataset collection [28]). As shown, the distributions have
long tails in which the good hubs occur.

We say that a time series x is a good (or bad) hub, if GNj(x) (or BNg(x), respec-
tively) is exceptionally large for x. For the nearest neighbor classification of time
series, the skewness of good occurrence is of major importance, because some few
time series are responsible for large portion of the overall error: bad hubs tend to mis-
classify a surprisingly large number of other time series [43]. Therefore, one has to
take into account the presence of good and bad hubs in time series datasets. While the
kNN classifier is frequently used for time series classification, the k-nearest neighbor
approach is also well suited for learning under class imbalance [16, 20, 21], therefore

240 N. Tomaseyv et al.

Sony AIBO
BF F
c acesUCR RobotSurface
500 800 300
400 600 200
300
400
100 200
02 4 6 8 101214 01 2 3 4 5 6 01234567

Fig. 11.4 Distribution of GN| (x) for some time series datasets. The horizontal axis corresponds
to the values of GN| (x), while on the vertical axis one can see how many instances have that value

hubness-aware classifiers, the ones we present in the next section, are also relevant
for the classification of imbalanced data.

The total occurrence count of an instance x can be decomposed into good and bad
occurrence counts: Ni(x) = GNi(x) + BNy (x). More generally, we can decompose
the total occurrence count into the class-conditional counts: N (x) = Zc ez Nik,c (%)
where Ny c(x) denotes how many times x occurs as one of the k nearest neighbors
of instances belonging to class C, i.e.,

Ni,c(x) = |{xilx € M (x;)) A yi = C} (11.8)

where y; denotes the class label of x;.

As we mentioned, hubs appear in data with high (intrinsic) dimensionality,
therefore, hubness is one of the main aspects of the curse of dimensionality [4].
However, dimensionality reduction can not entirely eliminate the issue of bad hubs,
unless it induces significant information loss by reducing to a very low dimensional
space—which often ends up hurting system performance even more [40].

11.5 Hubness-Aware Classification of Time-Series

Since the issue of hubness in intrinsically high-dimensional data, such as time-series,
cannot be entirely avoided, the algorithms that work with high-dimensional data need
to be able to properly handle hubs. Therefore, in this section, we present algorithms
that work under the assumption of hubness. These mechanisms might be either
explicit or implicit.

Several hubness-aware classification methods have recently been proposed. An
instance-weighting scheme was first proposed in [43], which reduces the bad influ-
ence of hubs during voting. An extension of the fuzzy k-nearest neighbor framework
was shown to be somewhat better on average [54], introducing the concept of class-
conditional hubness of neighbor points and building an occurrence model which is

11 Hubness-Aware Classification, Instance Selection and Feature Construction 241

-
[Calculate all J [Detect hub instances Improve future predictions
a

kNN sets on the training data nd find their occurrence profiles based on pasthub occurrences
\

Fig. 11.5 The hubness-aware analytic framework: learning from past neighbor occurrences

used in classification. This approach was further improved by considering the self-
information of individual neighbor occurrences [50]. If the neighbor occurrences are
treated as random events, the Bayesian approaches also become possible [52, 53].

Generally speaking, in order to predict how hubs will affect classification of non-
labeled instances (e.g. instances arising from observations in the future), we can
model the influence of hubs by considering the training data. The training data can
be utilized to learn a neighbor occurrence model that can be used to estimate the
probability of individual neighbor occurrences for each class. This is summarized in
Fig. 11.5. There are many ways to exploit the information contained in the occurrence
models. Next, we will review the most prominent approaches.

While describing these approaches, we will consider the case of classifying an
instance x*, and we will denote its nearest neighbors as x;, i € {1,...,k}. We
assume that the test data is not available when building the model, and therefore
Ni(x), Ni,c(x), GNi(x), BNy (x) are calculated on the training data.

11.5.1 hw-kNN: Hubness-Aware Weighting

The weighting algorithm proposed by Radovanovi¢ et al. [41] is one of the simplest
ways to reduce the influence of bad hubs. They assign lower voting weights to bad
hubs in the nearest neighbor classifier. In hw-kNN, the vote of each neighbor x; is
weighted by e (%) where

BN (x;) — BN, (x)
OBN (x)

hp (xi) =

(11.9)

is the standardized bad hubness score of the neighbor instance x; € A% (x*), wan, (x)
and opy, (v) are the mean and standard deviation of the distribution of BN (x).

Example I We illustrate the calculation of Ni(x), GNi(x), BNi(x) and the
hw-kNN approach on the example shown in Fig. 11.6. As described previously, hub-
ness primarily characterizes high-dimensional data. However, in order to keep it
simple, this illustrative example is taken from the domain of low dimensional vector
classification. In particular, the instances are two-dimensional, therefore, they can
be mapped to points of the plane as shown in Fig. 11.6. Circles (instances 1-6) and

242 N. Tomaseyv et al.

Fig. 11.6 Running example 7.4_. 8

used to illustrate

hubness-aware classifiers. C>O1 ,"
Instances belong to two ‘> n
classes, denoted by circles 2
and rectangles. The triangle
is an instance to be classified 3O 6 : Aﬂ
q/(&5 ol <— 10

rectangles (instances 7—10) denote the training data: circles belong to class 1, while
rectangles belong to class 2. The triangle (instance 11) is an instance that has to be
classified.

For simplicity, we use k = 1 and we calculate N (x), GN(x) and BN (x) for the
instances of the training data. For each training instance shown in Fig. 11.6, an arrow
denotes its nearest neighbor in the training data. Whenever an instance x” is a good
neighbor of x, there is a continuous arrow from x to x’. In cases if x” is a bad neighbor
of x, there is a dashed arrow from x to x’.

We can see, e.g., that instance 3 appears twice as good nearest neighbor of other
train instances, while it never appears as bad nearest neighbor, therefore, GN1(x3) =
2, BNi(x3) = 0 and N1 (x3) = GN1(x3) + BN1(x3) = 2. For instance 6, the situation
is the opposite: GN{(xg) = 0, BN|(x6) = 2 and N1 (x¢) = GN{(x6) + BN1(x6) = 2,
while instance 9 appears both as good and bad nearest neighbor: GNy(x9) = 1,
BNi(x9) = 1 and Ni(x9) = GNj(x9) + BN;(x9) = 2. The second, third and fourth
columns of Table 11.2 show GN;(x), BN (x) and N;(x) for each instance and the
calculated means and standard deviations of the distributions of GN| (x), BN (x) and
Ni(x).

While calculating N (x), GNi(x) and BNg(x), we used k = 1. Note, however,
that we do not necessarily have to use the same k for the kNN classification of the
unlabeled/test instances. In fact, in case of kNN classification with k = 1, only
one instance is taken into account for determining the class label, and therefore the
weighting procedure described above does not make any difference to the simple 1
nearest neighbor classification. In order to illustrate the use of the weighting proce-
dure, we classify instance 11 with X’ = 2 nearest neighbor classifier, while Ny (x),
GNy (x), BNy (x) were calculated using k = 1. The two nearest neighbors of instance
11 are instances 6 and 9. The weights associated with these instances are:

_BN1 (X6) —ILBN| (x) 203
we=e) = TG =7 0675 =0.0806

11 Hubness-Aware Classification, Instance Selection and Feature Construction 243

Table 11.2 GN (x), BN (x), N1 (x), Ni,c, (x) and N ¢, (x) for the instances shown in Fig. 11.6
Instance | GNj(x) BN (x) Ni(x) Nic,(x) | Nic,(x)

O Q||| W
(=R RN el el el i SR SR
O|l—=|lO|Oo|NM|O|O|O|O|O
SN O = |||~
O|—= OO ||| —
S|l=|lOo|=|NMO|O|O|O|O

—_
(=

Mean KGN (v) = 0.7 wBN (x) = 0.3 Ny) = 1
Std. OGN, (x) = 0.823 OBN| (x) = 0.675 ON|(x) = 0.943

and

BN1(x9)—uaN, (x) 1-03

wy = e) — e OBN} () =e¢e 0675 =(0.3545.

