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Preface

It is with great pleasure that we present the proceedings of Asiacrypt 2014 in two
volumes of Lecture Notes in Computer Science published by Springer. The year
2014 marked the 20th edition of the International Conference on Theory and
Application of Cryptology and Information Security held annually in Asia by
the International Association for Cryptologic Research (IACR). The conference
was sponsored by the IACR and was jointly organized by the following con-
sortium of universities and government departments of the Republic of China
(Taiwan): National Sun Yat-sen University; Academia Sinica; Ministry of Sci-
ence and Technology; Ministry of Education; and Ministry of Economic Affairs.
The conference was held in Kaohsiung, Republic of China (Taiwan), during
December 7-11, 2014.

An international Program Committee (PC) consisting of 48 scientists was
formed approximately one year earlier with the objective of determining the
scientific content of the conference. As for previous editions, Asiacrypt 2014 also
stimulated great interest among the scientific community of cryptologists. A total
of 255 technical papers were submitted for possible presentations approximately
six months prior to the conference. Authors of the submitted papers are spread
all over the world. Each PC member could submit at most two co-authored
papers or at most one single-authored paper, and the PC co-chairs did not
submit any paper. All the submissions were screened by the PC members and 55
papers were finally selected for presentation at the conference. These proceedings
contain the revised versions of the papers that were selected. The revisions were
not checked and the responsibility of the papers rest with the authors and not
the PC members.

The selection of papers for presentations was made through a double-blind
review process. Each paper was assigned four reviewers and submissions by PC
members were assigned five reviewers. Apart from the PC members, the selection
process was assisted by a total of 397 external reviewers. The total number of
reviews for all the papers was more than 1,000. In addition to the reviews, the
selection process involved an extensive discussion phase. This phase allowed PC
members to express opinion on all the submissions. The final selection of 55
papers was the result of this extensive and rigorous selection procedure.

The decision of the best paper award was based on a vote among the PC
members, and it was conferred upon the paper “Solving LPN Using Covering
Codes” authored by Qian Guo, Thomas Johansson, and Carl Löndahl. In addi-
tion to the best paper, three other papers were recommended for solicitations
by the Editor-in-Chief of the Journal of Cryptology to submit expanded ver-
sions to the journal. These papers are “Secret-Sharing for NP” authored by
Ilan Komargodski, Moni Naor, and Eylon Yogev; “Mersenne Factorization Fac-
tory” authored by Thorsten Kleinjung, Joppe W. Bos, and Arjen K. Lenstra; and



VI Preface

“Jacobian Coordinates on Genus 2 Curves” authored by Huseyin Hisil and Craig
Costello.

In addition to the regular presentations, the conference featured two invited
talks. The invited speakers were decided through an extensive multi-round dis-
cussion among the PC members. This resulted in very interesting talks on two
different aspects of the subject. Kennth G. Paterson spoke on “Big Bias Hunt-
ing in Amazonia: Large-Scale Computation and Exploitation of RC4 Biases,” a
topic of importance to practical cryptography, while Helaine Leggat spoke on
“The Legal Infrastructure Around Information Security in Asia,” which had an
appeal to a wide audience.

Along with the regular presentations and the invited talks, a rump session was
organized. This session contained short presentations on latest research results,
announcements of future events, and other topics of interest to the audience.

Many people contributed to Asiacrypt 2014. We would like to thank the au-
thors of all papers for submitting their research works to the conference. Thanks
are due to the PC members for their enthusiastic and continued participation for
over a year in different aspects of selecting the technical program. The selection
of the papers was made possible by the timely reviews from external reviewers,
and thanks are due to them. A list of external reviewers is provided in these
proceedings. We have tried to ensure that the list is complete. Any omission is
inadvertent and if there is an omission, we apologize to that person.

Special thanks are due to D. J. Guan, the general chair of the conference, for
working closely with us and ensuring that the PC co-chairs were insulated from
the organizational work. This work was carried out by the Organizing Committee
and they deserve thanks from all the participants for the wonderful experience.
We thank Daniel J. Bernstein and Tanja Lange for expertly organizing and
chairing the rump session.

We thank Shai Halevi for developing the IACR conference management soft-
ware, which was used for the whole process of submission, reviewing, discussions,
and preparing these proceedings. We thank Josh Benaloh, our IACR liaison,
and San Ling, Asiacrypt Steering Committee Representative, for guidance and
advice on several issues. Springer published the volumes and made these avail-
able before the conference. We thank Alfred Hofmann, Anna Kramer, Christine
Reiss and their team for the professional and efficient handling of the production
process.

December 2014 Palash Sarkar
Tetsu Iwata
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André Chailloux
Donghoon Chang
Pascale Charpin
Sanjit Chatterjee
Jie Chen
Wei-Han Chen
Yu-Chi Chen
Ray Cheung
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The Legal Infrastructure around Information

Security in Asia
(Abstract)

Helaine Leggat
Information Legal, Australia

helaine@informationlegal.com.au

http://www.informationlegal.com.au

Abstract. If the history of the Internet can be said to have commenced
with the development of electronic computers in the 1950s, it took almost
fifty years for the world to embrace the need to facilitate and to regulate
electronic commerce and communications. This was brought about ini-
tially, through the United Nations Commission on International Trade
Law (UNCITRAL) Model Law on Electronic Commerce in 1996. It was
followed by the UNCITRAL Model Law on Electronic Signatures in 2001
and the United Nations Convention on the Use of Electronic Communica-
tions in International Contracts adopted by the United Nations General
Assembly in 2005.
The theory and application of cryptology and information security are
directly connected to these model laws and conventions.
In this talk, we will look, at a high level, at these developments and
then shift the focus, with more detail, to the development and status of
electronic law in Asia, including but not limited to Taiwan, Hong Kong,
Japan, Singapore, India, Australia and New Zealand.
We will look at the overarching and interpretive nature of electronic
transactions laws on laws that pre-date the electronic age and at subse-
quent ICT-specific laws, concentrating on three major trends (i) access
to (or freedom of) information, (ii) monitoring and surveillance and (iii)
information privacy.
We will look at competing rights and limitations in the global and na-
tional contexts. Including, developments in the light of economic, geo-
graphic and political shifts in dominance from West to East, the diffusion
of power from state to society and the importance of knowledge based
capital in the form of intangible assets.
The intention of the talk is to empower persons with an interest in cryp-
tology and information security to look more broadly at the regulatory
context and changing paradigms that can inspire hot topic research aris-
ing from law as a social science in relation to cryptology.

keywords: Law, information, security, cryptology, Asia.
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Benôıt Libert1,�, Marc Joye2, Moti Yung3, and Thomas Peters4,��

1 Ecole Normale Supérieure de Lyon,
Laboratoire de l’Informatique du Parallélisme, France

2 Technicolor, USA
3 Google Inc. and Columbia University, USA
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Abstract. To gain strong confidence in the security of a public-key
scheme, it is most desirable for the security proof to feature a tight re-
duction between the adversary and the algorithm solving the underlying
hard problem. Recently, Chen and Wee (Crypto ’13) described the first
Identity-Based Encryption scheme with almost tight security under a
standard assumption. Here, “almost tight” means that the security re-
duction only loses a factor O(λ) —where λ is the security parameter—
instead of a factor proportional to the number of adversarial queries.
Chen and Wee also gave the shortest signatures whose security almost
tightly relates to a simple assumption in the standard model. Also re-
cently, Hofheinz and Jager (Crypto ’12) constructed the first CCA-secure
public-key encryption scheme in the multi-user setting with tight secu-
rity. These constructions give schemes that are significantly less efficient
in length (and thus, processing) when compared with the earlier schemes
with loose reductions in their proof of security. Hofheinz and Jager’s
scheme has a ciphertext of a few hundreds of group elements, and they
left open the problem of finding truly efficient constructions. Likewise,
Chen and Wee’s signatures and IBE schemes are somewhat less efficient
than previous constructions with loose reductions from the same assump-
tions. In this paper, we consider space-efficient schemes with security al-
most tightly related to standard assumptions. We construct an efficient
CCA-secure public-key encryption scheme whose chosen-ciphertext se-
curity in the multi-challenge, multi-user setting almost tightly relates
to the DLIN assumption (in the standard model). Quite remarkably,
the ciphertext size decreases to 69 group elements under the DLIN as-
sumption whereas the best previous solution required about 400 group
elements. Our scheme is obtained by taking advantage of a new almost
tightly secure signature scheme (in the standard model) which is based
on the recent concise proofs of linear subspace membership in the quasi-
adaptive non-interactive zero-knowledge setting (QA-NIZK) defined by
Jutla and Roy (Asiacrypt ’13). Our signature scheme reduces the length
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of the previous such signatures (by Chen and Wee) by 37% under the De-
cision Linear assumption, by almost 50% under the K-LIN assumption,
and it becomes only 3 group elements long under the Symmetric eXter-
nal Diffie-Hellman assumption. Our signatures are obtained by carefully
combining the proof technique of Chen and Wee and the above men-
tioned QA-NIZK proofs.

Keywords: CCA-secure encryption, multi-user, multi-challenge, signa-
ture, IND-CCA2 security, QA-NIZK proofs, tight security, efficiency.

1 Introduction

Security of public-key cryptographic primitives is established by demonstrating
that any successful probabilistic polynomial time (PPT) adversary A implies
a PPT algorithm B solving a hard problem. In order to be convincing, such
“reductionist” arguments should be as tight as possible. Ideally, algorithm B’s
probability of success should be about as large as the adversary’s advantage. The
results of Bellare and Rogaway [9] initiated an important body of work devoted
to the design of primitives validated by tight security reductions in the random
oracle model [22,23,38,20,21,10,24,48,1,37] and in the standard model [21,7,48].

Tight security proofs may be hard to achieve and are even known not to exist
at all in some situations [23,37,33]. On the positive side, long-standing open
problems have been resolved in the recent years. Hofheinz and Jager [31] showed
the first public-key encryption scheme whose chosen-ciphertext security [45,46]
in the multi-user setting tightly relates to a standard hardness assumption, which
solved a problem left open by Bellare, Boldyreva and Micali [6] although their
ciphertext is a few hundreds group elements long. Chen andWee [19] answered an
important open question raised by Waters [51] by avoiding the concrete security
loss, proportional to the number of adversarial queries, that affected the security
reductions of all prior identity-based encryption (IBE) [14,49] schemes based on
simple assumptions, including those based on the dual system paradigm [52,39].
The results of [19] also implied the shortest signatures almost tightly related to
simple assumptions1 in the standard model. In the terminology of [19], “almost
tight security” refers to reductions where the degradation factor only depends
on the security parameter λ, and not on the number q of adversarial queries,
which is potentially much larger as it is common to assume λ = 128 and q ≈ 230.

The tighter security results of Chen and Wee [19] overcame an important
barrier since, as pointed out in [19], all earlier short signatures based on standard
assumptions in the standard model [51,34,32,53,12] suffered a Θ(q) loss in terms
of exact security. On the other hand, the Chen-Wee schemes are less efficient
than previous solutions based on similar assumptions [51,39,18,12]. Likewise,

1 By “simple assumptions,” we mean non-interactive (and thus falsifiable [43]) as-
sumptions that can be described using a constant number of group elements. In
particular, the number of input elements in the description of the assumption does
not depend on the number of adversarial queries.
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encryption schemes with tight multi-challenge chosen-ciphertext security [31,3]
come at the expense of much longer ciphertexts than constructions (e.g., [25]) in
the single-challenge setting.2 In order to exploit concrete security improvements
in the choice of parameters, it is desirable to keep schemes as efficient —from
both computational and space viewpoints— as their counterparts backed by
loose reductions. This paper aims at rendering the constructions and techniques
of [31,19] truly competitive with existing signatures and encryption schemes
based on simple assumptions in the standard model.

Our Contributions. In this paper, we construct a new public-key encryption
scheme with almost tight chosen-ciphertext (IND-CCA2) security in the multi-
user, multi-challenge setting [6] under the DLIN assumption. As in the setting
of Chen and Wee, the underlying reduction is not as tight as those of [31,3] since
we lose a factor of O(λ). On the other hand, our construction provides much
shorter ciphertexts than previous tightly IND-CCA2-secure systems [31,3] based
on the same assumption. Moreover, our security bound does not depend on the
number of users or on the number of challenges, so that our scheme can be
safely instantiated in environments involving arbitrarily many users encrypting
as many ciphertexts as they like.

As a tool for achieving our encryption scheme (and a result of independent
interest), we devise a variant of the Chen-Wee signature scheme [19], which has
been proved almost tightly secure under the DLIN assumption, with shorter
signatures in prime-order groups. Under the DLIN assumption, each signature
consists of 6 groups elements, instead of 8 in [19]. Under the K-linear assumption
(which is believed weaker than DLIN when K > 2), we reduce the signature
length of [19] from 4K to 2K + 2 and thus save Θ(K) group elements.

By combining our technique and the recent non-interactive proof systems of
Jutla and Roy [36], we can further shorten our signatures and obtain 5 group
elements per signature under the DLIN assumption and 2K + 1 elements un-
der the K-linear assumption. Our DLIN-based (resp. K-linear-based) system
thus improves upon the Chen-Wee constructions [19] by 37% (resp. nearly 50%)
in terms of signature length. Under the Symmetric eXternal Diffie-Hellman as-
sumption (namely, the hardness of DDH in G and Ĝ for asymmetric pairings

e : G × Ĝ → GT ), the same optimizations yield signatures comprised of only
3 group elements, which only exceeds the length of Waters signatures [51] by
one group element. Since the SXDH-based signatures of [19] live in G4, we also
shorten them by one element (or 25%) under the same assumption. Our SXDH-
based scheme turns out to yield the shortest known signature with nearly tight
security under a simple assumption.

While randomizable in their basic variant, our schemes can be made strongly
unforgeable in a direct manner, without any increase of the signature length.

2 Using a hybrid argument, Bellare, Boldyreva and Micali [6] showed that any CCA2-
secure encryption scheme in the single-challenge setting remains secure if the ad-
versary is given arbitrarily many challenge ciphertexts. However, the reduction is
linearly affected by the number q of challenge ciphertexts.



4 B. Libert et al.

In particular, we do not need generic transformations based on chameleon hash
functions, such as the one of Boneh el al. [15], which tend to lengthen signatures
by incorporating the random coins of the chameleon hashing algorithm. Using the
SXDH assumption and asymmetric pairings, we thus obtain the same signature
length as the CDH-based strongly unforgeable signatures of Boneh, Shen and
Waters [15] with the benefit of a much better concrete security (albeit under a
stronger assumption).

Then, our signature schemes can be applied to construct a new efficient public-
key encryption scheme with almost tight chosen-ciphertext (IND-CCA) security
in the multi-user, multi-challenge setting [6]. Indeed, the randomizable signa-
tures described in this paper easily lend themselves to the construction of new
unbounded simulation-sound proof systems (where the adversary remains un-
able to prove false statements after having seen polynomially many simulated
proofs for possibly false statements) with almost tight security. In turn, this
yields the most efficient constructions, to date, of IND-CCA-secure public-key
encryption schemes in the multi-challenge setting. By following the approach
of [29,31], we can obtain an almost tightly simulation-sound proof system by
showing that either: (i) a set of pairing product equations is satisfiable; and
(ii) committed group elements form a valid signature on the verification key of
a one-time signature. In this case, our randomizable signatures are very inter-
esting candidates since they reduce the number of signature components that
must appear in committed form. In addition, the specific algebraic properties
of our signature scheme make it possible to construct an optimized simulation-
extractable proof system that allows proving knowledge of the plaintext using
only 62 group elements, which reduces our ciphertexts to only 69 group elements
under the DLIN assumption. This dramatically improves upon previous tightly
secure constructions based on the same assumption [31,3] which require sev-
eral hundreds of group elements per ciphertext. Moreover, unlike [3], our system
can also be instantiated in asymmetric pairing configurations. We stress that,
unlike [42] (which has a loose security reduction), our simulation-sound proof
system does not provide constant-size proofs of linear subspace membership.
Still, for the specific application of nearly tight CCA-security, our proof system
suffices to obtain relatively concise ciphertexts.

Concurrent to our work, Blazy, Kiltz and Pan [11] independently gave different
constructions of signature schemes with tight security under the SXDH, DLIN
and other simple assumptions. Their technique extends to provide (hierarchical)
identity-based encryption schemes. Under the DLIN and SXDH assumption,
our optimized signatures are as short as theirs. Our approach bears similiarities
with theirs in that each signature can be seen as a NIZK proof that a message
authentication code is valid w.r.t. a committed key.

Our Techniques. Underlying our results is a methodology of getting security
proofs with a short chain of transitions from actual games to ideal ones. Our con-
structions build upon a signature scheme of Jutla and Roy [35, Section 5], which
is itself inspired by [16, Appendix A.3]. In [35], each signature is a CCA2-secure
encryption of the private key, where the message is included in the label [50] of
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the ciphertext. The signer also computes a non-interactive zero-knowledge proof
that the encrypted value is the private key. The security proof uses the dual
system encryption method [52,40,28] and proceeds with a sequence of hybrid
games heading for a game where all signatures encrypt a random value while
the NIZK proofs are simulated.

While Camenisch el al. [16] used Groth-Sahai proofs, Jutla and Roy obtained
a better efficiency using quasi-adaptive NIZK (QA-NIZK) proofs, i.e., where the
common reference string (CRS) may depend on the specific language for which
proofs are being generated but a single CRS simulator works for the entire class
of languages. For the common task of proving that a vector of n group elements
belongs to a linear subspace of rank t, Jutla and Roy [35] gave computation-
ally sound QA-NIZK proofs of length Θ(n − t) where the Groth-Sahai (GS)
techniques entail Θ(n+ t) group elements per proof. They subsequently refined
their techniques, reducing the proof’s length to a constant [36], regardless of the
number of equations or the number of variables. Libert el al. [42] independently
obtained similar improvements using different techniques.

Our signature schemes rely on the observation that the constant-size QA-
NIZK proofs of [42,36] make it possible to encode the label (which contains the
message) in a bit-by-bit manner without affecting the signature length. In turn,
this allows applying the technique of Chen and Wee [19] so as to avoid the need
for q transitions, where q is the number of signing queries. As in the security proof
of [19], the signing oracle uses a semi-functional private key which is obtained
by shifting a normal private key by a factor consisting of a random function that
depends on increasingly many bits of the message in each transition. In the last
game, the random function depends on all the message bits, so that the shifting
factor is thus totally unpredictable by the adversary.

Our encryption of almost tightly CCA2-secure encryption scheme is based on a
modification of the Naor-Yung [45] paradigm due to [26,3]. The latter consists in
combining an IND-CPA encryption and a simulation-extractable proof of knowl-
edge of the plaintext. In order to build an optimized simulation-extractable proof,
we take advantage of the simple algebraic structure of our signature scheme and
its randomizability properties. Our proof system is a simplification of the one in
[3] and shows that either: (i) A commitment is an extractable commitment to
a function of the encryption exponents; or (ii) Another commitment contained
in the proof contains a valid signature on the verfication key of a one-time sig-
nature. Our signature scheme allows implementing this very efficiently. Specifi-
cally, a real proof used by the encryption algorithm involves a commitment to a
pseudo-signature —which can be generated without the signing key— whereas a
simulated proof uses a real signature instead of a pseudo-signature. The perfect
witness indistinguishability of Groth-Sahai proofs on a NIWI CRS guarantees
that the adversary will not be able to distinguish committed pseudo-signatures
from real signatures.
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2 Background and Definitions

2.1 Hardness Assumptions

We consider groups (G, Ĝ,GT ) of prime-order p endowed with a bilinear map

e : G × Ĝ → GT . In this setting, we rely on the standard Decision Linear
assumption, which is a special case of the K-linear assumption for K = 2.

Definition 1 ([13]). The Decision Linear Problem (DLIN) in a group G, is to
distinguish between the distributions (ga, gb, gac, gbd, gc+d) and (ga, gb, gac, gbd,

gz), with a, b, c, d
R← Zp, z

R← Zp. The Decision Linear assumption asserts the
intractability of DLIN for any PPT distinguisher.

It will sometimes be convenient to use the following assumption, which is
implied by DLIN, as observed in [17].

Definition 2. The Simultaneous Double Pairing problem (SDP) in (G, Ĝ,GT )

is, given a tuple of group elements (ĝz , ĝr, ĥz, ĥu) ∈ Ĝ4, to find a non-trivial triple
(z, r, u) ∈ G3\{(1G, 1G, 1G)} satisfying the equalities e(z, ĝz) · e(r, ĝr) = 1GT and

e(z, ĥz) · e(u, ĥu) = 1GT .

2.2 One-Time Linearly Homomorphic Structure-Preserving
Signatures

In structure-preserving signatures [5,4], messages and public keys all consist of

elements of a group over which a bilinear map e : G × Ĝ → GT is efficiently
computable. Constructions based on simple assumptions were put forth in [2,3].

Libert el al. [41] considered structure-preserving schemes with linear homo-
morphic properties. This section recalls the one-time linearly homomorphic
structure-preserving signature (LHSPS) of [41].

Keygen(λ, n): Given a security parameter λ and the dimension n ∈ N of the

subspace to be signed, choose bilinear group (G, Ĝ,GT ) of prime order p.

Then, choose ĝz, ĝr, ĥz, ĥu
R← Ĝ. For i = 1 to n, pick χi, γi, δi

R← Zp and com-

pute ĝi = ĝz
χi ĝr

γi , ĥi = ĥz
χi
ĥu

δi
. The private key is sk = {(χi, γi, δi)}ni=1

while the public key is pk =
(
ĝz, ĝr, ĥz, ĥu, {(ĝi, ĥi)}ni=1

)
∈ Ĝ2n+4.

Sign(sk, (M1, . . . ,Mn)): To sign a vector (M1, . . . ,Mn) ∈ Gn using the key
sk = {(χi, γi, δi)}ni=1, output σ = (z, r, u) ∈ G3, where z =

∏n
i=1M

−χi

i ,

r =
∏n

i=1,M
−γi

i and u =
∏n

i=1M
−δi
i .

SignDerive(pk, {(ωi, σ
(i))}�

i=1): Given pk as well as � tuples (ωi, σ
(i)), parse

σ(i) as σ(i) =
(
zi, ri, ui

)
for i = 1 to �. Compute and return σ = (z, r, u),

where z =
∏�

i=1 z
ωi

i , r =
∏�

i=1 r
ωi

i , u =
∏�

i=1 u
ωi

i .
Verify(pk, σ, (M1, . . . ,Mn)): Given a signature σ = (z, r, u) ∈ G3 and a vec-

tor (M1, . . . ,Mn), return 1 if and only if (M1, . . . ,Mn) �= (1G, . . . , 1G) and
(z, r, u) satisfy the relations 1GT = e(z, ĝz) · e(r, ĝr) ·

∏n
i=1 e(Mi, ĝi), and

1GT = e(z, ĥz) · e(u, ĥu) ·
∏n

i=1 e(Mi, ĥi).
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The one-time security of the scheme (in the sense of [41]) was proved [41]
under the SDP assumption under a tight reduction. In short, the security notion
implies the infeasibility of deriving a signature on a vector outside the subspace
spanned by the vectors authenticated by the signer. Here, “one-time” security
means that a given public key allows signing only one subspace.

3 Shorter Signatures Almost Tightly Related to the
DLIN Assumption

This section shows that LHSPS schemes and constant-size QA-NIZK proofs for
linear subspaces can be used to construct shorter signatures with nearly optimal
reductions under the DLIN assumption.

The scheme builds on ideas used in a signature scheme suggested by Jutla and
Roy [35, Section 5], where each signature is a CCA2-secure encryption —using
the message to be signed as a label— of the private key augmented with a
QA-NIZK proof (as defined in [35]) that the encrypted value is a persistent
hidden secret. As in [52,40,28], the security proof uses a sequence of games
which gradually moves to a game where all signatures contain an encryption of
a random value while the QA-NIZK proofs are simulated. At each step of the
transition, increasingly many signatures are generated without using the private
key and the CCA2-security of the encryption scheme ensures that this should
not affect the adversary’s probability to output a signature that does encrypt
the private key. In the security proof of [35], the latter approach implies that:
(i) the number of transitions depends on the number of signing queries; and
(ii) a CCA2-secure encryption scheme is needed since, at each transition, the
reduction has to decrypt the ciphertext contained in the forgery.

Here, our key observation is that, by using a QA-NIZK proof system where the
proof length is independent of the dimension of the considered linear subspace,
the approach of [35] can be combined with the proof technique of Chen and
Wee [19] so as to reduce the number of game transitions while retaining short
signatures. In addition, the techniques of [19] allow us to dispense with the need
for a CCA2-secure encryption scheme. The security analysis actually departs
from that of [35] and rather follows the one of Chen and Wee [19]. The techniques
of [35,16,28] argue that, even if the adversary is given signatures where the
private key is blinded by a semi-functional component, its forgery will retain the
distribution of a normal signature unless some indistinguishability assumption
is broken. Here, we follow [19] and blind the outputs of the signing oracle by
a random function of increasingly many bits of the message. Instead of using
the same argument as in [35], however, we argue that the adversary’s forgery
will always have the same distribution as the signatures produced by the signing
oracle. In the last game of the hybrid sequence, we prove that the adversary
cannot retain the same behavior as the signing oracle since the latter’s outputs
are blinded by a random function of all message bits. In order to come up with
the same kind of signature as the signing oracle, the adversary would have to
predict the value of the random function on the forgery message M�, which is
information-theoretically infeasible.
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As in [19], by guessing exactly one bit of the target message, the reduction
can efficiently test whether the forgery has the same distribution as outputs of
the signing oracle while remaining able to embed a DLIN instance in outputs
of signing queries. For L-bit messages, by applying arguments similar to those
of [44,19], we need L game transitions to reach a game where each signature
encrypts a random —and thus unpredictable— function of the message. As a
result, we obtain DLIN-based signatures comprised of only 6 group elements.

Keygen(λ): Choose bilinear groups (G, Ĝ,GT ) of prime order p together with

f, g, h, u1, u2
R← G.

1. For � = 1 to L, choose V�,0, V�,1,W�,0,W�,1
R← G to assemble row vectors

V = (V1,0, V1,1, . . . , VL,0, VL,1), W = (W1,0,W1,1, . . . ,WL,0,WL,1) ∈ G2L .

2. Define the matrix M =
(
Mi,j

)
i,j

∈ G(4L+2)×(4L+3) given by

M =

⎛⎜⎜⎝
V � Idf,2L 12L×2L 12L×1 12L×1

W� 12L×2L Idh,2L 12L×1 12L×1

g 11×2L 11×2L u1 1
g 11×2L 11×2L 1 u2

⎞⎟⎟⎠ (1)

with Idf,2L = f I2L ∈ G2L×2L, Idh,2L = hI2L ∈ G2L×2L, and where
I2L ∈ Z2L×2L

p is the identity matrix.
3. Generate a key pair (skhsps, pkhsps) for the one-time linearly homo-

morphic signature of Section 2.2 in order to sign vectors of dimension
n = 4L+3. Let skhsps = {(χi, γi, δi)}4L+3

i=1 be the private key, of which the

corresponding public key is pkhsps =
(
ĝz, ĝr, ĥz, ĥu, {(ĝi, ĥi)}4L+3

i=1

)
.

4. Using skhsps = {χi, γi, δi}4L+3
i=1 , generate one-time homomorphic signa-

tures {(Zj , Rj , Uj)}4L+2
j=1 on the rows M j = (Mj,1, . . . ,Mj,4L+3) of M.

For each j ∈ {1, . . . , 4L+ 2}, these are obtained as

(Zj , Rj , Uj) =

(
4L+3∏
i=1

M−χi

j,i ,
4L+3∏
i=1

M−γi

j,i ,
4L+3∏
i=1

M−δi
j,i

)
,

and, as part of the common reference string for the QA-NIZK proof
system of [42], they will be included in the public key.

5. Choose ω1, ω2
R← Zp and compute Ω1 = uω1

1 ∈ G, Ω2 = uω2
2 ∈ G.

The private key consists of SK = (ω1, ω2) and the public key is

PK =
(
f, g, h, u1, u2, Ω1, Ω2, V , W ,

pkhsps =
(
ĝz, ĝr, ĥz, ĥu, {(ĝi, ĥi)}4L+3

i=1

)
, {(Zj, Rj , Uj)}4L+2

j=1

)
.

Sign(SK,M): Given M =M [1] . . .M [L] ∈ {0, 1}L and SK = (ω1, ω2):
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1. Choose r, s
R← Zp and compute

σ1 = gω1+ω2 ·H(V ,M)r ·H(W ,M)s , σ2 = f r , σ3 = hs , (2)

where H(V ,M) =
∏L

�=1 V�,M [�] and H(W ,M) =
∏L

�=1W�,M [�].

2. Using {(Zj, Rj , Uj)}4L+2
j=1 , derive a one-time homomorphic signature (Z,

R,U) which will serve as a non-interactive argument showing that the
vector

(σ1, σ
1−M [1]
2 , σ

M [1]
2 , . . . , σ

1−M [L]
2 , σ

M [L]
2 , σ

1−M [1]
3 , σ

M [1]
3 ,

. . . , σ
1−M [L]
3 , σ

M [L]
3 , Ω1, Ω2) (3)

is in the row space ofM, which ensures that (σ1, σ2, σ3) is of the form (2).
Namely, compute⎧⎪⎪⎨⎪⎪⎩

Z = Zω1

4L+1 · Z
ω2

4L+2 ·
∏L

i=1

(
Zr
2i−M [i]

· Zs
2L+2i−M [i]

)
R = Rω1

4L+1 · R
ω2

4L+2 ·
∏L

i=1

(
Rr

2i−M [i]
· Rs

2L+2i−M [i]

)
U = Uω1

4L+1 · U
ω2

4L+2 ·
∏L

i=1

(
U r
2i−M [i]

· Us
2L+2i−M [i]

)
.

(4)

Return the signature σ =
(
σ1, σ2, σ3, Z,R, U

)
∈ G6.

Verify(PK,M, σ): Parse σ as
(
σ1, σ2, σ3, Z,R, U

)
∈ G6 and return 1 iff

e(Z, ĝz) · e(R, ĝr) = e(σ1, ĝ1)
−1 · e(σ2,

L∏
i=1

ĝ2i+M [i])
−1

· e(σ3,
L∏

i=1

ĝ2L+2i+M [i])
−1 · e(Ω1, ĝ4L+2)

−1 · e(Ω2, ĝ4L+3)
−1

e(Z, ĥz) · e(U, ĥu) = e(σ1, ĥ1)
−1 · e(σ2,

L∏
i=1

ĥ2i+M [i])
−1

· e(σ3,
L∏

i=1

ĥ2L+2i+M [i])
−1 · e(Ω1, ĥ4L+2)

−1 · e(Ω2, ĥ4L+3)
−1 .

Each signature consists of 6 elements of G, which is as short as Lewko’s DLIN-
based signatures [39, Section 4.3] where the security proof incurs a security loss
proportional to the number of signing queries. Under the same assumption, the
Chen-Wee signatures [19] require 8 group elements.

We emphasize that our security proof allows using any QA-NIZK proof system
for linear subspaces and not only the one of [42] (which we used in order to keep
the description as simple and self-contained as possible). Our constructions can
thus be optimized if we replace the QA-NIZK proof system of [42] —which
entails K + 1 group elements under the K-LIN assumption— by those recently
suggested by Jutla and Roy, where only K group elements per proof are needed.



10 B. Libert et al.

Under the DLIN (resp. K-linear) assumption, each signature is only comprised
of 5 (resp. 2K+1) group elements. We thus shorten signatures by 37% under the
DLIN assumption. Under the K-Linear assumption, our improvement is more
dramatic since, when K increases, our signatures become almost 50% shorter as
we reduce the signature length of [19] from 4K to 2K + 1.

Under the SXDH assumption (namely, the 1-linear assumption), a direct adap-
tation of the above scheme entails 4 elements of G per signature, which is as long
as [19]. However, as explained in the full version of the paper, the QA-NIZK proof
system of Jutla and Roy [36] can supersede the one of [42] since, under the SXDH
assumption, it only requires one group element per proof, instead of two in [42].
The signature thus becomes a triple (σ1, σ2, Z) = (uω ·H(V ,M)r, f r, Z), where
Z is a QA-NIZK proof of well-formedness for (σ1, σ2).

Theorem 1. The above signature scheme provides existential unforgeability un-
der chosen-message attacks if the DLIN assumption holds in G and Ĝ. For L-bit
messages, for any adversary A, there exist DLIN distinguishers B and B′ in Ĝ

and G such that AdvA(λ) ≤ AdvDLIN
B (λ) + 2 · L · AdvDLIN

B′ (λ) + 2
p and with

running times tB, tB′ ≤ tA + q · poly(λ, L).

Proof. The proof considers several kinds of valid signatures.

Type A signatures are produced by the real signing algorithm. Namely, if
V = fv and W = hw for vectors v = (v1,0, v1,1, . . . , vL,0, vL,1) ∈ Z2L

p , w =

(w1,0, w1,1, . . . , wL,0, wL,1) ∈ Z2L
p and if we define F (v,M) =

∑L
�=1 v�,M [�]

and F (w,M) =
∑L

�=1 w�,M [�], these signatures are such that

gω1+ω2 = σ1 · σ−F (v,M)
2 · σ−F (w,M)

3

and (Z,R,U) is a valid linearly homomorphic signature on the vector (3).

Type B signatures are valid signatures that are not Type A signatures. These
are of the form

σ1 = gω1+ω2+τ ·H(V ,M)r ·H(W ,M)s , σ2 = f r , σ3 = hs ,

for some τ ∈R Zp, r, s ∈R Zp, and⎧⎪⎪⎨⎪⎪⎩
Z = g−τ ·χ1 · Zω1

4L+1 · Z
ω2

4L+2 ·
∏L

i=1

(
Zr
2i−M [i]

· Zs
2L+2i−M [i]

)
R = g−τ ·γ1 ·Rω1

4L+1 ·R
ω2

4L+2 ·
∏L

i=1

(
Rr

2i−M [i]
·Rs

2L+2i−M [i]

)
U = g−τ ·δ1 · Uω1

4L+1 · U
ω2

4L+2 ·
∏L

i=1

(
U r
2i−M [i]

· Us
2L+2i−M [i]

) .

Note that Type B signatures also satisfy the verification algorithm since
(Z,R,U) is a valid homomorphic signature on the vector (3). The term gτ

will be henceforth called the semi-functional component of the signature.
Type B signatures include the following sub-classes.
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Type B-k signatures (1 ≤ k ≤ L) are generated by choosing r, s
R← Zp and

setting

σ1 = gω1+ω2 ·Rk(M|k) ·H(V ,M)r ·H(W ,M)s , σ2 = f r , σ3 = hs ,

with H(V ,M) =
∏L

�=1 V�,M [�] and where H(W ,M) =
∏L

�=1W�,M [�] and

Rk : {0, 1}k → G,M|k �→ Rk(M|k) is a random function that depends on
the first k bits of M . The (Z,R,U) components are simulated QA-NIZK
proofs of subspace membership. They are obtained using {(χi, γi, δi)}4L+3

i=1

to generate a homomorphic signature on the vector (3) by computing⎧⎪⎪⎨⎪⎪⎩
Z = σ−χ1

1 · σ−
∑L

i=1 χ2i+M[i]

2 · σ−
∑L

i=1 χ2L+2i+M[i]

3 ·Ω−χ4L+2

1 ·Ω−χ4L+3

2

R = σ−γ1

1 · σ−
∑L

i=1 σ2i+M[i]

2 · σ−
∑L

i=1 γ2L+2i+M[i]

3 ·Ω−γ4L+2

1 ·Ω−γ4L+3

2

U = σ−δ1
1 · σ−

∑L
i=1 δ2i+M[i]

2 · σ−
∑L

i=1 δ2L+2i+M[i]

3 ·Ω−δ4L+2

1 ·Ω−δ4L+3

2

.

To prove the result, we consider the following sequence of games. For each i,
we call Si the event that the adversary wins in Game i. We also define Ei to
be the event that, in Game i, A’s forgery has the same type as the signatures
it observes. Namely, if A obtains a Type A (resp. Type B-k) signature at each
query, it should output a Type A (resp. Type B-k) forgery.

Game 0: This game is the real game. Namely, the adversary obtains Type A
signatures at each signing query. At the end of the game, however, the
challenger B checks if A’s forgery is a Type A signature and we define
E0 the event that the forgery σ� is a Type A forgery. We obviously have
Pr[S0] = Pr[S0 ∧ E0] + Pr[S0 ∧ ¬E0]. Lemma 1 shows that, if the DLIN

assumption holds in Ĝ, the adversary can only output a Type B signature
with negligible probability. We have Pr[S0 ∧¬E0] ≤ AdvDLIN

Ĝ
(λ) + 1/p. We

are thus left with the task of bounding Pr[S0 ∧E0]. To this end, we proceed
using a sequence of L games.

Game 1: This game is identical to Game 0 with the difference that, at each
signing query, the signature components (Z,R,U) are obtained as simulated
QA-NIZK proofs of linear subspace membership. Namely, instead of com-
puting (Z,R,U) as per (4), the challenger uses {χi, γi, δi}4L+3

i=1 to compute
(Z,R,U) as a one-time linearly homomorphic signature on the vector (3).
Clearly (Z,R,U) retains the same distribution as in Game 0, so that A’s
view remains unchanged. We have Pr[S1 ∧ E1] = Pr[S0 ∧ E0], where E1 is
the counterpart of event E0 in Game 1.

Game 2.k (1 ≤ k ≤ L): In Game 2.k, all signing queries are answered by re-
turning Type B-k signatures. For each k, we call E2.k the event that A
outputs a Type B-k forgery in Game 2.k. Lemma 2 provides evidence that
Game 2.1 is computationally indistinguishable from Game 1 under the DLIN
assumption in G: we have |Pr[S2.1 ∧E2.1]− Pr[S1 ∧E1]| ≤ 2 ·AdvDLIN

G (λ).
In the full version of the paper, we show that, under the DLIN assumption
in G, the probability of A’s forgery to be of the same type as the outputs of
signing queries is about the same in Game 2.k and in Game 2.(k − 1). We
thus have |Pr[S2.k ∧ E2.k]− Pr[S2.(k−1) ∧ E2.(k−1)]| ≤ 2 ·AdvDLIN

G (λ).
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When we reach Game 2.L, we know that |Pr[S2.L∧E2.L]−Pr[S2.0∧E2.0]| ≤ 2·L·
AdvDLIN

G (λ) by the triangle inequality. However, in Game 2.L, it is easy to prove
that, even though A only obtains Type B-k signatures throughout the game, its
probability to output a Type B-k forgery is negligible even with an unbounded
computational power. Indeed, a legitimate adversary that outputs a forgery on
a new message M� has no information on RL(M

�). Hence, it can only produce
a Type B-k forgery by pure chance and we thus have Pr[S2.L ∧E2.L] ≤ 1/p. 
�

Lemma 1. In Game 0, any PPT adversary outputting a Type B forgery with
non-negligible probability implies an algorithm breaking the DLIN assumption in
Ĝ with nearly the same advantage. (The proof is in the full version of the paper).

Lemma 2. If the DLIN assumption holds in G, A’s probability to output a
Type B-1 signature in Game 2.1 is about the same as its probability to output a
Type A signature in Game 1.

Proof. Let us assume that events S2.1 ∧E2.1 and S1 ∧E1 occur with noticeably
different probabilities in Game 2.1 and Game 1, respectively. We construct a
DLIN distinguisher B in G. Our algorithm B takes as input (f, g, h, fa, hb, T )
with the task of deciding if T = ga+b or T ∈R G. Similarly to [19, Lemma 6],
the reduction B uses the random self-reducibility of DLIN to build q tuples
(Fj = faj , Hj = hbj , Tj) such that, for each j ∈ {1, . . . , q}, we have

Tj =

{
gaj+bj if T = ga+b

gaj+bj+τ0 if T ∈R G

for some τ0 ∈R Zp. This is done by picking ρ0
R← Zp and ρaj , ρbj

R← Zp, for
j ∈ {1, . . . , q}, and setting

(Fj , Hj , Tj) =
(
(fa)ρ0 · fρaj , (hb)ρ0 · hρbj , T ρ0 · gρaj

+ρbj
)
, ∀j ∈ {1, . . . , q} .

In addition, B generates an extra tuple (u1, u2, Ω1, Ω2) ∈ G4 by choosing random

exponents αu,1, αu,2
R← Zp and setting

u1 = fαu,1 , u2 = hαu,2 , Ω1 = (fa)αu,1 , Ω2 = (hb)αu,2 .

Before generating the public key of the scheme, B flips a coin b†
R← {0, 1} hop-

ing that the first bit of the target message M� =M [1]� . . .M [L]� ∈ {0, 1}L will

coincide with b†. To construct PK, B chooses α = (α1,0, α1,1, . . . , αL,0, αL,1)
R←

Z2L
p , β = (β1,0, β1,1, . . . , βL,0, βL,1)

R← Z2L
p and ζ

R← Zp. It defines the vectors
V = (V1,0, V1,1, . . . , VL,0, VL,1), W = (W1,0,W1,1, . . . ,WL,0,WL,1) as{
(V�,0, V�,1) = (fα�,0 , fα�,1) , (W�,0,W�,1) = (hβ�,0 , hβ�,1) if � �= 1 ,

(V1,1−b† , V1,b†) = (fα
1,1−b† · gζ , fα

1,b† ) , (W1,1−b† ,W1,b†) = (hβ1,1−b† · gζ , hβ1,b† ) .

The rest of PK, including (skhsps, pkhsps) and {(Zi, Ri, Ui)}4L+2
i=1 , is generated

as in the real setup. The adversary A is run on input of
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PK =
(
f, g, h, u1, u2, Ω1 = u1

a, Ω2 = u2
b, V , W ,

pkhsps =
(
ĝz, ĝr, ĥz, ĥu, {(ĝi, ĥi)}4L+3

i=1

)
, {(Ẑj, R̂j , Ûj)}4L+2

j=1

)
and B keeps ({χi, γi, δi}4L+3

i=1 ) to itself. Note that a, b ∈ Zp are part of the original
DLIN instance and are not available to B. However, B will use the challenge value
T —which is either ga+b or a random element of G— to answer signing queries.

During the game, signing queries are answered as follows. In order to handle
the j-th signing queryM j =M [1]j . . .M [L]j ∈ {0, 1}L, the answer of B depends
on the first bit M [1]j of M j . Specifically, B considers the following cases.

– If M [1]j = b†, B chooses r, s
R← Zp and sets

σ1 = T ·H(V ,M)r ·H(W ,M)s , σ2 = f r , σ3 = hs ,

where H(V ,M) =
∏L

�=1 V�,M [�] and H(W ,M) =
∏L

�=1W�,M [�]. The (Z,R,
U) components of the private key are computed by generating a homomor-
phic structure-preserving signature on the vector

(σ1, σ
1−M [1]
2 , σ

M [1]
2 , . . . , σ

1−M [L]
2 , σ

M [L]
2 , σ

1−M [1]
3 , σ

M [1]
3 ,

. . . , σ
1−M [L]
3 , σ

M [L]
3 , Ω1, Ω2) ,

by computing⎧⎪⎪⎨⎪⎪⎩
Z = σ−χ1

1 · σ−
∑L

i=1 χ2i+M[i]

2 · σ3−
∑L

i=1 χ2L+2i+M[i] ·Ω−χ4L+2

1 ·Ω−χ4L+3

2

R = σ−γ1

1 · σ−
∑L

i=1 γ2i+M[i]

2 · σ−
∑L

i=1 γ2L+2i+M[i]

3 ·Ω−γ4L+2

1 ·Ω−γ4L+3

2

U = σ−δ1
1 · σ−

∑L
i=1 δ2i+M[i]

2 · σ−
∑L

i=1 δ2L+2i+M[i]

3 ·Ω−δ4L+2

1 ·Ω−δ4L+3

2

(5)

Note that, if T = ga+b+τ for some τ ∈R Zp, (Z,R,U) can be written⎧⎪⎪⎨⎪⎪⎩
Z = g−χ1·τ · Za

4L+1 · Zb
4L+2 ·

∏L
i=1

(
Zr
2i−M [i]

· Zs
2L+2i−M [i]

)
R = g−γ1·τ ·Ra

4L+1 · Rb
4L+2 ·

∏L
i=1

(
Rr

2i−M [i]
· Rs

2L+2i−M [i]

)
U = g−δ1·τ · Ua

4L+1 · U b
4L+2 ·

∏L
i=1

(
U r
2i−M [i]

· Us
2L+2i−M [i]

) .

We observe that (σ1, σ2, σ3, Z,R, U) matches the distribution of signatures
in both Game 2.1 if τ �= 0 and Game 1 if τ = 0. Indeed, in the former case,
we implicitly define the constant function R0(ε) = gτ and define the function
R1 so that R1(b

†) = R0(ε).

– If M [1]j = 1− b†, B implicitly defines

R1(M
j
|1) = R1(1− b†) =

{
R0(ε) · gζ·τ0 if T ∈R G

1 if T = ga+b
.
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Namely, B uses the j-th tuple (Fj , Hj , Tj) to set

σ1 = T · F
∑L

�=1 α�,M[�]

j ·H
∑L

�=1 β�,M[�]

j · T ζ
j , σ2 = Fj = faj , σ3 = Hj = hbj .

If T = ga+b (and thus Tj = gaj+bj ), this implicitly defines σ1 as the product
σ1 = ga+b · H(V ,M j)aj · H(W ,M j)bj , so that (σ1, σ2, σ3) has the same
distribution as in Game 1. If T = ga+b+τ (so that Tj = gaj+bj+τ0), we have

σ1 = ga+b · R1(M
j
|1) ·H(V ,M j)aj ·H(W ,M j)bj ,

since R1(M
j
|1) = R0(ε) · gζ·τ0 , which is distributed as in Game 2.1. In ei-

ther case, (Z,R,U) are computed using skhsps = {(χi, γi, δi)}4L+3
i=1 as in the

previous case (i.e., as per (5)).

In the forgery stage, the adversary A outputs a new messageM� and a signa-
ture σ� = (σ�

1 , σ
�
2 , σ

�
3 , Z

�, R�, U�). Our distinguisher B must determine if σ� has
the same type as the outputs of the simulated signing oracle. At this point, al-
gorithm B halts and outputs a random bit if M [1]� �= b†. Otherwise, B can com-

pute F (v,M�) =
∑L

�=1 α�,M [�]� and F (w,M�) =
∑L

�=1 β�,M [�]� , which yields

η� = σ�
1 · σ�

2
−F (v,M�) · σ�

3
−F (w,M�). If η� = T , B considers (σ�,M�) as a forgery

of the same type as outputs of the signing oracle and returns 1. Recall that
R0(ε) = T/ga+b, so that σ� matches the output distribution of the signing ora-
cle in both Game 1 and Game 2.1. Otherwise, B decides that σ� has a different
distribution than signatures produced by the signing oracle and outputs 0. If
the difference between A’s probability to output the same kind of signatures
as the signing oracle in Games 2.1 and 2.1 is ε, then B’s advantage as a DLIN
distinguisher is at least ε/2 since b† ∈ {0, 1} is independent of A’s view. 
�

We remark that, while its signatures are randomizable, the system can be
made strongly unforgeable in a simple manner and without increasing the sig-
nature length. In particular, we do not need a chameleon-hash-function-based
transformation such as [15]. Using the QA-NIZK proofs of [36], we thus obtain
strongly unforgeable signatures based on the SXDH assumption which are short
as those of Boneh, Shen and Waters [15] with a nearly tight reduction. The
details are given in the full version of the paper.

4 Almost Tightly CCA-Secure Encryption with Shorter
Ciphertexts

Equipped with our signature scheme, we now present a public-key encryption
scheme whose IND-CCA2 security in the multi-challenge-multi-user setting is
almost tightly related to the DLIN assumption. Like [31], our scheme instan-
tiates a variant of the Naor-Yung paradigm using Groth-Sahai proofs and the
cryptosystem of Boneh, Boyen and Shacham (BBS) [13].
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The construction can be seen as an instantiation of a technique suggested by
Dodis el al. [26] as a modification of the Naor-Yung paradigm, where only one
IND-CPA secure encryption suffices (instead of two in [45,47]) if it is
accompanied with a NIZK proof of knowledge of the plaintext that is simulation-
extractable (and not only simulation-sound). In [3], Abe el al. used a simulation-
extractable proof system showing that either: (i) The IND-CPA encryption
scheme encrypts the message containted in an extractable commitment; (ii) An-
other commitment included in the proof is a valid signature on the verification
key VK of a one-time signature. Here, we show that, if this simulation-extractable
proof system is combined with the BBS cryptosystem, it can be simplified by re-
moving the commitment to the message and the proof that this commitment con-
tains the encrypted plaintext. The reason is that, in each simulation-extractable
proof, the commitments to the encryption exponents suffice to guarantee the
extractability of the plaintext.

While our reduction is not quite as tight as in the results of [31,3] since we
lose a factor of Θ(λ), our scheme is much more space-efficient as the ciphertext
overhead reduces to 68 group elements. As a comparison, the most efficient
solution of [3] incurs 398 group elements per ciphertext.

For simplicity, the description below uses symmetric pairings e : G×G → GT

(i.e., G = Ĝ) but extensions to asymmetric pairings are possible.

Par-Gen(λ): Choose bilinear groups (G,GT ) with generators g, f, h
R← G. De-

fine common public parameters par = ((G,GT ), g, f, h).
Keygen(par): Parse par as

(
(G,GT ), g, f, h

)
and conduct the following steps.

1. Choose random exponents x1, y1
R← Zp and set f1 = gx1 , h1 = gy1 .

2. Choose a strongly unforgeable one-time signature Σ = (G,S,V) with
verification keys of length L ∈ poly(λ).

3. For � = 1 to L, choose V�,0, V�,1,W�,0,W�,1
R← G to assemble row vectors

V = (V1,0, V1,1, . . . , VL,0, VL,1) ,

W = (W1,0,W1,1, . . . ,WL,0,WL,1) ∈ G2L .

4. Choose ω1, ω2
R← Zp, u1, u2

R← G, and compute Ω1 = uω1
1 , Ω2 = uω2

2 .
5. Define the matrix M =

(
Mi,j

)
i,j

∈ G(4L+2)×(4L+3) as

(
Mi,j

)
i,j

=

⎛⎜⎜⎝
V � Idf,2L 12L×2L 12L×1 12L×1

W� 12L×2L Idh,2L 12L×1 12L×1

g 11×2L 11×2L u1 1
g 11×2L 11×2L 1 u2

⎞⎟⎟⎠
with Idf,2L = f I2L ∈ G2L×2L, Idh,2L = hI2L ∈ G2L×2L, where I2L ∈
Z2L×2L
p is the identity matrix. Then, generate a key pair (pkhsps, skhsps)

for the one-time LHSPS scheme of Section 2.2 with n = 4L + 3. Let
pkhsps =

(
gz, gr, hz, hu, {gi, hi}4L+3

i=1

)
be the resulting public key and

let skhsps = {χi, γi, δi}4L+3
i=1 be the underlying private key.
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6. Generate one-time linearly homomorphic signatures {(zj, rj , uj)}4L+2
j=1 on

the rows of M.
7. Choose a perfectly WI Groth-Sahai CRS g = (G1,G2,G3) defined by

vectorsG1 = (G1, 1, G),G2 = (1, G2, G) andG3 ∈ G3, withG,G1, G2
R←

G and G3
R← G3.

8. Define the private key as SK = (x1, y1) ∈ Z2
p. The public key is

PK =
(
g, f1, h1, V , W , u1, u2, Ω1, Ω2,

pkhsps, {(zj , rj , uj)}4L+2
j=1 ,g = (G1,G2,G3), Σ

)
,

whereas ω1, ω2 ∈ Zp and skhsps are erased.

Encrypt(M,PK): To encrypt M ∈ G, generate a one-time signature key pair
(SK,VK) ← G(λ) and conduct the following steps:

1. Choose θ1, θ2
R← Zp and compute (C0, C1, C2) = (M · gθ1+θ2 , fθ1

1 , hθ21 ).

2. Choose r, s
R← Zp and compute a pseudo-signature

σ1 = H(V ,VK)r ·H(W ,VK)s , σ2 = f r , σ3 = hs ,

where H(V ,VK) =
∏L

�=1 V�,VK[�] and H(W ,VK) =
∏L

�=1W�,VK[�].

3. Define the variables (W1,W2) = (gθ1 , gθ2) and compute Groth-Sahai
commitments {CWi}2i=1 to these.

4. Define the bit b = 1 and generate Cb = (1, 1, Gb) ·Grb
1 ·Gsb

2 ·Gtb
3 , where

rb, sb, tb
R← Zp, as a commitment to b. Then, compute a Groth-Sahai

commitment Cσ1 to σ1 and commitments CΘ1 ,CΘ2 ∈ G3 and CΓg to

Θ1 = Ω1−b
1 , Θ2 = Ω1−b

2 , Γg = gb . (6)

The vector

(σ1, σ
1−VK[1]
2 , σ

VK[1]
2 , . . . , σ

1−VK[L]
2 , σ

VK[L]
2 ,

σ
1−VK[1]
3 , σ

VK[1]
3 , . . . , σ

1−VK[L]
3 , σ

VK[L]
3 , Θ1, Θ2) ∈ G4L+3 (7)

belongs to the subspace spanned by the first 4L rows of the matrix M ∈
G(4L+2)×(4L+3). Hence, the algorithm can use r, s ∈ Zp to derive a one-
time linearly homomorphic signature (Z,R,U) ∈ G3 on the vector (7).
Note that (σ1, σ2, σ3, Z,R, U) can be seen as a signature on VK, for the
degenerated private key (ω1, ω2) = (0, 0).

5. Generate commitments CZ ,CR,CU ∈ G3. Then, compute a NIWI proof
πb ∈ G9 that b satisfies b2 = b (which ensures that b ∈ {0, 1}) and NIWI
proofs πPPE1,πPPE2 ∈ G3 that variables (σ1, Z,R, U,Θ1, Θ2) satisfy
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e(Z, gz) · e(R, gr) = e(σ1, g1)
−1 · e(σ2,

L∏
i=1

g2i+VK[i])
−1

· e(σ3,
L∏

i=1

g2L+2i+VK[i])
−1 · e(Θ1, g4L+2)

−1 · e(Θ2, g4L+3)
−1 ,

e(Z, hz) · e(U, hu) = e(σ1, h1)
−1 · e(σ2,

L∏
i=1

h2i+VK[i])
−1

· e(σ3,
L∏

i=1

h2L+2i+VK[i])
−1 · e(Θ1, h4L+2)

−1 · e(Θ2, h4L+3)
−1 .

6. Generate NIWI proofs πg, {πΘi}2i=1 that (b, Θ1, Θ2), which are commit-
ted in Cb,CΘ1 ,CΘ2 , satisfy (6). Each such proof lives in G3.

7. Generate a simulation-extractable proof that (W1,W2) satisfy

e(C1, g) = e(f1,W1) , e(C2, g) = e(h1,W2) . (8)

To this end, prove that (W1,W2, Γg) satisfy

e(C1, Γg) = e(f1,W1) , e(C2, Γg) = e(h1,W2) . (9)

This requires proofs π1,π2 of 3 group elements each.
8. Finally, compute a one-time signature sig = S(SK, C0, C1, C2, π) and

output the ciphertext C = (VK, C0, C1, C2, π, sig), where

π = (Cb,πb,Cσ1 , σ2, σ3, {CWi}2i=1,CZ ,CR,CU , {CΘi}2i=1,CΓg ,

πg, {πΘi}2i=1,πPPE1,πPPE2,π1,π2) (10)

is a simulation-extractable proof of plaintext knowledge consisting of 62
elements of G.

Decrypt(SK,C): Parse C as C = (VK, C0, C1, C2, π, sig) and do the following.
1. Return ⊥ if V(VK, (C0, C1, C2, π), sig) = 0 or if π does not properly

verify.

2. Using SK = (x1, y1) ∈ Z2
p, compute and returnM = C0 ·C−1/x1

1 ·C−1/y1

2 .

Note that π forms a proof that either (σ1, σ2, σ3) is a valid signature or
{CWi}2i=1 are commitments to (W1,W2) = (gθ1 , gθ2), where θ1, θ2 ∈ Zp are
the encryption exponents. A simulator holding the private key (ω1, ω2) ∈ Z2

p of
the signature scheme can simulate a proof π of plaintext knowledge by comput-
ing (σ1, σ2, σ3) as a real signature, by setting b = 0 at step 4 of the encryption
algorithm and using the witnesses (W1,W2) = (1G, 1G) to prove relations (9).

We remark that each ciphertext must contain a proof comprised of 62 group
elements. In an instantiation using the one-time signature of [31], the entire
ciphertexts thus costs 69 group elements. The scheme can also be adapted to
asymmetric pairings in a simple manner.
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For simplicity, we follow [3] and only prove security in the single-user, multi-
challenge case. However, as pointed out in [3], the single-user security results can
always be simply extended to the scenario of multiple public keys by leveraging
the random self-reducibility of the DLIN assumption in a standard manner. In
the full version of the paper, we prove the following result.

Theorem 2. The above scheme is (1, qe)-IND-CCA secure provided: (i) Σ is
a strongly unforgeable one-time signature; and (ii) the DLIN assumption holds
in G. For any adversary A, there exist a one-time signature forger B′ and a
DLIN distinguisher B with running times tB, tB′ ≤ tA + qe · poly(λ, L) such that

Adv
(1,qe)-cca
A (λ) ≤ 2 ·Advn-suf-ots

B′ (λ) + (4 · L+ 5) ·AdvDLIN
B (λ) + 5/p, where L

is the verification key length of Σ and qe is the number of encryption queries.

In order to extend the result to the multi-user setting, the main changes are
that we need to rely on: (i) The random self-reducibility of DLIN, which is used
as in [31]; (ii) The almost tight security of the signature scheme of Section 3
in the multi-user setting [27], which can also be proved using the random self-
reducibility of DLIN. The latter proof notably relies on the tight security of the
homomorphic signature of Section 2.2 in the multi-key setting, which is proved
in the full version of the paper.
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12. Böhl, F., Hofheinz, D., Jager, T., Koch, J., Seo, J.H., Striecks, C.: Practical signa-
tures from standard assumptions. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 461–485. Springer, Heidelberg (2013)

13. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

14. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. SIAM
J. of Computing 32(3), 586–615 (2003)

15. Boneh, D., Shen, E., Waters, B.: Strongly unforgeable signatures based on com-
putational diffie-hellman. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.)
PKC 2006. LNCS, vol. 3958, pp. 229–240. Springer, Heidelberg (2006)

16. Camenisch, J., Chandran, N., Shoup, V.: A public key encryption scheme secure
against key dependent chosen plaintext and adaptive chosen ciphertext attacks.
In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 351–368. Springer,
Heidelberg (2009)

17. Cathalo, J., Libert, B., Yung, M.: Group encryption: Non-interactive realization
in the standard model. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912,
pp. 179–196. Springer, Heidelberg (2009)

18. Chen, J., Lim, H.-W., Ling, S., Wang, H., Wee, H.: Shorter IBE and signatures
via asymmetric pairings. In: Abdalla, M., Lange, T. (eds.) Pairing 2012. LNCS,
vol. 7708, pp. 122–140. Springer, Heidelberg (2013)

19. Chen, J., Wee, H.: Fully (almost) tightly secure IBE and dual system groups. In:
Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 435–
460. Springer, Heidelberg (2013)

20. Chevallier-Mames, B.: An efficient CDH-based signature scheme with a tight secu-
rity reduction. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 511–526.
Springer, Heidelberg (2005)

21. Chevallier-Mames, B., Joye, M.: A practical and tightly secure signature scheme
without hash function. In: Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp.
339–356. Springer, Heidelberg (2006)

22. Coron, J.-S.: On the exact security of full domain hash. In: Bellare, M. (ed.)
CRYPTO 2000. LNCS, vol. 1880, pp. 229–235. Springer, Heidelberg (2000)

23. Coron, J.-S.: Optimal security proofs for PSS and other signature schemes. In:
Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 272–287. Springer,
Heidelberg (2002)

24. Coron, J.-S.: A variant of Boneh-Franklin IBE with a tight reduction in the random
oracle model. Designs, Codes & Cryptography 50(1), 115–133 (2009)



20 B. Libert et al.

25. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS,
vol. 1462, pp. 13–25. Springer, Heidelberg (1998)

26. Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Efficient public-key cryptog-
raphy in the presence of key leakage. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS,
vol. 6477, pp. 613–631. Springer, Heidelberg (2010)

27. Galbraith, S., Malone-Lee, J., Smart, N.: Public-key signatures in the multi-user
setting. Information Processing Letters 83(5), 263–266 (2002)

28. Gerbush, M., Lewko, A., O’Neill, A., Waters, B.: Dual form signatures: An ap-
proach for proving security from static assumptions. In: Wang, X., Sako, K. (eds.)
ASIACRYPT 2012. LNCS, vol. 7658, pp. 25–42. Springer, Heidelberg (2012)

29. Groth, J.: Simulation-sound NIZK proofs for a practical language and constant size
group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284,
pp. 444–459. Springer, Heidelberg (2006)

30. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In:
Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008)

31. Hofheinz, D., Jager, T.: Tightly secure signatures and public-key encryption. In:
Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 590–607.
Springer, Heidelberg (2012)

32. Hofheinz, D., Jager, T., Kiltz, E.: Short signatures from weaker assumptions. In:
Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 647–666.
Springer, Heidelberg (2011)

33. Hofheinz, D., Jager, T., Knapp, E.: Waters signatures with optimal security re-
duction. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS,
vol. 7293, pp. 66–83. Springer, Heidelberg (2012)

34. Hohenberger, S., Waters, B.: Short and stateless signatures from the RSA assump-
tion. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 654–670. Springer,
Heidelberg (2009)

35. Jutla, C., Roy, A.: Shorter quasi-adaptive NIZK proofs for linear subspaces. In:
Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 1–20.
Springer, Heidelberg (2013)

36. Jutla, C., Roy, A.: Switching lemma for bilinear tests and constant-size NIZK
proofs for linear subspaces. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014,
Part II. LNCS, vol. 8617, pp. 295–312. Springer, Heidelberg (2014)

37. Kakvi, S., Kiltz, E.: Optimal security proofs for full domain hash, revisited. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
537–553. Springer, Heidelberg (2012)

38. Katz, J., Wang, N.: Efficiency improvements for signature schemes with tight se-
curity reductions. In: ACM-CCS 2003, pp. 155–164. ACM Press (2003)

39. Lewko, A.: Tools for simulating features of composite order bilinear groups in the
prime order setting. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 318–335. Springer, Heidelberg (2012)

40. Lewko, A., Waters, B.: New techniques for dual system encryption and fully secure
HIBE with short ciphertexts. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978,
pp. 455–479. Springer, Heidelberg (2010)

41. Libert, B., Peters, T., Joye, M., Yung, M.: Linearly homomorphic structure-
preserving signatures and their applications. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 289–307. Springer, Heidelberg (2013)



Concise Multi-challenge CCA-Secure Encryption and Signatures 21

42. Libert, B., Peters, T., Joye, M., Yung, M.: Non-malleability from malleability:
Simulation-sound quasi-adaptive NIZK proofs and CCA2-secure encryption from
homomorphic signatures. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 514–532. Springer, Heidelberg (2014)

43. Naor, M.: On cryptographic assumptions and challenges. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 96–109. Springer, Heidelberg (2003)

44. Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random
functions. In: FOCS 1997, pp. 458–467. IEEE Press (1997)

45. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen ci-
phertext attacks. In: STOC 1990, ACM Press (1990)

46. Rackoff, C., Simon, D.: Non-interactive zero-knowledge proof of knowledge and
chosen ciphertext attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576,
pp. 433–444. Springer, Heidelberg (1992)

47. Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In: FOCS 1999, pp. 543–553. IEEE Press (1999)
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Abstract. Efficient implementations of lattice-based cryptographic
schemes have been limited to only the most basic primitives like encryp-
tion and digital signatures. The main reason for this limitation is that
at the core of many advanced lattice primitives is a trapdoor sampling
algorithm (Gentry, Peikert, Vaikuntanathan, STOC 2008) that produced
outputs that were too long for practical applications. In this work, we
show that using a particular distribution over NTRU lattices can make
GPV-based schemes suitable for practice. More concretely, we present
the first lattice-based IBE scheme with practical parameters – key and
ciphertext sizes are between two and four kilobytes, and all encryp-
tion and decryption operations take approximately one millisecond on
a moderately-powered laptop. As a by-product, we also obtain digital
signature schemes which are shorter than the previously most-compact
ones of Ducas, Durmus, Lepoint, and Lyubashevsky from Crypto 2013.

Keywords: Lattice Cryptography, Identity-Based Encryption, Digital
Signatures, NTRU.

1 Introduction

Recent improvements in efficiency have firmly established lattice-based cryptog-
raphy as one of the leading candidates to replace number-theoretic cryptography
after the eventual coming of quantum computing. There are currently lattice-
based encryption [HPS98, LPR13a, LPR13b], identification [Lyu12], and digital
signature schemes [GLP12, DDLL13] that have run-times (both in software and
in hardware), key sizes, and output lengths that are more or less on par with
traditional number-theoretic schemes. But unfortunately, the extent of practi-
cal lattice-based cryptography stops here. While number-theoretic assumptions
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allow for very efficient constructions of advanced schemes like identity-based en-
cryption [BF01], group signatures [CS97, BBS04], etc. none of these schemes yet
have practical lattice-based realizations.

One of the major breakthroughs in lattice cryptography was the work of
Gentry, Peikert, and Vaikuntanathan [GPV08], that showed how to use a short
trap-door basis to generate short lattice vectors without revealing the trap-door.1

In [GPV08], this was used to give the first lattice-based construction of secure
hash-and-sign digital signatures and identity-based encryption schemes. This
vector-sampling algorithm has since become a key component in many other
lattice constructions, ranging from hierarchical IBEs [CHKP12, ABB10] to the
recent breakthrough in multi-linear map constructions [GGH13]. Unfortunately,
even when using improved trap-doors [AP11, MP12] and instantiating with ideal
lattices [LPR13a], signature schemes that used the GPV trap-door approach were
far less practical (by about two orders of magnitude) than the Fiat-Shamir ones
[GLP12, DDLL13], and identity-based encryption had ciphertexts that were even
longer - having ciphertexts on the order of millions of bits.2

1.1 Our Results

Our main result is showing that the GPV sampling procedure can in fact be used
as a basis for practical lattice cryptography. The two main insights in our work
are that one can instantiate the GPV algorithm using a particular distribution of
NTRU lattices that have nearly-optimal trapdoor lengths, and that a particular
parameter in the GPV algorithm can be relaxed, which results in shorter vectors
being output with no loss in security. As our main applications, we propose
identity-based encryption schemes that have ciphertext (and key) sizes of two
and four kilobytes (for approximately 80-bit and 192-bit security, respectively)
and digital signatures that have outputs (and keys) of approximately 5120 bits
for about 192-bits of security. We believe that this firmly places GPV-based
cryptographic schemes into the realm of practicality. The IBE outputs are orders
of magnitude smaller than previous instantiations and the signature sizes are
smaller by about a factor of 1.3 than in the previously shortest lattice-based
scheme based on the same assumption [DDLL13].

Our schemes, like all other practical lattice-based ones, work over the poly-
nomial ring Zq[x]/(x

N +1), where N is a power of 2 and q is a prime congruent
to 1 mod 2N . For such a choice of q, the polynomial xN + 1 splits into N linear
factors over Zq, which greatly increases the efficiency of multiplication over the
ring. Our hardness assumption is related to the hardness, in the random oracle
model, of solving lattice problems over NTRU lattices. These assumptions under-
lie the NTRU encryption scheme [HPS98], the NTRU-based fully-homomorphic
encryption scheme [LTV12], and the recent signature scheme BLISS [DDLL13].

1 A very similar algorithm was earlier proposed by Klein [Kle00], but was utilized in
a different context and was not fully analyzed.

2 The only works that we are aware of that give actual parameters for candidate
constructions that use trapdoor sampling are [MP12, RS10].
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Table 1. Comparing our IBE (GPV) with a recent implementation [Gui13] of the
Boneh-Franklin scheme (BF). Our implementation was done in C++, using the NTL

and GnuMP libraries. Timings were performed on an Intel Core i5-3210M laptop with
a 2.5GHz CPU and 6GB RAM. The complete implementation can be found on
github.com/tprest/Lattice-IBE/.

Scheme GPV-80 GPV-192 BF-128 BF-192

User Secret key size 11 kbits 27 kbits 0.25 kbits 0.62 kbits
Ciphertext size 13 kbits 30 kbits 3 kbits 15 kbits

User Key Generation 8.6 ms 32.7 ms 0.55 ms 3.44 ms
Encryption 0.91 ms 1.87 ms 7.51 ms 40.3 ms
Decryption 0.62 ms 1.27 ms 5.05 ms 34.2 ms

Table 2. IBE scheme parameters (see Section 5)

Security parameter λ 80 192
Root Hermite factor [GN08] γ 1.0075 1.0044

Polynomial degree N 512 1024
Modulus q ≈ 223 ≈ 227

User Public key size 13 Kbits 30 Kbits
User Secret key size 11 Kbits 27 Kbits

Ciphertext size 13 Kbits 30 Kbits
Ciphertext expansion factor 26 30

And even though this assumption is not related to the hardness of worst-case lat-
tice problems via some worst-case to average-case reduction3, in the fifteen years
that the assumption has been around, there were no serious cryptanalytic threats
against it. The work of [DDLL13] also provided experimental evidence that the
computational complexity of finding short vectors in these special NTRU lattices
was consistent with the extensive experiments of Gama and Nguyen on more gen-
eral classes of lattices [GN08], some of which are connected to the hardness of
worst-case lattice problems.

We implemented our schemes in software (see Table 1), and most of the al-
gorithms are very efficient. The slowest one is user key generation, but this
procedure is not performed often. More important is the underlying encryption
scheme, which in our case is the Ring-LWE scheme from [LPR13a, LPR13b],
which already has rather fast hardware implementations [PG13]. And as can be
seen from the tables, decryption and encryption are very fast in software as well
and compare very favorably to state-of-the-art implementations of pairing-based
constructions.

3 The work of [SS11] showed a connection between problems on NTRU lattices and
worst-case problems, but for choices of parameters that do not lead to practical
instantiations.
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1.2 Related Work

Following the seminal work of [GPV08], there were attempts to improve sev-
eral aspects of the algorithm. There were improved trap-doors [AP11], more
efficient trap-door sampling algorithms [Pei10, MP12], and an NTRU signature
scheme proposal [SS13]. All these papers, however, only considered parameters
that preserved a security proof to lattice problems that were known to have an
average-case to worst-case connection. To the best of our knowledge, our work
is the first that successfully utilizes GPV trapdoor sampling in practice.

1.3 Identity-Based Encryption Scheme

In a public-key IBE scheme, the public key of every user in the system is a
combination of the master authority’s public key along with an evaluation of a
publicly-computable function on the user’s name or i.d.. The secret key of each
user is then derived by the master authority by using his master secret key. We
now give a brief description of the IBE in this paper, which is built by using the
GPV algorithm to derive the user’s secret keys from an NTRU lattice [GPV08,
SS13], and then using the Ring-LWE encryption scheme of [LPR13a, LPR13b]
for the encryption scheme.

The master public key in the scheme will be a polynomial h and the secret
key will consist of a “nice basis” for the 2N -dimensional lattice generated by the

rows of Ah,q =

(
−A(h) IN
qIN ON

)
, where A(h) is the anti-circulant matrix whose ith

row consists of the coefficients of the polynomial hxi mod xN +1 (see Definition
1). A user with identity id will have a public key consisting of h as well as t =
H(id), where H is some publicly-known cryptographic hash function mapping
into Zq[x]/(x

N + 1). The user’s secret key will consist of a small polynomial s2
such that s1+ s2h = t, where s1 is another small polynomial (how one generates
these keys is explicited in Alg. 3 in Section 5). Encryption and decryption will
proceed as in the Ring-LWE scheme of [LPR13a]. To encrypt a message m ∈
Z[x]/(xN + 1) with binary coefficients, the sender chooses polynomials r, e1, e2
with small coefficients and sends the ciphertext

(u = rh+ e1, v = rt + e2 + �q/2�m).4

To decrypt, the receiver computes v − us2 = rs1 + e2 + �q/2�m − s2e1. If the
parameters are properly set, then the polynomial rs1 + e2 − s2e1 will have small
coefficients (with respect to q), and so the coordinates in which m is 0 will be
small, whereas the coordinates in which it is 1 will be close to q/2. Notice that
for decryption, it is crucial for the polynomial rs1 + e2 − s2e1 to have small
coefficients, which requires s1 and s2 to be as small as possible.

While the above follows the usual encryption techniques based on LWE, we
need a little tweak to make the security proof based on KL-divergence work

4 In fact, one can save almost a factor of 2 in the ciphertext length by only sending
the three highest order bits of v, rather than all of v.
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Table 3. Signature scheme parameters (see Section 5)

Security parameter λ 80 192
Root Hermite factor γ 1.0069 1.0042

Polynomial degree N 256 512
Modulus q ≈ 210 ≈ 210

Public key size 2560 bits 5120 bits
Secret key size 1280 bits 2048 bits
Signature size 2560 bits 5120 bits

Verification time 0.62 ms 1.27 ms

(see Section 4), since this argument only applies to search problems (while CPA
security is a decisional problem). To do so we use a key-encapsulationmechanism,
that is we encrypt a random key k rather than m, and then use it as a one-time-
pad to send m⊕H ′(k) where H ′ is a hash function.

1.4 Interlude: A Hash-and-Sign Digital Signature Scheme

The first part of the above IBE is actually a hash-and-sign digital signature
scheme. The public (verification) key corresponds to the master authority’s pub-
lic key, the secret (signing) key is the master secret key, messages correspond
to user i.d.’s, and signatures are the user secret keys. To sign a message m,
the signer uses his secret key to compute short polynomials s1, s2 such that
s1 + s2h = H(m), and transmits s2. The verifier simply checks that s2 and
H(m)−hs2 are small polynomials. In the IBE, the modulus q is set deliberately
large to avoid decryption errors, but this is not an issue in the signature scheme.
By selecting a much smaller q, which allows one to sample from a tighter distri-
bution, the signature size can be made more compact than the user secret key
size in the IBE.

In Table 3, we present some possible parameters for such signature schemes.
The size of the keys and signatures compare very favorably to those of the
BLISS signature scheme [DDLL13]. For example, for the 192 bit security level,
the signature size in BLISS is approximately 6500 bits, whereas signatures in this
paper are approximately 5000 bits. In fact, further improvements to the signature
size may be possible via similar techniques that were used for BLISS. The main
drawback of the hash-and-sign signature scheme is that signing requires sampling
a discrete Gaussian over a lattice, whereas the Fiat-Shamir based BLISS scheme
only required Gaussian sampling over the integers. At this point, the signature
scheme in this paper yields smaller signatures but BLISS is much faster. Since
both BLISS and this current proposal are very new, we believe that there are
still a lot of improvements left in both constructions.

1.5 Techniques and Paper Organization

The main obstacle in making the above schemes practical is outputting short
s1, s2 such that s1 + s2h = t while hiding the trap-door that allows for this
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generation. [GPV08] provided an algorithm where the length of s1, s2 crucially
depend on the length of the Gram-Schmidt orthogonalized vectors in the trap-
door basis of the public lattice. In Section 3 we show, by experimental evidence
backed up by a heuristic argument, that there exist distributions of NTRU lat-
tices that have trap-doors whose lengths are within a small factor of optimal.
Once we have such short trap-doors (which correspond to the master secret key in
the IBE), we can use the GPV algorithm to sample s1, s2 such that s1+s2h = t.
In order for (s1, s2) to reveal nothing about the trap-door, it’s important that
s1, s2 come from a distribution such that seeing (h, s1, s2, t) does not reveal
whether s1, s2 were generated first and then t was computed as s1 + hs2 = t, or
whether t was first chosen at random and then s1, s2 were computed using the
GPV sampler.

To prove this, [GPV08] showed that the distribution of s1, s2 produced by
their sampler is statistically-close to some trapdoor-independent distribution. In
Section 4, we show that the requirement of statistical closeness can be relaxed,
and we can instead use Kullback-Leibler divergence to obtain shorter secret keys.
The intuition behind using KL-divergence can be described by the following ex-
ample. If Bc denotes a Bernoulli variable with probability c on 1, then trying to
distinguish with constant probability B1/2+ε/2 from B1/2 requires O(1/ε2) sam-
ples. Therefore if there is no adversary who can forge in time less than t (for
some t > 1/ε2) on a signature scheme where some parameter comes from the
distribution B1/2, then we can conclude that no adversary can forge in time
less than approximately 1/ε2 if that same variable were distributed according to
B1/2+ε/2. This is because a successful forger is also clearly a distinguisher be-
tween the two distributions (since forgeries can be checked), but no distinguisher
can work in time less than 1/ε2. On the other hand, distinguishing Bε from B0

requires only O(1/ε) samples. And so if there is a time t forger against a scheme
using B0, all one can say about a forger against the scheme using Bε is that he
cannot succeed in time less than 1/ε. In both cases, however, we have statisti-
cal distance ε between the two distributions. In this regard, statistical distance
based arguments are not tight; but the KL-divergence is finer grained and can
give tighter proofs. Indeed, in the first case, we can set 1/ε to be the square
root of our security parameter, whereas in the second case, 1/ε would have to be
the security parameter. In Section 4, we show that the GPV algorithm produces
samples in a way that allows us to work with parameters for which the inverse
of the statistical distance is the square root of the security parameter, whereas
previous work required it to be the security parameter itself.

1.6 Conclusions and Open Problems

Trapdoor sampling is at the heart of many “advanced” lattice constructions, yet
it has not been previously considered to be viable in practice. In this paper, we
showed that with a proper distribution on the trap-door as well as analyzing
the outputs using KL divergence instead of statistical distance, one can have
schemes that are rather efficient and have their security based on the hardness
of lattice problems over NTRU lattices. We believe that this opens the door to



28 L. Ducas, V. Lyubashevsky, and T. Prest

further practical implementations of lattice primitives having the GPV trap-door
sampling algorithm at their core.

Our work used a distribution over NTRU lattices that is somewhat new –
rather than having very short vectors, our secret key has vectors with a small
Gram-Schmidt maximum. It is unclear how this compares in terms of dificulty
to the hardness of lattice problems under the ”standard” NTRU distribution.
On the one hand, the vectors in our secret key are longer, but on the other hand,
our secret key is more ”orthogonal”. General lattice algorithms (such as BKZ)
don’t seem to exploit this feature, but it is an interesting open problem whether
other techniques could be used for improved cryptanalysis of our schemes.

2 Preliminaries

2.1 The Ring Z[x]/(xN + 1)

For the rest of the paper, N will be a power-of-two integer. We will work in the

ring R Δ
= Z[x]/(xN + 1) (and occasionally R′ Δ

= Q[x]/(xN + 1)). Among other
useful properties, xN + 1 is irreducible, so R′ is a cyclotomic field.
We clarify a few notations. Let f =

∑N−1
i=0 fix

i and g =
∑N−1

i=0 gix
i be polyno-

mials in Q[x].

– fg denotes polynomial multiplication in Q[x], while f∗g Δ
= fg mod (xN+1).

– (f) is the vector whose coefficients are f0, ..., fN−1. (f, g) ∈ R2N is the con-
catenation of (f) and (g).

– �f� is the coefficient-wise rounding of f . The same notation applies for vec-
tors.

2.2 Anticirculant Matrices

Definition 1 (Anticirculant matrix). An N -dimensional anticirculant ma-
trix of f is the following Toeplitz matrix:

AN (f) =

⎛⎜⎜⎜⎜⎜⎜⎝
f0 f1 f2

. . . fN−1

−fN−1 f0 f1
. . . fN−2

. . .
. . .

. . .
. . .

. . .

−f1 −f2
. . .

. . . f0

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎝
(f)

(x ∗ f)
...

(xN−1 ∗ f)

⎞⎟⎟⎠

When it is clear from context, we will drop the subscript N , and just write
A(f). Anticirculant matrices verify this useful property:

Lemma 1. Let f, g ∈ R. Then AN (f) + AN (g) = AN (f + g), and AN (f) ×
AN (g) = AN (f ∗ g).
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2.3 Gaussian Sampling

Gaussian sampling was introduced in [GPV08] as a technique to use a short
basis as a trap-door without leaking any information about the short basis; in
particular it provably prevents any attack in the lines of [NR06, DN12b] designed
against the NTRUSign scheme. The discrete distribution is defined as follows.

Definition 2 (Discrete Gaussians). The n-dimensional Gaussian function
ρσ,c : R

n → (0, 1] is defined by:

ρσ,c(x)
Δ
= exp

(
−‖x− c‖2

2σ2

)
For any lattice Λ ⊂ Rn, ρσ,c(Λ)

Δ
=
∑

x∈Λ ρσ,c(x). Normalizing ρσ,c(x) by ρσ,c(Λ),
we obtain the probability mass function of the discrete Gaussian distribution
DΛ,σ,c.

Using an algorithm inspired by Klein [Kle00], Gentry et al. [GPV08] showed
that it was possible to sample vectors according to this discrete Gaussian dis-
tribution using a short basis B of the lattice Λ. There is a requirement on the
width of the Gaussian σ related to the so called smoothing parameter. In sec-
tion 4 we detail this sampler and show, using KL-divergence that the condition
on the width σ can be reduced by a factor

√
2.

2.4 Hardness Assumptions

We can base the hardness of our IBE scheme on two assumptions that have
been previously used in the literature. The first assumption deals with NTRU
lattices and states that if we take two random small polynomials f, g ∈ Rq, their
quotient g/f is indistinguishable from random in Rq. This assumption was first
formally stated in [LTV12], but it has been studied since the introduction of
the NTRU cryptosystem [HPS98] in its computational form (i.e. recovering the
polynomials f and g from h). Despite more than fifteen years of cryptanalytic
effort, there has not been any significant algorithmic progress towards solving
either the search or decision version of this problem. As a side note, Stehle and
Steinfeld [SS11] showed that for large enough f and g generated from a discrete
Gaussian distribution, the quotient g/f is actually uniform in Rq. Thus if one
were to use larger polynomials, the NTRU assumption would be unnecessary.
Using smaller polynomials, however, results in much more efficient schemes.

The other assumption we will be using is the Ring-LWE assumption [LPR13a]
stating that the distribution of (hi, his+ ei), where hi is random in Rq and s, ei
are small polynomials, is indistinguishable from uniform. When the number of
such samples given is polynomial (with respect to the degree of s), the coefficients
of ei cannot be too small [AG11], however, if we only give one or two samples (as
is done for Ring-LWE encryption), there have been no specific attacks found if
the coefficients of s, e1, e2 are taken from a very small set like {−1, 0, 1}. In our
work, we choose to sample them from such a small set, but the scheme can be
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changed to sample from any other slightly larger set at the expense of slightly
increasing the size of the modulus. For the concrete parameter choices, we will be
using the standard methods of Gama and Nguyen [GN08] based on the currently
most efficient lattice reduction algorithms [CN11].

3 Optimizing the Master Key Generation

One of the most important parameters in the scheme is the Master Secret Key:
its size impacts the speed of the computations and, more importantly, the size
of the users’ secret keys. The smaller these secret keys will be, the more secure
and efficient the scheme is (with the additional advantage that these keys can be
sent more easily). While our scheme can be instantiated in any ring lattice, we
choose to work in the family of NTRU lattices because the Gram-Schmidt norm
of some bases are both small and easy to compute. In the end, this is what will
determine the size of the users’ secret keys.

3.1 The NTRU Lattices

Definition 3 (NTRU lattices). Let N be a power-of-two integer, q a positive
integer, and f, g ∈ R. Let h = g ∗ f−1 mod q. The NTRU lattice associated to
h and q is

Λh,q = {(u, v) ∈ R2|u + v ∗ h = 0 mod q}

Λh,q is a full-rank lattice of Z2N generated by the rows of Ah,q =

(
−AN (h) IN

qIN ON

)
.

This basis is storage-efficient since it is uniquely defined by a single polynomial
h ∈ Rq, however it proves to be a poor choice if one wants to perform standard
lattice operations. Assuming h is uniformly distributed in Rq, Ah,q has a very
large orthogonal defect.

This makes this basis not very appropriate for solving usual lattice problems
such as finding the closest lattice vector to a target point. However, as explained
in [HHGP+03], another basis can be found by computing F,G ∈ R such that:

f ∗G− g ∗ F = q (1)

Finding such (F,G) can be achieved efficiently and we describe one way (which is
not new) of doing it in Section 5. A short basis is then provided by the following
proposition.

Proposition 1. Let f, g, F,G ∈ R verifying (1) and h = g ∗ f−1 mod q. Then

Ah,q =

(
−A(h) IN
qIN ON

)
and Bf,g =

(
A(g) −A(f)
A(G) −A(F )

)
generate the same lattice.

Proof. Consider P = Ah,q ×B−1
f,g the change-of-basis matrix between Ah,q and

Bf,g. One can check that qP = O2N mod q, so P ∈ Z2N×2N . Also, | det(P)| = 1
so P−1 ∈ Z2N×2N . We can conclude that Ah,q and Bf,g both generate the same
lattice. 
�
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Definition 4 (Gram-Schmidt norm [GPV08]). Let B = (bi)i∈I be a fi-
nite basis, and B̃ = (b̃i)i∈I be its Gram-Schmidt orthogonalization. The Gram-
Schmidt norm of B is the value

‖B̃‖ = max
i∈I

‖b̃i‖

An interesting property of NTRU lattices is related to the Gram-Schmidt
norm of their bases: they can be small and can be computed quickly. These two
facts and their benefits for our scheme are discussed in the following subsection.

3.2 Bounding the Gram-Schmidt Norm

The lattice over which we do Gaussian sampling is Λh,q, and the size of the

secret keys we sample will be proportional to ‖B̃‖, where B is the basis of Λh,q

used in the Gaussian sampler. It is very important then that the Gram-Schmidt
norm ‖B̃‖ of B is as small as possible.

Proposition 1 tells us that Bf,g is a basis of Λh,q. The second step is to

compute its Gram-Schmidt norm ‖B̃f,g‖. For general lattices, this is done by
applying the Gram-Schmidt process to the basis and computing the maximum
length of the resulting vectors. In the case of NTRU lattices, however, Lemmas
2 and 3 allow to compute ‖B̃f,g‖ much faster, in time O(N log(N)) instead of
O(N3).

Lemma 2. Let Bf,g be as defined in Proposition 1, and b1, ...,b2N be the row

vectors of Bf,g. Then ‖B̃f,g‖ = max{‖b̃1‖, ‖b̃N+1‖}

Proof. For V a subspace of R2N and b ∈ R2N , let us denote ProjV(b) the
orthogonal projection of b over V. We also call r the linear isometry (f, g) �→
(x∗ f, x∗ g) (see the notations from Subsection 2.1), so that for any i � N , bi =
ri−1(b1) and bN+i = ri−1(bN+1). Let Vi = Span(b1, ...,bi)

⊥. By definition of
the Gram-Schmidt orthogonalization, for any i ∈ �1, 2N�, b̃i = ProjVi−1

(bi).
Moreover, one can check the two following properties:

– ‖ProjV(b)‖ � ‖b‖
– V ⊆ W ⇒ ‖ProjV(b)‖ � ‖ProjW(b)‖

From the first property comes the fact that for any i ∈ �1, N�, ‖b̃i‖ � ‖b1‖ =

‖b̃1‖. Proving ‖b̃N+i‖ � ‖b̃N+1‖ is a bit trickier. Since Span(b1, ...bN ) is stable
by r, so isVN . One can check thatProjVN

(bN+i) = ri−1(ProjVN
(bN+1)). Now

VN+i−1 ⊆ VN , so :
‖b̃N+i‖ = ‖ProjVN+i−1

(bN+i)‖ � ‖ProjVN
(bN+i)‖ = ‖ProjVN

(bN+1)‖ = ‖b̃N+1‖
Which concludes this proof. ��

Figure 1 illustrates the result of Lemma 2. Before the reduction, all the vectors
of each semi-basis are of the same size, but after the reduction, the largest vector
of B̃f,g is either b̃1 or b̃N+1.

Instead of computing 2N values ‖b̃1‖, ..., ‖b̃2N‖, there is now only two of them
to compute. We already know that ‖b̃1‖ = ‖b1‖, and we introduce a notation
which will provide us an expression for ‖b̃N+1‖.
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Fig. 1. Size of the vectors of B̃f,g before and after Gram-Schmidt reduction

Definition 5. Let f ∈ R′. We denote f̄ the unique polynomial in R′ such that
A(f)t = A(f̄). If f(x) =

∑N−1
i=0 fix

i, then f̄(x) = f0 −
∑N−1

i=1 fN−ix
i

This notation is only needed in the master key generation, to compute the Gram-
Schmidt norm of the basis as well as reducing (G,−F ) modulo (g,−f). The
following lemma gives an exact expression for ‖b̃N+1‖.

Lemma 3. ‖b̃N+1‖ =
∥∥∥( qf̄

f∗f̄+g∗ḡ ,
qḡ

f∗f̄+g∗ḡ

)∥∥∥
Proof. Let k = f̄∗F+ḡ∗G

f∗f̄+g∗ḡ mod (xN + 1) and write k(x) =
∑N−1

i=0 kix
i. Then

c
Δ
= bN+1−

N−1∑
i=0

kibi+1 = (G,−F )−(k∗g,−k∗f) =
(

qf̄

f ∗ f̄ + g ∗ ḡ
,

qḡ

f ∗ f̄ + g ∗ ḡ

)
is orthogonal to Span(b1, ...,bN ). By the uniqueness of the Gram-Schmidt de-
composition, c = b̃N+1 and the result follows. 
�

This enables us to compute ‖B̃f,g‖ only from (f, g), gaining some time when
generating the Master Key. Knowing (f, g) is enough to know almost instantly
whether the basis B̃f,g will be a good one for Gaussian sampling. After deriving

this formula for ‖B̃f,g‖, we ran experiments to compute it for different values of
N, q and initial vector b1.

For fixed values of ‖b1‖ and q, experiments show no correlation between the
dimension N and ‖B̃f,g‖. Moreover, they suggest that ‖b̃N+1‖ is actually pretty
close to its lower bound q/‖b1‖ (see Lemma 4 for the proof of this bound).
Both experiments and a heuristic indicate that the optimal choice for ‖b1‖ is
‖b1‖ ≈

√
qe
2 , since we then get ‖b̃N+1‖ ≈ ‖b̃1‖. And so in our experiments, we

sample b1 with a norm slightly bigger than
√

qe
2 ≈ 1.1658

√
q. The heuristic can

be found in the full version of this paper.
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√
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0
√
q 2

√
q

Norm of b1

N = 512, q = 1048576

‖b̃1‖
q/‖b1‖

◦

◦

◦
◦
◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦

◦
‖b̃N+1‖

√
q

√
q

√
qe/2

Norm of b1

N = 512, q = 1048576

‖b̃1‖
q/‖b1‖

◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦

◦
‖b̃N+1‖

Fig. 2. Values of candidates ‖b̃N+1‖ and ‖b̃1‖ for ‖B̃f,g‖, with N = 512, q = 220.
q/‖b1‖ is the lower bound for ‖b̃N+1‖ given in Lemma 4.

The following lemma provides a theoretical lower bound for ‖b̃N+1‖, given q
and ‖b1‖. In our case, ‖b̃N+1‖ is very close to its lover bound.

Lemma 4. Let B = (bi)1�i�2N be a NTRU basis. ‖b̃N+1‖ admits the following

lower bound: ‖b̃N+1‖ � q/‖b1‖.

Proof. We have | det(Bf,g)| = | det(B̃f,g)| =
N∏
i=1

‖b̃i‖. We know that | det(Bf,g)|

= qN and that for any k in �1;N�, ‖b̃i‖ � ‖b̃1‖ and ‖b̃N+i‖ � ‖b̃N+1‖. So
qN � ‖b1‖N‖b̃N+1‖N . 
�

With the results of these experiments, we can now design an efficient Master
Key Generator found in Section 5.

4 Optimizing the User Key Generation

Many arguments in lattice based cryptography are driven by a smoothing condi-
tion, that is that the parameter σ of some Gaussian is greater than the smoothing
parameter. We recall that DΛ,σ,c is defined in Definition 2.

Definition 6 (Smoothing parameter [MR07]). For any n-dimensional lat-
tice Λ and real ε > 0, the smoothing parameter ηε(Λ) is the smallest s > 0 such
that ρ1/s

√
2π,0(Λ

∗ \ 0) � ε. We also define a scaled version η′ε(Λ) =
1√
2π
ηε(Λ).

This is in particular the case for the correctness of the sampling algorithm
of [GPV08]: it is correct up to negligible statistical distance for any choice of
s = ω(

√
logn) · ‖B̃‖. A concrete sufficient condition to ensure λ-bits of security

was computed in [DN12a]
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Theorem 1 (Theorem 1 of [DN12a], Concrete version of [GPV08, Th.
4.1]). Let n, λ be any positive integers, and ε = 2−λ/(2n). For any basis B ∈
Zn×n, and for any target vector c ∈ Z1×n, Alg. 1 is such that the statistical
distance Δ(DΛ(B),σ,c, Gaussian Sampler(B, σ, c)) is less than 2−λ, provided:

σ ≥ ‖B̃‖ · η′ε(Z) where η′ε(Z) ≈
1

π
·

√
1

2
ln

(
2 +

2

ε

)
.

Algorithm 1. Gaussian Sampler(B, σ, c)

Require: Basis B of a n-dimensional lattice Λ, standard deviation σ > 0, center
c ∈ Zn

Ensure: v sampled in DΛ,σ,c

1: vn ← 0
2: cn ← c
3: for i← n, ..., 1 do
4: c′i ← 〈ci, b̃i〉/‖b̃i‖2
5: σ′

i ← σ/‖b̃i‖
6: zi ← SampleZ(σ′

i, c
′
i)

7: ci−1 ← ci − zibi and vi−1 ← vi + zibi

8: end for
9: return v0

The sub-algorithm SampleZ(σ′, c′) samples a 1-dimensional Gaussian DZ,σ′,c′ . This can
be achieved in various ways: rejection sampling, look-up tables, etc. For our imple-
mentation, we chose an hybrid method using the discrete Gaussian sampling from
[DDLL13] and “standard” rejection sampling.

Fig. 3. Description of Klein-GPV Gaussian Sampler

In this section, we sketch why the condition ε = 2−λ/(4N) can be relaxed to

ε ≤ 2−λ/2/(4
√
2N);

asymptotically square-rooting the minimal value of ε; this impacts the value of
η′ε(Z) by a factor

√
2, that is one can use the same algorithm with a standard

deviation σ shorter by a factor
√
2. To do so we rely on a finer grained mea-

sure of “distance”5 between distributions, called Kullback-Leibler Divergence
(or KL Divergence). Interestingly, this common notion from information theory,
has to our knowledge been used in cryptography only in the context of symmet-
ric key cryptanalysis [Vau03]. The use of KL Divergence recently found similar
application in lattice based Cryptography, namely for an enhanced implementa-
tion [PDG14] of Bliss [DDLL13]. It is defined as follows:

5 Technically it is not a distance: it is neither symmetric nor does it verifies the triangle
inequality.
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Definition 7 (Kullback-Leibler Divergence). Let P and Q be two distribu-
tions over a common countable set Ω, and let S ⊂ Ω be the support of P. The
Kullback-Leibler Divergence, noted DKL of Q from P is defined as:

DKL(P‖Q) =
∑
i∈S

ln

(
P(i)

Q(i)

)
P(i)

with the convention that ln(x/0) = +∞ for any x > 0.

For complements the reader can refer to [CT91]. We only require two essential
properties, additivity: DKL(P0 × P1‖Q0 ×Q1) = DKL(P0‖Q0) +DKL(P1‖Q1),
and the data processing inequality: DKL(f(P)‖f(Q)) ≤ DKL(P‖Q)).

Lemma 5 (Bounding Success Probability Variations [PDG14]). Let EP

be an algorithm making at most q queries to an oracle sampling from a dis-
tribution P and outputting a bit. Let ε ≥ 0, Q be a distribution such that
DKL(P‖Q) ≤ ε, and x (resp. y) denote the probability that EP (resp. EQ) outputs
1. Then,

|x− y| ≤ 1√
2

√
qε.

Concrete Security. This lemma lets us conclude that if a scheme is λ-bit secure
with access to a perfect oracle for distribution P , then it is also about λ-bit
secure with oracle access to Q if DKL(P‖Q) ≤ 2−λ.

To argue concrete security according to Lemma 5, consider a search problem
SP using oracle access to a distribution P , and assume it is not λ-bit hard; that
is there exists an attacker A that solve SP with probability p and has running
time less than 2λ/p; equivalently (repeating the attack until success) there exists
an algorithm A′ that solves SP in time ≈ 2λ with probability at least 3/4. Such
algorithms make q ≤ 2λ queries to P . If DKL(P‖Q) ≤ 2−λ, Lemma 5 ensures
us that the success of A′ against SQ will be at least 1/4; in other word if SQ is
λ-bit secure, SP is also about λ-bit secure.

Note that this applies to search problems only, therefore, it is unclear if it could
be directly applied to any CPA scheme: CPA security is a decisional problem, not
a search problem. Yet our IBE design makes this argument valid: we designed
encryption using key-encapsulation mechanism, the random key k being fed into
a hash function H ′ to one-time-pad the message. Modeling H ′ as a random
oracle, one easily proves that breaking CPA security with advantage p is as hard
as recovering k with probability p; which is a search problem. 
�

The point is that the KL Divergence is in some cases much smaller than statisti-
cal distance; and it will indeed be the case for Klein sampling as used in [GPV08]
and described in Fig. 3.

Theorem 2 (KL Divergence of the Gaussian Sampler). For any ε ∈
(0, 1/4n), if σ � η′ε(Z) · ‖B̃‖ then the KL Divergence between DΛ(B),c,σ and the

output of Gaussian Sampler(B, σ, c) is bounded by 2
(
1−

(
1+ε
1−ε

)n)2
≈ 8n2ε2.
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Proof. The probability that Klein’s algorithm outputs x = x̃ on inputs σ,B, c
is proportional to

n∏
i=1

1

ρσi,c′i(Z)
· ρσ,c(x̃)

for σi = σ/‖b̃i‖ and some c′i ∈ R that depends on c and B. as detailed
in [GPV08]. By assumption, σi ≥ ηε(Z), therefore ρσi,c′i(Z) ∈ [ 1−ε

1+ε , 1] · ρσi(Z)
(see [MR07, Lemma 4.4]). The relative error to the desired distribution (propor-

tional to ρσ,c(x̃)) is therefore bounded by 1 −
(

1+ε
1−ε

)n
; we can conclude using

Lemma 2 from [PDG14]. 
�

This last theorem implies that the condition ε ≤ 2−λ

4N of [DN12a] can be

relaxed to ε ≤ 2−λ/2

4
√
2N

which conclude this section.

5 The Schemes and Their Security Analysis

5.1 The IBE Scheme

We recall that an IBE scheme is composed of four algorithms: Master Keygen,
which generates the Master Keys, Extract, which uses the Master Secret Key
to generate users’ secret keys for any identity, Encrypt, which allows anybody
to encrypt a message for an user given the Master Public Key and the user’s
identity, and Decrypt which enables an user to decrypt the messages intended
to him with his secret key.

Algorithm 2. Master Keygen(N, q)

Require: N, q
Ensure: Master Secret Key B ∈ Z2N×2N

q and Master Public Key h ∈ Rq

1: σf = 1.17
√

q
2N

{σf chosen such that E[‖b1‖] = 1.17
√
q}

2: f, g ← DN,σf

3: Norm ← max
(
‖(g,−f)‖ ,

∥∥∥( qf̄
f∗f̄+g∗ḡ ,

qḡ
f∗f̄+g∗ḡ

)∥∥∥) {We compute ‖B̃f,g‖}
4: if Norm> 1.17

√
q, go to step 2

5: Using extended euclidean algorithm, compute ρf , ρg ∈ R and Rf , Rg ∈ Z such that
– ρf · f = Rf mod (xN + 1)
– ρg · g = Rg mod (xN + 1)

6: if GCD(Rf , Rg) = 1 or GCD(Rf , q) = 1, go to step 2
7: Using extended euclidean algorithm, compute u, v ∈ Z such that u ·Rf + v ·Rg = 1
8: F ← qvρg, G← −quρf

9: k =
⌊

F∗f̄+G∗ḡ
f∗f̄+g∗ḡ

⌉
∈ R

10: Reduce F and G: F ← F − k ∗ f, G← G− k ∗ g
11: h = g ∗ f−1 mod q

12: B =

(
A(g) −A(f)
A(G) −A(F )

)
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Here, B is a short basis of Λh,q, making it a trapdoor for sampling short ele-
ments (s1, s2) such that s1+s2∗h = t for any t, without leaking any information
about itself.

Algorithm 3. Extract(B, id)

Require: Master Secret Key B ∈ Z2N×2N
q , hash function H : {0, 1}∗ → ZN

q , user
identity id

Ensure: User secret key SKid ∈ Rq

1: if SKid is in local storage then
2: Output SKid to user id
3: else
4: t ← H(id) ∈ ZN

q

5: (s1, s2)← (t, 0) − Gaussian Sampler(B, σ, (t, 0)) {s1 + s2 ∗ h = t}
6: SKid ← s2
7: Output SKid to user id and keep it in local storage
8: end if

Algorithm 3 stores the secret key for each user that has made a query. The
reasons behind this choice, and alternatives are discussed in the full version of
this paper.

Algorithm 4. Encrypt(id,m)

Require: Hash functions H : {0, 1}∗ → ZN
q and H ′ : {0, 1}N → {0, 1}m, message

m ∈ {0, 1}m, Master Public Key h ∈ Rq , identity id
Ensure: Encryption (u, v, c) ∈ R2

q of m under the public key of id
1: r, e1, e2 ← {−1, 0, 1}N ; k ← {0, 1}N (uniform)
2: t← H(id)
3: u← r ∗ h+ e1 ∈ Rq

4: v ← r ∗ t+ e2 + �q/2� · k ∈ Rq

5: Drop the least significant bits of v: v ← 2�
⌊
v/2�

⌉
6: Output (u, v,m⊕H ′(k))

Note that encryption is designed using a key-encapsulation mechanism; the
hash of the key k is used to one-time-pad the message. If H ′ is modeled as
a random oracle, this makes the CPA security (a decisional problem) of the
scheme as hard as finding the key k exactly (a search problem). Basing the
security argument on a search problem is necessary for our KL Divergence-based
security argument to hold, as explained in Section 4.

