
Palash Sarkar
Tetsu Iwata (Eds.)

 123

LN
CS

 8
87

3

20th International Conference on the Theory
and Application of Cryptology and Information Security
Kaoshiung, Taiwan, December 7–11, 2014
Proceedings, Part I

Advances in Cryptology –
ASIACRYPT 2014

Lecture Notes in Computer Science 8873
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Palash Sarkar Tetsu Iwata (Eds.)

Advances in Cryptology –
ASIACRYPT 2014

20th International Conference on the Theory
and Application of Cryptology and Information Security
Kaoshiung, Taiwan, December 7-11, 2014
Proceedings, Part I

13

Volume Editors

Palash Sarkar
Indian Statistical Institute
Applied Statistics Unit
203, B.T. Road, Kolkata 700108, India
E-mail: palash@isical.ac.in

Tetsu Iwata
Nagoya University
Department of Computer Science and Engineering
Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
E-mail: iwata@cse.nagoya-u.ac.jp

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-662-45610-1 e-ISBN 978-3-662-45611-8
DOI 10.1007/978-3-662-45611-8
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014954246

LNCS Sublibrary: SL 4 – Security and Cryptology

© International Association for Cryptologic Research 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

It is with great pleasure that we present the proceedings of Asiacrypt 2014 in two
volumes of Lecture Notes in Computer Science published by Springer. The year
2014 marked the 20th edition of the International Conference on Theory and
Application of Cryptology and Information Security held annually in Asia by
the International Association for Cryptologic Research (IACR). The conference
was sponsored by the IACR and was jointly organized by the following con-
sortium of universities and government departments of the Republic of China
(Taiwan): National Sun Yat-sen University; Academia Sinica; Ministry of Sci-
ence and Technology; Ministry of Education; and Ministry of Economic Affairs.
The conference was held in Kaohsiung, Republic of China (Taiwan), during
December 7-11, 2014.

An international Program Committee (PC) consisting of 48 scientists was
formed approximately one year earlier with the objective of determining the
scientific content of the conference. As for previous editions, Asiacrypt 2014 also
stimulated great interest among the scientific community of cryptologists. A total
of 255 technical papers were submitted for possible presentations approximately
six months prior to the conference. Authors of the submitted papers are spread
all over the world. Each PC member could submit at most two co-authored
papers or at most one single-authored paper, and the PC co-chairs did not
submit any paper. All the submissions were screened by the PC members and 55
papers were finally selected for presentation at the conference. These proceedings
contain the revised versions of the papers that were selected. The revisions were
not checked and the responsibility of the papers rest with the authors and not
the PC members.

The selection of papers for presentations was made through a double-blind
review process. Each paper was assigned four reviewers and submissions by PC
members were assigned five reviewers. Apart from the PC members, the selection
process was assisted by a total of 397 external reviewers. The total number of
reviews for all the papers was more than 1,000. In addition to the reviews, the
selection process involved an extensive discussion phase. This phase allowed PC
members to express opinion on all the submissions. The final selection of 55
papers was the result of this extensive and rigorous selection procedure.

The decision of the best paper award was based on a vote among the PC
members, and it was conferred upon the paper “Solving LPN Using Covering
Codes” authored by Qian Guo, Thomas Johansson, and Carl Löndahl. In addi-
tion to the best paper, three other papers were recommended for solicitations
by the Editor-in-Chief of the Journal of Cryptology to submit expanded ver-
sions to the journal. These papers are “Secret-Sharing for NP” authored by
Ilan Komargodski, Moni Naor, and Eylon Yogev; “Mersenne Factorization Fac-
tory” authored by Thorsten Kleinjung, Joppe W. Bos, and Arjen K. Lenstra; and

VI Preface

“Jacobian Coordinates on Genus 2 Curves” authored by Huseyin Hisil and Craig
Costello.

In addition to the regular presentations, the conference featured two invited
talks. The invited speakers were decided through an extensive multi-round dis-
cussion among the PC members. This resulted in very interesting talks on two
different aspects of the subject. Kennth G. Paterson spoke on “Big Bias Hunt-
ing in Amazonia: Large-Scale Computation and Exploitation of RC4 Biases,” a
topic of importance to practical cryptography, while Helaine Leggat spoke on
“The Legal Infrastructure Around Information Security in Asia,” which had an
appeal to a wide audience.

Along with the regular presentations and the invited talks, a rump session was
organized. This session contained short presentations on latest research results,
announcements of future events, and other topics of interest to the audience.

Many people contributed to Asiacrypt 2014. We would like to thank the au-
thors of all papers for submitting their research works to the conference. Thanks
are due to the PC members for their enthusiastic and continued participation for
over a year in different aspects of selecting the technical program. The selection
of the papers was made possible by the timely reviews from external reviewers,
and thanks are due to them. A list of external reviewers is provided in these
proceedings. We have tried to ensure that the list is complete. Any omission is
inadvertent and if there is an omission, we apologize to that person.

Special thanks are due to D. J. Guan, the general chair of the conference, for
working closely with us and ensuring that the PC co-chairs were insulated from
the organizational work. This work was carried out by the Organizing Committee
and they deserve thanks from all the participants for the wonderful experience.
We thank Daniel J. Bernstein and Tanja Lange for expertly organizing and
chairing the rump session.

We thank Shai Halevi for developing the IACR conference management soft-
ware, which was used for the whole process of submission, reviewing, discussions,
and preparing these proceedings. We thank Josh Benaloh, our IACR liaison,
and San Ling, Asiacrypt Steering Committee Representative, for guidance and
advice on several issues. Springer published the volumes and made these avail-
able before the conference. We thank Alfred Hofmann, Anna Kramer, Christine
Reiss and their team for the professional and efficient handling of the production
process.

December 2014 Palash Sarkar
Tetsu Iwata

Asiacrypt 2014
The 20th Annual International Conference on

Theory and Application of Cryptology and
Information Security

Sponsored by the International Association for Cryptologic
Research (IACR)

December 7–11, 2014, Kaohsiung, Taiwan (R.O.C.)

General Chair

D. J. Guan National Sun Yat-sen University, Taiwan, and
National Chung Hsing University, Taiwan

Program Co-chairs

Palash Sarkar Indian Statistical Institute, India
Tetsu Iwata Nagoya University, Japan

Program Committee

Masayuki Abe NTT Secure Platform Laboratories, Japan
Elena Andreeva K.U. Leuven, Belgium
Paulo S. L. M. Barreto University of Sao Paulo, Brazil
Daniel J. Bernstein University of Illinois at Chicago, USA,

and Technische Universiteit Eindhoven,
The Netherlands

Guido Bertoni STMicroelectronics, Italy
Jean-Luc Beuchat ELCA, Switzerland
Debrup Chakraborty CINVESTAV-IPN, Mexico
Chen-Mou Cheng National Taiwan University, Taiwan
Jung Hee Cheon Seoul National University, Korea
Ashish Choudhury IIIT Bangalore, India
Sherman S.M. Chow Chinese University of Hong Kong,

Hong Kong SAR
Kai-Min Chung Academia Sinica, Taiwan
Carlos Cid Royal Holloway, University of London,

UK
Jean-Sébastien Coron University of Luxembourg, Luxembourg

VIII Asiacrypt 2014

Joan Daemen STMicroelectronics, Belgium

Itai Dinur École Normale Supérieure, Paris, France
Marc Fischlin Darmstadt University of Technology, Germany
Steven Galbraith University of Auckland, New Zealand
Sanjam Garg University of California, Berkeley, USA
Marc Joye Technicolor, USA
Koray Karabina Florida Atlantic University, USA
Xuejia Lai Shanghai Jiaotong University, China
Gregor Leander Ruhr University Bochum, Germany
Jooyoung Lee Sejong University, Korea
Stefan Mangard Infineon Technologies, Germany
Willi Meier FHNW, Switzerland
Jesper Buus Nielsen Aarhus University, Denmark
Thomas Peyrin Nanyang Technological University, Singapore
Duong Hieu Phan University of Paris 8, France
Raphael C.-W. Phan Multimedia University, Malaysia
Maŕıa Naya-Plasencia Inria Paris-Rocquencourt, France
Emmanuel Prouff ANSSI, France
Christian Rechberger DTU, Denmark
Alon Rosen IDC Herzliya, Israel
Abhi Shelat University of Virginia, USA
Berry Schoenmakers Technische Universiteit Eindhoven,

The Netherlands
Ron Steinfeld Monash University, Australia
Marc Stevens CWI, The Netherlands
Daisuke Suzuki Mitsubishi Electric, Japan
Stefano Tessaro UCSB, USA
Huaxiong Wang Nanyang Technological University, Singapore
Meiqin Wang Shandong University, China
Daniel Wichs Northeastern University, USA
Duncan S. Wong City University of Hong Kong,

Hong Kong SAR
Kan Yasuda NTT Secure Platform Laboratories, Japan
Hong-Sheng Zhou Virginia Commonwealth University, USA

Additional Reviewers

Mohammed
Abdelraheem

Arash Afshar
Shashank Agrawal
Shweta Agrawal
Adi Akavia
Martin Albrecht

Hoda A. Alkhzaimi
Prabhanjan Ananth
Kazumaro Aoki
Daniel Apon
Diego F. Aranha
Hassan Jameel Asghar
Gilad Asharov

Gilles Van Assche
Jean-Philippe Aumasson
Paul Baecher
Chung Hun Baek
Shi Bai
Abhishek Banerjee
Kfir Barhum

Asiacrypt 2014 IX

Aurélie Bauer
Carsten Baum
Anja Becker
Amos Beimel
Rishiraj Bhattacharya
Begül Bilgin
Olivier Billet
Elia Bisi
Nir Bitansky
Olivier Blazy
Céline Blondeau
Andrej Bogdanov
Alexandra Boldyreva
Joppe W. Bos
Elette Boyle
Zvika Brakerski
Nicolas Bruneau
Christina Brzuska
Sébastien Canard
Anne Canteaut
Claude Carlet
Angelo De Caro
David Cash
Dario Catalano
André Chailloux
Donghoon Chang
Pascale Charpin
Sanjit Chatterjee
Jie Chen
Wei-Han Chen
Yu-Chi Chen
Ray Cheung
Céline Chevalier
Dong Pyo Chi
Ji-Jian Chin
Alessandro Chisea
Chongwon Cho
Kim-Kwang Raymond

Choo
HeeWon Chung
Craig Costello
Giovanni Di Crescenzo
Dana Dachman-Soled
Ivan Damg̊ard
Jean-Luc Danger

Bernardo David
Patrick Derbez
David Derler
Srinivas Devadas
Sandra Diaz-Santiago
Vassil Dimitrov
Ning Ding
Yi Ding
Christoph Dobraunig
Matthew Dodd
Nico Döttling
Rafael Dowsley
Frédéric Dupuis
Stefan Dziembowski
Maria Eichlseder
Martianus Frederic

Ezerman
Liming Fang
Xiwen Fang
Pooya Farshim
Sebastian Faust
Omar Fawzi
Serge Fehr
Victoria Fehr
Matthieu Finiasz
Dario Fiore
Rob Fitzpatrick
Pierre-Alain Fouque
Tore Kasper Frederiksen
Georg Fuchsbauer
Eiichiro Fujisaki
Philippe Gaborit
Tommaso Gagliardoni
David Galindo
Wei Gao
Pierrick Gaudry
Peter Gaži
Laurie Genelle
Irene Giacomelli
Sergey Gorbunov
Dov Gordon
Samuel Dov Gordon
Robert Granger
Jens Groth
Felix Guenther

Nicolas Guillermin
Sylvain Guilley
Siyao Guo
Divya Gupta
Patrick Haddad
Nguyen Manh Ha
Iftach Haitner
Shai Halevi
Fabrice Ben Hamouda
Shuai Han
Christian Hanser
Mitsuhiro Hattori
Carmit Hazay
Qiongyi He
Brett Hemenway
Jens Hermans
Takato Hirano
Jeffrey Hoffstein
Dennis Hofheinz
Deukjo Hong
Hyunsook Hong
Wei-Chih Hong
Sebastiaan de Hoogh
Jialin Huang
Kyle Huang
Qiong Huang
Yan Huang
Yun Huang
Zhengan Huang
Andreas Hülsing
Michael Hutter
Jung Yeon Hwang
Malika Izabachene
Abhishek Jain
Dirmanto Jap
Stanislaw Jarecki
Eliane Jaulmes
Jérémy Jean
Mahabir Jhanwar
Guo Jian
Shaoquan Jiang
Pascal Junod
Chethan Kamath
Pierre Karpman
Aniket Kate

X Asiacrypt 2014

Jonathan Katz
Elif Bilge Kavun
Akinori Kawachi
Yutaka Kawai
Sriram Keelveedhi
Dakshita Khurana
Franziskus Kiefer
Eike Kiltz
Jihye Kim
Jinsu Kim
Minkyu Kim
Miran Kim
Myungsun Kim
Sungwook Kim
Taechan Kim
Mehmet Sabir Kiraz
Susumu Kiyoshima
Ilya Kizhvatov
Markulf Kohlweiss
Ilan Komargodski
Takeshi Koshiba
Simon Kramer
Ranjit Kumaresan
Po-Chun Kuo
Thijs Laarhoven
Fabien Laguillaumie
Russell W.F. Lai
Tanja Lange
Adeline Langlois
Martin M. Laurisden
Rasmus Winther

Lauritsen
Changmin Lee
Hyung Tae Lee
Kwangsu Lee
Moon Sung Lee
Younho Lee
Wang Lei
Tancrède Lepoint
Gaëtan Leurent
Kevin Lewi
Allison Lewko
Liangze Li
Wen-Ding Li
Guanfeng Liang

Kaitai Liang
Benôıt Libert
Changlu Lin
Huijia (Rachel) Lin
Tingting Lin
Yannis Linge
Helger Lipmaa
Feng-Hao Liu
Joseph Liu
Zhen Liu
Daniel Loebenberger
Victor Lomné
Yu Long
Patrick Longa
Cuauhtemoc

Mancillas-López
Atul Luykx
Vadim Lyubashevsky
Houssem Maghrebi
Mohammad Mahmoody
Alex Malozemoff
Mark Manulis
Xianping Mao
Joana Treger Marim
Giorgia Azzurra Marson
Ben Martin
Daniel Martin
Takahiro Matsuda
Mitsuru Matsui
Ingo von Maurich
Filippo Melzani
Florian Mendel
Bart Mennink
Sihem Mesnager
Arno Mittelbach
Payman Mohassel
Amir Moradi
Tomoyuki Morimae
Kirill Morozov
Nicky Mouha
Pratyay Mukherjee
Gregory Neven
Khoa Nguyen
Phon Nguyen
Ivica Nikolić

Ventzislav Nikov
Svetla Nikova
Ryo Nishimaki
Adam O’Neill
Miyako Ohkubo
Tatsuaki Okamoto
Cristina Onete
Claudio Orlandi
David Oswald
Elisabeth Oswald
Khaled Ouafi
Carles Padro
Jiaxin Pan
Omer Paneth
Anat Paskin
Rafael Pass
Kenneth G. Paterson
Arpita Patra
Roel Peeters
Chris Peikert
Geovandro

C. C. F. Pereira
Olivier Pereira
Ludovic Perret
Edoardo Persichetti
Krzysztof Pietrzak
Bertram Poettering
Geong-Sen Poh
David Pointcheval
Antigoni Polychroniadou
Raluca Ada Popa
Manoj Prabhakaran
Baodong Qin
Somindu C. Ramanna
Samuel Ranellucci
C. Pandu Rangan
Vanishree Rao
Jean-René Reinhard
Ling Ren
Oscar Reparaz
Alfredo Rial
Jefferson E. Ricardini
Silas Richelson
Ben Riva
Matthieu Rivain

Asiacrypt 2014 XI

Thomas Roche
Francisco

Rodŕıguez-Henŕıquez
Lil Maŕıa

Rodŕıguez-Henŕıquez
Mike Rosulek
Arnab Roy
Hansol Ryu
Minoru Saeki
Amit Sahai
Yusuke Sakai
Olivier Sanders
Fabrizio De Santis
Yu Sasaki
Alessandra Scafuro
Christian Schaffner
John Schanck
Tobias Schneider
Peter Schwabe
Gil Segev
Nicolas Sendrier
Jae Hong Seo
Karn Seth
Yannick Seurin
Ronen Shaltiel
Elaine Shi
Koichi Shimizu
Ji Sun Shin
Naoyuki Shinohara
Joseph Silverman
Marcos A. Simplicio Jr
Boris Skoric
Daniel Slamanig
Nigel Smart
Fang Song
Douglas Stebila
Damien Stehlé
Rainer Steinwandt
Marc Stottinger

Mario Strefler
Takeshi Sugawara
Ruggero Susella
Koutarou Suzuki
Alan Szepieniec
Björn Tackmann
Katsuyuki Takashima
Syh-Yuan Tan
Xiao Tan
Qiang Tang
Christophe Tartary
Yannick Teglia
Sidharth Telang
Isamu Teranishi
Adrian Thillard
Aishwarya

Thiruvengadam
Enrico Thomae
Susan Thomson
Mehdi Tibouchi
Tyge Tiessen
Elmar Tischhauser
Arnaud Tisserand
Yosuke Todo
Jacques Traoré
Roberto Trifiletti
Viet Cuong Trinh
Raylin Tso
Toyohiro Tsurumaru
Hoang Viet Tung
Yu-Hsiu Tung
Dominique Unruh
Berkant Ustaoglu
Meilof Veeningen
Muthuramakrishnan

Venkitasubramaniam
Daniele Venturi
Frederik Vercauteren
Damien Vergnaud

Andrea Visconti
Ivan Visconti
Niels de Vreede
Mingqiang Wang
Wei Wang
Yanfeng Wang
Yuntao Wang
Hoeteck Wee
Puwen Wei
Qiaoyan Wen
Erich Wenger
Qianhong Wu
Keita Xagawa
Hong Xu
Weijia Xue
Takashi Yamakawa
Bo-Yin Yang
Guomin Yang
Wun-She Yap
Scott Yilek
Eylon Yogev
Kazuki Yoneyama
Ching-Hua Yu
Yu Yu
Tsz Hon Yuen
Aaram Yun
Mark Zhandry
Cong Zhang
Guoyan Zhang
Liang Feng Zhang
Tao Zhang
Wei Zhang
Ye Zhang
Yun Zhang
Zongyang Zhang
Yongjun Zhao
Yunlei Zhao
Vassilis Zikas

XII Asiacrypt 2014

Organizing Committee

Advisors

Lynn Batten Deakin University, Australia
Eiji Okamoto Tsukuba University, Japan
San Ling Nanyang Technological University, Singapore
Kwangjo Kim Korea Advanced Institute of Science and

Technology, Korea
Xuejia Lai Shanghai Jiaotong University, China
Der-Tsai Lee National Chung Hsing University, Taiwan,

and Academia Sinica, Taiwan
Tzong-ChenWu National Taiwan University of Science and

Technology, Taiwan

Secretary

Chun-I Fan National Sun Yat-sen University, Taiwan

Treasurer

Chia-Mei Chen National Sun Yat-sen University, Taiwan

Local Committee Members

Shiuhpyng Shieh National Chiao Tung University, Taiwan
Ching-Long Lei National Taiwan University, Taiwan
Wen-Guey Tzeng National Chiao Tung University, Taiwan
Hung-Min Sun National Tsing Hua University, Taiwan
Chen-Mou Cheng National Taiwan University, Taiwan
Bo-Yin Yang Institute of Information Science, Academia

Sinica, Taiwan

Sponsors

National Sun Yat-sen University
Academia Sinica
Ministry of Science and Technology
Ministry of Education
Ministry of Economic Affairs

Table of Contents – Part I

Cryptology and Coding Theory

Solving LPN Using Covering Codes . 1
Qian Guo, Thomas Johansson, and Carl Löndahl

Algebraic Attack against Variants of McEliece with Goppa Polynomial
of a Special Form . 21

Jean-Charles Faugère, Ludovic Perret, and Frédéric de Portzamparc

New Proposals

Bivariate Polynomials Modulo Composites and Their Applications 42
Dan Boneh and Henry Corrigan-Gibbs

Cryptographic Schemes Based on the ASASA Structure: Black-box,
White-box, and Public-key (Extended Abstract) . 63

Alex Biryukov, Charles Bouillaguet, and Dmitry Khovratovich

Authenticated Encryption

Beyond 2c/2 Security in Sponge-Based Authenticated
Encryption Modes . 85

Philipp Jovanovic, Atul Luykx, and Bart Mennink

How to Securely Release Unverified Plaintext in Authenticated
Encryption . 105

Elena Andreeva, Andrey Bogdanov, Atul Luykx, Bart Mennink,
Nicky Mouha, and Kan Yasuda

Forging Attacks on Two Authenticated Encryption Schemes COBRA
and POET . 126

Mridul Nandi

Symmetric Key Cryptanalysis

Low Probability Differentials and the Cryptanalysis of Full-Round
CLEFIA-128 . 141

Sareh Emami, San Ling, Ivica Nikolić, Josef Pieprzyk, and
Huaxiong Wang

XIV Table of Contents – Part I

Automatic Security Evaluation and (Related-key) Differential
Characteristic Search: Application to SIMON, PRESENT, LBlock,
DES(L) and Other Bit-Oriented Block Ciphers . 158

Siwei Sun, Lei Hu, Peng Wang, Kexin Qiao, Xiaoshuang Ma, and
Ling Song

Scrutinizing and Improving Impossible Differential Attacks:
Applications to CLEFIA, Camellia, LBlock and Simon 179

Christina Boura, Maŕıa Naya-Plasencia, and Valentin Suder

A Simplified Representation of AES . 200
Henri Gilbert

Side Channel Analysis I

Simulatable Leakage: Analysis, Pitfalls, and New Constructions 223
Jake Longo, Daniel P. Martin, Elisabeth Oswald,
Daniel Page, Martijin Stam, and Michael J. Tunstall

Multi-target DPA Attacks: Pushing DPA Beyond the Limits of a
Desktop Computer . 243

Luke Mather, Elisabeth Oswald, and Carolyn Whitnall

GLV/GLS Decomposition, Power Analysis, and Attacks on ECDSA
Signatures with Single-Bit Nonce Bias . 262

Diego F. Aranha, Pierre-Alain Fouque, Benôıt Gérard,
Jean-Gabriel Kammerer, Mehdi Tibouchi,
and Jean-Christophe Zapalowicz

Soft Analytical Side-Channel Attacks . 282
Nicolas Veyrat-Charvillon, Benôıt Gérard,
and François-Xavier Standaert

Hyperelliptic Curve Cryptography

On the Enumeration of Double-Base Chains with Applications to
Elliptic Curve Cryptography . 297

Christophe Doche

Kummer Strikes Back: New DH Speed Records . 317
Daniel J. Bernstein, Chitchanok Chuengsatiansup, Tanja Lange,
and Peter Schwabe

Jacobian Coordinates on Genus 2 Curves . 338
Huseyin Hisil and Craig Costello

Table of Contents – Part I XV

Factoring and Discrete Log

Mersenne Factorization Factory . 358
Thorsten Kleinjung, Joppe W. Bos, and Arjen K. Lenstra

Improving the Polynomial time Precomputation of Frobenius
Representation Discrete Logarithm Algorithms: Simplified Setting for
Small Characteristic Finite Fields . 378

Antoine Joux and Cécile Pierrot

Invited Talk I

Big Bias Hunting in Amazonia: Large-Scale Computation and
Exploitation of RC4 Biases (Invited Paper) . 398

Kenneth G. Paterson, Bertram Poettering, and Jacob C.N. Schuldt

Cryptanalysis

Multi-user Collisions: Applications to Discrete Logarithm,
Even-Mansour and PRINCE . 420

Pierre-Alain Fouque, Antoine Joux, and Chrysanthi Mavromati

Cryptanalysis of Iterated Even-Mansour Schemes with Two Keys 439
Itai Dinur, Orr Dunkelman, Nathan Keller, and Adi Shamir

Meet-in-the-Middle Attacks on Generic Feistel Constructions 458
Jian Guo, Jérémy Jean, Ivica Nikolić, and Yu Sasaki

XLS is Not a Strong Pseudorandom Permutation . 478
Mridul Nandi

Signatures

Structure-Preserving Signatures on Equivalence Classes and Their
Application to Anonymous Credentials . 491

Christian Hanser and Daniel Slamanig

On Tight Security Proofs for Schnorr Signatures . 512
Nils Fleischhacker, Tibor Jager, and Dominique Schröder

Zero-Knowledge

Square Span Programs with Applications to Succinct NIZK
Arguments . 532

George Danezis, Cédric Fournet, Jens Groth, and Markulf Kohlweiss

XVI Table of Contents – Part I

Better Zero-Knowledge Proofs for Lattice Encryption and Their
Application to Group Signatures . 551

Fabrice Benhamouda, Jan Camenisch, Stephan Krenn,
Vadim Lyubashevsky, and Gregory Neven

Author Index . 573

Table of Contents – Part II

Encryption Schemes

Concise Multi-challenge CCA-Secure Encryption and Signatures with
Almost Tight Security . 1

Benôıt Libert, Marc Joye, Moti Yung, and Thomas Peters

Efficient Identity-Based Encryption over NTRU Lattices 22
Léo Ducas, Vadim Lyubashevsky, and Thomas Prest

Order-Preserving Encryption Secure Beyond One-Wayness 42
Isamu Teranishi, Moti Yung, and Tal Malkin

Outsourcing and Delegation

Statistically-secure ORAM with Õ(log2 n) Overhead 62
Kai-Min Chung, Zhenming Liu, and Rafael Pass

Adaptive Security of Constrained PRFs . 82
Georg Fuchsbauer, Momchil Konstantinov, Krzysztof Pietrzak, and
Vanishree Rao

Obfuscation

Poly-Many Hardcore Bits for Any One-Way Function and a Framework
for Differing-Inputs Obfuscation . 102

Mihir Bellare, Igors Stepanovs, and Stefano Tessaro

Using Indistinguishability Obfuscation via UCEs . 122
Christina Brzuska and Arno Mittelbach

Indistinguishability Obfuscation versus Multi-bit Point Obfuscation
with Auxiliary Input . 142

Christina Brzuska and Arno Mittelbach

Bootstrapping Obfuscators via Fast Pseudorandom Functions 162
Benny Applebaum

Homomorphic Cryptography

Homomorphic Authenticated Encryption Secure against
Chosen-Ciphertext Attack . 173

Chihong Joo and Aaram Yun

XVIII Table of Contents – Part II

Authenticating Computation on Groups: New Homomorphic Primitives
and Applications . 193

Dario Catalano, Antonio Marcedone, and Orazio Puglisi

Compact VSS and Efficient Homomorphic UC Commitments 213
Ivan Damg̊ard, Bernardo David, Irene Giacomelli,
and Jesper Buus Nielsen

Secret Sharing

Round-Optimal Password-Protected Secret Sharing and T-PAKE
in the Password-Only Model . 233

Stanislaw Jarecki, Aggelos Kiayias, and Hugo Krawczyk

Secret-Sharing for NP . 254
Ilan Komargodski, Moni Naor, and Eylon Yogev

Block Ciphers and Passwords

Tweaks and Keys for Block Ciphers: The TWEAKEY Framework 274
Jérémy Jean, Ivica Nikolić, and Thomas Peyrin

Memory-Demanding Password Scrambling . 289
Christian Forler, Stefan Lucks, and Jakob Wenzel

Side Channel Analysis II

Side-Channel Analysis of Multiplications in GF(2128):
Application to AES-GCM . 306

Sonia Beläıd, Pierre-Alain Fouque, and Benôıt Gérard

Higher-Order Threshold Implementations . 326
Begül Bilgin, Benedikt Gierlichs, Svetla Nikova, Ventzislav Nikov,
and Vincent Rijmen

Masks Will Fall Off : Higher-Order Optimal Distinguishers 344
Nicolas Bruneau, Sylvain Guilley, Annelie Heuser, and Olivier Rioul

Black-Box Separation

Black-Box Separations for One-More (Static) CDH
and Its Generalization . 366

Jiang Zhang, Zhenfeng Zhang, Yu Chen, Yanfei Guo,
and Zongyang Zhang

Black-Box Separations for Differentially Private Protocols 386
Dakshita Khurana, Hemanta K. Maji, and Amit Sahai

Table of Contents – Part II XIX

Composability

Composable Security of Delegated Quantum Computation 406
Vedran Dunjko, Joseph F. Fitzsimons, Christopher Portmann,
and Renato Renner

All-But-Many Encryption: A New Framework for Fully-Equipped UC
Commitments . 426

Eiichiro Fujisaki

Multi-Party Computation

Multi-valued Byzantine Broadcast: The t < n Case 448
Martin Hirt and Pavel Raykov

Fairness versus Guaranteed Output Delivery in Secure Multiparty
Computation . 466

Ran Cohen and Yehuda Lindell

Actively Secure Private Function Evaluation . 486
Payman Mohassel, Saeed Sadeghian, and Nigel P. Smart

Efficient, Oblivious Data Structures for MPC . 506
Marcel Keller and Peter Scholl

Author Index . 527

Solving LPN Using Covering Codes

Qian Guo1,�, Thomas Johansson2, and Carl Löndahl2,��

1 Dept. of Electrical and Information Technology, Lund University, Lund, Sweden
and School of Computer Science, Fudan University, Shanghai, China

qian.guo@eit.lth.se
2 Dept. of Electrical and Information Technology, Lund University, Lund, Sweden

{thomas.johansson,carl.londahl}@eit.lth.se

Abstract. We present a new algorithm for solving the LPN problem.
The algorithm has a similar form as some previous methods, but includes
a new key step that makes use of approximations of random words to
a nearest codeword in a linear code. It outperforms previous methods
for many parameter choices. In particular, we can now solve instances
suggested for 80-bit security in cryptographic schemes like HB variants,
LPN-C and Lapin, in less than 280 operations.

1 Introduction

In recent years of modern cryptography, much effort has been devoted to finding
efficient and secure low-cost cryptographic primitives targeting applications in
very constrained hardware environments (such as RFID tags and low-power
devices). Many proposals rely on the hardness assumption of Learning Parity
with Noise (LPN), a fundamental problem in learning theory, which recently
has also gained a lot of attention within the cryptographic society. The LPN

problem is well-studied and it is intimately related to the problem of decoding
random linear codes, which is one of the most important problems in coding
theory. Being a supposedly hard problem1, the LPN problem is a good candidate
for post-quantum cryptography, where other classically hard problems such as
factoring and the discrete log problem fall short. The inherent properties of LPN
also makes it ideal for lightweight cryptography.

The first time the LPN problem was employed in a cryptographic construction
was in the Hopper-Blum (HB) identification protocol [17]. HB is a minimalistic
protocol that is secure in a passive attack model. Aiming to secure the HB scheme
also in an active attack model, Juels and Weis [18], and Katz and Shin [19] pro-
posed a modified scheme. The modified scheme, which was given the name HB+,
extends HB with one extra round. It was later shown by Gilbert et al. [14] that
the HB+ protocol is vulnerable to active attacks, i.e. man-in-the-middle attacks,
� Supported in part by the National Natural Science Foundations of China (Grants No.

61170208) and Shanghai Key Program of Basic Research (Grant No. 12JC1401400).
�� Supported by the Swedish Research Council (Grants No. 621-2012-4259).
1 LPN with adversarial error is NP-hard.

P. Sarkar and T. Iwata (Eds.): ASIACRYPT 2014, PART I, LNCS 8873, pp. 1–20, 2014.
c© International Association for Cryptologic Research 2014

2 Q. Guo, T. Johansson, and C. Löndahl

where the adversary is allowed to intercept and attack an ongoing authentication
session to learn the secret. Gilbert et al. [12] subsequently proposed a variant
of the Hopper-Blum protocol called HB#. Apart from repairing the protocol,
the constructors of HB# introduced a more efficient key representation using a
variant of LPN called Toeplitz-LPN.

In [13], Gilbert et al. proposed a way to use LPN in encryption of messages,
which resulted in the cryptosystem LPN-C. Kiltz et al. [22] and Dodis et al. [9]
showed how to construct message authentication codes (MACs) using LPN. The
existence of MACs allows one to construct identification schemes that are prov-
ably secure against active attacks. The most recent contribution to LPN-based
constructions is a two-round identification protocol called Lapin, proposed by
Heyse et al. [16], and an LPN-based encryption scheme called Helen, proposed
by Duc and Vaudenay [10]. The Lapin protocol is based on an LPN variant
called Ring-LPN, where the samples are elements of a polynomial ring.

The two major threats against LPN-based cryptographic constructions are
generic algorithms that decode random linear codes (information set decoding
(ISD)) and variants of the BKW algorithm, originally proposed by Blum et
al. [3]. Being the asymptotically most efficient2 approach, the BKW algorithm
employs an iterated collision procedure on the queries. In each iteration, colliding
entries sum together to produce a new entry with smaller dependency on the
information bits but with an increased noise level. Once the dependency from
sufficiently many information bits are removed, the remaining are exhausted
to find the secret. Although the collision procedure is the main reason for the
efficiency of the BKW algorithm, it leads to a requirement of an immense amount
of queries compared to ISD. Notably, for some cases, e.g., when the noise is very
low, ISD yields the most efficient attack.

Levieil and Fouque [26] proposed to use Fast Walsh-Hadamard Transform in
the BKW algorithm when searching for the secret. In an unpublished paper,
Kirchner [23] suggested to transform the problem into systematic form, where
each information (key) bit then appears as an observed symbol, pertubated by
noise. This requires the adversary to only exhaust the biased noise variables
rather than the key bits. When the error rate is low, the noise variable search
space is very small and this technique decreases the attack complexity. Building
on the work by Kirchner [23], Bernstein and Lange [5] showed that the ring
structure of Ring-LPN can be exploited in matrix inversion, further reducing
the complexity of attacks on for example Lapin. None of the known algorithms
manage to break the 80 bit security of Lapin. Nor do they break the parameters
proposed in [26], which were suggested as design parameters of LPN-C [13] for
80-bit security.

In this paper, we propose a new algorithm for solving the LPN problem based
on [23,5]. We employ a new technique that we call subspace distinguishing, which
exploits coding theory to decrease the dimension of the secret. The trade-off is
a small increase in the sample noise. Our novel algorithm performs favorably in
comparison to »state-of-the-art« algorithms and we manage to break previously

2 For a fixed error rate.

Solving LPN Using Covering Codes 3

Table 1. Comparison of different algorithms for solving LPN with parameters (512, 1/8)

Algorithm Complexity (log2)

Queries Time Memory

Levieil-Fouque [26] 75.7 87.5 84.8
Bernstein-Lange [5] 68.6 85.7 77.6

New algorithm 66.3 79.9 75.3

unbroken parameters of HB variants, Lapin and LPN-C. As an example, we
attack the common (512, 1/8)-instance of LPN and break its 80-bit security
barrier. A comparision of complexity of different algorithms3 is shown in Table 1.

The organization of the paper is as follows. In Section 2, we give some pre-
liminaries and introduce the LPN problem in detail. Moreover, in Section 3 we
give a short description of the BKW algorithm. We briefly describe the general
idea of our new attack in Section 4 and more formally in Section 5. In Section 6,
we analyze its complexity. The results when the algorithm is applied on various
LPN-based cryptosystems are given in Section 7 and in Section 8, we describe
some aspects of the covering-coding technique. Section 9 concludes the paper.

2 The LPN Problem

We will now give a more thorough description of the LPN problem. Let Berη be
the Bernoulli distribution and let X ∼ Berη be a random variable with alphabet
X = {0, 1}. Then, Pr [X = 1] = η and Pr [X = 0] = 1−Pr [X = 1] = 1−η. The
bias ε of X is given from Pr [X = 0] = 1/2 (1 + ε). Let k be a security parameter
and let x be a binary vector of length k.

Definition 1 (LPN oracle). An LPN oracle ΠLPN for an unkown vector x ∈
{0, 1}k with η ∈ (0, 1

2) returns pairs of the form(
g

$← {0, 1}k, 〈x,g〉+ e
)
,

where e← Berη. Here, 〈x,g〉 denotes the scalar product of vectors x and g.

We also write 〈x,g〉 as x · gT, where gT is the transpose of the row vector g.
We receive a number n of noisy versions of scalar products of x from the oracle
ΠLPN, and our task is to recover x.

3 The Bernstein-Lange algorithm is originally proposed for Ring-LPN, and by a slight
modification [5], one can apply it to the LPN instances as well. It shares the be-
ginning steps (i.e., the steps of Gaussian elimination and the collision procedure)
with the new algorithm, so for a fair comparison, we use the same implementation
of these steps when computing their complexity.

4 Q. Guo, T. Johansson, and C. Löndahl

Problem 1 (LPN). Given an LPN oracle ΠLPN, the (k, η)-LPN problem con-
sists of finding the vector x. An algorithm ALPN(t, n, δ) using time at most t
with at most n oracles queries solves (k, η)-LPN if

Pr
[
ALPN(t, n, δ) = x : x

$← {0, 1}k
]
≥ δ.

Let y be a vector of length n and let yi = 〈x,gi〉. For known random vec-
tors g1,g2, . . . ,gn, we can easily reconstruct an unknown x from y using lin-
ear algebra. In the LPN problem, however, we receive instead noisy versions of
yi, i = 1, 2, . . . , n. Writing the noise in position i as ei, i = 1, 2, . . . , n we obtain
zi = yi + ei = 〈x,gi〉 + ei. In matrix form, the same is written as z = xG + e,
where z =

[
z1 z2 · · · zn

]
, and the matrix G is formed as G =

[
gT
1 gT

2 · · · gT
n

]
.

This shows that the LPN problem is simply a decoding problem, where G is a
random k×n generator matrix, x is the information vector and z is the received
vector after transmission of a codeword on the binary symmetric channel with
error probability η.

2.1 Piling-up Lemma

We recall the piling-up lemma, which is frequently used in analysis of the LPN
problem.

Lemma 1 (Piling-up lemma). Let X1, X2, ...Xn be independent binary ran-
dom variables where each Pr [Xi = 0] = 1

2 (1 + εi), for 1 ≤ i ≤ n. Then,

Pr [X1 +X2 + · · ·+Xn = 0] =
1

2

(
1 +

n∏
i=1

εi

)
.

3 The BKW Algorithm

The BKW algorithm is due to Blum, Kalai and Wasserman [3]. In the spirit of
generalized birthday algorithms, their approach uses an iterative sort-and-match
procedure on the columns of the generator matrix G, which iteratively reduces
the dimension of G.

Initially, one searches for all combinations of two columns in G that add to
zero in the last b entries. Assume that one finds two columns gT

i1
,gT

i2
such that

gi1 + gi2 = [∗ ∗ · · · ∗ 0 0 · · · 0︸ ︷︷ ︸
b symbols

],

where ∗ means any value. Then a new vector g
(2)
1 = gi1 + gi2 is formed. An

“observed symbol” is also formed, corresponding to this new column by forming
z
(2)
1 = zi1 + zi2 . If y

(2)
1 =

〈
x,g

(2)
1

〉
, then z

(2)
1 = y

(2)
1 + e

(2)
1 , where now e

(2)
1 =

ei1 + ei2 . It can be verified that Pr
[
e
(2)
1 = 0

]
= 1/2(1 + ε2).

Solving LPN Using Covering Codes 5

There are two approaches to realize the above merging procedure. One, raised
by Blum et al. [3], called LF1 type by Levieil and Fouque [26], and later adopted
by Bernstein and Lange [5], is choosing one sample in each partition with the
same last b entries, and then adding it to the remaining samples in the same
partition. Thus, the number of samples reduces by about 2b after this operation.
The other method is a heuristic called LF2 in [26], which computes any pair
with the same last b entries. It produces more samples at the cost of increased
dependency, thereby gaining more efficiency in practice but losing rigorous anal-
ysis in theory. We will use the LF1 setting throughout the remaining part of the
paper.

Put all such new columns in a matrix G2,

G2 =
[
g
(2)T
1 g

(2)T
2 . . . g

(2)T

n−2b

]
.

If n is the number of columns in G, then the number of columns in G2 will
be n − 2b. Note that the last b entries of every column in G2 are all zero. In
connection to this matrix, the vector of observed symbols is

z2 =
[
z
(2)
1 z

(2)
2 · · · z(2)

n−2b

]
,

where Pr
[
z
(2)
i = y

(2)
i

]
= 1/2(1 + ε2), for 1 ≤ i ≤ n− 2b.

We now iterate the same, picking one column and then adding it to another
suited column in Gi giving a sum with an additional b entries being zero, forming
the columns of Gi+1. Repeating the same procedure an additional t − 2 times
will reduce the number of unknown variables to k−bt in the remaining problem.

For each iteration the noise level is squared. By the piling-up lemma we have
that

Pr

⎡⎣ 2t∑
j=1

ei = 0

⎤⎦ =
1

2

(
1 + ε2

t
)
.

Hence, the bias decreases quickly to low levels. The remaining unknown key
variables are guessed and for each guess we check whether the bias is present or
not. The procedure is summarized in Algorithm 1.

4 Essential Idea

In this section we try to give a very basic description of the idea used to give a
new and more efficient algorithm for solving the LPN problem. A more detailed
analysis will be provided in later sections, and a graphical interpretation of the
key step is given in Appendix A.

Assume that we have an initial LPN problem described by G=
[
gT
1 gT

2 · · · gT
n

]
and z = xG+ e, where z =

[
z1 z2 · · · zn

]
, where zi = yi + ei = 〈x,gi〉+ ei.

As previously shown in [23] and [5], we may through Gaussian elimination
transform G into systematic form. Assume that the first k columns are linearly

6 Q. Guo, T. Johansson, and C. Löndahl

Algorithm 1. BKW Algorithm

Input: Matrix G with k rows and n columns and received vector z, algorithm
parameters b, t

Put the received word as a first row in the matrix, G1 ←
[
z
G

]
;

1

for i = 1 to t do2
For Gi, partition the columns by the last b · i bits;3
Form pairs of columns from each partition and form Gi+1;4

for x ∈ {0, 1}k−bt do5
Find the vector

[
1 x 0
]

such that
[
1 x 0
]
Gt+1 has minimal weight;6

independent and forms the matrix D. With a change of variables x̂ = xD−1

we get an equivalent problem description with Ĝ =
[
I ĝT

k+1 ĝT
k+2 · · · ĝT

n

]
. We

compute
ẑ = z+

[
z1, z2, . . . , zk

]
Ĝ =

[
0, ẑk+1, ẑk+2, . . . , ẑn

]
.

In this situation, one may start performing a number of BKW steps on
columns k + 1 to n, reducing the dimension k of the problem to something
smaller. This will result in a new problem instance where noise in each posi-
tion is larger, except for the first systematic positions. We may write the prob-
lem after performing t BKW steps in the form G′ =

[
I g′

1
T
g′
2
T · · · g′

m
T] and

z′ =
[
0, z′1, z

′
2, . . . z

′
m

]
, where now G′ has dimension k′×m with k′ = k−bt and m

is the number of columns remaining after the BKW step. We have z′ = x′G′+e′,
Pr [x′

i = 0] = 1/2(1 + ε) and Pr
[
x′ · g′

i
T
= zi

]
= 1/2(1 + ε2

t

).
Now we will explain the basics of the new idea proposed in the paper. In a

problem instance as above, we may look at the random variables y′i = x′ · g′
i
T.

The bits in x′ are mostly zero but a few are set to one. Let us assume that c
bits are set to one. Furthermore, x′ is fixed for all i. We usually assume that
g′
i is generated according to a uniform distribution. However, assume that every

column g′
i would be biased, i.e., every bit in a column position is zero with

probability 1/2(1 + ε′). Then we observe that the variables y′i will be biased, as

y′i = 〈x′,g′
i〉 =

c∑
j=1

[g′
i]kj ,

where k1, k2, . . . kc are the bit positions where x′ has value one (here [x]y denotes
bit y of vector x). In fact, variables y′i will have bias (ε′)c.

So how do we get the columns to be biased in the general case? We could
simply hope for some of them to be biased, but if we need to use a larger
number of columns, the bias would have to be small, giving a high complexity
for an algorithm solving the problem. We propose instead to use a covering code
to achieve something similar to what is described above. Vectors g′

i are of length

Solving LPN Using Covering Codes 7

k′, so we consider a code of length k′ and some dimension l. Let us assume that
the generator matrix of this code is denoted F. For each vector g′

i, we now find
the codeword in the code spanned by F that is closest (in Hamming sense) to
g′
i. Assume that this codeword is denoted ci. Then we can write

g′
i = ci + e′i,

where e′i is a vector with biased bits. It remains to examine exactly how biased
the bits in e′i will be, but assume for the moment that the bias is ε′. Going back
to our previous expressions we can write

y′i = 〈x′,g′
i〉 = x′ · (ci + e′i)

T

and since ci = uiF for some ui, we can write

y′i = x′FT · uT
i + x′ · e′i

T
.

We may introduce x′′ = x′FT as a length l vector of unknown bits (linear
combinations of bits from x′) and again

y′i = x′′ · uT
i + x′ · e′i

T
.

Since we have Pr [y′i = z′i] = 1/2(1 + ε2
t

), we get

Pr [x′′ · uT
i = z′i] =

1

2
(1 + ε2

t

(ε′)c),

where ε′ is the bias determined by the expected distance between g′
i and the

closest codeword in the code we are using, and c is the number of positions in x′

set to one. The last step in the new algorithm now selects about m = 1/(ε2
t

ε′c)2

samples z′1, z
′
2, . . . , z

′
m and for each guess of the 2l possible values of x′′, we

compute how many times x′′ ·uT
i = z′i when i = 1, 2, . . . ,m. As this step is similar

to a correlation attack scenario, we know that it can be efficiently computed
using Fast Walsh-Hadamard Transform. After recovering x′′, it is an easy task
to recover remaining unknown bits of x′.

4.1 An Example Using Dimension k = 160

In order to illustrate the ideas and convince the reader that the proposed al-
gorithm can be more efficient than previously known methods, we consider an
example. We assume an LPN instance of dimension k = 160, where we allow
at most 224 received samples and we allow at most around 224 vectors of length
160 to be stored in memory. Furthermore, the error probability is η = 0.1.

For this particular case, we propose the following algorithm. The first step is
to compute the systematic form, Ĝ =

[
I ĝT

k+1 ĝT
k+2 · · · ĝT

n

]
and

ẑ = z+
[
z1 z2 . . . zk

]
Ĝ =

[
0 ẑk+1 ẑk+2 . . . ẑn

]
.

Here Ĝ has dimension 160 and ẑ has length at most 224.

8 Q. Guo, T. Johansson, and C. Löndahl

In the second step we perform t = 4 steps of BKW (using the LF1 approach),
the first step removing 22 bits and the remaining three each removing 21 bits.
This results in G′ =

[
I g′

1
T
g′
2
T · · · g′

m
T] and z′ =

[
0 z′1 z′2 . . . z′m

]
, where now

G′ has dimension 75×m and m is about 3·221. We have z′ = x′G′, Pr [x′
i = 0] =

1/2(1 + ε), where ε = 0.8 and Pr
[
x′ · g′

i
T
= zi

]
= 1/2(1 + ε16). So the resulting

problem has dimension 75 and the bias is ε2
t

= (0.8)16.
In the third step we then select a suitable code of length 75. In this example

we choose a block code which is a direct sum of 25 [3, 1, 3] repetition codes4, i.e.,
the dimension is 25. We map every vector g′

i to the nearest codeword by simply
selecting chunks of three consecutive bits and replace them by either 000 or 111.
With probability 3/4 we will change one position and with probability 1/4 we will
not have to change any position. In total we expect to change (3/4 ·1+1/4 ·0) ·25
positions. The expected weight of the length 75 vector e′i is 75/4, so the expected
bias is ε′ = 1/2. As Pr [x′

i = 1] = 0.1, the expected number of nonzero positions
in x′ is 7.5. Assuming we have only c = 6 nonzero positions, we get

Pr [x′′ · uT
i = z′i] =

1

2

(
1 + 0.816

(
1

2

)6
)

=
1

2
(1 + 2−11.15).

In the last step we then run through 225 values of x′′ and for each of them
we compute how often x′′ ·uT

i = z′i for i = 1, . . . , 3 · 221. Again since we use Fast
Walsh-Hadamard Transform, the cost of this step is not much more than 225

operations. The probability of having no more than 6 ones in x′ is about 0.37,
so we need to repeat the whole process a few times.

In comparison with other algorithms, the best approach we can find is the
Kirchner, Bernstein, Lange approach [23,5], where one can do up to 5 BKW
steps. Removing 21 bits in each step leaves 55 remaining bits. Using Fast Walsh-
Hadamard Transform with 0.8−64 = 220.6 samples, we can include another 21
bits in this step, but there are still 34 remaining variables that needs to be
guessed.

Overall, the simple algorithm sketched above is outperforming the best pre-
vious algorithm using optimal parameter values5.

Simulation. We have verified in simulation that the proposed algorithm works
in practice. We use a rate R = 1/3 concatenated repetition code and query the
oracle for 224 samples. Simple pruning of the samples with too large distance from
the codeword was used to approximate the behaviour of an optimal distinguisher.
4 In the sequel, we denote this code construction as concatenated repetition code.

For this [75, 25, 3] linear code, the covering radius is 25, but we could see from this
example that what matters is the average weight of the error vector, which is much
smaller than 25.

5 Adopting the same method to implement their overlapping steps, for the (160, 1/10)
LPN instance, the Bernstein-Lange algorithm and the new algorithm cost 235.70

and 233.83 bit operations, respectively. Thus, the latter offers an improvement with
a factor roughly 4 to solve this small-scale instance.

Solving LPN Using Covering Codes 9

Algorithm 2. New attacking algorithm

Input: Matrix G with k rows and n columns, received length n vector z and
algorithm parameters t, b, k′′, l, w0, c

repeat1
Pick random column permutation π;2
Perform Gaussian elimination on π(G) resulting in G0 = [I|L0];3
for i = 1 to t do4

Partition the columns of Li−1 by the last b · i bits;5
Denote the set of columns in partition s by Ls;6
Pick a vector ais ∈ Ls;7
for (a ∈ Ls) and (a �= ais) do8

Li ← [Li|(a+ ais)];9

Pick a [k′′, l] linear code with good covering property;10
Partition the columns of Lt by the middle non-all-zero k′′ bits and11
group them by their nearest codewords;
Set k1 = k − ab− k′′;12

for x′
2 ∈ {0, 1}k1 with wt(x′

2) ≤ w0 do13
Update the observed samples;14

for y ∈ {0, 1}l do15
Use Fast Walsh-Hadamard Transform to compute the16
numbers of 1s and 0s observed respectively;
Perform hypothesis testing whose threshold is defined as a17
function of c;

until acceptable hypothesis is found18

The average execution time is ∼ 1.86 seconds on an Apple iMac 3.06 GHz Intel
Core 2 Duo with 4 GB ram running OS X 10.9 (13A603).

5 Algorithm Description

Having introduced the key idea in a simplistic manner, we now formalize it by
stating a new five-step LPN solving algorithm (see Algorithm 2) in detail. Its first
three steps combine several well-known techniques on this problem, i.e., chang-
ing the distribution of secret vector [23], sorting and merging to make the length
of samples shorter [3], and partial secret guessing [5], together. The efficiency
improvement comes from a novel idea introduced in the last two subsections—if
we employ a linear covering code and rearrange samples according to their near-
est codewords, then the columns in the matrix subtracting their corresponding
codewords lead to sparse vectors desired in the distinguishing process. We later
propose a new distinguishing technique—subspace hypothesis testing, to remove
the influence of the codeword part using Fast Walsh-Hadamard Transform. The
algorithm consists of five steps, each described in separate subsections.

10 Q. Guo, T. Johansson, and C. Löndahl

5.1 Gaussian Elimination

Recall that our LPN problem is given by z = xG + e, where z and G are
known. We can apply an arbitrary column permutation π without changing
the problem (but we change the error locations). A transformed problem is
π(z) = xπ(G)+ π(e). This means that we can repeat the algorithm many times
using different permutations.

Continuing, we multiply by a suitable k × k matrix D to bring the matrix
G to a systematic form, Ĝ = DG. The problem remains the same, except that
the unknowns are now given by the vector x̃ = xD−1. This is just a change
of variables. As a second step, we also add the codeword

[
z1 z2 · · · zk

]
Ĝ to

our known vector z, resulting in a received vector starting with k zero entries.
Altogether, this corresponds to the change x̂ = xD−1 +

[
z1 z2 · · · zk

]
.

Our initial problem has been transformed and the problem is now written as

ẑ =
[
0 ẑk+1 ẑk+2 · · · ẑn

]
= x̂Ĝ+ e, (1)

where now Ĝ is in systematic form. Note that these transformations do not affect
the noise level. We still have a single noise variable added in every position.

Schoolbook implementation of the above Gaussian elimination procedure re-
quires about nk2/2 bit-operations; we propose however to reduce its complexity
by using a more sophisticated space-time trade-off technique. We store interme-
diate results in tables, and then derive the final result by adding several items
in the tables together. The detailed description is as follows.

For a fixed s, divide the matrix D in a=
k/s� parts, i.e., D=
[
D1,D2, . . . ,Da

]
,

where Di is a sub-matrix with s columns(except possibly the last matrix Da).
Then store all possible values of Dix

T for x ∈ Fs
2 in tables indexed by i, where

1 ≤ i ≤ a. For a vector g =
[
g1,g2, . . . ,ga

]
, the transformed vector is

DgT = D1g
T
1 +D2g

T
2 + . . .+Dag

T
a ,

where Dig
T
i can be read directly from the table.

The cost of constructing the tables is about O (2s), which can be negligible
if memory in the BKW step is much larger. Furthermore, for each column, the
transformation costs no more than k · a bit operations; so, this step requires

C1 = (n− k) · ka < nka

bit operations in total if 2s is much smaller than n.

5.2 Collision Procedure

This next step contains the BKW part. The input to this step is ẑ and Ĝ.
We write Ĝ =

[
I L0

]
and process only the matrix L0. As the length of L0 is

typically much larger than the systematic part of Ĝ, this is roughly no restriction
at all. We then use the a sort-and-match technique as in the BKW algorithm,

Solving LPN Using Covering Codes 11

operating on the matrix L0. This process will give us a sequence of matrices
denoted L0,L1,L2, . . . ,Lt.

Let us denote the number of columns of Li by r(i), with r(0) = n−k. Adopting
the LF1 type technique, every step operating on columns will reduce the number
of samples by 2b, yielding that m = r(t) = r(0) − t2b. Apart from the process
of creating the Li matrices, we need to update the received vector in a similar
fashion. A simple way is to put ẑ as a first row in the representation of Ĝ.

This procedure will end with a matrix
[
I Lt

]
, where Lt will have all tb last

entries in each column all zero. By discarding the last tb rows we have a given
matrix of dimension k − tb that can be written as G′ =

[
I Lt

]
, and we have

a corresponding received vector z′ =
[
0 z′1 z′2 · · · z′m

]
. The first k′ = k − tb

positions are only affected by a single noise variable, so we can write

[0, z′] = x′Ĝ+
[
e1 e2 · · · ek′ ẽ1 ẽ2 · · · ẽm

]
, (2)

for some unknown x′ vector, where ẽi =
∑

ij∈Ti,|Ti|≤2t eij and Ti contains the
positions that have been added up to form the (k′ + i)th column of G′. By the
piling-up lemma, the bias for ẽi increases to ε2

t

.
We denote the complexity of this step C2, where

C2 =

t∑
i=1

(k + 1− ib)(n− i2b) ≈ (k + 1)tn.

5.3 Partial Secret Guessing Procedure

The previous procedure outputs G′ with dimension k′ = k−tb and m = n−k−t2b

columns. We removed the bottom tb bits of x̂ to form the length k′ vector x′,
with z′ = x′G′ + ẽ.

We now divide x′ into two parts: x′ =
[
x′
1 x′

2

]
, where x′

1 is of length k′′. In
this step, we simply guess all vectors x2 ∈ Fk′−k′′

2 such that wt(x2) ≤ w0 for
some w0 and update the observed vector z′ accordingly. This transforms the
problem to that of attacking a new smaller LPN problem of dimension k′′ with
the same number of samples. Firstly, note that this will only work if wt(x2) ≤ w0,
and we denote this probability by P (w0, k

′ − k′′). Secondly, we need to be able
to distinguish a correct guess from incorrect ones and this is the task of the
remaining steps. The complexity of this step is

C3 = m

w0∑
i=0

(
k′ − k′′

i

)
i.

5.4 Covering-Coding Method

In this step, we use a [k′′, l] linear code C with covering radius dC to group the
columns. That is, we rewrite

g′
i = ci + e′i,

12 Q. Guo, T. Johansson, and C. Löndahl

where ci is the nearest codeword in C, and wt(e′i) ≤ dC . The employed linear
code is characterized by a systematic generator matrix F =

[
I F′]

l×k′′ ; we thus
obtain a corresponding parity-check matrix H =

[
F′T I

]
(k′′−l)×k′′ .

There are several ways to select a code. One way of realizing the above group-
ing idea is by a table-based syndrome decoding technique. The procedure is as
follows: 1) We construct a constant query time table containing 2k

′′−l items, in
each of which stores the syndrome and its corresponding minimum weight error
vector. 2) If the syndrome Hg′

i
T is computed, we then find its corresponding

error vector e′i by checking in the table; adding them together yields the nearest
codeword ci.

The remaining task is to calculate the syndrome efficiently. We, according to
the first l bits, sort the vectors g′

i, where 0 ≤ i ≤ m, and group them into 2l

partitions denoted by Pj for 1 ≤ j ≤ 2l. Starting from the partition P1 whose
first l bits are all zero, we can derive the syndrome by reading its last k′′ − l
bits without any additional computational cost. If we know one syndrome in Pj ,
then we can compute another syndrome in the same partition within 2(k′′ − l)
bit operations, and another in a different partition whose first l-bit vector has
Hamming distance 1 from that of Pj within 3(k′′ − l) bit operations. Therefore,
the complexity of this step is

C4 = (k′′ − l)(2m+ 2l).

Notice that the selected linear code determines the syndrome table, which can
be pre-computed within complexity O(k′′2k

′′−l). The optimal parameter sug-
gests that this cost is acceptable compared with the total attacking complexity.

The expected distance to the nearest codeword determines the bias ε′ in
e′i. This plays important roles in the later hypothesis testing step: if we rearrange
the columns e′i as a matrix, then it is sparse; therefore, we can view the ith value
in one column as a random variable Ri distributed according to Ber d

k′′ , where d

is the expected distance. We can bound it by the covering radius6. Moreover, if
the bias is large enough, then it is reasonable to consider Ri, for 1 ≤ i ≤ i1, as
independent variables.

5.5 Subspace Hypothesis Testing

Group the samples (g′
i, z

′
i) in sets L(ci) according to their nearest codewords

and define the function fL(ci) as

fL(ci) =
∑

(g′
i,z

′
i)∈L(ci)

(−1)z′
i .

The employed systematic linear code C describes a bijection between the linear
space Fl

2 and the set of all codewords in Fk′′
2 , and moreover, due to its systematic

6 In the sequel, we replace the covering radius by the sphere-covering bound to estimate
the expected distance d, i.e., d is the smallest integer, s.t.

∑d
i=0

(
k′′
i

)
> 2k

′′−l. We
give more explanation in Section 8.

Solving LPN Using Covering Codes 13

feature, the corresponding information vector appears explicitly in their first l
bits. We can thus define a new function

g(u) = fL(ci),

such that u represents the first l bits of ci and exhausts all the points in Fl
2.

The Walsh transform of g is defined as

G(y) =
∑
u∈Fl

2

g(u)(−1)〈y,u〉.

Here we exhaust all candidates of y ∈ Fl
2 by computing the Walsh transform.

The following lemma illustrates the reason why we can perform hypothesis
testing on the subspace Fl

2.

Lemma 2. There exits a unique vector y ∈ Fl
2 s.t.,

〈y,u〉 = 〈x′, ci〉 .

Proof. As ci = uF, we obtain

〈x′, ci〉 = x′FTuT = 〈x′FT,u〉 .

Thus, we construct the vector y = x′FT that fulfills the requirement. On the
other hand, the uniqueness is obvious.

Given the candidate y, G(y) is the difference between the number of predicted
0 and the number of predicted 1 for the bit z′i+ 〈x′, ci〉. If y is the correct guess,
then it is distributed according to Ber 1

2 (1−ε2t ·(ε′)w), where ε′ = 1− 2d
k′′ and w is the

weight of x′; otherwise, it is considered random. Thus, the best candidate y0 is
the one that maximizes the absolute value of G(y), i.e. y0 = argmaxy∈F l

2
|G(y)|,

and we need approximately 1/(ε2
t+1 · (ε′)2w) samples to distinguish these two

cases. Note that false positives are quickly detected in an additional step and
this does not significantly increase complexity.

Since the weight w is unknown, we assume that w ≤ c and then query for
samples. If the assumption is valid, we can distinguish the two distributions
correctly; otherwise, we obtain a false positive which can be recognized without
much cost, and then choose another permutation to run the algorithm again.
The procedure will continue until we find the secret vector x.

We use the Fast Walsh-Hadamard Transform technique to accelerate the dis-
tinguishing step. As the hypothesis testing runs for every guess of x′

2, the overall
complexity of this step is

C5 = l2l
w0∑
i=0

(
k′ − k′′

i

)
.

14 Q. Guo, T. Johansson, and C. Löndahl

6 Analysis

In the previous section we already indicated the complexity of each step. We now
put it together in a single complexity estimate. We first formulate the formula
for the possibility of having at most w errors in m positions P (w,m) as follows,

P (w,m) =

w∑
i=0

(1 − η)m−iηi
(
m

i

)
.

Therefore, the success probability in one iteration is P (w0, k
′ − k′′)P (c, k′′). In

each iteration, the complexity accumulates step by step, hence revealing the
following theorem.

Theorem 1 (The complexity of Algorithm 2). Let n be the number of
samples required and a, t, b, w0, c, l, k

′′ be algorithm parameters. For the LPN in-
stance with parameter (k, η), the number of bit operations required for a successful
run of the new attack is equal to 2f(k,n,a,t,b,w0,c,l,k

′′,η), where f(k, n, a, t, b, w0, c, l,
k′′, η) is a function7 defined as follows,

f(k, n, a, t, b, w0, c, l, k
′′, η) =

log2

(
ank + b2b

t(t+ 1)(2t+ 1)

6
− ((k + 1)2b + nb)

(
t

2

)
+ (k + 1)tn

+(k′′ − l)(2(n− t2b) + 2l) + l2l
w0∑
i=0

(
k1
i

)
+ (n− t2b)

w0∑
i=0

(
k1
i

)
i

)

− log2

(w0∑
i=0

(1− η)k1−iηi
(
k1
i

))
− log2

(c∑
i=0

(1 − η)k
′′−iηi

(
k′′

i

))
(3)

under the condition that

n− t2b > 1/(ε2
t+1 · (ε′)2c), (4)

where ε = 1 − 2η, ε′ = 1 − 2d
k′′ and d is the smallest integer, s.t.,

∑d
i=0

(
k′′

i

)
>

2k
′′−l.

Proof. The complexity in one iteration is C1+C2+C3+C4+C5, and the expected
number of iterations is the inverse of P (w0, k1)P (c, k′′); the overall complexity,
therefore, is C∗, where

C∗ =
C1 + C2 + C3 + C4 + C5

P (w0, k1)P (c, k′′)
.

Substituting the detailed formulas into the above expression will end the proof.
The condition (4) ensures that we have enough samples to determine the right
guess with high probability. �
7 The symbol k1 denotes k − tb− k′′ for notational simplicity.

Solving LPN Using Covering Codes 15

7 Results

We now present numerical results of the new algorithm attacking three key
LPN instances, as shown in Table 2. All aiming for achieving 80-bit security,
the first one is with parameter (512, 1/8), widely accepted in various LPN-
based cryptosystems (e.g., HB+ [18], HB# [12], LPN-C [13]) after the suggestion
from Levieil and Fouque [26]; the second one is with increased length (532, 1/8),
adopted as the parameter of the irreducible Ring-LPN instance employed in
Lapin [16]; and the last one is a new design parameter8 we recommend to use in
the future. The attacking details on different protocols will be given later. We
note that the new algorithm has significance not only on the above applications
but also on some LPN-based cryptosystems without explicit parameter settings
(e.g., [9,22]).

Table 2. The complexity for solving different LPN instances

LPN instance Parameters log2 C
∗

t a b l k′′ w0 c log2 n

(512, 1/8) 6 9 63 64 124 2 16 66.3 79.92
(532, 1/8) 6 9 65 66 130 2 17 68.0 81.82
(592, 1/8) 6 10 70 64 137 3 18 72.7 88.07

7.1 HB+

In [26], Levieil and Fouque proposed an active attack on HB+ by choosing the
random vector a from the reader to be 0. To achieve 80-bit security, they sug-
gested to adjust the lengths of secret keys to 80 and 512, respectively, instead of
being both 224. Its security is based on the assumption that the LPN instance
with parameter (512, 1/8) can resist attacks in 280 bit operations. But we break
it in 279.9 bit operations, thereby yielding an active attack on 80-bit security of
HB+ authentication protocol straightforwardly.

7.2 LPN-C and HB#

Using similar structures, Gilbert et al. proposed two different cryptosystems, one
for authentication (HB#) and the other for encryption (LPN-C). By setting
the random vector from the reader and the message vector to be both 0, we
obtain an active attack on HB# authentication protocol and a chosen-plaintext-
attack on LPN-C, respectively. As their protocols consist of both secure version
(random-HB

and LPN-C) and efficient version (HB# and Toeplitz LPN-C),
we need to analyze separately.
8 This instance requires 282.3 bits memory using the new algorithm, and could with-

stand all existing attacks on the security level of 280 bit operations.

16 Q. Guo, T. Johansson, and C. Löndahl

Using Toeplitz Matrices. Toeplitz matrix is a matrix in which each ascend-
ing diagonal from left to right is a constant. Thus, when employing a Toeplitz
matrix as the secret, if we attack its first column successively, then only one
bit in its second column is unknown. So the problem is transformed to that of
solving a new LPN instance with parameter (1, 1/8). We then deduce the third
column, the fourth column, and so forth. The typical parameter settings of the
number of the columns (denoted by m) are 441 for HB#, and 80 (or 160) for
Toeplitz LPN-C. In either case, the cost for determining the vectors except for
the first column is bounded by 240, negligible compared with that of attacking
one (512, 1/8) LPN instance. Therefore, we break the 80-bit security of these
»efficient« versions that use Toeplitz matrices.

Random Matrix Case. If the secret matrix is chosen totally at random, then
there is no simple connection between different columns to exploit. One strategy
is to attack column by column, thereby deriving an algorithm whose complexity
is that of attacking a (512, 1/8) LPN instance multiplied by the number of the
columns. That is, if m = 441, then the overall complexity is about 279.9× 441 ≈
288.7. We may slightly improve the attack by exploiting that the different columns
share the same random vector in each round.

7.3 Lapin with an Irreducible Polynomial

In [16], Heyse et al. use a (532, 1/8) Ring-LPN instance with an irreducible
polynomial to achieve 80-bit security. We show here that this parameter setting
is not secure enough for Lapin to thwart attacks on the level of 280. Although the
new attack on a (532, 1/8)LPN instance requires 281.8 bit operations, larger than
280, there are two key issues to consider: 1) the Ring-LPN problem is believed
to be not harder than the standard LPN problem9; 2) we perform BKW steps
using LF1 setting in the new algorithm, but may obtain a more efficient attack
in practice when adopting the LF2 heuristic, whose effectiveness has been stated
and proven in the implementation part of [26]. We suggest to increase the size
of the employed irreducible polynomial in Lapin for 80-bit security.

8 More on the Covering-Coding Method

We in this section describe more aspects of the covering-coding technique, thus
emphasizing the most novel and essential step in the new algorithm.

Sphere-Covering Bound. We use sphere-covering bound, for two reasons, to
estimate the bias ε′ contributed by the new technique. Firstly, there is a well-
known conjecture [7] in coding theory, i.e., the covering density approaches 1

9 For the instance in Lapin using a quotient ring modulo the irreducible polynomial
x532 + x + 1, it is possible to optimize the procedure for inverting a ring element,
thereby resulting in a more efficient attack than the generic one.

Solving LPN Using Covering Codes 17

asymptotically if the code length goes to infinity. Thus, it is sensible to assume
for a »good« code, when the code length k′′ is relatively large. Secondly, we
could see from the previous example that the key feature desired is a linear code
with low average error weights, which is smaller than its covering radius. From
this perspective, the covering bound brings us a good estimation.

By concatenating five [23, 12] Golay codes, we construct a [115, 60] linear
code10 with covering radius 15. Its expected weight of error vector is quite close
to the sphere-covering bound for this parameter (with gap only 1). We believe
in the existence of linear codes with length around 125, rate approximately 1/2
and average error weight that reaches the sphere-covering bound. For explicit
code construction, see [15] for details.

Using Soft Information. The weight of the error vector e′i is different for
different values of i, causing the confidence level to vary on different samples.
However, the inherent assumption when using Fast Walsh-Hadamard Transform
is a constant confidence level over all samples; thus, Fast Walsh-Hadamard Trans-
form is not an optimal distinguishing method. For optimal distinguishing, soft
information methods such as likelihood ratio tests are required. We show how
to fully exploit soft distinguishing in the longer version of the paper[15].

Attacking Public-Key Cryptography. We know various decodable cover-
ing codes that could be employed in the new algorithm, e.g., rate about 1/2
linear codes that are table-based syndrome decodable, concatenated codes built
on Hamming codes, Golay codes and repetition codes, etc.. For the aimed cryp-
tographic schemes in this paper, i.e., HB variants, LPN-C, and Lapin with an
irreducible polynomial, the first three are efficient; but in the realm of public-
key cryptography (e.g., schemes proposed by Alekhnovich [1], Damgård and
Park [8], Duc and Vaudenay [10]), the situation alters. For these systems, their
security is based on LPN instances with huge secret length (tens of thousands)
and extremely low error probability (less than half a percent), so due to the
competitive average weight of the error vector shown by the previous exam-
ple in Section 4.1, the concatenation of repetition codes with much lower rate
seems more applicable—by low-rate codes, we remove more bits when using the
covering-coding method.

Alternative Collision Procedure. Although the covering-coding method is
employed only once in the new algorithm, we could derive numerous variants,
and among them, one may find a more efficient attack. For example, we could
replace one or two steps in the later stage of the collision procedure by adding
two vectors decoded to the same codeword together. This alternative technique is
similar to that invented by Lamberger et al. in [24,25] for finding near-collisions
of hash function. By this procedure, we could eliminate more bits in one step
10 Using this code, we stand at the margin of breaking the 80-bit security of (512, 1/8)

LPN instances, with time complexity only 280.5 and query complexity 266.2.

18 Q. Guo, T. Johansson, and C. Löndahl

at the cost of increasing the error rate; this is a trade-off, and the concrete
parameter setting should be analyzed more thoroughly later.

9 Conclusions

In this paper we have described a new algorithm for solving the LPN problem
that employs an approximation technique using covering codes together with a
subspace hypothesis testing technique to determine the value of linear combina-
tions of the secret bits. Complexity estimates show that the algorithm beats all
the previous approaches, and in particular, we can present academic attacks on
instances of LPN that has been suggested in different cryptographic primitives.

The new technique has only been described in a rather simplistic manner,
due to space limitations. There are a few obvious improvements, one being the
use of soft decoding techniques and another one being the use of more powerful
constructions of good codes. There are also various modified versions that need
to be further investigated. One such idea is to use the new technique inside a
BKW step, thereby removing more bits in each step at the expense of introducing
another contribution to the bias. An interesting open problem is whether these
ideas can improve the asymptotic behavior of the BKW algorithm.

References

1. Alekhnovich, M.: More on Average Case vs Approximation Complexity. In: FOCS,
pp. 298–307. IEEE Computer Society (2003)

2. Blum, A., Furst, M., Kearns, M., Lipton, R.: Cryptographic Primitives Based on
Hard Learning Problems. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773,
pp. 278–291. Springer, Heidelberg (1994)

3. Blum, A., Kalai, A., Wasserman, H.: Noise-Tolerant Learning, the Parity Problem,
and the Statistical Query Model. Journal of the ACM 50(4), 506–519 (2003)

4. Berlekamp, E.R., McEliece, R.J., van Tilborg, H.C.A.: On the Inherent Intractabil-
ity of Certain Coding Problems. IEEE Trans. Info. Theory 24, 384–386 (1978)

5. Bernstein, D.J., Lange, T.: Never trust a bunny. In: Hoepman, J.-H., Verbauwhede,
I. (eds.) RFIDSec 2012. LNCS, vol. 7739, pp. 137–148. Springer, Heidelberg (2013)

6. Chose, P., Joux, A., Mitton, M.: Fast Correlation Attacks: An Algorithmic Point of
View. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 209–221.
Springer, Heidelberg (2002)

7. Cohen, G., Honkala, I., Litsyn, S., Lobstein, A.: Covering codes. Elsevier (1997)
8. Damgård, I., Park, S.: Is Public-Key Encryption Based on LPN Practical? Cryp-

tology ePrint Archive, Report 2012/699 (2012), http://eprint.iacr.org/
9. Dodis, Y., Kiltz, E., Pietrzak, K., Wichs, D.: Message Authentication, Revisited.

In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237,
pp. 355–374. Springer, Heidelberg (2012)

10. Duc, A., Vaudenay, S.: HELEN: A Public-Key Cryptosystem Based on the
LPN and the Decisional Minimal Distance Problems. In: Youssef, A., Nitaj, A.,
Hassanien, A.E. (eds.) AFRICACRYPT 2013. LNCS, vol. 7918, pp. 107–126.
Springer, Heidelberg (2013)

http://eprint.iacr.org/

Solving LPN Using Covering Codes 19

11. Fossorier, M.P.C., Mihaljevic, M.J., Imai, H., Cui, Y., Matsuura, K.: A Novel
Algorithm for Solving the LPN Problem and its Application to Security Evaluation
of the HB Protocol for RFID Authentication. Cryptology ePrint archive, Report
2012/197 (2012), http://eprint.iacr.org/

12. Gilbert, H., Robshaw, M., Seurin, Y.: HB#: Increasing the Security and the
Efficiency of HB+. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965,
pp. 361–378. Springer, Heidelberg (2008)

13. Gilbert, H., Robshaw, M.J.B., Seurin, Y.: How to encrypt with the LPN problem.
In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A.,
Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 679–690. Springer,
Heidelberg (2008)

14. Gilbert, H., Robshaw, M.J.B., Sibert, H.: An active attack against HB+—a prov-
ably secure lightweight authentication protocol. Cryptology ePrint Archive, Report
2005/237 (2005), http://eprint.iacr.org/

15. Guo, Q., Johansson, T., Löndahl, C.: Solving LPN Using Covering Codes and Soft
Information (in preparation)

16. Heyse, S., Kiltz, E., Lyubashevsky, V., Paar, C., Pietrzak, K.: Lapin: An Efficient
Authentication Protocol Based on Ring-LPN. In: Canteaut, A. (ed.) FSE 2012.
LNCS, vol. 7549, pp. 346–365. Springer, Heidelberg (2012)

17. Hopper, N.J., Blum, M.: Secure human identification protocols. In: Boyd, C. (ed.)
ASIACRYPT 2001. LNCS, vol. 2248, pp. 52–66. Springer, Heidelberg (2001)

18. Juels, A., Weis, S.A.: Authenticating pervasive devices with human protocols. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 293–308. Springer, Heidelberg
(2005)

19. Katz, J., Shin, J.S.: Parallel and concurrent security of the HB and HB+ protocols.
In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 73–87. Springer,
Heidelberg (2006)

20. Katz, J., Shin, J.S., Smith, A.: Parallel and concurrent security of the HB and
HB+ protocols. Journal of Cryptology 23(3), 402–421 (2010)

21. Kearns, M.: Effcient Noise-Tolerant Learning from Statistical Queries. J.
ACM 45(6), 983–1006 (1998)

22. Kiltz, E., Pietrzak, K., Cash, D., Jain, A., Venturi, D.: Efficient Authentica-
tion from Hard Learning Problems. In: Paterson, K.G. (ed.) EUROCRYPT 2011.
LNCS, vol. 6632, pp. 7–26. Springer, Heidelberg (2011)

23. Kirchner, P.: Improved Generalized Birthday Attack. Cryptology ePrint Archive,
Report 2011/377 (2011), http://eprint.iacr.org/

24. Lamberger, M., Mendel, F., Rijmen, V., Simoens, K.: Memoryless near-collisions
via coding theory. Designs, Codes and Cryptography 62(1), 1–18 (2012)

25. Lamberger, M., Teufl, E.: Memoryless near-collisions, revisited. Information Pro-
cessing Letters 113(3), 60–66 (2013)

26. Levieil, É., Fouque, P.-A.: An Improved LPN Algorithm. In: De Prisco, R., Yung,
M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 348–359. Springer, Heidelberg (2006)

27. Lyubashevsky, V.: The Parity Problem in the Presence of Noise, Decoding Random
Linear Codes, and the Subset Sum Problem. In: Chekuri, C., Jansen, K., Rolim,
J.D.P., Trevisan, L. (eds.) APPROX 2005 and RANDOM 2005. LNCS, vol. 3624,
pp. 378–389. Springer, Heidelberg (2005)

28. Mitzenmacher, M., Upfal, E.: Probability and computing - randomized algorithms
and probabilistic analysis. Cambridge University Press (2005)

29. Munilla, J., Peinado, A.: HB-MP: A further step in the HB-family of lightweight
authentication protocols. Computer Networks 51(9), 2262–2267 (2007)

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

20 Q. Guo, T. Johansson, and C. Löndahl

30. Regev, O.: On Lattices, Learning with Errors, Random Linear Codes, and Cryp-
tography. In: Gabow, H.N., Fagin, R. (eds.) Proceedings of 37th Annual ACM
Symposium on Theory of Computing, pp. 84–93 (2005)

31. Stern, J.: A Method for Finding Codewords of Small Weight. In: Wolfmann, J.,
Cohen, G. (eds.) Coding Theory 1988. LNCS, vol. 388, pp. 106–113. Springer,
Heidelberg (1989)

32. Stern, J.: A New Identification Scheme Based on Syndrome Decoding. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 13–21. Springer, Heidelberg (1994)

33. Wagner, D.: A Generalized Birthday Problem. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 288–304. Springer, Heidelberg (2002)

A Illustrating the Procedure

In this section, we give an intuitive illustration of subspace hypothesis test per-
formed as follows,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗
...
∗
z′i
∗
...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎣

x0

...
xk′′

0
...

⎤⎥⎥⎥⎥⎥⎥⎦

T

︸ ︷︷ ︸
Secret x

⎡⎢⎢⎢⎢⎢⎢⎣

∗ ∗ g0 ∗
...

...
...

...
∗ ∗ gk′′ ∗

0
...

⎤⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸
Query matrix

=

⎡⎢⎢⎢⎢⎢⎢⎣

x0

...
xk′′

0
...

⎤⎥⎥⎥⎥⎥⎥⎦

T ⎡⎢⎢⎢⎢⎢⎢⎣

∗ ∗ (u′F+ e′i)0 ∗
...

...
...

...
∗ ∗ (u′F+ e′i)k′′ ∗

0
...

⎤⎥⎥⎥⎥⎥⎥⎦ .

Rewrite gi as codeword ci = u′F and discrepancy e′
i

We can separate the discrepancy e′i from uF, which yields

⎡⎢⎢⎢⎢⎢⎢⎣

x0

...
xk′′

0
...

⎤⎥⎥⎥⎥⎥⎥⎦

T ⎡⎢⎢⎢⎢⎢⎢⎣

∗ ∗ (u′F)0 ∗
...

...
...

...
∗ ∗ (u′F)k′′ ∗

0
...

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗
...
∗

z′i + 〈x, e′i〉
∗
...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Finally, we note that x′
1F

T ∈ Fl
2, where l < k′′. A simple transformation yields⎡⎢⎢⎢⎢⎢⎢⎣

(x′
1F

T)0
...

(x′
1F

T)l
0
...

⎤⎥⎥⎥⎥⎥⎥⎦

T ⎡⎢⎢⎢⎢⎢⎢⎣

∗ ∗ u′
0 ∗

...
...

...
...

∗ ∗ u′
l ∗
0
...

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗
...
∗

z′i + 〈x′
1, e

′
i〉

∗
...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Since wH (e′i) ≤ w, the contribution from 〈x′
1, e

′
i〉 is very small.

Algebraic Attack against Variants of McEliece

with Goppa Polynomial of a Special Form

Jean-Charles Faugère1,2,3, Ludovic Perret1,2,3,
and Frédéric de Portzamparc1,2,3,4

1 Inria, Équipe PolSys, Paris-Rocquencourt
2 Sorbonne Universités, UPMC Univ Paris 06, Équipe PolSys,

LIP6, F-75005, Paris, France
3 CNRS, UMR 7606, LIP6 UPMC, F-75005, Paris

4 Gemalto, 6 rue de la Verrerie 92190, Meudon, France
jean-charles.faugere@inria.fr, ludovic.perret@lip6.fr,

frederic.urvoydeportzamparc@gemalto.com

Abstract. In this paper, we present a new algebraic attack against some
special cases of Wild McEliece Incognito, a generalization of the origi-
nal McEliece cryptosystem. This attack does not threaten the original
McEliece cryptosystem. We prove that recovering the secret key for such
schemes is equivalent to solving a system of polynomial equations whose
solutions have the structure of a usual vector space. Consequently, to
recover a basis of this vector space, we can greatly reduce the number
of variables in the corresponding algebraic system. From these solutions,
we can then deduce the basis of a GRS code. Finally, the last step of
the cryptanalysis of those schemes corresponds to attacking a McEliece
scheme instantiated with particular GRS codes (with a polynomial re-
lation between the support and the multipliers) which can be done in
polynomial-time thanks to a variant of the Sidelnikov-Shestakov attack.
For Wild McEliece & Incognito, we also show that solving the corre-
sponding algebraic system is notably easier in the case of a non-prime
base field Fq. To support our theoretical results, we have been able to
practically break several parameters defined over a non-prime base field
q ∈ {9, 16, 25, 27, 32}, t � 6, extension degrees m ∈ {2, 3}, security level
up to 2129 against information set decoding in few minutes or hours.

Keywords: Public-key cryptography, McEliece cryptosystem, algebraic
cryptanalysis.

1 Introduction

Algebraic cryptanalysis is a general attack technique which reduces the security
of a cryptographic primitive to the difficulty of solving a non-linear system of
equations. Although the efficiency of general polynomial system solvers such as
Gröbner bases, SAT solvers . . ., is constantly progressing such algorithms all
face the intrinsic hardness of solving polynomial equations. As a consequence,
the success of an algebraic attack relies crucially in the ability to find the best
modelling in term of algebraic equations.

P. Sarkar and T. Iwata (Eds.): ASIACRYPT 2014, PART I, LNCS 8873, pp. 21–41, 2014.
© International Association for Cryptologic Research 2014

22 J.-C. Faugère, L. Perret, and F. de Portzamparc

In [14,15], Faugère, Otmani, Perret and Tillich (FOPT) show – in particular –
that the key-recovery of McEliece [20] can be reduced to the solving of a system
of non-linear equations. This key-recovery system can be greatly simplified for so-
called compact variants of McEliece, e.g. [4,21,2,16,23,1], leading to an efficient
attack against various compact schemes [14,13]. However, it is not clear whether
the attack of [14,15] could be efficient against non-compact variants of McEliece,
the bottleneck being the huge number of variables and the high degree of the
equations involved in the algebraic modelling.

We present a novel algebraic modelling that applies to the original McEliece
system and to generalizations such as Wild McEliece [6] and Wild McEliece
Incognito [8]. Note, however, that the resulting attack works only in some spe-
cial cases, and in particular does not work for the original McEliece system.
Wild McEliece uses Wild Goppa codes, that is Goppa codes over Fq, q � 2, with
a Goppa polynomial of the form Γ q−1 (Γ being an univariate polynomial of low
degree). This form of the Goppa polynomial, generalizing the form used in the
original McEliece system for q = 2, allows to increase the number of errors that
can be added to a message (in comparison to a random Goppa polynomial of
the same degree). In [8], Bernstein, Lange, and Peters generalized this idea by
using Goppa polynomials of the form f Γ q−1, with f another univariate poly-
nomial. We shall call such Goppa codes Masked Wild Goppa codes. Like the
authors of [8], we refer to this version as Wild McEliece Incognito. All in all,
Wild McEliece/Wild McEliece Incognito allow the users to select parameters
with a resistance to all known attacks, so in particular to the algebraic attack of
[14,15], similar to that of binary Goppa codes but with much smaller keys. The
security of Wild McEliece defined over quadratic extension has been recently
investigated in [11], where the authors presented a polynomial time attack on
the key when t = deg(Γ) > 1.

1.1 Our Contributions

We present a completely new algebraic attack dedicated to Wild McEliece and
Wild McEliece Incognito. To do so, we show that the key-recovery for such
schemes is equivalent to finding the basis of a vector-space which is hidden in
the zero-set of an algebraic system. To our knowledge, this is a new computa-
tional problem that never appeared in algebraic cryptanalysis before. Compared
to the algebraic attack proposed in [14] for McEliece, our modelling intrinsically
involves less variables. Informally, the multiplicity of the Goppa polynomial im-
plies that the solutions of the algebraic system considered here have a structure
of vector space. When the base field is Fq with q > 2, this simplifies its res-
olution. For instance, for a Wild McEliece Incognito scheme with parameters
q = 32,m = 2, n = 864, t = 2, deg(f) = 36), we end up with an algebraic system
having only 9 variables ([14] would require to consider algebraic equations with
1060 variables in the same situation). On a very high level, our attack proceeds
in two main steps.

1. Polynomial System Solving. We have to solve a non-linear system of
equations whose zero-set forms, unexpectedly, a vector space of some known

Algebraic Attack against Variants of McEliece with Goppa Polynomial 23

dimension d. Consequently, we can reduce the number of variables by fixing
d variables in the initial and repeat several times the solving step to recover a
basis of the vector space solution. This is the most computationally difficult
part of the attack.

2. Linear Algebra to Recover the Secret Key. The second phase is the
treatment of the solutions obtained at the first step so as to obtain a private
description which allows to decode the public-key as efficiently as the private
key. It involves computing intersections of vector spaces, solving linear sys-
tems, and polynomial interpolation. Thus, this part can be done efficiently,
i.e. in polynomial time.

We detail below the main ingredients of our attack.

An Algebraic Modelling with a Vector Space Structure on the Zero
Set. Let Gpub = (gi,j)0�i�n−1

0�j�k−1
∈ Fk×n

q be the public matrix of a Wild McEliece

Incognito scheme. We denote by m its extension degree, and set t = deg(Γ). Our
attack considers the system

Wq,a(Z) =
⋃

u∈Pa

⎧⎨⎩
n−1∑
j=0

gi,jZ
u
j = 0 | 0 � i � k − 1

⎫⎬⎭ , (1)

with Pa = {1, 2, . . . , pa − 1} ∪ {pa, pa+1, . . . , q} being a subset of {1, . . . , q}.
As a comparison, the modelling of Faugère, Otmani, Perret and Tillich [14]

will necessarily introduce variablesX = (X0, . . . , Xn−1),Y = (Y0, . . . , Yn−1) and
W = (W0, . . . ,Wn−1) for all the support and multipliers (that is, the vectors
y = Γ (x)−1 and w = f(x)−1). In [14], the system is as follows:

⋃
0�u�t−1

⎧⎨⎩
n−1∑
j=0

gi,jYjX
u
j = 0 | 0 � i � k − 1

⎫⎬⎭ .

In our context, [14] would induce a system containing monomials of the forms
Y �Y
i X�X

i and even Y �Y
i X�X

i W �W
i (for some �X , �Y , �W). Here, we use a single

vector of variables Z = (Z0, . . . , Zn−1) and write very simple homogeneous
equations. The secret-key x, y and w will be recovered from Z, but in a sec-
ond step. The main advantage of this approach (Theorem 2) is that the so-
lutions of Wq,a(Z) have a very unexpected property for a non-linear system:
they form a vector space. This allows to reduce the number of “free” unknowns
in Wq,a(Z) by the dimension of the solutions. For example, we end up with
a system containing only 9 variables for an Incognito scheme with parameters
q = 32,m = 2, n = 864, t = 2, deg(f) = 36). The algebraic description of Goppa
codes proposed in [14] would require to consider algebraic equations with 1060
variables for the same parameters.

To be more precise, the vector space underlying the solutions of (1) is closely
related to Generalized Reed-Solomon (GRS) codes.

Definition 1 (Generalized Reed-Solomon codes). Let x=(x0, . . . , xn−1) ∈
(Fqm)n where all xi’s are distinct and y = (y0, . . . , yn−1) ∈

(
F∗
qm
)n
. The

24 J.-C. Faugère, L. Perret, and F. de Portzamparc

Generalized Reed-Solomon code of dimension t, denoted by GRSt(x,y), is de-
fined as follows

GRSt(x,y)
def
=
{
(y0Q(x0), . . . , yn−1Q(xn−1)) | Q ∈ Fqm [z], deg(Q) � t− 1

}
.

We shall call x the support of the code, and y the multipliers.

Theorem 2 shows that the solutions of Wq,a(Z) contain a vector-space which
is generated by sums of codewords of Generalized Reed-Solomon (GRS) codes
GRSt(x

�,y�) (where (x,y) is a key equivalent to the secret key). In Section 3.2,
we explain more precisely how we can take advantage of this special structure
for solving (1) and recover a basis of the vector subspace.

A Method to Isolate a GRS Code From a Sum of GRS. From a basis
of this sum of GRS, we want to recover the basis of the code GRSt(x,y). We
refer to this phase as the disentanglement. We expose our solution in Section
4, which relies on a well-chosen intersection of codes. It is rigorously proved
in characteristic 2 (Proposition 6). For other characteristics, we launched more
than 100, 000 experiments and observed that Proposition 6 still held in all cases.

A Sidelnikov-Shestakov-Like Algorithm Recovering the Goppa Poly-
nomial. Given a basis of a Generalized Reed-Solomon code GRSt(x,y), the
Sidelnikov-Shestakov attack [26] consists in recovering the secret pair of vectors
(x,y). It is well-known that the Sidelnikov-Shestakov attack works in polynomial-
time. In our case, we have to address a slight variant of this problem. There is a
polynomial relation Γ (z) linking x and y which is part of the private key. In Sec-
tion 4.2, we provide an adaptation of [26] to obtain a key (x′,y′, Γ ′) equivalent
to the secret key, also in polynomial time. We are unaware of such an algorithm
published so far.

A Weakness of Codes Defined Over Non-prime Base Fields. Indepen-
dently of our algebraic attack, we prove a general result about Goppa codes
defined over Fq (with q = ps, p prime and s > 0) and whose polynomials have a
factor Γ (z) with multiplicity q. We show in Section 5 that the coordinate-vectors
over Fp of the codewords of such a public code are codewords of a Wild Goppa
code, defined over Fp, with same secret support and Goppa polynomial Γ (z)p

(Theorem 8). In other words, this construction gives access, from the public
key, to a new code implying the same private elements. As a consequence, using
non-prime base fields reveals more information on the secret key than expected
by the designers. Any key-recovery attack can benefit from it. This is then an
intrinsic weakness of Goppa codes defined over non-prime base fields. In our
context, this property provides additional linear equations between the variables
Zj ’s of the system (1). We can reduce the number of variables from (ps − 1)mt
to (p− 1)mst essential variables, and make the codes defined over fields Fq with
q = ps notably weaker (Corollary 10).

Algebraic Attack against Variants of McEliece with Goppa Polynomial 25

1.2 Impact of Our Work

In order to evaluate the efficiency of our attack, we considered various parameters
for which [6] said that strength is “unclear” and that an attack would not be a
“surprise” but for which no actual attack was known.

Information Set Decoding (ISD) is a generic decoding technique which allows
message-recovery. This technique has been intensively studied since 1988 (e.g.
[17,10,5,7,19,3]) and remains the reference to choose secure parameters in code-
based cryptography. The latest results from [24] have been used to generate the
parameters for Wild McEliece and Wild McEliece Incognito.

In [6, Table 7.1] numerous keys are presented which illustrate the key size re-
duction when the size of the field q grows. Another consequence of increasing q
is pointed out by the authors of [6]: the low number of irreducible polynomials in
Fqm [z] entails a possible vulnerability against the SSA structural attack ([18,25]).
Although the designers provide a protection (using non full-support codes) such
that [18] is completely infeasible today, they warn that further progress in [18]
may jeopardize the parameters with q > 9 and thus estimate that those parame-
ters have unclear security. Our experiments reveal that, in the case of non-prime
base fields, it is already possible to recover the secret key in some minutes with
our attack using off-the-shelf tools (Magma [9] V2.19-1).

Getting around the alleged vulnerability against SSA was the main motivation
for proposing Incognito: in [8, Table 5.1], they propose parameters considered
fully secure, as all ISD-complexities are above 2128 and numbers of possible
Goppa polynomials greater than 2256. It turns out that, in the case of non-
prime base fields, the extra-shield introduced in Incognito is not a protection
against our attack. We can practically break the recommended parameters for
q ∈ {16, 27, 32}. However, we could not solve (in less than two days) the algebraic
systems involved for extension degrees m � 4 or t � 7, and for codes over
Fp, p prime. So, it does not threaten the original McEliece cryptosystem. To
conclude, we highlight that Theorem 2 is valid for all Goppa codes whose Goppa
polynomial has multiplicities and should be then taken into account by designers
in the future. Figure 1 provides a diagram which recapitulates all the steps
performed to solve the system (1) and recover the secret key.

2 Coding Theory Background

Let Fq be a finite field of q = ps elements (p prime, and s > 0). To define
conveniently the various kinds of codes we will deal with, we introduce the
following Vandermonde-like matrices:

Vt(x,y)
def
=

⎛⎜⎜⎜⎝
y0 · · · yn−1

y0x0 · · · yn−1xn−1

...
...

y0x
t−1
0 · · · yn−1x

t−1
n−1

⎞⎟⎟⎟⎠ , (2)

where
(
x = (x0, . . . , xn−1),y = (y0, . . . , yn−1)

)
∈ Fn

qm × Fn
qm .

26 J.-C. Faugère, L. Perret, and F. de Portzamparc

Wq,a(Z) =
⋃

u∈Pa

{∑n−1
j=0 gi,jZ

u
j = 0 | 0 � i � k − 1

}
We solve the system several times by fixing many variables.

⎧⎪⎪⎨⎪⎪⎩
Solve(Wq,a(Z)

⋃
{Z = (1, . . . , 0, Zda , . . . , Zn−1)}) → v(0)

...
...

Solve (Wq,a(Z)
⋃
{Z = (0, . . . , 1, Zda , . . . , Zn−1)}) → v(da−1)

CΣ = Span
(
v(0), . . . ,v(da−1)

)
=
∑

�∈La

GRSt(x
�,y�)

We perform the Fröbenius alignement to have a cleaner vector space (i.e. same Fröbenius power on all the solutions).

We perform a suitable intersection CΣ ∩ (CΣ)p
s−a

to recover a single GRS.

GRSt(x,y)
ps−a

We adapt Sidelnikov-Shestakov attack to recover the secret key.

Secret x,y, Γ (z)

Secret f(z) for incognito

For Incognito, a extra linear algebra step allows to recover the last part of the secret key.

Fig. 1. Overview of the attack

With suitable x and y, the rows of such matrices Vt(x,y) define Generalized
Reed-Solomon (GRS) codes (Definition 1). Alternant and Goppa codes can be
viewed as the restriction of duals of GRS codes to the base field Fq.

Definition 2 (Alternant/Goppa Codes). Let x = (x0, . . . , xn−1) ∈ (Fqm)n

where all xi’s are distinct and y ∈ (F∗
qm)n. The alternant code of order t is

defined as At(x,y)
def
=
{
c ∈ Fn

q | Vt(x,y)c
T = 0

}
. As for GRS codes, x is

the support, and y the multipliers. Let g(z) ∈ Fqm [z] be of degree t satisfying
g(xi) �= 0 for all i, 0 � i � n− 1. We define the Goppa code over Fq associated

to g(z) as the code Gq(x, g(z))
def
= At(x,y), with y = g(x)−1. The dimension

k of Gq(x, g(z)) satisfies k � n − tm. The polynomial g(z) is called the Goppa
polynomial, and m is the extension degree. Equivalently, Gq

(
x, g(z)

)
can be

defined as:

Gq

(
x, g(z)

) def
=

{
c = (c0, . . . , cn−1) ∈ Fn

q |
n−1∑
i=0

ci
z − xi

≡ 0 mod g(z)

}
.

Goppa codes naturally inherit a decoding algorithm that corrects up to t
2 errors.

This bound can be improved to correct more errors by using Wild Goppa codes,
introduced by Bernstein, Lange, and Peters in [6]. We also recall the version
of Wild Goppa code used in Wild McEliece Incognito [8]. We call such special
version of Wild Goppa codes: Masked Wild Goppa codes.

Definition 3 (Wild Goppa/Masked Wild Goppa). Let x be an n-tuple
(x0, . . . , xn−1) of distinct elements of Fqm . Let Γ (z) ∈ Fqm [z] (resp. f(z) ∈

Algebraic Attack against Variants of McEliece with Goppa Polynomial 27

Fqm [z]) be a squarefree polynomial of degree t (resp. u) satisfying Γ (xi) �= 0 (resp.
f(xi) �= 0) for all i, 0 � i � n − 1. A Wild Goppa code is a Goppa code whose
Goppa polynomial is of the form g(z) = Γ (z)q−1. A Masked Wild Goppa code
is a Wild Goppa code whose Goppa polynomial is such that g(z) = f(z)Γ (z)q−1.

The reason for using those Goppa polynomials lies in the following result.

Theorem 1. [6,8] Let the notations be as in Definition 3. It holds that

Gq

(
x, f(z)Γ q−1(z)

)
= Gq

(
x, f(z)Γ q(z)

)
. (3)

Thus, the code Gq

(
x, f(z)Γ q(z)

)
has dimension � n−m ((q − 1)t+ u).

This is a generalization of a well-known property for q = 2. The advantage
of Wild Goppa codes (i.e. f = 1) compared to standard Goppa codes is that
�qt/2� errors can be decoded efficiently (instead of �(q − 1)t/2�) for the same
code dimension (n − (q − 1)mt in most cases). In fact, we can decode up to
�qt/2� + 2 using list decoding. This increases the difficulty of the syndrome
decoding problem. Hence, for a given level of security, codes with smaller keys
can be used (for details, see [6, Section 7] and [8, Section 5]).

3 An Algebraic Modelling with a Vector Space Structure
on the Zero Set

The core idea of our attack is to construct, thanks to the public matrix, an
algebraic system whose solution set S has a very surprising structure (Definition
4). It appears that S includes the union of several vector spaces. The vector
spaces correspond in fact to sums of GRS codes (Definition 1) which have almost
the same support x and multiplier vector y as the public-key of the attackedWild
McEliece Incognito scheme (Theorem 3). These vectors give a key-equivalent to
the secret-key.

3.1 Description of the New Modelling

We consider the following algebraic equations:

Definition 4. Let q = ps (p prime and s � 0). Let Gpub = (gi,j)0�i�n−1
0�j�k−1

be a

generator matrix of a masked Wild Goppa code Cpub = Gq(x, f(z)Γ
q−1(z)). For

an integer a, 0 < a � s, we define the system Wq,a(Z) as follows :

Wq,a(Z) =
⋃

u∈Pa

⎧⎨⎩
n−1∑
j=0

gi,jZ
u
j = 0 | 0 � i � k − 1

⎫⎬⎭ (4)

with Pa = {1, 2, . . . , pa − 1} ∪ {pa, pa+1, . . . , q}.

28 J.-C. Faugère, L. Perret, and F. de Portzamparc

The parameter a in Pa determines the exponents considered for the Zj ’s in the
system (4). For a = s, we consider all the powers Zu

j where u ranges in {1, . . . , q}.
Removing some exponents leads to a system with fewer equations and may seem
counter-intuitive at first sight (the more equations, the better it is for solving a
polynomial system). However, the situation is different here due to the specific
structure of the solutions of Wq,a(Z), described in the following theorem.

Theorem 2. Let the notations be as in Definition 4. Let y = Γ (x)−1, t =
deg(Γ) and La =

⋃
0�r�s−1−a {pr, 2pr, . . . , (p− 1)pr}∪{ps−a}. The solutions S

of Wq,a(Z) contain the union of m vector spaces which are sums of GRS codes:

⋃
0�e�m−1

(∑
�∈La

GRSt(x
�,y�)q

e

)
⊆ S,

with GRSt(x
�,y�)q

e

denoting all the elements of GRSt(x
�,y�) with coordinates

raised to the power qe, with 0 � e � m− 1.

Remark 1. When all the powers {1, . . . , q} are considered in the system, that is
a = s, then La is reduced to {1} and the solution set is a union of GRS codes. If
a < s, the solution set is a bit more complex, but it has the great advantage of
having a larger dimension; allowing then to solve the system (4) more efficiently.
We will formalize this in Section 3.2.

Note that we state in Theorem 2 that we know a subset of the solutions. In
practice, as the system is highly overdefined, we always observed that this subset
was all the solutions.

Proof. The full proof of this result is postponed in Section A.3. We just give the
global idea of the proof. The goal is to show the elements of

∑
�∈La

GRSt(x
�,y�)q

e

are solutions ofWq,a(Z). We can assume that e = 0 w.lo.g.
Let z = (z1, . . . , zn) ∈

∑
�∈La

GRSt(x
�,y�). We write the coordinates of z

as zj =
∑

�∈La
y�jQ�(x

�
j), where the Q�’s are polynomials of degree � t − 1 of

Fqm [z]. We have to prove that

n−1∑
j=0

gi,jz
u
j = 0 for u ∈ P1 ∪ P2,where P1 = {1, 2, . . . , pa − 1}, P2 = {pa, . . . , ps}.

The idea is to develop zuj =
(∑

�∈La
y�jQ�(x

�
j)
)u

with Newton multinomial.
The development is performed slightly differently whether u ∈ P1 or u ∈ P2

(see Appendix A.3). In both cases, we end up with a result of the form zuj =∑
ux,uy

αux,uyy
uy

j xux

j , so that our sum writes:

n−1∑
j=0

gi,jz
u
j =

∑
ux,uy

⎛⎝αux,uy

n−1∑
j=0

gi,jy
uy

j xux

j

⎞⎠ . (5)

Then, we apply the next lemma (proved in Appendix A.2).

Algebraic Attack against Variants of McEliece with Goppa Polynomial 29

Lemma 3. Let Gpub be a generator matrix of a masked Wild Goppa code Cpub =
Gq(x, f(z)Γ

q−1(z)),y = Γ (x)−1, w = f(x)−1 and t = deg(Γ (z). The values of
x, y, and w satisfy the following set of equations for any value of ux, uy, u, b
verifying the conditions 0 � uy � q, 0 � ux � uyt − 1, 0 � u � deg(f) − 1, b ∈
{0, 1} and (b, uy) �= (0, 0):{ n−1∑

j=0

gi,j (wix
u
i)

b
y
uy

j xux

j = 0 | 0 � i � k − 1

}
.

We set b = 0 and obtain that
∑n−1

j=0 gi,jy
uy

j xux

j = 0 for (uy, ux) such that 1 �
uy � t and 0 � ux � uyt− 1. Thus to conclude that

∑n−1
j=0 gi,jz

u
j = 0, we check

that all the couples (ux, uy) appearing in the sum (5) satisfy those conditions.

3.2 Recovering a Basis of the Vector Subspace

We now explain more precisely how to use the particular structure of the solution
set for solving the non-linear system (4). When looking for a vector in a subspace
of Fn

qm of dimension d, then you can safely fix d coordinates arbitrarily and
complete the n − d so as to obtain a vector of this subspace. This corresponds
to computing intersections of your subspace with d hyperplanes. With this idea,
we deduce the following corollary of Theorem 2.

Corollary 4. Let Cpub = Gq(x, f(z)Γ
q−1(z)) be a masked Wild Goppa code. Let

t = deg(Γ), Wq,a(Z), and La be as defined in Theorem 2. Then, we can fix t×
#La variables Zi to arbitrary values in Wq,a(Z). The system obtained has m so-
lutions (counted without multiplicities), one for each sum

∑
�∈La

GRSt(x
�,y�)q

e

.

In the rest of this article, we set λa,t = t × #La. Our purpose is to find a
basis of one of the vector spaces

∑
�∈La

GRSt(x
�,y�)q

e

. To do so, we pick λa,t

independent solutions of Wq,a(Z) by fixing the variables Z0, Z1, . . . , Zλa,t−1 in

Wq,a,t(Z) accordingly. Namely, for 0 � i � λa,t − 1, we pick one solution v(i)

among the m solutions of the system

Wq,a(Z)
⋃
{Zi = 1, Zj = 0 | 0 � j �= i � λa,t − 1}.

Thanks to Theorem 3 and Definition 1, we know that those solutions can be
written as follows, for Qi,� ∈ Fqm [z] of degree lower than t and 0 � ei � m− 1:

v(i) =

(
0, . . . , 1, . . . , 0,

∑
�∈La

yq
ei

λa,t
Qi,�(x

qei
λa,t

), . . .

)
∈
∑
�∈La

GRSt(x
�,y�)q

ei
. (6)

After λa,t resolutions ofWq,a(Z), the solutions v
(i) are not necessarily a basis

of one of the vector spaces
∑

�∈La
GRSt(x

�,y�)q
e

because the Fröbenius expo-

nents need not be identical for all v(i)’s. We explain in the next paragraph why
this is not an issue in practice.

Simplication: FröbeniusAlignment. Let {v(i)}0�i�λa,t−1 be as defined in (6).
We can suppose without loss of generality that q0 = q1 = . . . = qλa,t−1. This

30 J.-C. Faugère, L. Perret, and F. de Portzamparc

simplification requires less than m(λa,t−1) Fröbenius evaluations on the solutions.
Indeed, v ∈

∑
�∈La

GRSt(x
�,y�)q

e

, implies that vq ∈
∑

�∈La
GRSt(x

�,y�)q
e+1

.
For the parameters considered in [6,8], m and t are rather small, making the cost
of the Fröbenius alignment negligible. In the rest of this article, we assume that
q0 = . . . = qλa,t−1 = 0, which is not a stronger assumption since the private
elements of Cpub are already defined up to Fröbenius endomorphism.

Example 1. Pick for instance q = 8 and solve the system Wq,a with a = 2.
Thanks to Theorem 2, after re-alignment of the Fröbenius exponents, we have a
basis of the vector space GRSt(x,y) + GRSt(x

2,y2), that is:{
(yiQ(xi) + y2i R(x2

i))0�i�n−1|Q,R ∈ Fqm [z], deg(Q), deg(R) � t− 1
}
.

4 Recovering the Secret Key from a Sum of GRS – A
Linear Algebra Step

Once we know a basis (v(i))0�i�λa,t−1 of
∑

�∈La
GRSt(x

�,y�), we aim at recov-
ering the basis of a single GRS code. This disentanglement is done in Paragraph
4.1. Then, we show in 4.2 how to recover a private support x and Goppa polyno-
mial Γ (z) of the masked Wild Goppa code. This is the full description of a plain
Wild Goppa code. In the Incognito case (deg(f) > 0), we explain in 4.3 that an
extra linear step enables to find f . To sum up, the purpose of this section is to
prove the following theorem.

Theorem 5. Let q = ps (p prime and s � 0). Let Gpub = (gi,j)0�i�n−1
0�j�k−1

be a

generator matrix of a masked Wild Goppa code Cpub = Gq(x, f(z)Γ
q−1(z)). Let

y = Γ (x)−1, t = deg(Γ), and

V =

(∑
�∈La

GRSt(x
�,y�)

)
where La =

s−1−a⋃
r=0

{pr, 2pr, . . . , (p− 1)pr} ∪
{
ps−a

}
.

Once V is given, we can recover in polynomial-time a support x′ and polynomials
f ′(z), Γ ′(z) ∈ Fqm [z] such that Cpub = Gq(x

′, f ′(Γ ′)q−1). Stated differently, we
can recover in polynomial-time a key (x′, Γ ′, f ′) equivalent to the secret-key as
soon as the system (4) has been solved.

4.1 Disentanglement of the System Solutions

The Sidelnikov-Shestakov [26] attack is a well known attack against McEliece
schemes instantiated with GRS codes [22]. In our case, we can have a sum
of GRS codes. In this situation, it seems not possible to apply directly [26]
(because the vectors of

∑
�∈La

GRSt(x
�,y�) do not have the desired form; that

is (y0Q(x0), . . . , yn−1Q(xn−1)). To overcome this issue, we propose to use well-
chosen intersections to recover a basis suitable for Sidelnikov-Shestakov. To gain
intuition, we provide a small example.

Algebraic Attack against Variants of McEliece with Goppa Polynomial 31

Example 2. We continue with the example 1. By squaring all the elements of
GRSt(x,y) + GRSt(x

2,y2), we have a basis of GRSt(x
2,y2) + GRSt(x

4,y4):{
(y2i Q(x2

i) + y4i R(x4
i))0�i�n−1|Q,R ∈ Fqm [z], deg(Q), deg(R) � t− 1

}
.

We prove in Proposition 6 that, in charac. 2,(
GRSt(x,y) + GRSt(x

2,y2)
)
∩
(
GRSt(x

2,y2) + GRSt(x
4,y4)

)
= GRSt(x

2,y2).

Hence, we have a basis of GRSt(x
2,y2).

Our general method to disentangle the solutions is proved in characteristic 2,
but for other characteristics we need the following assumption:

Assumption 1. Let q = ps with p prime. Let x ∈ Fn
qm be a support and y ∈ Fn

qm

be defined by y = Γ (x)−1 for some polynomial Γ (z) ∈ Fqm [z] of degree t. Let L
and L′ be two subsets of {1, . . . , q} with (#L+#L′)t < n. Then, we have that:(∑

�∈L
GRSt(x

�,y�)

)⋂(∑
�∈L′

GRSt(x
�,y�)

)
=
∑

�∈L∩L′
GRSt(x

�,y�).

For the specific subsets L that we encountered, this assumption is rigorously
proved in characteristic 2 (see Proposition 6). For bigger characteristics, though
we could not find a formal proof, we launched more than 100, 000 experiments
and found out that equality held in all cases. Now we generalize the method of
intersection of codes proposed in Example 2.

Proposition 6. Let q = ps (p prime and s � 0). Let also a, 0 < a � s, and
La =

⋃
0�r�s−1−a {pr, 2pr, . . . , (p− 1)pr} ∪ {ps−a} . Then:

∑
�∈La

GRSt(x
�,y�) ∩

(∑
�∈La

GRSt(x
�,y�)

)p(s−a)

= GRSt(x
ps−a

,yps−a

).

Proof. Let Φ : (m0, . . . ,mn−1) ∈ Fn
qm �→ (mps−a

0 , . . . ,mps−a

n−1).
First, remark that, as ps−a is a power of the characteristic, it
holds that Φ

(
GRSt(x

�,y�)
)

= GRSt(x
ps−a�,yps−a�) for all �, and

Φ
(∑

�∈La
GRSt(x

�,y�)
)

=
∑

�∈Φ(La)
GRSt(x

�,y�). When p = 2, we fully

prove the proposition in Appendix A.4. Otherwise (when p > 2), we rely on
Assumption 1 with the sets La and

Φ (La) =
⋃

s−a�r�2(s−a)−1

{pr, 2pr, . . . , (p− 1)pr} ∪
{
p2(s−a)

}
.

Then, we have La ∩ Φ (La) = {ps−a}, and the desired equality. �

Once a basis of GRSt(x
ps−a

,yps−a

) is known, we recover x,y and Γ (z) thanks
to a variant of Sidelnikov-Shestakov described below.

32 J.-C. Faugère, L. Perret, and F. de Portzamparc

4.2 Sidelnikov-Shestakov Adapted to Recover the Goppa
Polynomial

In our attack, we have to adapt the classical Sidelnikov-Shestakov attack for
special GRS codes, namely those for which there is an additional polynomial
relation between the support and the multipliers.

Proposition 7. Let x be an n-tuple (x0, . . . , xn−1) of distinct elements of Fqm

and Γ (z) ∈ Fqm [z] be a squarefree polynomial of degree t such that Γ (xi) �= 0,
for all i, 0 � i � n − 1 Let GGRS be the generator matrix of a GRS code
GRSt

(
x, Γ (x)−1

)
. There is a polynomial-time algorithm which allows to recover

a n-tuple x′ = (x′
0, . . . , x

′
n−1) of distinct elements of Fqm and a squarefree poly-

nomial Γ ′(z) ∈ Fqm [z] of degree t such that Γ ′(x′
i) �= 0, for all i, 0 � i � n − 1

and GRSt
(
x, Γ (x)−1

)
= GRSt

(
x′, Γ ′(x′)−1

)
.

This problem is very close to the one addressed in [26]. The only issue is that the
homographic transformation on the support used in the original attack indeed
preserves the GRS structure but not the polynomial link. Thus, polynomial in-
terpolation over x and y−1 is not possible. We propose to avoid this homographic
transformation by considering a well chosen extended code.

Definition 5. Let C be a linear code of length n over Fq. The extended code of

C , denoted by C̃ , is a code of length n+ 1 obtained by adding to each codeword
m = (m0, . . . ,mn−1) the coordinate −

∑n−1
j=0 mj.

Our algorithm, proved in the full version of this paper, is then the following.

Algorithm 1. Extended Version of Sidelnikov-Shestakov algorithm

Input : GGRS generator matrix of CGRS = GRSt(x,y), with y = Γ (x)−1 (deg(Γ) = t)
Output : Secret x, y, and Γ (z)
1: Build P = (pi,j)0�i�n−t−1

0�j�n−1
a generator matrix of the dual of CGRS .

2: Deduce P̃ a matrix of the extended code (Definition 5) of the code spanned by P
3: Build

(
It|U
)
, with U = (ui,j) 0�i�t

t+1�j�n
a parity-check matrix of the code spanned

by P̃ in systematic form
4: Solve the linear system with unknowns Xi’s to find x{

ui,j

ui′,j
(Xi′ −Xj) =

ui,n

ui′,n
(Xi −Xj) | 0 � i, i′ � t, t+ 1 � j � n− 1

}
.

5: Solve the linear system with unknowns Yi’s to find y (the xi’s were found at
previous step){

n−1∑
i=0

pj,ix
�
iYi = 0 | 0 � j � n− t− 1, 0 � � � t− 1

}
.

6: Interpolate Γ (z) from x and y−1

Algebraic Attack against Variants of McEliece with Goppa Polynomial 33

4.3 Recovery of the Incognito Polynomial by Solving a Linear
System

An extra step is necessary in the Incognito case to recover the other factor f
of the Goppa polynomial. To do so, we recover the multipliers associated to f ,
that is the vector w = f(x)−1. Then, we perform polynomial interpolation. We
note that once x and y = Γ (x)−1 are known, many of the equations of Lemma
3 become linear in w. Namely,

q⋃
uy=1

{ n−1∑
j=0

gi,jwi

(
y
uy

j xux

j

)
= 0 | 0 � i � k − 1, 0 � ux � uyt+ deg(f)− 1

}
.

In practice, we observed that the linear system obtained has a rank defect
and is not sufficient to find w. However, we can also use the fact that Cpub ⊂
G (x, f(z)) to prove that

n−1∑
j=0

gi,jwix
deg(f)
i =

1

LC(f)

⎛⎝n−1∑
j=0

gi,j

⎞⎠ .

(This is rigorously done in the full version of this article.) Since x is known and
setting LC(f) = 1, we obtain new linear equations in the components of w.
Putting all the linear equations together, experiments show then that we obtain
a unique solution w, and f by polynomial interpolation.

5 Weakness of Non-prime Base Fields

The most (computationally) difficult part of our attack against Wild McEliece
Incognito is to solve the algebraic system defined in Theorem 2. In this part,
we aim at giving a better idea of the complexity of resolution by determining
the exact number of “free variables” in the system. Namely, we show that we
can eliminate many variables thanks to linear equations. The system Wq,a(Z) =⋃

u∈Pa

{∑n−1
j=0 gi,jZ

u
j = 0 | 0 � i � k − 1

}
of Theorem 2 obviously contains k

linear equations by picking u = 1 (1 ∈ Pa by definition). We can easily derive
other linear equations by applying the additive map z �→ z(q

m/pu) to all the
equations in degree pu. As the solutions lie in Fqm , it holds that (Zpu

j)q
m/pu

= Zj ,
and for 0 � i � k − 1⎛⎝n−1∑

j=0

gi,jZ
pu

j

⎞⎠qm/pu

=

n−1∑
j=0

g
qm/pu

i,j Zj = 0.

However, we observed that those linear equations were very redundant. To ex-
plain those linear dependencies,we foundout a property of themaskedWildGoppa
codes Gq(x, f(z)Γ (z)q) (Theorem 8). Namely, by simple operations on their gen-
erator matrices, we can build a generatormatrix of the code Gp(x, Γ (z)p) over Fp .
This latter matrix allows to write many independent linear equations implying the
private elements of Cpub.

34 J.-C. Faugère, L. Perret, and F. de Portzamparc

Theorem 8. Let q = ps (p prime, and s > 0). Let Gpub = (gi,j)0�i�n−1
0�j�k−1

be

a generator matrix of a masked Wild Goppa code Cpub = Gq(x, f(z)Γ (z)q−1).
We consider the scalar restriction of m ∈ Cpub ⊆ Fn

q into Fs
p. This yields s

components m(0), . . . ,m(s−1) ∈ Fn
p (we write each m ∈ Fn

q over a Fp-basis, i.e.

m = m(0)θ0 + · · · + m(s−1)θs−1). Let C Fp ⊆ Fn
p be the code generated by the

coordinate vectors m(0), . . . ,m(s−1) for all the codewords m ∈ Cpub. Then, it
holds that

C Fp ⊆ Gp(x, Γ (z)p).

The proof can be found in the full version of this paper.In practice, we observed
equality in the inclusion provided s dim(Cpub) > dim(Gp(x, Γ (z)p)). Note that
Gp(x, Γ (z)p) is a Wild Goppa code with the same private elements x and y =
Γ (x)−1 as Cpub. This provides extra equations on the variables Z of Wq,a(Z)
(proved in the full version):

Proposition 9. Let Cpub = Gq(x, f(z)Γ
q−1(z)) and Wq,a(Z) the associated

system for 1 � a � s. Let G̃Fp = (g̃i,j) 0�i�n−1
0�j�kp−1

be a generator matrix of

Gp(x, Γ (z)p) (with kp = dim (Gp(x, Γ (z)p))). Then, the solutions of Wq,a(Z)
satisfy:

p−1⋃
�=0

⎧⎨⎩
n−1∑
j=0

g̃i,jZj = 0 | 0 � u � t− 1, 0 � i � kp − 1

⎫⎬⎭ .

As kp � n − (p − 1)mst (and in practice kp = n − (p − 1)mst), we have the
following corollary.

Corollary 10. The knowledge of Gpub gives access to n−(p−1)mst independent
linear relations between the Zi’s. The system Wq,a(Z) contains (at most) (p −
1)mst free variables.

Remark 2. The number of “free” variables given in Corollary 10 is given with-
out taking into account the vector space structure of the solutions. Thanks to
Corollary 4, we know that λa,t extra variables can be fixed to arbitrary values
in Wq,a(Z).

For a Goppa polynomial of same degree, but without multiplicities, the number
of free variables in the system would be n−k � (ps−1)mt instead of (p−1)mst.
In particular, for a masked code, the number of variables describing it does not
depend on the degree of the incognito polynomial f and the attack is not harder
for masked codes. This explains why the codes defined over non-prime fields are
the weakest ones.

6 Practical Experiments

We report below various experimental results performed with our attack on
various parameters for which [6] said that strength is ”unclear” and that an

Algebraic Attack against Variants of McEliece with Goppa Polynomial 35

attack would not be a ”surprise” but for which no actual attack was known. We
also generated our own keys/parameters to see how the attack scales. We per-
formed our experiments with off-the-shelf tools (Magma [9] V2.19-1) and using
a 2.93 GHz Intel PC with 128 Gb. of RAM. As the polynomial system solving is
by far the most costly step, we give timings only for this one. We performed it
using the F4 algorithm ([12]) of Magma. As explained in Section 4, it is neces-
sary to solve the systems Wq,a(Z) a number of times equal to the dimension of
the vector space of the solutions (Theorem 2). These resolutions are completely
independent and can be executed in parallel. This is why we give the timings
under the form (number of separate resolutions)× (time for one resolution). By
#Z, we denote the number of free variables remaining in the system after clean-
ing up the linear equations (Corollary 10) and fixing coordinates thanks to the
vector space structure of the solutions (Corollary 4). The general formula is
#Z = ((p− 1)ms−#La) t for q = ps and s > 1.

In the experiments, we tried various parameters a for the systems Wq,a(Z).
We give a comparison on some examples in Table 1 (the system Wq,a(Z) with
a = s can be solved in a reasonable amount of time in actually few cases).

Table 1. Comparison of the resolution times of Wq,a(Z) for various possible a’s. The
smallest possible a gives the best timings.

q m t n k deg(f) Solving Wq,a(Z) with a = s Solving Wq,a(Z), optimal a

32 2 2 678 554 0 2× 12s (#Z = 18) 8× 0.08 s (a = 2,#Z = 9)
32 2 1 532 406 32 2× 49s (#Z = 9) 4× 0.02 s (a = 2,#Z = 6)
32 2 3 852 621 24 3× (30 min 46s) (#Z = 37) 12× 0.6 s (a = 2,#Z = 18)
27 3 3 1312 1078 0 3× (3h 10 min) (#Z = 51) 15× 3.0 s (a = 1,#Z = 39)

It appeared that a should be chosen so as to maximize the dimension of the
solution set (Theorem 2). This choice minimizes the number of variables. Namely,
the best choice is to set a = 1 when p > 2. When p = 2, setting a = 1 would yield
only “linear” equations (of degree 2u, u � s). So, we set a = 2 and the systems
W2u,2(Z) contain only cubic equations. We recall that for a = s, Assumption 1
is not necessary, whereas we rely on it when a < s and p �= 2. In the rest of the
experiments, we always pick the best choice for a.

In Table 2, we present experimental results performed with Wild McEliece
(when deg(f) = 0) and Incognito (deg(f) > 0) parameters. For Wild McEliece,
all the parameters in the scope of our attack were quoted in [6, Table 7.1] with
the international biohazard symbol �. The reason is that, for those parameters,
enumerating all the possible Goppa polynomials is computationaly feasible. In
the current state of the art, to apply the SSA attack ([18]), one would not only
have to enumerate the irreducible polynomials of Fqm [z], but also all the possible
support sets, as the support-splitting algorithm uses the support set as input.
This introduces a factor

(
qm

n

)
in the cost of SSA, chosen by the designers in order

to make the attack infeasible. However, the authors of [6] conclude that, even
if no attack is known against those instances, algorithmical progress in support

36 J.-C. Faugère, L. Perret, and F. de Portzamparc

enumeration may be possible and therefor they do not recommend their use. In
the case of non-prime base fields, experiments show that our attack represents
a far more serious threat for the security of some of those instances: for q ∈
{32, 27, 16}we could find the secret keys of parameters with high ISD complexity.
We indicate, for each set of parameters, the ISD complexity (obtained thanks
to Peters’ software1), as it remains the reference to evaluate the security of a
McEliece scheme. We also give the complexity of an SSA attack, which is in the
current state-of-the-art

(
qm

n

)
· qmt/t.

Regarding Wild McEliece Incognito, we broke the parameters indicated with
a security of 2128 in [8, Table 5.1] for q ∈ {32, 27, 16}. For some other non-
prime base fields, we give the hardest parameters in the scope of our attack in
roughly one day of computation. Note that here, SSA complexity is given by(
qm

n

)
· (qm(t+s)/(ts)).

For the sake of completeness, we also include in Tables 2 Wild McEliece
schemes with a quadratic extension. In [11], the authors already presented a poly-
time attack in this particular case: it applies for the parameters with q = 32, but
not for the other ones. We want to stress that our attack also works for m = 2
and any t ([11] does not work in the extreme case t = 1). Also, we emphasize
that, whilst solving a non-linear system, our attack is actually faster than [11]
in some cases. For q = 32 and t = 4, the attack of [11] requires 49.5 minutes
(using a non-optimized Magma implementation according to the authors). We
can mount our attack in several seconds with the techniques of this paper.

Table 2. Practical experiments with Wild McEliece & Incognito parameters. ISD

complexity is obtained thanks to Peters’ software1. SSA attack complexity is given
under the form (support enumeration)·(Goppa polynomial enumeration).

q m t n k deg(f) Key (kB) ISD SSA Solving Wq,a(Z), optimal a

32 2 4 841 601 0 92 2128 2688 · 238 16× 10 s (#Z = 36)
32 2 5 800 505 0 93 2136 2771 · 248 20× (2 min 45s) (#Z = 40)
27 3 3 1312 1078 0 45 2113 26947 · 241 15× 3.0 s (#Z = 39)
27 3 4 1407 1095 0 203 2128 27304 · 255 20× (6 min 34 s) (#Z = 52)
27 3 5 1700 1310 0 304 2158 28343 · 269 25× (1h 59 min) (#Z = 65)
27 3 5 1800 1410 0 327 2160 28679 · 269 25× (1h 37 min) (#Z = 65)
16 3 6 1316 1046 0 141 2129 23703 · 269 18× (36h 26 min) (#Z = 54)

32 2 3 852 621 24 90 2130 2663 · 2273 12× 0.6 s (#Z = 18)
27 3 2 1500 1218 42 204 2128 25253 · 2225 10× 0.9 s (#Z = 26)
25 3 3 1206 915 25 155 2117 27643 · 2632 15× (1h 2 min) (#Z = 57)
16 3 6 1328 1010 16 160 2125 23716 · 2265 18× (36h 35 min) (#Z = 54)
9 3 6 728 542 14 40 281 22759 · 2191 18× (25h 13 min) (#Z = 54)

1 Available at http://christianepeters.wordpress.com/publications/tools/

Algebraic Attack against Variants of McEliece with Goppa Polynomial 37

7 Conclusion and Future Work

In practice, we could not solve (in less than two days) the algebraic systems
involved when the number of free variables #Z exceeds 65. We recall the relation
#Z = ((p− 1)ms−#La) t (for q = ps and s > 1), which should help the
designers to scale their parameters. An important remaining open question is to
give a precise complexity estimates for the polynomial system solving phase in
those cases.

Acknowledgements. This work was supported in part by the HPAC grant
(ANR ANR-11-BS02-013) of the French National Research Agency. The authors
would also like to thank (some of) the referees as well as PC chairs for their
useful comments on a preliminary version of this paper.

References

1. Barbier, M., Barreto, P.S.L.M.: Key reduction of McEliece’s cryptosystem using
list decoding. In: Kuleshov, A., Blinovsky, V., Ephremides, A. (eds.) 2011 IEEE
International Symposium on Information Theory Proceedings, ISIT 2011, St, St.
Petersburg, Russia, July 31 - August 5, pp. 2681–2685. IEEE (2011)

2. Barreto, P.S.L.M., Lindner, R., Misoczki, R.: Monoidic codes in cryptography. In:
Yang (ed.) [27], pp. 179–199

3. Becker, A., Joux, A., May, A., Meurer, A.: Decoding random binary linear codes
in 2n/20: How 1 + 1 = 0 improves information set decoding. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 520–536. Springer,
Heidelberg (2012)

4. Berger, T.P., Cayrel, P.-L., Gaborit, P., Otmani, A.: Reducing key length of
the McEliece cryptosystem. In: Preneel, B. (ed.) AFRICACRYPT 2009. LNCS,
vol. 5580, pp. 77–97. Springer, Heidelberg (2009)

5. Bernstein, D.J., Lange, T., Peters, C.: Attacking and defending the McEliece cryp-
tosystem. In: Buchmann, J., Ding, J. (eds.) PQCrypto 2008. LNCS, vol. 5299,
pp. 31–46. Springer, Heidelberg (2008)

6. Bernstein, D.J., Lange, T., Peters, C.: Wild McEliece. In: Biryukov, A., Gong, G.,
Stinson, D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp. 143–158. Springer, Heidelberg
(2011)

7. Bernstein, D.J., Lange, T., Peters, C.: Smaller decoding exponents: Ball-collision
decoding. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 743–760.
Springer, Heidelberg (2011)

8. Bernstein, D.J., Lange, T., Peters, C.: Wild McEliece incognito. In: Yang (ed.) [27],
pp. 244–254

9. Bosma, W., Cannon, J.J., Playoust, C.: The Magma algebra system I: The user
language. Journal of Symbolic Computation 24(3-4), 235–265 (1997)

10. Canteaut, A., Chabaud, F.: A new algorithm for finding minimum-weight words in
a linear code: Application to McEliece’s cryptosystem and to narrow-sense BCH
codes of length 511. IEEE Transactions on Information Theory 44(1), 367–378
(1998)

38 J.-C. Faugère, L. Perret, and F. de Portzamparc

11. Couvreur, A., Otmani, A., Tillich, J.–P.: Polynomial time attack on wild McEliece
over quadratic extensions. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 17–39. Springer, Heidelberg (2014)

12. Faugère, J.-C.: A new efficient algorithm for computing gröbner bases (F4). Journal
of Pure and Applied Algebra 139(1-3), 61–88 (1999)

13. Faugère, J.-C., Otmani, A., Perret, L., de Portzamparc, F., Tillich, J.-P.: Structural
cryptanalysis of McEliece schemes with compact keys. IACR Cryptology ePrint
Archive, 2014:210 (2014)

14. Faugère, J.-C., Otmani, A., Perret, L., Tillich, J.-P.: Algebraic cryptanalysis of
Mceliece variants with compact keys. In: Gilbert, H. (ed.) EUROCRYPT 2010.
LNCS, vol. 6110, pp. 279–298. Springer, Heidelberg (2010)

15. Faugère, J.-C., Otmani, A., Perret, L., Tillich, J.-P.: Algebraic Cryptanalysis of
McEliece variants with compact keys – toward a complexity analysis. In: SCC
2010: Proceedings of the 2nd International Conference on Symbolic Computation
and Cryptography, pp. 45–55. RHUL (June 2010)

16. Heyse, S.: Implementation of McEliece based on quasi-dyadic Goppa codes for
embedded devices. In: Yang (ed.) [27], pp. 143–162

17. Leon, J.S.: A probabilistic algorithm for computing minimum weights of large
error-correcting codes. IEEE Transactions on Information Theory 34(5), 1354–1359
(1988)

18. Loidreau, P., Sendrier, N.: Weak keys in the McEliece public-key cryptosystem.
IEEE Transactions on Information Theory 47(3), 1207–1211 (2001)

19. May, A., Meurer, A., Thomae, E.: Decoding random linear codes in Õ(20.054n).
In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 107–124.
Springer, Heidelberg (2011)

20. McEliece, R.J.: A Public-Key System Based on Algebraic Coding Theory,
pp. 114–116. Jet Propulsion Lab (1978), DSN Progress Report 44

21. Misoczki, R., Barreto, P.S.L.M.: Compact McEliece keys from Goppa codes. In:
Jacobson Jr., M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol. 5867,
pp. 376–392. Springer, Heidelberg (2009)

22. Niederreiter, H.: Knapsack-type cryptosystems and algebraic coding theory. Prob-
lems Control Inform. Theory 15(2), 159–166 (1986)

23. Persichetti, E.: Compact McEliece keys based on quasi-dyadic srivastava codes. J.
Mathematical Cryptology 6(2), 149–169 (2012)

24. Peters, C.: Information-set decoding for linear codes over Fq. In: Sendrier, N. (ed.)
PQCrypto 2010. LNCS, vol. 6061, pp. 81–94. Springer, Heidelberg (2010)

25. Sendrier, N.: Finding the permutation between equivalent linear codes: The support
splitting algorithm. IEEE Transactions on Information Theory 46(4), 1193–1203
(2000)

26. Sidelnikov, V., Shestakov, S.: On the insecurity of cryptosystems based on gener-
alized Reed-Solomon codes. Discrete Mathematics and Applications 1(4), 439–444
(1992)

27. Yang, B.-Y. (ed.): PQCrypto 2011. LNCS, vol. 7071. Springer, Heidelberg (2011)

Algebraic Attack against Variants of McEliece with Goppa Polynomial 39

A Appendix

A.1 A Technical Lemma

We prove a technical lemma which is useful for the proofs of Sections 3 and 4.

Lemma 1. Let q = ps (p prime and s > 0), and Q = γtz
t + · · · + γ0 ∈ Fqm [z]

be a polynomial of degree t. For all j, it holds that:

Q(z)p
j

= γpj

t (zt)p
j

+ · · ·+ γpj

0

= γpj

t (zp
j

)t + · · ·+ γpj

0

= F(j)(Q)(zp
j

).

where F(j)(Q) = γpj

t zt+ · · ·+γpj

0 is the polynomial of same degree as Q obtained
by raising all the coefficients to the pj-power.

A.2 Proof of Lemma 3

We want to prove that, under the conditions of Lemma 3 (that is 0 � uy �
q, 0 � ux � uyt− 1, 0 � u � deg(f)− 1, b ∈ {0, 1} and (b, uy) �= (0, 0)), it holds
that { n−1∑

j=0

gi,j (wix
u
i)

b y
uy

j xux

j = 0 | 0 � i � k − 1

}
.

Proof. The crucial remark is that, for any c ∈ Fn
q ,
∑n−1

i=0
ci

z−xi
≡ 0 mod f(z)Γ q(z)

implies
∑n−1

i=0
ci

z−xi
≡ 0 mod f b(z)Γ uy (z) for all 0 � uy � q and 0 � b � 1 (and

(uy, b) �= (0, 0)). In other words, for those uy, b , it holds that

Cpub ⊆ Gq(x, f
b(z)Γ uy(z)).

As Gq(x, f(z)
bΓ uy (z)) has parity check matrix Vdtot(x,w

byuy) (with dtot =
b deg(f) + uyt), the matrix products Vdtot(x,w

byuy) ×GT
pub = 0dtot×k yield all

the relations of the lemma. �

A.3 Proof of Theorem 2

Proof. We give the multinomial development of the zuj =
(∑

�∈La
y�jQ�(x

�
j)
)u

under the form zuj =
∑

ux,uy
αux,uyy

uy

j xux

j and show that ux, uy satisfy the
conditions of Lemma 3. This is done separately for u ∈ P1 and u ∈ P2.

Case u ∈ P1. We pick u ∈ {1, 2, . . . , pa − 1} and use the multinomial formula
to expand

(∑
�∈La

y�jQ�(x
�
j)
)u
. Namely, with La = #La, we have:

(∑
�∈La

y�jQ�(x
�
j)

)u

=
∑

0�u1,...,uL�u
u1+...+uL=u

⎛⎜⎝(u
u1,...,uL

)
y

(∑
�∈La

�u�

)
j

∏
�∈La

Q�(x
�
j)

u�)

⎞⎟⎠ .

40 J.-C. Faugère, L. Perret, and F. de Portzamparc

Let’s look at each term y
uy

j xux

j in the sum. For u1, . . . , uL non-negative integers

with u1+ . . .+ uL = u, it holds that uy =
∑

�∈La

�u� � max(La)
∑

�∈La

u� � ps−au �

ps. For each y
uy

j , several terms y
uy

j xux

j appear after expanding
∏

�∈La

Q�(x
�
j)

u� . In

Q�(x
�
j)

u� the maximal power ux appearing is �u�(t− 1) (as Q� has degree t− 1).

Thus, in
∏

�∈La

Q�(x
�
j)

u� , the maximal power is (t−1)
∑

�∈La

�u� = (t−1)uy � tuy−1.

Case u ∈ P2. We pick b ∈ {a, . . . , s}. Then zp
b

j =
(∑

�∈La
y�jQ�(x

�
j)
)pb

=∑
�∈La

y�p
b

j F(b)(Q�)(x
�pb

j) (Lemma 1). Pick � ∈ La, it writes � = αpc with

1 � α < p and 0 � c � s − a. Thus we have �pb = αpc+b. The euclid-
ian division of c + b by s gives c + b = ds + e with 0 � e < s. The ex-
ponent �pb then writes �pb = αpepds = αpeqd. As gqi,j = gi,j it holds that(∑n−1

j=0 gi,jy
αpeqd

j F(b)(Q�)(x
αpeqd

j)
)qm/qd

=
∑n−1

j=0 gi,jy
αpe

j F(b−ds)(Q�)(x
αpe

j). As

the F(b−ds)(R�)’s have degree lower than t, all the terms of the sum are of the
form y

uy

j xux

j with uy � q (since αpe < ps) and ux � uyt− 1. �

A.4 Proof of Proposition 6

When p = 2, we prove Proposition 6 without resorting to Assumption 1. We
use the fact that the polynomial Γ (z) linking x and y−1 is irreducible in the
construction proposed in [6,8]. For p = 2, La is reduced to powers of 2, namely
La = {pu}0�u�s−a. So the proof consists in showing that the intersection

I =

(
s−a∑
u=0

GRSt(x
pu

,ypu

)

)
∩

⎛⎝2(s−a)∑
u=s−a

GRSt(x
pu

,ypu

)

⎞⎠
is reduced to GRSt(x

ps−a

,yps−a

).

Proof. We pick v ∈ I. There exist polynomials Rpu , Qps−a+u ∈ Fqm [z] (with
0 � u � s− a) of degree lower than t such that

vi =

s−a∑
u=0

yp
u

i Rpu(xpu

i) =

s−a∑
u=0

yp
s−a+u�

i Qps−a+u(xps−a+u�
i)

for all 0 � i � n− 1. As yi = Γ (xi)
−1, we obtain polynomial relations in the

xi’s by multiplying by Γ (xi)
p2(s−a)

. This yields n relations,

s−a∑
u=0

Γ (xi)
(p2(s−a)−u)Rpu(xpu

i) =

s−a∑
u=0

Γ (xi)
p2(s−a)−(s−a+u)

Qps−a+u(xps−a+u

i).

We suppose here that the degree of this polynomial relation is lower than n,
that is (t− 1)p2(s−a) < n, so that we can deduce the polynomial equality:

s−a∑
u=0

Γ (z)(p
2(s−a)−u)Rpu(zp

u

) =

s−a∑
u=0

Γ (z)p
2(s−a)−(s−a+u)

Qps−a+u(zp
s−a+u

) (7)

Algebraic Attack against Variants of McEliece with Goppa Polynomial 41

Modulo Γ (z) all polynomials vanish but one, this yields Qp2(s−a)(zp
2(s−a)

) ≡
0 mod Γ (z). Thanks to Lemma 1, we have Γ (z) divides Qp2(s−a)(zp

2(s−a)

) =(
F(u)(Qp2(s−a))(z)

)p2(s−a)

(for u = ms − 2(s − a)). As Γ (z) is irreducible, this
entails that Γ (z) divides F(u)(Qp2(s−a))(z), but F(u)(Qp2(s−a))(z) has same de-
gree as Qp2(s−a)(z), which has degree lower than t (notations as in the proof of
Theorem 2). Hence we deduce that F(u)(Qp2(s−a))(z) = 0 and also its Fröbenius
Qp2(s−a) = 0. Then, we look at the new relation of type (7) and start over with

the polynomial Qp2(s−a)−1 (zp
2(s−a)−1

). The proof that Qp2(s−a)−1 = 0 is identi-
cal. One after the other, we prove that all the polynomials Rpu , Qps−a+u are
zero except the matching polynomials Rps−a and Qps−a which are equal, so that

z ∈ GRSt(x
ps−a

,yps−a

). The problem when p �= 2 is that the set La contains
exponents which are not a pure power of p. �

Bivariate Polynomials Modulo Composites

and Their Applications

Dan Boneh and Henry Corrigan-Gibbs

Stanford University, Stanford CA 94305, USA

Abstract. We investigate the hardness of finding solutions to bivariate
polynomial congruences modulo RSA composites. We establish necessary
conditions for a bivariate polynomial to be one-way, second preimage
resistant, and collision resistant based on arithmetic properties of the
polynomial. From these conditions we deduce a new computational as-
sumption that implies an efficient algebraic collision-resistant hash func-
tion. We explore the assumption and relate it to known computational
problems. The assumption leads to (i) a new statistically hiding com-
mitment scheme that composes well with Pedersen commitments, (ii)
a conceptually simple cryptographic accumulator, and (iii) an efficient
chameleon hash function.

Keywords: Algebraic curves, bivariate polynomials, cryptographic com-
mitments, Merkle trees.

1 Introduction

In this paper, we investigate the cryptographic properties of bivariate polyno-
mials modulo random RSA composites N = pq. We ask: for which integer poly-
nomials f ∈ Z[x, y] does the function f : ZN × ZN → ZN defined by f appear
to be a one-way function, a second-preimage-resistant function, or a collision-
resistant function? We say that a polynomial f ∈ Z[x, y] is one-way if the func-
tion f : ZN×ZN → ZN defined by f is one-way (Section 3.1). We similarly define
second-preimage-resistance (Section 3.2) and collision-resistance (Section 3.3) of
polynomials f ∈ Z[x, y].

Using tools from algebraic geometry we develop a heuristic for deducing the
cryptographic properties of a bivariate polynomial over ZN from its arithmetic
properties, namely from its properties as a polynomial over the rationals Q.
We give a number of necessary conditions for a bivariate polynomial to be one-
way, second-preimage-resistant, or collision-resistant. We also provide examples
of polynomials f that appear to satisfy each of these properties and we offer
separations between these three classes.

Taking collision resistance as an example, we conjecture that a bivariate poly-
nomial f ∈ Z[x, y] that defines an injective function f : Q2 → Q gives a colli-
sion resistant function f : Z2

N → ZN where N is a random RSA modulus
of secret factorization (see Section 3.3). Constructing an explicit polynomial

P. Sarkar and T. Iwata (Eds.): ASIACRYPT 2014, PART I, LNCS 8873, pp. 42–62, 2014.
c© International Association for Cryptologic Research 2014

Bivariate Polynomials Modulo Composites 43

f ∈ Z[x, y] that is provably injective over the rationals is an open number the-
oretic problem [30]. However, even relatively simple polynomials appear to be
injective over Q2. For example, Don Zagier [13,34] conjectures that the poly-
nomial f

zag
(x, y) := x7 + 3y7, which we refer to as the Zagier polynomial, is

injective over the rationals. Since the only apparent efficient strategy for finding
collisions in f

zag
over ZN is to find rational collisions and reduce them modulo N ,

we conjecture that f
zag

is collision resistant over ZN . To build confidence in the
assumption that f

zag
is collision resistant over ZN we discuss potential collision-

finding strategies and relate them to existing number theoretic problems.

Applications. We demonstrate that the existence of low-degree collision-resistant
bivariate polynomials gives rise to very efficient instantiations of a number of
cryptographic primitives.

First, we derive a statistically hiding commitment scheme which is computa-
tionally inexpensive to evaluate and composes naturally with Pedersen commit-
ments. By “nesting” these new commitments inside of Pedersen commitments,
we obtain an efficient zero-knowledge protocol for proving knowledge of an open-
ing of a commitment which is nested inside of another commitment. Use of
nested commitments reduces the length of transactions in an anonymous e-cash
scheme [24] by roughly 70%.

Second, we demonstrate that the new commitment scheme, in conjunction
with Merkle trees, can serve as a simple replacement for one-way accumula-
tors. Though the communication complexity of our accumulator construction
is asymptotically worse than that of strong-RSA accumulators [8]—O(log |S|)
versus O(1) for a set S being accumulated—our construction has the benefit of
being conceptually simple and easy to implement.

Third, from the same collision-resistant polynomial, we derive a new chameleon
hash function, signature scheme, claw-free permutation family, and a variable-
length algebraic hash function.

2 Related Work

Multivariate polynomials in ZN have a long history in cryptography. For ex-
ample, the security of the Ong-Schnorr-Shamir signature scheme [26] followed
from the hardness of finding solutions to a particular type of bivariate polyno-
mial equation over ZN . Pollard and Schnorr later demonstrated a general attack
against the hardness of finding solutions to such equations [28].

Shamir related the hardness of factoring certain multivariate polynomials
modulo N to the problem of factoring the modulus N itself [33]. Schwenk and
Eisfeld proposed encryption and signature schemes reliant on the hardness of
finding roots of random univariate polynomials f ∈ Z[x] modulo a composite N ,
and they prove that this problem is as hard as factoring N [31].

This work introduces a new statistically hiding commitment scheme based on
low-degree polynomials. Commitment schemes are used widely in cryptography.

44 D. Boneh and H. Corrigan-Gibbs

Prior work has derived statistically hiding commitment schemes from the dis-
crete log problem [27], the Paillier cryptosystem [12], and the RSA problem [3].
Verifying the correctness of opening a commitment in these existing schemes
requires expensive modular exponentiations or elliptic curve scalar multiplica-
tions. Verifying an opening with our new commitment scheme requires just a
few modular multiplications. By combining our new commitment scheme with
traditional Pedersen commitments, we improve the communication efficiency of
the Zerocoin decentralized e-cash construction [24].

Given a Pedersen commitment and a finite set of elements S, our commit-
ment scheme leads to a simple zero-knowledge protocol for proving knowledge
of an opening x of the commitment such that x ∈ S. The length of the proof is
log |S|. This technique, which uses Merkle trees [21], has applications to anony-
mous authentication and credential systems and it has the potential to replace
traditional RSA one-way accumulators, introduced by Benaloh and De Mare [5]
and revisited by Barić and Pfitzmann [4].

Camenisch and Lysyanskaya presented an efficient zero-knowledge protocol
which proves that a value contained in a Pedersen commitment is also con-
tained in a particular strong-RSA accumulator [8]. The Camenisch-Lysyanskaya
accumulator produces a shorter proof of knowledge than ours does, but the con-
ceptual simplicity and ease of implementation may make our Merkle-style proof
more attractive for some applications.

The “zero-knowledge sets” of Micali, Rabin, and Kilian solve an orthogonal
problem: a prover publishes a commitment to a set S and later can prove that x ∈
S without leaking other information about S [23]. In contrast, we are interested
in hiding the value x but allow the set of items S to be public.

3 Cryptographic Properties of Polynomials

We begin by surveying the cryptographic properties of integer polynomials mod-
ulo random RSA composites. Our goal is to relate the algebraic properties of
polynomials to their cryptographic complexity. In particular, we identify fami-
lies of integer polynomials that give rise to progressively stronger cryptographic
primitives: one-way functions, second-preimage-resistant functions, and collision-
resistant functions.

Notation. We write x
R← S to indicate that the variable x takes on a value

sampled independently and uniformly at random from a finite set S. A function
f : Z → R+ is negligible if it is smaller than 1/p(λ) for every polynomial p()
and all sufficiently large λ. We denote an arbitrary negligible function in λ as
negl(λ). We use the notation f(x) := x2 to indicate the definition of a new term.

In what follows, we let RSAgen(λ) denote a randomized algorithm that runs
in time polynomial in λ. The algorithm generates two random len(λ)-bit primes
p and q and outputs (p, q, N := p ·q). Here len : Z+ → Z+ is some fixed function
that determines the size of the primes p and q as a function of λ.

Bivariate Polynomials Modulo Composites 45

Let f ∈ Z[x, y] be a bivariate polynomial. For c ∈ Z consider the curve
f(x, y) = c. The genus of this curve is a standard measure of its “complexity:”
conics have genus zero, elliptic curves have genus one, and so on (see, e.g. [2,18]).
We define the genus of a polynomial f as follows:

Definition 1. The genus of a polynomial f ∈ Z[x, y] is defined as

max
c∈Q

(
genus(f(x, y)=c)

)
.

As we will see, the genus of a polynomial f has some relation to its crypto-
graphic properties. While we focus on bivariate polynomials, most of the follow-
ing discussion generalizes to multivariates.

We use the following terms throughout this section to describe relationships
between curves. (For more precise definitions, see Hindry and Silverman [18, Sec.
A.1.2].) A rational map from a curve C to another curve C′ is a pair of rational
functions g and h mapping points (x, y) on C to points (g(x, y), h(x, y)) on C′.
A birational map from C to C′ is a rational map which is a bijection between
points on C and C′ such that the map’s inverse is also rational. Two curves C
and C′ and are birationally equivalent if there is a birational map from C to C′.
An automorphism is a birational map from a curve to itself.

3.1 One-Way Polynomials

One-way functions are the basis of much of cryptography. A function g : X → Y
is one-way if, given the image c = f(x) of a random point x ∈ X , it is hard
to find an x′ such that f(x′) = c. We first ask: what polynomials give rise to
one-way functions?

Definition 2. A polynomial f in Z[x1, ..., x�] is one-way if for every p.p.t. al-
gorithm A the following advantage is a negligible function of λ:

AdvA,f (λ) := Pr[N ← RSAgen(λ), x̄
R← (ZN)�, c← f(x̄) :

f
(
A(N, c)

)
= c in ZN] .

Clearly linear polynomials are not one-way. A result of Pollard and Schnorr [28]
shows that quadratic polynomials, indeed all genus zero polynomials, are not
one-way.

Theorem 3. A genus zero polynomial f ∈ Z[x, y] is not one-way.

Proof sketch. For all c ∈ Q the curve f(x, y) = c is of genus zero, or is a product
of genus zero curves. A genus zero curve is birationally equivalent to a linear or
quadratic curve f̃(x, y) = 0 [18, Theorem A.4.3.1]. If f̃(x, y) is linear in one of
the variables x or y then finding points on this curve is easy thereby breaking the
one-wayness of f . This leaves the case where f̃(x, y) is quadratic in both x and
y. Let N be an output of RSAgen(λ). Let f̃ ∈ Z[x, y] be a quadratic polynomial
in x and y and let c ∈ ZN . There is an efficient algorithm that for most c ∈ ZN

finds an (x0, y0) ∈ Z2
N such that f̃(x0, y0) = c in ZN , breaking the one-wayness

of f . See for example [6, Sec. 5.2] for a description of the algorithm. �

46 D. Boneh and H. Corrigan-Gibbs

Theorem 3 played an important role in analyzing the security of the Ong-
Schnorr-Shamir signature scheme [26]. The scheme depended on the difficulty of
finding solutions (x, y) to the equation:

x2 + ay2 = b in ZN

for known constants a, b ∈ ZN . Since this equation defines a genus-zero curve,
Theorem 3 shows that it is possible to efficiently find solutions without knowledge
of the factors of N . Pollard and Schnorr demonstrated an attack against the
scheme soon after its publication [28,32].

One-way Polynomials. It is not known how to break the one-wayness of poly-
nomials f ∈ Z[x, y] that are not genus zero. Thus, for example, even a simple
polynomial such as f(x, y) = y2 − x3 may be one-way, although that would
require further study.

3.2 Second Preimage Resistant Polynomials

A function f : U → V is second preimage resistant if, given u ∈ U , it is difficult
to find a u′ �= u ∈ U such that f(u) = f(u′). We define a similar notion for
polynomials:

Definition 4. A polynomial f in Z[x1, ..., x�] is second preimage resistant if, for
every p.p.t. algorithm A, the following advantage is a negligible function of λ:

AdvA,f (λ) := Pr[N ← RSAgen(λ), x̄
R← (ZN)�, x̄′ ← A(N, x̄) :

f(x̄) = f(x̄′) in ZN ∧ x̄ �= x̄′] .

Since genus 0 polynomials are not one-way they are also not second preimage
resistant. It is similarly straight-forward to show that no genus-one polynomial
is second preimage resistant.

Proposition 5. A genus one polynomial f ∈ Z[x, y] is not second preimage
resistant.

To see why, let f ∈ Z[x, y] be a polynomial such that f(x, y) = c is a curve of
genus one for all but finitely many c ∈ Q. Then f is not second preimage resistant
because of the group structure on elliptic curves. That is, let N be an output of
RSAgen(λ). Choose a random pair (x0, y0) ∈ Z2

N and set c := f(x0, y0) ∈ ZN .
Then P = (x0, y0) is a point on the curve f(x, y) = c and so is the point
2P = P + P where addition refers to the elliptic curve group operation. With
overwhelming probability 2P is not the point at infinity and therefore, given P
as input, the adversary can output 2P as a second preimage for P . It follows
that f is not second preimage resistant.

Even polynomials that give higher genus curves need not be second preimage
resistant. For example, a hyperelliptic polynomial of genus g ≥ 2 has the form

Bivariate Polynomials Modulo Composites 47

f(x, y) = y2 − h(x) ∈ Z[x, y] where h ∈ Z[x] is a polynomial of degree 2g + 1
or 2g + 2. The simple fact that f(x0, y0) = f(x0,−y0) immediately gives a
second preimage attack on these polynomials: given (x0, y0) the attacker outputs
(x0,−y0) as a second preimage.

The fact that all curves of genus two are hyperelliptic [18, Theorem A.4.5.1]
leads to the following proposition:

Proposition 6. A genus two polynomial f ∈ Z[x, y] is not second preimage
resistant.

This proposition, in combination with Theorem 3 and Proposition 5 means that
all second preimage resistant polynomials must have genus at least three.

As outlined above, elliptic (genus one) and hyperelliptic (genus two) poly-
nomials are not second preimage resistant because there are non-trivial auto-
morphisms on the associated curves. We say that a polynomial f ∈ Z[x, y] is
automorphism free if, for all but finitely many c ∈ Q, the curve f(x, y) = c has
no automorphisms over Q, apart from the trivial map (x, y) �→ (x, y). It is natu-
ral to conjecture that every automorphism-free polynomial f ∈ Z[x, y] is second
preimage resistant.

Poonen constructs a large family of automorphism-free polynomials, in ar-
bitrarily many variables and of arbitrarily large degree [29]. For example, he
proves that the polynomial f(x, y) = x3 + xy3 + y4 is automorphism-free over
the rationals [29].

A Historical Aside: q-Way Preimage Resistance. A stronger notion of
preimage resistance for a function f : U → V , called q-way preimage resistance,
states that given a random v ∈ V and random points u1, . . . , uq in U such that
v = f(u1) = · · · = f(uq), it is difficult to find a new point u ∈ U \ {u1, . . . , uq}
such that f(u) = v.

As before, one can define a similar property for polynomials. That is, a poly-
nomial f in Z[x, y] is q-way preimage resistant if, for a random RSA moduli N
and a random c ∈ ZN , given q points on the curve f(x, y) = c in ZN , it is hard
to find another point on this curve.

Kilian and Petrank [19] proposed an authentication scheme whose security is
based on the q-way preimage resistance of the polynomial f

KP
(x, y) = xe−ye, for

some small odd e, say e = 17. In their scheme, q is the total number of users in
the system. Naor [25] refers to the computational assumption that f

KP
is q-way

preimage resistant as the Difference RSA Assumption. We note that the poly-
nomial f

KP
is not even second preimage resistant because there is a non-trivial

automorphism (x, y) �→ (−y,−x) on the curve. In other words, for any point
(x0, y0) we have that f

KP
(x0, y0) = f

KP
(−y0,−x0). This bad symmetry appears

to violate the security properties needed for the Kilian-Petrank identification
scheme, but the scheme can be modified to resist such attacks.

Camenisch and Stadler [10, Sec. 6] used a similar assumption to construct
group signatures. They need the polynomial fCS(x, y) = xe1 + aye2 to be q-way
preimage resistant for some small e1 and e2. They propose using e1 = 5 and

48 D. Boneh and H. Corrigan-Gibbs

e2 = 3. We observe in that next section that the polynomial f(x, y) = x5 + y3 is
not collision resistant. Nevertheless, it may be second preimage resistant.

3.3 Collision-Resistant Polynomials

A function f : U → V is collision resistant if it is difficult to find a pair u �= u′ ∈
U such that f(u) = f(u′). We define a similar notion for polynomials:

Definition 7. For a polynomial f in Z[x1, ..., x�] and an integer N , we say that
x̄, ȳ ∈ (ZN)� are an N -collision for f if f(x̄) = f(ȳ) in ZN and x̄ �= ȳ.

Definition 8. A polynomial f in Z[x1, ..., x�] is collision resistant if for every
p.p.t. algorithm A the following advantage is a negligible function of λ:

AdvA,f (λ) := Pr
[
N ← RSAgen(λ) : A(N) is an N -collision for f

]
.

In the previous two subsections, we observed that polynomials f ∈ Z[x, y]
which are of genus g ≤ 2 or which are hyperelliptic, are not second preimage
resistant and thus are not collision resistant.

Even polynomials that are second preimage resistant are not necessarily col-
lision resistant. For example, in Section 3.2 we suggested that the polynomial
f(x, y) = x3 + xy3 + y4 may be second preimage resistant. However, it is cer-
tainly not collision resistant, since for any r ∈ Q, the points (r4, 0) and (0, r3)
constitute a collision.

Attacking Collision Resistance over the Rationals. Suppose that a poly-
nomial f ∈ Z[x1, . . . , x�] has a rational collision. That is, there are rational points
x̄0 �= x̄1 in Q� such that f(x̄0) = f(x̄1). Then, for most1 RSA moduli N , the
points x̄0 and x̄1 give a collision for f in ZN . This breaks the collision resistance
of f when the security parameter λ is sufficiently large. Indeed, for sufficiently
large λ the attack algorithm can construct the fixed rational points x̄0 and x̄1

by exhaustive search and obtain collisions for f for most RSA moduli output by
RSAgen(λ).

The discussion above shows that if a polynomial f ∈ Z[x1, . . . , x�] has a
rational collision then f is not collision resistant. We summarize this in the
following proposition.

Proposition 9. If a polynomial f ∈ Z[x1, . . . , x�] is collision resistant then the
function f : Q� → Q must be injective.

If f ∈ Z[x1, . . . , x�] defines an injective function from Q� to Q then f is said
to be an injective polynomial. Proposition 9 shows that the search for collision-
resistant polynomials must begin with the search for an injective polynomial
over the rationals.

1 The points x̄0 and x̄1 give a collision in ZN whenever N is relatively prime to their
denominators and x̄0 �= x̄1 mod N . This holds with overwhelming probability for
sufficiently large λ.

Bivariate Polynomials Modulo Composites 49

Injective Polynomials. Even the existence of bivariate injective polynomials
is currently an open problem. Poonen [30] shows that they exist under certain
number theoretic conjectures. Moreover, Poonen [30, Lemma 2.3] shows that
if f ∈ Z[x, y] has only a finite number of rational collisions then one can use
f to construct an injective polynomial g ∈ Z[x, y] by pre-composing f with a
suitable polynomial map. In other words, an “almost” injective polynomial can
be converted to an injective one.

Although proving that a particular polynomial is injective over Q is currently
out of reach, there are simple polynomials that appear to have this property.
In particular, Don Zagier2 conjectures that the polynomial f

zag
(x, y) := x7 +

3y7 (the “Zagier polynomial”) defines an injective function from Q2 to Q. As
indirect evidence, Cornelissen [13, Remarque 10] and Poonen [30, Remark 1.7]
remark that the four-variate generalization of the abc-conjecture [7] implies that
f(x, y) = xe + 3ye is injective over the rationals for “sufficiently large” odd
integers e. Experimentally, we have confirmed that there are no rational collisions
in f

zag
for rationals with height less than 100.

�-Variate Injective Polynomials over Q from Merkle-Damg̊ard. Given a
bivariate injective polynomial overQ, it is possible to construct �-variate injective
polynomials over Q for every � > 2 using the Merkle-Damg̊ard construction
for collision-resistant hash functions [15,22]. For example, applying one step of
Merkle-Damg̊ard to f

zag
shows that if f

zag
is injective then so is the following

three-variate polynomial:

g(x, y, z) = (x7 + 3y7)7 + 3z7 .

Injective Polynomials and Collision Resistance. Proposition 9 states that,
for a polynomial f to be collision resistant over ZN , f must be injective over
the rationals. The following conjecture asserts the converse: injectivity over the
rationals is sufficient for collision resistance.

Conjecture 10. If f ∈ Z[x1, . . . , x�] is injective over Q then f is collision re-
sistant.

This conjecture is based on the intuition that the only efficient way to find
collisions in f over ZN is to find collisions in f over Q. Since collisions over Q
do not exist it may be difficult to find collisions over ZN .

We only state Conjecture 10 to stimulate further research on this topic. The
conjecture is not needed for this paper. For the applications described in this
paper, we only need the collision resistance of an explicit low-degree polynomial
in Z[x, y]. Nevertheless, if Conjecture 10 is true it would give a clean character-
ization of collision resistant polynomials in terms of their arithmetic properties.

For the applications in paper, the following assumption suffices.

2 Gunther Corneliseen attributes to Don Zagier the suggestion that f(x, y) = x7+3y7

is collision-free over the rationals [13, Remarque 10].

50 D. Boneh and H. Corrigan-Gibbs

Assumption 11. The Zagier polynomial f
zag
(x, y) = x7 +3y7 ∈ Z[x, y] is colli-

sion resistant.

We see that breaking Assumption 11 would either: (a) resolve a 15-year open
number theoretic problem by showing that f

zag
is non-injective, or (b) find ZN

collisions that are not rational collisions. We next review two potential avenues
for attacks of type (b) and discuss why they do not apply.

Attack Strategy I: Related Non-injective Polynomials over Q. One
potential avenue for attacking the collision resistance of f

zag
in ZN is to look for

a polynomial h ∈ Z[x, y] such that

g(x, y) := f(x, y) +N · h(x, y)

is not injective over Q. If (x0, y0) and (x1, y1) in Q2 are a rational collision
for g then by reducing this pair modulo N we may3 obtain a ZN collision for
f(x, y). We say that h is “useful” if there exists a rational collision for g(x, y)
that gives a ZN collision for f(x, y). It is easy to show that there are many
useful polynomials h: every ZN collision for f(x, y) gives a useful polynomial
h. However, we do not know how to construct a useful h just given f and N .
Furthermore, even if efficiently constructing a useful h is possible, the attack
algorithm will need to find a rational collision on the resulting g and this may
not be feasible in polynomial time.

Attack Strategy II: Algebraic Extensions. Another avenue for attacking
the collision resistance of f

zag
in ZN is via algebraic extensions. Let g be an

irreducible polynomial in Z[x] and consider the number field K = Q[x]/(g).
Suppose the adversary constructs g so that it knows an efficiently computable
map ρ : K → ZN (this can be done by choosing the polynomial g so that the
adversary knows a zero of g in ZN). Now, even if f

zag
is injective as a function

Q2 → Q, it may not be injective as a function K2 → K. For example, f
zag

is
not injective over the extension K = Q[7

√
3]: the points (7

√
3, 0) and (0, 1) are a

collision. If the adversary could find a collision of f
zag

in K2 this collision may lead
to a ZN collision for f

zag
. However, for a random RSA modulus N , it is not known

how to efficiently construct an extension K such that (i) f
zag

: K2 → K is not
injective, and (ii) the adversary has an efficiently computable map ρ : K→ ZN .

Assumption 11 merits further analysis and we hope that this work will stim-
ulate further research on this question.

Non-collision Resistant Polynomials. Simple variations of Zagier’s polyno-
mial are trivially not injective and therefore not collision resistant. For example,
the polynomials

f1(x, y) = x7 + y7 and f2(x, y) = x7 + 2y7

3 If (x0, y0) and (x1, y1) happens to reduce to the same point modulo N or if one of
the denominators is not relatively prime to N then this rational collision for g does
not give a ZN collision for f .

Bivariate Polynomials Modulo Composites 51

in Z[x, y] are not collision resistant. The polynomial f1 is not injective because
for all x0 �= y0 in Z the points (x0, y0) and (y0, x0) are a collision for f1. The
polynomial f2 is not collision resistant because for all t �= 0 in Z the points
(−t, 0) and (t,−t) are a collision for f2.

Similarly, polynomials of the form f(x, y) = xe1+bye2 ∈ Z[x, y] for some b ∈ Z

where gcd(e1, e2) = 1 are not injective and therefore not collision resistant. To
see why observe that if the equation αe1−βe2 = 1 has integer solutions (α0, β0)
and (α1, β1) then (tα0 , tβ1) and (tα1 , tβ0) are a collision for f .

Random Self-reduction. Finally, we mention that the collision finding prob-
lem for the family of polynomials {xe + aye}a∈ZN has a random self reduction.
Given a collision-finding algorithmA(N, a) that outputs a ZN collision in xe+aye

for a non-negligible fraction of choices of a ∈ ZN , it is possible to construct a
collision-finding algorithm B(N, a) that finds collisions for every choice of a with
high probability. On input (N, a) Algorithm B chooses a random r ← ZN , and
calls A(N, rea). When A outputs the collision (x0, y0), (x1, y1), algorithm B ob-
tains the following collision on the original curve: (x0, ry0), (x1, ry1). If A fails
then B can try again with a fresh random choice of a ∈ ZN . After an expected
polynomial number of iterations algorithm B will find a collision for the given
polynomial xe + aye.

4 A Nestable Commitment Scheme from Polynomials
over ZN

Having argued that it is infeasible to find collisions in the function f
zag
(x, y) =

x7+3y7 mod N (Assumption 11), we now turn to the cryptographic applications
of this new computational assumption. In this section, we demonstrate that the
collision-resistance of f

zag
leads to a commitment scheme where the procedure for

verifying that a commitment was opened correctly uses only low-degree polyno-
mials. The new commitment scheme is statistically hiding and its computational
binding property is based on Assumption 11.

The commitment scheme composes naturally with zero-knowledge proofs of
knowledge involving Pedersen commitments. In particular, given a Pedersen
commitment C to one of our low-degree commitments, there is a succinct zero-
knowledge protocol which proves knowledge of an opening of an opening of C.
We call the inner commitment scheme nestable, since it can be efficiently nested
inside of a Pedersen commitment. We discuss applications of nestable commit-
ments in Sections 4.4 and 5.

4.1 Commitments

A commitment scheme is a tuple of efficient algorithms (Setup, Commit, Open),
with the following functionalities:
Setup(λ) → pp. The Setup routine is a randomized algorithm that runs in time

polynomial λ and returns public parameters pp. These parameters define

52 D. Boneh and H. Corrigan-Gibbs

a message space M, a space of random blinding values R, and a space of
commitments C. The following algorithms take the public parameters pp as
an implicit argument.

Commit(m)→ (c, r). Given a message m ∈ M, return a commitment c ∈ C and
a random blinding value r ∈ R used to open the commitment.

Open(c,m, r) → {0, 1}. Given a commitment c, a message m, and a blinding
value r, return “1” if (m, r) is a valid opening of c and “0” otherwise.

For correctness, we require that, for all m ∈M:

Pr[pp← Setup(λ); (c, r)← Commit(m) : Open(c,m, r) = 1] ≥ 1− negl(λ).

A statistically hiding commitment scheme must satisfy two security properties:

– Statistically Hiding. For any two messages m0 and m1 in M, a commit-
ment to m0 is statistically indistinguishable from a commitment to m1.

– Computationally Binding. For any p.p.t. adversary A, the adversary has
negligible advantage in producing two different valid openings of the same
commitment. More precisely,

Pr[pp← Setup(λ); (c,m, r,m′, r′)← A(pp) :
Open(c,m, r) = 1 ∧ Open(c,m′, r′) = 1 ∧ (m, r) �= (m′, r′)] ≤ negl(λ).

4.2 Construction

The public parameters for our new commitment scheme consist only of an RSA
modulus N , for which no one knows the factorization. To commit to a value m ∈
Z∗
N , the committer samples a random blinding value r from Z∗

N and computes
the value of f

zag
at the point (m, r).

The construction of the new commitment scheme follows.
Setup(λ) → N . The value N is an RSA modulus—the product of two random

len(λ)-bit primes p and q such that gcd(p−1, q−1, 7) = 1. The commitment
space C is ZN . The message space M and the space of blinding values R
are Z∗

N .
Commit(m) → (c, r). Choose a random blinding value r ← Z∗

N and set c ←
m7 + 3r7 in ZN . Return r as the commitment secret.

Open(c,m, r) → {0, 1}. Output “1” if m, r ∈ Z∗
N and if c = m7 + 3r7 in ZN .

Output “0” otherwise.

Security Properties. The following theorem summarizes the security properties
of the scheme.

Theorem 12. The commitment scheme is statistically hiding and computation-
ally binding under Assumption 11.

Proof. Statistical hiding follows from a standard argument given in Appendix A.
Computational binding follows directly from the collision resistance of f

zag
over

ZN . One issue is Setup algorithm generates a randomN such that gcd(φ(N), 7) =

Bivariate Polynomials Modulo Composites 53

1 whereas Assumption 11 imposes no such restriction on N . Nevertheless, As-
sumption 11 implies the collision resistance of f

zag
for this modified distribution

of N : By way of contradiction, assume there were an algorithm A which finds
collisions in f

zag
with non-negligible probability ε when gcd(φ(N), 7) = 1. Since

algorithm RSAgen in Assumption 11 generates such N with probability about
(5/6)2 = 25/36 it follows that A will find collisions in with probability at least
(25/36)ε when N is sampled as in algorithm RSAgen, violating Assumption 11.

Efficiency. Generating and verifying standard Pedersen commitments requires
two modular exponentiations (or elliptic curve scalar multiplications). In con-
trast, our scheme requires only a few modular multiplications. On a workstation
with a 3.20 GHz processor, for example, computing 10,000 Pedersen commit-
ments in a subgroup of order ≈ 2256 modulo a 2048-bit prime takes 16.54 sec-
onds. Computing the same number of commitments using this new scheme takes
0.925 seconds—a factor of 17.9× speed-up.

4.3 Nestable Commitments

We say that a commitment scheme (Setup,Commit,Open) is nestable if, given
Pedersen commitments to a message m, randomness r, and a commitment c,
there is an succinct zero-knowledge proof of knowledge of values m, r, and c,
such that c = Commit(m, r). In other words, there is a succinct protocol for
proving knowledge of an opening of an opening of a Pedersen commitment. For
our purposes, a succinct zero-knowledge protocol is one in which proof length
is k|c| bits long, where k is a constant which does not depend on the security
parameter.

We adopt the notation of Camenisch and Stadler [9] for specifying zero-
knowledge proof-of-knowledge protocols. For example, PoK{x, y : X = gx ∨ Y =
gx} indicates a protocol in which the prover and verifier share public values g,
X , and Y , and the prover demonstrates knowledge of either a value x such that
X = gx or a value y such that Y = gy.

Given Pedersen commitments

Cm = gmhsm Cr = grhsr Cc = gchsc

a nestable commitment scheme has a succinct zero-knowledge protocol which
proves knowledge of the statement:

PoK{m, r, c, sm, sr, sc : Cm = gmhsm ∧ Cr = grhsr ∧ Cc = gCommit(m,r)hsc}.

For the commitment scheme outlined above, Commit(m, r) = m7+3r7 mod N ,
so the proof of knowledge protocol is:

PoK{m, r, c, sm, sr, sc : Cm = gmhsm ∧ Cr = grhsr ∧ Cc = gm
7+3r7hsc}.

The group G = 〈g〉 = 〈h〉 used for the proof must be a group of composite order
N , where N is the RSA modulus used in the commitment scheme. As usual for

54 D. Boneh and H. Corrigan-Gibbs

Pedersen commitments, no one should know the discrete logarithm logg h in G.
For example, G might be the order-N subgroup of the group Z∗

p for a prime
p = 2kN + 1, where k is a small prime. Alternatively, G could be an elliptic
curve group of order N .

The fact that the verification equation for our commitment scheme is a fixed
low-degree polynomial means that this proof can be executed succinctly using
standard techniques [10]. This proof requires only one challenge and 20 elements
of G. If N is a 2048-bit modulus, then the proof is roughly 5 KB in length.

In contrast, nesting Pedersen commitments inside of other Pedersen com-
mitments does not lead to succinct proofs of knowledge. The shortest proofs
of knowledge for nested Pedersen commitments require a number of group ele-
ments that is linear in the security parameter [11, Sec. 5.3.3], whereas our proof
requires only a constant number of group elements.

Being able to prove knowledge of an opening of a commitment which is itself
nested inside of a commitment proves useful in constructing distributed e-cash
schemes (Section 4.4) and set membership proofs (Section 5).

4.4 Application Sketch: Anonymous Bitcoins

The Zerocoin scheme for anonymizing Bitcoin transactions requires a proof of
knowledge of an opening of an opening of a commitment [24]. For this purpose,
Zerocoin uses Pedersen commitments nested inside of Pedersen commitments,
which requires a proof-of-knowledge of the form: PoK{m, r, s : ĉ = ĝ(g

mhr)ĥs}.
The number of group elements exchanged in this proof is linear in the security
parameter, since the proof uses single-bit challenges.

By using our nestable commitment scheme for the “inner” commitment, we
reduce the number of group elements from linear to constant in the security
parameter. This reduces the length of anonymous coin transactions in the Ze-
rocoin scheme by roughly 70% (down to 12.0 KiB from 39.4 KiB when using
a 2048-bit RSA modulus). When instantiated with our nestable commitments,
Zerocoin maintains its unconditional privacy property and maintains double-
spending prevention under Assumption 11.

5 Succinct Set Membership Proofs

A cryptographic accumulator, first defined by Benaloh and De Mare [5], is a prim-
itive which allows a prover to accumulate large set of values S = {x1, . . . , xn}
into a single short value A. For every value xi in the accumulator, there is an
accompanying short witness wi. By exhibiting a valid (xi, wi) pair, a prover can
convince a verifier that the value xi was actually accumulated into A. Informally,
the security property of the accumulator requires that it be difficult to find a
valid value-witness pair (x∗, w∗) such that x∗ /∈ S.

Benaloh and De Mare give one example application of this primitive: the ad-
ministrator of a club can accumulate the names of the members of the club into
an accumulator A, distribute a witness to each member, and publish the accumu-
lator value A. The value A is a concise representation of the club’s membership

Bivariate Polynomials Modulo Composites 55

list. A person can prove membership in the club by revealing her name xi and
the witness wi to a verifier.

Camenisch-Lysyanskaya extend the basic accumulator primitive to allow for
zero-knowledge proofs of accumulator membership [8]. That is, a prover can
convince a verifier that the prover “knows” a valid value-witness pair (x,w) for
a particular accumulator A, without revealing x or w. This augmented primitive
allows for privacy-preserving authentication: a club member can prove that she
is some member of the club defined by a membership list A without revealing
which member she is.

We provide a construction that offers the same functionality as the Camenisch-
Lysyanskaya scheme with the cost of requiring slightly larger proofs—of length
O(log |S|) instead of length O(1). The benefit of our construction is its simplic-
ity: compared with the Camenisch-Lysyanskaya proof, which requires a nuanced
security analysis, ours is relatively straightforward.

5.1 Definitions

A cryptographic accumulator is a tuple of algorithms (Setup, Accumulate,Witness,
Verify) with the following functionalities:
Setup(λ) → pp. Given a security parameter λ as input, output the public pa-

rameters pp. The other functions take pp as an implicit input. Setup runs
in time polynomial in λ.

Accumulate(S = {x1, . . . , xn}) → A. Accumulate the n items in the set S into
an accumulator value A.

Witness(S, x)→ w or ⊥. If x /∈ S, return ⊥. Otherwise, return a witness w that
x was accumulated in Accumulate(S). To be useful, the length of w should
be short (constant or logarithmic) in the size of S.

Verify(A, x, w) → {0, 1}. Return “1” if the value-witness pair (x,w) is valid for
the accumulator A. Return “0” otherwise.

Camenisch and Lysyanskaya, following Barić and Pfitzmann [4], define an
accumulator as secure, if for all polynomial-time adversaries A:

Pr[pp← Setup(λ); (S, x∗, w∗)← A(pp); x∗ /∈ S;

A← Accumulate(S) : Verify(A, x∗, w∗) = 1] ≤ negl(λ).

If an accumulator satisfies this definition, then it is infeasible for an adversary
to prove that a value x was accumulated in a value A if it was not.

Zero-Knowledge Proof of Knowledge of an Accumulated Value. In many appli-
cations, it is useful for a prover to be able to convince a verifier that the prover
knows some value inside of an accumulator without revealing which value the
prover knows. Such a proof protocol should satisfy the standard properties of
soundness, completeness, and zero-knowledgeness [11, Sec. 2.9]. Camenisch and
Lysyanskaya construct one such proof-of-knowledge protocol for the strong-RSA
accumulator [8] and we exhibit a protocol for a Merkle-tree-style accumulator in
Section 5.3.

56 D. Boneh and H. Corrigan-Gibbs

5.2 Construction

Given a collision-resistant hash function H : D × D → D, which operates on
a domain D such that S ⊆ D, it is possible to construct a simple accumulator
using Merkle trees. For example, given a set S = {x1, x2, x3, x4}, the accumulator
value A is the value A← H(H(x1, x2), H(x3, x4)). A witness wi that an element
xi is in the accumulator is the set of O(log |S|) nodes along the Merkle tree
needed to verify a path from xi to the root (labeled A).

The limitation of this accumulator construction is that it no longer admits
simple zero-knowledge proofs of knowledge of (x,w) pairs, unless H has a very
special form. For instance, if H is a standard cryptographic hash function (e.g.,
SHA-256), there is no straightforward zero-knowledge protocol for proving knowl-
edge in zero knowledge of a preimage under H . By instantiating H with the
function H(x, y) = x7 +3r7 mod N , as we demonstrate in the following section,
it is possible to execute this zero-knowledge proof succinctly.

A

a0

a00

a000

(m0)
a001

(m1)

a01

a010

(m2)
a011

(m3)

a1

a10

a100

(m4)
a101

(m5)

a11

a110

(m6)
a111

(m7)

Fig. 1. A perfect Merkle tree with eight leaves rooted at A. The shaded nodes are a
witness to the fact that m2 is accumulated in A. The tree invariant is ai = H(ai0, ai1).

We first recall the standard construction of Merkle trees [21] and then describe
the zero-knowledge proof construction. The construction from a general collision-
resistant hash function family {Hλ}∞λ=1 follows.

Setup(λ) → H . Given a security parameter λ as input, sample a λ-secure
collision-resistant hash function H from Hλ. Setup runs in time polynomial
in λ.

Accumulate(S = {x1, . . . , xn})→ A. If |S| is not a power of two, insert “dummy”
elements into S (e.g., by duplicating the first element of S) until |S| is a
power of two. Construct a perfect Merkle tree of depth d = log2 |S| using
the hash function H with the members of S as its leaves and return the
root A. Figure 1 depicts an example tree of depth three.

Witness(S, x) → w or ⊥. If x /∈ S, return ⊥. Otherwise, let the path from A to
the message x be: P = (A, ab1 , ab1b2 , ab1b2b3 , . . . , ab1...bd), where ai0 is the
left child of node ai, ai1 is the right child of node ai, and d is the number of
edges between the root and leaf labeled x in the tree. The first component
of the witness is the list of siblings of the nodes in the path P : wα =
(ab̄1 , ab1b̄2 , ab1b2 b̄3 , . . . , ab1...b̄d). The second component of the witness is a bit

Bivariate Polynomials Modulo Composites 57

vector indicating where x is located in the tree: wβ = (b1, b2, . . . , bd−1, bd).
The witness is w = (wα, wβ).

Verify(A, x, w) → {0, 1}. Interpret the witness as (wα, wβ) such that wα =
(w1, . . . , wd) and wβ = (b1, . . . , bd). To verify the witness, let td = x and
recompute the intermediate nodes of the tree from the leaf back to the root.
Specifically, compute test nodes ti for i = d− 1, . . . , 0:

ti =

{
H(ti+1, wi+1) : if bi = 0
H(wi+1, ti+1) : if bi = 1

Return “1” if A = t0 and “0” otherwise.

5.3 Proof of Knowledge of an Accumulated Value

When instantiated with a general hash function H , the Merkle-tree accumu-
lator of the prior section does not admit a succinct proof of knowledge of an
accumulated value. When instantiated with our new hash function H(x, y) =
x7+3y7 mod N , however, there is a succinct proof of knowledge that the prover
knows an opening of a Pedersen commitment Cm such that some leaf of the
accumulator Merkle tree has label m. The proof requires a group G = 〈g〉 = 〈h〉
of order N , as in Section 4.3. The proof length is log |S|, for a set S of elements
accumulated.

The Setup algorithm outputs an RSA modulus N ← RSAgen(λ) such that
gcd(φ(N), 7) = 1 and such that no one knows the factorization of N . The hash
function H is H(x, y) = x7 +3y7 mod N and the accumulator domain D is Z∗

N .
The high-level idea is that, if the prover wants to convince the verifier that a

particular value m is accumulated in A, the prover commits to the values of all of
the nodes in the Merkle tree along the path from the root to the leaf labeled m.
The prover also commits to all of the witness values needed to recreate the path
from the leaf labeled m down to the tree root. The prover can then convince the
verifier in zero knowledge that these commitments together contain a path to
some leaf in the tree, without revealing which one.

Assume that the prover has a value-witness pair (x,w) which convinces a
verifier that x is accumulated in A. Denote the node values along the path from
the root node, with value A, to the leaf node, with value x, in the Merkle tree
as: p = (p0, p1, . . . , pd). Note that p0 = A and pd = x.

The prover now commits to every value pi in this path and to the values of
the left and right children of pi in the Merkle tree. If the value of the left child
is �i and the right child is ri, the commitments are, for i = 0, . . . , d− 1:

Pi = gpihsi Li = g�ihs′i Ri = grihs′′i

The prover opens P0 by publishing (p0, s0) and the verifier ensures that p0 = A
and that P0 = gp0hs0 .

The prover now can prove, for i = 0, . . . , d− 1, that each (Pi, Li, Ri) tuple is
well-formed using a standard discrete logarithm proof:

PoKα{�, r, s, s′, s′′ : Pi = g�
7+3r7hs ∧ Li = g�hs′ ∧Ri = grhs′′}.

58 D. Boneh and H. Corrigan-Gibbs

The prover then must prove that it knows an opening of the commitment Pi+1

such that the opening is equal to an opening of either Li or Ri. For i = 0, . . . , d−
1, the prover proves:

PoKβ{p, s, s�, sr : Pi+1 = gphs ∧ (Li = gphs� ∨Ri = gphsr)}.

The complete proof is the set of commitment pairs {(Pi, Li, Ri)}di=0, the 2d
proofs of knowledge, and the opening (p0, r0) of the root commitment P0. The
total length is O(d) = O(log |S|), since the tree has depth d = log |S| and each
of the elements of the proof has length which is constant in |S|.

Security. The completeness and zero-knowledgeness properties follows from the
properties of the underlying zero-knowledge proofs used and from the fact that
Pedersen commitments are perfectly hiding.

To show soundness, we must demonstrate that if the verifier accepts, it can ex-
tract a value-witness pair (x∗, w∗) for the original Merkle tree with non-negligible
probability by rewinding the prover. Starting at the root and working towards
the leaves of the tree, we will be able to extract the prover’s witness for each of
the proofs of knowledge with non-negligible probability.

By induction on i, we can show that after d steps, the verifier will be able
to extract the value-witness pair (x,w). The base case of the induction is i = 0
and the verifier can extract a preimage of A under H . From each of the i PoKαs,
the verifier extracts an element of the witness wα (the preimage of pi under H).
From each of the i PoKβs, the verifier extracts an element of the witness wβ

(whether the next node in the path is the left or right child of pi).

6 Claw-Free Functions, Signatures, and Chameleon
Hashes

In this section, we describe a few other applications arising from the assumed
collision-freeness of the Zagier polynomial.

Claw-Free Functions and Signatures. Assumption 11 immediately gives rise to
a family of trapdoor claw-free functions [14]. For each RSA modulus N selected
as in Section 4.2, we can define a function family:

FN := {fa | a ∈ Z∗
N} where fa(x) = x7 + 3a7 mod N.

Following Damg̊ard [14], a function family FN is claw free if, given FN , it
is difficult to find a “claw” (x, y, a, b) such that fa(x) = fb(y). For all p.p.t.
adversaries A, we require that:

Pr [N ← RSAgen(λ), (x, y, a, b)← A(N) : fa(x) = fb(y)] ≤ negl(λ).

The claw-freeness of FN follows from Assumption 11, since a claw in FN implies
a collision in f(x, y) = x7 + 3y7 mod N . Additionally, the function family FN

Bivariate Polynomials Modulo Composites 59

is trapdoor claw-free, since anyone with knowledge of the factors of N can find
claws easily by choosing (x, y, a) arbitrarily and solving for b.

This family FN is not quite a family of trapdoor claw-free permutations,
since the range of two functions fa and fb in FN are not necessarily equal (i.e.,
f−1
b (fa(x)) is sometimes undefined). However, the fraction of choices of (a, b, x)
for which this event occurs is negligible, so it is possible to treat FN as if it
were a family of trapdoor claw-free permutations. In particular, this function
family leads to a signature scheme secure against adaptive chosen message at-
tacks in the standard model by way of the Goldwasser-Micali-Rivest signature
construction [17].

Chameleon Hash. This commitment scheme immediately gives rise to a new
chameleon hash function. A chameleon hash, as defined by Krawczyk and Rabin,
is a public hash function H(m, r) with a secret “trapdoor” [20]. A chameleon
hash function has three properties:

1. Without the trapdoor, it is difficult to find collisions in H . That is, it is hard
to find colliding pairs (m, r) and (m′, r′) such that H(m, r) = H(m′, r′).

2. Given the trapdoor, there is an efficient algorithm which takes (m, r,m′) as
input and outputs a value r′ such that H(m, r) = H(m′, r′).

3. For any pair of messagesm and m′ in the message spaceM, the distributions
H(m, r) and H(m′, r′) are statistically close if r and r′ are chosen at random.

Chameleon hashes are useful in building secure signature schemes in the standard
model [16] and for a number of other applications [20].

To derive a chameleon hash scheme from our commitment scheme, set the
public key to the RSA modulus N , and the secret key to the factorization of N .
The hash function H is then H(m, r) = m7 + 3r7 mod N . Without the factors
of N , it is difficult to find collisions but anyone with knowledge of the factors of
N (the “trapdoor”) can find collisions.

Chameleon hashes based on Pedersen commitments require two modular ex-
ponentiations to evaluate, while ours requires just a few modular multiplications.

7 Conclusion and Future Work

We have used arithmetic properties of bivariate polynomials over Q to reason
about their cryptographic properties in the ring ZN . Using one particular low-
degree polynomial, f

zag
, we build a new statistically hiding commitment scheme,

a conceptually simple cryptographic accumulator, and a computationally effi-
cient chameleon hash function. To gain confidence in Conjecture 10 it would be
interesting to prove it in the generic ring model [1]. We leave that for future
work.

Acknowledgments. We are grateful to Bjorn Poonen for information about
injective polynomials, to Steven Galbraith and Antoine Joux for comments on
our cryptographic assumptions, and to Don Zagier for recounting his rationale

60 D. Boneh and H. Corrigan-Gibbs

for conjecturing the injectivity of f(x, y) = x7 + 3y7 over Q. We thank Joe
Zimmerman for helpful conversations about this work. This work was supported
by DARPA, an NSF research grant, and an NSF Graduate Research Fellowship
under Grant No. DGE-114747.

References

1. Aggarwal, D., Maurer, U.: Breaking RSA generically is equivalent to factoring.
In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 36–53. Springer,
Heidelberg (2009)

2. Ash, A., Gross, R.: Elliptic Tales: Curves, Counting, and Number Theory. Prince-
ton University Press (2012)

3. Ateniese, G., de Medeiros, B.: Identity-based chameleon hash and applications. In:
Juels, A. (ed.) FC 2004. LNCS, vol. 3110, pp. 164–180. Springer, Heidelberg (2004)

4. Barić, N., Pfitzmann, B.: Collision-free accumulators and fail-stop signature
schemes without trees. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233,
pp. 480–494. Springer, Heidelberg (1997)

5. Benaloh, J.C., de Mare, M.: One-way accumulators: A decentralized alternative
to digital signatures. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765,
pp. 274–285. Springer, Heidelberg (1994)

6. Boneh, D., Gentry, C., Hamburg, M.: Space-efficient identity based encryption
without pairings. In: FOCS, pp. 647–657 (2007)

7. Browkin, J., Brzeziński, J.: Some remarks on the abc-conjecture. Mathematics of
Computation 62(206), 931–939 (1994)

8. Camenisch, J., Lysyanskaya, A.: Dynamic accumulators and application to efficient
revocation of anonymous credentials. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 61–76. Springer, Heidelberg (2002)

9. Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups. In:
Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 410–424. Springer,
Heidelberg (1997)

10. Camenisch, J., Stadler, M.: Proof systems for general statements about discrete
logarithms. Tech. Rep. 260, Dept. of Computer Science, ETH Zurich (March 1997)

11. Camenisch, J.: Group Signature Schemes and Payment Systems Based on the
Discrete Logarithm Problem. Ph.D. thesis, Swiss Federal Institute of Technology
Zürich (ETH Zürich) (1998)

12. Catalano, D., Gennaro, R., Howgrave-Graham, N., Nguyen, P.Q.: Paillier’s
cryptosystem revisited. In: ACM Conference on Computer and Communications
Security, pp. 206–214 (2001)

13. Cornelissen, G.: Stockage diophantien et hypothese abc généralisée. Comptes Ren-
dus de l’Académie des Sciences-Series I-Mathematics 328(1), 3–8 (1999)

14. Damg̊ard, I.B.: The Application of Claw Free Functions in Cryptography. Ph.D.
thesis, Aarhus University (May 1988)

15. Damg̊ard, I.B.: A design principle for hash functions. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 416–427. Springer, Heidelberg (1990)

16. Gennaro, R., Halevi, S., Rabin, T.: Secure hash-and-sign signatures without
the random oracle. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592,
pp. 123–139. Springer, Heidelberg (1999)

17. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM Journal on Computing 17(2), 281–308
(1988)

Bivariate Polynomials Modulo Composites 61

18. Hindry, M., Silverman, J.H.: Diophantine geometry: an introduction, vol. 201.
Springer (2000)

19. Kilian, J., Petrank, E.: Identity escrow. In: Krawczyk, H. (ed.) CRYPTO 1998.
LNCS, vol. 1462, pp. 169–185. Springer, Heidelberg (1998)

20. Krawczyk, H., Rabin, T.: Chameleon hashing and signatures. In: NDSS,
pp. 143–154 (2000)

21. Merkle, R.C.: A digital signature based on a conventional encryption function.
In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 369–378. Springer,
Heidelberg (1988)

22. Merkle, R.C.: One way hash functions and DES. In: Brassard, G. (ed.) CRYPTO
1989. LNCS, vol. 435, pp. 428–446. Springer, Heidelberg (1990)

23. Micali, S., Rabin, M., Kilian, J.: Zero-knowledge sets. In: FOCS, pp. 80–91 (2003)

24. Miers, I., Garman, C., Green, M., Rubin, A.D.: Zerocoin: Anonymous distributed
e-cash from Bitcoin. IEEE Security and Privacy, 397–411 (2013)

25. Naor, M.: On cryptographic assumptions and challenges. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 96–109. Springer, Heidelberg (2003)

26. Ong, H., Schnorr, C.P., Shamir, A.: An efficient signature scheme based on
quadratic equations. In: STOC, pp. 208–216 (1984)

27. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992)

28. Pollard, J., Schnorr, C.: An efficient solution of the congruence. IEEE Transactions
on Information Theory 33(5), 702–709 (1987)

29. Poonen, B.: Varieties without extra automorphisms III: hypersurfaces. Finite Fields
and their Applications 11(2), 230–268 (2005)

30. Poonen, B.: Multivariable polynomial injections on rational numbers. arXiv
preprint arXiv:0902.3961v2 (June 2010)

31. Schwenk, J., Eisfeld, J.: Public key encryption and signature schemes based on
polynomials over Zn. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070,
pp. 60–71. Springer, Heidelberg (1996)

32. Shallit, J.: An exposition of Pollard’s algorithm for quadratic congruences (October
1984)

33. Shamir, A.: On the generation of multivariate polynomials which are hard to factor.
In: STOC, pp. 796–804. ACM (1993)

34. Zagier, D.: Personal communication (June 2014)

A Proof of Statistical Hiding

This appendix presents a proof that the commitment scheme of Section 4.2 is
statistically hiding. To demonstrate that the statistical hiding property holds, we
show that for anymessagem ∈ Z∗

N , the distribution of the value of a commitment
c to m is statistically close to uniform.

The commitment c is generated by sampling a random value r ←R Z∗
N and

letting c ← m7 + 3r7. Since r ∈ Z∗
N , and since gcd(7, φ(N)) = 1, the RSA

function f(x) = x7 mod N defines a permutation on Z∗
N . Thus, there are exactly

|Z∗
N | = φ(N) possible commitments to m, and each of these values occurs with

equal probability.

62 D. Boneh and H. Corrigan-Gibbs

Let the random variable C take on the value of the commitment to m and let
U be a random variable uniformly distributed over ZN . Then:

Pr[C = c0] =
1

φ(N)
; Pr[U = c0] =

1

N

The statistical distance between these distributions is:

Δ(C,U) =
1

2

∑
c0∈ZN

|Pr[C = c0]− Pr[U = c0]|

=
1

2

∑
c0∈ZN

∣∣∣∣N − φ(N)

Nφ(N)

∣∣∣∣ = (p+ q − 1)

2φ(N)
≤ negl(λ).

Cryptographic Schemes Based on the ASASA
Structure: Black-Box, White-Box,

and Public-Key

(Extended Abstract)

Alex Biryukov, Charles Bouillaguet, and Dmitry Khovratovich

CSC& SnT, University of Luxembourg, Luxembourg, and University of Lille-1, France
{alex.biryukov,dmitry.khovratovich}@uni.lu,

charles.bouillaguet@univ-lille1.fr

Abstract. In this paper we pick up an old challenge to design public
key or white-box constructions from symmetric cipher components. We
design several encryption schemes based on the ASASA structure ranging
from fast and generic symmetric ciphers to compact public key and white-
box constructions based on generic affine transformations combined with
specially designed low degree non-linear layers. While explaining our de-
sign process we show several instructive attacks on the weaker variants
of our schemes1.

Keywords: ASASA, multivariate cryptography, white-box cryptogra-
phy, cryptanalysis, algebraic, symmetric.

1 Introduction

Since the development of public key cryptography in the late 1970’s it has been
an open challenge to diversify the set of problems on which such primitives were
built as well as to find faster alternatives, since most public key schemes were
several orders of magnitude slower than symmetric ones. One of the directions
was to design public key schemes from symmetric components. As public key
encryption requires trapdoors, they have been hidden in secret affine layers [39],
field representations [43], biased S-boxes and round functions [45]; however most
of these schemes were broken [35,42]. We recall that a typical symmetric cipher is
built from layers of affine transformations (A) and S-boxes (S), a design principle
dating back to Shannon. It is thus natural to see what designs can be made from
such components. Whereas the classical cipher AES-128 consists of 10 rounds
with 19 layers in total, it is striking that a lot of effort has been put into designing
public-key schemes with only 3 layers, using the ASA (affine-substitution-affine)
structure. This has indeed been the mainstream of what is known as multivariate
cryptography. However, in this case, the non-linear layer is usually an ad-hoc
monolithic function over the full state, as opposed to an array of independent
S-boxes.

1 The full version of our paper is available at Eprint [8].

P. Sarkar and T. Iwata (Eds.): ASIACRYPT 2014, PART I, LNCS 8873, pp. 63–84, 2014.
c© International Association for Cryptologic Research 2014

64 A. Biryukov, C. Bouillaguet, and D. Khovratovich

It has been known that the scheme SASAS with two affine and three nonlin-
ear layers is vulnerable to a structural attack if the nonlinear layer consists of
several independent S-boxes [10]. The scheme ASA, though secure for a random
monolithic S-box, has been shown weak in concrete multivariate proposals. In
the seemingly unrelated area of white-box cryptography the ASA approach to
build obfuscated lookup tables failed multiple times. This suggests exploring the
shortest scheme unbroken so far — the ASASA construction with injective S-
boxes — in the application to symmetric (black-box), public-key, and white-box
cryptography. Let us overview the related areas.

Retrospective of Multivariate Cryptography

The idea of multivariate cryptography dates back to the Shannon’s idea that
recovering the secrets in any cryptographic scheme could be reduced to solving
particular systems of (boolean) equations. Since nearly all forms of cryptology
implicitly rely on the hardness of solving some kind of equation systems, then
it must be possible to design cryptographic schemes that explicitly rely on the
hardness of this problem. In multivariate public-key schemes, the public-key
itself is a system of polynomial equations in several variables. It is well-known
that solving such systems is NP-hard, even when the polynomials are quadratic
(hence the name of the MQ problem, which stands for Multivariate Quadratic
polynomial systems). An additional advantage of the MQ cryptosystems is that
they seem invulnerable to quantum algorithms and hence are candidates for
Post-Quantum cryptography.

Multivariate polynomials have been used in cryptography in the early 1980’s
with the purpose of designing RSA variants with faster decryption. At this time,
Imai and Matsumoto designed the first public-key scheme explicitly based on
the hardness of MQ. It made it to the general crypto community a few years
later under the name C∗ [39].

Several years later, in 1995, Patarin [42] found a devastating attack against
C∗, allowing to decrypt and to forge signatures very efficiently. Thereafter many
multivariate scheme have been proposed (we counted at least 20 of them), includ-
ing a plethora of bogus and vainly complicated proposal with a short lifespan. A
few constructions stood out and received more attention than the others because
of their simplicity and their elegance, such as HFE [43] and UOV [34].

However, the practical break of the first HFE challenge, supposed to offer 80
bits of security, in 2003 [29], and the demise of SFLASH in 2007 [24], just after
the NESSIE consortium proposed it to be standardized, shattered the hopes and
trust of the cryptographic community at large in multivariate cryptography. This
brought the multivariate fashion to a stop.

The main problem in multivariate crypto is that the selection of candidates
for the nonlinear layer S is scarce (we will discuss this in Section 4). What
remains usually has so strong a structure within, that it can be detected and
exploited even in the presence of unknown A layers. A very recent example is the
promising matrix-based scheme ABC [48]. In the last years, a few researchers
started designing public-key schemes based on the hardness of random instances

Cryptographic Schemes Based on the ASASA Structure 65

of the MQ problem [46], though no drop-in replacement for conventional public-
key encryption schemes has been proposed. Still, they are promising because
there is a concensus that random instances are hard, and all known algorithms
are exponential and impractical on random systems.

This overview clearly indicates the need of a larger structure for multivariate
cryptosystems, and suggests truly random polynomials in this context, which we
use in our schemes.