As wg > wg, instance 11 will be classified as rectangle according to instance 9.

From the example we can see that in hw-kNN all neighbors vote by their own
label. As this may be disadvantageous in some cases [49], in the algorithms consid-
ered below, the neighbors do not always vote by their own labels, which is a major
difference to hw-kNN.

11.5.2 h-FNN: Hubness-Based Fuzzy Nearest Neighbor

Consider the relative class hubness uc (x;) of each nearest neighbor x;:
(11.10)

The above uc(x;) can be interpreted as the fuzziness of the event that x; occurred
as one of the neighbors, C denotes one of the classes: C € €. Integrating fuzziness
as a measure of uncertainty is usual in k-nearest neighbor methods and h-FNN [54]
uses the relative class hubness when assigning class-conditional vote weights. The
approach is based on the fuzzy k-nearest neighbor voting framework [27]. Therefore,
the probability of each class C for the instance x* to be classified is estimated as:

ZX,'GL/W((X*) uC(-xi)
D e N (%) 2oc e Uer (Xi)

uc(x*) = (11.11)

244 N. Tomaseyv et al.

Example 2 We illustrate h-FNN on the example shown in Fig. 11.6. Ni ¢ (x) is shown
in the fifth and sixth column of Table 11.2 for both classes of circles (C1) and rectangle
(C2). Similarly to the previous section, we calculate Ny ¢(x;) using k = 1, but we
classify instance 11 using X’ = 2 nearest neighbors, i.e., x¢ and xg. The relative class
hubness values for both classes for the instances xg and x9 are:

uc,(x¢) =0/2=0, uc,(x¢) =2/2=1,
uc,(xg) =1/2=20.5, uc,(xg) =1/2=0.5.

According to (11.11), the class probabilities for instance 11 are:

04+0.5
U) = T 05505

and

1405
ue; (1) = T 05505

As uc, (x11) > uc, (x11), x11 will be classified as rectangle (C»).

Special care has to be devoted to anti-hubs, such as instances 4 and 5 in Fig. 11.6.
Their occurrence fuzziness is estimated as the average fuzziness of points from the
same class. Optional distance-based vote weighting is possible.

11.5.3 NHBNN: Naive Hubness Bayesian k-Nearest Neighbor

Each k-occurrence can be treated as a random event. What NHBNN [53] does is that
it essentially performs a Naive-Bayesian inference based on these k events

P(* = ClM(G") o« P(O) H P(xi € M|O), (11.12)
xi €M (x*)
where P(C) denotes the probability that an instance belongs to class C and P(x; €

|C) denotes the probability that x; appears as one of the k nearest neighbors of
any instance belonging to class C. From the data, P(C) can be estimated as

|@g‘aln|

P(C) ~ |@train| ’

(11.13)

where |@[C’“i"| denotes the number of train instances belonging to class C and | 2|
is the total number of train instances. P(x; € .4;|C) can be estimated as the fraction

Ni,c(xi)

P(x; € M|C) ~ |@gain| :

(11.14)

11 Hubness-Aware Classification, Instance Selection and Feature Construction 245

Example 3 Next, we illustrate NHBNN on the example shown in Fig. 11.6. Out of
all the 10 training instances, 6 belong to the class of circles (C1) and 4 belong to the
class of rectangles (C5). Therefore:

|2&4 | =6, |ZE™| =4, P(C1) =0.6, P(Cy) =0.4.
Similarly to the previous sections, we calculate Ny c(x;) using k = 1, but we classify

instance 11 using k¥’ = 2 nearest neighbors, i.e., xg and x9. Thus, we calculate (11.14)
for x¢ and xg for both classes Cy and C5:

Nici(xs) _ 0 Nic,(x) _ 2
Pxs € MICp) ~ —EELEE = 2 =0, Plxg € M|Cy) ~ =228 = 2 =05,
|7 6 |gEn 4
Nic () 1 Nic () 1
P(ro € M|Cp) & —=SL222 =~ = 0,167, P(wo € M|Cy) & —=2222 = — = 0.25.
\ZEen 6 |7 4

According to (11.12):

P(y11 = C1|M(x11)) x 0.6 x 0 x 0.167 =0
P(y11 = Ca| A (x11)) x 0.4 x 0.5 x 0.25 =0.125

As P(y11 = C2| M (x11)) > P(y11 = C1]4(x11)), instance 11 will be classified as
rectangle.

The previous example also illustrates that estimating P(x; € .4;|C) according to
(11.14) may simply lead to zero probabilities. In order to avoid it, instead of (11.14),
we can estimate P(x; € A%|C) as

N i
PG € MIO) ~ (1 —) MeCl) (11.15)
75

where ¢ < 1.

Even though k-occurrences are highly correlated, NHBNN still offers some
improvement over the basic kNN. Itis known that the Naive Bayes rule can sometimes
deliver good results even in cases with high independence assumption violation [44].

Anti-hubs, i.e., instances that occur never or with an exceptionally low frequency
as nearest neighbors, are treated as a special case. For an anti-hub x;, P(x; € 4%|C)
can be estimated as the average of class-dependent occurrence probabilities of non-
anti-hub instances belonging to the same class as x;:

I
T 2 PayesMIo. (116

class)” et

P(xi € M|C) ~

For more advanced techniques for the treatment of anti-hubs we refer to [53].

246 N. Tomaseyv et al.

11.5.4 HIKNN: Hubness Information k-Nearest Neighbor

In h-FNN, as in most kNN classifiers, all neighbors are treated as equally important.
The difference is sometimes made by introducing the dependency on the distance
to x*, the instance to be classified. However, it is also possible to deduce some
sort of global neighbor relevance, based on the occurrence model—and this is what
HIKNN was based on [50]. It embodies an information-theoretic interpretation of
the neighbor occurrence events. In that context, rare occurrences have higher self-
information, see (11.17). These more informative instances are favored by the algo-
rithm. The reasons for this lie hidden in the geometry of high-dimensional feature
spaces. Namely, hubs have been shown to lie closer to the cluster centers [55], as
most high-dimensional data lies approximately on hyper-spheres. Therefore, hubs
are points that are somewhat less ‘local’. Therefore, favoring the rarely occurring
points helps in consolidating the neighbor set locality. The algorithm itself is a bit
more complex, as it not only reduces the vote weights based on the occurrence fre-
quencies, but also modifies the fuzzy vote itself—so that the rarely occurring points
vote mostly by their labels and the hub points vote mostly by their occurrence profiles.
Next, we will present the approach in more detail.

The self-information I, associated with the event that x; occurs as one of the
nearest neighbors of an instance to be classified can be calculated as

N (x;)
1. — .
| @tram |

1
=log——, Plxije M)~
i 0og PO € M) (x; 9]

(11.17)

Occurrence self-information is used to define the relative and absolute relevance
factors in the following way:

Ix,' - minijM((xi) IXj
o(xi) =

I,
= - , Xi) = ———— 11.18
IOg |_@tram| _ minxj‘ef/ﬂc(x,-) IXj ﬁ(l) ()

10g | Gytrain | :

The final fuzzy vote of a neighbor x; combines the information contained in its
label with the information contained in its occurrence profile. The relative relevance
factor is used for weighting the two information sources. This is shown in (11.19).

a(x)+ 0 —alx) -uclx;), yi=C

(1 —a(x)) - uc(x), yi #C (11.19)

Pr(y* = Clx;) ~ [

where y; denotes the class label of x;, for the definition of uc(x;) see (11.10).

