Chapter 10

Irrelevant Feature and Rule Removal
for Structural Associative Classification
Using Structure-Preserving Flat
Representation

Izwan Nizal Mohd Shaharanee and Fedja Hadzic

Abstract Practical applications of association rule mining often suffer from
overwhelming number of rules that are generated, many of which are not interesting
or useful for the application in question. Removing irrelevant features and/or rules
comprised of irrelevant features can significantly improve the overall performance.
Many statistical and constraint based measures are used to discard unnecessary and
irrelevant features and rules when vectorial or tabular data is in question. In contrast,
the use of such measures is limited in the tree-structured data domain, due to the
structural aspects that are not easily incorporated. In this chapter, we explore the use
of a feature subset selection measure as well as a number of common statistical inter-
estingness measures via a recently proposed structure-preserving flat representation
for tree-structured data such as XML. A feature subset selection is used prior to asso-
ciation rule generation. Once the initial set of rules is obtained, irrelevant rules are
determined as those that are comprised of attributes not determined to be statistically
significant for the classification task. The experiments are performed using real world
web access trees and property management dataset. The results indicate that where
the dataset has more standard structure a large number of insignificant rules will be
discarded and accuracy will increase. However, where the tree instances can vary
greatly in terms of structure and label distribution among nodes, while many rules
are removed and the accuracy increases, there is a significant reduction in coverage
rate of the rule set.
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10.1 Introduction

Real world datasets often contain attributes that are irrelevant or redundant for the
classification problem at hand. These features can degrade the performance and
interfere with the learning mechanism typically resulting in a reduction in the quality
and generality of the discovered patterns/model and overfitting of the model to the
train data. The basic principle of feature subset selection is to find the necessary
and sufficient subset of features or attributes which results in simplification of the
discovered knowledge model, better generalisation power, while at the same time
the accuracy for classification tasks is not compromised.

Association rule mining, being one of the most popular techniques for discovering
interesting associations among data objects, has also been utilized for the classi-
fication task, where it can contribute to discovering strong associations between
occurring attribute and class values [26]. An associative classification framework
was first proposed in [28], which consists of an algorithm to generate all class asso-
ciation rules from which a classifier is constructed. Many works [10, 45, 49, 50] have
developed various extensions and refinements to this initially proposed framework
and the results reported high accuracy and efficiency for the classification prob-
lem. Similarly in tree-structured data domain, the XRules structural classifier [52],
is based on association rules generated from the ordered embedded subtree mining
algorithm [51].

When dealing with pattern selection, one faces the quantity problem due to large
volume of output as well as the quality assurance problem of rules reflecting real,
significant associations in the domain under investigation [25]. In a recent work pre-
sented in [24] the search space of Apriori-like algorithms is pruned so that discovered
rules are interesting with respect to the Jaccard measure, rather than the support con-
straint for which an optimal threshold is often unknown. To deal with the quality
problem many interestingness measures have been developed and utilized in various
knowledge discovery tasks [12, 29]. In one train of thought, since the nature of data
mining techniques is data-driven, the generated rules can often be effectively vali-
dated by a statistical methodology in order for them to be useful in practice [13, 22].
Interesting rules could then be interpreted as those rules that have a sound statistical
basis and are neither redundant nor contradictory. The aforementioned works [12, 13,
22, 29] have mainly focused on relational data. There is relatively less work in this
area when it comes to tree-structured data (an overview is given in the next section).
Tree-structured data has underlying complex structural characteristics which typi-
cally need to be preserved in the knowledge patterns discovered during a data mining
task [17, 52]. The structural characteristics of data pose difficulties in application
of traditional classifiers and interestingness measures, whose mechanism typically
does not take structural aspects of data into account.

In [38], a unified framework was proposed that systematically combines several
statistical/heuristic techniques to assess the rule quality and remove any redundant
and unnecessary rules for the classification problem. In this chapter, the focus is on
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exploring the application of this framework to tree-structured data, enabled by the
recently proposed structure-preserving flat data format for tree-structured data [14].
The work presented in [14] is based on the extraction of a database structure model
(henceforth DSM) within which every tree instance from the database can be matched
to and which keeps the structural information of the flat representation generated.
The implications of the representation in contrast to traditional tree mining field is
that every subtree pattern or a rule, will be constrained by the pre-order position of
the constituting tree nodes of the subtree w.r.t the DSM. In this work, we explore
the application of a feature subset selection measure and statistical interestingness
measures via this method to filter out unnecessary and irrelevant subtree patterns
for the structural classification task. A feature subset selection method is used prior
to association rule generation. Once the initial set of rules is obtained, irrelevant
rules are determined as those that are comprised of attributes not determined to be
statistically significant for the classification task. The experiments are performed
using real world web access tree dataset and a property management dataset from a
real estate company. The results indicate that where the dataset has more standard
structure the use of statistical measures will discard a large number of insignificant
rules and at the same time increase the accuracy of the rule sets. On the other extreme,
where the tree instances can vary greatly in terms of structure and label distribution
among nodes, as is the case in the web access tree dataset, while many rules are
removed and the accuracy increases, there is a significant reduction in coverage
rate of the rule set. Furthermore, we compare some of the results with a structural
classifier based on traditional subtrees, and highlight some important differences and
implications when subtree based rules are constrained by their position. The results
also show that including the associations that do not necessary result in connected
trees can be important, while such associations are typically ignored within the tree
mining field. These findings indicate that structural classifier could be improved and
complemented by including disconnected subtrees and constraining the subtrees by
their exact occurrence in the database. However, more work is required to identify
the domains and application where including such association rules can be beneficial
and the right way to combine them with traditional subtree patterns for optimal
performance.

The rest of the chapter is organized as follows. The related works are given in
Sect. 10.2, while Sect. 10.3 defines the concepts and the rule set optimization problem
focused on in this study. In Sect. 10.4, we describe the steps involved in the proposed
approach which is evaluated using real-world datasets and experimental findings are
discussed in Sect. 10.5. Section 10.6 concludes the chapter.

10.2 Related Work

To date, limited work has been done on the feature selection, rule evaluation and
interestingness measures for tree-structured data. Many of the well developed rule
interestingness measures are in relational data and they have had great success in
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evaluating rule interestingness as discussed in [44]. Several works on the evaluation
of discovered patterns based on statistical significance [2, 22, 46] are limited to
relational data. The existence of vast well-developed measuring techniques to evalu-
ate interestingness of rules from relational data, offers great opportunities for adapt-
ing these techniques for verifying significant subtrees from semi-structured data. The
applicability of these interestingness measures needs to be explored in the context
of frequent subtree mining, where necessary adjustments and extensions need to be
made to ascertain the validity of the methods given the more complex structured
aspects in the data, which often need to be preserved in the rules.

One line of work focusing on more interesting subtree patterns aims to reduce
the patterns through the application of plausible constraints. The problem of min-
ing mutually dependent ordered subtrees has been addressed in [32]. The proposed
algorithm utilizes the hyperclique method [47] in the tree mining context so that
all the components of a subtree are highly correlated together. These hyperclique
subtree patterns are discovered using an h-confidence measure which is the mini-
mum probability of an item from a pattern in one transaction implying the presence
of all other items in the same transaction. Hence, the extracted hyperclique subtree
patterns will satisfy the minimum h-confidence threshold. The work done in [3] uses
the method proposed for database compression in regards to item set mining in [39]
to demonstrate how the same minimum description length principle can yield good
results for sequential and tree-structured data. The work presented in [31] extends
the idea of the item constraint [41] to that of a node-inclusion constraint in subtrees.
Furthermore, Knijf and Feelders [20] proposed the use of monotone constraints in
frequent subtree mining, namely monotone, anti-monotone, convertible and succinct
constraints. Using these constraints, the frequent subtrees are mined using an oppor-
tunistic pruning strategy, and the set of frequent subtrees are reduced to only those
satisfying the specific user pre-defined constraints.