In order for an user to decrypt correctly, y = r ∗ s1+ e2− e1 ∗ s2 must have all
its coefficients in (− q

4 ,
q
4 ), so we need to set q big enough. In practice, this gives

q � 5.1 · 106 for λ = 80, and q � 5.6 · 106 for λ = 192.
Dropping bits can also lead to incorrect decryption. However, for � � �log2 q�−

3, it doesn’t significantly affect the correct decryption rate of the scheme, so we
take this value of � as standard.
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Algorithm 5. Decrypt(MSid, (u, v, c))

Require: User secret key SKid, encryption (u, v, c) of m
Ensure: Message m ∈ {0, 1}N
1: w ← v − u ∗ s2
2: k ←

⌊
w
q/2

⌉
3: Output m← c⊕H ′(k)

The computations leading to these values of q and � can be found in the full
version of this paper.

The scheme described above is only CPA-secure. In practice, we would want to
make it CCA-secure by using one of the standard transformations (e.g. [FO99]).

5.2 Security Analysis of the IBE Scheme

We now use the techniques in [GN08, CN11, DDLL13] to analyze the concrete
security of the scheme. The way lattice schemes are analyzed is to determine the
hardness of the underlying lattice problem, which is measured using the “root
Hermite factor” introduced in [GN08]. If one is looking for a vector v in an
n-dimensional lattice that is larger than the nth root of the determinant, then
the associated root Hermite factor is

‖v‖
det(Λ)1/n

= γn (2)

If one is looking for an unusually-short planted vector v in an NTRU lattice, then
the associated root Hermite factor, according to the experiments in [DDLL13] is√

n/(2πe) · det(Λ)1/n
‖v‖ = .4γn. (3)

Based on the results in [GN08, CN11], one can get a very rough estimate of the
hardness of the lattice problem based on the value of γ (unfortunately, there
has not been enough lattice cryptanalysis literature to have anything more that
just a rough estimate). For values of γ ≈ 1.007, finding the vector is at least
280-hard. For values less that 1.004, the problem seems completely intractable
and is approximated to be at least 192-bits hard.

The most vulnerable part of our IBE scheme will be the actual encryption.
Still, we will first run through the best attacks on the master public key and user
secret keys because these correspond exactly to attacks on the key and signature
forgery, respectively, in the hahs-and-sign digital signature scheme. Our master
public key polynomial h is not generated uniformly at random, but rather as
g ∗ f−1. The best-known attack for distinguishing an NTRU polynomial from
a random one is to find the polynomials f, g that are “abnormally short”. This
involves finding the short f and g such that h ∗ f − g = 0 mod q. This is equiv-
alent to finding the vector (f, g) in a 2N -dimensional lattice with determinant
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qN . From Section 3, we know that the euclidean norm of the vector (f, g) is
approximately 1.17

√
q and so calculating the value of γ using (3), we get√

2N/(2πe) · √q
1.17

√
q

= .4γ2N =⇒ γ = (
√
N/1.368)1/2N ,

which is 1.0054 for N = 256 and 1.0027 for N = 512, which is already beyond
the realm of practical algorithms. The secret user keys (s1, s2) are generated
with standard deviation of about σ = 1.17η′ε(Z) · ‖B̃‖, which gives σ = 1.5110

√
q

for N = 256 (resp. σ = 2.2358
√
q for N = 512), and so the vector has length

σ
√
2N , which by (2) results in a value of γ,

σ
√
2N

√
q

= γ2N =⇒
{
γ = (2.137

√
N)1/2N for N = 256

γ = (3.162
√
N)1/2N for N = 512

which is 1.0069 for N = 256 and 1.0042 for N = 512.
We now move on to the hardness of breaking the CPA-security of the scheme.

Encryption (disregarding the message) consists of (u = r ∗h+ e1, v = r ∗ t+ e2),
where the coefficients of r, e1, e2 have coefficients chosen from {−1, 0, 1}. In order
to avoid decryption errors, the value of the modulus q has to be set fairly high
(see Table 1). The best-known attack against the encryption scheme involves
essentially recovering the errors e1, e2. From the ciphertext (u, v), we can set
up the equation (t ∗ h−1) ∗ e1 − e2 = (t ∗ h−1) ∗ u − v mod q, which can be
converted into the problem of finding the 2N + 1-dimensional vector (e1, e2, 1)
in a 2N + 1-dimensional lattice with determinant qN . Using (3), we get√

2N/(2πe) · √q
‖(e1, e2, 1)‖

= .4γ2N =⇒ γ = (.74
√
q)1/2N ,

which gives us γ = 1.0075 for N = 512 and γ = 1.0044 for N = 1024.

5.3 Analysis of the Signature Scheme

In our signature scheme, the Keygen is provided by Algorithm 2, Signature by
Algorithm 3 and Verification by checking the norm of (s1, s2) as well as the
equality s1 + s2 ∗ h = H(message). Since there is no encryption, we can discard
the CPA-security analysis at the end of the previous section, as well as the issues
regarding correctness of the encryption. This leads to much smaller values for N
and q, which can be found in the Table 3 of Section 1.

We now analyze the bitsize of the secret key, public key and signature. The
public key is h ∈ Rq, as well as the signature s1, so their bitsizes are N�log2 q�.
The secret key is f such that f ∗h = g mod q. Given the procedure to generate
b1 = (f, g), with high probability each coefficient of f has absolute value at most
equal to 6σf (if it isn’t the case, one just need to resample the coefficient). f can
therefore be stored using N(1 + �log2(6σf )�) bits, where σf = 1.17

√
q

2N .6

6 Using Huffman coding, as in BLISS [DDLL13], may also be appropriate here for
reducing the key length by several hundred bits.
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[PG13] Pöppelmann, T., Güneysu, T.: Towards practical lattice-based public-
key encryption on reconfigurable hardware. In: Lange, T., Lauter, K.,
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Abstract. Semantic-security of individual plaintext bits given the corre-
sponding ciphertext is a fundamental notion in modern cryptography. We
initiate the study of this basic problem for Order-Preserving Encryption
(OPE), asking “what plaintext information can be semantically hidden
by OPE encryptions?” OPE has gained much attention in recent years
due to its usefulness for secure databases, and has received a thorough
formal treamtment with innovative and useful security notions. How-
ever, all previous notions are one-way based, and tell us nothing about
partial-plaintext indistinguishability (semantic security).

In this paper, we propose the first indistinguishability-based security
notion for OPE, which can ensure secrecy of lower bits of a plaintext
(under essentially a random ciphertext probing setting). We then justify
the definition, from the theoretical plausibility and practicality aspects.
Finally, we propose a new scheme satisfying this security notion (the first
one to do so). In order to be clear, we note that the earlier security no-
tions, while innovative and surprising, nevertheless tell us nothing about
the above partial- plaintext indistinguishability because they are limited
to being one-way-based.

Keywords: Order-preserving encryption, secure encryption, security
notions, indistinguishability, foundations.

1 Introduction

Securing cloud database with untrusted cloud servers needs to hide information
from the database manager itself, and has resulted in new research areas.

Order-Preserving Encryption (OPE): This is, perhaps, the most promis-
ing new primitives in the area of encrypted database processing [1,17,3,7,8,28].
It is a symmetric encryption over the integers such that ciphertexts preserve
the numerical orders of the corresponding plaintexts. That is, ∀m,m′{m <
m′ ⇒ EncK(m) < EncK(m′)}. OPE was originally studied in an ad-hoc fashion
in the database community by Agrawal, Kiernan, Ramakrishnan, Srikant and
Xu [1], and seemed like a clever heuristics. However, its careful foundational
study was initiated with surprising formal cryptographic models and proofs by

P. Sarkar and T. Iwata (Eds.): ASIACRYPT 2014, PART II, LNCS 8874, pp. 42–61, 2014.
c© International Association for Cryptologic Research 2014



Order-Preserving Encryption Secure Beyond One-Wayness 43

Boldyreva, Chenette, Lee, and O’Neill [7,8].Overall, it has received much recent
attention in the cryptographic community [7,8,28], in the database community
[1,17,3], as well as in other applied areas.

OPE is attractive since it allows one to simultaneously perform very efficiently
over encrypted data numerous fundamental database operations: sorting, simple
matching (i.e., finding m in a database), range queries (i.e., finding all messages
m within a given range {i, . . . , j}), and SQL operations [1,20,21,23]. Further-
more, OPE is more efficient than these other primitives. For instance, the sim-
ple matching operation realized by OPE only requires logarithmic time in the
database size [1], while the same operation realized by, say, searchable encryption
[9,22], needs linear time in the size, which is too costly for a database containing
a few millions data items.

Security of OPE: Despite its importance, security of OPE is far from being
understood at this time. Even the most fundamental problem: “what plaintext
information can be semantically hidden” is open. This is important. Imagine the
following ”string embedding” problem: we concatenate numerical strings to get
a larger number and we have degree of freedom in this concatenation, don’t we
want to hide the most crucial string by embedding it at a location within the large
number which hides it better than otherwise? Hasn’t this very issue (partial in-
formation security in a ciphertext) been at the heart of cryptographic formalisms
of encryption technologies in the last 30 years or so? Indeed, a naturally defined
indistinguishability notion for OPE, indistinguishability under ordered CPA at-
tack (IND-O-CPA) [7], was not only unachievable but it was shown that any
OPE under this notion is broken with overwhelming probability if the OPE
scheme has a super-polynomial size message space. (And if the message space is
only polynomial size, an OPE scheme completely loses its utility, of course.)

OPE Is an Inherently “Leaky” Method: The reason behind the above
negative result is that an OPE scheme has to reveal something about plaintexts
other than their order, i.e., information about the distance between the two
plaintexts. By definition (as stated above), an OPE scheme’s encryption function
EncK has to satisfy the monotone increasing property, m0 < m1 ⇒ EncK(m0) <
EncK(m1). Hence, the difference EncK(m1)−EncK(m0) of two ciphertexts has to
become noticeably large if the difference m1−m0 of the corresponding plaintexts
becomes large. The negative result of [7] mentioned above is, in fact, proved using
an attack based on this observation.

To date, no one can tell what exactly OPE must leak and what it can protect.
Our motivation is the fact that the existing security notions are not really helpful
in understanding this simple basic question. If we have started to take the formal
approach to the problem, why should we stop short of answering such a question?
Here are a few notions to date:

IND-O-CPA [7]: It is similar to the LOR-based indistinguishability notion [4]
for symmetric key encryption, except that queries of the adversary have to satisfy
some order-preserving property. This notion is natural but as we stated above,
it is not achievable for schemes with a super-polynomial size message space [7].
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POPF-CCA [7]: This is a very important notion which says that a CCA adver-
sary cannot distinguish a pair of an encryption and decryption oracles from a pair
of an order-preserving random oracle and its inverse. This notion is natural and
therefore should be further studied. But currently, nothing is known about what
partial information it can hide and what it cannot hide, as pointed out in [8].

(r, q+1)-WOW [8] (Window One-Wayness): It says that1 no adversary, who
gets q + 1 encryptions C∗, C1, . . . , Cq of uniformly randomly selected unknown
messages, can find an interval I of length ≤ r satisfying DecK(C∗) ∈ I. This
notion is important since it captures the following natural database setting:
Randomly selected q+1 elements stored in a database system in their encrypted
form and an adversary A who wants to know one of them breaches the database
and gets all the ciphertexts in it. This notion, however, does not ensure anything
about the secrecy of internal plaintext partial information, since it is “one-way-
based” in nature.

(r, q + 1)-WDOW [8]: It is another one-way-based notion defined in [8]. Since
it is one-way-based, it also does not tell us what partial information about the
plaintexts is hidden.

1.1 Our Contributions

This paper presents the first attempt to give a new perspective to the funda-
mental open problem: “go beyond one-wayness security and investigate what
internal plaintext partial information OPE can hide.” Here (while respecting
earlier important works on the subject) we propose the first achievable indis-
tinguishability notion for OPE regarding partial plaintext information hiding.
More specifically: we show that our notion can assure secrecy of lower bits of a
plaintext in the same natural settings as WOW [8].

Our Security Notion — (X , θ, q)-indistinguishability: It is defined based on
(r, q + 1)-WOW [8]. But since WOW is inherently one-way-based, our security
notion is defined as a “hybrid” of WOW and indistinguishability as follows.
Consider the same database setting as WOW, where an honest entity (not the
adversary!) stores q + 1 his data elements m∗,m1, . . . ,mq in their encrypted
forms in a database and an adversary A, who wants to get knowledge of m∗,
breaches the database system and gets all ciphertexts in it. Above, the messages
m1, . . . ,mq have been selected according to given distributions X1, . . . ,Xq.

The difference from WOW is that m∗ has been selected as follows: two mes-
sages m∗

0 and m∗
1 are generated using a polynomial time machine Mg called

message generator, and set m∗ ← m∗
b , where b is a random bit hidden from A.

For X = (Xi)i=1,...,q, an OPE scheme is called (X , θ, q)-indistinguishable if
the advantage of A in the above game (guessing the bit b beyond probability
1/2) is negligible for any A and for any Mg whose output satisfies

|m∗
1 −m∗

0| ≤ θ. (1.1)

1 Here we adopt the simpler definition of the window one-wayness notion given in
Appendix B of the full paper of [8], which can be reduced to the definition of Section
3 of that paper and and vise versa.
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Restriction (1.1) enables us to avoid the known attack [7] since it applies only
when the distance between m∗

0 and m∗
1 is large.

Our Results: We will show in Section 2 the following fact:

Fact 1 (informal). If an OPE scheme satisfies (X , θ, q)-indistinguishability,
the least significant �log2 θ� bits of a plaintext are hidden from the adversary in
the above database setting.

We then propose a new OPE scheme Ēk,θ based on a pseudo-random function
PRF and show the following facts in Section 4. Below, X1, . . . ,Xq are distributions
on [1..M ] such that they are independent from one another and one can take a
sample from Xi in time polynomial in λ.

Theorem 2 (informal). Let β and t be constants satisfying 0 < t < β ≤
1. Suppose that the message space size M is super-polynomial in the security
parameter λ. Then, for any X = (Xi)i satisfying ∀i : H∞(Xi) ≥ β log2M , Ēk,θ
satisfies (X ,M t, q)-indistinguishability under the condition that PRF is secure.

Remarks: First, our security notion does not ensure the secrecy of higher bits
of the plaintext, and, in fact, there is no known scheme which can ensure their
secrecy, since the scheme of [7] also reveals its high order bits [8]. Second, since
any distribution Y on [1..M ] satisfies 0 ≤ H∞(Y) ≤ log2M , the condition
H∞(Xi) ≥ β log2M means that the ratio of H∞(Xi) to the maximum log2M
has to be more than β. Third, Theorem 2 requires that the message space size
M is super-polynomial in λ: which is exactly the same condition assumed by
Boldyreva et.al.[8] to get their results. Fourth, Theorem 2 shows stronger security
when t is closer to β, though the advantage bound decrease is slower in this case.

Due to the above results, we can conclude the following crucial facts:

Knowledge of X : Theorem 2 only requires X to satisfy the entropy bound.
Hence, we can show (X , θ, q)-indistinguishability even when we do know the tuple
X of message distributions completely in advance. This fact is very important
because the complete knowledge of X is not realistic in a central application,
like the secure database above, when, for instance, plaintexts are names of new
students (with the lexicographic order) or scores of some examination.

Fraction t < β of Lower Bits Are Hidden: Due to Fact 1, (X ,M t, q)-
indistinguishability implies secrecy of the least significant �logM t� bits of a
plaintext. Since the maximum bit length of a message in the message space [1..M ]
is �log2M� + 1, Theorem 2 shows that our scheme with the above parameters
can ensure secrecy of the fraction

�logM t�
�log2M�+ 1

≈ t < β (1.2)

of the least significant bits of a plaintext. The above secrecy can be shown even
when we do not have complete knowledge of plaintext distributions.
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Any Fraction of Low-Order Bits Are Hidden in the Uniform Distri-
bution Case: In the most significant case where plaintexts distribute uniformly
at random, Theorem 2, in particular, shows that our scheme can ensure secrecy
of any fraction of the least significant bits of the plaintext because the maxi-
mum log2M of the min-entropy is achieved by the uniform distribution and we
therefore can set β to 1 in this case.

Allowing Decryption Queries: As in [8], we can naturally make our scheme
secure even when we allow the adversary to make decryption queries at any time,
using the “Encrypt-then-Mac” composition (adding MAC data) [5].

Open Problem:We can show that our scheme satisfies EncK(m+1) = EncK(m)
+ 1 with high probability. Hence, an adversary can break the scheme if she can
get EncK(m∗

b+ (small value)), where (m∗
0,m

∗
1) is a challenge query of her. (Our

proof for Theorem 2 ensures that she can get it only with negligible probability.)
Designing a scheme ensuring security for this case is an important open problem.

Finally, we give a note about the construction of our scheme. Since Boldyreva
et.al. [7] already gave a natural security notion, POPF-CCA, one important ap-
proach to study indistinguishability of OPE is to show that POPF-CCA implies
some indistinguishability notion, such as ours. However, we take a different ap-
proach in this paper because currently, we do not have much knowledge about the
random order-preserving function used in the definition of POPF-CCA, which
means that showing our security notion based on POPF-CCA seems to us to be
hard. Rather, we define a specific scheme Ēk,θ designed for showing our security
notion. Showing some indistinguishability results for the more natural security
notion, POPF-CCA, is, of course, of independent interest and we leave it as an
important open problem.

1.2 Other Security Notions

We also introduce two more security notions for OPE.

(k, θ)-FTG-O-nCPA: This is an (artificial) variant of an indistinguishability
notion. We will give the definition of it in Section 3 and show that this notion
with suitable parameter implies (X , θ, q)-indistinguishability for any X = (Xi)i
such that H∞(Xi) is larger than the predetermined constant. We then use this
fact to show (X , θ, q)-indistinguishability of our proposed scheme.

WOWM — Stronger Variant of WOW [8]: Informally, (r, q + 1)-WOWM
says that no adversary given EncK(m∗), and (mi,EncK(mi))i=1,...,q can find an
interval I of length ≤ r satisfying m∗ ∈ I. This is stronger than (r, q+1)-WOW
because it allows an adversary to watch (mi)i while (r, q + 1)-WOW prohibits
her from doing this.

We will show in Section 5 the following facts. The (X , θ, q)-indistinguishability
notion with suitable parameters implies (r, q + 1)-WOWM. For any constant
0 ≤ ρ < 1, our scheme with suitable parameters satisfies (Mρ, q + 1)-WOWM
(and therefore (Mρ, q + 1)-WOW).
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1.3 Comparison with Known Results [7,8]

First, we clarify what our results owe to [8]: we consider the same natural
“database as a service” setting of WOW as described in Section 1.1, and our
results are shown under the same condition as WOW [8], that is, the message
space size M is super-polynomial in λ. (Note that, technically, our proposed
scheme owes the excellent “lazy sampling” of [7] as well.)

Next, we clarify the difference of them. The earlier results on OPE are indeed
remarkable and opened the door to our investigation, but there are some crucial
differences which we would like to point out explicitly.

About Our Security Notion: (X , θ, q)-indistinguishability of the scheme [7]
is unknown, because our goal is newly defined. Moreover, we can prove that the
known scheme [7] cannot satisfy (Uq,M t, q)-indistinguishability for t > 1/2. (See
our full paper for the proof.)

Our scheme achieves (Uq,M t, q)-indistinguishability for any 0 ≤ t < 1, where
Uq was the tuple of the uniform distributions on the message space. This means
that it can hide (in the sense of semantic security) any fraction t of the least
significant bits of a plaintext in our setting with uniformly randomly selections
of plaintexts. Even when plaintext distributions are not the uniform ones, the
scheme can hide fraction t < β of lower bits of a plaintext. (β is determined
depending on the min-entropy measure of other plaintexts).

About WOW [8]: The known best result [8] is (1, q)-WOW security of the
scheme of [7]. But it is proved that this scheme cannot achieve (Mρ, q+1)-WOW
[8] for any ρ > 1/2. In contrast, for any constant 0 ≤ ρ < 1, our scheme with
suitable parameters can satisfies (Mρ, q+1)-WOWM (and therefore (Mρ, q+1)-
WOW, in particular).

Finally, we describe the POPF-CCA notion given in the seminal work [7].

About POPF-CCA [7]: POPF-CCA is very important notion which can en-
sure indistinguishability from an ideal object, while our security notion cannot
ensure it. Hence, POPF-CCA, as a notion, is more natural and has much po-
tential like other real-vs-ideal definitions and it can ensure security in lots of
situations while ours can ensure it in the specific situation described before.
E.g. our notion can ensure nothing when an adversary knows EncK(m) and
EncK(m+ 1) while POPF-CCA can ensure something even in this situation. In
particular, our notion does not imply POPF-CCA and therefore, POPF-CCA
has independent interest.

But currently and unfortunately, nothing is known about what POPF-CCA
can hide and what it cannot hide, as pointed out in [8]. This is the motivation be-
hind our entire investigation. Our result is the first positive result in the sense of
indistinguishability. Showing some indistinguishability for a more natural notion
like, say, POPF-CCA, is an important open issue.

1.4 Other Related Works

Property preserving encryptions [18,2,10] was introduced by Pandey and Rouse-
lakis [18] as a variants of the OPE. Although the security notions for this scheme
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can be the same as for OPE, almost the same attack as that of [7] can break
any OPE scheme under these security notions when the scheme has a super-
polynomial size message space. See our full paper for the details.

CEOE and MOPE schemes (introduced by Boldyreva, Chenette, Lee, and
O’Neill [8]), mOPE and stOPE schemes (introduced by Popa, Li, and Zeldovich
[19]), and GOPE schemes (introduced by Xiao and Yen [25]) achieve stronger
security than OPE by sacrificing some of their functionalities, by allowing inter-
actions, or by considering restrictive cases, respectively. Comparable encryption
schemes (introduced by Furukawa [12,13]) consider an encrypted database where
the database manager can search messages m satisfying m > u on behalf of a
user if a key Ku depending on u is given from the user as a query. These notions
are of independent interests, some may require further formalizations, and are
all beyond the scope of this work.

Yum, Kim, Kim, Lee and Hong [28] propose a more efficient method to com-
pute the encryption and decryption functions of the known scheme [7]. Xiao, Yen,
and Huynh [27] study OPE in a multi-user setting. Xiao and Yen [26] estimates
the min-entropy of a plaintext encrypted by the known scheme [7].

2 (X , θ, q)-indistinguishability

We introduce notations and terminology and then define our security notion.

Intervals: For integers a and b ≥ a, interval [a..b] is the set {a, . . . , b}. [b], (a..b],
[a..b), and (a..b) denote [1..b], [a+1..b], [a..b− 1], and [a+1..b− 1], respectively.

Order-Preserving Encryption: An OPE scheme is a symmetric key encryp-
tion E = (Kg,Enc,Dec) whose message space M and ciphertext space are inter-
vals in N and which satisfies m < m′ ⇒ EncK(m) < EncK(m′) for ∀m,m′ ∈ M
and ∀K ← Kg(1λ). Here “<” represents the numerical order. Throughout this
paper, we assume w.l.o.g. that M can be written as [1..M ].

Definition 3 ((X , θ, q)-indistinguishability). Let λ, E = (Kg,Enc,Dec), θ =
θ(λ) > 0, and q = q(λ) > 0 be a security parameter, an OPE scheme, a real
number, and a polynomial respectively and X = (Xi)i∈[1..q] be a tuple of distri-
butions on the message space of E . E is said to be (X , θ, q)-indistinguishable if
for any polynomial time machine Mg (called message generator) whose outputs
(m∗

0,m
∗
1, info) satisfies

m∗
0 < m∗

1, |m∗
1 −m∗

0| ≤ θ (2.1)

and any polynomial time adversary A, Adv.Exp
(X ,θ,q)-indis.
E (Mg,A) =

|Pr[Exp(X ,θ,q)-indis.
E (Mg,A, 1) = 1]− Pr[Exp

(X ,θ,q)-indis.
E (Mg,A, 0) = 1]| is negligi-

ble. Here Exp
(X ,θ,q)-indis.
E (Mg,A, b) is defined as follows.

K ← Kg(1λ), (m∗
0,m

∗
1, info) ← Mg(1λ),m1

$← X1, . . . ,mq
$← Xq,

d← A(EncK(m∗
b ), (mi,EncK(mi))i∈[1..q], info),Return d.
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Remarks: First, when we consider the above notion, the probability that mi ∈
[m∗

0..m
∗
1] has to be negligible because otherwise, an OPE scheme under the above

notion is broken by an adversary simply by checking EncK(m∗
b) > Enck(mi). This

condition will be automatically satisfied in our theorems due to the selection of
parameters of our scheme. Second, due to the bit string info moving between the
parties, we can re-interpret the above definition as Mg and A being the “guess
and find stages” of a single adversary (Mg,A) where info is her state.

Low-Order Bits Can be Hidden: Our security notion ensures the secrecy
of the least significant �log2 θ� bits of a plaintext, due to the following: Let
L = �log2 θ� and take any (maximal) interval I satisfying the following theorem:
for any two elements of I, all of their bits except the least significant L bits are
the same. That is, I can be written as I = {2Lu + x | x ∈ [0..2L − 1]} for some
u. By definition the length of I is not more than θ.

Then, our security notion, in particular, ensures that any element m∗
0 of I is

indistinguishable from that of a uniformly random element m∗
1 of I, because our

condition (1.1) is satisfied due to the definition of I. Since the least significant L
bits of uniformly random element m∗

1 of I distribute uniformly at random on the
L-bit space [0..2L− 1], the indistinguishability of m∗

0 and m∗
1 can ensure secrecy

of the least significant L bits of m∗
0.

3 (k, θ)-FTG-O-nCPA

In this section, we introduce a security notion, (k, θ)-FTG-O-nCPA, and using
it, we give a sufficient condition for (X , θ, q)-indistinguishability.
(k, θ)-FTG-O-nCPA: It is Find-Then-Guess [4] type indistinguishability for
nCPA adversary whose queries satisfy the conditions (3.1), . . . (3.4) described
later. Here nCPA (non-adaptive CPA) [16,14,15] is a type of attack where the
adversary is required to output encryption queries m1, . . . ,mq and challenge
query (m∗

0,m
∗
1) together at the same time and gets their answers thereafter.

Definition 4 ((k, θ)-FTG-O-nCPA). For real numbers k = k(λ) > 0 and θ =
θ(λ) > 0, an OPE E is said to be (k, θ)-FTG-O-nCPA secure if for any polyno-

mial time adversaryA = (Afind,Aguess), the advantage Adv.Exp
(k,θ)-FTG-O-nCPA
E (A)

= |Pr[Exp(k,θ)-FTG-O-nCPA
E (A, 1) = 1]−Pr[Exp

(k,θ)-FTG-O-nCPA
E (A, 0) = 1]| is neg-

ligible. Here Exp
(k,θ)-FTG-O-nCPA
E (A, b) is defined as follows (below, q is an arbi-

trary number selected by A):

K ← Kg(1λ), ((m∗
0,m

∗
1), (mi)i∈[1..q], st) ← Afind(1

λ),

d← Aguess(EncK(m∗
b), (EncK(mi))i∈[1..q], st),Return d.

(m∗
0,m

∗
1) and m1, . . . ,mq are called a challenge query and encryption queries

respectively. The output of A has to satisfy the following (3.1), (3.2), and (3.3).
We also assume (3.4) throughout this paper w.l.o.g.
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∀i : mi < m∗
0 ⇔ mi < m∗

1, (3.1)

|m∗
0 −m∗

1| ≤ θ, (3.2)

∀d ∈ {0, 1}, ∀i : |m∗
d −mi| ≥ kθ. (3.3)

m∗
0 < m∗

1 (3.4)

Above, (3.1) requires the order preserving property, (3.2) requires the same con-
dition as (X , θ, q)-indistinguishability, and (3.3) requires the distance |m∗

d −mi|
has to be bigger than the given constant kθ for any d and i. (3.3) is required
because without it, an adversary can take (m∗

0,m
∗
1) and m1 such that |m∗

1−m1|
is much larger than |m∗

0 −m1| (when θ is big. Say, take any m∗
0 and set m∗

1 ←
m∗

0 + θ and m1 ← m∗
0 − 1). Then, since OPE reveals information about the

distance between the two plaintexts, an adversary can know b by checking
|EncK(m∗

b )− EncK(m)|.
Sufficient Condition: Using (k, θ)-FTG-O-nCPA, we can give the following
sufficient condition for (X , θ, q)-indistinguishability. Below, λ, E , q = q(λ) are
a security parameter, an OPE scheme on a message space [1..M ], and a poly-
nomial respectively. X1, . . . ,Xq are distributions on [1..M ] such that they are
independent from one another and one can take a sample from Xi in time poly-
nomial in λ. (M and X can depend on λ.) A and Mg denote an adversary and
a message generator for (X , θ, q)-indistinguishability respectively and B denotes
an adversary for (k, θ)-FTG-O-nCPA.

Theorem 5 (Sufficient Condition for (X , θ, q)-indistinguishability). Let
β > 0 be any constant. For k = k(λ) > 0, θ = θ(λ) > 0, if

∀i ∈ [1..q] : H∞(Xi) ≥ β log2M (3.5)

holds for any λ, then ∀Mg∀A∃B :

Adv.Exp
(X ,θ,q)-indis.
E (Mg,A) ≤ Adv.Exp

(k,θ)-FTG-O-nCPA
E (B) + O

(
qkθ

Mβ

)
. (3.6)

We next give two notes reg. Theorem 5. First, as in Theorem 2, condition (3.5)
means that the ratio of H∞(Xi) to the maximum log2M has to be more than β.
Second, the right hand side of (3.6) is negligible only when kθ/Mβ is negligible.
We will show that kθ/Mβ is, in fact, negligible (for suitable parameters k and θ
we will choose) in the proof of Theorem 7, which uses the above theorem.

Proof. For Mg and A for (X , θ, q)-indistinguishability, consider an adversary

B for (k, θ)-FTG-O-nCPA which takes (m∗
0,m

∗
1, info) ← Mg(1λ) and m1

$←
X1, . . . ,mq

$← Xq, makes query ((m∗
0,m

∗
1), m1, . . . ,mq), gives info and an an-

swer to the query to A, and produces the output of A.
Let I be the interval (m∗

0 − kθ..m∗
1 + kθ). The above B will violate constraint

(3.3) if mi ∈ I holds for some i. But the probability that mi ∈ I holds for some
i is

∑
i∈[1..q] Pr[mi ← Xi : mi ∈ I] ≤ (length of I) ·

∑
i∈[1..q] maxx∈I Pr[mi ←

Xi : mi = x] ≤
∑

i∈[1..q]
(2k+1)θ

2H∞(Xi)
≤ O

(
qkθ
Mβ

)
. When mi /∈ I holds, (3.1) is also

satisfied. Moreover (2.1) implies (3.2). Thus, Theorem 5 follows. 
�
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4 Our Scheme

4.1 Our Goal

This section is devoted to constructing our scheme Ēk,θ satisfying the following
theorem: Below, A and B are adversaries for (k, θ)-FTG-O-nCPA and PRF re-
spectively, λ is a security parameter, and neg(·) is some negligible function which
is determined independently of (k, θ,A).

Theorem 6 ((k, θ)-FTG-O-nCPA of Ēk,θ). For k, θ > 0, ∀A∃B :

Adv.Exp
(k,θ)-FTG-O-nCPA

Ēk,θ
(A) ≤ O

(
1√
k

)
+ Adv.ExpPRF(B) + neg(λ) (4.1)

holds when k → ∞. (The value θ does not affect the advantage bound.)
Moreover, the computational costs of algorithms of Ēk,θ and the ciphertext

length of it are within polynomial of log k, log θ, logM , and λ, where M is the
size of the message space [1..M ].

Due to Theorem 5, our scheme satisfies the following theorem as well. Below,
M is the size of message space [1..M ] of our scheme Ēk,θ, q = q(λ) is a polynomial,
and X1, . . . ,Xq are distributions on [1..M ] such that they are independent from
one another and one can take a sample from Xi in time polynomial in λ, neg(·) is
some negligible function, A and Mg are an adversary and a message generator for
(X ,M t, q)-indistinguishability, B is an adversary for PRF, and Adv.ExpPRF(B) is
an advantage of B in the experiments of PRF.

Theorem 7 ((X , θ, q)-Indistinguishability of Our Scheme, Formal Ver-
sion of Theorem 2). Let 0 < β ≤ 1 be any constant. Suppose that X =
(X1, . . . ,Xq) satisfies

∀i ∈ [1..q] : H∞(Xi) ≥ β log2M. (4.2)

Then, for any constant 0 < t < β(≤ 1), our scheme Ēk,θ with suitable (k, θ)
(depending on (M,β, t)) satisfies ∀Mg∀A∃B :

Adv.Exp
(X ,Mt,q)-indis.

Ēk,θ
(Mg,A) ≤ O

(
q

M
β−t
3

)
+ Adv.ExpPRF(B) + neg(λ). (4.3)

Moreover, the computational costs of algorithms of Ēk,θ and the ciphertext
length of it are within polynomial of t, β, logM , and λ.

The right hand sides of (4.3) becomes negligible under the condition that the
message space size M is super-polynomial in λ.

Reduction from Theorem 7 to Theorem 5 and 6: Theorem 7 follows if we
set parameters (k, θ) of our scheme Ēk,θ as

(k, θ) = (M2(β−t)/3,M t) (4.4)
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because in this case, terms of (3.6) and (4.1) becomeO
(

qkθ
Mβ

)
= O( qM

2(β−t)/3 ·Mt

Mβ )

= O( q
M(β−t)/3 ) and O( 1√

k
) = O( 1

M(β−t)/3 ). They are negligible when M → ∞
because the constants t and β satisfy the condition 0 < t < β ≤ 1 of Theorem 7.
The computational costs of algorithms in our scheme and the ciphertext length
of it are polynomial in logM even when parameters are set as in (4.4), due to
the latter part of Theorem 6 and the condition 0 < t < β ≤ 1. 
�

4.2 Scheme Ek,θ with Polysize Message Space

The goal of this section is designing an OPE scheme Ek,θ whose advantage bound
regarding (k, θ)-FTG-O-nCPA is given in Theorem 6. But the message space
size M of Ek,θ must be bounded by some polynomial in the security parameter
λ. (Hence, e.g. the upper bound (4.3) of an advantage for this scheme is not
negligible although the bound itself holds even for this scheme.) We stress that
Ek,θ is not our proposed scheme.

The scheme Ek,θ does not use PRF although Theorem 6 refers to it and the
discussion in this subsection is purely information theoretic ones. The PRF will
be used to design our proposed scheme Ēk,θ in the next subsection.

Ideas behind Construction. The scheme Ek,θ is constructed based mainly
on three ideas. Firstly, we write an OPE encryption EncK(m) on a message
space [1..M ] as EncK(m) = R +

∑
i∈[2..m] δi, where R = EncK(1) and δi =

EncK(i)− EncK(i− 1). Then, a design of an OPE encryption can be reduced to
the selections of R and (δi).

Secondly, we take some values j0, j1, . . ., and set δj0 , δj1 , . . . and/or R to
random values which are very large compare to other δi, so as to hide a (smaller)
secret value which the adversary wants to know. A naive way to apply this idea
is that we set R to a large random value, while setting all δi to 1. Then, the
large randomness R seems to hide the secret bit b of a challenge ciphertext
EncK(m∗

b ) = R +
∑

i∈[2..m∗
b ]
δi = m∗

b + R − 1. But, in fact, the adversary can

recover b because she can cancel out R by computing EncK(mb)− EncK(m′) =
mb −m′, where m′ and EncK(m′) are her encryption query and its answer.

Therefore, we set some δj0 , δj1 , . . . , to large random values as well and expect
that the set {j0, j1, . . .} of indices of them and queries of the adversary to satisfy
“good relation” in the sense that, for some js, the adversary cannot cancel out δjs
even when she has encryption queries and their answers. (The precise meaning
of this “good relation” will be given later.)

But, the problem is that we cannot know her queries in advance. Therefore,
after we fix j0, j1, . . ., she may choose her queries such that the queries and
{j0, j1, . . .} do not satisfy the good relation. So, thirdly, we solve the above
problem by introducing another key idea: changing the bit length of δi randomly.
Specifically, for each i, we flip a random coin ρi which becomes 0 with small
probability p and then samples δi randomly from some given large set if ρi = 0
and set δi ← 1 otherwise. Then the set I = {j0, j1, . . . , } of indices of large δi
varies randomly and, (due to the definition of nCPA,) we can hide I from the
view of the adversary until she determines her queries. Hence, the adversary
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Parameters: Message Space = [1..M ], p = 1− (1− 1/
√
k)1/θ , A = −kθ − 1.

Kg(1λ)
11. For i ∈ (A..M ],

12. ρi
$← Binom(1, 1− p).

13. If ρi = 0, then δi
$← Xλ.

14. Else δi ← 1

15. Output K ← (δi)i∈(A..M].

EncK(m)
21. Parse K as (δi)i∈(A..M].

22. Output C ←
∑

i∈(A..m] δi

DecK(C)
31. Parse K as (δi)i∈(A..M].
32. For i ∈ [0..M ],

33. If C =
∑

i∈(A..m] δi,

output m.
34. Output ⊥.

�
−kθ

· · ·

�
bit length

m

(*) �� (***)��
(**) ��

· · ·

��
A cannot make Enc.queries

��
kθ

i0

δi0

· · ·
��m0

· · ·

θ

m1

· · ·
��

kθ

i1

δi1

· · · · · ·
M

i

Fig. 1. The Scheme of Section 4.2 (upper) and the Intuition Behind Its Security (lower).
In the lower figure, EncK(m0) − EncK(m), EncK(m1) − EncK(m), and the difference
of them are the sum of δi in (*), (**), and (***) respectively. Since both (*) and (**)
contain a large randomness δi0 , the difference (***), which is smaller, is hidden by
this large randomness. EncK(m0)− EncK(m) and EncK(m1)− EncK(m) are therefore
indistinguishable.

cannot arrange intentionally her queries such that the queries and I do not
satisfy the good relation.

Note that this idea has resemblance to the partitioned technique [24] of Wa-
ters for an identity based encryption, where one takes some parameters (which
determine a “partition”) randomly and secretly and expects that queries of an
adversary fall into some good places.

Scheme Ek,θ: The formal description of our scheme is given in Fig.1. Here k
and θ be the values which we want to show (k, θ)-FTG-nCPA security for, p
is a parameter which we will determine in (4.9), and Binom(n, p) is a binomial
distribution.

We set in Fig.1 EncK(m) =
∑

i∈[A..m] δi where A = −kθ − 1 < 0 is a fixed

value while in the idea described before, we set EncK(m) = R +
∑

i∈[2..m] δi.

(That is, we set R ←
∑

i∈[A..1] δi.) Due to this change, we can simplify the
security proof for the case where an adversary take as a query a small value m,
such as m = 0.

Xλ is a probability distribution such that a random variable taken from it can
hide other values, specifically,

∃ξ : (negligible func.), ∀α, β ∈ [−θ..θ], for δ $← Xλ, SD(α+ δ, β + δ) ≤ ξ(λ),
(4.5)

where SD denotes statistical distance. We can use the uniform distribution on
[1..2λθ] as Xλ for example. But the scheme in Section 4.3 will use another dis-
tribution due to a technical reason.
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Message Space Size: The message space size M of this scheme has to satisfy
M = poly(λ) because the encryption cost of this scheme is clearly O(M). We
will remove this restriction in Section 4.3.

(k, θ)-FTG-nCPA Security of Ek,θ: Let k and θ be the values which we
want to show (k, θ)-FTG-nCPA security for. Then, since intervals [m0 − kθ..m0]
and [m1..m1 + kθ] are k times larger than [m0..m1], the probabilities that
[m0 − kθ..m0] and [m1..m1 + kθ] will contain a large δi is much larger than
the probability that [m0..m1] will contain a large δi.

Therefore, if p is taken suitably, we can ensure the three properties below with
high probability. (See Fig.1). Bellow, we call δi large number if it is taken from
[0..2λM ] and we say “δi = EncK(i)− EncK(i− 1) is in interval I” to mean that
both integers i− 1 and i used to define δi are contained in I.2

All δi in [m0..m1] are 1, (4.6)

Some δi0 in [m0 − kθ..m0] is large, (4.7)

Some δi1 in [m1..m1 + kθ] is large. (4.8)

Note that the precise meaning of “good relation” given in “Ideas behind Con-
struction” is that (δi)i∈(A..M ] and queries of an adversary satisfy all of the above
three properties.

Here we exploit constraints (3.3) and (3.4) of (k, θ)-FTG-nCPA. Due to them,
encryption query m has to satisfy m ≤ m0 − kθ or m ≥ m1 + kθ. In the former
case, the difference EncK(mb) − EncK(m) =

∑
i∈(m..mb]

δi =
∑

i∈(m..m0]
δi +∑

i∈(m0..mb]
δi contains the large dominant randomness δi0 as a summand. Since

the term
∑

i∈(m0..mb]
δi depending on b can be hidden by δi0 , an adversary cannot

detect b from EncK(mb)− EncK(m).
In the latter case, similarly, the sum EncK(m) − EncK(mb) =

∑
i∈(mb..m] δi

contains the other large dominant randomness δi1 . An adversary therefore cannot
detect b from EncK(m)− EncK(mb) due to a similar argument as above.

The above discussion shows that the secret bit b is hidden by “barriers” δi0 and
δi1 . Based on the same idea, we can show, more generally, that the distribution
of the secret bit b is independent from the view of an adversary even when she
knows encryption queries and their answers, under the assumption that (4.6),
(4.7), and (4.8) hold. (See the full paper for the formal proof.)

Upper Bound on Advantage: The rest of thing we have to do is to show the
advantage bound of (4.1) by estimating the probabilities that (4.6), (4.7), and
(4.8) hold. To this end, we set the parameter p of the scheme Ek,θ as follows:

p = 1−
(
1− 1√

k

) 1
θ

. (4.9)

2 That is, δi is in I = [a..b] iff i ∈ (a..b]. Seemingly asymmetry of the interval, which
is a “left-open” one (a..b] but is not “right open” one [a..b), comes from how we
number δi. If we set δi not to EncK(i)− EncK(i− 1) but to EncK(i+ 1)− EncK(i),
it becomes a right open one [a..b).
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Then the advantage bound is calculated as follows. Let E1, E2, and E3 be,
respectively, the events that condition (4.6), (4.7), and (4.8) does not hold and
Bad be E1 ∨E2 ∨E3. Then, the previous discussion showed that the advantage
of an adversary for our scheme is less than Pr[Bad] + neg(λ).

Recall that nCPA adversary has to make her challenge query (m0,m1) and
encryption queries at the same time. Hence, she has to determine her chal-
lenge query (m0,m1) without knowing any information about ciphertexts, in
particular, any information about δi. Therefore, the distributions of (δi)i and
(m0,m1) are independent. Since they are independent, E1, E2, E3 are smaller
than 1− (1−p)θ = 1/

√
k, (1−p)kθ = (1−1/

√
k)k, and (1−p)kθ = (1−1/

√
k)k,

respectively. Due to the same reason, it follows that

Pr[Bad] ≤ 1√
k
+ 2

(
1− 1√

k

)k

=
1√
k
+ 2

{(
1− 1√

k

)√
k
}√

k

=
1√
k
+O

(
e−

√
k
)
= O

(
1√
k

)
, (4.10)

which is the bound given in Theorem 6.

About CPA Security: The above proof crucially relies on the independence
of the distributions of challenge query (m∗

0,m
∗
1) and (δi)i, which is ensured in

the nCPA setting. However, a CPA adversary can choose (m∗
0,m

∗
1) in the region

(mi..mi+1] where EncK(mi+1) − EncK(mi) is the smallest, where m1 < . . . <
mq are the encryption queries and (EncK(mi))i are their answers. Then all δi
contained in the sum EncK(mi+1)−EncK(mi) =

∑
i∈(mi..mi+1]

δi must be small

as well. This means that the probabilities that conditions (4.7) and (4.8) hold
must be smaller than those of the case of nCPA. Hence, our proof does not work
well in the CPA setting.

4.3 The Proposed Scheme

By improving the scheme Ek,θ of Section 4.2, we achieve our proposed OPE
scheme Ēk,θ. The encryption and decryption algorithms of it stay polynomial
time in the logarithm in the message space M , which enables M to become a
super-polynomial in the security parameter λ.

Idea of the Full Paper of [7]: The starting point of our improvement is the
following excellent new “lazy sampling” [6] technique of Section 6 of the full
paper of [7]: They construct a polynomial time algorithm3 Ḡ which takes two
pairs (u,Cu) and (v, Cv) of messages and their encryptions, and outputs a data
whose distribution is the same as that of ciphertext Cw of w, where w is the
“midpoint” �(u+v)/2� of u and v. Using Ḡ, their improved encryption algorithm
Enc(m) computes a ciphertext Cm of m the following binary search recursion:

3 To simplify, here we only consider the case where inputs of Ḡ are (u,Cu) and (v, Cv),
although the full paper of [7] considers more general case due to some technical
reasons.
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It takes some initial values u, v such that m ∈ (u..v] holds and Cu and Cv are
known. (We denote by Init an algorithm which outputs the encryption Cu and
Cv of the initial values.) Enc(m) then computes Cw using Ḡ, replaces interval
(u..v] with (u..w] or (w..v] depending on whether m ≤ w or not, and recursively
executes Enc itself. The computational cost of Enc is O(logM), where M is the
message space size, because the binary search recursion is terminated in time
O(logM). Their decryption algorithm Dec is constructed in a similar fashion.

The Idea Behind Our Scheme: Our efficient encryption and decryption al-
gorithms are constructed based on the above idea, but our innovation is that
our algorithms Ḡ and Init are constructed based not on a ciphertext Cu itself
but on Iu defined below. This is so, since our elaborated scheme of Section 4.2
does not allow construction of Ḡ to be based simply on Cu. Below, ρi, δi, and
A = −kθ − 1 are as defined in the scheme of Section 4.2.

Iu ← (C(0)
u , C(1)

u ) ←
( ∑

i∈(A..u]
ρi=0

δi,
∑

i∈(A..u]
ρi=1

δi

)
. (4.11)

We will construct Init and Ḡ satisfying the following properties:

Output Init is indistinguishable from (IA, IM ). (4.12)

For any u, v ∈ (A..M ] and any I ′u and I ′v, the distribution of an output
of Ḡ(u, v, I ′u, I

′
v) is the same as the conditional distribution of Iw when

(Iu, Iv) = (I ′u, I
′
v) holds. Here w = �(u+ v)/2�.

(4.13)

Then our efficient encryption algorithm can get Im in time logarithm O(logM)
in the message space sizeM by executing a recursion based on Init and Ḡ. It can

get the ciphertext of m from Im = (C
(0)
m , C

(1)
m ) because an encryption EncK(m)

of Section 4.2 is
∑

i∈(A..u] δi, and therefore satisfies

EncK(m) = C(0)
m + C(1)

m . (4.14)

As in the case of [7], the efficient decryption algorithm is also constructed based
on a similar idea.

Ideas Behind the Construction of Init and Ḡ: The remaining issue to take
care of is the construction of Init and Ḡ(Iu, Iv). To this end, we set Xλ of (4.5)
to a binomial distribution

Xλ = B(2λθ2, 1/2) (4.15)

with suitable parameters. Note that this Xλ, in fact, satisfies (4.5), which is the
property required to ensure the security of the scheme of Section 4.2. Formally,
the following fact holds (See the full paper for the proof):

Proposition 8 (Binomial Satisfies (4.5)). There exists a negligible function
ξ such that for all α, β ∈ [−θ..θ], the statistical distance between the random

variables α+ δ and β + ζ for δ, ζ
$← B(2λθ2, 1/2) is less than ξ(λ).
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(4.15) allows us to write Iu by using two binomial distributions because (4.11)
shows that Iu can be written as sums of δi, step 13 of Fig.1 and (4.15) show
that δi is taken from a binomial distribution, and the sum of binomials is also
binomial. Since IA = (0, 0), this means that our algorithm Init satisfying (4.12)
can be constructed by using two binomial distributions for generating IM .

Moreover, it is also known that the conditional distributions of binomials can
be written as hypergeometric distributions. Hence, our algorithm Ḡ satisfying
(4.13) can be constructed by using hypergeometric distributions. Since the values
which follow the binomial and hypergeometric distributions can be generated in
polynomial time [11], our algorithms Init and Ḡ can terminate in polynomial
time.

The description of our algorithms Ḡ and Init is given in Fig.2. Here Binom(n, p)
and HG(a, b, c) are algorithms whose outputs follow binomial distribution and
hypergeometric distribution. We can show that our algorithms Init and Ḡ in fact
satisfy (4.12) and (4.13); see the full paper for the proof.

Proposition 9 (Init and Ḡ Work Well). For constants A and M be given in
Fig.1, tuples (δi)i∈(A..M ] and (ρi)i∈(A..M ] generated as in Kg(1λ) of Fig.1, and
Iu defined as is (4.11), (4.12) and (4.13) hold.

We denote the encryption function given in the above way by Ẽnc. Then, from

(4.12), (4.13), and the construction of Ẽnc, the following proposition holds. (See
the full paper for the formal proof.)

Proposition 10. Take A, M , Kg, Enc as in Fig.1 and take Kg as in Fig.2.

Then for K̄ ← Kg(1λ) and K ← Kg(1λ), the distributions of (ẼncK̄(i))i∈[A..M ]

and (EncK(i))i∈[A..M ] are perfectly indistinguishable.

Finally, we replace the randomness of Ẽnc with a pseudo-random value output
by a pseudo-random function, so as to make it deterministic, as in [7]. Then our
final encryption algorithm Enc is obtained.

Formal Description of Our Scheme: It is given in Fig.2. Here k and θ are
the values which we want to show (k, θ)-FTG-O-nCPA security for, M is the
value such that the message space is [1..M ], and p and A are the same values
used in the scheme of Section 1. Cph, in turn, is an algorithm which computes a
ciphertext Cu from Iu based on (4.14). The notation Ḡ(u, v, Iu, Iv; cc) means that
we compute Ḡ(u, v, Iu, Iv) using cc as the random tape. PRF is a pseudo-random
function.

(k, θ)-FTG-O-nCPA: Theorem 6 follows from Proposition 8, 9, and 10, and
the security of the scheme of Section 4.2. See the full paper for the formal proof
of Proposition 8, 9, and 10 and Theorem 6.

Efficiency: The algorithms of our scheme can terminate within polynomial time
in logM , log k, log θ, and security parameter λ due to our binary recursion search
and polynomial time algorithms [11] of binomial and hypergeometric distribu-
tions. The ciphertext bit length is not more than λ+2 log2 θ+ log2(M + kθ+1)
because, due to Proposition 10, a ciphertext can be written as

∑
i∈[A..m) δi
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Parameters:
· Message Space = [1..M ],
· p = 1− (1− 1/

√
k)1/θ,

· A = −kθ − 1.

Kg(1λ)
41. Randomly take λ bit string K′.
42. (IA, IM )← Init.
43. Return K̄ ← (K′, A,M, IA, IM ).

Cph(I)
71. Parse I as (C(0), C(1)).
72. Output C(0) + C(1).

Init
81. C

(1)
M ← Binom(M −A, 1− p),

82. C
(0)
M ← Binom(2λθ2(M − A− C

(1)
M ), 1/2),

83. IA ← (0, 0), IM ← (C
(0)
M , C

(1)
M ).

84. Output (IA, IM ).

EncK̄(m)
51. Parse K̄ as (K′, u, v, Iu, Iv).
52. If m = v holds,

return Cph(Iv).
53. w ← �(u+ v)/2�.
54. cc← PRFK′(u, v)
55. Iw ← Ḡ(u, v, Iu, Iv; cc)

56. K̄ ←
{
(K′, u, w, Iu, Iw) if m ≤ w

(K′, w, v, Iw, Iv) otherwise

57. Return EncK̄(m).

DecK̄(C)
61. Parse K̄ as (K′, u, v, Iu, Iv).
62. If C = Cph(Iv) or u = v holds,

return v or ⊥ respectively.
63. w ← �(u+ v)/2�.
64. cc← PRFK′ (u, v)
65. Iw ← Ḡ(u, v, Iu, Iv; cc)

66. K̄ ←
{
(K ′, u, w, Iu, Iw) if C ≤ Cph(Iw)

(K ′, w, v, Iw, Iv) otherwise

67. Return DecK̄(C)

Ḡ(u, v, Iu, Iv)

91. Parse Iu and Iv as (C
(0)
u , C

(1)
u ) and (C

(0)
v , C

(1)
v ). w ← �(u+ v)/2�.

92. C
(1)
w ← C

(1)
u + HG(v − u,C

(1)
v − C

(1)
u , w − u),

93. C
(0)
w ← C

(0)
u

+HG(2λθ2((v − u)− (C
(1)
v − C

(1)
u )), C

(0)
v − C

(0)
u , 2λθ2((w − u)− (C

(1)
w − C

(1)
u ))),

94. Output Iw ← (C
(0)
w , C

(1)
w ).

Fig. 2. The Schemes of Section 4.3, its Parameters, and its Subroutines

for some m ∈ [1..M ] and each δi is not more than 2λθ2 due to (4.15). When
we set (k, θ) = (M2(β−t)/3,M t) as in (4.4), the ciphertext bit length becomes
λ+ 3 log2M + (lower terms) due to 0 < t < β < 1.

On the other hand, the known scheme [7] can ensure (1, q + 1)-WOW if the
ciphertext length is more than (log2M) + 1 when M is super-polynomial of λ.

5 Stronger Window-OneWayness of Our Scheme

Finally, we study a stronger variant of (r, q)-WOW notion, called (r, q)-WOWM
(studied in [8] intuitively as well). Our definition of WOWM is based on the
simpler definition of WOW given in Appendix B of the full paper of [8] which
can be reduced to the original WOW given in Section 3 of that paper and vise
versa.

Definition 11 ((r, q)-WOWM). An OPE scheme E on the message space
[1..M ] is said to be (r, q)-WOWM (Window One-Way viewing Messages) if for

any polynomial time adversary A, Succ.Exp
(r,q)-WOWM
E (A) = Pr[Exp(r,q)-WOWM

E(A) = 1] is negligible for the message space size M . Here, experiment
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Exp
(r,q)-WOWM
E (A) is defined as follows. Below, Combq(M) be the set of q-element

subset of [1..M ].

K ← Kg(1λ),m
$← Combq(M),m∗

$← m,

(mL,mR) ← A(EncK(m∗), (m,EncK(m))m∈m\{m∗}),

Return 1 iff m∗ ∈ S(mL,mR),

where S(mL,mR) =

{
[mL..mR] if mL ≤ mR

[1..mR] ∪ [mL..M ] otherwise.,

“m∗
$← m” means that “choose a message m∗ from the tuple m uniformly at

random”. The output (mL,mR) of A has to satisfy #S(mL,mR) ≤ r.

The following property holds for WOWM and WOW of Appendix B of the full
paper of [8] because they are the same except that A can view m \ {m∗}.

∀A : Adv.Exp
(r,q)-WOW
E (A) ≤ Adv.Exp

(r,q)-WOWM
E (A). (5.1)

Lemma 12 (Relationship between (Uq, θ, q)-indis. and WOWM). Let
q = q(λ) be a polynomial of security parameter λ, E be an OPE scheme with
a message space [1..M ], Uq be the tuple of q uniform distributions on [1..M ],
and 0 < t < 1 be a constant. Suppose that E is (Uq,M t, q)-indistinguishable.
Then for any constant ρ satisfying

0 ≤ ρ < t(< 1), (5.2)

E is (Mρ, q + 1)-WOWM when M is super-polynomial of λ. Specifically,

∀A∃Mg∃B : Succ.Exp
(Mρ,q+1)-WOWM
E (A)

≤ Adv.Exp
(Uq,Mt,q)-indis
E (Mg,B) +O

( 1

M t−ρ

)
+O

( 1

M1−t

)
+O

( q

M

)
. (5.3)

The right hand side of (5.3) is negligible when M is super-polynomial to λ
because of (5.2). See the full paper for the formal proof of the above lemma.
Lemma 12 and Theorem 7 show the following theorem.

Theorem 13 (WOWM of Our Scheme). For a polynomial q = q(λ) and for
any constant

0 ≤ ρ < 1, (5.4)

our scheme Ēk,θ with suitable parameter (depending on (M,ρ)) is (Mρ, q + 1)-
WOWM under security of PRF (although the advantage bound decreases slower
when ρ becomes closer to 1). Specifically,

∀A∃B : Succ.Exp
(Mρ,q+1)-WOWM

Ēk,θ
(A) ≤ O

(
q

M
1−ρ
4

)
+ Adv.ExpPRF(B) + neg(λ).

(5.5)
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It achieve better ρ than [8]. See Section 1.3 for details.

Proof (Theorem 13). Take any ρ satisfying (5.4) and set

(β, t) = (1, (3ρ+ 1)/4). (5.6)

Let U be the tuple uniform distributions on the message space [1..M ] and let
X = Uq. Then two conditions of Theorem 7, (4.2) and β > t, are satisfied due to
H∞(U) = log2M , (5.6), and (5.4). Hence, our scheme Ēk,θ with suitable param-
eter (k, θ) is (Uq,M t, q)-indistinguishable and satisfies (4.3). (Due to (4.4), the
parameters are (k, θ) = (M2(β−t)/3,M t) = (M (1−ρ)/2,M (3ρ+1)/4)). The condi-
tion (5.2) of Lemma 12 follows from (5.6) and (5.4). Hence, our scheme with
the above parameters is (Mρ, q + 1)-WOWM and satisfies (5.3). The bound
(5.5) comes from (5.4) and (5.6) because in (4.3) and (5.3), O( q

M(β−t)/3 ) =

O( q

M
1
3
·(1−(3ρ+1)/4)

) = O( q
M(1−ρ)/4 ), O(

1
Mt−ρ ) = O( 1

M(1−ρ)/4 ) ≤ O( q
M(1−ρ)/4 ),

O( 1
M1−t ) = O( 1

M3(1−ρ)/4 ) ≤ O( 1
M(1−ρ)/4 ), and O(

q
M ) ≤ O( q

M(1−ρ)/4 ). 
�
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Abstract. We demonstrate a simple, statistically secure, ORAM with compu-
tational overhead Õ(log2 n); previous ORAM protocols achieve only computa-
tional security (under computational assumptions) or require Ω̃(log3 n)
overheard. An additional benefit of our ORAM is its conceptual simplicity, which
makes it easy to implement in both software and (commercially available)
hardware.

Our construction is based on recent ORAM constructions due to Shi, Chan,
Stefanov, and Li (Asiacrypt 2011) and Stefanov and Shi (ArXiv 2012), but with
some crucial modifications in the algorithm that simplifies the ORAM and enable
our analysis. A central component in our analysis is reducing the analysis of our
algorithm to a “supermarket” problem; of independent interest (and of importance
to our analysis,) we provide an upper bound on the rate of “upset” customers in
the “supermarket” problem.

1 Introduction

In this paper we consider constructions of Oblivious RAM (ORAM) [10,11]. Roughly
speaking, an ORAM enables executing a RAM program while hiding the access pat-
tern to the memory. ORAM have several fundamental applications (see e.g. [11,24] for
further discussion). Since the seminal works for Goldreich [10] and Goldreich and Os-
trovksy [11], constructions of ORAM have been extensively studied. See, for example,
[32,33,1,25,12,6,27,2,13,29,15] and references therein. While the original constructions
only enjoyed “computational security” (under the the assumption that one-way func-
tions exists) and required a computational overhead of Õ(log3 n), more recent works
have overcome both of these barriers, but only individually. State of the art ORAMs
satisfy either of the following:
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– An overhead of Õ(log2 n)1, but only satisfies computational security, assuming the
existence of one-way functions. [25,12,15]

– Statistical security, but have an overhead of O(log3 n). [1,6,27,8,5].

A natural question is whether both of these barriers can be simultaneously overcome;
namely, does there exists a statistically secure ORAM with only Õ(log2 n) overhead?
In this work we answer this question in the affirmative, demonstrating the existence of
such an ORAM.

Theorem 1. There exists a statistically-secure ORAM with Õ(log2(n)) worst-case
computational overhead, constant memory overhead, and CPU cache size poly log(n),
where n is the memory size.

An additional benefit of our ORAM is its conceptual simplicity, which makes it
easy to implement in both software and (commercially available) hardware. (A software
implementation is available from the authors upon request.)

Our ORAM Construction. A conceptual breakthrough in the construction of ORAMs
appeared in the recent work of Shi, Chan, Stefanov, and Li [27]. This work demon-
strated a statistically secure ORAM with overheadO(log3 n) using a new “tree-based”
construction framework, which admits significantly simpler (and thus easier to imple-
mented) ORAM constructions (see also [8,5] for instantiations of this framework which
additionally enjoys an extremely simple proof of security).

On a high-level, each memory cell r accessed by the original RAM will be associated
with a random leaf pos in a binary tree; the position is specified by a so-called “position
map” Pos. Each node in the tree consists of a “bucket” which stores up to � elements.
The content of memory cell r will be found inside one of the buckets along the path
from the root to the leaf pos; originally, it is put into the root, and later on, the content
gets “pushed-down” through an eviction procedure—for instance, in the ORAM of [5]
(upon which we rely), the eviction procedure consists of “flushing” down memory con-
tents along a random path, while ensuring that each memory cell is still found on its
appropriate path from the root to its assigned leaf. (Furthermore, each time the content
of a memory cell is accessed, the content is removed from the tree, the memory cell is
assigned to a new random leaf, and the content is put back into the root).

In the work of [27] and its follow-ups [8,5], for the analysis to go through, the bucket
size � is required to be ω(logn). Stefanov and Shi [28] recently provided a different
instantiation of this framework which only uses constant size buckets, but instead relies
on a single poly log n size “stash” into which potential “overflows” (of the buckets in
the tree) are put;2 Stefanov and Shi conjectured (but did not prove) security of such
a construction (when appropriately evicting elements from the “stash” along the path
traversed to access some memory cell).3

In this work, we follow the above-mentioned approaches, but with the following
high-level modifications:

1 The best protocol achieves O(log2 n/ log log n).
2 We mention that the idea of using “stash” also appeared in the works [12,13,15,17].
3 Although different, the “flush” mechanism in [5] is inspired by this eviction method.
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– We consider a binary tree where the bucket size of all internal buckets is
O(log logn), but all the leaf nodes still have bucket size ω(logn).

– As in [28], we use a “stash” to store potential “overflows” from the bucket. In our
ORAM we refer to this as a “queue” as the main operation we require from it is
to insert and “pop” elements (as we explain shortly, we additionally need to be
able to find and remove any particular element from the queue; this can be easily
achieved using a standard hash table). Additionally, instead of inserting memory
cells directly into the tree, we insert them into the queue. When searching for a
memory cell, we first check whether the memory cell is found in the queue (in
which case it gets removed), and if not, we search for the memory cell in the binary
tree along the path from the root to the position dictated by the position map.

– Rather than just “flushing” once (as in [5]), we repeat the following procedure “pop
and random flush” procedure twice.
• We “pop” an element from the queue into the root.
• Next, we flush according to a geometrically distributed random variable with

expectation 2.4

We demonstrate that such an ORAM construction is both (statistically) secure, and only
has Ω̃(log2 n) overhead.

Our Analysis. The key element in our analysis is reducing the security of our ORAM
to a “supermarket” problem. Supermarket problems were introduced by Mitzenmacher
[20] and have seen been well-studied (see e.g., [20,31,23,26,21]). We here consider a
simple version of a supermarket problem, but ask a new question: what is the rate of
“upset” customers in a supermarket problem: There are D cashiers in the supermarket,
all of which have empty queues in the beginning of the day. At each time step t: with
probability α < 1/2 a new customer arrives and chooses a random cashier5 (and puts
himself in that cashiers queue); otherwise (i.e., with probability 1−α) a random cashier
is chosen that “serves” the first customer in its queue (and the queue size is reduced by
one). We say that a customer is upset if he chooses a queue whose size exceeds some
bound ϕ. What is the rate of upset customers?6

We provide an upper bound on the rate of upset customers relying on Chernoff
bounds for Markov chains [9,14,16,3]—more specifically, we develop a variant of tra-
ditional Chernoff bounds for Markov chains which apply also with “resets” (where at
each step, with some small probability, the distribution is reset to the stationary distri-
bution of the Markov chain), which may be of independent interest, and show how such
a Chernoff bound can be used in a rather straight-forward way to provide a bound on
the number of upset customers.

4 Looking forward, our actual flush is a little bit different than the one in [5] in that we only pull
down a single element between any two consecutive nodes along the path, whereas in [5] all
elements that can be pulled down get flushed down.

5 Typically, in supermarket problems the customer chooses d random cashiers and picks the one
with the smallest queue; we here focus on the simple case when d = 1.

6 Although we here consider a discrete-time version of the supermarket problem (since this is
the most relevant for our application), as we remark in Remark 1, our results apply also to the
more commonly studied continuous-time setting.



Statistically-secure ORAM with Õ(log2 n) Overhead 65

Intuitively, to reduce the security of our ORAM to the above-mentioned supermar-
ket problem, each cashier corresponds to a bucket on some particular level k in the
tree, and the bound ϕ corresponds to the bucket size, customers correspond to elements
being placed in the buckets, and upset customers overflows. Note that for this transla-
tion to work it is important that the number of flushes in our ORAM is geometrically
distributed—this ensures that we can view the sequence of operations (i.e., “flushes”
that decrease bucket sizes, and “pops” that increase bucket sizes) as independently dis-
tributed as in the supermarket problem.

Independent Work. In a very recent independent work, Stefanov, van Dijk, Shi, Fletcher,
Ren, Yu, and Devadas [30] prove security of the conjectured Path ORAM of [28].
This yields a ORAM with overhead O(log2 n), whereas our ORAM has overhead
O(log2 n log logn)). On the other hand, the data structure required to implement our
queue is simpler than the one needed to implement the “stash” in the Path ORAM con-
struction. More precisely, we simply need a standard queue and a standard hash table
(both of which can be implemented using commodity hardware), whereas the “stash” in
[28,30,18] requires using a data structure that additionally supports sorting, or “range
queries” ( thus a binary search tree is needed), which may make implementations less
straightforward. We leave a more complete exploration of the benefits of these two in-
dependent approaches for future work.

In another concurrent work, Gentry, Goldman, Halevi, Jutla, Raykova, and Wichs
optimize the ORAM of [27]. In particular, they improve the memory overhead from
O(log n) to constant, but the time overhead remains Õ(log3 n). We rely on their idea to
achieve constant memory overhead.

2 Preliminaries

A Random Access Machine (RAM) with memory size n consists of a CPU with a small
size cache (e.g., can store a constant or poly log(n) number of words) and an “external”
memory of size n. To simplify notation, a word is either ⊥ or a logn bit string.

The CPU executes a program Π (given n and some input x) that can access the
memory by a Read(r) and Write(r, val) operations where r ∈ [n] is an index to
a memory location, and val is a word (of size logn). The sequence of memory cell
accesses by such read and write operations is referred to as the memory access pattern
of Π(n, x) and is denoted Π̃(n, x). (The CPU may also execute “standard” operations
on the registers, any may generate outputs).

Let us turn to defining an Oblivous RAM Compiler. This notion was first defined by
Goldreich [10] and Goldreich and Ostrovksy [11]. We recall a more succinct variant of
their definition due to [5].

Definition 1. A polynomial-time algorithm C is an Oblivious RAM (ORAM) compiler
with computational overhead c(·) and memory overheadm(·), if C given n ∈ N and a
deterministic RAM programΠ with memory-size n outputs a programΠ ′ with memory-
size m(n) · n such that for any input x, the running-time of Π ′(n, x) is bounded by
c(n) · T where T is the running-time of Π(n, x), and there exists a negligible function
μ such that the following properties hold:
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– Correctness: For any n ∈ N and any string x ∈ {0, 1}∗, with probability at least
1− μ(n), Π(n, x) = Π ′(n, x).

– Obliviousness: For any two programs Π1, Π2, any n ∈ N and any two in-
puts x1, x2 ∈ {0, 1}∗ if |Π̃1(n, x1)| = |Π̃2(n, x2)|, then Π̃ ′

1(n, x1) is μ-close
to Π̃ ′

2(n, x2) in statistical distance, where Π ′
1 = C(n,Π1) and Π ′

2 = C(n,Π2).

Note that the above definition (just as the definition of [11]) only requires an oblivi-
ous compilation of deterministic programsΠ . This is without loss of generality: we can
always view a randomized program as a deterministic one that receives random coins
as part of its input.

3 Our ORAM and Its Efficiency

This section presents the construction of our ORAM, followed by an analysis of its
efficiency.

3.1 The Algorithm

Our ORAM data structure serves as a “big” memory table of size n and exposes the
following two interfaces.

– READ(r): the algorithm returns the value of memory cell r ∈ [n].
– WRITE(r, v): the algorithm writes value v to memory cell r, and returns the original

value of r.

We start by assuming that the ORAM is executed on a CPU with cache size is 2n/α+
o(n) (in words) for a suitably large constant α (the reader may imagine α = 16).
Following the framework in [27], we can then reduce the cache size to O(poly logn)
by recursively applying the ORAM construction; we provide further details on this
transformation at the end of the section.

In what follows, we group each consecutive α memory cells in the RAM into a block
and will thus have n/α blocks in total. We also index the blocks in the natural way, i.e.
the block that contains the first α memory cells in the table has index 0 and in general
the i-th block contains memory cells with addresses from αi to α(i + 1)− 1.

Our algorithm will always operate at the block level, i.e. memory cells in the same
block will always be read/written together. In addition to the content of its α memory
cells, each block is associated with two extra pieces of information. First, it stores the
index i of the block. Second, it stores a “position” p that specify its storage “destination”
in the external memory, which we elaborate upon in the forthcoming paragraphs. In other
words, a block is of the form (i, p, val), where val is the content of its α memory cells.

Our ORAM construction relies on the following three main components.

1. A full binary tree at the in the external memory that serves as the primary media
to store the data.

2. A position map in the internal cache that helps us to search for items in the binary
tree.

3. A queue in the internal cache that is the secondary venue to store the data.

We now walk through each of the building blocks in details.
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The Full Binary Tree Tr. The depth of this full binary tree is set to be the smallest d
so that the number of leaves L = 2d is at least 2(n/α)/(logn log log n) (i.e., L/2 <
2(n/α)/(logn log logn) ≤ L). (In [27,5] the number of leaves was set to n/α; here, we
instead follow [8] and make the tree slightly smaller—this makes the memory overhead
constant.) We index nodes in the tree by a binary strings of length at most d, where
the root is indexed by the empty string λ, and each node indexed by γ has left and
right children indexed γ0 and γ1, respectively. Each node is associated with a bucket.
A bucket in an internal node can store up to � blocks, and a bucket in a leaf can store up
to �′ blocks, where � and �′ are parameters to be determined later. The tree shall support
the following two atomic operations:

– READ(Node: v): the tree will return all the blocks in the bucket associated with v
to the cache.

– WRITE(Node: v,Blocks: b): the input is a node v and an array of blocks b (that
will fit into the bucket in node v). This operation will replace the bucket in the node
v by b.

The Position Map P . This data structure is an array that maps the indices of the blocks
to leaves in the full binary tree. Specifically, it supports the following atomic operations:

– READ(i): this function returns the position P [i] ∈ [L] that corresponds to the block
with index i ∈ [n/α].

– WRITE(i, p): this function writes the position p to P [i].
We assume that the position map is initialized with value ⊥.

The Queue Q. This data structure stores a queue of blocks with maximum size qmax,
a parameter to be determined later, and supports the following three atomic operations:

– INSERT(Block b): insert a block b into the queue.
– POPFRONT(): the first block in the queue is popped and returned.
– FIND(int: i,word: p): if there is a block b with index i and position p stored in the

queue, then FIND returns b and deletes it from the queue; otherwise, it returns ⊥.
Note that in addition to the usual INSERT and POPFRONT operations, we also require

the queue to support a FIND operation that finds a given block, returns and deletes it
from the queue. This operation can be supported using a standard hash table in conjunc-
tion with the queue. We mention that all three operations can be implemented in time
less than O(log n log logn), and discuss the implementation details in Appendix A.

Our Construction. We now are ready to describe our ORAM construction, which
relies the above atomic operations. Here, we shall focus on the read operation. The
algorithm for the write operation is analogous.

For two nodes u and v in Tr, we use path(u, v) to denote the (unique) path con-
necting u and v. Throughout the life cycle of our algorithm we maintain the following
block-path invariance.

Block-Path Invariance: For any index i ∈ [n/α], either P [i] = ⊥ and in
this case both Tr and the queue do not contain any block with index i, or there
exists a unique block b with index i that is located either in the queue, or in the
bucket of one of the nodes on path(λ, P [i]) in Tr
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We proceed to describe our READ(r) algorithm. At a high-level, READ(r) con-
sists of two sub-routines FETCH() and DEQUEUE(). READ(r) executes FETCH() and
DEQUEUE() once in order. Additionally, at the end of every logn invocations of
READ(r), one extra DEQUEUE() is executed. Roughly, FETCH() fetches the block b
that contains the memory cell r from either path(λ, P [�r/α�]) in Tr or in Q, then re-
turns the value of memory cell r, and finally inserts the block b to the queue Q. On
the other hand, DEQUEUE() pops one block b from Q, inserts b to the root λ of Tr
(provided there is a room), and performs a random number of “FLUSH” actions that
gradually moves blocks in Tr down to the leaves.

Fetch: Let i = �r/α� be the index of the block b that contains the r-th memory cell,
and p = P [i] be the current position of b. If P [i] = ⊥ (which means that the
block is not initialized yet), let P [i] ← [L] be a uniformly random leaf, create a
block b = (i, P [i],⊥), and insert b to the queue Q. Otherwise, FETCH performs
the following actions in order.

Fetch from Tree Tr and Queue Q: Search the block b with index i along
path(λ, p) in Tr by reading all buckets in path(λ, p) once and writing them back.
Also, search the block b with index i and position p in the queue Q by invoking
FIND(i, p). By the block-path invariance, we must find the block b.

Update Position Map P . Let P [i] ← [L] be a uniformly random leaf, and update
the position p = P [i] of b.

Insert to Queue Q: Insert the block b to Q.
Dequeue: This sub-routine consists of two actions PUT-BACK() and FLUSH(). It starts

by executing PUT-BACK() once, and then performs a random number of FLUSH()es
as follows: Let C ∈ {0, 1} be a biased coin with Pr [C = 1] = 2/3. It samples C,
and if the outcome is 1, then it continues to perform one FLUSH() and sample an-
other independent copy of C, until the outcome is 0. (In other words, the number
of FLUSH() is a geometric random variable with parameter 2/3.)

Put-Back: This action moves a block from the queue, if any, to the root of Tr.
Specifically, we first invoke a POPFRONT(). If POPFRONT() returns a block b then
add b to λ .

Flush: This procedure selects a random path (namely, the path connecting the root
to a random leaf p∗ ← {0, 1}d) on the tree and tries to move the blocks along
the path down subject to the condition that the block always finds themselves on
the appropriate path from the root to their assigned leaf node (see the block-path
invariance condition). Let p0(= λ)p1...pd be the nodes along path(λ, p∗). We tra-
verse the path while carrying out the following operations for each node pi we
visit: in node pi, find the block that can be “pulled-down” as far as possible along
the path path(λ, p∗) (subject to the block-path invariance condition), and pull it
down to pi+1. For i < d, if there exists some η ∈ {0, 1} such that pi contains more
than �/2 blocks that are assigned to leafs of the form pi||η||· (see also Figure 1
in Appendix),7 then select an arbitrary such block b, remove it from the bucket
pi and invoke an OVERFLOW(b) procedure, which re-samples a uniformly random

7 Here, a||b denotes the concatenation of string a and b.
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position for the overflowed block b and inserts it back to the queue Q. (See the full
version of the paper [4] for the pseudocode.)

Finally, the algorithm aborts and terminates if one of the following two events happen
throughout the execution.

Abort-Queue: If the size of the queue Q reaches qmax, then the algorithm aborts and
outputs ABORTQUEUE.

Abort-Leaf: If the size of any leaf bucket reaches �′ (i.e., it becomes full), then the
algorithm aborts and outputs ABORTLEAF.

This completes the description of our READ(r) algorithm; the WRITE(r, v) algo-
rithm is defined in essentially identically the same way, except that instead of inserting
b into the queueQ (in the last step of FETCH), we insert a modified b′ where the content
of the memory cell r (inside b) has been updated to v.

It follows by inspection that the block-path invariance is preserved by our construc-
tion. Also, note that in the above algorithm, FETCH increases the size of the queueQ by
1 and PUT-BACK is executed twice which decreases the queue size by 2. On the other
hand, the FLUSH action may cause a few OVERFLOW events, and when an OVERFLOW

occurs, one block will be removed from Tr and inserted to Q. Therefore, the size of the
queue changes by minus one plus the number of OVERFLOW for each READ operation.
The crux of our analysis is to show that the number of OVERFLOW is sufficiently small
in any given (short) period of time, except with negligible probability.

We remark that throughout this algorithm’s life cycle, there will be at most � − 2
non-empty blocks in each internal node except when we invoke FLUSH(·), in which
case some intermediate states will have � − 1 blocks in a bucket (which causes an
invocation of OVERFLOW).

Reducing the Cache’s Size. We now describe how the cache can be reduced to
poly log(n) via recursion [27]. The key observation here is that the position map shares
the same set of interfaces with our ORAM data structure. Thus, we may substitute the
position map with a (smaller) ORAM of size [n/α]. By recursively substituting the
position map O(log n) times, the size of the position map will be reduced to O(1).

A subtle issue here is that we need to update the position map when overflow occurs
(in addition to the update for the fetched block), which results in an access to the recur-
sive ORAM. This causes two problems. First, it reveals the time when overflow occurs,
which kills obliviousness. Second, since we may make more than one recursive calls,
the number of calls may blow up overO(log n) recursion levels.

To solve both problems, we instead defer the recursive calls for updating the position
map to the time when we perform PUT-BACK operations. It is not hard to check that
this does not hurt correctness. Recall that we do DEQUEUE once for each ORAM ac-
cess, and additionally do an extra DEQUEUE for every logn ORAM accesses (to keep
the cache size small). This is a deterministic pattern and hence restores obliviousness.
Also note that this implies only (log n) + 1 recursive calls are invoked for every logn
ORAM accesses. Thus, intuitively, the blow-up rate is (1 + (1/ logn)) per level, and
only results in a constant blow up over O(log n) levels. More precisely, consider a pro-
gram execution with T ORAM access. It results in T · (1 + (1/ logn)) access to the
second ORAM, and O(T ) access to the final O(1) size ORAM.
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Now, we need to be slightly more careful to avoid the following problem. It might
be possible that the one extra DEQUEUE occurs in multiple recursion levels simultane-
ous, resulting in unmanageable worst case running time. This problem can be avoided
readily by schedule the extra DEQUEUE in different round among different recursion
levels. Specifically, let u = logn. For recursion level �, the extra DEQUEUE is sched-
uled in the (au + �)-th (base-)ORAM access, for all positive integers a. Note that the
extra DEQUEUE occurs in slightly slower rate in deeper recursion levels, but this will
not change the asymptotic behavior of the system. As such, no two extra DEQUEUE’s
will be called in the same READ/WRITE operation.

On the other hand, recall that we also store the queue in the cache. We will set the
queue size qmax = poly log(n) (specifically, we can set qmax = O(log2+ε n) for an
arbitrarily small constant ε). Since there are only O(log n) recursion levels, the total
queue size is poly log(n).

3.2 Efficiency of Our ORAM

In this section, we discuss how to set the parameters of our ORAM and analyze its ef-
ficiency. We summarize the parameters of our ORAM and the setting of parameters as
follows:

– �: The bucket size (in terms of the number of blocks it stores) of the internal nodes
of Tr. We set � = Θ(log logn).

– �′: The bucket size of the leaves of Tr. We set �′ = Θ(log n log logn).
– d: The depth of Tr. As mentioned, we set it to be the smallest d so that the number

of leaves 2d is at least 2(n/α)/(logn log log n).
– qmax: The queue size. As mentioned, we set qmax = Θ(log2+ε n) for an arbitrarily

small constant ε.
– α: The number of memory cells in a block. As mentioned, we set α to be a constant,

say 16.

We proceed to analyze the efficiency of our ORAM.

Memory Overhead: Constant. The external memory storesO(log n) copies of binary
trees from O(log n) recursion levels. Let us first consider Tr of the top recursion level:
there are 2d+1 − 1 = Θ(n/ logn log logn) nodes, each of which has bucket of size at
most �′ = Θ(log n log logn). The space complexity of Tr is Θ(n). As the size of Tr
in each recursion level shrinks by a constant factor, one can see that the total memory
overhead is constant.

Cache Size: poly log(n). As argued, the CPU cache stores the position map in the final
recursion level, which has O(1) size, and the queues from O(logn) recursion levels,
each of which has at most Θ(log2+ε n) size. Thus, the total cache size is O(log3+ε n).
As we shall see below, poly log(n) queue size is required in our analysis to ensure that
the queue overflows with negligible probability by concentration bounds. On the other
hand, we mention that our simple simulation shows that the size of the queue in the top
recursion level is often well below 50 for ORAM with reasonable size.

Worst-Case Computational Overhead: Õ(log2 n). As above, we first consider the
top recursion level. In the FETCH() sub-routine, we need to search from both Tr and the
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queue. Searching Tr requires us to traverse along a path from the root to a leaf. The time
spent on each node is proportional to the size of the node’s bucket. Thus, the cost here is
O(log n log logn). One can also see searching the queue takes O(log n log logn) time.
The total cost of FETCH() is O(log n log logn).

For the DEQUEUE() sub-routine, the PUT-BACK() action invokes (1) one
POPFRONT(), which takes O(log n log logn) time, and (2) accesses the root node,
which costs O(log logn). It also writes to the position map and triggers recursive
calls. Note that certain recursive levels may execute two consecutive DEQUEUE’s af-
ter a READ/WRITE operation. But our construction ensures only one level will execute
two DEQUEUE’s for any READ/WRITE. Thus, the total cost here is Õ(log2 n).

The FLUSH() sub-routine also traverses Tr along a path, and has cost
O(log n log logn). However, since we do a random number of FLUSH() (accord-
ing to a geometric random variable with parameter 2/3), we only achieve expected
O(log n log logn) runtime, as opposed to worst-case runtime.

To address this issue, recall that there are O(log n) recursion levels, and the total
number of FLUSH() is the sum of O(log n) i.i.d. random variables. Thus, the proba-
bility of performing a total of more than ω(logn) number of FLUSH()’s is negligible
by standard concentration result. Thus, the total time complexity is upper bounded by
ω(log2 n log logn) except with negligible probability. To formally get Õ(log2 n) worst-
case computational overhead, we can add an Abort-Flush condition that aborts when
the total number of flush in one READ()/WRITE() operation exceeds some parameter
t ∈ ω(logn).

4 Security of Our ORAM

The following observation is central to the security of our ORAM construction (and an
appropriate analogue of it was central already to the constructions of [27,5]):

Key Observation: LetX denote the sum of two independent geometric random
variables with mean 2. Each Read and Write operation traverses the tree
along X + 1 randomly chosen paths, independent of the history of operations
so far.

The key observation follows from the facts that (1) just as in the schemes of [27,5], each
position in the position map is used exactly once in a traversal (and before this traversal,
no information about the position is used in determining what nodes to traverse), and
(2) we invokes the FLUSH action X times and the flushing, by definition, traverses a
random path, independent of the history.

Armed with the key observation, the security of our construction reduces to show that
our ORAM program does not abort except with negligible probability, which follows
by the following two lemmas.

Lemma 1. Given any program Π , let Π ′(n, x) be the compiled program using our
ORAM construction. We have

Pr [ABORTLEAF] ≤ negl(n).
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Proof. The proof follows by a direct application of the (multiplicative) Chernoff bound.
We show that the probability of overflow in any of the leaf nodes is small. Consider any
leaf node γ and some time t. For there to be an overflow in γ at time t, there must be
�′+1 out of n/α elements in the position map that map to γ. Recall that all positions in
the position map are uniformly and independently selected; thus, the expected number
of elements mapping to γ is μ = logn log logn and by a standard multiplicative version
of Chernoff bound, the probability that �′+1 elements are mapped to γ is upper bounded
by 2−�′ when �′ ≥ 6μ (see Theorem 4.4 in [19]). By a union bound, we have that the
probability of any node ever overflowing is bounded by 2−(�′) · (n/α) · T

To analyze the full-fledged construction, we simply apply the union bound to the
failure probabilities of the logα n different ORAM trees (due to the recursive calls).
The final upper bound on the overflow probability is thus 2−(�′) · (n/α) · T · logα n,
which is negligible as long as �′ = c logn log logn for a suitably large constant c.

Lemma 2. Given any program Π , let Π ′(n, x) be the compiled program using our
ORAM construction. We have

Pr [ABORTQUEUE] ≤ negl(n).

The proof of Lemma 2 is significantly more interesting. Towards proving it, in
Section 5 we consider a simple variant of a “supermarket” problem (introduced by
Mitzenmacher[20]) and show how to reduce Lemma 2 to an (in our eyes) basic and
natural question that seems not to have been investigated before.

5 Proof of Lemma 2

We here prove Lemma 2: in Section 5.1 we consider a notion of “upset” customers in
a supermarket problem [20,31,7]; in Section 5.2 we show how Lemma 2 reduced to
obtaining a bound on the rate of upset customers, and in Section 5.3 we provide an
upper bound on the rate of upset customers.

5.1 A Supermarket Problem

In a supermarket problem, there are D cashiers in the supermarket, all of which have
empty queues in the beginning of the day. At each time step t,

– With probability α < 1/2, an arrival event happens, where a new customer arrives.
The new customer chooses d uniformly random cashiers and join the one with the
shortest queue.

– Otherwise (i.e. with the remaining probability 1 − α), a serving event happens: a
random cashier is chosen that “serves” the first customer in his queue and the queue
size is reduced by one; if the queue is empty, then nothing happens.

We say that a customer is upset if he chooses a queue whose size exceeds some bound
ϕ. We are interested in large deviation bounds on the number of upset customers for a
given short time interval (say, of O(D) or poly log(D) time steps).

Supermarket problems are traditionally considered in the continuous time set-
ting [20,31,7]. But there exists a standard connection between the continuous model
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and its discrete time counterpart: conditioned on the number of events is known, the
continuous time model behaves in the same way as the discrete time counterpart (with
parameters appropriately rescaled).

Most of the existing works [20,31,7] study only the stationary behavior of the pro-
cesses, such as the expected waiting time and the maximum load among the queues
over the time. Here, we are interested in large deviation bounds on a statistics over a
short time interval; the configurations of different cashiers across the time is highly
correlated.

For our purpose, we analyze only the simple special case where the number of choice
d = 1; i.e. each new customer is put in a random queue.

We provide a large deviation bound for the number of upset customers in this setting.8

Proposition 1. For the (discrete-time) supermarket problem with D cashiers, one
choice (i.e., d = 1), probability parameter α ∈ (0, 1/2), and upset threshold ϕ ∈ N,
for any T steps time interval [t + 1, t + T ], let F be the number of upset customers in
this time interval. We have

Pr [F ≥ (1 + δ)(α/(1 − α))ϕT ] ≤

⎧⎨⎩ exp
{
−Ω

(
δ2(α/(1−α))ϕT

(1−α)2

)}
for 0 ≤ δ ≤ 1

exp
{
−Ω

(
δ(α/(1−α))ϕT )

(1−α)2

)}
for δ ≥ 1

(1)

Note that Proposition 1 would trivially follow from the standard Chernoff bound if
T is sufficiently large (ı.e., T � O(D)) to guarantee that we individually get concen-
tration on each of the D queue (and then relying on the union bound). What makes
Proposition 1 interesting is that it applies also in a setting when T is poly logD.

The proof of Proposition 1 is found in Section 5.3 and relies on a new variant Cher-
noff bounds for Markov chains with “resets,” which may be of independent interest.

Remark 1. One can readily translate the above result to an analogous deviation bound
on the number of upset customers for (not-too-short) time intervals in the continuous
time model. This follows by noting that the number of events that happen in a time
interval is highly concentrated (provided that the expected number of events is not too
small), and applying the above proposition after conditioning on the number of events
happen in the time interval (since conditioned on the number of events, the discrete-time
and continous-time processes are identical).

5.2 From ORAM to Supermarkets

This section shows how we may apply Proposition 1 to prove Lemma 2. Central to
our analysis is a simple reduction from the execution of our ORAM algorithm at level
k in Tr to a supermarket process with D = 2k+1 cashiers. More precisely, we show
there exists a coupling between two processes so that each bucket corresponds with two
cashiers; the load in a bucket is always upper bounded by the total number of customers
in the two cashiers it corresponds to.

To begin, we need the following Lemma.

8 It is not hard to see that with D cashiers, probability parameter α, and “upset” threshold ϕ, the
expected number of upset customers is at most (α/(1−α))ϕ · T for any T -step time interval.
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Lemma 3. Let {ai}i≥1 be the sequence of PUT-BACK/FLUSH operations defined by
our algorithm, i.e. each ai ∈ {PUT-BACK, FLUSH} and between any consecutive
PUT-BACKs, the number of FLUSHes is a geometric r.v. with parameter 2/3. Then
{ai}i≥1 is a sequence of i.i.d. random variables so that Pr [ai = PUT-BACK] = 1

3 .9

To prove Lemma 3, we may view the generation of {ai}i≥1 as generating a sequence
of i.i.d. Bernoulli r.v. {bi}i≥1 with parameter 2

3 . We set ai be a FLUSH() if and only
if bi = 1. One can verify that the {ai}i≥1 generated in this way is the same as those
generated by the algorithm.

We are now ready to describe our coupling between the original process and the
supermarket process. At a high-level, a block corresponds to a customer, and 2k+1

sub-trees in level k + 1 of Tr corresponds to D = 2k+1 cashiers. More specifically,
we couple the configurations at the k-th level of Tr in the ORAM program with a
supermarket process as follows.

– Initially, all cashiers have zero customers.
– For each PUT-BACK(), a corresponding arrival event occurs: if a ball bwith position
p = (γ||η) (where γ ∈ {0, 1}k+1) is moved to Tr, then a new customer arrives at
the γ-th cashier; otherwise (e.g. when the queue is empty), a new customer arrives
at a random cashier.

– For each FLUSH() along the path to leaf p∗ = (γ||η) (where γ ∈ {0, 1}k+1), a
serving event occurs at the γ-th cashier.

– For each FETCH(), nothing happens in the experiment of the supermarket prob-
lem. (Intuitively, FETCH() translates to extra “deletion” events of customers in the
supermarket problem, but we ignore it in the coupling since it only decreases the
number of blocks in buckets in Tr.)

Correctness of the Coupling. We shall verify the above way of placing and serving
customers exactly gives us a supermarket process. First recall that both PUT-BACK and
FLUSH actions are associated with uniformly random leaves. Thus, this corresponds to
that at each timestep a random cashier will be chosen. Next by Lemma 3, the sequence
of PUT-BACK and FLUSH actions in the execution of our ORAM algorithm is a se-
quence of i.i.d. variables with Pr [PUT-BACK] = 1

3 . Therefore, when a queue is chosen
at a new timestep, an (independent) biased coin is tossed to decide whether an arrival
or a service event will occur.

Dominance. Now, we claim that at any timestep, for every γ ∈ {0, 1}k+1, the number
of customers at γ-th cashier is at least the number of blocks stored at or above level
k in Tr with position p = (γ||·). This follows by observing that (i) whenever there is
a block with position p = (γ||·) moved to Tr (from PUT-BACK()), a corresponding
new customer arrives at the γ-th cashier, i.e. when the number of blocks increase by
one, so does the number of customers, and (ii) for every FLUSH() along the path to
p∗ = (γ||·): if there is at least one block stored at or above level k in Tr with position
p = (γ||·), then one such block will be flushed down below level k (since we flush the

9 The first operation in our system is always a PUT-BACK. To avoid that a1 ≡ PUT-BACK,
we can first execute a geometric number of FLUSHes before the system starts for the analysis
purpose.
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blocks that can be pulled down the furthest)—that is, when the number of customers
decreases by one, so does the number of blocks (if possible). This in particular implies
that throughout the coupled experiments, for every γ ∈ {0, 1}k the number of blocks in
the bucket at node γ is always upper bounded by the sum of the number of customers
at cashier γ0 and γ1.

We summarize the above in the following lemma.

Lemma 4. For every execution of our ORAM algorithm (i.e., any sequence of READ

and WRITE operations), there is a coupled experiment of the supermarket problem such
that throughout the coupled experiments, for every γ ∈ {0, 1}k the number of blocks in
the bucket at node γ is always upper bounded by the sum of the number of customers at
cashier γ0 and γ1.

From Lemma 4 and Proposition 1 to Lemma 2. Note that at any time step t, if the
queue size is ≤ 1

2 log
2+ε n, then by Proposition 1 with ϕ = �/2 = O(log logn) and

Lemma 4, except with negligible probability, at time step t + log4 n, there have been
at most ω(logn) overflows per level in the tree and thus at most 1

2 log
2+ε n in total.

Yet during this time “epoch”, log3 n element have been “popped” from the queue, so,
except with negligible probability, the queue size cannot exceed 1

2 log
2+ε n.

It follows by a union bound over log3 n length time “epochs”, that except with neg-
ligible probability, the queue size never exceeds log2+ε n.

5.3 Analysis of the Supermarket Problem

We now prove Proposition 1. We start with interpreting the dynamics in our process as
evolutions of a Markov chain.

A Markov Chain Interpretation. In our problem, at each time step t, a random cashier
is chosen and either an arrival or a serving event happens at that cashier (with probability
α and (1−α), respectively), which increases or decreases the queue size by one. Thus,
the behavior of each queue is governed by a simple Markov chain M with state space
being the size of the queue (which can also be viewed as a drifted random walk on a
one dimensional finite-length lattice). More precisely, each state i > 0 of M transits
to state i + 1 and i − 1 with probability α and (1 − α), respectively, and for state 0, it
transits to state 1 and stays at state 0 with probability α and (1 − α), respectively. In
other words, the supermarket process can be rephrased as having D copies of Markov
chainsM , each of which starts from state 0, and at each time step, one random chain is
selected and takes a move.

We shall use Chernoff bounds for Markov chains [9,14,16,3] to derive a large devia-
tion bound on the number of upset customers. Roughly speaking, Chernoff bounds for
Markov chains assert that for a (sufficiently long) T -steps random walk on an ergodic fi-
nite state Markov chainM , the number of times that the walk visits a subset V of states
is highly concentrated at its expected value π(V ) · T , provided that the chain M has
spectral expansion10 λ(M) bounded away from 1. However, there are a few technical
issues, which we address in turn below.
10 For an ergodic reversible Markov chain M , the spectral expansion λ(M) of M is simply

the second largest eigenvalue (in absolute value) of the transition matrix of M . The quantity
1− λ(M) is often referred to as the spectral gap of M .
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Overcounting. The first issue is that counting the number of visits to a state set V ⊂ S
does not capture the number of upset customers exactly—the number of upset cus-
tomers corresponds to the number of transits from state i to i + 1 with i + 1 ≥ ϕ.
Unfortunately, we are not aware of Chernoff bounds for counting the number of transits
(or visits to an edge set). Nevertheless, for our purpose, we can set Vϕ = {i : i ≥ ϕ} and
the number of visits to Vϕ provides an upper bound on the number of upset customers.

Truncating the Chain. The second (standard) issue is that the chainM for each queue
of a cashier has infinite state space {0}∪N, whereas Chernoff bounds for Markov chains
are only proven for finite-state Markov chains. However, since we are only interested in
the supermarket process with finite time steps, we can simply truncate the chain M at
a sufficiently large K (say, K � t+ T ) to obtain a chain MK with finite states SK =
{0, 1, . . . ,K}; that is, MK is identical to M , except that for state K , it stays at K with
probability α and transits to K − 1 with probability 1−α. Clearly, as we only consider
t+ T time steps, the truncated chain MK behaves identical to M . It’s also not hard to
show that MK has stationary distribution πK with πK(i) = (1 − β)βi/(1 − βK+1),
and spectral gap 1− λ(MK) ≥ Ω(1/(1− α)2).11

Correlation over a Short Time Frame. The main challenge, however, is to estab-
lish large deviation bounds for a short time interval T (compared to the number D of
chains). For example, T = O(D) or even poly log(D), and in these cases the expected
number of steps each of the D chains take can be a small constant or even o(1). There-
fore, we cannot hope to obtain meaningful concentration bounds individually for each
single chain. Finally, the D chains are not completely independent: only one chain is
selected at each time step. This further introduces correlation among the chains.

We address this issue by relying on a new variant of Chernoff bounds for Markov
chains with “resets,” which allows us to “glue” walks onD separate chains together and
yields a concentration bound that is as good as a T -step random walk on a single chain.
We proceed in the following steps.

– Recall that we haveD copies of truncated chainsMK starting from state 0. At each
time step, a random chain is selected and we takes one step in this chain. We want
to upper bound the total number of visits to Vϕ during time steps [t+ 1, t+ T ].

– We first note that, as we are interested in upper bounds, we can assume that the
chains start at the stationary distribution πK instead of the 0 state (i.e., all queues
have initial size drawn from πK instead of being empty). This follows by noting that
starting from πK can only increase the queue size throughout the whole process for
all of D queues, compared to starting from empty queues, and thus the number of
visits to Vϕ can only increase when starting from πK in compared to starting from
state 0 (this can be formalized using a standard coupling argument).

– Since walks from the stationary distribution remain at the stationary distribution, we
can assume w.l.o.g. that the time interval is [1, T ]. Now, as a thought experiment, we
can decompose the process as follows. We first determine the number of steps each
of the D chains take during time interval [1, T ]; let cj denote the number of steps
taken in the j-th chain. Then we take cj steps of random walk from the stationary

11 One can see this by lower bounding the conductance of MK and applying Cheeger’s inequality.
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distribution πK for each copy of the chain MK , and count the total number of visit
to Vϕ.

– Finally, we can view the process as taking a T -step random walk on MK with “re-
sets.” Namely, we start from the stationary distribution πK , take c1 steps in MK ,
”reset” the distribution to stationary distribution (by drawing an independent sam-
ple from πK) and take c2 more steps, and so on. At the end, we count the number
of visits to Vϕ, denoted byX , as an upper bound on the number of upset customers.

Intuitively, taking a random walk with resets injects additional randomness to the
walk and thus we should expect at least as good concentration results. We formalize
this intuition as the following Chernoff bound for Markov chains with ”resets”—the
proof of which follows relatively easy from recent Chernoff bounds for Markov chains
[3] and is found Section 5.4—and use it to finish the proof of Proposition 1.

Theorem 2 (Chernoff Bounds for Markov Chains with Resets). Let M be an ergodic
finite Markov chain with state spaceS, stationary distribution π, and spectral expansion
λ. Let V ⊂ S and μ = π(V ). Let T,D ∈ N and 1 = T0 ≤ T1 ≤ · · · ≤ TD <
TD+1 = T +1. Let (W1, . . . ,WT ) denote a T -step random walk onM from stationary
with resets at steps T1, . . . , TD; that is, for every j ∈ {0, . . . , D}, WTj ← π and
WTj+1, . . . ,WTj+1−1 are random walks from WTj . Let Xi = 1 iff Wi ∈ V for every

i ∈ [T ] and X =
∑T

i=1Xi. We have

Pr [X ≥ (1 + δ)μT ] ≤
{
exp

{
−Ω(δ2(1− λ)μT

)
} for 0 ≤ δ ≤ 1

exp {−Ω(δ(1− λ)μT )} for δ ≥ 1

Now, recall that 1 − λ(MK) = Ω(1/(1 − α)2) and πK(ϕ) = βϕ/(1 − βK+1) =
(α/1 − α)ϕ/(1 − βK+1). Theorem 2 says that for every possible c1, . . . , cD (corre-
sponding to resetting time Tj =

∑j
l=1 cj + 1),

Pr

[
X ≥ (1 + δ)(α/1 − α)ϕT

(1− βK+1)

∣∣∣∣ c1, . . . , cD
]
≤

⎧⎨
⎩
exp

{
−Ω

(
δ2(α/1−α)ϕT

(1−α)2(1−βK+1)

)}
for 0 ≤ δ ≤ 1

exp
{
−Ω

(
δ(α/1−α)ϕT )

(1−α)2(1−βK+1)

)}
for δ ≥ 1

Since X is an upper bound on the number of upset customers, and the above bound
holds for every c1, . . . , cD and for every K ≥ t + T , Proposition 1 follows by taking
K → ∞.

5.4 Chernoff Bounds for Markov Chains with Reset

We now prove Theorem 2. The high level idea is simple—we simulate the resets by
taking a sufficiently long “dummy” walk, where we “turn off” the counter on the num-
ber of visits to the state set V . However, formalizing this idea requires a more general
version of Chernoff bounds that handles “time-dependent weight functions,” which al-
lows us to turn on/off the counter. Additionally, as we need to add long dummy walks,
a multiplicative version (as opposed to an additive version) Chernoff bound is needed
to derive meaningful bounds. We here rely on a recent generalized version of Chernoff
bounds for Markov chains due to Chung, Lam, Liu and Mitzenmacher [3].
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Theorem 3 ([3]). Let M be an ergodic finite Markov chain with state space S, sta-
tionary distribution π, and spectral expansion λ. Let W = (W1, . . . ,WT ) denote a
T -step random walk on M starting from stationary distribution π, that is, W1 ← π.
For every i ∈ [T ], let fi : S → [0, 1] be a weight function at step i with expected weight
Ev←π [fi(v)] = μi. Let μ =

∑
i μi. Define the total weight of the walk (W1, . . . ,Wt)

by X �
∑t

i=1 fi(Wi). Then

Pr [X ≥ (1 + δ)μ] ≤
{
exp

{
−Ω(δ2(1 − λ)μ)

}
for 0 ≤ δ ≤ 1

exp {−Ω(δ(1− λ)μ)} for δ > 1

We now proceed to prove Theorem 2.

Proof of Theorem 2. We use Theorem 3 to prove the theorem. Let f : S → [0, 1] be
an indicator function on V ⊂ S (i.e., f(s) = 1 iff s ∈ V ) .The key component from
Theorem 3 we need to leverage here is that the functions fi can change over the time.
Here, we shall design a very long walk V on M so that the marginal distribution of a
specific collections of “subwalks” from V will be statistically close to W . Furthermore,
we design {fi}i≥0 in such a way that those “unused” subwalks will have little impact
to the statistics we are interested in. In this way, we can translate a deviation bound
on V to a deviation bound on W . Specifically, let T (ε) be the mixing time for M (i.e.
the number of steps needed for a walk to be ε-close to the stationary distribution in
statistical distance). Here, we let ε � exp(−DT ) (ε is chosen in an arbitrary manner so
long as it is sufficiently small). Given 1 = T0 ≤ T1 ≤ · · · ≤ TD < TD+1 = T + 1, we
define V and fi as follows: V will start from π and take T1−2 steps of walk. In the mean
time, we shall set fi = f for all i < T1. Then we “turn off” the function fi while letting
V keep walking for T (ε) more steps, i.e. we let fi = 0 for all T1 ≤ i ≤ T1 + T (ε)− 1.
Intuitively, this means we let V take a long walk until it becomes close to π again.
During this time, fi is turned off so that we do not keep track of any statistics. After
that, we “turn on” the function fi again for the next T2 − T1 steps (i.e. fi = f for all
T1 + T (ε) ≤ i ≤ T2 + T (ε)− 1, followed by turning fi off for another T (ε) steps. We
continue this “on-and-off” process until we walk through all Tj’s.