Retrospective of White-Box Cryptography

In a parallel development a notion of white-box cryptography (WBC) has been in-
troduced in [17]. The initial motivation was to embed symmetric secret keys into
the implementation of popular standards like AES or DES in a way that binds
the attacker to the specific implementation for DRM purposes. Several propos-
als have been made [15,16] with the main idea to obfuscate key-dependent parts
of the cipher and publish them as lookup tables, so that the entire encryption
routine becomes just a sequence of table lookups. The obfuscation constitutes of
wrapping the nonlinear transformation (S) with random affine transformations
(A) so that the affine layers would cancel each other after composition.

As a result, the lookup tables are just instantiations of the ASA structure.
Moreover, since the nonlinear layers of AES and DES consist of independent
S-boxes, the resulting ASA structure is very weak and can be attacked by a
number of methods [7]. As demonstrated by Biryukov and Shamir [10], even
as large structure as SASAS is weak if the S-layers consist of smaller S-boxes.
Surprisingly overlooked by the designers of white-box schemes, the generic attack
[10] exploits multiset and differential properties of SASAS and applies to all the
published white-box proposals so far. It appears that the mainstream ciphers are
just poor choice for white-box implementations due to high diffusion properties
and the way how the key is injected.

To formalize the problem, two notions have been suggested [47,49]. The weak
white-box implementation of a cryptographic primitive protects the key and
its derivatives i.e. aims to prevent the key-recovery attack. This ensures that
unauthorized users can not obtain any compact information (e.g. the key or the
set of subkeys) to decrypt the protected content.

The strong white-box implementation of a primitive protects from the
plaintext-recovery attack, i.e. does not allow to decrypt given the encryption
routine with the embedded key. Such an implementation may replace the public-
key cryptosystems in many applications, in particular if it is based on an existing
symmetric cipher and is reasonably fast for a legitimate user. The existing white-
box implementations of AES and DES [16,17] do not comply with in this notion,
since they are easily invertible, which is strikingly different from the black-box
implementations of these ciphers. So far the only proposed candidate is the
pairing-based obfuscator scheme with poor performance [47].

The ASASA-based designs may not only hide the key for the weak white-box
implementation, but also provide non-invertibility aiming for the strong white-
box construction.

66 A. Biryukov, C. Bouillaguet, and D. Khovratovich

Our Contributions

We continue to explore the design space of compact schemes built from layers of
affine mappings and S-boxes. We first note that there is no known generic attack
on the 5-layeredASASA scheme with injective S-boxes in the flavour of [10], which
makes the ASASA structure a promising framework for future white-box, black-
box, and public-key schemes. Based on this principle, we propose and analyze
the following constructions in this paper:

• Two public-key / strong white-box variants of the ASASA symmetric scheme:
one is based on Daemen’s quadratic S-boxes [19] (previously used in various
hash functions) and another based on random expanding S-boxes.
(Section 2). We explore standard cryptanalytic attacks such as differential,
linear and others, the recent decomposition attacks [30], and a new interpola-
tion attack on weakened variants of our schemes (Section 3). We demonstrate
that our set of parameters offers a comfortable security margin with respect
to the existing attacks.

• A concrete instantiation for a fast symmetric ASASA-based blockcipher with
secret S-boxes and affine layers and comparable with AES in it’s encryp-
tion/decryption speed (Section 4).

• A concept of memory-hard white-box implementation for a symmetric block-
cipher and a concrete family of ciphers with tunable memory requirements
(Section 5). It prevents key recovery and requires the adversary to share
the entire set of lookup tables to allow an unauthorized user to decrypt.
Therefore, the cipher solves the problem of weak white-box implementation.

Due to the space limits, some references and attacks on the weakened variants
of our schemes are not present in this paper and are available at [8].

2 Asymmetric ASASA Schemes: Strong White-Box and
Public-Key

The first ASASA cryptosystem, designed by Patarin and Goubin, was a public-
key scheme with non-bijective S-boxes and was easily broken by Biham, ex-
ploiting this property in [5]. Shortly afterwards, Biryukov and Shamir explored
multi-layer schemes with bijective S-boxes and demonstrated a generic attack on
the structure SASAS with two affine layers [10]. The outer S-boxes are recovered
with a variant of the Square attack, whereas the inner affine layers are peeled off
with linear algebra methods. It was clearly demonstrated that these properties
disappear in larger schemes, and no attack on ASASA or other larger structures
has been proposed since.

2.1 Strong White-Box Security

We start with the notion of the strong white-box security that summarizes the
discussion in [49].

Cryptographic Schemes Based on the ASASA Structure 67

Definition 1. Let the pair of algorithms (E,D) be a private-key encryption
scheme, which takes key K as parameter. Let OEK be a function that computes
EK . We say that OEK is a secure strong white-box implementation for EK if it
is computationally hard to obtain D′ equivalent to DK given full access to OEK .

In other words, an adversary should be unable to decrypt given the white-box
implementation OEK of EK . This notion closely resembles the definition of a
trapdoor permutation used to construct a public-key encryption scheme. As we
see, our asymmetric proposals are suitable for both notions.

2.2 Outline

We propose several asymmetric instantiations of the ASASA structure, which
may serve both in the white-box and public-key setting. We have not found
any reasonable use for lookup tables in this framework2 and hence look for
polynomial-based S-boxes. In order to keep the reasonable size of the descrip-
tion, we restrict to polynomials of degree two over some finite field, so that the
resulting scheme has degree four. This approach brings us to the area of mul-
tivariate cryptography, which aims to design cryptographic primitives based on
multivariate polynomials over finite field.

S
A

nonlinear

nonlinear

affine

affine

S
A

affineA

Fig. 1. The ASASA structure: two
nonlinear layers surrounded by
affine layers

Let us introduce the following notations.
The public key/white-box implementation is
exposed as a set of polynomials b, which is
constructed out of the following composition:

b = U ◦ a2 ◦ T ◦ a1 ◦ S, (1)

where a1, a2 are nonlinear transformations,
and U , T ,S are affine transformations.

There have been many proposals for non-
linear layers in the ASA structure, and vari-
ous attacks exploited these choices. Most at-
tacks are not evidently translated into degree
4, as they compute, e.g., differentials of the
public key, which are linear functions the ASA
case. The notable exception is the decomposition attack [30,31], that will be dis-
cussed in Section 2.3.

We offer two fresh ideas for the nonlinear layers in ASASA. The first candidate
is the so called χ-function. It derives from invertible cellular automata and was
brought into symmetric cryptography by Daemen. To the best of our knowledge,
it has never been used in multivariate cryptography.

The second candidate is a set of random injective S-boxes of degree 2. Since
the families of low degree permutations are small and do not absorb much ran-
domness, we propose to use expanding S-boxes, which can be key-dependent.

2 So far all attempts to hide a trapdoor in lookup table-based designs failed. We
investigated this problem and conjecture that such scheme just does not exist, at
least given the state-of-the-art in the design of preimage-resistant functions.

68 A. Biryukov, C. Bouillaguet, and D. Khovratovich

Having the expansion rate of 2, it is rather easy to obtain injective transforma-
tions and still keep them quadratic3.

Limitations for expanding schemes. Whatever construction is used, an expand-
ing scheme has a clear limitation in the public-key and white-box setting. It
implies that only a tiny subset of potential ciphertexts is decryptable, which
makes the encryption and decryption process non-interchangeable. As a result,
the expanding scheme can be used for encryption only and can not produce sig-
natures. Also in the white-box context, it can not be used for decrypting the
content. On the other hand, it can still be used to ensure tamper-resistance of
software [41].

2.3 Defeating Decomposition Algorithm with Perturbations

The authors of recently published decomposition algorithms [30, 31] claim to
break ASASA schemes with quadratic nonlinear layers with complexity O(n9),
where n is the number of variables. The decomposition problem is formulated
as follows: given a set of polynomials h = (h1, . . . , hu) over polynomial ring
K[x1, . . . , xn] (K denoting an arbitrary field) find any f = (f1, . . . , fu) and g =
(g1, . . . , gn) over K[x1, . . . , xn] whose composition is equal to h:

h = (h1, . . . , hu) = (f1(g1, . . . , gn), . . . , fu(g1, . . . , gn)).

and their degree being smaller than h.
In the context of the ASASA structure with quadratic S-boxes, the sets f and

g, that are produced by a decomposition algorithm, are linearly equivalent to the
internal ASA structures. This does not fully constitute a break, since the adver-
sary still needs to invert both ASA constructions. The proposed algorithms also
have not been applied to the parameters and fields that we choose. Nevertheless,
it is desirable to find some countermeasure.

Our idea is to introduce some perturbation just after the second S layer in the
form of several key-dependent secret polynomials of degree 4. A similar approach
has been used by Ding in his modification of C∗ [21] and HFE [22]. In some cases
(notably HFE), the “perturbation” would be identified and removed [25], thanks
to a differential attack exploiting properties of the non-linear transformations.
The use of perturbation polynomials has been also linked to the LWE (Learning
with Error) framework in [32], but the full application of LWE to multivariate
cryptography is still to be explored in the future.

Denoting the perturbation polynomials as another nonlinear transformation
ap we obtain the modified public key bp:

bp = U ◦ [ap + (a2 ◦ T ◦ a1 ◦ S)], (2)

so
bp(x) = b(x) + Uap(x).

3 Our experiments show that S-boxes with an even smaller rate of 1.75 can be found.

Cryptographic Schemes Based on the ASASA Structure 69

A
S

S
A

A

S sparse. degree 2d

degree d

degree d

Fig. 2. Small perturbations to defeat decomposition
attacks as injection of sparse high-degree polynomials

Hence the perturbation
polynomials are mixed by
the last affine transforma-
tion and spread over the
public key. The encryption
process remains exactly the
same, while for decryption
we have to guess the values
of these polynomials. Sup-
pose that we work over F2

so that ap is sparse and con-
tains only w polynomials.
Let each polynomial be non-
zero in q · 2n points. Then
the noise on average consists
of qw bit flips, and we guess
their positions after about

(
w
qw

)
attempts. For instance, ap with 8 non-zero poly-

nomials of weight ≈ 2n−1 requires 26 trial decryptions on average.
We distinguish true plaintexts from false ones either by recomputing the per-

turbation polynomials or by using expanding S-boxes so that noisy bits prohibit
inversion. Padding the plaintexts with zero bits also helps but disallows turning
encryption to decryption. The position of noisy bits does not matter much, since
it would be concealed by the affine transformation. However, if we filter out noise
with expanding S-boxes, it makes sense to spread the noisy bits so that an S-box
can still be inverted in the presence of noise.

2.4 χ-Scheme

Our first idea was to build the nonlinear transformation out of a popular quadratic
S-boxχ [19, Section 6.6.2], which has been used in several hash functions including
SHA-3/Keccak [4]. The transformation χ can be defined for every odd length k =
2t+ 1 and has the following features:

– It has degree 2 in the forward direction, but degree (t+ 1) in the backward
direction.

– It can be efficiently inverted for every size [8].
– Its differential and linear properties have been widely studied [19].

The S-box χ of length k is defined as follows:

χ(x0, x1, x2, . . . , xk−1) = (y0, y1, y2, . . . , yk−1),

where
yi = xi ⊕ xi+1xi+2 ⊕ xi+2,

and indices are computed modulo k.
Regardless of the χ length (and hence the size of the S-box), we can formulate

properties of the whole scheme and its features:

70 A. Biryukov, C. Bouillaguet, and D. Khovratovich

1. For the standard block size of 128 bits, we get approximately (since the S-box
size might not divide 128) 27 input variables. Thus each output coordinate of

b is a polynomial of degree 4 of 27 variables, has about
(
27

4

)
≈ 224.5 terms, so

the full scheme description is about 224.5+7−3 = 228.5 bytes, or 300 MBytes.

2. The private key size is much more compact, and is dominated by three ma-
trices with 214 bits each (hence 213 bytes in total). If the matrices are deter-
ministically produced out of some secret key (e.g., 128-bit), the description
is even smaller.

3. The inverse polynomial of our schemes has degree (t+1)2 for S-boxes of size
2t+ 1.

The S-box size (length of χ) has negligible effect on the performance because
of the internal structure of χ and its inverse. Hence it only affects the security
of the scheme. We choose a single S-box a of length 127, so that its inverse has
degree 64, and will show later that a system with small S-boxes is insecure.

In order to defeat decomposition algorithms and hide the ASASA structure we
suggest using perturbation polynomials. More precisely, we propose 24 random
polynomials of degree 4 for the perturbation layer ap. We pad each plaintext with
8 zero bits, so that for each guess the probability to fit the padding is 2−8. As a
result, we get 216 candidate plaintexts, and then check if we correctly computed
the noise. This filters out all wrong plaintexts with probability 1− 2−8.

Overall security. We have found a number of attacks on the χ-scheme in different
variants (Section 3), so it appears that its algebraic structure yields it vulnerable.
Nevertheless, the variant with added perturbation remains unbroken, and we
offer it as cryptanalytic challenge, but not for the practical use. We expect the
perturbation theory to develop in the near future, which would suggest a more
secure set of parameters.

2.5 Scheme with Expanding S-Boxes

This variant provides a more compact description of the scheme since we may
switch to a larger field. First, we want the nonlinear layer be a degree-2 poly-
nomial over Fq, q > 2, and define the linear (affine) transformations over the
same field. Though a few examples of bijective transformations of degree 2 over
a field not equal to F2 exist [36], they appear to be vulnerable to Groebner basis
attacks in our own experiments. As a solution, we suggest expanding S-boxes,
whose output is twice as big as the input. It is rather easy to design injective S-
boxes of degree 2 with this property. Indeed, a random function with expansion
rate 2 has no collisions with probability around 1/2, and hence there are enough
injective transformations of the desired form.

Here is the summary of the scheme:

– Input length 128 bits (32 variables), output length 512 bits (128 variables);

– All polynomials and affine transformations are defined over F16;

Cryptographic Schemes Based on the ASASA Structure 71

– S-boxes map 16 bits to 32 bits and hence are described by 8 degree-2 polyno-
mials over F16 of four variables. The inverse is computed with lookup tables
of size 216.

– The first nonlinear layer has 8 S-boxes and doubles the state size to 256 bits.
The second layer has 16 S-boxes and further doubles to 512 bits. Accordingly,
the affine transformations S, T, U operate on 128-, 256-, and 512-bit states,
respectively.

The output of the scheme is a set of 27 degree-4 polynomials over F16 over

32 input variables (each variable is encoded with 4 bits). There are
(
25

4

)
≈ 216.5

possible terms, hence, taking 4-bit constants into account, each polynomial is
described by 220.5 bits, or 220.5+7−3 = 224.5 bytes, which is about 24 MBytes.

The private key is smaller: affine layers contain 27+7+1 + 26+6+1 + 25+5+1 ≈
214.2 elements of F16. The 48 S-boxes are described as 25.5+3 polynomials of
21 ≈ 24.5 terms each, hence 213 elements, plus a few noise polynomials. In total,
the private key fits into 214 bytes.

We also suggest using perturbation polynomials here. Due to the large ex-
pansion rate, we can use rather dense perturbation layer ap and still ensure a
unique decryption. We use two random polynomials over F16 of degree four at
each S-box, hence 32 polynomials in total. While decrypting we face 162 = 28

options for each S-box output. As a result, the probability of having non-unique
decryption of the last S layer is 24 ·216+8−32 = 2−4, and if this happens the next
layer filters out wrong candidates.

As we already mentioned, the expanding character of the scheme allows only
public-key and white-box encryption, but not signature generation.

3 Security Analysis of Our White-Box/Public-Key
Schemes

In this section we apply various attacks to weakened versions of our schemes,
thus demonstrating the design rationale behind them. We demonstrate that the
added perturbations are crucial in both schemes, and that they must be secret.
We also show that S-boxes in the χ-scheme must be large, that linearity (in
contrast to affinity) of A may weaken the scheme, and that the expanding S-
boxes should not be biased (these results are presented mainly in [8]). Our attacks
are summarized in Table 1.

These attacks allow us to evaluate the security margin of the unbroken variants
of our schemes. Since only the perturbation protects the χ-scheme from a number
of practical attacks, we conclude that it is rather fragile, but might become a
good candidate for a strong white-box implementation when the complexity of
generic algorithms applied to the perturbed version is better understood. In
contrast, the expanding scheme appears to be more resistant to generic attacks,
and we propose it as a ready-to-use public-key encryption scheme and a strong
white-box implementation.

72 A. Biryukov, C. Bouillaguet, and D. Khovratovich

Table 1. Summary of our attacks on the weakened versions of our schemes. D stands
for the complexity of decomposition attacks.

Weakening Attack complexity Attack type Reference

Expanding scheme

Public perturbation 245 +D Interpolation Section 3.2

Biased S-boxes (bias= 1/8) 288 LPN Section 3.4

χ-scheme

Public perturbation 257 +D Interpolation Section 3.2

No perturbation ≈ 240 Groebner-basis Section 3.3

Small S-boxes 245 Algebraic [8]

3.1 Generic Attacks

Given the public-key of a multivariate scheme, an attacker may directly try to
solve the multivariate polynomial equations using a generic algorithm. If the
public-key is a vector of m polynomials in n over Fq, then a plaintext can always
be found by exhaustive search in time O (qn). The other main family of algo-
rithms to solve systems of polynomial equations are Groebner-basis algorithms,
such as Buchberger’s algorithm and all its derivatives [27, 28].

Without going into details (the interested reader is referred to a standard
textbook such as [18]), given a system of polynomial equations f1 = · · · =
fm = 0 in x1, . . . , xn, a Groebner basis of the ideal spanned by the fi’s is an
equivalent system of equations with nice properties. If the system admits a single
solution (a1, . . . , an), then a Groebner basis is precisely the vector of polynomials:
x1 − a1, . . . , xn − an. It follows that if a Groebner basis can be computed, then
the system of equations can be solved.

Groebner basis algorithms work by performing polynomial elimination, i.e.,
by trying to eliminate some terms by summing suitable multiples of other poly-
nomials. The complexities of these algorithms are difficult to analyze [2]. They
are essentially exponential in the highest degree reached by the polynomials cre-
ated and manipulated by the algorithms during their execution. On “generic”
systems of n equations in n variables, this degree is typically n. However, in some
special cases it can be lower. For instance, the first HFE Challenge could be bro-
ken because in HFE, for some ranges of parameters, this degree was roughly
O(log n).

3.2 Interpolation Attack on the ASASA Scheme with Public
Perturbation Polynomials

We stressed that the perturbation polynomials must be secret. A reader may
wonder why this is required, since these polynomials are seemingly mixed by the
last affine transformation U .

In this subsection we outline an attack that peels off the perturbation polyno-
mials and recovers the core ASASA scheme in almost practical time. Suppose we

Cryptographic Schemes Based on the ASASA Structure 73

work over a field F2 and the scheme adds perturbation polynomials at r bit po-
sitions after the nonlinear transformation a2 (cf. Eq. (2)), and the total number
of variables in the scheme is n. Then we collect N plaintexts xi such that

ap(xi) = 0.

Since polynomials of ap do not have any structure, finding a common zero is an
NP-hard problem, and we expect that 2r plaintexts must be tried to find a right
one. Hence the naive complexity of this step is N2r evaluations4 of ap.

Then we evaluate the right plaintexts on the perturbed scheme bp. Since ap
is zero, we have

bp(xi) = U ◦ a2 ◦ T ◦ a1 ◦ S(xi).

Therefore, we know the evaluation of the ASASA scheme without perturba-
tions on N plaintexts. Since the scheme has degree 4, the polynomial coefficients
can be recovered by the Lagrange interpolation. There are

∑4
i=0

(
n
i

)
monomials

of degree 4 or smaller, hence N must slightly exceed
∑4

i=0

(
n
i

)
to allow for linear

dependencies among plaintexts. For the typical value n = 27 we need about 225

right plaintexts to fully recover the core ASASA polynomials and then launch
the decomposition attack. However, the interpolation itself is not a trivial pro-
cedure, since we deal with a multivariate function. Only recently an algorithm
with complexity quadratic in the number of monomials has been proposed [1].
Equipped with it, we recover a single polynomial in 250 bit operations, and the
entire bp in 257 operations. In turn, 225 right plaintexts can be obtained for 16
noisy bits in 241 evaluations of ap, and for 24 noisy bits – in 249 evaluations,
which is close to 255 bit operations. Therefore, the total complexity of recovering
(x) is about 257 bit operations.

This attack clearly shows that the perturbation polynomials must not be
public and should not have any structure that would allow the adversary to find
their common zeros. We do not see how the attack can be applied to secret
polynomials.

3.3 Algebraic Attack on the Plain χ-Scheme

Although χ has been used successfully in the symmetric world, it turns out to be
a complete disaster in a multivariate context. An ASA construction where S = χ,
with n = 127 variables over F2 is broken in a few seconds by a direct Groebner
basis computation. A two-layer ASASA construction is not more secure, and can
be broken in less than two hours using the implementation of the F4 algorithm of
the MAGMA computer algebra system [14] (and 100Gbytes of RAM). This hap-
pens because a Groebner basis can be computed by manipulating polynomials
of small, constant degree (typically 3 or 6).

Let us give some detailed explanation for the insecurity of the ASA construc-
tion. We work within the polynomial ring R = F2 [x0, . . . , xn−1], and we consider

4 Finding subsequent solutions might be easier, but this step is not a dominant in our
attack complexity.

74 A. Biryukov, C. Bouillaguet, and D. Khovratovich

the ideal of R:

I =
〈
f0, . . . , fn−1, x0

2 − x0, . . . , xn−1
2 − xn−1

〉
where fi = xi+xi+2+xi+1xi+2+ai (all indices are taken modulo n), and where
the ai are constants. Any solution (in the xi’s) making all the polynomials in
I vanish simultaneously, is a solution of χ(x1, . . . , xn) = (a0, . . . , an−1). Such a
solution always exists, and is unique.

We will show that there are many linear polynomials in this ideal, and that
they can be “easily” discovered (by manipulating small-degree polynomials).
Indeed:

xi+1 · fi − xi+2 ·
(
xi+1

2 − xi+1

)
+ fi−1 = (xi−1 + xi+1)− (ai−1 + ai+1)

The expression on the left-hand side is a polynomial combination of elements
of I, therefore it belongs to I. As a consequence, the linear polynomial on the
right-hand side can be found inside I after performing a few steps of polynomial
elimination on polynomials of degree less than 3.

After these n linear relations have been found, another few steps of polyno-
mial elimination allows all the variables but one to disappear. This shows that
a Groebner basis of the ideal I can be computed in polynomial time. Now, per-
forming a (random) linear change of coordinate in I, or replacing the generators
of I by (random) linear combinations thereof does not change this fact. As a
conclusion, the ASA construction, where S is the χ-function, falls victim to a di-
rect algebraic attack, by running any Groebner basis algorithm on the equations
defining the “white-box”.

This reasoning extends to the ASASA construction where both non-linear lay-
ers are χ (however, this time the degree is 6). It is an open question of how much
the added perturbation slows the Groebner-basis attacks (our implementation
does not break the selected noise parameters in reasonable time).

3.4 Attack on the Expanding Scheme with Biased S-Boxes

If S-box output bits are biased, an attack exploiting this bias can be applied.
The last affine transformation can be viewed as affine over F2, so the further
analysis without loss of generality applies to any field of characteristic two.

We target a single biased bit b after the second layer of expanding S-boxes:
the probability P[b = 1] of its equality to 1 is equal to p �= 1

2 . If y is a ciphertext,
then following previous notations, the biased bit is the b-th component of U−1 ·y.
In other terms, if u denotes the b-th line of U−1, then 〈u, y〉 = b.

Now, assume we collect a large number (say N) of ciphertexts. We stack them
vertically into a matrix C, which thus has N rows. Let us also assume that b is
biased towards zero. Then we have the “noisy linear system”:

u · C = e,

where e is a vector of i.i.d. random variables following the Bernoulli distribution
with mean p. Recovering u is exactly an instance of the Learning Parity with Noise
(LPN) problem.

Cryptographic Schemes Based on the ASASA Structure 75

The best known algorithms to solve LPN are variants of the BKW algo-
rithm [11], whose complexity is of order O

(
2n/ logn

)
. The only actual imple-

mentation (along with algorithmic improvements) is described in [37], and some
more tweaks are given in [3]. The actual complexities of these algorithms depend
on the bias (their efficiency decreases when the bias gets closer to zero).

With n = 512 variables, and if P[b = 1] = 1/8, then the implementation of [37]
is said to require 280 bits of memory (plus the time needed to sort this much
memory 80 times). However, time-memory tradeoffs, plus algorithmic improve-
ments, allow [3] to conclude that the same problem can be solved in 259 bits
memory and less than 2100 bits operations. If 280 bits of memory are available,
then the running-time could be decreased to 288 bit operations.

This beats more naive approaches, such as, for instance, enumerating all the
possible sparse possibilities for the first n components of e, and solving the
corresponding linear system for each trial. The above instance would require
more than 2120 operations to be solved using the naive approach.

Of course, the attack has to be repeated for each row of U−1, and possibly
twice for each row (assuming that the targeted bit is biased towards zero, or
towards one). Note that the above estimates are extremely pessimistic; in random
expanding S-boxes of degree 2, the biases we observed experimentally are much
lower than what was used above (we observed P[b = 1] ≈ 0.49).

After U is recovered, we can view the output of expanding S-boxes, and are
likely to recover them by interpolation due to low degree.

4 Black-Box ASASA Schemes

Given rather low performance and large key size of the public-key ASASA
schemes, a reader may wonder if significant performance increase can be achieved
with lower security goals. We answer this question twofold. First, we propose a
generic black-box symmetric cipher based on the five layerASASA. The cipher is
expected to have a very fast software implementation thanks to vector instruc-
tions in modern processors. Secondly, we use a small version of this cipher as a
building block in achieving weak white-box security (Section 5).

4.1 Design

We propose a symmetric cipher with a classical set of parameters, widely used
in AES and other designs. It has a block of n = 128 bits with m = 8 bit S-boxes
and a choice of key-sizes 128 – 256 bits. Let us outline specific parameters for
linear and nonlinear layers.

Affine layers. A key-dependent n×n affine transformation can be produced out
of the master keyK by any secure key derivation function HK (for example a fast
stream cipher, or a block cipher in the counter mode (more details in [8])), and
checking that the resultant matrix is invertible, this can be done in O(n3) steps,

76 A. Biryukov, C. Bouillaguet, and D. Khovratovich

and we also generate an n-bit constant 5. The branch number of the matrix [20]
determines the minimum number of active S-boxes in a differential trail, and
thus the upper bound on the trail probability. Since the matrix is random, we
expect the branch number to be close to the maximum possible (the number of
S-boxes n/m plus one). Note that for each affine layer a new matrix is generated.

Nonlinear layers. Typically, nonlinear layers of symmetric ciphers consist of
several small S-boxes, which have a compact description [12,20]. For the ASASA
scheme we propose to use 32 randomly generated 8-bit invertible S-boxes, which
are all different and key-dependent. We note that efficiency of generic attacks on
the SASAS structure [10] increases if smaller S-boxes are used, and thus it may
be interesting in the future to explore full block size non-linear layers, for which
such attack would not work.

Large S-box alternatives. The choice for large block algorithmic S-boxes is sur-
prisingly limited. Unless the S-boxes are themselves multi-layer permutations
(e.g., fixed-key ciphers), a compact description is typically delivered in the alge-
braic form as a function over an appropriate finite field. The resulting permuta-
tion polynomials have become an active research topic in the recent years. The

well known example is X2k+1 over F2n (scheme C* [39]); the more recent and

interesting include
(
X2k +X + a

)−l

+ X over F2n by Zeng et al. [50] (derived

from Helleseth-Zinoviev polynomials) (more references in [8]). It thus can be an
interesting second challenge to break the symmetric ASASA scheme with known
block-wide non-linear layers. Note however that fixed S-boxes do not offer im-
plementation advantage and thus we would keep S-boxes secret and randomly
generated in the main variant of our scheme. Implementation details

Implementation. The implementation details can be found in the full version of
the paper [8].

4.2 Security Analysis

Differential and linear attacks. We expect the secret linear layers to hide all dif-
ferential [6] and linear [38] properties of the cipher, since it becomes impossible to
figure out any high-probability differential or linear trail. It can be argued, how-
ever, that the existence of high-probability characteristics may lead to efficient
distinguishers. For instance, Dunkelman and Keller showed in [26] that if for
every α the differential probabilities {α→ β} are much higher (or much lower)
than for a random permutation, then this can be used as a distinguisher. The
authors further suggested the parameter of effective linearity that essentially
measures the average probability of the boomerang difference quartet (α,K)

5 Non-anonymous final version of this paper will link to implementations of our
schemes and challenges gradually increasing complexity for the interested crypt-
analysts.

Cryptographic Schemes Based on the ASASA Structure 77

over all possible α,K and is supposed to take even unknown characteristics into
account. In the full version of this paper [8] we show that all these methods do
not lead to attacks much faster than exhaustive key search.

Algebraic attacks. We expect the random S-box of width m to have the alge-
braic degree m − 1 = 7. As a result, the entire scheme can be represented by
a polynomial of degree 49 over F2. As observed by Meier [40], the low degree
can be detected by applying differentials of the same order to the ciphertext.
Therefore, an attacker can distinguish the ASASA construction from random
given 249 chosen data and time. However, this does not lead to the disclosure of
the plaintext, and it is unclear how this property can be exploited.

Other attacks. The boomerang and impossible differential attack can be also of
concern. We have tried basic and improved versions of these attacks, and in all
cases the randomness of the affine layers prevented us from mounting an attack.
However, it is possible to build boomerang quartets in the known-key setting
by activating a single S-box at both sides of the boomerang. Whether such
properties can be carried out to the secret-key setting is the object of the future
research. Impossible differential attacks typically rely on truncated differentials
with probability 1 which exist in some ciphers due to incomplete diffusion. Since
in our case the random affine layers provide complete diffusion and since the
entrance into and the exit from the scheme are both guarded by these affine
layers, chosen plaintext attacks have little chance of predicting truncated values
somewhere inside the scheme.

Our scheme should be more secure than a two-roundEven-Mansour cipher [13],
where the subkeys are simply xored to the internal state (as opposed to applying
a full-blown secret affine transformation to the internal state). The recent attack
on the 2-round Even-Mansour [23] explicitly requires the access to the internal
permutation and thus can not be immediately used in our setting.

The meet-in-the-middle attacks [33] do not apply to our scheme, because the
amount of key material used to compute any matching variable is too large
(several S-boxes and a large part of the affine transformation). The cube attacks
do not apply, since there is no compact polynomial representation of the scheme.

Structural attack. Finally, we investigate the structural attack from [10]. We will
see that even though it does not apply to the 128-bit ASASA cipher, it allows
to bound the security level of schemes with smaller block, which are used in
Section 5. First, we recall the main property preserved by the SASA structure
with m-bit S-boxes:

Theorem 1 ([10]). Let {x1, x2, . . . , x2m} be the inputs to the SASA structure
such that the input bits to one S-box take all possible combinations whereas the
other bits are constant. Then the XOR of all outputs is the all-zero bit vector:⊕

i

SASA(xi) = (0, 0, . . . , 0).

78 A. Biryukov, C. Bouillaguet, and D. Khovratovich

Now consider the input y to some m-bit S-box in the first S layer of the ASASA
scheme E. It is an affine function of the scheme input y:

y = M · x⊕ c,

where M is an (m× n)-matrix and c is a constant. Let L be an (n× n)-matrix
such that

M × L =
(
M ′ 0 0 · · · 0,

)
(3)

where M ′ is a (m × m)- submatrix. If we apply E to L · x, then y depends
only on the first m bits of x. Thus we compose inputs {x1, x2, . . . , x2m} as in
Theorem 1, multiply them by L and apply E. The output bits must sum to 0 bit-
wise. This property allows to recover the outer affine layer and eventually all the
components of E. Equation (3) holds with probability 2−(n−m)m, which makes
the attack impractical for large n. However, for small n it might be efficient.
Therefore, the maximum security level of the ASASA scheme with n variables
and m-bit S-boxes does not exceed (n−m)m bits.

For our design, this gives the upper bound of 960 bits, which is far larger
than the key length which is used to generate the affine and nonlinear layers.
As a result, we claim the 128-bit security level for our design, even though a
small factor over exhaustive key search might be saved by biclique attacks or by
exploiting the full codebook. This is still higher security than what is offered by
2048 bit RSA.

5 Proposal for Weak White-Box Security: ASASA-Based
Block Cipher

5.1 Weak White-Box Security

Definition 2. Let the pair of algorithms (E,D) be a private-key encryption
scheme, which takes key K as a parameter. We call F(K) the equivalent key
set for key K, if from any element from F(K) it is easy to get an algorithm
equivalent to EK , i.e. there is an (efficient) algorithm

A(K)→ E ′,

where E ′ equivalent to EK .

Definition 3. The function OEK is a T -secure weak white-box implementation
for EK if it is computationally hard to obtain K ∈ F(K) of length less than T
given full access to OEK .

In other words, an adversary who gets a secure weak white-box implementa-
tion is unable to find out any compact (shorter than T) equivalent representation
of it. In the practical sense, an adversary who wants to share a protected imple-
mentation of the encryption routine, would have to share the entire code. Such
ciphers are motivated by DRM applications, which aim to prohibit the users of

Cryptographic Schemes Based on the ASASA Structure 79

protected content from sharing the information needed to decrypt it. Clearly,
in this context there is little practical difference between sharing the key and
sharing, say, the set of subkeys as long as the other cipher operations are inde-
pendent of the key. Therefore, naive methods of key protection, e.g. transforming
it with a preimage-resistant hash function, would not prevent an attack. Ideally,
the adversary would have to isolate and extract the entire decryption routine,
which might be hard per se.

5.2 Weak White-Box Cipher Proposal

In this section we propose a blockcipher family, which conforms to the weak
white-box security notion, so that it is computationally infeasible to derive a key
or any other compact secret information from the white-box implementation.

We further say that the white-box implementation is memory-hard if it re-
quires a pre-specified and large enough amount of memory in the spirit of
memory-hard key-derivation functions [44]. This concept is even stronger than
the T -secure weak WB implementations, as an adversary is unable to reduce
the implementation size at all and thus would have to publish the entire set of
lookup tables. In contrast to earlier white-box designs, we offer a set of ciphers
with a wide range of memory requirements.

E1,1

L

R subciphers

R iterations

E1,2 E1,R

ER,1 ER,2 ER,R

L

A

S
A

S
A

Fig. 3. Blockcipher family for weak white-box se-
curity

Our memory-hard cipher con-
sists of a number of smaller
components, which are exposed
as lookup tables in the white-
box implementation. Each com-
ponent is either a small-block
ASASA cipher, adapted from
the construction in Section 4, or
just a single S-box. The S-boxes
are minimum 8-bit wide to
avoid equivalence problems [9],
but 10-, and 12-bit ones are also
used. All S-boxes and affine lay-
ers are derived in a determinis-
tic way from the secret key. In
fact, it is enough to have linear, not affine, layers, since the constant can be
kept in the S-boxes. To estimate memory requirements, we assume for simplicity
that each table output fits an integer number of bytes (e.g., 2 bytes for 10-bit
S-boxes).

We propose the SPN structure for the cipher, i.e. we alternate layers of smaller
ciphers (denote their number by R) with a public linear transformation L. Any
transformation with good diffusion shall be fine. Recalling that AES can be par-
titioned into 5 rounds with 4 32-bit Super S-boxes in each, we propose R layers
for similar security margin. The cipher’s pseudocode is as follows (Figure 3):

80 A. Biryukov, C. Bouillaguet, and D. Khovratovich

– Repeat R times;
• Apply R parallel ASASA-based distinct blockciphers;
• Apply the linear transformation L to the entire state.

We outline specific parameters and memory requirements for 64- and 128-bit
blockciphers in Table 2. The 16-bit S layer has two 8-bit S-boxes, the 18-bit –
8-bit and 10-bit S-boxes, the 20-bit – two 10-bit S-boxes, and the 24-bit – three
8-bit S-boxes. We see that whereas the black-box implementation is a few dozen
KBytes, the white-box implementation can be made large enough in the range
from 2 MBytes to several GBytes.

Table 2. Parameters and memory requirements of white-box and black-box implemen-
tations for the 128-bit blockcipher. We assume that n-bit component occupies 	n

8

2n

bytes of memory in the white-box implementation.

Rows Component Components in row
Security level

(bits)
White-box
memory

Black-box
memory

64-bit block

4 ASASA 4×(16-bit) 64 2MB 16 KB
4 ASASA 3×(18-bit) + 10-bit 64 9 MB 32 KB

128-bit block

8 ASASASA 8×(16-bit) 128 8 MB 96 KB
8 ASASA 24-bit + 6×(16-bit) +8-bit 64 384 MB 64 KB
5 ASASASA 4×(28-bit) + (16-bit) 128 20 GB 130 KB

Table 3. Our schemes in comparison, along with (presumably) secure parameters for
UOV and HFE

Scheme Field # vars # polys Degree Private key PK/white-box Ref.

Black-box ASASA F2 128 - - 14 KB 196 KB Sec. 4

χ-scheme* F2 127 127 4 8 KB 300 MB Sec. 2

Expanding scheme F16 32 128 4 16 KB 24 MB Sec. 2

Memory-hard cipher F2 64 - - 16-32 KB 2-8 MB Sec. 5

Memory-hard cipher F2 128 - - 64-130 KB 8 MB – 20 GB Sec. 5

HFE F16 64 64 2 48 KB 520 KB [43]

UOV F256 78 26 2 71 KB 80 KB [34]

* — several variants broken in this paper.

Security Analysis. Our ASASA components have very small block and only a
few S-boxes in the S layer. Some attacks that are infeasible on the 128-bit block,
may have practical complexity on the 16-bit block. The best attack we could find
was presented in Section 4.2 and has complexity 2(n−m)m for m-bit S-boxes and

Cryptographic Schemes Based on the ASASA Structure 81

the n-bit block. As a result, the 16-bit ASASA components with 8-bit S-boxes
have maximum security level of 64 bits, the 20-bit components — 100 bits, and
24-bit components with 8-bit S-boxes — 128 bits.

An easy way to increase the security level is to add two more layers, thus
producing ASASASA components. This yields a 50% increase of the private key
size, but no increase in the white-box implementation size. Since we have not
found a way to expand our attack to this structure, we conjecture its security
level to 128 bits. In Table 2 we provide both variants so that a protocol designer
may choose between them according to his own requirements.

6 Conclusion

We have explored deeply the state of the art in black-box, white-box, and mul-
tivariate public key cryptography, and concluded that the ASASA structure is
the minimal generic construction which is still unbroken. We constructed cipher
candidates for all these settings. We designed two ASASA schemes for public-key
cryptography based on multivariate polynomials. We showed how to avoid exist-
ing attacks on multivariate schemes, including the recent powerful decomposi-
tion algorithms by adding appropriate perturbation functions. In the traditional
black-box setting we offered a cryptanalytic challenge of a fast cipher with small
random S-boxes and random affine layers.

We proposed several solutions for white-box cryptography, both in weak and
strong security notions. In the weak model, we designed a memory-hard cipher,
which prohibits key extraction and requires an adversary to spend a large, pre-
defined amount of memory. It is based on small ASASA components. We showed
how our multivariate schemes can be used as strong white-box implementations,
as they are not invertible without the key and allow fast encryption and decryp-
tion for legitimate users. We compare the implementation size of our schemes
with other unbroken MQ-systems in Table 3.

Our findings indicate a number of future research directions. First, it would be
interesting to explore algorithmic large S-boxes in the black-box ASASA struc-
ture, e.g. instantiated with recently found permutation polynomials. Secondly, a
theory of perturbation layers as a countermeasure to generic decomposition algo-
rithms needs to be developed, possibly along the concept of LWE (Learning with
Error). Thirdly, we suggest investigating the actual security level of small-block
(16-,20-, 24-bit) ASASA schemes to figure out which components are suitable
for weak white-box implementations. Finally, open question is to develop con-
structions with smaller descriptions (e.g., within 1 MByte), which are bijective,
suitable for digital signatures, and allow strong white-box implementations.

Acknowledgements. We thank Willi Meier for fruitful comments and the
discussion about the results of this paper. We also thank anonymous reviewers
for comments, which helped to improve the paper.

82 A. Biryukov, C. Bouillaguet, and D. Khovratovich

References

1. Armknecht, F., Carlet, C., Gaborit, P., Künzli, S., Meier, W., Ruatta, O.: Efficient
computation of algebraic immunity for algebraic and fast algebraic attacks. In:
Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 147–164. Springer,
Heidelberg (2006)

2. Bardet, M., Faugère, J.-C., Salvy, B.: On the complexity of Gröbner basis compu-
tation of semi-regular overdetermined algebraic equations. In: Proc. International
Conference on Polynomial System Solving (ICPSS), pp. 71–75 (2004)

3. Bernstein, D.J., Lange, T.: Never trust a bunny. In: Hoepman, J.-H., Verbauwhede,
I. (eds.) RFIDSec 2012. LNCS, vol. 7739, pp. 137–148. Springer, Heidelberg (2013)

4. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: The Keccak reference, version
3.0 (2011), http://keccak.noekeon.org/Keccak-reference-3.0.pdf

5. Biham, E.: Cryptanalysis of Patarin’s 2-Round Public Key System with S Boxes
(2R). In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 408–416.
Springer, Heidelberg (2000)

6. Biham, E., Shamir, A.: Differential Cryptanalysis of the Data Encryption Standard.
Springer (1993)

7. Billet, O., Gilbert, H., Ech-Chatbi, C.: Cryptanalysis of a white box AES imple-
mentation. In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357,
pp. 227–240. Springer, Heidelberg (2004)

8. Biryukov, A., Bouillaguet, C., Khovratovich, D.: Cryptographic schemes based on
the ASASA structure: Black-box, white-box, and public-key. Cryptology ePrint
Archive, Report 2014/474 (2014), http://eprint.iacr.org/

9. Biryukov, A., De Cannière, C., Braeken, A., Preneel, B.: A toolbox for cryptanal-
ysis: Linear and affine equivalence algorithms. In: Biham, E. (ed.) EUROCRYPT
2003. LNCS, vol. 2656, pp. 33–50. Springer, Heidelberg (2003)

10. Biryukov, A., Shamir, A.: Structural cryptanalysis of SASAS. In: Pfitzmann, B.
(ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 394–405. Springer, Heidelberg
(2001)

11. Blum, A., Kalai, A., Wasserman, H.: Noise-tolerant learning, the parity problem,
and the statistical query model. J. ACM 50(4), 506–519 (2003)

12. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: An ultra-lightweight block cipher.
In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007)

13. Bogdanov, A., Knudsen, L.R., Leander, G., Standaert, F.-X., Steinberger, J.P.,
Tischhauser, E.: Key-alternating ciphers in a provable setting: Encryption using
a small number of public permutations. In: Pointcheval, D., Johansson, T. (eds.)
EUROCRYPT 2012. LNCS, vol. 7237, pp. 45–62. Springer, Heidelberg (2012)

14. Bosma, W., Cannon, J.J., Playoust, C.: The Magma Algebra System I: The User
Language. J. Symb. Comput. 24(3/4), 235–265 (1997)

15. Carlier, V., Chabanne, H., Dottax, E.: Grey box implementation of block ciphers
preserving the confidentiality of their design. IACR Cryptology ePrint Archive,
2004:188 (2004)

16. Chow, S., Eisen, P.A., Johnson, H., van Oorschot, P.C.: White-box cryptography
and an AES implementation. In: Nyberg, K., Heys, H.M. (eds.) SAC 2002. LNCS,
vol. 2595, pp. 250–270. Springer, Heidelberg (2003)

17. Chow, S., Eisen, P., Johnson, H., van Oorschot, P.C.: A white-box DES implemen-
tation for DRM applications. In: Feigenbaum, J. (ed.) DRM 2002. LNCS, vol. 2696,
pp. 1–15. Springer, Heidelberg (2003)

http://keccak.noekeon.org/Keccak-reference-3.0.pdf
http://eprint.iacr.org/

Cryptographic Schemes Based on the ASASA Structure 83

18. Cox, D.A., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms: An Introduction
to Computational Algebraic Geometry and Commutative Algebra. Undergraduate
Texts in Mathematics. Springer-Verlag New York, Inc., Secaucus (1991)

19. Daemen, J.: Cipher and Hash Function Design Strategies based on linear and differ-
ential cryptanalysis. PhD thesis, Katholieke Universiteit Leuven, Leuven, Belgium
(March 1995)

20. Daemen, J., Rijmen, V.: The Design of Rijndael. AES — the Advanced Encryption
Standard. Springer (2002)

21. Ding, J.: A new variant of the matsumoto-imai cryptosystem through perturbation.
In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 305–318.
Springer, Heidelberg (2004)

22. Ding, J., Schmidt, D.: Cryptanalysis of hFEv and internal perturbation of HFE. In:
Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 288–301. Springer, Heidelberg
(2005)

23. Dinur, I., Dunkelman, O., Keller, N., Shamir, A.: Key recovery attacks on 3-round
Even-Mansour, 8-step LED-128, and full AES2. In: Sako, K., Sarkar, P. (eds.)
ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 337–356. Springer, Heidelberg
(2013)

24. Dubois, V., Fouque, P.-A., Shamir, A., Stern, J.: Practical cryptanalysis of
SFLASH. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 1–12.
Springer, Heidelberg (2007)

25. Dubois, V., Granboulan, L., Stern, J.: Cryptanalysis of HFE with internal pertur-
bation. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 249–265.
Springer, Heidelberg (2007)

26. Dunkelman, O., Keller, N.: A new criterion for nonlinearity of block ciphers. IEEE
Transactions on Information Theory 53(11), 3944–3957 (2007)

27. Faugère, J.-C.: A new efficient algorithm for computing Gröbner bases (F4). Jour-
nal of Pure and Applied Algebra 139(1-3), 61–88 (1999)

28. Faugère, J.-C.: A New Efficient Algorithm for Computing Gröbner Bases Without
Reduction to Zero (F5). In: Mora, T. (ed.) ISSAC 2002: Proceedings of the 2002 In-
ternational Symposium on Symbolic and Algebraic Computation, pp. 75–83. ACM
Press, New York (2002) ISBN: 1-58113-484-3

29. Faugère, J.-C., Joux, A.: Algebraic Cryptanalysis of Hidden Field Equation (HFE)
Cryptosystems Using Gröbner Bases. In: Boneh, D. (ed.) CRYPTO 2003. LNCS,
vol. 2729, pp. 44–60. Springer, Heidelberg (2003)

30. Faugère, J.-C., Perret, L.: An efficient algorithm for decomposing multivariate poly-
nomials and its applications to cryptography. J. Symb. Comput. 44(12), 1676–1689
(2009)

31. Faugère, J.-C., von zur Gathen, J., Perret, L.: Decomposition of generic multivari-
ate polynomials. In: ISSAC 2010, pp. 131–137. ACM (2010)

32. Huang, Y.-J., Liu, F.-H., Yang, B.-Y.: Public-key cryptography from new multi-
variate quadratic assumptions. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.)
PKC 2012. LNCS, vol. 7293, pp. 190–205. Springer, Heidelberg (2012)

33. Isobe, T.: A single-key attack on the full GOST block cipher. J. Cryptology 26(1),
172–189 (2013)

34. Kipnis, A., Patarin, J., Goubin, L.: Unbalanced Oil and Vinegar Signature Schemes.
In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 206–222. Springer,
Heidelberg (1999)

35. Kipnis, A., Shamir, A.: Cryptanalysis of the HFE public key cryptosystem by
relinearization. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 19–30.
Springer, Heidelberg (1999)

84 A. Biryukov, C. Bouillaguet, and D. Khovratovich

36. Laigle-Chapuy, Y.: A note on a class of quadratic permutations over f2n . In: Boztaş,
S., Lu, H.-F(F.) (eds.) AAECC 2007. LNCS, vol. 4851, pp. 130–137. Springer,
Heidelberg (2007)

37. Levieil, É., Fouque, P.-A.: An improved LPN algorithm. In: De Prisco, R., Yung,
M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 348–359. Springer, Heidelberg (2006)

38. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)

39. Matsumoto, T., Imai, H.: Public quadratic polynomial-tuples for efficient signature-
verification and message-encryption. In: Günther, C.G. (ed.) EUROCRYPT 1988.
LNCS, vol. 330, pp. 419–453. Springer, Heidelberg (1988)

40. Meier, W.: Personal communication (2014)
41. Michiels, W., Gorissen, P.: Mechanism for software tamper resistance: an ap-

plication of white-box cryptography. In: Digital Rights Management Workshop,
pp. 82–89. ACM (2007)

42. Patarin, J.: Cryptanalysis of the matsumoto and imai public key scheme of euro-
crypt ’88. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 248–261.
Springer, Heidelberg (1995)

43. Patarin, J.: Hidden fields equations (HFE) and isomorphisms of polynomials (IP):
Two new families of asymmetric algorithms. In: Maurer, U.M. (ed.) EUROCRYPT
1996. LNCS, vol. 1070, pp. 33–48. Springer, Heidelberg (1996)

44. Percival, C.: Stronger key derivation via sequential memory-hard functions (2009)
(self-published)

45. Rijmen, V., Preneel, B.: A family of trapdoor ciphers. In: Biham, E. (ed.) FSE
1997. LNCS, vol. 1267, pp. 139–148. Springer, Heidelberg (1997)

46. Sakumoto, K., Shirai, T., Hiwatari, H.: Public-key identification schemes based on
multivariate quadratic polynomials. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 706–723. Springer, Heidelberg (2011)

47. Saxena, A., Wyseur, B., Preneel, B.: Towards security notions for white-box cryp-
tography. In: Samarati, P., Yung, M., Martinelli, F., Ardagna, C.A. (eds.) ISC
2009. LNCS, vol. 5735, pp. 49–58. Springer, Heidelberg (2009)

48. Tao, C., Diene, A., Tang, S., Ding, J.: Simple matrix scheme for encryption.
In: Gaborit, P. (ed.) PQCrypto 2013. LNCS, vol. 7932, pp. 231–242. Springer,
Heidelberg (2013)

49. Wyseur, B.: White-Box Cryptography. PhD thesis, Katholieke Universiteit Leuven,
Leuven, Belgium (March 2009)

50. Zeng, X., Zhu, X., Hu, L.: Two new permutation polynomials with the form (x2k +
x+ d)s +x over Fn

2 . Appl. Algebra Eng. Commun. Comput. 21(2), 145–150 (2010)

Beyond 2c/2 Security in Sponge-Based

Authenticated Encryption Modes

Philipp Jovanovic1, Atul Luykx2, and Bart Mennink2

1 Fakultät für Informatik und Mathematik, Universität Passau, Germany
jovanovic@fim.uni-passau.de

2 Dept. Electrical Engineering, ESAT/COSIC, KU Leuven, and iMinds, Belgium
{atul.luykx,bart.mennink}@esat.kuleuven.be

Abstract. The Sponge function is known to achieve 2c/2 security, where
c is its capacity. This bound was carried over to keyed variants of the
function, such as SpongeWrap, to achieve a min{2c/2, 2κ} security bound,
with κ the key length. Similarly, many CAESAR competition submis-
sions are designed to comply with the classical 2c/2 security bound. We
show that Sponge-based constructions for authenticated encryption can
achieve the significantly higher bound of min{2b/2, 2c, 2κ} asymptoti-
cally, with b > c the permutation size, by proving that the CAESAR
submission NORX achieves this bound. Furthermore, we show how to
apply the proof to five other Sponge-based CAESAR submissions: As-
con, CBEAM/STRIBOB, ICEPOLE, Keyak, and two out of the three
PRIMATEs. A direct application of the result shows that the parameter
choices of these submissions are overly conservative. Simple tweaks ren-
der the schemes considerably more efficient without sacrificing security.
For instance, NORX64 can increase its rate and decrease its capacity
by 128 bits and Ascon-128 can encrypt three times as fast, both with-
out affecting the security level of their underlying modes in the ideal
permutation model.

Keywords: Authenticated encryption, CAESAR, Ascon, CBEAM, ICE-
POLE, Keyak, NORX, PRIMATEs, STRIBOB.

1 Introduction

Authenticated encryption schemes, cryptographic functions that aim to provide
both privacy and integrity of data, have gained renewed attention in light of the
recently commenced CAESAR competition [1]. A common approach to building
such schemes is to design a mode of operation for a block cipher, as in CCM [2],
OCB1-3 [3,4,5], and EAX [6]. Nevertheless a significant fraction of the CAESAR
competition submissions use modes of operation for permutations.

Most of the permutation-based modes follow the basic design of the Sponge
construction [7]: their output is computed from a state value, which in turn is
repeatedly updated using key, nonce, associated data, and plaintext by calling a
permutation. The state is divided into a rate part of r bits, through which the

P. Sarkar and T. Iwata (Eds.): ASIACRYPT 2014, PART I, LNCS 8873, pp. 85–104, 2014.
c© International Association for Cryptologic Research 2014

86 P. Jovanovic, A. Luykx, and B. Mennink

user enters plaintext, and a capacity part of c bits, which is out of the user’s
control.

The security of the Sponge construction as a hash function follows from the
fact that the user can only affect the rate, hence an adversary only succeeds with
significant probability if it makes on the order of 2c/2 permutation queries, as
this many are needed to produce a collision in the capacity [7]. Keyed versions
of the Sponge construction, such as KeyedSponge [8] and SpongeWrap [9], are
proven up to a similar bound of 2c−a, assuming a limit of 2a on online complexity,
but are additionally restricted by the key size κ to 2κ. The permutation-based
CAESAR candidates are no exception and recommend parameters based on
either the 2c/2 bound or 2c−a bound, as shown in Table 1.

1.1 Our Results

Contrary to intuition, a wide range of permutation-based authenticated en-
cryption schemes achieve a significantly higher mode security level: we prove
that the bound is limited by approximately min{2(r+c)/2, 2c, 2κ} as opposed to
min{2c/2, 2κ}. The main proof in this work concerns NORX mode [10], but we
demonstrate its applicability to the CAESAR submissions Ascon [11], CBEAM1

[13,14], ICEPOLE [15], Keyak [16], two out of three PRIMATEs [17], and STRI-
BOB2 [19, 20]. Additionally, we note that it directly applies to SpongeWrap [9]
and DuplexWrap [16], upon which Keyak is built.

Our results imply that all of these CAESAR candidates have been overly con-
servative in choosing their parameters, since a smaller capacity would have lead
to the same bound. For instance, Ascon-128 could take (c, r) = (128, 192) instead
of (256, 64), NORX64 (the proposed mode with 256-bit security) could increase
its rate by 128 bits, and GIBBON-120 and HANUMAN-120 could increase their
rate by a factor of 4, all without affecting their mode security levels.

These observations only concern the mode security, where characteristics of
the underlying permutation are set aside. Specifically, the concrete security of
the underlying permutations plays a fundamental role in the choice of param-
eters. For instance, the authors of Ascon, NORX, and PRIMATEs [11, 10, 17]
acknowledge that non-random properties of some of the underlying primitives
exist. Although these properties are harmless, a non-hermetic design approach
for the primitives affects the parameter choices.

1.2 Outline

We present our security model in Section 2. A security proof for NORX is derived
in Section 3. In Section 4 we show that the proof of NORX generalizes to other
CAESAR submissions, as well as to SpongeWrap and DuplexWrap. The work is
concluded in Section 5, where we also discuss possible generalizations to Artemia
[21] and π-Cipher [22].

1 CBEAM was withdrawn after an attack by Minaud [12], but we focus on modes of
operation.

2 Both CBEAM and STRIBOB use the BLNK Sponge mode [18].

Beyond 2c/2 Security in Sponge-Based Authenticated Encryption Modes 87

Table 1. Parameters and the achieved mode security levels of seven CAESAR submis-
sions. We remark that ICEPOLE consists of three configurations (two with security
level 128 and one with security level 256) and Keyak of four configurations (one with
an 800-bit state and three with a 1600-bit state).

b c r κ τ security

Ascon [11]
320 192 128 96 96 96

320 256 64 128 128 128

CBEAM [?] 256 190 66 128 64 128

ICEPOLE [15]
1280 254 1026 128 128 128

1280 318 962 256 128 256

Keyak [16]
800 252 548 128..224 128 128..224

1600 252 1348 128..224 128 128..224

NORX [10]
512 192 320 128 128 128

1024 384 640 256 256 256

GIBBON/

HANUMAN
[17]

200 159 41 80 80 80

280 239 41 120 120 120

STRIBOB [19] 512 254 258 192 128 192

2 Security Model

For n ∈ N, let Perm(n) denote the set of all permutations on n bits. When

writing x
$←− X for some finite set X , we mean that x gets sampled uniformly at

random from X . For x ∈ {0, 1}n, and a, b ≤ n, we denote by [x]a and [x]b the a
leftmost and b rightmost bits of x, respectively. For tuples (j, k), (j′, k′) we use
lexicographical order: (j, k) > (j′, k′) means that j > j′, or j = j′ and k > k′.

Let Π be an authenticated encryption scheme, which is specified by an en-
cryption function E and a decryption function D:

(C,A)←− EK(N ;H,M, T) and M/⊥ ←− DK(N ;H,C, T ;A) .

Here N denotes a nonce value, H a header, M a message, C a ciphertext, T
a trailer, and A an authentication tag. The values (H,T) will be referred to
as associated data. If verification is correct, then the decryption function DK

outputs M , and ⊥ otherwise. The scheme Π is also determined by a set of
parameters such as the key size, state size, and block size, but these are left
implicit. In addition, we define $ to be an ideal version of EK , where $ returns

(C,A)
$←− {0, 1}|M|+τ on input of a new (N ;H,M, T).

We follow the convention in analyzing modes of operation for permutations
by modeling the underlying permutations as being drawn uniformly at random

88 P. Jovanovic, A. Luykx, and B. Mennink

from Perm(b), where b is a parameter determined by the scheme. We note that
irregularities in the underlying permutation may invalidate the underlying as-
sumption.

An adversary A is a probabilistic algorithm that has access to one or more or-
acles O, denoted AO. By AO = 1 we denote the event that A, after interacting
with O, outputs 1. We consider adversaries A that have unbounded compu-
tational power and whose complexities are solely measured by the number of
queries made to their oracles. These adversaries have query access to the under-
lying idealized permutations, EK or its counterpart $, and possibly DK . The key
K is randomly drawn from {0, 1}κ at the beginning of the security experiment.
The security definitions below follow [23, 24].

Privacy
Let p denote the list of underlying idealized permutations of Π . We define the
advantage of an adversary A in breaking the privacy of Π as follows:

Advpriv
Π (A) =

∣∣∣Prp,K

(
Ap±,EK = 1

)
−Prp,$

(
Ap±,$ = 1

)∣∣∣ ,
where the probabilities are taken over the random choices of p, $,K, and the
random choices of A, if any. The fact that the adversary has access to both
the forward and inverse permutations in p is denoted by p±. We assume that
adversary A is nonce-respecting, which means that it never makes two queries
to EK or $ with the same nonce. By Advpriv

Π (qp, qE , λE) we denote the maximum
advantage taken over all adversaries that query p± at most qp times, and that
make at most qE queries of total length at most λE blocks to EK or $. We remark
that this privacy notion is also known as the CPA security of an (authenticated)
encryption scheme.

Integrity
As above, let p denote the list of underlying idealized permutations of Π . We
define the advantage of an adversary A in breaking the integrity of Π as follows:

Advauth
Π (A) = Prp,K

(
Ap±,EK,DK forges

)
,

where the probability is taken over the random choices of p,K, and the random
choices of A, if any. Here, we say that “A forges” if DK ever returns a valid
message (other than ⊥) on input of (N ;H,C, T ;A) where (C,A) has never been
output by EK on input of a query (N ;H,M, T) for some M . We assume that
adversary A is nonce-respecting, which means that it never makes two queries to
EK with the same nonce. Nevertheless, A is allowed to repeat nonces in decryp-
tion queries. By Advauth

Π (qp, qE , λE , qD, λD) we denote the maximum advantage
taken over all adversaries that query p± at most qp times, that make at most qE
queries of total length at most λE blocks to EK , and at most qD queries of total
length at most λD blocks to DK/⊥.

Beyond 2c/2 Security in Sponge-Based Authenticated Encryption Modes 89

3 NORX

We introduce NORX at a level required for the understanding of the security
proof, and refer to Aumasson et al. [10] for the formal specification. Let p be a
permutation on b bits. All b-bit state values are split into a rate part of r bits and
a capacity part of c bits. We denote the key size of NORX by κ bits, the nonce size
by ν bits, and the tag size by τ bits. The header, message, and trailer can be of
arbitrary length, and are padded using 10∗1-padding to a length of a multiple of
r bits. Throughout, we denote the r-bit header blocks by H1, . . . , Hu, message
blocks by M1, . . . ,Mv, ciphertext blocks by C1, . . . , Cv, and trailer blocks by
T1, . . . , Tw.

Unlike other permutation-based schemes, NORX allows for parallelism in the
encryption part, which is described using a parameter D ∈ {0, . . . , 255} cor-
responding to the number of parallel chains. Specifically, if D ∈ {1, . . . , 255}
NORX has D parallel chains, and if D = 0 it has v parallel chains, where v is
the block length of M or C.

NORX consists of five proposed parameter configurations: NORXW -R-D for
(W,R,D) ∈ {(64, 4, 1), (32, 4, 1), (64, 6, 1), (32, 6, 1), (64, 4, 4)}. The parameter R
denotes the number of rounds of the underlying permutation p, and W denotes
the word size which we use to set r = 10W and c = 6W . The default key and
tag size are κ = ν = 4W . The corresponding parameters for the two different
choices of W , 64 and 32, are given in Table 1.

Although NORX starts with an initialization function init which requires the
parameters (D,R, τ) as input, as soon as our security experiment starts, we
consider (D,R, τ) fixed and constant. Hence we can view init as a function that
maps (K,N) to (K‖N‖0b−κ−ν) ⊕ const, where const is irrelevant to the mode
security analysis of NORX, and will be ignored in the remaining analysis.

After init is called, the header H is compressed into the rate, then the state
is branched into D states (if necessary), the message blocks are encrypted in a
streaming way, the D states are merged into one state (if necessary), the trailer
is compressed, and finally the tag A is computed. All rounds are preceded with a
domain separation constant XORed into the capacity: 01 for header compression,
02 for message encryption, 04 for trailer compression, and 08 for tag generation.
If D �= 1, domain separators 10 and 20 are used for branching and merging,
along with pairwise distinct lane indices idk for k = 1, . . . , D (if D = 1 we write
id1 = 0).

The privacy of NORX is proven in Section 3.1 and the integrity in Section 3.2.
In both proofs we consider an adversary that makes qp permutation queries and
qE encryption queries of total length λE . In the proof of integrity, the adver-
sary can additionally make qD decryption queries of total length λD. To aid the
analysis, we compute the number of permutation calls made via the qE encryp-
tion queries. The exact same computation holds for decryption queries with the
parameters defined analogously.

90 P. Jovanovic, A. Luykx, and B. Mennink

init(K,N)

0

0

r

c

p p p p

p p p

p p p

p p p p

H... Hu

id1

id2

M1,0 M1,v1

M2,0 M2,v2

C1,0 C1,v1

C2,0 C2,v2

T... Tw

A

01 01 10

02

02

02 20

02 20

04 04 08

sinit sH0 sH... sHu

sM1,0

sM2,0

sM1,...

sM2,...

sM1,v1

sM2,v2

sT0 sT... sTw stag

Fig. 1. NORX with D = 2

Consider a query to EK , consisting of u header blocks, v message blocks, and
w trailer blocks. We denote its corresponding state values by⎛⎜⎜⎝sinit; sH0 , . . . , sHu ;

⎡⎢⎢⎣
sM1,0, . . . , s

M
1,v1

...
...

sMD,0, . . . , s
M
D,vD

⎤⎥⎥⎦ ; sT0 , . . . , s
T
w; stag

⎞⎟⎟⎠ , (1)

as outlined in Figure 1. Here,
∑D

k=1 vk = v. If there are no branching and
merging phases, i.e. D = 1, then the state values corresponding to the branching
and merging, {sM1,0, . . . , sMD,0} and sT0 , are left out of the tuple. Note that the
length of this tuple equals the number of primitive calls made in this encryption
query, as every state value corresponds to the input of exactly one primitive call.
A simple calculation shows that if the jth EK query is of length u+v+w blocks,
it results in u+ v+w+3 state values if D = 1, in u+ v+w+D+4 state values
if D > 1, and in u + 2v + w + 4 state values if D = 0.3 We denote the number
of state values by σE,j , where the dependence on D is suppressed as D does not
change during the security game. In other words, σE,j denotes the number of
primitive calls in the jth query to EK . Furthermore, we define σE to be the total
number of primitive evaluations via the encryption queries, and find that

σE :=

qE∑
j=1

σE,j ≤

⎧⎪⎨⎪⎩
2λE + 4qE , if D = 0 ,

λE + 3qE , if D = 1 ,

λE + (D + 4)qE , if D > 1 .

(2)

This bound is rather tight. Particularly, for D = 0 an adversary can meet this
bound by only making queries without header and trailer. For queries to DK we
define σD,j and σD analogously.

3 For D = 0, the original specification dictates an additional 10b−21-padding for every
complete message block. This means that lanes 1, . . . , v−1 consist of two rounds. We
do not take this padding into account, noting that it is unnecessary for the security
analysis.

Beyond 2c/2 Security in Sponge-Based Authenticated Encryption Modes 91

3.1 Privacy of NORX

Theorem 1. Let Π = (E ,D) be NORX based on an ideal underlying primitive
p. Then,

Advpriv
Π (qp, qE , λE) ≤

3(qp + σE)
2

2b+1
+

(
8eqpσE

2b

)1/2

+
rqp
2c

+
qp + σE

2κ
,

where σE is defined in (2).

Theorem 1 can be interpreted as implying that NORX provides privacy security
as long as the total complexity qp + σE does not exceed min{2b/2, 2κ} and the
total number of primitive queries qp, also known as the offline complexity, does
not exceed 2c/r. See Table 1 for the security level of the various parameter
choices of NORX.

The proof is based on the observation that NORX is indistinguishable from a
random scheme as long as there are no collisions among the (direct and indirect)
evaluations of p. Due to uniqueness of the nonce, state values from evaluations
of EK collide with probability approximately 1/2b. Regarding collisions between
direct calls to p and calls via EK : while these may happen with probability
about 1/2c, they turn out not to significantly influence the bound. The latter is
demonstrated in part using the principle of multiplicities [25]: roughly stated, the
maximum number of state values with the same rate part. The formal security
proof is more detailed. Furthermore, we remark that, at the cost of readability
and simplicity of the proof, the bound could be improved by a constant factor.

Proof. We consider any adversary A that has access to either (p±, EK) or (p±, $)
and whose goal is to distinguish these two worlds. For brevity, we write

Advpriv
Π (A) = ΔA(p

±, EK ; p±, $) . (3)

We start with replacing p± by a random function, as this simplifies the analysis.
This is done with a PRP-PRF switch [26, 27], in which we make a transition
from p± to a primitive f± defined as follows. This primitive f± maintains an
initially empty list F of query/response tuples (x, y). For F , we denote its set
of domain and range values by dom(F) and rng(F), respectively. For a forward
query f(x) with x ∈ dom(F), the corresponding value y = F(x) is returned. For
a new forward query f(x), the response y is randomly drawn from {0, 1}b, then
if y is in rng(F) the primitive aborts, otherwise the tuple (x, y) is added to F .
The description for f−1 is similar. The usage of F will remain implicit in the
remaining usage of f±. Now, p± and f± behave identically as long as the latter
does not abort. Given that the adversary triggers at most qp+σE evaluations of
f , such an abort happens with probability at most

(
qp+σE

2

)
/2b ≤ (qp+σE)

2/2b+1.
This PRP-PRF switch needs to be applied to both the real and ideal world, to
get

ΔA(p
±, EK ; p±, $) ≤ ΔA(f

±, EK ; f±, $) +
(qp + σE)

2

2b
. (4)

92 P. Jovanovic, A. Luykx, and B. Mennink

We restrict our attention to A with oracle access to (f±, F), where F ∈ {EK , $}.
Without loss of generality, we can assume that the adversary only queries full
blocks and that no padding rules are involved. We can do this because the
padding rules are injective, allowing the proof to carry over to the case of frac-
tional blocks with 10∗1-padding.

We introduce some terminology. Queries to f± are denoted (xi, yi) for i =
1, . . . , qp, while queries to F are written as elements (Nj ;Hj ,Mj, Tj;Cj , Aj) for
j = 1, . . . , qE . If F = EK , the state values are denoted as in (1), subscripted with
a j: ⎛⎜⎜⎝sinitj ; sHj,0, . . . , s

H
j,u;

⎡⎢⎢⎣
sMj,1,0, . . . , s

M
j,1,v1

...
...

sMj,D,0, . . . , s
M
j,D,vD

⎤⎥⎥⎦ ; sTj,0, . . . , s
T
j,w; stagj

⎞⎟⎟⎠ . (5)

If the structure of (5) is irrelevant we refer to the tuple as (sj,1, . . . , sj,σE,j),
where we use the convention to list the elements of the matrix column-wise.
In this case, we write parent(sj,k) to denote the state value that lead to sj,k,
with parent(sj,1) := ∅ and parent(sTj,0) := (sMj,1,v1 , . . . , s

M
j,D,vD

). We remark that
the characteristic structure of NORX, with the D parallel states, only becomes
relevant in the two technical lemmas that will be used at the end of the proof.
We point out that sj,1 corresponds to the initial state value of the evaluation,
which requires special attention throughout the remainder of the proof.

We define two collision events, guess and hit. Let i ∈ {1, . . . , qp}, j, j′ ∈
{1, . . . , qE}, k ∈ {1, . . . , σE,j}, and k′ ∈ {1, . . . , σE,j′}:

guess(i; j, k) ≡ xi = sj,k ,

hit(j, k; j′, k′) ≡ parent(sj,k) �= parent(sj′,k′) ∧ sj,k = sj′,k′ .

Event guess(i; j, k) corresponds to a primitive call in an encryption query hit-
ting a direct primitive query, or vice versa, while hit(j, k; j′, k′) corresponds
to non-trivial primitive calls colliding in encryption queries. We write guess =
∨i;j,k guess(i; j, k), hit = ∨j,k;j′,k′ hit(j, k; j′, k′), and set event = guess ∨ hit.

The remainder of the proof is divided as follows. In Lemma 1 we prove that
(f±, EK) and (f±, $) are indistinguishable as long as ¬event holds. In other
words,

ΔA(f
±, EK ; f±, $) ≤ Pr

(
Af±,EK sets event

)
. (6)

Then, in Lemma 2 we bound this term by
qpσE + σ2

E/2

2b
+

(
8eqpσE

2b

)1/2

+
rqp
2c

+

qp + σE
2κ

. Noting that
qpσE + σ2

E/2

2b
≤ (qp + σE)

2

2b+1
, this completes the proof via

equations (3,4,6). �

Lemma 1. Given that event does not occur, (f±, EK) and (f±, $) are indistin-
guishable.

Beyond 2c/2 Security in Sponge-Based Authenticated Encryption Modes 93

Proof. The outputs of f± are sampled uniformly at random in both (f±, EK)
and (f±, $), except when such an output collides with a state of an EK evaluation
in the real world. However, this event is excluded by assuming ¬guess, hence it
suffices to only consider queries to the big oracle F ∈ {EK , $}.

Let Nj be a new nonce used in the F -query (Nj ;Hj ,Mj , Tj), with correspond-
ing ciphertext and authentication tag (Cj , Aj). Denote the query’s state values
as in (5). Let u, v, and w denote the number of padded header blocks, padded
message blocks, and padded trailer blocks, respectively.

By the definition of $, in the ideal world we have (Cj , Aj)
$←− {0, 1}|Mj|+τ . We

will prove that (Cj , Aj) is identically distributed in the real world, under the
assumption that guess∨hit does not occur. Denote the message blocks of Mj by
Mj,k,� for k = 1, . . . , D and � = 1, . . . , vk.

We know that sHj,u is new and that f(sHj,u) does not collide with any other f -

query because otherwise ¬event would have been violated. Since sMj,k,0 = f(sHj,u)⊕
idk we conclude that sMj,k,0 is new for k = 1, . . . , D, as otherwise event would

be set. Similarly, sMj,k,� is new for all � > 0. The ciphertext blocks Cj,k,� are
computed as

Cj,k,� = Mj,k,� ⊕ [f(sMj,k,�−1)]
r .

As the state value sMj,k,�−1 has not been evaluated by f before (neither directly

nor indirectly via an encryption query), f(sMj,k,�−1) outputs a uniformly random

value from {0, 1}b, hence Cj,k,�
$←− {0, 1}r. We remark that similar reasoning

shows that a ciphertext block corresponding to a truncated message block is

uniformly randomly drawn as well, yet from a smaller set. The fact that Aj
$←−

{0, 1}τ follows the same reasoning, using that stagj is a new input to f . Thus,

Aj = [f(stagj)]τ
$←− {0, 1}τ . �

Lemma 2. Pr
(
Af±,EK sets event

)
≤ qpσE + σ2

E/2

2b
+

(
8eqpσE

2b

)1/2

+
rqp
2c

+

qp + σE
2κ

.

Proof. Consider the adversary interacting with (f±, EK), and let Pr (guess ∨ hit)
denote the probability we aim to bound. For i ∈ {1, . . . , qp}, define

key(i) ≡ [xi]
κ = K ,

and key = ∨i key(i). Event key(i) corresponds to a primitive query hitting the
key. Let j ∈ {1, . . . , qE} and k ∈ {1, . . . , σE,j}, and consider any threshold ρ ≥ 1,
then define

multi(j, k) ≡[
maxα∈{0,1}r

∣∣{j′ ≤ j, 1 < k′ ≤ k : α ∈ {[sj′,k′]r, [f(sj′,k′)]r}
}∣∣] > ρ .

94 P. Jovanovic, A. Luykx, and B. Mennink

Event multi(j, k) is used to bound the number of states that collide in the rate
part. Note that state values sj′,1 are not considered here as they will be covered
by key. We define multi = multi(qE , σE,qE), which is a monotone event. By basic
probability theory,

Pr (guess ∨ hit) ≤ Pr (guess ∨ hit | ¬(key ∨multi)) +Pr (key ∨multi) . (7)

In the remainder of the proof, we bound these probabilities as follows (a formal
explanation of the proof technique is given in Appendix A): we consider the ith
forward or inverse primitive query (for i ∈ {1, . . . , qp}) or the kth state of the jth
construction query (for j ∈ {1, . . . , qE} and k ∈ {1, . . . , σE,j}), and bound the
probability that this evaluation makes guess∨hit satisfied, under the assumption
that this query does not set key ∨ multi and also that guess ∨ hit ∨ key ∨ multi
has not been set before. For the analysis of Pr (key ∨multi) a similar technique
is employed.

Event guess. This event can be set in the ith primitive query (for i = 1, . . . , qp)
or in any state evaluation of the jth construction query (for j = 1, . . . , qE).
Denote the state values of the jth construction query as in (5). Consider any
evaluation, assume this query does not set key∨multi and assume that guess∨hit∨
key∨multi has not been set before. Firstly, note that xi = sinitj for some i, j would
imply key(i) and hence invalidate our assumption. Therefore, we can exclude
sinitj from further analysis on guess. For i = 1, . . . , qp, let ji ∈ {1, . . . , qE} be the
number of encryption queries made before the ith primitive query. Similarly, for
j = 1, . . . , qE , denote by ij ∈ {1, . . . , qp} the number of primitive queries made
before the jth encryption query.

– Consider a primitive query (xi, yi) for i ∈ {1, . . . , qp}, which may be a for-
ward or an inverse query, and assume it has not been queried to f± before.
If it is a forward query xi, by ¬multi there are at most ρ state values s with
[xi]

r = [s]r, and thus xi = s with probability at most ρ/2c. Here, we remark
that the capacity part of s is unknown to the adversary and it guesses it with
probability at most 1/2c. A slightly more complicated reasoning applies for
inverse queries. Denote the query by yi. By ¬multi there are at most ρ state
values s with [yi]

r = [f(s)]r, hence yi = f(s) with probability at most ρ/2c.
If yi equals f(s) for any of these states, then xi = s, otherwise xi = s with

probability at most
∑ji

j=1 σE,j/2
b. Therefore the probability that guess is set

via a direct query is at most
qpρ
2c +

∑qp
i=1

∑ji
j=1

σE,j

2b ;
– Next, consider the probability that the jth construction query sets guess, for

j ∈ {1, . . . , qE}. For simplicity, first considerD = 1, hence the message is pro-
cessed in one lane and we can use state labeling (sj,1, . . . , sj,σE,j). We range
from sj,2 to sj,σE,j (recall that sj,1 = sinitj can be excluded) and consider the
probability that this state sets guess assuming it has not been set before. Let
k ∈ {2, . . . , σE,j}. The state value sj,k equals f(sj,k−1)⊕ v, where v is some
value determined by the adversarial input prior to the evaluation of f(sj,k−1),
including input from (Hj ,Mj, Tj) and constants serving as domain separa-
tors. By assumption, guess∨hit has not been set before, and f(sj,k−1) is thus

Beyond 2c/2 Security in Sponge-Based Authenticated Encryption Modes 95

randomly drawn from {0, 1}b. It hits any xi (i ∈ {1, . . . , ij}) with probability
at most ij/2

b. Next, consider the general case D > 1. We return to the la-
beling of (5). A complication occurs for the branching states sMj,1,0, . . . , s

M
j,D,0

and the merging state sTj,0. Starting with the branching states, these are

computed from sHj,u as⎛⎜⎝ sMj,1,0
...

sMj,D,0

⎞⎟⎠ = f(sHj,u)⊕

⎛⎜⎝ v1
...

vD

⎞⎟⎠ ,

where v1, . . . , vD are some distinct values determined by the adversarial input
prior to the evaluation of the jth construction query. These are distinct by
the XOR of the lane numbers id1, . . . , idD. Any of these nodes equals xi

for i ∈ {1, . . . , qp} with probability at most ijD/2b. Finally, for the merging
node sTj,0 we can apply the same analysis, noting that it is derived from a
sum of D new f -evaluations. Concluding, the jth construction query sets
guess with probability at most ijσE,j/2

b (we always have in total at most
σE,j new state values). Summing over all qE construction queries, we get∑qE

j=1 ijσE,j/2
b.

Concluding,

Pr (guess | ¬(key ∨multi)) ≤ qpρ

2c
+

qp∑
i=1

ji∑
j=1

σE,j
2b

+

qE∑
j=1

ijσE,j
2b

=
qpρ

2c
+

qpσE
2b

.

Here we use that
∑qp

i=1

∑ji
j=1 σE,j +

∑qE
j=1

∑σE,j

k=1 ij = qpσE , which follows from a
simple counting argument.

Event hit. We again employ ideas of guess, and particularly that as long as
guess∨ hit is not set, we can consider all new state values (except for the initial
states) to be randomly drawn from a set of size 2b. Particularly, we can refrain
from explicitly discussing the branching and merging nodes (the detailed analysis
of guess applies) and label the states as (sj,1, . . . , sj,σE,j). Clearly, sj,1 �= sj′,1 for
all j, j′ by uniqueness of the nonce. Any state value sj,k for k > 1 (at most σE−qE
in total) hits an initial state value sj′,1 only if [sj,k]

κ = K, which happens with
probability at most σE/2

κ, assuming sj,k is generated randomly. Finally, any two
other states sj,k, sj′,k′ for k, k′ > 1 collide with probability at most

(
σE−qE

2

)
/2b.

Concluding, Pr (hit | ¬(key ∨multi)) ≤
(
σE
2

)
/2b + σE/2

κ.

Event key. For i ∈ {1, . . . , qp}, the query sets key(i) if [xi]
κ = K, which happens

with probability 1/2κ (assuming it did not happen in queries 1, . . . , i− 1). The
adversary makes qp attempts, and hence Pr (key) ≤ qp/2

κ.

Event multi. We again use the principles from the analysis for guess of con-
struction queries (note that this part does not rely on multi itself). Particularly,

96 P. Jovanovic, A. Luykx, and B. Mennink

consider a new state value sj,k−1; then for a fixed state value x ∈ {0, 1}b it
satisfies f(sj,k−1) = x or sj,k = f(sj,k−1) ⊕ v = x for some predetermined v
with probability at most 2/2b. Now, let α ∈ {0, 1}r. More than ρ state values

hit α with probability at most
(
σE
ρ

)
(2/2r)

ρ ≤
(

2eσE
ρ2r

)ρ
, using Stirling’s approxi-

mation (x! ≥ (x/e)x for any x). Considering any possible choice of α, we obtain

Pr (multi) ≤ 2r
(

2eσE
ρ2r

)ρ
.

Addition of the four bounds via (7) gives

Pr (guess ∨ hit) ≤ qpσE + σ2
E/2

2b
+

qpρ

2c
+

qp + σE
2κ

+ 2r
(
eσE
ρ2r

)ρ

.

Putting ρ = max

{
r,
(

2eσE2c
qp2r

)1/2}
gives

Pr (guess ∨ hit) ≤ qpσE + σ2
E/2

2b
+ 2

(
2eqpσE

2b

)1/2

+
rqp
2c

+
qp + σE

2κ
,

assuming 2eqpσE/2
b < 1 (which we can do, as the bound would otherwise be

void anyway). This completes the proof. �

3.2 Authenticity of NORX

Theorem 2. Let Π = (E ,D) be NORX based on an ideal underlying primitive
p. Then,

Advauth
Π (qp, qE , λE , qD, λD) ≤

(qp + σE + σD)
2

2b
+

(
8eqpσE

2b

)1/2

+
rqp
2c

+

qp + σE + σD
2κ

+
(qp + σE + σD)σD

2c
+

qD
2τ

,

where σE , σD are defined in (2).

The bound is more complex than the one of Theorem 1, but intuitively implies
that NORX offers integrity as long as it offers privacy and the number of forgery
attempts σD is limited, where the total complexity qp + σE + σD should not
exceed 2c/σD. See Table 1 for the security level for the various parameter choices
of NORX. Needless to say, the exact bound is more fine-grained.

Proof. We consider any adversary A that has access to (p±, EK ,DK) and at-
tempts to make DK output a non-⊥ value. As in the proof of Theorem 1, we
apply a PRP-PRF switch to find

Advauth
Π (A) = Pr

(
Ap±,EK ,DK forges

)
≤ Pr

(
Af±,EK ,DK forges

)
+

(qp + σE + σD)
2

2b+1
.

(8)

Beyond 2c/2 Security in Sponge-Based Authenticated Encryption Modes 97

Then we focus on A having oracle access to (f±, EK ,DK). As before, we assume
without loss of generality that the adversary only makes full-block queries.

We inherit terminology from Theorem 1. The state values corresponding to
encryption and decryption queries will both be labeled (j, k), where j indicates
the query and k the state value within the jth query. If needed we will add
another parameter δ ∈ {D, E} to indicate that a state value sδ,j,k is in the jth
query to oracle δ, for δ ∈ {D, E} and j ∈ {1, . . . , qδ}. Particularly, this means we
will either label the state values as in (5) with a δ appended to the subscript, or
simply as (sδ,j,1, . . . , sδ,j,σδ,j

).
As before, we employ the collision events guess and hit, but expanded to the

new notation with δ = E . Next, we define two D-related collision events Dguess
and Dhit. Let i ∈ {1, . . . , qp}, (D, j, k) be a decryption query index, and (δ′, j′, k′)
be an encryption or decryption query index:

Dguess(i; j, k) ≡ xi = sD,j,k ,

Dhit(j, k; δ′, j′, k′) ≡ parent(sD,j,k) �= parent(sδ′,j′,k′) ∧ sD,j,k = sδ′,j′,k′ ,

We write Dguess = ∨i;j,k Dguess(i; j, k) and hit = ∨j,k;δ′,j′,k′ Dhit(j, k; δ′, j′, k′),
and define event = guess ∨ hit ∨ Dguess ∨Dhit.

Observe that from (8) we get

Pr
(
Af±,EK ,DK forges

)
≤ Pr

(
Af±,EK ,DK forges | ¬event

)
+

Pr
(
Af±,EK ,DK sets event

)
.

(9)

A bound on the probability that A sets event is derived in Lemma 3.
The remainder of this proof centers on the probability that A forges given

that event does not happen. Such a forgery requires that [f(stagD,j)]
τ = Aj for

some decryption query j. By ¬event, we know that stagD,j is a new state value

for all j ∈ {1, . . . , qD}, hence f ’s output under stagD,j is independent of all other
values and uniformly distributed for all j. As a result, we know that the jth
forgery attempt is successful with probability at most 1/2τ . Summing over all
qD queries, we get

Pr
(
Af±,EK ,DK forges | ¬event

)
≤ qD

2τ
,

and the proof is completed via (8,9) and the bound of Lemma 3, where we again

use that
qpσE + σ2

E/2

2b
≤ (qp + σE + σD)

2

2b+1
. �

Lemma 3. Pr
(
Af±,EK ,DK sets event

)
≤ qpσE + σ2

E/2

2b
+

(
8eqpσE

2b

)1/2

+
rqp
2c

+

qp + σE + σD
2κ

+
(qp + σE)σD + σ2

D/2

2c
.

The proof of Lemma 3 is given in the full version of this paper [28].

98 P. Jovanovic, A. Luykx, and B. Mennink

4 Other CAESAR Submissions

In this section we discuss how the mode security proof of NORX generalizes
to the CAESAR submissions Ascon, the BLNK mode underlying CBEAM/
STRIBOB, ICEPOLE, Keyak, and two out of the three PRIMATEs. Before
doing so, we make a number of observations and note how the proof can accom-
modate small design differences.

– NORX uses domain separation constants at all rounds, but this is not strictly
necessary and other solutions exist. In the privacy and integrity proofs of
NORX, and more specifically at the analysis of state collisions caused by a
decryption query in Lemma 3, the domain separations are only needed at the
transitions between variable-length inputs, such as header to message data
or message to trailer data. This means that the proofs would equally hold if
there were simpler transitions at these positions, such as in Ascon. Alterna-
tively, the domain separation can be done by using a different primitive, as
in GIBBON and HANUMAN, or a slightly more elaborated padding, as in
BLNK, ICEPOLE, and Keyak;

– The extra permutation evaluations at the initialization and finalization of
NORX are not strictly necessary: in the proof we consider the monotone
event that no state collides assuming no earlier state collision occurred. For
instance, in the analysis of Dhit in the proof of Lemma 3, we necessarily
have a new input to p at some point, and consequently all next inputs to p
are new (except with some probability);

– NORX starts by initializing the state with init(K,N) = (K‖N‖0b−κ−ν) ⊕
const for some constant const and then permuting this value. Placing the key
and nonce at different positions of the state does not influence the security
analysis. The proof would also work if, for instance, the header is preceded
with K‖N or a properly padded version thereof and the starting state is 0b;

– In a similar fashion, there is no problem in defining the tag to be a different
τ bits of the final state; for instance, the rightmost τ bits;

– Key additions into the capacity part after the first permutation are harm-
less for the mode security proof. Particularly, as long as these are done at
fixed positions, these have the same effect as XORing a domain separation
constant.

These five modifications allow one to generalize the proof of NORX to Ascon,
CBEAM and STRIBOB, ICEPOLE, Keyak, and two PRIMATEs, GIBBON
and HANUMAN. The only major difference lies in the fact none of these designs
accommodates a trailer, hence all are functions of the form

(C,A)←− EK(N ;H,M) and M/⊥ ←− DK(N ;H,C;A) ,

except for one instance of ICEPOLE which accommodates a secret message
number. Additionally, these designs have σδ ≤ λδ + qδ for δ ∈ {D, E} (or σδ ≤
λδ +2qδ for CBEAM/STRIBOB). We always write H = (H1, . . . , Hu) and M =
(M1, . . . ,Mv) whenever notation permits. In below sections we elaborate on these

Beyond 2c/2 Security in Sponge-Based Authenticated Encryption Modes 99

designs separately, where we slightly deviate from the alphabetical order to suit
the presentation. Diagrams of all modes are given in Figure 2. The parameters
and achieved provable security levels of the schemes are given in Table 1.

4.1 Ascon

Ascon is a submission by Dobraunig et al. [11] and is depicted in Figure 2a. It
is originally defined based on two permutations p1, p2 that differ in the number
of underlying rounds. We discard this difference, considering Ascon with one
permutation p.

Ascon initializes its state using init that maps (K,N) to (0b−κ−ν‖K‖N) ⊕
const, where const is determined by some design-specific parameters set prior to
the security experiment. The header and message can be of arbitrary length, and
are padded to length a multiple of r bits using 10∗-padding. An XOR with 1 sep-
arates header processing from message processing. From the above observations,
it is clear that the proofs of NORX directly carry over to Ascon.

4.2 ICEPOLE

ICEPOLE is a submission by Morawiecki et al. [15] and is depicted in Figure 2c.
It is originally defined based on two permutations, p1 and p2, that differ in the
number of underlying rounds. We discard this difference, considering ICEPOLE
with one permutation p.

ICEPOLE initializes its state as NORX does, be it with a different con-
stant. The header and message can be of arbitrary length, and are padded as
follows. Every block is first appended with a frame bit: 0 for header blocks
H1, . . . , Hu−1 and message block Mv, and 1 for header block Hu and message
blocks M1, . . . ,Mv−1. Then, the blocks are padded to length a multiple of r
bits using 10∗-padding. In other words, every padded block of r bits contains at
most r − 2 data bits. This form of domain separation using frame bits suffices
for the proof to go through. One variant of ICEPOLE also allows for a secret
message number Msecret, which consists of one block and is encrypted prior to
the processing of the header, similar to the message. As this secret message
number is of fixed length, no domain separation is required and the proof can
easily be adapted. From above observations, it is clear that the proofs of NORX
directly carry over to ICEPOLE. Without going into detail, we note that the
same analysis can be generalized to the parallelized mode of ICEPOLE [15].

4.3 Keyak

Keyak is a submission by Bertoni et al. [16]. The basic mode for the serial case is
depicted in Figure 2d, yet due to its hybrid character it is slightly more general
in nature. It is built on top of SpongeWrap [9].

Keyak initializes its state by 0b, and concatenates K, N , and H using a special
padding rule:

Hpad(K,N,H) = keypack(K, 240) ‖ enc8(1) ‖ enc8(0) ‖ N ‖ H ,

100 P. Jovanovic, A. Luykx, and B. Mennink

init(K,N)

0

0

r

c

p1 p2 p2 p2 p2 p2 p2

H1 H... Hu M1 M... MvC1 C... Cv

0c−κ ‖ K 0c−1 ‖ 1 K ‖ 0c−κ K

A

(a) Ascon

0

0

r

c

p p p p p p p p

‖ 10 ‖ 20 ‖ 40 ‖ 40 ‖ 40 ‖ 50 ‖ 50 ‖ 50

K N H1 H... Hu M1 M... MvC1 C... Cv

A

(b) BLNK (used in CBEAM and STRIBOB)

init(K,N)

0

0

r

c

p1 p2 p2 p2 p2 p2 p2 p2

MsecretCsecret

‖ 0 ‖ 0 ‖ 1

H1 H... Hu

‖ 1 ‖ 1 ‖ 0

M1 M... MvC1 C... Cv

A

(c) ICEPOLE

0

0

r

c

p p p p p p

‖ 00 ‖ 00 ‖ 01

(Hpad(K,N,H))1 (Hpad(K,N,H))... (Hpad(K,N,H))u

‖ 11 ‖ 11 ‖ 10

M1 M... MvC1 C... Cv

A

(d) Keyak

init(K,N)

0

0

r

c

p1 p2 p2 p2 p3 p3 p3 p1

H1 H... Hu M1 M... MvC1 C... Cv

K ‖ 0c+1−κ K ‖ 0c+1−κ K

A

(e) GIBBON (PRIMATEs)

init(K,N)

0

0

r

c

p1 p4 p4 p1 p1 p1 p1

H1 H... Hu M1 M... MvC1 C... Cv

K

A

(f) HANUMAN (PRIMATEs)

Fig. 2. CAESAR submission modes discussed in Section 4

Beyond 2c/2 Security in Sponge-Based Authenticated Encryption Modes 101

where enc8(x) is an encoding of x as a byte and keypack(K, �) = enc8(�/8)‖K‖
10−κ−1 mod (�−8). The key-nonce-header combination Hpad(K,N,H) and mes-
sage M can be of arbitrary length, and are padded as follows: first, every block is
appended with two frame bits, being 00 for header blocks (Hpad(K,N,H))1, . . . ,
(Hpad(K,N,H))u−1 and 01 for (Hpad(K,N,H))u, and 11 for message blocks
M1, . . . ,Mv−1 and 10 for Mv. Then, the blocks are padded to length a multi-
ple of r bits using 10∗1-padding. In other words, every padded block of r bits
contains at most r − 2 data bits. This form of domain separation using frame
bits suffices for the proof to go through. Due to above observations, our proof
readily generalizes to SpongeWrap [9] and DuplexWrap [16], and thus to Keyak.
Without going into detail, we note that the same analysis can be generalized to
the parallelized mode of Keyak [16]. Additionally, Keyak also supports sessions,
where the state is re-used for a next evaluation. Our proof generalizes to this
case, simply with a more extended description of (1).

4.4 BLNK (CBEAM and STRIBOB)

CBEAM and STRIBOB are submissions by Saarinen [13, 14, 19, 20]. Minaud
identified an attack on CBEAM [12], but we focus on the modes of operation.
Both modes are based on the BLNK Sponge mode [18], which is depicted in
Figure 2b.

The BLNK mode initializes its state by 0b, compresses K into the state (using
one or two permutation calls, depending on κ), and does the same with N .
Then, the mode is similar to SpongeWrap [9], though using a slightly more
involved domain separation system similar to the one of NORX. Due to above
observations, our proof readily generalizes to BLNK [18], and thus to CBEAM
and STRIBOB.

4.5 PRIMATEs: GIBBON and HANUMAN

PRIMATEs is a submission by Andreeva et al. [17], and consists of three al-
gorithms: APE, GIBBON, and HANUMAN. The APE mode is the more ro-
bust one, and significantly differs from the other two, and from the other CAE-
SAR submissions discussed in this work, in the way that ciphertexts are de-
rived and because the mode is secure against nonce misusing adversaries up to
common prefix [27]. We now focus on GIBBON and HANUMAN, which are
depicted in Figures 2e and 2f. GIBBON is based on three related permutations
p = (p1, p2, p3), where the difference in p2, p3 is used as domain separation of
the header compression and message encryption phases (the difference of p1 from
(p2, p3) is irrelevant for the mode security analysis). Similarly, HANUMAN uses
two related permutations p = (p1, p2) for domain separation.

GIBBON and HANUMAN initialize their state using init that maps (K,N)
to 0b−κ−ν‖K‖N . The header and message can be of arbitrary length, and are
padded to length a multiple of r bits using 10∗-padding. In case the true header
(or message) happens to be a multiple of r bits long, the 10∗-padding is con-
sidered to spill over into the capacity. From above observations, it is clear that

102 P. Jovanovic, A. Luykx, and B. Mennink

the proofs of NORX directly carry over to GIBBON and HANUMAN. A small
difference appears due to the usage of two different permutations: we need to
make two PRP-PRF switches for each world. Concretely this means that the first

term in Theorem 1 becomes
5(qp+σE)2

2b+1 and the first term in Theorem 2 becomes
3(qp+σE+σD)2

2b+1 .

5 Conclusions

In this work we analyzed one of the Sponge-based authenticated encryption
designs in detail, NORX, and proved that it achieves security of approximately
min{2b/2, 2c, 2κ}, significantly improving upon the traditional bound of
min{2c/2, 2κ}. Additionally, we showed that this proof straightforwardly gen-
eralizes to five other CAESAR modes, Ascon, BLNK (of CBEAM/STRIBOB),
ICEPOLE, Keyak, and PRIMATEs. Our findings indicate an overly conserva-
tive parameter choice made by the designers, implying that some designs can
improve speed by a factor of 4 at barely any security loss.

It is expected that the security proofs also generalize to the modes of Artemia
[21] and π-Cipher [22]. However, they deviate slightly more from the other de-
signs. Artemia is based on the JH hash function [29] and XORs data blocks in
both the rate and capacity part. It does not use domain separations, rather it
encodes the lengths of the inputs into the padding at the end [30]. Therefore, a
generalization of the proof of NORX to Artemia is not entirely straightforward.
π-Cipher, on the other hand, is structurally different in the way it maintains
state. A so-called “common internal state” is used throughout the evaluation.
For the processing of the header (or similarly the message) the state is forked
into u chains to process H1, . . . , Hu in parallel, resulting in u tag values, which
are added into the common internal state. Due to this design property, the devi-
ation of π-Cipher from NORX is too large to simply claim that the proof carries
over.

The results in this work are derived in the ideal permutation model, where the
underlying primitive is assumed to be ideal. We acknowledge that this model does
not perfectly reflect the properties of the primitives. For instance, it is stated by
the designers of Ascon, NORX, and PRIMATEs that non-random (but harmless)
properties of the underlying permutation exist. Furthermore, it is important
to realize that the proofs of security for the modes of operation in the ideal
model do not have a direct connection with security analysis performed on the
permutations, as is the case with block ciphers modes of operation. Nevertheless,
we can use these proofs as heuristics to guide cryptanalysts to focus on the
underlying permutations, rather than the modes themselves.

Acknowledgements. The authors would like to thank their co-designers of
NORX and PRIMATEs and the designers of Ascon and Keyak for the dis-
cussions. In particular, we thank Samuel Neves for his useful comments. This
work was supported in part by the Research Fund KU Leuven, OT/13/071,
and in part by the Research Council KU Leuven: GOA TENSE (GOA/11/007).

Beyond 2c/2 Security in Sponge-Based Authenticated Encryption Modes 103

Atul Luykx is supported by a Ph.D. Fellowship from the Institute for the Promo-
tion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen).
Bart Mennink is a Postdoctoral Fellow of the Research Foundation – Flanders
(FWO).

References

1. CAESAR: Competition for Authenticated Encryption: Security, Applicability, and
Robustness (2014), http://competitions.cr.yp.to/caesar.html

2. Whiting, D., Housley, R., Ferguson, N.: AES Encryption and Authentication Using
CTR Mode and CBC-MAC. IEEE 802.11-02/001r2 (2002)

3. Rogaway, P., Bellare, M., Black, J., Krovetz, T.: OCB: a block-cipher mode of
operation for efficient authenticated encryption. In: Reiter, M.K., Samarati, P.
(eds.) ACM Conference on Computer and Communications Security, pp. 196–205.
ACM (2001)

4. Rogaway, P.: Efficient instantiations of tweakable blockciphers and refinements to
modes OCB and PMAC. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329,
pp. 16–31. Springer, Heidelberg (2004)

5. Krovetz, T., Rogaway, P.: The software performance of authenticated-encryption
modes. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 306–327. Springer, Hei-
delberg (2011)

6. Bellare, M., Rogaway, P., Wagner, D.: The EAX mode of operation. In: Roy, B.,
Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 389–407. Springer, Heidelberg
(2004)

7. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Sponge functions. In:
ECRYPT Hash Function Workshop (2007)

8. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: On the security of the
keyed sponge construction. In: Symmetric Key Encryption Workshop (SKEW
2011) (2011)

9. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Duplexing the sponge: Single-
pass authenticated encryption and other applications. In: Miri, A., Vaudenay, S.
(eds.) SAC 2011. LNCS, vol. 7118, pp. 320–337. Springer, Heidelberg (2012)

10. Aumasson, J., Jovanovic, P., Neves, S.: NORX v1 (2014), Submission to CAESAR
competition

11. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Ascon v1 (2014), Sub-
mission to CAESAR competition

12. Minaud, B.: Re: CBEAM Withdrawn as of today! (2014), CAESAR mailing list

13. Saarinen, M.: CBEAM r1 (2014), Submission to CAESAR competition

14. Saarinen, M.: CBEAM: Efficient authenticated encryption from feebly one-way φ
functions. In: Benaloh (ed.) [9], pp. 251–269

15. Morawiecki, P., Gaj, K., Homsirikamol, E., Matusiewicz, K., Pieprzyk, J., Ro-
gawski, M., Srebrny, M., Wójcik, M.: ICEPOLE v1 (2014), Submission to CAESAR
competition

16. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G., Van Keer, R.: Keyak v1
(2014), Submission to CAESAR competition

17. Andreeva, E., Bilgin, B., Bogdanov, A., Luykx, A., Mendel, F., Mennink, B.,
Mouha, N., Wang, Q., Yasuda, K.: PRIMATEs v1 (2014), Submission to CAE-
SAR competition

http://competitions.cr.yp.to/caesar.html

104 P. Jovanovic, A. Luykx, and B. Mennink

18. Saarinen, M.: Beyond modes: Building a secure record protocol from a crypto-
graphic sponge permutation. In: Benaloh (ed.) [9], pp. 270–285

19. Saarinen, M.: STRIBOB r1 (2014), Submission to CAESAR competition
20. Saarinen, M.: Authenticated encryption from GOST R 34.11-2012 LPS permuta-

tion. In: CTCrypt 2014 (2014)
21. Alizadeh, J., Aref, M., Bagheri, N.: Artemia v1 (2014), Submission to CAESAR

competition
22. Gligoroski, D., Mihajloska, H., Samardjiska, S., Jacobsen, H., El-Hadedy, M.,

Jensen, R.: π-Cipher v1 (2014), Submission to CAESAR competition
23. Bellare, M., Namprempre, C.: Authenticated encryption: Relations among notions

and analysis of the generic composition paradigm. J. Cryptology 21(4), 469–491
(2008)

24. Iwata, T., Ohashi, K., Minematsu, K.: Breaking and repairing GCM security
proofs. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417,
pp. 31–49. Springer, Heidelberg (2012)

25. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Sponge-based pseudo-
random number generators. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010.
LNCS, vol. 6225, pp. 33–47. Springer, Heidelberg (2010)

26. Bellare, M., Rogaway, P.: The security of triple encryption and a frame-
work for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT
2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006)

27. Andreeva, E., Bilgin, B., Bogdanov, A., Luykx, A., Mennink, B., Mouha, N.,
Yasuda, K.: APE: Authenticated permutation-based encryption for lightweight
cryptography. In: Cid, C., Rechberger, C. (eds.) FSE. LNCS. Springer (2014)

28. Jovanovic, P., Luykx, A., Mennink, B.: Beyond 2c/2 security in sponge-based au-
thenticated encryption modes. Cryptology ePrint Archive, Report 2014/373 (2014),
Full version of this paper

29. Wu, H.: The Hash Function JH (2011) Submission to NIST’s SHA-3 competition
30. Bagheri, N.: Padding of Artemia (2014), CAESAR mailing list
31. Benaloh, J. (ed.): CT-RSA 2014. LNCS, vol. 8366. Springer, Heidelberg (2014)

A Proof Technique Used in Lemma 2

Formally, the proof technique used in Lemma 2 relies on the following paradigm.
Note that there is an ordering of the qp + σE primitive queries, and we can
reformulate guess(�), hit(�), key(�), andmulti(�) for � = 1, . . . , qp+σE analogously.
Defining event(�) = guess(�) ∨ hit(�) and help(�) = key(�) ∨multi(�), then

Pr (event) ≤ Pr (event(qp+σE) | ¬event(1 · · · qp+σE−1) ∧ ¬help(1 · · · qp+σE)) +

Pr (event(1 · · · qp+σE−1) ∨ help(1 · · · qp+σE)) ,

and inductively Pr (event) ≤
∑qp+σE

�=1 Pr (event(�) | ¬event(1 · · · �− 1)∧
¬help(1 · · · �))+Pr (help(�) | ¬help(1 · · · �− 1)). This formulation would however
merely reduce the readability of the proof.

How to Securely Release Unverified Plaintext

in Authenticated Encryption�

Elena Andreeva1,2, Andrey Bogdanov3, Atul Luykx1,2, Bart Mennink1,2,
Nicky Mouha1,2, and Kan Yasuda1,4

1 Department of Electrical Engineering, ESAT/COSIC, KU Leuven, Belgium
{firstname.lastname}@esat.kuleuven.be

2 iMinds, Belgium
3 Department of Mathematics, Technical University of Denmark, Denmark

anbog@dtu.dk
4 NTT Secure Platform Laboratories, Japan

yasuda.kan@lab.ntt.co.jp

Abstract. Scenarios in which authenticated encryption schemes out-
put decrypted plaintext before successful verification raise many secu-
rity issues. These situations are sometimes unavoidable in practice, such
as when devices have insufficient memory to store an entire plaintext,
or when a decrypted plaintext needs early processing due to real-time
requirements. We introduce the first formalization of the releasing unver-
ified plaintext (RUP) setting. To achieve privacy, we propose using plain-
text awareness (PA) along with IND-CPA. An authenticated encryption
scheme is PA if it has a plaintext extractor, which tries to fool adversaries
by mimicking the decryption oracle, without the secret key. Releasing un-
verified plaintext to the attacker then becomes harmless as it is infeasible
to distinguish the decryption oracle from the plaintext extractor. We in-
troduce two notions of plaintext awareness in the symmetric-key setting,
PA1 and PA2, and show that they expose a new layer of security be-
tween IND-CPA and IND-CCA. To achieve integrity, INT-CTXT in the
RUP setting is required, which we refer to as INT-RUP. These new se-
curity notions are compared with conventional definitions, and are used
to make a classification of symmetric-key schemes in the RUP setting.
Furthermore, we re-analyze existing authenticated encryption schemes,
and provide solutions to fix insecure schemes.

1 Introduction

The goal of authenticated encryption (AE) is to simultaneously provide data
privacy and integrity. AE decryption conventionally consists of two phases: plain-
text computation and verification. As reflected in classical security models, plain-
text coming from decryption is output only upon successful verification.

� This work was supported in part by the Research Council KU Leuven: GOA TENSE
(GOA/11/007) and OT/13/071. Elena Andreeva, Bart Mennink, and Nicky Mouha
are Postdoctoral Fellows of the Research Foundation – Flanders (FWO). Atul Luykx
is supported by a Ph.D. Fellowship from the Institute for the Promotion of Innovation
through Science and Technology in Flanders (IWT-Vlaanderen).

P. Sarkar and T. Iwata (Eds.): ASIACRYPT 2014, PART I, LNCS 8873, pp. 105–125, 2014.
c© International Association for Cryptologic Research 2014

106 E. Andreeva et al.

Nevertheless, there are settings where releasing plaintext before verification
is desirable. For example, it is necessary if there is not enough memory to store
the entire plaintext [21] or because real-time requirements would otherwise not
be met [15, 38]. Even beyond these settings, using dedicated schemes secure
against the release of unverified plaintext can increase efficiency. For instance,
to avoid releasing unverified plaintext into a device with insecure memory [37],
the two-pass Encrypt-then-MAC composition can be used: a first pass to verify
the MAC, and a second to decrypt the ciphertext. However, a single pass AE
scheme suffices if it is secure against the release of unverified plaintext.

If the attacker cannot observe the unverified plaintext directly, it may be
possible to determine properties of the plaintext through a side channel. This
occurs, for example, in the padding oracle attacks introduced by Vaudenay [39],
where an error message or the lack of an acknowledgment indicates whether
the unverified plaintext was correctly padded. Canvel et al. [18] showed how
to mount a padding oracle attack on the then-current version of OpenSSL by
exploiting timing differences in the decryption processing of TLS. As shown by
Paterson and AlFardan [1, 30] for TLS and DTLS, it is very difficult to prevent
an attacker from learning the cause of decryption failures.

The issue of releasing unverified plaintext has also been acknowledged and ex-
plicitly discussed in the upcoming CAESAR competition:1 “Beware that security
questions are raised by any authenticated cipher that handles a long ciphertext
in one pass without using a large buffer: releasing unverified plaintext to applica-
tions often means releasing it to attackers and also requires an analysis of how
the applications will react.”

For several AE schemes, including OCB [27], AEGIS [41], ALE [15], and
FIDES [15], the designers explicitly stress that unverified plaintext cannot be
released. Although the issue of releasing unverified plaintext (RUP) in AE is
frequently discussed in the literature, it has largely remained unaddressed even
in recent AE proposals, likely due to a lack of comprehensive study.

We mention explicitly that we do not recommend omitting verification, which
remains essential to preventing incorrect plaintexts from being accepted. To en-
sure maximal security, unverified plaintext must be kept hidden from adversaries.
However, our scenario assumes that the attacker can see the unverified plaintext,
or any information relating to it, before verification is complete. Furthermore, is-
sues related to the behavior of applications which process unverified plaintext are
beyond the scope of this paper; careful analysis is necessary in such situations.

1.1 Security Under Release of Unverified Plaintext

AE security is typically examined using indistinguishability under chosen plain-
text attack (IND-CPA) for privacy and integrity of ciphertexts (INT-CTXT) for
integrity, and a scheme which achieves both is indistinguishable under chosen
ciphertext attack (IND-CCA), as shown by Bellare and Namprempre [9] and
Katz and Yung [26]. However, in the RUP situation adversaries can also observe

1 http://competitions.cr.yp.to/features.html

How to Securely Release Unverified Plaintext in Authenticated Encryption 107

D

EK DK EK E

Fig. 1. The two plaintext aware settings (PA1 and PA2) used in the paper, where
D is an adversary. Not shown in the figure is the type of IV used by the EK oracle
(cf. Sect. 3.2). Left: Real world, with encryption oracle EK and decryption oracle DK .
Right: Simulated world, with encryption oracle EK and plaintext extractor E. The
plaintext extractor E is a stateful algorithm without knowledge of the secret key K,
nor access to the encryption oracle EK . The dotted line indicates that E has access to
the encryption queries made by adversary D, which only holds in the PA1 setting.

unverified plaintext, which the conventional definitions do not take into account.
To address this gap we introduce two definitions: integrity under releasing un-
verified plaintext (INT-RUP) and plaintext awareness (PA). For integrity we
propose using INT-RUP and for privacy both IND-CPA and PA. In the full ver-
sion of this paper [3], we discuss how the combination of INT-RUP, IND-CPA,
and PA measures the impact of releasing unverified plaintext on security.

INT-RUP. The goal of an adversary under INT-CTXT is to produce new ci-
phertexts which pass verification, with only access to the encryption oracle.
We translate INT-CTXT into the RUP setting, called INT-RUP, by allowing
the adversary to observe unverified plaintexts. We formalize this by separating
plaintext computation from verification, and giving the adversary access to a
plaintext-computing oracle.

Plaintext Awareness (PA). We introduce PA as a new symmetric-key notion
to achieve security in the RUP setting. Informally, we define a scheme to be PA
if the adversary cannot gain any additional knowledge about the plaintext from
decryption queries besides what it can derive from encryption queries.

Our PA notion only involves encryption and decryption, and can thus be
defined both for encryption schemes as well as for AE schemes that release
unverified plaintext.

At the heart of our new PA notion is the plaintext extractor, shown in Fig. 1.
We say that an encryption scheme is PA if it has an efficient plaintext extractor,
which is a stateful algorithm that mimicks the decryption oracle in order to fool
the adversary. It cannot make encryption nor decryption queries, and does not
know the secret key. We define two notions of plaintext awareness: PA1 and PA2.
The extractor is given access to the history of queries made to the encryption
oracle in PA1, but not in PA2. Hence PA1 is used to model RUP scenarios in
which the goal of the adversary is to gain knowledge beyond what it knows from

108 E. Andreeva et al.

IND-CPA + PA1

IND-CPA + PA2IND-CPA

IND-CCA

IND-CCA′

RIV nonce + arbitrary all

INT-RUP

INT-CTXT

DI

Fig. 2. Implications and separations between the IND-CPA, IND-CPA+PA1,
IND-CPA+PA2, IND-CCA, IND-CCA′, PA2, and DI security notions (left) and
INT-CTXT and INT-RUP (right). Dashed lines refer to relations that hold if the
IV is random and thin solid lines in case of nonce or arbitrary IV. We use a thick solid
line if the relation holds under all IV cases.

the query history. For situations in which the goal of the adversary is to decrypt
one of the ciphertexts in the query history, we require PA2.

Relations among Notions. PA for public-key encryption was introduced by
Bellare and Rogaway [11], and later defined without random oracles by Bellare
and Palacio [10]. In the symmetric-key setting, our definition of PA is somewhat
similar, however there are important technical differences which make the public-
key results inapplicable to the symmetric-key setting.

Relations among the PA and conventional security definitions for encryption
(see Sect. 3.3) are summarized in Fig. 2. We consider three IV assumptions:
random IV, nonce IV (non-repeating value), and arbitrary IV (value that can
be reused), as explained in Sect. 3.2. The statements of the theorems and proofs
can be found in the full version of this paper [3].

The motivation for having two separate notions, PA1 and PA2, is as fol-
lows. As we prove in this work, if the plaintext extractor has access to the
query history (PA1), then there are no implications between IND-CPA+PA1
and IND-CCA. However, if we modify plaintext awareness so that the plaintext
extractor no longer has access to the query history (PA2), then we can prove
that IND-CPA+PA2 implies IND-CCA′. IND-CCA′ is a strengthened version of
IND-CCA, where we allow the adversary to re-encrypt the outputs of the decryp-
tion oracle. Note that such a re-encryption is always allowed in the public-key
setting, but not in the symmetric-key setting where the key required for encryp-
tion is secret. Furthermore, we also prove that PA2 is equivalent to the notion of
decryption independence (DI). DI captures the fact that encryption and decryp-
tion under the same key are only related to each other as much as encryption
and decryption under different keys.

Finally, although INT-RUP clearly implies INT-CTXT, the opposite is not
necessarily true.

Motivating Examples. To get an intuition for PA1 (shown in Fig. 1) and
how it relates to the RUP setting, we provide two motivating examples with
CTR mode. For simplicity, we define the encryption function of CTR mode as

How to Securely Release Unverified Plaintext in Authenticated Encryption 109

EK(IV,M) = EK(IV) ⊕M , where the message M and the initialization value
IV consist of one block each, and EK is a block cipher with a secret key K.
The corresponding decryption function is DK(IV, C) = EK(IV) ⊕ C. As shown
in [13], CTR mode is IND-CPA but not IND-CCA, a result that holds for nonce
IVs (unique non-repeating values) as well as for random IVs.

1. Nonce IV CTR mode is not PA1. Following Rogaway [31], we assume that
an adversary is free to specify the IV for encryption and decryption queries,
as long as it does not make two encryption queries with the same nonce IV,
N . In the attack, an adversary first makes a decryption query (N,C) with
nonce N and one-block ciphertext C to obtain a message M . The correct
decryption of M is EK(N) ⊕ C as output by the decryption oracle. The
adversary then computes the keystream κ := M ⊕C. Now in a second query
(N,M ′), this time to the encryption oracle, the adversary obtains C′ where
C′ = M ′ ⊕ κ.
The scheme fails to be plaintext aware as it is infeasible for any plaintext
extractor to be consistent with subsequent encryption queries. Specifically,
the plaintext extractor cannot compute κ at the time of the first decryption
query for the following reasons: it does not know the secret key K, it is not
allowed to do encryption queries, and an encryption query with N has not
yet been recorded in the query history.

2. Random IV CTR mode is PA1. In this setting, the IV used in encryption is
chosen randomly by the environment, and therefore out of the attacker’s con-
trol. However, the adversary can still freely choose the IV for its decryption
queries. In this random IV setting, the attack in the nonce IV example does
not apply. To see this, consider an adversary which queries the decryption
of (IV1, C) with a one-block ciphertext C. It can compute the keystream as-
sociated to IV1, but does not control when IV1 is used in encryption. Thus,
a plaintext extractor can be defined as outputting a random plaintext M in
response to the (IV1, C) query.
But what if an adversary makes additional decryption queries with the same
IV? Suppose the adversary makes decryption query (IV1, C ⊕Δ). Since the
plaintext extractor is a stateful algorithm, it can simply output M ⊕Δ to
provide consistency. Furthermore, if an adversary makes encryption queries,
these will be seen by the PA1 plaintext extractor. Therefore, the plaintext
extractor can calculate the keystream from these queries, and respond to
any decryption queries in a consistent way. A proof that random IV CTR
mode is PA1 is provided in Prop. 2.

AE schemes such as GCM [28] and CCM [40] reduce to CTR mode in the RUP
setting. This is because the adversary does not need to forge a ciphertext in
order to obtain information about the corresponding (unverified) plaintext. By
requiring that the underlying encryption scheme of an AE scheme is PA1, we
ensure that the adversary does not gain any information from decryption queries,
meaning no decryption query can be used to find an inconsistency with any past
or future queries to the encryption or decryption oracles.

110 E. Andreeva et al.

1.2 Analysis of Authenticated Encryption Schemes

Given the formalization of AE in the RUP setting, we categorize existing AE
schemes based on the type of IV used by the encryption function: random IV,
nonce IV, and arbitrary IV. Then, we re-analyze the security of several recently
proposed AE schemes as well as more established AE schemes. In order to do
so, we split the decryption algorithms into two parts, plaintext computation and
verification, as described in Sect. 3.1.

For integrity, we show that OCB [33] and COPA [4] succumb to attacks by
using unverified plaintext to construct forgeries. For privacy an overview of our
results can be seen in Table 1, where we also include the encryption-only modes
CTR and CBC as random IV examples. We draw a distinction between the
schemes that are online and the schemes that are not, where an online scheme
is one that is able to produce ciphertext blocks as it receives plaintext blocks.

Most of the schemes in Table 1 fail to achieve PA1. As a result, we demon-
strate techniques to restore PA1 for nonce IV and arbitrary IV schemes. For the
former, we introduce the nonce decoy technique, and for the latter the PRF-to-
IV method, which converts a random IV PA1 scheme into an arbitrary IV PA1
scheme. For online arbitrary IV schemes, we demonstrate that PA1 security can
be achieved only if the ciphertext is substantially longer than the plaintext, or
the decryption is offline. We show that McOE-G [20] achieves PA1 if the plain-
text is padded so that the ciphertext becomes twice as long. We also prove that
APE [2], an online deterministic AE scheme with offline decryption, achieves
PA1.

Finally we show that the nonce decoy preserves INT-RUP, and the PRF-to-IV
method turns any random IV scheme into an INT-RUP arbitrary IV scheme.

1.3 Background and Related Work

The definition of encryption and AE has been extended and generalized in dif-
ferent ways. In 2004, Rogaway [32] introduced nonce IV encryption schemes, in
contrast with prior encryption modes that used a random IV, as in the CBC
mode standardized by NIST in 1980 [29].

Rogaway and Shrimpton [34] formalized deterministic AE (DAE), where an IV
input is optional and can therefore take arbitrary values. Secure DAE differs from
secure nonce IV AE schemes in that DAE privacy is possible only up to message
repetition, namely an adversary can detect repeated encryptions. Unfortunately,
DAE schemes cannot be online. To resolve this issue, Fleischmann et al. [20]
explored online DAE schemes, where privacy holds only up to repetitions of
messages with identical prefixes or up to the longest common prefix.

Tsang et al. [38] gave syntax and security definitions of AE for streaming data.
Bellare and Keelveedhi [6] considered a stronger security model where data may
be key-dependent. Boldyreva et al. reformulated AE requirements and properties
to handle ciphertext fragmentation in [16], and enhanced the syntax and security
definitions so that the verification oracle is allowed to handle multiple failure
events in [17]. Our formalization can be interpreted as a special case of the work
in [17], yet the emphasis and results differ.

How to Securely Release Unverified Plaintext in Authenticated Encryption 111

Table 1. PA1 and PA2 security of deterministic and non-deterministic schemes, sep-
arated as described in Sect. 3.1. In the columns for PA1 and PA2, ✓ means secure
(there exists an extractor), and ✗ means insecure (there exists an attack). Proofs for
the security results in this table can be found in Sect. 5.

IV type Online Scheme PA1 PA2 Remark

random ✓ CTR, CBC [29] ✓ ✗

nonce ✓ OCB [33] ✗ ✗

✓ GCM [28], SpongeWrap [14] ✗ ✗

✗ CCM [40] ✗ ✗ not online [35]

arbitrary ✓ COPA [4] ✗ ✗ privacy up to prefix
✓ McOE-G [20] ✗ ✗ ′′
✓ APE [2] ✓ ✗ ′′, backwards decryption
✗ SIV [34], BTM [23], HBS [24] ✓ ✗ privacy up to repetition
✗ Encode-then-Encipher [12] ✓ ✓ ′′, VIL SPRP, padding

2 Preliminaries

Symbols. Given two strings A and B in {0, 1}∗, we use A‖B and AB inter-
changeably to denote the concatenation of A and B. The symbol ⊕ denotes
the bitwise XOR operation of two strings. Addition modulo 2n is denoted by +,
where n usually is the bit length of a block. For example, in the CTR mode of op-
eration of a block cipher, we increment the IV value by addition IV +i (mod 2n),
where n is the block size, the n-bit string IV = IVn−1 · · · IV1IV0 ∈ {0, 1}n is
converted to an integer 2n−1IVn−1+ · · ·+2IV1+IV0 ∈ {0, 1, . . . , 2n−1}, and the

result of addition is converted to an n-bit string in the reverse way. By K
R← K

we mean that K is chosen uniformly at random from the set K. All algorithms
and adversaries are considered to be “efficient”.

Adversaries and Advantages. An adversary is an oracle Turing machine. Let
D be some class of computationally bounded adversaries; a class D can consist
of a single adversary D, i.e. D = {D}, in which case we simply write D instead
of D. For convenience, we use the notation

Δ
D
(f ; g) := sup

D∈D

∣∣Pr[Df = 1]− Pr[Dg = 1]
∣∣

to denote the supremum of the distinguishing advantages over all adversaries
distinguishing oracles f and g, where the notation DO indicates the value output
by D after interacting with oracle O. The probabilities are defined over the
random coins used in the oracles and the random coins of the adversary, if
any. Multiple oracles are separated by a comma, e.g. Δ(f1, f2 ; g1, g2) denotes
distinguishing the combination of f1 and f2 from the combination of g1 and g2.

If D is distinguishing (f1, f2, . . . , fk) from (g1, g2, . . . , gk), then by Oi we mean
the ith oracle that D has access to, i.e. either fi or gi depending upon which

112 E. Andreeva et al.

oracles it is interacting with. By Oi ↪→ Oj we describe a set of actions that D
can perform: first D queries Oi, and then at some point in the future D queries
Oj with the output of Oi, assuming the output of Oi can be used directly as the
input for Oj . If the oracles Oi and Oj represent a family of algorithms indexed

by inputs, then the indices must match. For example, say that EN,A
K and DN,A

K

are families indexed by (N,A). Then EK ↪→ DK describes a set of actions, which

includes querying EN,A
K (M) to receive C, and then at some point in the future

querying DN,A
K (C), where K, N , A, and C are reused.

Our security definitions follow [9] and are given in terms of adversary ad-
vantages. A scheme is said to be secure with respect to some definition if it is
negligible with respect to all adversaries with time complexity polynomial in
the security parameter. As in [9], positive results are given as explicit bounds,
whereas negative results, i.e. separations, are given in asymptotic terms, which
can easily be converted into concrete bounds.

Online Functions. A function f : M → C is said to be n-online if there exist
functions fi : {0, 1}i → {0, 1}ci and f ′

i : {0, 1}i → {0, 1}c′i such that ci > 0, and
for all M ∈ M we have

f(M) = fn(M1) f2n(M1M2) · · · fjn(M1M2 · · ·Mj) f
′
|M|(M) ,

where j = �(|M | − 1)/n� and Mi is the ith n-bit block of M . Often we just say
f is online if the value n is clear from context.

3 AE Schemes: Syntax, Types, and Security

3.1 New AE Syntax

A conventional AE scheme Π = (E ,D) consists of an encryption algorithm E
and a decryption algorithm D:

(C, T)← EIV,AK (M) ,

M/⊥ ← DIV,A
K (C, T) ,

where K ∈ K is a key, IV ∈ IV an initialization value, A ∈ A associated data,
M ∈ M a message, C ∈ C the ciphertext, T ∈ T the tag, and each of these sets is
a subset of {0, 1}∗. The correctness condition states that for all K, IV , A, and

M , DIV,A
K (EIV,AK (M)) = M . A secure AE scheme should return ⊥ when it does

not receive a valid (C, T) tuple.
In order to consider what happens when unverified plaintext is released, we

disconnect the decryption algorithm from the verification algorithm so that the
decryption algorithm always releases plaintext. A separated AE scheme is a
triplet Π = (E ,D,V) of keyed algorithms — encryption E , decryption D, and
verification V — such that

(C, T)← EIV,AK (M) ,

M ← DIV,A
K (C, T) ,

 /⊥ ← VIV,A
K (C, T) ,

How to Securely Release Unverified Plaintext in Authenticated Encryption 113

where K, IV,A,M,C, and T are defined as above. Note that in some determin-
istic schemes IV may be absent, in which case we can expand the interface of
such schemes to receive IV input with which it does nothing. Furthermore, for
simplicity we might omit A if there is no associated data. The special symbols
 and ⊥ indicate the success and failure of the verification process, respectively.

As in the conventional setting we impose a correctness condition: for all K,
IV , A, and M such that EIV,AK (M) = (C, T), we require DIV,A

K (C, T) = M and

VIV,A
K (C, T) = .

Relation to Conventional Syntax. Given a separated AE scheme Π =
(E ,D,V), we can easily convert it into a conventional AE scheme Π = (E ,D). Re-
member that the conventional decryption oracle DIV,A

K (C, T) outputs M where

M = DIV,A
K (C, T) if VIV,A

K (C, T) = , and ⊥ otherwise.
The conversion in the other direction is not immediate. While the verification

algorithm V can be easily “extracted” from D (i.e., one can easily construct V
using D — just replace M with), it is not clear if one can always “naturally”
extract the decryption algorithm D from D. However, all practical AE schemes
that we are aware of can be constructed from a triplet (E ,D,V) as above, and
hence their decryption algorithms D are all separable into D and V .

3.2 Types of AE Schemes

Classification Based on IVs. In order to achieve semantic security [22], AE
schemes must be probabilistic or stateful [5]. Usually the randomness or state
is focused into an IV [32]. How the IV is used restricts the scheme’s syntax and
the types of adversaries considered in the security notions:

1. Random IV. The environment chooses a random IV for each encryption,
thus an adversary has no control over the choice of IV for each encryption.
The generated IV must be sent along with the ciphertext so that the receiver
can decrypt.

2. Nonce IV. A distinct IV must be used for each encryption, thus an ad-
versary can choose but does not repeat nonce IV values in its encryption
queries. How the parties synchronize the nonce is typically left implicit.

3. Arbitrary IV. No restrictions on the IV are imposed, thus an adversary
may choose any IV for encryption. Often a deterministic AE scheme does
not even have an IV input, in which case an IV can be embedded into the
associated data A, which gets authenticated along with the plaintext M but
does not get encrypted; A is sent in the clear.

In all IV cases the adversary can arbitrarily choose the IV input values to the
decryption oracle. In some real-world protocols the decryption algorithm can be
stateful [7], but such schemes are out of the scope of this paper, and schemes
designed to be secure with deterministic decryption algorithms will be secure in
those settings as well.

While random and nonce IV schemes can achieve semantic security, arbitrary
IV schemes cannot, and therefore reduce to deterministic security. In the lat-
ter case, the most common notions are “privacy up to repetition” which is used

114 E. Andreeva et al.

Table 2. The type of random oracle needed depending upon the class of AE scheme
considered

IV type
type of encryption

online offline

random random oracle random oracle
nonce random oracle random oracle
arbitrary random-up-to-prefix oracle random-up-to-repetition oracle

for DAE [34] and “privacy up to prefix” which is used for authenticated online
encryption [20]. In any case, we write $ to indicate the ideal oracle from which
an adversary tries to distinguish the real encryption oracle EK , regardless of the
IV type. This means that the ideal $ oracle should be either the random or-
acle, random-up-to-repetition oracle, or random-up-to-prefix oracle, depending
upon the IV. Each of the cases with their respective random oracles are listed in
Table 2. In order to avoid redundancy in the wording of the definitions, when-
ever we write Δ(EK , . . . ; $, . . .), it is understood that the $ oracle is the one
appropriate for the AE scheme consisting of E .
Online Encryption/Decryption Algorithms. A further distinction is made
between online schemes and the others. An AE scheme with online encryption
is one in which the ciphertext can be output as the plaintext is received, namely
we require that for each (K, IV,A) the resulting encryption function is online as
a function of the plaintext M .

Although decryption in AE schemes can never be online due to the fact that
the message needs to be verified before it is output, we still consider schemes
which can compute the plaintext as the ciphertext is received. In particular, a
scheme with online decryption is one in which this plaintext-computing algo-
rithm, viewed as a function of the ciphertext and tag input, is online. Note that
in some schemes the tag could be received before the ciphertext, in which case
we still consider D to be online (even though our new syntax implies that the
tag is always received after the ciphertext).

3.3 Conventional Security Definitions under the New Syntax

Let Π = (E ,D,V) denote an AE scheme as a family of algorithms indexed by
the key, IV, and associated data. With the new separated syntax we reformulate
the conventional security definitions, IND-CPA, IND-CCA, and INT-CTXT. As
mentioned above, the security notions are defined in terms of an unspecified $,
where the exact nature of $ depends on the type of IV allowed (cf. Table 2).
In the definitions the only fixed input to the algorithms is the key, indicated by
writing EK and DK ; all other inputs, such as the IV and associated data, can be
entered by the adversary.

Definition 1 (IND-CPA Advantage). Let D be a computationally bounded

adversary with access to one oracle O, and let K
R← K. Then the IND-CPA

How to Securely Release Unverified Plaintext in Authenticated Encryption 115

advantage of D relative to Π is given by

CPAΠ(D) := Δ
D
(EK ; $) .

Definition 2 (IND-CCA Advantage). Let D be a computationally bounded
adversary with access to two oracles O1 and O2, such that D never queries

O1 ↪→ O2 nor O2 ↪→ O1, and let K
R← K. Then the IND-CCA advantage of D

relative to Π is given by

CCAΠ(D) := Δ
D
(EK ,DK ; $,DK) .

Note that IND-CCA as defined above does not apply to the random IV setting.
When a random IV is used, the adversary is not prohibited from querying O2 ↪→
O1. We introduce a version of IND-CCA below, which can be applied to all IV
settings.

Definition 3 (IND-CCA′ Advantage). Let D be an adversary as in Def. 2,

except D may now query O2 ↪→ O1, and let K
R← K. Then the IND-CCA′

advantage of D relative to Π is given by

CCA′
Π(D) := Δ

D
(EK ,DK ; $,DK) .

Definition 4 (INT-CTXT Advantage). Let F be a computationally bounded
adversary with access to two oracles EK and VK , such that F never queries
EK ↪→ VK . Then the INT-CTXT advantage of F relative to Π is given by

CTXTΠ(F) := Pr
[
FEK ,VK forges

]
,

where the probability is defined over the random key K and random coins of F.
Here, “forges” means that VK returns to the adversary.

4 Security under Release of Unverified Plaintext

4.1 Security of Encryption

We introduce the notion of plaintext-aware encryption of symmetric-key encryp-
tion schemes. An analysis of existing plaintext-aware schemes can be found in
Sect. 5. The formalization is similar to the one in the public-key setting [10]. Let
Π = (E ,D) denote an encryption scheme.

Definition 5 (PA1 Advantage). Let D be an adversary with access to two
oracles O1 and O2. Let E be an algorithm with access to the history of queries
made to O1 by D, called a PA1-extractor. We allow E to maintain state across
invocations. The PA1 advantage of D relative to E and Π is

PA1EΠ(D) := Δ
D
(EK ,DK ; EK ,E) ,

where K
R← K, and the probability is defined over the key K, the random coins

of D, and the random coins of E.

116 E. Andreeva et al.

The adversary D tries to distinguish the case in which its second oracle O2 is
given by DK versus the case in which O2 is given by E. The task of E is to
mimic the outputs of DK given only the history of queries made to EK by D
(the key is not given to E). Note that D is allowed to make queries of the form
EK ↪→ E; these can easily be answered by E via the query history.

PA2 is a strengthening of PA1 where the extractor no longer has access to
the query history of EK ; the extractor becomes a simulator for the decryption
algorithm. Note that in order for this to work, we cannot allow the adversaries
to make queries of the form EK ↪→ E.

Definition 6 (PA2 Advantage). Let D be an adversary as in Def. 5, with
the added restriction that it may not ask queries of the form O1 ↪→ O2. Let E
be an algorithm, called a PA2-extractor. We allow E to maintain state across
invocations. The PA2 advantage of D relative to E and Π is

PA2EΠ(D) := Δ
D
(EK ,DK ; EK ,E) ,

where K
R← K, and the probability is defined over the key K, the random coins

of D, and the random coins of E.

An equivalent way of describing PA2 is via decryption independence (DI), which
means that the adversary cannot distinguish between encryption and decryption
under the same key and under different keys. The equivalence between PA2 and
DI is proven in [3].

Definition 7 (Decryption Independence). Let D be a distinguisher accept-
ing two oracles not making queries of the form O1 ↪→ O2, then the DI advantage
of D relative to Π is

DIΠ(D) := Δ
D
(EK ,DK ; EK ,DL) ,

where K,L
R← K are independent.

4.2 Security of Verification

Integrity when releasing unverified plaintext is a modification of INT-CTXT
(Def. 4) to include the decryption oracle as a means to obtain unverified plain-
text. Let Π = (E ,D,V) be an AE scheme with separate decryption and verifica-
tion.

Definition 8 (INT-RUP Advantage). Let F be a computationally bounded
adversary with access to three oracles EK , DK , and VK , such that F never queries
EK ↪→ VK . Then the INT-RUP advantage of F relative to Π is given by

INT-RUPΠ(F) := Pr
[
FEK ,DK ,VK forges

]
,

where the probability is defined over the key K and random coins of F. Here,
“forges” means the event of the oracle VK returning to the adversary.

How to Securely Release Unverified Plaintext in Authenticated Encryption 117

5 Achieving Plaintext Awareness

5.1 Why Existing Schemes Do Not Achieve PA1

In conventional AE schemes such as OCB, GCM, SpongeWrap, CCM, COPA,
and McOE-G, a ciphertext is computed using some bijective function, and then
a tag is appended to the ciphertext. The schemes achieve AE because the tag
prevents all ciphertexts from being valid. But if the tag is no longer checked,
then we cannot achieve PA1, as explained below.

Let Π = (EK ,DK) be a nonce or arbitrary IV encryption scheme, then we
can describe Π as follows,

EIV,AK (M) = EIV,A
K (M) ‖ F IV,A

K (M) ,

where EK is length-preserving, i.e. |EIV,A
K (M)| = |M |. One can view F IV,A

K (M)
as the tag-producing function from a scheme such as GCM. In the following
proposition we prove that if Π is IND-CPA and PA1, then EK cannot be bi-
jective for each (IV,A), assuming either a nonce or arbitrary IV. Note that the
proposition only holds if Π is a nonce or arbitrary IV scheme.

Proposition 1. Say that EK is bijective for all (IV,A), then there exists an
adversary D such that for all extractors E, there exists an adversary D1 such
that

1− CPAΠ(D1) ≤ PA1EΠ(D) ,

where D makes one O1 query, one O2 query, and D1 is as efficient as D plus
one query to E.

Proof. See [3]. �

We conclude that in order for a nonce or arbitrary IV scheme to be PA1 and
IND-CPA, EK must either not be bijective, or not be length-preserving.

5.2 PA1 Random IV Schemes

We illustrate Def. 5 and the idea of an extractor by considering the CTR mode
with a random IV.

Example 1 (RIV-CTR Extractor). Let F : {0, 1}k×{0, 1}n → {0, 1}n be a PRF.
For Mi ∈ {0, 1}n, 1 ≤ i ≤ �, define RIV-CTR encryption as

EC0

K (M1 · · ·M�) = FK(C0 + 1)⊕M1 ‖ · · · ‖ FK(C0 + �)⊕M� ,

where C0 is selected uniformly at random from {0, 1}n for each encryption, and
decryption as

DC0

K (C1 · · ·C�) = FK(C0 + 1)⊕ C1 ‖ · · · ‖ FK(C0 + �)⊕ C� .

We can define an extractor E for RIV-CTR as follows. Initially, E generates a
random key K ′ which it will use via FK′ . Let (C0, C1 · · ·C�) denote an input to
E. Using C0, the extractor searches its history for a ciphertext with C0 as IV.

118 E. Andreeva et al.

1. If such a ciphertext exists, we let (C′
1 · · ·C′

m,M ′
1 · · ·M ′

m) denote the longest
corresponding EK query-response pair. Define κi := C′

i ⊕M ′
i for 1 ≤ i ≤

min{�,m}. Notice that κi corresponds to the keystream generated by FK

for 1 ≤ i ≤ �. For m < i ≤ � we generate κi by FK′(C0 + i).
2. If there is no such ciphertext, then we generate κi as FK′(C0+i) for 1 ≤ i ≤ �.

Then we set EC0(C1 · · ·C�) = (C1 ⊕ κ1, C2 ⊕ κ2 ‖ · · · ‖ C� ⊕ κ�) .

Proposition 2. Let D be a PA1 adversary for RIV-CTR making queries whose
lengths in number of blocks sum up to σ, then

PA1ERIV-CTR(D) ≤ Δ
D1

(FK , FK ; FK , FK′) +
σ2

2n
,

where D1 is an adversary which may not make the same query to both of its
oracles, and makes a total of σ queries with the same running time as D.

We refer to a proof of this proposition to the full version of the paper [3]. Here,
we also describe and analyze an extractor for the CBC mode.

In the following subsections we discuss ways of achieving PA1 assuming a
nonce and arbitrary IV. Our basic building block will be a random IV PA1
scheme.

5.3 PA1 Nonce IV Schemes

Nonce IV schemes are not necessarily PA1 in general. For example, CTR mode
with a nonce IV is not PA1 and in [3] we show that IND-CPA is distinct from
PA1. Furthermore, coming up with a generic technique which transforms nonce
IV schemes into PA1 schemes in an efficient manner is most likely not possible.

If we assume that the nonce IV scheme, when used as a random IV scheme,
is PA1, then there is an efficient way of making the nonce IV scheme PA1. Note
that we already have an example of a scheme satisfying our assumption: nonce
IV CTR mode is not PA1, but RIV-CTR is.

Nonce Decoy. The nonce decoy method creates a random-looking IV from the
nonce IV and forces the decryption algorithm to use the newly generated IV.
Note that we are not only transforming the nonce into a random nonce: the
solution depends entirely on the fact that the decryption algorithm does not
recompute the newly generated IV from the nonce IV.

Let Π = (E ,D,V) be a nonce-IV-based AE scheme. For simplicity assume
IV := {0, 1}n, so that IVs are of a fixed length n. We prepare a pseudo-random
function GK′ : IV → IV with an independent key K ′. We then construct an AE
scheme Π̃ = (Ẽ , D̃, Ṽ) as follows.

ẼIV,A
K,K′(M):

ĨV ← GK′ (IV)

(C, T) ← E ĨV ,A
K

(
M
)

C̃ ← ĨV ‖C
return (C̃, T)

D̃IV,A
K,K′(C̃, T):

ĨV ‖C ← C̃

M ← DĨV ,A
K (C, T)

return M

ṼIV,A
K,K′(C̃, T):

ĨV
∗
← GK′(IV)

ĨV ‖C ← C̃

b ← V ĨV ,A
K (C, T)

return (ĨV
∗
= ĨV and b =)? : ⊥

How to Securely Release Unverified Plaintext in Authenticated Encryption 119

Note that the decryption algorithm D̃ does not make use of K ′ or IV . If the
decryption algorithm recomputes ĨV using K ′ and IV , then Π̃ will not be PA1.
Furthermore, one can combine D̃ and Ṽ in order to create a scheme which rejects
ciphertexts when the IV it receives does not come from an encryption query.

The condition that Π with random IVs be PA1 is necessary and sufficient
in order for Π̃ to be PA1, assuming G is a PRF; see [3] for the proof of this
statement. In Sect. 6.2 we discuss what the nonce decoy does for INT-RUP.

5.4 PA1 Arbitrary IV Schemes

PRF-to-IV. Using a technique similar to MAC-then-Encrypt [9], we can turn
a random IV PA1 scheme into an arbitrary IV PA1 scheme.

The idea behind the PRF-to-IV method is to evaluate a VIL PRF over the
input to the scheme and then to use the resulting output as an IV for the random
IV encryption scheme. Let Π = (E ,D,V) be a random IV PA1 scheme taking
IVs from {0, 1}n, and let G : {0, 1}k × {0, 1}∗ → {0, 1}n be a VIL PRF.

ẼIV,A
K,K′(M):

ĨV ← GK′(IV ‖A‖M)

(C, T) ← E ĨV ,A
K

(
M
)

return (C, ĨV ‖T)

D̃IV,A
K,K′ (C, ĨV ‖T):

M ← DĨV ,A
K (C, T)

return M

ṼIV,A
K,K′ (C, ĨV ‖T):

M ← D̃IV,A
K,K′ (C, ĨV ‖T)

IV ∗ ← GK′(IV ‖A‖M)

b ← V ĨV ,A
K (C,T)

return (ĨV = IV ∗ and b =)? : ⊥

The PRF-to-IV method is more robust than the nonce decoy since D̃ really only
can use ĨV to decrypt properly.

The condition that Π with random IVs be PA1 is necessary and sufficient in
order for Π̃ to be PA1, assuming G is a VIL-PRF; see [3] for the proof of this
statement. Note that the PRF-to-IV method is the basic structure behind SIV,
BTM, and HBS. We show that the PRF-to-IV method is INT-RUP in Sect.6.2.

Online Encryption. Since the PRF needs to be computed over the entire
message before the message is encrypted again, the PRF-to-IV method does
not allow for online encryption. Recall that an encryption scheme has online
encryption if for all (K, IV,A), the resulting function is online. Examples of
such schemes include COPA and McOE-G.

If we want encryption and decryption to both be online in the arbitrary IV
setting, then a large amount of ciphertext expansion is necessary, otherwise a
distinguisher similar to the one used in the proof of Prop. 1 can be created.

An encryption scheme Π = (E ,D) is online if for some n there exist functions
fi and f ′

i such that

EK(M) = fn(M1) f2n(M1M2) · · · fjn(M1M2 · · ·Mj) f
′
|M|(M) ,

where j = �(|M | − 1)/n� and Mi is the ith n-bit block of M . If the encryption
scheme has online decryption as well, then the decryption algorithm can start

120 E. Andreeva et al.

decrypting each “block” of ciphertext, or

DK(fn(M1) f2n(M1M2) · · · fin(M1M2 · · ·Mi)) = M1M2 · · ·Mi ,

for all i ≤ j.

Proposition 3. Let Π = (E ,D) be an encryption scheme where E is n-online
for all K, IV , and A, and D is online as well, then there exists a PA1-adversary
D such that for all extractors E there exists an IND-CPA adversary D1 such
that

1− CPAΠ(D1) ≤ PA1EΠ(D) ,

where D makes one O1 query, one O2 query, and D1 is as efficient as D plus
one query to E.

Proof. See [3]. �

Example 2. In certain scenarios, padding the plaintext is sufficient for PA1. Do-
ing so makes schemes such as McOE-G secure in the sense of PA1, while keeping
encryption and decryption online. The cost is a substantial expansion of the ci-
phertext. For the case of McOE-G, the length of the ciphertext becomes roughly
twice the size of its plaintext.

It is important to note that McOE-G is based on an n-bit block cipher, and
each n-bit message block is encrypted (after it is XORed with some state val-
ues) via the block cipher call. Since the underlying block cipher is assumed
to be a strong pseudo-random function (SPRP), we can pad a message M =
M1M2 · · ·M� (each Mi is an n/2-bit string) as 0n/2M1

∥∥ 0n/2M2

∥∥ · · · ∥∥ 0n/2M�

and then encrypt this padded message using McOE-G. So each block cipher call
processes 0n/2Mi for some i. This “encode-then-encipher” scheme [12] is PA1 as
shown in [3].

Example 3. If we do not require the decryption to be online, then we can achieve
PA1 without significant ciphertext expansion. An example of a scheme that falls
into this category is the recently-introduced APE mode [2], whose decryption is
backward (and hence not online). A proof of this is given in [3].

5.5 PA2 Schemes

Most AE schemes are proven to be IND-CPA and INT-CTXT, which allows one
to achieve IND-CCA [9] assuming verification works correctly. In order to be
as efficient as possible, the underlying encryption schemes in the AE schemes
are designed to only achieve IND-CPA and not IND-CCA, since achieving IND-
CCA for encryption usually requires significantly more operations. For example,
GCM, SIV, BTM, and HBS all use CTR mode for encryption, yet CTR mode is
not IND-CCA. Since IND-CPA+PA2 is equivalent to IND-CCA′, none of these
schemes achieve PA2.

A scheme such as APE also cannot achieve IND-CCA′ because its decryption
is online “in reverse”. If (EK ,DK) denotes APE, then an adversary can query

How to Securely Release Unverified Plaintext in Authenticated Encryption 121

EK(M1M2) = C1C2 and then DK(C′
1C2), which equals M ′

1M2. But if an ad-
versary interacts with ($,DK) (see Def. 3), then DK(C′

1C2) will most likely not
output M ′

1M2.
Existing designs which do achieve PA2 include those which are designed to

be IND-CCA′, such as the solutions presented by Bellare and Rogaway [12],
Desai [19], and Shrimpton and Terashima [36]. These solutions cannot be online,
and they are usually at least “two-pass”, meaning the input is processed at least
twice.

6 Integrity in the INT-RUP Setting

6.1 INT-RUP Attack

Several AE schemes become insecure if unverified plaintext is released. In Propo-
sition 4, we explain that OCB [33] and COPA [4] are not secure in the RUP
setting.

The strategy of our attack is similar to that of Bellare and Micciancio on the
XHASH hash function [8]. However, our attack is an improved version that solves
a system of linear equations in GF (2) with only half the number of equations
and variables.

The attack works by first querying the encryption oracle under nonce N to
get a valid ciphertext and tag pair. Then, two decryption queries are made under
the same nonce N . Using the resulting plaintexts a system of linear equations is
set up, which when solved will give the a forgery with high probability. A formal
description of the attack is given in [3].

Proposition 4. For OCB and COPA, for all � ≥ n there exists an adversary
A such that

INT-RUPΠ(A) ≥ 1− 2n−� ,

where A makes one encryption query and two decryption queries, each consisting
of � blocks of n bits. Then, the adversary solves a system of linear equations in
GF (2) with n equations and � unknowns.

6.2 Nonce Decoy and PRF-to-IV

In Sect. 5 we introduced a way of turning a random IV PA1 scheme into a nonce
IV PA1 scheme, the nonce decoy, and a way of turning a random IV PA1 scheme
into an arbitrary IV PA1 scheme, the PRF-to-IV method. Here we consider what
happens to INT-RUP when the two methods are applied.

The nonce decoy adds some integrity to the underlying random IV PA1
scheme. Using the notation from Sect. 5.3, Π needs to be a slightly lighter
form of INT-RUP in order for Π̃ to be INT-RUP. Concretely, Π only needs
to be INT-RUP against adversaries which use IVs which are the result of an
encryption query. Furthermore, this requirement on Π is sufficient to prove that
Π̃ is INT-RUP.

122 E. Andreeva et al.

Naturally if Π is INT-RUP, then Π̃ is INT-RUP as well. In fact, if Π is
INT-RUP against adversaries which use IVs which are the result of an encryption
query, then Π̃ is INT-RUP. These statements and their proofs can be found in [3].

The PRF-to-IV method is a much stronger transform than the nonce decoy.
Following the notation from Sect. 5.4, we do not need to assume anything about
the underlying random IV scheme Π in order to prove that Π̃ is INT-RUP.

7 Conclusions

Many practical applications desire that an AE scheme can securely output plain-
text before verification. We formalized security under the release of unverified
plaintext (RUP) to adversaries by separating decryption and verification.

Two symmetric-key notions of plaintext awareness (PA1 and PA2) were intro-
duced. In the RUP setting, privacy is achieved as a combination of IND-CPA and
PA1 or PA2. For integrity, we introduced the INT-RUP notion as an extension
of INT-CTXT, where a forger may abuse unverified plaintext. We connected our
notions of privacy and integrity in the RUP setting to existing security notions,
and saw that the relations and separations depended on the IV type.

The CTR and CBCmodes with a random IV achieve IND-CPA+PA1, but this
is non-trivial for nonce-based or deterministic encryption schemes. Our results
showed that many AE schemes such as GCM, CCM, COPA, and McOE-G are
not secure in the RUP setting. We provided remedies for both nonce-based and
deterministic AE schemes. For the former case, we introduced the nonce decoy
technique, which allowed to transform a nonce to a random-looking IV. The
PRF-to-IV method converts random IV PA1 schemes into arbitrary IV PA1
schemes. We showed that deterministic AE schemes cannot be PA1, unless the
decryption is offline (as in APE) or there is significant ciphertext expansion.

Future Work. Given that our PRF-to-IV method is rather inefficient, we leave
it as an open problem to efficiently modify any encryption-only scheme into an
AE scheme that is INT-RUP. A related problem is to fix OCB and COPA to
be INT-RUP in an efficient way. The PA1 solutions we provide all start with
the assumption that the nonce IV or arbitrary IV scheme is PA1 when a ran-
dom IV is used instead. An interesting problem is to find alternative solutions
to constructing nonce IV and arbitrary IV PA1 schemes. A problem of theo-
retical interest is to find a non-pathological random IV encryption scheme that
is not PA1. In some applications, formalizing security in the RUP setting as
IND-CPA+PA1 and INT-RUP may be sufficient. It is interesting to investi-
gate how well this formalization reflects the problems encountered in real-world
implementations, to see where PA2 may also be necessary, and how blockwise
adaptive adversaries [25] play a role in the RUP setting. Finally, our paper does
not address the behavior of applications which use unverified plaintext. A fur-
ther understanding of the security risks involved in using unverified plaintext in
applications is necessary.

How to Securely Release Unverified Plaintext in Authenticated Encryption 123

Acknowledgments. The authors would like to thank Martijn Stam and the
reviewers for their valuable comments.

References

1. AlFardan, N.J., Paterson, K.G.: Lucky Thirteen: Breaking the TLS and DTLS
Record Protocols. In: IEEE Symposium on Security and Privacy, pp. 526–540.
IEEE Computer Society (2013)

2. Andreeva, E., Bilgin, B., Bogdanov, A., Luykx, A., Mennink, B., Mouha, N.,
Yasuda, K.: APE: Authenticated Permutation-Based Encryption for Lightweight
Cryptography. In: FSE. LNCS, Springer (2014)

3. Andreeva, E., Bogdanov, A., Luykx, A., Mennink, B., Mouha, N., Yasuda, K.: How
to Securely Release Unverified Plaintext in Authenticated Encryption. Cryptology
ePrint Archive, Report 2014/144 (2014), full version of this paper

4. Andreeva, E., Bogdanov, A., Luykx, A., Mennink, B., Tischhauser, E., Yasuda, K.:
Parallelizable and Authenticated Online Ciphers. In: Sako, K., Sarkar, P. (eds.)
ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 424–443. Springer, Heidelberg
(2013)

5. Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A Concrete Security Treatment of
Symmetric Encryption. In: FOCS, pp. 394–403. IEEE Computer Society (1997)

6. Bellare, M., Keelveedhi, S.: Authenticated and Misuse-Resistant Encryption of
Key-Dependent Data. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841,
pp. 610–629. Springer, Heidelberg (2011)

7. Bellare, M., Kohno, T., Namprempre, C.: Breaking and provably repairing the
SSH authenticated encryption scheme: A case study of the encode-then-encrypt-
and-mac paradigm. ACM Tr. Inf. Sys. Sec. 7(2), 206–241 (2004)

8. Bellare, M., Micciancio, D.: A New Paradigm for Collision-Free Hashing: Incremen-
tality at Reduced Cost. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233,
pp. 163–192. Springer, Heidelberg (1997)

9. Bellare, M., Namprempre, C.: Authenticated Encryption: Relations among No-
tions and Analysis of the Generic Composition Paradigm. In: Okamoto, T. (ed.)
ASIACRYPT 2000. LNCS, vol. 1976, pp. 531–545. Springer, Heidelberg (2000)

10. Bellare, M., Palacio, A.: Towards Plaintext-Aware Public-Key Encryption Without
Random Oracles. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 48–
62. Springer, Heidelberg (2004)

11. Bellare, M., Rogaway, P.: Optimal Asymmetric Encryption. In: De Santis, A. (ed.)
EUROCRYPT 1994. LNCS, vol. 950, pp. 92–111. Springer, Heidelberg (1995)

12. Bellare, M., Rogaway, P.: Encode-Then-Encipher Encryption: How to Exploit
Nonces or Redundancy in Plaintexts for Efficient Cryptography. In: Okamoto,
T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 317–330. Springer, Heidelberg
(2000)

13. Bellare, M., Rogaway, P.: Introduction to modern cryptography. In: UCSD CSE
207 Course Notes (September 2005)

14. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Duplexing the Sponge:
Single-Pass Authenticated Encryption and Other Applications. In: Miri, A.,
Vaudenay, S. (eds.) SAC 2011. LNCS, vol. 7118, pp. 320–337. Springer, Heidel-
berg (2012)

15. Bogdanov, A., Mendel, F., Regazzoni, F., Rijmen, V., Tischhauser, E.: ALE: AES-
Based Lightweight Authenticated Encryption. In: Moriai, S. (ed.) FSE 2013. LNCS,
vol. 8424, pp. 447–466. Springer, Heidelberg (2014)

124 E. Andreeva et al.

16. Boldyreva, A., Degabriele, J.P., Paterson, K.G., Stam, M.: Security of Symmet-
ric Encryption in the Presence of Ciphertext Fragmentation. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 682–699. Springer,
Heidelberg (2012)

17. Boldyreva, A., Degabriele, J.P., Paterson, K.G., Stam, M.: On Symmetric En-
cryption with Distinguishable Decryption Failures. In: Moriai, S. (ed.) FSE 2013.
LNCS, vol. 8424, pp. 367–390. Springer, Heidelberg (2014)

18. Canvel, B., Hiltgen, A.P., Vaudenay, S., Vuagnoux, M.: Password Interception
in a SSL/TLS Channel. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729,
pp. 583–599. Springer, Heidelberg (2003)

19. Desai, A.: New Paradigms for Constructing Symmetric Encryption Schemes Secure
against Chosen-Ciphertext Attack. In: Bellare, M. (ed.) CRYPTO 2000. LNCS,
vol. 1880, pp. 394–412. Springer, Heidelberg (2000)

20. Fleischmann, E., Forler, C., Lucks, S.: McOE: A Family of Almost Foolproof On-
Line Authenticated Encryption Schemes. In: Canteaut, A. (ed.) FSE 2012. LNCS,
vol. 7549, pp. 196–215. Springer, Heidelberg (2012)

21. Fouque, P.-A., Joux, A., Martinet, G., Valette, F.: Authenticated On-Line En-
cryption. In: Matsui, M., Zuccherato, R.J. (eds.) SAC 2003. LNCS, vol. 3006, pp.
145–159. Springer, Heidelberg (2004)

22. Goldwasser, S., Micali, S.: Probabilistic Encryption and How to Play Mental Poker
Keeping Secret All Partial Information. In: STOC 1982, pp. 365–377. ACM (1982)

23. Iwata, T., Yasuda, K.: BTM: A Single-Key, Inverse-Cipher-Free Mode for Deter-
ministic Authenticated Encryption. In: Jacobson Jr., M.J., Rijmen, V., Safavi-
Naini, R. (eds.) SAC 2009. LNCS, vol. 5867, pp. 313–330. Springer, Heidelberg
(2009)

24. Iwata, T., Yasuda, K.: HBS: A Single-Key Mode of Operation for Deterministic
Authenticated Encryption. In: Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665,
pp. 394–415. Springer, Heidelberg (2009)

25. Joux, A., Martinet, G., Valette, F.: Blockwise-Adaptive Attackers: Revisiting the
(In)Security of Some Provably Secure Encryption Models: CBC, GEM, IACBC. In:
Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 17–30. Springer, Heidelberg
(2002)

26. Katz, J., Yung, M.: Complete characterization of security notions for probabilistic
private-key encryption. In: STOC, pp. 245–254. ACM (2000)

27. Krovetz, T., Rogaway, P.: The OCB Authenticated-Encryption Algorithm (June
2013), http://datatracker.ietf.org/doc/draft-irtf-cfrg-ocb

28. McGrew, D.A., Viega, J.: The Security and Performance of the Galois/Counter
Mode (GCM) of Operation. In: Canteaut, A., Viswanathan, K. (eds.) IN-
DOCRYPT 2004. LNCS, vol. 3348, pp. 343–355. Springer, Heidelberg (2004)

29. NIST: DES Modes of Operation. FIPS 81 (December 1980)
30. Paterson, K.G., AlFardan, N.J.: Plaintext-Recovery Attacks Against Datagram

TLS. In: NDSS. The Internet Society (2012)
31. Rogaway, P.: Authenticated-encryption with associated-data. In: ACM Conference

on Computer and Communications Security 2002, pp. 98–107. ACM (2002)
32. Rogaway, P.: Nonce-Based Symmetric Encryption. In: Roy, B., Meier, W. (eds.)

FSE 2004. LNCS, vol. 3017, pp. 348–359. Springer, Heidelberg (2004)
33. Rogaway, P., Bellare, M., Black, J.: OCB: A Block-Cipher Mode of Operation for

Efficient Authenticated Encryption. ACM Tr. Inf. Sys. Sec. 6(3), 365–403 (2003)
34. Rogaway, P., Shrimpton, T.: A Provable-Security Treatment of the Key-Wrap

Problem. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 373–390.
Springer, Heidelberg (2006)

http://datatracker.ietf.org/doc/draft-irtf-cfrg-ocb

How to Securely Release Unverified Plaintext in Authenticated Encryption 125

35. Rogaway, P., Wagner, D.: A Critique of CCM. Cryptology ePrint Archive, Report
2003/070 (2003)

36. Shrimpton, T., Terashima, R.S.: A modular framework for building variable-input-
length tweakable ciphers. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part
I. LNCS, vol. 8269, pp. 405–423. Springer, Heidelberg (2013)

37. Tsang, P.P., Smith, S.W.: Secure cryptographic precomputation with insecure
memory. In: Chen, L., Mu, Y., Susilo, W. (eds.) ISPEC 2008. LNCS, vol. 4991, pp.
146–160. Springer, Heidelberg (2008)

38. Tsang, P.P., Solomakhin, R.V., Smith, S.W.: Authenticated streamwise on-line
encryption. Dartmouth Computer Science Technical Report TR2009-640 (2009)

39. Vaudenay, S.: Security Flaws Induced by CBC Padding - Applications to SSL,
IPSEC, WTLS.. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332,
pp. 534–546. Springer, Heidelberg (2002)

40. Whiting, D., Housley, R., Ferguson, N.: Counter with CBC-MAC (CCM). Request
For Comments 3610 (2003)

41. Wu, H., Preneel, B.: AEGIS: A Fast Authenticated Encryption Algorithm. In:
Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC 2013. LNCS, vol. 8282, pp. 185–202.
Springer, Heidelberg (2013)

Forging Attacks on Two Authenticated

Encryption Schemes COBRA and POET

Mridul Nandi

Indian Statistical Institute, Kolkata, India
mridul.nandi@gmail.com

Abstract. In FSE 2014, an authenticated encryption mode COBRA [4],
based on pseudorandom permutation (PRP) blockcipher, and POET [3],
based on Almost XOR-Universal (AXU) hash and strong pseudorandom
permutation (SPRP), were proposed. Few weeks later, COBRA mode
and a simple variant of the original proposal of POET (due to a forging
attack [13] on the original proposal) with AES as an underlying block-
cipher, were submitted to CAESAR, a competition [1] of authenticated
encryption (AE). In this paper, we show a forging attack on the mode
COBRA based on any n-bit blockcipher. Our attack on COBRA requires
about O(n) queries with success probability of about 1/2. This disproves
the claim proved in the FSE 2014 paper. We also show both privacy and
forging attack on the parallel version of POET, denoted POET-m. In case
of the modes POET and POE (the underlying modes for encryption), we
demonstrate a distinguishing attack making only one encryption query
when we instantiate the underlying AXU hash function with some other
AXU hash function, namely a uniform random involution. Thus, our re-
sult violates the designer’s main claim (Theorem 8.1 in [1]). However, the
attacks can not be extended to the specifications of POET submitted to
the CAESAR competition.

Keywords: Authenticated Encryption, COBRA, POET, Distinguishing
Attack and Forging Attack.

1 Introduction

The common application of cryptography is to implement a secure channel be-
tween two or more users and then to exchange information over that channel.
These users can initially set up their one-time shared key. Otherwise, a typi-
cal implementation first calls a key-exchange protocol for establishing a shared
key or a session key (used only for the current session). Once the users have
a shared key, either through the initial key set-up or key-exchange, they use
this key to authenticate and encrypt the transmitted information using efficient
symmetric-key algorithms such as a message authentication code Mac(·), pseu-
dorandom function Prf(·) and (possibly tweakable symmetric-key) encryption
Enc(·) respectively. The encryption Enc provides privacy or confidentiality of the
plaintext M . The message authentication code Mac and pseudorandom function

P. Sarkar and T. Iwata (Eds.): ASIACRYPT 2014, PART I, LNCS 8873, pp. 126–140, 2014.
c© International Association for Cryptologic Research 2014

Forging Attacks on Two Authenticated Encryption Schemes 127

Prf provide data-integrity authenticating the transmitted message (M, A), a pair
of plaintext M and an associated data A. Mac also provides user-authenticity
(protecting from impersonation). An Authenticated Encryption scheme (or
simply AE) serves both of the purposes in an integrated manner. An authenti-
cated encryption scheme AE has two functionalities one of which, called tagged
encryption, essentially combines message authentication code and encryption,
and the other combines verification and decryption algorithms.

1. Tagged Encryption AE.enck: On an input message M from a message
space M⊆ {0, 1}∗ and an associated data A from an associated data space
D ⊆ {0, 1}∗, it returns a tagged ciphertext1 Z ∈ {0, 1}∗.

2. Verified Decryption AE.deck: On an input tagged ciphertext Z and an
associated data A, it returns a plaintext M when Z = AE.enck(M,A), called
valid tagged ciphertext. Otherwise, for all invalid tagged ciphertext Z, it
returns a special symbol ⊥.

Note that both algorithms take the shared key k from a keys-spaceK = {0, 1}Lkey

where Lkey denotes the key-size. The key includes keys for an underlying block-
cipher, masking keys etc. Some constructions derive more keys by invoking the
blockcipher with different constant inputs.

Privacy and Authenticity Advantage. Informally speaking, an AE scheme
is said to have privacy if the tagged ciphertext behave like a uniform random
string for any adaptively chosen plaintext. More formally, let A be an oracle
adversary which can make queries to AE.enc adaptively. Let $ be a random
oracle which returns a uniform random string for every new query. We define
the privacy advantage of A against AE to be

Advpriv
AE (A) :=

∣∣Pr[AAE.encK = 1]− Pr[A$ = 1]
∣∣

where the two probabilities are taken under $, K (usually chosen uniformly from
the key-space K) and the random coins of A. Similarly, we define the authenticity
advantage of A as

Advauth
AE (A) := Pr[AAE.encK = Z, AE.decK(Z) �= ⊥ and Z is fresh]

where the probability is taken under K and the random coins of A. By fresh, we
mean that Z is not a response of an encryption query of A.

1.1 Two AE Schemes COBRA and POET Submitted to CAESAR

CAESAR [1] is an ongoing competition for authenticated encryption schemes.
The final goal of the competition is to identify a portfolio of different authenti-
cated encryption schemes depending on different applications and environments.
Fifty seven schemes have been submitted. AES-COBRA and POET are two such

1 A tagged ciphertext usually consists of a ciphertext and tag. However, there may
not exist a clear separation between ciphertext and tag.

128 M. Nandi

submissions. Variants of these two schemes have been published before in FSE
2014. In [13] Guo et al. demonstrated a forging attack against POET making
only one encryption query. So the designers of POET modified it accordingly to
resist this forging attack and submitted the revised version to CAESAR.

1.2 Our Contribution

In this paper, we investigate the resistance of the two authenticated encryption
schemes COBRA and POET against forging and privacy attacks. The paper is
essentially divided in two sections: Section 4 describes the forging attack for
COBRA and Section 5 describes forging and privacy analysis on the POET-
mode and its parallel variant, called POET-m.

1. Attack on COBRA. In this paper, we show a forging attack on the submit-
ted version of AES-COBRA. In fact, the attack works for the mode COBRA
based on any blockcipher. Thus it disproves the claim stated in [4]. The au-
thenticity advantage of our proposed algorithm is about 1/2 and it makes
about 2n encryption queries where n is the plaintext size of the underlying
blockcipher.

2. Analysis of POET and POET-m. The designers of POET have recom-
mended a parallel version, denoted POET-m. We provide distinguishing and
forging attacks on it. Moreover, the designers claimed security of POET for
an arbitrary AXU or almost XOR universal hash function (the formal defini-
tion of AXU hash function is given in Section 2). Here we disprove their claim
by showing a distinguishing attack on a special choice of AXU, namely a uni-
form random involution. Thus, the security proof of the claims have flaws.
We also extend this to a forging attack. All these attack algorithms make
very few encryption queries and succeed with probability close to one.

We would like to note that while the COBRA is affected by our attack, the
instantiation of the POET candidate which uses specific AXU hash functions is
not affected.

2 Basics of Almost XOR Universal (AXU) Hash

2.1 Notation and Basics

In this paper, we fix a positive integer n which denotes the block size of the
underlying blockcipher. We mostly use AES (advanced encryption standard) [11]
with 128 bit key size as the underlying blockcipher and in this case n = 128.

Binary Field. We identify the set {0, 1}n as the binary field of size 2n. An n bit
string α = α0α1...αn−1, αi ∈ {0, 1} can be equivalently viewed as a polynomial
α(x) = α0 + α1x + · · · + αn−1x

n−1. For notational simplicity, we write the
concatenation of two binary strings α and β as αβ. The field addition between
two n bit strings is bit-wise addition ⊕ (we also use “+”). Let us fix a primitive

Forging Attacks on Two Authenticated Encryption Schemes 129

polynomial p(x) of degree n. Field multiplication between two n-bit strings α and
β can be defined as the binary string corresponding to the polynomial α(x)β(x)
mod p(x). We denote the multiplication of α and β as α · β. Thus, the zero
polynomial 0 and the constant 1 polynomial are the additive and multiplicative
identity respectively. Moreover, x is a primitive element since the polynomial
p(x) is primitive.

2.2 Almost XOR Universal (AXU) Hash

Universal hash functions and its close variants strongly universal, AXU-hash [9,
12, 18, 20–23] are information theoretic notions which are used as building blocks
of several cryptographic constructions, e.g., message authentication code [9, 24],
domain extension of pseudorandom function [5, 8], extractor [17], quasi-
randomness and other combinatorial objects [12, 21].

Definition 1 (AXU Hash Function). A function family FL : M → {0, 1}n
indexed by L ∈ L is called ε-AXU [18] if for all x �= x′ ∈ M and δ ∈ {0, 1}n,
PrL[FL(x) ⊕ FL(x

′) = δ] ≤ ε where L is chosen uniformly from L.

Examples. Field Multiplier. Let L ∈ {0, 1}n be chosen uniformly then
FL(x) = L · x (field multiplication on {0, 1}n) is 2−n-AXU.

Polynomial Hash. Polynomial hash [20] is one of the popular universal hash
which can be computed efficiently by Horner’s rule [14] (same as computation
of CBC message authenticated code [2, 6]).

Definition 2. [20] We define the polynomial-hash indexed by L ∈ {0, 1}n over
the domain ({0, 1}n)+ := ∪∞

i=1{0, 1}ni as

polyL(ad, ad−1, . . . , a0) = a0 + a1 · L · · ·+ ad−1 · Ld−1 + ad · Ld

where a0, a1, . . . , ad ∈ {0, 1}n and Li denotes L · L · · ·L (i times).

It is easy to see that the function mapping (a1, . . . , ad) to a1 ·L+ · · ·+ad ·Ld is
d
2n -AXU hash function over the domain ({0, 1}n)d. To see this, let (a1, . . . , ad) �=
(b1, . . . , bd) and c ∈ {0, 1}n. So,

c+ (a1 − b1) · L+ · · ·+ (ad − bd) · Ld

is a non-zero polynomial and hence it has at most d distinct roots of L.

Four-Round AES. The AES (for 128 bit keys) has ten rounds. However, it has
been shown that four-round AES has good differential properties. More formally,
Daemen et al. in [10] showed that four-round AES is a family of 2−113-AXU under
the simplified assumption that all four round keys are uniform and independent.

Uniform Random Involution. The uniform random function from {0, 1}n
to itself is an 2−n-AXU hash function. A function f : {0, 1}n → {0, 1}n is

130 M. Nandi

called an involution if f is inverse of itself (so it must be permutation). Let
In denote a random involution whose responses are defined according to the
following procedure: After responding to every query, it updates two sets: the
set of all queries D and the set of all responses R. On a query x �∈ D ∪ R, it
returns an element chosen uniformly from the set {0, 1}n\(D∪R). If x ∈ D then
it returns the previous response corresponding to x. Similarly, if x ∈ R then it
returns the previous query y ∈ D for which the response was x.

Lemma 1. The uniform random involution In (as defined above) is an 2
2n−2 -

AXU hash function.

Proof. Let x �= x′ ∈ {0, 1}n and δ ∈ {0, 1}n. Let us assume that x ⊕ x′ �= δ.
By conditioning In(x) = y, we must have In(x

′) = y ⊕ δ which happens with
probability at most 1/(2n − 2). Note that if y = x′ or y = x ⊕ δ then the
probability is zero. So Pr[In(x) ⊕ In(x

′) = δ] ≤ 1
2n−2 . Now assume x ⊕ x′ = δ.

So Pr[In(x) = x′] ≤ 1
2n−2 . When In(x) �= x′, by similar argument as before

we also have differential probability bounded above by 1
2n−2 . This proves the

Lemma. �

2.3 Combination of AXU Hash Functions

Compositions of AXU Hash Functions. Now we show that property of
being an AXU-hash function does not preserve under composition with same
key. In other words, there exists an ε-AXU FL for a “small” ε such that FL ◦FL

is not even δ-AXU for any δ < 1. In particular, if we choose FL to be a uniform
random involution then FL is 1

2n−2 -AXU whereas the composition FL ◦ FL is
the identity function. Trivially, a similar result holds if we apply the CBC mode
for a uniform random involution In. The CBC mode applied to a function f is
defined as follows:

CBCf (x1, . . . , xd) = yd, where yi = f(yi−1 ⊕ xi), 1 ≤ i ≤ d

and y0 = 0n. So when d = 2 and x2 = 0, CBCIn(x1, 0) = In(In(x1)) = x1 and
so CBCIn is not δ-AXU for any δ < 1. However, it is true for some specific
choices of FL, e.g. when FL is field multiplier. In this case, CBCFL is nothing
but the poly-hash which has been shown to be d/2n-AXU (see the paragraph
immediately after Definition 2).

Sum of AXU Hash Functions. Now we consider another method of domain
extension of AXU hash function. Given an ε-AXU FL, we define the sum hash

F sum
L (x1, . . . , x�) = FL(x1)⊕ · · · ⊕ FL(x�).

Note that if FL is linear (which is true for the field multiplier) then the sum hash
can be simplified as F sum

L (x1, . . . , x�) = FL(x1 ⊕ . . . ⊕ x�) for which a collision
can be found easily. So it can not be δ-AXU for any δ < 1. However, this does
not work when we consider a uniform random function or involution and we
concatenate a counter to message blocks.

Forging Attacks on Two Authenticated Encryption Schemes 131

3 Description of COBRA

COBRA is an authenticated encryption mode based on blockcipher. It was origi-
nally published in FSE 2014 [4]. Later the same mode with AES as the underlying
blockcipher, called AES-COBRA, was submitted to CAESAR [1]. The mode can
be viewed as hash then ECB (or electronic code-book) type encryption where
hash function is poly-hash and ECB is applied on a double block, i.e., 2n bit
plaintext. The double block encryption is defined by two-round Feistel struc-
ture [15].2 As it uses Feistel structure, it is inverse-free. In other words, even
though it is based on AES blockcipher, the decryption of COBRA does not re-
quire AES decryption.

Fig. 3.1. COBRA Modes for ciphertext and tag generation for three double blocks
message. U is obtained from associated data, N is nonce and L is the hash key.

3.1 Encryption Mode for COBRA

COBRA is defined for any messages of size at least n bits. Now we briefly describe
how the encryption algorithm of COBRA works for all inputs M ∈ ({0, 1}2n)+.
In addition to a message M , it also takes a nonce N ∈ {0, 1}n and an associated
data A, and outputs a tagged ciphertext (C, T) where |C| = |M | and T ∈ {0, 1}n.
Readers are referred to [1, 4] for complete description of the algorithm (i.e., how
it behaves for other input sizes). We write M = M1‖ · · · ‖Md for some posi-
tive integer d where M1, . . . ,Md ∈ {0, 1}2n. We also write Mi = (Mi[1],Mi[2])
where Mi[1],Mi[2] ∈ {0, 1}n are also called blocks and Mi’s are called double
blocks. Let βi’ and γi’s be independent uniform random (or pseudorandom)
permutations over {0, 1}n for all i ≥ 1. We describe the COBRA-mode based on
these permutations.3 It uses the two-round Feistel structure which is defined as
follows:

LRi(X [1], X [2]) = (Y [1], Y [2]), X [1], X [2] ∈ {0, 1}n

2 The 3 and 4 rounds security analysis is given in [15] (see [16] for characterization of
Luby-Rackoff constructions).

3 These are actually derived from a single blockcipher using the standard masking
algorithm (i.e., XEX construction [19]).

132 M. Nandi

where

1. Y [1] = X [1]⊕ βi(X [2]) and
2. Y [2] = X [2]⊕ γi(X [1]).

It is easy to see that it is invertible and the inverse function 2LR−1
i (Y [1], Y [2]) =

(X [1], X [2]) where X [2] = γi(Y [1])⊕ Y [2] and X [1] = βi(X [2])⊕ Y [1].

Algorithm: COBRA Encryption
Input: (M1[1],M1[2], . . . ,Md[1],Md[2]) ∈ ({0, 1}n)2d, N ∈ {0, 1}n
Output: (C1, C2, ..., Cd) ∈ ({0, 1}2n)d

1 for i = 1 to d

2 Pi[1] = polyL(1, N,M1[1],M1[2], . . . ,Mi[1]);

3 Pi[2] = polyL(1, N,M1[1],M1[2], . . . ,Mi[1],Mi[2]);

4 Ci = LRi(Pi[1], Pi[2]);

5 end for loop

6 Return (C1, C2, ..., Cd)

Algorithm 1. COBRA encryption algorithm for a nonce N ∈ {0, 1}n, and a messages
M of sizes multiple of 2n. Note that the associated data has no influence on the
ciphertext. It is used for computing the tag.

3.2 Tag Generation and Verified Decryption Algorithm

The final tag T is computed from nonceN and U (depends only on the associated
data A) and

S :=
d⊕

i=1

(Pi[1]⊕ Pi[2]⊕ Ci[1]⊕ Ci[2]).

We simply denote the tag by T (N,U, S). One can find the details of the construc-
tion of T in [1, 4]. The verified decryption algorithm takes a tagged ciphertext
(C1, . . . , Cd, T) where Ci’s are double blocks and T ∈ {0, 1}n. It works as follows:

1. It first computes Pi = LR−1
i (Ci), 1 ≤ i ≤ d.

2. It returns ⊥ if T �= T (N,U, S).

3. Else it returns (M1, . . . ,Md) where Mi[2] = L · Pi[1] ⊕ Pi[2] and Mi[1] =
L · Pi−1[2]⊕ Pi[1], 1 ≤ i ≤ d.

Forging Attacks on Two Authenticated Encryption Schemes 133

4 Forging Attack on COBRA

We first state the following fact which plays key role in our forging attack.

Fact 1.[7] Let h ∈ {0, 1}n be a fixed element and h1
0, h

1
1, . . . , h

s
0, h

s
1 be chosen

uniformly from {0, 1}n. Then, the probability that there exists b1, . . . , bs ∈ {0, 1}
such that

⊕
i h

i
bi

= h is at least 1 − 2n−s. Furthermore, the sequence b1, . . . , bs
can be efficiently computed.

Key Idea of the Forging Attack. Now we describe the main idea of our
forging attack. Our attack fixes nonce and associated data and so we simply
denote the tag T (N,U, S) by T (S). Suppose M0 is an encryption query with
T 0 := T (S0) as a tag where S0 denotes the S-value for the message M0. Suppose
C0

i and C1
i are the two ith double-block ciphertexts for two different queries,

1 ≤ i ≤ s. By Fact 1, we can find b1, . . . , bs such that ⊕s
i=1(C

bi
i [0]⊕Cbi

i [1]) = S0.

So if we can choose messages such that ⊕s
i=1(P

bi
i [0]⊕P bi

i [1]) = 0n happens with

high probability then (Cb1
1 , . . . , Cbs

s , T 0) is a valid tagged ciphertext. As poly-
hash is linear, we can ensure that ⊕s

i=1(P
bi
i [0] ⊕ P bi

i [0]) = 0n holds with high
probability for suitably chosen queries.

Forging Algorithm F0. Now let us fix a positive integer � whose exact value
will be determined later. We define the following messages

M i := ((0, 0)i−1, (0, 1), (0, 0)�−i), 1 ≤ i ≤ �.

Let M0 be the all zero block message. Our forging algorithm makes �+ 1 many
queries, namely M i’s.

Forging Algorithm F0 for COBRA.

1. It makes encryption queries M i and obtains responses (Ci, T i), 0 ≤ i ≤ �.

2. Let C0 = (C0
1 [1], C

0
1 [2], · · · , C0

� [1], C
0
� [2]) and hi

0 = C0
i [1]⊕ C0

i [2].

3. For i = 1 to �
let Ci = (Ci

1[1], C
i
1[2], · · · , Ci

�[1], C
i
�[2]) and hi

1 = Ci
i [1]⊕ Ci

i [2].

4. Let h = h�
0 ⊕ (

⊕�−1
i=1 hi

0) (the sum of the ciphertext blocks for M0).

5. Based on Fact 1, it finds a sequence b1, . . . , b�−1 ∈ {0, 1},
⊕�−1

i=1 hi
bi
= h�

1⊕h.

6. If there is no such sequence then it aborts else it proceeds.
7. If b1 ⊕ · · · ⊕ b�−1 �= 1 then it aborts.

8. Else it makes the forgery (C∗ := (C∗
1 , . . . , C

∗
�), T

0) where for all 1 ≤ i ≤ �−1

C∗
i =

{
Ci

i [1]‖Ci
i [2] if bi = 1,

C0
i [1]‖C0

i [2] if bi = 0.

and C∗[�] = C�
� [1]‖C�

� [2].

134 M. Nandi

Now we compute the success probability of the forging attack. The forging
algorithm aborts in two cases. We show that the abort probabilities are small.
Moreover, given that it does not abort, we also show that the forging attack
works perfectly.

Theorem 1. The forgery algorithm F0 has success probability at least 1
2 × (1−

2−n) when we set � = 2n.

Proof. In the ideal case, hi
0 and hi

1 are independently and (almost) uniformly
drawn from {0, 1}n as these are xor of two blocks of the ith double-block ci-
phertext for fresh queries M i and M0 respectively. Note that M i and M0 have
different double block values in the ith position. By Fact 1, with probability at
least 1/2, we can efficiently find b1, . . . , b�−1 such that ⊕�−1

j=1h
j
bj

= h⊕ h�
1.

Claim. Let us assume that we have found such b1, . . . , b�−1 ∈ {0, 1} which
happens with probability at least 1− 2n−�. Then,

b1 ⊕ · · · ⊕ b�−1 = 1⇒ (C∗, T) is a valid ciphertext tag pair.

We first note that (C∗, T) is a fresh tagged ciphertext as the last double block
of ciphertext is different from those of all other tagged ciphertexts. To prove
that tagged ciphertext is valid, we first compute S∗ and S0 for the given forged
ciphertext and M0 respectively where S0 denotes the S values for the message
M0.

Computation of S0. Computation of S0 is straightforward from its definition.

S0 := (⊕�
j=1(P

0
j [1]⊕ P 0

j [2]))⊕ (⊕�
i=1(C

0
i [1]⊕ C0

i [2]).

Now note that P 0
i [1] = polyL(1, N, 02i−2, 0) and P i

0 [2] = polyL(1, N, 02i−1, 0).

Let Σ =
⊕�

i=1(polyL(1, N, 02i−1, 0)⊕ polyL(1, N, 02i−2, 0). So

S0 = h⊕ (

�⊕
i=1

(polyL(1, N, 02i−1, 0)⊕ polyL(1, N, 02i−2, 0)) = h⊕Σ.

Computation of S∗. Now we compute S∗ under the assumption that the first
abort does not hold, i.e., we have found b1, . . . , b�−1 such that ⊕�−1

j=1h
j
bj

= h⊕h�
1.

Note that the xor of ciphertext blocks which is equal to ⊕�−1
j=1h

j
bj
⊕ h�

1 = h.

Now we decrypt the forged ciphertext double blocks by applying 2LR−1. Let
P ∗
i := (P ∗

i [1], P
∗
i [2]) be the ith double block of forged ciphertext after we apply

Luby-Rackoff two round decryption. Similarly, we denote Pi values for M
j query

as P j
i . As all ciphertext double blocks C∗

i have appeared in responses of queries
at the same position, the P ∗

i values, 1 ≤ i ≤ � are given as below.

P ∗
i =

{
P i
i [1]‖P i

i [2] if bi = 1,

P 0
i [1]‖P 0

i [2] if bi = 0.

Forging Attacks on Two Authenticated Encryption Schemes 135

and P ∗
� = P �

� [1]‖P �
� [2]. Note that

1. P i
i [1] = polyL(1, N, 02i−1) and P i

i [2] = polyL(1, N, 02i−11),
2. P 0

i [1] = polyL(1, N, 02i−1) and P 0
i [2] = polyL(1, N, 02i).

By linearity of polyL, we can simply write for 1 ≤ i ≤ �− 1,

1. P ∗
i [1]⊕ P ∗

i [2] = polyL(1, N, 02i−1)⊕ polyL(1, N, 02i)⊕ bi and
2. P ∗

� [1]⊕ P ∗
� [2] = polyL(1, N, 02�−1)⊕ polyL(1, N, 02�)⊕ 1.

So
⊕�

j=1(P
∗
j [1]⊕ P ∗

j [2]) = Σ ⊕ 1⊕ (⊕�−1
j=1bj) and

S∗ = ⊕(Σ ⊕ 1⊕ (⊕�−1
j=1bj).

Now if the second abort does not hold then (i.e., ⊕jbj = 1) we have S∗ = h⊕Σ =
S0. This proves the claim.

Probabilities of the Abort Events. Now we informally argue that the
second abort probability is Pr[⊕�−1

j=1bj = 1] = 1/2. Note that Ci
i [1], C

i
i [2], C

0
i [1],

C0
i [2]’s are independent and so are hi

0, h
i
1 for all 1 ≤ i ≤ �. Thus by conditioning

h�
0, h

�
1, choices of bi’s are independent and uniform. So the probability is 1/2. By

Fact 1, the first abort does not hold with probability 1− 2n−� and now we claim
the second abort does not hold with probability 1/2. Hence success probability
of forging is at least 1

2 (1− 2n−�) which is almost 1/2 if we set � = 2n. �

Remark 1. Note that in the above attack, we can verify whether the forged
ciphertext tag pair is valid without querying it. So we can repeat this process
n times (we choose bit 0 or 1 in different position instead of the last bit as
described above) to succeed with probability of about 1− 2−n.

Remark 2. In the above analysis we make several probabilistic assumptions to
make the analysis clean and simple. Here we list these.

1. We assume that hi
j ’s are independent and uniform. However, for a fixed

i, hi
1 and hi

0 are not completely independent as these are generated from
ideal online random permutation. However, for these 4n outputs Ci

i [1], C
i
i [2],

C0
i [1], C

0
i [2] these are statistically very close to the uniform distribution with

distance about
(
4n
2

)
/2n.

2. True distributions of bi’s may not be uniform and independent. It actually
depends on how we define bi’s as there could be more than one choice of bi’s.
However, all of these choices would lead to abort with probability of about
1/2 or less.

5 Security Analysis of POET and POET-m

In this section we analyze POET and its parallel variant POET-m for some
positive integer m.

136 M. Nandi

Algorithm: POET-m Encryption
Input: (M1,M2, ...,M�) ∈ ({0, 1}n)�
Output: (C1, C2, ..., C�, T) ∈ ({0, 1}n)�+1

1 for i = 1 to �− 1
2 Xi = τ ⊕ FLtop (M1 ⊕ L1)⊕ FLtop (M2 ⊕ L2)⊕ · · · ⊕ FLtop(Mi ⊕ Li).
3 Yi = EK(Xi);
4 Ci = FLbot(Yi−1 ⊕ Yi)⊕ Li;
5 end for loop
6 X� = FLtop (X�−1)⊕M�.
7 Y� = EK(X�);
8 C� = FLbot (Y�−1 ⊕ Y�);
9 X�+1 = FLtop (X�)⊕ S ⊕ τ.

10 Y�+1 = EK(X�+1);
11 T = FLbot(Y�)⊕ Y�+1 ⊕ S;
12 Return (C1, C2, ..., C�, T)

Algorithm 2. POET-m encryption algorithm for a messages M of sizes �n with
� < m. Let τ be an n-bit element which is derived from associated data. The elements
L1, . . . , Lm−1 are derived keys and S is a key derived from length of the message.

Fig. 5.1. POET-m Mode for ciphertext and tag generation. X0 = Y0 = τ is obtained
from the associated data. We denote FLtop and FLbot simply by Ft and Fb respectively.

Forging Attacks on Two Authenticated Encryption Schemes 137

5.1 POET-m and Its Security Analysis

POET-m. We first describe ciphertext generation algorithm of parallel version
POET-m. We consider FL to be the field multiplier hash in which message block
is multiplied by the key L. We describe how POET-m works for all messages
(M1, . . . ,M�) with � < m. Let τ be an n-bit element which is derived from
associated data. The elements L1, . . . , Lm−1 are keys derived by invoking pseu-
dorandom permutation on different constants (see [1, 3] for details). Note that
the input of the blockcipher Xi is a sum hash. When we instantiate the AXU
by field multiplier we can simplify the sum hash (due to linearity). We have

Xi = τ ⊕ Ltop · (M1 ⊕ · · · ⊕Mi)⊕ L′

where L′ is the remaining part depending only on keys. We use this expression
to mount the attack.

Privacy Attack on POET-m. We first demonstrate a distinguishing attack on
POET-m distinguishing it from uniform random online cipher when m > 4. We
make two queries

1. M = (M1,M2,M3,M4) and
2. M ′ = (M ′

1,M
′
2,M

′
3 := M3,M

′
4) such thatM1 �= M ′

1 andM1⊕M2 = M ′
1⊕M ′

2.

We denote the corresponding internal variables by X,C’s and X ′, C′’s. It is easy
to see that X2 = X ′

2 and X3 = X ′
3 and hence C3 = C′

3 with probability one.
This equality of third ciphertext block happens with probability 2−n for uniform
random online cipher. So we have a distinguisher which succeeds with probability
almost one. The presence of fourth block makes sure that Xi’s are defined as
above (as the final block is processed differently). We can keep all other inputs,
for example nonce, associated data etc., the same.

Forging Attack on POET-m. Now we see how we can exploit the above
weakness in sum of AXU hash to mount a forging attack on the construction.
We can forge when the number of message blocks is less than m and the last
block is complete (as described in Algorithm 2). We first simply describe how
the decryption algorithm works. Assume m > 3 and let C1, C2, C3, T be an input
for decryption where Ci, T ∈ {0, 1}n. We note the following observations:

1. Yi depends on C1 ⊕ · · · ⊕ Ci for i ≤ 3.
2. Verification algorithm depends on X3, Y3, T and some fixed values depending

on associated data and key.

We make one query M = (M1,M2,M3) and obtain the response (C, T) where
C = (C1, C2, C2). Let C

′ = (C′
1, C

′
2, C

′
3 := C3) �= C such that C1⊕C2 = C′

1⊕C′
2.

We denote the corresponding internal variable by X,C’s and X ′, C′’s. It is easy
to see that by choices of C′ and the first observation Y3 = Y ′

3 and so X3 = X ′
3.

Again by the second observation, we see that verification algorithm depends on
X3, Y3, T (or X ′

3, Y
′
3 , T

′) and some fixed information based on key and associated

138 M. Nandi

data. So, whenever verification algorithm passes for X3, Y3, it must pass for
X ′

3, Y
′
3 . Thus, (C

′
1, C

′
2, C3, T) is a valid forge.

Note that the above attack is a single query forging attack and hence it is
also applicable to situations where nonce can not be reused.

5.2 Security Analysis of POET mode

POET: We now describe ciphertext generation algorithm of POET, i.e. POE the
underlying encryption algorithm. In [1], the following theorem (restated) was
claimed:

Fig. 5.2. POET Mode for ciphertext and tag generation. X0 = Y0 = τ is obtained
from the associated data. In this figure, let Ft and Fb any independent ε-AXU hash
functions.

Theorem 8.1 of POET Submission in [1]. Let E be a uniform random
permutation, Ft and Fb be independent ε-AXU hash functions. Then, for any
privacy adversary A making at most q queries of a total length of at most σ
blocks, we have

Advpriv

POETE (A) ≤ εσ2 +
σ2

2n − σ
.

Here we consider Ft and Fb to be any arbitrary AXU functions as men-
tioned above in Theorem 8.1 of the submission POET in [1]. Given messages
(M1, . . . ,M�), we compute for 1 ≤ i ≤ �− 1 as follows:

Ci = Fb(Yi−1)⊕ Yi, Yi = EK(Xi), Xi = Ft(Xi−1)⊕Mi

where X0 = Y0 = τ . The last ciphertext block is computed differently and we do
not need its description for our distinguishing attack. Note that Xi is computed
by CBCFt . If Ft is a uniform random involution then as we have seen before,
after applying CBC mode to F it does not remain δ-AXU for all δ < 1. We use
this property to obtain a distinguisher.

Forging Attacks on Two Authenticated Encryption Schemes 139

Privacy Attack on POET with Uniform Random Involution Ft. Now we
demonstrate a privacy attack on POET distinguishing it from uniform random
cipher when FL is instantiated with uniform random involution. In this attack
we only make a single query and so it is also nonce-respecting. This would violate
Theorem 8.1 of the submission POET in [1] (online permutation security of POE).
We believe that the theorem remains valid when FL is instantiated with field
multiplier (however, proof needs to be revised). The attack is described below.

Claim. Pr[C2 = C4] = 1 where (C1, C2, . . .) is the response of (M1, 0, 0, 0, · · ·)
to POET with involution Ft.

We prove the claim by using the involution property of F . We can easily see
that

1. X3 = F (F (X1)) = X1 and
2. similarly, X4 = X2 = F (X1).

So Y1 = Y3 and Y2 = Y4 and hence C2 = C4. Note, we can choose any arbitrary
nonce and associated data. This proves the claim.

In an ideal case, we observe C2 = C4 with probability 2−n. So the distinguisher
of POET has advantage at least 1− 2−n.

6 Conclusion

In this paper, we demonstrate forging attack on COBRA with practical com-
plexity. Hence the theorem proved in [4] is wrong. We also demonstrate forging
and distinguishing attack on POET-m for one particular recommended choice of
AXU hash function. We also disprove the security claim for POET by presenting
a distinguishing attack on a different choice of AXU hash function (not in the
recommended list). However, these attacks on POET do not carry over to the
versions submitted to CAESAR.

Acknowledgement. This work is supported by Centre of Excellence in Cryp-
tology at Indian Statistical Institute, Kolkata. Author would also like to thank
all anonymous reviewers who provided us very useful comments to improve the
quality of the paper.

References

1. CAESAR submissions (2014), http://competitions.cr.yp.to/caesar-

submissions.html

2. ISO/IEC 9797. Data cryptographic techniques-Data integrity mechanism using a
cryptographic check function employing a blockcipher algorithm (1989)

3. Abed, F., Fluhrer, S., Forler, C., List, E., Lucks, S., McGrew, D., Wenzel, J.:
Pipelineable on-line encryption. In: Fast Software Encryption. LNCS. Springer
3:320–337 (to appear)

4. Andreeva, E., Luykx, A., Mennink, B., Yasuda, K.: Cobra: A parallelizable authen-
ticated online cipher without block cipher inverse. In: Fast Software Encryption.
LNCS. Springer (to appear, 2014)

http://competitions.cr.yp.to/caesar-submissions.html
http://competitions.cr.yp.to/caesar-submissions.html

140 M. Nandi

5. Bellare, M.: New proofs for nmac and hmac: Security without collision-resistance.
IACR Cryptology ePrint Archive, 2006:43 (2006)

6. Bellare, M., Kilian, J., Rogaway, P.: The security of cipher block chaining. In:
Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 341–358. Springer,
Heidelberg (1994)

7. Bellare, M., Micciancio, D.: A new paradigm for collision-free hashing: Incremen-
tality at reduced cost. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233,
pp. 163–192. Springer, Heidelberg (1997)

8. Black, J., Halevi, S., Krawczyk, H., Krovetz, T., Rogaway, P.: UMAC: Fast and
Secure Message Authentication. In: Wiener, M. (ed.) CRYPTO 1999. LNCS,
vol. 1666, pp. 216–233. Springer, Heidelberg (1999)

9. Carter, L., Wegman, M.N.: Universal Classes of Hash Functions. J. Comput. Syst.
Sci. 18(2), 143–154 (1979)

10. Daemen, J., Lamberger, M., Pramstaller, N., Rijmen, V., Vercauteren, F.: Compu-
tational aspects of the expected differential probability of 4-round aes and aes-like
ciphers. Computing 85(1-2), 85–104 (2009)

11. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryp-
tion Standard (2002), http://csrc.nist.gov/CryptoToolkit/aes/rijndael/

Rijndael-ammended.pdf
12. Gilbert, E.N., MacWilliams, F.J., Sloane, N.J.: Codes which detect deception. Bell

System Technical Journal 53(3), 405–424 (1974)
13. Guo, J., Jean, J., Peyrin, T., Wang, L.: Breaking poet authentication with a sin-

gle query. Technical report, Cryptology ePrint Archive, Report 2014/197 (2014),
http://eprint.iacr.org

14. Horner, W.G.: Philosophical Transactions. Royal Society of London 109, 308–335
(1819)

15. Luby, M., Rackoff, C.: How to construct pseudo-random permutations from pseudo-
random functions. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218,
pp. 447–447. Springer, Heidelberg (1986)

16. Nandi, M.: The characterization of luby-rackoff and its optimum single-key vari-
ants. In: Gong, G., Gupta, K.C. (eds.) INDOCRYPT 2010. LNCS, vol. 6498,
pp. 82–97. Springer, Heidelberg (2010)

17. Nisan, N., Zuckerman, D.: Randomness is linear in space. J. Comput. Syst.
Sci. 52(1), 43–52 (1996)

18. Rogaway, P.: Bucket hashing and its application to fast message authentication.
In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 29–42. Springer,
Heidelberg (1995)

19. Rogaway, P.: Efficient instantiations of tweakable blockciphers and refinements to
modes ocb and pmac. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329,
pp. 16–31. Springer, Heidelberg (2004)

20. Shoup, V.: On fast and provably secure message authentication based on univer-
sal hashing. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 313–328.
Springer, Heidelberg (1996)

21. Stinson, D.R.: On the connections between universal hashing, combinatorial de-
signs and error-correcting codes. Congressus Numerantium 114, 7–27 (1996)

22. Stinson, D.R.: Universal hashing and authentication codes. In: Feigenbaum, J. (ed.)
CRYPTO 1991. LNCS, vol. 576, pp. 74–85. Springer, Heidelberg (1992)

23. Stinson, D.R.: Universal hashing and authentication codes. Des. Codes Cryptog-
raphy 4(4), 369–380 (1994)

24. Wegman, M.N., Carter, L.: New hash functions and their use in authentication
and set equality. J. Comput. Syst. Sci. 22(3), 265–279 (1981)

http://csrc.nist.gov/CryptoToolkit/aes/rijndael/Rijndael-ammended.pdf
http://csrc.nist.gov/CryptoToolkit/aes/rijndael/Rijndael-ammended.pdf
http://eprint.iacr.org

Low Probability Differentials and the

Cryptanalysis of Full-Round CLEFIA-128�

Sareh Emami1, San Ling2, Ivica Nikolić2, Josef Pieprzyk3

and Huaxiong Wang2

1 Macquarie University, Australia
2 Nanyang Technological University, Singapore

3 Queensland University of Technology, Australia

Abstract. So far, low probability differentials for the key schedule of
block ciphers have been used as a straightforward proof of security against
related-key differential analysis. To achieve resistance, it is believed that
for cipher with k-bit key it suffices the upper bound on the probabil-
ity to be 2−k. Surprisingly, we show that this reasonable assumption is
incorrect, and the probability should be (much) lower than 2−k. Our
counter example is a related-key differential analysis of the well estab-
lished block cipher CLEFIA-128. We show that although the key sched-
ule of CLEFIA-128 prevents differentials with a probability higher than
2−128, the linear part of the key schedule that produces the round keys,
and the Feistel structure of the cipher, allow to exploit particularly cho-
sen differentials with a probability as low as 2−128. CLEFIA-128 has 214

such differentials, which translate to 214 pairs of weak keys. The prob-
ability of each differential is too low, but the weak keys have a special
structure which allows with a divide-and-conquer approach to gain an
advantage of 27 over generic analysis. We exploit the advantage and give
a membership test for the weak-key class and provide analysis of the
hashing modes. The proposed analysis has been tested with computer
experiments on small-scale variants of CLEFIA-128. Our results do not
threaten the practical use of CLEFIA.

Keywords: CLEFIA, cryptanalysis, weak keys, CRYPTREC, differen-
tials.

1 Introduction

CLEFIA [13] is a block cipher designed by Sony. It is advertised as a fast en-
cryption algorithm in both software and hardware and it is claimed to be highly
secure. The efficiency comes from the generalized Feistel structure and the byte
orientation of the algorithm. The security is based on the novel technique called
Diffusion Switching Mechanism, which increases resistance against linear and dif-
ferential attacks, in both single and related-key models. These and several other
attractive features of CLEFIA-128 have been widely recognized, and the cipher

� The researcher is supported by the Singapore National Research Foundation Fellow-
ship 2012 NRF-NRFF2012-06.