Besides the aforementioned constraint-based techniques, to the best of our
knowledge, there are limited works on verifying the significance of discovered fre-
quent subtrees. Hashimoto et al. [19] proposed and developed an application of sta-
tistical hypothesis testing to re-rank the significant frequent subtrees. This approach
ranks the significant patterns according to P-values obtained from the Fisher’s Exact
test of significance. The significant patterns were then used for Glycan classifi-
cations problems. Recently Yan et al. [48], proposed a mining framework called
LEAP (Descending Leap Mine) for checking and mining significant frequent sub-
graphs which helps to discard redundant frequent subgraphs. For a predefined class
label in XML documents, an efficient XRules classifier has been proposed in [52].
This approach offers promising results in terms of a structural classifier for semi-
structured data, but utilizes standard measures of interestingness based on support
and confidence.



10 Irrelevant Feature and Rule Removal for Structural Associative Classification 203

10.2.1 Relationship Between Feature Subset Selection
and Frequent Subtree Interestingness

In general, the objective of feature subset selection as defined in [18] is to find a
minimum set of attributes such that the resulting probability distribution of the data
classes is as close as possible to the original distribution obtained using all attributes.
Han and Kamber in [18] asserted that domain expertise can be employed in order
to pick out useful attributes. However, because the data mining task involves a large
volume of data and unpredictable behaviour of data during data mining, this task is
often expensive and time consuming.

The test of statistical significance is one of the prominent approaches in evalu-
ating attributes/features usefulness. Stepwise forward selection, stepwise backward
selection and a combination of both are three commonly used heuristic techniques
utilized in statistical significance tests such as linear regression and logistic regres-
sion [18]. Moreover, the application of correlation analysis such as the chi-square
test is also valuable in identifying redundant variables for feature subset selection.
Another powerful technique for this purpose is the Symmetrical Tau [54], which
is a statistical-heuristic feature selection criterion. It measures the capability of an
attribute in predicting the class of another attribute. Additionally, information gain
is another attributes relevance analysis method employed in the popular ID3 [33]
and C4.5 [34] as reported in [18]. An extensive overview and comparison of the
different approaches to the feature subset selection problem has been provided in
[6, 11, 21, 30].

While the original purpose of feature subset selection is to reduce the number of
attributes to only those attributes relevant for a certain data mining task, they never-
theless can be utilized to measure the interestingness of rules/pattern generated. For
example, if the rule/pattern consists of irrelevant attributes, the aforementioned mea-
sure can also give some indication that the rule/pattern is not interesting. Moreover,
[12] stated that there are three roles of interestingness measures. The first is their
ability to discard uninteresting patterns during the mining process, thereby narrowing
the search space and improving the mining efficiency. The second role is to calcu-
late the interestingness scores for each pattern, which allows the ranking of patterns
according to specific needs. The final role is the use of interestingness measures dur-
ing the post-processing stage to select interesting patterns. Interestingness measures
such as the chi-square test [8], Symmetrical Tau [54] and Mutual Information [44],
are capable of measuring the interestingness of rules and at the same time identifying
useful features for frequent patterns.

Since frequent patterns are generated based solely on frequency without
considering their predictive power, the use of frequent patterns without selecting
appropriate features will still result in a huge feature space which leads to larger
volume and complexity of rules. This might not only slow down the model learn-
ing process, but even worse, the classification accuracy deteriorates (another kind of
overfitting issue since the features are numerous) [9].
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10.3 Problem Background

The problem of finding association rules x — y was first introduced in [1] as a
data mining task for finding frequently co-occurring items in large databases. Let
I = {iy,ip,..., i)} be a set of items. Let D be a transactions database for which
each record/transaction R is a set of items, such that R C . An association rule is
an implication of the form x — y where x € I andy € [ and x Ny = (. The
absolute support of a rule x — y is the number of transactions that contain both x
and y. Typically, the relative support is used, where given the support of rule x — y
(denoted as o (x — y)) be s %, there are s % of transactions in D that contain items
(itemsets) x and y. In other words, the probability P(x U y) = s%. An itemset is
frequent if it satisfies the user-specified minimum support threshold. The confidence
of arule x — y, is the estimate of conditional probability of a transaction containing
the consequent (y) if the transaction contains the antecedent (x), and is calculated as
o(x — y)/ o).

Association rule discovery finds all rules that satisfy specific constraints such
as the minimum support and confidence threshold, as is the case in the Apriori
algorithm [1]. When tree-structured data such as XML is in question, the under-
lying associations are tree-structured by nature. Thus, the pre-requisite for the dis-
covery of (structural) association rules becomes the task of frequent subtree min-
ing. A tree-structured document can be modeled as a rooted ordered labeled tree.
A rooted ordered labeled tree can be denoted as T = (vg, V, L, E), where (1) Vo € V
is the root vertex; (2) V is the set of vertices or nodes; (3) L is a labelling function
that assigns a label L(v) to every vertex v € V; (4) E = {(v1, v2)|vi, v2 € V AND
v1 # vp} is the set of edges in the tree, and (5) for each internal nodes, the children
are ordered from left to right.

This problem is generally defined as: given a database of trees T, and minimum
support threshold o, find all subtrees that occur at least o times in T . Most
commonly considered subtrees are induced and embedded. The formal defini-
tions of induced and embedded subtrees are as follows [42]: Given a tree S =
(vsg, Vs, Ls, Es) and tree T = (vtg, Vr, L7, ET), S is an ordered induced subtree of
Tiff (1) Vs € Vy; (2) Ls C Ly, and Lg(v) = Lr(v); (3) Es C ET; (4) the left-to-
right ordering of sibling nodes in the original tree is preserved. Moreover, S is an
ordered embedded subtree of T iff (1) Vg C Vy; (2) Ls € Ly, and Lg(v) = Ly (v);
(3) if (v1,v2) € Eg then parent(vy) = vy in S and v; is ancestor of v, in T, and
(4) the left-to-right ordering of sibling nodes in the original tree is preserved. If
S = (vsg, Vs, Ls, Es) is an embedded subtree of T = (vty, V7, L7, E7), and two
vertices vi € Vs and vy € Vs form ancestor-descendant relationship, the level of
embedding (LoE) [42], between vy and v,, denoted by A (v1, v2), is defined as the
length of the path between v and v, in T. Hence, a maximum level of embedding
constraint (MaxLoE) M 5 can be imposed on the subtrees extracted from 7, such that
any two connected nodes in an embedded subtree of 7" will be connected in 7 by a
path that has the maximum length of M 5. Examples of induced and embedded sub-
tree are given in Fig. 10.1 (the number on the left of the nodes indicate its pre-order
position in the original tree T').
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Fig. 10.1 Example of induced/embedded subtrees (T, T2, T4, T¢) and embedded subtrees (73, T5)
of tree T

In this chapter, the focus is on evaluating rules based on embedded and induced
subtrees that satisfy minimum support and confidence thresholds, and discarding
any rules determined to be irrelevant to the classification task at hand. Let us denote
the subtree patterns from the frequent subtree set SF' that have a class label (value),
as SFC, their accuracy as ac(SFC) and coverage rate as cr(SFC). The problem
focused on in this work can then be generally defined as follows: Given SFC with
accuracy ac(SFC), obtain SFC' C SFC, such that ac(SFC') > (ac(SFC) — ¢) and
cr(SFC") > (cr(SFC) — ¢) (¢ is an arbitrary user defined small value used to reflect
the noise that is often present in real-world data).