Let V ′ be the subwalks of V with non-zero fi. One can see that the statistical distance
between V ′ and W is poly(D,T ) exp(−DT ) ≤ exp(−T + o(T )). Thus, for any θ we
have

Pr
[∑

w∈W f(w) ≥ θ
]
≤ Pr

[∑
v′∈V′ f(v′) ≥ θ

]
+ exp(−T + o(T ))

= Pr
[∑

v∈V f(v) ≥ θ
]
+ exp(−T + o(T )).

(2)

By letting θ = (1 + δ)μT and using Theorem 3 to the right hand side of (2), we finish
our proof.

Acknowledgements. We are extremely grateful to an anonymous reviewer for pointing
out a subtle missing implementation detail needed to make the recursion go through.
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A Implementation Details

This section discusses a number of implementation details in our algorithm.

The queue at the cache. We now describe how we may use a hash table and a stan-
dard queue (that could be encapsulated in commodity chips) to implement our queue
with slightly non-standard behavior, which still suffices for our ORAM. Here, we only
assume the hash table uses universal hash function and it resolves collisions by using a
linked-list. To implement the INSERT(Block :b) procedure, we simply insert b to both
the hash table and the queue. The key we use is b’s value at the position map. Doing
so we may make sure the maximum load of the hash table is O(log n) whp [22]. To
implement FIND(int :i,word :p), we find the block b from the hash table. If it exists,
return the block and delete it. However, for simplicity of implementation, we do not
delete b at the queue. This introduces inconsistencies between the hash table and the
queue, which we take care below in POPFRONT().

We now describe how we implement POPFRONT(). Here, we need to be careful with
the inconsistencies. We first pop a block from the queue. Then we need to check whether
the block is in hash table. If not, that means the block was already deleted earlier. In
this case, POPFRONT() will not return anything (because we need a hard bound on the
running time). Note that this does not effect the correctness of our analysis, since the
queue size is indeed decreased by 1 for every PUT-BACK() action.

One can see that the above implementation relies only on standard hash table and
queue, and INSERT() takes O(1) time and the other two operations take ω(logn) time
(except with negligible probability).

0

pi

�/2

{

1

�/2

{

Fig. 1. In the FLUSH operation, we may imagine each bucket is splitted into two sub-arrays so
that blocks that will travel to different subtrees are stored in different arrays. An overflow occurs
when either sub-array’s size reaches �

2
.
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Abstract. Constrained pseudorandom functions have recently been in-
troduced independently by Boneh and Waters (Asiacrypt’13), Kiayias et
al. (CCS’13), and Boyle et al. (PKC’14). In a standard pseudorandom
function (PRF) a key k is used to evaluate the PRF on all inputs in the
domain. Constrained PRFs additionally offer the functionality to dele-
gate “constrained” keys kS which allow to evaluate the PRF only on a
subset S of the domain.

The three above-mentioned papers all show that the classical GGM
construction (J.ACM’86) of a PRF from a pseudorandom generator
(PRG) directly yields a constrained PRF where one can compute con-
strained keys to evaluate the PRF on all inputs with a given prefix. This
constrained PRF has already found many interesting applications. Un-
fortunately, the existing security proofs only show selective security (by
a reduction to the security of the underlying PRG). To achieve full se-
curity, one has to use complexity leveraging, which loses an exponential
factor 2N in security, where N is the input length.

The first contribution of this paper is a new reduction that only loses
a quasipolynomial factor qlogN , where q is the number of adversarial
queries. For this we develop a new proof technique which constructs a
distinguisher by interleaving simple guessing steps and hybrid arguments
a small number of times. This approach might be of interest also in other
contexts where currently the only technique to achieve full security is
complexity leveraging.

Our second contribution is concerned with another constrained PRF,
due to Boneh and Waters, which allows for constrained keys for the more
general class of bit-fixing functions. Their security proof also suffers from
a 2N loss, which we show is inherent. We construct a meta-reduction
which shows that any “simple” reduction of full security from a non-
interactive hardness assumption must incur an exponential security loss.

Keywords: Constrained pseudorandom functions, full security, com-
plexity leveraging, meta-reduction.

1 Introduction

PRFs. Pseudorandom functions (PRFs) were introduced by Goldreich, Gold-
wasser and Micali [GGM86]. A PRF is an efficiently computable keyed function
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F : K × X → Y, where F(K, ·), instantiated with a random key K ∗← K, cannot
be distinguished from a function randomly chosen from the set of all functions
X → Y with non-negligible probability.

Constrained PRFs. The notion of constrained PRFs (CPRFs) was intro-
duced independently by Boneh and Waters [BW13], Boyle, Goldwasser and Ivan
[BGI14] and Kiayias, Papadopoulos, Triandopoulos and Zacharias [KPTZ13].1

A constrained PRF is defined with respect to a set system S ⊆ 2X and
supports the functionality to “delegate” (short) keys that can only be used to
evaluate the function F : K × X → Y on inputs specified by a subset S ∈ S.
Concretely, there is a “constrained” keyspace Kc and additional algorithms
F.constrain : K × S → Kc and F.eval : Kc × X → Y, which for all k ∈ K, S ∈
S, x ∈ S and kS ← F.constrain(k, S), satisfy F.eval(kS , x) = F(k, x) if x ∈ S and
F.eval(kS , x) = ⊥ otherwise.

The GGM and the Boneh-Waters Construction. All the aforementioned
papers [BW13, BGI14, KPTZ13] show that the classical GGM [GGM86] con-
struction of the PRF GGM : {0, 1}λ × {0, 1}N → {0, 1}λ from a length-doubling
pseudorandom generator (PRG) G : {0, 1}λ → {0, 1}2λ directly gives a con-
strained PRF, where for any key K and input prefix z ∈ {0, 1}≤N , one can
generate a constrained key Kz that allows to evaluate GGM(K,x) for any x with
prefix z. This simple constrained PRF has found many applications; apart from
those discussed in [BW13, BGI14, KPTZ13], it can be used to construct so-called
“punctured” PRFs, which are a key ingredient in almost all the recent proofs of
indistinguishability obfuscation [SW14, BCPR13, HSW14].

Boneh and Waters [BW13] construct a constrained PRF for a much more
general set of constraints, where one can delegate keys that fix any subset of bits
of the input (not just the prefix, as in GGM). The construction is based on leveled
multilinear maps [GGH13] and its security is proven under a generalization of
the decisional Diffie-Hellman assumption.

Security of Constrained PRFs. The security definition for normal PRFs is
quite intuitive. One considers two experiments: the “real” experiment and the
“random” experiment, in both of which an adversary A gets access to an oracle
O(·) and then outputs a bit. In the real experiment O(·) implements the PRF
F(K, ·) using a random key; in the random experimentO(·) implements a random
function. The PRF is secure if every efficient A outputs 1 in both experiments
with (almost) the same probability.

Defining the security of constrained PRFs requires a bit more thought. We
want to give an adversary access not only to F(K, ·), but also to the constraining
function F.constrain(K, ·). But now we cannot expect the values F(K, ·) to look
random, as an adversary can always ask for a key KS ← F.constrain(K,S) and
then for any x ∈ S check whether F(K,x) = F.eval(KS , x).

1 The name “constrained PRF” is from [BW13]; in [KPTZ13] and [BGI14] these ob-
jects are called “delegatable PRFs” and “functional PRFs”, respectively. In this
paper we follow the naming and notation from [BW13].
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Instead, security is formalized by defining the experiments in two phases.
In the first phase of both experiments the adversary gets access to the same
oracles F(K, ·) and F.constrain(K, ·). The experiments differ in a second phase,
where the adversary chooses some challenge query x∗. In the real experiment the
adversary then obtains F(K,x∗), whereas in the random experiment she gets a
random value. Intuitively, when no efficient adversary can distinguish these two
games, this means that the outputs of F(K, ·) look random on all points that the
adversary cannot compute by herself using the constrained keys she has received
so far.

Selective vs. Full Security. In the above definition we let the adversary choose
the challenge input x∗ after she gets access to the oracles. This is the notion
typically considered, and it is called “full security” or “adaptive security”. One
can also consider a weaker “selective security” notion, where the adversary must
choose x∗ before getting access to the oracles.

The reason to consider selective security notions, not only here, but also for
other objects like identity-based encryption [BF01, BB04, AFL12] is that it is
often much easier to achieve. Although there exists a simple generic technique
called “complexity leveraging”, which translates any selective security guarantee
into a security bound for full security, this technique (which really just consists
of guessing the challenge) typically loses an exponential factor (in the length of
the challenge) in the quality of the reduction, often making the resulting security
guarantee meaningless for practical parameters.

1.1 Our Contributions

All prior works [BW13, BGI14, KPTZ13] only show selective security of the
GGM constrained PRF, and [BW13] also only give a selective-security proof for
their bit-fixing constrained PRF. In this paper we investigate the full security of
these two constructions. For GGM we achieve a positive result, giving a reduc-
tion that only loses a quasipolynomial factor. For the Boneh-Waters bit-fixing
CPRF we give a negative result, showing that for a large class of reductions, an
exponential loss is necessary. We now elaborate on these results.

A Quasipolynomial Reduction for GGM. To prove full security of GGM :
{0, 1}λ×{0, 1}N → {0, 1}λ, the “standard” proof proceeds in two steps (we give
a precise statement in Proposition 2).

1. A guessing step (a.k.a. complexity leveraging), which reduces full to selective
security. This step loses an exponential factor 2N in the input length N .

2. Now one applies a hybrid argument which loses a factor 2N .

The above two steps transform an adversary Af that breaks the full security
of GGM with advantage ε into a new adversary that breaks the security of the
underlying pseudorandom generator G (used to construct the GGM function)
with advantage ε/(2N · 2N ). As a consequence, even if one makes a strong expo-
nential hardness assumption on the PRG G, one must use a PRG whose domain
is Θ(N) bits in order to get any meaningful security guarantee.
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The reason for the huge security loss is the first step, in which one guesses
the challenge x∗ ∈ {0, 1}N the adversary will choose, which is correct with
probability 2−N . To avoid this exponential loss, one must avoid guessing the
entire x∗. Our new proof also consists of a guessing step followed by a hybrid
argument.

1. A guessing step, where (for some �) we guess which of the adversary’s queries
will be the first one that agrees with x∗ in the first � positions.2 This step
loses a factor q, which denotes the number of queries made by the adversary.

2. A hybrid argument which loses a constant factor 3.

The above two steps only lose a factor 3q. Unfortunately, after one iteration of
this approach we do not get a distinguisher for G right away. At a high level,
these two steps achieve the following: We start with two games which in some
sense are at distance N from each other, and we end up with two games which
are at distance N/2. We can iterate the above process n := logN times to end
up with games at distance N/2n = 1. Finally, from any distinguisher for games
at distance 1 we can get a distinguisher for the PRG G with the same advantage.
Thus, starting from an adversary against the full security of GGM with advantage
ε, we get a distinguisher for the PRG with advantage ε/(3q)logN .

We can optimize this by combining this approach with the original proof,
and therby obtain a quasipolynomial loss of 2q log q · (3q)logN−log log q. To give
some numerical example, let the input length be N = 210 = 1024 and the
number of queries be q = 232. Then we get a loss of 2q log q · (3q)logN−log log q =
2 · 232 · 32 · (3 · 232)10−5 = 2198 · 35 ≤ 2206, whereas complexity leveraging loses
2N2N = 21035.

Although our proof is somewhat tailored to the GGM construction, the general
“fine-grained” guessing approach outlined above might be useful to improve
the bounds for other constructions (like CPRFs, and even IBE schemes) where
currently the only proof technique that can be applied is complexity leveraging.

A Lower Bound for the Boneh-Waters CPRF and Hofheinz’s Con-
struction. We then turn our attention to the bit-fixing constrained PRF by
Boneh and Waters [BW13]. For this construction too, complexity leveraging—
losing an exponential factor—is the only known technique to prove full security.
We give strong evidence that this is inherent (even when the construction is only
used as a prefix-fixing CPRF).

Concretely, we prove that every “simple” reduction (which runs the adver-
sary once without rewinding; see Sect. 5.2) of the full security of this scheme
from any decisional (and thus also search) assumption must lose an exponential
factor. Our proof is a so-called meta-reduction [BV98, Cor02, FS10], showing
that any reduction that breaks the underlying assumption when given access to
any adversary that breaks the CPRF, could be used to break the underlying
assumption without the help of an adversary.

2 This guessing is somewhat reminiscent of a proof technique from [HW09].
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This impossibility result is similar to existing results, the closest one being
a result of Lewko and Waters [LW14] ruling out security proofs without expo-
nential loss for so-called “prefix-encryption” schemes (which satisfy some special
properties). Other related results are those of Coron [Cor02] and Hofheinz et
al. [HJK12], which show that security reductions for certain signature schemes
must lose a factor polynomial in the number of signing queries.

The above impossibility proofs are for public-key objects, where a public key
that uniquely determines the input/output distribution of the object. This prop-
erty is crucially used in the proof, wherein one first gets the public key and then
runs the reduction, rewinding the reduction multiple times to the point right
after the public key has been received.

As we consider a secret-key primitive, the above approach seems inapplica-
ble. We overcome this by observing that for the Boneh-Waters CPRF we can
initially make some fixed “fingerprint” queries, which then uniquely determine
the remaining outputs. We can therefore use the responses to these fingerprint
queries instead of a public key as in [LW14].

Hofheinz [Hof14] has (independently and concurrently with us) investigated
the adaptive security of bit-fixing constrained PRFs. He gives a new construction
of such PRFs which is more sophisticated than the Boneh-Waters construction,
and for which he can give a security reduction that only loses a polynomial factor.
The main tool that allows Hofheinz to overcome our impossibility result is the use
of a random oracle H(·). Very informally, instead of evaluating the PRF on an
input X , it is evaluated on H(X) which forces an attacker to make every query
X explicit. Unfortunately, this idea does not work directly as it destroys the
structure of the preimages, and thus makes the construction of short delegatable
keys impossible. Hofheinz deals with this problem using several other ideas.

2 Preliminaries

For a ∈ N, we let [a] := {1, 2, . . . , a} and [a]0 := {0, 1, . . . , a}. By {0, 1}≤a =⋃
i≤a{0, 1}i we denote the set of bitstrings of length at most a, including the

empty string ∅. By Ua we denote the random variable with uniform distribution
over {0, 1}a. We denote sampling s uniformly from a set S by s ∗← S. We
let x‖y denote the concatenation of the bitstrings x and y. For sets X ,Y, we
denote by F [X ,Y] the set of all functions X → Y; moreover, F [a, b] is short for
F [{0, 1}a, {0, 1}b]. For x ∈ {0, 1}∗, we denote by xi the i-th bit of x, and by
x[i . . . j] the substring xi‖xi+1‖ . . . ‖xj .

Definition 1 (Indistinguishability). Two distributions X and Y are (ε, s)-
indistinguishable, denoted X ∼(ε,s) Y , if no circuit D of size at most s can
distinguish them with advantage greater than ε, i.e.,

X ∼(ε,s) Y ⇐⇒ ∀D, |D| ≤ s :
∣∣Pr[D(X) = 1]− Pr[D(Y ) = 1]

∣∣ ≤ ε .

X ∼δ Y denotes that the statistical distance of X and Y is δ (i.e., X ∼(δ,∞) Y ),
and X ∼ Y denotes that they have the same distribution.



Adaptive Security of Constrained PRFs 87

Definition 2 (PRG). An efficient function G : {0, 1}λ → {0, 1}2λ is an (ε, s)-
secure (length-doubling) pseudorandom generator (PRG) if

G(Uλ) ∼(ε,s) U2λ .

Definition 3 (PRF). A keyed function F : K × X → Y is an (ε, s, q)-secure
pseudorandom function if for all adversaries A of size at most s making at
most q oracle queries∣∣∣PrK ∗←K[A

F(K,·) → 1]− Prf ∗←F [X ,Y][A
f(·) → 1]

∣∣∣ ≤ ε .

Constrained Pseudorandom Functions. Following [BW13], we say that a
function F : K × X → Y is a constrained PRF for a set system S ⊆ 2X , if there
is a constrained-key space Kc and algorithms

F.constrain : K × S → Kc and F.eval : Kc ×X → Y ,

which for all k ∈ K, S ∈ S, x ∈ S and kS ← F.constrain(k, S) satisfy

F.eval(kS , x) =

{
F(k, x) if x ∈ S

⊥ otherwise

That is, F.constrain(k, S) outputs a key kS that allows evaluation of F(k, ·) on
all x ∈ S.

Informally, a constrained PRF F is secure, if no efficient adversary can dis-
tinguish F(k, x∗) from random, even given access to F(k, ·) and F.constrain(k, ·)
which he can query on all x �= x∗ and S ∈ S where x∗ �∈ S, respectively. We will
always assume that S contains all singletons, i.e., ∀x ∈ X : {x} ∈ S; this way
we do not have to explicitly give access to F(k, ·) to an adversary, as F(k, x) can
be learned by querying for kx ← F.constrain(k, {x}) and computing F.eval(kx, x).

We distinguish between selective and full security. In the selective security
game the adversary must choose the challenge x∗ before querying the oracles.
Both games are parametrized by the maximum number q of queries the adversary
makes, of which the last query is the challenge query.

Expsel
CPRF(A,F, b, q)

K ∗← K, Ŝ := ∅, c := 0
x∗ ← A

AO(·)

C0
∗← Y, C1 := F(K,x∗)

A gets Cb

b̃← A

if x∗ ∈ Ŝ, return 0

return b̃

Expfull
CPRF(A, F, b, q)

K ∗← K, Ŝ := ∅, c := 0

AO(·)

x∗ ← A
C0

∗← Y, C1 := F(K, x∗)
A gets Cb

b̃← A

if x∗ ∈ Ŝ, return 0

return b̃

Oracle O(S)
if c = q − 1, return ⊥
c := c+ 1

Ŝ := Ŝ ∪ S
kS ← F.constrain(K,S)
return kS

For atk ∈ {sel, full} we define A’s advantage as

AdvatkF (A, q) = 2
∣∣∣Prb ∗←{0,1}[Expatk

CPRF(A,F, b, q) = b]− 1
2

∣∣∣ (1)
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and denote with
AdvatkF (s, q) = maxA,|A|≤s Adv

atk
F (A, q)

the advantage of the best q-query adversary of size at most s.

Definition 4 (Security of CPRFs). A constrained PRF F is

– selectively (ε, s, q)-secure if AdvselF (s, q) ≤ ε and
– fully (ε, s, q)-secure if AdvfullF (s, q) ≤ ε.

Remark 1 (CCA1 vs. CCA2 security). In the selective and full security notion,
we assume that the challenge query x∗ is only made at the very end, when A
has no longer access to the oracle (this is reminiscent of CCA1 security). All our
positive results hold for stronger notions (reminiscent to CCA2 security) where
A still has access to O(·) after making the challenge query, but may not query
on any S where x∗ ∈ S.

Remark 2 (Multiple challenge queries). We only allow the adversary one chal-
lenge query. As observed in [BW13], this implies security against any t > 1
challenge queries, losing a factor of t in the distinguishing advantage, by a stan-
dard hybrid argument.

Using what is sometimes called “complexity leveraging”, one can show that se-
lective security implies full security: given an adversary A against full security, we
construct a selective adversary B, which at the beginning guesses the challenge
x∗, which it outputs, then runs the A and aborts if the challenge A eventually
outputs is different from x∗. The distinguishing advantage drops thus by a factor
of the domain size |X |. We prove the following in the full version [FKPR14].

Lemma 1 (Complexity leveraging). If a constrained PRF F : K × X → Y
is (ε, s, q)-selectively secure, then it is (ε|X |, s′, q)-fully secure (where s′ =
s−O(log |X |)), i.e.,

AdvfullF (s′, q) ≤ |X | · AdvselF (s, q) .

3 The GGM Construction

The GGM construction, named after its inventors Goldreich, Goldwasser and
Micali [GGM86], is a keyed function GGMG : {0, 1}λ × {0, 1}∗ → {0, 1}λ from
any length-doubling PRG G : {0, 1}λ → {0, 1}2λ, recursively defined as

GGM(K∅, x) = Kx , where ∀ z ∈ {0, 1}≤N−1 : Kz‖0‖Kz‖1 = G(Kz) (2)

(cf. Fig. 1). In [GGM86] it is shown that when the inputs are restricted to {0, 1}N
then GGMG is a secure PRF if G is a secure PRG. Their proof is one of the first
applications of the so-called hybrid argument.3 The proof loses a factor of q ·N
in distinguishing advantage, where q is the number of queries. We provide it in
the full version [FKPR14].

3 The first application is in the “probabilistic encryption” paper [GM84].
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K∅

K0

K00

K000 K001

K01

K010 K011

K1

K10

K100 K101

K11

K110 K111

Fig. 1. Illustration of the GGM PRF. Every left child Kz‖0 of a node Kz is defined
as the first half of G(Kz), the right child Kz‖1 as the second half. The circled node
corresponds to GGM(K∅, 010).

Proposition 1 (GGM is a PRF [GGM86]). If G : {0, 1}λ → {0, 1}2λ is an
(εG, sG)-secure PRG then (for any N, q) GGMG : {0, 1}λ × {0, 1}N → {0, 1}λ is
an (ε, s, q)-secure PRF with

ε = εG · q ·N and s = sG −O(q ·N · |G|) .

3.1 GGM Is a Constrained PRF

As observed recently by three works independently [BW13, BGI14, KPTZ13],
the GGM construction can be used as a constrained PRF for the set Spre defined
as

Spre = {Sp : p ∈ {0, 1}≤N} , where Sp = {p‖z : z ∈ {0, 1}N−|p|} .

Thus, given a key Kp for the set Sp, one can evaluate GGMG(K, ·) on all inputs
with prefix p. Formally, the constrained PRF with key K = K∅ is defined using
(2) as follows:

GGMG.constrain(K∅, p) = GGMG(K∅, p) = Kp

GGMG.eval(Kp, x = p‖z) = GGMG(Kp, z) = Kx

Remark 3. When the domain is defined as X := {0, 1}∗ as for eq. (2) then the
GGM construction is a secure prefix-free PRF, which means that none of the
adversary’s queries can be a prefix of another query (see [FKPR14]). One might
be tempted to think that this fact together with the fact that constrained-key
derivation is simply the GGM function itself, already implies that it is a secure
constrained PRF. Unfortunately, this is not sufficient, as the (selective and full)
security notions for CPRFs do allow queries that are prefixes of previous queries.

The selective security of this construction can be proven using a standard hybrid
argument, losing only a factor of 2N in the distinguishing advantage. Proving full
security seems much more challenging, and prior to our work it was only achieved
by complexity leveraging (see Lemma 1), which loses an additional exponential
factor 2N in the distinguishing advantage, as stated in Proposition 2 below.
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Remark 4. In the proof of Proposition 2 and Theorem 1 we will slightly cheat,
as in the security game when b = 0 (i.e., when the challenge output is random)
we not only replace the challenge output Kx∗ , but also its sibling Kx∗[1...N−1]x∗

N
,

with a random value. Thus, technically this only proves security for inputs of
length N − 1 (as we can e.g. simply forbid queries x‖0, x ∈ {0, 1}N−1, in which
case it is irrelevant what the sibling is, as it will never be revealed). The proofs
without this cheat require one extra hybrid, which requires a somewhat different
treatment than all others hybrids and thus would complicate certain proofs and
definitions. Hence, we chose to not include it. The bounds stated in Proposition 2
and Theorem 1 are the bounds we get without this cheat.

Proposition 2. If G : {0, 1}λ → {0, 1}2λ is an (εG, sG)-secure PRG then (for
any N, q) GGMG : {0, 1}N → {0, 1}λ is a constrained PRF for Spre which is

1. selectively (ε, s, q)-secure, with

ε = εG · 2N and s = sG −O(q ·N · |G|) ;

2. fully (ε, s, q)-secure, with

ε = εG · 2N2N and s = sG −O(q ·N · |G|) .

Full security as stated in Item 2. of the proposition follows from selective security
(Item 1.) by complexity leveraging as explained in Lemma 1. To prove selective
security, we let H0 be the real game for selective security and let H2N−1 be the
random game, that is, where Kx∗ is random. We then define intermediate hybrid
games H1, . . . , H2N−2 by embedding random values along the path to Kx∗ . In
particular, in hybrid Hi, for 1 ≤ i ≤ N , the nodes K∅,Kx∗

1
, . . . ,Kx∗[1...i] are

random and for N + 1 ≤ i ≤ 2N − 1 the nodes K∅,Kx∗
1
, . . . ,Kx∗[1...2N−1−i] and

Kx∗ are random. Thus two consecutive games Hi, Hi+1 differ in one node that is
real in one game and random in the other, and moreover the parent of that node
is random, meaning we can embed a PRG challenge. From any distinguisher for
two consecutive games we thus get a distinguisher for the PRG G with the same
advantage. (A formal proof can be found in [FKPR14].)

This hybrid argument only loses a factor 2N in distinguishing advantage, but
complexity leveraging loses a huge factor 2N . In the next section we show how
to prove full security avoiding such an exponential loss.

4 Full Security with Quasipolynomial Loss

Theorem 1. If G : {0, 1}λ → {0, 1}2λ is an (εG, sG)-secure PRG then (for any
N, q) GGMG : {0, 1}N → {0, 1}λ is a fully (ε, s, q)-secure constrained PRF for
Spre, where

ε = εG · (3q)logN and s = sG −O(q ·N · |G|) .

At the end of this section we will sketch how to combine the proof of this theorem
with the standard complexity leveraging proof from Proposition 2 to get a smaller
loss of ε = εG · 2q log q · (3q)logN−log log q.
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Proof Idea. We can view the real and the random game for CPRF security
as having distance N , in the sense that from the only node in which they differ
(which is the challenge node Kx∗) we have to walk up N nodes until we reach a
node that was chosen uniformly at random (which here is the root K∅).

As outlined in Sect. 1.1, our goal is to halve that distance. For this, we could
define two intermediate hybrids which are defined as the real and the random
games, except that the node half way down the path to x∗, i.e., Kx∗[1...N/2], is a
random node. This is illustrated in Fig. 2, where a row depicts the path from the
root, labeled ‘0’, to x∗, labeled ‘8’ and where dark nodes correspond to random
values. The path at the top of the figure is the real and the one at the bottom is
the random game (ignore anything in the boxes for now), and the intermediate
hybrids are the 2nd and the 3rd path. Of these 4 hybrids, each pair of consecutive
hybrids has the following property: they differ in one node and its distance to
the closest random node above is N/2.

There is a problem with this approach because the intermediate hybrid games
we have just constructed are not even well-defined, as the value x∗[1 . . .N/2] is
only known when the adversary makes his challenge query. This is also the
case for x∗ itself, but Kx∗ only needs to be computed once x∗ is queried; in
contrast, Kx∗[1...N/2] could have been computed earlier in the game, if the value
of some constrained-key query is a descendant of it. In order to avoid possible
inconsistencies, we do the following: we guess which of the adversary’s queries
will be the first one with a prefix x∗[1 . . .N/2]. As there are at most q queries
and there always exists a query with this property (at latest the challenge query
itself), the probability of guessing correctly is 1/q. If we guess correctly then the
node x∗[1 . . .N/2] is known precisely when the value Kx∗[1...N/2] is computed for
the first time and we can correctly simulate the game. If our guess was wrong,
we abort.

Assuming an attacker can distinguish between the real and the random game,
there must be two consecutive hybrids of the 4 hybrids that it can distinguish
with at least one third of his original advantage. Between these two hybrids,
which differ in one node d, we can again embed two intermediate hybrids, which
have a random value half way between d and the closest random node above (cf.
the outer box in Fig. 2). We continue to do so until we reach two hybrids where
there is a random node immediately above the differing node. A distinguisher
between two such games can then be used to break the PRG.

Neighboring Sets with Low Weight. Before starting with the proof, we
introduce some notation. It will be convenient to work with ternary numbers,
which we represent as strings of digits from {0, 1, 2} within angular brackets
〈. . .〉. We denote repetition of digits as 0n = 0 . . . 0 (n times). Addition will also
be in ternary, e.g., 〈202〉+ 〈1〉 = 〈210〉.

Let N = 2n be a power of 2. In the proof of Theorem 1 we will construct 3n+1
subsets S〈0〉, . . . ,S〈10n〉 ⊂ {0, . . . , N}. These sets will define the positions in the
path to the challenge where we make random guesses in a particular hybrid. The
following definition measures how “close” sets (that differ in one element) are
and will be useful in defining neighboring hybrids.
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H〈0〉

H〈100〉

H〈200〉

H〈1000〉

H〈210〉

H〈220〉

H〈211〉

H〈212〉

0 1 2 3 4 5 6 7 8

0 41 2 3 5 6 7 8

0 4 81 2 3 5 6 7

0 2 4 81 3 5 6 7

0 2 3 4 81 5 6 7

0 2 3 81 4 5 6 7

0 2 81 3 4 5 6 7

0 81 2 3 4 5 6 7

Fig. 2. Concrete example (n = 3) illustrating the iterative construction of hybrids in
Theorem 1

Definition 5 (Neighboring sets). For k ∈ N+, sets S,S ′ ⊂ N0, S �= S ′ are
k-neighboring if

1. SΔS ′ := (S ∪ S ′) \ (S ∩ S ′) = {d} for some d ∈ N0, i.e., they differ in
exactly one element d.

2. d− k ∈ S.
3. ∀ i ∈ [k − 1] : d− i �∈ S.

We define the first set (with index 0 = 〈0〉) and the and last set (with index
3n = 〈10n〉) as

S〈0〉 := {0} and S〈10n〉 := {0, N} . (3)

(They will correspond to the real game, where only the root at depth ‘0’ is
random, and the random game, where the value for x∗ at depth N is random
too.) The remaining intermediate sets are defined recursively as follows. For
� = 0, . . . , n, we define the �-th level of sets to be all the sets of the form S〈?0n−�〉
(i.e., whose index in ternary ends with (n− �) zeros). Thus, S〈0〉 and S〈10n〉 are
the (only) level-0 sets.

Let SI ,SI′ be two consecutive level-� sets, by which we mean that I ′ = I +
〈10n−�〉. By construction, these sets will differ in exactly one element {d} (i.e.,
SI �= SI′ ; and SI ∪ {d} = SI′ or SI′ ∪ {d} = SI). Then the two level-(�+ 1) sets
between the level-� sets SI ,SI′ are defined as

SI+〈10n−(�+1)〉 := SI ∪{d− N
2�+1 } and SI′−〈10n−(�+1)〉 := SI′ ∪{d− N

2�+1 } . (4)

A concrete example for N = 2n = 23 = 8 is illustrated in Fig. 2 (where the dark
nodes of HI correspond to SI).

An important fact we will use is that consecutive level-� sets are (N/2�)-
neighboring (see Definition 5); in particular, consecutive level-n sets (the 4 lines
in the box in Fig. 2 illustrate 4 consecutive sets) are thus 1-neighboring, i.e.,
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∀ I ∈ {〈0〉, . . . , 〈2n〉} : SI ΔSI+〈1〉 = {d} and d− 1 ∈ SI . (5)

Proof of Theorem 1. Below we prove two lemmata (2 and 3) concerning the
games defined in Fig. 3, from which the theorem follows quite immediately. As
the games and the lemmata are rather technical, we first intuitively explain what
is going on, going through a concrete example as illustrated in Fig. 2.

To prove the theorem, we assume that there exists an adversary Af that breaks
the full security of GGMG with some advantage ε, and from this, we want to con-
struct a distinguisher for G with advantage at least ε/(3q)n, where n = logN .
Like in the proof of Proposition 2, we can think of the two games that Af dis-
tinguishes as the games where we let Af query GGMG, but along the path from
the root K∅ down to the challenge Kx∗ the nodes are either computed by G or
they are random values. The position of the random values are defined by the
set S〈0〉 = {0} for the real game and by S〈10n〉 = {0, N} for the random game: in
both cases the root K∅ is random, and in the latter game the final output Kx∗

is also random. We call these two games H∅
〈0〉 and H

∅
〈10n〉, and they correspond

to the games defined in Fig. 3 with P = ∅, and I = 〈0〉 and 〈10n〉, respectively).
As just explained, they satisfy

H∅
〈0〉 ∼ Expfull

CPRF(Af ,GGM
G, 0, q) and H∅

〈10n〉 ∼ Expfull
CPRF(Af ,GGM

G, 1, q) .

Thus, if Af breaks the full security of GGMG with advantage ε then∣∣Pr[H∅
〈0〉 = 1]− Pr[H∅

〈10n〉 = 1]
∣∣ ≥ ε . (6)

In the proof of Proposition 2 we were able to “connect” the real and random
experiments H0 and H2N−1 via intermediate hybrids H1, . . . , H2N−2, such that
from a distinguisher for any two consecutive hybrids we can build a distinguisher
for G with the same advantage.

We did this by using random values (instead of applying G) in some steps
along the path from the root K∅ to the challenge Kx∗ . Here we cannot use the
same approach to connect H∅

〈0〉 and H∅
〈10n〉, as these games consider full (and

not selective) security, where we learn x∗ only at the very end, and thus “the
path to x∗” is not even defined until the adversary makes the challenge query.

We could of course reduce the problem from the full to the selective setting
by guessing x∗ at the beginning like in the proof of Lemma 1, but this would
lose a factor 2N , which is what we want to avoid.

Instead of guessing the entire x∗, we will guess something easier. During the
experiment H〈0〉 we have to compute at most q children Kz‖0‖Kz‖1 = G(Kz)

of nodes at level N/2 − 1, i.e., z ∈ {0, 1}N/2−1. One of these Kz satisfies z =
x∗[1 . . . N/2 − 1], that is, it lies on the path from the root K∅ to the challenge
Kx∗ (potentially this happens only at the very last query xq = x∗). We randomly
guess qN/2

∗← [q] for which invocation of G this will be the case for the first time.
Note that we have to wait until Af makes its last query xq = x∗ before we know
whether our guess was correct. If the guess was wrong, we output 0; otherwise
we output Af ’s output. We will denote the position of the node down to which



94 G. Fuchsbauer et al.

Experiment HP
I

// I ∈ {〈0〉, . . . , 〈10n〉}
// P = {p1, . . . , pt} ⊆ [N − 1]
// SI ⊆ P ∪ {0, N},
// SI defined by eq. (3) and (4).

∀x ∈ {0, 1}≤N : Kx := ⊥
K∅

∗← {0, 1}λ
// Initialize counters:

∀ j = 1 . . . N − 1 : cj = 0
// Make a random guess for each
// element in P = {p1, . . . , pt}:

∀ j ∈ [t] : qpj
∗← [q]

// Af can make exactly q distinct
// oracle queries x1, . . . , xq;
// the last (challenge) query
// xq = x∗ must be in {0, 1}N :

A
O(·)
f

b̃← Af

// Only if guesses qp1 , . . . , qpt
// were correct, return b̃,
// otherwise return 0:

if ∀ p ∈ P : x∗[1 . . . p− 1] = zp−1

then return b̃
else return 0 fi

O(x = x[1 . . . �])
// Return Kx if it is already defined:

if Kx = ⊥ then return Kx fi

// Get parent of Kx recursively:
Kx[1...�−1] := O(x[1 . . . �− 1])

// Increase counter for level �− 1:
c�−1 = c�−1 + 1

// Compute Kx and its sibling using G,
// unless its parent Kx[1...�−1] is a node
// which we guessed will be on the path
// from K∅ and Kx∗ and as � ∈ P we
// must use a random value at this level;
// OR this is the challenge query xq=x∗

// and N ∈ SI , which means the answer
// to the challenge is random:

if (� ∈ P and c�−1 = q�−1)

OR (x = xq and N ∈ SI)

Kx[1...�−1]‖0‖Kx[1...�−1]‖1
∗← U2λ

// Store this node to check if guess
// was correct later:

z�−1 = x[1 . . . �− 1]
else

Kx[1...�−1]‖0‖Kx[1...�−1]‖1 := G(Kx[1...�−1])
fi

return Kx

Fig. 3. Definition of the hybrid games from the proof of Theorem 1. The sets SI are
as in Equations (3) and (4). The hybrid HP

I is defined like the full security game of a
q-query adversary Af against the CPRF GGMG, but where we “guess”, for any value
p ∈ P , at which point in the experiment the node at depth p on the path from the root
K∅ to the challenge Kx∗ is computed. (Concretely, the guess is that it’s the cp−1-th
time we compute the children of a node at level p−1, we define the p level node Kx∗[1...�]
on the path.) At a subset of these points, namely SI , we embed random values. The
final output is 0 unless all guesses were correct, in which case we forward Af ’s output.

our guessed query should equal the path to x∗ as superscript of the hybrid H .

The experiment just described corresponds thus to hybrid H
{N/2}
〈0〉 , as defined in

Fig. 3.

The games H
{N/2}
〈0〉 and H

{N/2}
〈10n〉 behave exactly like H∅

〈0〉 and H∅
〈10n〉, except

for the final output, which in the former two hybrids is set to 0 with probability
1 − 1/q, and left unchanged otherwise (namely, if our random guess qN/2

∗← [q]
turns out to be correct, which we know after learning x∗). This implies

Pr[H
{N/2}
〈0〉 = 1] = Pr[H∅

〈0〉 = 1] · 1q and Pr[H
{N/2}
〈10n〉 = 1] = Pr[H∅

〈10n〉 = 1] · 1q ,

and with (6) ∣∣Pr[H{N/2}
〈0〉 = 1]− Pr[H

{N/2}
〈10n〉 = 1]

∣∣ ≥ ε/q . (7)



Adaptive Security of Constrained PRFs 95

What did we gain? We paid a factor q in the advantage for aborting when our
guess qN/2 was wrong. What we gained is that when we guess correctly we know
x∗[1 . . . N/2], i.e., the node half way in between the root and the challenge.

We use this fact to define two new hybridsH
{N/2}
〈10n−1〉, H

{N/2}
〈20n−1〉 which are defined

like H
{N/2}
〈0〉 , H

{N/2}
〈10n〉 , respectively, but where the children of Kx∗[1...N/2−1] are

uniformly random instead of being computed by applying G to Kx∗[1...N/2−1].
Fig. 2 (ignoring the boxes for now) illustrates the path from K∅ to Kx∗ in the

hybrids H
{4}
〈0〉 , H

{4}
〈100〉, H

{4}
〈200〉, H

{4}
〈1000〉 assuming the guessing was correct (a node

with label i corresponds to Kx∗[1...i], dark nodes are sampled at random, and
green ones by applying G to the parent).

By (7) we can distinguish the first from the last hybrid with advantage ε/q,

and thus there are two consecutive hybrids in the sequence H
{N/2}
〈0〉 , H

{N/2}
〈10n−1〉,

H
{N/2}
〈20n−1〉, H

{N/2}
〈10n〉 that we can distinguish with advantage at least ε/(3q). For

concreteness, let us fix parameters N = 8 = 23 = 2n as in Fig. 2 and assume
that this is the case for the last two hybrids in the sequence, i.e.,

|Pr[H{4}
〈200〉 = 1]− Pr[H

{4}
〈1000〉 = 1]| ≥ ε/(3q) . (8)

The central observation here is that the above guessing step (losing a factor q)
followed by a hybrid argument (losing a factor 3) transformed a distinguishing
advantage ε for two hybrids H∅

〈0〉, H
∅
〈1000〉 which have random values embed-

ded along the path from K∅ to Kx∗ on positions defined by N -neighboring sets
S〈0〉,S〈1000〉, into a distinguishing advantage of ε/(3q) for two hybrids that cor-
respond to N/2-neighboring sets, e.g. S〈200〉 and S〈1000〉.

We can now iterate this approach, in each iteration losing a factor 3q in
distinguishing advantage, but getting hybrids that correspond to sets of half
the neighboring distance. After n = logN iterations we end up with hybrids
that correspond to 1-neighboring sets, and can be distinguished with advantage
ε/(3q)n. We will make this formal in Lemma 3 below. From any distinguisher for
hybrids corresponding to two 1-neighboring sets we can construct a distinguisher
for G with the same advantage, as formally stated in Lemma 2 below. Let’s
continue illustrating the approach using the hybrids illustrated in Fig. 2.

Recall that we assumed that we can distinguish H
{4}
〈200〉 and H

{4}
〈1000〉 as stated

in eq. (8). We now embed hybrids corresponding to the sets S〈210〉,S〈220〉 in
between, illustrated in the outer box in Fig. 2 (ignore the inner box for now).
Since S〈200〉ΔS〈1000〉 = {4}, by eq. (4) for � = 1, we construct S〈200〉+〈10〉 =

S〈200〉 ∪{4− 8
22 = 2} and S〈1000〉−〈10〉 = S〈1000〉 ∪{2} . We add this new element

{2} to the “guessing set” {4}, at the price of losing a factor q in distinguishing
advantage compared to eq. (8):∣∣Pr[H{2,4}

〈200〉 = 1]− Pr[H
{2,4}
〈1000〉 = 1]

∣∣ ≥ ε/(3q2) . (9)

We can now consider the sequence of hybrids H
{2,4}
〈200〉 , H

{2,4}
〈210〉 , H

{2,4}
〈220〉 , H

{2,4}
〈1000〉.

There must be two consecutive hybrids that can be distinguished with advantage
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ε/(32q2). Let’s assume this is the case for the middle two.∣∣Pr[H{2,4}
〈210〉 = 1]− Pr[H

{2,4}
〈220〉 = 1]

∣∣ ≥ ε/(32q2) . (10)

Now S〈210〉ΔS〈220〉 = {4}, and 4− 8/23 = 3, so we add {3} to the guessing set
losing another factor q:∣∣Pr[H{2,3,4}

〈210〉 = 1]− Pr[H
{2,3,4}
〈220〉 = 1]

∣∣ ≥ ε/(32q3) , (11)

and can now consider the games H
{2,3,4}
〈210〉 , H

{2,3,4}
〈211〉 , H

{2,3,4}
〈212〉 , H

{2,3,4}
〈220〉 as shown

inside the two boxes in Fig. 2. Two consecutive hybrids in this sequence must
be distinguishable with advantage at least 1/3 of the advantage we had for the
first and last hybrid in this sequence; let’s assume this is the case for the last
two, then: ∣∣Pr[H{2,3,4}

〈212〉 = 1]− Pr[H
{2,3,4}
〈220〉 = 1]

∣∣ ≥ ε/(33q3) . (12)

We have thus shown the existence of two games HP
I and HP

I+〈1〉 (what P and I

are exactly is irrelevant for the rest of the argument) that can be distinguished
with advantage ε/(3q)n. Any two consecutive (i.e., 1-neighboring) hybrids have
the following properties (cf. eq. 5). They only differ in one node on the path to
x∗ and its parent node is random. Moreover, the position of the differing node is
in the guessing set P , meaning we know its position in the tree. Together, this
means we can use a distinguisher between HP

I and HP
I+〈1〉 to break G: Given a

challenge for G we embed it as the value of the differing node and, depending
whether it was real or random, simulate one hybrid or the other. We formalize
this in the following lemma, which is proven in the full version [FKPR14].

Lemma 2. For any I ∈ {〈0〉, . . . , 〈2n〉},P ⊂ {1, . . . , N−1} where SI ∪SI+〈1〉 ⊆
P ∪ {0, N} (so the games HP

I+〈1〉, H
P
I are defined) the following holds. If∣∣Pr[HP

I = 1]− Pr[HP
I+〈1〉 = 1]

∣∣ = δ

then G is not a (δ, s)-secure PRG for s = |Af | −O(q ·N · |G|).

Lemma 3. For � ∈ {0, . . . , n−1}, any consecutive level-� sets SI ,SI′ (i.e., I, I ′

are of the form 〈?0n−�〉 and I ′ = I + 〈10n−�〉) and any P for which the hybrids
HP

I , H
P
I′ are defined (which is the case if SI ∪ SI′ ⊆ P ∪ {0, N}), the following

holds. If ∣∣Pr[HP
I = 1]− Pr[HP

I′ = 1]
∣∣ = δ (13)

then for some consecutive level-(�+1) sets J ∈ {I, I+ 〈10n−�−1〉, I+ 〈20n−�−1〉}
and J ′ = J + 〈10n−�−1〉 and some P ′:∣∣Pr[HP′

J = 1]− Pr[HP′
J′ = 1]

∣∣ = δ/(3q) .

The proof of Lemma 3 is in [FKPR14]. The theorem now follows from Lem-
mata 2 and 3 as follows. Assume a q-query adversary Af breaks the full security
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of GGMG for domain X = {0, 1}2n with advantage ε, which, as explained in the
paragraph before eq. (6), means that we can distinguish the two level-0 hybrids
H∅

〈0〉 and H
∅
〈10n〉 with advantage ε. Applying Lemma 3 n times, we get that there

exist consecutive level-n hybrids HP
I , H

P
I+〈1〉 that can be distinguished with ad-

vantage ε/(3q)n, which by Lemma 2 implies that we can break the security of G
with the same advantage ε/(3q)n. This concludes the proof of Theorem 1.

To reduce the loss to 2q log q ·(3q)n−log log q as stated below Theorem 1, we use
the same proof as above, but stop after n− log log q (instead of n) iterations. At
this point, we have lost a factor (3q)n−log log q, and have constructed games that
are (log q)-neighboring. We can now use a proof along the lines of the proof of
Proposition 2, and guess the entire remaining path of length log q at once. This
step loses a factor 2q log q (a factor 2log q = q to guess the path, and another
2 log q as we have a number of hybrids which is twice the length of the path).

5 Impossibility Result for the Boneh-Waters PRF

In this section we show that we cannot hope to prove full security without an
exponential loss for another constrained PRF, namely the one due to Boneh and
Waters [BW13].

5.1 The Boneh-Waters Constrained PRF

Leveled κ-linear Maps. The Boneh-Waters constrained PRF [BW13] is based
on leveled multilinear maps [GGH13, CLT13], of which they use the following
abstraction.

We assume a group generator G that takes as input a security parameter 1λ

and the number of levels κ ∈ N and outputs a sequence of groups (G1, . . . ,Gκ),
each of prime order p > 2λ, generated by gi, respectively, such that there exists
a set of bilinear maps {ei,j : Gi ×Gj → Gi+j | i, j ≥ 1; i+ j ≤ κ} with

∀a, b ∈ Zp : ei,j(g
a
i , g

b
j) = (gi+j)

ab .

(For simplicity we will omit the indices of e.) Security of the PRF is based on
the following assumption.

The κ-multilinear decisional Diffie-Hellman assumption states that given the
output of G(1λ, κ) and (g1, g

c1
1 , . . . , g

cκ+1

1 ) for random (c1, . . . , cκ+1)
∗← Zκ+1

p , it

is hard to distinguish (gκ)
∏

j∈[κ+1] cj from a random element in Gκ with better
than negligible advantage in λ.

The Boneh-Waters Bit-Fixing PRF. Boneh and Waters [BW13] define a
PRF with domain X = {0, 1}N and range Y = Gκ, where κ = N + 1. The sets
S ⊆ X for which constrained keys can be derived are subsets of X where certain
bits are fixed; a set S is described by a vector v ∈ {0, 1, ?}N (where ‘?’ acts as a
wildcard) as Sv := {x ∈ {0, 1}N | ∀i ∈ [N ] : (vi =?) ∨ (xi = vi)}.
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The PRF is set up for domain X = {0, 1}N by running G(1λ, N + 1) to
generate a sequence of groups (G1, . . . ,GN+1). We let g denote the generator
of G1. Secret keys are random elements from K := Z2N+1

p :

k = (α, d1,0, d1,1, . . . , dN,0, dN,1) . (14)

and the PRF is defined as

F : K × X → Y , (k, x) �→ (gN+1)
α
∏

i∈[N ] di,xi .

F.constrain(k, v): On input a key k as in (14) and v ∈ {0, 1, ?}N describing the
constrained set, output the key kv :=

(
v,K, {Di,b}i∈[N ]\V, b∈{0,1}

)
, where

V := {i ∈ [N ] | vi �=?} is the set of fixed indices,

K := (g|V |+1)
α
∏

i∈V di,vi and Di,b := gdi,b , for i ∈ [N ]\V, b ∈ {0, 1} .

F.eval(kv, x): On input kv = (v,K, {Di,b}i∈[N ]\V, b∈{0,1}) and x ∈ X :
– if for some i ∈ V : xi �= vi, return ⊥ (as x is not in Sv);
– if |V | = N , output K (as Sv = {v} and K = F(k, v));

– else, compute T := (gN−|V |)
∏

i∈[N ]\V di,xi via repeated application of the

bilinear maps to the elements Di,xi = gdi,xi for i ∈ [N ]\V and output

e(T,K) = (gN+1)
α
∏

i∈[N ] di,xi = F(k, x).

In [BW13] it is shown how to use an adversary breaking the constrained PRF
for N -bit inputs with advantage ε(λ) to break the (N +1)-multilinear decisional
Diffie-Hellman assumption with advantage 1

2N
· ε(λ). (The exponential factor

comes from security leveraging.) In the next section we show that this is optimal
in the sense that every simple reduction from a decisional problem must lose a
factor that is exponential in the input length N .

We actually prove a stronger statement. First, this security loss is necessary
even when the CPRF is only used as a prefix-fixing PRF, that is, constrained keys
are only issued for sets S(z,?...?) with z ∈ {0, 1}≤N . Second, the loss is necessary
even when one only wants to prove unpredictability of the CPRF, where the
adversary must compute F(k, x∗) instead of distinguishing it from random.

Definition 6 (Unpredictability). Consider the following experiment for a
constrained PRF (F,F.constrain,F.eval).

– The challenger chooses k ∗← K;
– A can query F.constrain for sets Si;
– A wins if it outputs (x,F(k, x)) with x ∈ X and x /∈ Si for all queried Si.

The CPRF is (ε, t, q)-unpredictable if no A running in time at most t making
at most q queries can win the above game with probability greater than ε.

Since unpredictability follows from pseudorandomness without any security
loss (we assume that the domain X is of superpolynomial size), our impossibil-
ity result holds a forteriori for pseudorandomness. In particular, this precludes
security proofs for the Boneh-Waters CPRF using the technique from Sect. 4.
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5.2 Adaptive Security of the Boneh-Waters CPRF

Hierarchical identity-based encryption (HIBE) [HL02] is a generalization of iden-
tity-based encryption where the identities are arranged in a hierarchy and from
a key for an identity id one can derive keys for any identities that are below id.
In the security game for HIBE the adversary receives the parameters and can
query keys for any identity. He then outputs (id,m0,m1) and, provided that id
is not below any identity for which he queried a key, receives the encryption for
id of one of the two messages, and wins if he guesses which one it was.

Lewko andWaters [LW14], following earlier work [Cor02, HJK12], show that it
is hard to prove full security of HIBE schemes if one can check whether secret keys
and ciphertexts are correctly formed w.r.t. the public parameters. In particular,
they show that a simple black-box reduction (that is, one that runs the attacker
once without rewinding; see below) from a decisional assumption must lose a
factor that is exponential in the depth of the hierarchy. We adapt their proof
technique and show that a proof of full security of the Boneh-Waters PRF with
constrained keys for prefix-fixing must lose a factor that is exponential in the
length of the PRF inputs.

The proof idea in [LW14] is the following: Assume that there exists a reduc-
tion which breaks a challenge with some probability δ after interacting with
an adversary that breaks the security of the HIBE with some probability ε.
We define a concrete adversary A, which, after receiving the public parameters,
guesses a random identity id at the lowest level of the hierarchy and then queries
keys for all identities except id, checking whether they are consistent with the
parameters. Finally it outputs a challenge query for id.

Given a challenge, we run the reduction and simulate this adversary until
we have keys for all identities except id. We then rewind the reduction to the
point right after it sent the parameters to A and simulate A again (choosing a
fresh random identity id′; thus id′ �= id with high probability). A now asks for
a challenge for id′ and can break it by using the key for id′ it received in the
first run. It is crucial that keys can be verified w.r.t. the parameters, as this
guarantees that the reduction cannot detect that a key from the first run was
used to win in the second run (the parameters being the same in both runs).

The reduction can thus be used to break the challenge without any adversary,
as we can simulate the adversary ourselves. (The actual proof, as well as that of
Theorem 2, is more complex, as we need to rewind more than once.) We formally
define decisional problems and simple reductions, following [LW14].

Definition 7. A non-interactive decisional problem Π = (C,D) is described
by a set of challenges C and a distribution D on C. Each c ∈ C is associated
with a bit b(c), the solution for challenge c. An algorithm A (ε, t)-solves Π if A
runs in time at most t and Pr

c
D←−C

[
b(c) ← A(c)

]
≥ 1

2 + ε .

Definition 8. An algorithm R is a simple (t, ε, q, δ, t′)-reduction from a deci-
sional problem Π to breaking unpredictability of a CPRF if, when given black-box
access to any adversary A that (t, ε, q)-breaks unpredictability, R (δ, t′)-solves Π
after simulating the unpredictability game once for A.
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We show that every simple reduction from a decisional problem to unpre-
dictability of the Boneh-Waters CPRF must lose at least a factor exponential
in N . Instead of checking validity of keys computed by the reduction w.r.t. the
public parameters, as in [LW14], we show that after two concrete key queries,
the secret key k used by the reduction is basically fixed; the two received con-
strained keys are thus a “fingerprint” of the secret key. Moreover, we show that,
by using the multilinear map, correctness of any key can be verified w.r.t. to
this fingerprint; which gives us the required checkability property. We define
an adversary A that we can simulate by rewinding the reduction: After mak-
ing the fingerprint queries, A chooses a random value x∗ ∈ X and queries keys
which allow it to evaluate all other domain points, checking every key is consis-
tent with the fingerprint. (Note that keys for (1 − x∗1, ?, . . .), (x

∗
1, 1 − x∗2, ?, . . .),

. . . ,(x∗1, . . . , x
∗
N−1, 1− x∗N ) allow evaluation of the PRF on X \{x∗}.)

By rewinding the reduction to the point after receiving the fingerprint and
choosing a different x′, we can break security by using one of the keys obtained in
the first run to evaluate the function at x′. In [FKPR14] we prove the following.

Theorem 2. Let Π(λ) be a decisional problem for which no algorithm running
in time t = poly(λ) has an advantage non-negligible in λ. Let R be a simple
(t, ε, q, δ, t′) reduction from Π to unpredictability of the Boneh-Waters prefix-
constrained PRF with domain {0, 1}N , with t, t′ = poly(λ), and q ≥ N −1. Then
δ vanishes exponentially as a function of N (up to terms that are negligible in λ).

The reason why our impossibility result does not apply to the GGM con-
struction is that its constrained keys are not “checkable”. This is why in the
intermediate hybrids we can embed random nodes on the path to x∗, which lead
to constrained keys that are not correctly computed.
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Abstract. We show how to extract an arbitrary polynomial number
of simultaneously hardcore bits from any one-way function. In the case
the one-way function is injective or has polynomially-bounded pre-image
size, we assume the existence of indistinguishability obfuscation (iO). In
the general case, we assume the existence of differing-input obfuscation
(diO), but of a form weaker than full auxiliary-input diO. Our construc-
tion for injective one-way functions extends to extract hardcore bits on
multiple, correlated inputs, yielding new D-PKE schemes. Of indepen-
dent interest is a definitional framework for differing-inputs obfuscation
in which security is parameterized by circuit-sampler classes.

1 Introduction

When RSA was invented [52], the understanding was that public-key encryption
(PKE) would consist of applying the RSA one-way function f directly to the
message. In advancing semantic security (unachieved by this plain RSA scheme)
as the appropriate target for PKE, Goldwasser and Micali [37] created a new
challenge. Even given RSA, how was one to achieve semantic security?

The answer was hardcore functions [17,58,37]. Let f be a one-way function,
and h a function that has the same domain as f and returns strings of some
length s. We say that h is hardcore for f if the distributions (f, h, f(x), h(x))
and (f, h, f(x), r) are computationally indistinguishable when x is chosen at
random from the domain of f and r is a random s-bit string.1 We will refer
to the output length s of h, which is the number of (simultaneously) hardcore
bits produced by h, as the span of h, and say that f achieves a certain span
if there exists a hardcore function h for f with the span in question. Hardcore
predicates are hardcore functions with span one. Semantically-secure PKE can
now be easily achieved: encrypt s-bit message m as (f(x), h(x)⊕m) for random
x where trapdoor, injective one-way function f together with hardcore function

1 In the formal definitions in Section 2, both one-way functions and hardcore functions
are families. Think here of f, h as instances chosen at random from the respective
families, their descriptions public.
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h constitute the public key. The span s determines the number of message bits
that can be encrypted, so the larger it is, the better.

The quest for semantic security turned into a quest for hardcore functions
[17,58,37,54,15,42,3,48,39,56,46,35,40]. It became quickly evident that finding
hardcore predicates, let alone hardcore functions of span larger than one, was
very challenging, and many sophisticated techniques were invented. With time,
encryption methods avoiding hardcore functions did emerge [26]. But hardcore
functions have never lost their position as a fundamental cryptographic prim-
itive, as new usages, applications and constructions have arisen [28,25,1,2,27].
Hardcore functions have been particularly important in developing new forms
of encryption, including lossy-TDF based encryption [51] and deterministic en-
cryption [6,8,30].

Generic Constructions. Across all this work and applications, something
that stands out is the value and appeal of generic constructions, the representa-
tive result being that of Goldreich and Levin (GL) [35]. Prior to this, hardcore
functions were obtained by dedicated and involved analyses that exploited the
algebra underlying the one-way function itself. GL [35] showed that the inner
product of x with a random string (the latter is part of the description of h)
results in a hardcore predicate for any OWF. This result has had an enormous
impact, as evidenced by over 900 citations to the paper to date. A generic con-
struction such as that of GL allows theoreticians to develop constructions and
proofs independently of specific algebraic assumptions. Furthermore, it allows
us to immediately obtain hardcore functions, and thus encryption, from new,
candidate one-way functions.

Questions and Answers. The GL construction however only provided a hard-
core predicate, meaning span one, and by extension logarithmic span. The most
desired goal was polynomial span.2 Significant effort was been invested towards
this goal, allowing it to be reached for specific algebraic OWFs [40,25,47,50,2]
or ones satisfying extra properties [51]. But a generic construction providing
polynomial span seemed out of reach.

This is the question resolved by our work. We present generic constructions of
hardcore functions with polynomial span for both injective and non-injective one-
way functions. The tools we use are indistinguishability obfuscation (iO) [5,31]
and differing-inputs obfuscation (diO) [5,20,4]. See Fig. 1 for a summary of our
results.

Prior Work. In more detail, early results gave hardcore predicates (ie. span
one) for specific one-way functions including discrete exponentiation modulo a
prime, RSA and Rabin [17,58,54,15,42,3,48,39,28]. Eventually, as noted above,
the impactful and influential work of Goldreich and Levin [35] gave a generic
hardcore predicate for any one-way function. Extensions of these results are able
to achieve logarithmic span [56,46,35,1,27].

2 Once one can obtain a particular polynomial number of output bits, one can always
expand to an arbitrary polynomial via a PRG, so we do not distinguish these cases.
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OWF Span Assumption Construction See

injective poly iO HC1 Cor. 5 of Th. 4
poly pre-image size poly iO HC2 Cor. 8 of Th. 6

any poly diO− HC2 Cor. 7 of Th. 6

Fig. 1. Our results: We indicate the assumptions we make in order to construct
hardcore functions with polynomial span. By diO− we mean a weakening of diO that
we define.

Hardcore functions with polynomial span have been provided for specific,
algebraic functions, usually under a stronger assumption than one-wayness of
the function itself. These include the works by H̊astad, Schrift and Shamir [40]
for discrete exponentiation modulo a composite, by Patel and Sundaram [50]
for discrete exponentiation modulo a safe prime, by Catalano, Gennaro and
Howgrave-Graham [25] for the Paillier function [49], and by Akavia, Goldwasser
and Vaikuntanathan [2] for certain LWE-based functions. Moreover, polynomial-
span hardcore functions for RSA [45,55] and the Rabin trapdoor function [55]
have been given under different assumptions. Peikert and Waters showed that
lossy trapdoor functions [51] achieve polynomial span, yielding further examples
of specific one-way functions with polynomial span [51,29].

The basic question that remains open was whether polynomial span is achiev-
able for an arbitrary, given OWF, meaning whether there is a generic hardcore
function with polynomial span. One answer was provided by [9], who showed
that UCE-security (specifically, relative to split, computationally-unpredictable
sources) of a function h with polynomial span suffices for h to be hardcore for
any one-way function, but the assumption made is arguably close to the desired
conclusion.

Our Results. Injective one-way functions are the most important case for apli-
cations. (Most applications are related to some form of encryption.) Accordingly
we begin by focusing on the case where f is injective. We give a construction of
a hardcore function called HC1 that provides polynomial span for any injective
OWF f . Beyond one-wayness of f we assume iO [5,53].

We then provide theHC2 construction of a hardcore function with polynomial
span for any, even non-injective OWF f . In the case f has polynomially-bounded
pre-image size, the extra assumption remains iO. In the general case, it is diO,
but of a form that is weaker than full auxiliary-input diO as defined in [20,4].

As direct corollaries, we obtain hardcore functions of polynomial span for
many specific OWFs f , in some cases providing the first hardcore function with
polynomial span for this f , in others providing a construction under different
and new assumptions compared to prior ones. Thus for the basic discrete ex-
ponentiation OWF over the integers modulo a prime or an elliptic curve group,
we provide the first construction with polynomial span. (Results were known
when exponents are short [33,50] and for discrete exponentiation modulo com-
posites [40,36].)
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Our results have the above-noted benefits of generic constructions. They yield
conceptual simplifications for the development of theoretical cryptography, and
also provide automatic ways to get hardcore functions for new, candidate one-
way functions. We view our work as also been interesting from the point of view
of showing the power and applicability of iO, in the wake of Sahai-Waters [53].

Technical Approach. We now take a closer look at our constructions and
proofs to highlight the technical approach and novelties. Recall that the guar-
antee of iO [5,53] is that the obfuscations of two circuits are indistinguishable
if the circuits themselves are equivalent, meaning return the same output on all
inputs. Differing-inputs obfuscation (diO) [5,20,4] relaxes the equivalence condi-
tion, asking instead that it only be hard, given the (unobfuscated) circuits, to
find an input where they differ. See Section 3 for formal definitions.

Our HC1 construction is a natural one, namely to let h be an obfuscation of
the circuit G(gk, ·) where G is a PRF [34] and gk is a random key for G. Our proof
assumes the PRF is punctured [19,43,21]. (This is not an extra assumption, as
we assume the existence of one-way functions.) Moreover, the proof uses a weak
form of diO shown by Boyle, Chung and Pass (BCP) [20] to be implied by iO. The
proof considers an adversaryH provided with f, h, f(x∗), r∗ (where f is injective)
and we want to move from the real game, in which r∗ = G(gk, x∗), to the random
game, in which r∗ is random. We begin by using the SW technique [53] to move
to a game in which r∗ is random and h is an obfuscation of the circuit C1

that embeds the target input x∗, a punctured PRF key, and a random point r∗,
returning the latter when called on x = x∗ (the trigger) and otherwise returning
G(gk, x), computed via the punctured key. (This move relies on iO and punctured
PRF security.) While this has made r∗ random as desired, h is not what it should
be in the random game, where it is in fact an obfuscation of the real circuit
G(gk, ·). The difficulty is to move h back to an obfuscation of this real circuit
while leaving r∗ random. We realize that such a move must exploit the one-
wayness of f , which has not so far been used. A one-wayness adversary, given
f(x∗) and aiming to find x∗, needs to run H. The problem is that H needs an
obfuscation of the above-described circuit C1 as input, and construction of C1

requires knowing the very point x∗ that the one-wayness adversary is trying to
find. The difficulty is inherent rather than merely one of proof, for the forms
of obfuscation being used give no guarantee that an obfuscation of C1 does
not reveal x∗. We get around this by changing the trigger check from x = x∗ to
f(x) = f(x∗), so that now the circuit can embed f(x∗) rather than x∗, a quantity
there is no harm in revealing. This is reminescent of the technique in the security
proof of the short signature scheme of Sahai and Waters [53]. The new check is
equivalent to the old if f is injective, which is where we use this assumption.
But we have still not arrived at the random game. We note that our modified
circuit C2 and the target circuit G(gk, ·) of the random game are inherently
non-equivalent, and iO would not apply. However, these circuits differ only at
input x∗. We exploit the one-wayness of f to prove that it is hard to find this
input even given the two circuits. The assumed diO-security of the obfuscator
now implies that the obfuscations of these circuits are indistinguishable, allowing
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us to conclude. Finally, since we exploit diO only for circuits that differ at one
(hard to find) point, BCP [20] says that iO in fact suffices, making iO the only
assumption needed for the result beyond the necessary one-wayness of f .

The above argument makes crucial use of the assumption that f is injective.
To handle an arbitrary one-way function, our HC2 construction modifies the
above so that h is an obfuscation of the circuit G(gk, f(·)) where gk is a random
key for punctured PRF G. Thus, h(x) = G(gk, f(x)). We refer to Section 5 for
the proof but note that BCP [20] implies that iO suffices for our proof when the
number of preimages of any output of f is polynomial, but in general it could
be exponential. In this case, diO suffices, but in fact a weaker version of it, that
we define, does as well.

In summary, in the important case of injective one-way functions, and even
for one-way functions with polynomial pre-image size, we provide a hardcore
function with polynomial span assuming only iO. For one-way functions with
super-polynomial pre-image size, we provide a hardcore function with polynomial
span assuming a weak form of diO that we denote by diO− in Fig. 1.

Extensions and Applications. We show that our HC1 hardcore function
construction is able to extract random, independent bits even on inputs that are
arbitrarily correlated, which is not true of most prior constructions and, com-
bined with the fact that we get polynomially-many output bits for each input,
yields new applications. In more detail, an injective function f is said to be
one-way on a distribution I over vectors x if, given the result f(x) of applying
f to x component-wise, it is hard to recover any component of x. We want a
hardcore function such that the components of h(x) look not only random but
independent even given f(x). If the components of x are independent, this is
true for any hardcore function meeting the standard definition, and thus for
ours, but if the components are correlated, standard hardcore functions give
no such guarantee and may fail. As an example, many existing hardcore func-
tions [17,58,54,15,42,3,48,39,28,56,46,35,1,27,40,25,49,2] return certain specific
bits of their input and will thus fail to be hardcore relative to the distribution
in which x[2] is the bitwise complement of x[1], even if f is one-way on this dis-
tribution. We show however that HC1 remains hardcore for f on any efficiently
sampleable distribution I over which f is one-way, even when the entries of the
vectors produced by I are arbitrarily correlated. This answers open questions
from [38,30].

Deterministic PKE (D-PKE) is useful for many applications, including effi-
cient search on encrypted data [6] and providing resilience in the face of the
low-quality randomness that pervades systems [7]. However, it cannot provide
IND-CPA security. BBO [6] define what it means for a D-PKE scheme to provide
PRIV-security over an input sampler I, the latter returning vectors of arbitrarily
correlated messages to be encrypted. We restrict attention to distributions that
are admissible, meaning that there exists a family of injective, trapdoor functions
that is one-way relative to I. The basic question that emerges is, for which admis-
sible distributions I does there exist a D-PKE scheme that is PRIV-secure over
I? We show that this is true for all admissible distributions that are efficiently
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sampleable, assuming only the existence of iO. We obtain this result using the
security of HC1 on correlated inputs and techniques from [30]. Previously, this
was known only in the ROM [6], under the assumption that UCE-secure func-
tions exist [9], for distributions with limited correlation between messages [8,18]
or assuming lossy trapdoor functions [30]. See [12] for definitions, a precise state-
ment of the result, and proofs.

Parameterized diO. Of independent interest, we provide a definitional frame-
work for diO in which security is parameterized by a class of circuit samplers.
This allows us to unify and capture variant notions of iO and diO in the litera-
ture [5,53,20,4]. The framework makes it easy to define further variants that are
weaker than full diO, yielding a language in which one can state assumptions
that are closer to those actually used in the proof rather than being overkill,
particularly with regard to the type of auxiliary inputs used [13,22,32]. This
is useful in the light of work like [32] which indicates that diO with arbitrary
auxiliary inputs may be implausible. The weaker notion of diO noted above and
denoted diO− in Fig. 1 is formally defined in our framework as diO security for
“short” auxiliary inputs, which evades the negative results of [32]. See Section 3.

Discussion and Related Work. Random oracles (ROs) are “ideal” hardcore
functions, able to provide polynomial span for any one-way function [10]. Our
results, akin to [44,9,41], can thus be seen as instantiating the RO in a natural
ROM construction, in particular showing hardcore functions in the standard
model that are just as good as those in the ROM. As a consequence, we are able
to instantiate the RO in the BR93 PKE scheme [10] to obtain a standard-model
IND-CPA scheme.

The hardcore function in our second construction is the reverse of the hash
function used to instantiate FDH in HSW [41]: in our case, the circuit being
obfuscated first applies a one-way function and then a punctured PRF, while in
their case it first applies a punctured PRF and then a one-way function.

Our work adopts the standard definition of a one-way function in which any
polynomial-time adversary must have negligible inversion advantage. Polyno-
mial span is known to be achievable for any exponentially hard to invert func-
tion [35,27].

Given a one-way permutation f and a polynomial n it is possible to con-
struct another one-way permutation g that has n hardcore bits. Namely let
g(x) = fn(x) and let the hardcore function on x be the result of the Blum-
Micali-Yao PRG [17,58] on seed x. A similar transform is provided in [16]. We
provide hardcore functions directly for any given one-way function rather than
for another function built from it.

GGHW [32] show that if what they call “special purpose” obfuscation is pos-
sible then full diO (diO for all circuits relative to arbitrary auxiliary inputs)
is not possible. (Their result constructs a pathological auxiliary input that is
itself a special-purpose obfuscated circuit.) Their result does not rule out the
assumptions we use, namely iO or diO−. GGHW go on to show that if a special-
purpose obfuscation of Turing Machines is possible then there is an artificial
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one-way function with exponential pre-image size (in particular it is not injec-
tive) for which there is no hardcore predicate that is output-dependent. (That
is, f(x1) = f(x2) implies h(x1) = h(x2), a property possessed by our second
construction.)

Subsequent Work. Our proof for HC1 avoids hardwiring the challenge input
x∗ in the circuit by hardwiring y∗ = f(x∗) and changing the test for x = x∗ to
f(x) = y∗. Brzuska and Mittelbach [23] change this step in our proof to imple-
ment the test using auxiliary-input point function obfuscation (AIPO) [23,24,14].
As a result, under the additional assumption that AIPO is possible, they obtain
a proof for our HC1 construction which applies to arbitrary (not just injective)
one-way functions. Zhandry [59] shows how to replace diO in our constructions
with extractable witness PRFs.

2 Preliminaries

We recall definitions for one-way functions, hardcore predicates and punctured
PRFs.

Notation. We denote by λ ∈ N the security parameter and by 1λ its unary
representation. We denote the size of a finite set X by |X |, and the length
of a string x ∈ {0, 1}∗ by |x|. We let ε denote the empty string. If C is a
circuit then |C| denotes its size, and if s is an integer then Pads(C) denotes
C padded to have size s. If X is a finite set, we let x←$ X denote picking
an element of X uniformly at random and assigning it to x. Algorithms may be
randomized unless otherwise indicated. Running time is worst case. “PT” stands
for “polynomial-time,” whether for randomized algorithms or deterministic ones.
If A is an algorithm, we let y ← A(x1, . . . ; r) denote running A with random
coins r on inputs x1, . . . and assigning the output to y. We let y←$ A(x1, . . .) be
the result of picking r at random and letting y ← A(x1, . . . ; r). We let [A(x1, . . .)]
denote the set of all possible outputs of A when invoked with inputs x1, . . .. We
say that f : N → R is negligible if for every positive polynomial p, there exists
np ∈ N such that f(n) < 1/p(n) for all n > np. We use the code based game
playing framework of [11]. (See Fig. 2 for examples of games.) By GA(λ) we
denote the event that the execution of game G with adversary A and security
parameter λ results in the game returning true.

Function Families. A family of functions F specifies the following. PT key
generation algorithm F.Kg takes 1λ and possibly another input to return a key
fk ∈ {0, 1}F.kl(λ), where F.kl: N → N is the key length function associated to
F. Deterministic, PT evaluation algorithm F.Ev takes key fk and an input x ∈
{0, 1}F.il(λ) to return an output F.Ev(fk, x) ∈ {0, 1}F.ol(λ), where F.il,F.ol: N → N

are the input and output length functions associated to F, respectively. The pre-
image size of F is the function PreImgF defined for λ ∈ N by

PreImgF(λ) = max
fk,x∗

∣∣∣{ x ∈ {0, 1}F.il(λ) : F.Ev(fk, x) = F.Ev(fk, x∗) }
∣∣∣
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Game OWF
F (λ)

fk←$ F.Kg(1λ)

x∗ ←$ {0, 1}F.il(λ)
y∗ ← F.Ev(fk, x∗)
x′ ←$ F(1λ, fk, y∗)
Return (y∗ = F.Ev(fk, x′))

Game HCH
F,H(λ)

b←$ {0, 1}
fk ←$ F.Kg(1λ)

hk←$ H.Kg(1λ, fk)

x∗ ←$ {0, 1}F.il(λ)
y∗ ← F.Ev(fk, x∗)
If b = 1 then

r∗ ← H.Ev(hk, x∗)
Else r∗ ←$ {0, 1}H.ol(λ)
b′ ←$H(1λ, fk,hk, y∗, r∗)
Return (b = b′)

Game PPRFG
G(λ)

b←$ {0, 1}
gk←$ G.Kg(1λ)

b′ ←$ GCH(1λ)

Return (b = b′)

CH(x∗)

gk∗ ←$ G.PKg(1λ, gk, x∗)
If b = 1 then

r∗ ← G.Ev(gk, x∗)
Else r∗ ←$ {0, 1}G.ol(λ)
Return (gk∗, r∗)

Game DIFFD
S (λ)

(C0,C1, aux )←$ S(1λ)
x←$D(C0,C1, aux )

Return (C0(x) = C1(x))

Game IOO
Obf,S(λ)

b←$ {0, 1} ; (C0,C1, aux)←$ S(1λ)
C←$ Obf(1λ,Cb) ; b

′ ←$O(1λ,C, aux )

Return (b = b′)

Fig. 2. Games defining one-wayness of F, security of H as a hardcore function for F,
punctured-PRF security of G, difference-security of circuit sampler S and iO-security
of obfuscator Obf relative to circuit sampler S

where the maximum is over all x∗ ∈ {0, 1}F.il(λ) and all fk ∈ [F.Kg(1λ)]. We
say that F is injective if PreImgF(λ) = 1 for all λ ∈ N, meaning F.Ev(fk, x1) �=
F.Ev(fk, x2) for all distinct x1, x2 ∈ {0, 1}F.il(λ), all fk and all λ ∈ N. We say that F
has polynomial pre-image size if there is a polynomial p such that PreImgF(·) ≤
p(·).
One-Wayness and Hardcore Functions. Function family F is one-way if
AdvowF,F(·) is negligible for all PT adversaries F , where AdvowF,F (λ) = Pr[OWF

F (λ)]

and game OWF
F (λ) is defined in Fig. 2. Let H be a family of functions with

H.il = F.il. We say that H is hardcore for F if AdvhcF,H,H(·) is negligible for all PT

adversaries H, where AdvhcF,H,H(λ) = 2Pr[HCH
F,H(λ)] − 1 and game HCH

F,H(λ) is
defined in Fig. 2.

Punctured PRFs. A punctured function family G specifies (beyond the usual
algorithms) additional PT algorithms G.PKg,G.PEv. On inputs 1λ, a key gk ∈
[G.Kg(1λ)] and target input x∗ ∈ {0, 1}G.il(λ), algorithm G.PKg returns a “punc-
tured” key gk∗ such that G.PEv(gk∗, x) = G.Ev(gk, x) for all x ∈ {0, 1}G.il(λ) \
{x∗}. We say that G is a punctured PRF if AdvpprfG,G(·) is negligible for all PT

adversaries G, where AdvpprfG,G (λ) = 2Pr[PPRFG
G(λ)] − 1 and game PPRFG

G(λ) is
defined in Fig. 2. Here G must make exactly one oracle query where it picks a
target point x∗ and gets back the corresponding punctured key together with a
challenge for the value of G.Ev on the target point.
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The concept of punctured PRFs is due to [19,43,21] who note that they can
be built via the GGM construction [34]. This however yields a family G with
G.il = G.ol. For our purposes, we need a stronger result, namely a punctured
PRF with arbitrary polynomial output length:

Proposition 1. Let ι, � be polynomials and assume one-way functions exist.
Then there is a punctured PRF G with G.il = ι and G.ol = �.

The claimed punctured PRF G can be obtained by starting from a GGM-based
punctured PRF G with G.il = G.ol = ι and letting G.Ev(gk, x) = S.Ev(G.Ev(gk,
x)) where S is a PRG with input length ι and output length �. We omit the
details.

3 Parameterized diO Framework

We present a definitional framework for diO where security is parameterized by
a class of circuit samplers. This is of conceptual value in enabling us to capture
and unify existing forms of iO and diO. Further, it allows one to easily define
new forms of diO that are weaker than the full auxiliary-input diO of [20,4]
and thus obtain results under weaker assumptions. Our parameterized language
leads to sharper and more fine-grained security claims in which we can state
assumptions that are closer to what is actually used by the proof rather than
being overkill, in particular with regard to what types of auxiliary input are
used [13,22,32]. This allows us to circumvent the negative results of [32] which
apply to diO with arbitrary auxiliary input. We note that previous definitions
did parameterize the definition by a class of circuits but this is different and in
particular will not capture differences related to auxiliary inputs.

Circuit Samplers. A circuit sampler is a PT algorithm S that on input 1λ

returns a triple (C0,C1, aux) where C0,C1 are circuits which have the same
size, number of inputs and number of outputs, and aux is a string. We say that
a circuit sampler S is difference secure if AdvdiffS,D(·) is negligible for every PT

adversary D, where AdvdiffS,D(λ) = Pr[DIFFD
S (λ)] and game DIFFD

S (λ) is defined
in Fig. 2. Difference security of S means that given C0,C1, aux it is hard to find
an input on which the circuits differ.

iO-security. An obfuscator is a PT algorithm Obf that on input 1λ and a
circuit C returns a circuit C such that C(x) = C(x) for all x. If S is a circuit
sampler and O is an adversary, we let AdvioObf,S,O(λ) = 2Pr[IOO

Obf,S(λ)]−1 where

game IOO
Obf,S(λ) is defined in Fig. 2. Now let S be a class (set) of circuit samplers.

We say that Obf is S-secure if AdvioObf,S,O(·) is negligible for every PT adversary
O and every circuit sampler S ∈ S . This is our parameterized notion of security.
The following obvious fact will often be useful:

Proposition 2. Let S1,S2 be classes of circuit samplers and Obf an obfuscator.
Suppose S1 ⊆ S2. Then if Obf is S2-secure it is also S1-secure.



Poly-Many Hardcore Bits for Any One-Way Function 111

Capturing Known Notions. Different types of iO security in the literature
can now be captured and unified by considering different classes of circuit sam-
plers, as follows.

Let Sdiff be the class of all difference-secure circuit samplers. Then Obf being
Sdiff -secure means it is a differing-inputs obfuscator as per [20,4].

Let Saux be the class of circuit samplers S that do not have auxiliary inputs,
meaning aux = ε for all λ ∈ N and all (C0,C1, aux) ∈ [S(1λ)]. Let Saux

diff =
Sdiff ∩ Saux ⊆ Sdiff be the class of all difference-secure circuit samplers that do
not have auxiliary inputs. Then Obf being Saux

diff -secure means it is a differing-
inputs obfuscator as per [5].

We say that circuits C0,C1 are equivalent, written C0 ≡ C1, if they agree on
all inputs. We say that circuit sampler S produces equivalent circuits if C0 ≡ C1

for all λ ∈ N and all (C0,C1, aux) ∈ [S(1λ)]. Let Seq be the class of all circuit
samplers that produce equivalent circuits. Then Obf being Seq-secure means it is

an indistinguishability obfuscator as per [53]. Let Saux
eq = Seq∩Saux be the class

of circuit samplers without auxiliary inputs that produce equivalent circuits.
Then Obf being Saux

eq -secure means it is an indistinguishability obfuscator as
per [5].

If S produces equivalent circuits it is certainly difference-secure. This means
that Seq ⊆ Sdiff and Saux

eq ⊆ Saux
diff . Hence Proposition 2 says that any Sdiff -secure

obfuscator is a Seq-secure obfuscator and any Saux
diff -secure obfuscator is a Saux

eq -
secure obfuscator. That is, diO implies iO, both for the case with auxiliary input
and the case without, a fact we will often use.

We say that circuit sampler S produces d-differing circuits, where d: N → N,
if C0 and C1 differ on at most d(λ) inputs for all λ ∈ N and all (C0,C1, aux ) ∈
[S(1λ)]. Let Sdiff(d) be the class of all difference-secure circuit samplers that
produce d-differing circuits, so that Seq ⊆ Sdiff(d) ⊆ Sdiff . The interest of this
definition is the following result of BCP [20]:

Proposition 3. If d is a polynomial then any Seq-secure obfuscator is also a
Sdiff(d)-secure obfuscator.

We will exploit this to reduce our assumptions from Sdiff -secure obfuscation to
Seq-secure obfuscation in some cases.

New Classes. Above, we have used our framework to express and capture
existing variants of iO and diO. We now define a new variant, via a new class
of samplers. Following the definition we will explain the motivation. We say
that a circuit sampler S has short auxiliary inputs if |aux | < |Cb| for all b ∈
{0, 1}, all λ ∈ N and all (C0,C1, aux) ∈ [S(1λ)]. We let Ssh be the class of
all circuit samplers that have short auxiliary inputs. The assumption made in
Theorem 6 is a S-secure obfuscator for a particular S ⊆ Sdiff ∩Ssh, meaning diO
is only required relative to circuits samplers with short auxiliary inputs. This is
a potentially weaker assumption than a Sdiff -secure obfuscator.
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4 Poly-Many Hardcore Bits for Injective OWFs

In this section we consider the natural construction of a hardcore function with
arbitrary span, namely an obfuscated PRF. We show that this works assuming
the one-way function is injective and the obfuscation is diO-secure, yielding our
first result, namely a hardcore function with arbitrary polynomial span for any
injective one-way function.

Construction. Let G be a function family. Let Obf be an obfuscator and
let s: N → N. We define function family H = HC1[G,Obf, s] as follows, with
H.il = G.il and H.ol = G.ol:

H.Kg(1λ, fk)

gk ←$ G.Kg(1λ) ; C ← Pads(λ)(G.Ev(gk, ·))
C←$ Obf(1λ,C)
hk ← C ; Return hk

H.Ev(hk, x)

C ← hk ; r ← C(x)
Return r

We give H.Kg two inputs because this is required by the syntax, but the second is
ignored. Here G.Ev(gk, ·) represents the circuit that given x returns G.Ev(gk, x),
and C is obtained by padding G.Ev(gk, ·) to size s(λ). The padding length func-
tion s is a parameter of the construction that will depend on the one-way function
F for which H will be hardcore. The description hk of the hardcore function is
an obfuscation of circuit C. The hardcore function output is the result of this
obfuscated circuit on x, which is simply G.Ev(gk, x), the result of the original
circuit on x. The output of the hardcore function is thus the output of a PRF,
the key for the latter embedded in an obfuscated circuit to prevent its being
revealed.

Results. Recall that a Sdiff(1)-secure obfuscator is weaker than a full Sdiff -
secure obfuscator (see Section 3 for definitions) since it is only required to work
on circuits that differ on at most one (hard to find) input. We have:

Theorem 4. Let F be an injective one-way function family. Let G be a punctured
PRF with G.il = F.il. Then there is a polynomial s such that the following is
true. Let Obf be any Sdiff(1)-secure obfuscator. Then the function family H =
HC1[G,Obf, s] defined above is hardcore for F.

Proposition 1 yields punctured PRFs with as long an output as desired, so that
the above allows extraction of an arbitrary polynomial number of hardcore bits.
The one-way function assumption made in Proposition 1 is already implied by
the assumption that F is one way. Theorem 4 assumes a differing-inputs obfus-
cator only for circuits that differ on at most one input, which by Proposition 3
can be obtained from an indistinguishability obfuscator, making the latter the
only assumption beyond one-wayness of F needed to extract polynomially-many
hardcore bits. Formally, we have:

Corollary 5. Let � be any polynomial. Let F be any injective one-way function.
If there exists a Seq-secure obfuscator then there exists a hardcore function H for
F with H.ol = �.
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Games G0–G4

fk←$ F.Kg(1λ) ; gk ←$ G.Kg(1λ) ; x∗ ←$ {0, 1}F.il(λ)
y∗ ← F.Ev(fk, x∗) ; gk∗ ←$ G.PKg(1λ, gk, x∗)

r∗ ← G.Ev(gk, x∗) ; C← Pads(λ)(G.Ev(gk, ·)) // G0

r∗ ← G.Ev(gk, x∗) ; C← Pads(λ)(C
1
gk∗,x∗,r∗) // G1

r∗ ←$ {0, 1}G.ol(λ) ; C← Pads(λ)(C
1
gk∗,x∗,r∗) // G2

r∗ ←$ {0, 1}G.ol(λ) ; C← Pads(λ)(C
2
fk,gk,y∗,r∗) // G3

r∗ ←$ {0, 1}G.ol(λ) ; C← Pads(λ)(G.Ev(gk, ·)) // G4

C←$ Obf(1λ,C) ; hk ← C ; b′ ←$H(1λ, fk,hk, y∗, r∗) ; Return (b′ = 1)

Circuit C1
gk∗,x∗,r∗(x)

If x = x∗ then return G.PEv(gk∗, x)
Else return r∗

Circuit C2
fk,gk,y∗,r∗(x)

If F.Ev(fk, x) = y∗ then return G.Ev(gk, x)
Else return r∗

Fig. 3. Games for proof of Theorem 4

Proof (Theorem 4). We define s as follows: For any λ ∈ N let s(λ) be a poly-
nomial upper bound on max(|G.Ev(gk, ·)|, |C1

gk∗,x∗,r∗ |, |C2
fk,gk,y∗,r∗ |) where the

last two circuits are in Fig. 3 and the maximum is over all gk ∈ [G.Kg(1λ)],
x∗ ∈ {0, 1}G.il(λ), gk∗ ∈ [G.PKg(1λ, gk, x∗)], fk ∈ [F.Kg(1λ)], y∗ ∈ {0, 1}F.ol(λ)
and r∗ ∈ {0, 1}G.ol(λ). Now let H be a PT adversary. Consider the games and
associated circuits of Fig. 3. Lines not annotated with comments are common to
all five games. The games begin by picking keys fk, gk for the one-way function
F and the punctured-PRF G, respectively. They pick the challenge input x∗ and
then create a punctured PRF key gk∗ for it. Then the games differ in how they
define r∗ and the circuit C to be obuscated. These defined, the games re-unite
to obfuscate the circuit and run H.

Game G0 does not use the punctured keys, and is equivalent to the b = 1 case
of HCH

F,H(λ) while G4, similarly, is its b = 0 case, so

AdvhcF,H,H(λ) = Pr[G0]− Pr[G4] . (1)

We now show that Pr[Gi−1] − Pr[Gi] is negligible for i = 1, 2, 3, 4, which by
Equation (1) implies that AdvhcF,H,H(·) is negligible and proves the theorem. We
begin with some intuition. In game G1, we switch the circuit being obfuscated
to one that uses the punctured key when x �= x∗ and returns an embedded
r∗ = G.Ev(gk, x∗) otherwise. This circuit is equivalent to G.Ev(gk, ·) so iO-
security, implied by diO, will tell us that the adversaryH will hardly notice. This
switch puts us in position to use the security of the punctured-PRF, based on
which G2 replaces r∗ with a random value. These steps are direct applications of
the Sahai-Waters technique [53], but now things get more difficult. Having made
r∗ random is not enough because we must now revert the circuit being obfuscated
back to G.Ev(gk, ·). We also realize that we have not yet used the one-wayness
of F, so this reversion must rely on it. But the circuit in G2 embeds x∗, the point
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a one-wayness adversary would be trying to find, and it is not clear how we can
simulate the construction of this circuit in the design of an adversary violating
one-wayness. To address this, instead of testing whether x equals x∗, the circuit
in G3 tests whether the values of F.Ev(fk, ·) on these points agree, which can
be done given only y∗ = F.Ev(fk, x∗) and avoids putting x∗ in the circuit. But
we need this to not alter the functionality of the circuit. This is where we make
crucial use of the assumption that F.Ev(gk, ·) is injective. Finally, in game G4

we revert the circuit back to G.Ev(gk, ·). But the circuits in G3,G4 are now
manifestedly not equivalent. However, the input on which they differ is x∗. We
show that the one-wayness of F implies that this point is hard to find, whence
diO (here iO is not enough) allows us to conclude. We now proceed to the details.

Below, we (simultaneously) define three circuit samplers that differ at the
commented lines and have the uncommented lines in common, and then also
define an iO-adversary:

Circuit Samplers S1(1
λ), S3(1

λ), S4(1
λ)

fk←$ F.Kg(1λ) ; gk ←$ G.Kg(1λ)

x∗ ←$ {0, 1}F.il(λ) ; y∗ ← F.Ev(fk, x∗) ; gk∗ ←$ G.PKg(1λ, gk, x∗)
r∗ ← G.Ev(gk, x∗) ; C1 ← Pads(λ)(G.Ev(gk, ·)) ; C0 ← Pads(λ)(C

1
gk∗,x∗,r∗) // S1

r∗ ←$ {0, 1}G.ol(λ) ; C1 ← Pads(λ)(C
1
gk∗,x∗,r∗) ; C0 ← Pads(λ)(C

2
fk,gk,y∗,r∗) // S3

r∗ ←$ {0, 1}G.ol(λ) ; C1 ← Pads(λ)(C
2
fk,gk,y∗,r∗) ; C0 ← Pads(λ)(G.Ev(gk, ·)) // S4

aux ← (fk, y∗, r∗) ; Return (C0,C1, aux)

Adversary O(1λ,C, aux )

(fk, y∗, r∗)← aux ; hk ← C ; b′ ←$H(1λ, fk,hk, y∗, r∗)
Return b′

Now we have

Pr[Gi−1]− Pr[Gi] = AdvioObf,Si,O(λ) for i ∈ {1, 3, 4} . (2)

We now make three claims: (1) S1 ∈ Seq (2) S3 ∈ Seq (3) S4 ∈ Sdiff(1). Since
Seq ⊆ Sdiff(1) and Obf is assumed Sdiff(1)-secure, the RHS of Equation (2) is
negligible in all three cases.

We now establish claim (1). If x �= x∗ then C1
gk∗,x∗,r∗(x) = G.PEv(gk∗, x) =

G.Ev(gk, x). If x = x∗ then C1
gk∗,x∗,r∗(x) = r∗, but S1 sets r∗ = G.Ev(gk, x∗).

This means that S1 produces equivalent circuits, and hence S1 ∈ Seq.
Next we establish claim (2). The assumed injectivity of F implies that circuits

C1
gk∗,x∗,r∗ and C2

fk,gk,y∗,r∗ are equivalent when y∗ = F.Ev(fk, x∗), and hence S3 ∈
Seq.

To establish claim (3), given any PT difference adversary D for S4, we build
one-wayness adversary F via

Adversary F(1λ, fk, y∗)

gk ←$ G.Kg(1λ) ; r∗ ←$ {0, 1}G.ol(λ)
C1 ← Pads(λ)(C

2
fk,gk,y∗,r∗) ; C0 ← Pads(λ)(G.Ev(gk, ·))

aux ← (fk, y∗, r∗) ; x←$D(C0,C1, aux ) ; Return x
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If C1(x) �= C0(x) then it must be that F.Ev(fk, x) = y∗. Thus AdvdiffS4,D(·) ≤
AdvowF,F(·). The assumed one-wayness of F thus means that S4 is difference-secure.
But we also observe that, due to the injectivity of F, circuits C0,C1 differ on
only one input, namely x∗. So S4 ∈ Sdiff(1).

One transition remains, namely that from G1 to G2. Here we have

Pr[G1]− Pr[G2] = AdvpprfG,G(λ) (3)

where adversary G is defined via

Adversary GCH(1λ)

fk←$ F.Kg(1λ) ; x∗ ←$ {0, 1}F.il(λ) ; y∗ ← F.Ev(fk, x∗) ; (gk∗, r∗)←$ CH(x∗)
C← Pads(λ)(C

1
gk∗,x∗,r∗) ; hk←$ Obf(1λ,C) ; b′ ←$H(1λ, fk,hk, y∗, r∗)

Return b′

The RHS of Equation (3) is negligible by the assumption that G is a punctured
PRF. This concludes the proof.

5 Poly-Many Hardcore Bits for Any OWF

The proof of Theorem 4 makes crucial use of the assumed injectivity of F. To
remove this assumption, we modify the construction so that the obfuscated PRF
is applied, not to x, but to the result of the one-way function on x.

Construction. Let F,G be function families with G.il = F.ol. Let Obf be an
obfuscator and let s: N → N. We define function family H = HC2[F,G,Obf, s]
as follows, with H.il = F.il and H.ol = G.ol:

H.Kg(1λ, fk)

gk ←$ G.Kg(1λ) ; C ← Pads(λ)(G.Ev(gk,F.Ev(fk, ·)))
C←$ Obf(1λ,C)
hk ← C ; Return hk

H.Ev(hk, x)

C ← hk ; r ← C(x)
Return r

This time the result of the hardcore function output on input x is G.Ev(gk, y)
where y = F.Ev(fk, x).

Results. The following says that Sdiff-security of the obfuscator suffices for
the security of the above hardcore function, but that in fact the assumption is
weaker, the circuit samplers for which security is required being further restricted
to have short auxiliary input as captured and to produce circuits that differ at
a number of points bounded by the pre-image size d of the one-way function,
formally (Sdiff(d) ∩ Ssh)-security, where the classes were defined in Section 3.
The proof is in [12]:

Theorem 6. Let F be a one-way function family. Let G be a punctured PRF
with G.il = F.ol. Let d = PreImgF. Then there is a polynomial s such that the
following is true. Let S = Sdiff(d) ∩ Ssh. Let Obf be any S-secure obfuscator.
Then the function family H = HC2[F,G,Obf, s] defined above is hardcore for F.

This means that in the most general case we have:
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Corollary 7. Let � be any polynomial. Let F be any one-way function. If there
exists a (Sdiff ∩ Ssh)-secure obfuscator then there exists a hardcore function H
for F with H.ol = �.

When the pre-image size of F is polynomial, however, we can again exploit Propo-
sition 3 to obtain our conclusion assuming nothing beyond iO:

Corollary 8. Let � be any polynomial. Let F be any one-way function with
polynomially-bounded pre-image size. If there exists a Seq-secure obfuscator then
there exists a hardcore function H for F with H.ol = �.

6 Hardcore Functions for Correlated Inputs

We show that our hardcore functions are able to extract random bits even on se-
quences of inputs that are arbitrarily correlated. Somewhat more precisely, draw
a vector x from an arbitrary distribution, in particuclar allowing its components
to be arbitrarily correlated. Then applying our hardcore function component-
wise to x results in a vector whose components look random and independent
even given the result of applying f componentwise to x, making only the nec-
essary assumption that f remains one-way on the distribution from which x
was selected. This is an unusual property, not possessed by all constructions of
hardcore functions. The ability to extract polynomially-many bits on correlated
inputs leads to new constructions of deterministic PKE schemes.

Notation. We denote vectors by boldface lowercase letters, for example x. If x
is a vector then |x| denotes the number of components of x and x[i] denotes the i-
th component of x, for any 1 ≤ i ≤ |x|. We write x ∈ x to mean that x = x[i] for
some 1 ≤ i ≤ |x|. If F is a family of functions, x is a vector over {0, 1}F.il(λ) and
fk ∈ {0, 1}F.kl(λ), then we let F.Ev(fk,x) = (F.Ev(fk,x[1]), . . . ,F.Ev(fk,x[|x|])).
Let Rnd denote the algorithm that on input a vector x and an integer � returns
a vector r of the same length as x whose entries are random �-bit strings except
that if two entries of x are the same, the same is true of the corresponding entries
of r. In detail, Rnd(x, �) creates table T via: For i = 1, . . . , |x| do: If not T [x[i]]
then T [x[i]]←$ {0, 1}�. Then it sets r[i] ← T [x[i]] for i = 1, . . . , |x| and returns
the vector r.

Definitions. An input sampler is an algorithm I that on input 1λ returns a
I.vl(λ)-vector of strings over {0, 1}I.il(λ), where the vector-length I.vl: N → N

and the input length I.il: N → N are polynomials associated to I. We say that
a function family F is one-way with respect to input sampler I if F.il = I.il
and AdvowF,I,F(·) is negligible for all PT adversaries F , where AdvowF,I,F(λ) =

Pr[OWF
F,I(λ) = 1] and game OWF

F,I(λ) is defined in Fig. 4. We stress that for F
to win in this game it needs to find the inverse under F.Ev(fk, ·) of some compo-
nent of y∗, not all components. Let H be a family of functions with H.il = F.il.
We say that H is hardcore for F with respect to input sampler I if AdvhcF,H,I,H(·)
is negligible for all PT adversariesH, where AdvhcF,H,I,H(λ) = 2Pr[HCH

F,H,I(λ)]−1

and game HCH
F,H,I(λ) is defined in Fig. 4.
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Game OWF
F,I(λ)

fk ←$ F.Kg(1λ)

x∗ ←$ I(1λ)
y∗ ← F.Ev(fk,x∗)
x′ ←$ F(1λ, fk,y∗)
Return (F.Ev(fk, x′) ∈ y∗)

Game HCH
F,H,I(λ)

b←$ {0, 1}
fk←$ F.Kg(1λ)

hk←$ H.Kg(1λ, fk)

x∗ ←$ I(1λ)
y∗ ← F.Ev(fk,x∗)
If b = 1 then

r∗ ← H.Ev(hk,x∗)
Else

r∗ ←$ Rnd(x∗,H.ol(λ))
b′ ←$H(1λ, fk,hk,y∗, r∗)
Return (b = b′)

Game PPRFG
G(λ)

b←$ {0, 1}
gk ←$ G.Kg(1λ)

b′ ←$ GCH(1λ)

Return (b = b′)

CH(x∗)

gk∗ ←$ G.PKg(1λ, gk,x∗)
If b = 1 then

r∗ ← G.Ev(gk,x∗)
Else

r∗ ←$ Rnd(x∗,G.ol(λ))
Return (gk∗, r∗)

Fig. 4. Games defining one-wayness of F with respect to an input sampler I, security
of H as a hardcore function for F with respect to I and punctured-PRF security of G
on multiple inputs

We extend punctured PRFs as defined in Section 2 to allow puncturing at
multiple points. In a punctured function family G, algorithm G.PKg now takes
1λ, a key gk ∈ [G.Kg(1λ)] and a vector x∗ over {0, 1}G.il(λ) (the target inputs)
to return a “punctured” key gk∗ such that G.PEv(gk∗, x) = G.Ev(gk, x) for all

x ∈ {0, 1}G.il(λ) such that x �∈ x∗. G is a punctured PRF if AdvpprfG,G (·) is negligible
for all PT adversaries G, where AdvpprfG,G(λ) = 2Pr[PPRFG

G(λ)] − 1 and game

PPRFG
G(λ) is defined in Fig. 4. Here G must make exactly one oracle query

consisting of a vector over {0, 1}G.il(λ). Proposition 1 extends, and we exploit
this below.

Results. The following says that our construction for injective functions F ex-
tracts hardcore bits for any PT input sampler I with respect to which F is one
way, meaning even for arbitrarily correlated inputs. The proof is in [12]:

Theorem 9. Let F be an injective function family. Let G be a punctured PRF
with G.il = F.il. Let d: N → N be a polynomial. Then there is a polynomial s
such that the following is true. Let I be any PT input sampler with I.vl = d and
I.il = F.il. Let Obf be any Sdiff(d)-secure obfuscator. Assume F is one-way with
respect to I. Then the function family H = HC1[G,Obf, s] defined in Section 4
is hardcore for F with respect to I.

A subtle point here is that s depends on d = I.vl in addition to F and G, which
means that the size of the key hk describing the hardcore function grows with the
number of correlated inputs d on which we want the function to be hardcore. This
is expected and due to [57] may not be avoidable under falsifiable assumptions.
Importantly for our applications, H does not depend on I beyond depending on
d = I.vl and F.il = I.il.
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Since d in Theorem 9 is a polynomial, we may apply Proposition 3 to obtain
the analog of Corollary 5 for correlated inputs, namely that, assuming only a
Seq-secure obfuscator (i.e. iO), there exists, for any injective F and any input
sampler I, a function family that returns polynomially-many bits and is hardcore
for F with respect to I. In [12] we discuss the application of Theorem 9 to the
design of new D-PKE schemes that are PRIV-secure for arbitrarily correlated
messages.

7 Application to D-PKE

A PKE scheme is deterministic if its encryption function is deterministic. Deter-
ministic public-key encryption (D-PKE) is useful for many applications. How-
ever, it cannot provide IND-CPA security. BBO [6] define what it means for a
D-PKE scheme to provide PRIV-security over an input sampler I, the latter
returning vectors of arbitrarily correlated messages to be encrypted. We restrict
attention to distributions that are admissible, meaning that there exists a family
of injective, trapdoor functions that is one-way relative to I. The basic question
that emerges is, for which admissible distributions I does there exist a D-PKE
scheme that is PRIV-secure over I? We show that this is true for all admissi-
ble distributions that are efficiently sampleable, assuming only the existence of
iO. We obtain this result by combining Theorem 9 with techniques from [30].
Previously, this was known only in the ROM [6], under the assumption that
UCE-secure functions exist [9], for distributions with limited correlation between
messages [8,18] or assuming lossy trapdoor functions [30]. See [12] for details.
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Abstract. We provide the first standard model construction for a pow-
erful class of Universal Computational Extractors (UCEs; Bellare et
al. Crypto 2013) based on indistinguishability obfuscation. Our construc-
tion suffices to instantiate q-query correlation-secure hash functions and
to extract polynomially many hardcore bits from any one-way function.