The final class assignments are given by the weighted sum of these fuzzy votes.
The final vote of class C for the classification of instance x* is shown in (11.20). The
distance weighting factor d,, (x;) yields mostly minor improvements and can be left
out in practice, see [54] for more details.

11 Hubness-Aware Classification, Instance Selection and Feature Construction 247

uc(x®) o Z B(x) - dy(xi) - Pr(y* = Clxp). (11.20)
X €M (x*)

Example 4 Next, we illustrate HIKNN by showing how HIKNN classifies instance
11 of the example shown in Fig.11.6. Again, we use k' = 2 nearest neighbors to
classify instance 11, but we use Np(x;) values calculated with k = 1. The both
nearest neighbors of instance 11 are xg and xg9. The self-information associated with
the occurrence of these instances as nearest neighbors:

2 1
Pxg € M) =—=02, I, =Ilog, — =log,5,

10 02
2 1
P(xg € M) = 0= 0.2, Iy =log, 0z = log, 5.

The relevance factors are:

log, 5
@) = ety =0 Pl = 0w = 100;210'

The fuzzy votes according to (11.19):

Pr(y* = Cilxe) = uc,(x6) =0, Pr(y* = Calxe) = uc,(x6) =1,
Pr(y* = Cilx9) = uc,(x9) = 0.5, Pr(y" = Calxg) = uc,(x9) = 0.5.

The sum of fuzzy votes (without taking the distance weighting factor into account):

log, 5 log, 5
_ 0 0.5,
ue) = 1010 9 fog, 10

log, 5 log, 5
0820 4 9820 45

ey (1) = log, 10~ log, 10

As uc, (x11) > uc, (x11), instance 11 will be classified as rectangle (C>).

11.5.5 Experimental Evaluation of Hubness-Aware Classifiers

Time series datasets exhibit a certain degree of hubness, as shown in Table 11.3. This
is in agreement with previous observations [43].

Most datasets from the UCR repository [28] are balanced, with close-to-uniform
class distributions. This can be seen by analyzing the relative imbalance factor (RImb)
of the label distribution which we define as the normalized standard deviation of the
class probabilities from the absolutely homogenous mean value of 1/m, where m
denotes the number of classes, i.e., m = |€|:

N. Tomasev et al.

248

(panunuod)
1°0S 100 9% I's £8°0 9 94 0g'l 4 9601 purwdIMOdAeI]
081 600 8T €65 wo 9 ey 1 L 0S9 areygauI[ug
91T Y00 9 609 S8°0 9 9°¢S 9¢'1 S €9% sondey
0°0$ 00 €T TS 1£0 12 0T 90 T 00T u10g-unn
¥al 00 9¢ see €8°0 9 981 Lyl L 0S¢ HSId
Syl [0 9¢ € SLo 9 [61'l vl 0sTT AONSOR
¥'0g 600 9T Sel or'o L St 08’1 v T 1IN0 208
0 00 ST $0°0 100— 14 100 89°0 T 88 sKe@RALIDDH
S99 €60 T L6l ¥20 9 0cl €1 4 00T 00TD0a
L0g 610 €T 10 9¢°0 S 1'0 98°0 v Tee uonINPaYRZISWONIq
€8 00 Lz Tee LEO S 661 00'1 4 08L ZR1)
€8 00 0g 6'7E LY'0 9 T8l 9Tl Tl 08L Apou)
€8 00 8T r'ee 860 9 L91 91 Tl 08L X1
8IS Y00 61 91¢ LTO— € 9¢ ST T 9 29Jj0D
ST 00 ST 10 80°0 S 00 LSO 4 0Tr1 0810)-DDH-JUL)
9'¢s 0€°0 k4 91¢ 05°0 T 0 00 € LOEY UONENUIIUODAULIONYD)
%33 00 LS 0] 1 [00 81°¢ € 0€6 490
ST 00 w T6¢E LS1 9 Tre w 12 0zl 1)
00T 00 81 9 ST0 € 0 0r'0 S 09 Joog
Le 200 8T 8IS 9€°0 9 53 9I'l LE 18L oupy
Y 91'0 €€ T9¢ 99°0 S 961 9T'1 0s 06 SpIOMOS
(%) (M2)d qury ()01 xew (%))Ng ON 5 () 1N xew (%) 4Ng MIN 5 12 a2 108 IR

sjesejep soLIas aw) YD) 2yl Jo senradoid jueasyar Jo Arewrwns ay], €T dqeL

249

Hubness-Aware Classification, Instance Selection and Feature Construction

11

(yesejep 21nuad oy} Jo aSejusorad e se passaidxa) sse[o Ajrofewr ay) Jo AZIS AY) SB [[oM SB “USAIS ST UONNQLISIP [9QR] AY) JO OUR[EQUIT JATB[I 9} ‘OS[Y
*((x) 2y xewr) yutod-qny 3seS1e] o) Jo 2215ap oY (MZMV SOOUALINDO0-Y Peq Jo 9Fejuadiad oy (D N,47) uonnquisIp 92UALINGI0-Y 3Y) JO SSAUMAYS oY) :A[oureu
‘S9ZIS POOYIOQUSIAU JUSISJJIP 0M) J10F sennuenb poje[aI-ssauqny SWOs pue (Sasse[d jo requinu ‘ozis) senradoid orseq Jo 19s € £q Y)oq PaqLIOSIP SI JASEIEp Yory

0'1¢g 80°0 pSIE Tl 850 vT9 L1l 1Tl 9L 9°L16 o3eIoAY
19C 200 9% 10 101 4! 00 L0°T 14 000S SUINEJ-OML,
0S 00 %3 €0 [0 9 10 Tl T 7911 DOFPEITOML
ST 00 [ST $0°0 9 00 9¢'1 14 00T QouI],
L91 00 S 0C or'1 4! L0 86T 9 009 [onuod-onayIukg
LL 200 8¢ 0¢ €8°0 9 81 ST 9 0201 sjoquig
L9 00 |84 (S L60 8 Lyl €'l S1 sell JEOTUSIPOMS
919 €20 s¢ $9 780 9 ST w1 T 086 [129¢31n§10q0YO ATV AUOS
798 Tro %3 a4 080 L 61 (43! 4 129 Q2BJING10q0YOIIVAUOS
€yl 00 IC 10 S00— S 00 €0'1 L 01T aue[q
6'1¢C 18K0] 6C 8 €9°0 S Y LO'T 9 T JINSO
LY 920 €T 0°8C 8€°0 14 LTl 260 14 09 [10PATIO
6'¢S 80°0 €€ €6 €L0 9 0 16'0 T Tl UrENSAION
1S 87°0 9C 9°T¢ SE0 14 T81 8L°0 o1 828! SOSeWEIIPIN
S| 00 € LT 8’1 9 €1 60'1 8 00tT IVTIVIN
99T S1o 9T 1°6€ 6€°0 9 01T €9'1 L epl LSunysry
€09 9070 %4 8'8C 9€°0 S I'6 ST 4 |14 ZBunysry
(%) (Mo)d quipy (001 xew (»)Yng WON 5 (01N xew (%)oNE WN 5 |2 az1g s veq

(panunuod) ¢'T1 dqBL,

250 N. Tomaseyv et al.

k=1 k=10

skewness
=
w
skewness
-
w

0.5

| | |
" |1.HI.Ill||-_|||||I||||||||,|||||.I|

0.5 -0.5

Fig. 11.7 The skewness of the neighbor occurrence frequency distribution for neighborhood sizes
k = 1 and k = 10. In both figures, each column corresponds to a dataset of the UCR repository.
The figures show the change in the skewness, when k is increased from 1 to 10

_ 2
RImb = \/ ZCE%;P_(Cl))/ml/ m” (11.21)

In general, an occurrence frequency distribution skewness above 1 indicates a
significant impact of hubness. Many UCR datasets have ., () > 1, which means
that the first nearest neighbor occurrence distribution is significantly skewed to the
right. However, an increase in neighborhood size reduces the overall skewness of
the datasets, as shown in Fig. 11.7. Note that only a few datasets have o) > 1,
though some non-negligible skewness remains in most of the data. Yet, even though
the overall skewness is reduced with increasing neighborhood sizes, the degree of
major hubs in the data increases. This leads to the emergence of strong centers of
influence.