P. Sarkar and T. Iwata (Eds.): ASIACRYPT 2014, PART I, LNCS 8873, pp. 141–157, 2014.
c© International Association for Cryptologic Research 2014

142 S. Emami et al.

has been submitted for standardization (and already standardized) by several
bodies: CLEFIA was submitted to IETF (Internet Engineering Task Force) [1],
it is on the Candidate Recommended Ciphers List1 of CRYPTREC (Japanese
government standardization body), and it is one of the only two2 lightweight
block ciphers recommended by the ISO/IEC standard [8].

A significant body of analysis papers has been published on the round-reduced
versions of CLEFIA [18,19,14,17,15,10,16,9,6], all for the single-key model, but
the analysis based on related keys is missing. Often this type of analysis can
cover a higher number of rounds but requires the cipher to have a relatively sim-
ple and almost linear key schedule. CLEFIA, however, has a highly non-linear
key schedule, equivalent roughly to 2/3 of the state transformation and designed
with an intention to make the cipher resistant against analysis based on related-
key differentials. Using a widely accepted approach, the designers have proved
that no such analysis could exist as the key schedule has only low probability
(≤ 2−128 for CLEFIA with 128-bit keys) differential characteristics. Note, we
will not try to exploit the fact that some characteristics can be grouped into a
differential that has a much higher probability than the individual characteris-
tics. Our results go a step further and we show that key schedule differentials
with a probability as low as 2−128, can still be used in analysis. This happens
when they have a special structure, namely, the input/output differences of the
differentials are not completely random, but belong to a set that, as in the case
of CLEFIA-128, is described with a linear relation.

We exploit the special form of the key schedule: a large number of non-linear
transformations at the beginning of the key schedule is followed by light linear
transformations that are used to produce the round keys. In the submission paper
of CLEFIA-128, the proof of related-key security is based only on the non-linear
part as this part guarantees that the probability of any output difference is 2−128.
In contrast, our analysis exploits the linear part and we show that there are 214

of the above low probability differences which, when supplied to the linear part,
produce a special type of iterative round key differences. CLEFIA-128 is a Feistel
cipher and, as shown in [5], iterative round key differences lead to an iterative
differential characteristic in the state that holds with probability 1. Therefore
we obtain related-key differentials with probability 1 in the state and 2−128 in
the key schedule. The low probability (2−128) of each of the 214 iterative round
key differences means that for each of them there is only one pair of keys that
produces such differences, or in total 214 pairs for all of them – these pairs form
the weak-key class of the cipher. When we target each pair independently, we
cannot exploit the differentials. However, the whole set of 214 pairs has a special
structure and we can target independently two smaller sets of sizes 27 and thus
obtain the advantage of 27 over generic analysis. As we will see in the paper,
the special structure of the weak key class is due to the linear part of the key
schedule, therefore we exploit the weakness of this part twice (the first time for
producing iterative round key differences).

1 This is the final stage of evaluation, before becoming CRYPTREC standard.
2 The second one is PRESENT [7].

Low Probability Differentials and the Cryptanalysis of Full-Round CLEFIA-128 143

We further analyze the impact of the 214 pairs of keys and the advantage of 27

that we gain over generic analysis. First we show that CLEFIA-128 instantiated
with any pair of weak keys can be analyzed, namely we present a membership test
for the weak class. Next, for the hashing mode of CLEFIA-128, i.e. when the cipher
is used in single-block-length hash constructions, we show that differential multi-
collisions [4] can be produced with a complexity lower than for an ideal cipher.

The paper is organized as follows. We start with a description of
CLEFIA-128 given in Section 2. We present the main results related to the anal-
ysis of the key schedule and the production of the class of 214 pairs of weak-keys
in Section 3. The differential membership test is given in Section 4. We present
the analysis of the hashing mode of the cipher in Section 5 and in Section 6 we
conclude the paper.

2 Description of CLEFIA-128

CLEFIA is a 128-bit cipher that supports 128, 192, and 256-bit keys. We analyze
CLEFIA with 128-bit keys that is referred as CLEFIA-128. Before we define the
cipher, we would like to make an important note. To simplify the presentation,
we consider CLEFIA-128 without whitening keys 3. Our analysis applies to the
original CLEFIA-128 as shown in Appendix B. We proceed now with a brief
description of CLEFIA-128. It is an 18-round four-branch Feistel (see Fig. 3 of
Appendix A) that updates two words per round. A definition of the state update
function is irrelevant to our analysis (see [13] for a full description) and further
we focus on the key schedule only.

A 128-bit master key K is input to a 12-round Feistel GFN4,12(with the same
round function as the one in the state, refer to Fig. 3 of Appendix A) resulting
in a 128-bit intermediate key L. All the 36 round keys4 RKi, i = 0, . . . , 35 are
produced by applying a linear transformation to the master key K and the
intermediate key L as shown below (⊕ stands for the XOR operation and || is
concatenation):

RK0||RK1||RK2||RK3 ← L ⊕S1,

RK4||RK5||RK6||RK7 ← Σ(L)⊕K ⊕S2,

RK8||RK9||RK10||RK11 ← Σ2(L) ⊕S3,

RK12||RK13||RK14||RK15 ← Σ3(L)⊕K ⊕S4,

RK16||RK17||RK18||RK19 ← Σ4(L) ⊕S5,

RK20||RK21||RK22||RK23 ← Σ5(L)⊕K ⊕S6,

RK24||RK25||RK26||RK27 ← Σ6(L) ⊕S7,

RK28||RK29||RK30||RK31 ← Σ7(L)⊕K ⊕S8,

RK32||RK33||RK34||RK35 ← Σ8(L) ⊕S9,

3 There are four whitening keys: two are added to the plaintext, and two to the
ciphertext.

4 Two round keys are used in every round, thus there are 2 · 18 = 36 keys in total.

144 S. Emami et al.

where Si are predefined 128-bit constants, and Σ is a linear function defined fur-
ther. In short, each four consecutive round keys RK4i, RK4i+1, RK4i+2, RK4i+3

are obtained by XOR of multiple applications of Σ to L, possibly the master key
K, and the constant Si. The resulting 128-bit sequence is divided into four 32-bit
words and each is assigned to one of the round key words. The linear function
Σ (illustrated in Fig. 1) is a simple 128-bit permutation used for diffusion. The
function Σ : {0, 1}128 → {0, 1}128 is defined as follows:

X128 → Y128

Y = X [120− 64]X [6− 0]X [127− 121]X [63− 7],

where X [a− b] is a bit sequence from the a-th bit to the b-th bit of X .

Fig. 1. The function Σ. The numbers denote the size of the bit sequence.

We would like to make a note about the notations of XOR differences used
throughout the paper. To emphasize that a difference is in the word X , we use
ΔX , otherwise, if it irrelevant or clear from the context we use simply Δ.

3 Weak Keys for CLEFIA-128

In the related-key model, the security of a cipher is analyzed by comparing two
encryption functions obtained by two unknown but related keys. Given a specific
relation5 between keys, if the pair of encryption functions differs from a pair of
random permutations, then the cipher has a weakness and can be subject to
related-key analysis. Sometimes the analysis is applicable only when the pairs
of related keys belong a relatively small subset of all possible pairs of keys. The
subset is called the weak-key class of the cipher and the number of pairs of keys
is the size of the class.

We will show that a weak-key class in CLEFIA-128 consists of pairs of keys
(K, K̃ = K ⊕ L1(D)), where D can take approximately 214 different 128-bit
values, such that for any plaintext P , the following relation holds:

EK(P)⊕ EK̃(P ⊕ L2(D)) = L3(D), (1)

5 Some relations are prohibited as they lead to trivial attacks, see [3] for details.

Low Probability Differentials and the Cryptanalysis of Full-Round CLEFIA-128 145

where L1,L2,L3 are linear functions defined below. The property can be seen as
a related-key differential, with the difference L1(D) for the master key, L2(D)
for the plaintext and L3(D) for the ciphertext. From Equation (1), it follows
that once D is defined, the probability of the differential is precisely one.

In the state of CLEFIA-128, the probability of a differential characteristic is
one if in each Feistel round, there is no incoming difference to the non-linear
round function. This happens when the differences in the state and in the round
key cancel each other. Consequently, the input difference to the round function
becomes zero6. An illustration of the technique for four rounds of CLEFIA-128
is given in Fig. 2. Notice that the input state difference at the beginning of the
first round (Δ1, Δ2, Δ3, Δ4) is the same as the output difference after the fourth
round, i.e. it is iterative with the period of 4 rounds. Therefore, we will obtain
a differential characteristic with probability 1 (in the state) for the full-round
CLEFIA-128 if we can produce 4-round iterative round key differences.

Fig. 2. Iterative related-key differential characteristic for 4 rounds of the CLEFIA-128

that is true with probability 1. The symbols Δ1,Δ2,Δ3,Δ4 denote word differences.

Each round of the state uses two round keys, thus the above 4-round
iterative characteristic requires the round key differences to have a period
of 8, i.e. ΔRKi = ΔRKi+8. Moreover, an additional condition has to

6 A similar idea is given in [5].

146 S. Emami et al.

hold. Note that in Fig. 2, the differences in the consecutive round keys are
(Δ1, Δ3, Δ2, Δ4, Δ3, Δ1, Δ4, Δ2), that is among the 8 round key differences, the
first four are different, while the remaining four are only permutations of the
first. These two conditions can be summarized as follows:

Condition 1 - For all i, it should hold ΔRKi = ΔRKi+8.
Condition 2 - For all i divisible by 8, it should hold ΔRKi = ΔRKi+5,

ΔRKi+1 = ΔRKi+4, ΔRKi+2 = ΔRKi+7, ΔRKi+3 = ΔRKi+6. This can
be rewritten as (ΔRKi+4, ΔRKi+5, ΔRKi+6, ΔRKi+7)=π(ΔRKi, ΔRKi+1

, ΔRKi+2, ΔRKi+3), where π is 4-word permutation (0, 1, 2, 3)→ (1, 0, 3, 2).

Further we show how to find the set of differences for which the two conditions
hold.

Condition 1. From the definition of the key schedule

RK8i+0||RK8i+1||RK8i+2||RK8i+3 ← Σ2i(L) ⊕ S2i+1

RK8i+8||RK8i+9||RK8i+10||RK8i+11 ← Σ2i+2(L) ⊕ S2i+3,

it follows that Condition 1 for the first 4 (out of 8) round key differences in an
octet of round keys can be expressed as

ΔL = Σ2(ΔL). (2)

We will obtain the same equation if we consider the remaining 4 round key dif-
ferences. To satisfy Condition 1, we have to find possible values for ΔL such that
Equation (2) holds. This can be achieved easily as (2) is a system of 128 linear
equations with 128 unknowns (refer to the definition of Σ), and has solutions of
the form (expressed as concatenation of bit sequences):

ΔL = a1a2tb2b1b2b1b2b1b2a2a1a2a1a2a1a2tb1b2, (3)

where a1, a2 are any 7-bit values, t is the most significant bit of a1 and the 7-bit
values b1, b2 are defined as tb2b1 = a1a2t. Thus there are 27 · 27 = 214 solutions.

Condition 2. From the definition of the key schedule

RK8i+0||RK8i+1||RK8i+2||RK8i+3 ← Σ2i(L) ⊕ S2i+1,

RK8i+4||RK8i+5||RK8i+6||RK8i+7 ← Σ2i+1(L)⊕K ⊕ S2i+2,

we see that Condition 2 can be expressed as

π(ΔL) = Σ(ΔL)⊕ΔK,

where π is 4-word permutation (0, 1, 2, 3)→ (1, 0, 3, 2). Thus when ΔL is fixed
(to one of the values from (3)), the difference in the master key ΔK can be
determined as

ΔK = π(ΔL)⊕Σ(ΔL). (4)

Low Probability Differentials and the Cryptanalysis of Full-Round CLEFIA-128 147

Summary. We have shown above that Conditions 1 and 2 can be achieved
simultaneously as there are 214 values for ΔLi (see Equation (3)) with corre-
sponding values of ΔKi (see Equation (4)). It means that given the difference
in the master key ΔKi and the difference of the intermediate key ΔLi (i.e. the
differential in the 12-round Feistel GFN4,12 of the key schedule is ΔKi → ΔLi),
the differences in the round keys are going to be of the requested form as shown
below:

ΔRK0||ΔRK1||ΔRK2||ΔRK3 = Δ1||Δ3||Δ2||Δ4,

ΔRK4||ΔRK5||ΔRK6||ΔRK7 = Δ3||Δ1||Δ4||Δ2,

. . .

ΔRK28||ΔRK29||ΔRK30||ΔRK31 = Δ3||Δ1||Δ4||Δ2,

ΔRK32||ΔRK33||ΔRK34||ΔRK35 = Δ1||Δ3||Δ2||Δ4,

where Δ1||Δ3||Δ2||Δ4 = ΔLi. As a result, we have obtained the necessary dif-
ferences in the round keys and we can use the 4-round iterative characteristic
from Fig. 2.

Now we can easily specify the description of the weak-key class given by
Equation (1). The value of D coincides with the values of ΔL from Equation (3).
Therefore the first linear function L1 is defined as L1(D) = π(D) ⊕ Σ(D). The
input difference in the plaintext is the same as the input difference in the first four
round keys (which is again ΔL), but the order of the words is slightly different –
instead of (Δ1, Δ3, Δ2, Δ4) it is (Δ1, Δ2, Δ3, Δ4), see Fig. 2. Hence, we introduce
the 4-word permutation π2 : (0, 1, 2, 3)→ (0, 2, 1, 3) that corrects the order. With
this notation, the second linear function L2 is defined as L2(D) = π2(D). Finally,
L3 is defined similarly. CLEFIA-128 has 18 rounds, thus the last 4-round iterative
characteristic (for the rounds 17,18) will be terminated after the second round,
with an output difference (Δ2, Δ3, Δ4, Δ1). It differs from ΔL only in the order
of the four words, hence we introduce π3 : (0, 1, 2, 3)→ (3, 1, 0, 2) and conclude
that L3(D) = π3(D).

In the weak-key class the pairs of keys are defined as (K,K ⊕ π(D)⊕Σ(D))
and for any plaintext P , it holds

EK(P)⊕ EK⊕π(D)⊕Σ(D)(P ⊕ π2(D)) = π3(D). (5)

A pair of keys belongs to this class if for any of the 214 values D = ΔL de-
fined by Equation (3), the 12-round Feistel GFN4,12 in the key schedule, on
input difference ΔK = π(ΔL) ⊕ Σ(ΔL) gives the output difference ΔL, i.e.
GFN4,12(K ⊕ π(ΔL) ⊕ Σ(ΔL)) ⊕GFN4,12(K) = ΔL. Therefore not all of the
keys K have a related key and form a pair in the weak-key class, but only those
for which the differential in the Feistel permutation holds.

We deal with a 12-round Feistel permutation and thus the probability of the
differential π(ΔL) ⊕ Σ(ΔL) → ΔL is low. We assume it is 2−128 (as proven
by the designers), which is the probability of getting fixed output difference
from a fixed input difference in a random permutation. However, even when we
model the Feistel permutation by a random one, there still exist 214 key schedule

148 S. Emami et al.

differentials that have a probability of 2−128 and that result in iterative round
key differences.

In CLEFIA-128, there are 2128 possible keys K, and therefore for a specific
value of D, the number of related keys (K,K ⊕ π(D)⊕Σ(D)) is the same. The
probability of the differential in the Feistel permutation is 2−128, thus among all
of the pairs, only one will pass the differential. However, there are 214 possible
values for D, hence the size of the weak-key class is 214.

4 Membership Test for the Weak-Key Class

An analysis technique that succeeds when the related keys belong to the weak-
key class is called a membership test. For the weak-key class of CLEFIA-128,
the membership test will be a differential distinguisher that succeeds always and
whose data, time and memory complexities are equal to 28. That is to say that
we can decide with probability 1 whether the underlying cipher is CLEFIA-128

with weak keys or other (possibly ideal) cipher.
Given a pair of weak keys (K,K ⊕ π(D) ⊕ Σ(D)), it is easy to distinguish

CLEFIA-128 (see Equation (5)) with only a single pair of related plaintexts
(P, P ⊕ π2(D)) but D has to be known. If it is unknown, we will have to try all
214 possible values of D (as D coincides with one of ΔLi). Consequently, we are
going to end up with a brute force attack on the space of weak keys. To address
this problem, we have to be able to detect the correct value of ΔL efficiently.

Finding the correct ΔLi can be performed much faster if we take into account
the additional properties of the difference in the intermediate key. All 214 values
of ΔLi (see Equation (3)) can be defined as XOR of two elements from two
different sets each of cardinality 27 as shown below

ΔLi = ΔLi(a1, a2) =a1a2tb2b1b2b1b2b1b2a2a1a2a1a2a1a2tb1b2 =

=G1(a1)⊕G2(a2),

a1 = 0, . . . , 27 − 1, a2 = 0, . . . , 27 − 1,

where G1(a1) is a 128-bit word that is the same as ΔL on the bits that depend
on a1 and has 0’s for the bits that depend on a2 while G2(a2) is the opposite,
i.e. coincides with ΔL on bits for a2 and has 0’s for bits that depend on a1

7.
Using the representation helps to detect the correct ΔL by finding collisions

on two specific sets. Assume the pair (K, K̃ = K ⊕ π(ΔL)⊕Σ(ΔL)) belongs to
the weak-key class. For a randomly chosen plaintext P , let us define two pools,
each with 27 chosen plaintexts:

P 1
i = π2(P ⊕G1(ai1)), a

i
1 = 0, 1, . . . , 27 − 1,

P 2
i = π2(P ⊕G2(ai2)), a

i
2 = 0, 1, . . . , 27 − 1.

7 Recall that each bit of b1, b2, t is equal to a single bit of either a1 or a2.

Low Probability Differentials and the Cryptanalysis of Full-Round CLEFIA-128 149

Next, we obtain two pools of ciphertexts with (K, K̃) as encryption keys, i.e.
C1

i = EK(P 1
i), C

2
i = EK̃(P 2

i). Finally, we compute two sets V 1, V 2:

V 1 = {V 1
i |V 1

i = π−1
2 (P 1

i)⊕ π−1
3 (C1

i)},
V 2 = {V 2

i |V 2
i = π−1

2 (P 2
i)⊕ π−1

3 (C2
i)}.

The crucial observation is that the sets V 1 and V 2 will always collide, i.e. there
exist V 1

i and V 2
j such that V 1

i = V 2
j . This comes from the following sequence:

V 1
i ⊕ V 2

j =

= π−1
2 (P 1

i)⊕ π−1
3 (C1

i)⊕ π−1
2 (P 2

j)⊕ π−1
3 (C2

j) =

= π−1
2 (P 1

i ⊕ P 2
j)⊕ π−1

3 (EK(P 1
i)⊕ EK̃(P 2

j)) =

= π−1
2 (π2(G

1(ai1)⊕G2(aj2)))⊕
⊕ π−1

3 (EK(P 1
i)⊕ EK̃(P 1

i ⊕ π2(G
1(ai1)⊕G2(aj2)))) =

= ΔL′ ⊕ π−1
3 (EK(P 1

i)⊕ EK̃(P 1
i ⊕ π2(ΔL′))),

where ΔL′ = G1(ai1)⊕G2(ai2). Note that ΔL′ can take all possible 214 values (as
ai1, a

j
2 take all 27 values), and therefore for some particular i, j, it must coincide

with ΔL. In such case, the difference in the plaintext is π2(ΔL), and thus for
the ciphertext we obtain

EK(P 1
i)⊕ EK̃(P 1

i ⊕ π2(ΔL)) = π3(ΔL)

Then V 1
i ⊕ V 2

j = ΔL⊕ π−1
3 (π3(ΔL)) = 0.

The possibility to create the sets independently and then to find a collision
between them is the main idea of the membership test on CLEFIA-128. It works
according to the following steps.

1. Choose at random a plaintext P .
2. Create a pool of 27 plaintexts P 1

i = π2(P ⊕ G1(ai1)) and ask for the cor-
responding ciphertext C1

i obtained with encryption under the first key, i.e.
C1

i = EK(P 1
i). Compute the set V 1 composed of elements V 1

i = π−1
2 (P 1

i)⊕
π−1
3 (C1

i).
3. Create a pool of 27 plaintexts P 2

i = π2(P ⊕ G2(ai2)) and ask for the corre-
sponding ciphertext C2

i obtained with encryption under the second key, i.e.
C2

i = EK̃(P 2
i). Compute the set V 2 composed of elements V 2

i = π−1
2 (P 2

i)⊕
π−1
3 (C2

i).
4. Check for collisions between V 1 and V 2. If such a collision exists, then output

that the examined cipher is CLEFIA-128. Otherwise, it is an ideal cipher.

The total data complexity of the membership test is 27 + 27 = 28 plaintexts.
The time complexity of each of the steps 2,3 is 27 encryptions, while the collision
at step 4 can be found with 27 operations and 27 memory that is used to store
one of the sets V 1 or V 2. Therefore, given a pair of keys from the weak-key class,
we can distinguish CLEFIA-128 in 28 data, time and memory.

150 S. Emami et al.

To confirm the correctness of the membership test, we implemented it for a
small-scale variant of CLEFIA-128. Each word was shrunk to 8-bit value, thus
the whole state became 32 bits. The Sbox from AES was taken as the round
function F , and random 8-bit values were chosen as constants. The chunks in
the linear function Σ were taken of size 5, 11 (compared to the 7, 57 in the
original version). The expected size of the weak-key class in this toy version
is 210 (because X = Σ2(X) has 210 solutions), while in practice we obtained
960 = 29.9 solutions. For a random key pair chosen from this class, we were able
to distinguish the cipher after 26 encryptions which confirms our findings to a
large extent.

5 Analysis of the Hashing Modes of CLEFIA-128

In this section we analyze the impact of the weak-key class on hashing modes
of CLEFIA-128. We show that compression functions built upon single-block-
length modes instantiated with CLEFIA-128 exhibit non-random properties that
come in a form of differential multicollisions. The analysis of hashing modes of
a cipher is usually reduced to finding open-key distinguishers for the cipher.
Note, open-key distinguishers come in a form of known-key (the adversary has
the knowledge of the key, but cannot control it) and chosen-key (the adversary
can choose the value of the key). Our analysis applies to the second case, i.e. we
show non-randomness of the hashing modes of CLEFIA-128 when the adversary
can control the key.

First, let us find a pair of keys (K1,K2) that belong to the weak-key class –
we stress that the task is to find the pair explicitly, i.e. to produce the two values
that compose a weak-key pair. From the previous analysis we have seen that a
pair is a weak-key pair if for one of the 214 values of ΔL defined previously:
1) the difference ΔK = K1 ⊕ K2 satisfies ΔK = π(ΔL) ⊕ Σ(ΔL), and 2) the
12-round Feistel in the key schedule GFN4,12 produces output difference ΔL,
i.e. GFN4,12(K1)⊕GFN4,12(K2) = ΔL. The two conditions can be generalized
as search for a pair that satisfies the differential π(ΔL)⊕Σ(ΔL)→ ΔL through
the 12-round Feistel in the key schedule.

Recall that the difference ΔL is an XOR of two elements (defined as G1(a1)
and G2(a2)) from sets of size 27, i.e. ΔL = G1(a1) ⊕ G2(a2). Therefore we get
that:

ΔK = π(ΔL)⊕Σ(ΔL) = π(G1(a1)⊕G2(a2)) ⊕Σ(G1(a1)⊕G2(a2)) =

= [π(G1(a1))⊕Σ(G1(a1))]⊕ [π(G2(a2))⊕Σ(G2(a2))] =

= T 1(a1)⊕ T 2(a2),

where T 1(a1) = π(G1(a1))⊕Σ(G1(a1)), T
2(a2) = π(G2(a2)⊕Σ(G2(a2)) are two

linear functions (as π,Σ,G1, G2 are linear), and therefore the difference in the
keys of a weak-key pair is an XOR of two sets as well. Using this fact, we can
find a weak-key pair as follows:

Low Probability Differentials and the Cryptanalysis of Full-Round CLEFIA-128 151

1. Create a set ΔK of 214 values T 1(a1) ⊕ T 2(a2), a1 = 0, . . . , 27 − 1, a2 =
0, . . . , 27 − 1.

2. Randomly choose a key K.
3. Create a set V1 of 27 pairs

(K1,K1 ⊕ π(GFN4,12(K1))⊕Σ(GFN4,12(K1))),

where K1 = K ⊕ T 1(a1), a1 = 0, . . . , 27 − 1. Index the set V1 by the second
elements.

4. Create a set V2 of 27 pairs

(K2,K2 ⊕ π(GFN4,12(K2))⊕Σ(GFN4,12(K2))),

where K2 = K ⊕ T 2(a2), a2 = 0, . . . , 27 − 1. Index V2 as well by the second
elements.

5. Check for collisions between V 1 and V 2 on the second (and indexed) ele-
ments. If such a collision exists, then confirm the key pair is weak by checking
if the xor difference of the first elements belongs to ΔK. If so, then output
that found pair (K1,K2) and exit. Otherwise, go to step 2.

The above algorithm will output a correct weak-key pair after repeating around
2114 times the steps 2-5. For each randomly chosen key K, there are 214 pairs
of keys (K1,K2) with difference K1 ⊕ K2 = K ⊕ T 1(a1) ⊕ K ⊕ T 2(a2) =
T 1(a1)⊕T 2(a2) = π(ΔLi)⊕Σ(ΔLi). If the output difference of 12-round Feistel
is precisely the same ΔLi (an event that happens with probability 2−128), i.e. if
GFN4,12(K1)⊕GFN4,12(K2) = ΔLi, then

π(GFN4,12(K1)⊕GFN4,12(K2))⊕Σ(GFN4,12(K1)⊕GFN4,12(K2)) =

π(ΔLi)⊕Σ(ΔLi),

and therefore

K1 ⊕K2 = π(GFN4,12(K1)⊕GFN4,12(K2))⊕Σ(GFN4,12(K1)

⊕GFN4,12(K2)),

which is equivalent to

K1 ⊕ π(GFN4,12(K1))⊕Σ(GFN4,12(K1)) =

K2 ⊕ π(GFN4,12(K2))⊕Σ(GFN4,12(K2)).

Therefore a collision between V1 and V2 suggests a possible weak-key pair. The
suggested pair is weak-key only if the input and the output differences satisfy the
differential, thus with probability 2−128. As we take 2114 random keys K, and for
each there are 214 pairs, with overwhelming probability, one will be a weak-key
pair. To avoid false positives, we add step 1 and the additional checking at step
5, i.e. we make sure that the difference between the keys is π(ΔLi) ⊕ Σ(ΔLi)
for some of the 214 good values of ΔLi. Hence, the algorithm will produce a
weak-key pair in 214 + 2114 × 2× 27 ≈ 2122 time and 214 memory.

152 S. Emami et al.

We can use the found pair to show weakness of CLEFIA-128 when used for
cryptographic hashing. More precisely, we consider hashing based on single-
block-length8 modes, where a compression function is built from a block cipher.
If the compression function uses CLEFIA-128 then we can find a pair of weak keys
in 2122 time using the described algorithm. Once such pair (K1,K2) is found,
we can produce any number of differential multicollisions [4] for any of the 12
modes investigated by Preneel et al. [12], including the popular Davies-Meyer,
Matyas-Meyer-Oseas modes. For instance, for the Davies-Meyer mode, i.e. when
the compression function C(H,M) is defined as C(H,M) = EM (H) ⊕ H , the
differential multicollisions have the form

C(Hi,K1)⊕ C(Hi ⊕ π2(ΔL),K1 ⊕ π(ΔL)⊕Σ(ΔL)) =

= EK1(Hi)⊕Hi ⊕ EK1⊕π(ΔL)⊕Σ(ΔL)(Hi ⊕ π2(ΔL)))⊕Hi ⊕ π2(ΔL) =

= EK1(Hi)⊕ EK1⊕π(ΔL)⊕Σ(ΔL)(Hi ⊕ π2(ΔL))⊕ π2(ΔL) =

= π3(ΔL)⊕ π2(ΔL),

for i = 0, 1, Note that we do not need to call the compression functions as
C(Hi,K1) ⊕ C(Hi ⊕ π2(ΔL),K1 ⊕ π(ΔL) ⊕ Σ(ΔL)) = π3(ΔL) ⊕ π2(ΔL) as
long as (K1,K1⊕π(ΔL)⊕Σ(ΔL)) form a weak-key pair. Consequently, we can
produce an arbitrary number of differential multicollisions with the complexity
2122. On the other hand, the proven lower bound (see [4]) in the case of ideal
cipher is 2128. A distinguisher for the hashing based on CLEFIA-128 has already
been presented by Aoki at ISITA’12 [2]. It works in the framework of middletext
distinguishers [11] (open-key version of the integral attack), where the adversary
starts with a set of particularly chosen states in the middle of the cipher, then
from them (and the knowledge of the key) produces the set of plaintexts and
the set of ciphertexts, and finally shows that these two sets have some prop-
erty that cannot be easily reproduced if the cipher was ideal. For CLEFIA-128,
Aoki showed how to choose 2112 starting middle states that result in 17-round
middletext distinguisher, and then added one more round where he used subkey
guesses, to obtain the 18-round distinguisher. We want to point out that there
is a substantial difference, between our result and that of Aoki. We do not fix
the values neither of the plaintexts nor of the ciphertexts, and our analysis is
applicable as long as the pair of chaining values has the required difference – the
values can be arbitrary and even unknown.

6 Conclusion

The analysis of CLEFIA-128 presented in this paper shows existence of a weak-
key class that consists of 214 pairs of keys. We have shown how to exploit the
pairs in two different scenarios: hashing mode of CLEFIA-128 and membership
test for the weak-key class. In the hashing mode (or open-key mode in general)

8 The state and key sizes in CLEFIA-128 coincide, thus we can construct only single-
block-length compression functions.

Low Probability Differentials and the Cryptanalysis of Full-Round CLEFIA-128 153

we have shown that a weak-key pair can be found in around 2122 time, and such
pair can be used to produce differential multicollisions faster than the generic
2128. Furthermore, we have shown a membership test for the weak-key class
that has 28 time and data complexity, compared to the generic 214. The main
ideas of the analysis have been verified with computer experiments on small-scale
variants of CLEFIA-128.

The analysis is invariant of three important security features that presumably
increase the strength of a cipher. First, the non-linear part of the key schedule
can be any random permutation (not necessarily a 12-round Feistel). Our anal-
ysis would still work as we do not need high probability differentials for this
permutation. Second, the state update functions (in CLEFIA-128 F0, F1 are one
round substitution-permutation networks) can be arbitrary functions or permu-
tations, including several layers of SP – the difference never goes into them,
hence, the probability of the characteristic in the state would stay 1. Finally, the
number of rounds in CLEFIA-128 plays absolutely no role in our analysis – even
if CLEFIA-128 had 1000 rounds, the complexity of the analysis would stay the
same.

To prevent future analysis as ours, we have to clearly understand what are
the main drawbacks of the design. The weak-key class and the three analysis
invariances are results of these drawbacks (not their cause) and provide clues
on what the actual cause might be. The invariance of the state update function
is due to the Feistel structure of the cipher – this construction can lead to
probability 1 characteristics as it can cancel round key and state differences.
To maintain the cancellation through arbitrary number of rounds (invariance of
the number of rounds), the round key differences have to be iterative. The key
schedule prevents high probability iterative (or any fixed value) differences as
they have to be produced from a difference in the key that goes initially through a
12-round Feistel modeled as random permutation. The Feistel, however, produces
low probability (2−128) differences (invariance of the random permutation), and
214 of them become iterative round key differences due to the linear function
used after the Feistel. That is, because of the linear function, with 2−128 we can
have a special type of differences in 36 rounds keys (1152 bits !). Therefore, the
analysis of CLEFIA-128 holds due to the Feistel structure of the cipher and the
weak linear function that is used to produce the round keys.

To conclude, our work shows that low probability differentials (around 2−k for
a cipher with k-bit key and n-bit state) for the key schedule of Feistel ciphers,
cannot be used as a sole proof of resistance against related-key differential anal-
ysis.. A safe upper bound on the probability of such differentials, which proves
and provides security against related-key analysis, is not 2−k but 2−2k−n – this
comes from the fact that there can be as many as 22k pairs of weak keys, and
their combined probability should be below 2−n.

154 S. Emami et al.

References

1. RFC 6114. CLEFIA, http://www.rfc-editor.org/rfc/rfc6114.txt

2. Aoki, K.: A middletext distinguisher for full CLEFIA-128. In: ISITA, pp. 521–525.
IEEE (2012)

3. Bellare, M., Kohno, T.: A theoretical treatment of related-key attacks: RKA-PRPs,
RKA-PRFs, and applications. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS,
vol. 2656, pp. 491–506. Springer, Heidelberg (2003)

4. Biryukov, A., Khovratovich, D., Nikolić, I.: Distinguisher and related-key attack
on the full AES-256. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp.
231–249. Springer, Heidelberg (2009)

5. Biryukov, A., Nikolić, I.: Complementing feistel ciphers. In: Moriai, S. (ed.) FSE
2013. LNCS, vol. 8424, pp. 3–18. Springer, Heidelberg (2014)

6. Bogdanov, A., Geng, H., Wang, M., Wen, L., Collard, B.: Zero-correlation linear
cryptanalysis with FFT and improved attacks on ISO standards camellia and CLE-
FIA. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC 2013. LNCS, vol. 8282, pp.
306–323. Springer, Heidelberg (2013)

7. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: An ultra-lightweight block cipher.
In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007)

8. ISO/IEC 29192-2. Information technology - Security techniques - Lightweight
cryptography - Part 2: Block ciphers,
http://www.iso.org/iso/iso catalogue/catalogue tc/

catalogue detail.htm?csnumber=56552

9. Li, Y., Wu, W., Zhang, L.: Improved integral attacks on reduced-round CLEFIA
block cipher. In: Jung, S., Yung, M. (eds.) WISA 2011. LNCS, vol. 7115, pp. 28–39.
Springer, Heidelberg (2012)

10. Mala, H., Dakhilalian, M., Shakiba, M.: Impossible differential attacks on 13-round
CLEFIA-128. J. Comput. Sci. Technol. 26(4), 744–750 (2011)

11. Minier, M., Phan, R.C.-W., Pousse, B.: Distinguishers for ciphers and known key
attack against rijndael with large blocks. In: Preneel, B. (ed.) AFRICACRYPT
2009. LNCS, vol. 5580, pp. 60–76. Springer, Heidelberg (2009)

12. Preneel, B., Govaerts, R., Vandewalle, J.: Hash functions based on block ciphers:
A synthetic approach. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp.
368–378. Springer, Heidelberg (1994)

13. Shirai, T., Shibutani, K., Akishita, T., Moriai, S., Iwata, T.: The 128-bit block-
cipher CLEFIA (Extended abstract). In: Biryukov, A. (ed.) FSE 2007. LNCS,
vol. 4593, pp. 181–195. Springer, Heidelberg (2007)

14. Sun, B., Li, R., Wang, M., Li, P., Li, C.: Impossible differential cryptanalysis of
CLEFIA. IACR Cryptology ePrint Archive, 2008:151 (2008)

15. Tang, X., Sun, B., Li, R., Li, C.: Impossible differential cryptanalysis of 13-round
CLEFIA-128. Journal of Systems and Software 84(7), 1191–1196 (2011)

16. Tezcan, C.: The improbable differential attack: Cryptanalysis of reduced round
CLEFIA. In: Gong, G., Gupta, K.C. (eds.) INDOCRYPT 2010. LNCS, vol. 6498,
pp. 197–209. Springer, Heidelberg (2010)

17. Tsunoo, Y., Tsujihara, E., Shigeri, M., Saito, T., Suzaki, T., Kubo, H.: Impossi-
ble differential cryptanalysis of CLEFIA. In: Nyberg, K. (ed.) FSE 2008. LNCS,
vol. 5086, pp. 398–411. Springer, Heidelberg (2008)

http://www.rfc-editor.org/rfc/rfc6114.txt
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=56552
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=56552

Low Probability Differentials and the Cryptanalysis of Full-Round CLEFIA-128 155

18. Wang, W., Wang, X.: Improved impossible differential cryptanalysis of CLEFIA.
IACR Cryptology ePrint Archive, 2007:466 (2007)

19. Zhang, W., Han, J.: Impossible differential analysis of reduced round CLEFIA. In:
Yung, M., Liu, P., Lin, D. (eds.) Inscrypt 2008. LNCS, vol. 5487, pp. 181–191.
Springer, Heidelberg (2009)

A Specification on CLEFIA-128

B Analysis of CLEFIA-128 with Whitening Keys

The whitening keys are the four words WKi, i = 0, 1, 2, 3, defined as
WK0||WK1||WK2||WK3 = K, i.e. they are the words of the master key K.
The first two are XOR-ed to the second and the fourth plaintext words, and the
remaining two to the second and the fourth ciphertext words (see Fig 3).

To index the whitening words, we define two linear functions on 128-bit words
(or four 32-bit words). Assume X is 128-bit word, such that X = a|b|c|d, where
a, b, c, d are 32-bit words. Then l(X) : {0, 1}128 → {0, 1}128 is defined as l(X) =
l(a|b|c|d) = 0|a|0|b. Similarly r(X) : {0, 1}128 → {0, 1}128 is defined as r(X) =
r(a|b|c|d) = 0|c|0|d.

Now we can easily specify the weak-key class:

– the key difference remains the same,
– the plaintext difference, instead of π2(ΔL), should be π2(ΔL)⊕ l(ΔK),
– the ciphertext difference, instead of π3(ΔL), should be π3(ΔL)⊕ r(ΔK).

As ΔK = π(ΔL) ⊕ Σ(ΔL), it follows that the weak-key class for the original
CLEFIA-128 is defined as 214 pairs of keys (K,K ⊕ π(ΔL)⊕ Σ(ΔL)) such that
for any plaintext P holds:

EK(P)⊕ EK⊕π(ΔL)⊕Σ(ΔL)(P ⊕ π2(ΔL)⊕ l(π(ΔL)⊕Σ(ΔL))) =

π3(ΔL)⊕ r(π(ΔL) ⊕Σ(ΔL)).

Let us focus on the membership test. We define the plaintexts pools as:

P 1
i = P ⊕ π2(G

1(ai1))⊕ l(T 1(ai1)), a
i
1 = 0, 1, . . . , 27 − 1,

P 2
i = P ⊕ π2(G

2(ai2))⊕ l(T 2(ai2)), a
i
2 = 0, 1, . . . , 27 − 1.

This way, the difference between each two plaintext from two different pools is
π2(ΔL′)⊕ l(ΔK), i.e. it is as required by the class.

To define the sets V 1, V 2 that lead to a collision, first we have to understand
how a collision can occur. In the previous membership test (on CLEFIA-128with-
out whitening keys), we used the trick that the difference in both the plaintext
and the ciphertext is ΔL, but with permuted words (that is why we applied
π−1
2 , π−1

3). Here it is not the same: in the plaintext the difference is ΔL and two
more words of ΔK, while in the ciphertext it is ΔL and the remaining two words
of ΔK. Hence, XOR of these values does not trivially produce zero as the two
words from l and the two from r are different.

156 S. Emami et al.

Fig. 3. The encryption function of CLEFIA-128 at the left, and the key schedule at
the right. P0, P1, P2, P3 are 32-bit plaintext words, C0, C1, C2, C3 are the ciphertext
words, K0,K1,K2,K3 are the key words, RKi,WKj are the round and whitening
keys, respectively, and Si are 128-bit constants. Finally, F0, F1 are the two state update
functions, while Σ is a linear function (permutation).

Nevertheless, we can achieve collisions. Assume ΔL = a|b|c|d. Then the dif-
ference ΔP in the plaintext is

ΔP =π2(a|b|c|d)⊕ l(π(a|b|c|d)⊕Σ(a|b|c|d)) =
a|c|b|d⊕ l(b|a|d|c)⊕ l(Σ(a|b|c|d)) =
a|c+ b|b|d+ a⊕ l(Σ(a|b|c|d)).

Note, l(Σ(a|b|c|d) has zeros at the first and at the third words.
Similarly, the difference ΔC in the ciphertext is

ΔC =π3(a|b|c|d)⊕ r(π(a|b|c|d) ⊕Σ(a|b|c|d)) =
c|b|d|a⊕ r(b|a|d|c) ⊕ r(Σ(a|b|c|d)) =
c|b+ d|d|a+ c⊕ r(Σ(a|b|c|d)).

Again, in the sum r influences only the second and the fourth word.

Low Probability Differentials and the Cryptanalysis of Full-Round CLEFIA-128 157

Let us introduce a function f , that acts on the four 32-bit words of a 128-bit
state and it XORs the first word to the fourth word, and the third word to the
second word, i.e. f(x|y|z|t) = (x|y + z|z|t+ x). Then

f(ΔP) = a|c|b|d⊕ l(Σ(a|b|c|d)),
f(ΔC) = c|b|d|a⊕ r(Σ(a|b|c|d)).

The function Σ is linear and therefore Σ(a|b|c|d) = Σ(a|0|0|0) + Σ(0|b|0|0) +
Σ(0|0|c|0)+Σ(0|0|0|d). Let us denote these four values with Σa, Σb, Σc, and Σd.
Furthermore, with superscripts we denote the four 32-bit words of Σx, e.g. Σ

2
a is

the second (most significant) word of Σa. This allows us to remove the functions
l, r from the terms, and as a result we obtain

f(ΔP) = a|c+Σ1
a +Σ1

b +Σ1
c +Σ1

d |b|d+Σ2
a +Σ2

b +Σ2
c +Σ2

d ,

f(ΔC) = c|b+Σ3
a +Σ3

b +Σ3
c +Σ3

d |d|a+Σ4
a +Σ4

b +Σ4
c +Σ4

d .

Next, we define a function g(x|y|z|t) that from x, z computes Σ1
x, . . . , Σ

4
x,

Σ1
z , . . . , Σ

4
z and it adds Σ4

x, Σ
4
z to the first word, Σ1

x, Σ
1
z to the second, Σ3

x, Σ
3
z to

the third, and Σ2
x, Σ

2
z to the fourth. Similarly, for ΔC we define h(x|y|z|t) that

from x, z computes Σ1
x, . . . , Σ

4
z and it adds Σ1

x, Σ
1
z to the first word, Σ3

x, Σ
3
z to

the second, Σ2
x, Σ

2
z to the third, and Σ4

x, Σ
4
z to the fourth. Thus we get

g(f(ΔP)) = a+Σ4
a +Σ4

b |c+Σ1
c +Σ1

d |b+Σ3
a +Σ3

b |d+Σ2
c +Σ2

d ,

h(f(ΔC)) = c+Σ1
c +Σ1

d |b+Σ3
a +Σ3

b |d+Σ2
c +Σ2

d |a+Σ4
a +Σ4

b .

Obviously h(f(ΔC)) = π4(g(f(ΔP))), where π4(0, 1, 2, 3) → (3, 0, 1, 2). There-
fore the sets V1, V2 are defined as:

V 1 = {V 1
i |V 1

i = π4(g(f(P
1
i)))⊕ h(f(C1

i))},
V 2 = {V 2

i |V 2
i = π4(g(f(P

2
i)))⊕ g(f(C2

i))},

and a collision between this two sets suggests that ΔL′ coincides with ΔL.
Thus the membership test for CLEFIA-128 with whitening keys has the same
complexity as before (without whitening).

Automatic Security Evaluation

and (Related-key) Differential Characteristic
Search: Application to SIMON, PRESENT,

LBlock, DES(L) and Other Bit-Oriented Block
Ciphers�

Siwei Sun1,2, Lei Hu1,2, Peng Wang1,2, Kexin Qiao1,2, Xiaoshuang Ma1,2,
and Ling Song1,2

1State Key Laboratory of Information Security, Institute of Information Engineering,
Chinese Academy of Sciences, Beijing 100093, China

2Data Assurance and Communication Security Research Center,
Chinese Academy of Sciences, Beijing 100093, China

{sunsiwei,hulei,wpeng,qiaokexin,maxiaoshuang,songling}@iie.ac.cn

Abstract. We propose two systematic methods to describe the differen-
tial property of an S-box with linear inequalities based on logical condi-
tion modelling and computational geometry respectively. In one method,
inequalities are generated according to some conditional differential prop-
erties of the S-box; in the other method, inequalities are extracted from
the H-representation of the convex hull of all possible differential patterns
of the S-box. For the second method, we develop a greedy algorithm for
selecting a given number of inequalities from the convex hull. Using these
inequalities combined with Mixed-integer Linear Programming (MILP)
technique, we propose an automatic method for evaluating the security
of bit-oriented block ciphers against the (related-key) differential attack
with several techniques for obtaining tighter security bounds, and a new
tool for finding (related-key) differential characteristics automatically for
bit-oriented block ciphers.

Keywords: Automatic cryptanalysis, Related-key differential attack,
Mixed-integer Linear Programming, Convex hull.

1 Introduction

Differential cryptanalysis [7] is one of the most well-known attacks on modern
block ciphers, based on which many cryptanalytic techniques have been devel-
oped, such as truncated differential attack [34], impossible differential attack [9],
and boomerang attack [51]. Providing a security evaluation with respect to the
differential attack has become a basic requirement for a newly designed practical
block cipher to be accepted by the cryptographic community.

� An extended version of this paper containing more applications and the source code
is available at http://eprint.iacr.org/2013/676.

P. Sarkar and T. Iwata (Eds.): ASIACRYPT 2014, PART I, LNCS 8873, pp. 158–178, 2014.
c© International Association for Cryptologic Research 2014

http://eprint.iacr.org/2013/676

Automatic Security Evaluation and Differential Characteristic Search 159

Contrary to the single-key model, where methodologies for constructing block
ciphers provably resistant to differential attacks are readily available, the under-
standing of the security of block ciphers with regard to related-key differential
attacks is relatively limited. This limited understanding of the security concern-
ing related-key differential attacks has been greatly improved in recent years for
AES-like byte- or word-oriented SPN block ciphers. Along this line of research,
two representative papers [10,25] were published in Eurocrypt 2010 and Crypto
2013. In the former paper [10], an efficient search tool for finding differential
characteristics both in the state and in the key was presented, and the best
differential characteristics were obtained for some byte-oriented block ciphers
such as AES, byte-Camellia, and Khazad. In the latter paper [25], Pierre-Alain
Fouque et al. showed that the full-round AES-128 can not be proven secure
against differential attacks in the related-key model unless the exact coefficients
of the MDS matrix and the S-Box differential properties are taken into account.
Moreover, a variant of Dijkstra’s shortest path algorithm for finding the most
efficient related-key attacks on SPN ciphers was developed in [25]. In [27], Ivica
Nikolic presented a tweak for the key schedule of AES and the new cipher called
xAES is resistant against the related-key differential attacks found in AES.

For bit-oriented block ciphers such as PRESENT-80 and DES, Sareh Emami
et al. proved that no related-key differential characteristic exists with probabil-
ity higher than 2−64 for the full-round PRESENT-80, and therefore argue that
PRESENT-80 is secure against basic related-key differential attacks [22]. In [48],
Sun et al. obtained tighter security bounds for PRESENT-80 with respect to
the related-key differential attacks using the Mixed-integer Linear Programming
(MILP) technique. Alex Biryukov and Ivica Nikolić proposed two methods [11]
based on Matsui’s tool [42] for finding related-key differential characteristics for
DES-like ciphers. For their methods, they stated that “... our approaches can be
used as well to search for high probability related-key differential characteristics
in any bit-oriented ciphers with linear key schedule.”

Sareh Emami et al. [22] and Sun et al.’s method [48] can not be used to
search for actual (related-key) differential characteristics, and Alex Biryukov et
al.’s method [11] is only applicable to ciphers with linear key schedule.

In this paper, we provide a method based on MILP which can not only eval-
uate the security (obtain security bound) of a block cipher with respect to the
(related-key) differential attacks, but is also able to search for actual (related-
key) differential characteristics even if the key schedule algorithm of the block
cipher is nonlinear.

The problem of MILP is a class of optimization problems derived from Lin-
ear Programming in which the aim is to optimize an objective function under
certain constraints. Despite its intimate relationship with discrete optimization
problems, such as the set covering problem, 0-1 knapsack problem, and travel-
ing salesman problem, it is only in recent years that MILP has been explicitly
applied in cryptographic research [1,17,18,36,46,52,57].

In this paper, we are mainly concerned with the application of MILP method
in the (related-key) differential cryptanalysis. A practical approach to evaluate

160 S. Sun et al.

the security of a cipher against differential attack is to determine the lower bound
of the number of active S-boxes throughout the cipher. This strategy has been
employed in many designs [4,8,15,16,19]. MILP was applied in automatically
determining the lower bounds of the numbers of active S-boxes for some word-
oriented symmetric-key ciphers, and therefore used to prove their security against
differential cryptanalysis [14,44,54] . Laura Winnen [53] and Sun et al. [48] ex-
tended this method by making it applicable to ciphers involving bit-oriented
operations. We notice that such MILP tools [14,44,48,54] for counting the mini-
mum number of active S-boxes are also applied or mentioned in the design and
analysis of some authenticated encryption schemes [8,20,21,29,30,31,55,58].

Our Contributions. We find that the constraints presented in [48] are too
coarse to accurately describe the differential properties of a specific cipher, since
there are a large number of invalid differential patterns of the cipher satisfying
all these constraints, which yields a feasible region of the MILP problem much
larger than the set of all valid differential characteristics.

In this paper, we propose two methods to tighten the feasible region by cutting
off some impossible differential patterns of a specific S-box with linear inequali-
ties: one method is based on logical condition modeling, and the other is a more
general approach based on convex hull computation — a fundamental algorith-
mic problem in computational geometry.

However, the second approach produces too many inequalities so that adding
all of them to an MILP problem will make the solving process impractical.
Therefore, we develop a greedy algorithm for selecting a given number of linear
inequalities from the convex hull.

By adding all or a part of the constraints generated by these methods, we
provide MILP based methods for evaluating the security of a block cipher with
respect to the (related-key) differential attack, and searching for actual (related-
key) differential characteristics. Using these methods, we obtain the following
results.

1. The probability of the best related-key differential characteristic of the 24-
round PRESENT-80 is upper bounded by 2−64, which is the tightest security
bound obtained so far for PRESENT-80.

2. The probability of the best related-key differential characteristic for the full-
round LBlock is at most 2−60.

3. We obtain a single-key differential characteristic and a single-key differential
for the 15-round SIMON48 (a lightweight block cipher designed by the U.S.
National Security Agency) with probability 2−46 and 2−41.96 respectively,
which are the best results published so far for SIMON48.

4. We obtain a 14-round related-key differential characteristic of LBlock with
probability 2−49 in no more than 4 hours on a PC. Note that the probabilities
of the best previously published related-key characteristics covering the 13-
and 14-round LBlock are 2−53 and 2−65 [56], respectively.

5. We obtain an 8-round related-key differential characteristic of DESL with
probability 2−34.78 in 10 minutes on a PC. To the best of our knowledge, no

Automatic Security Evaluation and Differential Characteristic Search 161

related-key differential characteristic covering more than 7 rounds of DESL
has been published before.

6. We obtain a 7-round related-key characteristic for PRESENT-128 with prob-
ability 2−11 and 0 active S-box in its key schedule algorithm, based on
which an improved related-key boomerang distinguisher for the 14-round
PRESENT-128 and a key-recovery attack on the 17-round PRESENT-128
can be constructed by using exactly the same method presented in [47].

The method presented in this paper is generic, automatic, and applicable to
other lightweight ciphers with bit-oriented operations. Due to the page limit, the
concrete results concerning the related-key or single-key differential characteris-
tics for LBlock, PRESENT-128, and DES(L) are put into an extended version
of this paper available at http://eprint.iacr.org/2013/676.

Organization of the Paper. In Sect. 2, we introduce Mouha et al.’s frame-
work and its extension for counting the number of active S-boxes of bit-oriented
ciphers automatically with the MILP technique. In Sect. 3, we introduce the
concept of valid cutting-off inequalities for tightening the feasible region of an
MILP problem, and explore how to generate and select valid cutting-off inequal-
ities. We present the methods for automatic security evaluation with respect to
the (related-key) differential attack, and searching for (related-key) differential
characteristics in Sect. 4 and Sect. 5. In Sect. 6 we conclude the paper and pro-
pose some research directions for bit-oriented ciphers and the application of the
MILP technique in cryptography. The application of the methods presented in
this paper to PRESENT, LBlock, and SIMON is given in Appendices.

2 Mouha et al.’s Framework and Its Extension

2.1 Mouha et al.’s Framework for Word-Oriented Block Ciphers

Assume a cipher is composed of the following three word-oriented operations,
where ω is the word size:

- XOR, ⊕ : Fω
2 × Fω

2 → Fω
2 ;

- Linear transformation L : Fm
2ω → Fm

2ω with branch number BL;
- S-box, S : Fω

2 → Fω
2 .

Mouha et al.’s framework uses 0-1 variables, which are subjected to certain
constraints imposed by the above operations, to denote the word level differences
propagating through the cipher (1 for nonzero difference and 0 otherwise).

Firstly, we should include the constraints imposed by the operations of the
cipher.

Constraints Imposed by XOR Operations. Suppose a ⊕ b = c, where
a, b, c ∈ Fω

2 are the input and output differences of the XOR operation, the
following constraints will make sure that when a, b, and c are not all zero, then
there are at least two of them are nonzero:{

a+ b+ c ≥ 2d⊕
d⊕ ≥ a, d⊕ ≥ b, d⊕ ≥ c

(1)

http://eprint.iacr.org/2013/676

162 S. Sun et al.

where d⊕ is a dummy variable taking values from {0, 1}. If each one of a, b, and
c represents one bit, we should also add the inequality a+ b+ c ≤ 2.

Constraints Imposed by Linear Transformation. Let xik and yjk , k ∈
{0, 1, . . . ,m − 1}, be 0-1 variables denoting the word-level input and output
differences of the linear transformation L respectively. Since for nonzero input
differences, there are totally at least BL nonzero ω-bit words in the input and
output differences, we include the following constraints:⎧⎨⎩

m−1∑
k=0

(xik + yjk) ≥ BLdL

dL ≥ xik , dL ≥ yjk , k ∈ {0, . . . ,m− 1}
(2)

where dL is a dummy variable taking values in {0, 1} and BL is the branch
number of the linear transformation.

Then, we set up the objective function to be the sum of all variables rep-
resenting the input words of the S-boxes.

2.2 Extension of Mouha et al.’s Framework for Bit-Oriented Ciphers

For bit-oriented ciphers, bit-level representations and additional constraints are
needed [48]. For every input and output bit-level difference, a new 0-1 variable xi

is introduced such that xi = 1 if and only if the difference at this bit is nonzero.
For every S-box in the schematic diagram, including the encryption process

and the key schedule algorithm, we introduce a new 0-1 variable Aj such that
Aj = 1 if the input word of the Sbox is nonzero and Aj = 0 otherwise.

At this point, it is natural to choose the objective function f , which will be
minimized, as

∑
Aj for the goal of determining a lower bound of the number of

active S-boxes.
For bit-oriented ciphers, we need to include two sets of constraints. The first

one is the set of constraints imposed by XOR operations, and the other is due
to the S-box operation. After changing the representations to bit-level, the set
of constraints imposed by XOR operations for bit-oriented ciphers are the same
as that presented in (1). The S-box operation is more tricky.

Constraints Describing the S-box Operation. Suppose (xi0 , . . . , xiω−1) and
(yj0 , . . . , yjν−1) are the input and output bit-level differences of an ω × ν S-box
marked by At. Firstly, to ensure that At = 1 holds if and only if xi0 , . . . , xiω−1

are not all zero, we require that:{
At − xik ≥ 0, k ∈ {0, . . . , ω − 1}
xi0 + xi1 + · · ·+ xiω−1 −At ≥ 0

(3)

For bijective S-boxes, nonzero input difference must result in nonzero output
difference and vice versa:{

ωyj0 + ωyj1 + · · ·+ ωyjν−1 − (xi0 + xi1 + · · ·+ xiω−1) ≥ 0
νxi0 + νxi1 + · · ·+ νxiω−1 − (yj0 + yj1 + · · ·+ yjν−1) ≥ 0

(4)

Automatic Security Evaluation and Differential Characteristic Search 163

Note that the above constraints should not be used for non-bijective S-box such
as the S-box of DES(L) [37].

Finally, the Hamming weight of the (ω+ν)-bit word xi0 · · ·xiω−1yj0 · · · yjν−1 is
lower bounded by the branch number BS of the S-box for nonzero input difference
xi0 · · ·xiω−1 , where dS is a dummy variable:⎧⎨⎩

ω−1∑
k=0

xik +
ν−1∑
k=0

yjk ≥ BSdS

dS ≥ xik , dS ≥ yjt , k ∈ {0, . . . , ω − 1}, t ∈ {0, . . . , ν − 1}
(5)

where the branch number BS of an S-box S, is defined as BS = mina =b{wt((a⊕
b)||(S(a) ⊕ S(b)) : a, b ∈ Fω

2 }, and wt(·) is the standard Hamming weight of an
(ω+ ν)-bit word. We point out that constraint (5) is redundant for an invertible
S-box with branch number BS = 2, since in this particular case, all differential
patterns not satisfying (5) violate (4).

0-1 Variables. The MILP model proposed above is indeed a Pure Integer Pro-
gramming Problem since all variables appearing are 0-1 variables. However, in
practice we only need to explicitly restrict a part of all variables to be 0-1,
while all other variables can be allowed to be any real numbers, which leads to
an MILP problem. Following this approach, the MILP solving process may be
accelerated as suggested in [17].

3 Tighten the Feasible Region with Valid Cutting-off
Inequalities

The feasible region of an MILP problem is defined as the set of all variable
assignments satisfying all constraints in the MILP problem. The modelling pro-
cess presented in the previous sections indicates that every differential path
corresponds to a solution in the feasible region of the MILP problem. How-
ever, a feasible solution of the MILP model is not guaranteed to be a valid
differential path, since our constraints are far from perfect to rule out all in-
valid differential patterns. For instance, assume xi and yi (0 ≤ i ≤ 3) are the
bit-level input and output differences of the PRESENT-80 S-box. According
to Sect. 2.2, xi, yi are subjected to the constraints of (3), (4) and (5). Obvi-
ously, (x0 · · · , x3, y0, · · · , y3) = (1, 0, 0, 1, 1, 0, 1, 1) satisfies the above constraints,
whereas 0x9 = 1001→ 0xB = 1011 is not a valid difference propagation pattern
for the PRESENT S-box, which can be seen from the differential distribution
table of the PRESENT S-box. Hence, we are actually trying to minimize the
number of the active S-boxes over a larger region, and the optimum value ob-
tained in this setting must be smaller than or equal to the actual minimum
number of active S-boxes. Although the above fact will not invalidate the lower
bound we obtained from our MILP model, this prevents the designers or ana-
lysts from obtaining tighter security bounds and valid (related-key) differential
characteristics from the feasible region.

164 S. Sun et al.

The situation would be even worse when modelling an invertible S-box with
branch number BS = 2, which is the minimal value of the branch number for an
invertible S-box. In the case of invertible S-box with BS = 2, the constraints of
(3), (4) are enough, and (5) is redundant.

Therefore, we are motivated to look for linear inequalities which can cut off
some part of the feasible region of the MILP model while leaving the region of
valid differential characteristics intact. For the convenience of discussion, we give
the following definition.

Definition 1. A valid cutting-off inequality is a linear inequality which is satis-
fied by all possible valid differential patterns, but is violated by at least one feasible
solution corresponding to an impossible differential pattern in the feasible region
of the original MILP problem.

3.1 Methods for Generating Valid Cutting-Off Inequalities

In this section, we present two methods for generating valid cutting-off inequal-
ities by analyzing the differential behavior of the underlying S-box.

Modelling Conditional Differential Behaviour. In building integer pro-
gramming models in practice, sometimes it is possible to model certain logical
constraints as linear inequalities. For example, assume x is a continuous variable
such that 0 ≤ x ≤ M , where M is a fixed integer, and we know that δ is a 0-1
variable taking value 1 when x > 0, that is x > 0 ⇒ δ = 1. It is easy to ver-
ify that the above logical condition can be achieved by imposing the constraint
x−Mδ ≤ 0.

In fact, there is a surprisingly large number of different types of logical con-
ditions can be imposed in a similar way. We now give a theorem which will be
used in the following.

Theorem 1. If we assume that all variables are 0-1 variables, then the logical
condition that (x0, . . . , xm−1) = (δ0, . . . , δm−1) ∈ {0, 1}m ⊆ Zm implies y = δ ∈
{0, 1} ⊆ Z can be described by the following linear inequality

m−1∑
i=0

(−1)δixi + (−1)δ+1y − δ +

m−1∑
i=0

δi ≥ 0, (6)

where δi, δ are fixed constants and Z is the set of all integers.

Proof. We only prove the Theorem for the case δ = 0. For δ = 1, it can be
proved in a similar way. We assume

(δ0, . . . , δm−1) = (δ0, . . . , δs1−1; δs1 , . . . , δm−1) = (1, 1, . . . , 1; 0, 0, . . . , 0) = Δ∗.

For other 0-1 patterns, it can be permuted into such a form and this will not
affect our proof.

Automatic Security Evaluation and Differential Characteristic Search 165

Firstly, (Δ∗, 0) is satisfied by (6), which can be verified directly.
Secondly, we prove that all vectors (x0, . . . , xm−1, y) ∈ {0, 1}m+1 such that

(x0, . . . , xm−1) �= Δ∗ are satisfied by (6). In such cases, we have

m−1∑
i=0

(−1)δixi + (−1)δ+1y − δ +

m−1∑
i=0

δi = −
s1−1∑
i=0

xi +

m∑
i=s1

xi − y − 0 + s1 ≥ 0,

for y = 0 or y = 1.
Finally we prove that the vector (x0, . . . , xm−1, y) = (Δ∗, 1) is not satisfied

by the linear inequality. In such case, we have

m−1∑
i=0

(−1)δixi + (−1)δ+1y − δ +
m−1∑
i=0

δi = −
s1−1∑
i=0

xi +
m∑

i=s1

xi − 1− 0 + s1 < 0.

The proof is completed.
For example, the PRESENT S-box has the following conditional differential

[26,32,38,33,18] properties, which are referred to as undisturbed bits in [50].

Fact 1. The S-box of PRESENT-80 has the following properties:
(i) 1001→***0: If the input difference of the S-box is 0x9 = 1001, then the

least significant bit of the output difference must be 0;
(ii) 0001→***1 and 1000→***1: If the input difference of the S-box is 0x1 =

0001 or 0x8 = 1000, then the least significant bit of the output difference must
be 1;

(iii) ***1→0001 and ***1→0100: If the output difference of the S-box is 0x1 =
0001 or 0x4 = 0100, then the least significant bit of the input difference must be
1; and

(iv) ***0→0101: If the output difference of the S-box is 0x5 = 0101, then the
least significant bit of the input difference must be 0.

From Theorem 1, we have the following fact.

Fact 2. Let 0-1 variables (x0, x1, x2, x3) and (y0, y1, y2, y3) represent the input
and output bit-level differences of the S-box respectively, where x3 and y3 are the
least significant bits. Then the logical conditions in Theorem 1 can be described
by the following linear inequalities:

−x0 + x1 + x2 − x3 − y3 + 2 ≥ 0 (7)

{
x0 + x1 + x2 − x3 + y3 ≥ 0
−x0 + x1 + x2 + x3 + y3 ≥ 0

(8){
x3 + y0 + y1 + y2 − y3 ≥ 0
x3 + y0 − y1 + y2 + y3 ≥ 0

(9)

−x3 + y0 − y1 + y2 − y3 + 2 ≥ 0 (10)

166 S. Sun et al.

For example, the linear inequality (7) removes all differential patterns of
the form (x0, . . . , x3, y0, . . . , y3) = (1, 0, 0, 1, ∗, ∗, ∗, 1), where (x0, . . . , x3) and
(y0, . . . , y3) are the input and output differences of the PRESENT S-box respec-
tively. We call this group of constraints presented in (7), (8), (9), and (10) the
constraints of conditional differential propagation (CDP constraints for short).
The CDP constraints obtained from Fact 1 and the differential patterns removed
by these CDP constraints are given in Table 1.

Table 1. Impossible differential patterns removed by the CDP constraints gener-
ated according to the differential properties of the PRESENT S-box. Here, a vector
(λ0, . . . , λ3, γ0, . . . , γ3, θ) in the left column denotes a linear inequality λ0x0 + · · · +
λ3x3 + γ0y0 + · · ·+ γ3y3 + θ ≥ 0.

Constraints obtained by log-
ical condition modelling

Impossible differential patterns removed

(−1, 1, 1,−1, 0, 0, 0,−1, 2) (1, 0, 0, 1, 0, 0, 0, 1), (1, 0, 0, 1, 0, 0, 1, 1), (1, 0, 0, 1, 0, 1, 0, 1), (1, 0, 0, 1, 0, 1, 1, 1),

(1, 0, 0, 1, 1, 0, 0, 1), (1, 0, 0, 1, 1, 0, 1, 1), (1, 0, 0, 1, 1, 1, 0, 1), (1, 0, 0, 1, 1, 1, 1, 1)

(1, 1, 1,−1, 0, 0, 0, 1, 0) (0, 0, 0, 1, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0, 1, 0), (0, 0, 0, 1, 0, 1, 0, 0), (0, 0, 0, 1, 0, 1, 1, 0),

(0, 0, 0, 1, 1, 0, 0, 0), (0, 0, 0, 1, 1, 0, 1, 0), (0, 0, 0, 1, 1, 1, 0, 0), (0, 0, 0, 1, 1, 1, 1, 0)

(−1, 1, 1, 1, 0, 0, 0, 1, 0) (1, 0, 0, 0, 0, 0, 0, 0), (1, 0, 0, 0, 0, 0, 1, 0), (1, 0, 0, 0, 0, 1, 0, 0), (1, 0, 0, 0, 0, 1, 1, 0),

(1, 0, 0, 0, 1, 0, 0, 0), (1, 0, 0, 0, 1, 0, 1, 0), (1, 0, 0, 0, 1, 1, 0, 0), (1, 0, 0, 0, 1, 1, 1, 0)

(0, 0, 0, 1, 1, 1, 1,−1, 0) (0, 0, 0, 0, 0, 0, 0, 1), (0, 0, 1, 0, 0, 0, 0, 1), (0, 1, 0, 0, 0, 0, 0, 1), (0, 1, 1, 0, 0, 0, 0, 1),

(1, 0, 0, 0, 0, 0, 0, 1), (1, 0, 1, 0, 0, 0, 0, 1), (1, 1, 0, 0, 0, 0, 0, 1), (1, 1, 1, 0, 0, 0, 0, 1)

(0, 0, 0, 1, 1,−1, 1, 1, 0) (0, 0, 0, 0, 0, 1, 0, 0), (0, 0, 1, 0, 0, 1, 0, 0), (0, 1, 0, 0, 0, 1, 0, 0), (0, 1, 1, 0, 0, 1, 0, 0),

(1, 0, 0, 0, 0, 1, 0, 0), (1, 0, 1, 0, 0, 1, 0, 0), (1, 1, 0, 0, 0, 1, 0, 0), (1, 1, 1, 0, 0, 1, 0, 0)

(0, 0, 0,−1, 1,−1, 1,−1, 2) (0, 0, 0, 1, 0, 1, 0, 1), (0, 0, 1, 1, 0, 1, 0, 1), (0, 1, 0, 1, 0, 1, 0, 1), (0, 1, 1, 1, 0, 1, 0, 1),

(1, 0, 0, 1, 0, 1, 0, 1), (1, 0, 1, 1, 0, 1, 0, 1), (1, 1, 0, 1, 0, 1, 0, 1), (1, 1, 1, 1, 0, 1, 0, 1)

However, there are cases where no such conditional differential property ex-
ists. For example, two out of the eight S-boxes of Serpent [6] exhibit no such
property. Even when the S-box under consideration can be described with this
logical condition modelling technique, the inequalities generated may be not
enough to produce a satisfied result. In the following, a more general approach
for generating valid cutting-off inequalities is proposed.

Convex Hull of All Possible Differentials for an S-box. The convex hull
of a set Q of discrete points in Rn is the smallest convex set that contains Q. A
convex hull in Rn can be described as the common solutions of a set of finitely
many linear (in)equalities as follows:⎧⎪⎪⎨⎪⎪⎩

λ0,0x0 + · · ·+ λ0,n−1xn−1 + λ0,n ≥ 0
· · ·

γ0,0x0 + · · ·+ γ0,n−1xn−1 + γ0,n = 0
· · ·

(11)

Automatic Security Evaluation and Differential Characteristic Search 167

This is called the H-Representation of a convex hull. Computing the H-
representation of the convex hull of a set of finitely many points is a fundamental
algorithm in computation geometry with many applications.

If we treat a differential of an ω×ν S-box as a point in Rω+ν , then we can get
a set of finitely many discrete points which includes all possible differential pat-
terns of this S-box . For example, one possible differential pattern of PRESENT
S-box is 0x9 = 1001→ 0xE = 1110 which is identified with (1, 0, 0, 1, 1, 1, 1, 0).
The set of all possible differential patterns for the S-boxes are essentially sets of
finitely many discrete points in high dimensional space, hence we can compute
their convex hulls by standard method in computational geometry.

We now define the convex hull of a specific ω × ν S-box to be the set of all
linear (in)equalities in the H-Representation of the convex hull VS ⊆ Rω+ν

of all possible differential patterns of the S-box. The convex hull of a spe-
cific S-box can be obtained by using the inequality generator() function in the
sage.geometry.polyhedron class of the SAGE computer algebra system [49]. The
convex hull of the PRESENT S-box contains 327 linear inequalities. Any one of
these inequalities can be taken as a valid cutting-off inequality.

3.2 Selecting Valid Cutting-off Inequalities from the Convex Hull:
A Greedy Approach

The number of (in)equalities in the H-Representation of a convex hull computed
from a set of discrete points in n dimensional space is very large in general. For
instance, the convex hull VS ⊆ R8 of a 4 × 4 S-box typically involves several
hundreds of linear inequalities. Adding all of them to an MILP problem will
make the MILP problem insolvable in practical time. Hence, it is necessary to
select a small number, say n, of “best” inequalities from the convex hull. Here by
“best” we mean that, among all possible selections of n inequalities, the selected
ones maximize the number of removed impossible differentials. Obviously, this
is a hard combinatorial optimization problem. Therefore, we design a greedy
algorithm, listed in Algorithm 1, to approximate the optimum selection.

This algorithm builds up a set of valid cutting-off inequalities by selecting
at each step an inequality from the convex hull which maximizes the number
of removed impossible differential patterns from the current feasible region. For
instance, We select 6 valid cutting-off inequalities from the convex hull of the
PRESENT S-box using Algorithm 1. Compared with the 6 valid cutting-off
inequalities obtained by Theorem 1 (see Table 1), they cut off 24 more impossible
differential patterns, which leads to a relatively tighter feasible region.

168 S. Sun et al.

Algorithm 1. Selecting n inequalities from the convex hull H of an S-box

Input: H: the set of all inequalities in the H-representation of the
convex hull of an S-box; X : the set of all impossible differential
patterns of an S-box; n: a positive integer.

Output: O: a set of n inequalities selected from H
1 l∗ := None; X ∗ := X ; H∗ := H; O := ∅;
2 for i ∈ {0, . . . , n− 1} do
3 l∗ := The inequality in H∗ which maximizes the number of removed

impossible differential patterns from X ∗ ;
4 X ∗ := X ∗ − {removed impossible differential patterns by l∗};
5 H∗ := H∗ − {l∗}; O := O ∪ {l∗};
6 end
7 return O

4 Automatic Security Evaluation

To obtain the security bound of a block cipher with respect to related-key
differential attack, we can build an MILP model according to Sect. 2 with the
constraints introduced in Sect. 3.1 and Sect. 3.2 included. Then we solve the
MILP model using any MILP optimizer, and the optimized solution, say N , is
the minimum number of the active S-boxes from which we can deduce that the
probability of the best differential characteristic is upper bounded by εN , where
ε is the maximum differential probability (MDP) a single S-box.

However, it is computationally infeasible to solve an MILP model generated
by an r-round block cipher with large r. In such case, we can turn to the so
called simple split approach. We split the r-round block cipher into two parts
with consecutive r1 rounds and r2 rounds such that r1 + r2 = r. Then we apply
our method to these two parts. Assuming that there are at least Nr1 and Nr2

active S-boxes in the first and second part respectively, we can deduce that the
probability of the best differential characteristic for this r-round cipher is upper
bounded by ε(Nr1+Nr2). If r1 and r2 are still too large, they can be divided into
smaller parts further. Note that our method is applicable to both the single-key
and related-key models.

4.1 Techniques for Getting Tighter Security Bounds

Technique 1. In the above analysis, we pessimistically (in the sense that we
want to prove the security of a cipher) assume that all the active S-boxes take
the MDP ε. However, this is unlikely to happen in practice, especially in the case
that the number of active S-boxes is minimized. Therefore, we have the following
strategy for obtaining tighter security bound for a t-round characteristic.

Firstly, compute the set E of all the differential patterns of an S-box with
probabilities greater than or equal to the S-box’s MDP ε.

Secondly, compute the H-representation HE of the convex hull of E , and then
use the inequalities selected from HE by Algorithm 1 to generate a t-round

Automatic Security Evaluation and Differential Characteristic Search 169

model according to Sect. 2 and Sect. 3. Note that the feasible region of this
model is smaller than that of a t-round model generated in standard way, since
the differential patterns allowed to take in this model is more restrictive. Hence,
we hope to get a larger objective value than Nt, which is the result obtained by
using the standard t-round model.

Finally, solve the model using a software optimizer. If the objective value is
greater than Nt, we know that there is no differential characteristic with only Nt

active S-boxes such that all these S-boxes take differential patterns with proba-
bility ε. And hence, we can conclude that there is at least one active S-box taking
a differential pattern with probability less than ε in a t-round characteristic with
only Nt active S-boxes.

Technique 2. Yet another technique for obtaining tighter security bound is
inspired by Alex Biryukov et al. and Sareh Emami et al.’s (extended) split ap-
proach [11,22]. In Sun et al.’s work [48], the strategy for proving the security
of an n-round iterative cipher against the related-key differential attacks is to
use the simple split approach. By employing the MILP technique, compute the
minimum number Nt of differentially active S-boxes for any consecutive t-round
(1 ≤ t ≤ n) related-key differential characteristic. Then the lower bound of the
number of active S-boxes for the full cipher (n-round) can be obtained by com-
puting

∑
j∈I⊆{1,2,... }

Ntj , where
∑
j∈I

tj = n. Note that the computational cost is

too high to compute Nn directly.
We point out that this simple “split strategy” can be improved to obtain

tighter security bound by exploiting more information of a differential charac-
teristic. The main idea is that the characteristic covering round 1 to round m and
the characteristic covering round m+1 to round 2m should not be treated equal
although they have the same number of rounds, since the starting difference of
a characteristic of round m+1 to 2m is not as free as that of a characteristic of
round 1 to round m. Therefore, we have the following strategy.

Firstly, split an r-round into two parts: round 1 to round r1, and round r1+1
to round r = r1 + r2.

Secondly, construct an MILP model covering round 1 to round r. Change the
objective function to be the sum of all S-boxes covering round r1 + 1 to round
r. Add some additional constraints on the number of active S-boxes covering
round 1 to round r1 (One way to obtain such constraints is to solve the model
covering round 1 to round r1).

Finally, solve the model using any software optimizer, and the result is the
lower bound of the number of active S-boxes of round r1 + 1 to round r (r2
rounds in total) for any characteristic covering round 1 to round r.

We have applied the methods presented in this section to PRESENT-80 and
LBlock, and the results are given in Appendix A.

170 S. Sun et al.

5 A Heuristic Method for Finding (Related-key)
Differential Characteristics Automatically

To find a (related-key) differential characteristic with relatively high probability
covering r rounds of a cipher is the most important step in (related-key) differ-
ential cryptanalysis. Most of the tools for searching differential characteristics
are essentially based on Matsui’s algorithm [42]. In this section, we propose an
MILP based heuristic method for finding (related-key) differential characteris-
tics. Compared to other methods, our method is easier to implement, and more
flexible.

Thanks to the valid cutting-off inequalities which can describe the property of
an S-box according to its differential distribution table, our method can output
a good (related-key) differential characteristic directly by employing the MILP
technique. The procedure of our method is outlined as follows.

Step 1. For every S-box S, select n inequalities from the convex hull of the
set of all possible differential patterns of S using Algorithm 1, and generate an
r-round MILP model in which we require that all variables involved are 0-1.

Step 2. Extract a feasible solution of the MILP model by using the Gurobi
[45] optimizer.

Step 3. Check whether the feasible solution is a valid (related-key) differential
characteristic. If it is a valid characteristic, the procedure terminates. Otherwise,
go to step 1, increase the number of selected inequalities from the convex hulls,
and repeat the whole process.

We have developed a software by employing the python interface provided by
the Gurobi optimizer, which automates the whole process of the above method.

To demonstrate the practicability of our method, we have applied the methods
presented in this section to SIMON and the results are given in Appendix B.

On the Quality of the Characteristics. The characteristics found by this
method are not guaranteed to be the best. However, if you would like to wait until
the optimizer outputs optimum solution, the characteristic found by this method
is guaranteed to have the minimum number of active S-boxes. Experimental
results show that we get reasonably good solutions.

On the Flexibility of the Searching Algorithm. By adding a small number
of additional constraints, our method can be used to search characteristics with
specific properties. For example, by setting some given variables marking the
activity of some S-boxes to 1, we can search for characteristics with active S-
boxes of predefined positions, which may be used in leaked-state forgery attacks
[55]; by requiring the output and input variables to be the same, we can search for
iterative characteristics; by setting all the variables marking the activity of all the
S-boxes in the key schedule algorithm to be 0, we can search for characteristics
with 0 active S-boxes in its key schedule algorithm, which may be preferred in
the related-key differential attack.

Automatic Security Evaluation and Differential Characteristic Search 171

6 Conclusion and Directions for Future Work

In this paper, we bring new constraints into the MILP model to describe the
differential properties of a specific S-box, and obtain a more accurate MILP
model for the differential behavior of a block cipher. Based on these constraints,
we propose an automatic method for evaluating the security of bit-oriented block
ciphers with respect to (related-key) differential attack. We also present a new
tool for finding (related-key) characteristics automatically.

At this point, several open problems emerge. Firstly, we observe that the
MILP instances derived from such cryptographic problems are very hard to
solve compared with general MILP problems with the same scale with respect
to the numbers of variables and constraints. Hence, it is interesting to develop
specific methods to accelerate the solving process of such problems and therefore
increase the number of rounds of the cipher under consideration that can be
dealt with. Secondly, the method presented in this paper is very general. Is it
possible to develop a compiler which can convert a standard description, say
a description using hardware description language, of a cipher into an MILP
instance to automate the entire security evaluation cycle with respect to (related-
key) differential attack?

Finally, the methodology presented in this paper has some limitations which
we would like to make clear, and trying to overcome these limitations is a topic
deserving further investigation. Firstly, this methodology is only suitable to eval-
uate the security of constructions with S-boxes, XOR operations and bit permu-
tations, and can not be applied to block cipher like SPECK [5], which involve
modulo addition and no S-boxes at all. For tools which can be applied to ARX
constructions, we refer the reader to [12,39,40,41,43]. Secondly, in this paper we
do not consider the differential effect and we assume that the expected differen-
tial probability (EDP) π of a characteristic over all keys is (almost) the same as
the fixed-key differential probability (DP) πK for almost all keys (the common
hypothesis of stochastic equivalence [35]), and that if the lower bound of the EDP
for any characteristic of a block cipher is less than 2−s, where s is bigger than the
block size or key size, then the block cipher is secure against the (related-key)
differential attack. For more in-depth discussion of the essential gap between
EDP π and DP πK , we refer the reader to [13] for more information.

Acknowledgements. The authors would like to thank the anonymous review-
ers for their helpful comments and suggestions. The work of this paper is sup-
ported by the National Key Basic Research Program of China (2013CB834203,
2014CB340603), the National Natural Science Foundation of China (Grants
61402469, 61472417, 61472415 and 61272477), the Strategic Priority Research
Program of Chinese Academy of Sciences under Grant XDA06010702, and the
State Key Laboratory of Information Security, Chinese Academy of Sciences.

172 S. Sun et al.

References

1. Albrecht, M., Cid, C.: Cold boot key recovery by solving polynomial systems with
noise. In: Lopez, J., Tsudik, G. (eds.) ACNS 2011. LNCS, vol. 6715, pp. 57–72.
Springer, Heidelberg (2011)

2. Biryukov, A., Roy, A., Velichkov, V.: Differential analysis of block ciphers SIMON
and SPECK. In: Fast Software Encryption, FSE 2014 (2014)

3. Alkhzaimi, H.A., Lauridsen, M.M.: Cryptanalysis of the SIMON fam-
ily of block ciphers. Cryptology ePrint Archive, Report 2013/543 (2013),
http://eprint.iacr.org/2013/543

4. Aoki, K., Ichikawa, T., Kanda, M., Matsui, M., Moriai, S., Nakajima, J., Tokita,
T.: Camellia: A 128-bit block cipher suitable for multiple platforms - design
and analysis. In: Stinson, D.R., Tavares, S. (eds.) SAC 2000. LNCS, vol. 2012,
pp. 39–56. Springer, Heidelberg (2001)

5. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.:
The SIMON and SPECK families of lightweight block ciphers. Cryptology ePrint
Archive, Report 2013/404 (2013), http://eprint.iacr.org/2013/404

6. Biham, E., Anderson, R., Knudsen, L.: Serpent: A new block cipher proposal. In:
Vaudenay, S. (ed.) FSE 1998. LNCS, vol. 1372, pp. 222–238. Springer, Heidelberg
(1998)

7. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. Jour-
nal of Cryptology 4(1), 3–72 (1991)

8. Bilgin, B., Bogdanov, A., Knežević, M., Mendel, F., Wang, Q.: fides: Lightweight
authenticated cipher with side-channel resistance for constrained hardware. In:
Bertoni, G., Coron, J.-S. (eds.) CHES 2013. LNCS, vol. 8086, pp. 142–158.
Springer, Heidelberg (2013)

9. Biryukov, A.: Impossible differential attack. In: Encyclopedia of Cryptography and
Security, pp. 597–597. Springer (2011)

10. Biryukov, A., Nikolić, I.: Automatic search for related-key differential character-
istics in byte-oriented block ciphers: Application to AES, Camellia, Khazad and
others. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 322–344.
Springer, Heidelberg (2010)

11. Biryukov, A., Nikolić, I.: Search for related-key differential characteristics in DES-
like ciphers. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 18–34. Springer,
Heidelberg (2011)

12. Biryukov, A., Velichkov, V.: Automatic search for differential trails in ARX ciphers.
In: Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol. 8366, pp. 227–250. Springer, Hei-
delberg (2014)

13. Blondeau, C., Bogdanov, A., Leander, G.: Bounds in shallows and in miseries.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp.
204–221. Springer, Heidelberg (2013)

14. Bogdanov, A.: On unbalanced feistel networks with contracting MDS diffusion.
Designs, Codes and Cryptography 59(1-3), 35–58 (2011)

15. Bogdanov, A.A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M., Seurin, Y., Vikkelsoe, C.: PRESENT: An ultra-lightweight block cipher. In:
Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007)

16. Borghoff, J., Canteaut, A., Güneysu, T., Kavun, E.B., Knezevic, M., Knudsen,
L.R., Leander, G., Nikov, V., Paar, C., Rechberger, C., Rombouts, P., Thomsen,
S.S., Yalçın, T.: PRINCE – A low-latency block cipher for pervasive computing

http://eprint.iacr.org/2013/543
http://eprint.iacr.org/2013/404

Automatic Security Evaluation and Differential Characteristic Search 173

applications. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658,
pp. 208–225. Springer, Heidelberg (2012)

17. Borghoff, J., Knudsen, L.R., Stolpe, M.: Bivium as a mixed-integer linear pro-
gramming problem. In: Parker, M.G. (ed.) Cryptography and Coding 2009. LNCS,
vol. 5921, pp. 133–152. Springer, Heidelberg (2009)

18. Bulygin, S., Walter, M.: Study of the invariant coset attack on PRINTcipher:
more weak keys with practical key recovery. Tech. rep., Cryptology ePrint Archive,
Report 2012/85 (2012), http://eprint.iacr.org/2012/085.pdf

19. Daemen, J., Rijmen, V., Proposal, A.: Rijndael. In: Proceedings from the First
Advanced Encryption Standard Candidate Conference, National Institute of Stan-
dards and Technology (NIST) (1998)

20. Andreeva, E., Bilgin, B., Bogdanov, A., Luykx, A., Mendel, F., Mennink, B.,
Mouha, N., Wang, Q., Yasuda, K.: PRIMATEs v1. CAESAR submission (2014),
http://competitions.cr.yp.to/round1/primatesv1.pdf

21. Kavun, E.B., Lauridsen, M.M., Leander, G., Rechberger, C., Schwabe, P., Yalcin,
T.: Pr∅st v1. CAESAR submission (2014),
http://competitions.cr.yp.to/round1/proestv1.pdf

22. Emami, S., Ling, S., Nikolic, I., Pieprzyk, J., Wang, H.: The resistance of
PRESENT-80 against related-key differential attacks. Cryptology ePrint Archive,
Report 2013/522 (2013), http://eprint.iacr.org/

23. Abed, F., List, E., Wenzel, J., Lucks, S.: Differential cryptanalysis of round-reduced
SIMON and SPECK. In: Fast Software Encryption, FSE 2014 (2014)

24. Abed, F., List, E., Lucks, S., Wenzel, J.: Differential and linear cryptanalysis
of reduced-round SIMON. Cryptology ePrint Archive, Report 2013/526 (2013),
http://eprint.iacr.org/526/

25. Fouque, P.A., Jean, J., Peyrin, T.: Structural evaluation of AES and chosen-key
distinguisher of 9-round AES-128. In: Canetti, R., Garay, J.A. (eds.) CRYPTO
2013, Part I. LNCS, vol. 8042, pp. 183–203. Springer, Heidelberg (2013)

26. Fuhr, T.: Finding second preimages of short messages for Hamsi-256. In: Abe, M.
(ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 20–37. Springer, Heidelberg (2010)

27. Nikolić, I.: Tweaking AES. In: Biryukov, A., Gong, G., Stinson, D.R. (eds.) SAC
2010. LNCS, vol. 6544, pp. 198–210. Springer, Heidelberg (2011)

28. Alizadeh, J., Bagheri, N., Gauravaram, P., Kumar, A., Sanadhya, S.K.: Lin-
ear cryptanalysis of round reduced SIMON. Cryptology ePrint Archive, Report
2013/663 (2013), http://eprint.iacr.org/2013/663

29. Jean, J., Nikolić, I., Peyrin, T.: Deoxys v1. CAESAR submission (2014),
http://competitions.cr.yp.to/round1/deoxysv1.pdf

30. Jean, J., Nikolić, I., Peyrin, T.: Joltik v1. CAESAR submission (2014),
http://competitions.cr.yp.to/round1/joltikv1.pdf

31. Jean, J., Nikolić, I., Peyrin, T.: Kiasu v1. CAESAR submission (2014),
http://competitions.cr.yp.to/round1/kiasuv1.pdf

32. Knellwolf, S., Meier, W., Naya-Plasencia, M.: Conditional differential cryptanaly-
sis of NLFSR-based cryptosystems. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS,
vol. 6477, pp. 130–145. Springer, Heidelberg (2010)

33. Knellwolf, S., Meier, W., Naya-Plasencia, M.: Conditional differential cryptanal-
ysis of trivium and KATAN. In: Miri, A., Vaudenay, S. (eds.) SAC 2011. LNCS,
vol. 7118, pp. 200–212. Springer, Heidelberg (2012)

34. Knudsen, L.R.: Truncated and higher order differentials. In: Preneel, B. (ed.) FSE
1994. LNCS, vol. 1008, pp. 196–211. Springer, Heidelberg (1995)

http://eprint.iacr.org/2012/085.pdf
http://competitions.cr.yp.to/round1/primatesv1.pdf
http://competitions.cr.yp.to/round1/proestv1.pdf
http://eprint.iacr.org/
http://eprint.iacr.org/526/
http://eprint.iacr.org/2013/663
http://competitions.cr.yp.to/round1/deoxysv1.pdf
http://competitions.cr.yp.to/round1/joltikv1.pdf
http://competitions.cr.yp.to/round1/kiasuv1.pdf

174 S. Sun et al.

35. Lai, X., Massey, J.L.: Markov ciphers and differential cryptanalysis. In: Davies,
D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 17–38. Springer, Heidelberg
(1991)

36. Lamberger, M., Nad, T., Rijmen, V.: Numerical solvers and cryptanalysis. Journal
of Mathematical Cryptology 3(3), 249–263 (2009)

37. Leander, G., Paar, C., Poschmann, A., Schramm, K.: New lightweight DES vari-
ants. In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 196–210. Springer,
Heidelberg (2007)

38. Lehmann, M., Meier, W.: Conditional differential cryptanalysis of grain-128a. In:
Pieprzyk, J., Sadeghi, A.-R., Manulis, M. (eds.) CANS 2012. LNCS, vol. 7712, pp.
1–11. Springer, Heidelberg (2012)

39. Leurent, G.: Construction of differential characteristics in ARX designs application
to skein. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042,
pp. 241–258. Springer, Heidelberg (2013)

40. Lipmaa, H., Moriai, S.: Efficient algorithms for computing differential properties of
addition. In: Matsui, M. (ed.) FSE 2001. LNCS, vol. 2355, pp. 336–350. Springer,
Heidelberg (2002)

41. Lipmaa, H., Wallén, J., Dumas, P.: On the additive differential probability of
exclusive-or. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 317–331.
Springer, Heidelberg (2004)

42. Matsui, M.: On correlation between the order of S-boxes and the strength of DES.
In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 366–375. Springer,
Heidelberg (1995)

43. Mouha, N., Preneel, B.: Towards finding optimal differential characteristics for
ARX: Application to Salsa20. Cryptology ePrint Archive, Report 2013/328 (2013),
http://eprint.iacr.org/2013/328

44. Mouha, N., Wang, Q., Gu, D., Preneel, B.: Differential and linear cryptanalysis
using mixed-integer linear programming. In: Wu, C.-K., Yung, M., Lin, D. (eds.)
Inscrypt 2011. LNCS, vol. 7537, pp. 57–76. Springer, Heidelberg (2012)

45. Optimization, Gurobi: Gurobi optimizer reference manual (2013),
http://www.gurobi.com

46. Oren, Y., Kirschbaum, M., Popp, T., Wool, A.: Algebraic side-channel analysis in
the presence of errors. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS,
vol. 6225, pp. 428–442. Springer, Heidelberg (2010)

47. Özen, O., Varıcı, K., Tezcan, C., Kocair, Ç.: Lightweight block ciphers revisited:
Cryptanalysis of reduced round PRESENT and HIGHT. In: Boyd, C., González
Nieto, J. (eds.) ACISP 2009. LNCS, vol. 5594, pp. 90–107. Springer, Heidelberg
(2009)

48. Sun, S., Hu, L., Song, L., Xie, Y., Wang, P.: Automatic security evaluation of
block ciphers with s-bp structures against related-key differential attacks. In: In-
ternational Conference on Information Security and Cryptology – Inscrypt 2013
(2013)

49. Stein, W., et al.: Sage: Open source mathematical software (2008)
50. Tezcan, C.: Improbable differential attacks on PRESENT using undisturbed bits.

Journal of Computional and Applied Mathematics 259, 503–511 (2014)
51. Wagner, D.: The boomerang attack. In: Knudsen, L.R. (ed.) FSE 1999. LNCS,

vol. 1636, pp. 156–170. Springer, Heidelberg (1999)
52. Walter, M., Bulygin, S., Buchmann, J.: Optimizing guessing strategies for algebraic

cryptanalysis with applications to EPCBC. In: Kuty�lowski, M., Yung, M. (eds.)
Inscrypt 2012. LNCS, vol. 7763, pp. 175–197. Springer, Heidelberg (2013)

http://eprint.iacr.org/2013/328
http://www.gurobi.com

Automatic Security Evaluation and Differential Characteristic Search 175

53. Winnen, L.: Sage S-box MILP toolkit,
http://www.ecrypt.eu.org/tools/sage-s-box-milp-toolkit

54. Wu, S., Wang, M.: Security evaluation against differential cryptanalysis for block
cipher structures. Tech. rep., Cryptology ePrint Archive, Report 2011/551 (2011),
http://eprint.iacr.org/2011/551.pdf

55. Wu, S., Wu, H., Huang, T., Wang, M., Wu, W.: Leaked-state-forgery attack against
the authenticated encryption algorithm ALE. In: Sako, K., Sarkar, P. (eds.) ASI-
ACRYPT 2013, Part I. LNCS, vol. 8269, pp. 377–404. Springer, Heidelberg (2013)

56. Wu, W., Zhang, L.: LBlock: A lightweight block cipher. In: Lopez, J., Tsudik, G.
(eds.) ACNS 2011. LNCS, vol. 6715, pp. 327–344. Springer, Heidelberg (2011)

57. Yap, H., Khoo, K., Poschmann, A., Henricksen, M.: EPCBC - A block cipher
suitable for electronic product code encryption. In: Lin, D., Tsudik, G., Wang, X.
(eds.) CANS 2011. LNCS, vol. 7092, pp. 76–97. Springer, Heidelberg (2011)

58. Sasaki, Y., Todo, Y., Aoki, K., Naito, Y., Sugawara, T., Murakami,
Y., Matsui, M., Hirose, S.: Minalpher v1. CAESAR submission (2014),
http://competitions.cr.yp.to/round1/minalpherv1.pdf

A On the Security of PRESENT-80, and LBlock with
Respect to the Related-Key Differential Attack

A.1 Results on PRESENT-80

We apply the logical condition modelling method presented in Sect. 3.1 to the
block cipher PRESENT-80 to determine its security bound with respect to the
related-key differential attack. In each of these MILP models, we include one
more constraint to ensure that the difference of the initial key register is nonzero,
since the case where the difference of the initial key register is zero can be
analyzed in the single-key model. Then we employ the Gurobi 5.5 optimizer [45]
to solve the MILP instances.

By default the computations are performed on a PC using 4 threads with
Intel(R) Core(TM) Quad CPU (2.83GHz, 3.25GB RAM, Windows XP), and a
star “*” is appended on a timing data to mark that the corresponding com-
putation is taken on a workstation equipped with two Intel(R) Xeon(R) E5620
CPU(2.4GHz, 8GB RAM, 8 cores).

We compute the number of active S-boxes for PRESENT-80 in the related-
key model up to 14 rounds, and the results and a comparison with previous
results without using CDP constraints are summarized in Table 2. For example,
according to the 6th row of Table 2, the Gurobi optimizer finds that the minimum
number of active S-boxes for 6-round PRESENT-80 is at least 5 in no more than
16 seconds by solving the MILP model with CDP constraints

These results clearly demonstrate that the MILP models with CDP con-
straints lead to tighter security bounds. In particular, we have proved that there
are at least 16 active S-boxes in the best related-key differential characteris-
tic for any consecutive 12-rounds of PRESENT-80. Therefore, the probability
of the best related-key differential characteristic of 24-round PRESENT-80 is
(2−2)16× (2−2)16 = 2−64, leading to the result that the 24-round PRESENT-80
is resistant to basic related-key differential attack based on related-key differen-
tial characteristic (rather than differential).

http://www.ecrypt.eu.org/tools/sage-s-box-milp-toolkit
http://eprint.iacr.org/2011/551.pdf
http://competitions.cr.yp.to/round1/minalpherv1.pdf

176 S. Sun et al.

Table 2. Results obtained from MILP models for PRESENT-80

Rounds
With CDP Constraints Without CDP Constraints

Active S-boxes # Time(in seconds) # Active S-boxes # Time(in seconds)

1 0 1 0 1

2 0 1 0 1

3 1 1 1 1

4 2 1 2 1

5 3 5 3 3

6 5 16 4 10

7 7 107 6 26

8 9 254 8 111

9 10 522 9 171

10 13 4158 12 1540

11 15 18124 13 8136

12 16 50017 15 18102

13 18 137160* 17 49537*

14 20 1316808* 18 685372*

15 − > 20days − > 20days

A.2 Results on LBlock

Up to now, there is no concrete result concerning the security of full-round
LBlock [56] against differential attack in the related-key model due to a lack of
proper tools for bit-oriented designs.

Since the encryption process of LBlock is nibble-oriented, the security of
LBlock against single-key differential attack can be evaluated by those word-
oriented techniques. However, the “≪ 29” operations in the key schedule algo-
rithm of LBlock destroy its overall nibble-oriented structure. In this subsection,
we apply the method proposed in this paper to LBlock, and some results con-
cerning its security against related-key differential attacks are obtained. Note
that the type of constraints given in (5) are removed in our MILP models for
LBlock according to the explanations presented in previous sections.

From Table 3, we can deduce that the probability of the best differential
characteristic for full LBlock (totally 32 = 11+11+10 rounds) is upper bounded
by (2−2)10 × (2−2)10 × (2−2)8 = 2−56, where 2−2 is the MDP for a single S-box
of LBlock.

In fact, here we have an implicit trade-off between the number of constraints
we use and the number of rounds we analyze. For example, we can use less
constraints for every S-box and try to analyze more rounds, or we can use more
constraints and focus on less rounds (but stronger bounds). However, it is not a
simple task to find the best trade-off due to our limited computational power.
We do try to analyze more rounds by using only one inequality selected from
the convex hull for every S-box. The largest number of rounds we are able to
analyze is 13, and we have prove that there are at least 13 active S-boxes in any
related-key characteristic for 13-round LBlock on a PC in roughly 49 days.

Automatic Security Evaluation and Differential Characteristic Search 177

Table 3. Results for related-key differential analysis on LBlock (The #Variables col-
umn records the sum of the number of the 0-1 variables and continuous variables in
the MILP model).

Rounds #Variables #Constraints #Active S-boxes Time (in seconds)

1 218+104 = 322 660 0 1

2 292+208 = 500 1319 0 1

3 366+312 = 678 1978 0 1

4 440+416 = 856 2637 0 1

5 514+520 = 1034 3296 1 2

6 588+624 = 1212 3955 2 12

7 662+728 = 1390 4614 3 38

8 736+832 = 1568 5273 5 128

9 810+936 = 1746 5932 6 386

10 884+1040 = 1924 6591 8 19932

11 958+1144 = 2102 7250 10 43793

Then, we try to improve the above result with the two techniques presented
in Sect. 4.1. By using the first technique, we can show that there are at least
13 active S-boxes in a 13-round related-key differential characteristic of LBlock,
and there is at least one active S-box taking a differential pattern with probability
2−3 in any 13-round related-key differential characteristic of LBlock with only
13 active S-boxes. Therefore, the probability of a 13-round related-key differential
characteristic of LBlock is upper bounded by (2−2)12 × (2−3) = 2−27.

We now turn to the second technique presented in Sect. 4.1. By adding the
constraint that the number of active S-boxes of any characteristic covering round
22 to round 26 (5 rounds in total) has at least 1 active S-box (see Table 3),
and at most 12 active S-boxes to a 11-round (round 22 to round 32) MILP
model (If this is not the case, it will enable us to get better bounds than the
result presented here), we can show that there are at least 3 active S-boxes
in a characteristic covering round 27 to round 32 . Combined with Fact 3, we
have that the probability of the best related-key differential characteristic for
full LBlock is upper bounded by 2−27 × 2−27 × (2−2)3 = 2−60.

B Search for Related-Key Characteristics of SIMON48

SIMON [5] is a family of lightweight block ciphers designed by the U.S National
Security Agency (NSA). For a detailed description of SIMON and existing at-
tacks, we refer the reader to [2,3,23,24,28].

By treating the AND (F2×F2 → F2) operation as a 2×1 S-box, we apply our
method to SIMON in the single-key model. For SIMON48 we obtain a 15-round
differential characteristic with probability 2−46 (see Table 4), which is the best
15-round differential characteristic for 15-round SIMON48 published so far. If
we fix the input and output differences to be the differences suggested by the
characteristic we found, we can compute the probability of this differential by

178 S. Sun et al.

searching all characteristics with probability greater than 2−54 in this differential,
and the result is 2−41.96 which is also the best result published so far.

We would like to emphasize that in our MILP models we treat the input bits
of the AND operation as independent input bits, and the dependencies of the
input bits to the AND operation are not considered. Therefore, the characteristic
obtained by our method is not guaranteed to be valid. Hence, every time after the
Gurobi optimizer outputs a good solution (characteristic), we check its validity
and compute its probability by the method presented in [2].

Table 4. Single-key differential characteristic of 15-round SIMON48

Rounds Left Right

0 000000001000000000000000 000000100010001000000000
1 000000000010001000000000 000000001000000000000000
2 000000000000100000000000 000000000010001000000000
3 000000000000001000000000 000000000000100000000000
4 000000000000000000000000 000000000000001000000000
5 000000000000001000000000 000000000000000000000000
6 000000100000100000000000 000000000000001000000000
7 000000000010001000000010 000000100000100000000000
8 001000001000001000001000 000000000010001000000010
9 000000000010001000000010 001000001000001000001000
10 000000100000100000000000 000000000010001000000010
11 000000000000001000000000 000000100000100000000000
12 000000000000000000000000 000000000000001000000000
13 000000000000001000000000 000000000000000000000000
14 000000000000100000000000 000000000000001000000000
15 000000000010001000000000 000000000000100000000000

Scrutinizing and Improving Impossible

Differential Attacks: Applications to CLEFIA,
Camellia, LBlock and Simon

�

Christina Boura1, Maŕıa Naya-Plasencia2 and Valentin Suder2

1 Versailles Saint-Quentin-en-Yvelines University, France
christina.boura@prism.uvsq.fr

2 Inria, France
{Maria.Naya Plasencia,Valentin.Suder}@inria.fr

Abstract. Impossible differential cryptanalysis has shown to be a very
powerful form of cryptanalysis against block ciphers. These attacks, even
if extensively used, remain not fully understood because of their high
technicality. Indeed, numerous are the applications where mistakes have
been discovered or where the attacks lack optimality. This paper aims
in a first step at formalizing and improving this type of attacks and in
a second step at applying our work to block ciphers based on the Feis-
tel construction. In this context, we derive generic complexity analysis
formulas for mounting such attacks and develop new ideas for optimiz-
ing impossible differential cryptanalysis. These ideas include for example
the testing of parts of the internal state for reducing the number of in-
volved key bits. We also develop in a more general way the concept of
using multiple differential paths, an idea introduced before in a more
restrained context. These advances lead to the improvement of previous
attacks against well known ciphers such as CLEFIA-128 and Camellia,
while also to new attacks against 23-round LBlock and all members of
the Simon family.

Keywords: block ciphers, impossible differential attacks, CLEFIA,
Camellia, LBlock, Simon.

1 Introduction

Impossible differential attacks were independently introduced by Knudsen [21]
and Biham et al. [5]. Unlike differential attacks [6] that exploit differential paths
of high probability, the aim of impossible differential cryptanalysis is to use
differentials that have a probability of zero to occur in order to eliminate the
key candidates leading to such impossible differentials.

The first step in an impossible differential attack is to find an impossible
differential covering the maximum number of rounds. This is a procedure that

� Partially supported by the French Agence Nationale de la Recherche through the
BLOC project under Contract ANR-11-INS-011.

P. Sarkar and T. Iwata (Eds.): ASIACRYPT 2014, PART I, LNCS 8873, pp. 179–199, 2014.
c© International Association for Cryptologic Research 2014

180 C. Boura, M. Naya-Plasencia, and V. Suder

has been extensively studied and there exist algorithms for finding such impos-
sible differentials efficiently [20,19,9]. Once such a maximum-length impossible
differential has been found and placed, one extends it by some rounds to both
directions. After this, if a candidate key partially encrypts/decrypts a given pair
to the impossible differential, then this key certainly cannot be the right one
and is thus rejected. This technique provides a sieving of the key space and the
remaining candidates can be tested by exhaustive search.

Despite the fact that impossible differential cryptanalysis has been extensively
employed, the key sieving step of the attack does not seem yet fully understood.
Indeed, this part of the procedure is highly technical and many parameters have
to be taken into consideration. Questions that naturally arise concern the way
to choose the plaintext/ciphertext pairs, the way to calculate the necessary data
to mount the attack, the time complexity of the overall procedure as well as
which are the parameters that optimize the attack. However, no simple and
generalized way for answering these questions has been provided until now and
the generality of most of the published attacks is lost within the tedious details
of each application. The problems that arise from this approach is that mistakes
become very common and attacks become difficult to verify. Errors in the analysis
are often discovered and as we demonstrate in the next paragraph, many papers
in the literature present flaws. These flaws include errors in the computation of
the time or the data complexity, in the analysis of the memory requirements or
of the complexity of some intermediate steps of the attacks. We can cite many
such cases for different algorithms, as shown in Table 1. Note however, that the
list of flaws presented in this table is not exhaustive.

Table 1. Summary of flaws in previous impossible differential attacks on CLEFIA-128,
Camellia, LBlock and Simon. Symbol ✗ means that the attack does not work, while
✓ says that the corrected attacks work. Error type (1) is when the data complexity
is higher than the codebook, error type (2) shows a big computation flaw, error type
(3) stands for small complexity flaws, while error type (4) is if the attack cannot be
verified without implementation.

Algorithm # rounds Ref. Type Repaira- Where
of error bility discovered

CLEFIA-128 without 14 [36] (1) ✗ [13]
without whit. layers

CLEFIA-128 13 [30] (4) - [7]

Camellia without 12 [34] (2) ✗ this paper, similar
FL/FL−1 layers problem as [33]

Camellia-128 12 [33] (2) ✗ [25]

Camellia-128/192/256 11/13/14 [23] (3) ✓ [34]
without FL/FL−1 layers

LBlock 22 [26] (3) ✓ [27]

Simon (all versions) 14/15/15/16/16/ [3] (1) ✗ Table 1 of [3]
19/19/22/22/22

Simon (all versions) 13/15/17/20/25 [1,2] (2) ✗ this paper

Scrutinizing and Improving Impossible Differential Attacks 181

Instances of such flaws can for example be found in analyses of the cipher
CLEFIA. CLEFIA is a lightweight 128-bit block cipher developed by SONY in
2007 [28] and adopted as an international ISO/IEC 29192 standard in lightweight
cryptography. This cipher has attracted the attention of many researchers and nu-
merous attacks have been published so far on reduced round versions
[31,32,30,24,29,8]. Most of these attacks rely on impossible differential cryptanal-
ysis. However, as pointed out by the designers of CLEFIA [14], some of these
attacks seem to have flaws, especially in the key filtering phase. We can cite here
a recent paper by Blondeau [7] that challenges the validity of the results in [30],
or a claimed attack on 14 rounds of CLEFIA-128 [36], for which the designers
of CLEFIA showed that the necessary data exceeds the whole codebook [13].
Another extensively analyzed cipher is the ISO/IEC 18033 standard Camellia,
designed by Mitsubishi and NTT [4]. Among the numerous attacks presented
against this cipher, some of the more successful ones rely on impossible differ-
ential cryptanalysis [34,33,22,25,23]. In the same way as for CLEFIA, some of
these attacks were detected to have flaws. For instance, the attack from [33] was
shown in [25] to be invalid. We discovered a similar error in the computation
that invalidated the attack of [34]. Also, [34] reveals small flaws in [23]. Errors
in impossible differential attacks were also detected for other ciphers. For ex-
ample, in a cryptanalysis against the lightweight block cipher LBlock [26], the
time complexity revealed to be incorrectly computed [27]. Another problem can
be found in [3], where the data complexity is higher than the amount of data
available in the block cipher Simon, or in [1,2], where some parameters are
not correctly computed. During our analysis, we equally discovered problems in
some attacks that do not seem to have been pointed out before. In addition to
all this, the more the procedure becomes complicated, the more the approach
lacks optimality. To illustrate this lack of optimality presented in many attacks
we can mention a cryptanalysis against 22-round LBlock [18], that could easily
be extended to 23 rounds if a more optimal approach had been used to evaluate
the data and time complexities, as well as an analysis of Camellia [22] which we
improve in Section 4.

The above examples clearly show that impossible differential attacks suffer
from the lack of a unified and optimized approach. For this reason, the first aim
of our paper is to provide a general framework for dealing with impossible differ-
ential attacks. In this direction, we provide new generic formulas for computing
the data, time and memory complexities. These formulas take into account the
different parameters that intervene into the attacks and provide a highly opti-
mized way for mounting them. Furthermore, we present some new techniques
that can be applied in order to reduce the data needed or to reduce the number
of key bits that need to be guessed. In particular we present a new method that
helps reducing the number of key bits to be guessed by testing instead some bits
of the internal state during the sieving phase. This technique has some similari-
ties with the methods introduced in [15,17], however important differences exist
as both techniques are applied in a completely different context. In addition to
this, we apply and develop the idea of multiple impossible differentials, intro-

182 C. Boura, M. Naya-Plasencia, and V. Suder

duced in [32], to obtain more data for mounting our attacks. To illustrate the
strength of our new approach we consider Feistel constructions and we apply the
above ideas to a number of block ciphers, namely CLEFIA, Camellia, LBlock
and Simon.

More precisely, we present an attack as well as different time/data trade-offs
on 13-round CLEFIA-128 that improve the time and data complexity of the
previous best known attack [25] and improvements in the complexity of the
best known attacks against all versions of Camellia [22]. In addition, in order to
demonstrate the generality of our method, we provide the results of our attacks
against 23-round LBlock and all versions of the Simon block cipher. The attack
on LBlock is the best attack so far in the single-key setting 1, while our attacks
on Simon are the best known impossible differential attacks for this family of
ciphers and the best attacks in general for the three smaller versions of Simon.

Summary of Our Attacks. We present here a summary of our results on the
block ciphers CLEFIA-128, Camellia, LBlock and Simon and compare them to
the best impossible differential attacks known for the four analyzed algorithms.
This summary is given in Table 2, where we point out with a ‘*’ if the mentioned
attack is the best cryptanalysis result on the target cipher or not, i.e. by the best
known attack we consider any attack reaching the highest number of rounds, and
with the best complexities among them.

The rest of the paper is organized as follows. In Section 2 we present a generic
methodology for mounting impossible differential attacks, provide our complex-
ity formulas and show new techniques and improvements for attacking a Feistel-
like block cipher using impossible differential cryptanalysis. Section 3 is dedicated
to the details of our attacks on CLEFIA and Section 4 presents our applications
to all versions of Camellia. Due to lack of space, our applications on LBlock and
the Simon family of ciphers are given in the full version of this paper [11].

2 Complexity Analysis

We provide in this section a complexity analysis of impossible differential attacks
against block ciphers as well as some new ideas that help improving the time
and data complexities. We derive in this direction new generic formulas for the
complexity evaluation of such attacks. The role of these formulas is twofold;
on the one hand we aim at clarifying the attack procedure by rendering it as
general as possible and on the other hand help at optimizing the time and
data requirements. Establishing generic formulas should help mounting as well
as verifying such attacks by avoiding the use of complicated procedures often
leading to mistakes.

An impossible differential attack consists mainly of two general steps. The first
one deals with the discovery of a maximum-length impossible differential, that
is an input difference ΔX and an output difference ΔY such that the probability

1 In [12], an independent and simultaneous result on 23-round LBlock with worse time
complexity was proposed.

Scrutinizing and Improving Impossible Differential Attacks 183

Table 2. Summary of the best impossible differential attacks on CLEFIA-128, Camel-
lia, LBlock and Simon and presentation of our results. The presence of a ‘*’ mentions
if the current attack is the best known attack against the target cipher. Note here
that we provide only the best of our results with respect to the time complexity. Other
trade-offs can be found in the following sections. † see Section 4 for details.

Algorithm Rounds Time Data Memory Reference
(CP) (Blocks)

CLEFIA-128 13 2121.2 2117.8 286.8 [24]
using state-test technique 13 2116.90 2116.33 283.33 Section 3

using multiple impossible differentials 13 2122.26 2111.02 282.60 Section 3*
combining with state-test technique 13 2116.16 2114.58 283.16 [11]*

Camellia-128 11 2122 2122 298 [22]
11 2118.43 2118.4 292.4 Section 4*

Camellia-192 12 2187.2 2123 2155.41 [22]
12 2161.06 2119.7 2150.7 Section 4*

Camellia-256 13 2251.1 2123 2203 [22]
13 2225.06 2119.71 2198.71 Section 4*

Camellia-256† 14 2250.5 2120 2120 [22]
14 2220 2118 2173 Section 4

LBlock 22 279.28 258 272.67 [18]
22 271.53 260 259 [11,10]
23 274.06 259.6 274.6 [11,10]*

Simon32/64 19 262.56 232 244 [11]*

Simon48/72 20 270.69 248 258 [11]*

Simon48/96 21 294.73 248 270 [11]*

Simon64/96 21 294.56 264 260 [11]

Simon64/128 22 2126.56 264 275 [11]

Simon96/96 24 294.62 294 261 [11]

Simon96/144 25 2190.56 2128 277 [11]

Simon128/128 27 2126.6 294 261 [11]

Simon128/192 28 2190.56 2128 277 [11]

Simon128/256 30 2254.68 2128 2111 [11]

that ΔX propagates after a certain number of rounds, rΔ, to ΔY is zero. The
second step, called the key sieving phase, consists in the addition of some rounds
to potentially both directions. These extra added rounds serve to verify which key
candidates partially encrypt (resp. decrypt) data to the impossible differential.
As this differential is of probability zero, keys showing such behavior are clearly
not the right encryption key and are thus removed from the candidate keys space.

We start by introducing the notation used in the rest of the paper. As in this
work we are principally interested in the key sieving phase, we start our attack
after a maximum impossible differential has been found for the target cipher.

184 C. Boura, M. Naya-Plasencia, and V. Suder

ΔX

ΔY

Δin

Δout

rin

rout

rΔ

(cin, kin)

(cout, kout)

– ΔX , ΔY : input (resp. output) dif-
ferences of the impossible differen-
tial.

– rΔ: number of rounds of the impos-
sible differential.

– Δin, Δout: set of all possible input
(resp. output) differences of the ci-
pher.

– rin: number of rounds of the differ-
ential path(ΔX , Δin).

– rout: number of rounds of the dif-
ferential path(ΔY , Δout).

The differential (ΔX → Δin) (resp. (ΔY → Δout)) occurs with probability 1
while the differential (ΔX ← Δin) (resp. (ΔY ← Δout)) is verified with prob-
ability 1

2cin (resp. 1
2cout

), where cin (resp. cout) is the number of bit-conditions
that have to be verified to obtain ΔX from Δin (resp. ΔY from Δout).

It is important to correctly determine the number of key bits intervening
during an attack. We call this quantity information key bits. In an impossible
differential attack, one starts by determining all the subkey bits that are involved
in the attack. We denote by kin the subset of subkey bits involved in the attack
during the first rin rounds, and kout during the last rout ones. However, some
of these subkey bits can be related between them. For example, two different
subkey bits can actually be the same bit of the master key. Alternatively, a
bit in the set can be some combination, or can be easily determined by some
other bits of the set. The way that the different key bits in the target set are
related is determined by the key schedule. The actual parameter that we need
to determine for computing the complexity of the attacks is the information key
bits intervening in total, that is from an information theoretical point of view,
the log of the entropy of the involved key bits, that we denote by |kin ∪ kout|.

We continue now by describing our attack scenario on (rin+rΔ+rout) rounds
of a given cipher.

2.1 Attack Scenario

Suppose that we are dealing with a block cipher of block size n parametrized by
a key K of size |K|. Let the impossible differential be placed between the rounds
(rin +1) and (rin + rΔ). As already said, the impossible differential implies that
it is not feasible that an input difference ΔX at round (rin+1) propagates to an
output difference ΔY at the end of round (rin + rΔ). Thus, the goal is, for each
given pair of inputs (and their corresponding outputs), to discard the keys that
generate a difference ΔX at the beginning of round (rin + 1) and at the same
time, a difference ΔY at the output of round (rin + rΔ). We need then enough
pairs so that the number of non-discarded keys is significantly lower than the a
priori total number of key candidates.

Scrutinizing and Improving Impossible Differential Attacks 185

Suppose that the first rin rounds have an input truncated difference in Δin

and an output difference ΔX , which is the input of the impossible differential.
Suppose that there are cin bit-conditions that need to be verified so that Δin

propagates to ΔX and |kin| information key bits involved.
In a similar way, suppose that the last rout rounds have a truncated output

difference in Δout and an input difference ΔY , which is the output of the im-
possible differential. Suppose that there are cout bit-conditions that need to be
verified so that Δout propagates to ΔY in the backward direction and |kout|
information key bits involved.

We show next how to determine the amount of data needed for an attack.

2.2 Data Complexity

The probability that for a given key, a pair of inputs already satisfying the
differences Δin and Δout verifies all the (cin+ cout) bit-conditions is 2

−(cin+cout).
In other words, this is the probability that for a pair of inputs having a difference
in Δin and an output difference in Δout, a key from the possible key set is
discarded. Therefore, by repeating the procedure with N different input (or
output) pairs, the probability that a trial key is kept in the candidate keys set
is P = (1− 2−(cin+cout))N .

There is not a unique strategy for choosing the amount of input (or output)
pairs N . This choice principally depends on the overall time complexity, which
is influenced by N , and the induced data complexity. Different trade-offs are
therefore possible. A popular strategy, generally used by default is to choose N
such that only the right key is left after sieving. This amounts to choose P as

P = (1− 2−(cin+cout))N <
1

2|kin∪kout|
.

In this paper we adopt a different approach that can help reducing the number
of pairs needed for the attack and offers better trade-offs between the data and
time complexity. More precisely, we permit smaller values of N . By proceeding
like this, we will be probably left with more than one key in our candidate keys
set and we will need to proceed to an exhaustive search among the remaining
candidates, but the total time complexity of the attack will probably be much
lower. In practice, we will start considering values of N such that P is slightly
smaller than 1

2 so to reduce the exhaustive search by at least one bit. The smallest
value of N , denoted by Nmin, verifying

P = (1 − 2−(cin+cout))Nmin # e−Nmin×2−(cin+cout)

<
1

2

is approximately Nmin = 2cin+cout . Then we have to choose N ≥ Nmin.
We provide then a solution for determining the cost of obtaining N pairs such

that their input difference belongs to Δin and their output difference belongs

186 C. Boura, M. Naya-Plasencia, and V. Suder

to Δout. To the best of our knowledge, this is the first generic solution to this
problem. We evaluated this cost as

CN = max

{
min

Δ∈{Δin,Δout}

{√
N2n+1−|Δ|

}
, N2n+1−|Δin|−|Δout|

}
. (1)

A detailed explanation on how this formula is derived can be found in the full
version of the paper [11]. The cost CN represents also the amount of needed data.
Obviously, as the size of the state is n, the following inequality, should hold:

CN ≤ 2n.

This inequality simply states that the total amount of data used for the at-
tack cannot exceed the codebook. These conditions are not verified in several
cases from [3], as well as in the corrected version of [36] which invalidates the
corresponding attacks.

2.3 Time and Memory Complexity

We are going to detail now the computation of the time complexity of the attack.
Note that the formulas that we are presenting in this section are the first generic
formulas given for estimating the complexity of impossible differential attacks.

By following the early abort technique [23], the attack consists in storing the
N pairs and testing out step by step the key candidates, by reducing at each
time the size of the remaining possible pairs. The time complexity is then de-
termined by three quantities. The first term is the cost CN , that is the amount
of needed data (see Formula (1)) for obtaining the N pairs, where N is such
that P < 1/2. The second term corresponds to the number of candidate keys
2|kin∪kout|, multiplied by the average cost of testing the remaining pairs. For
all the applications that we have studied, this cost can be very closely approx-
imated by

(
N + 2|kin∪kout| N

2cin+cout

)
C′

E , where C′
E is the ratio of the cost of

partial encryption to the full encryption. Finally, the third term is the cost of
the exhaustive search for the key candidates still in the candidate keys set after
the sieving. By taking into account the cost of one encryption CE , we conclude
that the time complexity of the attack is

Tcomp =

(
CN +

(
N + 2|kin∪kout| N

2cin+cout

)
C′

E + 2|K|P

)
CE , (2)

where CN = max
{
minΔ∈{Δin,Δout}

{√
N2n+1−|Δ|

}
, N2n+1−|Δin|−|Δout|

}
, with

N such that P = (1−1/(2cin+cout))N < 1/2 and where the last term corresponds
to 2|K|−|kin∪kout|P2|kin∪kout|. Obviously, as we want the attack complexity to be
smaller than the exhaustive search complexity, the above quantity should be
smaller than 2|K|CE .

It must be noted here that this is a minimum estimation of the complexity,
that, in practice, and thanks to the idea of Section 2.4, it approximates really

Scrutinizing and Improving Impossible Differential Attacks 187

well the actual time complexity, as it can be seen in the applications, and in
particular, in the tight correspondence shown between the LBlock estimation
that we detail in [11] and the exact calculation from [10]. The precise evaluation
of C′

E (that is always smaller than 1) can only be done once the attack parameters
are known. However, C′

E can be estimated quite by calculating the ratio between
the active SBoxes during a partial encryption and the total number of SBoxes
(thought it is not always the best approximation, it is a common practice).

Memory complexity. By using the early abort technique [23], the only elements
that need to be stored are the N pairs. Therefore, the memory complexity of
the attack 2 is determined by N .

2.4 Choosing Δin,Δout, cin and cout

We explain now, the two possible ways for choosing Δin, Δout, cin and cout. For
this, we introduce the following example that can be visualized in Figure 1 and
where we consider an Sbox-based cipher. In this example, we will only talk about
Δin and cin, however the approach for Δout and cout is identical.

S M

(α, 0, 0, 0) M(β, 0, 0, 0)
(β, 0, 0, 0)

(α, 0, 0, 0)

ΔX

K0

(0, 0, 0, 0)

Fig. 1. Choosing Δin and cin

Suppose that the state is composed of two branches of four nibbles each. The
round function is composed of a non-linear layer S, seen as a concatenation of
four Sboxes S0, S1, S2 and S3, followed by a linear layer M . There exist two
different ways for choosing |Δin| and cin:

1. The most intuitive way is to consider |Δin| = 4 + 4 and cin = 4, as the size
of α and of β is 4 bits, and in the first round we want 4 bits to collide. In
this case, for a certain key, the average probability that a pair taken out of
the 24+424+4−1 pairs belonging to Δin leads to ΔX is 2−4.

2. In general, the difference α can take 24 − 1 different values. However, each
value can be associated by the differential distribution table of the Sbox S0

2 If N > 2|kin∪kout| we could store the discarded key candidates instead, this is rarely
the case. Thus, we can consider a memory complexity of min{N, 2|kin∪kout|}.

188 C. Boura, M. Naya-Plasencia, and V. Suder

to 23 output differences on average3, so the possibilities for the difference β
are limited to 23. Therefore, we can consider that |Δin| ≈ 4+3. But, in this
case cin = 3, as for each input pair belonging to the 24+324+3−1 possible
ones, there exist on average 2 values that make the differential transition
α→ β possible (instead of 1 in the previous case).

We can see, by using the generic formulas of Section 2.3, that both cases
induce practically the same time complexity, as the difference in N compensates
with the difference in cin + cout. However, the memory complexity, given by
N , is slightly better in case 2. Furthermore, case 2, in which a preliminary
pairs filtering is done, allows to reduce the average cost of using the early abort
technique [23].

In several papers, for example in [33] and [23], the second case is followed.
However, its application is partial (either for the input or the output part) and
this with no apparent reason. Note however, that in these papers, the associated
cout was not always correctly computed and sometimes, 8-bit conditions were
considered when 7-bit conditions should have been accounted for. For reasons of
simplicity, we will consider case 1 in our applications and check afterwards the
actual memory needed.

2.5 Using Multiple Impossible Differentials to Reduce the Data
Complexity

We explain in this section a method to reduce the data complexity of an attack.
This method is inspired by the notion of multiple impossible differentials that was
introduced by Tsunoo et al. [32] and applied to 12-round CLEFIA-128. The idea
in this technique is to consider at once several impossible differentials, instead of
just one. We assume, as done in [16], that the differences in Δin (and in Δout)
lie in a closed set. There are two ways in which this can be a priori done:

1. Take rotated versions of a certain impossible differential. We call nin the
number of different input pattern differences generated by the rotated ver-
sions of the chosen impossible differential.

2. When the middle conditions have several impossible combinations, we can
consider the same first half of the differential path together with a rotated
version of the second one, in a way to get a different impossible differential.
We call nout the number of different output pattern differences generated
by the rotated versions of the second part of the path that we will consider.
For the sake of simplicity and without loss of generality we will only consider
the case of rotating the second half of the path.

It is important to point out that for our analysis to be valid, in both cases
the number of conditions associated to the impossible differential attack should
stay the same. Both cases can be translated into a higher amount of available

3 This quantity depends on the Sbox. In this example, we consider that all four Sboxes
have good cryptographic properties.

Scrutinizing and Improving Impossible Differential Attacks 189

data by redefining two quantities, |Δ′
in| and |Δ′

out|, that will take the previous
roles of |Δin| and |Δout|,

|Δ′
in| = |Δin|+ log2(nin) and |Δ′

out| = |Δout|+ log2(nout).

|Δ′
in| is the log of the total size of the set of possible input differences, and |Δ′

out|
is the log of the total size of the set of possible output differences.

In this case, the data complexity CN is computed with the corrected values
for the input sizes and is, as can be easily seen, smaller than if only one path
had been used. The time complexity remains the same, except for the CN term.
Indeed, the middle term of Formula (2) remains the same, as for a given pair, the
number of key bits involved stays 2|kin∪kout|. Equally, as the number of involved
possible partial keys is ninnout2

|kin∪kout|, the last term of Formula (2) is now

2|K|

nin · nout2|kin∪kout|
(P · nin · nout · 2|kin∪kout|) = 2|K|P

and so also stays the same.
In Section 3 we present our attacks on CLEFIA. In part of these attacks, we

use multiple impossible differentials to reduce the data complexity. Besides, this
technique shows particularly useful for mounting attacks on some versions of
the Simon family for which there is not enough available data to mount a valid
attack with the traditional method.

2.6 Introducing the State-Test Technique

We introduce now a new method that consists in making a test for some part
of the internal state instead of guessing the necessary key bits for computing
it. This somewhat reminds the techniques presented in [15,17] in the context
of meet-in-the-middle attacks. However, the technique that we present in this
section, and that we call the state-test technique is different since it consists
in checking the values of the internal state to verify if we can discard all the
involved candidates.

Very often during the key filtering phase of impossible differential attacks, the
size of the internal state that needs to be known is smaller than the number of
key bits on which it depends. As we will see, focusing on the values that a part of
the state can take permits to eliminate some key candidates without considering
all the values for the involved key bits. The state-test technique works by fixing
s bits of the plaintexts, which allows us to reduce the number of information key
bits by s. We will explain how this method works by a small example.

Consider a 32-bit Feistel construction, where each branch can be seen as a
concatenation of four nibbles (see Figure 2). Suppose that the round function is
composed of a non-linear layer S, seen as a concatenation of four 4-bit invertible
Sboxes (S0, S1, S2, S3) and of a linear layer M on F24 . We suppose for this exam-
ple that the branch number of M , that is the minimal number of active Sboxes
in any two consecutive rounds, is less than 5. Let ΔX = (α, 0, 0, 0)|(0, 0, 0, 0) be
the input difference of the impossible differential, placed at the end of the second

190 C. Boura, M. Naya-Plasencia, and V. Suder

round and let Δin = (∗, ∗, ∗, 0)|(∗, ∗, ∗, ∗) be the difference at the input of the
block cipher. Note however that in reality, the leftmost side of Δin only depends
on a 4-bit non-zero difference δ, i.e. Δin = M(δ, 0, 0, 0)|(∗, ∗, ∗, ∗).

K1

K0

P0 P1

ΔX

Δin

S

S

M

M

12 bit-cond.

4 bit-cond.

x

Fig. 2. Grey color stands for nibbles with non-zero difference. Hatched key nibbles
correspond to the part of the subkeys that have to be guessed. The nibble x is the part
of the state on which we apply the state-test technique.

As can be seen in Figure 2, there are in total 4 active Sboxes and thus there
are cin = 16 conditions that have to be verified in order to have a transition
from Δin to ΔX . Therefore, the first step is to collect N pairs such that P =
(1 − 2−(cin+cout))N = (1 − 2−cin)N = (1 − 2−16)N < 1

2 . The exact value of N
will be chosen in a way to obtain the best trade-off for the complexities. Before
describing the new method, we start by explaining how this attack would have
worked in the classical way. As we can see in Figure 2, there are 3× 4 bits that
have to be guessed (K0,0, K0,1 and K0,2) in order to verify the conditions on the
first round and there are 2 × 4 bits that have to be guessed (K0,3 and K1,0) in
order to verify the conditions on the second round.

Therefore, for all N pairs, one starts by testing all the 24 possible values for the
first nibble of K0. After this first guess, N×2−4 pairs remain in average, as there
are 4-bit conditions that need to be verified by the guess through the first round.
Then one continues by testing the second and the third nibble of K0 and finally
the last nibble of K0 and the first nibble of K1. At each step, the amount of
data remaining is divided by 24. To summarize, we have |kin ∪kout| = |kin| = 20
and 2cin+cout = 2cin = 24242424. Then Formula (2) can be used to evaluate the
time complexity of the attack as(

CN +

(
N + 220

N

216

)
C′

E + 220P2|K|−20

)
CE . (3)

We will see now how the state-test technique applies to this example and how
it permits to decrease the time complexity. Consider the first nibble of the left

Scrutinizing and Improving Impossible Differential Attacks 191

part of the state after the addition of the subkey K1. We denote this nibble by
x. Note that mathematically, x can be expressed as

x = K1,0 ⊕ P1,0 ⊕M(S(K0 ⊕ P0))0

x⊕ P1,0 = K1,0 ⊕m0S0(K0,0 ⊕ P0,0)⊕m1S1(K0,1 ⊕ P0,1)

⊕m2S2(K0,2 ⊕ P0,2)⊕m3S3(K0,3 ⊕ P0,3), (4)

where the mi’s are coefficients in F4
2.

Suppose now that for all pairs, we fix the last s = 4 bits of P0 to the same
constant value. One can verify that this is a reasonable assumption, as by fixing
this part of the inputs we still have enough data to mount the attack. Then
one starts as before, by guessing the first three nibbles of K0. After this 12-bit
guess, approximately N × 2−12 pairs remain. We know for each pair the input
and output differences of the Sbox of the second round as the needed part of K0

has been guessed. Therefore, by a simple lookup at the differential distribution
table of the involved Sbox, we obtain one value for x that verifies the second
round conditions in average per pair (about half of the time the transition is not
possible, whereas for the other half we find two values). Equation (4) becomes

x⊕ P1,0 ⊕m0S0(K0,0 ⊕ P0,0)⊕m1S1(K0,1 ⊕ P0,1)⊕m2S2(K0,2 ⊕ P0,2)

= K1,0 ⊕m3S3(K0,3 ⊕ P0,3), (5)

where the left side of Equation (5), that we denote by x′, is known for each pair.
Thus, for each guess of (K0,0,K0,1,K0,2), we construct a table of size N×2−12,

where we store these values of x′. The last and more important step consists now
in looking if all 24 possible values of x′ appear in the table. Note here, that as
N ≥ 216, the size of the table is necessarily greater than or equal to 24.

Since P0,3 is fixed, the only unknown values in Equation (5) are K1,0 and
K0,3. If all values for x′ are in the table and since S3 is a permutation, for any
choice of K1,0 and any choice of K0,3, there will always exist (at least) one pair
such that K1,0⊕m3S3(K0,3⊕P0,3) is in the table, leading thus to the impossible
differential.

As a conclusion, we know that if x′ takes all the possible values in the table,
we can remove the keys composed by the guessed value (K0,0,K0,1,K0,2) from
the candidate keys set, as for all the values of (K1,0,K0,3), they would imply
the impossible differential. If instead, x′ does not take all the possible values
for a certain value of (K0,0,K0,1,K0,2), we can test this partial key combined
to all the possibilities of the remaining key bits that verify Equation (5) for the
missing x′, as they belong to the remaining key candidates.

The main gain of the state-test technique is that it decreases the number
of information key bits and therefore the time complexity. For instance,

192 C. Boura, M. Naya-Plasencia, and V. Suder

in this example, the variable x′ can be seen as 4 information key bits 4 instead
of 2× 4 key bits we had to guess in the classic approach (the bits of K0,3 and of
K1,0). We have s = 4 less bits to guess thanks to the s = 4 bits of the plaintext
that we have fixed. Thus the time complexity in this case becomes(

CN +

(
N + 220−4 N

216

)
C′

E + 220−4P2|K|−(20−4)

)
CE . (6)

One can see now by comparing Equations (6) and (3) that the time complexity
is lower with the state-test technique, than with the trivial method. Indeed, the
first and the third term of the Equations (6) and (3) remain the same, while the
second term is lower in Equation (6). Finally, note that the probability P for
a key to be still in the candidate keys set remains the same as before. Indeed,
during the attack we detect all and the same candidate keys for which none of
the N pairs implies the impossible differential, which are the same candidate
keys that we would have detected in a classic attack.

We would like to note here that we have implemented the state-test technique
on a toy cipher, having a structure similar to the one that we introduced in this
section, and we have verified its correctness.

Application of the state-test technique in parallel for decreasing the probability P .
An issue that could appear with this technique is that as we have to fix a part
of the plaintexts, s bits, the amount of data available for computing the N pairs
is reduced. The probability P associated to an attack is the probability for a
key to remain in the candidate keys set. When the amount of available data is
small, the number of pairs N that we can construct is equally small and thus
the probability P is high. In such a situation, the dominant term of the time
complexity (Formula (2)), is in general the third one, i.e. 2|K|P .

More precisely, we need the sum of log2(CN) and s, the number of plaintext
bits that we fix, to be less than or equal to the block size. This limits the size
of N that we can consider, leading to higher probabilities P , and could lead,
sometimes, to higher time complexities. To avoid this, one can repeat the attack
in parallel for several different values, say Y , of the fixed part of the plaintext. In
this case, the data and memory needed are multiplied by Y . On the other hand,
repeating the attack in parallel permits to detect more efficiently if a guessed
key could be the right one. Indeed, for a guessed key, only if none of the tables
constructed as described above contains all the values for x′, one can test if this
guessed key is the correct one.

To summarize, by repeating the state-test technique in parallel, we multiply
the available data by Y , as well as the available pairs, and since the attack is done
Y times in parallel, the probability P becomes PY . The probability decreases

4 Note that we could, equivalently, consider all possible values of x′ in the last step,
and consider the associated remaining pairs table, that would have a size of N2−16

(empty if the key is a good candidate, not empty otherwise), obtaining the same key
candidates of 16 bits, 12 from (K0,0,K0,1,K0,2) and 4 information key bits from x′,
with the same complexity as in the previously described method.

Scrutinizing and Improving Impossible Differential Attacks 193

much faster than the data or the other terms of the time complexity increase.
Therefore, the Formula (2) becomes in this case:(

CN × Y +

(
N × Y + 2|kin∪kout|−s N × Y

2cin+cout

)
C′

E + 2|K|P Y

)
CE . (7)

In Section 3, we are going to see an application of this technique to 13-round
CLEFIA-128, and at the end of Section 4 we show an application on Camellia-256.

3 Application to CLEFIA

CLEFIA is a lightweight 128-bit block cipher designed by Shirai et al. in 2007 [28]
and based on a 4-branch generalized Feistel network. It supports keys of size
128, 192 or 256 bits and the total number of iterations, say R, depends on the
key size. More precisely, R = 18 for the 128-bit version, while R = 22 and
R = 26 for the two following variants. A key-scheduling algorithm is used to
generate 2R round keysRK0, . . . , RK2R−1 and 4 whitening keysWK0, . . . ,WK3.
The whitening keys are XORed to the right branches of the first and the last
round. CLEFIA’s round function design can be visualized in Figure 3. For a
more complete description of the specifications one can refer to [28].

We describe now several attacks against 13-round CLEFIA-128.

3.1 Impossible Differential Cryptanalysis of 13-round CLEFIA-128

The authors of [31] noticed that a difference on the internal state of CLEFIA
of the form P i = 032|032|032|A cannot lead to a difference P i+9 = 032|032|B|032
after 9 rounds, where A and B are 4-byte vectors for which only one byte in a
different position is active (e.g. A = (α, 08, 08, 08) and B = (08, β, 08, 08)). We
use this same 9-round impossible differential and place it between rounds 3 and
11. Therefore, for our attack, rin = rout = 2 and rΔ = 9, as in [24].

RK0

WK0

F0

RK1

WK1

F1

RK2

F0

RK3

F1

RK22

F0 F1

F0 F1

Δin

ΔX

ΔY

Δout

x

RK23

RK25RK24

WK2 WK3

Fig. 3. The attack on CLEFIA-128. Grey color stands for bytes with a non-zero differ-
ence, while hatched bytes are the subkey bytes that have to be guessed.

194 C. Boura, M. Naya-Plasencia, and V. Suder

The differential placed on the top and at the bottom of the impossible dif-
ferential are depicted in Figure 3. We describe now the parameters for our
cryptanalysis of 13-round CLEFIA-128. As can be seen in Figure 3 there are
cin + cout = 40 + 40 bit-conditions that need to be verified so that the differ-
ence in the plaintexts Δin = 032|(∗8, 08, 08, 08)|M0(∗8, 08, 08, 08)|∗32 propagates
to ΔX = 032|032|032|(α, 08, 08, 08) and the difference in the ciphertexts Δout =
032|(08, ∗8, 08, 08)|M1(08, ∗8, 08, 08)|∗32 propagates to ΔY = 032|032|(08, β, 08, 08)
|032. In this way, |Δin| = |Δout| = 48.

Following the complexity analysis of Section 2, we need to construct at least
Nmin = 280 pairs. The cost to construct these pairs is

CNmin = max
{√

2802129−48, 2802129−48−48
}
= 2113.

Using the state-test technique. We use now the state-test technique, described
in Section 2.6 to test the 8 bits of the internal state denoted by x in Figure 3,
instead of guessing the whole subkey RK0 and the XOR of the leftmost byte of
RK2 and WK0. For doing this, we need to fix part of the 32 leftmost bits of the
plaintexts. As the number of needed data is CNmin = 2113, we can fix at most
128− 113 = 15 bits. However, as each Sbox is applied to 8 bits, we will only fix
one byte of this part of the plaintexts. We will guess then 24 bits of the subkey
RK0 which are situated on the other bytes.

During a classical attack procedure, we would need to guess 32 bits of RK1, 32
bits of RK0 and 8 bits ofRK2⊕WK0, thus kin = 72.We would also need to guess
8 bits of RK23⊕WK2, 32 bits of RK24 and 32 bits of RK25, therefore kout = 72.
However, the subkeys RK1 and RK24 share 22 bits in common. As a consequence,
the number of information key bits would be |kin ∪ kout| = 72 + 72− 22 = 122.
As we will fix 8 bits of the plaintexts, according to Section 2.6, it is the same
to say that there will be |kin ∪ kout| − 8 = 122− 8 = 114 bits to test. The time
complexity of our attack, computed using Formula (2) is then(

CN +

(
N + 2114

N

280

)
18

104
+ 2128P

)
CE ,

where the fraction 18/104 is the ratio of the cost of partial encryption to the
full encryption. Since our attack needs at least 2113 plaintexts and since we fixed
8 bits out of them, we have 128 − 113 − 8 = 7 bits of freedom for building
structures.

Among all possible trade-offs with respect to the amount of data, the best
time complexity is 2116.90CE with 283.33 pairs built from 2116.33 plaintexts.

Using multiple impossible differentials. The authors of [31] noticed that there
exist several different 9-round impossible differentials, see [31, Table 1]. In [32],
multiple impossible differentials were used to attack 12 rounds of CLEFIA-128.
Here, we will apply our formalized approach of this idea presented in Section 2.5,
to reduce the data complexity of the attack on 13 rounds of CLEFIA-128.

We use the nin = 2× 4 different inputs to the impossible differentials, that is
P i = 032|A|032|032 and P i = 032|032|032|A, where A can take a difference on only

Scrutinizing and Improving Impossible Differential Attacks 195

one of the four possible bytes. For each one of them, there are nout = 3 different
output impossible differences P i+9 = 032|032|B|032 after 9 rounds, where B has
only one byte active in a different position than the active byte in A. We have
now |Δ′

in| = |Δin|+ log2(8) = 48 + 3 and |Δ′
out| = |Δout|+ log2(3) = 48 + 1.58.

Since the bit-conditions remain unchanged, cin+ cout = 80, the minimal number
of pairs needed for the attack to work is Nmin = 280. For this number of pairs,
we need CNmin = 2113−4.58 = 2108.42 plaintexts. The number of information key
bits is |kin ∪ kout| = 122. We have then

(
CN +

(
N + 2122 N

280

)
18
104 + P2128

)
CE .

Among all the possible trade-offs with respect to the amount of data, the best
time complexity we obtained is 2122.26CE with 282.6 pairs built from 2111.02 plain-
texts. Recall here that the aim of this approach was to reduce data complexity.
Thus, in this attack the gain on the data complexity is the important part5.

In the full version of this paper [11] we show how to combine the state-test-
technique together with multiple differentials in order to reduce at the same time
the time and the data complexity for the attacks on CLEFIA-128.

4 Applications to Camellia

Camellia is a 128-bit block cipher designed by Aoki et. al. in 2000 [4]. It is
a Feistel-like construction where two key-dependent layers FL and FL−1 are
applied every 6 rounds to each branch. Whitening keys are equally applied to the
first and the last round of the cipher. There exist three different versions of the
cipher, that we note Camellia-128, Camellia-192 and Camellia-256, depending
on the key size used. The number of iterations is 18 for the 128-bit version and
24 for the other two versions. A detailed description of Camellia’s structure can
be found in the full version of the paper. For further details, one can refer to [4].

Previous Cryptanalysis. Camellia is since 2005 an international ISO/IEC
standard and has therefore attracted a lot of attention from the cryptographic
community. Since Camellia has a particular design, involving the so-called
FL/FL−1 layers, its cryptanalysis can be classified in several categories. Some
attacks consider the FL/FL−1 functions, while others do not take them into con-
sideration. Equally, some attacks take into account the whitening keys, whereas
others don’t and finally all attacks do not start from the same round. The best
attacks on Camellia in terms of the number of rounds and the complexities are
those presented in [22, Section 4.2].

Here we start by presenting improvements of the best attacks that include
the FL/FL−1 layers and the whitening keys. Next we build an attack using the
state-test technique on 14-round Camellia-256 starting from the first round but
without the FL/FL−1 layers and the whitening keys.

Improvements. We improve here the complexities of the previous attacks that
take into account the FL/FL−1 layers and the whitening keys on all three

5 In [24], the authors used a loose approximation for C′
E, as C

′
E = 1/104.

196 C. Boura, M. Naya-Plasencia, and V. Suder

versions of Camellia. By using the complexity analysis introduced in Section 2,
we can optimize the complexities of the corresponding attacks from [22]. Note
that we use for this the same parameters as in [22]. The parameters of our attacks
on 11-round Camellia-128, 12-round Camellia-192 and 13-round Camellia-256
are depicted in Table 3. As can be seen in Table 2, the time complexity of
our improved attack on Camellia-128 is 2118.43CE , with data complexity 2118.4

and memory complexity 292.4. For Camellia-192, the time, data and memory
complexities are 2161.06CE , 2

119.7 and 2150.7 respectively, while for Camellia-256
the corresponding complexities are 2225.06CE , 2

119.71 and 2198.71.

Table 3. Attack parameters against all versions of Camellia

Algorithm |Δin| |Δout| rin rout rΔ cin cout |kin ∪ kout|
Camellia-128 23 80 1 2 8 32 57 96

Camellia-192 80 80 2 2 8 73 73 160

Camellia-256 80 128 2 3 8 73 121 224

Using the State-Test Technique on Camellia-256. We provide here an im-
possible differential attack on Camellia-256 without FL/FL−1 layers and whiten-
ing keys by using the state-test technique. Note here, that unlike all previous
attacks not starting from the first round in order to take advantage of the key
schedule asymmetry, our attack starts from the first round of the cipher. It cov-
ers 14 rounds of Camellia-256 which is, to the best of our knowledge, the highest
number of rounds attacked for this version. In [22] another attack on 14-round
Camellia-256 with FL/FL−1 and whitening keys is presented, however, as said
before, it does not start from the first round and it uses a specific property of
the key schedule at the rounds where it is applied.

In this attack, we consider the same 8-round impossible differential as in [25]
and we add 4+2 rounds such that rin = 4, rout = 2 and rΔ = 8. We have |Δin| =
128, |Δout| = 56, cin = 120 and cout = 48. Then we need at least Nmin = 2168

plaintexts pairs. The amount of data needed to construct these pairs is CNmin =

max
{√

21682129−128, 21682129−184
}

= 2113. There remain then 128 − 113 = 15

bits of freedom. Thus, we can fix s = 8 bits on the ciphertexts to apply the
state-test technique on the 8 bits of the internal state at the penultimate round.
The number of information key bits is |kin ∪ kout| = 227− 8 = 219 since there
are 45 bits shared between the subkeys with respect to the key schedule. The
best attack is obtained with N = 2118 pairs. In this case, the time complexity is
2220CE , the data complexity is 2118 plaintexts and the memory is 2118.

5 Conclusion

To start with, we have proposed in this paper a generic vision of impossible
differential attacks with the aim of simplifying and helping the construction

Scrutinizing and Improving Impossible Differential Attacks 197

and verification of this type of cryptanalysis. Until now, these attacks were very
tedious to mount and even more to verify, and so, very often flaws appeared in
the computations. We believe that our objective has been successfully reached,
as it can be seen by the high amount of new improved attacks that we have been
able to propose, as well as by all the different possible trade-offs for each one of
them, something that would be near to unthinkable prior to our work.

Next, the generic and clear vision of impossible differential attacks has allowed
us to discover and propose new ideas for improving these attacks. In particular,
we have proposed the state-test technique, that allows to reduce the number
of key bits involved in the attack, and so to reduce the time complexity. We
have also formalized and adapted to our generic scenario the notion introduced
in [32] of multiple impossible differentials. This option allows reducing the data
complexity. Finally, we have proposed several applications for different variants
of the Feistel ciphers CLEFIA, Camellia, LBlock and Simon, providing in most
of the cases, the best known attack on reduced-round versions of these ciphers.

We hope that these results will simplify and improve future impossible attacks
on Feistel ciphers, as well as their possible combination with other attacks. For
instance, in [35] a combination of impossible differential with linear attacks is
proposed. We haven’t verified these results, but this direction could be promising.

References

1. Abed, F., List, E., Lucks, S., Wenzel, J.: Differential and linear cryptanalysis of
reduced-round SIMON. Cryptology ePrint Archive, Report 2013/526 (2013)

2. Abed, F., List, E., Wenzel, J., Lucks, S.: Differential Cryptanalysis of round-
reduced Simon and Speck. In: FSE 2014. LNCS. Springer (to appear, 2014)

3. Alkhzaimi, H.A., Lauridsen, M.M.: Cryptanalysis of the SIMON Family of Block
Ciphers. Cryptology ePrint Archive, Report 2013/543 (2013)

4. Aoki, K., Ichikawa, T., Kanda, M., Matsui, M., Moriai, S., Nakajima, J., Tokita,
T.: Camellia: A 128-Bit Block Cipher Suitable for Multiple Platforms - Design
and Analysis. In: Stinson, D.R., Tavares, S. (eds.) SAC 2000. LNCS, vol. 2012,
pp. 39–56. Springer, Heidelberg (2001)

5. Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of Skipjack Reduced to 31
Rounds Using Impossible Differentials. In: Stern, J. (ed.) EUROCRYPT 1999.
LNCS, vol. 1592, pp. 12–23. Springer, Heidelberg (1999)

6. Biham, E., Shamir, A.: Differential Cryptanalysis of DES-like Cryptosystems. In:
Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 2–21.
Springer, Heidelberg (1991)

7. Blondeau, C.: Improbable Differential from Impossible Differential: On the Valid-
ity of the Model. In: Paul, G., Vaudenay, S. (eds.) INDOCRYPT 2013. LNCS,
vol. 8250, pp. 149–160. Springer, Heidelberg (2013)

8. Bogdanov, A., Geng, H., Wang, M., Wen, L., Collard, B.: Zero-Correlation Linear
Cryptanalysis with FFT and Improved Attacks on ISO Standards Camellia and
CLEFIA. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC 2013. LNCS, vol. 8282,
pp. 306–323. Springer, Heidelberg (2013)

9. Bouillaguet, C., Dunkelman, O., Fouque, P.-A., Leurent, G.: New Insights on
Impossible Differential Cryptanalysis. In: Miri, A., Vaudenay, S. (eds.) SAC 2011.
LNCS, vol. 7118, pp. 243–259. Springer, Heidelberg (2012)

198 C. Boura, M. Naya-Plasencia, and V. Suder

10. Boura, C., Minier, M., Naya-Plasencia, M., Suder, V.: Improved Impossible Differ-
ential Attacks against Round-Reduced LBlock. Cryptology ePrint Archive, Report
2014/279 (2014)

11. Boura, C., Naya-Plasencia, M., Suder, V.: Scrutinizing and Improving Impossible
Differential Attacks: Applications to CLEFIA, Camellia, LBlock and Simon (Full
Version). Cryptology ePrint Archive, Report 2014/699 (2014)

12. Chen, J., Futa, Y., Miyaji, A., Su, C.: Impossible differential cryptanalysis of
LBlock with concrete investigation of key scheduling algorithm. Cryptology ePrint
Archive, Report 2014/272 (2014)

13. CLEFIA Design Team. Comments on the impossible differential analysis of re-
duced round CLEFIA presented at Inscrypt 2008 (January 8, 2009)

14. CLEFIA Design Team. Private communication (May 2014)
15. Dunkelman, O., Sekar, G., Preneel, B.: Improved Meet-in-the-Middle Attacks

on Reduced-Round DES. In: Srinathan, K., Rangan, C.P., Yung, M. (eds.) IN-
DOCRYPT 2007. LNCS, vol. 4859, pp. 86–100. Springer, Heidelberg (2007)

16. Gilbert, H., Peyrin, T.: Super-Sbox Cryptanalysis: Improved Attacks for AES-
Like Permutations. In: Hong, S., Iwata, T. (eds.) FSE 2010. LNCS, vol. 6147,
pp. 365–383. Springer, Heidelberg (2010)

17. Isobe, T., Shibutani, K.: Generic Key Recovery Attack on Feistel Scheme. In: Sako,
K., Sarkar, P. (eds.) ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 464–485.
Springer, Heidelberg (2013)

18. Karakoç, F., Demirci, H., Harmancı, A.E.: Impossible Differential Cryptanalysis
of Reduced-Round LBlock. In: Askoxylakis, I., Pöhls, H.C., Posegga, J. (eds.)
WISTP 2012. LNCS, vol. 7322, pp. 179–188. Springer, Heidelberg (2012)

19. Kim, J., Hong, S., Lim, J.: Impossible differential cryptanalysis using matrix
method. Discrete Mathematics 310(5), 988–1002 (2010)

20. Kim, J., Hong, S., Sung, J., Lee, C., Lee, S.: Impossible Differential Cryptanalysis
for Block Cipher Structures. In: Johansson, T., Maitra, S. (eds.) INDOCRYPT
2003. LNCS, vol. 2904, pp. 82–96. Springer, Heidelberg (2003)

21. Knudsen, L.R.: DEAL – A 128-bit cipher. Technical Report, Department of In-
formatics, University of Bergen, Norway (1998)

22. Liu, Y., Li, L., Gu, D., Wang, X., Liu, Z., Chen, J., Li, W.: New Observations on
Impossible Differential Cryptanalysis of Reduced-Round Camellia. In: Canteaut,
A. (ed.) FSE 2012. LNCS, vol. 7549, pp. 90–109. Springer, Heidelberg (2012)

23. Lu, J., Kim, J., Keller, N., Dunkelman, O.: Improving the Efficiency of Impossible
Differential Cryptanalysis of Reduced Camellia and MISTY1. In: Malkin, T. (ed.)
CT-RSA 2008. LNCS, vol. 4964, pp. 370–386. Springer, Heidelberg (2008)

24. Mala, H., Dakhilalian, M., Shakiba, M.: Impossible Differential Attacks on 13-
Round CLEFIA-128. J. Comput. Sci. Technol. 26(4), 744–750 (2011)

25. Mala, H., Shakiba, M., Dakhilalian, M., Bagherikaram, G.: New Results on Impos-
sible Differential Cryptanalysis of Reduced–Round Camellia–128. In: Jacobson Jr.,
M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol. 5867, pp. 281–294.
Springer, Heidelberg (2009)

26. Minier, M., Naya-Plasencia, M.: A Related Key Impossible Differential At-
tack Against 22 Rounds of the Lightweight Block Cipher LBlock. Inf. Process.
Lett. 112(16), 624–629 (2012)

27. Minier, M., Naya-Plasencia, M.: Private communication (May 2013)
28. Shirai, T., Shibutani, K., Akishita, T., Moriai, S., Iwata, T.: The 128-Bit Block-

cipher CLEFIA (Extended Abstract). In: Biryukov, A. (ed.) FSE 2007. LNCS,
vol. 4593, pp. 181–195. Springer, Heidelberg (2007)

Scrutinizing and Improving Impossible Differential Attacks 199

29. Tang, X., Sun, B., Li, R., Li, C.: Impossible differential cryptanalysis of 13-round
CLEFIA-128. Journal of Systems and Software 84(7), 1191–1196 (2011)

30. Tezcan, C.: The Improbable Differential Attack: Cryptanalysis of Reduced Round
CLEFIA. In: Gong, G., Gupta, K.C. (eds.) INDOCRYPT 2010. LNCS, vol. 6498,
pp. 197–209. Springer, Heidelberg (2010)

31. Tsunoo, Y., Tsujihara, E., Shigeri, M., Saito, T., Suzaki, T., Kubo, H.: Impossible
Differential Cryptanalysis of CLEFIA. In: Nyberg, K. (ed.) FSE 2008. LNCS,
vol. 5086, pp. 398–411. Springer, Heidelberg (2008)

32. Tsunoo, Y., Tsujihara, E., Shigeri, M., Suzaki, T., Kawabata, T.: Cryptanalysis
of CLEFIA using multiple impossible differentials. In: Information Theory and
Its Applications, ISITA 2008, pp. 1–6 (2008)

33. Wu, W., Zhang, L., Zhang, W.: Improved Impossible Differential Cryptanalysis
of Reduced-Round Camellia. In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) SAC
2008. LNCS, vol. 5381, pp. 442–456. Springer, Heidelberg (2009)

34. Wu, W., Zhang, W., Feng, D.: Impossible Differential Cryptanalysis of Reduced-
Round ARIA and Camellia. J. Comput. Sci. Technol. 22(3), 449–456 (2007)

35. Yuan, Z., Li, X., Liu, H.: Impossible Differential-Linear Cryptanalysis of Reduced-
Round CLEFIA-128. Cryptology ePrint Archive, Report 2013/301 (2013)

36. Zhang, W., Han, J.: Impossible Differential Analysis of Reduced Round CLEFIA.
In: Yung, M., Liu, P., Lin, D. (eds.) Inscrypt 2008. LNCS, vol. 5487, pp. 181–191.
Springer, Heidelberg (2009)

A Simplified Representation of AES

Henri Gilbert�

ANSSI, France
henri.gilbert@ssi.gouv.fr

Abstract. We show that the so-called super S-box representation of
AES – that provides a simplified view of two consecutive AES rounds
– can be further simplified. In the untwisted representation of AES pre-
sented here, two consecutive AES rounds are viewed as the composition
of a non-linear transformation S and an affine transformation R that re-
spectively operate on the four 32-bit columns and on the four 32-bit rows
of their 128-bit input. To illustrate that this representation can be helpful
for analysing the resistance of AES-like ciphers or AES-based hash func-
tions against some structural attacks, we present some improvements of
the known-key distinguisher for the 7-round variant of AES presented
by Knudsen and Rijmen at ASIACRYPT 2007. We first introduce a
known-key distinguisher for the 8-round variant of AES which constructs
a 264-tuple of (input,output) pairs satisfying a simple integral property.
While this new 8-round known-key distinguisher is outperformed for 8
AES rounds by known-key differential distinguishers of time complex-
ity 248 and 244 presented by Gilbert and Peyrin at FSE 2010 and Jean,
Naya-Plasencia, and Peyrin at SAC 2013, we show that one can take
advantage of its specific features to mount a known-key distinguisher for
the 10-round AES with independent subkeys and the full AES-128. The
obtained 10-round distinguisher has the same time complexity 264 as
the 8-round distinguisher it is derived from, but the highlighted input-
output correlation property is more intricate and therefore its impact on
the security of the 10-round AES when used as a known key primitive,
e.g. in a hash function construction, is questionable. The new known-key
distinguishers do not affect at all the security of AES when used as a
keyed primitive, for instance for encryption or message authentication
purposes.

1 Introduction

In this paper we present an alternative representation of AES. More precisely
we show that AES can be viewed as the composition of other elementary trans-
formations than those originally used for the specification of its round function.
While one might wonder whether selecting any of the equivalent descriptions of
a cipher is more than an arbitrary convention, numerous examples illustrate that
the choice of an appropriate description may be very useful for highlighting some

� This work was partially supported by the French National Research Agency through
the BLOC project (contract ANR-11-INS-011).

P. Sarkar and T. Iwata (Eds.): ASIACRYPT 2014, PART I, LNCS 8873, pp. 200–222, 2014.
c© International Association for Cryptologic Research 2014

A Simplified Representation of AES 201

of its structural features and serve as a starting point for its cryptanalysis or for
optimised implementions. To take a simple example, it is well known that while
the so-called ladder representation of the Feistel scheme is strictly equivalent to
its more traditional twisted representation for any even number of rounds, it is
helpful for understanding some attacks against DES and DES-like ciphers, for
instance the Davies-Murphy attack [8].

In the case of AES, several alternative representations have been proposed
[9,20] to highlight some aspects of its algebraic structure. These representations
respectively allow to relate the ciphertext to the plaintext using continued frac-
tions, resp. algebraic equations over GF (28). In [2] it was shown that numerous
dual ciphers of AES - i.e. equivalent descriptions of AES up to fixed, easy to
compute and to invert bijective mappings on the plaintexts, the ciphertexts, and
the keys - can be obtained by applying appropriately chosen modifications to
the irreducible polynomial used to represent GF (28), the affine transformation
in the S-box, the coefficients of MixColumns, etc. This observation was further
extended in [3]. While these dual ciphers can be considered as equivalent rep-
resentations of AES, these representations essentially preserve the structure of
the round function of the AES up to small variations on the exact parameter of
each elementary transformation. They are therefore closer to the original AES
than the equivalent representations we consider in this paper.

The starting point for the AES representation introduced here is the so-called
super S-box (or super-box) representation of two AES rounds which allows to
describe two consecutive AES rounds as the composition of one single non-linear
operation, namely a range of four parallel 32-bit to 32-bit key-dependent S-boxes
and several affine transformations. This representation was introduced in [7] by
the designers of AES as a useful notion for the analysis of AES differentials over
two rounds. It was subsequently reused in [11,12] and [18] in order to extend
so-called rebound attacks on AES-like permutations by at least one round: this
improved rebound technique, sometimes referred to as super S-box cryptanalysis,
was shown to be applicable in two related contexts, the cryptanalysis of AES-
like hash functions and the investigation of so-called known-key distinguishers
for AES-like block ciphers. Many recent improved distinguishers for reduced-
round versions of AES-like hash functions such as the SHA-3 candidates Grøstl
and ECHO are using super S-boxes, e.g. [19,16,15].

We introduce a novel representation of two consecutive AES rounds that re-
sults from an extra simplification of the super S-box representation. The simpli-
fication relates to the description of the affine transformations that surround the
32-bit super S-boxes. We show that all these transformations can be replaced by
one simple 32-bit oriented affine transformation that operates on the rows of the
4 × 4 matrix of bytes representing the current state. We propose to name the
resulting view of two or more generally r AES rounds the untwisted representa-
tion since it avoids viewing the affine transformations that surround the super
S-boxes as column-oriented operations “twisted” by the action the ShiftRows
transformation. The untwisted representation thus provides an equivalent de-
scription of two consecutive AES rounds as the composition of:

202 H. Gilbert

– a non-linear transformation denoted by S (a shorthand for “super S-boxes”)
that consists of the parallel application of four non-linear bijective mappings
which operate on the four 32-bit columns of the AES state. These four map-
pings are essentially super S-boxes up to permutations of the four input bytes
and the four output bytes of each column;

– an affine transformation denoted by R (a shorthand for “MixRows”) that
consists of the parallel application of four affine mappings which operate on
the four 32-bit rows of the AES state.

Fig. 1. Equivalent representation of two AES rounds as the composition R ◦ S of four
parallel non-linear bijections of the columns and four parallel affine bijections of the
rows of the input state

As shown in Figure 1, two consecutive AES rounds can thus be viewed as one
“super-round” that is the composition R ◦S of S and R. As will be shown more
in detail in the sequel, the small price to pay for this simplified view is that in
the resulting equivalent representation of 2r AES rounds as the composition of
r super-rounds, the first (resp. last) super-round is preceded (resp. followed) by
a simple affine permutation.

While an alternative representation of a cipher can obviously be regarded
in itself neither as a design nor as a cryptanalysis result, we believe that the
simplicity of the new representation can play a significant heuristic role in the
investigation of structural attacks on reduced-round versions of AES. Indeed,
the new representation pushes the advantage of the super S-box representation
of highlighting the 32-bit structure underlying the AES transformation one step
further.

To illustrate this alternative representation, we present extensions of the
known cryptanalytic results on reduced-round versions of AES in the so-called
known-key model. The known-key model was first introduced by Knudsen and
Rijmen in [17]. Attacks in this model are most often named known-key distin-
guishers and we will use this terminology in the sequel.1 An integral known-
key distinguisher for the 7-round AES was introduced by Knudsen and Rijmen
in [17]. We first present an improvement of this distinguisher whose idea was
inspired by the use of the untwisted representation of AES. This provides a

1 This terminology may seem a bit confusing since known-key distinguishers have
little to do with the notion of distinguisher one considers in more traditional se-
curity models, namely a testing algorithm with an oracle access capability. But on
the other hand the wording known-key distinguisher conveys probably less risks of
misinterpretation than the wording known-key attack.

A Simplified Representation of AES 203

known-key distinguisher against the 8-round AES. While this distinguisher is
outperformed by the differential known-key distinguishers for the 8-round AES
of [12] and [14], whose respective complexities are 248 and 244, we show that one
can take advantage of its specific features, that reflect integral properties of the
8-round AES, to extend it by one outer round at both sides. We thus obtain
the first known-key distinguisher for the full 10-round AES. This known-key
distinguisher has the same time complexity 264 (now measured as an equivalent
number of 10-round AES encryptions) as the one of the 8-round distinguisher it
is derived from, but the highlighted input-output correlation property is more
intricate. We nevertheless provide some evidence that unlike some generic known
distinguishers that are known to exist for block ciphers if the key size is suffi-
ciently small, the obtained distinguisher can reasonably be considered mean-
ingful. While in this paper we will only investigate the security of AES in the
known-key model, it is worth mentioning a recent result on the security of AES in
a related but even stronger security model, namely the chosen-key distinguisher
on the 9-round AES-128 of [10].

The rest of this paper is organized as follows. In Section 2, we introduce the
novel representation of two consecutive AES rounds and of 2r AES rounds. In
Section 3, we propose a definition of the known-key model, i.e. we define the
adversaries considered in this model and we remind known impossibility results
on the resistance of block ciphers to all known-key distinguishers. In Section 4,
we show how to use the untwisted representation of AES to mount known-key
distinguishers for the 8-round AES and its extension to the full 10-round AES
and why the latter distinguisher can be considered meaningful.

2 A New Representation of AES

Notational Conventions and Usual Representation of AES. Throughout
this paper we most often denote the composition of two mappings F and G
multiplicatively by F ·G instead of using the more classical notation G ◦F . The
advantage of this notation in the context considered here is that when read from
left to right it describes the successive transformations that are applied to the
input value.

Let us briefly recall the AES features that will be useful for the sequel and the
associated notation. Each AES block is represented by a four times four matrix of
bytes. While there are three standard versions of AES, of respective key lengths
k= 128, 192, and 256 bits and respective number of rounds 10, 12, and 14 rounds,
for the purpose of this paper we restrict ourselves for the sake of simplicity to the
full 10-round AES-128 and reduced-round versions of this cipher.2 For r ≤ 10,
the r-round version of the AES-128 encryption function is denoted by AESr and
is parametrized by (r+1) 128-bit subkeys denoted by K0 to Kr. These subkeys

2 However, since the AES properties we are investigating do not relate to the key
schedule but to the data encryption part of the block cipher that is the same for all
AES versions, all the presented results are also applicable to reduced-round versions
of AES-192 and AES-256.

204 H. Gilbert

are derived from a k-bit key K by the key schedule; since the exact features of the
AES-128 key schedule are not relevant for the analysis presented here, we do not
detail them and refer to the full specification of AES for their description. Each
round of the encryption function AESr is the composition SB ·SR ·MC ·AK of
four transformations named SubBytes or SB, ShiftRows or SR, MixColumns or
MC, and AddRoundKey or AK. SubBytes applies a fixed 8-bit to 8-bit bijective
S-box to each input byte, ShiftRows circularly shifts each of the four 4-byte rows
of the input state by 0, 1, 2, and 3 bytes to the left, MixColumns applies to each
of the four-byte columns of the input state, viewed as a 4-coordinate vector with
GF (28) coefficients, a left multiplication by a fixed 4× 4 matrix M with GF (28)
coefficients, and at round i ∈ [1; r], AddRoundKey or AK consists of a bytewise
exclusive or of the input block with subkey Ki.

3 The first round of AESr is
preceded by a key addition with the subkey K0 and the MixColumns operation
is omitted in the last round. In the sequel we will sometimes also have to refer
to the variant of AESr where the MixColumns transformation is kept in the last
round: we will denote this variant by AESr+ . At the end of Section 4, we will also
have to refer to the r-round variant of AES parametrized by r + 1 independent
subkeys. Depending whether the MixColumns transformation is omitted or kept
in the last round, we will denote this variant by AES∗r or AES∗r+ .

Super S-box Representation of 2 Consecutive AES Rounds. The super
S-box representation allows to view two consecutive AES rounds as the parallel
invocation of four 32-bit to 32 bit mappings named super S-boxes - which are
applied to the four columns of the AES state - surrounded by affine applications.
More in detail, since the transformations SB and SR commute and the com-
position of transformations is associative, the composition of two consecutive
rounds:

SB · SR ·MC ·AK · SB · SR ·MC · AK

can be rewritten as:

SR · (SB ·MC · AK · SB) · SR ·MC · AK.

We can notice that the middle term in brackets, i.e. SuperSB = (SB ·MC ·
AK · SB), where SuperSB stands for “Super S-boxes”, is the composition of
transformations that all preserve the column-wise structure of the AES state.
Thus SuperSB splits up into 4 parallel key-dependent bijective transformations
of one column of the input state. It is surrounded by the left, resp right affine
transformations SR, resp SR·MC ·AK. Each super S-box applies its 4-byte input
column the composition of 4 parallel S-box invocations, a left multiplication by
the MixColumn matrixM , a xor with a 32-bit subkey column, and 4 final parallel
S-box invocations.

3 Since AddRoundKey is parametrized by a subkey the use of the notation AK, that
suggests a fixed transformation, is a slight abuse of notation, but this notation is
convenient in the context of this paper: in the sequel AK just stands for a xor with
some constant — whose value does not affect the properties we consider.

A Simplified Representation of AES 205

Moving to the Untwisted Representation of 2 Consecutive AES
Rounds. We now show how to move from the super S-box representation of two
consecutive rounds to their untwisted representation as the composition S ·R of
four parallel column-wise non-linear transformations and four parallel row-wise
affine transformations. We first observe that the periodic repetition, in r itera-
tions, of the 2-round pattern associated with the super S-box representation:

SR · SuperSB · SR ·MC ·AK

can be equivalently viewed as the periodic repetition in r iterations of the cycli-
cally shifted periodic 2-round pattern:

SuperSB · SR ·MC · AK · SR

up to a minor correction, namely the left composition of the first iteration with
SR and the right composition of the last iteration with SR−1. Now in order
to move to the aimed 2-round representation the conducting idea is to left and
right-compose the SuperSB and SR ·MC ·AK · SR transformations using well
chosen byte permutations P and Q and their inverses P−1 and Q−1. Due to the
cancellation effect produced by the alternate use of these permutations and their
inverse, r iterations of the obtained 2-round description:

(Q−1 · SuperSB · P−1) · (P · SR ·MC ·AK · SR ·Q)

gives, for any choice of the two byte permutations, exactly the same product
as r iterations of the 2-round transformation it is derived from, up to a left
composition of the first iteration by Q−1 and a right composition of the last
iteration by Q. In order for the byte permutations P and Q to provide the desired
untwisted representation, they must satisfy the two following extra requirements:

– (i) the non-linear transformation S = Q−1 ·SuperSB ·P−1 must operate on
columns;

– (ii) the affine transformation R = P · SR ·MC · AK · SR ·Q must operate
on rows.

In order to describe the byte permutations satisfying the above requirements
that we found, we introduce the following auxiliary byte permutations:

– we denote by T the matrix transposition that operates on 4× 4 matrices of
bytes as follows:

T :

⎛⎜⎝a0 a4 a8 a12

a1 a5 a9 a13

a2 a6 a10 a14

a3 a7 a11 a15

⎞⎟⎠ �→
⎛⎜⎝ a0 a1 a2 a3

a4 a5 a6 a7

a8 a9 a10 a11

a12 a13 a14 a15

⎞⎟⎠
– we denote by SC (or SwapColumns) the swapping of the second and fourth

columns of the input state:

SC :

⎛⎜⎝a0 a4 a8 a12

a1 a5 a9 a13

a2 a6 a10 a14

a3 a7 a11 a15

⎞⎟⎠ �→
⎛⎜⎝a0 a12 a8 a4

a1 a13 a9 a5

a2 a14 a10 a6

a3 a15 a11 a7

⎞⎟⎠

206 H. Gilbert

Proposition 1. The byte permutations

P = SR · T · SR−1 :

⎛⎜⎝a0 a4 a8 a12

a1 a5 a9 a13

a2 a6 a10 a14

a3 a7 a11 a15

⎞⎟⎠ �→
⎛⎜⎝a0 a5 a10 a15

a3 a4 a9 a14

a2 a7 a8 a13

a1 a6 a11 a12

⎞⎟⎠
and

Q = SR−1 · T · SR · SC :

⎛⎜⎝a0 a4 a8 a12

a1 a5 a9 a13

a2 a6 a10 a14

a3 a7 a11 a15

⎞⎟⎠ �→
⎛⎜⎝a0 a7 a10 a13

a1 a4 a11 a14

a2 a5 a8 a15

a3 a6 a9 a12

⎞⎟⎠
satisfy the requirements (i) and (ii) and thus result in the desired untwisted
representation.

Proof sketch.
(i): It is easy to see that P , Q, and their inverses operate on columns. Therefore
S = Q−1 · SuperSB · P−1 also operates on columns.
(ii): We can simplify the expression of R:

R = P · SR ·MC · AK · SR ·Q
= SR · T · SR−1 · SR ·MC · AK · SR · SR−1 · T · SR · SC
= SR · T ·MC · AK · T · SR · SC

Since T ·MC · T and therefore T ·MC · AK · T operates on rows and SR and
SC also operate on rows, R operates on rows. �

The linear part of the row-wise affine transformation R determined by P and
Q is described by the four following circulant matrices Ri, i = 0 to 3. Each
matrix Ri operates on a 4-byte row vector xi that represents row i of the input
block of R and produces the 4-byte row vector yi = xi · Ri that represents row
i of the linear part of the image of the input block by R. The coefficients of the
Ri are those of the MixColumns matrix M (in a different order).

R0 = R2 =

⎛⎜⎝2 3 1 1
3 1 1 2
1 1 2 3
1 2 3 1

⎞⎟⎠ R1 = R3 =

⎛⎜⎝1 1 2 3
1 2 3 1
2 3 1 1
3 1 1 2

⎞⎟⎠ M =

⎛⎜⎝2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

⎞⎟⎠
Remark. (P,Q) is not the unique pair of byte permutations that satisfy require-
ments (i) and (ii). Given any permutations σ and τ of the set {0, 1, 2, 3}, let
us denote by Cσ, resp. Dτ the associated column and row permutations, that
on input a 4-tuple (x0, x1, x2, x3) of columns, resp. of rows produces the per-
muted 4-tuple (x′

0, x
′
1, x

′
2, x

′
3) of columns, resp. of rows given by x′

σ(i) = xi, resp.

x′
τ (i) = xi, i.e. x

′
i = xσ−1(i) resp. x

′
i = x−1

τ (i), i = 0 to 3. It is easy to see that all
the pairs of byte permutations (Pσ,τ , Qσ,τ) = (Cσ ·Dτ · P,Q ·Dτ−1 · Cσ−1) also
satisfy requirements (i) and (ii). We will however only use (P,Q) in the sequel.

A Simplified Representation of AES 207

Resulting Untwisted Representation of AES2r+ and AES2r. The former
2-round untwisted representation of two consecutive AES rounds immediately
results in the following equivalent untwisted description of the 2r-round version
AES2r+ of the encryption function of AES (in which the MixColumns transfor-
mation is kept in the last round).

AES2r+ = AK · IP · (S ·R)r · FP,

where the initial and final permutations IP and FP are the byte permutations
given by:

IP = SR ·Q = T · SR · SC;
FP = Q−1 · SR−1 = IP−1.

.

This representation AES2r+ is illustrated on Figure 2. To confirm the equivalence
of the above representation of AES2r+ with its usual representation using SB,
SR, MC, and AK, implementations based on both representations were checked
to provide equal output values on a few input values.

Fig. 2. Equivalent representation of AES10+ . IP and FP are permutations of the byte
positions.

The former representation of AES2r+ can be used to derive a first representation
of AES2r, that will be used in the sequel to mount a known-key distinguisher for
AES8. The right composition of AES2r with an appropriate conjugate of MC−1

is required in order to cancel out the MixColumns operation in the last round. If
one “develops” the last occurrence of R and simplifies the obtained expression,
one obtains the equality:

AES2r = AK · IP · (S · R)r−1 · S · P · SR ·AK.

We also introduce a second equivalent representation of AES2r that will be
used in the sequel to mount a known-key distinguisher for AES10: we start
from an equivalent representation of the 2(r − 1)-round version AES2(r−1)+ of
AES, apply a left composition with a full round and a right composition with a
last round without MixColumns, and simplify the obtained expression using the
equality R = P · SR ·MC ·AK · SR ·Q.

AES2r = (AK · SB · SR ·MC) ·AES2(r−1)+ · (SB · SR · AK)
= AK · SB · SR ·MC ·AK · SR ·Q · (S · R)r−1 ·Q−1 · SR−1 · SB · SR · AK
= AK · SB · P−1 ·R · (S · R)r−1 ·Q−1 · SB · AK
= AK · P−1 · SB ·R · (S · R)r−1 · SB ·Q−1 · AK

Thus AES2r can be equivalently viewed as a middle transformation R ·(S ·R)r−1

preceded and followed by simplified initial and final “external rounds”, namely
AK · P−1 · SB and SB ·Q−1 · AK.

208 H. Gilbert

3 The Known-Key Model

We believe that the untwisted AES representation introduced above can po-
tentially help analysing known structural attacks of reduced-round versions of
AES, AES-like ciphers, or AES-based hash functions.4 In the next section we
will present two “attacks” that substantiate this belief. They both happen to
belong to a quite specific class of structural attacks, the so-called known-key
distinguishers, and respectively relate to a reduced-round version of AES and
the full 10-round AES-128. In this section we introduce the underlying security
model, that is named the known-key model. This model was inspired from the
cryptanalysis of hash functions and first introduced by Knudsen and Rijmen in
[17]. The difference between the known-key model and the usual security model
considered for block ciphers can be outlined as follows.

– In the usual model, the adversary is given a black box (oracle) access to an
instance of the encryption function associated with a random secret key and
its inverse and must find the key or more generally efficiently distinguish the
encryption function from a perfect random permutation;

– In the known-key model, the adversary is given a white box (i.e. full) access
to an instance of the encryption function associated with a known random
key and its inverse and her purpose is to simultaneously control the inputs
and the outputs of the primitive, i.e. to achieve input-output correlations
she could not efficiently achieve with the inputs and outputs of a perfect
random permutation to which she would have an oracle access.

We now propose a more detailed definition of the known-key model – i.e. of the
adversaries considered in this model, that are named known-key distinguishers. In
order to capture the idea that the goal of such adversaries is to derive an N -tuple
of input blocks of the considered block cipher E that is “abnormally correlated”
with the corresponding N -tuple of output blocks, we first introduce the notion of
T -intractable relation on N -tuples of E blocks. This notion (that is independent
of E up to the fact that for the sake of simplicity we are using the time complexity
of E as the unit for quantifying time complexities) is closely related to the notion
of correlation intractable relation proposed in [6]. It essentially expresses that it
is difficult to derive from oracle queries to a random permutation and its inverse
an N -tuple of input/output pairs satisfying the relation.

Definition 1 (T -Intractable Relation). Let E : (K,X) ∈ {0, 1}k×{0, 1}n �→
EK(X) ∈ {0, 1}n denote a block cipher of block size n bits. Let N ≥ 1 and R
denote an integer and any relation5 over the set S of N -tuples of n-bit blocks. R
4 By structural attacks we mean here attacks that unlike statistical attacks, e.g. dif-
ferential and linear cryptanalysis, do not consider the detail of the algorithm’s el-
ementary ingredients such as the S-boxes, but put more emphasis on their overall
construction, their use of transformations that preserve the byte structure or the
32-bit structure of the data, etc.

5 Let us remind that for any set S, a relation R over S can be defined as a subset of
the cartesian product S × S and that for any pair (a, b) of S × S, aRb means that
(a, b) belongs to this subset.

A Simplified Representation of AES 209

is said to be T -intractable relatively to E if, given any algorithm A′ that is given
an oracle access to a perfect random permutation Π of {0, 1}n and its inverse,
it is impossible for A′ to construct in time T ′ ≤ T two N -tuples X ′ = (X ′

i)
and Y ′ = (Y ′

i) such that Y ′
i = Π(X ′

i), i = 1 · · ·N and X ′ R Y ′ with a success
probability p′ ≥ 1

2 over Π and the random choices of A′. The computing time
T ′ of A′ is measured as an equivalent number of computations of E, with the
convention that the time needed for one oracle query to Π or Π−1 is equal to
1.Thus if q′ denotes the number of queries of A′ to Π or Π−1, q′ ≤ T ′.

Definition 2 (Known-Key Distinguisher). Let E : (K,X) ∈ {0, 1}k ×
{0, 1}n �→ EK(X) ∈ {0, 1}n denote a block cipher of block size n bits. A known-
key distinguisher (R,A) of order N ≥ 1 consists of (1) a relation R over the
N -tuples of n-bit blocks (2) an algorithm A that on input a k-bit key K pro-
duces in time TA, i.e. in time equivalent with TA computations of E, an N -tuple
X = (Xi)i=1···N of plaintext blocks and an N -tuple Y = (Yi)i=1···N of ciphertext
blocks related by Yi = EK(Xi), The two following conditions must be met:
(i) The relation R must be TA-intractable relatively to E.
(ii) The validity of R must be efficiently checkable: we formalize this requirement
by incorporating the time for checking whether two N -tuples are related by R in
the computing time TA of algorithm A.6

It is important for the sequel to notice that in the former definition, while the
algorithm A takes a random key K as input, the relation R satisfied by the
N -tuples of input and output blocks constructed by A is the same for all values
of K and must be efficiently checkable without knowing K.

Example 1. The following example of a known-key distinguisher of order N = 2 il-
lustrates the link between the use of block ciphers for hashing purposes and their
security in the known-key model. Let E denote a block cipher of key length k bits
and block length n bits and (X1, X2) and (Y1, Y2) denote two pairs of n-bit blocks.
We define the relation (X1, X2) R (Y1, Y2) by the conditions X1 �= X2 and X1 ⊕ Y1 =
X2 ⊕ Y2. The definition of relation R obviously implies that if E is vulnerable to a
known-key distinguisher (R,A) of complexity T � 2

n
2 , then the compression function

h : {0, 1}k × {0, 1}n → {0, 1}n : (K,X) �→ X ⊕ EK(X) derived from E using the
Matyas-Meyer-Oseas construction is vulnerable to a collision attack of complexity T
that is more powerful than any generic collision attack against h.7

In the next example and throughout the rest of this paper, we are using the fol-
lowing notation to describe integral properties of partial AES encryptions and
decryptions.

Notation. Let F : {0, 1}n → {0, 1}n denote any mapping over the block space
and let us consider the transformation by F of a structure X of N = 28m blocks,

6 This avoids specifying an explicit upper bound on the time complexity for checking
whether two N-tuples are related by R. In practice one typically expects the time
complexity for checking R to be at most the one of N computations of E.

7 It could be shown that if T � 2
n
2 , R is T -intractable.

210 H. Gilbert

m ≤ 16. An input or output byte bi, i ∈ {0, · · · , 15} of F is said to be constant
and marked C if it takes one constant value. It is said to be uniform and marked
U if it takes each of the 28 possible values exactly 28(m−1) times. A s-tuple
(bi1 , · · · , bis), where s ≤ m and i1, · · · is ∈ {0, · · · , 15}, of input or output bytes
of F is said to be uniform and marked U1, · · ·Us if (bi1 , · · · , bis) takes each of
the 28s possible s-tuple values exactly 28(m−s) times.

Example 2. The known-key distinguisher for AES7 introduced in [17] uses a
relation R of order N = 256 that exploits integral properties of partial AES
encryptions and decryptions. The following integral properties are used:⎛⎜⎜⎝

U1 C C C
C U2 C C
C C U3 C
C C C U4

⎞⎟⎟⎠ +4r→

⎛⎜⎜⎝
U U U U
U U U U
U U U U
U U U U

⎞⎟⎟⎠ and

⎛⎜⎜⎝
U1 C C C
U2 C C C
U3 C C C
U4 C C C

⎞⎟⎟⎠ −3r→

⎛⎜⎜⎝
U U U U
U U U U
U U U U
U U U U

⎞⎟⎟⎠
where 4r denotes 4 consecutive AES encryption rounds without MixColumns in
the last round and −3r denotes 3 full AES decryption rounds. These properties
imply that if a middle structure Z of N = 256 blocks is chosen as to satisfy the
properties of the intermediate block of the scheme below, then by applying 4
forward encryption rounds and 3 backward decryption rounds to this structure
one obtains a N -tuple of (plaintext, ciphertext) pairs that satisfy the relation R
that (1) the N input blocks are pairwise distinct and (2) each of the 16 input
bytes and each of the 16 output bytes is uniformly distributed.⎛⎜⎜⎝

U U U U
U U U U
U U U U
U U U U

⎞⎟⎟⎠ −3r←

Z⎛⎜⎜⎝
U1 C C C
U5 U2 C C
U6 C U3 C
U7 C C U4

⎞⎟⎟⎠ +4r→

⎛⎜⎜⎝
U U U U
U U U U
U U U U
U U U U

⎞⎟⎟⎠
While R could be shown to be N -intractable by the same kind of arguments

as those used in the next section, we do not give a detailed proof here. The
authors of [17] do not use exactly the same notion of T -intractable relation,
but conjecture the related – somewhat stronger – property that “for a randomly
chosen 128-bit permutation, finding a collection of 256 texts in similar time, using
similar (little) memory and with similar properties as in the case of 7-round AES
has a probability of succeeding which is very close to zero”.

Example 3. In [12] a known-key distinguisher of order N = 2 for AES8 of time
complexity T = 248, memory about 232, and success probability close to 1 is
described. The associated relation R is differential in nature. It is defined as
follows: (X1, X2)R(Y1, Y2) if and only if X1 �= X2, the single non-zero bytes of
the input difference X1 ⊕ X2 are the diagonal bytes, i.e. the bytes numbered
0, 5, 10, and 15, and the single non-zero bytes of the output difference Y1 ⊕ Y2

are the four bytes numbered 0, 7, 10, and 13. It was shown in [13] that given a
perfect random permutation Π , the best method to get an input pair (X1, X2)
and an output pair (Y1, Y2) = (Π(X1), Π(X2)) satisfying (X1, X2)R(Y1, Y2) is
the so-called limited birthday technique, that requires about 265 oracle queries

A Simplified Representation of AES 211

for a target success probability of about 1
2 . With only T = 248 oracle queries,

the success probability of this best method would decrease to about 2−17.

Example 4. When applied to block ciphers, so-called zero-sum distinguishers
[1,4,5], that thanks to higher order differential properties produce structures

(Xi, Yi)i=1···N of N (input, output) pairs such that
⊕N

i=1 Xi =
⊕N

i=1 Yi = 0 also
represent examples of known-key distinguishers.

Impossiblity Results on the Resistance of Block Ciphers to all Known-
Key Distinguishers. Specifying the requirements on the resistance of a block
cipher E against known-key distinguishers is a notoriously difficult issue because
of an impossibility result that was first pointed out by Canetti, Goldreich, and
Halevi in [6]. While the notion of correlation intractability was originally used to
state this result, the related notion of resistance against known-key distinguishers
can be used to reformulate it as follows:

Proposition 2. Every block cipher of key length k bits and block length n bits
such that k ≤ n is vulnerable to a known-key distinguisher of order 1 and com-
plexity about one computation of E.

Proof sketch. In order to give the intuition of the proof, let us restrict ourselves
to the situation where k = n. It suffices to use the whole specification of E in
the definition of R to get the claimed result. Let us define X R Y , where X
and Y are any n-bit blocks, by the condition Y = EX(X). Given any known
k-bit key K, the easy to compute values X = K and Y = EK(K) are related
by EK and satisfy X R Y . However, for any adversary A′ that makes q << 2n

queries to a perfect random permutation Π of the block space, finding X such
that X R Π(X), i.e. Π(X) = EX(X) is very unlikely to succeed: by sepa-
rately considering the cases where A′ outputs a value X that belongs or does
not belong to a queried pair it can indeed be shown that the success probabil-
ity of A′ is upper bounded by q

2n + 1
2n−q , and is therefore negligible if q << 2n. �

The former proposition can be easily extended as follows.

Proposition 3. Every block cipher of block length n bits and key length k = Nn
bits is vulnerable to a known-key distinguisher of order N and complexity about
N computations of E.8

Proof sketch. We just need to replace the relation R used in the former proof by
the following relation RN over the N -tuples of blocks: if X = (Xi)i=1···N and
Y = (Yi)i=1···N , XRNY iff ∀i ∈ [1;N]EX (Xi) = Yi, where EX denotes the block
cipher E parametrized by the Nn-bit key X1||X2|| · · · ||XN . �

8 One can generalize the former result a bit further by noticing that if k ≤ Nn, then
given any easy to compute and easy to invert function f : {0, 1}Nn → {0, 1}k, a
simple variant of the known-key distinguisher of Proposition 3 can be obtained by
replacing RN by the relation R′

N defined by XR′
NY iff ∀i ∈ [1;N] Ef(X)(Xi) = Yi.

212 H. Gilbert

To summarize the above impossibility results, for a block cipher E of block and
key lengths n and k, generic known-key distinguishers of order N are known to
exist iff k ≤ Nn.

Discussion. If k > Nn, any known-key distinguisher of order at most N can
be reasonably conjectured to be meaningful, i.e. to reflect, unlike the artificial
generic known-key distinguishers of Propositions 2 and 3, a meaningful corre-
lation property of E. Now in the frequently encountered case where k ≤ Nn,
that is met for instance for the known-key distinguisher of [17] where k = 128
and Nn = 256 × 128, characterizing which known-key distinguishers of order N
should be considered meaningful and which ones should be considered artificial
is a very complex issue. Finding a complete characterization remains an open
problem that even lacks a rigorous statement and we will not attempt to solve
it here. We will limit ourselves to propose informal criteria allowing to identify
two classes of known key distinguishers that have little to do with artificial dis-
tinguishers identified so far and can be both reasonably considered meaningful.
– Informal criterion 1. One heuristic argument in favour of the view that the
known-key distinguisher of Example 2 [17] for AES7 is meaningful is the ob-
servation that while the description of the generic relations R and RN used in
Propositions 2 and 3 involve the specification of E itself, the relation R used in
[17] has no obvious connection with the specification of E. More generally, if a
known-key distinguisher uses an intractable relation R whose specification does
not extensively reuse operations of E, this provides some heuristic evidence that
it can be considered meaningful.9

– Informal criterion 2. While the informal criterion 1 sounds like a reasonable
sufficient condition, we think it should not be considered as a necessary condi-
tion. In other words, known-key distinguishers that do not satisfy it, i.e. whose
relation R re-uses some operations of E, should not be systematically ruled out
as if they were all artificial. We informally state an alternative criterion for high-
lighting that independently of whether their relation R reuses operations of E
or not, some known-key distinguishers have little to do with existing artificial
distinguishers. One can observe that in the artificial distinguishers (A,R) of
Propositions 2 and 3 and of the generalisation of Proposition 3 in the remark
above, algorithm A produces an N -tuple X of input blocks from which the value
of the whole key can be easily derived: in other words, one exploits the fact that
X “encodes” the value of the entire key. If for a given known-key distinguisher
(A,R) the entire key can neither be derived from the N -tuples of input values
X nor from the N -tuples of output values Y produced by A one is brought back
to a situation somewhat similar to the case where k > Nn (a condition that ob-
viously prevents X and Y from encoding the entire key) and this provides some
evidence that (A,R) has little to do with the artificial distinguishers identified
so far. We will use this informal criterion at the end of the next section.

9 Giving a rigorous definition of the former informal criterion seems difficult. One
might perhaps express that the verification of R is not substantially sped up by
oracle accesses to E.

A Simplified Representation of AES 213

4 Application: Improved Known-Key Distinguishers for
AES8 and AES10

4.1 A Known-Key Distinguisher for AES8

Let us now show how to use the first untwisted representation of AES2r in-
troduced in Section 2 in order to mount a known-key distinguisher of order
N = 264 for AES8. The distinguisher starts from a suitably chosen middle N -
block structure and exploits the forward and backward properties of the final
rounds, resp. the initial rounds of the AES8, that are illustrated on Figure 3.
These properties result from the fact that the initial and final rounds essentially
consist of the composition S ·R ·S, up to simple initial and final transformations.

Property 1. For any structure X(a,b,c,d) = {(x⊕ a, b, c, d), x ∈ {0, 1}32} of 232

input blocks — where (a, b, c, d) denotes an AES block of columns a, b, c, and
d — each of the four 4-byte columns of the image of X(a,b,c,d) by S · R · S is
uniformly distributed.

This can be easily seen by following the column-wise transitions through trans-
formations S, R, and S on the top of Figure 3 and by observing (1) that S
transforms each column bijectively and (2) that if one fixes the second, third,
and fourth input columns of R, each of the four output columns of R is a bijec-
tive affine function of the first input column. Since moreover P ·SR ·AK is just
a permutation of the byte positions followed by a key addition, each of the 16
bytes of the image of X(a,b,c,d) by S ·R · S · P · SR ·AK is uniformly distributed
and can be marked “U”.

Property 2. For any structure Y(e,f,g,h) = {(y ⊕ e, f, g, h), y ∈ {0, 1}32} of 232

blocks, each four-byte column of the preimage of Y(e,f,g,h) by S ·R ·S is uniformly
distributed.

This can be easily seen by following the column-wise transitions through trans-
formations S−1, R−1, and S−1 on the bottom of Figure 3 and observing (1)
that S−1 transforms each column bijectively and that (2) if one fixes the second,
third, and fourth input columns of R−1, each of the four output columns of R−1

is a bijective affine function of the first input column. Since moreover IP−1 is
a permutation of the byte positions, each of the 16 bytes of the preimage of
Y(e,f,g,h) by AK · IP ·S ·R ·S is uniformly distributed and can be marked “U”.
We are using these properties to mount the known-key distinguisher of order
N = 264 for AES8 illustrated on Figure 4, i.e. an algorithm A allowing to effi-
ciently derive from any known key a N -tuple

(
(Xi, Yi)

)
i=1···N of AES8 (input,

output) pairs that satisfy the relation R defined as follows.

214 H. Gilbert

X(a,b,c,d)⎛⎝U1 C C C
U2 C C C
U3 C C C
U4 C C C

⎞⎠ S→

⎛⎝U1 C C C
U2 C C C
U3 C C C
U4 C C C

⎞⎠ R→

⎛⎝U1
1 U2

1 U3
1 U4

1

U1
2 U2

2 U3
2 U4

2

U1
3 U2

3 U3
3 U4

3

U1
4 U2

4 U3
4 U4

4

⎞⎠ S→

⎛⎝U1
1 U2

1 U3
1 U4

1

U1
2 U2

2 U3
2 U4

2

U1
3 U2

3 U3
3 U4

3

U1
4 U2

4 U3
4 U4

4

⎞⎠ P ·SR·AK
−−−→

⎛⎝U U U U
U U U U
U U U U
U U U U

⎞⎠
Y(e,f,g,h)⎛⎝U1 C C C
U2 C C C
U3 C C C
U4 C C C

⎞⎠S−1

→

⎛⎝U1 C C C
U2 C C C
U3 C C C
U4 C C C

⎞⎠ R−1

→

⎛⎝U1
1 U2

1 U3
1 U4

1

U1
2 U2

2 U3
2 U4

2

U1
3 U2

3 U3
3 U4

3

U1
4 U2

4 U3
4 U4

4

⎞⎠ S−1

→

⎛⎝U1
1 U2

1 U3
1 U4

1

U1
2 U2

2 U3
2 U4

2

U1
3 U2

3 U3
3 U4

3

U1
4 U2

4 U3
4 U4

4

⎞⎠ (AK·IP)−1

−−→

⎛⎝U U U U
U U U U
U U U U
U U U U

⎞⎠
Fig. 3. Forward and backward properties of S · R · S

Relation R: (Xi)i=1···NR(Yi)i=1···N iff the N blocks Xi are pairwise distinct
and for each byte position j ∈ {0, · · · , 15}, the j-th byte of the Xi and the j-th
byte of the Yi are uniformly distributed.

Algorithm A: The conducting idea is that in the untwisted representation of
AES8 in Figure 4, the initial and final rounds of Figure 3 are linked together by
the transformation R, that is affine. This allows to construct a structure that
simultaneously achieves the requirements on the intput and the output of R−1

in order to apply Properties 1 and 2. More in detail, we are using the 264 chosen
middle blocks structure Z = X0 ⊕ RY0, where X0 and Y0 are shorthands for
X(0,0,0,0) and Y(0,0,0,0) and X0 ⊕ RY0 denotes the set {X ⊕ R(Y), X ∈ X0, Y ∈
Y0}. It directly results from the definition of Z that it can be partitioned into
232 structures X0 ⊕ R(y, 0, 0, 0) = XR(y,0,0,0) of 232 blocks each, one for each
value y ∈ {0, 1}32. In other words, Z can be partitioned into 232 structures of
the form X(a,b,c,d). Therefore, due to Property 1, each byte of the image of Z by
S ·R ·S ·P ·SR ·AK satisfies property U . Let us denote by L and C the linear and
constant parts of the affine mapping R, i.e. the linear mapping and the constant
such that ∀X ∈ {0, 1}128R(X) = L(X) ⊕ C. Since the linear mapping and the
constant associated with R−1 are L′ = L−1 and C′ = L−1(C), the preimage of
Z by R is R−1(Z) = L−1(X0 ⊕ L(Y0) ⊕ C) ⊕ C′ = L−1(X0) ⊕ Y0. Therefore
R−1(Z) can be partitioned into 232 structures Y0⊕L−1(x, 0, 0, 0) = YL−1(x,0,0,0)

of 232 blocks each10 – one for each value x ∈ {0, 1}32. In other words, R−1(Z)
can be partitioned into 232 structures of the form Y(e,f,g,h) and the application
of Property 2 to R−1(Z) shows that each byte of the preimage of R−1(Z) by
AK · IP ·S ·R ·S, i.e. each byte of the preimage of Z by AK · IP · S · R · S ·R,
satisfies property U .

In summary, we derived from themiddle structureZ aN -tuple
(
(Xi, Yi)

)
i=1···N

of AES8 (input, output) pairs that satisfy relationR. The time complexity of the
derivation of such an N -tuple is T = N = 264 AES8 computations. To complete
the proof that we have mounted a known-key distinguisher for AES8, we just have
to show that property R is T -intractable, i.e. that the success probability of any

10 One can notice that the above partitions of Z and R−1(Z) do not map into each
other through R.

A Simplified Representation of AES 215

⎛⎜⎜⎝
U U U U
U U U U
U U U U
U U U U

⎞⎟⎟⎠ (AK·IP)−1

←−−−

⎛⎜⎜⎝
U1

1 U2
1 U3

1 U4
1

U1
2 U2

2 U3
2 U4

2

U1
3 U2

3 U3
3 U4

3

U1
4 U2

4 U3
4 U4

4

⎞⎟⎟⎠ (SRS)−1

←−−

R−1(Z)=Y0⊕L−1X0

≡232×⎛⎜⎜⎝
U1 C C C
U2 C C C
U3 C C C
U4 C C C

⎞⎟⎟⎠ R−1

←−−

Z=X0⊕RY0

≡232×⎛⎜⎜⎝
U1 C C C
U2 C C C
U3 C C C
U4 C C C

⎞⎟⎟⎠ · · ·

· · ·
SRS

−−→

⎛⎜⎜⎝
U1

1 U2
1 U3

1 U4
1

U1
2 U2

2 U3
2 U4

2

U1
3 U2

3 U3
3 U4

3

U1
4 U2

4 U3
4 U4

4

⎞⎟⎟⎠ P ·SR·AK

−−→

⎛⎜⎜⎝
U U U U
U U U U
U U U U
U U U U

⎞⎟⎟⎠
Fig. 4. A known-key distinguisher for AES8

oracle algorithm A(Π,Π−1) of overall time complexity upper bounded by N (and
therefore of number q of queries also upper bounded by N) is negligible.

