
Studies in Computational Intelligence 584

Urszula Stańczyk
Lakhmi C. Jain    Editors 

Feature 
Selection for 
Data and Pattern 
Recognition



Studies in Computational Intelligence

Volume 584

Series editor

Janusz Kacprzyk, Polish Academy of Sciences, Warsaw, Poland
e-mail: kacprzyk@ibspan.waw.pl



About this Series

The series “Studies in Computational Intelligence” (SCI) publishes new develop-
ments and advances in the various areas of computational intelligence—quickly and
with a high quality. The intent is to cover the theory, applications, and design
methods of computational intelligence, as embedded in the fields of engineering,
computer science, physics and life sciences, as well as the methodologies behind
them. The series contains monographs, lecture notes and edited volumes in com-
putational intelligence spanning the areas of neural networks, connectionist
systems, genetic algorithms, evolutionary computation, artificial intelligence, cel-
lular automata, self-organizing systems, soft computing, fuzzy systems, and hybrid
intelligent systems. Of particular value to both the contributors and the readership
are the short publication timeframe and the world-wide distribution, which enable
both wide and rapid dissemination of research output.

More information about this series at http://www.springer.com/series/7092



Urszula Stańczyk • Lakhmi C. Jain
Editors

Feature Selection for Data
and Pattern Recognition

123



Editors
Urszula Stańczyk
Institute of Informatics
Silesian University of Technology
Gliwice
Poland

Lakhmi C. Jain
Faculty of Education, Science, Technology
and Mathematics

University of Canberra
Canberra
Australia

and

University of South Australia
Mawson Lakes Campus
Adelaide
Australia

ISSN 1860-949X ISSN 1860-9503 (electronic)
Studies in Computational Intelligence
ISBN 978-3-662-45619-4 ISBN 978-3-662-45620-0 (eBook)
DOI 10.1007/978-3-662-45620-0

Library of Congress Control Number: 2014958565

Springer Heidelberg New York Dordrecht London
© Springer-Verlag Berlin Heidelberg 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained
herein or for any errors or omissions that may have been made.

Printed on acid-free paper

Springer-Verlag GmbH Berlin Heidelberg is part of Springer Science+Business Media
(www.springer.com)



Preface

This research book provides the reader with a selection of high-quality texts
dedicated to current progress, new developments and research trends in feature
selection for data and pattern recognition. In particular, this volume points to a
number of advances topically subdivided into four parts:

• estimation of importance of characteristic features, their relevance, dependencies,
weighting and ranking;

• rough set approach to attribute reduction with focus on relative reducts;
• construction of rules and their evaluation;
• and data- and domain-oriented methodologies.

The volume presents one introductory and 13 reviewed research papers,
reflecting the work of 29 researchers from 11 countries, namely Australia, Canada,
Germany, Greece, Hungary, Italy, Japan, Malaysia, Poland, Slovenia and USA.

Compilation of this book has been made possible by many people. Our sincere
thanks go to the laudable efforts of many individual persons, groups and institutions
that supported them in their valuable work. We wish to express our gratitude to the
contributing authors and all who helped us in review procedures of the submitted
manuscripts. In addition, the editors and authors of this volume extend an
expression of gratitude to the members of staff at Springer, for their support in
making this volume possible.

Poland, September 2014 Urszula Stańczyk
Australia Lakhmi C. Jain
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Chapter 1
Feature Selection for Data and Pattern
Recognition: An Introduction

Urszula Stańczyk and Lakhmi C. Jain

Abstract Surrounded by data and information in various forms we need to
characterise and describe objects of our universe using some attributes of nominal or
numerical type. Selection of features can be performed basing on domain knowledge,
executed through dedicated approaches, driven by some particular inherent proper-
ties ofmethodologies and techniques employed, or governed by other factors or rules.
This chapter presents a general and brief introduction to topics of feature selection
for data and pattern recognition. Its main aim is to provide short descriptions of the
chapters included in this volume.

Keywords Feature · Feature selection · Pattern recognition · Data mining

1.1 Introduction

Some say that our earliest memories form when, as children, we learn to describe
the world we live in, and express verbally what we feel and think, how we perceive
other people, objects, events, abstract concepts. While we grow older, we learn to
detect and recognise patterns [20], and our discriminating skills grow as well. We
develop associations, preferences and dislikes, which are employed, consciously and
subconsciously, when choices are made, actions taken.

Imagine opening an unknown thick book and finding in it a whole page dedicated
to a line of thought of some character, jumping from one topic to another, along with
connecting ideas, feelings and memories, digressions. Without looking at the cover
or the title page, by similarity to a stream of consciousness, one instantly thinks
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about James Joyce as the author. A painting with a group of posed ballet dancers
upon a stage we would associate with Degas, and water lilies in a pond with Monet.
Hearing rich classical organ music we could try to guess Bach as the composer. In
each of these exemplary cases we have a chance of correct recognition basing on
some characteristic features the authors are famous for. Our brains recognise lily
flowers or organ tunes, yet to make other people or machines capable of the same we
need to explain these specific elements, which means describing, expressing them in
understandable and precise terms.

Characterisation of things is a natural element of life, some excel at it while
others are not so good. Yet anybody can make basic distinctions, especially with
some support system. Some of how these characteristics play into problems we need
to tackle, taskswaiting to be solved, comes intuitively, somewe get fromobservations
or experiments, drawn conclusions. Some pointers are rather straightforward while
others indirect or convoluted.

According to a dictionary definition a feature is a distinctive attribute or aspect
of something and it is used as a synonym for characteristic, quality, or property
[29, 38]. With such meaning it is employed in general language descriptions but also
in more confined areas of technical sciences, computer technologies, in particular in
the domain of data mining and pattern recognition [24, 30, 39].

For automatic recognition and classification [11, 27] all objects of the universe of
discourse need to be perceived through information carried by their characteristics
and in cases when this information is incomplete or uncertain the resulting predictive
accuracies of constructed systems, whether they induce knowledge from available
data in supervised or unsupervised manner [28], relying on statistics-oriented calcu-
lations [8, 19] or heuristic algorithms, could be unsatisfactory or falsified, making
observations and conclusions unreliable.

The performance of any inducer depends on the raw input data on which inferred
knowledge is based [21], exploited attributes, the approach or methodology of data
mining applied, but also on the general dimensionality of the problem [40]. Con-
temporary computer technologies with their high computational capabilities aid in
processing, but still for huge data sets, and very high numbers of variables the process,
even if feasible, can take a lot of time and effort, require unnecessary or impractically
large storage.

Typically the primary goal is to achieve the maximal classification accuracy but
we need to take into account practical aspects of obtained solutions, and consider
compromises with trade-offs such as some loss in performance for much shortened
time, less processing, lower complexity, or smaller structure of the system.

Feature selection is an explicit part of most knowledgemining approaches—some
attributes are chosen over others while forming a set of characteristic features in the
first place [10, 18]. Here the choice can be supported by expert knowledge. Once
some subset of variables is available, using it to construct a rule classifier, a rule
induction algorithm leads to particular choices of conditions for all constituent rules,
either usual or inhibitory. In a similar manner in a decision tree construction specific
attributes are to be checked at its nodes, and artificial neural networks through their
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learning rule establish the degrees of importance or relevance of features. Such
examples can be multiplied.

Even for working solutions it is worthwhile to study attributes as it is not out of
realm of possibility that some of them are excessive or repetitive, even irrelevant,
or there exist other alternatives of the same merit, and once such variables are dis-
covered, different selection can improve the performance, if not with respect to the
classification accuracy, then by better understanding of analysed concepts, possibly
more explicit presentation of information [23].

With all these factors and avenues to explore it is not surprising that the problem
of feature selection, with various meanings of this expression, is actively pursued in
research, which has given us the motivation for dedicating this book to this area.

1.2 Chapters of the Book

The 13 chapters included in this volume are grouped into four parts. What follows
is a short description of the content for each chapter.

Part I Estimation of Feature Importance

Chapter2 is devoted to a review of the field of all-relevant feature selection, and
presentation of the representative algorithm [5, 25]. The problem of all-relevant
feature selection is first defined, then key algorithms are described. Finally the
Boruta algorithm is explained in a greater detail and applied both to a collection
of synthetic and real-world data sets, with comments on performance, properties
and parameters.
Chapter3 illustrates the three approaches to feature selection and reduction [17]:
filters, wrappers, and embedded solutions [25], combined for the purpose of fea-
ture evaluation. These approaches are usedwhen domain knowledge is unavailable
or insufficient for an informed choice, or in order to support this expert knowledge
to achieve higher efficiency, enhanced classification, or reduced sizes of classi-
fiers. The classification task under study is that of authorship attribution with
balanced data.
Chapter4 presents a method of feature ranking that calculates the relative weight
of features in their original domain with an algorithmic procedure [3]. The method
supports information selection of realworld features and is usefulwhen the number
of features has costs implications. It has at its core a feature extraction technique
based on effective decision boundary featurematrix, which is extended to calculate
the totalweight of the real features through aprocedure geometrically justified [28].
Chapter5 focuses on weighting of characteristic features by the processes of their
sequential selection. A set of all accessible attributes can be reduced backwards,
or variables examined one by one can be selected forward. The choice can be
conditioned by the performance of a classification system, in a wrapper model,
and the observations with respect to selected variables can result in assignment

http://dx.doi.org/10.1007/978-3-662-45620-0_2
http://dx.doi.org/10.1007/978-3-662-45620-0_3
http://dx.doi.org/10.1007/978-3-662-45620-0_4
http://dx.doi.org/10.1007/978-3-662-45620-0_5
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of weights. The procedures are employed for rule [37] and connectionist [26]
classifiers, applied in the task of authorship attribution.

Part II Rough Set Approach to Attribute Reduction

Chapter6 discusses two probabilistic approaches [44] to rough sets: the variable
precision rough set model [43] and the Bayesian rough set model, as they apply
to data dependencies detection, analysis and their representation. The focus is on
the analysis of data co-occurrence-based dependencies appearing in classification
tables and probabilistic decision tables acquired from data. In particular, the notion
of attribute reduct, in the framework of probabilistic approach, is of interest in the
chapter and it includes two efficient reduct computation algorithms.
Chapter7 provides an introduction to a rough set approach to attribute reduction
[1], treated as removing condition attributes with preserving some part of the
lower/upper approximations of the decision classes, because the approximations
summarize the classification ability of the condition attributes [42]. Several types
of reducts according to structures of the approximations are presented, called
“structure-based” reducts. Definitions and theoretical results for structures-based
attribute reduction are given [33, 36].

Part III Rule Discovery and Evaluation

Chapter8 compares a strategy of rule induction based on feature selection [32],
exemplified by the LEM1 algorithm, with another strategy, not using feature selec-
tion, exemplified by the LEM2 algorithm [15, 16]. The LEM2 algorithm uses all
possible attribute-value pairs as the search space. It is shown that LEM2 signifi-
cantly outperforms LEM1, a strategy based on feature selection in terms of an error
rate. The LEM2 algorithm induces smaller rule sets with the smaller total number
of conditions as well. The time complexity for both algorithms is the same [31].
Chapter9 addresses action rules extraction. Action rules present users with a set of
actionable tasks to follow to achieve a desired result. The rules are evaluated using
their supporting patterns occurrence and their confidence [41]. Thesemeasures fail
to measure the feature values transition correlation and applicability, hence meta-
actions are used in evaluating action rules, which is presented in terms of likelihood
and execution confidence [14]. Also an evaluation model of the application of
meta-actions based on cost and satisfaction is given.
Chapter10 explores the use of a feature subset selection measure, along with a
number of common statistical interestingness measures, via structure-preserving
flat representation for tree-structured data [34, 35]. A feature subset selection is
used prior to association rule generation. Once the initial set of rules is obtained,
irrelevant rules are determined as those that are comprised of attributes not deter-
mined to be statistically significant for the classification task [22].

Part IV Data- and Domain-Oriented Methodologies

Chapter11 gives a survey of hubness-aware classification methods and instance
selection. The presence of hubs, the instances similar to exceptionally large number

http://dx.doi.org/10.1007/978-3-662-45620-0_6
http://dx.doi.org/10.1007/978-3-662-45620-0_7
http://dx.doi.org/10.1007/978-3-662-45620-0_8
http://dx.doi.org/10.1007/978-3-662-45620-0_9
http://dx.doi.org/10.1007/978-3-662-45620-0_10
http://dx.doi.org/10.1007/978-3-662-45620-0_11
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of other instances, has been shown to be one of the crucial properties of time-series
data sets [4, 7]. There are proposed some selected instances for feature construc-
tion, detailed description of the algorithms provided, and experimental results on
large number of publicly available real-world time-series data sets shown.
Chapter12 presents an analysis of descriptors that utilize various aspects of image
data: colour, texture, gradient, and statistical moments, and this list is extended
with local features [2]. The goal of the analysis is to find descriptors that are
best suited for particular task, i.e. re-identification of objects in a multi-camera
environment. For descriptor evaluation, scatter and clustering measures [12] are
supplemented with a new measure derived from calculating direct dissimilarities
between pairs of images [5, 6].
Chapter13 deals with the selection of the most appropriate moment features used
to recognise known patterns [13]. For this purpose, some popular moment families
are presented and their properties are discussed. Two algorithms, a simple Genetic
Algorithm (GA) and the Relief algorithm are applied to select the moment features
that better discriminate human faces and facial expressions, under several pose and
illumination conditions [9].
Chapter14 contains considerations on grouped features. When features are gro-
uped, it is desirable to perform feature selection groupwise in addition to selecting
individual features. It is typically the case in data obtained by modern high-
throughput genomic profiling technologies such as exon microarrays. To handle
grouped features, feature selection methods are discussed with the focus on a
popular shrinkage method, lasso, and its variants, that are based on regularized
regression with generalized linear models [6].

1.3 Concluding Remarks

In this book some advances and research dedicated to feature selection for data and
pattern recognition are presented. Even though it has been the subject of interest for
some time, feature selection remains oneof actively pursued avenues of investigations
due to its importance and bearing upon other problems and tasks. It can be studied
within a domain from which features are extracted, independently of it, taking into
account specific properties of involved algorithms and techniques, with feedback
from applications, or without it. Observations from executed experiments can bring
local and global conclusions, with theoretical and practical significance.
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Chapter 2
All Relevant Feature Selection Methods
and Applications

Witold R. Rudnicki, Mariusz Wrzesień and Wiesław Paja

Abstract All-relevant feature selection is a relatively new sub-field in the domain
of feature selection. The chapter is devoted to a short review of the field and presen-
tation of the representative algorithm. The problem of all-relevant feature selection
is first defined, then key algorithms are described. Finally the Boruta algorithm,
under development at ICM, University of Warsaw, is explained in a greater detail
and applied both to a collection of synthetic and real-world data sets. It is shown
that algorithm is both sensitive and selective. The level of falsely discovered relevant
variables is low—on average less than one falsely relevant variable is discovered for
each set. The sensitivity of the algorithm is nearly 100% for data sets for which clas-
sification is easy, but may be smaller for data sets for which classification is difficult,
nevertheless, it is possible to increase the sensitivity of the algorithm at the cost of
increased computational effort without adversely affecting the false discovery level.
It is achieved by increasing the number of trees in the random forest algorithm that
delivers the importance estimate in Boruta.
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U. Stańczyk and L.C. Jain (eds.), Feature Selection for Data
and Pattern Recognition, Studies in Computational Intelligence 584,
DOI 10.1007/978-3-662-45620-0_2

11



12 W.R. Rudnicki et al.

2.1 Introduction

The usual goal of feature selection in machine learning is to find the best set of
features that allows one to build useful models of studied phenomena. The chapter
is devoted to a different application of feature selection process, where building
a machine learning model is merely a tool for extracting all features that are relevant
for a problem. The relevance is considered in a broad sense—it is sufficient for a
feature to be declared relevant, when it is useful for building a machine learning
model of the problem under scrutiny at some context. One may ask why this goal is
relevant at all? Why should anyone be interested in this type of relevance?

Let us firstly describe a toy problem that illustrates a need for the all-relevant
feature selection in an artificially transparent setting. Let us construct a system con-
taining 100 objects described with one hundred real-valued variables X1,...,100, and
one binary decision variable D. The descriptive variables X1 and X2 are drawn from
a normal distribution N(0, 1). The value of the decision variable is determined from
values of these variables in the following manner. It is one (TRUE) if both vari-
ables have the same sign and is zero (FALSE) if their signs differ. The descriptive
variables X3, . . . ,X10 are obtained as a linear combination of X1 and X2, and nor-
malised to N(0, 1). The variables X11, . . . ,X100, are drawn from a normal distribu-
tion N(0, 1). Finally the indexes of the variables are randomly permuted. The goal
of the researcher is to determine which variables are responsible for the value of a
decision variable.

There is a very easy path to the solution of this problem. One could take a clas-
sifier that is able to rank feature importance and select two most important features.
Unfortunately this path may lead us astray, as displayed in Fig. 2.1, that shows the
ranking of feature importance for our toy problem returned by a random forest (RF)
[2] classifier. Here, for clarity, variable indexes are not permuted.

The toy problem is simple enough that it can be solved directly by a brute force
approach. It is sufficient to build 4,950models including two variables to find one that
gives perfect classification and hence is the most likely to be built on two variables
used to generate the model. However, for real life problems a number of descriptive
variables may bemuch larger, connections between these variables and decision may
be more complicated, measurements are subject to noise. Moreover, one does not
know beforehand how many variables influence decision. Finally, while for our toy
problem the model based on two variables used to generate the model usually gives
best results, this is not guaranteed to work in a general case. Hence the brute force
approach will not work in most cases.

As an example of a real-life application we may consider deciphering connection
between gene expression levels in humanswith somemedical condition. In this case a
number of variables is roughly twenty thousands, it is not known howmany genes are
involved and how, and last but not least—measurements are subject both to normal
variability and experimental error. Analysis of such problem can be split into two
separate tasks: determination which variables are connected in some way with the
decision variable, and then identification of those variables that are responsible for
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Fig. 2.1 The illustration for the toy problem. The upper panel shows projection of the system on the
plane (X1X2). The lower panel shows the importance of variables in random forest classifier. Solid
squares correspond to variables used to generate the decision variable, solid circles correspond
to combinations of X1 and X2 and open circles correspond to random variables. It is clear that
importance of variables obtained from random forest can be used to discern informative and non-
informative features. Nevertheless, the importance ranking does not allow to detect the variables
used for generation of the decision variable

a value of the decision variable. The first task can be tackled using the all-relevant
feature selection approach. The solution of the second task, which generally is much
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harder, should be easier when all relevant variables are identified and hence the
number of variables is reduced.

For example in our toy problem a perfect algorithm for all-relevant feature selec-
tion should find that 10 variables out of 1,000 are somehow connected with decision
variable, therefore the number of models tested in the brute force approach can be
reduced to 45. In a medical problem of a researcher studying a connection between
gene expression and a medical condition, a number of genes to consider may be
reduced from multiple thousands to hundreds or tens, or maybe even a handful of
variables. A domain specific knowledge can be then applied to build a model of a
problem under scrutiny.

2.1.1 Definitions

Up to this point the notion of relevance was used without definition, instead we relied
on its intuitive understanding. However, it has been already observed by Kohavi and
John [7] that there are several definitions of relevance that may be contradictory
and misleading. They proposed that two degrees of relevance (strong and weak) are
required to encompass all notions that are usually associated with this term. In their
approach the relevance is defined in the absolute terms, with the help of an ideal
Bayes classifier.

Definition 1 A feature X is strongly relevant when removal of X alone from the data
always results in deterioration of the prediction accuracy of the ideal Bayes classifier.

Definition 2 A feature X is weakly relevant if it is not strongly relevant and there
exists a subset of features S, such that the performance of ideal Bayes classifier on S
is worse than the performance on S ∪ {X}.
Definition 3 A feature X is irrelevant if it is neither strongly nor weakly relevant.

One should note, that an information system might be constructed in such a way,
that there are no strongly relevant attributes. Indeed, it is easy to notice that the toy
system described above does not contain strongly relevant attributes.

Another useful notions were introduced by Nilson et al. [13], who used concepts
of weakly and strongly relevant features to define formally two problems of feature
selection. A minimal optimal problem in feature selection has the goal to find the
minimal set of attributes giving the best possible classifier. The other is an all relevant
problem, where one is interested in finding all strongly andweakly relevant attributes.

Definition 4 (Minimal optimal problem) Find a set of attributes consisting of all
strongly relevant attributes and such subset of weakly relevant attributes, that all
remaining weakly relevant attributes contain only redundant information.

Definition 5 (All-relevant problem) Find all strongly relevant and all weakly rele-
vant attributes.
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It has been shown by Nilsson and co-workers, that exact solution of the all rele-
vant problem requires an exhaustive search, which is intractable for all but smallest
systems.

The relevance defined earlier is a qualitative notion—a feature can either be rel-
evant or irrelevant. It is also an objective property of the system under scrutiny,
independent from the classifier used for building a model. This notion is distinct
from importance of variable, that is a quantitative and classifier-dependent measure
of the contribution of a variable to a model of the system. One can use various mea-
sures of importance of variable, provided that they satisfy the simple condition—the
importance of relevant variables should be higher than importance of irrelevant ones.
A useful and intuitive measure of importance was introduced by Breiman in random
forest (RF) classification algorithm [2].

Definition 6 (Importance of a variable) is the loss of the classification accuracy of
the model that was built using this variable, when the information on the variable’s
value is withdrawn.

A final concept that will be used often enough in the current chapter to deserve a
mention in this section is a contrast variable.

Definition 7 (Contrast variable) is such descriptive variable that does not carry
information on the decision variable by design.

It is added to the system in order to discern relevant and irrelevant variables. It may be
obtained by drawing from theoretically justified probability distribution e.g. normal
or uniform; it may be also obtained from real variables by random permutation of
their values between objects. Application of contrast variables for feature selection
was first proposed by Stoppiglia et al. [15] and then independently by Tuv et al. [17],
and Rudnicki et al. [14].

Onemaynotice, that any all-relevant feature selection algorithm is a special type of
classification algorithm. It assigns variables to two classes: relevant or non relevant.
Hence the performance of the algorithms can be measured using the same quantities
that are used for estimation of ordinary classifiers. Two measures are particularly
useful for estimation of performance: sensitivity S and positive predictive value
PPV. Sensitivity S is measured as

S = TP/(TP + FN), (2.1)

where TP is a number of truly relevant features recognised by an algorithm, FN is a
number of truly relevant features that are not recognised by an algorithm and FP is a
number of non relevant features that are incorrectly recognised as relevant. Positive
predictive value PPV is measured as

PPV = TP/(TP + FP). (2.2)
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2.1.2 Algorithms for All-Relevant Feature Selection

There are two issues that are non-existent for the minimal optimal problem, but
are very important for the all relevant one. The first one is detection of weakly
relevant attributes that can be completely obscured by other attributes, the second
one is discerning between weakly but truly relevant variables from those that are
only seemingly relevant due to random fluctuations.

The concepts of strong and weak relevance, and consequently also the problem of
all relevant feature selection, are defined in a context of a perfect classifier that is able
to use all available information. Yet, in real-world applications one is restricted to
use imperfect classification algorithms, that are not capable of using all information
present in the information system, and this may influence the outcome of the feature
selection algorithm. In particular, an algorithm may not be able to find and use
some of the relevant features. In many cases this will not disturb solution of the
minimal optimal problem, provided that final predictions of a classifier are sufficiently
accurate; yet it will significantly decrease a sensitivity of an all relevant feature
selection. Hence a classification algorithm used in all relevant feature selection
should be able to detect weak and redundant attributes.

Algorithms that may be used for finding all the relevant features [3, 6, 9, 14,
17] are designed around ensembles of decision trees, either using the random forest
algorithm [2] or an algorithm specially tailored for the task. The choice of decision
trees as base learners is due to their flexibility and relative robustness, when multiple
redundant features are present in the data set. Moreover, the estimate of the variable
importance is easily obtained for tree-based ensembles.

The second issue, namely discerning between the truly and randomly relevant
attributes arises because the analysis is performed for finite size samples. This gives
a chance for random correlations to emerge and significantly influence the results.
The probability of such an event increases with the decreasing number of objects; the
effect is also boosted byoverall large number of attributes,which in addition increases
chances for random interactions between features. This issue is handled by introduc-
ing ‘contrast variables’ which are used as a reference. A statistical test is performed
that compares the importance of original variables with that of contrast variables.

Contrast variables have been used to find all relevant variables by four independent
groups. Tuv et al. [17] in ACE algorithm used ensembles of shallow classification
trees and iterative procedure in which the influence of the most important variables
on decision was removed in order to reveal variables of secondary importance. In
each step only these variables that were more important in the statistical test than the
75th percentile of contrast variables were deemed important.

Rudnicki et al. [14] introducedBoruta algorithm that used the importance estimate
from the random forest. The algorithm started by establishing initial ranking of
variables in random forest. Then the algorithm performed an iterative procedure in
which the least important variables were consecutively turned into contrast variables
by permuting their values between objects. Then the threshold level was increased by
a predefined step and procedure was repeated until the self-consistencewas achieved.
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The procedurewas carried out until the importance of all contrast variables was lower
than that of the unperturbed variables.

Huynh-Thu et al. [6] independently proposed a procedure that aimed at the same
goal from another end. In this approach the procedure starts similarly from establish-
ing the ranking of importance from RF. Then the algorithm estimates the importance
of noninformative variables by turning all variables into contrast variables. In the fol-
lowing steps the algorithm iteratively introduces back the informative variables into
the information system and computes the importance of both i informative variables
(the original most important variables) and N − i noninformative variables.

Dramiński et al. [4] introduced the MCFS algorithm to improve a feature ranking
obtained from an ensemble of decision trees. It was constructed in such a way that
eliminated known bias of random forest towards variables with fewer number of
values. The algorithm was later extended for use as an all-relevant feature selection
algorithm [3] by introducing a comparison of the importance of variables with the
maximal importance obtained from a set where all variables were uninformative.

The second version of Boruta [9] was introduced to improve computational effi-
ciency and used a different heuristic procedure. In this version the original dataset
is extended with random contrast variables. For each original attribute a ’shadow’
attribute is generated by randomly permuting its values. Then, for each attribute,
it is tested whether its importance is higher than the maximal importance achieved
by a contrast attribute. In order to obtain statistically significant results this proce-
dure is repeated several times, with contrast variables generated independently for
each iteration. After each iteration, the algorithm checks how many times the impor-
tance of tested attributes is higher (or lower) than that of the highest ranked contrast
variable. Once this number is significantly higher than allowed under hypothesis of
equality with importance of highest random contrast, the attribute is deemed relevant
and not tested further. On the other hand, if this number is significantly lower than
allowed under the same hypothesis, then the attribute is deemed irrelevant and perma-
nently removed from the data set. The corresponding contrast variables can be either
retained or removed from the dataset; the former choice increases precision of the
result, whereas the other greatly improves computational efficiency. The algorithm
is terminated when either the relevance of all attributes is established or until prede-
fined number of steps is executed. The result of the algorithm is the assignment of
each variable to one of three classes—relevant, irrelevant, unresolved (or tentative).
The final decision about the unresolved (tentative) attributes is left to the user.

All these algorithms are quite similar to each other: they are based on the ensemble
of trees, they use similar measures of importance and use contrast variables to discern
relevant and non relevant attributes. They differ mostly in implementation of the
statistical test as well as in performance. The current study is devoted to detailed
analysis of performance of Boruta algorithm for a family of synthetic data sets with
varying number of truly relevant variables and total number of variables, and hence
varying difficulty. The difficulty is measured as the error level of the random forest
classifier built on the truly relevant variables. The small scale tests performed by us
have shown that results of these algorithms are also similar, hence we believe that the
analysis performed for single algorithm will be relevant also for other algorithms.
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2.1.3 Random Forest

The random forest algorithm is used in the current work both as a classifier and as
an engine for the feature selection algorithm, hence we give below a short summary
of its most important qualities. It is designed as an ensemble of weak classifiers
that combine their results during the final classification of each object. Individual
classifiers are built as classification trees. Each tree is constructed using different
bootstrap sample of the training set, roughly 1/3 of objects is not used for building a
tree. At each step of the tree construction a different subset of attributes is randomly
selected and a split is performed using an attribute which leads to a best distribution
of data between nodes of the tree.

Each object has not been used by roughly 1/3 of trees. This object is called ‘out
of bag’ (OOB) for these trees, and they are the OOB trees for this object. One may
perform (OOB) error estimate by comparing the classification of the ensemble of the
OOB trees for each object with the true decision. The OOB object can be used also
for estimation of variables’ importance using following procedure. For each tree all
its’ OOB objects are classified and the number of votes for a correct class is recorded.
Then values of the variable under scrutiny are randomly permuted across objects, the
classification is repeated and the number of votes for a correct class is again recorded.
The importance of the variable for the single tree can be then defined as a difference
between a number of correct votes cast in original and permuted system, divided by
number of objects. The importance of the variable under scrutiny is then obtained by
averaging importance measures for individual trees. The implementation of random
forest in R library [11] is used in Boruta and also was used for classification tasks.

2.2 Testing Procedure

Boruta algorithm is a wrapper on the random forest, hence it is likely that quality
of feature selection depends on the quality of random forest model. Therefore in
the first step of the testing procedure we performed a series of tests of the random
forest algorithm itself on synthetic data sets. Then the performance of the all-relevant
feature selection algorithm was examined on the selected synthetic data sets as well
as on few real-world data sets.

2.2.1 Data Sets

Synthetic data sets were constructed as variants of the well known hypercube prob-
lem. In this problem a set of points are generated in corners of D-dimensional hyper-
cube, each coordinate of the corner is either +1 or −1. The corners of the hypercube
were assigned to one of two classes using twomethods. The first one relies on random
process. Corners of a hypercube are numbered 1, . . . , 2D, then a random sample of
length 2(D−1) is drawn from the range (1, . . . , 2D) and cornerswith these numbers are
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assigned to class 1; the remaining corners assigned to class 2. The second method is
deterministic. Corners with odd number of−1 coordinates are assigned to class 1 and
the remaining corners are assigned to class 2. The points were generated using three
methods. In the first one, the points are generated from multidimensional Gaussian
distribution with mean zero and standard deviation one and assigned to the nearest
corner. In the second method, the multidimensional uniform distribution spanned on
(−1, 1) interval was used instead of Gaussian. In the third one, points were drawn
from 2D multidimensional Gaussian distributions with standard deviation 0.1, each
centred on the respective corner of the hypercube. Then two classes of additional
features were added to each data set. Features from the first class were obtained as a
linear combination of original variables. Features from the second class were drawn
randomly from the normal distribution. As a result we obtain the data set described
with three types of features. The generative features are the original variables used to
define the value of decision variable. The combination features are obtained as linear
combinations of generative features and hence they are also connected with decision
variable. These two sets of features are by definition relevant. One should note, how-
ever, that features of both types are weakly relevant—it is possible to replace any of
the features with combination of other features. The remaining variables are random
features—they are not connected with decision variable.

Multiple data sets with varying numbers of generative, combination and random
features, aswell as varyingnumber of objectswere generatedusing four combinations
of the class assignment and point distributionsmethods, resulting in four series of data
sets. The first series, denoted as NORM used the deterministic class assignment and
single Gaussian in a centre for generation of data points. The second one, denoted as
UNI used deterministic class assignment and uniform distribution of points, the third
one used random class assignment and uniform distribution of points. The last series
was obtained using random class assignment and Gaussians centered on corners of
the hypercube for points generation. Two last series were generated with functions
mlbench.xor and mlbench.hypercube from the mlbench package [10] in R [16], with
default parameters for data dispersion and are denoted as XOR and HYPER.

In addition to analysis of synthetic data sets the relevance of the variables was
examined for four recently published data sets deposited in the UCI repository [1]:
MicroMass, QSAR biodegradation (Q-b) [12], Turkiye Student Evaluation Data Set
(TSE) [5] and Amazon Commerce Reviews Set (ACRS).

2.2.2 Classification

The tests of classification accuracy for random forest were performed for four series
of data sets described earlier. However, the data sets used for survey of classification
results were simpler than those used for feature selection. The number of generative
variables varied between 2 and 8, the number of combination features was either
zero or two times the number of original features and the number of objects varied
between 100 and 2,000. The systems were not extended with random features—the
goal of this survey was to find the region of parameter space that is feasible for
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classification in the best settings, without additional noise from random features.
The random forest implementation in R [11] was used to perform classification,
using the default parameters: 500 trees in ensemble and the number of variables used
for split generation set at the square root of the total.

2.2.3 Feature Selection

Two series of data sets were selected for further analysis with Boruta feature selection
algorithm implemented in a package in R [8]. In higher dimensions both functions
using deterministic class assignment generated data sets that were too difficult for the
random forest algorithm, hence only sets generated with the help of two functions
frommlbench package that were based on randomwere used in feature selection test.

The result of the classification testing has shown that the quality ofmodels depends
monotonically on the number of objects—theOOBclassification error decreaseswith
increasing number of objects. This relationship was universal, but in some cases the
number of objects required to obtain model of good quality was very high. This is
especially true for the high dimensional problems. Therefore to reduce the number of
variable parameters we fixed the number of objects at single value 500, that allowed
us to scan a wide range of difficulties for numbers of variables varying between 50
and 10,000.

The tests were performed for the following grid of parameters describing data sets:
Ngen = (2, 3, 4, 5) generative variables × Ncomb = (5, 10, 20, 50, 100, 200, 500)
combination variables × Nall = (50, 100, 200, 500, 1,000, 2,000, 5,000, 10,000)
all variables, where Nall = Ngen + Ncomb + Nrand (and Nrand is a number of random
variables). Obviously, the grid points corresponding to negative number of random
variables were not explored. The number of variable parameters in the test is four,
therefore generation of every possible combination is neither feasible nor interesting.
Data sets that are either very easy or very difficult are not interesting for further
analysis. For the purpose of this work the data set was considered easy when the
OOB estimate of the classification error of random forest model is below 2% and
it is considered hard when the OOB error is above 30%. Therefore only a subset of
possible datasets within the range of parameters was generated and tested. For each
number of generative variables the initial test system was generated that comprised
of 500 objects with 5 combination features and 50 random features. Then the number
of objects, combination features and random features was varied until either easy or
hard region of the parameter space was found.

Additionally, the influence of number of trees in the forest on the feature selection
procedurewas examined. To this end, the entire procedurewas repeated using random
forest classifiers obtained with three different numbers of trees, namely 500, 1,000
and 2,000.

Despite fixing the number of objects and examining only two set series of data
sets, the number of possible combinations was still too high to be practical, hence
not all of the possible grid points were examined. The set of combinations examined
is given in Table2.1.
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Table 2.1 Data sets generated for the all relevant feature selection analysis

# objects # generative variables # combination variables Total variables # Trees

500 (2, 3, 4, 5) (5, 10, 20, 50) 100 (500, 1,000, 2,000)

500 (2, 3, 4, 5) (5, 10, 20, 50, 100) 200 (500, 1,000, 2,000)

500 (2, 3, 4, 5) (5, 10, 20, 50, 100, 200) 500 (500, 1,000, 2,000)

500 (2, 3, 4, 5) (5, 10, 20, 50, 100, 200) 1,000 (500, 1,000, 2,000)

500 (2, 3, 4, 5) (5, 10, 20, 50, 100, 200) 2,000 (500, 1,000, 2,000)

500 (2, 3, 4, 5) (5, 10, 20, 50, 100, 200) 5,000 (500, 1,000, 2,000)

In contrast with the synthetic data sets, information on true relevance of variables
is unknown for real-world data sets. Therefore, we can measure directly neither
sensitivity nor PPV of the algorithm. However, we can estimate the PPV using
contrast variables, by measuring how many of them algorithm deems relevant. To
this end, we generate contrast variables as ‘shadows’ of original variables, which
are obtained by copying values of original variables and randomly permuting them
between objects. Each variable is accompanied by a shadow variable. The system
extended in this way is then analysed with the Boruta algorithm. Then the PPV
estimate is obtained as

PPV∗ = Nrelevant(Xoriginal)

Nrelevant(Xoriginal) + Nrelevant(Xcontrast)
, (2.3)

where PPV∗ denotes approximate PPV, Nrelevant(Xoriginal) and Nrelevant(Xcontrast) are
respectively a number of original and contrast variables that algorithm has deemed
relevant. Entire analysis was repeated five times to check robustness of the results.
Boruta algorithm assigns variables to three classes: (Confirmed, Tentative,Rejected).
One can treat the Tentative class either as relevant or irrelevant, hence two measures
of PPV∗ were used, PPV∗

c and PPV∗
t that differed in the assignment of the Tentative

variables. The former assigns them to irrelevant, whereas latter to relevant class.

2.3 Results and Discussion

Four series of datasets were generated using small variations of the same approach,
nevertheless, the results differ significantly for these sets. Two series of synthetic
data sets generated with deterministic class assignment were generally difficult to
classify with random forest algorithm. The classification results for these sets were
satisfactory (OOB error less then 30%) only for low dimensional problems (2 and 3).
The problems of higher dimensionality were solvable only when large number of
objects was available. Therefore further analysis for synthetic sets was performed
for two remaining series.
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2.3.1 Classification

The results of the classification survey are in general agreement with intuitive expec-
tations, see Fig. 2.2. Increasing the dimensionality of the problem makes it more
difficult, adding noise to the problem makes it more difficult, and increasing the
number of objects helps in building better models.

Fig. 2.2 Classification results for four variants of hypercube problem. Top 2D and 3D models.
Bottom 4D and 5D models. Labels for series are constructed from the first letter of the series name
and dimension of the problem, for example X3 denotes three dimensional data sets from XOR
series, H5 denotes five dimensional data sets from HYPER series etc
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Fig. 2.3 The OOB error for two series of HYPER data sets, one with points described with genera-
tive variables only, and the other with additional combination features. The number of combination
features is two times the number of generative features. The datasets with combination features are
marked with a ‘*’

One result that may be less intuitive is that introduction of features that are lin-
ear combinations of original variables may improve the classification. These fea-
tures in some cases may form lower dimensional subspace that allows to separate
clusters located originally in corners of the hypercube. This is not universal, but
observed for the last series. Hence presence of the combination features in the data
set may facilitate transition of a problem that is formally N-dimensional to easier
(N-k)-dimensional one. The effect is displayed in Fig. 2.3. The classification error is
significantly lower for series with original generative features augmented with lin-
ear combinations. This result shows that relationship between importance and true
relevance may not be straightforward.

2.3.2 Feature Selection

In line with expectations the results of the feature selection are correlated with the
results of the classifications. It is difficult to identify important features for data sets
that are difficult to classify and relatively easy for those that are easy to classify.
This is clearly visible in Table2.2 that collects the overall results of the survey of
the synthetic data sets. For the XOR series the sensitivity is very high for easy
2-dimensional data sets and drops to 25% for hard 5-dimensional data sets. On the
other hand, the level of false discovery is uniformly low—the expected value of false
positive discovery is 0.3. It means that on average only 3 falsely relevant variables
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Table 2.2 The cumulative results for the XOR and HYPER series of data sets

XOR HYPER

DIM TP FP FN Sensitivity (%) PPV (%) TP FP FN Sensitivity (%) PPV (%)

2 51.2 0.3 0.2 98 98 – – – – –

3 42.1 0.2 8.2 81 97 50.5 0.1 1.3 97 99.7

4 37.0 0.3 15.0 65 99 52.2 0.1 0.7 96 99.6

5 14.2 0.3 36.2 23 97 47.7 0.1 5.3 91 99.0

The average number of false positive, false negative, sensitivity and PPV were computed for the
entire range of parameters

Table 2.3 Cumulative results for four dimensional data set

Ntotal Mean TP Mean FP Mean FN Mean sensitivity (%) Mean PPV (%)

100 24.5 0.7 0.8 91.7 97.4

200 40.1 0.5 0.9 90.2 98.7

500 61.6 0.1 6.6 81.5 99.8

1,000 52.4 0.3 15.7 53.6 99.4

2,000 48.2 0.1 19.9 59.7 99.9

5,000 29.7 0.1 42.6 33.8 99.6

10,000 25.6 0.1 57.2 34.2 99.6

The average number of true and false positive, false negative, sensitivity and PPV are displayed for
varying number of total variables. The averaging was performed over variable number of combina-
tion variables

should be expected in 10 runs of Boruta algorithm. Both sensitivity and PPV are very
high for the sets in the HYPER series, hence deeper analysis is devoted to the more
difficult XOR series.

The four-dimensional data sets are examined in closer detail in the Table2.3,
where the results for a range of total number of variables is presented. It is clear that
the sensitivity of the algorithm drops with increasing number of variables, in line
with the number of false positive discoveries.

The drop in sensitivity with increasing number of variables is expected behaviour.
When the number of variables is large, the chance for a variable to be included in
a tree in few first splits is diminished, hence the impact of individual variable is
a subject to larger variability when compared with systems with a small number
of variables. Therefore it is more difficult to discern relevant variables with lesser
impact from random ones. This effect can be circumvented by increasing a number
of trees in the system; see Table2.4, where cumulative data for all four-dimensional
sets is presented as well as a more detailed analysis of a five-dimensional set.

Another interesting effect is presented in Table2.5. Systemswith different number
of relevant variables have variable behaviour of sensitivity when the number of
variables is increasing. For example, when the total number of variables is 500,
the sensitivity is 100% for a system with 54 relevant variables, whereas it is 87%
for a system with 204 relevant variables. When the number of random variables is
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Table 2.4 Change of sensitivity as a function of a number of trees in Boruta

Average for 4D systems Average for 5D systems

Ntree TP FN Sensitivity (%) PPV (%) TP FN Sensitivity (%) PPV (%)

100 – – – – 40.2 164.8 19.6 100

200 – – – – 70.2 134.8 34.2 100

500 34.9 21.1 57.8 99.7 123.6 81.4 60.3 100

1,000 39.9 16.0 63.5 99.5 157.6 47.4 76.9 100

2,000 43.4 12.5 68.5 98.9 180.4 24.6 88.0 99.8

5,000 – – – – 189.6 15.4 92.5 99.5

10,000 – – – – 193.2 11.8 94.2 99.4

20,000 – – – – 195.6 9.4 95.4 99.4

The average results for all 4-dimensional systems examined with Boruta using 500, 1,000, and
2,000 trees are shown in the left panel. The more detailed inspection of results for sets described
with 5 generative, 200 combination and 1,000 total variables is presented in the right panel. Average
results for five instances are presented for Boruta using 100 to 20,000 trees

Table 2.5 Results of feature selection presented for two series of 4-dimensional data sets for
varying total number of variables in the system

Ncomb Ntotal Mean TP Mean FP Mean FN Mean sensitivity (%) Mean PPV (%)

50 100 54 0.0 0.0 100.0 100.0

200 54 0.7 0.0 100.0 98.8

500 54 0.0 0.0 100.0 100.0

1,000 46.7 1.3 7.3 86.4 97.2

2,000 52.0 0.3 2.0 96.3 99.4

5,000 21.7 0.0 32.3 40.1 100.0

10,000 10.7 0.0 43.3 19.8 100.0

200 500 176.7 0.0 27.3 86.6 100.0

1,000 173.3 0.0 30.7 85.0 100.0

2,000 145.7 0.0 58.3 71.4 100.0

5,000 112.7 0.0 91.3 55.2 100.0

10,000 84.7 0.0 119.3 41.5 100.0

The average number of true and false positive, false negative, sensitivity and PPV are displayed.
The averaging was performed over Random Forest models built from 500, 1,000, and 2,000 trees

increased, the sensitivity for the system with 54 relevant variables drops faster than
for the system with 204 ones, reaching 20% when total number of variables arrives
at 10,000, whereas the sensitivity for the system with 204 relevant features is still
40% at this point.

This effect is most likely due to the method for generation of splits in random
forest algorithm. The subset of variables is randomly selected from all variables and
split is performed for the variable that produces the best split. When the number of
relevant variables is large in comparison with the sample size, the variables with low
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importance are rarely selected and hence their apparent importance is similar to that
of random variables. When the number of relevant variables is small, but not very
small, then there is a good chance that one or two relevant variables will be selected
at each step. In this case the truly relevant variables have the highest chance to be
selected and hence their apparent importance is high. Finally when the number of
variables is very small in comparison with the number of total variables the chance of
truly relevant variable being included in the sample is small and this again decreases
the apparent importance of relevant variables in comparison with random ones, and
hence decreases sensitivity.

The systematic survey of range of synthetic data sets generated with varying
parameters shows that the results of Boruta algorithm are robust.While the sensitivity
may be low for systems described with very large number of variables, nevertheless,
the variables that are reported as relevant are relevant with very high probability.

2.3.2.1 Real-World Data Sets

Boruta algorithm has been also applied to four real-world data sets recently deposited
in the UCI repository (see Table2.6). In this case only the false discovery ratio could
be estimated since the true relevance of the attributes is unknown. In two cases of
the sets described with small number of attributes nearly all attributes were deemed
relevant.

The level of false discovery was very low. In all cases the PPV∗
c was 100%—not

a single false discovery was made with the strict definition of relevance. With the
more relaxed definition, accommodating also Boruta’s tentative class as relevant,
some false discoveries were reported for QSAR biodegradation data set. Neverthe-
less, even in this case the expected value of false discovery was 0.4 and PPV∗

t was
98.9%. Therefore we may assume that nearly all features identified by Boruta as
relevant are truly so. The case of QSAR biodegradation data set could suggest that
variables assigned byBoruta to tentative class, bear higher risk of being false positive.

Table 2.6 Results for the real-world data sets from the UCI repository

Data Original Contrast PPV∗
c PPV∗

t

Dataset Instances Variables Conf Tent Rej Conf Tent Rej (%) (%)

Q-b 1,055 41 36.2 0.8 4.0 0.0 0.4 40.6 100.0 98.9

TES 5,820 33 30.0 1.0 1.0 0.0 0.0 32.0 100.0 100.0

MM-500 931 1,300 293 66 941 0 0 1,300 100 100

MM-1000 931 1,300 363 58 879 0 0 1,300 100 100

ACRS 1,500 10,000 220 84 9,696 0.0 0.0 10,000.0 100.0 100.0

The MicroMass data set was analysed with Random Forest runs with 500 and 1,000 trees that are
described as MM-500 and MM-1000, respectively. The number of variables marked as confirmed
(Conf), tentative (Tent) and rejected (Rej) is reported for original and contrast variables. The PPV∗

c
was computed according to Eq.2.3 counting as relevant only these variables with confirmed status,
for PPV∗

t also variables with tentative status were taken into account
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Nevertheless, in the case of MicroMass data set all attributes deemed tentative by
Boruta using 500 trees, were later deemed confirmed by Boruta using 1,000 trees,
without any false positive hits. This suggests that when the number of variables
deemed tentative is large, it is quite likely that most of them are truly relevant and
Boruta run with larger number of trees is required.

2.4 Conclusions

As it was demonstrated in the chapter, the all-relevant feature selection algorithms
are capable of discerning between relevant and non relevant variables. The Boruta
algorithm, which was used as a representative algorithm of the class, was examined
on a wide range of synthetic problems and several recently published real-world data
sets. Algorithm works particularly well for systems for which good quality models
may be obtained by means of random forest classification algorithm. The sensitivity
of the algorithm is close to 100% for such systems. The sensitivity of Boruta can
be improved by utilising random forest with larger number of decision trees. The
level of false discoveries is very low for all data sets examined, therefore all relevant
feature selection is suitable for generation of robust knowledge.

The main factor limiting analysis with Boruta algorithm is time of computations.
The single iteration of the random forest algorithm can take several hours for larger
systems. The algorithm in the best case requires at least time equivalent to 30 random
forest iterations to complete, hence entire analysis may take more then one CPU-
week. The random forest is computationally demanding and its implementation in
R, while very useful, is not very efficient for large problems. In particular, while the
random forest is trivially parallel its implementation is strictly sequential. This limits
application of the algorithm for analysis of truly large datasets described with tens
or even hundreds thousands variables and thousands of objects.
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Chapter 3
Feature Evaluation by Filter, Wrapper,
and Embedded Approaches

Urszula Stańczyk

Abstract The choice of particular variables for construction of a set of characteristic
features relevant to classification can be executed in a kind of external process with
respect to a classification system employed in pattern recognition, it can depend
on the performance of such system, or it can involve some inherent mechanism,
build-in in the system. The three types of approaches correspond to three categories
of methodologies typically exploited in feature selection and reduction: filters, wrap-
pers, and embedded solutions, respectively. They are used when domain knowledge
is unavailable or insufficient for an informed choice, or in order to support this expert
knowledge to achieve higher efficiency, enhanced classification, or reduced sizes of
classifiers. The chapter illustrates the combinations of the three approaches with the
aim of feature evaluation, for binary classification with balanced, for the task of
authorship attribution that belongs with stylometric analysis of texts.

Keywords Feature evaluation · Filter · Wrapper · Embedded solution · DRSA ·
ANN · Stylometry · Authorship attribution

3.1 Introduction

Since inductive learning systems can suffer from both insufficient and excessive
numbers of characteristic features they depend on, the problem of feature selection
and reduction has become quite popular and widely studied, with methodologies
applied typically grouped into threemain categories: filters, wrappers, and embedded
solutions [17].

Filters work independently on a classifier involved in pattern recognition,
regardless of its specifics and parameters [14]. The choice of attributes is performed
basing on some algorithms, qualitymeasures, for example by referring to information
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theory. Filters are general in nature and this generality should be understood here as
applicability to any domain, any inducer. This universality is, however, most often
achieved at a cost of some lower classification accuracy than for other approaches.

In wrappers selection of features is conditioned by the performance of the inducer
itself and its characteristics [16]. Typically, the predictive accuracy is considered as
the most important and deciding factor. Dependence on some particular classifier
means loss of generality and bias, but at the same time close tailoring of the set of
inputs to local requirements usually results in improved performance.

A solution is called embedded when an algorithm for feature selection and elim-
ination is a part of the learning system, some inherent dedicated mechanism that is
actively used [8]. As examples from this category there can be given construction of
decision trees, artificial neural networks with pruning of input neurons, activation of
relative reducts in rough set processing.

The chapter presents examples of combined filter, wrapper, and embedded
approaches for rule and connectionist classifiers employed for evaluation of fea-
tures in stylometric (or computational stylistics) domain, for a case of binary author-
ship attribution. The considered features reflect lexical and syntactic characteristics
expressing writing styles [2]. The stylistic features are studied and evaluated within
two contexts: firstly by their established rankings, secondly in the observed perfor-
mance of classifiers employing sequential backward selection while following these
rankings.

The text of the chapter is organised as follows. Section3.2 presents fundamen-
tal notions of stylometric processing of texts and features used in such analysis.
Section3.3 is dedicated to the differences in approaches to variable selection process,
while Sect. 3.4 provides some details of experimental setup, and Sects. 3.5 and 3.6
contain illustration of test results. Section3.7 concludes the chapter.

3.2 Characteristic Features for Stylometric
Analysis of Texts

Stylometry is a branch of science dedicated to understanding of writing styles, their
characteristics and descriptive elements, shared and unique traits, aiming at knowl-
edge discovery from linguistic point of view, but also at author characterisation,
comparison, and recognition [7, 31]. Stylometric processing typically involves either
statistic-oriented computer-aided computations [20], ormethodologies frommachine
learning domain [34]. Once we obtain a definition of a writing style by some char-
acteristic features, the task of recognising it can be perceived as pattern recognition,
with text samples categorised and classified by their authors.

A style is a phenomenon which we grasp and recognise rather intuitively, but
usually have trouble with more formal definitions and descriptions [3]. While we
can typically tell that we prefer someone’s style over others, expressing the reasons
for our preferences, especially not in somegeneral qualificatory terms such as “good”,
“bad”, “enjoyable”, “boring”, etc., but in more detail, comes much harder.
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To employ contemporary data mining techniques for stylometric analysis [1],
quantitative instead of qualitative descriptors are required and they are based on
statistics of linguistic features. As their selection reflects the richness of language,
the list of existing possibilities is practically endless. The markers often exploit term
frequencies of occurrence [24] and are divided into four categories: lexical, syntactic,
structural, and content specific [30].

Lexical descriptors provide information about total numbers of characters or
words, averages of numbers of characters per word or sentence, words per sentence,
distributions of these numbers. Syntactic markers express the structure of sentences
as created by punctuation marks [4]. Structural attributes reflect the overall organi-
sation of a text into paragraphs, sections, headings, signatures, embedded formatting
elements. Content-specific features refer to words and phrases of key meaning in
some context [6]. Out of these four groups, typically in authorship attribution tasks
there are chosen lexical and syntactic descriptors [41].

Even though it is universally acknowledged that it is possible to execute reliable
authorship attribution while using stylometric descriptors as characteristic features,
there is no consensus with regard to the way in which these sets of variables should
be constructed. Of course, as always there is needed a sufficiently high number of
representative text samples, but basing on themvarious candidate subsets of attributes
can be prepared and the knowledge about their efficiency and relevance for the
purposes of classification is unavailable a priori.

With the absence of domain knowledge about the importance of attributes a dif-
ferent attitude can be tried, by applying somemethodology that by itself can discover
relevance of variables, or some approaches dedicated to feature selection and reduc-
tion, either single, or in combinations. Even when expert knowledge is available,
feature selection algorithms can help with dimensionality reduction, improvement
of obtained results. When the task of feature set construction is considered in the
context of data processing and mining, it can be biased by a particular technique
used, with the result of the possible existence of alternative feature sets, found by
other approaches or computations. Thus the widely accepted procedure is to propose
some candidate set of attributes (chosen by arbitrary assumptions, using statistics,
or heuristics), test its quality, and optimise it for the set criteria.

3.3 Approaches to Feature Selection

Inmany classification tasks the total number of possible features that can be employed
is relatively high. Using all of them would result in respectively high dimensionality
which encumbers processing (even may make it impractical), also the presence of
too many variables is a drawback to most inducers even when these attributes by
themselves are relevant for the task, not to mention irrelevant or redundant variables
which can obscure other patterns [18]. In such cases several candidate subsets can
be tried and their efficiency tested, or we can employ some of algorithms explicitly
dedicated to feature selection and reduction.
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Depending on the organisation of a search process, feature selection algorithms are
typically categorised as belonging with filters, wrappers, or embedded approaches.
There are also constructed combinations of approaches, where for example firstly
a filter is employed, then wrapper, or when a wrapper is used as a filter. It is also
possible to apply some algorithm to obtain ranking of attributes, basing on which
feature selection or reduction is next executed.

3.3.1 Filters

Filters are completely separate processes to systems used for classification, working
independently on their performance and other parameters. They can be treated as
kind of pre-processing procedures. They exploit information contained in input data
sets looking for example for information gain, entropy, consistency [9].

One of popular algorithms from this group is Relief, in its original form invented
for binary classification (later modified to allow for multiple classes) [43]. Relief
assigns scores to variables depending on how well they discern decision classes. It
randomly samples the training set, looking for the two examples that are nearest to
the one selected, one from the same class (near-hit) while the other from the opposite
class (near-miss), and basing on this iteratively accumulates weights for attributes.
One of the drawbacks of Relief algorithm is the fact that it looks for all relevant
features and cannot discern redundant features, even when they are relevant in a very
low degree, thus each variable has some weight assigned.

The general nature of filters makes them applicable in all cases, yet the fact that
they totally disregard the performance of a classification system employing the set
of selected variables causes typically worse results than other approaches and it is
considered as a disadvantage.

3.3.2 Wrappers

In a wrapper approach to feature selection it is argued that the best evaluation of some
candidate variable subset is obtained by checking its usefulness in classification, as
the estimated predictive accuracy is typically considered to be the most important
indicator of relevance for attributes [22]. The induction algorithm can be run over
the entire training set and then measured against the testing set, or a cross-validation
method can be employed.

Since the search and selection process is adjusted to specific characteristic of the
inducer, they can show a bias, resulting in an increased performance for the chosen
classifier but worse results for another, especially when they significantly vary in
properties. In other words wrappers tend to construct sets of attributes which are
customised, tailored to some particular task and some particular system.
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Another disadvantage of this approach is in computational costs required.
Execution of the learning algorithm for many subsets of features can become unfea-
sible, not only when there are very high numbers of attributes to consider, but also
in cases when the training step is complex and time-consuming even for smaller
numbers of variables. For example artificial neural networks deal much better with
more than necessary inputs than for situations when their number is low.

When an inducer is able by itself to select some features while disregarding others
due to some additional procedures dedicated to dimensionality reduction, they cannot
be used for thewrappermode to play its role. If such processing is employed, it results
in an embedded approach.

Wrapper model can be used not only for feature selection or reduction, but for
other purposes, to better adjust some parameters of a classification system. An exam-
ple of such procedure constitutes establishing preference orders for values of condi-
tional attributes in Dominance-based Rough Set Approach, when there is insufficient
domain knowledge for such definitions [39].

3.3.3 Embedded Solutions

Several of predictors have their own, inherent mechanisms, built-in in the learning
algorithm, dedicated to feature selection. When such mechanism is actively used we
have an embedded solution [23].

As an example of this category there can be given input pruning for artificial
neural networks [19, 21] that leads to establishing by repetitive computations which
of network inputs have very low influence on the network outputs. In decision trees in
fact at each node some feature is selected, and this decision is a constituent element
of the algorithm, cannot be simply separated from it. For rough sets such function is
played by relative reducts, subsets of attributes which guarantee the same quality of
approximation as the entire set of variables [26].

When a set of all relative reducts is treated as yet another entity, another form
of expression for available knowledge on features extracted from instances, we can
assign weights [25] and define some quality measures for them [40, 42], to be used
in feature selection. These measures and weights can take into account how often
each attribute is included in reducts of specific cardinalities, and the same statistics
for other variables included in the same reducts. This kind of processing leads to
ordering of features, which can be interpreted as their ranking.

3.3.4 Ranking of Features

When we proceed through the entire set of available features with an application
of any of the aforementioned approaches to feature selection, either single or in
combinations, as a result these features become ordered by a value of some score or
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measure, considered then a weight or rank, assigned through processing. Therefore,
we obtain in such case a ranking of variables [27].

When a ranking of attributes is exploited in some processing, for feature selection
or reduction, and it is executed independently on the procedures that led to ranking in
the first place, by a formal definition the ranking can be then perceived as a filter. Even
a wrapper can be employed as a ranking filter in the subsequent stage of calculations,
as long as it follows a search path that gives the ordering of all variables, and the
inducer from the second stage is different from the first one.

3.4 Details of Research Framework

Before conducting any experiments several decisions needed to be made, with
respect to:

• input data sets—defined by the numbers of analysed learning and testing samples,
and a set of available stylometric characteristic features,

• machine learning techniques used in classification,
• the point in the feature space where search procedures start and directions of the
search,

• the stopping criterion for the search process,
• evaluation method for a candidate variable subset,
• organisation of the search,

as described below in more detail.

3.4.1 Input Data Sets

To ensure reliability of detected patterns in linguistic habits and preferences, sta-
tistics must be obtained basing on several samples of writing, with each sample of
sufficient length. In the considered case there were taken novels by two famous writ-
ers, Thomas Hardy and Henry James. Since within documents that are so long it is
natural to perceive some small variations of styles depending on the character of text
parts (narrative or dialog), they were divided into smaller samples, corresponding to
chapters or sections, to keep comparable length and size.

For all these prepared parts next the characteristic features were extracted for 25
arbitrarily selected lexical and syntactic descriptors (which proved to be useful in
some past research on authorship attribution [35, 36]), by calculation of frequencies
of usage for some function words and punctuation marks as follows:

• lexical markers (17)—but, and, not, in, with, that, what, for, by, if, from, at, to, as,
on, of, this,

• syntactic markers (8)—a comma, a fullstop, a colon, a semicolon, a bracket, a
question mark, an exclamation mark, a hyphen.
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3.4.2 Machine Learning Techniques Used in Research

In the research performed two distinctively different approaches to classification
were used, namely artificial neural networks simulated by software in multilayer
perceptron (MLP) topology, and decision algorithms induced within Dominance-
based Rough Set Approach (DRSA).

3.4.2.1 ANN Classifier

MLP is a feed-forward, unidirectional network, which at the training phase often
employs backpropagation algorithm [11]. Firstly for all connections some random
weights are assigned, then they are modified in such way that results in minimising
the difference between the value generated on the network output and the one that is
expected, for all outputs and all training samples. Its popularity MLP owes to good
generalisation properties—once a network learns characteristics of the training set,
it can correctly classify also unknown instances.

Within the first steps ofANNclassifier construction that encompasses establishing
network parameters the number of input nodes was set to the number of considered
variables, the number of outputs as corresponding to two recognised classes, and
in the internal structure the number of hidden layers was set to two, with the total
number of neurons in themequal to the number of inputs. Tominimise the influence of
random interconnection weights on the training phase the multi-starting procedure
was employed, with repetitive learning and calculations of median, minimal, and
maximal performance.

3.4.2.2 DRSA Classifier

In rough set approach the objects of the universe are perceived through granules of
knowledge [28]. In classical version, invented by Pawlak [29], these granules are
equivalence classes of instances that cannot be discerned basing on values of con-
sidered conditional attributes. Classical Rough Set Approach (CRSA) enables only
nominal classification, which can be insufficient for multicriteria decision making
[10]. Replacing indiscernibility relation with dominance and observing weak pref-
erence orderings in value sets of attributes allows for ordinal classification and gives
Dominance-based Rough Set Approach [12].

DRSA approximates dominance cones—upward and downward unions of deci-
sion classes and induces decision rules that form rule-based classifiers. The advantage
of this approach is enhanced understanding of approximated information, as rules
explicitly specify the conditions that need to be met for some object to be classified
to the specific class (to be precise, in this case to the union of classes). There are
many algorithms for rule induction and depending on them the sets of generated
rules can greatly vary [5, 32], not only with respect to their cardinalities, but, more
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importantly, in quality. In the performed tests all rules on learning samples were
found and then in each studied case limited by introducing hard constraints to the
type of rules and their support [37, 38].

The inferred rules can be certain (exact), possible, or approximate and only the
first type without additional processing indicates recognition results. In the research
conducted only certain rules were taken into account.

To reduce processing time required also a very strict rule was applied to ambigu-
ous decisions (cases of no rules matching, or multiple rules but with contradicting
decisions)—instead of solving the matter by voting, weighting, or both, all ambigu-
ous decisions were always treated as incorrect.

3.4.3 Search Parameters

Yet another of the search parameters, which we need to decide upon before we start,
is the point in the input feature space, from which the algorithm begins its execution.
Taking into account the dimensionality of this search space, and all candidate subsets
of features that can be found, this initial set is either arbitrarily selected as empty
and then variables are added to it in forward direction, or as an entire set of attributes
from which elements are reduced backward, or there is chosen some other subset
and then we can both add and remove features, checking in both directions.

The exhaustive search, with evaluation of all possible candidate subsets, is rarely
executed as it is typically too time-consuming, and only a part of these subsets are
tested. We can stop the search when the maximal performance is obtained (but we
cannot be then sure that the maximum is global and not local), but we can also
make the search complete with respect to the search path—that is it can end upon
reaching the point in space that is opposite to the starting one. This last attitude was
exploited in executed tests.

The search procedures startedwith the entire set of considered stylometric features
and then their sequential backward selection was executed, by removing one variable
at a time, until there was no attribute left. To evaluate a subset of features two separate
groups of samples were involved—one for induction phase and the other for testing.

3.5 Feature Evaluation by Ranking

Within the research presented in this chapter the two-step work framework was
implemented. The first step encompassed evaluation of relevance for characteristic
features by obtaining their ranking.

The rankings of features were calculated by Relief algorithm [43], and by employ-
ing embedded DRSA processing. Relief algorithm establishes through iterative cal-
culations how well individual attributes discern defined decision classes, whereas
in rough processing (described in detail in [42]) ranks of variables depend on their
occurrences in relative reducts, to which weights are assigned.
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Both rankings are listed in Table3.1. The attributes are given in decreasing order
with respect to their importance as perceived by the two algorithms, that is staring
with these variables which are considered more important, then with gradually lower
and lower significance expressed by scores they were assigned. For comparison
purposes also both reversed orderings of variables were tested in the second stage of
experiments, presented in the next section.

When the two rankings of features are compared against each otherwe can observe
some similarities, after all both algorithms operate on the same input set. However,
there are also significant differences. They both consider “and” attribute as the most
important and “as” takes the same place, but the rest of variables is put in a different
order. “But” and “that”, placed among lowest ranking for DRSA order, are among
the highest ranking features for Relief. “Of”, the last on Relief list, is in the upper half
for DRSA ranking, and so on. Different focus of both ranking algorithms resulted in
different weights being assigned to majority of attributes.

Table 3.1 Rankings of
features obtained in the first
stage of experiments

Nr Ranking by

Relief algorithm Embedded DRSA processing

1 and and

2 that not

3 but by

4 from .

5 : on

6 not from

7 ? in

8 for ;

9 by if

10 - of

11 what ,

12 at !

13 ! :

14 with at

15 if -

16 on to

17 as as

18 to this

19 this with

20 in ?

21 ( what

22 . (

23 , that

24 ; for

25 of but
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3.6 Feature Evaluation by Backward Reduction

Within the second phase of experiments the considered stylometric features were
evaluated by observation of performance of classification systems executing sequen-
tial backward elimination, while following the previously established ranking. It
resulted in combining filter, wrapper, and embedded approaches.

Firstly therewere constructedANNandDRSAclassifiers for the entire set of stud-
ied features. The trained network correctly recognised median 83.33% of samples,
while generated all rules on examples algorithm, with hard constraints on minimal
support required of rules being 41, classified without any ambiguity 76.67% of
instances. These two results were next treated as reference points, when sequential
backward elimination was executed.

For neural networks reduction of variables corresponded to decreasing the number
of inputs (and also the number of neurons in the two hidden layers) and repeating
the complete training procedure for such modified topologies.

For DRSA processing it is also possible to conduct it in the same way, that is
eliminate attributes and construct a new classifier by induction of new decision
rules. However, with generation of all rules in each case the task would be very
time-consuming—for the entire set of variables the algorithm comprised 46,191 con-
stituent rules. With lower number of features we can expect this number to decrease
yet we can also expect that at least some part of these rules would be the same.
Therefore, instead of generating the same rules over and over again, another atti-
tude is employed and the process of attribute reduction is applied to the already
induced all rules on examples algorithm for the entire set of features. When a vari-
able is reduced, all rules having conditions on this variable are discarded (regardless
on other conditions they may include in the premise part) from the set and the new,
reduced algorithm is constructed. Such process is executedmuch faster than repeated
induction of rules.

The experimentswere organised in two series, depending on the ranking of charac-
teristic features controlling backward reduction for both types of classifiers employed
in the stylometric task of authorship attribution.

3.6.1 Relief Ranking

The first group of executed tests was focused on elimination of characteristic features
for ANN and DRSA classifiers, while following the ranking of attributes returned
by Relief algorithm (see Table3.1).

The performance of the connectionist classifier for decreasing number of input
nodes is plotted in Fig. 3.1. The graph in Fig. 3.1a displays reduction of variables in
the decreasing order, starting with those which are ranked the highest, and then along
lower and lower rank. Elimination of features in the reversed order, that is when the
first to go are the variables with the lowest ranking, is given in Fig. 3.1b.
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(a) (b)

Fig. 3.1 ANN classification accuracy in relation to the number of considered features, observed in
sequential backward elimination process while employing feature ranking obtained by Relief filter:
a decreasing order, b increasing order. For each median there is indicated maximal and minimal
performance

We can observe that reduction of the highest ranking features in the initial phase,
for just few variables discarded, gives a slight increase in performance, but it soon
falls down to an unacceptably low level. On the other hand, rejection of low ranking
features enables to keep the classification accuracy at sufficiently high level even
when there are only few inputs left for the network to learn from.

Similar results were obtained for rule classifiers as shown in Fig. 3.2. The trends
reflect those previously detected, but overall comparison of both types of classifiers
indicates that ANN outperforms DRSA decision algorithm. This conclusion is not
entirely accurate due to the fact that the network with the used topology classifies
without any ambiguity while for DRSA classifier ambiguities did occur and were
treated as incorrect decisions.

Fig. 3.2 DRSA classification accuracy in relation to the number of considered features, observed
in sequential backward elimination process of all rules on examples algorithm, while employing
feature ranking obtained by Relief filter for a decreasing order (Most series), and increasing order
(Least series)
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3.6.2 Embedded DRSA Ranking

The second batch of performed tests employed an embedded DRSA ranking (see
Table3.1) in backward reduction of features, again for both connectionist and
rule-based classifiers. Classification results for artificial neural networks are pre-
sented in Fig. 3.3, with reduction of the highest ranking features in Fig. 3.3a and
elimination of lowest ranking variables in Fig. 3.3b. The pattern visible in the two
graphs shows close resemblance to the one observed for the first tested ranking. We
can also note that in most cases there are bigger differences between the maximal
and minimal performances of the tested networks.

Figure3.4 illustrates reduction of characteristic features with highest and lowest
rank, based on the embedded DRSA approach, for decision algorithms. For the
decreasing order in the initial phase of reduction the results are acceptable, but once

(a) (b)

Fig. 3.3 ANN classification accuracy in relation to the number of considered features, observed in
sequential backward elimination process while employing feature ranking obtained by an embedded
approach based on relative reducts: a decreasing order, b increasing order. For each median there
is indicated maximal and minimal performance

Fig. 3.4 DRSA classification accuracy in relation to the number of considered features, observed
in sequential backward elimination process of all rules on examples algorithm, while employing
feature ranking obtained by embedded approach based on relative reducts, for a decreasing order
(Most series), and increasing order (Least series)
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more than five important variables are eliminated the performance gets worse quickly
and irrecoverably. We can reduce significantly more lower ranking variables before
the performance degrades below a satisfactory level.

3.6.3 Comparison of Feature Reduction Results

For both types of classifiers we can also observe the differences and similarities in
the performance in the feature reduction process while following the two defined
rankings, as shown in Fig. 3.5. The displayed values correspond to the calculated
difference in classification accuracy for the currently considered number of features,
Relief-based reduction minus DRSA-based reduction. For ANN classifiers the dif-
ferences are calculated only with respect to median classification accuracies.

For artificial neural networks for both increasing and decreasing orders for both
rankings the results are close as the differences are equal to or close to zero. The
discrepancies are visible when there are fewer than a half of features left. Then
reduction of those with lower ranks returns better results for Relief (at maximum
for five variables, when the difference in classification accuracy is 35%), and for
elimination of higher ranking attributes DRSA-based ordering is more advantageous
(at maximum outperforms by 25% for 8, 7 and 9 remaining features).

For rule classifiers for the decreasing order for both rankings the classification
accuracies are almost the same for the first 16–17 reduced variables. Then, for
fewer than 8 inputs, Relief ranking based selection of attributes is outperformed
by DRSA-based reduction. For elimination of higher ranking variables in most cases
the results are better while employing Relief than DRSA-based ranking.

As can be seen in presented graphs, executing sequential backward reduction of
characteristic features driven by ranking of these features obtained previously results
in several cases with significant gains in terms of lower dimensionality, increased
predictive accuracies of the constructed classification systems, and decreased stor-
age requirements. Observations based on performance allow for evaluation of used
attributes and estimation of their relevance for particular tasks.

(a) (b)

Fig. 3.5 Differences in classification for reduction of characteristic features along Relief and
embedded DRSA ranking, for decreasing orders (Most series), and increasing orders (Least series)
for: a ANN classifier, b DRSA classifier
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3.7 Conclusions

Both connectionist and rule-based classifiers are often used in caseswhen observation
of some subtle patterns in input data sets is required for recognition, when available
information is incomplete and uncertain, and generalisation property is exploited
to its fullest extent. Stylometry, which is dedicated to analysis of writing styles,
constitutes an example of an application domain with such characteristics, and it
employs machine learning techniques and methodologies to solve its tasks of writer
characterisation, comparison, and, the one considered as the most important, writer
recognition.

Once a writing style is defined by stylometric characteristic features that corre-
spond to linguistic descriptors, authorship attribution can be treated as classification,
binary or multi-class, depending on the total number of compared writers.

All types of classification systems can suffer from excessive numbers of variables,
by extended processing time, complex calculations required, or simply by irrelevant
features obscuring those that are of the highest importance for a task and causing
worse performance. Those and many other reasons give motivation to pursue the
avenue of various feature selection and evaluation approaches and their efficiency.

The chapter illustrates the two-step processing framework for research on feature
selection and evaluation, combining filter, wrapper, and embedded approaches to the
problem. Within the first phase two rankings of variables are obtained, the one with
application of Relief algorithm (as implemented inWEKASoftware), and the second
embedded in rough setmodel, referring to the concept of relative reducts, andweights
defined for them. The two rankings are then used in the second stage of experiments
to filter out the input features for artificial neural networks (simulated by software)
and rule classifiers induced within Dominance-based Rough Set Approach (DRSA).
The performance is observed from the starting point where the entire set of available
features is involved in classification, then in sequential backward elimination of one
variable at a time, till there are no features left, which is the stopping point for
processing.

For both types of classifiers, and both rankings, decreasing as well as increasing
orderings of attributes were tested and overall results compared, revealing signifi-
cant gains in classification accuracies and the reduced sizes of systems, and by that
betraying the importance of attributes, which validates the presented methodology.
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and download thanks to Project Guttenberg (http://www.gutenberg.org). 4eMka Software used in
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23. Lal, T., Chapelle, O., Weston, J., Elisseeff, E.: Embedded methods. In: Guyon, I., Nikravesh,
M., Gunn, S., Zadeh, L. (eds.) Feature Extraction: Foundations and Applications. Studies in
Fuzziness and Soft Computing, vol. 207, pp. 137–165. Springer, Berlin (2006)

24. Lynam, T., Clarke, C., Cormack, G.: Information extraction with term frequencies. In: Pro-
ceedings of the Human Language Technology Conference, pp. 1–4. San Diego (2001)

25. Moshkov, M., Piliszczuk, M., Zielosko, B.: On partial covers, reducts and decision rules with
weights. Trans. Rough Sets 6, 211–246 (2006)

26. Moshkow, M., Skowron, A., Suraj, Z.: On covering attribute sets by reducts. In: Kryszkiewicz,
M., Peters, J., Rybinski, H., Skowron, A. (eds.) Rough Sets and Emerging Intelligent Systems
Paradigms. LNCS (LNAI), vol. 4585, pp. 175–180. Springer, Berlin (2007)
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34. Stańczyk, U.: Dominance-based rough set approach employed in search of authorial invari-
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Chapter 4
A Geometric Approach to Feature Ranking
Based Upon Results of Effective Decision
Boundary Feature Matrix

Claudia Diamantini, Alberto Gemelli and Domenico Potena

Abstract This chapter presents a new method of Feature Ranking (FR) that
calculates the relative weight of features in their original domain with an algorithmic
procedure. The method supports information selection of real world features and is
useful when the number of features has costs implications. The Feature Extraction
(FE) techniques, although accurate, provide the weights of artificial features whereas
it is important to weight the real features to have readable models. The accuracy of
the ranking is also an important aspect; the heuristics methods, another major family
of ranking methods based on generate-and-test procedures, are by definition approx-
imate although they produce readable models. The ranking method proposed here
combines the advantages of older methods, it has at its core a feature extraction
technique based on Effective Decision Boundary Feature Matrix (EDBFM), which
is extended to calculate the total weight of the real features through a procedure
geometrically justified. The modular design of the new method allows to include
any FE technique referable to the EDBFM model; a thorough benchmarking of the
various solutions has been conducted.

Keywords Feature ranking · Feature weight · Effective decision boundary feature
matrix · Classification

4.1 Introduction

The recent developments of information technology dramatically increased the capa-
bility of gathering information. This information is described by a high number of
attributes, observations or measures, generically called features. On the one hand this
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improves our ability to study real phenomena, but on the other hand huge amounts
of data produce an “informative overload”, raising data acquisition and processing
costs without effective exploitation of information. What is more, most of machine
learning techniques suffer from the so called “curse of dimensionality” effect, and
human interpretation of models generated by these techniques can be difficult on
high dimensional spaces. To address these issues, the adoption of Feature Selection
(FS) in processes is observing increasing interest and expansion.

Decision making and operations in the modern production contexts require a FS
methodwhich is generally valid for all applications, therefore robust andflexible, able
to operate interactively in a dynamic information environment, dealing effectively
with challenges posed by data heterogeneity, data bandwidth and real-time require-
ments. The large availability of information represents also a challenge because of
the exponential growth of data acquisition costs and, last but not least, energy con-
sumption by computers and acquisition sensor systems. The FS process represents a
complex decisional mechanism in which the accuracy of results is equally important
as usability, fastness, robustness and scalability. In the scientific literature, the cur-
rent approaches to FS in the machine learning process show distinct solutions which
address specific issues and highlight opposite vintages, though many practical issues
have arisen around applications in productive contexts that have never been consid-
ered on the whole. This is the context that inspires the invention and validation of
our novel Feature Ranking (FR) method that supports the FS. This chapter proposes
an innovative approach to FR that detains vintages otherwise dispersed over a vari-
ety of distinct methods. Our research is articulated over two main objectives, the
first is to obtain feature ranking leading to high accuracy in machine learning goals
achievement, the second is to provide an algorithm capable to actively consider cost
functions in supporting decision making. These issues have been studied in relation
to a machine learning process among the most known: the classification.

