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Abstract. In this paper, we investigate the multi-user setting both in
public and in secret-key cryptanalytic applications. In this setting, the
adversary tries to recover keys of many users in parallel more efficiently
than with classical attacks, i.e., the number of recovered keys multiplied
by the time complexity to find a single key, by amortizing the cost among
several users. One possible scenario is to recover a single key in a large set
of users more efficiently than to recover a key in the classical model. An-
other possibility is, after some shared precomputation, to be able to learn
individual keys very efficiently. This latter model is close to traditional
time/memory tradeoff attacks with precomputation. With these goals in
mind, we introduce two new algorithmic ideas to improve collision-based
attacks in the multi-user setting. Both ideas are derived from the paral-
lelizable collision search as proposed by van Oorschot and Wiener. This
collision search uses precomputed chains obtained by iterating some ba-
sic function. In our cryptanalytic application, each pair of merging chains
can be used to correlate the key of two distinct users. The first idea is
to construct a graph, whose vertices are keys and whose edges are these
correlations. When the graph becomes connected, we simultaneously re-
cover all the keys. Thanks to random graph analysis techniques, we can
show that the number of edges that are needed to make this event occurs
is small enough to obtain some improved attacks. The second idea mod-
ifies the basic technique of van Oorschot and Wiener: instead of waiting
for two chains to merge, we now require that they become parallel.

We first show that, using the first idea alone, we can recover the
discrete logarithms of L users in a group of size N in time ˜O(

√
NL).

We put these two ideas together and we show that in the multi-user
Even-Mansour scheme, all the keys of L = N1/3 users can be found with
N1/3+ε queries for each user (where N is the domain size). Finally, we
consider the PRINCE block cipher (with 128-bit keys and 64-bit blocks)
and find the keys of 2 users among a set of 232 users in time 265. We also
describe a new generic attack in the classical model for PRINCE.
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1 Introduction

The multi-user setting is a very interesting practical scenario, which is sometimes
overlooked in cryptography. Indeed, cryptosystems are designed to be used by
many users, and usually cryptographers prove the security of their schemes in
a single-user model except in some cases such as key exchange, public-key en-
cryption and signatures. At EUROCRYPT 2012, Menezes [20] gave an invited
talk pointing out the discrepancy between security proofs for message authen-
tication code in the single-user and in the multi-user setting. As it was already
been pointed out in [10], he showed that there is a straightforward reduction
between the security proof for one user and the security proof for L users with
a success probability divided by L. Next, he recalled the key collision attack
due to Biham [3] that matches this bound and that can be applied on various
deterministic MACs (CMAC, SIV, OCB, EME, . . . ). In this attack, the adver-
sary asks the MAC tag of a single message M for L different users; we call this
the set of secret MACs. Then, for a subset W of size N/L of known keys (N
is the key size), he computes MAC(k,M) for all k ∈ W and builds the set of
public MACs. If a collision occurs between the public and secret sets, then we
learn one of the L secret keys.1 For MAC schemes with an 80-bit security level,
it is possible with time/memory tradeoff to make this reasonably practical and
derive a key recovery of a single key among a set of L = 220 users, using time
and memory 240. Menezes thus insists that cryptographers have to consider this
practical setting when devising or analyzing cryptosystems. For more results on
multi-user attacks, the reader can also refer to [4].

In this paper, we are interested in collision-based attacks [24] in the multi-
user setting. We rely on the distinguished point technique to propose new attacks
on the generic discrete logarithm problem, on the Even-Mansour cipher and on
PRINCE. Collision-based methods have been nicely improved by van Oorschot
and Wiener to become parallelizable using the distinguished point technique of
Rivest and Quisquater and Delescaille [22]. Here, we extend these methods and
apply them to cryptanalysis in the multi-user setting.

Our Contributions. From a cryptanalytic point of view, there are many ways
to perform attacks in the multi-user setting. In this paper, we are interested by
several scenarios. The first option is to recover all the users’ keys (or a large
fraction thereof) in time less than the product of the number of users by the
time complexity to recover one key. Another direction is to improve Biham’s
attack and recover a single key in the multi-user setting with a reduced memory
cost. Finally, we consider time/memory attacks starting with a precomputation
whose result can then be used later to recover individual keys much faster.

Giant connected component. The multi-user setting for the discrete logarithm
problem has been studied by Kuhn and Struik in [17]. They show that it is

1 Provided that the tag length is greater than the key length.
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possible to adapt the parallel version of the Pollard rho technique with distin-
guished points to recover L keys in time

√
NL where N is the size of the group

as long as L � 4
√
N . In the parallel version of Pollard rho method described by

van Oorschot and Wiener, we run random walks in parallel, stop them once a
distinguished point is reached and store this value for many starting points. We
get a public set of distinguished points for the walks that begin at ya = ga for
which we know a and a secret set from a user public key y for starting points ygb

where b is known. Kuhn and Struik generalize this method by using many secret
sets, one for each user. Once a distinguished point appears twice in the public
and secret sets, the discrete logarithm of one user can be discovered, and conse-
quently, we also know the discrete logarithm of all the distinguished points that
were discovered during the random walks for this user. Therefore, as the number
of “known” points increases, the probability of a collision between a secret point
and a known one becomes higher. Similar results can be found in [19,1,2].

Here, we show another method that works without any restriction on L and
keeps the symmetry between all read points. Indeed, we do not have to wait until
the first collision between a public point and a secret one happens, but we also
consider collisions between secret points. More precisely, as soon as a collision
between the public walks and the secret walks happens, we learn many discrete
logarithms, since when two secret chains collide, we learn the difference between
the discrete logarithm. We can then construct a graph whose vertices are the
users and we add an edge if we know the difference of the discrete logarithm
between these users. At some point, when the number of edges becomes slightly
larger than the users, a giant component emerges in our random graph and if
the public user is in this component (with high probability in time 2L lnL), then
the discrete logarithm of all users will be known.