Proposition 4. For any oracle algorithm A that makes q ≤ N = 264 oracle
queries to a perfect random permutation Π of {0, 1}n (where n = 128) or its
inverse, the probability that A successfully outputs a N -tuple (

(
Xi, Yi)

)
i=1···N

of (input, output) pairs of Π that satisfy R is upper bounded by 1
2n−(N−1) and

hence by 1
2n−1 .

Proof. If at least one of the N pairs (Xi, Yi) output by A does not result from
the query Xi to Π or the query Yi to Π−1, then the probability that for this pair
Yi = Π(Xi) and thus the success probability of A is upper bounded by 1

2n−(N−1) .

In the opposite case, i.e. if q = N and all the (Xi, Yi) result from queries to Π
or Π−1, we can assume w.l.o.g. that (XN , YN) results from the N -th query XN

or YN of A to Π or Π−1. But given any pairs (Xi, Yi)i=1···N−1 at most one value
of the block YN , resp. XN is such that each of the 16 bytes of (Yi)i=1···N , resp.
(Xi)i=1···N be uniformly distributed.11 However the oracle answer YN , resp. XN

is uniformly drawn from {0, 1}n \ {Y1, · · ·YN−1}, resp. {0, 1}n \ {X1, · · ·XN−1}.
Therefore the probability that the answer to the N -th query allows the output
of A to satisfy property R is also upper bounded by 1

2n−(N−1) in this case. �

Discussion. The known-key distinguisher of order N = 264 for AES8 presented
above has a time complexity of about 264. It is obviously applicable without
modification to the AES8 variant parametrized by independent subkeys AES∗8.
In both cases, the fact that informal criterion of Section 3 is met, i.e. that
the relation R used by the distinguisher has no obvious connection with the
AES specification suggests that the obtained known-key distinguisher can be
considered meaningful. While the presented 8-round known-key distinguisher is
outperformed by the differential known-key distinguishers for AES8 of complex-
ities 248 and 244 of [12,14], the strong property expressed by relation R that

11 This can for instance be deduced from the fact that the Xi and the Yi must satisfy⊕N
i=1 Xi =

⊕N
i=1 Yi = 0.

216 H. Gilbert

each input and output byte is not only balanced as in zero-sum distinguishers,
but uniformly distributed turns out to be convenient for further extending the
known key distinguisher by two rounds in a provable manner, as will be shown
in the rest of this section.

Strengthening Proposition 4 Under a Heuristic Assumption. Let us give
some partial evidence that R is actually T -intractable in a stronger sense than in
Proposition 4 above, namely that the success probability of any adversaryA who
makes M > N oracle queries to Π or Π−1 remains negligible if M−N is not too
large. While a rigorous proof requiring no unproven assumptions could be easily
derived along the same lines as Proposition 4 for values of M marginally larger
than N , e.g. N + 3, for larger values of M we make the heuristic assumption
that querying both Π and Π−1 does not improve the performance of A over
an adversary who only queries one of these oracles. Therefore, we consider an
adversary A who only makes queries to an oracle permutation Π not its inverse,
and aims at finding an N -tuple of (input, output) pairs that satisfy the relation
R of Section 4.1. To upper bound the success probability of such an adversary,
we observe that given any N -tuple of distinct input blocks Xi and any output
byte position j ∈ [0; 15], the 256-tuple (N0, · · · , N255) of numbers of occurrences
of the values 0, 1, · · · 255 for byte j of the blocks Yi = Π(Xi) is nearly governed

by a multinomial law. For any 256-tuple (N0, · · · , N255) such that
∑255

i=0 Ni = N ,

we denote the multinomial coefficient N !
N0!N1!···N255!

by
(

N
N0,···N255

)
.

Proposition 5. For any N -tuple (Xi)i=1···N of distinct inputs to Π an upper
bound on the probability p that for byte positions j = 0 to 15, the 256-tuple of
numbers of occurrence of the values of byte j of Π(Xi) be (N j

0 , · · · , N
j
255) —

where for j=0 to 15 the 256-tuple (N j
0 , · · · , N

j
255) satisfies

∑255
0 N j

i = N — is
given by:

p ≤
15∏
j=0

(
N

N j
0 , · · ·N

j
255

)
× (

1

2128 −N + 1
)N .

An upper bound on the success probability pA of an adversary A who makes
M > N queries to Π and no query to Π−1 is given by:

pA ≤
(
M

N

)
×
(

N
N
256 ,

N
256 · · ·

N
256

)16

× (
1

2128 −N + 1
)N .

Since N = 264, Proposition 5 provides very small upper bounds pA % 1
2 for

values of M of up to M ≈ N + 211. But it provides no bound pA < 1
2 for

slightly larger values, e.g. M ≈ N + 212. We do not know whether the bounds
of Proposition 5, that relate to the probability that the (input, output) pairs
provided by M queries contain one N -tuple, can be significantly improved. Since
even in a situation where such N -tuples exist it can be computationally difficult
to find one in time T , a potential approach might consist in establishing upper
bounds that hold for higer values of M under computational assumptions.

A Simplified Representation of AES 217

4.2 A Known-Key Distinguisher for the 10-Round AES

In this section we show that the former known-key distinguisher for AES8 can
be extended by two rounds without significant complexity increase. The price to
pay for this extension is that the relation R of the new distinguisher is much less
simple and that its description involves operations of the first and last rounds.
This raises the question whether the new known-key distinguisher reflects a
meaningful correlation property of the cipher. Since we can provide more simple
arguments supporting this view for AES∗

10 (i.e. the 10-round AES parametrized
by 11 independent subkeys), we first describe the application of the new known-
key distinguisher to AES∗

10 and then discuss how this transposes to AES-128.
As shown at the end of Section 2, AES∗

10 can be equivalently represented by
the sequence of transformations

AK · P−1 · SB ·R · (S · R)4 · SB ·Q−1 ·AK

The properties we are using to build a known-key distinguisher on AES∗10 are
illustrated on Figure 5.

(Xi)
(AK·P−1·SB·R)−1

←−−−−−−−−

U⎛⎜⎜⎝
U U U U
U U U U
U U U U
U U U U

⎞⎟⎟⎠(SRS)−1

←−−−−−

R−1(Z)=Y0⊕L−1X0⎛⎜⎜⎝
U1 C C C
U2 C C C
U3 C C C
U4 C C C

⎞⎟⎟⎠ R−1

←−−

Z=X0⊕RY0⎛⎜⎜⎝
U1 C C C
U2 C C C
U3 C C C
U4 C C C

⎞⎟⎟⎠SRS

−−→

V⎛⎜⎜⎝
U U U U
U U U U
U U U U
U U U U

⎞⎟⎟⎠R·SB·Q−1·AK

−−−−−−−−→ (Yi)

Fig. 5. Derivation of the N AES10 (input,output) pairs used in our known-key distin-
guisher

Algorithm A: We reuse the same structure Z of N = 264 intermediate blocks
as for the known-key distinguisher on AES8 presented above, but extend the for-
ward computation and backward computations S ·R ·S and (S ·R ·S ·R)−1, by
two outer transformations whose structures are symmetric of each other, namely
(AK · P−1 · SB · R)−1 (backward) and R · SB · Q−1 · AK (forward) to get an
N -tuple of related AES∗10 inputs and outputs. As shown in the former subsection
the inputs to the forward and backward outer transformations each consist of
four columns that are uniformly distributed and therefore each of the 16 bytes
of each of these two states U and V is uniformly distributed and can be marked
U . However, these states are related to the AES∗10 inputs Xi and to the AES∗10
outputs Yi by the outer transformations.

This implies that if we denote by α and β the 128-bit states P−1(K0) and
Q(K10) the N -tuple X = (Xi)i=1···N and Y = (Yi)i=1···N are related by the key-
dependent relation Rα,β defined as follows: XRα,βY if and only if each byte of
R ◦SB(P−1(Xi)⊕α) and each byte of R−1 ◦SB−1(Q(Yi)⊕ β) is uniformly dis-
tributed. We can now define the following relationR over the N -tuples of blocks:

Relation R: Given two N -tuples X ′ = (X ′
i)i=1···N and Y ′ = (Y ′

i)i=1···N X ′RY ′

if and only if all the X ′
i, i = 1 · · ·N are pairwise distinct and there exists a pair

α′, β′ of 128-bit states such that X ′Rα′,β′Y ′.

218 H. Gilbert

It is important to understand that though relation R reflects the existence of
values α′ and β′ that can be conveniently interpreted as subkeys, ckecking R
does not take as input any key or subkey: given two N -tuples X ′ and Y ′ that
can be possibly derived from a random key value K by algorithm A, whether
X ′RY ′ must be efficiently checkable without providing the verifyer with K or
any other side information about suitable values of α′ and β′.

It immediately results from the definition of R that the N -tuples X and Y
derived as described in Figure 5 satisfy property R and the complexity of the
derivation algorithm A is T = N = 264. To complete the proof that (R,A) is
a known-key distinguisher for AES∗10, we just have to show that R is efficiently
checkable and T -intractable.

R is Efficiently Checkable. Though the involvement in R of 128-bit constants
α′ and β′ might suggest that checking R has a huge complexity, this is not the
case because the existence of 128-bit states α′, β′ such that X ′Rα′,β′Y ′ can be
split into independent conditions. Let us denote by sb : {0, 1}32 → {0, 1}32 a
parallel application of four AES S-boxes that from a four-byte row produces a
four-byte output row. For j= 0 to 3 let us denote by rowj the mapping that
from a 128-bit state outputs the row numbered j of this state, and by Rj the
linear transformation of row j introduced in Section 2. It is easy to see that the
existence of α′ and β′ is equivalent to the existence of eight 32-bit constants
α′
j , j = 0 · · · 3 and β′

j , j = 0 · · · 3 (representing the rows of α′ and β′) such

that for j = 0 · · · 3 each of the four bytes of Rj ◦ sb ◦ rowj(P
−1(Xi) ⊕ α′

j) and

R−1
j ◦ sb−1 ◦ rowj(Q(Yi)⊕ α′

j) is uniformly distributed. This can be easily done

by first computing in a first step the number of occurrences of each of the 232

possible values of the 32-bit words rowj(P
−1(Xi)) and rowj(Q(Yi)), j = 0 · · · 3,

and then using the obtained distributions of frequencies in a second step for
computing, for j = 0 to 3 and each of the 232 possible values of α′

j , resp. β′
j

the resulting distribution of frequencies of Rj ◦ sb ◦ rowj(P
−1(Xi) ⊕ α′

j), resp

R−1
j ◦ sb−1 ◦ rowj(Q(Yi)⊕ α′

j) and checking that at least one of them induces a

balanced distribution for each byte position. Since the first step requires 264 very
simple operations that are much less complex that one operation of AES∗10 and
the second step again requires 8 times 264 very simple operations, the overall
complexity of checking R is strictly smaller than N = 264 AES∗10 operations.

Remark. The reader might wonder whether the technique we used to derive a
known-key distinsguisher for the 10-round AES from a known-key distinguisher
for the 8-round AES, by expressing that the 10-round inputs and outputs are
related (by one outer round at each side) to intermediate blocks that satisfy the
relation used by the 8-round distinguisher does not allow to extend this 8-round
known distinguisher by an arbitrary number of rounds. If this was the case, this
would of course render this technique highly suspicious. It is easy however to see
that the argument showing that 10-round relation R is efficiently checkable does
not transpose for showing that the relations over r > 10 rounds one could derive
from the 8-round relation by expressing that the r-round inputs and outputs are

A Simplified Representation of AES 219

related by r−8 > 2 outer rounds to intermediate blocks that satisfy the 8-round
relation are efficiently checkable. To complete this remark, we explain at the end
of this section why the 2-round extension technique we used is not generically
applicable to extend any r-round known-key distinguisher to a r + 2-round dis-
tinguisher.

R is T -Intractable. In order to show that relation R is T -intractable, we now
have to prove that the success probability of any oracle algorithm of overall time
complexity upper bounded by N = 264 (and therefore of number q of queries
also upper bounded by N) is negligible.

Proposition 6. For any oracle algorithm A that makes q ≤ N = 264 oracle
queries to a perfect random permutation Π of {0, 1}128 or Π−1, the probability
that A outputs a N -tuple (Xi, Yi)i=1···N of Π that satisfies and ∀i ∈ [1;N] Yi =

Π(Xi) and also satisfies R is upper bounded by 2256 × (516

2128−(N−5))
3 ≈ 2−16.5 .

Proof. If at least one of the N pairs (Xi, Yi) output by A does not result from
a query Xi to Π or a query Yi to Π−1, then the probability that for this pair
Yi = Π(Xi) and consequently the success probability of A is upper bounded by

1
2n−(N−1) . So from now on we only consider the opposite case, i.e. q = N and

all the (Xi, Yi) result from queries to Π or Π−1. Given any two 128-bit words α
and β, let us upper bound the probability that A outputs an N -tuple (Xi, Yi)
that satisfies ∀i ∈ [1;N] Yi = Π(Xi) and the relation Rα,β . The conducting
idea is that the constraints on the very last queries to the oracle (Π,Π−1) in
order for Rα,β to hold are so strong this is extremely unlikely to happen. For
the sake of simplicity of this proof, we consider the consider the last 5 queries
of A to the oracle (Π,Π−1): indeed, while considering the d last queries, d > 5,
might have lead to a tighter upper bound, the chosen value of 5 is sufficient for
establishing a suitable upper bound. Since the 5 last queries contain at least 3
queries to either Π or Π−1 we can assume w.l.o.g. that they contain at least
3 queries X , X ′, and X ′′ to Π and we denote the corresponding responses
by Y , Y ′, and Y ′′. In order for the property Rα,β to be satisfied, for each
byte position j ∈ [0; 15], the set of byte values Bj = {b ∈ [0; 255] | �{i ∈
[1;N−5] | R−1◦SB−1(Q(Yi)⊕β)[j] = b} �= N

256}must contain at most 5 elements
(since the last 5 queries can affect the number of occurrences of at most 5 of
the 256 byte values and all the unaffected numbers of occurrences must already
be N

256). Furthermore, in order for property Rα,β to be satisfied, one must have
∀i ∈ [N − 4;N] R−1 ◦ SB−1(Q(Yi) ⊕ β)[j] ∈ Bj , i.e. ∀i ∈ [N − 4;N] Yi ∈ S =

Q−1◦SB◦R(
∏15

j=0 Bj)⊕β. Since Q, SB, R, and the xor with β are bijective, the

set S defined above contains �S = �
∏15

j=0 Bj elements (where
∏15

j=0 Bj denotes

the Cartesian product of the Bj). Since for j=0 to 15 �Bj ≤ 5, �
∏15

j=0 B
′
j ≤ 516

and hence �S ≤ 516. Therefore the probability that the three blocks Y, Y ′, and

Y ′′ all belong to S is upper bounded by (516

2128−(N−5))
3. By summing the obtained

upper bound over all the 2256 possible values of α, β, one gets the claimed upper

bound 2256× (516

2128−(N−5))
3 ≈ 2−16.5 on the probability that R be satisfied. �

220 H. Gilbert

In order to give partial evidence that R is not only N -intractable as shown
in Proposition 6 above, but remains M -intractable for M > N if M −N is not
too large, we can make the heuristic assumption that the success probabilities
of adversaries who are allowed to make oracle queries to both Π and Π−1 and
adversaries who are allowed to make oracle queries to Π only have the same
upper limit. Proposition 5 can be transposed to the 10-round relation R, up to
a multiplication of the upper bounds obtained for p and pA by 2256. This multi-
plicative factor does not strongly affect the values ofM−N one can reach and one
still gets very small upper bounds pA % 1

2 for values of M of up to M ≈ N+211.

The Former 2-Round Extension Technique is Not Generic. The reader
might wonder why the two-round extension technique introduced above does not
allow to extend any r-round known-key distinguisher to an r+2-round known-key
distinguisher. There are two reasons that can make such an extension fail: firstly,
unlike the r-round relation it is derived from, the r + 2-round relation may not
be efficiently ckeckable; secondly, unlike the r-round relation it is derived from,
the r+2-round relation may be insufficiently intractable to mount a r+2-round
distinguisher. This second situation occurs in the case of the 8-round differential
relation R8 of order 2 used in [12]. In the full version of this paper we show
that unlike R8, that is T -intractable for T = 248, the 10-round relation R10

derived from R8 is not intractable at all for T = 248, but simple to achieve with
a probabillity about 0.97 with only two queries to a perfect random permutation
Π and no extra operation. In other words, the transposition of our technique
to the 8-round distinguisher of [12] does not allow to derive a valid 10-round
distinguisher.

In the full version of this paper, we also show that while we do not preclude
that the use of the stronger property (reflected by a higher-order relation than
R8) that several pairs satisfying the differential relation of [12] can be derived
might potentially result in a 10-round distinguisher that outperforms the 10-
round distinguisher presented above, giving a rigorous proof (as was done in
Proposition 6) seems technically difficult. We leave the investigation of improved
10-round known-key distinguishers and associated proofs – or even plausible
heuristic arguments if rigorous proofs turn out to be too difficult to obtain – as
an open issue.

Discussion. The known-key distinguisher (R,A) of order N = 264 for AES∗10
presented above has a time complexity of about 264. Unlike in the former 8-
round known-key distinguishers the relation R involves operations of the AES.
However, it is easy to show that the alternative criterion at the end of Section
3 for differentiating certain known-key distinguishers from the artificial known-
key distinguishers that result from generic impossibility results is applicable.
Indeed, the derivation by A of the input N -tuple (Xi)i=1···N from the interme-
diate structure Z only involves the 6 first subkeys K0 to K5 and the derivation
A of the output N -tuple (Yi)i=1···N from the same structure only involves the
5 last subkeys K6 to K11. Consequently the 5 last subkeys cannot be derived

A Simplified Representation of AES 221

from (Xi)i=1···N and thus the input N -tuples do not “encode” the entire key.
Similarly, the 6 first subkeys cannot be derived from (Yi)i=1···N and thus the
output N -tuples do not “encode” the entire key. This suggests that the obtained
known-key distinguisher for AES∗10 can reasonably be considered meaningful.

While the former known-key distinguisher is obviously applicable without any
modification to AES10, i.e. the full AES-128, the former argument vanishes in
this case because all subkeys are related by the key schedule: the first subkey,
resp. the last subkey can actually be derived from the input, resp. the output
N -tuple and because of the key schedule relations this determines the entire key.
This does not mean that when applied to AES10 the former distinguisher be-
comes artificial. Actually, the fact that the very same distinguisher is applicable
to AES∗10 gives a hint that it can still be considered meaningful.12

5 Conclusion

As said before, the untwisted representation of AES introduced in this paper is
not exclusively intended for the analysis of the security of AES in the known-key
model. We think however that the fact that this represention was used to find the
two known-key distinguishers presented in Section 4 provides some evidence that
this representation is well suited for analysing the resistance of (a reduced-round
version of) AES against some structural attacks.

Whether there exists a more simple 10-round known-key or even chosen-key
distinguisher for AES than the 10-round known key distinguisher presented in
this paper – allowing to highlight a less tenuous deviation from the behaviour
of a perfect random permutation, resp. of an ideal cipher remains an interesting
open question.

Acknowledgements. We would like to thank Yannick Seurin for helpful dis-
cussions and insights.

References

1. Aumasson, J.-P., Meier, W.: Zero-sum distinguishers for reduced Keccak-f and
for the core functions of Luffa and Hamsi, Comment on the NIST SHA-3 Hash
Competition (2009)

2. Barkan, E., Biham, E.: In How Many Ways Can You Write Rijndael? In: Zheng,
Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 160–175. Springer, Heidelberg
(2002)

3. Biryukov, A., De Cannière, C., Braeken, A., Preneel, B.: A Toolbox for Cryptanal-
ysis: Linear and Affine Equivalence Algorithms. In: Biham, E. (ed.) EUROCRYPT
2003. LNCS, vol. 2656, pp. 33–50. Springer, Heidelberg (2003)

12 Since the input N-tuple now encodes the entire key, there might exist artificial
variants of the former known-key distinguisher that produce the same input N-
tuples (or the same output N-tuples) but can be extended to AESr for any value of
r. We conjecture however that unlike the known-key distinguisher presented here,
such variants would not be applicable to AES∗

r .

222 H. Gilbert

4. Boura, C., Canteaut, A.: Zero-Sum Distinguishers for Iterated Permutations and
Application to Keccak-f and Hamsi-256. In: Biryukov, A., Gong, G., Stinson, D.R.
(eds.) SAC 2010. LNCS, vol. 6544, pp. 1–17. Springer, Heidelberg (2011)

5. Boura, C., Canteaut, A., De Cannière, C.: Higher-Order Differential Properties of
Keccak and Luffa. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 252–269.
Springer, Heidelberg (2011)

6. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited.
J. ACM 51(4), 557–594 (2004)

7. Daemen, J., Rijmen, V.: Understanding Two-Round Differentials in AES. In:
De Prisco, R., Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 78–94. Springer,
Heidelberg (2006)

8. Davies, D.W., Murphy, S.: Pairs and Triplets of DES S-Boxes. Journal of Cryptol-
ogy 8(1), 1–25 (1995)

9. Ferguson, N., Schroeppel, R., Whiting, D.L.: A Simple Algebraic Representation
of Rijndael. In: Vaudenay, S., Youssef, A.M. (eds.) SAC 2001. LNCS, vol. 2259,
pp. 103–111. Springer, Heidelberg (2001)

10. Fouque, P.-A., Jean, J., Peyrin, T.: Structural Evaluation of AES and Chosen-Key
Distinguisher of 9-Round AES-128. In: Canetti, R., Garay, J.A. (eds.) CRYPTO
2013, Part I. LNCS, vol. 8042, pp. 183–203. Springer, Heidelberg (2013)

11. Gilbert, H., Peyrin, T.: Super-Sbox Cryptanalysis: Improved Attacks for AES-like
permutations. IACR Cryptology ePrint Archive, 2009:531 (2009)

12. Gilbert, H., Peyrin, T.: Super-Sbox Cryptanalysis: Improved Attacks for AES-Like
Permutations. In: Hong, S., Iwata, T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 365–
383. Springer, Heidelberg (2010)

13. Iwamoto, M., Peyrin, T., Sasaki, Y.: Limited-Birthday Distinguishers for Hash
Functions. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS,
vol. 8270, pp. 504–523. Springer, Heidelberg (2013)

14. Jean, J., Naya-Plasencia, M., Peyrin, T.: Multiple Limited-Birthday Distinguishers
and Applications

15. Jean, J., Naya-Plasencia, M., Peyrin, T.: Improved Rebound Attack on the Finalist
Grøstl. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549, pp. 110–126. Springer,
Heidelberg (2012)

16. Jean, J., Naya-Plasencia, M., Schläffer, M.: Improved Analysis of ECHO-256. In:
Miri, A., Vaudenay, S. (eds.) SAC 2011. LNCS, vol. 7118, pp. 19–36. Springer,
Heidelberg (2012)

17. Knudsen, L.R., Rijmen, V.: Known-Key Distinguishers for Some Block Ciphers. In:
Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 315–324. Springer,
Heidelberg (2007)

18. Lamberger, M., Mendel, F., Rechberger, C., Rijmen, V., Schläffer, M.: Rebound
Distinguishers: Results on the Full Whirlpool Compression Function. In: Matsui,
M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 126–143. Springer, Heidelberg
(2009)

19. Mendel, F., Rechberger, C., Schläffer, M., Thomsen, S.S.: Rebound Attacks on
the Reduced Grøstl Hash Function. In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS,
vol. 5985, pp. 350–365. Springer, Heidelberg (2010)

20. Murphy, S., Robshaw, M.: Essential Algebraic Structure within the AES. In: Yung,
M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 1–16. Springer, Heidelberg (2002)

Simulatable Leakage: Analysis, Pitfalls,

and New Constructions

Jake Longo1, Daniel P. Martin1, Elisabeth Oswald1, Daniel Page1,
Martijin Stam1, and Michael J. Tunstall2

1 Department of Computer Science, University of Bristol,
Merchant Venturers Building, Woodland Road,

Bristol, BS8 1UB, United Kingdom
{jake.longo,dan.martin,elisabeth.oswald,daniel.page,

martijn.stam}@bris.ac.uk
2 Cryptography Research Inc.
425 Market Street, 11th Floor

San Francisco, CA 94105, United States
michael.tunstall@cryptography.com

Abstract. In 2013, Standaert et al. proposed the notion of simulat-
able leakage to connect theoretical leakage resilience with the practice of
side channel attacks. Their use of simulators, based on physical devices,
to support proofs of leakage resilience allows verification of underlying
assumptions: the indistinguishability game, involving real vs. simulated
leakage, can be ‘played’ by an evaluator. Using a concrete, block cipher
based leakage resilient PRG and high-level simulator definition (based on
concatenating two partial leakage traces), they included detailed reason-
ing why said simulator (for AES-128) resists state-of-the-art side channel
attacks.

In this paper, we demonstrate a distinguisher against their simula-
tor and thereby falsify their hypothesis. Our distinguishing technique,
which is evaluated using concrete implementations of the Standaert et
al. simulator on several platforms, is based on ‘tracking’ consistency
(resp. identifying simulator inconsistencies) in leakage traces by means
of cross-correlation. In attempt to rescue the approach, we propose sev-
eral alternative simulator definitions based on splitting traces at points
of low intrinsic cross-correlation. Unfortunately, these come with signif-
icant caveats, and we conclude that the most natural way of producing
simulated leakage is by using the underlying construction ‘as is’ (but
with a random key).

Keywords: leakage resilience, side channel attack, simulatable leakage,
cross-correlation.

1 Introduction

At Crypto’13, Standaert et al. [19] proposed a new notion for leakage resilience
involving simulators. The intuition behind their proposal is that if an adversary

P. Sarkar and T. Iwata (Eds.): ASIACRYPT 2014, PART I, LNCS 8873, pp. 223–242, 2014.
c© International Association for Cryptologic Research 2014

224 J. Longo et al.

cannot tell the difference between real leakage and simulated leakage (from a
simulator that does not know the secret key), then clearly the leakage does not
reveal any information about the secret key. This offers a middle ground which
connects theorists (who desire provably secure scheme) and practitioners (who
require empirically verifiable constructions). In this paper we show that while
this is a step in the right direction in terms of modelling leakage, the specific
simulator given for their construction is in fact distinguishable. We explain why
this is the case, and show how to resolve the problem so that their theoretical
proof still holds.

1.1 What is Leakage?

A fundamental discrepancy between theory and practice lies in the different un-
derstanding of what constitutes ‘leakage’. When examining the vast literature
on side channels and leakage resilience, there seem to be three different under-
standings of what constitutes a leakage function. The first two of these ideas
are typically found in works written by practitioners (such as [8,11]) and centre
around a mathematical description of the physical nature of real-world leakage
traces. The third, in contrast, seeks to define leakage functions in more general
and powerful terms, and is often found in theoretical contributions.

Leakage understood as the modelling of the physical nature of the observed leak-
age points. The first understanding is that a leakage function is the mathemat-
ical function describing the shape and form of points in leakage traces. Such
a function then models the manner in which the operations and data act on
the physical environment, alongside other electrical components including the
measurement apparatus, and the environment conditions. This understanding
of leakage implies that the leakage function fundamentally depends on how the
leakage is acquired (because it includes the measurement apparatus). It also
implies that the leakage function, whilst being key dependent, is in principle
unbounded: every new measurement gives more information.

Leakage understood as modelling of the exploitable information about the key.
The second understanding is that of a mathematical function that again de-
scribes the leakage traces; however, the conceptual emphasis is that the term
‘leakage’ refers to leakage about the key. A key must have a finite length and
therefore the leakage function can never reveal more than that amount of infor-
mation. It is hence a function that could (depending on the number of queries to
the function), under ideal circumstances, reveal the entire key information but
no more than that.

Leakage understood as a mathematical concept largely separated from any phys-
ical interpretation. The third understanding is that leakage is a function that
has certain restrictions (for example, see [4,5]) such that defining cryptography
is still possible, but otherwise is meant to be as general and powerful as possible.
Consequently a direct physical interpretation is not intended as such; rather, the

Simulatable Leakage: Analysis, Pitfalls, and New Constructions 225

idea is pursued that any ‘realistic’ leakage function is included given the general
nature of the definition. The discrepancy that arises from this perspective is that
for practitioners, any overhead that is incurred because of ‘proof relics’ or pro-
tection against ‘magic’ such as future computation attacks [15] is an unnecessary
expense.

1.2 Simulatable Leakage

The recent contribution by Standaert et al. [19] hence comes as a welcome ad-
dition to the current approaches for dealing with the concept of leakage as part
of provable security. In a nutshell, the authors suggest that a sensible notion for
leakage resilience is that if real leakage cannot be distinguished from simulated
leakage (from a simulator that does not have access to the secret key k), it cannot
contain any information about the key. This approach removes the problem of
having to mathematically define a leakage function: instead one gets a concrete
instance of it in the form of an actual simulator. Rather than struggling with
meaningful definitions for what is leakage, and how to practically derive bounds
for it for a concrete device, the new challenge is therefore to define and build
(practical) simulators.

The challenge of building concrete leakage simulators for invertible functions
was also taken up in [19], where the authors suggest an efficient solution: given
some public input x and output c of an invertible scheme f , they explain how
a trace can be constructed with a random key k∗ that is consistent with the
public inputs x and c. This can be done by choosing a random key k∗ and
computing c′ = fk∗(x), x′ = f−1

k∗ (c), and then c = fk∗(x′) to generate leakage
traces L(x) = ll||α, L(x′) = β||lr that can be ‘split up’ (as indicated) and
concatenated to a new simulated trace (ll||lr). The q-sim game, that can be
played in practice, consists of the attacker trying to distinguish real traces from
simulated traces given q real (or simulated) traces by using whatever state of the
art attacks that are available. The rest of [19] consists of two major contributions;
first they discuss why state of the art side channel attacks cannot win this game
effectively, and, second, they use the game restricted to q = 2 to prove a PRG
(using AES as the underlying PRF) construction leakage resilient in the standard
model.

1.3 Our Contribution

We show there exists a side channel distinguisher (against Standaert et al.’s sim-
ulator when instantiated with AES) which can effectively distinguish simulated
traces: it does so by detecting the fact such traces are constructed via split and
concatenation in the inner encryption rounds. We do not require knowledge of
input or output, or access to the auxiliary leakage oracles for building templates.
Our attack is based on using cross-correlation to check the consistency of the
data flow across encryption rounds and in order to pinpoint inconsistencies from
splitting and concatenating traces, and works across different real world plat-
forms. Our distinguisher has the property that playing a game with q traces for

226 J. Longo et al.

a single key is equivalent to playing a game with one trace for q keys, this implies
we can win the game in an asymptotic setting.

We analyse the properties of (cross-)correlation in this specific application to
identify the factors that impact on the ability to win the game efficiently. The
factors are the (intrinsic) cross-correlation between points in leakage traces, and
the ratio between signal and noise. Whilst changing the ratio between signal and
noise is well understood and practically achievable, it is not sufficient with re-
gards to decreasing an adversary’s chance to win the q-sim game. Our attempts
to work with points that have low intrinsic cross-correlation were only success-
ful in theory: for the concrete instantiations in our paper, which are based on
AES, there (in theory) should exist such points because of the nature of Sub-
Bytes. Theoretically, the input and output of the SubBytes operation are highly
uncorrelated. However, we explain why in practice it remains a challenge to
exploit this. Finally we suggest a method that indeed withstands the powerful
cross-correlation distinguisher, which is based on instantiating the PRG with a
double block cipher construction. Our proposed simulator then uses a meet-in-
the-middle technique to determine keys that map x to c without introducing
inconsistencies in the data flow. This simulator is somewhat theoretical because
of the implied computation cost. However it allows the proof given in [19] to
hold once more (remember that this proof crucially depends on the existence of
a simulator).

Finally we note in our work that even the computationally expensive simulator
still requires noisy traces: it would seem then that the most natural way to
produce simulated leakage is to just use the construction ‘as is’ and run it with a
random key. For sufficiently noisy traces even profiling prior to the game will not
help an attacker: noisy leakage implies that an adversary must have sufficiently
many traces to distinguish real from simulated leakage. By limiting q in the
game stage this will be infeasible. With this somewhat simple fact in mind,
we can argue that leakage can be simulated for any cryptographic primitive or
construction. It however requires implementations with high noise.

2 Simulatable Leakage: Standaert et al.’s Model

Before we discuss the model introduced by Standaert et al. in [19], we will
introduce the required notation. The probabilistic leakage of a block cipher will

be given as BCk(x) � l
def
= L(k, x) where L is the leakage function, x is the

plaintext and k the secret key. The leakage function can be described as a vector
l = (l1, l2, ...). For a block cipher, which typically consists of several encryption
rounds, we group those trace points corresponding to a round and indicate this
by placing the round number as a superscript li. For AES-128 we can represent a
leakage as l = [l1, . . . , l10]. We will later require to split and concatenate leakage
vectors. For this purpose we use the short-hand li,j = [li, . . . , lj] to denote that
we take the parts of the leakage vector that correspond to rounds i up to j.
To highlight where we ‘split and concatenate’ within leakage vectors we use ||
to explicitly mark concatenations. We often need to work with sets of leakages

Simulatable Leakage: Analysis, Pitfalls, and New Constructions 227

and so denote such a set with bold typesetting, i.e. l now is a set of leakages,
li,j = [li, . . . , lj] now means that we refer to rounds i until j in all leakages in the
set. Finally, if we need to differentiate between points within multiple leakages
we will use a subscript, i.e., lu = (l1,u, l2,u, ...) means we index the u-th point in
each leakage vector in l. Now that the notation has been defined, we are ready
to discuss the model.

2.1 Model and q-sim Game

Figure 1 describes the q-simulatable leakage game (q-sim) from [19] for com-
pleteness. Recall that the intuition captured in the q-sim game is that if an
adversary cannot distinguish real (i.e. depending on the secret key) from sim-
ulated (i.e. depending on a random key) traces, the real traces cannot contain
any information about the secret key. In the game, the adversary can make q
queries to the Enc oracle and receives back the encryption of x under key k
and either the real leakage L(k, x) or the simulated leakage SL(k∗, x, c). The
adversary can also make sA queries to the leakage oracle with a chosen key and
message, which represents profiling a device (i.e. the adversary can attempt to
derive (compute, or represent) the otherwise unknown leakage function). We
note that this, in particular, allows an adversary to query the leakage function
on the inputs from the game, so templates specifically for the inputs used in
the game can be derived. The last oracle which can be called once is Gen which
delivers simulated leakage for a chosen message/key pair where either the real
or random key in the game is output as the ciphertext. This is to represent the
fact that often encryption keys themselves are the result of block cipher invoca-
tion, i.e. in practice (and in the constructions discussed in [19]) the encryption
key used in round r is generated as the output of the block cipher in the previ-
ous round r − 1. The adversary’s advantage is calculated as Advq-sim

L,SL,BC(A) =

|Pr[q-sim(A,BC, L, SL, 1) = 1]− Pr[q-sim(A,BC, L, SL, 0) = 1]|.

2.2 Construction

The model given in [19] is used to prove the security of a leakage-resilient PRG
which is instantiated using block ciphers (we will continue the pattern started
in [19] and will instantiate the block cipher with AES). This construction show
on the left in Fig. 2 and the underlying 2PRG is shown on the right in Fig. 2.
When considering this within the q-sim game we note that each key is only used
twice (once to create the PRG output and one to create the new key) and thus
the value of q = 2 is the one of interest.

2.3 Simulator

For completeness we also recall the simulator in Fig. 3(a). The simulator takes
in a random key k∗ as well as a plaintext/ciphertext pair (x, c); note that this
pair was created using a key different to k∗. The simulator first encrypts x under

228 J. Longo et al.

Experiment q-sim(A,BC, L, SL, b):

k, k∗ $←− {0, 1}n
(i, j, l) ← (0, 0, 0)
b′ ← AEnc,(·),Gen(·,·),Leak(·,·)()
Return b′

proc Enc(x):
i ← i+ 1
if i > q then

Return ⊥
end if
c ← BCk(x)
if b = 0 then

Λ ← L(k, x)
else

Λ ← SL(k∗, x, c)
end if
Return (c, Λ)

proc Gen(z, x):
if l = 1 then

Return ⊥
end if
l ← 1
if b = 0 then

Λ ← SL(z, x, k)
else

Λ ← SL(z, x, k∗)
end if
Return Λ

proc Leak(z, x):
j ← j + 1
if j > sA then

Return ⊥
end if
Λ ← L(z, x)
Return Λ

Fig. 1. q-simulatable leakage from [19]

k0

2
P
R
G k1

c1

2
P
R
G k2

c2

2
P
R
G k3

c3

2
P
R
G k4

c4
BC

BC

p0

p1

k3

k4

c4

2PRG

Fig. 2. Left: Leakage resilient PRG. Right: 2PRG construction

k∗ and records the leakage. The next step is to decrypt c under k∗ to get a new
plaintext x′. The final stage is to encrypt x′ under k∗ (note that this will encrypt
to c) and record the leakage. The leakage is the split (in half) and concatenated
such that the first part of the new trace corresponds to the leakage on x while
the second half corresponds to the leakage on c. This simulator is referred to
as split and concatenate (Ss&c) simulator and we will refer to traces from this
simulator as s&c-traces.

3 The Security Game for the Practical Use of the 2PRG:
the p-q-sim Game

It is clear that in the q-sim game, the adversary can get only q queries on a
key: this represents only a single round in the PRG. However, based on the
construction for the 2PRG, we argue that the appropriate security game, which
we denote the p-q-sim game, should take into account that potentially many,
say p calls to the 2PRG are made. That is, in the p-q-sim game the adversary

Simulatable Leakage: Analysis, Pitfalls, and New Constructions 229

simulator SL
s&c(k

∗, x, c):
c′ ← AESk∗(x) � l1,5||α
x′ ← AES−1

k∗ (c)
c ← AESk∗(x′) � β||l6,10
Return l1,5||l6,10

(a) Description of simulator SL
s&c (b) Simulated SL

s&c SASEBO-R trace

Fig. 3. Definition for the SL
s&c simulator and an exemplary trace

gets to make q queries against either p real or p simulated instantiations (with
p different keys) and then he must work out if the leakage he is seeing real or
simulated leakage for all of the p instantiations.

We argue further that the p-q-sim game is in general more appropriate: in an
evaluation context, which is what [19] really consider, the q-sim game would be
played for real, and it seems unlikely that an evaluator would only ever play the
game once and take q traces (especially if q is small). More likely, one would
play this game several times to get a sense of the success rate for q traces.

It would be tempting to believe that an adversary cannot exploit the infor-
mation leakage across different games because they are based on different keys.
Traditional side channel distinguishers require after all to make key-dependent
hypotheses: hence whenever a new key is introduced the attacker is presented
with a new, fresh challenge. Whilst [19] discusses why the original q-sim game
does not hybridise with respect to q, they do not consider the possibility that
the game does hybridise in the number of keys p. If the game were to hybridise,
then we would have that Advp-q-sim

L,SL,BC(A) ≤ p ·Advq-sim
L,SL,BC(A); the game gets

easier to win if it is played more often.
In the next section we will show a distinguisher that can work across different

keys and thus can take advantage of the full (and more realistic) p-q-sim game.

4 Breaking the Split-and-Concatenate Simulator

Whilst the proposed simulator can be instantiated with any invertible function,
we continue to follow Standaert et al.’s exposition and use implementations of
AES-128 as running examples. To explain why cross-correlation is an efficient
distinguisher we briefly recall how a typical side channel trace relates to the
information flow in an AES implementation.

4.1 Properties of Real World Leakage

As argued in previous work [8,3], any implementation of AES will happen as a
sequence of steps that correspond to the processing of intermediate values. For
instance, in a serial implementation, the state bytes will be accessed sequentially

230 J. Longo et al.

(a) Power trace showing a single AES
round.

(b) Power trace showing individual as-
sembly instructions

Fig. 4. Power traces for an 8051 8-bit microcontroller

and updated according to the AES round function. As all high level functions
(SubBytes, MixColumns, etc.) are processed by some gates at the lowest level,
a clock signal is involved that governs (to some extent) when data flows be-
tween gates. All changes in gates, in each clock cycle, produce some form of
leakage (time for signals to travel, power consumed, radiation emitted) that
becomes available through observing the device. Figure 4 illustrates the power
consumption measurements from an AES implementation on a simple 8-bit mi-
crocontroller (i.e. all intermediate values are represented as bytes). Evidently,
we can see patterns in Fig. 4(a), which represents a single AES round.

In case of this very simple processor, we can even identify the effect (with
regard to shape and height) of individual instructions in the power consumption
by zooming into the trace further, see Fig. 4(b). It shows now only a small
part of the first round that corresponds to performing the SubBytes operation.
The instructions used for this purpose are register transfers, (MOV and MOVC), a
register increment (INC), and conditional branches which correspond to a loop
that runs through the 16 state bytes.

In a parallel implementation, each operation will touch multiple state bytes
but the sequence of round functions must remain sequential. SubBytes is some-
times implemented using combinational logic in dedicated hardware [22]. A com-
binatorial logic circuit is not governed by a clock but the output from such a
circuit will typically be connected to a synchronous storage element. Referring
to Fig. 5(c) we can see that there are 10 visible peaks relating to the AES-128
rounds.

4.2 Cross-Correlation as a Distinguisher

The term correlation is often used to refer to a broad class of statistical de-
pendencies in data. There are different metrics to measure correlation. Most
commonly used (at least in side channel attacks) is the Pearson correlation co-
efficient, and we use this metric when we refer to correlation in this article. In
the context of side channel analysis, correlation has been applied in DPA before
[2] and its properties as a good distinguisher are well understood [12].

Simulatable Leakage: Analysis, Pitfalls, and New Constructions 231

Cross-correlation is a term coined in signal processing and is commonly used
to identify (and measure) similarities of wave forms. It has been used in the
context of side channel analysis before, e.g. [13,18,21].

We make the simple observation that the cross-correlation of signals of length
one (i.e. points) equates to computing the correlation between trace points
(lu, lv) (as opposed to the correlation with key-dependent predictions in the
DPA context). Equation (1) recalls how (Pearson) correlation is defined and
estimated.

ρ(lu, lv) =
Cov(lu, lv)√

V ar(lu) · V ar(lv)
(1)

=

∑
i(li,u − l̄u) · (li,v − l̄v)√∑

i(li,u − l̄u)2 ·
∑

i(li,v − l̄v)2

Cross-Correlation Traces. We recall that cryptographic algorithms are im-
plemented as step-wise processes (with varying degrees of parallelism). Although
AES mixes keying material and input efficiently, and so the correlation between
key, input, and output is small, we can expect a high correlation between the
subsequent states, e.g. we expect a high correlation between the input and out-
put of ShiftRows, as well as states that operate on the same data (even though
they might be separated in time). This in turn implies that we can expect a high
correlation between subsequent points within leakage traces (see [11, Ch. 4]), as
well as points that are related to the same intermediate values. Further to that
we can also expect high correlations between data that is related to the program
state but independent of the states, e.g. the value of the program counter, point-
ers to memory locations, etc. Hence any implementation will lead to a specific
cross-correlation trace depending on the data flow.

By producing a cross-correlation trace that shows the cross-correlation of all
pairs of points, i.e. {ρ(lu, lv), ∀(u, v)}, we can consequently track the consistency
of data flow. Such a trace however would be very long (the length would be
the square of the original traces’ length). We hence opted to reduce the cross-
correlation data by selecting the highest cross-correlation value for each u over
all ‘distant’ pairs (lu, lv), i.e. for each u we took ρ̃u = max{ρ(lu, lv)∀v} where
v is not within a small window around u. Hence our cross-correlation traces
ρ̃ = {ρ̃u, ∀u} have the same length as the actual leakage traces, and they have
uninformative trivial cross-correlation removed because neighbouring points are
not considered. Consequently the cross-correlation traces show the effect of data
consistency, and any ‘dip’ implies some form of discontinuity in the data flow.

We provide in Fig. 5 some cross-correlation traces for illustration. We chose
two devices with contrasting architectures to demonstrate that cross-correlation
works irrespective of the underlying device. The first device features a highly
serial implementation of AES where each step only touches at most one byte of
the state. It is representative of AES implementations in the low cost market.
The second device features a highly parallel implementation of AES. Such an

232 J. Longo et al.

(a) AES power trace (8051) (b) Cross-correlation trace (8051)

(c) AES power trace (SASEBO-R) (d) Cross-correlation trace (SASEBO-R)

Fig. 5. AES power traces and cross-correlation plots

implementation is more likely to be found in high end products where imple-
mentation speed and security is considered an important factor.

4.3 Detecting s&c-traces

In the proof given in [19], an adversary plays the q-sim game and so has access
to the oracles Enc, Leak, and Gen (an adversary may also query them in the
p-q-sim game). Our distinguisher does not require any access to the oracles Leak
and Gen.

To detect the s&c-traces we apply the cross-correlation method to a set of q
leakage traces. The detection is then based on the absence of cross-correlation
that would otherwise be present in traces that have not been simulated, i.e. a set
of points which leak on the same data no longer show a significant correlation
with respect to each other.

The q-sim (and p-q-sim) games define that there exists a simulator that is
secure for all adversaries (with set computational limits). We may hence assume
the adversary’s knowledge includes all implementation details of the PRF as well
as the principle of the simulator, i.e. where the traces are split and concatenated.
Recall that a cross-correlation trace shows ‘patterns’ which are based on the rela-
tionships between following and related intermediate values. Consequently, even
a cross-correlation trace from the simulated leakages will show such patterns,
see right hand side of Fig. 5. Only at the round where the simulated traces

Simulatable Leakage: Analysis, Pitfalls, and New Constructions 233

have been split and concatenated a different pattern will occur. Consequently
an attacker gets a ‘fingerprint’ for how the cross-correlation trace should look
(in the case of the s&c-simulator) by examining the beginning and end of the
cross-correlation trace. Any significant deviation from the fingerprint (i.e. any
discrepancy between the two) will hence identify the s&c-traces.

4.4 Experiments for Real Devices

Practical attacks are often played down because they are device specific and
hence it is often not possible to draw general conclusions from a single attack.
However, the heart of the proposal in [19] is to be able to implement a secure
simulator on some real world devices. We consequently did not want to resort
to ‘pure simulations’ and opted to fully implement simulators for several real
world devices. By choosing different devices we can refute the argument that
our analysis outcomes are not valid in general: the devices we choose have differ-
ent architectures that lead to different AES implementations, different leakage
models and different noise characteristics.

AES can be implemented in different ways. Serial implementations are often
found on small processors (8-bit or 32-bit). These are software-only implemen-
tations and we have used two different widely-used processors to instantiate
such a software implementation for our attacks. Parallel implementations can be
found as dedicated hardware implementations. In practice 32-bit implementa-
tions would be considered as suitable for constrained devices such as smart cards,
whereas highly parallel 128-bit architectures would be used when throughput is
a practical concern. We opted to use a highly parallel 128-bit architecture to
provide contrasting results to the software implementations. In the following,
we give a brief overview of the results obtained from each architecture. Details
regarding the acquisition setup and target devices can be found in Appendix A.

Software Implementations. We used a general purpose microcontroller which
features an 8051 instruction set as the first device for our attacks. The cross-
correlation plots for this architecture reveal detailed information about the data
flow during the execution of an algorithm. In our running example (AES-128),
we are able to detect the order in which state bytes and functions are accessed,
the operations performed and for a masked implementation, when and where
each masked is applied. In Fig. 6(a) and 6(b) we show a portion of the cross-
correlation for real and simulated leakage traces respectively. There is a clear
break in the cross-correlation as a result of the concatenation between traces
with inconsistent states. We repeated the s&c experiment with an ARM1 based
32-bit architecture and implementation. Like for the 8051, we can track the AES
data flow and so the simulated leakage trace, once again, leads to a drop in the
cross-correlation.

1 The cross-correlation plots for this device are available in the full paper [10].

234 J. Longo et al.

(a) Real trace (8051) (b) Simulated trace (8051)

(c) Real trace (SASEBO-R) (d) Simulated trace (SASEBO-R)

Fig. 6. Cross-correlation distinguisher plots

Hardware Implementation. The SASEBO-R ASIC boasts a large number
of cryptographic functions implemented as dedicated logic. Unlike the two pre-
vious devices, the information leaked is no longer dependant on processor op-
erations but on combinatorial switching. Figures 5(c) and 3(b) show the power
consumption over an execution of AES and a simulated trace generated by the
s&c simulator respectively. The cross-correlation distinguisher now plays on the
coherency of the combinatorial switching rather than the state leakage at each
clock cycle. As with the software implementations, we can easily identify the
simulated leakage traces, see Figs. 6(c) and 6(d). One key difference over the
software implementation is cross-correlation no longer reveals any information
about the data flow or what operations are being performed but simply that
there exists some data dependency in the power consumption of the device.

4.5 Measures to Secure the Split-and-Concatenate Simulator

Recall that we estimate the cross-correlation between trace points, which implies
varying inputs and/or keys. The number of different inputs per key is q, whereas
the number of different keys is p. We may hence decide to increase p and keep
q small, which implies that we can break the PRG construction of [19] because
it has multiple rounds. As our distinguisher hybridises, the construction looses
security every time a round is leaked, on even though fresh keys may be used!

We now discuss how traditional engineering-style countermeasures impact on
the success of winning the game. We begin by showing how noise on leakage

Simulatable Leakage: Analysis, Pitfalls, and New Constructions 235

traces will help to make winning the game harder. We then explain why masking
and hiding approaches are unlikely to defeat the cross-correlation distinguisher.

Increasing the Noise. Just as we can write down a formula for the impact
of the signal-to-noise ratio (SNR) on a correlation-based DPA attack (see, e.g.
[10, Ch. 4.3.1]), we can express the impact of the SNR on our proposed cross-
correlation attack.

For this we write leakage points as a direct sum of an (unknown) signal (S)
plus independent (Gaussian) noise (N), i.e. lu = Su +Nu, with Nu ∼ N (0, σu),
and lv = Sv +Nv, with Nv ∼ N (0, σv) [3,11]. The signal to noise ratio (SNR)

is defined as SNR = V ar(S)
V ar(N) . The respective SNRs at the points u and v are

then SNRu = V ar(Su)/V ar(Nu) and SNRv = V ar(Sv)/V ar(Nv). Making the
simplifying assumption that SNRu ≈ SNRv = SNR, it turns out (using the
same technique as [10, Ch. 4.3.1]) that

ρ(lu, lv) = ρ(Su,Sv) ·
1

1 + 1
SNR

In comparison to a DPA attack (we refer to [10, Ch. 6.3]), the impact of
the SNR is potentially stronger on this distinguisher. However, because this
distinguisher hybridises over different keys, it is also easier to gather more leakage
traces to compensate for this. In particular, it follows that asymptotically over
an increasing number of keys p we can still win the game for any small q.

More Complex/Parallel Architectures. Another important observation at
this point is that in contrast to DPA attacks, the ‘relative size’ of the intermediate
value (in terms of its bit length in contrast to the overall device state) itself is less
important. At first glance this goes against the intuition from DPA style attacks
where practice has shown that they become harder for architectures that employ
a larger data-path (and so the intermediate values that are attacked contribute
only a small amount to the overall leakage). For instance, DPA style attacks on
32-bit processors often only predict 8 bits of the 32-bit state, so the remaining 24
bits are noise. In addition, in DPA style attacks using correlation one requires to
‘model’ the leakage behaviour, and especially for dedicated hardware, standard
models such as the Hamming weight or Hamming distance are less than ideal
approximations.

The cross-correlation distinguisher however does not require to model the
device leakage and, importantly, we are effectively using the entire state in-
formation because we are working with points and do not have to make any
predictions. This explains the contrast to typical DPA style attacks, and so the
highly effective nature of the distinguisher.

Masking and Hiding Approaches. It would be tempting to assume that
any countermeasure against correlation-based DPA attacks would automati-
cally work against the cross-correlation distinguisher because both distinguishers
share the same statistical method.

236 J. Longo et al.

simulator SL
2c(k

∗, x, c):
c′, ST5 ← AESk∗(x) � l1,4||α
x′ ← AES−1

k∗ (c)
c, ST6 ← AESk∗(x′) � β||l6,10
Construct k# using ST5, ST6

ST6 ← AES1k#(ST5) � l5

Return l1,4||l5||l6,10

Fig. 7. Simulator description and cross-correlation comparison for S2c

The two main engineering approaches to distinguish classes of countermea-
sures are hiding and masking [11]. Hiding countermeasures typically change the
SNR and so increase the number of leakage traces that are needed for a successful
attack.

Masking (i.e. secret sharing) countermeasures aim to make exploiting the in-
formation impossible by distributing it over different intermediate values (and
hence leakage points), such that it becomes increasingly infeasible to ‘recom-
bine’ that information. In practice however it is not possible to implement secret
sharing with many shares. Typically only two, or at most three, shares are used
and the masks (i.e. randomness) are not refreshed in between rounds or in be-
tween invocations of an intermediate value [7,6]. Consequently, practical mask-
ing schemes maintain the consistency between the subsequent transformations
on the state and so the cross-correlation distinguisher remains applicable.

5 The Challenge of Making Secure Simulators

Given that traditional countermeasures are not suitable to rescue the split-and-
concatenate simulator, we have to come up with new ideas. Two approaches are
(intuitively) worth pursuing. Firstly, this is to try and maintain state consistency
across the concatenated traces. Secondly, this is to split where there is a ‘natural’
discontinuity in the data flow.

5.1 Maintaining State Consistency

Over the execution of any algorithm there exists a degree of consistency be-
tween the intermediate values, which is disrupted by splitting traces. Hence, we
attempted to design a ‘state aware’ simulator by generating an ‘intermediate
round’ that ensures such consistency.

This simulator shown in Fig. 7 and the extra notation can be understood as
follows; STi is the state of AES at the start of the ith round and AES1k runs a
single round of AES on round key k.

The simulator S2c operates similarly to Ss&c by first performing an encryption
of x under the key k∗. The leakage captured from this corresponds to the first
four rounds l1,4. We also store the state ST5. Next, the encryption of x′ under

Simulatable Leakage: Analysis, Pitfalls, and New Constructions 237

k∗ is performed and the leakage of the last 5 rounds is captured l6,10 along with
ST6. To connect the two otherwise disconnected states we generate an extra
trace AES1k#(ST5) � l5. Note that finding the key k# which maps ST5 to ST6

is simple considering only a single round of AES.
We proceeded to implement the S2c simulator for the 8051 and the resulting

cross-correlation was once again able to detect the simulated traces. This time
it detected the discontinuity in the round key schedule. This shows how hard it
is to achieve state consistency because we have to take into account the AES
state as well as the AES key schedule (in the p-q-sim game), and the fact that
different instructions can leak subtly differently.

5.2 Leveraging an Algorithm-Dependent Data-Flow Discontinuity

Given our running example is AES, the natural candidate intermediate value is
SubBytes, because the input and output of SubBytes are (almost) statistically
uncorrelated. We can hence expect that there is also only a low correlation be-
tween the corresponding trace points, which implies that the data flow across
SubBytes is somewhat discontinued. We tested this idea first on an 8051 soft-
ware emulator which produces noise-free leakage on the data processed at each
instruction. The simulated traces were indeed indistinguishable from real traces
(taken from the emulator) produced. Consequently we attempted to implement
this on real devices.

On real devices, one has two implementation choices for SubBytes. Either a
table is stored and hence a SubBytes computation corresponds to a table lookup
operation. This is suitable for somewhat ‘serial’ implementations, as typically
only a single instance of the table is held in logic. This is the option used in
our AES software implementations. Alternatively, one implements it as combi-
national circuit, which is hence suitable for dedicated hardware platforms. This
option is used in the hardware AES on the SASEBO-R.

Our new simulator Ssbc ‘tweaks’ the SL
s&c simulator construction to perform

the split-and-concatenate at the S-box lookup rather than points of ‘no activ-
ity’. However, we note that for a sequential lookup, the simulator is required
to perform splice at each S-box rather than a simple split-and-concatenate as
illustrated by Fig. 8(a) (hence we effectively ‘chop up’ a trace).

A Practical Attempt for an 8051 Processor. Implementing this for a real
8051 device reveals the challenges of real world (imperfect) leakage. Although
we could pinpoint the exact location of the SubBytes operation, it so happens
that each low-level operation is performed over multiple clock cycles and hence
leaks multiple times for each operand. To be precise: consider the lookup r0 =
M [A], where a register r0 is loaded with the contents of memory address A. The
resulting leakage trace resembles the form [L(A)||L(M [A])||L(A)||L(M [A])] for
some leakage function L in our 8051 processor.

As a result, the simulator for the 8051 needs to splice multiple times within
each S-box lookup. This behaviour is clearly very architecture specific. Fig-
ure 8(b) shows the cross-correlation resulting from splicing at each S-box; the

238 J. Longo et al.

S00 S01 S14 S15

5th Round SubBytes

(a) A visual illustration for Ssbc (b) Cross-correlation comparison for Ssbc

Fig. 8. Illustration for a serial Ssbc simulator and a cross-correlation comparison of
Ssbc for the 8051 microcontroller

top plot (printed in blue) shows the cross-correlation trace as derived from real
traces. The middle plot (printed in red) shows the cross-correlation trace as
derived from simulated (Ssbc) traces. Whilst a visual detection seems difficult
at first, an adversary with information about the time points (or a fingerprint,
which we explained previously can be constructed even from simulated traces)
can spot the difference. This is made clear by the lowest plot (printed in black)
that shows that there is a distinct difference between real and simulated cross-
correlation.

A Practical Attempt for the SASEBO-R. We now consider the implica-
tions of a parallel combinatorial SubBytes function as performed by the
SASEBO-R ASIC. Pinpointing the SubBytes operation is no longer such a trivial
task as each round function is evaluated as a combinatorial circuit rather than
being governed by an external clock. Attempting to model the leakage in an ideal
setting would also require significant knowledge of both the design and layout
of the ASIC. We hence resorted to a exhaustive search over a whole encryption
round in order to determine whether or not a point existed that would allow us
to build the Ssbc simulator for such a device.

Perhaps unsurprisingly, we were unable to identify points that did not produce
a significant drop in the cross-correlation. This is primarily due to the relation
between evaluation stages of a combinatorial circuit. Without further insight on
the design of the ASIC, it is impossible to determine what processes were taking
place that made building a viable Ssbc simulator impractical.

6 A Sound Simulator

The previous section has shown that the intuitions for building secure simulators
failed to translate to the practical devices that we considered. Furthermore,
how they failed leaves us with little confidence that using other platforms, e.g.
embedded platforms (with other processors) or a different combinational circuit

Simulatable Leakage: Analysis, Pitfalls, and New Constructions 239

simulator SL(x, c):

Perform a meet–in–the–middle attack to learn a valid (k∗
i , k

∗′
i)

BCk∗
i
(BC

k∗′
i
(x)) � Λ

Return Λ

Fig. 9. A generic simulator S secure against the cross-correlation distinguisher

k0

3
P
R
G

k′0

k1
k′1
c1

3
P
R
G k2

k′2
c2

3
P
R
G k3

k′3
c3

3
P
R
G k4

k′4
c4

2BC

2BC

2BC

p0

p1

p2

k3k
′
3

k4

k′4

c4

3PRG

Fig. 10. The adjusted PRG construction

for SubBytes, would be any more successful. The fundamental hurdle is simply
that real world leakage is complex, and cryptographic algorithms are necessarily
implemented via step-wise processes. Hence there is a specific data flow that will
be somehow disrupted when using a split-and-concatenate approach. Without
substantial alterations to the devices’ designs this cannot be easily changed.

Splitting within one instantiation of a block cipher seems hence futile: but how
about considering constructions that are based on two somewhat independent
block cipher calls?

6.1 Doubling the Cipher

Now we discuss an approach based on using a double block cipher (i.e. a block
cipher 2BC that consists of two sequential computations of a block cipher BC
with independent keys ki and k′

i): c = BCki(BCk′
i
(x)). In this construction

there is a natural discontinuity between the first and the second encryption with
regards to the key state and so the data flow across the ‘boundary’ between the
first and the second encryption. This makes this boundary an ideal place to ‘split’
traces, and a generic simulator S that uses a meet–in–the–middle technique [9]
to find a suitable pair of keys follows immediately (see Fig. 9).

For completeness we show that this simulator can be plugged into the PRG
construction from [19] maintaining the correctness of the proof. We only switch
out the underlying PRF from AES to double AES, and subsequently we need to
switch the 2PRG for a 3PRG for the extra rekeying material. The proof given in
[19] can be expanded for any constant number of calls to the PRF and thus the
construction will not need to be reproved secure. The resulting construction can
be seen in Fig. 10.

240 J. Longo et al.

6.2 Some Final Considerations

In the case of AES, this simulator requires approximately 265 AES encryptions
(because of the meet–in–the–middle technique) per valid trace. This is compu-
tationally too expensive to be practical; yet the simulator is secure against the
cross-correlation distinguisher per design so a practical implementation is not
necessary in that regard.

However, its security against standard DPA attacks still needs to be con-
sidered. Recall that this already is an advantage because DPA attacks do not
hybridise over different keys!

Considering now a standard DPA on SL one would notice (in the process of
performing such an attack) that no key hypothesis ever achieves a good cor-
relation with the simulated traces. Hence for a DPA distinguisher we need to
consider the question of how many traces are necessary to decide with some
certainty that all key candidates are equally likely. We leave this as an option
question but note that the usual arguments for DPA success (or lack thereof)
will apply. These are that for a (reasonably) low SNR, and a small number of
leakage traces q, an attack does not succeed. In particular for the purposes of
the PRG construction from [19], which limits q to be two, practical instantiation
of S on an ASIC such as the SASEBO-R should be feasible.

Acknowledgements. Daniel Martin and Elisabeth Oswald have been sup-
ported in part by EPSRC via grant EP/I005226/1, and Daniel Page by
EP/H001689. Jake Longo Galea has been supported in part by a studentship
under the EPSRC Doctoral Training Partnership (DTP) scheme.

References

1. Atmel. AT89S8253 Datasheet, http://www.atmel.com/Images/doc3286.pdf
2. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.

In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004)

3. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to counter-
act power-analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666,
pp. 398–412. Springer, Heidelberg (1999)

4. Dziembowski, S., Pietrzak, K.: Leakage-resilient cryptography. In: FOCS,
pp. 293–302 (2008)

5. Faust, S., Rabin, T., Reyzin, L., Tromer, E., Vaikuntanathan, V.: Protecting cir-
cuits from leakage: the computationally-bounded and noisy cases. In: Gilbert, H.
(ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 135–156. Springer, Heidelberg
(2010)

6. Fumaroli, G., Martinelli, A., Prouff, E., Rivain, M.: Affine masking against higher-
order side channel analysis. In: Biryukov, A., Gong, G., Stinson, D.R. (eds.) SAC
2010. LNCS, vol. 6544, pp. 262–280. Springer, Heidelberg (2011)

7. Herbst, C., Oswald, E., Mangard, S.: An AES smart card implementation resistant
to power analysis attacks. In: Zhou, J., Yung, M., Bao, F. (eds.) ACNS 2006. LNCS,
vol. 3989, pp. 239–252. Springer, Heidelberg (2006)

http://www.atmel.com/Images/doc3286.pdf

Simulatable Leakage: Analysis, Pitfalls, and New Constructions 241

8. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

9. Lai, X., Massey, J.L.: Hash functions based on block ciphers. In: Rueppel, R.A.
(ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 55–70. Springer, Heidelberg (1993)

10. Longo Galea, J., Martin, D., Oswald, E., Page, D., Stam, M., Tunstall, M.: Simu-
latable leakage: analysis, pitfalls, and new construction. Cryptology ePrint Archive,
Report 2014/357, https://eprint.iacr.org/2014/357

11. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets
of Smart Cards. Springer (2008)

12. Mangard, S., Oswald, E., Standaert, F.-X.: One for all - all for one: unifying stan-
dard differential power analysis attacks. IET Information Security 5(2), 100–110
(2011)

13. Messerges, T.S., Dabbish, E., Sloan, R.H.: Power analysis attacks of modular ex-
ponentiation in smartcards. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS,
vol. 1717, pp. 144–157. Springer, Heidelberg (1999)

14. NXP. LPC2124 Datasheet,
http://www.keil.com/dd/docs/datashts/philips/lpc2114_2124.pdf

15. Pietrzak, K.: A leakage-resilient mode of operation. In: Joux, A. (ed.) EURO-
CRYPT 2009. LNCS, vol. 5479, pp. 462–482. Springer, Heidelberg (2009)

16. SASEBO. SASEBO Crypto LSI Specification, http://www.rcis.aist.go.jp/

files/special/SASEBO/CryptoLSI-ja/CryptoLSI2 Spec Ver1.0 English.pdf

17. SASEBO. SASEBO-R Specification, http://www.rcis.aist.go.jp/files/

special/SASEBO/SASEBO-R-ja/SASEBO-R Spec Ver1.0 English.pdf

18. Sauvage, L., Guilley, S., Flament, F., Danger, J.-L., Mathieu, Y.: Blind cartog-
raphy for side channel attacks: Cross-correlation cartography. Int. J. Reconfig.
Comp. 2012(15), 1–9 (2012)

19. Standaert, F.-X., Pereira, O., Yu, Y.: Leakage-resilient symmetric cryptography un-
der empirically verifiable assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO
2013, Part I. LNCS, vol. 8042, pp. 335–352. Springer, Heidelberg (2013)

20. IAIK TU. DPA Demo Board, https://www.iaik.tugraz.at/content/research/
implementation attacks/impa lab infrastructure/

21. Witteman, M.F., van Woudenberg, J.G.J., Menarini, F.: Defeating RSA multiply-
always and message blinding countermeasures. In: Kiayias, A. (ed.) CT-RSA 2011.
LNCS, vol. 6558, pp. 77–88. Springer, Heidelberg (2011)

22. Wolkerstorfer, J., Oswald, E., Lamberger, M.: An ASIC implementation of the AES
sBoxes. In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 67–78. Springer,
Heidelberg (2002)

A Acquisition Setup and Target Devices

In this appendix we outline the equipment used to gather the side channel data
provide a brief note about each of the target devices used throughout the paper.

A.1 Acquisition Setup

The hardware used throughout the experiments follows a typical acquisition
setup commonly found in the literature [8] [11, Ch. 3]. The measurement appa-
ratus used for each of the experiments is as follows:

https://eprint.iacr.org/2014/357
http://www.keil.com/dd/docs/datashts/philips/lpc2114_2124.pdf
http://www.rcis.aist.go.jp/files/special/SASEBO/CryptoLSI-ja/CryptoLSI2_Spec_Ver1.0_English.pdf
http://www.rcis.aist.go.jp/files/special/SASEBO/CryptoLSI-ja/CryptoLSI2_Spec_Ver1.0_English.pdf
http://www.rcis.aist.go.jp/files/special/SASEBO/SASEBO-R-ja/SASEBO-R_Spec_Ver1.0_English.pdf
http://www.rcis.aist.go.jp/files/special/SASEBO/SASEBO-R-ja/SASEBO-R_Spec_Ver1.0_English.pdf
https://www.iaik.tugraz.at/content/research/implementation_attacks/impa_lab_infrastructure/
https://www.iaik.tugraz.at/content/research/implementation_attacks/impa_lab_infrastructure/

242 J. Longo et al.

– Tektronix DPO7104 1Ghz Digital Oscilloscope.
– Tektronix P7330 High-performance differential probe.
– TTI EX354 Stable bench power supply.
– Agilent 33220 Signal generator.

The power consumption for each device was captured by measuring the drop
across a resistor placed in the ground return path for each of the devices.

A.2 The AT89S8253 8051 Microcontroller

The AT89S8253 [1] is an 8-bit microcontroller which represents the lower end
market for hardware. The device can be found in smartcards and is well docu-
mented in the side channel community for it’s Hamming weight leakage model.
This was used in conjunction with the DPA Demo board from IAIK-TU[20].

The AES implementation was limited to an 8-bit serial implementation due
to the architectural constraints. Each of the S-box operations were executed as a
table lookup. The device was clocked at 12Mhz throughout all experiments and
the oscilloscope set to capture the power signal at 200Ms/s.

A.3 LPC2124 ARM7TDMI NXP Microcontroller

The LPC2124 [14] microcontroller is a 32-bit RISC microcontroller with a 4 stage
pipeline. This device serves to represent the mid-range market of microcontrollers
with 32-bit architectures. A custom board was designed and used to facilitate
power measurement.

The AES implementation consisted primarily of 32-bit operations to build
each of the round functions (AddRoundKey, ShiftRows etc.) with the exception
of SubBytes which was performed as an 8-bit lookup table. The device was
clocked at 14Mhz throughout all experiments and the oscilloscope set to capture
the power signal at 250Ms/s.

A.4 SASEBO-R Cryptographic LSI

The SASEBO (Side-channel Attack Standard Evaluation Board) project aimed
to provide development kits to facilitate side channel research. The SASEBO-
R [17] board is specifically designed to fit a cryptographic LSIs [16]. The AES
core used throughout this paper is the AES2 instantiation. Both the clock and
power regulation for the target ASIC is managed on the SASEBO-R board. The
oscilloscope was set to capture the power signal at 2Gs/s.

Multi-target DPA Attacks: Pushing DPA

Beyond the Limits of a Desktop Computer

Luke Mather, Elisabeth Oswald, and Carolyn Whitnall

Department of Computer Science, University of Bristol,
Merchant Venturers Building, Woodland Road,

Bristol, BS8 1UB, United Kingdom
{luke.mather,elisabeth.oswald,carolyn.whitnall}@bris.ac.uk

Abstract. Following the pioneering CRYPTO ’99 paper by Kocher et
al., differential power analysis (DPA) was initially geared around low-
cost computations performed using standard desktop equipment with
minimal reliance on device-specific assumptions. In subsequent years, the
scope was broadened by, e.g., making explicit use of (approximate) power
models. An important practical incentive of so-doing is to reduce the data
complexity of attacks, usually at the cost of increased computational
complexity. It is this trade-off which we seek to explore in this paper.
We draw together emerging ideas from several strands of the literature—
high performance computing, post-side-channel global key enumeration,
and effective combination of separate information sources—by way of
advancing (non-profiled) ‘standard DPA’ towards a more realistic threat
model in which trace acquisitions are scarce but adversaries are well
resourced. Using our specially designed computing platform (including
our parallel and scalable DPA implementation, which allows us to work
efficiently with as many as 232 key hypotheses), we demonstrate some
dramatic improvements that are possible for ‘standard DPA’ when com-
bining DPA outcomes for several intermediate targets. Unlike most pre-
vious ‘information combining’ attempts, we are able to evidence the fact
that the improvements apply even when the exact trace locations of the
relevant information (i.e. the ‘interesting points’) are not known a priori
but must be searched simultaneously with the correct subkey.

1 Introduction

Differential power analysis (DPA) was initially conceived as a computationally
‘cheap’ way to recover secret information from side-channel leakages, under the
assumption that trace measurements could be easily acquired [14]. Over time, the
emphasis has changed and several directions have been pursued in the literature,
e.g. attacks using power models [6] and attacks using several trace points [7] ([15]
surveys the many variations of DPA style attacks). Across all these directions,
one ‘measure’ of attack success has emerged and now dominates the scientific
discourse with regards to attack efficiency. This measure is the number of power
traces needed to identify the correct (sub)key1.

1 The overall key recovery works according to a divide-and-conquer strategy; each (for
example) byte of the key is attacked and recovered individually.

P. Sarkar and T. Iwata (Eds.): ASIACRYPT 2014, PART I, LNCS 8873, pp. 243–261, 2014.
c© International Association for Cryptologic Research 2014

244 L. Mather, E. Oswald, and C. Whitnall

What is the purpose of considering (sub)key recovery attacks? From a practi-
cal perspective any strategy is considered successful if it reveals ‘enough’ infor-
mation about the (global) key to enable a brute force search. It is crucial that
side-channel resistance, like other aspects of security, be considered with respect
to realistic threat models. Real world adversaries are then (arguably) mostly
interested in exploring trade-offs between the number of leakage traces available
and the computational resources dedicated to extracting as much information
as possible from those traces. Recent work by Veyrat-Charvillon et al. [25,26]
presents an algorithm for searching the candidate space containing the key and
a means to estimate its size if the enumeration capabilities of the analyst are
below those of a better-resourced adversary.

Resources, from the point of view of a contemporary DPA adversary, include
not only sophisticated measurement equipment but crucially also processing ca-
pabilities that directly map to the time necessary to mount and complete attacks
[8]. Moradi et al.’s recent work [18] demonstrates how the use of a handful of
modern graphics cards allows for dramatic increase in processing capabilities,
enabling an attack on 32-bit key hypotheses in a known point scenario (the leak-
age point corresponding to the attacked operation was determined a priori via
a known key attack).

In this submission we explore the possibilities for sophisticated use of modern
processing capabilities (such as those associated with high performance com-
puting (HPC), albeit restricted to the setting of a few machines or a ‘small’
cluster) to facilitate ‘multi-target’ DPA attacks. Multi-target DPA consists in
amalgamating outcomes from multiple single-target attacks with the aim of re-
ducing global key entropy more quickly than an individual single-target attack.
For example, against a sequential AES implementation, multi-target DPA could
amalgamate the outcomes of standard attacks on the AddRoundKey, SubBytes,
and MixColumns operations. We will show later that we can do this mean-
ingfully, and also efficiently, for correlation-based DPA attacks—even in realistic
scenarios where the exact leakage points for those target functions are not known
and must each be searched within windows of the trace. Most importantly, we
show that such attacks can dramatically out-perform single-target attacks and
are by far the best strategy to minimise the number of leakage traces required.

1.1 Our Contribution

An adversary who is capable of attacking large numbers of key hypotheses has
a greater choice of intermediate target functions to attack. For instance, possi-
ble AES targets include the output of AES MixColumns (involving four bytes
of the secret key) as well as the (implementation-dependent) intermediate com-
putations for MixColumns (involving two or three key bytes at once). Given
the potential plethora of intermediate value combinations for a sequential AES
implementation (as typically found on micro-processors) we investigate the ef-
fectiveness of some of the possible combinations with respect to the reduction
on key guessing entropy. We also touch on the possibility of combining different
distinguisher outputs and explain when this is (or is not) going to be helpful.

Pushing DPA Beyond the Limits of a Desktop Computer 245

We also take inspiration from the suggestion of Veyrat-Charvillon et al. [25,26]
(originally for the purposes of a key enumeration algorithm) that probability dis-
tributions on the subkeys can be derived from the outcome of a DPA attack. We
propose an alternative (more conservative) heuristic for assigning ‘probability’
scores to subkeys, and show how these can be used to simply and usefully com-
bine information from multiple standard univariate DPA attacks in a strategy
inspired by Bayesian updating.

This research is rooted in our developed capability to efficiently process large
numbers of key hypotheses over many repeat experiments; our architecture
(which we sketch out) is influenced by the design of modern HPC platforms.

We structure our contribution as follows. We briefly provide the relevant
preliminaries and then discuss prior literature (Section 2). We then introduce
our specialised attack framework and explain our attack strategy, including our
method of assigning and updating ‘probability’ scores, in Section 3. Section 4
reports the results of our experiments with simulated leakage data, exploring
what can be achieved by combining the outcomes of attacks against different
target functions, as well as investigating the potential to combine different DPA
strategies. In Section 5 we report the outcomes of some practical attacks against
traces measured from an ARM 7 microcontroller, including scenarios in which
the precise locations of the intermediate targets in the traces are unknown.

1.2 Preliminaries: Differential Power Analysis

We consider a ‘standard DPA attack’ scenario as defined in [16], and briefly
explain the underlying idea as well as introduce the necessary terminology here.
We assume that the power consumption P of a cryptographic device depends
on some internal value (or state) Fk∗(X) which we call the target : a function

Fk∗ : X → Z of some part of the known plaintext—a random variable X
R
∈ X—

which is dependent on some part of the secret key k∗ ∈ K. Consequently, we
have that P = L ◦ Fk∗(X) + ε, where L : Z → R describes the data-dependent
component and ε comprises the remaining power consumption which can be
modeled as independent random noise (this simplifying assumption is common
in the literature—see, again, [16]). The attacker has N power measurements
corresponding to encryptions of N known plaintexts xi ∈ X , i = 1, . . . , N and
wishes to recover the secret key k∗. The attacker can accurately compute the
internal values as they would be under each key hypothesis {Fk(xi)}Ni=1, k ∈ K
and uses whatever information he possesses about the true leakage function L
to construct a prediction model M : Z →M.

DPA is motivated by the intuition that the model predictions under the correct
key hypothesis should give more information about the true trace measurements
than the model predictions under an incorrect key hypothesis. A distinguisher D
is some function which can be applied to the measurements and the hypothesis-
dependent predictions in order to quantify the correspondence between them.
For a given such comparison statistic, D, the estimated vector from a practical
instantiation of the attack is D̂N = {D̂N(L ◦Fk∗(x)+ e,M ◦Fk(x))}k∈K (where

246 L. Mather, E. Oswald, and C. Whitnall

x = {xi}Ni=1 are the known inputs and e = {ei}Ni=1 is the observed noise). Then

the attack is o-th order successful if #{k ∈ K : D̂N [k∗] ≤ D̂N [k]} ≤ o.
The success rate of a DPA attack is the probability that the correct key is

ranked first by the distinguisher (the o-th order success rate is the probability
it is ranked among the o first candidates); the guessing entropy is the expected
number of candidates to test before reaching the correct one [24]. These met-
rics are often associated with the subkeys targeted in the ‘divide-and-conquer’
paradigm rather than with the global key when the partial outcomes are finally
combined; we use the terms accordingly, unless explicitly stated.

Unless stated otherwise, we use the (estimate of the) Pearson correlation co-
efficient as distinguisher, in combination with a Hamming weight power model.

2 Related Literature

Our work unites and advances three broad areas of the literature: resource-
intensive side-channel strategies, post-SCA global key enumeration, and optimal
combination of multiple sources of exploitable information.

Resource-intensive strategies. Such strategies have for a long time been consid-
ered mainly relevant in single-trace settings (e.g. SPA attacks using algebraic
methods [19,20]); this has only lately begun to change, with a few recent studies
making use of modern graphics cards to speed up DPA attacks [3,18]. These ar-
ticles essentially use GPUs within a single machine to speed up the processing of
standard correlation DPA attacks. Our more ambitious approach is to distribute
all the different components of a DPA attack (including workloads related to
combination functionality) across several cards and several machines.

Post-SCA global key enumeration. Recent work by Veyrat-Charvillon et al.
[25,26] focuses on the opportunity for a well-resourced adversary to view side-
channel analysis as an auxiliary phase in an enhanced global key search, rather
than a stand-alone ‘win-or-lose’ attack. They present an algorithm for searching,
based on probability distributions for each of the subkeys (derived from DPA
outcomes) [25]. In the case of profiling DPA with Gaussian templates, the true
leakage distributions conditioned on each subkey hypothesis are known, and the
probabilities are naturally produced in the Bayesian template matching. In the
case of non-profiling DPA, these conditional leakage distributions are not known;
an attack does not produce a probability distribution on the subkey candidates
but a set of distinguisher scores (for example, correlations) associated with each
candidate. Deriving probabilities from these scores is tricky; the method sug-
gested in [25] is to use the hypothesis-dependent fitted leakage models after a
non-profiled linear regression (‘stochastic’) attack as estimates on the ‘true’ con-
ditional distributions. However, non-profiled linear regression-based DPA specif-
ically relies on the fact that the models built under incorrect key hypotheses are
invalid. Consequently, the hypothesised functions do not describe the true data-
dependent deterministic behaviour of the trace measurements, and so they are

Pushing DPA Beyond the Limits of a Desktop Computer 247

useless for (statistical) inference. For this reason, we opt for a different (‘safer’)
heuristic for assigning ‘probability’ scores, as explained in Section 3.1.

Combining multiple sources of information. Whilst profiling attacks with multi-
variate Gaussian templates [7] naturally exploit multiple trace points, notions of
‘multivariate’ non-profiled DPA are varied in nature and intention. In particu-
lar, techniques designed to defeat protected implementations are best considered
separately from attempts to enhance trace efficiency, and we now focus on the
latter. Already in an unprotected implementation, information on a given sub-
key generally leaks via more than one target function (AddRoundKey, SubBytes
and MixColumns, for example, in the case of AES) and moreover each of those
target functions can be seen to leak at more than one trace point. In some cases,
an adversary may even have opportunity to observe multiple side-channels si-
multaneously (timing, power consumption, electromagnetic radiation. . .).

In the realms of both profiled and non-profiled DPA, several efforts have been
made to combine information from multiple trace points in such a way as to
optimise the (trace) efficiency of an attack. Dimensionality reduction techniques
such as principal component analysis or linear discriminant analysis can be used
to transform the (often collinear) trace measurements into a reduced number
of linearly uncorrelated variables, together accounting for the important vari-
ation in the original data [1,4,22]. In this way it is even possible to combine
information from different side-channels, such as power and electro-magnetic ra-
diation [22]. Such methods can be very effective if the leakage associated with
a particular intermediate value is concentrated into a single component giving
rise to a stronger attack outcome than the ‘best’ of any individual point in the
raw dataset. A recent work by Hajra et al. [12] achieves a similar end via sig-
nal processing techniques. They show how to maximise the signal-to-noise ratio
(SNR) (and consequently demonstrate the success rate of a univariate correla-
tion DPA) by finding the linear Finite Impulse Response (FIR) filter coefficients
for the leakage signal. Hutter et al. [13] also seek to enhance DPA efficiency by
incorporating multiple sources of information, but take an entirely different ap-
proach in which the combination is instead made at the trace acquisition stage.
They measure the difference in consumption between two identical devices op-
erating on different data, which they reason has a higher data-dependent signal
because all environmental and operation-dependent noise is cancelled out.

Other suggestions involve performing separate attacks (against different tar-
gets, power models or using different distinguishers) and then attempting to
combine the distinguishing vectors themselves in a meaningful way. Doget et al.
[9] present options for combining difference-of-means (DoM) style outcomes in
order to avoid the ‘suboptimality’ associated with attacks exploiting only one
or a few of the bits at a time. Whitnall et al. [28] try applying a multivariate
extension of the mutual information to the AddRoundKey and an S-box jointly,
but find that it is less efficient than the corresponding attack against the S-box
alone, and moreover would not scale easily beyond a two-target scenario due to
the complex nature of the statistic. Souissi et al. [21] suggest to combine different
distinguishers (namely, Pearson’s and Spearman’s correlation) applied against

248 L. Mather, E. Oswald, and C. Whitnall

the same or different leakage points by taking either the sum or the maximum
of the two, and show that the former works better, and is most effective if the
trace points contain non-equivalent information. Most directly related to our
study is a paper by Elaabid et al. [10] which suggests to (pointwise) multiply
correlation distinguishing vectors together in order to enhance distinguishing
outcomes. They do this for four known leakage points, all relating to the same
target function and power model, and find that it substantially improves over
the outcomes achieved for any one of those leakage points taken individually.
Our own combining approach is different: we first convert distinguishing vectors
to ‘probability’ scores and view the multiplication as a Bayesian updating-like
procedure. Moreover, we focus on combinations between different target val-
ues (rather than different leakage points for the same value) with potentially
different-sized subkey hypotheses.

3 Methodology

3.1 Assigning Probabilities

The attempt of [25] to estimate ‘genuine’ probabilities on the subkey hypotheses
in the non-profiled setting (see Section 2), by using the recovered models derived
from a linear regression based attacks, is expensive as well as unsuitable for
our purpose. Ignoring the fact that the incorrect key hypotheses (using their
approach) recover invalid models, the method of [25,26] may be viewed as one
possible heuristic to assign probabilities to key guesses. It preserves the ranking
of the keys as they appear in the distinguishing vector produced by a non-profiled
linear regression-based DPA. However, because of the nature of the formula
used it dramatically exaggerates the apparent distance between the high- and
low-ranked key candidates. If the implied key is the right one it reinforces this
‘correct’ result. But if it is not the right one it reinforces the misleading result.
In their application (i.e. key enumeration) this may cause a less efficient key
search. However, we are aiming to combine distinguisher results, and hence key
rankings, and mixing in a grossly exaggerated incorrect key ranking may destroy
the effectiveness of the method.

Embracing the heuristic nature of the task of obtaining (from distinguishing
vectors) scores which may be handled as though probabilities, we suggest the
conversion be kept simple and conservative. Our approach firstly transforms the
distinguishing vector to be positive-valued with a baseline of zero (in a manner
appropriate to the statistic—e.g. the absolute value for correlation, subtraction of
the minimum for the mutual information) before secondly normalising the scores
to sum to one. We draw analogy between this idea and the notion of subjective
probability basic to a Bayesian view of statistics: both involve human-allocated
scores derived from one’s current best knowledge about reality.

3.2 Combining Probabilities

A Bayesian interpretation views probabilities as measures of uncertainty on hy-
potheses. Each time new information becomes available, the current state of

Pushing DPA Beyond the Limits of a Desktop Computer 249

knowledge can be updated via Bayes’ theorem:

P(H |B) =
P(B|H)P(H)

P(B)
,

where H is some hypothesis (for example, a guess on the key, “K = k”), and B
is some data (for example, a set of trace measurements l = L ◦ Fk∗(x) + e).

Suppose that we have probabilities for (K = k) conditioned on two sources of
data l1, l2, which are conditionally independent given K = k so that P(l1, l2|K =
k) = P(l1|K = k)P(l2|K = k). This is a natural assumption for the leakages of
two target intermediate values: they are related via their shared dependence on
the underlying key, but as long as they are separated in the trace, we would
not expect any dependency in the residual variances after the key is taken
into account. In this case, the task of combining the conditional probabilities
is straightforward (see [2]):

P(K = k|l1, l2) =
P(l1, l2|K = k)P(K = k)

P(l1, l2)

=
P(l1|K = k)P(l2|K = k)P(K = k)

P(l1, l2)

=
P(l1)P(l2)

P(l1, l2)
× P(K = k|l1)P(K = k|l2)

P(K = k)
,

(via Bayes’ theorem again, since P(li|K = k) = P(K = k|li)P(li)/P(K = k)).
Since a = P(l1)P(l2)/P(l1, l2) does not depend on the key hypothesis we can
treat it as a normalisation constant which just needs to be computed so as to
satisfy

∑
k∈K P(K = k|l1, l2) = 1. In the typical case that all keys are a priori

equally likely, the denominator in the second product term is 1
|K| (constant for

all key hypotheses) and simply gets absorbed into the normalising constant.
Thus, conditional probabilities on the key candidates can be updated with the
introduction of any new, independent information via a simple multiplication-
and-normalisation step.

3.3 Parallelised Attack Architecture

Combining multiple distinguishing vectors and attacking target functions involv-
ing 24 or more bits of the key are both computationally demanding tasks, and
necessitate the use of parallelised computation. We elected to use the OpenCL
language and a set of graphics cards to parallelise the computation needed to
attack up to 32-bits of a key, the combination and normalisation of distinguish-
ing vectors, and finally the statistics necessary for evaluating the effectiveness of
each combined attack.

We took inspiration from modern HPC facilities, in which a significant amount
of the computing power is delivered by GPUs. Hence our experimental setup
consists of several (up to 6) workstations, each containing two discrete GPUs

250 L. Mather, E. Oswald, and C. Whitnall

Keys attacked per second, OpenCL kernel for attacking 32 bits of key using the MixColumns operation

2,
00

0
tra

ce
s

5,
00

0
tra

ce
s

2x AMD Radeon HD 7970 GHz Edition

2x AMD Radeon R9 290X

2x Intel Xeon E5 2670 @ 2.6 GHz, 16 cores

Intel i5 3550 @ 3.3 GHz, single core

39,727,037

47,034,048

1,257,608

739

2x AMD Radeon HD 7970 GHz Edition

2x AMD Radeon R9 290X

2x Intel Xeon E5 2670 @ 2.6 GHz, 16 cores

Intel i5 3550 @ 3.3 GHz, single core

15,549,116

19,219,889

498,627

295

Fig. 1. Average keys per second recorded during DPA attacks on 32-bits of the input
to the MixColumns operation for a variety of different sample sizes. Implementations
are a ‘naive’ single-threaded CPU implementation, a parallelised OpenCL CPU-based
implementation, and the two fastest OpenCL GPU implementations.

(the cost per machine is approximately 2000 GBP). These were various pairs of
high-end AMD and Nvidia cards, installed in our own workstations or within
the Bluecrystal Phase 3 supercomputing facility2. In total, including all the
functionality used to fully produce and analyse our experimental results, we were
able to complete at least 250 operations on combined distinguishing vectors, in
very roughly a couple of weeks of computation time.

The most computationally demanding function was performing a 32-bit DPA
attack on the MixColumns operation. Here we decided to share the cost over
multiple GPUs, with each work group inside a single card computing a partial
piece of the distinguishing vector using a portion of the traces and a subset of
the key hypotheses, followed by a global reduction to compute the final vector.
Fig. 1 shows the performance of our OpenCL attack implementation for a variety
of devices, in terms of the number of key hypotheses tested per second.

We note that these benchmark timings are not likely to be optimal. We did not
try to improve the memory coalescence of our kernels, nor did we try to perform
any other non-trivial optimisation beyond maximising kernel occupancy, and so
there may be considerable headroom in key-search throughput still to be gained.
It is clear from the extremely cheap price for a dual GPU setup, coupled with the
considerable performance increases observed with the introduction of new GPU
architectures, that an adversary can acquire very large side-channel key-search
capabilities at minimal financial cost.

Bartkewitz et al. [3] use Nvidia’s CUDA technology and a Tesla C2070 to
parallelise 8-bit CPA attacks on the SubBytes operation, and focus on maximis-
ing trace data throughput in an 8-bit setting. Our more ambitious goal is to
optimise for large key-search problems as well as for trace data throughput. In
this context Moradi et al. [18] utilise 4 Nvidia Tesla GPUs to attack 32-bits of
key using 60, 000 traces, and are able to attack a single time-point every 33 min-
utes. A direct comparison is not possible as we are using slightly more modern
hardware and the exact computational costs included in the benchmarking are
not clear—however we might expect to be able to perform a similar attack in
approximately 20 minutes.

2 Bluecrystal is managed by the Advanced Computing Research Centre at the Uni-
versity of Bristol—see http://www.bris.ac.uk/acrc/

http://www.bris.ac.uk/acrc/

Pushing DPA Beyond the Limits of a Desktop Computer 251

4 Experiments with Simulated Data

The goal of our combining strategy is to reduce (relative to ‘standard univariate
DPA’) the guessing entropy on the subkeys (and consequently on the global
key). Many types of combination are possible. We study the effect of combining
outcomes from different targets as well as, secondarily, the effect of combining
outcomes from different distinguishers applied to the same target. We do this
initially for simulated trace measurements so that we can take into account
different noise levels (i.e. by varying the SNR) as well as the impact of using an
imperfect power model. Both aspects have practical relevance.

4.1 Combining Outcomes from Different Targets

We simulated leakages of AES AddRoundKey, SubBytes, and three 8-bit interim
values in the computation of MixColumns: one involving two key bytes (namely
GFm2(statei ⊕ statei+1) where statei is the ith state byte after the SubBytes
operation, and GFm2 denotes doubling in Rijndael’s finite field), one involving
three key bytes (namely GFm2(statei⊕statei+1)⊕statei+1⊕statei+2), and one
involving four key bytes (namely GFm2(statei⊕statei+1)⊕statei+1⊕statei+2⊕
statei+3)

3.
In the case of the 16-bit multi-target attack we necessarily hypothesise over

two key bytes (in order to incorporate the MixColumns leakage). The experi-
ments each involve two AddRoundKey correlation-based DPA attacks (which are
then combined into probabilities on the full 16-bit subkeys via multiplication),
two S-box attacks (combined likewise), and the one MixColumns attack, before
multiplying each possible target function pair together, as well as multiplying
all three together. Similarly, for the 24-bit multi-target attack we hypothesise
over three key bytes. The experiments in the 24-bit attack then involve three
AddRoundKey attacks, three S-box attacks, and the one attack on an interim
MixColumns value. We amalgamate probabilities by multiplication as in the
16-bit case. The 32-bit multi-target attack proceeds in the same fashion: we
combine four AddRoundkey attack results and four SubBytes results into the
MixColumns attack result. The graphs in Fig. 2(a) show these different scenarios
for a single column of the AES state.

In the following paragraphs we analyse these graphs with respect to three
questions that are relevant for practice. Firstly, what is the impact of a (low)
SNR with regards to our multi-target strategy? As we base our DPA attacks on
correlation distinguishers, we would hope that, similarly to single-target attacks,
multi-target attacks will ‘scale’ alongside the SNR. Secondly, we are interested in
how the size of the key hypotheses impacts on the guessing entropy, and lastly, in
how multi-target attacks behave when the attacker’s power model is imprecise.

3 This targets a single intermediate byte. The relative effectiveness of combining all
four attacks on all the possible intermediate bytes would also be interesting to in-
vestigate, but generating results requires time and so is left as future work.

252 L. Mather, E. Oswald, and C. Whitnall

S-box AddRoundKey + MixColumns S-box + MixColumns AddRoundKey + S-box All three

50 100 150 200 250 300 350 4000

1

2

3

4

5

6

7

8

9

50 100 150 200 250 300 350 400
0

1

2

3

4

5

6

7

50 100 150 200 250 300 350 400
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

24-bit targets, SNR = 0.0625 32-bit targets, SNR = 0.0625

16-bit targets, SNR = 0.062516-bit targets, SNR = 1.0

Number of traces Number of traces

G
ue

ss
in

g
en

tro
py

 (l
og

)
10

G
ue

ss
in

g
en

tro
py

 (l
og

)
10

G
ue

ss
in

g
en

tro
py

 (l
og

)
10

G
ue

ss
in

g
en

tro
py

 (l
og

)
10

Number of traces Number of traces

(a) Outcomes for attacks combining several targets using up to 32-bit key hypotheses

0

0.5

1

1.5

2

200 4000

G
ue

ss
in

g
en

tro
py

 (l
og

)
10

SNR = 0.0625

Best univariate
Best bivariate (same)
Best bivariate (independent)
MIA+KSA+VRA (same)
MIA+KSA+VRA(independent)

G
ue

ss
in

g
en

tro
py

 (l
og

)
10

Imprecise power-model, 16-bit targets, SNR = 0.0625

Number of traces
200 4000

0
66600

1

2

3

4

5

Number of traces

(b) Outcomes for attacks combining several distinguishers for the same target (the
S-box output)

Fig. 2. Simulation results

Impact of SNR. The top two graphs in Fig. 2(a) show the subkey guessing
entropies (for a 16-bit key guess) as the number of traces increases, for the attacks
against simulated Hamming weight leakages with two SNR levels. Aside from the
fact that all attacks require increased numbers of traces as the SNR decreases (as
we would expect) the scenarios exhibit similar outcomes. The attacks on S-boxes
are effective at reducing uncertainty on the key (the results for these are printed

Pushing DPA Beyond the Limits of a Desktop Computer 253

in red), but are clearly outperformed by all three ‘bivariate’ combinations—even
the one between the MixColumns sub-computation and AddRoundKey. The
combination between all three further reduces the enumeration work required.

Impact of larger distinguishing vectors. The top right and the bottom graphs in
Fig. 2(a) show the subkey guessing entropies for increasing subkey sizes (16-bit
in the top right, 24-bit in the bottom left, and 32-bit in the bottom right). In all
three experiments the multi-target attacks outperform the single target attacks.
Note that the guessing entropy range naturally increases with the size of the
key hypothesis and is in no way an indicator of attack degradation. For the
16-bit attack the guessing entropy is out of 216 and eight such guesses need to
be combined to get a global key with guessing entropy between 1 and 2128. For
the 32-bit attack the guessing entropy is out of 232 but only four such guesses
need to be combined. It is the global guessing entropy which ultimately matters
and the subkeys always need to be combined at some point – incorporating
information at (e.g.) the 32-bit level simply increases the scope of intermediate
targets exploitable by the attacker. For both hypothesis sizes, the outcomes
suggest that we are able to succeed with roughly half the number of leakage traces
when using the best multi-target attack (for a fixed subkey guessing entropy, the
best multi-target attacks require roughly half of the traces required by the best
single-target attack). It is possible to estimate global key guessing entropies
based on these results by assuming that the attacks on the other ‘chunks’ of
the key would behave identically. For instance, in the 16-bit case, if all eight
16-bit attacks give identical outcomes, we could estimate global key entropies
by raising the results of a single 16-bit attack to the power eight. However, this
does not necessarily translate into practice, so we will instead show actual global
key guessing entropies when we come to discuss attacks on real data.

Impact of imperfect power model. The left picture of Fig. 2(b) shows the out-
comes (against a 16-bit subkey target: the legend from Fig. 2(a) applies) in the
case where the Hamming weight is not a perfect match to the leakage, because
of the presence of a constant reference state (representing an address, for exam-
ple) of Hamming weight 1. The most striking impact of this distortion occurs for
attacks that include AddRoundKey as a target, which are no longer able to iden-
tify the correct key as a likely candidate. This is because the Hamming distance
of the AddRoundKey from the reference state when the correct key is guessed
is the same as the Hamming weight of the AddRoundKey when the key guess
is the correct key XORed with the reference state. In effect, an incorrect key is
masquerading as the correct one, and the correlation DPA against AddRound-
Key will naturally preference this. (The same cannot happen for the S-box, for
example, because the key XOR is inside the highly nonlinear transformation,
with the Hamming distance being taken afterwards).

Nonetheless, in this case where the reference state is itself of low weight, in-
corporating AddRoundKey information still produces marginal reductions on
the guessing entropies after S-box and MixColumns (separately, and combined).

254 L. Mather, E. Oswald, and C. Whitnall

Greater imprecision of the power model will more strongly impact on AddRound-
Key attacks; it may be advisable to exclude it as a target in such cases.

4.2 Combining Outputs from the Same Target

One might ask whether or not the outcomes of different distinguishing statistics
or power models can likewise be combined to some advantage.

Using different distinguishing statistics. Suppose we run three different attacks
against the leakage of an AES S-box, e.g.: mutual information [11], Kolmogorov–
Smirnov [27], and the variance ratio [23], all using a Hamming weight power
model. The distinguishing vectors are transformed to have a baseline of zero and
to sum to one, for use as heuristic ‘probability’ scores. We would then like to
know whether the combined outcomes improve upon the individual ones.

The right picture in Fig. 2(b) shows what happens when we attempt this in the
example scenario of Hamming weight leakage with SNR 0.0625. When the same
measurements are used for all of the attacks, combining the outcomes actually
increases the guessing entropy. By contrast, when independent measurements are
used in each case (i.e., each distinguisher has been applied against a different
point in the trace leaking the same information but with independent noise),
there is some scope to refine the information on the key by combining outcomes—
although all three outcomes together on average produce worse results than the
best combination of two. We found that it was generally the addition of mutual
information which degraded the outcome, as it required substantially more data
to estimate to an equivalent degree of precision.

This is very much in line with what we might expect, and acts as a note-
worthy warning: it is the addition of new information which improves attack
outcomes—exploiting the same measurements using the same power models but
with different distinguishers does not contribute anything further. In the context
of our heuristic ‘probability’ distributions such a practice could be particularly
dangerous, as it still serves to exaggerate the magnitude of the peaks, thus giving
a false sense of increased certainty. Note that the multiplication step implicitly
assumes independence of the separate score vectors, which is clearly violated in
the case that they are all based on the same leakage information.

Using different power models. In the light of the ineffectiveness of combining
information about the same target, we briefly revisit previous work by Bevan
and Knudsen [5]. They suggest to combine eight difference-of-means attacks,
each targeting a distinct bit of the intermediate value, by ‘summing over the
distinguisher results’ (in our approach we convert them into ‘probability’ distri-
butions on the set of 28 subkeys, as per Section 3.1). Since each attack exploits
a separated portion of the overall leaked value we may expect that each new
bit attacked helps to further reduce the candidate search space—and, indeed,
our experiments confirm this (see Appendix A). Such a technique is hence very
useful in leakage scenarios which are unfamiliar to an attacker, which is often
the case when attacking dedicated hardware.

Pushing DPA Beyond the Limits of a Desktop Computer 255

5 Practical Attacks

We tested our strategy in practice using a dataset of 10,000 traces from an
ARM7 microcontroller running an unprotected implementation of AES. The
10,000 traces were divided up in 200 sets of 50 traces each to conduct suffi-
cient repeat experiments to report reasonably precise estimates for the guessing
entropies in the same vein as our simulated attacks. Multi-target attacks, sim-
ilar to multivariate attacks, are greatly helped by knowledge about where the
attacked intermediate values leak in the traces. Consider for instance a (multi-
variate) template attack: it is much harder for an adversary to conduct such an
attack when in the profiling phase a similar device is available but not the exact
implementation (of, say, AES). In such a case an adversary could still build tem-
plates for microprocessor instructions during profiling, but in the attack phase
the adversary would need to find the specific trace points at which to apply the
templates. Similarly, knowing precisely where the single-target leakages occur is
helpful for a multi-target attack. We consequently focus initially on a ‘known
point’ scenario and then make a first attempt at relaxing this assumption.

5.1 Practical Attacks against Known Interesting Points

We applied two multi-target attacks (one involving 16-bit, one 32-bit key hy-
potheses) under the assumption that interesting trace points are known, running
200 repeat experiments for increasing samples of up to size 50. For each 16-bit
subkey, correlation DPA attacks were performed against the two corresponding
AddRoundKey operations, the S-boxes and the MixColumns sub-computation
GFm2(statei ⊕ statei+1), where statei is the state byte corresponding to the
ith key byte after the S-box substitutions and (in this implementation) the
ShiftRows operation. For each 32-bit subkey, correlation DPA attacks are per-
formed against four AddRoundKey operations, four S-boxes, and the 32-bit Mix-
Columns computation GFm2(statei⊕statei+1)⊕statei+1⊕statei+2⊕statei+3.

The first two graphs in Fig. 3(a) show the guessing entropies on the first
key-byte pair and the final global guessing entropies, estimated by multiplying
the eight subkey guessing entropies together (the outcomes for the other seven
subkey guesses can be found in the Appendix of the full version of our paper,
see [17]).4 They largely, but not perfectly, match up with our observations for
simulated traces. This is an important point: theory and practice rarely perfectly
align, even in the case of a relatively ‘simple’ platform like the ARM7. In the
practical experiments, AddRoundKey and the MixColumns sub-value are con-
sistently unable to identify the correct key alone (at least, not within 50 traces).
However, the two together produce guessing entropies to rival the effectiveness
of the S-box attack, and both produce improvements in combination with the
S-box. All three together produce the best guessing entropies for many of the

4 The more refined rank estimation methodology of [26] indicates that this simple
method of approximating global guessing entropies underestimates the rank by 20
to 40 binary orders of magnitude.

256 L. Mather, E. Oswald, and C. Whitnall

16-bit subkeys, although they are sometimes outperformed by the two-target
S-box+AddRoundKey attacks, which achieve a marginal advantage overall.

The second two graphs in Fig. 3(a) show the guessing entropies for the first
32-bit subkey and the final global guessing entropies. The global entropies were
estimated by multiplying the four subkey entropies together. We observed vary-
ing behaviour for our combined attacks on different subkeys; our targeted Mix-
Columns computation does not leak nearly as much information in the middle 8
bytes of the state as it does in the first and final 4 bytes. Consequently, despite
(as suggested by our simulated attacks) observing strong performance of the
combined three-target attacks in the latter two cases, in the global setting this
advantage is diminished, and the ‘trivariate’ attack produces similar performance
to the combined four-byte S-box+AddRoundKey attacks. It is noteworthy that
even in the presence of this variable leakage, most combined attacks outperform
the S-box attack. Graphs and data for each of the four separate subkey attacks
can be found in the Appendix of the full version of our paper [17].

5.2 Practical Attacks where Interesting Points Are A Priori
Unknown

The natural next question to ask is whether we can relax the assumption that
the leakage points are precisely known. We made some preliminary inroads using
‘desktop-level’ resources (whilst our GPU machines were occupied with other
experiments), focusing, for computational feasibility, on 8-bit key hypotheses.
The three targets we selected to combine were AddRoundKey, the S-box outputs,
and the interim MixColumns valueGFm2(statei⊕statei+1) with the assumption
that the second involved key byte of the two is known.

We relaxed the ‘known point’ assumption by visually inspecting the AES
traces in order to identify the intervals in which each of the three target functions
are contained. The first round takes about 1,400 clock cycles in total and the
(non-overlapping) windows we selected for experimentation were of widths 240,
230, and 180 for AddRoundKey, SubBytes and MixColumns respectively. Within
these windows we took an ‘exhaustive search’ approach. First, we subjected
each point to a standard DPA attack against the associated target function, and
computed the ‘probability’ scores. We then pairwise combined them in each of
the three possible configurations, and finally we combined all three. We tried
two strategies: in the first, we took (for each configuration) the combined vector
with the largest peak as the one most likely to correspond to the correct key and
pair/triple of leakage points, and in the second we took the Nt combined vectors
with the largest peaks and multiplied these together (for different values of Nt),
so achieving a sort of ‘majority vote’.

The left side of Fig. 3(b) shows the average guessing entropy for each of the
attacks using the first ‘maximum peak’ strategy. The AddRoundKey attack in
an unknown point scenario performs very badly. Further analysis of the trace
window reveals that there are other points exhibiting strong correlations with
AddRoundKey⊕R, for R some other (possibly address?) value in {0, 255} (see

Pushing DPA Beyond the Limits of a Desktop Computer 257

S-box AddRoundKey + MixColumns S-box + MixColumns AddRoundKey + S-box All three

16-bit subkey guessing entropy Global guessing entropy, 16-bit attacks

32-bit subkey guessing entropy Global guessing entropy, 32-bit attacks

0
0

1

2

3

4

5

6

7

8

9

10 20 30 40 50

G
ue

ss
in

g
en

tro
py

 (l
og

)
10

0 10 20 30 40 50
0

10

20

30

Number of traces

0

1

2

3

5

4

0 10 20 30 40 50

G
ue

ss
in

g
en

tro
py

 (l
og

)
10

G
ue

ss
in

g
en

tro
py

 (l
og

)
10

0 10 20 30 40 50

Number of traces

0

5

10

15

20

25

30

35

40

G
ue

ss
in

g
en

tro
py

 (l
og

)
10

Number of traces Number of traces

(a) Outcomes for multi-target attacks in a known points scenario

Number of traces

G
ue

ss
in

g
en

tro
py

Number of traces

G
ue

ss
in

g
en

tro
py

AddRoundKey
S-box
MixColumns
ARK+S-box
ARK+MixCols
S-box+MixCols
All three

S-box
S-box (first 2)
S-box (first 20)

All 3
All 3 (first 2)
All 3 (first 20)

150

100

50

0
0 50 100 150

150

100

50

0
0 50 100 150

(b) Outcomes for multi-target attacks in a known interval scenario

Fig. 3. Practical results

Fig. 5 in Appendix B).5 Moreover, at these points the correct key correlations
are low, so that the contribution to the combined leakage is highly distorting (as
opposed to when an ‘imperfect but close’ leakage prediction is made, in which
case the combination can still improve distinguishability). In the presence of
such misleading leakage information, it is reassuring that the attack outcomes
are robust to the combining step.

5 Note that the leakage of the S-box is less vulnerable to such distortions: a non-zero
reference state will not masquerade as an alternative key hypothesis, as the key
addition happens inside the S-box.

258 L. Mather, E. Oswald, and C. Whitnall

The combined MixColumns and S-box attack exhibits lower guessing entropies
than either of the two taken individually. The trivariate attack (as expected
from the above) does not really add much to this, but again we reflect that the
inclusion of AddRoundKey at least does not seem to harm the outcome.

The right side of Fig. 3(b) shows the advantage gained by multiplying the
top-ranked few ‘probability’ vectors for the trivariate attack, as well as (for
comparison) for the S-box attack on its own. Interestingly, even the addition
of the second ranked vector degrades the S-box attack, whereas the product
combining for the top-ranked triples reduces the guessing entropy at least up
to Nt = 20. The subsequent total improvement over the S-box outcome on its
own indicates this as a potentially worthwhile strategy for key recovery in an
unknown point scenario.

From a practical perspective, a useful forward approach for multi-target at-
tacks would be to ‘try out’ (for a concrete device and implementation) different
combinations of targets, and different point selection strategies, to see which give
the best results. We want to caution against drawing too many conclusions from
these last experiments: they clearly represent a first step only!

6 Conclusion

We have shown how to amalgamate single-target ‘standard’ DPA attacks (us-
ing a correlation distinguisher and a Hamming weight power model) into multi-
target attacks capable of increasing information on the correct key by combining
DPA outcomes that are treated as heuristic probabilities. Leveraging our mod-
ern HPC-inspired computing platform, we are able to efficiently handle key hy-
potheses of up to 32 bits using a small cluster of simple workstations containing
consumer graphics cards. Such a capability allows us to combine many inter-
mediate targets; in this work we made the first serious attempt to explore the
characteristics of successful combinations. Our results indicate that combining
S-box+AddRoundKey or additionally including an intermediate MixColumns
computation typically produces the strongest results. Multi-target attacks scale
predictably with noise and are robust with regards to imprecise power models.
Our primary investigative effort is mainly on ‘known’ (leakage) point attacks,
in line with assumptions generally made for multivariate attacks. When leakage
points are not known, an exhaustive search in suitable visually-identified trace
windows, together with a ‘majority vote’-style approach to decide on ‘peaks’,
leads to improved practical attacks even in this challenging scenario.

Our definition of multi-target attacks and intuitive and efficient combination
technique opens up many interesting new research questions: e.g. is there any
single best combination of intermediate values for a given cipher? How effectively
can we combine power and EM attack results in this way? Could we even move
further on and include results from the second encryption round? What other
strategies for combining in unknown point scenarios exist? How could we use
this against implementations when masking and hiding are used? For better or
worse, these are “interesting times”—to call to mind the fabled Chinese curse.

Pushing DPA Beyond the Limits of a Desktop Computer 259

Acknowledgements. This work has been supported in part by EPSRC via
grant EP/I005226/1. This work was carried out using the computational fa-
cilities of the Advanced Computing Research Centre, University of Bristol—
http://www.bris.ac.uk/acrc/.

References

1. Archambeau, C., Peeters, E., Standaert, F.-X., Quisquater, J.-J.: Template At-
tacks in Principal Subspaces. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS,
vol. 4249, pp. 1–14. Springer, Heidelberg (2006)

2. Bailer-Jones, C., Smith, K.: Combining probabilities. Technical Report GAIA-C8-
TN-MPIA-CBJ-053, Max Planck Institute for Astronomy, Heidelberg (January
2010)

3. Bartkewitz, T., Lemke-Rust, K.: A high-performance implementation of differen-
tial power analysis on graphics cards. In: Prouff, E. (ed.) CARDIS 2011. LNCS,
vol. 7079, pp. 252–265. Springer, Heidelberg (2011)

4. Batina, L., Hogenboom, J., van Woudenberg, J.: Getting More from PCA: First
Results of Using Principal Component Analysis for Extensive Power Analysis. In:
Dunkelman, O. (ed.) CT-RSA 2012. LNCS, vol. 7178, pp. 383–397. Springer, Hei-
delberg (2012)

5. Bévan, R., Knudsen, E.: Ways to Enhance Differential Power Analysis. In: Lee, P.J.,
Lim, C.H. (eds.) ICISC 2002. LNCS, vol. 2587, pp. 327–342. Springer, Heidelberg
(2003)

6. Brier, E., Clavier, C., Olivier, F.: Correlation Power Analysis with a Leakage Model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004)

7. Chari, S., Rao, J., Rohatgi, P.: Template Attacks. In: Kaliski Jr., B.S., Koç, Ç.K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 51–62. Springer, Heidelberg
(2003)

8. Common Criteria, Technical editor: BSI. Application of Attack Potential to Smart
Cards (2009),
http://www.commoncriteriaportal.org/files/supdocs/CCDB-2009-03-001.pdf

9. Doget, J., Prouff, E., Rivain, M., Standaert, F.-X.: Univariate side channel attacks
and leakage modeling. J. Cryptographic Engineering 1(2), 123–144 (2011)

10. Elaabid, M., Meynard, O., Guilley, S., Danger, J.-L.: Combined Side-Channel At-
tacks. In: Chung, Y., Yung, M. (eds.) WISA 2010. LNCS, vol. 6513, pp. 175–190.
Springer, Heidelberg (2011)

11. Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual Information Analysis. In:
Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 426–442. Springer,
Heidelberg (2008)

12. Hajra, S., Mukhopadhyay, D.: SNR to Success Rate: Reaching the Limit
of Non-Profiling DPA. Cryptology ePrint Archive, Report 2013/865 (2013),
http://eprint.iacr.org/

13. Hutter, M., Kirschbaum, M., Plos, T., Schmidt, J.-M., Mangard, S.: Exploiting the
Difference of Side-Channel Leakages. In: Schindler, W., Huss, S.A. (eds.) COSADE
2012. LNCS, vol. 7275, pp. 1–16. Springer, Heidelberg (2012)

14. Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

http://www.bris.ac.uk/acrc/
http://www.commoncriteriaportal.org/files/supdocs/CCDB-2009-03-001.pdf
http://eprint.iacr.org/

260 L. Mather, E. Oswald, and C. Whitnall

15. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets
of Smart Cards

16. Mangard, S., Oswald, E., Standaert, F.-X.: One for All – All for One: Unifying
Standard DPA Attacks. IET Information Security 5(2), 100–110 (2011)

17. Mather, L., Oswald, E., Whitnall, C.: Multi-target DPA attacks: Pushing DPA be-
yond the limits of a desktop computer. Cryptology ePrint Archive, Report 2014/365
(2014), http://eprint.iacr.org/

18. Moradi, A., Kasper, M., Paar, C.: Black-Box Side-Channel Attacks Highlight the
Importance of Countermeasures. In: Dunkelman, O. (ed.) CT-RSA 2012. LNCS,
vol. 7178, pp. 1–18. Springer, Heidelberg (2012)

19. Renauld, M., Standaert, F.-X.: Combining Algebraic and Side-Channel Cryptanal-
ysis against Block Ciphers. In: 30th Symposium on Information Theory in the
Benelux (2009)

20. Renauld, M., Standaert, F.-X., Veyrat-Charvillon, N.: Algebraic Side-Channel At-
tacks on the AES: Why Time also Matters in DPA. In: Clavier, C., Gaj, K. (eds.)
CHES 2009. LNCS, vol. 5747, pp. 97–111. Springer, Heidelberg (2009)

21. Souissi, Y., Bhasin, S., Guilley, S., Nassar, M., Danger, J.-L.: Towards Different
Flavors of Combined Side Channel Attacks. In: Dunkelman, O. (ed.) CT-RSA 2012.
LNCS, vol. 7178, pp. 245–259. Springer, Heidelberg (2012)

22. Standaert, F.-X., Archambeau, C.: Using Subspace-Based Template Attacks to
Compare and Combine Power and Electromagnetic Information Leakages. In: Os-
wald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 411–425. Springer,
Heidelberg (2008)

23. Standaert, F.-X., Gierlichs, B., Verbauwhede, I.: Partition vs. Comparison Side-
Channel Distinguishers: An Empirical Evaluation of Statistical Tests for Univari-
ate Side-Channel Attacks against Two Unprotected CMOS Devices. In: Lee, P.J.,
Cheon, J.H. (eds.) ICISC 2008. LNCS, vol. 5461, pp. 253–267. Springer, Heidelberg
(2009)

24. Standaert, F.-X., Malkin, T.G., Yung, M.: A Unified Framework for the Analysis
of Side-Channel Key Recovery Attacks. In: Joux, A. (ed.) EUROCRYPT 2009.
LNCS, vol. 5479, pp. 443–461. Springer, Heidelberg (2009)

25. Veyrat-Charvillon, N., Gérard, B., Renauld, M., Standaert, F.-X.: An Optimal Key
Enumeration Algorithm and Its Application to Side-Channel Attacks. In: Knudsen,
L.R., Wu, H. (eds.) SAC 2012. LNCS, vol. 7707, pp. 390–406. Springer, Heidelberg
(2013)

26. Veyrat-Charvillon, N., Gérard, B., Standaert, F.-X.: Security Evaluations beyond
Computing Power. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013.
LNCS, vol. 7881, pp. 126–141. Springer, Heidelberg (2013)

27. Veyrat-Charvillon, N., Standaert, F.-X.: Mutual Information Analysis: How, When
and Why? In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 429–443.
Springer, Heidelberg (2009)

28. Whitnall, C., Oswald, E.: A Comprehensive Evaluation of Mutual Information
Analysis Using a Fair Evaluation Framework. In: Rogaway, P. (ed.) CRYPTO
2011. LNCS, vol. 6841, pp. 316–334. Springer, Heidelberg (2011)

A Combining Difference-of-Means Outcomes

Fig. 4 shows the reduction in subkey guessing entropy as an increasing number
of difference-of-means (against different individual bits) are combined via our
strategy.

http://eprint.iacr.org/

Pushing DPA Beyond the Limits of a Desktop Computer 261

0 50 100 150
0

50

100

150
SNR = 1

Number of traces

G
ue

ss
in

g
en

tr
op

y

0 200 400
0

50

100

150
SNR = 0.25

Number of traces

G
ue

ss
in

g
en

tr
op

y

0 1000 2000
0

50

100

150
SNR = 0.0625

Number of traces

G
ue

ss
in

g
en

tr
op

y

1 bit

2 bits
4 bits

8 bits

Fig. 4. Combining the outcomes of up to eight difference-of-means attacks against
Hamming weight leakage of the AES S-box

B Unknown Point Attacks: Problem of Rival Peaks

Fig. 5 illustrates the difficulty of separating the true key from strong rival can-
didates when the relevant ‘interesting points’ in the trace are not known. As de-
scribed in Section 5, this introduces distorting information into the point search,
which reduces the ability to increase an attack’s effectiveness by the addition of
AddRoundKey outcomes.

0 200 400 600 800 1000 1200 1400
0

0.1

0.2

0.3

0.4

0.5
Correlations with a sample size of 50

Time index

C
or

re
la

tio
n

(a
bs

ol
ut

e)

Correct key
Key⊕227

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Number of traces

C
or

re
la

tio
n

(a
bs

ol
ut

e)

Outcome at current ’winning’ time point

Correct key
Key⊕243, Key⊕227

Fig. 5. Left: Example of a fixed XOR offset from the key producing a rival peak in the
AddRoundKey correlation attack against the ARM7 traces. Right: The evolution of an
AddRoundKey correlation attack against the ARM7 traces, showing the confounding
effect of strong rival candidates.

GLV/GLS Decomposition, Power Analysis,

and Attacks on ECDSA Signatures
with Single-Bit Nonce Bias

Diego F. Aranha1, Pierre-Alain Fouque2, Benôıt Gérard3,4,
Jean-Gabriel Kammerer3,5, Mehdi Tibouchi6, and Jean-Christophe Zapalowicz7

1 Institute of Computing, University of Campinas
dfaranha@ic.unicamp.br

2 Université de Rennes 1 and Institut Universitaire de France
fouque@irisa.fr

3 DGA–MI, Rennes
4 IRISA, benoit.gerard@irisa.fr
5 IRMAR, Université de Rennes 1
jean-gabriel.kammerer@m4x.org

6 NTT Secure Platform Laboratories
tibouchi.mehdi@lab.ntt.co.jp

7 Inria
jean-christophe.zapalowicz@inria.fr

Abstract. The fastest implementations of elliptic curve cryptography
in recent years have been achieved on curves endowed with nontriv-
ial efficient endomorphisms, using techniques due to Gallant–Lambert–
Vanstone (GLV) and Galbraith–Lin–Scott (GLS). In such implementa-
tions, a scalar multiplication [k]P is computed as a double multiplication
[k1]P + [k2]ψ(P), for ψ an efficient endomorphism and k1, k2 appropri-
ate half-size scalars. To compute a random scalar multiplication, one
can either select the scalars k1, k2 at random, hoping that the resulting
k = k1+ k2λ is close to uniform, or pick a uniform k instead and decom-
pose it as k1 + k2λ afterwards. The main goal of this paper is to discuss
security issues that may arise using either approach.

When k1 and k2 are chosen uniformly at random in [0,
√
n), n =

ord(P), we provide a security proofs under mild assumptions. However,
if they are chosen as random integers of � 1

2
log2 n� bits, the resulting k is

slightly skewed, and hence not suitable for use in schemes like ECDSA.
Indeed, for GLS curves, we show that this results in a bias of up to 1
bit on a suitable multiple of k mod n, and that this bias is practically
exploitable: while lattice-based attacks cannot exploit a single bit of bias,
we demonstrate that an earlier attack strategy by Bleichenbacher makes
it possible. In doing so, we set a record by carrying out the first ECDSA
full key recovery using a single bit of bias.

On the other hand, computing k1 and k2 by decomposing a uniformly
random k ∈ [0, n) avoids any statistical bias, but the decomposition al-
gorithm may leak side-channel information. Early proposed algorithms
relied on lattice reduction and exhibited a significant amount of timing
channel leakage. More recently, constant-time approaches have also been

P. Sarkar and T. Iwata (Eds.): ASIACRYPT 2014, PART I, LNCS 8873, pp. 262–281, 2014.
c© International Association for Cryptologic Research 2014

GLV/GLS Decomposition, Power Analysis, and Attacks 263

proposed, but we show that they are amenable to power analysis: we de-
scribe a template attack that can be combined with classical lattice-based
attacks on ECDSA to achieve full key recovery on physiscal devices.

Keywords: Elliptic Curve Cryptography, GLV/GLS Method, Bleichen-
bacher’s ECDSA Attacks, Side-Channel Analysis.

1 Introduction

The GLV/GLS Techniques. Many record implementations of elliptic curve
cryptography in software, including, most recently, works such as [27,5,10], rely
on elliptic curves endowed with fast endomorphisms, as constructed by the
methods due to Gallant–Lambert–Vanstone (GLV) [15], Galbraith–Lin–Scott
(GLS) [13], and generalizations thereof. In such implementations, the fast endo-
morphism ψ on the elliptic curve E/Fq is used to speed up full size scalar mul-
tiplications [k]P by computing them as multi-exponentiation [k1]P + [k2]ψ(P),
where k1 and k2 are roughly half of the size of k. Indeed, on a prime order sub-
group of E(Fq), ψ acts by multiplication by some constant λ, and thus, for a
generator P of that subgroup, we have [k1]P + [k2]ψ(P) = [k1 + k2λ]P .

In order to compute random scalar multiplications with those techniques,
two types of approaches have been considered, as far back as in the earliest
presentations of the GLV method (such as Gallant’s talk at ECC’99 [14]).

On the one hand, k1 and k2 can simply be chosen uniformly at random in
a suitable half-length interval. This approach, which we call the recomposition
technique (since k is “recomposed” as k = k1 + k2λ), results in a very simple
implementation, and has been used in several implementation records includ-
ing [27], but Gallant expressed concerns about possible biases in the resulting
scalar k. Such concerns have been partially vindicated by some numerical ev-
idence provided by Brumley and Nyberg [7], who also described a relatively
general way to choose intervals for k1 and k2 so that the resulting choice of k
is in fact secure (in the sense that it has high entropy). However, the Brumley–
Nyberg method is a bit cumbersome, and no attack so far has been demonstrated
against arbitrary half-length uniform choices of k1 and k2, so that the security
picture is somewhat unclear.

On the other hand, one can also pick k at random and subsequently deduce
half-length values k1 and k2, which eliminates concerns regarding possible biases
in the distribution of k. This decomposition technique usually relies on lattice
reduction in dimension 2 (or equivalently, continued fractions, a generalized Eu-
clidean algorithm, etc.), as originally described in the GLV paper [15], and is
significantly more computationally demanding than recomposition. Simplifica-
tions of this method have later been proposed (particularly in [28]), as well as
higher-dimensional generalizations [25] to tackle decompositions involving sev-
eral endomorphisms (as recently used in [31,16] for instance).

ECDSA Attacks. The success of GLV/GLS method in implementations lately
makes it desirable to reconsider these decomposition and recomposition

264 D.F. Aranha et al.

techniques from a security viewpoint. We do so in this paper in the context of
ECDSA signatures, one of the most widely deployed elliptic curve cryptographic
schemes, and an interesting target for the cryptanalyst (like other Schnorr-like
signature schemes) due to its sensitivity to biases in the distribution of nonce
values, as demonstrated by the powerful attack due to Howgrave-Graham and
Smart [17] based on lattice reduction techniques, which breaks (EC)DSA when
some of the most significant bits of the nonces are known. This attack was an-
alyzed in further details by Nguyen and Shparlinski [23,24] and carried out in
practice in many contexts, including against physical devices (see e.g. [22,6] for
some examples). The basic idea is to express the key recovery problem as an in-
stance of the Hidden Number problem (HNP), which reduces to the closest vector
problem (CVP) in a suitable lattice. Since CVP is tractable in low-dimensional
lattices, many practical instances of ECDSA can be broken depending on key size
and the number of leaked nonce bits. The largest problem instance broken so far
is the case of 2-bit nonce leaks on 160-bit curves, tackled by Liu and Nguyen [19]
using the most advanced known techniques for lattice reduction (BKZ 2.0 [9]).
Breaking 2-bit leaks on 256-bit curves, or 4-bit leaks on 384-bit curves seems
currently out of reach (see the discussions in [9,21]).

In any case, there is a hard limit to what can be achieved using lattice reduc-
tion: due to the underlying structure of the HNP lattice, it is impossible to attack
(EC)DSA using a single-bit nonce leak with lattice reduction. In that case, the
“hidden lattice point” corresponding to the HNP solution will not be the closest
vector even under the Gaussian heuristic (see [26]), so that lattice techniques
cannot work. To break this “lattice barrier”, the only known alternate attack is
an algorithm due to Bleichenbacher [3] which predates the attack of Howgrave-
Graham and Smart, but was generally considered of mostly theoretical interest
until it was recently revisited by De Mulder et al. [21] to attack 384-bit curves.
Bleichenbacher devised his attack to demonstrate a vulnerability in DSS at the
time, in which DSA nonces were generated by picking a random value of �n bits,
where �n is the bit length of the group order n, and then to reduce it modulo
n. Bleichenbacher showed that the resulting bias could be exploited in a very
interesting way, obtaining a key recovery using about 241 signatures and about
247 time and 241 memory complexities. At that time, it was not possible to
mount this attack and only simulations on reduced numbers were possible and
the paper was never published.

In the first stage, Bleichenbacher’s algorithm reduces the signatures from 160
bits to say 40 bits using linear combinations of the original signatures and then,
during a second phase, a Discrete Fourier Transform is used to recover the most
significant bits of the secret key. The bias of the reduced signatures is higher
than the bias of the original signatures, that’s the reason why Fourier technique
is needed to extract this information. This algorithm is very similar to Blum,
Kalai and Wasserman algorithms [4,18] for solving LPN and LWE problems.
For 384-bit order, the first stage of Bleichenbacher original attack is not suffi-
ciently efficient to reduce the signatures and more advanced techniques based
on LLL and BKZ are needed if the number of leaked bits is high enough [21].

GLV/GLS Decomposition, Power Analysis, and Attacks 265

The modification of the first stage is not possible if less than one bit of nonces
is available and we turn back to Bleichenbacher’s original attack which requires
a high number of signatures.

Our Contributions. Our first contribution is the first implementation of Ble-
ichenbacher’s attack against ECDSA with a single-bit on nonce bias. We carry
out this attack on the standardized SECG P160 R1 elliptic curve. On this 160-
bit curve, we use 233 ECDSA signatures, and achieve a full key recovery in a few
hours of wall-clock time on a 64-core workstation. The most time-consuming
part of the attack is the first phase, in which a sorting algorithm is executed
several times. This is the first key recovery from a single bit of bias, which
paves the way to new applications. We stress again that this record cannot be
achieved using lattice reduction techniques based on HNP problem, since even if
the HNP lattice satisfies the Gaussian heuristic, a condition for finding the hid-
den lattice point is that the number of known bits of the nonce must be greater
than log2(

√
πe/2) ≈ 1.0471 (hence at least 2) [26], irrespective of the underlying

lattice reduction algorithm.
As a second contribution, we show a security proof for the recomposition

method on curves obtained by the quadratic GLS method once the values k1
and k2 are uniformly distributed in the interval [0,

√
n), where n is the prime

group order. We prove that the statistical distance between this distribution
and the uniform distribution in [0, n) is negligible. Furthermore, if k1 and k2 are
taken at random in a small interval of the form [0, 2m), where m = � 12 log2 n�,
the bias on the distribution on k used in Bleichenbacher’s attack is negligible.
However, we show that the bias of the distribution on tk where t is the trace is
sufficiently large and a Bleichenbacher’s attack allows to recover the secret key.
We also implement this attack and the complexities are similar to the previous
part.

Finally, we study the decomposition technique proposed in GLV with the
implementation described by Park et al. in [28]. To this end, we propose a very
efficient side-channel attack that uses the leakage on the multiplication in order
to recover some of the least significant bits of the nonces. Consequently, we can
thus use lattice techniques to recover the secret key.

2 Preliminaries

2.1 Bias Definition and Properties

The measurement of the bias of random variables represents a significant part
of our analyses. We thus recall the definition of the bias which was proposed by
Bleichenbacher in [3].

Definition 1. Let X be a random variable over Z/nZ. The bias Bn(X) is de-
fined as

Bn(X) = E(e2πiX/n) = Bn(X mod n),

where E(X) represents the mean.

266 D.F. Aranha et al.

Similarly, the sampled bias of a set of points V = (v1, · · · , vL) in Z/nZ is
defined by

Bn(V) =
1

L

L−1∑
j=0

e2πivj/n.

The bias as defined above presents some useful properties we recall in Lemma 1.

Lemma 1. Let 0 < T ≤ n be a bound and X,Y random variables uniformly
distributed on the interval [0, T − 1].

(a) If X is uniformly distributed on the interval [0, n− 1], then Bn(X) = 0.
(b) If X and Y are independent, then Bn(X + Y) = Bn(X)Bn(Y).
(c) Bn(−X) = Bn(X) where a denotes the conjugate of a.

(d) Bn(X) = 1
T

∣∣∣∣ sin(πT/n)
sin(π/n)

∣∣∣∣ and Bn(X) is real-valued with 0 ≤ Bn(X) ≤ 1.

(e) Let a be an integer with |a|T ≤ n and Y = aX, then Bn(Y) = 1
T

sin(πaT/n)
sin(πa/n)

2.2 ECDSA Signature Generation

ECDSA is a NIST standard and we describe the signature generation in
Algorithm 1.

Algorithm 1. ECDSA signature. P is a base point of order n and H : {0, 1}∗ →
[0, n−1] is a cryptographic hash function. The private key is an element x ∈ Z/nZ
and the public key is denoted by (p, n,H, P,Q) with Q = [x]P .

1: function SignECDSA(m)

2: k
$← [0, n− 1]

3: (u, v) ← [k]P
4: r ← u mod n; if r = 0 then goto step 2;
5: s ← k−1(H(m) + rx) mod n; if s = 0 then goto step 2;
6: return (r, s)
7: end function

3 Bleichenbacher’s Attack on Single Bit Bias

In this part, we present our results on an ECDSA signature generation scheme
where the nonce k is 1-bit biased. We demonstrate that an attack proposed some
years ago by Bleichenbacher can succeed in retrieving the secret key in about
237 time and 233 memory complexities given 233 signatures, for 160-bit order.
This attack was initially focusing on the DSA signature generation scheme but
can be applied without any modification to ECDSA we consider in this paper.

The main idea consists in using the fact that the nonces kj are chosen from a
biased random variable K, i.e. k are not randomly and uniformly generated on
[0, n− 1]. Because the values kj are biased and linked with the secret key x by

GLV/GLS Decomposition, Power Analysis, and Attacks 267

the equations which are used for the signature computations, these signatures,
correctly manipulated, also present a bias which will only be significant for the
correct value of x. In other words the bias plays the role of the distinguisher in
this attack.

Obviously, for cryptographic sizes, evaluating the bias for all values in [0, n−1]
is impractical. However, Bleichenbacher observed that it is possible to ”broaden
the peak” of the bias in such a way that, with a value close the correct value of x,
the bias will remain significant. Thus the bias computations can be performed on
a more sparse set of candidates thanks to the Fast Fourier Transform. In return,
it requires a non-negligible work on the signatures which reduces the bias, and
the attack returns an approximation of the secret key, i.e. its most significant
bits. The attack can be iterated to retrieve more bits of the secrets and as soon
as sufficiently many bits of x are known, Pollard’s lambda method [29] can be
used to derive the remaining bits. Algorithm 2 presents the main steps of the
attack.

Algorithm 2. Bleichenbacher’s attack given S ECDSA signatures. The param-
eters S, � and ι have to be chosen accordingly to the bias.

Require: S biased ECDSA signatures (rj , sj) computed using a single secret key x.
Ensure: The � most significant bits of x.

1: Preprocessing
2: for j = 0 to S − 1 do
3: hj ← H(mj) · s−1 mod n
4: cj ← rj · s−1

j mod n
5: end for

6: Reduction of the cj values (Sort-and-Difference Algorithm)
7: A ← [(cj , hj)]0≤j≤S−1

8: for i = 1 to ι do
9: Sort A by the cj values � cj ≤ cj+1

10: for j = 0 to S − ι do
11: A[j] ← A[j + 1]− A[j] � A[j] = (cj+1 − cj , hj+1 − hj)
12: end for
13: end for
14: Only keep the pairs (cj , hj) such that cj < 2�

15: Denote by L the number of such pairs

16: Bias computation using the inverse FFT
17: Z ← (0, · · · , 0) a vector of size 2�

18: for j = 0 to L− 1 do
19: Zcj ← Zcj + e2πihj/n

20: end for
21: W ← iFFT(Z) � Inverse FFT computation. The output is also a vector of

complex numbers.
22: Find the value m such that |Zm| is maximal
23: return msb�(mn/2�)

268 D.F. Aranha et al.

3.1 Attack Analysis

We first explain why the bias can serve as a distinguisher and while doing so
explain the goal of the preprocessing phase, as it was done in [21], for the sake
of completeness. For that purpose, consider S ECDSA signatures (rj , sj) with
biased nonces kj . We have the following relation due to step 5 of Algorithm 1:

kj = H(mj)s
−1
j + rjs

−1
j x mod n for 0 ≤ j ≤ S − 1.

Now let hj = H(mj)s
−1
j mod n and cj = rjs

−1
j mod n. Then the set {hj +

cjx}S−1
j=0 = {kj}S−1

j=0 will show a significant nonzero sampled bias. Moreover, for

any w �= x, the sampled bias from Vw = {hj + cjw}S−1
j=0 will be relatively small.

Since hj and cj are publicly computable, we thus have a way to determine the
correct value of x by testing all the value w ∈ [0, n− 1].

To have a practical test, we have to broaden the peak of the bias such that
values of w close to the correct value x will also show a significant bias. The
peak will be broad if the cj are relatively small. More precisely, by denoting 2�

a bound such that 0 ≤ cj < 2�, then we can find an approximation of x by
evaluating the sampled bias of 2� evenly-spaced values of w between 0 and n−1.

The reduction of the cj , second phase in Algorithm 2, can be done using a
sort-and-difference algorithm. From S pairs (cj , hj), we first sort them according
to their first element. Then we subtract each cj from the next largest one and we
take the differences of the corresponding hj as well. We thus obtain a list of S−1
pairs (c′j , h

′
j) whose values c′j are on average log(S) bits smaller. More details

about the analysis of this reduction are given later. This reduction algorithm can
be repeated in order to achieve the bound 2�: once the MSB of x are known, one
can rewrite the system and attack the next top bits, by integrating the learnt
MSB into the cj as was done in [21].

Now let wm = mn/2�, with m ∈ [0, 2�−1], be 2� evenly-spaced values between
0 and n − 1. For sake of clarity, we keep the notation (cj , hj) for the reduced
pairs with cj < 2� and we consider having L such pairs. Then

Bn(Vwm) =
1

L

L−1∑
j=0

e2πi(hj+cjmn/2�)/n =

2�−1∑
t=0

(
1

L

∑
{j|cj=t}

e2πihj/n

)
e2πitm/2�

=

2�−1∑
t=0

Zte
2πitm/2�

with Zt = 1
L

∑
{j|cj=t} e

2πihj/n. Bn(Vwm) can be viewed as the inverse Fast

Fourier Transform of the vector Z = (Z0, · · · , Z2�−1). Thus the multiple
bias computations can be performed very efficiently using the FFT. From
Step 17 to 20 in Algorithm 2, we compute this vector Z. Step 21 out-
puts a vector of the sampled bias for the 2� candidates, i.e. iFFT(Z) =
(Bn(Vw0), Bn(Vw1), · · · , Bn(Vw

2�−1
)). Finally, the value of wm = mn/2� with

the largest sampled bias should share its � most significant bits with the secret
key x.

GLV/GLS Decomposition, Power Analysis, and Attacks 269

Choosing the Parameters. We first give some properties which will help to
define the parameters for the attack. We can estimate the sampled bias for a
wrong candidate wm, i.e. a value wm which do not share some most significant
bits with the secret key x. More precisely, it can be shown that for wm either
significantly larger or significantly smaller than x, we have Bn(Vwm) ≈ 1√

L
,

which corresponds to the average distance from the origin for a random walk on
the complex plane.

The second property concerns the cj reduction phase and gives a relation
between the number of signatures S and the number of reduced pairs L.

Proposition 1. Consider S ECDSA signatures of the form (cj , hj) and γ ∈ Z.
The percentage of signatures (c′j , h

′
j) after the first application of the sort-and-

difference algorithm such that c′j < 2log q−log S+γ can be approximated by 1−e−2γ .

Lemma 2. Let X1, . . . , XN be N independent uniformly distributed random
variables over [0, 1], and for all i, denote by X(i) the i-th order statistic of the
Xj’s (namely, X(i) is the i-th smallest among the Xj’s). Then, the random vari-
ables Yi = X(i+1) − X(i) for i = 1, . . . , N − 1 are identically distributed, and
all follow the beta distribution B(1, N), of probability density function (here-
after pdf) f(t) = N · (1 − t)N−1. As a result, for any constant α > 0, we have
Pr[Yi ≤ α/N] = 1− e−α +O(1/N).

Proof. Indeed, a standard formula [11, 2.2.1] expresses the joint pdf of X(i) and
X(i+1) as:

fi,i+1(u, v) =

{
N !

(i−1)!(N−i−1)!u
i−1(1 − v)N−i−1 for 0 ≤ u ≤ v ≤ 1,

0 otherwise.

Hence, the pdf fi of Yi is given by:

fi(t) =

∫ 1−t

0

fi,i+1(u, u+ t)dt for t ∈ [0, 1].

The change of variable u = (1 − t)w gives:

fi(t) = (1− t)

∫ 1

0

fi,i+1

(
(1− t)w, (1 − t)w + t

)
dw

= c(1− t)

∫ 1

0

(1− t)i−1wi−1(1− w − t+ wt)N−i−1dw

= c(1− t)i
∫ 1

0

wi−1(1− t)N−i−1(1− w)N−i−1dw

= c(1− t)N−1

∫ 1

0

wi−1(1− w)N−i−1dw,

270 D.F. Aranha et al.

where c = N !
(i−1)!(N−i−1)! . In particular, we have fi(t) = c′(1 − t)N−1 for some

constant c′ and all t ∈ [0, 1], and since
∫ 1

0 fi = 1, we must have fi(t) = N(1 −
t)N−1 = f(t) as required. As a result, we obtain:

Pr
[
Yi ≤

α

N

]
=

∫ α/N

0

N(1− t)N−1dt = 1−
(
1− α

N

)N
= 1− exp

(
N · (−α/N +O(1/N2))

)
= 1− e−α +O(1/N).

This concludes the proof. �

As an example consider a modulus n of size 160. Starting from 240 ECDSA
signatures, after one iteration of the sort-and-difference algorithm, about 86.5%
of them will have a value c′j < 2121. The percentage drops to 22.1% if we consider

only those ones with a value c′j < 2118. Note that this proposition is only true
for the first iteration of the algorithm where we really can consider variables as
uniformly random and independently distributed. Clearly they are not after this:
if after the first round variables were uniformly distributed, the ratio between
γ = −2 and γ = 1 would be 0.125 = 1/23 where it is ≈ 0.255. Sadly, it appears
that the ratio progress in our disfavor when we want to iterate, i.e. the ratio after
ι iterations is less than (1−e−2γ)ι. We thus do not have a lower bound. However
the ratio can be experimentally determined and Table 1 gives an overview for
different values of γ up to 6 iterations.

Table 1. Experimental ratio between the ECDSA signatures of the form (c′j , h
′
j) such

that c′j < 2log n−ι·(log S+γ), and the S initial signatures, after ι iterations of the sort-
and-difference algorithm

γ -2 -1 0 1 2

1st iteration 0.22 0.39 0.63 0.86 0.98

2nd iteration 0.031 0.12 0.36 0.75 0.94

3rd iteration 3.2 10−3 0.025 0.17 0.64 0.89

4th iteration 3.0 10−4 4.6 10−3 0.069 0.53 0.84

5th iteration 2.0 10−5 6.7 10−4 0.022 0.40 0.79

6th iteration 2.8 10−6 9.5 10−5 6.5 10−3 0.28 0.73

Given S signatures, we have to choose a pair (γ, ι) such that logn− ι · (logS+
γ) = � is sufficiently small to perform a FFT in 2� log � time and 2� memory
complexities. The algorithm complexity is O

(
S log(S) + � log(�)

)
. Now a verifi-

cation is necessary to be sure that this set of parameters will give a successful
attack. Indeed denote by Bn(K) the initial bias which is fully determined by the
number of most (or least) significant bits of the ki which are known or set to
zero (see Table 2 for some values). From properties (b) and (c) of the Lemma 1,
each iteration of the sort-and-difference algorithm reduces the bias by raising
it to the square of its norm (assuming that the variables are independant): in-
deed, let X,Y be uniformly distributed and independent random variables on

GLV/GLS Decomposition, Power Analysis, and Attacks 271

[0, n − 1], then Bn(X) = Bn(Y) and Bn(X − Y) = Bn(X)Bn(Y) = |Bn(X)|2.
The final bias is then approximated by |Bn(K)|2ι . Thus the following inequality
holds since Bn(Vwm) ≈ 1/

√
L:

|Bn(K)|2ι ' 1/
√
L,

where L represents as before the number of reduced pairs (cj , hj) with cj < 2�.
Using Table 1 which gives the ratio L/S for different choices of pairs (γ, ι), we
obtain a relation between S, ι, � and n.

Note that contrary to previous reports in the literature [21,3], we do not need
to center the kj around 0. Indeed sort-and-difference algorithm performs only
subtractions and does not mix subtractions and additions as is common with
lattice reduction or generalized birthday algorithms.

Table 2. Some values of bias for large n, when b most (or least) significant bits of k
are known, using Property (d) of Lemma 1

b 1 2 3 4 5

Bn(K) 0.6366198 0.9003163 0.9744954 0.9935869 0.9983944

3.2 Implementation

We successfully implemented the attack. As our target, we chose the SECG P160
R1 curve, published in 2000 by the SECG consortium [8] and still considered
secure. We fixed the most significant bit in the nonces and checked (with the
help of the secret) that we indeed got the expected bias: ≈ 0.63662. Our C++
implementation was based on the RELIC toolkit (using its provided plain C
integer arithmetic) [1] and FFTW [12]. We parallelized it in a straightforward
manner (including (quick)sorting phases) and tested it on a multicore machine.

We generated 233 signatures and performed 4 sort-and-difference reduction
phases. 450 millions (which is 52.5%) of our initial 233 signatures had their
cj reduced down to 32 bits, as was expected from table 1. The bias after 4
reduction steps was 0.000743558 which is slightly greater than the expected
0.636622

4 ≈ 0.00072792. We then computed a FFT on 32 bits (we selected the
reduced cj smaller than 232). The best candidate had a score approximately 35%
greater than the second. Both corresponding MSB of the secret differed only by
the 31st and 32nd most significant bits. The 3rd and 4th candidates were also very
close to the two first ones, with score approximately 1/3 of the best candidate.
Then, there was a number of random values with maximal score approximately
1/6 of the best one. We repeated the experiment several (5) times and got similar
results, always finding at least the 30 MSB of the secret with the best candidate.
We couldn’t repeat it more because of the high computational resources involved.

The total memory used by the signatures and FFT tables was slightly more
than 1 terabyte. To recover 32 bits of the private key, the attack took approxi-
mately 1150 CPU-hours, most of it being data exchange, which we can decom-
pose as follows:

272 D.F. Aranha et al.

– 70%: parallelised quicksort (the most memory-intensive phase)
– 18%: signature generation (approximately 250 to 430 kilocycles per signature

depending on the CPU, excluding hash computations)
– 10%: candidate selection and FFT table preparation
– ≈ 1%: the FFT itself.

We did not use more parallelizable sorts like Batcher odd-even mergesort [2] but
this would clearly be the next thing to do from a performance perspective.

Next steps of the attack to recover the following bits of the secret were done as
in [21]. Basically, it amounts to a replay of algorithm 2 on the initial signatures,
putting the previously found MSB of the secret into hj . Write the private key
x as x02

m + x1 where x0 is the recovered m MSB at the first round. Then
(hj) + (cj)x = (hj + cjx02

m) + (cjx1) and we want to recover the MSB of
x1. We proceed as in the first round, except that we now keep the cj that are
smaller than 2�+m instead of 2� (thus when � = m we just have to stop the
reduction one iteration earlier). Then we build the FFT table as Z[cj/2

m] =

Z[cj/2
m] + e2πih

′
j/n. The FFT recovers the next most significant chunk of bits

of the secret key. The computation restart makes it necessary to go back from
the initial signatures, but there’s no need to keep them in memory during the
reduction. In practice we had barely enough memory to keep them, but in order
to reduce memory usage they should either be stored on disk and retrieved to
iterate the secret recovery, or tracked down through the reduction and rebuilt
afterwards.

In practice, it is advisable to take a small security margin and reinject only
30 bits of the computed MSB of the secret to account for small variations of
sampling around the peak. In any case, if we recurse with a wrong secret, the FFT
will not detect any peak. Experiments indeed showed no peak in this case, with
the highest score not being statistically different from the other ones. This paves
the way for a time/memory tradeoff: suppose the hardware is limited in memory
and can only work on (say) 231 signatures and 230 FFT size instead of the 233

needed for attacking 160 bits with 4 iterations with the previous algorithm. We
first reduce the cj from 160 to 40 bits with 4 reductions as usual. We then simply
guess the 10 MSB of the secret and build 230-sized FFT tables accordingly. The
guess will be correct on the only one FFT among the 210 which shows a significant
peak. Since FFTs are particularly efficient, much more than sorting, this is of
practical importance. Alternatively, if it’s possible to compute 241 signatures, we
can select only the expected 1/210 fraction of signatures whose corresponding cj
have their 10 MSB already zeroes, that is to say that have 150 bits instead of 160
and can be reduced to 30 with 4 iterations. Finally, since the FFT table takes
less memory than the signatures (a complex number occupies 16 bytes whereas
a signature requires at least 40), we could improve the attack further by either
carrying out several FFTs in parallel when guessing some bits of the secret, or
by increasing the size of the FFT table slightly (with a corresponding increase of
the selection bound on cj). This would have two advantadges. Firstly, it would
improve the sampling around the peak and reduce the uncertainty. Secondly, the
bound increase implies that some signatures would be selected after the third

GLV/GLS Decomposition, Power Analysis, and Attacks 273

round of reduction instead of the fourth, thus having a much better bias and
hopefully revealing more precise information about the secret.

Our experiments targeted a 160-bit curve, but it should be pointed out that
larger curves are susceptible to this attack as well. Roughly speaking, one can
carry out the key recovery attack with 1-bit nonce bias on an N -bit curve in
time ≈ 2N/5 log2(N/5) and memory ≈ 2N/5. For example, a 256-bit curve can be
attacked in time ≈ 258 and memory ≈ 252: generate 252 signatures, perform 4
reduction steps (removing 4 · 51 = 204 bits on approximately 53% of the data),
keep signatures with cj less than 252 and carry out the FFT on a table of size
252. One signature is 64 = 26 bytes, so that the total memory needed for the
attack is 218 terabytes of storage, which corresponds to 65536 of today’s 4 TB
disks. This does not appear to be out of reach of well-funded adversaries.

4 Security Analysis of the Recomposition Technique

The results presented so far had no direct connection with GLV/GLS curves.
We now turn to such curves, and first discuss in this section the security of
what we called the “recomposition technique” for GLV/GLS coefficients (namely,
choose k1 and k2 uniformly at random in some interval [0,K) to obtain k =
k1 + k2λ mod n), whereas the next section will focus on the “decomposition
technique”.

To fix ideas, we consider an elliptic curve E obtained by the quadratic GLS
method over a prime field [13, §2.1]. In other words, there is an elliptic curve E0

over the prime field Fp such that E is the quadratic twist of E0 over Fp2 . If we
denote by p+1− t the order of E0(Fp) (where t is bounded as |t| ≤ 2

√
p by the

Hasse–Weil theorem), the order n of E(Fp2) satisfies:

n = (p− 1)2 + t2. (1)

We assume that this order n is prime, which is the main case of interest. Then,
E is endowed with an efficient endomorphism ψ (obtained by conjugating the
Frobenius map with the twisting isomorphism) which acts on the cyclic group
E(Fp2) by multiplication by

λ ≡ t−1(p− 1) (mod n). (2)

In particular, λ2 ≡ (p− 1)2/t2 ≡ −t2/t2 ≡ −1 (mod n).
In this setting, we first prove in §4.1 that if k1 and k2 are chosen uniformly at

random in [0,
√
n), then k = k1+k2λ is statistically close to uniform in Z/nZ, so

that such a choice of (k1, k2) can be used securely in any cryptographic protocol
(and in particular ECDSA). On the other hand, we show in §4.2 that if k1 and k2
are chosen in [0, 2m) where m = � 12 log2 n� instead, then k = k1 + k2λ may not
be close to uniform anymore, and we show that a variant of Bleichenbacher’s
attack can apply. In §4.3, we describe an implementation of that attack on a
160-bit GLS curve, similar to the attack of §3.

274 D.F. Aranha et al.

4.1 A Secure Choice of (k1, k2)

Let E be a curve of prime order n over Fp2 obtained by the quadratic GLS
method as above. In view of (1), we have:

(p− 1)2 ≤ n ≤ (p− 1)2 + (2
√
p)2 = (p+ 1)2,

and the inequalities are in fact strict, since n is prime. Thus, we have p − 1 <√
n < p + 1, and it follows that the distribution of k = k1 + k2λ for (k1, k2)

uniform in [0,
√
n)2 is statistically close to the distribution of the same k for

(k1, k2) uniform in [0, p− 1)2. We will thus concentrate on the latter, and show
that it is close to uniform in Z/nZ using the following lemma.

Lemma 3. The following map is injective.

F : [0, p− 1)2 −→ Z/nZ

(k1, k2) �−→ k1 + k2λ.

Proof. Consider two distinct pairs (k1, k2) �= (k′
1, k

′
2) such that F (k1, k2) =

F (k′
1, k

′
2). We have:

(x− x′) + (y − y′)λ ≡ 0 (mod n)

(x− x′)2 ≡ λ2(y − y′)2 (mod n)

(x− x′)2 + (y − y′)2 ≡ 0 (mod n),

since λ2 ≡ −1 (mod n). Thus, the positive integer (x−x′)2+(y−y′)2 is divisible
by n, and it is also smaller than 2(p − 1)2 < 2n, so we must have (x − x′)2 +
(y − y′)2 = n. In other words, (x − x′)2 + (y − y′)2 is a decomposition of n as
a sum of two squares. Now it is well-known that, as a prime number, n has at
most one decomposition as a sum of two squares up to order and sign (see e.g.
[20, §3.6]), and (p − 1)2 + t2 is one such representation. As a result, we must
have either x− x′ = ±(p− 1) or y− y′ = ±(p− 1), and neither is possible since
those difference are bounded by p− 2 in absolute value. Hence, F is injective as
required. �

Theorem 1. The distribution of the values k = k1 + k2λ for (k1, k2) uniform
in [0, p − 1)2 is statistically close to the uniform distribution on Z/nZ. More
precisely, the statistical distance:

Δ1 =
∑

k∈Z/nZ

∣∣∣Pr [k = k1 + k2λ ; (k1, k2)
$← [0, p− 1)2

]
− 1

n

∣∣∣
is given by Δ1 = 2t2/n, which is negligible.

Proof. Indeed, since the function F above is injective by Lemma 3, the proba-

bility Pr
[
k = k1 + k2λ ; (k1, k2)

$← [0, p − 1)2
]
is equal to 1/(p − 1)2 for each

GLV/GLS Decomposition, Power Analysis, and Attacks 275

of the (p− 1)2 points in the image of F , and 0 for each of the n− (p− 1)2 = t2

points outside of that image. Therefore:

Δ1 = (p− 1)2 ·
∣∣∣ 1

(p− 1)2
− 1

n

∣∣∣+ t2 ·
∣∣∣0− 1

n

∣∣∣ = 1− (p− 1)2

n
+

t2

n
=

2t2

n

as required. This is bounded above by 8p/(p−1)2, which is indeed negligible. �

Remark 1. Theorem 1 means that it is secure, in any ECC protocol instantiated
over the GLS curveE, to sample random scalars k by picking k1 and k2 uniformly
in [0, p− 1), or equivalently [0,

√
n).

As we can see, the proof relies on the particular arithmetic properties of the
quadratic GLS method (mainly the fact that λ =

√
−1 in Z/nZ), so that the

result does not readily extend to different settings, like the GLV method on a
curve of CM discriminant −3. And indeed, in that case, Brumley and Nyberg
have provided evidence that choosing (k1, k2) uniformly in [0,

√
n) may not yield

a close to uniform distribution for k [7, Example 3]. They suggest an alternate
approach to select intervals to choose k1 and k2 from and still achieve high
entropy in a more general setting, but since the quadratic GLS method is one
of the most used variants of GLV/GLS, we believe Theorem 1 is of significant
practical interest.

4.2 Breaking Insecure Choices of (k1, k2) with Bleichenbacher’s
Attack

In the quadratic GLS setting, we have just seen that choosing (k1, k2) uniformly
in [0,

√
n)2 yields a close-to-uniform distribution of k = k1 + k2λ. However,

we can reasonably suspect that if we choose k1 and k2 uniformly in [0, 2m),
m = � 12 log2 n� (i.e. uniform bitstrings of length just under half of the size of n),
the distribution of k will no longer be uniform. This is not immediately visible
on the bias, however.

Indeed, if we let T = 2m and define K1,K2 as independent uniform random
variables over [0, T) and K as the random variable in Z/nZ given by K =
K1 +K2λ, we have, by Lemma 1:

Bn(K) = Bn(K1) ·Bn(λK2) =
1

T

∣∣∣ sin(πT/n)

sin(π/n)

∣∣∣ · 1
T

∣∣∣ sin(πλT/n)

sin(πλ/n)

∣∣∣.
The first factor is very close to 1, but the second factor is usually negligi-
ble. For example, on the 160-bit GLS curve (3) below, we have T = 279 and
Bn(λK2) ≈ 1.52/T . As a result, Bleichenbacher’s attack does not apply directly
to this setting in general.

276 D.F. Aranha et al.

However, since λ ≡ t−1(p − 1) (mod n), we claim that there is a significant
bias on the values t · k. Indeed, we have:

Bn(tK) = Bn(tK1) · Bn

(
(p− 1)K2

)
=

1

T

∣∣∣ sin(πtT/n)

sin(πt/n)

∣∣∣ · 1
T

∣∣∣ sin(π(p− 1)T/n)

sin(π(p− 1)/n)

∣∣∣
=

1

T

πtT/n+O((tT/n)3)

πt/n+O((t/n)3)
· 1
T

| sin(π(p− 1)T/n)|
π(p− 1)/n+O(((p − 1)/n)3)

=
(
1 +O

(
(tT/n)2 + (p/n)2

))
·
∣∣∣ sin(π(p− 1)T/n)

π(p− 1)T/n

∣∣∣.
The big-O in the first factor is negligible since tT/n = Θ(p1/2 ·p/p2) = Θ(p−1/2)
and p/n = Θ(p−1). On the other hand, (p− 1)T/n ≈ T/

√
n is roughly between

0.5 and 1 depending on how close n is to a power of two. Thus, the bias is
significant in general, and is maximal when (p−1)T/n is smallest (close to 1/2),
which happens when n is just under a power of two. The bias Bn(tK) is then
close to 1/(π · 1/2) = 2/π ≈ 0.637.

It is then straightforward to adapt Bleichenbacher’s attack to this setting by
targetting the values t·k instead of k. We can then break ECDSA signatures that
use nonces of the form k = k1+k2λ above using that variant. An implementation
of that attack is discussed in the next subsection.

4.3 Implementation of Bleichenbacher’s Attack in the GLS Setting

We carry out the attack described above on the 160-bit GLS curve E defined as
follows. Over the 80-bit prime field1 Fp, p = 255 · 272 + 1, we define E0 : y

2 =
x3 − 3x/23 + 104. Then, the elliptic curve E is the quadratic twist of E0 over
Fp2 = Fp(

√
23), namely:

E : y2 = x3 − 3x+ 104 ·
√
23

3
over Fp2 . (3)

The order of E0(Fp) is p + 1 − t for t = 776009485427, and E(Fp2) is of prime
order n = (p − 1)2 + t2. The theoretical value of the bias Bn(tK), computed
using the exact formula above, is then ≈ 0.634.

We performed the recovery of 32 MSB of a private key as in section 3.2. We
computed 233 signatures and unrolled the attack on (tcj mod n, thj mod n)
instead of (cj , hj). We checked the bias and obtained ≈ 0.634116 which is close
to the theory. In practice the attack took about 2000 CPU-hours, with 56% for
the signature generation, 37% for the four sort-and-difference reduction steps,
5% for the candidate selection and FFT table preparation and less than 0.5%
for the FFT itself. In wall-clock time terms, except for the signature generation
which took (much) longer, other phases were identical as 3.2. We attribute this
unexpected increase in signing time to threshold effects: for example, represent-
ing elements on a prime field with ≈ 2160 elements needs only 3 64-bit words,
whereas a on Fp2 we needed 4× 2 = 8 words.

1 This is an example of “optimal prime field” (OPF). See e.g. [32].

GLV/GLS Decomposition, Power Analysis, and Attacks 277

5 Security Analysis of the Decomposition Technique

In this section, we analyze the security of algorithms for computing the decom-
position of the nonces used in the GLV method from a side-channel analytic
perspective. Many techniques have been proposed, including [15,28]. The origi-
nal GLV method [15] based on LLL reduction of a lattice that depends on the
nonce k, and variants thereof, have an execution time that depends on k, and
are therefore vulnerable to timing attacks.

Therefore, we examine the security of a potentially more secure approach, the
Park et al. [28] decomposition technique, using more involved power analysis
technique.

5.1 Decomposition Algorithm

Park et al. provide an alternative decomposition to the GLV paper [15] which
reduces the theoretical bound for the decomposition using the theory of μ-
Euclidian algorithm and is a little bit faster. The algorithm requires two short
and independent vectors v1 and v2 of the two-dimensional lattice L = {(x, y) :
x + yλ = 0 mod n}. We can find these vectors during a precomputation time
using the Gauss reduction. The algorithm consists in finding a vector in the lat-
tice L = Zv1 + Zv2 that is close to (k, 0) using linear algebra. Then, (k1, k2) is
determined by the equation:

(k1, k2) = (k, 0)− (�b1�v1 + �b2�v2),

where (k, 0) = b1v1 + b2v2 is an element of Q×Q.

Algorithm 3. Decomposition technique of Park et al. in [28]

Require: k ≈ n, the shortest vectors v1 = (x1, y1), v2 = (x2, y2)
Ensure: (k1, k2) such that k = k1 + k2λ(modn)

1: D = x1y2 − x2y1, a1 = y2k, a2 = −y1k
2: zi = �ai/D
 for i = 1, 2
3: k1 = k − (z1x1 + z2x2), k2 = z1y1 + z2y2 return (k1, k2)

The decomposition technique depicted in Algorithm 3 makes many computa-
tions involving the sensitive nonce k. Particularly, the computation of a1 (resp.
a2) is based on a multiplication of the nonce k by y2 (resp. y1) which is assumed
to be known since it is a precomputed value obtained from public parameters
using a deterministic algorithm.

Suppose now that we obtain the knowledge of the least significant byte of �
nonces k1, · · · , k�. The best strategy for finding the secret key x consists in per-
forming classical lattice attacks as proposed in [17,23,24]. For a 160-bit modulus,
the lattice attack works consistently for � � 27. However the side-channel attack
may sometimes fail, i.e. the returned byte of some kj can be a wrong value.

278 D.F. Aranha et al.

Thus, by denoting 0 < c < 1 the confidence rate, the side-channel attack has to
be performed on m >
27/c� signatures. Then:

– Select 27 signatures at random among them.
– Perform the attack using these signatures.
– If the attack fails, goto the first step.

The probability of success at each iteration of the lattice attack is
(
m·c
27

)
/
(
m
27

)
.

As an example, suppose we obtain m = 200 signatures, and can guess the least
significant byte with 90% accuracy (c = 0.9). Then the probability of success of
the lattice attack is about 4.7% and 21 lattice reductions have to be performed
on average. Since LLL reductions are cheap, much lower success probabilities are
tractable as well.

In the following, we discuss the side-channel attack that aims at recovering
the first byte of the nonce targeting the two aforementioned multiplications.
We present the attack in the particular case of a 8-bit implementation (that
corresponds to the device we used in experiments). Note that this attack may
also work for 16-bit implementation but in this case the computational cost will
be larger and the success rate smaller.

5.2 Side-Channel Attack on this Implementation

The details of the attack highly rely on the way the multiplication is imple-
mented. Depending of the underlying algorithm, the attack may be more or less
difficult. We present here the attack corresponding to the implementation we
target but we will discuss adaptations to different algorithms. The multiplica-
tion we target is a schoolbook multiplication with the nonce being scanned in
the outter loop. Algorithm 4 outlines the implementation of such multiplication
for �n-bit nonces and �n/2-bit b.

Algorithm 4. Multiplication v = kb of k =
∑�n/8

i=0 ki2
8i times b =

∑�n/2/8

i=0 bi2
8i

Require: �n-bit k and �n/2-bit b two integers, v = 0
Ensure: v = k × b

1: v ← 0
2: for i = 0 to i < �n/8 do
3: c0 ← 0
4: for j = 0 to j < �n/2/8 do
5: vi+j = (ki × bj + cj) & 0xFF

6: cj+1 = (ki × bj + cj) � 8

7: end for
8: end for return v

The idea is to take profit of all operations involving the first nonce-byte in the
inner loop to recover its value. This can be done by propagating a probability
distibution from an operation to another and updating it with the corresponding

GLV/GLS Decomposition, Power Analysis, and Attacks 279

leakages. Since the nonce bits have to be recovered using a single trace (the nonce
is randomly generated for each signature) we place ourselves in the context of
a profiled attack. The application of such an attack in a non-profiled setting is
left as an open question.

Template Attack on One Step. One step of the inner loop consists in a multipli-
cation of the first byte of the nonce k0, a byte of the auxiliary input bi and the
carry ci. This results in a value vi and a new carry ci+1. We may obtain leakages
for each of these variables. We denote by capital letters the output distributions
of template exploitation corresponding to small letter variables. For instance,
after processing the leakage corresponding to ci, the attacker gets a distribution

Ci =
(
Pr(ci = 0),Pr(ci = 1), . . . ,Pr(ci = 255)

)
.

Since these variables may be manipulated more than once during the compu-
tation, different leakage points may be combined by multiplicating probabilities
then normalizing the resulting distribution. More precisely, let l1, l2, . . . , ll be
leakages corresponding to variable k0, then the distribution K0 obtained from
these leakages is computed as

Pr(k0 = x) =
1

Z

l∏
j=1

Pr(k0 = x|lj),

where the normalizing coefficient Z is given by
∑

x

∏l
j=1 Pr(k0 = x|lj).

Propagating and Updating Distribution. Let us now discuss how to take profit
of all the leakages of the inner loop to gain information on the byte k0. The
main idea is to gather all the information from all variables of a given step i
into distribution K0 and Ci+1 then do the same at step i + 1 using the newly
updated distributions. From a probabilistic point of view we should compute the
joint distribution of variables of step i then compute marginalized distributions
K0 and Ci+1. The following algorithm updates the distributions K0 and Ci+1

according to the distributions of variables bi, vi and ci.

Algorithm 5. Information propagation for one step of the multiplication inner
loop

Require: distributions K0, Bi, Vi, Ci and Ci+1

Ensure: K′
0 and C′

i+1 updated distribution

1: K′
0 = (0, 0, . . . , 0)

2: for 0 ≤ k, b, c < 256 do
3: 28 · u+ v ← k × b+ c
4: K′

0(k) ← K′
0(k) +K0(k) ·Bi(b) · Ci−1(c) · Vi(v) · Ci(u)

5: C′
i+1(u) ← C′

i+1(u) +K0(k) ·Bi(b) · Ci(c) · Vi(v) · Ci+1(u)
6: end for
7: return K′

0/
∑

k K
′
0(k) and C′

i+1/
∑

u C′
i+1(u)

280 D.F. Aranha et al.

The attacker starts with using Algorithm 5 for the first step. Then she uses
the newly updated distributions K0 and C1 and the initial distributions B1, V1

and C2 as inputs of Algorithm 5 and so on . . . At the end, the attacker gets the
final distribution K0 from which she can derive the most likely value of the least
significant bit (or more).

References

1. Aranha, D.F., Gouvêa, C.P.L.: RELIC is an Efficient LIbrary for Cryptography,
http://code.google.com/p/relic-toolkit/

2. Batcher, K.E.: Sorting networks and their applications. In: Proceedings of the
Spring Joint Computer Conference, AFIPS 1968 (Spring), pp. 307–314. ACM,
New York (1968)

3. Bleichenbacher, D.: On the generation of one-time keys in DL signature schemes.
Presentation at IEEE P1363 Working Group Meeting (2000)

4. Blum, A., Kalai, A., Wasserman, H.: Noise-tolerant learning, the parity problem,
and the statistical query model. J. ACM 50(4), 506–519 (2003)

5. Bos, J.W., Costello, C., Hisil, H., Lauter, K.: High-Performance Scalar Multiplica-
tion Using 8-Dimensional GLV/GLS Decomposition. In: Bertoni, G., Coron, J.-S.
(eds.) CHES 2013. LNCS, vol. 8086, pp. 331–348. Springer, Heidelberg (2013)

6. Brumley, B.B., Hakala, R.M.: Cache-Timing Template Attacks. In: Matsui, M.
(ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 667–684. Springer, Heidelberg
(2009)

7. Brumley, B.B., Nyberg, K.: On Modular Decomposition of Integers. In: Preneel, B.
(ed.) AFRICACRYPT 2009. LNCS, vol. 5580, pp. 386–402. Springer, Heidelberg
(2009)

8. Certicom Research. Standards for efficient cryptography, SEC 1: Elliptic curve
cryptography, Version 1.0 (September 2000)

9. Chen, Y., Nguyen, P.Q.: BKZ 2.0: Better Lattice Security Estimates. In: Lee, D.H.,
Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer, Heidel-
berg (2011)

10. Costello, C., Hisil, H., Smith, B.: Faster Compact Diffie–Hellman: Endomorphisms
on the x-line. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS,
vol. 8441, pp. 183–200. Springer, Heidelberg (2014)

11. David, H.A., Nagaraja, H.N.: Order Statistics. Wiley (2003)
12. Frigo, M., Johnson, S.G.: The design and implementation of FFTW3. Proceed-

ings of the IEEE 93(2), 216–231 (2005); Special issue on Program Generation,
Optimization, and Platform Adaptation

13. Galbraith, S.D., Lin, X., Scott, M.: Endomorphisms for faster elliptic curve cryp-
tography on a large class of curves. J. Cryptology 24(3), 446–469 (2011)

14. Gallant, R.: Efficient multiplication on curves having an endomorphism of norm
1. In: Workshop on Elliptic Curve Cryptography (1999)

15. Gallant, R.P., Lambert, R.J., Vanstone, S.A.: Faster Point Multiplication on El-
liptic Curves with Efficient Endomorphisms. In: Kilian, J. (ed.) CRYPTO 2001.
LNCS, vol. 2139, pp. 190–200. Springer, Heidelberg (2001)

16. Guillevic, A., Ionica, S.: Four-Dimensional GLV via the Weil Restriction. In: Sako,
Sarkar (eds.) [30], pp. 79–96

17. Howgrave-Graham, N., Smart, N.P.: Lattice Attacks on Digital Signature
Schemes. Des. Codes Cryptography 23(3), 283–290 (2001)

http://code.google.com/p/relic-toolkit/

GLV/GLS Decomposition, Power Analysis, and Attacks 281

18. Levieil, É., Fouque, P.-A.: An Improved LPN Algorithm. In: De Prisco, R.,
Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 348–359. Springer, Heidelberg
(2006)

19. Liu, M., Nguyen, P.Q.: Solving BDD by enumeration: An update. In: Dawson, E.
(ed.) CT-RSA 2013. LNCS, vol. 7779, pp. 293–309. Springer, Heidelberg (2013)

20. McKean, H., Moll, V.: Elliptic curves: function theory, geometry, arithmetic. Cam-
bridge University Press (1999)

21. Mulder, E.D., Hutter, M., Marson, M.E., Pearson, P.: Using Bleichenbacher’s
solution to the hidden number problem to attack nonce leaks in 384-bit ECDSA:
extended version. J. Cryptographic Engineering 4(1), 33–45 (2014)

22. Naccache, D., Nguyên, P.Q., Tunstall, M., Whelan, C.: Experimenting with
Faults, Lattices and the DSA. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386,
pp. 16–28. Springer, Heidelberg (2005)

23. Nguyen, P.Q., Shparlinski, I.: The Insecurity of the Digital Signature Algorithm
with Partially Known Nonces. J. Cryptology 15(3), 151–176 (2002)

24. Nguyen, P.Q., Shparlinski, I.: The Insecurity of the Elliptic Curve Digital Signa-
ture Algorithm with Partially Known Nonces. Des. Codes Cryptography 30(2),
201–217 (2003)

25. Nguyên, P.Q., Stehlé, D.: Low-Dimensional Lattice Basis Reduction Revisited. In:
Buell, D.A. (ed.) ANTS 2004. LNCS, vol. 3076, pp. 338–357. Springer, Heidelberg
(2004)

26. Nguyen, P.Q., Tibouchi, M.: Lattice-Based Fault Attacks on Signatures. In: Fault
Analysis in Cryptography. Information Security and Cryptography, pp. 201–220.
Springer (2012)

27. Oliveira, T., López, J., Aranha, D.F., Rodŕıguez-Henŕıquez, F.: Two is the fastest
prime: lambda coordinates for binary elliptic curves. J. Cryptographic Engineer-
ing 4(1), 3–17 (2014)

28. Park, Y.-H., Jeong, S., Kim, C.H., Lim, J.: An Alternate Decomposition of an In-
teger for Faster Point Multiplication on Certain Elliptic Curves. In: Naccache, D.,
Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 323–334. Springer, Heidelberg
(2002)

29. Pollard, J.M.: Kangaroos, monopoly and discrete logarithms. J. Cryptology 13(4),
437–447 (2000)

30. Sako, K., Sarkar, P. (eds.): ASIACRYPT 2013, Part I. LNCS, vol. 8269. Springer,
Heidelberg (2013)

31. Smith, B.: Families of Fast Elliptic Curves from Q-curves. In: Sako, Sarkar (eds.)
[30], pp. 61–78

32. Wenger, E., Großschädl, J.: An 8-bit AVR-based elliptic curve cryptographic RISC
processor for the Internet of Things. In: MICRO Workshops, pp. 39–46. IEEE
Computer Society (2012)

Soft Analytical Side-Channel Attacks

Nicolas Veyrat-Charvillon1, Benôıt Gérard2, and François-Xavier Standaert3

1 IRISA-CAIRN, Campus ENSSAT, 22305 Lannion, France
2 DGA Mâıtrise de l’Information, 35998 Rennes, France

3 ICTEAM/ELEN/Crypto Group, Université catholique de Louvain, Belgium

Abstract. In this paper, we introduce a new approach to side-channel
key recovery, that combines the low time/memory complexity and noise
tolerance of standard (divide and conquer) differential power analysis
with the optimal data complexity of algebraic side-channel attacks. Our
fundamental contribution for this purpose is to change the way of ex-
pressing the problem, from the system of equations used in algebraic at-
tacks to a code, essentially inspired by low density parity check codes. We
then show that such codes can be efficiently decoded, taking advantage of
the sparsity of the information corresponding to intermediate variables in
actual leakage traces. The resulting soft analytical side-channel attacks
work under the same profiling assumptions as template attacks, and di-
rectly exploit the vectors of probabilities produced by these attacks. As
a result, we bridge the gap between popular side-channel distinguishers
based on simple statistical tests and previous approaches to analytical
side-channel attacks that could only exploit hard information so far.

1 Introduction

The great majority of side-channel attacks published in the literature follow a
divide and conquer strategy (DC). That is, they first attack independent parts
of the key separately (divide), and then combine these pieces of information
(conquer). Information on individual parts of the key is obtained by study-
ing correlations between key-dependent leakage predictions and the actual side-
channel measurements. The information can then be combined either by simply
concatenating the most probable values of each key part together, or by using
an enumeration algorithm [27,28]. Examples of distinguishers exploiting such a
strategy include Kocher et al.’s Differential Power Analysis (DPA) [13], Brier et
al.’s Correlation Power Analysis (CPA) [2], Gierlichs et al.’s Mutual Information
Analysis (MIA) [9], Chari et al.’s Template Attacks (TA) [4] and Schindler et
al.’s Stochastic Approach (SA) [23]. The popularity of these tools is due to their
simplicity and versatility: they can be adapted to essentially any implementa-
tion, have low time complexity and work in a gray box manner. That is, they do
not require a precise understanding of the underlying hardware, but their data
complexity is highly dependent on the quality of the adversary’s leakage predic-
tions. Therefore, the knowledge of implementation details and some engineering
intuition can usually be exploited to improve their time and data complexity.

P. Sarkar and T. Iwata (Eds.): ASIACRYPT 2014, PART I, LNCS 8873, pp. 282–296, 2014.
c© International Association for Cryptologic Research 2014

Soft Analytical Side-Channel Attacks 283

In this context, one fundamental question regarding DC distinguishers is
whether they are sufficient for security evaluations. That is, are the security
levels estimated with such tools close enough to the worst-case? In view of the
previously listed qualities (and in particular, their excellent time complexity),
the most likely drawback candidate for DC strategies is a suboptimal data com-
plexity. As a result, a number of research works have investigated whether the ap-
plication of analytical strategies (i.e. targeting the full key at once) could provide
improved results. To the best of our knowledge, one of the first attempts in this
direction was Mangard’s Simple Power Analysis (SPA) against the AES key ex-
pansion algorithm [15]. The Side-Channel Collision Attacks (SCCA) in [1,24,25]
were next interesting steps, in which the key is recovered by solving a set of
(mostly) linear equations corresponding to the first cipher round(s). Following,
Algebraic Side-Channel Attacks (ASCA) were introduced in [21,22] and probably
constitute the most representative example of analytical strategy to date. Under
certain conditions, they are able to extract the key of an AES implementation
from a single leakage trace, in an unknown plaintext/ciphertext scenario.

So to some extent, ASCA could be viewed as an extreme opposite to DC
attacks, with a minimum data complexity coming at the cost of a (much) more
complex and sensitive solving phase – hence raising questions regarding their
practical relevance. For example in the first papers from Renauld et al., the ad-
versary represents the target block cipher and its leakages as an instance of sat-
isfiability problem that she sends to a generic sat solver (other types of solvers,
e.g. based on Gröbner bases, have also been analyzed [3]). The main issue with
this approach is a very weak resistance to noise, since the solver essentially needs
to be fed with correct hard information. For this purpose, the usual strategy was
to group certain leakage values according to a model with lower cardinality, e.g.
the well-known Hamming weight one, in order to trade robustness for informa-
tiveness. Improved heuristics are presented in [17,29]. More recently, Oren et
al. proposed to replace the use of a solver by that of an optimizer, leading to
Tolerant ASCA (TASCA) able to exploit more general models [18,19]. Yet, even
these last attempts were quite inefficient in exploiting soft information, mainly
because of the difficulty to translate a vector of probabilities (e.g. as provided
by classical TA) into an optimizer-friendly format. In fact TASCA essentially
encode these vectors as exhaustive hard information, hence limiting the num-
ber of leaking operations that could be included in the optimizer to a couple of
rounds (compared to the full cipher in ASCA), because of memory issues. Even-
tually, the results in [10] provide yet another powerful approach to analytical
side-channel attacks, based smart enumeration and specialized to the AES, but
so far they also remain limited to the exploitation of hard information.

This state-of-the-art seems to suggest that the probabilistic information pro-
vided by side-channel leakages can be easily exploited with DC attacks, while
analytical strategies require a preprocessing step to translate this soft informa-
tion into hard one. In this paper, we argue that this intuition is flawed, and
in fact relates to the way of formulating the problem rather than to its na-
ture. That is, while previous analytical attacks were expressing the target block

284 N. Veyrat-Charvillon, B. Gérard, and F.-X. Standaert

ciphers and their leakages as equations, we propose to describe the same prob-
lem as a code. As a result, and for the first time, we detail a Soft Analytical
Side-Channel Attack (SASCA) that combines the best of two worlds, namely
the noise robustness and low time complexity of DC strategies with the low data
complexity of analytical ones. In this respect, our first contribution is to exhibit
a natural way to encode a side-channel cryptanalysis problem. Next, we show
that we can efficiently decode such problems thanks to the Belief Propagation
algorithm (BP). Using these new tools, we are able (i) for low noise levels: to
attack the aes furious implementation that was targeted in previous works on
ASCA/TASCA with a single leakage trace, with significantly reduced time and
memory complexities, (ii) for large noise levels: to attack the same implementa-
tion with multiple plaintexts, but with 23 to 24 less traces than a standard TA.
Summarizing, the proposed technique bridges the gap between DPA and ASCA.

Related Works. While the motivation for SASCA quite directly derives from
previous works in ASCA/TASCA, its mathematical modeling fundamentally dif-
fers from them and is in fact much closer to some results exploiting techniques
from coding theory. In particular, the application of Hidden Markov Models in
the context of time-randomized implementations [5,12] or side-channel disassem-
blers [6], and the decoding of Low Density Parity Check (LDPC) codes in the
context of SCCA [8] were sources of inspiration for the following work.

Cautionary Note. In order to show the applicability of SASCA at different
noise levels, our empirical results are based on simulated experiments. Yet, we
insist that SASCA is (in general) just as realistic as any TA, since it relies on the
same assumptions for the profiling phase (i.e. the knowledge of a single key – see
Appendix A). Furthermore, we paid attention to exploit exhaustive templates
(i.e. used 256 profiles per intermediate value attacked) which can be generalized
to any leakage function and corresponds to the worst-case time complexity.

2 Soft Analytical Side-Channel Attacks

We first emphasize the differences between previous solver- or optimizer-based
approaches to analytical side-channel attacks and our decoder-based solution. We
then describe the BP algorithm and discuss its connection to the exploitation of
side-channel leakage. We finally detail how to describe an AES implementation as
a factor graph, that can be efficiently decoded by BP. The following descriptions
assume a profiled attack scenario, as usual in worst-case evaluations [26].

2.1 Solving (or Optimizing) vs. Decoding

In the course of a profiled side-channel attack, the adversary extracts information
from leakage traces. This information comes from the processing of intermediate
values throughout the cryptographic computations. By comparing these leakages
with previously estimated templates, she obtains for each target value Xi a
conditional posterior distribution Pr[Xi|L]. Provided the device is not perfectly

Soft Analytical Side-Channel Attacks 285

side-channel resistant, most of the posterior distributions will have an entropy
lower than that of a uniform distribution. In this context, the most interesting
pieces of information relate to the encryption key. For this purpose, not only
the leakages that directly correspond to key bytes – informally denoted as SPA
leakages – are exploited, but also those of intermediate variables that depend
on both the key and the (usually known) plaintext – informally denoted as
DPA leakages – such as the sbox outputs in the first aes round, typically. For
example, starting from the posterior probability of the output value Sout given
the leakage Lout, one can deduce its image before the substitution layer:

Pr[Sin = v|Lout] = Pr[Sout = sbox(v)|Lout].

For a known plaintext value P , one can compute a posterior distribution on a
key byte K by unrolling the computation one step further:

Pr[K = k|P = p, Lout] = Pr[Sout = sbox(k ⊕ p)|Lout].

These simple equations show that it is possible to derive information about
the key using intermediate variables. Furthermore, one can easily combine the
leakage obtained from multiple plaintexts, by marginalizing Pr(K = k) over the
corresponding traces: this is in fact what DC attacks do. Next, and since multiple
key-dependent variables can usually be found within cryptographic implemen-
tations, a natural problem is to find ways to exploit them efficiently. But this is
exactly where the DC strategy faces limitations. Namely, combining the leakage
of these intermediate variables is trivial as long as they only depend on a single
key byte, e.g. the sbox inputs and outputs in a first block cipher round. One just
deals with the additional variable as with an additional plaintext in this case.
Taking the example of aes, this can even be extended to the first mixcolumns
operation, if 32-bit key hypotheses are performed by the adversary. But the DC
approach is inherently limited to the exploitation of predictable parts of the key.
So as soon as the diffusion is complete (which very rapidly occurs in modern
ciphers and therefore corresponds to most of their intermediate computations),
the leakages are left unexploited by such strategies. This limitation directly leads
to the main problem we tackle in this paper, namely: How to efficiently exploit
the leakage of any intermediate variable in a side-channel attack?

Previous ASCA were a first attempt to answer this question, by trying to solve
a system of equations describing the target cryptographic algorithm, comple-
mented with the information extracted. These attacks typically begin by sieving
intermediate values, keeping only the most probable ones. A usual approach is to
coalesce the leakages by Hamming weights for this purpose. The set of remain-
ing values is then verified one against another (e.g. using heuristic sat-solvers).
Unfortunately, this algebraic approach cannot easily deal with the probability
distributions output by TA, which are thus discretized and sieved. Whenever the
measurement noise is not negligible, this introduces “errors” that are fatal to al-
gebraic solvers. As mentioned in introduction, optimizers allow mitigating this
problem, but are still limited in the exhaustive way they encode the probabilities
(which is too expensive for describing more than a couple of aes rounds).

286 N. Veyrat-Charvillon, B. Gérard, and F.-X. Standaert

Our method works differently, by operating directly on the posterior distribu-
tions of the intermediate values extracted from leakage traces, and propagating
the information throughout the computation steps of the algorithm. When at-
tacking a cryptographic implementation, we first build a large graphical model
containing the intermediate variables, which are linked by constraints corre-
sponding to the atomic operations executed. For instance, the exclusive-or and
sbox functions are usually found in software implementations of the aes. Next,
the goal is to find the marginal distribution of the key, given the distributions of
all the intermediate variables. While this is generally a hard problem, we observe
that an important feature of cryptographic algorithms is that intermediate val-
ues tend to appear only in a few places. A similar behavior is present in Gallager
codes [7], also called Low-Density Parity Check codes (LDPC). In such a code,
codeword bits are linked together by a small number of parity constraints (i.e.
linear in the codeword size). Decoding such a construction is generally performed
via application of the BP algorithm, also known as sum-product algorithm. Our
application in the following sections is a (conceptually) simple extension, where
values are not limited to bits, and parity constraints go beyond exclusive-ors.

2.2 The Belief-Propagation Algorithm

Our description of the BP algorithm is largely based on the (excellent) de-
scription provided in [14, chapter 26]. Let us consider a set of N variables
x ≡ {xn}Nn=1, and define a function P ∗ of x which is a product of M factors :

P ∗(x) =
M∏

m=1

fm(xm),

where each factor fm(xm) is a function of a subset xm of x. The P ∗ function is
typically depicted using a factor graph, in which circles correspond to variables
xi and squares to functions fm. An edge is drawn between xi and fm if xi ∈ xm,
meaning that the m-th factor depends on the i-th variable. For example, the
parity functions and factor graph of a simple 3-repetition code are shown below:

f1(x1) = Pr(x1 = 1)
f2(x2) = Pr(x2 = 1)
f3(x3) = Pr(x3 = 1)

f4(x1, x2) =

{
1 if x1 ⊕ x2 = 0
0 otherwise

f5(x2, x3) =

{
1 if x2 ⊕ x3 = 0
0 otherwise

f1 f2 f3

f4 f5

x1 x2 x3

The task we are interested in is that of marginalization. That is, we aim to be
able to compute the following function:

Zn(xn) =
∑

x,xn=xn

P ∗(x),

Soft Analytical Side-Channel Attacks 287

and more importantly it normalized version Pn(xn) = Zn(xn)/Z, where:

Z =
∑
x

M∏
m=1

fm(xm).

These tasks are intractable in general. Even when the factor functions are limited
to three variables, the cost of computing the exact marginal is believed to grow
exponentially with the number of variablesN . The BP algorithm can circumvent
this problem and compute marginals efficiently as long as the factor graph is tree-
like. We will denote by N (m) the set of variables involved in factor fm, byM(n)
the set of factors where variable xn appears, and shorthand the set of variables
in xm with xn excluded as: xm \ n ≡ {xn′ : n′ ∈ N (m) \ n}. The algorithm
works by passing two types of messages along the edges of the factor graph,
from variables to factors (qn→m) and from factors to variables (rm→n). The sets
of messages are updated using two rules:

qn→m(xn) =
∏

m′∈M(n)\m
rm′→n(xn).

rm→n(xn) =
∑
xm\n

⎛⎝fm(xm)
∏

n′∈N (m)\n
qn′→m(x′

n)

⎞⎠ .

Convergence should occur after a finite number of iterations, at most equal to the
longest path. Once the network has converged, the marginal function (also called
belief) of a variable xn can be recovered by multiplying together all incoming
messages at the corresponding node:

Zn(xn) =
∏

m∈M(n)

rm→n(xn).

The normalized value Pn(xn) = Zn(xn)/Z is easily obtained by summing to-
gether the marginal functions Z =

∑
xn

Zn(xn). As already mentioned, the BP
algorithm returns the exact marginals as long as the factor graph is a tree-shaped
graphical model. Yet, in many useful cases such as decoding, the graph contains
cycles. Fortunately, BP can be applied directly on general factor graphs as well,
raising the so-called “loopy” BP. While this version does not guarantee to return
the correct marginals, and may even not converge to a fixed point in some cases,
it usually gives results that are good enough for most applications.

2.3 Efficient Representation of an AES Implementation

Our method for SASCA consists in an application of the BP algorithm to the
decoding of keys using plaintexts, ciphertexts and side-channel traces. In this
section, we illustrate it in the context of an implementation of the aes in an 8-
bit device. For this purpose, the xi variables defined in the description of the BP
algorithm will represent the intermediate values handled by the cryptographic
algorithm, and the parity functions will be separated into two sets:

288 N. Veyrat-Charvillon, B. Gérard, and F.-X. Standaert

– The first set corresponds to the a priori knowledge on the variables acquired
through side-channel leakages, denoted as fi(xi) = Pr[xi = v|L].

– The second set corresponds to the operations executed by the implementa-
tion. In the case of a binary operation op(xi1 , xi2), the function is defined by:

fi(xi1 , xi2 , xi3) =

{
1 if op(xi1 , xi2) = xi3 ,
0 otherwise.

Based on these notations, an adversary first has to encode the aes computations
in a form that is compatible with the BP algorithm. For illustration, and because
it is publically available, we will describe how to build a factor graph for the aes
furious implementation (http://point-at-infinity.org/avraes).

Concretely, our program takes in a description which is very similar to the
assembly code of aes furious, with the memory related operations left out,
but where any assignment requires a newly named variable. Namely, variable
nodes are denoted by names starting with a capital letter, such as K[2,4]_0 for
the intermediate key in row 2 and column 4 of key scheduling round 0, which
also happens to be the second master key byte (noted K0

2,4 in the factor graph),
or SB[2,1]_0 for the sbox output in row 2 and column 1 of round 0 (SB0

2,1 in
the factor graph). These variable nodes correspond to intermediate values com-
puted during encryption, such as the state (ST), key addition or mixcolumns

intermediate results (AK and MC), outputs of xtime operations (XT), . . . Be-
sides, factor node names start with an underscore such as _Xor (exclusive or)
and _Xtime (polynomial multiplication by x). They correspond to instructions
executed during encryption. For example, Table 1 gives samples of the corre-
spondence between the assembly code, input description and factor graph. Note
that the factor nodes for the prior probabilities of the variables are not drawn.

Table 1. Factor graph representation of an aes encryption

Assembly code Graph description Factor graph

ld H1, Y+
eor ST11, H1
mov ZL, ST11
lpm ST11, Z

*
_Xor AK[1,1]_0 ST[1,1]_0 K[1,1]_0
*
_Sbox SB[1,1]_0 AK[1,1]_0 xor sbox

AK0
1,1ST 0

1,1K0
1,1 SB0

1,1

mov H3, ST11
eor H3, ST21
mov ZL, H3
lpm H3, Z

*
_Xor MC[3,1]_0 SB[1,1]_0 SB[2,1]_0
*
_Xtime XT[1,1]_0 MC[3,1]_0 xor xtime

SB0
1,1 SB0

2,1 MC0
3,1 XT 0

1,1

mov ZL, ST24
lpm H3, Z
eor ST11, H3
eor ST11, H1

*
_Sbox SK[1,1]_1 K[2,4]_0
_Xor XK[1,1]_1 SK[1,1]_1 K[1,1]_0
_XorCst K[1,1]_1 XK[1,1]_1 0x1 sbox xor xorcst

K0
2,4 SK1

1,1 K0
1,1 XK1

1,1 K1
1,1

There are two notable differences between SASCA and the classical decoding
of LDPC codes. First, variable nodes are not binary digits, but rather elements of

Soft Analytical Side-Channel Attacks 289

GF(28). Second, factor nodes are not limited to exclusive or’s, but may include
any of the variety of functions used in cryptographic implementations (e.g. xor,
sbox, xtime). However, these factor nodes are not much more complex than for
classical decoding, as illustrated with our three previous examples:

xor(A,B,C) =

{
1 if A⊕B = C,

0 otherwise.

sbox(A,B) =

{
1 if A = S(B),

0 otherwise.

xtime(A,B) =

{
1 if A = Xt(B),

0 otherwise.

This natural representation of operations is very efficient, as opposed to the
contrived way aes encryptions are translated to sat instances (roughly, it corre-
sponds to 1,200 equations and variables in GF(28) compared to 18,000 equations
in 10,000 variables in sat-based ASCA). Taking advantage of it, the SASCA ad-
versary then tries to compute the key marginal probability for Pn(K) given the
leakages. For this purpose, one simply has to incorporate the implicit factor
nodes corresponding to prior knowledge on variable nodes, as given by the tem-
plates of the side-channel attack. For instance, the factor for the output of the
first sbox in the first round fm(SB0

1,1) is the posterior distribution Pr[SB0
1,1|L].

In addition, any known value (for instance the plaintext bytes) has a prior knowl-
edge with entropy zero, and any value that does not leak (either because it is
protected or precomputed) has a uniform prior. Eventually, the loopy BP algo-
rithm propagates information throughout the factor graph: if successful (i.e. in
case of convergence), it should return the approximate marginal probabilities of
the key bytes Pn(K

0
1,1) to Pn(K

0
4,4), i.e. the answer we are looking for.

2.4 Attacking with Several Traces

The ability to efficiently exploit (i.e. combine the information of) several leakage
traces is one of the reasons that have made DPA attacks so popular – since it
typically leads to the noise vs. data complexity tradeoff that is at the core of most
side-channel attacks. It also remains one of the main practical issue for ASCA
and follow-up works. So far, the only way several traces can be useful is when
they are repetitions of the same encryption (without randomizations), so that the
noise can be averaged out. By contrast, adding traces corresponding to multiple
plaintexts could only be managed with the construction of larger systems, that
are too memory consuming for TASCA, and increasing the probability that one
piece of hard information in such systems is incorrect for ASCA.

Interestingly, SASCA are able to improve the key recovery success rate with
each additional trace observed. Practically, the factor graph used for decoding
is first replicated for each trace. Yet, since the master key stays the same during
the course of the attack, the part of our factor graph corresponding the key

290 N. Veyrat-Charvillon, B. Gérard, and F.-X. Standaert

K
ey

S
ch

ed
u
le

aesk(P3)

aesk(P2)

aesk(P1) K0
1,1

K0
1,2

K0
1,3

...

K10
4,4

Fig. 1. Factor graph connections for several traces

scheduling also remains constant: it forms a kind of “backbone” where all the
encryption rounds connect, as depicted in Figure 1. As a result, whenever sev-
eral messages are used, the probability distributions are propagated from each
replicated graph towards the key schedule. The impact of such propagation is in
fact very similar to the one resulting from using several traces in a classical TA,
where probabilities are multiplied together and the success rate increases.

3 Experimental Results

We now validate the method described in the previous section with illustrative
simulated attacks against the aes furious implementation. For this purpose,
we assume a setup that is essentially similar to the one used to demonstrate
the applicability of ASCA to the AES in [22]. The only difference is that we
will consider implementations with and without the key scheduling leakages. As
previously explained (and illustrated in Table 1), all the operations found in
the assembly code are translated into factor nodes, excluding memory related
operations. For illustration, we considered Hamming weight leakages affected by
a noise of variance σ2

n, but the attack is independent of this choice: any function
could be incorporated without performance penalty. The only important param-
eter in our case is the informativeness of the leakages which, in the first-order
setting we investigate, can be measured with a Signal-to-Noise Ratio (SNR) [16].
Since the signal (i.e. variance) of a Hamming weight leakage function for 8-bit
intermediate values equals 2, one can simply derive the SNR as 2/σ2

n. For il-
lustration, we compared our results with the ones of two standard TA. Namely,
one univariate exploiting only the first-round S-box output leakages, and one
bivariate exploiting the first-round S-box input and output leakages.

The results of our experiments are shown in figure 2. The x-axis corresponds
to the number of messages used for the attack (in log scale), and the y-axis is
a stack of success rate curves for decreasing SNRs (i.e. increasing noise levels).
An alternative view is provided in Figure 3, which sums up these simulation
results by showing the data complexity gains of SASCA over TA. It appears
from both figures that these gains are significant and consistently observed for

Soft Analytical Side-Channel Attacks 291

S
N
R

24

0

1

23

0

1

22

0

1

21

0

1

20

0

1

2−1

0

1

2−2

0

1

2−3

0

1

2−4

0

1

2−5

0

1

2−6

0

1
S
u
ccess

R
a
te

1 2 5 10 20 50 100 200 500 1000 2000 5000

Number of traces

Fig. 2. Attacks results for our simulated furious implementation. Each graph gives
the success rate (SR, ranging from 0 to 1) for a given signal-to-noise ratio (SNR,
ranging from 24 down to 2−6) as a function of the number of traces (in logarithmic
scale, ranging from 1 to 5000). The attacks are:

– univariate TA targetting the sbox output (in dark gray),

– bivariate TA targetting the sbox input and output (in blue),

– SASCA attack ignoring the key schedule leakages (in violet),

– SASCA attack exploiting all the intermediate values (in orange).

any noise level. Eventually, the unknown inputs and outputs scenario is detailed
for SASCA in Figure 4. We see that its impact is limited if the key scheduling
leaks (confirming the results from [15]) and more significant otherwise.

292 N. Veyrat-Charvillon, B. Gérard, and F.-X. Standaert

20

2−1

2−2

2−3

2−4
M
es
sa
ge

ra
ti
o

24 23 22 21 20 2−1 2−2 2−3 2−4 2−5 2−6

SNR

Fig. 3. Data complexity gain of SASCA compared to TA given as the fraction of
measurements needed to reach a success rate of 0.9 (same colors as in Figure 2)

Discussion. Compared to previous results in ASCA/TASCA, our new tools
bring two main advantages. First, from the SNR point of view, these works were
typically limited to scenarios where a single leakage trace was enough to recover
the master key (i.e. to SNRs > 22). We can deal with any SNR. Second, the
time and memory complexity of the BP decoding is much improved compared
to sat-solver based ASCA and optimizer-based TASCA. Our implementation
deals with a factor graph of size proportional to the number of messages, with a
relatively high (yet easily tractable in practice) constant of approximately 16M
per message. Its computation time is proportional to both the diameter of the
graph (constant after the second message) which sets the number of decoding
iterations, and the number of measurements which sets the amount of messages
exchanged at each iteration. This makes the evolution of the time and memory
complexity of SASCA quite comparable to the one in divide and conquer TA
(i.e. linear in the number of messages). Yet, decoding the AES encryption factor
graph with the BP algorithm implies a larger computation time of approximately
one second per message in our prototype implementation, running on an Intel i7-
2720QM. This (constant) overhead is the main penalty to enjoy the substantially
smaller data complexities of SASCA (i.e. similar to ASCA/TASCA) which is, as
expected, the main advantage of analytical strategies over DC ones.

As detailed in Appendix A, the practical relevance of such attacks is quite
similar to TA, since it requires the same profiling assumptions (i.e. the knowledge
of a single key). Admittedly, the profiling effort is significantly more expensive
for SASCA, since it requires characterizing all the target intermediate values.
But since all these target values can be profiled independently, building their
templates can be done quite efficiently (with essentially the same amount of
measurements as needed to characterize the first-round operations exploited in
TA), and is easily automated with standard side-channel attack techniques.

Soft Analytical Side-Channel Attacks 293

24
23
22
21
20
2−1
2−2

1 2 5 10 20 50

SNR

0

1

S
u
cc
es
s
ra
te

24
23
22
21
20

1 2 5 10 20 50 100 200

SNR

0

1

S
u
cc
es
s
ra
te

Number of traces

Fig. 4. SASCA with unknown input and output for different SNRs.The x-axis is the
number of traces used for the attack (in log scale), and the y-axis gives the probability
of key recovery. The top graph corresponds to a leaky key schedule, and the lower
graph gives the results for a leak-free key schedule.