4.2 Feature Ranking for Classification:
The Background Picture

4.2.1 Intrinsic Discriminant Dimension
of a Classification Task

In the literature FS refers to the problem of selecting a subset of relevant features
for building robust learning models [19, 27]. The concept of optimal feature subset
has been refined during the years by the comprehension of the dataset properties that
condition the classification performance. As it happens in generic data collections,
many of the features are insignificant to reach a learning objective. A definition of
relevant feature is provided by [3]: a feature xi is strongly relevant to dataset X if
there exist examples A and B in X that differ only in their assignment to xi and
have different labels. A feature xi is weakly relevant to classification accuracy if it
is possible to remove a subset of the features so that becomes strongly relevant.
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In a classification task, the FS is used to predict the so called intrinsic discriminant
dimension of the dataset, which has been defined by Lee and Landgrebe [24] as
the smallest dimensional subspace wherein the same classification accuracy can be
obtained as could be obtained in the original space. Effects of FS on accuracy have
more recently been studied by Sima et al. [34]. In [21, 35], the problem of FS is
seen as trade-off between generalization and specialization or, equivalently, a trade-
off between bias and variance of the inductive process. A classification algorithm
partitions the instance space into regions; when the number of features is relatively
small, regions are too large, that causes the partitioning of the instances to be poor in
terms of generalization and therefore accuracy decreases, this phenomenon is called
bias. When the number of features is high, the probability that individual regions are
labeled with the wrong class is increased too. This effect is called variance. Deci-
sion tree and neural network classifiers are particularly sensible to variance. There
emerges the concept of irrelevant/redundant features that might cause the classifica-
tion algorithms loosing efficiency and accuracy, whereas the subset of features that
improves the performance of learning algorithms is defined optimal subset. All the
aspects of the learning algorithm sensitivity to the dataset dimensionality, have been
generally named as the curse of dimensionality by Kira and Rendell [20].

The optimal subset can be detected on a feature evaluation function [8]. When
doing classification, an Evaluation Function (EF) expresses for each feature subset
its ability to discriminate between classes. The effectiveness of the EF in highlighting
the relative importance of feature depends on the search strategy by which the space
of all possible subsets is explored, and it has measurable properties: accuracy (how
accurate is the prediction of the EF), generality (how suitable is the EF for different
classifiers) and time complexity (time taken to calculate the EF). A selection based
on classification accuracy can be considered effective if the classifier error rate does
not significantly decrease after selection. The authors indicate the 1NN classifier as
a convenient algorithm to build the evaluation function since it appears to always
provide a reasonable classification performance in most applications.

4.2.2 Classical Feature Selection Strategies

The FS process is divided generally into two phases: FR and FS in the strict sense. It is
necessary to rank the relative importance of features before proceeding to an optimal
selection and then learning a classification model, although these two phases can
be integrated in different modes as it will be discussed in this section. The progress
in scientific research almost coincides for ranking and selection. As in the survey
of [2, 15], the FS methods are categorized in two main categories: (i) methods that
explore the space of possible subsets, searching an optimal subset of features by
using heuristics to limit computational complexity, (ii) methods that rank features
individually based on properties that good features are presumed to have, such as
their contribution to class separability. In the classification learning process, input
dataset is arranged in a n by m matrix where each row, or record, represents an
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object belonging to a class, and each column represents a characterizing feature. In a
geometric sight, the objects can be thought as points positioned in an m-dimensional
space of features. The solution to a problem of classification can be thought as the
procedure that finds the hyperplanes that, in the feature space, separate the classes
of points.

A broad group of FS techniques is based on the construction and ranking of new
features [11, 16]. The Feature Extraction (FE) process is based on a transforma-
tion of the original set of real features by a linear combination of these, by which
the power to discriminate among classes is concentrated on a reduced number of
extracted features. The relevancy of each individual feature is evaluated, in fact the
set of eigenvalues, always associated with the transformation process, represents the
relative relevancy of each extracted feature and allows ranking them. It is impor-
tant to notice, however, that FE methodology was conceived primarily to do data
compression, therefore it effectively reduces the size of the initial volume of data,
but it implies the entire dataset to be available to construct each extracted feature;
clearly the FE approach is of no help in an application where the containment of data
acquisition costs is important. Furthermore the FE model is very application specific
since extracted features are uniquely associated with a dataset.

For FS, three modes of application have been identified by [6, 16, 29] in relation
to the dependence on the classification algorithm: in the wrapper mode, selection
and classification are iterated to refine the selection of features up to achieving an
optimal performance of the classification algorithm. The exploration of the solution
space can be conducted either with the brute force or the heuristic approaches. The
wrapper mode is supervised and is not suitable for applications in real-time, although
some solutions have been proposed that increase its performance whilst avoiding its
procedural complexity [28]. By contrast, in the filter mode the features that respond
to a general criterion of relevancy for a classification process are selected. The filter
method is applied in a unique step independently of the classification algorithm. In
the Embedded mode, FS is part of the model training process, and features relevancy
is obtained by analyzing their utility for optimizing the objective function of the
learning model; an application example is in [30]. From a productive point of view
these three methods represent different levels of trade-off between ease of execution
and accuracy of the results.

When heuristic methods are used in feature selection the search of the optimal
subset is done by attempts, bywhich there is built an evaluation function that provides
for each subset of real features its ability to discriminate between classes [8, 36]. The
results depend sensibly on the heuristic adopted and the amount of points effectively
explored of the solution space. Because of the underlying subjective assumption, the
heuristic approach is not fully reliable [1, 33], however it has the vintage to produce
a rank model for real world features, therefore retaining a human interpretability.
Among the heuristic strategies we would like to describe briefly the following: Gain
Ratio, One-Rule and Relief-F.

The Gain Ratio algorithm [32] uses information entropy to find out how well a
feature separates instances. The goodness of each individual feature depends of how
broadly and uniformly it splits the considered data. Features are sorted from the most
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relevant (the one with the highest gain ratio) to the least relevant (the one with the
lowest gain ratio). Then, a decision tree is created starting with the most relevant
feature. This method is computationally efficient because it tests at most a number
of cases equal to the number of features. The danger is that if none of the features
is significantly better than the others then the method may fail to find a good subset,
by contrast if there is a strongly relevant feature the method gives reasonably good
results.

The One-Rule algorithm [18] ranks the attributes according to the error rate. This
method is sensibly affected by overfitting.

The Relief algorithm uses a nearest-neighbor approach [20]. The algorithm
updates iteratively a relevance vector of length equal to the number of features,
initially set to zero. In a two-class problem, for a randomly chosen sample, one
nearest point is chosen in the same class and one in the opposite class. The squared
component distances of these two closest examples are component-wise subtracted
from (or added to) the relevance vector depending on whether the closest example
was in the same (or different) class. This procedure is repeated for m (a given para-
meter) times, and those features whose relevance weight, thus computed, are above
a certain threshold are selected. An improvement of the basic algorithm is Relief-F
[23] that uses M, instead of just one, nearest hits and ensures greater robustness of
the algorithm against noise.

The development in scientific research currently focuses on topics related to data
explosion phenomenon such as FS for ultrahigh dimensional data [30], and multi-
source FS [38]. In [13] there is a case study on feature selection techniques applied
to geographic information systems and geospatial decision support, an application
domain where the growing availability of data poses several challenges along with
important perspectives. There is a growing interest to consider the FS as something
more than just a routine to improve machine learning accuracy; the FR model is
by itself a knowledge model holding important semantic aspects of the information
environment. There have been attempts to further enrich the concept of relevant
featurewith semanticmeanings, such as the contribution of a feature to the knowledge
of the physical process underlying the generation of the data. The usefulness of the FR
in selecting the variables for modelling dynamic systems has been studied in [5]. A
causal feature selection is proposed in [17], where the FS is driven by the detection of
cause-effect relationships observed in time. This kind of selection process explicitly
associates the concept of relevant feature with the concept of control variable. One
step forward to the contribution of FS to themodelling of a real system is provided by
[12, 33], which in the selection process take into account the interaction of features,
acknowledging the fact that features exhibit group properties that cannot be detected
on individual features, as they were actual components of a system. More recently
there have been attempts to integrate the FS with preexisting basis of knowledge
such as ontologies and association rules [7].
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4.2.3 A Multiple-Challenge Case Study for Feature Ranking

The issues identified in the previous sections have been dealt in the scientific
literature in separate ways, but in reality they constitute a complex of challenges
to be addressed in an integrated manner, especially when pursuing goals of effi-
ciency and effectiveness as it is in real applications and in production environments.
The problem on which we focus our interest is to obtain a new model for rank-
ing features which combines effective FE methods to a representation model that is
humanly understandable and can be integrated in domain knowledge. It is also an
objective to explore how generalizable is the efficacy of this new method and how
it benefits from a modular architecture that allows to choose between alternative
methods of feature extraction depending on restrictions imposed by specific appli-
cations. In order to compare the quality of the new model, and its possible variants,
to the classical methods it is necessary to identify suitable performance metrics and
a benchmarking methodology that uses reference datasets. At the same time there
has to be explored the possibility to obtain cost-benefit functions of the features for
use in decision-making.

4.3 Focus on Feature Extraction Based Ranking

4.3.1 Linear Models

Many known techniques of Feature Extraction (FE) differ in the principle underlying
the detection of an optimal new set of features. However, all of them show an under-
lying unity in the calculation of geometric transformation, algebraically expressed
as projection (or mapping) matrix.

In Linear Discriminant Analysis (LDA), where a linear separability of classes is
assumed, the principle underlying the detection of a new feature is that ofmaximising
the ratio of the between-class variance to the within-class variance on this feature.
Therefore a set of new features are obtained by maximizing the ratio of the between-
class covariance matrix Sb to the within-class covariance matrix Sw. The projection
matrix is the eigenvector matrix U obtained by solving the generalized eigenvalue
problem: Sb · U = Sw · U · Λ, where Λ is a diagonal matrix whose entries are the
eigenvalues of U. Each eigenvalue λi measures the relative capability of each new
feature ui of separating classes.

A limitation of the classic LDA algorithm is that both Sw and Sb matrices must be
non-singular in order to preserve the orthonormality of the mapping. For this reason
several variants of the classic algorithm have been proposed in order to overcome the
singularity problem. In particular in this work, we consider the Orthogonal Linear
Discriminant Analysis (OLDA) algorithm [37]. This algorithm uses Singular Value
Decomposition to obtain a non-singular approximation of Sw

−1 · Sb. When Sw and
Sb matrices are non-singular, OLDA and classic LDA give identical results.
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4.3.2 Feature Extraction Based on Decision Boundary

Another family of FE techniques is based on the properties of decision border [10].
Classes are statistically characterized by the class-conditional probability density
function (cpdf) pX|Y (x|yi), where the continuous random vector X takes values in
RN and the discrete random variable Y takes value in y. The cumulative probability
density function of the random vector X is:

pX(x) =
C∑

i=1

PY (yi)pX|Y (x|yi), (4.1)

where PY (yi) is the a-priori probability of class yi.
Therefore, a classification or decision rule is a mappingΨ : RN → Y that assigns

a class label to data on the basis of the observation of its feature vector.A classification
rule determines a partition of the feature space in C decision regions D1, . . . , DC

such that Di = {x ∈ RN | Ψ (x) = yi}. The boundary separating decision regions is
called the decision boundary. Figure4.1 illustrates an example of decision rule for
two Gaussian classes (symbolized by ‘∗’ and ‘o’). The straight line represents the
decision boundary: all points at the left of it are assigned by the decision rule to ‘∗’
class, and those at the right to ‘o’ class.

Among all possible classification rules, the rule achieving the minimum error
probability

ε =
∫ ∑

yi �=Ψ (x)

p(x|yi)P(yi)dx (4.2)

is the Bayes rule ΨB(x) = arg MAXyi [p(x|yi)P(yi)]. The corresponding decision
boundary is consistently called Bayes boundary, which is the theoretically optimal
solution that every classification method aims to achieve.

The geometry of the decision boundary has been used in the discriminative feature
extraction approach known as Decision Boundary Feature Extraction (DBFE) [25]
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Fig. 4.1 Examples of two-classes classification problems in a 2-dimensional space. aLinear bound-
ary. α and β represent the informative direction and the redundant direction respectively, b Closed
boundary, c Piecewise linear boundary
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to recognize those informative features allowing to achieve the same classification
accuracy as in the original space. The basic idea of DBFE is that moving along the
direction of the decision boundary, the classification of each observation will remain
unchanged (see Fig. 4.1a).Hence, the direction of the decision boundary is redundant.
In contrast, while moving along the direction normal to the decision boundary the
classification changes, hence it represents an informative direction. Moreover, the
effectiveness of a direction is directly proportional to the area of decision boundary
with the same normal vector. To discuss this statement, consider Fig. 4.1b. There,
the border is a rectangle parallel to the axes, so the informative directions defined by
normal vectors to the border are the x and y axes themselves. Although both directions
are informative, it is simple to see that the x-axis is more important since projecting
data on it results in less class overlapping than projecting data on the y-axis.

The idea is formalized by the notion of Effective Decision Boundary Feature
Matrix (EDBFM):

�EDBFM = 1∫
S′ p(x)dx

∫

S′
NT (x)N(x)p(x)dx, (4.3)

where N(x) is the normal vector at a point x, NT (x) denotes the transposed normal
vector and S′ is the portion of decision boundary containing most of the training data
(the effective decision boundary). It has been proved [25] that:

• the rank of the EDBFM represents the intrinsic discriminant dimension, that is
the minimum number of feature vectors needed to achieve the same Bayes error
probability as in the original space;

• the eigenvectors of EDBFM corresponding to nonzero eigenvalues are the neces-
sary feature vectors.

In order to construct a Bayes decision border, in [25] there has been proposed SVM
Decision Boundary Analysis, a method that combines DBFE principle and Support
Vector Machine algorithm. In [14] the use of Analytical Decision Boundary Feature
Extraction (ADBFE) is introduced, where the normal vectors are calculated analyt-
ically from the equations of the decision border. All methods produce an EDBFM
that represents a data projection matrix onto a new feature space.

4.4 Feature Ranking Based on Effective Decision
Boundary Feature Matrix

4.4.1 Geometric Considerations

As it has been introduced in previous sections, it is desirable to obtain a ranking of
real features on the basis of information contained in EDBFM. The idea is intuitively
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explained by referring again to the examples in Fig. 4.1. Let us consider decision
boundaries formed by a unique line, like line β in Fig. 4.1a. In these cases none of
the features is redundant, however it is apparent that the relevance of a feature can be
stated in terms of the line slope. In order to apply the DBFE method, let us observe
that the decision boundary has the form y = mx + k, hence the normal vector is
N = [m,−1]. The calculus of equation (4.3) is straightforward since the normal
vector is constant along S′ and the equation becomes:

�EDBFM = NT N
∫

S′ p(x)dx∫
S′ p(x)dx

= NT N =
(

m2 −m
−m 1

)
. (4.4)

Eigenvalues and related eigenvectors are λ1 = 0, λ2 = m2 + 1, v1 = [1, m],
v2 = [−m, 1], and only the second eigenvector v2 is the informative direction. In
this case the eigenvector components define the relevance of the real features. For
instance, when m = 0 (boundary parallel to the x-axis) the only informative real
feature is the y-axis, when m = 1 (boundary y = x) both features are equally
important, finally as m → ∞ (boundary tends to the y-axis) the relevance of x-axis
grows. As a second case, let us consider the border in Fig. 4.1b. In this case, cpdfs
are taken constant along the boundary and EDBFM is

�EDBFM =
(
8 0
0 2

)
,

with λ1 = 8, λ2 = 2, v1 = [1, 0], v2 = [0, 1]. This case is somewhat complemen-
tary to the former: now, since new features coincide with the real ones, the relevance
of the latter is fully expressed by eigenvalues. From the analysis of these two cases
we can derive that in the DBFE approach the eigenvector components represent the
weight of every real feature locally to the new feature, whereas the eigenvalues rep-
resent the discriminative power of each new feature. Hence we can combine these
two characteristics in order to define a global ranking of the real features as it is in the
objective of the present work. Firstly eigenvectors are weighted by multiplying them
by the respective eigenvalues, and then the corresponding components of weighed
eigenvectors are summed (in the absolute values). Resulting values are the individual
contributions (or weights) of every real feature into the transformation, and represent
the discriminative power of each real feature and its relative position in a rank model.

Formally, let u1, u2, . . . , uN be the eigenvectors of the EDBFM matrix, λ1, λ2,
…, λN the corresponding eigenvalues, and uij the jth component of the eigenvector
ui. The weights of real features are computed as follows:

wj =
N∑

i=1

λi|uij|, j = 1, . . . , N, (4.5)

wj > wk ⇒ feature fj is more important than fk .
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As a numeric example, let us consider Fig. 4.1c. The equation of the border is
y = 2x for x ∈ [0, 1], y = x/8 + 15/8 for x ∈ [1, 9]. The cpdfs are taken constant
along the boundary. It turns out that

�EDBFM =
(

1.913 −1.887
−1.887 8.385

)
,

λ1 = 1.4, λ2 = 8.89, v1 = [0.965, 0.261], v2 = [−0.261, 0.965]. The ranking
method leads to the following weights: w1 = 3.68, w2 = 8.95, hence the real feature
y turns out to be more discriminant than x as the figure suggests, since the first piece
of boundary is shorter than the second one which is almost parallel to the x-axis.

4.4.2 The Algorithm

The presentedmethod is based on the calculus of the EDBFM,which in turn needs the
knowledge of the decision boundary. In order to apply it to real cases, where the deci-
sion boundary, as well as cpdfs are typically unknown, non-parametric approaches
will be considered. In non-parametric approaches we are given a set of instances of
the true phenomenon (training data) only, and no assumption on the form of cpdfs
is made. In this work we propose the use of Labeled Vector Quantizer (LVQ) archi-
tectures and the Bayes Vector Quantizer (BVQ) learning algorithm. The reason for
the choice of BVQ is twofold: (1) it has demonstrated to drive an LVQ toward a
(locally) optimal approximation of the Bayes boundary [10]; (2) the approximation
is piecewise linear, thus simplifying the calculus of the normal vectors.

An Euclidean nearest neighbor Vector Quantizer (VQ) of dimension N and order
Q is a function Ω : RN → M , M = {m1, m2, . . . , mQ}, mi ∈ RN , mi �= mj,
which defines a partition of RN into Q regions V1,V2, . . . ,VQ, such that

Vi = {x ∈ RN :‖ x − mi ‖2<‖ x − mj ‖2, j �= i}. (4.6)

Elements of M are called code vectors. The region Vi defined by (4.6) is called
the Voronoi region of the code vector mi. Note that the Voronoi region is completely
defined by M . In particular, the boundary of Voronoi region Vi is defined by the
intersection of a finite set of hyperplanes Si,j with equation

(mi − mj) · (x − mi + mj

2
) = 0,

where mj is a neighbor code vector to mi. The definition of normal vectors to these
hyperplanes is thus straightforward and it is Nij = mi − mj (see Fig. 4.2).

By associating with each code vector a class we can define a decision rule. A
Labeled Vector Quantizer (LVQ) is a pair LVQ =< Ω,L >, where Ω : RN → M
is a vector quantizer, and L : M → † is a labeling function, assigning to each
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Fig. 4.2 A piece of true decision boundary, its linear approximation and the local discriminative
direction Nij = mi − mj

code vector in M a class label. The classification rule associated with an LVQ is:
ΨLVQ : RN → y, x 
→ L (Ω(x)).

Note the Nearest Neighbor nature of this classification rule: each vector in RN

is assigned to the same class as its nearest code vector. Thus, decision regions are
defined by the union of Voronoi regions of code vectors with the same label. Note
also that the decision boundary is defined only by those hyperplanes Si,j such that
mi and mj have different labels.

An LVQ can be trained to find an approximation of the Bayes boundary. LVQ
training algorithms have been originally proposed by Kohonen [22]. Here we use a
more recent algorithm known as Bayes VQ (BVQ), formally defined as a gradient
descent algorithm for the minimization of the error probability. It strongly resem-
bles Kohonen’s LVQ2.1, however, formal derivation introduces also some modifica-
tions that improve performances and robustness. The BVQ algorithm is an iterative
punishing-rewarding adaptation schema. At each iteration, the algorithm considers a
sample randomly picked from the training set. If the sample turns out to fall “on” the
decision boundary, then the position of the two code vectors determining the bound-
ary is updated, moving the code vector with the same label of the sample towards
the sample itself and moving away that with a different label. Since the decision
boundary is a null measure subspace of the feature space, we have zero probability
to get samples falling exactly on it. Thus, an approximation of the decision boundary
is made, considering those samples falling close to it. Due to lack of space we cannot
report the BVQ algorithm here. The algorithm is described in [9].

Having a trained LVQ, the calculus of the feature rank is straightforward and is
given by the following BVQ-based Feature Ranking (BVQ-FR) Algorithm 1.
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Algorithm 1 BVQ-FR algorithm

1: Train the LVQ {(m1, l1), . . . , (mQ, lQ)}, mi ∈ RN , li ∈ y by using the BVQ algorithm;
2: Set the elements of the matrix �BV QFM to 0;
3: wtot = 0;
4: For each training sample tk

1: Find the two code vectors mi, mj nearest to tk ;
2: If li �= lj and tk falls at a distance less than Δ from the border Sij then

1: Calculate the unit normal vector to the decision boundary as: Nij = (mi−mj)

‖mi−mj‖ ;
2: �BV QFM = �BV QFM + NT

ij ∗ Nij;
3: wtot = wtot + 1;

5: �BV QFM = �BV QFM
wtot

;
6: Calculate eigenvectors u1, u2, . . . , uN and related eigenvalues λ1, λ2, . . . , λN of �BV QFM ;

7: Set W =
N∑

z=1

λi|ui|;
8: Sort features with respect to W components.

The core of theBVQ-FRalgorithm is at point 4. There, finding the twonearest code
vectors to each training sample allows us to define the effective decision boundary of
the LVQ. As a matter of fact, testing whether labels are different guarantees that the
piece of Voronoi boundary Sij is actually a part of the decision boundary. Secondly,
incrementing the �BV QFM each time a pair of code vectors is selected, allows to
weight the normal vector Nij by the number of samples falling at a distance less than
Δ from Sij. It can be proved that this is equivalent to a Parzen estimate of the integral∫

Sij
p(x), while the final value of wtot represents the Parzen estimate of

∫
S′ p(x) in

Eq. (4.3) [10].
It should be noted that the algorithm BVQ-FR can be transformed by replacing

BVQ with other FE algorithm that produces a transformation matrix EDBFM-like.
For example there can be used OLDA, SVM and ADBFE algorithms. In the next
section an experimental comparison between these alternatives will be made.

4.5 Experiments

4.5.1 Experimental Setting

This section is devoted to experimental evaluation of the EDBFM-based feature
weighting method. In particular in the present subsection we propose a synthetic
experimentwhich allowsus to illustrate the properties of themethod.Wealsodescribe
both the experimental procedure and the evaluation criteria that will be used for
all subsequent experiments. In the next subsection various implementations of the
methodwill be tested over real-world datasets and comparedwithwell-known feature
weighting algorithms.



4 A Geometric Approach to Feature Ranking Based Upon Results of EDBFM 57

As synthetic experiment we draw a dataset from a 22 dimensions two-class prob-
lem. The first two dimensions are drawn from the classical XOR problem, while
the remaining 20 dimensions are drawn from the normal distribution. The first two
dimensions are useful to classify the two classes (i.e. informative dimensions), while
the remaining dimensions are noise. The dataset contains 1,000 samples equally dis-
tributed over the two classes. In this experiment, as well as in all experiments of
the following subsection, we followed a 10-fold cross-validation procedure: in each
fold the 90% of the samples are used to build the EDBFM matrix and to weight the
original features; the remaining samples are used to evaluate the performance of the
method. In particular, for each fold a weight model is calculated on an incrementing
number of features taken in the rank order from the test set to extract a projection
along the first informative features. Hence we firstly obtain two datasets with the
most important feature, then two datasets with the first two most important features,
and so forth until the full-dimensional datasets (i.e. the original ones) are returned.
For each of these pairs of datasets the Nearest Neighbor algorithm is used to esti-
mate the accuracy. After the tenth fold repetition, the weights and the accuracies are
averaged by rank, and curves are built, which represent the average accuracy that the
method achieves over all folds as a function of the most informative features.

The experimental work-flow is depicted in Fig. 4.3a, it consists of two phases:
first the appliance of the EDBFM based ranking method to the multivariate dataset
in the filter mode of [26], and then the validation procedure. The process is sketched
in the following pseudocode.

Fig. 4.3 a General work-flow of feature selection techniques. b Example of two classes classifica-
tion problems. Piecewise lines represent the approximation of the Bayes boundary found by BVQ.
y1 and y2 represent the two most important extracted features
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Algorithm 2 First phase: a FE algorithm (BVQ in this example) is applied to the
training set, and then the feature ranking algorithm is executed
1: Let X = {x1, x2, ..., xm} be the m-dimensional normalized dataset.
2: Apply the BVQ algorithm to X. Let Y = {y1, y2, ..., yn} be the extracted eigenfeatures.
3: Compute the contributive weight wi of each feature xi to the eigenfeatures of Y.
4: Sort the features of X such that xa < xb if wa < wb. Let Xs = {xs

1, xs
2, ..., xs

m} be the sorted
dataset and m the rank index.

Algorithm 3 Second phase: on an incrementing number of features, taken in the
rank order from the test set, the 1NN classification process is run and the accuracy
calculated
1: The dataset Xs is input.
2: Apply 1NN to whole Xs, let Am be the returned accuracy.
3: For rank i=1 to m (where m = 22 for this dataset):

• let Xs
i = {xs

1, xs
2, ..., xs

i } be a subset of Xs with selected features up to rank i.
• compute accuracy Ai using 1NN with 10-fold cross-validation.

For the first fold, the decision boundary depicted by BVQ is reported in Fig. 4.3b,
altogether with features extracted on the basis of the DBFE method.

The BVQ setting: Optimal values for Δ and local region r have been found by a
manually conducted search assuming the classification error rate as objective func-
tion. The parameters were fixed to Δ = 0.4 and r = 0.5; 16 code vectors have been
detected. The choice of the classification algorithm is unimportant to our purpose
since we are interested only in study of the relative performance of ranking algo-
rithms. The 1NN is a non-parametric classifier among the simplest of all machine
learning algorithms, the object is simply assigned to the class of its nearest neigh-
bour on the basis of the Euclidean distance, it does not require settings. In [21] the
1NN classifier is indicated as a convenient algorithm to build the evaluation function,
since it appears to always provide a reasonable classification performance in most
applications.

For this experiment the resulting accuracies, in the order they were calculated, are
reported in Table4.1 and plotted aside. The curve shows a steep rise which expresses
the high contribution to classification accuracy by the two highest rank features.
Beyond a critical point, which in this example occurs on the second feature, the
curve tends to decrease because irrelevant features (low rank) are added, which only
cause curse of dimensionality. By a way of comparison, a random sorting of features
has been used, to which the same validation procedure is applied. The fifth column
of Table4.1 and the corresponding plot represent the average accuracy achieved by
20 different 1NN classifiers, where the features are selected according to 20 different
ranks obtained by means of trivial random permutations.

As a figure of merit to characterize the performance of the ranking method we
define an empirical Performance Index φ:

Performance Index(φ) = AreaFR − AreaRP

AreaMax − AreaRP
(4.7)



4 A Geometric Approach to Feature Ranking Based Upon Results of EDBFM 59

Table 4.1 The features (first column) sorted by weight (second column); cumulative percentage of
weight (third column); the accuracy, by subset, of EDBFM method (fourth column); the accuracy,
by subset, on a random weight model (fifth column)

1NN Acc.% 1NN Acc.%

Rank Weight Weight Cum. Norm Cum. Norm

%Cum. (BVQ-FR) (rand. rank)

Feat. 1 0.557 27.41 6.08 51.79

1 to 2 0.461 50.10 100 57.27

1 to 3 0.081 54.07 99.09 56.57

1 to 4 0.075 57.76 97.40 57.82

1 to 5 0.063 60.82 95.94 56.26

1 to 6 0.062 63.88 95.15 59.22

1 to 7 0.058 66.74 91.54 59.16

1 to 8 0.057 69.53 90.30 59.54

1 to 9 0.055 72.18 90.41 58.88

1 to 10 0.054 74.83 88.61 58.66

… … … …

1 to 22 0.035 100.00 79.93 79.93

The accuracies of fourth and fifth columns, normalized to 100%, are also plotted aside

where AreaFR is the area underneath the accuracy curve relative to BVQ-FR,
obtained by summing the accuracy values at each feature subset, namely the accu-
racy value in the BVQ-FR column of Table4.1. Analogously AreaRP is the area
underneath the curve obtained by random permutation of features. The AreaMax is
the area underneath a theoretical curve reaching the 100% possible accuracy with
the top rank feature, thereafter remaining constant up to full dataset. The AreaFR
is expected to be geometrically bounded between the other two curves, mathemati-
cally 0 ≤ φ ≤ 1, where φ represents a relative area. When AreaFR approximates
AreaMax , φ = 1, the ranking model approximates an ideal order of the features,
where the first feature is the most significant and contains all the weight to discrim-
inate between classes. Conversely, when AreaFR approximates AreaRP, φ = 0, the
ranking model approximates to a random ordering of the features and is therefore
useless.

4.5.2 Benchmarking the EDBFM Ranking Method

In this section the EDBFM ranking method is tested on complex and real world
datasets and the rank models are compared to other methods. Testing includes two
phases:

• studying EDBFM performance when different FE algorithms are included;
• comparing EDBFM ranking and heuristic methods.
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As data testbed of the experiments, 13 multivariate datasets have been considered.
Eight of these datasets (Heart, HeartStat, Australian, Ionosphere, Waveform, Seg-
ment, CoverType, Letter) have been drawn from the UCI repository [31], selected
for their large number of instances, classes and features as it is appropriate when
testing ranking algorithms. Five more datasets (Urban, Wildfire, Landslide, Corine,
Gottigen) have been extracted from large geographic data collections. These datasets,
which include both discrete and continuous variables, are heterogeneous collections
of data, excellent to challenge the selective capability of our method and to high-
light the properties of the ranking model. The datasets: Urban, Wildfire, Landslide,
Corine originated from the same data collection, they differ from each other by a dif-
ferent feature chosen as class attribute. Urban, Wildfire and Landslide have balanced
classes, namely in these datasets all classes are represented by an equal number of
instances. The geographic dataset namedGottingen comes from a different collection
[4], its features correspond to Earth observation imagery from satellite on different
wavelength band. The characteristics of all the datasets are resumed in Table4.2,
where the datasets are sorted by number of classes, then by number of features, and
by number of instances. Such a sorting also represents an increasing complexity of
dataset, ranging from a simple two-class perfectly balanced dataset with relatively
few instances, such is the Urban, up to the Corine dataset which is a 26 class large
dataset. All datasets have gone through a common preprocessing step where each
feature has been normalized in the range [0; 1], to give equal importance to each
feature during learning.

The first set of experiments aims to highlight how the FR algorithm perfor-
mance varies when different FE built-in algorithms are used. As already men-
tioned, the algorithm BVQ-FR can be transformed by changing the FE algorithm,

Table 4.2 Testbed datasets

Origin Dataset name # Classes # Features # Instances

UCI HeartStat 2 13 270

UCI Heart 2 13 293

UCI Australian 2 14 690

GIS Urban 2 18 3,972

GIS Wildfires 2 18 5,359

GIS Landslides 2 18 23,663

UCI Ionosphere 2 34 351

UCI Waveform 3 40 5,000

UCI CoverType 7 12 58,104

UCI Segment 7 19 2,310

GIS Gottigen 14 8 28,083

UCI Letter 26 16 20,000

GIS Corine 26 18 48,379

Datasets are sorted by number of classes, by number of features, and finally by number of instances
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e.g. usingOLDA, SVM, ADB. In subsequent experimentswewill denote these variants
respectively with the acronyms OLDA-FR, SVM-FR, ADBFE-FR. These algorithms,
along with BVQ-FR, will be tested on the datasets listed above, following the exper-
imental procedure described in the previous section. Notice in the parameter setting
for BVQ-FR, the number of code vectors has been set to a multiple of the number
of classes in the dataset, with 200000 BVQ iterations, whereas Δ and r come from
a manual refinement in three steps. In SVM-FR, we employ a Gaussian radial basis
kernel to train the SVM, and we set r to 0.2.

In the Fig. 4.4, the accuracy curves are grouped by dataset to compare the perfor-
mance of EDBFMRanking algorithms. For each dataset the accuracy curve obtained
by means of random permutation of features is also displayed. Notice the curves of
EDBFM ranking are always located above the random ranking curve, that reveals the
general efficacy of EDBFM ranking. The qualitative comparison between the curves
is difficult because of the irregular pattern and their overlaps. The Performance Index
φ is of help in the analysis. In Table4.3 φ calculated for each curve is shown. Note
that missing values in the Table4.3 are due to the impossibility to perform compu-
tationally expensive algorithms, such as SVM and ADBFE, on datasets with large
number of classes and instances. We can observe in Table4.3, where rows are sorted
by increasing complexity of the dataset, OLDA-FR and BVQ-FR have, together,
a dominance in the values of φ when applied to datasets with two classes Heart-
Stat, Heart, Australian, Urban, Wildfire, Landslide whereas BVQ-FR has a relative
dominance on complex datasets Ionosphere, Waveform, CoverType, Segment, Got-
tigen, Letter, Corine. This is due to the fact that BVQ-FR, based on nonparametric
model, has a superior performance when working on non-linearly separable classes
of objects.

In the second set of experiments we compare the performance of OLDA-FR and
BVQ-FR with other ranking methods known in literature such as Relief, Gain Ratio
and One-Rule. Also heuristic methods calculate a weight for each individual real
feature, which allows to rearrange the features by decreasing weights and to submit
dataset to the 1NNclassification algorithmusing the sameprocedure as for themodels
based on EDBFM. Accuracies calculated in the previous experiment for OLDA-FR
and BVQ-FR are now compared with accuracies obtained using the Relief, Gain
Ratio and One Rule. The accuracy curves gathered by dataset are shown in Fig. 4.5.
The criterion of comparison of curves is the same than in the previous experiment.

The general picture of performances is rather complex, but trends are evidenced
by the analysis of the index φ. For each dataset the best ranker is highlighted in
the Table4.4; there are also reported some statistics of the Performance Index: the
mean value of φ for BVQ-FR is the highest, and the variance has the lowest value.
The statistics indicate a low dispersion of φ for BVQ-FR algorithm, that reveals a
relatively stable behaviour in comparison to Relief, GainRatio and One-Rule rankers
and OLDA-FR as well.

In the star plot (see Fig. 4.6) the index values are shown as a radial line from a
common centre point. Points corresponding to the same algorithm are connected by
a common-style line. In the clockwise direction the datasets are sorted by increas-
ing complexity. Notice in the part of the diagram where two-classes datasets are
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Fig. 4.4 Feature Ranking experiments. Comparing the performance of FE filter algorithms. On the
horizontal axis the features sorted by rank and in vertical the percentage of accuracy
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Table 4.3 EDBFM ranking: comparison of filter FE algorithms

OLDA-FR (φ) BVQ-FR (φ) ADBFE-FR (φ) SVM-FR (φ)

HeartStat 0.116 0.411 0.015 0.188

Heart 0.187 0.471 – 0.144

Australian 0.685 0.463 0.180 −0.298

Urban 0.543 0.465 0.502 0.075

Wildfires 0.474 0.354 0.277 0.265

Landslides 0.400 0.388 0.224 0.446

Ionosphere −0.096 0.207 0.019 0.017

Waveform 0.651 0.670 0.641 –

CoverType 0.125 0.373 – –

Segment 0.348 0.595 – –

Gottigen 0.445 0.456 – 0.447

Letter 0.133 0.287 – –

Corine 0.484 0.592 – –

The Performance Index (φ) for each of the accuracy curves in Fig. 4.4

concentrated, from Heart to Ionosphere, there is an evident superiority of One Rule
over the other rankers. By contrast where more complex datasets are concentrated,
from Waveform to Corine, BVQ-FR tends to outperform the other rankers whose
performance decreases more rapidly as the dataset complexity increases.

Another comparative indicator of performance is the number of features needed
to reach 90% of total accuracy, see Table4.5. This indicator represents a relative
measure of the steepness of the curve; it indicates the ranker’s ability to lead to higher
accuracies with relatively small subsets. On this indicator BVQ-FR outperforms all
other rankers.

Let us observe inmore detail a rankingmodel to highlight its usefulness in support-
ing cost-benefit informed decision making. In Fig. 4.7 left, for the Wildfire dataset,
the curve of accuracy obtained for BVQ-FR is overlaid with the curve of cumulative
weights, the horizontal axis represents the features sorted by rank. Notice that the first
nine features, which are 50% of total, represent half the cost of the entire dataset, but
detain over 70% of the total weight and over 98% of the total accuracy achievable.
Analogously, in Fig. 4.7 right, for CoverType dataset, the first feature holds 17% of
the total weight of the features, whereas the first six features (50% of total features)
detain over 70% of the total weight and over 80% of the accuracy achievable on the
full dataset. If the individual costs of the features are given, it is possible to construct
a detailed cost function. As a consequence, it is evident that the proposed methodol-
ogy can guarantee the best ratio between cost of features acquisition and informative
power.

As it was described above, the index φ has been used to compare the relative
performance of ranking algorithms on a dataset. To assess the overall performance
for each algorithm the number of times that the algorithm has had the highest φ

was counted. These aleatory results, however, require a test of statistical significance
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Fig. 4.5 Feature Ranking experiments. Comparing the performance of Ranking Algorithms. On
the horizontal axis the features are sorted by rank and in vertical the percentage of accuracy
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Table 4.4 The EDBFM ranking is compared to other methods (Relief, Gain Ratio, OneRule); the
Performance Index (φ) is calculated for each of the accuracy curves in Fig. 4.5

Goal oriented ranking

OLDA-FR (φ) BVQ-FR (φ) Relief (φ) Gain-ratio (φ) One-rule (φ)

HeartStat 0.116 0.411 0.059 0.516 0.513

Heart 0.187 0.471 0.151 0.548 0.521

Australian 0.685 0.463 0.602 0.744 0.806

Urban 0.543 0.465 0.408 0.331 0.609

Wildfires 0.474 0.354 0.483 0.336 0.647

Landslides 0.400 0.388 0.292 0.251 0.402

Ionosphere −0.096 0.207 0.083 0.075 0.072

Waveform 0.651 0.670 0.654 0.614 0.621

CoverType 0.125 0.373 0.418 0.264 0.040

Segment 0.348 0.595 0.483 0.501 0.467

Gottigen 0.445 0.456 0.407 0.169 0.187

Letter 0.133 0.287 0.349 0.198 0.217

Corine 0.484 0.592 0.438 0.474 0.545

Mean 0.346 0.441 0.371 0.386 0.434

Variance 0.055 0.016 0.034 0.039 0.056

The two bottom rows are descriptive statistics of the Performance Index computed values

Fig. 4.6 Each piecewise line represents a method of ranking, each radial line represents a dataset.
Datasets are radially ordered by increasing complexity. The intersections represent the values of
performance index φ

to support the observations made. The probability of success of an algorithm over
another is calculated with the binomial distribution, from the count of victories and
defeats, or the number of times that the algorithm outperformed the others on the
basis of the index of performance. Assuming the null hypothesis is that the frequency
of success of the two algorithms is the same, with the two-tailed test it can be seen
how much we deviate from “null hypothesis” assumption.



66 C. Diamantini et al.

Table 4.5 Number of features needed to reach 90% of total accuracy

Rand rank Goal oriented ranking

OLDA-FR BVQ-FR Relief Gain-ratio One-rule

HeartStat 9 7 4 11 4 4

Heart 6 5 2 8 3 3

Australian 9 2 4 2 N/D N/D

Urban 6 3 3 3 3 3

Wildfires 8 4 6 3 5 3

Landslides 8 3 3 6 5 4

Ionosphere 4 4 3 3 4 4

Waveforms 24 6 6 6 8 8

Covertype 9 9 5 5 5 12

Segment 6 4 3 4 3 3

Gottingen 6 3 3 3 6 6

Letter 10 9 7 6 7 7

Corine 16 13 10 12 14 12

Dataset sorted by increasing complexity

Fig. 4.7 Performance Indices cost-benefit of features of EDBFM based ranking. Left Wildfire
dataset. Right CoverType dataset. On the horizontal axis the features sorted by rank and in vertical
the values in percentage normalized to 100%

In theTable4.6 (top), the significance test is performed on all ranking experiments.
The table does not allowus to assert the superiority of amethod over another; pointing
out that more experiments are needed. However, we have that BVQ-FR overcomes
Relief and Gain Ratio with statistical significance greater than 0.9, while there is
condition of parity with One Rule that is expressed by null statistic significance. It is
noteworthy that BVQ-FR results have been obtainedwithout stressing the parameters
setup of the BVQ algorithm.
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Table 4.6 Overall comparison of the five algorithms

Sign test—all datasets

φ BVQ-FR Relief G.Ratio Onerule

4/9 7/6 6/7 3/10 w/l

OLDA-FR 0.733 0.0 0.0 0.908 P

10/3 10/3 7/6 w/l

BVQ-FR 0.908 0.908 0.0 P

8/5 6/7 w/l

Relief 0.419 0.0 P

5/8 w/l

GainRatio 0.419 P

4.6 Conclusions

This chapter focuses on a novel ranking procedure. We considered that the premise
for integrating the feature ranking models into domain knowledge is their repre-
sentation in terms of real world features. This principle is the fundamental premise
of the study conducted which leads to a computational model that is accurate and
humanly understandable. A new approach to Feature Ranking (FR) based on fea-
tures extraction (FE) and properties of the decision border has been discussed. This
method uses Effective Decision Boundary Feature Matrix (EDBFM) to measure the
relevance of the real world features thus maintaining the readability of the knowl-
edge model extracted. The method has been tested on classification problems and
cost-benefit analysis of features. While maintaining the geometric procedure which
yields the ranking of features, this method allows to choose between alternative core
FE algorithms, such as BVQ, when extracting the EDBFM, that allows to optimize
the method application on datasets with different complexity. In particular BVQ-FR
has proven to be more effective in applications to dataset of non-linearly separable
points. Benchmarking tests, supported by the calculation of index of performance,
show that BVQ-FR and OLDA-FR are generally more effective than other solutions.
Furthermore, the comparison with known heuristic techniques of ranking confirms
the robustness and the superiority of the EDBFM based method on complex dataset.
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Chapter 5
Weighting of Features by Sequential Selection

Urszula Stańczyk

Abstract Constructing a setwith characteristic features for supervised classification
is a task which can be considered as preliminary for the intended purpose, just a step
to take on the way, yet with its significance and bearing on the outcome, the level
of difficulty and computational costs involved, the problem has evolved in time to
constitute by itself a field of intense study. We can use statistics, available expert
domain knowledge, specialised procedures, analyse the set of all accessible features
and reduce them backward, we can examine them one by one and select them for-
ward. The process of sequential selection can be conditioned by the performance
of a classification system, while exploiting a wrapper model, and the observations
with respect to selected variables can result in assignment of weights and ranking.
The chapter illustrates weighting of features with the procedures of sequential back-
ward and forward selection for rule and connectionist classifiers employed in the
stylometric task of authorship attribution.

Keywords Weighting · Ranking of features · Sequential selection · Forward selec-
tion · Backward selection · DRSA · ANN · Stylometry · Authorship attribution

5.1 Introduction

In order to arrive at a set of characteristic features which are relevant for a task and
give some satisfactory predictive accuracy for a classification system employed in
supervised pattern recognition [20], we can either start with the empty set and then
in the process of forward selection add some number of attributes to it, or we can
execute backward elimination of features from some original set, chosen basing on
expert domain knowledge, some other algorithms or measures, or even randomly.
We can also attempt to go in both directions at the same time, mixing elimination
with selection of features [19].
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In forward selection the initial dimensionality of the inducers used is low and it
gradually increases when the numbers of considered variables get higher. Yet in such
limited context,without the presence of other features,without observing interactions
among them, any conclusions with regard to importance and relevance of attributes
could be unreliable and misleading [24].

For rule classifiers the low dimensionality means quick induction of rules and
relatively short decision algorithms, with few constituent rules, which seems to be
an advantage, however, with not enough data to mine, the constructed rules tend to be
approximate rather than certain and do not necessarily help in classification [33]. On
the other hand, when a classification system is of a connectionist type, the learning
stage is much more problematic when there are only few inputs to induce knowledge
from. Artificial neural networks with insufficient number of input nodes can have
significant trouble converging and training them takes much more time as more runs
are needed to learn anything from the training facts [11].

When the approach is that of backward reduction, we start with induction process
while dealing with some high number of attributes, and computational costs needed
for inferring decision rules in such case are much higher, could even be unfeasible,
depending on the induction algorithm. But, if it is still manageable, studying features
in much wider context can bring additional information resulting in better perfor-
mance of the classifier. Also, connectionist classification systems with more inputs
converge faster because with many neurons and interconnections there is simply
more room for adjustments of weights which minimises the error on the output.

The chapter illustrates a comparison of the two approaches of sequential selection
with a case of a binary classification task of authorship attribution with balanced data
[31, 32]. The characteristic features observed refer to textual markers of lexical and
syntactic type, which enable definition and recognition of writing styles [25]. The
procedures of sequential selection serve as a means to an end of assignment of
weights to variables, depending on how their presence or absence in a considered
feature subset influences predictive accuracy of the classification system.

The text is organised as follows. Section5.2 contains a brief introduction to
approaches to variable selection, exploited classifiers, and stylometric analysis. In
Sect. 5.3 there is described a framework for conducted experiments. Sections5.4 and
5.5 show results from tests focused respectively on forward and backward selection
procedures. Concluding remarks are included in Sect. 5.6.

5.2 Background

In the research presented in this chapter there are combined three issues, namely
approaches to feature selection, connectionist and rule-based classifiers employed in
pattern recognition, and stylometric processing of texts as the application domain,
which are briefly described in this section.



5 Weighting of Features by Sequential Selection 73

5.2.1 Algorithms for Feature Selection

Any inducer used in data mining incorporates in fact some elements of feature selec-
tion in the learning phase, by the way in which it exploits some of the considered
variables in higher while others in lower degree. The results of this processing are a
part of the obtained solution, depending on its type either directly visible, for exam-
ple through specific conditions included in decision rules, or hidden in the internal
structure, as in artificial neural networks. Apart from those inherent mechanisms
there are also many procedures and algorithms dedicated to the aim of selection and
reduction of attributes [17].

In feature selection algorithms the decision with respect to the starting point in
the feature space, and determined by it possible search directions, bears significantly
upon other parameters of the process and its execution [9, 10]. Although theoretically
possible, typically the exhaustive search and evaluation of all candidate subsets of
features is unfeasible as for N attributes there are as many as 2N possible subsets,
and even for relatively small N this number quickly becomes impractical under tests.

Imagine the feature space with five possible attributes to choose from, which
corresponds to 25 = 32 candidate subsets of variables. We can start the search for
a good subset, however this “goodness” is defined, with the empty set, then add
to it some variables in the forward manner, basing on some evaluation criteria for
each selection. Or, we can begin the procedure with the entire set of features, from
which the elements are next rejected backward. This feature space and two exemplary
search paths are illustrated in Fig. 5.1. Going top to bottom with each level we add

Fig. 5.1 Points in the exemplary feature space for five attributes, with possible directions for search
and either selection or reduction. In top to bottom direction there is indicated an example for forward
selection path, and from bottom to the top, another example for backward elimination
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one feature till we have the entire set. Going from bottom to the top at each step one
variable is eliminated and at the end of this search path the set becomes empty. The
former algorithm is called sequential forward selection, while the latter sequential
backward reduction or elimination (or selection). A variation of the two approaches
requires commencing with some non-empty set, and adding to it as well as reducing.

Whichever starting point is selected, we need to decide on a search direction,
forward or backward, and some limitations that are imposed on the procedure. Instead
of checking all available options, more popular and realistic approach is to apply
some greedy methodology, where feature selection is executed stepwise—at each
stage evaluation of a considered subset of attributes is based on this local context,
and addition or removal of features depends on the fact whether this action results
in increased performance. With this kind of processing if we conduct it from the
beginning to the end without introducing any other stopping criteria the number of
tested subsets equals to:

N + (N − 1)+ (N − 2)+ · · · + 2+ 1 =
N−1∑

i=0

(N − i) = (N − 1)N

2
(5.1)

which is in amoremanageable formof a polynomial than the exponential relationship
given before.

The condition of increased performance uses the concept of relevance by
incremental usefulness for attributes. This requirement could be considered as too
strong, especially in case of backward elimination. It could be argued that if the pre-
dictive accuracy is the same regardless of presence or absence of some variable in the
considered subset, then this variable is irrelevant for the task and can be disregarded,
thus making the condition weaker.

When subsets of features are evaluated using the quality of prediction in a direct
manner, it means employing the wrapper approach [18]. Another alternative is to use
some measures, separate and independent from the system responsible for discrim-
inating classes present in the training data, for example exploiting elements from
information theory such as information gain, entropy, consistency [9].

Sequential selection procedures, whether forward or backward, executed in the
wrapper mode explicitly return the information on how useful individual attributes
are for the employed inducer, show how it prefers some variable over others, which
can be interpreted as a scoring function assigning specific weights and organising
features into specific ordering, which is in fact their ranking. In forward selection
the first to be selected are the most important variables, in backward reduction the
least important features are the first to be discarded. This importance of attributes is
always considered in the local context, from the current perspective of the confines
of the search path.
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5.2.2 Connectionist Classifier

Artificial neural networks (ANN) are widely used in classification tasks due to their
ability to generalise: they draw conclusions from the available training data and
modify their topology by adjusting weights associated with interconnections in such
way that leads to increased performance [11].

Multilayer Perceptron (MLP), which is a popular example of feed-forward
unidirectional network topology, in the learning phase most often uses some ver-
sion of backpropagation training rule that aims at minimisation of the error at the
network output, for all outputs and all learning facts. Initial weights assigned to
connections strongly influence the training procedure and can cause distinctively
different predictive accuracy. To minimise that effect, multi-starting procedure is
used, in which there is employed repetitive learning after randomisation of weights,
and calculating average classification ratio. The performance of a connectionist clas-
sifier depends also on the number of hidden layers and neurons comprising them,
and these parameters are usually established in tests.

One of disadvantages of ANNs lies in knowledge representation: even though the
networks learn from the input data sets, the relationships detected are hidden in the
internal structure of the solution and cannot help in understanding of information.

When there are no significant inconsistencies in the training sets, neural networks
usually perform better for higher rather than lower numbers of inputs. For just few
inputs a network has trouble converging and learning can require many more runs
and still low classification accuracy is obtained. Choosing the best from generally
poor solutions, without clear understanding of patterns, can be next to impossible
and then still cause some inferior results.

Because of the general idea behind the concept of artificial neural networks, it is
more natural to establish irrelevance of some inputs by observing their connection
weights adjusted to some negligible values in learning, which can be then deleted
in pruning [21, 23]. Thus backward elimination of features seems a better approach
than forward selection.

5.2.3 Rule-Based Classification

Rule classifiers enable very clear and straightforward expression of available
knowledge through decision rules of IF…THEN…type. The premise (or condi-
tion) parts specify the conditions on attributes that, when met, indicate a particular
decision class (or a group of classes) to which the considered object should belong.

In multicriteria decision making [12, 13] better results are obtained while
employing approaches that allow for not only nominal but also ordinal classifica-
tion, possible by detecting and exploiting partial orderings of values for all variables
[16]. One of suchmethodologies is Dominance-based Rough Set Approach (DRSA),
which is a modification of classical rough set processing [29, 30], replacing the
indiscernibility relation with dominance [35].
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Rough set processing possesses an inherent mechanism for dimensionality reduc-
tion in the concept of relative reducts [27]. Relative reducts are such subsets of
attributes which offer the same predictive accuracy as the entire set of attributes for
the considered samples. If a reduct is activated, some of variables are excluded from
the rule induction phase. If the intersection of all reducts, called the core, is non-
empty, it includes all features that are necessary for classification, yet they are not
necessarily sufficient. Also it often happens that there are many reducts and no indi-
cators as to which one should be activated [26]. Reducts can be used indirectly, as a
source of additional information on individual attributes, reflecting their importance
for a task [36, 41].

Predictive accuracy of a rule classifier depends not only on the input data basing on
which the constituent decision rules are inferred, but also, in the very high degree, on
a selected approach to rule induction [5]. Possibly the quickest (yet not the simplest)
is induction of a minimal cover—there is found only such small number of rules that
are sufficient to classify correctly all learning samples. However, rules inferred with
this approach are not necessarily the best. Taking under consideration for example
a value of rule support, which is a parameter stating for how many training samples
a rule is valid, it may turn out that other algorithms for rule induction can find
some more interesting rules [34]. Generation of all rules on examples is the opposite
approach to minimal cover and enables calculation of good, bad, and average rules,
but at the cost of higher computational complexity and extended processing. If it can
be afforded, induction of all rules and their analysis enables to tailor the decision
algorithm to specific requirements [37, 38]. Once a set of rules is induced, we can
filter some elements using quality measures.

Calculation of all rules on examples for sequential backward elimination of
variables even for relatively small their number is a task of unmanageable propor-
tions.

When the number of attributes is low, inferring rules takes distinctively less time
which allows to employ sequential forward selection procedure. However, the dif-
ferences in performance for algorithms found in initial stages can be so small that
to choose the best one not only its predictive accuracy is taken into account but also
other parameters, for example the number of rules in the algorithm and their type.
The exact (certain) rules are the most useful for classification as they classify unam-
biguously. Possible and approximate rules point to possible inclusion in some class
or a union of classes which do not help in increasing recognition without any further
processing.

Classification results for rule classifiers are given in three groups of decisions:
correct, incorrect, and ambiguous. The last of these is dedicated for cases when there
are several rules with contradicting verdicts or no rules matching. In situation of
contradicting verdicts the popular attitude is to execute some kind of voting, either
by simple majority or with weighting of rules, for example by their support as it can
be argued that rules with higher support can be considered as more important [39].
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5.2.4 Textual Analysis

Some input data sets directly determine data mining techniques that can be applied
to themwhile for others many alternative approaches can be used. Stylometry, which
was the application domain in the research on weighting characteristic features in
forward and backward selection illustrated in this chapter, refers to stylistic textual
descriptors, reflecting individual linguistic preferences of writers [8]. In processing
there are employed either computer-aided and statistic-oriented computations [22],
or methodologies from machine learning area [1, 42].

While text categorisation with respect to a subject content uses some key words
and phrases of specific significance [6], categorisation by text authors, which is
considered as the most important of stylometric tasks, needs to detect more subtle
linguistic elements because we want to recognise who has written a text regardless
of what it is about [7].

In stylometric processing typically there are exploited textual descriptors
employed rather subconsciously, based on common parts of speech. Under more
detailed analysis they reveal patterns corresponding to individual habits and prefer-
ences, invisible to the bare eye, which makes them hard to imitate [2].

Even though linguists agree that we have individual writing styles, they cannot
really help when asked for style definitions. Since styles are unique, they cannot be
expressed by any general rule that would be universal and applicable to all writers
and all texts [3]. Instead for any author a set of discriminating features needs to be
established by tests.

The markers the most popularly used in authorship attribution come from either
lexical or syntactic group. Lexical descriptors give such numerical statistics as fre-
quencies of occurrences, distributions of frequencies, and averages for characters,
words, and phrases [28]. Syntactic markers express organisation of a text in units
such as sentences and paragraphs by punctuation marks [4].

5.3 Experimental Setting

To be reliable, all numerical characteristics need to be calculated over some sufficient
number of representative writing samples. In fact, the bigger the corpus, the higher
chance at good recognition ratio. That is why in experiments there were used novels
written by two writers, Henry James and Thomas Hardy, divided into smaller parts
of comparable length. All texts used in the experiments performed are available in
electronic formats for download and on-line reading thanks to Project Gutenberg
(http://www.gutenberg.org).

To avoid the problems that can result from imbalanced data sets used in classifi-
cation, in both groups of samples exactly one half corresponds to one author and the
other half to the second one, making the classification binary.

http://www.gutenberg.org
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By referring to frequencies of usage for certain punctuation marks and elements
from the list of the most common words in English language, 17 lexical and 8
syntactic descriptors were arbitrarily selected as follows:

• lexical: but, and, not, what, that, with, in, on, of, as, at, by, for, to, if, this, from,
• syntactic: a comma, a fullstop, a colon, a semicolon, a bracket, a hyphen, a question
mark, an exclamation mark,

giving together a search space of 25 characteristic features (which have shown their
usefulness in authorship studies [36, 38]), tested in both forward and backward
selection procedures.

The frequencies used as features are continuous values with natural ordering. To
use Dominance-based Rough Set Approach to this kind of data definitions of either
increasing or decreasing preference orderings are required. This choice can be based
on domain knowledge, but in its absence the problem can be treated as another aspect
of knowledge discovery process and established in tests.

4eMka Software used for induction of DRSA decision rules was developed at
the Laboratory of Intelligent Decision Support Systems, (http://www-idss.cs.put.
poznan.pl/), Poznań University of Technology, Poland [14, 15].

At each stage of forward selection there were inferred two types of algorithms,
minimal cover and all rules on examples, for two possible preference orderings
of values for a considered variable, increasing and decreasing. From the sets of
all generated rules only exact certain rules were used in classification. From the
presented test results ambiguous decisions were excluded and they were treated as
incorrect to avoid additional processing.

In case of that many input variables backward elimination of attributes while
inducing all rules on examples algorithm would take much too long, and mini-
mal cover algorithms typically perform unsatisfactorily. Instead, there was executed
another methodology. Firstly all rules on examples algorithm for the complete set of
25 attributes was induced and to this algorithm backward reduction approach applied
by rejecting rules containing conditions on evaluated features.

Artificial neural networks were simulated with California Scientific Brainmaker
software. In the preliminary phase there were executed tests to establish a topology,
in particular the number of hidden layers and the number of neurons in those lay-
ers. As a result, in all experiments dedicated to backward elimination of inputs the
networks contained two hidden layers and the total number of hidden neurons equal
to the number of network inputs. The two outputs corresponded to two recognised
authors. Each network was trained 20 times with randomisation of weights between
subsequent learning stages.

5.4 Sequential Forward Selection

Forward selection procedures started with induction of decision algorithms for 25
single-attribute subsets, from which the one performing best was chosen, which
completed the first stage of selection. At the second stage to the already chosen

http://www-idss.cs.put.poznan.pl/
http://www-idss.cs.put.poznan.pl/
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attribute another one was added and 24 two attribute subsets were prepared and rules
for them generated. Again selection of the best algorithm ended the processing at
this stage. The analogous procedure was executed at all stages that followed.

At the first and all subsequent stages there were generated four algorithms for
each considered subset: two with the conditional attribute of cost (decreasing) type,
and two for gain (increasing) type, for both minimal cover and all rules on examples
algorithm. From inferred algorithms all possible and approximate rules were next
excluded, then an algorithm was tested with respect to the maximal predictive accu-
racy. To this aim for all algorithms there were introduced hard constraints on rules
with respect to minimal support required of rules to be taken under consideration in
classification. In most cases these requirements resulted in increased performance.
The details of conducted experiments are listed in Table5.1.

As ambiguous cases of no rule matching the testing samples or contradicting
decisions were always treated as incorrect, the performance of these rule classifiers
in the initial phase, when there are only few considered features, is rather poor.
However, it increases quickly and gradually with each added attribute. For just few
conditional attributes from which rules are inferred, the two types of algorithms,
minimal cover and all rules on examples, are not that different, with similar numbers
of constituent rules and close performance level. Once there are more features the
differences are more distinct.

The first local maximum is detected for the subset of just five attributes, for which
all rules on examples algorithm limited by rejecting rules with support lower than 7
classifies correctly 91.67% of samples. The best performance for six variables for
this type of algorithm is lower, 88.33%. Yet for the same subset the minimal cover
algorithm has predictive accuracy of 91.67%, which is kept at the same level also for
seven features before it decreases to 83.33% for eight attributes. The performance of
all best rule classifiers at each stage in shown in Fig. 5.2 for both minimal cover and
all rules on examples decision algorithms, denoted as MCDA and FDA respectively.

In forward selection approach with each iterative step of the procedure we deal
with more and more variables and at each step we can ask the question whether it
is enough, whether we have the set of features that satisfy our requirements. The
answer is not straightforward. Even when the predictive accuracy is considered as
the most important factor on which the decision is based, it is not a simple task of
reaching some maximum, as upon finding it we cannot possibly know if this is of
local character or global, and after some decreased performance for another subset
in the search path we can encounter another local maximum. We know what the
maximum is only when all possible subsets of attributes are tested (all possible on
the selected search path, which is not exhaustive), that is including the entire set of
available variables.

When we can afford the extended processing of search procedures executed with-
out additional stopping criteria, the observed performance for subsets of variables,
with gradually increasing cardinalities, can be used as means to feature weighting
and ranking, to be employed for another inducer as a kind of filter. Or, we can fin-
ish the variable selection procedure by choosing such subset of features for which
the classification accuracy was the highest when compared to all tested alternatives.
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Fig. 5.2 DRSA classification accuracy observed in sequential forward selection process, in relation
to the number of considered features, for both minimal cover (MCDA) and all rules on examples
(FDA) decision algorithms

This approach is also the one to be used when the number of possible features is
practically infinitive—as the search cannot be endless, we need to limit the number
of subsets to be tested somehow and from them select the best.

Once the search path of forward sequential selection is completed the goal of
feature weighting is achieved by observing the order in which attributes were chosen,
as listed in the (b) column of Table5.1, with the frequency of occurrence of “that”
at the top of the list and “;” at the bottom.

In the presented research to the central search for important attributes one more
element was introduced, which added one more dimension to the search space at
each stage, and it was a preference order for an attribute. In the stylometric domain
preference orders should be understood as associating certain, higher or lower, fre-
quencies of usage of linguistic elements with specific authors. Although undeniably
such relationships exist and enable authorship attribution in the first place, a priori
knowledge about them, ready and applicable to any writers, any texts, any samples,
does not exist. In its absence preference orders can be arbitrarily assumed, or they can
be adjusted through some processing [40]. But whenwe actively search for subsets of
relevant attributes it is more natural to extend this search to include not only selection
of variables but their preference orders as well. As a result the obtained solutions
are closer tailored to specifics of the classification task, which is visible in higher
predictive accuracy when we compare them to the case of rule classifiers induced
for attributes with arbitrarily assigned preference orders, tested within sequential
backward elimination procedures described in the next section.
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5.5 Sequential Backward Selection

Backward elimination of variables starts with inducing a solution for all available
or considered features to be treated as the reference point. Then there are tested
N subsets of variables, each with a single variable rejected, and the performance
of the classifiers compared. We would prefer the predictive accuracy to increase,
however, already one goal of backward selection is achieved through reduction of
dimensionality, so as long as the performance is not worse, we can still consider it
as satisfying requirements. From all tested subsets the one for which classification
accuracy is the highest is selected and the whole procedure repeated for N − 1
attributes, then for N −2, and so on. Backward selection procedures were employed
for both connectionist and rule classifiers.

Asmentioned before, for ANN backward elimination is better suited than forward
selection. Naturally all networks during the training phase learn to some degree the
relevance of particular input features and this learned knowledge is expressed by
adjustingweights of interconnections. It is also possible to exploit some input pruning
algorithms, which, however, involves rather complex calculations and processing,
whereas the general steps of backward selection are straightforward. We need to test
relatively many networks with many inputs but in such cases the classifiers converge
quickly and typically without trouble. When the numbers of inputs get lower the
training takes more time, but there are also significantly fewer such networks to be
tested.

The details from the conducted experiments in which artificial neural networks
were used as an inducer are given in Table5.2, where the right-most (e) column
presents the order reflecting the weights assigned to attributes by the sequential
backward selection. The elimination of “not” begins the list, and “but”was kept to the
very end of the search, which indicates its high importance. The column specifying
the classification accuracy displays median performance, because to minimise the
influence of the initial weights associated with interconnections on the results of the
learning phase the multi-starting approach was employed with repeating the learning
phase several times and accumulating the minimal, median, and maximal predictive
accuracies, plotted in Fig. 5.3.

It can be observed that in the initial 7 steps the performance is increased with each
reduced variable to stabilise at the level of 96.67% for the next 9, then to decrease
when the number of remaining features falls below 10. Yet when compared to the
performance of the network for all 25 input variables, only in the last two steps, for
classifiers referring to respectively just two and one input, the obtained results are
worse.

The additional parameters of minimal and maximal performance can be used
not only to achieve higher reliability of obtained classification results, but also as
factors helping in selection of features. It may happen (and actually in the research
is did happen many times) that at some elimination stage several subsets of features
give the same results when only median classification accuracy is compared. Then
we can analyse the results from each step of multi-starting in more detail, check
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Table 5.2 Sequential backward elimination of attributes basing on the performance of ANN
classifiers

(a) (b) (c) (d) (e)

0 25 but and not in with on at of as this that by for to if what from . , ; : ! ? ( - 83.33 not

1 24 but and in with on at of as this that by for to if what from . , ; : ! ? ( - 88.33 (

2 23 but and in with on at of as this that by for to if what from . , ; : ! ? - 90.00 in

3 22 but and with on at of as this that by for to if what from . , ; : ! ? - 91.67 and

4 21 but with on at of as this that by for to if what from . , ; : ! ? - 93.33 ,

5 20 but with on at of as this that by for to if what from . ; : ! ? - 94.17 -

6 19 but with on at of as this that by for to if what from . ; : ! ? 95.00 with

7 18 but on at of as this that by for to if what from . ; : ! ? 96.67 on

8 17 but at of as this that by for to if what from . ; : ! ? 96.67 what

9 16 but at of as this that by for to if from . ; : ! ? 96.67 to

10 15 but at of as this that by for if from . ; : ! ? 96.67 of

11 14 but at as this that by for if from . ; : ! ? 96.67 .

12 13 but at as this that by for if from ; : ! ? 96.67 :

13 12 but at as this that by for if from ; ! ? 96.67 ?

14 11 but at as this that by for if from ; ! 96.67 ;

15 10 but at as this that by for if from ! 96.67 this

16 9 but at as that by for if from ! 95.00 as

17 8 but at that by for if from ! 95.00 at

18 7 but that by for if from ! 93.33 for

19 6 but that by if from ! 93.33 !

20 5 but that by if from 93.33 if

21 4 but that by from 95.00 from

22 3 but that by 90.00 by

23 2 but that 78.33 that

24 1 but 50.00 but

Columns present parameters: (a) elimination stage, (b) number of characteristic features left, (c) set
of currently considered variables, (d) median predictive accuracy of the classifier (%), (e) attribute
selected to be eliminated

the distributions and dispersions of specific classification accuracies, we can assign
higher priority to these networks that have especially good results such as for example
100% recognition.

As before for forward selection, for backward elimination the search for subsets
of features is not exhaustive. Commencing with the entire set of variables we reject
one variable at a time with the decision based on the local context, and once some
variable is reduced it is not taken under consideration for the second time.

For the set of attributes with cardinality of 25 with arbitrarily assigned preference
orders, the decision algorithm generated within the approach of finding onlyminimal
cover performs rather poorly, correctly recognising barely a half of the testing sam-
ples. We can try to increase this accuracy by adjusting preference orders, yet there
are no quick procedures that could be employed to this end.When we induce all rules
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Fig. 5.3 ANN classification accuracy observed in sequential backward elimination process, in
relation to the number of considered features, for each average there is indicated maximal and
minimal performance

on examples, the full algorithm with hard constraints on minimal rule support gives
much better results of 76.67%. Yet this full algorithm contains over 46 thousands of
constituent decision rules and calculation takes a noticeable amount of time. Genera-
tion of this type of algorithm at all stages of backward elimination of features would
be far too much time-consuming. Instead, another approach is employed, focused on
the previously inferred all rules on examples algorithm for the entire set of attributes.

Decision rules included in the full algorithm have varying lengths equal to
the numbers of conditions in the premise part, varying supports, refer to various
attributes. If we were to employ backward elimination procedures and attempted to
induce all rules on examples algorithms for subsets of variables in subsequent reduc-
tion stages it is reasonable to expect that at least a part of newly inferred rules would
be the same as those already found. Therefore, rather than waste time on such simply
repetitive computations we can apply the backward selection to the full algorithm
itself in the following manner.

In the first step we disregard all rules with conditions on a specific variable, itera-
tively for all variables. As a result we obtain 25 different reduced decision algorithms,
which are then tested and the one with the highest classification accuracy is selected.
We reject the attribute, elimination of which have resulted in this algorithm, and use
this limited set of decision rules as the input to the second stage of processing, where
24 reduced algorithms are tested, and so on, with reduction of one feature and all
rules referring to it at each stage. The process can continue till the point of detecting
some significantly worse performance, rejecting all rules from the algorithm (even
though there are still some features left to be considered), or reducing all conditional
attributes. With this last stopping criterion there is obtained weighting of variables
which can be used for other purposes. The procedure of discarding rules governed
by included attributes can be perceived as rule filtering.

The detailed results from execution of described methodology are shown in
Table5.3, in which the ranking of features is given in the (h) column.
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Table 5.3 Backward elimination of attributes basing on the performance of reduced all rules on
examples decision algorithm

(a) (b) (c) (d) (e) (f) (g) (h)

0 25 but and not in with on at of as this that by for to if 46, 191 41 80 76.67 and

what from . , ; : ! ? ( -

1 24 but not in with on at of as this that by for to if what 42, 018 33 19 83.33 (

from . , ; : ! ? ( -

2 23 but not in with on at of as this that by for to if what 34, 390 30 38 85.00 on

from . , ; : ! ? -

3 22 but not in with at of as this that by for to if what from 24, 732 29 35 86.67 as

. , ; : ! ? -

4 21 but not in with at of this that by for to if what from . , 19, 869 29 33 86.67 this

; : ! ? -

5 20 but not in with at of that by for to if what from . , ; : ! 15, 072 29 32 86.67 -

? -

6 19 but not in with at of that by for to if what from . , ; : ! ? 12, 407 29 31 86.67 .

7 18 but not in with at of that by for to if what from , ; : ! ? 9, 065 29 31 86.67 ;

8 17 but not in with at of that by for to if what from , : ! ? 6, 597 29 31 86.67 with

9 16 but not in at of that by for to if what from , : ! ? 4, 939 29 31 86.67 :

10 15 but not in at of that by for to if what from , ! ? 3, 740 29 31 86.67 for

11 14 but not in at of that by to if what from , ! ? 3, 031 29 31 86.67 if

12 13 but not in at of that by to what from , ! ? 2, 456 29 31 86.67 what

13 12 but not in at of that by to from , ! ? 2, 131 29 31 86.67 that

14 11 but not in at of by to from , ! ? 1, 841 29 31 86.67 but

15 10 not in at of by to from , ! ? 1, 659 29 31 86.67 in

16 9 not at of by to from , ! ? 1, 085 29 21 85.00 ?

17 8 not at of by to from , ! 861 21 55 88.33 at

18 7 not of by to from , ! 649 21 54 88.33 !

19 6 not of by to from , 407 16 88 88.33 to

20 5 not of by from , 311 13 106 90.00 ,

21 4 not of by from 172 13 84 83.33 of

22 3 not by from 100 11 71 76.67 not

23 2 by from 34 16 22 63.33 by

24 1 from 4 8 4 23.33 from

Columns present parameters: (a) elimination stage, (b) number of characteristic features left, (c) set
of currently considered variables, (d) number of rules in a decision algorithmwithout any constraints,
(e)minimal support required ofDRSA rules resulting inmaximal classification accuracy, (f) number
of exactDRSArulesmeeting constraints on support, (g)maximal predictive accuracy of the classifier
(%), (h) attribute selected to be eliminated

Whenwe compare predictive accuracies of rule classifiers tested at each reduction
stage, plotted in Fig. 5.4, not by exact numbers but perceivable trends, to those pre-
viously studied in forward selection approach, it is immediately apparent that they
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Fig. 5.4 Classification accuracy observed for decision algorithms in sequential backward elimina-
tion process of attributes and rules, in relation to the number of considered features

are very close. The fact that here the correct classification ratio is lower than before
results from the different attitude to preference orders of features. In forward selec-
tion it was treated as one more element to be established, thus better adjusted to the
task under study, while for backward elimination in the initial stage the preference
orders are arbitrarily assigned and remain unchanged throughout all processing.

The two types of classifiers used in experiments have very distinctive properties,
and the differences between them are also visible in obtained by them rankings of
considered variables, which shows bias that all wrappers are prone to. For example,
for ANN the feature “not” is rejected as the first one, while for DRSA classifier it
is kept almost to the end. When we compare orderings of variables from forward
with backward selection for rule classifiers, even though the type of the inducer
employed is the same, we cannot say that they are reversed. All these observations
illustrate how different perspectives in which attributes are considered can change
relationships and dependencies detectable among studied elements, to the point of
completely different relevance of the same features and their resulting weightings.

5.6 Concluding Remarks

Backward and forward sequential search are two approaches to feature selection,with
the opposite starting points in the feature space. In forward selection we commence
with the empty set of variables to which we add one element at a time. In backward
elimination we begin with the entire set of attributes, which are reduced one by
one. The two procedures are relatively simple to apply, even though could be time
consuming, depending on the number of available variables to be tested, and a type
of inducer used in validation of candidate feature subsets.

In the experiments dedicated to selection of variables two distinctively different
classifiers were employed, connectionist approach of artificial neural networks and
rule-based exploiting rough set theory incorporating dominance relation.
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For ANN classifiers it is more natural to apply backward elimination, because
networks with excessive numbers of inputs still can perform better than those with
insufficient features. In the training phase networks can detect just by themselves
which input variables are less important and assign to them low weights of intercon-
nections, minimising their influence on the outcome. On the other hand, when there
are not enough of characteristic features, the network can try and generalise, yet the
conclusions cannot be drawn from nothing. As a result neural networks with only
few inputs typically need more time to be trained, can have trouble converging and
then generalising for unknown samples.

Induction of decision rules takes significantly less time for fewer attributes. How-
ever, they do not necessarily contain information required to infer rules with good
quality, resulting in high predictive accuracy. Applying forward selection procedures
we can not only choose the attributes that are the most beneficial to rule induction
process, but also adjust their preference orders which further increases performance.
Typically minimal cover decision algorithms give worse results than rule classifiers
constructed in different approaches, for example all rules on examples with some
hard constrains on constituent rules such as minimal support required. Yet inferring
all rules when there are many attributes requires a lot of computations and takes
time. Since in subsequent stages of backward elimination many of generated rules
would be the same, as the studied subsets of features are overlapping, we can employ
anothermethodology, inwhich backward reduction is in fact applied to rules referring
to rejected features.

For all search paths tested one of the important elements to consider is the stopping
criterion, answering the question when or where the selection procedures should end.
The response is not trivial as it depends to a high degree on the purpose of applying
the search procedures in the first place. When the goal is just to find a good subset
of features, that is resulting in an induced solution with satisfyingly high predictive
accuracy, we can stop the search once we detect a maximum in correct recognition
ratio. However, if we do it to quickly, before checking alternative subsets, it may
turn out that a maximum is only local and not global, and for some other candidate
subset of variables the predictive accuracy is better.

If extended processing is acceptable, or with the goal of weighting available
variables we test all possible subsets of variables in a search path. We do observe
the performance (after all the choice is conditioned by it), but we also study the
order in which all features are organised. This order reflects their weighting from
the perspective of applied search procedure and inducer employed. As classifiers
have different characteristics and the selection of variables is wrapped around their
performance, the same search direction applied for another classification system,
with distinctively different properties may return completely different ranking of
attributes. From all validated subsets we can choose the best, or we can impose the
obtained ranking of features on a separate classification process and test its usefulness
as a filter.

All attribute selection procedures were illustrated for a binary classification task
with balanced data, for the problem of authorship attribution from stylometric
processing of texts. The most important aim of textual analysis is to find definitions
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of individual writing styles by referring to such linguistic features which betray
individual preferences and are employed rather subconsciously. Lexical and syntac-
tic descriptors exploited enable definition of individual styles and categorisation of
texts by their authors.
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37. Stańczyk, U.: DRSA decision algorithm analysis in stylometric processing of literary texts.
In: Szczuka, M., Kryszkiewicz, M., Ramanna, S., Jensen, R., Hu, Q. (eds.) Rough Sets and
Current Trends in Computing. LNCS (LNAI), vol. 6086, pp. 600–609. Springer, Berlin (2010)
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41. Stańczyk, U.: Relative reduct-based estimation of relevance for stylometric features. In: Cata-
nia, B., Guerrini, G., Pokorny, J. (eds.)Advances inDatabases and Information Systems. LNCS,
vol. 8133, pp. 135–147. Springer, Berlin (2013)

42. Waugh, S., Adams, A., Tweedie, F.: Computational stylistics using artificial neural networks.
Lit. Linguist. Comput. 15(2), 187–198 (2000)



Part II
Rough Set Approach

to Attribute Reduction



Chapter 6
Dependency Analysis and Attribute
Reduction in the Probabilistic Approach
to Rough Sets

Wojciech Ziarko

Abstract Two probabilistic approaches to rough sets are discussed in this chapter:
the variable precision rough set model and the Bayesian rough set model, as they
apply to data dependencies detection, analysis and their representation. The focus
is on the analysis of data co-occurrence-based dependencies appearing in classifi-
cation tables and probabilistic decision tables acquired from data. In particular, the
notion of attribute reduct, in the framework of probabilistic approach, is of interest in
the chapter. The reduct allows for information-preserving elimination of redundant
attributes from classification tables and probabilistic decision tables. The chapter
includes two efficient reduct computation algorithms.

Keywords Variable precision rough set model ·Bayesian rough set model ·Depen-
dency analysis · Reduct

6.1 Introduction

The chapter reviews the basics of the variable precision rough set [2, 3, 7, 13, 15, 26,
28, 30, 32, 34, 35] and the Bayesian rough set [13] approaches to data dependencies
detection, analysis and their optimal representation. The variable precision rough set
and the Bayesian rough set theories are extensions of the rough set theory, as intro-
duced by Pawlak [10, 11]. They are among many extensions and generalizations of
the rough set approach, which inspired significant research interest worldwide (see,
for example [5, 12, 17, 18, 22]). The primary motivation behind the research aimed
at extending rough set approach is the imperfections of gathered practical applica-
tion data. In particular, application data often suffer from presence of measurement
noise, leading to lack of consistency and resulting difficulty to form data classifi-
cations and set approximations of the rough set model. In addition, the data often
are real-valued, for example in pattern recognition or control applications, requiring

W. Ziarko (B)

Department of Computer Science, University of Regina, Regina S4S 0A2, Canada
e-mail: ziarko@sasktel.net

© Springer-Verlag Berlin Heidelberg 2015
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initial preprocessing via a discretization procedure to make it applicable to rough
set methodology. This pre-processing however leads to a loss of information and
introduces a subjective factor into the method.