In what follows we discuss the common way of representing trees. This will
lay the necessary ground for understanding the positional constraint imposed by
the DSM approach [14]. A pre-order traversal can be computed as follows: If an
ordered tree T consists only of a root node 7, then r is the pre-order traversal of 7.
Otherwise let T1, Ty, ..., T,, be the subtrees occurring at r from left to right in 7.
The pre-order traversal begins by visiting » and then traversing all the remaining
subtrees in pre-order starting from 7 and finishing with 7},. The string encoding
(¢) can be generated by adding vertex labels in the pre-order traversal of a tree
T = (vo, V, L, E) and appending a backtrack symbol (e.g., */’, /’ ¢ L) whenever we
backtrack from a child node to its parent node. Figure 10.2 and Table 10.1 depict a
tree database consisting of 7 tree instances (or transactions) and the string encoding
for tree database, respectively.

10.3.1 Feature Subset Selection

Feature subset selection is an important pre-processing step in the data mining
process. If the irrelevant attributes are left in the dataset, they can interfere with
the data mining process and the quality of the discovered patterns may deteriorate,
creating problems such as overfitting [9]. It is in particular the case in associative
classifiers, since frequent patterns are typically generated without considering their
predictive power [9], resulting in a huge feature space for possible frequent patterns.
The removal of irrelevant attributes will result in a much smaller dataset, thereby



206 I.N.M. Shaharanee and F. Hadzic

T4

Fig. 10.2 Example of a tree-structured database Ty, consisting of 7 transactions

Table 10.1 Example of tree

) Tree database (Tp) Pre-order string encoding
transactions
To ‘abdn—-le—1—-1—-1c¢c—-1’
T, ‘bc—1be—-1-1"
T ‘bde -1 -1’
T3 Im—1n-1
Ty klm—-1—-1n-1
Ts ‘bacf—-1—-1-1d-0
Te ‘abecd—-le—1—-1—-1fgh—-1i
—1—-1-r

reducing the number of rules that need to be generated from the association rule
mining algorithm, while closely maintaining the integrity of the original data [18].
Additionally, rules described with fewer attributes are also expected to perform better
when classifying future cases; hence, they will have better generalization power than
do the more specific rules that take many attributes into account. Besides, the patterns
extracted will also be simpler and easier to analyse and understand. Determining the
relevant and irrelevant attributes poses a great challenge to many data mining algo-
rithms [36].
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The feature subset selection problem can be more formally described as: Given
a relational database D, AT = {aty, ats, ..., atjar|} the set of distinct items in D,
and ¥ = {y1,y2,...,y)y|} the class attribute with a set of class labels in D. Let an
association rule mining algorithm be denoted as ARz, the set of association rules
for predicting the value of a class attribute Y from D extracted using AR4z, as AR(D),
and accuracy of AR(D) as ac(AR(D)). The problem of feature subset selection is to
reduce D into D’ such that AT” C AT and ac(AR(D')) > ac(AR(D’)) — ¢, where &
is an arbitrary user defined small value to reflect noise present in real-world data. In
other words, the task is to find the optimal set of attributes, AT opr S AT, such that
the accuracy of the association rule set using AR47, is maximized.

10.3.2 Modeling Tree-Structured Data

An example of three user sessions logged into an academic institution website server
is depicted here to represent the process of tree-structured data representation for
data mining purposes. Table 10.3 is an example of a string to integer mapping from
the user sessions in Table 10.2. The mapping process from string to integer can be
done with a hash function as discussed in [51]. Representing a label as an integer
instead of a string label has considerable performance and space advantages [42].

As mentioned earlier, a common way of representing trees is to use the pre-order
(depth-first) string encoding (¢) as described in [51]. For example, the pre-order
string encoding representation of the underlying tree structure of the user navigation
of Table 10.2 is transformed to (¢)(session0) = ‘0123 —-14—-1—-156 -1 —1—1
789—-1—-1—-11011-112 -1 —1"and (¢)(session 1) =01 1314 -1 15 -1 —1
16 —1 —117 —1” and (¢)(session2) = ‘011819 -1 —-1-12021 -1 —-1722 —1
—1’. The access sequence of web pages from Table 10.2 can be represented in a tree-
structured way as shown in Fig. 10.3. The order of pages accessed is reflected by the
pre-order traversal of the tree. The corresponding tree structure is more informative
than just a sequence of pages accessed as it captures the structure of the web site, and
navigational patterns over this website, and the discovered knowledge patterns will
as a result be more informative and useful, as already elaborated on in works such
as [16, 17, 51, 52]. With this approach, specific pages can be considered within the
same context. An example of this is the two pages being grouped under the ‘centres
and labs’ parent node with label 13in the tree of session 1, and 2 pages under the
‘research’ parent node with label 11in the tree of session 0. Session 0 has come from
an IP within the university and is most likely an example of a student acquiring
some general information about the institute and then seeking information related
to postgraduate study. The first session came from an IP internal to the university,
where the user was interested in looking for jobs by browsing institutional centres
and labs, and contacted the institute for more information. While session two may
come from a potential external student who is searching for a potential supervisor
by browsing some related conference papers and is interested in finding a research
training program.
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Table 10.2 Example of user
session

Session 1:
/
/research.html

/research/topics.html

/research/topics/51-business-intelligence.html

/research/topics/55-e-education-ecosystems.html

/research/seminars.html

/research/seminars/413-presentation-by-eric-feinberg.html

/phd-a-msc.html

/phd-a-msc/scholarships.html

/phd-a-msc/scholarships.html#debii
/about.html
/about/objectives.html

/about/mission-and-vision.html

Session 2:
/
/research.html

/research/centres-and-labs.html

/centres-and-labs/217-anti-spam-research-lab-asrl.html

/centres-and-labs/214-centre-for-stringology-a-applications

-csa-.html

/research/jobs.html

/contact-us.html

Session3:
/
/research.html

/research/publications.html

/research/publications/conf-a-journal-papers.html
/allstaff.html

/allstaff/Research Professors & Fellows.html
/exchange-students.html

/phd-a-msc.html

/phd-a-msc/research-training.html

The integer-indexed tree is then formatted as shown in Table 10.4. This dataset
format representation was proposed by [51]. Please note that the second column
(cid) could be used to refer to a specific entity which the record describes (e.g. User
id). However, in many domains such information is often unavailable, or it has been
intentionally omitted or related through the transaction id (tid). Hence, in most of the
tree databases represented in this format, the cid column will simple be a repetition
of the tid column. This is the common format used in the frequent subtree mining
field [17].
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Table 10.3 Integer mapping

. ID Web page

for web pages from Table 10.2
0 Homepage
1 Research
2 Topics
3 51-business-intelligence
4 55-e-education-ecosystems
5 Seminars
6 413-presentation-by-eric-feinberg
7 phd-a-msc
8 Scholarships
9 scholarships.html#debii
10 About
11 Objectives
12 Mission-and-vision
13 Centres-and-labs
14 217-anti-spam-research-lab-asrl
15 214-centre-for-stringoLogsy-a-applications-csa-
16 Jobs
17 Contact-us
18 Publications
19 Conf-a-journal-papers
20 Allstaff
21 Research Professors & Fellows
22 Research-training