For many cryptographic primitives and in particular for correlation-
secure hash functions all known constructions are in the random-oracle
model. Indeed, recent negative results by Wichs (ITCS 2013) rule out a
large class of techniques to prove the security of correlation-secure hash
functions in the standard model. Our construction is based on punc-
turable PRFs (Sahai und Waters; STOC 2014) and indistinguishability
obfuscation. However, our proof also relies on point obfuscation under
auxiliary inputs (AIPO). This is crucial in light of Wichs’ impossibility
result. Namely, Wichs proves that it is often hard to reduce two-stage
games (such as UCEs) to a “one-stage assumption” such as DDH. In con-
trast, AIPOs and their underlying assumptions are inherently two-stage
and, thus, allow us to circumvent Wichs’ impossibility result.

Our positive result is also noteworthy insofar as Brzuska, Farshim and
Mittelbach (Crypto 2014) have shown recently, that iO and some variants
of UCEs are mutually exclusive. Our results, hence, validate some of the
new UCE notions that emerged as a response to the iO-attack.

Keywords: Correlation-secure hash functions, hardcore functions, indis-
tinguishability obfuscation, differing-inputs obfuscation, point-function
obfuscation, auxiliary-input obfuscation, universal computational extrac-
tors (UCEs).

1 Introduction

For many cryptographic primitives, it is easy to construct a secure scheme in the
random oracle model, but it is hard to give a construction in the standard model.
For example, correlated-input hash functions (CIH) which were introduced by
Goyal, O’Neill, and Rao [31], are easy to construct in the random oracle model,
because the random oracle itself is secure under correlated inputs. However, up
to now, no standard-model construction is known, and indeed, a recent black-box
separation by Wichs [40] explains why it is so hard to construct them. Namely,
the security definition of a CIH involves a pair of adversaries (A1,A2) and is thus
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a two-stage game (i.e., the adversary is not a single algorithm but consists of two
separate algorithms). The first adversary samples correlated inputs (x1, ..., xt).
Then a hash key hk is generated and the second adversary with access to hk needs
to distinguish between getting a tuple of random strings and getting the tuple
(H(hk, x1), ..., H(hk, xt)). Now, Wichs employs a meta reduction to show that
it is unlikely to have a black-box reduction R from CIH to a (one-stage) cryp-
tographic assumption such as the decisional Diffie–Hellman assumption (DDH).
Namely, he shows that if such a reduction to DDH exists, then the DDH as-
sumption is wrong. In his proof, he substantially exploits that the CIH game is
a two-stage game. For a black-box reduction R it must hold that if the reduc-
tion R gets access to a pair of oracles (A1,A2) that break CIH, then RA1,A2

must also break DDH. Wichs constructs a pair of inefficient adversaries (A1,A2)
which, however, can be efficiently emulated using a stateful simulator Sim. That
is, the simulator simulates both adversaries together while sharing state between
them. As the reduction cannot distinguish between the two settings RA1,A2 and
RSim this breaks DDH, and hence, if we believe that DDH is a hard problem,
then such an R cannot exist. Note that Wichs’ proof is not specific to DDH, but
rather applies to any one-stage assumption and presents a substantial barrier
to prove security. Moreover, Wichs’ impossibility result extends to a range of
security notions that are specified by two-stage games.

In this paper, we use cryptographic obfuscation techniques to circumvent
Wichs’ impossibility result and achieve security notions that are based on two-
stage assumptions. Towards this goal, the key idea is to combine point-function
obfuscation and indistinguishability obfuscation.

Point and Indistinguishability Obfuscation. A point function px is a function that
returns 1 on input x and ⊥ on all other values. A point function obfuscator under
auxiliary input AIPO returns a point function p←$ AIPO(x) that hides the point
x even in case the adversary receives some side-channel information z about x.
More formally, the security of AIPO is defined as security for all computationally
unpredictable distributions D, that is, D outputs a pair (x, z), where x is a
point and z is some leakage that hides x computationally. AIPO is secure, if
for all computationally unpredictable D, (AIPO(x), z) is indistinguishable from
(AIPO(u), z), where (x, z) ← D and u is a uniformly random point. Such AIPO
schemes have been constructed in [20, 11].

While point function obfuscators are obfuscation schemes for a very specific
class of functionalities (namely point functions) Garg et al. [26] have recently re-
vived the study of general obfuscation schemes with their candidate construction
of indistinguishability obfuscation. The notion of indistinguishability obfusca-
tion is weaker than VBB-obfuscation—thereby circumventing the impossibility
results of Barak et al. [3, 2]—and says intuitively that, for any two circuits that
compute the same function, their obfuscations are indistinguishable. The publica-
tion of the candidate for indistinguishability obfuscation by Garg et al. inspired
simultaneous breakthroughs for hard problems in various sub-areas of cryptog-
raphy [39, 15, 1, 25, 33, 14, 9, 30] including functional and deniable encryption,
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two-round secure multi-party computation, full-domain hash, poly-many hard-
core bits from any one-way function, multi-input functional encryption and more.

Correlated-Input Hash-Functions. In this paper, we give the first standard-model
construction for q-query CIHs. Our CIH is not only one-way under correlated
inputs, but also outputs elements that are indistinguishable from random. We
will compare our notion of q-query CIH with other notions of CIHs shortly.

On a high-level, our construction is a de facto instantiation of a random oracle.
As the behavior of a PRF is similar to that of a random function, we instantiate
the random oracle by securely delegating a PRF, that is, we obfuscate a PRF
with a hard coded key. Indeed, our hash-function construction only consists of
a (puncturable) PRF that is obfuscated via an indistinguishability obfuscator
(iO):

Hash Construction: iO(PRF(k, .)) .

Bellare, Stepanovs, and Tessaro (BST; [9]) already used this natural construction
in the direct construction of hardcore functions for injective one-way functions
from indistinguishability obfuscation. We will discuss BST and the relation to
our our work shortly.

Note that before obfuscating the PRF we need to pad the circuit to a specific
length. This is needed when using indistinguishability obfuscation to move from
one circuit to another one in the security proof and thus the construction must
be padded to the length of the biggest circuit needed within the security proof.
Jumping ahead, we note that although our construction and that of BST look
identical on the outside the padding is different. For BST, the construction needs
to be padded differently depending on the size of the one-way function. In turn,
our padding is universal and thus we yield a universal hardcore function that
works for any one-way function.

Circumventing Wichs’ Impossibility Result. Although the construction is natural,
proving its security is non-trivial, as the security guarantees of iO do not even
allow us to show easily that it is hard to extract the PRF key. Towards proving
the security of our construction, we build on the puncturable PRF technique
by Waters and Sahai [39] and combine it with point function obfuscators secure
under auxiliary input (AIPO).

Using AIPOs is crucial to circumvent the impossibility result by Wichs [40],
because the security of AIPOs is defined via a two-stage security game. The first
AIPO adversary samples a point, and the second adversary tries to break the
obfuscation of the point function. In a sense, the impossibility result of Wichs
tells us that using a two-stage assumption such as AIPO in the proof is, indeed,
necessary. In particular, iO and PRFs are both one-stage assumptions. Note that,
as AIPOs are only used in the proof and not in the construction, it might be
possible that the same construction can be proven secure without making use of
AIPOs possibly through some other two-stage assumption.

Universal Hardcore Functions for Any One-Way Function. Bellare, Stepanovs,
and Tessaro (BST; [9]) recently established that the same construction (with a
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different amount of padding) also yields a hardcore function for any injective
one-way function, assuming a puncturable PRG and iO.

For general one-way functions, BST gave a second, different construction of
a hardcore function and proved it based on so-called differing-inputs obfusca-
tion. Differing-inputs obfuscation is a stronger assumption than iO and has been
shown conditionally impossible by Garg et al. [27] assuming special-purpose ob-
fuscators. Therefore, in the current version of their paper, Bellare et al. [9] use
a weaker variant of diO that is not affected by the results of Garg et al. [27].

In an updated version of their paper, Garg et al. [28] show that, assum-
ing a special-purpose obfuscator and indistinguishability obfuscation for Turing
Machines, there are one-way functions for which the second construction of
BST cannot be a secure hardcore function, because their hardcore function
has “output-only dependence”. This means that hardcore bits h(x) are com-
pletely determined by f(x), or in other words, for any inputs x and x′ such that
f(x) = f(x′) it holds that h(x) = h(x′). We note that the only candidate for iO
for Turing machines is currently based on full diO.

The conditional negative result for output-only dependent hardcore functions
does not apply to the construction iO(PRF(k, .)) which is the construction that
we use throughout this paper and which BST—with a different amount of
padding—prove to be a hardcore function for injective one-way functions. In
turn, assuming AIPO in addition to iO allows us to prove this construction se-
cure for all one-way functions, even those that have many pre-images. Another
difference with the BST result is that we yield a universal hardcore function for
any one-way function while their padding depends on the one-way function.

Our proof builds on ideas by BST, and we will come back to their result in the
context of presenting our proof techniques. We note that for our security proof,
we assume AIPO in addition to iO and thereby are able to avoid diO variants
altogether. The assumption of point obfuscators is currently incomparable to the
assumption of differing-inputs obfuscation as well as to more restricted versions
that were used by BST. It is an interesting question to explore the relationship
between these assumptions.

Modularizing Proofs via UCEs. We could prove the security of our construction
directly, but instead, we split our proof into two parts. First, we show that
our construction enjoys some useful, abstract properties. Then we use results
by Bellare et al. [6] that show that these abstract properties suffice for the
application at hand. This way, we provide a means of using iO in a black-box
way. Our abstraction is a version of UCE security [6] that we discuss next.

The UCE Framework by Bellare, Hoang, and Keelveedhi (BHK; [6]) intro-
duces assumptions that allow us to instantiate random oracles in a wide range
of applications. Loosely speaking, UCEs are PRF-like assumptions that split the
distinguisher into two parts: a first adversary S that gets access to a keyed hash
function or a random oracle (and which is called the source), and a second ad-
versary D that gets the hash key hk (and which is called the distinguisher). The
two algorithms together try to guess whether the source was given access to a
keyed hash function (under a randomly chosen key) or to a random oracle.
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Concretely, the UCE notions are defined via a two-stage UCE game (we depict
the communication flow in Figure 1 and the pseudocode in Figure 2). First, the
source S is run with oracle access to Hash (which either implements a random
oracle or the hash function with a randomly chosen key hk) to output some
leakage L. Subsequently, distinguisher D is run on the leakage L and hash key
hk but without access to oracle Hash. Distinguisher D outputs a single bit b
indicating whether oracle Hash implements a random oracle or hash function H
with key hk.

Without any restrictions, (S,D) can easily win the UCE game. For example,
say, source S makes a random query x to receive y ← Hash(x) and outputs
(x, y) as leakage. As distinguisher D knows the hash key hk as well as the leakage
(x, y), it can recompute the hash value and check whether y = H(hk, x).

BHK present several possible restrictions on the source which give rise to
various UCE notions. It turns out to be particularly useful to restrict sources
to be computationally unpredictable, that is, the leakage created by the source
S—when interacting with a random oracle—should not reveal (computation-
ally) any of the source’s queries to Hash. This notion is denoted by UCE[Scup],
where Scup denotes the class of computationally unpredictable sources [7]. BHK
show that UCE[Scup]-secure hash functions can safely replace a random oracle
in a large number of interesting applications such as hardcore functions or de-
terministic public-key encryption [6]. In a recent work Brzuska, Farshim and
Mittelbach (BFM; [17]) show that UCE security with respect to computational
unpredictability cannot be achieved in the standard model assuming indistin-
guishability obfuscation exists. Several refinements have been proposed since, in-
cluding a statistical notion of unpredictability denoted by Ssup as well as source
classes containing sources that are structurally required to produce output in
a special way as well as sources which are restricted to only a fixed number of
queries [7, 17, 36].

Our notion of UCE security strengthens the notion of unpredictability to
what we call strong unpredictability and we denote the corresponding class of
sources by Ss-cup for the computational variant and by Ss-sup for its statistical
version. Namely, we demand that the leakage be computationally/statistically
unpredictable even if the predictor additionally gets the answers to the queries
that the source received from the oracle. We give the pseudo-code for strong
unpredictability in Figure 3.

It turns out that UCEs for strongly computationally unpredictable sources
that can only make a single query (denoted by UCE[Ss-cup ∩ S1-query]) already
imply hardcore functions for any one-way function. Furthermore, UCEs for
strongly statistically unpredictable sources that can only make q queries (de-
noted UCE[Ss-sup ∩ Sq-query]) imply q-query correlation-secure hash functions.
We note that strongly unpredictable sources can be regarded as a generaliza-
tion of so-called split sources [7] which were introduced by BHK after the BFM
impossibility results. We will discuss the exact relationship later.
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So far UCEs have only been constructed in idealized models. BHK showed
that a random oracle is UCE-secure in the strongest proposed settings and con-
jectured that HMAC is UCE-secure if the underlying compression function is
modeled as an ideal function. This conjecture has recently been confirmed by
Mittelbach [37] who shows that HMAC and various Merkle-Damg̊ard variants
are UCE-secure in the ideal compression function model. We note that so far, no
standard model instantiation of any (non-trivial) UCE variant has been proposed
and, hence, we present the first standard model construction of UCEs.1

Techniques. Our construction is based on indistinguishability obfuscation and
similar to many other recent constructions from iO [39, 9, 33, 14] our construction
also makes use of puncturable PRFs [39] which admit the generation of keys that
allow to evaluate the PRF on all points except for points in a small target set
(often containing just a single point). Our security reduction, however, differs
from existing techniques. That is, we make use of point function obfuscations
which allows us to hide the punctured points within our constructed circuits.
Hiding the punctured points was also the key problem in the earlier discussed
work by Bellare, Stepanovs and Tessaro [9] who construct hardcore-functions
for one-way functions. They solve the problem elegantly by using the one-way
function from the security game to blind the punctured point by embedding
the image under the one-way function. However, when testing whether a given
point is equivalent to the punctured point this test is ambiguous which is why
they need to assume differing-inputs obfuscators for one-way functions that map
more than polynomially many points to the same image value. This is where
point function obfuscation comes into the picture which allows us to bypass
any assumptions related to differing-input obfuscation variants. Yet, of course,
point obfuscators are as far as is currently known an assumption incomparable
to differing-inputs obfuscation.

Point Obfuscation and iO. In a recent and independent work, Hofheinz uses
point obfuscation in a similar way to construct fully secure constrained pseu-
dorandom functions [32] in the random oracle model. A constrained PRF is a
generalized form of a puncturable PRF which allows for the generation of keys
that enable the holder to evaluate the PRF on a set of points but not on all
points. In contrast to previous constructions [13, 16, 34] Hofheinz uses point
obfuscation and an extension he introduces as extensible testers in conjunction
with indistinguishability obfuscation to hide which points a given key allows to
honestly evaluate. This allows him to achieve full security without relying on
complexity leveraging which was used in previous constructions entailing a su-
perpolynomial loss of security in the adaptive setting. We note that unlike this
work Hofheinz relies on the simpler assumption of plain point obfuscation (that
is, obfuscation without auxiliary inputs) and he shows how to build extensible
testers based on the DDH-based point obfuscator by Canetti [20].

1 The UCE Framework is very flexible and it is, for example, possible to define a UCE
restriction that corresponds to PRF security.



128 C. Brzuska and A. Mittelbach

Brzuska and Mittelbach study the connection between point obfuscation with
multi-bit output secure in the presence of auxiliary inputs and indistinguisha-
bility obfuscation [18]. They show that indistinguishability obfuscation and a
strong form of multi-bit point obfuscation are mutually exclusive. Their results
do not carry over to the setting of statistically hard-to-invert auxiliary infor-
mation (which we rely on for CIHs) and it is not clear if their results can be
extended to cover plain AIPO, that is point functions with single-bit outputs.

Our Results. We next discuss the specific UCE assumptions that our construc-
tion will meet and the relation to the specific point obfuscation schemes used.
In Section 3 we will show that our construction is UCE[Ss-cup ∩ S1-query]-secure
assuming iO, puncturable PRFs and the existence of AIPO. That is, we consider
UCE-secure for computationally strongly unpredictable sources that make a sin-
gle query. In Section 3.3, we prove that our construction is also UCE[Ss-sup ∩
Sq-query]-secure, that is, secure against statistically unpredictable sources that
make at most q queries.

As explained, we base the security of our construction on the existence of a
different (incomparable) notion of point obfuscation. We consider a notion of
AIPO which only needs to be secure against statistically unpredictable distri-
butions but, in turn, we require it to be q-composable [21, 10]. Intuitively, q-
composability says that an obfuscation remains secure even if an adversary sees
q many (possibly related) obfuscations. The reason that we need q-composable
AIPO is that now, the source is a allowed to make q queries and hence, we need to
hide q points in the proof. q-composable AIPO implies multi-bit point function
obfuscation [21] and thus does not exist, if iO exists [18].

However, as we here only consider sources in Ss-sup, that is, sources which are
only statistically strongly unpredictable, it suffices that our AIPO-notion is secure
against statistically unpredictable samplers which weakens the notion of AIPO.
Matsuda and Hanoka [35] have recently shown that q-composable AIPO secure
against statistically unpredictable samplers is implied by composable VGB-AI
point obfuscators, a notion that Bitansky and Canetti constructed under the q-
Strong Vector Decision Diffie Hellman assumption [10]. Note that, for the proof
to work, we need to let the circuit size of our construction grow, artificially, with
the number of queries q. Towards this goal, we use some padding that does not
have any functionality.

In summary we get the following results:

1. Our construction is UCE[Ss-cup ∩ S1-query]-secure assuming indistinguisha-
bility obfuscation for all circuits in P/poly and AIPO secure with respect to
computationally hard-to-invert auxiliary information exist.

2. Our construction is UCE[Ss-sup ∩ Sq-query]-secure assuming indistinguisha-
bility obfuscation for all circuits in P/poly and q-composable AIPO with
respect to statistically hard-to-invert auxiliary information exist.

On the Feasibility of Our AIPO Assumptions. Standard AIPO secure against com-
putationally unpredictable samplers has been constructed by Canetti in [20] un-
der (non-standard) variants of the DDH assumption and by Bitansky and Paneth
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in [11] under (non-standard) assumptions on pseudorandompermutations.We dis-
cuss the constructions and the underlying assumptions in the full version of this
work [19]. One might hope that AIPO is naturally composable. However, Canetti
et al. show that this is generally not the case [21, 10]. On the other hand, Bitan-
sky and Canetti [10] show that under the t-Strong Vector Decision Diffie Hellman
assumption the original point obfuscation scheme of Canetti [20] composes in the
so-called virtual grey-box (VGB) setting. The VGB setting was introduced by Bi-
tansky and Canetti [10] and is a relaxation of the strongest obfuscation setting the
virtual black-box (VBB) setting [3, 2]. Similarly to VBB obfuscation, VGB obfus-
cation is in general not achievable, yet for the class of point functions it seems in
reach [10]. The VGB setting is particularly interesting because “plain” VGB and
VGB with auxiliary information are equivalent [10]. This result stands in contrast
to the VBB setting where allowing auxiliary information results in a stronger no-
tion. Furthermore, we currently have no candidate constructions for composable
point obfuscation schemes in this stronger setting. We note that for our purpose
composable obfuscation in the VGB setting is sufficient for our purpose as Mat-
suda and Hanaoka [35] show that this setting already implies q-composable AIPO
with respect to statistically unpredictable samplers which form the basis for our
q-query correlation-secure hash functions.

In a very recent work Brzuska and Mittelbach (BM) investigate the connection
between indistinguishability obfuscation and multi-bit output point obfuscation
secure in the presence of auxiliary input (MB-AIPO) [18]. A multi-bit point
function px,m is zero everywhere except on x where it outputs m. BM show
that various strong notions of MB-AIPO and indistinguishability obfuscation
are mutually exclusive. However, their results do not seem to carry over to plain
AIPO, that is to AIPO for plain point functions as needed in our constructions.
We refer to [18] for a discussion on MB-AIPO and discuss the implications of
an extension of the results of BM to plain AIPO shortly when talking about the
feasibility of our UCE notions.

On the Feasibility of Our UCE Notions. In a recent work, Brzuska, Farshim,
and Mittelbach (BFM; [17]) show that, assuming indistinguishability obfuscation
exists, no standard model hash construction can be UCE-secure with respect
to computationally unpredictable sources. Our construction achieves a weaker
yet related notion of security, namely UCE-security with respect to strongly
computationally unpredictable sources which raises the question whether the
BFM result can be extended to this setting.

The BFM result crucially hinges on the possibility of extending the output-
length of the studied hash construction such that it is significantly larger than
the key size. For example, this can be achieved by using multiple queries to the
hash construction or via extending the output size by applying a pseudo-random
generator [17, 8]. Both approaches fail with our construction: the size of our hash
key grows with the number of allowed queries and since we consider strong un-
predictability it seems implausible to prove the construction PRG(H(·, ·))-secure
under the assumption that H is UCE-secure with respect to strongly computa-
tionally unpredictable sources. Thus, we think that extending the BFM attack
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is implausible. Furthermore, if it can be extended this would immediately imply
that indistinguishability obfuscation implies the non-existence of AIPO, which
would be a surprising result. We discuss the BFM result in greater detail in
the full version [19] and note that, even if an extension of the BFM result were
to break AIPOs with computational unpredictability, then the second construc-
tion would not be affected, as it only considers AIPOs secure with respect to
statistically hard-to-invert auxiliary information.

Notions of Correlation-Secure Hash-Functions. We now compare our notion of
q-query CIHs to different notions of correlated-input security. Note that q-query
CIH means that the size of the hash-key can depend on the number of inputs q.
However, and that is a crucial difference to previous works, each input value is
hashed using the same hash-key. In turn, Freeman et al. [23] as well as Rosen and
Segev [38] use a fresh hash-key for every input. Notably, the correlation-secure
functions that they construct also have a trapdoor. Note that the correlated-
input variant2 of the IND security game for deterministic public-key encryp-
tion [5, 4, 12] and the CIH game are almost identical if it is required that the
CIH has a trapdoor. We can then view the computation of the CIH as an en-
cryption operation and the CIH game becomes a slightly stronger version of the
IND security game (that is, a real-or-random rather than a left-or-right game).
Hence, a CIH function which has a trapdoor is also a deterministic public-key
encryption scheme.

As in the schemes of [23, 38] a new key needs to be generated for every new
message, the constructions are not a deterministic public-key encryption scheme.
In turn, if our q-query CIH were a trapdoor function, then by definition, it would
also be a q-query deterministic public-key encryption scheme. Unfortunately, our
construction of a q-query CIH does not come with a trapdoor, and we do not
know whether this is possible.

Another related notion of CIH are statistically secure q-query CIHs. Here, as
for our notion of q-query CIH, the key size may grow with the number of queries
and one uses the same hash key for each query. In contrast to our security notion
one here requires that the output is statistically close to random given the hash
key. As we are concerned with statistical security, this notion is only achievable
for distributions that come with a notable amount of entropy, that is, the q pre-
images need to have entropy that is at least q times the output length. In turn,
for the notion of entropy that we consider, the entropy of the pre-images does
not need to grow with q and can also be less than the length of the output.

Hence, this notion of statistically secure CIH only applies to a substantially
smaller class of distributions. In turn, while our construction relies on the strong
assumption of indistinguishability obfuscation, statistically secure CIH can be
achieved without any assumptions. That is, if the pre-images carry enough (true)
entropy, then one can extract q uniformly random image values by using a q-wise
independent hash-functions [24].

2 Here, we refer to the variant where each message needs to have high entropy on its
own, but might have low entropy conditioned on the other messages.
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Finally, Goyal, O’Neill, and Rao [31] construct CIHs that are secure under
polynomially related inputs and introduce a hierarchy of CIH notions: One-
wayness under correlated inputs, unpredictability under correlated inputs and
pseudorandomness under correlated inputs. These notions describe a hierarchy of
security notions when we consider CIHs with superlogarithmic output length. We
note that we achieve the strongest of these notions, namely pseudorandomness
under correlated inputs.

Full Version. Due to space restrictions, this version should be regarded as an
extended abstract as we defer many details and all proofs to the full version [19].
In the remainder of this extended abstract we present our main results and give
some intuition for the underlying proofs.

2 Preliminaries

2.1 Obfuscation

Indistinguishability Obfuscation. While the strongest obfuscation notion, that
is, virtual black-box obfuscation provably does not exist in general for all cir-
cuits [3], weaker notions such as indistinguishability obfuscation may well exist.
VBB requires the existence of a simulator. On the other hand, an indistinguisha-
bility obfuscation (iO) scheme only ensures that the obfuscations of any two
functionally equivalent circuits are computationally indistinguishable. Indistin-
guishability obfuscation was originally proposed by Barak et al. [3] as a potential
weakening of virtual-black-box obfuscation. We recall the definition from [26].

Definition 1. A PPT algorithm iO is called an indistinguishability obfuscator
for a circuit ensemble C = {Cλ}λ∈N if the following conditions are satisfied:

– Correctness. For all security parameters λ ∈ N, for all C ∈ Cλ, and for all
inputs x we have that Pr

[
C′(x) = C(x) : C′ ←$ iO(1λ, C)

]
= 1.

– Security. For any PPT distinguisher D, for all pairs of circuits C0, C1 ∈
Cλ such that C0(x) = C1(x) on all inputs x the following distinguishing
advantage is negligible:∣∣Pr[D(1λ, iO(1λ, C1)) = 1

]
− Pr

[
D(1λ, iO(1λ, C0)) = 1

]∣∣ ≤ negl(λ) .

Closely related to indistinguishability obfuscation is the notion of differing-
inputs obfuscation (diO) which also goes back to the seminal paper of Barak et
al. [3]. Building on a theorem by Boyle, Chung and Pass [15], we are able to
avoid diO as an assumption and only use it as an intermediary concept in our
proof. We defer the details to the full version [19].

Point Obfuscation. While indistinguishability, as well as differing-inputs, obfus-
cation are obfuscation schemes for general circuits one can also study obfuscation
schemes for particular function classes such as point functions. A point function
px for some value x ∈ {0, 1}∗ maps every input to ⊥ except for x which is mapped
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to 1. We consider a variant of point function obfuscators under auxiliary input
which was first formalized by Canetti [20], although in a slightly different context.
We here give the definition from [11] presented in a game based formulation. The
first definition formalizes unpredictable distributions which are in turn used to
define obfuscators for point functions.

Definition 2 (Unpredictable distribution). A distribution ensemble D =
{Dλ = (Zλ, Xλ)}λ∈N, on pairs of strings is unpredictable if no poly-size (non-
uniform) circuit can predict Xλ from Zλ. That is, for every poly-size circuit
sequence {Cλ}λ∈N and for all large enough λ:

Pr(z,x)←$ Dn
[Cλ(z) = x] ≤ negl(λ)

Definition 3 (Auxiliary input point obfuscation for unpredictable dis-
tributions (AIPO)). A PPT algorithm AIPO is a point obfuscator for unpre-
dictable distributions if it satisfies the functionality and polynomial slowdown
requirements as VBB obfuscation [3, 2], and the following secrecy property:
for any (efficiently sampleable) unpredictable distribution B1 over {0, 1}poly(λ) ×
{0, 1}λ it holds for any PPT algorithm B2 that the probability that the following
experiment outputs true for (B1,B2) is negligibly close to 1

2 :

b←$ {0, 1}
(z, x0)←$ B1(1

λ)

x1 ←$ {0, 1}λ

p←$ AIPO(xb)

b′ ←$ B2(1
λ, p, z)

return b = b′

The probability is over the coins of adversary (B1,B2), the coins of AIPO and
the choices of x1 and b.

2.2 Universal Computational Extractors (UCE)

The UCE Framework by Bellare, Hoang, and Keelveedhi (BHK; [6]) introduces
assumptions that allow us to instantiate random oracles in a wide range of
applications and which are not succeptible to the impossibility result by Canetti,
Goldreich and Halevi [22]. Loosely speaking, UCEs are PRF-like assumptions
that split the distinguisher into two parts: a first adversary S that gets access
to a keyed hash function or a random oracle (and which is called the source),
and a second adversary D that gets the hash key hk (and which is called the
distinguisher). The two algorithms together try to guess whether the source was
given access to a keyed hash function or to a random oracle.

Concretely, the UCE notions are defined via a two-stage UCE game (we de-
pict the communication flow in Figure 1 and the pseudocode in Figure 2). First,
the source S is run with oracle access to Hash to output some leakage L. Sub-
sequently, distinguisher D is run on the leakage L and hash key hk but without
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S Hash

D(hk) b′

L

x

y

1λ

Fig. 1. Schematic of the UCE
game

Main UCES,D
H (λ)

b←$ {0, 1}
hk←$ H.KGen(1λ)

L←$ S
Hash

(1
λ
)

b′ ←$ D(1λ, hk, L)

return (b = b
′
)

Hash(x)

if T [x] = ⊥ then
if b = 1 then

T [x] ← H.Eval(hk, x)

else T [x]←$ {0, 1}H.ol(λ)

return T [x]

Main PredPS(λ)

done ← ⊥; Q ← ∅
L←$ S

Hash

(1
λ
)

done ← �
Q′ ←$ PHash(1λ, L)

return (Q ∩ Q′ �= ∅)

Hash(x)

if done = ⊥ then
Q ← Q ∪ {x}

if T [x] = ⊥ then

T [x]←$ {0, 1}H.ol(λ)

return T [x]

Fig. 2. The UCE game together with the unpre-
dictability game. In the UCE game source S has
access to Hash, which returns real or ideal hash
values, and leaks L to distinguisher D. The lat-
ter additionally gets the hash key and outputs a
bit b′. On the right we give the unpredictability
game.

access to oracle Hash. Distinguisher D outputs a single bit b indicating whether
oracle Hash implements a random oracle or hash function H with key hk.

Without any restrictions, (S,D) can easily win the UCE game. For example, say,
source S makes a random query x to receive y ← Hash(x) and outputs (x, y) as
leakage.As distinguisherDknows the hash key hkaswell as the leakage (x, y), it can
recompute the hash value and check whether y = H(hk, x). BHK present several
possible restrictions on the source which give rise to various UCE notions.

Formal UCE Definition. In line with [9] we consider families of functions F
consisting of algorithms F.KGen, F.kl, F.Eval, F.il and F.ol. Algorithm F.KGen
is a PPT algorithm taking the security parameter 1λ and outputting a key k ∈
{0, 1}F.kl(λ) where F.kl : N → N denotes the key length. Functions F.il : N → N

and F.ol : N → N denote the input and output length functions associated to F
and for any x ∈ {0, 1}F.il(λ) and k←$ F.KGen(1λ) we have that F.Eval(k, x) ∈
{0, 1}F.ol(λ), where the PPT algorithm F.Eval denotes the “evaluation” function
associated to F .

We denote hash functions by H. Let H = (H.KGen,H.Eval,H.kl,H.il,H.ol) be a
hash-function family and let (S,D) be a pair of PPT algorithms. We define the
UCE advantage of a pair (S,D) against H through

AdvuceH,S,D(λ) := 2 · Pr
[
UCES,D

H (λ)
]
− 1 ,

where game UCES,D
H (λ) is shown in Figure 2 on the left (in Figure 1 we give a

schematic overview of the communication within the game).

Unpredictability. Without any further restrictions there are PPT pairs (S,D)

that achieve an advantage in the UCES,D
H (λ) game close to 1. BHK define several
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possible restrictions for sources yielding various flavors of UCE assumptions [6].
Here, we are interested in a strengthened version of the original computational
unpredictability [6] restriction. A source S is called computationally unpredictable
if the advantage of any PPT predictor P, defined by

AdvpredS,P (λ) := Pr
[
PredPS (λ)

]
,

is negligible, where game PredPS (λ) is shown in Figure 2 on the right. In line
with [7], we call the class of all computationally unpredictable sources Scup,
where Scup denotes the class (set) of all computationally unpredictable sources.
Similarly, we define the class of statistically unpredictable sources where the
predictor in game PredPS(λ) can run in unbounded time but is still restricted to
only polynomially many oracle queries. The class of statistically unpredictable
sources is denoted by Ssup.

UCE Security. We say a hash function H is UCE secure for sources S ∈ S de-
noted by UCE[S], if for all PPT sources S ∈ S and all PPT distinguishers D
the advantage AdvuceH,S,D(λ) is negligible. In that way we get the UCE assump-
tions UCE[Scup] and UCE[Ssup], that is, UCE with respect to computationally
(resp. statistically) unpredictable sources.3

2.3 Puncturable PRFs

Besides point function obfuscation schemes, our main ingredient in the upcoming
proofs are so-called puncturable pseudorandom functions (PRF) [39]. A family
of puncturable PRFs G :=(G.KGen, G.Puncture, G.kl, G.Eval, G.il, G.ol) consists
of functions that specify input length, output length and key length as well as
a key generation algorithm k ← G.KGen, a deterministic evaluation algorithm
G.Eval(k, x) that takes a key k, an input x of length G.il(1λ) and outputs a
value y of length G.ol(1λ). Additionally, there is a PPT puncturing algorithm
G.Puncture which on input a polynomial-size set S ⊆ {0, 1}G.il(λ), outputs a
special key kS . A family of functions is called puncturable PRF if the following
two properties are observed

– Functionality Preserved under Puncturing. For every PPT adversary
A such that A(1λ) outputs a polynomial-size set S ⊆ {0, 1}G.il(λ), it holds
for all x ∈ {0, 1}G.il(λ) where x /∈ S that:

Pr
[
G.Eval(k, x) = G.Eval(kS, x) : k←$ G.KGen(1λ), kS ←$ G.Puncture(k, S)

]
= 1

– Pseudorandom at Punctured Points. For every PPT adversary (A1,A2)
such that A1(1

λ) outputs a set S ⊆ {0, 1}G.il(λ) and state st, consider an
experiment where k ← G.KGen(1λ) and kS = G.Puncture(k, S). Then we
have∣∣∣Pr[A2(st, kS , S,G.Eval(k, S)) = 1

]
− Pr

[
A2(st, kS, S, UG.ol(λ)·|S|) = 1

]∣∣∣ ≤ negl(λ)

3 The notion UCE[Scup] was originally named UCE1 and later changed to
UCE[Scup] [6, 7]. The notion of statistical unpredictability was introduced in [17, 7].
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where Eval(k, S) denotes the concatenation of Eval(k, x1), . . . ,Eval(k, xk)
where S = {x1, . . . , xk} is the enumeration of the elements of S in lexi-
cographic order, negl is a negligible function, and U� denotes the uniform
distribution over {0, 1}�.

As observed by [13, 16, 34] puncturable PRFs can, for example, be constructed
from pseudorandom generators via the GGM tree-based construction [29]. As
AIPO implies one-way functions [19] AIPO also implies puncturable PRFs.

3 UCEs from iO and Point Obfuscation

In this section we present our constructions of UCEs from iO and AIPO. We
first define the precise UCE notions that our constructions achieve and intro-
duce the UCE restriction of strong unpredictability. We will then in Section 3.2
present a construction of a UCE-secure function with respect to sources which
are strongly computationally-unpredictable and which make exactly one oracle
query. In Section 3.3 we will show how to extend the construction to allow for
an a-priory fixed number of queries by switching to a statistical version of strong
unpredictability.

Interestingly, our two constructions are basically the same modulo circuit
padding. That is, our constructions depend on an obfuscation of a circuit, which
in both cases is the same but padded to a different length. A larger but func-
tionally equivalent circuit seems to be necessary to allow for multiple source
queries.

We discuss applications of our constructions in the full version of this work [19].
Due to space limitations we also defer to the full version [19] for a discussion
on why our construction does not (seem to) fall pray to the BFM attacks on
computationally unpredictable sources [17].

3.1 Strongly Unpredictable and q-Query Sources

We now introduce the precise source restrictions for our upcoming UCE construc-
tions. We define a new restriction that we call strong unpredictability and which
can be seen as either a stronger form of unpredictability or a relaxed version of
split sources. Secondly, we consider sources that make only a bounded number
of oracle queries.

Strong Unpredictability. We consider sources which are strongly unpredictable
both in the computational and in the statistical sense. We denote by Ss-cup the
class of sources which are strongly, computationally unpredictable and by Ss-sup

the class of strongly, statistically unpredictable sources. Strong unpredictability
is a stronger requirement than unpredictability and we require that the leakage
hides queries to Hash even if the predictor is given the query results. We say
that a source S is called strongly computationally unpredictable if the advantage
of any PPT predictor P, defined by

AdvstpredS,P (λ) := Pr
[
stPredPS(λ)

]
,
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Main stPredPS(λ)

X∗, Y ∗ ← ∅
b←$ {0, 1}
L←$ SHash(1λ)

x′ ←$ PHash(1λ, L, Y ∗)
return (x′ ∈ X∗)

Hash(x)

X∗ ← X∗ ∪ {x}
y←$ {0, 1}H.ol(λ)

Y
∗ ← Y

∗ ∪ {y}
return y

Splt Source SHash(1λ)

(L0,x)←$ S0(1
λ)

for i = 1, . . . , |x| do y[i]←$ Hash(x[i])

L1←$ S1(1
λ,y);L← (L0, L1)

return L

Fig. 3. On the left: the strong unpredictability game where the predictor, in addition
to the leakage is also given the result of the Hash queries. On the right: the definition
of split sources [7]. A split source S = Splt[S0, S1] consists of two parts S0 and S1 that
jointly generate leakage L and neither part gets direct oracle access to Hash.

is negligible, where game stPredPS(λ) is shown in Figure 3 on the left. For the case
of strongly statistically unpredictable sources (Ss-sup) we allow the predictor to
be unbounded in its running time, but restrict the number of oracle queries to
be bounded polynomially.

In order to circumvent the BFM attacks on computationally unpredictable
sources BHK introduce the notion of split sources [7, 17]. A source S is called
split source, denoted by S ∈ Ssplt if it can be decomposed into two algorithms
S0 and S1 such that neither part gets direct access to oracle Hash. We give the
pseudocode of split sources in Figure 3 on the right. In a first step algorithm S0
outputs a leakage string L0 together with a vector x. Then, each of the entries
in x is queried to Hash and the results stored in vector y. Finally, the second
algorithm S1 is run on vector y to produce the second part of the leakage L1.

One can prove that split sources are a (strict) subclass of strongly unpre-
dictable sources, that is, Ssplt ∩ Scup � Ss-cup (and similarly in the statistical
case Ssplt ∩ Ssup � Ss-sup). For further information on the implications see the
full version of this work [19].

q-Query UCE. Our first construction only admits sources which make exactly
one query. We call such sources single-query sources and denote the correspond-
ing source class by S1-query. We also consider a relaxed notion to allow for poly-
nomially bounded number of queries for some polynomial q := q(λ). We call
the corresponding sources q-query sources and denote their class by Sq-query. We
note that sources restricted to a constant number of queries are discussed in [7].

3.2 A UCE Construction Secure against Sources in Ss-cup ∩ S1-query

We will now present our construction which depending on different assumptions
on the existence of point obfuscators will achieve UCE[Ss-cup∩S1-query]-security
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or UCE[Ss-sup ∩ Sq-query]-security. Note that depending on the number of sup-
ported queries the construction needs to pad the circuit before obfuscating it.

Construction 1. Let s : N → N, let G be a puncturable PRF and let iO be
an indistinguishability obfuscator for all circuits in P/poly. We define our hash
function family H as

H.KGen(1λ)

k←$ G.KGen(1λ)

hk←$ iO(PAD(s(λ),G.Eval(k, ·)))
return hk

H.Eval(hk, x)

C ← hk

return C(x)

where PAD : N × {0, 1}∗ −→ {0, 1}∗ denotes a deterministic padding algorithm
that takes as input an integer and a circuit and outputs a functionally equivalent
circuit padded to length s(λ).4

In other words, the key generation algorithmH.KGen(1λ) runs k ← G.KGen(1λ)
and returns iO(G.Eval(k, ·)), i.e., an obfuscation of the evaluation circuit of PRF
G with key k hardwired into it. Function H.Eval is basically a universal Turing
machine which runs input x on the obfuscated circuit hk.

Theorem 2. If G is a secure puncturable PRF, if iO is a secure indistinguisha-
bility obfuscator and if AIPO exists, then the hash function family H defined in
Construction 1 is UCE[Ss-cup ∩ S1-query]-secure.

We prove the theorem via a sequence of 5 games (depicted in Figure 4 on
page 138) where game Game1 denotes the original UCE[Ss-cup ∩ S1-query] game
with hidden bit b fixed to 1. We present the proof in the full version of this
work [19].

3.3 A UCE Construction Secure against Sources in Ss-sup ∩ Sq-query

In this section we show that our construction is also UCE-secure with respect to
sources which are strongly unpredictable in a statistical sense and which allow
the source to make q-many queries for any polynomial q := q(λ). That is, we
consider sources in class Ss-sup ∩ Sq-query.

In case we allow the source to make q many queries, the first observation is
that we need to choose the size of our obfuscated circuit such we can puncture
at q many points. For each point, we will encode a random string into the circuit
and thus, the circuit size grows with the number of points we need to puncture
out. Besides this, the construction is identical to the one before with the ex-
ception that we need a different (incomparable) security property of our point
function obfuscation scheme. That is, we require the point obfuscator to be a q-
composable VGB obfuscator secure in the presence of statistically unpredictable
auxiliary information which implies an AIPO obfuscator with statistically unpre-
dictable auxiliary information. We refer to the full version for further details [19].

4 Function s needs to be chosen in accordance with the puncturable PRF to allow for
the required number of puncturings.
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Theorem 3. Let q be a polynomial. If G is a secure puncturable PRF, if iO is
a secure indistinguishability obfuscator and if there exist a q-composable VGB
point obfuscator for statistically unpredicatable auxiliary input, then the hash
function family H defined in Construction 1 is UCE[Ss-sup ∩ Sq-query]-secure.

The proof follows analogously to the proof of Theorem 2, except for puncturing at
several points instead of a single point and therefore, we reduce to q-composable
VGB point obfuscation. We defer the proof to the full version [19].
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Abstract. In a recent celebrated breakthrough, Garg et al. (FOCS 2013)
gave the first candidate for so-called indistinguishability obfuscation (iO)
thereby reviving the interest in obfuscation for a general purpose. Since
then, iO has been used to advance numerous sub-areas of cryptography.
While indistinguishability obfuscation is a general purpose obfuscation
scheme, several obfuscators for specific functionalities have been consid-
ered. In particular, special attention has been given to the obfuscation
of so-called point functions that return zero everywhere, except for a sin-
gle point x. A strong variant is point obfuscation with auxiliary input
(AIPO), which allows an adversary to learn some non-trivial auxiliary
information about the obfuscated point x (Goldwasser, Tauman-Kalai;
FOCS, 2005).

Multi-bit point functions are a strengthening of point functions, where
on x, the point function returns a string m instead of 1. Multi-bit point
functions with auxiliary input (MB-AIPO) have been constructed from
composable AIPO by Canetti and Dakdouk (Eurocrypt 2008) and have
been used by Matsuda and Hanaoka (TCC 2014) to construct CCA-
secure public-key encryption schemes and by Bitansky and Paneth (TCC
2012) to construct three-round weak zero-knowledge protocols for NP.

In this paper we present both positive and negative results. We show
that if indistinguishability obfuscation exists, then MB-AIPO does not.
Towards this goal, we build on techniques by Brzuska, Farshim and Mit-
telbach (Crypto 2014) who use indistinguishability obfuscation as a mean
to attack a large class of assumptions from the Universal Computational
Extractor framework (Bellare, Hoang and Keelveedhi; Crypto 2013). On
the positive side we introduce a weak version of MB-AIPO which we
deem to be outside the reach of our impossibility result. We build this
weak version of MB-AIPO based on iO and AIPO and prove that it suf-
fices to construct a public-key encryption scheme that is secure even if
the adversary can learn an arbitrary leakage function of the secret key,
as long as the secret key remains computationally hidden. Thereby, we
strengthen a result by Canetti et al. (TCC 2010) that showed a similar
connection in the symmetric-key setting.

Keywords: Indistinguishability obfuscation, differing-inputs obfuscation,
point function obfuscation, multi-bit point function obfuscation, auxil-
iary input obfuscation, leakage resilient PKE.
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1 Introduction

The obfuscation of a program should hide its inner workings while preserving
the functionality of the program. Inspired by heuristic code-obfuscation tech-
niques [28], obfuscation turned into a major research area of cryptography due
to its manifold applications. The formal definition of Virtual Black-Box Obfusca-
tion (VBB) demands that an obfuscated program is as good as a black-box that
provides the same input-output behaviour as the program. Since the seminal
paper of Barak et al. [5, 4], we know that this strong notion of obfuscation is
generally not achievable.

Hence, research focused on special-purpose obfuscators and, in particular,
there are various positive results for obfuscating so-called point functions px,
that map all strings to 0, except for a single string x that they map to 1 [23,
27, 30, 52, 40, 24, 29, 26, 9, 13]. Other positive examples include obfuscating
re-encryption [41] and encrypted signatures [38].

Point Functions vs. Point Functions with Multi-bit Output. When considering
point function obfuscation, we need to make a clear distinction between plain
point functions such as px which map every input to 0 except for the single
input x that is mapped to 1 and point functions with multi-bit output (MBPF)
such as px,m where input x is mapped to string m. Obfuscators for plain point
functions are constructed in [23, 52, 40, 29].

Another important distinction is, whether the adversary is given some “leak-
age” about x, so-called auxiliary information, as introduced by Goldwasser and
Tauman-Kalai [36]. We note that the obfuscator by Canetti [23] also allow for
auxiliary information about the point x to leak and the obfuscator by Dodis et
al. [29] allows for auxiliary information that hides the point statistically.

Although very similar, obfuscation schemes for MBPFs seem to be harder to
construct than obfuscation schemes for plain point functions. Indeed, Canetti
and Dakdouk initiated the study of obfuscation for MBPFs and showed that
such obfuscation schemes are closely related to composable obfuscation schemes
for plain point functions [24]. They show that obfuscators for MBPFs exist if
composable obfuscators for plain point functions exist. Moreover, they show
that composability is a non-trivial property. Both of these results carry over
to obfuscation in the presence of auxiliary information, as long as the auxiliary
information does not allow to recover the point. We refer to this type of auxiliary
information as hard-to-invert or more specifically to computationally hard-to-
invert.

Bitansky and Paneth [13] provide a clean treatment of auxiliary inputs and
introduce the notion of point obfuscation with auxiliary input secure against
unpredictable distributions (AIPO). Assuming composable AIPO they construct
a three-round weak zero-knowledge protocol for NP . Matsuda and Hanaoka [49]
extend the notion of AIPO to the multi-bit point function case (MB-AIPO) and
show how to use it to build CCA-secure public-key encryption. We adopt the
notions AIPO and MB-AIPO in this paper.
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Indistinguishability Obfuscation. Simultaneously to constructing task-specific
obfuscation schemes, the quest for general obfuscators continued, and in a cel-
ebrated breakthrough [32], Garg, Gentry, Halevi, Raykova, Sahai and Waters
presented a candidate construction for indistinguishability obfuscation (iO). The
notion of indistinguishability obfuscation is weaker than VBB-obfuscation and
assures that, for any two circuits that compute the same function, their ob-
fuscations are indistinguishable. As Goldwasser and Rothblum [37] establish,
this seemingly weak notion of obfuscation is actually the best possible notion
of obfuscation. And indeed, the work by Garg et al. [32] inspired simultaneous
breakthroughs for hard problems in several sub-areas of cryptography [51, 16, 1,
31, 42, 15, 8, 22] such as functional encryption, deniable encryption, two-round
secure multi-party computation, full-domain hash, poly-many hardcore bits for
any one-way function and more.

Contribution. In this paper we give both positive and negative results. We
show that the existence of indistinguishability obfuscation contradicts the exis-
tence of multi-bit point function obfuscation in the presence of computationally
hard-to-invert auxiliary information (MB-AIPO), a notion which was built upon
in [13, 49]. That is, if indistinguishability obfuscation exists, then MB-AIPO does
not exist and some of the results in [13, 49] are based on a false assumption. (We
discuss the precise implications shortly.) Or, equivalently, if MB-AIPO exists,
then indistinguishability obfuscation does not exist and all candidate assump-
tions are false [32, 50, 34]. However, we do not have a candidate construction for
MB-AIPO1, but we do have a candidate construction for iO. Therefore, given the
current advancements in the understanding of indistinguishability obfuscation—
for example, Gentry et al. [34] show in a very recent work that iO can be based
on the Multilinear Subgroup Elimination Assumption thereby giving the first
construction based on an instance-independent assumption—we consider the ex-
istence of iO to be more likely.

In summary, we derive the following negative results.

Theorem (informal). If indistinguishability obfuscation exists, then MB-AIPO
and hence composable AIPO do not exist.

Our proof is inspired by the result by Barak et al. [5, 4]. Technically, they show
that multi-bit output point functions cannot be VBB-obfuscated when “coupled”
with a particularly chosen second function. Let px,m be a multi-bit output point
function that maps all strings to 0, except for the single point x which the
function maps to the string m. Now, the second function is a test function Tx,m
that takes as input a circuit C and tests whether C(x) is equal to m. Now, if
an adversary is given access to two oracles that compute px,m and Tx′,m′ then it
cannot check whether the two functions “match”, i.e., whether (x′,m′) = (x,m).

1 Note that the construction by Canetti and Dakdouk [24] is from composable AIPO
for which we do not have a candidate construction. The construction by Bitansky and
Canetti [9, 10] achieves composable point obfuscation in the virtual grey-box setting
(VGB) which implies MB-AIPO, but only for statistically hard-to-invert leakage [49].
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In turn, when given a circuit C that computes px,m, the adversary can run Tx,m
on C and simply check whether Tx,m(C) returns 1. Hence, the obfuscation of
px,m and the obfuscation of Tx,m leak more information than two oracles for
px,m and Tx,m thus establishing a counterexample for VBB obfuscation.

Although the starting point of Barak et al.’s result is a point function px,m,
they actually construct an unobfuscateble function that is a combination of the
point function px,m together with test function Tx,m and thus their result is an
impossibility result for general VBB obfuscation rather than an impossibility
result for point function obfuscation.

In order to obtain a result for point function obfuscation based on the above
idea, we proceed in two steps. Firstly, we think of the test circuit Tx,m as “auxil-
iary information” [36] about the point function px,m. Secondly, we do not use the
“plain” test function Tx,m but rather, based on indistinguishability obfuscation,
we construct an obfuscated circuit that approximates the behaviour of Tx,m.

Matsuda and Hanoaka [49] introduce MB-AIPO as follows. A first stage of
the adversary B1 defines a distribution over a point address x, a message m and
auxiliary input z—we sometimes refer to the auxiliary input as “leakage”.

Now, a second stage of the adversary B2 gets the leakage z as well as an
obfuscation of the point function px,m or an obfuscation of the point function
px,m′ , where m′ is drawn at random. The distinguisher B2 tries to guess which
of the two it received.

A multi-bit point function obfuscator is called secure, if for all efficiently
computable distributions2 B1, for the second stage of the adversary B2, given z,
obfuscations of px,m and obfuscations of px,m′ are indistinguishable.

As such, the definition is not satisfiable, because B1 can leak the pair (x,m)
so that B2 can check whether this pair “matches” the point function that B1 re-
ceived. Hence, we additionally require that B1 be computationally unpredictable,
that is, for all efficient predictors Pred, it holds that with high probability over
(z, x,m)←$ B1, given z, the algorithm Pred outputs x at most with negligible
probability.

To recap, B1 outputs a point address x, a point value m and some leakage
z such that z hides the value x. Then, the second stage of the adversary B2

receives z as well as an obfuscation of px,m or an obfuscation of px,m′ and needs
to distinguish between the two. See Definition 5 for a formal definition.

Hence, to attack MB-AIPO, we need to define an adversarial distribution B1

that is unpredictable and that returns some leakage z that allows B2 to distin-
guish between obfuscations of px,m and obfuscations of px,m′ . Our adversarial
distribution B1 draws a random value x and a random value m. Moreover, as
auxiliary information z, it will output a specially devised obfuscation that ap-
proximates the behaviour of the test function Tx,m.

Given the circuit z and a multi-bit point function p, the second stage of
the adversary B2 outputs whatever the circuit z outputs when run on p. It
distinguishes successfully between an obfuscation p of the “matching” multi-bit

2 We add the condition of unpredictability in the next paragraph.
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point function px,m and the obfuscation p of a non-matching multi-bit point
function px,m′ .

We now explain how adversary B1 constructs z. The hardness resides in con-
structing an obfuscation of the test function Tx,m such that indeed, x is unpre-
dictable given the description of the obfuscated test function. Towards this goal,
we build on techniques developed by Brzuska, Farshim and Mittelbach [20] who
show a similar 1-out-of-2 result, namely that indistinguishability obfuscation and
a large class of assumptions of the Universal Computational Extractor framework
(UCE) [6] aremutually exclusive.We obfuscate the test function via indistinguisha-
bility obfuscation and prove that it is indistinguishable from an obfuscation of the
zero circuit 0, the circuit that returns 0 on all inputs. As the zero circuit does not
contain any information about x, indistinguishability obfuscation guarantees that
likewise, an obfuscation of the test function Tx,m hides x computationally.

In detail, let y be the output of a pseudo-random generator G when applied
to m. The circuit z is an indistinguishability obfuscation of the following circuit
C[x, y] with parameters x and y hard-coded. Circuit C[x, y] gets as input a
circuit p, runs p on x and checks whether G(p(x)) is equal to y. If yes, it outputs
1. Else, it outputs 0.

For simplicity, let us assume that the G is injective. Then, C[x, y] behaves
exactly like the test function Tx,m. Interestingly, and that is the key idea, we do
not actually use m to compute the circuit C[x, y], we only need y = G(m). In
particular, as G is a one-way function, y does not leak m. Moreover, as G is a
pseudo-random generator, y does not even leak whether a pre-image m exists.

We will now use the PRG property to argue that an indistinguishability obfus-
cation of C[x, y] does not leak anything about x. Namely, if y is in the image of
the PRG, then C[x, y] is equal to the test function Tx,m. In turn, when y is not
in the image of the PRG, then C[x, y] is the all-zero function. Due to the PRG
security, these two distributions—C[x, y] when y is drawn as an output from the
G and C[x, y] when y is drawn at random—are computationally indistinguishable.
Moreover, when the PRG has enough stretch, then with overwhelming probability,
a random y is not in the image of the PRG, and hence, with overwhelming prob-
ability over a random y, the circuit C[x, y] is the all-zero circuit 0. For the two
functionally equivalent circuits C[x, y] and 0, it holds that iO(C[x, y]) is compu-
tationally indistinguishable from iO(0). As 0 leaks nothing about x, we can argue
that also iO(C[x, y]) leaks nothing about x and hence, x is unpredictable from the
leakage of B1 as required by the definition of MB-AIPO.

We note that our usage of the PRG is somewhat similar to the use by Sahai
and Waters in their construction of a CCA-secure PKE scheme from iO [51] as
well as the range-extension of Matsuda and Hanaoka [49] of a multi-bit point
function to obtain shorter point values and the range-extension of a UCE1-secure
hash-function by Bellare et al. [7] used to strengthen the impossibility result by
Brzuska et al. [20].

To recap, we use the pseudo-random generator to hidem, and we use the indis-
tinguishability obfuscation to hide x. Note that unpredictability in the MB-AIPO
definition only requires that x is unpredictable from the leakage. Therefore, hiding
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m might seem unnecessary. Interestingly, it turns out that this is not merely an
artefact of our proof. Namely, we define a strong notion of unpredictability where
x needs to be unpredictable from the pair (z,m), and we show that MB-AIPO can
achieved under this definition, assuming plain AIPO in conjunction with iO.

Indeed, our negative results do not carry over to the setting of obfuscating
plain point functions in the presence of auxiliary information, that is, to plain
AIPO (assuming they are not composable3). This is due the fact that we cannot
apply the PRG to a function that only outputs a single bit.

Analogously, it looks unlikely that the result of Barak et al. [5, 4] carries over
to plain point functions, because it seems crucial that the point function px,m
has a multi-bit output m. Imagine that Tx takes the circuit C as input and
returns 1 if and only if C(x) = 1. Then, an adversary can perform binary search
and recover x, even when only given access to Tx and px as oracles.4 Hence, also
their result does not carry over to standard point functions.

On the positive side, as hinted above, we show ways to work around our im-
possibility result. Firstly, note that Canetti et al. [26] introduce weaker versions
of MB-AIPO that are not affected by our negative results. In particular, they
use these weaker notions to build a symmetric-key encryption scheme that is se-
cure in the presence of hard-to-invert leakage about the key. We strengthen their
result insofar, as we present a notion that lies between their weaker versions of
MB-AIPO and full MB-AIPO.

Our weak notion of MB-AIPO requires that the auxiliary information L com-
putationally hides the point x even when given the corresponding point value m
for some multi-bit point function px,m.

This definition circumvents our impossibility result because we cannot use
the security of the PRG anymore. In the proof of the impossibility result, we
used that the circuit C[x, y] does not need m as a parameter and only needs
y = G(m). In the presence of the value m, the reduction to the PRG-security
does not carry through.

This argument merely shows that our proof fails. However, we provide pos-
itive evidence for the new security notion. Assuming AIPO and iO, we give a
construction that achieves MB-AIPO for strongly unpredictable distributions.
We show that this weaker notion of MB-AIPO is useful for applications. Based
on our weak MB-AIPO construction, we build a public-key encryption scheme
which is leakage resilient in the presence of hard-to-invert leakage of the key.
Previously, such a result was only known for symmetric-key encryption [26]. We
next discuss existing notions of multi-bit point obfuscation.

Notions of Multi-bit Point-Obfuscation. Lynn et al. [47] initiate the study of
obfuscators for point functions with multi-bit output (MBPF) in the idealized
random oracle model (ROM) and give a construction of a VBB obfuscator in the
ROM. Though they do not explicitly introduce auxiliary information, it is easily
seen that their construction allows for computationally hard-to-invert auxiliary

3 Canetti and Dakdouk [24] show that composable AIPO already implies MB-AIPO.
4 Access to the testing function Tx suffices to recover x, even when not given access
to px neither as a circuit nor as an oracle.
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information. Canetti and Dakdouk [24] initiated the study of MBPF-obfuscators
in the standard model and showed that these exist if so-called t-composable ob-
fuscators exist for plain point functions. Building on these results Canetti and
Bitansky [9, 10] show that the point obfuscator by Canetti [23] meets the require-
ments of a t-composable point function obfuscator down to a strong variant of the
decisional Diffie–Hellman assumption (DDH), namely the t-strong vector DDH
assumption. Note that the notion they achieve is the so-called notion of Virtual
Grey-Box obfuscation (VGB)—the virtual grey box notion was introduced by
Bitansky and Canetti [9, 10] and allows the simulator to run in unbounded time—
and not the stronger notion of VBB obfuscation. In [26] Canetti et al. show that
obfuscators for MBPFs are closely related to symmetric encryption and that ob-
fuscators for MBPFs secure in the presence of (certain types of) auxiliary inputs
imply the existence of (certain types of) leakage resilient symmetric encryption
schemes. Bitansky and Paneth [13] introduce a clean treatment of a form of
auxiliary information which hides the obfuscated point computationally (AIPO)
and Matsuda and Hanaoka [49] extend their notion to multi-bit output functions
which is also the notion considered in this paper (MB-AIPO). Using composable
AIPOs Bitansky and Paneth construct a three-round weak zero-knowledge pro-
tocol for NP based on composable AIPO [13] thereby circumventing a black-box
impossibility result [35]. Matsuda and Hanaoka (MH, [49]) introduce also an av-
erage case variant of MB-AIPO and a more restricted version of MB-AIPO which
requires the auxiliary input to statistically hide the obfuscated point. They fur-
ther study the relation between these average case MB-AIPO notions and the
worst-case notions of point obfuscation, that is, virtual black-box and virtual
grey-box. MH show how to construct CCA secure public-key encryption schemes
from an IND-CPA secure encryption scheme using MB-AIPO with computation-
ally hard-to-invert auxiliary information, as well as, how to achieve CCA security
starting from a CPA-secure lossy encryption scheme and using MB-AIPO with
statistically hard-to-invert auxiliary information. In a very recent work, Canetti
et al. [25] show how to build fuzzy extractors using t-composable point obfus-
cation secure in the presence of auxiliary information in the virtual grey-box
setting. MH show that this form of point obfuscation implies MB-AIPO with
respect to statistically hard-to-invert auxiliary information [49], it is, however,
not known if it can be shown to also imply MB-AIPO with computationally
hard-to-invert auxiliary information.

Our negative result shows that if indistinguishability obfuscation exists that
MB-AIPO with computationally hard-to-invert auxiliary information does not
exist. This applies to the first of the two constructions of CCA secure PKE
schemes by Matsuda and Hanaoka [49] as well as to the construction of a three-
round weak zero-knowledge protocol for NP by Bitansky and Paneth [13].5 We

5 Bitanski and Paneth actually consider the stronger notion of composable AIPO
which implies MB-AIPO. We also note that the construction of 3-message witness-
hiding protocols from AIPO [13] as well as the construction of a CCA secure PKE
scheme from a lossy encryption scheme and MB-AIPO with statistically hard-to-
invert information [49] are not affected by our result.
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leave as open problems, whether our negative results can be strengthened to
encompass further uses of MBPF obfuscation or, whether the above construc-
tions can be based on weaker notions of MBPF obfuscation not ruled out by our
result.

Finally, we note that our result can be regarded as a random oracle uninstan-
tiability result. One can show that the VBB obfuscator given by Lynn et al. [47]
is a secure MB-AIPO in the random oracle model, even if hard-to-invert leakage
is allowed. Our results shows that, if indistinguishability obfuscation exists, then
there is no hash-function that instantiates the random oracle securely according
to this notion of security.

Point Obfuscation and Indistinguishability Obfuscation. For our positive result,
a construction of weak MB-AIPO and subsequently a construction of a leakage
resilient PKE scheme, we combine AIPOs and indistinguishability obfuscation.
In a recent work Brzuska and Mittelbach (BM, [22]) show that combining these
techniques allows to build powerful primitives and they give the first construction
of a standard model hash function which is UCE secure for a non-trivial UCE
notion which implies universal hardcore-functions and q-query correlated input
secure hash functions. Furthermore, we note that our notion of weak MB-AIPO
is inspired by the UCE notion introduced by BM: UCE security with respect to
strongly unpredictable sources.

In a recent and independent work, Hofheinz constructs fully secure constrained
pseudorandom functions [39] in the random oracle model. A constrained PRF
allows for the generation of keys that enable the holder to evaluate the PRF on
a set of points but not on all points, and various forms have been suggested [14,
17, 44]. In contrast to previous works Hofheinz uses point obfuscation and an
extension he calls extensible testers—an extensible tester can be regarded as an
obfuscation of a set of points Z which can be combined with a known set Z ′ into
a tester for set (Z ∪Z ′)—in conjunction with indistinguishability obfuscation to
hide which points a given key allows to honestly evaluate. This allows him to
achieve full security without relying on complexity leveraging which was used
in previous constructions entailing a superpolynomial loss of security in the
adaptive setting. We note that unlike this work (and the work by BM) Hofheinz
relies on the simpler assumption of plain point obfuscation (that is, obfuscation
without auxiliary inputs) and shows how to build extensible testers based on the
DDH-based point obfuscator by Canetti [23].

Further 1-Out-of-2 Results. Indistinguishability obfuscation has led to many
surprising breakthroughs in a number of sub-areas of cryptography [51, 16, 1,
31, 42, 15, 8, 22]. Interestingly, the existence of indistinguishability obfuscation
collides with the existence of other desirable primitives. If indistinguishability
obfuscation exists, then it draws a fine line between what is possible and what is
impossible, e.g., MB-AIPO and iO are mutually exclusive, but weak MB-AIPO
can be build from iO (and AIPO).
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If indistinguishability obfuscations does not exist, then 1-out-of-2 results are
a promising way to prove such an impossibility result. In particular, it would be
highly interesting to show a 1-out-of-2 result for iO and some other primitive
for which we have a candidate construction, e.g., AIPO. Whether indistinguisha-
bility obfuscation exists or not, 1-out-of-2 results for iO help us explore the
boundaries of what is possible. Either, they increase our understanding of iO, or
they increase our understanding of other primitives.

Before our result, several 1-out-of-2 results have been established for iO. We
already discussed the result by Brzuska et al. [20] who show that iO is mutually
exclusive with a large class of assumptions from the UCE framework [6].

Interestingly, several notions of obfuscation are mutually exclusive with iO.
Bitansky et al. [11] show that iO implies the non-existence of average-case vir-
tual black-box obfuscation with auxiliary input (AI-VBB) for circuit families
with super-polynomial pseudo-entropy. In particular, AI-VBB obfuscation is im-
possible for all pseudo-random function families. Moreover, they show that in-
distinguishability obfuscation implies the non-existence of average-case virtual
black-box obfuscation with a universal simulator for circuit families with a su-
perpolynomial amount of pseudo-entropy. Bitansky et al. [12] show that if indis-
tinguishability obfuscation exists, then for every extractable one-way function
family there is an (unbounded polynomial-length) auxiliary input distribution
L and an adversary A such that all extractors fail for A. Similar to our result
for MB-AIPO, they embed an attack circuit into the auxiliary input. Boyle and
Pass [18] strengthen this result under the assumption of differing-input obfusca-
tion (diO). If diO exists, then the quantifiers can be reversed so that L does not
depend on the one-way function family.

Moreover, Bitansky et al. [12] show how to construct extractable one-way
functions with bounded auxiliary input under relatively standard assumptions.
Finally, Marcedone et al. [48], as well as Koppula et al. [46] show that if in-
distinguishability obfuscation exists, then IND-CPA-security of an encryption
scheme does not imply its circular security, even if the cycles are of arbitrary
polynomial-length.

On the Plausibility of iO. Barak et al. [5, 4] introduce Indistinguishability Ob-
fuscation as a notion of obfuscation that is not ruled out by their impossibility
result for virtual black-box obfuscation. The amount and quality of positive
results based on iO as well as the number of 1-out-of-2 results indicate that in-
deed, indistinguishability obfusaction is a strong assumption and Komargodski
et al. [45] show that (even imperfect) indistinguishability obfuscation does not
exist in Pessiland [43], a world where NP is hard but one-way functions do not
exist. Their result does not carry over to a world where one-way functions exist.

Garg et al. [33] show that differing-inputs obfuscation—a stronger form of
indistinguishably obfuscation that was also introduced in the seminal paper by
Barak et al. [5, 4]—is mutually exclusive with some special-purpose obfuscator.
As the particular special-purpose obfuscator that they consider seems to be a rel-
atively mild assumption, we interpret their result as a conditional impossibility
result for differing-inputs obfuscation. However, their result does not apply to
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indistinguishability obfuscation. In particular, recent results show how to im-
prove the assumptions that underly indistinguishability obfuscation [50, 19, 3, 2,
34] supporting its plausibility.

Auxiliary Input. Auxiliary input (AI) has been introduced by Goldwasser and
Tauman-Kalai [36] and the specifics of how AI is modeled are very important
when it comes to the (im)possibility of notions of obfuscation. Notably, for ex-
tractable one-way functions, the aforementioned results by Bitansky et al. [12]
show that, assuming iO, this notion of security is impossible under unbounded
AI, but possible when the length of the AI is bounded by a fixed polynomial
that is known a priori. Potentially, bounded AI—for example, if the amount of
AI is restricted to be less than the size of an MB-AIPO—could also be used to
circumvent our iO-based impossibility result while preserving a reasonably wide
range of applications.

Moreover, one can consider independent AI rather than dependent AI, which
would also help to circumvent our impossibility result. However, AI is usually use-
ful for composition where partial information about the obfuscated circuit/point
is leaked to the outside and thus, dependent AI is often quite powerful in appli-
cations. However, even security under independent AI is non-trivial to achieve.
Assuming iO, Bitansky et al. [11] show that a large class of functions cannot be
VBB-obfuscated in the presence of independent AI.

A further possibility to circumvent our impossibility result is to consider a
statistical notion of unpredictability rather than computational unpredictabil-
ity. Statistical unpredictability has already proved useful for the construction
of q-query secure correlation-secure hash functions [22] and CCA secure PKE
schemes [49].

While in the VBB-setting AI is a strong notion that corresponds to the exis-
tence of a universal simulator [11], in the VGB-setting AI is trivial. That is, it is
equivalent whether one considers VGB security with AI or without AI. The rea-
son is that the VGB simulator is unbounded and hence able to compute the best
AI itself [9]. Secure AIPOs in the VGB-setting imply AIPOs with statistically
hard-to-invert leakage [49]. Our result does not rule out composable AIPOs in
the VGB-setting, and indeed, this assumption has been used very recently by
Canetti et al. [25] to build computationally secure fuzzy extractors that work
for classes of sources that have more errors than entropy.

In light of the subtle modeling of AI, it remains to investigate whether those
results in [13] and [49] that use an assumption which is mutually exclusive with iO
can be based on an alternative assumption that is compatible with iO. Towards
this goal, one might consider our weakened notion of MB-AIPO or model AI in
a way that circumvents our result. Finally, it would then be interesting to come
up with candidate assumptions for such a notion of security.

Conclusion and Future Work. We show that indistinguishability obfuscation and
MB-AIPO—that is, MB-AIPO as used in [13, 49] and with computationally hard-
to-invert auxiliary information—are mutually exclusive. It remains to investigate
whether the positive results in [13, 49] can be salvaged through weaker notions



152 C. Brzuska and A. Mittelbach

of MB-AIPO or, perhaps, when combining AIPO and iO in a similar way as
we do in the full version [21] to receive our positive result for weak MB-AIPO.
We note, however, that, at a first glance, it is not straightforward to base the
applications in [13, 49] on our weakened notion of MB-AIPO.6

On the other hand, one might ask whether our negative result can be extended
to showing that AIPO and iO are mutually exclusive. Currently, we do not know
whether this is possible. We consider such a result to be a highly interesting
finding and suspect that it would require different techniques than the ones we
use. Our result implies directly that differing-inputs obfuscation (diO) and MB-
AIPO are mutually exclusive. Perhaps, using different techniques, one might be
able to first show that diO and AIPO are mutually exclusive, for example, by
showing that we can instantiate the special-purpose obfuscator by Garg et al. [33]
using AIPO.

We hope that our work sparks further interest in studying the connections
between iO/diO on the one hand and notions of (multi-bit) point obfuscation
on the other hand. More generally, we believe that it is an interesting question
to identify notions of security that collide with indistinguishability obfuscation
and we expect more results of that flavor in the future.

Full Version. Due to space restrictions, this version should be regarded as an
extended abstract as we defer many details and all proofs to the full version [21].
In the remainder of this extended abstract we present our main impossibility
result and give some intuition for the underlying proof. For details as well as
for our positive results (our weak MB-AIPO notion and the construction of a
leakage resilient PKE scheme) we refer to the full version [21].

2 Preliminaries

Indistinguishability Obfuscation. Virtual black-box (VBB) obfuscation [5, 36, 4]
requires that for any PPT adversary given the code of some functionality (and
some auxiliary input) there exists a PPT simulator that given only black-box
access to the functionality (and as input the same auxiliary input) produces a
computationally indistinguishable distribution. While VBB obfuscation provably
does not exist for all circuits [5, 4], weaker notions such as indistinguishability
obfuscation may well do. An indistinguishability obfuscation (iO) scheme, on the
other hand, only ensures that the obfuscations of any two functionally equivalent
circuits are computationally indistinguishable. Indistinguishability obfuscation

6 Note that [13] use composable point functions which is a stronger security notion
than MB-AIPO for showing the existence of 3-round protocols that are weakly zero-
knowledge. Also note, that their second result, a 3-round witness-hiding protocol,
is not affected by our result. Likewise, our result only affects the CCA-encryption
scheme in [49] that is based on CPA-security and MB-AIPO. They also build a CCA-
secure encryption scheme based on lossy IND-CPA secure encryption and MB-AIPO
with statistically hard-to-invert auxiliary input. The latter result is not affected by
our result.
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was originally proposed by Barak et al. [5] as a potential weakening of virtual-
black-box obfuscation. We recall the definition from [32].

Definition 1. A PPT algorithm iO is called an indistinguishability obfuscator
for a circuit ensemble C = {Cλ}λ∈N if the following conditions are satisfied:

– Correctness. For all security parameters λ ∈ N, for all C ∈ Cλ, and for all
inputs x we have that Pr

[
C′(x) = C(x) : C′ ←$ iO(1λ, C)

]
= 1.

– Security. For any PPT distinguisher D, for all pairs of circuits C0, C1 ∈
Cλ such that C0(x) = C1(x) on all inputs x the following distinguishing
advantage is negligible:∣∣Pr[D(1λ, iO(1λ, C1)) = 1

]
− Pr

[
D(1λ, iO(1λ, C0)) = 1

]∣∣ ≤ negl(λ) .

Differing-Inputs Obfuscation. Differing-inputs obfuscation is closely related to
indistinguishability obfuscation and also goes back to the seminal paper of Barak
et al. [5, 4]. Building on a theorem by Boyle, Chung and Pass [16], we are able
to avoid diO as an assumption and only use it as an intermediary concept in our
proof. We refer for details to the full version of this work [21].

Point Obfuscation. Besides the general purpose indistinguishability obfuscator
we consider obfuscators for the specific class of so-called point functions. A point
function px for some value x ∈ {0, 1}∗ is defined as outputting ⊥ on all inputs
except for x where it outputs 1. In this paper, we consider a variant of point func-
tion obfuscators under auxiliary input which was first formalized by Canetti [23].
We here give the definition from [13] presented in a game based formulation. The
first definition formalizes unpredictable distributions which are in turn used to
define obfuscators for point functions.

Definition 2 (Unpredictable distribution). A distribution ensemble D =
{Dλ = (Zλ, Xλ)}λ∈N, on pairs of strings is unpredictable if no poly-size (non-
uniform) circuit can predict Xλ from Zλ. That is, for every poly-size circuit
sequence {Cλ}λ∈N and for all large enough λ:

Pr(z,x)←$ Dλ
[Cλ(z) = x] ≤ negl(λ)

Definition 3 (Auxiliary input point obfuscation for unpredictable dis-
tributions (AIPO)). A PPT algorithm AIPO is a point obfuscator for unpre-
dictable distributions if it satisfies the functionality and polynomial slowdown
requirements as in VBB-obfuscation [5, 4], and the following secrecy property:
for any (efficiently sampleable) unpredictable distribution B1 over {0, 1}poly(λ) ×
{0, 1}λ it holds for any PPT algorithm B2 that the probability that the following
experiment outputs true for (B1,B2) is negligibly close to 1

2 :

b←$ {0, 1}
(z, x0)←$ B1(1

λ)

x1 ←$ {0, 1}λ

p←$ AIPO(xb)

b′ ←$ B2(1
λ, p, z)

return b = b′
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The probability is over the coins of adversary (B1,B2), the coins of AIPO and
the choices of x1 and b.

Obfuscation for Point Functions with Multi-bit Output. While point functions
only return a single bit, a point function with multi-bit output (MBPF) px,m
for values x,m ∈ {0, 1}∗ is defined as ⊥ on any input except for input x which
is mapped to m. For an MBPF px,m we call x the point address and m the
point value. Similar to AIPO we can define MB-AIPO via an unpredictable
distribution—the notion was introduced by Matsuda and Hanaoka [49] in an av-
erage case formulation called AIND-δ-cPUAI—where the distribution outputs a
tuple (x,m) (defining a point function px,m) together with auxiliary information
z. We require that it be computationally infeasible to recover the point address
x given auxiliary information z. Thus, in the MBPF setting we define the un-
predictable distribution as D = {Dλ = (Zλ, Xλ,Mλ)}λ∈N but still require that
the point address x remains hidden given the auxiliary input. An MB-AIPO as-
sures that the obfuscation of px,m is indistinguishable from an obfuscation with
a changed point value m′ that is chosen uniformly at random, which captures
that the obfuscation does not reveal any information about the point value m.

Definition 4 (Unpredictable distribution). A distribution ensemble D =
{Dλ = (Zλ, Xλ,Mλ)}λ∈N, on triples of strings is unpredictable if no poly-size
(non-uniform) circuit can predict Xλ from Zλ. That is, for every poly-size circuit
sequence {Cλ}λ∈N and for all large enough λ:

Pr(z,x,m)←$ Dλ
[Cλ(z) = x] ≤ negl(λ)

Definition 5 (Auxiliary input point obfuscation for unpredictable dis-
tributions (MB-AIPO)). A PPT algorithm MB-AIPO is a multi-bit point
obfuscator for unpredictable distributions if it satisfies the functionality and
polynomial slowdown requirements as in VBB-obfuscation [5, 4], and the follow-
ing secrecy property: for any (efficiently sampleable) unpredictable distribution
B1 over {0, 1}poly(λ) × {0, 1}λ × {0, 1}poly(λ) it holds for any PPT algorithm B2

that the probability that the following experiment outputs true for (B1,B2) is
negligibly close to 1

2 :

b←$ {0, 1}
(z, x,m0)←$ B1(1

λ)

m1 ←$ {0, 1}λ

p←$ MB-AIPO(x,mb)

b′ ←$ B2(1
λ, p, z)

return b = b′

The probability is over the coins of adversary (B1,B2), the coins of AIPO and
the choices of x, m0, m1 and b.

We note that also different definitional choices are possible and we discuss
various choices in the full version of this work [21]
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Average-Case Point Obfuscation and Statistical Unpredictability. The above no-
tions for point obfuscation are for arbitrary high-entropy distributions over the
point address. Instead, we can consider a weaker variant where the point ad-
dress is sampled according to the uniform distribution. Indeed, Matsuda and
Hanaoka [49] recently presented constructions of CCA-secure public-key encryp-
tion schemes based on this version of point obfuscation. They call AIPO with
arbitrary high-entropy samplers a worst-case notion, and AIPO with the uni-
form distribution an average-case notion and denote it by AIND-δ-cPUAI. Our
impossibility result also applies to AIND-δ-cPUAI which we refer to as average
case MB-AIPO.

A second avenue to weaken the security requirements of point obfuscators
is to require that the auxiliary input needs to hide the point address statisti-
cally. We call unpredictable distributions for which this is the case statistically
unpredictable. Our impossibility result does not carry over to this notion.

3 IO Implies the Impossibility of MB-AIPO

In the following we present our negative result, namely that indistinguishability
obfuscation and multi-bit point function obfuscation in the presence of auxiliary
information (MB-AIPO) are mutually exclusive. This holds for MB-AIPO as
defined in Definition 5 as well as for the two alternative definitions discussed
below the definition. We discuss implications of our result in Section 3.2.

3.1 IO and MB-AIPO Are Mutually Exclusive

Multi-bit point obfuscation with auxiliary inputs is a powerful primitive and has,
for example, been used to construct CCA-secure encryption schemes [49] and to
circumvent black-box impossibility results for three-round weak zero-knowledge
protocols for NP [13]. Our following result says that, if indistinguishability ob-
fuscation and pseudo-random generators exist, then MB-AIPOs (as defined in
Definition 5) cannot exist. The result remains valid even if we consider average
case MB-AIPOs (where point address x is chosen uniformly at random). Techni-
cally our result builds on techniques used by Brzuska, Farshim and Mittelbach
(BFM; [20]). BFM show a similar 1-out-of-2 result, namely that if indistinguisha-
bility obfuscation exists, then certain kinds of UCE-secure hash functions—a
hash function security notion recently introduced in [6]—cannot exist [20]. In
the UCE-framework, a hash function H gets a hash key hk and an input x and
outputs y. BFM obfuscate the circuit (H(·, x) = y), that given a hash-key hk
checks whether hk “matches” the pair (x, y), that is, whether H(hk, .) maps x to
y. They show that, if |hk| < 2 |y|, then it is likely (in the corresponding exper-
iment) that the circuit is the 0-circuit that outputs 0 on all inputs and hence,
the indistinguishability obfuscation of this circuit does not leak x.

We will use a similar technique to hide the point address. In order to break
AIPO with indistinguishability obfuscation, we need to show that, given the
auxiliary input, it is hard to recover the point address, but that, given the
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auxiliary input and the point function, one can distinguish. Similarly, for UCEs,
one needs to show that, given some leakage about x and y, it is hard to recover
x, but that, given the leakage and the hash-key hk, one can distinguish whether
y was generated by applying H(hk, .) to x or whether y was drawn at random.

Showing that an indistinguishability obfuscation hides a certain value is usu-
ally the crux in proofs involving iO. For this, we construct a new technique which
may be of independent interest and which we discuss in further detail in the full
version [21].

Theorem 1. If indistinguishability obfuscation exists for all circuits in P/poly,
then average-case obfuscation for multi-bit point functions secure under auxiliary
input (MB-AIPO) does not exist.

This theorem applies to the average-case version where the point address is
sampled uniformly, because our adversary samples both, x and m uniformly at
random. It also applies to other variants of the MB-AIPO definition which we
discuss in the full version of this work [21].

To prove Theorem 1 we use indistinguishability obfuscation to construct an
unpredictable distribution B1 together with an adversary B2 that, given leakage
from the unpredictable distribution can distinguish between point obfuscations
from B1 and point obfuscations from the uniform distribution.

We first give the unpredictable distribution B1 which takes as input the se-
curity parameter 1λ and outputs two values x,m together with some auxiliary
information (resp. leakage) z. Here leakage z will be the indistinguishability ob-
fuscation of a predicate circuit that takes as input a description of a circuit C,
evaluates the circuit on a hard-coded value x, runs the result through a pseudo-
random generator G and finally compares this result with some hard-coded value
y. That is, we consider the circuit

C[x, y](·) := iO
(
G(uC(·, x)) = y

)
,

where uC denotes a universal circuit taking as input a circuit description C of a
fixed length and a value x and which outputs C(x). This use of a PRG allows
us later to argue that if value y is chosen uniformly at random that with high
probability it falls outside the image of the PRG and thus the circuit is 0 on all
inputs, that is, it implements the zero-circuit 0.

We next formally define the unpredictable distribution. For this let n and �
be two polynomials and let G : {0, 1}n(λ) → {0, 1}2n(λ) be a pseudo-random
generator with stretch 2. Note that we do not need to additionally assume the
existence of PRGs as AIPOs (and in particular MB-AIPOs) already imply one-
way functions.7 Let, furthermore, uC(·, x) be a universal circuit that on input a
description of a circuit C and value x outputs C(x). Adversary B1 computes an
unpredictable distribution over (z, x,m) as follows:

7 Canetti et al. [26] show that multi-bit point function obfuscation is tightly related to
symmetric encryption and that MB-AIPO implies the existence of (leakage-resilient)
IND-CPA symmetric encryption schemes.
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Game1(λ)

m←$ {0, 1}n(λ)

x←$ {0, 1}�(λ)

y ← G(m)

Cx,y ← (G(uC(·, x)) = y)

C̃ = ←$ iO(Cx,y)

b
′ ←$ Dist(1λ, C̃)

return (1 = b
′
)

Game2(λ)

m←$ {0, 1}n(λ)

x←$ {0, 1}�(λ)

y←$ {0, 1}|G(m)|

Cx,y ← (G(uC(·, x)) = y)

C̃ = ←$ iO(Cx,y)

b
′ ←$ Dist(1λ, C̃)

return (1 = b
′
)

Game3(λ)

m←$ {0, 1}n(λ)

x←$ {0, 1}�(λ)

y←$ {0, 1}|G(m)|

abort if (x, y) ∈ Bad(λ)

Cx,y ← (G(uC(·, x)) = y)

C̃ = ←$ iO(Cx,y)

b
′ ←$ Dist(1λ, C̃)

return (1 = b
′
)

Game4(λ)

m←$ {0, 1}n(λ)

x←$ {0, 1}�(λ)

y←$ {0, 1}|G(m)|

abort if(x, y) ∈ Bad(λ)

C̃ = ←$ iO(0)

b
′ ←$ Dist(1λ, C̃)

return (1 = b
′
)

PRG Bad iO

Fig. 1. The hybrids for the proof of Theorem 1. We have highlighted the changes
between the games with a light-grey background.

m←$ {0, 1}n(λ)

y ← G(m)

x←$ {0, 1}�(λ)

z←$ iO
(
G(uC(·, x)) = y

)
output: (z, x,m)

We now present the adversary B2 that, given the leakage z from B1, breaks
the security of the multi-bit point obfuscator. We then argue that B1, indeed,
implements an unpredictable distribution. Adversary B2 gets values p and z as
input, where p is either a point obfuscation of px,m sampled according to B1 or
an obfuscation for px,u for a uniformly random value u. Adversary B2 computes
z(p) and outputs the result. If p is an obfuscation of px,m, then B2 computes the
predicate function

G(px,m(x)) = y

where y is computed as G(m) and outputs 1. In turn, if p is an obfuscation of
px,u, then with overwhelming probability over the choice of u, adversary B2 re-
turns 0. Thus, (B1,B2) is a successful pair of adversaries. To prove that (B1,B2)
is also a valid pair of adversaries, we need to show that B1 is an unpredictable
distribution. Under the assumption of indistinguishability obfuscation, the leak-
age computed by B1 is indistinguishable from an obfuscated zero circuit 0, the
circuit that returns 0 on all inputs and which is padded to the same length as the
(unobfuscated) leaked circuit, that is, the circuit (G(uC(·, x)) = y). As the zero
circuit does not leak any information about y, the leakage is unpredictable. For-
mally we prove the unpredictably of B1 via a sequence of four hybrids depicted
in Figure 1. We defer a formal proof to the full version [21].

3.2 Implications

Average case MB-AIPO is a relaxed notion of virtual-black-box point obfus-
cation in the presence of auxiliary input and in particular implied by it [49].
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Consequently our impossibility result also shows that VBB obfuscation of multi-
bit point functions secure in the presence of auxiliary input cannot exist if indis-
tinguishability obfuscation exist:

Corollary 1. If indistinguishability obfuscation exists, then VBB multi-bit point
obfuscation secure with auxiliary input does not exist.

We note that VBB multi-bit point obfuscation is also often referred to as Digital
Lockers. Canetti and Dakdouk [24] study the composition of point function ob-
fuscation and show that composable AIPO implies the existence of composable
MB-AIPO. And hence, applying our result we get the following corollary.

Corollary 2. If indistinguishability obfuscation exists, then composable AIPO
does not exist.

Several results have been based on the existence of MB-AIPO (or composable
AIPO). Matsuda and Hanaoka give a CCA secure public-key encryption scheme
based on MB-AIPO [49] and Bitansky and Paneth give a three-round weak
zero-knowledge protocol for NP based on composable AIPO [13].8 In the full
version [21] we present a weakened notion of MB-AIPO that we deem to fall
outside our impossibility result. It is not clear whether this weaker notion suffices
for the applications in [13, 49] and such a proof is not straightforward, so it
remains to study whether one could use other weak variants of MB-AIPO.

A Random Oracle Uninstantiability. Lynn et al. [47] construct VBB obfuscators
for multi-bit point functions in the idealized random oracle model and their
result can easily be seen to encompass auxiliary information. Thus, assuming iO
exists our result rules out the existence of a standard model hash function that
can instantiate the random oracle in their construction.

Corollary 3. If indistinguishability obfuscation exists, then the multi-bit out-
put point function obfuscator by Lynn et al. [47] cannot be instantiated in the
standard model so that it achieves VBB security with auxiliary input.
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Abstract. We show that it is possible to upgrade an obfuscator for a
weak complexity class WEAK into an obfuscator for arbitrary polyno-
mial size circuits, assuming that the class WEAK can compute pseudo-
random functions. Specifically, under standard intractability assumptions
(e.g., hardness of factoring, Decisional Diffie-Hellman, or Learning with
Errors), the existence of obfuscators for NC1 or evenTC0 implies the ex-
istence of general-purpose obfuscators forP. Previously, such a bootstrap-
ping procedure was known to exist under the assumption that there exists
a fully-homomorphic encryption whose decryption algorithm can be com-
puted in WEAK. Our reduction works with respect to virtual black-box
obfuscators and relativizes to ideal models.

1 Introduction

General-purpose program obfuscation allows us to transform an arbitrary com-
puter program into an “unintelligible” form while preserving its functionality.
The latter property is formalized via the notion of Virtual Black-Box which as-
serts that the code of the obfuscated program reveals nothing more than what
can be learned via oracle access to its input-output behavior. The seminal re-
sult of [7] shows that general purpose obfuscation is impossible in the standard
model. Nevertheless, in a sequence of recent exciting works [10,8,6], it was shown
that general-purpose obfuscation can be achieved in idealized models such as the
Generic Colored Matrix Model, or the Generic Graded Encoding model.

All these works share a similar outline. First it is shown how to use the ide-
alized model to obfuscate a weak complexity class such as NC1, and then the
weak obfuscator is bootstrapped into a general-purpose obfuscator for arbitrary
polynomial-size circuits.1 The bootstrapping step in all these works employs a
fully homomorphic encryption [11] whose decryption algorithm can be imple-
mented in NC1. While recent constructions of FHE (e.g., [9]) make the latter

� Supported by Alon Fellowship, ISF grant 1155/11, Israel Ministry of Science and
Technology (grant 3-9094), GIF grant 1152/2011, and the Check Point Institute for
Information Security.

1 The class NC1 is the class of polynomial-size circuits with logarithmic depth and
bounded fan-in gates.

P. Sarkar and T. Iwata (Eds.): ASIACRYPT 2014, PART II, LNCS 8874, pp. 162–172, 2014.
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assumption reasonable, the existence of FHE is still a strong public-key assump-
tion and it is natural to ask whether it can be relaxed. Indeed, NC1 obfuscation
already seems to put us at the “Heights of Cryptomania” [12], and so one may
suspect whether the extra power of FHE is really needed for bootstrapping.

1.1 Our Results

In this note we show that bootstrapping can be based on a “Minicrypt” type
assumption.

Theorem 1 (main theorem – informal). Assume that the complexity class
WEAK can compute a pseudorandom function (PRF). Then an obfuscator for
WEAK (in some idealized model) can be bootstrapped into an obfuscator for
every polynomial-size circuit family.

(See Theorem 5 for a formal statement.) Since practical and theoretical imple-
mentations of PRFs tend to be highly efficient, we can instantiate the theorem
with relatively low complexity classes. For example, by relying on PRFs con-
structions from [18,5], we derive the following corollary.

Corollary 1. Assuming the hardness of factoring, Decisional Diffie-Hellman,
or Learning with Errors, the following holds. If TC0 can be obfuscated (in some
idealized model), then every polynomial-size circuit family can be obfuscated as
well.2

Tightness. One may ask whether the PRF assumption in Theorem 1 can be
further relaxed and replaced with the existence of a weaker primitive such as a
one-way function or a pseudorandom generator. We note that the answer seems
to be negative as such primitives can be computed in NC0 (under standard
assumptions [4]), a class which is learnable and therefore trivially obfuscatable
in the standard model. Therefore, such a strengthening of Theorem 1 would
contradict the impossibility results of [7].

In fact, we do not expect to prove a statement like Corollary 1 for classes lower
than TC0, as TC0 is the lowest complexity class for which the impossibility
results of [7] apply. More generally, [7] essentially show that if a complexity
class WEAK contains a PRF then it cannot be obfuscated in the standard
model. Our results complement the picture by showing that if such a class can
be obfuscated in some idealized model, then everything can be obfuscated. This
suggests the existence of a zero-one law: if an idealized model admits non-trivial
obfuscation (i.e., for some class which is non-obfuscatable in the standard model)
then it admits general purpose obfuscation for all (polynomial-size) circuits.

2 The class TC0 is the class of all Boolean circuits with constant depth and polynomial
size, containing only unbounded-fan in AND gates, OR gates, and majority gates.
This class is a subclass of NC1.
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Virtual Black-Box vs. Indistinguishability Obfuscation. Our results hold with re-
spect to the strongest security notion ofVirtual Black-Box (VBB) obfuscation [7]
relative to some ideal model. An alternative (weaker) notion of security is in-
distinguishability Obfuscation. The latter notion is highly attractive as it may
be achievable in the standard model (no impossibility results are known), and,
quite surprisingly, it suffices for a wide range of applications [19]. In this work
we focus on VBB obfuscators, as we believe that when constructing obfuscators
it is best to strive for the strongest form of security. (See a detailed discussion
in [6].) We do not know whether our results apply in the indistinguishability
setting, and leave this question for future research. Interestingly, the FHE-based
bootstrapping works in both settings [10,8].

1.2 Techniques

Our main technical tool is randomized encoding (RE) of functions [17,4]. In-

tuitively, a function f(x) is encoded by a randomized function f̂(x; r) if the

distribution f̂(x), induced by a random choice of r, reveals nothing but f(x).

Formally, a sample from f̂(x) can be decoded to f(x), and vice versa, given f(x)

one can efficiently simulate the distribution f̂(x) – so the functions are essen-
tially “equivalent”. REs become non-trivial (and useful) when their complexity
is smaller than the complexity of f . This “equivalence” between a complicated
function f to a simpler encoding f̂ , was exploited in various applications to re-
duce a complex task to a simpler one. (See the surveys [1] and [16].) We can
adopt a similar approach in our context as well.

In order to obfuscate a function f taken from a family F let us obfuscate its
low-complexity encoding f̂ and release the latter obfuscated program composed
with the decoder algorithm. For this to work, let us assume the existence of
universal decoder and universal simulator that work uniformly for all functions in
F . (This can be guaranteed by encoding the evaluation function of the collection
F which maps a circuit of f and an input x to the value f(x).)

Unfortunately, this approach is somewhat problematic as the encoding f̂ em-
ploys internal randomness. One potential solution is to treat the randomness as
an additional input and let the user of the obfuscated program choose it. While
decoding still succeeds, this solution fails to be secure. Once the randomness r
is revealed, the function f can be fully recovered. (Technically, universal simu-
lation cannot be achieved anymore.) Another (flawed) solution, is to fix some

secret randomness r and obfuscate the mapping x �→ f̂(x; r). Unfortunately, the
privacy of the encoding holds only when fresh randomness is being used, and
one can easily recover the circuit of f when r is fixed.

The problem is solved via the extra use of a PRF. Specifically, we choose

a PRF h
R← H and obfuscate the function f̂(x;h(x)). The security of the PRF

ensures that this function behaves essentially as a standard encoding whose inter-
nal randomness is freshly chosen in each invocation, and so simulation succeeds.
By using the low-complexity encoding from [3], the complexity of f̂ is dominated
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by the complexity of the PRF H ∈ WEAK (assuming that the class WEAK
satisfies some basic closure properties), and one can prove Theorem 1.

We note that a similar usage of PRF-derandomized randomized encoding was
made by [14] in the context of Functional Encryption.

2 Preliminaries

We say that a function ε : N → R is negligible if for every constant c > 0
there exists an integer n0 ∈ N such that ε(n) < n−c for every n > n0. We will
sometimes use neg(·) to denote an unspecified negligible function.

One-Way Functions. An efficiently computable function g : {0, 1}∗ → {0, 1}∗ is
one-way if for every (non-uniform) efficient adversary A we have that

Pr
x

R←{0,1}n

[A(1n, f(x)) ∈ f−1(f(x))] < neg(n). (1)

Circuit Families. A family of polynomial-size boolean circuits F is an infinite
sequence of circuit families {Fn}n∈N

where for every n ∈ N the family Fn consists
of boolean circuits with n inputs, m(n) outputs, and circuit size �(n) where m, �
are polynomials in n. For such a family there is always a universal efficient
evaluator F such that for every length parameter n, circuit f ∈ Fn and input
x ∈ {0, 1}n, we have that F (f, x) = f(x).

Pseudorandom Functions [13]. Let H = {Hn}n∈N
be a family of polynomial-

size boolean circuits and let K be a PPT sampling algorithm that on input
1n samples a circuit in Hn. (The probability distribution induced by K is not
necessarily uniform.) We say that H is a pseudorandom function family (PRF)
if for every (non-uniform) efficient oracle-aided adversary A we have that∣∣∣∣∣ Pr

h
R←K(1n)

[Ah(1n) = 1]− Pr
Rn

[ARn(1n) = 1]

∣∣∣∣∣ ≤ neg(n), (2)

where Rn is a uniformly chosen function with the same input and output lengths
as the functions in Hn. To simplify notation, we will typically make the sampler

implicit and write h
R← Hn with the understanding that the distribution is

induced by some efficient sampler.

2.1 Randomized Encoding of Functions

Let F be a polynomial-time computable function that maps n bits to m(n) bits.
Intuitively, a randomized function F̂ is an “encoding” of F if for every input x the
distribution F̂ (x) reveals the value of F (x) but no other additional information.
We formalize this via the notion of computationally private randomized encoding
from [3].
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Definition 1 (Computational randomized encoding). Let F : {0, 1}n →
{0, 1}m(n) be an efficiently computable function and let F̂ be an efficiently com-
putable randomized function. We say that F̂ is a computational randomized
encoding of F (or encoding for short), if there exist an efficient decoder algo-
rithm D and an efficient probabilistic simulator algorithm Sim that satisfy the
following:

– Perfect Correctness. For every n and every input x ∈ {0, 1}n,

D(1n, F̂ (x)) = F (x).

– Computational Privacy. For every non-uniform efficient oracle-aided ad-
versary A we have∣∣∣Pr[AF̂n(1n) = 1]− Pr[ASim(1n,Fn(·))(1n) = 1]

∣∣∣ ≤ neg(n), (3)

where F̂n and Fn are the restrictions of F̂ and F to n-bit inputs, and both
oracles are probabilistic functions (and fresh randomness is used in each
invocation).

Encoding Collections. We encode a family of polynomial-size boolean circuits F
by encoding its evaluation algorithm F (f, x). Specifically, for every f ∈ F we

define the randomized function f̂(x; r) = F̂ (f, x; r) where F̂ is the encoder of F .
By definition, the decoder D and the simulator Sim of F apply universally for
all f ∈ F . Formally, for every n and f ∈ Fn:

D(1|x|, f̂(x)) = f(x) ∀x ∈ {0, 1}n.

Also for every non-uniform efficient oracle-aided adversaryA and every sequence

of functions {fn} and their encodings
{
f̂n

}
we have that∣∣∣Pr[Af̂n(1n) = 1]− Pr[ASim(1n,fn(·))(1n) = 1]

∣∣∣ ≤ neg(n). (4)

(The oracles in (4) are simply the restriction of the oracles in (3) to inputs of
the form (fn, ·) and so (4) follows immediately from (3).)

2.2 Obfuscation

Definition 2 (Virtual Black-Box Obfuscator [7]). Let F = {Fn}n∈N
be

a family of polynomial-size boolean circuits. An obfuscator O for F is a PPT
algorithm which maps a circuit f ∈ Fn to a new circuit [f ] (not necessarily in
F) such that the following properties hold:

1. Preserving Functionality. For every n ∈ N, every f ∈ Fn and every input
x ∈ {0, 1}n

Pr
[f ]

R←O(f)

[[f ](x) �= f(x)] ≤ neg(n).



Bootstrapping Obfuscators via Fast Pseudorandom Functions 167

2. Polynomial Slowdown. There exists a polynomial p such that for every
n ∈ N and f ∈ Fn the circuit O(f) is of size at most p(|f |).

3. Virtual Black-Box. For every (non-uniform) efficient adversary A there
exists a (non-uniform) efficient simulator Sim such that for every n and
every f ∈ Fn:∣∣∣Pr[A(O(f)) = 1]− Pr[Simf (1|f |, 1n) = 1]

∣∣∣ ≤ neg(n). (5)

A complexity class C is obfuscatable if there exists an efficiently computable
mapping that maps every efficiently computable function family F ∈ C (repre-
sented by its evaluator F ) to an obfuscator O for F .

Obfuscation in an Idealized Model. An idealized model is captured by a sequence
of probabilistic stateful oracles M = {Mn}n∈N

indexed by a security parameter
n. We consider obfuscators which are implementable relative to M. This means
that the obfuscator O is allowed to make oracle queries to Mn and that Eq. 5
should hold even when A is allowed to query Mn. (The circuit f cannot have
oracle gates to M.) In this case, Properties (1) and (2) should hold for every
possible coins of M.

3 Our Reduction

Let F be a family of polynomial-size boolean circuits with an evaluator F . We
will construct an obfuscator O for F based on the following ingredients. (1) An
encoding F̂ of F ; (2) a pseudorandom function family H where the output length
of functions in Hn equals to the length of the random input of F̂n; and (3) a
weak obfuscator weakO for the circuit family G = {Gn} where Gn contain all
circuits of the form

gf,h : x �→ F̂ (f, x;h(x)), ∀f ∈ Fn, h ∈ Hn.

We allow the weak obfuscator to be implementable in some idealized model M,
but assume that the PRF and the randomized encoding are implemented in the
standard model and make no calls to M.

Construction 2. Given a circuit f ∈ Fn the obfuscator OMn does the follow-
ing:

– Sample a random h
R← H and obfuscate gf,h by [g] := weakOMn(gf,h).

– Output the circuit [f ] = D ◦ [g] where D is the RE decoder and ◦ denotes
function composition.

Note that the construction is syntactically well defined as gf,h makes no calls
to the oracle M. (For this purpose, we had to assume that the PRF and the
randomized encoding do not use M.)

It is easy to verify that [f ] preserves the functionality of f .



168 B. Applebaum

Lemma 1. The obfuscator O is functionality preserving.

Proof. Fix some x and h ∈ H, and let us condition on the event that the weak
obfuscator preserves the functionality, namely, [g](x) = gf,h(x). Then, by the
correctness of the encoding, we have

[f ](x) = D([g](x)) = D(gf,h(x)) = D(F̂ (f, x;h(x))) = f(x).

Since the weak obfuscator is correct with all but negligible probability the claim
follows. 
�

In the next section, we will prove that the obfuscator is secure.

Lemma 2. The obfuscator O satisfies the Virtual Black-Box property relative
to M.

3.1 Security (Proof of Lemma 2)

Let A be an efficient adversary for the new obfuscatorO. Our goal is to construct
a simulator Sim that simulates A. For this aim, let us first define an oracle-aided
adversary B for the weak obfuscator weakO as follows. Given an obfuscated
circuit [f ], the adversary B applies A to the circuit D ◦ [f ] where D is the
(universal) decoder of the encoding. If A makes oracle queries to the oracle Mn

then B answers them using his own oracle Mn. Let weakSim be the simulator
of weakO which simulates the adversary B, and let reSim be the (universal) RE
simulator.

We define the simulator Simf (1n) for the adversary A as follows. Invoke the
oracle-aided weak simulator weakSimg(1n), and whenever weakSim makes a new
oracle query x ∈ {0, 1}n, answer it with reSim(1n, f(x)), where the latter is
computed via the help of the oracle f . If x was previously queried, respond with
the same answer as before.