The variable precision and Bayesian rough set models are focused on the recogni-
tion andmodelling of set overlap-based, also referred to as probabilistic, relationships
between sets, which are most useful when dealing with noisy data. In this approach,
the set-overlap relationships are used to construct approximations of undefinable sets
[11]. The primary application of the approach is to the analysis of data co-occurrence-
based dependencies in classification tables and probabilistic decision tables derived
from data, as discussed in the following sections. Both, the probabilistic decision
tables and classification tables are normally “learned” from data to represent some
inter-data item connections, typically for the purpose of their analysis or data value
prediction. The probabilistic decision tables can also be used as a basis of generalized
probabilistic rule induction algorithms [29], but this topic is outside the scope of this
chapter.

In practical applications of the data-acquired decision tables, one of the main
issues is the identification of a minimal subset of attributes, which are discrete func-
tions of measured features, to represent an identified data dependency without any
loss, or with minimal loss, of information. The original general idea of attribute
reduct, as introduced by Pawlak [10, 11], is applicable here. However, the original
specific notion of reduct is applicable only to functional, or partial functional, data
dependencies. In this chapter, we discuss an extended notion of reduct, as defined
in the contexts of variable precision and Bayesian rough set models. The notion of
reduct in these contexts allows for information-preserving identification of minimal
subsets of attributes, in the presence of probabilistic dependencies between attributes.

The chapter is organized as follows. In the next section, we review the fundamen-
tals of the variable precision rough set approach, which include the introduction of set
approximations and the presentation of the basics of the related Bayesian rough set
model. In Sect. 6.3, we discuss different kinds of probabilistic dependencies occur-
ring between a “target set” and a partition of the universe of interest. The partition
is assumed to represent our classification knowledge. The target set is our learning
goal, whose approximate classification in terms of the classification knowledge we
are trying to learn. The dependencies in question reflect our overall ability to cre-
ate such a classification. In Sect. 6.4, the probabilistic attribute value-based decision
tables are introduced, along with related classification tables. Both kinds of these
tables represent our classification knowledge with respect to the target set.

The probabilistic decision tables additionally represent rough approximations of
the target set, as defined in the framework of the variable precision rough set theory.
The inter-attribute dependencies occurring in both, the probabilistic decision tables
and classification tables, are subject of Sect. 6.5. All the discussed dependencies are
of probabilistic nature and are either defined in the contexts of variable precision or
Bayesian rough set models. They generalize and expand the attribute dependencies
introduced by Pawlak in the original rough set theory [11]. Attribute reduction with
respect to introduced dependencies is a subject of Sect. 6.6. The monotonicity prop-
erty of the introduced λ—dependencymeasure allows for a definition of the notion of
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information-preserving reduct with respect to this dependency. Couple of efficient,
linear-time algorithms for computing single attribute reducts, either in classification
tables or probabilistic decision tables, are presented. The ability to compute reducts
allows us also to determine the importance, or significance of attributes. This is the
subject of Sect. 6.7. Finally, in Sect. 6.8, we discuss the concept of generalized core
attributes, the extension of the original core attributes introduced by Pawlak [10, 11].
The core attributes are the fundamental ones, which are preserved in every attribute
reduction.

6.2 Variable Precision Rough Sets

In the rough set approach to data analysis, the crucial aspect is the existence of
an ability, or knowledge, to form the prior classification of the universe of objects
of interest into distinct classes. This ability, or classification knowledge, is usually
associated with an external agent, such as medical professional for example, who
is assumed to know how to classify objects (for example patients) into categories
(for example, into health condition groups). However, in automated systems such
an expert typically is not available. Instead, the system has to rely on measurements
taken by system sensors (for example, temperature, blood pressure etc.) to perform
the classification. In the rough set approach, the measurements are converted into
discrete features called attribute values, which are then used to classify objects. We
elaborate in detail about the attribute value-based classifications in Sect. 6.4.

The general variable precision rough set (VPRS) model does not make any
assumptions how the prior classification was performed. It just assumes that some
kind of prior knowledge exists and is represented in mathematical form by an equiv-
alence relation, referred to as an indiscernibility relation IND on the universe U, IND
⊆ U ×U . The relation is assumed to have a finite number of equivalence classes, i.e.
classification categories, called elementary sets. It should be noted that the assump-
tion of finite number of classes may not be satisfied in general, but in attribute-value
systems, which are the focus of this chapter, it is always the case. The collection of
elementary sets of the IND relation will be denoted as IND∗. The pair (U, IND) is
called an approximation space.

Let X be an arbitrary subset, referred to as the target set, of the universeU , X ⊆ U .
In practice, the universe is a finite non-empty collection of objects of interest, such
as medical patients, and the target set is our “goal” class, for example representing
the class of patients suffering from a specific disease. Our objective is to create a
system which would allow us to classify arbitrary objects into the “goal” class, or its
complement, with an error rate which we would consider acceptable in the context
of our criteria (which are domain-specific and, consequently, outside of the rough set
model), but lower, on average, than in the case of random classification. For exam-
ple, the objective may be to predict (diagnose) the presence, or absence, of a specific
disease based on the results of medical tests, which are supposed to increase the accu-
racy of such predictions (if tests are properly designed) in comparison to predictions
based solely on the frequency of occurrence of the disease in the population.
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In the VPRS approach, each equivalence class E of the indiscernibility relation
IND is assigned two measures which are: the relative “size” of the class E within
universe U , referred to as the probability P(E) of E , and the relative “size” of the
target set X within an elementary set E , referred to as the conditional probability
P(X |E). The conditional probability, in this context, is just a measure of the degree
of overlap between the target set X and the elementary set E . These two measures
can be approximated from data respectively by:

P(E) = card(E)

card(U )
(6.1)

and

P(X |E) = card(X ∩ E)

card(E)
(6.2)

where card denotes set cardinality.
The target set X may be undefinable [11], which informally means that, in gen-

eral, it cannot be expressed as a set union of some elementary sets forming our
classification knowledge. That is, in general, the set definability criterion:

X = ∪{E ∈ IND∗ : E ⊆ X} (6.3)

is not satisfied.
This lack of definability is more common than not in applications. The original

rough set theory, as introduced by Pawlak [10, 11], deals with this problem via the
notions of lower and upper set approximations. However, inmany applications, when
the target set is not definable, this approach is not sufficient due to the absence of
numeric assessments of the degree of association of elementary sets with the target
set X .

The VPRS approach extends the rough set model to make it more flexible, by
replacing the full inclusion relation with the overlap relation in the definitions of
set approximations. Two precision control parameters called lower limit l and upper
limit u are used in the definition of lower approximation of the target set X, or its
complement. In this way, one can control the process of computation of approxima-
tions of the target set to identify such approximations which satisfy user-imposed
criteria, such as for example, characterizing classes of patients with an elevated (or
reduced) risk of a disease.

6.2.1 Set Approximations in the VPRS Approach

The approximations of the target set in the VPRS approach are defined in terms of
unions of some elementary sets, as controlled by lower limit l and upper limit u
precision parameters.
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The notion of prior probability P(X) plays also an essential role in the definitions
of approximations, also called approximation regions: it represents the likelihood
that a random object e ∈ U is a member of the target set X in the absence of any
classification knowledge about the object. If the classification knowledge is available,
as represented by the equivalence relation IND, the likelihood of membership in the
set X of objects belonging to different elementary sets can either increase, or decrease,
or stay approximately the same as the prior probability P(X). These variations in
the set X membership likelihood across different elementary sets are reflected in the
definitions of set approximation regions, which characterize areas of the universe
U with significantly increased, significantly decreased, or approximately unchanged
target set X membership probability.

Each elementary set is classified either into one of approximation regions of the
set X , i.e. a positive region POSu , a negative region NEGl , or a boundary region
BND l,u . The upper limit u defines the positive region, or lower approximation, of
the target set X , with the constraint 0 < P(X) < u ≤ 1. It represents the least
acceptable degree of the conditional probability P(X |E), or the set overlap degree,
to include the elementary set E in the positive region. The positive region, or the
lower approximation of the target set X, denoted as POSu , is a collection of objects
for which the probability ofmembership in the target setX is significantly higher than
the prior probability P(X), where the term significantly higher is precisely specified
by the parameter u (as defined by some external criteria):

POSu(X) = ∪{E : P(X |E) ≥ u}. (6.4)

The lower limit l defines the negative region of the target set X , with the constraint
0 ≤ l < P(X) < 1. It is the highest acceptable degree of the conditional probability
P(X |E) to include the elementary set E in the negative region. The negative region
of the target setX, denoted asNEGl is a collection of objects for which the probability
of membership in the target set X is significantly lower than the prior probability
P(X), where the term significantly lower is precisely specified by the parameter l
(as defined by some external, application-related, criteria):

NEGl(X) = ∪{E : P(X |E) ≤ l}. (6.5)

The boundary region denoted as BND l,u , is a collection of remaining objects
which cannot be classified with sufficient certainty into either positive or negative
regions. For the boundary area objects, the probability of membership in the target
set X is not significantly different from the prior probability P(X), that is:

BNDl,u(X) = ∪{E : l < P(X |E) < u}. (6.6)

Regardless of the choice of lower and upper limit control parameters, the positive
and negative approximation regions are subsets of absolute approximation regions,
as described in the next subsection.
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In the Pawlak’s rough set model [11], the notion of upper approximation of a set
is defined as a union of all elementary sets which have non-empty intersection with
the set. The generalized definition of upper approximation UPP l(X) in the VPRS
approach, as in the original rough set model, is a set union of the positive region and
of the boundary region giving:

UPPl(X) = ∪{E : P(X |E) > l}. (6.7)

Note that the generalized definition coincideswith the Pawlak’s definition of upper
approximation when l = 0. In addition, when u = 1, it can be easily demonstrated
that the VPRSM definitions of positive, negative and boundary regions, become
equivalent to the original rough set model’s definitions of lower approximation,
negative and boundary regions [11].

One can also note that, in general, as opposed to Pawlak’s rough sets, it is not
true that POSu(X) ⊆ X and it is not true that X ⊆ U P Pl(X). Consequently, the
rough set cannot be defined in the VPRSM as a pair consisting of upper and lower
approximation, as it is done in Pawlak’s rough sets [11].

A frequently asked question is to how to set, or tune, the values of the precision
control parameters l and u. The author’s point of view is that apart from the general
constraint 0 ≤ l < P(X) < u ≤ 1, the settings of the parameters are entirely
dependent on the requirements of a practical application,while being likely subjective
or obtained via the cost-benefit analysis [27].

6.2.2 Absolute Set Approximation Regions

To describe the areas of the universe characterized by an unconstrained increase, or
decrease of the set X membership probability, the following definitions of absolute
approximation regions are applicable. It this case, no parameters to specify “suffi-
ciently” high increase, or decrease of the set membership probability in those areas
are used. We call these areas absolute approximation regions.

The absolute boundary region of the target set X is a definable region of the uni-
verseU consisting of those elementary setswhich are characterized by the unchanged
probability of membership in the target set X ⊆ U , that is:

BND∗(X) = ∪{E : P(X |E) = P(X)}. (6.8)

As it can be easily verified, in the absolute boundary region, each elementary set
E is probabilistically independent from the target set X, i.e. P(X ∩Y ) = P(X)P(Y ).
Consequently, the whole boundary region is independent from the target set X . In
other words, the objects in the absolute boundary regions can be considered entirely
unrelated with the target set.
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The region of the universe U that is characterized by an increased probabilistic
connection with the target set X ⊆ U , relative to the prior probability P(X), is called
the absolute positive region of the set X , denoted as POS ∗(X):

POS∗(X) = ∪{E : P(X |E) > P(X)}. (6.9)

In the absolute positive region of X , the likelihood of an object belonging to the
target set is higher than in the whole universe U , but in practice that increase may
be not sufficient from an application perspective.

Similarly, the absolute negative region, NEG∗(X), of the target set X is an area
of the universe U characterized by reduced likelihood of an object being a member
of the target set X :

NEG∗(X) = ∪{E : P(X |E) < P(X)}. (6.10)

The above definitions provide the basis of the Bayesian rough set model [13, 30].

6.3 Dependencies in Approximation Spaces

Theprobabilistic connections between elementary sets and the target set, and between
definable sets and the target set in the approximation spaces can be quantified by using
different dependencymeasures [24, 33]. Some of thesemeasures are reviewed below.

6.3.1 Absolute Certainty Gain

Absolute certainty gain, denoted as gabs, evaluates the degree of one-directional
dependency between any two sets. In the simplest case, it is a single-directional
dependency measure representing the degree of change of the probability of mem-
bership in the set X for an object belonging to the elementary set E. The absolute
certainty gain is defined by:

gabs(X |E) = |P(X |E) − P(X)|, (6.11)

where |.| is the absolute value function.
The above definition can be extended to any definable setY . The absolute certainty

gain between the subsets X and Y can be computed directly from the available
probabilistic knowledge based on the formula below, where the summation is over
all elementary sets forming the definable set Y :

gabs(X |Y ) = |ΣE⊆Y P(E)P(X |E) − P(X)ΣE⊆Y P(E)|
ΣE⊆Y P(E)

. (6.12)
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6.3.2 Absolute Dependency Gain

Another dependency measure is an absolute dependency gain, which is a bi-
directional dependency measure used to evaluate the degree of the two-way con-
nection between any two sets. Given two arbitrary subsets X and Y of the universe
U, the absolute dependency gain, denoted as dabs(X,Y), is defined by:

dabs(X, Y ) = |P(X ∩ Y ) − P(X)P(Y )|. (6.13)

The absolute dependency gain reflects the degree of probabilistic dependency
between sets X and Y by quantifying the amount of deviation from the probabilistic
independence between sets X and Y, as represented by the product P(X)P(Y ).

Similar to the absolute certainty gain, in an approximation space (U, IND), if a
subset Y is definable, then the absolute dependency gain between the subsets X and
Y can be computed directly from the available probabilistic knowledge based on the
following formula:

dabs(X, Y ) = |ΣE⊆Y P(E)P(X |E) − P(X)ΣE⊆Y P(E)|. (6.14)

The absolute boundary region of the target set X can alternatively be expressed
by the absolute dependency gain as:

BND∗(X) = ∪{E : dabs(X, E) = 0}. (6.15)

In other words, the absolute boundary region is an area with no dependency gain.

6.3.3 Average Dependency Gain

The average, or expected gain function, denoted as egabs(X |IND), is a measure
of the degree of probabilistic dependency between classification represented by the
indiscernibility relation IND and the classification (X,¬X) of the universeU induced
by the target set X, and its complement ¬X . It is a measure of dependency between
two partitions of the universe U :

egabs(X |IND) =
∑

E∈IND∗
|P(X ∩ E)− P(X)P(E)| =

∑

E∈IND∗
dabs(X, E). (6.16)

When the dependency is functional, i.e. when set X is definable in Pawlak’s sense
[11], we have:

egabs(X |IND) =
∑

E∈IND∗
|P(X ∩ E) − P(X)P(E)| (6.17)
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that is:

egabs(X |IND) =
∑

E∈IND∗
P(E)(1 − P(X)) = 1 − P(X) = P(¬X). (6.18)

Similarly, egabs(¬X |IND) = P(X) in the functional case.
In the casewhen egabs = 0, P(X∩E) = P(X)P(E), for every elementary set E .

This means that for every elementary set E , P(X |E) = P(X) and P(E |X) = P(E).
This is equivalent to saying that all elementary sets are probabilistically independent
from the target set X . In practical terms, it means that the occurrence of an object
belonging to any of the elementary sets does not affect in any way our ability to guess
whether the object is the member of the set X, or of its complement ¬X .

6.4 Probabilistic Decision Tables

Probabilistic decision tables describe classes of approximation space and their prob-
abilistic relations with a target set. They are composed of combinations of attribute
values, probability values and approximation region designations.

6.4.1 Attributes

In many applications, the information about objects is expressed in terms of values
of observations or measurements, often real-valued, referred to as features. For the
purpose of rough set-based analysis and classifier construction, the feature values are
typically mapped into finite-valued numeric or symbolic domains to form composite
mappings, referred to as attributes. A common kind of mapping is dividing the range
of values of a feature into a number of suitably chosen disjoint subranges via a
discretization procedure (see, for example, [9]). Formally, an attribute a is a function
on the universe U , a : U → a(U ) ⊆ Va , where Va is a finite set of values called the
domain of the attribute a.

Based on combinations of attributes and their values, a structure of approximation
space can be created and analyzed using general notions and results of rough set
theory and of the VPRSM. Each attribute defines a classification of the universe U
into classes corresponding to different values of the attribute. Each attribute value
v ∈ a(U ), corresponds to a set of objects Ea

v ⊆ U such that Ea
v = a−1(v) = {e ∈

U : a(e) = v}. The classes Ea
v , referred to as a-elementary sets, form a partition of

U . The equivalence relation corresponding to this partition will be denoted as INDa .
Similarly, an equivalence relation INDB , and the corresponding approximation space,
can be defined on the basis of any non-empty set of attributes B.
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6.4.2 Decision Tables

A knowledge representation system [11] is a pair (U, A), where U is a universe and
A is a nonempty and finite set of attributes defined on U. In the context of rough
set approach, decision tables are constructed in terms of knowledge representation
systems as follows.

Let C, D ⊂ A be two disjoint subsets of attributes, called condition and deci-
sion attributes, respectively. The condition attributes generate the partitioning of the
universe U into classes of objects having identical values of attributes belonging
to C , thus forming the structure of approximation space on U . The corresponding
collection of elementary sets of this approximation space is denoted by U/C. Simi-
larly, the decision attributes D induce a structure of approximation space on U , with
U/D denoting its elementary sets. The knowledge representation systemwith defined
condition and decision attributes is called a decision table [11]. Decision tables fall
into two broad groups: deterministic decision tables and non-deterministic decision
tables.

Deterministic decision tables describe the functional relation between a set of
observations (inputs, conditions) and the corresponding decisions (outcomes). In
practice, deterministic decision knowledge is not always available. When only some,
but not all, decisions can uniquely be determined by combinations of attribute values,
the decision table is called non-deterministic. In a non-deterministic decision table,
the relationship between conditions and decisions is only partially functional.

Compared to the previous two types of decision tables, which are based on the
original rough set theory, a probabilistic decision table is developedwithin the frame-
work of the variable precision rough set theory. It contains some built-in probabilistic
measures to help in the process of decisionmaking or prediction in non-deterministic
cases.

When defining the probabilistic decision tables, we focus on elementary sets (our
target sets) of the decision attribute D, X ∈ U/D, of the partition generated by the
decision attributes.

For a given target set X , the probabilistic decision table can be defined as a
mapping associating each combination of condition attribute values, corresponding
to an elementary set E ∈ U/C, with a triple of values representing:

1. the unique designation of the rough approximation region (positive, negative, or
boundary region),

2. the respective values of the elementary set probability P(E), and
3. the conditional probability P(X |E).

In practice, when deriving a probabilistic decision table, the measures of P(E)

and P(X |E) are usually computed based on available data. An example probabilistic
decision table is shown in Table6.1. It should be noted at this point, that while prob-
abilistic decision tables are containing information about set approximation regions
of the variable precision rough set model, and consequently depend on the settings of
the parameters l and u, similar decision tables can be constructed based on Bayesian
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Table 6.1 Probabilistic decision table

Ei a1 a2 a3 Region P(Ei ) P(X |Ei )

E0 1 1 1 BND 0.0520 0.78

E1 1 1 0 NEG 0.1354 0.02

E2 1 0 1 POS 0.1562 0.99

E3 1 0 0 BND 0.1562 0.36

E4 0 1 1 NEG 0.1406 0.11

E5 0 1 0 BND 0.1093 0.41

E6 0 0 1 NEG 0.1562 0.27

E7 0 0 0 POS 0.0941 0.85

rough set model, using absolute approximation regions. Another related issue is that
the probabilistic decision tables can be structured into parent-child linear hierarchies,
in which a parent boundary region provides a basis to form an approximation space
for the child decision table [31]. In this way, the exponential growth of decision
tables caused by the increase in the number of attributes can be effectively controlled
without reducing the quality of rough approximations.

6.4.3 Classification Tables

An intermediate step leading to the probabilistic decision table is the creation of
the classification table, as illustrated in Table6.2. The classification table associates
combinations of condition attribute values, for each elementary set E ∈ U/C , with
a pair of corresponding P(E) and P(X |E) probability measures. In the example
Table6.2, the partitioning of U is obtained in terms of conditional attributes C =
{a1, a2, a3}, with the connected probabilistic measures. The information contained
in the classification table can then be used to build rough approximations of any
target set X ∈ U/D, based on pre-set values of the precision control lower and upper
limit parameters l and u.

Table 6.2 Classification table

Ei a1 a2 a3 P(Ei ) P(X |Ei )

E0 1 1 1 0.0520 0.78

E1 1 1 0 0.1354 0.02

E2 1 0 1 0.1562 0.99

E3 1 0 0 0.1562 0.36

E4 0 1 1 0.1406 0.11

E5 0 1 0 0.1093 0.41

E6 0 0 1 0.1562 0.27

E7 0 0 0 0.0941 0.85
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Once the approximation region of each elementary set E was determined, the
classification table can be converted into a probabilistic decision table. The creation
of the probabilistic decision table involves adding an extra column, technically of a
newdecision attribute calledRegion, tomark the approximation region designation of
each elementary set. The decision table created in that way is fully deterministic with
respect to the new Region decision attribute which is representing the corresponding
three approximation regions: POS, NEG and BND. This is illustrated in the example
probabilistic decision Table6.1, derived from the classification Table6.2, with l =
0.3 and u = 0.8.

6.5 Dependencies in Decision Tables

In this section, dependencies between attributes occurring in classification tables and
probabilistic decision tables are discussed. Specifically, our interest is in the depen-
dencies occurring between condition attributes C, or their subset, and the two-class
classification (X,¬X) formed by the target set X and its complement¬X . This clas-
sification is numerically represented in both classification and probabilistic decision
tables, by values of the conditional probability P(X |E). Technically, the columns
P(E) and P(X |E) can be treated as extra “attributes” associating some real values
with elementary sets of the classification generated by condition attributes. In par-
ticular, the attribute P(X |E) describes the distribution of the degrees of association
across different elementary sets E with the target set X . Consequently, it can be used,
in conjunction with the attribute P(E), for computing the overall degree of associa-
tion of the set of condition attributes, or of its subset, with the binary classification
of the universe U , as defined by the target set X and its complement ¬X .

In our research, we identified two dependencies, called γ—dependency and λ—
dependency, which provide useful measures for evaluating probabilistic decision
tables. They also provide criteria for decision table optimization through reduction
of redundant condition attributes.

6.5.1 Functional and Partial Functional Dependencies

Functional dependencies and partially functional dependencies between attributes
of decision tables were originally explored in [11]. We will refer to them as γ—
dependencies. They capture the quality of approximation of the target set X ∈ U/D
in terms of the elementary sets of the approximation space induced by condition
attributes. We generalize them within the framework of the VPRS model by defining
the γ—dependencies [33] as a relative size of the positive region of the two class
partition (X,¬X), subject to prior setting of the values of the control parameters l
and u:
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γl,u(X |C) = P(POSu(X |C) ∪ NEGl(X |C)), (6.19)

where POSu(X |C) and NEGl(X |C), respectively are positive and negative regions
of X in the approximation space induced on U by the set of condition attributes C .
This dependency measure reflects the proportion of objects in the universe U that
can be classified as members of the target set X, or a complement of the target set X,
with sufficient certainty, as given by the parameters l and u.

The γl,u(X |C) measure was inspired by the partial functional dependency mea-
sure γ(D|C) introduced by Pawlak [11], which is given as a fraction of objects of
the universe U that can be uniquely classified, based on their condition attributes
value combinations, as members of some classes of the decision attribute D. More
precisely, in the VPRS model terms:

γ(D|C) =
∑

F∈U/D

P(POS1(F |C)). (6.20)

The above measures play useful role in decision table analysis and reduction of
condition attributes.

6.5.2 λ—Dependency Measure

Another kind of dependency, unrelated to the the γ—dependencies measure and
conveying different kind of information, is a parametric λ—dependency, denoted as
λl,u(X |C) [33]. It captures the average, or expected degree of the probabilistic con-
nection between elementary sets E (E ∈ U/C) and the binary classification (X,¬X)

corresponding to the target set X and its complement¬X . The dependency is defined
as a normalized expected degree of deviation of the conditional probability P(X |E)

from the prior probability P(X):

λl,u(X |C) =

∑

E⊆POSu(X |C)∪NEGl (X |C)

P(E)|P(X |E) − P(X)|

2P(X)(1 − P(X))
, (6.21)

where 2P(X)(1−P(X)) is a normalization factor equal to the theoreticallymaximum
value of the numerator summation, achievable only when X is definable in Pawlak’s
rough set’s sense, independent of settings of the parameters l and u. The higher the
deviation, the stronger the probabilistic connection between conditional attributes
C and the decision partition (X,¬X), and vice versa, with the total probabilistic
independence occurring at λl,u(X |C) = 0.

In the framework of the Bayesian rough set model, the parametric λ—dependency
reduces to non-parametric λ—dependency defined as:
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λ(X |C) =

∑

E∈U/C

P(E)|P(X |E) − P(X)|

2P(X)(1 − P(X))
. (6.22)

The non-parametric λ—dependency λ(X |C) is a normalized expected degree of
deviation of the conditional probability P(X |E) from the prior probability P(X).
Themain practical advantage of the non-parametric λ—dependency is the absence of
any external parameters,whichmay be difficult to obtain, to compute the dependency.
Another useful advantage is its monotonicity with respect to condition attributes, as
explained in the next section.

6.6 λ—Dependency-Based Reduct

The application of idea of reduct, introduced by Pawlak [10, 11], allows for opti-
mization of representation of classification knowledge by providing a technique
for removal of redundant attributes. The concept of reduct generated considerable
amount of research interest, primarily as a method for feature selection [1, 2, 6, 8,
12–14, 16, 19–21, 23–25]. The general notion of reduct is applicable to the optimiza-
tion of classification tables and probabilistic decision tables. The following theorem
[13] demonstrates that the λ—dependency measure is monotonic, which means that
expanding the set of condition attributes B ⊆ C will not result in the decrease of the
dependency level λ(X |B).

Theorem 1 Let B ⊆ C be a subset of condition attributes on U and let “a” be any
condition attribute. Then the following relation holds:

λ(X |B) ≤ λ(X |B ∪ {a}). (6.23)

As a consequence of the Theorem, the notion of the probabilistic reduct of
attributes RED ⊆ C can be defined as a minimal subset of attributes preserving
the λ—dependency with the target classification (X,¬X).

The reduct satisfies the following two important properties:

λ(X |RED) = λ(X |C) (6.24)

and for any attribute a ∈ RED:

λ(X |RED − {a}) < λ(X |RED). (6.25)

The probabilistic reducts, called λ—reducts, can be computed using any methods
available for reduct computation in the framework of the Pawlak’s original rough
set approach, and in particular, a single λ—reduct can be easily computed from a
classification table using the following λ—Reduction algorithm:
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Algorithm 1 λ—Reduction:
Step 1: Let Initial Dependency ← λ(X |C);
Step 2: Arrange condition attributes a ∈ C in descending order based on the

degree of λ—dependency measure λ(X |{a});
Step 3: Starting with the attribute with the lowest λ—dependency degree and

proceeding in ascending order, perform the following two steps for all condition
attributes:

Step 3.1: Test the condition Initial Dependency = λ(X |C − {a});
Step 3.2: If Initial Dependency = λ(X |C − {a}) then eliminate the attribute a

from the set of condition attributes C ;
Step 4: The remaining set of condition attributes at the end of the process is a

λ—reduct of the initial collection of condition attributes.

In the above algorithm, the condition attributes with the weakest connection with
the target classification are eliminated first. Although this technique does not guar-
antee finding the shortest reduct, it appears to be a reasonable heuristic to find best
attributes in the reduct. It should also be noted that the λ—reduct, in general, does not
preserve the approximation regions of a target set X . This means that after computing
the λ—reduct of a condition attributes, the approximation regions of a probabilistic
decision table have to be re-computed again.

If the preservation of the approximation regions of a probabilistic decision table
is of interest, the reduction of condition attributes can be conducted using γ—
dependencies measure (Eq.6.19), which is also monotonic. In this case, any reduct,
referred to as γ—reduct, of condition attributes preserving the functional dependency
between the condition attributes and the attribute Region indicating the approxima-
tion region of each elementary set, can be computed. A single γ—reduct can be
identified using a variant of λ—Reduction algorithm, referred to as γ—Reduction
algorithm:

Algorithm 2 γ—Reduction:
Step 1 Let Initial Dependency ← 1;
Step 2 Arrange condition attributes a ∈ C in descending order based on the

degree of λ—dependency measure λ(X |{a});
Step 3 Starting with the attribute with the lowest λ—dependency degree and

proceeding in ascending order, perform the following two steps for all condition
attributes:

Step 3.1 Test the condition Initial Dependency = γ(Region|C − {a});
Step 3.2 If Initial Dependency = γ(Region|C −{a}) then eliminate the attribute

a from the set of condition attributes C ;
Step 4 The remaining set of condition attributes at the end of the process equals to

a γ—reduct of the initial collection of condition attributes of a probabilistic decision
table.
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6.7 Probabilistic Decision Rules

Once the attribute reduct was computed, corresponding classification and decision
tables can be formed based on the reduced set of condition attributes. Each row of
either of such tables is a probabilistic decision rule with probabilistic “confidence
factor” given by P(X |Ei ) attached to it. The “strength” of such a rule is given by the
fraction of “supporting” cases, that is, P(Ei ). For example, the row for the elementary
set E2 of the classification Table6.2, can be interpreted as a rule:

if (a1 = 1)∧(a2 = 0)∧(a3 = 1) then X with confidence = 0.99 and strength =
0.1562.

The rule of this kind gives the likelihood that a new object matching the rule’s
preconditions will belong to the target set X .

Similarly, the probabilistic rules can be computed from probabilistic decision
tables. In this case, the target set X is replaced by either positive, negative or boundary
regions. For example, the row for the elementary set E2 of the classification Table6.2,
can be interpreted as a rule:

if (a1 = 1) ∧ (a2 = 0) ∧ (a3 = 1) then POS with confidence = 0.99 and
strength = 0.1562.

This rule specifies the likelihood that a new object matching the rule’s precondi-
tions will belong to the positive region of the target set X . Clearly, these rules are
dependent on the settings of the precision parameters l and u.

If required, the rules based on the probabilistic decision tables can be further sim-
plified (or “generalized”, using machine learning terminology) by removing some
unnecessary attribute-value pairs from their preconditions, without affecting their
confidence factors. This objective can be accomplished by computing a value reduct
of attributes [11]. Value reduct was used in some machine learning algorithms based
on the rough set theory [31]. However, we will not elaborate more about this com-
prehensive topic in this chapter as it deserves another chapter of its own.

6.8 Significance of λ—Reduct Attributes

The λ—Reduct provides a method for computing fundamental factors of the λ—
dependency.

The attributes appearing in a λ—reduct can be evaluated with respect to their
contribution to the dependency with the target classification by adopting the notion
of a significance factor. The significance factor sigRED(a) of an attribute a ∈ RE D
is a relative decrease of the dependency λ(X|RED) caused by removal of the attribute
“a” from the reduct:

sigRED(a) = λ(X |RED) − λ(X |RED − {a})
λ(X |RED)

. (6.26)

Similarly, the significance of attributes in a probabilistic decision table can be
assessed within any γ—reduct, using the approach given above.
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6.9 λ—Core Collection of Attributes

As in the original rough set approach [11], one can easily identify the set of most
essential condition attributes with respect to the λ—dependency. These attributes,
called the λ—core, are the ones which would never be eliminated in the process of
any λ—Reduct computation. They are included in all λ—reducts i.e. their collection
is equal to the intersection of all λ—reducts.

Any core attribute {a} satisfies the following inequality:

λ(X |C) > λ(X |C − {a}). (6.27)

The above inequality demonstrates that there is no need to compute allλ—reducts,
which isNP-hard, to identify theλ—core as the core attributes can be found by simple
linear testing procedure.

As in the case of λ—core attributes, γ—core attributes can also be computed in
a probabilistic decision table with respect to the dependency γ(Region|C) by testing
the effect of removal of each condition attribute.

6.10 Final Remarks

The chapter reviews results of our long-term research on data dependencies, within
the frameworks of the variable precision and Bayesian rough set models, occur-
ring in approximation spaces and in both, classification and decision tables. These
probabilistic dependencies are defined based on the degrees of overlap between
sets. The primary dependency measures discussed in the chapter are γ—dependency
and λ—dependency. They generalize and expand the attribute functional and partial
functional dependency measures introduced by Pawlak [10, 11]. The applicability
of the measures to creation, analysis and optimization of classification and deci-
sion tables, via the concept of attribute reduct, was also discussed and two reduct
computation algorithms were presented. The variable precision rough set approach
was used inmany applications since its introduction in 1990s. To our best knowledge,
the most comprehensive application, involving the use of hierarchies of probabilistic
decision tables and the attribute dependencymeasures presented in this chapter, were
the experiments with face recognition [4]. It is our belief that the theory and meth-
ods presented in the chapter will find additional useful applications in areas dealing
with large amounts of data such as, for example, in medicine, pattern classification,
market analysis and prediction, machine learning and data mining in general, just to
mention a few areas where in our opinion this theory is applicable.
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Chapter 7
Structure-Based Attribute
Reduction: A Rough Set Approach

Yoshifumi Kusunoki and Masahiro Inuiguchi

Abstract We provide an introduction to a rough set approach to attribute
reduction. Analyzed data sets consist of objects which are described by attributes and
partitioned into decision classes. Rough set theory deals with uncertainty decision
classes with respect to attributes by approximating them to precise sets. The aim of
attribute reduction is to remove redundant attributes as well as find important ones
for classification. Several types of attribute reduction have been proposed especially
according to preserving structures of approximated decision classes. We introduce
definitions and theoretical results about structures-based attribute reduction.

Keywords Rough set model · Reduct · Boolean function · Structure-based reduct

7.1 Introduction

We provide an introduction to attribute reduction or feature selection based on rough
set theory [35, 36, 39]. Rough set theory approaches uncertainty or inconsistency
of membership for sets due to incomplete or granular information. In a rough set
approach for data analysis, data sets are usually given by decision tableswhich consist
of objects (items) described by attributes. Moreover, each object in decision tables is
classified into decision classes. Because of incompleteness of given attributes, some
objects are indiscernible to each other by the attributes, and that causes uncertainty
of decision classes. Such an uncertain decision class is approximated by two precise
sets, called lower and upper approximations. The difference of the upper and lower
approximations is called a boundary.
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One of the major topics for rough set based data analysis is (relative) attribute
reduction [37, 39]. Attribute reduction is a problem to delete redundant condition
(explanatory) attributes for the classification of the decision classes. Minimal sets
of attributes preserving a part of information of the classification are called reducts.
Reducts can be interpreted as important sets of attributes for the classification. Several
types of reducts have been proposed according to a part of the information which
should be preserved [23, 36, 43, 45]. Originally, Pawlak proposed reducts preserving
the positive region [36, 43],which is the union of all lower approximations of decision
classes, in other words, the set of all certainly classified objects. Ślȩzak proposed
ones preserving all boundaries of decision classes [45]. One of the authors also
proposed two types of reducts, which preserve all lower approximations and all
upper approximations of decision classes, and show that they are equivalent to reducts
preserving the positive region and all boundaries, respectively [23].

Inspired by the above studies, we provide a framework to discuss attribute reduc-
tion in the rough set theory. We regard attribute reduction as removing condition
attributes with preserving some part of the lower/upper approximations of the deci-
sion classes, because the approximations summarize the classification ability of the
condition attributes. Hence, we define several types of reducts according to structures
of the approximations [23, 24]. They are called “structure-based” reducts.

When several types of structure-based reducts are defined, we would be interested
in whether one reduct is stronger/weaker than another reduct, in other words, one
preserves more/less structure than the other. Therefore, we have investigated the
strong-weak relation among different types of structure-based reducts. As a result of
the investigation, we obtain a strong-weak hierarchy of structure-based reducts. The
strong-weak hierarchy is useful when we search the best reduct for an application,
because it provides a trade-off between the size (cost for precise classification) of a
reduct and its classification ability. It is an advantage of the variations of structure-
based reducts.

The rough set model is extended to apply to various kinds of data sets [12, 16,
22, 29, 38, 43, 47, 53, 54]. Two important extensions of the rough set model are
the variable precision rough set model [53, 54] and the dominance-based rough set
model [16]. The variable precision rough setmodel is a probabilistic extension.Given
precision parameters, requirements for lower and upper approximations are relaxed
to tolerate errors in decision tables. The dominance-based rough set model is applied
to decision tables with ordinal attributes, where decision classes are ordered and
monotonically depend on the ordinal attributes. It deals with inconsistency between
the classification of the ordinal decision classes and the monotonic dependence.
Instead of decision classes, upward unions and downward unions of decision classes
are approximated. In the extended rough set models, we have studied structure-based
reducts [20, 21, 25, 26, 31].

In the classical rough set model, it is well-known that reducts are associated
with prime implicants of a Boolean function [37, 43]. We can efficiently enumerate
reducts by converting it to enumerating prime implicants of the Boolean function.
Like that conversion, the methodology solving a problem by solutions of a Boolean
equation is called Boolean reasoning [37, 43]. In this chapter, we propose a unified
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formulation of several Boolean functions corresponding to several types of reducts
in the classical and extended rough set models.

In this chapter, we show our theoretical results of structure-based reducts in the
classical and extended rough set models, including definitions of reducts and their
strong-weak hierarchy. The results consist of our papers [20, 23, 25, 31]. Our main
contributions are to propose structure-based reducts, investigate strong-weak rela-
tions of reducts, and connect reducts with prime implicants of Boolean functions in a
unified formulation in the variable precision and dominance-based rough set models.
For the structure-based reducts in the variable precision rough set model, we revise
their definitions from our previous work [20]. Parts of the results were independently
developed by other authors [33, 45, 49, 52].

This chapter is organized as follows. In Sect. 7.2, we study structure-based reducts
in the classical rough set models. Firstly, we define a decision table and the rough set
model of the decision table. Then, we introduce several types of reducts including
structure-based reducts and others. We show that all types of reducts are reduced to
two different types. Finally, we connect all reducts of each type with the prime
implicants of a specific Boolean function. Sections7.3 and 7.4 are devoted to
structure-based reducts in the variable precision rough set model and those in the
dominance-based rough setmodel, respectively. Those sections have almost the same
organization as that of Sect. 7.2, namely, defining a rough set model and reducts,
investigating strong-weak relations of reducts, and connecting reducts with prime
implicants of Boolean functions. Concluding remarks are given in Sect. 7.5.

7.2 Structure-Based Attribute Reduction in Rough Set Models

7.2.1 Decision Tables

In rough set theory, analysed data sets form decision tables [36, 39]. A decision
table is defined by D = (U, AT = C ∪ {d}, {Va}a∈AT ).1 U is a finite set of objects.
AT is a finite set of attributes. V is a set of attribute values. Each attribute a ∈ AT
is a function a : U → Va , where Va ⊆ V is a set of values for a. For an object
u ∈ U and an attribute a ∈ AT , a(u) is the value of u with respect to a. For A =
{ai1 , ai2 , . . . , aik } ⊆ AT , VA is theCartesian product of {Vail

}l=1,2,...,k , namely, VA =
Πail∈AVail

= {(vi1, vi2 , . . . , vik ) | vil ∈ Vail
, l = 1, 2, . . . , k}. A(u) is the tuple of

the values of u with respect to A, namely, A(u) = (ai1(u), ai2(u), . . . , aik (u)). The
attribute set AT is divided into a condition attribute set C and a decision attribute d
to investigate the dependency of the decision attribute on condition attributes or
the causal effect of condition attributes on the decision attribute. Throughout this
chapter, we consider that the objects and the condition attributes are indexed by

1 A decision table is often defined by the finite set of objects U and the finite set of attributes AT ,
i.e., (U, AT), however we use that definition to clarify the sets of values for the attributes.
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U = {u1, u2, . . . , un} and C = {c1, c2, . . . , cm}, where n = |U | and m = |C |.
Moreover, we define the decision attribute values as Vd = {1, 2, . . . , p}.
Remark 1 Decision tables are identical to data sets or data tables for the classifi-
cation problem or the supervised learning in the data mining or machine learning
literature, in which condition attributes are called attributes or independent variables,
the decision attribute is a class attribute or dependent variable, and objects are tuples
or samples. In that literature, each object is given by a tuple of attribute values with
a class label (decision attribute value). However, we use the form of decision tables
in this chapter by two reason. One is that we often deal with subsets of the attributes,
so we prefer to let the symbols of the attributes be explicit. The other is to emphasise
the view that a relation (e.g. the equivalence relation) on the object set is induced
from a structure of the attribute value space (e.g. equivalence of values) through the
attributes (functions).

Example 1 Consider a decision table D = (U, C ∪ {d}, {Va}) about car evaluations
in Table7.1, where U = {u1, u2, . . . , u7}, C = {Pr,Ma,Sa} and d = Ev. The
attribute value sets are given by VPr = VMa = VSa = {low,med, high}, VEv =
{unacc, acc, good}. Condition attributes Pr, Ma, and Sa indicate price, maintenance
cost, and safety of a car, respectively, by values high, med (medium), and low.
Decision attribute Ev means evaluation of a car by some customer(s).

The value of u1 with respect to Pr is Pr(u1) = high, and that of u2 with respect
to Ev is Ev(u2) = unacc. The value tuple of u4 with respect to C = {Pr,Ma,Sa} is
C(u4) = (med, high, low).

Given an attribute subset A ⊆ AT , we define an indiscernibility relation on U
with respect to A, denoted by RA, as follows:

RA = {(u, u′) ∈ U 2 | a(u) = a(u′), for any a ∈ A}.

RA is the set of the object pairs each of which is indiscernible by the given attributes
A. Obviously, RA is an equivalence relation, which is reflexive, symmetric, and
transitive. From RA, we define the equivalence class of an object u ∈ U , denoted by
RA(u), as follows:

RA(u) = {u′ ∈ U | (u′, u) ∈ RA}.

Table 7.1 Decision table of
car evaluations

Car Pr Ma Sa Ev

u1 High High Low Unacc

u2 Med Med Med Unacc

u3 Med Med Med Acc

u4 Med High Low Acc

u5 Med Med High Acc

u6 Med Med High Good

u7 Low Med Med Good
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RA(u) is the set of objects which have the same values as u for all attributes in A. We
denote the set of all equivalence classes with respect to RA by U/RA = {RA(u) |
u ∈ U }. Every equivalence class with respect to the decision attribute d is called a
decision class. For each value of the decision attribute i ∈ Vd , we define the corre-
sponding decision class Xi = {u ∈ U | d(u) = i}. Clearly,X = {X1, X2, . . . , X p}
forms a partition of U .

Example 2 RememberD = (U, C∪{d}, {Va}) in Table7.1. Let A = {Pr,Ma} be an
attribute subset. The discernibility relation RA is described as the following matrix.
Symbol ∗ indicates that the corresponding object pair ui and u j is in the discernibility
relation, i.e., (ui , u j ) ∈ RA.

u1 u2 u3 u4 u5 u6 u7

u1 ∗
u2 ∗ ∗ ∗ ∗
u3 ∗ ∗ ∗ ∗
u4 ∗
u5 ∗ ∗ ∗ ∗
u6 ∗ ∗ ∗ ∗
u7 ∗
From the matrix, we can easily see that the equivalence classes by RA form a

partition of U , namely, U/RA = {{u1}, {u4}, {u7}, {u2, u3, u5, u6}}.
The decision classes of the decision table D are obtained as Xunacc = {u1, u2},

Xacc = {u3, u4, u5}, Xgood = {u6, u7}.

7.2.2 Rough Set Models

Let A be a subset of the attribute set AT and X be a subset of the object set U .
When X can be represented by a union of elements in U/RA, we can say that the
classification by X is consistent with the information of A. Such subsets of objects are
called definable setswith respect to A. On the other hand, considering an object subset
X which cannot be represented by any union of elements in U/RA, the classification
of X is inconsistent with A. The classical Rough Set Model (RSM) [35, 36, 39]
deals with the inconsistency by two operators for object sets, called lower and upper
approximations. For A ⊆ AT and X ⊆ U , the lower approximation LAA(X) and
the upper approximation UAA(X) of X with respect to A is defined by:

LAA(X) = {u ∈ U | RA(u) ⊆ X},
UAA(X) = {u ∈ U | RA(u) ∩ X 	= ∅}.

The difference between UAA(X) and LAA(X) is called the boundary of X with
respect to A, which is defined by:

BNA(X) = UAA(X) \ LAA(X).
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LAA(X) is interpreted as the set of objects which are certainly classified to X in
view of A. While, UAA(X) is the set of objects which are possibly classified to X in
view of A. BNA(X) is a set of objects whose membership to X is doubtful.

The approximations are a definable set with respect to A, where a definable set
with respect to A is a set defined by the union of elements in U/RA:

LAA(X) =
⋃

RA(u)⊆X

RA(u) =
⋃

u∈LAA(X)

RA(u),

UAA(X) =
⋃

RA(u)∩X 	=∅
RA(u) =

⋃

u∈UAA(X)

RA(u).

The boundary is necessarily definable because U/RA is the partition of U .
In fact, LAA(X) and UAA(X) are “lower” and “upper” approximations of Xi :

LAA(X) ⊆ X ⊆ UAA(X). (7.1)

By the above inclusion relations and the definition of the boundary, it holds that

LAA(X) = X \ BNA(X), (7.2)

UAA(X) = X ∪ BNA(X). (7.3)

For B ⊂ A ⊆ AT , we have,

LAB(X) ⊆ LAA(X) and UAB(X) ⊇ UAA(X). (7.4)

When B is included in A, the approximations with respect to B are coarser that
those with respect to A. It means that dropping some attributes, i.e., information,
decline the accuracy of RSM.

So far, we have defined approximations of X from the lower and upper definable
sets. We can approximate the partition X and U \ X by three definable sets. They
are called positive, boundary, and negative regions of X with respect to A, denoted
by POSA(X), BNDA(X), and NEGA(X), respectively:

POSA(X) =
⋃

{E ∈ U/RA | E ⊆ X},
BNDA(X) =

⋃
{E ∈ U/RA | E ∩ X 	= ∅ and E ∩ U \ X 	= ∅},

NEGA(X) =
⋃

{E ∈ U/RA | E ⊆ U \ X}.

POSA(X) is the union of elements in U/RA which are completely included in X ,
while NEGA(X) is the union of elements in U/RA which are completely excluded
from X . BNDA(X) is the union of the rest of elements in U/RA. Clearly, POSA(X),
BNDA(X), and NEGA(X) form a partition of U . We can easily see the following
correspondence:
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POSA(X) = LAA(X),

BNDA(X) = BNA(X),

NEGA(X) = U \ UAA(X).

In the rest of this section, we consider RSM for decision tables, namely, we only
deal with approximations of decision classes X = {X1, X2, . . . , X p} with respect
to subsets of condition attributes A ⊆ C .

Example 3 Remember the decision classes Xunacc = {u1, u2}, Xacc = {u3, u4, u5}
and Xgood = {u6, u7} of the decision table in Table7.1. The lower and upper approx-
imations with respect to C of Xunacc, Xcc and Xgood are obtained as follows:

LAC (Xunacc) = {u1}, UAC (Xunacc) = {u1, u2, u3},
LAC (Xacc) = {u4}, UAC (Xacc) = {u2, u3, u4, u5, u6},
LAC (Xgood) = {u7}, UAC (Xgood) = {u5, u6, u7}.
We can see that LAC (Xi ) ⊆ Xi ⊆ UAC (Xi ) for each i = unacc, acc, good.

Moreover, we can also see that each approximation is the union of equivalence
classes included in the approximation, e.g., UAC (Xacc) = {u2, u3}∪{u4}∪{u5, u6}.

We reduce condition attributes to A = {Pr}. The approximations become:

LAA(Xunacc) = {u1}, UAA(Xunacc) = {u1, u2, u3, u4, u5, u6},
LAA(Xacc) = ∅, UAA(Xacc) = {u2, u3, u4, u5, u6},
LAA(Xgood) = {u7}, UAA(Xgood) = {u2, u3, u4, u5, u6, u7}.
The approximations with respect to A are coarser than those with respect to C ,

namely, LAA(Xi ) ⊆ LAC (Xi ) and UAA(Xi ) ⊇ UAC (Xi ) for each
i = unacc, acc, good.

For every Xi , the lower approximation LAA(Xi ) and the boundary BNA(Xi )

can be represented using all upper approximations of decision classes UAA(X1),
UAA(X2), . . . ,UAA(X p):

LAA(Xi ) = UAA(Xi ) \
⋃

j∈Vd\{i}
UAA(X j ), (7.5)

BNA(Xi ) = UAA(Xi ) ∩
⋃

j∈Vd\{i}
UAA(X j ). (7.6)

All upper approximations form a cover of U :

U =
⋃

i∈Vd

UAA(Xi ). (7.7)

A positive region with respect to A ⊆ C is also defined for the decision attribute
d or equivalently for the decision table D. It is the union of all positive regions of
decision classes, i.e., the set of objects which are certainly classified to exactly one
of the decision classes:
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POSA(d) =
⋃

i∈Vd

POSA(Xi ).

A generalized decision function [1, 45] with respect to A ⊆ C , denoted by
∂A : U → 2Vd , provides a useful representation of RSM. For u ∈ U , ∂A(u) is a set
of decision attribute values or decision classes to which u is possibly classified:

∂A(u) = {i ∈ Vd | Xi ∩ RA(u) 	= ∅}.

The generalized decision function gives an object-wise view of RSM. The lower
and upper approximations can be expressed by the generalized decision function:

LAA(Xi ) = {u ∈ U | ∂A(u) = {i}},
UAA(Xi ) = {u ∈ U | ∂A(u)  i}.

Because ∂A(u) is defined based on RA(u), we have

∂A(u) = ∂A(u′) if (u, u′) ∈ RA,

and because each object u is included in at least one upper approximation, we have

∂A(u) 	= ∅.

The monotonic property of upper approximations is represented as:

B ⊆ A ⇒ ∂B(u) ⊇ ∂A(u) for all u ∈ U.

Example 4 Remember D = (U, C ∪ {d}, {Va}) in Table7.1. The generalized deci-
sion function ∂C is obtained as follows.

∂C (u1) = {unacc}, ∂C (u2) = ∂C (u3) = {unacc, acc},
∂C (u4) = {acc}, ∂C (u5) = ∂C (u6) = {acc, good},
∂C (u7) = {good}.
For A ⊆ C , a quality of classification (or quality of approximation) of the decision

attribute d with respect to A is defined by:

γA(d) = |POSA(d)|
|U | . (7.8)

It measures to what degree objects are correctly classified by RSM.
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7.2.3 Reducts in Rough Set Models

7.2.3.1 Preserving Positive Region, Quality, and Generalized Decisions

Attribute reduction is to find important subsets of condition attributes by dropping
as many as possible other condition attributes while preserving some specific infor-
mation of RSM for a decision table D. A minimal subset of condition attributes
preserving the information is called a relative (or decision) reduct. In this chapter,
we call it “reduct” for short. Reducts are originally defined to preserve the positive
region POSC (d) [36, 43].

Definition 1 ([36, 43]) A reduct is a minimal condition attribute subset A ⊆ C
satisfying the following condition:

POSA(d) = POSC (d). (P)

Here, the minimality is defined in terms of the set inclusion, i.e., there is no proper
subset A′ ⊂ A satisfying (P).

A condition attribute subset A satisfying (P) preserves the information of the
certain classification in the decision table. Generally, there exist more than one reduct
in a decision table. The intersection of all reducts is called the core. Every element in
the core is an essential condition attribute to preserve the information of POSC (d).
The core can be empty. On the other hand, the condition attributes which do not
belong to any reducts can be dropped without deterioration of the information. We
call the original reduct a P-reduct.

Remark 2 Condition (P) is monotonic with respect to the set inclusion of condition
attributes, i.e., for A′ ⊆ A ⊆ C we have POSA′(d) = POSC (d) implies POSA(d) =
POSC (d). Hence, the above minimality condition for A is equivalent to that there is
no condition attribute a ∈ A such that A \ {a} satisfies (P).
Example 5 Remember D = (U, C ∪ {d}, {Va}) in Table7.1. The set of all condition
attributesC obviously satisfies condition (P), but it is not a P-reduct because a proper
subset A = {Pr,Ma} satisfies (P). On the other hand, A is a P-reduct because all of
proper subsets of A do not preserve the positive region: POS{Pr}(d) = {u1, u7} and
POS{Ma}(d) = POS∅(d) = ∅.

We can define another kind of reducts preserving the quality of classification
[23, 39, 40].

Definition 2 ([40]) A Q-reduct is a minimal condition attribute subset A ⊆ C
satisfying the following condition:

γA(d) = γC (d). (Q)
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Clearly, condition (P) implies (Q). In RSM, the inverse is also true, because the
monotonic property of POS(d) holds, namely, for A′ ⊆ A, POSA′(d) ⊆ POSA(d).
We also call Q-reducts measure-based reducts, because it preserves a predefined
measure for information of RSM.

Bazan et al. [1] and Ślȩzak [45] proposed reducts preserving the generalized
decision function ∂ .

Definition 3 ([1, 45]) A G-reduct is a minimal condition attribute subset A ⊆ C
satisfying the following condition:

∂A(u) = ∂C (u) for all u ∈ U. (G)

As shown in the next section, condition (G) implies (P).

7.2.3.2 Structure-Based Reducts

Structure-based reducts, proposed by one of the authors [20, 23], are defined to pre-
serve families of object sets (structures) which are composed of lower and upper
approximations, or positive, boundary, and negative regions. Hence, reducts of con-
dition (P) can be seen as structure-based.

Now, we introduce structure-based reducts proposed in [23]. First, we define a
reduct preserving all lower approximations. The preservation of the lower approxi-
mations implies the sustenance of certain classification ability.

Definition 4 ([23]) An L-reduct is a minimal condition attribute subset A ⊆ C
preserving the following condition:

LAA(Xi ) = LAC (Xi ) for all i ∈ Vd . (L)

Clearly, condition (L) implies (P) as well as (Q). In RSM, the inverse is also
true, because the lower approximations LA(Xi ), i = 1, 2, . . . , p have the empty
intersection with each other, and they are monotonically decreasing with respect to
the set inclusion of condition attributes.

However, even if we preserve lower approximations LAC (Xi ), i = 1, 2, . . . , p,
we may lose the information of boundaries BNA(Xi ), i = 1, 2, . . . , p and the infor-
mation of upper approximations UAA(Xi ), i = 1, 2, . . . , p.

Ślȩzak [45] proposed a type of reducts preserving all boundaries.

Definition 5 ([45]) A B-reduct is a minimal condition attribute subset A ⊆ C pre-
serving the following condition:

BNA(Xi ) = BNC (Xi ) for all i ∈ Vd . (B)

The preservation of boundaries implies the protection against uncertainty expan-
sion. Ślȩzak [45] also showed that condition (B) is equivalent to (G). Hence, we have
that a B-reduct is a G-reduct and vice versa.

On the other hand, we proposed a reduct preserving all upper approximations [23].
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Definition 6 ([23]) A U-reduct is a minimal condition attribute subset A ⊆ C
preserving the following condition:

UAA(Xi ) = UAC (Xi ) for all i ∈ Vd . (U)

By definition, the classification ability of the upper approximations is equal to
that of the generalized decision function. Hence, condition (U) is equivalent to (G),
and we have that a U-reduct is a G-reduct and vice versa.

From Eqs. (7.2) and (7.5), we know that lower approximations are obtained from
upper approximations as well as from boundaries. This fact implies that each of the
preservation of all upper approximations or the preservation of all boundaries entails
the preservation of all lower approximations.

To sum up the above discussion, we have the next theorem.

Theorem 1 ([23, 45]) Let A be a subset of C. We have the following statements.

(a) A is a Q-reduct if and only if A is an L-reduct.
(b) A is a P-reduct if and only if A is an L-reduct.
(c) A is a G-reduct if and only if A is a U-reduct.
(d) A is a B-reduct if and only if A is a U-reduct.
(e) A is a U-reduct as well as B-reduct, then A satisfies condition (L).

All statements in the theorem can be easily proved by the equations which
appeared in Sect. 7.2.2. For example, to prove Theorem 1(d), we show that pre-
serving all boundaries implies preserving all upper approximations by Eq. (7.3), and
show the converse by Eq. (7.6).

From Theorem 1(e), if A is a U-reduct then there exists an L-reduct B ⊆ A. Note
that the converse is not always true, i.e., for an L-reduct B, there is no guarantee that
there exists a U-reduct A ⊇ B.

The relations of 6 types of reducts are depicted in Fig. 7.1. Reducts located in
the upper part of the figure preserve regions much more. Therefore, such reducts are
larger in the sense of the set inclusion than the other reducts located in the lower part.
A line segment connecting two types of reducts implies that, for each reduct of the
upper type say A satisfies the preserving condition of the reduct of the lower one.
From the figure, we know that there are 2 different types of reducts: U-reducts and
L-reducts, and U-reducts are stronger than L-reducts.

Remark 3 As shown in Theorem 1, the six types of reducts are reduced to two types.
However, it is important to define all possible types of reducts and organize them
because of two reasons. One is that when we should mention different definitions of

Fig. 7.1 Strong-weak
hierarchy of 6 types of
reducts in RSM

strong

weak
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reducts (e.g. different authors would give different definitions), we can easily quote
the equivalent of them from here. The other is that equivalent reducts (e.g. U-reducts
and B-reducts) in RSM could become different in an extended RSM (e.g. variable
precision RSM).

Remark 4 From the discussion above, we know that a U-reduct preserves more
information than an L-reduct. However, when p = 2, we have the following relation:

UAA(X1) = U \ LAA(X2), UAA(X2) = U \ LAA(X1).

Namely, we obtain upper approximations from lower approximations. Hence, in that
case, an L-reduct is a U-reduct.

Remark 5 From Theorem 1, we see that preserving the measure γ is equivalent to
preserving the lower approximations. Contrary, we can define a measure preserving
which is equivalent to preserving the upper approximations. For example [23], we
define,

σA(d) =
∑

i∈Vd
|U \ UAA(Xi )|

(p − 1)|U | ,

then σA(d) = σC (d) is same as condition (U).

7.2.4 Boolean Functions Representing Reducts

Boolean reasoning [37] is a methodology where solutions of a given problem is
associated with those of Boolean equations. In this section, we develop positive
(monotone) Boolean functions whose solutions are given by condition attribute sub-
sets satisfying the preserving conditions (L) or (U). Moreover, prime implicants of
the Boolean functions exactly correspond to L-reducts or U-reducts. The Boolean
functions are useful for enumerating reducts.

The results of this section are well-known and appeared in many papers e.g. [1,
43, 45, 50], but in slightly different expressions from ours. A unified formulation
of Boolean functions of different types of reducts is provided using the generalized
decision function.

Here, we briefly introduce Boolean functions and Boolean formulas [9, 14]. Let
q be a natural number. A Boolean function is a mapping f : {0, 1}q → {0, 1}, where
w ∈ {0, 1}q is called a Boolean vector whose i th component is wi . Let x1, x2, . . . , xq

be Boolean variables. A Boolean formula in the Boolean variables x1, x2, . . . , xq is
a composition of 0, 1, the variables and operators of conjunction ∧, disjunction ∨,
complementation ·, such as x1 ∧ (x2 ∨ x3), (x1 ∧ x2) ∨ x3, and so on (for complete
definition, see e.g. [9]). The Boolean formula is a Boolean function of the variables
x1, x2, . . . xq . Conversely, any Boolean function can be expressed by a Boolean
formula. For two Boolean functions f and g, g ≤ f means that f and g satisfy
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g(w) ≤ f (w) for all w ∈ {0, 1}q , and g < f means that g ≤ f and g 	= f . A
Boolean function f is positive or monotone, if w ≤ w′ implies f (w) ≤ f (w′) for
all w, w′ ∈ {0, 1}q .

Boolean variables x1, x2, . . . and the complements x1, x2, . . . are called literals.
A clause (resp., term) is a disjunction (resp., conjunction) of at most one of xi and xi

for each variable. The empty disjunction (resp., conjunction) is denoted by⊥ (resp.,
�). A clause c (resp., term t) is an implicate (resp., implicant) of a function f , if
f ≤ c (resp. t ≤ f ). Moreover, it is prime if there is no implicate c′ < c (resp.,
no implicant t ′ > t) of f . A conjunction normal form (CNF) (resp., disjunction
normal form (DNF)) of a function f is a Boolean formula of f which is expressed
by a conjunction of implicates (resp. disjunction of implicants) of the function, and
it is prime if all its members are prime. The complete CNF (resp. DNF) of f is the
conjunction of all prime implicates (resp. disjunction of all prime implicants) of f .
When f is positive, there is the unique CNF (resp. DNF) of f which is the complete
CNF (resp. DNF) of f .

First, we associate conditions (L) (or (P)) and (U) (or (B)) with the conditions
of the generalized decision function. As mentioned in the previous section, condi-
tion (U) is equivalent to (G).

Lemma 1 ([23, 50]) Let A be a subset of C. We have the following statements.

• Condition (L) is equivalent to:

∂A(u) = ∂C (u) for all u ∈ U such that |∂C (u)| = 1. (LG)

• Condition (U) is equivalent to (G), i.e.,

∂A(u) = ∂C (u) for all u ∈ U. (G)

The next lemma is the heart of theBoolean reasoning,which connects two notions:
“preserving” and “discerning”.

Lemma 2 For u ∈ U, the following assertions are equivalent.

• ∂A(u) = ∂C (u).
• ∀u′ ∈ U, (∂C (u′) 	= ∂C (u) ⇒ ∃a ∈ A, (u′, u) 	∈ R{a})

Hence, to preserve the generalized decision of an object u, we should discern u
from other objects u′ having different generalized decisions from that of u.

Using Lemmas 1 and 2, we define two Boolean formulas, called discernibility
functions. First, we define a discernibility matrix by M = (mi j )i, j=1,2,...,n , where
i j-entry mi j is a set of condition attributes which discern objects ui and u j ,

mi j = {c ∈ C | c(ui ) 	= c(u j )}.

Then, we define discernibility functions.
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Definition 7 Discernibility functions FU and FL are defined as follows:

FU(c̃1, . . . , c̃m) =
∧

i, j |∂C (u j ) 	=∂C (ui )

∨

c∈mi j

c̃,

FL(c̃1, . . . , c̃m) =
∧

i | |∂C (ui )|=1

∧

j |∂C (u j ) 	=∂C (ui )

∨

c∈mi j

c̃,

where c̃i is a Boolean variable corresponding to i th condition attribute ci .

For A ⊆ C , we consider a Boolean vector c̃A = (c̃A
1 , . . . , c̃A

m), where,

c̃A
i =

{
1 if ci ∈ A,

0 if ci 	∈ A.

Let FU(c̃A) = 1. Then, for each pair ui and u j such that ∂C (ui ) 	= ∂C (u j ),
the intersection of A and mi j should not be empty by the definition of FU. By
Lemma 2, in that case, ∂A(u) = ∂C (u) for each u holds. We have the simi-
lar consequence when FL(c̃A) = 1. Therefore, the following theorem holds. Let
φA = ∧{c̃|c ∈ A}.
Theorem 2 ([43, 45, 50])Let A be a subset of C. We have the following equivalences:

• A satisfies (G), i.e., (U) if and only if FU(c̃A) = 1. Moreover, A is a U-reduct in
RSM if and only if φA is a prime implicant of FU,

• A satisfies (LG), i.e., (L) if and only if FL(c̃A) = 1. Moreover, A is an L-reduct
in RSM if and only if φA is a prime implicant of FL.

Definition 7 shows CNFs of FU and FL. The prime CNFs of the functions can be
easily obtained. Because the functions are positive, the prime implicants of the prime
DNF of each function are all of the prime implicants of the function. Therefore, all
reducts of each type appear in the prime DNF of the corresponding function. The
problem which converts the prime CNF of a positive Boolean function to its prime
DNF is called the dualization problem [14]. We show an example for enumerating
reducts by solving the dualization problems of the discernibility functions.

Example 6 Remember the decision table D = (U, C ∪ {d}, {Va}) in Table7.1. In
Table7.2, we show again the decision table D with the generalized decision func-
tion ∂C .

The discernibility matrix is obtained as below. Sign ∗ attached to objects ui means
that the generalized decision of ui is a singleton, or equivalently, ui is in the positive
region POSC (d).
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Table 7.2 The decision
table in Table7.1 with the
generalized decision function

Car Pr Ma Sa Ev ∂C

u1 High High Low Unacc {unacc}

u2 Med Med Med Unacc {unacc, acc}

u3 Med Med Med Acc {unacc, acc}

u4 Med High Low Acc {acc}

u5 Med Med High Acc {acc, good}

u6 Med Med High Good {acc, good}

u7 Low Med Med Good {good}

u1 u2 u3 u4 u5 u6 u7

u∗1 ∅ C C {Pr} C C C
u2 C ∅ ∅ {Ma,Sa} {Sa} {Sa} {Pr}
u3 C ∅ ∅ {Ma,Sa} {Sa} {Sa} {Pr}
u∗4 {Pr} {Ma,Sa} {Ma,Sa} ∅ {Ma,Sa} {Ma,Sa} C
u5 C {Sa} {Sa} {Ma,Sa} ∅ ∅ {Pr,Sa}
u6 C {Sa} {Sa} {Ma,Sa} ∅ ∅ {Pr,Sa}
u∗7 C {Pr} {Pr} C {Pr,Sa} {Pr,Sa} ∅
The discernibility functions FL and FL for the decision table are calculated as:

FL(P̃r, M̃a, S̃a) =
∧

i=1,4,7

∧

j 	=i

∨

c∈mi j

c̃ = (P̃r) ∧ (M̃a ∨ S̃a) = (P̃r ∧ M̃a) ∨ (P̃r ∧ S̃a),

FU(P̃r, M̃a, S̃a) =
∧

i, j |i 	= j,(i, j) 	=(2,3),(3,2),(5,6),(6,5)

∨

c∈mi j

c̃ = (P̃r) ∧ (S̃a) = (P̃r ∧ S̃a).

Therefore, there are two L-reducts {Pr, Ma} and {Pr, Sa}, and one U-reduct {Pr, Sa}.
In this case, we would select the U-reduct {Pr, Sa}, because we obtain the same

size of reducts even if we select the other L-reduct.

7.3 Structure-Based Attribute Reduction in Variable
Precision Rough Set Models

7.3.1 Rough Membership Function

The reason why decision tables are inconsistent is not only lack of knowledge (con-
dition attributes) related to the decision attribute but also noise in observation of
attribute values. In the latter case, the classical RSMwould not be very useful because
it does not permit any errors in the classification of objects into the lower approxi-
mations.
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To overcome such shortcoming of the classical RSM, the variable precision rough
set model (VPRSM) was proposed [53, 54]. Let D = (U, AT = C ∪ {d}, {Va}a∈AT )

be a decision table. In definitions of lower and upper approximations in VPRSM,
the following rough membership function of an object u with respect to an object set
X ⊆ U and an attribute set A ⊆ AT plays an important role:

μA
X (u) = |RA(u) ∩ X |

|RA(u)| .

The valueμA
X (u) gives the degree to which the object u belongs to the set X under

the attribute set A. It can be interpreted as the conditional probability of u ∈ X under
u ∈ RA(u).

Because the rough membership function of an object is defined based not on
the object but its equivalence class, we define a rough membership function of an
equivalence class E ∈ U/RA for X :

μX (E) = |E ∩ X |
|E | .

An important property of the function is that given two equivalence classes
E, E ′ ∈ U/RA the rough membership of the union E ∪ E ′ falls between those
of E and E ′, namely,

min{μX (E), μX (E ′)} ≤ μX (E ∪ E ′) ≤ max{μX (E), μX (E ′)}. (7.9)

7.3.2 Variable Precision Rough Set Models

Given precision parameters 0 ≤ β < α ≤ 1, lower and upper approximations of X
with respect to A in VPRSM are defined as:

LAα
A(X) = {u ∈ U | μA

X (u) ≥ α},
UAβ

A(X) = {u ∈ U | μA
X (u) > β}.

The boundary of X is defined by BNα,β
A (X) = UAβ

A(X) \LAα
A(X). When α = 1

and β = 0, the approximations of X are the same as those of the classical RSM.
LAα

A(X) is the set of objects whose degrees of membership to X are not less than α.

On the other hand, UAβ
A(X) is the set of objects whose degrees of membership to X

are more than β. In this chapter, we restrict our discussion to the situation that α =
1− β and β ∈ [0, 0.5). Under that situation, we have the dual property LAα

A(X) =
U \UAβ

A(U \X), becauseμA
X (u) = 1−μA

U\X (u). We call β an admissible error rate.

We denote LA1−β
A (X) and BN1−β,β

A (X) by LAβ
A(X) and BNβ

A(X), respectively.
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Differently from (7.1) of RSM, we do not always have LAβ
A(X) ⊆ X and

UAβ
A(X) ⊇ X . However, we have

LAβ
A(X) ⊆ UAβ

A(X), (7.10)

because 1− β > β when β < 0.5. Moreover, we also have

LAβ
A(X) ∩ LAβ

A(X ′) = ∅, (7.11)

for any disjoint subsets X, X ′ ⊆ U , X ∩ X ′ = ∅, because β < 0.5. Because the
inclusion relation of (7.10), each of the lower and upper approximations, and the
boundary is represented by the other two sets:

UAβ
A(X) = LAβ

A(X) ∪ BNβ
A(X),

LAβ
A(X) = UAβ

A(X) \ BNβ
A(X).

Themonotonic property (7.4) does not hold either. It causes difficulties of defining
and enumerating reducts in VPRSM.

We can define positive, boundary, and negative regions in the same manner of the
classical RSM:

POSβ
A(X) =

⋃
{RA(u) | μA

X (u) ≥ 1− β},
BNDβ

A(X) =
⋃

{RA(u) | μA
X (u) ∈ [β, 1− β)},

NEGβ
A(X) =

⋃
{RA(u) | μA

X (u) > β}.

Clearly, we have,

POSβ
A(X) = LAβ

A(X),

BNDβ
A(X) = BNβ

A(X),

NEGβ
A(X) = U \ UAβ

A(X).

In the rest of this section, we consider VPRSM under a decision table D =
(U, C ∪ {d}, {Va}). For each decision attribute value i ∈ Vd , the decision class
Xi = {u ∈ U | d(u) = i}. The set of all decision classes are denoted by X =
{X1, X2, . . . , X p}.
Example 7 Consider a decision table D = (U, C ∪ {d}, {Va}) given in Table7.3.
The decision table composed of 40 objects with a condition attribute set C =
{c1, c2, c3, c4} and a decision attribute d. Each condition attribute takes a value bad
or good, i.e., Vci ={bad, good} for i = 1, 2, 3, 4. The decision attribute takes one
of three values: Vd ={bad, medium, good}. Then there are three decision classes
Xb, Xm and Xg whose objects take decision attribute value bad, medium and good,
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Table 7.3 An example of
decision table

c1 c2 c3 c4 d : (b, m, g)

P1 Good Good Bad Good (0, 2, 9)

P2 Good Good Good Bad (0, 19, 1)

P3 Bad Good Bad Good (1, 1, 2)

P4 Bad Bad Bad Good (0, 1, 1)

P5 Good Bad Good Good (1, 1, 1)

respectively. In Table7.3, objects are classified into 5 groups P1, P2, . . . , P5 by the
condition attributes C . For example, group P1 is composed of objects having a con-
dition attribute tuple (c1, c2, c3, c4) = (good, good, bad, good)∈ VC . The number
of objects in each class in each group is shown in column d : (b, m, g) in Table7.3.
For example, (0,2,9) of group P1 means that no object is in class Xb, 2 objects are
in class Xm and 9 objects are in class Xg.

The rough membership of an object u in each group Pi to each class Xk with
respect to C is the number of objects in Pi and Xk divided by the number of objects
in Pi . For example, μC

Xb
(P1) = 0/(0 + 2 + 9) = 0, μC

Xm
(P1) = 2/(0 + 2 + 9) =

0.1818 . . . , μC
Xg

(P1) = 9/(0 + 2 + 9) = 0.8181 . . . . Given a condition attribute
subset A = {c1, c2}, the objects in P1 and P2 are indiscernible to each other. Hence,
the rough membership of an object u in P1 and P2 with respect to A becomes
μA

Xb
(P1) = μA

Xb
(P2) = 0/(0 + 21 + 10) = 0, μA

Xm
(P1) = μA

Xm
(P2) = 21/(0 +

21+ 10) = 0.6774 . . . , μA
Xg

(P1) = μA
Xg

(P2) = 10/(0+ 21+ 10) = 0.3225 . . . .
Let β = 0.39. The lower approximations and the upper approximations with

respect to C and β are obtained as follows:

LAβ
C (Xb) = ∅, UAβ

C (Xb) = ∅,

LAβ
C (Xm) = {P2}, UAβ

C (Xm) = {P2, P4},
LAβ

C (Xg) = {P1}, UAβ
C (Xg) = {P1, P3, P4},

where we express approximations by means of groups, namely, all members of a
group P are members of an approximation X if P ∈ X .

InVPRSM, the properties corresponding to (7.5) and (7.6) are not always satisfied.
Consequently, L-reducts, U-reducts, and B-reducts become independent concepts in
VPRSM, and there are no strong-weak relations among them.

Additionally, property (7.7) only partially holds:

1

p
> β ⇒ U =

⋃

i∈Vd

UAβ
A(Xi ). (7.12)

The union of upper approximations of all decision classes does not always equal
to U but when 1/p > β. From this fact we define an unpredictable region of d with
respect to β and A, denoted by UNPβ

A(d), as follows:

UNPβ
A(d) =

⋂

i∈Vd

NEGβ
A(Xi ),
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equivalently,

UNPβ
A(d) = U −

⋃

i∈Vd

UAβ
A(Xi ).

The unpredictable region is the set of all objects which cannot be classified to any
decision class.

We can define the positive region of d with respect to β and A in the same manner
of RSM,

POSβ
A(d) =

⋃

i∈Vd

POSβ
A(Xi ).

The quality of classification of d can be also defined in the same manner,

γ
β
A (d) = |POSβ

A(d)|
|U | .

The generalized decision function in RSM can be extended in VPRSM. However,
differently from RSM, we define two functions. They are called lower and upper
generalized decision functions, denoted by λ and υ, respectively. For each u ∈ U ,

λ
β
A(u) = {i ∈ Vd | μA

Xi
(u) ≥ 1− β},

υ
β
A(u) = {i ∈ Vd | μA

Xi
(u) > β}.

The lower generalized decision of u is the set of the decision values to which the
membership degree of u is more than or equal to 1 − β. The upper generalized
decision of u is the set of the decision values to which the membership degree of u is
more than β. The upper generalized decision corresponds to the generalized decision
in RSM. By the definitions, the lower and upper generalized decision functions are
closely related to the lower and upper approximations,

i ∈ λ
β
A(u) ⇔ u ∈ LAβ

A(Xi ),

i ∈ υ
β
A(u) ⇔ u ∈ UAβ

A(Xi ).

So, they have the inclusion relation:

λ
β
A(u) ⊆ υ

β
A(u). (7.13)

Any two objects in the same equivalence class take the same values of generalized
decision functions.

For each (u, u′) ∈ RA, λ
β
A(u) = λ

β
A(u′) and υ

β
A(u) = υ

β
A(u′). (7.14)
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The lower generalized decision function is a singleton or the empty set,

|λβ
A(u)| ≤ 1. (7.15)

Unlike RSM, we may have the case that the upper generalized decision of u is
a singleton, i.e., υ

β
A(u) = {i} but u does not belong to the lower approximation

LAβ
A(Xi ). When the lower generalized decision is a singleton, the upper generalized

decision is also a singleton, and they are the same,

|λβ
A(u)| = 1 ⇒ υ

β
A(u) = λ

β
A(u). (7.16)

Property (7.12) can be expressed as:

1

p
> β ⇒ υ

β
A(u) 	= ∅. (7.17)

Hence, υβ
A(u) may be empty unless β is less than 1

p .

We define a function (υ\λ)
β
A(u) as:

(υ\λ)
β
A(u) = υ

β
A(u) \ λ

β
A(u).

By properties (7.13), (7.15), and (7.16), we have

(υ\λ)
β
A(u) = ∅ ⇒ υ

β
A(u) = ∅ or λ

β
A(u) 	= ∅, (7.18)

(υ\λ)
β
A(u) 	= ∅ ⇒ (υ\λ)

β
A(u) = υ

β
A(u). (7.19)

By that property, the following equivalence holds:

i ∈ (υ\λ)
β
A(u) ⇔ u ∈ BNβ

A(Xi ). (7.20)

Therefore, we call (υ\λ) a boundary generalized decision function.

Example 8 Remember the decision table D = (U, C ∪ {d}, {Va}) in Table7.3. Let
β = 0.39. The lower and upper generalized decision function with respect to C and
β are,

λ
β
C (P1) = {g}, λ

β
C (P2) = {m}, λ

β
C (P3) = ∅, λ

β
C (P4) = ∅, λ

β
C (P5) = ∅,

υ
β
C (P1) = {g}, υ

β
C (P2) = {m}, υ

β
C (P3) = {g}, υ

β
C (P4) = {m,g}, υ

β
C (P5) = ∅,

where λ
β
C (Pi ) and υ

β
C (Pi ) indicate the lower and upper generalized decisions of an

object in the group Pi .
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7.3.3 Structure-Based Reducts in Variable Precision
Rough Set Models

Before we define structure-based reducts in VPRSM, we firstly introduce Q-reducts.
They preserve the quality of classification with the parameter β.