Our method has an advantage towards the method proposed by Kuhn and
Struik as we use parallelism extensively. However, a disadvantage is that in our
case we do not learn any discrete logarithms until the very end, when a giant
component appears in the graph. In contrast, Kuhn and Struik’s algorithm is
sequential and so they find each discrete logarithm one after the other. Overall,
the main goal of section 2 is to provide an educational example of the graph
connexity approach and show that it is much simpler to analyze.

Lambda Method for two different Even-Mansour style functions. We were also
able to apply similar techniques on Even-Mansour with domain size N . Indeed,
using some functions related to the encryption scheme, we show that we can learn
the Xor between the keys of two users. The previous technique can also be used
to recover the keys of all users. However, in this case, we get a new problem: the
two functions we iterate are no longer the same. Consequently, contrary to the
DL case, once a collision appears, the chains will no longer merge and we cannot
use distinguished point technique. To solve this issue, we tweak the two functions
and define related functions that will no longer merge but become parallel. We
show that this parallel method is as efficient as the previous one. For instance,
we show an attack that partially solves an open problem of Dunkelman et al.
that asked to find a memoryless attack on Even-Mansour with D queries to the
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secret function and T = N/D to the public function with D �
√
N . We propose

an attack that matches these bounds (D = N2/5, T = N3/5) but where the
memory is N1/5 as an application of our lambda-method. Furthermore, we also
describe a multi-user attack which allows to learn all the keys in a set of N1/3

users in data complexity N1/3+ε to each user and T = N1/3+ε time complexity
by combining the two algorithmic tools. This attack exhibits new tradeoff where
the amortized data complexity per user times the time complexity is reduced to
N2/3+ε instead of N .

Application to PRINCE. PRINCE cipher [7] is a new block cipher recently
introduced at ASIACRYPT 2012 with blocklength 64 bits and keylength 128
bits. Its design has a α-reflection property which is a related-key relation that
transforms the decryption algorithm to the encryption process with a related-
key. Here, we propose generic attacks on the full number of rounds. At FSE
2014 [8], an attack on 10 rounds of PRINCE has been presented, with time
complexity 260.7 and data complexity 257.94. In [15], an attack with slightly less
than 2128 allows to break all the rounds, but our attacks have a particular low
time complexity. They are similar to the one on Even-Mansour but we have
to take into account that in PRINCE, the internal permutation uses a secret
key. They make use both of the α-reflection property and of the specific key
scheduling of PRINCE, i.e. the relationship between the two whitening keys.
The first attack allows to recover the keys of two users among a set of 232 users
in time 265 and the second one allows to recover the keys of all users in time
232 after a precomputation of time 296 and 264 in memory. Finally, we do not
contradict the security bound showed in the original paper, but we show that
different tradeoffs are possible.

Organization of the Paper. In section 2, we present our results on the dis-
crete logarithm problem in the multi-user setting and we use the properties of
random graph in this setting. Then, we present various results concerning the
security of Even-Mansour: new time/memory/data (denoted T/M/D) tradeoffs,
new time/memory (denoted T/M) attack solving the open problem of Dunkel-
man et al. and in the multi-user setting. In this part, we show how we can adapt
the lambda-method when searching for collisions for two different functions based
on the Even-Mansour idea. Finally, in the last section, we present various generic
attacks on the PRINCE block cipher, one in the multi-user setting and the other
in the classical model.

2 Discrete Logarithms in the Multi-user Setting

In this section, we present a new algorithmic idea for performing T/M attacks
with distinguished points in the multi-users setting. Our technique allows to
compute the discrete logarithms of L public keys yi = gxi for i = 1, . . . , L in
time2 ˜O(

√
NL) for any value of L where N = |〈g〉|. Starting from the parallel

2 The ˜O notation hides logarithmic terms.
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version of Pollard rho method [24], we compute cL/2 chains consisting of pseudo-
random walks from yi (c/2 chains for each user by randomizing the starting
point) until we discover a distinguished point di ∈ S0 where S0 denotes the set of
distinguished points3. Then, all distinguished points found are sorted and each
collision between the distinguished points of different users di and dj reveals
a linear relation between xi and xj . We also compute a few chains starting
from random points for which the discrete logarithm is known gx0. Finally, we
construct the random graph where the vertices are the public keys and we add
an edge between yi and yj if we have a collision between di and dj (this process
can be described more formally using a random graph process). This edge is
labelled with the linear relation between xi and xj . Once we have computed a
sufficient number of collisions, a small constant time the number of users, then
a giant component will appear with high probability. More precisely, in a graph
with L vertices and cL/2 randomly placed edges with c > 1, there is a giant
component whose size is almost exactly (1− t(c))L, (see [6]) where:

t(c) =
1

c

∞
∑

k=1

kk−1(ce−c)k

k!
.

For c = 4, we get 1− t(c) = 0.98. The discrete logarithm of all the points in the
component of the x0’s are known. If we want to recover the discrete logarithm
of all users with overwhelming probability, we need 2L lnL edges to connect
all connected components according to the coupon collectors problem and not
cL/2, as it is recalled in Theorem 2.

Let � the average length of the chains and S0 the set of distinguished points.
The average length of each chain is � = N/|S0|. Assume we have computed i
chains that do not collide, the probability that the (i + 1)th chain collides with
one of the previous is i�× �/N . Consequently, the expected number of collisions
Coll is:

E[Coll] =
L−1
∑

i=1

i�2

N
≈ L2

2
· �

2

N
=

L2

2
· (N/|S0|)2

N
=

L2N

2|S0|2
.