4 Conclusions

By modeling the side-channel analysis problem adequately, SASCA bring the
missing link between standard DC distinguishers and analytical strategies for
key recoveries. As a result and for the first time, we are able to efficiently exploit
the probabilistic information of all the leaking operations in a software imple-
mentation. Our resulting attacks are optimal in data complexity and efficient in
time and memory. Yet, we note that the tools exploited in this first instantiation
of SASCA can certainly be improved. For example, the BP algorithm performs
too many computations for our needs. Indeed, it propagates every distribution
throughout the factor graph whereas in practice, we are mostly interested in
the key. Hence, further works could exploit the propagation of messages only
towards the schedule (i.e. perform Bayesian inference). This would additionally
allow the attack to be performed one message at a time, by accumulating in-
formation retrieved from each trace onto the nodes of the key schedule, hence
reducing the memory requirements to that of a single trace (i.e. 16M).

In view of the improved noise robustness of SASCA, an important open prob-
lem is to determine whether the strong results obtained with this new type of
analytical strategy also apply to implementations protected with countermea-
sures. Masking, shuffling and leakage-resilient cryptography appear as the most
interesting targets in this respect. Besides, the experiments in this work consid-
ered a worst-case scenario where the adversary could take advantage of all the
leaking operations of an AES implementation (i.e. assuming the knowledge of

294 N. Veyrat-Charvillon, B. Gérard, and F.-X. Standaert

the source code, essentially). But the investigation of an intermediate scenario
where the adversary would exploit less leaking observations (e.g. the ones he
could guess without knowing the source code) and its resulting time and data
complexity is another interesting scope for additional investigations.

Acknowledgements. François-Xavier Standaert is a research associate of the
Belgian Fund for Scientific Research (FNRS-F.R.S.). This work has been funded
in parts by the European Commission through the ERC project 280141 (acronym
CRASH) and by the PAVOIS project (ANR 12 BS02 002 01).

References

1. Bogdanov, A., Kizhvatov, I., Pyshkin, A.: Algebraic methods in side-channel col-
lision attacks and practical collision detection. In: Chowdhury, D.R., Rijmen,
V., Das, A. (eds.) INDOCRYPT 2008. LNCS, vol. 5365, pp. 251–265. Springer,
Heidelberg (2008)

2. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, Quisquater (eds.) [11], pp. 16–29

3. Carlet, C., Faugère, J.-C., Goyet, C., Renault, G.: Analysis of the algebraic side
channel attack. Journal of Cryptographic Engineering 2(1), 45–62 (2012)

4. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski Jr., B.S., Koç, Ç.K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg (2003)

5. Durvaux, F., Renauld, M., Standaert, F.-X., van Oldeneel tot Oldenzeel, L., Veyrat-
Charvillon, N.: Efficient removal of random delays from embedded software imple-
mentations using hidden markov models. In: Mangard, S. (ed.) CARDIS 2012.
LNCS, vol. 7771, pp. 123–140. Springer, Heidelberg (2013)

6. Eisenbarth, T., Paar, C., Weghenkel, B.: Building a side channel based disassem-
bler. Transactions on Computational Science 10, 78–99 (2010)

7. Gallager, R.G.: Low-density parity-check codes. IRE Transactions on Information
Theory 8(1), 21–28 (1962)

8. Gérard, B., Standaert, F.-X.: Unified and optimized linear collision attacks and
their application in a non-profiled setting. In: Prouff, Schaumont (eds.) [20],
pp. 175–192

9. Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual information analysis. In:
Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 426–442. Springer,
Heidelberg (2008)

10. Guo, S., Zhao, X., Zhang, F., Wang, T., Shi, Z.J., Standaert, F.-X., Ma, C.: Ex-
ploiting the incomplete diffusion feature: A specialized analytical side-channel at-
tack against the AES and its application to microcontroller implementations. IEEE
Transactions on Information Forensics and Security 9(6), 999–1014 (2014)

11. Joye, M., Quisquater, J.-J. (eds.): CHES 2004. LNCS, vol. 3156. Springer, Heidel-
berg (2004)

12. Karlof, C., Wagner, D.: Hidden markov model cryptanalysis. In: Walter, C.D.,
Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 17–34. Springer,
Heidelberg (2003)

13. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

Soft Analytical Side-Channel Attacks 295

14. MacKay, D.J.C.: Information theory, inference, and learning algorithms.
Cambridge University Press (2003)

15. Mangard, S.: A simple power-analysis (SPA) attackon implementations of the
AES key expansion. In: Lee, P.J., Lim, C.H. (eds.) ICISC 2002. LNCS, vol. 2587,
pp. 343–358. Springer, Heidelberg (2003)

16. Mangard, S., Oswald, E., Standaert, F.-X.: One for all - all for one: unifying stan-
dard differential power analysis attacks. IET Information Security 5(2), 100–110
(2011)

17. Mohamed, M.S.E., Bulygin, S., Zohner, M., Heuser, A., Walter, M., Buchmann,
J.: Improved algebraic side-channel attack on AES. Journal of Cryptographic En-
gineering 3(3), 139–156 (2013)

18. Oren, Y., Kirschbaum, M., Popp, T., Wool, A.: Algebraic side-channel analysis in
the presence of errors. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS,
vol. 6225, pp. 428–442. Springer, Heidelberg (2010)

19. Oren, Y., Renauld, M., Standaert, F.-X., Wool, A.: Algebraic side-channel attacks
beyond the hamming weight leakage model. In: Prouff, Schaumont (eds.) [20],
pp. 140–154

20. Prouff, E., Schaumont, P. (eds.): CHES 2012. LNCS, vol. 7428. Springer, Heidel-
berg (2012)

21. Renauld, M., Standaert, F.-X.: Algebraic side-channel attacks. In: Bao, F.,
Yung, M., Lin, D., Jing, J. (eds.) Inscrypt 2009. LNCS, vol. 6151, pp. 393–410.
Springer, Heidelberg (2010)

22. Renauld, M., Standaert, F.-X., Veyrat-Charvillon, N.: Algebraic side-channel at-
tacks on the AES: Why time also matters in DPA. In: Clavier, C., Gaj, K. (eds.)
CHES 2009. LNCS, vol. 5747, pp. 97–111. Springer, Heidelberg (2009)

23. Schindler, W., Lemke, K., Paar, C.: A stochastic model for differential side chan-
nel cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659,
pp. 30–46. Springer, Heidelberg (2005)

24. Schramm, K., Leander, G., Felke, P., Paar, C.: A collision-attack on AES: Com-
bining side channel- and differential-attack. In: Joye, Quisquater (eds.) [11],
pp. 163–175

25. Schramm, K., Wollinger, T., Paar, C.: A new class of collision attacks and
its application to DES. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887,
pp. 206–222. Springer, Heidelberg (2003)

26. Standaert, F.-X., Malkin, T., Yung, M.: A unified framework for the analysis of
side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS,
vol. 5479, pp. 443–461. Springer, Heidelberg (2009)

27. Veyrat-Charvillon, N., Gérard, B., Renauld, M., Standaert, F.-X.: An optimal key
enumeration algorithm and its application to side-channel attacks. In: Knudsen,
L.R., Wu, H. (eds.) SAC 2012. LNCS, vol. 7707, pp. 390–406. Springer, Heidelberg
(2013)

28. Veyrat-Charvillon, N., Gérard, B., Standaert, F.-X.: Security evaluations beyond
computing power. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013.
LNCS, vol. 7881, pp. 126–141. Springer, Heidelberg (2013)

29. Zhang, F., Zhao, X., Guo, S., Wang, T., Shi, Z.: Improved algebraic fault analysis:
A case study on piccolo and applications to other lightweight block ciphers. In:
Prouff, E. (ed.) COSADE 2013. LNCS, vol. 7864, pp. 62–79. Springer, Heidelberg
(2013)

296 N. Veyrat-Charvillon, B. Gérard, and F.-X. Standaert

A Attack Requirements

In this section, we provide a brief discussion of the profiling step that precedes
the application of SASCA. In particular, we argue that the profiling overhead
and required knowledge for this purpose are similar to those of standard TA.

Profiling Overhead. Similarly to classical TA, SASCA require profiling the leak-
age corresponding to their target intermediate values. In this respect, the only
difference is that they can take advantage of many such values, whereas DC
strategies only exploit the first round(s) leakages. In general, one can assume
that all target intermediate values leak a similar amount of information. And if
it is not the case, it is usually the first round(s) leakages that have lower SNRs.
As a result, and given that the set of profiling traces corresponds to random
inputs, one can essentially build all the SASCA templates with the same traces
as for a TA, by simply re-organizing these traces according to the target inter-
mediate values. This process can be automated based on the implementation
knowledge, and its computational cost grows linearly with the number of tar-
gets. Concretely, this cost should be small for most concrete implementations,
and if needed can be speeded up by assuming sets of intermediate values to leak
according to the same model (possibly at the cost of some information loss).

Required Knowledge. Since templates are built by grouping the leakage traces
according to some target intermediate values, it requires being able to predict
these values. Both for TA and SASCA, this is usually achieved thanks to some
key knowledge (or a profiling device). So both attacks can be based on the same
assumptions. In fact, their main difference is that any intimate knowledge of the
target implementations can – but does not have to – be exploited by SASCA
(while, e.g. the middle round leakages are useless for DC attacks). The experi-
ments in this paper consider a worst-case scenario where the adversary knows
the implementation source code. Another extreme scenario would be to consider
only “standard” attack points that can be guessed from the algorithms specifi-
cations (e.g. S-boxes inputs/outputs), which would reduce the gain of SASCA
compared to TA. Any intermediate situation could be investigated, correspond-
ing to various tradeoffs between implementation details and attack efficiency.

On the Enumeration of Double-Base Chains

with Applications to Elliptic Curve Cryptography

Christophe Doche

Department of Computing
Macquarie University, Australia
christophe.doche@mq.edu.au

Abstract. The Double-Base Number System (DBNS) uses two bases, 2
and 3, in order to represent any integer n. A Double-Base Chain (DBC)
is a special case of a DBNS expansion. DBCs have been introduced
to speed up the scalar multiplication [n]P on certain families of ellip-
tic curves used in cryptography. In this context, our contributions are
twofold. First, given integers n, a, and b, we outline a recursive algo-
rithm to compute the number of different DBCs with a leading factor
dividing 2a3b and representing n. A simple modification of the algorithm
allows to determine the number of DBCs with a specified length as well
as the actual expansions. In turn, this gives rise to a method to compute
an optimal DBC representing n, i.e. an expansion with minimal length.
Our implementation is able to return an optimal expansion for most
integers up to 260 bits in a few minutes. Second, we introduce an origi-
nal and potentially more efficient approach to compute a random scalar
multiplication [n]P , based on the concept of controlled DBC. Instead of
generating a random integer n and then trying to find an optimal, or
at least a short DBC to represent it, we propose to directly generate n
as a random DBC with a chosen leading factor 2a3b and length �. To
inform the selection of those parameters, in particular �, which drives
the trade-off between the efficiency and the security of the underlying
cryptosystem, we enumerate the total number of DBCs having a given
leading factor 2a3b and a certain length �. The comparison between this
total number of DBCs and the total number of integers that we wish
to represent a priori provides some guidance regarding the selection of
suitable parameters. Experiments indicate that our new Near Optimal
Controlled DBC approach provides a speedup of at least 10% with re-
spect to the NAF for sizes from 192 to 512 bits. Computations involve
elliptic curves defined over Fp, using the Inverted Edwards coordinate
system and state of the art scalar multiplication techniques.

Keywords: Double-base number system, elliptic curve cryptography.

1 Introduction

1.1 Elliptic Curve Cryptography

An elliptic curve E defined over a field K is a nonsingular projective plane cubic
together with a point with coordinates in K. For cryptographic applications, the

P. Sarkar and T. Iwata (Eds.): ASIACRYPT 2014, PART I, LNCS 8873, pp. 297–316, 2014.
c© International Association for Cryptologic Research 2014

298 C. Doche

field K is always finite. In practice, it is a large prime field Fp or a binary field
F2d . We refer to [23] for a mathematical presentation of elliptic curves and to
[1, 16] for a discussion focused on cryptographic applications.

There are different ways to represent the curve E, in particular with a Weier-
straß equation or in Edwards form [13, 3]. Irrespective of the representation, the
set of points lying on the curve E can be endowed with an abelian group struc-
ture. This property has been exploited for about twenty five years to implement
public-key cryptographic primitives.

The core operation in elliptic curve cryptography is the scalar multiplication,
which consists in computing [n]P given a point P on the curve E and some
integer n. Several methods exist relying on different representations of n. One
of the simplest approach relies on the non-adjacent form (NAF) [20, 19], which
allows to compute [n]P with t doublings and t/3 additions on average, where t
is the binary length of n. The approach discussed next is more sophisticated and
has recently received increasing attention.

1.2 Double-Base Number System

The Double-Base Number System (DBNS) was introduced by Dimitrov and
Cooklev [5] and later used in the context of elliptic curve cryptography [6].
With this system, an integer n is represented as

n =
�∑

i=1

ci2
ai3bi , with ci ∈ {−1, 1}. (1)

This representation is highly redundant and an expansion can easily be found
with a greedy-type approach. The principle is to find at each step the best
approximation of a given integer in terms of a {2, 3}-integer , i.e. an integer of
the form 2a3b. Then compute the difference and reapply the process until we
reach zero.

Example 1. Applying this approach to n = 542788, we find that

542788 = 2837 − 2337 + 2433 − 2.32 − 2.

In [7], Dimitrov et al. show that for any integer n, this greedy approach returns
a DBNS expansion of n having at most O

(
logn

log logn

)
terms. However, in general

this system is not well suited for scalar multiplications. For instance, in order to
compute [542788]P from the DBNS expansion given in Example 1, it seems that
we need more than 8 doublings and 7 triplings unless we can use extra storage
to keep certain intermediate results. But, if we are lucky enough that the terms
in the expansion can be ordered in such a way that their powers of 2 and 3 are
both decreasing, then it becomes trivial to obtain [n]P .

On the Enumeration of Double-Base Chains with Applications 299

1.3 Double-Base Chain

The concept of Double-Base Chain (DBC), introduced in [6], corresponds to an
expansion of the form

�∑
i=1

ci2
ai3bi , with ci ∈ {−1, 1} (2)

such that a1 � a2 � · · · � a� and b1 � b2 � · · · � b�. (3)

Equivalently, (3) means that 2a�3b� | · · · | 2a23b2 | 2a13b1 . It guarantees that
exactly a� doublings, b� triplings, �− 1 additions, and at most two variables are
sufficient to compute [n]P . It is straightforward to adapt the greedy algorithm
to return a DBC.

Example 2. A modified greedy algorithm returns the following DBC

542788 = 21433 + 21233 − 21032 − 210 + 26 + 22.

The DBC expansion returned by the greedy approach is always at least as long
than its DBNS counterpart. Furthermore, it has been shown in [18] that for any
size t, there exists a t-bit integer n such that any DBC representing n needs
at least Ω(t) terms. But the DBC has the advantage to offer a much more
direct and easy way to compute a scalar multiplication. The most natural ap-
proach is probably to proceed from right-to-left. With this method, each term
2ai3bi is computed individually and all the terms are added together. This can
be implemented using two variables. The left-to-right method, which can be
seen as a Horner-like scheme, needs only one variable. Simply initialize it with
[c12

a1−a23b1−b2]P , then add c2P and apply [2a2−a33b2−b3] to the result. Repeat-
ing this process eventually gives [n]P , as illustrated with the chain of Example 2

[542788]P = [22]
(
[24]
(
[24]
(
[32]
(
[223]([22]P + P)− P

)
− P

)
+ P

)
+ P

)
.

Note that there are other methods to compute a DBC, see for instance a
tree-based algorithm developed in [9]. There exist also several variants and gen-
eralizations of the DBC. For instance, the extended DBC [10] relies on nontrivial
coefficients and precomputed points in order to obtain shorter chains. There is
also a notion of joint DBC [11, 12] for double scalar multiplications of the form
[n]P + [m]Q. Next we are interested to find the best possible chains for a given
integer. To this end, we introduce the following.

Definition 1. We call the largest {2,3}-integer of a DBC chain in absolute
value, i.e. 2a13b1 in (2), the leading factor of the chain. It encapsulates the total
number of doublings and of triplings necessary to compute [n]P .

Among all the different DBCs with a leading factor dividing 2a3b and represent-
ing n, the DBCs with minimal length play a special role as they minimize the
number of additions required to compute [n]P . This observation gives rise to the
following definition.

300 C. Doche

Definition 2. Given integers a, b, and n, a DBC with a leading factor dividing
2a3b and representing n is said to be optimal for n, if its length � is minimal
across all the DBCs with leading factor dividing 2a3b and representing n.

Remark 1. For the purpose of this study, we slightly modify the definitions of
a Double-Base expansion and of a DBC so that we can precisely and meaning-
fully enumerate them. Concretely, we require that each term 2ai3bi appears at
most once in any expansion or chain. In practice, expansions always fulfill this
property. Also, this requirement is not a real constraint since 2ai3bi + 2ai3bi =
2ai+13bi . From now on, when we use the terms double-base expansion or DBC,
this restriction is implied.

Definition 3. An unsigned Double-Base Chain is a DBC of the form (2) such
that all the coefficients ci’s are equal to 1 and satisfying (3).

Some properties of the set containing all the unsigned DBCs of a given integer n,
in particular its structure and cardinality, are studied in [17]. Next, we investigate
the number of signed DBCs representing a given integer.

2 Enumerating DBCs Representing a Given Integer

2.1 Partition Problem

Given an integer n, the number p(n) of partitions of n of the form

n = dk + · · ·+ d2 + d1 with d1 | d2 | · · · | dk

is studied by Erdős and Loxton in [14]. The authors also introduce p1(n) as the
number of partitions of n of the form n = dk + · · ·+ d2+1 with d1 | d2 | · · · | dk.
They observe that p(n) = p1(n) + p1(n+ 1) and that

p1(n) =
∑

d|n−1,d>1

p1

(
n− 1

d

)
·

2.2 Enumerating DBCs

Mimicking their approach, we introduce q(a, b, n), the number of signed parti-
tions of n of the form

n = dk ± dk−1 ± · · · ± d2 ± d1 with d1 | d2 | · · · | dk | 2a3b.

Clearly, q(a, b, n) corresponds to the number of DBCs with a leading factor
dividing 2a3b and representing n. Note that in the signed version, it is necessary
to take into account a and b, the largest powers of 2 and 3. Indeed, we observe
that 1 = 2k −

∑k−1
i=0 2i for any k > 0. This shows that the number of signed

representations of any integer is infinite. Obviously, the problem disappears when

On the Enumeration of Double-Base Chains with Applications 301

we bound the leading factor of an expansion by 2a3b. Similarly, we introduce
q1(a, b, n) as the number of partitions of n of the form

n = dk ± dk−1 ± · · · ± d2 + 1 with d2 | · · · | dk | 2a3b

and q1̄(a, b, n) as the number of partitions of n of the form

n = dk ± dk−1 ± · · · ± d2 − 1 with d2 | · · · | dk | 2a3b.

In the following, we denote the valuation of u at 2 and 3 by val2(u) and val3(u),
respectively.

Proposition 1. We have

1. q(a, b, n) = q1(a, b, n) + q1̄(a, b, n) + q1̄(a, b, n− 1).
2.

q1(a, b, n) =
∑

d|gcd(n−1,2a3b)
d>1

q1

(
a− val2(d), b− val3(d),

n− 1

d

)

+
∑

d|gcd(n−1,2a3b)
d>1

q1̄

(
a− val2(d), b− val3(d),

n− 1

d

)

3.

q1̄(a, b, n) =
∑

d|gcd(n+1,2a3b)
d>1

q1

(
a− val2(d), b − val3(d),

n+ 1

d

)

+
∑

d|gcd(n+1,2a3b)
d>1

q1̄

(
a− val2(d), b − val3(d),

n+ 1

d

)
.

4. q1(a, b, 1) = 1, if a � 0 and b � 0, and q1(a, b, 1) = 0 otherwise.
5. q1̄(a, b, 1) = a, if a � 0 and b � 0, and q1̄(a, b, 1) = 0 otherwise.

Proof.

1. We observe that any DBC representing n must end by 1, −1, or a term that
is a nontrivial divisor of the leading factor. These three sets form a partition
of all the DBCs representing n. By definition, the cardinality of the first two
sets is q1(a, b, n) and q1̄(a, b, n). There exists a bijection between this last set
and the set of DBCs representing n− 1 ending with −1. Note that we could
also compute q(a, b, n) as q1(a, b, n) + q1̄(a, b, n) + q1(a, b, n+ 1).

2. Let us consider a DBC with a leading factor dividing 2a3b, ending with 1, and
representing n. Then this DBC can be written

∑
i ci2

ai3bi±d+1 where d > 1
and d | 2ai3bi for all i. If we denote α = val2(d) and β = val3(d), we see that
the chain

∑
i ci2

ai−α3bi−β ± 1 represents (n− 1)/d. We note that its leading

302 C. Doche

factor must divide 2a−α3b−β and it ends by 1 or −1. Also, by construction,
the factor d is a divisor of n− 1 and of 2a3b. Reciprocally, take d = 2α3β a
common divisor of n− 1 and 2a3b. Then for any DBC with a leading factor
dividing 2a−α3b−β and representing (n− 1)/d, it corresponds a unique DBC
with a leading factor dividing 2a3b, finishing with 1 and representing n.

3. The proof is similar to 2., except that we need to consider DBCs of the form∑
i ci2

ai3bi ± d− 1.
4. We assume that each term 2ai3bi appears at most once, cf Remark 1. With

this constraint in mind, it is easy to check that there is a unique DBC ending
with 1 and representing 1, namely the chain 1.

5. Regarding the DBCs representing 1 and ending with −1, we note that for
any k > 0, we have 2k −

∑k−1
i=0 2i = 1. In particular, the previous formula

for k = 1 up to a gives rise to a total number of a different DBCs with a
leading factor dividing 2a3b, ending with −1, and representing 1. It is easy
to see that there is no other solution. This shows that q1̄(a, b, 1) = a, when
a � 0 and b � 0. �

Using Proposition 1, it is possible to compute q(a, b, n) recursively, for any tuple
(a, b, n).

Example 3. We have q(14, 5, 542788) = 2092690. In other words, there are
2092690 different DBCs with a leading factor dividing 214310 and representing
542788.

Remark 2. The approach is highly recursive but precomputing small values
can greatly speed up computations. For instance, precomputing q1(a, b, n) and
q1̄(a, b, n) for all (a, b, n) ∈ [0, 30]× [0, 20]× [1, 1000] allows to deal with numbers
of size up to 30 bits in a few seconds.

2.3 Enumerating DBCs of Bounded Length

A simple modification of the algorithm outlined above allows to determine the
total number of different DBCs of length less or equal to � with a leading factor
dividing 2a3b and representing an integer n. Namely, we introduce a new pa-
rameter � to keep track of the length of the DBC. It is straightforward to check
that

q(a, b, �, n) = q1(a, b, �, n) + q1̄(a, b, �, n) + q1̄(a, b, �+ 1, n− 1).

Additionally, q1(a, b, �, n) and q1̄(a, b, �, n) satisfy relations similar to the ones
expressed in Proposition 1. For instance,

q1(a, b, �, n) =
∑

d|gcd(n−1,2a3b)
d>1

q1

(
a− val2(d), b− val3(d), � − 1,

n− 1

d

)

+
∑

d|gcd(n−1,2a3b)
d>1

q1̄

(
a− val2(d), b− val3(d), � − 1,

n− 1

d

)
.

On the Enumeration of Double-Base Chains with Applications 303

Finally, it is easy to see that q1(a, b, �, 1) = min(1,max(0, �)) and q1̄(a, b, �, 1) =
min(a,max(0, �− 1)). This gives rise to Algorithms 1 and 2.

Algorithm 1. q1(a, b, �, n)

Input: An integer n and parameters a, b, and �.

Output: The number of DBCs representing n, ending with 1, having a
leading factor dividing 2a3b, and a length less than or equal to �.

1. if n � 0 or a < 0 or b < 0 or � � 0 then return 0

2. else if n = 1 then

3. if a � 0 and b � 0 then return min(1,max(0, �))

4. else return 0

5. else if n > 1 then

6. D ← gcd(n− 1, 2a3b)

7. s ← 0

8. for each divisor d > 1 of D do

9. s ← s+ q1
(
a− val2(d), b− val3(d), �− 1, n−1

d

)
10. s ← s+ q1̄

(
a− val2(d), b− val3(d), �− 1, n−1

d

)
11. return s

Algorithm 2. q1̄(a, b, �, n)

Input: An integer n and parameters a, b, and �.

Output: The number of DBCs representing n, ending with −1, having
a leading factor dividing 2a3b, and a length less than or equal to �.

1. if n � 0 or a < 0 or b < 0 or � � 0 then return 0

2. else if n = 1 then

3. if a � 0 and b � 0 then return min
(
a,max(0, �− 1)

)
4. else return 0

5. else if n > 1 then

6. D ← gcd(n+ 1, 2a3b)

7. s ← 0

8. for each divisor d > 1 of D do

9. s ← s+ q1
(
a− val2(d, 2), b− val3(d, 3), �− 1, n+1

d

)
10. s ← s+ q1̄

(
a− val2(d, 2), b− val3(d, 3), �− 1, n+1

d

)
11. return s

304 C. Doche

Example 4. Using Algorithms 1 and 2, we see that among the 2092690 different
DBCs with a leading factor dividing 214310 and representing 542788, there are
three optimal chains of length 5, 81 chains of length 6, 843 of length 7, 5005 of
length 8, 19715 of length 9, 56148 of length 10, and so on. The total number is
bounded as for instance, there cannot be a DBC of length greater or equal to 26
since the leading factor is at most 214310.

2.4 Optimal DBCs

Using the algorithms described in the previous part, it is simple to determine
the optimal length of a DBC representing an integer n with a leading factor
dividing 2a3b. Simply compute q(a, b, �, n) for increasing values of � � 1 until
a positive cardinality is returned. Also, along with the total number of DBCs,
it is possible to return the list of all the actual DBCs representing an integer,
by introducing a few simple modifications in the Algorithms 1 and 2. We note
that we can further modify Algorithms 1 and 2 so that we compute only the
DBCs having a specified length. Also, in case we are only interested in finding
an optimal chain for a given integer n, we can implement a simple early abort
technique to terminate the search once a DBC of a certain given size has been
found. This is possible because these algorithms perform a depth-first search.

Example 5. Among the three optimal DBCs of length 5 with leading factor
dividing 214310 and representing 542788, one is

2837 − 2635 − 2633 + 263 + 22.

The running time of this approach is largely driven by the length of the opti-
mal chain that is returned. Typically, it takes a few seconds for chains of length
12 up to a few hours for length 15. In general, it is practical to determine an op-
timal DBC for integers of size around 60 to 70 bits. See Section 5.1 and Table 1
for details including actual experiments and timings of our C++ implementation
that is available from our homepage, see [8].

So it is clear that computing an optimal DBC for a scalar of size around 200
bits, i.e. the kind of size typically used in elliptic curve cryptography, is com-
pletely out of reach with this approach. Instead, we consider another approach
to efficiently perform a random scalar multiplication [n]P .

3 Enumerating DBCs with Given Parameters

Instead of computing the number of DBCs representing a given integer n, this
time we want to count the number of different DBCs with a given leading factor
2a3b and a given length �.

Remark 3. The same problem is straightforward for DBNS expansions. Indeed,
we see from (1) that there are 2�

(
(a+1)(b+1)

�

)
different expansions of length � and

such that max ai = a and max bi = b. Note that all the expansions are different
in this count, but the integers they represent are not necessarily all different.

It is more involved to determine the number of unsigned DBCs (see Definition 3)
and of DBCs with a given leading factor 2a3b and a given length �.

On the Enumeration of Double-Base Chains with Applications 305

3.1 First Properties

Definition 4. Let S�(a, b) denote the number of unsigned DBCs of length � with
a leading factor equal to 2a3b. Let T�(a, b) denote the number of unsigned DBCs
of length � with a leading factor dividing 2a3b.

Proposition 2. Let � � 1. We have:

1. S�+1(a, b) = T�(a, b)− S�(a, b).

2.

T�+1(a, b) =
a∑

i=0

b∑
j=0

[
(a− i + 1)(b− j + 1)− 1

]
S�(i, j).

3. S�(a, b) and T�(a, b) are both symmetrical polynomials.

4. The leading terms of S�(a, b) and of T�(a, b) are respectively
(ab)�−1

(�−1)!2 and (ab)�

�!2
.

Proof. The first three relations are a simple consequence of the definitions of
S�(a, b) and T�(a, b). To prove 4. we first note that S�(a, b) is of degree 2� − 2
and T�(a, b) is of degree 2�. This can be shown by induction based on S1(a, b) = 1,
T1(a, b) = (a+1)(b+1), and using 1. and 2. We can now prove 4. by induction.
The property is true for S1(a, b) and T1(a, b). Also, by 1. and given that S�+1(a, b)
and T�(a, b) are of the same degree, it is clear that their leading terms are equal.
So by the induction hypothesis, it is clear that the property holds for S�(a, b),
for all � � 1. Now assuming it holds for T�−1(a, b), let us show that it holds for
T�(a, b). Using the induction hypothesis, we observe that the leading term of

T�(a, b) =

a∑
i=0

b∑
j=0

[
(a− i+ 1)(b− j + 1)− 1

]
S�−1(i, j)

is equal to the leading term of

1

(� − 2)!2

a∑
i=0

b∑
j=0

(a− i)(b− j)(ij)�−2·

Next, we note that the leading term of

a∑
i=0

ik is 1
(k+1)a

k+1. We deduce that the
leading term of

a∑
i=0

b∑
j=0

(a− i)(b− j)(ij)�−2

is

(ab)�
(

1

�2
+

1

(� − 1)2
− 2

�(�− 1)

)
=

(ab)�

((�− 1)�)2
·

It follows that the leading term of T�(a, b) is
(ab)�

�!2
, as expected. �

306 C. Doche

Remark 4. The number of signed DBCs of length � with a leading factor equal
to 2a3b and dividing 2a3b can be easily deduced from S�(a, b) and T�(a, b), re-
spectively. Namely, it is only necessary to multiply by a factor 2�. Note that all
those DBCs represent positive and negative integers. But it is easy to see that the
sign of the integer represented by a chain corresponds to the sign of the largest
term of the chain. See Lemma 1 in Section 4. So if we are only interested in
DBCs representing positive values, the multiplication factor between unsigned
and signed DBCs should be 2�−1.

3.2 Explicit Computations

Recall that S1(a, b) = 1 and T1(a, b) = (a+1)(b+ 1). Proposition 2 can then be
used to explicitly determine the polynomials S� and T� of rank � � 2 recursively.
For instance, we have S2(a, b) = ab + a + b from 1. and T2(a, b) =

1
4 (ab + 2a+

2b)T1(a, b) using 2. We can then compute S3(a, b), then T3(a, b), and so on.
In practice, however, the complexity of those polynomials rapidly grows with

� and it becomes quickly impossible to compute them formally. Fortunately, we
are only interested by the value of these polynomials at a specific pair (a0, b0).
This can be done very efficiently using some precomputations and Lagrange
interpolation. Since S� is a polynomial of degree � − 1 in a and � − 1 in b, it is
enough to know the value of S� at �2 pairs (ai, bj), for (i, j) ∈ [1, �]2 in order
to compute S�(a0, b0). First, for each i ∈ [1, �], we interpolate with respect to
the second coordinate based on the values S�(ai, bj), for j ∈ [1, �]. We obtain
� polynomials in variable b. Specializing those polynomials at b0, we obtain
� values and a second Lagrange interpolation, followed by a specialization at
a0 gives S�(a0, b0). Note that in order to find the Lagrange polynomial P (x)
interpolating the points (xk, f(xk)), it is faster, in our case, to use the following
formulas

P (x) = w(x)
�∑

k=1

f(xk)

w′(xk)(x− xk)
with w(x) =

�∏
j=1

(x− xj)

rather than a more classical approach such as Aitken method. For each length
�, the �2 precomputed values can be obtained with Proposition 2. There is a
similar approach for evaluating T� at (a0, b0).

Our PARI/GP implementation allows to deal efficiently with length � up
to 150. For most pairs (a, b), it takes less than 50ms to evaluate S�(a, b) or
T�(a, b). In any case, at most a few seconds are necessary. The corresponding
precomputations require about 45 MB. Only 10 MB are necessary to handle
lengths � up to 100. See [8] to access the actual implementation.

3.3 Generalization to Multi-Base Chains

It is easy to generalize the previous results to Multi-Base Chains. Let p1, . . . , pk
be k pairwise coprime bases. A Multi-Base Chain (MBC) allows to represent a

On the Enumeration of Double-Base Chains with Applications 307

positive integer n as

n =

�∑
i=1

cip
a1,i

1 . . . p
ak,i

k , with c1 = 1 and ci = ±1, for i > 1

and aj,1 � aj,2 � · · · � aj,�, for all j ∈ [1, k]. An unsigned Multi-Base Chain is
similar to a Multi-Base Chain except that all the ci’s are equal to 1. In any case,
we assume that the term p

a1,i

1 . . . p
ak,i

k appears at most once in any expansion.

Definition 5. Let a denote the vector (a1, . . . , ak) and let S�(a) be the number
of unsigned Multi-Base Chains of length � satisfying aj,1 = aj, for all j. Also,
let T�(a) be the number of unsigned Multi-Base Chains of length � satisfying
aj,1 � aj, for all j.

The following Proposition is a simple generalization of Proposition 2. The proof
is also similar.

Proposition 3. Let � � 1. We have

1. S�+1(a) = T�(a)− S�(a).
2.

T�+1(a) =

a1∑
i1=0

· · ·
ak∑

ik=0

[
k∏

j=1

(aj − ij + 1)− 1

]
S�(a).

3. S�(a) and T�(a) are both symmetrical polynomials.

4. The leading terms of S�(a) and of T�(a) are respectively (a1...ak)
�−1

(�−1)!k and
(a1...ak)

�

�!k
.

Remark 5. Again the number of MBCs of length � with a leading factor equal
or dividing pa1,1

1 . . . pak,1
k can be easily deduced from S�(a) or T�(a). Namely, it

is only necessary to multiply by a factor 2�−1.

Example 6. For k = 3, we have

S1(a) = (a1 + 1)(a2 + 1)(a3 + 1),

T1(a) = 1,

S2(a) =
1

8
(a1a2a3 + 2a1a2 + 2a1a3 + 2a2a3 + 4a1 + 4a2 + 4a3)S1(a),

T2(a) = a1a2a3 + a1a2 + a1a3 + a2a3 + a1 + a2 + a3.

4 Controlled DBC for Scalar Multiplication

For cryptographic applications, we propose a new way to perform a random
scalar multiplication based on the concept of controlled DBC . The idea is to
directly generate a random DBC expansion instead of choosing a random integer
n and then finding a corresponding DBC to represent it.

308 C. Doche

Definition 6. Given a leading factor 2a3b and a given length �, the controlled
DBC approach refers to the generation of a DBC expansion

�∑
i=1

ci2
ai3bi , with ci ∈ {−1, 1}

such that c1 = 1, a1 = a, b1 = b, and whose � − 1 remaining terms ci2
ai3bi are

selected to satisfy a1 � a2 � · · · � a� and b1 � b2 � · · · � b�.

This has two main advantages. Although very efficient, the greedy approach
still requires some time to return a DBC. No conversion is necessary with this
approach. Furthermore, there is no guarantee that the DBC expansion returned
by the greedy approach is optimal. In fact, we have evidence that the greedy
method returns a DBC that is far from optimal in general, especially for large
integers. See Section 5.2 and Figure 2. By choosing the DBC expansion first, in
particular its leading factor as well as its length, we can get closer to the average
optimal length. As a result, we can perform a scalar multiplication faster than
with the DBC obtained with the greedy approach by saving many additions. This
approach raises a few questions, in particular, regarding a suitable selection of
the length. For a given size and a given leading factor, it is possible to estimate
the length which corresponds heuristically to the average optimal length of a
DBC representing integers of that size with that leading factor. See Definition 7
for the notion of Near Optimal Length.

First, let us address the range of the integers that can be represented a priori
with a DBC having a leading term equal to 2a3b.

4.1 Integer Range

The following result provides an answer.

Lemma 1. Any DBC with leading factor 2a3b belongs to the interval[
3b + 1

2
, 2a+13b − 3b + 1

2

]
.

It follows that the sign of the integer represented by a DBC with leading factor
equal to 2a3b is driven by the sign of the coefficient of the leading factor in the
DBC.

Proof. It is not difficult to see that the largest integer represented with a DBC
having a leading factor equal to 2a3b can be constructed with a greedy-type
approach. In other words, it is enough to pick the largest available term at each
step to end up with the largest possible integer. Starting from 2a3b, the next
term in the DBC is of the form 2i3j with i � a, j � b, and (i, j) �= (a, b).
Assuming that a � 1, clearly, 2a−13b is the largest possible integer we can pick.

On the Enumeration of Double-Base Chains with Applications 309

If a = 0, then there is no choice but to pick 3b−1. Repeating this argument, we
deduce that the largest integer that can be represented is

2a3b +

a−1∑
j=0

2j3b +

b−1∑
j=0

3j = 2a+13b +
3b − 1

2
.

Similarly, the smallest integer corresponds to 3b+1
2

. Finally, it is obvious that if
a DBC starts with −2a3b, then the integers that can be represented with this
DBC belong to the interval[

−2a+13b +
3b + 1

2
, − 3b + 1

2

]
.

So integers represented by a DBC starting with 2a3b are always positive and
those represented by a DBC starting with −2a3b are always negative. �

The work in Section 3 gives the exact cardinality of the set containing all the
DBCs with selected parameters. It is then tempting to select a length � giving
rise to as many DBCs as there are integers in the interval given in Lemma 1.
However, this is ignoring that in general an integer has many different DBCs
representations.

4.2 Redundancy and Near Optimal Length

In the controlled DBC approach, we need to be careful in selecting the length
�, as generating DBCs that are not long enough could compromise the security
of the cryptosystem by severely restricting the number of scalars that can be
represented with those chains. What length is then long enough? See Definition 7
for the notion Near Optimal Length addressing this question.

For various leading factors up to 230310 and length between 1 and 12, we have
computed the number of different optimal representations of integers having an
optimal DBC with this particular leading factor and length. For every selection of
parameters, we consider between 10, 000 and 100 such integers. We then compute
the average number of optimal DBCs for each length between 1 and 12, taking
into account all the possible leading factors. This search was carried out with
the algorithms developed in Section 2. The data fit an exponential regression of
the form y = exp(0.4717x− 1.1683) with R2 = 0.9975, see Figure 1.

To double-check the relevance of this estimate, we investigate DBCs having a
leading factor of the form 23�. We know that in this case the optimal length is
�, which corresponds to the NAF. We then compute the number of DBCs with
a leading factor equal to 3� and a length equal to � using what we have done
in Section 3. Dividing this quantity by 23�+1, which corresponds approximately
to the number of integers that can be represented a priori, we should obtain an
estimate of the average number of optimal DBCs representing an integer, i.e.
something close to exp(0.4717�− 1.1683). For all � ∈ [10, 100], the ratio between

310 C. Doche

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12

Fig. 1. Curve exp(0.4717x − 1.1683) fitting the experimental data

these two quantities lies in the interval [0.0974, 3.384]. This tends to confirm the
relevance of our estimate, at least for relatively small values of b (0 in this case).

Definition 7. For a leading factor equal to 2a3b # 2t, the Near Optimal Length
corresponds to the integer value � minimizing∣∣∣2�−1S�(a, b)− 2t
exp(0.4717�− 1.1683)�

∣∣∣.
Indeed, we expect that the average number of different DBC expansions of length
� representing the same integer is close to
exp(0.4717� − 1.1683)�. Heuristi-
cally, we also expect that this redundancy factor multiplied by 2t is equal to
2�−1S�(a, b) for the average optimal length �.

4.3 Applications to Elliptic Curve Cryptography

For a chosen coordinate system representing a point on an elliptic curve and the
corresponding complexities of a doubling, a tripling, and a mixed addition, it is
possible to determine the optimal parameters, i.e. leading factor 2a3b and length
�, which minimize the overall cost of a scalar multiplication with that particular
coordinate system, without compromising the security of the system.

Definition 8. For a given coordinate system and a bit size t, the Near Optimal
Controlled (NOC) DBC method refers to the generation of a Controlled DBC
with Near Optimal Length, which minimizes the costs of a scalar multiplication.

On the Enumeration of Double-Base Chains with Applications 311

In practice, we first select the bit size t, then consider all the possible pairs (a, b)
such that 2a3b # 2t. For each pair (a, b), we work out the corresponding Near
Optimal Length �. Then we can compute the overall complexity to perform a
scalar multiplication based on a controlled DBC with leading factor 2a3b and
length �. It is then a matter of selecting the pair (a, b) corresponding to the
lowest complexity overall. See Figure 2 and Tables 2 and 3.

5 Experiments

We have implemented the work described in Section 3 in C++ using NTL 6.0.0 [21]
built on top of GMP 5.1.2 [15]. The approach described in Section 4 is implemented
in PARI/GP 2.7.1 [22]. See [8] to access the actual C++ and PARI/GP implementa-
tions. All the programs are executed on a quad core i7-2620 at 2.70Ghz.

5.1 Optimal DBC Search

Given an integer n, the running time of Algorithms 1 and 2 to find the optimal
length of a DBC representing n with a leading factor dividing 2a3b is largely
driven by the length � of this optimal expansion. It usually takes several minutes
for DBCs of length 14. See Table 1.

Table 1. Average running times to find an optimal DBC of length �

Length � 9 10 11 12 13 14

Time in s 1.08 5.21 28.52 66.38 214.80 757.91

Considering integers related to π, the longest optimal DBC that we have been
able to compute corresponds to the 69-bit integer 314159265358979323846 with
a leading factor equal to 238319 and length 18. It takes about 22 hours to show
that there is no expansion of length less than or equal to 17 and it takes a bit less
than six hours to return an optimal expansion of length 18 with the early abort
technique mentioned in Section 2.4. Interestingly, the greedy approach returns
a DBC of length 18 so that we can obtain an optimal DBC in no time, in that
particular case.

5.2 Comparison between Greedy and Near Optimal Length

We have run some tests for sizes 192, 256, 320, 384, 448, and 512 bits. For
each size t, we have considered various leading factors of the form 2a3b # 2t.
More precisely, we fix a between t/2 and t, compute the corresponding b, and
then compute the average length of the DBCs returned by the greedy method
for 5, 000 random integers. We also compute the Near Optimal Length of a

312 C. Doche

DBC with leading factor equal to 2a3b, see Definition 7 in Section 4.2. Our
computations indicate that considering controlled DBCs that are 20 to 30%
shorter than those returned by the greedy algorithm should not significantly
reduce the set of integers that can be represented. See Figure 2, which shows a
comparison for size t = 320. The x-coordinate axis corresponds to a between 160
and 315. The y-coordinate axis corresponds to the average length of the DBCs.

 0

 20

 40

 60

 80

 100

 120

 160 180 200 220 240 260 280 300 320

Greedy
Controlled

Fig. 2. Comparison between the average length of the DBCs returned by the greedy
method and the Near Optimal Length for size 320 bits

5.3 Scalar Multiplication

In this part, we are interested in the potential savings introduced by our new
scalar multiplication framework described in Section 4, in particular using the
notion of Near Optimal Controlled DBC, see Definition 8.

In the following, we select the Inverted Edwards coordinate system [4] for a
curve defined over a large prime field Fp. This system offers a very fast doubling
and a reasonably cheap mixed addition and tripling [2]. More precisely, the respec-
tive costs of a doubling, mixed addition, and tripling are 3M + 4S, 8M + S, and
9M+4S, where M and S stand respectively for a multiplication and a squaring in
Fp. To allow easy comparisons and as customary, we assume that S = 0.8M.

Until now, computing [n]P for a random n, in Inverted Edwards coordinates
with a DBC was not really worth it. Indeed, only the greedy method was fast
enough to return a DBC in a reasonable time and the overall savings obtained
were marginal with respect to the NAF, whose recoding can be achieved much
faster. With the NAF, we perform t doublings and approximately t/3 mixed
additions in order to compute [n]P where n is of size t bits.

On the Enumeration of Double-Base Chains with Applications 313

In Table 2, we display the parameters, costs, and speedups corresponding to
different methods, for various sizes between 192 and 512. First, we consider the
Near Optimal Controlled DBC approach, then the greedy method, and finally the
NAF. LF stands for the leading factor and � is the length of the corresponding
expansion. The costs are expressed in terms of the number of multiplications
needed to compute [n]P but do not take into account the effort to produce each
expansion. Regarding the NOC DBC, we determine for each size the optimal
leading factor 2a3b and corresponding Near Optimal Length � minimizing the
costs of the scalar multiplication, as explained in Section 5.2. Similarly, for the
greedy approach we rely on the computations of Section 5.2.

Table 2. Theoretical comparison between NOC, greedy, and NAF methods

NOC Greedy NAF Speedups

Size LF � Cost LF1 �1 Cost1 LF2 �2 Cost2 S1 S2

192 2151326 37 1570.20 2116348 44.63 1688.74 2192 64.00 1744.80 7.02% 10.01%

256 2198337 48 2092.60 2153365 58.73 2249.62 2256 85.33 2329.33 6.98% 10.16%

320 2260338 62 2612.40 2180389 70.80 2816.04 2320 106.67 2913.87 7.23% 10.35%

384 2297355 71 3128.40 22173106 84.74 3375.51 2384 128.00 3498.40 7.32% 10.58%

448 2369350 86 3645.80 22543123 98.73 3935.42 2448 149.33 4082.93 7.36% 10.71%

512 2406367 95 4161.80 22863143 112.07 4495.22 2512 170.67 4667.47 7.42% 10.83%

To validate these theoretical results, we have developed an implementation
in C++ using NTL 6.0.0 [21] built on top of GMP 5.1.2 [15]. The program is
compiled and executed on a quad core i7-2620 at 2.70Ghz. For t = 192, 256,
320, 384, 448, and 512, we generate a random prime number pt having bit size
t. For each pt, we then create a total of 100 curves of the form

E : x2 + y2 = c2(1 + dx2y2)

defined over Fpt , where c and d are small random values. For each curve E, we
determine a random point P on E. Next, we select 100 random scalars in the
interval [0, pt − 1]. The corresponding NAF and greedy DBC expansions with
a leading factor as in Table 2 are then computed for each scalar. For each t,
we also directly create 100 random DBC expansions of length � returned by
the controlled DBC approach. Since we only want to assess the efficiency of the
scalar multiplication, our only constraint is to generate a DBC with the specified
length � and leading factor as in Table 2. In practice, the method used to generate
the expansions should be thoroughly designed and analyzed to ensure that the
integers that are produced are uniformly distributed. This will be the object of
some future work.

The experiments confirm the theoretical complexity analysis provided in Ta-
ble 2, especially regarding S2. The discrepancy between the theoretical and the

314 C. Doche

experimental values of S1 can be explained by a ratio M/S that is closer to 0.95
in NTL rather than 0.8 as initially assumed.

See Table 3 for actual timings. Note that the respective times necessary to
compute the expansions for each method are not counted.

Table 3. Comparison of running times of NOC, greedy, and NAF methods

NOC Greedy NAF Speedups

Size Time in ms Time in ms Time in ms S1 S2

192 0.822 0.861 0.939 4.58% 12.49%

256 1.444 1.531 1.642 5.73% 12.08%

320 2.446 2.584 2.766 5.35% 11.58%

384 3.511 3.703 3.960 5.17% 11.33%

448 5.088 5.392 5.729 5.65% 11.20%

512 6.569 6.982 7.408 5.91% 11.32%

6 Conclusion and Future Work

In this article, we have introduced new techniques to compute an optimal DBC
representing a given integer. The algorithms that we have developed allow to
tackle sizes of around 60 to 70 bits in a reasonable time.

We have also developed a new way to produce DBCs, namely the controlled
DBC approach, which allows to directly create a DBC expansion instead of
selecting an integer and converting it to DBC format. This idea raises a few issues
regarding the choice of parameters, in particular the length of the expansion.

We use heuristics to estimate the average length of an optimal DBC expansion
representing an integer of a certain bit size with a given leading factor. This
estimate is based on the enumeration of the DBCs with given parameters and
the expected number of different optimal DBCs representing the same integer.

For a given size and coordinate system, these heuristics allow to determine the
optimal parameters, i.e. leading factor and length, which minimize the overall
costs of a scalar multiplication of that size. This gives rise to the concept of Near
Optimal Controlled DBC. Our experiments show speedups for this approach in
excess of 10% over the NAF and of about 5% over the greedy method. Those
computations do not take into account the time necessary to produce the ex-
pansions. So the interest of this new method is even greater as the expansions
do not have to be computed unlike for the greedy and NAF methods.

In future, we aim at studying the redundancy of DBCs more accurately in
order to find an upper bound on the number of DBCs of a certain length, rep-
resenting an integer of a certain size.

On the Enumeration of Double-Base Chains with Applications 315

Also, given a leading factor, once we have an estimate of the length of the
expansion, the problem remains to actually create random controlled DBC ex-
pansions, such that the corresponding integers are uniformly distributed.

This question is not addressed in the present paper and will be the object of
some future work.

Acknowledgments. The author would like to thank the GAATI group and the
Department of Mathematics of the University of French Polynesia for hosting
him while this research was carried out.

References

������� �	
���� ��
���� � ��� �	� ���
��� ��� ���� ����� ���
�����	� �

���

1. Avanzi, R.M., Cohen, H., Doche, C., Frey, G., Lange, T., Nguyen, K., Vercauteren,
F.: Handbook of Elliptic and Hyperelliptic Curve Cryptography. Discrete Mathe-
matics and its Applications. Chapman & Hall/CRC, Boca Raton (2005) {298}

2. Bernstein, D.J., Lange, T.: Explicit-formulas database,
http://www.hyperelliptic.org/EFD/ {312}

3. Bernstein, D.J., Lange, T.: Faster addition and doubling on elliptic curves. In:
Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 29–50. Springer,
Heidelberg (2007) {298}

4. Bernstein, D.J., Lange, T.: Inverted Edwards Coordinates. In: Boztaş, S.,
Lu, H.-F(F.) (eds.) AAECC 2007. LNCS, vol. 4851, pp. 20–27. Springer, Heidelberg
(2007) {312}

5. Dimitrov, V.S., Cooklev, T.: Hybrid Algorithm for the Computation of the Matrix
Polynomial I+A+· · ·+AN−1. IEEE Trans. on Circuits and Systems 42(7), 377–380
(1995) {298}

6. Dimitrov, V.S., Imbert, L., Mishra, P.K.: Efficient and Secure Elliptic Curve Point
Multiplication Using Double-Base Chains. In: Roy, B. (ed.) ASIACRYPT 2005.
LNCS, vol. 3788, pp. 59–78. Springer, Heidelberg (2005) {298, 299}

7. Dimitrov, V.S., Jullien, G.A., Miller, W.C.: An Algorithm for Modular Exponen-
tiation. Information Processing Letters 66(3), 155–159 (1998) {298}

8. Doche, C.: C++ and PARI/GP implementations to compute optimal and enumer-
ate Double-Base Chains, http://www.comp.mq.edu.au/~doche {304, 306, 311}

9. Doche, C., Habsieger, L.: A Tree-Based Approach for Computing Double-Base
Chains. In: Mu, Y., Susilo, W., Seberry, J. (eds.) ACISP 2008. LNCS, vol. 5107,
pp. 433–446. Springer, Heidelberg (2008) {299}

10. Doche, C., Imbert, L.: Extended Double-Base Number System with applications to
Elliptic Curve Cryptography. In: Barua, R., Lange, T. (eds.) INDOCRYPT 2006.
LNCS, vol. 4329, pp. 335–348. Springer, Heidelberg (2006) {299}

11. Doche, C., Kohel, D.R., Sica, F.: Double-Base Number System for Multi-
scalar Multiplications. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479,
pp. 502–517. Springer, Heidelberg (2009) {299}

12. Doche, C., Sutantyo, D.: New and Improved Methods to Analyze and Compute
Double-Scalar Multiplications. IEEE Trans. Comput. 63(1), 230–242 (2014) {299}

13. Edwards, H.M.: A normal form for elliptic curves. Bull. Amer. Math. Soc
(N.S.) 44(3), 393–422 (2007) (electronic) {298}

http://www.hyperelliptic.org/EFD/
http://www.comp.mq.edu.au/~doche

316 C. Doche

14. Erdős, P., Loxton, J.H.: Some problems in partitio numerorum. J. Austral. Math.
Soc. Ser. A 27(3), 319–331 (1979) {300}

15. Free Software Foundation. GNU Multiple Precision Library {311, 313}
16. Hankerson, D., Menezes, A.J., Vanstone, S.A.: Guide to Elliptic Curve Cryptogra-

phy. Springer, Berlin (2003) {298}
17. Imbert, L., Philippe, F.: Strictly chained (p, q)-ary partitions. Contrib. Discrete

Math. 5(2), 119–136 (2010) {300}
18. Lou, T., Sun, X., Tartary, C.: Bounds and Trade-offs for Double-Base Number

Systems. Information Processing Letters 111(10), 488–493 (2011) {299}
19. Morain, F., Olivos, J.: Speeding up the Computations on an Elliptic Curve using

Addition-Subtraction Chains. Inform. Theor. Appl. 24, 531–543 (1990) {298}
20. Reitwiesner, G.: Binary arithmetic. Adv. Comput. 1, 231–308 (1962) {298}
21. Shoup, V.: NTL: A Library for doing Number Theory {311, 313}
22. The PARI Group, Bordeaux. PARI/GP, version 2.7.1 (2014) {311}
23. Washington, L.C.: Elliptic Curves. Discrete Mathematics and its Applications.

Number theory and cryptography. Chapman & Hall/CRC, Boca Raton (2003)
{298}

Kummer Strikes Back: New DH Speed Records

Daniel J. Bernstein1,2, Chitchanok Chuengsatiansup2, Tanja Lange2,
and Peter Schwabe3

1 Department of Computer Science, University of Illinois at Chicago
Chicago, IL 60607–7045, USA

djb@cr.yp.to
2 Department of Mathematics and Computer Science

Technische Universiteit Eindhoven
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

c.chuengsatiansup@tue.nl, tanja@hyperelliptic.org
3 Radboud University Nijmegen, Digital Security Group

P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
peter@cryptojedi.org

Abstract. This paper sets new speed records for high-security constant-
time variable-base-point Diffie–Hellman software: 305395 Cortex-A8-slow
cycles; 273349 Cortex-A8-fast cycles; 88916 Sandy Bridge cycles; 88448
Ivy Bridge cycles; 54389 Haswell cycles. There are no higher speeds in
the literature for any of these platforms.

The new speeds rely on a synergy between (1) state-of-the-art for-
mulas for genus-2 hyperelliptic curves and (2) a modern trend towards
vectorization in CPUs. The paper introduces several new techniques for
efficient vectorization of Kummer-surface computations.

Keywords: performance, Diffie–Hellman, hyperelliptic curves, Kummer
surfaces, vectorization.

1 Introduction

The Eurocrypt 2013 paper “Fast cryptography in genus 2” by Bos, Costello,
Hisil, and Lauter [17] reported 117000 cycles on Intel’s Ivy Bridge microarchi-
tecture for high-security constant-time scalar multiplication on a genus-2 Kum-
mer surface. The eBACS site for publicly verifiable benchmarks [13] confirms
119032 “cycles to compute a shared secret” (quartiles: 118904 and 119232) for
the kumfp127g software from [17] measured on a single core of h9ivy, a 2012
Intel Core i5-3210M running at 2.5GHz. The software is not much slower on
Intel’s previous microarchitecture, Sandy Bridge: eBACS reports 122716 cycles
(quartiles: 122576 and 122836) for kumfp127g on h6sandy, a 2011 Intel Core
i3-2310M running at 2.1GHz. (The quartiles demonstrate that rounding to a

This work was supported by the National Science Foundation under grant 1018836
and by the Netherlands Organisation for Scientific Research (NWO) under grants
639.073.005, 613.001.011, and through the Veni 2013 project 13114. Permanent ID
of this document: 1c5c0ead2524267af6b4f6d9114f10f0. Date: 2014.09.25.

P. Sarkar and T. Iwata (Eds.): ASIACRYPT 2014, PART I, LNCS 8873, pp. 317–337, 2014.
c© International Association for Cryptologic Research 2014

318 D.J. Bernstein et al.

multiple of 1000 cycles, as in [17], loses statistically significant information; we
follow eBACS in reporting medians of exact cycle counts.)

The paper reported that this was a “new software speed record” (“breaking
the 120k cycle barrier”) compared to “all previous genus 1 and genus 2 imple-
mentations” of high-security constant-time scalar multiplication. Obviously the
genus-2 cycle counts shown above are better than the (unverified) claim of 137000
Sandy Bridge cycles by Longa and Sica in [40] (Asiacrypt 2012) for constant-
time elliptic-curve scalar multiplication; the (unverified) claim of 153000 Sandy
Bridge cycles by Hamburg in [34] for constant-time elliptic-curve scalar mul-
tiplication; the 182708 cycles reported by eBACS on h9ivy for curve25519, a
constant-time implementation by Bernstein, Duif, Lange, Schwabe, and Yang
[11] (CHES 2011) of Bernstein’s Curve25519 elliptic curve [9]; and the 194036
cycles reported by eBACS on h6sandy for curve25519.

One might conclude from these figures that genus-2 hyperelliptic-curve cryp-
tography (HECC) solidly outperforms elliptic-curve cryptography (ECC). How-
ever, two newer papers claim better speeds for ECC, and a closer look reveals a
strong argument that HECC should have trouble competing with ECC.

The first paper, [44] by Oliveira, López, Aranha, and Rodŕıguez-Henŕıquez
(CHES 2013 best-paper award), is the new speed leader in eBACS for non-
constant-time scalar multiplication; the paper reports a new Sandy Bridge speed
record of 69500 cycles. Much more interesting for us is that the paper claims
114800 Sandy Bridge cycles for constant-time scalar multiplication, beating [17].
eBACS reports 119904 cycles, but this is still faster than [17].

The second paper, [24] by Faz-Hernández, Longa, and Sánchez, claims 92000
Ivy Bridge cycles or 96000 Sandy Bridge cycles for constant-time scalar mul-
tiplication; a July 2014 update of the paper claims 89000 Ivy Bridge cycles or
92000 Sandy Bridge cycles. These claims are not publicly verifiable, but if they
are even close to correct then they are faster than [17].

Both of these new papers, like [40], rely heavily on curve endomorphisms
to eliminate many doublings, as proposed by Gallant, Lambert, and Vanstone
[27] (Crypto 2001), patented by the same authors, and expanded by Galbraith,
Lin, and Scott [26] (Eurocrypt 2009). Specifically, [44] uses a GLS curve over
a binary field to eliminate 50% of the doublings, while also taking advantage of
Intel’s new pclmulqdq instruction to multiply binary polynomials; [24] uses a
GLV+GLS curve over a prime field to eliminate 75% of the doublings.

One can also use the GLV and GLS ideas in genus 2, as explored by Bos,
Costello, Hisil, and Lauter starting in [17] and continuing in [18] (CHES 2013).
However, the best GLV/GLS speed reported in [18], 92000 Ivy Bridge cycles,
provides only 2105 security and is not constant time. This is less impressive than
the 119032 cycles from [17] for constant-time DH at a 2125 security level, and
less impressive than the reports in [44] and [24].

The underlying problem for HECC is easy to explain. All known HECC ad-
dition formulas are considerably slower than the state-of-the-art ECC addition
formulas at the same security level. Almost all of the HECC options explored in

Kummer Strikes Back: New DH Speed Records 319

[17] are bottlenecked by additions, so they were doomed from the outset, clearly
incapable of beating ECC.

The one exception is that HECC provides an extremely fast ladder (see Sec-
tion 2), built from extremely fast differential additions and doublings, consider-
ably faster than the Montgomery ladder frequently used for ECC. This is why
[17] was able to set DH speed records.

Unfortunately, differential additions do not allow arbitrary addition chains.
Differential additions are incompatible with standard techniques for removing
most or all doublings from fixed-base-point single-scalar multiplication, and
with standard techniques for removing many doublings from multi-scalar mul-
tiplication. As a consequence, differential additions are incompatible with the
GLV+GLS approach mentioned above for removing many doublings from single-
scalar multiplication. This is why the DH speeds from [17] were quickly super-
seded by DH speeds using GLV+GLS. A recent paper [22] (Eurocrypt 2014) by
Costello, Hisil, and Smith shows feasibility of combining differential additions
and use of endomorphisms but reports 145000 Ivy Bridge cycles for constant-
time software, much slower than the papers mentioned above.

1.1. Contributions of This Paper. We show that HECC has an important
compensating advantage, and we exploit this advantage to achieve new DH speed
records. The advantage is that we are able to heavily vectorize the HECC ladder.

CPUs are evolving towards larger and larger vector units. A low-cost low-
power ARM Cortex-A8 CPU core contains a 128-bit vector unit that every two
cycles can compute two vector additions, each producing four sums of 32-bit
integers, or one vector multiply-add, producing two results of the form ab + c
where a, b are 32-bit integers and c is a 64-bit integer. Every cycle a Sandy
Bridge CPU core can compute a 256-bit vector floating-point addition, producing
four double-precision sums, and at the same time a 256-bit vector floating-point
multiplication, producing four double-precision products. A new Intel Haswell
CPU core can carry out two 256-bit vector multiply-add instructions every cycle.
Intel has announced future support for 512-bit vectors (“AVX-512”).

Vectorization has an obvious attraction for a chip manufacturer: the costs
of decoding an instruction are amortized across many arithmetic operations.
The challenge for the algorithm designer is to efficiently vectorize higher-level
computations so that the available circuitry is performing useful work during
these computations rather than sitting idle. What we show here is how to fit
HECC with surprisingly small overhead into commonly available vector units.
This poses several algorithmic challenges, notably to minimize the permutations
required for the Hadamard transform (see Section 4). We claim broad applica-
bility of our techniques to modern CPUs, and to illustrate this we analyze all
three of the microarchitectures mentioned in the previous paragraph.

Beware that different microarchitectures often have quite different perfor-
mance. A paper that advertises a “better” algorithmic idea by reporting new
record cycle counts on a new microarchitecture, not considered in the previ-
ous literature, might actually be reporting an idea that loses performance on
all microarchitectures. We instead emphasize HECC performance on the widely

320 D.J. Bernstein et al.

deployed Sandy Bridge microarchitecture, since Sandy Bridge was shared as a
target by the recent ECC speed-record papers listed above. We have now set
a new Sandy Bridge DH speed record, demonstrating the value of vectorized
HECC. We have also set DH speed records for Ivy Bridge, Haswell, and Cortex-
A8.

1.2. Constant Time: Importance and Difficulty. See full version of this
paper online at https://eprint.iacr.org/2014/134.

1.3. Performance Results. eBACS shows that on a single core of h6sandy

our DH software (“kummer”) uses just 88916 Sandy Bridge cycles (quartiles:
88868 and 89184). On a single core of h9ivy our software uses 88448 cycles
(quartiles: 88424 and 88476). On a single core of titan0, an Intel Xeon E3-1275
V3 (Haswell), our software uses 54389 cycles (quartiles: 54341 and 54454). On
h7beagle, a TI Sitara AM3359 (Cortex-A8-slow), our software uses 305395 cy-
cles (quartiles: 305380 and 305413). On h4mx515e, a Freescale i.MX515 (Cortex-
A8-fast), our software uses 273349 cycles (quartiles: 273337 and 273387).

1.4. Cycle-Count Comparison. Table 1.5 summarizes reported high-security
DH speeds for Cortex-A8, Sandy Bridge, Ivy Bridge, and Haswell.

This table is limited to software that claims to be constant time, and that
claims a security level close to 2128. This is the reason that the table does not
include, e.g., the 767000 Cortex-A8 cycles and 108000 Ivy Bridge cycles claimed
in [18] for constant-time scalar multiplication on a Kummer surface; the authors
claim only 103 bits of security for that surface. This is also the reason that the
table does not include, e.g., the 69500 Sandy Bridge cycles claimed in [44] for
non-constant-time scalar multiplication.

The table does not attempt to report whether the listed cycle counts are
from software that actually meets the above security requirements. In some cases
inspection of the software has shown that the security requirements are violated;
see Section 1.2. “Open” means that the software is reported to be open source,
allowing third-party inspection.

Our speeds, on the same platform targeted in [17], solidly beat the HECC
speeds from [17]. Our speeds also solidly beat the Cortex-A8, Sandy Bridge, and
Ivy Bridge speeds from all available ECC software, including [11], [15], [22],
and [44]; solidly beat the speeds claimed in [34] and [40]; and are even faster
than the July 2014 Sandy Bridge/Ivy Bridge DH record claimed in [24], namely
92000/89000 cycles using unpublished software for GLV+GLS ECC. For Haswell,
despite Haswell’s exceptionally fast binary-field multiplier, our speeds beat the
55595 cycles from [44] for a GLS curve over a binary field. We set our new speed
records using an HECC ladder that is conceptually much simpler than GLV and
GLS, avoiding all the complications of scalar-dependent precomputations, lattice
size issues, multi-scalar addition chains, endomorphism-rho security analysis,
Weil-descent security analysis, and patents.

https://eprint.iacr.org/2014/134

Kummer Strikes Back: New DH Speed Records 321

Table 1.5. Reported high-security DH speeds for Cortex-A8, Sandy Bridge, Ivy Bridge,
and Haswell. Cycle counts from eBACS are for curve25519, kumfp127g, gls254prot,
and our kummer on h7beagle (Cortex-A8-slow), h4mx515e (Cortex-A8-fast), h6sandy
(Sandy Bridge), h9ivy (Ivy Bridge), and titan0 (Haswell). Cycle counts not from
SUPERCOP are marked “?”. ECC has g = 1; genus-2 HECC has g = 2. See text for
security requirements.

arch cycles ladder open g field source of software

A8-slow 497389 yes yes 1 2255 − 19 [15] CHES 2012
A8-slow 305395 yes yes 2 2127 − 1 new (this paper)

A8-fast 460200 yes yes 1 2255 − 19 [15] CHES 2012
A8-fast 273349 yes yes 2 2127 − 1 new (this paper)

Sandy 194036 yes yes 1 2255 − 19 [11] CHES 2011
Sandy 153000? yes no 1 2252 − 2232 − 1 [34]
Sandy 137000? no no 1 (2127 − 5997)2 [40] Asiacrypt 2012
Sandy 122716 yes yes 2 2127 − 1 [17] Eurocrypt 2013
Sandy 119904 no yes 1 2254 [44] CHES 2013
Sandy 96000? no no 1 (2127 − 5997)2 [24] CT-RSA 2014
Sandy 92000? no no 1 (2127 − 5997)2 [24] July 2014
Sandy 88916 yes yes 2 2127 − 1 new (this paper)

Ivy 182708 yes yes 1 2255 − 19 [11] CHES 2011
Ivy 145000? yes yes 1 (2127 − 1)2 [22] Eurocrypt 2014
Ivy 119032 yes yes 2 2127 − 1 [17] Eurocrypt 2013
Ivy 114036 no yes 1 2254 [44] CHES 2013
Ivy 92000? no no 1 (2127 − 5997)2 [24] CT-RSA 2014
Ivy 89000? no no 1 (2127 − 5997)2 [24] July 2014
Ivy 88448 yes yes 2 2127 − 1 new (this paper)

Haswell 145907 yes yes 1 2255 − 19 [11] CHES 2011
Haswell 100895 yes yes 2 2127 − 1 [17] Eurocrypt 2013
Haswell 55595 no yes 1 2254 [44] CHES 2013
Haswell 54389 yes yes 2 2127 − 1 new (this paper)

2 Fast Scalar Multiplication on the Kummer Surface

This section reviews the smallest number of field operations known for genus-2
scalar multiplication. Sections 3 and 4 optimize the performance of those field
operations using 4-way vector instructions.

Vectorization changes the interface between this section and subsequent sec-
tions. What we actually optimize is not individual field operations, but rather
pairs of operations, pairs of pairs, etc., depending on the amount of vectorization
available from the CPU. Our optimization also takes advantage of sequences of
operations such as the output of a squaring being multiplied by a small con-
stant. What matters in this section is therefore not merely the number of field
multiplications, squarings, etc., but also the pattern of those operations.

2.1. Only 25 Multiplications. Almost thirty years ago Chudnovsky and Chud-
novsky wrote a classic paper [21] optimizing scalar multiplication inside the
elliptic-curve method of integer factorization. At the end of the paper they

322 D.J. Bernstein et al.

x2

����

y2

����

z2

����

t2

����

x3

����

y3

����

z3

����

t3

����
×

��

×

��

×

��

×

��

×

��

×

��

×

��

×

��
H

����
66

��

��

��

��

��

��

H

�� �� �� ��

·A
2

B2

��
88

·A
2

C2

��
88

·A
2

D2

��
88×

��

×

��

×

��

×

��

×

��

×

��

×

��

×

��
H

��

�� �� ��

H

��

�� �� ��
·a
b

��

·a
c

��

·a
d

��

·x1
y1

��

·x1
z1

��

·x1
t1

��
x4 y4 z4 t4 x5 y5 z5 t5

(a) 10M + 9S + 6m ladder formulas.

x2

����

y2

����

z2

����

t2

����

x3

����

y3

����

z3

����

t3

����
×

��

×

��

×

��

×

��

×

��

×

��

×

��

×

��
H

����
66

����
66

����
66

����
66

H

�� �� �� ��
×

��

×
��

×
��

×
��

×

��

×
��

×
��

×
��

·A
2

B2

��

·A
2

C2

��

·A
2

D2

��

·A
2

B2

��

·A
2

C2

��

·A
2

D2

��
H

��

�� �� ��

H

��

�� �� ��
·a
b

��

·a
c

��

·a
d

��

·x1
y1

��

·x1
z1

��

·x1
t1

��
x4 y4 z4 t4 x5 y5 z5 t5

(b) 7M + 12S + 9m ladder formulas.

Fig. 2.2. Ladder formulas for the Kummer surface. Inputs are X(Q − P) = (x1 :
y1 : z1 : t1), X(P) = (x2 : y2 : z2 : t2), and X(Q) = (x3 : y3 : z3 : t3); outputs are
X(2P) = (x4 : y4 : z4 : t4) and X(P +Q) = (x5 : y5 : z5 : t5). Formulas in (a) are from
Gaudry [30]; diagrams are copied from Bernstein [10].

also considered the performance of scalar multiplication on Jacobian varieties
of genus-2 hyperelliptic curves. After mentioning various options they gave some
details of one option, namely scalar multiplication on a Kummer surface.

A Kummer surface is related to the Jacobian of a genus-2 hyperelliptic curve in
the same way that x-coordinates are related to a Weierstrass elliptic curve. There
is a standard rational map X from the Jacobian to the Kummer surface; this map
satisfies X(P) = X(−P) for points P on the Jacobian and is almost everywhere
exactly 2-to-1. Addition on the Jacobian does not induce an operation on the
Kummer surface (unless the number of points on the surface is extremely small),
but scalar multiplication P 7→ nP on the Jacobian induces scalar multiplication
X(P) 7→ X(nP) on the Kummer surface. Not every genus-2 hyperelliptic curve
can have its Jacobian mapped to the standard type of Kummer surface over the
base field, but a noticeable fraction of curves can; see [31].

Chudnovsky and Chudnovsky reported 14M for doubling a Kummer-surface
point, where M is the cost of field multiplication; and 23M for “general addi-
tion”, presumably differential addition, computing X(Q+P) given X(P), X(Q),
X(Q−P). They presented their formulas for doubling, commenting on a “pretty
symmetry” in the formulas and on the number of multiplications that were ac-
tually squarings. They did not present their formulas for differential addition.

Two decades later, in [30], Gaudry reduced the total cost of differential addi-
tion and doubling, computing X(2P), X(Q+ P) given X(P), X(Q), X(Q− P),
to 25M, more precisely 16M + 9S, more precisely 10M + 9S + 6m, where S is

Kummer Strikes Back: New DH Speed Records 323

x2

��

y2

��

z2

��

t2

��

x3

��

y3

��

z3

��

t3

��
H

����
66

��

��

��

��

��

��

H

�� �� �� ��

·A
2

B2

��
88

·A
2

C2

��
88

·A
2

D2

��
88×

��

×

��

×

��

×

��

×

��

×

��

×

��

×

��
H

���� ���� ���� ����

H

���� ���� ���� ����
×

��

×
��

×
��

×
��

×

��

×

��

×

��

×

��
·a

2

b2

��

·a
2

c2

��

·a
2

d2

��

·x1
y1

��

·x1
z1

��

·x1
t1

��
x4 y4 z4 t4 x5 y5 z5 t5

(a) 10M + 9S + 6m ladder formulas.

x2

��

y2

��

z2

��

t2

��

x3

��

y3

��

z3

��

t3

��
H

����
66

����
66

����
66

����
66

H

�� �� �� ��
×

��

×
��

×
��

×
��

×

��

×
��

×
��

×
��

·A
2

B2

��

·A
2

C2

��

·A
2

D2

��

·A
2

B2

��

·A
2

C2

��

·A
2

D2

��
H

���� ���� ���� ����

H

���� ���� ���� ����
×

��

×
��

×
��

×
��

×

��

×

��

×

��

×

��
·a

2

b2

��

·a
2

c2

��

·a
2

d2

��

·x1
y1

��

·x1
z1

��

·x1
t1

��
x4 y4 z4 t4 x5 y5 z5 t5

(b) 7M + 12S + 9m ladder formulas.

Fig. 2.4. Ladder formulas for the squared Kummer surface. Compare to Figure 2.2.

the cost of field squaring and m is the cost of multiplication by a curve constant.
An `-bit scalar-multiplication ladder therefore costs just 10`M + 9`S + 6`m.

Gaudry’s formulas are shown in Figure 2.2(a). Each point on the Kummer
surface is expressed projectively as four field elements (x : y : z : t); one is free
to replace (x : y : z : t) with (rx : ry : rz : rt) for any nonzero r. The “H”
boxes are Hadamard transforms, each using 4 additions and 4 subtractions; see
Section 4. The Kummer surface is parametrized by various constants (a : b : c : d)
and related constants (A2 : B2 : C2 : D2) = H(a2 : b2 : c2 : d2). The doubling
part of the diagram, from (x2 : y2 : z2 : t2) down to (x4 : y4 : z4 : t4), uses
3M + 5S + 6m, matching the 14M reported by Chudnovsky and Chudnovsky;
but the rest of the picture uses just 7M + 4S extra, making remarkable reuse
of the intermediate results of doubling. Figure 2.2(b) replaces 10M + 9S + 6m
with 7M + 12S + 9m, as suggested by Bernstein in [10]; this saves time if m is
smaller than the difference M− S.

2.3. The Original Kummer Surface vs. The Squared Kummer Surface.
Chudnovsky and Chudnovsky had actually used slightly different formulas for
a slightly different surface, which we call the “squared Kummer surface”. Each
point (x : y : z : t) on the original Kummer surface corresponds to a point
(x2 : y2 : z2 : t2) on the squared Kummer surface. Figure 2.4 presents the
equivalent of Gaudry’s formulas for the squared Kummer surface, relabeling
(x2 : y2 : z2 : t2) as (x : y : z : t); the squarings at the top of Figure 2.2 have
moved close to the bottom of Figure 2.4.

The number of field operations is the same either way, as stated in [10]
with credit to André Augustyniak. However, the squared Kummer surface has a
computational advantage over the original Kummer surface, as pointed out by

324 D.J. Bernstein et al.

Bernstein in [10]: constructing surfaces in which all of a2, b2, c2, d2, A2, B2, C2, D2

are small, producing fast multiplications by constants in Figure 2.4, is easier than
constructing surfaces in which all of a, b, c, d, A2, B2, C2, D2 are small, producing
fast multiplications by constants in Figure 2.2.

2.5. Preliminary Comparison to ECC. A Montgomery ladder step for ECC
costs 5M+4S+1m, while a ladder step on the Kummer surface costs 10M+9S+
6m or 7M+12S+9m. Evidently ECC uses only about half as many operations.
However, for security ECC needs primes around 256 bits (such as the convenient
prime 2255 − 19), while the Kummer surface can use primes around 128 bits
(such as the even more convenient prime 2127 − 1), and presumably this saves
more than a factor of 2.

Several years ago, in [10], Bernstein introduced 32-bit Intel Pentium M soft-
ware for generic Kummer surfaces (i.e., m = M) taking about 10% fewer cycles
than his Curve25519 software, which at the time was the speed leader for ECC.
Gaudry, Houtmann, and Thomé, as reported in [32, comparison table], intro-
duced 64-bit software for Curve25519 and for a Kummer surface; the second
option was slightly faster on AMD Opteron K8 but the first option was slightly
faster on Intel Core 2. It is not at all clear that one can reasonably extrapolate
to today’s CPUs.

Bernstein’s cost analysis concluded that HECC could be as much as 1.5×
faster than ECC on a Pentium M (cost 1355 vs. cost 1998 in [10, page 31]),
depending on the exact size of the constants a2, b2, c2, d2, A2, B2, C2, D2. This
motivated a systematic search through small constants to find a Kummer surface
providing high security and high twist security. But this was more easily said
than done: genus-2 point counting was much more expensive than elliptic-curve
point counting.

2.6. The Gaudry–Schost Kummer Surface. Years later, after a 1000000-
CPU-hour computation relying on various algorithmic improvements to genus-2
point counting, Gaudry and Schost announced in [33] that they had found a
secure Kummer surface (a2 : b2 : c2 : d2) = (11 : −22 : −19 : −3) over Fp with
p = 2127 − 1. This is exactly the surface that was used for the HECC speed
records in [17]. We obtain even better speeds for the same surface.

Note that, as mentioned by Bos, Costello, Hisil, and Lauter in [17], the con-
stants (1 : a2/b2 : a2/c2 : a2/d2) = (1 : −1/2 : −11/19 : −11/3) in Figure 2.4
are projectively the same as (−114 : 57 : 66 : 418). The common factor 11
between a2 = 11 and b2 = −22 helps keep these integers small. The constants
(1 : A2/B2 : A2/C2 : A2/D2) = (1 : −3 : −33/17 : −33/49) are projectively the
same as (−833 : 2499 : 1617 : 561).

3 Decomposing Field Multiplication

The only operations in Figures 2.2 and 2.4 are the H boxes, which we analyze
in Section 4, and field multiplications, which we analyze in this section. Our
goal here is to obtain the smallest possible number of CPU cycles for M, S,
etc. modulo p = 2127 − 1.

Kummer Strikes Back: New DH Speed Records 325

This prime has been considered before, for example in [8] and [10]. What is
new here is fitting arithmetic modulo this prime, for the pattern of operations
shown in Figure 2.4, into the vector abilities of modern CPUs. There are four
obvious dimensions of vectorizability:

• Vectorizing across the “limbs” that represent a field element such as x2. The
most obvious problem with this approach is that, when f is multiplied by
g, each limb of f needs to communicate with each limb of g and each limb
of output. A less obvious problem is that the optimal number of limbs is
CPU-dependent and is usually nonzero modulo the vector length. Each of
these problems poses a challenge in organizing and reshuffling data inside
multiplications.

• Vectorizing across the four field elements that represent a point. All of the
multiplications in Figure 2.4 are visually organized into 4-way vectors, except
that in some cases the vectors have been scaled to create a multiplication
by 1. Even without vectorization, most of this scaling is undesirable for
any surface with small a2, b2, c2, d2: e.g., for the Gaudry–Schost surface we
replace (1 : a2/b2 : a2/c2 : a2/d2) with (−114 : 57 : 66 : 418). The only
remaining exception is the multiplication by 1 in (1 : x1/y1 : x1/z1 : x1/t1)
where X(Q − P) = (x1 : y1 : z1 : t1). Vectorizing across the four field
elements means that this multiplication costs 1M, increasing the cost of a
ladder step from 7M + 12S + 12m to 8M + 12S + 12m.

• Vectorizing between doubling and differential addition. For example, in Fig-
ure 2.4(b), squarings are imperfectly paired with multiplications on the third
line; multiplications by constants are perfectly paired with multiplications
by the same constants on the fourth line; squarings are perfectly paired with
squarings on the sixth line; and multiplications by constants are imperfectly
paired with multiplications by inputs on the seventh line. There is some loss
of efficiency in, e.g., pairing the squaring with the multiplication, since this
prohibits using faster squaring methods.

• Vectorizing across a batch of independent scalar-multiplication inputs, in ap-
plications where a suitably sized batch is available. This is relatively straight-
forward but increases cache traffic, often to problematic levels. In this paper
we focus on the traditional case of a single input.

The second dimension of vectorizability is, as far as we know, a unique feature
of HECC, and one that we heavily exploit for high performance.

For comparison, one can try to vectorize the well-known Montgomery ladder
for ECC [42] across the field elements that represent a point, but (1) this provides
only two-way vectorization (x and z), not four-way vectorization; and (2) many of
the resulting pairings are imperfect. The Montgomery ladder for Curve25519 was
vectorized by Costigan and Schwabe in [23] for the Cell, and then by Bernstein
and Schwabe in [15] for the Cortex-A8, but both of those vectorizations had
substantially higher overhead than our new vectorization of the HECC ladder.

3.1. Sandy Bridge Floating-Point Units. The only fast multiplier available
on Intel’s 32-bit platforms for many years, from the original Pentium twenty

326 D.J. Bernstein et al.

years ago through the Pentium M, was the floating-point multiplier. This was
exploited by Bernstein for cryptographic computations in [8], [9], etc.

The conventional wisdom is that this use of floating-point arithmetic was
rendered obsolete by the advent of 64-bit platforms: in particular, Intel now
provides a reasonably fast 64-bit integer multiplier. However, floating-point units
have also become more powerful; evidently Intel sees many applications that rely
critically upon fast floating-point arithmetic. We therefore revisit Bernstein’s
approach, with the added challenge of vectorization.

We next describe the relevant features of the Sandy Bridge; see [25] for more
information. Our optimization of HECC for the Sandy Bridge occupies the rest
of Sections 3 and 4. The Ivy Bridge has the same features and should be expected
to produce essentially identical performance for this type of code. The Haswell
has important differences and is analyzed in Appendix B online; the Cortex-A8
is analyzed in Section 5.

Each Sandy Bridge core has several 256-bit vector units operating in parallel
on vectors of 4 double-precision floating-point numbers:

• “Port 0” handles one vector multiplication each cycle, with latency 5.
• Port 1 handles one vector addition each cycle, with latency 3.
• Port 5 handles one permutation instruction each cycle. The selection of per-

mutation instructions is limited and is analyzed in detail in Section 4.
• Ports 2, 3, and 4 handle vector loads and stores, with latency 4 from L1

cache and latency 3 to L1 cache. Load/store throughput is limited in various
ways, never exceeding one 256-bit load per cycle.

Recall that a double-precision floating-point number occupies 64 bits, including
a sign bit, a power of 2, and a “mantissa”. Every integer between −253 and 253

can be represented exactly as a double-precision floating-point number. More
generally, every real number of the form 2ei, where e is a small integer and i is an
integer between −253 and 253, can be represented exactly as a double-precision
floating-point number. The computations discussed here do not approach the
lower or upper limits on e, so we do not review the details of the limits.

Our final software uses fewer multiplications than additions, and fewer per-
mutations than multiplications. This does not mean that we were free to use
extra multiplications and permutations: if multiplications and permutations are
not finished quickly enough then the addition unit will sit idle waiting for input.
In many cases, noted below, we have the flexibility to convert multiplications to
additions, reducing latency; we found that in some cases this saved time despite
the obvious addition bottleneck.

3.2. Optimizing M (Field Multiplication). We decompose an integer f mod-
ulo 2127−1 into six floating-point limbs in (non-integer) radix 2127/6. This means
that we write f as f0 + f1 + f2 + f3 + f4 + f5 where f0 is a small multiple of 20, f1
is a small multiple of 222, f2 is a small multiple of 243, f3 is a small multiple of 264,
f4 is a small multiple of 285, and f5 is a small multiple of 2106. (The exact mean-
ing of “small” is defined by a rather tedious, but verifiable, collection of bounds
on the floating-point numbers appearing in each step of the program. It should

Kummer Strikes Back: New DH Speed Records 327

be obvious that a simpler definition of “small” would compromise efficiency; for
example, H cannot be efficient unless the bounds on H intermediate results and
outputs are allowed to be larger than the bounds on H inputs.)

If g is another integer similarly decomposed as g0 + g1 + g2 + g3 + g4 + g5
then f0g0 is a multiple of 20, f0g1 + f1g0 is a multiple of 222, f0g2 + f1g1 + f2g0
is a multiple of 243, etc. Each of these sums is small enough to fit exactly in a
double-precision floating-point number, and the total of these sums is exactly
fg. What we actually compute are the sums

h0 = f0g0 + 2�127f1g5 + 2�127f2g4 + 2�127f3g3 + 2�127f4g2 + 2�127f5g1,

h1 = f0g1 + f1g0 + 2�127f2g5 + 2�127f3g4 + 2�127f4g3 + 2�127f5g2,

h2 = f0g2 + f1g1 + f2g0 + 2�127f3g5 + 2�127f4g4 + 2�127f5g3,

h3 = f0g3 + f1g2 + f2g1 + f3g0 + 2�127f4g5 + 2�127f5g4,

h4 = f0g4 + f1g3 + f2g2 + f3g1 + f4g0 + 2�127f5g5,

h5 = f0g5 + f1g4 + f2g3 + f3g2 + f4g1 + f5g0,

whose total h is congruent to fg modulo 2127 − 1.
There are 36 multiplications figj here, and 30 additions. (This operation

count does not include carries; we analyze carries below.) One can collect the
multiplications by 2−127 into 5 multiplications such as 2−127(f4g5 + f5g4). We
use another approach, precomputing 2−127f1, 2

−127f2, 2
−127f3, 2

−127f4, 2
−127f5,

for two reasons: first, this reduces the latency of each hi computation, giving
us more flexibility in scheduling; second, this gives us an opportunity to share
precomputations when the input f is reused for another multiplication.

3.3. Optimizing S (Field Squaring) and m (Constant Field Multipli-
cation). For S, i.e., for f = g, we have

h0 = f0f0 + ε2f1f5 + ε2f2f4 + εf3f3, h1 = 2f0f1 + ε2f2f5 + ε2f3f4,

h2 = 2f0f2 + f1f1 + ε2f3f5 + εf4f4, h3 = 2f0f3 + 2f1f2 + ε2f4f5,

h4 = 2f0f4 + 2f1f3 + f2f2 + εf5f5, h5 = 2f0f5 + 2f1f4 + 2f2f3

where ε = 2−127. We precompute 2f1, 2f2, 2f3, 2f4, 2f5 and εf3, εf4, εf5; this
costs 8 multiplications, where 5 of the multiplications can be freely replaced by
additions. The rest of S, after this precomputation, takes 21 multiplications and
15 additions, plus the cost of carries.

For m we have simply h0 = cf0, h1 = cf1, etc., costing 6 multiplications plus
the cost of carries. This does not work for arbitrary field constants, but it does
work for the small constants stated in Section 2.6.

3.4. Carries. The output limbs hi from M are too large to be used in a
subsequent multiplication. We carry h0 → h1 by rounding 2−22h0 to an integer
c0, adding 222c0 to h1, and subtracting 222c0 from h0. This takes 3 additions
(the CPU has a rounding instruction, vroundpd, that costs just 1 addition) and
2 multiplications. The resulting h0 is guaranteed to be between −221 and 221.

We could similarly carry h1 → h2 → h3 → h4 → h5, and carry h5 → h0
as follows: round 2−127h5 to an integer c5, add c5 to h0, and subtract 2127c5

328 D.J. Bernstein et al.

from h5. One final carry h0 → h1, for a total of 7 carries (21 additions and 14
multiplications), would then guarantee that all of h0, h1, h2, h3, h4, h5 are small
enough to be input to a subsequent multiplication.

The problem with this carry chain is that it has extremely high latency: 5
cycles for 2−22h0, 3 more cycles for c0, 5 more cycles for 222c0, and 3 more
cycles to add to h1, all repeated 7 times, for a total of 112 cycles, plus the
latency of obtaining h0 in the first place. The ladder step in Figure 2.4 has a
serial chain of H → M → m → H → S → M, for a total latency above 500
cycles, i.e., above 125500 cycles for a 251-bit ladder.

We do better in six ways. First, we use only 6 carries in M rather than 7, if the
output will be used only for m. Even if the output h0 is several bits larger than
222, it will not overflow the small-constant multiplication, since our constants
are all bounded by 212.

Second, pushing the same idea further, we do these 6 carries in parallel. First
we round in parallel to obtain c0, c1, c2, c3, c4, c5, then we subtract in parallel,
then we add in parallel, allowing all of h0, h1, h2, h3, h4, h5 to end up several bits
larger than they would have been with full carries.

Third, we also use 6 parallel carries for a multiplication that is an m. There
is no need for a chain, since the initial h0, h1, h2, h3, h4, h5 cannot be very large.

Fourth, we also use 6 parallel carries for each S. This allows the S output
to be somewhat larger than the input, but this still does not create overflows
in the subsequent M. At this point the only remaining block of 7 carries is in
the M4 by (1 : x1/y1 : x1/z1 : x1/t1), where M4 means a vector of four field
multiplications.

Fifth, for that M4, we run two carry chains in parallel, carrying h0 → h1 and
h3 → h4, then h1 → h2 and h4 → h5, then h2 → h3 and h5 → h0, then h3 → h4
and h0 → h1. This costs 8 carries rather than 7 but chops latency in half.

Finally, for that M4, we use the carry approach from [8]: add the constant
α22 = 222(252+251) to h0, and subtract α22 from the result, obtaining the closest
multiple of 222 to h0; add this multiple to h1 and subtract it from h0. This costs
4 additions rather than 3, but reduces carry latency from 16 to 9, and also saves
two multiplications.

4 Permutations: Vectorizing the Hadamard Transform

The Hadamard transform H in Section 2 is defined as follows: H(x, y, z, t) =
(x+ y+ z+ t, x+ y− z− t, x− y+ z− t, x− y− z+ t). Evaluating this as written
would use 12 field additions (counting subtraction as addition), but a standard
“fast Hadamard transform” reduces the 12 to 8.

Our representation of field elements for the Sandy Bridge (see Section 3)
requires 6 limb additions for each field addition. There is no need to carry before
the subsequent multiplications; this is the main reason that we use 6 limbs rather
than 5.

In a ladder step there are 4 copies of H, each requiring 8 field additions,
each requiring 6 limb additions, for a total of 192 limb additions. This operation

Kummer Strikes Back: New DH Speed Records 329

count suggests that 48 vector instructions suffice. Sandy Bridge has a helpful
vaddsubpd instruction that computes (a− e, b+ f, c− g, d+ h) given (a, b, c, d)
and (e, f, g, h), obviously useful inside H.

However, we cannot simply vectorize across x, y, z, t. In Section 3 we were
multiplying one x by another, at the same time multiplying one y by another,
etc., with no permutations required; in this section we need to add x to y, and
this requires permutations.

The Sandy Bridge has a vector permutation unit acting in parallel with the
adder and the multiplier, as noted in Section 3. But this does not mean that the
cost of permutations can be ignored. A long sequence of permutations inside H
will force the adder and the multiplier to remain idle, since only a small fraction
of the work inside M can begin before H is complete.

Our original software used 48 vector additions and 144 vector permutations
for the 4 copies of H. We then tackled the challenge of minimizing the number
of permutations. We ended up reducing this number from 144 to just 36. This
section presents the details; analyzes conditional swaps, which end up consum-
ing further time in the permutation unit; and concludes by analyzing the total
number of operations used in our Sandy Bridge software.

4.1. Limitations of the Sandy Bridge Permutations. There is a latency-1
permutation instruction vpermilpd that computes (y, x, t, z) given (x, y, z, t).
vaddsubpd then produces (x − y, y + x, z − t, t + z), which for the moment we
abbreviate as (e, f, g, h). At this point we seem to be halfway done: the desired
output is simply (f + h, f − h, e+ g, e− g).

If we had (f, h, e, g) at this point, rather than (e, f, g, h), then we could apply
vpermilpd and vaddsubpd again, obtaining (f − h, h + f, e − g, g + e). One
final vpermilpd would then produce the desired (f + h, f − h, e+ g, e− g). The
remaining problem is the middle permutation of (e, f, g, h) into (f, h, e, g).

Unfortunately, Sandy Bridge has very few options for moving data between
the left half of a vector, in this case (e, f), and the right half of a vector, in this
case (g, h). There is a vperm2f128 instruction (1-cycle throughput but latency
2) that produces (g, h, e, f), but it cannot even produce (h, g, f, e), never mind a
combination such as (f, h, e, g). (Haswell has more permutation instructions, but
Ivy Bridge does not. This is not a surprising restriction: n-bit vector units are
often designed as n/2-bit vector units operating on the left half of a vector in one
cycle and the right half in the next cycle, but this means that any communication
between left and right requires careful attention in the circuitry. A similar left-
right separation is even more obvious for the Cortex-A8.) We could shift some
permutation work to the load/store unit, but this would have very little benefit,
since simulating a typical permutation requires quite a few loads and stores.

The vpermilpd instruction (x, y, z, t) 7→ (y, x, t, z) mentioned above is one of
a family of 16 vpermilpd instructions that produce (x or y, x or y, z or t, z or t).
There is an even more general family of 16 vshufpd instructions that pro-
duce (a or b, x or y, c or d, z or t) given (a, b, c, d) and (x, y, z, t). In the first
versions of our software we applied vshufpd to (e, f, g, h) and (g, h, e, f),
obtaining (f, h, g, e), and then applied vpermilpd to obtain (f, h, e, g).

330 D.J. Bernstein et al.

Overall a single H handled in this way uses, for each limb, 2 vaddsubpd

instructions and 6 permutation instructions, half of which are handling the per-
mutation of (e, f, g, h) into (f, h, e, g). The total for all limbs is 12 additions and
36 permutations, and the large “bubble” of permutations ends up forcing many
idle cycles for the addition unit. This occurs four times in each ladder step.

4.2. Changing the Input/Output Format. There are two obvious sources
of inefficiency in the computation described above. First, we need a final permu-
tation to convert (f−h, f+h, e−g, e+g) into (f+h, f−h, e+g, e−g). Second,
the middle permutation of (e, f, g, h) into (f, h, e, g) costs three permutation
instructions, whereas (g, h, e, f) would cost only one.

The first problem arises from a tension between Intel’s vaddsubpd, which al-
ways subtracts in the first position, and the definition of H, which always adds in
the first position. A simple way to resolve this tension is to store (t, z, y, x) instead
of (x, y, z, t) for the input, and (t′, z′, y′, x′) instead of (x′, y′, z′, t′) for the output;
the final permutation then naturally disappears. It is easy to adjust the other
permutations accordingly, along with constants such as (1, a2/b2, a2/c2, a2/d2).

However, this does nothing to address the second problem. Different per-
mutations of (x, y, z, t) as input and output end up requiring different middle
permutations, but these middle permutations are never exactly the left-right
swap provided by vperm2f128.

We do better by generalizing the input/output format to allow negations.
For example, if we start with (x,−y, z, t), permute into (−y, x, t, z), and apply
vaddsubpd, we obtain (x+y, x−y, z− t, t+z). Observe that this is not the same
as the (x − y, x + y, z − t, t + z) that we obtained earlier: the first two entries
have been exchanged.

It turns out to be best to negate z, i.e., to start from (x, y,−z, t). Then
vpermilpd gives (y, x, t,−z), and vaddsubpd gives (x − y, x + y,−z − t, t − z),
which we now abbreviate as (e, f, g, h). Next vperm2f128 gives (g, h, e, f), and
independently vpermilpd gives (f, e, h, g). Finally, vaddsubpd gives (f − g, h+
e, h− e, f + g). This is exactly (x′, t′,−z′, y′) where (x′, y′, z′, t′) = H(x, y, z, t).

The output format here is not the same as the input format: the positions of
t and y have been exchanged. Fortunately, Figure 2.4 is partitioned by the H
rows into two separate universes, and there is no need for the universes to use
the same format. We use the (x, y,−z, t) format at the top and bottom, and the
(x, t,−z, y) format between the two H rows. It is easy to see that exactly the
same sequence of instructions works for all the copies of H, either producing
(x, y,−z, t) format from (x, t,−z, y) format or vice versa.

S4 and M4 do not preserve negations: in effect, they switch from (x, t,−z, y)
format to (x, t, z, y) format. This is not a big problem, since we can reinsert
the negation at any moment using a single multiplication or low-latency logic
instruction (floating-point numbers use a sign bit rather than twos-complement,
so negation is simply xor with a 1 in the sign bit). Even better, in Figure 2.4(b),
the problem disappears entirely: each S4 and M4 is followed immediately by a
constant multiplication, and so we simply negate the appropriate constants. The
resulting sequence of formats is summarized in Figure 4.3.

Kummer Strikes Back: New DH Speed Records 331

x2

��

y2

��

−z2

��

t2

��

x3

��

y3

��

−z3

��

t3

��
H

x
����

33

t
����

33

�z
����

33

y

����
33

H

x
��

t
��

�z
��

y

��
×

x

��

×
t��

×
z��

×
y��

×

x

��

×
t��

×
z��

×
y��

·(A2/D2)

t
��

·(−A2/C2)

�z
��

·(A2/B2)

y
��

·(A2/D2)

t
��

·(−A2/C2)

�z
��

·(A2/B2)

y
��

H

x
����

y

����
�z

����
t

����

H

x
����

y

����
�z

����
t

����
×

x

��

×
y��

×
z��

×
t��

×

x

��

×
y

��

×
z

��

×
t��

·(a2/b2)

y

��

·(−a2/c2)

�z
��

·(a2/d2)

t
��

·(x1/y1)

y

��

·(−x1/z1)

�z
��

·(x1/t1)

t
��

x4 y4 −z4 t4 x5 y5 −z5 t5

Fig. 4.3. Output format that we use for each operation in the right side of Figure 2.4
on Sandy Bridge, including permutations and negations to accelerate H

Each H now costs 12 additions and just 18 permutations. The number of
non-addition cycles that need to be overlapped with operations before and after
H has dropped from the original 24 to just 6.

4.4. Exploiting Double Precision. We gain a further factor of 2 by temporar-
ily converting from radix 2127/6 to radix 2127/3 during the computation ofH. This
means that, just before starting H, we replace the six limbs (h0, h1, h2, h3, h4, h5)
representing h0 +h1 +h2 +h3 +h4 +h5 by three limbs (h0 +h1, h2 +h3, h4 +h5).
These three sums, and the intermediate H results, still fit into double-precision
floating-point numbers.

It is essential to switch each output integer back to radix 2127/6 so that each
output limb is small enough for the subsequent multiplication. Converting three
limbs into six is slightly less expensive than three carries; in fact, converting from
six to three and back to six uses exactly the same operations as three carries,
although in a different order.

We further reduce the conversion cost by the following observation. Except
for the M4 by (1 : x1/y1 : x1/z1 : x1/t1), each of our multiplication results uses
six carries, as explained in Section 3.4. However, if we are about to add h0 to h1
for input to H, then there is no reason to carry h0 → h1, so we simply skip that
carry; we similarly skip h2 → h3 and h4 → h5. These skipped carries exactly
cancel the conversion cost.

For the M4 by (1 : x1/y1 : x1/z1 : x1/t1) the analysis is different: h0 is large
enough to affect h2, and if we skipped carrying h0 → h1 → h2 then the output

332 D.J. Bernstein et al.

of H would no longer be safe as input to a subsequent multiplication. We thus
carry h0 → h1, h2 → h3, and h4 → h5 in parallel; and then h1 → h2, h3 → h4,
and h5 → h0 in parallel. In effect this M4 uses 9 carries, counting the cost of
conversion, whereas in Section 3.4 it used only 8.

To summarize, all of these conversions for all four H cost just one extra
carry, while reducing 48 additions and 72 permutations to 24 additions and 36
permutations.

4.5. Conditional Swaps. A ladder step starts from an input (X(nP), X((n+
1)P)), which we abbreviate as L(n), and produces L(2n) as output. Swapping
the two halves of the input, applying the same ladder step, and swapping the
two halves of the output produces L(2n + 1) instead; one way to see this is to
observe that L(−n− 1) is exactly the swap of L(n).

Consequently one can reach L(2n + ε) for ε ∈ {0, 1} by starting from L(n),
conditionally swapping, applying the ladder step, and conditionally swapping
again, where the condition bit is exactly ε. A standard ladder reaches L(n) by
applying this idea recursively. A standard constant-time ladder reaches L(n) by
applying this idea for exactly ` steps, starting from L(0), where n is known
in advance to be between 0 and 2` − 1. An alternate approach is to first add
to n an appropriate multiple of the order of P , producing an integer known
to be between (e.g.) 2`+1 and 2`+2 − 1, and then start from L(1). We use a
standard optimization, merging the conditional swap after a ladder step into
the conditional swap before the next ladder step, so that there are just ` + 1
conditional swaps rather than 2`.

One way to conditionally swap field elements x and x′ using floating-point
arithmetic is to replace (x, x′) with (x+ b(x′ − x), x′ − b(x′ − x)) where b is the
condition bit, either 0 or 1. This takes three additions and one multiplication
(times 6 limbs, times 4 field elements to swap). It is better to use logic instruc-
tions: replace each addition with xor, replace each multiplication with and, and
replace b with an all-1 or all-0 mask computed from b. On the Sandy Bridge,
logic instructions have low latency and are handled by the permutation unit,
which is much less of a bottleneck for us than the addition unit.

We further improve the performance of the conditional swap as follows. The
M4 on the right side of Figure 4.3 is multiplying H of the left input by H of
the right input. This is commutative: it does not depend on whether the inputs
are swapped. We therefore put the conditional swap after the first row of H
computations, and multiply the H outputs directly, rather than multiplying the
swap outputs. This trick has several minor effects and one important effect.

A minor advantage is that this trick removes all use of the right half of the
swap output; i.e., it replaces the conditional swap with a conditional move. This
reduces the original 24 logic instructions to just 18.

Another minor advantage is as follows. The Sandy Bridge has a vectorized
conditional-select instruction vblendvpd. This instruction occupies the permu-
tation unit for 2 cycles, so it is no better than the 4 traditional logic instructions
for a conditional swap: a conditional swap requires two conditional selects. How-
ever, this instruction is better than the 3 traditional logic instructions for a

Kummer Strikes Back: New DH Speed Records 333

conditional move: a conditional move requires only one conditional select. This
replaces the original logic instructions with 6 conditional-select instructions, con-
suming just 12 cycles.

A minor disadvantage is that the first M4 and S4 are no longer able to
share precomputations of multiplications by 2−127. This costs us 3 multiplication
instructions.

The important effect is that this trick reduces latency, allowing the M4 to
start much sooner. Adding this trick immediately produced a 5% reduction in
our cycle counts.

4.6. Total Operations. We treat Figure 2.4(b) as 2M4 + 3S4 + 3m4 + 4H.
The main computations of hi, not counting precomputations and carries, cost

30 additions and 36 multiplications for each M4, 15 additions and 21 multiplica-
tions for each S4, and 0 additions and 6 multiplications for each m4. The total
here is 105 additions and 153 multiplications.

The M4 by (1 : x1/y1 : x1/z1 : x1/t1) allows precomputations outside the
loop. The other M4 consumes 5 multiplications for precomputations, and each S4

consumes 8 multiplications for precomputations; the total here is 29 multiplica-
tions. We had originally saved a few multiplications by sharing precomputations
between the first S4 and the first M4, but this is incompatible with the more
important trick described in Section 4.5.

There are a total of 24 additions in the four H, as explained in Section 4.4.
There are also 51 carries (counting the conversions described in Section 4.4 as
carries), each consuming 3 additions and 2 multiplications, for a total of 153
additions and 102 multiplications.

The grand total is 282 additions and 284 multiplications, evidently requiring
at least 284 cycles for each iteration of the main loop. Recall that there are
various options to trade multiplications for additions: each S4 has 5 precomputed
doublings that can each be converted from 1 multiplication to 1 addition, and
each carry can be converted from 3 additions and 2 multiplications to 4 additions
and 0 multiplications (or 4 additions and 1 multiplication for h5 → h0). We could
use either of these options to eliminate one multiplication, reducing the 284-cycle
lower bound to 283 cycles, but to reduce latency we ended up instead using the
first option to eliminate 10 multiplications and the second option to eliminate 35
multiplications, obtaining a final total of 310 additions and 239 multiplications.
These totals have been computer-verified.

We wrote functions in assembly for M4, S4, etc., but were still over 500 cy-
cles. Given the Sandy Bridge floating-point latencies, and the requirement to
keep two floating-point units constantly busy, we were already expecting in-
struction scheduling to be much more of an issue for this software than for
typical integer-arithmetic software. We used various standard optimization tech-
niques that were already used in several previous DH speed records: we merged
the functions into a single loop, reorganized many computations to save regis-
ters, and eliminated many loads and stores. After building a new Sandy Bridge
simulator and experimenting with different instruction schedules we ended up
with our current loop, just 338 cycles, and a total of 88916 Sandy Bridge cycles

334 D.J. Bernstein et al.

for scalar multiplication. The main loop explains 84838 of these cycles; the re-
maining cycles are spent outside the ladder, mostly on converting (x : y : z : t)
to (x/y : x/z : x/t) for output.

5 Cortex-A8

The low-power ARM Cortex-A8 core is the CPU core in the iPad 1, iPhone 4,
Samsung Galaxy S, Motorola Droid X, Amazon Kindle 4, etc. Today a Cortex-
A8 CPU, the Allwinner A10, costs just $5 in bulk and is widely used in low-cost
tablets, set-top boxes, etc. Like Sandy Bridge, Cortex-A8 is not the most recent
microarchitecture, but its very wide deployment and use make it a sensible choice
of platform for optimization and performance comparisons.

Bernstein and Schwabe in [15] (CHES 2012) analyzed the vector capabilities
of the Cortex-A8 for various cryptographic primitives, and in particular set a
new speed record for high-security DH, namely 460200 Cortex-A8 cycles. We do
much better, just 274593 Cortex-A8 cycles, measured on a Freescale i.MX515.
Our basic vectorization approach is the same for Cortex-A8 as for Sandy Bridge,
and many techniques are reused, but there are also many differences. The rest
of this section explains the details.

5.1. Cortex-A8 Vector Units. Each Cortex-A8 core has two 128-bit vector
units operating in parallel on vectors of four 32-bit integers or two 64-bit integers:

• The arithmetic port takes one cycle for vector addition, with latency 2; or
two cycles for vector multiplication (two 64-bit products ac, bd given 32-bit
inputs a, b and c, d), with latency 7. Logic operations also use the arithmetic
port.

• The load/store port handles loads, stores, and permutations. ARM’s Cortex-
A8 documentation [5] indicates that the load/store port can carry out one
128-bit load every cycle. Beware, however, that there are throughput lim-
its on the L1 cache. We have found experimentally that the common TI
Sitara Cortex-A8 CPU (used, e.g., in the Beaglebone Black development
board) needs three cycles from one load until the next (this is what we
call “Cortex-A8-slow”), while other Cortex-A8 CPUs (“Cortex-A8-fast”) can
handle seven consecutive cycles of loads without penalty.

There are three obvious reasons for Cortex-A8 cycle counts to be much larger
than Sandy Bridge cycle counts: registers are only 128 bits, not 256 bits; there are
only 2 ports, not 6; and multiplication throughput is 1 every 2 cycles, not 1 every
cycle. However, there are also speedups on Cortex-A8. There is (as in Haswell’s
floating-point units—see Appendix B online) a vector multiply-accumulate in-
struction with the same throughput as vector multiplication. A sequence of m
consecutive multiply-accumulate instructions that all accumulate into the same
register executes in 2m cycles (unlike Haswell), effectively reducing multiplica-
tion latency from 7 to 1. Furthermore, Cortex-A8 multiplication produces 64-bit
integer products, while Sandy Bridge gives only 53-bit-mantissa products.

Kummer Strikes Back: New DH Speed Records 335

5.2. Representation. We decompose an integer f modulo 2127 − 1 into five
integer pieces in radix 2127/5: i.e., we write f as f0+226f1+251f2+277f3+2102f4.
Compared to Sandy Bridge, having 20% more room in 64-bit integers than in
53-bit floating-point mantissas allows us to reduce the number of limbs from 6
to 5. We require the small integers f0, f1, f2, f3, f4 to be unsigned because this
reduces carry cost from 4 integer instructions to 3.

We arrange four integers x, y, z, t modulo 2127 − 1 in five 128-bit vectors:
(x0, y0, x1, y1); (x2, y2, x3, y3); (x4, y4, z4, t4); (z0, t0, z1, t1); (z2, t2, z3, t3). This
representation is designed to minimize permutations in M, S, and H. For exam-
ple, computing (x0 + z0, y0 + t0, x1 + z1, y1 + t1) takes just one addition without
any permutations. The Cortex-A8 multiplications take two pairs of inputs at a
time, rather than four as on Sandy Bridge, so there is little motivation to put
(x0, y0, z0, t0) into a vector.

5.3. Optimizing M. Given an integer f as above and an integer g = g0 +
226g1 + 251g2 + 277g3 + 2102g4, the product fg modulo 2127 − 1 is h = h0 +
226h1 + 251h2 + 277h3 + 2102h4, with

h0 = f0g0 + 2f1g4 + 2f2g3 + 2f3g2 + 2f4g1,

h1 = f0g1 + f1g0 + f2g4 + 2f3g3 + f4g2,

h2 = f0g2 + 2f1g1 + f2g0 + 2f3g4 + 2f4g3,

h3 = f0g3 + f1g2 + f2g1 + f3g0 + f4g4,

h4 = f0g4 + 2f1g3 + f2g2 + 2f3g1 + f4g0.

There are 25 multiplications figj ; additions are free as part of multiply-
accumulate instructions. We precompute 2f1, 2f2, 2f3, 2f4 so that these values
can be reused for another multiplication. These precomputations can be done
by using either 4 shift or 4 addition instructions. Both shift and addition use 1
cycle per instruction, but addition has a lower latency. See Section 5.6 for the
cost of carries.

5.4. Optimizing S. The idea of optimizing S in Cortex-A8 is quite similar to
Sandy Bridge; for details see Section 3.3. We state here only the operation count.
Besides precomputation and carry, we use 15 multiplication instructions; some
of those are actually multiply-accumulate instructions.

5.5. Optimizing m. For m we compute only h0 = cf0, h1 = cf1, h2 = cf2,
h3 = cf3, and h4 = cf4, again exploiting the small constants stated in Section 2.6.

Recall that we use unsigned representation. We always multiply absolute
values, then negate results as necessary by subtracting from 2129 − 4: n0 =
228−4−h0, n1 = 227−4−h1, n2 = 228−4−h2, n3 = 227−4−h3, n4 = 227−4−h4.

Negating any subsequence of x, y, z, t costs at most 5 vector subtractions.
Negating only x or y, or both x and y, costs only 3 subtractions, because our
representation keeps x, y within 3 vectors. The same comment applies to z and
t. The specific m in Section 2.6 end up requiring a total of 13 subtractions with
the same cost as 13 additions.

336 D.J. Bernstein et al.

5.6. Carries. Each multiplication uses at worst 6 serial carries h1 → h2 → h3 →
h4 → h0 → h1, each costing 3 additions. Various carries are eliminated by the
ideas of Section 3.4.

5.7. Hadamard Transform. See Appendix A online.

5.8. Total Arithmetic. We view Figure 2.4(b) as 4M2 + 6S2 + 6m2 + 4H.
Here we combine x multiplications and y multiplications into a vectorized M2,
and similarly combine z multiplications and t multiplications; this fits well with
the Cortex-A8 vector multiplication instruction, which outputs two products.

The main computations of hi, not counting precomputations and carries, cost
0 additions and 25 multiplications for each M, 0 additions and 15 multiplications
for each S, 0 additions and 5 multiplications for each m, and 15 additions for
each H block. The total here is 60 additions and 220 multiplications.

Each M costs 4 additions for precomputations, and each S also costs 4 ad-
ditions for precomputations. Some precomputations can be reused. The cost of
precomputations is 20 additions.

There are 10 carry blocks using 6 carries each, and 6 carry blocks using 5
carries each. Each carry consists of 1 shift, 1 addition, and 1 logical and. This
cost is equivalent to 3 additions. There are another 13 additions needed to handle
negation. Overall the carries cost 283 additions. Two conditional swaps, each
costing 9 additions, sum up to 18 additions.

In total we have 381 additions and 220 multiplications in our inner loop. This
means that the inner loop takes at least 821 cycles.

We scheduled instructions carefully but ended up with some overhead beyond
arithmetic: even though the arithmetic and the load/store unit can operate in
parallel, latencies and the limited number of registers leave the arithmetic unit
idle for some cycles. Sobole’s simulator at [48], which we found very helpful,
reports 966 cycles. Actual measurements report 986 cycles; the 251 ladder steps
thus account for 247486 of our 273349 cycles.

References

[5] ARM Limited: Cortex-A8 technical reference manual, revision r3p2 (2010),
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0344k/DDI0344K_

cortex_a8_r3p2_trm.pdf

[8] Bernstein, D.J.: Floating-point arithmetic and message authentication (2004),
http://cr.yp.to/papers.html#hash127

[9] Bernstein, D.J.: Curve25519: new Diffie-Hellman speed records. In: PKC 2006.
LNCS, vol. 3958, pp. 207–228 (2006)

[10] Bernstein, D.J.: Elliptic vs. hyperelliptic, part 1 (2006), http://cr.yp.to/talks.
html#2006.09.20

[11] Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.-Y.: High-speed high-
security signatures. In: CHES 2011. LNCS, vol. 6917 (2011); see also newer version
[12]

[12] Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.-Y.: High-speed high-
security signatures. Journal of Cryptographic Engineering 2, 77–89 (2012); see
also older version [11]

http://infocenter.arm.com/help/topic/com.arm.doc.ddi0344k/DDI0344K_cortex_a8_r3p2_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0344k/DDI0344K_cortex_a8_r3p2_trm.pdf
http://cr.yp.to/papers.html#hash127
http://cr.yp.to/talks.html#2006.09.20
http://cr.yp.to/talks.html#2006.09.20

Kummer Strikes Back: New DH Speed Records 337

[13] Bernstein, D.J., Lange, T. (eds.): eBACS: ECRYPT Benchmarking of Crypto-
graphic Systems, accessed 25 September 2014 (2014), http://bench.cr.yp.to

[15] Bernstein, D.J., Schwabe, P.: NEON crypto. In: CHES 2012. LNCS, vol. 7428,
pp. 320–339 (2012)

[17] Bos, J.W., Costello, C., Hisil, H., Lauter, K.: Fast cryptography in genus 2. In:
Eurocrypt 2013. LNCS, vol. 7881, pp. 194–210 (2013)

[18] Bos, J.W., Costello, C., Hisil, H., Lauter, K.: High-performance scalar multipli-
cation using 8-dimensional GLV/GLS decomposition. In: CHES 2013. LNCS, vol.
8086, pp. 331–348 (2013)

[21] Chudnovsky, D.V., Chudnovsky, G.V.: Sequences of numbers generated by ad-
dition in formal groups and new primality and factorization tests. Advances in
Applied Mathematics 7, 385–434 (1986)

[22] Costello, C., Hisil, H., Smith, B.: Faster compact Diffie–Hellman: endomorphisms
on the x-line. In: Eurocrypt 2014. LNCS, vol. 8441, pp. 183–200 (2014)

[23] Costigan, N., Schwabe, P.: Fast elliptic-curve cryptography on the Cell Broadband
Engine. In: Africacrypt 2009. LNCS, vol. 5580, pp. 368–385 (2009)

[24] Faz-Hernández, A., Longa, P., Sánchez, A.H.: Efficient and secure algorithms for
GLV-based scalar multiplication and their implementation on GLV-GLS curves.
In: CT-RSA 2014. LNCS, vol. 8366, pp. 1–27 (2013)

[25] Fog, A.: Instruction tables: Lists of instruction latencies, throughputs and micro-
operation breakdowns for Intel, AMD and VIA CPUs (2014), http://agner.org/
optimize/

[26] Galbraith, S., Lin, X., Scott, M.: Endomorphisms for faster elliptic curve cryp-
tography on a large class of curves. In: Eurocrypt 2009. LNCS, vol. 5479, pp.
518–535 (2009)

[27] Gallant, R.P., Lambert, R.J., Vanstone, S.A.: Faster point multiplication on el-
liptic curves with efficient endomorphisms. In: Crypto 2001. LNCS, vol. 2139, pp.
190–200 (2001)

[30] Gaudry, P.: Variants of the Montgomery form based on Theta functions (2006);
see also newer version [31], http://www.loria.fr/~gaudry/publis/toronto.pdf

[31] Gaudry, P.: Fast genus 2 arithmetic based on Theta functions. Journal of Math-
ematical Cryptology 1, 243–265 (2007); see also older version [30]

[32] Gaudry, P., Lubicz, D.: The arithmetic of characteristic 2 Kummer surfaces and
of elliptic Kummer lines. Finite Fields and Their Applications 15, 246–260 (2009)

[33] Gaudry, P., Schost, É: Genus 2 point counting over prime fields. Journal of Sym-
bolic Computation 47, 368–400 (2012)

[34] Hamburg, M.: Fast and compact elliptic-curve cryptography (2012), https://

eprint.iacr.org/2012/309

[40] Longa, P., Sica, F.: Four-dimensional Gallant–Lambert–Vanstone scalar multipli-
cation. In: Asiacrypt 2012. LNCS, vol. 7658, pp. 718–739 (2012)

[42] Montgomery, P.L.: Speeding the Pollard and elliptic curve methods of factoriza-
tion. Mathematics of Computation 48, 243–264 (1987)

[44] Oliveira, T., López, J., Aranha, D.F., Rodŕıguez-Henŕıquez, F.: Lambda coordi-
nates for binary elliptic curves. In: CHES 2013. LNCS, vol. 8086, pp. 311–330
(2013)

[48] Sobole, É.: Calculateur de cycle pour le Cortex A8 (2012), http://pulsar.

webshaker.net/ccc/index.php

http://bench.cr.yp.to
http://agner.org/optimize/
http://agner.org/optimize/
http://www.loria.fr/~gaudry/publis/toronto.pdf
https://eprint.iacr.org/2012/309
https://eprint.iacr.org/2012/309
http://pulsar.webshaker.net/ccc/index.php
http://pulsar.webshaker.net/ccc/index.php

Jacobian Coordinates on Genus 2 Curves

Huseyin Hisil1 and Craig Costello2

1 Yasar University, Izmir, Turkey
huseyin.hisil@yasar.edu.tr

2 Microsoft Research, Redmond, USA
craigco@microsoft.com

Abstract. This paper presents a new projective coordinate system and
new explicit algorithms which together boost the speed of arithmetic
in the divisor class group of genus 2 curves. The proposed formu-
las generalise the use of Jacobian coordinates on elliptic curves, and
their application improves the speed of performing cryptographic scalar
multiplications in Jacobians of genus 2 curves over prime fields by an
approximate factor of 1.25x. For example, on a single core of an Intel Core
i7-3770M (Ivy Bridge), we show that replacing the previous best formulas
with our new set improves the cost of generic scalar multiplications from
243,000 to 195,000 cycles, and drops the cost of specialised GLV-style
scalar multiplications from 166,000 to 129,000 cycles.

Keywords: Genus 2, hyperelliptic curves, explicit formulas, Jacobian
coordinates, scalar multiplication.

1 Introduction

Motivated by the popularity of low-genus curves in cryptography [29,22,23], we
put forward a new system of projective coordinates that facilitates efficient group
law computations in the Jacobians of hyperelliptic curves of genus 2. This paper
combines several techniques to arrive at explicit formulas that are significantly
faster than those in previous works [25,9]. The two main ingredients we use in
the derivation are:

– The generalisation of Jacobian coordinates from the elliptic curve setting
to the hyperelliptic curve setting: these coordinates essentially cast affine
points into projective space according to the weights of x and y in the
defining curve equation. While applying Jacobian coordinates to elliptic
curves is straightforward, their application to hyperelliptic curves requires
transferring the x-y weightings into weightings for the Mumford coordinates.
As it does for the x-y coordinates in genus 1, this projection naturally
balances the Mumford coordinates to facilitate substantial simplifications
in the projective genus 2 group law formulas.

– The adaptation of Meloni’s “co-Z” idea [28] to the genus 2 setting. Although
originally proposed in the context of addition-only (e.g. Fibonacci-style)
chains, this approach can also be used to gain performance in the more

P. Sarkar and T. Iwata (Eds.): ASIACRYPT 2014, PART I, LNCS 8873, pp. 338–357, 2014.
c© International Association for Cryptologic Research 2014

Jacobian Coordinates on Genus 2 Curves 339

meaningful context of binary addition chains. Moreover, this idea is espe-
cially advantageous when used in conjunction with Jacobian coordinates.

The application of the above techniques, as well as some further optimisations
discussed in the body of this paper, gives rise to the operation counts in Table 1 –
the counts here include field multiplications (M), squarings (S), and multiplica-
tions by curve constants (D). Here we make a brief comparison with the previous
works in [25] and [9], by considering the two most common operations in the
context of cryptographic scalar multiplications: a point doubling (denoted DBL),
and a mixed-doubling-and-addition (denoted mDBLADD) between two points1.
These two operations constitute the bottleneck of most state-of-the-art scalar
multiplication routines, since the multiplication of a point in the Jacobian by
an n-bit scalar typically requires α DBL operations and β mDBLADD operations,
where α+ β ≈ n. Thus, the improved operation counts in Table 1 give a rough
idea of the speedups that we can expect when plugging these formulas into an
existing genus 2 scalar multiplication routine that uses the formulas from [25]
or [9]. (We give a better indication of the improvements over previous formulas
by reporting concrete implementation numbers in Section 8.) As well as the
reduction in field multiplications indicated in Table 1, the explicit formulas in
this paper also require far fewer field additions than those in [25] and [9]. We
note that the biggest relative difference occurs in the mDBLADD column: among
other things, this difference results from the combination of the new coordinate
system with the extension of Meloni’s idea [28], which allows us to compute
mDBLADD operations independently of the curve constants. On the other hand,
when such curve constants are zero, certain operations in this paper become even
faster (relatively speaking): for example, on the two special families exhibiting
endomorphisms used in [7], the doubling formulas in [25] and [9] save 2D, while
the new operation count reported for DBL in Table 1 saves 3S+2D to drop down
to 21M+ 9S.

Table 1. Field operation counts obtained in this work, versus two previous works, for
the most common operations incurred during cryptographic scalar multiplications in
Jacobians of genus 2 curves of the form C/K : y2 = f(x), where f(x) is of degree 5
and the characteristic of K is greater than 5

authors DBL mADD mDBLADD

Lange [25] 32M + 7S+ 2D 36M+ 5S 68M+ 12S+ 2D

Costello-Lauter [9] 30M + 9S+ 2D 36M+ 5S 66M+ 14S+ 2D

This work 21M + 12S+ 2D 29M+ 7S 52M+ 11S

1 For genus 2 scalar multiplications, it is usually advantageous to convert precomputed
(lookup table) points to their affine representation using a shared inversion – see
Section 7.2. This is why the double-and-add operations involve a “mixed” addition.

340 H. Hisil and C. Costello

While the formulas in this paper target Jacobians of imaginary genus 2 curves,
Gaudry showed in [16] that one can perform cryptographic scalar multiplications
much more efficiently in the special case that the Jacobian of the curve C/K has
K-rational two-torsion, by instead working on an associated Kummer surface. To
illustrate the difference between working on the Kummer surface and working in
the full Jacobian group, Gaudry’s analogous operation counts are a blazingly fast
6M+8S for DBL and 16M+9S for mDBLADD. Referring back to Table 1, it is clear
that raw scalar multiplications on the Kummer surface will remain unrivalled by
those in the full Jacobian group. However, there are several cryptographic caveats
related to the Kummer surface that justify the continued exploration of fast
algorithms for traditional arithmetic in the Jacobian. Namely, Kummer surfaces
do not support generic additions, so while they are extremely fast in the realm
of key exchange (where such additions are not necessary), it is not yet known
how to efficiently use the Kummer surface in a wider realm of cryptographic
settings, e.g. for general digital signatures2. Furthermore, the absence of generic
additions complicates the application of endomorphisms [7, §8.5], and from a
more pragmatic standpoint, also prevents the use of standard precomputation
techniques that exploit fixed system parameters (those of which give huge
speedups in practice, even over the Kummer surface [7, §7.4]). Thus, all genus
2 implementations that either target signature schemes, use endomorphisms, or
optimise the use of precomputation, are currently required to work in the full
Jacobian group3; and in all of these cases, the formulas in this paper will now offer
the most efficient route. The upshot is that in popular practical scenarios the
most efficient genus 2 cryptography is likely to result from a hybrid combination
of operations on the Kummer surface and in the full Jacobian group.We illustrate
this in Section 8 by benchmarking genus 2 curves in the context of ephemeral
elliptic curve Diffie-Hellman (ECDHE) with perfect forward secrecy: to exploit
the best of both worlds, Alice’s multiplications of the public generator P by each
one of her ephemeral scalars a can make use of our new explicit formulas (and
offline precomputations on P) in the full Jacobian, and her resulting ephemeral
public keys [a]P can then be mapped onto the corresponding Kummer surface,
whose speed can be exploited by Bob in the computation of the shared secret
[b]([a]P).

A set of Magma [8] scripts verifying all of the explicit formulas and operation
counts can be found in the full version [21], and is also publicly available at

http://research.microsoft.com/en-us/downloads/37730278-3e37-47eb-91d1-cf889373677a/ ;

and a complete mixed-assembly-and-C implementation of all explicit formulas
and scalar multiplication routines is publicly available at

http://hhisil.yasar.edu.tr/files/hisil20140527jacobian.tar.gz .

2 At least one exception here, as Gaudry points out, is the hashed version of ElGamal
signatures [16, §5.3].

3 Lubicz and Robert [27] have recently broken through the “full addition restriction”
on Kummer varieties, but it is not yet clear how competitive their compatible addition
formula are in the context of raw scalar multiplications.

http://research.microsoft.com/en-us/downloads/37730278-3e37-47eb-91d1-cf889373677a/
http://hhisil.yasar.edu.tr/files/hisil20140527jacobian.tar.gz

Jacobian Coordinates on Genus 2 Curves 341

2 Preliminaries

For ease of exposition, we immediately restrict to the most cryptographically
common case of genus 2 curves, where C is an imaginary hyperelliptic curve over
a field K of characteristic greater than 5. (In terms of a general coverage of all
genus 2 curves, we mention the interesting remaining scenarios in Section 9.)
Every such curve can then be written as

C/K : y2 = f(x) := x5 + a3x
3 + a2x

2 + a1x+ a0, (1)

where we note the absence of an x4 term in f(x); it can always be removed via
a trivial substitution thanks to char(K) �= 5.

Let JC denote the Jacobian of C. We assume that we are working with a
general point P ∈ JC(K), whose Mumford representation4

P ↔ (u(x), v(x)) =
(
x2 + qx+ r, sx+ t

)
∈ K[x]×K[x]

↔ (q, r, s, t) ∈ A4(K)
(2)

encodes two affine points (x1, y1), (x2, y2) ∈ C(K), where we assume that x1 �=
x2 so that these two points are not the same, nor are they the hyperelliptic
involution of one another. The Mumford coordinates (q, r, s, t) of P are uniquely
determined according to u(x1) = u(x2) = 0, v(x1) = y1 and v(x2) = y2. That is,

q = −(x1 + x2), r = x1x2, s =
y1 − y2
x1 − x2

, t =
x1y2 − y1x2

x1 − x2
. (3)

From (1), (2) and (3), it is readily seen that

v(x)2 − f(x) = 0 in K[x]/〈u(x)〉, (4)

from which it follows that such general points P lie in the intersection of two
hypersurfaces over K [9, §3], given as

S0 : r
(
s2 + q3 − (2r − a3)q − a2

)
= t2 − a0,

S1 : q
(
s2 + q3 − (3r − a3)q − a2

)
= 2st− r(r − a3)− a1.

(5)

We note that a more simple relation is found by taking rS1 − qS0.
Our driving motivation for improving the explicit formulas for arithmetic

in the Jacobian is the application of enhancing the fundamental operation in
curve-based cryptosystems: the scalar multiplication [k]P of an integer k ∈ Z

by a general point P in JC . Such scalar multiplications are computed using
a sequence of point doubling and addition operations, and so a common way
of comparing different sets of addition formulas is to tally the number of field
multiplications (M), field squarings (S), and field additions (denoted by a) that
each point operation incurs. In cryptographic contexts, the input and output

4 We adopted the notation (q, r, s, t) over (u1, u0, v1, v0) to avoid additional sub-
scripts/superscripts when working with distinct elements in JC .

342 H. Hisil and C. Costello

points are typically required to be in their unique affine form, whilst intermediate
computations are carried out in projective space to avoid inversions. Thus,
the most commonly reported operation counts include: DBL, which refers to the
addition of a Jacobian point in projective form to itself; ADD, which refers to the
addition between two distinct points in projective form; mADD, which refers to
the mixed addition between a projective point and an affine point; and mDBLADD,
which refers to the combined doubling of a projective point and subsequent
addition of the result with an affine point.

As is done in [25, §5-6], in this paper we focus on deriving formulas for the most
common cases of arithmetic in JC . This set of formulas is enough to perform and
benchmark scalar multiplications in JC , since the possible input/output cases are
extremely dense amongst all possible scenarios, i.e. for random input points P
and scalars k, the cases not covered by these formulas have an exponentially small
probability of being encountered in the scalar multiplication routine (see [25,
§1.2] for a similar discussion). Nevertheless, the set of formulas we present are still
far from a complete and cryptographically adequate coverage, so it is important
to distinguish exactly which input/output cases they do apply to. We clarify this
in Assumption 1 below, and return to this discussion in §7.3.

Assumption 1 (General Points and Operations in JC .). Throughout this
paper, we assume that all input and output points are “general” points in JC:
we say that P ∈ JC is general if the Mumford representation of P encodes two
distinct affine points (x1, y1) and (x2, y2) on C, where x1 �= x2. Moreover, all
operations in this paper are of the form P1 + P2 = P3, where we assume that
P1, P2 and P3 are general points and that we are in one of two cases: (i) either
P1 = P2, in which case we are computing the “doubling” P3 = [2]P1, where we
further assume that neither of the two x-coordinates encoded by P1 coincide with
the two encoded by P3, or (ii) that of the six points encoded by P1, P2 and P3,
no two share the same x-coordinate.

3 Extending Jacobian Coordinates to Jacobians

Let λ be a nonzero element in K. Over fields of large characteristic, Jacobian
coordinates have proven to be a natural and efficient way to work projectively
on elliptic curves in short Weierstrass form E/K : y2 = x3 + ax + b. Indeed,
in cryptographic contexts, using the triple (λ2X : λ3Y : λZ) ∈ P(2, 3, 1)(K) to
represent the affine point (X/Z2, Y/Z3) ∈ A2(K) on E was suggested by Miller
in his seminal 1985 paper [29, p. 424], and his comment that this representation
“appears best” still holds true after decades of further exploration: Jacobian
coordinates (and extended variants) remain the most efficient way to work on
such general Weierstrass curves [4]. Moreover, the weightings wt(x) = 2 and
wt(y) = 3 are the orders of the poles of the functions x and y at the point at
infinity on E .

In the context of imaginary hyperelliptic curves of the form

C/K : y2 = x5 + a3x
3 + a2x

2 + a1x+ a0,

Jacobian Coordinates on Genus 2 Curves 343

the analogous weightings are

wt(x) = 2, and wt(y) = 5, (6)

under which the affine point (X/Z2, Y/Z5) ∈ A2(K) is represented by the triple
(λ2X : λ5Y : λZ) ∈ P(2, 5, 1)(K), which lies on

C/K : Y 2 = X5 + a3X
3Z4 + a2X

2Z6 + a1XZ8 + a0Z
10. (7)

Indeed, the weights wt(x) = 2 and wt(y) = 5 are the orders of the poles of x and
y at the (unique) point at infinity on C. Since we perform arithmetic using the
Mumford coordinates in JC , rather than the x-y coordinates on C, we transfer
the above weightings across to the Mumford coordinates via Equation (3), which
yields

wt(q) = wt(x), wt(r) = 2 · wt(x), wt(s) = wt(y)− wt(x), wt(t) = wt(y).
(8)

Combining (6) and (8) then gives

wt(q) = 2, wt(r) = 4, wt(s) = 3, wt(t) = 5, (9)

which suggests the use of (λ2Q : λ4R : λ3S : λ5T : λZ) ∈ P(2, 4, 3, 5, 1)(K) to
represent the affine point

(q, r, s, t) =

(
Q

Z2
,
R

Z4
,
S

Z3
,
T

Z5

)
∈ A4(K). (10)

Equation (10) is at the heart of this paper. We found these weightings to
be highly advantageous for group law computations: the Mumford coordinates
balance naturally under this projection, and significant simplifications occur
regularly in the derivation of the corresponding explicit formulas. This coordinate
system is referred to as Jacobian coordinates in this paper. We note that, in line
with Assumption 1, we will not work with the full projective closure of the affine
part in P(2, 4, 3, 5, 1)(K), but rather with the affine patch where Z �= 0.

Just as in [25, §6], we found it useful to introduce an additional coordinate
(independent of Z) in the denominator of the two coordinates corresponding to
the v-polynomial in the Mumford representation. So, in addition to the Jacobian
coordinate Z, we include the coordinate W and use the projective six-tuple
(λ2Q : λ4R : λ3μS : λ5μT : λZ : μW) to represent the affine point

(q, r, s, t) =

(
Q

Z2
,
R

Z4
,

S

Z3W
,

T

Z5W

)
∈ A4(K) (11)

for some nonzero μ in K. This coordinate system is referred to as auxiliary
Jacobian coordinates in this paper.

Remark 1. We note the distinction between the above coordinate weightings
and the weightings used by Lange, which were also said to “generalise the

344 H. Hisil and C. Costello

concept of Jacobian coordinates . . . from elliptic to hyperelliptic curves” [25,
§6]. In terms of the first projective coordinate Z, Lange used (q, r, s, t) =(
Q/Z2, R/Z2, S/Z3, T/Z3

)
. Although these weight the u- and v-polynomials of

a point with the same (Jacobian) weightings as the x- and y-coordinates on an
elliptic curve, the derivation of the weightings in (10) draws a closer analogy
with the use of Jacobian coordinates in genus 1. This is why we dubbed the
weightings used in this work as “Jacobian coordinates”.

4 Adopting the “co-Z” Approach

With the aim of improving addition formulas on elliptic curves, Meloni [28] put
forward a nice idea that is particularly suited to working in Jacobian coordinates.
In the explicit addition of two elliptic curve points (X1 : Y1 : Z1) and (X2 : Y2 :
Z2) in P(2, 3, 1)(K), which respectively correspond to the points (X1/Z

2
1 , Y1/Z

3
1)

and (X2/Z
2
2 , Y2/Z

3
2) in A2(K), Meloni observed that almost all expressions of

the form Zi
1Z

j
2 can completely vanish if Z1 = Z2. That is, the sum of the points

(X1 : Y1 : Z1) and (X2 : Y2 : Z1) can be written as an expression of the
form (X3Z

6
1 : Y3Z

9
1 : Z3Z

3
1), which is projectively equivalent to (X3 : Y3 : Z3);

here X3 and Y3 depend only on X1, Y1, X2 and Y2, so now it is only Z3 that
depends on Z1. Since two projective points are unlikely to share the same Z-
coordinate in general, the method starts by updating one or both of the input
points to force this equivalence. The obvious way to do this is to respectively
cross-multiply (X1 : Y1 : Z1) and (X2 : Y2 : Z2) into (X1Z

2
2 : Y1Z

3
2 : Z1Z2) and

(X2Z
2
1 : Y2Z

3
1 : Z2Z1), but as it stands, performing this update would incur a

significant overhead. The observation that is key to making this “co-Z” approach
advantageous is that, in the context of scalar multiplications, these updated
values (or the main subexpressions within them) are often already computed in
the previous operation [28, p. 192], so this update can be performed either for
free, or with a much smaller overhead.

Meloni did not apply his idea to classical “double-and-add” style addition
chains, but subsequent papers [26,19] showed how his approach could be used
to enhance performance in such binary chains. In genus 2 however, successful
transferral of the “co-Z” idea has not yet been achieved: the work in [24] also
uses non-binary addition chains, and crucially, it was performed without access to
the hyperelliptic analogue of Jacobian coordinates (those which work in stronger
synergy with Meloni’s idea).

Our adaptation of the “co-Z” approach requires that both the Z and W
coordinates are the same, for two different input points. The first projective
formulas we derive in Section 6 are for the “co-ZW” addition between the two
points P1 = (Q1 : R1 : S1 : T1 : Z1 : W1) and P2 = (Q2 : R2 : S2 : T2 : Z1 : W1),
and this routine is then used as a subroutine for all subsequent operations (except
for standalone doublings).

Jacobian Coordinates on Genus 2 Curves 345

5 Arithmetic in Affine Coordinates with New Common
Subexpressions

The explicit formulas for arithmetic in genus 2 Jacobians are significantly more
complicated than their elliptic curve counterparts, so it is especially useful to
start the derivation by looking for common subexpressions and advantageous
orderings in the affine versions of the formulas (i.e., before the introduction of
more coordinates complicates the situation further). Our derivation follows that
of [9], but it is important to point out that the resulting affine formulas have
been refined by grouping new subexpressions throughout; these groupings were
strategically chosen to exploit the symmetries of the q and r coordinates, and
especially for the application of Jacobian coordinates that follows in Section 6.

In what follows, we give the affine formulas for general point additions and
general point doublings respectively. From Section 2, recall the abbreviated
notation (q, r, s, t) ∈ A4(K) for the point in JC with Mumford representation
(x2 + qx+ r, sx+ t).

Let P1 = (q1, r1, s1, t1), P2 = (q2, r2, s2, t2) and P1+P2 =: P3 = (q3, r3, s3, t3)
be points in JC satisfying Assumption 1. The choice of the three subexpressions

A := (t1 − t2) (q2 (q1 − q2)− (r1 − r2))− r2 (q1 − q2) (s1 − s2) ,

B := (r1 − r2) (q2 (q1 − q2)− (r1 − r2))− r2 (q1 − q2)
2
,

C := (q1 − q2) (t1 − t2)− (r1 − r2) (s1 − s2)

is key to our refined derivation. The point P3 is then given by

q3 = (q1 − q2) + 2
A

C
− B2

C2
,

r3 = (q1 − q2)
A

C
+

A2

C2
+ (q1 + q2)

B2

C2
− (s1 + s2)

B

C
,

s3 = (r1 − r3)
C

B
− q3 (q1 − q3)

C

B
+ (q1 − q3)

A

B
− s1,

t3 = (r1 − r3)
A

B
− r3 (q1 − q3)

C

B
− t1.

(12)

These formulas are used to derive the projective co-ZW addition formulas
in §6.1, those which form a basis for all of the other (non-doubling) formulas
in this work.

Let P1 = (q1, r1, s1, t1) and [2]P1 =: P3 = (q3, r3, s3, t3) be points in JC
satisfying Assumption 1. Again, it is particularly useful to make use of three
subexpressions:

A :=
((

q21 − 4r1 + a3
)
q1 − a2 + s21

)
(q1s1 − t1) +

(
3q21 − 2r1 + a3

)
r1s1,

B := 2 (q1s1 − t1) t1 − 2r1s
2
1,

C :=
((

q21 − 4r1 + a3
)
q1 − a2 + s21

)
s1 +

(
3q21 − 2r1 + a3

)
t1.

346 H. Hisil and C. Costello

The point P3 is then given by

q3 =2
A

C
− B2

C2
,

r3 =
A2

C2
+ 2q1

B2

C2
− 2s1

B

C
,

s3 = (r1 − r3)
C

B
− q3 (q1 − q3)

C

B
+ (q1 − q3)

A

B
− s1,

t3 = (r1 − r3)
A

B
− r3 (q1 − q3)

C

B
− t1.

(13)

These formulas are used to derive projective doubling formulas in §6.5. The
formulas in (12) and (13) agree with those of Costello-Lauter [9].

6 Projective Arithmetic in Extended Jacobian
Coordinates

In this section we derive all of the explicit formulas that are needed for the scalar
multiplication routines we describe in Section 7. The formulas are summarised in
Table 2 below, where we immediately note the extension of auxiliary Jacobian
coordinates discussed in Section 3 to include W 2; it is advantageous to carry
this additional coordinate between consecutive operations because it is often
computed en route to the output points already, and therefore comes for free as
input into the following operation. We refer to this extended version of auxiliary
Jacobian coordinates as extended Jacobian coordinates. Table 2 reports two sets
of operation counts: the “plain” count, which corresponds to our deriving sets
of formulas with the aim of minimising the total number of all field operations,
and the “trade-offs” count.

If W 2 is dropped from the coordinate system, and we work only with auxiliary
Jacobian coordinates, (Q : R : S : T : Z : W), then we note that both DBL and
DBLa2a3zero would require one extra squaring (in both the “plain” and “trade-
off” formulas). The only other change resulting from this abbreviated coordinate
system would be in the “trade-off” version of ADD, where a squaring would revert
back to a multiplication. All other operation counts would remain unchanged.

Following on from the discussion in Section 4, in §6.1 we start the derivations
by using the affine addition formulas in (12) to develop projective formulas for
zwADD; these are then used in the derivation of the formulas for ADD in §6.2,
for mADD in §6.3, and for mDBLADD in §6.4. Finally, we use the affine doubling
formulas in (13) to develop projective formulas for DBL in §6.5.

6.1 Projective co-ZW Addition (zwADD)

Let P1 = (Q1 : R1 : S1 : T1 : Z1 : W1), P2 = (Q2 : R2 : S2 : T2 : Z1 : W1),
and P1 + P2 =: P3 = (Q3 : R3 : S3 : T3 : Z3 : W3 : W 2

3) represent three points
in JC satisfying Assumption 1. We emphasize that P1 and P2 need not contain
W 2

1 , which is why both are given in auxiliary Jacobian coordinates. However,
the output P3 is in extended Jacobian coordinates. The projective form of (12)

Jacobian Coordinates on Genus 2 Curves 347

Table 2. A summary of the explicit formulas derived in this section for various
operations in the Jacobian, JC , of an imaginary hyperelliptic curve C/K of genus 2,
with char(K) > 5

operation description derived field operations

in JC of operation in “plain” w. “trade-offs”

zwADD
(Q1 : R1 : S1 : T1 : Z1 : W1) §6.1 25M + 3S 23M + 4S

+(Q2 : R2 : S2 : T2 : Z1 : W1) +22a +40a

ADD
(Q1 : R1 : S1 : T1 : Z1 : W1 : W 2

1) §6.2 41M + 7S 35M + 12S

+(Q2 : R2 : S2 : T2 : Z2 : W2 : W 2
2) +22a +56a

mADD
(Q1 : R1 : S1 : T1 : Z1 : W1 : W 2

1) §6.3 32M + 5S 29M + 7S

+(Q2 : R2 : S2 : T2 : 1 : 1 : 1) +22a +44a

mDBLADD
[2](Q1 : R1 : S1 : T1 : Z1 : W1 : W 2

1) §6.4 57M + 8S 52M + 11S

+(Q2 : R2 : S2 : T2 : 1 : 1 : 1) +42a +82a

DBL [2](Q1 : R1 : S1 : T1 : Z1 : W1 : W 2
1) §6.5 26M+ 8S + 2D 21M + 12S + 2D

+25a +52a

DBL [2](Q1 : R1 : S1 : T1 : Z1 : W1 : W 2
1) §6.5 25M + 6S 21M + 9S

a2a3zero (when a2a3 = 0) +22a +48a

in extended Jacobian coordinates corresponds to the following. We define the
subexpressions

A := (T1 − T2) (Q2 (Q1 −Q2)− (R1 −R2))−R2 (Q1 −Q2) (S1 − S2) ,

B := (R1 −R2) (Q2 (Q1 −Q2)− (R1 −R2))−R2 (Q1 −Q2)
2
,

C := (Q1 −Q2) (T1 − T2)− (R1 −R2) (S1 − S2) .

The point P3 is then given by

W3 =W1[B],

Q3 =
(
Q1

[
C2
]
−Q2

[
C2
])

+ 2AC −W 2
3 ,

R3 =
(
Q1

[
C2
]
−Q2

[
C2
]
+AC

)
AC+(

Q1

[
C2
]
+Q2

[
C2
])

W 2
3 − S1

[
C3B

]
− S2

[
C3B

]
,

S3 =
(
R1

[
C4
]
−R3

)
+ (AC −Q3)

(
Q1

[
C2
]
−Q3

)
− S1

[
C3B

]
,

T3 =
(
R1

[
C4
]
−R3

)
AC −R3

(
Q1

[
C2
]
−Q3

)
− T1

[
C5B

]
,

Z3 =Z1[C].

(14)

This operation, referred to as zwADD, not only computes P3, but also produces the
subexpressions Q1

[
C2
]
, R1

[
C4
]
, S1

[
C3B

]
, T1

[
C5B

]
, Z1[C], W1[B], W 2

1

[
B2
]
; if

desired, these can be used to update P1 to be of the form

P1 = (Q1 : R1 : S1 : T1 : Z1 : W1 : W 2
1)

= (Q1

[
C2
]
: R1

[
C4
]
: S1

[
C3B

]
: T1

[
C5B

]
: Z1[C] : W1[B] : W 2

1

[
B2
]
),

so that it now has the same Z, W , and W 2 coordinates as P3. The combination
of the zwADD operation and this update will be denoted using the syntax

(P3, P
′
1) := P1 + P2 ,

where P ′
1 is the updated (but projectively equivalent) version of P1.

348 H. Hisil and C. Costello

6.2 Projective Addition (ADD)

Rather than producing lengthy formulas for additions, we use a simple con-
struction that exploits zwADD. Let P1 = (Q1 : R1 : S1 : T1 : Z1 : W1 : W 2

1),
P2 = (Q2 : R2 : S2 : T2 : Z2 : W2 : W 2

2), and P1 + P2 =: P3 = (Q3 : R3 : S3 :
T3 : Z3 : W3 : W 2

3) represent three points in JC satisfying Assumption 1. We can
then cross-multiply to define the points in auxiliary Jacobian coordinates

P ′
1 :=

(
Q1

[
Z2
2

]
: R1

[
Z4
2

]
: S1

[
Z3
2W2

]
: T1

[
Z5
2W2

]
: Z1[Z2] : W1[W2]

)
,

P ′
2 :=

(
Q2

[
Z2
1

]
: R2

[
Z4
1

]
: S2

[
Z3
1W1

]
: T2

[
Z5
1W1

]
: Z2[Z1] : W2[W1]

)
.

Observe that P ′
1 = P1 and P ′

2 = P2, but that P ′
1 and P ′

2 now share the same Z
and W coordinates. This means that we can use the zwADD operation defined in
§6.1 to compute P3 = P1 + P2 as (P3, P

′′
1) := P ′

1 + P ′
2. Observe that P ′′

1 = P1,
and that P ′′

1 will share the same Z, W , and W 2 coordinates as P3. We note that
this update of P1 into P ′′

1 can be useful in the generation of lookup tables [26],
but is generally not useful during the main loop.

6.3 Projective Mixed Addition (mADD)

In a similar way, let P1 = (Q1 : R1 : S1 : T1 : Z1 : W1 : W 2
1), P2 = (Q2 : R2 :

S2 : T2 : 1 : 1 : 1), and P1 + P2 =: P3 = (Q3 : R3 : S3 : T3 : Z3 : W3 : W 2
3)

represent three points in JC satisfying Assumption 1. This time we only need to
update P2 into P ′

2, which is performed in auxiliary Jacobian coordinates as

P ′
2 :=

(
Q2

[
Z2
1

]
: R2

[
Z4
1

]
: S2

[
Z3
1W1

]
: T2

[
Z5
1W1

]
: [Z1] : [W1]

)
,

where we observe that P1 and P ′
2 now have the same Z and W coordinates.

Subsequently, using the zwADD operation from §6.1 allows P3 = P1 + P2 to be
computed by (P3, P

′
1) := P1 + P ′

2.

6.4 Projective Mixed Doubling-and-Addition (mDBLADD)

Let P1 = (Q1 : R1 : S1 : T1 : Z1 : W1 : W 2
1), P2 = (Q2 : R2 : S2 : T2 : 1 : 1 : 1),

and [2]P1 + P2 =: P3 = (Q3 : R3 : S3 : T3 : Z3 : W3 : W 2
3), represent three

points in JC satisfying Assumption 1. To compute [2]P1 + P2, we schedule the
higher level operations in the form (P1 +P2)+P1 (see [11] and [26] for the same
high level scheduling). This means that mDBLADD can be computed using an mADD

operation before a zwADD operation. (Subsequently, we must also assume that
P1, the intermediate point P1 + P2, and the output point [2]P1 + P2 =: P3 =
(Q3 : R3 : S3 : T3 : Z3 : W3 : W 2

3) represent three points in JC satisfying
Assumption 1.)

6.5 Projective Doubling (DBL)

Let P1 = (Q1 : R1 : S1 : T1 : Z1 : W1 : W 2
1) and [2]P1 =: P3 = (Q3 : R3 :

S3 : T3 : Z3 : W3 : W 2
3) represent two points in JC satisfying Assumption 1.

Jacobian Coordinates on Genus 2 Curves 349

The projective form of (13) in extended Jacobian coordinates corresponds to the
following. We define the subexpressions

A :=
((

Q1

(
Q2

1 − 4R1

)
+
(
Q1 − (a2/a3)Z

2
1

)
a3Z

4
1

)
W 2

1 + S2
1

)
(Q1S1 − T1)+(

3Q2
1 − 2R1 + a3Z

4
1

)
W 2

1R1S1,

B := 2 (Q1S1 − T1)T1 − 2R1S
2
1 ,

C :=
((

Q1

(
Q2

1 − 4R1

)
+
(
Q1 − (a2/a3)Z

2
1

)
a3Z

4
1

)
W 2

1 + S2
1

)
S1+(

3Q2
1 − 2R1 + a3Z

4
1

)
W 2

1 T1.

We can then write P3 as

W3 =W1[B],

Q3 =2AC −W 2
3 ,

R3 = (AC)
2
+ 2Q1

[
C2
]
W 2

3 − 2S1

[
C3B

]
,

S3 =
(
R1

[
C4
]
−R3

)
+ (AC −Q3)

(
Q1

[
C2
]
−Q3

)
− S1

[
C3B

]
,

T3 =
(
R1

[
C4
]
−R3

)
AC −R3

(
Q1

[
C2
]
−Q3

)
− T1

[
C5B

]
,

Z3 =Z1[C].

(15)

The DBL operation not only computes P3, but also produces the subexpressions
Q1

[
C2
]
, R1

[
C4
]
, S1

[
C3B

]
, T1

[
C5B

]
, Z1[C], W1[B], W 2

1

[
B2
]
; if desired, these

can be used to update P1 into

P1 = (Q1 : R1 : S1 : T1 : Z1 : W1 : W 2
1)

=
(
Q1

[
C2
]
: R1

[
C4
]
: S1

[
C3B

]
: T1

[
C5B

]
: Z1[C] : W1[B] : W 2

1

[
B2
])

,

in order to share the same Z, W , and W 2 coordinates with P3. We define
the operation DBLa2a3zero to be a doubling in the special case that the curve
constants a2 and a3 are zero.

7 Implementation

We chose two different curves to showcase the explicit formulas derived in the
previous section, both of which target the 128-bit security level.

The first curve was found in the colossal point counting effort undertaken
by Gaudry and Schost [18]. From a security standpoint, it is both twist-secure
and it is not considered to be special (e.g. it has a large discriminant); from a
performance standpoint, it was chosen over the arithmetically advantageous field
Fp with p = 2127 − 1, and with optimal cofactors such that the curve supports
a Gaudry-style Kummer surface implementation [16]. This is the same Kummer
surface that was used to set speed records in [7] and [3]. We chose the Jacobian
of this curve to illustrate the performance that is gained when using our new
formulas inside a general “double-and-add” scalar multiplication routine.

The second curve supports a 4-dimensional Gallant-Lambert-Vanstone (GLV)
decomposition [15]. Over prime fields, requiring 4-dimensional GLV imposes that

350 H. Hisil and C. Costello

the Jacobian has complex multiplication (CM) by a special field – in this case it is
Q(ζ5). This (specialness) means that we cannot hope to find a twist-secure curve
over a particular prime, but rather that we must search over many primes. In the
same vein as [7, §8.3], we also wanted this curve to support a rational Gaudry-
style Kummer surface. This curve is defined over the prime field p = 2128−c with
c = 7689975, which is the smallest c > 0 such that a curve with CM by Q(ζ5)
over Fp is twist-secure with optimal cofactors5. This curve was chosen to exhibit
the performance that is gained when using our new formulas inside a GLV-style
multiexponentation; in particular, each step of the multiexponentation requires
only an mDBLADD operation, and this is where our explicit formulas offer the
largest relative speedup over the previous ones.

7.1 Working on the Gaudry-Schost Jacobian

Let p = 2127 − 1, and define the following constants in Fp: a := 11, b := −22,
c := −19, d := −3, e := 1 +

√
−833/363 and f := 1 −

√
−833/363. For the

Rosenhain invariants λ = ac
bd , μ = ce

df , ν = ae
bf , the curve

CRos/Fp : y2 = x(x− 1)(x− λ)(x − μ)(x − ν)

is such that #JCRos = 24 · r and #JC′
Ros

= 24 · r′, where r and r′ are 250- and
251-bit primes respectively [18], and where C′Ros is the quadratic twist of CRos.
The coefficient of x4 in CRos is α = −(1 + λ + μ + ν), and we choose to zero
it under the transformation ϕ : CRos → C̃, (x, y) �→ (x − α/5, y). The resulting
curve, C̃, has a coefficient of x3 which is a fourth power in Fp; let it be u−4,
where we chose u = 19859741192276546142105456991319328298. We can then
use the map ψ : C̃ → C, (x, y) �→ (x·u2, y ·u5) to work with the isomorphic curve
C/Fp : y2 = x5 + x3+ a2x

2 + a1x+ a0, where the coefficient of x3 being 1 saves
a multiplication inside every point doubling6. We use the name Jac1271 for the
Jacobian JC , and use the name Kum1271 for the associated Kummer surface K
– this is defined by the above constants a, b, c, d (see [16]).

In Section 8 we report two new sets of implementation numbers on Jac1271.
First, we benchmark a generic scalar multiplication, using both the old and the
new formulas, to illustrate the performance boost given by this work in the
general case. In addition, we benchmark a fixed-base scalar multiplication, which
uses the new formulas and takes advantage of precomputations on a public gen-
erator to give large speedups on Jac1271. In the context of ECDHE, this second
benchmark corresponds to the “key gen” phase, which compliments the per-
formance numbers for the “shared secret” scalar multiplications on Kum1271

in [7] and [3]. (We discuss some caveats related to this Jacobian/Kummer

5 It is relatively straightforward to show that if JC has CM by Q(ζ5) and full rational
two-torsion, then either JC or JC′ must contain a point of order 5; thus, the optimal
cofactors are 16 and 80.

6 If the coefficient of x3 in C̃ was not a fourth power, one could still use this form of
transformation to achieve another “small” coefficient, or in this case, work on the
twist instead.

Jacobian Coordinates on Genus 2 Curves 351

combination in §7.3.) To tie these two sets of performance numbers together,
we also benchmark the numbers for computing the map from Jac1271 onto
Kum1271, which was made explicit in the AVIsogenies library [6], and for general
points in JCRos is given as

Ψ : JCRos → K, (x2 + qx+ r, sx+ t) �→ (X : Y : Z : T),

where

X = a
(
r(μ − r)(λ + q + ν)− t2

)
, Y = b

(
r(νλ − r)(1 + q + μ)− t2

)
,

Z = c
(
r(ν − r)(λ + q + μ)− t2

)
, T = d

(
r(μλ − r)(1 + q + ν)− t2

)
. (16)

For practical scenarios like ECDHE, it is fortunate that we only need the map in
this direction, as the pullback map fromK to JCRos is much more complicated [16,
§4.3]. Since we compute in JC (rather than JCRos), we actually need to compute
the composition of Ψ with (ψϕ)−1, which when extended to general points in JC
is

(ψϕ)−1 : JC → JCRos , (x2 + qx+ r, sx+ t) �→ (x2 + q′x+ r′, s′x+ t′),

with q′ = u−2q+2α/5, r′ = u−4r+α/5q′− (α/5)2, s′ = u−3s, t′ = u−5t+α/5s′.
Assuming that the input point in JC is in extended Jacobian coordinates, the
operation count for the full map Ψ ′ = Ψ(ψϕ)−1 from JC to K is 1I+31M+2S+
19a; we benchmark it alongside the scalar multiplications in Section 8.

To draw a fair comparison against prior works, we inserted our formulas into
the software made publicly available by Bos et al. [7], which itself employed
the previous best formulas. (We tweaked both sets of formulas for Jac1271 to
take advantage of the constant a3 = 1.) This software computes the scalar
multiplications on Jac1271 using an adaptation of the left-to-right signed sliding
window recoding from [1] with a window size of w = 5, where the lookup table
consists of 8 points and is constructed using the same approach as in [26, §4].
The timings are presented in Section 8.

7.2 Working on the Jacobian of a GLV curve

Let p = 2128 − 7689975 and define C/Fp : y2 = x5 + 710. The Jacobian groups
JC and JC′ have cardinalities #JC = 24 · 5 · r and #JC′ = 24 · r′, where

r = (2252 + 375576928331233691782146792677798267213584131651764404159)/5,

r′ = 2252 − 375576928331887882475846226038533397089218679777223482485

are both prime.
The implementation of a 4-dimensional GLV scalar multiplication in JC follows

that which is described in [7, §6]; again, we wrapped their GLV software around
both their old and our new formulas for a fair comparison – we note that both
instances were made to use the above curve, which we refer to as GLV128c.

Practically speaking, it does not make as much sense to benchmark GLV128c

in the same ECDHE style as we discussed for Jac1271 and Kum1271. If there is

352 H. Hisil and C. Costello

enough storage to exploit a long-term public generator P , then the presence of
endomorphisms is essentially redundant in the key gen phase, since multiples
of P can then be precomputed offline without using an endomorphism. On the
shared secret side, where variable-base scalar multiplications are performed on
fresh inputs, our implementations show that a 4-dimensional decomposition on
GLV128c is still slightly slower than a Kummer surface scalar multiplication, so
in the case of ECDHE, it is likely to be faster on both sides to stick with the
combination of Jac1271 and Kum1271. Nevertheless, there could be scenarios
where it makes sense to use the endomorphism on GLV128c (e.g. for a signature
verification), and still make use of the maps between the full Jacobian group and
the associated Kummer surface. In this case, the map in (16) and the pullback
map in [16, §4.3] can be exploited analogously to the case of Jac1271, keeping
in mind that the maps would pass through the Jacobian of the Rosenhain form
of C.

Timings for a 4-dimensional GLV variable-base scalar multiplication on
GLV128c using both the old and the new explicit formulas are given in Section 8.

We note that in all scalar multiplication routines, i.e. in both fixed- and
variable-base scalar multiplications on Jac1271 and in 4-dimensional multiexpo-
nentiations on GLV128c, we always found it advantageous to convert the lookup
table elements from extended Jacobian coordinates to affine coordinates using
Montgomery’s simultaneous inversion method [30]. This “decision” is generally
made easier in genus 2, where the difference between mixed additions and full
additions is greater, and the relative cost of a field inversion (compared to the
rest of the scalar multiplication routine) is much less than it is in the elliptic
curve case. Finally, we note that the single conversion of the output point from
Jacobian to affine coordinates comes at a cost of 1I+ 10M+ 1S.

7.3 A Disclaimer: The Difficulties Facing Constant-Time,
Exception-Free Scalar Multiplications in JC

We must point out that none of the scalar multiplications on Jac1271 or GLV128c
that we report in this paper run in constant time, and that the difficulties of
achieving such a routine in genus 2 Jacobians is closely related to Assumption 1.
We note that these are not the same implementation-level difficulties pointed out
in [3, §1.2]; indeed, while the Kummer surface implementations reported in [3]
and [7] run in constant time, a truly constant-time genus 2 implementation that
does not use the Kummer surface is yet to be documented in the literature.

More specifically, there are scalar recoding algorithms (cf. [20,12]) that make
it possible to implement the Jac1271 or GLV128c routines such that scalar
multiplications on random inputs will run in constant time with probability
exponentially close to 1. However, in order to guard against active adversaries
and to be considered truly constant-time, the routines should be guaranteed
to execute identically and run correctly for all combinations of integer scalars
and input points; this means the explicit formulas must be able to handle
input combinations in JC that are not “general” in the sense of Assumption 1.
Although explicit formulas can be developed for each of these special cases,

Jacobian Coordinates on Genus 2 Curves 353

their culmination into an efficient and truly constant-time scalar multiplication
algorithm remains an important open problem.

8 Results

In this section we present the timings of the routines described in the previous
section. All of the benchmarks were performed on an Intel Core i7-3770M (Ivy
Bridge) processor at 3.4 GHz with hyperthreading turned off and over-clocking
(“turbo-boost”) disabled, and all-but-one of the cores switched off in BIOS. The
implementations were compiled with gcc 4.6.3 with the -O2 flag set and tested
on a 64-bit Linux environment. Cycles were obtained using the SUPERCOP [5]
toolkit and then rounded to the nearest 1,000 cycles.

The primary purpose of our benchmarks is to compare the performance of
scalar multiplications in genus 2 Jacobians using both the old and new sets of
explicit formulas. Table 3 reports that a generic scalar multiplication on Jac1271

using the explicit formulas in this paper gives a factor 1.25x improvement over
one that uses the previous best formulas; this is the approximate speedup that
one can expect when adopting extended Jacobian coordinates on any imaginary
hyperelliptic curve of genus 2 over a large prime field. Table 4 reports that a
4-dimensional GLV multiexponentiation routine using the explicit formulas in
this paper gives a factor 1.29x improvement over the same routine that calls
the previous explicit formulas. We note that the benchmarked implementations
of the new formulas always used the “plain” versions (see Table 2), since these
proved to be more efficient than the “trade-off” versions in our implementations.

Table 3. Benchmarking the old and new explicit formulas in the context of a generic
scalar multiplication on Jac1271

curve coordinates formulas from cycles

Jac1271 homogeneous [9,7] 243,000

Jac1271 ext. Jacobian this work 195,000

Table 4. Benchmarking the old and new explicit formulas in the context of a 4-GLV
scalar multiplication on GLV128c

curve coordinates formulas from cycles

GLV128c homogeneous [9,7] 166,000

GLV128c ext. Jacobian this work 129,000

As a secondary set of benchmarks, in Table 5 we give summary performance
numbers for the Gaudry-Schost curve in §7.1 in the context of ECDHE. Using
extended Jacobian coordinates and precomputing a lookup table of size 256KB,

354 H. Hisil and C. Costello

each key gen operation takes around 40,000 cycles in total. (Note that this
cycle count excludes the cycles required to transfer the lookup table from main
memory to the cache.) Together with the recent Kummer surface performance
numbers of Bernstein et al. [3], this gives an idea of the performance that is
possible when space permits a significant precomputation in genus 2 ECDHE.
Note, however, that until an efficient remedy to the issues discussed in §7.3
is known, this style of key gen in genus 2 is unprotected against side-channel
attacks. We also benchmarked a fixed-base scalar multiplication with a much
smaller 1KB lookup table, but it ran in 87,000, which when combined with the
Ψ ′ map, is not faster than the scalar multiplication on Kum1271 from [3].

Table 5. The performance of genus 2 in ECDHE on the Gaudry-Schost curve [18]

ECDHE operation details curve implementation cycles

key gen fixed-base scalar mul Jac1271 this work 36,000

Ψ ′ map - this work (and [6]) 4,000

shared secret variable-base scalar mul Kum1271 Bernstein et al. [3] 91,000

We reiterate that, to get the performance numbers in Tables 3 and 4, and those
for key gen in Table 5, we modified the software made publicly available by Bos
et al. [7] to be able to call both sets of explicit formulas. This software already
included routines for general scalar multiplications, 4-GLV scalar multiplications,
and the fixed-base scenario. To complete the benchmarks in Table 5, we ran the
publicly available software from [3] on our hardware.

9 Related Scenarios

We conclude by mentioning some related cases of interest, for which the analogue
of (extended) Jacobian coordinates and/or the co-Z idea could also be applied.
The takeaway message of this section is that, while we focussed on the most
common instance of genus 2 curves, the ideas in this work have the potential to
boost the speed of arithmetic in other scenarios too.

– Real Hyperelliptic Curves. In Section 2 we immediately specialised to
the imaginary case, where C/K is hyperelliptic of degree 5 with one point
at infinity. The other case in genus 2, where the curve is of degree 6 and
has two points at infinity [13], has received less attention in papers pursuing
high performance, since it is slightly slower than the imaginary case [10].
Moreover, it is often the case (at least among the scenarios of practical
interest) that a degree 6 model contains a rational Weierstrass point and can
therefore be transformed to a degree 5 model (e.g. the family in [17, §4.4]).
On the other hand, there are some scenarios where this transformation is not
always possible, so it is of interest to see how efficient projective arithmetic

Jacobian Coordinates on Genus 2 Curves 355

can be made in the real case, and whether analogues of the ideas in this work
can be carried across successfully.

– Pairings. Genus 2 pairings are also likely to benefit from Jacobian coor-
dinates. Roughly speaking, the explicit formulas in this paper inherently
compute the additional components (i.e. the Miller functions) that are
required in a pairing computation. However, the resulting savings would
not be as drastic, as the operations in JC are dominated by extension field
operations in a pairing computation. In addition, genus 2 has not been as
competitive in the realm of pairings as it has as a standard discrete logarithm
primitive, largely because the construction of competitive ordinary, pairing-
friendly hyperelliptic curves has been very limited. On the other hand, there
are attractive constructions of supersingular genus 2 curves [14], which may
be of interest in the “Type 1” setting, especially given that the fastest
instantiations of such pairings are (in recent times) considered broken [2].
Interestingly, the construction in [14, §7] is one example of a scenario where
the real model cannot be converted into an imaginary one in general.

– Low Characteristic / Higher Genus. The specialisation of Jacobian
coordinates to low characteristic genus 2 curves and the extension to higher
genus imaginary hyperelliptic curves follows analogously. However, the mo-
tivation in both directions is nowadays stunted by their respective security
concerns. Nevertheless, it could be worthwhile to see how much faster the
arithmetic in these cases can become when using Jacobian coordinates.

– The RM Families. We benchmarked the new explicit formulas in two
scenarios; on a non-special “generic” curve, and on a curve with very special
CM that subsequently comes equipped with an endomorphism. A third
option comes from the families with explicit RM in [17], which perhaps
achieves the best of both worlds in genus 2: they also come equipped with
an endomorphism, but are much more general than the CM curve we used.
This generality dispels any security concerns associated with special curves,
and moreover allows them to be found over a fixed prime field. Thus, at
the 128-bit security level, one could find such a curve over p = 2127− 1 that
facilitates both 2-dimensional GLV decomposition on its Jacobian and which
supports a (twist-secure) Kummer surface. It would then be interesting to
benchmark the new explicit formulas on one of these families, where the
GLV routine would again make a higher relative frequency of calls to the
fast mDBLADD routine.

Acknowledgements. We thank Joppe Bos, Michael Naehrig, Benjamin Smith,
and Osmanbey Uzunkol for their useful comments on an early draft of this work.
We also thank the anonymous referees for their valuable comments.

356 H. Hisil and C. Costello

References

1. Avanzi, R.M.: A note on the signed sliding window integer recoding and a left-to-
right analogue. In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357,
pp. 130–143. Springer, Heidelberg (2004)

2. Barbulescu, R., Gaudry, P., Joux, A., Thomé, E.: A heuristic quasi-polynomial
algorithm for discrete logarithm in finite fields of small characteristic. In: Nguyen,
P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 1–16. Springer,
Heidelberg (2014)

3. Bernstein, D.J., Chuengsatiansup, C., Lange, T., Schwabe, P.: Kummer strikes
back: new DH speed records. IACR Cryptology ePrint Archive, 2014:134 (2014)

4. Bernstein, D.J., Lange, T.: Explicit-formulas database,
http://www.hyperelliptic.org/EFD/ (accessed January 2, 2014)

5. Bernstein, D.J., Lange, T.: eBACS: ECRYPT Benchmarking of Cryptographic
Systems, http://bench.cr.yp.to (accessed September 28, 2013)

6. Bisson,G.,Cosset,R., Robert,D.: AVIsogenies – a library for computing isogenies be-
tween abelian varieties (November 2012), http://avisogenies.gforge.inria.fr

7. Bos, J.W., Costello, C., Hisil, H., Lauter, K.: Fast cryptography in genus 2.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881,
pp. 194–210. Springer, Heidelberg (2013), full version available at:
http://eprint.iacr.org/2012/670

8. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user
language. J. Symbolic Comput. 24(3-4), 235–265 (1997) Computational algebra
and number theory, London (1993)

9. Costello, C., Lauter, K.: Group law computations on jacobians of hyperelliptic
curves. In: Miri, A., Vaudenay, S. (eds.) SAC 2011. LNCS, vol. 7118, pp. 92–117.
Springer, Heidelberg (2012)

10. Erickson, S., Ho, T., Zemedkun, S.: Explicit projective formulas for real hyperel-
liptic curves of genus 2. Advances for Mathematics of Communications (to appear,
2014)

11. Fan, X., Gong, G.: Efficient explicit formulae for genus 2 hyperelliptic curves over
prime fields and their implementations. In: Adams, C., Miri, A., Wiener, M. (eds.)
SAC 2007. LNCS, vol. 4876, pp. 155–172. Springer, Heidelberg (2007)

12. Faz-Hernández, A., Longa, P., Sánchez, A.H.: Efficient and secure algorithms for
GLV-based scalar multiplication and their implementation on GLV-GLS curves. In:
Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol. 8366, pp. 1–27. Springer, Heidelberg
(2014)

13. Galbraith, S.D., Harrison, M., Mireles Morales, D.J.: Efficient hyperelliptic arith-
metic using balanced representation for divisors. In: van der Poorten, A.J., Stein,
A. (eds.) ANTS-VIII 2008. LNCS, vol. 5011, pp. 342–356. Springer, Heidelberg
(2008)

14. Galbraith, S.D., Pujolàs, J., Ritzenthaler, C., Smith, B.A.: Distortion maps for
supersingular genus two curves. J. Mathematical Cryptology 3(1), 1–18 (2009)

15. Gallant, R.P., Lambert, R.J., Vanstone, S.A.: Faster point multiplication on elliptic
curves with efficient endomorphisms. In: Kilian, J. (ed.) CRYPTO 2001. LNCS,
vol. 2139, pp. 190–200. Springer, Heidelberg (2001)

16. Gaudry, P.: Fast genus 2 arithmetic based on Theta functions. Journal of Mathe-
matical Cryptology, JMC 1(3), 243–265 (2007)

17. Gaudry, P., Kohel, D.R., Smith, B.A.: Counting points on genus 2 curves with real
multiplication. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073,
pp. 504–519. Springer, Heidelberg (2011)

http://www.hyperelliptic.org/EFD/
http://bench.cr.yp.to
http://avisogenies.gforge.inria.fr
http://eprint.iacr.org/2012/670

Jacobian Coordinates on Genus 2 Curves 357

18. Gaudry, P., Schost, E.: Genus 2 point counting over prime fields. J. Symb.
Comput. 47(4), 368–400 (2012)

19. Goundar, R.R., Joye, M., Miyaji, A., Rivain, M., Venelli, A.: Scalar multiplication
on Weierstraß elliptic curves from Co-Z arithmetic. J. Cryptographic Engineer-
ing 1(2), 161–176 (2011)

20. Hamburg, M.: Fast and compact elliptic-curve cryptography. Cryptology ePrint
Archive, Report 2012/309 (2012), http://eprint.iacr.org/

21. Hisil, H., Costello, C.: Jacobian coordinates on genus 2 curves. IACR Cryptology
ePrint Archive, 2014:385 (2014)

22. Koblitz, N.: Elliptic curve cryptosystems. Mathematics of Computation 48(177),
203–209 (1987)

23. Koblitz, N.: Hyperelliptic cryptosystems. Journal of Cryptology 1(3), 139–150
(1989)

24. Kovtun, V., Kavun, S.: Co-Z divisor addition formulae in Jacobian of genus 2
hyperelliptic curves over prime fields. Cryptology ePrint Archive, Report 2010/498
(2010), http://eprint.iacr.org/

25. Lange, T.: Formulae for arithmetic on genus 2 hyperelliptic curves. Appl. Algebra
Eng. Commun. Comput. 15(5), 295–328 (2005)

26. Longa, P., Miri, A.: New composite operations and precomputation scheme for
elliptic curve cryptosystems over prime fields. In: Cramer, R. (ed.) PKC 2008.
LNCS, vol. 4939, pp. 229–247. Springer, Heidelberg (2008)

27. Lubicz, D., Robert, D.: A generalisation of Miller’s algorithm and applications
to pairing computations on abelian varieties. Cryptology ePrint Archive, Report
2013/192 (2013), http://eprint.iacr.org/

28. Meloni, N.: New point addition formulae for ECC applications. In: Carlet, C.,
Sunar, B. (eds.) WAIFI 2007. LNCS, vol. 4547, pp. 189–201. Springer, Heidelberg
(2007)

29. Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.)
CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986)

30. Montgomery, P.L.: Speeding the Pollard and elliptic curve methods of factorization.
Mathematics of Computation 48(177), 243–264 (1987)

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

Mersenne Factorization Factory

Thorsten Kleinjung1, Joppe W. Bos2,�, and Arjen K. Lenstra1

1 EPFL IC LACAL, Station 14, CH-1015 Lausanne, Switzerland
2 NXP Semiconductors, Leuven, Belgium

Abstract. We present work in progress to completely factor seventeen
Mersenne numbers using a variant of the special number field sieve where
sieving on the algebraic side is shared among the numbers. It is expected
that it reduces the overall factoring effort by more than 50%. As far
as we know this is the first practical application of Coppersmith’s “fac-
torization factory” idea. Most factorizations used a new double-product
approach that led to additional savings in the matrix step.

Keywords: Mersenne numbers, factorization factory, special number
field sieve, block Wiedemann algorithm.

1 Introduction

Despite its allegedly waning cryptanalytic importance, integer factorization is
still an interesting subject and it remains relevant to test the practical value of
promising approaches that have not been tried before. An example of the latter
is Coppersmith’s by now classical suggestion to amortize the cost of a precompu-
tation over many factorizations [7]. The reason for the lack of practical validation
of this method is obvious: achieving even a single “interesting” (i.e., record) fac-
torization usually requires such an enormous effort [18] that an attempt to use
Coppersmith’s idea to obtain multiple interesting factorizations simultaneously
would be prohibitively expensive, and meeting its storage requirements would
be challenging.

But these arguments apply only to general numbers, such as RSA moduli [30],
the context of Coppersmith’s method. Given long-term projects such as [9,10,5]
where many factoring-enthusiasts worldwide constantly busy themselves to fac-
tor many special numbers, such as for instance small-radix repunits, it makes
sense to investigate whether factoring efforts that are eagerly pursued no matter
what can be combined to save on the overall amount of work. This is what we
set out to do here: we applied Coppersmith’s factorization factory approach in
order to simultaneously factor seventeen radix-2 repunits, so-called Mersenne
numbers. Except for their appeal to makers of mathematical tables, such factor-
izations may be useful as well [16].

Let S = {1007, 1009, 1081, 1093, 1109, 1111, 1117, 1123, 1129, 1147, 1151, 1153,
1159, 1171, 1177, 1193, 1199}. For all n ∈ S we have determined, or are in the

� Part of this work was conducted while this author was at Microsoft Research, One
Microsoft Way, Redmond, WA 98052, USA.

P. Sarkar and T. Iwata (Eds.): ASIACRYPT 2014, PART I, LNCS 8873, pp. 358–377, 2014.
c© International Association for Cryptologic Research 2014

Mersenne Factorization Factory 359

process of determining (for updates, see [19]), the full factorization of 2n − 1,
using the method proposed in [7, Section 4] adapted to the number field sieve
(SNFS, [22]). Furthermore, for two of the numbers a (new, but rather obvious)
multi-SNFS approach was exploited as well. Most of our new factorizations will
soundly beat the previous two SNFS records, the full factorizations of 21039 − 1
and 21061 − 1 reported in [1] and [6] respectively. Measuring individual (S)NFS-
efforts, factoring 21193 − 1 would require about 20 times the effort of factoring
21039 − 1 or more than twice the effort of factoring the 768-bit RSA modulus
from [18]. Summing the individual efforts for the seventeen numbers involved
would amount to more than one hundred times the (21039 − 1)-effort. Extrap-
olating our results so far, we expect that sharing the work à la Coppersmith
will allow us to do it in about 50 times that effort. The practical implications of
Coppersmith’s method for general composites remain to be seen.

Although the factoring efforts reported here shared parts of the sieving tasks,
each factorization still required its own separate matrix step. With seventeen
numbers to be factored, and thus seventeen matrices to be dealt with, this gave
us, and is still giving us, ample opportunity to experiment with a number of
new algorithmic tricks in our block Wiedemann implementation, following up on
the work reported in [1] and [18]. While the savings we obtained are relatively
modest, given the overall matrix effort involved, they are substantial in absolute
terms. Several of the matrices that we have dealt with, or will be dealing with,
are considerably larger than the one from [18], the largest published comparable
matrix problem before this work.

Section 2 gives background on the (S)NFS and Coppersmith’s method as
required for the paper. Section 3 introduces our two sets of target numbers to
be factored, while sections 4 and 5 describe our work so far when applying the
two main steps of the SNFS to these numbers. Section 6 provides evidence of
the work completed so far and Section 7 presents a few concluding remarks.

All core years reported below are normalized to 2.2 GHz cores.

2 Background on (S)NFS and Coppersmith’s Method

2.1 Number Field Sieve

To factor a composite integer N in the current range of interest using the num-
ber field sieve (NFS, [22]), a linear polynomial g ∈ Z[X] and a degree d > 1
polynomial f ∈ Z[X] are determined such that g and f have, modulo N , a
root m ≈ N1/(d+1) in common. For any m one may select g(X) = X −m and

f(X) =
∑d

i=0 fiX
i where N =

∑d
i=0 fim

i and 0 ≤ fi < m (or |fi| ≤ m
2) for

0 ≤ i ≤ d. Traditionally, everything related to the linear polynomial g is re-
ferred to as “rational” and everything related to the non-linear polynomial f as
“algebraic”.

Relations are pairs of coprime integers a, b with b ≥ 0 such that bg(a/b) and
bdf(a/b) have only small factors, i.e., are smooth. Each relation corresponds
to the vector consisting of the exponents of the small factors (omitting details

360 T. Kleinjung, J.W. Bos, and A.K. Lenstra

that are not relevant for the present description). Therefore, as soon as more
relations have been collected than there are small factors, the vectors are linearly
dependent and a matrix step can be used to determine an even sum of the vectors:
each of those has probability at least 50% to lead to a non-trivial factor of N .

Balancing the smoothness probability and the number of relations required
(which both grow with the number of small factors) the overall heuristic expected
NFS factoring time is L((64/9)1/3) ≈ L(1.923) asymptotically for N →∞, where

L(c) = L[
1

3
, c] and L[ρ, c] = exp((c+ o(1))(log(N))ρ(log(log(N)))1−ρ)

for 0 ≤ ρ ≤ 1 and the degree d is chosen as an integer close to (3 log(N)
log(log(N)))

1/3.

A more careful selection of g and f than that suggested above (following for
instance [17]) can lead to a substantial overall speed-up but has no effect on the
asymptotic runtime expression.

For regular composites the fi grow as N1/(d+1) which is onlyNo(1) for N →∞
but in general not O(1). Composites for which the fi are O(1) are “special” and
the SNFS applies: its heuristic expected runtime is L((32/9)1/3) ≈ L(1.526)
asymptotically for N → ∞, where the degree d is chosen as an integer close to

(3 log(N)
2 log(log(N)))

1/3. Both asymptotically and in practice the SNFS is much faster

than the NFS, with a slowly widening gap: for 1000-bit numbers the SNFS is
more than ten thousand times faster, for 1200-bit numbers it is more than 30
thousand times faster.

The function L(c) satisfies various useful but unusual properties, due to the
o(1) and N →∞: L(c1)L(c2) = L(c1 + c2), L(c1) +L(c2) = L(max(c1, c2)), and
for c > 0 and fixed k it is the case that (log(N))kL(c) = L(c)/ log(L(c)) = L(c).

2.2 Relation Collection

We briefly discuss some aspects of the relation collection step that are relevant
for the remainder of the paper and that apply to both the NFS and the SNFS.
Let N be the composite to be factored, c = (64/9)1/3 (but c = (32/9)1/3 if
N is special), and assume the proper corresponding d as above. Heuristically
it is asymptotically optimal to choose L(c2) as the upper bound for the small
factors in the polynomial values and to search for relations among the integer
pairs (a, b) with |a| ≤ L(c2) and 0 ≤ b ≤ L(c2). For the NFS the rational and
algebraic polynomial values then have heuristic probabilities L(−c

8) and L(−3c
8)

to be smooth, respectively; for the SNFS both probabilities are L(−c
4). Either

way (i.e., NFS or SNFS) and assuming independence of the polynomial values,
the polynomial values are both smooth with probability L(−c

2). Over the entire
search space L(c)L(−c

2) = L(c2) relations may thus be expected, which suffices.
Relation collection can be done using sieving because the search space is a

rectangle in Z2 and because polynomial values are considered. The latter implies
that if p divides g(s) (or f(s)), then p divides g(s+ kp) (or f(s + kp)) for any
integer k, the former implies that given s all corresponding values s+ kp in the
search space are quickly located. Thus, for one of the polynomials, sieving is used

Mersenne Factorization Factory 361

to locate all pairs in the search space for which the corresponding polynomial
value has only factors bounded by L(c2). This costs∑

p prime, p≤L(c
2)

L(c)

p
= L(c)

(for N →∞, due to the o(1) in L(c)) and leads to pairs for which the polynomial
value is smooth. Next, in the same way and at the same cost, the pairs are located
for which the other polynomial value is smooth. Intersecting the two sets leads
to L(c2) pairs for which both polynomial values are smooth.

Sieving twice, once for each polynomial, works asymptotically because L(c)+
L(c) = L(c). It may be less obvious that it is also a good approach in practice.
After all, after the first sieve only pairs remain that are smooth with respect to
the first polynomial, so processing those individually for the second polynomial
could be more efficient than reconsidering the entire rectangular search space
with another sieve. It will depend on the circumstances what method should be
used. For the regular (S)NFS using two sieves is most effective, both asymp-
totically and in practice: sieving is done twice in a “quick and dirty” manner,
relying on the intersection of the two sets to quickly reduce the number of re-
maining pairs, which are then inspected more closely to extract the relations. In
Section 2.4, however, different considerations come into account and one cannot
afford a second sieve – asymptotically or in practice – precisely because a second
sieve would look at too many values.

As suggested in [28] the sieving task is split up into a large number of some-
what overlapping but sufficiently disjoint subtasks. Given a root z modulo a
large prime q of one of the polynomials, a subtask consists of sieving only those
pairs (a, b) for which a/b ≡ z mod q and for which therefore the values of that
polynomial are divisible by q. This implies that the original size L(c) rectangular
search space is intersected with an index-q sublattice of Z2, resulting in a size
L(c)/q search space. Sieving can still be used in the new smaller search space,
but in a somewhat more complicated manner [28], as first done in [15] and later
much better in [12]. Also, more liberal smoothness criteria allow several primes
larger than L(c2) in either polynomial value [11]. This complicates the decision
of when enough relations have been collected and may increase the matrix size,
but leads to a substantial overall speed-up. Another complication that arises is
that duplicate relations will be found, i.e., by different subtasks, so the collection
of relations must be made duplicate-free before further processing.

2.3 Matrix and Filtering

Assume that the numbers of distinct rational and algebraic small primes allowed
in the smooth values during relation collection equal r1 and r2, respectively. With
r = r1 + r2, each relation corresponds to an r-dimensional vector of exponents.
With many distinct potential factors (i.e., large r1 and r2) of which only a few
occur per smooth value, the exponent vectors are huge-dimensional (with r on
the order of billions) and very sparse (on average about 20 non-zero entries).

362 T. Kleinjung, J.W. Bos, and A.K. Lenstra

As soon as r+1 relations have been collected, an even sum of the corresponding
r-dimensional vectors (as required to derive a factorization) can in principle be
found using linear algebra: with v one of the vectors and the others constituting
the columns of an r × r matrix Mraw, an r-dimensional bit-vector x for which
Mrawx equals v modulo 2 provides the solution. Although a solution has at least
a 50% chance to produce a non-trivial factorization, it may fail to do so, so in
practice somewhat more relations are used and more than a single independent
solution is derived.

The effort required to find solutions (cf. Section 5) grows with the product of
the dimension r and the number of non-zero entries ofMraw (the weight ofMraw).
A preprocessing filtering step is applied first toMraw in order to reduce this prod-
uct as much as is practically possible. It consists of a “best effort” to transform,
using a sequence of transformation matrices, the initial huge-dimensional matrix
Mraw of very low average column weight into a matrix M of much lower dimen-
sion but still sufficiently low weight. It is not uncommon to continue relation
collection until a matrix M can be created in this way that is considered to be
“doable” (usage of a second algebraic polynomial for some of our factorizations
takes this idea a bit further than usual; cf. sections 3.2 and 4). Solutions for
the original matrix Mraw easily follow from solutions for the resulting filtered
matrix M .

2.4 Coppersmith’s Factorization Factory

Coppersmith, in [7, Section 4], observed that a single linear polynomial g may
be used for many different composites as long as their (d + 1)st roots are not
too far apart, with each composite still using its own algebraic polynomial. Thus
smooth bg(a/b)-values can be precomputed in a sieving step and used for each
of the different factorizations, while amortizing the precomputation cost. We
sketch how this works, referring to [7, Section 4] for the details.

After sieving over a rectangular region of L(2.007) rational polynomial val-
ues with smoothness bound L(0.819) a total of L(1.639) pairs can be expected
(and must be stored for future use) for which the rational polynomial value is
smooth. Using this stored table of L(1.639) pairs corresponding to smooth ratio-
nal polynomial values, any composite in the correct range can be factored at cost
L(1.639) per composite: the main costs per number are the algebraic smooth-
ness detection, again with smoothness bound L(0.819), and the matrix step.
Factoring � = L(ε) such integers costs L(max(2.007, 1.639+ ε)), which is advan-
tageous compared to �-fold application of the regular NFS (at cost L(1.923) per
application) for � ≥ L(0.084). Thus, after a precomputation effort of L(2.007),
individual numbers can be factored at cost L(1.639), compared to the individual
factorization cost L(1.923) using the regular NFS.

During the precomputation the L(1.639) pairs for which the rational polyno-
mial value is smooth are found by sieving L(2.007) locations. This implies that,
from an asymptotic runtime point of view, a sieve should not be used to test the
resulting L(1.639) pairs for algebraic smoothness (with respect to an applica-
ble algebraic polynomial), because sieving would cost L(2.007). As a result each

Mersenne Factorization Factory 363

individual factorization would cost more than the regular application of the NFS.
Asymptotically, this issue is resolved by using the elliptic curve factoring method
(ECM, [24]) for the algebraic smoothness test because, for smoothness bound
L(0.819), it processes each pair at cost L(0), resulting in an overall algebraic
smoothness detection cost of L(1.639). In practice, if it ever comes that far, the
ECM may indeed be the best choice, factorization trees ([3] and [14, Section 4])
may be used, or sieving may simply be the fastest option. Because the smooth
rational polynomial values will be used by all factorizations, in practice the
rational precomputation should probably include, after the sieving, the actual
determination of all pairs for which the rational polynomial value is smooth: in
the regular (S)NFS this closer inspection of the sieving results takes place only
after completing both sieves.

These are asymptotic results, but the basic idea can be applied on a much
smaller scale too. With a small number � of sufficiently close composites to be
factored and using the original NFS parameter choices (and thus a table of
L(1.683) as opposed to L(1.639) pairs), the gain approaches 50% with growing �
(assuming the matrix cost is relatively minor and disregarding table-storage
issues). It remains to be seen, however, if for such small � individual processing
is not better if each composite uses a carefully selected pair of polynomials as
in [17], and if that effect can be countered by increasing the rational search space
a bit while decreasing the smoothness bounds (as in the analysis from [7]).

We are not aware of practical experimentation with Coppersmith’s method.
To make it realistically doable (in an academic environment) a few suitable
moduli could be concocted. The results would, however, hardly be convincing
and deriving them would be mostly a waste of computer time – and electric
power [20]. We opted for a different approach to gain practical experience with
the factorization factory idea, as described below.

2.5 SNFS Factorization Factory

If we switch the roles of the rational and algebraic sides in Coppersmith’s factor-
ization factory, we get a method that can be used to factor numbers that share
the same algebraic polynomial, while having different rational polynomials. Such
numbers are readily available in the Cunningham project [9,10,5]1. They have
the additional advantage that obtaining their factorizations is deemed to be de-
sirable, so an actual practical experiment may be considered a worthwhile effort.
Our choice of target numbers is described in Section 3. First we present the the-
oretical analysis of the factorization factory with a fixed algebraic polynomial
with O(1) coefficients, i.e., the SNFS factorization factory.

Let L(2α) be the size of the sieving region for the fixed shared algebraic
polynomial (with coefficient size O(1)), let L(β) and L(γ) be the algebraic and

1 On an historical note, the desire to factor the ninth Fermat number 22
9

+1, in 1988
the “most wanted” unfactored Cunningham number, inspired the invention of the
SNFS, triggering the development of the NFS; the details are described in [22].

364 T. Kleinjung, J.W. Bos, and A.K. Lenstra

rational smoothness bounds, respectively. Assume the degree of the algebraic

polynomial can be chosen as δ(log(N)
log(log(N)))

1/3 for all numbers to be factored.

The algebraic polynomial values are of size L[23 , αδ] and are thus assumed to

be smooth with probability L(−αδ
3β) (cf. [21, Section 3.16]). With the coefficients

of the rational polynomials bounded by L[23 ,
1
δ], the rational polynomial values

are of size L[23 ,
1
δ] and may be assumed to be smooth with probability L(− 1

3γδ).
To be able to find sufficiently many relations it must therefore be the case that

2α− αδ

3β
− 1

3γδ
≥ max(β, γ). (1)

The precomputation (algebraic sieving) costs L(2α) and produces L(2α − αδ
3β)

pairs for which the algebraic value is smooth. Per number to be factored, a total
of L(max(β, γ) + 1

3γδ) of these pairs are tested for smoothness (with respect to

L(γ)), resulting in an overall factoring cost

L(max(2β, 2γ,max(β, γ) +
1

3γδ
))

per number. If β �= γ, then replacing the smaller of β and γ by the larger increases
the left hand side of condition (1), leaves the right hand side unchanged, and does
not increase the overall cost. Thus, for optimal parameters, it may be assumed
that β = γ. This simplifies the cost to L(max(2γ, γ+ 1

3γδ)) and condition (1) to

(2− δ
3γ)α ≥ γ+ 1

3γδ , which holds for some α ≥ 0 as long as δ < 6γ. Fixing δ, the

cost is minimized when 2γ = γ+ 1
3γδ or when γ+ 1

3γδ attains its minimum; these

two conditions are equivalent and the minimum is attained for γ = (3δ)−1/2.
The condition δ < 6γ translates into δ < 121/3 respectively γ > 18−1/3. It
follows that for δ approaching 121/3 from below, the factoring cost per number
approaches L((4/9)1/3) ≈ L(0.763) from above, with a precomputation cost of
L(2α), α → ∞. These SNFS factorization factory costs should be compared to
individual factorization cost L((32/9)1/3) ≈ L(1.526) using the regular SNFS,
and approximate individual factoring cost L(1.639) after a precomputation at
approximate cost L(2.007) using Coppersmith’s NFS factorization factory.

Assuming γ = (3δ)−1/2, the choices γ = (2/9)1/3 and α = (128/343)1/3

lead to minimal precomputation cost L((4/3)5/3) ≈ L(1.615), and individual
factoring cost L((4/3)2/3) ≈ L(1.211). This makes the approach advantageous if
more than approximately L(0.089) numbers must be factored (compare this to
L(0.084) for Coppersmith’s factorization factory). However, with more numbers
to be factored, another choice for γ (and thus larger α) may be advantageous
(cf. the more complete analysis in [19]).

3 Targets for the SNFS Factorization Factory

3.1 Target Set

For our SNFS factorization factory experiment we chose to factor the Mersenne
numbers 2n − 1 with 1000 ≤ n ≤ 1200 that had not yet been fully factored,

Mersenne Factorization Factory 365

the seventeen numbers 2n − 1 with n ∈ S as in the Introduction. We write
S = SI∪SII, where SI is our first batch containing exponents that are ±1 mod 8
and SII is the second batch with exponents that are ±3 mod 8. Thus

SI = {1007, 1009, 1081, 1111, 1129, 1151, 1153, 1159, 1177, 1193, 1199},

and

SII = {1093, 1109, 1117, 1123, 1147, 1171}.

Once these numbers have been factored, only one unfactored Mersenne number
with n ≤ 1200 remains, namely 2991 − 1. It can simply be dealt with using an
individual SNFS effort, like the others with n ≤ 1000 that were still present
when we started our project. Our approach would have been suboptimal for
these relatively small n.

Around 2009, when we were gearing up for our project, there were several more
exponents in the range [1000, 1200]. Before actually starting, we first used the
ECM in an attempt to remove Mersenne numbers with relatively small factors
and managed to fully factor five of them [4]: one with exponent 1 mod 8 and
four with exponents ±3 mod 8. Three, all with exponents ±3 mod 8, were later
factored by Ryan Propper (using the ECM, [34]) and were thus removed from
SII. Some other exponents which were easier for the SNFS were taken care of by
various contributors as well, after which the above seventeen remained.

3.2 Polynomial Selection for the Target Set

We used two different algebraic polynomials: fI = X8−2 for n = ±1 mod 8 in SI

and fII = X8 − 8 for n = ±3 mod 8 in SII. This leads to the common roots mn

and rational polynomials gn corresponding to n as listed in Table 1. Relations
were collected using two sieves (one for fI shared by eleven n-values, and one for
fII shared by six n-values) and seventeen factorization trees (one for each gn), as
further explained in Section 4. Furthermore, in an attempt to reduce the effort
to process the resulting matrix, for n ∈ {1177, 1199} additional relations were
collected using the algebraic polynomial f ′

I , as specified in Table 1 along with
the common roots m′

n and rational polynomials g′n. Although n = 1177 and
n = 1199 share f ′

I , to obtain the additional relations it turned out to be more
convenient to use the vanilla all-sieving approach from [13] twice, cf. Section 4.4.

Another possibility would have been to select the single degree 6 polynomial
X6−2. Its relatively low degree and very small coefficients lead to a huge number
of smooth algebraic values, all with a relatively large rational counterpart (again
due to the low degree). Atypically, rational sieving could have been appropriate,
whereas due to large cofactor sizes rational cofactoring would be relatively costly.
Overall degree 8 can be expected to work faster, despite the fact that it requires
two algebraic polynomials. Degree 7 would require three algebraic polynomials
and may be even worse than degree 6 for our sets of numbers, but would have
had the advantage that numbers of the form 2n+1 could have been included too.

366 T. Kleinjung, J.W. Bos, and A.K. Lenstra

Table 1. The shared algebraic polynomials, roots, and rational polynomials for the
11 + 6 = 17 Mersenne numbers 2n − 1 considered here

fI = X8 − 2 fII = X8 − 8
n n mod 8 mn gn n n mod 8 mn gn

1007
1111
1151
1159
1199

⎫⎪⎪⎪⎬⎪⎪⎪⎭
2126 X − 2126 1093

1109
1117

}
2137 X − 2137

2139 X − 2139 −3 2139 X − 2139

−1 2144 X − 2144 2140 X − 2140

2145 X − 2145

2150 X − 2150

1009
1081
1129
1153
1177
1193

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
1

2−126 2126X − 1 1123
1147
1171

}
2−140 2140X − 1

2−135 2135X − 1 3 2−143 2143X − 1
2−141 2141X − 1 2−146 2146X − 1
2−144 2144X − 1
2−147 2147X − 1
2−149 2149X − 1

f ′
I = X5 +X4 − 4X3 − 3X2 + 3X + 1

n m′
n g′n

1177 2107 + 2−107 2107X − (2214 + 1)
1199 2109 + 2−109 2109X − (2218 + 1)

4 Relation Collection for the Target Set

4.1 Integrating the Precomputation

The first step of Coppersmith’s factorization factory is the preparation and stor-
age of a precomputed table of pairs corresponding to smooth rational polynomial
values. With the parameters from [7] this table contains L(1.639) pairs. Assum-
ing composites of relevant sizes, this is too large to be practical. If we apply
Coppersmith’s idea as suggested in the second to last paragraph of Section 2.4
to a relatively small number of composites with the original NFS parameter
choices, the table would contain L(1.683) pairs, which is even worse.

Here we can avoid excessive storage requirements. First of all, with the origi-
nal SNFS parameter choices the table would contain “only” L(1.145) pairs cor-
responding to smooth algebraic polynomial values, because we are using the
factorization factory for the SNFS with a shared algebraic polynomial. Though
better, this is still impractically large. Another effect in our favor is that we are
using degree 8 polynomials, which is a relatively large degree compared to what
is suggested by the asymptotic runtime analysis: for our N -values the integer

closest to (3 log(N)
2 log(log(N)))

1/3 would be 6. A larger degree leads to larger algebraic

values, fewer smooth values, and thus fewer values to be stored.
Most importantly, however, we know our set of target numbers in advance.

This allows us to process precomputed pairs right after they have been gener-
ated, and to keep only those that lead to a smooth rational polynomial value
as well. With � numbers to be factored and L(1.5232) as smoothness bound

Mersenne Factorization Factory 367

(cf. Section 2.2), this reduces the storage requirements from L(1.523)L(−1.523
4) =

L(1.145) to �L(1.523)L(−1.523
2) = �L(0.763). For our target sets this is only on

the order of TBs (less than six TBs for SII.).
The precomputation and the further processing are described separately.

4.2 Algebraic Sieving

For the sieving of the polynomial fI = X8− 2 from Section 3.2 we used a search
space of approximately 266 pairs and varying smoothness bounds. At most two
larger primes less than 237 were allowed in the otherwise smooth fI-values.