We evaluated the performance of different kANN classification methods on time
series data for a fixed neighborhood size of k = 10. A slightly larger k value
was chosen, since most hubness-aware methods are known to perform better in
such cases, as better and more reliable neighbor occurrence models can be inferred
from more occurrence information. We also analyzed the algorithm performance
over a range of different neighborhood sizes, as shown in Fig. 11.8. The hubness-
aware classification methods presented in the previous sections (hw-kNN, NHBNN,
h-FNN and HIKNN) were compared to the baseline kNN [15] and the adaptive kNN
(AKNN) [56], where the neighborhood size is recalculated for each query point based
on initial observations, in order to consult only the relevant neighbor points. AKNN
does not take the hubness of the data into account.

The tests were run according to the 10-times 10-fold cross-validation protocol and
the statistical significance was determined by employing the corrected re-sampled
t-test. The detailed results are given in Table 11.4.

The adaptive neighborhood approach (AKNN) does not seem to be appropriate
for handling time-series data, as it performs worse than the baseline ANN. While
hw-kNN, NHBNN and h-FNN are better than the baseline kNN in some cases, they
do not offer significant advantage overall which is probably a consequence of a
relatively low neighbor occurrence skewness for k = 10 (see Fig. 11.7). The hubness

251

Hubness-Aware Classification, Instance Selection and Feature Construction

11

(panunuoo)

0'l F 896 0T+ 696 0'T F 696 I'l FL96 I'T + 696 I'TF 96 AT
°VyF 109 0y F €S 8¢ F €S LeF 1€S ®6'CF8YY 8€CF 0SS ojeySauluf
o9y F €S LY F6'1S 8Yv F 10 8Y F IS §CF97TS 8Yv F S°0S sondey

7’1+ 066 9'1 + 886 £CF6'Lo 0T+ T86 * ¢ F 66 V'L F 166 jurod-unp
oSvF L8 I'SFO6LL SCFILL ECFILL ®LSFCTL I'SFCLL HSIA

9°0 F 0'86 LOFSL6 LOFI'L6 8'0F L96 8'0F 6'S6 L0 F 96 ADNs9de]
€SFI'V6 'S F9°¢6 I'SF0v6 L9F 816 L'SFTC6 €E9F 116 Inoaoe]
9°0 + 0°66 L'0F 886 6'0 F €86 01+ €86 *01FLL6 L0F S86 sKe@aALIDDH
0°S FI'L8 0'S F S8 9Y F 6'¢8 I'S F €68 67 F0¢8 8¢ F 6'¢8 00¢HODd

L0F 966 80 F 966 I'l F 166 V'l FL86 0°0 F 07001 9'l F 686 quoelg
°8TF T8 0'cF86L 0€F98L I'eF1'8L ecEFo60L I'eF08L Z7dUD)
°6CF 918 I'eF6'6L TEFSLL €EFLOL eI EFIL9 I'eFLLL A-1RdLD
°9TF 6’18 8CTF oL 0'cF 8L 9CTFO6'LL ®6CFOIL 6'CFO8L X-RNIOLD
v'El F 6'9L CSLFO0L ECIFCTIL 1'61 F+ 989 ¥'S1 F L'89 6'SLF VL YOO

10 + 6°66 10 + 6°66 €0 F 966 0 F L66 €0F 966 70 F 866 0SI03-DDH-DUID)
°0T F 816 * ¥ FT08 ® 01 F L89 * O FSYL ® 01 FL89 €1 F L8 eOULIOIYD

0°0 + 0001 0°0 F 07001 0°0 F 07001 0°0 F 07001 0°0 F 07001 0°0 F 07001 44D
OL8FTI'6L T6F89L 98 F 09L ¥'6F09L V'6F6€EL 86F LIL IeD

8CI F 8Ly 9ClL F9LY TSI F¥0S eEvl F o'ty ®0¢CI F8I¢ 9°ST + S'IS Joed
o0y F 659 8CF 1'€9 6'¢ F 8¢9 0¥ F L 09 €€ F 98¢ I'v+019 Jeipy
°6CF 108 °0¢cF oL LTF 1YL CEFCIL ®¢'cF 889 TeEF VYL SpIomQg

NNIH NNAY NNEHN NN-mYq NNV NN 1es Ble(g

SIOYISSE[O AIeME-Ssauqny 10 (9, UI) UOTIBIASD PIEpUE)S F AOBINOOY [T dqEL

N. Tomaseyv et al.

252

[190831n810q0YOIVAUOS,

2084IN§10q0YOFIVAUOS

puUBWIIOMOJATeI]

UONONPAYIZISWOII(I
UONENUIdUODYIULIONYD),

“PIOq UI ST QUI[YOrd UI J[NSI
1829 YL, ‘NN 03 paredwods (60" > d) @ouewio}rad 10119q/9sI0M JuedyIuSIS A[[eONSIIe)S 9J0Uap o/e S[OqUIAS ay], ‘0] = ¥ J0J paurioyrad orom sjuowradxa [y

6’8 678 8 618 6L 4 oSerony

00 F 0°001 00 F 0°001 00+ 666 00+ 666 00+ 666 00+ 666 suroned-om],
10 + 6°66 10+ 6°66 70 F 866 0 F 866 T0F L'66 70 F 866 DOHpeaToM]
70 F 6°66 L0OTF L66 81 F L'86 1"+ v'86 0CF ¥'86 91 + 686 9OBLL,
LOF 066 LOF T66 LOF T66 9°0 F £°66 * V'l FTL6 L'0F 066 [01)U02-d0YIUAS

° 80+ 786 ©80F 086 60+ 9L6 60+ 9L6 't +1L6 0T+ ¥L6 S[oquIAg
°CTTF 098 °CeTF S8 0TTF+8C8 °ETF 8T8 9C+ 978 I'C + 88 JEITYSIPIMS
TLF 59 €1 F¢96 ¥'1F 866 7’1+ 096 91 + 816 1+ 8¢6 SIT1Auog
oI F L6 ol FLLE oI F VL6 °TIF8L6 °0 T+ 686 ST+ L96 pAUOS
L0+ L°66 L0+ L°66 60 F S°66 0l + 166 9'l + 686 L0+ L°66 Jue[d
°6v+ STIL Y+ 199 I'SF I'v9 1'S+ 099 'S+ 109 0S¢+ 0°L9 JeaINSO
OLOIFI'L8 9CL F98L °6'6 T 6'L8 0°€l F6'8L SCLFVeEL L€l FTOL ['O2AO
OTLF ¥'S6 €1 F L16 V'IF €6 Y1+ LY6 €1 F €16 ¥'1+0v6 urengaonN
°9TFEI8 8CTF T6L *CTFTO9 6CF 6'8L *lcFo¢cL LTFToL EEELL LRI A
70 + 8'86 0 F $°86 S0 F ¥'86 S0+ S86 S0+ ¥'86 S0F <86 IVTIVIN
O8LFEIL L8FSIL 06FcvL §6F00L ['6 F 69 ['6 + 769 LBuny3ry
OTLF6'¢8 9L+ 008 6’8 F VvL T8 F 1'8L 98+ S9L T8 F 6L Z8uny3ry
NNMIH NNAY NNIHN NN-mY NNAV NNY o8 Bl

(ponunuod) L1 Aqel,

11 Hubness-Aware Classification, Instance Selection and Feature Construction 253

is, on average, present in time-series data to a lower extent than in text or images [49]
where these methods were previously shown to perform rather well.