We want the number of collisions to be larger than cL/2, which implies
L2N/2|S0|2 ≥ cL/2, thus |S0| ≤

√

LN/c. Consequently, the overall cost is dom-

inated by the computation of the chains, i.e. L ×N/|S0| which is about
√
cLN

if |S0| =
√

LN/c. Finally, in order to have cL/2 edges in our graph, each user
has to compute a small number of chains using a small number of random input
points of the form gxi+ri for known value of ri. The overall complexity of our
attack is ˜O(

√
NL) for any value of L while Kuhn and Struik analysis achieves

the value
√
2LN for L � 4

√
N .

Another possible approach to analyze known, unknown points and collisions
between them would be to use a matrix. For this, we consider a symmetric matrix
M where M [i, j] represents the linear relation between the discrete logarithms of
i and j. Then we apply a random variable in order to sparsify the matrix. More

3 This algorithm can also be adapted to the Pollard-lambda algorithm [21].
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precisely, we multiply the coefficient (i, j) of the matrix by 1 with probability
p and by 0 with probability (1 − p), where these probabilities are independent.
When we multiply by 1, that means, that we know the differences between the
discrete logarithms of i and j.The question then becomes how many rows (with
2 non-zero coefficients) do we need to achieve full column-rank, which naturally
leads to the same results: O(L ∗ log(L)). However, when considering rows with
O(log(L)) non-zero coefficients, we only needs O(L) rows. This would imply
that for multi-user discrete logarithms the overall complexity can be reduced
by a factor log(L) to O(sqrt(L ∗N)) by spending a factor log(L) more work in
generating starting points of random combinations of log(L) known/unknown
points (e.g., see [11]). We choose to analyze the complexity in the same form as
Wiener and van Oorschot which is usually the case for crypto papers, i.e we do
not care on the logN factors that arise in such birthday algorithms. Indeed, the
Kuhn and Struik algorithm hides also a log(N) factor in order to get collisions
with very high probability because a 1/2 probability is not sufficient since we
need many collisions of this type.

3 Even-Mansour in the Single and Multi-user Settings

3.1 Brief Description of Even-Mansour

At Asiacrypt 1991, Even and Mansour in [14] describe a very efficient design
(called EM in the following) to construct a block cipher, i.e. a keyed permutation
family ΠK1,K2 from a large permutation π. The key K1 is first xored with the
plaintext, then the fixed permutation is applied and finally the key K2 is xored
to obtain the final value.

ΠK1,K2(P ) = π(P ⊕K1)⊕K2.

Their main result is a security proof that any attack that uses D on-line plain-
text/ciphertext pairs (queries to Π) and T off-line computations (queries to π)
must satisfy DT = N, where N = 2n with n the size of the plaintext and key
and which will be called the EM curve. The important part of the proof is that
it is a lower bound for all attacks including known-plaintext attacks. It appears
that the use of two keys K1 and K2 does not add much more resistance to the
scheme. This variant of using K = K1 = K2 has been proposed under the name
Single-Key Even-Mansour and we denote it by ΠK . The security of this minimal
version has been proved secure with the same bound as for the two-key version
by Dunkelman et al. This minimal version is amazingly resistant and guaran-
tees the same security bound, but it is not unexpected since usually the attacks
look for the two keys independently and once the key K1 is recovered, there is
no security for K2. In the following, we see that the two-key version does not
improve the security since most of the attacks on the single-key can be levered
to this version.

In this section, we describe new results concerning the security of the Even-
Mansour scheme which has recently been the subject of many papers [13,18].
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We recall the basic attacks and then, we present a basic T/M tradeoff for known
plaintext attacks with better on-line complexity (Sect. 3.3) and a better T/M
tradeoff for adaptive queries (Sect. 3.4). For this attack, we introduce our second
algorithmic trick to discover collisions for two different functions based on the
Even-Mansour construction. The main difficulty we have to solve is that when
a lambda-like method is used to recover collisions, if two different functions are
used, after the collision, the chain will no longer merge. To this end, we adapt
the lambda-method to have parallel chains when the collision happens. Finally,
we show that in the multi-user setting (Sect. 3.5) the precomputation cost can
be amortized. It is possible to balance all the complexities to recover all the keys
of N1/3 users with N1/3+ε adaptive queries to each user, a precomputation time
of N1/3+ε and the attack requires N1/3+ε in memory and N1/3+ε for the on-line
time.

3.2 Previous Attacks on Even-Mansour

In [12], Daemen showed that the EM curve TD = N , is valid for a known
plaintext attack at the point (T = N/2, D = 2). He also gave a chosen-plaintext
attack that matches the EM curve for any value of D and T and in particular
at the point (T = N1/2, D = N1/2). Later, Biryukov and Wagner described a
sliding attack that matches the EM curve for known-plaintext but only at the
point (T = N1/2, D = N1/2). Recently, Dunkelman et al. introduce a new twist
on the sliding attack whose complexities match the whole curve for any value
of D and T using a known-plaintext attack which is exactly the result proved
by Even and Mansour. Finally, Dunkelman et al. also provide a slidex attack on
the two-key Even-Mansour scheme.

Simpler collision-based attack on the Single-Key Even-Mansour. In the single-
key case a simpler attack achieves the same performance. The basic idea is to
apply the Davies-Meyer construction to Π and to π. More precisely, write:

FΠ(x) = Π(x)⊕x and Fπ(x) = π(x)⊕x.

For any value of x, the equality FΠ(x) = Fπ(x⊕K) is satisfied. Moreover, any
collision between these two functions FΠ(x) = Fπ(y) indicates that x⊕y is a
likely candidate for the key K.