The sieving task is split up into a large number of subtasks: given a root z
of fI modulo a large prime number q, a subtask consists of finding pairs (a, b)
for which a/b ≡ z mod q (implying that q divides b8fI(a/b)) and such that the
quotient b8fI(a/b)/q is smooth (except for the large primes) with respect to the
largest h · 108 less than q, with h ∈ {3, 4, 6, 8, 12, 15, 20, 25, 30, 35}.

Pairs (a, b) for which a/b ≡ z mod q form a two-dimensional lattice of index q
in Z2 with basis

(
q
0

)
,
(
z
1

)
. After finding a reduced basis u, v ∈ Z2 for the lattice,

the intersection of the original search space and the lattice is approximated as
{
(
a
b

)
= iu + jv : i, j ∈ Z, |i| < 2I , 0 ≤ j < 2J}. The bounds I, J ∈ Z>0 were

(or, rather, “are ideally”, as this is what we converged to in the course of our
experiment) chosen such that I + J + log2(q) ≈ 65 and such that max(|a|) ≈
max(b), thus taking the relative lengths of u and v into account. Sieving takes
place in a size 2I+J+1 rectangular region of the (i, j)-plane while avoiding storage
for the (even,even) locations, as described in [12]. After the sieving, all fI-values
corresponding to the reported locations are divided by q and trial-divided as
also described in [12], allowing at most two prime factors between q and 237.
Allowing three large primes turned out to be counterproductive with slightly
more relations at considerably increased sieving time or many more relations at
the expense of a skyrocketing cofactoring effort.

Each (a, b) with smooth algebraic polynomial value resulting from subtask
(q, z) induces a pair (−a, b) with smooth algebraic polynomial value for subtask
(q,−z). Subtasks thus come in pairs: it suffices to sieve for one subtask and
to recover all smooth pairs for the other subtask. For n ≥ 1151 we used most
q-values with 4 · 108 < q < 8 · 109 (almost 233), resulting in about 157 million
pairs of subtasks. For the other n-values we used fewer pairs of subtasks: about
126 million for n ∈ {1007, 1009} and about 143 million for the others.

Subtasks are processed in disjoint batches consisting of all (prime,root) pairs
for a prime in an interval of length 2500 or 10 000. Larger intervals are used for
larger q-values, because the latter are processed faster: their sieving region is
smaller (cf. above), and their larger smoothness bounds require more memory
and thus more cores. After completion of a batch, the resulting pairs are in-
spected for smoothness of their applicable rational polynomial values as further
described below. Processing the batches, not counting the rational smoothness
tests, required about 2367 core years. It resulted in 1.57 · 1013 smooth algebraic
values, and thus for each n ∈ SI at most twice that many values to be inspected
for rational smoothness. Storage of the 1.57 · 1013 values (in binary format at

368 T. Kleinjung, J.W. Bos, and A.K. Lenstra

five bytes per value) would have required 70 TB. As explained in Section 4.1
we avoided these considerable storage requirements by processing the smooth
algebraic values almost on-the-fly; this also allowed the use of a more relaxed
text format at about 20 bytes per value.

Sieving for n ∈ SII was done in the same way. For the polynomial fII = X8−8
and n ∈ {1147, 1171} about 118 million pairs of subtasks were processed for most
q-values with 3 · 108 < q < 5.45 · 109. For the other n-values in SII about 94%
to 96% of that range of q-values sufficed. Overall, sieving for n ∈ SII required
1626 core years and resulted in 1.16 · 1013 smooth algebraic values.

4.3 Rational Factorization Trees

Each time a batch of fI-sieving subtasks is completed (cf. Section 4.2) the
pairs (a, b) produced by it are partitioned over four initially empty queues
Q34,Q35,Q36, and Q37: if the largest prime in the factorization of b8fI(a/b)
has bitlength i for i ∈ {35, 36, 37} then the pair is appended to Qi, all remaining
pairs are appended to Q34.

After partitioning the new pairs among the queues, the following is done

for each n ∈ SI (cf. Section 3.1). For all pairs (a, b) in ∪α(n)
i=34Qi, with α(n)

as in Table 2, the rational polynomial value bgn(a/b) (with gn as in Table 1)
is tested for smoothness: if bgn(a/b) is smooth, then (a, b) is included in the
collection of relations for the factorization of 2n− 1, else (a, b) is discarded. The
smoothness test for the bgn(a/b)-values is conducted simultaneously for all pairs

(a, b) ∈ ∪α(n)
i=34Qi using a factorization tree as in [14, Section 4] (see also [3]) with

τ(n) · 108 and 2β(n) as smoothness and cofactor bounds, respectively (with τ(n)
and β(n) as in Table 2). Here the cofactor bound limits the number and the size
of the factors in bgn(a/b) that are larger than the smoothness bound.

For all n ∈ SI, besides the runtimes Table 2 also lists the numbers of relations
found, of free relations [23], of relations after duplicate removal (and inclusion of
the free relations), and of prime ideals that occur in the relations before the first
singleton removal (where the number of prime ideals is the actual dimension
of the exponent vectors). All resulting raw matrices are over-square. For n ∈
{1193, 1199} the over-squareness is relatively small. For n = 1193 we just dealt
with the resulting rather large filtered matrix. For n = 1199, and for n = 1177 as
well, additional sieving was done, as further discussed in the section below. The
unusually high degree of over-squareness for the smaller n-values is a consequence
of the large amount of data that had to be generated for the larger n-values, and
that could be included for the smaller ones at little extra cost.

Completed batches of subtasks for fII-sieving were processed in the same way.
The results are listed in Table 2.

4.4 Additional Sieving

In an attempt to reduce the size of the (filtered) matrix we collected additional
relations for n ∈ {1177, 1199} using the degree 5 algebraic polynomial f ′

I and

Mersenne Factorization Factory 369

Table 2.

n α(n) τ (n) β(n)
core relations occurring
years found free total unique prime ideals

1007 34 5 99 26 6 157 265 485 47 681 523 4 083 240 054 1 488 688 670
1009 34 5 99 26 6 076 365 897 47 681 523 4 030 378 014 1 487 997 805
1081 35 5 103 48 7 704 145 069 92 508 436 5 484 250 026 2 828 752 381
1111 35 5 103 46 5 636 554 807 92 508 436 4 045 778 202 2 744 898 588
1129 35 5 103 47 4 860 167 788 92 508 436 3 447 412 400 2 690 405 347
1151 36 5 105 77 9 026 908 346 179 644 953 6 878 035 126 5 229 081 896
1153 36 5 105 78 8 919 329 699 179 644 953 6 798 580 785 5 219 976 433
1159 36 5 105 78 8 494 336 817 179 644 953 6 454 287 572 5 179 538 761
1177 37 20 138 140 15 844 796 536 349 149 710 12 687 801 912 10 098 132 272
1193 37 20 141 171 13 873 940 124 349 149 710 11 120 476 664 9 912 486 202
1199 37 20 141 169 13 201 986 116 349 149 710 10 600 157 337 9 795 656 570
core years for n ∈ SI: 906
1093 35 5 103 37 5 380 284 567 92 508 436 3 777 018 420 2 736 825 054
1109 36 5 105 55 9 621 428 465 179 644 953 7 102 393 219 5 134 440 256
1117 36 5 105 55 8 930 755 992 179 644 953 6 762 813 242 5 220 018 492
1123 36 5 105 54 8 686 858 952 179 644 953 6 567 794 152 5 197 770 153
1147 37 20 138 122 15 404 494 545 349 149 710 12 096 909 112 9 967 719 536
1171 37 20 138 115 12 240 930 101 349 149 710 9 688 750 293 9 556 433 885
core years for n ∈ SII: 438

the rational polynomials g′n from Table 1. For various reasons these two n-values
(though they share f ′

I) were treated separately using the software from [13].
For n = 1177 we used on the rational side smoothness bound 3 · 108, cofactor

bound 2109, and large factor bound 237. On the algebraic side these numbers were
5 ·108, 274, and 237. Using large primes q ∈ [3 ·108, 3.51 ·108] on the rational side
(as opposed to the algebraic side above) we found 1 640 189 494 relations, of which
1 606 180 461 remained after duplicate removal. With 1 117 302 548 free relations
this led to a total of 2 723 483 009 additional relations. With the 12 687 801 912
relations found earlier, this resulted in 15 411 284 921 relations in total, involving
15 926 778 561 prime ideals. Although this is not over-square (whereas the earlier
relation set for n = 1177 from Section 4.3 was over-square), the new free relations
contained many singleton prime ideals, so that after singleton removal the matrix
was easily over-square. The resulting filtered matrix was small enough.

For n = 1199 the rational smoothness bound is 4 · 108. All other parameters
are the same as for n = 1177. After processing the rational large primes q ∈
[4 · 108, 6.85 · 108] we had 6 133 381 386 degree 5 relations (of which 5 674 876 905
unique) and 1 117 302 548 free relations. This led to 17 392 336 790 relations with
15 955 331 670 prime ideals and a small enough filtered matrix.

The overall reduction in the resulting filtered matrix sizes was modest, and
we doubt that this additional sieving experiment, though interesting, led to an
overall reduction in runtime. On the other hand, spending a few months (thus
a few hundred core years) on additional sieving hardly takes any human effort,
whereas processing (larger) matrices is (more) cumbersome. Another reason is
that we have resources available that cannot be used for matrix jobs.

370 T. Kleinjung, J.W. Bos, and A.K. Lenstra

4.5 Equipment Used

Relation collection for n ∈ SI was done from May 22, 2010, until February 21,
2013, on clusters at EPFL as listed in Table 3: 82% on lacal 1 and lacal 2, 12%
on pleiades, 3% on greedy, and 1.5% on callisto and vega each, spending 3273
(2367+906) core years. Furthermore, 65 and 327 core years were spent on lacal 1
and lacal 2 for additional sieving for n = 1177 and n = 1199, respectively. Thus
a total of 3665 core years was spent on relation collection for n ∈ SI.

Relation collection for n ∈ SII was done from February 21, 2013, until Septem-
ber 11, 2014, on part of the XCG container cluster at Microsoft Research in
Redmond, USA, and on clusters at EPFL: 46.5% on the XCG cluster, 45.5%
on lacal 1 and lacal 2, 5% on castor, 2% on grid, and 1% on greedy, spending a
total of 2064 (1626+ 438) core years. It followed the approach described above
for fI, except that data were transported on a regular 500 GB hard disk drive
that was sent back and forth between Redmond and Lausanne via regular mail.

Table 3. Description of available hardware. We have 100% access to the equipment
at LACAL and to 134 nodes of the XCG container cluster (which contains many more
nodes) and limited access to the other resources. A checkmark (�) indicates InfiniBand
network. All nodes have 2 processors.

location name processor nodes
cores

per node
cores GHz

GB RAM per
node core

TB disk
space⎧⎪⎪⎪⎨⎪⎪⎪⎩

�bellatrix
callisto
castor
greedy
vega

Sandy Bridge 424 16 6784 2.2 32 2
Harpertown 128 8 1024 3.0 32 4

EPFL Ivy Bridge 52 16 832 2.6
{
50: 64
2:256

4
16

22

≈ 1000 mixed cores, ≈ 1 GB RAM per core; 70% windows, 25% linux, 5% mac

Harpertown 24 8 192 2.66 16 2⎧⎪⎨⎪⎩
�lacal 1
�lacal 2
pleiades
storage server

AMD 53 12 636 2.2 16 1 1
3

LACAL
AMD 28 24 672 1.9 32 1 1

3

Woodcrest 35 4 140 2.66 8 2
AMD 1 24 24 1.9 32 1 1

3
58

Microsoft
Research

part of the XCG
container cluster

AMD 134 8 1072 2.1 32 4
Switzerland grid several clusters at several Swiss institutes

5 Processing the Matrices

Although relation collection could be shared among the numbers, the matrices
must all be treated separately. Several of them required an effort that is con-
siderably larger than the matrix effort reported in [18]. There a 192 795 550×
192 796 550-matrix with on average 144 non-zeros per column (in this section
all sizes and weights refer to matrices after filtering) was processed on a wide
variety of closely coupled clusters in France, Japan, and Switzerland, requiring
four months wall time and a tenth of the computational effort of the relation
collection. So far it was the largest binary matrix effort that we are aware of, in
the public domain. The largest matrix done here is about 4.5 times harder.

Mersenne Factorization Factory 371

5.1 The Block Wiedemann Algorithm

Wiedemann’s Algorithm. Given a sparse r × r matrix M over the binary
field F2 and a binary r-dimensional vector v, we have to solve Mx = v (cf.
Section 2.3). The minimal polynomial F of M on the vector space spanned by
{M0v,M1v,M2v, . . .} has degree at most r. Denoting its coefficients by Fi ∈ F2

and assuming that F0 = 1 we have F (M)v =
∑r

i=0 FiM
iv = 0, so that x follows

as
∑r

i=1 FiM
i−1v. Wiedemann’s method [32] determines x in three steps. For

any j with 1 ≤ j ≤ r the j-th coordinates of the vectors M iv for i = 0, 1, 2, . . .
satisfy the linear recurrence relation given by the Fi. Thus, once the first 2r+1 of
these j-th coordinates have been determined using 2r iterations of matrix×vector
multiplications (Step 1), the Fi can be computed using the Berlekamp-Massey
method [25] (Step 2), where it may be necessary to compute the least common
multiple of the results of a few j-values. The solution x then follows using another
r matrix×vector multiplications (Step 3).

Steps 1 and 3 run in time Θ(rw(M)), where w(M) denotes the number of non-
zero entries of M . With Step 2 running in time O(r2) the effort of Wiedemann’s
method is dominated by steps 1 and 3.

Block Wiedemann. The efficiency of Wiedemann’s conceptually simple
method is considerably enhanced by processing several different vectors v si-
multaneously, as shown in [8,31]: on 64-bit machines, for instance, 64 binary
vectors can be treated at the same time, at negligible loss compared to process-
ing a single binary vector. Though this slightly complicates Step 2 and requires
keeping the 64 first coordinates of each vector calculated per iteration in Step 1,
it cuts the number of matrix×vector products in steps 1 and 3 by a factor of 64
and effectively makes Wiedemann’s method 64 times faster. This blocking factor
of 64 can, obviously, be replaced by 64t for any positive integer t. This calculation
can be carried out by t independent threads (or on t independent clusters, [1]),
each processing 64 binary vectors at a time while keeping the 64t first coordi-
nates per multiplication in Step 1, and as long as the independent results of
the t-fold parallelized first step are communicated to a central location for the
Berlekamp-Massey step [1].

As explained in [8,18] a further speed-up in Step 1 may be obtained by keep-
ing, for some integer k > 1, the first 64kt coordinates per iteration (for each
of the t independent 64-bit wide threads). This reduces the number of Step 1
iterations from 2 r

64t to (1k +1) r
64t while the number of Step 3 iterations remains

unchanged at r
64t . However, it has a negative effect on Step 2 with time and

space complexities growing as (k + 1)μtμ−1r1+o(1) and (k + 1)2tr, respectively,
for r →∞ and with μ the matrix multiplication exponent (we used μ = 3).

Double Matrix Product. In all previous work that we are aware of a single
filtered matrix M is processed by the block Wiedemann method. This matrix M
replaces the original matrix Mraw consisting of the exponent vectors, and is
calculated as M = Mraw ×M1 ×M2 for certain filtering matrices M1 and M2.
For most matrices here, we adapted our filtering strategy, calculated M ′

1 =
Mraw ×M1, and applied the block Wiedemann method to the r × r matrix M

372 T. Kleinjung, J.W. Bos, and A.K. Lenstra

without actually calculating it but by using M = M ′
1×M2. Because Mv can be

calculated asM ′
1(M2v) at (asymptotic) cost w(M2)+w(M ′

1) this is advantageous
if r(w(M ′

1) + w(M2)) is lower than the product of the dimension and weight
resulting from traditional filtering. Details about the new filtering strategy will
be provided once we have more experience with it.

Error Detection and Recovery. See [19] for the “folklore” methods we used.

5.2 Matrix Results

All matrix calculations were done at EPFL on the clusters with InfiniBand net-
work (lacal 1, lacal 2, and bellatrix) and the storage server (cf. Table 3). Despite
our limited access to bellatrix, it was our preferred cluster for steps 1 and 3 be-
cause its larger memory bandwidth (compared to lacal 1 and lacal 2) allowed us
to optimally run on more cores at the same time while also cutting the number of
core years by a factor of about two (compared to lacal 1). The matrix from [18],
for instance, which would have required about 154 core years on lacal 1, would
require less than 75 core years on bellatrix.

Table 4 lists most data for all matrices we processed, or are processing. Jobs
were usually run on a small number of nodes (running up to five matrices at
the same time), as that requires the least amount of communication and storage
per matrix and minimizes the overall runtime. Extended wall times were and
are of no concern. The Berlekamp-Massey step, for which there are no data in
Table 4, was run on the storage server. Its runtime requirements varied from
several days to two weeks, using just 8 of the 24 available cores, writing and
reading intermediate results to and from disk to satisfy the considerable storage
needs. For each of the numbers Step 2 thus took less than one core year.

6 Factorizations

For most n the matrix solutions were processed in the usual way [26,27,2] to find
the unknown factors of 2n−1. This required an insignificant amount of runtime.
The software from [2] is, however, not set up to deal with more fields than the
field of rational numbers and a single algebraic number field defined by a single
algebraic polynomial (in our case fI for n ∈ SI and fII for n ∈ SII). Using this
software for n ∈ {1177, 1199}, the values for which additional sieving was done
for the polynomials f ′

I and g′n from Table 1, would have required a substantial
amount of programming. To save ourselves this non-trivial effort we opted for
the naive old-fashioned approach used for the very first SNFS factorizations as
described in [23, Section 3] of finding explicit generators for all first degree prime
ideals in both number fields Q(8

√
2) and Q(ζ11+ ζ−1

11) and up to the appropriate
norms. Because both number fields have class number equal to one and the
search for generators took, relatively speaking, an insignificant amount of time,
this approach should have enabled us to quickly and conveniently deal with these
two more complicated cases as well.

Mersenne Factorization Factory 373

Table 4. Data about the matrices processed, as explained in Section 5.1, with M ′
1, M2,

and M matrices of sizes r× r′, r′ × (r+ δ), and r× (r+ δ), respectively, for a relatively
small positive integer δ. Runtimes in italics are estimates for data that were not kept
and runtimes between parentheses are extrapolations based on work completed. Start-
ing from Step 3 for n = 1151 a different configuration was used, possibly including some
changes in our code, and the programs ran more efficiently. Until n = 1159 a blocking
factor of 128 was used (so t must be even), for n ∈ {1177, 1193, 1199} ∪ SII it was 64
in order to fit on 16 nodes. The green bars indicate the periods that the matrices were
processed, on the green scale at the top. The red bars indicate the matrices that are
currently being processed. Dates are in the format yymmdd.[

121207 . . . core years . . . 140914
]

n r, r′, δ or r, δ (cf. above) weight(s) t k Step 1 Step 3 start - end

1007
{

r = 38 986 666
r′ = 61 476 801, δ = 420

{
201.089r
31.518r′ 12 3 3.5 2.6 121207 - 130106

(30 days)

1009
{

r = 39 947 548
r′ = 64 737 522, δ = 348

{
202.077r
36.958r′ 12 2 3.9 2.6 130424 - 130610

(47 days)

1081
{

r = 79 452 919
r′ = 122 320 052, δ = 1624

{
183.296r
15.332r′ 16 2 20.3 13.5 130130 - 130311

(41 days)

1111
{

r = 108 305 368
r′ = 167 428 008, δ = 1018

{
180.444r
13.887r′ 24 2 41.8 30.6 130109 - 130611

(154 days)

1129
{

r = 132 037 278
r′ = 204 248 960, δ = 341

{
180.523r
13.434r′ 16 2 64.8 44.4 121231 - 130918

(262 days)

1151
{

r = 164 438 818
r′ = 253 751 725, δ = 911

{
174.348r
11.810r′ 12 2 130.7 38.3 130316 - 131210

(270 days)

1153
{

r = 168 943 024
r′ = 260 332 296, δ = 1830

{
169.419r
11.014r′ 8 2 75.4 43.3 130326 - 131026

(215 days)

1159
{

r = 179 461 813
r′ = 276 906 625, δ = 1278

{
174.179r
11.688r′ 4 2 87.0 58.0 130808 - 140207

(184 days)

1177
{

r = 192 693 549
r′ = 297 621 101, δ = 1043

{
216.442r
19.457r′ 4 3 89.3 74.1 140119 - 140525

(127 days)

1193 r = 297 605 781, δ = 1024 272.267r 6 3 129.5 105.3 131029 - 140819
(295 days)

1199 r = 270 058 949, δ = 1064 217.638r 6 3 104.8 (86.0) started 140626
(≥ 51 days)

core years for n ∈ SI: 751.0 + 498.7 = 1249.7

1093
{

r = 90 140 482
r′ = 138 965 105, δ = 1854

{
204.151r
16.395r′ 8 3 13.4 10.1 140731 - 140912

(44 days)

1109
{

r = 106 999 725
r′ = 164 731 867, δ = 1662

{
216.240r
15.976r′ 8 3 20.3 (16.7) started 140801

(≥ 45 days)

1117
{

r = 117 501 821
r′ = 182 813 008, δ = 1894

{
202.310r
15.638r′ 6 3 (25.5) (20.9) started 140805

(≥ 41 days)

1123
{

r = 124 181 748
r′ = 192 010 818, δ = 3225

{
197.677r
14.222r′ 4 3 (29.4) (24.1) started 140819

(≥ 27 days)

100
47 548
37 522{

r =
′

1
{

r = 108 305 368
′ 167 428 008

29
{

r = 132 037 278
′ 204 248 960 δ 341

{
1

= 164 438 818
253 751 725 δ 911

{
174.348r
11 810 ′ 12

168 943 024
260 332 296 δ 1830

{
169.419
11 014{

174.179r
11 688 ′ 4 2

89.3 74.1

7r 6 3 129.5 105.3 131029 - 1408
(295 d)
rted 140626
≥ 51 d)

140912
)

40801
)

40805
)

819
)

For n = 1177, however, we ran into an unexpected glitch: the 244 congru-
ences that were produced by the 256 matrix solutions (after dealing with small
primes and units) were not correct modular identities involving squares of ratio-
nal primes and first degree prime ideal generators. This means that the matrix
step failed and produced incorrect solutions, or that incorrect columns (i.e.,
not corresponding to relations) were included in the matrix. Further inspection
learned that the latter was the case. It turned out that due to a buggy adap-
tation to the dual number field case incorrect “relations” containing unfactored
composites (due to the speed requirements unavoidably produced by sieving and
cofactorization) were used as input to the filtering step. When we started count-
ing the number of bad inputs, extrapolation of early counts suggested quite a
few more than 244 bad entries, implying the possibility that the matrix step
had to be redone because the 244 incorrect congruences may not suffice to pro-
duce correct congruences (combining incorrect congruences to remove the bad
entries). We narrowly escaped because, due to circumstances beyond anyone’s

374 T. Kleinjung, J.W. Bos, and A.K. Lenstra

control [29], the count unexpectedly slowed down and only 189 bad entries were
found. This then led to a total of 195 correct congruences, after which the fac-
torization followed using the approach described above.

The factorizations that we obtained so far, ten for n ∈ SI followed by a single
one for n ∈ SII, are listed below: n, the lengths in binary and decimal of the
unfactored part of 2n − 1, factorization date, the lengths of the smallest newly
found prime factor, and the factor.

1007 : 843-bit c254, Jan 8 2013, 325-bit p98:{
4566483352305262858649521337144251174007537195118247844881978589475276
3553620148815526546415896369

1009 : 677-bit c204, Jun 12 2013, 295-bit p89:{
3280162939931622038625593856607754107883623834586834118156725600815563
8984594836583203447

1081 : 833-bit c251, Mar 11 2013, 380-bit p115:{
1439581090232360306724652721497221475801893594104335706767629109277502
599083325989958974577353063372266168702537641

1111 : 921-bit c278, Jun 13 2013, 432-bit p130:{
9401699217426101126085627400537881688668923430306029902665947240112085
572850557654128039535064932539432952669653208185411260693457

1129 : 1085-bit c327, Sep 20 2013, 460-bit p139:{
2682863551849463941555012235061302606113919542117141814168219065469741
026973149811937861249380857772014308434017285472953428756120546822911

1151 : 803-bit c242, Dec 12 2013, 342-bit p103:{
8311919431039560964291634917977812765997001516444732136271000611174775
264337926657343369109100663804047

1153 : 1099-bit c331, Oct 28 2013, 293-bit p89:{
1012236096124787395362419088517888862960688998043517924968352429331323
0115056983720103793

1159 : 1026-bit c309, Feb 9 2014, 315-bit p95:{
6299926503608233590011196470146200043859293251781566081845188191562115
4349210038027033309344287

1177 : 847-bit c255, May 29 2014, 370-bit p112:{
2015660787548923454662590205621123886970085761436021592942859847523108
465523348455927947279783179798610711213193

1193 : 1177-bit c355, Aug 22 2014, 346-bit p104:{
8522732620131436182389377660543363667021742538831190645771440901604996
1507516230416822145599757462472729

1093 : 976-bit c294, Sep 13 2014, 405-bit p122:{
4611633294343645255154057631569698529799025986941131181322230323104719
6444160418969946791520558378694863913363980328293449

The total cost for the eleven factorizations for n ∈ SI will be about 4915
core years, with relation collection estimated at 3665 core years, and all matri-
ces in about 1250 core years. Relation collection for n ∈ SII required 2064 core
years, and three of the five remaining matrices are currently being processed.
Individual factorization using the SNFS would have cost ten to fifteen thousand

Mersenne Factorization Factory 375

core years for all n ∈ SI and four to six thousand core years for all n ∈ SII,
so overall we expect a worthwhile saving. The completion date of the overall
project depends on the resources that will be available to process the matrices.
The online version [19] of this paper will be kept up-to-date with our progress.

With so far a smallest newly found factor of 89 decimal digits and a largest
factor found using the ECM of 83 decimal digits [33], it may be argued that our
ECM preprocessing did not “miss” anything yet.

7 Conclusion

We have shown that given a list of properly chosen special numbers their fac-
torizations may be obtained using Coppersmith’s factoring factory with consid-
erable savings, in comparison to treating the numbers individually. Application
of Coppersmith’s idea to general numbers looks less straightforward. Taking the
effects into account of rational versus algebraic precomputation (giving rise to
many more smooth values) and of our relatively large algebraic degree (lower-
ing our number of precomputed values), extrapolation of the 70 TB disk space
estimate given at the end of Section 4.2 suggests that an EB of disk space may
be required if a set S of 1024-bit RSA moduli to be factored is not known in
advance. This is not infeasible, but not yet within reach of an academic effort. Of
course, these excessive storage problems vanish if S is known in advance. But the
relative efficiency of current implementations of sieving compared to factoriza-
tion trees suggests that |S| individual NFS efforts will outperform Coppersmith’s
factorization factory, unless the moduli get larger. This is compounded by the
effect of advantageously chosen individual roots, versus a single shared root.

Regarding the SNFS factorization factory applied to Mersenne numbers, the
length of an interval of n-values for which a certain fixed degree larger than our
d = 8 is optimal, will be larger than our interval of n-values. And, as the corre-
sponding Mersenne numbers 2n − 1 will be larger than the ones here, fewer will
be factored by the ECM. Thus, we expect that future table-makers, who may
wish to factor larger Mersenne numbers, can profit from the approach described
in this paper to a larger extent than we have been able to – unless of course
better factorization methods or devices have emerged. Obviously, the SNFS fac-
torization factory can be applied to other Cunningham numbers, or Fibonacci
numbers, or yet other special numbers. We do not elaborate.

Acknowledgements. We gratefully acknowledge the generous contribution by
Microsoft Research to the relation collection effort. Specifically, we want to thank
Kristin Lauter for arranging access to the XCG container lab, Lawrence LaVerne
for technical support and Michael Naehrig for his assistance in the coordination
of the relation collection. We thank Rob Granger for his comments. This work
was supported by EPFL through the use of the facilities of its Scientific IT and
Application Support Center: the SCITAS staff members have been tremendously
helpful and forthcoming dealing with our attempts to process the seventeen
matrix steps in a reasonable amount of time. Finally, this work was supported

376 T. Kleinjung, J.W. Bos, and A.K. Lenstra

by the Swiss National Science Foundation under grant numbers 200021-119776,
200020-132160, and 206021-128727 and by the project SMSCG (Swiss Multi
Science Compute Grid), with computational infrastructure and support, as part
of the “AAA/SWITCH – e-infrastructure for e-science” program.

References

1. Aoki, K., Franke, J., Kleinjung, T., Lenstra, A.K., Osvik, D.A.: A kilobit special
number field sieve factorization. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS,
vol. 4833, pp. 1–12. Springer, Heidelberg (2007)

2. Bahr, F.: Liniensieben und Quadratwurzelberechnung für das Zahlkörpersieb,
Diplomarbeit, University of Bonn (2005)

3. Bernstein, D.J.: How to find small factors of integers (June 2002),
http://cr.yp.to/papers.html

4. Bos, J.W., Kleinjung, T., Lenstra, A.K., Montgomery, P.L.: Efficient SIMD arith-
metic modulo a Mersenne number. In: IEEE Symposium on Computer Arithmetic
– ARITH-20, pp. 213–221. IEEE Computer Society (2011)

5. Brillhart, J., Lehmer, D.H., Selfridge, J.L., Tuckerman, B., Wagstaff Jr., S.S.: Fac-
torizations of bn ± 1, b = 2, 3, 5, 6, 7, 10, 11, 12 Up to High Powers, 1st edn. Con-
temporary Mathematics, vol. 22. American Mathematical Society (1983) (2nd edn.
1988), (3rd edn. 2002), Electronic book available at:
http://homes.cerias.purdue.edu/~ssw/cun/index.html

6. Childers, G.: Factorization of a 1061-bit number by the special number field sieve.
Cryptology ePrint Archive, Report 2012/444 (2012), http://eprint.iacr.org/

7. Coppersmith, D.: Modifications to the number field sieve. Journal of Cryptol-
ogy 6(3), 169–180 (1993)

8. Coppersmith, D.: Solving homogeneous linear equations over GF(2) via block
Wiedemann algorithm. Mathematics of Computation 62(205), 333–350 (1994)

9. Cunningham, A.J.C., Western, A.E.: On Fermat’s numbers. Proceedings of the
London Mathematical Society 2(1), 175 (1904)

10. Cunningham, A.J.C., Woodall, H.J.: Factorizations of yn ± 1, y = 2, 3, 5, 6, 7,
10, 11, 12 up to high powers. Frances Hodgson, London (1925)

11. Dodson, B., Lenstra, A.K.: NFS with four large primes: An explosive experiment.
In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 372–385. Springer,
Heidelberg (1995)

12. Franke, J., Kleinjung, T.: Continued fractions and lattice sieving. In: Special-
purpose Hardware for Attacking Cryptographic Systems – SHARCS (2005),
http://www.hyperelliptic.org/tanja/SHARCS/talks/FrankeKleinjung.pdf

13. Franke, J., Kleinjung, T.: GNFS for linux. Software (2012)

14. Franke, J., Kleinjung, T., Morain, F., Wirth, T.: Proving the primality of very
large numbers with fastECPP. In: Buell, D.A. (ed.) ANTS 2004. LNCS, vol. 3076,
pp. 194–207. Springer, Heidelberg (2004)

15. Golliver, R., Lenstra, A.K., McCurley, K.: Lattice sieving and trial division. In:
Huang, M.-D.A., Adleman, L.M. (eds.) ANTS 1994. LNCS, vol. 877, pp. 18–27.
Springer, Heidelberg (1994)

16. Harrison, J.: Isolating critical cases for reciprocals using integer factorization.
In: IEEE Symposium on Computer Arithmetic – ARITH-16, pp. 148–157. IEEE
Computer Society Press (2003)

http://cr.yp.to/papers.html
http://homes.cerias.purdue.edu/~ssw/cun/index.html
http://eprint.iacr.org/
http://www.hyperelliptic.org/tanja/SHARCS/talks/FrankeKleinjung.pdf

Mersenne Factorization Factory 377

17. Kleinjung, T.: On polynomial selection for the general number field sieve. Math-
ematics of Computation 75, 2037–2047 (2006)

18. Kleinjung, T., Aoki, K., Franke, J., Lenstra, A.K., Thomé, E., Bos, J.W., Gaudry,
P., Kruppa, A., Montgomery, P.L., Osvik, D.A., te Riele, H., Timofeev, A.,
Zimmermann, P.: Factorization of a 768-bit RSA modulus. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 333–350. Springer, Heidelberg (2010)

19. Kleinjung, T., Bos, J.W., Lenstra, A.K.: Mersenne factorization factory. Cryptol-
ogy ePrint Archive, Report 2014/653 (2014), http://eprint.iacr.org/

20. Lenstra, A.K., Kleinjung, T., Thomé, E.: Universal security. In: Fischlin, M.,
Katzenbeisser, S. (eds.) Buchmann Festschrift. LNCS, vol. 8260, pp. 121–124.
Springer, Heidelberg (2013), http://eprint.iacr.org/2013/635

21. Lenstra, A.K., Lenstra Jr., H.W.: Algorithms in number theory. In: van Leeuwen,
J. (ed.) Handbook of Theoretical Computer Science (Volume A: Algorithms and
Complexity), pp. 673–715. Elsevier and MIT Press (1990)

22. Lenstra, A.K., Lenstra Jr., H.W.: The Development of the Number Field Sieve.
LNM, vol. 1554. Springer (1993)

23. Lenstra, A.K., Lenstra Jr., H.W., Manasse, M.S., Pollard, J.M.: The number field
sieve, pp. 11–42 in [22]

24. Lenstra Jr., H.W.: Factoring integers with elliptic curves. Annals of Mathemat-
ics 126(3), 649–673 (1987)

25. Massey, J.: Shift-register synthesis and BCH decoding. IEEE Transactions on
Information Theory 15, 122–127 (1969)

26. Montgomery, P.: Square roots of products of algebraic numbers. In: Gautschi, W.
(ed.) Mathematics of Computation 1943–1993: a Half-Century of Computational
Mathematics, Proceedings of Symposia in Applied Mathematics, pp. 567–571.
American Mathematical Society (1994)

27. Nguyen, P.Q.: A Montgomery-like square root for the number field sieve. In:
Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 151–168. Springer, Heidelberg
(1998)

28. Pollard, J.M.: The lattice sieve, pp. 43–49 in [22]
29. Radford, B.: Why do people see guardian angels? (August 2013),

http://news.discovery.com/human/psychology/why-people-see-guardian-

angels-130813.htm

30. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Communications of the ACM 21, 120–126 (1978)

31. Thomé, E.: Subquadratic computation of vector generating polynomials and im-
provement of the block Wiedemann algorithm. Journal of Symbolic Computa-
tion 33(5), 757–775 (2002)

32. Wiedemann, D.: Solving sparse linear equations over finite fields. IEEE Transac-
tions on Information Theory 32, 54–62 (1986)

33. Zimmermann, P.: 50 large factors found by ECM,
http://www.loria.fr/~zimmerma/records/top50.html

34. Zimmermann, P.: Input file for Cunningham cofactors,
http://www.loria.fr/~zimmerma/records/c120-355

http://eprint.iacr.org/
http://eprint.iacr.org/2013/635
http://news.discovery.com/human/psychology/why-people-see-guardian-angels-130813.htm
http://news.discovery.com/human/psychology/why-people-see-guardian-angels-130813.htm
http://www.loria.fr/~zimmerma/records/top50.html
http://www.loria.fr/~zimmerma/records/c120-355

Improving the Polynomial time Precomputation

of Frobenius Representation Discrete Logarithm
Algorithms

Simplified Setting for Small Characteristic Finite Fields

Antoine Joux1,2 and Cécile Pierrot2,3

1 CryptoExperts, France and Chaire de Cryptologie de la Fondation de l’UPMC,
Paris

2 Laboratoire d’Informatique de Paris 6, UPMC Sorbonnes Universités, Paris
3 CNRS and Direction Générale de l’Armement, France
antoine.joux@m4x.org, Cecile.Pierrot@lip6.fr

Abstract. In this paper, we revisit the recent small characteristic dis-
crete logarithm algorithms. We show that a simplified description of the
algorithm, together with some additional ideas, permits to obtain an im-
proved complexity for the polynomial time precomputation that arises
during the discrete logarithm computation. With our new improvements,
this is reduced to O(q6), where q is the cardinality of the basefield we are
considering. This should be compared to the best currently documented
complexity for this part, namely O(q7). With our simplified setting, the
complexity of the precomputation in the general case becomes similar to
the complexity known for Kummer (or twisted Kummer) extensions.

1 Introduction

Recently, the computation of discrete logarithms in small characteristic finite
fields has been greatly improved [Jou14,GGMZ13a,BGJT14], with the introduc-
tion of a new family of Index Calculus algorithms for this case. In the sequel,
we call the algorithms from this family: Frobenius Representation algo-
rithms. Frobenius Representation algorithms can be seen as descendants of the
pinpointing algorithm introduced in [Jou13a]. The first two Frobenius Represen-
tation algorithms appeared essentially simultaneously, one of them proposed by
Joux in [Jou14] was first used in a discrete logarithm record in F21778 announced

on Feb 11th 2013 on the NMBRTHRY mailing list, while the first draft of the
article describing the L(1/4) complexity analysis of the algorithm was posted

as [Jou13b] on Feb 20th 2013. Between these two events, another Frobenius Rep-
resentation algorithm with complexity L(1/3) was proposed in [GGMZ13b] with

a record in F21971 announced on Feb 19th 2013 on the same mailing list. From
an asymptotic point of view, the best current Frobenius Representation algo-
rithm is the quasi-polynomial time algorithm proposed in [BGJT14]. In prac-
tice, a lot of options are open depending on the exact finite field we want to

P. Sarkar and T. Iwata (Eds.): ASIACRYPT 2014, PART I, LNCS 8873, pp. 378–397, 2014.
© International Association for Cryptologic Research 2014

Simplified Setting for Frob. Representation Dlogs 379

address. However, there are currently many open questions about these algo-
rithms. From a theoretical point of view, it would be extremely nice to remove
the heuristic hypotheses that are used in the algorithms. A first step in this
direction is proposed in [GKZ14b], with a simplified individual logarithms algo-
rithm that only relies on the ability to descent finite field elements expressed by
polynomials of even degree 2D to polynomials of degree D. Another theoretical
question would be to get the complexity down to polynomial time instead of
quasi-polynomial. From a practical point of view, the limiting step for setting
records in the general case, as opposed to special cases such as Kummer ex-
tension, is usually the computation of the logarithm of the initial factor base
elements. When working over a base field Fq, the best documented complex-
ity is O(q7) (see for example [AMORH14]). However, some authors mention
an higher complexity, typically, for the computation performed in [GKZ14a],
with q = 26, the authors explain that the dimension of the linear algebra is re-
duced from q4 to q4/24 = q4/ log2(q

4). Asymptotically, with this approach the
complexity would be O(q9/ log(q)2). For specific cases such as Kummer exten-
sion, the complexity is lower of the order of O(q6).

In this paper, we give a new variation which achieves complexity O(q6) for the
general case. Part of this work was already presented by the first-named author
in several presentations during the development of our algorithm. It is presented
here in writing for the first time. In these earlier talks, the variation was described
as a simplified version with degraded performance, the main reason being that
using polynomials of degree up to D over Fq seems essentially equivalent to
using linear polynomials over Fqd , with d = D. However, instead of allowing us
to compute logarithms in the field Fqdk with k of the same order of magnitude
as q, it only leads to logarithms in Fqk and we lose the extra factor of d in the
field exponent, which came for free with the standard approach (with a value
of d usually between 2 and 4). Also note that a similar correspondance between
low degree polynomials over a large field and higher degree polynomials over a
smaller field also appears in [GKZ14b].

In order to make the algorithm efficient, D needs to be minimized. At first
glance, it seems that we need to take at least D = 3 to bootstrap the computa-
tion. Our main contribution is that with this simplified approach, it is in fact
possible, under a reasonable heuristic assumption, to reduce the degree of the
polynomials in the initial factor base over Fq to D = 2. Once the initial factor
base is computed, with a cost O(q5), we use it as a lever to obtain the logarithms
of polynomials of degree D = 3 and D = 4 with a total cost O(q6). Using either
the heuristic quasi-polynomial descent of [BGJT14] or the alternative version
from [GKZ14b], it is possible to bring down arbitrary elements to Fqk to this
extended factor base formed of irreducible polynomials up to degree 4.

Outline of the Article. As any recent discrete logarithms algorithms for small
characteristic finite fields, our simplified setting has several phases:

� The Preliminary phase, that finds a representation of the target finite field.
� The Relation Collection and Linear Algebra phases, that permit to recover

the discrete logarithms of a small set of elements, the factor base.

380 A. Joux and C. Pierrot

� The Extension phase, specific to small characteristic finite fields, in which
we obtain the discrete logarithms of a larger set containing the factor base.
We call this new set the extended factor base.

� The Descent phase, that recovers the discrete logarithm of an arbitrary
element of the finite field by rewriting it as products of elements of the
extended factor base.

Following this common structure we introduce our simplified setting in Sec-
tion 2. We present then in Section 3 the computation of the discrete logarithms
of the factor base together with the Extension phase. Section 4 gives a short
analysis of the total improved asymptotic complexity obtained. Finally, in Sec-
tion 5, we illustrate the efficiency of the algorithm with a practical computation
of discrete logarithms in the general case of a prime extension degree which does
not divide1 q(q + 1)(q − 1). More precisely, we perform the computation of the
logarithms in Fqk with q = 35 and extension degree k = 479 (the largest prime
smaller than 2q).

2 Simplified Setting for Small Characteristic Finite Fields

When trying to compute discrete logarithms in a given finite field, let us say Fqk ,
the first step is to choose a convenient way to construct it. We first expose in
Section 2.1 how Frobenius Representation algorithms represent the target field
with the help of two polynomials h0 and h1. We present then an improved way
to choose these two cornerstone polynomials in Section 2.2. Last but not least,
we propose in Section 2.3 a simpler factor base. It is the combination of these
two simplified choices that permits to obtain an improvement in the asymptotic
complexity of the Relation Collection, Linear Algebra and Extension phases.

2.1 Frobenius Representation Algorithms

Like all Frobenius Representation algorithms, the algorithm we propose relies
on two key elements. The first element is the well-known fact that over Fq[X],
the following polynomial identity holds:

∏
α∈Fq

(X − α) =Xq −X. (1)

The second element is to define the target finite field Fqk , where we want to com-
pute discrete logarithms, by determining two polynomials h0 and h1 of degree at
most H and by requiring that there exists a monic irreducible polynomial I(X)
of degree k over Fq[X] such that:

I(X) divides h1(X)X
q − h0(X). (2)

1 The known special cases which are very efficient for record being Kummer extensions
of degree dividing q − 1, twisted Kummer extensions with degree dividing q + 1 and
Artin-Schreier extensions.

Simplified Setting for Frob. Representation Dlogs 381

If θ denotes a root of I(X) in Fq, setting Fqk = Fq[X]/(I(X)) = Fq(θ) gives a
representation of the finite field that satisfies θq = h0(θ)/h1(θ). Since the map
that raises an element of Fq to the power q is called the Frobenius map, this
choice of representation explains the name of Frobenius Representation we
use for this family of algorithms.

The Dual Frobenius Representation Variant. There is an alternative op-
tion proposed in [GKZ14a] for constructing the extension field where we require
that:

I(X) divides h1(X
q)X − h0(X

q).

The advantage of this option is to allow a wider range of possible extension de-
grees k for a given basefield Fq. However, using this variation slightly complicates
the description of the algorithm. With this variation, the finite field represen-
tation satisfies θ = h0(θ

q)/h1(θ
q). When referring to the variation by name, we

will call it a dual Frobenius Representation or equivalently aVerschiebung
Representation.

2.2 Improved Choice of h0 and h1

A Really Simple Construction. We recall that the usual choice is to take two
quadratic polynomials to allows the possibility of representing, at least heuristi-
cally, a large range of finite fields. Since we know that using linear polynomials
for h0 and h1 does not allow such a large range, we propose a slightly different
choice. We take for h0 an affine polynomial and for h1 a quadratic poly-
nomial. We assume furthermore that the constant term of h1 is equal to 0. Note
that, by factoring out a constant in the defining Equation (2), we can assume,
without loss of generality, that h1 is monic. For simplicity of the presentation,
it is convenient to rewrite:

h0(X) = rX + s and h1(X) =X(X + t) (3)

A Useful Variant. Another natural option is to take for h0 a quadratic poly-
nomial with a contant term equal to 0 and for h1 an affine polynomial. In this
case, it is convenient to rewrite:

h0(X) =X(X +w) and h1(X) = uX + v. (4)

At first sight, nothing indicates that one of the two choices is better, and in fact,
both are equivalent in term of complexity. However, as we show in Section 3,
the first one leads in practice to a simpler description of the algorithm. As a
mnemonic we can notice that (r, s, t) are the coefficients of the really simple
construction whereas (u,v,w) are the one of the useful variant.

2.3 Seeking a Natural Factor Base

Once the representation of the target field is chosen, we need to fix the factor
base. With the aim of simplifying the description of the algorithm, we propose
to get rid of polynomials with coefficients in an extension field.

382 A. Joux and C. Pierrot

Irreducible Polynomials with Coefficients in the Basefield. We choose a
parameter D and consider a factor base that contains all irreducible polynomials
of degree ≤ D over Fq[X]. This has to be compared with previous Frobenius
Representation algorithms that consider irreducible polynomials with coefficients
in an extension of Fq. To generate equations, we let A and B be two polynomials
of degree ≤D and using Equations (1) and (2) we write:

B(θ) ∏
α∈Fq

(A(θ) − αB(θ)) = B(θ)A(θ)q −A(θ)B(θ)q

= B(θ)A(θq) −A(θ)B(θq)

= B(θ)A(
h0(θ)

h1(θ)
) −A(θ)B (

h0(θ)

h1(θ)
) .

For compactness, we match B(θ) with the point α at infinity on the projective
line P1(Fq). This permits to rewrite throughout the sequel the first product as

∏α∈P1(Fq)
(A(θ) − αB(θ)). We also introduce the following notation:

Definition 1. Let D be an integer, and h0, h1,A,B be four polynomials such
that A and B are of degree at most D. Then [A,B]D is called the D-bracket of
A and B. It is defined as:

[A,B]D(X) = h1(X)
D (B(X)A(

h0(X)

h1(X)
) −A(X)B (

h0(X)

h1(X)
)) .

Proposition 1. If h0 and h1 are polynomials of degree at most H and if A and B
are polynomials of degree at most D then:

� [A,B]D is a polynomial of degree at most (H + 1) ⋅D.

� The map [., .]D is bilinear and antisymmetric. In particular, [A,A]D = 0.

The proof of the two items of the proposition is straightforward. With these
two notations, we rewrite the equality as:

∏
α∈P1(Fq)

(A(θ) − αB(θ)) =
[A,B]D(θ)

h1(θ)D
. (5)

Since the numerator [A,B]D of the right-hand side of Equation (5) has a
bounded degree, under a classical heuristic, the probability that it factors into
irreducible polynomials of degree at most D can be lower bounded by a con-
stant pH . When using a dual Frobenius Representation, we similarly get:

∏
α∈P1(Fq)

(A(θ) − αB(θ)) = (
[A,B]D(θ)

h1(θ)D
)

q

. (6)

Degree of the Factor Base Polynomials. In order to choose the parameter
D, we have to balance three ideas: to lower the complexity of the linear algebra

Simplified Setting for Frob. Representation Dlogs 383

phase we require to have a small factor base, but, we also need to be able to gen-
erate enough good equations2 and to descent larger polynomials to polynomials
of the factor base. The polynomial degree of the factor base must not be too
small in both cases, otherwise one at least of this two steps will not be possible.
Let us give more details about this degree.

The previous degree 3 barrier. When we consider the general case where h0

and h1 are polynomials of degree bounded by H , the analysis is as follows. The
number of equations that can be generated is obtained by counting the number
of pairs of polynomials (A,B) that remains once we take into account the fact
that the pairs are invariant under the action of PGL2(Fq). In other words, ignor-
ing the cases where the degree is somehow reduced (see Appendix A for details)
in the left-hand side of Equation (5) we can assume that:

A(X) =XD + a(X) and B(X) =XD−1 + b(X),

where a(X) and b(X) have degree at most D − 2. As a consequence, since poly-
nomials of degree D − 2 have D − 1 coefficients, the number of good equations
that can be generated in this manner is of the order of pH ⋅ q

2D−2. Moreover,
the number of elements in the factor base, i.e. the number of irreducible of de-
gree at most D is close to qD/D. To get more equations than unknowns in the
linear algebra phase, i.e. to obtain D ⋅ pH ⋅ q

D−2 ⩾ 1, unless enlarging a lot the
probability pH , we need that D ⩾ 3, as underlined in [GKZ14b].

As a consequence, the best hope we get for the complexity of computing
the logarithms of factor base elements is of the order of (qD)2 ⋅ q ≥ q7. Note
that looking at the various existing record, this lower bound of q7 is not always
attained, since some computations need to enlarge the factor base to D = 4, which
raises the complexity to O(q9). Typically, such an enlargement is performed
in [GKZ14a], even if, thanks to a judicious use of Galois invariance, they reduce
the cost of this enlargement compared to O(q9) by regrouping the degree 4
objects3 into groups of 24 conjugates.

The reason for this enlargement is that the known techniques for descending
polynomials of degree larger than 4 to degree 4 do not work completely to de-
scent degree 4 polynomials to degree 3, since in most cases, only a fraction of
degree 4 irreducible polynomials can be obtained in this manner. This is similar
to the situation reported in [AMORH14], where half of the quadratic polynomi-
als over a cubic extension can be derived with the descent algorithm from linear
polynomials.

Breaking the barrier. Following the above argument, forD = 2 we expect about
q2/2 irreducible polynomials and assuming that H = 2, one would expect a value
of pH well below 1/2. Thus, without any improvement on the probability, the
expected number of equations is too small compared to the number of unknowns
and it is not possible to derive the discrete logarithms of the small elements in
this manner... Yet, in our simplified setting the factor base consists in all

2 We call good equations equations of the restricted form (5) where both right and
left-hand side can be written with polynomials of the factor base only.

3 Those objects are in fact quadratic polynomials over a degree 2 extension.

384 A. Joux and C. Pierrot

the irreducible polynomial of degree 2 with coefficients in the base
field. We explain in Section 3.1 how to get around this problem and to recover
all the discrete logarithms of the factor base.

3 Improving Computations of the (Extended) Factor Base

In this section, we present two contributions which allow us to reduce the global
cost of the polynomial part of discrete logarithm computations. The first con-
tribution in Section 3.1 describes how we can adapt the use of Equation (5)
to be able to perform an initial computation with a reduced initial factor base
corresponding to D = 2 for a cost O(q5). We also show, in Section 3.2, that once
this is done, the enlargement to D = 3 can be performed with a reduced cost
O(q6), instead of the expected O(q7).

The second contribution presented in Section 3.3 is a new descent technique
that only requires a small subset of degree 4 irreducible polynomials to be able to
compute on the fly the logarithm of an overwhelming fraction of other degree 4
polynomials. If there is enough available memory, it is also possible using a adap-
tation of this technique to obtain the logarithms corresponding to an enlarged
basis with D = 4. Both options can be performed with a time complexity O(q6).

3.1 A Reduced Degree 2 Factor Base

As previously said, if we choose a degree 2 factor base, it seems that we don’t
have enough good equations compared to the number of unknowns. We pro-
pose two approaches to get rid of this problem. First, we show that thanks to
our smaller degree polynomials h0 and h1, we can improve pH , the bound on
the probability to obtain a good equation, by exhibiting systematic factors. In
addition, we also use another source of equations to complete the system. A
secondary advantage is that this second source leads to much sparser equations
that the use of Equation (5).

Improving the Probability pH Thanks to Systematic Factors. Once we
have fixed A(X) = XD + a(X) and B(X) = XD−1 + b(X), we see that both the
left-hand side and the denominator of the right-hand side of Equation (5) or (6)
can be written as products of elements of the factor base. So, we have to analysis
the probability that the numerator of the right-hand side, namely the D-bracket
of A and B, can be factorized in products of polynomials of degree at most 2.

The simple construction: h0 affine and h1 quadratic. Proposition 1 allows to
upper-bound the degree of [A,B]D by (H + 1) ⋅D. As a consequence, for H = 2
and D = 2, this degree is lower than 6. The probability that a random polynomial
of degree 6 factors into terms of degree less than 2 is well too small to permits to
obtain enough equations. Though, as mentioned in [GKZ14b], we remark that a
systematic term appears in the factorization of [A,B]D(X). To be more precise,
we have the following result:

Simplified Setting for Frob. Representation Dlogs 385

Lemma 1 (Systematic factor of a D-bracket). Let A and B be two poly-
nomials of degree at most D. Then [A,B]D(X) is divisible by Xh1(X)−h0(X).

Proof. By bilinearity, if A(X) = ∑
D
i=0 aiX

i and B(X) = ∑
D
i=0 biX

i, we can write:
[A,B]D = ∑

D
i=0∑

D
j=0 aibj[X

i,Xj]
D
. Moreover, since [., .]D is bilinear and anti-

symmetric it is clear that [X i,Xj]
D
= −[Xj ,X i]

D
and [X i,X i]

D
= 0. Thus, it

suffices to consider the D-bracket of X i and Xj where i < j. Lets us compute:

[X i,Xj]
D
= hD−j

1 (X) (Xjh0(X)
ih1(X)

j−i −X ih0(X)
j)

= hD−j
1 (X)X ih0(X)

i ((Xh1(X))
j−i − h0(X)

j−i)

= hD−j
1 (X)X ih0(X)

i(Xh1(X) − h0(X))
j−i

∑
k=1

h0(X)
k−1(Xh1(X))

j−i−k.

As a consequenceXh1(X)−h0(X) divides [X
i,Xj]

D
and the lemma follows.

Thus, after dividing [A,B]D by this degree 3 systematic factor, the question
is whereas a polynomial of degree 3 factors into terms of degree at most 2.
Assuming that it behaves as a random polynomial in this respect, we can lower
bound (see Appendix B) the probability by 2/3. Since this is higher than 1/2,
we have now enough equations to compute the logarithms of the factor base.

The useful variant: h0 quadratic and h1 affine. We can check again that the
numerator in the right-hand side of Equation (5) or (6) becomes systematically
divisible by θh1(θ)−h0(θ). Yet, in this variant, this systematic factor has degree 2
only. This partially improves the value of pH , however, this is not sufficient to
get enough equations.

To go further in reducing this degree, we have to remark that the bound on
the degree of [A,B]D given in Proposition 1, which is (H + 1) ⋅D, can in fact
be improved in the specific case where h1 is affine. In truth, the degree is now
upper-bounded by (H + 1) ⋅D − 1. For H = 2 and D = 2, this reduces for free the
degree from 6 to 5. As a consequence, after dividing by the degree 2 systematic
factor of Lemma 1, there remains as previously a polynomial of degree 3. Again
the probability pH is lower-bounded by 2/3 > 1/2. In both cases, this probability
would already suffice to produce enough equations.

Additional Equations. Despite the fact that the equations obtained with our
improved choice of h0 and h1 in both the simple construction and the useful
variant would suffice to solve the linear system with parameter D = 2, proposing
a source of extra equations is also helpful. In this section, to produce additional
equations, we simply consider a variation on the systematic equations that were
introduced in [BMV85] and often used in the Function Field Sieve.

More precisely, let f(X) = X2 + f1X + f0 be an irreducible polynomial of
degree 2 in Fq[X]. We can write :

f(θ)q = f (
h0(θ)

h1(θ)
) =

h0(θ)
2 + f1 h0(θ)h1(θ) + f0 h1(θ)

2

h1(θ)2
.

386 A. Joux and C. Pierrot

The numerator of the right-hand side is a polynomial of degree 4, since one of
the two polynomials h0 or h1 is quadratic and the other one is affine. We remark
that about half of these numerators are irreducible and the other half factor
into a product of two degree 2 irreducible polynomials. For the case of a dual
Frobenius Representation, the systematic equations are slightly different:

f(θ) = f (
h0(θ)

h1(θ)
)

q

= (
h0(θ)

2 + f1 h0(θ)h1(θ) + f0 h1(θ)
2

h1(θ)2
)

q

but the principle remains identical. These systematic equations can easily be
generalized to irreducible polynomials of arbitrary degree, with again a close to
half/half repartition4:

Lemma 2. Let h0 and h1 be two polynomials such that one is affine and the
other quadratic. If f is a degree D monic irreducible polynomial in Fq[X], then
h1(X)

2Df(h0(X)/h1(X)) is a polynomial of degree 2D that has a probability
equal to 1 − p to be irreducible and a probability equal to p to factor into two
degree D irreducible polynomials, with:

1

qD
(
qD − 1

2
−

q⌊D/2⌋+1 − q

q − 1
) ≤ p ≤

qD + 3

2 qD
.

In particular, note that for irreducible polynomials of degree 1, which are
part of the initial factor base for D = 2, we always obtain a systematic equation
relating the given polynomial either to two other affine polynomials or to one
quadratic polynomial. Note that we could also use the systematic equations for
higher degree polynomials in Section 3.3 to ease the computation of the logarithm
of degree 4 polynomials.

3.2 Enlarging the Factor Base to Degree 3

In order to be able to enlarge the factor base to degree 3 without performing
linear algebra on a matrix of dimension q3, we follow an approach quite similar
to the one presented in [Jou14]. Namely, we divide first the set of irreducible
polynomials of degree 3 into groups and search then for a way to generate enough
equations involving only the polynomials within a group and polynomials of
degree 1 or 2 whose logarithms are already known.

Groups of Degree 3 Polynomials for the Simple Construction. To define
a group of degree 3 polynomials we start from an element g in the base field Fq

and we consider Pg the corresponding group of degree 3 polynomials such that:

Pg = {(X
3 + g) + αX2 + βX ∣(α,β) ∈ Fq

2}.

Clearly, if we generate a relation using Equation (5), or (6), with A(X) = (X3 +
g) + αX2 and B(X) = (X3 + g) + βX , with a and b in Fq, then all degree 3
polynomials that appear in the left-hand side belong to Pg. The elements of Pg

can be divided into two groups:

4 We prove the following lemma in the extended version of this article.

Simplified Setting for Frob. Representation Dlogs 387

� the reducible polynomials whose logarithms can be computed by taking the
sum of the logarithms of their factors,

� and the irreducible polynomials which appear as unknowns. Note that the
number of irreducible polynomials in a group Pg is approximately q2/3.

For one fixed element g, by considering all possibilities for α and β, we find q2 can-
didate relations. Yet, we keep only those whose right-hand side factors into terms
of degree at most 2. The question is now whether we obtain enough equations
to be able to solve the corresponding linear system.

For this, lets look into more details at the right-hand side. With our choice of
h0 and h1 it is a polynomial of degree 9, as described in Proposition 1. Moreover,
it follows from Lemma 1 that it is divisible by the degree 3 polynomial θh1(θ)−
h0(θ). As a consequence, we are left with a polynomial of degree 6 to factor
in terms of degree at most 2. The probability to obtain a good relation is not
yet higher than 1/3. To improve on this probability, we first remark that with
our specific choice of A and B the polynomial degree of the numerator of the
right-hand side is in fact 8. Thus we are left with a polynomial of degree 5 to
factor in terms of degree at most 2. Besides, we reveal a very simple systematic
factor.

Lemma 3 (Systematic factor of particular 3-brackets in the simple
construction). Let h0, h1,A and B be four polynomials such that h0 is affine,
h1(X) = X(X + t), A(X) = (X3 + g) + αX2 and B(X) = (X3 + g) + βX, with
t, g, α and β in Fq. Then [A,B]3 is a polynomial of degree at most 8 divisible
by X.

Proof. By bilinearity and antisymmetry we have [A,B]3 = α[X2,X3 + g]
3
+

β[X3 + g,X]
3
+ αβ[X2,X]

3
. Let us compute the following 3-brackets:

[X,X2]
3
= X2h0h

2
1 −Xh2

0h1

[X3 + g,X]
3
= X(h3

0 + gh3
1) − (X

3 + g)h0h
2
1

= X[h3
0 + gh

3
1 − (X

3 + g)h0X(X + t)2]

[X3 + g,X2]
3
= X2(h3

0 + gh3
1) − (X

3 + g)h2
0h1

= X[X(h3
0 + gh

3
1) − (X

3 + g)h2
0 (X + t)]

The result of the lemma comes from the fact that all the 3-brackets involved
in the computation of [A,B]3 are divisible by X . Moreover, considering the
polynomials degrees of these elements we remark that [X,X2]

3
has degree 6

whereas [X3 + g,X]
3
has degree 7 and [X3 + g,X2]

3
has degree 8.

As a direct consequence, the remaining factor in the right-hand side when
considering these groups is of degree 4. According to Appendix B the heuristic
probability that it factors into terms of degree at most 2 is close to 41%. Since
these is greater than 1/3, we expect to find enough equations to compute all the
discrete logarithms of the irreducible polynomials belonging to Pg. Moreover, it
is clear that any monic and irreducible polynomial of degree 3 belongs to one Pg.

388 A. Joux and C. Pierrot

Groups of Degree 3 Polynomials for the Useful Variant. In this setting,
computing discrete logarithms of degree 3 polynomials is a bit more tricky. To
define a group in this case, we start from a triple (g1, g2, g3) of elements in Fq.
The corresponding group of degree 3 polynomials is defined as:

Pg1,g2,g3 = {X
2(X − g1) + αX(X − g2) + β (X − g3)∣(α,β) ∈ Fq

2}.

Let us fix (g1, g2, g3) ∈ Fq
3. If we generate a relation using Equation (5) with

A(X) =X2(X−g1)+α (X−g3) and B(X) =X(X−g2)+β (X−g3), with α and β
in Fq, then all degree 3 polynomials that appear in the left-hand side belong to
the corresponding group Pg1,g2,g3 . After keeping only the q2 candidate relations
whose right-hand side factors into terms of degree at most 2, the question is,
again, whether we obtain enough equations to solve the linear system where the
unknown are the q2/3 irreducible polynomials of Pg1,g2,g3 .

When h0 is quadratic and h1 affine, the right-hand side is still a polynomial
of degree 8 divisible by θh1(θ)−h0(θ). We are left with a polynomial of degree 6
to factor in terms of degree at most 2. Yet, without any further improvement,
the probability of this remaining polynomial to factor into terms of degree at
most 2 is still too small to obtain enough equations.

To overcome this obstacle, we no longer consider the general groups of this
form. Our goal is to point out some groups in which we now that the right-
hand sides have some extra systematic factors. Another argument for considering
few special groups only comes when we remark that the number of degree 3
polynomials produced with all those general groups is way too large. Taking all q3

groups of the form Pg1,g2,g3 is a clear overkill since they each contain q2 elements
whereas there are only q3 monic polynomials of degree 3. In fact we expect that
these polynomials could be mostly covered by q groups only. To put it in a
nutshell, we restrict ourselves to the specific choice of g1, g2 and g3 where we
first choose a value g1 ∈ Fq and compute then:

g2 = G(g1) and g3 = G(g2)

where G ∶ Fq ↦ Fq is a particular map. We propose to consider:

G ∶ g ↦
v(v +w)

(1 + u)(v +w − g)
. (7)

We recall that u, v,w denote the coefficients of the polynomials h0 and h1, as
given in (4). Assuming that both g1 and g2 are not equal to v + w then all
three values (g1, g2, g3) are well-defined. With this specific choice, the right-hand
side that now appear in Equation (5) or (6) gains a new systematic degree 2
factor θh1 + h0 + (v + w)h1 = (1 + u) θ2 + (1 + u)(v + w)θ + vw + v2 as given in
Lemma 4. Again, the remaining factor in the right-hand side when considering
these groups is of degree 4. Since the probability of a degree 4 polynomial to
factor in terms of degree at most 2 is higher than 1/3, we can recover all the
discrete logarithms of the irreducible polynomials of Pg1,G(g1),G(G(g1)).

Simplified Setting for Frob. Representation Dlogs 389

Lemma 4 (Systematic factor of particular 3-brackets in the useful
variant). Let G denote the map of (7) and let h0, h1,A and B be four poly-
nomials such that h0(X) = X(X + w), h1(X) = uX + v, A(X) = X2(X − g) +
a (X −G(G(g))) and B(X) = X(X −G(g)) + b(X −G(G(g))), with u, v,w, a, b
and g in Fq. Then [A,B]3 is divisible by (1+u)X2 + (1+u)(v +w)X + vw + v2.

Proof. By bilinearity and antisymmetry: [A,B]3 = [X
2(X − g),X(X −G(g))]

3
+

b [X2(X − g),X −G(G(g))]
3
+ a [X −G(G(g)),X(X −G(g)))]3. The result of

the lemma comes from the computation of the 3 bracket of the three pairs of
different elements made with X2(X − g), X(X −G(g)) and X −G(G(g)).

Fraction of Degree 3 Polynomials Covered by Our Groups. Since we
can recover all the discrete logarithms of the irreducible polynomials that appear
in a group, the question that remains is whether every polynomial belongs to
one of these groups at least.

Valid groups. In the sequel we restrict ourselves to the case where v+w ≠ 0. Yet,
if v + w = 0 then G is the zero mapping. This case is studied in the extended
version of our article. To study the properties of our group, it is convenient to
remark that since G is an homography, we can transform it into a permutation
of the projective line P1(Fq). As classically done, we add the two following values
of G:

G(∞) = 0 and G(v +w) = ∞.

With this additional definition, we see that the groups we consider are indexed
by triple (g,G(g),G(G(g))) which do not contain the value ∞. Since v +w ≠ 0
then ∞ belongs to a cycle of length at least 3. Thus, there are q − 2 valid groups
corresponding to the values of g in Fq − {G

−1(∞),G−1(G−1(∞))}. With this
description we reach at best q3 − 2q2 polynomials of degree 3.

Groups at infinity. To reach more polynomials we define three additional groups
Pg,G(g),G(G(g)) when g,G(g) or G(G(g)) is equal to ∞. These groups are given
by the following descriptions:

P
∞,0,G(0) = {X (X

2 +
vw + v2

1 + u
) + αX2 + β (X −G(0))∣(α,β) ∈ F2

q} .

P
∞
−1,∞,0 = {X

2(X −∞−1) + αX + β (X2 +
vw + v2

1 + u
) ∣(α,β) ∈ F2

q} .

and P
∞
−2,∞−1,∞ = {X

2(X −∞−2) + αX(X −∞−1) + β ∣(α,β) ∈ F2
q}.

where∞−1 stands for G−1(∞) and∞−2 for G−1(G−1(∞)). We remark that these
three extra groups at infinity satisfy the same systematic divisibility properties
as the usual groups. Moreover, we enlarge the number of available polynomi-
als to q3 + q2, which is now enough to possibly cover all the monic degree 3
polynomials.

390 A. Joux and C. Pierrot

Covering every degree 3 polynomials. Let P (X) =X3+a2X
2+a1X+a0 be an arbi-

trary monic polynomial of degree 3. If P belongs to a valid group Pg,G(g),G(G(g)),
there exist α and β such that:

α − g = a2,

β − αG(g) = a1,

and − βG(G(g)) = a0.

Substituting the equations into each other, we find that this implies:

a0 = −(a1 + (a2 + g)G(g)) ⋅G(G(g)). (8)

After simplification this becomes Ha1,a2(g) = a0, where Ha1,a2 is an homography
whose coefficients depend on a1 and a2. If there is no degenerescence inside the
coefficients of Ha1,a2 , there is exactly one possible value for g. Let us write

the homography Ha1,a2(g) =
λ+μg
λ′+μ′g

where λ = −v(w + v)((1 + u)a1 + va2), μ =

v((1+u)a1−v(v+w)), λ
′ = (1+u)(u(v+w)+w) and μ′ = −(1+u)2. Thus, several

cases appear:

– If a0 ≠ μ/μ
′, then the homography is invertible.

● As a consequence, as long as g ≠ ∞−1 and g ≠ ∞−2, the polynomial P be-
longs to the valid group generated by g =H−1a1,a2

(a0),G(g) and G(G(g)),

and only to this one. There are q3 − 3q2 such polynomials.
● If g = ∞−1 then Ha1,a2(∞

−1) = a0 becomes a0(λ
′+μ′(v+w)) = λ+μ(v+w)

and finally a0 = ∞
−1v(a2+∞

−1)/(1+u). Besides, P belongs to the group
at infinity P

∞
−1,∞,0 if there exists α and β such that β−∞−1 = a2, α = a1,

and βv(v+w)/(1+u) = a0. Substituting the previous equations in β into
each other, we find that this implies a0 = ∞

−1v(a2 +∞
−1)/(1+u). Thus,

the polynomial P belongs to P
∞
−1,∞,0. There are q2−q such polynomials.

● Similarly, if g = ∞−2 then P belongs to the group at infinity P
∞
−2,∞−1,∞

and, again, there are q2 − q such polynomials.
– If a0 = μ/μ′ then Equation (8) is equivalent to 0 = g(a0μ

′ − μ) = λ − λ′.
Moreover requiring λ = λ′ leads to a2 = κ(κ

′a1+κ
′′) where κ = (1+u)/(v2(v+

w)), κ′ = v(v +w) and κ′′ = −u(v +w) −w.
● If a2 = κ(κ′a1 + κ′′) then P belongs to all the valid groups. There are q
such polynomials.
● If a2 ≠ κ(κ′a1 + κ′′) the question is whether the q2 − q remaining poly-
nomials belong to a group at infinity. Hopefully, if α denotes a2 and β
denotes a1 − v(v + w)/(1 + u) then we have the following equality be-
tween polynomials: X(X2 + v(w + v)/(1 + u)) + αX2 + β (X − G(0)) =
X3 + a2X

2 + a1X + v(v(v +w) − a1(1+ u))/(1+ u)
2 = P (X). As a conse-

quence, P belongs to the group at infinity P
∞,0,G(0).

Remark 1. The previous proof does not interact with the restriction on a2. Thus,
the q polynomials satisfying a0 = μ/μ′ and a2 = κ(κ′a1 + κ′′) belong also to the
group at infinity P

∞,0,G(0). Moreover, we notice that each intersection between
two groups at infinity consists in q polynomials.

Simplified Setting for Frob. Representation Dlogs 391

3.3 Discrete Logarithms of Degree 4 Polynomials

Previous Deadlocks. The natural approach for computing the logarithm of
I4(θ) where I4 is an irreducible polynomial of degree 4 is to start from the two
polynomials A(X) = X3 + a1X + a0 and B(X) = X2 + b1X + b0, construct a
relation from Equation (5) and require that I4 divides [A,B]3. Rewriting this
last condition as [A,B]3 = 0 (mod I4), we obtain 4 bilinear equations in the 4
unknowns (a0, a1, b0, b1). Experimentally, as explained in [Jou14], this system is
easy to solve using standard Gröbner basis algorithms. However, on average, the
system has solutions only for half of the degree 4 polynomials. As a consequence,
the other half polynomials are not accessible using this technique.

Another idea, already present in [AMORH14], is to use the additional relations
from Section 3.1 to improve the probability of success. For an irreducible of
degree 4 that failed to by expressed in terms of degree 3 polynomials, there
is a 1/2 chance that its image by Frobenius, whose degree is 8, factors into 2
quartic polynomials. Each of them has a 1/2 chance to be expressed in terms of
degree 3 polynomials. Thus, for a polynomial that failed, we have a 1/8 chance to
compute its logarithms through this process. This increases the global probability
of success for a degree 4 irreducible to 9/16. Repeating the process, we can further
improve the success probability. Heuristically, we expect to have a probability
of p0 = (4 −

√
8)/2 ≈ 0.586. Unfortunately, this does not suffice to obtain all

degree 4 polynomials. In order to bypass this problem, several techniques have
been considered but none of them are sufficient in the general case. We propose
here an approach that fits to the simple construction whereas the useful (but
tricky) variant is detailed in the extended version of the article.

Improved Approach for Degree 4 Polynomials for the Simple Con-
struction. The general approach we propose consists in dividing the degree 4
polynomials in groups of size q3 and following an approach close to the case
of the degree 3 polynomials presented in Section 3.2. We first compute all the
discrete logarithms of a group Qg of degree 4 polynomials of the form:

Qg = {(X
4 + g) + αX3 + βX2 + γX ∣(α,β, γ) ∈ F3

q}. (9)

To do so, we use a partition of this group Qg = ∪g′∈FqQg,g′ where:

Qg,g′ = {(X
4 + g) + αX3 + βX2 + g′X ∣(α,β) ∈ F2

q}. (10)

To build relations involving the polynomials from Qg,g′ we apply Equation (5)
with polynomials of the form A(X) = (X4+g)+aX2+g′X and B(X) =X3+bX2.
With the simple construction, Lemma 5 shows that [A,B]4 is of degree 11 and
has a systematic factor of degree one. Together with the general degree 3 sys-
tematic factor coming from Lemma 1, we are left with a polynomial of degree 7.
According to Appendix B the probability that it factors in terms of degree at
most 3 is about 24%.

Besides, the number of irreducible polynomials in Qg,g′ is close to q2/4. Com-
bining with previous techniques, after removing the irreducibles whose loga-
rithms can be obtained, we are left with approximately (1−0.586) ⋅q2/4 ≈ 0.10 q2

392 A. Joux and C. Pierrot

unknowns. Thus we obtain enough equations to solve the linear system. Finally,
we recover the discrete logarithms of Qg by computing the ones of its q sub-
groups.

Lemma 5 (Systematic factor of particular 4-brackets in the simple
construction5). Let h0, h1,A and B be four polynomials in Fq[X] such that
h0 is affine, h1(X) = X(X + t), A(X) = (X4 + g) + αX2 + α′X and B(X) =
X3 + βX2 + β′X. Then [A,B]4 is a polynomial of degree at most 11 divisible
by X.

Computing the remaining discrete logarithms. Let I4 ∉ Qg be a degree 4 polyno-
mial. We start again from A(X) = (X4 + g)+aX2+a′X and B(X) =X3+ bX2+
b′X , and apply Equation (5) to construct a relation such that I4 divides [A,B]4.
As in [Jou14], the heuristic probability to find a solution from the bilinear system
is 1/2. Extracting the degree one factor of Lemma 5 and the general degree 3 sys-
tematic factor of Lemma 1, and dividing then the degree 11 polynomial [A,B]4
by our degree 4 polynomial I4, we are left with a polynomial of degree 3, which
logarithm is already known. Thus, with only one group of the form described
in (9) we recover the discrete logarithms of approximately half6 the irreducible
missing polynomials of degree 4.

To obtain the remaining polynomials, we recursively apply this method to
other groups of the form (9). We show in Section 4.3 that O(log(q)) such groups
suffice and that the cost of their computations is asymptotically dominated by
the cost of the first one, which is O(q6), as announced.

4 Asymptotic Complexities

4.1 Recovering Discrete Logs of Degree 2 Irreducible Polynomials

We require to collect about q2 equations in the Relation Collection phase. Since
the probability to obtain a good relation is lower-bounded by 2/3, this phase
costs O(q2) operations. We perform then a sparse linear algebra phase on a
matrix of size O(q2). We recall that due to the form of the relations that are
created, the number of entries in each row is O(q). The total cost to recover the
discrete logarithms of degree 2 polynomials is so O((q2)2 ⋅ q) = O(q5).

4.2 Recovering Discrete Logs of Degree 3 Irreducible Polynomials

With the really simple construction. Since each group Pg contains O(q2) un-
knowns and since the linear algebra is done with a matrix containing O(q)
entries per line, the cost of computing a single group is O(q5). There are q such
groups and the global cost is, thus, O(q6).

5 The proof of this lemma works as the one of Lemma 3.
6 The probability to recover the logarithm of a missing polynomial is in fact higher
than 1/2, since we can use additional equations as presented in Section 3.1. Even
there are very useful in practice, the 1/2 probability already suffices for the analysis.

Simplified Setting for Frob. Representation Dlogs 393

With the useful variant. We consider 3 groups at infinity and q − 2 valid groups
with O(q2) unknowns each. Thus the global cost of this phase is O(q6).

4.3 Recovering Discrete Logs of Degree 4 Irreducible Polynomials

With the simple construction. We compute first the discrete logarithms of one
group of the form (10). Since we have a system of dimension O(q2) with O(q)
entries per line, it can be solved for a cost of O(q5). To recover the logarithms
of one group of the form (9), we need thus O(q6) operations.

Besides, the probability to recover the logarithm of an irreducible degree 4
polynomial from the first group of the form (9) is heuristically 1/2. Consider-
ing that the probabilities are independent, with k such groups, the proportion
of discrete logarithms that are left unknown is 1/2k. Clearly, as the number
of available groups grows, this proportion quickly tends to 0. With O(log(q))
such groups we expect to obtain all degree 4 polynomials. As a consequence,
performing the computation of O(log(q)) groups in this direct way, we would
obtain a global complexity of O(q6 log q). However, this overlooks the fact that
for each new group that we wish to compute, the size of the corresponding linear
system decreases and the rate of decrease follows a geometric progression7. As a
consequence, the cost of computing the required O(log(q)) groups is dominated
by the computation of the first one.

Hence, the total complexity8 of the precomputation phases becomes O(q6).
This has to be compared with the previousO(q7) complexity for the same phases.
However, we recall that the part of the algorithm that dominates the asymptotic
complexity of each Frobenius Representation algorithm is the Descent phase,
which is not under consideration in this article.

5 A Computational Example in Characteristic 3

To illustrate our algorithm, we have implemented our new ideas for a real-sized
example in characteristic 3. Namely, we let q = 35 and define Fq = F3[α], where
α satisfies α5 − α + 1 = 0. Choosing h0 = X2 + α111 X and h1 = αX + 1 we see
that X h1(X

q)−h0(X
q) has an irreducible factor of prime degree 479. We let U

denote a root of this irreducible polynomial and construct F35⋅479 as Fq[U].
The cardinality of the finite field we consider is a 3796-bit integer. A good

point of comparison is the computation over F212⋅367 performed in [GKZ14a].

7 Another option is to continue the computation for all groups. Due to the geometric
progression, the complexity of this part is the same. Yet, it yields a total runtime
lower than the option of recomputing on the fly the missing degree 4 polynomials
logarithms when required but as a side effect it raises the required amount of storage.

8 We consider here algorithms of Wiedmann or Lanczos families, that has a complexity
of O(n2) for a square matrix with n columns. Yet, using dense linear algebra with
fast matrix multiplication instead of sparse linear algebra would lower the asymptotic
complexity from O(q6) to O(q5.746). We do not choose to consider these algorithms
here since there are not at all competitive in practice.

394 A. Joux and C. Pierrot

Indeed, even if the bitsize of this computation was slightly larger than ours,
being on 4404 bits, this total size included a factor of two in the exponent
which comes for free when using the older Frobenius Representation algorithms.
More precisely, the main drawback of our approach is that instead of computing
logarithms in the field Fqdk it only computes in Fqk . Many cryptographers have
commented on this free factor, claiming that it is not really relevant in practice
and that one should rather consider extension field of prime degree that can be
embedded in the target field. For us, this is F3479 a 760-bit field. This can also
be compared to the largest computation of this form currently performed in the
finite field F2809 (see [BBD+13]).

With this example, computing all the discrete logarithms of the factor base
with D = 2, containing 29 646 irreducible polynomials, required 16 sequential
hours on a single core of an Intel Core i7 at 2.7 GHz. The equations themselves
took 35 seconds to produce, the 16 hours being the cost of the linear algebra
modulo:

M =
35⋅479 − 1

488246858
.

Enlarging the factor base to degree 3 polynomials was performed with 244 in-
dependent computations, each involving 19 602 unknowns in the corresponding
linear system. On the same machine, the sequential cost of one such computation
is 6.5 hours. Since these computations are independent, they are straightforward
to parallelize.

For degree 4 polynomials, the first subset of 243 independent computations
we considered contained on average 7 385 unknowns in each linear system. The
largest system contained 7571 unknowns and the smallest 7 212. Note that this
used a suboptimal variation of the technique obtained in Section 3.3 and induced
slightly larger system. Using the correct variation, we would expect a smaller
number of unknowns per linear system (around 6100).

The second subset has on average 3 674 unknowns, the third 1 829, the fourth
909, the fifth 452. We see that as predicted, the rate of decrease is very steep, es-
sentially a geometric series of ratio 1/2. As a consequence, the runtimes for these
subsets rapidly becomes negligible compared to the main part of the computation
consisting in tackling the degree 3 polynomials. Here again, our implementation
is suboptimal, but this was not a critical part of the computation. In fact, for all
subsets beyond the fifth, we only tried to the logarithms of the elements in terms
of the first four subsets. Indeed, the resulting systems were so small (around 450
unknowns) and sparse that they could be solve with a straightforward Gaus-
sian elimination. Thus for these subsets, the running time was dominated by
the generation of the equations (around 2h for each subset) and it did not make
sense to insist on reducing the size of the linear systems. In total, we computed
30 subsets and they were enough to express the logarithms of all the degree 4
elements encountered further during the computation.

For the descent phase, we followed the state of the art and were able to express
the seeked discrete logarithm using a total of under 41 millions polynomials of
degree 4 (and of course also polynomials of lower degree). For lack of space, we

Simplified Setting for Frob. Representation Dlogs 395

leave out the details, they will be reported in the extended version of this article.
The total running time of the computation was under 8600 CPU-hours.

6 Conclusion

In this paper, we proposed an improved Frobenius Representation algorithm for
the computation of discrete logarithms in small characteristic. Together with
the aim of simplifying the description of previous algorithms, we reduce the
complexity of the precomputation phase to O(q6) for general extension degree.
Computations with such a cost were previously available only for special degrees
such as Kummer extension.

References

AMORH14. Adj, G., Menezes, A., Oliveira, T., Rodŕıguez-Henŕıquez, F.: Computing
discrete logarithms in F36⋅137 and F36⋅163 using Magma. Cryptology ePrint
Archive, Report 2014/057 (2014)

BBD+13. Barbulescu, R., Bouvier, C., Detrey, J., Gaudry, P., Jeljeli, H., Thomé,
E., Videau, M., Zimmermann, P.: Discrete logarithm in F2809 with ffs.
Cryptology ePrint Archive, Report 2013/197 (2013)

BGJT14. Barbulescu, R., Gaudry, P., Joux, A., Thomé, E.: A heuristic quasi-
polynomial algorithm for discrete logarithm in finite fields of small charac-
teristic. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS,
vol. 8441, pp. 1–16. Springer, Heidelberg (2014)

BMV85. Blake, I.F., Mullin, R.C., Vanstone, S.A.: Computing logarithms in F2n .
In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp.
73–82. Springer, Heidelberg (1985)

GGMZ13a. Göloğlu, F., Granger, R., McGuire, G., Zumbrägel, J.: On the function
field sieve and the impact of higher splitting probabilities - application
to discrete logarithms in F21971 and F23164 . In: Canetti, R., Garay, J.A.
(eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 109–128. Springer,
Heidelberg (2013)

GGMZ13b. Göloglu, F., Granger, R., McGuire, G., Zumbrägel, J.: On the function
field sieve and the impact of higher splitting probabilities: Application to
discrete logarithms in F21971 . Cryptology ePrint Archive, Report 2013/074
(2013)

GKZ14a. Granger, R., Kleinjung, T., Zumbrägel, J.: Breaking ‘128-bit secure’ su-
persingular binary curves (or how to solve discrete logarithms in F24⋅1223

and F212⋅367). Cryptology ePrint Archive, Report 2014/119 (2014)
GKZ14b. Granger, R., Kleinjung, T., Zumbrägel, J.: On the powers of 2. Cryptology

ePrint Archive, Report 2014/300 (2014)
Jou13a. Joux, A.: Faster index calculus for the medium prime case application to

1175-bit and 1425-bit finite fields. In: Johansson, T., Nguyen, P.Q. (eds.)
EUROCRYPT 2013. LNCS, vol. 7881, pp. 177–193. Springer, Heidelberg
(2013)

Jou13b. Joux, A.: A new index calculus algorithm with complexity L(1/4 + o(1))
in very small characteristic. Cryptology ePrint Archive, Report 2013/095
(2013)

396 A. Joux and C. Pierrot

Jou14. Joux, A.: A new index calculus algorithm with complexity L(1/4 + o(1))
in small characteristic. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC
2013. LNCS, vol. 8282, pp. 355–380. Springer, Heidelberg (2014)

A Action of PGL2(Fq) on Polynomials

We detail here the reason why we can restrict ourselves to the case A(X) =
XD +a(X) and B(X) =XD−1+ b(X), with a and b polynomials of degree D−2.

Assume that we are initially given an equation for two degree D polynomials
A0 and B0. We may assume that these two polynomials are monic by multiplying
Equation (5) by the inverse of the product of their leading coefficients. Moreover,
thanks to Proposition 1 we have [A0,B0]D = [A0,B0 − A0]D. Thus, we can
replace B0 by B1 = B0 −A0. If there is no unexpected fall of degree (i.e. in the
general case), B1 has degree D − 1. We can again assume that it is monic. If the
coefficient of XD−1 in A0 is aD−1, remarking that:

[A0,B1]D = [A0 − aD−1B1,B1]D,

we can replace A0 by a polynomial A1 whose coefficient of XD−1 is 0. Thus, the
pair (A1,B1) generates the same equation as (A0,B0) and has the announced
restricted form.

B Estimating Probabilities of Factoring Polynomials

Throughout the paper, we need to estimate the probabilities that a polynomial
of degree D factors into terms of degree at most d. This is often done by using
the heuristic rule that the polynomial behaves in this respect like a random
polynomial.

In this appendix, we analyze these probabilities for random polynomials. Let
us start we a simple example and consider the probability that a random monic
polynomial of degree D splits into linear factors. Over the finite field Fq there
are qD distinct monic polynomials of degree D. Among those it is easy to count
the number of squarefree polynomials that split into linear terms, there are
in correspondance with their D distinct roots in Fq, thus there are precisely

(q
D
) = q⋅(q−1)⋯(q−(D−1))

D!
such polynomials. Hence, the fraction of polynomials

that split is lower bounded by (q
D
) ⋅ q−D, which tends to 1/D! as q tends to

infinity.
To obtain an upper bound, we also need to count the polynomials that split

and have multiple roots. The formula is more complex since we need to compute
a sum over partitions of D into multiplicities. However, the number of terms in
this sum is independent of q and each term is a multinomial that chooses the
correct number of roots with each multiplicity. Since each term contains at most
D − 1 roots, we can upper bound the contribution by C(D) qD−1 where C(D)
does not depend on q. Thus, as q tends to infinity, the upper bound on the total
fraction of polynomials that split tends to 1/D! too.

Simplified Setting for Frob. Representation Dlogs 397

For more complex decomposition, this kind of analysis remains doable but
messy for arbitrary fixed values of D and d. Thankfully, in the present paper,
we are only considering values such that:

d + 1 >D/2.

Under this constraint the analysis becomes quite easy. Indeed, if a polynomial P
of degree D does not factor into terms of degree at most d, it must have at least
one factor Fk of large degree k ≥ d+1. Since k >D/2, this factor is unique. Now,
the probability that P can be written as Fk ⋅Q, with Fk an irreducible of degree k
andQ an arbitrary polynomial of degreeD−k is precisely (Nk ⋅q

D−k)/qD = Nk/q
k,

where Nk denotes the number of irreducible polynomials of degree k over Fq.
Thus, the probability is precisely the fraction of irreducibles among degree k
polynomials and it is well-known that this tends to 1/k as q tends to infinity. As
a consequence, as q tends to infinity the probability that a degree D polynomial
factors into terms of degree at most d, when d + 1 >D/2 tends to:

1 −
D

∑
k=d+1

1

k
.

Using this we can easily estimate the probabilities required in the paper:

� For D = 3 and d = 2 the probability is 1 − 1
3
= 2

3
.

� For D = 4 and d = 2 the probability is 1 − 1
3
− 1

4
= 5

12
≈ 0.4167.

� For D = 7 and d = 3 the probability is 1 − 1
4
− 1

5
− 1

6
− 1

7
= 101

420
≈ 0.2405.

Big Bias Hunting in Amazonia: Large-Scale

Computation and Exploitation of RC4 Biases
(Invited Paper)

Kenneth G. Paterson1, Bertram Poettering1, and Jacob C.N. Schuldt2

1 Information Security Group, Royal Holloway, University of London, U.K.
2 Research Institute for Secure Systems, AIST, Japan

Abstract. RC4 is (still) a very widely-used stream cipher. Previous
work by AlFardan et al. (USENIX Security 2013) and Paterson et al.
(FSE 2014) exploited the presence of biases in the RC4 keystreams to
mount plaintext recovery attacks against TLS-RC4 and WPA/TKIP.
We improve on the latter work by performing large-scale computations
to obtain accurate estimates of the single-byte and double-byte distri-
butions in the early portions of RC4 keystreams for the WPA/TKIP
context and by then using these distributions in a novel variant of the
previous plaintext recovery attacks. The distribution computations were
conducted using the Amazon EC2 cloud computing infrastructure and
involved the coordination of 213 hyper-threaded cores running in parallel
over a period of several days. We report on our experiences of computing
at this scale using commercial cloud services. We also study Microsoft’s
Point-to-Point Encryption protocol and its use of RC4, showing that it
is also vulnerable to our attack techniques.

Keywords: RC4, plaintext recovery attack, WPA, TKIP, MPPE.

1 Introduction

1.1 RC4 and Its Applications

The stream cipher RC4, originally designed by Ron Rivest, is a beautifully com-
pact and fast algorithm. It became public in 1994 and has since been applied in
a very wide variety of secure communications protocols, including SSL/TLS (as
analysed in [1,7,13,16]); WEP [5] (where its particular usage led to devastating
attacks including complete, efficient key recovery, see [20] for a summary and ref-
erences); WPA [6] (as analysed in [21,20,22,15,18]); Microsoft’s Point-to-Point
Encryption protocol [14] (MPPE, as analysed here); and some Kerberos-related
encryption modes [8]. A selection of additional, non-protocol specific analyses of
RC4 can be found in [3,2,12,11,10,19].

Of particular relevance for this work are the results of AlFardan et al. [1]. They
introduced a simple, Bayesian statistical method that recovers plaintexts that
are repeatedly encrypted under RC4 by exploiting biases in RC4 keystreams.
Their approach was successfully applied to RC4 in HTTPS (i.e., HTTP over

P. Sarkar and T. Iwata (Eds.): ASIACRYPT 2014, PART I, LNCS 8873, pp. 398–419, 2014.
c© International Association for Cryptologic Research 2014

Big Bias Hunting in Amazonia Large-scale 399

SSL/TLS), where a fresh pseudorandom 128-bit key is used for each SSL/TLS
connection, and where the repeated encryption of HTTP cookies can be arranged
by having malicious JavaScript running in the target user’s browser.

1.2 RC4 in WPA/TKIP

The work of AlFardan et al. motivated us to explore RC4’s usage in other de-
ployed protocols, in an attempt to determine whether similar weaknesses exist
and are exploitable. Our first focus was the wireless network encryption protocol
WPA/TKIP [6], with results presented in [15]. While WPA/TKIP was only ever
intended as a stop-gap to replace WEP until stronger cryptography could be
deployed, a recent survey [22] showed that it is still in widespread use.

In WPA/TKIP, fresh 16-byte (128-bit) RC4 keys are used for every frame
transmitted on the wireless network, but the first three bytes of the key are
determined by two bytes TSC = (TSC0, TSC1) of a public value, TSC, which incre-
ments on a frame-by-frame basis; the remaining 13 bytes of the per-frame key
are generated pseudorandomly. As observed in [15] and independently in [18],
the dependence of the RC4 key on TSC in turn induces large, TSC-dependent,
single-byte biases in the initial positions of RC4 keystreams. This suggests the
attack proposed in [15]: bin the available ciphertexts into 216 bins, one bin for
each possible value of TSC; perform a Bayesian analysis as per [1] for each bin;
and then combine the results across all the bins to estimate the likelihood for
each plaintext byte candidate. But this attack requires the computation of ac-
curate single-byte distributions for RC4 keystreams for each of the 216 values
of TSC. We estimated in [15] that the analysis of 232 – 240 RC4 keystreams per
TSC would be needed to achieve sufficient accuracy, for a total of 248 – 256 RC4
keystreams. At that time, this was well beyond our computational capabilities.
We resorted to working with 224 keystream per TSC and using the sub-optimal
procedure of examining the dependence of the RC4 keystream only on TSC1, in
effect aggregating over TSC0 (since our intuition was that this byte would have
a greater influence in determining the distribution than TSC0).

Another avenue left unexplored in [15] for WPA/TKIP was the use of double-
byte biases in plaintext recovery attacks. Such biases concern the distribution
of adjacent pairs of keystream bytes. They were used in [1] in the preferred
attack against SSL/TLS, because these biases are persistent throughout the
RC4 keystream (whereas the single-byte biases disappear shortly after position
256) and, in the considered attack scenario, it was not possible to arrange for
the target plaintext bytes (an HTTP cookie) to appear sufficiently early in the
sequence of plaintext bytes. It’s also possible that using a double-byte bias attack
would improve plaintext recovery rates in the early positions. To extend the
double-byte bias attack of [15] to the WPA/TKIP setting would then require
the computation of the double-byte keystream distributions, ideally on a per-TSC
basis. This would not only require enormous numbers of keystreams to obtain
sufficient accuracy, but also significant storage: just to describe the double-byte
distribution per position and TSC requires 216 numbers, each typically 32 bits

400 K.G. Paterson, B. Poettering, and J.C.N. Schuldt

in size, leading to a total storage requirement of 8 Terabytes just to record the
double-byte distributions for the first 512 keystream positions.

1.3 RC4 in MPPE

Microsoft’s Point-to-Point Encryption (MPPE), as specified in [14,23], is a ven-
erable security protocol that can be used on top of the Point-to-Point Tunnelling
Protocol (PPTP). The latter is itself a general-purpose protocol encapsulation
method that is commonly used for providing Virtual Private Networking services
to devices running Microsoft operating systems, including Windows 8 and the
Windows Server family of products.

MPPE uses RC4 with a non-standard method for selecting keys. For example,
when a 40-bit key is used, MPPE starts with an 8-byte key K = (K0, . . . , K7) that
is itself derived by hashing a user password, an authentication protocol challenge,
and other public information. MPPE then sets K0 = 0xD1, K1 = 0x26, K2 = 0x9E.
It is then natural to ask: does this method for selecting keys in MPPE lead to
a different bias structure in its RC4 keystreams, and does this help or hinder
plaintext recovery attacks akin to those of [1]?

1.4 Our Contributions and Paper Organisation

Section 2 provides further background on the RC4 stream cipher and its use in
WPA and MPPE.

In Section 3, we report on our computations of more refined, per-TSC, single-
byte and double-byte RC4 keystream distributions for WPA/TKIP. In slightly
more detail, we computed these distributions for the first 512 keystream bytes,
based on 248 keys for the single-byte case and 246 keys for the double-byte
case. We made use of the Amazon Elastic Compute Cloud (Amazon EC2)1,
which is part of Amazon Web Services, to perform the computations. We used
approximately 30 virtual-core-years for the single-byte computation and 33 vir-
tual core-years for the double-byte computation. Since, to us, a total of 63
virtual-core-years was quite a significant amount of computation (costing roughly
US$41k2) and because we faced a number of obstacles in working at this scale,
we report in some detail on our experiences of working with Amazon EC2. One
notable feature revealed by our large-scale computations is the presence of TSC-
dependent, single-byte biases well beyond position 256 in the RC4 keystream.

Section 4 describes a plaintext recovery attack on WPA/TKIP that exploits
our newly-computed and more accurate single-byte distributions for RC4
keystreams, comparing it to our previous results from [15].

Section 5 describes a novel plaintext recovery attack on WPA/TKIP that
exploits per-TSC, double-byte biases in RC4 keystreams. This attack combines
the double-byte bias attack from [1] with the idea of binning that was developed
for the case of single-byte biases in [15].

1 http://aws.amazon.com/ec2/
2 Here, and throughout, we quote prices exclusive of sales taxes at 20%.

http://aws.amazon.com/ec2/

Big Bias Hunting in Amazonia Large-scale 401

Algorithm 1. RC4 KSA

input : key K of l bytes
output: initial internal state st0
begin

for i = 0 to 255 do
S [i] ← i

j ← 0
for i = 0 to 255 do

j ← j + S [i] + Ki mod l

swap(S [i],S [j])
i, j ← 0
st0 ← (i, j,S)
return st0

Algorithm 2. RC4 PRGA

input : internal state str
output: keystream byte Zr+1

updated internal state str+1

begin
parse (i, j,S) ← str
i ← i+ 1
j ← j + S [i]
swap(S [i],S [j])
Zr+1 ← S [S [i] + S [j]]
str+1 ← (i, j,S)
return (Zr+1, str+1)

Fig. 1. Algorithms implementing the RC4 stream cipher. All additions are performed
modulo 256.

In Section 6, we report on the single-byte keystream distributions for RC4
when it is keyed according to the MPPE specification. In short, we found the
distributions to be highly skewed and amenable to exploitation using our attack
techniques.

Finally, Section 7 presents our conclusions and remarks on open problems.

2 Further Background

2.1 The RC4 Stream Cipher

Technically, RC4 consists of two algorithms: a key scheduling algorithm (KSA)
and a pseudo-random generation algorithm (PRGA), which are specified in Al-
gorithms 1 and 2. The KSA takes as input a key K, typically a byte-array of
length between 5 and 32 (i.e., 40 to 256 bits), and produces the initial internal
state st0 = (i, j,S), where S is the canonical representation of a permutation
on the set [0, 255] as an array of bytes, and i, j are indices into this array. The
PRGA will, given an internal state str, output ‘the next’ keystream byte Zr+1,
together with the updated internal state str+1.

2.2 WPA/TKIP

A detailed description of how RC4 is used in the WPA/TKIP context is given
in [15]. In short, WPA/TKIP generates a fresh 128-bit key K = (K0, . . . , K15) for
RC4 for each frame that is transmitted; the key is a function of the temporal
encryption key TK (128 bits), the TKIP sequence counter TSC (48 bits), and
the transmitter address TA (48 bits). A single value of TK is used over many
frames, while TSC increments from frame to frame; meanwhile TA is fixed. Very
importantly, the function used to compute K adds a specific structure added to

402 K.G. Paterson, B. Poettering, and J.C.N. Schuldt

“preclude the use of known RC4 weak keys” [6]. More precisely, writing TSC =
(TSC0, TSC1, . . . , TSC5), we have

K0 = TSC1 K1 = (TSC1 | 0x20) & 0x7f K2 = TSC0 (1)

while K3, . . . , K15 can be considered to be pseudorandom functions of TK, TSC
and TA. Notably here, bytes K0, K1, K2 depend only on bytes TSC0 and TSC1 of TSC.
Moreover, the bits of TSC1 are used twice. So the bytes of K have more structure
than they would if they were chosen with uniform distribution. The per-frame
key K is then used to produce an RC4 keystream, following our description of
RC4 above. The TKIP plaintext (consisting of the frame payload, a 64-bit MAC
value MIC , and a 32-bit Integrity Check Vector ICV) is then XORed in a byte-
by-byte fashion with the RC4 keystream.

2.3 MPPE

MPPE provides a confidentiality service over PPTP using the RC4 algorithm.
Keys for the RC4 algorithm come from a separate authentication and key
establishment protocol, such as MS-CHAPv1, MS-CHAPv2 or EAP-TLS; the
first two of these were broken in [17] and [4], respectively, leading to the depre-
cation of the first and the recommendation only to use the second with additional
protection from PEAP3.

RFC 3079 [23] describes in detail how the keys used in MPPE’s instantiation of
RC4 are derived from preceding authentication and key establishment protocols.
Three different RC4 key lengths are supported, according to [23]: 40-bit, 56-
bit and 128-bit. When a 40-bit key is used, MPPE starts with an 8-byte key
K = (K0, . . . , K7) that is itself derived by hashing the password, the authentication
protocol challenge, and other public information. MPPE then overwrites K0 =
0xD1, K1 = 0x26, K2 = 0x9E. When a 56-bit key is used, the protocol starts with
the same 8-byte key and then sets K0 = 0xD1; when a 128-bit key is used, a
similar procedure involving password and challenge hashing is used to generate
a 16-byte key K, and no bytes of K are overwritten.

Furthermore, MPPE operates in two modes, with the mode in use being de-
termined by a PPTP header field. In stateless mode, the RC4 key is refreshed
and the cipher restarted for each PPTP packet sent. By contrast, in stateful
mode, the RC4 key is refreshed only every 256 packets. In both cases, refreshing
the key involves hashing the old key with the first key for the session (called
StartKey in [14]) to generate a value InterimKey, then an RC4 encryption step
in which InterimKey is used to encrypt itself to generate a key K of either 8
or 16 bytes, and finally setting bytes as described above. See [14, Section 7] for
details.

From the above description it may be remarked that, while the hashing and
encryption steps used in deriving the RC4 keys may be intended to render them
pseudorandom, in the 40-bit and 56-bit cases, they have additional structure

3 https://technet.microsoft.com/library/security/2743314

https://technet.microsoft.com/library/security/2743314

Big Bias Hunting in Amazonia Large-scale 403

that may be expected to lead to additional and/or different biases in the RC4
keystream as compared to the 128-bit case.Further, the use of stateless mode
would mean a fresh RC4 key (with additional structure in the 40-bit and 56-bit
cases) for every packet sent. These observations mean that MPPE in stateless
mode can be expected to be vulnerable to plaintext recovery attacks similar to
those developed in [1,15]. Since the protocol encapsulated by MPPE is likely to
be IP, similar fields as those identified in [15] could be targeted. We note that
while key lengths of 40 and 56 bits are small enough that a simple brute-force
search might initially seem to be more efficient than mounting a bias analysis
using our techniques, in the stateless case, such a brute-force search would only
recover the key used for a single packet. Moreover, a basic analysis suggests that
a 264 attack would be needed to recover StartKey from which all keys in the
session are derived. So our approach may be an attractive alternative if specific
plaintext bytes are targeted for recovery.

3 Large-Scale Computation of RC4 Keystream
Distributions for WPA/TKIP Keys

3.1 Computing Keystream Distributions and Finding New Biases

As noted in the introduction, in our previous work on WPA/TKIP in [15], we
worked with a total of only 240 keystreams and only with single-byte distribu-
tions for the first 256 positions. In an effort to further improve our attacks, we
decided to perform larger-scale computations using, in addition to our own local
resources, the Amazon EC2 cloud computing infrastructure to estimate both the
single-byte and double-byte keystream distributions for the first 512 positions,
on a per-TSC basis.

Because the double-byte biases are smaller than the single-byte ones (typically
by a factor of roughly 28), many more keystreams would be needed to accurately
estimate double-byte distributions than for single-byte ones. However, we chose
to focus our effort on the single-byte case here, computing distributions based
on 232 keystreams per TSC in the single-byte case and based on 230 keystreams
per TSC in the double-byte case. The reasons for this focus are as follows. Using
our local computational resources, we determined that it would be difficult to
use the full per-TSC distributions in a double-byte attack akin to that of [1]
because of the complexity of handling so much data when running attacks (for
example, we would need to deal with 16GB of distribution data and perform
248 multiplications of real numbers to analyse a single byte position). Rather,
an aggregated approach seemed more likely to be feasible for the double-byte
setting. Here our idea was to start with 230 keystreams per TSC and combine the
28 distributions for each TSC1 value (called TSC0-aggregation in [15]) to obtain
28 different double-byte distributions, one per TSC1-value, each distribution now
based on 238 keystreams. This not only boosts the number of keystreams per
distribution estimate (good for accurately estimating biases), but also reduces
the size of the distribution data and computation both by a factor of 256 (making
simulation of attacks much more feasible).

404 K.G. Paterson, B. Poettering, and J.C.N. Schuldt

 0

 32

 64

 96

 128

 160

 192

 224

 255

 0 32 64 96 128 160 192 224 255

By
te

 v
al

ue
 [0

...
25

5]

TSC1 [0...255]

-30

-20

-10

 0

 10

 20

 30

(a) Position 260

 0

 32

 64

 96

 128

 160

 192

 224

 255

 0 32 64 96 128 160 192 224 255

By
te

 v
al

ue
 [0

...
25

5]

TSC1 [0...255]

-30

-20

-10

 0

 10

 20

 30

(b) Position 270

 0

 32

 64

 96

 128

 160

 192

 224

 255

 0 32 64 96 128 160 192 224 255

By
te

 v
al

ue
 [0

...
25

5]

TSC1 [0...255]

-30

-20

-10

 0

 10

 20

 30

(c) Position 300

Fig. 2. Pictorial representation of biases in RC4 keystreams for random TSC0-
aggregated WPA/TKIP keys at keystream positions 260, 270, and 300, for different
TSC1 values (x-axis) and byte values (y-axis). At each point we encode the bias in the
keystream for the (TSC1,value) combination as a colour; precisely, we encode the dif-
ference between the occurring probability and the (expected) probability 1/256, scaled
up by a factor of 224, capped to values in [−30,+30].

Our computations went well beyond those of prior RC4 cryptanalyses in scale
(e.g., [1,15]), and indeed we were rewarded by discovering new TSC1-dependent
single-byte biases in positions all the way up to 512 (see Figure 2 for examples at
specific positions). The existence of these biases is surprising in view of the be-
haviour of single-byte biases observed in previous works and, in principle, would
allow the recovery of plaintext using a single-byte attack like that presented in
[15] and Section 4 below. It is an open problem to determine how far into the
RC4 keystream these biases persist.

3.2 Reflections on Using Amazon EC2

The task of computing accurate estimates of RC4 keystream distributions is
well-suited to distributed computation. In particular, in the case of WPA, the
probability distribution for each TSC value can be estimated independently by
generating keystreams using randomly chosen WPA keys for that TSC (having
the structure described in Section 2.2). This makes performing the computation
using cloud services such as Amazon EC2 seem appealing, on account of its
virtually unlimited computing capacity being able to provide the computational
resources required to complete the computation within an acceptable period of
time.

For our computation of the per-TSC bias estimates, we used Amazon EC2 to
create 256 virtual machines of the type ‘c3.x8large’, each providing 32 ‘virtual’
cores. The underlying hardware of the virtual machines were servers equipped
with Intel Xeon 2.8GHz processors. Note, however, that each of the cores of a
virtual machine corresponds to a hyper-threaded core of the underlying CPU i.e.,
one ‘c3.x8large’ instance effectively corresponds to a machine with 16 physical
cores. To manage the virtual machines, we utilized boto4 which implements a
Python interface to Amazon EC2. This provided a simple and straightforward

4 http://github.com/boto/boto

http://github.com/boto/boto

Big Bias Hunting in Amazonia Large-scale 405

way to automate management and access to the virtual machines, and made it
relatively easy to set up the execution of the computation using a combination
of Python and shell scripts. The virtual machines were all initialized with an
Ubuntu 13.10 image obtained through the AWS Marketplace5.

Each virtual machine was set up to compute the keystream distributions for
all TSC0 values given a fixed TSC1 value, and to split this computation equally
among the 32 available virtual cores. To make the WPA keystream generation
efficient, we used the RC4 implementation in OpenSSL6. However, experiments
showed that to reach the desired number of keystreams with our available budget,
further optimizations were required. Additional experiments revealed that the
amount of available cache in the underlying CPUs on which the virtual machines
were running, and how this cache was utilized, played an important role in the
performance of the keystream distribution generation. Specifically, the chance of
cache misses occurring when updating the keystream distribution statistics was
found to have a large influence on performance.

To address this, we used a combination of two different approaches to re-
duce the chance of cache misses occurring. Firstly, to fit the array storing the
counters used to collect the statistics of the keystream distribution into the
cache memory, we “packed” multiple small-width counters into single 64-bit in-
tegers and implemented logic for handling counter overflows. Secondly, instead
of updating the keystream distribution statistics after each keystream has been
generated, we stored multiple keystreams in memory before updating the statis-
tics. This implies that multiple updates of the statistics for a single position can
be done sequentially, which, assuming the appropriate memory layout, increases
the chance of a cache hit. While these optimizations only provided small gains
for the computation of single-byte biases, significant gains were achieved for the
computation of double-byte biases.

Single-Byte Computations. Using the above setup, each virtual core was ca-
pable of generating and processing on average 294k length 512 WPA keystreams
per second for single-byte distributions. Hence, computing the per-TSC single-
byte distributions based on 232 keystreams for each TSC value (i.e., 248

keystreams in total), took 9.56 × 108 virtual core seconds in total, or approxi-
mately 30 virtual core years. Due to the large degree of parallelism in our setup,
this corresponds to an actual running time of slightly more than 32 hours.

While each of the 256 virtual machine was set up identically, a single vir-
tual machine ran significantly slower than the others, and was only capable of
processing approximately 180k keystreams per second. We suspect that other
virtual machines running on the same underlying hardware might have affected
the performance of this virtual machine. Due to this issue, it took approximately
52 hours to complete the computation of the single-byte distributions.

At the time we did the experiments, the cost of running a single “c3.x8large”
virtual machine instance was US$2.40 per hour, leading to a cost of US$614 per
hour when running all 256 instances simultaneously.

5 http://aws.amazon.com/marketplace/
6 https://www.openssl.org/

http://aws.amazon.com/marketplace/
https://www.openssl.org/

406 K.G. Paterson, B. Poettering, and J.C.N. Schuldt

To store the generated keystream distributions, we attached a separate Ama-
zon Elastic Block Storage (EBS) volume to each virtual machine. This gave
us the option of terminating a virtual machine without erasing the generated
data, and furthermore allowed us to use a single virtual machine to inspect
and process all generated data, by sequentially attaching the EBS volumes to
this machine. The latter provided a more cost effective solution than running
the virtual machines in parallel, and a faster solution than resuming each vir-
tual machine sequentially. We stored the distribution for each TSC value as a
sequence of binary encoded 32-bit integers, leading to a storage requirement of
512KB per distribution (128MB per virtual machine), or 32GB in total. How-
ever, since the minimum size of an EBS volume is 1GB, we allocated a total of
256GB of EBS storage (note that a single EBS volume cannot be mounted by
multiple virtual machines simultaneously). The cost of EBS storage was US$0.05
per GB per month, leading to a cost of just US$12.60 a month to maintain the
EBS volumes.

Double-Byte Computations. Working with double-byte keystream distribu-
tions introduced significant overheads compared to the single-byte case, both in
terms of computation and storage. With the previously mentioned optimizations,
each virtual core was capable of processing on average 67k WPA keystreams
per second. Hence, computing the per-TSC double-byte keystream distributions
based on 230 keystreams for each TSC value (i.e., 246 keystreams in total),
took 1.05 × 109 virtual core seconds in total, or approximately 33 virtual core
years. In our setup, this corresponds to an actual running time of slightly more
than 34 hours, but due to the virtual machines being sequentially initialized and
an issue with a single virtual machine, the time it took to complete the computa-
tion was approximately 48 hours. More specifically, the issue that arose was that
the virtual machine in question was reset and rebooted during the computations,
and hence did not complete its assigned task. We were unable to identify the
cause of this event, and simply restarted the relevant computations manually.

As for the single-byte distributions, we created separate EBS volumes to store
the double-byte distributions. However, each TSC-specific double-byte distribu-
tion requires 128MB of storage when stored as a sequence of 32-bit integers,
leading to a storage requirement of 32GB per virtual machine, or 8TB in total.
This increased storage overhead not only led to an increased cost (US$410 per
month), but also created additional practical issues which we had to handle. For
example, since the EBS volumes are implemented via network attached storage
(NAS), writing the distribution data to an EBS volume caused a significant delay
in some instances. In particular, we observed that immediately after completion
of the keystream distribution generation, detaching an EBS volume might not
succeed, which in turn could interrupt the shutdown of a virtual machine. Fur-
thermore, making all data available to a single machine at the same time, which
is required to efficiently run attack simulations, was made more difficult by the
8TB size of the dataset. We decided to transfer the complete dataset to our local
storage array both to run the attack simulations and to permanently store the

Big Bias Hunting in Amazonia Large-scale 407

data. For this purpose, we used bbcp7, which is capable of transferring large
amounts of data between network computers using multiple TCP streams and
large transfer windows, and allowed us to obtain a transfer speed of approxi-
mately 50MB per second, leading to a total transfer time of slightly more than
48 hours. Note that data transfers out of Amazon EC2 were charged at US$0.12
per GB, resulting in a US$983 cost to move the complete 8TB dataset to our
local storage.

Our experience of using Amazon EC2 to compute estimates of the per-TSC
biases suggests that Amazon provides a flexible platform which is well suited to
perform this type of computation, and that the practical difficulties arising in
the distribution of the computation can be overcome with moderate effort.

4 Plaintext Recovery Attacks against WPA/TKIP Based
on Single-Byte Biases

4.1 The Attack of Paterson, Poettering and Schuldt[15]

The attack against WPA/TKIP in [15] builds on the single-byte bias attack (on
TLS) of [1]. Both attacks work for the setting where the same plaintext is en-
crypted many times under different RC4 keys to obtain a set of ciphertexts. The
key idea of both attacks is that, in any given position r of the ciphertext stream,
a guess for the repeated plaintext byte in that position induces a distribution
on the keystream in position r, via XORing the guess with byte r in each of the
ciphertexts in turn. This induced distribution can be compared to the known
distribution in keystream position r (which is obtained by sampling), and the
choice of plaintext guess giving the “best fit” selected as the attack’s output for
position r. This is formalised as a Bayesian procedure, leading to the output in
position r as being the plaintext candidate that maximises the probability of
observing the induced keystream distribution in position r.

The innovation in [15] (and independently observed in [18]) was to recognise
that in WPA/TKIP a different keystream distribution can – and should – be
used for each value of the byte pair TSC = (TSC0, TSC1) when estimating the
probabilities of the induced keystream distributions. This leads to an algorithm
that “bins” ciphertexts into 216 groups, one group per TSC, computes the induced
keystream probability for each group, and takes the product of these across the
groups to compute the probabilities for each plaintext candidate. Since our new
double-byte algorithm in Section 5 can be seen as an extension of our algorithm
in [15], we explain the latter here in more detail.

We first obtain a detailed picture of the distributions of RC4 keystream
bytes Zr, for all positions r in some range, on a per (TSC0, TSC1) pair basis,
by gathering statistics from keystreams generated using a large number of ran-
dom keys. That is, for all r in our selected range, we estimate

pTSC,r,k := Pr(Zr = k) , TSC ∈ TscSp, k ∈ Byte,
7 http://www.slac.stanford.edu/~abh/bbcp/

http://www.slac.stanford.edu/~abh/bbcp/

408 K.G. Paterson, B. Poettering, and J.C.N. Schuldt

where here (and henceforth) Byte denotes the set {0x00, . . . , 0xFF}, TscSp de-
notes the set Byte× Byte, and where the probability is taken over the random
choice of the RC4 encryption key K, subject to the structure on K0, K1, K2 induced
by TSC.

Now suppose we have S ciphertexts C1, . . . , CS available for our attack. We
partition these into 216 groups according to the value of TSC (recall that the TSC
value is public); for convenience, we assume the resulting bins of ciphertexts are
all of equal size T = S/216. Let the bin of ciphertexts associated with a particular
value of TSC be denoted STSC and have members CTSC,j for j = 1, . . . , T ; we denote
the byte at position r of CTSC,j by CTSC,j,r. For any position r and any candidate

plaintext byte μ for that position, vector
(
N

(μ)

TSC,r,k

)
k∈Byte

with

N
(μ)

TSC,r,k
= |{j ∈ [1 .. T] | CTSC,j,r = k ⊕ μ}| (0x00 ≤ k ≤ 0xFF)

represents the distribution on Zr required to obtain the observed ciphertext
bytes (CTSC,j,r)1≤j≤T for bin STSC by encrypting μ. The probability λTSC,r,μ that
plaintext byte μ is encrypted to bytes (CTSC,j,r)1≤j≤T in bin STSC for position r
now follows the distribution:

λTSC,r,μ =
∏

k∈Byte

(pTSC,r,k)
N

(μ)

TSC,r,k . (2)

Note that this expression differs from that in [15] by the omission of factorial
terms arising in the multinomial distribution. Those terms do not need to be
included in the formal Bayesian procedure underlying the attack (since we are
interested in the probability of a group of ciphertexts bytes as given in a par-
ticular sequence rather than in unordered form). Moreover, their removal makes
the attack slightly easier to implement.

Now the probability that plaintext byte μ is encrypted to the vector of bytes
(CTSC,j,r)1≤j≤T across all bins STSC in position r can be precisely calculated as

λr,μ =
∏

TSC∈TscSp

λTSC,r,μ .

By computing λr,μ for all μ ∈ Byte, and identifying P ∗
r = μ such that λr,μ is

largest, we determine the maximum-likelihood plaintext byte value P ∗
r .

Note that, for each position r and group of bytes (CTSC,j,r)1≤j≤T , values

N
(μ)

TSC,r,k
can be computed from values N

(μ′)
TSC,r,k

by using the equation N
(μ)

TSC,r,k
=

N
(μ′)
TSC,r,k⊕μ′⊕μ

, for all k. Further, computing and comparing log(λTSC,r,μ) and

log(λr,μ) instead of λTSC,r,μ and λr,μ makes the computation more efficient and
accuracy easier to maintain. Adding these optimisations leads to the attack in
Algorithm 3 (which differs from the corresponding attack in [15] only in the
omission of a term FTSC corresponding to the factorial terms discussed above
and some small notational changes).

Big Bias Hunting in Amazonia Large-scale 409

Algorithm 3. Plaintext recovery attack using TSC binning

input : {CTSC,j}TSC∈TscSp,1≤j≤T – S = 216 · T independent encryptions of fixed
plaintext P
r – target byte position
(pTSC,r,k)TSC∈TscSp,k∈Byte – keystream distributions for all TSC at pos. r

output: P ∗
r – estimate for plaintext byte Pr

begin
NTSC,k ← 0 for all TSC ∈ TscSp, k ∈ Byte
for TSC = (0x00, 0x00) to (0xFF, 0xFF) do

for j = 1 to T do
k ← CTSC,j,r

NTSC,r,k ← NTSC,r,k + 1

for TSC = (0x00, 0x00) to (0xFF, 0xFF) do
for μ = 0x00 to 0xFF do

for k = 0x00 to 0xFF do

N
(μ)

TSC,r,k
← NTSC,r,k⊕μ

λTSC,r,μ ←
∑

k∈Byte N
(μ)

TSC,r,k
log pTSC,r,k

for μ = 0x00 to 0xFF do
λr,μ ←

∑
TSC∈TscSp λTSC,r,μ

P ∗
r ← argmaxμ∈Byte λr,μ

return P ∗
r

4.2 Attacks Based on Aggregation

One method of coping with noisy estimates for the probabilities pTSC,r,k that was
extensively explored in [15] was to consider aggregation of distributions over TSC0
or over both TSC0 and TSC1 (effectively increasing the number of keys by factors
of 28 and 216, respectively). It is not difficult to see how to modify Algorithm 3 to
work with 28 bins, one for each value of TSC1, instead of 216 bins. The execution
of the modified algorithm becomes in practice faster, since each estimate for a
plaintext byte μ now only involves calculation of λTSC,r,μ over 28 TSC1 values

instead of 216 (TSC0, TSC1) pair values. Similarly, one can modify the algorithm
to work with just a single bin, one for all values of TSC0 and TSC1, in which case
we recover the original algorithm of [1], albeit without the unnecessary factorial
terms arising from the use of multinomial distributions and using WPA/TKIP-
specific distributions in place of the original RC4 distributions reported in [1].

However, the cost of using aggregation is that it “throws away” statistical
information that may be of use in improving the accuracy of the attack for a
given number of ciphertexts S. Indeed, this is demonstrably the case: as we
report below, using our new estimates for the probabilities pTSC,r,k computed

using a total of 248 keystreams in a full binning (non-aggregated) attack leads
to an improvement in accuracy.

410 K.G. Paterson, B. Poettering, and J.C.N. Schuldt

R
ec

o
ve

ry
 r

at
e

Log2(number of encryptions)

Fig. 3. Average success rates of non-aggregated (blue), TSC0-aggregated (green), and
fully aggregated (red) single-byte plaintext recovery attacks for byte positions 1 to 256
(based on 256 experiments). Punctured lines represent the average recovery rates for
the odd byte positions.

4.3 Attack Simulation Results

We implemented the single-byte plaintext recovery attack of Algorithm 3 based
on the keystream distribution estimates obtained from the Amazon EC2 compu-
tations described in Section 3. We furthermore implemented the TSC0-aggregated
and fully aggregated variants of the attack described in Section 4.2. To obtain
bias estimates for the latter two attacks, we aggregated the Amazon EC2 data
correspondingly, thereby obtaining estimates based on 240 keystream per TSC1
value, and 248 keystreams, respectively.

The measured success rates of the attacks are shown in Figure 3. We observe
that there is a significant difference in the recovery rates between the fully aggre-
gated attack and the two other attacks, the non-aggregated attack being capable
of achieving a similar success rate to the fully aggregated attack using almost
16 times fewer ciphertexts. Likewise, the non-aggregated attack clearly improves
upon the TSC0-aggregated attack, albeit not as significantly; the non-aggregated
attack requires on average half as many ciphertexts to achieve a similar success
rate to the TSC0-aggregated attack.

In order to investigate the effect of our new and (presumably) more accurate
single-byte keystream distributions, we also compared the performance of Algo-
rithm 3 using keystream distribution estimates based on 224 keystreams per TSC
(as in our previous work [15]) and based on 232 keystreams per TSC (obtained
from the Amazon EC2 computations described in Section 3). Figure 4 shows the
results, with the attacks using the two keystream distributions in combination
with 224 ciphertexts in each experiment. There is a clear boost to the success
rate of the attack when moving to the refined keystream distribution estimates.
The effect is particularly pronounced in the odd positions.

As noted in Section 3, we discovered significant TSC1-dependent, single-byte
biases in the RC4 keystreams for WPA/TKIP keys well beyond position 256.

Big Bias Hunting in Amazonia Large-scale 411

R
ec

o
ve

ry
 r

at
e

Byte position

Fig. 4. Success rates of single-byte plaintext recovery attack against TKIP/WPA for
positions 1 to 256 with 224 ciphertexts, using keystream distribution estimates based
on 224 keystreams (red) and 232 keystreams (blue) per TSC (success rates based on 256
experiments)

The biases are roughly comparable in size to the single-byte biases seen in RC4
keystreams at positions around 250 for random 128-bit keys (as used in TLS and
reported in [1]). So we might expect to obtain reliable plaintext recovery with
around 230 – 232 ciphertexts as in [1]. The full investigation of this avenue is left
to future work.

5 Plaintext Recovery Attacks for WPA/TKIP Based on
Double-Byte Biases

Our double-byte bias attack against WPA/TKIP builds on the attack in [1],
and works in the same setting as the above described single-byte bias attack:
the same plaintext is assumed to be encrypted many times under different RC4
keys, yielding a set of ciphertexts which is given as input to the attack algorithm.
However, as opposed to the attack based on single-byte biases, the attack does
not estimate the likelihoods of the individual plaintext bytes (or plaintext byte
pairs). Instead, the basic idea of the attack is to estimate likelihoods of sequences
of plaintext bytes by considering chains of overlapping plaintext byte pairs in
combination with the double-byte biases in the keystream.

More precisely, the attack will construct likelihood estimates for sequences
of plaintext bytes that are gradually increasing in length by extending already
established sequences and their corresponding likelihood estimates. This is done
as follows: consider a sequence of plaintext bytes with an already estimated like-
lihood, and a candidate for the next plaintext byte in the sequence. By XORing
the pair consisting of the last plaintext byte of the existing sequence and the
new candidate plaintext byte with the ciphertext byte pairs for the correspond-
ing positions, an induced distribution on the keystream byte pairs is obtained.

412 K.G. Paterson, B. Poettering, and J.C.N. Schuldt

By comparing this to the known double-byte keystream distribution, a likelihood
estimate for the new candidate plaintext byte can be computed; combining this
with the likelihood estimate for the initial plaintext sequence, a likelihood esti-
mate for the extended sequence can be obtained.

Note that, using a naive algorithm, the complexity of computing the likelihood
estimates for all possible plaintext sequences would grow exponentially in the
length of the sequences. Furthermore, considering all possible candidates for the
next plaintext byte, but only maintaining a small set of the most likely sequences
after each extension, is not guaranteed to produce a plaintext byte sequence
that maximises the value of the estimated likelihood. However, as highlighted in
[1], by tracking which sequences produce the maximum value for the estimated
likelihood for each possible value of the last byte in the sequence, the overall
plaintext sequence which maximises the likelihood estimate is guaranteed to be
found.

Compared to the algorithm from [1], the algorithm presented here provides
two refinements made possible by the specific way RC4 is used in WPA/TKIP.
Firstly, as in the attack described in Section 4, likelihood estimates are computed
on a per-TSC basis, and combined across all TSC values to obtain improved overall
likelihood estimates. Secondly, the attack not only exploits the per-TSC double-
byte biases in the WPA keystream, but also takes into account the single-byte
biases in the computation of the likelihood estimates. A more detailed description
of the algorithm is given next.

To run the algorithm, accurate estimates of both the single-byte and double-
byte keystream distributions are required for all positions r the attack is tar-
geting. By considering the statistics gathered by generating a large number of
keystreams, we estimate

pTSC,r,k := Pr(Zr = k), and p̃TSC,r,k1,k2
:= Pr(Zr = k1 ∧ Zr+1 = k2)

where TSC ∈ TscSp, k, k1, k2 ∈ Byte, and the probability is taken over a random
choice of RC4 key subject to the structure on K0, K1, K2 induced by TSC.

As in the single-byte bias attack, we suppose we have S ciphertexts available
for our attack, and that, when grouped according to TSC values, each group
contains exactly T = S/216 ciphertexts. We likewise use the notation CTSC,j,r

to denote the ciphertext byte at position r in the jth member of the group of
ciphertexts for the value TSC.

For a given position r, we can now use a similar approach to the single-
byte bias attack to compute the likelihood of a candidate byte μ or a candi-
date byte pair (μ, μ′) (at position (r, r + 1)) corresponding to the encrypted

plaintext byte or byte pair. More specifically, the vectors
(
N

(μ)

TSC,r,k1

)
k1∈Byte

and(
Ñ

(μ,μ′)
TSC,r,k1,k2

)
k1,k2∈Byte

, where

N
(μ)

TSC,r,k1
= |{j ∈ [1 .. T] | CTSC,j,r = k1 ⊕ μ}|

Ñ
(μ,μ′)
TSC,r,k1,k2

= |{j ∈ [1 .. T] | (CTSC,j,r, CTSC,j,r+1) = (k1 ⊕ μ, k2 ⊕ μ′)}| ,

Big Bias Hunting in Amazonia Large-scale 413

represent induced distributions on the keystream byte Zr and keystream byte
pair (Zr, Zr+1), respectively. Indeed, the probability that plaintext byte μ is

encrypted at position r, which we will denote α
(μ)
r , and the probability that

(μ, μ′) is encrypted at position (r, r + 1), which we will denote β
(μ,μ′)
r , can be

computed as:

α(μ)
r =

∏
TSC∈TscSp

∏
k1∈Byte

(pTSC,r,k1
)
N

(μ)

TSC,r,k1 ,

β(μ,μ′)
r =

∏
TSC∈TscSp

∏
k1,k2∈Byte

(p̃TSC,r,k1,k2
)
Ñ

(μ,μ′)
TSC,r,k1,k2 .

However, as highlighted earlier, instead of using the above probabilities for
individual plaintext byte and byte pairs directly, we use these to construct like-
lihood estimates for longer sequences of plaintext bytes by considering chains
of overlapping byte pairs. More specifically, consider a plaintext byte sequence
μ1 ‖ · · · ‖ μr for positions 1 to r with an already established likelihood esti-
mate λμ1‖···‖μr

, and a plaintext candidate byte μr+1 for position r+1. Then we
estimate the likelihood of the plaintext byte sequence μ1 ‖ · · · ‖ μr+1 as:

λμ1‖···‖μr+1
= δ(μr ,μr+1)

r · λμ1‖···‖μr
(3)

where δ
(μr ,μr+1)
r denotes the conditional probability that μr+1 is the plaintext

byte at position r+1 given that the plaintext byte at position r is μr. Note that,

by the definition of conditional probability, we can compute δ
(μr ,μr+1)
r based on

the estimates α
(μr)
r and β

(μr ,μr+1)
r as

δ(μr,μr+1)
r = β(μr ,μr+1)

r /α(μr)
r .

In the description of the attack algorithm presented here, it is assumed that
the plaintext byte P ∗

1 at position r = 1 is known. This serves as a starting
point for the algorithm, i.e., the algorithm is initialized with a single plaintext
sequence containing the byte value P ∗

1 for position r = 1 and with the estimated
likelihood λP∗

1
= 1. Now, using the above described method for extending a

plaintext byte sequence and the corresponding likelihood estimate, the attack
algorithm iterates over the range of considered positions as follows. For each
position r, and for all possible values μr+1 of the plaintext byte at position r+1,
the extension with μr+1 of each of the sequences from the previous iteration is
considered, and, for each of the possible values of μr+1, the algorithm stores the
“most likely” extended sequence having μr+1 as the last byte value (that is, it
stores the extended sequence which maximises the likelihood estimate expressed
in equation (3)). When the attack algorithm reaches the last position, it simply
returns the sequence with the highest likelihood estimate.

Note that this process is guaranteed to find the plaintext byte sequence with
the highest likelihood estimate computed according to equation (3). However,
we emphasise that this expression yields only an approximation to the actual

414 K.G. Paterson, B. Poettering, and J.C.N. Schuldt

plaintext likelihood, being based on the twin assumptions that plaintext bytes
are independently and uniformly distributed and that keystream bytes have no
dependencies beyond those in adjacent bytes as expressed in the double-byte
distributions.

A full description of the attack algorithm is given in Algorithm 4 (on page 415).
Note that the algorithm can easily be extended to work for the case where the
plaintext byte at the initial position is unknown. In particular, by exploiting
the single-byte biases, the likelihoods of all possible values of the initial plain-
text byte can be estimated, and subsequently used as a starting point for the
algorithm. Of course, the algorithm need not start at position r = 1 either.

Notice that the algorithm involves heavy nesting of loops, particularly in
phase 2b, where for each position r we perform a computation over all possible
values for the candidate plaintext byte pair (μr−1, μr), each such computation
itself involving a sum over 232 pairwise products of real numbers arising from
the triple summation over TSC, k1 and k2. Thus a direct implementation of
this algorithm would require on the order of 248 additions and products per
position! This would be inconvenient, to say the least. For this reason, and
because our double-byte, per-TSC keystream distributions are not particularly
accurate (being based only on 230 keystreams each), we would in preference use
aggregated versions of the algorithm. Specifically, building on our experience in
the single-byte case, we may consider a version of the algorithm that works with
TSC0-aggregated distributions and only works on a per-TSC1 basis. It is not hard
to see how to modify Algorithm 4 to operate in this way, saving a factor of 28

in its computational cost. The algorithm could be further modified to use fully
aggregated distributions, saving another factor of 28 in computational cost, but
now effectively ignoring any TSC-related structure in the keystream distributions.

We have performed a very limited validation of our double-byte attack in its
fully aggregated form. A complete evaluation of the algorithm and a comparison
of its performance with the single-byte Algorithm 3 is deferred to the full version
of the paper. We make one observation at this stage, however. Algorithm 4

makes use of ratios of probability expressions of the form β
(μr ,μr+1)
r /α

(μr)
r , where

the numerator is a double-byte probability and the numerator is a single-byte
probability. If the significant biases in the former probabilities actually arise from
products of single-byte biases for adjacent positions, then such expressions can

be simplified to just single-byte probability terms of the form α
(μr+1)
r+1 , in effect

reducing our double-byte attack to our single-byte attack. Such behaviour can be
expected in early byte positions, where single-byte biases are very large. Thus we
do not expect our double-byte attack in Algorithm 4 to significantly out-perform
our single-byte attack in the early positions. On the other hand, in regions where
single-byte biases become smaller and fewer in number but double-byte biases
still persist (as seems to be the case in later positions), then Algorithm 4 may
be expected to perform better than our single-byte attack. Indeed, Algorithm 4
should be able to smoothly interpolate between regions where single-byte biases
dominate and regions where they do not.

Big Bias Hunting in Amazonia Large-scale 415

Algorithm 4. Double-byte bias attack

input : C – balanced vector of 216 · S encryptions of fixed plaintext P
(CTSC,j,r denotes r-th byte of j-th encryption of P for TSC-value TSC)
L – length of P in bytes
m1 and mL – known first and last byte of P
{pTSC,r,k}TSC∈TscSp, 1≤r≤L, k∈Byte – single-byte key distribution
{p̃TSC,r,k1,k2

}TSC∈TscSp, 1≤r<L, k1,k2∈Byte – double-byte key distribution
output: estimate P ∗ for plaintext P
begin

NTSC,r,k ← 0 for all TSC ∈ TscSp, 1 ≤ r ≤ L, k ∈ Byte
ÑTSC,r,k1,k2

← 0 for all TSC ∈ TscSp, 1 ≤ r < L, k1, k2 ∈ Byte
initialise mappings Q,Q′ : Byte → Byte∗ × R

// Phase 1 (count occurrences of keystream bytes and byte pairs)
for each TSC ∈ TscSp do

for j = 1 to S do
for r = 1 to L− 1 do

NTSC,r,CTSC,j,r
← NTSC,r,CTSC,j,r

+ 1

ÑTSC,r,CTSC,j,r ,CTSC,j,r+1
← ÑTSC,r,CTSC,j,r,CTSC,j,r+1

+ 1

// Phase 2a (derive likelihoods for plaintext byte at position 2)
for μ2 = 0x00 to 0xFF do

λm1‖μ2
← +

∑
TSC∈TscSp

∑
k1,k2∈Byte

ÑTSC,1,k1⊕m1,k2⊕μ2
log p̃TSC,1,k1,k2

−
∑

TSC∈TscSp

∑
k∈Byte

NTSC,1,k⊕m1
log pTSC,1,k

Q[μ2] ← (μ2, λm1‖μ2
)

// Phase 2b (derive likelihoods for plaintext bytes at positions 3. . . (L− 1))
for r = 3 to L− 1 do

for μr = 0x00 to 0xFF do
L∗ ← −∞
for μr−1 = 0x00 to 0xFF do

parse Q[μr−1] as (P ′, λP ′)

λP ′‖μr ← λP ′

+
∑

TSC∈TscSp

∑
k1,k2∈Byte

ÑTSC,r−1,k1⊕μr−1,k2⊕μr
log p̃TSC,r−1,k1,k2

−
∑

TSC∈TscSp

∑
k∈Byte

NTSC,r−1,k⊕μr−1
log pTSC,r−1,k

if λP ′‖μr > L∗ then
(P ∗, L∗) ← (P ′, λP ′‖μr)

Q′[μr] ← (P ∗ ‖ μr, L
∗)

Q ← Q′

// Phase 3 (pick most likely plaintext out of candidate set)
L∗ ← −∞
for μL−1 = 0x00 to 0xFF do

parse Q[μL−1] as (P ′, λP ′)

λP ′‖mL
← λP ′

+
∑

TSC∈TscSp

∑
k1,k2∈Byte

ÑTSC,L−1,k1⊕μL−1,k2⊕mL
log p̃TSC,L−1,k1,k2

−
∑

TSC∈TscSp

∑
k∈Byte

NTSC,L−1,k⊕μL−1
log pTSC,L−1,k

if λP ′‖mL
> L∗ then

(P ∗, L∗) ← (P ′, λP ′‖mL
)

return m1 ‖ P ∗ ‖ mL

416 K.G. Paterson, B. Poettering, and J.C.N. Schuldt

 0

 32

 64

 96

 128

 160

 192

 224

 255

 1 32 64 96 128 160 192 224 256

By
te

 v
al

ue
 [0

...
25

5]

Position [1...256]

 0

 0.1

 0.2

 0.3

 0.4

 0.5

(a) 128-bit MPPE keys

 0

 32

 64

 96

 128

 160

 192

 224

 255

 1 32 64 96 128 160 192 224 256

By
te

 v
al

ue
 [0

...
25

5]

Position [1...256]

 0

 0.1

 0.2

 0.3

 0.4

 0.5

(b) 40-bit MPPE keys

 0

 32

 64

 96

 128

 160

 192

 224

 255

 1 32 64 96 128 160 192 224 256

By
te

 v
al

ue
 [0

...
25

5]

Position [1...256]

 0

 0.1

 0.2

 0.3

 0.4

 0.5

(c) 56-bit MPPE keys

Fig. 5. Pictorial representation of biases in RC4 keystreams for 128-bit, 40-bit and
56-bit MPPE keys, for different positions (x-axis) and byte values (y-axis). For each
position we encode the bias in the keystream for the (position,value) combination as a
colour; in each case, the colouring scheme encodes the absolute biases, i.e., the absolute
difference between the occurring probabilities and the (expected) probability 1/256,
scaled up by a factor of 216, capped to a maximum of 0.5.

6 MPPE

6.1 Computing Keystream Distributions for MPPE Keys

We also computed the RC4 keystream distributions for the first 256 keystream
bytes using MPPE keys having the structure described in Section 2.3. More
specifically, we generated random 8-byte random keys K = (K0, . . . , K7) and then
overwrote key bytes according to the MPPE specification for the 40-bit and
56-bit cases, while in the 128-bit case, we generated random 16-byte keys. We
used more than 239 keys in each case, with all computations being performed
on our local computing facilities. Figure 5 compares the distributions obtained
for random 128-bit RC4 keys (as used in 128-bit MPPE and in TLS) with those
for 40-bit and 56-bit MPPE keys. As can be seen, the process of fixing certain
key bytes to constant values produces many additional, strong biases in the
corresponding keystreams.

6.2 Attack Simulation Results

We used the MPPE keystream distributions to simulate plaintext recovery at-
tacks using the algorithm of [1], equivalent to the fully aggregated version of
Algorithm 3. The results are depicted in Figure 6. As expected, the additional
structure in RC4 keys introduced by MPPE in the 40-bit and 56-bit cases sig-
nificantly aids plaintext recovery, with 40-bit keys leading to the highest success
rate for a given number of ciphertexts. We also experimented with random 64-bit
keys, finding success rates very close to the random 128-bit case. This indicates
that it is not the reduction in key-size that makes the difference in MPPE, but
rather the introduction of fixed key bytes.

Big Bias Hunting in Amazonia Large-scale 417

R
ec

o
ve

ry
 R

at
e

Log2(number of encryptions)

Fig. 6. Average success rates of single-byte plaintext recovery attacks against MPPE
using 40-bit keys (blue), 56-bit keys (red), and 128-bit keys (green) over positions 1 to
256. The success rates are based on 256 experiments.

7 Conclusions

In this paper, we have explored the use of cloud computing facilities to perform
large-scale computations in support of the cryptanalysis of WPA/TKIP. We
expended 63 virtual-core-years of computational effort at a cost of US$43k to
carry out two computations, one involving 248 keystreams to estimate per-TSC
single-byte distributions, the other involving 246 keystreams to estimate per-
TSC double-byte distributions. The total amount of computation was roughly
one-twentieth of that used in the sieving stage for the factorisation of RSA-
7688. The problems of developing efficient code for, and then managing, these
computations were not insignificant but ultimately surmountable. This suggests
that commercial cloud services can be used as a platform for this kind of work,
instead of relying on owned infrastructure. Certainly, running 213 hyper-threaded
cores in parallel was an exhilarating, if expensive, way to explore the limits of
commercial cloud computing capabilities.

The value of our keystream distribution computations for WPA/TKIP is aptly
illustrated in Figure 4, which shows the marked improvement in success rate that
accrues from moving from single-byte keystream distribution estimates based on
224 keystreams per TSC to 232 keystreams per TSC. Our computations of RC4
keystream distributions in WPA/TKIP and MPPE also provide experimental
data that may be useful in making hypotheses about keystream biases, and
which may in turn lead to a better theoretical understanding of the operation

8 Estimated at 1500 core-years for a single core 2.2 GHz AMD Opteron processor with
2GB RAM in [9].

418 K.G. Paterson, B. Poettering, and J.C.N. Schuldt

of RC4 in these applications. Certainly, having an explanation for the long-lived
TSC1-specific single-byte biases that we observed experimentally would be very
welcome. A similar project would investigate the effect of fixing key bytes in RC4
keys, and apply the results to provide a theoretical explanation for the observed
biases in MPPE keystreams.

Our attack on WPA/TKIP based on double-byte biases requires further in-
vestigation: the time and budget available for this project has limited our ex-
perimentation with it and reduced our investment in its fine-tuning. Given the
dominance of single-byte biases in early portions of the RC4 keystreams for
WPA/TKIP, we expect this algorithm to come into its own when targeting re-
peated plaintext that is located later in WPA/TKIP frames (e.g. after position
256). Moreover, it provides a mechanism for smoothly transitioning attacks from
the regime where single-byte biases dominate to the regime where these biases
are no longer apparent but where double-byte biases are still present. It remains
to investigate whether other forms of bias (such as the “ABSAB” biases from
[11]) can be effectively integrated into a more general Bayesian approach, and
how much impact this might have on overall attack performance.

Acknowledgements. The research of the authors was conducted in part while
all authors were at Royal Holloway, University of London. The research was sup-
ported by an EPSRC Leadership Fellowship, EP/H005455/1 as well as a grant
from the UK government. We thank Martin Albrecht, Jon Hart and Adrian
Thomas at RHUL for their assistance with sourcing, building and maintaining
our local computing infrastructure and for help in managing AWS. We thank
Strombenzin for its generous donation of computing cycles. We thank the UK
government for financing our adventures with Amazon’s cloud computing in-
frastructure, and Mark Rowlands at Amazon Web Services for his assistance in
maxing out the AWS US West data centre.

References

1. AlFardan, N.J., Bernstein, D.J., Paterson, K.G., Poettering, B., Schuldt, J.C.N.:
On the security of RC4 in TLS. In: USENIX Security. USENIX Association (2013),
https://www.usenix.org/conference/usenixsecurity13/security-rc4-tls

2. Fluhrer, S.R., Mantin, I., Shamir, A.: Weaknesses in the key scheduling algo-
rithm of RC4. In: Vaudenay, S., Youssef, A.M. (eds.) SAC 2001. LNCS, vol. 2259,
pp. 1–24. Springer, Heidelberg (2001)

3. Fluhrer, S.R., McGrew, D.A.: Statistical analysis of the alleged RC4 keystream
generator. In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 19–30. Springer,
Heidelberg (2001)

4. Hulton, D., Marlinspike, M.: Divide and conquer: Cracking MS-CHAPv2 with
a 100% success rate (2012), https://www.cloudcracker.com/blog/2012/07/29/
cracking-ms-chap-v2/

5. IEEE 802.11. Wireless LAN medium access control (MAC) and physical layer
(PHY) specification (1997)

6. IEEE 802.11i. Wireless LAN medium access control (MAC) and physical layer
(PHY) specification: Amendment 6: Medium access control (MAC) security en-
hancements (2004)

https://www.usenix.org/conference/usenixsecurity13/security-rc4-tls
https://www.cloudcracker.com/blog/2012/07/29/cracking-ms-chap-v2/
https://www.cloudcracker.com/blog/2012/07/29/cracking-ms-chap-v2/

Big Bias Hunting in Amazonia Large-scale 419

7. Isobe, T., Ohigashi, T., Watanabe, Y., Morii, M.: Full plaintext recovery attack
on broadcast RC4. In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424, pp. 179–202.
Springer, Heidelberg (2014)

8. Jaganathan, K., Zhu, L., Brezak, J.: The RC4-HMAC Kerberos Encryption
Types Used by Microsoft Windows. RFC 4757 (Informational) (December 2006),
http://www.ietf.org/rfc/rfc4757.txt

9. Kleinjung, T., Aoki, K., Franke, J., Lenstra, A.K., Thomé, E., Bos, J.W., Gaudry,
P., Kruppa, A., Montgomery, P.L., Osvik, D.A., te Riele, H., Timofeev, A., Zimmer-
mann, P.: Factorization of a 768-bit RSA modulus. In: Rabin, T. (ed.) CRYPTO
2010. LNCS, vol. 6223, pp. 333–350. Springer, Heidelberg (2010)

10. Maitra, S., Paul, G., Sen Gupta, S.: Attack on broadcast RC4 revisited. In:
Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 199–217. Springer, Heidelberg (2011)

11. Mantin, I.: Predicting and distinguishing attacks on RC4 keystream generator. In:
Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 491–506. Springer,
Heidelberg (2005)

12. Mantin, I., Shamir, A.: A practical attack on broadcast RC4. In: Matsui, M. (ed.)
FSE 2001. LNCS, vol. 2355, pp. 152–164. Springer, Heidelberg (2002)

13. Ohigashi, T., Isobe, T., Watanabe, Y., Morii, M.: How to recover any byte of
plaintext on RC4. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC 2013. LNCS,
vol. 8282, pp. 155–173. Springer, Heidelberg (2013)

14. Pall, G., Zorn, G.: Microsoft Point-To-Point Encryption (MPPE) Protocol. RFC
3078 (Informational) (March 2001), http://www.ietf.org/rfc/rfc3078.txt

15. Paterson, K.G., Poettering, B., Schuldt, J.C.N.: Plaintext recovery attacks against
WPA/TKIP. In: FSE, Lecture Notes in Computer Science. Springer (to appear,
2014)

16. Sarkar, S., Sen Gupta, S., Paul, G., Maitra, S.: Proving TLS-attack related open
biases of RC4. Cryptology ePrint Archive, 2013/502,
https://eprint.iacr.org/2013/502

17. Schneier, B.: Mudge. Cryptanalysis of Microsoft’s Point-to-Point Tunneling Pro-
tocol (PPTP), https://www.schneier.com/paper-pptp.pdf

18. Sen Gupta, S., Maitra, S., Meier, W., Paul, G., Sarkar, S.: Dependence in IV-
related bytes of RC4 key enhances vulnerabilities in WPA. In: FSE 2014. LNCS,
Springer (to appear, 2014)

19. Sen Gupta, S., Maitra, S., Paul, G., Sarkar, S. (Non-) random sequences from (non-)
random permutations – analysis of RC4 stream cipher. Journal of Cryptology 27(1),
67–108 (2014)

20. Sepehrdad, P., Vaudenay, S., Vuagnoux, M.: Statistical attack on RC4. In: Pa-
terson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 343–363. Springer,
Heidelberg (2011)

21. Tews, E., Beck, M.: Practical attacks against WEP and WPA. In: Basin, D.A.,
Capkun, S., Lee, W. (eds.) WISEC, pp. 79–86. ACM (2009)

22. Vanhoef, M., Piessens, F.: Practical verification of WPA-TKIP vulnerabilities. In:
Chen, K., Xie, Q., Qiu, W., Li, N., Tzeng, W.-G. (eds.) ASIACCS, pp. 427–436.
ACM (2013)

23. Zorn, G.: Deriving Keys for use with Microsoft Point-to-Point Encryption (MPPE).
RFC 3079 (Informational) (March 2001), http://www.ietf.org/rfc/rfc3079.txt

http://www.ietf.org/rfc/rfc4757.txt
http://www.ietf.org/rfc/rfc3078.txt
https://eprint.iacr.org/2013/502
https://www.schneier.com/paper-pptp.pdf
http://www.ietf.org/rfc/rfc3079.txt

Multi-user Collisions: Applications to Discrete

Logarithm, Even-Mansour and PRINCE

Pierre-Alain Fouque1, Antoine Joux2, and Chrysanthi Mavromati3

1 Université Rennes 1, France and Institut Universitaire de France, France
2 CryptoExperts, France and Chaire de Cryptologie de la Fondation de l’UPMC

Laboratoire d’Informatique de Paris 6, UPMC Sorbonne Universités, France
3 Sogeti/ESEC R&D Lab, France

Université de Versailles Saint-Quentin-en-Yvelines, France
pierre-alain.fouque@univ-rennes1.fr, antoine.joux@m4x.org,

chrysanthi.mavromati@sogeti.com

Abstract. In this paper, we investigate the multi-user setting both in
public and in secret-key cryptanalytic applications. In this setting, the
adversary tries to recover keys of many users in parallel more efficiently
than with classical attacks, i.e., the number of recovered keys multiplied
by the time complexity to find a single key, by amortizing the cost among
several users. One possible scenario is to recover a single key in a large set
of users more efficiently than to recover a key in the classical model. An-
other possibility is, after some shared precomputation, to be able to learn
individual keys very efficiently. This latter model is close to traditional
time/memory tradeoff attacks with precomputation. With these goals in
mind, we introduce two new algorithmic ideas to improve collision-based
attacks in the multi-user setting. Both ideas are derived from the paral-
lelizable collision search as proposed by van Oorschot and Wiener. This
collision search uses precomputed chains obtained by iterating some ba-
sic function. In our cryptanalytic application, each pair of merging chains
can be used to correlate the key of two distinct users. The first idea is
to construct a graph, whose vertices are keys and whose edges are these
correlations. When the graph becomes connected, we simultaneously re-
cover all the keys. Thanks to random graph analysis techniques, we can
show that the number of edges that are needed to make this event occurs
is small enough to obtain some improved attacks. The second idea mod-
ifies the basic technique of van Oorschot and Wiener: instead of waiting
for two chains to merge, we now require that they become parallel.

We first show that, using the first idea alone, we can recover the
discrete logarithms of L users in a group of size N in time Õ(

√
NL).

We put these two ideas together and we show that in the multi-user
Even-Mansour scheme, all the keys of L = N1/3 users can be found with
N1/3+ε queries for each user (where N is the domain size). Finally, we
consider the PRINCE block cipher (with 128-bit keys and 64-bit blocks)
and find the keys of 2 users among a set of 232 users in time 265. We also
describe a new generic attack in the classical model for PRINCE.

P. Sarkar and T. Iwata (Eds.): ASIACRYPT 2014, PART I, LNCS 8873, pp. 420–438, 2014.
c© International Association for Cryptologic Research 2014

Multi-user Collisions and Applications 421

1 Introduction

The multi-user setting is a very interesting practical scenario, which is sometimes
overlooked in cryptography. Indeed, cryptosystems are designed to be used by
many users, and usually cryptographers prove the security of their schemes in
a single-user model except in some cases such as key exchange, public-key en-
cryption and signatures. At EUROCRYPT 2012, Menezes [20] gave an invited
talk pointing out the discrepancy between security proofs for message authen-
tication code in the single-user and in the multi-user setting. As it was already
been pointed out in [10], he showed that there is a straightforward reduction
between the security proof for one user and the security proof for L users with
a success probability divided by L. Next, he recalled the key collision attack
due to Biham [3] that matches this bound and that can be applied on various
deterministic MACs (CMAC, SIV, OCB, EME, . . .). In this attack, the adver-
sary asks the MAC tag of a single message M for L different users; we call this
the set of secret MACs. Then, for a subset W of size N/L of known keys (N
is the key size), he computes MAC(k,M) for all k ∈ W and builds the set of
public MACs. If a collision occurs between the public and secret sets, then we
learn one of the L secret keys.1 For MAC schemes with an 80-bit security level,
it is possible with time/memory tradeoff to make this reasonably practical and
derive a key recovery of a single key among a set of L = 220 users, using time
and memory 240. Menezes thus insists that cryptographers have to consider this
practical setting when devising or analyzing cryptosystems. For more results on
multi-user attacks, the reader can also refer to [4].

In this paper, we are interested in collision-based attacks [24] in the multi-
user setting. We rely on the distinguished point technique to propose new attacks
on the generic discrete logarithm problem, on the Even-Mansour cipher and on
PRINCE. Collision-based methods have been nicely improved by van Oorschot
and Wiener to become parallelizable using the distinguished point technique of
Rivest and Quisquater and Delescaille [22]. Here, we extend these methods and
apply them to cryptanalysis in the multi-user setting.

Our Contributions. From a cryptanalytic point of view, there are many ways
to perform attacks in the multi-user setting. In this paper, we are interested by
several scenarios. The first option is to recover all the users’ keys (or a large
fraction thereof) in time less than the product of the number of users by the
time complexity to recover one key. Another direction is to improve Biham’s
attack and recover a single key in the multi-user setting with a reduced memory
cost. Finally, we consider time/memory attacks starting with a precomputation
whose result can then be used later to recover individual keys much faster.

Giant connected component. The multi-user setting for the discrete logarithm
problem has been studied by Kuhn and Struik in [17]. They show that it is

1 Provided that the tag length is greater than the key length.

422 P.-A. Fouque, A. Joux, and C. Mavromati

possible to adapt the parallel version of the Pollard rho technique with distin-
guished points to recover L keys in time

√
NL where N is the size of the group

as long as L% 4
√
N . In the parallel version of Pollard rho method described by

van Oorschot and Wiener, we run random walks in parallel, stop them once a
distinguished point is reached and store this value for many starting points. We
get a public set of distinguished points for the walks that begin at ya = ga for
which we know a and a secret set from a user public key y for starting points ygb

where b is known. Kuhn and Struik generalize this method by using many secret
sets, one for each user. Once a distinguished point appears twice in the public
and secret sets, the discrete logarithm of one user can be discovered, and conse-
quently, we also know the discrete logarithm of all the distinguished points that
were discovered during the random walks for this user. Therefore, as the number
of “known” points increases, the probability of a collision between a secret point
and a known one becomes higher. Similar results can be found in [19,1,2].

Here, we show another method that works without any restriction on L and
keeps the symmetry between all read points. Indeed, we do not have to wait until
the first collision between a public point and a secret one happens, but we also
consider collisions between secret points. More precisely, as soon as a collision
between the public walks and the secret walks happens, we learn many discrete
logarithms, since when two secret chains collide, we learn the difference between
the discrete logarithm. We can then construct a graph whose vertices are the
users and we add an edge if we know the difference of the discrete logarithm
between these users. At some point, when the number of edges becomes slightly
larger than the users, a giant component emerges in our random graph and if
the public user is in this component (with high probability in time 2L lnL), then
the discrete logarithm of all users will be known.

Our method has an advantage towards the method proposed by Kuhn and
Struik as we use parallelism extensively. However, a disadvantage is that in our
case we do not learn any discrete logarithms until the very end, when a giant
component appears in the graph. In contrast, Kuhn and Struik’s algorithm is
sequential and so they find each discrete logarithm one after the other. Overall,
the main goal of section 2 is to provide an educational example of the graph
connexity approach and show that it is much simpler to analyze.

Lambda Method for two different Even-Mansour style functions. We were also
able to apply similar techniques on Even-Mansour with domain size N . Indeed,
using some functions related to the encryption scheme, we show that we can learn
the Xor between the keys of two users. The previous technique can also be used
to recover the keys of all users. However, in this case, we get a new problem: the
two functions we iterate are no longer the same. Consequently, contrary to the
DL case, once a collision appears, the chains will no longer merge and we cannot
use distinguished point technique. To solve this issue, we tweak the two functions
and define related functions that will no longer merge but become parallel. We
show that this parallel method is as efficient as the previous one. For instance,
we show an attack that partially solves an open problem of Dunkelman et al.
that asked to find a memoryless attack on Even-Mansour with D queries to the

Multi-user Collisions and Applications 423

secret function and T = N/D to the public function with D %
√
N . We propose

an attack that matches these bounds (D = N2/5, T = N3/5) but where the
memory is N1/5 as an application of our lambda-method. Furthermore, we also
describe a multi-user attack which allows to learn all the keys in a set of N1/3

users in data complexity N1/3+ε to each user and T = N1/3+ε time complexity
by combining the two algorithmic tools. This attack exhibits new tradeoff where
the amortized data complexity per user times the time complexity is reduced to
N2/3+ε instead of N .

Application to PRINCE. PRINCE cipher [7] is a new block cipher recently
introduced at ASIACRYPT 2012 with blocklength 64 bits and keylength 128
bits. Its design has a α-reflection property which is a related-key relation that
transforms the decryption algorithm to the encryption process with a related-
key. Here, we propose generic attacks on the full number of rounds. At FSE
2014 [8], an attack on 10 rounds of PRINCE has been presented, with time
complexity 260.7 and data complexity 257.94. In [15], an attack with slightly less
than 2128 allows to break all the rounds, but our attacks have a particular low
time complexity. They are similar to the one on Even-Mansour but we have
to take into account that in PRINCE, the internal permutation uses a secret
key. They make use both of the α-reflection property and of the specific key
scheduling of PRINCE, i.e. the relationship between the two whitening keys.
The first attack allows to recover the keys of two users among a set of 232 users
in time 265 and the second one allows to recover the keys of all users in time
232 after a precomputation of time 296 and 264 in memory. Finally, we do not
contradict the security bound showed in the original paper, but we show that
different tradeoffs are possible.

Organization of the Paper. In section 2, we present our results on the dis-
crete logarithm problem in the multi-user setting and we use the properties of
random graph in this setting. Then, we present various results concerning the
security of Even-Mansour: new time/memory/data (denoted T/M/D) tradeoffs,
new time/memory (denoted T/M) attack solving the open problem of Dunkel-
man et al. and in the multi-user setting. In this part, we show how we can adapt
the lambda-method when searching for collisions for two different functions based
on the Even-Mansour idea. Finally, in the last section, we present various generic
attacks on the PRINCE block cipher, one in the multi-user setting and the other
in the classical model.

2 Discrete Logarithms in the Multi-user Setting

In this section, we present a new algorithmic idea for performing T/M attacks
with distinguished points in the multi-users setting. Our technique allows to
compute the discrete logarithms of L public keys yi = gxi for i = 1, . . . , L in
time2 Õ(

√
NL) for any value of L where N = |〈g〉|. Starting from the parallel

2 The Õ notation hides logarithmic terms.

424 P.-A. Fouque, A. Joux, and C. Mavromati

version of Pollard rho method [24], we compute cL/2 chains consisting of pseudo-
random walks from yi (c/2 chains for each user by randomizing the starting
point) until we discover a distinguished point di ∈ S0 where S0 denotes the set of
distinguished points3. Then, all distinguished points found are sorted and each
collision between the distinguished points of different users di and dj reveals
a linear relation between xi and xj . We also compute a few chains starting
from random points for which the discrete logarithm is known gx0. Finally, we
construct the random graph where the vertices are the public keys and we add
an edge between yi and yj if we have a collision between di and dj (this process
can be described more formally using a random graph process). This edge is
labelled with the linear relation between xi and xj . Once we have computed a
sufficient number of collisions, a small constant time the number of users, then
a giant component will appear with high probability. More precisely, in a graph
with L vertices and cL/2 randomly placed edges with c > 1, there is a giant
component whose size is almost exactly (1− t(c))L, (see [6]) where:

t(c) =
1

c

∞∑
k=1

kk−1(ce−c)k

k!
.

For c = 4, we get 1− t(c) = 0.98. The discrete logarithm of all the points in the
component of the x0’s are known. If we want to recover the discrete logarithm
of all users with overwhelming probability, we need 2L lnL edges to connect
all connected components according to the coupon collectors problem and not
cL/2, as it is recalled in Theorem 2.

Let � the average length of the chains and S0 the set of distinguished points.
The average length of each chain is � = N/|S0|. Assume we have computed i
chains that do not collide, the probability that the (i + 1)th chain collides with
one of the previous is i�× �/N . Consequently, the expected number of collisions
Coll is:

E[Coll] =
L−1∑
i=1

i�2

N
≈ L2

2
· �

2

N
=

L2

2
· (N/|S0|)2

N
=

L2N

2|S0|2
.

We want the number of collisions to be larger than cL/2, which implies
L2N/2|S0|2 ≥ cL/2, thus |S0| ≤

√
LN/c. Consequently, the overall cost is dom-

inated by the computation of the chains, i.e. L ×N/|S0| which is about
√
cLN

if |S0| =
√

LN/c. Finally, in order to have cL/2 edges in our graph, each user
has to compute a small number of chains using a small number of random input
points of the form gxi+ri for known value of ri. The overall complexity of our
attack is Õ(

√
NL) for any value of L while Kuhn and Struik analysis achieves

the value
√
2LN for L% 4

√
N .

Another possible approach to analyze known, unknown points and collisions
between them would be to use a matrix. For this, we consider a symmetric matrix
M where M [i, j] represents the linear relation between the discrete logarithms of
i and j. Then we apply a random variable in order to sparsify the matrix. More

3 This algorithm can also be adapted to the Pollard-lambda algorithm [21].

Multi-user Collisions and Applications 425

precisely, we multiply the coefficient (i, j) of the matrix by 1 with probability
p and by 0 with probability (1 − p), where these probabilities are independent.
When we multiply by 1, that means, that we know the differences between the
discrete logarithms of i and j.The question then becomes how many rows (with
2 non-zero coefficients) do we need to achieve full column-rank, which naturally
leads to the same results: O(L ∗ log(L)). However, when considering rows with
O(log(L)) non-zero coefficients, we only needs O(L) rows. This would imply
that for multi-user discrete logarithms the overall complexity can be reduced
by a factor log(L) to O(sqrt(L ∗N)) by spending a factor log(L) more work in
generating starting points of random combinations of log(L) known/unknown
points (e.g., see [11]). We choose to analyze the complexity in the same form as
Wiener and van Oorschot which is usually the case for crypto papers, i.e we do
not care on the logN factors that arise in such birthday algorithms. Indeed, the
Kuhn and Struik algorithm hides also a log(N) factor in order to get collisions
with very high probability because a 1/2 probability is not sufficient since we
need many collisions of this type.

3 Even-Mansour in the Single and Multi-user Settings

3.1 Brief Description of Even-Mansour

At Asiacrypt 1991, Even and Mansour in [14] describe a very efficient design
(called EM in the following) to construct a block cipher, i.e. a keyed permutation
family ΠK1,K2 from a large permutation π. The key K1 is first xored with the
plaintext, then the fixed permutation is applied and finally the key K2 is xored
to obtain the final value.

ΠK1,K2(P) = π(P ⊕K1)⊕K2.

Their main result is a security proof that any attack that uses D on-line plain-
text/ciphertext pairs (queries to Π) and T off-line computations (queries to π)
must satisfy DT = N, where N = 2n with n the size of the plaintext and key
and which will be called the EM curve. The important part of the proof is that
it is a lower bound for all attacks including known-plaintext attacks. It appears
that the use of two keys K1 and K2 does not add much more resistance to the
scheme. This variant of using K = K1 = K2 has been proposed under the name
Single-Key Even-Mansour and we denote it by ΠK . The security of this minimal
version has been proved secure with the same bound as for the two-key version
by Dunkelman et al. This minimal version is amazingly resistant and guaran-
tees the same security bound, but it is not unexpected since usually the attacks
look for the two keys independently and once the key K1 is recovered, there is
no security for K2. In the following, we see that the two-key version does not
improve the security since most of the attacks on the single-key can be levered
to this version.

In this section, we describe new results concerning the security of the Even-
Mansour scheme which has recently been the subject of many papers [13,18].

426 P.-A. Fouque, A. Joux, and C. Mavromati

We recall the basic attacks and then, we present a basic T/M tradeoff for known
plaintext attacks with better on-line complexity (Sect. 3.3) and a better T/M
tradeoff for adaptive queries (Sect. 3.4). For this attack, we introduce our second
algorithmic trick to discover collisions for two different functions based on the
Even-Mansour construction. The main difficulty we have to solve is that when
a lambda-like method is used to recover collisions, if two different functions are
used, after the collision, the chain will no longer merge. To this end, we adapt
the lambda-method to have parallel chains when the collision happens. Finally,
we show that in the multi-user setting (Sect. 3.5) the precomputation cost can
be amortized. It is possible to balance all the complexities to recover all the keys
of N1/3 users with N1/3+ε adaptive queries to each user, a precomputation time
of N1/3+ε and the attack requires N1/3+ε in memory and N1/3+ε for the on-line
time.

3.2 Previous Attacks on Even-Mansour

In [12], Daemen showed that the EM curve TD = N , is valid for a known
plaintext attack at the point (T = N/2, D = 2). He also gave a chosen-plaintext
attack that matches the EM curve for any value of D and T and in particular
at the point (T = N1/2, D = N1/2). Later, Biryukov and Wagner described a
sliding attack that matches the EM curve for known-plaintext but only at the
point (T = N1/2, D = N1/2). Recently, Dunkelman et al. introduce a new twist
on the sliding attack whose complexities match the whole curve for any value
of D and T using a known-plaintext attack which is exactly the result proved
by Even and Mansour. Finally, Dunkelman et al. also provide a slidex attack on
the two-key Even-Mansour scheme.

Simpler collision-based attack on the Single-Key Even-Mansour. In the single-
key case a simpler attack achieves the same performance. The basic idea is to
apply the Davies-Meyer construction to Π and to π. More precisely, write:

FΠ(x) = Π(x)⊕x and Fπ(x) = π(x)⊕x.

For any value of x, the equality FΠ(x) = Fπ(x⊕K) is satisfied. Moreover, any
collision between these two functions FΠ(x) = Fπ(y) indicates that x⊕y is a
likely candidate for the key K.

With this idea in mind, the problem of attacking the single key Even-Mansour
scheme is reduced to the problem of finding a collision (or rather a few collisions)
between FΠ and Fπ . The simplest approach is simply to compute Fπ on T
distinct random values and FΠ on D distinct random values. When DT ≈ N ,
one expects to find the required collisions.

Moreover, this can be done in a more efficient way by using classical collision
search algorithms with reduced memory. Indeed, it is possible to use Floyd’s cycle
finding algorithm to obtain such a solution for the special case D = T = N1/2,
without using memory. However, in this case the attack is no longer a known-
plaintext attack and becomes an adaptively chosen plaintext attack.

Multi-user Collisions and Applications 427

Dunkelman, Keller and Shamir ask whether it is possible to generalize this
and to find memoryless attacks using D queries to Π and N/D to π where
D % N1/2 ?

In this paper, we partially answer this question, proposing attacks that use
less than D % N1/2 data and memory lower than min(T,D) if we require the
unkeyed queries to be precomputed. Without this requiring, we achieve a mem-
oryless attack.

3.3 Extending the Simple Attack

Dealing with two keys Even-Mansour. A first important remark is that the simple
attack on Single-Key EM can be extended to the two-key case. The idea is simply
to replace the function π(x)⊕x by another function with similar properties.
A first requirement is that the chosen function needs to be expressed by two
different formulas, one based on π and the other on Π . The other requirement is
that a collision on two evaluations, one of each type, should yield good candidates
for the keys.

We now construct the required function and show that the simple attack on
the single-key variant can be extended to two keys. We first choose a random
non-zero constant δ and let:

FΠ(x) = Π(x)⊕Π(x⊕δ) and Fπ(x) = π(x)⊕π(x⊕δ).

We remark that FΠ(x) = Fπ(x⊕K1) and that FΠ(x⊕δ) = Fπ(x⊕K1) are both
satisfied. As a consequence, every collision now suggests two distinct input keys
K1 = x⊕y and K1 = x⊕y⊕δ. Except for this detail, the attack remains un-
changed. Note that once K1 has been found, recovering K2 is a trivial matter.

Reducing the on-line time complexity. In this section, we focus on known-plaintext
attacks and we first show that the EM security model does not separate the on-
line and off-line time complexities, as usually done in T/M/D tradeoff. It is then
possible to use T/M/D tradeoff for this blockcipher design as suggested in [5] by
Biryukov and Shamir.

Let us separate the on-line time denoted by Ton and the off-line time denoted
by Toff . Clearly, the total time complexity T is Ton + Toff .

The main idea of this section is to use a different approach to find a collision
between FΠ and Fπ . More precisely, given a value of FΠ , we try to invert Fπ

on this value. If we succeed, we clearly obtain the desired collision. In order to
inverse Fπ, we rely on Hellman’s algorithm. The T/M/D tradeoff is

TonM
2D2 = N2 and D2 ≤ Ton ≤ N.

In order to fully use Hellman tradeoff with multiple tables, we can use the δ in
the definition of the function Fπ(x) = π(x) ⊕ π(x ⊕ δ) to define different and
independent functions for each table. These attacks achieve TonD % N while
TD = N .

428 P.-A. Fouque, A. Joux, and C. Mavromati

Using less data than memory. Despite its optimal efficiency in term of known-
plaintext attack matching the EM curve, the Slidex attack presents an impor-
tant drawback. Indeed, the public permutation π needs to be evaluated at points
which depend on the result of the queries to the keyed Even-Mansour construc-
tion Π . As a consequence, with this attack, it is not possible to precompute the
queries to π in order to improve the online time required to obtain the key to Π .

Our previous attack based on Hellman’s tables no longer requires adaptive
queries, however, it is less costly than the Slidex attack in term of on-line time
complexity but more costly than the simple collision-based attack (which uses
adaptive chosen plaintext). The goal of the next subsection is to present an attack
on Π , which is based on classical collision search algorithms and works by using
queries to π and Π without any cross-dependencies. However, the queries to Π
are adaptive but this new attack is more flexible to perform T/M tradeoff.

3.4 Time/Memory/Data Tradeoff Attack on Even-Mansour

Attacking Even-Mansour using distinguished points methods. In order to attack
Even-Mansour using a distinguished point method, we would like to construct a
set of chains using the public permutation π and then find a collision with a chain
obtained from the keyed permutation Π . One difficulty is that chains computing
from π and from Π can never merge since they are based on different functions
contrary to discrete logarithm section. We introduce here a new idea to solve
this dilemma when the functions are based on the Even-Mansour construction.
Let us define:

FΠ(x) = x⊕Π(x)⊕Π(x⊕δ) and Fπ(x) = x⊕π(x)⊕π(x⊕δ).

We remark that FΠ(x⊕K1) = Fπ(x)⊕K1. As a consequence, two chains based
on FΠ and Fπ cannot merge, but they may become parallel. Indeed, using the
equation FΠ(x⊕K1) = Fπ(x)⊕K1 and let two points X and x such that X =
x⊕K1, where X (resp. x) belongs to an FΠ chain (resp. x belongs to an Fπ

chain), the next element Y = FΠ(X) in the FΠ chain and the next element
y = Fπ(x) in the Fπ chain will satisfy:

Y = FΠ(X) = FΠ(x⊕K1) = Fπ(x)⊕K1 = y⊕K1.

So Y = y⊕K1, which means that Y and y satisfy the same relation as X and x,
and so on. Therefore, as soon as by chance X = x⊕K1 where X is an element
of an FΠ chain and x is an element of an Fπ chain, the same relation remains
with the subsequent points of the two chains, i.e. we get two parallel chains.

Moreover, the detection of this good event is compatible with the distinguished
point method. Indeed, it suffices to define a distinguished point x as a point with
a value of π(x)⊕π(x⊕δ) in S0. Similarly, for chains constructed by using FΠ , we
define a distinguished point X as a point with a value of Π(X)⊕Π(X⊕δ) in S0.
Now if X = x⊕K1 and x is a distinguished point in a π chain, then since

Π(X)⊕Π(X⊕δ) = π(X⊕K1)⊕π(X⊕K1⊕δ) = π(x)⊕π(x⊕δ),

Multi-user Collisions and Applications 429

the point X is also a distinguished point in the Π chain, and therefore X⊕x
gives a candidate for K1. Since the values π(x)⊕π(x⊕δ) and Π(X)⊕Π(X⊕δ)
are needed to compute the next element in the chains, using this definition does
not add any extra cost for distinguished point detection. The important point,
is that for a parallel chain based on FΠ , a point X = x⊕K1 corresponds to a
distinguished point x if and only if Π(X)⊕Π(X⊕δ) is in S0.

An important difference compared to the classical search for collisions is that
we do not need to backtrack to the beginning of the chains and identify where
the chains merge. Indeed, seeing parallel distinguished points suffices to get
candidates values for K1.

Analysis of the attack with precomputation. Since there is a clear symmetry
between the keyed and unkeyed queries, we may assume that the number of
unkeyed queries T is larger than the number of keyed queries D. Let BT the
number of unkeyed chains to increase the probability of a collision between
keyed and unkeyed chains. Moreover, this is the most reasonable scenario, since
keyed queries are usually the most constrained resource. In this case, we need
to choose the expected length � of the chains we are going to construct and BT

that satisfy the following relations:

T = � · BT and N = BT �
2.

Thus, � = N/T and BT = T 2/N . The required memory to store those chains is
of size O(BT).

After terminating the computation of the unkeyed chains, we can turn to the
keyed side. On this side, we want to perform about D = N/T evaluations of the
function. Since D = �, this means that we compute a single keyed chain and
expect it to (parallel) collide with an unkeyed chain.

We are interested in values for M such that M < D. Consequently, as M =
T/D = N/D2, we have N < D3. Let us consider N1/3 < D = Nα < N1/2. For
example, if D = N2/5 and T = N3/5, then M = N1/5 is much smaller than
N2/5. This attack requires a number of data D % N1/2 and despite this attack
is not memoryless (as in the open problem), the memory is less than the data.

Relaxing the precomputation requirement. Another alternative4 is to perform
the same attack while computing the keyed queries before the unkeyed ones. In
this case, since there is a single keyed chain to be stored, we can achieve the
attack using a constant amount of memory. Moreover, this variation works for
any D = Nα ≤ N1/2 using T = N/D.

3.5 Attacks in the Multi-user Setting

In the multi-user setting, we assume that L different users are all using the
Even-Mansour scheme based on the same public permutation π, with each user

4 We thank an anonymous reviewer of Asiacrypt 2014 for pointing this out.

430 P.-A. Fouque, A. Joux, and C. Mavromati

having its own key5, chosen uniformly at random and independently from the
keys of the other users.

Of course, the attack from Section 3.4 can be easily applied in this context.
Depending on the exact goal of the cryptanalysis, we have two main options:

1. If the goal is to recover the key of all users, the previous attack can be applied
by repeating the D key-dependent queries for each user, while amortizing the
T unkeyed queries across users. A typical case is to consider L = N1/3 users,
to perform T = N2/3+ε unkeyed queries (N1/3+ε chains of N1/3 queries,
memoryN1/3). For each new user, we needN1/3+ε key-dependent queries. As
a consequence, the amortized cost per user (up to constant factors c0 = 20)
is N1/3+ε queries of each type and the required memory also is N1/3.

2. If the goal of the cryptanalyst is to obtain at least one user key among all
the users, it suffices to split the D key-dependent queries arbitrarily across
the users.

However, we present in this section a much more efficient tradeoff in the multi-
user setting. This tradeoff becomes possible without precomputation inN2/3, but
by distributing the unkeyed queries among the users and by reusing the graph
algorithmic idea of the section 2. For this, we construct a graph whose vertices
are labelled by the users. Whenever we obtain a collision FΠ

(i)(x) = FΠ
(j)(y)

for users i and j, we add an edge between the corresponding vertices labelled
with x⊕ y which is expected equal to K(i)⊕K(j). Note that this indicates that
we know the exclusive-or of the first keys of the two users.

If we have L vertices and cL/2 randomly edges with c = 4, there is a giant
component whose size is 98% of the points, and with cL lnL, all the points are
in this component with overwhelming probability. Consequently, we obtain the
exclusive-or of the first keys for an arbitrary pair of users. To conclude the attack,
it suffices to find a single collision between any of the users functions FΠ of the
large connected component and the unkeyed function Fπ to reveal all the keys
of these users.

Algorithm Description.

1. Create a constant number c/2 of chains for each user up to a distinguished
point.

2. Sort the distinguished points.
3. Bring together the distinguished points into subsets, where we test whether

the key candidate is really the good one. It is indeed easy to check with a
few more queries if the xor of two keys is correct.

4. Construct the giant component and expect that the public user (the user
with the unkeyed function), lies in this giant component. To this end, we
initially begin with the set of reachable users containing only the public
user. Then, we add to this set all the users that are in a group where a
reachable user is present. At some point, the reachable set is stable and we
stop.

5 Or key-pair depending on whether we are considering the single or dual key scheme.

Multi-user Collisions and Applications 431

5. From the public user, we cross over the giant component and determine the
keys of each user.

The first step requires cL�/2 data and time O(c�) on average per user where
� is the average length of the chains. Then, the remaining steps are performed
in time linear in the number of users L. Typical parameters are: for an ar-
bitrary small positive constant c, we expect with N1/3 users, c · N1/3 queries
per user and N1/3 unkeyed queries, to recover almost all the N1/3 keys with
overwhelming probability. If we want to recover all users, we need to have
L lnL = cN1/3 lnN = N1/3+ε edges (instead of cL/2) to connect all compo-
nents according to the coupon collector’s problem.

Analysis of the attack. We want to use results from graph theory to prove the
correctness of our algorithm, this means that we have to prove that the assump-
tions of the giant component theorem are satisfied. We have to show that we
construct of a random graph according to the Erdös-Rényi model of random
graphs, in which each possible edge connecting pairs of a given set of L vertices
is present, independently of the other edges, with probability p. In this case,
we know that with this model of random graph, if the number of edges c.L/2 is
larger than the number of vertices L, there is with high probability a single giant
component, with all other components having size O(logL) according to [6].

Consequently, we need to prove that we construct a random graph and that
the edges are added independently of each others. We will define an idealized
version of the attack and we will show that the attack works in this version.
Then, we will prove that the idealized version and the attack are equivalent
using simulation argument.

In the idealized model, the simulator randomly chooses L keys K1, . . . ,KL

uniformly at random. Then it iterates the functions F
(i)
Π (x) = Ki ⊕ Fπ(x⊕Ki)

until x� ⊕Ki ∈ S0, where S0 is the set of pairs containing a distinguished point
di and an identificator of this point id(di). The identificators are unique, which
means that we do not have collision on them. Finally, the simulator reveals the
identificator of the point x� ⊕ Ki and the point x�. The value Ki cannot be
recovered from the information that the simulator returns.

To show that the attack works in this ideal model, we just have to see that
if two users have the same identificator, then x� ⊕Ki = x�′ ⊕Kj and therefore
x� ⊕ x�′ = Ki ⊕Kj which is the same information as in the real attack.

Now, we will prove that the simulator does not need to know F
(i)
Π and can

simulate the information by only using the public random function Fπ and that
the distribution of its outputs is indistinguishable from the idealized model. The
simulator generates at random L random keys for the EM scheme. For each key,
we will show that the pairs distinguished point/identificator can be generated

only using Fπ. Indeed, x� the �th iteration of F
(i)
Π with key Ki from the value

x0 is the value Ki ⊕ x� and this value is also the result of the iteration of the
public function Fπ from the value x0 ⊕Ki. Consequently, to generate the pairs
(distinguished point, identificator), the simulator can compute (x� ⊕Ki, id(x�))
without interacting with the users. As in this last case, the pairs are generated

432 P.-A. Fouque, A. Joux, and C. Mavromati

at random without interacting and knowing the function and since the function
Fπ are random, the edges in the graph are added at random and independently
of each others and so that the graph is a random graph according to the Erdös-
Rényi graph model.

Experimental results. We implement the previous attacks on an Even-Mansour
cryptosystem using the DES with a fixed key and n = 64. We simulate 222 users
and for each user we create 8 chains (80 for the public user). We use distinguished
points containing 21 zeroes and so the expected length is 221 on average. We
bound the length of the chains to 224, this means that if we remove the chain
if we have not seen a distinguished point after 224 evaluations. In all, we have
generated 33, 543, 077 chains (225 = 33, 554, 432, it misses the abandoned chains)
and the number of groups containing at least two parallel chains is 4, 109, 961.
Experimentally, the size of the giant component contains 3, 788, 059 users (among
the 4, 194, 304) and so we can deduce the keys of 90% of the users. This result
is what is expected from theory since the number of vertices in this experiment
is below the number of nodes. The 98% that is previously given as result in
section 3.5, would require twice as many vertices.

The time to generate the chains is 1600 sec using 4096 cores in parallel and
the analysis of the graph requires a few minutes on a standard PC.

4 Attacks on the PRINCE Cipher in the Multi-user and
Classical Setting

PRINCE is a lightweight block cipher published at ASIACRYPT 2012 [7]. It
is based on the FX construction [16] which is actually an Even-Mansour like
construction. PRINCE has been the interest of many cryptanalysts [9,23,15] who
attack either the full cipher, or its reduced version.

The designers of PRINCE claim that its security is ensured up to 2127−n

operations when an adversary acquires 2n plaintext/ciphertext pairs. This bound
has been reduced in [15] to 2126 operations with a single plaintext/ciphertext
pair. After a brief presentation of PRINCE, we describe a generic attack in the
multi-user setting that allow to recover the key of a pair of users in a set of
232 users with complexity 264 computations. The identification of the pair of
users uses the idea similar to the attack on Even-Mansour. However, details
are different since PRINCE is not an Even-Mansour scheme as the internal
permutation uses a secret key. Finally, we present another generic attack in the
classical model that after a precomputation of 296 time and 264 in memory,
allows to recover the key of every single user in time 232. Both attacks work for
all rounds of PRINCE.

4.1 Brief Description of PRINCE

PRINCE [7] uses a 64-bit block and a 128-bit key which is split into two equal
parts of 64 bits, i.e. k = k0‖k1. In order to extend the key to 192 bits it uses

Multi-user Collisions and Applications 433

the mapping k = (k0‖k1) → (k0‖k
′
0‖k1) where k

′
0 is derived from k0 by using a

linear function L′:
L′(k0) = (k0 ≫ 1)⊕ (k0 ' 63),

where ' denotes the right shift and ≫ the rotation of a 64-bit word. While
subkeys k0 and k

′
0 are used as input and output whitening keys, the 64-bit key k1

is used for the 12-round internal block cipher which is called PRINCEcore. For
simplicity, we refer to it as the core of PRINCE or simply the core function and
we denote it by Pcore. So every plaintext P is transformed into the corresponding
ciphertext C by using the function Ek(P) = k

′
0 ⊕ Pcorek1(P ⊕ k0) where Pcore

uses the key k1 (see Fig.1).

m

k0

PRINCEcore

k1

c

k
′
0

Fig. 1. Structure of PRINCE

The core function consists of a key k1 addition, a round constant (RC0) ad-
dition, five forward rounds, a middle round, five backward rounds and finally a
round constant (RC11) and a key k1 addition. The full schedule of the core is
shown in Fig. 2.

k1 RC0

R1 R2 R3 R4 R5 S M′ S−1 R−1
6 R−1

7 R−1
8 R−1

9 R−1
10

RC11 k1

S M

k1RCi k1 RCi

M−1 S−1

Fig. 2. Structure of the core of PRINCE

Each forward round of the core is composed by a 4-bit Sbox layer (S), a linear
layer (64×64 matrix M), an addition of a round constant RCi for i ∈ {1, . . . , 5}
and the addition of the key k1. The linear M layer is defined as M = SR ◦M ′

where SR is the following permutation

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 −→ 0 5 10 15 4 9 14 3 8 13 2 7 12 1 6 11

The M
′
layer, which is only used in the middle rounds, can be seen as a mirror

in the middle of the core as the 5 backward rounds are defined as the inverse of
the 5 forward rounds.

In every RCi-add step, a 64-bit round constant is XORed with the state.
It should be noted that RCi ⊕ RC11−i = α = 0xc0ac29b7c97c50dd for all
0 ≤ i ≤ 11. From this, but also from the fact that the matrix M

′
is an involu-

tion, we can perform the decryption function of PRINCE by simply performing
the encryption procedure with inverse order of keys k0 and k

′
0 and by using the

434 P.-A. Fouque, A. Joux, and C. Mavromati

key k1 ⊕ α instead of k1. That means, that for any key (k0‖k
′
0‖k1), we have

D(k0‖k′
0‖k1)

(·) = E(k
′
0‖k0‖k1⊕α)(·). This property is called the α-reflection prop-

erty of PRINCE.

4.2 Attack on PRINCE in the Multi-user Setting

In the multi-user setting, we assume that we have L different users which are all
using the block cipher PRINCE. Each user Ui with 0 ≤ i < L, chooses her key

k(i) = k
(i)
0 ‖k

(i)
1 at random and independently from all the other users. In order

to attack PRINCE using the distinguished point method, we first construct a
set of chains for every user using the function of PRINCE. For this, we use the
function defined as follows:

F
k
(i)
0 ,k

′(i)
0 ,k

(i)
1

(x) = x⊕ PRINCE
k
(i)
0 ,k

′(i)
0 ,k

(i)
1

(x)⊕ PRINCE
k
(i)
0 ,k

′(i)
0 ,k

(i)
1

(x⊕ δ)

where δ is an arbitrary but fixed non zero constant. The key k
′(i)
0 vanishes from

the equation and the function F thus takes the following form:

F
k
(i)
1
(x) = x⊕ Pcore

k
(i)
1
(x⊕ k

(i)
0)⊕ Pcore

k
(i)
1
(x⊕ k

(i)
0 ⊕ δ).

For every user Ui, we create one encryption (E) chain and one decryption (D)
chain which are both based on the function F defined above. E uses the encryp-
tion function of PRINCE whereas D uses the decryption function. And so, for
the user Ui, we define functions E and D as follows:

E
k
(i)
0 ,k

(i)
1
(x

(i)
j) = x

(i)
j+1 = x

(i)
j ⊕ Pcore

k
(i)
1
(x

(i)
j ⊕ k

(i)
0)⊕ Pcore

k
(i)
1
(x

(i)
j ⊕ k

(i)
0 ⊕ δ)

D
k
′(i)
0 ,k

(i)
1 ⊕α

(y
(i)
j) = y

(i)
j+1

= y
(i)
j ⊕ Pcore

k
(i)
1 ⊕α

(y
(i)
j ⊕ k

′(i)
0)

⊕ Pcore
k
(i)
1 ⊕α

(y
(i)
j ⊕ k

′(i)
0 ⊕ δ).

Let us define:

fE = Pcore
k
(i)
1
(x

(i)
j ⊕ k

(i)
0)⊕ Pcore

k
(i)
1
(x

(i)
j ⊕ k

(i)
0 ⊕ δ) and

fD = Pcore
k
(i)
1 ⊕α

(y
(i)
j ⊕ k

′(i)
0)⊕ Pcore

k
(i)
1 ⊕α

(y
(i)
j ⊕ k

′(i)
0 ⊕ δ).

We create encryption chains until fE reaches a distinguished point (resp. de-
cryption chains until fD reaches a distinguished point). We search for a collision
between the encryption and the decryption chain.

Let us consider two users, U1 and U2. Whenever the chains E
k
(1)
0 ,k

(1)
1
(x(1)) and

D
k
(2)
0 ,k

(2)
1 ⊕α

(y(2)) arrive at the same distinguished point, we suspect that these

Multi-user Collisions and Applications 435

two chains have become parallel. As the core of PRINCE is only parametrized by
the key k1, when we arrive at the same distinguished point we obtain a probable

collision between keys k
(1)
1 and k

(2)
1 ⊕α used in Pcore. However, we must verify

that this is a real collision and not just a random incident. For this, we verify
that next points of fE and fD after reaching a distinguished point, continue to
remain equal. If we obtained a real collision we know that:

k
(1)
1 = k

(2)
1 ⊕ α.

This indicates that x(1)⊕ y(2) is expected equal to k
(1)
0 ⊕ k

′(2)
0 . It is obvious that

since k
(1)
1 = k

(2)
1 ⊕ α we will also have k

(1)
1 ⊕ α = k

(2)
1 . This indicates that we

also know k
′(1)
0 ⊕ k

(2)
0 .

Thus, we have:

k
(1)
0 ⊕ k

′(2)
0 = A and k

′(1)
0 ⊕ k

(2)
0 = B (∗).

Let {a63, . . . , a0} be the representation of the bits of k
(1)
0 and {b63, . . . , b0} the

representation of bits of k
(2)
0 . As, from the definition of PRINCE, k

′
0 = (k0 ≫

1)⊕ (k0 ' 63), we have that:

k
′(1)
0 = {a0, a63, . . . , a2, a1 ⊕ a63} and k

′(2)
0 = {b0, b63, . . . , b2, b1 ⊕ b63}.

From (∗), we construct the system:

{a63, . . . , a0} ⊕ {b0, b63, . . . , b2, b1 ⊕ b63} = {A63, . . . , A0}
{b63, . . . , b0} ⊕ {a0, a63, . . . , a2, a1 ⊕ a63} = {B63, . . . , B0}

As this is an inversible linear system, we can easily find k
(1)
0 and k

(2)
0 . Note

that once k
(i)
0 has been found, recovering k

(i)
1 can be done with an exhaustive

search whose cost is 264.

Analysis of the attack. Once the computation of a chain is finished we have to
store (x�−1, d, d+ 1) where d is the distinguished point, x�−1 is the point before
the chain reaches a distinguished point and d + 1 is the point after the chain
reached a distinguished point. We need to store x�−1 as we have to test if the
found collision is useful and we also need to store d + 1 to test if it is a real
collision. If not, the search must continue.

As mentioned, PRINCE uses a 128-bit key which is split into two 64-bit
parts, i.e. k = k0‖k1. The attack consists in identifying and recovering all key

material of a pair of users i and j for whom k
(i)
1 = k

(j)
1 ⊕α. We expect to find a

collision k
(i)
1 = k

(j)
1 ⊕ α between two different users with high probability when

the number of users will be at least 232. So the attack uses a set of 232 users
and for each one we create 2 chains (encryption and decryption chain). The cost
per user is 232 operations and the total cost for recovering the keys k0 of 2 users
is approximately 264 operations. For recovering k1, the cost of the exhaustive
search is 264. So in total, we can deduce both k0 and k1 in 265 operations.

436 P.-A. Fouque, A. Joux, and C. Mavromati

4.3 Attack in the Classical Model

We show in this section that a classical attack that also uses the distinguished
points technique can also be possible. For this, we will create encryption chains
from the function E defined in section 4.2.

Precalculation. In the first phase of the attack, we aim to create encryption

chains for every possible key k
(i)
1 with 0 ≤ i < 264. More specifically, for every

possible k
(i)
1 , we set k

(i)
0 = 0 and we create for every (i) a chain Si from the

function E with length 232. We store all chains Si.

Attack. Now, our purpose is to find a collision with one of the chains created

with the zero key k
(i)
0 . For this, for a random starting point x0 and for keys k0

and k1 we will calculate an encryption chain T from the function E . The chain
T will collide with high probability with one of the chains Si. As described in
previous section 4.2, when we detect a collision between two distinguished points,

we know that the chains had become parallel and so we obtain k
(i)
0 ⊕ k0. As the

key k
(i)
0 = 0, we finally obtain the unknown k0.

Analysis of the attack. For the precalculation phase, for every 264 possible keys
we calculate a chain with length 232 and so our complexity is equal to 296. As
we need to store all chains, the precalculation phase has also a cost of 264 in
memory. However, once the first phase is over, the attacker can perform the
attack in only 232 operations as she has to calculate only one chain. So, the total
cost of the attack is 296. The proposed attack satisfies DT = 2128 as D = 232

and T = 296. This attack does not improve the complexity of PRINCE given
in [7] and [15]. However, in our case, T is not the on-line time complexity as it
corresponds to the precalculation phase of the attack. Thus, in our attack, we
have DTon = 264.

5 Conclusion

In this paper, we have presented new tradeoffs for public-key and symmetric-key
cryptosystems in the multi-user setting. We have introduced some algorithmic
tools for collision-based attacks using the distinguished point technique. The
first tool allows to look for the discrete logarithm of L users in parallel using
only a Õ(

√
L) penalty using random graph process behaviour. The second tool

allows to achieve key-recovery of Even-Mansour and related ciphers and is a novel
lambda technique to find collisions when two different functions are involved. For
the Even-Mansour cipher, we show new tradeoffs that partially solve an open
problem due to Dunkelman et al. and we propose an analysis in the multi-user
setting. Finally, for the PRINCE cipher, we show generic attacks that improve
the best published results in the sense that our time complexity corresponds to
a precomputation phase and not to an on-line phase. This last result could also
be adapted to similar ciphers such as DESX and would also improve on the best
previous attack.

Multi-user Collisions and Applications 437

References

1. Bernstein, D.J., Lange, T.: Computing Small Discrete Logarithms Faster. In:
Galbraith, S., Nandi, M. (eds.) INDOCRYPT 2012. LNCS, vol. 7668, pp. 317–
338. Springer, Heidelberg (2012)

2. Bernstein, D.J., Lange, T.: Non-uniform Cracks in the Concrete: The Power of
Free Precomputation. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II.
LNCS, vol. 8270, pp. 321–340. Springer, Heidelberg (2013)

3. Biham, E.: How to decrypt or even substitute DES-encrypted messages in 228 steps.
Inf. Process. Lett. 84(3), 117–124 (2002)

4. Biryukov, A., Mukhopadhyay, S., Sarkar, P.: Improved Time-Memory Trade-Offs
with Multiple Data. In: Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897,
pp. 110–127. Springer, Heidelberg (2006),
http://dx.doi.org/10.1007/11693383_8

5. Biryukov, A., Shamir, A.: Cryptanalytic Time/Memory/Data Tradeoffs for Stream
Ciphers. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 1–13.
Springer, Heidelberg (2000)

6. Bollobás, B.: Random Graphs, 2nd edn. Cambridge studies in advanced mathe-
matics (2001)

7. Borghoff, J., Canteaut, A., Güneysu, T., Kavun, E.B., Knezevic, M., Knudsen,
L.R., Leander, G., Nikov, V., Paar, C., Rechberger, C., Rombouts, P., Thomsen,
S.S., Yalçın, T.: PRINCE – A Low-Latency Block Cipher for Pervasive Computing
Applications. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658,
pp. 208–225. Springer, Heidelberg (2012)

8. Canteaut, A., Fuhr, T., Gilbert, H., Naya-Plasencia, M., Reinhard, J.-R.: Multi-
ple Differential Cryptanalysis of Round-Reduced PRINCE (Full version). IACR
Cryptology ePrint Archive, 2014:89 (2014)

9. Canteaut, A., Naya-Plasencia, M., Vayssière, B.: Sieve-in-the-middle: Improved
MITM attacks. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS,
vol. 8042, pp. 222–240. Springer, Heidelberg (2013)

10. Chatterjee, S., Menezes, A., Sarkar, P.: Another Look at Tightness. In: Miri, A.,
Vaudenay, S. (eds.) SAC 2011. LNCS, vol. 7118, pp. 293–319. Springer, Heidelberg
(2012)

11. Costello, K.P., Vu, V.H.: The rank of random graphs. Random Structures & Al-
gorithms 33(3), 269–285 (2008)

12. Daemen, J.: Limitations of the Even-Mansour Construction. In: Matsumoto, T.,
Imai, H., Rivest, R.L. (eds.) ASIACRYPT 1991. LNCS, vol. 739, pp. 495–498.
Springer, Heidelberg (1993)

13. Dunkelman, O., Keller, N., Shamir, A.: Minimalism in Cryptography: The Even-
Mansour Scheme Revisited. In: Pointcheval, D., Johansson, T. (eds.) EURO-
CRYPT 2012. LNCS, vol. 7237, pp. 336–354. Springer, Heidelberg (2012)

14. Even, S., Mansour, Y.: A construction of a cipher from a single pseudorandom
permutation. In: Imai, H., Rivest, R., Matsumoto, T. (eds.) ASIACRYPT 1991.
LNCS, vol. 739, pp. 210–224. Springer, Heidelberg (1993)

15. Jean, J., Nikolic, I., Peyrin, T., Wang, L.: S. Wu Security Analysis of PRINCE.
In: Fast Software Encryption - 20th International Workshop, FSE 2013, Singapore,
March 11-13, 2013. Revised Selected Papers, pp. 92–111 (2013)

16. Kilian, J., Rogaway, P.: How to Protect DES Against Exhaustive Key Search (an
Analysis of DESX). J. Cryptology 14(1), 17–35 (2001)

http://dx.doi.org/10.1007/11693383_8

438 P.-A. Fouque, A. Joux, and C. Mavromati

17. Kuhn, F., Struik, R.: Random walks revisited: Extensions of pollard’s rho algorithm
for computing multiple discrete logarithms. In: Vaudenay, S., Youssef, A.M. (eds.)
SAC 2001. LNCS, vol. 2259, pp. 212–229. Springer, Heidelberg (2001)

18. Lampe, R., Patarin, J., Seurin, Y.: An Asymptotically Tight Security Analysis of
the Iterated Even-Mansour Cipher. In: Wang, X., Sako, K. (eds.) ASIACRYPT
2012. LNCS, vol. 7658, pp. 278–295. Springer, Heidelberg (2012)

19. Lee, H.T., Cheon, J.H., Hong, J.: Accelerating ID-based Encryption based on
Trapdoor DL using Pre-computation. Cryptology ePrint Archive, Report 2011/187
(2011), http://eprint.iacr.org/

20. Menezes, A.: Another Look at Provable Security. In: Pointcheval, D., Johansson, T.
(eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 8–8. Springer, Heidelberg (2012)

21. Pollard, J.M.: Kangaroos, Monopoly and Discrete Logarithms. J. Cryptology 13(4),
437–447 (2000)

22. Quisquater, J.-J., Delescaille, J.-P.: How Easy Is Collision Search. New Results
and Applications to DES. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435,
pp. 408–413. Springer, Heidelberg (1990)

23. Soleimany, H., Blondeau, C., Yu, X., Wu, W., Nyberg, K., Zhang, H., Zhang, L.,
Wang, Y.: Reflection Cryptanalysis of PRINCE-Like Ciphers. In: Fast Software
Encryption - 20th International Workshop, FSE 2013, Singapore, March 11-13,
2013. Revised Selected Papers, pp. 71–91 (2013)

24. van Oorschot, P.C., Wiener, M.J.: Parallel Collision Search with Cryptanalytic
Applications. J. Cryptology 12(1), 1–28 (1999)

http://eprint.iacr.org/

Cryptanalysis of Iterated Even-Mansour

Schemes with Two Keys

Itai Dinur1,�, Orr Dunkelman2,3,��,
Nathan Keller3,4,� � �, and Adi Shamir4

1 Département d’Informatique, École Normale Supérieure, Paris, France
2 Computer Science Department, University of Haifa, Israel
3 Department of Mathematics, Bar-Ilan University, Israel

4 Computer Science department, The Weizmann Institute, Rehovot, Israel

Abstract. The iterated Even-Mansour (EM) scheme is a generalization
of the original 1-round construction proposed in 1991, and can use one
key, two keys, or completely independent keys. In this paper, we me-
thodically analyze the security of all the possible iterated Even-Mansour
schemes with two n-bit keys and up to four rounds, and show that none
of them provides more than n-bit security. Our attacks are based on a
new cryptanalytic technique called multibridge which splits the cipher
to different parts in a novel way, such that they can be analyzed inde-
pendently, exploiting its self-similarity properties. After the analysis of
the parts, the key suggestions are efficiently joined using a meet-in-the-
middle procedure.