On the other hand, HIKNN, the information-theoretic approach to handling vot-
ing in high-dimensional data, clearly outperforms all other tested methods on these
time series datasets. It performs significantly better than the baseline in 19 out of
37 cases and does not perform significantly worse on any examined dataset. Its
average accuracy for k = 10 is 84.9, compared to 82.5 achieved by kNN. HIKNN
outperformed both baselines (even though not significantly) even in case of the
ChlorineConcentration dataset, which has very low hubness in terms of skewness,
and therefore other hubness-aware classifiers worked worse than kNN on this data.
These observations reaffirm the conclusions outlined in previous studies [50], arguing
that HIKNN might be the best hubness-aware classifier on medium-to-low hubness
data, if there is no significant class imbalance. Note, however, that hubness-aware
classifiers are also well suited for learning under class imbalance [16, 20, 21].

In order to show that the observed improvements are not merely an artifact of
the choice of neighborhood size, classification tests were performed for a range of
different neighborhood sizes. Figure 11.8 shows the comparisons between kNN and
HIKNN for k € [1, 20], on Car and Fish time series datasets. There is little difference
between kNN and HIKNN for k£ = 1 and the classifiers performance is similar in
this case. However, as k increases, so does the performance of HIKNN, while the
performance of kNN either decreases or increases at a slower rate. Therefore, the
differences for k = 10 are more pronounced and the differences for £ = 20 are even
greater. Most importantly, the highest achieved accuracy by HIKNN, over all tested
neighborhoods, is clearly higher than the highest achieved accuracy by KNN.

These results indicate that HIKNN is an appropriate classification method for
handling time series data, when used in conjunction with the dynamic time warping
distance.

Of course, choosing the optimal neighborhood size in k-nearest neighbor methods
is a non-trivial problem. The parameter could be set by performing cross-validation
on the training data, though this is quite time-consuming. If the data is small, using

80
78 | 84
76 82 -
74 -
80 -
‘g- 70 'é-, 78
68 -
B 0 b 76
74
64 -
62 2
60 70
1 5 10 15 20 1 5 10 15 20
k k
| —KNN ——— HIKNN

Fig. 11.8 The accuracy (in %) of the basic kNN and the hubness aware HIKNN classifier over a
range of neighborhood sizes k € [1, 20], on Car and Fish time series datasets

254 N. Tomaseyv et al.

large k values might not make a lot of sense, as it would breach the locality assumption
by introducing neighbors into the kNN sets that are not relevant for the instance to be
classified. According to our experiments, HIKNN achieved very good performance
for k € [5, 15], therefore, setting k = 5 or k = 10 by default would usually lead to
reasonable results in practice.

11.6 Instance Selection and Feature Construction for
Time-Series Classification

In the previous section, we described four approaches that take hubness into account
in order to make time-series classification more accurate. In various applications,
however, besides classification accuracy, the classification time is also important.
Therefore, in this section, we present hubness-aware approaches for speeding-up
time-series classification. First, we describe instance selection for kNN classification
of time-series. Subsequently, we focus on feature construction.

11.6.1 Instance Selection for Speeding-Up Time-Series
Classification

Attempts to speed up DTW-based nearest neighbor classification fall into four major
categories: (i) speeding-up the calculation of the distance of two time series (by e.g.
limiting the warping window size), (ii) indexing, (iii) reducing the length of the time
series used, and (iv) instance selection. The first class of techniques was already
mentioned in Sect. 11.3. For an overview of techniques for indexing and reduction
of the length of time-series and more advanced approaches for limiting the warping
window size, we refer to [8] and the references therein. In this section, we focus on
how to speed up time-series classification via instance selection. We note that instance
selection is orthogonal to the other speed-up techniques, i.e., instance selection can
be combined with those techniques in order to achieve highest efficiency.

Instance selection (also known as numerosity reduction or prototype selection)
aims at discarding most of the training time series while keeping only the most
informative ones, which are then used to classify unlabeled instances. In case of
conventional nearest neighbor classification, the instance to be classified, denoted
as x*, will be compared to all the instances of the training data set. In contrast,
when applying instance selection, x* will only be compared to the selected instances
of the training data. For time-series classification, despite the techniques aiming at
speeding-up DTW-calculations, the calculation of the DTW distance is still relatively
expensive computationally, therefore, when selecting a relatively small number of
instances, such as 10% of the training data, instance selection can substantially
speed-up the classification of time-series.

11 Hubness-Aware Classification, Instance Selection and Feature Construction 255

While instance selection is well explored for general nearest neighbor
classification, see e.g. [1, 6, 19, 24, 32], there are only few works for the case
of time series. Xi et al. [57] presented the FastAWARD approach and showed that it
outperforms state-of-the-art, general-purpose instance selection techniques applied
for time-series.

FastAWARD follows an iterative procedure for discarding time series: in each
iteration, the rank of all the time series is calculated and the one with lowest rank
is discarded. Thus, each iteration corresponds to a particular number of kept time
series. Furthermore, Xi et al. argue that the optimal warping window size depends
on the number of kept time series. Therefore, FastAWARD calculates the optimal
warping window size dependent on the number of kept time series.

In this section, we present a hubness-aware instance selection technique which
was originally introduced in [9]. This approach is simpler and therefore compu-
tationally much cheaper than FastAWARD while it selects better instances, i.e.,
instances that allow more accurate classification of time-series than the ones selected
by FastAWARD.

In [9] coverage graphs were proposed to model instance selection, and the instance
selection problem was formulated as finding the appropriate subset of vertices of
the coverage graph. Furthermore, it was shown that maximizing the coverage is
NP-complete in general. On the other hand, for the case of time-series classification,
a simple approach performed surprisingly well. This approach is called Instance
Selection based on Graph-coverage and Hubness for Time-series or INSIGHT.