With this idea in mind, the problem of attacking the single key Even-Mansour
scheme is reduced to the problem of finding a collision (or rather a few collisions)
between FΠ and Fπ . The simplest approach is simply to compute Fπ on T
distinct random values and FΠ on D distinct random values. When DT ≈ N ,
one expects to find the required collisions.

Moreover, this can be done in a more efficient way by using classical collision
search algorithms with reduced memory. Indeed, it is possible to use Floyd’s cycle
finding algorithm to obtain such a solution for the special case D = T = N1/2,
without using memory. However, in this case the attack is no longer a known-
plaintext attack and becomes an adaptively chosen plaintext attack.
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Dunkelman, Keller and Shamir ask whether it is possible to generalize this
and to find memoryless attacks using D queries to Π and N/D to π where
D � N1/2 ?

In this paper, we partially answer this question, proposing attacks that use
less than D � N1/2 data and memory lower than min(T,D) if we require the
unkeyed queries to be precomputed. Without this requiring, we achieve a mem-
oryless attack.

3.3 Extending the Simple Attack

Dealing with two keys Even-Mansour. A first important remark is that the simple
attack on Single-Key EM can be extended to the two-key case. The idea is simply
to replace the function π(x)⊕x by another function with similar properties.
A first requirement is that the chosen function needs to be expressed by two
different formulas, one based on π and the other on Π . The other requirement is
that a collision on two evaluations, one of each type, should yield good candidates
for the keys.

We now construct the required function and show that the simple attack on
the single-key variant can be extended to two keys. We first choose a random
non-zero constant δ and let:

FΠ(x) = Π(x)⊕Π(x⊕δ) and Fπ(x) = π(x)⊕π(x⊕δ).

We remark that FΠ(x) = Fπ(x⊕K1) and that FΠ(x⊕δ) = Fπ(x⊕K1) are both
satisfied. As a consequence, every collision now suggests two distinct input keys
K1 = x⊕y and K1 = x⊕y⊕δ. Except for this detail, the attack remains un-
changed. Note that once K1 has been found, recovering K2 is a trivial matter.

Reducing the on-line time complexity. In this section, we focus on known-plaintext
attacks and we first show that the EM security model does not separate the on-
line and off-line time complexities, as usually done in T/M/D tradeoff. It is then
possible to use T/M/D tradeoff for this blockcipher design as suggested in [5] by
Biryukov and Shamir.

Let us separate the on-line time denoted by Ton and the off-line time denoted
by Toff . Clearly, the total time complexity T is Ton + Toff .

The main idea of this section is to use a different approach to find a collision
between FΠ and Fπ . More precisely, given a value of FΠ , we try to invert Fπ

on this value. If we succeed, we clearly obtain the desired collision. In order to
inverse Fπ, we rely on Hellman’s algorithm. The T/M/D tradeoff is

TonM
2D2 = N2 and D2 ≤ Ton ≤ N.

In order to fully use Hellman tradeoff with multiple tables, we can use the δ in
the definition of the function Fπ(x) = π(x) ⊕ π(x ⊕ δ) to define different and
independent functions for each table. These attacks achieve TonD � N while
TD = N .



428 P.-A. Fouque, A. Joux, and C. Mavromati

Using less data than memory. Despite its optimal efficiency in term of known-
plaintext attack matching the EM curve, the Slidex attack presents an impor-
tant drawback. Indeed, the public permutation π needs to be evaluated at points
which depend on the result of the queries to the keyed Even-Mansour construc-
tion Π . As a consequence, with this attack, it is not possible to precompute the
queries to π in order to improve the online time required to obtain the key to Π .

Our previous attack based on Hellman’s tables no longer requires adaptive
queries, however, it is less costly than the Slidex attack in term of on-line time
complexity but more costly than the simple collision-based attack (which uses
adaptive chosen plaintext). The goal of the next subsection is to present an attack
on Π , which is based on classical collision search algorithms and works by using
queries to π and Π without any cross-dependencies. However, the queries to Π
are adaptive but this new attack is more flexible to perform T/M tradeoff.

3.4 Time/Memory/Data Tradeoff Attack on Even-Mansour

Attacking Even-Mansour using distinguished points methods. In order to attack
Even-Mansour using a distinguished point method, we would like to construct a
set of chains using the public permutation π and then find a collision with a chain
obtained from the keyed permutation Π . One difficulty is that chains computing
from π and from Π can never merge since they are based on different functions
contrary to discrete logarithm section. We introduce here a new idea to solve
this dilemma when the functions are based on the Even-Mansour construction.
Let us define:

FΠ(x) = x⊕Π(x)⊕Π(x⊕δ) and Fπ(x) = x⊕π(x)⊕π(x⊕δ).

We remark that FΠ(x⊕K1) = Fπ(x)⊕K1. As a consequence, two chains based
on FΠ and Fπ cannot merge, but they may become parallel. Indeed, using the
equation FΠ(x⊕K1) = Fπ(x)⊕K1 and let two points X and x such that X =
x⊕K1, where X (resp. x) belongs to an FΠ chain (resp. x belongs to an Fπ

chain), the next element Y = FΠ(X) in the FΠ chain and the next element
y = Fπ(x) in the Fπ chain will satisfy:

Y = FΠ(X) = FΠ(x⊕K1) = Fπ(x)⊕K1 = y⊕K1.

So Y = y⊕K1, which means that Y and y satisfy the same relation as X and x,
and so on. Therefore, as soon as by chance X = x⊕K1 where X is an element
of an FΠ chain and x is an element of an Fπ chain, the same relation remains
with the subsequent points of the two chains, i.e. we get two parallel chains.