Definition 8 ([4, 5]) Let β ∈ [0, 0.5) be an admissible error rate. A Q-reduct with
β in VPRSM is a minimal condition attribute subset A ⊆ C satisfying the following
conditions:

γ
β
A (d) = γ

β
C (d), (VPQ1)

B satisfies (VPQ1) for all B ⊇ A. (VPQ2)

Remark 6 In VPRSM, approximations are no longer monotonic with respect to the
set inclusion of condition attributes. Hence, condition (VPQ1) is not monotonic with
respect to condition attributes, namely, A satisfies (VPQ1) but B ⊃ A does not. In
that case, we modify the preserving condition of reducts by adding a condition like
(VPQ2). We notice that Beynon [4, 5] originally proposed Q-reducts (the author
called them β-reducts) using only (VPQ1).

We define 4 kinds of structure-based reducts in VPRSM [20], which are already
discussed in the classical RSM.

Definition 9 ([20, 33]) Let β ∈ [0, 0.5) be an admissible error rate.

• A P-reduct2 with β in VPRSM is a minimal condition attribute subset A ⊆ C
satisfying the following conditions:

POSβ
A(d) = POSβ

C (d), (VPP1)

B satisfies (VPP1) for all B ⊇ A. (VPP2)

• An L-reduct with β in VPRSM is a minimal condition attribute subset A ⊆ C
satisfying the following condition:

LAβ
A(Xi ) = LAβ

C (Xi ) for all i ∈ Vd . (VPL)

• A B-reduct with β in VPRSM is a minimal condition attribute subset A ⊆ C
satisfying the following conditions:

BNβ
A(Xi ) = BNβ

C (Xi ) for all i ∈ Vd , (VPB1)

B satisfies (VPB1) for all B ⊇ A. (VPB2)

2 Strictly speaking, P-reducts do not appear in [20].
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• A U-reduct with β in VPRSM is a minimal condition attribute subset A ⊆ C
satisfying the following condition:

UAβ
A(Xi ) = UAβ

C (Xi ) for all i ∈ Vd . (VPU)

Mi et al. [33] independently proposed L-reducts and U-reducts under the names
of lower and upper distribution reducts.

Additionally, we can define a reduct preserving the unpredictable region.

Definition 10 ([20]) Let β ∈ [0, 0.5) be an admissible error rate. A UN-reduct with
β in VPRSM is a minimal condition attribute subset A ⊆ C satisfying the following
conditions:

UNPβ
A(d) = UNPβ

C (d), (VPUN1)

B satisfies (VPUN1) for all B ⊇ A. (VPUN2)

Remark 7 We modify the definitions of B- and UN-reducts from our paper [20],
because there aremistakes inBoolean functions forB- andUN-reducts. By adding the
second condition, the preserving conditions of B- and UN-reducts becomemonotone
with respect to the set-inclusion of condition attribute sets.

By definitions, (VPL) and (VPU) obviously imply (VPP1,2) and (VPUN1,2),
respectively. Moreover, (VPP1,2) also implies (VPQ1,2). Hence, we have the fol-
lowing relations among different types of reducts.

Theorem 3 ([20]) Let A be a subset of C. We have the following statements in
VPRSM with a fixed parameter β ∈ [0, 0.5),
(a) A is an L-reduct then A satisfies (VPP1,2),
(b) A is a U-reduct then A satisfies (VPUN1,2),
(c) A is a P-reduct then A satisfies (VPQ1,2).

Contrary to the classical RSM, (VPB1,2) is not equivalent to (VPU). In RSM, pre-
serving boundaries implies preventing ambiguity expansion, namely upper approx-
imations. However, in VPRSM, the ambiguity expansion can be prevented not
only by preserving boundaries but by preserving them with the unpredictable
region. Furthermore, we can define other compositions of different types of
reducts.

Simply combining 5 types of structure-based reducts, we obtain 25 − 1 = 31
types of reducts (ignoring (a) and (b) of Theorem 3). To reduce the number, we first
investigate relationships of preserving conditions of reducts.

Theorem 4 ([20]) Let A be a subset of C. We have the following statements in
VPRSM with a fixed parameter β ∈ [0, 0.5),
• The conjunction of (VPB1) and (VPP1) is equivalent to that of (VPB1) and
(VPUN1),
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• The conjunction of (VPL) and (VPB1) is equivalent to that of (VPL) and (VPU),
• The conjunction of (VPU) and (VPP1) is equivalent to that of (VPL) and (VPU).

We define 4 different types of reducts.

Definition 11 ([20]) Let β ∈ [0, 0.5) be an admissible error rate.

• An LU-reduct with β in VPRSM is a minimal condition attribute subset A ⊆ C
satisfying the following condition:

LAβ
A(Xi ) = LAβ

C (Xi ) and UAβ
A(Xi ) = UAβ

C (Xi ) for all i ∈ Vd . (VPLU)

• An LUN-reduct with β in VPRSM is a minimal condition attribute subset A ⊆ C
satisfying the following conditions:

LAβ
A(Xi ) = LAβ

C (Xi ) for all i ∈ Vd , and UNPβ
A(d) = UNPβ

C (d),

(VPLUN1)

B satisfies (VPLUN1) for all B ⊇ A. (VPLUN2)

• A BUN-reduct with β in VPRSM is a minimal condition attribute subset A ⊆ C
satisfying the following conditions:

BNβ
A(Xi ) = BNβ

C (Xi ) for all i ∈ Vd , and UNPβ
A(d) = UNPβ

C (d),

(VPBUN1)

B satisfies (VPBUN1) for all B ⊇ A. (VPBUN2)

• A PUN-reduct with β in VPRSM is a minimal condition attribute subset A ⊆ C
satisfying the following conditions:

POSβ
A(d) = POSβ

C (d) and UNPβ
A(d) = UNPβ

C (d), (VPPUN1)

B satisfies (VPPUN1) for all B ⊇ A. (VPPUN2)

In Fig. 7.2, we show the relationships among 9 types of reducts. Names of reducts
are abbreviated to their first characters. Reducts located in the upper part of Fig. 7.2
preserve regions much more. Therefore, such reducts are larger in the sense of set
inclusion than the other reducts located in the lower part. A line segment connecting
two types of reducts implies that, for each reduct of the upper type say A satisfies
the preserving condition of a reduct of the lower one. From Fig. 7.2, we know that
LU-reducts preserve regions most. On the other hand, UN-reducts and P-reducts do
not preserve many regions.

The next proposition says that composite reducts such as LUN- or BUN-reducts
can be constructed from their base reducts such as L- and UN-reducts or B- and
UN-reducts. The proposition is useful to enumerate the composite reducts.
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Fig. 7.2 Strong-weak
hierarchy of 9 types of
structure-based reducts in
VPRSM

strong

weak

Proposition 1 Consider two types of reducts, ♥-reducts and ♠-reducts, and the
composition of them: ♥♠-reducts. Let H and S be the set of all ♥-reducts and
the set of all ♠-reducts, respectively. Then the set of all ♥♠-reducts is the set of all
minimal elements of {A ∪ B | A ∈ H and B ∈ S }.

7.3.4 Boolean Functions Representing Reducts

As shown above, L- and U-reducts in the classical RSM are characterized by prime
implicants of certainBoolean functions. In this section, we discuss Boolean functions
of 9 types of reducts in VPRSM. To do this, we focus on Boolean functions of reducts
pertaining to the lower approximations, the upper approximations, the boundaries,
the positive region, and the unpredictable region, since the others can be obtained by
taking conjunctions of those Boolean functions or using Proposition 1.

First,we represent the preserving conditions by the generalizeddecision functions.

Lemma 3 Let β ∈ [0, 0.5) be an admissible error rate, and A be a subset of C. We
have the following statements:

• Condition (VPL) with β is equivalent to:

λ
β
A(u) = λ

β
C (u) for all u ∈ U. (VPLG)

• Condition (VPU) with β is equivalent to:

υ
β
A(u) = υ

β
C (u) for all u ∈ U. (VPUG)

• Condition (VPB1) with β is equivalent to:

(υ\λ)
β
A(u) = (υ\λ)

β
C (u) for all u ∈ U. (VPBG1)

• Condition (VPP1) with β is equivalent to:

λ
β
A(u) = ∅ ⇔ λ

β
C (u) = ∅ for all u ∈ U. (VPPG1)
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• Condition (VPUN1) with β is equivalent to:

υ
β
A(u) = ∅ ⇔ υ

β
C (u) = ∅ for all u ∈ U. (VPUNG1)

The next lemma is the counterpart of Lemma 2 of RSM. However, only the
sufficient condition of the lemma holds in VPRSM.

Lemma 4 Let u ∈ U be an object, β ∈ [0, 0.5) be an admissible error rate, and A
be a subset of C.

• The following assertion is a sufficient condition of υ
β
A(u) = υ

β
C (u):

∀u′ ∈ U, (υ
β
C (u′) 	= υ

β
C (u) ⇒ ∃a ∈ A, (u′, u) 	∈ R{a}).

• The following assertion is a sufficient condition of λ
β
A(u) = λ

β
C (u):

∀u′ ∈ U, (λ
β
C (u′) 	= λ

β
C (u) ⇒ ∃a ∈ A, (u′, u) 	∈ R{a}).

This lemma holds due to property (7.9). Then, we have the following corollary.

Corollary 1 We have the following equivalences:

∀u ∈ U, υ
β
A(u) = υ

β
C (u)

⇔ ∀u, u′ ∈ U, (υ
β
C (u′) 	= υ

β
C (u) ⇒ ∃a ∈ A, (u′, u) 	∈ R{a}),

∀u ∈ U, λ
β
A(u) = λ

β
C (u)

⇔ ∀u, u′ ∈ U, (λ
β
C (u′) 	= λ

β
C (u) ⇒ ∃a ∈ A, (u′, u) 	∈ R{a}).

It says that all L-reducts and all U-reducts can be enumerated by discernibility
functions. The similar result is shown in [33]. However, we do not have the same
result for (υ\λ) and conditions (VPPG1) and (VPUNG1).

We introduce a discernibility matrix M = (mi, j )i j=1,2,...,n , where i j-entry mi j is
defined by:

mi j = {c ∈ C | a(ui ) 	= a(u j )}.

It is the same as that of RSM. Then, we define discernibility functions corresponding
to L-reducts and U-reducts, which are denoted by FU

β and FL
β , respectively.

Definition 12 Let β ∈ [0, 0.5) be an admissible error rate. Discernibility functions
FU

β and FL
β are defined as follows:

FU
β (c̃1, c̃2, . . . , c̃m) =

∧

i, j | υ
β
C (ui ) 	=υ

β
C (u j )

∨

c∈mi j

c̃,
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FL
β (c̃1, c̃2, . . . , c̃m) =

∧

i, j | λ
β
C (ui ) 	=λ

β
C (u j )

∨

c∈mi j

c̃,

where, c̃i is a Boolean variable pertaining to a condition attribute ci ∈ C .

Function FU
β is true if and only if at least one variable c̃ inmi j of υ

β
C (ui ) 	= υ

β
C (u j )

is true. While function FL
β is true if and only if at least one variable c̃ in mi j of

λ
β
C (ui ) 	= λ

β
C (u j ) is true.

Remember thatwe associate A ⊆ C with aBoolean vector c̃A = (c̃A
1 , c̃A

2 , . . . , c̃A
m)

as follows:

c̃A
k =

{
1 ck ∈ A,

0 otherwise.

Then, we can prove the next theorem from Corollary 1. Remember that φA is the
term

∧{ã|a ∈ A}.
Theorem 5 ([20, 33]) Let A be the subset of C, and β ∈ [0, 0.5) be an admissible
error rate. We have the following equivalences:

• A satisfies (VPUG) as well as (VPU) with β if and only if FU
β (c̃A) = 1. Moreover,

A is a U-reduct with β if and only if φA is a prime implicant of FU
β ,

• A satisfies (VPLG) as well as (VPL) with β if and only if FL
β (c̃A) = 1. Moreover,

A is an L-reduct with β if and only if φA is a prime implicant of F L
β .

For the preservation of the boundaries, the positive region, and the unpredictable
region, we cannot use discernibility function approach. Because we cannot obtain a
preserving subset A ⊆ C by determining which pairs of objects should be discerned.
For example, consider a decision table below.

c1 c2 c3 X1 X2 X3

P1 0 0 0 4 0 0
P2 0 0 1 0 2 0
P3 0 1 0 0 0 1
P4 1 1 0 1 1 1

There are 3 condition attributes C = {c1, c2, c3} with the value set V = {0, 1},
and 3 decision classes X1, X2, X3. P1, P2, P3, P4 are sets of objects, wheremembers
of each set have the same condition attribute values. The distribution of the decision
classes on each set Pi is shown in the table, for instance the distribution on P1 forms
|X1 ∩ P1| = 4, |X2 ∩ P1| = 0, and |X3 ∩ P1| = 0. Consider P-reducts with β = 0.4.
The positive region of the table is POSβ

C (d) = P1 ∪ P2 ∪ P3. When we can make P1
and P2 be indiscernible and combine P1 ∪ P2, the positive region is still preserved.
Because the distribution on P1∪P2 is (X1, X2, X3) = (4, 2, 0), andμX1(P1∪P2) =
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2/3 ≥ 0.6. Similarly, we can make the pair of P1 and P3 and the pair of P2 and P3 be
indiscernible. However, when wemake all of P1, P2, and P3 indiscernible, and select
{c1} as a reduct, P1 ∪ P2 ∪ P3 falls outside of POS

β
{c1}(d), because the distribution

is (X1, X2, X3) = (4, 2, 1), and μX1(P1 ∪ P2 ∪ P3) = 4/7 ≤ 0.6.
To overcome that difficulty, for each type of reducts, we consider two approximate

discernibility functions F̂β and F̌β : F̂β characterizes a sufficient condition of the
preservation and F̌β characterizes a necessary condition.

First, we discuss discernibility functions characterizing sufficient conditions. By
Theorems 3 and 4, we know that FL

β , FU
β , and FLU

β = FL
β ∧ FU

β are discernibility
functions of sufficient conditions for B-reducts, P-reducts, and UN-reducts with β.

Definition 13 Let β ∈ [0, 0.5) be an admissible error rate. Discernibility functions
F̂B

β , F̂P
β , and F̂UN

β are defined as follows:

F̂B
β = FL

β ∧ FU
β , F̂P

β = FL
β , F̂UN

β = FU
β .

Clearly, we have the following proposition.

Proposition 2 ([20]) Let A be a subset of C, and β ∈ [0, 0.5) be an admissible
error rate. We have the following implications:

• If F̂B
β (c̃A) = 1 then A satisfies (VPB1) and (VPB2) with β,

• If F̂P
β (c̃A) = 1 then A satisfies (VPP1) and (VPP2) with β,

• If F̂UN
β (c̃A) = 1 then A satisfies (VPUN1) and (VPUN2) with β.

Next, let us discuss a discernibility function characterizing a necessary condition.
Consider necessary discernibility functions for P-reducts. In the sufficient discerni-
bility function F̂P

β = FL
β , pairs of objects included in the positive region are discerned

when they have different values of λ
β
C . However, such pairs are not necessarily dis-

cerned because theremay be a P-reduct such that some of pairs become indiscernible.
On the other hand, for each pair ui and u j , if they are excluded from the positive
region of the common condition attributes, i.e., C \ mi j , they should be discerned
because no subset A ⊆ C \ mi j satisfies (VPP1) and (VPP2). From this consider-
ation, discernibility functions characterizing necessary conditions for preservation
of the boundaries, the positive region, and the unpredictable region are obtained as
follows.

Definition 14 Let β ∈ [0, 0.5) be an admissible error rate. Moreover, let c̃i be a
Boolean variable pertaining to a condition attribute ci ∈ C . Discernibility functions
F̌B

β , F̌P
β , and F̌UN

β are defined as follows:

F̌B
β (c̃1, c̃2, . . . , c̃m) =

∧

(i, j)∈ΔB
β

∨

c∈mi j

c̃,

F̌P
β (c̃1, c̃2, . . . , c̃m) =

∧

(i, j)∈ΔP
β

∨

c∈mi j

c̃,
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F̌UN
β (c̃1, c̃2, . . . , c̃m) =

∧

(i, j)∈ΔUN
β

∨

c∈mi j

c̃,

where,

(i, j) ∈ ΔB
β ⇔

⎧
⎪⎨

⎪⎩

(υ\λ)
β
C (ui ) 	= (υ\λ)

β
C (u j ), or

(υ\λ)
β
C (ui ) = (υ\λ)

β
C (u j ) = ∅

and (υ\λ)
β
C\mi j

(ui ) = (υ\λ)
β
C\mi j

(u j ) 	= ∅,

(i, j) ∈ ΔP
β ⇔

⎧
⎪⎨

⎪⎩

λ
β
C (ui ) 	= ∅ and λ

β
C (u j ) = ∅, or

λ
β
C (ui ) = ∅ and λ

β
C (u j ) 	= ∅, or

λ
β
C (ui ) 	= ∅, λ

β
C (u j ) 	= ∅, and λ

β
C\mi j

(ui ) = λ
β
C\mi j

(u j ) = ∅,

(i, j) ∈ ΔUN
β ⇔

⎧
⎪⎨

⎪⎩

υ
β
C (ui ) 	= ∅ and υ

β
C (u j ) = ∅, or

υ
β
C (ui ) = ∅ and υ

β
C (u j ) 	= ∅, or

υ
β
C (ui ) 	= ∅, υ

β
C (u j ) 	= ∅, and υ

β
C\mi j

(ui ) = υ
β
C\mi j

(u j ) = ∅.

Proposition 3 Let A be a subset of C, and β ∈ [0, 0.5) be an admissible error rate.
We have the following implications:

• If F̌B
β (c̃A) = 0 then A does not satisfy (VPB1) or (VPB2) with β,

• If F̌P
β (c̃A) = 0 then A does not satisfy (VPP1) or (VPP2) with β,

• If F̌UN
β (c̃A) = 0 then A does not satisfy (VPUN1) or (VPUN2) with β.

From Proposition 3, we know that any prime implicant of each of F̌B
β , F̌P

β , and

F̌UN
β can be a subset of some reduct of the corresponding type.
Combining Propositions 2 and 3, we have the following theorem.

Theorem 6 Let A be a subset of C, and β ∈ [0, 0.5) be an admissible error rate.
Let P̂B

β , P̂P
β and P̂UN

β be the sets of condition attribute subsets corresponding to

the prime implicants of F̂B
β , F̂P

β , and F̂UN
β , respectively. Moreover, let P̌B

β , P̌P
β and

P̌UN
β be the sets of condition attribute subsets corresponding to the prime implicants

of F̌B
β , F̌P

β , and F̌UN
β , respectively. Then, we have the following implications:

• If A is a B-reduct with β then A ∈ {B ⊆ C | B ⊇ B ′ for some B ′ ∈ P̌B
β and

B 	⊃ B ′′ for any B ′′ ∈ P̂B
β },

• If A is a P-reduct with β then A ∈ {B ⊆ C | B ⊇ B ′ for some B ′ ∈ P̌P
β and

B 	⊃ B ′′ for any B ′′ ∈ P̂P
β },

• If A is a UN-reduct with β then A ∈ {B ⊆ C | B ⊇ B ′ for some B ′ ∈ P̌UN
β and

B 	⊃ B ′′ for any B ′′ ∈ P̂UN
β }.
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Table 7.4 Discernibility
functions related to 9 kinds of
reducts

Reduct Discernibility function(s) Exact/approximate

L FL
β Exact

U FU
β Exact

B (F̌B
β , FL

β ∧ FU
β ) Approximate

P (F̌P
β , FL

β ) Approximate

UN (F̌UN
β , FU

β ) Approximate

LU FL
β ∧ FU

β Exact

PUN (F̌P
β ∧ F̌UN

β , FL
β ∧ FU

β ) Approximate

LUN (FL
β ∧ F̌UN

β , FL
β ∧ FU

β ) Approximate

BUN (F̌B
β ∧ F̌P

β , FL
β ∧ FU

β ) Approximate

The obtained discernibility functions are shown in Table7.4. In the case of approx-
imate discernibility functions, the first function in the parenthesis characterizes
the necessary condition of the preservation and the second function characterizes
the sufficient condition. The discernibility functions related to LU-reducts, LUN-
reducts and BUN-reducts can be obtained by taking the conjunctions of discernibil-
ity functions related to L-reducts, U-reducts, B-reducts and UN-reducts. Note that
F̂B

β ∧ F̂UN
β = (FL

β ∧ FU
β ) ∧ FU

β = FL
β ∧ FU

β . This is why we have FL
β ∧ FU

β as
the discernibility function characterizing a sufficient condition for the preservation
of BUN-reducts.

Example 9 Remember the decision tableD = (U, C∪{d}, {Va}) in Table7.3. Let an
admissible error rate be β = 0.39. In Table7.5, we show the decision table with three
generalized decision functionsλ0.39C ,υ0.39

C , (υ\λ)0.39C with respect toC andβ = 0.39.
Now let us enumerate reducts as prime implicants of discernibility functions. First

let us discuss L-, U- and LU-reducts with β = 0.39. The discernibility matrix of the
decision table is shown as below.

P1 P2 P3 P4 P5

P1 ∅ {c3, c4} {c1} {c1, c2} {c2, c3}
P2 {c3, c4} ∅ {c1, c3, c4} C {c2, c4}
P3 {c1} {c1, c3, c4} ∅ {c2} {c1, c2, c3}
P4 {c1, c2} C {c2} ∅ {c1, c3}
P5 {c2, c3} {c2, c4} {c1, c2, c3} {c1, c3} ∅

Table 7.5 The decision table in Table7.3 with the generalized decision functions

c1 c2 c3 c4 d:(b,m,g) λ
β
C υ0.39

C (υ\λ)0.39C

P1 Good Good Bad Good (0,2,9) {g} {g} ∅
P2 Good Good Good Bad (0,19,1) {m} {m} ∅
P3 Bad Good Bad Good (1,1,2) ∅ {g} {g}

P4 Bad Bad Bad Good (0,1,1) ∅ {m,g} {m,g}

P5 Good Bad Good Good (1,1,1) ∅ ∅ ∅
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From the table, we obtain FL
0.39 and FU

0.39 as follows:

FL
0.39(c̃1, c̃2, c̃3, c̃4) =

∧

i=1,2, j=3,4,5

∨

c∈mi j

c̃ ∧
∨

c∈m12

c̃

= (c̃1) ∧ (c̃2 ∨ c̃3) ∧ (c̃2 ∨ c̃4) ∧ (c̃3 ∨ c̃4)

= (c̃1 ∧ c̃2 ∧ c̃3) ∨ (c̃1 ∧ c̃2 ∧ c̃4) ∨ (c̃1 ∧ c̃3 ∧ c̃4),

FU
0.39(c̃1, c̃2, c̃3, c̃4) =

∧

(i, j)∈{(k,l)|k 	=l}\{(1,3),(3,1)}

∨

c∈mi j

c̃

= (c̃2) ∧ (c̃1 ∨ c̃3) ∧ (c̃3 ∨ c̃4) = (c̃2 ∧ c̃3) ∨ (c̃1 ∧ c̃2 ∧ c̃4).

We obtain FLU
0.39 as:

FLU
0.39(c̃1, c̃2, c̃3, c̃4) = FL(c̃1, c̃2, c̃3, c̃4) ∧ FU(c̃1, c̃2, c̃3, c̃4)

= (c̃1) ∧ (c̃2) ∧ (c̃3 ∨ c̃4) = (c̃1 ∧ c̃2 ∧ c̃3) ∨ (c̃1 ∧ c̃2 ∧ c̃4).

Therefore, L-reducts are obtained as {c1, c2, c3}, {c1, c2, c4} and {c1, c3, c4}.
U-reducts are obtained as {c2, c3} and {c1, c2, c4}. LU-reducts are obtained as
{c1, c2, c3} and {c1, c2, c4}. Note that {c2, c3} is not an L-reduct but a U-reduct.
This is very different from the relation between L- and U-reducts in the classical
RSM, i.e., in the classical RSM, a U-reduct includes an L-reduct but an L-reduct
never includes a U-reduct.

Now let us discuss B-, P-, UN-reducts with β = 0.39.We can obtain only approx-
imations of those reducts. To this end, let us get discernibility functions F̌B

0.39, F̌P
0.39,

and F̌UN
0.39. For B-reducts, considering the second condition of ΔB

0.39, check each pair
Pi and Pj such that (υ\λ)0.39C (Pi ) = ∅ and (υ\λ)0.39C (Pj ) = ∅.

(υ\λ)0.39C\m12
(P1) = (υ\λ)0.39C\m12

(P2) = ∅, (υ\λ)0.39C\m15
(P1) = (υ\λ)0.39C\m15

(P5) = ∅,

(υ\λ)0.39C\m25
(P2) = (υ\λ)0.39C\m25

(P5) = ∅.

For P-reducts, check each pair such that λ0.39C (Pi ) 	= ∅ and λ0.39C (Pj ) 	= ∅.

λ0.39C\m12
(P1) = λ0.39C\m12

(P2) = {medium}.

Finally, for UN-reducts, check each pair such that υ0.39
C (Pi ) 	= ∅ and υ0.39

C (Pj ) 	= ∅.

υ0.39
C\m12

(P1) = υ0.39
C\m12

(P2) = {medium}, υ0.39
C\m13

(P1) = υ0.39
C\m13

(P3) = {good},
υ0.39

C\m14
(P1) = υ0.39

C\m14
(P4) = {good}, υ0.39

C\m23
(P2) = υ0.39

C\m23
(P3) = {medium},

υ0.39
C\m24

(P2) = υ0.39
C\m24

(P4) = {medium}, υ0.39
C\m34

(P3) = υ0.39
C\m34

(P4) = {good}.
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Therefore, discernibility functions F̌B
0.39, F̌P

0.39, and F̌UN
0.39 are obtained as:

F̌B
0.39(c̃1, c̃2, c̃3, c̃4) =

∧

i=1,2,5, j=3,4

∨

c∈mi j

c̃ ∧
∨

c∈m34

c̃ = c̃1 ∧ c̃2,

F̌P
0.39(c̃1, c̃2, c̃3, c̃4) =

∧

i=1,2, j=3,4,5

∨

c∈mi j

c̃ = (c̃1) ∧ (c̃2 ∨ c̃3) ∧ (c̃2 ∨ c̃4)

= (c̃1 ∧ c̃2) ∨ (c̃1 ∧ c̃3 ∧ c̃4),

F̌UN
0.39(c̃1, c̃2, c̃3, c̃4) =

∧

i=1,2,3,4, j=5

∨

c∈mi j

c̃ = (c̃1 ∨ c̃3) ∧ (c̃2 ∨ c̃3) ∧ (c̃2 ∨ c̃4)

= (c̃1 ∧ c̃2) ∨ (c̃2 ∧ c̃3) ∨ (c̃3 ∧ c̃4).

Because F̂B
0.39 = FL

0.39 ∧ FU
0.39 = (c̃1 ∧ c̃2 ∧ c̃3) ∨ c̃1 ∧ c̃2 ∧ c̃4), the candidates

of B-reducts are,
{c1, c2}, {c1, c2, c3}, {c1, c2, c4}.

We can see that all of those satisfy (VPB1), hence, {c1, c2} is the unique B-reduct.
Because F̂P

0.39 = FL
0.39 = (c̃1 ∧ c̃2 ∧ c̃3) ∨ (c̃1 ∧ c̃2 ∧ c̃4) ∨ (c̃1 ∧ c̃3 ∧ c̃4), the

candidates of P-reducts are,
{c1, c2}, {c1, c2, c3}, {c1, c2, c4}, {c1, c3, c4}.

Also, in that case, all candidates satisfy (VPP1), hence, {c1, c2} and {c1, c3, c4} are
P-reducts. Similarly, the candidates of UN-reducts are,

{c1, c2}, {c2, c3}, {c3, c4}, {c1, c2, c4}, {c1, c3, c4},
and all candidates satisfy (VPUN1), hence, {c1, c2}, {c2, c3}, and {c3, c4} are
UN-reducts.

All reducts are arranged in Table7.6. We can observe that several kinds of reducts
are different. In this example, each L-reduct is also an LUN-reduct and vice versa.
Such an equivalence holds in this example but not always.

In this example, we would select {c1, c2, c3} or {c1, c2, c4} to preserve all struc-
tures. Additionally, c1 and c2 appear in many other reducts. Whereas, we would
select U-reduct {c2, c3} to reduce the size of the reduct.

Table 7.6 All obtained
reducts with β = 0.39 in
Table7.3

Type Reducts

L-reduct {c1, c2, c3}, {c1, c2, c4}, {c1, c3, c4}
U-reduct {c2, c3}, {c1, c2, c4}
LU-reduct {c1, c2, c3}, {c1, c2, c4}
B-reduct {c1, c2}
P-reduct {c1, c2}, {c1, c3, c4}
UN-reduct {c1, c2}, {c2, c3}, {c3, c4}
LUN-reduct {c1, c2, c3}, {c1, c2, c4}, {c1, c3, c4}
BUN-reduct {c1, c2}
PUN-reduct {c1, c2}, {c1, c3, c4}
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7.4 Structure-Based Attribute Reduction
in Dominance-Based Rough Set Models

7.4.1 Decision Tables Under Dominance Principle
and Dominance-Based Rough Set Models

InDominance-based Rough SetModel (DRSM), known asDominance-based Rough
Set Approach [16, 18, 49], decision tables with order relations are analyzed. Let
D = (U, AT = C ∪ {d}, {Va}a∈AT ) be a decision table. The attribute set AT is
partitioned into AT N and ATC , where AT N is the set of nominal attributes and ATC

is the set of criteria (ordinal attributes). For a criterion a ∈ ATC , we suppose a total
order≥ on its value set Va . Moreover, all criteria are of the gain-type, i.e., the greater
the better. We assume that the decision attribute d is a criterion.

In DRSM, it is supposed that if an object u is better than or equal to another
object u′ with respect to all condition attributes, then the class of u should not be
worse than that of u′. This is called the dominance principle [16].

Remark 8 The setting of DRSM is considered as the monotone or ordinal classifi-
cation problem [2, 3, 32], where classifiers are restricted to be monotonic. Let f be
a classifier, which assigns to each object u a class label (decision class value) f (u).
The classifier f is monotonic if for any object pair u and u′, we have u ≤ u′ implying
f (u) ≤ f (u′). In this chapter, however, we do not discuss classifiers nor algorithms
for building classifiers.

Remark 9 We assume the total order, i.e., antisymmetry, transitivity, and, compara-
bility, on the value set Va of each condition criteria a ∈ ATC∩C . However, regardless
of comparability, the result of this section can be applied without modification. Addi-
tionally, we assume that all criteria are of the gain-type. However, in applications, we
may encounter cost-type criteria, i.e., the smaller the better. For a cost-type criterion,
we can deal with it as the gain-type by reversing the order of its values.

Remark 10 Generally, there is more than one decision attribute in a decision table.
In such a case, the set of decision classes (the partition of objects by the decision
attributes) is partially ordered,while it is totally ordered in the case of a single decision
attribute. In this section, we focus on the case of a single decision attribute (more
generally, the case when the decision classes form a totally ordered set), however,
the results of this section could be straightforwardly extended to that of multiple
decision attributes.

For A ⊆ C , a dominance relation DA on U is defined by:

DA =
{
(u, u′)∈ U 2|a(u) ≥ a(u′),∀a ∈ ATC ∩ A

and a(u) = a(u′),∀a ∈ ATN ∩ A
}
.

DA satisfies reflexivity and transitivity. When (u, u′) ∈ DA, we say that u domi-
nates u′ with respect to A. The relation (u, u′) ∈ DA means “u is better than or equal
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to u′ with respect to criteria A”. For u ∈ U , its dominating set and its dominated set
with respect to A are defined, respectively, by:

D+
A (u) = {u′ ∈ U | (u′, u) ∈ DA},

D−
A (u) = {u′ ∈ U | (u, u′) ∈ DA}.

The dominating set D+
A (u) (resp. the dominated set D−

A (u)) is the set of the objects
dominating (resp. dominated by) u under A.

Since decision classes are ordered X1 < X2 < · · · < X p, one can define an
upward union of decision classes X≥

i and a downward union of decision classes X≤
i

with respect to each class Xi , i ∈ Vd , as follows:

X≥
i =

⋃

j≥i

X j , X≤
i =

⋃

j≤i

X j .

For convenience, X≤
0 = X≥

p+1 = ∅. We have X≥
i = U \ X≤

i−1.

Example 10 Consider a decision table D = (U, C ∪ {d}, {Va}) given in Table7.7.
This table shows student evaluation in a school. The objects are seven students, i.e.,
U = {u1, u2, . . . , u7}. The condition attributes are scores of mathematics (Ma),
physics (Ph) and literature (Li), while the decision attribute (d) is a comprehensive
evaluation (E). Namely, C ={Ma, Ph, Li} and d =E.Wemay assume that the better
scores in all subjects student takes, the better comprehensive evaluation he/she gets.

Let A ={Ma, Ph}. The dominance relation DA is described as the following
matrix. Symbol ∗ indicates that the corresponding row object ui and column object
u j is in the dominance relation, i.e., (ui , u j ) ∈ DA.

u1 u2 u3 u4 u5 u6 u7

u1 ∗ ∗ ∗ ∗ ∗ ∗ ∗
u2 ∗ ∗ ∗ ∗ ∗ ∗ ∗
u3 ∗ ∗ ∗ ∗ ∗
u4 ∗ ∗
u5 ∗ ∗ ∗
u6 ∗ ∗ ∗
u7 ∗

Table 7.7 A decision table
of student records

Student Ma Ph Li E

u1 Good Good Good Good

u2 Good Good Med Med

u3 Med Good Med Good

u4 Bad Med Good Med

u5 Med Bad Med Bad

u6 Med Bad Bad Med

u7 Bad Bad Bad Bad
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For each object ui ∈ U , symbols ∗ in the row of ui indicate the objects in
D−(ui ), while symbols ∗ in the column indicate the objects in D+(ui ). For example,
D−(u3) = {u3, u4, u5, u6, u7} and D+(u3) = {u1, u2, u3}.

There are three decision classes Xb = {u5, u7}, Xm = {u2, u4, u6} and Xg =
{u1, u3} for bad, med and good, respectively. The upward and downward unions of
those decision classes are,

X≥
b = U, X≥

m = {u1, u2, u3, u4, u6}, X≥
g = {u1, u3},

X≤
b = {u5, u7}, X≤

m = {u2, u4, u5, u6, u7}, X≤
g = U.

Given a decision table, the inconsistency with respect to the dominance principle
is captured by the difference between upper and lower approximations of the unions
of decision classes. Given a condition attribute set A ⊆ C , and i ∈ Vd , the lower
approximation LAA(X≥

i ) and the upper approximationUAA(X≥
i ) of X≥

i are defined,
respectively, by:

LAA(X≥
i ) = {u ∈ U | D+

A (u) ⊆ X≥
i },

UAA(X≥
i ) = {u ∈ U | D−

A (u) ∩ X≥
i 	= ∅}.

Similarly, the lower approximation LAA(X≤
i ) of X≤

i and upper approximation
UAA(X≤

i ) are defined, respectively, by:

LAA(X≤
i ) = {u ∈ U | D−

A (u) ⊆ X≤
i },

UAA(X≤
i ) = {u ∈ U | D+

A (u) ∩ X≤
i 	= ∅}.

If u belongs to LAA(X≥
i ) then all objects dominating u do not belong to X≤

i−1,
i.e., there exists no evidence for u ∈ X≤

t−1 in view of the monotonicity assumption.
Therefore,we can say that u certainly belongs to X≥

i . On the other hand if u belongs to
UAA(X≥

i ) then u is dominating an object belonging to X≥
i , i.e., there exists evidence

for u ∈ X≥
i in view of the monotonicity assumption. Therefore, we can say that u

possibly belongs to X≥
i . The similar interpretations can be applied to LAA(X≤

i ) and
UAA(X≤

i ).
The difference between the upper and lower approximations is called a boundary.

The boundaries of an upward union X≥
i and a downward union X≤

i , denoted by
BNA(X≥

i ) and BNA(X≤
i ), are defined by:

BNA(X≥
i ) = UAA(X≥

i ) \ LAA(X≥
i ),

BNA(X≤
i ) = UAA(X≤

i ) \ LAA(X≤
i ).

Objects in the boundary region of an upward or downward union are classified
neither to that union nor to the complement with certainty.
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Example 11 Remember the decision table D = (U, C ∪ {d}, {Va}) in Table7.7. Let
A ={Ma, Ph}. The lower and upper approximations of the upward and downward
unions with respect to A are obtained as follows.

LAA(X≥
b ) = U, LAA(X≥

m) = {u1, u2, u3, u4}, LAA(X≥
g ) = ∅,

LAA(X≤
b ) = {u7}, LAA(X≤

m) = {u4, u5, u6, u7}, LAA(X≤
g ) = U,

UAA(X≥
b ) = U, UAA(X≥

m) = U \ {u7}, UAA(X≥
g ) = {u1, u2, u3},

UAA(X≤
b ) = {u5, u6, u7}, UAA(X≤

m) = U, UAA(X≤
g ) = U.

Now, we remember properties of approximations [16, 18, 31]. By the boundary
conditions of X≥ and X≤,

UAA(X≥
1 ) = LAA(X≥

1 ) = U, UAA(X≤
p ) = LAA(X≤

p ) = U,

UAA(X≥
p+1) = LAA(X≥

p+1) = ∅, UAA(X≤
0 ) = LAA(X≤

0 ) = ∅. (7.21)

Let A ⊆ C and i ∈ Vd . Similarly to RSM, there exist inclusion relations between
each union of decision classes and its lower and upper approximations.

LAA(X≥
i ) ⊆ X≥

i ⊆ UAA(X≥
i ), LAA(X≤

i ) ⊆ X≤
i ⊆ UAA(X≤

i ). (7.22)

Approximations are expressed by unions of dominating or dominated sets,

LAA(X≥
i ) =

⋃

D+
A (u)⊆X≥

i

D+
A (u) =

⋃

u∈LAA(X≥
i )

D+
A (u),

UAA(X≥
i ) =

⋃

D−
A (u)∩X≥

i 	=∅
D+

A (u) =
⋃

u∈UAA(X≥
i )

D+
A (u),

LAA(X≤
i ) =

⋃

D−
A (u)⊆X≤

i

D−
A (u) =

⋃

u∈LAA(X≤
i )

D−
A (u),

UAA(X≤
i ) =

⋃

D+
A (u)∩X≤

i 	=∅
D−

A (u) =
⋃

u∈UAA(X≤
i )

D−
A (u).

There exists duality of lower and upper approximations.

UAA(X≥
i ) = U \ LAA(X≤

i−1), UAA(X≤
i ) = U \ LAA(X≥

i+1). (7.23)

So, the upper approximations of the pair of complementary unions of decision classes
form a cover of U :

UAA(X≥
i ) ∪ UAA(X≤

i−1) = U. (7.24)
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By the duality of lower and upper approximations, the boundaries of the pair of
complementary unions are the same,

BNA(X≥
i ) = BNA(X≤

i−1). (7.25)

Lower and upper approximations can be expressed by boundaries. That is useful
for investigating relations between different types of reducts:

UAA(X≥
i ) = BNA(X≥

i ) ∪ X≥
i , UAA(X≤

i ) = BNA(X≤
i ) ∪ X≤

i , (7.26)

LAA(X≥
i ) = X≥

i \ BNA(X≥
i ), LAA(X≤

i ) = X≤
i \ BNA(X≤

i ). (7.27)

Let A, B ⊆ C and i, j ∈ Vd . Then, we have the following monotonicity proper-
ties:

j ≥ i ⇒ LAA(X≥
j ) ⊆ LAA(X≥

i ), UAA(X≥
j ) ⊆ UAA(X≥

i ), (7.28)

j ≤ i ⇒ LAA(X≤
j ) ⊆ LAA(X≤

i ), UAA(X≤
j ) ⊆ UAA(X≤

i ), (7.29)

B ⊆ A ⇒ LAB(X≥
i ) ⊆ LAA(X≥

i ), LAB(X≤
i ) ⊆ LAA(X≤

i ), (7.30)

B ⊆ A ⇒ UAB(X≥
i ) ⊇ UAA(X≥

i ), UAB(X≤
i ) ⊇ UAA(X≤

i ). (7.31)

Those are important for defining and enumerating reducts.
Furthermore, the authors proposed lower and upper approximations and boundary

regions of decision classes [31]. For A ⊆ C and i ∈ Vd , lower and upper approxi-
mations of Xi and the boundary region of Xi are defined by:

LAA(Xi ) = LAA(X≥
i ) ∩ LAA(X≤

i ),

UAA(Xi ) = UAA(X≥
i ) ∩ UAA(X≤

i ),

BNA(Xi ) = UAA(Xi ) \ LAA(Xi ).

This definition is an analogy to Xi = X≥
i ∩ X≤

i .
Let A ⊆ C and i ∈ Vd . The upper approximations of X≥

i and X≤
i are represented

by upper approximations of decision classes:

UAA(X≥
i ) =

⋃

j≥i

UAA(X j ), (7.32)

UAA(X≤
i ) =

⋃

j≤i

UAA(X j ). (7.33)

The boundary of Xi is the union of the boundaries of X≥
i and X≤

i ,

BNA(Xi ) = BNA(X≥
i ) ∪ BNA(X≤

i ). (7.34)
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Approximations of decision classes have similar properties as those of unions of
decision classes:

LAA(Xi ) ⊆Xi ⊆ UAA(Xi ), (7.35)

UAA(Xi ) =BNA(Xi ) ∪ Xi , (7.36)

LAA(Xi ) =Xi \ BNA(Xi ). (7.37)

The next properties are analogies to (7.6) and (7.5) of the classical RSM.

BNA(Xi ) = UAA(Xi ) ∩
⋃

j 	=i

UAA(X j ), (7.38)

LAA(Xi ) = U \
⋃

j 	=i

UAA(X j ). (7.39)

We define the positive region for the decision table in DRSM:

POSA(d) =
⋃

i∈Vd

LAA(Xi ).

The complement of the positive region is exactly the union of all boundaries,

U \ POSA(d) =
⋃

i∈Vd

BNA(Xi ). (7.40)

Moreover, the approximations are also monotone with respect to the inclusion
relation between condition attribute sets. Let A, B ⊆ C and i ∈ Vd .

B ⊆ A ⇒ LAB(Xi ) ⊆ LAA(Xi ), UAB(Xi ) ⊇ UAA(Xi ). (7.41)

The generalized decision function proposed by Dembczyński et al. [10] also plays
an important role for Boolean reasoning in DRSM. It provides an object-wise view
of DRSM. Let A ⊆ C and u ∈ U , generalized decision of u with respect to A is
defined by δA(u) = 〈lA(u), u A(u)〉, where

lA(u) = min{i ∈ Vd | D+
A (u) ∩ Xi 	= ∅},

u A(u) = max{i ∈ Vd | D−
A (u) ∩ Xi 	= ∅}.

δA(u) shows the interval of decision classes to which x may belong. lA(u) and u A(u)

are the lower and upper bounds of the interval. Obviously, we have

lA(u) ≤ u A(u). (7.42)
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lA(u) and u A(u) are monotone with respect to the inclusion relation between
condition attribute sets. Namely, for B, A ⊆ C and u ∈ U , we have

B ⊆ A ⇒ lB(u) ≤ lA(u), u B(u) ≥ u A(u). (7.43)

Let i ∈ Vd , using the generalized decision function, the lower and upper approx-
imations of unions are represented as:

LAA(X≥
i ) = {u ∈ U | lA(u) ≥ i}, UAA(X≥

i ) = {u ∈ U | u A(u) ≥ i}, (7.44)

LAA(X≤
i ) = {u ∈ U | u A(u) ≤ i}, UAA(X≤

i ) = {u ∈ U | lA(u) ≤ i}. (7.45)

We can represent approximations of classes using the generalized decision,

LAA(Xi ) = {u ∈ U | lA(u) = u A(u) = i}, (7.46)

UAA(Xi ) = {u ∈ U | lA(u) ≤ i ≤ u A(u)}, (7.47)

BNA(Xi ) = {u ∈ U | lA(u) ≤ i ≤ u A(u), lA(u) < u A(u)} . (7.48)

Example 12 Remember the decision table D = (U, C ∪ {d}, {Va}) in Table7.7. Let
A ={Ma, Ph}. The generalized decision function δA with respect to A is obtained
as follows:

δA(u1) = 〈med, good〉, δA(u2) = 〈med, good〉, δA(u3) = 〈med, good〉,
δA(u4) = 〈med,med〉, δA(u5) = 〈bad,med〉, δA(u6) = 〈bad,med〉,
δA(u7) = 〈bad, bad〉.

7.4.2 Structure-Based Reducts in Dominance-Based
Rough Set Models

Before defining structure-based reducts in DRSM, we introduce a notion of reducts
preserving the quality of sorting, proposed by Susmaga et al. [49]. For A ⊆ C , the
quality of sorting γA(d), which is the counterpart of the quality of classification in
the classical RSM, is defined by:

γA(d) = |U −⋃
i∈Vd

BNA(X≤
i )|

|U | = |U −⋃
i∈Vd

BNA(X≥
i )|

|U | .

By (7.34) and (7.40), we can see that γA(d) is related to the positive region of DRSM,

γA(d) = |U −⋃
i∈Vd

BNA(X≤
i )|

|U | = |U − ⋃
i∈Vd

BNA(Xi )|
|U | = |POSA(d)|

|U | .

We call this type of reducts Q-reducts.
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Definition 15 ([16, 49])AQ-reduct inDRSMis aminimal condition attribute subset
A ⊆ C satisfying the following condition:

γA(d) = γC (d). (DQ)

Now, we introduce structure-based reducts in DRSM. Lower and upper approx-
imations and boundary regions of upward and downward unions can be considered
as a structure over a given object setU . From this point, we define 7 union-structure-
preserving reducts. The following reducts are conceivable.

Definition 16 ([25, 52]) We define 7 types of reducts as follows.

• An L≥-reduct in DRSM is a minimal condition attribute subset A ⊆ C satisfying
the following condition:

LAA(X≥
i ) = LAC (X≥

i ) for all i ∈ Vd . (DL≥)

• An L≤-reduct in DRSM is a minimal condition attribute subset A ⊆ C satisfying
the following condition:

LAA(X≤
i ) = LAC (X≤

i ) for all i ∈ Vd . (DL≤)

• A U≥-reduct in DRSM is a minimal condition attribute subset A ⊆ C satisfying
the following condition:

UAA(X≥
i ) = UAC (X≥

i ) for all i ∈ Vd . (DU≥)

• A U≤-reduct in DRSM is a minimal condition attribute subset A ⊆ C satisfying
the following condition:

UAA(X≤
i ) = UAC (X≤

i ) for all i ∈ Vd . (DU≤)

• An L -reduct in DRSM is a minimal condition attribute subset A ⊆ C satisfying
the following condition:

LAA(X≥
i ) = LAC (X≥

i ) and LAA(X≤
i ) = LAC (X≤

i ) for all i ∈ Vd . (DL )

• A U -reduct in DRSM is a minimal condition attribute subset A ⊆ C satisfying
the following condition:

UAA(X≥
i ) = UAC (X≥

i ) and UAA(X≤
i ) = UAC (X≤

i ) for all i ∈ Vd . (DU )

• A B -reduct in DRSM is a minimal condition attribute subset A ⊆ C satisfying
the following condition:
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BNA(X≥
i ) = BNC (X≥

i ) for all i ∈ Vd , or equivalently,
BNA(X≤

i ) = BNC (X≤
i ) for all i ∈ Vd .

(DB )

Yang et al. [52] independently proposed four kinds of reducts in DRSM with
unknown attribute values, which are application of distribution reducts of Mi
et al. [33]. Those reducts preserve lower/upper approximations of upward/
downward unions. Hence, they correspond to L≥-, L≤-, U≥-, and U≤-reducts of
ours. However, Yang et al. did not consider boundaries and combinations of differ-
ent types of reducts.

From (7.23), we know that (DL≥) and (DU≤) are equivalent. Similarly, (DL≤)
and (DU≥) are also equivalent. Therefore, (DL ) is equivalent to (DU ). Moreover,
since condition (DL ) implies conditions (DL≥) and (DL≤), any L -reduct satisfies
(DL≥) and also (DL≤). Similarly, since condition (DU ) implies conditions (DU≥)
and (DU≤), any U -reduct satisfies (DU≥) and also (DU≤). Therefore, we have the
following theorem.

Theorem 7 ([25, 52]) Let A be a subset of C. The following statements hold.

• A is a U≥-reduct if and only if A is an L≤-reduct.
• A is a U≤-reduct if and only if A is an L≥-reduct.
• A is a U -reduct if and only if A is an L -reduct.
• A is a B -reduct if and only if A is an L -reduct.
• If A is an L -reduct then A satisfies (DL≥), (DL≤), (DU≥), and (DU≤).

As the result of the discussion, we obtain 3 different types of reducts based on
the structure induced from rough set operations on unions. They are represented by
L≥-reduct, L≤-reduct and L -reduct.

Now, we are ready to define other types of structure-based reducts, considering
approximations of decision classes. The first kind of reducts, called L-reduct, pre-
serves the lower approximations of decision classes, the second kind of reducts,
called U-reduct, preserves the upper approximations of decision classes, the third
kind of reduct, called B-reduct, preserves the boundary regions of decision classes,
and the fourth kind of reduct, called P-reduct, preserves the positive region. They are
parallel to L-, U-, B-, P-reducts discussion in the classical RSM.

Definition 17 ([31]) We define four types of reducts as follows.

• An L-reduct in DRSM is a minimal condition attribute subset A ⊆ C satisfying
the following condition:

LAA(Xi ) = LAC (Xi ) for all i ∈ Vd . (DL)

• AU-reduct in DRSM is a minimal condition attribute subset A ⊆ C satisfying the
following condition:

UAA(Xi ) = UAC (Xi ) for all i ∈ Vd . (DU)
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• A B-reduct in DRSM is a minimal condition attribute subset A ⊆ C satisfying the
following condition:

BNA(Xi ) = BNC (Xi ) for all i ∈ Vd . (DB)

• A P-reduct in DRSM is a minimal condition attribute subset A ⊆ C satisfying the
following condition:

POSA(d) = POSC (d). (DP)

From the properties of approximations of decision classes, we have the following
theorem.

Theorem 8 ([31]) Let A be a subset of C. We have the following assertions:

(a) A is a B-reduct if and only if A is a U-reduct,
(b) A is a P-reduct if and only if A is an L-reduct,
(c) If A is a U-reduct then A satisfies (DL).

Consequently, we have only 2 kinds of class-structure-based reducts: L-reducts
and U-reducts (or B-reducts). This result is also parallel to the result in RSM.

Let us discuss relations of the union-based reducts, the class-based reducts, the
Q-reducts. We have the following theorems.

Theorem 9 ([31]) Let A be a subset of C. We have the following assertions:

(a) A is an L -reduct if and only if A is a U-reduct,
(b) A is a Q-reduct if and only if A is an L-reduct.

Additionally, we propose two more types of reducts, which are compounds of
L- with L≥- and L≤-reducts, respectively.

Definition 18 We define two types of reducts as follows.

• An LL≥-reduct in DRSM is a minimal condition attribute subset A ⊆ C satisfying
the following condition:

LAA(Xi ) = LAC (Xi ) and LAA(X≥
i ) = LAC (X≥

i ) for all i ∈ Vd . (DLL≥)

• A LL≤-reduct in DRSM is a minimal condition attribute subset A ⊆ C satisfying
the following condition:

UAA(Xi ) = UAC (Xi ) and LAA(X≤
i ) = LAC (X≤

i ) for all i ∈ Vd . (DLL≤)

As a result, all types of reducts proposed in DRSM are arranged in Fig. 7.3.
Consequently, there exist six different kinds of reducts, i.e., U-reducts (B-reducts, L -
reducts, U -reducts, B -reducts), LL≥-reducts, LL≤-reducts, L-reducts (P-reducts),
L≥-reducts (U≤-reducts) and L≤-reducts (U≥-reducts) in DRSM.
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Fig. 7.3 Strong-weak hierar-
chy of reducts in DRSM

strong

weak

7.4.3 Boolean Functions Representing Reducts

Because Boolean reasoning is a popular approach to enumerate all reducts of each
type in rough set literature, some authors already showed Boolean functions repre-
senting their own types of reducts [49, 52]. On the other hand, the authors proposed
a unified formulation of Boolean functions for all types of reducts using the general-
ized decision function in [31]. We only discuss Boolean functions for L≥-, L≤- and
L-reducts, because U-reducts, LL≥-reducts, LL≤-reducts, and their equivalences can
be computed from L≥- and L≤-reducts or their Boolean functions.

We represent preserving conditions of reducts by those of the generalized decision
function.

Lemma 5 ([31]) Let A be a subset of C. We have the following assertions.

• Condition (DL≥) is equivalent to:

lA(u) = lC (u) for all u ∈ U. (DlG)

• Condition (DL≤) is equivalent to:

u A(u) = uC (u) for all u ∈ U. (DuG)

• Condition (DL) is equivalent to:

δA(u) = δC (u) for all u ∈ U such that lC (u) = uC (u). (DLG)

The next lemma is parallel to Lemma 2 of RSM. It also connects two notions:
“preserving” and “non-dominating”.

Lemma 6 ([31]) Let u ∈ U. The following assertions are equivalent.

• lA(u) = lC (u).
• ∀u′ ∈ U, (lC (u′) < lC (u) ⇒ ∃a ∈ A, (u′, u) 	∈ D{a}).

Moreover, the following assertions are also equivalent.

• u A(u) = uC (u).
• ∀u′ ∈ U, (uC (u′) > uC (u) ⇒ ∃a ∈ A, (u, u′) 	∈ D{a}).
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Now we are ready to define a non-domination matrix, instead of the discernibility
matrix of RSM. The non-domination matrix M = (mi j )i, j=1,2,...,n in DRSM is
defined as follows:

mi j = {c ∈ C | (u j , ui ) 	∈ D{c}}

Based on M , we define four non-domination functions.

Definition 19 Non-domination functions F≥, F≤ and FL are defined as follows.

F≥(c̃1, . . . , c̃m) =
∧

i, j |lC (u j )<lC (ui )

∨

c∈mi j

c̃,

F≤(c̃1, . . . , c̃m) =
∧

i, j |uC (u j )>uC (ui )

∨

c∈m ji

c̃,

FL(c̃1, . . . , c̃m) =
∧

i :lC (xi )=uC (xi )

⎛

⎝
∧

j |lC (u j )<lC (ui )

∨

c∈mi j

c̃ ∧
∧

j |uC (u j )>uC (ui )

∨

c∈m ji

c̃

⎞

⎠ ,

where c̃i is a Boolean variable corresponding to i th condition attribute ci .

From Lemma 6, we have the following theorem. Let A ⊆ C . Remember that c̃A

is a Boolean vector such that i th element c̃A
i is true iff ci ∈ A, and φA is the term∧{c̃|c ∈ A}.

Theorem 10 ([31, 49, 52]) Let A be a subset of C. We have the following equiva-
lences:

• A satisfies (DlG), i.e., (DL≥) if and only if F≥(c̃A) = 1. Moreover, A is an
L≥-reduct in DRSM if and only if φA is a prime implicant of F≥,

• A satisfies (DuG), i.e., (DL≤) if and only if F≤(c̃A) = 1. Moreover, A is an
L≤-reduct in DRSM if and only if φA is a prime implicant of F≤,

• A satisfies (DLG), i.e., (DL) if and only if FL(c̃A) = 1. Moreover, A is an L-reduct
in DRSM if and only if φA is a prime implicant of FL.

From Theorem 10, all L≥-, L≤- and L-reducts can be obtained as all prime impli-
cants of Boolean functions F≥, F≤ and FL, respectively.

The proposed non-domination matrices have an advantage when compared with
the previous ones. We need to calculate neither lower, upper approximations nor
boundary regions of unions but only the lower bounds lC and the upper bounds uC

of all objects. Namely, the computation of the proposed approach is free from the
number of decision classes.

Example 13 Remember the decision table givenD = (U, C∪{d}, {Va}) in Table7.7.
In Table7.8, we show again D with the lower bounds lC and the upper bounds uC of
the generalized decisions of the objects which appear in the rightmost two columns
of the table. To obtain lC (ui ) and uC (ui ), we search the minimum class in D+

C (ui )

and the maximum class in D−
C (ui ), respectively.
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Table 7.8 The decision table
in Table7.7 with the
generalized decision function

Student Ma Ph Li E δC = 〈lC , uC 〉
u1 Good Good Good Good 〈good, good〉
u2 Good Good Med Med 〈med, good〉
u3 Med Good Med Good 〈med, good〉
u4 Bad Med Good Med 〈med, med〉
u5 Med Bad Med Bad 〈bad, med〉
u6 Med Bad Bad Med 〈bad, med〉
u7 Bad Bad Bad Bad 〈bad, bad〉

Non-domination matrices M are obtained as follows.

u1 u2 u3 u4 u5 u6 u7

u∗1 ∅ {Li} {Ma,Li} {Ma,Ph} C C C
u2 ∅ ∅ {Ma} {Ma,Ph} {Ma,Ph} C C
u3 ∅ ∅ ∅ {Ma,Ph} {Ph} {Ph,Li} C
u∗4 ∅ {Li} {Li} ∅ {Ph,Li} {Ph,Li} {Ph,Li}
u5 ∅ ∅ ∅ {Ma} ∅ {Li} {Ma,Li}
u6 ∅ ∅ ∅ {Ma} ∅ ∅ {Ma}
u∗7 ∅ ∅ ∅ ∅ ∅ ∅ ∅
For example, the entry corresponding to row u1 and column u3 on M contains

Ma and Li, because u3 is worse than u1 with respect to Ma and Li but not worse
with respect to Ph. Symbol C at some entries means {Ma, Ph, Li}. The rows with
symbol ∗ show objects ui such that lC (ui ) = uC (ui ).

The Boolean function F≥ is obtained from M as

F≥(M̃a, P̃h, L̃i) =
∧

i=1, j=2,3,...,7

∨

c∈mi j

c̃ ∧
∧

i=2,3,4, j=5,6,7

∨

c∈mi j

c̃ = P̃h ∧ L̃i.

From the last equation, F≥(M̃a, P̃h, L̃i) = true only when P̃h = true and L̃i = true.
This implies that only {Ma, Ph, Li} and {Ph, Li} satisfy (DL≥) owing to Theorem 10.
An L≥-reduct is a minimal set of condition attributes that satisfies (DL≥). Therefore,
{Ph, Li} is a unique L≥-reduct. Moreover, the L≥-reduct corresponds to a unique
prime implicant of F≥, i.e., P̃h ∧ L̃i.

Similarly, Boolean functions F≤, FU and FL are

F≤(M̃a, P̃h, L̃i) =
∧

i=4,5,6,7, j=1,2,3

∨

c∈m ji

c̃ ∧
∧

i=7, j=1,2,...,6

∨

c∈m ji

c̃ = M̃a ∧ P̃h,

FL(M̃a, P̃h, L̃i) =
∧

i=1, j=2,3,...,7

∨

c∈mi j

c̃ ∧
∧

i=4, j=5,6,7

∨

c∈mi j

c̃ ∧
∧

i=4, j=1,2,3

∨

c∈m ji

c̃

∧
∧

i=7 j=1,2,...,6

∨

c∈m ji

c̃ = M̃a ∧ L̃i.
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Consequently, we obtain {Ph, Li} as the unique L≥-reduct, {Ma, Ph} as the
unique L≤-reduct and {Ma, Li} as the unique L-reduct. Moreover, {Ph, Li}∪ {Ma,
Ph} = {Ma, Ph, Li}= C is the unique U-reduct, {Ph, Li}∪ {Ma, Li} = {Ma, Ph,
Li} = C is the unique LL≥-reduct, and {Ma, Ph}∪{Ma, Li} = {Ma, Ph, Li}= C
is the unique LL≤-reduct.

7.5 Concluding Remarks

In this chapter, we have studied structure-based attribute reduction as a rough set
approach to the attribute selection/reduction problem. We have proposed several
concepts of structure-based reducts. In the rough set model, there are 2 different
types of reducts, U-reducts and L-reducts. U-reducts preserve generalized decisions
∂C (u) for all objects u ∈ U , while L-reducts do so for all certain classified objects u,
namely, |∂C (u)| = 1. The authors studied refinement of the hierarchy of structure-
based reducts (Fig. 7.1) by interpolating reducts which preserve objects u whose
generalized decisions are at most k, namely, |∂C (u)| ≤ k [24]. The parameter k
provides a trade-off between the size of a reduct and preserved information.

In VPRSM, because approximations may not be monotone with respect to the
set inclusion of condition attributes, classifications of some objects become precise
by reducing condition attributes. From that viewpoint, the authors have proposed
enhancing reducts [21], which do not preserve but make classification more precise
than that of all condition attributes.

Attribute reduction have been also studied in other extensions of the rough set
model, e.g. tolerance-based RSM [44], RSM for decision tables with missing val-
ues [29, 30], Bayesian RSM [47], fuzzy RSM [27, 28], and variable precision
DRSM [26]. However, in general, extensions of the rough set model drop some
important properties of approximations. Therefore, in such models, reducts may not
be represented by Boolean functions.

When a measure γ (e.g. Eq. 7.8) representing a part of consistency of a rough
set model is given, we can define approximate measure-based reducts as follows:
A ⊆ C is an approximate reduct if γA ≥ (1 − ε)γC or γA ≥ γC − ε for a small
ε ≥ 0. Several measures used for approximate measure-based reducts have been
proposed, e.g. based on the number of discerned object pairs or the information
entropy [45, 46, 51].Comparingwith structure-based reducts, approximatemeasure-
based approach can easily control size of reducts, but we cannot expect which parts
of the structure of the rough set model deteriorate by reduction.

We show that reducts are (approximately) represented by prime implicants of
Boolean functions (or pairs of Boolean functions). To compute all reducts of a par-
ticular type,we solve the dualization problem (more precisely, positiveDNF (orCNF)
dualization) of the corresponding Boolean function. It probably cannot be solved in
polynomial time (it can be solved in quasi-polynomial time with respect to the sizes
of the input and the output [9]).
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To apply attribute reduction of this chapter to real-world data sets, we notice the
following three points. Firstly, we need additional measures to select the best reducts
for applications, for example, minimizing the size of the reduct or the number of
the equivalence classes given by the reduct and so on [1, 13, 27, 42, 48, 50]. Such
an optimization problem cannot be generally solved in polynomial time. Therefore,
there are heuristic methods computing one or a number of reducts which are near to
optimal [1, 27, 42, 48]. It does not mean that the Boolean functions studied in this
chapter are useless for applications. They can be incorporated into heuristic methods.

Secondly, when data sets include numerical or continuous attribute values, the
approach of this chapter does not work well, because the order of values or the degree
of difference between values are not considered (except for criteria in DRSM). There
are two approaches to overcome the drawback. One is discretization [7, 15] where
the domain of a numerical attribute is partitioned to lower number of values. After
discretization, we can apply attribute reduction to the data set without modification.
The other is to use a similarity relation [12, 28] instead of the indiscernibility relation
or a fuzzy partition [12, 22, 27] instead of the equivalence classes and define exten-
sions of RSM. In that case, we can define structure-based reducts for the extended
RSMs in the same way as those of this chapter.

Thirdly, reducts could suffer from overfitting because of rigid definitions of their
preserving conditions. One technique to avoid overfitting is dynamic reducts [1],
where decision tables with object subsets of a given cardinality are randomly and
repeatedly selected, and reducts which appear in more decision tables than a given
threshold are chosen as dynamic reducts.

In this chapter, we did not discuss algorithms to compute reducts and numerical
experiments, whereas they are found in [5, 6, 8, 11, 13, 17, 19, 34, 41, 50, 51].
The references show how to select a desirable reduct or find an optimal reduct, and
how to use the selected reduct for building classifiers. Additionally, they also show
experimental results for benchmark or real-world data sets. The references do not
include some types of reducts of this chapter, especially most types of reducts in
VPRSM, however, from their results we hope that the proposed reducts would be
useful in applications.

Proofs of theoretical results of this chapter are not so difficult. Parts of proofs are
found in our papers [20, 23, 25, 31].
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Chapter 8
A Comparison of Rule Induction
Using Feature Selection and the LEM2
Algorithm

Jerzy W. Grzymała-Busse

Abstract Themain objective of this chapter is to compare a strategyof rule induction
based on feature selection, exemplified by theLEM1algorithm,with another strategy,
not using feature selection, exemplifiedby theLEM2algorithm.TheLEM2algorithm
uses all possible attribute-value pairs as the search space. It is shown that LEM2
significantly outperforms LEM1, a strategy based on feature selection in terms of
an error rate (5% significance level, two-tailed test). At the same time, the LEM2
algorithm induces smaller rule sets with the smaller total number of conditions as
well. The time complexity for both algorithms is the same.

Keywords Rough set theory ·Feature selection ·LERSdatamining system ·LEM1
and LEM2 rule induction algorithms

8.1 Introduction

In 1982 an approach to feature selection, under the name of attribute reduction, using
rough set theory,was introduced in [26], see also [27, 28]. In the rough set community
reducing the original attribute set of attributes is one of the main and frequently used
techniques.

Feature selection is the process of selecting a subset of relevant features. Research
on feature selection, see, e.g., [2, 6, 20–23, 29, 31], includes finding the smallest set
of features, improving this way the efficiency of data processing. Data are presented
in tables, with rows labeled as cases (examples or entries) and columns labeled as
features (variables or attributes).
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U. Stańczyk and L.C. Jain (eds.), Feature Selection for Data
and Pattern Recognition, Studies in Computational Intelligence 584,
DOI 10.1007/978-3-662-45620-0_8

163



164 J.W. Grzymała-Busse

An introduction to feature selection is presented in [17]. Recently two books were
published [18, 24], summarizing research in this area. There is active research on
feature selection in statistics, data mining, and soft computing.

The main objective of this chapter is to compare, in terms of an error rate, rule
complexity, and time complexity of two approaches: an approach to rule induction
based on feature selection with another approach to rule induction, based on the
LEM2 algorithm,without any feature selection. In the former approach computations
are conducted on the entire attributes, so it is also called global [14]. To be more
specific, for every attribute a corresponding partition on the set of all cases, implied by
the indiscernibility relation [26–28] is computed and feature selection is conducted
by computation on such partitions. On the other hand, the LEM2 algorithm works
on attribute values, instead on entire attributes, so it is called local [14]. The search
space of the LEM2 algorithm is the set of all blocks of attribute-value pairs. A block
of an attribute-value pair (a, v) is the set of all cases with the value of a equal to v.

A preliminary version of this chapter was presented at IPMU 2012, the 14th
International Conference on Information Processing andManagement ofUncertainty
in Knowledge-Based Systems, Catania, Italy, July 9–13, 2012 [15] (Table8.1).

Table 8.1 Acronyms and symbols used in the chapter and their meaning

Acronym or symbol Meaning

A Set of all attributes

appr(X) Lower approximation of X

appr(X) Upper approximation of X

B Subset of the set A of all attributes

B∗ Partition on U defined by B

C Concept of the data sets

d Decision

{d}∗ Partition on U, the set of all concepts

G Goal of the LEM2

IND(B) Indiscernibility relation of B

LEM1 Learning from Examples Module version 1

LEM2 Learning from Examples Module version 2

LERS Learning from Examples based on Rough Sets data mining system

t Attribute-value pair (a, v)

T Complex, i.e., a set of attribute-value pairs

T(G) Set of attribute-value pairs relevant with G

T Local covering

U Universe, the set of all cases of data set

x Element of U

X Subset of U

|X| Cardinality of the set X

y Element of U



8 A Comparison of Rule Induction Using Feature Selection and the LEM2 165

8.2 Rule Induction Based on Feature Selection

We will discuss rule induction which belongs to supervised learning, i.e., we will
assume that all cases are preclassified by an expert. In the data set one of variables
is called a decision and the decision value is assigned by an expert to each case. A
very simple example of such a table is presented as Table8.2, in which attributes
are: Temperature, Headache, Nausea, and the decision is Flu. The set of all cases
labeled by the same decision value is called a concept. For Table8.2, case set {1, 2}
is a concept of all cases affected by flu (for each case from this set the corresponding
value of Flu is yes).

Note that in Table8.2 the attribute Nausea is redundant (irrelevant). Remaining
two attributes (Temperature and Headache) distinguish all six cases. Let us make it
more precise using fundamental definitions of rough set theory [26–28]. Let B be
a nonempty subset of the set A of all attributes. Let U denote the set of all cases.
The indiscernibility relation IND(B) is a relation on U defined for x, y ∈ U by
(x, y) ∈ IND(B) if and only if for both x and y the values for all attributes from B
are identical.

The indiscernibility relation IND(B) is an equivalence relation. Equivalence
classes of IND(B) are called elementary sets of B. Any union of elementary sets
of B is called a definable set in B. For Table8.2, and B = {Temperature, Headache},
elementary sets of IND(B) are {1}, {2}, {3}, {4}, {5}, and {6}.

The family of all B-elementary sets is a partition on U. This set will be denoted
by B∗, for example, in Table8.2,

{Temperature,Headache}∗ = {{1}, {2}, {3}, {4}, {5}, {6}}.

For a decision d we say that {d} depends on B if and only if B∗ ≤ {d}∗, i.e., for
any elementary set X in B there exists a concept C from {d}∗ such that X ⊆ C. A
global covering (or relative reduct) of {d} is a subset B of A such that {d} depends
on B and B is minimal in A. The algorithm to compute a single global covering is
presented below.

Table 8.2 A consistent data
set

Case Attributes Decision

Temperature Headache Nausea Flu

1 High Yes No Yes

2 Very_high No No Yes

3 Very_high Yes No No

4 Normal No No No

5 High No Yes Maybe

6 Normal Yes Yes Maybe
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LEM1 algorithm for computing a single global covering
(input: the set A of all attributes, partition {d}∗ on U;
output: a single global covering R);
begin
compute partition A∗;
P : = A;
R := ∅;

if A∗ ≤ {d}∗
then

begin
for each attribute a in A do

begin
Q := P − {a};
compute partition Q∗;
if Q∗ ≤ {d}∗ then P := Q

end {for}
R := P

end {then}
end {algorithm}.

The time complexity of the algorithm for computing a single global covering is
polynomial. For a set X, |X| denotes the cardinality of X. Let m be the number of
all cases, i.e., |U| = m, and n be the number of all attributes, i.e., |A| = n. The
time complexity of the algorithm, using a “brute force” approach, in the worst case
scenario, and assuming symbolic attributes, is O(mn2). The time complexity of the
algorithm for the attributes with the number of values depending on m is O(m2n2).

For the data set from Table8.2, the global covering is {Temperature, Headache}.
The above algorithm is implemented as LEM1 (Learning from Examples Module
version 1). It is a component of the data mining system LERS (Learning from Exam-
ples using Rough Sets). Another, similar approach to rule induction based on feature
selection was presented in [1].

The rule set, inducedbyLEM1from theglobal covering{Temperature,Headache}
for the concept (Flu, maybe), is:

(Temperature, high) and (Headache, no) → (Flu,maybe),
(Temperature, normal) and (Headache, yes) → (Flu,maybe).

8.3 LEM2

An idea of blocks of attribute-value pairs is used in theLEM2 rule induction algorithm
(Learning from Examples Module, version 2), another component of LERS. LEM2
explores the search space of attribute-value pairs. We will quote a few definitions to
describe the LEM2 algorithm [4, 11, 12, 14].
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For an attribute-value pair (a, v), a block of (a, v), denoted by [(a, v)], is the
following set

{x | x ∈ U, a(x) = v},

where a(x) is the value of the attribute a for the case x. Let B be a nonempty lower or
upper approximation of a concept represented by a decision-value pair (d,w). Let T
be a complex of B, i.e., the set of attribute-value pairs t = (a, v) with a ∈ B. A block
of T , denoted by [T ], is the following set

∩{[t] | t ∈ T}.

Set B depends on a set T of attribute-value pairs if and only if

∅ 	= [T ] =
⋂

t∈T

[t] ⊆ B.

Set T is a minimal complex of B if and only if B depends on T and no proper
subset T ′ of T exists such that B depends on T ′. Let T be a nonempty collection of
nonempty sets of attribute-value pairs. Then T is a local covering of B if and only
if the following conditions are satisfied:

1. each member T of T is a minimal complex of B,
2. ∪{[T ] | T ∈ T } = B, and

T is minimal, i.e., T has the smallest possible number of elements.

The LEM2 algorithm is presented below.

LEM2 algorithm for computing a single local covering
(input: a set B,
output: a single local covering T of set B);
begin

G := B;
T := ∅;
while G 	= ∅

begin
T := ∅;
T(G) := {t|[t] ∩ G 	= ∅};
while T = ∅ or [T ] 	⊆ B

begin
select a pair t ∈ T(G) such that |[t] ∩ G| is
maximum; if a tie occurs, select a pair t ∈ T(G)

with the smallest cardinality of [t];
if another tie occurs, select first pair;
T := T ∪ {t};
G := [t] ∩ G;
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T(G) := {t|[t] ∩ G 	= ∅};
T(G) := T(G) − T ;
end {while}

for each t ∈ T do
if [T − {t}] ⊆ B then T := T − {t};

T := T ∪ {T};
G := B − ∪T∈T [T ];

end {while};
for each T ∈ T do

if
⋃

S∈T −{T}[S] = B then T := T − {T};
end {algorithm}.

With the same assumptions as for the algorithm for computing a single global
covering, the time complexity of the algorithm for computing a single local covering
is also O(mn2) for symbolic attributes and O(m2n2) for attributes with the number
of values depending on m.

The LERS data mining system also includes the LEM2 algorithm.
The first step of the algorithm LEM2 is to compute all attribute-value pair blocks.

For Table8.2, these blocks are
[(Temperature, very_high)] = {2, 3},
[(Temperature, high)] = {1, 5},
[(Temperature, normal)] = {4, 6},
[(Headache, yes)] = {1, 3, 6},
[(Headache, no)] = {2, 4, 5},
[(Nausea, no)] = {1, 1, 3, 4},
[(Nausea, yes)] = {5, 6}.
Let us induce rules for the concept {5, 6}. It is immediately clear that {(Nausea,

yes)} is the only required minimal complex and that the local covering consists of
only this single minimal complex.

The corresponding rule set, induced by LEM2, contains just one rule
(Nausea, yes) → (Flu,maybe).
Obviously, in general, rule sets induced by LEM2 are simpler than rule sets

induced by LEM1 from the same data sets. This observation is confirmed by our
experiments.

8.4 Inconsistent Data

An example of the inconsistent data set is presented in Table8.3. In inconsistent data
some cases may conflict with each other. Conflicting cases have the same attribute
values yet different decision values. In Table8.3 cases 1 and 7 are conflicting. A
level of consistency is the ratio of the cardinality of the set of all cases not involved
in any conflict to the cardinality of U. For the data set from Table8.3, the level of
consistency is 5

7 = 71.4%.



8 A Comparison of Rule Induction Using Feature Selection and the LEM2 169

Table 8.3 An inconsistent
data set

Case Attributes Decision

Temperature Headache Nausea Flu

1 High Yes No Yes

2 Very_high No No Yes

3 Very_high Yes No No

4 Normal No No No

5 High No Yes Maybe

6 Normal Yes Yes Maybe

7 High Yes No No

The LERS data mining system uses rough set approach to inconsistent data, i.e.,
it computes lower and upper approximations for all concepts before applying LEM1
or LEM2 algorithm. Let X be a concept. In general, X is not definable in A. However,
X may be approximated by two definable sets in A, the first one is called a lower
approximation of X, denoted by appr(X) and defined as follows

{[x] | x ∈ U, [x] ⊆ X}.

The second set is called an upper approximation of X, denoted by appr(X) and
defined as follows

∪ {[x] | x ∈ U, [x] ∩ X 	= ∅}.

For example, for the concept [(Flu, yes)] = {1, 2},
appr({1, 2}) = {2},

and
appr({1, 2}) = {1, 2, 7}.
Rules induced from lower approximations are called certain, rules induced from

upper approximations are called possible.
Note that even though the data set from Table8.3 is inconsistent, the attribute

Nausea is still redundant (irrelevant), since

{Temperature,Headache}∗ = {Temperature,Headache,Nausea}∗
= {{1, 7}, {2}, {3}, {4}, {5}, {6}}.

The LERS system computes, for every concept, a pair of data sets, based on lower
and upper approximations to induce certain and possible rule sets, respectively. For
example, for the concept {1, 2}, certain rule sets are induced from the data set
presented in Table8.4 and possible rule sets from Table8.5.