As a demonstration of the multibridge technique, we devise a new at-
tack on 4 steps of the LED-128 block cipher, reducing the time complex-
ity of the best known attack on this scheme from 296 to 264. Furthermore,
we show that our technique can be used as a generic key-recovery tool,
when combined with some statistical distinguishers (like those recently
constructed in reflection cryptanalysis of GOST and PRINCE).

Keywords: Cryptanalysis, meet-in-the-middle attacks, multibridge at-
tack, iterated Even-Mansour, LED-128.

1 Introduction

Most block ciphers (such as the AES) have an iterated structure which alter-
nately XOR’s a secret key and applies some publicly known permutation (typ-
ically consisting of S-boxes and linear transformations) to the internal state. A
generic way to describe such a scheme is to assume that the permutations are ran-
domly chosen, with no weaknesses which can be exploited by the cryptanalyst.

� Some of the work presented in this paper was done while the first author was a
postdoctoral researcher at the Weizmann Institute, Israel.

�� The second author was supported in part by the German-Israeli Foundation for
Scientific Research and Development through grant No. 2282-2222.6/2011.

� � � The third author was supported by the Alon Fellowship.

P. Sarkar and T. Iwata (Eds.): ASIACRYPT 2014, PART I, LNCS 8873, pp. 439–457, 2014.
c© International Association for Cryptologic Research 2014

440 I. Dinur et al.

This approach has several advantages: First of all, this is a very clean construc-
tion with great theoretical appeal. In addition, we can use the randomness of
the permutation in order to prove lower bounds on the complexity of all possible
attacks, something we cannot hope to achieve when we instantiate the scheme
with a particular choice of the permutation. Finally, any new generic attack on
block ciphers with this general form can have broad practical applicability.

At Asiacrypt 1991 [11], Even and Mansour defined and analyzed the simplest
example of such a block cipher, which consists of a single public permutation and
two independently chosen secret keys XOR’ed before and after the permutation.
We call such a scheme a 1-round 2-key Even-Mansour (EM) scheme. In their
paper, Even and Mansour showed that in any attack on this scheme that succeeds
with high probability, TD ≥ 2n. This implies that any attack on the scheme has
overall complexity (i.e., the maximal complexity among the time,1 memory and
data complexities) of at least 2n/2. In such a case, we say that the security of the
scheme is 2n/2, or n/2 bits.2 At Eurocrypt 2012 [10], a matching upper bound
in the known plaintext attack model was proved, and thus the security of this
scheme is now fully understood.

Since the security provided by a 1-round 2-key EM is much smaller than
the 22n time complexity of exhaustive key search, multiple papers published in
the last couple of years had studied the security of iterated EM schemes with
more than one round (e.g., [2,4,9,18,21,23]). These schemes differ not only in
their number of rounds, but also in the number of keys they use and in the order
in which these keys are used in the various rounds. This is somewhat analogous
to the study of the security of generic Feistel structures with various numbers
of rounds, which led to several fundamental results in theoretical cryptography
in the last two decades (e.g., how to construct pseudo-random permutations
from pseudo-random functions, and how many queries are required in order to
distinguish them from truly random permutations [19,24]).

In this paper, we study the security of iterated EM constructions using two
independent keys. As the security of the 1-round variant is already determined
to be 2n/2, and as it is easy to see that a 2-round variant supplies security of at
most 2n, we analyze all 3-round and 4-round variants with two keys. We show
that for any possible ordering of the two keys, all the r-round variants with
r ≤ 4 provide security of at most 2n (compared to exhaustive key search which
requires 22n time). Furthermore, for all such variants3 we obtain a complete
tradeoff curve of DT = 22n in the known plaintext attack model.

1 We define security in the computational model, which calculates the time complexity
according to the number of operations that the attacker performs. This model is
different from the information theoretical model (used, for example, in [4]), which
only considers the number of queries to the internal permutations of the primitive.

2 Note that, unlike the tradeoff attacks described in Hellman’s paper [14], the overall
complexity of an attack takes into account all attack stages. In particular, we do
not allow any free preprocessing stage.

3 Not including some weak variants, for which an attack of time complexity 2n can
be obtained given only 2 plaintext-ciphertext pairs (i.e., the unicity bound).

Cryptanalysis of Iterated Even-Mansour Schemes with Two Keys 441

Since several concrete proposals for block ciphers use a relatively small num-
ber of fairly complex rounds, our theoretical analysis has immediate practi-
cal applications. For example, we can use our results in order to compare the
best achievable security of schemes with various numbers of rounds and key
schedules, and thus to guide the design of future schemes. More surprisingly,
we can use our new generic attacks in order to improve by a large margin the
running time of the best known attacks on the extensively studied lightweight
block cipher LED-128, without even looking at its internal structure.

LED-128 [13] is a typical example of an iterated EM scheme. It is a 64-bit
block cipher that uses two unrelated 64-bit keys, which are alternately XOR’ed
in consecutive rounds. Since its publication at CHES 2011, reduced variants
of LED-128 have been extensively analyzed, and in particular the 4-step4 vari-
ant (reduced from the full 12) was analyzed in 3 consecutive papers at ACISP
2012 [16], Asiacrypt 2012 [21] and FSE 2013 [23], using a variety of cryptanalytic
techniques (see Table 1).

Table 1. Attacks on 4-Step LED-128

Reference Generic† Data†† Time Memory Security

[16] No 216 CP 2112 216 2112

[21] Yes 264 KP 296 264 296

[23] Yes D ≤ 232 KP 2128/D D 296

This paper Yes D ≤ 264 KP 2128/D D 264

† “Generic” stands for an attack independent of the actual
step function.

†† The data complexity is given in chosen plaintexts (CP),
or in known plaintexts (KP).

The first attack on 4-step LED-128 is described in [16]. The attack combines
the splice-and-cut technique [3] with a meet-in-the-middle attack which is based
on specific properties of the LED permutation. It has a time complexity of T =
2112, and requiresD = 216 chosen plaintext-ciphertext pairs. The second analysis
of 4-step LED-128 is given in [21] and is applicable to all 4-round EM schemes
with 2 alternating keys. When applied to 4-step LED-128, it has a reduced time
complexity of T = 296 (compared to T = 2112 of the attack of [16]), but it
requires the full code-book of D = 264 plaintext-ciphertext pairs. The attack
uses a technique related to Merkle and Hellman’s attack on two-key triple-DES
(2K3DES) [22], in combination with Daemen’s chosen plaintext attack of EM [6].
Finally, the currently best known attack on 4-step LED-128 is a known plaintext
attack given in [23]. The attack uses an extension of the SlideX attack [10] in
order to obtain a flexible tradeoff curve of TD = 2128 for any D ≤ N1/2.

4 In the design of LED, the term “step” is used in order to describe what we refer to
as a “round” of an iterated EM scheme.

442 I. Dinur et al.

By using our new generic attack on 4-round EM with alternating keys, we
can extend the tradeoff curve all the way to D = N . We can thus reduce the
time complexity of the best known attack on 4-step LED-128 by a large factor
of 232, from the totally impractical T = 296 to a more practical T = 264. We
note that when considering much smaller improvements over exhaustive search,
attacks on up to 8 rounds of LED-128 have been published in [9].

In order to obtain our improved generic attacks, we had to develop a new
cryptanalytic technique. The new technique stems from the dissection tech-
nique [7] and from the splice-and-cut technique [3], but has also additional
features. Like the dissection technique, it divides the cipher into several parts
treated independently by enumerating over an intermediate value, but unlike
dissection, the parts are not consecutive but rather nested. In addition, as the
splice-and-cut technique, the new attack takes advantage of “splicing” (or con-
necting) two ends of the cipher together. However, in the original splice-and-cut
technique, the plaintexts and ciphertexts were “spliced” together, and as a result
it was essentially a chosen plaintext attack. On the other hand, in our attack we
bridge (or connect) together intermediate encryption values, and thus our attack
does not have this constraint and can use known plaintexts. Once we connect
a pair of intermediate encryption values using a bridge, we use a self-similarity
property of the cipher in order to connect another pair of intermediate encryp-
tion values using another bridge. Thus, as our attack bridges between multiple
parts of the cipher using multiple bridges, we call it the multibridge attack.

In addition to their application to iterated Even-Mansour ciphers with two
keys, we notice that our techniques can also be combined with statistical distin-
guishers to give efficient key recovery attacks on certain block ciphers. These
block ciphers have internal symmetric properties which allow us to connect
(bridge) together intermediate encryption values at a relatively low cost. Such
bridges are constructed in reflection cryptanalysis, a technique introduced by
Kara in [17], and generalized more recently by Soleimany et al. in [28]. Thus, as
an additional application of our multibridge attack, we show how to use it as a
generic key-recovery tool in reflection cryptanalysis.

The self-similarity properties of the cipher that we exploit in multibridge
attacks are similar to the ones exploited in the SlideX attack [10] on 1-round
EM with one key and in later publications [9,23]. However, in the multibridge
attack the connected parts are more complex, analyzed themselves using bridging
techniques, and are joint using several meet-in-the-middle attacks.

The paper is organized as follows: in Section 2, we describe the notations and
conventions used in this paper. In Section 3, we describe our new multibridge
attack on the alternating key scheme, and its application to LED-128 and to
reflection cryptanalysis. In Section 4, we classify all 4-round iterated EM schemes
with two keys and summarize our attacks on them. We finish the analysis of 4-
round iterated EM schemes in Section 5, and finally propose open problems and
conclude the paper in Section 6.

Cryptanalysis of Iterated Even-Mansour Schemes with Two Keys 443

2 Notations and Conventions

Notations. For a general r-round iterated EM scheme with a block size of n bits,
we denote by Fi the public function of round i. We denote by Ki−1 the round-key
added at the beginning of round i (i.e., K0 is added before round 1), while the last
round-key is denoted by Kr (see Fig. 1). Given a plaintext-ciphertext pair (P,C),
we denote the state after i encryption rounds by Xi (e.g., X0 = P , X1 is the state
after one encryption round, etc.). In order to simplify our notation, we define
X̂i = Xi ⊕ Ki, and so Fi+1(X̂i) = Xi+1. In some of our attacks, we consider
several parallel evaluations which are similarly denoted by Yj+1 = Fj+1(Ŷj),

Zj+1 = Fj+1(Ẑj), etc.

Conventions. In this paper, we evaluate our attack algorithms in terms of
the time complexity T , the data complexity D, and the memory complexity
M , as a function of N = 2n where n is the block size. Note that this N is
not necessarily the size of the key space, and exhaustive search of a 2-key EM
scheme requires N2 rather than N time. The complexities of our algorithms are
generally exponential in n, and thus we can neglect multiplicative polynomial
factors in n in our analysis.

We note that in all of our memory-consuming attacks, it is possible to use time-
memory tradeoffs in order to reduce the amount of memory we use. However,
in this paper we are mainly interested in tradeoffs between the data and time
complexities of our attacks, and thus we simply assume that we have sufficient
memory to execute the fastest possible version of the attack, i.e., given D known
plaintext-ciphertext pairs, we always try to minimize T .

P
⊕

F1

⊕
F2

⊕
Fi

⊕
Fr

⊕
C

K0 K1 K2 Ki Kr

X0 X̂0 X1 X̂1 X2 X̂2 Xi X̂i Xr X̂r

Fig. 1. Iterated Even-Mansour

3 A New Attack on 4-Round Iterated Even-Mansour
with Two Alternating Keys

The currently best known attack on 4-round iterated EM scheme with 2 alter-
nating keys (see Fig. 2) was proposed in [23] as part of the analysis of 4-step
LED-128 (improving the previous attacks of [16,21]). The attack yields a tradeoff
curve of TD = N2, but is limited by an expensive outer loop that guesses one
of the keys and performs computations on the entire data for each such guess.
Therefore, the tradeoff TD = N2 is restricted by the constraint T ≥ ND (or

444 I. Dinur et al.

TD ≥ ND2) and is valid only up to D = N1/2. Consequently, the attack cannot
efficiently exploit more than D = N1/2 known plaintexts even when they are
available. In this section, we describe a new attack, which can obtain the curve
TD = N2 for any amount of given data D ≤ N . In order to provide sufficient
background to our new attack, we start by describing the very simple variant
of the SlideX attack (proposed in [10]) on 1-round EM with one key, and then
describe the previous attack of [23] on 4-round iterated Even-Mansour with 2
alternating keys. After this background material, we describe the basic variant
of our new attack on this scheme that applies in the case D = N , and then gen-
eralize the basic attack in order to obtain the complete curve TD = N2. Finally,
we apply the multibridge attack to 4-step LED-128, improving the running time
of the best known attack on this well-studied scheme from 296 to 264.

P
⊕

F1

⊕
F2

⊕
F3

⊕
F4

⊕
C

K0 K1 K0 K1 K0

Fig. 2. 4-Round Iterated Even-Mansour with Alternating Keys

3.1 The SlideX Attack on 1-Round Even-Mansour with a Single
Key

The SlideX attack [10] is an optimal known plaintext attack on 1-Round EM
with one key. It is based on the observation that for each plaintext-ciphertext
pair (P,C) = (X0, X̂1), by definition P ⊕ K = X̂0 and C ⊕ K = X1, hence
P ⊕ C = X̂0 ⊕X1 (see Fig. 3). As described in the attack below, this equality
is exploited in order to match the plaintext-ciphertext pairs with independent
evaluations of the public function F1 by the attacker. Each such match yields a
suggestion for the key, which we can easily test.

1. For each of the D plaintext-ciphertext pairs (P i, Ci):
(a) Calculate P i ⊕ Ci, and store it in a sorted list L, next to P i.

2. For N/D arbitrary values Ŷ j
0 :

(a) Compute Y j
1 = F1(Ŷ

j
0) and search Ŷ j

0 ⊕ Y j
1 in the list L.

(b) For each match, obtain P i and compute the suggestion K = P i ⊕ Ŷ j
0 .

(c) Test the suggestion for K using a trial encryption, and if it succeeds,
return it as the key.

As we have D plaintext-ciphertext pairs (P i, Ci) and we evaluate N/D arbi-
trary values Ŷ j

0 , we have D ·N/D = N pairs of the form (i, j). Thus, according
to the birthday paradox, with high probability, there is a pair (i, j) such that
Ŷ j
0 = P i ⊕ K � X̂ i

0. This implies that Ŷ j
0 ⊕ Y j

1 = P i ⊕ Ci, and thus we get
a match in Step 2.(a), suggesting the correct key K. The time complexity of
Step 1 is D. The time complexity of Step 2 is N/D , since for an arbitrary value

Cryptanalysis of Iterated Even-Mansour Schemes with Two Keys 445

of Ŷ j
0 ⊕ Y j

1 , we expect a match in Step 2.(a) with probability D/N (and thus,
on average, we perform only a constant number of operations for each value of
Ŷ j
0). Consequently, the time complexity of the attack is max(D,N/D), i.e., the

attack gives a tradeoff curve of TD = N , but only for D ≤ N1/2 (i.e., it cannot
efficiently exploit more than D = N1/2 known plaintexts).

P
⊕

Ŷ0 F1 Y1

⊕
C

K K⊕
⊕?=

Fig. 3. The Slidex Attack on 1-Round Even-Mansour with 1 Key

3.2 The Best Previous Attack on 4-Round Iterated Even-Mansour
with Two Alternating Keys [23]

The best previous attack [23] starts by guessing K0. This guess makes it pos-
sible to eliminate the first and last XOR’ed keys and thus also the first and
last permutations by partially encrypting (and decrypting) the plaintext (and
ciphertext). In addition, guessing K0 enables the attacker to combine the sec-
ond and third applications of the permutations F3(F2(x) ⊕ K0) into a single
known permutation, F ′

K0
(x). This reduces the 4-round EM scheme into a single

round EM scheme with a single key, which can be easily attacked by the SlideX
technique (see Fig. 4). The details of this attack are described below.

1. For all values of K0:
(a) For each of the D plaintext-ciphertext pairs (P i, Ci):

i. Compute X i
1 and X̂ i

3, and store X i
1 ⊕ X̂ i

3 in a sorted list L, next to
X i

1.
(b) For N/D arbitrary values Ŷ j

1 :

i. Compute Y j
3 and search Ŷ j

1 ⊕ Y j
3 in the list L.

ii. For each match, obtain X i
1 and compute the suggestion K1 = X i

1 ⊕
Ŷ j
1 .

iii. Test the suggestion for the full key (K0,K1) using a trial encryption,
and if it succeeds, return it.

For the correct value of K0, according to the birthday paradox, with high
probability there is a pair (i, j) such that Ŷ j

1 = X̂ i
1. This implies that X i

1⊕ X̂ i
3 =

Ŷ j
1 ⊕ Y j

3 , and thus we get a match in Step 1.(b).i, suggesting the correct key
(K0,K1). The time complexity of Step 1.(a) is D, and the complexity of Step
1.(b) is N/D (we do not expect more than one match in L in Step 1.(b).i for an
arbitrary value of Ŷ j

1 ⊕ Y j
3). Thus, for each value of K0 that we guess in Step 1,

we perform max(D,N/D) operations. Consequently, the attack gives a tradeoff

446 I. Dinur et al.

curve of TD = N2, but only for D ≤ N1/2, i.e., the time complexity must satisfy
T ≥ N3/2. In particular, for N = 264, the best possible time complexity of this
attack (for any available amount of data) is at least 296.

X1

⊕
Ŷ1 Y3

⊕
X̂3

K1 K0 K1

F2

⊕
F3

⊕
⊕?=

Fig. 4. The Best Previous Attack on 4-Round Iterated Even-Mansour with Two Al-
ternating Keys

Applying a Generalized Version of the Attack to any 2-Key 4-Round
Iterated Even-Mansour Scheme. Before describing our improved attack,
we notice that in a general 4-round iterated EM scheme with 2 keys which can
be used in any order, there is always a key that is added at most twice5. Thus,
the attack of [23] can be easily generalized and applied with the same complexity
to any 4-round iterated EM scheme with 2 keys. The generalized attack works by
guessing the value of the most common key (i.e., the key that is added at least 3
times), partially encrypting (decrypting) the plaintexts (ciphertexts), and thus
obtaining the inputs/outputs of a single-key EM scheme with a single permuta-
tion (which is fully known after guessing the most common key). However, as
we show in the rest of this paper, when D > N1/2, more efficient attacks exist
on all 4-round 2-key EM schemes.

3.3 The Basic Version of Our New Multibridge Attack on 4-Round
Iterated Even-Mansour with Two Alternating Keys

The approach of the previous attack was to guess K0, and thus “peel off” the first
and last rounds on the 4-round EM scheme with 2 alternating keys. Although
this approach seems natural, it gives the tradeoff curve of TD = N2 only for
D ≤ N1/2, and thus its time complexity is at least T ≥ N3/2. We now present
our new attack on this scheme which achieves the same tradeoff for any D ≤ N ,
and thus enables us to reduce the time complexity to T = N .

Unlike the previous attack, which guessed the value of K0, our attack guesses
the value of some internal state for which a special self-similarity property holds.
This property allows us to split the cipher into two parts which can be analyzed
independently. While standard meet-in-the-middle attacks also split the cipher
into two parts, in our attack the two parts of the cipher are nested (rather than
concatenated), similarly to attacks based on the splice-and-cut technique [3].

5 Schemes in which there is a key that is added only once are very weak (as shown in
the full version of this paper [8]).

Cryptanalysis of Iterated Even-Mansour Schemes with Two Keys 447

However, it is interesting to note that while splice-and-cut attacks consider the
first and the last rounds of the cipher as consecutive rounds (i.e., the cipher
is spliced using the plaintext-ciphertext pairs), here we connect (or bridge) the
cipher internally and consider as consecutive rounds its two internal ends.

We begin by describing our multibridge attack for the specific case of D = N
(i.e., given the full code-book), for which the attack runs in time T = N . In this
case, we look for some plaintext-ciphertext pair (P i, Ci) with the internal fixed-
point property X i

1 = X̂ i
3 (i.e., we connect X i

1 and X̂ i
3 using a “bridge”). Since

XOR’ing the same key twice leaves the result unchanged, this self-similarity
property also implies that X̂ i

1 = X i
3 (i.e., X̂ i

1 and X i
3 are now connected using

another bridge, which we get “for free”), and this allows us to split the cipher
into 2 nested parts6, each independently suggesting a value for the key K0.
Finally, the suggestions are merged using a meet-in-the-middle technique. Note
that for a specific plaintext-ciphertext pair, this internal fixed-point property
occurs with probability 1/N , and thus given D = N data, with high probability,
one of the plaintext-ciphertext pairs satisfies this property. The details of the
basic multibridge attack are given below (see Fig. 5):

1. For each of the D = N known plaintext-ciphertext pairs (P i, Ci):
(a) Calculate P i ⊕ Ci, and store it in a sorted list L1, next to P i.

2. For each of the N possible values of Y j
1 :

(a) Compute Ŷ j
0 = F−1

1 (Y j
1).

(b) Assume that Ŷ j
3 = Y j

1 , and compute Y j
4 = F4(Ŷ

j
3).

(c) Compute Ŷ j
0 ⊕ Y j

4 and search for matches with this value in L1.

(d) For each match, obtain P i, calculate a suggestion for K0 = P i ⊕ Ŷ j
0 .

Store all the suggestions in a sorted list L2, next to Y j
1 . We expect L2

to contain about N entries.
3. For each of the N possible values of Ẑ�

1 (i.e., the intermediate encryption
value obtained after applying 1 round and adding K1):
(a) Compute Z�

2 = F2(Ẑ
�
1).

(b) Assume that Z�
3 = Ẑ�

1, and compute Ẑ�
2 = F−1

3 (Z�
3).

(c) Compute K0 = Z�
2 ⊕ Ẑ�

2 and search for matches in L2. We expect one
match on average for a given value of K0.

(d) For each match, obtain Y j
1 , calculate a suggestion for K1 = Y j

1 ⊕ Ẑ�
1.

(e) Test the suggestion for the full key (K0,K1) using a trial encryption,
and if it succeeds, return it.

The success of the attack is based on the observation above, namely, given
D = N plaintext-ciphertext pairs (P i, Ci), then with high probability, there
exists an i such that X i

1 = X̂ i
3. Since we iterate over all possible values of Y j

1 in

Step 2 of the attack, then for Y j
1 = X i

1, we calculate Ŷ j
0 ⊕Y j

4 = X̂ i
0⊕X i

4 = P i⊕Ci

in step 2.(c). Thus, we get a match with the correct value of K0 is Step 2.(d),
and we store it next to Y j

1 = X i
1 in the list L2. Similarly, since we iterate over all

6 In fact, as described in the detailed attack, the first part of the cipher is in itself
also composed of 2 parts.

448 I. Dinur et al.

possible values of Ẑ�
1, then for Ẑ�

1 = X̂ i
1, we have Z�

3 = Ẑ�
1 = X̂ i

1 = X i
3. Hence,

we calculate the correct value of K0 in Step 3.(c), obtain the match with L2 such
that Y j

1 = X i
1, and obtain the correct K1 = Y j

1 ⊕ Ẑ�
1 = X i

1⊕ X̂ i
1. As a result, we

encounter the correct suggestion for the full key in Step 3.(e) and return it.
The attack is composed of a sequential execution of 3 mains steps, each has a

time complexity of N : in Step 1, we perform a simple XOR operation for each
of the D = N plaintext-ciphertext pairs, and allocate the list L1, which is of
size N . In Step 2, we iterate over N possible values of Y j

1 , and for each such
value we expect a single match in L1 in Step 2.(c), implying that the complexity
of Step 2 is N . Finally, since the expected size of L2 is N , for each suggestion
of K0 we expect a single match in Step 3.(c), and thus the time complexity of
Step 3 is N , as claimed. In total, the analysis shows that the time complexity of
the full attack is N , and its memory complexity is N as well.

Step 1: For all i

P i
⊕

F1

⊕
F2

⊕
F3

⊕
F4

⊕
Ci

K0 K1 K0 K1 K0⊕
Store in L1

Step 2(a): For a given Δ
s
for all j

P
⊕

F1

⊕
F2

⊕
F3

⊕
F4

⊕
C

K0 K1 K0 K1 K0⊕
Find in L1; Deduce suggested K0; Store in L2

Y j
1 Y j

1 ⊕Δ
s

Step 2(b): For a given Δ
s
for all �

P
⊕

F1

⊕
F2

⊕
F3

⊕
F4

⊕
C

K0 K1 K0 K1 K0

Deduce suggested K0; Find in L2; Find suggested K1

Z�
1 Zj

1 ⊕Δ
s

Fig. 5. The Multibridge Attack

3.4 Our Generalized Multibridge Attack on 4-Round Iterated
Even-Mansour with Two Alternating Keys

Given D < N data, we do not expect to have a plaintext-ciphertext pair that
satisfies the internal fixed-point property. In order to generalize the attack for

Cryptanalysis of Iterated Even-Mansour Schemes with Two Keys 449

any D ≤ N , we first notice that the internal fixed-point property X i
1 = X̂ i

3 can
be replaced by the more general “bridging” property X i

1 = X̂ i
3⊕Δ, for any fixed

known value of7 Δ (the previously described fixed-point property is the special
case of Δ = 0). Thus, in Step 2.(b) we calculate Ŷ j

3 = Y j
1 ⊕Δ, and similarly in

Step 3.(b) we calculate Z�
3 = Ẑ�

1 ⊕Δ.
When we fix one value of Δ, we expect to have a pair (P i, Ci) such that

X i
1 = X̂ i

3 ⊕Δ with probability of about D/N . Thus, in order to recover the key
with high probability, we randomly choose N/D different values of Δ, indexed
by Δs, and run a variant of the fixed-point multibridge attack independently for
each value. This is a similar approach to the one used in [10] in order to extend
the SlideX attack on 1-round 2-key EM to all D ≤ N1/2. The details of the
generalized multibridge attack are given below:

1. For each of the D plaintext-ciphertext pairs (P i, Ci):

(a) Calculate P i ⊕ Ci, and store it in a sorted list L1, next to P i.

2. For N/D arbitrary values of Δs:

(a) Apply a variant of the basic multibridge attack using Δs.

As we execute a variant of the fixed-point attack N/D times, the expected
time complexity of the attack is N2/D. The size of the list L1 is D, implying
that the size of L2 (the second list allocated in the multibridge attack) is D as
well, and thus the memory complexity of the attack is D.

We conclude by noting that this attack can also be applied directly to the
attack of Merkle and Hellman against 2K3DES [14]. The resulting attack is es-
sentially the known plaintext variant of van Oorschot and Wiener [29] to Merkle
and Hellman’s attack, i.e., an attack on 2K3DES with D known plaintexts and
running time of N2/D.

3.5 Application to 4-Step LED-128

LED is a 64-bit lightweight iterated EM block cipher, proposed at CHES 2011
[13]. The cipher has two main variants: a one-key version called LED-64, and a
two-key version called LED-128. We concentrate on the 128-bit variant, which
has 12 steps, in which the two keys are alternately used. The best previously
known attack on 4-step LED-128 was described in [23] (and also described in
Section 3.2 for a general 4-step EM cipher with alternating keys), and gives a
tradeoff of TD = 2128, but only for D ≤ 232. We can directly apply our improved
attack, described in Section 3.4, to 4-step LED-128, we obtain the tradeoff of
TD = 2128 for any D ≤ 264. Thus, we improve the time complexity of the best
known attack on this scheme from 296 to 264.

We note that recently, up to 8 steps of the 2-key alternating EM scheme have
been attacked faster than exhaustive search (see [9]). However, all the known

7 Thus, we do not exploit the actual fixed-point in a strong way (such as in [1]), but
merely some fixed linear relation between Xi

1 and X̂i
3.

450 I. Dinur et al.

attacks on more than 4 steps are marginal in the sense that they improve the
time complexity of exhaustive search only by a logarithmic factor in N , and
thus our new attack on the 4-step version of LED-128 is currently the best
non-marginal attack on this scheme.

3.6 Application to Reflection Cryptanalysis

Reflection cryptanalysis was introduced by Kara in [17] as a self-similarity attack
on GOST and related block ciphers, and generalized to a statistical attack on
a broader class of ciphers (called “PRINCE-like” ciphers) by Soleimany et al.
in [28]. A PRINCE-like cipher is designed to have a specific symmetry property
around its middle round, called α-reflection.8 The definition and analysis of
PRINCE-like ciphers in [28], was inspired by the block cipher PRINCE [5], that
used the α-reflection property in order to realize decryption on top of encryption
with a negligible additional cost.

In reflection cryptanalysis of PRINCE-like ciphers, we consider the encryp-
tion process of a single plaintext, and study the difference between its internal
encryption values, which are symmetric with respect to the middle round of the
cipher. The goal is to iteratively construct a reflection distinguisher, which is a
strong non-random property, likely to be present in several rounds of PRINCE-
like ciphers (as shown in [28]). In particular, a reflection distinguisher on r
rounds of the cipher (denoted by EK), gives a specific value of Δ for which
Pr(X ⊕ EK(X) = Δ) > 2−n (where the probability is taken over the input X).

In this section, we present a variant of the multibridge attack as a generic key-
recovery method for reflection cryptanalysis. This attack can be considered as
the reflection cryptanalysis counterpart of the key-recovery attack of Daemen [6]
for differential cryptanalysis of ciphers based on the Even-Mansour construction.
The attack assumes that we have a reflection distinguisher with probability p >
2−n on r rounds of the cipher, and recovers the secret key for a total of r + 2
rounds, by adding one round at the beginning and one round at the end (i.e., the
reflection distinguisher covers rounds 2, 3, . . . , r + 1). For the sake of simplicity,
we first assume that the cipher is a single-key iterated Even-Mansour scheme,
where the secret key is denoted by K. We now describe the attack, assuming
that we obtain D plaintext-ciphertext pairs, such that D > p−1.

1. For 2n/(p ·D) arbitrary values of Ŷ j
0 :

(a) Compute Y j
1 = F1(Ŷ

j
0).

(b) Assume that Ŷ j
r+1 = Y j

1 ⊕ Δ (where the value of Δ is given by the

reflection distinguisher), and compute Y j
r+2 = Fr+2(Ŷ

j
r+1).

(c) Store Ŷ j
0 ⊕ Y j

r+2 in a sorted list L, next to Ŷ j
0 .

2. For each of the D plaintext-ciphertext pairs (P i, Ci):
(a) Compute P i ⊕ Ci, and search the list L for matches.

8 If we denote by EK the encryption of r rounds in the middle of the cipher under
the key K, then the α-reflection property (for a fixed value of α) states that for any
input X, EK(X) = E−1

K⊕α(X).

Cryptanalysis of Iterated Even-Mansour Schemes with Two Keys 451

(b) For each match obtain Ŷ j
0 , and calculate a suggestion for K = P i ⊕ Ŷ j

0 .
(c) Test the suggestion for the key K using a trial encryption, and if it

succeeds, return it.

We have D > p−1 plaintext-ciphertext pairs, out of which p · D > 1 are
expected to satisfy the reflection characteristic. As we evaluate 2n/(p ·D) values
of Ŷ j

0 in Step 1 of the attack, according to the birthday paradox, we expect at

least one match between Ŷ j
0 and P i⊕K such that (P i, Ci) satisfies the reflection

property. Once we obtain such a match (i.e., Ŷ j
0 = P i⊕K), we recover the correct

key in Step 2.(c).
As we expect less than one match in L in Step 2.(a) for an arbitrary (P i, Ci),

the time complexity of the attack is max(D, 2n/(p · D)). The time complexity
is minimized to 2n/2 · p−1/2 by choosing D = 2n/2 · p−1/2 (note that it is not
reasonable to exploit more than 2n/2 · p−1/2 data). The memory complexity of
the attack is 2n/(p ·D), but can be easily reduced to D, by exchanging the order
of steps 1 and 2 of the attack.

In order to apply the attack to more complex key schedules, the attacker
can exploit the internal properties of the reflection distinguisher to recover more
key material (perhaps using more data, or function evaluations in Step 1 of the
attack). However, this extension is highly dependent on the internal properties
of the cipher, and is thus out of the scope of this paper.

4 Classification and Summary of Our Attacks on All
4-Round 2-Key Iterated Even-Mansour Schemes

In the rest of the paper, we analyze all the remaining iterated EM schemes
with 4 rounds and 2 keys, and show that the best attack on each one of them
has a time complexity of N . We begin by noting that each such construction
can be described by a sequence of 5 keys, which specifies the order in which
the keys K0 and K1 are added (over GF (2)) to the internal state. For exam-
ple, we denote the 4-round EM scheme with alternating keys (of Fig. 2) by
[K0,K1,K0,K1,K0]. Clearly, each such scheme has an equivalent representation
which is obtained by renaming the keys K0 and K1 (e.g., [K0,K0,K1,K1,K0] is
equivalent to [K1,K1,K0,K0,K1]). In addition, since our attacks assume that
the public permutations Fi (and F−1

i) are chosen at random (i.e., we do not
exploit any special properties of the public permutations), from a cryptana-
lytic point of view, the roles of encryption and decryption can be exchanged.
Namely, if we reverse the order in which the keys are added, we get an equiv-
alent scheme. For example, the scheme [K0,K0,K1,K1,K0] is equivalent to
[K0,K1,K1,K0,K0], since any attack on [K0,K0,K1,K1,K0] can also be ap-
plied to [K0,K1,K1,K0,K0] (by reversing the roles of encryption and decryp-
tion), and vice-versa. Altogether, the scheme [K0,K0,K1,K1,K0] belongs to an
equivalence class (EC) with 4 members, containing the 3 additional schemes
[K1,K1,K0,K0,K1], [K0,K1,K1,K0,K0] and [K1,K0,K0,K1,K1]. Since any

452 I. Dinur et al.

attack on a member of an EC is applicable to its other members, we only need
to describe an attack on a representative of the EC.

Table 2 lists the equivalence classes of all the 4-round 2-key iterated EM
schemes, next to the complexities of our best attacks. For the sake of simplifi-
cation, we will refer to each EC as a single scheme, using its ID as described in
Table 2. For example, our attack on the schemes of the first EC is simply refereed
to an attack on the “EC1 scheme”, whose representative is [K0,K1,K1,K1,K1].

The attack on EC7, which is 4-round EM with alternating keys, was already
described in Section 3.4. In the next section we present the most complex multi-
bridge attacks on the classes EC8 and EC9. The simpler attacks on EC1–EC6
are presented in the full version of this paper [8].

Table 2. Classification and Attacks on Iterated Even-Mansour Schemes with Four
Rounds and Two Keys

EC ID EC Representative Reference Data Time Memory

EC1 [K0,K1,K1, K1,K1] [8] O(1) N O(1)

EC2 [K0,K1,K0, K0,K0] [8] O(1) N O(1)

EC3 [K0,K0,K1, K0,K0] [8] O(1) N O(1)

EC4 [K0,K0,K1, K1,K1] [8] O(1) N N

EC5 [K0,K1,K1, K0,K0] [8] O(1) N N

EC6 [K0,K1,K1, K1,K0] [8] D ≤ N N2/D D

EC7 [K0,K1,K0, K1,K0] Section 3.4 D ≤ N N2/D D

EC8 [K0,K1,K0, K1,K1] Section 5.1 D ≤ N N2/D D

EC9 [K0,K1,K0, K0,K1] Section 5.2 D ≤ N1/2 N2/D D

N1/2 < D ≤ N N2/D N

Each EC (equivalence class) is described using an ID and a representative scheme.

Classification and Attacks on All 3-Round 2-Key Iterated Even-
Mansour Schemes. We did not find any cryptanalytic techniques which are
specifically applicable to 3-round 2-key EM schemes. However, for the sake of
completeness, we also classify all 3-round 2-key iterated EM schemes and spec-
ify which variant of our 4-round attacks can be used to break it (with the same
complexity parameters).

1. [K0,K1,K1,K1] and [K0,K1,K0,K0] can be broken with a variant of the
attack on EC1.

2. [K0,K1,K1,K0] can be broken with a variant of the attack on EC4.
3. [K0,K1,K0,K1] can be broken with a variant of the attack on EC7.

5 Multibridge Attacks on EC8 and EC9

In this section we consider the schemes EC8 and EC9, and show that they can
be attacked with complexity DT = N2, for all D ≤ N . The attacks on these

Cryptanalysis of Iterated Even-Mansour Schemes with Two Keys 453

schemes use the same general multibridge technique as our previous attack on
EC7 in Section 3, namely, we use a generalized version of the internal fixed-
point property in order to internally bridge different parts of the cipher. Finally,
the suggestions for the key obtained from the two parts are merged using a
meet-in-the-middle technique.

5.1 A Multibridge Attack on EC8

In order to attack the scheme [K0,K1,K0,K1,K1], we look for a plaintext-
ciphertext pair (P i, Ci) such that X̂ i

2 = P i ⊕ Δs (for arbitrary values of Δs).
The details of the multibridge attack on EC8 are given below:

1. For N/D arbitrary values of Δs:
(a) For each of the D plaintext-ciphertext pairs (P i, Ci):

i. Assume that X̂ i
2 = P i ⊕Δs and compute X i

3 = F3(X̂
i
2).

ii. Compute X i
3 ⊕ Ci and store it in a sorted list L1, next to Ci.

(b) For each of the N possible values of Ŷ j
3 :

i. Compute Y j
4 = F4(Ŷ

j
3).

ii. Compute Ŷ j
3 ⊕ Y j

4 , and search for matches in L1.

iii. For each match, obtain Ci, compute a suggestion for K1 = Ci⊕ Y j
4 ,

and store the suggestion in a sorted list L2, next to P i.
(c) For each of the N possible values of Ẑ�

0:
i. Compute Z�

1 = F1(Ẑ
�
0).

ii. Assume that Z�
2 = Ẑ�

0 ⊕Δs, and compute Ẑ�
1 = F−1

2 (Z�
2).

iii. Compute a suggestion for K1 = Z�
1 ⊕ Ẑ�

1 and search for it in the list
L2.

iv. For each match, obtain P i, compute a suggestion for K0 = P i ⊕ Ẑ�
0.

v. Test the full key (K0,K1) using a trial encryption, and if it succeeds,
return it.

The analysis of the attack is very similar to the analysis of our general multi-
bridge attack in Section 3.4, and thus given D ≤ N known plaintext-ciphertext
pairs, its time complexity is N2/D and its memory complexity is D.

5.2 A Multibridge Attack on EC9

In order to attack the scheme [K0,K1,K0,K0,K1], we look for a plaintext-
ciphertext pair (P i, Ci) such that X i

1 = Ci ⊕ Δs (for arbitrary values of Δs).
The details of the multibridge attack on EC9 are given below:

1. For N/D arbitrary values of Δs:
(a) For each of the D plaintext-ciphertext pairs (P i, Ci):

i. Assume that X i
1 = Ci ⊕Δs and compute X̂ i

0 = F−1
1 (X i

1).

ii. Compute a suggestion for K0 = X̂ i
0 ⊕P i and store it in a sorted list

L1, next to X i
1.

(b) For each of the N possible values of Ŷ j
1 :

454 I. Dinur et al.

i. Compute Y j
2 = F2(Ŷ

j
1).

ii. Assume that Y j
4 = Ŷ j

1 ⊕Δs and compute Ŷ j
3 = F−1

4 (Y j
4).

iii. Compute Y j
2 ⊕ Ŷ j

3 and store this value on a sorted list L2, next to

Ŷ j
1 and Y j

2 .

(c) For each of the N possible values of Ẑ�
2:

i. Compute Z�
3 = F3(Ẑ

�
2).

ii. Compute Ẑ�
2 ⊕ Z�

3 and search for it in the list L2.
iii. For each match, obtain Y j

2 (and Ŷ j
1), compute a suggestion for K0 =

Y j
2 ⊕ Ẑ�

2, and search it in the sorted list L1.
iv. For each match, obtain X i

1 and compute a suggestion for K1 = X i
1⊕

Ŷ j
1 .

v. Test the full key (K0,K1) using a trial encryption, and if it succeeds,
return it.

Similarly to the multibridge attacks on EC7 and EC8, the time complexity
of the attack is N2/D for any D ≤ N , as the time complexity of each of the
Steps 1.(a), 1.(b) and 1.(c) is N . However, unlike the previous attacks which had
a reduced memory complexity ofD, the list L2 contains N elements, and thus the
memory complexity of this attack is N . As a result, when D ≤ N1/2, the most
efficient attack on this scheme is the generalized version of the attack presented
in Section 3.2, which has the same running time but requires less memory.

We note that in cases where D > N1/2, but the available memory M satisfies
D ≤ M < N , it is possible obtain a tradeoff between the memory and time
complexities of the attack. Although in this paper we mainly consider tradeoffs
between data and time, an interesting open question is whether it is possible to
reduce the memory complexity of the attack for D > N1/2 without increasing
its time complexity.

6 Conclusions and Open Problems

In this paper, we studied the security of iterated Even-Mansour schemes with two
keys. We showed that all such schemes with at most 4 rounds provide security
of at most 2n (compared to the 22n complexity of exhaustive key search). Our
theoretical results allowed us to reduce the complexity of the best known attack
on 4-step LED-128 from 296 to 264, and to develop a generic key-recovery tool
for reflection cryptanalysis. In order to obtain these results, we developed the
novel multibridge technique which combines the advantages of the dissection [7]
and the splice-and-cut [3] techniques.

We conclude this paper with a list of several open problems and research
directions which arise naturally from the results of our paper.

1. Finding Better Attacks on 3-round EM with Two Keys. Using our
techniques, we could not find attacks on 3-round EM with alternating keys
which are better than the attacks on 4-round EM with alternating keys. If
such attacks indeed do not exist, then there is no security gain in adding

Cryptanalysis of Iterated Even-Mansour Schemes with Two Keys 455

a round to the 3-round EM scheme. Such a situation is somewhat unusual,
and hence, one may anticipate that better attacks exist on 3-round EM
with alternating keys. We note that this is a similar scenario to cascade
encryption, where the complexity of the best attack on 3-encryption is the
same as the complexity of the best attack on 4-encryption [7]. However, in
cascade encryption, the complexities are equal only for the specific attacks
that minimize the time complexity, while in our case, the complexities are
the same for all attacks on the tradeoff curve.

2. Finding the Minimal number r for which r-round EM with Two
Keys Provides 2n-bit Security. This is an interesting research direction
whose equivalent has been extensively studied in the domain of Feistel con-
structions (see [20,25,26]). In the case of EM with two keys, we are not aware
of any attacks on the 5-round alternating key scheme which improve over ex-
haustive search by a significant factor. On the other hand, when considering
relatively small (polynomial in n) improvements over exhaustive search, up
to 8 rounds can be broken (see [9]), but no attacks at all are known for r ≥ 9
rounds. Clearly, this fundamental question can be generalized to more keys,
namely, what is the minimal number of rounds for which mn-bit security can
be achieved for n-bit iterated EM constructions with m independent keys?

3. Other Attack Models. In this paper, we concentrated on attacks in the
most conservative model in which the adversary has access only to known
plaintexts, and the complexity of the attack takes into consideration all op-
erations (including a potential preprocessing stage). It would be interesting
to see whether the complexities of the attacks can be reduced in other mod-
els, where chosen or even adaptively chosen plaintext queries are allowed,
and perhaps precomputation is not counted in the overall complexity of the
attack. We note that in a recent work of Joux and Fouque [12], such im-
proved attacks were found for the 1-round EM construction with two keys,
suggesting that similar results may be possible for iterated EM with two
keys as well.

4. Considering Memory Complexity. As in all previous papers on iterated
EM, we concentrated in this paper on tradeoffs between data and time com-
plexities, assuming that we always have enough memory to apply the most
efficient attack. It would be interesting to consider more general tradeoffs
between data, memory and time complexities, and in particular, minimize
the memory complexity for which the (presumably) optimal curve DT = 22n

can be obtained. We note that a similar question with respect to 1-round
EM was asked in [10] and partially answered in [12].

5. More Complex Key Schedules. As stated in the introduction, iterated
EM schemes can be considered with a wide variety of key schedules, gener-
ating an endless field of research. However, even when restricted to schemes
with two keys as we do in this paper, one may consider more complex key
schedules in which combinations of the keysK0 and K1 can be used as round
keys. It seems that the attacks presented in this paper cannot target such
key schedules, and for example, we could not find an attack of complexity
2n on 4-round EM with the keys [K0,K1,K0,K1,K0⊕K1]. Hence, it will

456 I. Dinur et al.

be interesting to find new techniques that will be able to handle such key
schedules, or to show lower bounds on the security of the respective iterated
EM schemes.

References

1. Aerts, W., Biham, E., De Moitie, D., De Mulder, E., Dunkelman, O., Indesteege,
S., Keller, N., Preneel, B., Vandenbosch, G.A.E., Verbauwhede, I.: A Practical
Attack on KeeLoq. J. Cryptology 25(1), 136–157 (2012)

2. Andreeva, E., Bogdanov, A., Dodis, Y., Mennink, B., Steinberger, J.P.: On the
Indifferentiability of Key-Alternating Ciphers. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 531–550. Springer, Heidelberg (2013)

3. Aoki, K., Sasaki, Y.: Preimage Attacks on One-Block MD4, 63-Step MD5 and
More. In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) SAC 2008. LNCS, vol. 5381,
pp. 103–119. Springer, Heidelberg (2009)

4. Bogdanov, A., Knudsen, L.R., Leander, G., Standaert, F.-X., Steinberger, J.P.,
Tischhauser, E.: Key-Alternating Ciphers in a Provable Setting: Encryption Using
a Small Number of Public Permutations - (Extended Abstract). In: Pointcheval,
Johansson (eds.) [27], pp. 45–62

5. Borghoff, J., Canteaut, A., Güneysu, T., Kavun, E.B., Knezevic, M., Knudsen,
L.R., Leander, G., Nikov, V., Paar, C., Rechberger, C., Rombouts, P., Thomsen,
S.S., Yalçin, T.: PRINCE - A Low-Latency Block Cipher for Pervasive Computing
Applications - Extended Abstract. In: Wang, Sako (eds.) [30], pp. 208–225

6. Daemen, J.: Limitations of the Even-Mansour Construction. In: Imai, et al. (eds.)
[15], pp. 495–498

7. Dinur, I., Dunkelman, O., Keller, N., Shamir, A.: Efficient Dissection of Compos-
ite Problems, with Applications to Cryptanalysis, Knapsacks, and Combinatorial
Search Problems. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 719–740. Springer, Heidelberg (2012)

8. Dinur, I., Dunkelman, O., Keller, N., Shamir, A.: Cryptanalysis of iterated even-
mansour schemes with two keys. Cryptology ePrint Archive, Report 2013/674
(2013), http://eprint.iacr.org/

9. Dinur, I., Dunkelman, O., Keller, N., Shamir, A.: Key Recovery Attacks on 3-round
Even-Mansour, 8-step LED-128, and Full AES2. In: Sako, K., Sarkar, P. (eds.)
ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 337–356. Springer, Heidelberg
(2013)

10. Dunkelman, O., Keller, N., Shamir, A.: Minimalism in Cryptography: The Even-
Mansour Scheme Revisited. In: Pointcheval, Johansson (eds.) [27], pp. 336–354

11. Even, S., Mansour, Y.: A construction of a cioher from a single pseudorandom
permutation. In: Imai, et al. (eds.) [15], pp. 210–224

12. Fouque, P.-A., Joux, A., Mavromati, C.: Multi-user collisions: Applications to Dis-
crete Logs, Even-Mansour and Prince. Cryptology ePrint Archive, Report 2013/761
(2013), http://eprint.iacr.org/

13. Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.: The LED Block Cipher. In:
Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 326–341. Springer,
Heidelberg (2011)

14. Hellman, M.E.: A Cryptanalytic Time-Memory Trade-Off. IEEE Transactions on
Information Theory 26(4), 401–406 (1980)

http://eprint.iacr.org/
http://eprint.iacr.org/

Cryptanalysis of Iterated Even-Mansour Schemes with Two Keys 457

15. Matsumoto, T., Imai, H., Rivest, R.L. (eds.): ASIACRYPT 1991. LNCS, vol. 739.
Springer, Heidelberg (1993)

16. Isobe, T., Shibutani, K.: Security Analysis of the Lightweight Block Ciphers XTEA,
LED and Piccolo. In: Susilo, W., Mu, Y., Seberry, J. (eds.) ACISP 2012. LNCS,
vol. 7372, pp. 71–86. Springer, Heidelberg (2012)

17. Kara, O.: Reflection Cryptanalysis of Some Ciphers. In: Chowdhury, D.R., Rijmen,
V., Das, A. (eds.) INDOCRYPT 2008. LNCS, vol. 5365, pp. 294–307. Springer,
Heidelberg (2008)

18. Lampe, R., Patarin, J., Seurin, Y.: An Asymptotically Tight Security Analysis of
the Iterated Even-Mansour Cipher. In: Wang, Sako (eds.) [30], pp. 278–295

19. Luby, M., Rackoff, C.: How to Construct Pseudorandom Permutations from Pseu-
dorandom Functions. SIAM J. Comput. 17(2), 373–386 (1988)

20. Mandal, A., Patarin, J., Seurin, Y.: On the Public Indifferentiability and Correla-
tion Intractability of the 6-Round Feistel Construction. In: Cramer, R. (ed.) TCC
2012. LNCS, vol. 7194, pp. 285–302. Springer, Heidelberg (2012)

21. Mendel, F., Rijmen, V., Toz, D., Varici, K.: Differential Analysis of the LED Block
Cipher. In: Wang, Sako (eds.) [30], pp. 190–207

22. Merkle, R.C., Hellman, M.E.: On the Security of Multiple Encryption. Commun.
ACM 24(7), 465–467 (1981)

23. Nikolić, I., Wang, L., Wu, S.: Cryptanalysis of Round-Reduced LED. In: Moriai,
S. (ed.) FSE 2013. LNCS, vol. 8424, pp. 112–130. Springer, Heidelberg (2014)

24. Patarin, J.: Improved security bounds for pseudorandom permutations. In:
Graveman, R., Janson, P.A., Neumann, C., Gong, L. (eds.) ACM Conference on
Computer and Communications Security, pp. 142–150. ACM (1997)

25. Patarin, J.: Luby-Rackoff: 7 Rounds Are Enough for formula image Security. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 513–529. Springer, Heidelberg
(2003)

26. Patarin, J.: Security of Random Feistel Schemes with 5 or More Rounds. In:
Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 106–122. Springer, Hei-
delberg (2004)

27. Pointcheval, D., Johansson, T. (eds.): EUROCRYPT 2012. LNCS, vol. 7237.
Springer, Heidelberg (2012)

28. Soleimany, H., Blondeau, C., Yu, X., Wu, W., Nyberg, K., Zhang, H., Zhang, L.,
Wang, Y.: Reflection Cryptanalysis of PRINCE-Like Ciphers. Journal of Cryptol-
ogy, 1–27 (2013)

29. van Oorschot, P.C., Wiener, M.: A Known-Plaintext Attack on Two-Key Triple
Encryption. In: Damg̊ard, I.B. (ed.) EUROCRYPT 1990. LNCS, vol. 473,
pp. 318–325. Springer, Heidelberg (1991)

30. Wang, X., Sako, K. (eds.): ASIACRYPT 2012. LNCS, vol. 7658, pp. 2012–2018.
Springer, Heidelberg (2012)

Meet-in-the-Middle Attacks

on Generic Feistel Constructions

Jian Guo1, Jérémy Jean1, Ivica Nikolić1, and Yu Sasaki2

1 Nanyang Technological University, Singapore

2 NTT Secure Platform Laboratories, Tokyo, Japan

ntu.guo@gmail.com, {JJean,INikolic}@ntu.edu.sg, sasaki.yu@lab.ntt.co.jp

Abstract. We show key recovery attacks on generic balanced Feistel
ciphers. The analysis is based on the meet-in-the-middle technique and
exploits truncated differentials that are present in the ciphers due to
the Feistel construction. Depending on the type of round function, we
differentiate and show attacks on two types of Feistels. For the first type,
which is the most general Feistel, we show a 5-round distinguisher (based
on a truncated differential), which allows to launch 6-round and 10-round
attacks, for single-key and double-key sizes, respectively. For the second
type, we assume the round function follows the SPN structure with a
linear layer P that has a maximal branch number, and based on a 7-
round distinguisher, we show attacks that reach up to 14 rounds. Our
attacks outperform all the known attacks for any key sizes, have been
experimentally verified (implemented on a regular PC), and provide new
lower bounds on the number of rounds required to achieve a practical
and a secure Feistel.

Keywords: Feistel, generic attack, key recovery, meet-in-the-middle.

1 Introduction

A Feistel network [13] is a scheme that builds n-bit permutations from smaller,
usually n/2-bit permutations or functions. In ciphers based on the Feistel net-
work, both the encryption and the decryption algorithms can be achieved with
the use of a single scheme, thus such ciphers exhibit an obvious implementation
advantage. The Feistel-based design approach is widely trusted and has a long
history of usage in block ciphers. In particular, a number of current and former
international or national block cipher standards such as DES [6], Triple-DES [19],
Camellia [2], and CAST [5] are Feistels. In addition to the standard block ciphers,
the Feistel construction is an attractive choice for many lightweight ciphers, for
instance the recent NSA proposal SIMON [3], LBlock [26], Piccolo [24], etc. The
application of the Feistel construction is not limited only to ciphers, and has
been used to design other crypto primitives: the hash function SHAvite-3 [4],
the CAESAR proposal for authentication scheme LAC [27] and others.

The analysis of Feistel primitives and their provable security bounds depend
on the type of the round function implemented. Luby and Rackoff [21] have

P. Sarkar and T. Iwata (Eds.): ASIACRYPT 2014, PART I, LNCS 8873, pp. 458–477, 2014.
c© International Association for Cryptologic Research 2014

Meet-in-the-Middle Attacks on Generic Feistel Constructions 459

shown that an n-bit pseudorandom permutation can be constructed from an n/2-
bit pseudorandom function with 3-round Feistel network. In this construction,

the round functions are chosen uniformly at random from a family of 2n/2·2
n/2

functions – a set that can be enumerated with n/2 · 2n/2-bit keys. Later, Knud-
sen [20] considered a practical model, in which the round functions are chosen
from a family of 2k functions and showed a generic attack on up to 6 rounds.
Knudsen’s construction was coined as Feistel-1 by Isobe and Shibutani in [18]
to reflect the fact that it is the most general type of Feistels. They further in-
troduced the term Feistel-2 to denote ciphers in which the round functions are
composed of an XOR of a subkey followed by an application of a public function
or permutation. Generic attacks on Feistel-2 such as impossible differentials [20],
all-subkey recovery [17,18], and integral-like attacks [25] penetrate up to 6 rounds
when the key size equals the state size, and up to 9 rounds when the key is
twice as large as the block. Better attacks have been published, but they are on
so-called Feistel-3 that has round functions based on substitution-permutation
network (SPN), i.e. the rounds start with an XOR of a subkey, followed by a
layer of S-Boxes and a linear diffusion layer. The attacks on Feistel-3 presented
in [18] reach up to 7 rounds for equal key and state sizes, and 11 rounds for twice
larger keys.

We present attacks on Feistel-2 and Feistel-3 ciphers based on the meet-in-the-
middle cryptanalytic technique. Its most basic form corresponds to the textbook
case of Double-DES [22] and in the past few years, a few improvements have
been proposed to more specific cases, for instance, Dinur et al. [11] have gen-
eralized the attack on Double-DES when multiple encryption (more than two
n-bit keys) is used. Besides the applications to preimage attacks on hash func-
tions [1,16,23], a notable application of the meet-in-the-middle technique and a
line of research that has been started by Demirci and Selçuk [8] are the attacks
on the Advanced Encryption Standard (AES). They presented cryptanalysis of
AES-192 and AES-256 reduced to 8 rounds by improving the collision attack due
to Gilbert and Minier [14] and with the use of the meet-in-the-middle technique.
Later, their strategy has been revisited by Dunkelman, Keller and Shamir [12],
and most recently further improved by Derbez, Fouque and Jean [9, 10]. In this
advanced form, the attack combines both the classical differential attack and
the meet-in-the-middle strategy. In the differential attack, a high-probability dif-
ferential is used to detect statistical biases to deduce information on the last
subkey used in a block cipher. The attacker detects correct subkey guesses by
checking meet-in-the-middle equations during the encryption process. Namely,
the attack starts with a precomputation phase which is used to fully tabulate the
distinguishing behavior particular to the targeted cipher, e.g. AES, and later in
the online phase, the attacker searches for messages verifying the distinguisher
by checking the precomputed table.

Our Contributions. We show the best known generic attacks on Feistel-2
and Feistel-3 cipher constructions. Our analysis, and a preliminary step of the
attacks, relies on a special differential behavior of several consecutive rounds
that is inherited by the generic Feistel construction. This property can be seen

460 J. Guo et al.

as a distinguisher, and for Feistel-2 it extends to 5 rounds, while for Feistel-3 to
7 rounds. The attacks exploit the distinguishers, and by adding rounds before,
in the middle, and after the distinguisher, they can penetrate higher number of
rounds. The distinguisher allows the differential behavior of the Feistel rounds
to be enumerated offline and without the knowledge of the actual subkeys. This
in fact is the first step of our attacks: a precomputation phase used to create
a large look-up table. The next step is the collection of a sufficient number of
plaintext/ciphertext pairs, some of which will comply with the conditions of the
distinguisher. Each such pair suggests candidates for the round subkeys, and
the look-up table is used to filter the correct subkeys. This step is indeed the
meet-in-the-middle part of the attack.

In the case of the Feistel-2 construction, the number of rounds that our attacks
can reach depends on the ratio of key to state sizes k/n: the larger the ratio,
the more rounds we can attack. Namely, 4s + 2 rounds can be attacked for
k/n = (s+1)/2, which translates to 6 rounds when k = n, 8 rounds for k = 3n/2,
10 for k = 2n, etc. As long as the ratio is increasing, the number of attacked
rounds will grow. This property comes from the meet-in-the-middle nature of
the attacks, i.e. when we increase the key by bit size equivalent to one Feistel
branch (and thus allow the complexity of the attack to increase by this amount),
then we can add one round to the distinguisher in the offline phase, and prepend
one round in the online phase. Since the attack relies on the meet-in-the-middle
strategy, the complexities of these two phases are not multiplied but simply
added, hence the accumulative complexity remains below the trivial exhaustive
key search. In the analysis of Feistel-2, regardless of the number of attacked
rounds, we make no assumptions on the type of the round functions: they can
be any invertible or one-way functions or permutations, unique for each round.
What we assume, however, is that the round functions have standard differential
behavior. That is, given a large set of input-output differences of these functions
(which can be seen as a set of differentials), on average for each differential there
is one solution that conforms to it.

For the Feistel-3 construction and a linear diffusion layer P with maximal
branch number, we can attack up to 14 rounds of the ciphers when the key is
twice as large as the state (k = 2n), while for smaller keys we have attacks on
12 and 10 rounds, for key sizes k = 3n/2 and k = n, respectively. The above
generalization (the number of attacked rounds always increases when the key
size increase) is no longer possible as the data complexity grows beyond the full
codebook when key size is more than 2n bits. To reach more rounds compared
to Feistel-2, we use the SPN structure of the round function in both the offline
and online stages of the attack. The best such example given in the paper is
the redefinition of the Feistel-3 by moving the linear layer from one round to
the surrounding rounds: this allows to extend the attack by an additional round.
Other improvements based on the SPN structure are better (in terms of number
of rounds) distinguisher and key recovery. For the main Feistel-3 attacks, we
assume that the P-layers of all rounds are the same, but in case they are different,
we show that the attacks can be adapted on only one round less.

Meet-in-the-Middle Attacks on Generic Feistel Constructions 461

Table 1. Comparison of previous results and ours for n-bit block-length, k-bit key-
length and c-bit S-Box length

Target
Round #rounds and complexity

Reference
functions k = n k = 3n/2 k = 2n

bijective 5 23n/4 6 2n 7 23n/2 [20]

— 3 2n/2 5 2n 7 23n/2 [17]

Feistel-2 — 5 2n/2 7 25n/4 9 23n/2 [18]

bij., ident. 6 2n/2 — — — — [25]

— 6 23n/4 8 24n/3 10 211n/6 Section 3

— 7 23n/4+c 9 2n+c 11 27n/4+c [18]

Feistel-3 — 9 2n/2+4c 11 2n+4c 13 23n/2+4c Section 4

identical 10 2n/2+4c 12 2n+4c 14 23n/2+4c Section 4

Our analysis results in a recovery of the whole values (not only partial values
or bytes) of certain subkeys. This is the main advantage of the attack, and by
repeating it a few times, we can recover one by one all the subkeys and thus
be able to encrypt and decrypt without the knowledge of the initial master key.
Hence, the key schedule plays no role in the analysis and the attacks are in fact
an all-subkey recovery. We have also experimentally confirmed the validity of our
analysis on the case of small state Feistel-21. The experiments ran on a regular
PC supported the complexity evaluation and the correctness of the attacks. All
of the results described in this paper are summarized in Table 1 and compared
to the already-published generic analysis on Feistel-2 and Feistel-3.

Due to space constraints, in the sequel, we present only our main ideas that
result in 6-round attack on Feistel-2 and 10-round attack on Feistel-3. The full
version of the paper, including additional attacks, the technique to recover all
the subkeys and the experimental results can be found in [15].

2 Preliminaries

Throughout the paper, we assume that the block size is n bits and the Feis-
tel is balanced, thus the branch size is n/2 bits. The internal state value (the
branch) is denoted by vi and the n-bit plaintext is assigned to v0‖v−1. We
count the rounds starting from 0, and at round i, vi+1 is computed as vi+1 ←
RoundFunction(vi, vi−1,Ki). The round function depends on the class defined
further, i.e. it is either Feistel-2 or Feistel-3. In the description of the attacks, we
omit the network twist in the last round as it has not cryptographic significance.

Generic Feistel-2 Construction. A Feistel-2 round function consists of a
subkey XOR and a subsequent public function as illustrated in Figure 1. Several

1 The interested reader can find the implementations of our attacks at
http://www1.spms.ntu.edu.sg/~syllab/attacks/F2-6rounds.tar.gz and
http://www1.spms.ntu.edu.sg/~syllab/attacks/F2-8rounds.tar.gz.

http://www1.spms.ntu.edu.sg/~syllab/attacks/F2-6rounds.tar.gz
http://www1.spms.ntu.edu.sg/~syllab/attacks/F2-8rounds.tar.gz

462 J. Guo et al.

Fig. 1. Feistel-2

Fig. 2. Feistel-3

S P

 −1

+1

Fig. 3. Simplified Feistel-3

classes of public functions can be considered. Typical classifications are bijective
or non-bijective, invertible or non-invertible, and different functions for different
rounds or an identical function for all rounds.

Generic Feistel-3 Construction. A Feistel-3 round function consists of a
subkey XOR, an S-layer, and a P-layer. The S-layer performs word-wise S-Boxes
applications, while the P-layer performs a linear operation for mixing all words.
Several classes of S-layers and P-layers can be considered. An example of the
classification of the S-layer is different S-Boxes for different words or an identi-
cal S-Box for all words. The P-layers can be classified according to the branch
number2 of the linear transformation used in the layer. In our analysis, if c is
the bit size of a word, then the internal state value has n/2c words, and we
assume that the branch number of the linear operation in the P-layer is n/2c+1,
i.e. it is maximal. For example, a multiplication by an MDS matrix produces
the maximal branch number of n/2c+ 1. The Feistel-3 construction is shown in
Figure 2. We often use the simplified description given in Figure 3.

Solutions of Differential Equations. In our analysis, we make the follow-
ing assumption on the non-linear round functions Fi of the Feistel cipher. We
assume that given a large set of fixed input and output differences of Fi, i.e.
(ΔIj , ΔOj), j = 1, 2, . . ., then on average there is one solution of each of the dif-
ferential equations Fi(X ⊕ΔIj) ⊕ Fi(X) = ΔOj , j = 1, 2, That is, some of
the equations may have many solutions and some none, however, we assume that
on average (over a large set) the number of solution is one per equation. This
requirement is sufficient for our analysis, as we solve the differential equations
for a large number of (ΔI , ΔO), thus we can take the average case which is one
solution per equation. Our computer simulations of the attacks confirmed this
expectation and the complexity of the attacks was as predicted by our analysis,
in part because the aforementioned assumption is true in the case of randomly
chosen (Feistel-2 and Feistel-3) non-linear round functions. There are examples
of round functions3 where the assumption does not hold, for instance, linear

2 The branch number of a linear transformation is the minimum number of active/non-
zero input and output words over all inputs with at least one active/non-zero word.

3 We do not claim attacks on Feistel-2 that have this type of round functions.

Meet-in-the-Middle Attacks on Generic Feistel Constructions 463

functions4. However, to the best of our knowledge, such round functions are ei-
ther not used as building blocks of ciphers, or they can be attacked using other,
more trivial attacks.

It is important to notice that although one solution is expected, it does not
mean that it can be found trivially. To solve most of the equations, we use
precomputation tables, i.e. we tabulate the functions, store their values, and
later perform table lookups to solve the differential equations.

Definition 1 (δ-Set, [7]). A δ-set for byte-oriented cipher is a set of 28 state
values that are all different in 1 byte and are all equal in the remaining bytes.

We introduce slightly modified definition (without byte-oriented sets).

Definition 2 (b-δ-Set). A b-δ-set is a set of 2b state values that are all different
in b state bits (the active bits) and are all equal in the remaining state bits (the
inactive bits).

By this definition, the original Knudsen’s δ-set from [7] can be seen as an 8-δ-set,
since it takes all the values of a particular byte, which is an 8-bit value. To define
b-δ-set, we have to specify not only the value of b, but also the position of the
active bits. In some cases, however, the position is irrelevant and the analysis is
applicable for any b active bits.

Given a state value v, we can construct a b-δ-set from v, by applying 2b − 1
differences to some b bits of the state v. Furthermore, we can take a function F ,
order all the possible 2b − 1 input differences, and obtain a sequence of output
differences of F . An example of such sequence, when the active bits are the least
significant bits, is F (v)⊕ F (v ⊕ 1), F (v)⊕ F (v ⊕ 2), . . . , F (v)⊕ F (v ⊕ 2b − 1).

The Attack Model. The key-recovery attacks presented in the paper follow
the standard attack model. That is, the key of the block cipher is secret and
chosen uniformly at random. The attacker can query both the encryption and
the decryption functions of the block cipher. His task is to recover the secret
key (or the subkeys produced from the key schedule) based on the queries. We
explicitly state that the attacker has no information about the internal state
values of the block cipher.

3 Key-Recovery Attacks against Feistel-2 Construction

In this section, we present a key-recovery attack on 6-round Feistel-2 ciphers for
the case when the key and the state sizes are equal, i.e. k = n. The extensions
of the attack to 8 rounds for k = 3n/2, 10 rounds for k = 2n, and in general
to (4 + 2s) rounds for k = n(s + 1)/2, can be found in the full version of the
paper [15]. In our attack, the round functions can be either bijective or non-
bijective, i.e. permutations or functions, and they can even be one-way. To make

4 For linear function, the probability that a solution exist depends on the size of the
large set.

464 J. Guo et al.

Fig. 4. 5-round differen-
tial characteristic

Fig. 5. b-δ-set construc-
tion

Fig. 6. 6-round key-
recovery

the attack applicable to the most general type of constructions, in the sequel,
we assume that the round functions are one-way and pairwise distinct.

We use Fi to denote the round function at round i of the construction. To
refer to the input (resp. output) of Fi, we write F I

i (resp. FO
i). Similarly, the

input difference (resp. output difference) of Fi is denoted by ΔF I
i (resp. ΔFO

i).
Recall that the two branches, as well as the subkeys Ki, have n/2 bits each.

The 6-round key-recovery attack is based on a non-ideal behavior of 5 rounds
of Feistel-2, which is described by the lemma and the proposition that follow. In
the 6-round attack (refer to Figure 6), the last five rounds are the rounds where
this distinguisher is used.

Lemma 1. Let X and X ′, where X �= X ′, be two non-zero branch differences.
If a 5-round Feistel-2 encrypts a pair of plaintexts (m,m′) with difference 0‖X to
a pair of ciphertexts with difference 0‖X ′, then the number of possible internal
state values of the three middle rounds that correspond to the plaintext m is
limited to 2n/2 on average.

Proof. Note that n/2-bit round keys are added in each round, and hence the
number of possible internal state values for the three middle rounds is limited
by its size, 23n/2. We show, however, that the bound can be tightened to 2n/2.

A 5-round differential characteristic, with input difference 0‖X and output
difference 0‖X ′ is depicted in Figure 4 (the rounds are denoted from i + 1 to
i+5 to make this part of the analysis generic). From the figure, we can see that
after the first round, the input difference (0, X) must become a state difference
(X, 0). Similarly, after the inversion of the last round the output difference (0, X ′)
becomes (0, X ′). This makesΔFO

i+3 to be X ′′ ← X⊕X ′. Since X �= X ′, it follows
that X ′′ �= 0 and thus ΔF I

i+3 �= 0 – let us denote this difference with Δ. It means
that both ΔFO

i+2 and ΔFO
i+4 also have the difference Δ. To summarize, we get

that for each fixed Δ, the input and output differences of the round functions at
rounds i+2, i+3, and i+4 are fixed. Therefore, there exists one state value (one
solution) that satisfies such input-output difference in each of the three rounds.

Meet-in-the-Middle Attacks on Generic Feistel Constructions 465

As Δ can take at most 2n/2 different values (one branch has n/2 bits), the states
in rounds i + 2, i + 3, i + 4 can assume only 2n/2 different values. In Figure 4,
the fixed value for each Δ is drawn by bold line. �

We use Lemma 1 to prove the below proposition that will help us later to
launch the attack on 6 rounds. To present the proposition, we need additional
notations. Let F : m→ F (m) be a 5-round Feistel-2 (we omit writing the key k

as input) and let the function FΔ : {0, 1} 3n
2 → {0, 1}n

2 be defined as FΔ(m, δ) =

Truncn/2

(
F (m)⊕F (m⊕(0‖δ))

)
, where Truncn/2 denotes the truncation to the

first n/2 bits. In other words, FΔ(m, δ) gives the output difference (of the left
branch) in the pair of ciphertexts, produced by encryption of a pair of plaintexts
(m,m ⊕ 0‖δ) with the 5-round Feistel. Furthermore, instead of taking a single
pair of plaintexts, let us create several pairs such that in each pair, the first
element is always m, while the second is m⊕ 0‖δj where δj = 1, . . . , 2b − 1 (the
precise value of b is defined later in the section). In fact, we can see that the
second elements of the pairs form a b-δ-sequence. The proposition given further
claims that the sequence of differences in the ciphertexts pairs (that correspond
to such plaintexts pairs) can take only 2n/2 values.

Proposition 1. Let (m,m′) be a pair of plaintexts that conforms to the 5-round
differential characteristic given in Figure 4 and let δj = 1, . . . , 2b−1, b ≥ 1 forms
b-δ-sequence. Then, the sequence FΔ(m, δj), δj = 1, . . . , 2b − 1 can assume only
2n/2 possible values.

Remark 1. We note that the sequence can be constructed from any of the two
plaintexts m or m′ given in Proposition 1, as long as the pair (m,m′) conforms
to the differential characteristic.

Remark 2. From a theoretical point of view, Proposition 1 yields a distinguisher
since the number of functions reached by the 5-round Feistel-2 construction is
much less than the theoretical number of functions from a set of 2b elements
to a set of 2n/2 elements when b ≥ 1. Indeed, for a fixed m, the latter equals

(2n/2)2
b

= 22
bn/2, whereas it is only 2n/2 in the case of the 5-round Feistel-2

construction.

Proof. The initial pair of plaintexts (m,m′) is only used to compute the state
values of the three middle rounds that correspond to the plaintext m. We have
seen from Lemma 1 that these three states can take only 2n/2 possible values
(each of them corresponds to one of the values of Δ). We will show that if the
values of these three states are fixed, then we can change the right half of the
plaintext (instead of m, we takem⊕0‖δj) and still be able to compute the output
difference in the left half of the ciphertexts. In fact, we can change the value of the
plaintext many times (i.e. we can produce many pairs of the form (m,m⊕0‖δj)),
and for each of them, we can easily compute the output difference in the right
halves of the ciphertext. The number of plaintexts pairs adds no complexity
in predicting the ciphertext difference – once the three middle states are fixed
(and they can have only 2n/2 different values), the sequence of differences in the
ciphertext pairs is uniquely determined.

466 J. Guo et al.

Assume the difference Δ is fixed5, and thus are fixed the three internal state
values. Let ti+2, ti+3, ti+4 be the input values to Fi+2, Fi+3, Fi+4 that correspond
to the plaintext m, in which ti+2, ti+3, ti+4 are determined depending on Δ. Let
vi be the values of the states that correspond to the plaintext m as shown in
Fig. 5. Let us consider a new pair of plaintexts, (m,m⊕(0‖δj)), i.e. we introduce
a difference δj to the right branch, i.e. Δvi = δj . Since the difference ΔFO

i+1 is
always zero, we obtain that Δvi+2 = Δvi = δj . In round i+2, the attacker knows
the value of F I

i+2 = ti+2 and the difference ΔF I
i+2 = δj . Hence, the new paired

values of F I
i+2 are ti+2 and ti+2⊕ δj. Therefore, the new ΔFO

i+2 can be obtained
as ΔFO

i+2 ← Fi+2(ti+2) ⊕ Fi+2(ti+2 ⊕ δj). In Figure 5, we represent this type
of computable difference with ‘∗’. The new difference for ΔFO

i+2 is propagated
forward to vi+3 and the same reasoning as in round i + 2 is applied to round
i + 3. As we know the value of F I

i+3 = ti+3 and ΔF I
i+3 = ΔFO

i+2, it follows
that (ti+3, ti+3⊕ΔFO

i+2) are the paired values. The new ΔFO
i+3 can therefore be

computed as ΔFO
i+3 ← Fi+3(ti+3)⊕Fi+3(ti+3⊕ΔFO

i+2). The knowledge of ΔFO
i+3

gives the difference for vi+4 for the next round, namely:Δvi+4 ← ΔFO
i+3⊕δj. The

analysis continues the same way for round i+4. From the knowledge of the value
of FO

i+4 = ti+4 and the new difference ΔFO
i+4 = Δvi+4, the output difference

of the round function ΔFO
i+4 is computed, and finally Δvi+5 is computed as

ΔFO
i+4 ⊕Δvi+3 = ΔFO

i+4 ⊕ΔFO
i+2.

In summary, for an arbitrary δj, we can compute the output difference Δvi+5,
i.e., the mapping from δj to Δvi+5 becomes deterministic (as long as Δ is fixed).
Therefore, for the ordered sequence of δj that takes the values 1, 2, . . . , 2n/2 − 1,
we can determine the sequence of corresponding differences Δvi+5 (which indeed
is the difference in the left half of the ciphertext). We emphasize that the mapping
depends only on values of ti+2, ti+3, ti+4, which in turn are determined from the
value of Δ,X and X ′, and acts independently of the value of m. Since Δ takes
at most 2n/2 values, the number of sequences of Δvi+5 is limited to 2n/2. �

6-Round Key-Recovery Attack. We prepend one round to the 5-round dis-
tinguisher shown in Figure 4 and the resulting construction is illustrated in
Figure 6. The attack consists of precomputation and online phases. The online
phase is further divided into collecting pair and key recovery phases. In the pre-
computation phase, we choose many pairs (X,X ′), where X is fixed while X ′

takes multiple values, and for each pair, we find all possible 2n/2 sequences of
Δv5 based on Proposition 1. We store all the sequences in a large table along
with its corresponding internal state values. Next, in the online phase, we collect
many pairs that satisfy one of the differential characteristics (X, 0) → (X ′, 0).
Finally, for each of the obtained pairs, we compute Δv5 sequences by guessing
the first round key K0. We then find a match of Δv5 sequences between the
precomputed table and the one computed online – this allows us to determine
the internal states and to recover K0. The meet-in-the-middle nature of our at-
tack comes from the fact that the Δv5 sequence is computed offline for the last

5 Recall that this difference corresponds to an internal state difference for the plaintext
pair (m,m′).

Meet-in-the-Middle Attacks on Generic Feistel Constructions 467

five rounds and online for the first round, and the results are later matched in a
meet-in-the-middle-like fashion.

Precomputation. From Proposition 1, the number of possible sequences of
Δv5 is 2

n/2 for a fixed X and a fixed X ′. We can achieve a time/memory tradeoff
by relaxing the n/2-bit constraint of a fixed X ′ and allow 2x

′
different possible

differences for X ′, where 0 ≤ x′ ≤ n/2. Without loss of generality, assume that
the values ofX ′ differ in the last x′ bits and are the same in the remaining n/2−x′

most significant bits (MSBs). In the sequel, we will determine the optimal value
for x′ to reach the best time/data/memory complexities for the attack.

First, we show how to compute all 2x
′ · 2n/2 = 2x

′+n/2 sequences of 2b

differences as an offline precomputation in 2x
′+n/2+b time (encryptions), and

2x
′+n/2+b memory (blocks of n/2 bits). This offline precomputation results in a

table Tδ, that contains all the sequences. Since the precomputation step is the
same for all X ′ differences, further we show the procedure for a particular X ′

and assume that for the whole offline execution this procedure is repeated 2x
′

times for the possible values of X ′ differences.
In rounds 2 and 4, the input differences to the round functions are fixed to X

and X ′, respectively, while both of the output difference are Δ. To reduce the
time complexity, we first tabulate completely the round functions F2, F3 and
F4 and thus we will have a constant-time access to paired values for some input
or output differences. Namely, we construct precomputation tables T2 and T4,
which take the difference Δ as input and return the paired values conforming
to the differentials X → Δ and X ′ → Δ through F2 and F4, respectively. The
strategy consists simply in iterating over all possible inputs, and storing the
results indexed by output difference as described in Algorithm 1.

Similarly, in round 3 we want to construct the table T3 that gives in constant
time a paired-value input to F3 resulting in the fixed output difference X ′′.
However, since the function F3 is assumed to be one-way and in the attack
we need to invert it, we cannot compute F−1

3 to construct T3. Thus, we first
evaluate F3 for all input values, store the values in a temporary table, and
later consider the difference, as detailed in Algorithm 2. After this part of the
precomputation phase, for an arbitrary fixed difference Δ (which is the difference
ΔFO

2 = ΔF I
3 = ΔFO

4), the corresponding state values in rounds 2, 3, and 4 can
be looked up in tables T2, T3, and T4 in constant time. Hence, we can compute
the b-δ-set for all the 2n/2 possible choices of Δ and store the resulting sequences
in the precomputation table Tδ, which later is used for the meet-in-the-middle
check of the online phase. This step is described in Algorithm 3.

Finally, another table T0 of size 2n/2 is generated to make more efficient the
online phase and the recovery of the subkey K0. That is, in round 0, for all values
of F I

0 , the corresponding ΔFO
0 is computed. Namely, for i = 0, 1, . . . , 2n/2 − 1,

F0(i)⊕ F0(i⊕X) is computed and stored in T0.

468 J. Guo et al.

As stated previously, we repeat this procedure for 2x
′
different choices of the

difference X ′. For the sake of simplicity, the resulting tables for each X ′ are all
merged in the same table Tδ. For a fixed choice of X ′, building T0, T2, T3 and T4

requires 2n/2 round function computations each. Hence, constructing Tδ requires
less6 than 2b · 2n/2 encryptions. The entire analysis is iterated over 2x

′
choices

of X ′ so that the computational cost is less than 2x
′+b+n/2 encryptions. The

memory requirement to build T0, T2, T3 and T4 is 2n/2 blocks of n/2 bits, and is
constant as we can reuse the memory across different X ′. The size of Tδ increases
with the iteration of 2x

′
choices of X ′, namely, the memory requirement for the

precomputation phase amounts to 2b · 2x′+n/2 = 2x
′+n/2+b blocks of n/2 bits.

Collecting Pairs. In the data collection phase, we query the encryption oracle
with chosen plaintexts to get enough pairs such that one conforms to the whole
6-round differential characteristic. To do so, we construct a structure of 2n/2+1

plaintexts that consists of two lists of sizes 2n/2. All the elements of the first list
are fixed to a constant random value v0 on their left half, while the right halves
are pairwise distinct. The second list is constructed similarly, except that the
left half is fixed to v0 ⊕X . As a result, we have 2n pairs of plaintexts such that
the difference in the left half equals X and the right half is nonzero.

For a single structure, the data complexity corresponds to encryption of 2n/2+1

chosen plaintexts, which can subsequently be sorted by their ciphertext values
to detect the pairs that match on their left half (n/2 bits) and n/2 − x′ most
significant bits of the right half. Consequently, we expect one structure of plain-
texts to provide 2n/2n/2+n/2−x′

= 2x
′
pairs conforming to the truncated output

difference, i.e. such that only the x′ less significant bits of the right half are
nonzero. To complete the attack, we need 2n/2 pairs, as the difference cancel-
lation at the output of the first round holds with probability 2−n/2. Hence by
repeating the data collection for 2n/2−x′

different values of v0, we can expect
one pair among the 2n/2 to follow the whole characteristic. Therefore, the data
complexity amounts to 2n/2−x′ × 2n/2+1 = 2n−x′+1 chosen plaintexts, requires
the same amount of memory access as time complexity to be generated, and can
be stored using only 2n/2 elements with the use of a hash table for the pairs
that verify the truncated output difference. The whole procedure is described in
Algorithm 4.

Recovery of K0. The previous phase results in 2n/2 candidate pairs with a
plaintext difference (X,Δv−1) and an appropriate ciphertext difference. For each
pair, we match against the precomputed table T0 to find the corresponding value
of F I

0 , and thus determine uniquely a subkey candidate for K0 by K0 ← v0⊕F I
0 .

However, among these 2n/2 candidates for K0, only one is correct while the
remaining are false positives. To find the correct subkey, we use the results of
Proposition 1 and the precomputation table Tδ, i.e. we construct a b-δ-set by
modifying the active bits of v0. For each modified plaintext, with the knowledge
of K0, we compute the corresponding FO

0 and modify v−1 so that the value of v1
stays unchanged. Then, we query the plaintexts and observe the left half of the

6 Less, as one evaluation of the round functions costs less than one encryption query.

Meet-in-the-Middle Attacks on Generic Feistel Constructions 469

Algorithm 1. Construction of the tables T2 and T4

1: for i = 0, 1, . . . , 2n/2 − 1 do
2: Compute ΔFO

2 ← F2(i)⊕ F2(i⊕X).
3: Store (i,ΔFO

2) in T2 indexed by ΔFO
2 .

4: Compute ΔFO
4 ← F4(i)⊕ F4(i⊕X ′)

5: Store (i,ΔFO
4) in T4 indexed by ΔFO

4 .

Algorithm 2. Construction of the table T3

1: for i = 0, 1, . . . , 2n/2 − 1 do
2: Store (i, F3(i)) in a temporal table tmp indexed by F3(i).
3: for i = 0, 1, . . . , 2n/2 − 1 do
4: Compute F3(i)⊕X ′′.
5: Look up tmp to obtain j such that F3(j) = F3(i)⊕X ′′.
6: Store (i, i⊕ j) in T3 indexed by i⊕ j.

Algorithm 3. Construction of the sequences of Δv5

1: for Δ = 1, . . . , 2n/2 − 1 do
2: Obtain internal state values F I

2 , F I
3 and F I

4 by looking up T2, T3 and T4,
respectively.

3: for all b active bits of the b-δ-set do
4: Modify Δv0, and compute the corresponding Δv5.
5: Compute the sequence of Δv5 and add it to Tδ.

Algorithm 4. Data collection phase of the 6-round attack

1: Choose 2x
′
differences X ′ so that the n/2− x′ MSBs of X ′ are 0 for all X ′.

2: Choose a difference X such that X �= X ′.
3: for 2n/2−x′

different values of v0 do
4: for all 2n/2 choices of v−1 do
5: Query (v0, v−1) and store it in L0 sorted by the ciphertext value.
6: Query (v0 ⊕X, v−1) and store it in L1 sorted by the ciphertext value.
7: Pick up the elements of L0 × L1 whose ciphertexts match

in the n− x′ most significant bits.

corresponding ciphertexts. Hence, we can compute the sequence of Δv5. If this
sequence is included in the precomputation table Tδ, K0 is a correct guess with
high probability, otherwise it is wrong. We note that this does not increase the
data complexity, since the structures of plaintexts already includes the plaintexts
for the b-δ-set evaluation.

Complexity Analysis. In the online phase of the attack, we perform 2n/2

checks in the precomputed table Tδ that contains all the possible stored sequences
of differences. If we do not store enough information in this table (if b is too
small), many checks will wrongly yield to valid subkey candidates K0. On the
other hand, if we store too much information (if b is too large), the table will
require higher time and memory complexity to be constructed. Thus, we need
to select an optimal value of b. One check yields a false positive with probability

470 J. Guo et al.

2n/2/2n2
b/2 = 2n(1−2b)/2 as there are 2n/2 valid sequences of 2b elements among

the 2n2
b/2 theoretically possible ones. Therefore, we want n(1− 2b)/2+ n/2 < 0

so that among all the 2n/2 checks, only the correct K0 results in a stored element,
and thus b ≥ 2.

In terms of tradeoff, adjusting the value x′ balances the data, time and mem-
ory complexities. The data complexity is 2n−x′+1 chosen plaintexts, the time
complexity is 2x

′+n/2 encryptions to construct Tδ and 2n−x′+1 memory access
to query the encryption oracle. The memory complexity is also 2x

′+n/2 blocks
of n/2 bits required to store Tδ. Consequently, the choice of x′ = n/4 makes
the data complexity to become about 23n/4 chosen plaintexts, the time complex-
ity equivalent to about 23n/4 encryptions, and the memory complexity to 23n/4

blocks of n/2 bits.

4 Key-Recovery Attacks against Feistel-3 Construction

In this section, we present a 10-round key-recovery attack on the Feistel-3 con-
struction with k = n. In the attack, we assume that different S-Boxes are used
for different words in a given round, but we consider they are the same across
all of the rounds. Recall that all the S-Boxes operate on c-bit words, and thus
there are n

2c words per branch. We consider that the P-layer is identical for all
rounds and it has the maximal branch number of n

2c + 1. The extensions of the
attack to 12 and 14 rounds for key sizes of k = 3n/2 and k = 2n, respectively,
and the analysis of a class of P-layers that not necessarily has a maximal branch
number are given in the full version of the paper [15].

The 10-round key-recovery attack is based on a non-ideal behavior of 7 rounds
of Feistel-3. We first present the 7-round distinguisher in the proposition below,
and then use it to launch a key-recovery attack on a 10-round Feistel-3 primitive
where the inner rounds are the ones from the distinguisher. To construct the
distinguisher, we first apply an equivalent transformation to the 7-round primi-
tive, as shown in Figure 7. Namely, the P-layer of round i + 6 is removed from
this round, and linear transformations are added to three different positions in
order to obtain a primitive that is computationally equivalent to the original
one. Hereafter, v′i+7 represents the value of P−1(vi+7). We use the non-ideal
behavior of the new representation to mount the 10-round key recovery attack
by extending the 7-round differential by one round at the beginning and two
rounds at the end. The newly-introduced P after vi+7 is later addressed in the
key-recovery part.

As in the previous section, F I
i and ΔF I

i denote the input value and input
difference of the i-th round, respectively, that is the input to the S-layer in Fi.
Similarly, FM

i and ΔFM
i refer to the state value and state difference after the

S-layer, that is between the S-layer and P-layer of Fi, and FO
i and ΔFO

i denote
the output value and output difference of the P-layer in Fi, respectively. For the
branch-wise difference, we use 0 to refer to branch with no active words, 1 to the
case when only a single pre-specified word is active, and P and P−1 for branch-
wise differences obtained after 1 has been processed by P and P−1, respectively.

Meet-in-the-Middle Attacks on Generic Feistel Constructions 471

S P

S P

S P

S P

S

S P

S P P

P-1

P

-

Fig. 7. 7-round differential

P

S P

S

S P

P

P-1

-

Fig. 8. 10-round key-recovery for k = n

Finally, X [1] and ΔX [1], respectively, denote the pre-specified active-word value
and difference of a branch-wise variable X .

The technique used to construct the 7-round distinguisher (described in the
proposition below) is very similar to the technique we have used in the distin-
guisher on five rounds of Feistel-2. In other words, first we show that if a pair
(m,m′) of plaintexts follows a particular differential characteristic, then the num-
ber of possible internal state values that correspond to m is limited. Based on
this, we can introduce a difference in the plaintext and predict the output differ-
ence in the ciphertext. Again, we introduce many pairs of plaintexts where each
right half differs on δj (and thus get a b-δ-sequence) and observe that the pairs
of ciphertexts have predictable difference. Unlike the proposition for Feistel-2
where we observed the difference in the left half of the ciphertext, for Feistel-3,
we check the difference in one word of the right half in the ciphertext pairs (the
position of this particular word plays no role in the analysis). That is why we
have to redefine FΔ(m, δj). To avoid bulky notations, we define it informally as
one-word difference in the right half of the ciphertext pair that are produced
from the encryption of a plaintext pair (m,m⊕ 0‖δj) through 7-round Feistel-3.
In Figure 7, this is the ciphertext difference in the word v′i+7.

Proposition 2. Let (m,m′) be a pair of plaintexts that conforms to the 7-round

differential (0,1)
7R→ (1,0) shown in Figure 7 and let δj = 1, 2, . . .2b− 1 forms a

b-δ-sequence. Then, the sequence FΔ(m, δj), δj = 1, . . . , 2b − 1 can assume only
2n/2+4c possible values.

Proof. We show here that the number of internal state values for pairs satisfying
the 7-round differential in Figure 7 is at most 2n/2+4c. Namely, we show they
can be parameterized by five nonzero differences in five c-bit words (marked by

472 J. Guo et al.

circles in Figure 7), and by the values of n/2− c inactive bits of F I
i+4 (marked

by a star ‘	’ in Figure 7).
We first assume that the five word differences circled in Figure 7 are fixed,

that is: ΔF I
i+2, ΔFM

i+2, ΔF I
i+4, ΔF I

i+6 and ΔFM
i+6 are fixed to random nonzero

values. When ΔF I
i+2 and ΔFM

i+2 are fixed, we expect one value on average to be
determined for F I

i+2[1]. In Figure 7, the state in which the value is fixed only
in one word is represented by dotted lines. Then, the corresponding ΔFO

i+2 =
Δvi+3 = ΔF I

i+3 can be fully computed linearly by P (ΔFM
i+2). Since the branch

number of P is n/2c+ 1, P (ΔFM
i+2) is fully active. Similarly, when ΔF I

i+6 and
ΔFM

i+6 are fixed, one value on average can be determined for F I
i+6[1], and the cor-

responding fully active difference Δvi+5 = ΔF I
i+5 can also be computed linearly

by P (ΔFM
i+6). Then, ΔFO

i+4 is computed by Δvi+3 ⊕Δvi+5, where both Δvi+3

and Δvi+5 are of type P . Since P is linear, ΔFO
i+4 also has the form P , which im-

plies that the form ofΔFM
i+4 is P

−1(P) = 1. Then, the middle difference ΔF I
i+4 is

considered fixed. When ΔF I
i+4 �= ΔF I

i+2 and ΔF I
i+4 �= ΔF I

i+6, the corresponding
differences ΔFO

i+3 and ΔFO
i+5 are computed by simply taking their XOR. Thus,

both ΔFO
i+3 and ΔFO

i+5 are of type 1, which makes ΔFM
i+3 and ΔFM

i+5 fully active
(denoted by P−1). Then, the values of F I

i+3, F
M
i+3, F

O
i+3 and F I

i+5, F
M
i+5, F

O
i+5 are

uniquely determined, as well as the values for F I
i+4[1], F

M
i+4[1].

Finally, when we additionally consider the n/2−c inactive bits of F I
i+4 marked

by a star in Figure 7 being fixed, along with the already-fixed c bits of the active
word 1, the full n/2-bit values of FM

i+4 and FO
i+4 are determined. In summary, for

each value of the five c-bit active differences circled in Figure 7 and the n/2− c
inactive bits of F I

i+4, all the differences of the differential as well as one word
values in rounds i+ 2, i+ 6, and all state values in rounds i+ 3, i+ 4, i+ 5 are
uniquely fixed.

For each of 5c+n/2−c = n/2+4c word parameters, we can partially evaluate
a b-δ-set vi up to Δv′i+7[1]. Namely, for one member of the pairs, vi[1] is modified
so that Δvi[1] becomes δj . The modification changes the difference in subsequent
rounds, but we can still compute the corresponding difference Δv′i+7[1] without
requiring the knowledge of the subkey bits.

Indeed, in round i+1, ΔFO
i+1 = 0, Δvi+2 = ΔF I

i+2 = δj . In round i+2, from
the original active word value of F I

i+2 and updated difference ΔF I
i+2 = δj , the

updated ΔFO
i+2 can be computed as P ◦ S(F I

i+2) ⊕ P ◦ S(F I
i+2 ⊕ δj). This also

derives the updated differences Δvi+3 and ΔF I
i+3. Then, in round i+ 3 to i+ 5,

from the original value and the updated difference of F I
x , the updated difference

ΔFO
x , and moreover the updated differences Δvx+1 and ΔF I

x+1 can be computed
for x = i + 3, i + 4, i + 5. Note that, in round i + 4, ΔF I

i+4 originally has only
one active word, while the updated difference is fully active. Because n/2 − c
inactive bits of F I

i+4 are parameters, and thus known to the attacker, ΔFM
i+4 can

be computed in all words. Finally, in round i+ 6, the updated difference Δvi+6

is known in all words while the original value is known only in one active word.
Since the position of the P-layer is moved, the attacker can still compute the
1-word updated difference Δv′i+7[1].

Meet-in-the-Middle Attacks on Generic Feistel Constructions 473

To conclude, for each of the 2n/2+4c possible values of the parameters, the
sequence of Δv′i+7[1] is uniquely obtained by computing Δv′i+7[1] for all δj in
Δvi[1], which concludes the proof. �

10-Round Key-Recovery Attack. Let us describe the 10-round key-recovery
attack that uses the 7-round distinguisher. As shown in Figure 8, we extend the
7-round differential characteristic of the distinguisher by one round at the begin-
ning and two rounds at the end (the analysis and complexity would be similar if
we extend by two rounds at the beginning and one at the end). Recall that the
additional P -layer after v′7, introduced by the distinguisher, has to be addressed
in the key-recovery part. We also note that the active word 1 in the branches
can be located in any position, but the position has to be fixed beforehand to
be able to conduct the attack. The P-layer in round 8 is moved to two different
positions as shown in Figure 8. The newly-introduced P−1 transformation and
the P transformation after v′7 generated by the distinguisher cancel each other,
we therefore ignore them. Similarly to the analysis for Feistel-2, the attack con-
sists of three parts: the precomputation phase, followed by the data collection
and finally the meet-in-the-middle check to detect correct subkey candidates.

Precomputation. Given the proof of Proposition 2, the precomputation phase
is straightforward. For each of the 2n/2+4c values of the parameters, and for any
value of δj constructed at v0, the corresponding Δv′7[1] can be computed easily
as shown in Algorithm 5. As in the attack on Feistel-2, in this phase we construct
the meet-in-the-middle table Tδ that contains all the sequences of differences in
Δv′7[1] for 2

b < 2c nonzero differences δj in v0. The computational cost is about
2n/2+4c encryptions as the b parameter is relatively small and we consider only
a small fraction of all the rounds. Storing Tδ requires 2c/n× 2n/2+4c+b blocks of
n/2 bits, as the sequences contains 2b elements of c bits.

Collecting Pairs. To launch the attack, we need a pair that satisfies the 7-
round differential characteristic in Figure 7, i.e. the plaintext difference (1,P)
should propagate to the ciphertext difference (P , A), where A is a truncated
difference. The probability that the plaintext difference (1,P) after the first
round becomes (0,1) is 2−c, while the probability that the ciphertext differ-
ence (P , A) after inversion of the last round becomes (1,1) is 2−n/2+c, and
to become (1,0) after another inverse round is 2−c. Therefore, a random pair
verifying a plaintext difference (1,P) conforms to the inner 7-round differen-
tial with probability 2−n/2−c. Hence, we need to collect 2n/2+c pairs satisfying

the differential (1,P) 10R→ (P , A). Among all of them, one is expected to sat-
isfy (Δv1, Δv0) = (0,1) and (Δv8, Δv7) = (1,0). The procedure is given in
Algorithm 6.

For fixed values of the inactive bits in v0 and v−1, about 24c pairs can be
generated, and we expect approximately 24c · 2−n/2+c = 2−n/2+5c of them to
verify the ciphertext truncated difference (P , A). By iterating the procedure for
2n−4c different values, we obtain 2n−4c−n/2+5c = 2n/2+c pairs satisfying the
desired (Δv0, Δv−1) and (Δv9, Δv10). The data complexity required to generate
the 2n/2+c pairs amounts to approximately 22c+n−4c = 2n−2c chosen plaintexts,

474 J. Guo et al.

Algorithm 5. Construction of the difference sequences of Δv′7[1]
(precomputation)

1: for all 2n/2+4c values of the parameters do
2: Derive all differences of the differential.
3: Derive 1-word state values in rounds 2 and 6.
4: Derive all state values in rounds 3, 4 and 5.
5: for 2b different differences in v0 do
6: Modify Δv0[1], and update the corresponding sequence of Δv′7[1].
7: Insert the sequence of Δv′7[1] in the table Tδ.

Algorithm 6. Data collection for the 10-round attack

1: Fix the n/2− c inactive bits of v0 and v−1.

2: for all 22c choices (v0, v−1) do

3: Query (v0, v−1) to obtain (v9, v10).

4: Store (v9, v10) in a hash table indexed by the wanted inactive bits in P−1(v9).

5: Construct about 24c/2n/2−c = 2−n/2+5c pairs verifying the truncated ciphertext

difference.

6: Iterate the analysis 2n−4c times by changing the the inactive-bit value of v0 and vt.

the computational cost is equivalent to 2n−2c memory accesses, and the memory
requirement is about 2n/2+c blocks of n/2 bits.

Detecting Subkeys. For each of the 2n/2+c obtained pairs, we derive 2c can-
didates for n/2+2c bits of key material, namely K0[1], K8[1], and K9. For each
pair, we first guess the 1-word difference of Δv8[1]. Then, we assume the differ-
ential characteristic is satisfied, i.e. Δv1 = 0, Δv′7 = 0, and Δv8 = 1. This fixes
the input and output differences for the active words in rounds 0 and 8, and for
all words in round 9. Then, the possible inputs for each of these S-Boxes can be
reduced to a single value, and the corresponding subkeys K0[1], K8[1] and K9

can be calculated.
Finally, we construct the b-δ-set by modifying v0[1]. For each modified plain-

text, with the knowledge of K0[1], we modify v−1 such that v1 remains un-
changed. From the corresponding ciphertexts, with the knowledge of K9 and
K8[1], we compute the sequence of 2b differences Δv′7[1], and if it matches one
of the entries in the precomputed table Tδ, then the guessed subkeys K0[1], K8[1],
and K9 are correct with high probability, otherwise they are wrong. When the
values of c and n are in a particular range (see below), only the right guess will
remain, thus the subkeys are recovered.

The computational cost of the key-recovery phase is the one for computing
Δv′7[1] for 2

n/2+c pairs, 2c guesses for Δv8[1], and 2b choices of δj in the b-δ-set,
which is upper bounded by 2n/2+3c encryptions.

Complexity Analysis and Constraints on (n, c). As shown above, the data
complexity requires 2n−2c chosen plaintexts, the time complexity is equivalent to
2n−2c+2n/2+5c encryptions and the memory complexity is 2n/2+5c blocks of n/2

Meet-in-the-Middle Attacks on Generic Feistel Constructions 475

bits. We note that the overall complexity is balanced when n/2c = 7, i.e. when a
branch includes 7 S-Boxes. It is possible to achieve a simple tradeoff where only
a fraction 1/2c of all the sequences are stored in Tδ, which decreases the memory
complexity to 2n/2+4c blocks of n/2 bits, but in turn makes the data complexity
and the time complexity of the online phase increased by a factor 2c as we
have decreased the chance to hit one element in Tδ. With this tradeoff, the data
complexity becomes 2n−c chosen plaintexts, and the time complexity becomes
about 2n−c + 2n/2+4c encryptions, which is balanced for n/2c = 5 S-Boxes per
branch.

Moreover, to launch the attack, a branch must have at least 5 S-Boxes so
that n/2 + 4c < n. Additionally, in the subkey detection phase, the number
of remaining key candidates should be one or small enough. The number of
sequences in Tδ is 2

n/2+4c and the number of candidates derived online is 2n/2+2c.
Thus in total, 2n+6c matches are examined, whether or not we use the tradeoff.

In theory, there exists 2c·2
b

sequences from b < c bits to c bits. Hence, the
condition to extract only the correct subkey is n + 6c − c · 2b < 0, which gives
b > log2(6 + n/c). Since 2b < 2c, by combining the two conditions, the valid
range for (n, c) is 10c ≤ n < c(2c − 6). For example, 128-bit block ciphers with
8-bit S-Boxes and 80-bit block ciphers with 5-bit S-Boxes can be attacked.

Another possible tradeoff is the one used to achieve the best attacks on reduced
variants of the AES in [10]. If we add a second active word at the beginning of the
differential characteristic, it allows to reduce the data complexity, while keeping
the same overall complexity. This tradeoff is possible as long as there are at least
7 words per branch, i.e. n/2c ≥ 7. The main advantage of adding an active word
is to increase the size of the structures of plaintext from 22c to 24c, which allows
to construct about 28c input pairs already verifying the input difference. The
precomputation requires 2n/2+6c encryptions and a memory of 2c/n× 2n/2+6c+b

blocks of n/2 bits, the online phase requires more pairs, namely 2n/2+2c, but
this is achieved with less data: only 2n−3c chosen plaintexts. Therefore, the
final time complexity is 2n−3c + 2n/2+6c for both the encryption of the data
and the precomputation. This yields an attack as long as n/2 + 6c < n, which
is true for n/2c ≥ 7 S-Boxes. For example, with 8 S-Boxes per branch, the
attack without the second active word requires 214n/16 chosen plaintexts, 214n/16

encryptions and the memory of about 212n/16 blocks of n/2 bits, hence the overall
complexity is 214n/16. For the same primitive, but with an additional active word,
the tradeoff gives an attack that requires the same overall time complexity while
the data complexity is reduced to 213n/16 chosen plaintexts.

5 Conclusion

With the use of the meet-in-the-middle technique, we have shown the best known
generic attacks on balanced Feistel ciphers. As we imposed very small restrictions
on the round functions, our attacks are applicable to almost all balanced Feistels.
Such ciphers, with an arbitrary round function and a double key are insecure on
up to 10 rounds. In the case when the round function is SPN, for a large class of

476 J. Guo et al.

linear P-layers, the attacks penetrate 14 rounds and recover all the subkeys. We
have produced experimental verification of the attacks supporting our claims.

Our results give insights on the lower bound on the number of rounds a secure
Feistel should have. They suggest that this number in the case of SPN round
functions should be surprisingly high. Furthermore, from the attacks on Feistel-2,
we show that as long as the ratio of key to state size is increasing, the number
of rounds that can be attacked will grow, while the data complexity will always
stay below the full codebook. Thus, we have shown that a block cipher designer
cannot fix a priori the number of rounds in a balanced Feistel and allow any (or
very large) key size, as for each increment of the key by amount of bits equivalent
to the state size, we can attack four more rounds.

We have analyzed generic constructions and as such, we could not make any
assumptions about the particular details of the ciphers, e.g. the key schedule,
the permutation layer, etc. However, the attacks on the AES have shown that
it is possible to take advantage of the cipher details in order to penetrate more
rounds. Thus, we believe that our analysis can be used as a beginning step for
attacks on larger number of rounds of specific Feistel ciphers.

Acknowledgments. The authors would like to thank the ASIACRYPT 2014
reviewers for their valuable comments. Jian Guo, Jérémy Jean and Ivica Nikolić
are supported by the Singapore National Research Foundation Fellowship 2012
NRF-NRFF2012-06.

References

1. Aoki, K., Guo, J., Matusiewicz, K., Sasaki, Y., Wang, L.: Preimages for Step-
Reduced SHA-2. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912,
pp. 578–597. Springer, Heidelberg (2009)

2. Aoki, K., Ichikawa, T., Kanda, M., Matsui, M., Moriai, S., Nakajima, J., Tokita,
T.: Camellia: A 128-Bit Block Cipher Suitable for Multiple Platforms - Design
and Analysis. In: Stinson, D.R., Tavares, S. (eds.) SAC 2000. LNCS, vol. 2012, pp.
39–56. Springer, Heidelberg (2001)

3. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.:
The SIMON and SPECK Families of Lightweight Block Ciphers. Cryptology ePrint
Archive, Report 2013/404 (2013)

4. Biham, E., Dunkelman, O.: The SHAvite-3 Hash Function. Submission to NIST,
Round 2 (2009)

5. Communications Security Establishment Canada: Cryptographic algorithms ap-
proved for Canadian government use (2012)

6. Coppersmith, D.: The Data Encryption Standard (DES) and its Strength Against
Attacks. IBM Journal of Research and Development 38(3), 243–250 (1994)

7. Daemen, J., Knudsen, L.R., Rijmen, V.: The Block Cipher SQUARE. In: Biham,
E. (ed.) FSE 1997. LNCS, vol. 1267, pp. 149–165. Springer, Heidelberg (1997)

8. Demirci, H., Selçuk, A.A.: A Meet-in-the-Middle Attack on 8-Round AES. In: Ny-
berg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 116–126. Springer, Heidelberg (2008)

9. Derbez, P., Fouque, P.A., Jean, J.: Improved Key Recovery Attacks on Reduced-
Round AES in the Single-Key Setting. IACR Cryptology ePrint Archive, 477 (2012)

Meet-in-the-Middle Attacks on Generic Feistel Constructions 477

10. Derbez, P., Fouque, P.-A., Jean, J.: Improved Key Recovery Attacks on Reduced-
Round AES in the Single-Key Setting. In: Johansson, T., Nguyen, P.Q. (eds.)
EUROCRYPT 2013. LNCS, vol. 7881, pp. 371–387. Springer, Heidelberg (2013)

11. Dinur, I., Dunkelman, O., Keller, N., Shamir, A.: Efficient Dissection of Compos-
ite Problems, with Applications to Cryptanalysis, Knapsacks, and Combinatorial
Search Problems. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 719–740. Springer, Heidelberg (2012)

12. Dunkelman, O., Keller, N., Shamir, A.: Improved Single-Key Attacks on 8-Round
AES-192 and AES-256. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477,
pp. 158–176. Springer, Heidelberg (2010)

13. Feistel, H., Notz, W., Smith, J.: Some Cryptographic Techniques for Machine-to-
Machine Data Communications. Proceedings of IEEE 63(11), 15545–1554 (1975)

14. Gilbert, H., Minier, M.: A Collision Attack on 7 Rounds of Rijndael. In: AES
Candidate Conference, pp. 230–241 (2000)

15. Guo, J., Jean, J., Nikolić, I., Sasaki, Y.: Meet-in-the-Middle Attacks on Generic
Feistel Constructions - Extended Abstract. Cryptology ePrint Archive, Temporary
version (to appear, 2014),
http://www1.spms.ntu.edu.sg/~syllab/attacks/FeistelMitM.pdf

16. Guo, J., Ling, S., Rechberger, C., Wang, H.: Advanced Meet-in-the-Middle Preim-
age Attacks: First Results on Full Tiger, and Improved Results on MD4 and SHA-2.
In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 56–75. Springer, Hei-
delberg (2010)

17. Isobe, T., Shibutani, K.: All Subkeys Recovery Attack on Block Ciphers: Extending
Meet-in-the-Middle Approach. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS,
vol. 7707, pp. 202–221. Springer, Heidelberg (2013)

18. Isobe, T., Shibutani, K.: Generic Key Recovery Attack on Feistel Scheme. In: Sako,
K., Sarkar, P. (eds.) ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 464–485.
Springer, Heidelberg (2013)

19. ISO/IEC 18033-3:2010: Information technology–Security techniques–Encryption
Algorithms–Part 3: Block ciphers (2010)

20. Knudsen, L.R.: The Security of Feistel Ciphers with Six Rounds or Less. J. Cryp-
tology 15(3), 207–222 (2002)

21. Luby, M., Rackoff, C.: How to Construct Pseudorandom Permutations from Pseu-
dorandom Functions. SIAM J. Comput. 17(2), 373–386 (1988)

22. Merkle, R.C., Hellman, M.E.: On the Security of Multiple Encryption. Commun.
ACM 24(7), 465–467 (1981)

23. Sasaki, Y., Aoki, K.: Finding Preimages in Full MD5 Faster Than Exhaustive
Search. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 134–152.
Springer, Heidelberg (2009)

24. Shibutani, K., Isobe, T., Hiwatari, H., Mitsuda, A., Akishita, T., Shirai, T.: Piccolo:
An Ultra-Lightweight Blockcipher. In: Preneel, B., Takagi, T. (eds.) CHES 2011.
LNCS, vol. 6917, pp. 342–357. Springer, Heidelberg (2011)

25. Todo, Y.: Upper Bounds for the Security of Several Feistel Networks. In: Boyd,
C., Simpson, L. (eds.) ACISP. LNCS, vol. 7959, pp. 302–317. Springer, Heidelberg
(2013)

26. Wu, W., Zhang, L.: LBlock: A Lightweight Block Cipher. In: Lopez, J., Tsudik, G.
(eds.) ACNS 2011. LNCS, vol. 6715, pp. 327–344. Springer, Heidelberg (2011)

27. Zhang, L., Wu, W., Wang, Y., Wu, S., Zhang, J.: LAC: A Lightweight Authenti-
cated Encryption Cipher. Submitted to the CAESAR competition (March 2014)

http://www1.spms.ntu.edu.sg/~syllab/attacks/FeistelMitM.pdf

XLS is Not a Strong Pseudorandom Permutation

Mridul Nandi

Indian Statistical Institute, Kolkata, India
mridul@isical.ac.in

Abstract. In FSE 2007, Ristenpart and Rogaway had described a
generic method XLS to construct a length-preserving strong pseudoran-
dom permutation (SPRP) over bit-strings of size at least n. It requires a
length-preserving permutation E over all bits of size multiple of n and a
blockcipher E with block size n. The SPRP security of XLS was proved
from the SPRP assumptions of both E and E. In this paper we disprove
the claim by demonstrating a SPRP distinguisher of XLS which makes
only three queries and has distinguishing advantage about 1/2. XLS uses
a multi-permutation linear function, called mix2. In this paper, we also
show that if we replace mix2 by any invertible linear functions, the con-
struction XLS still remains insecure. Thus the mode has inherit weakness.

Keywords: XLS, SPRP, Distinguishing Advantage, length-preserving
encryption.

1 Introduction

The notion of domain extension arises in many areas of cryptography such as
hash function, pseudorandom function or PRF, strong pseudorandom permuta-
tion or SPRP [12] etc. Usually, we design a building block defined for a small
and fixed bit size domain. Then, by applying the building block iteratively, we
obtain a similar kind of function defined over arbitrary domain. For example,
a blockcipher defined on n bits can be used to define an encryption algorithm
which can encrypt any message of size multiple of n. To define a ciphertext for
a message whose size is not a multiple of n, one can first apply some padding
rule to make the (padded) message of size multiple of n. This method can not
preserve length as it expands ciphertext length. A length-preserving encryption
is called an enciphering scheme. The length-preserving property makes our
task more difficult and restricted than length expanding encryptions. On the
other hand, designing enciphering schemes over all bit strings of size multiple
of block-size (i.e., n) seems to be easier than defining over arbitrary bit strings.
Many such enciphering schemes have been defined [10,9].

Non-Generic Methods. There are several known methods for turning a
blockcipher into an enciphering schemes over arbitrary bit strings. One can ap-
ply the underlying block cipher twice and use the intermediate output as an
one-time pad for partial block (used in EME [7], TET [8], HEH [16] etc.); The

P. Sarkar and T. Iwata (Eds.): ASIACRYPT 2014, PART I, LNCS 8873, pp. 478–490, 2014.
c© International Association for Cryptologic Research 2014

XLS is Not a Strong Pseudorandom Permutation 479

other constructions e.g., HCTR [17], HCH [3], XCB [13] use hash-then counter
paradigm. A standard trick like ciphertext stealing can also be applied to specific
constructions (e.g., AEZ [1]). However, all these approaches are not generic.

We call a method domain completion (or generic domain completion) if
it converts any enciphering scheme over bit strings of size multiple of n into
an enciphering scheme over any bit strings (possibly of size at least n).

To our best knowledge, so far only two domain completions have been proposed.

1. A popular, efficient and neatly defined domain completion method is XLS
(eXtended by Latin Square) designed by Ristenpart and Rogaway [15]. The
design rational of XLS is similar to that of elastic blockcipher as both follow
encrypt-then-mix paradigm.

2. Following hash-counter-hash paradigm, Nandi proposed a domain comple-
tion method in [14].

In addition to these, a heuristically described method, called Elastic blockci-
pher [4], was proposed by Cook, Yung and Keromytis. Later elastic blockcipher,
defined over all bits of sizes in between n and 2n, has been more formally defined
in [5].

Applications of Domain Completion Method. While primarily interested
in the theoretical question of how to obtain domain extension for ciphers,
arbitrary-input-length enciphering is a problem with many applications. A well-
known application is disk-sector encryption in which size of ciphertext and plain-
text remain same as the sector size of the disk. In general, enciphering scheme
is easy to define for input sizes of multiple of n (block size of the underlying
blockcipher). Domain completion methods can be used to define the enciphering
schemes for arbitrary bit strings. It is also used in other symmetric key algo-
rithms such as authenticated encryption. For example, XLS is widely adapted
in many authenticated encryptions, e.g. AES-COPA [2], Deoxys, Joltik, KIASU,
Marble, SHELL etc. [1].

1.1 Our Contribution

In this paper we demonstrate a chosen plaintext-ciphertext adversary (CPCA)
distinguisher against XLS (see Algorithm A0 in section 3.2). The attack makes
only three encryption and decryption oracle queries in an interleaved manner
and has distinguishing advantage about 1/2. Thus, the security claim of XLS is
wrong.

XLS uses a linear multi-permutation (very efficiently computable) mix2 which
satisfies some property. Authors called any such linear permutation satisfying
the property a good mixing function. It is natural to think a possible remedy of
XLS to replace mix2 by other good mixing function or some other stronger lin-
ear permutations. Unfortunately, we show that these remedies would not work.

480 M. Nandi

To establish our claim, we consider a generalized version of XLS (we call it GXLS)
which applies any arbitrary linear permutations instead of mix2. Moreover, we
consider keys of two invocations of the underlying blockcipher E to be indepen-
dently chosen. We demonstrate similar CPCA-distinguishers (in section 4) for
GXLS having advantage at least 1/4. So we conclude that XLS has design flaws
in its modes not in the choice of linear mixing functions.

2 XLS and Its General Form GXLS

Basics and Notation

1. An s-bit string X is denoted as X = X [1]X [2] · · ·X [s] where X [i] ∈ {0, 1}.
We denote X [i..j] = X [i] · · ·X [j] and |X | = s.

2. A length-preserving function f satisfies |f(X)| = |X | for all X .
3. Any linear function from {0, 1}s to {0, 1}t can be represented by a t×s binary

matrix. Let rol(X) represent left circular bit-rotation, that is, for any bit-
string X := X [1]X [2] · · ·X [s] of length s, let rol(X) = X [2]X [3] · · ·X [s]X [1].
Note that rol is a linear invertible function and is represented by the following
s× s invertible matrix:

R =

⎛⎜⎜⎜⎜⎜⎝
0 1 0 · · · 0 0
0 0 1 · · · 0 0

...
0 0 0 · · · 0 1
1 0 0 · · · 0 0

⎞⎟⎟⎟⎟⎟⎠ =

(
0 Is−1

1 0

)
.

Here, Is−1 represents the identity matrix of size s− 1.
4. Throughout the paper, let n be a fixed integer representing the block-size of

the underlying blockcipher E.

2.1 XLS and GXLS on {0, 1}2n−1

In this section we describe how XLS has been defined for bit strings of size 2n−1.
Later we show distinguishing attack of XLS by making queries of size 2n−1 only.
We refer readers to the original paper [15] for the definition of XLS over arbitrary
bit strings. We first define a linear function mix2 : {0, 1}2n−2 → {0, 1}2n−2 as
below

mix2(AB) = (A⊕rol(A⊕B), B⊕rol(A⊕B)) = ((R+I)·A+R·B, R·A+(R+I)·B)

=

(
R+ I R

R R+ I

)
·
(
A

B

)
where |A| = |B| = n−1 and I is the identity matrix of size n−1. It is easy to see
that the inverse of the linear map mix2 is itself. Such a permutation is also called
an involution. Now we describe the XLS algorithm [15] over the set of all 2n− 1

XLS is Not a Strong Pseudorandom Permutation 481

E

E

E

P Q

A

U

V

W

B

DC

mix2

mix2

a

u = a⊕ 1

v

b = v ⊕ 1

Π1

Π2

P Q

A

U

V

W

B

mix1

mix2

C

Π3

D′

Π1

Π2

Π3

P Q

A

U

D

A

DC

a

v

B

(3)(1) (2)

Fig. 2.1. Illustration of (1) XLS, (2) GXLS and (3) 3-round Elastic Blockcipher. The
XLS and 3-round Elastic blockcipher are special cases of GXLS.

bit strings based on two n-bit (random) permutations E and E and the linear
permutation mix2. We would like to note that we express the input, output and
intermediate variables with different notations from those of [15] which would
be used to describe our attack and analysis.

Algorithmic Definitions of XLS and GXLS. Now we describe the algorithms
XLS and GXLS which are defined on 2n− 1 bits.

Algorithm XLSE,E

Input: (P,Q) ∈ Fn
2 × Fn−1

2

Output: (C,D) ∈ Fn
2 × Fn−1

2 .
01 E(P) = a‖A, a ∈ F2.
02 u = a!, (U,W) = mix2(A,Q).
03 E(u‖U) = v‖V .
04 b = v!, (B,D) = mix2(V,W).
05 E(b‖B) = C.
06 return (C,D).

Algorithm GXLS[Π1,mix1, Π2,mix2, Π3]
Input: (P,Q) ∈ Fn

2 × Fn−1
2

Output: (C,D) ∈ Fn
2 × Fn−1

2 .
01 Π1(P) = A.
02 (U,W) = mix1(A,Q).
03 Π2(U) = V .
04 (B,D) = mix2(V,W).
05 Π3(B) = C.
06 return (C,D).

Here ! denotes bit complement. Here mix1 and mix2 are two invertible linear
functions on 2n− 1 bits and mix2 is a linear invertible function over {0, 1}2n−2

bits as described before. The Πi’s are independent uniform random (or pseudo-
random) permutations whereas in XLS E and E are independent uniform ran-
dom (or pseudorandom) permutations. We also denote the generalized-XLS as

482 M. Nandi

GXLS[Π1,mix1, Π2,mix2, Π3](P,Q) = (C,D) as above (in the right hand side of
Fig. 2.1). Note that the XLS algorithm is nothing but GXLS[E, !‖mix2, E , !‖mix2,
E] where (!‖f)(b,X) = b!‖f(X). In order for GXLS to be invertible, mix1 and
mix2 should be invertible.

2.2 Elastic Blockcipher

The three round Elastic blockcipher can also be viewed as a GXLS[Π1,mix3, Π2,
mix3, Π3] where mix3(A,B) = ((A[i1] · · ·A[is]) ⊕ B,A[i1] · · ·A[is]), |A| = n,
|B| = s and 1 ≤ i1 < · · · < is ≤ n are some fixed integers (specific choices of
these values depend on the underlying blockcipher). We illustrate this method
in Fig 2.1 when i1 = n−s+1, . . . , is = n. Basic mix function of it can be defined
as (X‖Y) �→ X⊕Y ‖X where |X | = |Y | = s. Similarly, four or higher number of
rounds can be defined. So all of these follow the encrypt-mix paradigm iterated
several rounds. We capture this paradigm for three iterations in GXLS. In the
following sections, we prove that three rounds are not sufficient for having SPRP.

3 Insecurity of XLS

In this section we show that XLS is not SPRP (strong pseudorandom permu-
tation). In fact we establish a distinguisher making only three oracle queries
having distinguishing advantage about 1/2. Moreover, if we repeat this attack
independently, we can amplify the distinguishing advantage close to one. We first
briefly define basics of security notions related to distinguishing advantages.

3.1 Security Definitions

Let Ri denote the uniform random function from {0, 1}i to {0, 1}i, i.e., the uni-
form distribution on the set Func({0, 1}i, {0, 1}i) of all functions from {0, 1}i to
itself. Given a set L ⊆ N := {1, 2, · · · }, we denote RL for the tuple 〈Ri〉i∈L of
random functions where Ri’s are jointly independently distributed. We call the
set L length set. We call RL a length-preserving uniform random function on
{0, 1}L := ∪i∈L{0, 1}i. Similarly, let Pi denote the uniform random permutation
on {0, 1}i, i.e., the uniform distribution on the set Perm({0, 1}i, {0, 1}i) of all
permutations on {0, 1}i. Note that the inverse random permutation, P−1

i , is also
an uniform random permutation. We similarly define length-preserving uniform
random permutation PL on {0, 1}L which is independent composition of Pi for
all i ∈ L.

Now let A be an oracle algorithm which has access of two length-preserving
oraclesO1 andO2. SupposeAmakes queries from the set {0, 1}L for both oracles.
We define SPRP-advantage of A for a length-preserving random permutation
FL (not necessarily uniform) by

Advsprp
FL

(A) = Pr[AFL,F−1
L = 1]− Pr[APL,P−1

L = 1].

XLS is Not a Strong Pseudorandom Permutation 483

In general, we can define advantage for two pairs of tuples of length-preserving
random functions (FL, F

′
L) and (GL, G

′
L) as

AdvA((FL, F
′
L), (GL, G

′
L)) = Pr[AFL,F′L = 1]− Pr[AGL,G′L = 1].

If A interacts with a length-preserving random permutation O1 and its inverse
O2 then we can assume the following:

1. A is not making any repetition query.
2. If xi is O1-query and yi is its response then there is no O2-query xj = yi for

some j > i and vice-versa.

We can assume these since the responses are determined for these types of
queries. An adversary satisfying the above conditions is called an allowed ad-
versary.

Theorem 1. [11] Let RL and R′L be independently chosen length-preserving
uniform random functions and let PL be length-preserving uniform random per-
mutation. Then for any allowed adversary A which makes at most Q queries,
we have,

AdvA((PL, PL
−1), (RL, R

′
L)) ≤

Q(Q− 1)

2m+1

where m = min{� : � ∈ L}.
The above result says that an uniform length-preserving random permutation

is very close to an uniform length-preserving random function. Thus if we want
to prove that an enciphering scheme is not SPRP-secure by small number of
queries then it would be enough to compute the distinguishing advantage from
uniform random functions for an allowed adversary. For example, when Q = 3,
if for length-preserving construction FL, AdvA((PL, PL

−1), (FL, F
−1
L)) := c is

significant for an allowed adversary then Advsprp
FL

(A) is at least c−2−n+2 which
is also significant.

Remark 1. The above is one side of the implication of the Theorem 1. The other
application is to show a construction FL SPRP by showing AdvA((FL, FL

−1),
(RL,R

′
L)) is negligible.

3.2 SPRP Distinguishing Algorithm

Distinguishing Algorithm A0 for XLS.

1. Make encryption query (P1, Q1) and obtains response (C1, D1).
2. Make decryption query (C2 := C1, D2 := D1 + 1) and obtains re-

sponse (P2, Q2).
3. Make encryption query (P3 = P2, Q3) and obtains response (C3, D3)

where

Q3 = Q1 + (I+R−2) · (Q1 +Q2 + 1).

4. return 1 if D3 = Q1 +Q3 +D1, 0 otherwise.

484 M. Nandi

E

E

E

P1 Q1

A1

U1

V1

W1

B1

D1C1

mix2

mix2

a1

u1 = a1!

v1

b1 = v1!

Query-1 (encryption)

E

E

E

P2 Q3

A2

U3 = U1

V3 = V1

W3

B3

D3C3

mix2

mix2

a2

u2 = a2!

v3 = v1

b3 = v3!

Query-3 (encryption)

E

E

E

P2 Q2

A2

U2

V2

W2

B1

D2 = D1 + 1C1

mix2

mix2

a2 = u2!

u2

v1 = b1!

b1

Query-2 (decryption)

Fig. 3.1. A0 makes three queries and obtains collisions on U1 and U3 values with
probability 1/2 (due to the event that a1 = a2)

3.3 Analysis of Attack

To see why our attack works, let us first observe some useful relations among
internal variables in the computations of XLS.

Lemma 1. With the notations as described in the algorithm XLS, we have A+
B = (R−1 + I) · (Q+D).

Proof. Since mix2 is inverse of itself we have (V,W) = mix2(B,D). By equating
W with line 02 of XLS algorithm, we have

R · B + (R + I) ·D = R ·A+ (R+ I) ·Q.

Thus, R · (A+B) = (R+ I) · (Q+D) and so the result follows. �

Lemma 2. With the notations as described in the algorithm XLS, we have U +
V = R−1 · (Q +D).

Proof. Due to line 02 and 04, we have R · U + (I +R) ·W = Q and R · V +
(I+R) ·W = D. Thus, R · (U + V) = (D +Q) and so the result follows. �

The basic idea of our attack is to obtain an internal collision. Suppose we
have two queries (Pi, Qi) with responses (Ci, Di), i = 1, 2 such that the Ui

values remain the same. So the outputs Vi are also same. Due to above lemma,
we have Q1 ⊕ D1 = Q2 ⊕ D2. For a uniform random permutations this event
can occur with a probability of about 2−n+1. Now we show that in query-1
and query-3, U values collide with probability 1/2 and so we can distinguish
XLS from uniform random permutation with advantage about 1/2 (for large n,
2−n+1 is negligible).

XLS is Not a Strong Pseudorandom Permutation 485

Theorem 2. The Algorithm of A0 has distinguishing advantage about 1/2
against XLS.

Proof. Note that A0 makes three encryption and decryption queries in an in-
terleaved manner. Let us denote the intermediate variables of computations of
ith query by using suffix i, 1 ≤ i ≤ 3. Let us denote G = R−1 + I. By Lemma 1,
we have A1 +B1 = G · (Q1 +D1) and A2 +B1 = A2 +B2 = G · (Q2 +D2) and
so A1 +A3 = A1 +A2 = G · (Q1 +D1 +Q2 +D2) = G · (Q1 +Q2 +1). Now we
make our main claim:

Claim: U1 = U3.

U1 + U3 = (R+ I) · (A1 +A3) +R · (Q1 +Q3)

= (R+ I) ·G(Q1 +Q2 + 1) +R · (Q1 +Q3)

= (R+R−1) · (Q1 +Q2 + 1) +R · (Q1 +Q3)

Since Q3 = Q1 + (I+R−2) · (Q1 +Q2 + 1), we have U1 = U3. �
The rest of the proof is straightforward. As we have collision on U values,

we have collision on V values, i.e., V1 = V3. But this can happen if the first
bit of inputs of E in query 1 and 3 match which can happen with probability
1/2. Assuming this, we can exploit the collision to make distinguishing attack
as discussed before the theorem. We have D3 = Q1+Q3+D1. This can hold for
a uniform random permutation E with probability about 2−n+1. So the result
follows. �

Remark 2. The same attack works for any length of the form kn− 1 with same
advantage. We only need the size of the partial block to be n − 1. Note that
we need the first bit of output of E in query 1 and 3 should match which
can happen with probability 1/2. For other length inputs, the distinguishing
advantage reduces as we need more bits collision. In general, if we want to
distinguish XLS only on kn + s bits inputs then we need collision on the first
n− s bits of outputs of E in query 1 and 3 which can happen with probability
about 2s−n. So the distinguishing advantage would be about 2s−n − 21−n. So
if the partial block size s is small the distinguishing advantage of our attack
reduces. This is very natural as most of the intermediate bits are processed
through E .

4 Distinguishing Attack on GXLS on {0, 1}2n−1

Now we demonstrate how we can modify the distinguishing attack for GXLS.
This would suggest that any simple modification on XLS (such as changing mix
functions with others) do not work. In other words, we show that the mode,
not the mixing function, has inherent weakness. Behavior of this distinguishing
attack depends on different cases of invertible mixing matrices mix1 and mix2.
As we need to assume these as linear permutations, we can represent these by
the following (2n− 1)× (2n− 1) invertible matrices.

486 M. Nandi

mix1 =

(
M [1]n×n N [1]n×(n−1)

M [2](n−1)×n N [2](n−1)×(n−1)

)
,

mix−1
2 =

(
M ′[1]n×n N ′[1]n×(n−1)

M ′[2](n−1)×n N ′[2](n−1)×(n−1)

)
.

Before we demonstrate our attacks we state some notations and results which
would be used.

Notations. Given a r × s matrix A we denote C(A) the column space of the
matrix.

Lemma 3. Let Mr×s and Nr×t be two matrices and cr×1 is a vector such that

C(N) �⊆ C(M). For any two uniform random vectors a
$← {0, 1}s and q

$← {0, 1}t
(not necessarily independent) Pr[M · a = N · q + c] ≤ 1/2.

Proof. This is straightforward when M is of the form
(
Ir ∗
0 0

)
where r is the rank

of M and ∗ means that the sub matrix could be anything. In this case there
must exist i > r such that ith row of N is non-zero. As qi is uniform on {0, 1},
by equating the event on ith bit we get probability at most 1/2 to achieve the
event.

For a general matrix M , we can find two non-singular square matrices S and
T such that S ·M · T =

(
Ir ∗
0 0

)
. So the given probability p should be same as

Pr[SMT · (T−1a) = SN · q + S · c].

Let us denote M ′ = SMT , a′ = T−1a, c′ = Sc and N ′ = SN . With this
notation, we have p = Pr[M ′ ·a′ = N ′ ·q+ c′]. Now note that M ′ has the form as
considered before. Due to invertible property of S and T , we have the property
that C(N ′) �⊆ C(M ′) and, a′ and q′ follow individually uniform distributions. �

Now we describe our attacks for different cases of the sub matrices of the mix
functions. Conventionally, we use suffix 1, 2 and 3 to denote intermediate values
for the first, second and third queries respectively.

4.1 rank(M [2]) ≤ n − 2

In this case we first claim that the column space of N [2] must contain a vector
which does not belong to the column space of M [2]. Otherwise, the rank of
(n− 1)× (2n− 1) matrix (M [2] N [2]) is less than n− 2 which contradicts that
the matrix mix1 is invertible.

Now we run the algorithm A0 only for the first two queries. As before, we
have M [2](A1 + A2) = N [2](Q1 + Q2) + N ′[2] · 1. Using the lemma 3, we know
that when the algorithm is interacting with uniform random permutation, the
probability that N [2](Q1+Q2)+N ′[2] ·1 belongs to the column space of M [2] is
less than 1/2. However, for the case of GXLS it occurs with probability one. So
we can distinguish with advantage at least 1/2. We formally describe the attack
algorithm by A1 below.

XLS is Not a Strong Pseudorandom Permutation 487

Distinguishing Algorithm A1.

1. Make encryption query (P1, Q1) and obtain response (C1, D1).
2. Make decryption query (C2 := C1, D2 := D1+1) and obtain response

(P2, Q2).
3. return 1 if N [2](Q1 +Q2) +N ′[2] · 1 ∈ C(M [2]), 0 otherwise.

Note that given a vector v and a matrix M [2], there is an efficient algorithm
to check whether a vector v belongs to the column space of M [2]. For this we
essentially need to solve the system of equations M [2] · x = v and whenever we
arrive contradiction a solution does not exist equivalently v is not a member of
the column space. Alternatively we can first find some invertible matrices S and
T (by some standard elementary operations) such that

S ·M [2] · T =

(
Ir ∗
0 0

)
where r denotes the rank of M [2]. So M [2] · x = v if and only if(

Ir ∗
0 0

)
(T−1x) = S · v

which holds if and only if for all i > r, the ith entry of S · v is zero.

Remark 3. Similar attack works when rank(M ′[2]) ≤ n− 2. In this case we only
need to interchange the role of encryption and decryption queries.

4.2 Case: rank(M [2]) = rank(M ′[2]) = n − 1, rank(N [1]) ≤ n − 2

As N [1] does not have full rank, we can find Q1 �= Q2 such that N [1]Q1 =
N [1]Q2. So U values collide for two encryption queries (P,Q1) and (P,Q2). Now
we write the relationship among intermediate variables. So A1 = A2 and due to
choice of Q1 and Q2 we also have U1 = U2 and hence V1 = V2. Now, let us write
mix2 function as

mix2 =

(
M ′′[1]n×n N ′′[1]n×(n−1)

M ′′[2](n−1)×n N ′′[2](n−1)×(n−1)

)
.

By the applications of mix1 and mix2 functions for two queries, we have

1. W1 = M [2] · A1 +N [2] ·Q1, W2 = M [2] ·A2 +N [2] ·Q2 and

2. D1 = M ′′[2] · V1 +N ′′[2] ·W1, D2 = M ′′[2] · V2 +N ′′[2] ·W2.

So W1+W2 = N [2]·(Q1+Q2) and D1+D2 = N ′′[2]·(W1+W2) = N ′′[2]·N [2]·
(Q1 + Q2). Note that for a random function, we observe this with probability
2−n+1. We formally describe the attack algorithm by A2 below.

488 M. Nandi

Distinguishing Algorithm A2.

1. Let N [1]Q1 = N [1]Q2.
2. Make encryption query (P1, Q1) and obtains response (C1, D1).
3. Make encryption query (P1, Q2) and obtains response (C2, D2).
4. return 1 if D2 = D1 +N ′′[2] ·N [2] · (Q1 +Q2), 0 otherwise.

4.3 Case: rank(M [2]) = rank(M ′[2]) = n − 1, rank(N [1]) = n − 1

We make three queries same as A0 except the choice of Q3 whose value is de-
termined below. We have

1. U1 + U3 = M [1](A1 +A2) +N [1]Q1 +N [1]Q3.
2. M [2](A1 +A2) = N [2](Q1 +Q2) +N ′[2](D1 +D2) (from the computations

of W1 and W2).

As the rank of M [2] is n − 1 and the right hand side of item 2 above is
known, we can guess (A1 + A2) correctly with probability 1/2 (since there are
only two choices). So we can guess M [1](A1 + A2) from M [2](A1 + A2) with
probability at least 1/2. Let X be the guessed value of M [1](A1 +A2). We now
choose Q3 such that U1 + U3 = 0 (i.e., U1 = U3). From the item 1 of above,
we define Q3 = N [1]−1 ·X + Q1. Note that N [1] is assumed to be invertible in
this case. So Pr[U1 = U3] ≥ 1/2. This essentially leads to a similar distinguisher
as in XLS. However, we need to compute the distinguishing event similar to the
computation of the previous case. By the applications of mix1, mix−1

2 and mix2
functions for three queries, we have

1. W1 +W2 = N ′[2] · (D1 +D2),
2. W2 +W3 = N [2] · (Q2 +Q3), and
3. N ′′[2] · (W1 +W3) = D1 +D3.

So we have D3 = D1 +N ′′[2] · (N ′[2] · (D1 +D2) +N [2] · (Q1 +Q3)) which can
be observed with probability 2−n+1 for a random function. We formally describe
the attack algorithm by A2 below.

Distinguishing Algorithm A3.

1. Make encryption query (P1, Q1) and obtains response (C1, D1).
2. Make decryption query (C2 := C1, D2 := D1 + 1) and obtains response

(P2, Q2).
3. Guess M [1](A1 +A2), denoted X , from N [2](Q1 +Q2) +N ′[2](D1 +D2)
4. Choose Q3 such that N [1](Q1 +Q3) = X .
5. Make encryption query (P3 = P2, Q3) and obtains response (C3, D3).
6. return 1 if D3 = D1 +N ′′[2] · (N ′[2] · (D1 +D2) + N [2] · (Q1 + Q3)),
7. return 0, otherwise.

XLS is Not a Strong Pseudorandom Permutation 489

5 Conclusion

In this paper we provide chosen plaintext and ciphertext distinguishing attack
(i.e., SPRP distinguisher) of XLS. It makes three encryption and decryption calls
and has distinguishing advantage about 1/2. This attack can be further extended
to a general form of XLS following mix-then-encrypt paradigm. We believe that
it can not be repaired without introducing any non-linear functionality, e.g. an
additional blockcipher call. So we need four blockcipher calls to make this types
of design secure. Both Elastic blokcipher and Nandi’s construction make four
calls of non-linear functions. However, Nandi’s construction could be potentially
faster, as it requires two universal hash invocations (which can be achieved by
applying four rounds of AES [6]) and one call of weak-PRF (optimistically, one
can apply eight rounds of AES) in addition with a full blokcipher call (which is
e.g., ten rounds of AES). So in total it requires 26 rounds of AES which is much
faster than four full invocations of AES.

Acknowledgement. This work is supported by Centre of Excellence in Cryp-
tology at Indian Statistical Institute, Kolkata.

References

1. CAESAR submissions (2014), http://competitions.cr.yp.to/caesar-

submissions.html

2. Andreeva, E., Bogdanov, A., Luykx, A., Mennink, B., Tischhauser, E., Yasuda,
K.: Parallelizable and authenticated online ciphers. In: Sako, K., Sarkar, P. (eds.)
ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 424–443. Springer, Heidelberg
(2013)

3. Chakraborty, D., Sarkar, P.: HCH: A new tweakable enciphering scheme using the
hash-encrypt-hash approach. In: Barua, R., Lange, T. (eds.) INDOCRYPT 2006.
LNCS, vol. 4329, pp. 287–302. Springer, Heidelberg (2006)

4. Cook, D.L., Yung, M., Keromytis, A.D.: Elastic aes. IACR Cryptology ePrint
Archive, 2004:141 (2004)

5. Cook, D.L., Yung, M., Keromytis, A.D.: Elastic block ciphers: method, security
and instantiations. Int. J. Inf. Sec. 8(3), 211–231 (2009)

6. Daemen, J., Lamberger, M., Pramstaller, N., Rijmen, V., Vercauteren, F.: Compu-
tational aspects of the expected differential probability of 4-round aes and aes-like
ciphers. Computing 85(1-2), 85–104 (2009)

7. Halevi, S.: EME*: Extending EME to handle arbitrary-length messages with asso-
ciated data. In: Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT 2004. LNCS,
vol. 3348, pp. 315–327. Springer, Heidelberg (2004)

8. Halevi, S.: TET: A wide-block tweakable mode based on Naor-Reingold. Cryptol-
ogy ePrint Archive, Report 2007/014 (2007), http://eprint.iacr.org/

9. Halevi, S., Rogaway, P.: A tweakable enciphering mode. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 482–499. Springer, Heidelberg (2003)

10. Halevi, S., Rogaway, P.: A parallelizable enciphering mode. In: Okamoto, T.
(ed.) CT-RSA 2004. LNCS, vol. 2964, pp. 292–304. Springer, Heidelberg (2004)

11. Liskov, M., Rivest, R.L., Wagner, D.: Tweakable block ciphers. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, pp. 31–46. Springer, Heidelberg (2002)

http://competitions.cr.yp.to/caesar-submissions.html
http://competitions.cr.yp.to/caesar-submissions.html
http://eprint.iacr.org/

490 M. Nandi

12. Luby, M., Rackoff, C.: How to construct pseudo-random permutations from pseudo-
random functions. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, p. 447.
Springer, Heidelberg (1986)

13. McGrew, D.A., Fluhrer, S.R.: The extended codebook (XCB) mode of operation.
Cryptology ePrint Archive, Report 2004/278 (2004), http://eprint.iacr.org/

14. Nandi, M.: A generic method to extend message space of a strong pseudorandom
permutation. Computación y Sistemas 12(3) (2009)

15. Ristenpart, T., Rogaway, P.: How to enrich the message space of a cipher. In:
Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 101–118. Springer, Heidelberg
(2007)

16. Sarkar, P.: Improving upon the tet mode of operation. In: Nam, K.-H., Rhee, G.
(eds.) ICISC 2007. LNCS, vol. 4817, pp. 180–192. Springer, Heidelberg (2007)

17. Wang, P., Feng, D., Wu, W.: HCTR: A variable-input-length enciphering mode.
In: Feng, D., Lin, D., Yung, M. (eds.) CISC 2005. LNCS, vol. 3822, pp. 175–188.
Springer, Heidelberg (2005)

http://eprint.iacr.org/

Structure-Preserving Signatures

on Equivalence Classes and Their Application
to Anonymous Credentials

Christian Hanser and Daniel Slamanig

Institute for Applied Information Processing and Communications (IAIK),
Graz University of Technology (TUG), Inffeldgasse 16a, 8010 Graz, Austria

{christian.hanser,daniel.slamanig}@tugraz.at

Abstract. Structure-preserving signatures are a quite recent but im-
portant building block for many cryptographic protocols. In this paper,
we introduce a new type of structure-preserving signatures, which allows
to sign group element vectors and to consistently randomize signatures
and messages without knowledge of any secret. More precisely, we con-
sider messages to be (representatives of) equivalence classes on vectors
of group elements (coming from a single prime order group), which are
determined by the mutual ratios of the discrete logarithms of the repre-
sentative’s vector components. By multiplying each component with the
same scalar, a different representative of the same equivalence class is
obtained. We propose a definition of such a signature scheme, a security
model and give an efficient construction, which is secure in the SXDH
setting, where EUF-CMA security holds against generic forgers in the
generic group model and the so called class hiding property holds under
the DDH assumption.

As a second contribution, we use the proposed signature scheme to
build an efficient multi-show attribute-based anonymous credential
(ABC) system that allows to encode an arbitrary number of attributes.
This is – to the best of our knowledge – the first ABC system that pro-
vides constant-size credentials and constant-size showings. To allow an
efficient construction in combination with the proposed signature scheme,
we also introduce a new, efficient, randomizable polynomial commitment
scheme. Aside from these two building blocks, the credential system re-
quires a very short and constant-size proof of knowledge to provide fresh-
ness in the showing protocol.

1 Introduction

Digital signatures are an important cryptographic primitive to provide a means
for integrity protection, non-repudiation as well as authenticity of messages in
a publicly verifiable way. In most signature schemes, the message space consists
of integers in Zord(G) for some group G or consists of arbitrary strings encoded
either to integers in Zord(G) or to elements of a group G using a suitable hash
function. In the latter case, the hash function is usually required to be mod-
eled as a random oracle (thus, one signs random group elements). In contrast,

P. Sarkar and T. Iwata (Eds.): ASIACRYPT 2014, PART I, LNCS 8873, pp. 491–511, 2014.
c© International Association for Cryptologic Research 2014

492 C. Hanser and D. Slamanig

structure-preserving signatures [33,6,1,2,21,5,4] can handle messages which are
elements of two groups G1 and G2 equipped with a bilinear map, without re-
quiring any prior encoding. Basically, in a structure-preserving signature scheme
the public key, the messages and the signatures consist only of group elements
and the verification algorithm evaluates a signature by deciding group member-
ship of elements in the signature and by evaluating pairing product equations.
Such signature schemes typically allow to sign vectors of group elements (from
one of the two groups G1 and G2, or mixed) and also support some types of
randomization (inner, sequential, etc., cf. [1,5]).

Randomization is one interesting feature of signatures, as a given signature
can be randomized to another unlinkable version of the signature for the same
message. Besides randomizable structure-preserving signatures, there are various
other constructions of such signature schemes [24,25,18,43]. We emphasize that
although these schemes are randomizable, they are still secure digital signatures
in the standard sense (EUF-CMA security).

We are interested in constructions of structure-preserving signature schemes
that do not only allow randomization of the signature, but also allow to random-
ize the signed message in particular ways. Such signature schemes are particu-
larly interesting for applications in privacy-enhancing cryptographic protocols.

1.1 Contribution

This paper has three contributions: A novel type of structure-preserving sig-
natures defined on equivalence classes on group element vectors, a novel ran-
domizable polynomial commitment scheme, which allows to open factors of the
polynomial committed to, and a new construction (type) of multi-show attribute-
based anonymous credentials (ABCs), which is instantiated from the first two
contributions.

Structure-Preserving Signature Scheme on Equivalence Classes.
Inspired by randomizable signatures, we introduce a novel variant of structure-
preserving signatures. Instead of signing particular message vectors as in other
schemes, the scheme produces signatures on classes of an equivalence relation
R defined on (G∗

1)
� with � > 1 (where we use G∗

1 to denote G1 \ {0G1}). More
precisely, we consider messages to be (representatives of) equivalence classes on
(G∗

1)
�, which are determined by the mutual ratios of the discrete logarithms of

the representative’s vector components. By multiplying each component with the
same scalar, a different representative of the same equivalence class is obtained.
Initially, an equivalence class is signed by signing an arbitrary representative.
Later, one can obtain a valid signature for every other representative of this
class, without having access to the secret key. Furthermore, we require two rep-
resentatives of the same class with corresponding signatures to be unlinkable,
which we call class hiding. We present a definition of such a signature scheme
along with game based notions of security and present an efficient construction,
which produces short and constant-size signatures that are independent of the
message vector length �. In the full version [37], we prove the security of our

Structure-Preserving Signatures on Equivalence Classes 493

construction in the generic group model against generic forgers and the DDH
assumption, respectively.

Polynomial Commitments with Factor Openings. We propose a new, effi-
cient, randomizable polynomial commitment scheme. It is computationally bind-
ing, unconditionally hiding, allows to commit to monic, reducible polynomials
and is represented by an element of a bilinear group. It allows to open factors of
committed polynomials and re-randomization (i.e., multiplication with a scalar)
does not change the polynomial committed to, but requires only a consistent
randomization of the witnesses involved in the factor openings. We present a
definition as well as a construction of such a polynomial commitment scheme.
In the full version [37], we give a security model in which we also prove the
construction secure.

A Multi-Show Attribute-Based Anonymous Credential (ABC) Sys-
tem.We describe a new way to build multi-show ABCs (henceforth, we will only
write ABCs) as an application of the first two contributions. From another per-
spective, the signature scheme allows to consistently randomize a vector of group
elements and its signature. So, it seems natural to use this property to achieve
unlinkability during the showings of an ABC system. To enable a compact at-
tribute representation, which is compatible with the randomization property of
the signature scheme, we encode the attributes to polynomials and commit to
them using the introduced polynomial commitment scheme. During the issuing,
the obtainer is, then, given a set of attributes and the credential, which is a
message (vector) consisting of the polynomial commitment and the generator
of the group plus the corresponding signature. During a showing, a subset of
the issued attributes can be shown by opening the corresponding factors of the
committed polynomial. The unlinkability of showings is achieved through the in-
herent re-randomization properties of the signature scheme and the polynomial
commitment scheme, which are compatible to each other. Furthermore, to pro-
vide freshness during a showing, we require a very small, constant-size proof of
knowledge. We emphasize that our approach to construct ABCs is very different
from existing approaches, as we use neither zero-knowledge proofs for prov-
ing the possession of a signature nor for selectively disclosing attributes during
showings. Recall that existing approaches rely on signature schemes that allow
to sign vectors of attributes and use efficient zero-knowledge proofs to show pos-
session of a signature and to prove relations about the signed attributes during
a showing.

Interestingly, in our construction the size of credentials as well as the size of
the showings are independent of the number of attributes in the ABC system,
i.e., a small, constant number of group elements. This is, to the best of our
knowledge, the first ABC system with this feature. The proposed ABC system
is secure in a security model adapted from [23,8,26,27], where we refer the reader
to the full version [37] for the proofs and the security model. Finally, we compare
our system to other existing multi- and one-show ABC approaches. Although
we are only dealing with multi-show credentials, for the sake of completeness, we

494 C. Hanser and D. Slamanig

also compare our approach to the one-show (i.e., linkable) anonymous credentials
of Brands [20] (and, thus, also its provably secure generalization [12]).

1.2 Related Work

In [16], Blazy et al. present signatures on randomizable ciphertexts (based on
linear encryption [18]) using a variant of Waters’ signature scheme [43]. Basi-
cally, anyone given a signature on a ciphertext can randomize the ciphertext
and adapt the signature accordingly, while maintaining public verifiability and
neither knowing the signing key nor the encrypted message. However, as these
signatures only allow to randomize the ciphertexts and not the underlying plain-
texts, this approach is not useful for our purposes.

Another somewhat related approach is the proofless variant of the Chaum-
Pedersen signature [31] which is used to build self-blindable certificates by Ver-
heul in [42]. The resulting so called certificate as well as the initial message can
be randomized using the same scalar, preserving the validity of the certificate.
This approach works for the construction in [42], but it does not represent a se-
cure signature scheme (as also observed in [42]) due to its homomorphic property
and the possibility of efficient existential forgeries.

Homomorphic signatures for network coding [19] allow to sign any subspace
of a vector space by producing a signature for every basis vector with respect to
the same (file) identifier. Consequently, the message space consists of identifiers
and vectors. These signatures are homomorphic, meaning that given a sequence
of scalar and signature pairs (βi, σi)

�
i=1 for vectors vi, one can publicly compute

a signature for the vector v =
∑�

i=1 βivi (this is called derive). If one was using
a unique identifier per signed vector v, then such linearly homomorphic signa-
tures would support a functionality similar to the one provided by our scheme,
i.e., publicly compute signatures for vectors v′ = βv (although they are not
structure-preserving). It is also known that various existing constructions, e.g.,
[19,10] are strong context hiding, meaning that original and derived signatures
are unlinkable. Nevertheless, this does not help in our context, which is due
to the following argument: If we do not restrict every single signed vector to a
unique identifier, the signature schemes are homomorphic, which is not compat-
ible with our unforgeability goal. If we apply this restriction, however, then we
are not able to achieve class hiding as all signatures can be linked to the initial
signature by the unique identifier. We note that the same arguments also apply
to structure-preserving linearly homomorphic signatures [40].

The aforementioned context hiding property is also of interest in more general
classes of homomorphic (also called malleable) signature schemes (defined in [7]
and refined in [9]). In [29], the authors discuss malleable signatures that allow
to derive a signature σ′ on a message m′ = T (m) for an ”allowable” transfor-
mation T , when given a signature σ for a message m. This can be considered
as a generalization of signature schemes, such as quotable [10] or redactable sig-
natures [38] with the additional property of being context hiding. The authors
note that for messages being pseudonyms and transformations that transfer one
pseudonym into another pseudonym, such malleable signatures can be used to

Structure-Preserving Signatures on Equivalence Classes 495

construct anonymous credential systems. They also demonstrate how to build
delegatable anonymous credential systems [15,14]. The general construction in
[29] relies on malleable-ZKPs [28] and is not really efficient, even when instanti-
ated with Groth-Sahai proofs [35]. Although it is conceptually totally different
from our approach, we note that by viewing our scheme in a different way, our
scheme fits into their definition of malleable signatures (such that their SigEval
algorithm takes only a single message vector with corresponding signature and
a single allowable transformation). However, firstly, our construction is far more
efficient than their approach (and in particular really practical) and, secondly,
[29] only focuses on transformations of single messages (pseudonyms) and does
not consider multi-show attribute-based anonymous credentials at all (which is
the main focus of our construction).

Signatures providing randomization features [24,25,18] along with efficient
proofs of knowledge of committed values can be used to generically construct
ABC systems. The most prominent approaches based on Σ-protocols are CL cre-
dentials [24,25]. With the advent of Groth-Sahai proofs, which allow
(efficient) non-interactive proofs in the CRS model without random oracles, var-
ious constructions of so called delegatable (hierarchical) anonymous credentials
have been proposed [15,14]. These provide per definition a non-interactive show-
ing protocol, i.e., the show and verify algorithms do not interact when demon-
strating the possession of a credential. In [34], Fuchsbauer presented the first
delegatable anonymous credential system that also provides a non-interactive
delegation protocol based on so called commuting signatures and verifiable en-
cryption. We note that although such credential systems with non-interactive
protocols extend the scope of applications of anonymous credentials, the most
common use-case (i.e., authentication and authorization), essentially relies on
interaction (to provide freshness/liveness). We emphasize that our goal is not to
construct non-interactive anonymous credentials. Nevertheless, one could gener-
ically convert our proposed system to a non-interactive one: in the ROM using
Fiat-Shamir or by replacing our single Σ-proof for freshness with a Groth-Sahai
proof without random oracles, which is, however, out of scope of this paper.

2 Preliminaries

Definition 1 (Bilinear Map). Let G1, G2 and GT be cyclic groups of prime
order p, where G1 and G2 are additive and GT is multiplicative. Let P and P ′

generate G1 and G2, respectively. We call e : G1 × G2 → GT bilinear map or
pairing if it is efficiently computable and the following conditions hold:

Bilinearity: e(aP, bP ′) = e(P, P ′)ab = e(bP, aP ′) ∀a, b ∈ Zp

Non-degeneracy: e(P, P ′) �= 1GT , i.e., e(P, P ′) generates GT .

If G1 = G2, then e is called symmetric (Type-1) and asymmetric (Type-2 or
Type-3) otherwise. For Type-2 pairings there is an efficiently computable iso-
morphism Ψ : G2 → G1, whereas for Type-3 pairings no such efficient isomor-
phism is assumed to exist. Note that Type-3 pairings are currently the optimal
choice [30], with respect to efficiency and security trade-off.

496 C. Hanser and D. Slamanig

Definition 2 (Decisional Diffie Hellman Assumption (DDH)). Let p be
a prime of bitlength κ, G be a group of prime order p generated by P and
let (P, aP, bP, cP) ∈ G4, where a, b, c ∈R Z∗

p. Then, for every PPT adversary
A distinguishing between (P, aP, bP, abP) ∈ G4 and (P, aP, bP, cP) ∈ G4 is
infeasible, i.e., there is a negligible function ε(·) such that

|Pr [true← A(P, aP, bP, abP)]− Pr [true← A(P, aP, bP, cP)] | ≤ ε(κ).

Definition 3 (Symmetric External DH Assumption (SXDH) [13]). Let
G1, G2 and GT be three distinct cyclic groups of prime order p and e : G1×G2 →
GT be a pairing. Then, the SXDH assumption states that in both groups G1

and G2 the DDH assumption holds.

Note that the SXDH assumption formalizes Type-3 pairings, i.e., the absence of
an efficiently computable isomorphism between G1 and G2 as well as between
G2 and G1.

Definition 4 (Bilinear Group Generator). Let BGGen be a PPT algo-
rithm which takes a security parameter κ and generates a bilinear group BG =
(p,G1, G2, GT , e, P, P ′) in the SXDH setting, where the common group order p
of the groups G1, G2 and GT is a prime of bitlength κ, e is a pairing and P as
well as P ′ are generators of G1 and G2, respectively.

Definition 5 (t-Strong DH Assumption (t-SDH) [17]). Let p be a prime
of bitlength κ, G be a group of prime order p generated by P ∈ G, α ∈R Z∗

p and

let (αiP)ti=0 ∈ Gt+1 for some t > 0. Then, for every PPT adversary A there is
a negligible function ε(·) such that

Pr

[(
c,

1

α+ c
P
)
← A((αiP)ti=0)

]
≤ ε(κ) for some c ∈ Zp \ {−α}.

This assumption turns out to be very useful in bilinear groups (Type-1 or Type-2
setting). However, in a Type-3 setting (SXDH assumption), where the groups
G1 and G2 are strictly separated, the presence of a pairing does not give any
additional benefit. This is due to the fact that the problem instance is given
either in G1 or in G2. As our constructions rely on the SXDH assumption, we
introduce the following modified assumption, which can be seen as the natural
counterpart for a Type-3 setting [30]:

Definition 6 (co-t-Strong DH Assumption (co-t-SDH∗
i)). Let G1 and G2

be two groups of prime order p (which has bitlength κ) generated by P1 ∈ G1 and
P2 ∈ G2, respectively. Let α ∈R Z∗

p and let (αjP1)
t
j=0 ∈ Gt+1

1 and (αjP2)
t
j=0 ∈

Gt+1
2 for some t > 0. Then, for every PPT adversary A there is a negligible

function ε(·) such that

Pr

[(
c,

1

α+ c
Pi

)
← A((αjP1)

t
j=0, (α

jP2)
t
j=0)

]
≤ ε(κ) for some c ∈ Zp \ {−α}.

Structure-Preserving Signatures on Equivalence Classes 497

Note that for a compact representation, we make a slight abuse of notation,
where it should be interpreted as P1 = P and P2 = P ′. Obviously, we have co-t-
SDH∗

i ≤p t-SDH in group Gi. The t-SDH assumption was originally proven to be
secure in the generic group model in [17, Theorem 5.1] and further studied in [32].
The proof is done in a Type-2 pairing setting, where an efficiently computable
isomorphism Ψ : G2 → G1 exists. In the proof, the adversary is given the
problem instance in group G2 and is allowed to obtain encodings of elements
in G1 through isomorphism queries. As we are in a Type-3 setting, there is no
such efficiently computable isomorphism. Thus, the problem instance given to
the adversarymust contain all corresponding elements in both groupsG1 andG2.
Then, the generic group model proof for the co-t-SDH∗

i assumption can be done
analogously to the proof in [17, proof of Theorem 5.1]. The main difference is
that instead of querying the isomorphism, the adversary must compute the same
sequence of computations performed in one group in the other group, in order
to obtain an element containing the same discrete logarithm, which, however,
preserves the asymptotic number of queries.

3 Structure-Preserving Signatures on Equivalence
Classes

We are looking for an efficient, randomizable structure-preserving signature
scheme for vectors with arbitrary numbers of group elements that allows to
randomize messages and signatures consistently in the public. It seems natural
to consider such messages as representatives of certain equivalence classes and
to perform randomization via a change of representatives. Before we can intro-
duce such a signature scheme and give an efficient construction, we detail these
equivalence classes.

All elements of a vector (Mi)
�
i=1 ∈ (G∗

1)
� (for some prime order group G1,

where we write G∗
1 for G1 \ {0G1}) share different mutual ratios. These ra-

tios depend on their discrete logarithms and are invariant under the operation
γ : Z∗

p × (G∗
1)

� → (G∗
1)

� with (s, (Mi)
�
i=1) �→ s(Mi)

�
i=1. Thus, we can use this

invariance to partition the set (G∗
1)

� into classes using the following equivalence
relation:

R = {(M,N) ∈ (G∗
1)

� × (G∗
1)

� : ∃s ∈ Z∗
p such that N = s ·M} ⊆ (G∗

1)
2�.

It is easy to verify that R is indeed an equivalence relation given that G1 has
prime order. When signing an equivalence class [M]R with our scheme, one actu-
ally signs an arbitrary representative (Mi)

�
i=1 of class [M]R. The scheme, then,

allows to choose different representatives and to update corresponding signatures
in the public, i.e., without any secret key. Thereby, one of our goals is to guar-
antee that two message-signature pairs on the same equivalence class cannot be
linked. Note that such an approach only seems to work for structure-preserving
signature schemes, where we have no direct access to scalars. Otherwise, if we
wanted to sign vectors of elements of Z∗

p, the direct access to the scalars would

498 C. Hanser and D. Slamanig

allow us to decide class membership efficiently. This is also the reason, why we
subsequently define the class hiding property with respect to a random-message
instead of a chosen-message attack.

3.1 Defining the Signature Scheme

Now, we formally define a signature scheme for the above equivalence relation
and its required security properties.

Definition 7 (Structure-Preserving Signature Scheme for Equivalence
Relation R (SPS-EQ-R)). An SPS-EQ-R scheme consists of the following
polynomial time algorithms:

BGGenR(κ): Is a probabilistic bilinear group generation algorithm, which on
input a security parameter κ outputs a bilinear group BG.

KeyGenR(BG, �): Is a probabilistic algorithm, which on input a bilinear group
BG and a vector length � > 1, outputs a key pair (sk, pk).

SignR(M, sk): Is a probabilistic algorithm, which on input a representative M
of an equivalence class [M]R and a secret key sk, outputs a signature σ for
the equivalence class [M]R (using randomness y).

ChgRepR(M,σ, ρ, pk): Is a probabilistic algorithm, which on input a representa-
tive M of an equivalence class [M]R, the corresponding signature σ, a scalar
ρ and a public key pk, returns an updated message-signature pair (M̂, σ̂)
(using randomness ŷ). Here, M̂ is the new representative ρ ·M and σ̂ its
updated signature.

VerifyR(M,σ, pk): Is a deterministic algorithm, which given a representative M ,
a signature σ and a public key pk, outputs true if σ is a valid signature for
the equivalence class [M]R under pk and false otherwise.

When one does not care about which new representative is chosen, ChgRepR
can be seen as consistent randomization of a signature and its message using
randomizer ρ without invalidating the signature on the equivalence class. The
goal is that the signature resulting from ChgRepR is indistinguishable from a
newly issued signature for the new representative of the same class.

For security, we require the usual correctness property for signature schemes,
but instead of single messages we consider the respective equivalence class and
the correctness of ChgRepR. More formally, we require:

Definition 8 (Correctness). An SPS-EQ-R scheme is called correct, if for all
security parameters κ ∈ N, for all � > 1, for all bilinear groups BG← BGGenR(κ),
all key pairs (sk, pk)← KeyGenR(BG, �) and for all M ∈ (G∗

1)
� it holds that

VerifyR(ChgRepR(M, SignR(M, sk), ρ, pk), pk) = true ∀ρ ∈ Z∗
p.

Furthermore, we require a notion of EUF-CMA security. In contrast to the
standard definition of EUF-CMA security, we consider a natural adaption, i.e.,
outputting a valid message-signature pair, corresponding to an unqueried equiv-
alence class, is considered to be a forgery.

Structure-Preserving Signatures on Equivalence Classes 499

Definition 9 (EUF-CMA). An SPS-EQ-R scheme is called existentially un-
forgeable under adaptively chosen-message attacks, if for all PPT algorithms A
having access to a signing oracle O(sk,M), there is a negligible function ε(·) such
that:

Pr

⎡⎣ BG← BGGenR(κ), (sk, pk)← KeyGenR(BG, �)
(M∗, σ∗)← AO(sk,·)(pk) :

[M∗]R �= [M]R ∀M ∈ Q ∧ VerifyR(M∗, σ∗, pk) = true

⎤⎦ ≤ ε(κ),

where Q is the set of queries which A has issued to the signing oracle O.

Subsequently, we let Q be a list for keeping track of queried messages M and
make use of the following oracles:

ORM (�): A random-message oracle, which on input a message vector length �,

picks a message M
R← (G∗

1)
�, appends M to Q and returns it.

ORoR(sk, pk, b,M): A real-or-random oracle taking input a bit b and a message

M . If M �∈ Q, it returns ⊥. On the first valid call, it chooses R
R← (G∗

1)
�,

computes M ←
(
(M, SignR(M, sk)), (R, SignR(R, sk))

)
and returns M[b].

Any next call forM ′ �= M will return⊥ and ChgRepR(M[b], ρ, pk) otherwise,

where ρ
R← Z∗

p.

Definition 10 (Class Hiding). An SPS-EQ-R scheme on (G∗
1)

� is called class
hiding, if for every PPT adversaryA with oracle access to ORM and ORoR, there
is a negligible function ε(·) such that

Pr

⎡⎣BG← BGGenR(κ), b
R← {0, 1}, (state, sk, pk)← A(BG, �),

O ← {ORM (�),ORoR(sk, pk, b, ·)}, b∗ ← AO(state, sk, pk) :
b∗ = b

⎤⎦− 1

2
≤ ε(κ).

Here, the adversary is in the role of a signer, who issues signatures on random
messages (in the sense of a random message attack) and can derive signatures for
arbitrary representatives of queried classes. Observe that, if the adversary was
able to pick messages on its own, e.g., knows the discrete logarithms of the group
elements or puts identical group elements on different positions of the message
vectors, it would trivially be able to distinguish the classes. Consequently, we
define class hiding in a random message attack game and the random sampling
of messages makes the probability of identical message elements at different
positions negligible.

Definition 11 (Security). An SPS-EQ-R scheme is secure, if it is correct,
EUF-CMA secure and class hiding.

3.2 Our Construction

In our construction, we sign vectors of � > 1 elements of G∗
1, where the public key

only consists of elements in G2 and we require the SXDH assumption to hold.

500 C. Hanser and D. Slamanig

The signature consists of four group elements, where three elements are from G1

and one element is from G2. Two signature elements (Z1, Z2) are aggregates of
the message vector under � elements of the private key. In order to prevent an
additive homomorphism on the signatures, we introduce a randomizer y ∈ Z∗

p,
multiply one aggregate with it and introduce two additional values Y = yP and
Y ′ = yP ′. The latter elements (besides eliminating the homomorphic property)
prevent simple forgeries, where Y ′ contains an aggregation of the public keys
X ′, X ′

1, . . . , X
′
� in G2. This is achieved by verifying whether Y and Y ′ contain the

same unknown discrete logarithms during verification. Our construction lets us
switch to another representative M̂ = ρM of M by multiplying M and (Z1, Z2)
with the respective scalar ρ. Furthermore, a consistent re-randomization of ρZ2,
Y and Y ′ with a scalar ŷ yields a signature σ̂ for M̂ that is unlinkable to the
signature σ of M . In Scheme 1, we present the detailed construction of the
SPS-EQ-R scheme.

BGGenR(κ): Given a security parameter κ, output BG ← BGGen(κ).

KeyGenR(BG, �): Given a bilinear group description BG and vector length � > 1, choose x
R← Z∗

p

and (xi)
�
i=1

R← (Z∗
p)

�, set the secret key as sk ← (x, (xi)
�
i=1), compute the public key pk ←

(X′, (X′
i)

�
i=1) = (xP ′, (xixP

′)�i=1) and output (sk, pk).

SignR(M, sk): On input a representative M = (Mi)
�
i=1 ∈ (G∗

1)
� of equivalence class [M]R and

secret key sk = (x, (xi)
�
i=1), choose y

R← Z∗
p and compute

Z1 ← x
�∑

i=1

xiMi, Z2 ← y
�∑

i=1

xiMi and (Y, Y ′) ← y · (P, P ′).

Then, output σ = (Z1, Z2, Y, Y
′) as signature for the equivalence class [M]R.

ChgRepR(M,σ, ρ, pk): On input a representative M = (Mi)
�
i=1 ∈ (G∗

1)
� of equivalence class [M]R,

the corresponding signature σ = (Z1, Z2, Y, Y
′), ρ ∈ Z∗

p and public key pk, this algorithm picks

ŷ
R← Z∗

p and returns (M̂, σ̂), where σ̂ ← (ρZ1, ŷρZ2, ŷY, ŷY
′) is the update of signature σ for

the new representative M̂ ← ρ · (Mi)
�
i=1.

VerifyR(M,σ, pk): Given a representative M = (Mi)
�
i=1 ∈ (G∗

1)
� of equivalence class [M]R, a

signature σ = (Z1, Z2, Y, Y
′) and public key pk = (X′, (X′

i)
�
i=1), check whether

�∏
i=1

e(Mi, X
′
i)

?
= e(Z1, P

′
) ∧ e(Z1, Y

′
)

?
= e(Z2, X

′
) ∧ e(P, Y

′
)

?
= e(Y, P

′
)

and if this holds output true and false otherwise.

Scheme 1. A Construction of an SPS-EQ-R Scheme

Note that a signature resulting from ChgRepR is indistinguishable from a new
signature on the same class using the new representative (it can be viewed as
issuing a signature with randomness y · ŷ).

3.3 Security of Our Construction

In our construction, message vectors are elements of (G∗
1)

�, public keys are only
available in G2 and signatures are elements of G1 and G2. Furthermore, we

Structure-Preserving Signatures on Equivalence Classes 501

rely on the SXDH assumption, and it seems very hard (to impossible) to ana-
lyze the EUF-CMA security of the scheme via a reductionist proof using accepted
non-interactive assumptions. Abe et al. [3] show that for optimally short
structure-preserving signatures, i.e., three-element signatures, such reductions
using non-interactive assumptions cannot exist. But right now, it is not entirely
clear how structure-preserving signatures for equivalence relationR fit into these
results and if the lower bounds from [2] also apply. Independently of this, it ap-
pears that a reduction to a (non-interactive) assumption is not possible, since
due to the class hiding property the winning condition cannot be checked effi-
ciently (without substantially weakening the unforgeability notion). Therefore,
we chose to prove the EUF-CMA security of our construction using a direct proof
in the generic group model such as for instance the proof of Abe et al. [2, Lemma
1] (cf. [37] for the proof).

Now, we state the security of the signature scheme. The corresponding proofs
can be found in the full version [37].

Theorem 1. The SPS-EQ-R scheme in Scheme 1 is correct.

Theorem 2. In the generic group model for SXDH groups, Scheme 1 is an
EUF-CMA secure SPS-EQ-R scheme.

Theorem 3. If the DDH assumption holds in G1, Scheme 1 is a class hiding
SPS-EQ-R scheme.

Taking everything together, we obtain the following corollary:

Corollary 1. The SPS-EQ-R scheme in Scheme 1 is secure.

4 Polynomial Commitments with Factor Openings

In [39], Kate et al. introduced the notion of constant-size polynomial commit-
ments. The authors present two distinct commitment schemes, where one is
computationally hiding (PolyCommitDL) and the other one is unconditionally
hiding (PolyCommitPed). These constructions are very generic, as they allow to
construct witnesses for opening arbitrary evaluations of committed polynomials.

Yet, we emphasize that in practical scenarios (and especially in our construc-
tions) it is often sufficient to consider the roots of polynomials for encodings and
to open factors of the polynomial instead of arbitrary evaluations. Moreover, we
need a polynomial commitment scheme that is easily randomizable. Therefore,
we introduce the subsequent commitment scheme for monic, reducible polyno-
mials. Instead of opening evaluations, it allows to open factors of committed
polynomials. Hence, we call this type of commitment polynomial commitment
with factor openings. Our construction is unconditionally hiding, computation-
ally binding and more efficient than the Pedersen polynomial commitment con-
struction PolyCommitPed of [39]. Now, we briefly present this construction, which
we denote by PolyCommitFO.

502 C. Hanser and D. Slamanig

SetupPC(κ, t): It takes input a security parameter κ ∈ N and a maximum poly-

nomial degree t ∈ N. It runs BG ← BGGen(κ), picks α
R← Z∗

p and outputs

sk← α as well as pp← (BG, (αiP)ti=1, (α
iP ′)ti=1).

CommitPC(pp, f(X)): It takes input the public parameters pp and a monic, re-

ducible polynomial f(X) ∈ Zp[X] with deg f ≤ t. It picks ρ
R← Z∗

p, computes
the commitment C ← ρ · f(α)P ∈ G1 and outputs (C, O) with opening
information O ← (ρ, f(X)). 1

OpenPC(pp, C, ρ, f(X)): It takes input the public parameters pp, a polynomial
commitment C, the randomizer ρ used for C and the committed polynomial
f(X) and outputs (ρ, f(X)).

VerifyPC(pp, C, ρ, f(X)): It takes input the public parameters pp, a polynomial
commitment C, the randomizer ρ used for C and the committed polynomial

f(X). It verifies whether ρ
?

�= 0 ∧ C ?
= ρ · f(α)P holds and outputs true

on success and false otherwise.
FactorOpenPC(pp, C, f(X), g(X), ρ): It takes input the public parameters pp, a

polynomial commitment C, the committed polynomial f(X), a factor g(X)

of f(X) and the randomizer ρ used for C. It computes h(X) ← f(X)
g(X) , the

witness Ch ← ρ · h(α)P and outputs (g(X), Ch).
VerifyFactorPC(pp, C, g(X), Ch): It takes input the public parameters pp, a poly-

nomial commitment C to a polynomial f(X), a polynomial g(X) of positive
degree and a corresponding witness Ch. It verifies that g(X) is a factor of

f(X) by checking whether Ch
?

�= 0G1 ∧ e(Ch, g(α)P ′)
?
= e(C, P ′) holds. It

outputs true on success and false otherwise.

In analogy to the security notion in [39], a polynomial commitment scheme
with factor openings is secure if it is correct, polynomial binding, factor binding,
factor sound, witness sound and hiding. The above scheme can be proven secure
under the co-t-SDH∗

1 assumption. For the security model and the formal proofs
of security, we refer the reader to the full version [37]. Note that one can also
define a scheme based on the co-t-SDH∗

2 assumption with C ∈ G1 and Ch ∈ G2.
Although this would improve the performance of VerifyFactorPC, we define it
differently to reduce the computational complexity of the prover in the ABC
system in Section 5.3. Also note that we use the co-t-SDH∗

1 assumption in a
static way, as t is a system parameter and fixed a priori. Finally, observe that
sk = α must remain unknown to the committer (and, thus, the setup has to be
run by a TTP), since it is a trapdoor commitment scheme otherwise.

5 Building an ABC System

In this section, we present an application of the signature scheme and the poly-
nomial commitment scheme introduced in the two previous sections, by using

1 Subsequently, we use f(α)P as short-hand notation for
∑deg f

i=0 fi · αiP even if α is
unknown.

Structure-Preserving Signatures on Equivalence Classes 503

them as basic building blocks for an ABC system. ABC systems are usually con-
structed in one of the following two ways. Firstly, they can be built from blind
signatures: A user obtains a blind signature from some issuer on (commitments
to) attributes and, then, shows the signature, provides the shown attributes and
proves the knowledge of all unrevealed attributes [20,12]. The drawback of such
a blind signature approach is that such credentials can only be shown once in
an unlinkable fashion (one-show). Secondly, anonymous credentials supporting
an arbitrary number of unlinkable showings (multi-show) can be obtained in a
similar vein using different types of signatures: A user obtains a signature on
(commitments to) attributes, then randomizes the signature (such that the re-
sulting signature is unlinkable to the issued one) and proves in zero-knowledge
the possession of a signature and the correspondence of this signature with the
shown attributes as well as the undisclosed attributes [24,25]. Our approach also
achieves multi-show ABCs, but differs from the latter significantly: We random-
ize the signature and the message and, thus, do not require costly zero-knowledge
proofs (which are, otherwise, at least linear in the number of shown/encoded at-
tributes) for the showing of a credential.

Subsequently, we start by discussing the model of ABCs. Then, we provide
an intuition for our construction in Section 5.2 and present the scheme in Sec-
tion 5.3. In Section 5.4, we discuss the security of the construction. Finally, we
give a performance comparison with other existing approaches in Section 5.5.

5.1 Abstract Model of ABCs

In an ABC system there are different organizations issuing credentials to different
users. Users can then anonymously demonstrate possession of these credentials to
verifiers. Such a system is called multi-show ABC system when transactions (is-
suing and showings) carried out by the same user cannot be linked. A credential
credi for user i is issued by an organization j for a set A = {(attrk, attrVk)}nk=1

of attribute labels attrk and values attrVk. By #A we mean the size of A,
which is defined to be the sum of cardinalities of all second components attrVk
of the tuples in A. Moreover, we denote by A′ + A a subset of the creden-
tial’s attributes. In particular, for every k, 1 ≤ k ≤ n, we have that either
(attrk, attrVk) is missing or (attrk, attrV

′
k) with attrV′k ⊆ attrVk is present.

A showing with respect to A′ only proves that a valid credential for A′ has been
issued, but reveals nothing beyond (selective disclosure).

We note that in some ABC system constructions, the entire key generation is
executed by the Setup algorithm. However, we split these algorithms into three
algorithms to make the presentation more flexible and convenient.

Definition 12 (Attribute-Based Anonymous Credential System). An
attribute-based anonymous credential (ABC) system consists of the following
polynomial time algorithms:

Setup: A probabilistic algorithm that gets a security parameter κ, an upper
bound t for the size of attribute sets and returns the public parameters pp.

504 C. Hanser and D. Slamanig

OrgKeyGen: A probabilistic algorithm that takes input the public parameters pp
and j ∈ N, produces and outputs a key pair (oskj , opkj) for organization j.

UserKeyGen: A probabilistic algorithm that takes input the public parameters
pp and i ∈ N, produces and outputs a key pair (uski, upki) for user i.

(Obtain, Issue): These (probabilistic) algorithms are run by user i and organiza-
tion j, who interact during execution. Obtain takes input the public param-
eters pp, the user’s secret key uski, an organization’s public key opkj and an
attribute set A of size #A ≤ t. Issue takes input the public parameters pp,
the user’s public key upki, an organization’s secret key oskj and an attribute
set A of size #A ≤ t. At the end of this protocol, Obtain outputs a credential
credi for A for user i.

(Show, Verify): These (probabilistic) algorithms are run by user i and a verifier,
who interact during execution. Show takes input public parameters pp, the
user’s secret key uski, the organization’s public key opkj , a credential credi
for set A of size #A ≤ t and a second set A′ + A. Verify takes input pp, the
public key opkj and a set A′. At the end of the protocol, Verify outputs true
or false indicating whether the credential showing was accepted or not.

An ABC system is called secure if it is correct, unforgeable and anonymous (for
formal definitions, we refer the reader to the full version [37]).

5.2 Intuition of Our Construction

Our construction of ABCs is based on the proposed signature scheme, on poly-
nomial commitments with factor openings and on a single constant-size proof of
knowledge (PoK) for guaranteeing freshness. In contrast to this, the number of
proofs of knowledge in other ABC systems, like [23,20] and related approaches, is
linear in the number of shown attributes. Nevertheless, aside from selective dis-
closure of attributes, they allow to prove statements about non-revealed attribute
values, such as AND, OR and NOT, interval proofs, as well as conjunctions and
disjunctions of the aforementioned. The expressiveness that we achieve with our
construction, can be compared to existing alternative constructions of ABCs
[26,27]. Namely, our construction supports selective disclosure as well as AND
statements about attributes. Thereby, a user can either open some attributes
and their corresponding values or solely prove that some attributes are encoded
in the respective credential without revealing their concrete values. Furthermore,
one may associate sets of values to attributes, such that one is not required to
reveal the full attribute value, but only pre-defined ”statements” about the at-
tribute value such as {”01.01.1980”, ”> 16”, ” > 18”} for attribute birthdate.
This allows us to emulate proving properties about attribute values and, thus,
enhances the expressiveness of the system.

Credential Representation: In our construction, a credential credi of user i
is a vector of two group elements (C1, P) together with a signature under the
proposed signature scheme (see Section 3.2). During a showing, the credential
gets randomized, which is easily achieved by changing the representative. The
meaning of its values will be discussed subsequently.

Structure-Preserving Signatures on Equivalence Classes 505

Attribute Representation: We use PolyCommitFO (cf. Section 4) to commit
to a polynomial, which encodes a set of attributes A = {(attrk, attrVk)}nk=1

(where the encoding is inspired from [36]). This commitment is represented by
the credential value C1.

Now, we show how we use polynomials to encode this set of attributes and
values. Thereby, we use a collision-resistant hash function H : {0, 1}∗ → Z∗

p and
the following encoding function to generate the polynomials:

enc : A �→
n∏

k=1

∏
M∈attrVk

(
X −H(attrk‖M)

)
.

This function is used to encode the set A in the issued credential, the shown
attributes A′ as well as its complement:

A′ = {(attr, attrV \ attrV′) : (attr, attrV) ∈ A, (attr, attrV′) ∈ A′}∪
{(attr′, attrV) ∈ A : (attr′, ·) �∈ A′}

in every showing. The idea is that the credential includes a commitment to the
encoding of A and that showings include a witness of the encoding of A′ (with-
out opening it) as well as A′ in plain for which the encoding is then recomputed
by the verifier. To compute these values, we use the PolyCommitFO public pa-
rameters pp, which allow an evaluation of these polynomials in G1 and G2 at
α ∈ Z∗

p (without knowing the trapdoor α). Then, the verifier checks whether the

multiplicative relationship enc(A) = enc(A′) ·enc(A′) between the polynomials is
satisfied by checking the multiplicative relationship between the corresponding
commitments and witnesses via a pairing equation. More precisely, the commit-
ment to the encoding of A is computed as C1 = ri · enc(A)(α)P with ri being
the secret key of user i. We note that since no entity knows α, we must compute

C1 ← ri · enc(A)(α)P = ri ·
t∑

i=0

eiα
iP, with enc(A) =

t∑
i=0

eiX
i ∈ Zp[X].

The verification of a credential, when showing A′, requires checking whether the
following holds:

VerifyFactorPC(pp, C1, enc(A
′), CA′)

?
= true,

where C
A′ = ri · enc(A′)(α)P is part of the showing. A showing, then, sim-

ply amounts to randomizing C1, opening a product of factors of the commit-
ted polynomial (representing the selective disclosure), providing a consistently
randomized witness of the complementary polynomial and performing a small,
constant-size PoK of the randomizer for freshness, as we will see soon.

Example. For the reader’s convenience, we include an example of a set A. We
are given a user with the following set of attributes and values:

A = {(birthdate, {”01.01.1980”, ”> 18”}), (drivinglicense, {#, car})}.

506 C. Hanser and D. Slamanig

Note that # indicates an attribute value that allows to prove the possession of
the attribute without revealing any concrete value. A showing could, for instance,
involve the following attributes A′ and its hidden complement A′:

A′ = {(drivinglicense, {#})}
A′ = {(birthdate, {”01.01.1980”, ”> 18”}), (drivinglicense, {car})}.

Freshness. We have to guarantee that no valid showing transcript can be re-
played by someone not in possession of the credential and the user’s secret key. To
do so, we require the user to conduct a proof of knowledge PoK{γ : C2 = γP} of
the discrete logarithm of the second component C2 = ρP of a credential, i.e., the
value ρ, in the showing protocol. This guarantees that we have a fresh challenge
for every showing.

In order to prove the anonymity of the ABC system, we need a little trick.
We modify the aforementioned PoK and require that the user delivers a proof
of knowledge PoK{γ : Q = γP ∨ C2 = γP}, where Q is an additional value in
the public parameters pp with unknown discrete logarithm q. Consequently, the
user needs to conduct the second part of the proof honestly, while simulating the
one for Q. In the proof of anonymity, this allows us to let the challenger know q
and simulate showings without knowledge of the discrete logarithm of C2, which
is required for our reduction to work. Due to the nature of the OR proof, this
cannot be detected by the adversary.

5.3 The Construction of the ABC System

Now, we present our ABC system in Scheme 2, where we use the notation X ←
f(X) to indicate that the value of X is overwritten by the result of the evaluation
of f(X). Note that if a check does not yield true, the respective algorithm
terminates with a failure and the algorithm Verify accepts only if VerifyFactorPC
and VerifyR return true as well as PoK is valid. Also note that the first move
in the showing protocol can be combined with the first move of the proof of
knowledge. Therefore, the showing protocol consists of a total of three moves.

5.4 Security

In the full version [37], we introduce a security model for attribute-based anony-
mous credentials and we provide formal proofs for the following:

Theorem 4. Scheme 2 is correct.

Theorem 5. If PolyCommitFO is factor-sound, H is a collision-resistant hash
function, Scheme 1 is secure and the DLP is hard in G1, then Scheme 2 is
unforgeable.

Theorem 6. If Scheme 1 is class hiding, then Scheme 2 is anonymous.

Taking everything together, we obtain the following corollary:

Structure-Preserving Signatures on Equivalence Classes 507

Setup: Given (κ, t), run pp′ = (BG, (αiP)ti=1, (α
iP ′)ti=1) ← SetupPC(κ, t) and let H : {0, 1}∗ → Z∗

p

be a collision-resistant hash function used inside enc(·). Finally, choose Q
R← G1 and output

pp ← (H, enc, Q, pp′).
OrgKeyGen: Given pp and j ∈ N, return (oskj , opkj) ← KeyGenR(BG, 2).

UserKeyGen: Given pp and i ∈ N, pick ri
R← Z∗

p, set Ri ← riP and return (uski, upki) ← (ri, Ri).

(Obtain, Issue): Obtain and Issue interact in the following way:

Issue(pp, upki, oskj ,A) Obtain(pp, uski, opkj ,A)

e(C1, P
′) ?

= e(Ri, enc(A)(α)P
′)

C1←−− C1 ← ri · enc(A)(α)P
σ ← SignR((C1, P), oskj)

σ−→ VerifyR((C1, P), σ, opkj)
?
= true

credi ← ((C1, P), σ)

(Show,Verify): Show and Verify interact in the following way:

Verify(pp, opkj ,A
′) Show(pp, uski, opkj , (A,A

′), credi)

ρ
R← Z∗

p

cred′i ← ChgRepR(credi, ρ, opkj)[
VerifyFactorPC(pp

′, C1, enc(A
′), C

A′) ∧
cred′i,CA′←−−−−−− C

A′ ← (ρ · uski) · enc(A′)(α)P

VerifyR(cred′i, opkj)
]

?
= true

PoK{γ:Q=γP∨C2=γP}←−−−−−−−−−−−−−−−→

where cred′i = ((C1, C2), σ).

Scheme 2. A Multi-Show ABC System

Corollary 2. Scheme 2 is a secure ABC system.

Note that in the proof of Theorem 5, we can distinguish whether a forgery
goes back to a signature forgery of Scheme 1 or not. The reason for this is that
the knowledge extractor of the PoK gives us the possibility to extract the used
credential, which allows us to determine whether a showing is based on a queried
credential (and, in further consequence, on a queried signature) or not. Hence,
we are able to efficiently check the winning condition of the EUF-CMA game.

5.5 Efficiency Analysis and Comparison

We provide a brief comparison with other ABC approaches and for complete-
ness also include the most popular one-show approach. As other candidates for
multi-show ABCs, we take the Camenisch-Lysyanskaya schemes [23,24,25] as
well as schemes from BBS+ signatures [18,11] which cover a broad class of ABC
schemes from randomizable signature schemes with efficient proofs of knowledge.
Furthermore, we take two alternative multi-show ABC constructions [26,27] as
well as Brands’ approach [20] (also covering the provable secure version [12]) for
the sake of completeness, although latter only provides one-show ABCs. We omit
other approaches such as [8] that only allow a single attribute per credential. We
also omit approaches that achieve more efficient showings for existing ABC sys-
tems only in very special cases such as for attribute values that come from a
very small set (and are, thus, hard to compare). For instance, the approach in

508 C. Hanser and D. Slamanig

[22] for CL credentials in the strong RSA setting (encoding attributes as prime
numbers) or in a pairing-based setting using BBS+ credentials [41] (encoding
attributes using accumulators), where the latter additionally requires very large
public parameters (one BB signature [15] for every possible attribute value).

Table 1 gives an overview of these systems. Thereby, Type-1 and Type-2 refer
to bilinear group settings with Type-1 and Type-2 pairings, respectively. In a
stronger sense, XDH as well as SXDH stand for bilinear group settings, where the
former requires the external Diffie-Hellman assumption and the latter requires
the SXDH assumption to hold. Furthermore,Gq denotes a group of prime order q
(e.g., a prime order subgroup of Z∗

p or of an elliptic curve group). By |G|, we mean
the bitlength of the representation of an element from group G and the value c
is a constant specified to be approximately 510 bits in [26]. We emphasize that,
in contrast to other approaches, such as [25,27], our construction only requires
a small and constant number of pairing evaluations in all protocol steps. Note
that in the issuing step we always assume a computation of O(L) for the user, as
we assume that the user checks the validity of the obtained credential on issuing
(most of the approaches, including ours, have cost O(1) if this verification is
omitted).

Table 1. Comparison of various approaches to ABC systems
Parameter Size (L attributes) Issuing Showing (k-of-L attributes)

Setting pp Credential Size Issuer User Com Verifier User Com
[23,24] sRSA O(L) O(1) 3|ZN | O(L) O(L) O(L) O(L) O(L) O(L − k)
[25] Type-1 O(L) O(L) (2L+ 2)|G1| O(L) O(L) O(L) O(L) O(L) O(L)
[18] Type-2 O(L) O(1) |G1| + 22|Zq| O(L) O(L) O(1) O(L) O(L) O(L)
[26] Type-2 O(1) O(L) L|G1| + c+ |G2| O(L) O(L) O(L) O(L) O(1) O(1)
[27] XDH O(L) O(L) (2L + 2)(|G1| + |Zp|) O(L) O(L) O(L) O(k) O(k) O(k)
[20] Gq O(L) O(1) 2|Gq| + 2|Zq| O(L) O(L) O(1) O(k) O(k) O(L − k)
Our SXDH O(L) O(1) 4|G1| + |G2| O(L) O(L) O(1) O(k) O(L − k) O(1)

6 Future Work

The proposed signature scheme seems to be powerful and there might be other
applications that could benefit, like blind signatures or verifiably-encrypted sig-
natures. We leave a detailed study and the analysis of such applications as future
work. Future work also includes constructing revocable and delegatable anony-
mous credentials from this new approach to ABCs. Furthermore, it is an interest-
ing question whether the proposed construction is already optimal, whether such
signatures can be built for other interesting relations and whether it is possible
to construct such signature schemes whose unforgeability can be proven under
possible non-interactive assumptions or even to show that this is impossible.

Acknowledgments. This work has been supported by the European Commis-
sion through project FP7-FutureID, grant agreement number 318424. We thank
the anonymous referees for their helpful comments.

Structure-Preserving Signatures on Equivalence Classes 509

References

1. Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-
Preserving Signatures and Commitments to Group Elements. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 209–236. Springer, Heidelberg (2010)

2. Abe, M., Groth, J., Haralambiev, K., Ohkubo, M.: Optimal Structure-Preserving
Signatures in Asymmetric Bilinear Groups. In: Rogaway, P. (ed.) CRYPTO 2011.
LNCS, vol. 6841, pp. 649–666. Springer, Heidelberg (2011)

3. Abe, M., Groth, J., Ohkubo, M.: Separating Short Structure-Preserving Signa-
tures from Non-interactive Assumptions. In: Lee, D.H., Wang, X. (eds.) ASI-
ACRYPT 2011. LNCS, vol. 7073, pp. 628–646. Springer, Heidelberg (2011)

4. Abe, M., Groth, J., Ohkubo, M., Tibouchi, M.: Structure-Preserving Signatures
from Type II Pairings. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part
I. LNCS, vol. 8616, pp. 390–407. Springer, Heidelberg (2014)

5. Abe, M., Groth, J., Ohkubo, M., Tibouchi, M.: Unified, Minimal and Selectively
Randomizable Structure-Preserving Signatures. In: Lindell, Y. (ed.) TCC 2014.
LNCS, vol. 8349, pp. 688–712. Springer, Heidelberg (2014)

6. Abe, M., Haralambiev, K., Ohkubo, M.: Signing on Elements in Bilinear Groups
for Modular Protocol Design. IACR Cryptology ePrint Archive (2010)

7. Ahn, J.H., Boneh, D., Camenisch, J., Hohenberger, S., Shelat, A., Waters, B.:
Computing on Authenticated Data. In: Cramer, R. (ed.) TCC 2012. LNCS,
vol. 7194, pp. 1–20. Springer, Heidelberg (2012)

8. Akagi, N., Manabe, Y., Okamoto, T.: An Efficient Anonymous Credential System.
In: Tsudik, G. (ed.) FC 2008. LNCS, vol. 5143, pp. 272–286. Springer, Heidelberg
(2008)

9. Attrapadung, N., Libert, B., Peters, T.: Computing on Authenticated Data: New
Privacy Definitions and Constructions. In: Wang, X., Sako, K. (eds.) ASIACRYPT
2012. LNCS, vol. 7658, pp. 367–385. Springer, Heidelberg (2012)

10. Attrapadung, N., Libert, B., Peters, T.: Efficient completely context-hiding
quotable and linearly homomorphic signatures. In: Kurosawa, K., Hanaoka, G.
(eds.) PKC 2013. LNCS, vol. 7778, pp. 386–404. Springer, Heidelberg (2013)

11. Au, M.H., Susilo, W., Mu, Y.: Constant-Size Dynamic k-TAA. In: De Prisco, R.,
Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 111–125. Springer, Heidelberg
(2006)

12. Baldimtsi, F., Lysyanskaya, A.: Anonymous Credentials Light. In: CCS. ACM
(2013)

13. Ballard, L., Green, M., de Medeiros, B., Monrose, F.: Correlation-Resistant Stor-
age via Keyword-Searchable Encryption. IACR Cryptology ePrint Archive (2005)

14. Belenkiy, M., Camenisch, J., Chase, M., Kohlweiss, M., Lysyanskaya, A.,
Shacham, H.: Randomizable Proofs and Delegatable Anonymous Credentials. In:
Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 108–125. Springer, Heidel-
berg (2009)

15. Belenkiy, M., Chase, M., Kohlweiss, M., Lysyanskaya, A.: P-signatures and Non-
interactive Anonymous Credentials. In: Canetti, R. (ed.) TCC 2008. LNCS,
vol. 4948, pp. 356–374. Springer, Heidelberg (2008)

16. Blazy, O., Fuchsbauer, G., Pointcheval, D., Vergnaud, D.: Signatures on Random-
izable Ciphertexts. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.)
PKC 2011. LNCS, vol. 6571, pp. 403–422. Springer, Heidelberg (2011)

17. Boneh, D., Boyen, X.: Short Signatures Without Random Oracles. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer,
Heidelberg (2004)

510 C. Hanser and D. Slamanig

18. Boneh, D., Boyen, X., Shacham, H.: Short Group Signatures. In: Franklin, M.
(ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

19. Boneh, D., Freeman, D., Katz, J., Waters, B.: Signing a Linear Subspace: Signa-
ture Schemes for Network Coding. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009.
LNCS, vol. 5443, pp. 68–87. Springer, Heidelberg (2009)

20. Brands, S.: Rethinking public-key Infrastructures and Digital Certificates: Build-
ing in Privacy. MIT Press (2000)

21. Camenisch, J., Dubovitskaya, M., Haralambiev, K.: Efficient Structure-Preserving
Signature Scheme from Standard Assumptions. In: Visconti, I., De Prisco, R.
(eds.) SCN 2012. LNCS, vol. 7485, pp. 76–94. Springer, Heidelberg (2012)

22. Camenisch, J., Groß, T.: Efficient Attributes for Anonymous Credentials. ACM
Trans. Inf. Syst. Secur. 15(1), 4 (2012)

23. Camenisch, J.L., Lysyanskaya, A.: An Efficient System for Non-transferable
Anonymous Credentials with Optional Anonymity Revocation. In: Pfitzmann,
B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg
(2001)

24. Camenisch, J.L., Lysyanskaya, A.: A Signature Scheme with Efficient Proto-
cols. In: Cimato, S., Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576,
pp. 268–289. Springer, Heidelberg (2003)

25. Camenisch, J.L., Lysyanskaya, A.: Signature Schemes and Anonymous Credentials
from Bilinear Maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152,
pp. 56–72. Springer, Heidelberg (2004)

26. Canard, S., Lescuyer, R.: Anonymous credentials from (indexed) aggregate sig-
natures. In: DIM, pp. 53–62. ACM (2011)

27. Canard, S., Lescuyer, R.: Protecting privacy by sanitizing personal data: a new
approach to anonymous credentials. In: ASIACCS, pp. 381–392. ACM (2013)

28. Chase, M., Kohlweiss, M., Lysyanskaya, A., Meiklejohn, S.: Malleable Proof Sys-
tems and Applications. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT
2012. LNCS, vol. 7237, pp. 281–300. Springer, Heidelberg (2012)

29. Chase, M., Kohlweiss, M., Lysyanskaya, A., Meiklejohn, S.: Malleable Signatures:
Complex Unary Transformations and Delegatable Anonymous Credentials. IACR
Cryptology ePrint Archive (2013)

30. Chatterjee, S., Menezes, A.: On cryptographic protocols employing asymmet-
ric pairings - the role of ψ revisited. Discrete Applied Mathematics 159(13),
1311–1322 (2011)

31. Chaum, D., Pedersen, T.P.: Wallet Databases with Observers. In: Brickell, E.F.
(ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993)

32. Cheon, J.H.: Security analysis of the strong diffie-hellman problem. In: Vaudenay,
S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 1–11. Springer, Heidelberg
(2006)

33. Fuchsbauer, G.: Automorphic Signatures in Bilinear Groups and an Application
to Round-Optimal Blind Signatures. IACR Cryptology ePrint Archive (2009)

34. Fuchsbauer, G.: Commuting Signatures and Verifiable Encryption. In: Pater-
son, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 224–245. Springer,
Heidelberg (2011)

35. Groth, J., Sahai, A.: Efficient Non-interactive Proof Systems for Bilinear Groups.
In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008)

36. Hanser, C., Slamanig, D.: Blank Digital Signatures. IACR Cryptology ePrint
Archive, Report 2013/130 (2013)

Structure-Preserving Signatures on Equivalence Classes 511

37. Hanser, C., Slamanig, D.: Structure-Preserving Signatures on Equivalence Classes
and their Application to Anonymous Credentials. Cryptology ePrint Archive,
Report 2014/705 (2014)

38. Johnson, R., Molnar, D., Song, D., Wagner, D.: Homomorphic Signature Schemes.
In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 244–262. Springer,
Heidelberg (2002)

39. Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-Size Commitments to Poly-
nomials and Their Applications. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS,
vol. 6477, pp. 177–194. Springer, Heidelberg (2010)

40. Libert, B., Peters, T., Joye, M., Yung, M.: Linearly Homomorphic Structure-
Preserving Signatures and Their Applications. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 289–307. Springer, Heidelberg
(2013)

41. Sudarsono, A., Nakanishi, T., Funabiki, N.: Efficient Proofs of Attributes in
Pairing-Based Anonymous Credential System. In: Fischer-Hübner, S., Hopper,
N. (eds.) PETS 2011. LNCS, vol. 6794, pp. 246–263. Springer, Heidelberg (2011)

42. Verheul, E.R.: Self-Blindable Credential Certificates from the Weil Pairing. In:
Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 533–551. Springer,
Heidelberg (2001)

43. Waters, B.: Efficient Identity-Based Encryption Without Random Oracles. In:
Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer,
Heidelberg (2005)

On Tight Security Proofs for Schnorr Signatures

Nils Fleischhacker1, Tibor Jager2, and Dominique Schröder1

1 Saarland University, Germany
2 Horst Görtz Institute for IT Security

Ruhr-University Bochum, Germany

Abstract. The Schnorr signature scheme is the most efficient signature scheme
based on the discrete logarithm problem and a long line of research investigates
the existence of a tight security reduction for this scheme in the random oracle.
Almost all recent works present lower tightness bounds and most recently Seurin
(Eurocrypt 2012) showed that under certain assumptions the non-tight security
proof for Schnorr signatures in the random oracle by Pointcheval and Stern (Eu-
rocrypt 1996) is essentially optimal. All previous works in this direction rule out
tight reductions from the (one-more) discrete logarithm problem. In this paper
we introduce a new meta-reduction technique, which shows lower bounds for the
large and very natural class of generic reductions. A generic reduction is inde-
pendent of a particular representation of group elements and most reductions in
state-of-the-art security proofs have this desirable property. Our approach shows
unconditionally that there is no tight generic reduction from any natural com-
putational problem Π defined over algebraic groups (including even interactive
problems) to breaking Schnorr signatures, unless solving Π is easy.