10.3.3 Database Structure Model (DSM)

The definition given by [14] is utilized here to describe the Database Structure Model
(DSM). Generally, the string-like representation of a tree database (example given
in Table 10.4, is converted into a flat data format while preserving the ancestor-
descendant and sibling node relationships. Henceforth, this structure-preserving flat
data representation will be simply referred to as ‘table’. The header of the table
contains the DSM without any specific attribute names. It represents only the most
general structure where every instance from the tree database can be matched to. This
will ensure that when the labels of a particular transaction from the tree database are
processed, they are placed in the correct column, corresponding to the position in
the DSM that this label matches. To illustrate the complete conversion process using
DSM, please refer to Fig. 10.2. Using the string encoding format representation [51],
the tree database T, from Fig. 10.2 would be represented as is shown in Table 10.1,
where the left column corresponds to the transaction identifiers, and the right column
is the string encoding of each subtree.
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Session 0 Session 1 Session 2

Fig. 10.3 Integer-indexed tree of user sessions in Table 10.2

Table 10.4 An integer-indexed tree in Fig.10.3 formatted as a string-like representation as used
in [51]

tid | cid |S] Pre-order(depth-first) encoding

0 25 |0123-14-1-156-1-1-1789-1-1-11011-112-1-1

1 25 |011314—-115-1-116—-1-117 -1

2 25 |011819—-1-1-12021—-1-1722—-1-1

| = O

tid transaction-id, cid omitted (i.e. equal to tid), |S| size of string

In this example, the DSM is reflected in the structure of T¢ in Fig. 10.2 and it
becomes the header of the table to reflect the attribute names as explained pre-
viously. The string encoding is used to represent this uniform structure and since
the order of the nodes (and backtracks (‘-1)) is important, the nodes and back-
tracks are labeled sequentially according to their occurrence in the string encod-
ing. For nodes (labels in the string encoding), x; is used as the attribute name,
where i corresponds to the pre-order position of the node in the tree, while for
backtracks, b; is used as the attribute name, where j corresponds to the backtrack
number in the string encoding. Hence, from our example in Fig. 10.2 and Table 10.1,
(DSM) =‘x¢, x1, X2, x3, bo, x4, b1, by, b3, x5, x¢, x7, bs, X3, b5, be, b7’.

To fill in the remaining rows, every transaction from 7 is scanned and when a
label is encountered, it is placed in the matching column (i.e. under the matching
node (x;) in the DSM), and when a backtrack (‘-1”) is encountered, a value ‘1’ (or
‘y’) is placed in the matching column (i.e. matching backtrack (b;) in DSM). The
remaining entries are assigned values of ‘0’ (or ‘No’, indicating non existence). The
flat data format of T, from Table 10.1 (and Fig. 10.2) is illustrated in Table 10.5.

The conversion process can be formalized as follows. Let the tree database con-
sisting of n transactions be denoted as Tz, = {tidy, tidy, . . ., tid,—1}, and let the string
encoding of the tree instance at transaction tid; be denoted as ¢(tid;). The DSM is
extracted from 7, using the procedure explained earlier. Further, let |¢(tid;)| denote
the number of elements in ¢(tid;), and ¢(tid;); (k = {0, 1, ..., |p(tid;)| — 1}) denote
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Table 10.5 Flat representation of 7, in Fig. 10.2 and Table 10.1

X0

x3 | by |x4 |b1 |by |bs |x5 |x6 |x7 |bs |x3 |bs |bg | by

SEIGSEE

o|lo|o|o|Oo|O

oogoooo.s

ool x —|lo|lo|l
almh | oo OB
[l el == N el el Il B
o |lo|lo|oc|lOo|O|0
— oo o OO =

1
0
1
0
1
1
1

— === =] =] =
=l B | B |lo|lo|o
g | oo/ Oo|0 | O
S|lo|lo|o|o|o|O
—|lOo|oc|o|lOo| OO
— oo |Oo|o|Oo|O
—|lo|o|o|lOo |~ | O
e el el = e

o | &
-

Table 10.6 Flat representation of 7db in Fig. 10.2 and Table 10.1 when minimum support = 3

X0 X X3 bo by by X4 b3

SEICREE

ol F|—lo|o|e
— = oo o O

1
0
1
0
1
1
1

OOEO(‘DOO
almlo|lo|lo|lo|s
U RNV [N RV RN U
~lals s |o|o|e
— | | = | O = | =

o | &

the kth element (a label or a backtrack ‘-1°) of ¢(#id;). The flat data format or table
Fr (C,R)(C = columns, R = rows) is set up where C = {cp, c1, ..., Cp—1}(m =
IC] = |(DSM)), and R = {ro,r1,...,1p—1}(p = IR| = n+ 1) (i.e. extra col-
umn for attribute names). The value in column number x and row number y is
denoted as Fr(cy, ry). Hence, to set the attribute names Fr(c;, 79) = @(DSM)y
wherei =k =1{0,1, ..., (lp(DSM)| — 1)}.

In addition, during the conversion process as mentioned in [16], one can incorpo-
rate the minimum support threshold s so that the DSM captures only those structural
characteristics that have occurred in at least s % of the tree database. Hence, in some
cases only a fraction of a tree instance can be matched to the DSM due to low occur-
rences in the tree database, but the partial information still needs to be included in
the resulting flat table. As an example, refer to the tree database T, in Table 10.5 and
Fig. 10.2, in mining the subtrees with minimum support threshold of 3, the resulting
DSM would be as follows: ‘xg, x1, X2, x3, bg, b1, ba, x4, b3’ and the new table is
shown in Table 10.6.

10.3.4 Tree to Flat Conversion Example Using Academic
Institution WebLogs Data

Referring to the an Academic Institution WebLogs data example in Sect. 10.3.2,
the pre-order encoding format of the tree database needs to be converted into a flat
representation as proposed by [14]. The DSM applications were described earlier in
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Sect. 10.3.3. In this section, an illustrative example is provided using an Academic
Institution WebLogs example as reference. The DSM is reflected in the structure
of Tp in Table 10.4 and the corresponding tree is shown in Fig.10.3 (Session 0).
Transaction Ty becomes the general structure of DSM and the header in Table 10.7
to reflect the attributes names. Every transaction that remains in the 7y, will be
matched against the DSM and every node label placed in the matching column (i.e.
under the matching node (x;) in the DSM). The flat data format of 7, from Table 10.4
is illustrated in Table 10.7.

10.3.5 Representing Disconnected Trees w.r.t. DSM

As discussed earlier in Sect. 10.3.3, the rules from DSM can be converted into pre-
order string encoding of the subtrees, and hence are represented as subtrees of the
tree database. However, some rules may not be representatives of valid subtrees.
For example, it is possible that some items in the rules correspond to sibling nodes
in the original tree, while the parent or any ancestor node connecting those in the
original tree is not present in the rules discovered using DSM approach. Hence, this
would result in an invalid subtree as the nodes are disconnected. In addressing this
matter, one can add the other nodes that make it into a valid subtree but flag them
as irrelevant. The process consists of sequentially listing the values of each matched
node in DSM, while retaining the level of embedding information of each current
node in DSM and in the subtree pattern. Since the DSM itself is ordered according
to the pre-order traversal, this results in pre-order string encodings of the subtrees.

As a simple illustrative example, consider the following associations/patterns
extracted from an Academic Institution WebLogs Data:

P;: business-intelligence human-space-computing phd-msc,

P;: scholarships management phd-a-msc.