Obviously, the final rule set, certain or possible, is a union of rule sets induced for
all concepts, from data sets based on lower or upper approximations, respectively,
with all rules for SPECIAL values removed.
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Table 8.4 A data set based
on the lower approximation
{2} of the concept {1, 2}

Case Attributes Decision

Temperature Headache Nausea Flu

1 High Yes No SPECIAL

2 Very_high No No Yes

3 Very_high Yes No SPECIAL

4 Normal No No SPECIAL

5 High No Yes SPECIAL

6 Normal Yes Yes SPECIAL

7 High Yes No SPECIAL

Table 8.5 A data set based
on the upper approximation
{1, 2, 7} of the concept {1, 2}

Case Attributes Decision

Temperature Headache Nausea Flu

1 High Yes No Yes

2 Very_high No No Yes

3 Very_high Yes No SPECIAL

4 Normal No No SPECIAL

5 High No Yes SPECIAL

6 Normal Yes Yes SPECIAL

7 High Yes No Yes

Thus, if we are going to use the strategy of rule induction based on feature selec-
tion, possible rules induced from Table8.3 are:

(Temperature, high) and (Headache, yes) → (Flu, yes),
(Temperature, very_high) and (Headache, no) → (Flu, yes),
(Temperature, high) and (Headache, yes) → (Flu, no),
(Temperature, very_high) and (Headache, yes) → (Flu, no),
(Temperature, normal) and (Headache, no) → (Flu, no),
(Temperature, high) and (Headache, no) → (Flu,maybe),
(Temperature, normal) and (Headache, yes) → (Flu,maybe).
At the same time, the LEM2 algorithm will induce the flowing set of possible

rules from the same data set:
(Nausea, no) and (Temperature, high) → (Flu, yes),
(Temperature, very_high) and (Headache, no) → (Flu, yes),
(Nausea, no) and (Headache, yes) → (Flu, no),
(Temperature, normal) and (Headache, no) → (Flu, no),
(Nausea, yes) → (Flu,maybe).
Again, it is quite clear that LEM2 produces simpler rules (and fewer rules).
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8.5 LERS Classification System

There is a few existing classification systems, e.g., associated with rule induction
systems LERS or AQ [25]. A classification system used in LERS is a modification
of the well-known bucket brigade algorithm [3, 19, 30]. In the LERS classifica-
tion system the decision to which concept a case belongs is made on the basis of
three factors: strength, specificity, and support. These factors are defined as follows:
strength is the total number of cases correctly classified by the rule during training.
Specificity is the total number of attribute-value pairs on the left-hand side of the
rule. The matching rules with a larger number of attribute-value pairs are considered
more specific. The third factor, support, is defined as the sum of products of strength
and specificity for all matching rules indicating the same concept. The concept C for
which the support, i.e., the following expression

∑

matching rules r describing C

Strength(r) ∗ Specificity(r)

is the largest is the winner and the case is classified as being a member of C.
In the classification system of LERS, if complete matching is impossible, all

partially matching rules are identified. These are rules with at least one attribute-
value pair matching the corresponding attribute-value pair of a case. For any par-
tially matching rule r, the additional factor, called Matching_ factor(r), is computed.
Matching_factor(r) is defined as the ratio of the number of matched attribute-value
pairs of r with a case to the total number of attribute-value pairs of r. In partial
matching, the concept C for which the following expression is the largest

∑

partially matching
rules r describing C

Matching_ factor(r) ∗ Strength(r) ∗ Specificity(r)

is the winner and the case is classified as being a member of C.

8.6 Experiments

In our experiments we used 14 data sets that are available on the Machine Learning
Repository at the University of California at Irvine, see Table8.6. Some of these data
sets were incomplete (Breast Cancer-Slovenia, Soybean, Postoperative Patient and
Primary Tumor).

For incomplete data sets missing attribute values were replaced by specified
attribute values using an imputation method called the most common value of an
attribute restricted to a concept [16].
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Table 8.6 Data sets used for experiments

Data set Number of Consistency (%)

Cases Attributes Concepts

Australian Credit Approval 690 14 2 100

Breast Cancer—Slovenia 286 9 2 95.45

Breast Cancer—Wisconsin 625 9 9 94.08

Bupa Liver Disorders 345 6 2 100

Glass 214 9 6 100

Hepatitis 155 19 2 100

Image segmentation 210 19 7 100

Iris 150 4 3 100

Lymphography 148 18 4 100

Pima 768 8 2 100

Postoperative patients 90 8 3 84.44

Soybean 307 35 19 100

Primary Tumor 339 17 21 76.40

Wine Recognition 178 13 3 100

Let us say that attribute a has missing attribute value for case x from concept C
and that the value of a for x is missing. This missing attribute value is exchanged by
the known attribute value for which the conditional probability of a for case x given
C is the largest.

Some of these data sets had numerical attributes (Australian Credit Approval,
Bupa Liver Disorders, Primary Tumor and Wine Recognition). Numerical attributes
were discretized using cluster analysis methods of discretization [5].

The data mining system LERS uses for discretization a number of discretization
algorithms [13]. In our experiments we used two approaches to discretization based
on cluster analysis. First, all numerical attributeswere normalized [7] (attribute values
were divided by the attribute standard deviation).

In our first discretization technique, based on agglomerative cluster analysis [7],
initially each case is a single cluster, then clusters are fused together, forming larger
and larger clusters. In remaining four cluster analysis discretization methods, where
we used divisive techniques, initially all cases are grouped in one cluster, then this
cluster is gradually divided into smaller and smaller clusters. In bothmethods, during
the first step of discretization, cluster formation, cases that exhibit themost similarity
are fused into clusters.
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Once clusters are formed the postprocessing starts. Initially clusters are projected
on all attributes. Then the resulting intervals are merged to reduce the number of
intervals and, at the same time, preserving consistency. Merging of intervals begins
from safe merging, where, for each attribute, neighboring intervals labeled by the
same decision value are replaced by their union. The next step of merging intervals
is based on checking every pair of neighboring intervals whether their merging will
result in preserving consistency. If so, intervals are merged permanently. If not, they
are marked as un-mergeable.

Thus, all data sets used for experiments were complete and symbolic.
Our experiments were conducted on a machine with 34GB of RAMwith Intel(R)

Xeon Processor X5650 (12MB cache, 2.66GHz, 6 Cores) under Fedora 17 Linux
operating system.

In our experiments, for any data set, for both algorithms, LEM1 and LEM2,
the same ten pairs of training and testing data sets were used during ten-fold cross
validation. Hence, for any fold, the same training data sets were used for induction
and the same testing data sets were used for computing an error rate. Additionally, the
sameLERS classificationmethodwas used for computing errors. The only difference
was in different strategies of rule induction used in LEM1 and LEM2. Additionally,
for both algorithms, we used only certain rule sets for inconsistent data sets. Results
of our experiments are presented in Tables8.7, 8.8 and 8.9.

Table 8.7 Results of
experiments—an error rate

Data set LEM1 (%) LEM2 (%)

Australian Credit Approval 21.74 16.67

Breast Cancer—Slovenia 36.71 34.62

Breast Cancer—Wisconsin 19.68 22.24

Bupa Liver Disorders 36.52 36.81

Glass 33.18 31.31

Hepatitis 21.94 16.77

Image segmentation 17.62 18.10

Iris 3.33 4.67

Lymphography 31.08 18.24

Pima 33.46 30.73

Postoperative patients 41.11 35.36

Soybean 23.45 14.98

Primary tTumor 60.18 62.64

Wine Recognition 8.43 5.06



174 J.W. Grzymała-Busse

Table 8.8 Results of experiments—rule set complexity

Data set LEM1 LEM2

Number of

Rules Conditions Rules Conditions

Australian Credit Approval 317 1,380 115 559

Breast Cancer—Slovenia 160 518 92 319

Breast Cancer—Wisconsin 255 638 164 421

Bupa Liver Disorders 234 684 164 487

Glass 111 334 82 262

Hepatitis 47 191 21 88

Image segmentation 71 273 38 144

Iris 18 43 13 30

Lymphography 77 217 26 74

Pima 444 1,547 287 1,025

Postoperative patients 50 175 28 98

Soybean 101 411 42 139

Primary Tumor 171 829 125 638

Wine Recognition 32 111 16 52

Table 8.9 Results of
experiments—run time, in
milliseconds

Data set LEM1 LEM2

Australian Credit Approval 457 273

Breast Cancer—Slovenia 38 54

Breast Cancer—Wisconsin 146 126

Bupa Liver Disorders 30 69

Glass 31 30

Hepatitis 33 26

Image segmentation 65 39

Iris 3 1

Lymphography 36 27

Pima 257 407

Postoperative patients 7 5

Soybean 415 158

Primary Tumor 341 134

Wine Recognition 25 9
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8.7 Conclusions

As follows from our experiments presented in Table8.7, rule sets induced by the
LEM2 algorithm outperform rule sets induced by using feature selection (the LEM1
algorithm) in terms of the error rate. The Wilcoxon matched-pairs signed-rank test
indicates that the LEM2 algorithm is better with 5% of significance level (two-tailed
test).

Moreover, the LEM2 algorithm induces much simpler rule sets. As follows from
Table8.8, for all 14 data sets, rule sets induced by the LEM2 algorithm are smaller
and the total number of conditions in these rule sets is smaller as well. Simpler rules
are easier to interpret.

Both algorithms, LEM1 and LEM2, are of polynomial time complexity. It is
confirmed by Table8.9. The Wilcoxon matched-pairs signed-rank test indicates that
there is no significant difference in run time between the two algorithms. LEM2 can
induce rule sets from data sets with tens of thousands of attributes, such asmicroarray
data sets, see, e.g., [8–10]. Therefore we may conclude that the LEM2 algorithm,
with the space search of all attribute-value pairs, is better than LEM1 based on feature
selection.
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Chapter 9
Meta-actions as a Tool for Action
Rules Evaluation

Hakim Touati, Zbigniew W. Raś and James Studnicki

Abstract Action rules extraction is a field of data mining used to extract actionable
patterns from large datasets. Action rules present users with a set of actionable tasks
to follow to achieve a desired result. An action rule can be seen as two patterns of
feature values (classification rules) occurring together and having the same features.
Action rules are evaluated using their supporting patterns occurrence in a measure
called support. They are also evaluated using their confidence defined as the product
of the two patterns confidences. Those twomeasures are important to evaluate action
rules; nonetheless, they fail to measure the feature values transition correlation and
applicability. This is due to the core of the action rules extraction process that extracts
independent patterns and constructs an action rule. In this chapter, we present the
benefits of meta-actions in evaluating action rules in terms of two measures, namely
likelihood and execution confidence. In fact, in meta-actions, we extract real feature
values transition patterns, rather than composing two feature values patterns. We
also present an evaluation model of the application of meta-actions based on cost
and satisfaction. We extracted action rules and meta-actions and evaluated them
on the Florida State Inpatient Databases that is a part of the Healthcare Cost and
Utilization Project.
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9.1 Introduction

Action rules are used in several industries such as banking and healthcare. They pro-
vide decision makers with a tool to build strategies to drive their business toward a
more profitable outcome.Action ruleswere applied previously to a considerable num-
ber of research areas such as Music Information Retrieval (MIR) [5] and healthcare
[15, 17]. There has been an increasing interest on action rule discovery algorithms
since their creation by Raś andWieczorkowska [10]. Some of the new algorithms are
Association Action Rules [9] and ARED [4] that extract action rules directly from
the dataset, among other ones [6, 12, 14, 16].

In addition to action rules, a new concept called meta-actions allows deciders to
extract the triggers that provoke the necessary transitions to execute action rules. In
fact, meta-actions are the core triggers of action rules, and allow us to select the action
rules that are more likely to take effect. Meta-actions is a relatively new concept that
was defined in [14] and further explored in [7, 13].

In the healthcare research, action rules have been used to understand experts
practices and improve patients care [9, 15, 17]. However, treatment patterns under
the form of meta-actions were not applied previously to evaluate action rules. Meta-
actions allow us to mine the diagnosis transitions caused by applying treatments. In
this context, we can use meta-actions to evaluate action rules that model treatments.
In this chapter, we propose the application of meta-actions as an evaluation tool for
action rules. We strive to develop evaluation metrics for meta-actions and action
rules.

The 2010 Florida State Inpatient Databases (SID) that is a part of the Healthcare
Cost and Utilization Project (HCUP) [2] was used as a dataset to extract meta-actions
and action rules. We propose several evaluation metrics such as the likelihood of
execution of an action term, and the execution confidence of an action rule and
applied them to the 2010 Florida SID. The main contributions of this chapter are
summarized as follows:

• We presented meta-actions discovery methodology.
• We developed several evaluation metrics for action rules and meta-actions.
• We extracted meta-actions and action rules from the 2010 Florida SID, and eval-
uated them.

In what follows, we start by defining the terminology used in this chapter with
regards to meta-actions and action rules. We then present the meta-actions extraction
process and evaluation metrics. We compare briefly action rules and meta-actions
and propose action rules evaluation metrics. Finally, we evaluate our approach and
present our findings.
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9.2 Decision Systems

Action rules and meta-action elementary rules are extracted from decision systems.
A decision system is an information system, where features are partitioned into two
groups: the first group is composed of classification features, and the second of one
particular feature called the decision that models the outcome. An object instance is
represented as a row, called transaction instance, in terms of a set of features.

More formally, by a decision system we mean S = (X, F ∪ {d}, V ), where:

1. X is a set of objects instances, F is a set of classification features, d is a decision
feature, and V is the domain of these feature values.

2. f : X → V f is a function for any feature f ∈ F , where V f is called the domain
of f .

3. d : X → Vd is a function, where Vd is called the domain of d.
4. V = VF ∪ Vd , where VF = ⋃{V f : f ∈ F}.

Also, for each x ∈ X and f ∈ F , we assume that value f (x) ∈ V f is classified
either as positive (normal) or negative (abnormal). To be more precise, we assume
that F(x) denotes the set { f (x) : f ∈ F} which represents the state of the object
instance x , and that F(x) = En(x) ∪ E p(x), where E p(x) is a set of positive values
and En(x) is a set of negative values for x ∈ X . If f (x) ∈ En(x), then the value
f (x) is interpreted as abnormal (for instance: high temperature, cough, headache).
If f (x) ∈ E p(x), then value f (x) is interpreted as normal.

9.3 Action-Rules

Action rules are rules that provide a set of actionable patterns to follow in order
to transition the objects population from a certain state to a more profitable state
with respect to the decision feature. They allow users to understand the correlations
between transition patterns in the decision system, and construct actionable tasks that
lead to a desirable outcome. Action rules are composed of a decision feature d and
classification features that are in turn divided into two sets: stable features Fst, and
flexible features Ffl such that F = Ffl ∪ Fst. Stable features are object properties that
we do not have control over in the context of our information system. For example,
age and gender are stable features. Flexible features are object properties that can
transition from one value to another value triggering a change in the object state. For
instance, salary and benefits are flexible features since their values can change.

Definition 1 (Atomic action term in S) also called elementary action term in S, is
an expression that defines a change of state for a distinct feature in S. For example,
( f, v1 → v2) is an atomic action term which defines a change of value for the
attribute f in S from v1 to v2, where v1, v2 ∈ V f . In the case when there is no
change, we omit the right arrow sign, so for example, ( f, v1) means that the value of
attribute f in S remains v1, where v1 ∈ V f .
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Atomic action terms model a single feature values transition pattern, but it does
not model the association between feature values transition patterns.

Definition 2 (Action terms) are defined as the smallest collection of expressions for
a decision system S such that:

• If t is an atomic action term in S, then t is an action term in S.
• If t1, t2 are action terms in S and ∧ is a 2-argument functor called composition,
then t1 ∧ t2 is a candidate action term in S.

• If t is a candidate action term in S and for any two atomic action terms ( f, v1 →
v2), (g, w1 → w2) contained in t we have f �= g, then t is an action term in S.

Assuming that S is given, we will say from now on, action term instead of action
term in S.

Definition 3 (Domain of an action term) The domain Dom(t) of an action term t
is the set of features listed in the atomic action terms contained in t . For example,
t = [( f, v1 → v2) ∧ (g, w1)] is an action term that consists of two atomic action
terms, namely ( f, v1 → v2) and (g, w1). Therefore, Dom(t) = { f, g}.

Action rules are expressions that take the following form: r = [t1 ⇒ t2], where
t1, t2 are action terms. The interpretation of the action rule r is that by triggering
the action term t1, we would get, as a result, the changes of states in action term t2.
We also assume that Dom(t1) ∪ Dom(t2) ⊆ F , and Dom(t1) ∩ Dom(t2) = ∅.

For example, r = [[( f, v1 → v2) ∧ (g, w2)] ⇒ (d, d1 → d2)] means that by
changing the state of feature f from v1 to v2, and by keeping the state of feature g
as w2, we would observe a change in attribute d from the state d1 to d2, where d is
commonly referred to as the decision attribute.

9.3.1 Action Rules Evaluation

In [8] it was observed that each action rule can be seen as a composition of two classi-
fication rules. For instance, the rule r = [[( f, v1 → v2) ∧ (g, w2)] ⇒ (d, d1 → d2)]
is a composition of r1 = [( f, v1)∧(g, w2)] → (d, d1) and r2 = [( f, v2)∧(g, w2)] →
(d, d2). This fact can be recorded by the equation r = r(r1, r2). Also, the definition
of support (Sup) and confidence (Conf ) of an action rule is based on support and
confidence of classification rules (see below).

Assume that action rule r is a composition of two classification rules r1 and r2.
Then [8]:

• Sup(r) = min{card(sup(r1)), card(sup(r2))},
• Conf(r) = conf(r1) · conf(r2),

where conf(r1) and conf(r2) are the respective confidences of classification rules r1
and r2.
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In this context, the support of a classification rule r = [[( f1, f11) ∧ ( f2, f21) ∧
· · · ∧( fk, fk1)] → (d, d1)] in a decision system S = (X, F ∪ {d}, V ), where (∀i ≤
k)( fi ∈ F and fi1 ∈ V f i ), d1 ∈ Vd is defined as sup(r) = {x ∈ X : (∀i ≤
k) [ fi (x) = fi1] and d(x) = d1}.

9.4 Meta-actions

Action rules are the perfect analysis of transition patterns that inform deciders about
the possible changes to perform to reach a desired outcome. However, deciders still
need to acquire additional knowledge on how to perform the necessary changes, and
what are the object’s states changes that actually occurred in the system. To build
the strategies on the top of the actionable tasks that action rules provide, we use
meta-actions that are defined as follows.

Definition 4 (Meta-actions) associated with a decision system S are defined as
higher level concepts used to model certain generalizations of actions rules [14].
Meta-actions, when executed, trigger changes in values of some flexible features in S.

Meta-actions are actions, outside of the features F, taken by deciders to transition
objects from an initial known state with specific preconditions to different state with
known postconditions. The changes in flexible features, triggered by meta-actions,
are represented by atomic action terms for the respective features, and reported by
the influence matrix presented in [14].

Example 1 Let us take market segmentation for automobiles as an example of
domain. Then, an automotive company, say company X , would divide its customers
into: sedan cars seekers, sport cars seekers, wagon car seekers, all roads car seekers,
and hatchback cars seekers. An extensive list of classification features can be used
to classify them. For instance, age would be a good feature that would inform us that
a young person would prefer a hatchback, and an older person would rather have a
sedan. Another feature such as number of kids would inform us that bigger families
would prefer wagons or all roads rather than smaller cars, marital status could be a
good indication of sport cars preference, and so on. Other feature can be analyzed
for the purpose of customer satisfaction and segmentation. However, all features
cited earlier are stable features and would not allow values transitions regardless of
meta-actions applied.

Let us assume another company Y , a luxurious car company, would like to acquire
new customers, then their market segmentation would differ from X ’s market seg-
mentation. In fact, the new segmentation would be based on new classification fea-
tures, some of them are: customers income, car price range, customer functional
needs, car comfort, car quality, and customers favorite brand. Given those features,
the company can classify the customers based on their favorite brand, and would like
to attract customers from other less luxurious brands. Based on those features, Y can
apply a meta-action M that transitions car price range to match what customers can
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afford based on their income. This meta-action M can also affect car comfort and
quality negatively to reduce production price while meeting customers functional
needs. In this example Y ’s segmentation is based on luxurious cars, functional cars,
powerful sport cars, and so on. A new customer segment, called entry luxury cars,
can join the brand with the help of meta-action M transitioning them from functional
cars to entry-luxury cars.

Example 2 To give a new example, let us assume that classification features in S
describe teaching evaluations at some school and the decision feature represents
their overall score. Explain difficult concepts effectively, Speaks English fluently,
Stimulate student interest in the course, and Provide sufficient feedback are exam-
ples of classification features scored in the system. Then, examples of meta-actions
associated with S will be: Change the content of the course, Change the textbook
of the course, Post all material on the Web. Clearly, those meta-actions will trig-
ger changes in some of the features described such as Provide sufficient feed-back
and Stimulate student’s interest in the course; however none of these three meta-
actions will influence the feature Speaks English fluently and its values will remain
unchanged [14].

Example 3 Another example would be using Hepatitis as the application domain.
Then the increase in blood cell plagues and the decrease in level of alkaline phos-
phatase are examples of atomic action terms. Drugs like Hepatil or Hepargen are
seen as meta-actions triggering changes described by these two atomic action terms
[11, 15]. It should be noted that Hepatil is also used to get rid of obstruction, eructa-
tion, and bleeding. However, Hepargen is not used to get rid of obstruction but it is
used to get rid of eructation and bleeding. Some of the effects of those meta-actions
are not necessary and can be seen as side effects. At the same time some needed
changes are not triggered by the meta actions used and require the use of additional
meta-actions.

9.4.1 Meta-actions Influence Matrix

Consider several meta-actions, denoted M1, M2, . . . , Mn . Each one can invoke chan-
ges within values of some classification features in F = { f1, f2, . . . , fm}. The
expected changes of values of classification features on objects from S triggered by
these meta-actions are described by the influence matrix {Ei j : 1 ≤ i ≤ n and 1 ≤
j ≤ m}. The table below gives an example of an influence matrix associated with
six meta-actions and three features: a, b, and c.

For instance, let us describe the meta-action M2. The influence matrix in Table9.1
says that by executing M2 on objects in S, two atomic action terms are triggered.
They are: (a, a2 → a1) and (b, b2 → b2). It means that objects in S satisfying the
description (a, a2) ∧ (b, b2) are expected to change their description to (a, a1) ∧
(b, b2).
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Table 9.1 Meta-actions
influence matrix

Meta-actions a b c

M1 – b1 c2 → c1
M2 a2 → a1 b2 –

M3 a1 → a2 – c2 → c1
M4 – b1 c1 → c2
M5 – – c1 → c2
M6 a1 → a2 – c1 → c2

Let us define M(S) as a set of meta-actions associated with a decision system S.
Let f ∈ F , x ∈ X , and M ⊂ M(S), then, applying the meta-actions in the set M
on an object x will result in M( f (x)) = f (y), where object x is converted to object
y by applying all meta-actions in M to x . Similarly, M(F(x)) = F(y), where x is
converted to the state of y by applying all meta-actions in M to x for all f ∈ F .
Also, by F(Y ), where Y ⊆ X , we mean {F(y) : y ∈ Y }.

It should be mentioned here that an expert knowledge concerning meta-actions
involves only classification features. Now, if some of these features are correlated
with the decision feature, then the change of their values will cascade to the decision
through the correlation. The goal of action rule discovery is to identify possibly all
such correlations. At the same time, the goal of meta-actions discovery is to identify
all the effects triggered by the application of such meta-actions.

9.4.2 Mining Meta-actions Effects

The application of meta-actions on a set of objects triggers a set of effects within the
closed information system (newobjects can not be added). Those effects translate into
changes in some flexible features values. Meta-actions are applied by practitioners
without certainty on the effects for all objects. Each object might react differently to
eachmeta-action, thus practitioners shall explore the personalized effects of applying
meta-actions. In this sectionwe present themethodology used to extract meta-actions
effects on a closed information system.

Commonly, an information system is represented in a tabular format, where fea-
tures represent the columns as attributes and rows represent the individual transac-
tions. Each transaction is uniquely identified by a transaction ID, TID. In the context
of meta-actions, objects might have one or more transactions and each object is iden-
tified by an Object ID, OID. In addition, mining meta-actions effects translates into
mining the objects state transitions. In other words, mining the objects’ transitions
from an initial transaction, where meta-actions were applied, to another transaction
belonging to the same object. Meta-actions transitions are mined after the applica-
tion of meta-actions, and thus, it is important to keep track of the transactions’ order.
Therefore, an additional feature representing the order of the sequence of transactions
is necessary. In addition, in a decision system, a particular feature called decision
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feature is included, and represents the decision values for the particular transaction
TID and object OID.

Mining meta-actions transformations requires the study of the transactional
datasets in hand. Commonly, transactional datasets do not represent the objects tem-
poral transformations resulting from applyingmeta-actions. To be able tominemeta-
action’s transformations (atomic action terms), objects have to be uniquely identified
along with their transactions and clustered by their identifier. Object’s transactions
should be ordered based on temporal sequential order. Every two sequential object’s
transactions will be paired for every meta-action based on a temporal precedence
relationship. The resulting pairwise partition will model the atomic action terms tran-
sitions for each object given the meta-action applied. For instance, given a patient
visits recorded in our dataset with high blood pressure, high fever, and headaches for
his first visit to the doctor, who gave him/her a treatment m, at the second visit the
patient diagnosis displays no fever, high blood pressure and no headache. In such a
case we can extract the following atomic action terms for this patient pair of visits:
(fever, high → no), (blood pressure, high → high), (headaches, yes → no).

Now, we introduce the set of transactions T . Let us assume that S = (X, F ∪
{d}, V ) is a decision system, where X is a set of objects, F is a set of classifi-
cation attributes, d is the decision attribute, and V is a set of values of attributes
in F ∪ {d}, such that f (X) ⊆ V , for any f ∈ F . Also, let us assume that
M(S) is a set of meta-actions associated with S. In addition, we define the set
{si, j : j ∈ Ji } of ordered transactions Ji associated with xi ∈ X , such that
si, j = [(xi , F(xi ) j )], where (∀i, j) [si, j ∈ T ]. The set F(xi ) j is defined as the
set of attribute values { f (xi ) : f ∈ F} of the object xi in the transaction uniquely
represented by the transaction identifier j . Each transaction represents the current
state of the object when recorded with respect to a temporal order based on j for all
si, j ∈ T .

We define a precedence relationship denoted as>p on the system S to help locate
the position of each transaction within each object’s ordered transaction set. Given
two transactions si, j and si,k for an object xi ∈ X , the precedence relationship
si, j >p si,k represents the order of the recorded transactions for the object xi , and
says that the transaction si, j was recorded before the transaction si,k .

To strengthen this relationship, we define the set P(S) of pairs (si, j , si,k) such
that (si, j , si,k) ∈ P(S) if and only if si,k occurred directly after si, j (there is no other
transaction between them in the system S).

It should be observed that any pair (si, j , si,k) = ([(xi , F(xi ) j )], [(xi , F(xi )k)])
in P(S) represents a set of atomic action terms {( f, f (xi ) j → f (xi )k) : f ∈ F}.

We assume that there is always a set of meta-actions in M applied before any
transaction si,k with the exception of the very first transaction si,1 for each object
xi ∈ X . This suggests that the transaction si,k in the pair (si, j , si,k) is a direct
consequence of applying some set of meta-actions m (m ⊂ M) to the object xi ∈ X ,
and supports the assumption that the state of the objet xi is being affected by these
meta-actions.

As we already observed, each transaction pair (si, j , si,k) encompasses the set of
atomic action terms A j,k of the form {( f, f (xi ) j → f (xi )k) : f ∈ F}, that defines
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a change of value f (xi ) j derived from the transaction si, j to f (xi )k derived from
the transaction si,k , for each attribute f ∈ F and xi ∈ X .

Now, we can use the sets A j,k to build the influence matrix [7, 13] covering
all m ∈ M . Sets of action terms representing meta-actions in M can be built from
sets of pairs in P(S). Depending on the objects’ states, some of the atomic action
terms in A j,k may not be triggered by meta-actions. To be more precise, for a given
meta-action mj, only objects xl ∈ X that satisfy the following condition will be
affected:

∃(si, j , si,k) ∈ P(S) such that F(xl) ∩ F(xi ) j �= ∅, where si, j = (xi , F(xi ) j ).
This way, by applying the meta-action m on xi we will cover the set of attribute

values {F(xl) ∩ F(xi ) j }, thus the underlying subset of atomic action terms. This
subset can be seen as an action term t containing a set of atomic actions with the
domain Dom(t) = {a ∈ F : a(xl) = a(xi ) j }. Multiple action terms can be formed
this way, however, not all possible action terms are applicable to a given dataset.
The number of possible action terms for each meta-action grows monotonously
with the number of extracted pairs, the attributes’ domains sizes, and the number of
transactions for each object in X .

Ultimately, in the worst case scenario every object is different and reacts differ-
ently to each specificmeta-action. This might result in a large number of action terms
for each meta-action. Possible conflicts within the same meta-action scope such as
(a, a j → ak) and (a, a j → al), or non useful action terms such as (a, a j → a j ) for
a ∈ F and a j , ak, al ∈ Va might be extracted. Not all atomic action terms are useful
for all objects; however, it is important to keep a record of the different transitions
for the sake of object personalized meta-actions.

We can evaluate the different action terms composing each given meta-action to
avoid conflicts and use the more appealing ones to the treated object. Similarly the
frequent itemsets used in the Apriori [1] algorithm, frequent action terms can be
extracted from multiple pairs. Multiple action terms of different sizes can be formed
from the resulting atomic action terms (pairs). Frequent action terms are characterized
by their frequencyof occurrence throughout all themeta-actionpartitionof the dataset
(all the meta-action pairs).

9.4.3 Meta-action Evaluation

To evaluate the meta-actions, we need to evaluate the action terms composing them.
A simple evaluation metric consist of the frequency of occurrence (or support) for
each action term. Pairs extracted from the data share common atomic action terms
transitions, thus, they share common action terms. For each action term t j , we define
its likelihood support Like(t j ) as:

rLike(t j ) = card
({(si,k, si,l) ∈ P(S) : Left(t j ) ⊆ F(xi )k and (9.1)

Right(t j ) ⊆ F(xi )l}
)
,
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where (si,k, si,l) = ([(xi , F(xi )k)], [(xi , F(xi )l)]), xi ∈ X , Left(t j ) is defined as the
feature values in the left-hand side of the frequent action term t j , and Right(t j ) is the
right-hand side of t j such that if t j = [(al1 → ar1)∧(al2 → ar2)∧· · ·∧(aln → arn)]
then Left(t j ) = {al1, al2, . . . , aln}, and Right(t j ) = {ar1, ar2, . . . , arn}.

The likelihood support of action term measures the transition likelihood of their
attribute values but it neither takes into consideration the conflicts of action terms
nor handles the meta-actions comparison in a normalized way. A more sophisticated
way to evaluate action terms is by computing their likelihood confidence, and thus
a possible meta-action confidence metric. The likelihood confidence of an action
term t j is computed as follow:

TermConf(t j ) = Like(t j )/sup(Left(t j )). (9.2)

Given the set of atomic action terms {ti : 1 ≤ i ≤ n} composing a meta-action mj,
we can define the confidence of mj as the weighted sum of its atomic action terms
likelihood confidence where the weights represent atomic action terms likelihood
support. To be more precise, the meta-action confidence MetaConf(mj) is computed
as follows:

MetaConf(mj) =
∑n

i=1 Like(ti ) · TermConf(ti )∑n
i=1 Like(ti )

, (9.3)

where n is the number of atomic action terms in mj.
Note that some action terms will have the likelihood support below the required

threshold value, therefore, they will not be considered as frequent action terms.
However, those action terms are considered as outliers and it is important to keep
track of them in the meta-actions for objects personalized meta-actions.

9.5 Meta-actions Versus Action Rules

Meta-actions and action rules are similar concepts since they aim at extracting transi-
tion patterns from information systems. However, the meta-action extraction process
extracts a subset of the action terms extracted by the action rule extraction process.

Table 9.2 Meta-actions versus action rules

Action rules Meta-actions

One objects is one instance One objects is a set of instances

No instance order Temporal instance order

Support is minimum support of classification rule Likelihood is the number of real transitions

Confidence independent probability Term confidence and execution confidence

Possible transitions Real transitions

Rules Collection of action terms
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The similarities and differences of both concepts are discussed in this section and
reported in Table9.2.

Action rules are commonly used by decision makers to discover possible changes
in objects’ state, which would ultimately transition the objects’ overall state to a
more desirable state with regards to the decision feature. Several techniques exist
to extract action rules. The datasets used to extract action rules are composed of
instances, where each object is described by one instance. In other words, each object
is recorded once in the dataset, and the object state is represented by its instance
features values. All possible transitions from any instance to any other instance in
the dataset are discovered in the action rules discovery process regardless of the
order in which they were recorded. This suggests that there is no temporal ordering
relation amongst instances. Therefore, some transitions discovered in the action rules
discovery process may not be applicable in a real life scenario. For example, let us
assume that an information system models cancer patient visits, where each patient
visit describes the patient pathological state in term of diagnoses. In this example
dataset, each patient visit represents an instance. Now, let us assume that each visit
record includes three diagnoses as features, namely: tumor size, chemo level, and
number of chemotherapy performed. Also, it includes the information whether the
patient is stable or unstable stored as decision feature, at the visit time. The diagnosis
features are recorded as TSize for tumor size,CLevel for chemo level andNChemo for
the number of chemotherapy already performed on the patient, and the patient overall
state recorded as State. Note here that each patient visit is considered as an object
for the action rule discovery process. The following action rule may be discovered
by the system: (TSize, 7 → 4) ∧ (CLevel, 4 → 3) ∧ (NChemo, 5 → 4) ⇒
(State, Unstable → Stable). In this action rule, we are interested in the patient
overall state State, and we would like to move patients from an unstable state to a
stable one. Nonetheless, we cannot transition the NChemo from 5 to 4 since we
already performed 5 chemo on this patient. Therefore, this action rule would not be
applicable in real life. It was discovered using all the visits in our dataset, where each
visit is considered as an object, regardless of the fact that a patient may have several
visits to the hospital. In other words, patients are not taken into consideration since
the object instances are visits and not patients.

Meta-actions on the other hand, represent transitions from instances that occurred
in a specific order for specific objects in real life scenarios, which insures their
applicability. Meta-actions do not model rules, they rather model transition effects
that are represented in an influencematrix. By using the previous example and adding
a new feature that describes the visit number, we could sort the visits by their tempo-
ral order. In addition, we treat our system as multiple subsystems of visits identified
by the patient ID. This way, we could mine real transitions in terms of patients patho-
logical state. As a result the transition (NChemo, 5 → 4) would not be extracted
since the chemo number 4 would have taken place before chemo number 5, and
the meta-action mining process takes the visit order into consideration. In addition,
different patients might react differently to the chemotherapies with regards to their
cancer level and tumor size. Using meta-actions, we extract transitions that occurred
in real life for each patient. For instance, we may extract the following transitions:
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(TSize, 7 → 6)∧ (CLevel, 4)∧ (NChemo, 5 → 6)∧ (State, Unstable → Stable),
where the left hand side of the action term took place at a visit that occurred prior to
the right hand side. Furthermore, the transitionsweremined from instances belonging
to a unique patients. In summary, the introduction of the instances order and their
identifier with regard to the object eliminated any confusion.

The purpose of meta-actions is to trigger transitions in feature values that will
change the object state. Eventually, the transitions triggered by meta-actions will
trigger an action rule and will cascade into transitioning the decision feature value.
Asmentioned earlier,meta-actions’ transitions are a subset of the transitions extracted
in the action rules extraction process. In addition, meta-actions play a passive role,
in the sense that they do not change decision feature values. They rather inform deci-
sion makers of possible transitions. On the contrary, action rules play an active
role that help decision makers drive their strategy, and explicitly look into the
transitions that affect the decision feature. In other words, meta-actions are not
replacing action rules; instead, enhancing the process of selecting the best action
rules.

9.5.1 Action Rules Selection by Meta-actions

In the effort of selecting the best action rules, meta-actions play an important eval-
uation role. After extracting action rules, meta-actions inform us, amongst other
things, on whether the extracted action rules are applicable. Meta-actions also pro-
vide decision makers with the confidence of executing the antecedent side of an
action rule. Given a set of action rules, and an influence matrix describing meta-
actions transitions in our system, we strive to select the best applicable action rules
and their respective triggers. This is done by first dividing the set of action rules
into applicable and non-applicable action rules. Applicable action rules are the rules,
which antecedent sides are covered by the influence matrix. Then for each action
rule, we select the best coverings of the action rule from the influence matrix. The
best coverings of an action rule are the maximal action terms in the influence matrix.
By maximal action term, we mean the action term with the largest number of atomic
terms covering the action rule. This is performed by intersecting the antecedent side
of the action rule with all the action terms in the influence matrix. It is important
to note that the action terms with higher number of atomic action terms will have a
higher confidence. As one can guess, two or more action terms may be required to
cover an action rule. Similarly, two or more meta-actions may be required to cover
an action rule.

We described earlier how to compute the confidence of an action term Term-
Conf in 9.2; however, we still need to define how to compute the confidence of
multiple action terms, namely global confidence GlobConf. Computing the confi-
dence of multiple action terms depends on whether the action terms belong to the
same meta-action or not. In fact, action terms {t1, t2, . . . , tn} that belong to different
meta-actions are independent since they are extracted from different object pop-
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ulations; therefore, their confidences are independent and their global confidence
is the product probability of independent confidences, as shown in the following:

GlobConf ({t1, t2, . . . , tn}) =
n∏

i=1

TermConf(ti ). (9.4)

On the contrary, action terms that belong to the same meta-action are extracted
from the same object population, and might be extracted from the same objects.
Therefore, such action terms are dependent on the objects and their global confidence
is dependent on their transition probability. To avoid confusion, and for the sake
of simplicity, we will define the global confidence of action terms from the same
meta-action as follows:

GlobConf ({t1, t2, . . . , tn}) = Like

(
n⋃

i=1

{ti }
)

/sup

(
Left

(
n⋃

i=1

{ti }
))

. (9.5)

Global confidence will inform us on how well we can trigger the antecedent side
of an action rule; however, it does not inform us about how well the features values
transitioned by the meta-action will cascade into the desired decision feature value.
For this reason, we define a new metric called execution confidence ExConf that
computes the confidence of execution of an action rule. The execution confidence of
an action rule r triggered by the set of meta-actions m is as follows:

ExConf(m, r) = GlobConf(m(r)) · Conf(r), (9.6)

where m(r) represents the set of action terms used in triggering the antecedent side
of the action rule r .

With the introduction of the ExConf, one could select the action rules with the
highest execution confidence, along with their corresponding meta-actions. Doing
so would insure that the action rules chosen are more likely to be accurate. However,
decision makers may also be interested in the highest return on investment solution,
which would be good enough to solve the issue in hand. In fact, meta-actions are
commonly associated with a cost based on the domain of interest. For example, in
the healthcare domain, each treatment is associated with a cost, and patients are
discharged with a bill including all their medical expenses.

Let us assume that cost Ci is associated with each meta-action mi ∈ M(S)

used. Then a good measure associating the cost Ci and the execution confidence
ExConf would be the satisfaction rate noted as SatRate. The satisfaction rate gives a
pointer to which action rule r is good enough; in other words, which action rule and
corresponding meta-actions incurs the minimum cost while returning an acceptable
execution confidence. The satisfaction rate for a rule r and a set of corresponding
meta-actions Mr is computed as follows:
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SatRate(Mr , r) = ExConf(Mr , r)

λ
∑n

i=1 Ci
, (9.7)

where n is the number of meta-actions used, and 0 < λ ≤ 1 is a cost coefficient
chosen by decision makers.

9.6 Side Effects

The main goal of meta-actions is to trigger action rules. However, it is often the case
that when applying meta-actions for the purpose of executing a specific action rule, a
set of unrelated additional and potentially harmful atomic action terms are triggered.
The additional action terms resulting from the meta-action application are called
side effects. Meta-actions might move some object features values from negative to
positive values f (x) ∈ En(x) and f (y) ∈ E p(y) (desirable positive side effects),
and some object features values from positive to negative values f (x) ∈ E p(x)

and f (y) ∈ En(y) (undesirable negative side effects). Even though the features
transitioning from positive to negative values might result in catastrophic situations,
they were not fully investigated in previous work involving action rules discovery.
In the following, we depict two types of side effects and we give a brief description
for each type.

9.6.1 Meta-actions Side Effects

Side effects in the context of meta-actions are the effects that occur for specific
small clusters of objects. This type of side effects is discovered in the meta-action
extraction process. It is represented by the action terms, extracted in the meta-action
extraction process, with very low or unusual likelihood of occurrence. In fact, this
type of transition is very rare in our dataset, and was extracted from a very small
number of objects. We can think of this type of effect as minor effects of a meta-
action, that does not represent the core goal or trigger of this meta-action. Detecting
this type of side effects is done by setting a minimum likelihood for the action terms,
or setting a minimum jump in the likelihood between the action terms.

9.6.2 Action Rules Side Effects

Side effects in the context of action rules are the unintended changes in some flexible
features values that meta-actions trigger on objects. In other words, those effects
are triggered by meta-actions but are outside of the intended action rule scope. To
discover those side effects, we can perform two set operations. We first start by



9 Meta-actions as a Tool for Action Rules Evaluation 191

performing a minus set operation between the antecedent side of the action rule and
the meta-actions action terms reported in the influence matrix. The result is then
intersected with the objects precondition to get the final set of side effects.

9.7 Experiments

We performed a set of experiments on the Florida State Inpatient Database using our
meta-action and association action rules extraction system. We finally evaluated the
action rules extracted using the meta-actions applied.

9.7.1 Dataset Description

In the research, we used the Florida State Inpatient Databases (SID) that is part of the
Healthcare Cost and Utilization Project (HCUP). The Florida SID dataset contains
records from several hospitals in the Florida State. It contains over 2.5 million visit
discharges from over 1.5 million patients. The dataset is composed of five tables,
namely: AHAL, CHGH, GRPS, SEVERITY, and CORE.

The main table used in this chapter is the Core table. The Core table contains
over 280 attributes; however, many of those attributes are repeated with different
codification schemes. In the following experiments, we used the Clinical Classi-
fications Software (CCS) that consists of over 260 diagnosis categories, and 231
procedure categories. This system is based on ICD-9-CM codes. In our experiments,
we used fewer attributes that are described in this section. Each record in the Core
table represents a visit discharge. A patient may have several visits in the table. One
of themost important attributes of this table is theVisitLink attribute, which describes
the patient’s ID. Another important attribute is the Key, which is the primary key of
the table that identifies unique visits for the patients and links to the other tables. As
mentioned earlier, a VisitLink might map to multiple Key in the database.

The Core table reports up to 31 diagnoses per discharge as it has 31 diagnosis
columns. However, patient’s diagnoses are stored in a random order in this table.
For example, if a particular patient visits the hospital twice with heart failure, the
first visit discharge may report a heart failure diagnosis at diagnosis column number
10, and the second visit discharge may report a heart failure diagnosis at diagnosis
column number 22. Furthermore, it is worth mentioning that it is often the case that
patients examination returns less than 31 diagnoses.

The Core table also contains 31 columns describing up to 31 procedures that the
patient went through. Even though a patient might go through several procedures in
a given visit, the primary procedure that occurred at the visit discharge is assumed
to be the first procedure column. The Core table also contains an attribute called
DaysToEvent, which describes the number of days that passed between the admission
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Table 9.3 Mapping between
attributes and concepts
features

Attributes Concepts

VisitLink Patient Identifier

DaysToEvent Temporal visit ordering

DXCCSn nth Diagnosis, flexible attributes

PRCCSn nth Procedure, meta-actions

Race, Age Range, Sex, … Stable attributes

DIED Decision attribute

to the hospital and the procedure day. This field is anonymized in order to hide the
patients’ identity.

Furthermore, the Core table also contains a feature called DIED, that informs us
on whether the patient died or survived in the hospital for a particular discharge. In
addition, there are several demographic data that are reported in this table as well,
such as: Race, Age Range, Sex, living area, …The following Table9.3 maps the
attributes from the Core table to the concepts and notations used in this chapter.

9.7.2 Meta-action Extraction

We extracted meta-actions action terms from the Florida SID dataset, and computed
their likelihood and term confidence using the method described in Sect. 9.4.2. In
these experiments, we extracted action terms for 231 procedures, considered here as
meta-actions; however, for the sake of this chapter, we report the results for fivemeta-
actions described in Table9.4 with their CCS procedure codes. We built an influence
matrix represented by Table9.6 that describes our findings in terms of meta-actions’
action terms. Table9.6 reports few examples of action terms of size 1–4 extracted
for each meta-action; however, we extracted action terms with more than 4 atomic
terms and we may extract action terms of size up to the number of features. We also
included the description of the CCS diagnoses codes for some of the most significant
action terms’ features in Table9.5.

Table 9.4 Mapping between CCS single level procedure codes and their description [3]

PRCCS1 Description

43 Heart valve procedures

44 Coronary artery bypass graft (CABG)

45 Percutaneous transluminal coronary angioplasty (PTCA)

47 Operations on lymphatic system

48 Insertion; revision, replacement; removal of cardiac pacemaker or cardioverter/

defibrillator
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Table 9.5 Mapping between CCS single level diagnosis codes and their description [3]

Diagnosis code Description

101 Coronary atherosclerosis and other heart disease

55 Fluid and electrolyte disorders

62 Coagulation and hemorrhagic disorders

106 Cardiac dysrhythmias

99 Hypertension with complications and secondary hypertension

158 Chronic kidney disease

114 Peripheral and visceral atherosclerosis

108 Congestive heart failure; nonhypertensive

59 Deficiency and other anemia

58 Other nutritional; endocrine; and metabolic disorders

117 Other circulatory disease

105 Conduction disorders

155 Other gastrointestinal disorders

663 Screening and history of mental health and substance abuse codes

257 Other aftercare

259 Residual codes; unclassified

96 Heart valve disorders

253 Allergic reactions

211 Other connective tissue disease

As mentioned in the dataset description, the flexible attributes represented by
diagnosis are not ordered by attribute column (there are no fixed attribute columns).
For this reason, we represented each visit with a set of diagnoses instead of a set
of fixed attributes. However, as you can note in Table9.6, to simplify the reporting,
we assume the domain of each diagnosis is in {0, 1}, where 1 means that the patient
is diagnosed with that particular diagnosis at the current visit, and 0 means that the
patient is not diagnosed with that specific diagnosis at the current visit.

We first grouped our dataset by procedures that are represented here by the first
primary procedure attribute PRCCS1. We also grouped the visits by patient ID Vis-
itLink and ordered each patient’s visits by the DaysToEvent attribute. We then built
pairs of visits for the meta-action applied, and extracted the action terms from the
pairs. Finally, we computed the likelihood and term confidence for each action term.
As you can see from Table9.6, the likelihood and term confidence of the action
terms extracted are very high. The higher the likelihood of the action term, the more
important the diagnoses and the more likely the diagnoses involved are the main
reason of the procedure. In addition, the higher the term confidence the more stable
the meta-action and procedure result.
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Table 9.6 Influence matrix like table reporting support and confidence

Meta-actions Action terms with CCS codes Likelihood Term

Conf (%)

43 (101, 1 → 0) 167 84

(55, 1 → 0) 165 91

(62, 1 → 0) 146 96

(106, 1 → 0) 135 88

(99, 1 → 0) 66 96

(55, 1 → 0) ∧ (62, 1 → 0) 46 90

(55, 1 → 0) ∧ (106, 1 → 0) 44 90

(158, 1 → 0) ∧ (106, 1 → 0) ∧ (99, 1 → 0) 14 87.5

(55, 1 → 0) ∧ (158, 1 → 0)∧ 8 100

(101, 1 → 0) ∧ (99, 1 → 0)

44 (101, 1 → 0) 181 85

(108, 1 → 0) 92 91

(62, 1 → 0) 97 98

(114, 1 → 0) 86 93

(58, 1 → 0) 193 91

(108, 1 → 0) ∧ (106, 1 → 0) 32 94

(55, 1 → 0) ∧ (106, 1 → 0) 42 91

(62, 1 → 0) ∧ (55, 1 → 0) ∧ (106, 1 → 0) 16 94

(55, 1 → 0) ∧ (108, 1 → 0)∧ 8 100

(58, 1 → 0) ∧ (59, 1 → 0)

45 (101, 1 → 0) 262 78

(117, 1 → 0) 97 86

(105, 1 → 0) 85 83

(155, 1 → 0) 81 88

(663, 1 → 0) 201 85

(55, 1 → 0) ∧ (59, 1 → 0) 33 89

(58, 1 → 0) ∧ (257, 1 → 0) 40 77

(259, 1 → 0) ∧ (663, 1 → 0) ∧ (101, 1 → 0) 26 76

(58, 1 → 0) ∧ (259, 1 → 0)∧ 6 67

(663, 1 → 0) ∧ (101, 1 → 0)

47 (101, 1 → 0) 347 81

(117, 1 → 0) 135 88

(105, 1 → 0) 135 82

(96, 1 → 0) 99 93

(155, 1 → 0) 97 94

(117, 1 → 0) ∧ (257, 1 → 0) 45 80

(259, 1 → 0) ∧ (253, 1 → 0) 41 90

(117, 1 → 0) ∧ (257, 1 → 0) ∧ (101, 1 → 0) 24 83

(117, 1 → 0) ∧ (105, 1 → 0)∧ 9 75

(257, 1 → 0)∧(101, 1 → 0)

(continued)
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Table 9.6 (continued)

Meta-actions Action terms with CCS codes Likelihood Term

Conf (%)

48 (257, 1 → 0) 335 87

(96, 1 → 0) 152 90

(211, 1 → 0) 115 86

(106, 1 → 0) 147 94

(155, 1 → 0) 137 91

(59, 1 → 0) ∧ (58, 1 → 0) 69 86

(55, 1 → 0) ∧ (58, 1 → 0) 69 87

(58, 1 → 0) ∧ (59, 1 → 0) ∧ (55, 1 → 0) 27 80

(55, 1 → 0) ∧ (58, 1 → 0)∧ 11 100

(158, 1 → 0) ∧ (99, 1 → 0)

9.7.3 Action Rules Extraction and Evaluation

We extracted action rules using the association action rules extraction method
described in [9]. We commonly extract action rules from the whole dataset; however,
for the sake of this chapter, we extracted action rules from a subset of the dataset
that contains patient visit records involving the meta-actions reported in Table9.6.
It is important to note that the meta-action attribute, PRCCS1, is not involved in
the action rules extraction process. In addition, neither the patient ID, VisitLink,
nor the ordering attributes, DaysToEvent, are used in the action rules extraction
process.

Following this setting, we extracted the following two rules with their respective
support and confidence,where patients stay alive;more precisely, the decision feature
DIED stays at 0:

r1 = (58, 1 → 0) ∧ (59, 1 → 0) ∧ (55, 1 → 0) ⇒ (DIED, 0 → 0)

where sup = 334, and conf = 85%,

r2 = (62, 1 → 0) ∧ (55, 1 → 0) ∧ (106, 1 → 0) ⇒ (DIED, 0 → 0)

where sup = 101, and conf = 78%.
Now, we would like to apply meta-actions to trigger those rules. Therefore, we

need to pick up the action terms that cover the antecedent side of each rule and
their corresponding meta-actions. If we apply the set of meta-actions M{48} = {48}
to action rule r1, we will get the following global confidence and execution con-
fidence: GlobConf(r1) = 80% and ExConf(M{48}(r1)) = 68%. Whereas, if we
apply the meta-actions M{44} = {44} we will get: GlobConf(r1) = 100% and
ExConf(M{48}(r1)) = 85%. In other words, if a patient has the following diag-
noses {55, 59, 58} = {Fluid and electrolyte disorders, Deficiency and other anemia,
Other nutritional; endocrine; and metabolic disorders} it is better to perform a Coro-
nary artery bypass graft (CABG), CCS code of 44, rather than Insertion; revision,
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replacement; removal of cardiac pacemaker or cardioverter/defibrillator, CCS code
of 48. However, depending of the cost of the meta-action and the satisfaction rate, a
practitioner may make a different decision.

Similarly, we can apply meta-actions M{44} = {44}, Coronary artery bypass graft
(CABG), to trigger r2 and resolve the diagnoses {62, 55, 106} = {Coagulation and
hemorrhagic disorders, Fluid and electrolyte disorders, Cardiac dysrhythmias} and
we will get: GlobConf(r1) = 94% and ExConf(M{48}(r1)) = 73.32%.

We lack the cost of meta-actions in our dataset; hence, we cannot compute the
SatRate. Nonetheless, this information can be obtained via consultation with a prac-
titioner. If we assume that the cost of any given meta-action is the same and that λ

is selected as a constant for each meta-action, then the SatRate will essentially be
equal to the ExConf and practitioners can base their decision on the best execution
confidence.

9.8 Conclusion

Nowadays, action rules are used in several industries and the healthcare industry
among others is a very sensitive area. Results from action rules extraction process
have to be thoroughly evaluated and analyzed to be used in such industries. Action
rules are commonly constructed from feature values patterns and not from transition
patterns. In this chapter, we used meta-actions to evaluate action rules and we intro-
duced new evaluation metrics. We used the 2010 Florida State Inpatient Databases
(SID), and extracted meta-actions and action rules from this dataset. We evaluated
meta-actions applied to action rules with the different metrics and compared the
results to traditional metrics. Our results show the effectiveness of meta-actions in
evaluating action rules and the rigorousness of our evaluationmetrics. In future work,
we will explore the meta-actions’ extra action terms, considered as side effects, that
covered patients’ preconditions and did not cover action rules when applying meta-
actions.
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4. Im, S., Raś, Z.: Action rule extraction from a decision table: ARED. In: Foundations of Intel-
ligent Systems. Proceedings of ISMIS’08, pp. 160–168. Springer, Toronto (2008)

www.hcup-us.ahrq.gov/sidoverview.jsp
http://www.hcup-us.ahrq.gov/toolssoftware/ccs/ccs.jsp


9 Meta-actions as a Tool for Action Rules Evaluation 197
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Chapter 10
Irrelevant Feature and Rule Removal
for Structural Associative Classification
Using Structure-Preserving Flat
Representation

Izwan Nizal Mohd Shaharanee and Fedja Hadzic

Abstract Practical applications of association rule mining often suffer from
overwhelming number of rules that are generated, many of which are not interesting
or useful for the application in question. Removing irrelevant features and/or rules
comprised of irrelevant features can significantly improve the overall performance.
Many statistical and constraint based measures are used to discard unnecessary and
irrelevant features and rules when vectorial or tabular data is in question. In contrast,
the use of such measures is limited in the tree-structured data domain, due to the
structural aspects that are not easily incorporated. In this chapter, we explore the use
of a feature subset selection measure as well as a number of common statistical inter-
estingness measures via a recently proposed structure-preserving flat representation
for tree-structured data such as XML. A feature subset selection is used prior to asso-
ciation rule generation. Once the initial set of rules is obtained, irrelevant rules are
determined as those that are comprised of attributes not determined to be statistically
significant for the classification task. The experiments are performed using real world
web access trees and property management dataset. The results indicate that where
the dataset has more standard structure a large number of insignificant rules will be
discarded and accuracy will increase. However, where the tree instances can vary
greatly in terms of structure and label distribution among nodes, while many rules
are removed and the accuracy increases, there is a significant reduction in coverage
rate of the rule set.
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10.1 Introduction

Real world datasets often contain attributes that are irrelevant or redundant for the
classification problem at hand. These features can degrade the performance and
interfere with the learning mechanism typically resulting in a reduction in the quality
and generality of the discovered patterns/model and overfitting of the model to the
train data. The basic principle of feature subset selection is to find the necessary
and sufficient subset of features or attributes which results in simplification of the
discovered knowledge model, better generalisation power, while at the same time
the accuracy for classification tasks is not compromised.

Association rulemining, being one of themost popular techniques for discovering
interesting associations among data objects, has also been utilized for the classi-
fication task, where it can contribute to discovering strong associations between
occurring attribute and class values [26]. An associative classification framework
was first proposed in [28], which consists of an algorithm to generate all class asso-
ciation rules fromwhich a classifier is constructed.Manyworks [10, 45, 49, 50] have
developed various extensions and refinements to this initially proposed framework
and the results reported high accuracy and efficiency for the classification prob-
lem. Similarly in tree-structured data domain, the XRules structural classifier [52],
is based on association rules generated from the ordered embedded subtree mining
algorithm [51].

When dealing with pattern selection, one faces the quantity problem due to large
volume of output as well as the quality assurance problem of rules reflecting real,
significant associations in the domain under investigation [25]. In a recent work pre-
sented in [24] the search space of Apriori-like algorithms is pruned so that discovered
rules are interesting with respect to the Jaccard measure, rather than the support con-
straint for which an optimal threshold is often unknown. To deal with the quality
problem many interestingness measures have been developed and utilized in various
knowledge discovery tasks [12, 29]. In one train of thought, since the nature of data
mining techniques is data-driven, the generated rules can often be effectively vali-
dated by a statistical methodology in order for them to be useful in practice [13, 22].
Interesting rules could then be interpreted as those rules that have a sound statistical
basis and are neither redundant nor contradictory. The aforementionedworks [12, 13,
22, 29] have mainly focused on relational data. There is relatively less work in this
area when it comes to tree-structured data (an overview is given in the next section).
Tree-structured data has underlying complex structural characteristics which typi-
cally need to be preserved in the knowledge patterns discovered during a data mining
task [17, 52]. The structural characteristics of data pose difficulties in application
of traditional classifiers and interestingness measures, whose mechanism typically
does not take structural aspects of data into account.

In [38], a unified framework was proposed that systematically combines several
statistical/heuristic techniques to assess the rule quality and remove any redundant
and unnecessary rules for the classification problem. In this chapter, the focus is on
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exploring the application of this framework to tree-structured data, enabled by the
recently proposed structure-preserving flat data format for tree-structured data [14].
The work presented in [14] is based on the extraction of a database structure model
(henceforthDSM)withinwhich every tree instance from the database can bematched
to and which keeps the structural information of the flat representation generated.
The implications of the representation in contrast to traditional tree mining field is
that every subtree pattern or a rule, will be constrained by the pre-order position of
the constituting tree nodes of the subtree w.r.t the DSM. In this work, we explore
the application of a feature subset selection measure and statistical interestingness
measures via this method to filter out unnecessary and irrelevant subtree patterns
for the structural classification task. A feature subset selection method is used prior
to association rule generation. Once the initial set of rules is obtained, irrelevant
rules are determined as those that are comprised of attributes not determined to be
statistically significant for the classification task. The experiments are performed
using real world web access tree dataset and a property management dataset from a
real estate company. The results indicate that where the dataset has more standard
structure the use of statistical measures will discard a large number of insignificant
rules and at the same time increase the accuracy of the rule sets. On the other extreme,
where the tree instances can vary greatly in terms of structure and label distribution
among nodes, as is the case in the web access tree dataset, while many rules are
removed and the accuracy increases, there is a significant reduction in coverage
rate of the rule set. Furthermore, we compare some of the results with a structural
classifier based on traditional subtrees, and highlight some important differences and
implications when subtree based rules are constrained by their position. The results
also show that including the associations that do not necessary result in connected
trees can be important, while such associations are typically ignored within the tree
mining field. These findings indicate that structural classifier could be improved and
complemented by including disconnected subtrees and constraining the subtrees by
their exact occurrence in the database. However, more work is required to identify
the domains and application where including such association rules can be beneficial
and the right way to combine them with traditional subtree patterns for optimal
performance.

The rest of the chapter is organized as follows. The related works are given in
Sect. 10.2, while Sect. 10.3 defines the concepts and the rule set optimization problem
focused on in this study. In Sect. 10.4, we describe the steps involved in the proposed
approach which is evaluated using real-world datasets and experimental findings are
discussed in Sect. 10.5. Section10.6 concludes the chapter.

10.2 Related Work

To date, limited work has been done on the feature selection, rule evaluation and
interestingness measures for tree-structured data. Many of the well developed rule
interestingness measures are in relational data and they have had great success in
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evaluating rule interestingness as discussed in [44]. Several works on the evaluation
of discovered patterns based on statistical significance [2, 22, 46] are limited to
relational data. The existence of vast well-developed measuring techniques to evalu-
ate interestingness of rules from relational data, offers great opportunities for adapt-
ing these techniques for verifying significant subtrees from semi-structured data. The
applicability of these interestingness measures needs to be explored in the context
of frequent subtree mining, where necessary adjustments and extensions need to be
made to ascertain the validity of the methods given the more complex structured
aspects in the data, which often need to be preserved in the rules.

One line of work focusing on more interesting subtree patterns aims to reduce
the patterns through the application of plausible constraints. The problem of min-
ing mutually dependent ordered subtrees has been addressed in [32]. The proposed
algorithm utilizes the hyperclique method [47] in the tree mining context so that
all the components of a subtree are highly correlated together. These hyperclique
subtree patterns are discovered using an h-confidence measure which is the mini-
mum probability of an item from a pattern in one transaction implying the presence
of all other items in the same transaction. Hence, the extracted hyperclique subtree
patterns will satisfy the minimum h-confidence threshold. The work done in [3] uses
the method proposed for database compression in regards to item set mining in [39]
to demonstrate how the same minimum description length principle can yield good
results for sequential and tree-structured data. The work presented in [31] extends
the idea of the item constraint [41] to that of a node-inclusion constraint in subtrees.
Furthermore, Knijf and Feelders [20] proposed the use of monotone constraints in
frequent subtree mining, namely monotone, anti-monotone, convertible and succinct
constraints. Using these constraints, the frequent subtrees are mined using an oppor-
tunistic pruning strategy, and the set of frequent subtrees are reduced to only those
satisfying the specific user pre-defined constraints.

Besides the aforementioned constraint-based techniques, to the best of our
knowledge, there are limited works on verifying the significance of discovered fre-
quent subtrees. Hashimoto et al. [19] proposed and developed an application of sta-
tistical hypothesis testing to re-rank the significant frequent subtrees. This approach
ranks the significant patterns according to P-values obtained from the Fisher’s Exact
test of significance. The significant patterns were then used for Glycan classifi-
cations problems. Recently Yan et al. [48], proposed a mining framework called
LEAP (Descending Leap Mine) for checking and mining significant frequent sub-
graphs which helps to discard redundant frequent subgraphs. For a predefined class
label in XML documents, an efficient XRules classifier has been proposed in [52].
This approach offers promising results in terms of a structural classifier for semi-
structured data, but utilizes standard measures of interestingness based on support
and confidence.
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10.2.1 Relationship Between Feature Subset Selection
and Frequent Subtree Interestingness

In general, the objective of feature subset selection as defined in [18] is to find a
minimum set of attributes such that the resulting probability distribution of the data
classes is as close as possible to the original distribution obtained using all attributes.
Han and Kamber in [18] asserted that domain expertise can be employed in order
to pick out useful attributes. However, because the data mining task involves a large
volume of data and unpredictable behaviour of data during data mining, this task is
often expensive and time consuming.

The test of statistical significance is one of the prominent approaches in evalu-
ating attributes/features usefulness. Stepwise forward selection, stepwise backward
selection and a combination of both are three commonly used heuristic techniques
utilized in statistical significance tests such as linear regression and logistic regres-
sion [18]. Moreover, the application of correlation analysis such as the chi-square
test is also valuable in identifying redundant variables for feature subset selection.
Another powerful technique for this purpose is the Symmetrical Tau [54], which
is a statistical-heuristic feature selection criterion. It measures the capability of an
attribute in predicting the class of another attribute. Additionally, information gain
is another attributes relevance analysis method employed in the popular ID3 [33]
and C4.5 [34] as reported in [18]. An extensive overview and comparison of the
different approaches to the feature subset selection problem has been provided in
[6, 11, 21, 30].

While the original purpose of feature subset selection is to reduce the number of
attributes to only those attributes relevant for a certain data mining task, they never-
theless can be utilized to measure the interestingness of rules/pattern generated. For
example, if the rule/pattern consists of irrelevant attributes, the aforementioned mea-
sure can also give some indication that the rule/pattern is not interesting. Moreover,
[12] stated that there are three roles of interestingness measures. The first is their
ability to discard uninteresting patterns during themining process, thereby narrowing
the search space and improving the mining efficiency. The second role is to calcu-
late the interestingness scores for each pattern, which allows the ranking of patterns
according to specific needs. The final role is the use of interestingness measures dur-
ing the post-processing stage to select interesting patterns. Interestingness measures
such as the chi-square test [8], Symmetrical Tau [54] and Mutual Information [44],
are capable of measuring the interestingness of rules and at the same time identifying
useful features for frequent patterns.

Since frequent patterns are generated based solely on frequency without
considering their predictive power, the use of frequent patterns without selecting
appropriate features will still result in a huge feature space which leads to larger
volume and complexity of rules. This might not only slow down the model learn-
ing process, but even worse, the classification accuracy deteriorates (another kind of
overfitting issue since the features are numerous) [9].
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10.3 Problem Background

The problem of finding association rules x → y was first introduced in [1] as a
data mining task for finding frequently co-occurring items in large databases. Let
I = {i1, i2, . . . , i|I|} be a set of items. Let D be a transactions database for which
each record/transaction R is a set of items, such that R ⊆ I . An association rule is
an implication of the form x → y where x ⊆ I and y ⊆ I and x ∩ y = ∅. The
absolute support of a rule x → y is the number of transactions that contain both x
and y. Typically, the relative support is used, where given the support of rule x → y
(denoted as σ (x → y)) be s%, there are s% of transactions in D that contain items
(itemsets) x and y. In other words, the probability P(x ∪ y) = s%. An itemset is
frequent if it satisfies the user-specified minimum support threshold. The confidence
of a rule x → y, is the estimate of conditional probability of a transaction containing
the consequent (y) if the transaction contains the antecedent (x), and is calculated as
σ(x → y)/σ (x).

Association rule discovery finds all rules that satisfy specific constraints such
as the minimum support and confidence threshold, as is the case in the Apriori
algorithm [1]. When tree-structured data such as XML is in question, the under-
lying associations are tree-structured by nature. Thus, the pre-requisite for the dis-
covery of (structural) association rules becomes the task of frequent subtree min-
ing. A tree-structured document can be modeled as a rooted ordered labeled tree.
A rooted ordered labeled tree can be denoted as T = (v0, V , L, E), where (1) V0 ∈ V
is the root vertex; (2) V is the set of vertices or nodes; (3) L is a labelling function
that assigns a label L(v) to every vertex v ∈ V ; (4) E = {(v1, v2)|v1, v2 ∈ V AND
v1 �= v2} is the set of edges in the tree, and (5) for each internal nodes, the children
are ordered from left to right.

This problem is generally defined as: given a database of trees Tdb and minimum
support threshold σ , find all subtrees that occur at least σ times in Tdb. Most
commonly considered subtrees are induced and embedded. The formal defini-
tions of induced and embedded subtrees are as follows [42]: Given a tree S =
(vs0, VS, LS, ES) and tree T = (vt0, VT , LT , ET ), S is an ordered induced subtree of
T iff (1) VS ⊆ VT ; (2) LS ⊆ LT , and LS(v) = LT (v); (3) ES ⊆ ET ; (4) the left-to-
right ordering of sibling nodes in the original tree is preserved. Moreover, S is an
ordered embedded subtree of T iff (1) VS ⊆ VT ; (2) LS ⊆ LT , and LS(v) = LT (v);
(3) if (v1, v2) ∈ ES then parent(v2) = v1 in S and v1 is ancestor of v2 in T , and
(4) the left-to-right ordering of sibling nodes in the original tree is preserved. If
S = (vs0, VS, LS, ES) is an embedded subtree of T = (vt0, VT , LT , ET ), and two
vertices v1 ∈ VS and v2 ∈ VS form ancestor-descendant relationship, the level of
embedding (LoE) [42], between v1 and v2, denoted by � (v1, v2), is defined as the
length of the path between v1 and v2 in T. Hence, a maximum level of embedding
constraint (MaxLoE) M� can be imposed on the subtrees extracted from T, such that
any two connected nodes in an embedded subtree of T will be connected in T by a
path that has the maximum length of M�. Examples of induced and embedded sub-
tree are given in Fig. 10.1 (the number on the left of the nodes indicate its pre-order
position in the original tree T ).
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Fig. 10.1 Example of induced/embedded subtrees (T1, T2, T4, T6) and embedded subtrees (T3, T5)
of tree T

In this chapter, the focus is on evaluating rules based on embedded and induced
subtrees that satisfy minimum support and confidence thresholds, and discarding
any rules determined to be irrelevant to the classification task at hand. Let us denote
the subtree patterns from the frequent subtree set SF that have a class label (value),
as SFC, their accuracy as ac(SFC) and coverage rate as cr(SFC). The problem
focused on in this work can then be generally defined as follows: Given SFC with
accuracy ac(SFC), obtain SFC′ ⊆ SFC, such that ac(SFC′) ≥ (ac(SFC) − ε) and
cr(SFC′) ≥ (cr(SFC) − ε) (ε is an arbitrary user defined small value used to reflect
the noise that is often present in real-world data).

In what follows we discuss the common way of representing trees. This will
lay the necessary ground for understanding the positional constraint imposed by
the DSM approach [14]. A pre-order traversal can be computed as follows: If an
ordered tree T consists only of a root node r, then r is the pre-order traversal of T.
Otherwise let T1, T2, . . . , Tn be the subtrees occurring at r from left to right in T .
The pre-order traversal begins by visiting r and then traversing all the remaining
subtrees in pre-order starting from T1 and finishing with Tn. The string encoding
(ϕ) can be generated by adding vertex labels in the pre-order traversal of a tree
T = (v0, V , L, E) and appending a backtrack symbol (e.g., ‘/’, ‘/’ /∈ L) whenever we
backtrack from a child node to its parent node. Figure10.2 and Table10.1 depict a
tree database consisting of 7 tree instances (or transactions) and the string encoding
for tree database, respectively.

10.3.1 Feature Subset Selection

Feature subset selection is an important pre-processing step in the data mining
process. If the irrelevant attributes are left in the dataset, they can interfere with
the data mining process and the quality of the discovered patterns may deteriorate,
creating problems such as overfitting [9]. It is in particular the case in associative
classifiers, since frequent patterns are typically generated without considering their
predictive power [9], resulting in a huge feature space for possible frequent patterns.
The removal of irrelevant attributes will result in a much smaller dataset, thereby
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Fig. 10.2 Example of a tree-structured database Tdb consisting of 7 transactions

Table 10.1 Example of tree
transactions

Tree database (Tdb) Pre-order string encoding

T0 ‘a b d n −1 e −1 −1 −1 c −1’

T1 ‘b c −1 b e −1 −1’

T2 ‘b d e −1 −1’

T3 ‘l m −1 n −1’

T4 ‘k l m −1 −1 n −1’

T5 ‘b a c f −1 −1 −1 d −1’

T6 ‘a b c d −1 e −1 −1 −1 f g h −1 i

−1 −1 −1’

reducing the number of rules that need to be generated from the association rule
mining algorithm, while closely maintaining the integrity of the original data [18].
Additionally, rules describedwith fewer attributes are also expected to perform better
when classifying future cases; hence, they will have better generalization power than
do themore specific rules that takemany attributes into account. Besides, the patterns
extracted will also be simpler and easier to analyse and understand. Determining the
relevant and irrelevant attributes poses a great challenge to many data mining algo-
rithms [36].
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The feature subset selection problem can be more formally described as: Given
a relational database D, AT = {at1, at2, . . . , at|AT |} the set of distinct items in D,
and Y = {y1, y2, . . . , y|Y |} the class attribute with a set of class labels in D. Let an
association rule mining algorithm be denoted as ARAL , the set of association rules
for predicting the value of a class attribute Y from D extracted using ARAL as AR(D),
and accuracy of AR(D) as ac(AR(D)). The problem of feature subset selection is to
reduce D into D′ such that AT ′ ⊆ AT and ac(AR(D′)) ≥ ac(AR(D′)) − ε, where ε

is an arbitrary user defined small value to reflect noise present in real-world data. In
other words, the task is to find the optimal set of attributes, ATOPT ⊆ AT , such that
the accuracy of the association rule set using ARAL is maximized.

10.3.2 Modeling Tree-Structured Data

An example of three user sessions logged into an academic institution website server
is depicted here to represent the process of tree-structured data representation for
data mining purposes. Table10.3 is an example of a string to integer mapping from
the user sessions in Table10.2. The mapping process from string to integer can be
done with a hash function as discussed in [51]. Representing a label as an integer
instead of a string label has considerable performance and space advantages [42].

As mentioned earlier, a common way of representing trees is to use the pre-order
(depth-first) string encoding (ϕ) as described in [51]. For example, the pre-order
string encoding representation of the underlying tree structure of the user navigation
of Table10.2 is transformed to (ϕ)(session 0) = ‘0 1 2 3 −1 4 −1 −1 5 6 −1 −1 −1
7 8 9 −1 −1 −1 10 11 −1 12 −1 −1’ and (ϕ)(session 1) = ‘0 1 13 14 −1 15 −1 −1
16 −1 −1 17 −1’ and (ϕ)(session 2) = ‘0 1 18 19 −1 −1 −1 20 21 −1 −1 7 22 −1
−1’. The access sequence of web pages from Table10.2 can be represented in a tree-
structured way as shown in Fig. 10.3. The order of pages accessed is reflected by the
pre-order traversal of the tree. The corresponding tree structure is more informative
than just a sequence of pages accessed as it captures the structure of the web site, and
navigational patterns over this website, and the discovered knowledge patterns will
as a result be more informative and useful, as already elaborated on in works such
as [16, 17, 51, 52]. With this approach, specific pages can be considered within the
same context. An example of this is the two pages being grouped under the ‘centres
and labs’ parent node with label 13 in the tree of session 1, and 2 pages under the
‘research’ parent node with label 1 in the tree of session 0. Session 0 has come from
an IP within the university and is most likely an example of a student acquiring
some general information about the institute and then seeking information related
to postgraduate study. The first session came from an IP internal to the university,
where the user was interested in looking for jobs by browsing institutional centres
and labs, and contacted the institute for more information. While session two may
come from a potential external student who is searching for a potential supervisor
by browsing some related conference papers and is interested in finding a research
training program.
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Table 10.2 Example of user
session

Session 1:

/

/research.html

/research/topics.html

/research/topics/51-business-intelligence.html

/research/topics/55-e-education-ecosystems.html

/research/seminars.html

/research/seminars/413-presentation-by-eric-feinberg.html

/phd-a-msc.html

/phd-a-msc/scholarships.html

/phd-a-msc/scholarships.html#debii

/about.html

/about/objectives.html

/about/mission-and-vision.html

Session 2:

/

/research.html

/research/centres-and-labs.html

/centres-and-labs/217-anti-spam-research-lab-asrl.html

/centres-and-labs/214-centre-for-stringology-a-applications

-csa-.html

/research/jobs.html

/contact-us.html

Session3:

/

/research.html

/research/publications.html

/research/publications/conf-a-journal-papers.html

/allstaff.html

/allstaff/Research Professors & Fellows.html

/exchange-students.html

/phd-a-msc.html

/phd-a-msc/research-training.html

The integer-indexed tree is then formatted as shown in Table10.4. This dataset
format representation was proposed by [51]. Please note that the second column
(cid) could be used to refer to a specific entity which the record describes (e.g. User
id). However, in many domains such information is often unavailable, or it has been
intentionally omitted or related through the transaction id (tid). Hence, in most of the
tree databases represented in this format, the cid column will simple be a repetition
of the tid column. This is the common format used in the frequent subtree mining
field [17].
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Table 10.3 Integer mapping
for web pages from Table10.2

ID Web page

0 Homepage

1 Research

2 Topics

3 51-business-intelligence

4 55-e-education-ecosystems

5 Seminars

6 413-presentation-by-eric-feinberg

7 phd-a-msc

8 Scholarships

9 scholarships.html#debii

10 About

11 Objectives

12 Mission-and-vision

13 Centres-and-labs

14 217-anti-spam-research-lab-asrl

15 214-centre-for-stringoLogsy-a-applications-csa-

16 Jobs

17 Contact-us

18 Publications

19 Conf-a-journal-papers

20 Allstaff

21 Research Professors & Fellows

22 Research-training

10.3.3 Database Structure Model (DSM)

The definition given by [14] is utilized here to describe theDatabase Structure Model
(DSM). Generally, the string-like representation of a tree database (example given
in Table10.4, is converted into a flat data format while preserving the ancestor-
descendant and sibling node relationships. Henceforth, this structure-preserving flat
data representation will be simply referred to as ‘table’. The header of the table
contains the DSM without any specific attribute names. It represents only the most
general structure where every instance from the tree database can bematched to. This
will ensure that when the labels of a particular transaction from the tree database are
processed, they are placed in the correct column, corresponding to the position in
the DSM that this label matches. To illustrate the complete conversion process using
DSM, please refer to Fig. 10.2. Using the string encoding format representation [51],
the tree database Tdb from Fig. 10.2 would be represented as is shown in Table10.1,
where the left column corresponds to the transaction identifiers, and the right column
is the string encoding of each subtree.
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Fig. 10.3 Integer-indexed tree of user sessions in Table10.2

Table 10.4 An integer-indexed tree in Fig.10.3 formatted as a string-like representation as used
in [51]

tid cid |S| Pre-order(depth-first) encoding

0 0 25 0 1 2 3 −1 4 −1 −1 5 6 −1 −1 −1 7 8 9 −1 −1 −1 10 11 −1 12 −1 −1

1 1 25 0 1 13 14 −1 15 −1 −1 16 −1 −1 17 −1

2 2 25 0 1 18 19 −1 −1 −1 20 21 −1 −1 7 22 −1 −1

– – – –

tid transaction-id, cid omitted (i.e. equal to tid), |S| size of string

In this example, the DSM is reflected in the structure of T6 in Fig. 10.2 and it
becomes the header of the table to reflect the attribute names as explained pre-
viously. The string encoding is used to represent this uniform structure and since
the order of the nodes (and backtracks (‘–1’)) is important, the nodes and back-
tracks are labeled sequentially according to their occurrence in the string encod-
ing. For nodes (labels in the string encoding), xi is used as the attribute name,
where i corresponds to the pre-order position of the node in the tree, while for
backtracks, bj is used as the attribute name, where j corresponds to the backtrack
number in the string encoding. Hence, from our example in Fig. 10.2 and Table10.1,
(DSM)=‘x0, x1, x2, x3, b0, x4, b1, b2, b3, x5, x6, x7, b4, x8, b5, b6, b7’.

To fill in the remaining rows, every transaction from Tdb is scanned and when a
label is encountered, it is placed in the matching column (i.e. under the matching
node (xi) in the DSM), and when a backtrack (‘-1’) is encountered, a value ‘1’ (or
‘y’) is placed in the matching column (i.e. matching backtrack (bj) in DSM). The
remaining entries are assigned values of ‘0’ (or ‘No’, indicating non existence). The
flat data format of Tdb from Table10.1 (and Fig. 10.2) is illustrated in Table10.5.