Fix some f ∈ Fn. We will prove that∣∣∣Pr[AMn(O(f)) = 1]− Pr[Simf (1n) = 1]
∣∣∣ ≤ ε1(n) + ε2(n) + ε3(n) (6)

where ε1 (resp., ε2, ε3) upper-bounds the distinguishing advantage of efficient
adversaries against the weak obfuscator (resp., against the PRF, against the
encoding). Through the proof, we simplify notation by omitting the unary input
1n; also for a binary random variable Y we write Pr[Y ] to denote Pr[Y = 1].

Let f̂(x; r) be the circuit that computes the encoding of f(x), i.e., f̂(x; r) =

F̂ (f, x; r). For a function h ∈ H, let f̂h denote the circuit that computes f̂(x;h(x))
and let O(f ;h) denote the output of the obfuscator O with input f and PRF h.
Then, by definition, for every h, we have that

Pr[AMn(OMn(f ;h))] = Pr[BMn(weakOMn(f̂h))], (7)

Also, by the VBB property of the weak obfuscator, for every h we have that∣∣∣Pr[BMn(weakOMn(f̂h))]− Pr[weakSimf̂h ]
∣∣∣ ≤ ε1(n). (8)

By relying on the security of the PRF we will prove the following claim.
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Claim 3 ∣∣∣∣∣ Pr
h

R←Hn

[weakSimf̂h ]− Pr[weakSimf̂ ]

∣∣∣∣∣ ≤ ε2(n),

where f̂(·) is viewed as a randomized function and repeated queries to this func-
tion are answered consistently based on the first answer.

Proof. If the claim does not hold, we can break the PRF as follows. Let TR be
an oracle aided adversary which calls weakSim and whenever weakSim makes a
query x to its oracle, T answers the query with f̂(x;R(x)). Observe that if R is

a truly random function then T accepts with probability exactly Pr[weakSimf̂ ].

On the other hand, if the oracle is R
R← Hn then the acceptance probability is

exactly Pr
h

R←Hn
[weakSimf̂h ]. It follows that T breaks the security of the PRF,

and the claim follows. 
�

Finally, we rely on the privacy of the randomized encoding to prove the fol-
lowing claim.

Claim 4 ∣∣∣Pr[weakSimf̂ ]− Pr[Simf ]
∣∣∣ ≤ ε3(n),

where f̂(·) is viewed as a randomized function and repeated queries to this func-
tion are answered consistently based on the first answer.

Proof. Recall that Simf(·) is simply weakSimreSim(f(·)), where repeated queries
are answered consistently. Therefore, if the claim does not hold, we can use
weakSim to distinguish between the randomized functions reSim(f(·)) and f̂(·),
in contradiction to the privacy of the RE (Eq. 4). (The distinguisher will simply
invoke weakSim and will answer repeated queries based on the first answer.) 
�

The lemma (i.e., Eq. 6) now follows from Eqs. 7 and 8 and Claims 3 and 4. The
“furthermore” part follows by noting that the proof relativizes. 
�

4 Main Result

We say that a circuit complexity class WEAK is admissible if it satisfies the
following basic properties:

1. The class WEAK contains the class NC0;
2. (Closure under concatenation) If each output bit of a multi-output function
f is computable in WEAK then so is f ;

3. (Closure under composition) if f ∈ WEAK and g ∈ WEAK then g ◦ f is
in WEAK, where ◦ denotes function composition.

We can now prove our main theorem.
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Theorem 5. Let WEAK be an admissible complexity class, and let M be some
probabilistic oracle (an idealized model). Assume that there exists a one-way
function and a pseudorandom function H in WEAK. Then, if WEAK can be
obfuscated relative to M, every family of polynomial-size circuits can be obfus-
cated relative to M.

Proof. First, we claim that, under the above assumption, any efficiently com-
putable function F has an encoding F̂ computable in WEAK. In [3] it was
shown, based on Yao’s garbled circuit technique, that F (x) can be encoded by
an encoding F̂ (x; r) which is reducible to a minimal-stretch pseudorandom gen-
erator G : {0, 1}κ → {0, 1}κ+1 via a non-adaptive NC0 reduction. Namely,
F̂ (x; r) can be written as g(x, r,G(r1), . . . , G(rt)) where g is an NC0 function
and the ri’s are sub-blocks of the random string r. Such a PRG is also reducible
to a one-way function via a (non-adaptive) NC0 reduction by [4,15] (see also [2,
Remark 4.5]). Therefore, F̂ (x; r) can be written as g′(x, r,G′(r1), . . . , G

′(rt′))
where g′ is in NC0 and G′ is a one-way function. We can now instantiate G′

with a one-way function in WEAK whose existence is promised by the theo-
rem’s hypothesis. Since WEAK is closed under concatenation, we can view the
t′ copies G′(r1), . . . , G

′(rt′ ) as a single function in WEAK. Now, the resulting
encoding can be written as a composition of an NC0 function with a function
in WEAK which results in a WEAK function.3

Next, we observe that, since WEAK is closed under concatenation, the as-
sumption implies the existence of a PRF in WEAK whose output length is
equal to the randomness complexity of the encoding. (By using direct product,
one can transform a WEAK PRF with a single output bit into a new WEAK
PRF with arbitrary polynomial number of output bits.) It follows that the circuit
family G (from Construction 2) can be written as a composition of two WEAK
functions, and the theorem follows from Lemmas 1 and 2. 
�

Remark. We assume nothing on the complexity of the sampler of the PRF, and
therefore the sampler can preprocess the function h ∈ H. (This preprocessing
is exploited in fast implementations of PRFs [18,5].) As a result, the additional
one-wayness assumption does not seem to follow from the fact that H is in
WEAK.4

Under standard intractability assumptions, one can instantiate WEAK with
NC1 or even TC0. Indeed, the existence of PRFs in TC0 can be based on
the hardness of factoring, the DDH assumption or the intractability of lat-
tice/learning problems [18,5], and the existence of one-way functions in TC0

(or even in NC0) follow from these assumptions as well [4]. Therefore Corol-
lary 1 follows from Theorem 5.

3 We note that the construction of the RE makes a non black-box use of the code
of the one-way function. This does not affect the overall argument as none of these
primitives makes calls to the oracle M.

4 The one-wayness assumption becomes redundant if the mapping (k, x) �→ hk(x)
(where hk = K(1n; k)) is computable in WEAK.
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Abstract. We study homomorphic authenticated encryption, where pri-
vacy and authenticity of data are protected simultaneously. We define
homomorphic versions of various security notions for privacy and au-
thenticity, and investigate relations between them. In particular, we show
that it is possible to give a natural definition of IND-CCA for homomor-
phic authenticated encryption, unlike the case of homomorphic encryp-
tion. Also, we construct a simple homomorphic authenticated encryption
scheme supporting arithmetic circuits, which is chosen-ciphertext secure
both for privacy and authenticity. Our scheme is based on the error-free
approximate GCD assumption.

Keywords: homomorphic authenticated encryption, homomorphic
MAC, homomorphic encryption.

1 Introduction

Homomorphic cryptography allows processing of cryptographically protected
data. For example, homomorphic encryption lets a third party which does not
have the secret key to evaluate functions implicitly using only ciphertexts so
that the computed ciphertext decrypts to the correct function value. Simi-
larly, homomorphic signature allows a third party who is not the signer to de-
rive a signature to the output of a function, given signatures of the inputs.
This possibility for secure delegation of computation could potentially be used
for many applications including cloud computing, and so it makes homomor-
phic cryptography a very interesting area, which was recently attracting many
focused research activities, especially since Gentry’s first construction [20] of
fully homomorphic encryption (FHE) in 2009. While existing FHE schemes are
still many orders slower than ordinary encryption schemes to be truly prac-
tical, many progresses are already being made in improving the efficiency of
FHE [17,27,9,10,21,15,16,6,8,22,23,13,7,14]. Eventually, a truly practical FHE
could be used to build secure cloud computing services where even the cloud
provider cannot violate the privacy of the data stored and processed by the
cloud.

But, if such data is important enough to protect its privacy, in many scenarios
the authenticity of the data would also be worth protecting simultaneously. In-
deed, in symmetric-key cryptography, the authenticated encryption [26,4,18,25]
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is exactly such a primitive protecting both. Therefore, we would like to study
homomorphic authenticated encryption (henceforth abbreviated as HAE), which
is a natural analogue of the authenticated encryption for homomorphic cryptog-
raphy. A HAE is a symmetric-key primitive which allows public evaluation of
functions using only corresponding ciphertexts.

Just as in the case of homomorphic encryption, one important goal in this
area would be to design a fully homomorphic authenticated encryption. Since
there are several known FHE constructions, we may construct a fully homomor-
phic authenticated encryption scheme by generic composition [4] with a fully
homomorphic signature, or even a fully homomorphic MAC. But until very re-
cently, the homomorphic signature scheme closest to being fully homomorphic
was [5], where only low-degree polynomial functions are supported. A fully ho-
momorphic MAC is proposed by Gennaro and Wichs [19], but it supports only
a limited number of verification queries, so that the solution is in a sense incom-
plete. So far, the problem of constructing a fully homomorphic authenticated
encryption is still not solved completely satisfyingly.1

Our contribution in this paper is twofold. First, we define various security
notions for HAE and study relations among them. For privacy, we define homo-
morphic versions of IND-CPA and IND-CCA. While IND-CCA is not achievable
for homomorphic encryption due to malleability, nevertheless we may define a
version of IND-CCA for HAE. It is because that for HAE, encryption of a plain-
text is done with respect to a ‘label’, and similarly decryption of a ciphertext is
done with respect to a ‘labeled program’. So, while the ciphertext is still mal-
leable by function evaluation, a decryption query should essentially declare how
the ciphertext was produced. This allows a homomorphic version of IND-CCA
to be defined naturally.

For authenticity, we define UF-CPA, the homomorphic version of the unforge-
ability when the adversary has access to the encryption oracle. We also consider
UF-CCA, where the adversary has both the encryption oracle and the decryption
oracle. Moreover, we consider strong unforgeability flavors of authenticity, and
define homomorphic versions accordingly: SUF-CPA and SUF-CCA. We investi-
gate relationship between these notions, and, for example, show that SUF-CPA
implies SUF-CCA. And, we show that IND-CPA and SUF-CPA imply IND-
CCA. Together, this shows that a HAE scheme with IND-CPA and SUF-CPA
security is in fact IND-CCA and SUF-CCA.

The second contribution is that we propose a HAE scheme supporting arith-
metic circuits. This scheme is somewhat homomorphic and not fully homomor-
phic, but we show that our scheme is secure and satisfies both IND-CCA and
SUF-CCA. Another appeal of our scheme is that it is a straightforward con-
struction based on the error-free approximate GCD (EF-AGCD) assumption.
EF-AGCD assumption was used before [17,15,16,13,14] in constructing fully

1 Very recently, some constructions of leveled fully homomorphic signature schemes
are proposed [28,24], after the current paper has been submitted to Asiacrypt. So,
at least the fully homomorphic authenticated encryption via generic composition
would be possible now.
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homomorphic encryption schemes supporting boolean circuits, but here we use
it to construct a HAE scheme supporting arithmetic circuits on ZQ for Q ∈ Z+.

2 Related Work

After this paper has been submitted to Asiacrypt, there were many progresses
in the area of homomorphic signatures. In CRYPTO 2014, Catalano, Fiore,
and Warinschi constructed homomorphic signature schemes for polynomial func-
tions [12]. Compared with the scheme of Boneh and Freeman [5], their construc-
tion is in the standard model, and allows efficient verification.

Also, more relevantly, constructions of (leveled) fully homomorphic signa-
ture schemes are proposed by Wichs [28] and also by Gorbunov and Vaikun-
tanathan [24]. Therefore, the fully homomorphic authenticated encryption
scheme via generic composition would be now possible, using these. However,
currently known FHEs require large amount of ciphertext expansion, and that
would become worse by generic composition. Designing more efficient fully ho-
momorphic authenticated encryption would be an interesting problem.

Gennaro and Wichs [19] proposed the first construction of the fully homo-
morphic MAC. Their construction uses FHE, and exploits randomness in the
encryption to hide data necessary for authentication. In fact, since their scheme
encrypts plaintexts using FHE, it is already a fully homomorphic authenticated
encryption. But, their construction essentially does not allow verification queries,
so it satisfies only weaker security notions: IND-CPA and UF-CPA, according
to our definition.

Catalano and Fiore [11] proposed two somewhat homomorphic MACs sup-
porting arithmetic circuits on Zp for prime modulus p. In their construction, a
MAC for a message m is a polynomial σ(X) such that its constant term σ(0)
is equal to the message m, and its value σ(α) on a secret random point α is
equal to randomness determined by the label τ of the message m. While their
construction is very simple and practical, it does not protect privacy of data,
and it seems that this cannot be changed by simple modifications, for example
by choosing a secret random value β as the value satisfying σ(β) = m. Also, the
size of the modulus p is related to the security of the scheme, so it cannot be
chosen arbitrarily.

Our scheme is not as efficient as the schemes of Catalano and Fiore, but
certainly more efficient than the generically composed HAE of a FHE scheme
and the Catalano-Fiore homomorphic MAC. And our scheme is also relatively
straightforward. Moreover, in our construction, the security does not depend on
the modulus Q so that it can be chosen arbitrarily depending on the application.

Our scheme can also be compared with a homomorphic encryption scheme
called IDGHV presented in [13]. It supports encryption of a plaintext vector
(m1, . . . ,m�) where each mi is an element in ZQi . Like our scheme, IDGHV also
uses the Chinese remainder theorem, and indeed our construction can be seen as
a special-case, symmetric-key variant of IDGHV where � = 1, and where encryp-
tion randomness is pseudorandomly generated from the label. We intentionally
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omitted encryption of multiple plaintexts for simplicity of exposition, but our
construction can naturally be extended in this way.

Security notions of the authenticated encryption was studied before. Bellare
and Namprempre [4] studied both privacy and authenticity of authenticated en-
cryption schemes, and the authenticity notions are later studied further by Bel-
lare, Goldreich and Mityagin [2]. Our UF-CPA and SUF-CPA can be considered
as homomorphic versions of INT-PTXT-1 and INT-CTXT-1 of [2], respectively.
Our UF-CCA and SUF-CCA are comparable to homomorphic versions of INT-
PTXT-M and INT-CTXT-M, respectively, but in our (S)UF-CCA, the adversary
has access to the decryption oracle, while in INT-PTXT-M and INT-CTXT-M,
the adversary has access to the verification oracle.

3 Preliminary

3.1 Notations

For any a ∈ R, the nearest integer �a� of a is defined as the unique integer
in
[
a− 1

2 , a+
1
2

)
. The ring Zn of integers modulo n is represented as the set

Z ∩ (−n
2 ,

n
2 ]. That is, x mod n = x − �x/n� · n for any x ∈ Z. For example, we

have Z2 = {0, 1}, Z3 = {−1, 0, 1}.
For any mutually prime n,m ∈ Z+, CRT(n,m) is the isomorphism Zn×Zm →

Znm, such that for any (a, b) ∈ Zn × Zm, we have

(CRT(n,m)(a, b) mod n,CRT(n,m)(a, b) mod m) = (a, b) .

In this paper, the security parameter is always denoted as λ, and the expres-
sion f(λ) = negl(λ) means that f(λ) is a negligible function, that is, for any
c > 0, we have |f(λ)| ≤ λ−c for all λ ∈ Z+ large enough.

Also, lg means the logarithm to base 2. And Δ(D1, D2) denotes the statistical
distance between two distributions D1 and D2.

A notation like (τ, ·) ∈ S is an abbreviation for ∃x (τ, x) ∈ S. Naturally,
(τ, ·) �∈ S is its negation, ∀x (τ, x) �∈ S. This notation can also be generalized to
n-tuples for n > 2, for example (τ, ·, ·) ∈ S.

3.2 Security Assumptions

Here we define security assumptions we use in this paper. First, let us define
some distributions. For p, q0, ρ ∈ Z+, we define the distribution D(p, q0, ρ) as

D(p, q0, ρ) := {choose q $← Z ∩ [0, q0), r
$← Z ∩ (−2ρ, 2ρ) : output pq + r} .

Clearly, we can efficiently sample from the above distribution. In this paper, when
a distribution is given as an input to an algorithm, it means that a sampling
oracle for the distribution is given.

Let PRIME be the set of all prime numbers, and ROUGH(x) the set of all
‘x-rough integers’, that is, integers having no prime factors less than x.

In the following, the parameters ρ, η, γ are polynomially bounded functions
of λ, and we assume they can be efficiently computed, given λ.



Homomorphic AE Secure against Chosen-Ciphertext Attack 177

Definition 1 (Error-Free Approximate GCD Assumption). The (com-
putational) (ρ, η, γ)-EF-AGCD assumption is that, for any PPT adversary A,
we have

Pr
[
A(1λ, y0,D(p, q0, ρ)) = p

]
= negl(λ) ,

where p
$← [2η−1, 2η) ∩ PRIME, q0

$← [0, 2γ/p) ∩ ROUGH(2λ
2

), and y0 = pq0.

The EF-AGCD assumption is suggested by Coron et al. [15] to prove the
security of their variant of the DGHV scheme [17]. There is also a decisional
version, suggested by Cheon at al. [13]:

Definition 2 (Decisional Error-Free Approximate GCD Assumption).
The decisional (ρ, η, γ)-EF-AGCD assumption is that, for any PPT distinguisher
D, the following value is negligible:∣∣∣Pr[D(1λ, y0,D(p, q0, ρ), z) = 1 | z ← D(p, q0, ρ)

]
− Pr

[
D(1λ, y0,D(p, q0, ρ), z) = 1 | z $← Zy0

]∣∣∣ ,
where p

$← [2η−1, 2η) ∩ PRIME, q0
$← [0, 2γ/p) ∩ ROUGH(2λ

2

), and y0 = pq0.

Recently Coron et al. proved the equivalence of the EF-AGCD assumption
and the decisional EF-AGCD assumption [14]. In Theorem 6, we show that
our scheme is IND-CPA under the decisional EF-AGCD assumption. Hence, our
scheme’s security is in fact based on the (computational) EF-AGCD assumption,
due to the equivalence.

4 Homomorphic Authenticated Encryption

Here we define the homomorphic authenticated encryption and its security. In
the following, M, C, L, F are the plaintext space, the ciphertext space, the label
space, and the admissible function space, respectively.

4.1 Syntax

Labeled Programs. First, let us define labeled programs, a concept first in-
troduced in [19].

For each HAE, a set of admissible functions F is associated. In reality, an
element f of F is a concrete representation of a function which can be evaluated
in polynomial time. It is required that any f ∈ F should represent a function of
form f : Ml → M for some l ∈ Z+ which depends on f . We will simply call an
element f ∈ F an admissible function. The number l is the arity of f .

A HAE encrypts a plaintext m ∈ M under a ‘label’ τ ∈ L, and a labeled pro-
gram is an admissible function together with information which plaintexts should
be used as inputs. Formally, a labeled program is a tuple P = (f, τ1, . . . , τl), where
f is an arity-l admissible function, and τi ∈ L are labels for i = 1, . . . , l for each
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input of f . The idea is that, if mi are plaintexts encrypted under the label τi,
respectively, then the evaluation of the labeled program P = (f, τ1, . . . , τl) is
f(m1, . . . ,ml).

We also define the identity labeled program with label τ ∈ L, which is Iτ =
(id, τ), where id : M → M is the identity function.

Homomorphic Authenticated Encryption. A HAE Π consists of the fol-
lowing four PPT algorithms.

– Gen(1λ): given a security parameter λ, Gen outputs a key pair (ek , sk), with
a public evaluation key ek and a secret key sk .

– Enc(sk , τ,m): given a secret key sk , a label τ and a plaintextm, Enc outputs
a ciphertext c.

– Eval(ek , f, c1, · · · , cl): given an evaluation key ek , an admissible function
f : Ml → M and l ciphertexts c1, · · · , cl ∈ C, the deterministic algorithm
Eval outputs a ciphertext c̃ ∈ C.

– Dec(sk , (f, τ1, · · · , τl), ĉ): when given a secret key sk , a labeled program
(f, τ1, · · · , τl) and a ciphertext ĉ ∈ C, the deterministic algorithm Dec out-
puts a message m ∈ M or ⊥.

We assume that ek implicitly contains the information about M, C, L, and F .
As mentioned above, we assume both Eval and Dec are deterministic algorithms.

Compactness. In order to exclude trivial constructions, we require that the
output size of Eval(ek , . . . ) and Enc(sk , ·, ·) should be bounded by a polyno-
mial of λ for any choice of their input, when (ek , sk) ← Gen(1λ). That is, the
ciphertext size is independent of the choice of the admissible function f .

Correctness. A HAE scheme must satisfy the following correctness properties:

– m = Dec(sk , Iτ ,Enc(sk , τ,m)), for any λ ∈ Z+, τ ∈ L and m ∈ M, when
(ek , sk) ← Gen(1λ).

– f(m1, . . . ,ml) = Dec(sk , (f, τ1, . . . , τl), c), for any λ ∈ Z+, any f ∈ F ,
any τi ∈ L, mi ∈ M for i = 1, . . . , l, when (ek , sk) ← Gen(1λ), ci ←
Enc(sk , τi,mi) for i = 1, . . . , l, and c← Eval(ek , f, c1, . . . , cl).

In addition, we require that a HAE should satisfy a property we call ciphertext
constant testability, which will be explained in Sect. 4.3.

4.2 Legal Encryption

As in the case of homomorphic MAC [19], it is required that a label τ used in
an encryption Enc(sk , τ,m) should not be reused. In practice, this should be
enforced by policy between valid users of HAE.

In the security model of HAE, this is expressed by legality of an encryption
query of an adversary: the adversary makes adaptive encryption queries (τ,m),
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and this query is answered by c ← Enc(sk , τ,m). Let us keep an encryption
history S of all tuples (τ,m, c) occurring as the result of such an encryption
query. We say that an encryption query (τ,m) is illegal, if (τ, ·, ·) ∈ S. Also,
we say that τ is new if (τ, ·, ·) �∈ S, and τ is used if (τ, ·, ·) ∈ S. We say that
an adversary is legal, if it does not make any illegal queries, including illegal
encryption queries.

In this paper, we only consider legal adversaries, that is, we always exclude
illegal adversaries, in the sense of the paper by Bellare, Hofheinz, and Kiltz [3].
Different security notions may have additional definitions of illegal queries (for
example, illegal decryption queries), but any encryption query involving a used
label will always be considered as illegal.

4.3 Constant Testability

For later use, we need to be able to check efficiently whether certain functions
are constant or not. For example, we need this for the homomorphic evaluation
of any admissible function f , regarded as a function mapping a ciphertext tuple
to a ciphertext: (c1, . . . , cl) �→ Eval(ek , f, c1, . . . , cl). In fact, we need to consider
slightly more general functions.

Fix a HAE Π and an evaluation key ek of Π . Given an arity-l admissible
function f , a subset I of the index set {1, · · · , l}, plaintexts (mi)i∈I ∈ M|I|, and
ciphertexts (ci)i∈I ∈ C|I|, we make the following definition:

Definition 3. A partial application of f w.r.t. plaintexts (mi)i∈I is the function
f̃ : Ml−|I| → M defined by f̃((mj)j �∈I) := f(m1, . . . ,ml). We denote this f̃ by
App(f, (mi)i∈I).

Definition 4. A partial homomorphic evaluation of f w.r.t. ciphertexts (ci)i∈I

is the function ẽ : Cl−|I| → C defined by ẽ((cj)j �∈I) := Eval(ek , f, c1, . . . , cl). We
denote this ẽ by Eval(f, (ci)i∈I).

So, f̃ = App(f, (mi)i∈I) is the admissible function f with some inputs mi for i ∈
I already ‘filled in’, and f̃ becomes a function of remaining plaintext inputs. Sim-
ilarly, ẽ = Eval(f, (ci)i∈I) is the homomorphic evaluation Eval(ek , f, c1, . . . , cl)
with some inputs ci for i ∈ I already filled in, and ẽ becomes a function of
remaining ciphertext inputs. In particular, Eval(f, (ci)i∈I) is a constant function
if I = {1, . . . , l}.

Informally, if a HAE Π satisfies ciphertext constant testability (CCT), then
there is an efficient algorithm which can determine whether such Eval(f, (ci)i∈I)
is constant or not with overwhelming probability.

In fact, we need a computational version of this property. Therefore, we for-
mally define CCT using the following security game CCTΠ,A,D involving an
adversary A and a ‘constant tester’ D:

CCTΠ,A,D(1λ):

Initialization. A key pair (ek , sk) ← Gen(1λ) is generated, a set S is
initialized as the empty set ∅. Then ek is given to A.
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Queries. A may make legal encryption queries adaptively. For each en-
cryption query (τ,m) of A, the answer c← Enc(sk , τ,m) is returned
to A, and S is updated as S ← S ∪ {(τ,m, c)}.

Challenge. A outputs a labeled program (f, τ1, . . . , τl). Let I be the
set of indices i = 1, . . . , l such that (τi,mi, ci) ∈ S for some2 mi, ci.
Then D outputs a bit b← D(ek , (f, τ1, . . . , τl), I, (ci)i∈I).

Finalization. The game outputs 1 if ẽ := Eval(f, (ci)i∈I) is constant
and b = 0, or ẽ is nonconstant and b = 1. The game outputs 0
otherwise.

The output bit b of the testerD is 1 iff D ‘thinks’ that Eval(f, (ci)i∈I) is constant.
Therefore, the event CCTΠ,A,D(1λ) = 1 happens when the tester D is wrong.

The advantage of an adversary A in the game CCT against D is defined as

AdvCCT
Π,A,D(λ) := Pr[CCTΠ,A,D(1λ) = 1] .

We say that a HAE Π satisfies the ciphertext constant testability (CCT), if
there exists a PPT constant tester D such that AdvCCT

Π,A,D(λ) is negligible for
any legal PPT adversary A.

Similarly, we may define plaintext constant testability (PCT): informally, Π
satisfies PCT if testing whether a partial application of an admissible function
is constant or not can be done efficiently.

When the set of admissible functions of a HAE is simple, both PCT and
CCT may be satisfied. But, PCT might be a difficult property to be satisfied in
general; if a HAE supports boolean circuits and is fully homomorphic, then since
satisfiability of a boolean circuit can be efficiently determined if constant testing
is efficient, if such HAE satisfies PCT, we may use it to invert any one-way
function.

On the other hand, we claim that a HAE to satisfy CCT is a relatively mild
requirement: unlike the plaintext space M, often the ciphertext space C might
be a large ring, and Eval(f, (ci)i∈I) is a polynomial on the ring C, in which case
we may use the Schwartz-Zippel lemma to perform polynomial identity testing.
This applies to our HAE scheme to be presented in this paper, as shown in
Theorem 5.

Moreover, we show that ifΠ is a HAE which does not necessarily satisfy CCT,
then there is a simple generic transformation which turns it into another HAE
Π ′ which satisfies CCT, while preserving original security properties satisfied by
Π . This will be explained in Sect. 4.7.

Therefore, without (much) loss of generality, we assume the CCT property to
be an additional requirement for a HAE to satisfy.

4.4 Privacy

Indistinguishability under Chosen-Plaintext Attack. First we define a
homomorphic version of the IND-CPA security based on the left-or-right in-
distinguishability [1]. We use the following security game IND-CPAΠ,A for an
adversary A:

2 For any i ∈ I , such mi, ci are necessarily unique.
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IND-CPAΠ,A(1
λ):

Initialization. A key pair (ek , sk) ← Gen(1λ) is generated, a set S is

initialized as the empty set ∅. And a coin b
$← {0, 1} is flipped. Then

ek is given to A.
Queries. A may make encryption queries adaptively. For each encryp-

tion query (τ,m0,m1) of A, the answer c ← Enc(sk , τ,mb) is re-
turned to A, and S is updated as S ← S ∪ {(τ, (m0,m1), c)}.

Finalization. A outputs a bit b′, and then the challenger returns 1 if
b = b′, and 0 otherwise.

As usual, an encryption query is considered illegal if it involves a used label.3

The advantage of A in the game IND-CPA for the scheme Π is defined by

AdvIND-CPA
Π,A (λ) :=

∣∣∣∣Pr[ IND-CPAΠ,A(1
λ) = 1]− 1

2

∣∣∣∣ .

We say that Π satisfies IND-CPA, if AdvIND-CPA
Π,A (λ) is negligible for any legal

PPT adversary A.

Indistinguishability under Chosen-Ciphertext Attack. Though the usual
IND-CCA security is not achievable for homomorphic encryption due to mal-
leability, nevertheless we may define a version of IND-CCA for HAE. It is because
that for HAE, a ciphertext is decrypted with respect to a labeled program; while
the ciphertext is still malleable by function evaluation, a decryption query should
essentially declare how it was produced. This allows a homomorphic version of
IND-CCA to be defined naturally as follows.

The most important difference of our definition is on the legality of a de-
cryption query. In our case, any decryption query for a ciphertext produced by
function evaluation which may nontrivially depend on the bit b should be con-
sidered illegal, since decryption of that ciphertext might reveal the bit b. To
formalize:

Let S be the encryption history as before. Then, we say that a decryption
query ((f, τ1, · · · , τl), ĉ) is illegal, if f̃0 and f̃1 are not equal, where

I := {i ∈ {1, · · · , l} | (τi, (mi,0,mi,1), ·) ∈ S for some (mi,0,mi,1) ∈ M×M} ,

f̃b := App(f, (mi,b)i∈I) for b = 0, 1 .

Homomorphic IND-CCA for a HAE Π = (Gen,Enc,Eval,Dec) is defined via
the security game IND-CCAΠ,A whose formal description we omit here due to the
space constraints. It is very similar to IND-CPAΠ,A, except that the adversary
A may make both encryption and decryption queries at any time. In the full
version of this paper, the formal description of the security game IND-CCAΠ,A

will be given, as well as other security games.

3 As before, a label τ is used if (τ, ·, ·) ∈ S.
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The advantage ofA in the game IND-CCA for the schemeΠ ,AdvIND-CCA
Π,A (λ),

is defined similarly. And we say that Π satisfies IND-CCA, if AdvIND-CCA
Π,A (λ)

is negligible for any legal PPT adversary A.

Remark 1. As we have discussed while defining constant testability in Sect. 4.3,
in general it may not be feasible to check whether f̃0 = f̃1 or not, especially
when the HAE in question is fully homomorphic and may process arbitrarily
large boolean circuits. Therefore, in general, it may not be feasible to efficiently
decide whether a decryption query is legal or not. Hence we use the exclusion-
style definition, rather than the penalty-style, according to the classification of
Bellare, Hofheinz, and Kiltz [3]: we regard only legal adversaries, which does not
make any illegal queries. While in other cases the two styles of definitions are
mostly compatible, in this case it is not.

Also, later in Sect. 4.7, we show that by using a secure PRF and a collision-
resistant hash function (or a hash tree), we may transform a HAE scheme
into another HAE which satisfies CCT. After we apply the transformation, if
Dec(sk , (f, τ1, . . . , τl), ĉ) �= ⊥, then with overwhelming probability we should
have I = {1, . . . , l}. Therefore, any decryption query will either output ⊥, or
both f̃0 and f̃1 are constant, which makes deciding if a verification query is
illegal trivial. This transform can be used if an application requires ability to
efficiently decide whether a verification query is illegal or not.

4.5 Authenticity

Unforgeability under Chosen-Plaintext Attack. Our authenticity defini-
tion for HAE is an adaptation of the definition given by Catalano and Fiore [11]
for homomorphic MACs.

First, we define the forgery of an adversary. Let ((f, τ1, · · · , τl), ĉ) be a forgery
attempt, and let S be the encryption history. We say that it is a forgery, if the
following holds:

1. It is valid, that is, ⊥ �= Dec(sk , (f, τ1, · · · , τl), ĉ) and,
2. One of the following holds:

– Type 1 forgery: App(f, (mi)i∈I) is not constant, or,
– Type 2 forgery: App(f, (mi)i∈I) is constantly equal to some m̃, but m̃ �=

Dec(sk , (f, τ1, · · · , τl), ĉ),
where I is the set of i ∈ {1, . . . , l} such that (τi,mi, ·) ∈ S for some (unique)
mi ∈ M.

We define the unforgeability under chosen-plaintext attack (UF-CPA) of a
HAE Π using the security game UF-CPAΠ,A. In the game, the adversary A
is given the evaluation key ek and the encryption oracle. Finally, A outputs
((f, τ1, · · · , τl), ĉ). The game outputs 1 if it is a successful forgery, and 0 other-
wise.

The advantage of A in the game UF-CPA for the scheme Π is defined as

AdvUF-CPA
Π,A (λ) := Pr[UF-CPAΠ,A(1

λ) = 1] .
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We say that Π satisfies UF-CPA, if AdvUF-CPA
Π,A (λ) is negligible for any legal

PPT adversary A.

Unforgeability under Chosen-Ciphertext Attack. It is also natural to
consider a stronger variant of unforgeability, in which an adversary is allowed
to make decryption queries as well as encryption queries. We call this variant
UF-CCA. The only difference of UF-CCA from UF-CPA is that the adversary A
can also make any decryption query ((f, τ1, · · · , τl), ĉ), which is answered with
Dec(sk , (f, τ1, · · · , τl), ĉ).

The advantage of A in the game UF-CCA for the scheme Π , AdvUF-CCA
Π,A (λ),

is defined similarly. And we say that Π satisfies UF-CCA, if AdvUF-CCA
Π,A (λ) is

negligible for any legal PPT adversary A.

Strong Unforgeability under Chosen-Plaintext Attack. Sometimes it is
useful to consider stronger definition of authenticity. So let us define strong
unforgeability for HAE. Let S be the encryption history. Then we say that a
forgery attempt ((f, τ1, · · · , τl), ĉ) is a strong forgery, if the following holds:

1. It is valid, that is, ⊥ �= Dec(sk , (f, τ1, · · · , τl), ĉ) and,
2. One of the following holds:

– Type 1 strong forgery: Eval(f, (ci)i∈I) is not constant, or,
– Type 2 strong forgery: Eval(f, (ci)i∈I) is constantly equal to some c̃, but
c̃ �= ĉ, where I is the set of i ∈ {1, . . . , l} such that (τi, ·, ci) ∈ S for some
(unique) ci ∈ C.

We define the strong unforgeability under chosen-plaintext attack (SUF-CPA)
of a HAE Π using the game SUF-CPAΠ,A. In the game, the adversary A
is given the evaluation key ek and the encryption oracle. Finally, A outputs
((f, τ1, · · · , τl), ĉ). The game outputs 1 iff it is a successful strong forgery.

The advantage of A in the game SUF-CPA for the schemeΠ ,AdvSUF-CPA
Π,A (λ),

is defined similarly. And we say that Π satisfies SUF-CPA, if AdvSUF-CPA
Π,A (λ) is

negligible for any legal PPT adversary A.

Strong Unforgeability under Chosen-Ciphertext Attack. Also for strong
unforgeability, we consider security against chosen-ciphertext attacks, which we
call SUF-CCA. Again, the only difference of SUF-CCA from SUF-CPA is that
the adversary A is also given the decryption oracle.

The advantage ofA in the game SUF-CCA for the schemeΠ ,AdvSUF-CCA
Π,A (λ),

is defined similarly. And we say that Π satisfies SUF-CCA, if AdvSUF-CCA
Π,A (λ)

is negligible for any legal PPT adversary A.

4.6 Relations on Security Notions

In this section, we investigate relations between the six security notions defined
in the previous section. First, we have trivial implications from CCA security to
CPA security.
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Theorem 1. UF-CCA implies UF-CPA, SUF-CCA implies SUF-CPA, and also
IND-CCA implies IND-CPA.

The following theorem says that the strong unforgeability implies unforgeabil-
ity.

Theorem 2. SUF-CCA implies UF-CCA. And SUF-CPA implies UF-CPA.

Proof. It is enough to show that a successful forgery is also a successful strong
forgery. Let ((f, τ1, · · · , τl), ĉ) be a forgery. If it is a type 1 forgery, then f̃ :=
App(f, (mi)i∈I) is not constant. That is, there exist two tuples (m1

j)j �∈I and

(m2
j)j �∈I such that f̃(m1

j)j �∈I �= f̃(m2
j)j �∈I . Then there exist two tuples (c1j )j �∈I

and (c2j)j �∈I such that m1
j = Dec(sk , Iτj , c

1
j) and m2

j = Dec(sk , Iτj , c
2
j) for each

j �∈ I. Then we can show that ẽ := Eval(f, (ci)i∈I) is nonconstant; since we have
Dec(sk , (f, τ1, . . . , τl), ẽ(c

b
j)j �∈I) = f̃(mb

j)j �∈I for b = 1, 2 by correctness, we see

that ẽ(c1j )j �∈I �= ẽ(c2j )j �∈I . So it is a type 1 strong forgery.

If it is a type 2 forgery but not a type 1 strong forgery, then both f̃ and ẽ are
constants. Let the constant value of f̃ be m̃ ∈ M, and the constant value of ẽ be
c̃ ∈ C. We have m̃ �= Dec(sk , (f, τ1, · · · , τl), ĉ). But m̃ = Dec(sk , (f, τ1, · · · , τl), c̃),
again by correctness. So ĉ �= c̃, and thus it is a type 2 strong forgery.

Bellare et al. [2] showed that, in case of MAC, strong unforgeability implies
strong unforgeability even when the adversary has access to the verification
oracle, and in case of AE, integrity of ciphertexts implies integrity of ciphertexts
even when the adversary has access to the verification oracle. The following can
be considered as a homomorphic analogue to the result.

Theorem 3. SUF-CPA implies SUF-CCA.

The basic intuition of the proof of Theorem 3 is as follows: if a HAE scheme Π
satisfies SUF-CPA, since it is infeasible to produce any strong forgery, essentially
any decryption query ((f, τ1, · · · , τl), ĉ) which should be answered with anything
other than ⊥ must be the output of the Eval algorithm with correct ciphertexts
from encryption queries as inputs. Therefore, even if the decryption oracle is
given to the adversary A, it would not give any useful information. The actual
proof, which will be on the full version of this paper due to the page constraints,
uses a hybrid argument where the decryption queries are in the end handled by
a decryption simulation.

Theorem 4. IND-CPA and SUF-CPA together imply IND-CCA.

Proof of this theorem is similar to that of Theorem 3. Again, we use a hybrid
argument to transform the IND-CCA game into another game that is essentially
same as the IND-CPA game: the strong unforgeability allows us to simulate
decryption oracle. Again, the complete proof will be given in the full version of
this paper.

In conclusion, we see that IND-CPAandSUF-CPA together imply the strongest
security notions, IND-CCA and SUF-CCA.
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4.7 Generic Transformation for Ciphertext Constant Testability

Suppose that Π is a HAE which does not necessarily satisfy CCT. We describe a
generic construction that transforms a HAE Π into another HAE Π ′ satisfying
CCT, while preserving IND-CPA or SUF-CPA. The construction uses a PRF
Fk : {0, 1}λ → {0, 1}λ and a family H of collision-resistant hash functions H :
{0, 1}∗ → {0, 1}λ.

Scheme Π ′ = (Gen′,Enc′,Eval′,Dec′):

– Gen′(1λ): Generate keys (ek , sk) ← Gen(1λ), k ← {0, 1}λ and H ←
H. Return (ek ′, sk ′) where ek ′ = (ek , H) and sk ′ = (sk , k).

– Enc′(sk ′, τ,m): Let h = Fk(τ) and c ← Enc(sk , τ,m). Return c′ =
(h, c).

– Eval′(ek ′, f, c′1, · · · , c′l): Parse c′i = (hi, ci) for i = 1, · · · , l. Let h̃ =

H(h1, · · · , hl) and c̃← Eval(ek , f, c1, · · · , cl). Return c̃′ = (h̃, c̃).
– Dec′(sk ′, (f, τ1, · · · , τl), c̃′): Parse c̃′ = (h̃, c̃). For each i = 1, · · · , l, let
hi = Fk(τi). If h̃ = H(h1, · · · , hl), then return Dec(sk , (f, τ1, · · · , τl), c̃).
Otherwise, return ⊥.

It is clear that Π ′ satisfies correctness properties, as long as Π also does.
We claim that in addition Π ′ satisfies CCT. The constant tester D for Π ′

is simple: given ek ′, (f, τ1, . . . , τl), I, and (c′i)i∈I , the tester D outputs 1 if I =
{1, . . . , l}, and outputs 0 otherwise. Suppose there exists an adversary A with
non-negligible advantage in the game CCT against this tester. Observe that
D errs only when I �= {1, . . . , l} and the function Eval(f, (c′i)i∈I) is constant.
Therefore, we may use A to construct a hash collision finding algorithm B as
follows:B receivesH ← H, and simulates the CCT game. Since B itself generates
(ek , sk) and k, it may answer any queries made by A. Eventually A outputs a
labeled program (f, τ1, . . . , τl). If all τi are used, then B aborts. But there is
a non-negligible probability that I �= {1, . . . , l} and Eval(f, (c′i)i∈I) is constant,
and this means that h̃ = H(h1, . . . , hl) as a function of (hj)j �∈I is also constant.
Therefore, B may output a collision pair with non-negligible probability, because
{1, . . . , l} \ I �= ∅ and B may arbitrarily choose hj �= h′j for j �∈ I.

Also, if Π satisfies IND-CPA then so does Π ′: informally, in the ciphertext
c′ = (h, c) the h-part Fk(τ) has no information about the plaintext m, and any
information about the plaintextm in the c-part Enc(sk , τ,m) is computationally
hidden since Π is IND-CPA.

And, if Π satisfies SUF-CPA, then so does Π ′: since any strong forgery
((f, τ1, . . . , τl), ĉ

′ = (ĥ, ĉ)) of Π ′ has to be valid, it is easy to see that with
negligible exception, all τi are used and Eval(f, (c′i)i∈I) is constant. Then we
may show that in fact ((f, τ1, . . . , τl), ĉ) should be a type 2 strong forgery for Π .

We will provide proofs for all of the above in the full version of this pa-
per. Note that one disadvantage of this transform is that Π ′ does not support
composition of admissible functions; if Π supports boolean circuits, is fully ho-
momorphic, and admissible functions are composable, then, we may want the
same for Π ′. For this, we may adopt the Merkle hash tree construction used by
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Gennaro and Wichs [19] for their fully homomorphic MAC. This hash tree based
transformation will also be given in the full version.

5 Construction

Here we describe our HAE Π and show that it satisfies correctness and CCT.
Parameters ρ, η, γ, d̄ are polynomially bounded functions of the security

parameter λ, and the modulus parameter Q is a function of λ satisfying 2 ≤
Q ≤ 2λ. We assume that all these parameters can be efficiently computed, given
λ. Constraints on these parameters are given after the description of the scheme.

We use a PRF F in our construction. We may assume that Fk : {0, 1}λ → Zq0

for each k ∈ {0, 1}λ. The message space and the ciphertext space of our scheme
is ZQ and Zy0 , resp., and the label space is {0, 1}λ. To represent admissible
functions we use arithmetic circuits, that is, circuits consisting of + gates and
× gates. Such a circuit f of arity l determines a polynomial f : Zl → Z with
integral coefficients. We use such a circuit to compute function values of plaintext
inputs in ZQ, and also to homomorphically evaluate ciphertexts in Zy0 . The
precise description of the admissible function space will be given after the scheme
description, together with discussions on the correctness property.

Scheme Π = (Gen,Enc,Eval,Dec):

– Gen(1λ): Choose p
$← [2η−1, 2η)∩PRIME, q0

$← [0, 2γ/p)∩ROUGH(2λ
2

),
and k ← {0, 1}λ. Let y0 = pq0. Return the key pair (ek , sk), where
ek = (1λ, y0), and sk = (1λ, p, q0, k).

– Enc(sk , τ,m): Given the secret key sk , a label τ ∈ {0, 1}λ and a

plaintext m ∈ ZQ, choose r
$← Z ∩ (−2ρ, 2ρ). Let a = rQ +m and

b = Fk(τ). Return c = CRT(p,q0)(a, b).
– Eval(ek , f, c1, · · · , cl): Given ek , an arithmetic circuit f of arity l and

ciphertexts c1, · · · , cl, return c̃ := f(c1, · · · , cl) mod y0
– Dec(sk , (f, τ1, · · · , τl), ĉ): For i = 1 to l, compute bi ← Fk(τi) and b =
f(b1, · · · , bl) mod q0. Return m = (ĉ mod p) mod Q, if b = ĉ mod q0.
Otherwise, return ⊥.

5.1 Correctness

Here we determine when our HAE scheme is correct. Let (ek , sk) ← Gen(1λ).
Let ci ← Enc(sk , τi,mi) for each i = 1, · · · , l. And let c̃← Eval(ek , f, c1, · · · , cl),
for any arity-l arithmetic circuit f of degree d. Then

c̃ mod p = (f(c1, · · · , cl) mod y0) mod p = f(c1, · · · , cl) mod p

= f(c1 mod p, · · · , cl mod p) mod p

= f(r1Q+m1, · · · , rlQ+ml) mod p

= f(r1Q+m1, · · · , rlQ+ml)
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The last equality in the above holds if | f(r1Q+m1, · · · , rlQ+ml) | ≤ p/2. And
so, in this case,

(c̃ mod p) mod Q = f(r1Q+m1, · · · , rlQ +ml) mod Q

= f(m1, · · · ,ml) mod Q .

Since | f(r1Q+m1, · · · , rlQ+ml) | ≤ ‖f‖1 · 2d(ρ+λ) and 2η−2 ≤ p/2, the cor-
rectness is guaranteed if ‖f‖1 · 2d(ρ+λ) ≤ 2η−2, where ‖f‖1 is the �1-norm of the
coefficient vector of f .

So, we can see that if ‖f‖1 ≤ 2η/2 and η ≥ 2d(ρ + λ) + 4, then the correct
decryption is guaranteed for c̃. Let d̄ be the parameter representing the maximum
degree for our admissible functions. Then, as long as the condition η ≥ 2d̄(ρ +
λ) + 4 is met, we may define an admissible function as an arithmetic circuit f
such that deg f ≤ d̄ and ‖f‖1 ≤ 2η/2 as a polynomial.

5.2 Constraints of the Parameters

In our scheme, the parameters must satisfy the following constraints:

– ρ = ω(lgλ): to resist the brute force attack on the EF-AGCD problem.
– η ≥ 2d̄(ρ+ λ) + 4: for the correctness.
– η ≥ Ω(λ2): to resist the factoring attack using the elliptic curve method

(ECM). In fact, we also want η ≥ λ2 + 1 to make y0 a 2λ
2

-rough integer.
– γ = η2ω(lgλ): to resist known attacks on the EF-AGCD problem as ex-

plained in [17,13].
– 2 ≤ Q ≤ 2λ: to ensure that gcd(Q, y0) = 1.

Assuming d̄ = Θ(λ), one possible choice of parameters which satisfies all of above
is ρ = Θ(λ), η = Θ(λ2), and γ = Θ(λ5).

5.3 Ciphertext Constant Testability

Theorem 5. The scheme Π satisfies CCT.

Proof. Let ek be an evaluation key generated by Gen(1λ), f be any admissible

arity-l arithmetic circuit, and (ci)i∈I be any element in Z
| I |
y0 for a subset I of

{1, · · · , l}.
The constant tester D for our scheme Π determines if ẽ := Eval(f, (ci)i∈I) is

constant or not with overwhelming probability, as follows: given ek , (f, τ1, . . . , τl),
I, and (ci)i∈I , the tester D outputs 1 if I = {1, . . . , l}. Otherwise, it samples two

tuples of ciphertexts (c0j )j /∈I , (c
1
j)j /∈I

$← (Zy0)
l−| I |. Finally, if ẽ(c0j)j /∈I ≡ ẽ(c1j )j /∈I

(mod y0), then D outputs 1, and otherwise D outputs 0.
The tester D is essentially doing the usual polynomial identity testing. In the

scheme Π , ẽ can be considered as an (l − | I |)-variate polynomial over Zy0 of
degree ≤ deg f . We have

ẽ(cj)j �∈I = f((ci)i∈I , (cj)j �∈I) = f(c1, . . . , cl) mod y0 .
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When I = {1, · · · , l}, ẽ is clearly constant and D outputs 1 correctly. In case
I �= {1, · · · , l}, consider the function ẽ′ := ẽ − ẽ(c0j )j /∈I mod y0 for (c0j)j /∈I ∈
(Zy0)

l−| I |. If ẽ is constant, then ẽ′ is constantly zero and ẽ′(c1j)j /∈I = ẽ(c1j)j /∈I −
ẽ(c0j)j /∈I ≡ 0 (mod y0) for any (c1j)j /∈I ∈ (Zy0)

l−| I |. So, ẽ(c0j)j /∈I ≡ ẽ(c1j )j /∈I

(mod y0) and D outputs 1 correctly. If ẽ is not constant, then ẽ′ is not constantly
zero and D outputs the incorrect answer 1 when ẽ(c0j )j /∈I ≡ ẽ(c1j )j /∈I (mod y0),

that is, ẽ′(c1j )j /∈I ≡ 0 (mod y0). This is the only case when D is incorrect. So
the error probability of the tester D is

Pr
[
ẽ′(c1j)j /∈I ≡ 0 mod y0 | (c1j)j /∈I

$← (Zy0)
l−| I |] ,

when ẽ′ is not constantly zero.
Since y0 is chosen as a 2λ

2

-rough random integer, with negligible exception,
y0 is square-free and ẽ′ is not constantly zero modulo a prime factor p′ ≥ 2λ

2

of
y0. Then, using Schwartz-Zippel lemma,

Pr
[
ẽ′(c1j )j /∈I ≡ 0 mod y0 |(c1j )j /∈I

$← (Zy0)
l−| I |]

≤ Pr
[
ẽ′(c1j )j /∈I ≡ 0 mod p′ | (c1j )j /∈I

$← (Zp′)l−| I |]
≤ deg f

p′
≤ d̄

2λ2 = negl(λ) .

Therefore, the error probability of the tester D is negligible.

6 Security

In this section, we prove our HAE scheme satisfies both IND-CPA and SUF-CPA.
From this, we conclude that Π is IND-CCA and SUF-CCA by Theorem 3 and
Theorem 4. For simplicity, we consider the schemeΠ as an ideal scheme obtained
by replacing the PRF F with a real random function from {0, 1}λ into Zq0 . If F
is secure, then the real scheme is secure if the ideal scheme is.

6.1 Privacy

As mentioned earlier, Coron et al. proved the equivalence of the EF-AGCD and
the decisional EF-AGCD in [14]. So, Theorem 6 actually says thatΠ is IND-CPA
under the EF-AGCD assumption.

Theorem 6. The scheme Π is IND-CPA under the decisional
(ρ, η, γ)-EF-AGCD assumption.

Proof. We prove this theorem by a hybrid argument to transform the game
IND-CPA into another game that is infeasible to break.

Let A be a PPT adversary engaging in the game IND-CPA. Without loss of
generality, we assume that A makes exactly q = q(λ) encryption queries. For
each i ∈ {0, . . . , q}, define IND-CPAi to be the game that is equal to IND-CPA



Homomorphic AE Secure against Chosen-Ciphertext Attack 189

except that the first i encryption queries are answered by a sample from the
uniform distribution over the ciphertext space Zy0 .

By definition, IND-CPA0 = IND-CPA. So,

AdvIND-CPA0

Π,A (λ) = AdvIND-CPA
Π,A (λ) ,

And the game IND-CPAq does not reveal any information about the randomly
chosen bit b. So,

AdvIND-CPAq

Π,A (λ) = 0 .

Now consider the difference of each consecutive two games. We want to

show that for each i ∈ {1, . . . , q}, the difference between AdvIND-CPAi−1

Π,A (λ)

and AdvIND-CPAi

Π,A (λ) is not greater than the advantage for the the decisional
(ρ, η, γ)-EF-AGCD problem. For this purpose, we construct a PPT distinguisher
D(1λ, y0,D(p, q0, ρ), z) for the decisional (ρ, η, γ)-EF-AGCD problem as follows:
D starts the simulation of the game IND-CPAi−1

Π,A or IND-CPAi
Π,A giving y0 as

an evaluation key to A. And b
$← {0, 1}. Let (τ,m0,m1) ∈ {0, 1}λ×ZQ ×ZQ be

the j-th encryption query of A. Then D replies A with c := (xQ +mb) mod y0,
where x is chosen as below.

j ≤ i− 1 =⇒ x
$← Zy0 ,

j = i =⇒ x = z ,

j ≥ i+ 1 =⇒ x← D(p, q0, ρ) .

Finally, D returns b′, which is the output of A.
Note that gcd(y0, Q) = 1 since y0 is 2λ

2

-rough and Q ≤ 2λ. Consider the an-

swer c = (xQ+mb) mod y0 produced by D for an encryption query. If x
$← Zy0 ,

then c is also uniformly distributed over y0. And if x ← D(p, q0, ρ), then the
distribution of c is identical to the distribution of Enc(sk , τ,mb). Therefore, if

z
$← Zy0 , then D simulates the game IND-CPAi. And if z ← D(p, q0, ρ), then D

simulates the game IND-CPAi−1. So, the difference between AdvIND-CPAi−1

Π,A (λ)

and AdvIND-CPAi

Π,A (λ) is not greater than the advantage of D for the the
decisional (ρ, η, γ)-EF-AGCD problem, which is negligible by the decisional
(ρ, η, γ)-EF-AGCD assumption. That is,∣∣∣AdvIND-CPAi−1

Π,A (λ) −AdvIND-CPAi

Π,A (λ)
∣∣∣ = negl(λ) ,

for any i ∈ {1, · · · , q}.
Hence,

AdvIND-CPA
Π,A (λ) ≤ AdvIND-CPAq

Π,A (λ) +

q∑
i=1

∣∣∣AdvIND-CPAi−1

Π,A (λ)−AdvIND-CPAi

Π,A (λ)
∣∣∣

≤ 0 + q · negl(λ)
= negl (λ) .

Consequently, AdvIND-CPA
Π,A (λ) is negiligible for any PPT adversary A and Π

is IND-CPA.
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6.2 Authenticity

Theorem 7. If the (ρ, η, γ)-EF-AGCD assumption holds, then the scheme Π is
SUF-CPA.

Proof. Suppose there exists a PPT adversary A for the game SUF-CPA such
that

Pr
[
SUF-CPAΠ,A(1

λ) = 1
]
≥ ε(λ) ,

for some non-negligible function ε > 0.
Then, we construct a PPT solver B(1λ, y0,D(p, q0, ρ)) for the

(ρ, η, γ)-EF-AGCD problem as follows: B starts the simulation of the game
SUF-CPAΠ,A giving y0 as an evaluation key to A. For an encryption query
(τ,m) ∈ {0, 1}λ × ZQ of A, B replies A with c := (xQ + m) mod y0, where
x← D(p, q0, ρ). Eventually, A outputs a forgery attempt ((f, τ1, · · · , τl), ĉ). Let
I be the set of i ∈ {1, . . . , l} where τi is used, and for each i = 1, . . . , l, choose

ci
$← Zy0 if i �∈ I, and let ci be the unique ciphertext returned by the encryption

query involving τi if i ∈ I. Now B computes c̃ = f(c1, · · · , cl) mod y0, and
outputs y0/ gcd(y0, c̃− ĉ).

For the similar reason as in Theorem 6, the simulation of the encryption oracle
by B is exact.

Consider the forgery attempt ((f, τ1, · · · , τl), ĉ) made by A. If it is a type 1
strong forgery, then ẽ := Eval(f, (ci)i∈I) is not constant. Since y0 is chosen as a

2λ
2

-rough random integer, with negligible exception, y0 is square-free and ẽ is
not constantly ĉ modulo a prime factor p′ ≥ 2λ

2

of y0. So, using Schwartz-Zippel
lemma,

Pr
[
ẽ(cj)j �∈I ≡ ĉ mod y0 |(cj)j /∈I

$← (Zy0)
l−| I |]

≤ Pr
[
ẽ(cj)j /∈I ≡ ĉ mod p′ | (cj)j /∈I

$← (Zp′)l−| I |]
≤ deg f

p′
≤ d̄

2λ2 = negl(λ) .

This means that c̃ = ẽ(cj)j �∈I �≡ ĉ mod y0 with overwhelming probability. If
((f, τ1, · · · , τl), ĉ) is a type 2 strong forgery, then again we have ẽ(cj)j �∈I = c̃ �≡
ĉ mod y0.

Hence in both cases, we have c̃ �≡ ĉ mod y0, but also c̃ ≡ ĉ mod q0, since
any strong forgery is valid. Therefore, gcd(y0, ĉ − c̃) = q0 and the output of
B is exactly p with overwhelming probability if the forgery attempt of A is a
successful strong forgery. Since A succeeds with non-negligible probability, B
outputs the correct answer p with non-negligible probability.
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Abstract. In this paper we introduce new primitives to authenticate
computation on data expressed as elements in (cryptographic) groups.
As for the case of homomorphic authenticators, our primitives allow to
verify the correctness of the computation without having to know of the
original data set. More precisely, our contributions are two-fold.

First, we introduce the notion of linearly homomorphic authenticated
encryption with public verifiability and show how to instantiate this prim-
itive (in the random oracle model) to support Paillier’s ciphertexts. This
immediately yields a very simple and efficient (publicly) verifiable com-
putation mechanism for encrypted (outsourced) data based on Paillier’s
cryptosystem.

As a second result, we show how to construct linearly homomorphic
signature schemes to sign elements in bilinear groups (LHSG for short).
Such type of signatures are very similar to (linearly homomorphic) struc-
ture preserving ones, but they allow for more flexibility, as the signature
is explicitly allowed to contain components which are not group ele-
ments. In this sense our contributions are as follows. First we show a
very simple construction of LHSG that is secure against weak random
message attack (RMA). Next we give evidence that RMA secure LHSG
are interesting on their own right by showing applications in the con-
text of on-line/off-line homomorphic and network coding signatures. This
notably provides what seems to be the first instantiations of homomor-
phic signatures achieving on-line/off-line efficiency trade-offs. Finally, we
present a generic transform that converts RMA-secure LHSG into ones
that achieve full security guarantees.

1 Introduction

Homomorphic signatures allow to validate computation over authenticated data.
More precisely, a signer holding a dataset {mi}i=1,...,t can produce corresponding
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signatures σi = Sign(sk,mi) and store the signed dataset on a remote server.
Later the server can (publicly) compute m = f(m1, . . . ,mt) together with a
(succinct) valid signature σ on it. A keynote feature of homomorphic signature
is that the validity of σ can be verified without needing to know the original
messages m1, . . . ,mt. Because of this flexibility homomorphic signatures have
been investigated in several settings and flavors. Examples include homomorphic
signatures for linear and polynomial functions [9,8], redactable signatures [26],
transitive signatures and more [32,36]. In spite of this popularity, very few real-
izations of the primitive encompass the very natural case where the computation
one wants to authenticate involves elements belonging to typical cryptographic
groups (such as, for instance, groups of points over certain classes of elliptic
curves, or groups of residues modulo a composite integer).

Our Contribution. In this paper we put forward new tools that allow to au-
thenticate computation on elements in (cryptographic) groups. In this sense our
contributions are two-fold. First, we define a new primitive that we call Linearly
Homomorphic Authenticated Encryption with Public Verifiability (LAEPuV for
short). Informally, this primitive allows to authenticate computation on (out-
sourced) encrypted data, with the additional benefit that the correctness of the
computation can be publicly verified. The natural application of this primitive is
the increasingly relevant scenario where a user wants to store (encrypted) data
on the cloud in a way such that she can later delegate the cloud to perform com-
putation on this data. As a motivating example, imagine that a teacher wants
to use the cloud to store the grades of the homeworks of her students. To do
so she can create a file identifier fid for each class (e.g. Cryptography - Spring
2014), sign each record tied with the corresponding fid and store everything of-
fline. There are two problems with this solution. First, if the teacher wants to
compute statistics (e.g. average grades) on these records she has to download
all the data locally. Second, since data is stored in clear, outsourcing it offline
might violate the privacy of students. LAEPuV solves both these issues, as it
allows to delegate (basic) computations (i.e. linear functions) on encrypted data
in a reliable and efficient way. In particular, it allows to verify the correctness
of the computation without needing to download the original ciphertexts locally.
Moreover, as for the case of homomorphic signatures, correctness of the compu-
tation can be publicly verified via a succinct tag whose size is independent of the
size of the outsourced dataset.

We show an (efficient) realization of the primitive (in the random oracle
model) supporting Paillier’s ciphertexts. At an intuitive level our construction
works by combining Paillier’s encryption scheme with some appropriate addi-
tively homomorphic signature scheme. Slightly more in detail, the idea is as
follows. One first decrypts a “masking” of the ciphertext C and then signs the
masked plaintext using the linearly homomorphic signature. Thus we use the ho-
momorphic signature to authenticate computations on ciphertexts by basically
authenticating (similar) computations on the masked plaintexts. The additional
advantage of this approach is that it allows to authenticate computation on Pail-
lier’s ciphertexts while preserving the possibility to re-randomize the ciphertexts.
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This means, in particular, that our scheme allows to authenticate computation
also on randomized versions of the original ciphertexts1.

This result allows to implement a very simple and efficient (publicly) verifi-
able computation mechanism for encrypted (outsourced) data based on Paillier’s
cryptosystem [34]. Previous (efficient) solutions for this problem rely on linearly
homomorphic structure preserving signatures (LHSPS, for short) [30] and, as
such, only supported cryptosystems defined over pairing-friendly groups. Since,
no (linearly homomorphic) encryption scheme supporting exponentially large
message spaces is known to exist in such groups, our construction appears to be
the first one achieving this level of flexibility.

Beyond this efficiency gain, we stress that our approach departs from the
LHSPS-based one also from a methodological point of view. Indeed, the latter
authenticates computation by signing outsourced ciphertexts, whereas we sign
(masked versions of) the corresponding plaintexts. This is essentially what buy
us the possibility of relying on basic linearly homomorphic signatures, rather
than on, seemingly more complicate, structure preserving ones. On the negative
side, our solutions require the random oracle, whereas the only known LHSPS-
based construction works in the standard model.

As additional byproduct of this gained flexibility, we show how to generalize
our results to encompass larger classes of encryption primitives. In particular, we
show that our techniques can be adapted to work using any encryption scheme,
with some well defined homomorphic properties, as underlying encryption prim-
itive. Interestingly, this includes many well known linearly homomorphic encryp-
tion schemes such as [25,33,29].

Signing Elements in Bilinear Groups. As a second main contribution of
this paper, we show how to construct a very simple linearly homomorphic sig-
nature scheme to sign elements in bilinear groups (LHSG for short). Such type
of signatures are very similar to (linearly homomorphic) structure preserving
ones, but they allow for more flexibility, as the signature is explicitly allowed to
contain components which are not group elements (and thus signatures are not
necessarily required to comply with the Groth-Sahai famework). More in detail,
our scheme is proven secure against random message attack (RMA)2 under a
variant of the Computational Diffie-Hellman assumption introduced by Kunz-
Jacques and Pointcheval in [28]. In this sense, our construction is less general
(but also conceptually simpler) than the linearly homomorphic structure pre-
serving signature recently given in [30]. Also, the scheme from [30] allows to sign
vectors of arbitrary dimension, while ours supports vectors composed by one
single component only.

1 We stress however that this does not buy us privacy with respect to the functionality,
i.e. the derived (authenticated) ciphertexts are not necessarily indistinguishable from
freshly generated (authenticated) ones.

2 Specifically, by random message security here we mean that the unforgeability guar-
antee holds only with respect to adversaries that are allowed to see signatures cor-
responding to messages randomly chosen by the signer.
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Interestingly, we show that this simple tool has useful applications in the con-
text of on-line/off-line (homomorphic) signatures. Very informally, on-line/off-
line signatures allow to split the cost of signing in two phases. An (expensive)
offline phase that can be carried out without needing to know the message m
to be signed and a much more efficient on-line phase that is done once m be-
comes available. In this sense, on-line/off-line homomorphic signature could bring
similar efficiency benefits to protocols relying on homomorphic signatures. For
instance, they could be used to improve the overall efficiency of linear network
coding routing mechanisms employing homomorphic signatures to fight pollution
attacks3.

We show that RMA-secure LHSG naturally fit this more demanding on-
line/off-line scenario. Specifically, we prove that if one combines a RMA-secure
LHSG with (vector)Σ protocols with some specific homomorphic properties, one
gets a fully fledged linearly homomorphic signature achieving a very efficient on-
line phase. Moreover, since the resulting signature scheme supports vectors of
arbitrary dimensions as underlying message space, our results readily generalize
to the case of network coding signatures [7]. More concretely, by combining our
RMA-secure scheme together with (a variant of) Schnorr’s identification proto-
col we get what seem to be the first constructions of secure homomorphic and
network coding signatures offering online/offline efficiency tradeoffs both for the
message and the file identifier.

To complete the picture, we provide an efficient and generic methodology to
convert RMA-secure LHSG into ones that achieve full security We stress that
while similar transforms were known for structure preserving signatures (e.g.
[17]), to our knowledge this is the first such transform for the case of linearly
homomorphic signatures in general.

Other Related Work. Authenticated Encryption (AE) allows to simultane-
ously achieve privacy and authentication. In fact AE is considered to be the
standard for symmetric encryption, and many useful applications are based on
this primitive. Formal definitions for (basic) AE where provided by Bellare and
Namprempre in [6]. More closely related to our setting is the notion of homomor-
phic authenticated encryption recently proposed by Joo and Yun in [27]. With
respect to ours, their definitions encompass a wider class of functionalities, but
do not consider public verifiability.

Computationally Sound proofs. In the random oracle model, the problem
of computing reliably on (outsourced) encrypted data can be solved in principle
using Computationally Sound (CS) proofs [31]. The advantage of this solution,
with respect to ours, is that it supports arbitrary functionalities. On the other
hand, it is much less efficient as it requires the full machinery of the PCP theo-
rem. Moreover, composition in CS proofs is quite complicate to achieve, whereas

3 This is because the sender could preprocess many off-line computations at night or
when the network traffic is low and then use the efficient online signing procedure
to perform better when the traffic is high.
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it comes for free in our solution, as the outputs of previous computations can
always be used as inputs for new ones.

Linearly homomorphic signatures. The concept of homomorphic signature
scheme was originally introduced in 1992 by Desmedt [18], and then refined by
Johnson, Molnar, Song, Wagner in 2002 [26]. Linearly homomorphic signatures
were introduced in 2009 by Boneh et al. [7] as a way to prevent pollution at-
tacks in network coding. Following [7] many other works further explored the
notion of homomorphic signatures by proposing new frameworks and realizations
[23,3,9,8,14,4,15,21,5,13,16]. In the symmetric setting constructions of homomor-
phic message authentication codes have been proposed by [7,24,11,12].

Recently Libert et al. [30] introduced and realized the notion of Linearly Ho-
momorphic Structure Preserving signatures (LHSPS for short). Informally LH-
SPS are like ordinary SPS but they come equipped with a linearly homomorphic
property that makes them interesting even beyond their usage within the Groth
Sahai framework. In particular Libert et al. showed that LHSPS can be used
to enable simple verifiable computation mechanisms on encrypted data. More
surprisingly, they observed that linearly homomorphic SPS (generically) yield
efficient simulation sound trapdoor commitment schemes [22], which in turn
imply non malleable trapdoor commitments [19] to group elements.

On-Line/Off-Line Signatures. On-Line/Off-Line digital signature were in-
troduced by Even, Goldreich and Micali in [20]. In such schemes the signature
process consists of two parts: a computationally intensive one that can be done
Off-Line (i.e. when the message to be signed is not known) and a much more
efficient online phase that is done once the message becomes available. There
are two general ways to construct on-line/off-line signatures: using one time
signatures [20] or using chameleon hash [35].

In [10] Catalano et al., unified the two approaches by showing that they can
be seen as different instantiations of the same paradigm.

2 Preliminaries and Notation

We denote with Z the set of integers, with Zp the set of integers modulo p. An
algorithm A is said to be PPT if it’s modelled as a probabilistic Turing machine

that runs in polynomial time in its inputs. If S is a set, then x
$← S denotes the

process of selecting one element x from S uniformly at random. A function f
is said to be negligible if for all polynomial p there exists n0 ∈ N such that for
each n > n0, |f(n)| < 1

p(n) .

Computational Assumptions. We start by recalling a couple of relevant com-
putational assumptions. Let G be a finite (multiplicative) group of prime order
p. The 2-out-of-3 Computational Diffie-Hellman assumption was introduced by
Kunz-Jacques and Pointcheval in [28] as a relaxation of the standard CDH as-
sumption. It is defined as follows.
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Definition 1 (2-3CDH). We say that the 2-out-of-3 Computational Diffie-
Hellmann assumption holds in G if, given a random generator g ∈ G, there exists

no PPT A that on input (g, ga, gb) (for random a, b
$← Zp) outputs h, h

ab (h �= 1)
with more than negligible probability.

Also, we recall the Decisional Composite Residuosity Assumption, introduced
by Paillier in [34].

Definition 2 (DCRA). We say that the Decisional composite residuosity as-
sumption (DCRA) holds if there exists no PPT A that can distinguish between
a random element from Z∗

N2 and one from the set {zN |z ∈ Z∗
N2} (i.e. the set of

the N -th residues modulo N2), when N is the product of two random primes of
proper size.

3 (Publicly) Verifiable Delegation of Computation on
Outsourced Ciphertext

In this section, we introduce a new primitive that we call Linearly Homomorphic
Authenticated Encryption with Public Verifiability (LAEPuV). Informally, this
notion is inspired by the concept of homomorphic authenticated encryption,
introduced by Joo and Yun [27]. Important differences are that our definition4

focuses on linear functions and explicitly requires public verifiability.
Next, we provide an instantiation of this primitive supporting Paillier’s scheme

as the underlying encryption mechanism.
Additionally, in this and the following sections, we adopt the following con-

ventions

– The set F of supported functionalities, is the set of linear combinations of
elements of the group. Thus each function f ∈ F can be uniquely expressed
as f(m1, . . . ,mk) =

∏k
i=1m

αi

i , and therefore can be identified by a proper
vector (α1, . . . , αk) ∈ Zk.

– We identify each dataset by a string fid ∈ {0, 1}∗, and use an additional
argument i ∈ {1, . . . , n} for the signing/encryption algorithm to specify that
the signed/encrypted message can be used only as the i-th argument for each
function f ∈ F .

Definition 3 (LAEPuV). A LAEPuV scheme is a tuple of 5 PPT algorithms
(AKeyGen, AEncrypt, ADecrypt, AVerify, AEval) such that:

– AKeyGen(1λ, k) takes as input the security parameter λ, and an upper
bound k for the number of messages encrypted in each dataset. It outputs a
secret key sk and a public key vk (used for function evaluation and verifica-
tion); the public key implicitly defines a message space M which is also a
group, a file identifier space D and a ciphertext space C.

4 For lack of space the formal definition is provided in the full version of this paper.
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– AEncrypt(sk, fid, i,m) is a probabilistic algorithm which takes as input the
secret key, an elementm ∈ M, a dataset identifier fid, an index i ∈ {1, . . . , k}
and outputs a ciphertext c.

– AVerify(vk, fid, c, f) takes as input the public key vk, a ciphertext c ∈ C, an
identifier fid ∈ D and f ∈ F . It return 1 (accepts) or 0 (rejects).

– ADecrypt(sk, fid, c, f) takes as input the secret key sk, a ciphertext c ∈ C,
an identifier fid ∈ D and f ∈ F and outputs m ∈ M or ⊥ (if c is not
considered valid).

– AEval(vk, f, fid, {ci}i=1...k) takes as input the public key vk, an admissible
function f in its vector form (α1, . . . , αk), an identifier fid, a set of k ci-
phertexts {ci}i=1...k and outputs a ciphertext c ∈ C. Note that this algorithm
should also work if less than k ciphertexts are provided, as long as their re-
spective coefficients in the function f are 0, but we don’t explicitly account
this to avoid heavy notation.

The correctness conditions are the following:

– For any (sk, vk) ← AKeyGen(1λ, k) honestly generated keypair, any m ∈
M, any dataset identifier fid and any i ∈ {1, . . . , k}, with overwhelming
probability

ADecrypt(sk, fid,AEncrypt(sk, fid, i,m), ei) = m

where ei is the i-th vector of the standard basis of Zk.
– For any (sk, vk) ← AKeyGen(1λ, k) honestly generated keypair, any c ∈ C

AVerify(vk, fid, c, f) = 1 ⇐⇒ ∃m ∈ M : ADecrypt(sk, fid, c, f) = m

– Let (sk, vk) ← AKeyGen(1λ, k) be an honestly generated keypair, fid any
dataset identifier, c1, . . . , ck ∈ C any tuple of ciphertexts such that mi =
ADecrypt(sk, fid, ci, fi). Then, for any admissible function f = (α1, . . . , αk)
∈ Zk, with overwhelming probability

ADecrypt(sk, fid,AEval(vk, f, fid, {ci}i=1...k),

k∑
i=0

αifi) = f(m1, . . . ,mk)

Security definitions for LAEPuV are easy to derive, so, for lack of space, are
omitted. We refer the reader to the full version of this paper.

3.1 An Instantiation Supporting Paillier’s Encryption

Let (HKeyGen,HSign,HVerify,HEval) be a secure5 linearly homomorphic
signature scheme whose message space is ZN (where N is the product of two
distinct (safe) primes). Moreover, let H be a family of collision resistant hash
functions (whose images can be interpreted as elements of Z∗

N2). Then we can
construct a LAEPuV scheme as follows.
5 Again, for lack of space, security definition for linearly homomorphic signatures is
provided in the full version of the paper.
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AKeyGen(1λ, k): Choose two primes p, q of size λ/2, set N ← pq and choose
a random element g ∈ Z∗

N2 of order N . Run6 HKeyGen(1λ, k,N) to obtain
a signing key sk′ and a verification key vk′. Pick a hash function H ← H.
Return vk ← (vk′, g,N,H) as the public verification key and sk = (sk′, p, q)
as the secret signing key.

AEncrypt(sk,m, fid, i): Choose random β ← Z∗
N2 , compute C ← gmβN

mod N2. Set R ← H(fid||i), and use the factorization of N to com-
pute (a, b) ∈ ZN × Z∗

N such that gabN = RC mod N2. Compute σ ←
HSign(sk′, fid, i, a) and return c = (C, a, b, σ).

AVerify(vk, fid, c, f): Parse c = (C, a, b, σ) and vk ← (vk′, g,N,H), then check
that:

HVerify(vk′, fid, a, f, σ) = 1

gabN = C

k∏
i=1

H(fid||i)fi mod N2

If both the above equations hold output 1, else output 0.
ADecrypt(sk, fid, c, f): If AVerify(vk, fid, c, f) = 0, return ⊥. Otherwise, use

the factorization of N to compute (m,β) such that gmβN = C mod N2 and
return m.

AEval(vk, α, fid, c1, . . . , ck): Parse α = (α1, . . . , αk) and ci = (Ci, ai, bi, σi), set

C ←
k∏

i=i

Cαi

i mod N2, a←
k∑

i=i

aiαi mod N,

b←
k∏

i=i

bαi

i mod N2, σ ← HEval(vk′, fid, f, {σi}i=1,...,k)

and return c = (C, a, b, σ).

Remark 1. (Supporting Datasets of Arbitrary Size). In the construction
above the number k of ciphertexts supported by each dataset needs to be fixed
once and for all at setup time. This might be annoying in practical scenar-
ios where more flexibility is preferable. We remark, that in the random oracle
model, the scheme can be straightforwardly modified in order to remove this
limitation. The idea would be to use the random oracle also in the underlying
(homomorphic) signature scheme (see the full version of this paper for details)
More precisely, rather than publishing the hi as part of the public key, one com-
putes different hi’s on the fly for each dataset by setting hi = H ′(fid, i)(where
H ′ is some appropriate random oracle). Slightly more in detail, the elements from
dataset fid are then authenticated by replacing the hi with hfid,i = H ′(fid, i).

6 Notice that the signature scheme must support ZN as underlying message space. This
is why we give N to the HKeyGen algorithm as additional parameter. Note that,
this means that, in general, the signature algorithm cannot not use the factorization
of N as part of its private key.
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Using this simple trick brings the additional benefit that the public key can be
reduced to constant size.

The security of the scheme is provided by the following theorems (whose proofs
appear in the full version).

Theorem 1. Assuming that the DCRA holds, if (HKeyGen,HSign,HVerify,
HEval) is a secure linearly homomorphic signature scheme for messages in ZN

and H is a random oracle, the scheme described above is LH-IND-CCA secure.

Theorem 2. If Σ = (HKeyGen,HSign,HVerify,HEval) is a secure lin-
early homomorphic signature scheme for messages in ZN then the scheme de-
scribed above is LH-Uf-CCA secure.

Remark 2. (Instantiating the underlying signature scheme). As a con-
crete instantiation of the linearly homomorphic signature scheme (HKeyGen,
HSign,HVerify, HEval),one can use use a simple variant of the (Strong) RSA
based scheme from [15] adapted to use ZN as underlying message space, see the
full version for details.

3.2 A General Result

In this section we show how to generalize our results to support arbitrary en-
cryption schemes satisfying some well defined homomorphic properties.

In such schemes, the message, randomness and ciphertext spaces are assumed
to be finite groups, respectively denoted with M,R, C (the key spaces are treated
implicitly). To adhere with the notation used in the previous section, we will de-
note the operation overM additively and the ones overR and C multiplicatively.
We assume T to be an IND-CPA secure public key encryption scheme satisfying
the following additional properties:

– We require the group operation and the inverse of an element to be efficiently
computable over all groups, as well as efficient sampling of random elements.
The integer linear combinations are thus defined and computed by repeatedly
applying these operations.

– For any m1,m2 ∈ M, r1, r2 ∈ R, any valid public key pk it holds

Encpk(m1, r1) · Encpk(m2, r2) = Encpk(m1 +m2, r1 · r2)

– For any honest key pair (pk, sk) and any c ∈ C there exists m ∈ M and
r ∈ R such that Encpk(m, r) = c (i.e. the encryption function is surjective
over the group C). Moreover, we assume that such m and r are efficiently
computable given the secret key.

Now, let (HKeyGen,HSign,HVerify,HEval) be a secure linearly homo-
morphic signature scheme for elements in M, let H be a family of collision
resistant hash functions HK : {0, 1}∗ → C and let T = {Gen,Enc,Dec} be an
encryption scheme as above.

We construct a LAEPuV scheme as follows:
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AKeyGen(1λ, k): Run HKeyGen(1λ, k) to obtain a signing key sk′ and a
verification key vk′ and Gen(1λ) to obtain a public key pk and a secret key
sk. Pick a hash function H ← H. Return vk ← (vk′, pk, H) as the public
verification key and sk = (sk′, sk) as the secret key.

AEncrypt(sk,m, fid, i): Choose random r ← R, compute C ← Encpk(m, r)
and compute, using the secret key sk, m and r such that Encpk(m, r) =
H(fid||i). Compute σ ← HSign(sk′, fid, i,m +m) and return c = (C,m +
m, r · r, σ).

AVerify(vk, fid, c, f): Parse c = (C, a, b, σ) and vk ← (vk′, pk), then check that:

HVerify(vk′, fid, a, f, σ) = 1

Encpk(a, b) = C

k∏
i=1

H(fid||i)fi

If both the above equations hold output 1, else output 0.
ADecrypt(sk, fid, c, f): Parse c = (C, a, b, σ). If AVerify(vk, fid, c, f) = 0,

return ⊥. Otherwise, use the secret key sk to compute m← Decsk(C)
AEval(vk, α, fid, c1, . . . , ck): Parse α = (α1, . . . , αk) and ci = (Ci, ai, bi, σi), set

C ←
k∏

i=i

Cαi

i , a←
k∑

i=i

aiαi,

b←
k∏

i=i

bαi

i , σ ← HEval(vk′, fid, f, {σi}i=1,...,k)

and return c = (C, a, b, σ).

Theorem 3. Assuming T is an is IND-CPA secure public key encryption
scheme satisfying the conditions detailed above, (HKeyGen, HSign, HVerify,
HEval) is a secure linearly homomorphic signature scheme supporting M as
underlying message space and H is a random oracle, then the scheme described
above has indistinguishable encryptions.

Theorem 4. If Σ = (HKeyGen,HSign,HVerify,HEval) is a secure lin-
early homomorphic signature scheme for messages in M then the scheme de-
scribed above is unforgeable.

Proofs of theorems 3 and 4 are almost identical to the (corresponding) proofs of
theorems 1 and 2 and are thus omitted.

4 Linearly Homomorphic Signature Scheme to Sign
Elements in Bilinear Groups

Here we introduce the notion of linearly homomorphic signature scheme to sign
elements in bilinear groups. This essentially adapts the definition from [21] to
support a bilinear group as underlying message space. The formal definition is
given in the full version of the paper.



Authenticating Computation on Groups 203

4.1 A Random Message Secure Construction

Let G, GT be groups of prime order p such that e : G×G→ GT is a bilinear map
and S = (KeyGen,Sign,Verify) a standard signature with message space M.
The scheme works as follows:

HKeyGen(1λ, 1, k): Choose a random generator g ∈ G and run KeyGen(1λ)

to obtain a signing key sk1 and a verification key vk1. Pick random w
$← Zp

and set W ← gw. Select random group elements h1, . . . , hk,
$← G.

Set vk ← (vk1, g,W, h1, . . . , hk) as the public verification key and sk =
(sk1, w) as the secret signing key.

HSign(sk,m, fid, i): This algorithm stores a list L of all previously returned
dataset identifiers fid (together with the related secret information r and
public information σ, τ defined below) and works as follows

If fid �∈ L, then choose r
$← Zp, set σ ← gr , τ ← Sign(sk, fid, σ)

else if fid ∈ L, then retrieve the associated r, σ, τ from memory.
Then set M ← mw, V ← (hiM)r (if a signature for the same fid and the
same index i was already issued, then abort). Finally output π ← (σ, τ, V,M)
as a signature for m w.r.t. the function ei (where ei is the i-th vector of the
canonical basis of Zn).

HVerify(vk, π,m, fid, f): Parse the signature π as (σ, τ, V,M) and f as
(f1, . . . , fk). Then check that:

Verify(vk, τ, (fid, σ)) = 1 e(M,g) = e(m,W ) e(V, g) = e(
k∏

i=1

hfi
i M,σ)

If all the above equations hold output 1, else output 0.
HEval (vk, α, π1, . . . , πk): Parse α as (α1, . . . , αk) and πi as (σi, τi, Vi,Mi),

∀i = 1, . . . , k. Then, compute V ←
∏k

i=1 V
αi

i , M ←
∏k

i=1M
αi

i and output
π = (σ1, τ1, V,M) (or ⊥ if the σi are not all equal).

The security of the scheme follows from the following theorem (whose proof
is deferred to the full version of this paper).

Theorem 5. If the 2-3CDH assumption holds and S is a signature scheme un-
forgeable under adaptive chosen message attack then the scheme described above
is a LHSG scheme secure against a random message attack .

Remark 3. If the application considered allows the fid to be a group element and
not simply a string, we can replace the signature S with a Structure preserving
Signature satisfying the same hypothesis of theorem 5. This allows to obtain the
first example of a linearly homomorphic structure preserving signature scheme
(LHSPS) where all parts of the signature are actually elements of the group.
This is in contrast with the construction from [30], where the fid is inherently
used as a bit string. In addition, if the identifier can be chosen at random by the
signer and not by the adversary, we can even define σ to be the identifier itself
and thus further improve efficiency. In practical instantiation it’s possible to use
the SPS of [1].
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5 Applications to On-Line/Off-Line Homomorphic
Signatures

In this section, we show a general construction to build (efficient) on-line/off-line
homomorphic (and network coding) signature schemes by combining a LHSG
unforgeable against a random message attack (like the one described in section
4.1) with a certain class of sigma protocols. The intuitive idea is that in order
to sign a certain message m, one can choose a Σ-Protocol whose challenge space
contains m, then sign the first message of the Σ-Protocol with a standard signa-
ture (this can be done off-line) and use knowledge of the witness of the protocol
to later compute the response (third message) of the protocol associated to the
challenge m. This is secure because, if an adversary could produce a second sig-
nature with respect to the same first message, by the special soundness of the
Σ-Protocol, he would be able to recover the witness itself. We show how, if both
the signature scheme and the Σ-Protocol have specific homomorphic properties,
this construction can be extended to build (linearly) homomorphic signatures as
well.

Informally the properties we require from the underlying sigma protocol are:
(1) it is linearly homomorphic, (2) its challenge space can be seen as a vector
space and (3) the third message of the protocol can be computed in a very
efficient way (as it is used in the online phase of the resulting scheme). In what
follows, we first adapt the definition of linearly homomorphic signature (LHSG)
to the On-line/Off-line case. Then, we formally define the properties required by
the sigma protocol, and we describe (and prove secure) our construction.

Linearly Homomorphic On-Line/Off-Line Signatures. First, we remark
that the only difference between a LHSG and a LHOOS is in the signing algo-
rithm. When signing m the latter can use some data prepared in advance (by
running a dedicated algorithm OffSign) to speed up the signature process. The
definitions of unforgeability are therefore analogous to the ones of traditional
LHSG schemes and are omitted to avoid repetition7.

Definition 4 (LHOOS). A Linearly Homomorphic On-line/Off-line signature
scheme is a tuple of PPT algorithms (KeyGen, OffSign, OnSign, Verify,
Eval) such that:

– KeyGen(1λ, n, k) takes as input the security parameter λ, an integer n de-
noting the length of vectors to be signed and an upper bound k for the number
of messages signed in each dataset. It outputs a secret signing key sk and a
public verification key vk; the public key implicitly defines a message space
that can be seen as a vector space of the form M = Fn (where F is a field),
a file identifier space D and a signature space Σ.

7 We stress, however, that those definitions are stronger than the ones traditionally
introduced for network coding (i.e. the adversary is more powerful and there are
more types of forgeries), and therefore our efficient instantiation perfectly integrates
in that framework.
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– OffSign(sk) takes as input the secret key and outputs some information I.
– OnSign(sk, fid, I,m, i) takes as input the secret key, an element m ∈ M,

an index i ∈ {1, . . . , k}, a dataset identifier fid and an instance of I output
by OffSign. This algorithm must ensure that all the signatures issued for
the same fid are computed using the same information I (i.e. by associating
each fid with one specific I and storing these couples on a table). It outputs
a signature σ.

– Verify (vk, σ,m, fid, f) takes as input the public key vk, a signature σ ∈ Σ,
a message m ∈ M, a dataset identifier fid ∈ D and a function f ∈ Zk; it
outputs 1 (accept) or 0 (reject).

– Eval(vk, fid, f, {σi}i=1...k) takes as input the public key vk, a dataset iden-
tifier fid, an admissible function f in its vector form (α1, . . . , αk), a set of
k signatures {σi}i=1...k and outputs a signature σ ∈ Σ. Note that this al-
gorithm should also work if less than k signatures are provided, as long as
their respective coefficients in the function f are 0, but we don’t to explicitly
account this to avoid heavy notation.

The correctness conditions of our scheme are the following:

– Let (sk, vk) ← KeyGen(1λ, n, k) be an honestly generated keypair,m ∈ M,
fid any dataset identifier and i ∈ 1, . . . , k. If σ ← Sign(sk, fid,OffSign(sk),
m, i), then with overwhelming probability

Verify(vk, σ,m, fid, ei) = 1,

where ei is the i
th vector of the standard basis of Zk.

– Let (sk, vk) ← KeyGen(1λ, n, k) be an honestly generated keypair,m1, . . . ,
mk ∈ M any tuple of messages signed (or derived from messages origi-
nally signed) w.r.t the same fid (and therefore using the same offline in-
formation I), and let σ1, . . . , σk ∈ Σ, f1, . . . , fk ∈ F such that for all
i ∈ {1, . . . , k}, Verify(vk, σi,mi, fid, fi) = 1. Then, for any admissible func-
tion f = (α1, . . . , αk) ∈ Zk, with overwhelming probability

Verify(vk,Eval(vk, fid, f, {σi}i=1...k), f(m1, . . . ,mk), fid,

k∑
i=0

αifi) = 1

Vector and Homomorphic Σ-Protocols. Informally, a Σ-Protocol can be
described as a tuple of four algorithms (Σ-Setup,Σ-Com, Σ-Resp, Σ-Verify),
where the first one generates a statement/witness couple, Σ-Com and Σ-Resp
generate the first and third message of the protocol, and Σ-Verify is used by
the verifier to decide on the validity of the proof (a more formal and detailed
description is given in the full version of this paper). This notion can be extended
to the vector case8. For this purpose we adapt the notion of Homomorphic Iden-
tification Protocol originally introduced in [2] to the Sigma protocol framework.

8 The intuition is that it should be more efficient to run a vector Σ-Protocol once
than a standard Σ-Protocol multiple times in parallel).
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Given a language L and an integer n ∈ N, we can consider the language
Ln = {(x1, . . . , xn) | xi ∈ L ∀i = 1, . . . , n}. A natural witness for a tuple
(vector) in this language is the tuple of the witnesses of each of its components
for the language L. As before we can consider the relation Rn associated to
Ln, where (x,w) = (x1, . . . , xn, w1, . . . , wn) ∈ Rn if (x1, . . . , xn) is part of Ln

and wi is a witness for xi. A vector Σ-Protocol for Rn is a three round protocol
defined similarly as above with the relaxation that the special soundness property
is required to hold in a weaker form. Namely, we require the existence of an
efficient extractor algorithm Σn-Ext such that ∀x ∈ Ln, ∀ R, c, s, c′, s′ such
that (c, s) �= (c′, s′), Σn-Verify(x, R, c, s) = 1 and Σn-Verify(x, R, c′, s′) = 1,
outputs (x,w) ← Σn-Ext(x, R, c, s, c′, s′) where x is one of the components of
x and (x,w) ∈ R.

Another important requirement for our construction to work is the following
property.

Definition 5. A Σ-Protocol Σ = (Σ-Setup,Σ-Com,Σ-Resp,Σ-Verify) for
a relation R is called group homomorphic if

– The outputs of the Σ-Com algorithm and the challenge space of the protocol
can be seen as elements of two groups (G1,() and (G2,⊗) respectively

– There exists a PPT algorithm Combine such that, for all (x,w) ∈ R and all
α ∈ Zn, if transcripts {(Ri, ci, si)}i=1,...,n are such thatΣ-Verify(x,Ri, ci, si)
= 1 for all i, then

Σ-Verify

(
x,

n⊙
i=1

Rαi

i ,

n⊗
i=1

cαi

i ,Combine(x, α, {(Ri, ci, si)}i=1,...,n)

)
= 1

Although it is given for the standard case, this property can easily be extended
to vector Σ-Protocols: in particular, the group G2 can be seen as the group of
vectors of elements taken from another group G. To sum up, we define a class
of vector Σ-Protocols having all the properties required by our construction:

Definition 6 (1-n (vector) Σ-Protocol). Let (G1,(), (G2,⊗) be two com-
putational groups. A 1-n vector sigma protocol consists of four PPT algorithm
Σn = (Σn-Setup,Σn-Com,Σn-Resp, Σn-Verify) defined as follows:

Σn-Setup(1
λ, n,Rn) → (x,w) . It takes as input a security parameter λ, a vec-

tor size n and a relation Rn over a language Ln. It returns a vector of state-
ments and witnesses (x1, . . . , xn, w1, . . . , wn). The challenge space is required
to be ChSp⊆ Gn

2 .
Σn-Com(x) → (R, r) . It’s a PPT algorithm run by the prover to get the first

message R to send to the verifier and some private state to be stored. We
require that R ∈ G1.

Σn-Resp(x,w, r, c) → s . It’s a deterministic algorithm run by the prover to
compute the last message of the protocol. It takes as input the statements
and witnesses (x,w) the challenge string c ∈ChSp (sent as second message
of the protocol) and some state information r. It outputs the third message
of the protocol, s.
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Σn-Verify(x, R, c, s) → {0, 1} . It’s the verification algorithm that on input the
message R, the challenger c ∈ChSp and a response s, outputs 1 (accept) or
0 (reject).

We require this protocol to be group homomorphic and to satisfy the complete-
ness and special honest verifier zero knowledge properties. Moreover, the protocol
must guarantee either the vector special soundness outlined above or a stronger
soundness property that we define below.

Roughly speaking, this property requires that the extractor, upon receiving
the witnesses for all but one statements of the vector x, has to come up with a
witness for the remaining one.

Definition 7 (Strong (Vector) Special Soundness). Let Σ = (Σ-Setup,
Σ-Com,Σ-Resp,Σ-Verify) be a 1-n Σ-Protocol for a relation Rn. We say that
Σ has the Strong Special Soundness property if there exists an efficient extractor
algorithm Σn-Ext such that ∀x ∈ Ln, ∀j∗ ∈ {1, . . . , n}, ∀ R, c, s, c′, s′ such that
cj∗ �= c′j∗ , Σn-Verify(x, R, c, s) = 1 and Σn-Verify(x, R, c′, s′) = 1, outputs
wj∗ ← Σn-Ext(x, R, c, s, c′, s′, {wj}j �=j∗) such that (xj∗ , wj∗) ∈ R.

In the full version of this paper we show that a simple variant of the well
known identification protocol by Schnorr is a 1-n Σ-Protocol (with Strong Vector
Special Soundness).

5.1 A Linearly Homomorphic On-Line/Off-Line Signature

Suppose S = (KeyGen,Sign,Verify,Eval) is a randomly secure LHSG (even
one that only allows to sign scalars), Σn = (Σn-Setup ,Σn-Com ,Σn-Resp
,Σn-Verify ) is a 1-n Σ-Protocol and H = (CHGen,CHEval,CHFindColl)
defines a family of chameleon hash functions. Moreover, suppose that the LHSG’s
message space is the same as the group G1 of the outputs of Σn-Com. Our
generic construction uses the challenge space of the Σ-Protocol as a message
space and works as follows:

ON/OFFKeyGen (1λ, k, n): It runs (vk1, sk1) ← KeyGen(1λ, 1, k),
(x,w) ←Σn-Setup (1λ, n,Rn) and (hk, ck) ← CHGen(1λ). It outputs
vk ← (vk1,x, hk), sk ← (sk1,w, ck).

OFFSign (sk): This algorithm runs the Σn-Com algorithm k times to obtain
(Ri, ri) ←Σn-Com (x), chooses a random string fid′ from the dataset iden-
tifiers’ space and randomness ρ′ and sets fid ← CHEval(hk, fid′, ρ′). Then
it signs each Ri using the LHSG signing algorithm σi ← Sign(sk1, Ri, fid, i)
and outputs Ifid′ = {(i, ri, Ri, σi, fid

′, ρ′)}i=1,...,k.
ONSign (vk, sk,m, fid, Ifid′ , i): It parses Ifid′ as {(i, ri, Ri, σi, fid

′, ρ′)}i=1,...,k,
computes s←Σn-Resp (x,w, ri,m), ρ← CHFindColl(ck, fid′, ρ′, fid) and
outputs σ ← (Ri, σi, s, ρ). As explained in the definition, this algorithm
must ensure that all the messages signed with respect to the same fid are
computed from the same information Ifid′
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ON/OFFVerify (vk, σ,m, fid, f): It parses σ as (R, σ, s, ρ) and vk as
(vk1,x, hk). Then it checks that

Verify(vk1, σ, R,CHEval(fid, ρ), f) = 1 and Σn-Verify(x, R,m, s) = 1.

If both the above equations hold it returns 1, else it returns 0.
ON/OFFEval (vk, α, σ1, . . . , σk): it parses σi as (Ri, σi, si, ρ) for each i =

1, . . . , k and vk as (vk1,x). Then it computes:

R ← Rα1
1 ( · · · (Rαk

k , σ ← Eval(vk1, α, σ1, . . . , σk),

s← Combine (x, α, {(Ri, ci, si)}i=1,...,k) .

Finally it returns (R, σ, s, ρ) (as a signature for the messagemα1
1 ⊗· · ·⊗mαk

k ).

Remark 4. The construction presented above applies to any LHSG. However, if
the LHGS itself is obtained as described in section 4.1, the use of the chameleon
hash function could be avoided by substituting the signature scheme S used for
the fid with an on-line/off-line one. This improves efficiency.

Theorem 6. If S = (KeyGen,Sign,Verify,Eval) is a random message se-
cure LHSG, Σn = (Σn-Setup ,Σn-Com ,Σn-Resp ,Σn-Verify ) is a 1-n Σ-
Protocol for a non trivial relation Rn, and H implements a family of chameleon
hash functions then the LHOOS described above is secure against a chosen mes-
sage attack .

For lack of space, again, this proof is omitted. The security obtained by this
construction can be strengthened by assuming additional properties on the un-
derlying LHSG scheme: if S is strongly secure against a random message attack,
then we can prove that the resulting construction is strongly secure (against a
CMA) as well.

Theorem 7. If S = (KeyGen,Sign,Verify,Eval) is a LHSG scheme strongly
unforgeable against a random message attack and Σn = (Σn-Setup,Σn-Com,
Σn-Resp,Σn-Verify) is a 1-n Σ-Protocol for a non trivial relation Rn, then the
on-line/off-line scheme described above is strongly unforgeable against chosen
message attacks.

The proof is straightforward and similar to the previous one and is omitted.

6 From Random Message Security to Chosen Message
Security

In this section we present a general transform to construct an LHSG secure
against chosen message attack from one secure under random message attack.
Our transformation requires the RMA secure scheme to satisfy some additional,
but reasonable, requirements (a slightly more generic transformation is given in
the full version of this paper). In particular we require it to be almost determin-
istic. Informally, this means that given a file identifier fid ∈ D and a signature
on a message m with respect to fid, the signature of any other m′ ∈ M w.r.t. to
any admissible function f ∈ F and the same fid is uniquely determined.
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Remark 5. We stress that while we present our theorems in the context of lin-
early homomorphic signatures (LHSG), if they are applied to linearly homo-
morphic structure preserving signatures, the structure preserving property is
preserved.

Let S = (HKeyGen,HSign,HVerify,HEval) be a LHSG which is RMA-
secure and almost deterministic. The transformation below shows how to pro-
duce a new LHSG T = (TKeyGen,TSign,TVerify, TEval) which is secure
under CMA.

– TKeyGen(1λ, n, k) takes as input the security parameter λ, the vector
size n and an upper bound k for the number of messages signed in each
dataset. It runs two times the HKeyGen algorithm to obtain (sk1, vk1) ←
HKeyGen(1λ, n, k) and (sk2, vk2) ← HKeyGen(1λ, n, k).
It outputs sk = (sk1, sk2) as the secret signing key and vk = (vk1, vk2) as
the public verification key. The message space M is the same of S.

– TSign(sk,m, fid, i) It chooses random m1 = (m1,1, . . . ,m1,n)
$← M and

computes m2 ←
(

m1

m1,1
, . . . , mn

m1,n

)
(where m = (m1, . . . ,mn)).

Then it computes σ1 ← HSign(sk1,m1, i, fid), σ2 ← HSign(sk2,m2, i, fid)
and outputs σ = (fid,m1, σ1, σ2).

– TVerify(vk, σ,m, fid, f) parses σ as (fid,m1, σ1, σ2), computes

m2 ←
(

m1

m1,1
, . . . , mn

m1,n

)
and checks that the following equations hold:

HVerify(vki,mi, σi, fid, f) = 1 for i = 1, 2.

– Eval(vk, fid, f, {σ(i)}i=1...k) parses σ(i) as (fid(i),m
(i)
1 , σ

(i)
1 , σ

(i)
2 ) and f as

(α1, . . . , αk), then checks that fid = fid(i) for all i and, if not, aborts. Finally
it sets

σ1 ← HEval(vk1, fid, {σ(i)
1 }i=1...k, f),

σ2 ← HEval(vk2, fid, {σ(i)
2 }i=1...k, f),

m1 =

(
k∏

i=1

(m
(i)
1,1)

αi , . . . ,

k∏
i=1

(m
(i)
1,n)

αi

)
and returns

σ ← (fid,m1, σ1, σ2)

Theorem 8. Suppose S is a LHSG secure against a random message attack with
almost deterministic signatures. Moreover assume that the underlying message
space is a group where one can efficiently solve systems of group equations. Then
the scheme T described above is a LHSG secure against a chosen message attack.

Again, the proof of the above theorem is deferred to the full version of this paper.
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Abstract. We present a new compact verifiable secret sharing scheme,
based on this we present the first construction of a homomorphic UC
commitment scheme that requires only cheap symmetric cryptography,
except for a small number of seed OTs. To commit to a k-bit string,
the amortized communication cost is O(k) bits. Assuming a sufficiently
efficient pseudorandom generator, the computational complexity is O(k)
for the verifier and O(k1+ε) for the committer (where ε < 1 is a con-
stant). In an alternative variant of the construction, all complexities are
O(k · polylog(k)). Our commitment scheme extends to vectors over any
finite field and is additively homomorphic. By sending one extra mes-
sage, the prover can allow the verifier to also check multiplicative rela-
tions on committed strings, as well as verifying that committed vectors
a, b satisfy a = ϕ(b) for a linear function ϕ. These properties allow us
to non-interactively implement any one-sided functionality where only
one party has input (this includes UC secure zero-knowledge proofs of
knowledge). We also present a perfectly secure implementation of any
multiparty functionality, based directly on our VSS. The communication
required is proportional to a circuit implementing the functionality, up
to a logarithmic factor. For a large natural class of circuits the overhead
is even constant. We also improve earlier results by Ranellucci et al. on
the amount of correlated randomness required for string commitments
with individual opening of bits.

1 Introduction

A commitment scheme is perhaps the most basic primitive in cryptographic
protocol theory, but is nevertheless very powerful and important both in theory
and practice. Intuitively, a commitment scheme is a digital equivalent of a secure
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box: it allows a prover P to commit to a secret s by putting it into a locked
box and give it to a verifier V . Since the box is locked, V does not learn s at
commitment time, we say the commitment is hiding. Nevertheless, P can later
choose to give V the key to the box to let V learn s. Since P gave away the
box, he cannot change his mind about s after commitment time, we say the
commitment is binding.

Commitment schemes with stand-alone security (i.e., they only have the bind-
ing and hiding properties) can be constructed from any one-way function, and
already this most basic form of commitments implies zero-knowledge proofs for
all NP languages. Commitments with stand-alone security can be very efficient
as they can be constructed from cheap symmetric cryptography such as pseudo-
random generators [Nao91].

However, in many cases one would like a commitment scheme that composes
well with other primitives, so that it can be used as a secure module that will
work no matter which context it is used in. The strongest form of security we
can ask for here is UC security [Can01]. UC commitments cannot be constructed
without set-up assumptions such as a common reference string [CF01]. On the
other hand, a construction of UC commitment in such models implies public-
key cryptography [DG03] and even multiparty computation [CLOS02] (but see
[DNO10] for a construction based only on 1-way functions, under a stronger
set-up assumption).