Moreover, the detection of this good event is compatible with the distinguished
point method. Indeed, it suffices to define a distinguished point x as a point with
a value of π(x)⊕π(x⊕δ) in S0. Similarly, for chains constructed by using FΠ , we
define a distinguished point X as a point with a value of Π(X)⊕Π(X⊕δ) in S0.
Now if X = x⊕K1 and x is a distinguished point in a π chain, then since

Π(X)⊕Π(X⊕δ) = π(X⊕K1)⊕π(X⊕K1⊕δ) = π(x)⊕π(x⊕δ),
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the point X is also a distinguished point in the Π chain, and therefore X⊕x
gives a candidate for K1. Since the values π(x)⊕π(x⊕δ) and Π(X)⊕Π(X⊕δ)
are needed to compute the next element in the chains, using this definition does
not add any extra cost for distinguished point detection. The important point,
is that for a parallel chain based on FΠ , a point X = x⊕K1 corresponds to a
distinguished point x if and only if Π(X)⊕Π(X⊕δ) is in S0.

An important difference compared to the classical search for collisions is that
we do not need to backtrack to the beginning of the chains and identify where
the chains merge. Indeed, seeing parallel distinguished points suffices to get
candidates values for K1.

Analysis of the attack with precomputation. Since there is a clear symmetry
between the keyed and unkeyed queries, we may assume that the number of
unkeyed queries T is larger than the number of keyed queries D. Let BT the
number of unkeyed chains to increase the probability of a collision between
keyed and unkeyed chains. Moreover, this is the most reasonable scenario, since
keyed queries are usually the most constrained resource. In this case, we need
to choose the expected length � of the chains we are going to construct and BT

that satisfy the following relations:

T = � · BT and N = BT �
2.

Thus, � = N/T and BT = T 2/N . The required memory to store those chains is
of size O(BT ).

After terminating the computation of the unkeyed chains, we can turn to the
keyed side. On this side, we want to perform about D = N/T evaluations of the
function. Since D = �, this means that we compute a single keyed chain and
expect it to (parallel) collide with an unkeyed chain.

We are interested in values for M such that M < D. Consequently, as M =
T/D = N/D2, we have N < D3. Let us consider N1/3 < D = Nα < N1/2. For
example, if D = N2/5 and T = N3/5, then M = N1/5 is much smaller than
N2/5. This attack requires a number of data D � N1/2 and despite this attack
is not memoryless (as in the open problem), the memory is less than the data.

Relaxing the precomputation requirement. Another alternative4 is to perform
the same attack while computing the keyed queries before the unkeyed ones. In
this case, since there is a single keyed chain to be stored, we can achieve the
attack using a constant amount of memory. Moreover, this variation works for
any D = Nα ≤ N1/2 using T = N/D.

3.5 Attacks in the Multi-user Setting

In the multi-user setting, we assume that L different users are all using the
Even-Mansour scheme based on the same public permutation π, with each user

4 We thank an anonymous reviewer of Asiacrypt 2014 for pointing this out.
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having its own key5, chosen uniformly at random and independently from the
keys of the other users.

Of course, the attack from Section 3.4 can be easily applied in this context.
Depending on the exact goal of the cryptanalysis, we have two main options:

1. If the goal is to recover the key of all users, the previous attack can be applied
by repeating the D key-dependent queries for each user, while amortizing the
T unkeyed queries across users. A typical case is to consider L = N1/3 users,
to perform T = N2/3+ε unkeyed queries (N1/3+ε chains of N1/3 queries,
memoryN1/3). For each new user, we needN1/3+ε key-dependent queries. As
a consequence, the amortized cost per user (up to constant factors c0 = 20)
is N1/3+ε queries of each type and the required memory also is N1/3.

2. If the goal of the cryptanalyst is to obtain at least one user key among all
the users, it suffices to split the D key-dependent queries arbitrarily across
the users.

However, we present in this section a much more efficient tradeoff in the multi-
user setting. This tradeoff becomes possible without precomputation inN2/3, but
by distributing the unkeyed queries among the users and by reusing the graph
algorithmic idea of the section 2. For this, we construct a graph whose vertices
are labelled by the users. Whenever we obtain a collision FΠ

(i)(x) = FΠ
(j)(y)

for users i and j, we add an edge between the corresponding vertices labelled
with x⊕ y which is expected equal to K(i) ⊕K(j). Note that this indicates that
we know the exclusive-or of the first keys of the two users.

If we have L vertices and cL/2 randomly edges with c = 4, there is a giant
component whose size is 98% of the points, and with cL lnL, all the points are
in this component with overwhelming probability. Consequently, we obtain the
exclusive-or of the first keys for an arbitrary pair of users. To conclude the attack,
it suffices to find a single collision between any of the users functions FΠ of the
large connected component and the unkeyed function Fπ to reveal all the keys
of these users.

Algorithm Description.

1. Create a constant number c/2 of chains for each user up to a distinguished
point.

2. Sort the distinguished points.
3. Bring together the distinguished points into subsets, where we test whether

the key candidate is really the good one. It is indeed easy to check with a
few more queries if the xor of two keys is correct.

4. Construct the giant component and expect that the public user (the user
with the unkeyed function), lies in this giant component. To this end, we
initially begin with the set of reachable users containing only the public
user. Then, we add to this set all the users that are in a group where a
reachable user is present. At some point, the reachable set is stable and we
stop.

5 Or key-pair depending on whether we are considering the single or dual key scheme.
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5. From the public user, we cross over the giant component and determine the
keys of each user.

The first step requires cL�/2 data and time O(c�) on average per user where
� is the average length of the chains. Then, the remaining steps are performed
in time linear in the number of users L. Typical parameters are: for an ar-
bitrary small positive constant c, we expect with N1/3 users, c · N1/3 queries
per user and N1/3 unkeyed queries, to recover almost all the N1/3 keys with
overwhelming probability. If we want to recover all users, we need to have
L lnL = cN1/3 lnN = N1/3+ε edges (instead of cL/2) to connect all compo-
nents according to the coupon collector’s problem.