With respect to pattern (Pp) in Fig. 10.4 and pattern (P3) in Fig. 10.5, the items
(nodes) in the rule correspond to sibling nodes in the original tree, while the parent
or any ancestor node connecting those in the original tree is not present in the rule.
Hence, this would result in an invalid subtree as the nodes are disconnected. This is
illustrated in both Figs. 10.4 and 10.5, where irrelevant nodes are shaded grey. One
can also choose to display the labels of nodes that are there to contextualize the infor-
mation, i.e. scholarships and management and phd-a-msc, which would essentially
contextualize the specific rule constraints. Additionally, the labels of nodes can be
displayed in order to contextualize the information in the tree. In this work, these
rules are recognized as FullTree rules.
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business-intelligence |

[ human-space-computing ]

Fig. 10.4 Displaying pattern (P;) w.r.t. DSM in Table 10.7

’ scholarships ‘ ’ management ‘ . .

Fig. 10.5 Displaying pattern (P2) w.r.t. DSM in Table 10.7

10.4 Method and Experimental Setup

The method used here is the integration of rule optimization framework presented in
[37, 38] and structure-preserving flat representation of tree-structured data presented
in [14], which as a result will allow direct application of standard statistical measures
to tree-structured data. Figure 10.6 shows the proposed framework which in itself
describes the experimental process. The database structure model (DSM) [14] is
extracted from the tree-structured data/XML documents to preserve the structural
characteristics of the data. The extracted DSM is used to create the flat representation
of the tree structured data (shown in Fig. 10.6 with the square dash line region). An
example of the conversion process is given in Sect. 10.3. Once the tree-structured
dataset has been converted to a flat table format (FDT), the dataset is then divided into
two parts. The first part is used for frequent pattern mining, statistical evaluation and
rule filtering process, while the second part acts as sample data drawn from the dataset
used to verify the accuracy and coverage of the discovered rules. In the pre-processing
phase, missing values are handled using common distribution-based missing value
imputation [27] and equal width binning approach is utilised to discretise the values
of any continuous attributes. The equal-width binning approach groups the data into
several buckets or bins of the same interval size. The equal width binning will be
implemented based on the following steps [35]: (1) Calculate the range of variable
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Fig. 10.6 Method and experimental setup

to be binned; (2) Using the specified number of bins, calculate the boundary (width)
of each bin; (3) Using specified boundaries, assign each value of the variable to a bin
for each record. The data partitioning, missing value imputation and discretization
were performed using the SAS Enterprise Miner software (please refer to [35] for
further detail on the use of software for data pre-processing). Secondly, feature subset
selection based on attribute ranking according to Symmetrical Tau measure [54] of
predictive capability is performed as described in [15].

The association rule mining algorithm is utilized to discover frequent rules from
the FDT and rule filtering process based on sequence of chi-square test, Logistic
Regression model selection, redundant rule removal (based on minimum improve-
ment redundant rule constraint [4]) and optional filtering based on higher confidence
threshold is performed. The extracted association rules are mapped onto the DSM
(by the pre-order position of each item) to re-generate the pre-order string encoding
of subtrees, thereby representing them as subtrees of the tree database.

These rules may contain both valid and invalid subtrees (disconnected subtrees),
and we will refer to these as FullTree. In addition, the rules based on embedded sub-
trees and the rules based on induced subtrees (the rule sets that exclude disconnected
subtrees) have also been revealed within the extracted rules. Finally the rule accu-
racy and coverage rate is calculated for all rule sets at different stages.The extracted
frequent rules are mapped onto the DSM to re-generate the pre-order string encoding
of subtrees, thereby representing them as subtrees of the tree database.

Tree-Structured Data Format Conversion: For given tree-structured data, the enu-
meration of all possible subtrees in a complete, non-redundant and efficient way is
the major problem one needs to tackle [43]. A significant delay in the subtree patterns
analysis and interpretation process may occur at lower support thresholds. Addition-
ally, as a large number of frequent subtree patterns may be discovered, many of
which may not be useful, one needs to filter out many of the irrelevant/uninteresting
patterns.
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The flat data format (relational or vectorial data) was proven to be acceptable and
successful when utilized with many well-established data mining techniques. Thus,
an effective way proposed in [14] known as Database Structure Model (DSM) is
utilized in this research to represent tree-structured data in a structure-preserving flat
data format. This approach offers a way of preserving tree-structured and attribute-
value information. With the application of DSM, the structural characteristics are
preserved during the data mining process. The extracted rules from the data mining
application can be mapped onto the DSM to re-generate the pre-order string encoding
of subtrees.

Let a tree structure data in flat table format (FDT) dataset be denoted as D,
I = {iy, iz, ..., 1y} the set of distinct items in D, AT = {aty, a2, ..., atjar} the
set of input attributes in D, and ¥ = {y1, y2, ..., y|y|} the class attribute with a set
of class labels in D. Assume that D contains a set of n records D = {x,, yr};’:1 s
where x,, C [ is an item or a set of items and y, € Y is a class label, then |x,| =
|AT| and x, = {atival,, ataval,, ..., atjarjval,} contains the attribute names and
corresponding values for record r in D for each attribute ar in AT. The training
dataset is denoted as Dy € D and the testing dataset as Dy € D, and filtered
database after feature selection as D], where I’ C I.

We extracted the rule sets extracted from the flat table format (FDT) satisfying
the minimum support and confidence threshold (denoted as F(A)). Individual rules
are denoted as fA € F(A), of the form x — y, where x is the antecedent and y
the consequent, 3{x,, y,} € D;., x C x, x, = {atyval,, atyval,, ..., atiar|val,} and
y € Yisaclass label. For generating F'(A), SAS Enterprise Miner software was used.

Feature Subset Selection: The Symmetrical Tau (ST) measure [54] was derived
from the Goodman’s and Kruskal’s Asymmetrical Tau measure of association for
cross-classification tasks in the statistical domain. Zhou and Dillon [54] have used
the Asymmetrical Tau measure as feature selection during decision tree building, and
have found that it tends to favour attributes with more values. When the classes of an
attribute A are increased by class subdivision, more is known about attribute A and
the probability error in predicting the class of another attribute B may decrease. On
the other hand, attribute A becomes more complex, potentially causing an increase
in the probability error in predicting its category according to the category of B.
This trade off effect inspired Zhou and Dillon [54] to combine the two asymmetrical
measures in order to obtain a balanced feature selection criterion which is in turn
symmetrical. However, note that in case of Boolean variables, symmetrical and asym-
metrical tau will have the same value. Some powerful properties of ST, as reported
in [54], are noise handling through built-in statistical strength, potential classifica-
tion uncertainties are conveyed through dynamic error estimation, no bias towards
multi-valued attributes, not proportional to sample size, proportional-reduction-in-
error nature allows measuring of sequential variation in predictive capability, and
handling of Boolean combinations of logical features.

Let there be R rows and C columns in the contingency table for attributes at;
and Y. The probability that an individual belongs to row category r and column
category c is represented as P(rc), and P(r+) and P(+c) are the marginal prob-
abilities in row category r and column category c respectively. The measure is
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based on the probabilities of one attribute value occurring together with the value
of the second attribute, and for the classification task the second attribute will cor-
respond to a special attribute in the dataset defined as class. The ST measure for the
capability of input attribute at; in predicting the class attribute Y is defined in [54]
as follows.

c R P(ro)® R Cc  P(c)? R 2 c N2
SR By T X T ey S Pe? =3 P+o)
2= SR P2 =3 P(+0)?

Tau(at;, Y) = (10.1)

The higher values of the ST measure would indicate better discriminating criteria
(features) for the class that is to be predicted in the domain. As performed in [15], the
attributes are ranked according to their decreasing ST values and a relevance cut-off
point is chosen at and below which all attributes are considered as irrelevant and are
discarded. The relevance cut-off was selected based on the significant difference (less
than half of the previous value in the ranking) between the ST values in decreasing
order. This will prevent the generation of rules which would then need to be discarded
when found that they were comprised of some irrelevant attributes. In accordance
with [5] we have found that mutual information typically ranks attributes with more
values higher than the ST measure does.