INSIGHT performs instance selection by assigning a score to each instance and
selecting instances with the highest scores (see Algorithm 4), therefore the “intel-
ligence” of INSIGHT is hidden in the applied score function. Next, we explain the
suitability of several score functions in the light of the hubness property.

e Good 1-occurrence Score—INSIGHT can use scores that take into account how
many times an instance appears as good neighbor of other instances. Thus, a simple
score function is the good 1-occurrence score GN1(x).

e Relative Score—While x is being a good hub, at the same time it may appear as
bad neighbor of several other instances. Thus, INSIGHT can also consider scores
that take bad occurrences into account. This leads to scores that relate the good
occurrence of an instance x to either its total occurrence or to its bad occurrence.
For simplicity, we focus on the following relative score, however, other variations
could be used too: relative score RS(x) of a time series x is the fraction of good
1-occurrences and total occurrences plus one (to avoid division by zero):

GN1(x)

RSO =y o+1

(11.22)

e Xi’s score—Notably, GN;(x) and BNg(x) allows us to interpret the ranking
criterion used by Xi et al. in FastAWARD [57] as another form of score for relative
hubness:

XI(x) = GN{(x) — 2BN; (x). (11.23)

256 N. Tomaseyv et al.

Algorithm 4 INSIGHT

Require: Time series dataset &, Score Function g(x) /* e.g. one of GNj(x), RS(x) or XI(x) */,
Number of selected instances r,;
Ensure: Set of selected instances (time series) 2’

1: Calculate score function g(x) forallx €
2: Sort all the time series in & according to their scores g(x)
3: Select the top-ranked ng; time series and return the set containing them

As reported in [9], INSIGHT outperforms FastAWARD both in terms of classi-
fication accuracy and execution time. The second and third columns of Table 11.5
present the average accuracy and corresponding standard deviation for each data set,
for the case when the number of selected instances is equal to 10 % of the size of
the training set. The experiments were performed according to the 10-fold cross-
validation protocol. For INSIGHT, the good 1-occurrence score is used, but we note
that similar results were achieved for the other scores too.

In clear majority of the cases, INSIGHT substantially outperformed FastAWARD.
In the few remaining cases, their differences are remarkably small (which are not
significant in the light of the corresponding standard deviations). According to the
analysis reported in [9], one of the major reasons for the suboptimal performance
of FastAWARD is that the skewness degrades during the FastAWARD’s iterative
instance selection procedure, and therefore FastAWARD is not able to select the best
instances in the end. This is crucial because FastAWARD discards the worst instance
in each iteration and therefore the final iterations have substantial impact on which
instances remain, i.e., which instances will be selected by FastAWARD.

11.6.2 Feature Construction

Asshownin Sect. 11.6.1, the instance selection approach focusing on good hubs leads
to overall good results. Previously, once the instances were selected, we simply used
them as training data for the kNN classifier. In a more advanced classification schema,
instead of simply performing nearest neighbor classification, we can use distances
from selected instances as features. This is described in detail below.

First, we split the training data 2" into two disjoint subsets " @in and 74 ain,
ie., girain n girain — ¢, girain) girain — girain We select some instances from
9{””", denote these selected instances as Xges 1, Xsel .2, - - - » Xsel,1- FoOr each instance
X € 95””", we calculate its DTW-distance from the selected instances and use these
distances as features of x. This way, we map each instance x € @é’“i" into a vector
space:

Xmapped = (dpTW (X, Xse1,1), dpTW (X, X51,2) - - - dDTW (X, Xge1.1)) - (11.24)

11 Hubness-Aware Classification, Instance Selection and Feature Construction

257

Table 11.5 Accuracy =+ standard deviation (in %) for FastAWARD, INSIGHT and feature

construction methods

Data set FastAWARD | INSIGHT HubFeatures RndFeatures
50words 52.6 £4.1 642+460 |655+350 652+490
Adiac 348+5.8 469+490 |485+480 510 +5.20
Beef 350+£174 |333+105 38.3+19.3 36.7+ 153
Car 450119 |60.8+1450 |47.5+229 55.8 +£20.8
CBF 972+34 998 +0.60 [99.8+0.50 99.8 +0.50
ChlorineConcentration 53.7+23 734 +3.00 548+ 14 546 £ 1.7
CinC-ECG-torso 40.6 £ 8.9 966+ 140 [98.7+120 987+ 120
Coffee 56.0+309 |60.3£21.3 66.0 +21.4 59.0 + 16.1
DiatomSizeReduction 972 +£2.6 96.6 £ 5.8 100.0 £ 000 |98.8+22
ECG200 755+ 113 |83.5+£9.0 86.0 £7.0 0 84.5+7.6
ECGFiveDays 93.7+£27 94.5+2.0 96.5+220 96.7 +1.7 o
FaceFour 71.4 + 14.1 89.4+12.80 |91.1+840 90.2+890
FacesUCR 89.2+1.9 934+210 |914+£220 915+ 180
FISH 59.1 £8.2 66.6 + 8.5 59.7+£6.5 629+9.3
Gun-Point 80.0+ 124 |93.5+590 855+ 64 84.5+3.7
Haptics 303+6.8 435+ 6.0 0 339+94 354+£79
InlineSkate 19.7£5.6 434 +7.7 0 363+750 36.5+8.70
ItalyPowerDemand 96.0 2.0 95.7+£2.8 95.8 £2.4 95.7£2.1
Lighting2 69.4+134 |67.0£9.6 67.7£6.4 75.1 + 8.9
Lighting7 447 +12.6 |51.0+£82 614 +1050 |60.8+930
MALLAT 55.1+£9.8 969 +130 |964+150 96.8 £ 1.10
Medicallmages 64.2+33 69.3+490 734+390 73.0£330
MoteStrain 86.7+£4.2 908 +270 |933+240 93.6 +2.20
OliveOil 633+10.0 |71.7+£13.0 80.0 £17.20 |75.0+2390
OSULeaf 419+53 538+570 |57.0+£6.70 545+8.10
Plane 87.6 155 |98.1+3.2 95.7+£52 94.8 £ 6.1
Sony AIBORobotSurface 924 +£32 976+ 170 |984+130 98.7 + 1.3 0
SonyAIBORobotSurfacell |91.9 £ 1.5 91.2+33 94.6 £230 95.1+280
SwedishLeaf 68.3 £4.6 756+480 |77.6£510 |779+5.60
Symbols 95.7+138 96.6 + 1.6 95.1+2.1 95.6+22
Synthetic-control 923 £6.8 978 +2.60 [953+26 940134
Trace 780117 |895+720 |73.0+8.6 74.0 £ 8.1
TwoLeadECG 97.8+£13 989 +£1.2 93.6+28e 93.3+29e
Two-Patterns 40.7 £2.7 987+070 |984+£050 98.4+0.7 0
Wafer 92.1+1.2 99.1+£020 [995£0.20 99.5+0.20
WordsSynonyms 544 £5.8 63.7+6.60 653+390 66.6 = 5.3 0
Yoga 55.0 £ 1.7 87.7+210 86.4+2.00 86.7+ 1.60
Average 67.5 79.2 78.3 78.4

The symbols /o denote statistically significant worse/better performance (p < 0.05) compared to
FastAWARD. The best result in each line is in bold

258 N. Tomaseyv et al.

The representation of the data in a vector space allows the usage of any conventional
classifier. For our experiments, we trained logistic regression from the Weka soft-
ware package.* We used the mapped instances of 7% ain a5 training data for logistic
regression.

When classifying an instance x* € 2", we map x* into the same vector space
as the instances of @ér“i”, i.e., we calculate the DTW-distances between x* and the
selected instances Xy, 1, Xsel,2s - - - » Xse1,1 and we use these distances as features of x*.
Once the features of x* are calculated, we use the trained classifier (logistic regression
in our case) to classify x*.

We used the 10-fold cross-validation to evaluate this feature construction-based
approach. Similarly to the case of INSIGHT and FastAWARD, the number of selected
instances corresponds to 10% of the entire training data, however, as described
previously, for the feature construction-based approach, we selected the instances
from 2! (not from 2"4),

We tested several variants of the approach, for two out of them, the resulting
accuracies are shown in the last two columns of Table 11.5. The results shown in
the fourth column of Table 11.5 (denoted as HubFeatures) refer to the case when we
performed hub-based instance selection on 7" @in ysing good 1-occurrence score.
The results shown in the last column of Table 11.5 (denoted as RndFeatures) refer to
the case when the instances were randomly selected from 2" ain

Both HubFeatures and RndFeatures outperform FastAWARD in clear majority
of the cases: while they are significantly better than FastAWARD for 23 and 21
data sets respectively, they are significantly worse only for one data set. INSIGHT,
HubFeatures and RndFeatures can be considered as alternative approaches, as their
overall performances are close to each other. Therefore, in a real-world application,
one can use cross-validation to select the approach which best suits the particular
application.