Keywords: Schnorr signatures, black-box reductions, generic reductions, alge-
braic reductions, tightness.

1 Introduction

The security of a cryptosystem is nowadays usually confirmed by giving a security
proof. Typically, such a proof describes a reduction from some (assumed-to-be-)hard
computational problem to breaking a defined security property of the cryptosystem. A
reduction is considered as tight, if the reduction solving the hard computational prob-
lem has essentially the same running time and success probability as the attacker on
the cryptosystem. Essentially, a tight reduction means that a successful attacker can be
turned into an efficient algorithm for the hard computational problem without any sig-
nificant increase in the running time and/or significant loss in the success probability.1

The tightness of a reduction thus determines the strength of the security guarantees pro-
vided by the security proof: a non-tight reduction gives weaker security guarantees than
a tight one. Moreover, tightness of the reduction affects the efficiency of the cryptosys-
tem when instantiated in practice: a tighter reduction allows to securely use smaller
parameters (shorter moduli, a smaller group size, etc.). Therefore it is a very desirable
property of a cryptosystem to have a tight security reduction.

1 Usually even a polynomially-bounded increase/loss is considered as significant, if the polyno-
mial may be large. An increase/loss by a small constant factor is not considered as significant.

P. Sarkar and T. Iwata (Eds.): ASIACRYPT 2014, PART I, LNCS 8873, pp. 512–531, 2014.
c© International Association for Cryptologic Research 2014

On Tight Security Proofs for Schnorr Signatures 513

In the domain of digital signatures tight reductions are known for many fundamen-
tal schemes, like Rabin/Williams signatures (Bernstein, Eurocrypt 2008 [5]), many
strong-RSA-based signatures (Schäge, Eurocrypt 2011 [25]), and RSA Full-Domain
Hash (Kakvi and Kiltz, Eurocrypt 2012 [18]). The Schnorr signature scheme [26, 27]
is one of the most fundamental public-key cryptosystems. Pointcheval and Stern have
shown that Schnorr signatures are provably secure, assuming the hardness of the dis-
crete logarithm (DL) problem [22], in the Random Oracle Model (ROM) [3]. However,
the reduction of Pointcheval and Stern from DL to breaking Schnorr signatures is not
tight: it loses a factor of q in the time-to-success ratio, where q is the number of random
oracle queries performed by the forger.

A long line of research investigates the existence of tight security proofs for Schnorr
signatures. At Asiacrypt 2005 Paillier and Vergnaud [21] gave a first lower bound show-
ing that any algebraic reduction (even in the ROM) converting a forger for Schnorr sig-
natures into an algorithm solving some computational problem Π must lose a factor
of at least q1/2. Their result is quite strong, as they rule out reductions even for ad-
versaries that do not have access to a signing oracle and receive as input the message
for which they must forge (UF-NM, see Section A for a formal definition). However,
their result also has some limitations: It holds only under the interactive one-more dis-
crete logarithm assumption, they only consider algebraic reductions, and they only rule
out tight reductions from the (one-more) discrete logarithm problem. At Crypto 2008
Garg et al. [15] refined this result, by improving the bound from q1/2 to q2/3 with a new
analysis and show that this bound is optimal if the meta-reduction follows a particular
approach for simulating the forger. At Eurocrypt 2012 Seurin [28] finally closed the
gap between the security proof of [22] and known impossibility results, by describing
an elaborate simulation strategy for the forger and providing a new analysis. All previ-
ous works [21, 15, 28] on the existence of tight security proofs for Schnorr signatures
have the following in common:
1. They only rule out the existence of tight reductions from certain strong computa-

tional problems, namely the (one-more) discrete logarithm problem [1]. Reduction
from weaker problems like, e.g., the computational or decisional Diffie-Hellman
problem (CDH/DDH) are not considered.

2. The impossibility results are themselves only valid under the very strong OMDL
hardness assumption.

3. They hold only with respect to a limited (but natural) class of reductions, so-called
algebraic reductions.

It is not unlikely that first the inexistence of a tight reduction from strong compu-
tational problems is proven, and later a tight reduction from some weaker problem is
found. A concrete recent example in the domain of digital signatures where this has
happened is RSA Full-Domain Hash (RSA-FDH) [4]. First, at Crypto 2000 Coron [8]
described a non-tight reduction from solving the RSA-problem to breaking the security
of RSA-FDH, and at Eurocrypt 2002 [9] showed that under certain conditions no tighter
reduction from RSA can exist. Later, at Eurocrypt 2012, Kakvi and Kiltz [18] gave a
tight reduction from solving a weaker problem, the so-called Phi-Hiding problem. The
leverage used by Kakvi and Kiltz to circumvent the aforementioned impossibility re-
sults was to assume hardness of a weaker computational problem. As all previous works

514 N. Fleischhacker, T. Jager, and D. Schröder

rule out only tight reductions from strong computational problems like DL and OMDL,
this might happen again with Schnorr signatures and the following question was left
open for 25 years:

Does a tight security proof for Schnorr signatures based on any weaker com-
putational problem exist?

Our contribution. In this work we answer this question in the negative ruling out the
existence of tight reductions in the random oracle model for virtually all natural compu-
tational problems defined over abstract algebraic groups. Like previous works, we con-
sider universal unforgeability under no-message attacks (UF-NM-security). Moreover,
our results hold unconditionally. In contrast to previous works, we consider generic re-
ductions instead of algebraic reductions, but we believe that this restriction is marginal:
The motivation of considering only algebraic reductions from [21] applies equally to
generic reductions. In particular, to the best of our knowledge all known examples of
algebraic reductions are generic.

Our main technical contribution is a new approach for the simulation of a forger in
a meta-reduction, i.e., “a reduction against the reduction”, which differs from previous
works [21, 15, 28] and which allows us to show the following main result:

Theorem (Informal). For almost any natural computational problem Π , there is no
tight generic reduction from solving Π to breaking the universal unforgeability under
no-message attacks of Schnorr signatures in the random oracle model.

Technical approach. We begin with the hypothesis that there exists a tight generic re-
ductionR from some hard (and possibly interactive) problem Π to the UF-NM-security
of Schnorr signatures. Then we show that under this hypothesis there exists an efficient
algorithm M, a meta-reduction, which efficiently solves Π . This implies that the hy-
pothesis is false. The meta-reductionM =MR runsR as a subroutine, by efficiently
simulating the forgerA forR.

All previous works in this direction [21, 15, 28] followed essentially the same ap-
proach. The difficulty with meta-reductions is thatM =MR must efficiently simulate
the forger A for R. Previous works resolved this by using a discrete logarithm oracle
provided by the OMDL assumption, which allows to efficiently compute valid signa-
tures in the simulation of forger A. This is the reason why all previous results are only
valid under the OMDL assumption, and were only able to rule out reductions from the
discrete log or the OMDL problem. To overcome these limitations, a new simulation
technique is necessary.

We revisit the simulation strategy of A applied in known meta-reductions, and put
forward a new technique for proving impossibility results. It turns out that considering
generic reductions provides a new leverage to simulate a successful forger efficiently,
essentially by suitably re-programming the group representation to compute valid sig-
natures. The technical challenge is to prove that the reduction does not notice that the
meta-reduction changes the group representation during the simulation, except for some
negligible probability. We show how to prove this by adopting the “low polynomial de-
gree” proof technique of Shoup [30], which originally was introduced to analyze the

On Tight Security Proofs for Schnorr Signatures 515

complexity of certain algorithms for the discrete logarithm problem, to the setting con-
sidered in this paper.

This new approach turns out to be extremely powerful, as it allows to rule out re-
ductions from any (even interactive) representation-invariant computational problem.
Since almost all common hardness assumptions in algebraic groups (e.g., DL, CDH,
DDH, OMDL, DLIN, etc.) are based on representation-invariant computational prob-
lems, we are able to rule out tight generic reductions from virtually any natural compu-
tational problem, without making any additional assumption. Even though we apply it
specifically to Schnorr signatures, the overall approach is general. We expect that it is
applicable to other cryptosystems as well.

Generic reductions vs. algebraic reductions. Similar to algebraic reductions, a generic
reduction performs only group operations. The main difference is that the sequence of
group operations performed by an algebraic reduction may (but, to our best knowledge,
in all known examples does not) depend on a particular representation of group ele-
ments. A generic reduction, however, is required to work essentially identical for any
representation of group elements. Generic reductions are by definition more restrictive
than algebraic ones, however, we explain below why we do not consider this restriction
as very significant.

An obvious question arising with our work is the relation between algebraic and
generic reductions. Is a lower bound for generic reductions much less meaningful than
a bound for algebraic reductions? We argue that the difference is not very significant.
The restriction to algebraic reductions was motivated by the fact most reductions in
known security proofs treat the group as a black-box, and thus are algebraic [21, 15,
28]. However, the same motivation applies to generic reductions as well, with exactly
the same arguments. In particular, virtually all examples of algebraic reductions in the
literature are also generic.

The vast majority of reductions in common security proofs for group-based cryp-
tosystems treats the underlying group as a black-box (i.e., works for any representation
of the group), and thus is generic. This is a very desirable feature, because then the
cryptosystem can securely be instantiated with any group in which the underlying com-
putational problem is hard. In contrast, representation-specific security proofs would
require to re-prove security for any particular group representation the scheme is used
with. Therefore considering generic reductions seems very reasonable.

Generic reductions vs. security proofs in the generic group model. One might won-
der whether our result is implied by previous works (in particular by [28]), since we are
considering generic reductions, because for generic algorithms most non-trivial compu-
tational problems in algebraic groups are equivalent to the discrete logarithm problem.
The conclusion that therefore our result is implied by previous works is however not
correct.

Note that a reduction does not solve the computational problem alone. It has access to
an attackerA. The algorithm which solves the computational problem is a composition
R(A) of R and A. If both R and A were generic algorithms, then the composition
R(A) would also be a generic algorithm, and thus our results would indeed be trivial.
But note that we do not require A to be generic. Therefore also the compositionR(A)

516 N. Fleischhacker, T. Jager, and D. Schröder

is not a generic algorithm, thus the generic equivalence of DLOG and other problems
does not apply. See Section 2.4 and Figure 2 for further explanation.

Further related work. Dodis et al. [10] showed that it is impossible to reduce any com-
putational problem to breaking the security of RSA-FDH in a model where the RSA-
group Z∗

N is modeled as a generic group. This result extends [11]. Coron [9] considered
the existence of tight security reductions for RSA-FDH signatures [4]. This result was
generalized by Dodis and Reyzin [12] and later refined by Kiltz and Kakvi [18].

In the context of Schnorr signatures, Neven et al. [20] described necessary conditions
the hash function must meet in order to provide existential unforgeability under chosen-
message attacks (EUF-CM), and showed that these conditions are sufficient if the forger
(not the reduction!) is modeled as a generic group algorithm.

In [13] Fischlin and Fleischhacker presented a result also about the security of
Schnorr signatures which is orthogonal to our result. They show, again under the OMDL
assumption, that a large class of reductions has to rely on re-programming the random
oracle. Essentially they prove that in the non-programmable ROM [14] no reduction
from the discrete logarithm problem can exist that invokes the adversary only ever on
the same input. This class is limited, but encompasses all forking-lemma style reduc-
tions used to prove Schnorr signatures secure in the programmable ROM. As said be-
fore, the result is orthogonal to our main result, as it considers reductions in the non-
programmable ROM.

2 Preliminaries

Notation. If S is a set, we write s ←$ S to denote the action of sampling a uniformly
random element s from S. If A is a probabilistic algorithm, we denote with a←$ A the
action of computing a by running A. We denote with ∅ the empty string, the empty set,
as well as the empty list, the meaning will always be clear from the context. We write
[n] to denote the set of integers from 1 to n, i.e., [n] := {1, . . . , n}.

2.1 Schnorr Signatures

Let G be a group of order p with generator g, and let H : G × {0, 1}k → Zp be a
hash function. The Schnorr signature scheme [26, 27] consists of the following efficient
algorithms (Gen, Sign,Vrfy).
Gen(g): The key generation algorithm takes as input a generator g of G. It chooses

x←$ Zp, computes X := gx, and outputs (X, x).
Sign(x,m): The input of the signing algorithm is a private key x and a message m ∈

{0, 1}k. It chooses a random integer r ←$ Zp, sets R := gr as well as c :=
H(R,m), and computes y := x · c+ r mod p.

Vrfy(X,m, (R, y)): The verification algorithm outputs the truth value of gy
?
= Xc ·R,

where c = H(R,m).

Remark 1. Note that the above description of Schnorr signatures deviates slightly from
the original description in [26, 27], where a signature consists of (c, y) instead of (R, y),

On Tight Security Proofs for Schnorr Signatures 517

which reduces the length of signatures significantly. However, note that it is possible
to compute R from (c, y) as R := gy · X−c. Similarly, it is possible to compute c
from (R,m) as c := H(R,m). Thus both representations are equivalent. In particular,
changing between these two representation does not affect our results.

2.2 Computational Problems

Let G be a cyclic group of order p and g ∈ G a generator of G. We write desc(G, g)
to denote the list of group elements desc(G, g) = (g, g2, . . . , gp) ∈ Gp. We say that
desc(G, g) is the enumerating description of G with respect to g.

Definition 1. A computational problem Π in G is specified by three (computationally
unbounded) procedures Π = (GΠ ,SΠ ,VΠ), with the following syntax.
GΠ(desc(G, g)) takes as input an enumerating description of G, and outputs a state st

and a problem instance (the challenge) C = (C1, . . . , Cu, C
′) ∈ Gu×{0, 1}∗. We

assume in the sequel that at least C1 is a generator of G.
SΠ(desc(G, g), st, Q) takes as input desc(G, g), a state st, and Q = (Q1, . . . , Qv,

Q′) ∈ Gv × {0, 1}∗, and outputs (st′, A) where st′ is an updated state and A =
(A1, . . . , Aν , A

′) ∈ Gν × {0, 1}∗.
VΠ(desc(G, g), st, S, C) takes as input (desc(G, g), st, C) as defined above, and S =

(S1, . . . , Sw, S′) ∈ Gw × {0, 1}∗. It outputs 0 or 1.
If SΠ always responds with A = ∅ (i.e., the empty string), then we say that Π is
non-interactive. Otherwise it is interactive. The exact description and distribution of
st, C,Q,A, S depends on the considered computational problem.

Definition 2. An algorithmA (ε, t)-solves the computational problem Π if A has run-
ning time at most t and wins the following interactive game against a (computationally
unbounded) challenger C with probability at most ε, where the game is defined as fol-
lows:
1. The challenger C generates an instance of the problem (st, C)←$ GΠ(desc(G, g))

and sends C to A.
2. A is allowed to issue an arbitrary number of oracle queries to C. To this end, A

provides C with a query Q. C runs (st′, A)←$ SΠ(desc(G, g), st, Q), updates the
state st := st′, and responds with A.

3. Finally, algorithm A outputs a candidate solution S. The algorithm A wins the
game (i.e., solves the computational problem correctly) iff VΠ(desc(G, g), st, C,
S) = 1.

Example 1. The discrete logarithm problem in G is specified by the following proce-
dures. GΠ(desc(G, g)) outputs (st, C) with st = ∅ and C = (g, h), where h ←$ G

is a random group element. SΠ(desc(G, g), st, Q) always outputs (st′, A) = (st, ∅).
VΠ(desc(G, g), st, C, S) interprets S = S′ ∈ {0, 1}∗ canonically as an integer in Zp,
and outputs 1 iff h = gS

′
.

Example 2. We describe the u-one-more discrete logarithm problem (u-OMDL) [2, 1]
in G with the following algorithms. GΠ(desc(G, g)) outputs (st, C) where C = (C1,
. . . , Cu) ←$ Gu consists of u random group elements and st = 0. The algorithm

518 N. Fleischhacker, T. Jager, and D. Schröder

SΠ(desc(G, g), st, Q) takes as input state st and group element Q ∈ G. It responds
with st′ := st + 1 and A = A′ ∈ {0, 1}∗, where A′ canonically interpreted as an
integer in Zp satisfies gA

′
= Q. The verification algorithm VΠ(desc(G, g), st, C, S)

interprets S = (S′
1, . . . , S

′
u) ∈ {0, 1}∗ canonically as a vector of u integers in Zp, and

outputs 1 iff st < u and gi = gS
′
i for all i ∈ [u].

Example 3. The UF-NM-forgery problem for Schnorr signatures in G with hash func-
tion H is specified by the following procedures. GΠ(desc(G, g)) outputs (st, C) with
st = m and C = (g,X,m) ∈ G2 × {0, 1}k, where X = gx for x ←$ Zp and
m ←$ {0, 1}k. SΠ(desc(G, g), st, Q) always outputs (st′, A) = (st, ∅). The verifi-
cation algorithm VΠ(desc(G, g), st, C, S) parses S as S = (R, y) ∈ G × Zp, sets
c := H(R, st), and outputs 1 iff Xc ·R = gy.

2.3 Representation-Invariant Computational Problems

In our impossibility results given below, we want to rule out the existence of a tight
reduction from as large a class of computational problems as possible. Ideally, we want
to rule out the existence of a tight reduction from any computational problem that meets
Definition 1. However, it is easy to see that this is not achievable in this generality: as
Example 3 shows, the problem of forging Schnorr signatures itself is a problem that
meets Definition 1. However, of course there exists a trivial tight reduction from the
problem of forging Schnorr signatures to the problem of forging Schnorr signatures!
Therefore we need to restrict the class of considered computational problems to exclude
such trivial, artificial problems.

We introduce the notion of representation-invariant computational problems. This
class of problems captures virtually any reasonable computational problem defined over
an abstract algebraic group, even interactive assumptions, except for a few extremely
artificial problems. In particular, the problem of forging Schnorr signatures is not con-
tained in this class (see Example 5 below).

Intuitively, a computational problem is representation-invariant, if a valid solution
to a given problem instance remains valid even if the representation of group elements
in challenges, oracle queries, and solutions is converted to a different representation of
the same group. More formal is the following definition:

Definition 3. Let G, Ĝ be groups such that there exists an isomorphism φ : G →
Ĝ. We say that Π is representation-invariant, if for all isomorphic groups G, Ĝ and
for all generators g ∈ G, all C = (C1, . . . , Cu, C

′) ←$ GΠ(desc(G, g)), all st =
(st1, . . . , stt, st

′) ∈ Gt × {0, 1}∗, and all S = (S1, . . . , Sw, S′) ∈ Gw × {0, 1}∗
holds that VΠ(desc(G, g), st, C, S) = 1 ⇐⇒ VΠ(desc(Ĝ, ĝ), ŝt, Ĉ, Ŝ) = 1, where
ĝ = φ(g) ∈ G′, Ĉ = (φ(C1), . . . , φ(Cu), C

′), ŝt = (φ(st1), . . . , φ(stt), st
′), and

Ŝ = (φ(S1), . . . , φ(Sw), S
′).

Observe that this definition only demands the existence of an isomorphism φ : G→ Ĝ

and not that it is efficiently computable.

Example 4. The discrete logarithm problem is representation-invariant. Let C = (g,
h) ∈ G2 be a discrete log challenge, with corresponding solution S′ ∈ {0, 1}∗ such

On Tight Security Proofs for Schnorr Signatures 519

that S′ canonically interpreted as an integer S′ ∈ Zp satisfies gS
′
= h ∈ G. Let

φ : G → Ĝ be an isomorphism, and let (ĝ, ĥ) := (φ(g), φ(h)). Then it clearly holds
that ĝŜ

′
= ĥ, where Ŝ′ = S′.

Virtually all common hardness assumptions in algebraic groups are based on re-
presentation-invariant computational problems. Popular examples are, for instance, the
discrete log problem (DL), computational Diffie-Hellman (CDH), decisional Diffie-
Hellman (DDH), one-more discrete log (OMDL), decision linear (DLIN), and so on.

Example 5. The UF-NM-forgery problem for Schnorr signatures with hash function
H is not representation-invariant for any hash function H . Let C = (g,X,m) ←$

GΠ(desc(G, g)) be a challenge with solution S = (R, y) ∈ G×Zp satisfying Xc ·R =
gy, where c := H(R,m).

Let Ĝ be a group isomorphic to G, such that G ∩ Ĝ = ∅ (that is, there exists no
element of Ĝ having the same representation as some element of G).2 Let G → Ĝ

denote the isomorphism. If there exists any R such that H(R,m) �= H(φ(R),m) in Zp

(which holds in particular if H is collision resistant), then we have

gy = XH(R,m) ·R but φ(g)y �= φ(X)H(φ(R),m) · φ(R).

Thus, a solution to this problem is valid only with respect to a particular given repre-
sentation of group elements.

The UF-NM-forgery problem of Schnorr signatures is not representation-invariant,
because a solution to this problem involves the hash value H(R,m) that depends on
a concrete representation of group element R. We consider such complexity assump-
tions as rather unnatural, as they are usually very specific to certain constructions of
cryptosystems.

2.4 Generic Reductions

In this section we recall the notion of generic groups, loosely following [30] (cf. also [19,
24], for instance), and define generic (i.e., representation independent) reductions.

Generic groups. Let (G, ·) be a group of order p and E ⊆ {0, 1}�log p� be a set of
size |E| = |G|. If g, h ∈ G are two group elements, then we write g ÷ h for g · h−1.
Following [30] we define an encoding function as a random injective map φ : G→ E.
We say that an element e ∈ E is the encoding assigned to group element h ∈ G, if
φ(h) = e.

A generic group algorithm is an algorithm R which takes as input Ĉ = (φ(C1),
. . . , φ(Cu), C

′), where φ(Ci) ∈ E is an encoding of group element Ci for all i ∈ [u],
and C′ ∈ {0, 1}∗ is a bit string. The algorithm outputs Ŝ = (φ(S1), . . . , φ(Sw), S

′),
where φ(Si) ∈ E is an encoding of group element Si for all i ∈ [w], and S′ ∈ {0, 1}∗

2 Such a group Ĝ can trivially be obtained for any group G, for instance by modifying the
encoding by prepending a suitable fixed string to each group element, and changing the group
law accordingly.

520 N. Fleischhacker, T. Jager, and D. Schröder

PROC O(e, e′, ◦)
(e, e′, ◦) ∈ E × E × {·,÷}
(i, j) := GETIDX(e, e′)

return ENCODE(LG
i ◦ LG

j)

PROC GETIDX(�e)

parse �e = (e1, . . . , ew)

for j = 1, . . . , w do

pick first i ∈ [|LE |]
such that LE

i = ej

ij := i

return (i1, . . . , iw)

PROC ENCODE(G)

parse G = (G1, . . . , Gu)

for j = 1, . . . , u do

if ∃i s.t. LG
i = Gj

ej := LE
i

else

ej ←$ E \ LE

append ej to LE

append Gj to LG

return (e1, . . . , eu)

Fig. 1. Procedures implementing the generic group oracle

is a bit string. In order to perform computations on encoded group elements, algorithm
R = RO may query a generic group oracle (or “group oracle” for short). This oracle
O takes as input two encodings e = φ(G), e′ = φ(G′) and a symbol ◦ ∈ {·,÷},
and returns φ(G ◦ G′). Note that (E, ·O), where ·O denotes the group operation on E
induced by oracle O, forms a group which is isomorphic to (G, ·).

It will later be helpful to have a specific implementation of O. We will therefore
assume in the sequel that O internally maintains two lists LG ⊆ G and LE ⊆ E. These
lists define the encoding function φ as LE

i = φ(LG
i), where LG

i and LE
i denote the i-th

element of LG and LE , respectively, for all i ∈ [|LG|]. Note that from the perspective
of a generic group algorithm it makes no difference whether the encoding function is
fixed at the beginning or lazily evaluated whenever a new group element occurs. We
will assume that the oracle uses lazy evaluation to simplify our discussion and avoid
unnecessary steps for achieving polynomial runtime of our meta-reductions.
Procedure ENCODE takes a list G = (G1, . . . , Gu) of group elements as input. It

checks for each Gj ∈ L if an encoding has already been assigned to Gj , that is, if
there exists an index i such that LG

i = Gj . If this holds, ENCODE sets ej := LE
i .

Otherwise (if no encoding has been assigned to Gj so far), it chooses a fresh and
random encoding ej ←$ E \ LE . In either case Gj and ej are appended to LG and
LE , respectively, which gradually defines the map φ such that φ(Gj) = ej . Note
also that the same group element and encoding may occur multiple times in the list.
Finally, the procedure returns the list (e1, . . . , eu) of encodings.

Procedure GETIDX takes a list (e1, . . . , ew) of encodings as input. For each j ∈ [w]
it defines ij as the smallest3 index such that ej = LE

ij , and returns (i1, . . . , iw).4

3 Recall that the same encoding may occur multiple times in LE .
4 Note that GETIDX may receive only encodings e1, . . . , ew which are already contained in LE ,

as otherwise the behavior of GETIDX is undefined. We will make sure that this is always the
case.

On Tight Security Proofs for Schnorr Signatures 521

The lists LG, LE are initially empty. Then O calls (e1, . . . , eu) ←$ ENCODE(G1,
. . . , Gu) to determine encodings for all group elements G1, . . . , Gu and starts the
generic group algorithm on inputR(e1, . . . , eu, C

′).
RO may now submit queries of the form (e, e′, ◦) ∈ E × E × {·,÷} to the generic

group oracle O. In the sequel we will restrict R to issue only queries (e, e′, ◦) to O
such that e, e′ ∈ LE . It determines the smallest indices i and j with e = ei and e′ = ej
by calling (i, j) = GETIDX(e, e′). Then it computes LG

i ◦ LG
j and returns the encoding

ENCODE(LG
i ◦ LG

j). Furthemore, we require thatR only outputs encodings φ(Si) such
that φ(Si) ∈ LE .

Remark 2. We note that the above restrictions are without loss of generality. To explain
this, recall that the assignment between group elements and encodings is random. An
alternative implementationO′ ofO could, given an encoding e �∈ LE , assign a random
group element G ←$ G \ LG to e by appending G to LG and e to LE , in which case
R would obtain an encoding of an independent, new group element. Of course R can
simulate this behavior easily when interacting with O, too.

Generic reductions. Recall that a (fully black-box [23]) reduction from problem Π to
problem Σ is an efficient algorithm R that solves Π , having black-box access to an
algorithmA solving Σ.

In the sequel we consider reductionsRA,O having black-box access to an algorithm
A as well as to a generic group oracle O. A generic reduction receives as input a chal-
lenge C = (φ(C1), . . . , φ(C�), C

′) ∈ Gu ×{0, 1}∗ consisting of u encoded group ele-
ments and a bit-string C′.Rmay perform computations on encoded group elements, by
invoking a generic group oracle O as described above, and interacts with algorithm A
to compute a solution S = (φ(S1), . . . , φ(Sw), S

′) ∈ Gw × {0, 1}∗, which again may
consist of encoded group elements φ(S1), . . . , φ(Sw) and a bit-string S′ ∈ {0, 1}∗. Re-
ductions from an interactive computational problem Π may additionally have access to
an oracle SΠ corresponding to Π , we write RA,O,SΠ .

We stress that the adversary A does not necessarily have to be a generic algorithm.
It may not be immediately obvious that a generic reduction can make use of a non-
generic adversary, considering that A might expect a particular encoding of the group
elements. However, this is indeed possible. In particular, most reductions in security
proofs for cryptosystems that are based on algebraic groups (like [22, 6, 31], to name
a few well-known examples) are independent of a particular group representation, and
thus generic.

Recall that R is fully blackbox, i.e., A is external to R. Thus, the environment in
which the reduction is run can easily translate between the two encodings. Consider as
an example the reduction shown in Figure 2 that interacts with a non-generic adver-
sary A. Our notion of generic reductions merely formalizes that the reduction works
identically for any group representation. This is illustrated in Figure 2 with an “envi-
ronment” converting group elements received and output by the reduction from one
group representation to another. Note also that essentially all security reductions (from
a computational problem in an algebraic group) in the literature are generic. We stress
that we model only the reduction R as a generic algorithm. We do not restrict the
forgerA in this way, as commonly done in security proofs in the generic group model.

522 N. Fleischhacker, T. Jager, and D. Schröder

R

A

O

Environment

C1, . . . , Cl, C
′

φ(C1), . . . , φ(Cl), C
′

(φ(i), φ(j), ◦)

φ(i ◦ j)

φ(X),m, ω X,m,ω

A,mφ(A),m

B = H(φ(A),m) B

(R, y)(φ(R), y)S1, . . . , Sw, S
′

φ(S1), . . . , φ(Sw), S
′

Fig. 2. An example of the interaction between a generic reduction R and a non-generic adversay
A against the unforgeability of Schnorr signatures. All group elements – such as the challenge
input, random oracle queries, and the signature output by A – are encoded by the environment
before being passed to R. In the other direction, encodings of group elements output by R – such
as the public key that is the input of A, random oracle responses, and the solution output by R –
are decoded before being passed to the outside world.

It may not be obvious that this is possible, because A expects as input group elements
in some specific encoding, while R can only specify them in the form of random en-
codings. However, the reduction only gets access to the adversary as a blackbox, which
means that the adversary is external to the reduction, and the environment in which the
reduction is run can easily translate between the encodings used by reduction and ad-
versary. Further note, that while some reduction from a problem Π may be generic, the
actual algorithm solving said problem is not R itself, but the composition of R and A
which may be non-generic. In particular, this means that any results about equivalence
of interesting problems in the generic group model do not apply to the reduction.

3 Unconditional Tightness Bound for Generic Reductions

In this section, we investigate the possibility of finding a tight generic reductionR that
reduces a representation-invariant computational problem Π to breaking the UF-NM-
security of the Schnorr signature scheme. Our results in this direction are negative,
showing that it is impossible to find a generic reduction from any representation-invari-
ant computational problem. This includes even interactive problems.

3.1 Single-Instance Reductions

We begin with considering a very simple class of reduction that we call vanilla reduc-
tions. A vanilla reduction is a reduction that runs the UF-NM forger A exactly once
(without restarting or rewinding) in order to solve the problem Π . This allows us to
explain and analyze the new simulation technique. Later we turn to reductions that may
executeA repeatedly, like for instance the known security proof from [22] based on the
Forking Lemma.

An Inefficient Adversary A In this section we describe an inefficient adversary A that
breaks the UF-NM-security of the Schnorr signature scheme. Recall that a black-box

On Tight Security Proofs for Schnorr Signatures 523

reductionRmust work for any attackerA. Thus, algorithmRA will solve the challenge
problem Π , given black-box access to A. The meta-reduction will be able to simulate
this attacker efficiently for any generic reductionR. We describe this attacker for com-
prehensibility, in order to make our meta-reduction more accessible to the reader.
1. The input of A is a Schnorr public-key X , a message m, and random coins ω ∈
{0, 1}κ.

2. The forgerA chooses q uniformly random group elements R1, . . . , Rq ←$ G. (We
make the assumption that q ≤ |G|.) Subsequently, the forgerA queries the random
oracleH on (Ri,m) for all i ∈ [q]. Let ci := H(Ri,m) ∈ Zp be the corresponding
answers.

3. Finally, the forger A chooses an index uniformly at random α ←$ [q], computes
y ∈ Zp which satisfies the equation gy = Xcα · Rα, and outputs (Rα, y). For
concreteness, we assume this computation is performed by exhaustive search over
all y ∈ Zp (recall that we consider an unbounded attacker here, we show later how
to instantiate it efficiently).

Note that (Rα, y) is a valid signature for message m with respect to the public key X .
Thus, the forger A breaks the UF-NM-security of the Schnorr signatures with
probability 1.

Main Result for Vanilla Reductions Now we are ready to prove our main result for
vanilla reductions.

Theorem 1. Let Π = (GΠ ,SΠ ,VΠ) be a representation-invariant (possibly interac-
tive) computational problem with a challenge consisting of u group elements and let p
be the group order. Suppose there exists a generic vanilla reduction R that (εR, tR)-
solves Π , having one-time black-box access to an attacker A that (εA, tA)-breaks the
UF-NM-security of Schnorr signatures with success probability εA = 1 by asking q
random oracle queries. Then there exists an algorithm M that (ε, t)-solves Π with

ε ≥ εR − 2(u+q+tR)2

p and t ≈ tR.

Remark 3. Observe that Theorem 1 rules out reductions from nearly arbitrary compu-
tational problems (even interactive). At a first glance this might look contradictory, for
instance there always exists a trivial reduction from the problem of forging Schnorr
signatures to solving the same problem. However, as explained in Example 5, forging
Schnorr-signatures is not a representation-invariant computational problem, therefore
this is not a contradiction.

Proof. Assume that there exists a generic vanilla reduction R := RO,S′
Π ,A that (εR,

tR)-solves Π , when given access to a generic group oracle O, an oracle S ′
Π , and a

forger A(φ(X),m, ω), where the inputs to the forger are chosen by R. Furthermore,
the reductionR simulates the random oracleR.H forA. We show how to build a meta-
reduction M that has black-box access to R and to an oracle SΠ and that solves the
representation-invariant problem Π directly.

We describeM in a sequence of games, beginning with an inefficient implementation
M0 ofM and we modify it gradually until we obtain an efficient implementationM2

of M. We bound the probability with which any reduction R can distinguish each

524 N. Fleischhacker, T. Jager, and D. Schröder

implementationMi fromMi−1 for all i ∈ {1, 2}, which yields thatM2 is an efficient
algorithm that can useR to solve Π ifR in tight.

In what follows let Xi denote the event that R outputs a valid solution to the given
problem instance Ĉ of Π in Game i.

Game 0. Our meta-reductionM0 :=MSΠ

0 is an algorithm for solving a representation-
invariant computational problem Π , as defined in Section 2.3. That is,M0 takes as in-
put an instance C = (C1, . . . , Cu, C

′) ∈ Gu × {0, 1}∗, of the representation-invariant
computational problem Π , has access to oracle SΠ provided by Π , and outputs a can-
didate solution S.R is a generic reduction, i.e., a representation-independent algorithm
for Π having black-box access to an attacker A. AlgorithmM0 runs reductionR as a
subroutine, by simulating the generic group oracleO, the SΠ oracle, and attackerA for
R. In order to provide the generic group oracle for R, M0 implements the following
procedures (cf. Figure 3).

PROC M0(C)

INITIALIZATION

parse C = (C1, . . . , Cu, C
′)

LG := ∅ ; LE := ∅
�R = (R1, . . . , Rq) ←$ G

q

I := (C1, . . . , Cu, R1, . . . , Rq)

ENCODE(I)
Ĉ := (LE

1 , . . . ,LE
u , C

′)

Ŝ ←$ RO,A(Ĉ)

FINALIZATION

parse Ŝ := (Ŝ1, . . . , Ŝw, S
′)

(i1, . . . , iw) := GETIDX(Ŝ1, . . . , Ŝw)

return (LG
i1 , . . . ,L

G
iw , S

′)

PROC A(φ(X),m, ω)

for all i ∈ [q]

ci = R.H(φ(Ri),m)

α ←$ [q]

y := logg X
cαRα

return (Rα, y).

PROC SΠ
′(Q)

parse Q = (e1, . . . , ev, Q
′)

(i1, . . . , iv) = GETIDX(e1, . . . , ev)

(A1, . . . , Aν , A
′) = SΠ(Li1 , . . . ,Liν , Q

′)

(f1, . . . , fν) = ENCODE(A1, . . . , Aν)

return (f1, . . . , fν , A
′).

Fig. 3. Implementation of M0

INITIALIZATION OF M0: At the beginning of the game, M0 initializes two lists

LG := ∅ and LE := ∅, which are used to simulate the generic group oracle O. Fur-
thermore, M0 chooses #R = (R1, . . . , Rq) ←$ Gq at random (these values will later
be used by the simulated attacker A), sets I := (C1, . . . , Cu, R1, . . . , Rq), and runs
ENCODE(I) to assign encodings to these group elements. ThenM0 starts the reduction

R on input Ĉ := (LE
1 , . . . ,LE

u , C′). Note that Ĉ is an encoded version of the challenge
instance of Π received byM0. That is, we have Ĉ = (φ(C1), . . . , φ(Cu), C

′). Oracle
queries ofR are answered byM0 as follows:

On Tight Security Proofs for Schnorr Signatures 525

GENERIC GROUP ORACLE O(e, e′, ◦): To simulate the generic group oracle,M0 im-
plements procedures ENCODE and GETIDX as described in Section 2.4. Whenever R
submits a query (e, e′, ◦) ∈ E × E × {·,÷} to the generic group oracle O, the meta-
reduction determines the smallest indices i and j such that e = ei and e′ = ej by calling
(i, j) = GETIDX(e, e′). Then it computes LG

i ◦ LG
j and returns ENCODE(LG

i ◦ LG
j).

ORACLE S ′
Π(Q): This procedure handles queries issued by R to S ′

Π by forward-
ing them to oracle SΠ provided by the challenger and returning the response. That
is, whenever R submits a query Q = (e1, . . . , ev, Q

′) ∈ Ev × {0, 1}∗ to S ′
Π , the

meta-reduction runs (i1, . . . , iv) := GETIDX(e1, . . . , ev) and queries SΠ to compute
(A1, . . . , Aν , A

′) := SΠ(Li1 , . . . ,Liν , Q
′). Then M0 determines the corresponding

encodings as (f1, . . . , fν) := ENCODE(A1, . . . , Aν) and returns (f1, . . . , fν, A′) toR.

THE FORGER A(φ(X),m, ω): This procedure implements a simulation of the inef-
ficient attacker A described in Section 3.1. It proceeds as follows. When R outputs
(φ(X),m, ω) to invoke an instance of A, A queries the random oracle R.H provided
by R on (φ(Ri),m) for all i ∈ [q], to determine ci = H(φ(Ri),m). Afterwards,M0
chooses an index α ←$ [q] uniformly at random, computes the the discrete logarithm
y := logg X

cαRα by exhaustive search, and outputs (Rα, y). (This step is not efficient.
We show in subsequent games how to implement this attacker efficiently.)

FINALIZATION OF M0: Eventually, the algorithmR outputs a solution Ŝ := (Ŝ1, . . . ,

Ŝw, S′) ∈ Ew×{0, 1}∗. The algorithmM0 runs (i1, . . . , iw) := GETIDX(Ŝ1, . . . , Ŝw)
to determine the indices of group elements (LG

i1
, . . . ,LG

iw
) corresponding to encodings

(Ŝ1, . . . , Ŝw), and outputs (LG
i1
, . . . ,LG

iw
, S′).

Analysis ofM0. Note thatM0 provides a perfect simulation of the oraclesO and SΠ
and it also mimics the attacker from Section 3.1 perfectly. In particular, (Rα, y) is a
valid forgery for message m and thus, R outputs a solution Ŝ = (Ŝ1, . . . , Ŝw, S′) to
Ĉ with probability Pr[X0] = εR. Since Π is assumed to be representation-invariant,

S := (S1, . . . , Sw, S′) with Ŝi = φ(Si) for i ∈ [w] is therefore a valid solution to C.
Thus,M0 outputs a valid solution S to C with probability εR.

Game 1. In this game we introduce a meta-reduction M1, which essentially extends
M0 with additional bookkeeping to record the sequence of group operations performed
by R. The purpose of this intermediate game is to simplify our analysis of the final
implementationM2. Meta-reductionM1 proceeds identical to M0, except for a few
differences (cf. Figure 4).

INITIALIZATION OF M1: The initialization is exactly like before, except that M1
maintains an additional list LV of elements of Zu+q

p . Let LV
i denote the i-th entry of

LV .
List LV is initialized with the u+q canonical unit vectors in Zu+q

p . That is, let ηi de-
note the i-th canonical unit vector in Zu+q

p , i.e., η1 = (1, 0, . . . , 0), η2 = (0, 1, 0, . . . , 0),

. . . , ηu+q = (0, . . . , 0, 1). Then LV is initialized such that LV
i := ηi for all i ∈ [u+ q].

GENERIC GROUP ORACLE O(e, e′, ◦): In parallel to computing the group operation,
the generic group oracle implemented by M1 also performs computations on vectors
of LV .

526 N. Fleischhacker, T. Jager, and D. Schröder

Given a query (e, e′, ◦) ∈ E × E × {·,÷}, the oracle O determines the smallest
indices i and j such that e = ei and e′ = ej by calling GETIDX. It computes a :=
LV
i - LV

j ∈ Zu+q
p , where - := + if ◦ = · and - := − if ◦ = ÷, and appends a to LV .

Finally it returns ENCODE(LG
i ◦ LG

j).

Analysis of M1. Recall that the initial content I of LG is I = (C1, . . . , Cu, R1, . . . ,
Rq), and thatR performs only group operations on I. Thus, any group element h ∈ LG

can be written as h =
∏u

i=1 C
ai

i ·
∏q

i=1 R
au+i

i where the vector a = (a1, . . . , au+q) ∈
Zu+q
p is (essentially) determined by the sequence of queries issued byR toO. For a vec-

tor a ∈ Zu+q
p and a vector of group elements V = (v1, . . . , vu+q) ∈ Gu+q let us write

Eval(V, a) shorthand for Eval(V, a) :=
∏u+q

i=1 vai

i in the sequel. In particular, it holds
that Eval(I, a) =

∏u
i=1 C

ai

i ·
∏q

i=1 R
au+i

i . The key motivation for the changes intro-
duced in Game 1 is that now (by construction of M1) it holds that LG

i = Eval(I,LV
i)

for all i ∈ [|LG|]. Thus, at any point in time during the execution ofR, the entire list LG

of group elements can be recomputed from LV and I by setting LG
i := Eval(I,LV

i)
for i ∈ [|LV |]. The reductionR is completely oblivious to this additional bookkeeping
performed byM1, thus we have Pr[X1] = Pr[X0].

PROC M1(C)

INITIALIZATION

parse C = (C1, . . . , Cu, C
′)

LG := ∅ ; LE := ∅ ; LV := ∅
�R = (R1, . . . , Rq) ←$ G

q

I := (C1, . . . , Cu, R1, . . . , Rq)

ENCODE(I)

LV
i := ηi, ∀i ∈ [u+ q].

Ĉ := (LE
1 , . . . ,LE

u , C
′)

Ŝ ←$ RO,A(Ĉ)

FINALIZATION

parse Ŝ := (Ŝ1, . . . , Ŝw, S
′)

(i1, . . . , iw) := GETIDX(Ŝ1, . . . , Ŝw)

return (LG
i1 , . . . ,L

G
iw , S

′)

PROC O(e, e′, ◦)
(e, e′, ◦) ∈ E × E × {·,÷}
i := GETIDX(e)

j := GETIDX(e′)

a := LV
i � LV

j ∈ Z
u+q
p

append a to LV

return ENCODE(LG
i ◦ LG

j)

Fig. 4. Meta-Reduction M1. Boxed elements show the differences to M0. All other procedures
are identical to M0 and thus omitted.

Game 2. Note that the meta-reductions described in previous games were not efficient,
because the simulation of the attacker in procedure A needed to compute a discrete
logarithm by exhaustive search. In this final game, we construct a meta-reductionM2

On Tight Security Proofs for Schnorr Signatures 527

that simulates A efficiently. M2 proceeds exactly like M1, except for the following
(cf. Figure 5).
THE FORGER A(φ(X),m, ω): WhenR outputs (φ(X),m, ω) to invoke an instance of
A, A queries the random oracle R.H provided by R on (φ(Ri),m) for all i ∈ [q], to
determine ci = H(φ(Ri),m). Then it chooses an index α←$ [q] uniformly at random,
samples an element y uniformly at random from Zp, computes R∗

α := gyX−cα , and
re-computes the entire list LG using R∗

α instead of Rα.
More precisely, let I∗ := (C1, . . . , Cu, R1, . . . , Rα−1, R

∗
α, Rα+1, . . . , Rq). Observe

that the vector I∗ is identical to the initial contents I of LG, with the difference that
Rα is replaced by R∗

α. The list LG is now recomputed from LV and I∗ by setting
LG
i := Eval(I∗,LV

i) for all i ∈ [|LV |]. Finally, M2 returns (φ(R∗
α), y) to R as the

forgery.

Analysis of M2. First note that (φ(R∗
α), y) is a valid signature, since φ(R∗

α) is the
encoding of group element R∗

α satisfying the verification equation gy = Xcα · R∗
α,

where cα = H(φ(R∗
α),m). Next we claim that R is not able to distinguish M2 from

M1, except for a negligibly small probability. To show this, observe that Game 2 and
Game 1 are perfectly indistinguishable, if for all pairs of vectorsLV

i ,LV
j ∈ LV it holds

that Eval(I,LV
i) = Eval(I,LV

j) ⇐⇒ Eval(I∗,LV
i) = Eval(I∗,LV

j), because in this
caseM2 chooses identical encodings for two group elements LG

i ,LG
j ∈ LG if and only

if M1 chooses identical encodings.

PROC A(φ(X),m, ω) :

α ←$ [q]

for all i ∈ [q]

ci = R.H(φ(Ri),m)

y ←$ Zp ; R∗
α := gyX−cα

I∗ := (C1, . . . , Cu, R1, . . . , Rα−1, R
∗
α, Rα+1, . . . , Rq)

for j = 1, . . . , |LG| do

LG
i := Eval(I∗,LV

i)

return (y, φ(R∗
α))

Fig. 5. Efficient simulation of attacker A by M2

Lemma 1. Let F denote the event thatR computes vectors LV
i ,LV

j ∈ LV such that

Eval(I,LV
i) = Eval(I,LV

j) ∧ Eval(I∗,LV
i) �= Eval(I∗,LV

j) (1)

or

Eval(I,LV
i) �= Eval(I,LV

j) ∧ Eval(I∗,LV
i) = Eval(I∗,LV

j). (2)

528 N. Fleischhacker, T. Jager, and D. Schröder

Then
Pr[F] ≤ 2(u+ q + tR)2/p.

The proof of Lemma 1 is deferred to the full version.We apply it to finish the proof of
Theorem 1. By Lemma 1, the algorithm M2 fails to simulate M1 with probability at
most 2(u+ q + tR)2/p. Thus, we have Pr[X2] ≥ Pr[X1]− 2(u+ q + tR)2/p.

Note also thatM2 provides an efficient simulation of adversaryA. The total running
time of M2 is essentially of the running time of R plus some minor additional com-
putations and bookkeeping. Furthermore, if R is able to (εR, tR) solve Π , thenM2 is
able to (ε, t)-solve Π with probability at least

ε ≥ Pr[X2] ≥ εR −
2(u+ q + tR)2

p
.

Remark 4. Note that the simulated forger re-computes the entire list LG after replacing
Rα with R∗

α. This ensures consistency of the attacker’s view before and after replacing
Rα with R∗

α, if (and only if) it holds that

Eval(I,LV
i) = Eval(I,LV

j) ⇐⇒ Eval(I∗,LV
i) = Eval(I∗,LV

j) (3)

Lemma 1 bounds the probability that 3 does not hold, thus it bounds the probability that
an attacker is able to notice the re-programming by receiving different results before and
after the re-programming.

4 Multi-instance Reductions

Now we turn to considering multi-instance reductions, which may run multiple sequen-
tial executions of the signature forger A. This is the interesting case, in particular be-
cause the Forking-Lemma based security proof for Schnorr signatures by Pointcheval
and Stern [22] is of this type.

The meta-reduction described in detail in the full version is heavily based on Seurin’s
meta-reduction [28]. Essentially, we show that our new simulation of forged signa-
tures is compatible with Seurin’s approach for simulating a sequence of Random Or-
acle queries. In combination this allows to prove that a generic reduction from any
representation-invariant computational problem Π to breaking Schnorr signatures loses
a factor of at least q, which essentially matches the upper bound of [22].

The description of the corresponding family of adversaries and the proof of the fol-
lowing theorem can be found in the full version.

Theorem 2. Let Π be a representation-invariant computational problem. Suppose
there exists a generic reduction RO,S′

Π ,AF,f that (εR, tR)-solves Π , having n-time
black-box access to an attacker AF,f that (εA, tA, q)-breaks the UF-NM-security of
Schnorr signatures with success probability εA < 1 in time tA ≈ q. Then there exists
an algorithmM that (ε, t)-solves Π with t ≈ tR and

ε ≥ εR − 2n(u+ nq + tR)/p− n ln
(
(1− εA)

−1
)
/q(1− p−1/4)

This bound allows essentially the same analysis as in [28] and thus we arrive (for
εA ≈ 1 − (1 − 1/q)q) at a lower bound for ε of approximately εR − n

q . Therefore,R
must necessarily lose a factor of almost 1/q if the discrete logarithm problem is indeed
hard.

On Tight Security Proofs for Schnorr Signatures 529

5 A Note on Tightly-Secure Schnorr-Type Signatures

There exist several variants of Schnorr signatures with tight security reductions from
representation-invariant computational problems. This includes, for instance, the
schemes of Goh and Jarecki [16] and Chevallier-Mames [7], which are based on the
computational Diffie-Hellman problem, and the scheme of Shao [29].

It is natural to ask why our tightness bound, in particular our technique of
re-programming the group representation, can not be applied to these schemes. Due
to space limitations, we have to defer this discussion to the full version of this paper.

Acknowledgments. We thank the anonymous reviewers for valuable comments. Nils
Fleischhacker and Dominique Schröder were supported by the German Federal Min-
istry of Education and Research (BMBF) through funding for the Center for IT-Security,
Privacy, and Accountability (CISPA; see www.cispa-security.org). Dominique
Schröder is also supported by an Intel Early Career Faculty Honor Program Award.

References

1. Bellare, M., Namprempre, C., Pointcheval, D., Semanko, M.: The one-more-RSA-inversion
problems and the security of Chaum’s blind signature scheme. Journal of Cryptology 16(3),
185–215 (2003)

2. Bellare, M., Palacio, A.: GQ and schnorr identification schemes: Proofs of security against
impersonation under active and concurrent attacks. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, p. 162. Springer, Heidelberg (2002)

3. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient
protocols. In: Ashby, V. (ed.) Conference on Computer and Communications Security ACM
CCS 1993, Fairfax, Virginia, USA, November 3–5, pp. 62–73. ACM Press (1993)

4. Bellare, M., Rogaway, P.: The exact security of digital signatures - how to sign with RSA and
rabin. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 399–416. Springer,
Heidelberg (1996)

5. Bernstein, D.J.: Proving tight security for rabin-williams signatures. In: Smart, N.P. (ed.)
EUROCRYPT 2008. LNCS, vol. 4965, pp. 70–87. Springer, Heidelberg (2008)

6. Boneh, D., Boyen, X.: Secure identity based encryption without random oracles. In: Franklin,
M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 443–459. Springer, Heidelberg (2004)

7. Chevallier-Mames, B.: An efficient CDH-based signature scheme with a tight security reduc-
tion. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 511–526. Springer, Heidelberg
(2005)

8. Coron, J.-S.: On the exact security of full domain hash. In: Bellare, M. (ed.) CRYPTO 2000.
LNCS, vol. 1880, pp. 229–235. Springer, Heidelberg (2000)

9. Coron, J.-S.: Optimal security proofs for PSS and other signature schemes. In: Knudsen, L.R.
(ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 272–287. Springer, Heidelberg (2002)

10. Dodis, Y., Haitner, I., Tentes, A.: On the instantiability of hash-and-sign RSA signatures. In:
Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 112–132. Springer, Heidelberg (2012)

11. Dodis, Y., Oliveira, R., Pietrzak, K.: On the generic insecurity of the full domain hash. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 449–466. Springer, Heidelberg (2005)

12. Dodis, Y., Reyzin, L.: On the power of claw-free permutations. In: Cimato, S., Galdi, C.,
Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576, pp. 55–73. Springer, Heidelberg (2003)

530 N. Fleischhacker, T. Jager, and D. Schröder

13. Fischlin, M., Fleischhacker, N.: Limitations of the meta-reduction technique: The case of
schnorr signatures. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS,
vol. 7881, pp. 444–460. Springer, Heidelberg (2013)

14. Fischlin, M., Lehmann, A., Ristenpart, T., Shrimpton, T., Stam, M., Tessaro, S.: Random
oracles with(out) programmability. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477,
pp. 303–320. Springer, Heidelberg (2010)

15. Garg, S., Bhaskar, R., Lokam, S.V.: Improved bounds on security reductions for discrete
log based signatures. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 93–107.
Springer, Heidelberg (2008)

16. Goh, E.J., Jarecki, S.: A signature scheme as secure as the Diffie-Hellman problem. In:
Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 401–415. Springer, Heidelberg
(2003)

17. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against adaptive
chosen-message attacks. SIAM Journal on Computing 17(2), 281–308 (1988)

18. Kakvi, S.A., Kiltz, E.: Optimal security proofs for full domain hash, revisited. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 537–553.
Springer, Heidelberg (2012)

19. Maurer, U.M.: Abstract models of computation in cryptography. In: Smart, N.P. (ed.) Cryp-
tography and Coding 2005. LNCS, vol. 3796, pp. 1–12. Springer, Heidelberg (2005)

20. Neven, G., Smart, N.P., Warinschi, B.: Hash function requirements for schnorr signatures. J.
Mathematical Cryptology 3(1), 69–87 (2009)

21. Paillier, P., Vergnaud, D.: Discrete-log-based signatures may not be equivalent to discrete log.
In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 1–20. Springer, Heidelberg (2005)

22. Pointcheval, D., Stern, J.: Security proofs for signature schemes. In: Maurer, U.M. (ed.)
EUROCRYPT 1996. LNCS, vol. 1070, pp. 387–398. Springer, Heidelberg (1996)

23. Reingold, O., Trevisan, L., Vadhan, S.P.: Notions of reducibility between cryptographic prim-
itives. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 1–20. Springer, Heidelberg (2004)

24. Rupp, A., Leander, G., Bangerter, E., Dent, A.W., Sadeghi, A.-R.: Sufficient conditions for
intractability over black-box groups: Generic lower bounds for generalized DL and DH prob-
lems. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 489–505. Springer,
Heidelberg (2008)

25. Schäge, S.: Tight proofs for signature schemes without random oracles. In: Paterson, K.G.
(ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 189–206. Springer, Heidelberg (2011)

26. Schnorr, C.-P.: Efficient identification and signatures for smart cards. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, Heidelberg (1990)

27. Schnorr, C.P.: Efficient signature generation by smart cards. Journal of Cryptology 4(3),
161–174 (1991)

28. Seurin, Y.: On the exact security of schnorr-type signatures in the random oracle model. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 554–571.
Springer, Heidelberg (2012)

29. Shao, Z.: A provably secure short signature scheme based on discrete logarithms. Inf.
Sci. 177(23), 5432–5440 (2007)

30. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy, W. (ed.)
EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg (1997)

31. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer, R. (ed.)
EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg (2005)

A Universal Unforgeability under No-Message Attacks

Consider the following security experiment involving a signature scheme (Gen, Sign,
Vrfy), an attacker A, and a challenger C.

On Tight Security Proofs for Schnorr Signatures 531

1. The challenger C computes a key-pair (X, x) ←$ Gen(g) and chooses a message
m←$ {0, 1}k uniformly at random. It sends (X,m) to the adversaryA.

2. Eventually,A stops, outputting a signature σ.

Definition 4. We say that A (ε, t)-breaks the UF-NM-security of (Gen, Sign,Vrfy), if
A runs in time at most t and Pr [A(X,m) = σ : Vrfy(X,m, σ) = 1] ≥ ε.

Note that UF-NM-security is a very weak security goal for digital signatures. Since we
are going to prove a negative result, this is not a limitation, but makes our result only
stronger. In fact, if we rule out reductions from some problem Π to forging signatures
in the sense of UF-NM, then the impossibility clearly holds for stronger security goals,
like existential unforgeability under adaptive chosen-message attacks [17], too.

Square Span Programs with Applications

to Succinct NIZK Arguments�

George Danezis1, Cédric Fournet2, Jens Groth1, and Markulf Kohlweiss2

1 University College London, UK
2 Microsoft Research

Abstract. We propose a new characterization of NP using square span
programs (SSPs). We first characterize NP as affine map constraints
on small vectors. We then relate this characterization to SSPs, which
are similar but simpler than Quadratic Span Programs (QSPs) and
Quadratic Arithmetic Programs (QAPs) since they use a single series
of polynomials rather than 2 or 3.

We use SSPs to construct succinct non-interactive zero-knowledge ar-
guments of knowledge. For performance, our proof system is defined over
Type III bilinear groups; proofs consist of just 4 group elements, verified
in just 6 pairings. Concretely, using the Pinocchio libraries, we estimate
that proofs will consist of 160 bytes verified in less than 6 ms.

Keywords: Square span program, quadratic span program, SNARKs,
non-interactive zero-knowledge arguments of knowledge.

1 Introduction

Gennaro, Gentry, Parno and Raykova [GGPR13] proposed a new, influential char-
acterization of the complexity classNP usingQuadratic SpanPrograms (QSPs), a
natural extension of span programs defined by Karchmer andWigderson [KW93].
Their main motivation was the construction of Succinct Non-interactive Argu-
ments ofKnowledge (SNARKs). Their work has lead to fast progress towards prac-
tical verifiable computations, whereby a resource-constrained client offloads the
computation of an expensive function to a computationally endowed server or
cloud, but still intends to verify the correctness of any returned results. For in-
stance, using Quadratic Arithmetic Programs (QAPs), a generalization of QSPs
for arithmetic circuits, Pinocchio [PHGR13] provides evidence that verified re-
mote computation can be faster than local computation. At the same time, zero-
knowledgevariants of their construction enable the server to keep intermediate and
additional values used in the computation private. Such constructions are at the
forefront of privacy-friendly variants of Bitcoin, such as Pinocchio Coin [DFKP13]
and Zerocash [BSCG+14].

� The research leading to these results has received funding from the European
Research Council under the European Union’s Seventh Framework Programme
(FP/2007-2013) / ERC Grant Agreement n. 307937 and the Engineering and Phys-
ical Sciences Research Council grant EP/J009520/1.

P. Sarkar and T. Iwata (Eds.): ASIACRYPT 2014, PART I, LNCS 8873, pp. 532–550, 2014.
c© International Association for Cryptologic Research 2014

Square Span Programs with Applications to Succinct NIZK Arguments 533

We introduce Square Span Programs (SSPs), a radical simplification of quadr-
atic span programs, and we use them to build simpler and more efficient SNARKs
and Non-Interactive Zero-Knowledge arguments (NIZKs) for the verified compu-
tation of binary circuits and the verification of SAT solving, two closely related
problems. Thus, SSPs can be used to build NIZK arguments to support privacy
properties while guaranteeing high integrity, at a minimal cost for the verifier.

Square span programs are based on the insight that every 2-input binary gate
g(a, b) = c can be specified using (1) an affine combination � = αa+ βb+ γc+ δ
of the gate’s input and output wires that take exactly two values, � = 0 or � = 2,
when the wires meet the gate’s logical specification; and (2), equivalently, as a
single ‘square’ constraint (�− 1)2 = 1. Composing such constraints, a satisfying
assignment for any binary circuit (or any SAT problem) can be specified first
as a set of affine map constraints, then as a constraint on the span of a set of
polynomials, defining the square span program for this circuit.

Due to their conceptual simplicity, SSPs offer several advantages over previous
constructions for binary circuits. Their reduced number of constraints lead to
smaller programs, and to lower sizes and degrees for the polynomials required
to represent them, which in turn reduce the computation complexity required
in proving or verifying NIZK arguments. Notably, their simpler ‘square’ form
requires only a single polynomial to be evaluated for verification (instead of two
for earlier QSPs, and three for Pinocchio [PHGR13]) leading to a simpler and
more compact setup, smaller keys, and fewer operations required for proof and
verification.

The resulting, SSP-based SNARKs may be the most compact constructions
to date. For performance, our proof system is defined over Type III bilinear
groups; to this end, we revisit and restate known assumptions for Type III bilin-
ear groups. The communicated proofs consist of just 4 group elements (3 in the
left group, and one in the right group); they can be verified in just 6 pairings,
plus one multiplication for each (non-zero) bit of input, irrespective of the size
of the circuit. Concretely, using the same groups as in the implementation of
Pinocchio, we arrive at 160-byte proofs that we estimate can be verified in less
than 6 ms, for circuits with millions of gates. For instance, our SNARKs would
be entirely adequate to verify the solutions of large SAT problems offloaded to
specialized servers and tools, such as those available in the annual SAT competi-
tion1, without the need to communicate (or even reveal) their complete solutions.

2 Square Span Programs

In this section we will provide new characterizations of languages in NP. First,
we show that circuit satisfiability can be recast as a set of constraints on affine
maps over the integers. Next, we show in Section 2.2 that this leads to the NP-
completeness of square span programs as defined below. The reader may find
the example in Section 2.3 useful to illustrate the transformation from circuit

1 http://satcompetition.org/

534 G. Danezis et al.

satisfiability to square span programs. We compare square span programs to
quadratic span programs in Section 2.4.

Definition 1 (Square span program). A square span program Q over the
field F consists of m + 1 polynomials v0(x), v1(x), . . . , vm(x) and a target poly-
nomial t(x) such that deg(vi(x)) ≤ deg(t(x)) for all i = 0, . . . ,m.

We say that the square span program Q has size m and degree d = deg(t(x)).
We say that Q accepts an input (a1, . . . , a�) ∈ F� if and only if there exist

a�+1, . . . , am ∈ F satisfying

t(x) divides

(
v0(x) +

m∑
i=1

aivi(x)

)2

− 1.

We say that Q verifies a boolean function f : {0, 1}� → {0, 1} if it accepts
exactly those inputs a ∈ F� that satisfy a ∈ {0, 1}� and f(a) = 1.

In the definition, we may see f as a binary circuit or, more abstractly, as a
logical specification of a satisfiability problem. In our NIZK argument system
in Section 3.3 we will split the � inputs into �u public and �w private inputs.
We remark that the public ‘inputs’ are considered from the viewpoint of the
verifier: for an outsourced computation for instance, they may include both the
inputs sent by the clients and the outputs returned by the server performing the
computation together with its proof; for a SAT problem, they may provide a
partial instantiation of the problem, or a part of its solution.

This treatment is strictly more general than classic Circuit-SAT which only
cares about satisfiability and thus corresponds to the special case of �u = 0, i.e.,
Q verifies a circuit C if it accepts exactly those w where C(w) = 1. Alternatively,
if we want the same SSP Q to handle different circuits, it may be useful to let f
be a universal circuit that takes as input an �u-bit description of a freely chosen
circuit C and an �w-bit value w and returns 1 if and only if C(w) = 1.

2.1 The NP-completeness of Affine Map Constraints

In this section we will show that circuit satisfiability can be recast as a set of
constraints on the image of an affine map a �→ aV + b.

Groth, Ostrovsky and Sahai [GOS12] used that a NAND-gate with input wires
a, b and output wire c can be “linearized”. Given values a, b, c ∈ {0, 1}, with 0
meaning false and 1 meaning true, and writing c̄ for 1− c, we have

c = ¬(a ∧ b) if and only if a+ b− 2c̄ ∈ {0, 1}.

All logic gates with fan-in 2 can be linearized. We will without loss of gener-
ality ignore gates corresponding to c = a, c = a, c = b, c = b, c = 0 and c = 1
since they are trivial and can be eliminated from a circuit. This leaves us with 10
types of logic gates. Table 1 displays their truth tables and their linearizations.

Let C be a circuit with m wires and n fan-in 2 gates. We can use linearization
of the logic gates to rewrite the circuit as a set of constraints on the output of
an affine map.

Square Span Programs with Applications to Succinct NIZK Arguments 535

Table 1. Linearization of logic gates with inputs a, b and output c. We omit the 6
remaining gates, which depend on at most one input and are not used in circuits.

AND

a b c

0 0 0
0 1 0
1 0 0
1 1 1

a+ b− 2c ∈ {0, 1}

OR

a b c

0 0 0
0 1 1
1 0 1
1 1 1

ā+ b̄− 2c̄ ∈ {0, 1}

XOR

a b c

0 0 0
0 1 1
1 0 1
1 1 0

a+ b+ c ∈ {0, 2}

NAND

a b c

0 0 1
0 1 1
1 0 1
1 1 0

a+ b− 2c̄ ∈ {0, 1}

NOR

a b c

0 0 1
0 1 0
1 0 0
1 1 0

ā+ b̄− 2c ∈ {0, 1}

XNOR

a b c

0 0 1
0 1 0
1 0 0
1 1 1

a+ b+ c̄ ∈ {0, 2}

a ∧ b

a b c

0 0 0
0 1 1
1 0 0
1 1 0

ā+ b− 2c ∈ {0, 1}

a ∧ b

a b c

0 0 1
0 1 0
1 0 1
1 1 1

ā+ b− 2c̄ ∈ {0, 1}

a ∧ b

a b c

0 0 0
0 1 0
1 0 1
1 1 0

a+ b̄− 2c ∈ {0, 1}

a ∧ b

a b c

0 0 1
0 1 1
1 0 0
1 1 1

a+ b̄− 2c̄ ∈ {0, 1}

Theorem 1. For any circuit C with m wires and n fan-in 2 gates for a total
size of d = m+n, there exists a matrix V ∈ Zm×d and a vector b ∈ Zd such that
C is satisfiable if and only if there is a vector a ∈ Zm satisfying aV +b ∈ {0, 2}d.

The matrix V and the vector b can be constructed such that aV + b ∈ {0, 2}d
implies a ∈ {0, 1}m and a1, . . . , am corresponds to the values on the wires in a
satisfying assignment for C with the first � bits being the input wires.

Proof. We represent an assignment to the wires as a vector a ∈ Zm. The assign-
ment is a satisfying witness for the circuit if and only if the entries belong to
{0, 1}, the entries respect all gates, and the output wire is 1.

It is easy to impose the condition a ∈ {0, 1}m by requiring a(2I) ∈ {0, 2}m.
(Alternatively, whenever ai ∈ {0, 1} is clear from the context, for instance for
the public inputs a1, . . . , a�u , this check can be omitted.)

Since ā = 1 − a, b̄ = 1 − b and c̄ = 1 − c and after scaling some of the gate
equations from Table 1 by a factor 2, we can write all gate equations in the form
αa+ βb+ γc+ δ ∈ {0, 2}. We want the circuit output wire cout to have value 1.
We do that by adding the condition 3c̄out to the linearization of the output gate,
since if cout = 0 this adds 3 to the linear equation and brings us outside {0, 2}
regardless of the type of logic gate.

536 G. Danezis et al.

Define G ∈ Zm×n and δ ∈ Zn such that aG+ δ ∈ {0, 2}n corresponds to the
linearization of the gates as described above, and let

V = [2I | G] and b = (0 | δ).

The existence of a such that

aV + b ∈ {0, 2}d

is equivalent to a satisfying assignment to the wires in the circuit.

Note that V and b as we constructed them have some additional properties.
The matrix V is sparse, since it only has m+3n non-zero entries. The row vectors
of V and b are all linearly independent. Furthermore, all entries in V and b are
small integers. The small size of the integers gives us the following corollary.

Corollary 1. For any circuit C with m wires and n fan-in 2 gates and for any
p ≥ 8 there exist a matrix V ∈ Zm×d

p (with d = m + n) and a vector b ∈ Zd
p

(giving us m+1 linearly independent row vectors) such that C is satisfiable if and
only if there exists a vector a ∈ Zm

p satisfying aV + b ∈ {0, 2}d. Furthermore, if

aV + b ∈ {0, 2}d then a ∈ {0, 1}m and C(a1, . . . , a�) = 1.

Relation to closest vector problem. There is an interesting connection between
our construction of affine map constraints and the closest vector problem for in-
teger lattices using the max-norm �∞. Consider a circuit made just from NAND-
gates; then the affine map aV + b constructed in the proof of Theorem 1 cannot
take the value 1 for any index i = 1, . . . , d, which means the circuit is satisfi-
able if and only if aV + b − 1 ∈ {−1, 0, 1}d. This is equivalent to saying that
the lattice generated by the rows of V has a vector aV with distance at most
1 from the target vector t = 1 − b, i.e., ||aV − t||∞ ≤ 1, if and only if the
circuit is satisfiable. Our construction therefore gives a very direct reduction of
the closest vector problem in integer lattices to circuit satisfiability. The NP-
hardness of the closest (nearest) vector problem was first demonstrated by van
Emde Boas [vEB81] but using a more complicated reduction that relied on the
partition problem.

2.2 The NP-completeness of Square Span Programs

We will now connect affine maps to square span programs, which gives a reduc-
tion of square span programs to circuit satisfiability.

Corollary 1 can be reformulated to say that, for any circuit C and p ≥ 8,
there exist V and b such that C is satisfiable if and only there exists a ∈ Zm

p

satisfying
(aV + b) ◦ (aV + b− 2) = 0,

where ◦ denotes the Hadamard product (entry-wise multiplication). We can
rewrite this condition as

(aV + b− 1) ◦ (aV + b− 1) = 1.

Square Span Programs with Applications to Succinct NIZK Arguments 537

Let r1, . . . , rd be d distinct elements of Zp for a prime p ≥ max(d, 8). Define
v0(x), v1(x), . . . , vm(x) as the degree d− 1 polynomials satisfying

v0(rj) = bj − 1 and vi(rj) = Vi,j .

We can now reformulate Corollary 1 again. The circuit C is satisfiable if and
only if there exists a ∈ Zm

p such that for all rj(
v0(rj) +

m∑
i=1

aivi(rj)

)2

= 1.

Since the evaluations in r1, . . . , rd uniquely determine the polynomial v(x) =
v0(x) +

∑m
i=1 aivi(x) we can rewrite the condition as(

v0(x) +

m∑
i=1

aivi(x)

)2

≡ 1 mod

d∏
j=1

(x− rj).

Theorem 2. A circuit C with m wires and n fan-in 2 gates has for any prime
p ≥ max(n, 8) a square span program of size m and degree d = m+n that verifies
it over Zp.

Proof. From the discussion above, we see that for any circuit C with m wires
and n gates there exists polynomials v0(x), v1(x), . . . , vm(x) and distinct roots
r1, . . . , rd such that C is satisfiable if and only if

d∏
j=1

(x− rj) divides

(
v0(x) +

m∑
i=1

aivi(x)

)2

− 1.

Define t(x) =
∏d

j=1(x − rj) to get an SSP Q =
(
v0(x), v1(x), . . . , vm(x), t(x)

)
that verifies C over Zp.

2.3 Example

As a small example of the process of generating a square span program, consider
a circuit consisting of a single XOR-gate a3 = a1 ⊕ a2 (here � = �u + �w = 2
with �u = 0 and �w = 2). To guarantee a1, a2, a3 ∈ {0, 1} and the XOR-gate is
respected we use the constraints 2ai ∈ {0, 2} and a1+a2+a3 ∈ {0, 2}. The output
should be a3 = 1, which we represent with the constraint 3ā3 = 3(1 − a3) = 0.
We add the latter constraint to the output wire’s equation to get the combined
a1 + a2 − 2a3 + 3 ∈ {0, 2}, which at the same time guarantees a3 = a1 ⊕ a2 and
a3 = 1. We can represent the constraints as

aV + b = (a1, a2, a3)

⎛⎝ 2 0 0 1
0 2 0 1
0 0 2 −2

⎞⎠+ (0, 0, 0, 3) ∈ {0, 2}4.

538 G. Danezis et al.

The satisfiability of the circuit can therefore be represented by 4 quadratic equa-
tions

(2a1 − 1)2 = 1 (2a2 − 1)2 = 1 (2a3 − 1)2 = 1 (a1 + a2 − 2a3 + 2)2 = 1

corresponding to (aV + b− 1) ◦ (aV + b− 1) = 1.
To get a square span program, let p ≥ 8 be a prime and r1, r2, r3, r4 be four

distinct elements in Zp. Pick degree 3 polynomials v0(x), v1(x), v2(x), v3(x) such
that (

v0(r1), v0(r2), v0(r3), v0(r4)
)
= b− 1 = (−1,−1,−1, 2)

and ⎛⎝ v1(r1) v1(r2) v1(r3) v1(r4)
v2(r1) v2(r2) v2(r3) v2(r4)
v3(r1) v3(r2) v3(r3) v3(r4)

⎞⎠ = V =

⎛⎝ 2 0 0 1
0 2 0 1
0 0 2 −2

⎞⎠ .

Let t(x) = (x − r1)(x − r2)(x − r3)(x − r4) to get a square span program(
v0(x), v1(x), v2(x), v3(x), t(x)

)
for the circuit such that

t(x) divides
(
v0(x) + a1v1(x) + a2v2(x) + a3v3(x)

)2
− 1

if and only if a1, a2, a3 satisfy the circuit, i.e., a1, a2 ∈ {0, 1}, a3 = 1 and a3 =
a1 ⊕ a2.

2.4 Comparison to Quadratic Span Programs

Square span programs can be seen as a simplification of quadratic span programs.
Below we recall the definition of quadratic span programs given by Gennaro,
Gentry, Parno and Raykova [GGPR13].

Definition 2. A quadratic span program over a field F contains two sets of
polynomials V = {v′0(x), . . . , vm(x)} and W = {w′

0(x), . . . , wm(x)} and a target
polynomial t(x). It also contains a partition of the indices I = {1, . . . ,m} into

I = Ilabeled ∪ Ifree and a further partition Ilabeled = ∪�,1
i=1,j=0 Ii,j .

For input2 y ∈ {0, 1}�, let Iy = Ifree ∪�
i=1 Ii,yi be the set of indices that

“belong” to y. The quadratic span program accepts an input y ∈ {0, 1}� if and
only if there exist ai, bi ∈ F such that

t(x) divides

⎛⎝v′0(x) +
∑
i∈Iy

aivi(x)

⎞⎠ ·
⎛⎝w′

0(x) +
∑
i∈Iy

biwi(x)

⎞⎠ .

We say the quadratic span program verifies a boolean function f : {0, 1}� →
{0, 1} if it accepts exactly those inputs y where f(y) = 1. We say the size of the
quadratic span program is m and the degree is deg(t(x)).

2 In the rest of the paper, we will be using inputs of the form y = (u, w) where u of
size �u is considered public and w is considered private.

Square Span Programs with Applications to Succinct NIZK Arguments 539

Table 2. Costs compared with prior work (� input wires, out of which �u are public,
m wires in total and n gates). In a circuit with fan-in 2 gates m ≤ 2n + 1, so we get
rough bounds of size 2n and degree 3n when computed as a function of the number of
gates n only (ignoring �u).

Size and degree of Span Programs

Size Degree

Quadratic span programs [GGPR13] 36n 130n
Quadratic span programs (Lipmaa) [Lip13] 14n− 14� − 2 11n− 12�− 2
Square span programs m m+ n− �u

A square span program uses the simpler condition

t(x) divides

(
v0(x) +

m∑
i=1

aivi(x)

)2

− 1,

which is equivalent to

t(x) divides

(
v0(x) + 1 +

m∑
i=1

aivi(x)

)
·
(
v0(x) − 1 +

m∑
i=1

aivi(x)

)
.

A square span program can therefore be seen as a particularly simple type
of quadratic span program where w′

0(x) = v′0(x) − 2 and wi(x) = vi(x) and
ai = bi. Furthermore, Ilabeled = {1, . . . , �} with Ii,yi = {i} and Ii,ȳi = ∅, and
Ifree = {�+ 1, . . . ,m}.

The compilation of a circuit into a quadratic span programs in [GGPR13] has
a significant overhead. For a circuit with � input wires and m wires in total and
n gates, the size of the resulting quadratic span program is 36n and the degree
is 130n. Lipmaa [Lip13] gave a class of more efficient quadratic span programs.
Included in this class is a quadratic span program of size 14n − 14� − 2 and
degree 11n − 12� − 2. In comparison with these works our (square) quadratic
span programs are much more compact with size m − �u and degree m + n −
�u (assuming the verifier checks its inputs are all in {0, 1}.) These costs are
summarised in Table 2.

A further advantage compared to the previous works is that we consider all
types of logic gates, whereas they only consider NAND, AND and OR gates. We
would expect that their constructions can be generalized to handle other logic
gates but do not know whether this would increase the cost.

Remark. All three results prove that a circuit—fixed when the quadratic span
program is generated—is satisfied for public input u and private input w. Uni-
versal circuits allow using a single program for all n′ gate circuits at the cost of
n = n′ · 19 logn′ [Val76].

540 G. Danezis et al.

3 Succinct Non-interactive Arguments of Knowledge

We will now use square span programs to construct succinct non-interactive
zero-knowledge arguments of knowledge using bilinear groups.

Notation. Given two functions f, g : N → [0, 1] we write f(λ) ≈ g(λ) when
|f(λ)− g(λ)| = λ−ω(1). We say that f is negligible when f(λ) ≈ 0 and that f is
overwhelming when f(λ) ≈ 1.

We write y = A(x; r) when the algorithm A on input x and randomness r,
outputs y. We write y ← A(x) for the process of picking randomness r at random
and setting y = A(x; r). We also write y ← S for sampling y uniformly at random
from the set S. We will assume it is possible to sample uniformly at random from
sets such as Zp.

Following Abe and Fehr [AF07] we write (y; z) ← (A ‖ XA)(x) when A on
input x outputs y and XA on the same input (including random coins) outputs z.

3.1 Non-interactive Zero-Knowledge Arguments of Knowledge

Let {Rλ}λ∈N be a sequence of families of efficiently decidable binary relations R.
For pairs (u,w) ∈ R we call u the statement and w the witness. A non-interactive
argument for {Rλ}λ∈N is a quadruple of efficient algorithms (Setup,Prove,Vfy,
Sim) working as follows:

(σ, τ)← Setup(1λ, R): the setup algorithm takes as input a security parameter λ
and a relation R ∈ Rλ and returns a common reference string σ and a
simulation trapdoor τ for the relation R.

π ← Prove(σ, u, w): the prover algorithm takes as input a common reference
string σ for a relation R and (u,w) ∈ R and returns an argument π.

0/1← Vfy(σ, u, π): the verification algorithm takes as input a common reference
string, a statement u and an argument π and returns 0 (reject) or 1 (accept).

π ← Sim(τ, u): the simulator takes as input a simulation trapdoor and a state-
ment u and returns an argument π.

Definition 3. We say (Setup,Prove,Vfy, Sim) is a perfect non-interactive zero-
knowledge argument of knowledge for {Rλ}λ∈N if it has perfect completeness,
perfect zero-knowledge and computational knowledge soundness as defined below.

Perfect completeness. Completeness says that, given any true statement,
an honest prover should be able to convince an honest verifier. For all λ ∈ N,
R ∈ Rλ, (u,w) ∈ R

Pr
[
(σ, τ)← Setup(1λ, R);π ← Prove(σ, u, w) : Vfy(σ, u, π) = 1

]
= 1.

Perfect zero-knowledge. An argument is zero-knowledge if it does not leak
any information besides the truth of the statement. We say (Setup,Prove,Vfy,

Square Span Programs with Applications to Succinct NIZK Arguments 541

Sim) is perfect zero-knowledge if for all λ ∈ N, R ∈ Rλ, (u,w) ∈ R and all
adversaries A, we have

Pr
[
(σ, τ)← Setup(1λ, R);π ← Prove(σ, u, w) : A(σ, τ, π) = 1

]
= Pr

[
(σ, τ)← Setup(1λ, R);π ← Sim(τ, u) : A(σ, τ, π) = 1

]
.

Computational knowledge soundness. We call (Setup,Prove,Vfy, Sim) an
argument of knowledge if there is an extractor that can compute a witness when-
ever the adversary produces a valid argument. The extractor gets full access to
the adversary’s state, including any random coins.

Formally, we require that, for all sequences (Rλ)λ∈N of polynomially bounded
relations in {Rλ}λ∈N and non-uniform polynomial time adversaries A, there
exists a non-uniform polynomial time extractor XA such that

Pr

[
(σ, τ)← Setup(1λ, Rλ)
((u, π);w)← (A ‖ XA)(σ)

:
(u,w) /∈ Rλ

Vfy(σ, u, π) = 1

]
≈ 0.

Remark. Our notion of knowledge soundness guarantees security against an
adaptive adversary, cf. [AF07], that chooses the instance u depending on the
CRS σ. However, to get adaptive security for circuit satisfiability, Rλ has to
be universal, i.e., it has to check that a circuit u is satisfiable. For performance
reasons, this is usually not what one wants, and adaptive soundness for a more
restrictive Rλ is preferable. See Lipmaa [Lip14] for how to achieve adaptive
soundness for some NP-complete languages, not including circuit satisfiability,
while avoiding universal circuits.

3.2 Bilinear Groups

Let G be a bilinear group generator that, on security parameter λ, returns
(p,G, Ĝ,GT , e)← G(1λ) with the following properties:

– G, Ĝ,GT are groups of prime order p;
– e : G × Ĝ → GT is a bilinear map, that is, for all U ∈ G, V ∈ Ĝ, a, b ∈ Z,

we have e(Ua, V b) = e(U, V)ab;

– if G is a generator for G and Ĝ is a generator for Ĝ then e(G, Ĝ) is a generator
for GT ; and

– there are efficient algorithms for computing group operations, evaluating the
bilinear map, deciding membership of the groups, deciding equality of group
elements and sampling generators of the groups.

There are many ways to set up bilinear groups both as symmetric bilinear
groups where G = Ĝ and as asymmetric bilinear groups where G �= Ĝ. Our con-
struction works for both symmetric and asymmetric bilinear groups. Currently,
asymmetric bilinear groups are more efficient and therefore the most appropriate
choice in practice [GPS08].

542 G. Danezis et al.

The q-power knowledge of exponent assumption. The knowledge of ex-
ponent assumption (KEA) introduced by Damg̊ard [Dam91] says that given
G,G′ = Gα it is infeasible to create V, V ′ such that V ′ = V α without knowing a
such that V = Ga and V ′ = G′a. Bellare and Palacio [BP04] extended this to the
KEA3 assumption, which says that given G,Gs, G′, G′s it is infeasible to create
V, V ′ = V α without knowing a0, a1 such that V = Ga0(Gs)a1 . This assumption
has been used also in symmetric bilinear groups by Abe and Fehr [AF07] who
called it the extended knowledge of exponent assumption.

The q-power knowledge of exponent assumption is a generalization of these as-
sumptions in bilinear groups. It says that given (G, Ĝ,Gs, Ĝs, . . . , Gsq , Ĝsq) it is
infeasible to create V, V̂ such that e(V, Ĝ) = e(G, V̂) without knowing a0, . . . , aq
such that V =

∏q
i=0(G

si)ai . The q-power knowledge of exponent assumption

was introduced in [Gro10] for symmetric bilinear groups using Ĝ = Gα with
α chosen at random. Here we adapt it with minor modifications to the general
setting where it may be the case that G �= Ĝ and G, Ĝ belong to different groups.

Definition 4 (q-PKE). The q(λ)-power knowledge of exponent assumption
holds relative to G for the class Z of auxiliary input generators if, for every non-
uniform polynomial time auxiliary input generator Z ∈ Z and non-uniform poly-
nomial time adversary A, there exists a non-uniform polynomial time extrac-
tor XA such that

Pr

⎡⎢⎢⎢⎣
gk := (p,G, Ĝ,GT , e)← G(1λ);G← G∗

s← Z∗
p; z ← Z(gk,G, . . . , Gsq); Ĝ← Ĝ∗

(V, V̂ ; a0, . . . , aq)← (A ‖ XA)(gk,G, Ĝ, . . . , Gsq , Ĝsq , z) :

e(V, Ĝ) = e(G, V̂) ∧ V �= G
∑q

i=0 ais
i

⎤⎥⎥⎥⎦ ≈ 0.

An adaptation of the proof in Groth [Gro10] shows that the q-PKE assumption
holds in the generic bilinear group model.

As demonstrated by Bitansky, Canetti, Paneth and Rosen [BCPR13], if in-
distinguishability obfuscators [BGI+12, GGH+13] exist, then there are auxiliary
input generators for which the q-PKE assumption does not hold. However, their
counterexample is specifically tailored to make extraction difficult and, as they
explain, the q-PKE assumption may hold for “benign” auxiliary input genera-
tors. We will later use auxiliary input generators that generate group elements
in G and Ĝ in a specific manner according to the relations Rλ and we will
conjecture that such auxiliary input generators are benign and that the q-PKE
assumption holds with respect to them.

The q-power Diffie-Hellman assumption. The q-power Diffie-Hellman as-
sumption says given (G, Ĝ, . . . , Gsq , Ĝsq , Gsq+2

, Ĝsq+2

, . . . , Gs2q , Ĝs2q) it is hard

to compute the missing element Gsq+1

.

Square Span Programs with Applications to Succinct NIZK Arguments 543

Definition 5 (q-PDH). The q(λ)-power Diffie-Hellman assumption holds rel-
ative to G if for all non-uniform probabilistic polynomial time adversaries A

Pr

⎡⎢⎣ gk := (p,G, Ĝ,GT , e)← G(1λ);G← G∗; Ĝ← Ĝ∗; s← Z∗
p

Y ← A(gk,G, Ĝ, . . . , Gsq , Ĝsq , Gsq+2

, Ĝsq+2

, . . . , Gs2q , Ĝs2q) :

Y = Gsq+1

⎤⎥⎦ ≈ 0.

An adaptation of the proof in Groth [Gro10] shows that the q-PDH assumption
holds in the generic bilinear group model.
The q-target group strong Diffie-Hellman assumption. We adapt the
strong Diffie-Hellman assumption [BB08] in the target group [PHGR13] to the
asymmetric setting. It says that given (G, Ĝ, . . . , Gsq , Ĝsq) it is hard to find an

r ∈ Zp and compute e(G, Ĝ)
1

s−r .

Definition 6 (q-TSDH). The q(λ)-target group strong Diffie-Hellman assump-
tion holds relative to G if for all non-uniform probabilistic polynomial time ad-
versaries A

Pr

⎡⎢⎣ (p,G, Ĝ,GT , e)← G(1λ);G← G∗; Ĝ← Ĝ∗; s← Z∗
p

(r, Y)← A(p,G, Ĝ,GT , e, G, Ĝ, . . . , Gsq , Ĝsq) :

r ∈ Zp \ {s} ∧ Y = e(G, Ĝ)
1

s−r

⎤⎥⎦ ≈ 0.

An adaptation of the proof in Boneh and Boyen [BB08] shows that the q-TSDH
assumption holds in the generic bilinear group model.

3.3 Succinct Perfect NIZK Arguments

We will now construct succinct and perfect NIZK arguments of knowledge for any
functions �u, �w and families {R}λ of relations R of pairs (u,w) ∈ {0, 1}�u(λ) ×
{0, 1}�w(λ) that can be computed by polynomial size circuits with m(λ) wires
and n(λ) gates for a total size of d(λ) = m(λ) + n(λ).

(σ, τ)← Setup(1λ, R): Run gk := (p,G, Ĝ,GT , e)← G(1λ). ParseR as a boolean
circuit CR : {0, 1}�u × {0, 1}�w → {0, 1}. Generate a square span program
Q =

(
v0(x), . . . , vm(x), t(x)

)
that verifies CR over Zp. Pick G ← G∗ and

Ĝ, G̃← Ĝ∗ and β, s← Z∗
p such that t(s) �= 0. Return

σ = (gk,G, Ĝ, . . . , Gsd , Ĝsd , {Gβvi(s)}i>�u , G
βt(s), G̃, G̃β , Q)

τ = (σ, β, s).

π ← Prove(σ, u, w): Parse u as (a1, . . . , a�u) ∈ {0, 1}�u and use w to compute

a�u+1, . . . , am such that t(x) divides
(
v0(x) +

∑m
i=1 aivi(x)

)2
− 1.

Pick δ ← Zp and let

h(x) =
(v0(x) +

∑m
i=1 aivi(x) + δt(x))

2 − 1

t(x)
.

544 G. Danezis et al.

Use linear combinations of the elements in σ to compute

H = Gh(s) Vw = G
∑m

i>�u
aivi(s)+δt(s)

Bw = Gβ(
∑m

i>�u
aivi(s)+δt(s)) V̂ = Ĝv0(s)+

∑m
i=1 aivi(s)+δt(s)

and return π = (H,Vw, Bw, V̂).

0/1← Vfy(σ, u, π): Parse u as (a1, . . . , a�u) ∈ {0, 1}�u and π as (H,Vw , Bw, V̂) ∈
G3 × Ĝ. Compute V = Gv0(s)+

∑�u
i=1 aivi(s)Vw and return 1 if and only if

e(V, Ĝ) = e(G, V̂) e(H, Ĝt(s)) = e(V, V̂)e(G, Ĝ)−1 e(Vw, G̃β) = e(Bw, G̃).

π ← Sim(τ, u): Parse u as (a1, . . . , a�u) ∈ {0, 1}�u and pick δw ← Zp at random.
Let

h =

(
v0(s) +

∑�u
i=1 aivi(s) + δw

)2
− 1

t(s)

and return π = (Gh, Gδw , Gβδw , Ĝv0(s)+
∑�u

i=1 aivi(s)+δw).

Let Z be a family of non-uniform polynomial time auxiliary input generators Z
such that each of them corresponds to sequences of relations (Rλ)λ∈N in a family
of relations {Rλ}λ∈N. They work such that Z corresponding to (Rλ)λ∈N on in-

put (p,G, Ĝ,GT , e, G, . . . , Gsq) generates the final part of the common reference
string, i.e., returns z = ({Gβvi(s)}i>�u , G

βt(s), G̃, G̃β , Q).

Theorem 3. The construction above is a perfect NIZK argument for the family
of relations {Rλ}λ∈N bounded by d(λ) with computational knowledge soundness
if the d(λ)-PKE, d(λ)-PDH and d(λ)-SDH assumptions hold relative to G and
the family of auxiliary input generator Z defined above.

Proof. Perfect completeness follows by direct verification.
Perfect zero-knowledge follows from observing that both a real argument and

a simulated argument have a uniformly random Vw because t(s) �= 0 and δ, δw are
chosen uniformly at random. Once Vw has been fixed, the verification equations
uniquely determine Bw, V̂ and H . This means that for any (u,w) ∈ R both the
real arguments and the simulated arguments are chosen uniformly at random
such that the verification equations will be satisfied.

We now describe the witness-extractor for computational knowledge sound-
ness. The setup algorithm first generates a bilinear group (p,G, Ĝ,GT , e) ←
G(1λ) and picks G ← G∗ and s ← Z∗

p, which are used to compute G, . . . , Gsd .
This is exactly like the input given to the auxiliary input generator in a d-
PKE challenge. The setup algorithm now generates a square span program Q
over Zp for the relation Rλ and elements {Gβvi(s)}i>�u and G̃, G̃β . We can con-
sider this as part of the auxiliary input z that Z outputs in the d-PKE defini-
tion. More precisely, let A′ be the d-PKE adversary that, on (p,G, Ĝ,GT , e,

G, Ĝ, . . . , Gsd , Ĝsd) and auxiliary input z = ({Gβvi(s)}i>�u , G
βt(s), G̃, G̃β , Q)

runs (u,H, Vw, Bw, V̂) ← A(σ) with σ = (p, . . . , Ĝsd) and returns (V, V̂) where

Square Span Programs with Applications to Succinct NIZK Arguments 545

V = Gv0(s)+
∑�u

i=1 aivi(s)Vw when u = (a1, . . . , a�u) ∈ {0, 1}�u. Let XA′ be the cor-
responding extractor according to the d-PKE assumption that returns c0, . . . , cd
such that V = G

∑d
i=0 cis

i

when e(V, Ĝ) = e(G, V̂). Our witness-extractor XA
given σ runs (V, V̂ ; c0, . . . , cd)← (A′ ‖ XA′)(p,G, Ĝ,GT , e, G, Ĝ, . . . , Gsd , Ĝsd , z),

which defines a polynomial
∑d

i=0 cix
i. Define δ = cd to get a degree d− 1 poly-

nomial v(x) =
∑d

i=0 cix
i − δt(x). If it is possible to write the polynomial on the

form v(x) = v0(x)+
∑m

i=1 aivi(x) such that (a1, . . . , am) ∈ {0, 1}m is a satisfying
assignment for the circuit CR with u = (a1, . . . , a�u) then the extractor returns
w = (a�u+1, . . . , a�u+�w).

We will now show that with all but negligible probability the extracted polyno-
mial v(x) does indeed provide a valid witness w ∈ {0, 1}�w such that (u,w) ∈ Rλ.
Let Q be the square span program (v0(x), . . . , vm(x), t(x)) specified in σ that
verifies Rλ over Zp. We know by Theorem 2 that if t(x) divides v(x)2 − 1 and

vmid(x) =
∑d

i=0 cix
i − v0(x) −

∑�u
i=1 aivi(x) belongs to the span of {vi(x)}i>�u

then indeed w ∈ {0, 1}�w and (u,w) ∈ Rλ. So we will in the following show that
the two cases, t(x) does not divide v(x)2− 1 or vmid(x) is not in the appropriate
span both happen with negligible probability breaking the d-TSDH assumption
or the d-PDH assumption respectively.

Given a d-TSDH challenge (p,G, Ĝ,GT , e, G, Ĝ, . . . , Gsd , Ĝsd), we pick β ←
Z∗
p and roots r1, . . . , rd in the same way the setup algorithm does and simulate

a common reference string σ. Suppose the adversary and extractor return u =
(a1, . . . , a�u) ∈ {0, 1}�u, a valid proof π = (H,Vw , Bw, V̂) and c0, . . . , cd such

that V = Gv0(s)+
∑�u

i=1 aivi(s)Vw = G
∑d

i=0 cis
i

. Let v(x) =
∑d

i=0 cix
i − δt(x) with

δ = cd as before and define p(x) = (v(x) + δt(x))2 − 1 and suppose p(x) is not
divisible by t(x). Let ri be a root of t(x) such that x− ri does not divide p(x).
We can write p(x) = a(x)(x − ri) + b, where a(x) is a degree 2d− 1 polynomial
in Zp[x] and b ∈ Z∗

p. The verification equation e(H, Ĝt(s)) = e(V, V̂)e(G, Ĝ)−1

gives us e(H, Ĝ
t(s)
s−ri) = e(G, Ĝ)

a(s)+ b
s−ri . The adversary can use generic group

operations on the d-TSDH challenge to compute Ĝ
t(s)
s−ri and e(G, Ĝ)a(s), which

allows it to deduce e(G, Ĝ)
b

s−ri . Rasing this to the power b−1 gives a solution

(ri, e(G, Ĝ)
1

s−ri) to the d-TSDH challenge.

Given a d-PDH challenge (p,G, Ĝ,GT , e, G, Ĝ, . . . , Gsd , Ĝsd , Gsd+2

, Ĝsd+2

, . . . ,

Gs2d , Ĝs2d) we pick a random degree d polynomial a(x) such that a(x)vi(x) has
coefficient 0 for xd for all �u < i ≤ m and a(x)t(x) also has coefficient 0 for
xd. There are d + �u − m − 1 > 0 degrees of freedom in choosing a(x) so for
a polynomial vmid(x) outside the span of {vi(x)}mi=�u

and t(x) the polynomial

a(x)vmid(x) has a random coefficient for xd.
Now pick at random b ← Zp and define β(x) = a(x)x + b and let β = β(s).

Observe that Gβvi(s) = G(a(s)s+b)vi(s) can be constructed from our challenge

without knowing Gsd+1

; and the same goes for Gβt(s). Pick ρ ← Z∗
p at random

and compute G̃ = Ĝρt(s) and G̃β = Ĝρβt(s). Give to the adversary a simulated

546 G. Danezis et al.

common reference string

σ = (p,G, Ĝ,GT , e, G, Ĝ, . . . , Gsd , Ĝsd , {Gβvi(s)}i>�u , G
βt(s), G̃, G̃β , Q).

Suppose the adversary and extractor return u = (a1, . . . , a�u) ∈ {0, 1}�u, a
valid proof π = (H,Vw , Bw, V̂) and c0, . . . , cd such that V = G

∑
i=0 cis

i

. Define

vmid(x) =
∑d

i=0 cix
i − v0(x) −

∑�u
i=1 aivi(x). Due to the random choice of b the

value β(s) = a(s)s+b does not reveal anything about a(x), so if vmid(x) is outside
the span of {vi(x)}i>�u and t(x) then a(x)vmid(x) has a random coefficient for
xd+1. With probability 1− 1

p this means the adversary returns Bw = Gβ(s)vmid(s)

where β(x)vmid(x) =
∑2d

i=0 bix
i is a known polynomial with a non-trivial coeffi-

cient bd+1 �= 0 for xd+1. We can now take an appropriate linear combination of

Bw and the elements G, . . . , Gsd , Gsd+2

, . . . , Gs2d to compute Gsd+1

, which solves
the d-PDH challenge.

The proof of Theorem 3 suffers a computational overhead in the reduction
by using an extractor XA for A. Except for this computational overhead, the
security reduction for knowledge soundness is tight. It is possible to eliminate
the q-TSDH assumption and rely solely on the q-PKE and q-PDH assumptions,
but then the security reduction loses a factor q and is therefore not tight.

3.4 Efficiency

In this section, we will assume our NIZK argument is instantiated with the
square span program that we constructed in Section 2.2. This choice of square
span program enables a number of optimizations that makes the argument highly
efficient.

The prover has to compute

Vw = G
∑m

i>�u
aivi(s)+δt(s)

Bw = Gβ(
∑m

i>�u
aivi(s)+δt(s))

V̂ = Ĝv0(s)+
∑m

i=1 aivi(s)+δt(s).

It is possible to compute the polynomials
∑m

i>�u
aivi(x) + δt(x) and v0(x) +∑m

i=1 aivi(x) + δt(x) and then compute the appropriate exponentiations of the

polynomials evaluated in s using the elements G, Ĝ, . . . , Gsd , Ĝsd , {Gβvi(s)}i>�u ,
and Gβt(s) from the common reference string. However, this requires O(d) expo-
nentations to the coefficients of the polynomials. Following [GGPR13] a signifi-
cant saving can be made by precomputing {Gvi(s)}i>�u , G

t(s) and {Ĝvi(s)}mi=0,

Ĝt(s). Since each ai ∈ {0, 1} this makes it possible to compute Vw, Bw and V̂ us-
ing at most 3m+1− 2�u multiplications and 3 exponentiations. (Pragmatically,
taking advantage of our uniform support for all gates, we can profile the SSP
and ‘flip’ internal values from ai to ai to ensure that ai is more often equal to 0
than to 1, thereby on average performing less than half of those multiplications.)

The prover also has to compute H = Gh(s), where h(x) = (v(x)+δt(x))2−1
t(x) with

v(x) = v0(x) +
∑m

i=1 aivi(x) and t(x) =
∏d

i=1(x − ri). We can evaluate h(x) in

Square Span Programs with Applications to Succinct NIZK Arguments 547

d points r′1, . . . , r
′
d using two discrete Fourier transforms as follows. The degree

d − 1 polynomial v(x) is uniquely determined by its evaluation in the d points
r1, . . . , rd. In our square span program the evaluations in the points r1, . . . , rd can
be computed easily given the values of the wires in the circuit. Using an inverse
discrete Fourier transform, we compute the coefficients of v(x) =

∑d−1
i=0 cix

i.
Let γ ∈ Z∗

p be given such that r′1, . . . , r
′
d defined as r′i = γiri gives us 2d dis-

tinct values r1, . . . , rd, r
′
1, . . . , r

′
d. Compute c′i = γici to get the coefficients of the

polynomial v′(x) =
∑d−1

i=0 c′ix
i and use a discrete Fourier transform to evaluate

v′(x) in r1, . . . , rd. This gives us evaluations of v(x) in the points r′1, . . . , r
′
d

since v(r′j) = v′(rj). We have h(x) = v(x)2−1
t(x) + 2δv(x) + δ2t(x). Assuming

t(r′1)
−1, . . . , t(r′d)

−1 have been precomputed, it only costs 3d multiplications in

Zp to evaluate v(x)2−1
t(x) +2δv(x) in the d points r′1, . . . , r

′
d. Using Lagrange inter-

polation in the exponent, this allows us to compute

G
v(s)2−1

t(s)
+2δv(s) =

d∏
j=1

(G�′j(s))

v(r′j)2−1

t(r′
j
)

+2δv(r′j)

where �′j(x) is the Lagrange basis polynomial for r′j . By multiplying with (Gt(s))δ
2

we then get Gh(s).
To speed up the computation, we can set up a modified common reference

string for the prover

σProve =

(
p,G, Ĝ,GT , e, G, Ĝ, {Gvi(s)}i>�u , {Ĝvi(s)}i>�u , {Gβvi(s)}i>�u ,

Gβt(s), G̃, G̃β , γ, {t(r′j)−1}dj=1, {G�′j(s)}dj=1, G
t(s), Q

)
.

The computational cost for the prover is dominated by d exponentations in G

and 2 discrete Fourier transforms in Zp. The two discrete Fourier transforms
cost O(d log2 d) multiplications in general but the computation can be reduced
to O(d log d) multiplications when Zp is of a form amenable to using the fast
Fourier transform.

The verifier needs to compute V = Gv0(s)+
∑�u

i=1 aivi(s)Vw and evaluate three
pairing product equations e(V, Ĝ) = e(G, V̂), e(H, Ĝt(s)) = e(V, V̂)e(G, Ĝ)−1,
and e(Vw, G̃β) = e(Bw, G̃). The verifier does not need the full common reference
string but can use a more compact common reference string

σVfy =
(
p,G, Ĝ,GT , e, G, {Gvi(s)}�ui=0, Ĝ, Ĝt(s), G̃, G̃β

)
,

which only has �u + 6 group elements.3 Verification is also computationally effi-
cient, in the worst case it requires �u+1 multiplications in G, one multiplication
in GT and 6 pairings if we precompute e(G, Ĝ)−1.

For a large circuit, the cost of verification can be much smaller than the cost of
evaluating the circuit itself, even if the witness w is known to the verifier. This

3 Using the binary representation of the public input u from [PHGR13] this can be
further reduced to 	 �u

λ

 +O(1) group elements.

548 G. Danezis et al.

Table 3. Size in number of group elements (either G or Ĝ), performance in terms of
pairings (P) or multiplications in G or GT respectively

Proof size and verification cost comparison with Pinocchio

Proof Size (elements) Verification cost

Pinocchio [PHGR13] 8 14P + (�u + 4)G + 1GT

This work 4 6P + (�u + 1)G + 1GT

makes the NIZK argument a succinct non-interactive argument of knowledge
that is suitable for verifiable computation protocols.4

Partly due to the lack of benchmarks, it is hard to compare the performance of
SNARK protocols quantitatively without carefully reimplementing them. Table 3
compares the proof sizes and operations performed by the verifier between our
protocol and Pinocchio, arguably the state of the art in terms of proof size
and verification speed for QAPs. On this basis and the numbers reported in
[PHGR13], we conservatively estimate that an SSP implementation based on
the Pinocchio library would offer 160-byte proofs verified in less than 6 ms.

4 Conclusion

We introduce a representation of logic circuits, or predicates on propositional
formulae, using quadratic constraints on an affine map. The map is built using a
linearization of each gate, and a set of constraints to ensure all values of wires are
binary. This leads to a simple and elegant formulation of square span programs,
and in turn to efficient, minimalistic constructions for NIZKs and SNARKs.

The simplifications are twofold: (i) our representation of boolean functions
no longer requires wire checkers and (ii) square span programs consist of only
a single set of polynomials that are summed and squared. The former improves
prover efficiency, while the key advantage of the latter are SNARKs with an
extremely compact proof, consisting of only four group elements, and an efficient
verification procedure compared to more generic QSP characterisations of the
same program.

As can be expected, binary programs such as SSPs remain less efficient than
arithmetic programs for verifying computations on integers, involving e.g. 32-bit
additions and multiplications. Those operations have to be encoded as binary
adders and multipliers, leading to a significant blow-up in circuit size and com-
putation costs for the prover. It remains an open problem how to extend the SSP
approach with ideas from QAPs to verify such computations without sacrificing
its conceptual simplicity and short proofs.

4 In some cases, for instance when outsourcing computation, the verifier may be the
one that sets up the common reference string. In that case the verifier may know β
and s, which can further decrease the cost of verification.

Square Span Programs with Applications to Succinct NIZK Arguments 549

References

[AF07] Abe, M., Fehr, S.: Perfect NIZK with adaptive soundness. In: Vadhan, S.P.
(ed.) TCC 2007. LNCS, vol. 4392, pp. 118–136. Springer, Heidelberg (2007)

[BB08] Boneh, D., Boyen, X.: Short signatures without random oracles and the
sdh assumption in bilinear groups. Journal of Cryptology 21(2), 149–177
(2008)

[BCPR13] Bitansky, N., Canetti, R., Paneth, O., Rosen, A.: Indistinguishability ob-
fuscation vs. auxiliary-input extractable functions: One must fall. IACR
Cryptology ePrint Archive, Report 2013/641 (2013)

[BGI+12] Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A.,
Vadhan, S.P., Yang, K.: On the (im)possibility of obfuscating programs.
Journal of the ACM 59(2), 6 (2012)

[BP04] Bellare, M., Palacio, A.: Towards plaintext-aware public-key encryption
without random oracles. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS,
vol. 3329, pp. 48–62. Springer, Heidelberg (2004)

[BSCG+14] Ben-Sasson, E., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer,
E., Virza, M.: Zerocash: Practical decentralized anonymous e-cash from
bitcoin. In: Proceedings of the 2014 IEEE Symposium on Security and
Privacy. IEEE (May 2014)

[Dam91] Damg̊ard, I.: Towards practical public key systems secure against cho-
sen ciphertext attacks. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS,
vol. 576, pp. 445–456. Springer, Heidelberg (1992)

[DFKP13] Danezis, G., Fournet, C., Kohlweiss, M., Parno, B.: Pinocchio coin: build-
ing zerocoin from a succinct pairing-based proof system. In: Franz, M.,
Holzer, A., Majumdar, R., Parno, B., Veith, H. (eds.) PETShop@CCS,
pp. 27–30. ACM (2013)

[GGH+13] Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Can-
didate indistinguishability obfuscation and functional encryption for all
circuits. In: FOCS, pp. 40–49 (2013)

[GGPR13] Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span pro-
grams and succinct nizks without pcps. In: Johansson, T., Nguyen, P.Q.
(eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Hei-
delberg (2013)

[GOS12] Groth, J., Ostrovsky, R., Sahai, A.: New techniques for noninteractive
zero-knowledge. Journal of the ACM 59(3), 11:1–11:35 (2012)

[GPS08] Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptographers.
Discrete Applied Mathematics 156(16), 3113–3121 (2008)

[Gro10] Groth, J.: Short pairing-based non-interactive zero-knowledge arguments.
In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340.
Springer, Heidelberg (2010)

[KW93] Karchmer, M., Wigderson, A.: On span programs. In: Proc. of the 8th
IEEE Structure in Complexity Theory, pp. 102–111. IEEE Computer So-
ciety Press (1993)

[Lip13] Lipmaa, H.: Succinct non-interactive zero knowledge arguments from span
programs and linear error-correcting codes. In: Sako, K., Sarkar, P. (eds.)
ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 41–60. Springer, Heidel-
berg (2013)

[Lip14] Lipmaa, H.: Almost optimal short adaptive non-interactive zero knowl-
edge. Cryptology ePrint Archive, Report 2014/396 (2014),
http://eprint.iacr.org/

http://eprint.iacr.org/

550 G. Danezis et al.

[PHGR13] Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: Nearly practical
verifiable computation. In: IEEE Symposium on Security and Privacy,
pp. 238–252 (2013)

[Val76] Valiant, L.G.: Universal circuits (preliminary report). In: STOC,
pp. 196–203 (1976)

[vEB81] van Emde Boas, P.: Another NP-complete partition problem and the com-
plexity of computing short vectors in a lattice. Technical report (1981),
http://staff.science.uva.nl/~peter/vectors/mi8104c.html

http://staff.science.uva.nl/~peter/vectors/mi8104c.html

Better Zero-Knowledge Proofs for Lattice Encryption
and Their Application to Group Signatures�

Fabrice Benhamouda1, Jan Camenisch2, Stephan Krenn2,
Vadim Lyubashevsky3,1, and Gregory Neven2

1 Département d’Informatique, École Normale Supérieure, Paris, France
fabrice.ben.hamouda@ens.fr, lyubash@di.ens.fr

2 IBM Research Zurich – Rüschlikon, Switzerland
{jca,skr,nev}@zurich.ibm.com

3 INRIA, France

Abstract. Lattice problems are an attractive basis for cryptographic systems be-
cause they seem to offer better security than discrete logarithm and factoring
based problems. Efficient lattice-based constructions are known for signature and
encryption schemes. However, the constructions known for more sophisticated
schemes such as group signatures are still far from being practical. In this paper
we make a number of steps towards efficient lattice-based constructions of more
complex cryptographic protocols. First, we provide a more efficient way to prove
knowledge of plaintexts for lattice-based encryption schemes. We then show how
our new protocol can be combined with a proof of knowledge for Pedersen com-
mitments in order to prove that the committed value is the same as the encrypted
one. Finally, we make use of this to construct a new group signature scheme that
is a “hybrid” in the sense that privacy holds under a lattice-based assumption
while security is discrete-logarithm-based.

Keywords: Verifiable Encryption, Group Signatures, Zero-Knowledge Proofs
for Lattices.

1 Introduction

There has been a remarkable increase of research in the field of lattice-based cryp-
tography over the past few years. This renewed attention is largely due to a number
of exciting results showing how cryptographic primitives such as fully homomorphic
encryption [21] and multi-linear maps [20] can be built from lattices, while no such
instantiations are known based on more traditional problems such as factoring or dis-
crete logarithms. Lattice problems are also attractive to build standard primitives such
as encryption and signature schemes, however, because of their strong security proper-
ties. In particular, their worst-case to average-case reductions as well as their apparent
resistance against quantum computers set them apart from traditional cryptographic as-
sumptions such as factoring or computing discrete logarithms, in particular in situations
that require security many years or even decades into the future.

� The research leading to these results has received partial funding from the European Com-
mission under the Seventh Framework Programme (CryptoCloud #339563, PERCY #321310,
FutureID #318424) and from the French ANR-13-JS02-0003 CLE Project.

P. Sarkar and T. Iwata (Eds.): ASIACRYPT 2014, PART I, LNCS 8873, pp. 551–572, 2014.
c© International Association for Cryptologic Research 2014

552 F. Benhamouda et al.

Long-term integrity requirements, e.g., for digital signatures, can usually be fulfilled
by re-signing documents when new, more secure signature schemes are proposed. The
same approach does not work, however, for privacy requirements, e.g., for encryption or
commitment schemes, because the adversary may capture ciphertexts or commitments
now and store them until efficient attacks on the schemes are found.

Several lattice-based encryption schemes have been proposed in the literature, e.g.,
[22, 24, 30, 35], but many of their applications in more complex primitives require effi-
cient zero-knowledge proofs of the encrypted plaintext. Examples include optimistic
fair exchange [2], non-interactive zero-knowledge proofs [34], multiparty computa-
tion [18], and group signatures [12]. In this paper, we present a more efficient zero-
knowledge proof for lattice-based encryption schemes. We then combine it with a non-
lattice-based signature scheme to build a group signature scheme with privacy under
lattice assumptions in the random-oracle model.

1.1 Improved Proofs of Plaintext Knowledge for Lattice Schemes

In a zero-knowledge proof of plaintext knowledge, the encryptor wants to prove in
zero-knowledge that the ciphertext is of the correct form and that he knows the mes-
sage. Efficient constructions of these primitives are known based on number-theoretic
hardness assumptions such as discrete log, strong RSA, etc.

Encryptions in lattice-based schemes generally have the form t = Ae mod q, where
A is some public matrix and e is the unique vector with small coefficients that satisfies
the equation (in this general example, we are lumping the message with e). A proof
that t is a valid ciphertext (and also a proof of plaintext knowledge), therefore, involves
proving that one knows a short e such that Ae = t. It is currently known how to accom-
plish this task in two ways. The first uses a “Stern-type” protocol [37] in which every
run has soundness error 2/3 [26]. It does not seem possible to improve this protocol
since some steps in it are inherently combinatorial and non-algebraic.

A second possible approach is to use the Fiat-Shamir approach for lattices using
rejection sampling introduced in [27, 29]. But while the latter leads to fairly efficient
Fiat-Shamir signatures, there are some barriers to obtaining a proof of knowledge. What
one is able to extract from a prover are short vectors r′, z′ such that Ae′ = tc for some
integer c, which implies that Ae′c−1 = t. Unfortunately, this does not imply that e′c−1

is short unless c = ±1. This is the main way in which lattice-based Fiat-Shamir proofs
differ from traditional schemes like the discrete-log based Schnorr protocol. In the latter,
it is enough to extract any discrete log, whereas in lattice protocols, one must extract a
short vector. Thus, the obvious approach at Fiat-Shamir proofs of knowledge for lattices
(i.e., using binary challenge vectors) also leads to protocols with soundness error 1/2.

Things do not improve for lattice-based proofs of knowledge even if one considers
ideal lattices. Even if A and e are a matrix and a vector of polynomials in the ring
Zq[X]/(Xn + 1), and c is now a polynomial (as in the Ring-LWE based Fiat-Shamir
schemes in [28, 29]), then one can again extract only a short e′ such that Ae′c−1 = t.
In this case, not only is c−1 not necessarily short, but it does not even necessarily exist
(since the polynomial Xn + 1 can factor into up to n terms). At this point, we are not
aware of any techniques that reduce the soundness error of protocols that prove plaintext
knowledge of lattice encryptions, except by (parallel) repetition.

Better Zero-Knowledge Proofs for Lattice Encryption 553

In a recent work, Damgård et al. [18] gave an improved amortized proof of plain-
text knowledge for LWE encryptions. Their protocol allows one to prove knowledge of
O(k) plaintexts (where k is the security parameter) in essentially the same time as just
one plaintext. The ideas behind their protocol seem do not reduce the time requirement
for proving just one plaintext, nor do they apply to Ring-LWE based encryption schemes.
In particular, Ring-LWE based schemes are able to encrypt O(n) plaintext bits into one
(or two) polynomial, which is often all that is needed. Yet, the techniques in [18] do not
seem to be helpful here. The reason is that the challenge matrix required in [18] needs
to be of a particular form and cannot simply be a ring element in Zq[X]/(Xn + 1).

In this paper, we show that one can reduce the soundness error of lattice-based zero-
knowledge proofs of knowledge for ciphertext validity from 1/2 to 1/(2n), which in
practice decreases the number of required iterations of the protocol by a factor of ap-
proximately 10. Interestingly, our techniques only work for ideal lattices, and we do not
know how to adapt them to general ones. The key observation is that, when working
over the ring Z[X]/(Xn + 1), the quantity 2/(X i − Xj) for all 0 ≤ i �= j < n is a
polynomial with coefficients in {−1, 0, 1}, cf. section 3.1.

This immediately allows us to prove that, given A and t, we know a vector of short
polynomials e such that Ae = 2t. While this is not quite the same as proving that
Ae = t, it is good enough for most applications, since it still allows us to prove knowl-
edge of the plaintext. This result immediately gives improvements in all schemes that
require such a proof of knowledge for Ring-LWE based encryption schemes such as
the ring-version of the “dual” encryption scheme [22], the “two element” scheme of
Lyubashevsky et al. [30], and NTRU [24, 35].

1.2 Linking Lattice-Based and Classical Primitives

A main step in applying our new proof protocol to construct a “hybrid” group signature
scheme is to prove that two primitives, one based on classical cryptography and the
other one on lattices, are committing to the same message (and that the prover knows
that message). In our application, we will use the perfectly hiding Pedersen commitment
scheme as the classical primitive, and a Ring-LWE encryption scheme as the lattice-
based primitive.

While the Pedersen commitment and the lattice-based encryption scheme work over
different rings, we show that we can still perform operations “in parallel” on the two.
For example, if the message is μ0, μ1, . . . , μn−1, then it is encrypted in Ring-LWE
schemes by encrypting the polynomial μ = μ0 + μ1X + . . . + μn−1X

n−1, and each
μi is committed to individually using a Pedersen commitment. We will then want to
prove that a Ring-LWE encryption of μ encrypts the same thing as n Pedersen com-
mitments of the μi’s. Even though the two computations are performed over different
rings, we show that by mimicking polynomial multiplications over a polynomial ring
by appropriate additions and multiplications of coefficients in exponents, we can use
our previously mentioned proof of plaintext knowledge to both prove knowledge of μ
and show that the Pedersen commitments are committing to the coefficients of the same
μ. One reason enabling such a proof is that the terms dealing with μ (and μi) in the
proof of knowledge are done “over the integers”—that is, no modular reduction needs
to be performed on these terms. We describe this protocol in detail in section 4.

554 F. Benhamouda et al.

1.3 Applications to Group Signatures and Credentials

Group signatures [12] are schemes that allow members of a group to sign messages
on behalf of the group without revealing their identity. In case of a dispute, the group
manager can lift a signer’s anonymity and reveal his identity. Currently known group
signatures based on lattice assumptions are mainly proofs of concepts, rather than prac-
tically useful schemes. The schemes by Gordon et al. [23] and Camenisch et al. [10]
have signature size linear in the number of group members. The scheme due to Laguil-
laumie et al. [25] performs much better asymptotically with signature sizes logarithmic
in the number of group members, but, as the authors admit, instantiating it with practical
parameters would lead to very large keys and signatures. This is in contrast to classical
number-theoretic solutions, where both the key and the signature size are constant for
arbitrarily many group members.

One can argue that the privacy requirement for group signatures is a concern that is
more long-term than traceability (i.e., unforgeability), because when traceability turns
out to be broken, verifiers can simply stop accepting signatures for the broken scheme.
When privacy is broken, however, an adversary can suddenly reveal the signers behind
all previous signatures. Users may only be willing to use a group signature scheme
if their anonymity is guaranteed for, say, fifty years in the future. It therefore makes
sense to provide anonymity under lattice-based assumptions, while this is less crucial
for traceability.

Following this observation, we propose a “hybrid” group signature scheme, where
unforgeability holds under classical assumptions, while privacy is proved under lattice-
based ones. This allows us to combine the flexible tools that are available in the classical
framework with the strong privacy guarantees of lattice problems. Our group signature
scheme has keys and signatures of size logarithmic in the number of group members;
for practical choices of parameters and realistic numbers of group members, the sizes
will even be independent of the number of users. Furthermore, by basing our scheme
on ring-LWE and not standard LWE, we partially solve an open problem stated in [25].

Our construction follows a variant of a generic approach that we believe is folklore,
as it underlies several direct constructions in the literature [3, 8] and was described
explicitly by Chase and Lysyanskaya [11]. When joining the group, a user obtains a
certificate from the group manager that is a signature on his identity under the group
manager’s public key. To sign a message, the user now encrypts his identity under the
manager’s public encryption key, and then issues a signature proof of knowledge that
he possesses a valid signature on the encrypted plaintext. Our construction follows a
variant of this general paradigm, with some modifications to better fit the specifics of
our proof of plaintext knowledge for lattice encryption. To the best of our knowledge,
however, the construction was never proved secure, so our proof can be seen as a con-
tribution of independent interest.

2 Preliminaries

In this section, we informally introduce several notions. Formal definitions and proofs
can be found in the full version.

Better Zero-Knowledge Proofs for Lattice Encryption 555

2.1 Notation

We denote algorithms by sans-serif letters such as A,B. If S is a set, we write s←$ S to
denote that s was drawn uniformly at random from S. Similarly, we write y ←$ A(x) if
y was computed by a randomized algorithm A on input x, and d←$ D for a probability
distribution D, if d was drawn according to D. When we make the random coins ρ of
A explicit, we write y ← A(x; ρ).

We write Pr[E : Ω] to denote the probability of event E over the probability space
Ω. For instance, Pr[x = y : x, y ←$ D] denotes the probability that x = y if x, y were
drawn according to a distribution D.

We identify the vectors (a0, . . . , an−1) with the polynomial a0 + a1X + · · · +
an−1X

n−1. If v is a vector, we denote by ‖v‖ its Euclidean norm, by ‖v‖∞ its infinity
norm, and by v�l an anti-cyclic shift of a vector v by l positions, corresponding to a
multiplication by X l in Rq = Zq[X]/(Xn + 1). That is, v�l = (v0, . . . , vn−1)�l =
(−vn−l, . . . ,−vn−1, v0, . . . , vn−l−1).

Throughout the paper,λ denotes the main security parameter and ε denotes the empty
string.

2.2 Commitment Schemes and Pedersen Commitments

Informally, a commitment scheme is a tuple (CSetup,Commit,COpen), where CSetup
generates commitment parameters, which are then used to commit to a message m
using Commit. A commitment cmt can then be verified using COpen. Informally, a
commitment scheme needs to be binding and hiding. The former means that no cmt
can be opened to two different messages, while the latter guarantees that cmt does not
leak any information about the contained m.

The following commitment scheme was introduced by Pedersen [32]. Let be given
a family of prime order groups {G(λ)}λ∈N such that the discrete logarithm problem is
hard in G(λ) for security parameter λ, and let q̃ = q̃(λ) be the order of G = G(λ).

To avoid confusion, all elements with order q̃ are denoted with a tilde in the follow-
ing. To ease the presentation of our main result, we will write the group G(λ) additively.

CSetup. This algorithm chooses h̃←$ G, g̃ ←$ 〈h̃〉, and outputs cpars = (g̃, h̃).
Commit. To commit to a message m ∈M = Zq̃ , this algorithm first chooses r ←$ Zq̃ .

It then outputs the pair (c̃mt , o) = (m g̃ + rh̃, r).
COpen. Given a commitment c̃mt , an opening o, a public key cpars and a message m,

this algorithm outputs accept if and only if c̃mt
?
= m g̃ + oh̃.

Theorem 2.1. Under the discrete logarithm assumption for G, the given commitment
scheme is perfectly hiding and computationally binding.

2.3 Semantically Secure Encryption and NTRU

A semantically secure (or IND-CPA secure) encryption scheme is a tuple (EncKG,Enc,
Dec) of algorithms, where EncKG generates public/private key pair, Enc can be used to
encrypt a message m under the public key, and the message can be recovered from the
ciphertext by Dec using the secret key. Informally, while Dec(Enc(m)) = m should

556 F. Benhamouda et al.

always hold, only knowing the ciphertext and the public key should not leak any infor-
mation about the contained message.

In this paper we present improved zero-knowledge proofs of plaintext knowledge for
lattice-based encryption schemes, and show how to link messages being encrypted by
these schemes to Pedersen commitments. Our improved proof of knowledge protocol
will work for any Ring-LWE based scheme where the basic encryption operation con-
sists of taking public key polynomial(s) ai and computing the ciphertext(s) bi = ais+ei
where s and ei are polynomials with small norms. Examples of such schemes include
the ring-version of the “dual” encryption scheme [22], the “two element” scheme of
Lyubashevsky et al. [30], and the NTRU encryption scheme [24, 35].

In this paper we will for simplicity only be working over the rings R = Z[X]/(Xn+
1) and Rq = R/qR, for some prime q. Also for simplicity, we will use NTRU as our
encryption scheme because its ciphertext has only one element and is therefore simpler
to describe in protocols. The NTRU scheme was first proposed by Hoffstein et al. [24],
and we will be using a modification of it due to Stehlé and Steinfeld [35].

Definition 2.2. The discrete normal distribution on Zm centered at v with standard de-
viation σ is defined by the density function Dm

v,σ(x)=ρmv,σ(x)/ρσ(Z
m), with ρmv,σ(x) =(

1√
2πσ

)m
e−

‖x−v‖2
2σ2 being the continuous normal distribution on Rm and ρσ(Z

m) =∑
z∈Zm ρm0,σ(z) being the scaling factor required to obtain a probability distribution.

When v = 0, we also write Dm
σ = Dm

0,σ.

We will sometimes write u ←$ Dv,σ instead of u ←$ Dn
v,σ for a polynomial u ∈ Rq if

there is no risk of confusion.
In the following, let p be a prime less than q and σ, α ∈ R.

Message Space. The message spaceM is any subset of {y ∈ R : ‖y‖∞ < p}.
KeyGen. Sample f ′, g from Dσ, set f = pf ′+1, and resample, if f mod q or g mod q

are not invertible. Output the public key h = pg/f and the secret key f . Note here
that h is invertible.

Encrypt. To encrypt a message m ∈ M, set s, e ←$ Dα and return the ciphertext
y = hs+ pe+ m ∈ Rq .

Decrypt. To decrypt y with secret key f , compute y′ = fy ∈ Rq and output m′ = y′

mod p.

If the value of σ is large enough (approximately Õ(n
√
q)), then g/f is uniformly

random in Rq [35], and the security of the above scheme is based on the Ring-LWE
problem. For smaller values of σ, however, the scheme is more efficient and can be
based on the assumption that h = g/f is indistinguishable from uniform. This type of
assumption, while not based on any worst-case lattice problem, has been around since
the introduction of the original NTRU scheme over fifteen years ago. Our protocol
works for either instantiation.

To obtain group signatures, we will need our encryption scheme to additionally be a
commitment scheme. In other words, there should not be more than one way to obtain
the same ciphertext. For the NTRU encryption scheme, this will require that we work
over a modulus q such that the polynomial Xn + 1 splits into two irreducible polyno-
mials of degree n/2, which can be shown to be always the case when n is a power of 2
and q = 3 mod 8 [36, Lemma 3].

Better Zero-Knowledge Proofs for Lattice Encryption 557

Lemma 2.3. Suppose that q = 3 mod 8 and let #S,#E, and #M be the domain sizes
of the parameters s, e, and m in the ciphertext y = hs+ pe+m. Additionally suppose
that for all m ∈ M, ‖m‖∞ < p/2. Then the probability that for a random h, there ex-
ists a ciphertext that can be obtained in two ways is at most (2#M+1)·(2#S+1)·(2#E+1)

qn/2 .

Note that the above lemma applies to NTRU public keys h that are uniformly random.
If h = pg/f is not random, then the ability to come up with two plaintexts for the same
ciphertext would constitute a distinguisher for the assumed pseudorandomness of h.

2.4 Rejection Sampling
For a protocol to be zero-knowledge, the prover’s responses must not depend on its
secret inputs.However, in our protocols, the prover’s response will be from a discrete
normal distribution which is shifted depending on the secret key. To correct for this, we
employ rejection sampling [28, 29], where a potential response is only output with a
certain probability, and otherwise the protocol is aborted.

Informally, the following theorem states that for sufficiently large σ the rejection
sampling procedure outputs results that are independent of the secret. The technique
only requires a constant number of iterations before a value is output, and further-
more the output is also statistically close for every secret v with norm at most T . For
concrete parameters we refer to the original work of Lyubashevsky [29, Theorem 4.6].

Theorem 2.4. Let V be a subset of Z� in which all elements have norms less than T ,
and let H be a probability distribution over V . Then, for any constant M , there exists
a σ = Θ̃(T) such that the output distributions of the following algorithms A,F are
statistically close:

A : v ←$ H ; z ←$ D�
v,σ; output (z, v) with probability min

(
D�

σ(z)/(MD�
v,σ(z)), 1

)
F : v ←$ H ; z ←$ D�

0,σ; output (z, v) with probability 1/M

The probability that A outputs something is exponentially close to that of F, i.e., 1/M .

2.5 Zero-Knowledge Proofs and Σ′-Protocols
On a high level, a zero-knowledge proof of knowledge (ZKPoK) is a two party protocol
between a prover and a verifier, which allows the former to convince the latter that it
knows some secret piece of information, without revealing anything about the secret
apart from what the claim itself already reveals. For a formal definition we refer to
Bellare and Goldreich [4].

A languageL ⊆ {0, 1}∗ has witness relationship R ⊆ {0, 1}∗×{0, 1}∗ if x ∈ L ⇔
∃(x,w) ∈ R. We call w a witness for x ∈ L. The ZKPoKs constructed in this paper will
be instantiations of the following definition, which is a straightforward generalization
of Σ-protocols [13, 15]:

Definition 2.5. Let (P,V) be a two-party protocol, where V is PPT, and let L,L′ ⊆
{0, 1}∗ be languages with witness relations R,R′ such that R ⊆ R′. Then (P,V) is
called a Σ′-protocol for L,L′ with completeness error α, challenge set C, public input
x and private input w, if and only if it satisfies the following conditions:

558 F. Benhamouda et al.

– Three-move form: The protocol is of the following form: The prover P, on input
(x,w), computes a commitment t and sends it to V. The verifier V, on input x,
then draws a challenge c ←$ C and sends it to P. The prover sends a response s

to the verifier. Depending on the protocol transcript (t, c, s), the verifier finally
accepts or rejects the proof. The protocol transcript (t, c, s) is called accepting, if
the verifier accepts the protocol run.

– Completeness: Whenever (x,w) ∈ R, the verifier V accepts with probability at
least 1− α.

– Special soundness: There exists a PPT algorithm E (the knowledge extractor) which
takes two accepting transcripts (t, c′, s′), (t, c′′, s′′) satisfying c′ �= c′′ as inputs,
and outputs w′ such that (x,w′) ∈ R′.

– Special honest-verifier zero-knowledge (HVZK): There exists a PPT algorithm S
(the simulator) taking x ∈ L and c ∈ C as inputs, that outputs (t, s) so that the
triple (t, c, s) is indistinguishable from an accepting protocol transcript generated
by a real protocol run.

This definition differs from the standard definition of Σ-protocols in two ways. First,
we allow the honest prover to fail in at most an α-fraction of all protocol runs, whereas
the standard definition requires perfect completeness, i.e., α = 0. However, this relax-
ation is crucial in our construction that is based on rejection sampling [28, 29], where
the honest prover sometimes has to abort the protocol to achieve zero-knowledge. Sec-
ond, we introduce a second languageL′ with witness relationR′ ⊇ R, such that provers
knowing a witness inR are guaranteed privacy, but the verifier is only ensured that the
prover knows a witness for R′. This has already been used in [1] and informally also
in, e.g., [16, 19]. If the soundness gap between R and R′ is sufficiently small, the im-
plied security guarantees are often enough for higher-level applications. Note that the
original definition of Σ-protocols is the special case that α = 0 and R = R′.

We want to stress that previous results showing that a Σ-protocol is always also an
honest-verifier ZKPoK with knowledge error 1/|C| directly carry over to the modified
definition whenever 1 − α > 1/|C|. Zero-knowledge against arbitrary verifiers can be
achieved by applying standard techniques such as Damgård et al. [14, 17].

Finally, it is a well known result that negligible knowledge and completeness errors
in λ can be achieved, e.g., by running the protocol λ times in parallel and accepting if
and only if at least λ(1 − α)/2 transcripts were valid, if there exists a constant c such
that (1− α)/2 > 1/|C|+ c .

Some of the Σ′-protocols presented in this paper will further satisfy the following
useful properties:

– Quasi-unique responses: No PPT adversary A can output (y, t, c, s, s′) with s �= s′

such that V(y, t, c, s) = V(y, t, c, s′) = accept.
– High-entropy commitments: For all (y, w) ∈ R and for all t, the probability that an

honestly generated commitment by P takes on the value t is negligible.

3 Proving Knowledge of Ring-LWE Secrets

In the following we show how to efficiently prove knowledge of short 2s, 2e such that
2y = 2as + 2e. This basic protocol can easily be adapted for proving more complex

Better Zero-Knowledge Proofs for Lattice Encryption 559

relations including more than one public image or more than two secret witnesses. Be-
fore presenting the protocol, we prove a technical lemma that is at the heart of the
knowledge extractor thereof.

3.1 A Technical Lemma
The following lemma guarantees that certain binomials in Z[X]/(Xn + 1) can be in-
verted, and their inverses have only small coefficients.

Lemma 3.1. Let n be a power of 2 and let 0 < i, j < 2n−1. Then 2(X i−Xj)−1 mod
(Xn + 1) only has coefficients in {−1, 0, 1}.

Proof. Without loss of generality, assume that j > i. Using that Xn = −1 mod (Xn+
1), we have that 2(X i −Xj)−1 = −2Xn−i(1 −Xj−i)−1. It is therefore sufficient to
prove the claim for i = 0 only.

Now remark that, for every k ≥ 1 it holds that: (1 − Xj)(1 + Xj + X2j + . . . +
X(k−1)j) = 1−Xkj .

Let us write j = 2j
′
j′′, with j′′ a positive odd integer and 0 ≤ j′ ≤ log2(n), and let

us choose k = 2log2(n)−j′ (recall that n is a power of 2). We then have jk = nj′′, and
Xkj = (−1)j′′ = −1 mod (Xn + 1), hence 1−Xkj = 2 mod (Xn + 1). Therefore,
we have

2(1−Xj)−1 = 1 +Xj +X2j + . . .+X(k−1)j mod (Xn + 1)

= 1±Xj mod n ±X2j mod n ± . . .±X(k−1)j mod n mod (Xn + 1) .

Finally, in this equation, no two exponents are equal, since otherwise that would mean
that n divides jk′ with 1 ≤ k′ < k, which is impossible by definition of k. �

3.2 The Protocol
We next present our basic protocol. Let therefore be y = as+e, where the LWE-secrets
s, e←$ Dα are chosen from a discrete Gaussian distribution with standard deviation α.
Protocol 3.2 now allows a prover to convince a verifier that it knows s′ and e′ such that
2y = 2as′+2e′ with 2s′ and 2e′ being short (after reduction modulo q), i.e., the verifier
is ensured that the prover knows short secrets for twice the public input. Here, by short
we mean the following: An honest prover will always be able to convince the verifier
whenever ‖s‖ , ‖e‖ ≤ Õ(

√
nα), which is the case with overwhelming probability if

they were generated honestly. On the other hand, the verifier is guaranteed that the
prover knows LWE-secrets with norm at most Õ(n2α). This soundness gap on the size
of the witnesses is akin to those in, e.g., [1, 16].

To be able to simulate aborts when proving the zero-knowledge property of the pro-
tocol, we must not send the prover’s first message in the plain, but commit to it and
later open it in the last round of the Σ′-protocol. We therefore make use of an auxiliary
commitment scheme (aCSetup, aCommit, aCOpen), and assume that honestly gener-
ated commitment parameters are given as common input to both parties. We do not
make any assumptions on the auxiliary commitment scheme. However, if it is computa-
tionally binding, the resulting protocol is only sound under the respective assumption,

560 F. Benhamouda et al.

Prover Verifier

rs, re ←$ DÕ(
√

nα)

t = ars + re
(caux, daux) = aCommit(t) caux �

c ←$ C = {0, . . . , 2n− 1}c�
ss = rs +Xcs
se = re +Xce

accept with probability
DÕ(

√
2nα)

((se,ss))

MD
(Xce,Xcs),Õ(

√
2nα)

((se,ss))

t, daux, (ss, se)� Xcy + t
?
= ass + se

aCOpen(t, caux, daux)
?
= accept

‖ss‖ , ‖se‖ ≤ Õ(nα)

Protocol 3.2. Proof of knowledge of LWE-secrets s, e such that y = as+ e

and similarly if it is computationally hiding. For simplicity, the reader may just think of
the scheme as a random oracle.

Theorem 3.3. Protocol 3.2 is an HVZK Σ′-protocol for the following relations:

R = {((a, y), (s, e)) : y = as+ e ∧ ‖s‖ , ‖e‖ ≤ Õ(
√
nα)}

R′ = {((a, y), (s, e)) : 2y = 2as+ 2e ∧ ‖2s‖ , ‖2e‖ ≤ Õ(n2α)}

where 2s and 2e are reduced modulo q. The protocol has a knowledge error of 1/(2n),
a completeness error of 1− 1/M , and high-entropy commitments.

We remark that in Protocol 3.2, the rejection sampling is applied on the whole vector
(se, ss) instead of applying it twice on se and on ss. This yields better parameters (M
or the “σ = Õ(T)” in Theorem 2.4) by a factor of about

√
2, because of the use of the

Euclidean norm.

Proof. We need to prove the properties from definition 2.5.
Completeness. First note that by theorem 2.4, the prover will respond with probability
1/M . If the prover does not abort, we have that:

ass + se = a(rs +Xcs) + (re +Xce) = Xc(as+ e) + (ars + re) = Xcy + t .

For the norms we have that ‖ss‖ ≤ ‖rs‖ + ‖s‖ ≤ Õ(nα) with overwhelming proba-
bility, as the standard deviations of rs is Õ(

√
nα), and similarly for se.

Honest-verifier zero-knowledge. Given a challenge value c, the simulator outputs the tu-
ple (aCommit(0), c,⊥) with probability 1−1/M . With probability 1/M , the simulator
S proceeds as follows: It chooses ss, se ←$ DÕ(

√
nα), and computes t = ass + se −

Xcy, and (caux, daux)←$ aCommit(t). Finally, S outputs (caux, c, (t, daux, (ss, se))).
It follows from theorem 2.4 that if no abort occurs the distribution of se, ss does not

depend on s, e, and thus simulated and real protocol transcripts are indistinguishable.

Better Zero-Knowledge Proofs for Lattice Encryption 561

In case that an abort occurs, the indistinguishability follows from the hiding property of
aCommit and the fact that aborts are equally likely for every c.

Special soundness. Assume that we are given (caux, c
′, (t′, d′aux, (s

′
s, s

′
e))) and (caux, c

′′,
(t′′, d′′aux, (s

′′
s , s

′′
e))) passing the checks performed by the verifier. From the binding

property of the auxiliary commitment scheme we get that t′ = t′′ =: t. Now, by
subtracting the verification equations we get: (Xc′−Xc′′)y = a(s′s−s′′s)+(s′e−s′′e) .
Multiplying by 2(Xc′ −Xc′′)−1 yields:

2y = a
2(s′s − s′′s)

Xc′ −Xc′′ +
2(s′e − s′′e)

Xc′ −Xc′′ =: 2aŝ+ 2ê .

Furthermore, we get that ‖2ŝ‖ ≤ ‖s′e − s′′e‖
√
n
∥∥∥ 2
Xc′−Xc′′

∥∥∥ ≤ Õ(n2α), where in the

second inequality we used lemma 3.1, and similarly for ê.

High-entropy commitments. This directly follows from the security of the auxiliary
commitment scheme. �

By section 2.5, both the completeness and the knowledge error can be made negligible
if n > M2.

4 Proving Equality among Classical and Lattice-Based Primitives

In the following we show how our basic protocol from section 3 can be used to link
number-theory and lattice-based primitives via zero-knowledge proofs of knowledge.
We exemplify this by showing how to prove that the messages contained in Pedersen
commitments correspond to the plaintext in an encryption under the secure version
of NTRU. We want to stress that in particular the choice of the encryption scheme
is arbitrary, and it is easy to exchange it against other schemes, including standard
NTRU [24] or Ring-LWE encryption [30].

Let y = hs+ pe+m ∈ Rq be the NTRU encryption of a message m ∈ {0, 1}n, and
let p > 2n2 be coprime with q. Let further g̃, h̃ be a Pedersen commitment parameters,
cf. section 2.2, and let c̃mt i = mig̃ + rih̃ for i = 0, . . . , n − 1 be commitments to
coefficients of m, where the order of g̃ and h̃ is q̃ > 2n2.

Then Protocol 4.1 can be used to prove, in zero-knowledge, that the commitments
and the ciphertext are broadly well-formed and consistent, i.e., contain the same mes-
sage. More precisely, the protocol guarantees the verifier that the prover knows the
plaintext encrypted in 2y, and that the coefficients of the respective message are all
smaller than p. Furthermore, it shows that the messages are the same that are contained
in 2c̃mt i, i.e., 2y and the 2c̃mt i are consistent.

562 F. Benhamouda et al.

Prover Verifier

rs, re ←$ DÕ(
√

nα)

rm ←$ DÕ(
√

n)

rr,i ←$ Zq̃ for i = 0, . . . , n− 1
t = hrs + pre + rm
t̃i = rm,ig̃ + rr,ih̃ for i = 0, . . . , 2n− 1
(caux, daux) = aCommit(t, (t̃i)

n−1
i=0)

caux �
c ←$ C = {0, . . . , 2n− 1}c�

ss = rs +Xcs
se = re +Xce
sm = rm +Xcm
sr = rr + (r0, . . . , rn−1)�c

accept with probability
DÕ(

√
3nα)

((se,ss,sm))

MD
(Xce,Xcs,Xcm),Õ(

√
3nα)

(se,ss,sm)

(t, (t̃i)
n−1
i=0), daux,�

(ss, se, sm, sr) Xcy + t
?
= hss + pse + sm

(c̃mt0, . . . , c̃mtn−1)�c + (t̃0, . . . , t̃n−1)
?
= smg̃ + srh̃

aCOpen((t, t̃0, . . . , t̃n−1), caux, daux)
?
= accept

‖ss‖, ‖se‖ ≤ Õ(nα)
‖sm‖ ≤ Õ(n)

Protocol 4.1. Proof that Pedersen commitments and NTRU encryption contain the same Plain
Text

Theorem 4.2. Protocol 4.1 is an HVZK Σ′-protocol for the following relations:

R =

{
((g̃, h̃, (c̃mt i)

n−1
i=0 , h, p, y), (m, s, e, (ri)

n−1
i=0)) : y = hs+ pe+m

∧
n−1∧
i=0

c̃mt i = mig̃ + rih̃ ∧ ‖m‖∞ ≤ 1 ∧ ‖s‖ , ‖e‖ ≤ Õ(
√
nα)

}
,

R′ =

{
((g̃, h̃, (c̃mt i)

n−1
i=0 , h, p, y), (m, s, e, (ri)

n−1
i=0)) : 2y = 2hs+ 2pe+ 2m

∧
n−1∧
i=0

2c̃mt i = (2m mod q)ig̃ + 2rih̃

∧ ‖2m‖∞ ≤ 2n2 ∧ ‖2s‖ , ‖2e‖ ≤ Õ(n2α)

}
.

where (2m mod q)i is the i-coefficient of 2m ∈ Rq . The protocol has a knowledge
error of 1/(2n), and a completeness error of 1− 1/M .

Furthermore, if for the auxiliary commitment scheme a commitment does not only
bind the user to the message, but also to the opening information, the protocol has
quasi-unique responses and high-entropy commitments.

A detailed proof is given in the full version. By the remark in section 2.5, both the
completeness and the knowledge error can be made negligible if n > M .

Better Zero-Knowledge Proofs for Lattice Encryption 563

5 Application to Group Signatures

We next show how Protocol 4.1 can be used to construct a group signature scheme
with signature size logarithmic in the number of group members. The scheme is private
under lattice assumptions, but traceable/unforgeable under non-lattice assumptions. As
argued in the introduction, this may be realistic in applications where privacy needs to
be guaranteed on the long term. For example, if group signatures are used to sign votes
in electronic elections, unforgeability is mainly important when the votes are counted,
but privacy needs to be preserved long after that.

Before presenting the actual signature scheme, we will prove secure a variation of a
generic construction that we believe is folklore, as it underlies several direct schemes in
the literature [3, 8] and was explicitly described by Chase and Lysyanskaya [11]. The
resulting construction satisfies the following definition of group signatures providing
full (CCA) anonymity put forth by Bellare et al. [5].

Definition 5.1. A group signature scheme is a tuple (GKG,GSign,GVerify,GOpen)
where:

– On input 1λ, 1N , the key generation algorithm GKG outputs a group public key
gpk , an opening key gok , and a vector of N signing keys gsk where gsk[i] is given
to user i ∈ {1, . . . ,N }.

– On input gsk = gsk[i] and message m ∈M, the signing algorithm GSign outputs
a group signature σ.

– On input gpk ,m, σ, the verification algorithm GVerify outputs accept or reject.
– On input gok ,m, σ, the opening algorithm GOpen outputs the identity of the pur-

ported signer i ∈ {1, . . . ,N } or ⊥ to indicate failure.

The algorithms satisfy the following properties:

– Correctness: Verification accepts whenever keys and signatures are honestly gen-
erated, i.e., for all λ,N ∈ N, all i ∈ {1, . . . ,N }, and all m ∈ M

Pr

[
GVerify(gpk ,m, σ) = accept :

(gpk , gok ,gsk)←$ GKG(1λ, 1N), σ ←$ GSign(gsk[i],m)

]
= 1 .

– Anonymity: One cannot tell which signer generated a particular signature, even
when given access to an opening oracle. Referring to Figure 1, for all PPT A there
exists a negligible function negl such that∣∣Pr[Expanon−0

A (λ) = 1]− Pr[Expanon−1
A (λ) = 1]

∣∣ ≤ negl(λ) .

– Traceability: One cannot generate a signature that cannot be opened or that opens
to an honest user. Referring to Figure 1, for all PPT A there exists a negligible
function negl such that

Pr[Exptrace
A (λ)] ≤ negl(λ) .

564 F. Benhamouda et al.

Experiment Expanon−b
A (λ):

(gpk , gok ,gsk)←$ GKG(1λ, 1N)
(st , i∗0 , i

∗
1 ,m

∗)←$

AGOpen(gok ,·,·)((gpk ,gsk), ε)
σ∗ ←$ GSign(gsk[ib],m

∗)
b′ ←$ AGOpen(gok ,·,·)(σ∗, st)
If (m∗, σ∗) �∈ QGOpen

then return b′ else return 0

Experiment Exptrace
A (λ):

(gpk , gok ,gsk)←$ GKG(1λ, 1N)
(m, σ)←$

AGSign(gsk[·],·),gsk[·](gpk , gok)
i ←$ GOpen(gok ,m, σ)
If GVerify(gpk ,m, σ) = 1 ∧ i �∈ Qgsk

∧ (i ,m) �∈ QGSign

then return 1 else return 0

Fig. 1. The anonymity (left) and traceability (right) experiments for group signatures. The sets
QGOpen,QGSign,Qgsk contain all queries (m, σ), (i ,m), and i that A submitted to its GOpen,
GSign, and gsk oracles, respectively.

5.1 Building Blocks
The construction is based on weakly unforgeable standard signatures, and signature
proofs of knowledge. In the following, we recap the respective definitions.

Informally, a signature scheme is a triple (SKG, SSign, SVerify), where SKG gener-
ates a signing/verification key pair (ssk , spk), SSign can be used to sign a message m
using the signing key, and SVerify can be used to check the validity of a signature only
using the public verification key. It should hold that honestly computed signatures are
always valid, and that no adversary can come up with a valid signature on a new mes-
sage after having received signatures on messages that he chose before obtaining spk .
A formal definition can be found in the full version.

Concerning signature proofs of knowledge, we adapt the definitions of Chase and
Lysyanskaya [11] to allow for signatures in the random-oracle model (ROM) that are
simulated by programming the random oracle H and extracted through rewinding. We
also generalize the definition to allow for a soundness gap: signing is performed using
a witness from R for a language L, while extraction only guarantees that the signer
knows a witness from R′ ⊇ R for relation L′. Finally, we add a definition of simu-
lation soundness, meaning that an adversary cannot produce new signatures for false
statements even after seeing simulated signatures on arbitrary statements.

Definition 5.2. A signature of knowledge scheme for languages L,L′ with respective
witness relations R,R′ is a tuple (SoKSetup, SoKSign, SoKVerify, SoKSim) where:

– On input 1λ, the setup algorithm SoKSetup outputs common parameters sokp.
– On input sokp, x, w such that (x,w) ∈ R and message m ∈ M, the signing

algorithm SoKSign outputs a signature of knowledge sok .
– On input sokp, x,m, sok , the verification algorithm SoKVerify outputs accept or
reject.

– The stateful simulation algorithm SoKSim can be called in three modes. When
called as (sokp, st) ←$ SoKSim(setup, 1λ, ε), it produces simulated parameters
sokp, possibly keeping a trapdoor in its internal state st . When run as (h, st ′) ←$

SoKSim(ro, Q, st), it produces a response h for a random oracle query Q. When
run as (sok , st ′) ←$ SoKSim(sign, x,m, st), it produces a simulated signature of
knowledge sok without using a witness.

Better Zero-Knowledge Proofs for Lattice Encryption 565

For ease of notation, let StpSim(1λ) be the algorithm that returns the first part of
SoKSim(setup, 1λ, st), let ROSim(Q) be the algorithm that returns the first part
of SoKSim(ro, Q, st), let SSim(x,w,m) be the algorithm that returns the first
part of SoKSim(sign, x,m, st) if (x,w) ∈ R and returns ⊥ otherwise, and let
SSim′(x,m) be the algorithm that returns the first part of SoKSim(sign, x,m, st)
without checking language membership. The experiment keeps a single synchro-
nized state for SoKSim across all invocations of these derived algorithms.

The algorithms satisfy the following properties:

– Correctness: Verification accepts whenever parameters and signatures are cor-
rectly generated, i.e., for all λ ∈ N, all (x,w) ∈ R, and all m ∈ M, there exists a
negligible function negl such that

Pr

[
SoKVerify(sokp, x,m, sok) = reject :

sokp ←$ SoKSetup(1λ), sok ←$ SoKSign(sokp, x, w,m)

]
≤ negl(λ) .

– Simulatability: No adversary can distinguish whether it is interacting with a real
random oracle and signing oracle, or with their simulated versions. Formally, for
all PPT A there exists a negligible function negl such that

∣∣∣Pr[b = 1 : sokp ←$ SoKSetup(1λ), b←$ AH(·),SoKSign(sokp,·,·,·)(sokp)]

−Pr[b = 1 : sokp ←$ StpSim(1λ), b←$ AROSim(·),SSim(·,·,·)(sokp)]
∣∣∣ ≤ negl(λ) .

– Extractability: The only way to produce a valid signature of knowledge is by know-
ing a witness from R′. Formally, for all PPT A there exists an extractor SoKExtA
and a negligible function negl such that

Pr

⎡⎢⎢⎢⎢⎣
SoKVerify(sokp, x,m, sok) = accept

∧(x,w,m) �∈ Q ∧ (x,w) �∈ R′ :
sokp ←$ StpSim(1λ; ρS),

(x,m, sok)←$ AROSim(·),SSim(·,·,·)(sokp; ρA),
w ←$ SoKExtA(sokp, x,m, sok , ρS, ρA)

⎤⎥⎥⎥⎥⎦ ≤ negl(λ) ,

where Q is the set of queries (x,w,m) that A submitted to its SSim oracle.
– Simulation-soundness: No adversary can produce a new signature on a false state-

ment for L′, even after seeing a signature on an arbitrary statement. Formally, for
all PPT A there exists a negligible function negl such that

Pr

⎡⎢⎢⎣
SoKVerify(sokp, x,m, sok) = accept

∧ (x′,m ′, sok ′) �= (x,m, sok) ∧ x �∈ L′ :

sokp ←$ StpSim(1λ), (x,m, st)←$ AROSim(·)(sokp),
sok ←$ SSim′(x,m), (x′,m ′, sok ′)←$ AROSim(·)(sok , st)

⎤⎥⎥⎦ ≤ negl(λ) .

566 F. Benhamouda et al.

5.2 Generic Construction

A folklore construction of group signatures is to have a user’s signing key be a standard
signature on his identity i , and to have a group signature on message m be an encryption
of his identity together with a signature of knowledge on m that the encrypted identity
is equal to the identity in his signing key. The construction appeared implicitly [3, 8] or
explicitly [11] in the literature, but was never proved secure.

To obtain full anonymity, this generic construction would probably require CCA se-
curity from encryption scheme, but our NTRU variant is only semantically secure. We
could apply a generic CCA-yielding transformation using random oracles or
non-interactive zero-knowledge proofs of knowledge (NIZK), but this would make the
signature of knowledge hopelessly inefficient. Instead, we take inspiration from the
Naor-Yung construction [31, 33] by using a semantically secure scheme to encrypt
the user’s identity twice under two different public keys and letting the signature of
knowledge prove that both ciphertexts encrypt the same plaintext. Moreover, our proof
systems have a soundness gap: the adversary for the soundness game may use more
noise in the ciphertexts than what the encryption algorithm Enc does, and may also en-
crypt plaintexts outside {0, 1}n. We therefore give a generic construction that deviates
slightly from the general idea, but that is sufficient and that we can efficiently instantiate
with our protocol from section 3.

Let (EncKG,Enc,Dec) be an encryption scheme with message space ID, let ID′ ⊇
ID, and let Enc′ be an algorithm such that for all key pairs (epk , esk)←$ EncKG(1λ),
for all i ∈ ID and for all random tapes1 ρ, ρ′ and all i ∈ ID, i ′ ∈ ID′:

Enc(epk , i ; ρ) = Enc′(epk , i ; ρ) and Dec(esk ,Enc′(epk , i ′; ρ′)) = i ′ .

The algorithm Enc′ represents the way the adversary can generate the ciphertexts and
still prove them valid. The above property ensures that completeness holds perfectly
even with Enc′. The IND-CPA property still has to hold with Enc.

For our instantiation with the NTRU encryption scheme from Theorem 4.2, ID =
{0, 1}� which is identified with {0, . . . , 2� − 1} (with � ≤ n, q̃), ID′ = Zq̃ and ρ =
(s, e). The algorithm Enc′((h, p), i ′; ρ′) with i ′ ∈ ID′ checks that either ρ′ is a triple
(s, e, i ′′), or i ′ ∈ ID and ρ′ is a pair of vectors (s, e). In the latter case, i ′′ is just the
binary vector in {0, 1}� corresponding to i ′. In both cases, s and e must be such that
‖2s‖ , ‖2e‖ ≤ Õ(n2α), i ′′ ∈ Rq , 2i ′ =

∑n−1
j=0 2j(2i ′′ mod q)j mod q̃, and ‖i ′′‖∞ ≤

2n2 < p, q̃. If all these requirements are met, Enc′ outputs y ← hs+pe+i′. We need to
slightly change the algorithms EncKG and Enc to truncate the distribution of g, s and e,
to ensure that ‖s‖ , ‖e‖ ≤ Õ(

√
nα) and ‖g‖ is small enough for the decryption below.

We also change the algorithm Dec: to decrypt C = y with secret key f , it computes
y′ = 2fy ∈ Rq , and outputs i ′ = (

∑n−1
j=0 2j(y′ mod p)j)/2 mod q̃. In other words,

it decrypts 2C = 2y into y′ mod p, and then recover the corresponding identity in
ID′ = Zq̃ . This does not touch security.

1 To simplify notation in this section, we assume that the random tapes ρ, ρ′ are not necessarily
a uniform binary bitstrings as usual. Rather, we see ρ as the list of random values that Enc
directly derives from the random tape, while ρ′ can be seen as an auxiliary adversarial input to
the Enc′ algorithm.

Better Zero-Knowledge Proofs for Lattice Encryption 567

Let (SKG, SSign, SVerify) be a signature scheme and let (SoKSetup, SoKSign,
SoKVerify, SoKSim) be a signature of knowledge scheme for the languages L,L′ with
witness relationships

R = {((spk , epk1, epk2, C1, C2), (i , sig , ρ1, ρ2)) : SVerify(spk , i , sig) = accept

∧ C1 = Enc(epk1, i ; ρ1) ∧ C2 = Enc(epk2, i ; ρ2)} ,
R′ = {((spk , epk1, epk2, C1, C2), (i

′, sig , ρ′1, ρ
′
2)) : SVerify(spk , i ′, sig)= accept

∧C1 =Enc′(epk1, i
′; ρ′1)∧C2 =Enc′(epk2, i

′; ρ′2)}.

Consider the following group signature scheme with user identities i ∈ ID:

– GKG(1λ, 1N): The group manager generates signing keys (spk , ssk)←$ SKG(1λ),
encryption keys (epk1, esk1) ←$ EncKG(1λ), (epk2, esk2) ←$ EncKG(1λ), and
parameters sokp ←$ SoKSetup(1λ). He computes gsk[i] ←$ SSign(ssk , i) for i ∈
ID and outputs gpk = (spk , epk1, epk2, sokp), gok = (gpk , esk1), and gsk.

– GSign(gsk ,m): Signer i computes two ciphertexts C1 ← Enc(epk1, i ; ρ1) and
C2 ← Enc(epk2, i ; ρ2), computes a signature of knowledge sok ←$ SoKSign(
sokp, (spk , epk1, epk2, C1, C2), (i , sig , ρ1, ρ2),m) and outputs the group signa-
ture σ = (C1, C2, sok).

– GVerify(gpk ,m, σ): To verify a group signature, one checks that SoKVerify(sokp,
(spk , epk1, epk2, C1, C2),m, sok) = accept.

– GOpen(gok ,m, σ): The opener checks that GVerify(gpk ,m, σ) = accept, and
returns i ← Dec(esk1, C1).

Theorem 5.3. The group signature scheme sketched above is anonymous in the ROM
if the encryption scheme is semantically secure and the signature of knowledge scheme
is simulatable and simulation-sound.

Theorem 5.4. The group signature scheme is traceable in the ROM if the underlying
signature scheme is weakly unforgeable and the signature of knowledge scheme is sim-
ulatable and extractable.

The proofs of the last two theorems are omitted here and are given in the full version.

5.3 Signatures of Knowledge from Σ′-Protocols
We now show a construction of the required signatures of knowledge in the random-
oracle model from a signature scheme and an encryption scheme with Σ′-protocol
proofs. More particularly, we require that for the signature scheme one can prove knowl-
edge of a signature on a committed message, while for the encryption scheme one can
prove that an encrypted plaintext is equal to a committed message.

Let (CSetup,Commit,COpen) be a commitment scheme, let (EncKG,Enc,Dec) be
an encryption scheme with message space M and let Enc′ be an associated algorithm
as described earlier. Let (Ps,Vs, Ss) be a Σ-protocol for the language Ls with

Rs = {((spk , cpars , cmt), (sig ,m, o)) :

SVerify(spk ,m, sig) = accept ∧ COpen(cpars ,m, cmt , o) = accept} .

568 F. Benhamouda et al.

Let also (Pe,Ve, Se) be a Σ′-protocol for the languages Le,L′
e with

Re = {((epk , C, cpars , cmt), (m, ρ, o)) :

C = Enc(epk ,m; ρ) ∧ COpen(cpars ,m, cmt , o) = accept} ,
R′

e = {((epk , C, cpars , cmt), (m, ρ′, o)) :

C = Enc′(epk ,m; ρ′) ∧ COpen(cpars ,m, cmt , o) = accept} .

Let Cs and Ce be the challenge spaces for these respective protocols, and let H :
{0, 1}∗ → Cs × Ce. Consider the following construction of a signature of knowledge
scheme for the languages L and L′:

– SoKSetup(1λ): Return sokp = cpars ←$ CSetup(1λ).
– SoKSign(sokp, x, w,m): Create a commitment (cmt , o) ←$ Commit(cpars ,m).

Compute the first round of the Σ′-protocols for a signature and two encryptions
(ts, st s) ←$ Ps((spk , cpars , cmt), (sig ,m, o)) and (tj , stj) ←$ Pe((epk j , Cj ,
cpars , cmt), (m, ρj , o)) for j = 1, 2. Generate the challenges (cs, ce) ← H(spk ,
cpars , cmt , epk1, C1, epk2, C2, ts, t1, t2,m). Compute responses ss ← Ps(cs,
sts) and sj ← Pe(ce, stj) for j = 1, 2 and output the signature of knowledge
sok = (ts, t1, t2, ss, s1, s2).

– SoKVerify(sokp, x,m, sok): Recompute the challenges (cs, ce)← H(spk , cpars ,
cmt , epk1, C1, epk2, C2, ts, t1, t2,m). Return accept if Vs((spk , cpars , cmt),
ts, cs, ss) = accept and Ve((epk j , Cj , cpars , cmt), tj , ce, sj) = accept for
j = 1, 2. Otherwise, return reject.

– SoKSim: The simulation algorithm keeps in its state its random tape, an initially
empty table HT to keep track of previous random-oracle queries, and a counter ctr
initialized to zero. The simulator’s random tape ρ includes random-oracle responses
h1, . . . , hqH+qS ←$ Cs × Ce, where qH and qS are upper bounds on the number of
random-oracle and signing queries that an adversary can make. When called as
SoKSim(setup, 1λ, ε), it generates commitment parameters cpars ←$ CSetup(1λ)
and returns (cpars , st = (ρ,HT , ctr , cpars)). When run as SoKSim(ro, Q, st),
it checks whether the query Q was made before. If so, it returns hHT [q]. Other-
wise, it increases the counter ctr , sets HT [Q] ← ctr , and returns hctr . When
run as SoKSim(sign, (spk , epk1, epk2, C1, C2),m, st), the simulator first creates
a commitment (cmt , o) ←$ Commit(1, cpars). It then increases the counter ctr
and parses hctr as (cs, ce). It runs the simulators Ss, Se to obtain simulated proto-
col transcripts (ts, ss) ←$ Ss((spk , cpars , cmt), cs) and (tj , sj) ←$ Ss((epk j , Cj ,
cpars , cmt), ce) for j = 1, 2. If HT [spk , cpars , cmt , epk1, C1, epk2, C2, ts, t1,
t2,m] is not defined, then set it to hctr , else abort.

Theorem 5.5. The above scheme is correct if the proof systems (Ps,Vs) and (Pe,Ve)
have negligible completeness error.

Theorem 5.6. The above scheme is simulatable in the random-oracle model if the com-
mitment scheme is hiding and the proof systems (Ps,Vs) and (Pe,Ve) are special HVZK
and have high-entropy commitments.

Better Zero-Knowledge Proofs for Lattice Encryption 569

Theorem 5.7. The above scheme is extractable in the random-oracle model if the com-
mitment scheme is binding and the proof systems (Ps,Vs) and (Pe,Ve) are special-
sound and have super-polynomial challenge spaces and negligible knowledge error.

Theorem 5.8. The above scheme is simulation-sound if the underlying commitment
scheme is binding and the underlying Σ′-protocols (Ps,Vs, Ss) and (Pe,Ve, Se) are
special-sound, have quasi-unique responses, super-polynomial challenge spaces, and
negligible knowledge error.

Due to length limitations, the proofs of the previous theorems can be found in the full
version.

5.4 Σ′-Protocols for Boneh-Boyen Signatures and the Group Signature Scheme
In the following we briefly recap the weakly unforgeable version of the Boneh-Boyen
signature scheme [6, 7]. We assume that the reader is familiar with bilinear pairings
and the strong Diffie-Hellman (SDH) assumption.The Boneh-Boyen signature scheme
is defined as follows for a bilinear group generator BGGen:

SKG. This algorithm first computes (q̃,G1,G2,GT , e) ←$ BGGen(1λ). It chooses
g̃1 ←$ G×

1 , g̃2 ←$ G×
2 , x ←$ Z×

q̃ , and defines ṽ = xg̃2 and z̃ = e(g̃1, g̃2). It
outputs spk = ((q̃,G1,G2,GT , e), g̃1, g̃2, ṽ, z̃) and ssk = x.

SSign. To sign a message m ∈ Zq̃ \ {−ssk} with secret key ssk = x, this algorithm
outputs the signature s̃ig = 1

x+m g̃1 if x+m �= 0, and 0 otherwise.

SVerify. Given a signature public key spk , a message m ∈ Zq̃ and a signature s̃ig , this
algorithm outputs accept if ṽ+mg̃2 = 0 in case s̃ig = 0, and if e(s̃ig , ṽ+mg̃2) =

z̃ in case s̃ig �= 0. In all other cases, it outputs reject.

Lemma 5.9. If the SDH assumption holds for BGGen, then the above scheme is a
weakly unforgeable signature scheme.

We next show how a user can prove possession of a Boneh-Boyen signature on a
message m, while keeping both, the message and the signature, private. In addition, the
proof will additionally show that the m is also contained in a set of Pedersen commit-
ments c̃mt i = mig̃ + rih̃ such that m =

∑n−1
i=0 2imi, cf. section 2.2.

The idea underlying Protocol 5.10 is similar to that in Camenisch et al. [9]: The
prover first re-randomizes the signature to obtain a value s, which it sends to the verifier.
Subsequently, the prover and the verifier run a standard Schnorr proof for the resulting
statement.

Theorem 5.11. Protocol 5.10 is a perfectly HVZK Σ-proof of knowledge for the fol-
lowing relation:

R =

{
((spk , (c̃mt i)

n−1
i=0), (s̃ig ,m, r, (mi, ri)

n−1
i=0)) : m =

n−1∑
i=0

2imi ∧

c̃mt i = mig̃ + rih̃ ∧ SVerify(spk ,m, s̃ig) = accept

}
.

570 F. Benhamouda et al.

Prover Verifier

if s̃ig �= 0, then d ←$ Z
×
q̃ and s̃ = ds̃ig

otherwise, d = 0 and s̃ ←$ G×

rd, rm,i, rr,i ←$ Zq̃

t̃i = rm,ig̃ + rr,ih̃ for i = 0, . . . , n− 1
t̃ = rdz̃ − (

∑n−1
i=0 2irm,i) · e(s̃, g̃2) s̃, t̃, (t̃i)

n−1
i=0 �

c ←$ Zq̃c�
sd = rd + cd
sm,i = rm,i + cmi for i = 0, . . . , n− 1
sr,i = rr,i + cri for i = 0, . . . , n− 1

sd, (sm,i, sr,i)
n−1
i=0 � s̃ � ?

= 0

t̃+ ce(s̃, ṽ)
?
= sdz̃ − (

∑n−1
i=0 2ism,i) · e(s̃, g̃2)

t̃i + cc̃mt i
?
= sm,ig̃ + sr,ih̃

Protocol 5.10. Proof of possession of a signature on m, which is also contained in a set of
Pedersen commitments

The protocol is perfectly complete, and has a knowledge error of 1/q̃. Furthermore, the
protocol has quasi unique responses (under the discrete logarithm assumption in G)
and high-entropy commitments.

The proof of this theorem is straightforward and can be found in the full version.

The Group Signature Scheme. Combining Protocols 4.1 and 5.10 now directly gives a
group signature by the construction from section 5.3. The ID is given by {0, 1}� (which
can be identified with {0, . . . , 2� − 1}), where � ≤ n and n/q̃ is negligible,n is the
dimension of the ring being used, and q̃ is the order of the groups of the commitment-
and the signature schemes. The condition n/q̃ is just to ensure that with overwhelming
probability, ssk /∈ ID, so that all signatures of an identity i ∈ ID is non-zero and
can be used as a witness in Protocol 5.10. The commitment (CSetup,Commit,COpen)
scheme from section 5.3, corresponds to the bit-by-bit Pedersen commitments c̃mt i.

References
1. Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V., Wichs, D.: Multiparty

computation with low communication, computation and interaction via threshold FHE. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 483–501.
Springer, Heidelberg (2012)

2. Asokan, N., Shoup, V., Waidner, M.: Optimistic fair exchange of digital signatures. In:
Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 591–606. Springer, Heidelberg
(1998)

3. Ateniese, G., Camenisch, J., Joye, M., Tsudik, G.: A practical and provably secure
coalition-resistant group signature scheme. In: Bellare, M. (ed.) CRYPTO 2000. LNCS,
vol. 1880, pp. 255–270. Springer, Heidelberg (2000)

4. Bellare, M., Goldreich, O.: On defining proofs of knowledge. In: Brickell, E.F. (ed.)
CRYPTO 1992. LNCS, vol. 740, pp. 390–420. Springer, Heidelberg (1993)

5. Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: Formal defini-
tions, simplified requirements, and a construction based on general assumptions. In: Biham,
E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–629. Springer, Heidelberg (2003)

Better Zero-Knowledge Proofs for Lattice Encryption 571

6. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C., Camenisch,
J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer, Heidelberg (2004)

7. Boneh, D., Boyen, X.: Short signatures without random oracles and the SDH assumption
in bilinear groups. Journal of Cryptology 21(2), 149–177 (2008)

8. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.) CRYPTO
2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

9. Camenisch, J., Dubovitskaya, M., Neven, G.: Oblivious transfer with access control. In:
ACM Conference on Computer and Communications Security, pp. 131–140 (2009)

10. Camenisch, J., Neven, G., Rückert, M.: Fully anonymous attribute tokens from lattices.
In: Visconti, I., De Prisco, R. (eds.) SCN 2012. LNCS, vol. 7485, pp. 57–75. Springer,
Heidelberg (2012)

11. Chase, M., Lysyanskaya, A.: On signatures of knowledge. In: Dwork, C. (ed.) CRYPTO
2006. LNCS, vol. 4117, pp. 78–96. Springer, Heidelberg (2006)

12. Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT 1991.
LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991)

13. Cramer, R.: Modular Design of Secure yet Practical Cryptographic Protocols. Ph.D. thesis,
CWI and University of Amsterdam (1997)

14. Damgård, I.B.: Efficient concurrent zero-knowledge in the auxiliary string model. In: Pre-
neel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 418–430. Springer, Heidelberg
(2000)

15. Damgård, I.: On Σ-Protocols. Lecture on Cryptologic Protocol Theory; Faculty of Science,
University of Aarhus (2010)

16. Damgård, I.B., Fujisaki, E.: A statistically-hiding integer commitment scheme based on
groups with hidden order. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp.
125–142. Springer, Heidelberg (2002)

17. Damgård, I.B., Goldreich, O., Okamoto, T., Wigderson, A.: Honest verifier vs dishonest
verifier in public coin zero-knowledge proofs. In: Coppersmith, D. (ed.) CRYPTO 1995.
LNCS, vol. 963, pp. 325–338. Springer, Heidelberg (1995)

18. Damgård, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from somewhat
homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 643–662. Springer, Heidelberg (2012)

19. Fujisaki, E., Okamoto, T.: Statistical zero knowledge protocols to prove modular poly-
nomial relations. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 16–30.
Springer, Heidelberg (1997)

20. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices. In: Johans-
son, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 1–17. Springer,
Heidelberg (2013)

21. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC, pp. 169–178
(2009)

22. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new crypto-
graphic constructions. In: STOC, pp. 197–206 (2008)

23. Gordon, S.D., Katz, J., Vaikuntanathan, V.: A group signature scheme from lattice assump-
tions. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 395–412. Springer, Hei-
delberg (2010)

24. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: A ring-based public key cryptosystem. In:
Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer, Heidelberg (1998)

25. Laguillaumie, F., Langlois, A., Libert, B., Stehlé, D.: Lattice-based group signatures with
logarithmic signature size. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS,
vol. 8270, pp. 41–61. Springer, Heidelberg (2013)

572 F. Benhamouda et al.

26. Ling, S., Nguyen, K., Stehlé, D., Wang, H.: Improved zero-knowledge proofs of knowledge
for the ISIS problem, and applications. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013.
LNCS, vol. 7778, pp. 107–124. Springer, Heidelberg (2013)

27. Lyubashevsky, V.: Lattice-based identification schemes secure under active attacks. In:
Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 162–179. Springer, Heidelberg (2008)

28. Lyubashevsky, V.: Fiat-shamir with aborts: Applications to lattice and factoring-based sig-
natures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 598–616. Springer,
Heidelberg (2009)

29. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D., Johansson, T.
(eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer, Heidelberg (2012)

30. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over
rings. J. ACM 60(6), 43 (2013), Preliminary version appeared in Gilbert, H. (ed.): EURO-
CRYPT 2010. LNCS, vol. 6110, pp. 1–23. Springer, Heidelberg (2010)

31. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen ciphertext
attacks. In: 22nd ACM STOC. pp. 427–437. ACM Press (May 1990)

32. Pedersen, T.P.: Non-interactive and Information-Theoretic Secure Verifiable Secret Sharing.
In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidel-
berg (1992)

33. Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext
security. In: 40th FOCS, pp. 543–553. IEEE Computer Society Press (October 1999)

34. Santis, A.D., Persiano, G.: Zero-knowledge proofs of knowledge without interaction (ex-
tended abstract). In: 33rd FOCS, pp. 427–436. IEEE Computer Society Press (October)

35. Stehlé, D., Steinfeld, R.: Making NTRU as secure as worst-case problems over ideal lat-
tices. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 27–47. Springer,
Heidelberg (2011)

36. Stehlé, D., Steinfeld, R., Tanaka, K., Xagawa, K.: Efficient public key encryption based
on ideal lattices. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 617–635.
Springer, Heidelberg (2009)

37. Stern, J.: A new identification scheme based on syndrome decoding. In: Stinson, D.R. (ed.)
CRYPTO 1993. LNCS, vol. 773, pp. 13–21. Springer, Heidelberg (1994)

Author Index

Andreeva, Elena I-105
Applebaum, Benny II-162
Aranha, Diego F. I-262

Beläıd, Sonia II-306
Bellare, Mihir II-102
Benhamouda, Fabrice I-551
Bernstein, Daniel J. I-317
Bilgin, Begül II-326
Biryukov, Alex I-63
Bogdanov, Andrey I-105
Boneh, Dan I-42
Bos, Joppe W. I-358
Bouillaguet, Charles I-63
Boura, Christina I-179
Bruneau, Nicolas II-344
Brzuska, Christina II-122, II-142

Camenisch, Jan I-551
Catalano, Dario II-193
Chen, Yu II-366
Chuengsatiansup, Chitchanok I-317
Chung, Kai-Min II-62
Cohen, Ran II-466
Corrigan-Gibbs, Henry I-42
Costello, Craig I-338

Damg̊ard, Ivan II-213
Danezis, George I-532
David, Bernardo II-213
de Portzamparc, Frédéric I-21
Dinur, Itai I-439
Doche, Christophe I-297
Ducas, Léo II-22
Dunjko, Vedran II-406
Dunkelman, Orr I-439

Emami, Sareh I-141

Faugère, Jean-Charles I-21
Fitzsimons, Joseph F. II-406
Fleischhacker, Nils I-512
Forler, Christian II-289
Fouque, Pierre-Alain I-262, I-420,

II-306

Fournet, Cédric I-532
Fuchsbauer, Georg II-82
Fujisaki, Eiichiro II-426

Gérard, Benôıt I-262, I-282, II-306
Giacomelli, Irene II-213
Gierlichs, Benedikt II-326
Gilbert, Henri I-200
Groth, Jens I-532
Guilley, Sylvain II-344
Guo, Jian I-458
Guo, Qian I-1
Guo, Yanfei II-366

Hanser, Christian I-491
Heuser, Annelie II-344
Hirt, Martin II-448
Hisil, Huseyin I-338
Hu, Lei I-158

Jager, Tibor I-512
Jarecki, Stanislaw II-233
Jean, Jérémy I-458, II-274
Johansson, Thomas I-1
Joo, Chihong II-173
Joux, Antoine I-378, I-420
Jovanovic, Philipp I-85
Joye, Marc II-1

Kammerer, Jean-Gabriel I-262
Keller, Marcel II-506
Keller, Nathan I-439
Khovratovich, Dmitry I-63
Khurana, Dakshita II-386
Kiayias, Aggelos II-233
Kleinjung, Thorsten I-358
Kohlweiss, Markulf I-532
Komargodski, Ilan II-254
Konstantinov, Momchil II-82
Krawczyk, Hugo II-233
Krenn, Stephan I-551

Lange, Tanja I-317
Lenstra, Arjen K. I-358
Libert, Benôıt II-1

574 Author Index

Lindell, Yehuda II-466
Ling, San I-141
Liu, Zhenming II-62
Löndahl, Carl I-1
Longo, Jake I-223
Lucks, Stefan II-289
Luykx, Atul I-85, I-105
Lyubashevsky, Vadim I-551, II-22

Ma, Xiaoshuang I-158
Maji, Hemanta K. II-386
Malkin, Tal II-42
Marcedone, Antonio II-193
Martin, Daniel P. I-223
Mather, Luke I-243
Mavromati, Chrysanthi I-420
Mennink, Bart I-85, I-105
Mittelbach, Arno II-122, II-142
Mohassel, Payman II-486
Mouha, Nicky I-105

Nandi, Mridul I-126, I-478
Naor, Moni II-254
Naya-Plasencia, Maŕıa I-179
Neven, Gregory I-551
Nielsen, Jesper Buus II-213
Nikolić, Ivica I-141, I-458, II-274
Nikov, Ventzislav II-326
Nikova, Svetla II-326

Oswald, Elisabeth I-223, I-243

Page, Daniel I-223
Pass, Rafael II-62
Paterson, Kenneth G. I-398
Perret, Ludovic I-21
Peters, Thomas II-1
Peyrin, Thomas II-274
Pieprzyk, Josef I-141
Pierrot, Cécile I-378
Pietrzak, Krzysztof II-82
Poettering, Bertram I-398
Portmann, Christopher II-406
Prest, Thomas II-22
Puglisi, Orazio II-193

Qiao, Kexin I-158

Rao, Vanishree II-82
Raykov, Pavel II-448
Renner, Renato II-406
Rijmen, Vincent II-326
Rioul, Olivier II-344

Sadeghian, Saeed II-486
Sahai, Amit II-386
Sasaki, Yu I-458
Scholl, Peter II-506
Schröder, Dominique I-512
Schuldt, Jacob C.N. I-398
Schwabe, Peter I-317
Shamir, Adi I-439
Slamanig, Daniel I-491
Smart, Nigel P. II-486
Song, Ling I-158
Stam, Martijin I-223
Standaert, François-Xavier I-282
Stepanovs, Igors II-102
Suder, Valentin I-179
Sun, Siwei I-158

Teranishi, Isamu II-42
Tessaro, Stefano II-102
Tibouchi, Mehdi I-262
Tunstall, Michael J. I-223

Veyrat-Charvillon, Nicolas I-282

Wang, Huaxiong I-141
Wang, Peng I-158
Wenzel, Jakob II-289
Whitnall, Carolyn I-243

Yasuda, Kan I-105
Yogev, Eylon II-254
Yun, Aaram II-173
Yung, Moti II-1, II-42

Zapalowicz, Jean-Christophe I-262
Zhang, Jiang II-366
Zhang, Zhenfeng II-366
Zhang, Zongyang II-366

	Preface
	The 20th Annual International Conference on
	Theory and Application of Cryptology and
	Information Security
	Table of Contents – Part I
	Cryptology and Coding Theory
	Solving LPN Using Covering Codes
	1 Introduction
	2 The LPN Problem
	2.1 Piling-up Lemma

	3 The BKW Algorithm
	4 Essential Idea
	4.1 An Example Using Dimension k = 160

	5 Algorithm Description
	5.1 Gaussian Elimination
	5.2 Collision Procedure
	5.3 Partial Secret Guessing Procedure
	5.4 Covering-Coding Method
	5.5 Subspace Hypothesis Testing

	6 Analysis
	7 Results
	7.1 HB+
	7.2 LPN-C and HB#
	7.3 Lapin with an Irreducible Polynomial

	8 More on the Covering-Coding Method
	9 Conclusions
	References

	Algebraic Attack against Variants of McEliece with Goppa Polynomial of a Special Form
	1 Introduction
	1.1 Our Contributions
	1.2 Impact of Our Work

	2 Coding Theory Background
	3 An Algebraic Modelling with a Vector Space Structure on the Zero Set
	3.1 Description of the New Modelling
	3.2 Recovering a Basis of the Vector Subspace

	4 Recovering the Secret Key from a Sum of GRS – A Linear Algebra Step
	4.1 Disentanglement of the System Solutions
	4.2 Sidelnikov-Shestakov Adapted to Recover the Goppa
	4.3 Recovery of the Incognito Polynomial by Solving a Linear

	5 Weakness of Non-prime Base Fields
	6 Practical Experiments
	7 Conclusion and Future Work
	References

	New Proposals
	Bivariate Polynomials Modulo Composites and Their Applications
	1 Introduction
	2 Related Work
	3 Cryptographic Properties of Polynomials
	3.1 One-Way Polynomials
	3.2 Second Preimage Resistant Polynomials
	3.3 Collision-Resistant Polynomials

	4 A Nestable Commitment Scheme from Polynomials over
	4.1 Commitments
	4.2 Construction
	4.3 Nestable Commitments
	4.4 Application Sketch: Anonymous Bitcoins

	5 Succinct Set Membership Proofs
	5.1 Definitions
	5.2 Construction
	5.3 Proof of Knowledge of an Accumulated Value

	6 Claw-Free Functions, Signatures, and Chameleon Hashes
	7 Conclusion and Future Work
	References
	A Proof of Statistical Hiding

	Cryptographic Schemes Based on the ASASA Structure: Black-Box, White-Box,and Public-Key(Extended Abstract)
	1 Introduction
	2 Asymmetric
	Schemes: Strong White-Box and Public-Key
	2.1 Strong White-Box Security
	2.2 Outline
	2.3 Defeating Decomposition Algorithm with Perturbations
	2.4 χ-Scheme
	2.5 Scheme with Expanding S-Boxes

	3 Security Analysis of Our White-Box/Public-Key Schemes
	3.1 Generic Attacks
	3.2 Interpolation Attack on the ASASA Scheme with Public Perturbation Polynomials
	3.3 Algebraic Attack on the Plain χ-Scheme
	3.4 Attack on the Expanding Scheme with Biased S-Boxes

	4 Black-BoxASASA Schemes
	4.1 Design
	4.2 Security Analysis

	5 Proposal for Weak White-Box Security: ASASA-Based Block Cipher
	5.1 Weak White-Box Security
	5.2 Weak White-Box Cipher Proposal

	6 Conclusion
	References

	Authenticated Encryption
	Beyond 2c/2 Security in Sponge-Based Authenticated Encryption Modes
	1 Introduction
	1.1 Our Results
	1.2 Outline

	2 Security Model
	3 NORX
	3.1 Privacy of NORX
	3.2 Authenticity of NORX

	4 Other CAESAR Submissions
	4.1 Ascon
	4.2 ICEPOLE
	4.3 Keyak
	4.4 BLNK (CBEAM and STRIBOB)
	4.5 PRIMATEs: GIBBON and HANUMAN

	5 Conclusions
	References

	How to Securely Release Unverified Plaintext in Authenticated Encryption
	1 Introduction
	1.1 Security Under Release of Unverified Plaintext
	1.2 Analysis of Authenticated Encryption Schemes
	1.3 Background and Related Work

	2 Preliminaries
	3 AE Schemes: Syntax, Types, and Security
	3.1 New AE Syntax
	3.2 Types of AE Schemes
	3.3 Conventional Security Definitions under the New Syntax

	4 Security under Release of Unverified Plaintext
	4.1 Security of Encryption
	4.2 Security of Verification

	5 Achieving Plaintext Awareness
	5.1 Why Existing Schemes Do Not Achieve PA1
	5.2 PA1 Random IV Schemes
	5.3 PA1 Nonce IV Schemes
	5.4 PA1 Arbitrary IV Schemes
	5.5 PA2 Schemes

	6 Integrity in the INT-RUP Setting
	6.1 INT-RUP Attack
	6.2 Nonce Decoy and PRF-to-IV

	7 Conclusions
	References

	Forging Attacks on Two Authenticated Encryption Schemes COBRA and POET
	1 Introduction
	1.1 Two AE Schemes COBRA and POET Submitted to CAESAR
	1.2 Our Contribution

	2 Basics of Almost XOR Universal (AXU) Hash
	2.1 Notation and Basics
	2.2 Almost XOR Universal (AXU) Hash
	2.3 Combination of AXU Hash Functions

	3 Description of COBRA
	3.1 Encryption Mode for COBRA
	3.2 Tag Generation and Verified Decryption Algorithm

	4 Forging Attack on COBRA
	5 Security Analysis of POET and POET-m
	5.1 POET-m and Its Security Analysis
	5.2 Security Analysis of POET mode

	6 Conclusion
	References

	Symmetric Key Cryptanalysis
	Low Probability Differentials and the Cryptanalysis of Full-Round CLEFIA-128
	1 Introduction
	2 Description of CLEFIA-128
	3 Weak Keys for CLEFIA-128
	4 Membership Test for the Weak-Key Class
	5 Analysis of the Hashing Modes of CLEFIA-128
	6 Conclusion
	References

	Automatic Security Evaluation and (Related-key) Differential Characteristic Search: Application to SIMON, PRESENT,LBlock, DES(L) and Other Bit-Oriented Block Ciphers
	1 Introduction
	2 Mouha et al.’s Framework and Its Extension
	2.1 Mouha et al.’s Framework for Word-Oriented Block Ciphers
	2.2 Extension of Mouha et al.’s Framework for Bit-Oriented Ciphers

	3 Tighten the Feasible Region with Valid Cutting-off Inequalities
	3.1 Methods for Generating Valid Cutting-Off Inequalities
	3.2 Selecting Valid Cutting-off Inequalities from the Convex Hull: A Greedy Approach

	4 Automatic Security Evaluation
	4.1 Techniques for Getting Tighter Security Bounds

	5 A Heuristic Method for Finding (Related-key)Differential Characteristics Automatically
	6 Conclusion and Directions for Future Work
	References

	Scrutinizing and Improving Impossible Differential Attacks: Applications to CLEFIA,Camellia, LBlock and Simon
	1 Introduction
	2 Complexity Analysis
	2.1 Attack Scenario
	2.2 Data Complexity
	2.3 Time and Memory Complexity
	2.4 Choosing Δin,Δout, cin and cout
	2.5 Using Multiple Impossible Differentials to Reduce the Data Complexity
	2.6 Introducing the State-Test Technique

	3 Application to CLEFIA
	3.1 Impossible Differential Cryptanalysis of 13-round CLEFIA-128

	4 Applications to Camellia
	5 Conclusion
	References

	A Simplified Representation of AES
	1 Introduction
	2 ANewRepresentationofAES
	3 The Known-Key Model
	4 Application: Improved Known-Key Distinguishers forAES8 and AES10
	4.1 A Known-Key Distinguisher for AES8
	4.2 A Known-Key Distinguisher for the 10-Round AES

	5 Conclusion
	References

	Side Channel Analysis I
	Simulatable Leakage: Analysis, Pitfalls, and New Constructions
	1 Introduction
	1.1 What is Leakage?
	1.2 Simulatable Leakage
	1.3 Our Contribution

	2 Simulatable Leakage: Standaert et al.’s Model
	2.1 Model and q-sim Game
	2.2 Construction
	2.3 Simulator

	3 The Security Game for the Practical Use of the 2PRG: the p-q-sim Game
	4 Breaking the Split-and-Concatenate Simulator
	4.1 Properties of Real World Leakage
	4.2 Cross-Correlation as a Distinguisher
	4.3 Detecting s&c-traces
	4.4 Experiments for Real Devices
	4.5 Measures to Secure the Split-and-Concatenate Simulator

	5 The Challenge of Making Secure Simulators
	5.1 Maintaining State Consistency
	5.2 Leveraging an Algorithm-Dependent Data-Flow Discontinuity

	6 A Sound Simulator
	6.1 Doubling the Cipher
	6.2 Some Final Considerations

	References

	Multi-target DPA Attacks: Pushing DPA Beyond the Limits of a Desktop Computer
	1 Introduction
	1.1 Our Contribution
	1.2 Preliminaries: Differential Power Analysis

	2 Related Literature
	3 Methodology
	3.1 Assigning Probabilities
	3.2 Combining Probabilities
	Parallelised Attack Architecture

	4 Experiments with Simulated
	4.1 Combining Outcomes from Different Targets
	4.2 Combining Outputs from the Same Target

	5 Practical Attacks
	5.1 Practical Attacks against Known Interesting Points
	5.2 Practical Attacks where Interesting Points Are A Priori Unknown

	6 Conclusion
	References

	GLV/GLS Decomposition, Power Analysis,and Attacks on ECDSA Signatures with Single-Bit Nonce Bias
	1 Introduction
	2 Preliminaries
	2.1 Bias Definition and Properties
	2.2 ECDSA Signature Generation

	3 Bleichenbacher’s Attack on Single Bit Bias
	3.1 Attack Analysis
	3.2 Implementation

	4 Security Analysis of the Recomposition Technique
	4.1 A Secure Choice of (k1, k2)
	4.2 Breaking Insecure Choices of (k1, k2) with Bleichenbacher’s Attack
	4.3 Implementation of Bleichenbacher’s Attack in the GLS Setting

	5 Security Analysis of the Decomposition Technique
	5.1 Decomposition Algorithm
	5.2 Side-Channel Attack on this Implementation

	References

	Soft Analytical Side-Channel Attacks
	1 Introduction
	2 Soft Analytical Side-Channel Attacks
	2.1 Solving (or Optimizing) vs. Decoding
	2.2 The Belief-Propagation Algorithm
	2.3 Efficient Representation of an AES Implementation
	2.4 Attacking with Several Traces

	3 Experimental Results
	4 Conclusions
	References

	Hyperelliptic Curve Cryptography
	On the Enumeration of Double-Base Chains with Applications to Elliptic Curve Cryptography
	1 Introduction
	1.1 Elliptic Curve Cryptography
	1.2 Double-Base Number System
	1.3 Double-Base Chain

	2 Enumerating DBCs Representing a Given Integer
	2.1 Partition Problem
	2.2 Enumerating DBCs
	2.3 Enumerating DBCs of Bounded Length
	2.4 Optimal DBCs

	3 Enumerating DBCs with Given Parameters
	3.1 First Properties
	3.2 Explicit Computations
	3.3 Generalization to Multi-Base Chains

	4 Controlled DBC for Scalar Multiplication
	4.1 Integer Range
	4.2 Redundancy and Near Optimal Length
	4.3 Applications to Elliptic Curve Cryptography

	5 Experiments
	5.1 Optimal DBC Search
	5.2 Comparison between Greedy and Near Optimal Length
	5.3 Scalar Multiplication

	6 Conclusion and Future Work
	References

	Kummer Strikes Back: New DH Speed Records
	1 Introduction
	2 Fast Scalar Multiplication on the Kummer Surface
	3 Decomposing Field Multiplication
	4 Permutations: Vectorizing the Hadamard Transform
	5 Cortex-A8
	References

	Jacobian Coordinates on Genus 2 Curves
	1 Introduction
	2 Preliminaries
	3 Extending Jacobian Coordinates to Jacobians
	4 Adopting the “co-Z” Approach
	5 Arithmetic in Affine Coordinates with New Common Subexpressions
	6 Projective Arithmetic in Extended Jacobian Coordinates
	6.1 Projective co-ZW Addition (zwADD)
	6.2 Projective Addition (ADD)
	6.3 Projective Mixed Addition (mADD)
	6.4 Projective Mixed Doubling-and-Addition (mDBLADD)
	6.5 Projective Doubling (DBL)

	7 Implementation
	7.1 Working on the Gaudry-Schost Jacobian
	7.2 Working on the Jacobian of a GLV curve
	7.3 A Disclaimer: The Difficulties Facing Constant-Time,Exception-Free Scalar Multiplications in JC

	8 Results
	9 Related Scenarios
	References

	Factoring and Discrete Log
	Mersenne Factorization Factory
	1 Introduction
	2 Background on (S)NFS and Coppersmith’s Method
	2.1 Number Field Sieve
	2.2 Relation Collection
	2.3 Matrix and Filtering
	2.4 Coppersmith’s Factorization Factory
	2.5 SNFS Factorization Factory

	3 Targets for the SNFS Factorization Factory
	3.1 Target Set
	3.2 Polynomial Selection for the Target Set

	4 Relation Collection for the Target Set
	4.1 Integrating the Precomputation
	4.2 Algebraic Sieving
	4.3 Rational Factorization Trees
	4.4 Additional Sieving
	4.5 Equipment Used

	5 Processing the Matrices
	5.1 The Block Wiedemann Algorithm
	5.2 Matrix Results

	6 Factorizations
	7 Conclusion
	References

	Improving the Polynomial time Precomputation of Frobenius Representation Discrete Logarithm Algorithms
	1 Introduction
	2 Simplified Setting for Small Characteristic Finite Fields
	2.1 Frobenius Representation Algorithms
	2.2 Improved Choice of h0 and h1
	2.3 Seeking a Natural Factor Base

	3 Improving Computations of the (Extended) Factor Base
	3.1 A Reduced Degree 2 Factor Base
	3.2 Enlarging the Factor Base to Degree 3
	3.3 Discrete Logarithms of Degree 4 Polynomials

	4 Asymptotic Complexities
	4.1 Recovering Discrete Logs of Degree 2 Irreducible Polynomials
	4.2 Recovering Discrete Logs of Degree 3 Irreducible Polynomials
	4.3 Recovering Discrete Logs of Degree 4 Irreducible Polynomials

	5 A Computational Example in Characteristic 3
	6 Conclusion
	References

	Invited Talk I
	Big Bias Hunting in Amazonia: Large-Scale Computation and Exploitation of RC4 Biases(Invited Paper)
	1 Introduction
	1.1 RC4 and Its Applications
	1.2 RC4 in WPA/TKIP
	1.3 RC4 in MPPE
	1.4 Our Contributions and Paper Organisation

	2 Further Background
	2.1 The RC4 Stream Cipher
	2.2 WPA/TKIP
	2.3 MPPE

	3 Large-Scale Computation of RC4 Keystream Distributions for WPA/TKIP Keys
	3.1 Computing Keystream Distributions and Finding New Biases
	3.2 Reflections on Using Amazon EC2

	4 Plaintext Recovery Attacks against WPA/TKIP Basedon Single-Byte Biases
	4.1 The Attack of Paterson, Poettering and Schuldt[15]
	4.2 Attacks Based on Aggregation
	4.3 Attack Simulation Results

	5 Plaintext Recovery Attacks for WPA/TKIP Based on Double-Byte Biases
	6 MPPE
	6.1 Computing Keystream Distributions for MPPE Keys
	6.2 Attack Simulation Results

	7 Conclusions
	References

	Cryptanalysis
	Multi-user Collisions: Applications to Discrete Logarithm, Even-Mansour and PRINCE
	1 Introduction
	2 Discrete Logarithms in the Multi-user Setting
	3 Even-Mansour in the Single and Multi-user Settings
	3.1 Brief Description of Even-Mansour
	3.2 Previous Attacks on Even-Mansour
	3.3 Extending the Simple Attack
	3.4 Time/Memory/Data Tradeoff Attack on Even-Mansour
	3.5 Attacks in the Multi-user Setting

	4 Attacks on the PRINCE Cipher in the Multi-user and Classical Setting
	4.1 Brief Description of PRINCE
	4.2 Attack on PRINCE in the Multi-user Setting
	4.3 Attack in the Classical Model

	5 Conclusion
	References

	Cryptanalysis of Iterated Even-Mansour Schemes with Two Keys
	1 Introduction
	2 Notations and Conventions
	3 A New Attack on 4-Round Iterated Even-Mansour with Two Alternating Keys
	3.1 The SlideX Attack on 1-Round Even-Mansour with a Single Key
	3.2 The Best Previous Attack on 4-Round Iterated Even-Mansourwith Two Alternating Keys [23]
	3.3 The Basic Version of Our New Multibridge Attack on 4-Round Iterated Even-Mansour with Two Alternating Keys
	3.4 Our Generalized Multibridge Attack on 4-Round Iterated Even-Mansour with Two Alternating Keys
	3.5 Application to 4-Step LED-128
	3.6 Application to Reflection Cryptanalysis

	4 Classification and Summary of Our Attacks on All4-Round 2-Key Iterated Even-Mansour Schemes
	5 Multibridge Attacks on EC8 and EC9
	5.1 A Multibridge Attack on EC8
	5.2 A Multibridge Attack on EC9

	6 Conclusions and Open Problems
	References

	Meet-in-the-Middle Attacks on Generic Feistel Constructions
	1 Introduction
	2 Preliminaries
	3 Key-Recovery Attacks against Feistel-2 Construction
	4 Key-Recovery Attacks against Feistel-3 Construction
	5 Conclusion
	References

	XLS is Not a Strong Pseudorandom Permutation
	1 Introduction
	1.1 Our Contribution

	2 XLS and Its General Form GXLS
	2.1 XLS and GXLS on {0, 1}2n−1
	2.2 Elastic Blockcipher

	3 Insecurity of XLS
	3.1 Security Definitions
	3.2 SPRP Distinguishing Algorithm
	3.3 Analysis of Attack

	4 Distinguishing Attack on GXLS on {0, 1}2n−1
	4.1 rank(M[2]) ≤ n − 2
	4.2 Case: rank(M[2]) = rank(M�[2]) = n − 1, rank(N[1]) ≤ n − 2
	4.3 Case: rank(M[2]) = rank(M�[2]) = n − 1, rank(N[1]) = n − 1

	5 Conclusion
	References

	Signatures
	Structure-Preserving Signatures on Equivalence Classes and Their Application to Anonymous Credentials
	1 Introduction
	1.1 Contribution
	1.2 Related Work

	2 Preliminaries
	3 Structure-Preserving Signatures on Equivalence Classes
	3.1 Defining the Signature Scheme
	3.2 Our Construction
	3.3 Security of Our Construction

	4 Polynomial Commitments with Factor Openings
	5 Building an ABC System
	5.1 Abstract Model of ABCs
	5.2 Intuition of Our Construction
	5.3 The Construction of the ABC System
	5.4 Security
	5.5 Efficiency Analysis and Comparison

	6 Future Work
	References

	On Tight Security Proofs for Schnorr Signatures
	1 Introduction
	2 Preliminaries
	2.1 Schnorr Signatures
	2.2 Computational Problems
	2.3 Representation-Invariant Computational Problems
	2.4 Generic Reductions

	3 Unconditional Tightness Bound for Generic Reductions
	3.1 Single-Instance Reductions

	4 Multi-instance Reductions
	5 A Note on Tightly-Secure Schnorr-Type Signatures
	References

	Zero-Knowledge
	Square Span Programs with Applications to Succinct NIZK Arguments
	1 Introduction
	2 Square Span Programs
	2.1 The NP-completeness of Affine Map Constraints
	2.2 The NP-completeness of Square Span Programs
	2.3 Example
	2.4 Comparison to Quadratic Span Programs

	3 Succinct Non-interactive Arguments of Knowledge
	3.1 Non-interactive Zero-Knowledge Arguments of Knowledge
	3.2 Bilinear Groups
	3.3 Succinct Perfect NIZK Arguments
	3.4 Efficiency

	4 Conclusion
	References

	Better Zero-Knowledge Proofs for Lattice Encryption and Their Application to Group Signatures
	1 Introduction
	1.1 Improved Proofs of Plaintext Knowledge for Lattice Schemes
	1.2 Linking Lattice-Based and Classical Primitives
	1.3 Applications to Group Signatures and Credentials

	2 Preliminaries
	2.1 Notation
	2.2 Commitment Schemes and Pedersen Commitments
	2.3 Semantically Secure Encryption and NTRU
	2.4 Rejection Sampling
	2.5 Zero-Knowledge Proofs and Σ�-Protocols

	3 Proving Knowledge of Ring-LWE Secrets
	3.1 A Technical Lemma
	3.2 The Protocol

	4 Proving Equality among Classical and Lattice-Based Primitives
	5 Application to Group Signatures
	5.1 Building Blocks
	5.2 Generic Construction
	5.3 Signatures of Knowledge from Σ'-Protocols
	5.4 Σ'-Protocols for Boneh-Boyen Signatures and the Group Signature Scheme

	References

	Author Index