The conversion process can be formalized as follows. Let the tree database con-
sisting of n transactions be denoted asTdb = {tid0, tid1, . . . , tidn−1}, and let the string
encoding of the tree instance at transaction tidi be denoted as ϕ(tidi). The DSM is
extracted from Tdb using the procedure explained earlier. Further, let |ϕ(tidi)| denote
the number of elements in ϕ(tidi), and ϕ(tidi)k (k = {0, 1, . . . , |ϕ(tidi)|−1}) denote
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Table 10.5 Flat representation of Tdb in Fig. 10.2 and Table10.1

x0 x1 x2 x3 b0 x4 b1 b2 b3 x5 x6 x7 b4 x8 b5 b6 b7

a b d n 1 e 1 1 1 c 0 0 0 0 0 0 1

b c 0 0 0 0 0 0 1 b e 0 0 0 0 1 1

b d e 0 0 0 0 1 1 0 0 0 0 0 0 0 0

l m 0 0 0 0 0 0 1 n 0 0 0 0 0 0 1

k l m 0 0 0 0 1 1 n 0 0 0 0 0 0 1

b a c f 1 0 0 1 1 d 0 0 0 0 0 0 1

a b c d 1 e 1 1 1 f g h 1 i 1 1 1

Table 10.6 Flat representation of Tdb in Fig. 10.2 and Table10.1 when minimum support = 3

x0 x1 x2 x3 b0 b1 b2 x4 b3

a b c n 1 1 1 c 1

b c 0 0 0 0 1 b 1

b d e 0 0 1 1 0 0

l m 0 0 0 0 1 n 1

k l m 0 0 1 1 n 1

b a c f 1 1 1 d 1

a b c d 1 1 1 f 1

the kth element (a label or a backtrack ‘-1’) of ϕ(tidi). The flat data format or table
FT (C, R)(C = columns, R = rows) is set up where C = {c0, c1, . . . , cm−1}(m =
|C| = |ϕ(DSM)|), and R = {r0, r1, . . . , rp−1}(p = |R| = n + 1) (i.e. extra col-
umn for attribute names). The value in column number x and row number y is
denoted as FT (cx, ry). Hence, to set the attribute names FT (ci, r0) = ϕ(DSM)k
where i = k = {0, 1, . . . , (|ϕ(DSM)| − 1)}.

In addition, during the conversion process as mentioned in [16], one can incorpo-
rate the minimum support threshold s so that the DSM captures only those structural
characteristics that have occurred in at least s% of the tree database. Hence, in some
cases only a fraction of a tree instance can be matched to the DSM due to low occur-
rences in the tree database, but the partial information still needs to be included in
the resulting flat table. As an example, refer to the tree database Tdb in Table10.5 and
Fig. 10.2, in mining the subtrees with minimum support threshold of 3, the resulting
DSM would be as follows: ‘x0, x1, x2, x3, b0, b1, b2, x4, b3’ and the new table is
shown in Table10.6.

10.3.4 Tree to Flat Conversion Example Using Academic
Institution WebLogs Data

Referring to the an Academic Institution WebLogs data example in Sect. 10.3.2,
the pre-order encoding format of the tree database needs to be converted into a flat
representation as proposed by [14]. The DSM applications were described earlier in
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Sect. 10.3.3. In this section, an illustrative example is provided using an Academic
Institution WebLogs example as reference. The DSM is reflected in the structure
of T0 in Table10.4 and the corresponding tree is shown in Fig. 10.3 (Session 0).
Transaction T0 becomes the general structure of DSM and the header in Table10.7
to reflect the attributes names. Every transaction that remains in the Tdb will be
matched against the DSM and every node label placed in the matching column (i.e.
under thematching node (xi) in the DSM). The flat data format of Tdb fromTable10.4
is illustrated in Table10.7.

10.3.5 Representing Disconnected Trees w.r.t. DSM

As discussed earlier in Sect. 10.3.3, the rules from DSM can be converted into pre-
order string encoding of the subtrees, and hence are represented as subtrees of the
tree database. However, some rules may not be representatives of valid subtrees.
For example, it is possible that some items in the rules correspond to sibling nodes
in the original tree, while the parent or any ancestor node connecting those in the
original tree is not present in the rules discovered using DSM approach. Hence, this
would result in an invalid subtree as the nodes are disconnected. In addressing this
matter, one can add the other nodes that make it into a valid subtree but flag them
as irrelevant. The process consists of sequentially listing the values of each matched
node in DSM, while retaining the level of embedding information of each current
node in DSM and in the subtree pattern. Since the DSM itself is ordered according
to the pre-order traversal, this results in pre-order string encodings of the subtrees.

As a simple illustrative example, consider the following associations/patterns
extracted from an Academic Institution WebLogs Data:

P1: business-intelligence human-space-computing phd-msc,
P2: scholarships management phd-a-msc.
With respect to pattern (P1) in Fig. 10.4 and pattern (P2) in Fig. 10.5, the items

(nodes) in the rule correspond to sibling nodes in the original tree, while the parent
or any ancestor node connecting those in the original tree is not present in the rule.
Hence, this would result in an invalid subtree as the nodes are disconnected. This is
illustrated in both Figs. 10.4 and 10.5, where irrelevant nodes are shaded grey. One
can also choose to display the labels of nodes that are there to contextualize the infor-
mation, i.e. scholarships and management and phd-a-msc, which would essentially
contextualize the specific rule constraints. Additionally, the labels of nodes can be
displayed in order to contextualize the information in the tree. In this work, these
rules are recognized as FullTree rules.
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P1

business -intelligence

human-space-computing

phd-a-msc

Fig. 10.4 Displaying pattern (P1) w.r.t. DSM in Table10.7

P2

phd-a-msc

scholarships management

Fig. 10.5 Displaying pattern (P2) w.r.t. DSM in Table10.7

10.4 Method and Experimental Setup

The method used here is the integration of rule optimization framework presented in
[37, 38] and structure-preserving flat representation of tree-structured data presented
in [14], which as a result will allow direct application of standard statistical measures
to tree-structured data. Figure10.6 shows the proposed framework which in itself
describes the experimental process. The database structure model (DSM) [14] is
extracted from the tree-structured data/XML documents to preserve the structural
characteristics of the data. The extracted DSM is used to create the flat representation
of the tree structured data (shown in Fig. 10.6 with the square dash line region). An
example of the conversion process is given in Sect. 10.3. Once the tree-structured
dataset has been converted to a flat table format (FDT), the dataset is then divided into
two parts. The first part is used for frequent pattern mining, statistical evaluation and
rule filtering process, while the second part acts as sample data drawn from the dataset
used to verify the accuracy and coverage of the discovered rules. In the pre-processing
phase, missing values are handled using common distribution-based missing value
imputation [27] and equal width binning approach is utilised to discretise the values
of any continuous attributes. The equal-width binning approach groups the data into
several buckets or bins of the same interval size. The equal width binning will be
implemented based on the following steps [35]: (1) Calculate the range of variable
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Fig. 10.6 Method and experimental setup

to be binned; (2) Using the specified number of bins, calculate the boundary (width)
of each bin; (3) Using specified boundaries, assign each value of the variable to a bin
for each record. The data partitioning, missing value imputation and discretization
were performed using the SAS Enterprise Miner software (please refer to [35] for
further detail on the use of software for data pre-processing). Secondly, feature subset
selection based on attribute ranking according to Symmetrical Tau measure [54] of
predictive capability is performed as described in [15].

The association rule mining algorithm is utilized to discover frequent rules from
the FDT and rule filtering process based on sequence of chi-square test, Logistic
Regression model selection, redundant rule removal (based on minimum improve-
ment redundant rule constraint [4]) and optional filtering based on higher confidence
threshold is performed. The extracted association rules are mapped onto the DSM
(by the pre-order position of each item) to re-generate the pre-order string encoding
of subtrees, thereby representing them as subtrees of the tree database.

These rules may contain both valid and invalid subtrees (disconnected subtrees),
and we will refer to these as FullTree. In addition, the rules based on embedded sub-
trees and the rules based on induced subtrees (the rule sets that exclude disconnected
subtrees) have also been revealed within the extracted rules. Finally the rule accu-
racy and coverage rate is calculated for all rule sets at different stages.The extracted
frequent rules are mapped onto the DSM to re-generate the pre-order string encoding
of subtrees, thereby representing them as subtrees of the tree database.

Tree-Structured Data Format Conversion: For given tree-structured data, the enu-
meration of all possible subtrees in a complete, non-redundant and efficient way is
themajor problem one needs to tackle [43]. A significant delay in the subtree patterns
analysis and interpretation process may occur at lower support thresholds. Addition-
ally, as a large number of frequent subtree patterns may be discovered, many of
which may not be useful, one needs to filter out many of the irrelevant/uninteresting
patterns.
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The flat data format (relational or vectorial data) was proven to be acceptable and
successful when utilized with many well-established data mining techniques. Thus,
an effective way proposed in [14] known as Database Structure Model (DSM) is
utilized in this research to represent tree-structured data in a structure-preserving flat
data format. This approach offers a way of preserving tree-structured and attribute-
value information. With the application of DSM, the structural characteristics are
preserved during the data mining process. The extracted rules from the data mining
application can bemapped onto theDSM to re-generate the pre-order string encoding
of subtrees.

Let a tree structure data in flat table format (FDT) dataset be denoted as D,
I = {i1, i2, . . . , i|I|} the set of distinct items in D, AT = {at1, at2, . . . , at|AT |} the
set of input attributes in D, and Y = {y1, y2, . . . , y|Y |} the class attribute with a set
of class labels in D. Assume that D contains a set of n records D = {xr, yr}n

r=1 ,
where xr ⊆ I is an item or a set of items and yr ∈ Y is a class label, then |xr | =
|AT | and xr = {at1valr, at2valr, . . . , at|AT |valr} contains the attribute names and
corresponding values for record r in D for each attribute at in AT . The training
dataset is denoted as Dtr ⊆ D and the testing dataset as Dts ⊆ D, and filtered
database after feature selection as D′

tr where I ′ ⊆ I .
We extracted the rule sets extracted from the flat table format (FDT) satisfying

the minimum support and confidence threshold (denoted as F(A)). Individual rules
are denoted as fA ∈ F(A), of the form x → y, where x is the antecedent and y
the consequent, ∃{xr, yr} ∈ D′

tr, x ⊆ xr, xr = {at1valr, at2valr, . . . , at|AT |valr} and
y ∈ Y is a class label. For generating F(A), SAS EnterpriseMiner software was used.

Feature Subset Selection: The Symmetrical Tau (ST) measure [54] was derived
from the Goodman’s and Kruskal’s Asymmetrical Tau measure of association for
cross-classification tasks in the statistical domain. Zhou and Dillon [54] have used
the Asymmetrical Taumeasure as feature selection during decision tree building, and
have found that it tends to favour attributes with more values. When the classes of an
attribute A are increased by class subdivision, more is known about attribute A and
the probability error in predicting the class of another attribute B may decrease. On
the other hand, attribute A becomes more complex, potentially causing an increase
in the probability error in predicting its category according to the category of B.
This trade off effect inspired Zhou and Dillon [54] to combine the two asymmetrical
measures in order to obtain a balanced feature selection criterion which is in turn
symmetrical. However, note that in case ofBoolean variables, symmetrical and asym-
metrical tau will have the same value. Some powerful properties of ST, as reported
in [54], are noise handling through built-in statistical strength, potential classifica-
tion uncertainties are conveyed through dynamic error estimation, no bias towards
multi-valued attributes, not proportional to sample size, proportional-reduction-in-
error nature allows measuring of sequential variation in predictive capability, and
handling of Boolean combinations of logical features.

Let there be R rows and C columns in the contingency table for attributes ati
and Y. The probability that an individual belongs to row category r and column
category c is represented as P(rc), and P(r+) and P(+c) are the marginal prob-
abilities in row category r and column category c respectively. The measure is



10 Irrelevant Feature and Rule Removal for Structural Associative Classification 217

based on the probabilities of one attribute value occurring together with the value
of the second attribute, and for the classification task the second attribute will cor-
respond to a special attribute in the dataset defined as class. The ST measure for the
capability of input attribute ati in predicting the class attribute Y is defined in [54]
as follows.

Tau(ati, Y) =
∑C

c=1
∑R

r=1
P(rc)2

P(+c) + ∑R
r=1

∑C
c=1

P(rc)2

P(r+)
−∑R

r=1 P(r+)2 −∑C
c=1 P(+c)2

2 − ∑R
r=1 P(r+)2 − ∑C

c=1 P(+c)2
(10.1)

The higher values of the ST measure would indicate better discriminating criteria
(features) for the class that is to be predicted in the domain. As performed in [15], the
attributes are ranked according to their decreasing ST values and a relevance cut-off
point is chosen at and below which all attributes are considered as irrelevant and are
discarded. The relevance cut-off was selected based on the significant difference (less
than half of the previous value in the ranking) between the ST values in decreasing
order. This will prevent the generation of rules whichwould then need to be discarded
when found that they were comprised of some irrelevant attributes. In accordance
with [5] we have found that mutual information typically ranks attributes with more
values higher than the ST measure does.

Chi-square: A natural way to express the dependence between antecedent and
the consequence of an association rule is the correlation based on the chi-square
test for independence [7]. The chi-square test is defined as follows: For a given
D′

tr , the occurrence of ati where ati ∈ AT , (i = (1, . . . , |AT |) is independent of the
occurrence of yr ∈ Y if P(ati ∪yr) = P(ati)P(yr); otherwise ati and yr are dependent
and correlated. The correlation between ati and yr ∈ Y is measured using Eq.10.2.
For a given lift measure [40] based on Eq.10.2, the chi-square χ2 statistic value was
utilised to determine whether the correlation is statistically significant.

lift(ati, yr) = P(ati ∪ yr)

P(at1)P(yr)
(10.2)

Hence, the chi-square test discards any fAk ∈ F(A) for which ∃ati contained in x
of x → y, the χ2 value is not significant for y ∈ Y (correlation analysis in Eq.10.2).

Logistic Regression: Another form of statistical analysis applied was the logistic
regression. The relationship between the antecedent and consequent in association
rule mining can be presented as a relationship between a target variable and the input
variables in logistic regression. The following is the definition of the logistic regres-
sion model involved in the framework. For a given D′

tr , several logistic regression
models were developed based on ln(Y) = β0+β1at1+β2at2+· · ·+β|AT |at|AT | +e,
where ln(Y) is the natural logarithm of the odds ratio, β0, β1, . . . , β|AT | are the coef-
ficients of the input attributes ati, e is the error variable and Y the dichotomous class
attribute. The coefficient βi of ati is determined based on the log likelihood value
given in Eq.10.3, where ativalr denotes the value of attribute ati occurring in record r.
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βiati =
n∑

r=1

{yrln[π(ativalr)] + (1 − yr)ln[1 − π(ativalr)]} (10.3)

The statistical hypothesis is then used to determine whether the input attributes
are significantly related to the class attribute. A number of models can be developed
from logistic regression analysis, and each produces a different selection of attributes.
The model that fits the data well and has the highest predictive capability is selected.
Hence, logistic regression is used to discard any fAk ∈ F(A), fBk ∈ F(B), fCk ∈
F(C) for which ∃ati contained in x of x → y, the βiati value is not significant
towards the class attribute Y (logistic regression analysis in Eq.10.3).

Redundant and Contradictive Rule Removal: To remove redundant rules, we uti-
lize the concept of productive rules [4]. This approach is based onminimum improve-
ment redundant rule constraint [4], which discards any rule x → y if confidence
(x → y) ≤ max(confidence(z → y))∀z ⊂ x. In other words, a rule x → y with con-
fidence value c1 is considered as redundant if there exists another rule z → y with
confidence value c2, where z ⊂ x and c1 ≤ c2. The contradictory rule constraint
[53] is then utilised to discard two or more rules that have the same precedent but
imply a different class value.

Rules Accuracy and Rules Coverage: A measure needs to be applied to verify
whether the removal of a large volume of rules based on statistical analysis, and
redundancy and contradictory assessment methods, will enable the discovery of all
the interesting and significant subtree patterns. As such, the quality of the subtree
pattern will be demonstrated based on their accuracy and coverage values. The values
for rule accuracy and coverage will be measured at every stage and sequence of this
task. This measure is crucial as it can determine the quality of the discovered rules.
Additionally, this analysis will reveal the balancing/optimization issues with regards
to the trade-off between accuracy rate and coverage rate.

10.5 Experimental Evaluation

In this section we present the experiments performed using the CRM dataset
(real estate property management records in XML), CSLOGS dataset (web access
trees) and an academic institution dataset (web access trees), structural character-
istics of which are shown in Table10.8, and the following notation is used: |Tr|—
Number of transactions (independent tree instances); |L|—Number of unique labels;
|T |—Number of nodes (size) in a transaction; |D|—Depth; |F|—Fan-out-factor (or
degree). Please note, that in [52] where the structural/XML classificatotion was first
proposed, it was demonstrated that a simpler classifier that does not take the struc-
ture into the account cannot achieve equally good results. Similarly, in [51] it was
empirically shown, that tree-structured web-browsing patterns are more informative
and useful than, their itemset/sequential pattern counter part. Hence, this study is not
repeated in this work, but rather an experimental study is presented on the use of
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Table 10.8 Structural characteristics of the data

|Tr| |L| Avg|T | Avg|D| Avg|F| Max|T | Max|D| Max|F|
CRM 1,181 10,611 52.97 4.89 8 533 5 46

CSLOGS 68,302 16,207 7.8 3.45 1.82 313 123 137

Academic Institution
Website

18,836 34,052 9.63 4.98 1.56 60 59 37

standard statistical techniques to reduce the huge number of rules typically generated
during frequent subtree mining, in the context of associative classification. As such,
the focus is on the use of basic accuracy and coverage rate rule evaluation measures
to observe the gradual difference in the rule set accuracy and coverage as different
feature/rule filtering techniques are applied.

Each dataset underwent conversion into a structure-preserving flat data format
(henceforth FDT) using theDSMapproach. The backtrack attributes informationwas
kept in DSM as this is important for preserving the structural information. Hence,
this can be used to represent the resulting rules as trees/subtrees. The backtrack
attributes can be optionally kept in the FDT as when present in rules, they indicate
the existence/non-existence of a node irrespective of the label as discussed in [16].
We have compared the results when rules are generated from itemsets including the
backtrack attributes and without, and the difference was not substantial to make it
worth reporting. Inclusion of backtrack attributes typically resulted in slightly better
results, in terms of increased rule set coverage rate and thus all experiments presented
are done using this option. When reporting the results, the following notation will be
used ST—Symmetrical Tau, AR—accuracy rate, CR—coverage rate, FullTree—the
initial rule set containing disconnected subtree and backtrack attribute based rules,
Embedded—after itemsets have been mapped to DSM (by pre-order positions) to
generate valid connected subtrees, and Induced—only subtrees where maximum
level of embedding is limited to 1 (i.e. parent-child relationships among the nodes,
see Sect. 10.3).

10.5.1 Experiment Set 1—CRM Data

CRM data is a real-world dataset relating to the handling of complaints in the area of
real estate. Each complaint relates to a particular defect in the property, and a prop-
erty manager will assign a case to each defect, containing information such as case
managers, contractors, areas of defect, district and building type. The classification
problem considered corresponds to the “WorkCompletion”, with 2 possible values
(within a month and more than a month duration. The attributes containing similar
information or referring to work/task completion duration have then been removed.
The dataset consists of 1,181 instances with 675 attributes, of which 66% was used
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Table 10.9 Subtree association rule evaluation for CRM data

Type of analysis Data partition FullTree Induced

# of Rules AR% CR% # of Rules AR% CR%

# of Rules after ST Training 27116 83.02 100 5270 81.56 100

Testing 83.74 100 83.4 100

Logistic regression Training 91 79.85 100 17 68.54 100

Testing 80.95 100 70.57 100

Redundancy removal Training 51 76.78 100 17 68.54 100

Testing 77.72 100 70.57 100

Min. Conf. 60% Training 44 83.82 95.50 12 77.20 91.53

Testing 84.57 96.15 79.18 93.59

for training and 34% for testing. However, there are many complex classes within
this CRM data which may interest the users of the data. Nevertheless in this case,
as our main purposes is not to analyse the problem of CRM itself, but to look at the
CRMdata as an example of tree-structured data, the attention is confined to the afore-
mentioned class. The resulting DSM based flat data format contains 675 attributes
(including the class), 586 selected attributes based on Symmetrical Tau(ST) feature
selection. The rules are then generated based on support of 5% and confidence of
50%. Note that initially the dataset with backtrack attributes was used, which caused
memory issues in the SAS software and hence we applied the ST feature selection
prior to generating association rules which removed all of the backtrack attributes in
this dataset. Furthermore, for this dataset, all subtrees generated are of induced type,
and hence we do not report any results for the embedded subbtree variation as it is
identical to induced for this data.

Table10.9 shows the results as the statistical analysis and the redundancy assess-
ment have progressively been utilized to evaluate the interestingness of rules. Note
that chi-square analysis is not presented as it did not result in any rule removal at
that stage, and all of the connected subtrees were of induced subtree type in this
dataset. As one can see a significant number of rules was removed by applying the
logistics regression analysis, and in FullTree rule set further 40 rules were detected
as redundant. This has reduced the AR% by about 3%, but after rules whose min-
imum confidence is below 60% have been removed (last row) the accuracy has
increased with the cost of not covering around 5% of the instances. In this exper-
iment, FullTree rule set is the most optimal one, as it is not only more accurate in
classifying/predicting specific instances in the database, but also achieves a higher
coverage rate in the final step compared to Induced rule set. The FullTree rule set
can contain rules that do not convert to valid (connected) subtrees when matched to
DSM. Nevertheless, these are important to include as they may represent important
associations that should not be lost because they do not convert to connected valid
subtrees. Note that we have tried to run the XRules structural classifier [52] on this
data, but since there are quite a few repeating node labels in single tree instances,
caused by repetition of defects and individual cases within a single record, the tree
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Table 10.10 CSLOGS flattened data characteristics and initial number of rules for varying support

Support threshold (%) Atrr. # # Selected attr. # of Rules with target attr.

DSM flat Sym. Tau FullTree Embedded Induced

1 222 217 13835 13833 13809

5 64 52 920 919 918

10 40 29 216 215 215

20 24 11 48 47 47

30 16 7 32 31 31

mining algorithm [51] on which the XRules is based on, has difficulties in extracting
subtrees at required low support thresholds.

10.5.2 Experiment Set 2—CSLOGS Data

The CSLogs data comprises the web access trees from the computer science depart-
ment of the Rensselaer Polytechnic Institute previously used in [52] to evaluate the
XRules structural classifier. All of the three datasets (US1924, US2430, and US304)
were combined and instances were replicated (in both training and test data) to make
the class distribution even. The tree instances are labelled according to two classes,
namely the internal and external web site access. The total number of combined
instances is 68302. The training set was comprised of 66% of the data and the
remainder was left as the test set. Since different support thresholds were used, in
our approach the flat data representation of the dataset is done separately for each
support threshold, as the extracted database structure model (DSM) varies; hence,
the number of attributes used during frequent pattern generation. The general char-
acteristics of the flat data format (including backtrack attributes) and initial number
of rules extracted for CSLogs data (50% minimum confidence) at varying support
thresholds is provided in Table10.10. Note, that when using the association rules for
classification task it is natural that performance will vary depending on the support
threshold used. Hence, different support thresholds were tried from a larger to a
smaller extreme, and as expected for larger support thresholds there will be a trade-
off for limited coverage as only the very frequent subtrees will be extracted to form
part of the model.

For this dataset, the best results were achieved for the lowest examined support
threshold of 1%, and detailed results of progressively filtered rules based on statistical
analysis and redundancy removal are presented in Table10.11 for support 1% (at the
end of this subsection we present the performance of final rule sets for all the support
thresholds). The number of rules are shown in brackets below eachAR andCRvalues
reported. The results reveal that by selecting important input attributes with ST and
evaluating the rules with statistical analysis and redundancy assessment method,
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Table 10.11 Subtree association rule evaluation for CSLOG data (1% support 50% confidence)

Type of analysis Data partition FullTree Embedded Induced

AR% CR% AR% CR% AR% CR%

Initial rules Training 68.09 98.59 68.12 98.59 68.11 98.59

(13835) (13835) (13834) (13834) (13810) (13810)

Testing 69.94 98.6 69.94 98.6 69.94 98.6

Rules after ST Training 69.94 98.59 70.02 98.59 70.02 98.59

(6084) (6084) (6083) (6083) (6081) (6081)

Testing 72.01 98.6 72.1 98.6 72.1 98.6

Chi-Square Training 79.22 48.97 79.02 48.39 78.41 48.39

(73) (73) (72) (72) (65) (65)

Testing 78.78 48.77 78.57 48.25 78.06 48.25

Logistic regression Training 79.22 48.97 79.02 48.39 78.41 48.39

(73) (73) (71) (71) (64) (64)

Testing 78.78 48.77 78.57 48.25 78.06 48.25

Redundancy removal Training 79.02 48.97 78.71 48.97 78.71 48.97

(61) (61) (54) (54) (54) (54)

Testing 78.53 48.77 78.53 48.77 78.53 48.77

there is a significant reduction in the number of rules. While an increase in AR can
be observed, this is at the cost of reduced CR capabilities. The characteristics of
the FullTree rule set are similar to those of the Embedded and Induced rule sets,
and the AR and CR are very similar or the same for the different rule sets. This is
because the rules from Embedded and Induced rule sets are subsets of FullTree, and
in this dataset there were not so many variations among the rule sets w.r.t the level of
embedding in subtrees or frequent patterns that produce disconnected subtrees. To
conclude, the increase in prediction/classification accuracy comes with a trade-off
since fewer instances are captured from the datasets. On the positive side, a smaller
number of rules is expected to have better generalization power and are easier for
the user to understand and utilize for decision support purposes.
Comparison with XRules for varying support thresholds. In Table10.12 we com-
pare the AR and CR of the final rule sets of FullTree with XRules approach for
varying support thresholds. Note that the approaches are fairly different in terms of
the rule filtering performed in the process. Nevertheless, the comparison performed
serves mainly as a benchmark for the kind of accuracy and coverage rate that is to be
obtained when basing the classification on frequent patterns/subtrees extracted using
the support and confidence thresholds. As such, in no way do the results indicate
that one approach performs better than the other, as the internal mechanism is rather
incompatible. The XRules approach is based on the TreeMiner [51] algorithm for
extracting ordered embedded subtrees, and hence the number of rules extractd at
varying support thresholds is larger (shown in brackets), since the likelihood that a
subtree will be frequent when it does not need to occur at the same position is much
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Table 10.12 Comparison of
rules accuracy and coverage
rate for CSLogs data using
the XRules and FullTree final
rule set

Support 1% 5% 10%

AR% CR% AR% CR% AR% CR%

XRules 72.72 66.04 61.74 40.7 56.9 23.21

(298) (298) (20) (20) (3) (3)

FullTree 78.53 48.77 78.73 20.35 76.9 20.3

(61) (61) (4) (4) (2) (2)

Table 10.13 Rule sets at
support 10%

# XRules # FullTree

1 1 → Class(0) 1 X1(1) → Class(0)

2 12811 → Class(1) 2 X1(12811) → Class(1)

3 6 → Class(0)

higher. On this note, the rule sets of the XRules approach will typically have higher
coverage rate, especially in the CSLOGS dataset, where subtrees do in fact occur at
many different positions due to variations in website navigation. However, one can
see that this is at times at a cost of reduction in AR, and constraining the subtrees
by position could be seen as more precise, but naturally would cover less cases. To
give a simple example, please refer to Table10.13 where we show rule sets for the
support value of 10%. One can observe that the FullTree rule set does not contain
a rule that corresponds to rule number 3 in XRules even though it was considered
frequent by XRules. The reason for this is that the particular node with label “6”
with “Class(0)”, where “6” occurs at the same node/position in DSM did not occur
in 10% of the instances to be considered frequent and part of the FullTree rule set.
The two matching rules correspond to the first page accessed during the site naviga-
tion session, as it is labelled with pre-order position 1, namely X1 in our approach
(note that X0 is a virtual node in the CSLOGS dataset always labelled with 0 and is
removed in both approaches). For support threshold of 20 and 30% no rules were
extracted in our approach, while XRules only had the single default rule for majority
class.

10.5.3 Experiment Set 3—Academic Institution Web Log Data

Academic Institution WebLogs data is an apache2 (v2.2.3) web server logs files.
The WebLogs data was initially used in [16] in utilizing the DSM application. For
the purpose of the work in this research, the similar setting of the WebLogs data as
described in [16] has been utilized. The data was collected for a four-month period
in its native (default) format. During this period, all access to the website was stored
in logs files, while messages stored in the normal error message logs were excluded.
The access to the website was then classified as “internal” (within the university)
and “external” (outside the university). The grouped user sessions were converted
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Table 10.14 Academic Institution flattened data characteristics and initial number of rules for
varying support

Support threshold (%) Atrr. # # Selected attr. # of Rules with target attr.

DSM flat Sym. Tau FullTree Embedded Induced

1 442 217 – – –

5 126 123 28282 28282 28282

10 70 63 234 234 234

20 36 29 50 49 49

30 26 19 14 13 13

to trees as was explained with the illustrative example in Sect. 3.1. The resulting
dataset had 18,836 instances, of which 66% was used for training and the remainder
for testing. The details of the setting of the WebLogs access can be found in [16].
The general characteristics of the flat data format (including backtrack attributes)
and initial number of rules extracted for education institution data (50% minimum
confidence) at varying support thresholds is provided in Table10.14.

In this dataset, similar to the experiments described in Sect. 10.5.2, rules from
FullTree, Embedded and Induced rule sets have been progressively assessed with
statistical analysis and redundancy assessment method. The results demonstrate that
the conversion of the original tree-structured data into the flat data format represen-
tation, created a very large number of input attributes, especially at lower support
thresholds. By utilizing the Apriori algorithm to generate all frequent rules, one
might encounter difficulties in analyzing all rules given certain support and confi-
dence constraints.

By referring to the Table10.15, even with the given support constraint, the num-
ber of extracted rules (Initial Rule Set) is large. A large volume of rules may be
discovered due to the presence of irrelevant attributes in the dataset. The capabilities
of ST in selecting appropriate attributes, thereby removing irrelevant attributes, are
shown in our previous experiments for relational data problems. For this particular
task of evaluating tree-structured rules, similar experiments were conducted. The
attributes for each different support were ranked according to their decreasing ST
and a relevance cut-off point was chosen.

Table10.15 indicates the differences between the number of initial input attributes
and the number of attributes after applying Symmetrical Tau (ST) with their respec-
tive rule number (below) for each dataset for each different support. All attributes that
have been removed from the WebLogs data are backtrack attributes. This indicates
that the inclusion of these backtrack nodes may not be useful or have low capabilities
in predicting the class attributes in this dataset.The input variable that contains a sin-
gle value is unable to distinguish the class variables. Such input attributes have been
discarded as they are considered irrelevant based on the ST value calculated.With the
application of ST feature selection technique, rules that contain attributes that failed
the STmeasure are discarded. The large number of rules weremanaged to be reduced

http://dx.doi.org/10.1007/978-3-662-45620-0_3
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Table 10.15 Subtree association rule evaluation for Academic Institution data (10% support 50%
confidence)

Type of analysis Data partition FullTree Embedded Induced

AR% CR% AR% CR% AR% CR%

Initial Rules Training 64.27 100.00 64.54 100.00 64.54 100.00

(232) (232) (232) (232) (232) (232)

Testing 70.06 100.00 70.55 100.00 64.54 100.00

(232) (232) (232) (232) (232) (232)

Rules after ST Training 75.19 73.95 74.94 73.95 74.94 73.95

(43) (43) (43) (43) (43)) (43)

Testing 74.94 74.09 74.84 74.09 74.84 74.09

(43) (43) (43) (43) (43)) (43)

Chi-Square Training 78.21 64.47 77.56 64.47 77.56 64.47

(11) (11) (10) (10) (10) (10)

Testing 74.96 60.12 74.58 61.02 74.58 61.02

(11) (11) (10) (10) (10) (10)

with a proper sequence of usage of parameters including the ST feature selection,
statistical analysis and the redundancy assessmentmethod.According to Table10.15,
with the reduction of number of rules for FullTree, Embedded and Induced rule sets
for Academic Institution Weblogs (10% Support) the AR are increased but at the
cost of a decrease in CR. One can also notice that the AR for the FullTree rule set
is initially slightly lower than the AR of the Embedded and Induced rule set, but
after Symmetrical Tau is applied, the accuracy of FullTree is higher and remains
higher after chi-square rule filtering. Note that for this data there were no further
rules removed via logistic regression and redundancy check, and hence these stages
are not shown in Table10.15.

10.6 Conclusion and Future Work

The work presented in this chapter has explored the application of a number
of statistical methods to optimize the subtree based associative classification for
tree-structured data. It has utilized a structure-preserving flat format representation,
to progressively apply a number of statistical methods to first filter out irrelevant
attributes followed by the removal of irrelevant and redundant rules. The use of this
method has implications that the subtree based association rules are restricted to
those that occur at the same position in the original tree database, and that the initial
rule (before subtree reconstruction), can contain rules based on disconnected sub-
trees. Experiments were performed on three real datasets, and using the proposed
approach a large number of rules were removed in both cases without negatively
affecting the accuracy of the rule set, while for more structurally varied data, this
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optimization was at the cost of a large reduction in coverage rate. The results on
this data were compared with a structural classifier based on traditional subtrees,
and some important differences and implications were highlighted. The results show
that associations based on disconnected subtrees can be useful, while the positional
constraint can often result in more precise rules for structurally varied data, but at
the cost of lower coverage rate. From these findings one can conclude that when
forming association rules for tree-structured data, one should not be constrained to a
valid and connected subtree because an interesting association can be anywhere in a
tree instance, and it does not need to be a connected subtree of that instance. These
findings indicate that including disconnected subtrees and constraining the subtrees
by their exact occurrence in the database in addition to traditional subtree patterns,
could improve the classifiers for tree-structured data. Themethod used in this chapter
is to be seen as complementary and in no way a replacement of the traditional way
that subtrees are mined.

Our future work, will investigate the application domains where including such
association rules can be beneficial and the right way to combine themwith traditional
subtree patterns for optimal performance.

Furthermore, the chi-square and the logistic regression measures were used as a
case in point for statistic-based rule filtering, while Symmetrical Tau was utilized
in the feature subset selection process. However, by no means is any claim being
made that these are the most optimal measures to be used for their specific purpose.
In fact, we have used the confidence constraint here because of the stronger focus
on statistical quality assessment and the difference between the rule sets discovered
using the traditional support and confidence framework. However, many other mea-
sures could be used and applied instead of the support and or confidence constraint,
which, as discussed in several works [12, 23, 29], will yield more interesting rules.
Therefore, another future work will evaluate the combinations of other constraints,
statistical measures and techniques for rule removal/attribute relevance determina-
tion, in context of the tree-structured data domain.
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Chapter 11
Hubness-Aware Classification, Instance
Selection and Feature Construction:
Survey and Extensions to Time-Series

Nenad Tomašev, Krisztian Buza, Kristóf Marussy and Piroska B. Kis

Abstract Time-series classification is the common denominator in many real-world
pattern recognition tasks. In the last decade, the simple nearest neighbor classifier, in
combinationwith dynamic timewarping (DTW)as distancemeasure, has been shown
to achieve surprisingly good overall results on time-series classification problems.On
the other hand, the presence of hubs, i.e., instances that are similar to exceptionally
large number of other instances, has been shown to be one of the crucial properties of
time-series data sets. To achieve high performance, the presence of hubs should be
taken into account formachine learning tasks related to time-series. In this chapter,we
survey hubness-aware classification methods and instance selection, and we propose
to use selected instances for feature construction. We provide detailed description
of the algorithms using uniform terminology and notations. Many of the surveyed
approaches were originally introduced for vector classification, and their application
to time-series data is novel, therefore, we provide experimental results on large
number of publicly available real-world time-series data sets.
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11.1 Introduction

Time-series classification is one of the core components of various real-world
recognition systems, such as computer systems for speech and handwriting recog-
nition, signature verification, sign-language recognition, detection of abnormali-
ties in electrocardiograph signals, tools based on electroencephalograph (EEG)
signals (“brain waves”), i.e., spelling devices and EEG-controlled web browsers
for paralyzed patients, and systems for EEG-based person identification, see e.g.
[34, 35, 37, 45]. Due to the increasing interest in time-series classification, vari-
ous approaches have been introduced including neural networks [26, 38], Bayesian
networks [48], hidden Markov models [29, 33, 39], genetic algorithms, support
vector machines [14], methods based on random forests and generalized radial basis
functions [5] as well as frequent patternmining [17], histograms of symbolic polyno-
mials [18] and semi-supervised approaches [36]. However, one of themost surprising
results states that the simple k-nearest neighbor (kNN) classifier using dynamic time
warping (DTW) as distance measure is competitive (if not superior) to many other
state-of-the-art models for several classification tasks, see e.g. [8] and the references
therein. Besides experimental evidence, there are theoretical results about the opti-
mality of nearest neighbor classifiers, see e.g. [12]. Some of the recent theoretical
works focused on a time series classification, in particular on why nearest neighbor
classifiers work well in case of time series data [10].

On the other hand, Radovanović et al. observed the presence of hubs in time-
series data, i.e., the phenomenon that a few instances tend to be the nearest neighbor
of surprising lot of other instances [43]. Furthermore, they introduced the notion
of bad hubs. A hub is said to be bad if its class label differs from the class labels of
many of those instances that have this hub as their nearest neighbor. In the context of
k-nearest neighbor classification, bad hubs were shown to be responsible for a large
portion of the misclassifications. Therefore, hubness-aware classifiers and instance
selection methods were developed in order to make classification faster and more
accurate [9, 43, 50, 52–54].

As the presence of hubs is a general phenomenon characterizingmany datasets, we
argue that it is of relevance to feature selection approaches as well. Therefore, in this
chapter, we will survey the aforementioned results and describe the most important
hubness-aware classifiers in detail using unified terminology and notations. As a first
step towards hubness-aware feature selection, wewill examine the usage of distances
from the selected instances as features in a state-of-the-art classifier.

The methods proposed in [50, 52–54] were originally designed for vector classi-
fication and they are novel to the domain of time-series classification. Therefore, we
will provide experimental evidence supporting the claim that these methods can be
effectively applied to the problemof time-series classification. The usage of distances
from selected instances as features can be seen as transforming the time-series into
a vector space. While the technique of projecting the data into a new space is widely
used in classification, see e.g. support vector machines [7, 11] and principal com-
ponent analysis [25], to our best knowledge, the particular procedure we perform is
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novel in time-series classification, therefore, we will experimentally evaluate it and
compare to state-of-the-art time-series classifiers.

The remainder of this chapter is organized as follows: in Sect. 11.2 we
formally define the time-series classification problem, summarize the basic nota-
tion used throughout this chapter and shortly describe nearest neighbor classification.
Section11.3 is devoted to dynamic time warping, and Sect. 11.4 presents the hubness
phenomenon. In Sect. 11.5wedescribe state-of-the-art hubness-aware classifiers, fol-
lowed by hubness-aware instance selection and feature construction approaches in
Sect. 11.6. Finally, we conclude in Sect. 11.7.

11.2 Problem Formulation and Basic Notations

The problem of classification can be stated as follows.We are given a set of instances
and some groups. The groups are called classes, and they are denoted as C1, . . . , Cm.
Each instance x belongs to one of the classes.1 Whenever x belongs to class Ci, we
say that the class label of x is Ci. We denote the set of all the classes by C , i.e.,
C = {C1, . . . , Cm}. Let D be a dataset of instances xi and their class labels yi, i.e.,
D = {(x1, y1) . . . (xn, yn)}. We are given a dataset D train, called training data. The
task of classification is to induce a function f (x), called classifier, which is able to
assign class labels to instances not contained in D train.

In real-world applications, for some instances we know (from measurements
and/or historical data) to which classes they belong, while the class labels of other
instances are unknown. Based on the data with known classes, we induce a classifier,
and use it to determine the class labels of the rest of the instances.

In experimental settings we usually aim at measuring the performance of a classi-
fier. Therefore, after inducing the classifier usingD train, we use a seconddatasetD test ,
called test data: for the instances of D test , we compare the output of the classifier,
i.e., the predicted class labels, with the true class labels, and calculate the accuracy of
classification. Therefore, the task of classification can be defined formally as follows:
given two datasets D train and D test , the task of classification is to induce a classifier
f (x) that maximizes prediction accuracy forD test . For the induction of f (x), however,
solely D train can be used, but not D test .

Next, we describe the k-nearest neighbor classifier (kNN). Suppose, we are given
an instance x∗ ∈ D test that should be classified. The kNN classifier searches for those
k instances of the training dataset that are most similar to x∗. These k most similar
instances are called the k nearest neighbors of x∗. The kNN classifier considers the k
nearest neighbors, and takes the majority vote of their labels and assigns this label to
x∗: e.g. if k = 3 and two of the nearest neighbors of x∗ belong to class C1, while one

1 In this chapter, we only consider the case when each instance belongs to exactly one class.
Note, however, that the presence of hubs may be relevant in the context of multilabel and fuzzy
classification as well.
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Table 11.1 Abbreviations used throughout the chapter and the sections where those concepts are
defined/explained

Abbreviation Full name Definition

AKNN Adaptive kNN Sect. 11.5.5

BNk(x) Bad k-occurrence of x Sect. 11.4

DTW Dynamic Time Warping Sect. 11.3

GNk(x) Good k-occurrence of x Sect. 11.4

h-FNN Hubness-based fuzzy nearest neighbor Sect. 11.5.2

HIKNN Hubness information k-nearest neighbor Sect. 11.5.4

hw-kNN Hubness-aware weighting for kNN Sect. 11.5.1

INSIGHT Instance selection based on graph-coverage and Sect. 11.6.1

hubness for time-series

kNN k-nearest neighbor classifier Sect. 11.2

NHBNN Naive hubness Bayesian k-nearest Neighbor Sect. 11.5.3

Nk(x) k-occurrence of x Sect. 11.4

Nk,C(x) Class-conditional k-occurrence of x Sect. 11.4

SNk (x) Skewness of Nk(x) Sect. 11.4

RImb Relative imbalance factor Sect. 11.5.5

of the nearest neighbors of x belongs to class C2, then this 3-NN classifier recognizes
x∗ as an instance belonging to the class C1.

We use Nk(x) to denote the set of k nearest neighbors of x. Nk(x) is also called
as the k-neighborhood of x.

Abbreviations used throughout this chapter are summarized in Table11.1.

11.3 Dynamic Time Warping

While the kNN classifier is intuitive in vector spaces, in principle, it can be applied
to any kind of data, i.e., not only in case if the instances correspond to points of a
vector space. The only requirement is that an appropriate distance measure is present
that can be used to determine the most similar train instances. In case of time-series
classification, the instances are time-series and one of the most widely used distance
measures is DTW. We proceed by describing DTW. We assume that a time-series x
of length l is a sequence of real numbers: x = (x[0], x[1], . . . , x[l − 1]).

In the most simple case, while calculating the distance of two time series x1
and x2, one would compare the kth element of x1 to the kth element of x2 and
aggregate the results of such comparisons. In reality, however, when observing the
same phenomenon several times, we cannot expect it to happen (or any characteristic
pattern to appear) always at exactly the same time position, and the event’s duration
can also vary slightly. Therefore, DTW captures the similarity of two time series’
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shapes in a way that it allows for elongations: the kth position of time series x1 is
compared to the k′th position of x2, and k′ may or may not be equal to k.

DTW is an edit distance [30]. This means that we can conceptually consider the
calculation of the DTW distance of two time series x1 and x2 of length l1 and l2
respectively as the process of transforming x1 into x2. Suppose we have already
transformed a prefix (possibly having length zero or l1 in the extreme cases) of x1
into a prefix (possibly having length zero or l2 in the extreme cases) of x2. Consider
the next elements, the elements that directly follow the already-transformed prefixes,
of x1 and x2. The following editing steps are possible, both of which being associated
with a cost:

1. replacement of the next element of x1 for the next element of x2, in this case, the
next element of x1 is matched to the next element of x2, and

2. elongation of an element: the next element of x1 is matched to the last element
of the already-matched prefix of x2 or vice versa.

As result of the replacement step, both prefixes of the already-matched elements
grow by one element (by the next elements of x1 and x2 respectively). In contrast,
in an elongation step, one of these prefixes grows by one element, while the other
prefix remains the same as before the elongation step.

The cost of transforming the entire time series x1 into x2 is the sum of the costs of
all the necessary editing steps. In general, there are many possibilities to transform
x1 into x2, DTW calculates the one with minimal cost. This minimal cost serves as
the distance between both time series. The details of the calculation of DTW are
described next.

DTW utilizes the dynamic programming approach [45]. Denoting the length of x1
by l1, and the length of x2 by l2, the calculation of the minimal transformation cost is
done byfilling the entries of an l1 × l2 matrix. Each number in thematrix corresponds
to the distance between a subsequence of x1 and a subsequence of x2. In particular,
the number in the ith row and jth column,2 dDT W

0 (i, j) corresponds to the distance
between the subsequences x′

1 = (x1[0], . . . , x1[i]) and x′
2 = (x2[0], . . . , x2[j]). This

is shown in Fig. 11.1.
When we try to match the ith position of x1 and the jth position of x2, there are

three possible cases: (i) elongation in x1, (ii) elongation in x2, and (iii) no elongation.
If there is no elongation, the prefix of x1 up to the (i − 1)th position is matched

(transformed) to the prefix of x2 up to the (j − 1)th position, and the ith position of
x1 is matched (transformed) to the jth position of x2.

Elongation in x1 at the ith position means that the ith position of x1 has already
been matched to at least one position of x2, i.e., the prefix of x1 up to the ith position
is matched (transformed) to the prefix of x2 up to the (j − 1)th position, and the ith
position of x1 is matched again, this time to the jth position of x2. This way the ith
position of x1 is elongated, in the sense that it is allowed to match several positions
of x2. The elongation in x2 can be described in an analogous way.

2 Please note that the numbering of the columns and rows begins with zero, i.e., the very-first
column/row of the matrix is called in this sense as the 0th column/row.
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Fig. 11.1 The DTW-matrix. While calculating the distance (transformation cost) between two
time series x1 and x2, DTW fills-in the cells of a matrix. a The values of time series x1 =
(0.75, 2.3, 4.1, 4, 1, 3, 2) are enumerated on the left of the matrix from top to bottom. Time series
x2 is shown on the top of the matrix. A number in a cell corresponds to the distance (transformation
cost) between two prefixes of x1 and x2. b The order of filling the positions of the matrix

Out of these three possible cases, DTW selects the one that transforms the prefix
x′
1 = (x1[0], . . . , x1[i]) into the prefix x′

2 = (x2[0], . . . , x2[j]) with minimal overall
costs. Denoting the distance between the subsequences x′

1 and x′
2, i.e. the value of

the cell in the ith row and jth column, as dDTW
0 (i, j), based on the above discussion,

we can write:

dDT W
0 (i, j) = cDT W

tr (x1[i], x2[j]) + min

⎧
⎪⎨

⎪⎩

dDT W
0 (i, j − 1) + cDT W

el

dDT W
0 (i − 1, j) + cDT W

el

dDT W
0 (i − 1, j − 1)

⎫
⎪⎬

⎪⎭
. (11.1)

In this formula, the first, second, and third terms of the minimum correspond to
the above cases of elongation in x1, elongation in x2 and no elongation, respectively.
The cost of matching (transforming) the ith position of x1 to the jth position of x2
is cDTW

tr (x1[i], x2[j]). If x1[i] and x2[j] are identical, the cost of this replacement is
zero. This cost is present in all the three above cases. In the cases, when elongation
happens, there is an additional elongation cost denoted as cnDTW

el .
According to the principles of dynamic programming, Formula (11.1) can be

calculated for all i, j in a column-wise fashion. First, set dDTW
0 (0, 0) = cDTW

tr (x1[0],
x2[0]). Thenwebegin calculating the very first columnof thematrix (j = 0), followed
by the next column corresponding to j = 1, etc. The cells of each column are
calculated in order of their row-indexes: within one column, the cell in the row
corresponding i = 0 is calculated first, followed by the cells corresponding to i = 1,
i = 2, etc. (see Fig. 11.1). In some cases (in the very-first column and in the very-
first cell of each row), in the min function of Formula (11.1), some of the terms are
undefined (when i − 1 or j − 1 equals −1). In these cases, the minimum of the other
(defined) terms are taken.

The DTW distance of x1 and x2, i.e. the cost of transforming the entire time series
x1 = (x1[0], x1[1], . . . , x1[l1 − 1]) into x2 = (x2[0], x2[1], . . . , x2[l2 − 1]) is
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Fig. 11.2 Example for the calculation of the DTW-matrix. a The DTW-matrix calculated with
cDTW

tr (vA, vB) = |vA − vB|, cDTW
el = 0. The time series x1 and x2 are shown on the left and top of the

matrix respectively. b The calculation of the value of a cell. c The (implicitly) constructed mapping
between the values of the both time series. The cells are leading to the minimum in Formula (11.1),
i.e., the ones that allow for this mapping, are marked in the DTW-matrix

dDT W (x1, x2) = dDT W
0 (l1 − 1, l2 − 1). (11.2)

An example for the calculation of DTW is shown in Fig. 11.2.
Note that the described method implicitly constructs a mapping between the posi-

tions of the time series x1 and x2: by back-tracking which of the possible cases leads
to the minimum in the Formula (11.1) in each step, i.e., which of the above discussed
three possible cases leads to the minimal transformation costs in each step, we can
reconstruct the mapping of positions between x1 and x2.

For the final result of the distance calculation, the values close to the diagonal
of the matrix are usually the most important ones (see Fig. 11.2 for an illustration).
Therefore, a simple, but effective way of speeding-up dynamic time warping is to
restrict the calculations to the cells around the diagonal of the matrix [45]. This
means that one limits the elongations allowed when matching the both time series
(see Fig. 11.3).

Restricting thewarpingwindowsize to apre-defined constantwDTW (seeFig. 11.3)

implies that it is enough to calculate only those cells of the matrix that are at most
wDTW positions far from the main diagonal along the vertical direction:

dDT W
0 (i, j) is calculated ⇔ |i − j| ≤ wDT W . (11.3)

The warping window size wDTW is often expressed in percentage relative to the
length of the time series. In this case, wDTW = 100% means calculating the entire
matrix, while wDTW = 0% refers to the extreme case of not calculating any entries
at all. Setting wDTW to a relatively small value such as 5%, does not negatively affect
the accuracy of the classification, see e.g. [8] and the references therein.

In the settings used throughout this chapter, the cost of elongation, cDTW
el , is set

to zero:

cDT W
el = 0. (11.4)
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Fig. 11.3 Limiting the size of the warping window: only the cells around the main diagonal of the
matrix (marked cells) are calculated

The cost of transformation (matching), denoted as cDTW
tr , depends on what value is

replaced by what: if the numerical value vA is replaced by vB, the cost of this step is:

cDT W
tr (vA, vB) = |vA − vB|. (11.5)

We set the warping window size to wDTW = 5%. For more details and further recent
results on DTW, we refer to [8].

11.4 Hubs in Time-Series Data

The presence of hubs, i.e., some few instances that tend to occur surprisingly
frequently as nearest neighbors while other instances (almost) never occur as near-
est neighbors, has been observed for various natural and artificial networks, such as
protein-protein-interaction networks or the internet [3, 22]. The presence of hubs
has been confirmed in various contexts, including text mining, music retrieval and
recommendation, image data and time series [43, 46, 49]. In this chapter, we focus
on time series classification, therefore, we describe hubness from the point of view
of time-series classification.

For classification, the property of hubness was explored in [40–43]. The prop-
erty of hubness states that for data with high (intrinsic) dimensionality, like most of
the time series data,3 some instances tend to become nearest neighbors much more

3 In case of time series, consecutive values are strongly interdependent, thus instead of the length
of time series, we have to consider the intrinsic dimensionality [43].
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frequently than others. Intuitively speaking, very frequent neighbors, or hubs, domi-
nate the neighbor sets and therefore, in the context of similarity-based learning, they
represent the centers of influence within the data. In contrast to hubs, there are rarely
occurring neighbor instances contributing little to the analytic process. We will refer
to them as orphans or anti-hubs.

In order to express hubness in a more precise way, for a time series dataset
D one can define the k-occurrence of a time series x from D , denoted by Nk(x),
as the number of time series in D having x among their k nearest neighbors:

Nk(x) = |{xi|x ∈ Nk(xi)}|. (11.6)

With the term hubness we refer to the phenomenon that the distribution of Nk(x)
becomes significantly skewed to the right. We can measure this skewness, denoted
bySNk(x), with the standardized third moment of Nk(x):

SNk(x) = E[(Nk(x) − μNk(x))
3]

σ 3
Nk(x)

(11.7)

where μNk(x) and σNk(x) are the mean and standard deviation of the distribution of
Nk(x). WhenSNk(x) is higher than zero, the corresponding distribution is skewed to
the right and starts presenting a long tail. It should be noted, though, that the occur-
rence distribution skewness is only one indicator statistic and that the distributions
with the same or similar skewness can still take different shapes.

In the presence of class labels, we distinguish between good hubness and bad
hubness: we say that the time series x′ is a good k-nearest neighbor of the time
series x, if (i) x′ is one of the k-nearest neighbors of x, and (ii) both have the same
class labels. Similarly: we say that the time series x′ is a bad k-nearest neighbor of
the time series x, if (i) x′ is one of the k-nearest neighbors of x, and (ii) they have
different class labels. This allows us to define good (bad) k-occurrence of a time
series x, GNk(x) (and BNk(x) respectively), which is the number of other time series
that have x as one of their good (bad, respectively) k-nearest neighbors. For time
series, both distributions GNk(x) and BNk(x) are usually skewed, as it is exemplified
in Fig. 11.4, which depicts the distribution of GN1(x) for some time series data sets
(from the UCR time series dataset collection [28]). As shown, the distributions have
long tails in which the good hubs occur.

We say that a time series x is a good (or bad) hub, if GNk(x) (or BNk(x), respec-
tively) is exceptionally large for x. For the nearest neighbor classification of time
series, the skewness of good occurrence is of major importance, because some few
time series are responsible for large portion of the overall error: bad hubs tend to mis-
classify a surprisingly large number of other time series [43]. Therefore, one has to
take into account the presence of good and bad hubs in time series datasets.While the
kNN classifier is frequently used for time series classification, the k-nearest neighbor
approach is also well suited for learning under class imbalance [16, 20, 21], therefore
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Fig. 11.4 Distribution of GN1(x) for some time series datasets. The horizontal axis corresponds
to the values of GN1(x), while on the vertical axis one can see how many instances have that value

hubness-aware classifiers, the ones we present in the next section, are also relevant
for the classification of imbalanced data.

The total occurrence count of an instance x can be decomposed into good and bad
occurrence counts: Nk(x) = GNk(x) + BNk(x). More generally, we can decompose
the total occurrence count into the class-conditional counts: Nk(x) = ∑

C∈C Nk,C(x)
where Nk,C(x) denotes how many times x occurs as one of the k nearest neighbors
of instances belonging to class C, i.e.,

Nk,C(x) = |{xi|x ∈ Nk(xi) ∧ yi = C}| (11.8)

where yi denotes the class label of xi.
As we mentioned, hubs appear in data with high (intrinsic) dimensionality,

therefore, hubness is one of the main aspects of the curse of dimensionality [4].
However, dimensionality reduction can not entirely eliminate the issue of bad hubs,
unless it induces significant information loss by reducing to a very low dimensional
space—which often ends up hurting system performance even more [40].

11.5 Hubness-Aware Classification of Time-Series

Since the issue of hubness in intrinsically high-dimensional data, such as time-series,
cannot be entirely avoided, the algorithms that workwith high-dimensional data need
to be able to properly handle hubs. Therefore, in this section, we present algorithms
that work under the assumption of hubness. These mechanisms might be either
explicit or implicit.

Several hubness-aware classification methods have recently been proposed. An
instance-weighting scheme was first proposed in [43], which reduces the bad influ-
ence of hubs during voting. An extension of the fuzzy k-nearest neighbor framework
was shown to be somewhat better on average [54], introducing the concept of class-
conditional hubness of neighbor points and building an occurrence model which is



11 Hubness-Aware Classification, Instance Selection and Feature Construction 241

Fig. 11.5 The hubness-aware analytic framework: learning from past neighbor occurrences

used in classification. This approach was further improved by considering the self-
information of individual neighbor occurrences [50]. If the neighbor occurrences are
treated as random events, the Bayesian approaches also become possible [52, 53].

Generally speaking, in order to predict how hubs will affect classification of non-
labeled instances (e.g. instances arising from observations in the future), we can
model the influence of hubs by considering the training data. The training data can
be utilized to learn a neighbor occurrence model that can be used to estimate the
probability of individual neighbor occurrences for each class. This is summarized in
Fig. 11.5. There aremanyways to exploit the information contained in the occurrence
models. Next, we will review the most prominent approaches.

While describing these approaches, we will consider the case of classifying an
instance x∗, and we will denote its nearest neighbors as xi, i ∈ {1, . . . , k}. We
assume that the test data is not available when building the model, and therefore
Nk(x), Nk,C(x), GNk(x), BNk(x) are calculated on the training data.

11.5.1 hw-kNN: Hubness-Aware Weighting

The weighting algorithm proposed by Radovanović et al. [41] is one of the simplest
ways to reduce the influence of bad hubs. They assign lower voting weights to bad
hubs in the nearest neighbor classifier. In hw-kNN, the vote of each neighbor xi is
weighted by e−hb(xi), where

hb(xi) = BNk(xi) − μBNk(x)

σBNk(x)
(11.9)

is the standardized bad hubness score of the neighbor instance xi ∈ Nk(x∗), μBNk(x)

and σBNk(x) are the mean and standard deviation of the distribution of BNk(x).

Example 1 We illustrate the calculation of Nk(x), GNk(x), BNk(x) and the
hw-kNN approach on the example shown in Fig. 11.6. As described previously, hub-
ness primarily characterizes high-dimensional data. However, in order to keep it
simple, this illustrative example is taken from the domain of low dimensional vector
classification. In particular, the instances are two-dimensional, therefore, they can
be mapped to points of the plane as shown in Fig. 11.6. Circles (instances 1–6) and
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Fig. 11.6 Running example
used to illustrate
hubness-aware classifiers.
Instances belong to two
classes, denoted by circles
and rectangles. The triangle
is an instance to be classified

rectangles (instances 7–10) denote the training data: circles belong to class 1, while
rectangles belong to class 2. The triangle (instance 11) is an instance that has to be
classified.

For simplicity, we use k = 1 and we calculate N1(x), GN1(x) and BN1(x) for the
instances of the training data. For each training instance shown in Fig. 11.6, an arrow
denotes its nearest neighbor in the training data. Whenever an instance x′ is a good
neighbor of x, there is a continuous arrow from x to x′. In cases if x′ is a bad neighbor
of x, there is a dashed arrow from x to x′.

We can see, e.g., that instance 3 appears twice as good nearest neighbor of other
train instances, while it never appears as bad nearest neighbor, therefore, GN1(x3) =
2, BN1(x3) = 0 and N1(x3) = GN1(x3) + BN1(x3) = 2. For instance 6, the situation
is the opposite: GN1(x6) = 0, BN1(x6) = 2 and N1(x6) = GN1(x6) + BN1(x6) = 2,
while instance 9 appears both as good and bad nearest neighbor: GN1(x9) = 1,
BN1(x9) = 1 and N1(x9) = GN1(x9) + BN1(x9) = 2. The second, third and fourth
columns of Table11.2 show GN1(x), BN1(x) and N1(x) for each instance and the
calculated means and standard deviations of the distributions of GN1(x), BN1(x) and
N1(x).

While calculating Nk(x), GNk(x) and BNk(x), we used k = 1. Note, however,
that we do not necessarily have to use the same k for the kNN classification of the
unlabeled/test instances. In fact, in case of kNN classification with k = 1, only
one instance is taken into account for determining the class label, and therefore the
weighting procedure described above does not make any difference to the simple 1
nearest neighbor classification. In order to illustrate the use of the weighting proce-
dure, we classify instance 11 with k′ = 2 nearest neighbor classifier, while Nk(x),
GNk(x), BNk(x) were calculated using k = 1. The two nearest neighbors of instance
11 are instances 6 and 9. The weights associated with these instances are:

w6 = e−hb(x6) = e
− BN1(x6)−μBN1(x)

σBN1(x) = e− 2−0.3
0.675 = 0.0806
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Table 11.2 GN1(x), BN1(x), N1(x), N1,C1 (x) and N1,C2 (x) for the instances shown in Fig. 11.6

Instance GN1(x) BN1(x) N1(x) N1,C1 (x) N1,C2 (x)

1 1 0 1 1 0

2 2 0 2 2 0

3 2 0 2 2 0

4 0 0 0 0 0

5 0 0 0 0 0

6 0 2 2 0 2

7 1 0 1 0 1

8 0 0 0 0 0

9 1 1 2 1 1

10 0 0 0 0 0

Mean μGN1(x) = 0.7 μBN1(x) = 0.3 μN1(x) = 1

Std. σGN1(x) = 0.823 σBN1(x) = 0.675 σN1(x) = 0.943

and

w9 = e−hb(x9) = e
− BN1(x9)−μBN1(x)

σBN1(x) = e− 1−0.3
0.675 = 0.3545.

As w9 > w6, instance 11 will be classified as rectangle according to instance 9.

From the example we can see that in hw-kNN all neighbors vote by their own
label. As this may be disadvantageous in some cases [49], in the algorithms consid-
ered below, the neighbors do not always vote by their own labels, which is a major
difference to hw-kNN.

11.5.2 h-FNN: Hubness-Based Fuzzy Nearest Neighbor

Consider the relative class hubness uC(xi) of each nearest neighbor xi:

uC(xi) = Nk,C(xi)

Nk(xi)
. (11.10)

The above uC(xi) can be interpreted as the fuzziness of the event that xi occurred
as one of the neighbors, C denotes one of the classes: C ∈ C . Integrating fuzziness
as a measure of uncertainty is usual in k-nearest neighbor methods and h-FNN [54]
uses the relative class hubness when assigning class-conditional vote weights. The
approach is based on the fuzzy k-nearest neighbor voting framework [27]. Therefore,
the probability of each class C for the instance x∗ to be classified is estimated as:

uC(x∗) =
∑

xi∈Nk(x∗) uC(xi)∑
xi∈Nk(x∗)

∑
C′∈C uC′(xi)

. (11.11)
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Example 2 We illustrate h-FNNon the example shown in Fig. 11.6.Nk,C(x) is shown
in the fifth and sixth columnofTable11.2 for both classes of circles (C1) and rectangle
(C2). Similarly to the previous section, we calculate Nk,C(xi) using k = 1, but we
classify instance 11 using k′ = 2 nearest neighbors, i.e., x6 and x9. The relative class
hubness values for both classes for the instances x6 and x9 are:

uC1(x6) = 0/2 = 0, uC2(x6) = 2/2 = 1,

uC1(x9) = 1/2 = 0.5, uC2(x9) = 1/2 = 0.5.

According to (11.11), the class probabilities for instance 11 are:

uC1(x11) = 0 + 0.5

0 + 1 + 0.5 + 0.5
= 0.25,

and

uC2(x11) = 1 + 0.5

0 + 1 + 0.5 + 0.5
= 0.75.

As uC2(x11) > uC1(x11), x11 will be classified as rectangle (C2).

Special care has to be devoted to anti-hubs, such as instances 4 and 5 in Fig. 11.6.
Their occurrence fuzziness is estimated as the average fuzziness of points from the
same class. Optional distance-based vote weighting is possible.

11.5.3 NHBNN: Naive Hubness Bayesian k-Nearest Neighbor

Each k-occurrence can be treated as a random event. What NHBNN [53] does is that
it essentially performs a Naive-Bayesian inference based on these k events

P(y∗ = C|Nk(x
∗)) ∝ P(C)

∏

xi∈Nk(x∗)
P(xi ∈ Nk |C), (11.12)

where P(C) denotes the probability that an instance belongs to class C and P(xi ∈
Nk|C) denotes the probability that xi appears as one of the k nearest neighbors of
any instance belonging to class C. From the data, P(C) can be estimated as

P(C) ≈ |D train
C |

|D train| , (11.13)

where |D train
C | denotes the number of train instances belonging to classC and |D train|

is the total number of train instances. P(xi ∈ Nk|C) can be estimated as the fraction

P(xi ∈ Nk |C) ≈ Nk,C(xi)

|D train
C | . (11.14)
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Example 3 Next, we illustrate NHBNN on the example shown in Fig. 11.6. Out of
all the 10 training instances, 6 belong to the class of circles (C1) and 4 belong to the
class of rectangles (C2). Therefore:

|D train
C1

| = 6, |D train
C2

| = 4, P(C1) = 0.6, P(C2) = 0.4.

Similarly to the previous sections, we calculate Nk,C(xi) using k = 1, but we classify
instance 11 using k′ = 2 nearest neighbors, i.e., x6 and x9. Thus, we calculate (11.14)
for x6 and x9 for both classes C1 and C2:

P(x6 ∈ N1|C1) ≈ N1,C1(x6)

|D train
C1

| = 0

6
= 0, P(x6 ∈ N1|C2) ≈ N1,C2(x6)

|D train
C2

| = 2

4
= 0.5,

P(x9 ∈ N1|C1) ≈ N1,C1(x9)

|D train
C1

| = 1

6
= 0.167, P(x9 ∈ N1|C2) ≈ N1,C2(x9)

|D train
C2

| = 1

4
= 0.25.

According to (11.12):

P(y11 = C1|N2(x11)) ∝ 0.6 × 0 × 0.167 = 0

P(y11 = C2|N2(x11)) ∝ 0.4 × 0.5 × 0.25 = 0.125

As P(y11 = C2|N2(x11)) > P(y11 = C1|N2(x11)), instance 11 will be classified as
rectangle.

The previous example also illustrates that estimating P(xi ∈ Nk|C) according to
(11.14) may simply lead to zero probabilities. In order to avoid it, instead of (11.14),
we can estimate P(xi ∈ Nk|C) as

P(xi ∈ Nk|C) ≈ (1 − ε)
Nk,C(xi)

|D train
C | + ε, (11.15)

where ε 
 1.
Even though k-occurrences are highly correlated, NHBNN still offers some

improvement over the basic kNN. It is known that theNaiveBayes rule can sometimes
deliver good results even in cases with high independence assumption violation [44].

Anti-hubs, i.e., instances that occur never or with an exceptionally low frequency
as nearest neighbors, are treated as a special case. For an anti-hub xi, P(xi ∈ Nk |C)

can be estimated as the average of class-dependent occurrence probabilities of non-
anti-hub instances belonging to the same class as xi:

P(xi ∈ Nk |C) ≈ 1

|D train
class(xi)

|
∑

xj∈D train
class(xi)

P(xj ∈ Nk|C). (11.16)

For more advanced techniques for the treatment of anti-hubs we refer to [53].
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11.5.4 HIKNN: Hubness Information k-Nearest Neighbor

In h-FNN, as in most kNN classifiers, all neighbors are treated as equally important.
The difference is sometimes made by introducing the dependency on the distance
to x∗, the instance to be classified. However, it is also possible to deduce some
sort of global neighbor relevance, based on the occurrence model—and this is what
HIKNN was based on [50]. It embodies an information-theoretic interpretation of
the neighbor occurrence events. In that context, rare occurrences have higher self-
information, see (11.17). These more informative instances are favored by the algo-
rithm. The reasons for this lie hidden in the geometry of high-dimensional feature
spaces. Namely, hubs have been shown to lie closer to the cluster centers [55], as
most high-dimensional data lies approximately on hyper-spheres. Therefore, hubs
are points that are somewhat less ‘local’. Therefore, favoring the rarely occurring
points helps in consolidating the neighbor set locality. The algorithm itself is a bit
more complex, as it not only reduces the vote weights based on the occurrence fre-
quencies, but also modifies the fuzzy vote itself—so that the rarely occurring points
votemostly by their labels and the hub points votemostly by their occurrence profiles.
Next, we will present the approach in more detail.

The self-information Ixi associated with the event that xi occurs as one of the
nearest neighbors of an instance to be classified can be calculated as

Ixi = log
1

P(xi ∈ Nk)
, P(xi ∈ Nk) ≈ Nk(xi)

|D train| . (11.17)

Occurrence self-information is used to define the relative and absolute relevance
factors in the following way:

α(xi) = Ixi − minxj∈Nk(xi) Ixj

log |D train| − minxj∈Nk(xi) Ixj

, β(xi) = Ixi

log |D train| . (11.18)

The final fuzzy vote of a neighbor xi combines the information contained in its
label with the information contained in its occurrence profile. The relative relevance
factor is used for weighting the two information sources. This is shown in (11.19).

Pk(y
∗ = C|xi) ≈

{
α(xi) + (1 − α(xi)) · uC(xi), yi = C
(1 − α(xi)) · uC(xi), yi �= C

(11.19)

where yi denotes the class label of xi, for the definition of uC(xi) see (11.10).
The final class assignments are given by the weighted sum of these fuzzy votes.

The final vote of class C for the classification of instance x∗ is shown in (11.20). The
distance weighting factor dw(xi) yields mostly minor improvements and can be left
out in practice, see [54] for more details.
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uC(x∗) ∝
∑

xi∈Nk(x∗)
β(xi) · dw(xi) · Pk(y

∗ = C|xi). (11.20)

Example 4 Next, we illustrate HIKNN by showing how HIKNN classifies instance
11 of the example shown in Fig. 11.6. Again, we use k′ = 2 nearest neighbors to
classify instance 11, but we use N1(xi) values calculated with k = 1. The both
nearest neighbors of instance 11 are x6 and x9. The self-information associated with
the occurrence of these instances as nearest neighbors:

P(x6 ∈ N1) = 2

10
= 0.2, Ix6 = log2

1

0.2
= log2 5,

P(x9 ∈ N1) = 2

10
= 0.2, Ix9 = log2

1

0.2
= log2 5.

The relevance factors are:

α(x6) = α(x9) = 0, β(x6) = β(x9) = log2 5

log2 10
.

The fuzzy votes according to (11.19):

Pk(y
∗ = C1|x6) = uC1(x6) = 0, Pk(y

∗ = C2|x6) = uC2(x6) = 1,

Pk(y
∗ = C1|x9) = uC1(x9) = 0.5, Pk(y

∗ = C2|x9) = uC2(x9) = 0.5.

The sum of fuzzy votes (without taking the distance weighting factor into account):

uC1(x11) = log2 5

log2 10
· 0 + log2 5

log2 10
· 0.5,

uC2(x11) = log2 5

log2 10
· 1 + log2 5

log2 10
· 0.5.

As uC2(x11) > uC1(x11), instance 11 will be classified as rectangle (C2).

11.5.5 Experimental Evaluation of Hubness-Aware Classifiers

Time series datasets exhibit a certain degree of hubness, as shown in Table11.3. This
is in agreement with previous observations [43].

Most datasets from the UCR repository [28] are balanced, with close-to-uniform
class distributions. This can be seen by analyzing the relative imbalance factor (RImb)
of the label distribution which we define as the normalized standard deviation of the
class probabilities from the absolutely homogenous mean value of 1/m, where m
denotes the number of classes, i.e., m = |C |:
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Fig. 11.7 The skewness of the neighbor occurrence frequency distribution for neighborhood sizes
k = 1 and k = 10. In both figures, each column corresponds to a dataset of the UCR repository.
The figures show the change in the skewness, when k is increased from 1 to 10

RImb =
√∑

C∈C (P(C) − 1/m)2

(m − 1)/m
. (11.21)

In general, an occurrence frequency distribution skewness above 1 indicates a
significant impact of hubness. Many UCR datasets have SN1(x) > 1, which means
that the first nearest neighbor occurrence distribution is significantly skewed to the
right. However, an increase in neighborhood size reduces the overall skewness of
the datasets, as shown in Fig. 11.7. Note that only a few datasets have SN10(x) > 1,
though some non-negligible skewness remains in most of the data. Yet, even though
the overall skewness is reduced with increasing neighborhood sizes, the degree of
major hubs in the data increases. This leads to the emergence of strong centers of
influence.

We evaluated the performance of different kNN classification methods on time
series data for a fixed neighborhood size of k = 10. A slightly larger k value
was chosen, since most hubness-aware methods are known to perform better in
such cases, as better and more reliable neighbor occurrence models can be inferred
from more occurrence information. We also analyzed the algorithm performance
over a range of different neighborhood sizes, as shown in Fig. 11.8. The hubness-
aware classification methods presented in the previous sections (hw-kNN, NHBNN,
h-FNN and HIKNN) were compared to the baseline kNN [15] and the adaptive kNN
(AKNN) [56], where the neighborhood size is recalculated for each query point based
on initial observations, in order to consult only the relevant neighbor points. AKNN
does not take the hubness of the data into account.

The tests were run according to the 10-times 10-fold cross-validation protocol and
the statistical significance was determined by employing the corrected re-sampled
t-test. The detailed results are given in Table11.4.

The adaptive neighborhood approach (AKNN) does not seem to be appropriate
for handling time-series data, as it performs worse than the baseline kNN. While
hw-kNN, NHBNN and h-FNN are better than the baseline kNN in some cases, they
do not offer significant advantage overall which is probably a consequence of a
relatively low neighbor occurrence skewness for k = 10 (see Fig. 11.7). The hubness
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is, on average, present in time-series data to a lower extent than in text or images [49]
where these methods were previously shown to perform rather well.

On the other hand, HIKNN, the information-theoretic approach to handling vot-
ing in high-dimensional data, clearly outperforms all other tested methods on these
time series datasets. It performs significantly better than the baseline in 19 out of
37 cases and does not perform significantly worse on any examined dataset. Its
average accuracy for k = 10 is 84.9, compared to 82.5 achieved by kNN. HIKNN
outperformed both baselines (even though not significantly) even in case of the
ChlorineConcentration dataset, which has very low hubness in terms of skewness,
and therefore other hubness-aware classifiers worked worse than kNN on this data.
These observations reaffirm the conclusions outlined in previous studies [50], arguing
that HIKNN might be the best hubness-aware classifier on medium-to-low hubness
data, if there is no significant class imbalance. Note, however, that hubness-aware
classifiers are also well suited for learning under class imbalance [16, 20, 21].

In order to show that the observed improvements are not merely an artifact of
the choice of neighborhood size, classification tests were performed for a range of
different neighborhood sizes. Figure11.8 shows the comparisons between kNN and
HIKNN for k ∈ [1, 20], on Car and Fish time series datasets. There is little difference
between kNN and HIKNN for k = 1 and the classifiers performance is similar in
this case. However, as k increases, so does the performance of HIKNN, while the
performance of kNN either decreases or increases at a slower rate. Therefore, the
differences for k = 10 are more pronounced and the differences for k = 20 are even
greater. Most importantly, the highest achieved accuracy by HIKNN, over all tested
neighborhoods, is clearly higher than the highest achieved accuracy by kNN.

These results indicate that HIKNN is an appropriate classification method for
handling time series data, when used in conjunction with the dynamic time warping
distance.

Of course, choosing the optimal neighborhood size in k-nearest neighbor methods
is a non-trivial problem. The parameter could be set by performing cross-validation
on the training data, though this is quite time-consuming. If the data is small, using

Fig. 11.8 The accuracy (in %) of the basic kNN and the hubness aware HIKNN classifier over a
range of neighborhood sizes k ∈ [1, 20], on Car and Fish time series datasets
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large k valuesmight notmake a lot of sense, as itwould breach the locality assumption
by introducing neighbors into the kNN sets that are not relevant for the instance to be
classified. According to our experiments, HIKNN achieved very good performance
for k ∈ [5, 15], therefore, setting k = 5 or k = 10 by default would usually lead to
reasonable results in practice.

11.6 Instance Selection and Feature Construction for
Time-Series Classification

In the previous section, we described four approaches that take hubness into account
in order to make time-series classification more accurate. In various applications,
however, besides classification accuracy, the classification time is also important.
Therefore, in this section, we present hubness-aware approaches for speeding-up
time-series classification. First, we describe instance selection for kNN classification
of time-series. Subsequently, we focus on feature construction.

11.6.1 Instance Selection for Speeding-Up Time-Series
Classification

Attempts to speed up DTW-based nearest neighbor classification fall into four major
categories: (i) speeding-up the calculation of the distance of two time series (by e.g.
limiting the warping window size), (ii) indexing, (iii) reducing the length of the time
series used, and (iv) instance selection. The first class of techniques was already
mentioned in Sect. 11.3. For an overview of techniques for indexing and reduction
of the length of time-series and more advanced approaches for limiting the warping
window size, we refer to [8] and the references therein. In this section, we focus on
how to speed up time-series classification via instance selection.Wenote that instance
selection is orthogonal to the other speed-up techniques, i.e., instance selection can
be combined with those techniques in order to achieve highest efficiency.

Instance selection (also known as numerosity reduction or prototype selection)
aims at discarding most of the training time series while keeping only the most
informative ones, which are then used to classify unlabeled instances. In case of
conventional nearest neighbor classification, the instance to be classified, denoted
as x∗, will be compared to all the instances of the training data set. In contrast,
when applying instance selection, x∗ will only be compared to the selected instances
of the training data. For time-series classification, despite the techniques aiming at
speeding-upDTW-calculations, the calculation of theDTWdistance is still relatively
expensive computationally, therefore, when selecting a relatively small number of
instances, such as 10% of the training data, instance selection can substantially
speed-up the classification of time-series.
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While instance selection is well explored for general nearest neighbor
classification, see e.g. [1, 6, 19, 24, 32], there are only few works for the case
of time series. Xi et al. [57] presented the FastAWARD approach and showed that it
outperforms state-of-the-art, general-purpose instance selection techniques applied
for time-series.

FastAWARD follows an iterative procedure for discarding time series: in each
iteration, the rank of all the time series is calculated and the one with lowest rank
is discarded. Thus, each iteration corresponds to a particular number of kept time
series. Furthermore, Xi et al. argue that the optimal warping window size depends
on the number of kept time series. Therefore, FastAWARD calculates the optimal
warping window size dependent on the number of kept time series.