Analysis of the attack. We want to use results from graph theory to prove the
correctness of our algorithm, this means that we have to prove that the assump-
tions of the giant component theorem are satisfied. We have to show that we
construct of a random graph according to the Erdös-Rényi model of random
graphs, in which each possible edge connecting pairs of a given set of L vertices
is present, independently of the other edges, with probability p. In this case,
we know that with this model of random graph, if the number of edges c.L/2 is
larger than the number of vertices L, there is with high probability a single giant
component, with all other components having size O(logL) according to [6].

Consequently, we need to prove that we construct a random graph and that
the edges are added independently of each others. We will define an idealized
version of the attack and we will show that the attack works in this version.
Then, we will prove that the idealized version and the attack are equivalent
using simulation argument.

In the idealized model, the simulator randomly chooses L keys K1, . . . ,KL

uniformly at random. Then it iterates the functions F
(i)
Π (x) = Ki ⊕ Fπ(x⊕Ki)

until x� ⊕Ki ∈ S0, where S0 is the set of pairs containing a distinguished point
di and an identificator of this point id(di). The identificators are unique, which
means that we do not have collision on them. Finally, the simulator reveals the
identificator of the point x� ⊕ Ki and the point x�. The value Ki cannot be
recovered from the information that the simulator returns.

To show that the attack works in this ideal model, we just have to see that
if two users have the same identificator, then x� ⊕Ki = x�′ ⊕Kj and therefore
x� ⊕ x�′ = Ki ⊕Kj which is the same information as in the real attack.

Now, we will prove that the simulator does not need to know F
(i)
Π and can

simulate the information by only using the public random function Fπ and that
the distribution of its outputs is indistinguishable from the idealized model. The
simulator generates at random L random keys for the EM scheme. For each key,
we will show that the pairs distinguished point/identificator can be generated

only using Fπ. Indeed, x� the �th iteration of F
(i)
Π with key Ki from the value

x0 is the value Ki ⊕ x� and this value is also the result of the iteration of the
public function Fπ from the value x0 ⊕Ki. Consequently, to generate the pairs
(distinguished point, identificator), the simulator can compute (x� ⊕Ki, id(x�))
without interacting with the users. As in this last case, the pairs are generated
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at random without interacting and knowing the function and since the function
Fπ are random, the edges in the graph are added at random and independently
of each others and so that the graph is a random graph according to the Erdös-
Rényi graph model.

Experimental results. We implement the previous attacks on an Even-Mansour
cryptosystem using the DES with a fixed key and n = 64. We simulate 222 users
and for each user we create 8 chains (80 for the public user). We use distinguished
points containing 21 zeroes and so the expected length is 221 on average. We
bound the length of the chains to 224, this means that if we remove the chain
if we have not seen a distinguished point after 224 evaluations. In all, we have
generated 33, 543, 077 chains (225 = 33, 554, 432, it misses the abandoned chains)
and the number of groups containing at least two parallel chains is 4, 109, 961.
Experimentally, the size of the giant component contains 3, 788, 059 users (among
the 4, 194, 304) and so we can deduce the keys of 90% of the users. This result
is what is expected from theory since the number of vertices in this experiment
is below the number of nodes. The 98% that is previously given as result in
section 3.5, would require twice as many vertices.

The time to generate the chains is 1600 sec using 4096 cores in parallel and
the analysis of the graph requires a few minutes on a standard PC.

4 Attacks on the PRINCE Cipher in the Multi-user and
Classical Setting

PRINCE is a lightweight block cipher published at ASIACRYPT 2012 [7]. It
is based on the FX construction [16] which is actually an Even-Mansour like
construction. PRINCE has been the interest of many cryptanalysts [9,23,15] who
attack either the full cipher, or its reduced version.

The designers of PRINCE claim that its security is ensured up to 2127−n

operations when an adversary acquires 2n plaintext/ciphertext pairs. This bound
has been reduced in [15] to 2126 operations with a single plaintext/ciphertext
pair. After a brief presentation of PRINCE, we describe a generic attack in the
multi-user setting that allow to recover the key of a pair of users in a set of
232 users with complexity 264 computations. The identification of the pair of
users uses the idea similar to the attack on Even-Mansour. However, details
are different since PRINCE is not an Even-Mansour scheme as the internal
permutation uses a secret key. Finally, we present another generic attack in the
classical model that after a precomputation of 296 time and 264 in memory,
allows to recover the key of every single user in time 232. Both attacks work for
all rounds of PRINCE.

4.1 Brief Description of PRINCE

PRINCE [7] uses a 64-bit block and a 128-bit key which is split into two equal
parts of 64 bits, i.e. k = k0‖k1. In order to extend the key to 192 bits it uses
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the mapping k = (k0‖k1) → (k0‖k
′
0‖k1) where k

′
0 is derived from k0 by using a

linear function L′:
L′(k0) = (k0 ≫ 1)⊕ (k0 � 63),

where � denotes the right shift and ≫ the rotation of a 64-bit word. While
subkeys k0 and k

′
0 are used as input and output whitening keys, the 64-bit key k1

is used for the 12-round internal block cipher which is called PRINCEcore. For
simplicity, we refer to it as the core of PRINCE or simply the core function and
we denote it by Pcore. So every plaintext P is transformed into the corresponding
ciphertext C by using the function Ek(P ) = k

′
0 ⊕ Pcorek1(P ⊕ k0) where Pcore

uses the key k1 (see Fig.1).