With this in mind, it is not surprising that constructions of UC commitments
are significantly less efficient than stand-alone secure commitments. The most
efficient UC commitment schemes known so far are based on the DDH assump-
tion and requires several exponentiations in a large group [Lin11,BCPV13]. This
means that the computational complexity for committing to k-bit strings is typ-
ically Ω(k3).

Our Contribution. We first observe that even if we cannot build practical UC
commitments without using public-key technology, we might still confine the use
of it to a small once-and-for-all set-up phase. This is exactly what we achieve:
given initial access to a small number of oblivious transfers, we show a UC secure
commitment scheme where the only computation required is pseudorandom bit
generation and a few elementary operations in a finite field. The number of
oblivious transfers we need does not depend on the number of commitments we
make later. The main observation we make is that we can reach our goal by
combining the oblivious transfers with a “sufficiently compact” Verifiable Secret
Sharing Scheme (VSS) that we then construct. The VSS has applications on its
own as we detail below.

To commit to a k-bit string, the amortized communication cost is O(k) bits.
The computational complexity is O(k) for the verifier and O(k1+ε) for the com-
mitter (where ε < 1 is a constant). This assumes a pseudorandom generator with
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linear overhead per generated bit.1 In an alternative variant of the construction,
all complexities are O(k · polylog(k)). After the set-up phase is done, the prover
can commit by sending a single string. Our construction extends to commitment
to strings over any finite field and is additively homomorphic, meaning that given
commitments to strings a, b, the verifier can on his own compute a commitment
to a + b, and the prover can open it while revealing nothing beyond a + b.
Moreover, if the prover sends one extra string, the verifier can also check that
committed vectors a, b, c satisfy c = a∗b, the component-wise product. Finally,
again by sending one extra string and allowing one extra opening, the verifier
can compute a commitment to ϕ(a), given the commitment to a, for any linear
function ϕ. These extra strings have the same size as a commitment, up to a
constant factor.

On the technical side, we take the work from [FJN+13] as our point of depar-
ture. As part of their protocol for secure 2-party computation, they construct
an imperfect scheme (which is not binding for all commitments). While this is
good enough for their application, we show how to combine their scheme with an
efficient VSS that is compact in the sense that it allows to share several values
from the underlying field, while shares only consist of a single field element. This
is also known as packed secret sharing [FY92].

Our construction generalises the VSS from [CDM00] to the case of packed
secret sharing. We obtain a VSS where the communication needed is only a
constant factor larger than the size of the secret. Privacy for a VSS usually
just says that the secret remains unknown to an unqualified subset of players
until the entire secret is reconstructed. We show an extended form of privacy
that may be of independent interest: the secret in our VSS is a set of � vectors
s1, ..., s�, each of length �. We show that any linear combination of s1, ..., s�
can be (verifiably) opened and players will learn nothing beyond that linear
combination. We also build two new VSS protocols, both of which are non-trivial
extensions. The first allows the dealer to generate several sharings of the vector
0�. For an honest dealer, the shares distributed are random even given the extra
verification information an adversary would see during the VSS. This turns out
to be crucial in achieving secure multiplication of secret-shared or committed
values. The second new protocol allows us to share two sets of vectors s1, ..., s�
and s̃1, ..., s̃� such that it can be verified that ϕ(s1) = s̃1, . . . , ϕ(s�) = s̃� for a
linear function ϕ. In the commitment scheme, this is what allows us to verify
that two shared or committed vectors satisfy a similar linear relation.

Before we discuss applications, a note on an alternative way to view our
commitment scheme: A VSS is essentially a multiparty commitment scheme.

1 This seems a very plausible assumption as a number of different sufficient condi-
tions for such PRG’s are known. In [IKOS08] it is observed that such PRGs follow
Alekhnovich’s variant of the Learning Parity with Noise assumption. Applebaum
[App13] shows that such PRGs can be obtained from the assumption that a natural
variant of Goldreich’s candidate for a one-way function in NC0 is indeed one-way.
The improved HILL-style result of Vadhan and Zheng [VZ12] implies that such PRGs
can be obtained from any exponentially strong OWF that can be computed by a
linear-size circuit.
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Therefore, given our observation that VSS and OT gives us efficient UC com-
mitment, it is natural to ask whether our construction could be obtained using
“MPC-in-the-head” techniques. Specifically, the IPS compiler [IPS08] is a general
tool that transforms a multiparty protocol into a 2-party protocol implementing
the same functionality in the OT hybrid model. Indeed, applying IPS to our
VSS does result in a UC commitment protocol. However, while this protocol is
somewhat similar to ours, it is more complicated and less efficient.

Applications. One easily derived application of our commitment scheme is an
implementation of any two-party functionality where only one party has input,
we call this a one-sided functionality. This obviously includes UC secure zero-
knowledge proofs of knowledge for any NP relation. Our implementation is based
on a Boolean circuit C computing the desired output.

We will focus on circuits that are not too “oddly shaped”. Concretely, we
assume that every layer of the circuit is Ω(�) gates wide, except perhaps for
a constant number of layers. Here one may think of � as a statistical security
parameter, as well as the number of bits one of our commitments contains.
Second, we want that the number of bits that are output from layer i in the
circuit and used in layer j is either 0 or Ω(�) for all i < j. We call such circuits
well-formed. In a nutshell, well-formed circuit are those that allow a modest
amount of parallelization, namely a RAM program computing the circuit can
always execute Ω(�) bit operations in parallel and when storing bits for later use
or retrieving, it can always address Ω(�) bits at a time. In practice, since we can
treat � as a statistical security parameter, its value can be quite small(e.g., 80),
in particular very small compared to the circuit size, and hence a requirement
that the circuit be well-formed seems rather modest. Using the parallelisation
technique from [DIK10], we can evaluate a well-formed circuit using only parallel
operations on �-bit blocks, and a small number of different permutations of bits
inside blocks. This comes at the cost of a log-factor overhead.

Some circuits satisfy an even nicer condition: if we split the bits coming into
a layer of C into �-bit blocks, then each such block can be computed as a linear
function of blocks from previous layers, where the function is determined by the
routing of wires in the circuit. Such a function is called a block function. If each
block function depends only on a constant number of previous blocks and if each
distinct block function occurs at least � times, then C is called regular (we can
allow that a constant number of block functions do not satisfy the condition).
For instance, block ciphers and hash functions do not spread the bits around
much in one round, but repeat the same operations over many rounds and hence
tend to have regular circuits. Also many circuits for arithmetic problems have a
simple repetitive structure and are therefore regular.

Theorem 1. For any one-sided two-party functionality F that can be computed
by Boolean circuit C, there exists a UC secure non-interactive implementation
of F in the OT hybrid model. Assuming C is well-formed and that there exists a
linear overhead PRG, the communication as well as the receiver’s computation
is in O(log(|C|)|C|). If C is regular, the complexities are O(|C|).
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We stress that the protocol we build works for any circuit, it will just be
less efficient if C is not well-formed.2 We can also apply our VSS directly to
implement multiparty computation in the model where there are clients who
have inputs and get outputs and servers who help doing the computation.

Theorem 2. For any functionality F , there exists a UC perfectly secure imple-
mentation of F in the client/server model assuming at most a constant fraction
of the servers and all but one of the clients may be corrupted. If C is well-formed,
the total communication complexity is in O(log(|C|)|C|). If C is regular, the
complexity is O(|C|).

We are not aware of any other approach that would allow us to get perfect
security and “constant rate” for regular circuits.3

A final application comes from the fact that our commitment protocol can
be interpreted as an unconditionally secure protocol in the model where corre-
lated randomness is given. In this model, it was shown in [RTWW11] that any
unconditionally secure protocol that allows commitment to N bits where each
bit can be individually opened, must use Ω(Nk) bits of correlated randomness,
where k the security parameter. They also show a positive result that partially
circumvents this lower bound by considering a functionality FN,r

com that allows
commitment to N bits where only r < N bits can be selectively and individually
opened. When r is O(1), they implement this functionality at constant rate, i.e.,
the protocol requires only O(1) bits of correlated randomness per bit committed
to. We can improve this as follows:

Theorem 3. There exists a constant-rate statistically secure implementation of
FN,r
com in the correlated randomness model, where r ∈ O(N1−ε) for any ε > 0.

We find it quite surprising that r can be “almost” N , and still the lower bound
for individual opening does not apply. What the actual cut-off point is remains
an intriguing open question.

Related Work. In [DIK+08], a VSS was constructed that is also based on packed
secret sharing (using Shamir as the underlying scheme). This construction relies
crucially on hyper invertible matrices which requires the field to grow with the
number of players. Our construction works for any field, including F2. This
would not be so important if we only wanted to commit and reveal bits: we
could use [DIK+08] with an extension field, pack more bits into a field element

2 It is possible to use MPC-in-the-head techniques to prove results that have some
(but not all) of the properties of Theorem 1. Essentially one applies the IPS com-
piler to a multiparty protocol, either a variant of [DI06] (described in [IKOS09]),
or the protocol from [DIK10]. In the first case, the verifier’s computation will be
asymptotically larger than in our protocol, in the second case, one cannot obtain
the result for regular circuits since [DIK10] has at least logarithmic overhead for any
circuit since it cannot be based on fields of constant size.

3 Using [DIK10] would give at least logarithmic overhead for any circuit, using variants
of [DI06] would at best give statistical security.
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and still get constant communication overhead, but we want to do (Boolean)
operations on committed bits, and then “bit-packing” will not work. It therefore
seems necessary to construct a more compact VSS in order to get our results.
In [BBDK00], techniques for computing functions of shared secrets using both
broadcast channels and private interactive evaluation are introduced. However,
their constructions are based specifically on Shamir’s LSSS and do not allow
verification of share validity.

In recent independent work [GIKW14], Garay et al. also construct UC com-
mitments using OT, VSS and pseudorandom generators as the main ingredients.
While the basic approach is closely related to ours, the concrete constructions
are somewhat different, leading to incomparable results. In [GIKW14] optimal
rate is achieved, as well as a negative result on extension of UC commitments.
On the other hand, we focus more on computational complexity and achieve
homomorphic properties as well as non-interactive verification of linear relations
inside committed vectors.4

2 Preliminaries

In this section we introduce the basic definitions and notation that will be used
throughout the paper. We denote sampling a value r from a distribution D as
r ← D. We say that a function ε is negligible if there exists a constant c such that
ε(n) < 1

p(n) for every polynomial p and n > c. Two sequences X = {Xκ}κ∈N and

Y = {Yκ}κ∈N of random variables are said to be computationally indistinguish-

able, denoted by X
c≈ Y , if for every non-uniform probabilistic polynomial-time

(PPT) distinguisher D there exists a negligible function ε(·) such that for every
κ ∈ N, | Pr[D(Xκ) = 1] − Pr[D(Yκ) = 1] |< ε(κ). Similarly two sequences X
and Y of random variables are said to be statistically indistinguishable, denoted

by X
s≈ Y , if the same relation holds for unbounded non-uniform distinguishers.

2.1 Universal Composability

The results presented in this paper are proven secure in the Universal Compos-
ability (UC) framework introduced by Canetti in [Can01]. We consider security
against static adversaries, i.e. all corruptions take place before the execution of
the protocol. We consider active adversaries who may deviate from the protocol
in any arbitrary way. It is known that UC commitments cannot be obtained in
the plain model [CF01]. In order to overcome this impossibility, our protocol is
proven secure in the FOT -hybrid model in, where all parties are assumed to have
access to an ideal 1-out-of-2 OT functionality. In fact, our protocol is constructed
in the F t,n

OT -hybrid model (i.e. assuming access to t-out-of-n OT), which can be
subsequently reduced to the FOT -hybrid model via standard techniques for ob-
taining F t,n

OT from FOT [Nao91,BCR86,NP99]. We denote by F t,n
OT (λ) an instance

4 Our work has been recognised by the authors of [GIKW14] as being independent.
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Functionality FHCOM

FHCOM proceeds as follows, running with parties P1, . . . , Pn and an adversary S:

– Commit Phase: Upon receiving a message (commit, sid, ssid, Ps, Pr,m) from
Ps, where m ∈ {0, 1}λ, record the tuple (ssid, Ps, Pr,m) and send the message
(receipt, sid, ssid, Ps, Pr) to Pr and S. (The lengths of the strings λ is fixed and
known to all parties.) Ignore any future commit messages with the same ssid
from Ps to Pr. If a message (abort, sid, ssid) is received from S, the functionality
halts.

– Reveal Phase: Upon receiving a message (reveal, sid, ssid) from Ps: If
a tuple (ssid, Ps, Pr,m) was previously recorded, then send the message
(reveal, sid, ssid, Ps, Pr,m) to Pr and S. Otherwise, ignore.

– Addition: Upon receiving a message (add, sid, ssid, Ps, ssid1, ssid2, ssid3)
from Pr: If tuples (ssid1, Ps, Pr,m1), (ssid2, Ps, Pr,m2) were previously
recorded and ssid3 is unused, record (ssid3, Ps, Pr,m1 + m2) and send the
message (add, sid, ssid, Ps, ssid1, ssid2, ssid3, success) to Ps, Pr and S.

– Multiplication: Upon receiving a message
(mult, sid, ssid, Ps, ssid1, ssid2, ssid3) from Pr: If tuples
(ssid1, Ps, Pr,m1), (ssid2, Ps, Pr,m2) and (ssid3, Ps, Pr,m3) were
previously recorded, and if m3 = m1 ∗ m2, send the message
(mult, sid, ssid, Ps, ssid1, ssid2, ssid3, success) to Ps, Pr and S. Otherwise,
send message (mult, sid, ssid, Ps, ssid1, ssid2, ssid3, fail) to Ps, Pr and S.

– Linear Function Evaluation: Upon receiving a message
(linear, sid, ssid, Ps, ϕ, ssid1, ssid2), where ϕ is a linear function, from Ps: If
the tuple (ssid1, Ps, Pr,m1) was previously recorded and ssid2 is unused, store
(ssid2, Ps, Pr, ϕ(m1)) and send (linear, sid, ssid, Ps, ssid1, ssid2, success) to Ps,
Pr and S.

Fig. 1. Functionality FHCOM

Functionality Ft,n
OT

Ft,n
OT interacts with a sender Ps, a receiver Pr and an adversary S.

– Upon receiving a message (sender, sid, ssid,x0, . . . ,xn) from Ps, where each
xi ∈ {0, 1}λ , store the tuple (ssid,x0, . . . ,xn) (The lengths of the strings λ
is fixed and known to all parties). Ignore further messages from Ps to Pr with
the same ssid.

– Upon receiving a message (receiver, sid, ssid, c1, . . . , ct) from Pr, check if a tuple
(ssid,x0, . . . ,xn) was recorded. If yes, send (received, sid, ssid,xc1 , . . . ,xct) to
Pr and (received, sid, ssid) to Ps and halt. If not, send nothing to Pr (but
continue running).

Fig. 2. Functionality Ft,n
OT

of the functionality that takes as input from the sender messages in {0, 1}λ. No-
tice that FOT can be efficiently UC-realized by the protocols in [PVW08], which
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can be used to instantiate our commitment protocol. We define our commitment
functionality FHCOM in Figure 1 and F t,n

OT in Figure 2, further definitions can be
found in the full version of this paper [DDGN14].

2.2 Linear Secret Sharing

In very short terms, a linear secret sharing scheme is a secret sharing scheme
defined over a finite field F, where the shares are computed as a linear function
of the secret (consisting of one or more field elements) and some random field
elements. A special case is Shamir’s well known scheme. However, we need a
more general model for our purposes. We follow the approach from [CDP12] and
recall the definitions we need from their model.

Definition 1. A linear secret sharing scheme S over the finite field F is defined
by the following parameters: number of players n, secret length �, randomness
length e, privacy threshold t and reconstruction threshold r. Also, a n× (� + e)
matrix M over F is given and S must have r-reconstruction and t-privacy as
explained below. If � > 1, then S is called a packed linear secret sharing scheme.

Let d = � + e and let P = {P1, . . . , Pn} be the set of players, then the row
number i of M , denoted by mi, is assigned to player Pi. If A is a player subset,
then MA denotes the matrix consisting of rows from M assigned to players in
A. To share a secret s ∈ F�, one first forms a column vector f ∈ Fd where s
appears in the first � entries and with the last e entries chosen uniformly at
random. The share vector of s in the scheme S is computed as c =M ·f and its
i-th component c[i] is the share given to the player Pi. We will use π� to denote
the projection that outputs the first � coordinates of a vector, i.e. π�(f) = s.

Now, t-privacy means that for any player subset A of size at most t, the
distribution of MA · f is independent of s. It is easy to see that this is the case
if and only if there exists, for each position j in s, a sweeping vector wA,j . This
is a column vector of d components such that MA ·wA,j = 0 and π�(w

A,j) is a
vector whose j-th entry is 1 while all other entries are 0.

Finally, r-reconstruction means that for any player subset B of size at least r,
s is uniquely determined fromMB ·f . It is easy to see that this is the case if and
only if there exists, for each position j in s, a reconstruction vector rB,j . This is
a row vector of |B| components such that for any f ∈ Fd, rB,j ·MB · f = f [j],
where f [j] is the j-th entry in f .

A packed secret sharing scheme was constructed in Franklin and Yung [FY92].
However, to get our results, we will need a scheme that works over constant size
fields, such an example can be found in [CDP12].

Multiplying Shares: for v,w ∈ Fk, where v ⊗i w = (v[i]w[j])j �=i, the vector

v⊗w ∈ Fk2

is defined by v⊗w = (v[1]w[1], . . . ,v[k]w[k],v ⊗1 w, . . . ,v ⊗k w).
If M is the matrix of the linear secret sharing scheme S, we can define a new
scheme Ŝ considering the matrix M̂ , whose i-th row is the vector mi ⊗ mi.
Clearly M̂ has n rows and d2 columns and for any f1,f2 ∈ Fd it holds that
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(
M · f1

)
∗
(
M · f2

)
= M̂ ·

(
f1 ⊗ f2

)�
where ∗ is just the Schur product (or

componentwise product). Note that if t is the privacy threshold of S, then the

scheme Ŝ also has the t-privacy property. But in general it does not hold that
the Ŝ has r-reconstruction. However, suppose that Ŝ has (n− t)-reconstruction,
then S is said to have the t-strong multiplication property.

In particular, if S has the t-strong multiplication property, then for any player
set A of size at least n− t and for any index j = 1, . . . , � there exists a row vector
r̂A,j such that r̂A,j ·

[(
MA · f1

)
∗
(
MA · f2

)]
= s1[j]s2[j] for any s1, s2 ∈ F�.

3 Packed Verifiable Secret-Sharing

In a Verifiable Secret-Sharing scheme (VSS) a dealer distributes shares of a secret
to the players in P in such a way that the honest players are guaranteed to get
consistent shares of a well-defined secret or agree that the dealer cheated. In this
section we present a packed verifiable secret sharing protocol that generalizes
and combines the ideas of packed secret sharing from [FY92] and VSS based
on polynomials in 2 variables from [BOGW88]. The protocol is not a full-blown
VSS, as it aborts as soon as anyone complains, but this is all we need for our
results. The proofs for all lemmas in this section can be found in the full version
of this paper [DDGN14].

The protocol can be based on any linear secret-sharing scheme S over F as
defined in Section 2. We assume an active adversary who corrupts t players and
possibly the dealer, and we assume that at least r players are honest. The pro-
tocol will secret-share � column vectors s1, . . . , s� ∈ F�. In the following, F will
be a d× d matrix with entries in F and for 1 ≤ i ≤ n we will define hi = F ·m�

i

and gi = mi ·F . It is then clear that mj ·hi = gj ·m�
i for 1 ≤ i, j ≤ n. We will

use f b to denote the b-th column of F . The protocol is shown in Figure 3.

Packed Verifiable Secret-Sharing Protocol πV SS

1. Let s1, . . . , s� ∈ F� be the secrets to be shared. The dealer chooses a random
d× d matrix F with entries in F, subject to π�(f

b) = sb for any b = 1, . . . , �.
2. The dealer sends hi and gi to Pi.
3. Each player Pj sends gj ·m


i to Pi, for i = 1, . . . , n.
4. Each Pi checks, for j = 1, . . . , n, that mj · hi equals the value received from

Pj . He broadcasts Accept if all checks are OK, otherwise he broadcasts Reject.
5. If all players said Accept, then each Pj stores, for b = 1, . . . , �, gj [b] as his share

of sb, otherwise the protocol aborts.

Fig. 3. The VSS protocol

For a column vector v ∈ Fd, we will say that v shares s ∈ F�, if π�(v) = s
and each honest player Pj holds mj ·v. In other words, c =M · v forms a share
vector of s in exactly the way we defined in the previous section. We now show
some basic facts about πV SS :
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Lemma 1 (completeness). If the dealer in πV SS is honest, then all honest
players accept and the column vector f b shares sb for any b = 1, . . . , �.

Lemma 2 (soundness). If the dealer in πV SS is corrupt, but no player rejects,
then for b = 1, . . . , �, there exists a column vector vb and a bit string sb such
that vb shares sb.5

Finally, we show a strong privacy property guaranteeing that if we open any
linear function of sb’s, then no further information on the sb’s is released. To be
more precise about this, assume T : F� �→ F�′ , where �′ ≤ �, is a surjective linear
function. By T (s1, . . . , s�), we mean a tuple (u1, . . . ,u�′) of column vectors in
F� s.t. ub[a] = T (s1[a], . . . , s�[a])[b]. Put differently, if we arrange the column
vectors s1, . . . , s� in a �×�matrix, then what happens is that we apply T to each
row, and let the ub’s be the columns in the resulting matrix. In a completely
similar way, we define a tuple of �′ column vectors of length d by the formula
T (f1, . . . ,f �) = (w1, . . . ,w�′). It is easy to see that if f1, . . . ,f � share s1, . . . , s�,
then w1, . . . ,w�′ share u1, . . . ,u�′ , since the players can apply T to the shares
they received in the first place, to get shares of u1, . . . ,u�′ . In the following we
will abbreviate and use T (F ) to denote T (f1, . . . ,f �).

Now, by opening T (s1, . . . , s�), we mean that the (honest) dealer makes T (F )
public, which allows anyone to compute T (s1, . . . , s�). We want to show that, in
general, if T (s1, . . . , s�) is opened, then the adversary learns T (s1, . . . , s�) and
no more information about s1, . . . , s�. This is captured by Lemma 3. Suppose
that A = {Pi1 , . . . , Pit} is a set of players corrupted by the adversary.

Lemma 3 (privacy). Suppose the dealer in πV SS is honest. Now, in case 1
suppose he executes πV SS with input s1, . . . , s� and then opens T (s1, . . . , s�). In

case 2, he executes πV SS with input s̃1, . . . , s̃� and then opens T (s̃1, . . . , s̃�). If

T (s1, . . . , s�) = T (s̃1, . . . , s̃�), then the views of the adversary in the two cases
are identically distributed.

As the last step, we show an extra randomness property satisfied by the share
vectors obtained by Protocol πV SS . If C is a a×bmatrix, define π�(C) as the a×�
matrix given by the first � columns of C and π�(C) as the �×bmatrix given by the
first � rows of C. Note that, if V is a d× � matrix such that π�(V ) = (s1, . . . , s�),
then the dealer might have chosen V as the first � columns in his matrix F . We
want to show that given the adversary’s view, any V could have been chosen, as
long as it is consistent with the adversary’s shares of s1, . . . , s�.

Lemma 4 (randomness of the share vectors). Suppose that the dealer in
πV SS is honest and let A = {Pi1 , . . . , Pit} be a set of players corrupted by the
adversary. If we define GA as the matrix whose j-th row is gij , then all the d× �
matrices V such that π�(V ) = (s1, . . . , s�) and MA · V = π�(GA) are equally
likely, even given the adversary’s entire view.

5 Recall that this just means that π�(v
b) = sb and secret sharing with vb produces

the shares held by the honest parties in the protocol, i.e., (Mvb)[j] = gj [b] for all
honest Pj .
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For the applications of πV SS that we will show in Section 5, we will require
some new specialized forms of πV SS , which we describe in the following two
sections.

3.1 Applying a Linear Map to All the Secrets

Let ϕ : F� → F� be a linear function. Suppose that the dealer executes two cor-
related instances of Protocol πV SS in the following way: first the dealer executes
πV SS with input s1, . . . , s� choosing matrix F in step 1, later on, he executes
πV SS with input ϕ(s1), . . . , ϕ(s�) under the condition that the matrix chosen
for the second instance, Fϕ, satisfies π�(f

ϕ,i) = ϕ(π�(f
i)) for i = 1, . . . , d. The

dealer sends to Pi vectors hi and gi and also the vectors hϕ,i = Fϕ · m�
i ,

gϕ,i = mi · Fϕ. The protocol is shown in figure 4.

Packed Verifiable Secret-Sharing Protocol for ϕ, πϕ
V SS

1. Let s1, . . . , s� ∈ F� be the secrets to be shared. The dealer chooses two random
d×d matrices F , Fϕ subject to π�(f

b) = sb for any b = 1, . . . , � and π�(f
ϕ,i) =

ϕ(π�(f
i)) for any i = 1, . . . , d.

2. The dealer sends hi, gi, h
ϕ,i and gϕ,i to Pi.

3. Each player Pj sends gj ·m

i and gϕ,j ·m


i to Pi, for i = 1, . . . , n.
4. Each Pi checks, for j = 1, . . . , n, thatmj ·hi andmj ·hϕ,i are equal to the values

received from Pj and also that π�(h̃
i
) = ϕ

(
π�(h

i)
)
. He broadcasts Accept if all

checks are OK, otherwise he broadcasts Reject.
5. If all players said Accept, then each Pj stores, for b = 1, . . . , �, gj [b] and gϕ,j [b]

as his share respectively of sb and ϕ(sb), otherwise the protocol aborts.

Fig. 4. The VSS protocol for ϕ

The completeness of the πϕ
V SS protocol is trivial to prove. Moreover we will

show in the following lemma 5 and 6, that also the properties of soundness and
privacy are still valid for the πϕ

V SS protocol.

Lemma 5. If the dealer in πϕ
V SS is corrupt, but no player rejects, then for any

b = 1, . . . , � there exist column vectors vb, vϕ,b and sb, sϕ,b such that vb shares
sb, vϕ,b shares sϕ,b and ϕ

(
sb
)
= sϕ,b.

Lemma 6. Suppose the dealer in πϕ
V SS is honest. Now, in case 1 suppose the

dealer executes πϕ
V SS with input s1, . . . , s� and in case 2, he executes πϕ

V SS with

input s̃1, . . . , s̃�. Let A = {Pi1 , . . . , Pit} be a set of players corrupted by the
adversary, then the adversary’s view in the two cases are identically distributed.

Finally we show the randomness property satisfied by the pair of share vectors
of si, ϕ(si) obtained by the πϕ

V SS protocol.

Lemma 7. Suppose that the dealer in πϕ
V SS is honest and let A = {Pi1 , . . . , Pit}

be a set of players corrupted by the adversary. If we define GA as the matrix
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whose j-th row is gij and Gϕ,A as the matrix whose jth column is gϕ,ij , then
all the pairs of d × � matrices (V, Vϕ) such that π�(V ) = (s1, . . . , s�), π�(Vϕ) =
(ϕ(s1), . . . , ϕ(s�)), MA ·V = π�(GA) and MA ·Vϕ = π�(Gϕ,A) are equally likely,
even given the adversary’s entire view.

3.2 Sharing an All Zeros Vector

We are interested in modifying Protocol πV SS in order to share several times
just the vector 0�, i.e. the all zeros column vector in F�. Suppose that the d× d
random matrix F chosen by the dealer has the first � rows equal to zero. Let R
be the e× d matrix formed by the last e rows of F , then

hi = F ·m�
i =

(
0, . . . , 0, R ·m�

i

)�
gi = mi · F = (mi[�+ 1], . . . ,mi[d]) ·R

Given the special form of the vectors hi, the players can check not only that
the shares are consistent, but also that they are consistent with 0�. Define

h0,i =
(
R ·m�

i

)�
, m0,i = (mi[�+ 1], . . . ,mi[d]) andM0,A as the matrix whose

rows are the vectors m0,i with Pi ∈ A. The protocol in this case is shown in
Figure 5.

Packed Verifiable Secret-Sharing Protocol for 0�’s π0
V SS

1. The dealer chooses a random e× d matrix R with entries in F,
2. The dealer sends h0,i and gi to Pi.
3. Each player Pj sends gj ·m


i to Pi, for i = 1, . . . , n.
4. Each Pi checks that for j = 1, . . . , n, m0,j ·h0,i equals the value received from

Pj . He broadcasts Accept if all checks are OK, otherwise he broadcasts Reject.
5. If all players said Accept, then each Pj stores, for b = 1, . . . , �, gj [b] as his b-th

share of 0�, otherwise the protocol aborts.

Fig. 5. The VSS protocol for 0�’s

Again the completeness of Protocol π0
V SS is trivial. We will show the sound-

ness property in Lemma 8, while privacy is not required in this special case.

Lemma 8. If the dealer in π0
V SS is corrupt, but no player rejects, then there

exist column vectors v1, . . . ,v� each of which shares 0�.

Finally we show that the randomness property that is satisfied by the share
vectors obtained in Protocol πV SS is also satisfied by the share vectors of 0�

obtained by Protocol π0
V SS .

Lemma 9. Suppose that the dealer is honest and he executes Protocol π0
V SS.

Let A = {Pi1 , . . . , Pit} be a set of players corrupted by the adversary and define
GA as the matrix whose j-th row is gij , then all the e× � matrices V such that
M0,A · V = π�(GA) are equally likely, even given the adversary’s entire view.
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4 Low Overhead UC Commitments

In this section we introduce our construction of UC commitments with low over-
head. A main ingredient will be the n-player VSS scheme from the previous
section. We will use n as the security parameter. We will assume throughout
that the underlying linear secret sharing scheme S is such that the parameters
t and r are Θ(n), and furthermore that S has t-strong multiplication. We will
call such an S a commitment-friendly linear secret sharing scheme.

The protocol first does a set-up phase where the sender executes the VSS
scheme “in his head”, where the secrets are random strings r1, . . . , r�. The VSS
is secure against t corrupted players. Next, he chooses n seeds x1, . . . ,xn for a
pseudorandom generator G, and F t,n

OT is used to transfer a subset of t seeds to
the verifier. Finally, the sender sends the view of each virtual VSS player to the
receiver, encrypted with G(x1), . . . , G(xn) as “one-time pads”. Note that the
receiver can decrypt t of these views and check that they are consistent, and
also he now knows t shares of each ri.

To commit to m ∈ {0, 1}�, the sender picks the next unused secret rη and
sends m+ rη.

To open, the sender reveals m and the vector fη (from the VSS) that shares
rη. The receiver can now compute all shares of rη and check that they match
those he already knows.

Intuitively, this is binding because the sender does not know which VSS players
the receiver can watch. This means that the sender must make consistent views
for most players, or be rejected immediately. But if most views are consistent,
then the (partially encrypted) set of shares of rη that was sent during set-up is
almost completely consistent. Since the reconstruction threshold is smaller than
n by a constant factor this means that the prover must change many shares to
move to a different secret, and the receiver will notice this with high probability,
again because the sender does not know which shares are already known to the
receiver.

Hiding follows quite easily from security of the PRG G and privacy of the
VSS scheme, since the receiver only gets t shares of any secret.

The Commit and Reveal phases of protocol πHCOM are described in Figure 6
while the necessary steps for addition, multiplication and linear function evalu-
ation are described separately in Section 5 for the sake of clarity.

The proof of the following theorem can be found in the full version of this
paper [DDGN14].

Theorem 4. Let G : {0, 1}�PRG → {0, 1}2(�+e) be a pseudrandom generator and
let πV SS be a packed verifiable secret sharing scheme as described in Section 3
with parameters (M, r, t), based on a commitment-friendly secret sharing scheme.
Then protocol πHCOM UC-realizes FHCOM in the F t,n

OT (�PRG)-hybrid model in
the presence of static, active adversaries.
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Complexity. It is evident that in the set-up phase, or later, Ps could execute
any number of instances of the VSS and send the resulting views of players
encrypted with the seeds {xi}, as long as we have a PRG with sufficient stretch.
This way we can accommodate as many commitments as we want, while only
using the OT-functionality once.6 Therefore, the amortised cost of a commitment
is essentially only what we pay after the OT has been done. We now consider
what the cost will be per committed bit in communication and computation.
Using the linear secret sharing scheme from [CDP12], we can get a commitment
friendly secret sharing scheme over a constant size field, so this means that the
communication overhead is constant.

As for computation, under plausible complexity assumptions, there exists a
PRG where we pay only a constant number of elementary bit operations per
output bit (see, e.g., [VZ12]), so the cost of computing the PRG adds only a
constant factor overhead for both parties. As for the computation of Pr , let us
consider the set-up phase first. Let C be the set of players watched by Pr, and let
GC , HC be matrices where we collect the hi and gj ’s they have been assigned.
Then what Pr wants to check is thatMCHC = GCM

�
C . In [DZ13], a probabilistic

method is described for checking such a relation that has complexity O(n2) field
operations and fails with only negligible probability. This therefore also adds only
a constant factor overhead because one VSS instance allows commitment to �2

bits which is Θ(n2). Finally, in the reveal phase Pr computes Mfη and verifies
a few coordinates. If one can check Θ(n) such commitments simultaneously,
the same trick from [DZ13] can be used, and we get an overall constant factor
overhead for Pr. We note that checking many commitments in one go is exactly
what we need for the application to non-interactive proofs we describe later.

For Ps, using the scheme from [CDP12], there is no way around doing standard
matrix products which can be done in O(n2+σ) complexity for σ < 1. This gives
us overhead nσ per committed bit.

Finally, if we use instead standard packed secret sharing based on polynomi-
als, the field size must be linear in n, but on the other hand we can use FFT
algorithms in our computations. This gives a poly-logarithmic overhead for both
players in communication and computation.

5 Homomorphic Properties

In this section, we show how to implement the add, multiply and linear function
commands in FHCOM. As before, we assume a commitment-friendly linear secret
sharing scheme S.

We first need some notation: consider a single commitment as we defined it
in the previous section and note that the data pertaining to that commitment
consists of a vector f and the committed value m held by Ps, whereas Pr holds

6 It is not hard to see that since a corrupt Ps looses as soon as Pr sees a single inconsis-
tency, Ps cannot get any advantage from executing a VSS after other commitments
have been done.
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m + π�(f) as well as a subset of the coordinates of Mf . We will refer to the
vector m+ π�(f) as the message field of the commitment.

We will use comS(m,f) as a shorthand for all this data, where the subscript
S refers to the fact that the matrix M of S defines the relation between the
data of Ps and that of Pr. Whenever we write comS(m,f), this should also be
understood as stating that the players in fact hold the corresponding data.

The expression comS(m,f ) + comS(m
′,f ′) means that both players add the

corresponding vectors that they hold of the two commitments, and store the
result. It is easy to see that we have

comS(m,f) + comS(m
′,f ′) = comS(m+m′,f + f ′)

Furthermore, comS(m,f) ∗ comS(m
′,f ′) means that the players compute the

coordinate-wise product of corresponding vectors they hold and store the result.
We have

comS(m,f) ∗ comS(m
′,f ′) = comŜ(m ∗m′,f ⊗ f ′)

Note that Ŝ appears in the last term. Recall that the coordinates of f ⊗ f ′

are ordered such that indeed the vector π�(f) ∗ π�(f ′) appears in the first �
coordinates of f ⊗ f ′.

Now, in order to support the additional commands, we will augment the set-
up phase of the protocol: in addition to πV SS , Ps will execute π0

V SS and πϕ
V SS .

For π0
V SS we use Ŝ as the underlying linear secret sharing scheme, where the

other VSS schemes use S. Furthermore, we need an instance of πϕ
V SS for each

linear function ϕ we want to support. As before, all the views of the virtual
players are sent to Pr encrypted under the seeds xi. Pr checks consistency of the
views as well as the special conditions that honest players check in π0

V SS and
πϕ
V SS .
Note that if one instance of πV SS has been executed, this allows us to extract

data for � commitments. Likewise, an execution of π0
V SS allows us to extract

� commitments of form comŜ(0
�,u) for a random u, where by default we set

the message field to 0. Finally, having executed πϕ
V SS , we can extract � pairs of

form comS(r,fr), comS(ϕ(r),f
′
r) where r is random such that r = π�(f r) and

ϕ(r) = π�(f
′
r). Again, for these commitments we set the message field to 0. The

protocols are shown in Figure 7.

Generalizations In the basic case we are committing to bit strings, and we
note that we can trivially get negation of bits using the operations we already
have: Given comS(m,f ), Ps commits to 1� so we have comS(1

�,f ′), we output
comS(m,f ) + comS(1

�,f ′) and Ps opens comS(1
�,f ′) to reveal 1�.

If we do the protocol over a larger field than F2, it makes sense to also consider
multiplication of a commitment by a public constant. This is trivial to imple-
ment, both parties simply multiply their respective vectors by the constant.

Proof intution. The protocol in Figure 7 can be proven secure by essentially
the same techniques we used for the basic commitment protocol, but we need
in addition the specific properties of πV SS , π

0
V SS and πϕ

V SS . First of all, it is
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clear that in the case when the sender is corrupted and the receiver is honest,
a simulator for this protocol can extract the messages (and share vectors) in
the commitments by following the same procedure as the simulator for the basic
commitment protocol. The specific properties of the VSS protocols πV SS , π

0
V SS

and πϕ
V SS come into play when constructing a simulator for the case when the

sender is honest and the receiver is corrupted. More details are presented in the
full version of this paper [DDGN14].

6 Applications

Two-party One-sided Functionalities. In this section we consider applica-
tions of our implementation of FHCOM. We will implement a one-sided function-
ality where only one party Ps has input x and some verifier is to receive output
y, where y = C(x) for a Boolean circuit C.

The basic idea of this is straightforward: Ps commits to each bit in x and to
each output from a gate in C that is produced when x is the input. Now we can
use the commands of FHCOM to verify for each gate that the committed output
is the correct function of the inputs. Finally, Ps opens the commitment to the
final output to reveal y.

However, we would like to exploit the fact that our commitments can contain
�-bit strings and support coordinate-wise operations on �-bit strings in parallel.
To this end, we can exploit the construction found in [DIK10] (mentioned in the
introduction), that allows us to construct from C a new circuit C′ computing
the same function as C, but where C′ can be computed using only operations
in parallel on �-bit blocks as well as log � different permutations of the bits in a
block. The construction always works, but if C is well-formed, C′ will be of size
O(log(|C|)|C|).

With these observations, we can use FHCOM operations to compute C′ instead
of C. The difference to the first simplistic idea is that now every position in
a block is used for computation. Hence, the final protocol is non-interactive,
assuming the very first step doing the OT has been done. This is because Ps,
since he knows C, can predict which multiplications and permutation operations
Pr will need to verify, so he can compute the required opening information for
commitments and send them immediately. Moreover, if we use the linear secret
sharing scheme from [CDP12] as the basis for commitments, then the size of the
entire proof as well as of the verifier’s computation will be of size O(|C| log |C|)
for well formed circuits. If C is regular we will get complexity O(|C|)), since we
can implement the rerouting between layers by evaluating the block functions
directly. Thus we get the results claimed in Theorem 1.

Multiparty Computation. Due to space constraints the material on MPC
based on our VSS (Theorem 2) is left for the full version of this paper [DDGN14].
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Protocol πHCOM in the Ft,n
OT (�PRG)-hybrid model

Let G : {0, 1}�PRG → {0, 1}2(�+e) be a pseudorandom generator and let πV SS be a
packed verifiable secret sharing scheme as described in Section 3 with parameters
(M, r, t) based on a commitment-friendly linear secret sharing scheme. A sender
Ps and a receiver Pr interact between themselves and with Ft,n

OT (�PRG) as follows:

Setup Phase: At the beginning of the protocol Ps and Pr perform the following
steps and then wait for inputs.

1. For i = 1, . . . , n, Ps uniformly samples a random string xi ∈ {0, 1}�PRG . Ps

sends (sender, sid, ssid, x1, . . . , xn) to Ft,n
OT (�PRG).

2. Pr uniformly samples a set of t indexes c1, . . . , ct ← [1, n] and sends
(receiver, sid, ssid, c1, . . . , ct) to Ft,n

OT .
3. Upon receiving (received, sid, ssid) from Ft,n

OT , Ps uniformly samples n random
strings ri ← {0, 1}�, i = 1, . . . , � and internally runs πV SS using r1, . . . , rn as
input, constructing n strings ((hi)
, gi), i = 1, . . . , n of length 2(� + e) from

the vectors generated by πV SS. Ps computes ((h̃
i
)
, g̃i) = ((hi)
, gi) +G(xi)

and sends (sid, ssid, ((h̃
1
)
, g̃1), . . . , ((h̃

n
)
, g̃n)) to Pr.

4. Upon receiving (received, sid, ssid,xc1 , . . . ,xct) from Ft,n
OT and

(sid, ssid, ((h̃
1
)
, g̃1), . . . , ((h̃

n
)
, g̃n)) from Ps, Pr computes ((hcj )
, gcj ) =

((h̃
cj
)
, g̃cj

) − G(xcj ), 1 ≤ j ≤ t and uses the procedures of πV SS

to check that the shares gc1 , . . . , gct are valid, i.e. it checks that
mj · hi = gj · m


i for i, j ∈ {c1, . . . , ct}. If all shares are valid Pr stores
(ssid, sid, ((hc1)
, gc1), . . . , ((h

ct)
, gct)), otherwise it halts.

Commit Phase:

1. Upon input (commit, sid, ssid, Ps, Pr,m), Ps chooses an unuseda random string
rη, computes m̃ = m+ rη and sends (sid, ssid, η, m̃) to Pr.

2. Pr stores (sid, ssid, m̃) and outputs (receipt, sid, ssid, Ps, Pr).

Reveal Phase:

1. Upon input (reveal, sid, ssid, Ps, Pr), to reveal a message m, Ps reveals the
random string rη by sending (sid, ssid,m,fη) to Pr.

b

2. Pr receives (sid, ssid, η,m, fη), computes Mfη = (g1[η], . . . , gn[η])

, checks

that gj [η] = gj [η] for j ∈ {c1, . . . , ct} and that m = m̃ − rη. If the shares
pass this check, Pr outputs (reveal, sid, ssid, Ps, Pr,m). Otherwise, it rejects
the commitment and halts.

a We say that a string rη is unused if it has not been selected by Ps for use in any
previous commitment.

b Recall that fη denotes the η-th column of F , π�(f
η) = rη and that Mfη =

(g1[η], . . . , gn[η])

, i.e. fη determines the shares of rη generated in the setup

phase.

Fig. 6. Protocol πHCOM in the Ft,n
OT (�PRG)-hybrid model
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Protocols for addition, multiplication and linear operations

Setup Phase: Is augmented by executions of π0
V SS and πϕ

V SS as described in the
text. Throughout, opening a commitment comS(m, f) means that Ps sends m,f
and Pr verifies, as in πHCOM .
Addition: Given commitments comS(m,f), comS(m′,f ′), output

comS(m,f) + comS(m
′,f ′) = comS(m+m′, f + f ′).

Multiplication: Given commitments comS(a,fa), comS(b,f b), and comS(c,fc)
extract the next unused commitment from π0

V SS, comŜ(0
�,u). Form a default com-

mitment comS(1�,f1), where π�(f1) = 1� and the other coordinates are 0. This can
be done by only local computation. Ps opens the following commitment to reveal
0�:

comS(a,fa) ∗ comS(b,f b)− comS(c,fc) ∗ comS(1
�,f1) + comŜ(0

�,u) =

comŜ(a ∗ b− c,fa ⊗ f b − fc ⊗ f1 + u)

Linear Function Given commitment comS(m, f), extract from πϕ
V SS the next

unused pair comS(r,fr), comS(ϕ(r),f ′
r). Ps opens comS(m, f) − comS(r,fr) to

reveal m − r. Both parties compute ϕ(m − r) and form a vector v such that
π�(v) = ϕ(m− r) and the rest of the entries are 0. Output

comS(ϕ(r),f
′
r) + comS(ϕ(m− r),v) = comS(ϕ(m),f ′

r + v)

Fig. 7. Protocol for homomorphic operations on commitments

String Commitment with Partial Individual Opening. Here we wish to
implement a functionality FN,r

com that first allows Ps to commit to N bits and then
to open up to r bits individually, where he can decide adaptively which bits to
open. We do this in the correlated random bits model where a functionality
is assumed that initially gives bit strings to Ps and Pr with some prescribed
joint distribution, the implementation must be statistically secure with error
probability 2−k.

Note that our protocol can be seen as a protocol in this model if we let
players start from the strings that are output by the PRG. In this case we get
statistically secure commitments with error probability 2−Θ(�) (since � is Θ(n)).
So we can choose � to be Θ(k) and get the required error probability. Then one
of our commitments can be realised while consuming O(k) = O(�) correlated
random bits.

Note that we can open a single bit in a commitment to a as follows: to open
the j’th bit aj the prover commits to ej , a vector with 1 in position j and
0 elsewhere and to c which has aj in position j and 0’s elsewhere. Now the
multiplication check is done on commitments to a, ej and c, and Ps opens ej
and c. Pr does the obvious checks and extracts aj . It is trivial to show that this
is a secure way to reveal only aj and we consume O(�) correlated random bits
since only a constant number of commitments are involved.
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Now we can implement FN,r
com with N = �u and r = �u−1 for some u, and the

implementation is done by having Ps commit to the N bits in the normal way
using r commitments, and when opening any single bit, we execute the above
procedure. This consumes a total of O(N + r�) = O(N) correlated random
bits. Thus the consumption per bit committed to is O(1). Furthermore, we have
r = N (u−1)/u = N1−1/u, so we get the result of Theorem 3 by choosing a large
enough u.

Acknowledgements. We thank Yuval Ishai for pointing out interesting appli-
cations of our results and Ignacio Cascudo for clarifying key facts about algebraic
geometric secret sharing schemes.
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Abstract. In a Password-Protected Secret Sharing (PPSS) scheme with
parameters (t, n) (formalized by Bagherzandi et al. [2]), a user Alice
stores secret information among n servers so that she can later recover
the information solely on the basis of her password. The security require-
ment is similar to a (t, n)-threshold secret sharing, i.e., Alice can recover
her secret as long as she can communicate with t+1 honest servers but an
attacker gaining access to t servers cannot learn any information about
the secret. In particular, the system is secure against offline password
attacks by an attacker controlling up to t servers. On the other hand,
accounting for inevitable on-line attacks one allows the attacker an ad-
vantage proportional to the fraction of dictionary passwords tested in
on-line interactions with the user and servers.

We present the first round-optimal PPSS scheme, requiring just one
message from user to server and from server to user, and prove its se-
curity in the challenging password-only setting where users do not have
access to an authenticated public key. The scheme uses an Oblivious
PRF whose security we define using a UC-style ideal functionality for
which we show concrete, truly practical realizations in the random oracle
model as well as standard-model instantiations. As an important appli-
cation we use this scheme to build the first single-round password-only
Threshold-PAKE protocol in the CRS and ROM models for arbitrary
(t, n) parameters with no PKI requirements for any party (clients or
servers) and no inter-server communication. Our T-PAKE protocols are
built by combining suitable key exchange protocols on top of our PPSS
schemes. We prove T-PAKE security via a generic composition theorem
showing the security of any such composed protocol.

1 Introduction

Remarkably, passwords have become a fundamental pillar of electronic security.
That’s quite a high task for these low-entropy easily-memorable easily-guessed
short character strings. In spite of repeated evidence of their vulnerability to
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misuse and attack, passwords are still in widespread use and will probably remain
as such for a long while. The portability of passwords makes them ubiquitous
keys to access remote services, open computing devices, decrypt encrypted files,
protect financial and medical information, etc. Replacing passwords with long
keys requires storing these keys in devices that are not always available to the
user and are themselves at risk of falling in adversarial hands, hence endangering
these keys and the data they protect.

An increasingly common solution to the problem of data security and avail-
ability is to store the data itself, or at least the keys protecting its security, at a
remote server, which in turn is accessed using a password. This requires full trust
in this single server and the one password. In particular, compromising such a
server (or just its password file) is sufficient to crack most passwords stored at
it through an off-line dictionary attack. Indeed, loss of millions of passwords to
such attacks are common news nowadays [31]. Unfortunately, off-line attacks are
unavoidable in single-server scenarios. A natural approach to solving this prob-
lem is to distribute the above trust over a set of servers, for example by sharing
information among these servers using a secret sharing scheme. However, how
does the user access these servers? Using the same password in each of these
servers makes the off-line password recovery attack even worse (as it can be per-
formed against any of these servers) while memorizing a different password for
each server is impractical.

PPSS. The above problem and a framework for solution is captured by the
notion of Password-Protected Secret Sharing (PPSS), originated by the work of
Ford and Kaliski [16] and Jablon [18] and formalized by Bagherzandi et al. [2].
In such a scheme, parametrized by (t, n), user Alice has some secret information
sc that she wants to store and protect, and be able to later access on the basis
of a single password pw. (Secret sc can represent any form of information, but it
is best to think of it as a cryptographic key which protects some cryptographic
capability.) The scheme has an initialization phase where Alice communicates
with each one of a set of n servers S1, . . . , Sn after which each server Si stores
some information ωi associated with user Alice. When Alice needs to retrieve sc,
she performs a reconstruction protocol by interacting with at least t+ 1 servers
where the only input from Alice is her password pw.

The main requirements from this protocol are, informally: (i) an attacker
breaking into t servers cannot gain any information on sc other than by correctly
guessing Alice’s password and running an on-line attack with it (more on this
below). It follows, in particular, that off-line attacks on the password are not
possible as long as the attacker has not compromised more than t servers. In
this case, the only avenue of attack against the secrecy of sc is for the attacker
to select one value pw′ from a given dictionary D of passwords (from which the
user has selected a password at random) and check its validity by interacting
with the user and servers using pw′ as the password. If the overall number of
interactions between the attacker and the user, and between the attacker and the
servers, is q then we allow the attacker to break the semantic security of sc with
advantage q/|D|. Moreover, we will require that “testing” a guessed password
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by impersonating the user to the servers will require interacting with t + 1
different servers. (ii) Soundness: Similarly, a compromise of up to t servers cannot
allow an attacker to make the user reconstruct a wrong secret sc′ �= sc, except
with probability proportional to the number of on-line interactions between the
attacker and the user. This is a necessary exception as the attacker can isolate
the user and simulate a run with the servers with a password pw′ and secret
sc′ chosen by the adversary; what’s required is that only if pw′ happens to be
the user’s password will the attack succeed. Additionally, a desirable property is
(iii) Robustness: Alice can correctly reconstruct sc as long as (a) no more than
t servers are corrupted and (b) Alice communicates without disruptions with at
least t+1 honest servers. Note that robustness can only be achieved if 2t+1 ≤ n
while the other properties do not impose such intrinsic limitation.

T-PAKE. While PPSS schemes have many uses such as for retrieving keys,
credentials, data, and so on, the main PPSS application is for bootstrapping a
Threshold Password-Authenticated Key Exchange (T-PAKE) [27]. In a (t, n) T-
PAKE protocol, a user with a single password is to establish authenticated keys
with any given subset of the n servers, such that security of the keys established
with uncorrupted servers is guaranteed as long as there are no more than t
corrupted servers. PPSS schemes make it possible to build T-PAKE protocols by
combining the PPSS scheme with a regular key exchange protocol in a modular
and generic way. This allows one to focus on the PPSS design which by virtue
of being a much simpler primitive, e.g., avoiding the intricacies of the security
of (password) authenticated key exchange protocols, is likely to result in simpler
and stronger solutions, as is indeed demonstrated by our results below.

Prior/Concurrent Work and Our Contributions

For the general case of (t, n) parameters, Bagherzandi et al. [2] showed a PPSS
scheme in the random oracle model (ROM) where the reconstruction protocol
involves three messages between the user and a subset of t+1 servers (effectively
4 messages in the typical case that the user initiates the interaction). However, if
any of these servers deviates from the correct execution of the protocol, the pro-
tocol needs to be re-run with a new subset of servers, which potentially increases
the number of protocol rounds to O(n). Another significant shortcoming of the
PPSS solution from [2] is that it is secure only in the PKI model, namely, where
the user can authenticate the public keys of the servers. Indeed, if the attacker
can induce the user to run the protocol on incorrect public keys, the protocol of
[2] becomes completely insecure. Thus, [2] leaves at least two open questions: Do
PPSS protocols with optimal single-round communication exist (i.e., requiring a
single message from user to server and single message from server to user), and
can such protocols work in the password-only model, namely when the user does
not have a guaranteed authentic public key.

We answer both questions in the affirmative by exhibiting a PPSS protocol
for a general (t, n) setting with optimal single-round communication (in ROM)
which works in the password-only model. Concurrently to our work, Camenisch
et al. [7] have also presented a general (t, n) setting PPSS which works in the
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password-only model (and ROM). Their protocol sends 10 messages between
the user and each server, its total communication complexity is O(t2), and the
computational cost is more than 7 times the cost of our solution. Moreover, its
robustness is fragile in the same way as that of [2], i.e. the user runs the recon-
struction protocol with a chosen subset of t+1 players, and the protocol must be
re-started if any server in this chosen group deviates. By contrast, the protocol
we present has 2 messages and O(n logn) (worst-case) communication complex-
ity, which reduces to O(n) if the user caches O(n) data between reconstruction
protocol instances. Our protocol also has stronger robustness guarantee, namely,
Alice recovers her shared secret sc in the single protocol instance as long as it has
unobstructed communication with at least t+1 honest servers and if 2t+1 ≤ n.
While [7] formalize a UC functionality for PPSS (which they call “TPASS”,
for Threshold Password-Authenticated Secret Sharing) and prove their proto-
col to realize this functionality, we model the security of a PPSS scheme in the
password-only setting with a game-based notion. We show that our game-based
security notion is strong enough to imply the security of a natural T-PAKE
construction built on top of a PPSS scheme. However, a PPSS satisfying a UC
formalization might simplify the use of PPSS in the design of other cryptographic
schemes, which leaves designing a UC secure PPSS with low message complexity
and good robustness as an interesting open question.

Our PPSS construction is based on a novel version of so-called Oblivious Pseu-
dorandom Function (OPRF) [17] and our contributions touch on three distinct
elements, OPRF’s, PPSS, and T-PAKE’s, which we discuss next.

OPRF. The basic building block of our PPSS construction is a Verifiable Obliv-
ious PRF (V-OPRF). Oblivious PRF (OPRF) was defined [17,20] as a protocol
between two parties, a server and a user, where the first holds the key k for a
PRF function f while the latter holds an argument x on which fk(·) should be
evaluated. At the end of the protocol the user learns fk(x) and is convinced that
such value is properly evaluated while the server learns nothing. Formalizing the
OPRF primitive in a way that can serve our application is not trivial. Indeed,
the intuitive definition of OPRF [17,20] as the secure computation of a two-party
functionality which on input pair (k, x) returns an output pair (⊥, fk(x)), is lim-
iting for at least three reasons: (1) It does not imply security when several OPRF
instances are executed concurrently, as is the case in our PPSS construction; (2)
It does not apply to our setting where the existence of authenticated channels
cannot be assumed; and (3) It is not clear how to instantiate such functionality
in the concurrent setting without on-line extractable zero-knowledge proofs of
knowledge, which would add a significant overhead to any OPRF instantiation.

We overcome these issues via a novel formalization of the verifiable version of
the OPRF primitive, V-OPRF, as an ideal functionality in the Universal Com-
posability (UC) framework [10] for which we show several very efficient instan-
tiations. Expressing V-OPRF in the UC framework is a delicate task, especially
in the setting of interest to us where there are no authenticated channels. Our
formalism enforces that the server who generates the PRF key k also produces
a function descriptor π, which fixes a deterministic function fπ. (For honest
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servers, π is a commitment to k and the fixed function fπ is equal to the PRF
fk.) Then, in any (non-rejecting) execution of the V-OPRF protocol executed
given the function descriptor π, the V-OPRF functionality verifies that the user’s
output is computed as fπ(x). In other words, the V-OPRF functionality ensures
consistency between V-OPRF instances executed under the same function de-
scriptor π as well as verifiability that the output value is computed using the
committed function fπ.

Our UC V-OPRF formalization bears interesting similarities to UC blind
signatures [25,15,1]. In a nutshell, instead of on-line extraction of argument x
from the (potentially malicious) client in every V-OPRF instance, a V-OPRF
functionality issues a ticket for every instance executed under a given descriptor
π. The user (or adversary) can then use these tickets to evaluate function fπ
on inputs of their choice, but with the constraint that m tickets cannot be used
to compute fπ values on more than m distinct inputs. Given this similarity, we
observe that an efficient realization of V-OPRF can be achieved (in ROM) by
hashing a deterministic blind signature-message pair.

We obtain three highly efficient variants of this design strategy, which provide
three single-round V-OPRF instantiations in ROM, and we prove them UC-
secure under “one-more” type of assumptions [3,21]. Specifically, we show such
V-OPRF instantiations in ROM under a one-more Gap DH assumption on any
group of prime order, a similar assumption on the group with a bilinear map,
and a one-more RSA assumption. We also provide an efficient standard model
V-OPRF construction for the Naor-Reingold PRF [30], based on the honest-
but-curious OPRF protocol given by [17]. This protocol has four messages and
is secure under Strong-RSA and the Decisional Composite Residuosity (DCR)
assumptions. A single round standard-model (CRS) protocol is possible too but
at a significant higher computational complexity.

We note that the UC formalization of the Verifiable Oblivious PRF function-
ality that is at the core of our security treatment is likely to have applications
beyond this work. Indeed, OPRF’s have been shown to be useful in a variety
of scenarios, including Searchable Symmetric Encryption (SSE) schemes, e.g.
[13,11], and secure two-party computation of Set Intersection [17,20,21].

PPSS. Our PPSS protocol is password-only in the Common Reference String
(CRS) model, i.e. the user needs no other inputs than her password and a CRS
string defining a non-malleable commitment scheme instance which can be part
of the user’s V-OPRF software. Our PPSS protocol is single-round in the hybrid
model where parties can access the V-OPRF functionality. Given the V-OPRF
instantiations discussed above, this implies three different instantiations of a
single-round (i.e. two-message) PPSS schemes in ROM based on different one-
more type of assumptions, and a four-message PPSS scheme in the CRS model.

Our PPSS construction follows the strategy of the early protocols of Ford
and Kaliski [16] and Jablon [18] who treated the case of t = n: Secret-share the
secret sc into shares (s1, . . . , sn), let each server Si pick key ki for a PRF f , and
let c = (e1, . . . , en) where ei is an encryption of si under ρi = fki(pw). Each
server Si stores (ki, c), and in the reconstruction protocol the user re-computes
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each ρi via an instance of a V-OPRF protocol with each server Si on its input
pw and Si’s input ki. If the user also gets string c from the servers, the user
can decrypt shares si using the ρi’s and interpolate these shares to reconstruct
sc. The first thing to note is that ciphertexts ei must not be committing to
the encryption key ρi. Otherwise, an adversary could test a password guess pw∗

in an interaction with a single V-OPRF instance (instead of requiring t + 1
interactions with t + 1 different servers as our security notion imposes on the
attacker), by computing ρ∗i = fki(pw

∗) and testing if decryption of ei under ρ
∗
i

returns a plausible share value. We prevent such tests by sharing sc over a binary
extension field F = GF (2�), choosing a PRF f which maps onto �-bit strings,
and setting ei to si ⊕ fki(pw). Secondly, the above simple protocol can allow
a malicious server Si to find the user’s password pw if Si is not forced to use
the same function fπi in each V-OPRF instance. Consider the OPRF protocol
of [17] for the Naor-Reingold PRF fki(x) = gv where v = ki,0 ·

∏
xj=1 ki,j

for ki = (ki,0, . . . , ki,�) [30]. If in some PPSS instance, a misbehaving Si uses
key k′i which differs from ki on one index j, i.e. in one component ki,j , Si can
conclude that the j-th bit of pw is 0 if the user recovers its secret correctly
from such PPSS instance. Note that the adversary can learn whether user’s
secret is reconstructed correctly by observing any higher-level protocol which
uses this secret, e.g. a T-PAKE protocol discussed below. We counter this attack
by using the verifiability property of our V-OPRF functionality, which ensures
that Si computes the function committed in πi, and by extending the user-related
information stored by each server to ω = (π, c, C) where π is a vector of function
descriptors π1, . . . , πn of each server, and C is a non-malleable commitment
to the values π, c and user’s password pw. This commitment is the basis for
ensuring that the on-line attacker playing the role of the servers can test at
most one password guess per one reconstruction protocol instance. Note that
the described solution requires O(n) storage and bandwidth per server, but it is
straightforward to reduce these to O(log n) using a Merkle tree commitment.

With an instantiation of V-OPRF in ROM we achieve a remarkably efficient
reconstruction protocol without relying on PKI or secure channels. The user
runs an optimal 2-message protocol with t+1 (or more) servers, and in the case
of our V-OPRF construction based on the one-more Gap DH assumption, the
protocol involves just 2 exponentiations by the server and a total of 2t+3 multi-
exponentiations for the user, employing the optimized ROM-based NIZK for
discrete logarithm equality of [12], plus a few inexpensive operations. The (one-
time) initialization stage is also very efficient, involving 2n+ 1 exponentiations
for the user and 3 exponentiations per each server. Note that there is no inter-
server communication in the protocol and that the user can communicate with
each server independently, so it can be done in parallel and/or in any order
without the servers being aware of each other. Moreover, the user can initiate
the V-OPRF protocol with more than t+1 servers, and it will reconstruct secret
sc as long as t+ 1 contacted servers reply with correct triple ω = (π, c, C) and
complete the V-OPRF instances on function descriptors πi in π.
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Our PPSS protocol in the password-only setting enjoys the following security
hedging property: While avoiding the need to rely on the authenticity of servers’
public keys held by the user is an important security property, when such public
keys are available they can add significant security, because they render on-line
attacks against a user ineffective and strengthen the security and the soundness
properties of the PPSS scheme. Thus, to get the benefits of both worlds, both
with and without the correctly functioning PKI, running a password-only PPSS
protocol over PKI-authenticated links achieves the following: If the user has
the correct servers’ public keys, she gets the additional security benefits stated
above, otherwise, if some or all of the public keys are either incorrect or missing,
she still enjoys the security of the password-only setting.

T-PAKE. When composed with regular key exchange protocols, our PPSS
scheme leads to the most efficient T-PAKE protocols to date even when com-
pared to protocols that assume that the user carries a public key that it can use
to authenticate the servers. Figure 1 summarizes the state of the art in T-PAKE
protocols and how our protocols compare to this prior work. Interestingly, while
there is a large body of work on single-server PAKE protocols (e.g. [4,23,24,5])
that has produced remarkable schemes, including one-round password-only pro-
tocols in the standard model, threshold PAKE has seen less progress, with most
protocols showing disadvantages over a single-server PAKE. In particular, be-
fore our work, no single-round (t, n)-PAKE protocol was known, not even in
the ROM and assuming PKI. Most protocols assume a public key carried by
the client (making them non password-only) and all assume secure channels (or
PKI) between servers. Even in the n = t = 2 case no one-round protocol was
known, and all previously known protocols for this case require inter-server se-
cure channels. Our work improves on these parameters achieving the best known
properties in all the aspects reflected in the table.

In particular, we achieve single-round password-only protocol in the CRS and
ROM models for arbitrary (t, n) parameters with no PKI requirements for any
party and no inter-server communication (secure communication is only assumed
when a user first registers with the servers). In addition, the protocol is com-
putationally very efficient (and more so than any of the previous protocols,
even for the (2,2) case). We also exhibit a password-only standard-model imple-
mentation of our scheme requiring two rounds of communication (4 messages in
total) between client and servers. Our T-PAKE protocols are built by combining
(existing) suitable key exchange protocols on top of our V-OPRF-based PPSS
scheme. We prove T-PAKE security via a generic composition theorem showing
the security of any such composed protocol.

Organization. In Section 2 we present the formalization of the V-OPRF func-
tionality in the UC setting. In Section 3 we show an efficient realization of this
functionality in the random oracle model (ROM) (further ROM and standard
(CRS) model constructions are presented in the full version [19]). In Section 4
we define and formalize PPSS in the password-only model. In Section 5 we
present an efficient PPSS realization which relies on the V-OPRF functionality.
Finally, in Section 6 we consider T-PAKE schemes obtained by composing a
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scheme (t+1, n) ROM/std client inter-server msgs total comm. comp. C | S
BJKS [6] (2, 2) ROM PKI PKI 7 O(1) O(1)

KMTG [22] (2, 2) Std/ROM CRS sec.chan. ≥5 O(1) O(1)

CLN [9] (2, 2) Std/ROM CRS PKI 8 O(1) O(1)

DRG [14] t<n/3 Std CRS sec.chan. ≥12 O(n3) O(1) | O(n2)

MSJ [27] any ROM PKI PKI 7 O(n2) O(1) | O(n)

BJSL [2] any ROM PKI PKI 3 O(t) 8t+17 | 16
CLLN [7] any ROM CRS PKI 10 O(t2) 14t+24 | 7t+28

Our PPSS1 any ROM CRS none 2 O(t log n) 2t+3 | 2
Our PPSS2 any Std CRS none 4 O(�t log n) O(t�) | O(l)

Fig. 1. Comparison between PPSS/T-PAKE schemes. “PPSS1” and “PPSS2” refer to
our PPSS scheme of Section 5 with V-OPRF instantiated, respectively, with protocol
2HashDH-NIZK of Section 3 (this instantiation is shown in Figure 5) and with proto-
col NR-V-OPRF (deferred to the full version [19]). The “total comm.” column counts
the number of transmitted group elements and other objects of length polynomial in
the security parameter, like public-key signatures. Variable � denotes the length of
the password string (or its hash). The last column counts (multi)exponentiations in a
prime-order group (except for our PPSS2 where exponentiations are modulo a Paillier
modulus) performed by the client and each server in the reconstruction protocol. All
costs in the last four rows refer to an optimistic scenario with no adversarial interfer-
ence. With worst-case adversarial interference, for BJSL and CLLN all costs grow by
the factor of n−t, while for our schemes costs grow by the factor of �n/(t+1)�.

PPSS scheme with a regular key-exchange protocol, and present a full specifi-
cation of our most efficient instantiation of the PPSS and T-PAKE protocols.
This version of the paper omits many details, constructions and proofs; please
refer to the full version [19] for a complete presentation.

2 Functionality FVOPRF

The FVOPRF functionality can be thought of as a collection of tables that are
indexed by “labels” denoted by the function parameters π. Users may obtain val-
ues from these tables on inputs x of their choice without leaking any information
about these inputs (and corresponding outputs) to the adversary. FVOPRF gen-
erates these tables dynamically and fills them with random values on demand.
Each table is associated by the functionality with a specific sender. In addition
to the tables registered to honest senders, the adversary is allowed to register
with FVOPRF its own tables. Interacting with an adversary-registered table does
not jeopardize the privacy of the user’s input but naturally FVOPRF will provide
no pseudorandomness guarantee for the output derived from such tables. How-
ever, FVOPRF will ensure that all adversarial tables are completely determined
according to a deterministic function that is committed by the adversary at the
time of the table’s initialization in the form of a circuit M .



Round-Optimal Password-Protected Secret Sharing and T-PAKE 241

Functionality FVOPRF

Key generation:
On message (KeyGen, sid) from S, forward (KeyGen, sid , S) to adversary A∗.
On message (Parameter, sid , S, π,M) from A∗, ignore this call if param(S) is
already defined. Otherwise, set param(S) = 〈π〉 and initialize tickets(π) = 0, and
hist(π) to the empty string. If S is honest send (Parameter, sid , π) to party S,
else parse M as a circuit with �-bit output and insert (π,M) in CorParams.

V-OPRF evaluation:
On message (Eval, sid, S, x) from party U for sender S, record (U, x) and for-
ward (Eval, sid, U, S) to A∗.
On message (SenderComplete, sid , S) from A∗ for some honest S output
(SenderComplete, sid) to party S and set tickets(π) = tickets(π) + 1 for π
s.t. 〈π〉 = param(S).
On message (UserComplete, sid, U, π,flag) from A∗, recover (U, x) and:

– If flag = � and 〈π〉 = param(S) for an honest S then: If tickets(π) ≤ 0
ignore the UserComplete request of A∗. Otherwise: (1) if hist(π) includes
a pair 〈x, ρ′〉, set ρ = ρ′, else sample ρ at random from {0, 1}� and enter
〈x, ρ〉 into hist(π); (2) Set tickets(π) = tickets(π)−1 and output (Eval, π, ρ)
to party U .

– Else, if flag = ⊥ then return (Eval, π,⊥) to U .
– Else, if flag = � and π is such that (π,M) ∈ CorParams for some circuit M ,

compute ρ = M(x), enter 〈x, ρ〉 in hist(π), output (Eval, π, ρ) to party U .

Fig. 2. Verifiable Oblivious PRF functionality FVOPRF

A major consideration in our definition of FVOPRF is to avoid the need for
input extractability (from dishonest users) in the real-world realizations of the
functionality. Such need is common in UC-defined functionalities but in our
case it would disqualify the more efficient instantiations of FVOPRF presented
here. Thus, instead of resorting to input extraction requirements, we define a
“ticket mechanism” that increases a ticket upon function evaluation at a sender
and decreases it when this value is computed at the user (or the adversary).
The functionality guarantees that tickets remain non-negative, namely, for any
function parameter π registered with a honest sender S, the number of inputs on
which users compute the function π is no more than the number of evaluations
of the function at S.

Another important aspect of our FVOPRF formalism is the way we handle
the 1-1 relationship between a sender S and its function parameter π, where S
is used to identify a sender and π describes this sender’s committed function.
The unique sender-function binding that is known to the functionality cannot
be enforced in a real-world setting where users cannot validate such a binding
as is the case when no authenticated channels (or other forms of authenticated
information) are available to the user. Since these settings are common in our
applications, we define FVOPRF so that the user can provide a name of a sender



242 S. Jarecki, A. Kiayias, and H. Krawczyk

Parameters:
Generator g of cyclic group of order m, hash functions H1(·),H2(·), H3(·).

Key Generation:
On (KeyGen, sid), pick k ∈R Zm, set y = gk, return (Parameter, sid, y).

V-OPRF Evaluation:
On message (Eval, sid, S, x), pick r ∈R Zm and send a = H1(x)

r to S.
On message a from network entity U , check if a ∈ 〈g〉, compute b = ak and
ζ = NIZK

H3
EQ [g, y, a, b], and send 〈y, b, ζ〉 to U .

On message 〈y, b, ζ〉 from party S, verify the NIZK ζ and b ∈ 〈g〉. If the tests
pass return (Eval, y,H2(y, x, b

1/r)), else return (Eval, y,⊥).

Fig. 3. Protocol 2HashDH-NIZK

whose function it intends to compute but the result returned to the user applies a
function π determined by the attacker, and is possibly different than the function
associated to the requested S.

In spite of the above, note that if FVOPRF is used in a context where the user
knows a-priori a correspondence between S and π, the user can reject responses
that are not consistent with it. We make essential use of this capability in our
applications. Finally, note that FVOPRF guarantees that value ρ obtained by the
user is in the table π even though such table may not have been the user’s original
target. This provides FVOPRF with a verifiability property which is verifier-
dependent and may not be transferable to others; in particular, it is a weaker
guarantee than the verifiability propery of verifable random functions [29].

3 Efficient Realization of FVOPRF

We present a class of constructions for realizing FVOPRF in the random ora-
cle model. Our constructions share the following general structure: the receiver
hashes and blinds her input and requests the sender’s secret-key application on
this blinded value. The receiver verifies the sender’s response and then obtains
the V-OPRF output by applying a second hash function. Due to the double hash-
ing (which is essential in the security proof) we term the constructions with the
“2Hash” prefix. For lack of space we present here only a single instance of this de-
sign methodology, protocol 2HashDH-NIZK in Figure 3, while our further ROM
constructions, based on RSA or a group with a bilinear map, are presented in the
full version [19]. Protocol 2HashDH-NIZK uses a non-interactive zero-knowledge
proof NIZKH3

EQ [g, y, a, b] of discrete logarithm equality DL(g, y) = DL(a, b). This
NIZK has to be straight-line simulatable and simulation sound, and it can be
implemented with one multi-exponentiation for both the prover and the verifier
using hash function H3 modeled as a random oracle [12].

We will argue the security of the construction employing the following as-
sumption: the (N,Q) One-more Gap DH assumption, states that for any PPT
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A it holds that the following probability is negligible:

Prob[A(·)k,DDH(·,·,·,·)(g, gk, g1, . . . , gN) = {(gjs , gkjs) | s = 1, . . . , Q+ 1}]

where Q is the number of queries that A poses to the (·)k oracle. The probability
is taken over all choices of gk, g1, . . . , gN which are assumed to be random ele-
ments of 〈g〉. We denote by εomdh,G(N,Q) the maximum advantage of any PPT
adversary against the assumption.

Theorem 1. The 2HashDH-NIZK protocol over group G of order m UC-realizes
FVOPRF per Fig. 2 in ROM assuming (i) the existence of PRF functions, (ii) the
(N,Q) One-More Gap DH assumption on G where Q is the number of V-OPRF
executions and N = Q+ q1 where q1 is the number of H1(·) queries.

More precisely, for any adversary against 2HashDH-NIZK there is an ideal-
world adversary (simulator) that produces a view that no environment can distin-
guish with advantage better than qS · εomdh,G(N,Q)+ q3/m

2+2 ·qU/m+N2/m+
εPRF(q2) where qS is the number of senders, qU the number of users, q2, q3 are
the number of queries to oracles H2, H3, and εPRF(q2) is the security of the PRF
function against adversaries executing in comparable time and posing q2 queries.

Proof. See full version [19].

Remark. We note that in the construction of Figure 3, the outgoing message
that is constructed given an (Eval, sid, S, x) command is independent of S. It is
easy to see that security is preserved even if the user employs the same outgoing
message for any sequence of consecutive (Eval, sid, S1, x), . . . , (Eval, sid, Sn, x)
commands for any n ≥ 1. We make essential use of this feature in the optimized
protocol of Figure 5 where the user uses the same blinded input with all servers.

V-OPRF Constructions in the Standard Model. A 4-message realization
of V-OPRF in the standard model based on the Strong RSA and DCR assump-
tions is presented in the full version [19].

4 Password-Protected Secret Sharing: Definitions

Our definition of PPSS adapts the PPSS notion of [2] to the CRS model, but
also re-defines PPSS in terms of a key derivation mechanism rather than an
encryption-style notion used in [2]. In other words, rather than used directly to
semantically protect any message, a PPSS will generate and protect a random
key. This change allows for better modularity, because the resulting key can
be used not only for message encryption (and authentication), but also e.g. for
an Authenticated Key Exchange. A Password-Protected Secret Sharing (PPSS)
scheme in the CRS model is a protocol involving n+ 1 parties, a user U, and n
servers S1, . . . , Sn. A PPSS scheme is a tuple (ParGen, SKeyGen, Init,Rec), where
ParGen and SKeyGen are randomized algorithms and Init and Rec are multi-paty
protocols with the following syntax:

1) Algorithm ParGen generates string CRS for a given security parameter τ .
2) Each Si runs SKeyGen(CRS) to generate private state σi and public param. πi.



244 S. Jarecki, A. Kiayias, and H. Krawczyk

3) Protocol Init is executed by U and servers S1, . . . , Sn, where U runs algorithm
UInit on inputs a password pw ∈ {0, 1}τ , global parameters CRS, and a vector of
server’s public parameters π = (π1, . . . , πn), while each Si runs algorithm SInit on
input (CRS, σi, πi). The outputs of Init is a τ -bit key K for U and a user-specific
information ωi for each server Si.
4) Protocol Rec is executed by U and servers S1, . . . , Sn, where U runs algorithm
URec on (CRS, pw), and each Si runs algorithm SRec on (CRS, σi, πi, ωi). Protocol
Rec generates no output for the servers, while U outputs K ′ which is either a
τ -bit string or a rejection symbol ⊥.

The correctness requirement is that Rec returns the same key K which was
generated in Init, i.e. that for any τ , any CRS output by ParGen(1τ ), any (σi, πi)
output by n instances of SKeyGen(CRS), and any pw ∈ {0, 1}τ , if (K,ω1, . . . , ωn)
is the vector of outputs of Init executed on inputs (pw,CRS,π) for U and (CRS, σi,
πi) for each Si, then U’s local output in an instance of Rec executed on inputs
(CRS, pw) for U and (CRS, σi, πi, ωi) for each Si, is equal to K.

Server’s User-Related State. We stress that the state (σi, πi, ωi) of each server Si
is stored for each user separately, and the PPSS security notion we define below
assumes that each Si stores a separate (σi, πi, ωi) tuple for each user account.
Indeed, the security of the PPSS protocol we present in Section 5 would be
decreased if Si re-uses the same OPRF key, stored in σi in this PPSS protocol,
across multiple user accounts. (Technically, the adversary would get additional
oracle access to the same S�Rec oracle, see below, for each user account on which
the server re-uses the same (σi, πi) pair.) Consequently, if Si wants to provide
PPSS service to multiple users, it has to generate a separate (σi, πi) pair for
each user (these per-user keys can be derived internally by Si using a PRF and
a global PRF key applied to a user’s identifier).

Security. We define security of a PPSS scheme in terms of adversary’s advantage
in distinguishing the key K output by U from a random string. We assume that
the adversary sees CRS and the vector of server’s public parameters π used
in the initialization instance, as well as the private states σB � {σi}i∈B and
ωB � {ωi}i∈B for some set B of corrupted servers, and that it has concurrent
oracle access to instances of URec(CRS, pw) and SRec(CRS, σi, πi, ωi), for i in B �
{1, ..., n} \ B. We denote as U�

Rec(CRS, pw, b,K
(0)) an oracle which executes the

interactive algorithm URec(CRS, pw), and when this algorithm terminates with
a local output K, the U�

Rec oracle (re-)sets K to K(0) if b = 0 and K �=⊥, and
then returns K to the caller. However, if b = 1 or K =⊥ then the caller receives
the unmodified value K (to which we will refer as K(1)) as it was output by the
URec instance. We denote as S�Rec(CRS,σB,π,ωB) an oracle which on input i ∈ B
executes the interactive algorithm SRec(CRS, σi, πi, ωi).

Intuitively, we should call an (t, n)-threshold PPSS scheme secure if for any
password dictionary D, if pw is randomly chosen in D then the adversary’s
advantage in distinguishing the PPSS-protected key K from a random string
(i.e., guessing b) is at most negligibly above 1/|D|, the probability of guessing
the password, times qu + �qs/(t − t′ + 1)�, where qu and qs are the numbers,
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respectively, of the URec and SRec protocol instances the adversary can interact
with, and t′ ≤ t is the number of corrupted servers. Factor 1/|D| ·�qs/(t−t′+1)�
corresponds to an inherent vulnerability due to on-line dictionary attacks: An
adversary who learns the shares of t′ ≤ t servers can test any password p̃w in
D by running the user’s protocol on p̃w interacting with t− t′ + 1 uncorrupted
servers. Factor 1/|D| · qu corresponds to an inherent vulnerability of password-
authenticated protocols in the CRS model, because the adversary can run the
initialization protocol Init on a password guess p̃w and then run the servers’
protocol interacting with the user: If the user does not reject (by outputting ⊥),
the adversary can conclude that p̃w = pw.

To make the PPSS notion easier to use in applications it is important that the
adversary sees the key-pseudorandomness challenge, either a real key or a ran-
dom key, already after the initialization protocol Init, rather than only when this
key is reconstructed in protocol Rec. (E.g. our T-PAKE constructions rely on this
property.) To make sure that the PPSS-protected key remains pseudorandom in
each key usage, whether after the initialization or after each reconstruction in-
stance, we let the adversary see the key generated by Init as well as the key(s)
output by every Rec instance. That is, at the end of Init and after each Rec in-
stance the attacker is given K(0) if b = 0, but if b = 1 then the attacker is given
the actual value of the key output by, respectively, UInit or URec. Note that K(0)

does not change across different reconstructions because it is fixed at the start
of the experiment, while K(1) is determined by the actual outputs of UInit and
URec instances. Importantly, note that this definition implies that in the real ex-
ecution the reconstruction instances must output the same key that was created
in the initialization or the attacker can trivially guess b. We further discuss this
soundness property below.

Definition 1. A PPSS scheme is (T, qu, qs, ε)-secure (for fixed threshold param-
eters (t, n) if for any D ⊆ {0, 1}τ , any set B ⊆ {1, ..., n} of size t′ ≤ t, and any
algorithm A with running time T , we have

Advppss
A ≤

(
qu +

⌊
qs

t− t′ + 1

⌋)
· 1

|D| + ε (1)

where Advppss
A = |p(1)A −p(0)A | and p(b)A = Pr[b′ = 1] in a game below, for b ∈ {0, 1}:

(1) Choose pw at random in D, generate CRS ← ParGen(1τ ) and (σi, πi) ←
SKeyGen(CRS) for i ∈ B. Give CRS and {πi}i∈B to A and let A generate {πi}i∈B.
(2) Run an instance of Init between U, which executes protocol UInit(CRS, pw, π1,
..., πn), and the servers, where each Si for i ∈ B executes protocol SInit(CRS, σi,
πi), while servers Si for i ∈ B are controlled by adversary A. The protocol pro-
ceeds on public channels, with A playing a man-in-the-middle on all communi-
cations. Denote U’s output in this Init instance as K(1), and denote Si’s output,
for i ∈ B, as ωi. Choose K

(0) at random in {0, 1}τ . Give key K(b) to A.
(3) Let A interact with qu instances of U�

Rec(CRS, pw, b,K
(0)) and qs instances

of S�Rec(CRS,σB,π,ωB). Let b
′ be the final output of A.
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Secure Initialization. Note that in the above definition we assume that in the
initalization protocol U runs the UInit procedure on input a vector of public
parameters π = (π1, . . . , πn) where πi for each i ∈ B is the true output of
SKeyGen executed by server Si. In other words, we assume that the user runs
the initialization procedure on correct (i.e. authentic) values πi for the honest
servers. This is equivalent to assuming that the user can authenticate, e.g. via
the PKI, the servers with whom it wants to initialize the PPSS scheme. The
requirement of authenticated channels between the user and the honest servers
during the initialiation protocol is indeed necessesary, or otherwise the adversary
would be able to pose as t+1 servers among S1, . . . , Sn and recover U’s secret sc
from the initialization protocol. (A similar assumption on authenticity of servers’
public keys in the initialization is also made in [8].)

Soundness. The above definition captures also a soundness property of a PPSS
scheme, because it implies an upper-bound on the probability that an adversary
causes any URec instance to output K ′ �∈ {K,⊥} where K was an output of UInit.
Assume algorithm A which outputs 0 if every key returned by U�

Rec oracle is
either equal to K(b) which was output by UInit, or to ⊥. Note that in the security

experiment with b = 0, oracle U�
Rec always returns K(0) or ⊥, so p

(0)
A = 0. The

security definition implies that p
(1)
A ≤

(
qu +

⌊
qs

t−t′+1

⌋)
· 1
|D| +ε, hence this is also

an upper-bound on the probability that any URec instance outputs K ′ which is
neither ⊥ nor K output in UInit.

Robustness. Another desirable property of a PPSS scheme is robustness, which
we define as the requirement that the user reconstructs the key created in Init
as long as it communicates without obstructions with at least t+1 non-corrupt
servers and with at most t corrupt ones. This property is distinct from soundness
in that it assumes that the adversary lets the user communicate with t+1 non-
corrupt servers without interference. Note that this implies that the number t
number of corrupt servers satisfies t < n/2, a restriction which is not imposed
by either the security or the soundness properties.

5 A PPSS Protocol in the FVOPRF-Hybrid World

We show a PPSS protocol based on any realization of the FVOPRF functionality.
The protocol is shown in Figure 4 in the FVOPRF-hybrid model (a specific in-
stantiation based on the 2HashDH-NIZK V-OPRF of Fig. 3 is shown in Fig. 5).
The protocol is secure in the CRS model and it assumes a pseudorandom gener-
ator and a computationally hiding, computationally binding, and non-malleable
(with respect to decommitment) commitment scheme, which can be realized e.g.
by a CCA-secure public key encryption, or by hashing the message together
with a random nonce in ROM. To provide rationale for our design we first con-
sider a subset of the protocol in Figure 4 and then show the necessity of some
additional elements. In SKeyGen, each server Si picks its public parameter πi
as the V-OPRF function descriptor, which in all our V-OPRF instantiations
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is a commitment to the private key of the underlying PRF (see Section 2). In
protocol Init, on U’s inputs a password pw and a vector of function descriptors
π = (π1, . . . , πn), which are authentically delivered to the user, user U picks a
random key K, secret-shares it into shares s1, . . . , sn, and then encrypts each si
using one-time pad encryption under key ρi = Fπi(pw), computed in a V-OPRF
instance with server Si. The vector of function descriptors π = (π1, . . . , πn) and
the ciphertexts c = (c1, . . . , cn), where ci = si ⊕Fπi(pw), is public, and given to
each server. At reconstruction the servers send these two vectors to U, who can
recover t+ 1 shares si, and interpolate them to recover K, after t+ 1 V-OPRF
instances in which U recomputes the values ρi = Fπi(pw) for t+ 1 different i’s.

This simplified protocol, however, is not secure. As we explain in the intro-
duction, if the attacker learns whether the receiver recovers the shared key K
correctly, the above protocol would enable a malicious server Si to get informa-
tion about user’s password pw (including recovering it completely using binary
search in an OPRF based on the Naor-Reingold PRF), by manipulating the
function descriptor πi in each OPRF instance executed by Si in this reconstruc-
tion protocol. In fact, in the PPSS security model defined in section 4, the above
simplified protocol allows a malicious server to recover π through an off-line
dictionary search after a single instance of PPSS reconstruction. Note that our
PPSS security model reveals the whole key K output in a PPSS reconstruction
to the adversary, which models putting this key to an arbitrary usage by the
higher-level protocol, e.g. by the T-PAKE scheme built from PPSS in Section
6. Now, if A sends to URec a vector of function descriptors π∗

i which correspond
to PRF keys k∗i which A creates, and if A learns the key K output by this
URec instance, then A can stage an off-line dictionary attack running the user’s
reconstruction algorithm for every guess p̃w in the password dictionary D, and
locally computing values Fπ∗

i
(p̃w) using the PRF keys k∗i . This is yet another

reason why we need to extend the above protocol by adding a non-malleable
commitment C that binds user’s password pw to the reconstructed secret K. We
accomplish this binding as follows: The CRS string will include an instance of
a non-malleable commitment scheme COM. In the initialization procedure, the
user secret-shares not the key K directly, but a random value s, and then it uses
s as a PRG seed to derive the key K together with the commitment randomness
r, and sets each state ωi given to Si to (π, c, C) where C = COM((pw,π, c); r).
By the binding property of commitment COM, the adversary playing the role
of the servers must commit to a password guess p̃w in value C it sends to the
user, and the reconstruction procedure rejects unless the guess was right, i.e.
unless p̃w = pw, disabling the off-line dictionary attack above. We need the
non-malleability of the commitment scheme to forestall the possibility that the
adversary modifies either the vector of function descriptors π or the ciphertexts
c, and hence in particular modifies the reconstructed key K, without guessing
the password.

Communication Complexity, Robustness. In Figure 4 we show a PPSS
scheme whose communication complexity is O(n2 ·poly(τ)) where τ is a security
parameter, because the protocol starts with each server Si sending to U a tuple
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Parameters: Security parameters τ and �, binary extension field F = GF (2�),
session ID sid = (S1, . . . ,Sn), threshold parameters t, n ∈ N.

ParGen(τ ): Sets CRS as an instance of a non-malleable commitment COM.

SKeyGen(CRS): Si sends (KeyGen, sid) to FVOPRF and sets πi to π it receives in
the response (Parameter, sid , π) from FVOPRF. The private state σi of Si is the
unique handle “Si” has to the V-OPRF function Fπi implemented by the ideal
FVOPRF functionality. (In all our V-OPRF instantiations σi is a PRF key and the
function descriptor πi is a commitment to it.)

UInit(CRS, pw, π1, . . . , πn) � {SInit(CRS, σi, πi)}ni=1:
Step 1. User U picks s ← F and generates (s1, . . . , sn) as a (t, n) Shamir’s secret-
sharing of s over field F. (Indices 0, 1, . . . , n used in Shamir’s secret-sharing are
encoded as some distinct field elements 〈0〉F, 〈1〉F, . . . , 〈n〉F.) For i = 1 to n, U
sends (Eval, sid ,Si, pw) to FVOPRF.
Step 2. User U collects FVOPRF responses (π′

1, ρ1), . . . , (π
′
n, ρn), and aborts if π′

i =
πi for any i. If all parameters π′

i match those in the inputs, U computes ci ←
si ⊕ ρi for i = 1 to n, c ← (c1, . . . , cn), π ← (π1, . . . , πn), [r||K] ← G(s), C ←
COM((pw,π, c); r), sends ω = (π, c, C) to each Si, and outputsK as a local output.

URec(CRS, pw) � {SRec(CRS, σi, πi, ωi)}i∈S:
For each i = 1, . . . , n, user U sends (Eval, sid ,Si, pw) to FVOPRF and initiates a
run of the protocol Rec with Si.
Each Si responds by sending ωi to U and (SenderComplete, sid ,Si) to FVOPRF,
and U collects FVOPRF responses (π′

i, ρi) and ωi for each i ∈ S.
Let S be a subset of servers such that: (i) |S| = t+1; (ii) there exists ω = (π, c, C)
with π = (π1, . . . , πn) and c = (c1, . . . , cn) such that ωi = ω for all Si ∈ S; (iii) for
all Si ∈ S, π′

i = πi and ρi =⊥. If no such subset exists output ⊥ and halt.
Reconstruction: Set ui ← ci ⊕ ρi for all i ∈ S. Interpolate points {(〈i〉F, ui)}i∈S

with a polynomial U ∈ F[x], and set s ← U(〈0〉F). Compute [r||K] ← G(s). If
COM((pw,π, c); r) = C then output K, else output ⊥.

Fig. 4. A PPSS scheme in the FVOPRF-hybrid-model

ω which contains n function descriptors πi and n field elements ci. The reason
we do this is simplicity, plus we suspect that in most applications the number of
servers n will be small enough that the O(n2) cost of this communication will not
be significant in practice. However, for large n we can reduce the communication
to O(n log n) using a Merkle Tree hash [28]. Each server Si would then send only
its own πi, ci values together with the co-path in the hash tree which allows U to
agree on the set of t+1 servers whose tree co-paths hash to the same root value.
In practice U could also cash the ω vector as it does not change between Rec
protocol instances, in which case the communication cost becomes O(n). The
communication cost can be decreased even further, to O(t) group elements, at
the cost of reducing robustness. The user could instigate V-OPRF instances with
only t+ c servers instead of with all n, for any c between 1 and n− t. This would
reduce bandwidth at the price of increasing the protocol costs in the case of an
active attack: If just c among the t+ c servers U contacts are either corrupted or
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connected to U over corrupted links, the reconstruction attempt fails, and the
user needs to instigate V-OPRF instances with the remaining servers.

Theorem 2. (PPSS Security) Assuming commitment scheme COM is com-
putationally hiding, computationally binding, and non-malleable (with respect to
decommitment), and that G is a pseudorandom generator, the PPSS scheme in
Figure 4 is (T, qu, qs, ε)-secure for ε = εH + εB + qu · εNM + 4εG, where εH ,
εB, εNM and εG are the bounds implied by, respectively, computational hiding of
COM, copmutational binding of COM, non-malleability of COM with respect to
decommitment, and the pseudorandomness of G, on input sizes implied by the
usage of COM and G in the PPSS scheme, for adversaries whose time is bounded
by T plus the time taken by a single instance of Init, qu instances of URec, and
qs instances of SRec.

Proof. See full version [19].

6 From PPSS to Single-Round T-PAKE

Composition of a PPSS scheme with a (regular) key-exchange protocol allows
us to obtain very efficient one-round T-PAKE protocols with arbitrary thresh-
old parameters and in the password-only CRS model, i.e. no PKI or secure
channels are assumed. For lack of space we refer to the full version [19] for a
general composition theorem proving the security of T-PAKE protocols built by
this methodology. Here we only present examples of T-PAKE schemes obtained
through this approach, and illustrate them with the most efficient T-PAKE
instantiation, presented in Figure 5, resulting from our single-round PPSS of
Section 5 implemented with the 2Hash-DH OPRF shown of Section 3.

T-PAKE via PPSS and Symmetric-Key KE. Let P be a (t, n)-PPSS pro-
tocol in the CRS model. To bootstrap a (t, n)-TPAKE protocol using P , each
server Si, i = 1, . . . , n, generates its state pair (σi, πi) and runs with client C the
Init procedure of protocol P . As a result a user’s secret, which we call KC , is
(t, n)-secret-shared among these servers under the protection of the PPSS scheme
and the client’s password pw. Next, client C uses key KC to compute n keys
Ki = fKC(i), i = 1, . . . , n, where f is a pseudorandom function, and transmits
eachKi (protected under the secure communication assumed at initialization) to
the corresponding Si who stores Ki in its client-specific ζi(C) state. Later, when
a T-PAKE session at C is invoked, C runs the Rec procedure of protocol P with
a sufficient number of servers to obtain KC . C uses KC to compute K1, . . . ,Kn

and uses these keys as shared keys with the corresponding servers to exchange
a session key. Any KE protocol that assumes pre-shared keys between pairs of
parties can be used for this purpose. For example, C and Si can compute their
session key as fKi(nC , nSi , idC , idSi) where idC , idSi stand for the identities of
C and Si respectively, and nC , nSi are nonces exchanged between these parties
that also serve as session identifiers. Note that when using a one-round PPSS
scheme, the exchange of nonces can be piggybacked on top of the PPSS messages
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hence preserving the single round complexity of the protocol (with one additional
message from C to Si if key confirmation is desired). A full specification of this
protocol based on the 2HashDH-NIZK V-OPRF is presented in Figure 5. One
can also add forward secrecy to the protocol by using the shared key to au-
thenticate a Diffie-Hellman exchange (also piggybacked on top of the two PPSS
messages to preserve the single-round complexity).

T-PAKE via PPSS and public-key KE. The above scheme provides a full
T-PAKE protocol with very little extra cost over the PPSS scheme. Its relative
drawback is (as in any pre-shared key scheme) that the server needs to keep
a per-client secret and also that it requires secrecy for the transmission of key
Ki to Si (otherwise, our PPSS scheme only needs authenticated channels during
initialization). To avoid these secrecy requirements, key exchange protocols based
on public keys of the parties can be accommodated on top of a PPSS as follows.
At initialization, the client generates a pair of private and public keys, and
obtains public keys for all its servers. C then generates a file (we call it a keystore
in our formal treatment [19]) that includes its own key pair (with the private
key encrypted under a key derived from KC) and the servers’ public keys. The
keystore is stored at each server authenticated with a MAC computed by C using
a key derived from KC . In addition, each server stores C’s public key. When a
T-PAKE session is invoked at C, the client retrieves keystore from the servers
and, after reconstructing KC , uses this key to check the integrity of keystore
and to decrypt its private key. With this information and the (authenticated)
public keys of the servers contained in keystore, C is ready to perform the key
exchange protocol. Similarly, the servers can use C’s public key that they stored
to bootstrap the public-key based key exchange. In particular, using a two-
message KE protocol whose messages are independent of the parties private-
and public-keys. (such as HMQV [26]), one obtains a single-round T-PAKE by
piggy-backing the two KE messages on top of the two PPSS ones.

DH-Based Instantiation of PPSS and T-PAKE. For illustration and for
the reader’s convenience we describe in Figure 5 the specific instantiation of the
PPSS and T-PAKE protocols based on the 2HashDH-NIZK V-OPRF, with the
NIZK for DL equality implemented as in [12], and a symmetric-key KE scheme.
We comment on some of our choices for this illustration. The initialization is
presented for the case in which the client generates the servers’ V-OPRF keys
and computes all the values in the ω vector by itself. Another option, more in line
with the formal description of the PPSS protocol from Figure 4, is for the servers
to choose their own V-OPRF keys and engage in an V-OPRF computation with
the client for generating the pads used to encrypt the shares si. One advantage
of the latter option is that servers can save in the amount of secret memory and
derive the V-OPRF keys for each user U using a single key MK and a PRF
F , i.e., as kU = FMK(U) (we are abusing the symbols U and Si to denote the
identities of these parties). This option is more useful with a PK-based KE,
where servers do not need to store user-specific secrets (in contrast, the protocol
from Figure 5 requires the server storing the session key with each user). User
performance during reconstruction is improved by choosing a common value ρ
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Parties: User U, Servers S1, . . . ,Sn.

Public parameters and components: Security parameters τ and �, thresh-
old parameters t, n ∈ N, t ≤ n, field F = GF (2�), cyclic group of
prime order m with generator g; hash functions H1,H2,H3,H4,H5 with
ranges 〈g〉, {0, 1}�, {0, 1}τ , Zm, Zm, respectively; pseudorandom generator G and

pseudorandom function family f .

Initialization (secure channels between U and each server Si are assumed only
through initialization): User U performs the following steps:

1. Chooses s ∈R F and generates shares (s1, . . . , sn) as a (t, n) Shamir’s secret-
sharing of s over field F.

2. For i = 1, . . . , n, U chooses value ki ∈R Zm and sets πi = gki and
ci = si ⊕H2(πi, pw, (H1(pw))

ki).
3. Sets c = (c1, . . . , cn), π = (π1, . . . , πn), [r||K] = G(s), C = H3(r, pw,π, c);

For i = 1, . . . , n, sets Ki = fK(Si) .

4. For i = 1, . . . , n, sends to server Si the values ωi = (π, c, C), ki, Ki .
5. U memorizes pw and erases all other information.

Each server Si, i = 1, . . . , n, stores ωi, ki, yi = gki , Ki in its U-specific storage ζi.

Reconstruction/Key Exchange

− User U initiates a key exchange session with servers S1, . . . ,Sn by sending to

each Si the value a = (H1(pw))
ρ with ρ ∈R Zm and a nonce μi ∈R {0, 1}τ .

− Upon receiving (a, μi ), server Si checks that a ∈ 〈g〉 and if so, Si retrieves ki and

yi = gki from its U-specific storage ζi(U), picks z ∈R Zm, and computes bi = aki ,
γ = H4(g, yi, a, bi), vi = H5(g, yi, a, bi, (g · aγ)z), and ui = z + vi · ki mod m. Si

sends to U the values yi, bi, ui, vi as well as a nonce μ′
i ∈R {0, 1}τ and the value ωi

stored in ζi(U). Si computes the session key with U as SKi = fKi(μi, μ
′
i,U,Si).

− Upon receiving values bi, ui, vi, ωi, μ′
i from Si, U proceeds as follows:

– U chooses a subset of servers S for which the following conditions hold: (i)
there is a value ω = (π, c, C) with π = (π1, . . . , πn) and c = (c1, . . . , cn) such
that ωi = ω for all Si ∈ S; (ii) yi = πi for all Si ∈ S; (iii) bi ∈ 〈g〉 and the
equality vi = H5(g, yi, a, bi, (g ·aγ)ui · (yi ·biγ)−vi) for γ = H4(g, yi, a, bi) holds
for all Si ∈ S; (iv) |S| = t+ 1.

– If no such subset exists U aborts. Else, set si = ci ⊕H2(yi, pw, b
1/ρ
i ), for each

Si ∈ S, and reconstruct s from these si shares using polynomial interpolation.
– Compute [r||K] = G(s). If C = H3(r,pw,π, c) then U aborts.

– For each Si ∈ S, set Ki = fK(Si) and compute SKi = fKi(μi, μ
′
i,U,Si).

Fig. 5. DH-based PPSS and T-PAKE Protocols (boxed text indicates key-exchange
specific operations on top of PPSS)
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for blinding the H1(pw) value sent to all servers. We stress that while we specifiy
the actions of honest servers, corrupted ones can deviate from the protocol in any
way they choose to. Finally, note that the protocol as presented does not include
an explicit authentication mechanism. This can be easily added, for example, by
server Si adding the value fKi(0, μi, μ

′
i)) to its message and by U adding a third

message with value fKi(1, μ
′
i, μi) (in this case, the session key could be derived

as SKi = fKi(2, μi, μ
′
i,U, Si)).
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Abstract. A computational secret-sharing scheme is a method that en-
ables a dealer, that has a secret, to distribute this secret among a set
of parties such that a “qualified” subset of parties can efficiently re-
construct the secret while any “unqualified” subset of parties cannot
efficiently learn anything about the secret. The collection of “qualified”
subsets is defined by a monotone Boolean function.

It has been a major open problem to understand which (monotone)
functions can be realized by a computational secret-sharing scheme.
Yao suggested a method for secret-sharing for any function that has
a polynomial-size monotone circuit (a class which is strictly smaller than
the class of monotone functions in P). Around 1990 Rudich raised the
possibility of obtaining secret-sharing for all monotone functions in NP:
In order to reconstruct the secret a set of parties must be “qualified” and
provide a witness attesting to this fact.

Recently, Garg et al. [14] put forward the concept of witness encryption,
where the goal is to encrypt a message relative to a statement x ∈ L for a
language L ∈ NP such that anyone holding a witness to the statement can
decrypt the message, however, if x /∈ L, then it is computationally hard
to decrypt. Garg et al. showed how to construct several cryptographic
primitives from witness encryption and gave a candidate construction.

One can show that computational secret-sharing implies witness en-
cryption for the same language. Our main result is the converse: we give
a construction of a computational secret-sharing scheme for any mono-
tone function in NP assuming witness encryption for NP and one-way
functions. As a consequence we get a completeness theorem for secret-
sharing: computational secret-sharing scheme for any single monotone
NP-complete function implies a computational secret-sharing scheme for
every monotone function in NP.

1 Introduction

A secret-sharing scheme is a method that enables a dealer, that has a secret piece
of information, to distribute this secret among n parties such that a “qualified”
subset of parties has enough information to reconstruct the secret while any
“unqualified” subset of parties learns nothing about the secret. A monotone
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collection of “qualified” subsets (i.e., subsets of parties that can reconstruct
the secret) is known as an access structure, and is usually identified with its
characteristic monotone function.1 Besides being interesting in their own right,
secret-sharing schemes are an important building block in many cryptographic
protocols, especially those involving some notion of “qualified” sets (e.g., multi-
party computation, threshold cryptography and Byzantine agreement). For more
information we refer to the extensive survey of Beimel on secret-sharing schemes
and their applications [4].

A significant goal in constructing secret-sharing schemes is to minimize the
amount of information distributed to the parties. We say that a secret-sharing
scheme is efficient if the size of all shares is polynomial in the number of parties
and the size of the secret.