In this section, we present a hubness-aware instance selection technique which
was originally introduced in [9]. This approach is simpler and therefore compu-
tationally much cheaper than FastAWARD while it selects better instances, i.e.,
instances that allowmore accurate classification of time-series than the ones selected
by FastAWARD.

In [9] coverage graphswere proposed tomodel instance selection, and the instance
selection problem was formulated as finding the appropriate subset of vertices of
the coverage graph. Furthermore, it was shown that maximizing the coverage is
NP-complete in general. On the other hand, for the case of time-series classification,
a simple approach performed surprisingly well. This approach is called Instance
Selection based on Graph-coverage and Hubness for Time-series or INSIGHT.

INSIGHT performs instance selection by assigning a score to each instance and
selecting instances with the highest scores (see Algorithm 4), therefore the “intel-
ligence” of INSIGHT is hidden in the applied score function. Next, we explain the
suitability of several score functions in the light of the hubness property.

• Good 1-occurrence Score—INSIGHT can use scores that take into account how
many times an instance appears as good neighbor of other instances. Thus, a simple
score function is the good 1-occurrence score GN1(x).

• Relative Score—While x is being a good hub, at the same time it may appear as
bad neighbor of several other instances. Thus, INSIGHT can also consider scores
that take bad occurrences into account. This leads to scores that relate the good
occurrence of an instance x to either its total occurrence or to its bad occurrence.
For simplicity, we focus on the following relative score, however, other variations
could be used too: relative score RS(x) of a time series x is the fraction of good
1-occurrences and total occurrences plus one (to avoid division by zero):

RS(x) = GN1(x)

N1(x) + 1
. (11.22)

• Xi’s score—Notably, GNk(x) and BNk(x) allows us to interpret the ranking
criterion used by Xi et al. in FastAWARD [57] as another form of score for relative
hubness:

XI(x) = GN1(x) − 2BN1(x). (11.23)
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Algorithm 4 INSIGHT
Require: Time series dataset D , Score Function g(x) /* e.g. one of GN1(x), RS(x) or XI(x) */,

Number of selected instances nsel
Ensure: Set of selected instances (time series) D ′

1: Calculate score function g(x) for all x ∈ D
2: Sort all the time series in D according to their scores g(x)
3: Select the top-ranked nsel time series and return the set containing them

As reported in [9], INSIGHT outperforms FastAWARD both in terms of classi-
fication accuracy and execution time. The second and third columns of Table11.5
present the average accuracy and corresponding standard deviation for each data set,
for the case when the number of selected instances is equal to 10% of the size of
the training set. The experiments were performed according to the 10-fold cross-
validation protocol. For INSIGHT, the good 1-occurrence score is used, but we note
that similar results were achieved for the other scores too.

In clearmajority of the cases, INSIGHT substantially outperformed FastAWARD.
In the few remaining cases, their differences are remarkably small (which are not
significant in the light of the corresponding standard deviations). According to the
analysis reported in [9], one of the major reasons for the suboptimal performance
of FastAWARD is that the skewness degrades during the FastAWARD’s iterative
instance selection procedure, and therefore FastAWARD is not able to select the best
instances in the end. This is crucial because FastAWARD discards the worst instance
in each iteration and therefore the final iterations have substantial impact on which
instances remain, i.e., which instances will be selected by FastAWARD.

11.6.2 Feature Construction

As shown in Sect. 11.6.1, the instance selection approach focusing on good hubs leads
to overall good results. Previously, once the instances were selected, we simply used
themas training data for the kNNclassifier. In amore advanced classification schema,
instead of simply performing nearest neighbor classification, we can use distances
from selected instances as features. This is described in detail below.

First, we split the training data D train into two disjoint subsets D train
1 and D train

2 ,
i.e., D train

1 ∩ D train
2 = ∅, D train

1 ∪ D train
2 = D train. We select some instances from

D train
1 , denote these selected instances as xsel,1, xsel,2, . . . , xsel,l. For each instance

x ∈ D train
2 , we calculate its DTW-distance from the selected instances and use these

distances as features of x. This way, we map each instance x ∈ D train
2 into a vector

space:

xmapped = (
dDT W (x, xsel,1), dDT W (x, xsel,2), . . . , dDT W (x, xsel,l)

)
. (11.24)
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Table 11.5 Accuracy ± standard deviation (in %) for FastAWARD, INSIGHT and feature
construction methods

Data set FastAWARD INSIGHT HubFeatures RndFeatures

50words 52.6 ± 4.1 64.2 ± 4.6 ◦ 65.5 ± 3.5 ◦ 65.2 ± 4.9 ◦
Adiac 34.8 ± 5.8 46.9 ± 4.9 ◦ 48.5 ± 4.8 ◦ 51.0 ± 5.2 ◦
Beef 35.0 ± 17.4 33.3 ± 10.5 38.3 ± 19.3 36.7 ± 15.3

Car 45.0 ± 11.9 60.8 ± 14.5 ◦ 47.5 ± 22.9 55.8 ± 20.8

CBF 97.2 ± 3.4 99.8 ± 0.6 ◦ 99.8 ± 0.5 ◦ 99.8 ± 0.5 ◦
ChlorineConcentration 53.7 ± 2.3 73.4 ± 3.0 ◦ 54.8 ± 1.4 54.6 ± 1.7

CinC-ECG-torso 40.6 ± 8.9 96.6 ± 1.4 ◦ 98.7 ± 1.2 ◦ 98.7 ± 1.2 ◦
Coffee 56.0 ± 30.9 60.3 ± 21.3 66.0 ± 21.4 59.0 ± 16.1

DiatomSizeReduction 97.2 ± 2.6 96.6 ± 5.8 100.0 ± 0.0 ◦ 98.8 ± 2.2

ECG200 75.5 ± 11.3 83.5 ± 9.0 86.0 ± 7.0 ◦ 84.5 ± 7.6

ECGFiveDays 93.7 ± 2.7 94.5 ± 2.0 96.5 ± 2.2 ◦ 96.7 ± 1.7 ◦
FaceFour 71.4 ± 14.1 89.4 ± 12.8 ◦ 91.1 ± 8.4 ◦ 90.2 ± 8.9 ◦
FacesUCR 89.2 ± 1.9 93.4 ± 2.1 ◦ 91.4 ± 2.2 ◦ 91.5 ± 1.8 ◦
FISH 59.1 ± 8.2 66.6 ± 8.5 59.7 ± 6.5 62.9 ± 9.3

Gun-Point 80.0 ± 12.4 93.5 ± 5.9 ◦ 85.5 ± 6.4 84.5 ± 3.7

Haptics 30.3 ± 6.8 43.5 ± 6.0 ◦ 33.9 ± 9.4 35.4 ± 7.9

InlineSkate 19.7 ± 5.6 43.4 ± 7.7 ◦ 36.3 ± 7.5 ◦ 36.5 ± 8.7 ◦
ItalyPowerDemand 96.0 ± 2.0 95.7 ± 2.8 95.8 ± 2.4 95.7 ± 2.1

Lighting2 69.4 ± 13.4 67.0 ± 9.6 67.7 ± 6.4 75.1 ± 8.9

Lighting7 44.7 ± 12.6 51.0 ± 8.2 61.4 ± 10.5 ◦ 60.8 ± 9.3 ◦
MALLAT 55.1 ± 9.8 96.9 ± 1.3 ◦ 96.4 ± 1.5 ◦ 96.8 ± 1.1 ◦
MedicalImages 64.2 ± 3.3 69.3 ± 4.9 ◦ 73.4 ± 3.9 ◦ 73.0 ± 3.3 ◦
MoteStrain 86.7 ± 4.2 90.8 ± 2.7 ◦ 93.3 ± 2.4 ◦ 93.6 ± 2.2 ◦
OliveOil 63.3 ± 10.0 71.7 ± 13.0 80.0 ± 17.2 ◦ 75.0 ± 23.9 ◦
OSULeaf 41.9 ± 5.3 53.8 ± 5.7 ◦ 57.0 ± 6.7 ◦ 54.5 ± 8.1 ◦
Plane 87.6 ± 15.5 98.1 ± 3.2 95.7 ± 5.2 94.8 ± 6.1

SonyAIBORobotSurface 92.4 ± 3.2 97.6 ± 1.7 ◦ 98.4 ± 1.3 ◦ 98.7 ± 1.3 ◦
SonyAIBORobotSurfaceII 91.9 ± 1.5 91.2 ± 3.3 94.6 ± 2.3 ◦ 95.1 ± 2.8 ◦
SwedishLeaf 68.3 ± 4.6 75.6 ± 4.8 ◦ 77.6 ± 5.1 ◦ 77.9 ± 5.6 ◦
Symbols 95.7 ± 1.8 96.6 ± 1.6 95.1 ± 2.1 95.6 ± 2.2

Synthetic-control 92.3 ± 6.8 97.8 ± 2.6 ◦ 95.3 ± 2.6 94.0 ± 3.4

Trace 78.0 ± 11.7 89.5 ± 7.2 ◦ 73.0 ± 8.6 74.0 ± 8.1

TwoLeadECG 97.8 ± 1.3 98.9 ± 1.2 93.6 ± 2.8 • 93.3 ± 2.9 •
Two-Patterns 40.7 ± 2.7 98.7 ± 0.7 ◦ 98.4 ± 0.5 ◦ 98.4 ± 0.7 ◦
Wafer 92.1 ± 1.2 99.1 ± 0.2 ◦ 99.5 ± 0.2 ◦ 99.5 ± 0.2 ◦
WordsSynonyms 54.4 ± 5.8 63.7 ± 6.6 ◦ 65.3 ± 3.9 ◦ 66.6 ± 5.3 ◦
Yoga 55.0 ± 1.7 87.7 ± 2.1 ◦ 86.4 ± 2.0 ◦ 86.7 ± 1.6 ◦
Average 67.5 79.2 78.3 78.4

The symbols •/◦ denote statistically significant worse/better performance (p < 0.05) compared to
FastAWARD. The best result in each line is in bold
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The representation of the data in a vector space allows the usage of any conventional
classifier. For our experiments, we trained logistic regression from the Weka soft-
ware package.4 We used the mapped instances of D train

2 as training data for logistic
regression.

When classifying an instance x∗ ∈ D test , we map x∗ into the same vector space
as the instances of D train

2 , i.e., we calculate the DTW-distances between x∗ and the
selected instances xsel,1, xsel,2, . . . , xsel,l and we use these distances as features of x∗.
Once the features of x∗ are calculated, we use the trained classifier (logistic regression
in our case) to classify x∗.

We used the 10-fold cross-validation to evaluate this feature construction-based
approach. Similarly to the case of INSIGHTandFastAWARD, the number of selected
instances corresponds to 10% of the entire training data, however, as described
previously, for the feature construction-based approach, we selected the instances
from D train

1 (not from D train).
We tested several variants of the approach, for two out of them, the resulting

accuracies are shown in the last two columns of Table11.5. The results shown in
the fourth column of Table11.5 (denoted as HubFeatures) refer to the case when we
performed hub-based instance selection on D train

1 using good 1-occurrence score.
The results shown in the last column of Table11.5 (denoted as RndFeatures) refer to
the case when the instances were randomly selected from D train

1 .
Both HubFeatures and RndFeatures outperform FastAWARD in clear majority

of the cases: while they are significantly better than FastAWARD for 23 and 21
data sets respectively, they are significantly worse only for one data set. INSIGHT,
HubFeatures and RndFeatures can be considered as alternative approaches, as their
overall performances are close to each other. Therefore, in a real-world application,
one can use cross-validation to select the approach which best suits the particular
application.

11.7 Conclusions and Outlook

We devoted this chapter to the recently observed phenomenon of hubness which
characterizes numerous real-world data sets, especially high-dimensional ones. We
surveyed hubness-aware classifiers and instance selection. Finally, we proposed a
hubness-based feature construction approach. The approaches we reviewed were
originally published in various research papers using slightly different notations and
terminology. In this chapter, we presented all the approaches within an integrated
framework using uniform notations and terminology. Hubness-aware classifiers were
originally developed for vector classification. Here, we pointed out that these classi-
fiers can be used for time-series classification given that an appropriate time-series
distance measure is present. To the best of our knowledge, most of the surveyed
approaches have not yet been used for time-series data. We performed extensive
experimental evaluation of the state-of-the-art hubness-aware classifiers on a large

4 http://www.cs.waikato.ac.nz/ml/weka/.

http://www.cs.waikato.ac.nz/ml/weka/
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number of time-series data sets. The results of our experiments provide direct indi-
cations for the application of hubness-aware classifiers for real-world time-series
classification tasks. In particular, the HIKNN approach seems to have the best over-
all performance for time-series data.

Furthermore, we pointed out that instance selection can substantially speed-
up time-series classification and the recently introduced hubness-aware instance
selection approach, INSIGHT, outperforms the previous state-of-the-art instance
selection approach, FastAWARD, which did not take the presence of hubs explicitly
into account. Finally, we showed that the selected instances can be used to construct
features for instances of time-series data sets. While mapping time-series into a vec-
tor space by this feature construction approach is intuitive and leads to acceptable
overall classification accuracy, the particular instance selection approach does not
seem to play a major role in the procedure.

Future work may target the implications of hubness for feature construction
approaches and how these features suit conventional classifiers. Onewould for exam-
ple expect that monotone classifiers [2, 13, 23], benefit from hubness-based feature
construction: the closer an instance is to a good hub, the more likely it belongs to
the same class. Furthermore, regression methods may also benefit from taking the
presence of hubs into account: e.g. hw-kNN may simply be adapted for the case
of nearest neighbor regression where the weighted average of the neighbors’ class
labels is taken instead of their weighted vote. Last but not least, due to the novelty
of hubness-aware classifiers, there are still many applications in context of which
hubness-aware classifiers have not been exploited yet, see e.g. [47] for recognition
tasks related to literary texts. Also the classification of medical data, such as diagno-
sis of cancer subtypes based on gene expression levels [31], could potentially benefit
from hubness-aware classification, especially classifiers taking class-imbalance into
account [51].
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51. Tomašev, N., Mladenić, D.: Class imbalance and the curse of minority hubs. Knowl. Based
Syst. 53, 157–172 (2013)
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Chapter 12
Selection of Visual Descriptors
for the Purpose of Multi-camera
Object Re-identification

Piotr Dalka, Damian Ellwart, Grzegorz Szwoch, Karol Lisowski,
Piotr Szczuko and Andrzej Czyżewski

Abstract A comparative analysis of various visual descriptors is presented in this
chapter. The descriptors utilize many aspects of image data: colour, texture, gradi-
ent, and statistical moments. The descriptor list is supplemented with local features
calculated in close vicinity of key points found automatically in the image. The
goal of the analysis is to find descriptors that are best suited for particular task, i.e.
re-identification of objects in a multi-camera environment. The analysis is performed
using two datasets containing images of humans and vehicles recorded with different
cameras. For the purpose of descriptor evaluation, scatter and clustering measures
are supplemented with a new measure that is derived from calculating direct dissim-
ilarities between pairs of images. In order to draw conclusions from multi-dataset
analysis, four aggregation measures are introduced. They are meant to find descrip-
tors that provide the best identification effectiveness, based on the relative ranking,
and simultaneously are characterized with large stability (invariance to the selection
of objects in the dataset). Proposed descriptors are evaluated practically with object
re-identification experiments involving four classifiers to detect the same object after
its transition between cameras’ fields of view. The achieved results are discussed in
detail and illustrated with figures.

Keywords Video surveillance · Image descriptors · Multi-camera tracking · Object
identification

12.1 Introduction

The popularity of video surveillance systems increases continuously along with
greater availability of solutions designed to ensure the safety of the monitored areas.
However, due to rapid development of multi-camera surveillance systems [17], they
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become more difficult to manage manually because of a limited human perception
[1, 10, 31]. Therefore, methods and automatized algorithms are being extensively
developed to assist the human operator in the monitoring process. This task can be
accomplished by applying certain video processing algorithms to the recorded or live
video sequences [40]. Such methods can be utilized for threat-related event detection.
The event itself can be described diversely, for example as a defined set of rules [46]
or as a deviation from typically observed behaviour [48]. The system operator should
be alerted in case of an incident, and as a result, his attention should be focused on the
relevant camera image where the suspicious event occurs. Additionally, the object
that triggered the alert should be tracked in order to facilitate further observation of
its behaviour.

The approach described above is applied independently to each camera of the
system. As a result, tracks of moving objects in individual cameras are obtained. In
order to benefit from the multi-camera system architecture, data acquired from all the
logically related video sources should be combined in multi-camera object tracks.
The illustration of this approach is presented in Fig. 12.1.

In order to facilitate understanding how such a system works, a certain model
(architecture) of video processing might be considered (Fig. 12.2). The video process-
ing task can be divided into layers depending on the context level. Low level algo-
rithms operate on values of particular image pixels in order to detect objects that
are not part of a stable background. Object tracking within the camera field of view
(FOV) is based on the background subtraction results. In the next stage, the clas-
sification and event detection tasks are performed. Simultaneously, calculation of
visual feature descriptors is carried out. A combination of results obtained from
many cameras, data related to spatio-temporal inter-camera dependencies (referred
to as topology), and object behaviour model is performed on the higher level of
analysis. On each consecutive layer, the context becomes richer. It starts from deter-
mining that moving object appears in camera’s FOV and ends with connecting parts
of video images related to certain objects and to detected events.

Fig. 12.1 A general scheme of a smart multi-camera system
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Fig. 12.2 Consecutive stages of video analysis presented as layered model

Although the multi-camera object tracking is, in most of the cases, not a simple
task, its completion may allow for a more in-depth analysis of monitored activities.
For example, the route of object movement can be obtained for the whole monitored
area, presenting a comprehensive overview of the incident. In order to accomplish
the multi-camera object tracking it is necessary to recognize the same objects in
images from separate cameras. This is not a trivial task due to changes in object
appearance between the cameras. Two views of the same object in two cameras
may differ in shape (because of different camera angles), colour (different light or
camera settings). Therefore, the task of object re-identification requires solving two
problems. First, a set of visual descriptors has to be selected in order to provide
a distinctive representation of objects appearance. Numerous descriptors related to
object shape, colour, texture, etc. are available and in order to perform an efficient
re-identification, a set of descriptors has to be selected so that it is possible to match
two views of the same object in two cameras and, at the same time, distinguish the
object from the others. The second problem is related to a method of testing the
similarity between sets of visual descriptors. This may be formulated as follows:
given a set of descriptors of each object collected from individual cameras and a
set of descriptors computed for an object that appeared in another camera, find a
best match of the descriptors. The matching procedure may be realized with trained
classifiers and a distance measure.
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In this chapter, the authors’ approach to the aforementioned problem of object
re-identification is described. Section 12.2 presents the algorithms used for the low-
level video analysis which extracts moving objects from the individual camera
images. In Sect. 12.3, various approaches for multi-camera object tracking are pre-
sented. The problem of object re-identification requires a selection of distinctive
image features which allow for matching two appearances of the same object in
separate cameras and, at the same time, ensure that two different objects will not
have similar feature sets. In order to achieve this goal, the most commonly used
visual features descriptors and methods of extracting them from the image are dis-
cussed in Sect. 12.4. These descriptors are then evaluated in order to select a subset
of them optimal for the object re-identification in multiple cameras, as presented in
Sect. 12.5. In the following Section, the selected descriptors are applied to the object
re-identification task. The authors propose to use a classifier which is trained on fea-
ture descriptors of a single object obtained from all its appearances in a single camera,
and then use it for comparison with the feature sets obtained from other cameras.
Four classification methods are described in Sect. 12.6 and the optimal solution is
selected. Finally, the results of experiments performed using the proposed framework
are presented and discussed in Sect. 12.7.

12.2 Video Preprocessing

Generally, an image contains visual information at several levels of complexity,
depending on the application. From a single colour light detection, to analysis of
raster binary maps, colour photos of simple geometry, to understanding of complex
natural scenes, and finally tracking objects moving on a complex background [4].

Digital images, represented as an RBG pixel matrix, can be processed in many
dissimilar ways. Several methods treat each pixel independently of its surroundings
(contrast enhancement, gamma correction), while others require the pixel context—
colour values of neighbouring pixels (noise reduction, sharpening). Numerous meth-
ods of image filtration can be found in the literature [8, 9, 21], employing FFT, DCT
and wavelet transformations [42].

For the object re-identification framework described here, the most important
objects are these in motion, described with a particular colour distribution and a
texture, disturbed by the noise, and changing appearance over time due to the motion
and deformations of the object, and the camera motion in 3D space. In order to
obtain information on the movement, algorithms for object detection, recognition,
and tracking are applied [12, 28]. The purpose of the object detection routine is
to select image pixels belonging to moving objects, and to extract image regions
representing individual objects. These regions will be later used for calculation of
important visual information on these objects. Usually, a background modelling
and subtraction approach is used for this task [45]. The background model composes
statistical profiles of the most probable values of background pixels, for determination
of what colour and brightness of pixel in the current frame should be treated as the
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current background. In case of significant discrepancy between the pixel and the
model, the pixel is regarded as the foreground. The model is updated continuously
to account for lighting condition changes.

The result of the object detection stage for a single video image is composed of
image regions representing moving objects. Contours of these objects may be para-
metrized using descriptors related to its size and shape, while the image section cov-
ered by each region provides data for calculation of appearance descriptors (colour,
texture, etc.) These descriptors are essential for the object re-identification [16].

12.3 Multi-camera Object Tracking

Object tracking performed within a single camera is a matter of finding relations
between objects detected in consecutive video frames, so that each moving object is
tracked on a frame-to-frame basis. The result of object tracking performed in one cam-
era is the track—a set of consecutive object positions. For a multi-camera approach,
these relations are searched among the images from different system cameras, so
that the object’s tracks from a number of cameras are merged, which makes this task
more difficult. There are two general approaches to perform multi-camera object
tracking. Provided that the monitored area is observed by cameras with overlapping
views, the situation is quite simple. It is enough to define the relations between these
areas to re-identify objects in different images on the basis of their positions [38].

For disjointed camera views, the situation is more demanding. In order to recog-
nize objects between cameras, they need to be characterized by a set of features.
Again, two basic approaches can be found in the literature. In the first one, objects
are described by their biometrical features. For example, re-identification of persons
may be performed using features such as the gait or face [20]. However, application
of these methods is strictly limited regarding the image quality and camera place-
ment. A more popular approach for multi-camera object tracking involves extrac-
tion of image descriptors which depict object appearance [44, 47]. Selection of a
proper description method needs to ensure that the selected features are character-
ized by a high robustness to expected variances in object appearance throughout all
cameras.

Surveillance systems can contain miscellaneous camera types (e.g. digital and
analogue ones), registering images under unstable lighting conditions. Hence, an
object representation in images from these devices can vary. Particularly, this
variation can be related to different camera characteristics or their settings (i.e.
white balance, exposure), and their position respective to the object (angle of view).
Additionally, scenes observed by the cameras can be illuminated differently, result-
ing in different object appearances. Such differences can also be noticed between
the indoor and outdoor surveillance cameras. Therefore, the acquired object descrip-
tion needs to be robust against such changing conditions. This can be achieved by
utilizing illumination-invariant features which allow obtaining feature vectors that,
in most of the cases, do not suffer from varying conditions. On the other hand, even
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simple description methods can be sufficient, provided that camera colour calibration
techniques are used [27].

The actual object re-identification task involves implementation of the classifica-
tion scheme that allows determining which object candidate in a destination camera
is the one observed in a source camera. This task may be based on a simple, distance-
based measure in order to compare visual feature vectors of objects’ images with
each other, or it may employ intelligent decision systems techniques, such as Neural
Networks or Decision Trees.

Surveillance systems can contain dozens or even hundreds of cameras. Searching
for the tracked object in each camera of such systems would be inefficient and could
lead to many errors. In order to solve this problem, information about the system
topology should be included in the process [18]. This way, if an object leaves the field
of view of a certain origin camera, its representation is required to be searched only
in the cameras with a proper spatio-temporal relation from the origin. For further
improvement of the object re-identification accuracy, time windows representing
expected transition times between cameras can be utilized. Their purpose is to define
additionally the most probable periods within which the objects are sought after.
Such a mechanism is the most beneficial in case when neighbouring cameras are
placed at a considerable distance between each other.

The third hint in the re-identification process is a behaviour model that utilizes
information on frequency of particular transitions between cameras. Moreover, the
complete paths (routes) of objects can be analysed in order to obtain a behaviour
model. Such a model contains a statistical description of objects behaviour, so it can
be used to predict future movement of the object or allow reconstructing its route in
the past. In literature, many methods of building a behaviour model are described.
Kettnaker et al. present utilization of Markov models [29]. The number of future steps
which can be predicted is related to the order of Markov model. Another method
presumes usage of particle filters based on previously collected statistical data about
routes of objects [30]. Behaviour model facilitating object re-identification might be
also based on the idea of Pawlak’s flowgraphs [14]. The latter two algorithms use
large amount of statistical data as an input.

To sum up, the multi-camera object tracking process combines many types of
meta-data obtained from the consecutive steps of video analysis. Depending on the
changing conditions of video acquisition (different illumination types, number of
objects tracked by video surveillance system, amount of statistical data used for build-
ing behaviour model, modifications in the camera network topology etc.), importance
of a particular type of hints can also be modified.

12.4 Visual Object Descriptors

A large miscellany of visual object descriptors for image classification are available
[2, 3, 24, 35]. However, only some of them can be utilized for the problem considered
here [5, 32, 44]. As it was stated in the previous Section, object description for the
purpose of re-identification in a multi-camera surveillance system is expected to be
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robust against scene illumination changes. Hence, the extracted set of features should
be invariant to a set of image transformations. Five general types of such changes
related to different lighting conditions are defined in literature [49]. The general pixel
color transformation model is defined according to Eq. 12.1
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where RGB represent image values in corresponding channels, o[R, G, B] is the
offset and a, b and c denote scaling factors. From the relation presented in Eq. 12.1,
five different types of illumination changes can be listed:

• Type 1: a = b = c and oR = oG = oB = 0—light intensity change
• Type 2: a = b = c = 0 and oR = oG = oB—light intensity shift
• Type 3: a = b = c and oR = oG = oB—light intensity change and shift
• Type 4: a �= b �= c and oR = oG = oB = 0—light colour change
• Type 5: a �= b �= c and oR �= oG �= oB—light colour change and shift

To show the usefulness of the particular image descriptors they should be tested
against the enlisted transformations. Most extensively utilized descriptors in the topic
of multi-camera object tracking include SIFT-like features [5, 23, 47].

In this work, a set of feature extraction techniques is chosen, to show efficiency
of other solutions. Besides the regular image colour histogram, which is calculated
for comparison reasons, each of the descriptors shows resistance to at least one of
the illumination transformations. The related information is presented in Table 12.1.

Another important feature property is its geometric invariance. Object dimen-
sions can vary due to different camera placement and perspective. Additionally, for
non-levelled cameras and in case of lens distortions, objects visible in the scene
can be rotated. Some of the descriptors listed in Table 12.1 would suffer from
these conditions. To overcome this problem, during image preprocessing, objects
are rotated accordingly and resized to defined dimensions to introduce rotation and
scale invariance.

12.4.1 Colour Histogram

Two types of colour histograms have been selected as visual image features. The first
one is full RGB histogram of an object image (HistFull descriptor—Fig. 12.3).
The second one is a two-channel histogram using a chromatic space of RcGc colours
(Hist descriptor). The values of Rc and Gc in the chromatic space may be derived
from a RGB pixel through the following formulas:

Rc = R

R + G + B
, Gc = G

R + G + B
. (12.2)
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Table 12.1 Characteristics of the visual feature descriptors

Feature name Color space/representation Illumination inv. Geometric inv.

MomentCentNorm RGB Type 2 Yes

MomentInvGPSO RGB Type 1, 2, 3, 4, 5 Yes

VertTrace Transformed colour Type 1, 2, 3, 4, 5 No

CLD RGB Type 1, 2 No

CLDTrans Transformed colour Type 1, 2, 3, 4, 5 No

EHD Gray-level Type 1, 2, 3 No

LBPHist RGB Type 1, 2, 3 No

Hist rg-chromatic space Type 1 Yes

HistFull RGB – Yes

Sift Gray-level Type 1, 2, 3, 4, 5 Yes

Surf64 Gray-level Type 1, 2, 3, 4, 5 Yes

Surf128 Gray-level Type 1, 2, 3, 4, 5 Yes

OpponentSift Opponent colour space Type 1, 2, 3 Yes

OpponentSurf64 Opponent colour space Type 1, 2, 3 Yes

CMSP HSV Type 1, 2, 3 No
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Fig. 12.3 Colour histograms for example objects

This means that the values of Rc and Gc represent the share of red and green in
the original colour. It is easy to notice that deriving the share of blue is unnecessary,
as the three shares sum to one.
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The chromatic space defined in that way introduces some losses (it is not possible
to revert to the full RGB space of colours). However, simultaneously the space does
not include the information about luminance which causes an object moving in an
unevenly illuminated scene to have identical description in the RcGc space all the
time. For example, for Rc = 1/3 and Gc = 1/3, it is known that all the compound
colours have the same share in the original RGB space, although it is not possible to
determine whether the colour is black, grey, or white. Another advantage of the RcGc

colour space is the simplicity of its specification and lower dimension of histograms
based on it.

In order to limit dimensions of the histogram descriptors and to reduce their
internal redundancy, they are calculated for each colour channel independently. Fur-
thermore, histograms bin size is equal to 4, so each colour channel is represented by
64 bins in the histogram (assuming 8 bits per channel, i.e. 256 levels). Therefore, the
HistFull descriptor contains 192 elements and Hist—128 elements.

12.4.2 Vertical Trace

One of the methods to describe an object is by its colour characteristics. This can
be achieved by calculating the image colour trace along a defined direction [26]. In
case of images representing people, the most reasonable direction is vertical, since
more information about colour distribution can be acquired (Fig. 12.4). However,
this descriptor can be utilized for other objects as well, assuming that all of them
share the same orientation. Trace can be calculated in several ways, for example as
the mean or median of slices along the orientation.

As the trace length is dependent on the described object dimensions, during
the preprocessing stage, the image needs to be normalized. With this approach,
192-element feature vector is built, containing 64 values for each of the colour
channels (VertTrace descriptor). To introduce description invariance, feature
extraction procedure is performed for transformed colour representation, defined
by the following equation:

Average colour value

for each descriptor field

Fig. 12.4 Vertical trace calculation
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where R, G, B denote appropriate channel colour values, μ[R,G,B] and σ[R,G,B] are
their mean and standard deviation values in the image, respectively.

12.4.3 Moment Invariants

Image statistical moments calculation is one of the methods for a general charac-
terization of colour distribution. However, these basic parameters are sensitive to
all kinds of geometrical image transformations. Hence, normalized central moments
are defined to overcome this limitation. These moments, calculated for each image
channel independently, are utilized to form a feature vector consisting of 21 elements
(MomentCentNorm).

However, such a description is influenced by most of the photometric image
transformations. A set of parameters based on image moments which are invariant to
such changes is proposed in the literature [37]. They are expressed as a combination
of inter-channel image moments, which are defined as:

Mabc
pq =

∑

x,y

xq y p IR(x, y)a IG(x, y)b IB(x, y)c (12.4)

where I (x, y) are the image values for (x, y) coordinates, p +q is the moment order
and a + b + c is the moment degree. From the set of moments proposed by Mindru
et al. [37], Moment Invariants of type GPSO (Geometric Photometric Scaling Offset)
are chosen for later considerations, as they are independent from affine geometric
and photometric (scaling and offset) image transformations. Utilizing this approach,
a feature vector consisting of 18 elements (MomentInvGPSO descriptor) is built
for the purpose of further experiments.

12.4.4 Colour Layout Descriptors

Another method utilized for image colour description is called Colour Layout
Descriptor (CLD). It is a parametrization method defined as one of the colour
descriptors in MPEG-7 standard [36]. It is used to describe the basic colour palette
present in the image, including additional information about the colour spatial lay-
out. Preparation of a feature vector regarding this method can be divided into several
stages. These steps, including image preprocessing, are presented in Fig. 12.5.
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DCT

Fig. 12.5 Consecutive stages of Colour Layout Descriptor calculation. From left described object,
its stretched representation, image regions mean calculation, and the DCT coefficient scanning
result

As the CLD is defined for images of defined rectangular dimensions and the
object shape can vary, the visual object representation is stretched in each row to
defined dimensions during the preprocessing stage. Afterwards, the analysed image
is divided into equal blocks (8×8). Next, a representative value for each image region
is calculated as the mean channel intensity within a block. As a result, image thumb-
nail is acquired, which is further transformed using DCT (discrete cosine transform).
To form the feature vector, coefficients scanning, along with their normalization is
performed. This type of coefficient reading method is utilized to group low fre-
quency components together. The final feature vector acquired this way consists of
192 elements, in which 64 DCT coefficients for each colour channel are included. In
MPEG-7 standard it is stated that for CLD descriptor, YCbCr representation should
be used (CLD descriptor). For the purpose of experiments, besides YCbCr, addi-
tionally Transformed Colour, defined by Eq. 12.3, is utilized as well (CLDTrans
descriptor).

12.4.5 Co-occurrence Matrices Statistical Parameters

This image descriptor contains statistical parameters of co-occurrence matrices of
an object image (CMSP descriptor). A co-occurrence matrix, also referred to as a
co-occurrence distribution, is defined over an image to be the distribution of co-
occurring values at a given offset (Δx , Δy) [13, 25]. It is commonly used as a
texture description.

A set of symmetrical, normalized, co-occurrence matrices P is calculated for each
channel of the object image in HSV colour space. Each set contains four matrices P
calculated for four different directions of offsets: 0◦—offset (0,1), 45◦—(1,1), 90◦—
(1,0) and 135◦—(1, −1). Image values are quantized into 16 × 16 equally-spaced
levels, therefore each co-occurrence matrix contains 16 × 16 elements. Example
co-occurrence matrices P for two different object images are visualised in Figs. 12.6
and 12.7.
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Fig. 12.6 Co-occurrence matrices a calculated for an example vehicle image b for each channel
(HSV—from left to right) and for each direction (0◦, 45◦, 90◦, 135◦—from top to bottom)

Five statistical parameters are calculated for every co-occurrence matrix P . They
were chosen from among others to be the least dependent on each other and they are
defined as follows [13, 25]:

contrast =
∑

i, j

Pi, j (i − j)2 (12.5)

energy =
√∑

i, j

Pi, j
2 (12.6)

mean = μi = μ j =
∑

i, j

i · Pi, j (12.7)

standard deviation = σi = σ j =
√∑

i, j

(i − μi )
2 Pi, j (12.8)

correlation =
∑

i, j

Pi, j
(i − μi )

(
j − μ j

)
√

σi
2σ j

2
(12.9)

This gives a total number of 60 elements for CMSP descriptor (3 channels × 4
co-occurrence matrices × 5 parameters).
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Fig. 12.7 Co-occurrence matrices a calculated for an example person image b for each channel
(HSV—from left to right) and for each direction (0◦, 45◦, 90◦, 135◦—from top to bottom)

12.4.6 Edge Histogram Descriptor

Edge Histogram Descriptor is a technique which is used to characterize image texture
(EHD). It is one of the methods defined within the MPEG-7 standard [36]. It describes
the texture of a grey-scale image in the form of a histogram. This descriptor extraction
process is calculated as follows [41].

First, similarly to CLD extraction, a preprocessing stage, in which the image is
re-scaled and rotated accordingly, is carried out. Next, the analysed image is divided
into 16 regions (4×4). Afterwards, each region is additionally divided into blocks
of 4 pixels (2×2). For each block, a dominant texture directionality is estimated
utilizing a set of filters (Fig. 12.8).

To estimate the main directionality, the strength is calculated for each of its types
according to the equation:

m[dir ] =
∣∣∣∣∣

3∑

k=0

ak(i, j) × f[dir ](k)

∣∣∣∣∣ (12.10)

where m[dir ] is the strength of a specific direction, ak is the kth block element at
(i, j) coordinates and f[dir ](k) corresponds to kth filter coefficient.
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Fig. 12.8 Edge Histogram Descriptor: a Consecutive stages of the image segmentation; b–f direc-
tions for each bin in the edge histogram

The acquired maximum value is additionally thresholded to remove weak direc-
tionalities which could be caused by image noise:

max
{
m[dir ]

}
> Tedge (12.11)

The applied threshold (Tedge) is set to 10 during experiments. If this condition is
fulfilled, the appropriate histogram bin value, related to the specified directionality, is
incremented. In this way, 5 bin histograms for each of the 16 image regions are built.
Hence, the feature vector acquired utilizing this method consists of 80 elements.

12.4.7 Local Binary Pattern

Local Binary Pattern (LBP) is a texture related parametrization method which
describes neighbourhood of each analysed image point [11, 24]. In most cases, a
direct 8-point neighbourhood of an analysed pixel is used. However, it is possible to
define it in other words. LBP extraction procedure can be divided into two stages.
First, each pixel neighbourhood is analysed to determine the related code word. This
is done by comparing neighbouring pixel values against the analysed pixel. For the
pixel positions where the analysed point is greater than the related neighbour, the
value of 1 is assigned, 0 otherwise. In this way, binary code words are formed for each
of the image points. Afterwards, they are used to build a histogram. The description
obtained with this approach is rotation-dependent. Therefore, before feature extrac-
tion occurs, object images are preprocessed to set their proper orientation.

The LBP histogram is calculated and normalized for each of the colour channels
independently. After quantizing each of them to 64 bins, a feature vector consisting
of 192 elements is built (LBPHist descriptor).



12 Selection of Descriptors for Multi-camera Object Re-identification 277

Fig. 12.9 Local image feature matching

12.4.8 Local Image Features

Local image features differ significantly from all other image descriptors presented
in the chapter. They are calculated in the nearest vicinity of key points that are found
automatically in the grey-level image. While dimensionality of the vector derived
from each key point is constant for each local image feature, the number of key
point varies significantly depending on the image. Therefore, the final local image
descriptor is a matrix with vectors for each key point stored in its rows. This means
that the width of the matrix remains constant while its height depends on the analysed
image (Fig. 12.9).

Key points in the image are found automatically using the Fast-Hessian detector
[5]. An adaptive, iterative procedure is used in order to find 25 ± 10 % key points
for each image by changing Hessian threshold properly with each iteration.

Two types of local image features are used: SIFT (Scale Invariant Feature
Transform) and SURF (Speeded Up Robust Features). They are scale-, rotation- and
translation invariant, show robustness against illumination changes, and their values
remain very similar across a substantial range of affine distortions. SIFT features
[34] are derived from the image gradient magnitudes and orientations, sampled for
each pixel in the key point neighbourhood, while SURF descriptors [5] are based
on the sums of Haar wavelet responses in horizontal and vertical directions in the
square region centered around the key point. Depending on the number of sums, the
SURF vector may contain 64 or 128 elements per one key point.

Typically, local image features are calculated for grey-level images, therefore
they lack colour information. In order to overcome this inconvenience, features are
additionally calculated for each colour channel independently, thus increasing feature
vector dimensionality three times comparing to grey-level images. The opponent
colour space was used for this purpose [49]:
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Table 12.2 Local image features listing

Feature symbol Base local feature Colour information Feature vector

dimensionality

for a key point

Sift SIFT Grey-level 128

Surf64 SURF Grey-level 64

Surf128 SURF Grey-level 128

OpponentSift SIFT Opponent colour space 364

OpponentSurf64 SURF Opponent colour space 192

⎡

⎣
O1
O2
O3

⎤

⎦ =

⎡

⎢⎢⎢⎣

R−G√
2

R+G−2B√
6

R+G+B√
3

⎤

⎥⎥⎥⎦ (12.12)

where R, G, B denote appropriate channel colour values. This space is tuned to
mimic human perception of colour. The third channel is proportional to the intensity
channel of the HSV colour model while other two channels contain differences of
opponent pairs red–green and yellow–blue.

Table 12.2 lists all local image features used during object re-identification exper-
iments presented further in the chapter.

12.5 Descriptor Evaluation Methods

In order to evaluate the set of visual object descriptors objectively, valid measures
able to extract and highlight properties of the descriptors significant from the object
re-identification point of view, have to be employed. Therefore, two measures are
used that analyse inter- and intra-class scatter and clustering properties. They are
supplemented with a new, third method that is based on direct image pairs dissimi-
larity measurements.

12.5.1 RS Index

RS index is a parameter that estimates the degree of clusters dissimilarity [33, 43].
This method is based on the Euclidean distances between instances of the dataset. The
measure is one of the approaches utilized for verifying the presented object descrip-
tion techniques. The R-squared parameter RS is calculated utilizing the following
relation:
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RS = SSt − SSw

SSt
, (12.13)

where SSt and SSw are the sum of squared distances for the whole dataset and for
each of the clusters, respectively. These parameters are defined as follows:

SSt =
∑

v∈C

‖v − v‖2 , (12.14)

SSw =
∑

i

∑

v∈Ci

‖v − vi‖2 , (12.15)

where v is the mean of the whole dataset, described as C , and vi represents the mean
vector for the i th cluster. RS parameter ranges from 0, for poorly clustered data, to 1
for the classes which can be characterized as compact and separable. Thus, this term
should be maximized.

For the purpose of visual descriptors assessment this measure is calculated in two
variants:

• C—for each camera independently, where clusters represent objects,
• O—for each object independently, where clusters represent cameras.

The C variant is utilized to depict descriptor capabilities to distinguish between
objects in the same camera. On the other hand, O variant is utilized to represent
the compactness of object description between different system cameras. Stability
of these results, for each of the variants, is calculated as:

SNRi = μi

σi
, (12.16)

where μi and σi are mean and standard deviation calculated for i th variant.
Afterwards, the aggregated results are utilized to determine the parameter RSA which
can be used to compare different descriptors quality:

RSA = SNRC

SNRO
. (12.17)

For the optimal feature extractor, object description between cameras should be as
compact as possible and, at the same time, its description within a particular camera
should be distant from other objects descriptions. Hence, for a good parametrization
technique, RSA term should be maximized.

12.5.2 SD Index

SD validity index is another measure utilized to verify data clustering [22]. This
parameter is calculated as a relation of two components:
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SD = (1 + Scat) · Dis, (12.18)

where Scat represents cluster compactness and Dis indicates the separation between
different classes. Both of these components are calculated according to the following
formulas:

Dis =
max

i, j=1,...,nc

(‖v j − vi‖
)

min
i, j=1,...,nc

(‖v j − vi‖
) ·

nc∑

i=1

⎛

⎝
nc∑

j=1,i �= j

‖v j − vi‖
⎞

⎠
−1

, (12.19)

Scat =

nc∑
i=1

‖σ(vi )‖
nc‖σ(x)‖ , (12.20)

where nc is the class count, vi and v j are the corresponding class mean vectors, σ(vi )

denotes i th cluster standard deviation and σ(x) is the deviation of the whole dataset.
Low Scat factor value means that clusters are more compact. Dis parameter is

related to the clusters distribution and its value increases with the cluster number.
To ensure the best dataset cluster separation and compactness, the SD index value
should be minimum.

This validity measure, similarly to the RS index, is calculated for two separate
cases and aggregated afterwards (Eq. 12.16). From the obtained results, SDA term is
determined as the inverted relation from Eq. 12.17:

SDA = SNRO

SNRC
. (12.21)

12.5.3 Dissimilarity Measure

A new method of descriptor evaluation is proposed. It is based on direct comparison of
dissimilarity of all image pairs in the dataset according to a chosen visual descriptor.
The goal of the dissimilarity measure is to compare descriptors according to their
behaviour in a multi-camera, multi-object environment. The measure highlights the
fact that similarity of two images of the same object should be greater than similarity
of different objects, regardless of the cameras used to acquire both images. The
measure has also one additional advantage: in contrast to SD and RS indexes, the
dissimilarity measure may be obtained for local image features, because it does not
utilize mean and standard deviation values that are not defined for set-of-vectors
descriptors.

Given two images I1 and I2 and their descriptors V1 and V2, the dissimilarity d
for standard (non-local-based) descriptors is calculated as the Euclidean distance:

d = ‖V1 − V2‖. (12.22)
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In case of local image feature-based descriptors, V1 and V2 are matrices m1 × n
and m2 ×n, accordingly. Therefore, a matching procedure is used in order to find the
best matching vector in matrix V2 for each vector in V1 and vice versa [50]. For kth
vector (row) of matrix Vi, the best matching vector in the matrix Vj is the one having
the smallest Euclidean distance; this distance is denoted as ek

i j . The dissimilarity of
V1 and V2 is calculated according to the equation:

d = 0.5 ·

m1∑
k=1

ek
21

m1
+ 0.5 ·

m2∑
k=1

ek
21

m2
. (12.23)

The smaller the value of d, the smaller the dissimilarity and thus the greater
similarity of the compared images.

Dissimilarity values d of image pairs are divided into 4 sets depending on the
objects that are depicted in the images and on cameras that were used to capture
images. The sets are as follows: the same object in the same camera (SOSC), the same
object in different cameras (SODC), different objects in the same camera (DOSC) and
different objects in different cameras (DODC). In each set, SNR measure is calculated
as the ratio of the mean value to the standard deviation. This normalizes results
and makes it possible to compare visual descriptors according to the dissimilarity
measure. Final dissimilarity measure DSIM for the given visual descriptor is derived
from the following equation:

DSIM = SNRSOSC · SNRSODC

SNRDOSC · SNRDODC
. (12.24)

The numerator is related to similarity of image pairs belonging to the same object
while the denominator reflects similarity of images of different objects. Therefore,
the smaller dissimilarity measure DSIM for the given visual descriptor, the better the
descriptor is suited to identify objects in a multi-camera environment.

12.5.4 Result Aggregation

Descriptor evaluation measures (DEMs) discussed in Sects. 12.5.1–12.5.3 are calcu-
lated for one set of objects’ images only. In order to perform a thorough evaluation
of various visual descriptors, they need to be verified using several test datasets. This
subsection presents methodology for aggregation of results from such an analysis.

Let U = ui , i = 1, . . . , NU be the set of NU datasets used for visual descriptors
evaluation. Each set contains images of different objects recorded in different loca-
tions. Each dataset ui is divided into Ni subsets ui j ∈ ui containing objects from the
dataset ui . DEMs are calculated for each subset ui j , independently. The aim of the
approach is to make results of analysis robust against selection of particular objects
in the dataset.
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We propose two measures useful for analysis of DEM values for different datasets
and different visual descriptors: stability and ranking. Stability describes dispersion
of DEM values for the given descriptor. It exists in two variants: internal and external.
Individual internal stability SII is defined for the given feature D, set ui and descriptor
evaluation measure M with the following equation:

SIIi (D, M) =

√
Ni∑

j=1

(
Mi j (D) − μMD

i

)2

μMD
i · √

Ni
= σMD

i

μMD
i

= CV MD
i , (12.25)

μMD
i = 1

N

Ni∑

j=1

Mi j (D),

where Mi j (D) is a value of DEM M of the descriptor D in the subset ui j , μMD
i

denotes the mean value of DEM M of the descriptor D in the set ui , σMD
i is the

standard deviation of the same data and CV coefficient of variation.
Stability is given as an average dispersion of DEM values related to their mean

value, therefore the smaller its value is, the greater stability of the DEM is and the
better the visual descriptor is suited for object re-identification.

Internal stability SI aggregates partial stabilities of all DEMs of all sets:

SI(D) =
√√√√

NM∑

M=1

NU∑

i=1

SIIi (D, M), (12.26)

where NM denotes number of DEMs used.
External stability SE measures normalized dispersion of DEMs of a particular

feature D across different datasets in U . It is given with the equation:

SE(D) =
√√√√

NM∑

M=1

NU∑

i=1

(
μMD

i − μMD

μMD

)2

, (12.27)

μMD = 1

N

NU∑

i=1

μMD
i ,

where μMD denotes the average of mean values of DEM M of the descriptor D in
all datasets U . The smaller the value of SE, the greater the independence of DEMs
of the descriptor D from dataset selection and the better the descriptor is suited for
visual object identification.

Ranking is the second measure developed for analysis of DEM values for different
datasets and various visual descriptors. It also exists in two variants: value-based and
position-based. Individual value-based ranking RVI is defined for the given feature
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D, set ui and DEM M as the mean value over all subsets of ui normalized according
to the “best” value of M for all visual descriptors:

RVIi (D, M) = μMD
i

maxD(μMD
i )

, or RVIi (D, M) = minD(μMD
i )

μMD
i

. (12.28)

RVIi (D, M) ∈ [0, 1]

The formula for RVI is chosen based on the characteristics of DEM; if its value is
directly proportional to the expected results, i.e. the greater value of DEM the better
the descriptor is suited for visual object identification, then the first formula is used;
otherwise the second equation is employed.

Partial value-based ranking is aggregated in other to obtain the final value-based
ranking RV for the descriptor D:

RV(D) =

NM∑
M=1

NU∑
i=1

RVPi (D, M)

NM · NU
, RV(D) ∈ [0, 1]. (12.29)

Position-based ranking, in contrast to the value-based one, takes into account only
integer position (place) of the DEM of the given descriptor against all other features.
For the given feature D, set ui and DEM M , individual position-based ranking RPI
is defined as an integer value in the range [1, ND] (ND—number of descriptor used)
that positions the descriptor as the best (1) or the worst (ND) among all descriptors.
Therefore, for a particular set and DEM, RVI values in the descending order and RPI
values in the ascending order create the same sequence of descriptors.

Partial position-based ranking is aggregated in other to obtain final, floating-point,
position-based ranking RP for the descriptor D:

RP(D) =

NM∑
M=1

NU∑
i=1

RPPi (D, M)

NM · NU
, RP(D) ∈ [1, ND]. (12.30)

12.6 Object Identification

The purpose of feature extraction presented in the previous sections is to employ
the gathered data on moving objects for the task of object re-identification. A typi-
cal scenario of the multi-camera system is that the object (e.g. a vehicle) leaves the
camera view and appears in another camera’s view after some time. It is generally
not known in which camera the object will re-appear. Therefore, the problem may
be defined as follows. A set of feature vectors vi, j of the moving object Oi , gathered
from each video frame j in which a given object was present, comprises a class.
For a newly appeared object in another camera, a new feature vector v′ is computed.
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The task of a classifier is to assign v′ to the matching class. Each class represents a
single moving object. The label of such a class (e.g. the object’s ID) is the classifi-
cation result, allowing for object re-identification.

Diversity of classification algorithms may be found in the literature. For the pur-
pose of the experiments described in the chapter, four classifications algorithms have
been selected. Some other algorithms, such as Support Vector Machines or the Bayes
classifier, have been rejected after the preliminary experiments due to their unsat-
isfactory performance. Where applicable, classifiers are set to solve a regression
problems in order to obtain both discrete class label and a real number that may be
interpreted as similarity of a feature vector to the class recognized.

Parameters of the employed classifiers have been selected based on initial exper-
iments and are meant to be representative for the general problem class (i.e. object
re-identification). Usage of many classifiers is motivated by the need to make descrip-
tor evaluation invariant to a classifier selection. The four classifiers used are briefly
described below.

k-Nearest Neighbours (kNN). This is the simplest one of the four selected clas-
sifiers. For each feature vector of the considered objects, k closest feature vectors are
found in the training set, consisting of feature vectors of objects in another cameras
(k = 3 value has been used in the experiments as a typical value that has performed
well in initial experiments). These nearest neighbours are found by calculating a
distance between vectors, with the Euclidean metric. Object re-identification is per-
formed by voting, i.e. an object is assigned to the class to which most of the found
nearest neighbours belong.

Artificial Neural Networks (ANN). For the purpose of object identification, a
feed-forward, multi-layer perceptron (MLP) ANN [39] with one hidden layer is used.
This significantly reduces ANN training duration, comparing to larger quantity of
hidden layers. The ANN is trained using image features (in case of whole image-
based descriptors) or with features calculated for each interest point (for local image
features), and with their responses (classes—object IDs). Thus, the number of inputs
corresponds with the length of a feature vector. Based on initial experiments, the
number of neurons in the hidden layer is set to the half of ANN inputs. This fact
and only one hidden layer reduce possibility of ANN overtraining and losing its
generalisation properties. Bipolar sigmoid transfer functions are used in all neurons
as the most suited one to the ranges of input and output values. There are two outputs
from the network. An expected ANN output is equal to (1,−1) for a vector belonging
to the valid object and (−1, 1) if it belongs to other objects. During classification, two
ANN outputs (instead of one) make possible to get information both on the vector
similarity and the ANN response reliability.

Gradient Boosted Trees (GBTree). This classifier is built on the idea of Classi-
fication and Regression Trees [7]. Binary decision trees are trained using the object
features and their responses, a tree is constructed by processing each object feature
and finding an optimal split. Re-identification is done by processing the new object
features with the trained tree, starting from the topmost node, passing through each
split, and reaching the leaf which defines the class (ID of the re-identified object).
Importance of each object feature for the classification is assessed, so that features
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with low importance may be omitted from the classification. The Gradient Boosted
Trees (GBTree) algorithm [19] extends the idea of decision trees by employing a set
(an ensemble) of weak decision trees. A weighted sum of decisions from each tree in
the ensemble provides the final re-identification result. In the experiments described
here, the GBTree classifier is employed to solve the regression problem, returning
a value in the range [0, 1]; the grater the output value is, the grater similarity of the
object feature vectors. A squared loss function is used for the ensemble training as
the most suitable one for this setup. 200 iterations of boosting algorithms during
GBTree training has been performed (resulting in 200 trees in the ensemble) and for
each iteration, the randomly chosen subset of 80 % training vectors has been used.

Random Forest (RTree). This algorithm also uses an ensemble of binary trees
(called a forest here) for enhanced classification [6]. In contrast to the GBTree algo-
rithm, each tree is trained with only a subset of object features, different for each tree.
The data not used for training of a given tree is then used for its validation. During
the re-identification stage, each tree processes the same vector of object features and
makes a decision. The final classification result is a class that was chosen by most of
the decision trees. The depth of each tree is set to 5, which seems to be an optimal
value based on initial experiments using the cross-validation. The minimum samples
required at a leaf node for it to be split is equal to 10, which accounts for the small
ratio of the total data. The size of the randomly selected subset of features at each
tree node that are used to find the best split is equal to the square root of the number
of elements in the feature vector. During the re-identification experiments, the RTree
classifier was configured to solve a binary classification problem. However, the direct
output (a discrete class label) is ignored. Instead, the probability (confidence) of the
sample belonging to the object of interest is used. It returns the number between
0 and 1 that is calculated as the proportion of the decision trees that assigned the
sample to the class representing an object of interest.

In order to employ diversified classifiers and visual features to object re-identifi-
cation task, a method of training the classifier and aggregation of the results must be
proposed. The solution presented in the chapter resembles the real-life application
scenario as close as possible: a classifier is trained with object image features obtained
from one camera and then it is used to recognize the same object in video frames
acquired from another camera (Fig. 12.10). Therefore, one classifier is trained per
each object and each transition between fields of view of two particular cameras.

Positive training samples are formed by the image features of an object of interest
in the source camera. Negative samples for training are formed by features of other
objects from the dataset that passed the field of view of the source camera. Therefore
the classifier is learned to distinguish one particular object from other, possible similar
objects that could be found in the same area. Positive samples for validation are
created from the images of the object of interest in another, destination camera;
negative samples are formed with features of other object images. It is assured that
the same objects are not found in negative training and validation sets.

In order to identify the object S observed in camera C1 (the source one) in video
frames acquired from camera C2 (the destination one), it is necessary to find the
most similar object out of all candidates for matching. Let Oi , i = 1 . . . NO denote
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Fig. 12.10 Scheme of the multi-camera object identification algorithm

i th objects for matching from among NO objects, Ii j , j = 1 . . . N Ii represents j th
image of the i th object out of NIi images of Oi and Vi jk, k = 1 . . . NVi j defines kth
image feature vector of the image Ii j from among NVi j vectors. In case of majority
of image features, there is only one feature vector for each object image; however,
in case of local image features, there is one feature vector for each of multiple key
points found automatically in the image. The relation between objects, images and
feature vectors are illustrated in Fig. 12.11. During the re-identification stage, all
feature vectors Vi jk of every image of all objects found in the destination camera C2
are classified with the chosen classifier that represents the object S observed in the
source camera C1.

The result of each classification consists of three values: (1) the binary decision
di jk denoting whether the feature vector Vi jk belongs (positive decision), or not (neg-
ative decision), to the object of interest S; (2) the response ri jk ∈ [0, 1] representing
the similarity of vector Vi jk to the object of interest S; (3) the weight wi jk > 0 that
represents the classifier response reliability. The formulas for obtaining decision,
response and weight values for each classifier type are presented in Table 12.3.

Classification results for all vectors of the image Ii j are aggregated in order to
obtain the mean result r i j for an image according to the equation:

r i j =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

N Vi j∑
k=0

ri jk ·wi jk

N Vi j
for positive di jk

N Vi j∑
k=0

−(1−ri jk )·wi jk

N Vi j
for negative di jk

(12.31)
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Table 12.3 Formulas for obtaining decision d, response r and weight w values for various classifiers

Decision d

Classifier Classifier outputs (positive decision Response r ∈ [0, 1] Weight w > 0

condition)

ANN (o1, o2) ∈ [−1, 1] o1 > o2 0.5 · ( o1
2 − o2

2 + 1)
max

(
o1+1

2 ,
o2+1

2

)2

o1+1
2 + o2+2

2

— values of outputs

o ∈ [0, 1]—output,

L = {l : l ∈ {0, 1}}

kNN — vector of k responses, o > 0.5 o

k∑
i=1

mi ·li
k∑

i=1
li

M = {m : m ≥ 0}
— vector of k distances

RTree o ∈ [0, 1]—probability o > 0.5 o 1

GBTree o ∈ [0, 1]—probability o > 0.5 o 1

Then, the aggregated result Ri for each object Oi is calculated as follows:

Ri =
∑N Ii

j=0 r i j

N Ii
. (12.32)
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The object of interest S is matched with the object Oi with the highest value of
the aggregated result Ri . If there are more than one object with the same maximum
values of Ri , the object with the highest ratio Di of individual positive decisions is
chosen:

Di =

N Ii∑
j=0

(
1

N Vi j

N Vi j∑
j=0

di jk

)

N Ii
, di jk =

{
1 for positive decision
0 for negative decision

(12.33)

12.7 Experiments and Results

This section presents experiments carried out and their outcomes. First, datasets used
in experiments, involving human and vehicle images, are presented. Then, descriptor
evaluation measures are employed to assess particular descriptors in the task of object
re-identification. Based on the results, combined feature vectors for both object types
are proposed. The vectors (as well as single descriptors) are evaluated with object
re-identification experiments involving four classifiers.

12.7.1 Datasets

For the purpose of visual descriptor evaluation for multi-camera object identification,
two datasets were created. The first one, HUMAN, contains images of persons
walking indoors. The second set, VEHICLE, contains images of cars driving in
the parking lot near an office building. This location has already been exploited in
our previous experiments regarding parking event detection [15]. Both sets contain
images of objects acquired from various cameras with different horizontal and ver-
tical angles (Figs. 12.12 and 12.13). Not all objects appear in all cameras, therefore
the number of object/camera pairs in the set is lower than the product of numbers of
objects and cameras. Datasets also differ significantly by the number of objects and
the duration of data acquisition. Furthermore, in case of the VEHICLE set, for the
re-identification task a subset of objects (based on the time criterion) has been used
comparing with the descriptor evaluation task. Object amount reduction has been
made due to the enormous computational cost of the object re-identification exper-
iments (see the Sect. 12.7.3). All these differences (summarized in Table 12.4) are
meant to evaluate visual descriptors in the large inconstancy of conditions, including
small and large datasets, different object types and recording conditions.

Each object image in the dataset is accompanied with a binary mask that denotes
image pixels belonging to the object. The masks have been obtained automatically
with moving object detection and tracking algorithms that were developed with
the Indect project and deployed successfully in the area of video event detection
[16, 46]. Only masked pixels of object are used for visual descriptor calculating.
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Fig. 12.12 Sample images
of persons from HUMAN
dataset

Fig. 12.13 Sample images of two vehicles from the VEHICLE dataset moving in opposite direction
in the fields of view of all cameras

Table 12.4 Characteristics of datasets used in the experiments

Dataset Number Number Number Number of Average Average number Timespan

of of of object/ number of of images per of data

objects cameras images camera images object/camera acquisition

pairs per object pair (h)

HUMAN 7 7 265 48 37.9 5.5 1

VEHICLE 223 8 12,994 1,143 58.3 11.4 9

(descriptor

evaluation

experiments)

VEHICLE 15 8 922 85 61.5 10.9 1

(object

re-identification

experiments)

12.7.2 Descriptor Evaluation

Both datasets have been divided into several subsets based on objects in order to
make analysis results independent of the selection of the specific objects in the
dataset. HUMAN set contains few objects, therefore subsets have been created as all
combinations of five objects out of seven. This gives the total number of 21 subsets.

The VEHICLE set contains an adequate number of objects, therefore the criterion
for dividing is based on the time the object appears for the first time in any camera;
time window length of 1h has been chosen and the window moves with the step of
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0.5 h. This gives a total number of 17 subsets; each contains from 10 to 39 objects
(25 on average).

For each image in the datasets, all visual descriptors have been calculated. Then,
within each subset, visual descriptor evaluation measures presented in Sects. 12.5.1–
12.5.3 have been calculated. Unfortunately, it is not possible to calculate SD and RS
indexes for local image features. Therefore, analysis for these descriptors is limited
to DSIM measure only.

Next, the results were aggregated for each visual descriptor according to the steps
described in Sect. 12.5.4. For the reference, the same procedure has been performed
for full HUMAN and VEHICLE datasets, assuming there is only one subset in each
set containing all objects. Naturally, in this case it is not possible to calculate internal
stabilities SI.

Table 12.5 contains mean and standard deviation values of descriptor evaluation
measures (DEMs) over subsets of each dataset, for every visual descriptor. Because
for the local image features only dissimilarity measure DSIM can be calculated,
results for other measures are not available. The data is used to calculate individual
aggregation measures presented in Tables 12.6 and 12.7.

Summarized aggregation results (for all datasets and DEMs) are presented in
Figs. 12.14 and 12.15, and for each dataset separately—in Figs. 12.16 and 12.17.
Based on the data, it is possible to evaluate and compare descriptors with each
other based on the data type and different criteria. Among non-local image fea-
tures, the best results (based on RV and RP) were achieved for colour-based
descriptors (Hist, HistFull), texture-based ones (CMSP) and statistical-based
ones (MomentCentNorm, MomentInvGPSO) in case of VEHICLE dataset, and
for colour-based feature (CLDTrans), edge-based one (EHD) and statistical ones
(MomentCentNorm, MomentInvGPSO) in case of PERSON dataset. It means
that the statistical features are universal enough to be suitable for both human and
vehicle identification task, however they are not the best in each category, sepa-
rately. The reason for high effectiveness of histograms for VEHICLE set results
from the vehicle nature: they are usually monochromatic, therefore histogram-based
vectors are more or less orthogonal. This is not happening in case of objects with
more complex colours, like people images. On the other hand, edge orientation-
based descriptor EHD provides good results (comparing to other descriptors) for
PERSON dataset because human pose changes less with different camera viewing
angles (the pose remains vertical) while vehicle edges orientation depends heavily
on the object rotation angle and camera viewing angle. It seems strange that the
VertTrace extraction technique provides low descriptor evaluation measures for
PERSON. This might be due to characteristics of each image row colour that can
vary depending on people outfit. Hence, the mean value utilized to depict this variety
might to be inadequate for this task. However, a practical evaluation of this descriptor
is performed during re-identification experiments.

Ranking aggregation measures are not enough to select the best descriptors. It is
also important for the descriptor to guarantee stable results in case of different objects
in the dataset (it should not be dependent on particular objects in a dataset). Analysis
of the stability aggregation measures SI and SE reveals that the CMSP feature has
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Fig. 12.14 Internal stability SI and external stability SE aggregation measures (the lower the better)

Fig. 12.15 Value-based ranking RV (the higher the better) and position-based ranking RP (the
higher dots and smaller values the better)

Fig. 12.16 Value-based ranking RV (the higher the better) calculated for each dataset separately
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Table 12.5 Descriptor evaluation measures statistics (mean values and standard deviations) over
subsets of PERSON and VEHICLE datasets

DSIM SDA RSA

Visual descriptor (the lower the better) (the higher the better) (the higher the better)

mean std mean std mean std

PERSON set

CLD 0.746 0.067 1.528 0.313 0.815 0.231

CLDTrans 0.476 0.060 0.668 0.221 1.382 0.524

EHD 0.787 0.043 2.287 0.583 0.956 0.193

CMSP 0.769 0.049 1.714 1.386 0.231 0.069

Hist 0.736 0.056 1.790 0.799 0.208 0.032

HistFull 0.554 0.051 0.867 0.343 0.172 0.056

LBPHist 1.186 0.162 1.095 0.263 0.509 0.139

MomentCentNorm 0.959 0.020 1.775 0.327 0.182 0.044

MomentInvGPSO 0.881 0.041 6.424 1.614 0.511 0.209

VertTrace 0.901 0.049 1.874 0.819 0.218 0.077

OpponentSift 0.628 0.057 n/a n/a

OpponentSurf64 0.868 0.032 n/a n/a

Sift 0.832 0.032 n/a n/a

Surf128 0.890 0.047 n/a n/a

Surf64 0.911 0.045 n/a n/a

VEHICLE set

CLD 0.422 0.064 0.690 0.307 0.908 0.313

CLDTrans 0.482 0.051 0.760 0.388 0.931 0.261

EHD 0.726 0.041 0.889 0.278 1.121 0.346

CMSP 0.587 0.132 0.717 0.249 3.134 2.105

Hist 0.505 0.059 0.881 0.364 2.222 1.439

HistFull 0.470 0.065 0.865 0.285 3.437 1.368

LBPHist 0.696 0.046 0.931 0.257 0.687 0.158

MomentCentNorm 0.566 0.075 1.016 0.511 1.349 0.505

MomentInvGPSO 0.772 0.176 1.097 0.306 1.263 0.237

VertTrace 0.840 0.116 0.895 0.283 2.793 1.032

OpponentSift 0.412 0.073 n/a n/a

OpponentSurf64 0.548 0.063 n/a n/a

Sift 0.350 0.047 n/a n/a

Surf128 0.419 0.054 n/a n/a

Surf64 0.395 0.051 n/a n/a

the worst external (inter-set) stability SE. This alone would not disqualify the feature
(it provides good results for one object type only), however within dataset stability, SI
is also the worst which means that descriptor evaluation measures DEMs for CMSP
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Table 12.6 Aggregation measures for PERSON dataset

Visual descriptor Individual internal stability SII Individual value-based ranking (RVI)

and individual position-based

ranking (RPI) in parenthesis

DSIM SDA RSA DSIM SDA RSA

CLD 0.090 0.205 0.284 0.638 (4) 0.238 (7) 0.590 (3)

CLDTrans 0.126 0.331 0.379 1.000 (1) 0.104 (10) 1.000 (1)

EHD 0.054 0.255 0.202 0.605 (6) 0.356 (2) 0.692 (2)

CMSP 0.064 0.809 0.300 0.619 (5) 0.267 (6) 0.167 (6)

Hist 0.076 0.446 0.152 0.646 (3) 0.279 (4) 0.151 (8)

HistFull 0.092 0.396 0.323 0.859 (2) 0.135 (9) 0.125 (10)

LBPHist 0.137 0.240 0.273 0.401 (10) 0.170 (8) 0.368 (5)

MomentCentNorm 0.021 0.184 0.241 0.496 (9) 0.276 (5) 0.132 (9)

MomentInvGPSO 0.046 0.251 0.409 0.540 (7) 1.000 (1) 0.370 (4)

VertTrace 0.054 0.437 0.352 0.528 (8) 0.292 (3) 0.158 (7)

Table 12.7 Aggregation measures for VEHICLE dataset

Visual descriptor Individual internal stability SII Individual value-based ranking (RVI)

and individual position-based

ranking (RPI) in parenthesis

DSIM SDA RSA DSIM SDA RSA

CLD 0.151 0.444 0.345 1.000 (1) 0.630 (10) 0.264 (9)

CLDTrans 0.106 0.510 0.280 0.875 (3) 0.693 (8) 0.271 (8)

EHD 0.056 0.313 0.309 0.581 (8) 0.810 (5) 0.326 (7)

CMSP 0.225 0.347 0.672 0.719 (6) 0.654 (9) 0.912 (2)

Hist 0.117 0.413 0.648 0.837 (4) 0.804 (6) 0.646 (4)

HistFull 0.138 0.330 0.398 0.898 (2) 0.788 (7) 1.000 (1)

LBPHist 0.066 0.276 0.229 0.606 (7) 0.849 (3) 0.200 (10)

MomentCentNorm 0.132 0.503 0.375 0.745 (5) 0.926 (2) 0.393 (5)

MomentInvGPSO 0.228 0.279 0.188 0.547 (9) 1.000 (1) 0.368 (6)

VertTrace 0.138 0.317 0.369 0.502 (10) 0.816 (4) 0.813 (3)

change the most depending on the particular objects in the dataset. On the other hand,
EHD provides good SI and SE stabilities, comparing to other features.

Figures 12.18, 12.19 and 12.20 present aggregation measures for all descriptors,
including local ones, calculated for dissimilarity DSIM measure only. It may be
noticed that SIFT-based feature achieved better results that SURF-based features:
they have higher RV values and slightly better stabilities. Comparing grey level-
based versions with the opponent colour-based ones it is seen that the latter are
significantly better, especially in terms of stability, and their rankings are also better
in general.
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Fig. 12.17 Internal stability SI (the lower the better) calculated for each dataset separately

Fig. 12.18 Value-based ranking RV (the higher the better) for DSIM measure only with local image
descriptors included
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Fig. 12.19 Internal stability SI and external stability SE (the smaller the better) for DSIM measure
only with local image descriptors included

Basing on the DSIM measure only, it is possible to compare local-based features
with other descriptors. Local-based features provide better results for VEHICLE
(they adopt leading positions). This may be caused by the fact that vehicles provide
more distinguishable locations for local feature extraction that are more or less con-
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Fig. 12.20 Value-based ranking RV (the higher the better) for each dataset separately, for DSIM
measure only with local image descriptors included

Table 12.8 Relative differences (%) between aggregation measures calculated for both datasets as
wholes and the measures based on mean values of subsets

Visual descriptor External stability Value-based ranking Position-based ranking

SE difference (%) RV difference (%) RP difference (%)

CLD 9.8 −6.5 −17.6

CLDTrans 12.2 −3.7 −6.5

EHD 7.5 −9.3 −10.0

CMSP 15.4 −3.7 −5.9

Hist 8.0 −0.2 −3.4

HistFull 5.7 −12.9 9.7

LBPHist 14.6 −14.9 4.7

MomentCentNorm 27.9 −20.1 22.9

MomentInvGPSO −3.0 −0.1 3.6

VertTrace 6.0 −9.1 0.0

stant for all vehicles (e.g. borders between windows and a vehicle body); there is much
more diversity in case of human images. For HUMAN set, the OpponentSift
descriptor (the best one of all local image features) occupies the third place.

In the last experiments, it was evaluated how the results calculated for each subset
of both datasets independently correlate with results based on the whole sets (Table
12.8). It may be noticed that for majority of descriptors, external stability SE is lower
(stability value is higher) which seems to be obvious because of a larger quantity of
objects in the dataset. At the same time, value-based ranking RV values decreased
which means that descriptor evaluation measures vary more. However, in majority
of cases, difference values are less than 10 %. It proves that the results presented in
the chapter are invariant to the number of objects in datasets.

Table 12.9 contains proposed visual descriptors that are better than others (both
in case of their effectiveness and stability) for each dataset independently and for
both datasets simultaneously. These features are characterized by the highest rank-
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Table 12.9 Visual descriptor candidates suited for multi-camera object identification

Dataset Best visual descriptors

PERSON CLDTrans, CLD, EHD, MomentInvGPSO, OpponentSIFT

VEHICLE HistFull, MomentInvGPSO, VertTrace, OpponentSIFT, SURF64

Both CLDTrans, MomentInvGPSO, HistFull, EHD, OpponentSIFT

ing values and, simultaneously, by high or average stability. Analysing the results
in Fig. 12.20 it can be noticed that for the PERSON category, feature extractors that
include spatial dependencies outperform other evaluated descriptors. This relation
is reasonable since humans are typically characterized by a higher colour diver-
sity than vehicles. In comparison, the most effective descriptors for VEHICLE
dataset are based on local image features as well as on the general image colour
representation. This dependency shows that specific description techniques are more
suitable for specific object categories. From comprehensive analysis of both datasets,
MomentInvGPSO, OpponentSIFT and CLDTrans turned out to be a good
choice.

12.7.3 Object Identification

Object identification experiments have been performed according to the approach
presented in details in Sect. 12.6. A classifier is trained to distinguish visual features
of an object of interest from features of other objects in the first (source) camera and
then it is used to find the same object in the second (destination) camera from among
a few candidates. The classification process is repeated for each object and for all
pairs of cameras it appears in; within each pair, two classifications are performed, as
each camera is treated as the source and the destination of the transition. The positive
training samples are formed by images of the object of interest S in a camera C1.
The positive validation samples are formed by images of the vehicle S in the camera
C2, where C1 �= C2. All other objects that appear in cameras C1 or C2 are randomly
drawn to the negative training set and negative validation set, alternately, until one
of object pools is empty. Therefore both negative sets are equipotent or the negative
training set has one more element than the validation one. The drawing procedure
also assures that the negative training and validation samples do not contain images
of the same objects, therefore during re-identification negative validation samples
belong to objects whose images were not used for classifier training.

Table 12.10 presents details regarding quantity of objects in training and validation
sets and the amount of single identification tasks (for the given classifier and a feature
vector) that is equal to the number of object/transition pairs in the dataset. There is
always one positive sample (an object of interest S) in positive sets and there are
approx. 3 persons or 5–6 vehicles in negative training and validation samples on
average during each classification. It means that a classifier is trained with more
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Table 12.10 Number of objects (mean values and standard deviations) in training and validation
sets for each identification task

Dataset Number of Training set Validation set

identification Positive Negative Positive Negative

tasks Mean Std Mean Std Mean Std Mean Std

PERSON 282 1.00 0.00 3.00 0.00 1.00 0.00 2.94 0.24

VEHICLE 452 1.00 0.00 5.50 1.58 1.00 0.00 5.07 1.71

negative than positive samples, and its task is to find one valid object in a set of
4 other persons or 6 other vehicles. This is a very challenging task that is unlikely
to be carried out in the real scenarios with the application of spatial and temporal
constraints regarding cameras’ geographical localizations.

During re-identification experiments, 18 different feature vectors have been used;
15 of them are formed with single descriptors, presented in Sect. 12.4. Additionally,
3 combined vectors have been used that contain descriptors selected as the best
ones for re-identification of persons, vehicles and both groups, based on experiments
employing descriptor evaluation measures (Sect. 12.7.2). Due to different nature of
local image features and other descriptors, both parameter groups cannot be mixed
up within the same feature vector. Therefore, comparing to Table 12.9, combined
feature vectors VectorPerson, VectorVehicle and VectorBoth contain
only standard (non-local) descriptors. They are presented in Table 12.11.

Taking into account the number of feature vectors examined (18) and the number
of classifiers used (4), the total quantity of single identification tasks performed is
equal to 20,304 for PERSON dataset and 32,544 for VEHICLE dataset. In order to
make the results robust against the selection of training and validation samples, all
identification tasks are repeated 5 times, with different, random selection of both sets.
Furthermore, classifications with ANN and RTree (for the given training and valida-
tion sets) are further repeated 5 times due to the stochastic nature of the classifiers’
learning. Therefore, the re-identification tasks are computationally very complex and
full experiments take a few days to complete on a modern PC. The averaged results
from all iterations for PERSON and VEHICLE datasets are reported in Figs. 12.21
and 12.22, separately for each classifier used. Table 12.12 presents results averaged
over all classifiers.

Absolute accuracy values of object re-identification (i.e. the results of finding the
one object in the group of a few) are not impressive at the first sight, but taking into

Table 12.11 Combined visual feature vectors

Feature vector name Descriptors included in the vector

VectorPerson CLDTrans, CLD, EHD, MomentInvGPSO

VectorVehicle HistFull, MomentInvGPSO, VertTrace

VectorBoth CLDTrans, MomentInvGPSO, HistFull, EHD
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Fig. 12.21 Average object identification results for different feature vectors and classifiers, in
descended order of the accuracy averaged over all classifiers—PERSON set
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Fig. 12.22 Average object identification results for different feature vectors and classifiers, in
descended order of the accuracy averaged over all classifiers—VEHICLE set

account the large diversity of object poses and camera orientations in the datasets and
hard conditions of experiments that are unlikely to happen in real-life scenarios, they
could be interpreted as promising. However, the main purpose of the experiments
was to find the best descriptors for object re-identification.

Standard deviation values of results obtained for the tested classifiers and feature
vectors are similar to each other and low (less than 4 % points). This proves that
results obtained are independent of the selection of the specific objects into classifier
training and validation sets.