11.7 Conclusions and Outlook

We devoted this chapter to the recently observed phenomenon of hubness which
characterizes numerous real-world data sets, especially high-dimensional ones. We
surveyed hubness-aware classifiers and instance selection. Finally, we proposed a
hubness-based feature construction approach. The approaches we reviewed were
originally published in various research papers using slightly different notations and
terminology. In this chapter, we presented all the approaches within an integrated
framework using uniform notations and terminology. Hubness-aware classifiers were
originally developed for vector classification. Here, we pointed out that these classi-
fiers can be used for time-series classification given that an appropriate time-series
distance measure is present. To the best of our knowledge, most of the surveyed
approaches have not yet been used for time-series data. We performed extensive
experimental evaluation of the state-of-the-art hubness-aware classifiers on a large

4 http://www.cs.waikato.ac.nz/ml/weka/.

http://www.cs.waikato.ac.nz/ml/weka/

11 Hubness-Aware Classification, Instance Selection and Feature Construction 259

number of time-series data sets. The results of our experiments provide direct indi-
cations for the application of hubness-aware classifiers for real-world time-series
classification tasks. In particular, the HIKNN approach seems to have the best over-
all performance for time-series data.

Furthermore, we pointed out that instance selection can substantially speed-
up time-series classification and the recently introduced hubness-aware instance
selection approach, INSIGHT, outperforms the previous state-of-the-art instance
selection approach, FastAWARD, which did not take the presence of hubs explicitly
into account. Finally, we showed that the selected instances can be used to construct
features for instances of time-series data sets. While mapping time-series into a vec-
tor space by this feature construction approach is intuitive and leads to acceptable
overall classification accuracy, the particular instance selection approach does not
seem to play a major role in the procedure.

Future work may target the implications of hubness for feature construction
approaches and how these features suit conventional classifiers. One would for exam-
ple expect that monotone classifiers [2, 13, 23], benefit from hubness-based feature
construction: the closer an instance is to a good hub, the more likely it belongs to
the same class. Furthermore, regression methods may also benefit from taking the
presence of hubs into account: e.g. hw-kNN may simply be adapted for the case
of nearest neighbor regression where the weighted average of the neighbors’ class
labels is taken instead of their weighted vote. Last but not least, due to the novelty
of hubness-aware classifiers, there are still many applications in context of which
hubness-aware classifiers have not been exploited yet, see e.g. [47] for recognition
tasks related to literary texts. Also the classification of medical data, such as diagno-
sis of cancer subtypes based on gene expression levels [31], could potentially benefit
from hubness-aware classification, especially classifiers taking class-imbalance into
account [51].

Acknowledgments Research partially performed within the framework of the grant of the Hungar-
ian Scientific Research Fund (grant No. OTKA 108947). The position of Krisztian Buza is funded
by the Warsaw Center of Mathematics and Computer Science (WCMCS).

References

1. Aha, D., Kibler, D., Albert, M.: Instance-based learning algorithms. Mach. Learn. 6(1), 37-66
(1991)

2. Altendorf, E., Restificar, A., Dietterich, T.: Learning from sparse data by exploiting monotonic-
ity constraints. In: Proceedings of the 21st Annual Conference on Uncertainty in Artificial
Intelligence, pp. 18-26. AUAI Press, Arlington, Virginia (2005)

3. Barabasi, A.: Linked: How Everything Is Connected to Everything Else and What It Means for
Business, Science, and Everyday Life. Plume, New York (2003)

4. Bellman, R.E.: Adaptive Control Processes—A Guided Tour. Princeton University Press,
Princeton (1961)

5. Botsch, M.: Machine Learning Techniques for Time Series Classification. Cuvillier, Munchen

(2009)

260

6.

7.

8.

17.

18.

19.

20.

21.

22.

23.

24.

25.
26.

27.

28.

N. Tomaseyv et al.

Brighton, H., Mellish, C.: Advances in instance selection for instance-based learning algo-
rithms. Data Min. Knowl. Discov. 6(2), 153-172 (2002)

Burges, C.J.: A tutorial on support vector machines for pattern recognition. Data Min. Knowl.
Discov. 2(2), 121-167 (1998)

Buza, K.A.: Fusion Methods for Time-Series Classification. Peter Lang Verlag, New York
(2011)

Buza, K., Nanopoulos, A., Schmidt-Thieme, L.: Insight: efficient and effective instance selec-
tion for time-series classification. In: Proceedings of the 15th Pacific-Asia Conference on
Knowledge Discovery and Data Mining. Lecture Notes in Computer Science, vol. 6635, pp.
149-160. Springer (2011)

Chen, G.H., Nikolov, S., Shah, D.: A latent source model for nonparametric time series clas-
sification. In: Advances in Neural Information Processing Systems, vol. 26, pp. 1088—1096.
Springer (2013)

. Cortes, C., Vapnik, V.: Support vector machine. Mach. Learn. 20(3), 273-297 (1995)
. Devroye, L., Gyorfi, L., Lugosi, G.: A Probabilistic Theory of Pattern Recognition. Springer,

New York (1996)

. Duivesteijn, W., Feelders, A.: Nearest neighbour classification with monotonicity constraints.

In: Machine Learning and Knowledge Discovery in Databases, pp. 301-316. Springer (2008)
Eads, D., Hill, D., Davis, S., Perkins, S., Ma, J., Porter, R., Theiler, J.: Genetic algorithms and
support vector machines for time series classification. In: Applications and Science of Neural
Networks, Fuzzy Systems, and Evolutionary Computation V, Proceedings of SPIE, vol. 4787,
pp. 74-85 (2002)

. Fix, E., Hodges, J.: Discriminatory analysis, nonparametric discrimination: consistency prop-

erties. Technical Report, USAF School of Aviation Medicine, Randolph Field (1951)

. Garcia, V., Mollineda, R.A., Sanchez, J.S.: On the k-NN performance in a challenging scenario

of imbalance and overlapping. Pattern Anal. Appl. 11, 269-280 (2008)

Geurts, P.: Pattern extraction for time series classification. In: Principles of Data Mining and
Knowledge Discovery, pp. 115-127. Springer (2001)

Grabocka, J., Wistuba, M., Schmidt-Thieme, L.: Time-series classification through histograms
of symbolic polynomials. Comput. Res. Repos.-arXiv abs/1307.6365 (2013)

Grochowski, M., Jankowski, N.: Comparison of instance selection algorithms II. Results and
comments. In: International Conference on Artificial Intelligence and Soft Computing. Lecture
Notes in Computer Science, vol. 3070, pp. 580-585. Springer, Berlin (2004)

Hand, D.J., Vinciotti, V.: Choosing k for two-class nearest neighbour classifiers with unbalanced
classes. Pattern Recognit. Lett. 24, 1555-1562 (2003)

He, H., Garcia, E.A.: Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 21(9),
1263-1284 (2009)

He, X., Zhang, J.: Why do hubs tend to be essential in protein networks? PLoS Genet. 2(6)
(2006)

Horvith, T., Vojtas, P.: Ordinal classification with monotonicity constraints. In: Advances in
Data Mining. Applications in Medicine, Web Mining, Marketing, Image and Signal Mining,
pp. 217-225 (2006)

Jankowski, N., Grochowski, M.: Comparison of instance selection algorithms I. Algorithms
survey. In: Proceedings of the International Conference on Artificial Intelligence and Soft
Computing. Lecture Notes in Computer Science, vol. 3070, pp. 598-603. Springer, Berlin
(2004)

Jolliffe, I.: Principal Component Analysis. Wiley Online Library, New York (2005)
Kehagias, A., Petridis, V.: Predictive modular neural networks for time series classification.
Neural Netw. 10(1), 31-49 (1997)

Keller, J.E., Gray, M.R., Givens, J.A.: A fuzzy k-nearest-neighbor algorithm. IEEE Trans. Syst.,
Man Cybern. 15(4), 580-585 (1985)

Keogh, E., Shelton, C., Moerchen, F.: Workshop and challenge on time series classification.
In: International Conference on Knowledge Discovery and Data Mining (KDD) (2007)

http://arxiv.org/abs/1307.6365

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

S1.