Secret-sharing schemes were introduced in the late 1970s by Blakley [8] and
Shamir [32] for the threshold access structure, i.e., where the subsets that can re-
construct the secret are all the sets whose cardinality is at least a certain thresh-
old. Their constructions were fairly efficient both in the size of the shares and in
the computation required for sharing and reconstruction. Ito, Saito and Nishizeki
[21] considered general access structures and showed that every monotone ac-
cess structure has a (possibly inefficient) secret-sharing scheme that realizes it.
In their scheme the size of the shares is proportional to the DNF (resp. CNF)
formula size of the corresponding function. Benaloh and Leichter [7] proved that
if an access structure can be described by a polynomial-size monotone formula,
then it has an efficient secret-sharing scheme. The most general class for which
secret-sharing is known was suggested by Karchmer and Wigderson [22] who
showed that if the access structure can be described by a polynomial-size mono-
tone span program (for instance, undirected connectivity in a graph), then it has
an efficient secret-sharing scheme. Beimel and Ishai [5] proposed a secret-sharing
scheme for an access structure which is conjectured to lie outside NC. On the
other hand, there are no known lower bounds that show that there exists an
access structure that requires only inefficient secret-sharing schemes.2

Computational Secret-Sharing. In the secret-sharing schemes considered above
the security is guaranteed information theoretically, that is, even if the par-
ties are computationally unbounded. These secret-sharing schemes are known as
perfect secret-sharing schemes. A natural variant, known as computational secret-
sharing schemes, is to allow only computationally limited dealers and parties, i.e.,
they are probabilistic algorithms that run in polynomial-time. More precisely, a

1 It is most sensible to consider only monotone sets of “qualified” subsets of parties. A
set M of subsets is called monotone if A ∈ M and A ⊆ A′, then A′ ∈M . It is hard
to imagine a meaningful method for sharing a secret to a set of “qualified” subsets
that does not satisfy this property.

2 Moreover, there are not even non-constructive lower bounds for secret-sharing
schemes. The usual counting arguments (e.g., arguments that show that most func-
tions require large circuits) do not work here since one needs to enumerate over
the sharing and reconstruction algorithms whose complexity may be larger than the
share size.
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computational secret-sharing scheme is a secret-sharing scheme in which there
exists an efficient dealer that generates the shares such that a “qualified” sub-
set of parties can efficiently reconstruct the secret, however, an “unqualified”
subset that pulls its shares together but has only limited (i.e., polynomial) com-
putational power and attempts to reconstruct the secret should fail (with high
probability). Krawczyk [25] presented a computational secret-sharing scheme
for threshold access structures that is more efficient (in terms of the size of the
shares) than the perfect secret-sharing schemes given by Blakley and Shamir
[8,32]. In an unpublished work (mentioned in [4], see also Vinod et al. [33]), Yao
showed an efficient computational secret-sharing scheme for access structures
whose characteristic function can be computed by a polynomial-size monotone
circuit (as opposed to the perfect secret-sharing of Benaloch and Leichter [7]
for polynomial-size monotone formulas). Yao’s construction assumes the exis-
tence of pseudorandom generators, which can be constructed from any one-way
function [19]. There are access structures which are known to have an efficient
computational secret-sharing schemes but are not known to have efficient per-
fect secret-sharing schemes, e.g., directed connectivity.3 Yao’s scheme does not
include all monotone access structures with an efficient algorithm to determine
eligibility. One notable example where no efficient secret-sharing is known is
matching in a graph.4 Thus, a major open problem is to answer the following
question:

Which access structures have efficient computational secret-sharing schemes,
and what cryptographic assumptions are required for that?

Secret-Sharing for NP. Around 1990 Steven Rudich raised the possibility of ob-
taining secret-sharing schemes for an even more general class of access structures
than P: monotone functions in NP, also known asmNP.5 An access structure that
is defined by a function in mNP is called an mNP access structure. Intuitively,
a secret-sharing scheme for an mNP access structure is defined (in the natural
way) as following: for the “qualified” subsets there is a witness attesting to this
fact and given the witness it should be possible to reconstruct the secret. On the
other hand, for the “unqualified” subsets there is no witness, and so it should
not be possible to reconstruct the secret. For example, consider the Hamiltonian
access structure. In this access structure the parties correspond to edges of the
complete undirected graph, and a set of parties X is said to be “qualified” if and

3 In the access structure for directed connectivity, the parties correspond to edge slots
in the complete directed graph and the “qualified” subsets are those edges that
connect two distinguished nodes s and t.

4 In the access structure for matching the parties correspond to edge slots in the
complete graph and the “qualified” subsets are those edges that contain a perfect
matching. Even though matching is in P, it is known that there is no monotone
circuit that computes it [30].

5 Rudich raised it in private communication with the second author around 1990 and
was not written to the best of our knowledge; some of Rudich’s results can be found
in Beimel’s survey [4] and in Naor’s presentation [28].
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only if the corresponding set of edges contains a Hamiltonian cycle and the set
of parties knows a witness attesting to this fact.

Rudich observed that if NP �= coNP, then there is no perfect secret-sharing
scheme for the Hamiltonian access structure in which the sharing of the secret
can be done efficiently (i.e., in polynomial-time).6 This (conditional) impossi-
bility result motivates looking for computational secret-sharing schemes for the
Hamiltonian access structure and other mNP access structures. Furthermore,
Rudich showed that the construction of a computational secret-sharing schemes
for the Hamiltonian access structure gives rise to a protocol for oblivious trans-
fer. More precisely, Rudich showed that if one-way functions exist and there is a
computational secret-sharing scheme for the Hamiltonian access structure (i.e.,
with efficient sharing and reconstruction), then efficient protocols for oblivious
transfer exist.7 In particular, constructing a computational secret-sharing scheme
for the Hamiltonian access structure assuming one-way functions will resolve a
major open problem in cryptography and prove that Minicrypt=Cryptomania,
to use Impagliazzo’s terminology [20].

In the decades since Rudich raised the possibility of access structures beyond
P not much has happened. This changed with the work on witness encryption by
Garg et al. [14], where the goal is to encrypt a message relative to a statement
x ∈ L for a language L ∈ NP such that: Anyone holding a witness to the
statement can decrypt the message, however, if x /∈ L, then it is computationally
hard to decrypt. Garg et al. showed how to construct several cryptographic
primitives from witness encryption and gave a candidate construction.

A by-product of the proposed construction of Garg et al. was a construction of
a computational secret-sharing scheme for a specific monotone NP-complete lan-
guage. However, understanding whether one can use a secret-sharing scheme for
any single (monotone) NP-complete language in order to achieve secret-sharing
schemes for any language in mNP was an open problem. One of our main results
is a positive answer to this question. Details follow.

Our Results. In this paper, we construct a secret-sharing scheme for every mNP
access structure assuming witness encryption for NP and one-way functions. In
addition, we give two variants of a formal definition for secret-sharing for mNP
access structures (indistinguishability and semantic security) and prove their
equivalence.

Theorem 1. Assuming witness encryption for NP and one-way functions, there
is an efficient computational secret-sharing scheme for every mNP access struc-
ture.

We remark that if we relax the requirement of computational secret-sharing
such that a “qualified” subset of parties can reconstruct the secret with very

6 Moreover, it is possible to show that if NP ⊆ coAM, then there is no statistical
secret-sharing scheme for the Hamiltonian access structure in which the sharing of
the secret can be done efficiently [28].

7 The resulting reduction is non-black-box. Also, note that the results of Rudich apply
for any other monotone NP-complete problem as well.
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high probability (say, negligibly close to 1), then our scheme from Theorem 1
actually gives a secret-sharing scheme for every monotone functions in MA.

As a corollary, using the fact that a secret-sharing scheme for a language im-
plies witness encryption for that language and using the completeness of witness
encryption,8 we obtain a completeness theorem for secret-sharing.

Corollary 1 (Completeness of Secret-Sharing). Let L be a monotone lan-
guage that is NP-complete (under Karp/Levin reductions) and assume that one-
way functions exist. If there exists a computational secret-sharing scheme for
the access structure defined by L, then there are computational secret-sharing
schemes for every mNP access structure.

1.1 On Witness Encryption and Its Relation to Obfuscation

Witness encryption was introduced by Garg et al. [14]. They gave a formal
definition and showed how witness encryption can be combined with other
cryptographic primitives to construct public-key encryption (with efficient key
generation), identity-based encryption and attribute-based encryption. Lastly,
Garg et al. presented a candidate construction of a witness encryption scheme
which they assumed to be secure. In a more recent work, a new construction of
a witness encryption scheme was proposed by Gentry, Lewko and Waters [16].

Shortly after the paper of Garg et al. [14] a candidate construction of indistin-
guishability obfuscation was proposed by Garg et al. [13]. An indistinguishability
obfuscator is an algorithm that guarantees that if two circuits compute the same
function, then their obfuscations are computationally indistinguishable. The no-
tion of indistinguishability obfuscation was originally proposed in the seminal
work of Barak et al. [2,3].

Recently, there have been two significant developments regarding indistin-
guishability obfuscation: first, candidate constructions for obfuscators for all
polynomial-time programs were proposed [13,11,1,29,15] and second, intriguing
applications of indistinguishability obfuscation when combined with other cryp-
tographic primitives9 have been demonstrated (see, e.g., [13,31,9]).

As shown by Garg et al. [13], indistinguishability obfuscation implies witness
encryption for all NP, which, as we show in Theorem 1, implies secret-sharing for
all mNP. In fact, using the completeness of witness encryption (see Footnote 8),
even an indistinguishability obfuscator for 3CNF formulas (for which there is a
simple candidate construction [10]) implies witness encryption for all NP. Under-
standing whether witness encryption is strictly weaker than indistinguishability
obfuscation is an important open problem.

8 Using standard Karp/Levin reductions between NP-complete languages, one can
transform a witness encryption scheme for a single NP-complete language to a wit-
ness encryption scheme for any other language in NP.

9 See [23] for a thorough discussion of the need in additional hardness assumptions on
top of iO.
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1.2 Other Related Work

A different model of secret-sharing for mNP access structures was suggested by
Vinod et al. [33]. Specifically, they relaxed the requirements of secret-sharing
by introducing a semi-trusted third party T who is allowed to interact with the
dealer and the parties. They require that T does not learn anything about the
secret and the participating parties. In this model, they constructed an efficient
secret-sharing scheme for any mNP access structures (that is also efficient in
terms of the round complexity of the parties with T ) assuming the existence of
efficient oblivious transfer protocols.

1.3 Main Idea

Let Com be a perfectly-binding commitment scheme. LetM ∈ mNP be an access
structure on n parties P = {p1, . . . , pn}. Define M ′ to be the NP language that
consists of sets of n strings c1, . . . , cn as follows. M ′(c1, . . . , cn) = 1 if and only
if there exist r1, . . . , rn such that M(x) = 1, where x = x1 . . . xn is such that

∀i ∈ [n] : xi =

{
1 if ri �= ⊥ and Com(i, ri) = ci,

0 otherwise.

For the languageM ′ denote by (EncryptM ′ ,DecryptM ′) the witness encryption
scheme for M ′. A secret-sharing scheme for the access structure M consists
of a setup phase in which the dealer distributes secret shares to the parties.
First, the dealer samples uniformly at random n openings r1, . . . , rn. Then, the
dealer computes a witness encryption ct of the message S with respect to the
instance (c1 = Com(1, r1), . . . , cn = Com(n, rn)) of the languageM

′, namely ct =
EncryptM ′((c1, . . . , cn), S). Finally, the share of party pi is set to be 〈r1, ct〉.

Clearly, if EncryptM ′ and Com are efficient, then the generation of the shares
is efficient. Moreover, the reconstruction procedure is the natural one: Given a
subset of parties X ⊆ P such that M(X) = 1 and a valid witness w, decrypt
ct using the shares of the parties X and w. By the completeness of the witness
encryption scheme, given a valid subset of parties X and a valid witness w the
decryption will output the secret S.

As for the security of this scheme, we want to show that it is impossible to
extract (or even learn anything about) the secret having a subset of parties X for
which M(X) = 0 (i.e., an “unqualified” subset of parties). Let X be such that
M(X) = 0 and let D be an algorithm that extracts the secret given the shares of
parties corresponding to X . Roughly speaking, we will use the ability to extract
the secret in order to solve the following task: we are given a list of n unopened
string commitments c1, . . . , cn and a promise that it either corresponds to the
values A0 = {1, . . . , n} or it corresponds to the values A1 = {n+ 1, . . . , 2n} and
we need to decide which is the case. Succeeding in this task would break the
security guarantee of the commitment scheme.

We sample n openings r1, . . . , rn uniformly at random and create a new wit-
ness encryption ct′ such that ct′ = EncryptM ′((c′1, . . . , c

′
n), S) as above, where we
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replace the commitments corresponding to parties not in X with commitments
from the input as follows:

∀i ∈ [n] : c′i =

{
Com(i, ri) if pi ∈ X

ci otherwise.

For i ∈ [n] we set the share of party pi to be 〈ri, ct′〉. We run D with this new
set of shares. If we are in the case where c1, . . . , cn corresponds to A0, then D
is unable to distinguish between ct and ct′ and, hence, will be able to extract
the secret. On the other hand, if c1, . . . , cn corresponds to A1, then there is no
valid witness to decrypt ct′ (since the commitment scheme is perfectly-binding).
Therefore, by the security of the witness encryption scheme, it is computationally
hard to learn anything about the secret S from ct′. Hence, if D is able to extract
the secret S, then we deduce that c1, . . . , cn correspond to A0 and, otherwise we
conclude that c1, . . . , cn correspond to A1.

The above gives intuition for proving security in the non-uniform setting. To
see this, we assume that there exists an X such that M(X) = 0 and the distin-
guisher D can extract the secret from the shares of X . Our security definition
(see Section 3) is uniform and requires the distinguisher D to find such an X
and extract the secret with noticeable probability. In the uniform case, we first
run D to get X and must make sure that M(X) = 0. Otherwise, if M(X) = 1,
in both cases (that c1, . . . , cn correspond to A0 or to A1) it is easy to extract
the secret and thus we might be completely fooled. The problem is that M is a
language in mNP and, in general, it could be hard to test whether M(X) = 0.
We overcome this by sampling many subsets X and use D to estimate which
one to use. For more information we refer to Section 4.1.

2 Preliminaries

We start with some general notation. We denote by [n] the set of numbers
{1, 2, . . . , n}. Throughout the paper we use n as our security parameter. We
denote by Un the uniform distribution on n bits. For a distribution or random
variable R we write r ← R to denote the operation of sampling a random element

r according to R. For a set S, we write s
R←S to denote the operation of sampling

an s uniformly at random from the set S. We denote by neg : N → R a function
such that for every positive integer c there exists an integer Nc such that for all
n > Nc, neg(n) < 1/nc.

2.1 Monotone NP

A function f : 2[n] → {0, 1} is said to be monotone if for every X ⊆ [n] such that
f(X) = 1 it also holds that ∀Y ⊆ [n] such that X ⊆ Y it holds that f(Y ) = 1.

A monotone Boolean circuits is a Boolean circuit with AND and OR gates
(without negations). A non-deterministic circuit is a Boolean circuit whose in-
puts are divided into two parts: standard inputs and non-deterministic inputs.
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A non-deterministic circuit accepts a standard input if and only if there is some
setting of the non-deterministic input that causes the circuit to evaluate to 1. A
monotone non-deterministic circuit is a non-deterministic circuit where the mono-
tonicity requirement applies only to the standard inputs, that is, every path from
a standard input wire to the output wire does not have a negation gate.

Definition 1 ([18]). We say that a function L is in mNP if there exists a uni-
form family of polynomial-size monotone non-deterministic circuit that computes
L.

Lemma 1 ([18, Theorem 2.2]). mNP = NP∩mono, where mono is the set of
all monotone functions.

2.2 Computational Indistinguishability

Definition 2. Two sequences of random variables X = {Xn}n∈N and Y =
{Yn}n∈N are computationally indistinguishable if for every probabilistic polynomial-
time algorithm A there exists an integer N such that for all n ≥ N ,

|Pr[A(Xn) = 1]− Pr[A(Yn) = 1]| ≤ neg(n).

where the probabilities are over Xn, Yn and the internal randomness of A.

2.3 Secret-Sharing

A perfect (resp., computational) secret-sharing scheme involves a dealer who has
a secret, a set of n parties, and a collection A of “qualified” subsets of parties
called the access structure. A secret-sharing scheme for A is a method by which
the dealer (resp., efficiently) distributes shares to the parties such that (1) any
subset in A can (resp., efficiently) reconstruct the secret from its shares, and (2)
any subset not in A cannot (resp., efficiently) reveal any partial information on
the secret. For more information on secret-sharing schemes we refer to [4] and
references therein.

Throughout this paper we deal with secret-sharing schemes for access struc-
tures over n parties P = Pn = {p1, . . . , pn}.

Definition 3 (Access structure). An access structure M on P is a monotone
set of subsets of P. That is, for all X ∈ M it holds that X ⊆ P and for all
X ∈M and X ′ such that X ⊆ X ′ ⊆ P it holds that X ′ ∈M .

We may think of M as a characteristic function M : 2P → {0, 1} that outputs 1
given as input X ⊆ P if and only if X is in the access structure.

Many different definitions for secret-sharing schemes appeared in the litera-
ture. Some of the definitions were not stated formally and in some cases rigorous
security proofs were not given. Bellare and Rogaway [6] survey many of these
different definitions and recast them in the tradition of provable-security cryp-
tography. They also provide some proofs for well-known secret-sharing schemes
that were previously unanalyzed. We refer to [6] for more information.
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2.4 Witness Encryption

Definition 4 (Witness encryption [16]). A witness encryption scheme for an
NP language L (with a corresponding relation R) consists of the following two
polynomial-time algorithms:

Encrypt(1λ, x,M): Takes as input a security parameter 1λ, an unbounded-
length string x and an message M of polynomial length in λ, and outputs a
ciphertext ct.
Decrypt(ct, w): Takes as input a ciphertext ct and an unbounded-length string
w, and outputs a message M or the symbol ⊥.

These algorithms satisfy the following two conditions:

1. Completeness (Correctness): For any security parameter λ, any M ∈
{0, 1}poly(λ) and any x ∈ L such that R(x,w) holds, we have that

Pr[Decrypt(Encrypt(1λ, x,M), w) =M ] = 1.

2. Soundness (Security): For any probabilistic polynomial-time adversary
A, there exists a negligible function neg(·), such that for any x /∈ L and
equal-length messages M1 and M2 we have that∣∣Pr[A(Encrypt(1λ, x,M1) = 1]− Pr[A(Encrypt(1λ, x,M2) = 1]

∣∣ ≤ neg(λ).

Remark. Our definition of Rudich secret-sharing (that is given in Section 3) is
uniform. The most common definition of witness encryption in the literature
is a non-uniform one (both in the instance and in the messages). To achieve
our notion of security for Rudich secret-sharing it is enough to use a witness
encryption scheme in which the messages are chosen uniformly.

2.5 Commitment Schemes

In our construction we need a non-interactive commitment scheme such that
commitments of different strings has disjoint support. Since the dealer in the
setup phase of a secret-sharing scheme is not controlled by an adversary (i.e.,
it is honest), we can relax the foregoing requirement and use non-interactive
commitment schemes that work in the CRS (common random string) model,
Moreover, since the domain of input strings is small (it is of size 2n) issues of
non-uniformity can be ignored. Thus, we use the following definition:

Definition 5 (Commitment scheme in the CRS model). A polynomial-
time computable function Com : {0, 1}� × {0, 1}n × {0, 1}m → {0, 1}∗, where �
is the length of the string to commit, n is the length of the randomness, m is
the length of the CRS. We say that Com is a (non-interactive perfectly binding)
commitment scheme in the CRS model if for any two inputs x1, x2 ∈ {0, 1}� such
that x1 �= x2 it holds that:
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1. Computational Hiding: Let crs ← {0, 1}m be chosen uniformly at random.
The random variables Com(x1,Un, crs) and Com(x2,Un, crs) are computa-
tionally indistinguishable (given crs).

2. Perfect Binding: With all but negligible probability over the CRS, the supports
of the above random variables are disjoint.

Commitment schemes that satisfy the above definition, in the CRS model, can
be constructed based on any pseudorandom generator [26] (which can be based
on any one-way functions [19]). For simplicity, throghout the paper we ignore
the CRS and simply write Com(·, ·). We say that Com(x, r) is the commitment
of the value x with the opening r.

3 The Definition of Rudich Secret-Sharing

In this section we formally define computational secret-sharing for access struc-
tures realizing monotone functions in NP, which we call Rudich secret-sharing.
Even though secret-sharing for functions in NP were considered in the past
[33,4,14], no formal definition was given.

Our definition consists of two requirements: completeness and security. The
completeness requirement assures that a “qualified” subset of parties that wishes
to reconstruct the secret and knows the witness will be successful. The security
requirement guarantees that as long as the parties form an “unqualified” subset,
they are unable to learn the secret.

Note that the security requirement stated above is possibly hard to check
efficiently: For some access structures in mNP (e.g., monotone NP-complete
problems) it might be computationally hard to verify that the parties form an
“unqualified” subset. Next, in Definition 6 we give a uniform definition of secret-
sharing for NP. In Section 3.1 we give an alternative definition and show their
equivalence.

Definition 6 (Rudich secret-sharing). Let M : 2P → {0, 1} be an access
structure corresponding to a language L ∈ mNP and let VM be a verifier for L.
A secret-sharing scheme S for M consists of a setup procedure SETUP and a
reconstruction procedure RECON that satisfy the following requirements:

1. SETUP(1n, S) gets as input a secret S and distributes a share for each party.
For i ∈ [n] denote by Π(S, i) the random variable that corresponds to the
share of party pi. Furthermore, for X ⊆ P we denote by Π(S,X) the random
variable that corresponds to the set of shares of parties in X.

2. Completeness:
If RECON(1n, Π(S,X), w) gets as input the shares of a “qualified” subset
of parties and a valid witness, and outputs the shared secret. Namely, for
X ⊆ P if M(X) = 1, then for any valid witness w such that VM (X,w) = 1,
it holds that:

Pr [RECON(1n, Π(S,X), w) = S] = 1,

where the probability is over the internal randomness of the scheme and of
RECON.
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3. Indistinguishability of the Secret:
For every pair of probabilistic polynomial-time algorithms (Samp, D) where
Samp(1n) defines a distribution over pairs of secrets S0, S1, a subset of par-
ties X and auxiliary information σ, it holds that

|Pr [M(X) = 0 ∧ D(1n, S0, S1, Π(S0, X), σ) = 1]−
Pr [M(X) = 0 ∧ D(1n, S0, S1, Π(S1, X), σ) = 1] | ≤ neg(n),

where the probability is over the internal randomness of the scheme, the
internal randomness of D and the distribution (S0, S1, X, σ) ← Samp(1n).
That is, for every pair of probabilistic polynomial-time algorithms (Samp, D)
such that Samp chooses two secrets S0, S1 and a subset of parties X ⊆ P, if
M(X) = 0 then D is unable to distinguish (with noticeable probability) be-
tween the shares of X generated by SETUP(S0) and the shares of X generated
by SETUP(S1).

Notation. For ease of notation, 1n and σ are omitted when they are clear from
the context.

3.1 An Alternative Definition: Semantic Security

The security requirement (i.e., the third requirement) of a Rudich secret-sharing
scheme that is given in Definition 6 is phrased in the spirit of computational
indistinguishability. A different approach is to define the security of a Rudich
secret-sharing in the spirit of semantic security. As in many cases (e.g., encryp-
tion [17]), it turns out that the two definitions are equivalent.

Definition 7 (Rudich secret-sharing - semantic security version)
Let M : 2P → {0, 1} be an mNP access structure with verifier VM . A secret-

sharing scheme S for M consists of a setup procedure SETUP and a reconstruc-
tion procedure RECON as in Definition 6 and has the following property instead
of the indistinguishability of the secret property:

3 Unlearnability of the Secret:
For every pair of probabilistic polynomial-time algorithms (Samp, D) where
Samp(1n) defines a distribution over a secret S, a subset of parties X and
auxiliary information σ, and for every efficiently computable function f :
{0, 1}∗ → {0, 1}∗ it holds that there exists a probabilistic polynomial-time
algorithm D′ (called a simulator) such that

|Pr [M(X) = 0 ∧ D(1n, Π(S,X), σ) = f(S)]−
Pr [M(X) = 0 ∧ D′(1n, X, σ) = f(S)] | ≤ neg(n),

where the probability is over the internal randomness of the scheme, the in-
ternal randomness of D and D′, and the distribution (S,X, σ) ← Samp(1n).
That is, for every pair of probabilistic polynomial-time algorithms (Samp, D)
such that Samp chooses a secret S and a subset of parties X ⊆ P, if M(X) =
0 then D is unable to learn anything about S that it could not learn without
access to the secret shares of X.
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Theorem 2. Definition 7 and Definition 6 are equivalent.

We defer the proof of Theorem 2 to the full version of the paper [24].

3.2 Definition of Adaptive Security

Our definition of Rudich secret-sharing only guarantees security against static
adversaries. That is, the adversary chooses a subset of parties before it sees any
of the shares. In other words, the selection is done independently of the sharing
process and hence, we may think of it as if the sharing process is done after
Samp chooses X .

A stronger security guarantee would be to require that even an adversary that
chooses its set of parties in an adaptive manner based on the shares it has seen
so far is unable to learn the secret (or any partial information about it). Namely,
the adversary chooses the parties one by one depending on the secret shares of
the previously chosen parties.

The security proof of our scheme (which is given in Section 4) does not hold
under this stronger requirement. It would be interesting to strengthen it to the
adaptive case as well. One problem that immediately arises in an analysis of
our scheme against adaptive adversaries is that of selective decommitment (cf.
[12]), that is when an adversary sees a collection of commitments and can select
a subset of them and receive their openings. The usual proofs of security of
commitment schemes are not known to hold in this case.

4 Rudich Secret-Sharing from Witness Encryption

In this section we prove the main theorem of this paper. We show how to con-
struct a Rudich secret-sharing scheme for any mNP access structure assuming
witness encryption for NP and one-way functions.

Theorem 3. [Theorem 1 Restated] Assuming witness encryption for NP and
one-way functions, there is an efficient computational secret-sharing scheme for
every mNP access structure.

Let P = {p1, . . . , pn} be a set of n parties and let M : 2P → {0, 1} be an
mNP access structure. We view M either as a function or as a language. For a
language L in NP let (EncryptL,DecryptL) be a witness encryption scheme and
let Com : [2n] × {0, 1}n → {0, 1}q(n) be a commitment scheme, where q(·) is a
polynomial.

The Scheme. We define a language M ′ that is related to M as follows. The
language M ′ consists of sets of n strings {ci}i∈[n] ∈ {0, 1}q(n) as follows.
M ′(c1, . . . , cn) = 1 if and only if there exist {ri}i∈[n] such that M(x) = 1,
where x ∈ {0, 1}n is such that
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∀i ∈ [n] : xi =

{
1 if ri �= ⊥ and Com(i, ri) = ci,

0 otherwise.

For every i ∈ [n], the share of party pi is composed of 2 components: (1)
ri ∈ {0, 1}n - an opening of a commitment to the value i, and (2) a witness
encryption ct. The witness encryption encrypts the secret S with respect to the
commitments of all parties {ci = Com(i, ri)}i∈[n]. To reconstruct the secret given
a subset of parties X , we simply decrypt ct given the corresponding openings
of X and the witness w that indeed M(X) = 1. The secret-sharing scheme is
formally described in Figure 1.

The Rudich Secret-Sharing Scheme S for M

The SETUP Procedure:

Input : A secret S.

Let M ′ be the language as described above, and let (EncryptM′ ,DecryptM′) be a
witness encryption for M ′ (see Definition 4).

1. For i ∈ [n]:
(a) Sample uniformly at random an opening ri ∈ {0, 1}n.
(b) Compute the commitment ci = Com(i, ri).

2. Compute ct← EncryptM′((c1, . . . , cn), S).
3. Set the share of party pi to be Π(S, i) = 〈ri, ct〉.

The RECON Procedure:

Input : A non-empty subset of parties X ⊆ P together with their shares and a witness
w of X for M .

1. Let ct be the witness encryption in the shares of X.

2. For any i ∈ [n] let r′i =

{
ri if pi ∈ X

⊥ otherwise.

3. Output DecryptM′(ct, (r′1, . . . , r
′
n, w)).

Fig. 1. Rudich secret-sharing scheme for NP

Observe that if the witness encryption scheme and Com are both efficient, then
the scheme is efficient (i.e., SETUP and RECON are probabilistic polynomial-
time algorithms). SETUP generates n commitments and a witness encryption of
polynomial size. RECON only decrypts this witness encryption.
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Completeness. The next lemma states that the scheme is complete. That is,
whenever the scheme is given a qualified X ⊆ P and a valid witness w of X , it
is possible to successfully reconstruct the secret.

Lemma 2. Let M ∈ NP be an mNP access structure. Let S = SM be the scheme
from Figure 1 instantiated with M . For every subset of parties X ⊆ P such that
M(X) = 1 and any valid witness w it holds that

Pr [RECON(Π(S,X), w) = S] = 1.

Proof. Recall the definition of the algorithm RECON from Figure 1: RECON gets
as input the shares of a subset of parties X = {pi1 , . . . , pik} for k, i1, . . . , ik ∈ [n]
and a valid witness w. Recall that the shares of the parties in X consist of
k openings for the corresponding commitments and a witness encryption ct.
RECON decrypts ct given the openings of parties in X and the witness w.

By the completeness of the witness encryption scheme, the output of the
decryption procedure on ct, given a valid X and a valid witness, is S (with
probability 1).

Indistinguishability of the Secret. We show that our scheme is secure. More
precisely, we show that given an “unqualified” set of parties X ⊆ P as input
(i.e., M(X) = 0), with overwhelming probability, any probabilistic polynomial-
time algorithm cannot distinguish the shared secret from another.

To this end, we assume towards a contradiction that such an algorithm exists
and use it to efficiently solve the following task: given two lists of n commitments
and a promise that one of them corresponds to the values {1, . . . , n} and the other
corresponds to the values {n+1, . . . , 2n}, identify which one corresponds to the
values {1, . . . , n}. The following lemma shows that solving this task efficiently
can be used to break the hiding property of the commitment scheme.

Lemma 3. Let Com : [2n]×{0, 1}n → {0, 1}q(n) be a commitment scheme where
q(·) is a polynomial. If there exist ε = ε(n) > 0 and a probabilistic polynomial-
time algorithm D for which

|Pr[D(Com(1,Un), . . . ,Com(n,Un)) = 1]−
Pr[D(Com(n,Un), . . . ,Com(2n,Un)) = 1]| ≥ ε,

then there exist a probabilistic polynomial-time algorithm D′ and x, y ∈ [2n] such
that

|Pr[D′(Com(x,Un)) = 1]− Pr[D′(Com(y,Un)) = 1]| ≥ ε/n.

The proof of the lemma follows from a standard hybrid argument. See details in
the full version of the paper [24].

At this point we are ready to prove the security of our scheme. That is, we
show that the ability to break the security of our scheme translates to the ability
to break the commitment scheme (using Lemma 3).
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Lemma 4. Let P = {p1, . . . , pn} be a set of n parties. Let M : 2P → {0, 1} be
an mNP access structure. If there exist a non-negligible ε = ε(n) and a pair of
probabilistic polynomial-time algorithms (Samp, D) such that for (S0, S1, X) ←
Samp(1n) it holds that

Pr [M(X) = 0 ∧ D(S0, S1, Π(S0, X)) = 1]

− Pr [M(X) = 0 ∧ D(S0, S1, Π(S1, X)) = 1] ≥ ε,

then there exists a probabilistic algorithm D′ that runs in polynomial-time in n/ε
such that for sufficiently large n

|Pr[D′(Com(1,Un), . . . ,Com(n,Un)) = 1]−
Pr[D′(Com(n+ 1,Un), . . . ,Com(2n,Un)) = 1]| ≥ ε/10− neg(n).

The proof of Lemma 4 appears in Section 4.1.
Using Lemma 4 we can prove Theorem 3, the main theorem of this section.

The completeness requirement (Item 2 in Definition 6) follows directly from
Lemma 2. The indistinguishability of the secret requirement (Item 3 in Defini-
tion 6) follows by combining Lemmas 3 and 4 together with the hiding property
of the commitment scheme. Section 4.1 is devoted to the proof of Lemma 4.

4.1 Main Proof of Security

LetM be an mNP access structure, (Samp, D) be a pair of algorithms and ε > 0
be a function of n, as in the Lemma 4. We are given a list of (unopened) string
commitments c1, . . . , cn ∈ {Com(zi, r)}r∈{0,1}n , where for Z = {z1, . . . , zn} ei-

ther Z = {1, . . . , n} � A0 or Z = {n+1, . . . , 2n} � A1. Our goal is to construct
an algorithm D′ that distinguishes between the two cases (using Samp and D)
with non-negligible probability (that is related to ε). Recall that Samp chooses
two secrets S0, S1 and X ⊆ P and then D gets as input the secret shares of
parties in X for one of the secrets. By assumption, for (S0, S1, X) ← Samp(1n)
we have that

|Pr [M(X) = 0 ∧ D(S0, S1, Π(S0, X)) = 1]−
Pr [M(X) = 0 ∧ D(S0, S1, Π(S1, X)) = 1] | ≥ ε. (1)

Roughly speaking, the algorithm D′ that we define creates a new set of shares
using c1, . . . , cn such that: If c1, . . . , cn are commitments to Z = A0 then D is
able to recover the secret; otherwise, (if Z = A1) it is computationally hard to
recover the secret. Thus, D′ can distinguish between the two cases by running
D on the new set of shares and acting according to its output.

We begin by describing a useful subroutine we call Dver. The inputs to
Dver are n string commitments c1, . . . , cn, two secrets S0, S1 and a subset of
k ∈ [n] parties X . Assume for ease of notations that X = {p1, . . . , pk}. Dver

first chooses b uniformly at random from the set {0, 1} and samples uniformly
at random n openings r1, . . . , rn from the distribution Un. Then, Dver com-
putes the witness encryption ct′b of the message Sb with respect to the instance
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Com(1, r1), . . . ,Com(k, rk), ck+1, . . . , cn of M ′ (see Figure 1) and sets for every
i ∈ [n] the share of party pi to be Π ′(Sb, i) = 〈ri, ct′b〉. Finally, Dver emulates
the execution of D on the set of shares of X (Π ′(Sb, X)). If the output of D
equals to b, then Dver outputs 1 (meaning the input commitments correspond to
Z = A0); otherwise, Dver outputs 0 (meaning the input commitments correspond
to Z = A1).

The näıve implementation of D′ is to run Samp to generate S0, S1 and X , run
Dver with the given string commitments, S0, S1 and X , and output accordingly.
This, however, does not work. To see this, recall that the assumption (eq. (1))
only guarantees that D is able to distinguish between the two secrets when
M(X) = 0. However, it is possible that with high probability (yet smaller than
1 − 1/poly(n)) over Samp it holds that M(X) = 1, in which we do not have
any guarantee on D. Hence, simply running Samp and Dver might fool us in
outputting the wrong answer.

The first step to solve this is to observe that, by the assumption in eq. (1),
Samp generates an X such that M(X) = 0 with (non-negligible) probability at
least ε. By this observation, notice that by running Samp for Θ(n/ε) iterations
we are assured that with very high probability (specifically, 1 − neg(n)) there
exists an iteration in which M(X) = 0. All we are left to do is to recognize in
which iteration M(X) = 0 and only in that iteration we run Dver and output
accordingly.

However, in general it might be computationally difficult to test for a given
X whether M(X) = 0 or not. To overcome this, we observe that we need some-
thing much simpler than testing if M(X) = 0 or not. All we actually need is
a procedure that we call B that checks if Dver is a good distinguisher (between
commitments to A0 and commitments to A1) for a given X . On the one hand,
by the assumption, we are assured that this is indeed the case if M(X) = 0. On
the other hand, if M(X) = 1 and Dver is biased, then simply running Dver and
outputting accordingly is enough.

Thus, our goal is to estimate the bias of Dver. The latter is implemented
efficiently by running Dver independently Θ(n/ε) times on both inputs (i.e., with
Z = A0 and with Z = A1) and counting the number of “correct” answers.

Recapping, our construction of D′ is as follows: D′ runs for Θ(n/ε) iterations
such that in each iteration it runs Samp(1n) and gets two secrets S0, S1 and
a subset of parties X . Then, it estimates the bias of Dver for that specific X
(independently of the input). If the bias is large enough, D′ evaluates Dver with
the input of D′, the two secrets S0, S1 and the subset of parties X and outputs
its output. The formal description of D′ is given in Figure 2.

Analysis of D′. We defer the detailed analysis of D′ to the full version of the
paper [24].
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The algorithm D′

Input : A sequence of commitments c1, . . . , cn where ∀i ∈ [n] : ci ∈
{Com(zi, r)}r∈{0,1}n and for Z = {z1, . . . , zn} either Z = {1, . . . , n} � A0 or

Z = {n+ 1, . . . , 2n} � A1.

1. Do the following for T = n/ε times:
(a) S0, S1, X ← Samp(1n).
(b) Run bias← B(S0, S1, X).
(c) If bias = 1:

i. Run resD ← Dver(c1, . . . , cn, S0, S1, X).
ii. Output resD (and HALT).

2. Output 0.

The sub-procedure B

Input : Two secrets S0, S1 and a subset of parties X ⊆ P .

1. Set q0, q1 ← 0. Run TB = 4n/ε times:
(a) q0 ← q0 +Dver(Com(1,Un), . . . ,Com(n,Un), S0, S1, X).
(b) q1 ← q1 +Dver(Com(n+ 1,Un), . . . ,Com(2n,Un), S0, S1, X).

2. If |q0 − q1| > n, output 1.
3. Output 0.

The sub-procedure Dver

Input : A sequence of commitments c1, . . . , cn, two secrets S0, S1 and a subset of
parties X ⊆ P .

1. Choose b ∈ {0, 1} uniformly at random.

2. For i ∈ [n]: Sample ri
R←Un and let c′i =

{
Com(i, ri) if pi ∈ X

ci otherwise.

3. Compute ct′b ← EncryptM′((c′1, . . . , c
′
n), Sb).

4. For i ∈ [n] let the new share of party pi be Π ′(Sb, i) = 〈ri, ct′b〉.
5. Return 1 if D(S0, S1,Π

′(Sb, X)) = b and 0 otherwise.

Fig. 2. The description of the algorithm D′

5 Conclusions and Open Problems

We have shown a construction of a secret-sharing scheme for any mNP access
structure. In fact, our construction yields the first candidate computational
secret-sharing scheme for all monotone functions in P (recall that not every
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monotone function in P can be computed by a polynomial-size monotone cir-
cuit, see e.g., Razborov’s lower bound for matching [30]). Our construction only
requires witness encryption scheme for NP.

We conclude with several open problems:

– Is there a secret-sharing scheme for mNP that relies only on standard hard-
ness assumptions, or at least falsifiable ones [27]?

– Is there a way to use secret-sharing for monotone P to achieve secret-sharing
for monotone NP (in a black-box manner)?

– Construct a Rudich secret-sharing scheme for every access structure in mNP
that is secure against adaptive adversaries (see Section 3.2 for a discussion).
Under a stronger assumption, i.e., extractable witness encryption (in which
if an algorithm is able to decrypt a ciphertext, then it is possible to extract
a witness), Zvika Brakerski observed that our construction is secure against
adaptive adversaries as well.

– Show a completeness theorem (similarly to Corollary 1) for secret-sharing
schemes that are also secure against adaptive adversaries, as defined in Sec-
tion 3.2.

Acknowledgements. We are grateful to Amit Sahai for suggesting to base our
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Abstract. We propose the TWEAKEY framework with goal to unify the
design of tweakable block ciphers and of block ciphers resistant to related-
key attacks. Our framework is simple, extends the key-alternating con-
struction, and allows to build a primitive with arbitrary tweak and key
sizes, given the public round permutation (for instance, the AES round).
Increasing the sizes renders the security analysis very difficult and thus
we identify a subclass of TWEAKEY, that we name STK, which solves the
size issue by the use of finite field multiplications on low hamming weight
constants. Overall, this construction allows a significant increase of se-
curity of well-known authenticated encryptions mode like ΘCB3 from
birthday-bound security to full security, where a regular block cipher
was used as a black box to build a tweakable block cipher. Our work can
also be seen as advances on the topic of secure key schedule design.

Keywords: tweak, block cipher, key schedule, authenticated encryp-
tion.

1 Introduction

Block ciphers are among the most scrutinized cryptographic primitives, used in
many constructions as basic secure bricks that ensure data encryption and/or
authenticity. In the last few decades, a lot of research has been conducted on this
topic, and it is believed that building a secure and efficient block cipher is now
a well-understood problem. In particular, designs that allowed to prove their se-
curity against classical differential or linear attacks have been a very important
step forward, and have been incorporated in the current main worldwide stan-
dard AES-128 [34]. This topic is mature and the community has recently been
focusing on other directions, such as the possibility to build ciphers dedicated
to very constrained environments [9, 12, 23].

The security of the block ciphers, both Feistel and Substitution-Permutation
networks, has been well studied when the key is fixed and secret, however, when
the attacker is allowed to ask for encryption or decryption with different (and
related) keys the situation becomes more complicated. In the past, many pub-
lished ciphers have been broken in this so-called related-key model [4, 5] and it
has even been demonstrated that the Advanced Encryption Standard (AES) has
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c© International Association for Cryptologic Research 2014
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flaws in this model [6,7]. It is known how to design a cryptographically good per-
mutation composed of several iterated rounds, but when it comes to keying this
permutation with subkeys generated by the key schedule, it is hard to ensure
that the overall construction remains secure. Most key schedule constructions
are ad-hoc, in the sense that the designers came up with a key schedule that is
quite different from the internal permutation of the cipher, in a hope that no
meaningful structure is created by the interaction of the two components. This is
the case of PRESENT [9] or AES [34] ciphers, where the key schedule is purposely
made different from the round function. Some key schedules can be very weak
but fast and lightweight (like in LED [23], where many rounds are required to
ensure security against related-key attacks), while some can be very strong but
slow (like in the internal cipher of the WHIRLPOOL hash function [3]). In order
to partially ease this task of deriving a good schedule, some automatic tools ana-
lyzing the resistance of the ciphers against simple related-key differential attacks
have been developed [8, 21, 32].

The Hasty Pudding cipher [37], proposed to the AES competition organized
by the NIST, permitted the user to insert an additional input to the classical key
and plaintext pair, called spice by the designers of this cipher. This extra input
T , later renamed as tweak, was supposed to be completely public and to random-
ize the instance of the block cipher: to different values of T correspond different
and independent families of permutations EK . This feature was formalized in
2002 by Liskov et al. [30,31], who showed that tweakable block ciphers are valu-
able building blocks if retweaking (changing the tweak value) is less costly than
changing its secret key. Tweakable block ciphers (see MERCY [13], for example)
found many different utilizations in cryptography, such as disk encryption where
each block is ciphered with the same key, but the block index is used as tweak
value.

Simple constructions of a tweakable block cipher EK(T, P ) based on a block
cipher EK(P ), like XORing the tweak into the key input and/or message input,
are not satisfactory. For example, only XORing the tweak into the key input
would result in an undesirable property that EK(T, P ) = EK⊕X(T ⊕ X,P ).
Liskov et al. propose instead to use universal hash families for that purpose.
The XE and XEX constructions [36] (and the follow-up standard XTS [19]) are
based on finite field multiplications in GF (2n), and present the particularity of
being efficient if sequential tweaks are used. Nonetheless, even with such feature,
these scheme might not be really efficient as the cipher execution is not negligible
compared to a finite field multiplication in GF (2n) (for example when AES is the
internal block cipher and the scheme implementation uses AES-NI instructions).
More importantly, these methods ensure only security up to the birthday-bound
(relative to the block cipher size). This can be a problem as the main block
cipher standards only have 64- or 128-bit block size. Minematsu [33] partially
overcomes this limitation by proving beyond birthday-bound security for his
design, but at the expense of a very reduced efficiency. The same observation
applies to more recent beyond-birthday constructions such as [29, 38]. Overall,
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none of the state-of-the-art block-cipher-based schemes provide both efficiency
and beyond birthday-bound security.

Ad-hoc constructions would be a solution, with the obvious drawback that
security proofs regarding the construction would be very hard to obtain. So far,
this direction has seen a surprisingly low number of proposals. The NIST SHA-3
competition for hash functions triggered a few, like SKEIN [20] (with its ad-hoc
internal tweakable block cipher Threefish) and BLAKE2 [2]. It is interesting
to note that both are Addition-Rotation-XOR (ARX) functions and thus offer
less possibility of proofs with regard to classical differential-linear attacks. As
of today, it remains an open problem to design an ad-hoc AES-like tweakable
block cipher, which in fact would be very valuable for authenticated encryption
as AES-NI instruction sets guarantee extremely fast software implementations.
Such a primitive would enable very efficient authenticated encryption with be-
yond birthday-bound security and proof regarding the mode of operation.

Liskov et al. proposed to separate the roles of the secret key (which provides
uncertainty to the adversary) from that of the tweak (which provides independent
variability) – interestingly, almost all tweakable block cipher proposals (except
Threefish) follow this rule. This might be seen as counter intuitive as it is
required the tweak input to be somehow more efficient than the key input, but
at the same time the security requirement on the tweak seem somehow stronger
than on the key, since the attacker can fully control the former (even though
tweak-recovery attacks are irrelevant). We argue in this article that, in practice,
when one designs a block cipher these two inputs should be considered almost the
same, as incorporating a tweak and a secret key shares in fact a lot of common
ground, especially for the large family of key-alternating ciphers.

Our Contributions. In this article, we bring together key schedule design and
tweak input handling for block ciphers in a common framework that we call
TWEAKEY (Section 2). The idea is to provide a simple framework to design a
tweakable block cipher with any key and any tweak sizes. Our construction is
very simple and can be seen as a natural extension of key-alternating ciphers:
a subtweakey (i.e. a value obtained from the key and the tweak inputs) is in-
corporated into the internal state at every round of the iterative cipher. One
advantage of such a framework is that one can obtain a tweakable single-key
block cipher or a double-key length block cipher with the very same primitive.

Not all instances of TWEAKEY are secure and, in particular, the case where the
key and tweak material is treated exactly the same way does not lead to a secure
cipher. However, handling the key and the tweak material the same way would
be attractive in terms of performance, implementation, but more importantly it
would greatly simplify the security analysis, which is currently the main difficulty
designers have to face when constructing an ad-hoc tweakable block cipher. Indeed,
the main challenge is to evaluate the appropriate number of rounds required to
make the cipher secure – when the tweak size t and key size k are too large this
problem becomes infeasible. We propose a solution in Section 3 and we give a sub-
class of TWEAKEY for AES-like ciphers, named STK (for Superposition TWEAKEY),
where the key and the tweak materials are treated almost the same way – the small
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difference between the linear key and the tweak schedules is sufficient to remove
the aforementioned weakness. Due to the structure of STK, the security analysis
is rendered much easier, and the number of rounds can be kept small. The STK
construction leads to promising performances: in [24], a complete 128-bit tweak
128-bit key 128-bit block cipher proposal Deoxys-BC based on the AES round
function is proposed as an instance of the STK construction. It is faster and more
lightweight than other tentatives to build a tweakable block cipher from AES-128.
When used in ΘCB3 [28] authenticated encryption, Deoxys-BC runs at about
1.3 c/B on the latest Intel processors. This has to be compared to OCB3, which
runs at 0.7-0.88 c/B when instantiated with AES-128, but only ensures birthday-
bound security. Alternatively, Deoxys-BC could be a replacement for AES-256,
which has related-key issues as shown in [7]. The STK construction offers a very
lightweight tweakey schedule (only composed of a substitution of bits), that even
allows the key to be hardwired in hardware implementations. Similarly, one can
mention Joltik-BC: a lightweight instance of the STK construction as a 64-bit
tweak 64/128-bit key 64-bit tweakable block cipher.

In [26], the problem of tweaking AES-128 without altering the key schedule is
handled. The authors introduce Kiasu-BC as part of the TWEAKEY framework
as a way to securely introduce a 64-bit tweak in the 10-round AES-128 block
cipher.

2 The TWEAKEY Framework

In this section, we introduce the TWEAKEY construction framework that allows to
add a tweak of (almost) any length to a key-alternating block cipher and/or to
extend the key space of the block cipher to (almost) any size. In some sense, one
can view the TWEAKEY framework as a simple generalization of key-alternating
ciphers, offering more flexibility with regards to tweak and/or key sizes. Similarly
to key-alternating ciphers, we emphasize that not all TWEAKEY instances are se-
cure. We give in later sections natural instances of TWEAKEY that lead to secure
ciphers.

2.1 Key-Alternating Ciphers

A symmetric primitive like a block cipher E is usually built upon a smaller
building block f that is iterated a certain number of times – we refer to such
a function f as a round function. Usually f is cryptographically weak, but its
iterations bring security to E. The number r of iterations heavily depends on the
targeted security of E, the structure of f , its differential properties, its algebraic
degree, etc. In general, the function f takes two inputs: the first is the state,
while the second is a round-dependent parameter called round key or subkey.
The round keys are obtained by the expansion of a master secret K with an
expansion (key schedule) algorithm: K → (K0, . . . ,Kr). Formally, for a non-
negative i < r, we write f(si,Ki) = si+1 the function that transforms the state
si in one round into the state si+1, with the use of the round key Ki. Initially,
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K

P = s0 f
s1

. . . f
sr

sr+1 = C

K0 K1 Kr−1 Kr

Fig. 1. Key-alternating cipher: the function f is applied r times, surrounded by subkey
mixing operations

the state s0 is set to the plaintext value P , and state sr at the output of the
r-th round is the ciphertext C .

As a subclass of iterated block ciphers, we consider further the particular case
of key-alternating block ciphers, which specify how the round keys are used (see
Figure 1). The concept has been initially introduced by Daemen in [14, 16] and
has later been reused in many block cipher designs, e.g. [9, 15, 23]. Specifically,
we say that E is a key-alternating cipher when the general form f(si,Ki) =
si+1 for i < r becomes f(si ⊕ Ki) = si+1, where the current state si and
the incoming round key Ki are XORed prior to the application of the round
function f . Moreover, a final round key Kr is added after the r applications
of f to produce the ciphertext. The soundness of such a construction has been
theoretically studied recently in [1, 10].

2.2 Tweakable Block Ciphers

The concept of tweakable block ciphers goes back to the Hasty Pudding ci-
pher [37], and has later been formalized by Liskov, Rivest and Wagner in [30,31],
where they suggest to move the randomization of symmetric primitives brought
by the high-level operations of the modes directly at the block-cipher level.
The signature of standard block ciphers can be described as E : {0, 1}k ×
{0, 1}n → {0, 1}n where an n-bit plaintext P is transformed into an n-bit ci-
phertext C = E(K,M) using a k-bit key K. On top on these inputs, tweak-
able block ciphers introduce an additional t-bit parameter T called tweak (see
Figure 2). The signature for a tweakable block cipher therefore becomes E :
{0, 1}k × {0, 1}t × {0, 1}n → {0, 1}n, the ciphertext C = E(K,T, P ) where the
tweak T does not need to be secret and thus can be placed in the public do-
main. Similarly to a regular block cipher where E(K, ·) is a permutation for all
K ∈ {0, 1}k, a tweakable block cipher preserves this behavior as E(K,T, ·) is a
permutation for all (K,T ) ∈ {0, 1}k × {0, 1}t.
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(a) Regular Block Cipher.

EP
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T

(b) Tweakable Block Cipher.

Fig. 2. Types of ciphers

Usually, the security notion expected from a tweakable block cipher is to be
indistinguishable from a tweakable random permutation (a family of independent
random permutations parameterized by T ). It is important to note that the
security model considers that the attacker has full control over both the message
and the tweak inputs.

Adversarial Model. Besides the classical single-key attack model, a typical
model for block ciphers is the related-key model, where the adversary can ask for
encryption/decryption of plaintext/ciphertext with a key related to the original
one. In this article, we only consider the relation between the keys and tweaks
to be the classical XOR difference, and refer to [17] for more details on this so-
called key access scheme. Similarly to the related-key model, the related-tweak
model denotes a situation where the adversary can ask for encryption/decryption
of plaintext/ciphertext with a tweak related to the original one, while the key
remains the original one. Continuing further, we can also combine these two
models and consider the related-key related-tweak adversarial model. Moreover,
instead of related-key or related-tweak model, one can consider open-key and/or
open-tweak models, where the adversary has full control over the key/tweak.
This model is reasonable to consider as in practice an active adversary might
have a full control over the tweak. For the key, this model might be interesting
when the block cipher is used in a hash function setting, where message blocks
are usually inserted in the key input of the inner block cipher of the compression
function. Since in this article we do not always separate key and tweak input,
we sometimes denote related-tweakey or open-tweakey to refer to related-key
related-tweak or open-key open-tweak model, respectively.

2.3 The TWEAKEY Construction

In theory, for a tweakable block cipher the distinction between the tweak input
and the key input is clear: the former is public and can be fully controlled by the
attacker, while the later is secret. This might indicate that in practice the tweak
input must be handled more carefully then the key input, since the attacker is
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given more power1. However, from the point of view of applications, what is
intrinsically required for a tweakable block cipher is that computing consecutive
cipher calls with different random tweak values should be very efficient, while
not necessarily required for the key input. This tends to indicate that, in the
contrary, the tweak input should not use more computations than the key input.

This contradiction regarding the proportion of computations between the
tweak and key inputs should make tweakable block cipher designers handle
both inputs almost equivalently (we note that this is the case for example in
Threefish [20]). Moving in this direction, we introduce the TWEAKEY frame-
work, that tries to bridge the gap between key and tweak inputs by providing
a unified vision. This framework can be seen as a direct extension of the key-
alternating cipher construction. As of today, building a tweakable block cipher
with a key-alternating approach has never been considered, but we note that
Goldenberg et al. [22] studied how to insert a tweak input inside a Luby-Rackoff
cipher from a theoretical point of view.

The term tweakey refers to an input that can be both tweak or key material,
without distinction. Using our framework, the obvious advantage is that one can
leverage the work already done on key schedule design in order to build proper
tweak schedule, or tweakey schedule more generally.

The TWEAKEY construction is a framework to build a n-bit tweakable block
cipher with t-bit tweak and k-bit key. It consists of two states: the n-bit internal
state s and the (t + k)-bit tweakey state tk, and we denote respectively as si
and tki their values throughout the rounds. The state s0 is initialized with the
plaintext P (or ciphertext C for decryption), and tk0 is initialized with the
tweak and key material. Then, the cipher is composed of r successive rounds
each composed of three steps:

• a subtweakey extraction function g from the tweakey state, and incorporation
of this subtweakey to the internal state (for ease of description, we consider
that the subtweakey incorporation is done with a simple XOR, but this can
be trivially extended to other operations),

• an internal state update permutation f ,
• a tweakey state update function h.

This can be summarized as: si+1 = f(si ⊕ g(tki)) followed by tki+1 = h(tki).
At the end, the last subtweakey is incorporated to the last internal state and
sr ⊕ g(tkr) represents the ciphertext C (or plaintext P for decryption). The
subtweakeys are usually of size n bits, but they might be smaller. The framework
is depicted in Figure 3.

1 One may argue that key recovery attacks are not to be considered for the tweak
input, which makes the tweak and the key inputs fundamentally different. However,
from a designer perspective, it seems easier to protect against key-recovery attacks,
than against a known-key distinguisher. For example, for most ciphers, more rounds
can be attacked in the open-key model than in the related-key model.
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TWEAKEY Scheduling Algorithm
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. . . f
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sr+1 = C
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Fig. 3. The TWEAKEY framework

Increasing the amount of tweak or key material obviously renders the task of
the designer much more complex in terms of security analysis. To separate these
situations, we denote TK-p the class of tweakable block ciphers when one handles
p×n of tweakey material. For example, a simple single-key cipher would fit in TK-
1, while an n-bit key, n-bit tweak block cipher (or for a double-key cipher with
no tweak input) would fit in TK-2. By extension, a public permutation would fit
in TK-0. The tweakey material can be any amount of key and/or tweak. A tweak-
only cipher can be an interesting primitive as well, for example when building a
compression function (the members of the MD-SHA hash function family would
actually fit in our framework, the subtweakey having smaller size than n).

We emphasize that TWEAKEY is only a framework and, as such, will not guar-
antee a secure cipher. It is up to the designer to ensure picking a proper TWEAKEY
instance. The functions f , g and h must be chosen along with the number of
rounds r such that no known attack can apply on the resulting primitives. More
precisely, this must be true for any choice of the tweak/key size tradeoff inside
the tweakey input. A natural way to achieve this while keeping the same f , g
and h would be to set the number of rounds as the maximal number of required
rounds over all the possible tweak/key size tradeoffs. By known attacks, we refer
in particular to classical differential/linear attacks, even in related-tweakey or
open-tweakey model, or meet-in-the-middle techniques. Moreover, the key sched-
ule is often used to break inherent symmetries from the internal state update
function and to break round similarities (for example in the case of AES), hence
this has to be taken in account as well.

Cipher Instances Separation. Since the tweak and key material are not made
distinct in our framework, one might argue that since the tweakable block cipher
is always the same whatever is the amount of key or tweak inputs, there are some
obvious relations between these different versions. If the designer would prefer
to avoid these properties, this can be easily and securely done for example by
encoding the various cipher versions on a few bits of the tweakey state (with two
distinct key/tweak sizes versions, one tweak bit would then have to be booked
for that matter). Nevertheless, in the rest of this article, we do not consider
related-cipher attacks [39].
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3 The STK Construction

3.1 Motivation

The TWEAKEY framework unifies the tweak and key input for a tweakable block
cipher, but does not provide real instantiation of this construction, i.e. which
functions f , g and h (and number of rounds r) one should choose. For instance,
a trivial example resulting in a non-secure primitive consists in choosing the
identity function for the update function h (i.e. the key schedule of LED), and
defining g as the XOR of all n-bit tweakey words. In such a case, regardless of the
choice of the function f , the construction would not be secure as cancellations
of the tweakey words would lead to outputs of g consisting of zero bits.

One of the main causes for the low number of ad-hoc tweakable block ciphers
is the fact that adding a tweak input makes the security analysis much harder.
Building a block cipher secure in the related-key model is already not an easy
task, and by incorporating an additional tweak or a double key, the task becomes
even more difficult. In the case of AES, there exists tools [8, 21] to analyze the
best differential characteristics in the related-key model, but they mainly work
for TK-1. As soon as we switch to bigger keys or add tweak inputs, like TK-2
or TK-3, the searches might become infeasible, unless very good characteristics
exist to speed up the search with branching cuts, which would mean that the
cipher is insecure.

One research direction that we follow in this article consists in finding a con-
struction within the TWEAKEY framework that simplifies this analysis. A poten-
tial and natural solution would be that all p = (t+ k)/n n-bit words of tweakey
are handled the same way (i.e. the function h is symmetric with regards to the p
n-bit words of the tweakey state of TK-p), and that g simply XORs all these n-bit
tweakey state words to the internal state. The security analysis is simplified as
any analysis independently performed on one of the n-bit words of tweakey will
hold for the other words as well (and thus the tools working for TK-1 could now
do the analysis even for TK-p with p > 1). The problem is to understand what
happens when all words are considered together as their interaction might cause
potential weaknesses (e.g. if we insert differences in all the tweakey words). For
example, assume we would like to build an AES-like cipher with double key: this
would fit in TK-2 as k = 2n and t = 0. If the two n-bit tweakey words were
treated equivalently, we could use the differential characteristic search tools to
assess the security of the primitive with regards to classical differential attacks,
and then use this information to pick an appropriate number of rounds. However,
there is an obvious weakness if we strictly follow this strategy: starting with the
two tweakey words equal would lead to zero being XORed to the internal state
every round, since their value would always cancel each other in the XOR. Us-
ing constants to separate the two words would work, but only if the h function
is strongly non-linear, which is something we would like to avoid for efficiency
reasons. In fact, we would like to push even further the efficiency incentive and
only consider nibble-wise substitutions for the h function.
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In the remaining of the section, we propose a simple solution to overcome
this issue for AES-like ciphers. The basic idea is to minimize possible differences
cancellations between tweakey words by using small field multiplications. Follow-
ing this mechanism still allows to apply the existing differential characteristic
search tools, while avoiding the trivial characteristic in the tweakey scheduling
algorithm.

3.2 The STK (Superposition TWEAKEY) Construction

The STK construction is a subclass of the TWEAKEY framework for AES-like
ciphers defined over a finite field GF (2c). Recall that p = (t+ k)/n denotes the
number of n-bit words in the tweakey state composed of t-bit tweak and k-bit
key. Assuming that the AES-like S-Box operates on c bits (thus we have n/c
nibbles in a n-bit word), the STK construction further specifies the f , g and h
functions as follows (also see Figure 4):

• the function g simply XORs all the p n-bit words of the tweakey state to the
internal state (AddRoundTweakey, denoted ART), and then XORs a round-
dependent constant Ci,

• the function h first applies the same nibble position substitution function h′
to each of the p n-bit words of the tweakey state, and then multiply each
c-bit cell of the j-th n-bit word by a nonzero coefficient αj in the finite field
GF (2c) (with αi �= αj for all 1 ≤ i �= j ≤ p)

• the function f is an AES-like round.

STK Key Schedule

h′

h′

...

h′

α1

α2

αp

tk0

XOR C0

ART
f

h′

h′

...

h′

α1

α2

αp

XOR C1

ART
fP = s0

h′

h′

...

h′

. . .

. . .

. . .

XOR C2

ART
. . .

XOR Cr−1

ART
f

h′

h′

...

h′

α1

α2

αp

XOR Cr

ART
sr = C

Fig. 4. The STK construction: example with TK-p

3.3 Rationale behind the STK Construction

Most automated differential analysis tools for AES-like ciphers (e.g., [8, 18, 21])
use truncated differential representation to make feasible the search for differ-
ential characteristics. In the truncated difference representation [27], the exact
value of a difference in a nibble is not specified. Rather, only the presence (active
nibble) or absence (inactive nibble) of a difference is kept track of. In the STK
construction, the different subtweakey words will have precisely the same trun-
cated representation of the difference if the input tweakey words have the same
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difference. The reason behind this is that they all apply the same functions g and
h, which are completely independent of the tweakey word considered. This fea-
ture already significantly simplifies the analysis for the designer, since a simple
TK-1 differential analysis (already known to be possible with the current tools)
will ensure the security for all situations in which only a single tweakey word
contains a difference. Having all the tweakey words treated almost equivalently
is therefore very helpful for the designer.

The issue, however, is to understand what happens when differences are placed
in several tweakey words at the same place (in the same nibbles). In particular,
the difficulty lies in the cancellations that might happen in the nibbles at the
output of g (recall that g will XOR all the subtweakey word to the state). These
cancellations are the reason why having exactly the same update function for all
tweakey words leads to a design that is not secure. The trick we use is to apply
a nibble-wise multiplication with a distinct coefficient αj for all tweakey words.
This prevents the large number of cancellation of differences in a particular
nibble position at the output of g. To explain this, first observe that as we
apply the very same nibble position substitution function h′ to each of the p
tweakey words, the relative position of the nibble between the tweakey words is
always the same (i.e. two nibbles at the same position inside their tweakey word
will always keep that property). Thus, we can divide the tweakey nibbles into
n/c fully independent subgroups (according to the nibble position in the n-bit
tweakey words), and to each of these subgroups will correspond one and only
one nibble at the output of g at every round. More precisely, in each subgroup,
we have p input nibbles x = [x1, . . . , xp] (one in each tweakey word) and r + 1
output nibbles y = [y0, . . . , yr] (since we have to generate r + 1 sub-tweakeys).
Our STK construction ensures that whenever a non-null difference is inserted
in the input nibbles of the subgroup, there will always be at least r + 1 − p
active output nibbles. These output nibbles y can be expressed in terms of x
by using a right-matrix multiplication y = x×V with the following p× (r + 1)
Vandermonde matrix:

V =
(
αj
i

)
i,j

=

⎛⎜⎜⎜⎜⎜⎜⎝
α0
1 α1

1 . . . αr
1

α0
2 α1

2 . . . αr
2

...
...

. . .
...

α0
p α1

p . . . αr
p

⎞⎟⎟⎟⎟⎟⎟⎠ ,

In order to minimize the number of nonzero elements in y for x �= 0, we need to
ensure that all the columns in V are linearly independent. This is true as long
as the αi coefficients, 1 ≤ i ≤ p are pairwise distinct. Using for example the
specific distinct coefficients αj = j ∈ GF (2c), 1 ≤ j < 2c, in TK-p, 1 ≤ p ≤ c− 1,
then at most p elements of y can be zero for x �= 0, which is the property that
we targeted.

To summarize, when we deal with differences in several tweakey words (which
is supposedly very hard to analyze due to the important number of nibbles), the
study of the STK construction is again the same as for a classical TK-1 analysis,
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except that at most p active output nibbles can be erased in each subgroup.
This extra constraint in the search is rather easy to include in the existing
analysis tools [8, 21] and this is precisely why we believe the STK construction
to be interesting. It has been created with this criteria in mind, so as to ease a
systematic cryptographic analysis by existing tools, rather than only relying on
ad-hoc constructions, which are de facto more difficult to evaluate.

As a side note, the constants Ci in the STK construction prevent obvious issues
regarding symmetries in the internal state for an AES-like cipher, as the RCON
constants do for the original AES key scheduling algorithm. The choice of these
constants are left at the discretion of the designers, but one could recommend
for instance to use the AES RCON constants, based of the exponentiation of 2 in
GF (2c), or the exponentiation of any other primitive element in that field.

The nibble positions permutation h′ is also left at the discretion of the de-
signers, but it must be carefully chosen so as to provide the best resistance
against classical differential/linear attacks. This will permit the designers to
safely choose an appropriate number of rounds r. This number will of course
strongly depend on the amount of tweakey material, since more tweakey mate-
rial makes it harder for the designer to create a secure tweakable block cipher.
Our analysis tools indicate that using identity function instead of h′ would lead
to designs that require a great number of rounds. Therefore, we recommend
h′ to be a nibble positions permutation so as to prevent the existence of very
good differential characteristics, but yet remaining a very efficient function to
compute.

3.4 Performances

The performance of the STK construction is very high due to the simple trans-
formations used in the schedules – all of them are linear and lightweight. The
cost of the nibble position permutation h′ is very low, however, the choice of the
coefficients αj might have a significant impact on the performances. For optimal
efficiency, one should typically use α1 = 1 and α2 = 2 in the case of TK-2. For
larger instances, TK-p with p > 2, one could use powers of 2 as coefficients αj

in order to maintain high efficiency in the computations of the coefficients mul-
tiplications. In most of the applications, the tweak is changed more frequently
than the key. For instance, in a number of authenticated encryption schemes, the
key is the same across different calls to the tweakable cipher, while the tweak is
different in each call. Thus, it is reasonable to make the tweak schedule more ef-
ficient than the key schedule. Therefore, the tweak schedule should use the most
efficiently implementable coefficients αj (α1 = 1 would be the first choice). How-
ever, for some particular use-cases, it can be better to assign coefficient α1 = 1 to
a key input. Indeed, for hardware implementations, it might be very valuable in
certain scenarios to hard-wire the key in order to greatly reduce the area required
(this is a feature of several lightweight ciphers). Yet, this would be possible only
if the key input is not modified during the execution of the entire cipher and this
is ensured only if α1 = 1 is assigned to this key input. The efficiency of the STK
constructions can best be measured in term of key/tweak agility, i.e. how well
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the construction behaves when the key and/or the tweak are frequently changed.
Due to the very low number of transformations, and all being completely linear,
this construction has obviously one of the simplest possible schedules.

4 Conclusion

We have introduced the TWEAKEY framework, which helps designers to build
a secure tweakable block cipher by bringing together key schedule design and
tweak input. Inside this framework, we have identified a new type of construc-
tion, named STK, that is simple and generic and which provides efficient schemes,
as shown by the two STK instances Deoxys-BC and Joltik-BC. We have also
shown how to directly tweak the AES-128 block cipher, with the very simple
and extremely efficient Kiasu-BC tweakable block cipher. The three candidates
Kiasu [26], Joltik [25] and Deoxys [24] to the CAESAR authenticated en-
cryption competition by the same authors are based on three instances of either
the TWEAKEY or the STK constructions and are claimed secured against classical
class of cryptanalytic attacks, as differential and meet-in-the-middle attacks.

We believe this work opens many questions and future works. First, it would
be interesting to prove the soundness of our framework and the STK construction.
Namely, can we generalize the recent proofs done on key-alternating ciphers?
Secondly, we believe that several nibble positions permutation h′ might be of
particular interest for the STK construction. The search space is quite large,
thus a smart method in order to prune bad candidates is necessary, as well as
very optimized search tools. This problem is actually even more complex, since
the best permutation for TK-i might not necessarily be the best for TK-j with
i �= j. Then, a very valuable advance would be to find a way to tweak directly
the AES-128 (keeping the original key schedule) with a 128-bit tweak, since the
best achievable option to date only handles up to 64-bit tweak (Kiasu-BC). Our
searches led us to the conclusion that this seems quite hard to achieve. Finally,
the problem of designing a simple, secure and efficient key schedule for AES-like
ciphers remains an open problem. Is it possible to find an efficient key schedule
that could lead to simple human-readable proofs on the minimal number of active
S-Boxes in a differential characteristic in the related-tweakey model?
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Abstract. Most of the common password scramblers hinder password-
guessing attacks by “key stretching”, e.g., by iterating a cryptographic
hash function many times. With the increasing availability of cheap and
massively parallel off-the-shelf hardware, iterating a hash function be-
comes less and less useful. To defend against attacks based on such hard-
ware, one can exploit their limitations regarding to the amount of fast
memory for each single core. The first password scrambler taking this
into account was scrypt. In this paper we mount a cache-timing attack
on scrypt by exploiting its password-dependent memory-access pattern.
Furthermore, we show that it is possible to apply an efficient password
filter for scrypt based on a malicious garbage collector. As a remedy, we
present a novel password scrambler called Catena which provides both
a password-independent memory-access pattern and resistance against
garbage-collector attacks. Furthermore, Catena instantiated with the
here introduced (G,λ)-DBH operation satisfies a certain time-memory
tradeoff called λ-memory-hardness, i.e., using only 1/b the amount of
memory, the time necessary to compute the password hash is increased
by a factor of bλ. Finally, we introduce a more efficient instantiation of
Catena based on a bit-reversal graph.

Keywords: password hashing, memory-hard, cache-timing attack.

1 Introduction

Passwords1 are user-memorizable secrets for user authentication and crypto-
graphic key derivation. Typical (user-chosen) passwords suffer from low entropy
and can be attacked by trying out all possible candidates in order of likelihood.
In some cases, the security of interactive password-based authentication and key
derivation can be enhanced by dedicated cryptographic protocols defeating “of-
fline” password guessing where an adversary is in possession of the password
hashes (see [3] for an early example). Otherwise, the best protection are cryp-
tographic password scramblers, performing key stretching. This means to hash
the password with an intentionally slow one-way hash function to delay the
adversary, without inconveniencing the user.

Traditional password scramblers, e.g., md5crypt [10] or sha512crypt [7], it-
erate a cryptographic primitive (a block cipher or a hash function) many times.

1 We do not distinguish “passwords” from“passphrases” or “PINs”.
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An adversary who has b computing units (cores) can easily try out b different
passwords in parallel. With recent technological trends, such as the availability
of graphical processing units (GPUs) with hundreds of cores [13], the question of
how to slow down such adversaries becomes pressing. Fast memory is expensive.
Thus, each core of a GPU (or any other cheap and massively parallel machine)
possesses a very limited amount of fast memory (“cache”). Therefore, a defense
against massively-parallel attacks on cheap hardware is to consume plenty of
memory to cause a large amount of cache misses, up to the limit available to
the user. Modern password scramblers allow to adjust the required memory by a
logarithmic security parameter g, called garlic (memory-cost factor). A required
property for such memory-consuming algorithms is memory-hardness, i.e., as-
sume that a password scrambler uses S = 2g units of memory and an adversary
has less than S units of memory for each core. Then, the attack must slow down
greatly. The first password scrambler that took this into account was scrypt

[16], which inherited these features from its underlying function called ROMix.
However, a memory-consuming password scrambler might suffer from a new
problem. If the memory-access pattern depends on the password, this pattern
may leak during a cache-timing attack.

Contribution. In this paper we present two side-channel attacks against ROMix
(1) a cache-timing attack exploiting its password-dependent memory-access pat-
tern. This attack requires a spy process that runs on the defender’s machine,
without access to the internal memory of ROMix and (2) we show that ROMix is
vulnerable to garbage-collector attacks. Both attacks should be considered se-
vere since they might put the usage of memory-consuming password scramblers
at high risk.

As a remedy,we introduceCatena, amemory-consuming password-scrambling
framework which is resistant against the mentioned side-channel attacks. Fur-
thermore, we present two instantiations whose workflow can be represented as
directed acyclic graphs with bounded indegree. One is based on an adapted vari-
ant of the bit-reversal graph and the other one is based on an adapted variant of
the double-butterfly graph (which is on the other hand constructed by putting
two fast Fourier transformations (FFT) back-to-back).

Outline. Section 2 introduces two notions of memory-hardness. Section 3 de-
scribes our side-channel attacks against scrypt. In Section 4, we introduce our
novel password-scrambling frameworkCatena. Section 5 describes two instanti-
ations, namely Catena-BRG and Catena-DBG, and Section 6 discusses their
security. Section 7 concludes our work. Finally, in Appendix A we state the main
difference between this version and our original submission.

2 Memory-Hardness

To describe memory requirements, we adopt and slightly change the notion from
[16].
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Definition 1 (Memory-Hard Function [16])
Let g denote the memory-cost factor. For all α > 0, a memory-hard function
f can be computed on a Random Access Machine using S(g) space and T (g)
operations, where S(g) ∈ Ω(T (g)1−α).

Thus, for S · T = G2 with G = 2g, using b cores, we have (1/b · S) · (b · T ) = G2.
A formal generalization of this notion is given in the following.

Definition 2 (λ-Memory-Hard Function)
Let g denote the memory-cost factor. For a λ-memory-hard function f , which is
computed on a Random Access Machine using S(g) space and T (g) operations
with G = 2g, it holds that T (g) = Ω(Gλ+1/S(g)λ).

Thus, we have (1/b · Sλ) · (b · T ) = Gλ+1.

Remark 1. Note that for a λ-memory-hard function f , the relation S(g) · T (g)
is always in Ω(Gλ+1), i.e., it holds that if S decreases, T has to increase, and
vice versa.

λ-Memory-Hard vs. Sequential Memory-Hard. In [16], Percival intro-
duced the notion of sequential memory-hardness (SMH), which is satisfied by
his introduced password scrambler scrypt. An algorithm is sequential memory-
hard if an adversary has no computational advantage from the use of multiple
CPUs. This means that one does not gain any advantage from parallelism, i.e.,
running such an algorithm on b cores, one needs b times the memory required
for one core. On the other hand, a λ-memory-hard function satisfies a certain
time-memory tradeoff. Thus, if only O(1/b) times the memory is available, one
needs O(bλ) times the computational effort, independent of the number of cores.

3 Side-Channel Attacks on scrypt

Algorithm 1 describes the scrypt password scrambler and its core operation
ROMix. For pre- and post-processing, scrypt invokes the one-way function PBKDF2

[9] to support inputs and outputs of arbitrary length. ROMix uses a hash function
H with n output bits, where n is the size of a cache line (at current machines
usually 64 bytes). To support hash functions with smaller output sizes, [16] pro-
poses to instantiateH by a function called BlockMix, which we will not elaborate
on. For our security analysis of ROMix, we model H as a random oracle.

ROMix takes two inputs: an initial state x that depends on both password
and salt, and the array size G that defines the required storage. One can in-
terpret log2(G) as the garlic of scrypt. In the expand phase (Lines 20–23),
ROMix initializes an array v. More detailed, the array cells v0, . . . , vG−1 are set to
x,H(x), . . . , H(. . . (H(x))), respectively. In the mix phase (Lines 24–27), ROMix
updates x depending on vj . The sequential memory-hardness comes from the
way how the index j is computed, depending on the current value of x, i.e.,
j ← x mod G. After G updates, the final value of x is returned and undergoes
the post-processing.
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Algorithm 1. The scrypt algorithm and its core operation ROMix [16]
scrypt

Input: pwd {Password}
s {Salt}
G {Cost Parameter}

Output: x {Password Hash}
10: x← PBKDF2(pwd , s, 1, 1)
11: x← ROMix(x,G)
12: x← PBKDF2(pwd , x, 1, 1)
13: return x

ROMix

Input: x {Initial State}
G {Cost Parameter}

Output: x {Hash Value}
20: for i = 0, . . . , G− 1 do
21: vi ← x
22: x← H(x)
23: end for
24: for i = 0, . . . , G − 1 do
25: j ← x mod G
26: x← H(x⊕ vj)
27: end for
28: return x

Algorithm 2. ROMixMC, performing ROMix with G/K storage

Input: x {Initial State},
G {1st Cost Parameter},
K {2nd Cost Parameter}

Output: x {Hash Value}
1: for i = 0, . . . , G− 1 do
2: if i mod K = 0 then
3: vi ← x
4: end if
5: x← H(x)
6: end for

7: for i = 0, . . . , G− 1 do
8: j ← x mod G
9: �← K · �j/K�
10: y ← v�
11: for m = �+ 1, . . . , j do
12: y ← H(y) { Invariant: y ← vm }
13: end for
14: x← H(x⊕ y)
15: end for
16: return x

A minor issue of scrypt is its use of the password pwd as one of the inputs
for post-processing. Thus, it has to stay in storage during the entire password-
scrambling process. This is risky if there is any chance that the memory can be
compromised while scrypt is running. Compromising the memory should not
happen, anyway, but this issue could easily be fixed without any known bad
effect on the security of scrypt, e.g., one could replace Line 12 of Algorithm 1
by x← PBKDF2(x, s, 1, 1).

Below, we will attack scrypt from the hardware side. The general idea of
side-channel attacks against cryptographic algorithms is not new [11], neither is
the usage of a spy process for cache-timing attacks [15]. But, to the best of our
knowledge, we are the first to apply this approach to scrypt, or to password-
hashing in general.

3.1 Brief Analysis of ROMix

In the following we introduce a way to run ROMix with less than G units of
storage. Suppose we only have S < G units of storage for the values in v. For
convenience, we assume G is a multiple of S and set K ← G/S. The memory-
constrained algorithm ROMixMC (see Algorithm 2) generates the same result as
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ROMix with less than G storage places and is Θ(K) times slower than ROMix.
From the array v, we will only store the values v0, vK , v2K , . . . , v(S−1)K – using
all the S available memory units. At Line 9, the variable � is assigned to the
highest multiple ofK less or equal to j. By verifying the invariant at Line 12, one
can easily see that ROMixMC computes the same hash value as the original ROMix,
except that vj is computed on-the-fly, beginning with v�. These computations
call H (K − 1)/2 times on average. Thus, the mix phase of ROMixMC is about
Θ(K) times slower than the mix phase of ROMix, which dominates the workload
for ROMixMC.

Next, we briefly discuss why ROMixMC is sequentially memory-hard (for the full
proof see [16]). The intuition is as follows: the indices j are determined by the
output of the random oracle H and thus, uniformly distributed random values
over {0, . . . , G− 1}. With no way to anticipate the next j, the best approach is
to minimize the size of the “gaps”, i.e., the number of consecutively unknown
vj . This is indeed what ROMixMC does, by storing one vi every K-th step.

3.2 Cache-Timing Attacks

The Spy Process. The idea to compute a “random” index j and then ask for
the value vj , which is so useful for sequential memory-hardness, may be exploited
to mount a cache-timing attack against scrypt. Consider a spy process that
runs on the same machine as scrypt. This spy process cannot read the internal
memory of scrypt, but shares its cache memory with ROMix:

1. The spy process interrupts ROMix, just before entering the mix phase (Line
24 of Algorithm 1) and overwrites the (entire) cache with arbitrary values
wi to flush out all ROMix’ values vj .

2. The spy process allows ROMix to perform a few more iterations of the mix
loop (Line 24–27).

3. The spy process interrupts ROMix again. Now it reads the wi, measuring
precisely how long each read operation takes. If the corresponding vj has
been used by ROMix in the second step, a “cache-miss” occurs, wich makes
reading wi slow. Else, wi is likely to be still cached, and reading it is likely
to be fast.

So, the spy process can tell an adversary the indices j for which vj has been
read during the first few iterations of the mix loop (Lines 24–27 of Algorithm 1).
Given this information, we can attack scrypt.

First Cache-Timing Attack. Let x be the output of the operation
PBKDF2(pwd, s, 1, 1), where pwd denotes the current password candidate and s
the salt. Then, we can sieve the password candidates as follows:

1. Run the expand phase of ROMix, without storing the values vi, i.e., skip Line
21 of Algorithm 1.

2. Compute the index j ← x mod G.
3. If j is one of the indices were read by ROMix, then store pwd in a list.

Otherwise, conclude that pwd is a wrong password.
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This sieve can run in parallel on any number of cores, where each core tests
another password candidate pwd. Note that each core needs only a small and
constant amount of memory, i.e., the data structure to decide if j is one of the
indices being read with vj , which can be shared among all cores. Thus, we can
use exactly the kind of hardware, that scrypt was designed to hinder.

Let r denote the number of iterations the loop in Lines 24–27 of ROMix per-
formed, before the second interrupt from the spy process. Thus, we have a list
of r indices j used by ROMix. The probability for a false password to survive is
r/G.

We can further improve the attack. Assuming r * G, we may have space to
store the r values vj that were actually used by ROMix on each core. This allows
us to simulate the first r iterations of the loop in Lines 24–27. We can discard a
password candidate immediately if the simulation tries to read any vj which is
not on our short list. The probability for a false password candidate to survive
is now down to (r/G)r .

Second Cache-Timing Attack. It may be more realistic to assume the second
interrupt to be late, perhaps after the mix phase of ROMix. So, the loop in Lines
24–27 of ROMix was run r = G times and, on average, each vi has been read
once. Actually, some values have been read several times, and we expect about
(1/e)G ≈ 0.37G array elements vi not to have been read at all. At a first look,
we can eliminate about 37% of the false password candidates – a small gain for
such hard work.

In the following we introduce a way to push the attack further, inspired by Al-
gorithm 2, the memory-constrained ROMixMC. Our second cache-timing attack on
scrypt only needs the smallest possible amount of memory: S = 1,K = G/S =
G, and thus, we only have to store v0. Like ROMixMC, we will compute the values
vj on-the-fly when needed. Unlike ROMixMC, we will stop execution whenever one
of our values j is such that vj has not been read by ROMix (according to the
information from our spy process). Thus, if only the first j has not been read,
we immediately stop the execution without any on-the-fly computation; if the
first j has been read, but not the second, we need one on-the-fly computation of
vj , and so forth. Since a fraction (i.e., 1/e) of all values vi was not read, we will
need about 1/(1− 1/e) ≈ 1.58 on-the-fly computations of some vj , each at the
average price of (G− 1)/2 calls of H . Additionally, each iteration needs one call
to H for computing x ← H(x ⊕ vj). Including the work for the expand phase,
with G calls to H , the expected number of calls to reject a wrong password is
about

G+ 1.58 ·
(
1 +

G− 1

2

)
≈ 1.79G.

As it turns out, rejecting a wrong password with constant memory is faster
than computing ordinary ROMix with all the required storage, which actually
makes 2G calls to H , without computing any vi on-the-fly. We stress that the
ability to abort the computation, thanks to the information gathered by the spy
process, is crucial.
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3.3 The Garbage-Collector Attack

Memory-demanding password scramblers such as ROMix defend against a
massively-parallel password-cracking approach, since the required memory is
proportional to the number of passwords scrambled in parallel.

But, memory-demanding password scrambling may also open the gates for
new attack opportunities for the adversary. If we allocate a huge block of mem-
ory for password scrambling, holding v0, v1, . . . , vG−1, this memory becomes
“garbage” after the password scrambler has terminated, and will be collected
for reuse, eventually. One usually assumes that the adversary learns the hash of
the secret. The garbage-collector attack assumes that the adversary additionally
learns the memory content, i.e., the values vi, after termination of the password
scrambler.

For ROMix, the value v0 = H(x) is a plain hash of the original secret x. Hence,
a malicious garbage collector can completely bypass ROMix and search directly
for x with H(x) = v0, implying that each password candidate can be checked
in time and memory complexity of O(1). Furthermore, if the adversary fails to
learn v0, but any of the other values vi = H(vi−1), the computational effort
grows to O(i), but the memory complexity is still O(1).

Thus, ROMix does not provide much defense against garbage-collector attacks.
A possible countermeasure would be to overwrite v0, . . . , vG−1 after running
ROMix. But, this step might be removed by a compiler due to optimization, since
it is algorithmically ineffective.

3.4 Discussion

Currently, the attacks above are of theoretical nature. The garbage-collector
attack requires the adversary to be able to read the memory occupied by ROMix,
after its usage. Whereas the cache-timing attack requires to (1) run a spy process
on the machine ROMix is running, (2) interrupt ROMix twice at the right points
of time, and (3) precisely measure the timings of memory reads. Moreover, other
processes running on the same machine can add a huge amount of noise to the
cache timings. It is not clear if a “real” server can ever be attacked that way.

However, in an idealized “laboratory” setting, the applicability of cache-timing
attacks against ROMix has been demonstrated [2]. The idealized conditions in-
cluded execution rights on the system.

Remark 2. Even without knowing the password hash at all,

1. the adversary can find out when the password has been changed,
2. and the adversary can mount a password-guessing attack,

just from knowing the memory-access pattern.

Note that severe security issues can be caused by the second point. Consider any
offline attack on the password. When passwords are hashed using an old-style
password hash function, e.g., md5crypt [10], the adversary needs to first read
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the file containing the password hash. Without the password hash, mounting
an offline attack is not possible. Even plaintext passwords are safe from offline
adversaries which are not capable of reading the file containing the plaintext
passwords. But, using the seemingly strong password hash function scrypt may
enable offline password cracking, even when the adversary fails to ever learn the
password hash.

4 Catena – A Memory-Hard Password Scrambler

In this section we introduce our password scrambler Catena. First, we specify
Catena and explain its properties regarding to password hashing, i.e., client-
independent update and server relief. Thereupon, we present two instantiations
of Catena, called Catena-BRG and Catena-DBG. Both instances are de-
signed to provide a high resilience against cache-timing attacks, and the latter
naturally defends against garbage-collector attacks, whereas the former provides
this kind of resistance only for λ ≥ 2.

4.1 Specification

A formal definition is shown in Algorithm 3, where the function Fλ (see Line
3) is a placeholder for a certain instantiation. The password-dependent input of
H is appended to a prefix c, which denotes the iteration counter (garlic factor).
Note that a secure password scrambler must satisfy preimage security. Catena

inherits the preimage security from the underlying hash function H . Next, we
discuss the tweak and two further novel features of Catena.

Tweak. The parameter t is an additional multi-byte value which is given by:

t← λ || |s| || H(AD),

The first byte λ defines together with the value g (see above) the security pa-
rameters for Catena. The 32-bit value |s| denotes the total length of the salt
in bits. Finally, the n-bit value H(AD) is the hash of the associated data AD,
which can contain additional information like hostname, user-ID, name of the
company, or the IP of the host, with the goal to customize the password hashes.
Note that the order of the values does not matter as long as tey are fixed for a
certain application.

The tweak is processed together with the secret password and the salt (see
Line 1 of Algorithm 3). Thus, t can be seen as a weaker version of a salt increasing
the additional computational effort for an adversary when using different values.
Furthermore, it allows to differentiate between different applications of Catena,
and can depend on all possible input data. Note that one can easily provide
unique tweak values (per user) when including the user-ID in the associated
data.
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Algorithm 3. Catena

Input: λ {Depth}, pwd {Password}, t {Tweak} s {Salt}, g {Garlic}, Fλ {Instance}
Output: x {Hash of the Password}
1: x← H(t || pwd || s)
2: for c = 1, . . . , g do
3: x← Fλ(c, x)
4: x← H(c || x)
5: end for
6: return x

4.2 Properties

Client-Independent Update. Its sequential structure enables Catena to pro-
vide client-independent updates. Let h← Catenaλ(pwd, t, s, g, Fλ) be the hash
of a specific password pwd , where t, s, g, and Fλ denote tweak, the salt, the gar-
lic, and the instantiation, respectively. After increasing the security parameter
from g to g′ = g + 1, we can update the hash value h without user interaction
by computing:

h′ = H(g′ || Fλ(g
′, h)).

It is easy to see that the equation h′ = Catenaλ(pwd , t, s, g
′, Fλ) holds.

Server Relief. In the last iteration of the for-loop in Algorithm 3, the client
has to omit the last invocation of the hash function H (see Line 4). The current
output of Catena is then transmitted to the server. Next, the server computes
the password hash by applying the hash function H . Thus, the vast majority of
the effort (memory usage and computational time) for computing the password
hash is handed over to the client, freeing the server. This enables someone to
deploy Catena even under restricted environments or when using constrained
devices – or when a single server has to handle a huge amount of authentication
requests.

5 Instantiations

In this section we introduce two concrete instantiations of Catena: Catena-

BRG and Catena-DBG.

5.1 Catena-BRG

For Catena-BRG, Fλ is implemented by the (G, λ)-Bit-Reversal Hashing
((G, λ)-BRH) algorithm, which is based on the bit-reversal permutation.

Definition 3 (Bit-Reversal Permutation τ). Fix a number k ∈ G and rep-
resent i ∈ Z2k as a binary k-bit number, (i0, i1, . . . , ik−1). The bit-reversal per-
mutation τ : Z2k → Z2k is defined by

τ(i0, i1, . . . , ik−1) = (ik−1, . . . , i1, i0).
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Input
v00 v01 v02 v03 v04 v05 v06 v07

v10 v11 v12 v13 v14 v15 v16 v17

Fig. 1. An (8, 1)-BRG

Algorithm 4. (G, λ)-Bit-Reversal Hashing ((G, λ)-BRH)

Input: g {Garlic}, x {Value to Hash}, λ {Depth}, H {Hash Function}
Output: x {Password Hash}
1: v0 ← H(x)
2: for i = 1, . . . , 2g − 1 do
3: vi ← H(vi−1)
4: end for
5: for k = 1, . . . , λ do
6: r0 ← H(v0 || v2g−1)
7: for i = 1, . . . , 2g − 1 do
8: ri ← H(ri−1 || vτ(i))
9: end for
10: v ← r
11: end for
12: return r2g−1

The bit-reversal permutation τ defines the (G, λ)-Bit-Reversal Graph.

Definition 4 ((G, λ)-Bit-Reversal Graph). Fix a natural number g, let V
denote the set of vertices, and E the set of edges within this graph. Then, a
(G, λ)-bit-reversal graph Πλ

g (V , E) consists of (λ+ 1) · 2g vertices

{v00 , . . . , v02g−1} ∪ {v10 , . . . , v12g−1} ∪ · · · ∪ {vλ−1
0 , . . . , vλ−1

2g−1} ∪ {vλ0 , . . . , vλ2g−1},

and (2λ+ 1) · 2g − 1 edges as follows:

– (λ+1) · (2g −1) edges vji−1 → vji for i ∈ {1, . . . , 2g−1} and j ∈ {0, 1, . . . , λ}.
– λ · 2g edges vji → vj+1

τ(i) for i ∈ {0, . . . , 2g − 1} and j ∈ {0, 1, . . . , λ− 1}.
– λ additional edges vj2g−1 → vj+1

0 where j ∈ {0, . . . , λ− 1}.

For example, Figure 1 illustrates an (8,1)-BRG. Note that this graph is almost
identical – except for one additional edge e = (v07 , v

1
0) – to the bit-reversal graph

presented by Lengauer and Tarjan in [12].

Bit-Reversal Hashing. The (G, λ)-Bit-Reversal Hashing function is defined
in Algorithm 4. It requires O(2g) invocations of a given hash function H for a
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Fig. 2. A Cooley-Tukey FFT graph with eight input and output vertices

front

vertical sequential + connecting layer

back

diagonal

Fig. 3. Types of edges as we use them in our definitions

fixed value of x. The three inputs (g, x, λ) of (G, λ)-BRH represent the garlic
g = log2(G), the value to process, and the depth, respectively. Thus, g specifies
the required units of memory. Moreover, incrementing g by one doubles the time
and memory effort for computing the password hash.

5.2 Catena-DBG

Note that a (G, λ)-Double-Butterfly Graph is based on a stack of λ G-
superconcentrators. The following definition of a G-superconcentrator is a
slightly adapted version of that introduced in [12].

Definition 5 (G-Superconcentrator). A directed acyclic graph Π(V , E) with
a set of vertices V and a set of edges E, a bounded indegree, G inputs, and G
outputs is called a G-superconcentrator if for every k such that 1 ≤ k ≤ G and
for every pair of subsets V1 ⊂ V of k inputs and V2 ⊂ V of k outputs, there are
k vertex-disjoint paths connecting the vertices in V1 to the vertices in V2.
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H

H

output

intput

Fig. 4. An (8, 1)-double-butterfly graph

A double-butterfly graph (DBG) is a special form of a G-superconcentrator
which is defined by the graph representation of two back-to-back placed Fast
Fourier Transformations [5]. More detailed, it is a representation of twice the
Cooley-Tukey FFT algorithm [6] omitting one row in the middle (see Figure 2
for an example where G = 8). Therefore, a DBG consists of 2g rows.
Based on the double-butterfly graph, we define the sequential and stacked (G, λ)-
double-butterfly graph. In the following, we denote vki,j as the j-th vertex in the
i-th row of the k-th double-butterfly graph.

Definition 6 ((G, λ)-Double-Butterfly Graph). Fix a natural number g ≥ 1
and let G = 2g. Then, the (G, λ)-Double-Butterfly Graph Π(V , E) consists of
2g · (λ · (2g − 1) + 1) vertices

– {vk0,0, . . . , vk0,2g−1} ∪ . . . ∪ {vk2g−2,0, . . . , v
k
2g−2,2g−1} for 1 ≤ k ≤ λ and

– {vλ2g−1,0, . . . , v
λ
2g−1,2g−1},

and λ · (2g − 1) · (3 · 2g) + 2g − 1 edges

– vertical: 2g · (λ · (2g − 1)) edges

(vki,j , v
k
i+1,j) for 0 ≤ i ≤ 2g − 2, 0 ≤ j ≤ 2g − 1, and 1 ≤ k ≤ λ,

– diagonal: 2g · λ · g + 2g · λ · (g − 1) edges

(vki,j , v
k
i+1,j⊕2g−1−i ) for 0 ≤ i ≤ g − 1, 0 ≤ j ≤ 2g − 1, and 1 ≤ k ≤ λ.

(vki,j , v
k
i+1,j⊕2i−(g−1) ) for g ≤ i ≤ 2g − 2, 0 ≤ j ≤ 2g − 1, and 1 ≤ k ≤ λ.

– sequential: (2g − 1) · (λ · (2g − 1) + 1) edges

(vki,j , v
k
i,j+1) for 1 ≤ i ≤ 2g − 1, 0 ≤ j ≤ 2g − 2, 1 ≤ k ≤ λ, and

(vλ2g−1,j , v
λ
2g−1,j+1) for 0 ≤ j ≤ 2g − 2
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Algorithm 5. (G, λ)-Double-Butterfly Hashing

Input: g {Garlic}, x {Value to hash}, λ {Depth}, H {Hash Function}
Output: x {Password Hash}
1: v0 ← H(x)
2: for i = 1, . . . , 2g − 1 do
3: vi ← H(vi−1)
4: end for
5: for k = 1, . . . , λ do
6: for i = 1, . . . , 2g − 1 do
7: r0 ← H(v2g−1 ⊕ v0 || vσ(g,i−1,0))
8: for j = 1, . . . , 2g − 1 do
9: ri ← H(ri−1 ⊕ vi || vσ(g,i−1,j))
10: end for
11: v ← r
12: end for
13: end for
14: return v2g−1

– connecting layer: λ · (2g − 1) edges

(vki,2g−1, v
k
i+1,0) for 1 ≤ k ≤ λ, 0 ≤ i ≤ 2g − 2.

Figure 3 illustrates the individual types of edges we used in our Definition above.
Moreover, an example for G = 8 and λ = 1 can be seen in Figure 4.

Double-Butterfly Hashing. The (G, λ)-double-butterfly hashing operation
is defined in Algorithm 5. The structure is based on a (G, λ)-double-butterfly
graph. Note that the function σ (see Lines 7 and 9) is given by

σ(g, i, j) =

{
j ⊕ 2g−1−i if 0 ≤ i ≤ g − 1,

j ⊕ 2i−(g−1) otherwise.

Thus, σ determines the indices of the vertices of the diagonal edges.
Since the security of Catena in terms of password hashing is based on a

time-memory tradeoff, it is desired to implement it in an efficient way, making
it possible to increase the required memory. We recommend to use BLAKE2b
[1] as the underlying hash function, implying a block size of 1024 bits with 512
bits of output. Thus, it can process two input blocks within one compression
function call. This is suitable for Catena-BRG since a bit-reversal graph satis-
fies a fixed indegree of at most 2. When considering Catena-DBG, we cannot
simply concatenate the inputs to H while keeping the same performance per
hash function call, i.e., three inputs to H require two compression function calls,
which is a strong slow-down in comparison to (G, λ)-BRG. Therefore, we com-
pute H(X,Y, Z) = H(X ⊕ Y || Z) instead of H(X,Y, Z) = H(X || Y || Z)
obtaining the same performance as Catena-BRG per hash function call. Obvi-
ously, this doubles the probability of input collision. Nevertheless, for a 512-bit
hash function the advantage for an adversary is still negligible.
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Based on the approach above, the number of hash function calls to com-
pute Row ri from Row ri−1 is the same for Catena-BRG and Catena-DBG.
Moreover, for both instantiations it holds that the number of hash function
calls is equal to the number of compression function calls. More detailed, the
(G, λ)-BRG requires 2g − 1 + λ · 2g calls to H and the (G, λ)-DBG requires
2g − 1 + λ · (2g − 1) · 2g calls to H . It is easy to see, that the performance of
Catena-DBG in comparison to Catena-BRG is decreased by a logarithmic
factor.

6 Security

In this section we discuss the security of Catena-BRG and Catena-DBG

against side-channel attacks. Furthermore, we discuss the memory-hardness of
both instantiations.

6.1 Resistance against Side-Channel Attacks

Straightforward implementations of either Catena-BRG orCatena-DBG pro-
vide neither a password-dependent memory-access pattern nor password-depen-
dent branches. Therefore, both instantiations are resistant against cache-timing
attacks.

Considering a malicious garbage collector, each of Algorithms 4 and 5 ex-
poses the arrays v and r. Both arrays are overwitten multiple times. Therefore,
Catena-DBG is resistant against garbage-collector attacks. Thus, any variant
of Catena with some fixed λ ≥ 2 is at least as resistant to garbage-collector
attacks as the same variant with λ − 1 in the absence of a malicious garbage
collector.

6.2 Memory-Hardness

In 1970, Hewitt and Paterson introduced a method for analyzing time-memory
tradeoffs (TMTOs) on directed acyclic graphs [14], called pebble game. While
their method has been known for decades, it was recently used in a cryptographic
context, e.g., [8]. In general, a pebble game is a common model to derive and
analyze TMTOs as shown in [17,18,19,20,21].

The pebble-game model is restricted to DAGs with bounded in-degree and
can be seen as a single-player game. Let Π(V , E) be a DAG and let G = |V|
be the number of vertices within Π(V , E). In the setup phase of the game, the
player gets S pebbles (tokens) with S ≤ G. A pebble can be placed (pebble) or
be removed (unpebble) from a vertex v ∈ V under certain requirements:

1. A pebble may be removed from a vertex v at any time.
2. A pebble can be placed on a vertex v if all predecessors of the vertex v are

marked.
3. If all immediate predecessors of an unpebbled vertex v are marked, a pebble

may be moved from a predecessor of v to v.
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A move is the application of either the second or the third action stated above.
The goal of the game is to pebble Π , i.e., to mark all vertices of the graph Π at
least once. The total amount of moves represent the computational costs.

Catena-BRG. In [12], Lengauer and Tarjan have already proven the lower
bound of pebble movements for a (G, 1)-bit-reversal graph.

Theorem 1 (Lower Bound for a (G, 1)-BRG [12]). If S ≥ 2, then, pebbling
the bit-reversal graph Πg(V , E) consisting of G = 2g input nodes with S pebbles
takes time

T >
G2

16S
.

Biryukov and Khovratovich have shown in [4] that stacking more than one
bit-reversal graph only adds some linear factor to the quadratic time-memory
tradeoff. Hence, a (G, λ)-BRG with λ > 1 does not achieve the properties of a
λ-memory-hard function.

Catena-DBG. Likewise, the authors of [12] analyzed the time-memory tradeoff
for a stack of λ G-superconcentrators. Since the double-butterfly is a special form
of a G-superconcentrators their bound also holds for (G, λ)-DBG.

Theorem 2 (Lower Bound for a (G, λ)-Superconcentrator [12]). Pebbling
a (G, λ)-superconcentrator using S ≤ G/20 black and white pebbles requires T
placements such that

T ≥ G

(
λG

64S

)λ

.

Discussion. For scenarios where a quadratic time-memory tradeoff is sufficient,
we recommend the efficient Catena-BRG with either λ = 1 or – if garbage-
collector attacks pose a relevant threat – with λ = 2. Note that the benefit of
greater values for λ is very limited since the costs for pebbling the bit-reversal
graph remain quadratic. For scenarios that require a higher time-memory trade-
off, we highly recommend the λ-memory-hard Catena-DBG with λ = 2 or
λ = 3, which is sufficient for most practical applications.

We have to point out that the computational effort for (G, λ)-DBH with
reasonable values for G, e.g., G ∈ [217, 221], may stress the patience of many
users since the number of vertices and edges grows logarithmic with G. Thus, it
remains an open research problem to find a (G, λ)-superconcentrator – or any
other λ-memory-hard function – that can be computed more efficiently than a
(G, λ)-DBH.
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7 Conclusion

In this paper we introduced a new class of side-channel attacks, called garbage-
collector attack, which bases on a malicious garbage collector. We showed that
the common password scrambler scrypt is vulnerable to this kind of attacks.
Furthermore, we presented a (theoretical) cache-timing attack on scrypt that
exploits its password-dependent memory-access pattern. Both attacks enable an
adversary to construct a memoryless password filter that enables massively-
parallel password-guessing attacks. Moreover, we show that our attacks work
even without knowledge of the password hash. All regular implementations, i.e.,
implementations that are not hardened against side-channel attacks, of pass-
word scramblers with a password-dependent memory access pattern appear to
be vulnerable to these attacks.