m

k0

PRINCEcore

k1

c

k
′
0

Fig. 1. Structure of PRINCE

The core function consists of a key k1 addition, a round constant (RC0) ad-
dition, five forward rounds, a middle round, five backward rounds and finally a
round constant (RC11) and a key k1 addition. The full schedule of the core is
shown in Fig. 2.

k1 RC0

R1 R2 R3 R4 R5 S M′ S−1 R−1
6 R−1

7 R−1
8 R−1

9 R−1
10

RC11 k1

S M

k1RCi k1 RCi

M−1 S−1

Fig. 2. Structure of the core of PRINCE

Each forward round of the core is composed by a 4-bit Sbox layer (S), a linear
layer (64×64 matrix M), an addition of a round constant RCi for i ∈ {1, . . . , 5}
and the addition of the key k1. The linear M layer is defined as M = SR ◦M ′

where SR is the following permutation

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 −→ 0 5 10 15 4 9 14 3 8 13 2 7 12 1 6 11

The M
′
layer, which is only used in the middle rounds, can be seen as a mirror

in the middle of the core as the 5 backward rounds are defined as the inverse of
the 5 forward rounds.

In every RCi-add step, a 64-bit round constant is XORed with the state.
It should be noted that RCi ⊕ RC11−i = α = 0xc0ac29b7c97c50dd for all
0 ≤ i ≤ 11. From this, but also from the fact that the matrix M

′
is an involu-

tion, we can perform the decryption function of PRINCE by simply performing
the encryption procedure with inverse order of keys k0 and k

′
0 and by using the
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key k1 ⊕ α instead of k1. That means, that for any key (k0‖k
′
0‖k1), we have

D(k0‖k′
0‖k1)

(·) = E(k
′
0‖k0‖k1⊕α)(·). This property is called the α-reflection prop-

erty of PRINCE.

4.2 Attack on PRINCE in the Multi-user Setting

In the multi-user setting, we assume that we have L different users which are all
using the block cipher PRINCE. Each user Ui with 0 ≤ i < L, chooses her key

k(i) = k
(i)
0 ‖k(i)1 at random and independently from all the other users. In order

to attack PRINCE using the distinguished point method, we first construct a
set of chains for every user using the function of PRINCE. For this, we use the
function defined as follows:

F
k
(i)
0 ,k

′(i)
0 ,k

(i)
1

(x) = x⊕ PRINCE
k
(i)
0 ,k

′(i)
0 ,k

(i)
1

(x)⊕ PRINCE
k
(i)
0 ,k

′(i)
0 ,k

(i)
1

(x⊕ δ)

where δ is an arbitrary but fixed non zero constant. The key k
′(i)
0 vanishes from

the equation and the function F thus takes the following form:

F
k
(i)
1
(x) = x⊕ Pcore

k
(i)
1
(x⊕ k

(i)
0 )⊕ Pcore

k
(i)
1
(x⊕ k

(i)
0 ⊕ δ).

For every user Ui, we create one encryption (E) chain and one decryption (D)
chain which are both based on the function F defined above. E uses the encryp-
tion function of PRINCE whereas D uses the decryption function. And so, for
the user Ui, we define functions E and D as follows:

E
k
(i)
0 ,k

(i)
1
(x

(i)
j ) = x

(i)
j+1 = x

(i)
j ⊕ Pcore

k
(i)
1
(x

(i)
j ⊕ k

(i)
0 )⊕ Pcore

k
(i)
1
(x

(i)
j ⊕ k

(i)
0 ⊕ δ)

D
k
′(i)
0 ,k

(i)
1 ⊕α

(y
(i)
j ) = y

(i)
j+1

= y
(i)
j ⊕ Pcore

k
(i)
1 ⊕α

(y
(i)
j ⊕ k

′(i)
0 )

⊕ Pcore
k
(i)
1 ⊕α

(y
(i)
j ⊕ k

′(i)
0 ⊕ δ).

Let us define:

fE = Pcore
k
(i)
1
(x

(i)
j ⊕ k

(i)
0 )⊕ Pcore

k
(i)
1
(x

(i)
j ⊕ k

(i)
0 ⊕ δ) and

fD = Pcore
k
(i)
1 ⊕α

(y
(i)
j ⊕ k

′(i)
0 )⊕ Pcore

k
(i)
1 ⊕α

(y
(i)
j ⊕ k

′(i)
0 ⊕ δ).

We create encryption chains until fE reaches a distinguished point (resp. de-
cryption chains until fD reaches a distinguished point). We search for a collision
between the encryption and the decryption chain.

Let us consider two users, U1 and U2. Whenever the chains E
k
(1)
0 ,k

(1)
1
(x(1)) and

D
k
(2)
0 ,k

(2)
1 ⊕α

(y(2)) arrive at the same distinguished point, we suspect that these
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two chains have become parallel. As the core of PRINCE is only parametrized by
the key k1, when we arrive at the same distinguished point we obtain a probable

collision between keys k
(1)
1 and k

(2)
1 ⊕α used in Pcore. However, we must verify

that this is a real collision and not just a random incident. For this, we verify
that next points of fE and fD after reaching a distinguished point, continue to
remain equal. If we obtained a real collision we know that:

k
(1)
1 = k

(2)
1 ⊕ α.

This indicates that x(1)⊕ y(2) is expected equal to k
(1)
0 ⊕ k

′(2)
0 . It is obvious that

since k
(1)
1 = k

(2)
1 ⊕ α we will also have k

(1)
1 ⊕ α = k

(2)
1 . This indicates that we

also know k
′(1)
0 ⊕ k

(2)
0 .

Thus, we have:

k
(1)
0 ⊕ k

′(2)
0 = A and k

′(1)
0 ⊕ k

(2)
0 = B (∗).