Chi-square: A natural way to express the dependence between antecedent and
the consequence of an association rule is the correlation based on the chi-square
test for independence [7]. The chi-square test is defined as follows: For a given
D;r, the occurrence of at; where at; € AT, (i = (1, ..., |AT]) is independent of the
occurrence of y, € Y if P(at;Uy,) = P(at;)P(y,); otherwise at; and y, are dependent
and correlated. The correlation between at; and y, € Y is measured using Eq. 10.2.
For a given lift measure [40] based on Eq. 10.2, the chi-square x? statistic value was
utilised to determine whether the correlation is statistically significant.

P iUy,
lift(at;, yy) = % (10.2)

Hence, the chi-square test discards any fA; € F(A) for which Jat; contained in x
of x — , the x? value is not significant for y € ¥ (correlation analysis in Eq. 10.2).

Logistic Regression: Another form of statistical analysis applied was the logistic
regression. The relationship between the antecedent and consequent in association
rule mining can be presented as a relationship between a target variable and the input
variables in logistic regression. The following is the definition of the logistic regres-
sion model involved in the framework. For a given D}, several logistic regression
models were developed based on In(Y) = By + Braty + Pratr + - - - + Bjaratjar| +e,
where [n(Y) is the natural logarithm of the odds ratio, Bo, B1, ..., Bjar| are the coef-
ficients of the input attributes at;, e is the error variable and Y the dichotomous class
attribute. The coefficient g; of at; is determined based on the log likelihood value
givenin Eq. 10.3, where at;val, denotes the value of attribute at; occurring in record r.
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Biati = D _{yinlw (atvaly)] + (1 = y)in[l = w(atval)l} — (103)

r=1

The statistical hypothesis is then used to determine whether the input attributes
are significantly related to the class attribute. A number of models can be developed
from logistic regression analysis, and each produces a different selection of attributes.
The model that fits the data well and has the highest predictive capability is selected.
Hence, logistic regression is used to discard any fAx € F(A),fBr € F(B),fCy €
F(C) for which Jat; contained in x of x — y, the B;at; value is not significant
towards the class attribute Y (logistic regression analysis in Eq. 10.3).

Redundant and Contradictive Rule Removal: To remove redundant rules, we uti-
lize the concept of productive rules [4]. This approach is based on minimum improve-
ment redundant rule constraint [4], which discards any rule x — y if confidence
(x = y) < max(confidence(z — y))Vz C x. In other words, a rule x — y with con-
fidence value c1 is considered as redundant if there exists another rule z — y with
confidence value c2, where z C x and ¢l < ¢2. The contradictory rule constraint
[53] is then utilised to discard two or more rules that have the same precedent but
imply a different class value.

Rules Accuracy and Rules Coverage: A measure needs to be applied to verify
whether the removal of a large volume of rules based on statistical analysis, and
redundancy and contradictory assessment methods, will enable the discovery of all
the interesting and significant subtree patterns. As such, the quality of the subtree
pattern will be demonstrated based on their accuracy and coverage values. The values
for rule accuracy and coverage will be measured at every stage and sequence of this
task. This measure is crucial as it can determine the quality of the discovered rules.
Additionally, this analysis will reveal the balancing/optimization issues with regards
to the trade-off between accuracy rate and coverage rate.

10.5 Experimental Evaluation

In this section we present the experiments performed using the CRM dataset
(real estate property management records in XML), CSLOGS dataset (web access
trees) and an academic institution dataset (web access trees), structural character-
istics of which are shown in Table 10.8, and the following notation is used: |7r|—
Number of transactions (independent tree instances); |L|—Number of unique labels;
|T|—Number of nodes (size) in a transaction; |D|—Depth; |F|—Fan-out-factor (or
degree). Please note, that in [52] where the structural/ XML classificatotion was first
proposed, it was demonstrated that a simpler classifier that does not take the struc-
ture into the account cannot achieve equally good results. Similarly, in [51] it was
empirically shown, that tree-structured web-browsing patterns are more informative
and useful than, their itemset/sequential pattern counter part. Hence, this study is not
repeated in this work, but rather an experimental study is presented on the use of
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Table 10.8 Structural characteristics of the data

|Tr| |L| Avg|T| | Avg|D| | Avg|F| | Max|T| | Max|D| | Max|F|
CRM 1,181 | 10,611 |52.97 |4.89 8 533 5 46
CSLOGS 68,302 | 16,207 | 7.8 3.45 1.82 313 123 137
Academic Institution | 18,836 | 34,052 | 9.63 |4.98 1.56 60 59 37
Website

standard statistical techniques to reduce the huge number of rules typically generated
during frequent subtree mining, in the context of associative classification. As such,
the focus is on the use of basic accuracy and coverage rate rule evaluation measures
to observe the gradual difference in the rule set accuracy and coverage as different
feature/rule filtering techniques are applied.

Each dataset underwent conversion into a structure-preserving flat data format
(henceforth FDT) using the DSM approach. The backtrack attributes information was
kept in DSM as this is important for preserving the structural information. Hence,
this can be used to represent the resulting rules as trees/subtrees. The backtrack
attributes can be optionally kept in the FDT as when present in rules, they indicate
the existence/non-existence of a node irrespective of the label as discussed in [16].
We have compared the results when rules are generated from itemsets including the
backtrack attributes and without, and the difference was not substantial to make it
worth reporting. Inclusion of backtrack attributes typically resulted in slightly better
results, in terms of increased rule set coverage rate and thus all experiments presented
are done using this option. When reporting the results, the following notation will be
used ST—Symmetrical Tau, AR—accuracy rate, CR—coverage rate, FullTree—the
initial rule set containing disconnected subtree and backtrack attribute based rules,
Embedded—after itemsets have been mapped to DSM (by pre-order positions) to
generate valid connected subtrees, and Induced—only subtrees where maximum
level of embedding is limited to 1 (i.e. parent-child relationships among the nodes,
see Sect. 10.3).

10.5.1 Experiment Set I—CRM Data

CRM data is a real-world dataset relating to the handling of complaints in the area of
real estate. Each complaint relates to a particular defect in the property, and a prop-
erty manager will assign a case to each defect, containing information such as case
managers, contractors, areas of defect, district and building type. The classification
problem considered corresponds to the “WorkCompletion”, with 2 possible values
(within a month and more than a month duration. The attributes containing similar
information or referring to work/task completion duration have then been removed.
The dataset consists of 1,181 instances with 675 attributes, of which 66 % was used
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Table 10.9 Subtree association rule evaluation for CRM data

Type of analysis Data partition | FullTree Induced
#of Rules | AR% |CR% |#of Rules | AR% |CR%
# of Rules after ST | Training 27116 83.02 | 100 |5270 81.56 | 100
Testing 83.74 | 100 834 | 100
Logistic regression Training 91 79.85 | 100 17 68.54 | 100
Testing 80.95 | 100 70.57 | 100
Redundancy removal | Training 51 76.78 | 100 17 68.54 | 100
Testing 77.72 | 100 70.57 | 100
Min. Conf. 60 % Training 44 83.82 195.50 12 77.20 |91.53
Testing 84.57 |96.15 79.18 | 93.59

for training and 34 % for testing. However, there are many complex classes within
this CRM data which may interest the users of the data. Nevertheless in this case,
as our main purposes is not to analyse the problem of CRM itself, but to look at the
CRM data as an example of tree-structured data, the attention is confined to the afore-
mentioned class. The resulting DSM based flat data format contains 675 attributes
(including the class), 586 selected attributes based on Symmetrical Tau(ST) feature
selection. The rules are then generated based on support of 5% and confidence of
50 %. Note that initially the dataset with backtrack attributes was used, which caused
memory issues in the SAS software and hence we applied the ST feature selection
prior to generating association rules which removed all of the backtrack attributes in
this dataset. Furthermore, for this dataset, all subtrees generated are of induced type,
and hence we do not report any results for the embedded subbtree variation as it is
identical to induced for this data.