Analysing results for used classifiers it may be noticed that kNN classifier achieved
better results using local image features, comparing to other classifiers. In the same
time, it performed worse with combined feature vectors. Averaging over all feature
vectors, RTree classifier performed best for PERSON dataset (54.02 % accuracy)
and kNN—for VEHILCE dataset (54.49 %). On the other hand, ANN classifier per-
formed the worst for both datasets (49.72 % and 48.97 %, respectively). This may
be caused by the training set that contained a few object only, the amount too small
for proper neural network training. Although the accuracy span among classifiers
is small (approx. 5 % point), it is larger than the averaged standard deviation of
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Table 12.12 Object identification results averaged over all classifiers

PERSON dataset VEHICLE dataset

Feature vector Mean (%) Standard Feature vector Mean (%) Standard

deviation (%) deviation (%)

VectorPerson 57.54 2.31 Surf64 60.56 1.31

OpponentSift 56.40 1.65 Surf128 60.44 1.41

CLD 55.77 2.31 Sift 57.88 1.80

CLDTrans 54.05 2.40 OpponentSift 54.68 1.16

VertTrace 53.54 1.95 HistFull 53.85 1.99

Sift 52.54 1.93 OpponentSurf64 52.07 1.37

CMSP 51.72 3.22 MomentInvGPSO 51.38 1.56

MomentCentNorm 51.51 1.55 Hist 50.44 1.63

OpponentSurf64 51.39 1.75 LBPHist 49.17 1.27

EHD 50.19 2.10 VectorVehicle 49.16 1.50

Hist 49.19 2.25 VectorBoth 48.99 1.88

MomentInvGPSO 49.16 2.50 CMSP 48.32 2.21

VectorBoth 48.97 2.57 VertTrace 47.99 1.75

HistFull 48.76 2.09 MomentCentNorm 46.26 1.28

Surf128 48.58 1.69 EHD 45.34 1.53

Surf64 48.12 1.55 CLD 43.26 1.62

LBPHist 45.97 2.25 VectorPerson 42.59 1.69

VectorVehicle 45.04 2.08 CLDTrans 40.80 1.84

results achieved by each classifier (less than 2 % points). Therefore, for object re-
identification tasks, kNN and RTree classifiers seem to be the most suited.

Classification results obtained for different descriptors are coherent with the analy-
sis performed with descriptor evaluation measures (Sect. 12.7.2); the best candidate
descriptors obtained during this analysis turned out to perform better than majority
of other descriptors. Especially, CLD, CLDTrans and OpponentSIFT descrip-
tors provide better results for PERSON dataset and SURF64, OpponentSIFT,
HistFull and MomentInvGPSO—for VEHICLE dataset. The only major
difference between descriptor evaluation and identification results is caused by
VertTrace descriptor that performs very well for PERSON dataset, although
descriptor evaluation measures state otherwise. However, such a performance is con-
sistent with the descriptor extraction method that should provide meaningful clues
for people images.

Furthermore, it is clear that in case of vehicles, local image features outperform
other descriptors, while for people, descriptors based on whole image representations
are leading. This is due to the fact that vehicle images are basically texture-less and
very similar to each other, thus a proper vehicle identification may be performed by
looking at local, distinguishable features only.
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Combined feature vectors, stemmed from descriptor evaluation measures (Table
12.11), turned out to outperform single feature based vectors. In case of PERSON
dataset, VectorPerson achieved the best results (on average), while Vector
Vehicle provided the worst outcome. For VEHICLE dataset, VectorVehicle
feature vector results are at the top (excluding local image features that per-
form the best and cannot be mixed with other descriptors), however four single
descriptors (HistFull, MomentInvGPSO, Hist and LBPHist) provide some
slightly better results; VectorPerson feature vector is penultimate. The vector
VectorBoth proposed as the universal one, is characterized with a mediocre per-
formance; it is better than the combined feature vector not designed for the object
type, but significantly worse than the suited combined feature vector and many single
descriptors. This means that it is hard to provide the content of a feature vector that
would be universal and accurate of all types of objects; the feature vector should be
adjusted to the object type in order to obtain a high performance.

12.8 Conclusions

The problem of object re-identification in multiple cameras required solving the
problems of extracting important features of moving objects from a video stream
and efficient comparing the descriptor sets in order to match the same object in two
cameras. In order to select only distinctive descriptors, a comparative analysis of
many visual features was presented. A wide range of descriptors have been studied,
including the ones based on colour, texture, gradient and local image features. Eval-
uation of the descriptors was performed for two image datasets containing persons
and vehicles. On the basis of the experiments, features that are best suited for object
re-identification in multi-camera environment were selected.

The proposed method of descriptors evaluation is based on the measurement
of direct dissimilarity between pairs of images of objects. This method is supple-
mented with two other methods known from the literature. In order to combine the
results achieved for various datasets, four aggregation measures were introduced.
Their goal is to find descriptors that provide the best results based on the relative
ranking, whereas they are simultaneously characterized with large stability, i.e. their
effectiveness does not depend on the selection of particular objects in the dataset. The
proposed descriptors are evaluated practically with object re-identification experi-
ments involving four classifiers to detect the same object after its transition between
cameras’ fields of view.

Results achieved show that there are no visual descriptors that provide the
best results for both datasets, simultaneously. In case of human images, the best
results were provided by descriptors based on colour, gradient, and image statis-
tical moments. In case of vehicles, the favourable ones are descriptors utilizing
colour information, image statistical moments, and local features. The most uni-
versal descriptors, providing adequate effectiveness both for humans and vehicles,
are the statistical-based ones.
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Future work will focus on automatic classification of object type, and shape
parametrization methods. Both approaches are expected to improve re-identification
results, and to provide means for creating a hybrid “first classify, then re-identify”
approach-based solutions.
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Chapter 13
Improving the Recognition Performance
of Moment Features by Selection

George A. Papakostas

Abstract This chapter deals with the selection of the most appropriate moment
features used to recognize known patterns. This chapter aims to highlight the need
for selection of moment features subject to their descriptive capabilities. For this
purpose, some popular moment families are presented and their properties, making
them suitable for pattern recognition tasks, are discussed. Two different types of
feature selection algorithms, a simple Genetic Algorithm (GA) and the Relief algo-
rithm are applied to select the moment features that better discriminate human faces
and facial expressions, under several pose and illumination conditions. Appropriate
experiments using four benchmark datasets have been conducted in order to inves-
tigate the theoretical assertions. An extensive experimental analysis has shown that
the recognition performance of the moment features can be significantly improved
by selecting them from a predefined pool, relative to a specific application.

Keywords Moment descriptors · Pattern recognition · Feature selection · Genetic
algorithms · Relief algorithm

13.1 Introduction

Nowadays, many advanced intelligent systems take part into humans’ daily life
helping them to satisfy possible professional or entertainment needs. Thus, advanced
human computer/machine interaction [3], human identity authentication [10], bio-
metric authentication [30] and surveillance systems [28], have been developed and
proposed. Such systems mainly consist of a pattern recognition procedure, which
enables the system to interact with the surrounding environment.
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The successful operation of the pattern recognition procedure is mainly based on
the representationmethod of the real patterns in a form suitable to bemanipulated and
managed by the recognition module (classifier). In the case of image based systems
the content of an image pattern has to be transformed in a compact numerical format
(or other) by applying a feature extraction method (FEM). The role of a FEM is
twofold; it performs a dimensionality reduction from the space of image pixels to a
small set of numbers and it captures the discriminative characteristics of the patterns
in order to distinguish them.

A popular feature extraction method for the case of image patterns is the method
of moments. Image moments have proved to be efficient descriptors of the images’
content, with many applications in pattern recognition [2, 22, 25, 36], computer
vision [12, 23], image analysis [33, 37], image watermarking [27] etc. Among the
several moment types, the orthogonal moments [4] constitute the most prominent
moment features (discrimination features based on moments) due to their minimum
redundancy and high reconstruction capabilities. Additionally, their inherent proper-
ties staying invariant under common geometrical transformations (rotation, scaling,
translation, flipping) or incorporating such invariances through coordinates transfor-
mation, give them all the desirable advantages for any invariant pattern recognition
task.

However, a common drawback is the absence of a prior knowledge regarding
the number and the suitability of the used moment features being controlled by
adjusting the order of the orthogonal polynomial used as kernel function. A common
practice is to compute all the moment features up to a certain order and to apply
the entire set of moments as discriminative features. This is an “ad hoc” practice in
some sense, since the significance of each moment component in discriminating the
patterns of the application is not taken into account. A possible solution to this issue
is the application of an additional process that selects, from a large pool, the moment
features that best perform in terms of recognition accuracy.

The aforementioned issue, of the used moments’ appropriateness, constitutes the
main subject of this chapter. Initially, the main properties of some representative
moment features and their representation capabilities are discussed in Sect. 13.2.
Section13.3 focuses on the justification of the need for selection of the moment
features that better describe the distinctive characteristics of the patterns. The selec-
tion of moment features by applying two different types of selection algorithms, a
Genetic Algorithm and the Relief algorithm, is presented in Sect. 13.4. An extensive
experimental study with four benchmark pattern recognition datasets and selected
moment features subsets aims to justify the initial assertions in Sect. 13.5. Finally,
Sect. 13.6 summarizes and discusses the main conclusions.

13.2 Image Moment Features

Geometric moments were the first type of moments introduced in image analysis and
pattern recognition [9]. These moments constitute the projection of the image on the
monomial xnym of (n + m)th order. However, the geometric moments suffer from
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high information redundancy making them less efficient in difficult problems where
more discriminative information needs to be captured, due to monomials’ lack of
orthogonality increasing their information redundancy.

This fact has motivated scientists to develop the orthogonal moments, which
use as kernel functions orthogonal polynomials that constitute orthogonal basis.
The property of orthogonality gives to the corresponding moments the feature of
minimum information redundancy, meaning that different moment orders describe
different image content.

Initially, the orthogonal moments defined in the continuous space were intro-
duced [26], such asZernike, Pseudo-Zernike, Fourier-Mellin andLegendremoments.
Although these moments were widely applied in many disciplines for a long time,
their performance is degraded by several approximation errors [32] generatedmainly
due to coordinates normalization and space granulation procedures.

Recently, enhanced orthogonal moments free from approximation errors and
directly defined inside the discrete coordinate system of the image, were proposed
to overcome the disadvantages of the continuous moments. The most representative
moment families of discrete form are the Tchebichef [19], Krawtchouk [34] and dual
Hahn [14, 37] moments.

It is worth noting that the main research directions across which most scientists
work with, in the field of image moments are the following: (1) the development
of new algorithms that accelerate the overall moments’ computation time, (2) the
improvement of the moments’ accuracy by reducing the quantization and approxi-
mation errors and (3) the embodiment of invariance capabilities into the moments’
computation regarding themajor linear image’s transformations (translation, rotation
and scaling). The last direction is relative to the capabilities of the moment features
to achieve high recognition rates exploiting invariant behaviour under the aforemen-
tioned three basic transformations. Herein, only the description capabilities of the
moment features in terms of recognition accuracy will be studied, without paying
any attention to the invariant versions of them.

The most representative orthogonal moment families of both continuous and dis-
crete coordinate space are hereafter described and analyzed experimentally.

13.2.1 Continuous Orthogonal Moments

In the previous section it has already been mentioned that the first type of orthogonal
moments for images (2-D) was defined in the continuous coordinate space of a
continuous intensity function f (x, y). However, in order to use those moments
with digital images, which are defined in the discrete domain, an approximation
was applied the so-called zeroth order approximation (ZOA). These two different
definitions are as follows:
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Mnm = NF1

∫∫

A

Kernelnm(x, y)f (x, y) dxdy (13.1)

where A is the computation coordinate space, Kernelnm (·) corresponds to the
moment’s kernel (product of two polynomials) consisting of specific orthogonal
polynomials of order n and m, which constitute the orthogonal basis and NF1 is a
normalization factor. The type ofKernel’s polynomials gives the name to themoment
family and thus a wide range of different moment types can be derived.

The zeroth order approximation of Eq. (13.1) for a N × N image having intensity
function f (x, y) has the form:

(ZOA) : Mnm = NF2

N−1∑

x=0

N−1∑

y=0

Kernelnm(x, y)f (x, y) (13.2)

where NF2 is a normalization factor and the double integral of Eq. (13.1) is sub-
stituted by a double summation, by incorporating some approximation error. The
minimization of this error has been the subject of many works [31], which try to
propose a discrete computation form that converges to the theoretical values. Three
representative moment families of this category will be described in details in the
next sections.

13.2.1.1 Zernike Moments

Zernikemoments are themostwidely used family of orthogonalmoments due to their
inherent property of being invariant to an arbitrary rotation of the image they describe.
The main characteristic of this moment family is the usage of a set of complex
polynomials as basis, which forms a complete orthogonal set over the interior of the
unit circle x2 + y2 = 1. These polynomials have the form:

Vnm(r, θ) = Rnm(r)ejmθ (13.3)

where n is a non-negative integer and m an integer subject to the constraints n − |m|
even and |m| ≤ n, r(r = √

x2 + y2) is the length of the vector from the origin to the
pixel and θ

(
θ = tan−1(y/x)

)
is the angle between the vector r and x-axis in counter-

clockwise direction. Rnm(r), are the Zernike radial polynomials [35], in (r, θ) polar
coordinates defined as:

Rnm (r) =
n−|m|

2∑

s=0

(−1)s (n − s)!
s!

(
n+|m|

2 − s
)
!
(

n−|m|
2 − s

)
!

rn−2s (13.4)

Note that Rn(−m)(r) = Rnm(r).
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The Zernike moment of order n with repetition m for a N × N pixels size
continuous image function f (x, y), that vanishes outside the unit disk, has the form:

Znm = n + 1

π

2π∫

0

1∫

0

V∗
nm(r, θ)f (r, θ)rdrdθ (13.5)

where the symbol (∗) corresponds to conjugate.
For a digital image, the integrals are replaced according to the zeroth order approx-

imation Eq. (13.2) by summations to get:

Znm = n + 1

π

N−1∑

i=0

N−1∑

j=0

V∗
nm(rij, θij)f (i, j). (13.6)

The above transformation from continuous to discrete form adds some approxi-
mation errors. For this reason, several attempts [32] to decrease these approximation
errors have been reported in the literature. Moreover, significant work has been done
[7] in the last years towards the fast computation of the radial polynomials (Eq. 13.4)
and the moments (Eq.13.6).

13.2.1.2 Legendre Moments

The (n+m)th order Legendre moment [6] of an intensity function f (x, y), is defined
in [−1,1] as:

Lnm = (2n + 1)(2m + 1)

4

1∫

−1

1∫

−1

Pn(x)Pm(y)f (x, y)dxdy (13.7)

where Pn(x) is the nth order Legendre polynomial defined as:

Pn(x) =
n∑

k=0

αk,nxk = 1

2nn!
(

d

dx

)n

(x2 − 1)n (13.8)

The above Legendre polynomials satisfy the following recursive equation:

Pn(x) = [
(2n − 1)xPn−1(x) − (n − 1)Pn−2(x)

]
/n

P0(x) = 1, P1(x) = x
(13.9)

The recursive formula of Eq. (13.10) permits the fast computation of the Legendre
polynomials by using polynomials of lower order. In case of computing the Legendre
moments of a N × N image, Eq. (13.7) takes the following discrete form:
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Lnm = (2n + 1)(2m + 1)

(N − 1)(N − 1)

N−1∑

x=0

N−1∑

y=0

Pn(x)Pm(y)f (x, y). (13.10)

The computation of the Legendre moments through Eq. (13.10) shows significant
approximation errors as discussed lately and the resulted Legendre moments do not
satisfy the properties of the theoretical ones, by affecting their ability to describe the
image in process. For this reason new algorithms ensuring the accurate computation
of the moments have been proposed [6].

13.2.1.3 Gaussian-Hermite Moments

Gaussian-Hermite moments are continuous moments that have been introduced in
image analysis quite recently by Yang and Dai [33]. The (n + m)th order Gaussian-
Hermite moment is defined in (−∞,+∞) and has the form:

GHnm =
∞∫

−∞

∞∫

−∞
Ĥn(x; σ)Ĥm(y; σ)f (x, y)dxdy (13.11)

where

Ĥn(x; σ) = 1√
2nn!σ√

π
e
(−x2/2σ 2

)
Hn(x; σ) (13.12)

is the weighted Hermite orthonormal polynomial of order n, derived by the ordinary
Hermite polynomial Hn(x; σ), modulated by a Gaussian function with σ variance.
The ordinary Hermite polynomial of order n is defined as:

Hn(x) = n!
�n/2�∑

k=0

(−1)k

k!(n − 2k)! (2x)n−2k (13.13)

The recursive computation of the aboveHermite polynomials is performed accord-
ing to:

Hn+1(x) = 2x Hn(x) − 2n Hn−1(x), for n ≥ 1

H0(x) = 1, H1(x) = 2x (13.14)

TheGaussian-Hermite moments have proved to be of higher image representation
ability [33], compared to some traditional moment families e.g. Legendre and thus
their usage has been rapidly increased in many applications of the engineering life.

Due to this popularity, a faster and more accurate computation algorithm has been
proposed recently [8].
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13.2.2 Discrete Orthogonal Moments

The aforementioned drawback of the continuous orthogonal moments, has motivated
scientists in the field of image moments to develop more accurate moment families.
This goal has been achieved by the introduction of the discrete orthogonal moments
being defined directly on the discrete image coordinates space. Some of the most
representative discrete moment families are discussed herein.

13.2.2.1 Tchebichef Moments

This moment family is the first proposed in the literature by Mukundan et al. [19].
The (n+m)th order Tchebichef moment of a N × N image having intensity function
f (x, y) is defined as:

Tnm = 1

ρ̃(n, N)ρ̃(m, N)

N−1∑

x=0

N−1∑

y=0

t̃n(x)t̃m(y)f (x, y) (13.15)

where t̃n(x) is the nth order normalized Tchebichef polynomial, introduced in order
to ensure numerical stability and moments’ limited dynamical range, defined as
follows:

t̃n(x) = tn(x)

β(n, N)
(13.16)

where the ordinary Tchebichef polynomial of n order has the form:

tn(x) = (1 − N)n 3F2(−n,−x, 1 + n; 1, 1 − N; 1)
=

n∑

k=0

(−1)n−k
(

N − 1 − k

n − k

)(
n + k

n

)(
x

k

)
. (13.17)

In the above formulas, 3F2, is the generalized hypergeometric function, n, x =
0, 1, 2, . . . , N −1, N is the image size and β(n, N) is a suitable constant independent
of x that serves as a scaling factor, such as Nn. Moreover, ρ̃(n, N) is the normalized
norm of the Tchebichef polynomials defined as:

ρ̃(n, N) = ρ(n, N)

β(n, N)2
(13.18)

with

ρ(n, N) = (2n)!
(

N + n

2n + 1

)
, n = 0, 1, . . . , N − 1. (13.19)
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The computation speed of Tchebichef moments can be accelerated by using the
following recursive formula:

nt̃n (x) = (2n − 1) t̃n−1 (x) − (n − 1)
(
1 − (n−1)2

N2

)
t̃n−2 (x)

t̃0 (x) = 1, t̃1 (x) = 2x+1−N
N

(13.20)

Tchebichefmoments haveproved to be superior toZernike andLegendremoments
in describing objects,while their robustness in the presence of high noise levelsmakes
them appropriate to real-time pattern classification and computer vision applications.

13.2.2.2 Krawtchouk Moments

The Krawtchouk orthogonal moments are the second type of discrete moments intro-
duced in image analysis by Yap et al. [34]. The (n + m)th order orthogonal discrete
Krawtchouk moment of a N × N image having intensity function f (x, y) is defined
as:

Knm =
N−1∑

x=0

N−1∑

y=0

Kn (x; p1, N − 1) Km (y; p2, N − 1) f (x, y) (13.21)

where

Kn (x; p, N) = Kn (x; p, N)

√
w (x; p, N)

ρ (n; p, N)
(13.22)

is the weighted Krawtchouk polynomial of n order, used to reduce the numerical
fluctuations presented in the ordinary Krawtchouk polynomials, defined as:

Kn (x; p, N) = 2F1

(
−n,−x;−N; 1

p

)
=

N∑

k=0

αk,n,pxk . (13.23)

In Eq. (13.22) ρ (n; p, N) is the norm of the Krawtchouk polynomials having the
form:

ρ (n; p, N) = (−1)n
(
1 − p

p

)n n!
(−N)n

, n = 1, . . . , N (13.24)

and w (x; p, N) is the weight function of the Krawtchouk moments,

w (x; p, N) =
(

N

x

)
px (1 − p)N−x (13.25)

In Eq. (13.24) the symbol (·)n is the Pochhammer symbol, which for the general
case is defined as (α)k = α (α + 1) . . . (α + k + 1).
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In practice, the computation of the weighted Krawtchouk polynomials is not per-
formed through Eq. (13.22), since this is a very time consuming procedure; instead,
a recursive algorithm [34] is applied:

p (N − n) Kn+1 (x; p, N) = A (Np − 2np + n − x) Kn (x; p, N)

− Bn (1 − p) Kn−1 (x; p, N) (13.26)

where

A =
√

p (N − n)

(1 − p) (n + 1)
, B =

√
p2 (N − n) (N − n + 1)

(1 − p)2 (n + 1) n
(13.27)

and

K0 (x; p, N) =
√

w (x; p, N)

ρ (0; p, N)
, K1 (x; p, N) =

(
1 − x

pN

)√
w (x; p, N)

ρ (1; p, N)

(13.28)
The Krawtchouk moments proved to be effective local descriptors, since they can

describe the local features of an image, unlike the other moment families, which
capture only the global features of the objects they describe. This locality property
is controlled by appropriate adjustment of the p1,p2 parameters of Eq. (13.21).

13.2.2.3 Dual Hahn Moments

The (n + m)th order orthogonal dual Hahn moment [37] of a N × N image having
intensity function f (x, y) is defined as:

Wnm =
b−1∑

x=a

b−1∑

y=a

Ŵ (c)
n (x, a, b) Ŵ (c)

m (y, a, b) f (x, y) ,

n, m = 0, 1, . . . , N − 1 (13.29)

where − 1
2 < a < b, |c| < 1 + a, b = a + N and

Ŵ (c)
n (s, a, b) = W (c)

n (s, a, b)

√
ρ(s)

d2
n

[
Δx

(
s − 1

2

)]
(13.30)

is the nth order weighted dual Hahn polynomial used to reduce the numerical insta-
bilities caused by the ordinary dual Hahn polynomials, defined as:
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W (c)
n (s, a, b) = (a − b + 1)n (a + c + 1)n

n!
3F2 (−n, a − s, a + s + 1; a − b + 1, a + c + 1; 1) (13.31)

for n = 0, 1, . . . , N − 1, s = a, a + 1, . . . , b − 1, where 3F2 is the generalized
hypergeometric function given by:

3F2 (a1, a2, a3; b1, b2; z) =
∞∑

k=0

(a1)k (a2)k (a3)k

(b1)k (b2)k

zk

k! (13.32)

In the above formulas ρ (s) is the weighting function defined in terms of the
gamma function Γ (·) as:

ρ (s) = Γ (a + s + 1) Γ (c + s + 1)

Γ (s − a + 1) Γ (b − s) Γ (b + s + 1) Γ (s − c + 1)
(13.33)

and

d2
n = Γ (a + c + n + 1)

n! (b − a − n − 1)!Γ (b − c − n)
, n = 0, 1, . . . , N − 1. (13.34)

It is obvious from the above equations that the computation of dual Hahn polyno-
mials is a time consuming task, so efficient recursive algorithms need to be used [37].

13.2.3 Image Reconstruction by the Method of Moments

A significant and useful property of the orthogonal moments is their ability to recon-
struct the image they describe. The reconstruction of a N × N image by using
moment orders up to nmax and mmax is described by the following inverse formula
of Eq. (13.2):

f̂ (x, y) =
nmax∑

n=0

mmax∑

m=0

Kernelnm (x, y) Mnm (13.35)

where Mnm is the (n + m)th order moment and Kernelnm(x, y) the kernel function of
the used polynomial family, which is not always the same as Eq. (13.2), e.g. for the
case of the Zernike moments it is equal to the conjugate of Kernelnm(x, y).

It is worth to note that the reconstruction ability of each moment family is an
indication of its information compactness,which is highly connectedwith the amount
of image’s information enclosed by themoment coefficients. An extensive analysis of
the reconstruction performance of the orthogonal moments has been reported in [21].
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13.2.4 Moments Interpretation

The conventional characterization of the orthogonal image moments defines them as
the projections of an image to the orthogonal basis of the used polynomials. However,
this definition encloses more mathematical than engineering or computer science
oriented knowledge. According to a different perspective from an engineering and
computer science point of view, the orthogonal moments represent the similarity
between the image and a number of image patterns formed by the kernel function of
each moment family.

In order to better understand the latter proposition, the image patterns derived from
the kernels of the pre-analyzed moment families need to be calculated. These image
patterns are called basis images and they are computed by applying the following
formula:

Φnm = [
Polyn

]T Polym (13.36)

where Polyn and Polym are vectors with the values of the nth and mth order poly-
nomial for each image pixel. The computed basis images for the case of an 8 × 8
square image having constant intensity equal to 1, for the cases of the continuous
orthogonal moments (up to order 7) are depicted in Figs. 13.1, 13.2 and 13.3.

By examining the basis images of Figs. 13.1, 13.2 and 13.3 it is noticeable that the
patterns provided by each moment type are totally different. The Zernike moments
(Fig. 13.1) generate circular patterns due to the used radial polynomials Eq. (13.2),
while some images do not exist due to the constraints hold between the n and m
parameters.

Fig. 13.1 Basis images of the continuous orthogonal Zernike moments
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Fig. 13.2 Basis images of the continuous orthogonal Legendre moments

Fig. 13.3 Basis images of the continuous orthogonal Gaussian-Hermite (σ = 1) moments

Concerning the basis images of the rest continuous moments it can be noted that
the formed patterns include more details as the moment order increases, while for
low order these patterns are coarse.This observation deals with what is commonly
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Fig. 13.4 Basis images of the discrete orthogonal Tchebichef moments

stated regarding the description capabilities of different moment orders. The corre-
sponding basis images for the case of the discrete orthogonal moments are illustrated
in Figs. 13.4, 13.5 and 13.6.

Fig. 13.5 Basis images of the discrete orthogonal Krawtchouk (p1 = p2 = 0.5) moments
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Fig. 13.6 Basis images of the discrete orthogonal dual Hahn (a = c = 0, b = 8) moments

The local behaviour of the Krawtchouk and dual Hahn moments is obvious from
the above basis images of the discrete orthogonal moments. This constitutes the most
advantageous property of these moments, since they localize the window of interest
in a specific image portion. The previous analysis considering the basis images of
the orthogonal moments highlights the different representation capabilities of each
moment type for different moment orders. According to this study each moment
carries different image’s content and therefore the selection of the moments that
better discriminate some patterns seems to be a reasonable and inevitable process.

13.3 Is There a Need for Moments’ Selection?

Apart from the previous analysis of moments’ representation capabilities, the exe-
cution of a certain experiment regarding moments’ description ability, would be
constructive to further highlight the need for selection of the most appropriate
moment sets.

For this purpose the well known Lena benchmark image with 64 × 64 pixels
size in grayscale format, is reconstructed with various sets of Tchebichef moments
having different orders. The reconstruction results for moment sets consisting of 10
different orders are depicted in Fig. 13.7. It has to be noted that in each reconstructed
image the intensities are normalized into the [0, 255] range for illustration purposes.

From the reconstructed images of Fig. 13.7, it can be deduced that as the
moment order increases more detailed information of the image’s content emerges.
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Fig. 13.7 Lena image reconstruction using several sets of Tchebichef moments of various orders:
a 0–9, b 0–19, c 0–29, d 0–39, e 0–49, f 0–9, g 10–19, h 20–29, i 30–39 and j 40–49

For example, the orders’ range 0–9 (1st row of Fig. 13.7) is able to reconstruct a quite
coarse image’s content,while by adding the next 10orders (0–19) somedetailed infor-
mation is incorporated. This observation is in agreement with the image’s content
described by each moment set (2nd row of Fig. 13.7), where it is obvious that the
higher order moments sets model the high frequency pixels variations.

Considering the above analysis, the moments of low orders are not so useful in
discriminating patterns which differ slightly, since their differences are described in
the highmoment orders. For example, if a second image of the aboveLena benchmark
is constructed with Lena having her eyes closed, the two image patterns could not
be discriminated by the low order moments but high orders are needed.

Therefore, it is evident that the appropriate set of moments, better discriminating
some specified patterns, depends on the application and thus a selection procedure
considering patterns’ modalities is inevitable.

13.4 Moment Features Selection

By examining the recent literature in the field of image moments, one can reach the
conclusion that little work has been done towards the moments’ selection [13, 20].

The main selection method applied to all the aforementioned works is the
Genetic Algorithm (GA), proved as an efficient wrapper selection technique [24]
taking into account the classificationmodel applied to recognize the patterns. Genetic
Algorithms are a great example of evolutionary computation mimicking the evolu-
tionary process that characterizes the evolution of living organisms [5]. However,
the main disadvantage of the GA-based selection is the high computation time need
to converge the algorithm to a suitable solution.
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The aforementioned drawback of theGA-based selectionmakes the filter selection
methods [24] an attractive alternative approach. Thesemethods do not use themining
model (they are independent of the classification model), instead the internal data
properties/characteristics (dependency, correlation etc.) are taken into consideration.

For the sake of the experiments presented in the next section, the GA-based
(wrapper) and the Relief [15] algorithm (filter) selection methods will be applied
for the selection of the proper moment subsets that better discriminate the patterns
of some benchmark pattern recognition datasets. These two algorithms are briefly
discussed in the next sections.

13.4.1 GA-Based Selection

The main operational element of a Genetic Algorithm is the chromosome. The chro-
mosome corresponds to a candidate solution to the problem at hand, consisting of the
set of variables appropriately coded. For the case of the GA-based moment selection
method, the chromosome consists of the indices (Fig. 13.8) of a predefined number of
moments. The indices correspond to the moment id belonging to the moment feature
vector, which is constructed by arranging the computing moments according to the
zigzag scanning operation [11].

Initially, a pool of 100 moment features is constructed by computing all the
moments up to a specific order. Considering that a number of n moments are required
to be selected, the kth chromosome structure of the GA is depicted in Fig. 13.8.

Furthermore, the objective function being minimized by the GA is equal to
the recognition error (Wrong Recognized Patterns/Total Patterns) derived when the
selected moment sets are fed to the classifier model.

13.4.2 Relief Algorithm

Relief algorithm [15] is a popular feature selection method due to its simplicity. It
is based on the computation of the relevance between pairs of feature vectors. The
relevance is measured by applying the L-dimensional Euclidean distance, where L
is the dimension of the feature vectors being compared. This algorithm selects those
features which are relevant subject to a defined threshold in linear time.

Fig. 13.8 Chromosome structure
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13.5 Experimental Study

A set of experiments were conducted in order to study the impact of the selected
moment subsets on the overall recognition performance in several pattern recognition
problems. For this purpose, appropriate software was developed in the MATLAB
2012b environment, while all experiments were executed in an Intel i5 3.3GHz
PC with 8GB RAM. Moreover, four well known benchmark datasets were used
to evaluate the initial assertion of the moments’ selection significance, towards the
improvement of the recognition accuracy.

13.5.1 Benchmark Datasets

Four benchmark datasets are used in order to investigate the selection performance
of the Relief and Genetic Algorithms in selecting moment subsets of various sizes.
The considered datasets are the Yale face recognition dataset [1], a subset [22] of
the Terravic thermal infrared face recognition [18], the JAFFE [17] and RADBOUD
[16] facial expressions datasets. Three sample images (different classes) from each
dataset are depicted in Fig. 13.9, while the properties of each dataset are summarized
in Table13.1.

13.5.2 Datasets Pre-processing

It is worth noting that before computing the moment features, the images need to
be pre-processed in order to remove irrelevant image information (background, hair,
ears, etc.) and to isolate the image’s part, which includes the main face information.
For this purpose, the Viola-Jones face detector [29] is applied being followed by
an ellipse masking [11], for the case of Yale, JAFFE and Radboud datasets. The
aforementioned face detector fails to detect faces in thermal infrared images and

Table 13.1 Benchmark datasets properties

Dataset Type Number of classes Samples/class Total samples

Yale Face recognition 15 11 165

Terravic Thermal infrared face
recognition

10 70 700

JAFFE Facial expression
recognition

7 30, 29, 32, 31, 30, 31, 30 213

Radboud – 8 67 536
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 13.9 Samples of the four benchmarks: a–c Yale, d–f Terravic, g–i JAFFE and j–l RADBOUD

thus the procedure proposed in [22] is applied for the Terravic dataset. The outcome
of this processing stage is a cropped image of 128 × 128 pixels size, which includes
the most relative information to the face image content.
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13.5.3 Simulations

A large scale experimental study has taken place in order to extract useful conclu-
sions towards the improvement of the moment features’ recognition performance
through the application of a selection mechanism. The Genetic Algorithm settings
are: population size 50, maximum generations 30, crossover with probability 0.8 and
2 points, mutation probability 0.01 and Stochastic Universal Approximation (SUS)
selection method. The k-NN classifier (k =1) is selected as the prediction model in
the case of the GA-based selection. Moreover, a 10-fold cross-validation technique
is applied in all datasets, while the moments are selected from a pool of the first 100
(up to 9 order for all moments, except Zernike computed up to 18 order) computed
moments for each moment family.

The corresponding mean recognition rates for each dataset are summarized in
Tables13.2, 13.3, 13.4 and 13.5. The bestmoment family alongwith the best selection
method is presented in these results.

By examining Tables13.2, 13.3, 13.4 and 13.5 it is deduced that in almost all
cases the selected moment features show better or equal, in the worst case, perfor-
mance than the non selected (NoSel.) moments. This outcome enforces the initial
assertion regarding the needs for moment features selection. Moreover, among the
two examined selection methods, the GA-based one seems to be more efficient for
small sized moment subsets (up to 25–30), while the Relief algorithm is superior for
larger subsets (greater than 30–40). This observation can be justified by the fact that
for large moment subsets (greater than 30) the optimization problem, which needs
to be solved by the GA, is quite difficult. One solution to this limitation is to use
more advanced versions of the algorithm, where adaptive crossover and/or mutation
operators could guide the algorithm to more optimum solutions.

Table 13.2 Recognition performance of moment features subsets for the Yale dataset

Yale dataset

Number of moments Moment type Recognition rate (%) Selection method

5 Krawtchouk 76.00 GA

10 Krawtchouk 86.66 GA

15 Zernike 88.00 GA

20 Zernike 87.33 GA

25 Dual Hahn 84.66 GA

30 Krawtchouk 72.66 Relief

40 Krawtchouk 75.33 Relief

50 Krawtchouk 74.66 Relief

60 Krawtchouk 76.66 Relief

70 Dual Hahn 76.00 Relief
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Table 13.3 Recognition performance of moment features subsets for the Terravic dataset

Terravic dataset

Number of moments Moment type Recognition rate (%) Selection method

5 All 100.00 NoSel./GA

10 All 100.00 NoSel./GA

15 All 100.00 NoSel./GA

20 All 100.00 NoSel./GA

25 All 100.00 NoSel./GA

30 All 100.00 NoSel./Relief

40 All 100.00 NoSel./Relief

50 All 100.00 NoSel./Relief

60 All 100.00 NoSel./Relief

70 All 100.00 NoSel./Relief

Table 13.4 Recognition performance of moment features subsets for the JAFFE dataset

JAFFE Dataset

Number of moments Moment type Recognition rate (%) Selection method

5 Legendre 71.66 GA

10 Krawtchouk 79.90 GA

15 Legendre 78.90 GA

20 Krawtchouk 77.47 GA

25 Krawtchouk 69.33 GA

30 Krawtchouk 53.92 GA

40 Dual Hahn 47.35 Relief

50 Zernike 46.88 Relief

60 Gaussian-Hermite 46.80 Relief

70 Legendre 46.88 NoSel.

From the above results, it can be observed that the increase of the number of
moments used to discriminate the patterns does not always improve the recognition
accuracy. In almost all the cases a subset of 10–25 moment features is able to achieve
the highest recognition rate.

In order to draw a conclusion regarding the optimal settings, ensuring the best
solution to each dataset, the most effective configuration in each case is summarized
in Table13.6.

The results ofTable13.6 showagain the outperformanceof theGA-based selection
method over the Relief one, while its recognition accuracy is in agreement with the
state of the artmethods [11, 22, 25]. As far as the performance of themoment families
is concerned, it is obvious that Zernikemoments are themost efficient family, while a
moments’ subset of size lower than 25 is adequate to ensure an acceptable recognition
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Table 13.5 Recognition performance of moment features subsets for the Radboud dataset

Radboud dataset

Number of moments Moment type Recognition rate (%) Selection method

5 Zernike 48.21 GA

10 Zernike 55.75 GA

15 Zernike 61.96 GA

20 Zernike 61.38 GA

25 Zernike 62.14 GA

30 Zernike 54.10 GA

40 Zernike 53.30 Relief

50 Zernike 53.66 Relief

60 Zernike 53.30 Relief

70 Zernike 51.47 No Sel./Relief

Table 13.6 Best configuration for each dataset

Dataset Number of moments Moment type Recognition rate (%) Selection method

Yale 15 Zernike 88.00 GA

Terravic 5 All 100.00 No Sel./GA

JAFFE 10 Krawtchouk 79.90 GA

Radboud 25 Zernike 62.14 GA

accuracy. However, Krawtchouk moments show a significant performance leading
to the conclusion that the locality property plays an important role to capture the
local characteristics of the patterns. More work has to be done in this direction of
describing the local information by the method of moments.

13.6 Conclusions

A detailed discussion of the main properties of the most representative image orthog-
onal moment families was presented in the previous sections. Through an in depth
analysis of the representation capabilities of the orthogonal moments, the need for
selection of moment features for improved recognition accuracy is highlighted.
Finally, an extensive experimental study on well known benchmark datasets has
resulted in useful conclusions regarding the initial assertion of moment’s selec-
tion and the description capability of each moment family. The GA-based selection
method has shown superior performance to the Relief algorithm, mainly for low
number of moments, while for high number of features the latter algorithm seems to
be the suitable choice.
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Moreover, the Zernike moments seem to be the most discriminant moment family
compared to other moments, since they recognized the patterns of the three datasets
with the highest rate. Also, one additional outcome of the experiments was the out-
performance of the Krawtchouk moments to the JAFFE dataset. This result set the
basis of a future study regarding the selection of moments belonging to different
moment families, in order to take advantage of the properties each family presents.

Conclusively, an initial claim was set and proved both theoretically and
experimentally, by establishing the selection of moment features as a mandatory
processing step of any modern pattern recognition system.
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Chapter 14
Signature Selection for Grouped Features
with a Case Study on Exon Microarrays

Sangkyun Lee

Abstract When features are grouped, it is desirable to perform feature selection
groupwise in addition to selecting individual features. It is typically the case in
data obtained by modern high-throughput genomic profiling technologies such as
exon microarrays, which measure the amount of gene expression in fine resolution.
Exons are disjoint subsequences corresponding to coding regions in genes, and exon
microarrays enable us to study the event of different usage of exons, called alterna-
tive splicing, which is presumed to contribute to development of diseases. To identify
such events, all exons that belong to a relevant gene may have to be selected, perhaps
with different weights assigned to them to detect most relevant ones. In this chapter
we discuss feature selection methods to handle grouped features. A popular shrink-
age method, lasso, and its variants will be our focus, that are based on regularized
regression with generalized linear models. Data from exon microarrays will be used
for a case study.

Keywords Penalized regression · Lasso · Group lasso · Sparsity · Convex
regularization

14.1 Introduction

Group information of features provides us a way to perform feature selection in
different resolutions. That is, not only individual features (high resolution) but also
groups comprising these features (low resolution) can be considered for selection
when they are relevant. Examples of group information include:

• Population census data, where each record consists of demographic, economic and
social features. Grouped feature selection may identify that demographic features
are important for predicting years in education,
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• Measurements from sensors deployed in different parts of a machine. A task will
be finding parts that affect sensitivity in operation, as well as individual sensors
that matter inside,

• Gene expression measured in exon level. Exons correspond to coding regions of
genes, and they are translated to proteins that are functional in cells. Identifying
clinically important genes, as well as detecting their different usage of exons, is
an important task in biomedical studies,

• Genes that belong to different cellular components, different biological functions,
or different molecular functions according to the Gene Ontology.1

In the examples above, groups of features are used to represent associations of
features that come from our prior knowledge.

Another type of groups comes from our design on features, for instance, when
we perform feature selection on multinomial covariates. Suppose that a feature z ∈
{A, B, C} is represented with dummy variables x1 and x2, so that (x1, x2) = (0, 1),
(1, 0), and (1, 1) representA,B, andC, respectively.When z is relevant, then it would
make sense to select both x1 and x2; otherwise, both variables should not be selected.
Therefore dummy variables that correspond to the same multinomial variable have
to be considered as a group.

For both scenarios, the samemethods can be applied for grouped feature selection.
We will focus on the first type where groups represent our knowledge on features.

In the chapterwe discuss feature selectionmethods that can extract features in both
individual and group levels. We focus on a popular shrinkage method called lasso,
and its extensions to handle grouped features. These methods are often referred to as
embedded feature selection methods in machine learning, or penalized (regularized)
regression methods in statistics. A characteristic of them is that feature selection is
integrated with learning predictors, so there is no need to perform each separately.

14.1.1 Regularized Regression

The methods we will discuss in this chapter can be described as optimization
problems with a canonical convex minimization formulation,

min
β∈Rp,β0∈R

f (β, β0) + Ψ (β). (14.1)

Here the first part f (β, β0) of the objective function represents the amount of loss or
error by making incorrect predictions. The second part Ψ (β) is called a regularizer
or a penalty term, which is used to induce certain structure (for example, sparsity)
on the coefficient vector β.

1 http://www.geneontology.org

http://www.geneontology.org


14 Signature Selection for Grouped Features 331

14.1.1.1 Loss Functions

Suppose that we have a data set composed of n examples {(xi, yi)}n
i=1, where xi ∈ R

p

is an input vector with p features and yi is a response of xi. We consider loss functions
f (β, β0) that involve generalized linear models. Popular examples include:

• Ordinary least squares. This loss function is used for fitting a linear model to
real-valued responses yi ∈ R, i = 1, 2, . . . , n:

f (β, β0) = 1

2

n∑

i=1

(yi − βT xi − β0)
2. (14.2)

Here the inner product between two vectors β and xi has been represented as
βT xi =∑p

j=1 βjxi
j, where βj is the jth element of β.

• Logistic regression. The loss function is for classifying binary responses yi ∈
{−1,+1}:

f (β, β0) =
n∑

i=1

log
[
1 + exp

{
−yi(βT xi + β0)

}]
.

• Cox regression. This loss function is for the case where responses are given by
yi = (ti, ei): ti ∈ R+ is the the survival time of the ith patient (whose genetic
profile is given by a vector xi) and ei ∈ {0, 1} is an indicator variable (ei = 1 if
the ith patient had an event, ei = 0 otherwise). It is defined by

f (β, β0) = −
∑

i∈E

log
exp(βT xi)

∑
j∈Ri

exp(βT xj)
,

where E is an index set of all patients who have events, and Ri is an index set of
patients who are at risk at the time ti. This is the negative partial log-likelihood
function due to the proportional hazard model proposed by [6], which typically
appears in survival analysis.

A common property of the three loss functions above is the convexity of f in its
both arguments, β ∈ R

p and β0 ∈ R. A function f (β) is convex in R
p if for any

α ∈ [0, 1],

f (αβ + (1 − α)β ′) ≤ αf (β) + (1 − α)f (β ′), ∀β,β ′ ∈ R
p.

This is a desirable property, together with the convexity of the regularizer Ψ , since
it facilitates finding a minimizer of (14.1).

In our discussion, we only require that f is convex and continuously differen-
tiable, except that in some derivations we use the f of the ordinary least squares
because it leads to the simplest derivation.
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14.1.1.2 Regularizers

A popular choice of the regularizer Ψ (β) in (14.1) to perform feature selection
(without considering feature groups) is the �1 norm of β, which is also known as the
lasso penalty [23],

Ψ (β) := λ‖β‖1 = λ

p∑

j=1

|βj|,

for a given λ > 0. This is a convex function in β. The bias term β0 is usually not
included in regularization. A property of the lasso penalty is that when a feature is
not important for fitting responses with respect to a given value of λ, the lasso penalty
sets the corresponding coefficient in β to the exactly zero value. So there is no need
for thresholding to filter out irrelevant features after finding solutions of (14.1). In
fact, the value of λ plays a similar role to a threshold value, as we will see later.

When features are correlated, lasso tends to select only few out of the correlated
features (in an unstable way, especially when p � n). This is not desirable when all
correlated features may matter and therefore have to be selected. A remedy for this
behavior is to use the elastic net regularization [26], which augments Ψ above as
follows,

Ψ (β) := λ
{
α‖β‖1 + (1 − α)‖β‖22

}
. (14.3)

Here ‖β‖2 is the �2 norm (the Euclidean norm) of β. The parameter α ∈ [0, 1]
controls the mixing of the �1 and �2 regularizers: the case of α = 0 is often referred
to as the ridge regression, and for α = 1 it becomes the lasso penalty. Elastic net
tends to select all correlated features when they are relevant. So correlated groups of
features will be identified, but they may not correspond to known groups of features.

The rest of this chapter is organized as follows. In Sect. 14.2, the extensions of
lasso, namely thegroup lasso (Sect. 14.2.1), the overlappinggroup lasso (Sect. 14.2.2),
and the sparse group lasso (Sect. 14.2.3) algorithms are introduced, discussing their
properties anddifferences.Acase studyon exonmicroarray data follows inSect. 14.3,
demonstrating a possible use of grouped feature selection in bioinformatics. Some
technical issues of the methods are discussed in Sect. 14.4, followed by conclusions
in Sect. 14.5.

14.2 Regularized Regression Methods for Grouped Features

When group information on features is available, we can impose it as an extra
constraint for feature selection. Suppose that p features are grouped into K groups,
where we represent each group of G1, G2, . . . , GK as a subset of feature indices, that
is, Gk ⊂ {1, 2, . . . , p}. For simplicity we assume that all features have their groups
assigned, in other words ∪K

k=1Gk = {1, 2, . . . , p}.
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To facilitate our discussion, we denote a subvector of p dimensional vector β that
corresponds to a group Gk by

βGk := (βj)j∈Gk ∈ R
|Gk |.

Here we consider a fixed permutation of elements in βGk given by the sorted indices
in Gk in an increasing order. For example, if β = (a, b, c)T and G1 = {1, 3}, then
βG1 = (a, c)T , not (c, a)T . Also, the cardinality of a finite setGk has been denoted by
|Gk|. The definitions of norms and inner products apply naturally on these subvectors,

for example ‖βGk ‖2 =
(∑

j∈Gk
(βj)

2
)1/2

and βT
Gk

xGk =∑j∈Gk
βjxj.

14.2.1 Group Lasso

Group lasso [24] is an extension of the lasso penalty discussed in Sect. 14.1.1 for
grouped features. In group lasso we solve the following optimization problem,

min
β,β0

f (β, β0) + ΨG(β), ΨG(β) := λ

K∑

k=1

‖βGk ‖2. (14.4)

Here note that the �2 norm in summation is not squared: otherwise ΨG becomes
equivalent to λ‖β‖22 when groups are not overlapping.

The regularizer ΨG that replaces the �1 norm of β in lasso is often referred to
as the group �1/�2 norm. It computes an �1 norm over groups, and an �2 norm for
each group. The reason behind the name becomes obvious when we reformulate ΨG

defining a new vector z,

z :=

⎡

⎢⎢⎣

‖βG1‖2
...

‖βGK ‖2

⎤

⎥⎥⎦ , ΨG(β) = λ

K∑

k=1

∣∣ ‖βGk ‖2
∣∣ = λ‖z‖1.

That is, ΨG is an �1 norm over groups, and an �2 norm for each group. As a result,
group lasso selects few groups that are relevant for a given task as in lasso. If a group
of features is chosen, then all of the features inside are typically selected. Otherwise,
all corresponding features will have zero coefficients assigned.

14.2.1.1 Computation of Solutions

To see how group lasso performs groupwise feature selection, we need to understand
the characterizations of its solutions. In this section we consider group lasso defined
with the loss function of the ordinary least squares discussed in Sect. 14.1.1.1.
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Before discussing the details of the topic, we simplify the expression of f by
defining a collection of responses y = (y1, y2, . . . , yn)T ∈ R

n and a collection of
input vectors as rows in a matrix X = (x1, x2, . . . , xn)T ∈ Rn×p. Omitting the bias
term β0 for further simplification, we can rewrite the expression in (14.2) as,

f (β) = 1

2
‖y − Xβ‖22. (14.5)

We denote the column submatrix of X corresponding to a group Gk by XGk . As in
[24], we further assume that the columns in XGk are orthonormal, that is, XT

Gk
XGk =

I|Gk |, an identity matrix of dimension |Gk| × |Gk|. Then the group lasso problem
formulation in (14.4) defines a convexminimization problem for which solutions can
be characterized in a closed form by first-order optimality conditions, as shown in the
following theorem. The theorem is from [24], except for that our proof providesmore
rigorous arguments on how optimality conditions lead to the conclusion, compared
to the original proof.

Theorem 1 For a group lasso problem defined with f (β) = 1
2‖y − Xβ‖22 and

XT
Gk

XGk = I|Gk | for k = 1, 2, . . . , K, an optimal solution β is given by

βGk =
(
1 − λ

‖sk‖2
)

+
sk, k = 1, 2, . . . , K,

where sk := XT
Gk

(
y − Xβ−Gk

)
, β−Gk is a vector with the same elements as β except

for having zeros in the components at j ∈ Gk, and (·)+ := max(0, ·).
Proof For βGk 
= 0 the objective function of (14.4) is differentiable, and therefore
the first-order optimality condition is,

−XT
Gk

(y − Xβ) + λ
βGk

‖βGk ‖2
= 0,

Since XT
Gk

XGk = I|Gk |, this is equal to

− XT
Gk

(
y − Xβ−Gk

)+
(

λ

‖βGk ‖2
+ 1

)
βGk = 0. (14.6)

Suppose that βGk = 0 is optimal. We can consider the gradients of f (β) + ΨG(β) at
two nonzero points, β + η and β − η where η := (0, . . . , 0, ε, . . . , ε, 0, . . . , 0)T is
a p dimensional vector with ε > 0 at components j ∈ Gk . Since βGk = 0 is optimal,
the two gradients must satisfy

−sk +
(

λ

ε
√|Gk | + 1

)
ηGk > 0, −sk −

(
λ

ε
√|Gk| + 1

)
ηGk < 0.
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Since f (β) is continuously differentiable, tending ε → 0 gives us
∣∣(sk)j

∣∣ ≤ λ/√|Gk| for j = 1, . . . , |Gk |. This implies that

‖sk‖2 ≤
⎛

⎝
∑

j∈Gk

λ2/|Gk|
⎞

⎠
1/2

= λ. (14.7)

On the other hand, suppose that βGk 
= 0 is optimal. From (14.6), we get

sk =
(

λ

‖βGk ‖2
+ 1

)
βGk ⇒ ‖βGk ‖22 + 2λ‖βGk ‖2 + λ2 − ‖sk‖22 = 0.

Since ‖βGk ‖2 ≥ 0 we obtain ‖βGk ‖2 = ‖sk‖2 − λ. Replacing ‖βGk ‖2 above and
rearranging terms, we have

βGk =
(
1 − λ

‖sk‖2
)

sk .

Combining with the condition in (14.7), the claim follows. �

As we can see, the ratio between λ and the norm of a partial gradient vector
‖sk‖2 determines whether to select the corresponding group (‖sk‖2 > λ) or not
(‖sk‖2 ≤ λ). That is, the value of λ acts like a threshold for choosing groups.

It is also worthwhile to note that the optimal subvector βGk for a selected group
Gk is not necessarily sparse, since there is no mechanism that pushes its coefficients
to the zero values, as we can see from the theorem above. Therefore group lasso may
not be appropriate for finding features not only groupwise but also within groups,
for instance to detect alternative splicing events from exon microarrays.

14.2.1.2 Scaling of Regularization

In group lasso (14.4), we can consider rescaled versions of the regularizer ΨG,

ΨG(β) = λ

K∑

k=1

wk‖βGk ‖2,

where a scaling factor wk is defined for each group k = 1, 2, . . . , K . Scaling factors
can be defined according to applications. Two examples include:

• wk = √|Gk|: without scaling, each term ‖βGk ‖2 in (14.4) penalizes the square root
of the degree of freedom to present a groupGk . This scaling can be used to penalize
degrees of freedom, not square roots of them [16, 24]. This setting is suitable when
multinomial variables are represented as groups of dummy variables.

• wk = 1/
√|Gk|: without scaling, the order of magnitude of ‖βGk ‖2 is O(

√|Gk|),
and therefore larger groups tend to be penalized more than smaller ones in (14.4).
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In other words, smaller groups are more likely to be selected. When this behavior
is not preferable, we can use this scaling to impose equal amounts of regularization
on groups of different sizes.

14.2.2 Overlapping Group Lasso

So far, there has been no consideration of overlaps in groups. Graph lasso discussed
in Sect. 14.2.1, however, may lead to incorrect feature selectionwhen groups overlap.

Let us take a simple example from [12], with β = (β1, β2, β3)
T , G1 = {1, 2},

and G2 = {2, 3}. When we select none or both of G1 and G2, there is no issue. But
selecting only one of them is not permitted by the group lasso regularizer ΨG. That
is, if we select G1 (assigning nonzero values to β1 and β2), then G2 must be selected
as well (since β2 
= 0 implies that ‖βG2‖2 
= 0). In fact, selecting either G1 or G2
is allowed only for a very rare case when the optimal value for the shared variable
is β2 = 0. Theorem 1 tells that such case could happen when G1 is selected and
∂f (β,β0)

∂β2
= 0. However, this is not a property of the regularizer ΨG: it is not capable

of selecting only one of overlapping groups.
For the case of overlapping groups, we can use an alternative regularizer proposed

by [12]. The idea is rather simple: we consider a separate coefficient vector γ k ∈ R
p

for each group k = 1, 2, . . . , K , which can have nonzero values only for components
at j ∈ Gk . Using these vectors, the regularizer for overlapping groups is defined by

ΨO(β) := λ inf∑K
k=1 γ k=β

K∑

k=1

‖γ k‖2. (14.8)

Applying this to our simple example above, we have γ 1 = (γ 1
1 , γ 1

2 , 0)T for
G1 = {1, 2} and γ 2 = (0, γ 2

2 , γ 2
3 )T for G2 = {2, 3}. Now only one of the groups

can be selected since we have separate variables γ 1
2 and γ 2

2 for the second feature,
and therefore choosing γ 1

2 does not necessarily imply ‖γ 2‖2 > 0, for instance β is
determined by β = γ 1 + γ 2.

14.2.2.1 Structure Induced by ΨG and ΨO

The difference between ΨG and ΨO can be understood clearer by investigating the
structure induced by them on the coefficient vector β. In particular, we discuss the
set of nonzero components in β, {j : βj 
= 0}, which is equal to the set of features to
be selected.

In case of ΨG from group lasso, we have

{j : βj 
= 0} ⊂
( ⋃

k:βGk =0

Gk

)c

.
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As we discussed, in group lasso it is not allowed to select a group which has any
shared feature with a group that is not selected. That is, feature indices in selected
groups cannot belong to any of unselected groups, as stated in the expression above.
For an example, consider three groups G1 = {1, 2, 4}, G2 = {2, 3} and G3 = {4, 5}
with p = 5. Suppose that G2 and G3 are not selected. Then the only possible option
is to select the 1st feature, that is, the set of candidate features is {1} ⊂ (G2 ∪ G3)

c.
On the other hand, in case of ΨO for overlapping groups,

{j : βj 
= 0} ⊂
⋃

k:γ k 
=0

Gk .

This is indeed obvious since ΨO allows for selecting any group whenever its asso-
ciated γ k vector is nonzero. In the example above with three groups, we can select
any combination of G1, G2 and G3.

Note that when groups define a partition of features, that is, there is no overlap
amongst groups, then the two expressions above become the same. Therefore it is
advised to apply group lasso in Sect. 14.2.1 only if there is no overlap, or if there
exists overlap but the set of features that can be selected fits particular purposes.

14.2.2.2 Reformulation to Group Lasso

In the definition of the overlapping group lasso regularizer in (14.8), the coefficient
vector β is expressed as the summation of all γ k vectors over group indices k =
1, 2, . . . , K , that is,

β =
K∑

k=1

γ k .

This result can be used in combination with the loss function f (β, β0) discussed in
Sect. 14.1.1.1. Taking the loss function for logistic regression, we get

f (γ 1, . . . , γ k, β0) :=
n∑

i=1

log

[
1 + exp

{
−yi

(
K∑

k=1

(γ k)T xi + β0

)}]
.

This can be further simplified by constructing two new vectors,

γ̃ :=
(
(γ 1

G1
)T , (γ 2

G2
)T , . . . , (γ k

GK
)T
)T

,

x̃i :=
(
(xi

G1
)T , (xi

G2
)T , . . . , (xi

GK
)T
)T

.

Here γ̃ is a collection of nonzero components in {γ k}K
k=1 vectors, and x̃i is a copy

of an input vector xi with features replicated if they belong to multiple groups. Then
the loss function can be rewritten as,
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f (γ̃ , β0) :=
n∑

i=1

log
[
1 + exp

{
−yi

(
γ̃ T x̃i + β0

)}]
.

Finally, we define new groups Hk := {j | ∑k−1
s=1 |Gs| + 1 ≤ j ≤ ∑k

s=1 |Gs|} for
k = 1, 2, . . . , K . Then the optimization problem for overlapping group lasso can be
written in the same form as that of group lasso in (14.4),

min
γ̃ ,β0

f (γ̃ , β0) + λ

K∑

k=1

‖γ̃ Hk
‖2.

Therefore, the same algorithm for group lasso can be applied for overlapping group
lasso.

14.2.3 Sparse Group Lasso

In group lasso (Sect. 14.2.1) andoverlappinggroup lasso (Sect. 14.2.2), the coefficient
subvectors corresponding to selected groups are not necessarily sparse, as briefly dis-
cussed in Sect. 14.2.1.1. This would be undesirable when we try to identify only a
few important features inside selected groups.

An alternative is the sparse group lasso proposed by [22]. It tries to induce spar-
sity in coefficients not only groupwise but also within groups, by using a modified
formulation of group lasso in (14.4):

min
β,β0

f (β, β0) + λ{α‖β‖1 + (1 − α)ΨG(β)}. (14.9)

Here α ∈ [0, 1] is a parameter that determines the mixing of the �1 and the group
(ΨG, �1/�2) norms, similarly to a constant in elastic net (14.3). Overlapping group
lasso discussed in Sect. 14.2.2 can be extended in a similar fashion, by augmenting
its objective function with an �1 term.

14.2.3.1 Computation of Solutions

Similarly to group lasso, sparse group lasso in (14.9) defines a convex minimiza-
tion problem for which sufficient and necessary conditions can be characterized by
optimality conditions.

To understand the optimality conditions, we need the notion of subgradient. For
a function h(β), g ∈ R

p is a subgradient for h at β ∈ Rp if

h(β ′) ≥ h(β) + gT (β ′ − β), ∀β ′ ∈ R
p.

If h is a convex function onRp, it has a subgradient at every point inRp. For example,
h(β) = ‖β‖1 is a convex function and its subgradient g at β is defined by
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gj ∈
⎧
⎨

⎩

{+1} if βj > 0,
{−1} if βj < 0,
[ − 1,+1] if βj = 0.

Note that the expression on the right defines a set of subgradients, not a single
subgradient, since when βj = 0 we can select any number in [−1,+1] for the jth
element of g. A set of subgradients is referred to as a subdifferential.

For simple notation, we define a vector-valued signum function sgn: Rp →
{−1, 0,+1}p so that the jth element of sgn(β) is +1 if βj > 0, −1 if βj < 0,
and 0 otherwise. We also define a vector-valued soft threshold function soft(v, t) for
a vector v and a scalar t, so that (soft(v, t))j = sgn(vj)max{0, |vj| − t}.

The next theorem summarizes the optimality conditions for sparse group lasso.
The theorem is from [22], however, our proof is much simpler and provides clearer
arguments regarding optimality conditions.

Theorem 2 For a sparse group lasso problem (14.9) defined with f (β) = 1
2

‖y − Xβ‖22 in (14.5) and XT
Gk

XGk = I|Gk | for k = 1, 2, . . . , K, an optimal solu-
tion β is given by

βGk =
(
1 − λ

‖soft(sk, λα)‖2
)

+
soft(sk, λα), k = 1, 2, . . . , K,

where sk := XT
Gk

(
y − Xβ−Gk

)
, β−Gk is a vector with the same elements as β except

for having zeros in the components at j ∈ Gk, and (·)+ := max(0, ·).
Proof For βGk 
= 0, the objective function of (14.9) is differentiable, and therefore
the first-order optimality condition can be written using XT

Gk
XGk = I|Gk | and sk =

XT
Gk

(
y − Xβ−Gk

)
,

− sk + λαgGk +
(

λ(1 − α)

‖βGk ‖2
+ 1

)
βGk = 0. (14.10)

Here gGk is a subgradient of ‖β‖1 for the components in Gk .
Suppose that βGk

= 0 is optimal. Then the gradients of the sparse group lasso
objective in (14.9) evaluated at two nonzero points, β + η and β − η, where η :=
(0, . . . , 0, ε, . . . , ε, 0, . . . , 0)T is a p dimensional vector with ε > 0 at components
j ∈ Gk , must satisfy

⎧
⎨

⎩
−sk + λαgGk +

(
λ(1−α)

ε
√|Gk | + 1

)
ηGk > 0,

−sk + λαgGk −
(

λ(1−α)

ε
√|Gk | + 1

)
ηGk < 0.

Tending ε → 0, we obtain
∣∣(sk + λαgGk )j

∣∣ ≤ λ(1 − α)/
√|Gk| for j = 1, . . . , |Gk |.

This implies that together with the property of gGk at βGk = 0,

‖soft(sk, λα)‖2 ≤ ‖sk + λαgGk ‖2 ≤ λ(1 − α). (14.11)
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On the other hand, suppose that βGk 
= 0 is optimal. From (14.10), we get

sk − λαgGk =
(

λ(1 − α)

‖βGk ‖2
+ 1

)
βGk .

Here, we note that (βGk )j = 0 is optimal whenever |(sk)j| ≤ λα since it satisfies an
equality in the multiple equations above. Therefore we have

soft(sk, λα) =
(

λ(1 − α)

‖βGk ‖2
+ 1

)
βGk .

This gives that ‖βGk ‖2 = ‖soft(sk, λα)‖2 − λ(1− α). Replacing ‖βGk ‖2 above and
rearranging terms, we get

βGk =
(
1 − λ(1 − α)

‖soft(sk, λα)‖2
)
soft(sk, λα).

Combining with the condition in (14.11), we obtain the claim. �
Theorem 2 tells that there are two possibilities for a component βj, j ∈ Gk , to

have the zero value:

• ‖soft(sk, λα)‖ ≤ λ : in this case, the (·)+ part of the expression ofβGk inTheorem2
becomes zero, and therefore the entire subvector βGk (including βj) becomes the
zero vector. If this is the case, the group Gk is not selected,

• ‖soft(sk, λα)‖ > λ and |(sk)j| ≤ λ: in this case the group Gk is selected, but
the component j ∈ Gk is not selected because (soft(sk, λα))j = 0, and therefore
βj = 0.

Comparing to Theorem 1 for group lasso in Sect. 14.2.1, group lasso has a similar
property to the first one above for groupwise selection, but lacks the second property
for within group feature selection.

14.3 A Case Study on Exon Microarray Data

As a case study of selecting grouped features, we consider identifying alternative
splicing of genes from high-throughput genomic data. We use a specific type of data
acquired by using the GeneChip Human Exon 1.0 ST Arrays from Affymetrix,2 a
popular platform for profiling gene expression of entire human genome in exon level.

For background information, a gene is a sequence inDNA (deoxyribonucleic acid)
composed of four letters A, T, G, and C, and it has coding regions (called exons) and
non-coding regions (called introns). After its sequence is copied into a messenger
RNA (ribonucleic acid), only coding regions are combined together and later used to

2 http://www.affymetrix.com

http://www.affymetrix.com
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Fig. 14.1 An example of alternative splicing. A gene consists of coding regions (dark exons) and
non-coding regions (white introns). Exons are combined together by splicing mechanism to create a
normal transcript. In case of alternative splicing, transcripts are created with different use of exons

create functional units, proteins. This process of collecting exons is called splicing
in genomics.

Alternative splicing refers to the events of using exons differently than normal
cases in splicing. Figure14.1 shows a pictorial example of alternative splicing. Clas-
sical gene microarrays have probes to measure the amount of transcripts (mRNAs)
created as a result of splicing, and therefore cannot capture alternative splicing events.
Exon microarrays can capture alternative splicing. Different usage of exons can be
caused by several reasons including mutations in exon sequences, and it has impli-
cations in development of cancers, for example.

Exon microarrays measure the expression level of individual exons, and these are
grouped as genes as we can see in Fig. 14.1. So it would make sense to select all
exons that belong to the same gene when they are relevant. But one may also want to
assign different weights on exons, to detect alternative splicing events if any exists.
Selecting individual exons without considering their grouping as genes also remains
as an option, but it is more likely to overfit given data when p is large since it is not
constrained by group information.

14.3.1 Data

A combination of two microarray data sets available at Gene Expression Omnibus
(GEO),3 with accession numbers GSE21713 and GSE32664 [9, 19], have been used
in our case study. These contain total 113 microarrays from neuroblastoma patients.
Neuroblastoma is one of the most common solid cancer in children who are usually
younger than two years. Both GEO data sets have been obtained using the same
microarray platform, the Affymetrix Human Exon v1.0 ST arrays.

As up to four probes are used to measure the expression of a single exon, raw
measurements in microarrays have to be summarized and normalized. For these
we apply the frozen RMA (fRMA) algorithm by [14], which processes individual
microarrays using information from predefined global reference arrays. Low quality

3 http://www.ncbi.nlm.nih.gov/geo

http://www.ncbi.nlm.nih.gov/geo
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arrays with the median GNUSE error scores [15] larger than a threshold value of 1.2
have been discarded, resulting in total 92 microarrays for analysis.

After applying the fRMA algorithm, we choose the “core” exons for which we
have the best evidence being a coding region, with unique hybridization, unique
localization on human chromosomes, and genes assigned, according to the NetAffx
probeset annotation v33.1.4 This resulted in total 228476 features. Finally, the top
2000 exon features with largest standard deviation values have been chosen for
analysis.

To summarize, our data set consist of n = 92 patients with p = 2000 features
corresponding to exons. Each patient has a tumor stage out of five stages (1, 2, 3, 4,
and 4s) assigned. We categorize the stages into low risk (yi = −1, stages 1, 2, and
4s) and high risk (yi = +1, stages 3 and 4), so to create a binary classification task.
The ratio of the two categories is about 50:50.

In this data set, the 2000 exon features are grouped into K = 845 genes.
Figure14.2 shows the sizes of groups, that is, the number of exons (y-axis) in each
gene (a few gene names are on the x-axis). About 88% of genes consist of 1–4 exons,
whereas a gene C8 has the maximal size (30 exons).

14.3.2 Algorithms for Comparison

The following three algorithms are to be compared, with the loss function for logistic
regression, in order to identify features that are important for classifying high and
low risk categories.

Fig. 14.2 The number of exons in genes. As genes consist of exons, this shows the sizes of groups.
Most of the groups have 1–4 features

4 http://www.affymetrix.com/analysis/downloads/na33/

http://www.affymetrix.com/analysis/downloads/na33/
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LASSO
The regularized regression discussed in Sect. 14.1.1 is used to select individual fea-
tures, with the lasso regularizer. The glmnet R package [10] was used for our
experiments.

GL
The group lasso algorithm discussed in Sect. 14.2.1 is used to select grouped features.
For solving group lasso problems, the grplasso [16] or the SGL [22] R packages
can be used. The latter is designed for sparse group lasso, but it can solve group
lasso problems by specifying the parameter α = 0 so that the sparse group lasso
formulation in (14.9) will be optimizedwithout an �1 term.We used the SGL package
for our experiments.

SGL
The sparse group lasso discussed in Sect. 14.2.3 is used to perform both groupwise
and within-group individual feature selection. For analysis we use the SGL package.
Note that the parameter α in (14.9) can be chosen to solve the lasso problem by
setting α = 1, or the group lasso problem by α = 0. An optimal value of α can be
determined for instance by cross validation, searching on a two dimensional grid for
both λ and α. For the purpose of demonstration, we used a fixed value α = 0.95.

14.3.3 Comparison of Performance

14.3.3.1 Prediction Performance

Since the entire data set is rather small (n = 92), instead of dividing the set into a train-
ing and a test set once, we performed random subsampling: we repeated the process
of choosing 70% of random patient indices (without replacement) for training and
taking the rest for testing. For each trial, we measured the prediction performance
on a test set of the predictor obtained with a training set.

Figure14.3 shows the AUC (area under the curve) [11, 20] scores from 20 random
subsampling trials. The AUC score (left panel) is improved by performing grouped
selection (GL and SGL), compared to the individual selection (LASSO). However,
grouped selection resulted in choosing larger number of features than LASSO (right
panel). Less number of features were chosen by SGL compared to GL as expected,
but with sacrificing a small portion of prediction performance.

In fact, the number of selected features is closely related to the cost of clinical
tests built upon the chosen features. All numbers were relatively small (<100) in
our case, however some would prefer a smaller number of features to reduce cost if
degradation in prediction would not be significant. In this regard, SGL in Fig. 14.3
seemed to provide a good compromise between the number of features and prediction
performance.
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Fig. 14.3 Overall prediction performance of three feature selection methods: LASSO, GL, and
SGL. Left prediction performance in AUC score on test sets over 20 random subsampling trials
(train:test = 70:30%.) Right the corresponding number of selected features

14.3.3.2 Probabilistic Prediction

In logistic regression, the probability that an example xi will have the label “1” is
modeled by the logistic function

P(yi = 1|xi) = 1

1 + exp{−(βT xi + β0)} ∈ [0, 1],

where β and β0 are coefficients estimated during training. Note that this function
always returns a value between zero and one. That is, given β and β0, logistic regres-
sion provides each test point with a probabilistic outcome in addition to a binary
prediction. This makes a clear distinction to other classification methods such as the
support vector machines [3, 21].

For two logistic regression classifiers with similar binary prediction performance
(for example, in terms of AUC scores), a method that gives higher probability for
correct predictions would be arguably preferred in practice, since it provides higher
confidence on its predictions.

Figure14.4 compares such probability values for the three feature selection
methods LASSO, GL, and SGL. The x-axis shows the indices of test examples
(in a test set created by random subsampling), while the y-axis shows the probability
values we discussed above. The circles show the true labels, 0 or 1. The probability
outcomes from each algorithm are connected by lines only for visual distinction,
without any other implication. The decision probability (P(y = 1) = 0.5) is shown
as a horizontal line.

As we can see, GL and SGL provided higher values of probability outcomes for
correct labels (P(y = 1) or P(y = 0) = 1−P(y = 1)), at least for this particular test
set. The characteristics of GL and SGL were similar: on 11th example GL provided
slightly higher probability than SGL, and both misclassified 16th, 22nd and 23rd
examples that were classified correctly by LASSO.
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Fig. 14.4 Probabilistic outcomes of logistic regression classifiers for a single random test set. The
outcomes of LASSO, GL and SGL are compared to the true labels

14.3.3.3 Selected Features

Another important factor of feature selection in this case study is how the three
methods (LASSO, GL, and SGL) provide insights on our research question about
alternative splicing.

Table14.1 summarizes the features selected by the three methods in a single
random subsampling trial. Here the PID represents a 7-digit unique number assigned
by Affymetrix, to a set of probes (also known as probesets) on microarrays to detect
exons. As we consider core probesets with unique hybridization, each probeset has
a correspondence to a unique exon, a coding subsequence of a gene on DNA. A
PID also maps to a feature in our discussion. The “Coef” refers to the value in the
coefficient vector β corresponding to each chosen feature: the larger its magnitude
is, the more contribution is made by a feature to prediction.

Although some genes (DDR2 and HIST1H1A) were detected in all of the three
feature sets, the results were quite different. First, the exons chosen by LASSO were
all different except for the gene EPB41L3. As the genetic relations of exons are
essentially ignored and any exon with high correlation to labels can be selected by
LASSO, it is hard to say if an exon was chosen by a possible change in a single
exon or by a new combination of exons (alternative splicing). In fact, the coefficient
magnitude values were small except for a single exon from the gene IPW. Since this
gene is non-functional (non-protein coding), it is likely that correlations in measure-
ment errors have been captured rather than the true signals in this case. On the other
hand, several exons were chosen from the same genes (DDR2 and HIST1H1A) with
relatively large coefficient values in case of GL and SGL (a single exon was chosen
from HIST1H1A in case of SGL). They could be indicatives of possible alternative
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Table 14.1 Features chosen by LASSO, GL, and SGL methods in a single random subsampling
trial

PID Coef Gene Description

LASSO

2343490 0.10 IFI44L Interferon-induced protein 44-like

2364269 0.08 DDR2 Discoidin domain receptor tyrosine kinase 2

2417277 0.09 GNG12 Guanine nucleotide binding protein (G protein), gamma 12

2592622 −0.05 TMEFF2 Transmembrane protein with EGF-like and

2 follistatin-like domains 2

2946198 −0.10 HIST1H1A Histone cluster 1, H1a

3039339 −0.04 DGKB Diacylglycerol kinase, beta 90kDa

3544537 −0.03 FOS FBJ murine osteosarcoma viral oncogene homolog

3584453 0.23 IPW Imprinted in Prader-Willi syndrome (non-protein coding)

3797070 −0.07 EPB41L3 Erythrocyte membrane protein band 4.1-like 3

3797105 −0.10 EPB41L3 Erythrocyte membrane protein band 4.1-like 3

GL

2364258 1.09 DDR2 Discoidin domain receptor tyrosine kinase 2

2364269 1.04 DDR2 Discoidin domain receptor tyrosine kinase 2

2364272 0.97 DDR2 Discoidin domain receptor tyrosine kinase 2

2413913 0.62 DHCR24 24-dehydrocholesterol reductase

2923918 −0.63 PKIB Protein kinase (cAMP-dependent, catalytic) inhibitor beta

2946197 −1.01 HIST1H1A Histone cluster 1, H1a

2946198 −0.68 HIST1H1A Histone cluster 1, H1a

3584107 6.55 MKRN3 Makorin ring finger protein 3

3618343 −0.90 MEIS2 Meis homeobox 2

3653293 −1.27 CACNG3 Calcium channel, voltage-dependent, gamma subunit 3

SGL

2343489 1.29 IFI44L Interferon-induced protein 44-like

2364258 1.23 DDR2 Discoidin domain receptor tyrosine kinase 2

2364269 0.53 DDR2 Discoidin domain receptor tyrosine kinase 2

2413913 1.68 DHCR24 24-dehydrocholesterol reductase

2946197 −2.44 HIST1H1A Histone cluster 1, H1a

3584107 5.19 MKRN3 Makorin ring finger protein 3

3797060 −1.50 EPB41L3 Erythrocyte membrane protein band 4.1-like 3

3797104 −1.50 EPB41L3 Erythrocyte membrane protein band 4.1-like 3

3797105 −0.48 EPB41L3 Erythrocyte membrane protein band 4.1-like 3

4026080 0.60 GABRA3 Gamma-aminobutyric acid (GABA) A receptor, alpha 3

splicing events, although following-up biochemical experiments would be required
for validation.
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14.4 Discussion

The use of the lasso regularization (Sect. 14.1.1) also appears in many different
fields, for instance in compressed sensing [4, 5, 8] which solves an optimization
problem of the form of (14.1) with least squares loss function and an �1 regularizer.
In compressed sensing, a signal of length p is recovered from few observations (small
n), under the assumption that the original signal is sparse. Exact recovery with a high
probability is guaranteed under certain conditions.

For group lasso (Sect. 14.2.1) with the ordinary least squares loss function, there
are alternative methods to group lasso, including group LARS (Least Angle Regres-
sion Selection) and group non-negative garrotte [24]. These methods have slightly
different characteristics on their solution path. Also, group LARS usually scales
much better than group lasso.

In Sect. 14.2.2, we have introduced a naive approach to reformulate overlapping
group lasso to group lasso, by replicating features that belong to multiple groups.
However, this approach increases the dimension of optimization, and therefore may
not be preferable when p is large. There exist several optimization algorithms that
do not require such replication [13, 25, 28].

When the dimension in data is much larger than the size of a sample (p � n),
the solution of the optimization problem in (14.1) can vary even by small changes
in the sample. Denoting an estimate by β̂

n
which we obtain by solving (14.1) with a

sample of size n, and denoting a true unknown parameter by β∗, we can define the
notion of consistency in terms of variable selection,

P
(
{j : β̂n

j 
= 0} = {j : β∗
j 
= 0}

)
→ 1, as n → ∞.

When amethod is consistent in terms of variable selection and the convergence above
is fast enough, then small nmay notmattermuch as an estimate β̂

n
will be close toβ∗.

Lasso produces consistent estimates when some strong conditions hold [17, 27].
Unfortunately features from high-throughput genomic profiling are typically highly
correlated, for which these conditions often break. Reference [2] has shown that
under a fixed p and a specific choices of λ, the intersection of features selected by
bootstrapped lasso estimates is consistent under less restrictive conditions. Refer-
ence [18] has proposed the randomized lasso method, which potentially has better
consistency. This issue has been studied in bioinformatics in terms of stable feature
selection [1, 7].With the development of high-throughput profiling technologies, the
dimension in data keeps growing. Therefore consistency remains as a challenging
topic for research.

14.5 Conclusion

The rapid growth of dimensionality in modern high-throughput measurement
technology requires us to consider extra information on features, in order to avoid
averse effects of high dimensionality such as overfitting. Information on groupings
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of features are rather easy to acquire in many applications, and therefore can provide
a promising way to cope with high dimensionality.

Grouped feature selection based on regularized regression provides an intuitive
way to incorporate grouping information of features into feature selection, in a sta-
tistically sound and computationally efficient way. The regularizers in these methods
are also flexible to change, making it possible to adapt for future applications that
would come with different structures of groups such as hierarchies.

A case study of feature selection on exon microarray data has illustrated that
grouped feature selection would provide not only better prediction performance, but
also potentially new understanding of complex biological systems. Consistency is
still an open problem to solve when sample sizes are much smaller than the dimen-
sionality in data, especially for biomedical applications of grouped feature selection
methods.
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