52.

Hubness-Aware Classification, Instance Selection and Feature Construction 261

Kim, S., Smyth, P.: Segmental hidden Markov models with random effects for waveform
modeling. J. Mach. Learn. Res. 7, 945-969 (2006)

Levenshtein, V.: Binary codes capable of correcting deletions, insertions, and reversals. Sov.
Phys. Dokl. 10(8), 707-710 (1966)

Lin, W.J., Chen, J.J.: Class-imbalanced classifiers for high-dimensional data. Brief. Bioinform.
14(1), 13-26 (2013)

Liu, H., Motoda, H.: On issues of instance selection. Data Min. Knowl. Discov. 6(2), 115-130
(2002)

MacDonald, 1., Zucchini, W.: Hidden Markov and Other Models for Discrete-Valued Time
Series, vol. 1. Chapman & Hall, London (1997)

Marcel, S., Millan, J.: Person authentication using brainwaves (EEG) and maximum a posteriori
model adaptation. IEEE Trans. Pattern Anal. Mach. Intell. 29, 743-752 (2007)

Martens, R., Claesen, L.: On-line signature verification by dynamic time-warping. In: Proceed-
ings of the 13th International Conference on Pattern Recognition, vol. 3, pp. 38-42 (1996)
Marussy, K., Buza, K.: Success: a new approach for semi-supervised classification of time-
series. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L., Zurada,
J. (eds.) Atrtificial Intelligence and Soft Computing. Lecture Notes in Computer Science, vol.
7894, pp. 437-447. Springer, Berlin (2013)

Niels, R.: Dynamic time warping: an intuitive way of handwriting recognition? Master’s Thesis.
Radboud University Nijmegen, The Netherlands (2004)

Petridis, V., Kehagias, A.: Predictive Modular Neural Networks: Applications to Time Series.
The Springer International Series in Engineering and Computer Science, vol. 466. Springer,
Netherlands (1998)

Rabiner, L., Juang, B.: An introduction to hidden Markov models. ASSP Mag. 3(1), 4-16
(1986)

Radovanovi¢, M.: Representations and Metrics in High-Dimensional Data Mining. Izdavacka
knjizarnica Zorana Stojanovic¢a, Novi Sad, Serbia (2011)

Radovanovi¢, M., Nanopoulos, A., Ivanovi¢, M.: Nearest neighbors in high-dimensional data:
the emergence and influence of hubs. In: Proceedings of the 26th International Conference on
Machine Learning (ICML), pp. 865-872 (2009)

Radovanovi¢, M., Nanopoulos, A., Ivanovié¢, M.: Hubs in space: popular nearest neighbors in
high-dimensional data. J. Mach. Learn. Res. JMLR) 11, 2487-2531 (2010)

Radovanovi¢, M., Nanopoulos, A., Ivanovi¢, M.: Time-series classification in many intrin-
sic dimensions. In: Proceedings of the 10th SIAM International Conference on Data Mining
(SDM), pp. 677-688 (2010)

Rish, I.: Anempirical study of the naive Bayes classifier. In: Proceedings of the JCAI Workshop
on Empirical Methods in Artificial Intelligence (2001)

Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken word recog-
nition. Acoust. Speech Signal Process. 26(1), 43—49 (1978)

Schedl, M.F.A.: A Mirex meta-analysis of hubness in audio music similarity. In: Proceedings of
the 13th International Society for Music Information Retrieval Conference (ISMIR 12) (2012)
Stariczyk, U.: Recognition of author gender for literary texts. In: Man-Machine Interactions 2,
pp. 229-238. Springer (2011)

Sykacek, P., Roberts, S.: Bayesian time series classification. Adv. Neural Inf. Process. Syst. 2,
937-944 (2002)

TomasSev, N.: The Role of Hubness in High-Dimensional Data Analysis. JoZef Stefan Interna-
tional Postgraduate School (2013)

TomaSev, N., Mladeni¢, D.: Nearest neighbor voting in high dimensional data: learning from
past occurrences. Comput. Sci. Inf. Syst. 9, 691-712 (2012)

Tomasev, N., Mladeni¢, D.: Class imbalance and the curse of minority hubs. Knowl. Based
Syst. 83, 157-172 (2013)

Tomasev, N., Mladeni¢, D.: Hub co-occurrence modeling for robust high-dimensional kNN
classification. In: Proceedings of the ECML/PKDD Conference. Springer (2013)

262

53.

54.

55.

56.

57.

N. Tomaseyv et al.

Tomasev, N., Radovanovié, M., Mladeni¢, D., Ivanovicé, M.: A probabilistic approach to nearest
neighbor classification: Naive hubness Bayesian k-nearest neighbor. In: Proceedings of the
CIKM Conference (2011)

Tomasev, N., Radovanovi¢, M., Mladeni¢, D., Ivanovi¢, M.: Hubness-based fuzzy measures
for high-dimensional k-nearest neighbor classification. Int. J. Mach. Learn. Cybern. 5(3), 445
(2013)

Tomasev, N., Radovanovi¢, M., Mladenié, D., Ivanovi¢, M.: The role of hubness in clustering
high-dimensional data. [EEE Trans. Knowl. Data Eng. 99 (PrePrints), 1 (2013)

Wang, J., Neskovic, P., Cooper, L.N.: Improving nearest neighbor rule with a simple adaptive
distance measure. Pattern Recognit. Lett. 28(2), 207-213 (2007)

Xi, X., Keogh, E., Shelton, C., Wei, L., Ratanamahatana, C.: Fast time series classification
using numerosity reduction. In: Proceedings of the 23rd International Conference on Machine
Learning (ICML), pp. 1033—-1040 (2006)

	11 Hubness-Aware Classification, Instance Selection and Feature Construction: Survey and Extensions to Time-Series
	11.1 Introduction
	11.2 Problem Formulation and Basic Notations
	11.3 Dynamic Time Warping
	11.4 Hubs in Time-Series Data
	11.5 Hubness-Aware Classification of Time-Series
	11.5.1 hw-kNN: Hubness-Aware Weighting
	11.5.2 h-FNN: Hubness-Based Fuzzy Nearest Neighbor
	11.5.3 NHBNN: Naive Hubness Bayesian k-Nearest Neighbor
	11.5.4 HIKNN: Hubness Information k-Nearest Neighbor
	11.5.5 Experimental Evaluation of Hubness-Aware Classifiers

	11.6 Instance Selection and Feature Construction for Time-Series Classification
	11.6.1 Instance Selection for Speeding-Up Time-Series Classification
	11.6.2 Feature Construction

	11.7 Conclusions and Outlook
	References