Let {a63, . . . , a0} be the representation of the bits of k
(1)
0 and {b63, . . . , b0} the

representation of bits of k
(2)
0 . As, from the definition of PRINCE, k

′
0 = (k0 ≫

1)⊕ (k0 � 63), we have that:

k
′(1)
0 = {a0, a63, . . . , a2, a1 ⊕ a63} and k

′(2)
0 = {b0, b63, . . . , b2, b1 ⊕ b63}.

From (∗), we construct the system:

{a63, . . . , a0} ⊕ {b0, b63, . . . , b2, b1 ⊕ b63} = {A63, . . . , A0}
{b63, . . . , b0} ⊕ {a0, a63, . . . , a2, a1 ⊕ a63} = {B63, . . . , B0}

As this is an inversible linear system, we can easily find k
(1)
0 and k

(2)
0 . Note

that once k
(i)
0 has been found, recovering k

(i)
1 can be done with an exhaustive

search whose cost is 264.

Analysis of the attack. Once the computation of a chain is finished we have to
store (x�−1, d, d+ 1) where d is the distinguished point, x�−1 is the point before
the chain reaches a distinguished point and d + 1 is the point after the chain
reached a distinguished point. We need to store x�−1 as we have to test if the
found collision is useful and we also need to store d + 1 to test if it is a real
collision. If not, the search must continue.

As mentioned, PRINCE uses a 128-bit key which is split into two 64-bit
parts, i.e. k = k0‖k1. The attack consists in identifying and recovering all key

material of a pair of users i and j for whom k
(i)
1 = k

(j)
1 ⊕α. We expect to find a

collision k
(i)
1 = k

(j)
1 ⊕ α between two different users with high probability when

the number of users will be at least 232. So the attack uses a set of 232 users
and for each one we create 2 chains (encryption and decryption chain). The cost
per user is 232 operations and the total cost for recovering the keys k0 of 2 users
is approximately 264 operations. For recovering k1, the cost of the exhaustive
search is 264. So in total, we can deduce both k0 and k1 in 265 operations.
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4.3 Attack in the Classical Model

We show in this section that a classical attack that also uses the distinguished
points technique can also be possible. For this, we will create encryption chains
from the function E defined in section 4.2.

Precalculation. In the first phase of the attack, we aim to create encryption

chains for every possible key k
(i)
1 with 0 ≤ i < 264. More specifically, for every

possible k
(i)
1 , we set k

(i)
0 = 0 and we create for every (i) a chain Si from the

function E with length 232. We store all chains Si.

Attack. Now, our purpose is to find a collision with one of the chains created

with the zero key k
(i)
0 . For this, for a random starting point x0 and for keys k0

and k1 we will calculate an encryption chain T from the function E . The chain
T will collide with high probability with one of the chains Si. As described in
previous section 4.2, when we detect a collision between two distinguished points,

we know that the chains had become parallel and so we obtain k
(i)
0 ⊕ k0. As the

key k
(i)
0 = 0, we finally obtain the unknown k0.

Analysis of the attack. For the precalculation phase, for every 264 possible keys
we calculate a chain with length 232 and so our complexity is equal to 296. As
we need to store all chains, the precalculation phase has also a cost of 264 in
memory. However, once the first phase is over, the attacker can perform the
attack in only 232 operations as she has to calculate only one chain. So, the total
cost of the attack is 296. The proposed attack satisfies DT = 2128 as D = 232

and T = 296. This attack does not improve the complexity of PRINCE given
in [7] and [15]. However, in our case, T is not the on-line time complexity as it
corresponds to the precalculation phase of the attack. Thus, in our attack, we
have DTon = 264.

5 Conclusion

In this paper, we have presented new tradeoffs for public-key and symmetric-key
cryptosystems in the multi-user setting. We have introduced some algorithmic
tools for collision-based attacks using the distinguished point technique. The
first tool allows to look for the discrete logarithm of L users in parallel using
only a ˜O(

√
L) penalty using random graph process behaviour. The second tool

allows to achieve key-recovery of Even-Mansour and related ciphers and is a novel
lambda technique to find collisions when two different functions are involved. For
the Even-Mansour cipher, we show new tradeoffs that partially solve an open
problem due to Dunkelman et al. and we propose an analysis in the multi-user
setting. Finally, for the PRINCE cipher, we show generic attacks that improve
the best published results in the sense that our time complexity corresponds to
a precomputation phase and not to an on-line phase. This last result could also
be adapted to similar ciphers such as DESX and would also improve on the best
previous attack.



Multi-user Collisions and Applications 437

References

1. Bernstein, D.J., Lange, T.: Computing Small Discrete Logarithms Faster. In:
Galbraith, S., Nandi, M. (eds.) INDOCRYPT 2012. LNCS, vol. 7668, pp. 317–
338. Springer, Heidelberg (2012)

2. Bernstein, D.J., Lange, T.: Non-uniform Cracks in the Concrete: The Power of
Free Precomputation. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II.
LNCS, vol. 8270, pp. 321–340. Springer, Heidelberg (2013)

3. Biham, E.: How to decrypt or even substitute DES-encrypted messages in 228 steps.
Inf. Process. Lett. 84(3), 117–124 (2002)

4. Biryukov, A., Mukhopadhyay, S., Sarkar, P.: Improved Time-Memory Trade-Offs
with Multiple Data. In: Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897,
pp. 110–127. Springer, Heidelberg (2006),
http://dx.doi.org/10.1007/11693383_8

5. Biryukov, A., Shamir, A.: Cryptanalytic Time/Memory/Data Tradeoffs for Stream
Ciphers. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 1–13.
Springer, Heidelberg (2000)

6. Bollobás, B.: Random Graphs, 2nd edn. Cambridge studies in advanced mathe-
matics (2001)
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