Table 10.9 shows the results as the statistical analysis and the redundancy assess-
ment have progressively been utilized to evaluate the interestingness of rules. Note
that chi-square analysis is not presented as it did not result in any rule removal at
that stage, and all of the connected subtrees were of induced subtree type in this
dataset. As one can see a significant number of rules was removed by applying the
logistics regression analysis, and in FullTree rule set further 40 rules were detected
as redundant. This has reduced the AR % by about 3 %, but after rules whose min-
imum confidence is below 60 % have been removed (last row) the accuracy has
increased with the cost of not covering around 5 % of the instances. In this exper-
iment, FullTree rule set is the most optimal one, as it is not only more accurate in
classifying/predicting specific instances in the database, but also achieves a higher
coverage rate in the final step compared to Induced rule set. The FullTree rule set
can contain rules that do not convert to valid (connected) subtrees when matched to
DSM. Nevertheless, these are important to include as they may represent important
associations that should not be lost because they do not convert to connected valid
subtrees. Note that we have tried to run the XRules structural classifier [52] on this
data, but since there are quite a few repeating node labels in single tree instances,
caused by repetition of defects and individual cases within a single record, the tree
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Table 10.10 CSLOGS flattened data characteristics and initial number of rules for varying support

Support threshold (%) Atrr. # # Selected attr. | # of Rules with target attr.
DSM flat | Sym. Tau FullTree | Embedded | Induced
222 217 13835 13833 13809
5 64 52 920 919 918
10 40 29 216 215 215
20 24 11 48 47 47
30 16 7 32 31 31

mining algorithm [51] on which the XRules is based on, has difficulties in extracting
subtrees at required low support thresholds.

10.5.2 Experiment Set 2—CSLOGS Data

The CSLogs data comprises the web access trees from the computer science depart-
ment of the Rensselaer Polytechnic Institute previously used in [52] to evaluate the
XRules structural classifier. All of the three datasets (US1924, US2430, and US304)
were combined and instances were replicated (in both training and test data) to make
the class distribution even. The tree instances are labelled according to two classes,
namely the internal and external web site access. The total number of combined
instances is 68302. The training set was comprised of 66 % of the data and the
remainder was left as the test set. Since different support thresholds were used, in
our approach the flat data representation of the dataset is done separately for each
support threshold, as the extracted database structure model (DSM) varies; hence,
the number of attributes used during frequent pattern generation. The general char-
acteristics of the flat data format (including backtrack attributes) and initial number
of rules extracted for CSLogs data (50 % minimum confidence) at varying support
thresholds is provided in Table 10.10. Note, that when using the association rules for
classification task it is natural that performance will vary depending on the support
threshold used. Hence, different support thresholds were tried from a larger to a
smaller extreme, and as expected for larger support thresholds there will be a trade-
off for limited coverage as only the very frequent subtrees will be extracted to form
part of the model.

For this dataset, the best results were achieved for the lowest examined support
threshold of 1 %, and detailed results of progressively filtered rules based on statistical
analysis and redundancy removal are presented in Table 10.11 for support 1 % (at the
end of this subsection we present the performance of final rule sets for all the support
thresholds). The number of rules are shown in brackets below each AR and CR values
reported. The results reveal that by selecting important input attributes with ST and
evaluating the rules with statistical analysis and redundancy assessment method,
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Table 10.11 Subtree association rule evaluation for CSLOG data (1 % support 50 % confidence)

Type of analysis Data partition | FullTree Embedded Induced
AR% |CR% |AR% |CR% |AR% |CR%
Initial rules Training 68.09 9859 |68.12 |98.59 |68.11 |98.59
(13835) | (13835) | (13834) | (13834) | (13810) | (13810)
Testing 69.94 |98.6 69.94 |98.6 69.94 |98.6
Rules after ST Training 69.94 9859 |70.02 |9859 |70.02 |98.59
(6084) | (6084) | (6083) |(6083) |(6081) |(6081)
Testing 72.01 |98.6 72.1 98.6 72.1 98.6
Chi-Square Training 79.22 | 4897 |79.02 |4839 7841 |48.39
(73) | (73 (72) (72 (65) (65)
Testing 78.78 | 48.77 | 7857 |4825 |78.06 |4825
Logistic regression | Training 79.22 | 4897 |79.02 |4839 7841 |48.39
(73) (73) (71 QY (64) (64)
Testing 7878 | 48.77 | 7857 |4825 |78.06 |4825
Redundancy removal | Training 79.02 | 4897 |78.71 4897 |78.71 |48.97
(61 (61) (54 (54) (54) (54
Testing 78.53 | 4877 | 7853 |48.77 |78.53 |48.77

there is a significant reduction in the number of rules. While an increase in AR can
be observed, this is at the cost of reduced CR capabilities. The characteristics of
the FullTree rule set are similar to those of the Embedded and Induced rule sets,
and the AR and CR are very similar or the same for the different rule sets. This is
because the rules from Embedded and Induced rule sets are subsets of FullTree, and
in this dataset there were not so many variations among the rule sets w.r.t the level of
embedding in subtrees or frequent patterns that produce disconnected subtrees. To
conclude, the increase in prediction/classification accuracy comes with a trade-off
since fewer instances are captured from the datasets. On the positive side, a smaller
number of rules is expected to have better generalization power and are easier for
the user to understand and utilize for decision support purposes.

Comparison with XRules for varying support thresholds. In Table 10.12 we com-
pare the AR and CR of the final rule sets of FullTree with XRules approach for
varying support thresholds. Note that the approaches are fairly different in terms of
the rule filtering performed in the process. Nevertheless, the comparison performed
serves mainly as a benchmark for the kind of accuracy and coverage rate that is to be
obtained when basing the classification on frequent patterns/subtrees extracted using
the support and confidence thresholds. As such, in no way do the results indicate
that one approach performs better than the other, as the internal mechanism is rather
incompatible. The XRules approach is based on the TreeMiner [51] algorithm for
extracting ordered embedded subtrees, and hence the number of rules extractd at
varying support thresholds is larger (shown in brackets), since the likelihood that a
subtree will be frequent when it does not need to occur at the same position is much
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Table 10.12 Comparison of Support | 1% 5% 10%

rules accuracy and coverage AR% |CR% | AR% | CR% | AR% | CR%
rate for CSLogs data using

the XRules and FullTree final XRules | 72.72 | 66.04 | 61.74 | 40.7 |56.9 |23.21

rule set (298) [ (298) | (200 | 20) | (®) 3
FullTree | 78.53 | 48.77 | 78.73 |20.35 | 76.9 |20.3

(61 |6hH |*# “ @) @)

Table 10.13 Rule sets at
support 10 %

XRules # FullTree

1 — Class(0) X1(1) — Class(0)
12811 — Class(1) 2 X1(12811) — Class(1)
6 — Class(0)

—_

W N~ H*

higher. On this note, the rule sets of the XRules approach will typically have higher
coverage rate, especially in the CSLOGS dataset, where subtrees do in fact occur at
many different positions due to variations in website navigation. However, one can
see that this is at times at a cost of reduction in AR, and constraining the subtrees
by position could be seen as more precise, but naturally would cover less cases. To
give a simple example, please refer to Table 10.13 where we show rule sets for the
support value of 10%. One can observe that the FullTree rule set does not contain
a rule that corresponds to rule number 3 in XRules even though it was considered
frequent by XRules. The reason for this is that the particular node with label “6”
with “Class(0)”, where “6” occurs at the same node/position in DSM did not occur
in 10 % of the instances to be considered frequent and part of the FullTree rule set.
The two matching rules correspond to the first page accessed during the site naviga-
tion session, as it is labelled with pre-order position 1, namely X1 in our approach
(note that X0 is a virtual node in the CSLOGS dataset always labelled with 0 and is
removed in both approaches). For support threshold of 20 and 30 % no rules were
extracted in our approach, while XRules only had the single default rule for majority
class.

10.5.3 Experiment Set 3—Academic Institution Web Log Data

Academic Institution WebLogs data is an apache2 (v2.2.3) web server logs files.
The WebLogs data was initially used in [16] in utilizing the DSM application. For
the purpose of the work in this research, the similar setting of the WebLogs data as
described in [16] has been utilized. The data was collected for a four-month period
in its native (default) format. During this period, all access to the website was stored
in logs files, while messages stored in the normal error message logs were excluded.
The access to the website was then classified as “internal” (within the university)
and “external” (outside the university). The grouped user sessions were converted
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Table 10.14 Academic Institution flattened data characteristics and initial number of rules for
varying support

Support threshold (%) | Atrr. # # Selected attr. # of Rules with target attr.
DSM flat | Sym. Tau FullTree | Embedded | Induced
442 217 - - -

5 126 123 28282 28282 28282
10 70 63 234 234 234
20 36 29 50 49 49
30 26 19 14 13 13

to trees as was explained with the illustrative example in Sect.3.1. The resulting
dataset had 18,836 instances, of which 66 % was used for training and the remainder
for testing. The details of the setting of the WebLogs access can be found in [16].
The general characteristics of the flat data format (including backtrack attributes)
and initial number of rules extracted for education institution data (50 % minimum
confidence) at varying support thresholds is provided in Table 10.14.

In this dataset, similar to the experiments described in Sect. 10.5.2, rules from
FullTree, Embedded and Induced rule sets have been progressively assessed with
statistical analysis and redundancy assessment method. The results demonstrate that
the conversion of the original tree-structured data into the flat data format represen-
tation, created a very large number of input attributes, especially at lower support
thresholds. By utilizing the Apriori algorithm to generate all frequent rules, one
might encounter difficulties in analyzing all rules given certain support and confi-
dence constraints.

By referring to the Table 10.15, even with the given support constraint, the num-
ber of extracted rules (Initial Rule Set) is large. A large volume of rules may be
discovered due to the presence of irrelevant attributes in the dataset. The capabilities
of ST in selecting appropriate attributes, thereby removing irrelevant attributes, are
shown in our previous experiments for relational data problems. For this particular
task of evaluating tree-structured rules, similar experiments were conducted. The
attributes for each different support were ranked according to their decreasing ST
and a relevance cut-off point was chosen.

Table 10.15 indicates the differences between the number of initial input attributes
and the number of attributes after applying Symmetrical Tau (ST) with their respec-
tive rule number (below) for each dataset for each different support. All attributes that
have been removed from the WebLogs data are backtrack attributes. This indicates
that the inclusion of these backtrack nodes may not be useful or have low capabilities
in predicting the class attributes in this dataset.The input variable that contains a sin-
gle value is unable to distinguish the class variables. Such input attributes have been
discarded as they are considered irrelevant based on the ST value calculated. With the
application of ST feature selection technique, rules that contain attributes that failed
the ST measure are discarded. The large number of rules were managed to be reduced
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Table 10.15 Subtree association rule evaluation for Academic Institution data (10 % support 50 %
confidence)

Type of analysis | Data partition | FullTree Embedded Induced
AR% |CR% AR% |CR% AR% |CR%
Initial Rules Training 64.27 |100.00 |64.54 |100.00 |64.54 |100.00
(232) | (232) (232) | (232) (232) | (232)
Testing 70.06 | 100.00 |70.55 |100.00 |64.54 |100.00
(232) | (232) (232) | (232) (232) | (232)
Rules after ST Training 75.19 | 73.95 74.94 | 73.95 7494 | 73.95
(43) (43) (43) 43) “43) |43
Testing 74.94 | 74.09 74.84 | 74.09 74.84 | 74.09
(43) (43) (43) 43) “43) |43
Chi-Square Training 7821 | 64.47 77.56 | 64.47 77.56 | 64.47
arn an (10) (10) (10) (10)
Testing 7496 | 60.12 74.58 | 61.02 74.58 | 61.02
arn an 10 (10) 10y 110

with a proper sequence of usage of parameters including the ST feature selection,
statistical analysis and the redundancy assessment method. According to Table 10.15,
with the reduction of number of rules for FullTree, Embedded and Induced rule sets
for Academic Institution Weblogs (10 % Support) the AR are increased but at the
cost of a decrease in CR. One can also notice that the AR for the FullTree rule set
is initially slightly lower than the AR of the Embedded and Induced rule set, but
after Symmetrical Tau is applied, the accuracy of FullTree is higher and remains
higher after chi-square rule filtering. Note that for this data there were no further
rules removed via logistic regression and redundancy check, and hence these stages
are not shown in Table 10.15.

10.6 Conclusion and Future Work

The work presented in this chapter has explored the application of a number
of statistical methods to optimize the subtree based associative classification for
tree-structured data. It has utilized a structure-preserving flat format representation,
to progressively apply a number of statistical methods to first filter out irrelevant
attributes followed by the removal of irrelevant and redundant rules. The use of this
method has implications that the subtree based association rules are restricted to
those that occur at the same position in the original tree database, and that the initial
rule (before subtree reconstruction), can contain rules based on disconnected sub-
trees. Experiments were performed on three real datasets, and using the proposed
approach a large number of rules were removed in both cases without negatively
affecting the accuracy of the rule set, while for more structurally varied data, this
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optimization was at the cost of a large reduction in coverage rate. The results on
this data were compared with a structural classifier based on traditional subtrees,
and some important differences and implications were highlighted. The results show
that associations based on disconnected subtrees can be useful, while the positional
constraint can often result in more precise rules for structurally varied data, but at
the cost of lower coverage rate. From these findings one can conclude that when
forming association rules for tree-structured data, one should not be constrained to a
valid and connected subtree because an interesting association can be anywhere in a
tree instance, and it does not need to be a connected subtree of that instance. These
findings indicate that including disconnected subtrees and constraining the subtrees
by their exact occurrence in the database in addition to traditional subtree patterns,
could improve the classifiers for tree-structured data. The method used in this chapter
is to be seen as complementary and in no way a replacement of the traditional way
that subtrees are mined.

Our future work, will investigate the application domains where including such
association rules can be beneficial and the right way to combine them with traditional
subtree patterns for optimal performance.

Furthermore, the chi-square and the logistic regression measures were used as a
case in point for statistic-based rule filtering, while Symmetrical Tau was utilized
in the feature subset selection process. However, by no means is any claim being
made that these are the most optimal measures to be used for their specific purpose.
In fact, we have used the confidence constraint here because of the stronger focus
on statistical quality assessment and the difference between the rule sets discovered
using the traditional support and confidence framework. However, many other mea-
sures could be used and applied instead of the support and or confidence constraint,
which, as discussed in several works [12, 23, 29], will yield more interesting rules.
Therefore, another future work will evaluate the combinations of other constraints,
statistical measures and techniques for rule removal/attribute relevance determina-
tion, in context of the tree-structured data domain.
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