As a remedy, we introduced a novel password-scrambling framework Catena.
We presented two instantiations with a password-independent memory-access
pattern: Catena-BRG and Catena-DBG. The former is more efficient and
1-memory-hard, whereas the latter is less efficient but offers a higher level of
security, i.e., λ-memory-hardness. Finally, we want to emphasize that Catena-

BRG and Catena-DBG inherit their security from well-analyzed structures,
namely bit-reversal and double-butterfly graphs.
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Based on the cryptanalysis provided by Biryukov and Khovratovich in [4], we
decided to provide a slightly changed version in comparison to our submitted
version. The major changes are (1) removing the flawed proof for λ-memory-
hardness of a (G, λ)-BRG and (2) providing a new instance calledCatena-DBG

based on a (G, λ)-double-butterfly graph (variant of a stack of λDouble-Butterfly
Graphs (DBG)).
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Abstract. In this paper, we study the side-channel security of the field
multiplication in GF(2n). We particularly focus on GF(2128) multiplica-
tion which is the one used in the authentication part of AES-GCM but
the proposed attack also applies to other binary extensions. In a hard-
ware implementation using a 128-bit multiplier, the full 128-bit secret is
manipulated at once. In this context, classical DPA attacks based on the
divide and conquer strategy cannot be applied. In this work, the algebraic
structure of the multiplication is leveraged to recover bits of information
about the secret multiplicand without having to perform any key-guess.
To do so, the leakage corresponding to the writing of the multiplication
output into a register is considered. It is assumed to follow a Hamming
weight/distance leakage model. Under these particular, yet easily met,
assumption we exhibit a nice connection between the key recovery prob-
lem and some classical coding and Learning Parities with Noise problems
with certain instance parameters. In our case, the noise is very high, but
the length of the secret is rather short. In this work we investigate dif-
ferent solving techniques corresponding to different attacker models and
eventually refine the attack when considering particular implementations
of the multiplication.

Keywords: Field Multiplication, Authenticated Encryption, AES-GCM,
Side-Channel.

1 Introduction

The multiplication in GF(2128) is used in several cryptographic algorithms to dif-
fuse a secret parameter. Two widely deployed examples are the authentication
encryption mode AES-GCM and the mode of operation OCB. While it is impor-
tant to guarantee the security of such algorithms against black-box attacks, e.g.
using the knowledge of the inputs and outputs, it becomes mandatory to thwart
side-channel attacks for an industrial use.
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The main motivation of this work is to show that such multiplication, although
manipulating huge part of the secret at once, can be attacked by a side-channel
adversary. Hence, in a major part of this work we consider that the multiplication
is an atomic operation (that is performed using a 128-bit multiplier) what is the
worst case for an attacker. In an additional part we show that, as one may expect,
considering designs having intermediate results indeed provides more leakages
and thus lead to more powerful attacks.

As already mentioned, we focus on the application to AES-GCM. Proposed by
McGrew and Viega in [25] and standardized by NIST since 2007, this authen-
ticated encryption algorithm aims to provide both confidentiality and integrity.
It combines an encryption based on the widely used AES algorithm in counter
mode and an authentication based on the GHASH function involving multipli-
cations in GF(2128). This latter one mixes ciphertexts, potential additional data
and a secret parameter derived from the encryption key to produce a tag. The
security of the algorithm has been analyzed by many authors but despite signif-
icant progress in these attacks [28,16,30] there is currently no real attack on this
mode. The most efficient attacks are the ones described by Ferguson when the
tag is very short (32 bits) [14] and by Joux when the nonces are reused [18].

In the particular case of AES-GCM, attacking the multiplier will provide to
the attacker the knowledge of the authentication key H . Due to the malleability
of the counter mode, the knowledge of the authentication key induces a huge se-
curity breach and thus protecting the multiplier is of real importance in contexts
where a side-channel attacker is considered. Notice that if the multiplication is
protected, then the simple additional countermeasure that consists in masking
the tag register is enough to thwart the proposed attack.

Related Work. Some of the algorithms that we consider here come from the
coding theory and we think it is a nice view to cast many side-channel attacks.
Indeed, a secret value H for instance is encoded as the different leakage values
obtained by the adversary. Usually, these leakages allow to recoverH , but here for
128 bits, the Hamming weight does not give enough information. Moreover, we
only get noisy versions of the leakage values and these values form the codeword
with errors. The errors are independent from each other and the noise level is
rather high as in many stream cipher cryptanalysis. Given these values, the goal
of the adversary is to recover the original message H and the adversary faces a
classical decoding problem.

As for the AES-GCM, Jaffe describes in [17] a very efficient Differential Power
Analysis attack on its encryption counter mode. Basically, the main idea is to
use a DPA attack on the two first rounds of the AES block cipher. Then, as most
of the plaintext is the same between two evaluations, it is possible to recover the
secret key by guessing parts of the first and second round subkeys. This attack
is particularly efficient since it also allows to recover the counter if it is hidden.
However, the implementations of AES are now well protected using masking and
many papers proposed such countermeasures [8,29,9,15], so that we can assume
that it is not possible to recover the secret key on the encryption part.
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Our Contributions. In this paper, we consider a particular leakage model
where only the storage of values leaks information to the adversary. We assume
that each time a value is written in the large register, a noisy version of the
Hamming distance or the Hamming weight of this value can be known by the
adversary. For instance, in the context of the AES-GCM authentication, the first
time the register is written, we can learn the Hamming weight of the multiplica-
tion result between the authentication key H and some known valueM . Our key
point is that the least significant bit of the Hamming weight can be expressed as
a linear function of the bits of H . If we are able to find 128 such equations, then
it is easy to recover H . However, in side-channel attacks, we only access to noisy
versions of the Hamming weight and then, the problem becomes more difficult.
Classically, this problem has been known as the Learning Parities with Noise
(LPN) [7] and it is famous to have many applications in cryptography. We then
consider many attacker models, according to whether the inputs M are known,
can be chosen and repeated. If we consider only the tag generation algorithm,
additional authentication data can be input to the encryption and these values
are first authenticated. We think that this model is powerful and allows us to
consider many attacks on different implementations. For instance, since we only
consider the writing in the accumulator of the polynomial evaluation, we do not
take into account the way the multiplication is implemented and our attack also
works even though the multiplication is protected against side-channel attacks.

In the first part of this paper, we consider inputs that are non controlled by the
adversary. This is the case for instance in AES-GCM with the authentication of
encrypted messages. We show through practical experiments that the proposed
attacks may even be successful for reasonable levels of noise if averaging traces
is allowed. Then, we consider methods to choose the input values for instance for
the additional data or for the tag verification algorithm (e.g., with ciphertexts
whose tag is incorrect), so that to improve the basic attacks. In the final part,
we discuss three examples. The first one is the mode of operation OCB in which
the same multiplication is used and lead to the same attacks. The specificity
in this algorithm comes from the uncontrolled messages which are actually ad-
vantageously structured for our needs. The second one is a multiplication used
in a context of re-keying, which is an alternative of masking. A new secret key
is computed for each encryption through a multiplication which is performed
differently. The previous attacks do not work in this model. The last example
consider classical implementations of the field multiplication in GF(2128) to show
how the inner steps can improve the complexities of the aforementioned attacks.

2 Backgrounds, Leakage and Attacker Models

2.1 AES-GCM Description

AES-GCM is an authenticated encryption algorithm which aims to provide both
confidentiality and integrity. It combines an encryption based on the widely used
AES algorithm in counter mode and an authentication with the Galois mode.
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The so-called hash key H used for the authentication is derived from the encryp-
tion key K as H = AESK(0128). The ciphertext of the encryption is denoted as
C1, . . . , Cn where the blocks Ci have length 128 bits except Cn which is of size
u (u � 128). Similarly, the additional authenticated data is composed of 128-bit
blocks A1, . . . , Am where the last one has size ν (ν � 128). Eventually, we denote
by (Xi)0�i�m+n+1 the intermediate results of function GHASH with Xm+n+1 be-
ing the output exclusively ored with an encryption of the initial counter to form
the tag. Figure 1 illustrates the procedure with the previously defined notations.
For the sake of simplicity we will use a single letter M for both kinds of outputs

⊗PH

A1

X1

A2

⊗PH

X2

. . .

(
Am||0128−u

)

⊗PH

Xm

C1

⊗PH

Xm+1

. . .

(
Cn||0128−ν

)

⊗PH

Xm+n

(128m + u||128n + ν)

⊗PH

Xm+n+1

Fig. 1. AES-GCM authentication

(Ai or Ci). Then, the definition of the GHASH function can be simply described
by the following recursion

Xi+1 = (Xi ⊕Mi+1)⊗P H, (1)

where ⊗P is the Galois Field multiplication described below.

Galois Field Multiplication. The multiplication ⊗PH is performed in the
field GF(2128) between 128-bit data. For AES-GCM, the Galois’ extension is de-
fined by the primitive polynomial P (Y ) = Y 128+Y 7+Y 2+Y +1.We denote by
α a root of this polynomial P . An element Q in GF(2128) can be represented by
a vector of coefficient (q0, q1, . . . , q127) where Q =

∑
0�i<128 qiα

i. In the follow-

ing we denote by Q either the element of GF(2128) or the corresponding vector.
To avoid ambiguities we will differentiate field multiplication (⊗P ) from ma-
trix/vector multiplication (·). Since attacks we present in the paper heavily rely
on the linearity of multiplication in GF(2128), we will use a matrix representa-
tion of the multiplication. Namely, let Q and R be two elements of GF(2128),
the result of the multiplication Q⊗P R can be seen as a matrix/vector product
QP · R where QP is a matrix obtained by concatenating columns representing
coefficients of Q⊗P α

i:

QP =

⎛⎜⎜⎜⎝
q0 q127 · · · q1 ⊕ q127 ⊕ q126
q1 q0 ⊕ q127 · · · q2 ⊕ q123 ⊕ q1 ⊕ q127 ⊕ q122
...

...
. . .

...
q127 q126 · · · q0 ⊕ q127 ⊕ q126 ⊕ q121

⎞⎟⎟⎟⎠ .
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2.2 Attacker Context

Leakage Model. A usual assumption (see for instance [24]) when there is no
information on the implementation is to consider that all the variables Vi written
in the registers of a cryptographic computation leak the sum of their Hamming
weight (HW) and a independent noise εσ which follows a Gaussian distribution
with a null mean and standard deviation σ (denoted by N (0, σ)):

L
(HW)
i = HW(Vi) + εσ, εσ ∼ N (0, σ).

A common generalization of this leakage model when the attacker is given the
successive stored variables is to consider the Hamming distance (HD) between
two consecutive data Vi−1 and Vi:

L
(HD)
i = HD(Vi, Vi−1) + εσ = HW(Vi ⊕ Vi−1) + εσ.

This generalization depends on the implementation. If a register is initialized to
zero before storing a variable Vi, the Hamming distance between both stored data
is exactly the Hamming weight of Vi. However, in the case of a sum for instance,
we can reasonably assume that the new computed variable overwrites the stored
one (intermediate result), leaking the Hamming distance between them. In the
following and in order to cover most embedded devices, we consider both models.

Attacker Model. Now we defined the models for information leakage, we dis-
cuss the attacker capabilities. From the axiom “Only Computation Leaks” of
Micali and Reyzin [27], we only give the attacker the leakage of the manipulated
data. Furthermore, in the most part of this paper, we restrict the leaking data
to the multiplication’s output to cover all the implementations. We now discuss
the three characteristics that define the attacker model.

Known/Chosen Inputs. For the known operands of the Galois field multiplica-
tion, we consider the two classical attacker models namely the known message
model (e.g., ciphertexts) and the chosen message model (e.g., additional data to
authenticate). These two models will be respectively considered in Section 3 and
Section 4.

Limited/Unlimited Queries. The attacker may face limitation in the number of
queries. Such limitation may be due to time constraints but we may also consider
an attacker querying for forged tag verifications in which case an error-counter
may limit the number of invalid tag verifications.

Enabled/Disabled Averaging. Eventually, the attacker may be able to average
traces obtained for the same computation. This is the case in the chosen messages
setting but it may also be the case in the known messages setting when for
instance the first blocks to authenticate have a specific format. If such feature is
available, then the attacker may execute λ times each computation and average
the corresponding traces. Since the leakage model considers an additive Gaussian
noise, this decreases the standard deviation of the noise from σ to σ/

√
λ.
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Attack Paths. We present hereafter the key idea of this paper and some pre-
liminary results.

Main Observation. The cornerstone of the attacks presented in Section 3 and
Section 4 is the fact that the less significant bit (further referred to as LSB) of the
Hamming weight of a variable (equivalently distance between two variables) is a
linear function of its bits. While a side-channel attacker generally uses a divide-
and-conquer strategy to recover small parts of the key by making guesses, it is
not possible anymore as the size of chunks gets large. This prevents attackers
from targeting whole 128-bit variables. Nevertheless, in the particular case where
the intermediate variable is the output of a linear function involving a public
input and the key, then it means that the LSB of the Hamming weight is a linear
function of this input and the key. If we denote by lsb0 (HW(M ⊗P H)) (or also
b0) the bit 0 of the Hamming weight of the product M ⊗P H , we get

lsb0 (HW(M ⊗P H)) =
⊕

0�i�127

⎛⎝ ⊕
0�j�127

(M ⊗P α
i)j

⎞⎠ hi. (2)

This is precisely what is exploited in the attacks we present. Obviously this work
can also be applied to any algorithm in which such multiplication appears and
is not restricted to AES-GCM.

First Block. Observing Equation 1, we see that we only know the input of the
multiplication with H for the first block of data X1 since the input of further
blocks will depend on H . Moreover, since X0 is zero, we are in a context where
Hamming distance and Hamming weight leakages are equivalent and we thus
only refer to the Hamming weight in the following. While the linearity of its
parity bit is a very good thing from an attacker point of view, the drawback is
that this value is highly influenced by the measurement noise. Assume that we
use the following decision procedure to guess the bit from a leakage value,

b̃0
def
= lsb0 (�HW(M ⊗P H) + εσ�) ,

where �·� is the rounding operator. Then, we obtain a noisy bit of information
that we can model as follows

b̃0 = lsb0 (HW(M ⊗P H))⊕ bN . (3)

where the error-bit bN is the potential error due to the Gaussian noise. This error-
bit follows a Bernoulli distribution with a parameter p such that the probability
of no error is

1− p =

∞∑
i=−∞

∫ 2i+0.5

2i−0.5

φ0,σ(t)dt (4)



312 S. Beläıd, P.-A. Fouque, and B. Gérard

with φ0,σ(x) = e−
x2

2σ2 /(σ
√
2π), ∀x ∈ R the probability density function of the

Gaussian law with null mean and standard deviation σ. In Table 1 we provide
a few values of this Bernoulli parameter for several standard deviations. Note
that we generally evaluate the complexity of an attack according to the Signal-
to-Noise Ratio which is the ratio between the signal variance and the noise
variance. For 8-bit implementations1, we consider this SNR around 0.2 [23,4]
which is a typical value both for hardware [19] and software implementations
[11]. It corresponds to a signal variance of 8 (with the chosen leakage model)
and a noise variance of 10 (standard deviation around 3). While we do not have
reference measurements for 128-bit implementations, we can assume that the
noise standard deviation is close, that is around 3.

Other Blocks. The generation of traces is expensive for an attacker and in some
models it may also be limited. Therefore the number of traces is generally the
main criteria when evaluating the complexity of an attack. In the context of
the AES-GCM, the authentication is performed through a chained sequence of
multiplications. This is quite frustrating for an attacker to only consider the first
block when so much information is available. We will discuss in Section 3 and
Section 4 how to exploit some of the following multiplications to obtain more
bits of information from a single trace.

Other Leakage Bits. As mentioned above, we only exploit the LSB of the leakage
for the attacks because it directly depends on a linear combination of the key
bits. However, it is also strongly impacted by the noise which involves multiple
errors in the system. In this paragraph, we discuss the complexities of considering
further bits of leakage. We first focus on the impact of noise on each of them.
In this purpose, Table 1 gives the values of the parameters of the Bernoulli law
followed by each one of them. They are computed using (4) with i varying from
�−7σ� to �7σ� to capture at least

(
1f00− 2.56 · 10−10

)
% of the values. The

results are directly related to the number of errors in the system which decrease

Table 1. Bernoulli parameter p for different levels of noise with all ε� 10−9

std dev σ
Bernoulli parameter p

1st bit 2nd bit 3rd bit 4th bit 5th bit 6th bit 7th bit

0.5 3.1 10−1 2.7 10−3 ε ε ε ε ε
1 0.5 − 4.6 10−3 1.3 10−1 4.7 10−4 ε ε ε ε
2 0.5 − 1.7 10−9 3.8 10−1 8.0 10−2 1.8 10−4 ε ε ε
3 0.5− ε 4.3 10−1 2.3 10−1 1.2 10−2 2.0 10−7 ε ε
4 0.5− ε 4.5 10−1 3.2 10−1 6.1 10−2 1.1 10−4 ε ε
5 0.5− ε 4.6 10−1 3.7 10−1 1.3 10−1 1.9 10−3 ε ε

1 Notice that our attacks also work on 8-bit implementations where they are more
efficient since the attacker can capture intermediate leakage on 8-bit values.
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together with the increase of the bits indices. However, the resulting systems are
made of equations of higher degrees (exponential with the index):

bi =
⊕

0�j1<···<j2i�127

⎛⎝ ∏
1���2i

⊕
0�k�127

(M ⊗P α
k)j� hk

⎞⎠ , ∀ 0 � i � 7.

and thus are more complicated to solve. In particular, the methods capturing the
errors removal like LPN and linear decoding unfortunately do not apply on non-
linear systems2. We thus have to consider first a solver on the error-free system of
equations and then complete its complexity with the errors removal. To the best
of our knowledge, one of the most efficient solver is the algorithm F5 [13] provided
by Faugere and based on the Gröbner bases. While the solving complexity of
the (error-free) quadratic system may be reasonable, it gets computationally
impractical when considering the most significant bits3.

3 Known Inputs

As described in the previous section, for each observed first multiplication, an
attacker obtains a noisy Hamming weight value of the output. The LSB of
the Hamming weight being linearly dependent on the key (see Equation 2),
the attacker can gather many measurements to form a linear system having the
authentication key H as solution. In this section we discuss different techniques
to solve this noisy linear system. First we propose a simple procedure that allows
the attacker to recover the key. Then, we investigate enhancements and other
techniques that help decreasing the attack complexity in presence of higher noise.

3.1 Naive Attack

From Equation 2, the (noisy) linear system formed from t messages (M (�))0���t

can be written as follows:

S =

⎧⎪⎪⎨⎪⎪⎩
⊕

0�i�127

(⊕
0�j�127 (M (0) ⊗P α

i)j

)
hi = b̃0

(0)

. . .⊕
0�i�127

(⊕
0�j�127 (M (t−1) ⊗P α

i)j

)
hi = b̃0

(t−1)
.

(5)

The values b̃0
(�)

are obtained as in Equation 3 that is we simply round the
leakage observations to the closest integer and extract the least significant bits.
Once the system S is correctly defined in GF(2), we can efficiently and directly
solve it (e.g., calling mzd solve left of the library m4ri [1]) if these two conditions
are fulfilled:

2 A linearised system would be involve too many variables to be efficiently solved.
3 The complexities related to each bit can be computed with the package [6].
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i) S contains at least as many linearly independent equations as the number
of unknown variables (128),

ii) there is no error in the bits b̃0
(�)

(i.e., b̃0
(�)

= b
(�)
0 ).

First, the probability of obtaining a full-rank matrix from k k-bit messages, is∏
0�i�k−1

(
1−2i−k

)
. In our context (that is k = 128), this probability is close to

0.3. To obtain a full-ranked matrix with high probability (say 0.9) the number of

additional messages m must satisfy 1−
∏

1�j�2m

(
1−

∏
0�i�k−1

(
1− 2i−k

))
�

0.9. For k = 128, a single additional message (m = 1) makes the equation holds.
Note however that the full rank condition does not need to be fulfilled to recover
the key. If it is not the attacker should first recover a solution of the system
and the kernel of the linear application then test all the solutions to eventually
recover the key.

Second, we consider the negative impact of the measurement noise. The lat-
ter introduces errors in the system which thus cannot be solved with classical

techniques. A simple (naive) solution is to consider that one of the b̃0
(i)
’s is er-

roneous and to solve k times the system with the k possible vectors b̃0 ⊕ αi. If
the key is not found we can incrementally test all other numbers of errors until
the correct key is found. Notice that the inversion is only done once: solving the
system with a different vector b̃0 only requires a matrix/vector multiplication.
If e errors are made among the k messages, then the correct key will be found

in at most C
(e)
k matrix/vector products:

C
(e)
k =

e∑
i=0

(
k

i

)
. (6)

When the number of errors grows, it quickly becomes computationally hard. For

instance, for e = 6 and k = 128, C
(e)
k ≈ 232. In the next section we investigate

techniques to decrease the number of errors in S.

3.2 Improved Attack

In this section, we propose two improvements for the attack. The first one con-
sists in an optimal decision to guess the Hamming weight LSB. This criterium
can also be used to advantageously select 128 traces among many more to limit
the errors. The second improvement is to show that an attacker can actually use
the leakage obtained from the two first multiplications and not only from the
first one.

Reducing the Noise

An Optimal Decision Rule. We propose here to use the LLR statistics (for Log

Likelihood Ratio) to derive a bit value b̂0 in average closer to b0 than b̃0 from
a leaked Hamming weight. This statistics is extensively used in classical crypt-
analysis (an application to linear cryptanalysis can be found in [2]) since the
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Neyman-Pearson lemma states that for a binary hypothesis test the optimal4

decision rule is to compare the LLR to a threshold. The LLR of a leakage � is
given by:

LLR(�) = log(P[b0 = 0|�])− log(P[b0 = 1|�]).

The bit b0 is equally likely equal to 0 or 1 since we have an a priori uniform
distribution for the secret. Thus, using Bayes relation we obtain that

LLR(�) = log (P[�|b0 = 0])− log (P[�|b0 = 1])

with P[�|b0 = i] =

128∑
w=0

P[�|b0 = i,HW(�) = w]P[HW(�) = w].

If the result of LLR(�) is positive it means that the parity bit is likely to be equal
to 0. Otherwise, we should assume it is equal to 1. We thus define:

b̂0
def
=

{
0 if LLR(�) � 0,
1 otherwise.

Such technique will decrease the error rate since it boils down to select the most
probable value for b0. Unfortunately it turns out that it has a small impact on
the number of errors made, but its combination with the following technique will
be useful as illustrated in Figure 2.

Selecting Traces. Nevertheless, when more than k traces are available, it would
be of interest to only select the k most reliable ones to decrease the number of
errors in the system. Basically, we would like to take into account the confidence
we have in a given bit. For instance, assuming a 0 parity bit from a leakage 64.01
seems more reliable than for a leakage equal to 64.49. Interestingly, the higher
the absolute value of the LLR is for a given trace, the more confident we are in
the choice. Therefore, an attacker should select the n samples with the highest
LLR values to form the system. The point is that those k samples may not be
linearly independent. Two solutions can then be used:

i) one may only consider a subset of these k samples, solve the system and
brute force the remaining bits,

ii) or one may choose k linearly independent samples from the highest LLR
values.

Finding the set of k linearly independent samples maximizing this sum is a
combinatorial optimization problem which may be quite hard, thus we use a
simple “first come/first selected” algorithm that provides a set of k samples. The
algorithm iteratively looks for the sample with the highest absolute LLR value
that increases the system rank. Figure 2 represents the averaged experimental
values (on 10.000 samples) of the Bernoulli parameter p for 500 messages in
different scenarios. The black curve represents the use of function round to

4 For more precisions about this lemma and the meaning of optimal refer to [10].
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fix b̃0. The green one represents the LLR without selection of the best traces while
the blue one integers this selection among the first linearly independent traces.
Eventually, the red curve models the optimal with the 128 best traces (having
the highest LLR values but not necessarily linearly independent). As mentioned,
we can observe that the use of the LLR does not significantly improve the attack
(black and green curves very close). However, the chosen selection of the best
LLR allows the attack to resist higher levels of noise: 0.4 (resp. 0.5) instead of
0.3 (resp. 0.4) to achieve the same Bernoulli parameter. Notice that we cannot
distinguish the red curve from the blue one. This proximity means that while
the “first come/first selected” approach is not optimal it is not worth working
on a refined algorithm since the improvement will be bounded by the distance
between both curves.

Fig. 2. Bernoulli parameter with round-
ing (black), LLR (green), traces selection
(blue) and best LLR traces (red)

Fig. 3. Solving complexities for several
repetitions numbers with σ = 1 (blue),
σ = 3 (red) and σ = 4 (black)

Averaging Traces. In the context where the attacker can monitor few multiplica-
tions with the same input, we can also consider another commonly used method
which consists in averaging the traces. As claimed in Section 2 and experimen-
tally confirmed in Section 3.3, repeating the traces m times allows to divide
the noise standard deviation by

√
m. Figure 3 gives the complexity of removing

the errors (averaged from 10,000 tests computed from Eq. 6) according to the
number of repetitions of 128 traces for several levels of noise. Note that the full
complexity of the attack also includes the system solving (a single inversion in

k3 and C
(e)
k − 1 matrix/vector products in k2). Considering it, we can claim

that with less than 216 traces (i.e., 500 repetitions), the attacker can practicaly
recover the key for σ2 up to 10 (σ ≈ 3).

Saving Traces with Further Blocks. Up to now we only considered the first
multiplication since not knowing H implies not knowing the input of the second
multiplication (indeed X2 = (M1 ⊗P H ⊕M2) ⊗P H). Nonetheless, re-writting
this equality as

X2 =M1 ⊗P H
2 ⊕M2 ⊗P H,
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we observe that X2 also is a linear function of H since squaring is linear over
GF(2). Denoting by S the matrix corresponding to the squaring operation, then

X2 = (M1 · S ⊕M2)⊗P H.

Thus a linear relation can also be obtained from the second multiplication sub-
stituting M1 ·S⊕M2 to M in Equation 2. And this is also true in the Hamming
distance model since X1 ⊕X2 = (M1 · S ⊕M1 ⊕M2)⊗P H . This observation is
of great importance since it significantly improves the complexity of the attacks
with a number of required traces divided by a factor two.

3.3 Experimental Results

We illustrate here the necessity of averaging and we confirm the corresponding
decreasing of the noise by giving the results obtained on real experiments.

Settings. We implemented the GHASH function on the Virtex-5 FPGA of a
SASEBO board and acquired traces from an EM probe. We obtained 105 traces
that we separated in two 5 · 104 trace sets (Set 1 and Set 2). We then built
templates using Set 1 and a projection obtained using the same technique as
in [12]. Afterwards we performed the first part of the attack (that is guessing
parity bits of Hamming weights with the LLR technique) using this template.
We then attacked both sets of traces.

Results. In Table 2 we provide the results we obtained. For a given number of
averaging (av.) we report (i) the noise standard deviation σ, (ii) the simulated
error rate obtained from this standard deviation (107 simulations) and (iii) the
error rates obtained when applying the template to Set 1 and Set 2.

Table 2. Noise levels and error rates obtained from EM traces

av. σ error rates
simul Set 1 Set 2

1 1.958 n/c n/c n/c
2 1.287 n/c n/c n/c
3 1.063 0.5 - 2.26 10−3 n/c n/c
4 0.882 0.486 0.483 0.495

av. σ error rates
simul Set 1 Set 2

6 0.770 0.466 0.454 0.467
8 0.637 0.414 0.407 0.457
10 0.579 0.378 0.370 0.422
12 0.520 0.333 0.338 0.404

First, we see that doubling the number of averaging roughly leads to a reduc-
tion of noise standard deviation by a factor

√
2 as we would expect. Second, the

attack performs better on the first set since it is the one that have been used
to build templates. For Set 1, the error rates actually correspond to theoretical
approximations based on the noise standard deviation. We also see that the er-
ror rates obtained for Set 2, while obviously deviating from expected values, are
significantly decreasing with the number of averaging. Indeed, when averaging is
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possible, the obtained features show that an attack can be mount easily. As one
can see, Table 2 does not contain data for error rates corresponding to less than
4 averagings. This is due to the fact that the deviation from 0.5 is too small to
be estimated using 50,000 traces. We did not managed to get more traces since
experiments with higher levels of averaging confirm our predictions.

3.4 Solving the System with More Errors and Advanced Algorithms

There are many algorithms to recover the authentication key from noisy Ham-
ming weight LSBs. In the case where more than n multiplications are observed,
the attacker will obtain an overdefined linear system. In other words, the at-
tacker will get redundant linear relations involving bits of the key H . Guessed
LSBs extracted from leaking multiplication can thus be seen as forming a noisy
codeword that encodes the authentication key H using the code defined by the
linear relations of the form of Equation 2. Recovering the key is then equivalent
to decoding the noisy codeword.

Learning Parities with Noise Algorithms. The Learning Parities with
Noise (LPN) problem is the problem of recovering x ∈ GF(2)k given many
pairs (a, (a, s) ⊕ e) with a ∈ GF(2)k samples randomly chosen, (a, s) denotes
the scalar product and e is a Bernoulli distribution of parameter p. The most
efficient algorithms to solve the LPN problem are based on the Blum-Kalai-
Wasserman algorithm [7]. This algorithm tries to perform Gaussian elimination
in a smart way but cancelling many bits with one single xor. The idea is to
use many samples and xoring those that have many bits in common. However,
this algorithm is exponential in the number of samples, time and memory of
order 2O(k/ log k) where k is the size of the secret values. This algorithm has been
improved by Fouque and Levieil in [21] but it allows to reduce the constant in
the exponent. In practice, it requires a huge number of samples but since here the
size is relatively short k = 128, we could use such algorithms. However, since the
noise involves a Bernoulli parameter p getting closer to 1/2, it expects 240 bytes
of memory and 234 queries when the standard deviation σ equals 0.5, while it
grows to 2241 bytes of memory and 2334 queries when σ equals 2. Lyubashevsky
gave in [22] a variant of BKW with running time 2O(k/ log log k) for k1+ε samples.
A further modification proposed more recently by Kirchner in [20] achieved bet-

ter runtimes for small values of p. This algorithm runs in time O(2
√
k) with O(k)

samples when p = O(1/
√
k).

Linear Decoding. Since inputs are not controlled by the attacker, the corre-
sponding linear code is random. Decoding over random linear codes is known
to be a hard problem (NP problem). The currently best algorithm that solves
this problem is the one presented by Becker et al. in [3] which has complexity
O(20.0494n) (where n is the code length). Nevertheless, using such algorithm only
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makes sense if the noise is low enough to ensure that the actual key-codeword is
the closest to the noisy word obtained by the attacker. Indeed if the noise is too
high, then the channel capacity will decrease below the code rate and thus the
closest codeword to the obtained noisy one may not be the one the attacker looks
for. Using the binary symmetric channel model5 we obtain that for a standard
deviation σ of 0.5 the code length should be at least 128

0.107 ≈ 1200 which would
yield a complexity 259.28 using [3]. Obviously the attacker has better using less
than 1200 relations and test more than a single key candidate. To do so she will
need a list-decoding algorithm. For cryptographic parameters (that is a key that
can be very badly ranked), the only known solution is to see the linear code
as a punctured Reed-Muller code and to use a Fast Walsh transform to obtain
probabilities for each possible codeword. Since this technique has complexity
O(k2k) with k the code dimension, it is not straightforwardly applicable here.
We discuss in Section 4 how we can take profit of controlling inputs to use such
decoding algorithm.

3.5 Complexities Evaluation

In this section, we built a system of equations from a new trick, that is the use
of a single leakage bit. Then, we discussed methods to solve it involving step by
step decoding (Eq. 6) and LLR statistics and the existing tools: LPN and linear
decoding. We now propose a comparison of the methods complexities through
Table 3 both in terms of number of samples Cs and of computation time Ct. As
for the LLR method combined with the step by step error removal (Equation 6)

the time complexity Ct includes not only the errors removal C
(e)
k but also the

the linear system solving (a single inversion in k3 and C
(e)
k − 1 matrix/vector

products in k2). As for the number of samples Cs, it is divided by two in all
methods thanks to the smart use of the second GCM block X2. We remark that
for low levels of noise (at least until σ = 0.4), linear decoding is the best method
to choose both in terms of number of samples and time complexity. Afterwards,
it depends on the number of available samples. Concretely, the more traces we
have the less time we need.

Table 3. Complexities of recovering the key with LLR and Eq. 6, LPN and linear
decoding according to the level of noise

�������Method
σ 0.1 0.2 0.3 0.4 0.5

Cs/Ct Cs/Ct Cs/Ct Cs/Ct Cs/Ct

LLR and Eq. 6 28/221 28/221 28/222 28/265 28/2107

LPN (LF Algo) 27/221 27/223 226/228 232/234 248/250

Linear decoding 26/26 26/27 27/211 28/225 29/262

5 That is using the aforementioned Bernoulli parameter as error probability.
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4 Chosen Inputs

Let us now consider techniques that may be used to recover the key in the model
where the attacker is able to control multiplication inputs. A first idea is that
in such context averaging should be considered as obviously enabled6 and thus
measurement noise could be decreased by repeating inputs. Two other ideas are:

i) structuring the messages to make the system easier to solve,

ii) choosing messages to be able to exploit more than two multiplications.

The following is dedicated to the discussion of these two ideas.

4.1 Structured Messages

In Section 3 we saw that recovering the key could be seen as a decoding problem.
The difficulty arose from the fact that the linear code corresponding to our attack
is random and have a high dimension (128). Assuming the attacker is now able
to control inputs of the multiplication, she may choose the underlying code.

Choice of the Code. The question is now which code should we use? As a
cryptanalyst the requirements for a linear code may be different from the one
found in coding theory.

List Decoding. First, an attacker aims at recovering the key. She has computing
power and can enumerate many key candidates before finding the correct one.
Such a feature means that a list decoding algorithm should be available for the
chosen code. Moreover, the list size is not of the same order of magnitude that
can be found in coding theory. Ideally, we would like to obtain a list of all key
candidates ordered by probabilities of being the correct one. Obviously such a
list cannot be created since its size would be 2128. Nevertheless, using the key
enumeration algorithm of [31], an attacker can enumerate keys from ordered lists
of key chunks. If the linear code underlying the attack is a concatenated code
then such algorithm can be used. Indeed, the corresponding matrix of the system
would be a block diagonal matrix. Each block corresponds to a smaller linear
code that may be fully decoded, that is the attacker obtains a list of all possible
keys with the corresponding probabilities.

Soft Information. Second, since the noise may be high, we would like to take
profit of the whole available information and not only consider obtained bits
b̃0 or b̂0. We illustrated in Section 3.2 the gain obtained when considering LLR
statistics to take into account the relations reliabilities. Here, we would like a
code which decoding algorithm can exploit such soft information.

6 Except maybe in pathological cases.
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Taking into account the aforementioned constraints, we opted for a concatenat-
ing code of smaller random linear codes. The latters can efficiently be decoded
using a Fast Walsh Transform (FWT) as mentioned in Section 2. We thus aim
at obtaining a matrix corresponding to the system S of the form⎛⎜⎜⎝

S0

S1

. . .

⎞⎟⎟⎠ ·

⎛⎝H
⎞⎠ =

⎛⎜⎝b̂0...
b̂t

⎞⎟⎠ . (7)

Generating Structured Inputs. To generate the inputs that yield a matrix
similar to the one in (7), the attacker has to consider the application

ϕ :M �→

⎛⎝ ⊕
0�j�127

lsbj
(
M ⊗P α

0
)
, . . . ,

⊕
0�j�127

lsbj
(
M ⊗P α

127
)⎞⎠

that maps an input M to the corresponding vector of coefficients for the system
S. To generate the bloc Sc, she chooses inputs in the kernel of ϕ|Ic

where in-
dices in Ic correspond to columns outside block Sc. A basis of these kernels are
efficiently computed using Gauss eliminations.

Simulations. To illustrate the method results, we give two graphs. The left one
presents the averaged rank of the correct key among all the 2128 possible ones
from the key chunks probabilities according to the noise standard deviations for
256 samples (blue) and 1024 samples (red). The right one is a security graph
[32] which draws the evolution of the bounds of the correct key rank according
to the number of samples for σ = 0.5.

Fig. 4. Key rank for 256 (blue) and 1024
(red) samples
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4.2 Saving Traces

A second way, for the attacker, to take profit of the control she has on inputs
is to leverage on Ferguson observation [14]. During the specification process
of AES-GCM, Ferguson observed that it was possible to obtain a tag that is
linearly dependent on the authentication key H in the particular case where the
polynomial corresponding to the tag only has non-zero coefficients in positions
where the exponent ofH is a power of two. This observation relies on the linearity
of the squaring operation as mentioned in Section 3.

We saw that this observation allows to exploit the two first multiplications but
if the attacker has the control on the inputs she can choose them to do more.
Again, this trick can be used either in case of Hamming weight or Hamming
distance. The only limitation is that the number of blocks to authenticate grows
exponentially in the number of exploitable multiplications. The trade-off will
depend on the available time for getting traces and on a potential limitation in
the number of queries. To illustrate this we show how an attacker can exploit
3 multiplications in a single trace. From Eq. 1, we obtain the expression of the
four first Xi’s when M2 is set to 0:

X1 =M1 ⊗P H, X3 =M1 ⊗P H
3 ⊕M3 ⊗P H,

X2 =M1 ⊗P H
2, X4 =M1 ⊗P H

4 ⊕M3 ⊗P H
2 ⊕M4 ⊗P H.

We see that relations obtained from X1, X2 and X4 only involve power-of-two
of H which means that the relation is a linear function of H . For instance
X4 = (M1 ·S ·S⊕M3 ·S⊕M4)⊗P H , and because she knows S and can choose
M4, the attacker can obtain the input of its choice for the fourth multiplication.

5 Other Applications

In this section, we discuss different applications of the presented attacks. We
first consider the OCB mode of operation on which the proposed attacks allow
to recover the masks. Then, we look at another multiplication on which our
attacks unpractical. Finally, we give some hints on the complexity of our attacks
if the attacker has access to the inner parts of the multiplication.

5.1 OCB Mode of Operation

In OCB mode of operation, the masks added before and after the encryption of
each block are computed with a multiplication in GF(2128). As in AES-GCM, the
process uses a secret constant computed by encrypting the message zero with
the secret encryption key. Despite some small differences between the versions
OCB1 and OCB2, in both cases, a secret value (EK(0128)) is multiplied by a
power of two. Thus, the scenario is easier than for the uncontrolled setting since
the messages are very sparse. Plus, their shape is close to the one considered in
the controlled setting. As a consequence, the secret constant can be recovered
in OCB1 and OCB2 at least as well as (but generally easier than) in AES-GCM
and allows to recover the masks which are supposed to protect the encryption.
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5.2 Re-keying

In [26], Medwed et al. propose to multiply known uniformly distributed 128-
bit messages r with a 128-bit secret master key k to generate session keys in
the context of re-keying. Each resulting session key is then used for a single
encryption of a plaintext block. Doing so, only the generation of the session
keys is required to resist Differential Power Analysis attacks. Therefore, the
authors only mask this operation but the resulting session key can still leak its
(noisy) Hamming weight. The context is thus the same than in AES-GCM but
the multiplication is different, the variables being defined on GF(28)[y]/y16 + 1.
Re-using the matrix/vector modelization, we can represent the message r being
multiplied with the key k by a (16× 16) matrix Rp as follows:

Rp =

⎛⎜⎜⎜⎝
r0 rm−1 · · · r1
r1 r0 · · · r2
...

...
. . .

...
rm−1 rm−2 · · · r0

⎞⎟⎟⎟⎠
with the ri in GF(28). From this matrix, we can easily write the equation involv-
ing the LSB b0 of the Hamming weight of the result:

lsb0

⎛⎝HW

⎡⎣⎛⎝ ⊕
0�i�m−1

ri

⎞⎠ ·

⎛⎝ ⊕
0�j�m−1

kj

⎞⎠⎤⎦⎞⎠ = b0

with · the multiplication in GF(28). As we can see, only the sum of all the key
bytes can be recovered if the attack is successful. However, no individual key
bit can be determined. If we extended the attack to more leakage bits, we could
(at most) successively recover all the bits of the Hamming weight of the key. It
is worth noting that the non-applicability of the attack directly comes from the
multiplication’s polynomial. Any polynomial with an even number of monomials
makes the attack fail when considering only the LSB of the Hamming weight.

5.3 Specific Implementations

Previously, we considered a secure multiplication on GF(2128) for which we just
had access to the result. Doing so, we covered all the multiplier implementations
like [5] including the protected ones (e.g., with masking). We now show that
making assumptions on the multiplier implementation improves the efficiency of
our attack. As explained in [25,33], a usual method to implement a multiplier is to
split one of the two operands in smaller blocks (a (128× 128)-bit multiplier does
not generally fit the area requirements) and perform intermediate multiplications
which are progressively accumulated. In the full version of this paper, we focus
on two such multipliers with one or the other operand being split. When the
secret key is split, the attacker can follow a divide-and-conqueer strategy to
recover each block. Nevertheless, when the message is split, the attacker cannot
practically enumerate all the possible secret keys. In this case the scenario is still
easier than the generic one since we focus on sparse messages of at most n bits.
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Abstract. Higher-order differential power analysis attacks are a seri-
ous threat for cryptographic hardware implementations. In particular,
glitches in the circuit make it hard to protect the implementation with
masking. The existing higher-order masking countermeasures that guar-
antee security in the presence of glitches use multi-party computation
techniques and require a lot of resources in terms of circuit area and
randomness. The Threshold Implementation method is also based on
multi-party computation but it is more area and randomness efficient.
Moreover, it typically requires less clock-cycles since all parties can op-
erate simultaneously. However, so far it is only provable secure against
1st-order DPA. We address this gap and extend the Threshold Implemen-
tation technique to higher orders. We define generic constructions and
prove their security. To illustrate the approach, we provide 1st, 2nd and
3rd-order DPA-resistant implementations of the block cipher KATAN-
32. Our analysis of 300 million power traces measured from an FPGA
implementation supports the security proofs.

1 Introduction

Differential power analysis (DPA) attacks as introduced by Kocher et al. [19] ex-
ploit unintentional information leakage of a device’s internal processing through
its power consumption. Over the years, many types of countermeasures against
DPA attacks have been proposed. One family of countermeasures is called mask-
ing and consists in computing the algorithm on a randomized representation of
the data. For this purpose, the data is split in several shares that are processed
sequentially or in parallel. A DPA attack that exploits the information leakage
of several shares jointly, be it by combining the leakage from several points in
time or by analyzing higher-order statistical moments of the leakage at one point
in time, is a higher-order DPA (HO-DPA) attack [6,24].

It is preferable to protect the implementation of a cryptographic algorithm
with a higher-order masking countermeasure, where d > 1 random masks are
used to generate d+ 1 shares of a variable, since 2nd-order DPA attacks can be
relatively inexpensive to mount. It is well known that the number of measure-
ments required for a HO-DPA attack to succeed scales exponentially in the noise
standard deviation, the exponent being d+ 1 [6,33].

P. Sarkar and T. Iwata (Eds.): ASIACRYPT 2014, PART II, LNCS 8874, pp. 326–343, 2014.
c© International Association for Cryptologic Research 2014
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In a secure masking, all d + 1 shares are necessary to re-construct the vari-
able. Such a secure masking is called dth-order masking and leads to a dth-
order secure implementation in software. An implementation of the same secure
masking in CMOS-like glitchy hardware, on the other hand, will typically be
insecure [22,23,27].

Related Work. Several masking schemes that are secure against HO-DPA
have been proposed so far, e.g. [8,9,14,17,18,34,35]. However the scheme in [17]
is shown to be insecure in [10] and [9] discovers and proposes a fix to a leak
in [35]. Only one scheme claims to be secure against HO-DPA even in the pres-
ence of glitches [34], based on separation of the operations in the time domain.
Nevertheless, implementing this scheme within the defined models is a challeng-
ing task. Moradi and Mischke [26] provided practical evidence that a simple
separation of the operations in the time domain alone is not sufficient when the
shares of a sensitive variable are processed in consecutive clock cycles.

Threshold Implementation (TI) is a masking scheme based on secret sharing
and multi-party computation [29,30,31]. It provides provable security against
1st-order DPA even in the presence of glitches. The only requirement is that the
shares leak independently, but this requirement holds for all masking schemes.

So far, several S-boxes and symmetric-key algorithms have been implemented
with this method and the security claim has been confirmed in practical exper-
iments [2,28,32]. However, it has also been confirmed that a TI is vulnerable to
HO-DPA [2,25].

Contribution. So far, the theory of TI and its practical security is limited
to counteract 1st-order DPA. In this work, we define Higher-Order Threshold
Implementation (HO-TI) to thwart HO-DPA. We define generic constructions
and use results from Ches 2010, Eurocrypt 2010 and 2014 to prove their
security. We provide a relation between 1st-order DPA secure implementations
of 4 × 4 S-boxes in the alternating group with 5-shares provided in [4] and
2nd-order DPA secure implementations of these S-boxes. To illustrate the HO-
TI approach in a comprehensible example, we provide 1st, 2nd and 3rd-order
DPA-resistant implementations of the block cipher KATAN-32. Our analysis of
300 million power traces measured from an FPGA implementation supports the
security proofs.

2 Theory of HO-TI

We use lower case characters to refer to elements of a finite field and upper
case characters to describe vectors and vector functions. Stochastic variables
are described by the superscript $. The probability that x$ takes the value x is
Pr(x$ = x). In order to implement a function f(x) = y from Fn to Fm with TI,
we first split each variable x into s shares xi where i ∈ {1, 2, . . . , s} by means of
Boolean masking, such that the XOR sum of these shares is equal to the variable
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itself (x =
∑

i xi). For all values x with Pr(x$ = x) > 0, let Sh(x) denote the
set of valid share vectors X for x:

Sh(x) = {X ∈ Fns | x1 ⊕ x2 ⊕ · · · ⊕ xs = x}.

We use the terms sharing or masking interchangeably for a valid share vector X
and use the term s-sharing of x to emphasize the number of shares. Pr(X$ =
X |x$ = x) denotes the probability that X$ = X when the unmasked value
equals x, taken over all auxiliary inputs of the masking.

In a TI, f is implemented as a vector of functions F that takes X as input.
Each function in this vector is called a component function and represented by
fi where i ∈ {1, . . . , s}. From now on, we use the term sharing of the function to
describe F and s-sharing of f to emphasize the number of component functions
of F . F must satisfy the following property for a correct implementation.

Property 1 (Correctness). ∀y ∈ Fm, ∀X ∈ Sh(x) and ∀Y ∈ Sh(y); F (X) =
Y ⇐⇒ f(x) = y.

We call each share of X an input share and each share of Y an output share.

2.1 HO-TI of an Arbitrary Function

Like for other masking schemes, the masking of the input of a shared func-
tion F must be uniform. We call a masking X of a variable x uniform if and
only if Pr(X$ = X |x$ = x) is equal to the same constant p for each X and∑

X Pr(X$ = X |x$ = x) = Pr(x$ = x). If the input is a uniform masking, then
the shared function F must satisfy the following property in order to achieve
security against dth-order DPA.

Property 2 (dth-order non-completeness). Any combination of up to d compo-
nent functions fi of F must be independent of at least one input share.

One can see that this dth-order non-completeness property is equivalent to
the non-completeness property defined in [31] for 1st-order DPA resistance when
d = 1. We define a TI that satisfies Property 1 and Property 2 as dth-order TI.

In 2010, two different works at Eurocrypt and Ches [13,35] show a corre-
spondence between the HO-DPA attack model and the so-called “probing model”
where the d probing model considers an adversary that is allowed to observe the
value of up to d intermediate wires of the circuit during the computation. More-
over, at Eurocrypt 2014, this probing model is used by [12] to prove security
against HO-DPA, and a relation between the probing model and the noisy leak-
age model is provided in [8]. We make use of the following results.

Lemma 1. The attack order in a higher-order DPA corresponds to the number
of wires that are probed in the circuit (per unmasked bit).
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This lemma implies that if a circuit is perfectly secure against d probes, then
combining d power consumption points as in a dth-order DPA will reveal no
information. Since TI operates on the component functions in parallel and does
not separate these operations in the time domain, this is equivalent to security
against DPA exploiting the dth-order statistical moment. However, it should be
noted that the models considered in the mentioned papers do not take glitches
into account. Thanks to the TI separation of the component functions we are
able to use their models and results, and prove stronger security in the presence
of glitches.

Theorem 1. If the input masking X of the shared function F is a uniform
masking and F is a dth-order TI then the dth statistical moment of the power
consumption of a circuit implementing F is independent of the unmasked input
value x even if the inputs are delayed or glitches occur in the circuit.

Proof. By Lemma 1, it is sufficient to prove that an adversary who can probe
d wires does not get any information about x. By construction, if F satisfies
Property 1 and Property 2, an adversary who probes d or less wires will get
information from all but at least one input share, which is independent of the
input. 
�

2.2 On the Number of Shares

The storage of the state of a symmetric key algorithm and hence the storage of
the sharing of the state is typically the most expensive part in terms of area in a
hardware implementation. In all masking schemes, the number of shares required
increases with the order of DPA to protect against. Considering that DPA is a
powerful attack especially against constrained devices, defining a higher-order
masking that has a small area footprint, therefore with the minimum number of
shares, becomes important.

An affine function f(x) = y can be implemented with s ≥ d + 1 component
functions to thwart dth-order DPA. One possible way to generate F is to define
the first component function to be f1(x1) = y1 = f(x1) and the rest of the
component functions to be fi(xi) = yi where fi is equal to f without constant
terms and 2 ≤ i ≤ s. To give an example f(x) = 1+ x can be implemented with
the following component functions:

f1(x1) = 1 + x1 and fi(xi) = xi, where i ∈ {2, . . . , s}.
However, the minimum number of shares required increases together with the

nonlinearity. When the whole cryptographic algorithm is considered, one way
to construct a TI is to adapt the number of shares to be minimum for each
component of the algorithm, and to decrease or increase the number of shares
as required. This approach is partially applied in [2]. Even though this method
may lead to a relatively small circuit, it raises the problem to generate fresh
randomness to be able to increase the number of shares. Another method is to
keep the number of shares constant as much as possible as in [29,32] to avoid
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using fresh randomness. We adopt the second idea and try to keep the number
of input shares that are used by a sharing of a nonlinear operation as small as
possible. It is also possible to have different numbers of input and output shares
to a nonlinear operation. This idea was already mentioned for 1st-order TI in [3].
Unlike that particular case where the number of input shares sin is greater than
the number of output shares sout, we require sout ≥ sin to avoid using fresh
randomness for increasing the number of shares back to sin. A way to decrease
the number of shares without using extra randomness will be discussed in the
following subsection.

Theorem 2. There always exist a dth-order TI of a function of degree t that
requires sin ≥ t× d+ 1 input and sout ≥

(
sin
t

)
output shares.

Proof. Consider, without loss of generality, the product x1x2x3 . . . xt of first t
variables where Fn + x = (x1, x2, . . . xn) and xj ∈ F . We represent the sharing

of each variable xj as xji where i ∈ {1, . . . , sin}. Then,
x1x2x3 . . . xt = (x1

1 + x1
2 + · · ·+ x1

sin) . . . (x
t
1 + xt

2 + · · ·+ xt
sin)

= (x1
1x

2
1 . . . x

t
1) + (x1

1x
2
1 . . . x

t
2) + . . .+ (x1

sin
x2
sin

. . . xt
sin

).

To satisfy the correctness each term in the above sum should exist in (or belong
to) at least one component function. This can be done in the following way. Let
each component function use only t different shares such that any t combination
of sin shares is used by only one component function. Hence any combination of
up to d component functions carries information from at most t × d shares. To
achieve the non-completeness property, sin > t × d which implies the equation
sin ≥ t × d + 1 for the number of input shares. With the given sharing, there
exist

(
sin
t

)
different ways of choosing t combinations of sin shares and placing

them in component functions. Hence, this sharing needs sout ≥
(
sin
t

)
component

functions. The proof can be extended to all degree t terms. 
�
Theorem 2 shows that the number of input shares of a function depends

linearly on the order of security for a TI. Moreover, the required number of input
and output shares given in Theorem 2 corresponds to the number of shares for
d = 1 in [31].

We point out that a TI using the number of shares defined in the previous
theorem is not the only possible construction. Moreover, the theorem does not
imply that the number of output shares or the total number of input and output
shares (sin + sout) are minimized. As an example, consider y = f(a, b, b) =
1 + a + bc where y, a, b, c ∈ F . For a 2nd-order TI of f , by Theorem 2, one
requires sin = 5 input shares which implies sout = 10 output shares. One of the
many alternatives for constructing the component functions for that scenario is

y1 = 1 + a2 + b2c2 + b1c2 + b2c1

y3 = a4 + b4c4 + b1c4 + b4c1

y5 = b2c3 + b3c2

y7 = a5 + b5c5 + b2c5 + b5c2

y9 = b3c5 + b5c3

y2 = a3 + b3c3 + b1c3 + b3c1

y4 = a1 + b1c1 + b1c5 + b5c1

y6 = b2c4 + b4c2

y8 = b3c4 + b4c3

y10 = b4c5 + b5c4 .

(1)
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If we do not fix sin = 5, we can also construct a 2nd-order TI with sin = 6
input and sout = 7 output shares as described in Appendix A.2. It is still an
open question to find a lower bound for sin + sout.

The component functions provided in Equation (1) for a 2nd-order TI of a
degree two function are constructed in a systematic way following the proof of
Theorem 2. Namely, they are constructed with sin = 2× 2 + 1 = 5 input shares
and each component function uses one of the

(
5
2

)
= 10 possible combinations of

t = 2 shares exactly. When this construction is reduced to achieve 1st-order DPA
security, one gets the equation given in [29] which is repeated in Appendix A.1
for completeness.

Component functions for functions of higher degrees and/or other security
levels can be derived with the same construction. We provide an example of a
3rd-order TI of f in Appendix A.3.

2.3 Decreasing the Number of Shares

With the construction described in the previous section, we see that the number
of output shares becomes greater than the number of input shares when d > 1.
To avoid further increase in shares and hence in area, we need to decrease the
number of shares. This decrease can be done by combining different shares with
an affine function as described in the following theorem.

Theorem 3. Given sin ≥ d+r input shares where r ≥ 1 that are not necessarily
uniform masking but secure against (d+ r− 1)st-order DPA, any sharing G that
combines any r of the input shares linearly in one component function and keeps
the rest of the input shares unchanged, is secure against dth-order DPA.

Proof. We represent the variable a with sin ≥ d+r shares for a given d, that are
not necessarily a uniform masking. Assume that this initial masking of a is secure
against (d+r−1)st-order DPA. That implies that combining any d+r−1 shares
does not reveal the unmasked value a. Consider sin−1 component functions: the
first component function combines the first two input shares linearly, without
loss of generality, the other component functions each take one share as input
and output it unchanged, i.e. g1 = a1 + a2 and gi−1 = ai for 3 ≤ i ≤ sin. This
construction satisfies both Property 1 and Property 2 for (d + r − 2)nd-order
security and one needs sin−1 ≥ d+r−1 shares to reveal the unmasked variable.
Moreover, the component function g1 only uses a balanced gate. Namely, a 2× 1
XOR gate whose output changes with probability 1 for any input bit change,
independent of the input value. Hence, even though the input is not uniform, this
sharing of g will not leak information. A mere r− 1 repetition of this procedure
gives a sharing with d + 1 shares that satisfies Property 1 and Property 2 and
that is hence dth-order DPA secure. Moreover, since there are only balanced
gates involved, one can combine this repetitive construction in one step. 
�

Remark 1. To satisfy Property 2, the nonlinear operation generating the sharing
for a mentioned in the proof of Theorem 3 and the operation to decrease the
number of shares should be separated by registers.
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Given Theorem 3, one can decrease the number of shares from sout to sin as
follows. Let the nonlinear function we want to share be f(x) = y with dth-order
TI sharing F (X) = Y such that X is an sin-sharing and Y is an sout-sharing.
Consider another sharing G(Y ) = Z of a function g as defined in Theorem 3
where Z is again an sin-sharing, and G is a dth-order TI. It is not necessarily
required that the input sharing of G is uniform. As an example, for Equation (1)
which represents a 2nd-order TI of a quadratic function, one possible way to
decrease the shares such that X and Z are represented with the same number
of shares is given below.

zi = yi, where i < 5 and z5 = y5 + y6 + y7 + y8 + y9 + y10. (2)

With this TI, it is important to make sure that Remark 1 is applied by using
registers after the nonlinear operation F .

2.4 On Uniformity

We have proved that a function f can be implemented in a way that is secure
against dth-order DPA if Property 1 and Property 2 are satisfied and the masking
of the input is uniform (Theorem 1). Hence, we need to make sure that the input
to a shared function K of a nonlinear function k which follows H = G ◦ F is
also a uniform masking unless it is equal to the exceptional linear case defined
in Theorem 3. This is equivalent to saying that H should be a uniform sharing
of the function h as defined by the following property.

Property 3 (Uniform sharing of functions). The sharing H of h is uniform if
and only if ∀z ∈ Fm, ∀(z1, z2, . . . , zsoutz

) ∈ Sh(z), ∀x ∈ Fn with h(x) = z and
soutz ≥ d+ 1:

|{(x1, x2, . . . , xsin) ∈ Sh(x)|H(x1, x2, . . . , xsin) = (z1, z2, . . . , zsoutz
)}| = Fn(sin−1)

Fm(soutz −1)
.

We call a dth-order TI that is a uniform sharing, a uniform dth-order TI.
Unfortunately, we do not know a straight forward way to generate the component
functions with smin input and sout output shares provided in Theorem 2 so that
this property holds (unlike the other two properties) for any Boolean function.
Hence, a sharing should be explicitly checked to satisfy Property 3. In this paper,
we recall a uniform sharing of an AND and an XOR gate that is secure against
1st-order DPA in Equation (6) which is equal to the formula derived in [31].
Moreover, we provide uniform sharings that are secure against 2nd and 3rd-
order DPA by the sharings of H = G ◦ F generated from Equation (1) and
Equation (8) together with Equation (2). Note that Equations (1) and (8) alone
are not uniform. We found these sharings with a guided computer search. In the
following section, we will also provide a way to construct uniform 2nd-order TI
of 4× 4 S-boxes in the alternating group with 5 input and 10 output shares.
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2.5 Constructing 2nd-Order TI of Some 4 × 4 S-Boxes

The majority of the S-boxes used in lightweight implementations are 4 × 4 S-
boxes, therefore it is important to provide hardware implementations of these
S-boxes secure against HO-DPA.

In [4], it is shown that all 4 × 4 S-boxes that are in the alternating group
(S-boxes that can be represented as an even number of transpositions, e.g.
PRESENT [5], KLEIN [15] and Noekeon S-boxes and half of the Optimal S-
boxes [21]) can be decomposed into quadratic S-boxes. Moreover, these S-boxes
(represented as s(x) or one of their affine equivalents s′(x) = a(s(b(x))) s.t. a and
b are affine permutations) have a uniform 1st-order TI with 5 input and output
shares with direct sharing. To be more precise, if the sharing in Equation (3)
(given for f(a, b, c) = 1+ a+ bc) is applied to each term of the vectorial Boolean
functions, the resulting TI is 1st-order DPA-resistant and uniform.

y1 = 1 + a2 + b2c2 + b2c3 + b3c2 + b2c4 + b4c2

y2 = a3 + b3c3 + b3c4 + b4c3 + b3c5 + b5c3

y3 = a4 + b4c4 + b4c5 + b5c4 + b4c1 + b1c4 (3)

y4 = a5 + b5c5 + b5c1 + b1c5 + b5c2 + b2c5

y5 = a1 + b1c1 + b1c2 + b2c1 + b1c3 + b3c1 .

Generating the component functions as in Equation (4) for any of the men-
tioned S-boxes would lead to 2nd-order TI with sin = 5 and sout = 10.

y1 = 1 + a2 + b2c2 + b2c3 + b3c2

y3 = a3 + b3c3 + b3c4 + b4c3

y5 = a4 + b4c4 + b4c5 + b5c4

y7 = a5 + b5c5 + b5c1 + b1c5

y9 = a1 + b1c1 + b1c2 + b2c1

y2 = b2c4 + b4c2

y4 = b3c5 + b5c3

y6 = b4c1 + b1c4

y8 = b5c2 + b2c5

y10 = b1c3 + b3c1 .

(4)

If the sharing G of g(y) = z described in Section 2.3 is generated as gi =
y2i−1 + y2i for i ≤ 5, the overall sharing H(X) = G(F (X)) of the S-box (or
one of its affine equivalent) is uniform since the sharing H is equivalent to the
sharing given in Equation (3). Hence, we can construct uniform 2nd-order TI of
all 4× 4 S-boxes in the alternating group.

3 Implementation

We recall the block cipher KATAN and propose HO-TIs of it. We provide the
area requirements of these implementations in the Faraday Standard Cell Library
FSA0A C Generic Core which is based on UMC 0.18μm GenericII Logic Pro-
cess with 1.8V voltage. We verify the functionality of the implementations with
ModelSim and synthesize using Synopsys Design Vision D-201-.03-SP4 without
any optimization.



334 B. Bilgin et al.

3.1 KATAN

KATAN [11] is a family of block ciphers that is designed to be efficient in hard-
ware. The family has three variants with 32, 48 or 64-bit state size. All these
variants use an 80-bit key, hence have the same security level. A plaintext block,
of the same size as the state, is loaded into the state to start an encryption.
After 254 rounds, the content of the state is taken as the ciphertext. The round
operation is very similar for all variants and has only a few AND and XOR gates.

Our main consideration is to show how to instantiate a higher-order TI of
a simple algorithm and to analyze its side channel leakage. For this reason, we
implement the smallest variant of KATAN with 32-bit state size and focus on
encryption. A description of one round of KATAN-32 is provided in Appendix B.

3.2 TI of KATAN

We describe a general TI that has sin input shares, the same number of shares
in the state and sout output shares for nonlinear operations. An example of a
2nd-order TI of one round KATAN-32 where sin = 5 and sout = 10 is depicted
in Figure 1 (z coordinate refers to sin different shares of the state). In all these
versions, we use the same unshared key schedule for simplicity.

Fig. 1. Description of 2nd-order TI of one round of KATAN-32

We assume that the plaintext has a uniform masking with sin shares that is
provided as input. Each share will be split into two chunks of 13 and 19 bits that
will be written to the registers L1j and L2j respectively where j ≤ sin. Since we
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already know how to implement an AND and an XOR gate with a uniform TI,
we split the operations of the round update accordingly. For all the AND/XOR
blocks except the one that receives IR, we use the TI in Equation (1) (resp.
Eqn. (6) and Eqn.(8) for 1st and 3rd-order TI) which takes sin input shares. For
the AND/XOR block that receives IR we use the sharing

yi = ai + IR× bi where i ≤ sin (5)

because we do not share the round counter (and hence IR).
The XOR of two AND/XOR blocks is applied over sout shares or over the

first sin shares if the output of the AND/XOR block that receives IR is in-
volved. Similarly, the key is introduced only in the first of the sout shares. This
sout-sharing is written to the first bit of the L1 and L2 registers respectively
which have sout shares only for the first bits. One can think of it as having an
extension of sout − sin shares for those bits in addition to the sin shares of the
state. In the next clock cycle, the sout shares in the first bits of the L1 and L2
registers are reduced to sin shares as described in Section 2.3 and written as the
second bits. This implementation does not increase the number of clock cycles
compared to the unprotected KATAN-32 implementation. In Table 1, we show
the area requirements of these implementations in NAND gate equivalents. The
gate counts for the round function include the decrease of the number of shares
by means of Equation (2). The key register is included in the gate count of the
key schedule together with the LFSR update.

Table 1. Synthesis results for plain and TI of KATAN-32

State Round Key
Control Other Total

Array Function Schedule

Plain 170 54 444 64 270 1002
1st-order TI 510 135 444 64 567 1720

2nd-order TI 900 341 444 64 807 2556

3rd-order TI 1330 760 444 64 941 3539

4 Analysis

We implement our 2nd-order TI of Katan-32 on a SASEBO-G board [1] using
Xilinx ISE version 10.1 to evaluate its leakage characteristics in practice. The
board features two Xilinx Virtex-II Pro FPGA devices: we implement the 2nd-
order TI of Katan-32 in the crypto FPGA (xc2vp7) while the control FPGA
(xc2vp30) handles I/O with the measurement PC and other equipment includ-
ingn the random number generation. We use the “keep hierarchy” constraint
when we generate the bitstream for the crypto FPGA to prevent the tools from
optimizing over module boundaries. This is to prevent the tools from merging
component functions and to reduce the chance for crosstalk. The key is hard-
coded in the Katan-32 implementation. The PRNG on the control FPGA is
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implemented as AES-128 in CTR mode. To start an encryption, we share the
plaintext in 5 shares using random numbers from the PRNG and send the shares
to the Katan-32 implementation. When the PRNG is turned off, it outputs zeros.

We measure the power consumption of the crypto FPGA during the first
12 rounds of Katan-32 encryption as the voltage drop over a 1Ω resistor in
the FPGA core GND line. The output of the passive probe is sampled with a
Tektronix DPO 7254C digital oscilloscope at 1GS/s sampling rate and 1mV/div
amplitude resolution. We provide the FPGA with a stable 3 MHz clock signal
and use synchronized clocks to obtain high-quality measurements.

The main goal of our evaluation is not to demonstrate that the implementa-
tion resists state-of-the-art attacks that exploit the 1st or 2nd statistical moment
of the leakage distributions, but beyond that to demonstrate that there is no
evidence of leakage in these moments of the leakage distributions, exploitable
by state-of-the-art attacks or not. Obviously achieving this goal is much more
demanding than resistance to known attacks, but it directly corresponds to our
claims regarding provable security. We narrow the evaluation to univariate at-
tacks because our implementation processes all component functions in parallel.

We use leakage detection to evaluate our implementation. Contrary to the
classical approach of testing whether a given attack is successful, this approach
decouples the detection of leakage from its exploitation. For our purpose we use
the non-specific t-test based fixed versus random leakage detection methodology
of [7,16], see Appendix C for a brief introduction.

For all tests we obtain two sets of measurements. For the first set, we fix the
plaintext to some chosen value. We denote this set S0. For the second set, the
plaintexts are uniformly distributed and random. We denote this set Srandom.
We obtain the measurements for both sets interleaved and in a random order,
i.e. before each measurement we flip a coin, to avoid any deterministic or time-
dependent external and internal influences on the test result.

We compute Welch’s (two-tailed) t-test

t =
μ(S0)− μ(S1)√
σ2(S0)
|S0| + σ2(S1)

|S1|

(where μ() is the sample mean, σ2() is the sample variance and | · | denotes the
sample size) to determine if the samples in both sets were drawn from popula-
tions with the same mean (or from the same population). The null hypothesis is
that the samples in both sets were drawn from populations with the same mean.
In our context, this means that the TI is effective. The alternative hypothesis is
that the samples in both sets were drawn from populations with different means.
In our context, this means that the TI is not effective.

At each point in time, the test statistic t together with the degrees of free-
dom ν, computed with the Welch-Satterthwaite equation

ν =
(σ2(S0)/|S0|+ σ2(S1)/|S1|)2

(σ2(S0)/|S0|)2/(|S0| − 1) + (σ2(S1)/|S1|)2/(|S1| − 1)
,
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allow to compute a p value to determine if there is sufficient evidence to reject
the null hypothesis at a particular significance level (1−α). The p value expresses
the probability of observing the measured (or a greater) difference by chance if
the null hypothesis was true. In other words, small p values give evidence to
reject the null hypothesis.

While this evaluation methodology relieves us from choosing certain parame-
ters such as targeted intermediate value, power model and distinguisher, it does
not resolve all such issues. As in any evaluation, the tests are limited to the num-
ber of measurements at hand and one has to choose a threshold to decide if an
observed difference is statistically significant or not. Nevertheless, as we demon-
strate below this type of evaluation is very data-efficient, i.e. a small number of
measurements is required to provide evidence of leakage, and a decision threshold
can be motivated with some basic experiments.

To calibrate our threshold value we apply the test methodology to two groups
of 10 000 measurements each for which we know that the null hypothesis is true.
For the first group of measurements we switch off the PRNG and use the same
fixed plaintext for both sets, i.e. all measurements in both sets are samples from
the same population and the only cause of variance is noise. We compute the t
statistic, record its greatest absolute value and repeat the experiment 100 times
on a random split of the measurements in this group. The highest absolute t
value we observed was 4.7944. For the second group we switch on the PRNG
and use random plaintexts for both sets, i.e. the measurements in both sets are
samples from distributions with the same mean and high variance. We repeat
the analysis and the highest absolute t value we observed was 4.8608. Based on
these results and the recommendation in [7] we select the significance threshold
±4.5. For large sample sizes, observing a single t value greater/smaller than ±4.5
roughly corresponds to a 99.999% probability of the null hypothesis being false.

To confirm that our setup works correctly and to get some reference values we
first evaluate the implementation with the PRNG switched off. Figure 2 shows
the t values of fixed versus random tests with two different fixed plaintexts (left
and right) and for the 1st, 2nd and 3rd statistical moment of the distributions
(for the higher-order moments we pre-process the traces to expose the desired
standardized moment before we apply the t-test, e.g. for the 2nd moment we
center and then square the traces). Horizontal lines mark the ±4.5 thresholds.

The plots clearly show that there is sufficient evidence of leakage in all cases,
as there are multiple and systematic crossings of the thresholds. Comparing
the plots on the left hand side with the plots on the right hand side, we see
that the “shape” of the t curve depends on the fixed plaintext value. This is
no longer true when we switch on the PRNG, because all shares of the input
are random. We used 1 000 measurements (500 for fixed and 500 for random
plaintext) to generate these plots, but less than 100 measurements are required
to see evidence of leakage in the 1st statistical moment.

Now we switch on the PRNG and repeat the evaluation with a randomly cho-
sen fixed plaintext using 300 million measurements (150M for fixed, 150M for
random, done in a temperature controlled environment). Figure 3 (top left and
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Fig. 2. Fixed versus random t-test evaluation results with PRNG switched off; left: for
fixed plaintext 0x00000000, right: for a randomly chosen fixed plaintext; from top to
bottom: 1st, 2nd and 3rd-order statistical moment; 1 000 measurements
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Fig. 3. Fixed versus random t-test evaluation results with PRNG switched on for a
randomly chosen fixed plaintext; from top left, top right, to bottom right: 1st, 2nd, 3rd

and 5th statistical moment; 300 million measurements

right) shows plots of the t values for the 1st and 2nd moment. As expected there
is not sufficient evidence of leakage. But as mentioned earlier, one may always
wonder if the number of measurements at hand is sufficient. For completeness,
we also provide evaluation results of the 3rd and 5th moment. The 3rd moment
is the smallest moment for which our implementation does not provide prov-
able security in the combinational logic (Property 2) and the 5th moment is the
smallest moment for which our implementation does not provide provable secu-
rity in the memory elements (the state is shared in at least 5 shares). Therefore
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we may be able to detect leakage in these moments. Figure 3 (bottom left and
right) shows plots of the t values.

While there is not sufficient evidence of leakage also in the 3rd moment, we
can see multiple and systematic crossings of the threshold in the 5th moment.
This result suggests that we use enough measurements, and that we should be
able to detect leakage in the lower-order moments, if there was any. Together,
the results support our claim regarding provable 2nd-order DPA resistance.

One may wonder why we do not detect leakage in the 3rd moment. Several
explanations are possible but their careful investigation is beyond the scope of
this paper.

5 Conclusion

Research on HO-DPA attacks shows that these attacks are realistic threats,
and advances in the field can only increase the attack potential. It is therefore
desirable to have masking schemes that can be implemented securely at any
order. In hardware implementations, glitches make this a challenging task. TI
is a masking technique that provides provable security even in the presence of
glitches, but the method is limited to 1st-order DPA resistance. We address this
gap and extend the technique to higher orders. We define generic constructions,
prove their security and provide exemplary 1st, 2nd and 3rd-order DPA-resistant
implementations of the block cipher KATAN-32. Our analysis of 300 million
power traces from a 2nd-order DPA-resistant implementation in an FPGA with a
leakage detection test does not show significant evidence of leakage and supports
the security proofs. We also show that this method can be straightaway applied
to generate 2nd-order TI of 4× 4 S-boxes in the alternating group.
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A Component Functions of the Sharing F of
f(a, b, c) = 1 + a+ bc

A.1 1st-Order TI and sin = 3

y1 = 1 + a2 + b2c2 + b1c2 + b2c1

y2 = a3 + b3c3 + b2c3 + b3c2 (6)

y3 = a1 + b1c1 + b1c3 + b3c1

A.2 2nd-Order TI and sin = 6

y1 = 1 + a2 + b2c2 + b1c2 + b2c1 + b1c3 + b3c1 + b2c3 + b3c2

y2 = a3 + b3c3 + b3c4 + b4c3 + b3c5 + b5c3

y3 = a4 + b4c4 + b2c4 + b4c2 + b2c6 + b6c2

y4 = a5 + b5c5 + b1c4 + b4c1 + b1c5 + b5c1 (7)

y5 = b2c5 + b5c2 + b4c5 + b5c4

y6 = a6 + b6c6 + b3c6 + b6c3 + b4c6 + b6c4

y7 = a1 + b1c1 + b1c6 + b6c1 + b5c6 + b6c5

A.3 3rd-Order TI and sin = 7

y1 = 1+ a2 + b2c2 + b1c2 + b2c1

y3 = a4 + b4c4 + b1c4 + b4c1

y5 = a6 + b6c6 + b1c6 + b6c1

y7 = b2c3 + b3c2

y9 = b2c5 + b5c2

y11 = a7 + b7c7 + b2c7 + b7c2

y13 = b3c5 + b5c3

y15 = b3c7 + b7c3

y17 = b4c6 + b6c4

y19 = b5c6 + b6c5

y21 = b6c7 + b7c6

y2 = a3 + b3c3 + b1c3 + b3c1

y4 = a5 + b5c5 + b1c5 + b5c1

y6 = a1 + b1c1 + b1c7 + b7c1

y8 = b2c4 + b4c2

y10 = b2c6 + b6c2

y12 = b3c4 + b4c3

y14 = b3c6 + b6c3

y16 = b4c5 + b5c4

y18 = b4c7 + b7c4

y20 = b5c7 + b7c5 .

(8)

B Unmasked KATAN-32

The description of one round of KATAN-32 is provided in Fig. 4 where each
block represents one bit. 32-bit plaintext is divided into two chunks of 13 and 19
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bits and written to the registers L1 and L2 respectively. In every round, several
bits are used to update the first bits of the registers together with a one bit shift
to the right for L1 and to the left for L2. The bit depicted by IR is the last bit
of a round counter that decides irregularly if the fourth bit of L1 is used for the
round update or not. k2i and k2i+1 are the 2ith and (2i+ 1)st bits of the 80-bit
key for rounds i ≤ 40. For the rest of the rounds they are generated from the
original key by an LFSR.

Fig. 4. Description of one round of KATAN-32

C T-test Based Fixed versus Random Leakage Detection

The t-test based fixed versus random leakage detection methodology has two
main ingredients: first, chosen inputs allow to generate two sets of measurements
for which intermediate values in the implementation have a certain difference.
Without making an assumption about how the implementation leaks, a safe
choice is to keep the intermediate values fixed for one set of measurements,
while they take random values for the second set. The test is specific, if particular
intermediate values or transitions in the implementation are targeted (e.g. S-box
input, S-box output, Hamming distance in a round register, etc.). This type of
testing requires knowledge of the device key and carefully chosen inputs. On
the other hand, the test is non-specific if all intermediate values and transitions
are targeted at the same time. This type of testing only requires to keep all
inputs to the implementation fixed for one set of measurements, and to choose
them randomly for the second set. Obviously, the non-specific test is extremely
powerful. The second ingredient is a simple, robust and efficiently computable
statistical test to determine if the two sets of measurements are significantly
different. Contrary to the information-theoretic metric of Standaert et al. [36]
and the mutual-information-based leakage detection tests explored in [20] the
t-test based approach evaluates a specific statistical moment of the measured
distributions.
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Abstract. Higher-order side-channel attacks are able to break the secu-
rity of cryptographic implementations even if they are protected with
masking countermeasures. In this paper, we derive the best possible
distinguishers (High-Order Optimal Distinguishers or HOOD) against
masking schemes under the assumption that the attacker can profile. Our
exact derivation admits simple approximate expressions for high and low
noise and shows to which extent the optimal distinguishers reduce to
known attacks in the case where no profiling is possible. From these re-
sults, we can explain theoretically the empirical outcome of recent works
on second-order distinguishers. In addition, we extend our analysis to
any order and to the application to masked tables precomputation. Our
results give some insight on which distinguishers have to be considered
in the security analysis of cryptographic devices.
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1 Introduction

In order to secure embedded devices against side-channel attacks, masking
schemes have been introduced. Recent works have shown provable protections
with a security parameter d, such that each sensitive variable is secured with d
random masks [4]. The computation is carried out in such a way that the knowl-
edge of any tuple of d intermediate variables does not disclose any information
on any sensitive variable. Accordingly, all distinguishers using up to d leakages
will fail to recover the correct key. A successful attack would be a (d+1)th-order
CPA, which uses combination functions to transform the measured leakage and
the prediction on each share into a single value in order to compute Pearson
correlation coefficients [4, 10, 13, 14, 18, 19, 23].
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Using combination functions to fit to a known tool like CPA looks more
like an engineering recipe than the optimal solution. Yet, it is shown by Prouff
et al. [16] that, in the case of second-order attacks, using the normalized prod-
uct combination function combined with an optimal prediction function is the
most efficient solution among all known combination functions. Even more, Stan-
daert et al. [20] showed that the information loss induced from the combination
functions vanishes for high noise.

In [14] Oswald and Mangard introduced several template-based attacks on
masking schemes. Among them is the so-called template-based DPA attack,
which extends the traditional template attack from Chari et al. [5] to first-order
masking schemes. Besides, their approach classifies measurements according to
the key, and not according to sensitive variables.

A slightly different scenario has been analyzed by Tunstall et al. in [22], where
the authors study the security of masking tables for software implementations
as defined in [1]. The authors suggested a two-stage CPA: first, for each indi-
vidual trace, extract the mask during the precomputation and, second, use this
knowledge about the mask to reveal the secret key using a vertical attack.

In this article we tackle the questions “what is the best possible distinguisher in
case of profiling?” and “how far are they from known practical distinguishers?”.

In particular, we derive optimal higher-order distinguishers against higher-
order masking schemes in case profiling is possible. Here, optimality means max-
imizing the success rate. Starting from second-order optimal distinguisher we
derive approximations for high and low noise and recover known attacks. In par-
ticular, we show to what extent the optimal second-order distinguisher can be
translated into a second-order CPA attack using combination functions. Given
these results for second-order we extend our analysis to (d + 1)th-order distin-
guisher against dth-order masking schemes.

Additionally, we investigate the scenario of masking tables as in [22]. We derive
the optimal attack against masking tables and again derive approximations for
the scenario of high and low noise which results in new attacks and compare it
to the two-stage CPA.

2 Preliminaries

2.1 Masking Countermeasure and Notations

Even though many different masking schemes have been investigated so far,
which clearly differ in their strength, the principle of attacking is equivalent. A
masking scheme is characterized by the number of random masks that are used
per sensitive variable. In the following we consider a dth-order masked implemen-
tation where we assume that the masks are uniformly distributed over a space
M. Calligraphic letters (e.g., X ) denote sets, capital letters (e.g., X) denote
random variables taking values in these sets, and the corresponding lowercase
letters (e.g., x) denote their realizations. Let k∗ denote the secret cryptographic
key, k any possible key hypothesis from the keyspace K, and T be the input or
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ciphertext of the cryptographic algorithm. The mapping f : (T ,K,M) → Fn
2

maps the input or ciphertext t ∈ T , a key hypothesis k ∈ K and the mask
m ∈ M to an internally processed variable in some space Fn

2 that is assumed to
relate to the measured leakage X , where n is the number of bits. Generally it is
assumed that f is known to the attacker. The measured leakage X can then be
written as

X = ϕ(f(T, k∗,M)) +N, (1)

whereN denotes an independent—not necessarily Gaussian—additive noise with
zero mean and where ϕ a device-specific deterministic function. In this paper we
start by assuming that ϕ is known to the attacker due to profiling to consider
the most powerful attack. We then show to which extend and scenarios this
assumption can be relaxed while still achieving the same efficiency of the attack.

Specifically, in a dth-order masking scheme the implementation is protected
with d masks with corresponding leakages

X(ω) = ϕ(ω)(f (ω)(T (ω), k∗,M (ω))) +N (ω), (2)

with ω ∈ {0, . . . , d} and M (ω) ∈ M(ω) where the M(ω) does not need to be
equal in general. Accordingly, a dth-order masking scheme can be broken using
(d + 1)th-order distinguishers by targeting d + 1 shares. For simplification we
denote Y (T (ω), k,M (ω)) = ϕ(ω)(f (ω)(T (ω), k,M (ω))).

Example 1 (First-order software masking). For example a first-order masking
scheme (d = 1) might leak with

X(0) = HW[M ] +N (0), (3)

X(1) = HW[Sbox[T ⊕ k∗]⊕M ] +N (1), (4)

with Sbox : F8
2 → F8

2 being the AES Substitution box and T (1) = T uniformly
distributed over F8

2 (and T (0) is non-existent). Thus, ϕ(0)(·) = ϕ(1)(·) = HW[·]
(the Hamming weight function), M (0) = M (1) = M , f (0)(T, k,M) = M and
f (1)(T, k,M) = Sbox[T ⊕ k]⊕M .

Example 2 (Tables pre-computation). Again when assuming a Hamming weight
leakage model, a masking scheme using Sbox recomputation [11] might leak with

X(ω) = HW[ω ⊕M ] +N (ω), ∀ω ∈ {0, 1, . . . , 2n − 1} ∼= Fn
2 (5)

X(2n) = HW[T ⊕ k∗ ⊕M ] +N (2n). (6)

A detailed description will be given in Sect. 5.

Definition 1 (Perfect masking (dth-order) [2]). Let us denote the random
variables F (ω)(t, k) = f (ω)(t, k,M (ω)) for ω ∈ {0, . . . , d} and a fixed pair (t, k).
A masking scheme is perfect at dth-order if the joint distribution of maximum d
of F (0)(t, k), . . . , F (d)(t, k) is identically distributed of any pair (t, k) ∈ T × K.

Note that dth-order security implies 1st, 2nd, . . . , (d− 1)th-order security.
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Proposition 1. If a masking scheme is perfect, then whatever function ψ,∑
m(ω)∈M(ω) ψ(f (ω)(t, k,m(ω))) is constant for any pair (t, k) for any 0 ≤ ω ≤ d.

Proof. Let t̃, k̃ be any value in T and K, respectively. As the masking
scheme is perfect up to dth-order (which implies 1st-order) the distribution of
f (ω)(t, k,M (ω)) is equivalent to f (ω)(t̃, k̃,M (ω)), hence ψ(f (ω)(t, k,M (ω))) and
ψ(f (ω)(t̃, k̃,M (ω))) have the same distribution. In particular, the sum of realiza-
tions is identical. 
�

In our setup we assume that the attacker is able to measure q i.i.d. mea-
surements. All values indexed by i ∈ {1, . . . , q} are in bold face (e.g. a =
(a1, . . . , aq) ∈ Aq for ai ∈ A). Values indexed by the intermediate variable index

(ω) (a(ω) ∈ A) are denoted by a(�) = (a(0), . . . , a(d)) ∈ Ad+1. Moreover, a
(ω)
i ∈ A

and a(�) ∈ Aq×(d+1).
Note that contrary to a, the vectors along (ω) can be linked, e.g.,

⊕d
ω=0M

(ω)

= 0 in Example 1 or ∀ω ∈ {0, . . . , 2n−1}∪{2n},M (ω) =M (0) in Example 2. Thus
the set of admissible masks, denoted byM(�), is a subset of the Cartesian product
over all M(ω). Additionally, regarding the noise, we have that ∀(i, ω) �= (i′, ω′),

N
(ω)
i is independent of N

(ω′)
i′ .

We write P(m) = P(M = m) for discrete probability distributions, p for densi-
ties, andwhen the randomvariableX is conditioned by the eventY = y, we use the
notationpk(X |Y = y) to recall thatydepends ona (fixed)keyguessk.As themodel
is knownby the attacker,we also have: pk(X |Y = y) = pk(X |T = t,M = m) when
y = y(t, k,m). Indeed, owing to Eq. (2), Y is a sufficient statistic for k [8]. We then
use pk(x|t,m) to denote p(X = x|Y = ϕ(f(t, k,m))). We denote the scalar prod-
uct betweenx and y by 〈x|y〉 =

∑q
i=1 xiyi, the Euclidean normby ‖x‖2 =

√
〈x|x〉

and the componentwise product by x ·y = (x1y1, . . . , xqyq). Given a function g(k),
we use the notation argmaxk g(k) to denote the value of k that maximizes g(k).
Finally, �E : E → {0, 1} denotes the indicator function of the set E.

2.2 Combination Functions for Higher-Order CPA Attacks

In order to conduct a second-order CPA attack, two kinds of combination func-
tions, i.e., cX : X d+1 → R and cY : T d+1 → R, are required. However, this seems
to be more inspired from an engineering perspective –an “act from necessity”–
than a sound mathematical tool to maximize the success. That the use of
combination functions comes with information loss was already pointed out by
Mangard and Oswald and Mangard [14] and Standaert et al. [20]. The history
and selection of combination functions is indeed epic, where the literature mostly
concentrated on second-order CPA (d = 1).

The most prominent function to combine the leakages is the product combining
function cprodX (X(0), X(1)) = X(0) ·X(1) introduced by Chari et al. in [4] and the
absolute difference cdiffX (X(0), X(1)) = |X(0)−X(1)| by Messerges in [13]. Oswald
and Mangard [14] proposed (for e.g. the setting given in Example 1) an even
more exotic combination function and corresponding prediction function1:

1 Note that these are the corrected formulas given in [16].
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csinX (X(0), X(1)) = sin
(
(X(0) −X(1))2

)
(7)

csinY (T ) = −89.95 sin(HW[Y ])3 − 7.82 sin(HW[Y ])2 + 67.66 sin(HW[Y ]), (8)

where Y = Y (T, k, 0). Contrary to what was suggested in previous papers, Prouff
et al. [16] showed that all these combination functions should be accompanied by
coptY (T (0), T (1)) = E{c∗X(Y (0), Y (1))|T (0), T (1)} to maximize the absolute value of
correlation, where the expectation is taken over the maskM and c∗X denotes the
same combination function as cX but defined as a map Yd+1 → R. Moreover,
the normalized product function, i.e., cn-prodX (X(0), X(1)) = (X(0) − E{X(0)}) ·
(X(1) − E{X(1)}) is shown to be the most efficient of all known combination
functions when considering a Hamming weight leakage model.

3 Optimal Distinguisher for Second-Order Attacks

3.1 Motivation

As highlighted in Subsect. 2.2 the introduction of combination functions for
second-order CPA is more a necessary evil than an optimized procedure to max-
imize success. In [20] the authors empirically showed that a combination function
always goes hand in hand with information loss. However, the authors depicted
that for large noise the second-order CPA with the normalized product func-
tion cn-prodX (X(0), X(1)) becomes (nearly) equivalent to the maximum likelihood
distinguisher applied to the joint distribution.

This observation might not be obvious in theory since correlation is only an
appropriate statistical tool when the underlying noise is Gaussian. Unfortunately,
when multiplying two Gaussian distributions, as it is done for cn-prodX (X(0), X(1)),
does clearly not result in a Gaussian distribution.

Thus, our aim is to precisely state the higher-order optimal distinguisher
(HOOD) expression for second-order when the attacker has full information
about underlying the leakage and determine when this knowledge can be less-
ened to relate the expression to second-order CPA. This will help to understand
known empirical results [9,14,16,20]. In particular, we investigate low and high
noise scenarios to see which combination function from the pool described in
Subsect. 2.2 would be a reasonable choice.

3.2 Explicit Derivations

In [14] the authors state various template attacks against first-order masking
schemes. The most efficient is a straightforward extension of the classical tem-
plate attack [5] over all pairs (t, k). Our approach goes in a similar direction:
we utilize the joint distribution of both leakages X(0) and X(1) without using
a combination function, which gives us the optimal second-order distinguisher
maximizing the success rate.
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Theorem 2 (Second-order HOOD). If the model (i.e., ϕ(ω)) is known to the
attacker for all ω, then the second-order HOOD is

D2
opt(x

(�), t(�)) = argmax
k∈K

pk(x
(�)|t(�)) (9)

= argmax
k∈K

q∏
i=1

∑
m(�)∈M(�)

P(m(�))

1∏
ω=0

pk(x
(ω)
i |t(ω)

i ,m(ω)). (10)

Note that as the attacker knows the model he is able to compute the required
probability distributions and densities.

Proof. Let us denote the key guess of any second-order distinguisher by k̂ =
argmaxk∈K D2(x(�), t(�)). Then, using a frequentist approach we start from the
success probability PS over all possible secret keys k

PS =
1

|K|
∑
k∈K

P(k̂ = k) =
1

|K|
∑
k∈K

∑
t(�)

P(t(�)) P(k̂ = k|T(�) = t(�)) (11)

=
1

|K|
∑
k∈K

∑
t(�)∈T q×(d+1)

P(t(�))

∫
X q×(d+1)

pk(x
(�)|t(�))�k=k̂ dx

(�) (12)

=
1

|K|
∑
k∈K

∑
t(�)∈T q×(d+1)

P(t(�))

∫
X q×(d+1)

pk̂(x
(�)|t(�)) dx(�). (13)

In Eq. (11), we have to compute P(k̂ = k|t(�)) where k̂ = k̂(x(�), t(�)) =
argmaxk∈KD2(x(�), t(�)) is a function of x(�) and t(�). This is therefore a prob-
ability on the random variable X(�) knowing T(�) = t(�), which follows the
density pk(x

(�)|t(�)). Like for every probability taken on a random variable with
density, the required probability is the integral of density over the events. So
P(k̂(x(�), t(�)) = k|t(�)) =

∫
pk(x

(�)|t(�)) dx(�), where the integral is taken over

all x(�) such that k̂(x(�), t(�)) = k; this is the indicator function inside the inte-
gral in Eq. (12).

Now, P(t(�)) is independent of the key. Thus, for each given sequence x(�), t(�)

maximizing the success rate amounts to choose k = k̂ such that pk(x
(�)|t(�)) is

maximized. Moreover,

pk(x
(�)|t(�)) =

q∏
i=1

pk(x
(�)
i |t(�)i ) (14)

=

q∏
i=1

∑
m(�)∈M(�)

P(m(�)) pk(x
(�)
i |t(�)i ,m(�)) (15)

=

q∏
i=1

∑
m(�)∈M(�)

P(m(�))

1∏
ω=0

pk(x
(ω)
i |t(ω)

i ,m(ω)). (16)

We used from (15) to (16) that N
(ω)
i is i.i.d. across the values of i = {1, . . . , q}

and independent for ω = {0, 1}. Accordingly, argmaxk∈K of Eq. (16) forms the
optimal distinguisher D2

opt(x
(�), t(�)). 
�
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Remark 1. To simplify our notation, we assume in the following that the masks
at each order are drawn from the same spaceM, with uniform probability P(M =
m) = 1/|M| and only one text byte is manipulated with the masks, as in software

implementations (cf. Ex. 1). That is, ∀i t(0)i = t
(1)
i = ti and, moreover, there is

only one mask m(0) = m(1) = m. Accordingly, Eq. (10) simplifies to

D2
opt(x

(�), t) = argmax
k∈K

q∏
i=1

∑
m∈M

pk(x
(0)
i |ti,m) · p(x(1)i |ti,m). (17)

However, all our results hereafter can be easily extended to the scenario without
simplifications.

As it is most often assumed that the noise distribution at the manipulation of
each share is Gaussian (e.g., [14, 16]), we further deduce Eq. (17) for Gaussian
noise.

Proposition 3 (Second-order HOOD for Gaussian noise). Assuming that

N (ω) ∼ N (O, σ(ω)2) then the second-order optimal distinguisher becomes

D2,G
opt (x

(0),x(1), t) = argmax
k∈K

q∏
i=1

∑
m∈M

exp

{
−1

2

(
−2x

(0)
i y(0)(ti, k,m) + y(0)(ti, k,m)2

σ(0)2

+
−2x

(1)
i y(1)(ti, k,m) + y(1)(ti, k,m)2

σ(1)2

)}
. (18)

Proof. In this case pk(x
(ω)
i |ti,m) is the 1D Gaussian density with mean y(ω)

(ti, k,m) and standard deviation σ(ω). Removing all constants gives us the re-
quired formula. 
�

As a next step we give approximations for high noise and low noise.

Corollary 4 (Second-order HOOD for high Gaussian noise). When con-
sidering that E{y(T,m, k)} = E{ϕ(f(T,m, k))} is independent of the choice of
k ∈ K (owing to Proposition 1)2, which is given in case of high noise since a large
number of measurements q is considered, then the distinguishing rule simplifies
to

D2,G,σ↑
opt (x(�), t) = argmax

k∈K

q∏
i=1

∑
m∈M

exp

{
x
(0)
i y(0)(ti, k,m)

σ(0)2
+

x
(1)
i y(1)(ti, k,m)

σ(1)2

}
.

(19)

Proof. In Eq. (18) we can now remove the terms y(ω)(ti, k,m)2 for ω = {0, 1}
because, E{y(T,m, k)} = E{ϕ(f(T,m, k))} is independent of k ∈ K. This gives
Eq. (19). 
�
2 This assumption has been also made in [21].
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Remark 2. We see that the exact optimal distinguishing expression (Eq. (18))
operates in the direct scale, such that the function ϕ (including its scaling
factor) and thus the exact relationship between X and Y has to be known.
Whereas the distinguisher for high noise (Eq. (19)) operates in the propor-
tional scale3, thus the relationship between X and Y has only to be known
up to an irrelevant affine law. That is to say, the attacker shall know that
X(ω) = a(ω)ϕ(ω)(f (ω)(T (ω), k,m))+b(ω)+N (ω) with unknown a(ω), b(ω) ∈ R. For
more information on direct and proportional scales we refer the reader to [24].

Remark 2 already gives a hint about a possible relationship between the
second-order HOOD and second-order CPA for high noise, which we will dis-
cuss in the next subsection.

Proposition 5 (Second-order HOOD for low Gaussian noise). Assuming
that both shares have the same low noise standard deviation σ = σ(0) = σ(1) then
the optimal distinguisher reduces at first order to

D2,G,σ↓
opt (x(�), t) = argmin

k∈K

q∑
i=1

max
m∈Fn2

(x
(0)
i − y(0)(ti, k,m))2 + (x

(1)
i − y(1)(ti, k,m))2.

(20)

Proof. Starting from Eq. (18) and using y
(ω)
i = y(ω)(ti, k,m) we have

k̂ = argmax
k∈K

q∏
i=1

∑
m∈Fn

2

exp

{
− 1

σ(0)2
(x

(0)
i − y

(0)
i )2 − 1

σ(1)2
(x

(1)
i − y

(1)
i )2

}
. (21)

Now as σ = σ(0) = σ(1) and as the sum over exponential reduces at first order
to the minimum we have the first order approximation for σ → 0

= argmax
k∈K

q∏
i=1

min
m∈Fn

2

exp
{
−(x

(0)
i − y

(0)
i (ti, k,m))2 − (x

(1)
i − y

(1)
i (ti, k,m))2

}
.

Applying the logarithm that is strictly monotonous increasing yields

= argmax
k∈K

q∑
i=1

min
m∈Fn

2

(
−(x

(0)
i − y

(0)
i (ti, k,m))2 − (x

(1)
i − y

(1)
i (ti, k,m))2

)
(22)

= argmin
k∈K

q∑
i=1

max
m∈Fn

2

(
(x

(0)
i − y

(0)
i (ti, k,m))2 + (x

(1)
i − y

(1)
i (ti, k,m))2

)
. 
�

Interestingly, one can see directly from Eq. (20) that the optimal distinguisher
for low noise cannot be rewritten as correlation with any combination functions
and moreover that it operates in the direct scale. Even more, the nature of
distinguisher seems not very intuitive.

3 But not anti-proportional scale, or in other words, the “sign” has to be known.
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3.3 Comparison with Second-Order CPA

Proposition 6 (Relationship between second-order HOOD for high
noise and second-order CPA). The second-order HOOD for high noise can
be approximated as

D2,G,σ↑
opt ≈ argmax

k
〈x(0) · x(1)|

∑
m∈M

y(0)(t, k,m)y(1)(t, k,m)〉, (23)

which is all the more equivalent as the noise gets larger. Accordingly, as the noise
is larger, the closer the optimal distinguishing rule to second-order CPA with

cn-prodX (X(0), X(1)) = (X(0) − E{X(0)}) · (X(1) − E{X(1)}) and (24)

coptY (Y (�)) = E{c∗X(Y (0)(T, k,M), Y (1)(T, k,M))|T }. (25)

Proof. We use the first order Taylor expansion exp{ε} = 1+ε+O(ε2). Note that
this approximation is all the better as ε is close to zero and thus as the argument

of exp{·} his high. Starting from Eq. (19) and using y
(ω)
i = y(ω)(ti, k,m), we have

D2,G,σ↑(x(0),x(1), t) = argmax
k

q∏
i=1

∑
m∈M

exp

{
1

σ(0)2
x
(0)
i y

(0)
i

}
exp

{
1

σ(1)2
x
(1)
i y

(1)
i

}

≈ argmax
k

q∏
i=1

∑
m∈M

(
1 +

1

σ(0)2
x
(0)
i y

(0)
i

)(
1 +

1

σ(1)2
x
(1)
i y

(1)
i

)
(26)

= argmax
k

q∏
i=1

∑
m∈M

(
1 +

1

σ(0)2σ(1)2
x
(0)
i y

(0)
i x

(1)
i y

(1)
i +

1

σ(0)2
x
(0)
i y

(0)
i +

1

σ(1)2
x
(1)
i y

(1)
i

)
.

(27)

In Eq. (27), owing to the perfect masking definition, the terms
∑

m∈M x
(0)
i y

(0)
i

and
∑

m∈M x
(1)
i y

(1)
i are constant (const(0) and const(1)). Additionally, as the

logarithm function is increasing, we consider the logarithm of the product, and
we use the approximation ln{1 + ε} = ε + O(ε2), (reciprocal of the previous
Taylor’s expansion of the exponential function), which is again all the better as
ε is close to zero and thus for high noise. Accordingly,

D2,G,σ↑(x(0),x(1), t) ≈ argmax
k

ln

q∏
i=1

∑
m∈M

(
1 +

1

σ(0)2σ(1)2
x
(0)
i y(0)(ti, k,m)·

x
(1)
i y(1)(ti, k,m) +

1

σ(0)2
x
(0)
i y(0)(ti, k,m) +

1

σ(1)2
x
(1)
i y(1)(ti, k,m)

)
(28)

= argmax
k

q∑
i=1

ln

{
1 +

∑
m∈M

1

σ(0)2σ(1)2
x
(0)
i y

(0)
i x

(1)
i y

(1)
i + const(0) +const(1)

}

≈ argmax
k

q∑
i=1

x
(0)
i x

(1)
i

∑
m∈M

y(0)(ti, k,m)y(1)(ti, k,m) + const(0) +const(1)

= argmax
k

〈x(0) · x(1)|
∑

m∈M
y(0)(t, k,m)y(1)(t, k,m)〉. (29)
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Note that we can remove the const(0), const(1) as they do not depend on the
key guess. For large number of measurements (resulting from large noise) the
argmaxk∈K of the correlation coefficient can be simplified as

argmax
k∈K

〈x− x|y(k)〉
‖x− x‖2 · ‖y(k)− y(k)‖2

≈ argmax
k∈K

〈x− x|y(k)〉. (30)

Accordingly, if x(0) and x(1) are centered, then in Eq. (29) cn-prodX = x(0) ·x(1),

and coptY =
∑

m∈M y(0)(t, k,m)y(1)(t, k,m) is the optimal prediction function.

�

As correlation is a measure in the proportional scale, we can relax our assump-
tions made about the knowledge of the attacker. More precisely, he does not need
to know y(0) and y(1) exactly but any linear transformation l(ω)(y(ω)) = ay(ω)+b,
as it is most often assumed in the literature [16, 20]. Yet, in Prop. 6 we do not
recover the absolute value of the correlation, thus, for second-order CPA the
“sign” must be known and taking the absolute value does not result in an equiv-
alence for high noise, which is also empirically validated in our experiments in
Subsect. 3.4.

Remark 3. Prouff et al. illustrated in [16] that for large noise the improved (i.e.,
centered) product combining function has the best efficiency among the known
combination functions, which is inline with our findings in Prop. 6. Moreover,
we can claim that the improved product combining function is the most efficient
among all combining functions for high noise as it becomes equivalent to the
optimal second-order distinguisher. Moreover, our study is not restricted to a
particular HW or HD leakage model scenario as in the previous studies.

Remark 4. The determination of optimal combination functions is a vivid re-
search topic. As already mentioned, the optimality of the centered product
amongst all combination functions has been conjectured by Prouff et al. in [16].
Afterwards, mathematical arguments for optimality were given by Carlet et
al. [3], and independently by Ding et al. in [7].

Remark 5. As underlined in [20], the function to be maximized in Eq. (23) is a
straightforward generalization of Pearson’s correlation coefficient to the case of
three random variables: X(0), X(1), and E{y(0)(T, k,M)y(1)(T, k,M)|T }, where
the expectation is taken over M .

3.4 Experimental Validation

For our experimental validation we used simulations of a first-order masking
scheme where each share is leaking in the Hamming weight model to be able
to directly compare our results to previous publications conducting the same
setting [16,20] (see Example 1). We simulated the noise arising from a Gaussian
distributions N ∼ N (0, σ2) for σ = σ(0) = σ(1) ∈ {0.5, 4}. To be reliable we
conducted 500 independent experiments with uniformly distributed k∗ to com-
pute the empirical success rate. Moreover, when plotting the empirical success
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(a) σ = 0.5 (b) σ = 4

Fig. 1. Success rate for second-order attacks

rate, we additionally highlight the standard deviation of the success rate by error
bars. If the error bars do not overlap, we can unambiguously conclude that one
distinguisher is better than the other [12].

For our simulations we calculated the second-order HOOD and second-order
CPA with the normalized product and the absolute difference combination func-
tion as described in Subsect. 2.2. For a low value of σ, D2,G

opt (HOOD) clearly out-
performs 2nd-order CPA (2O-CPA) independent of the combination functions
(see Fig. 1a), which is inline with our theoretical analysis and the empirical anal-
ysis in [20]. For high values of σ, the second-order HOOD and second-order CPA
with the normalized product combining function become equivalently efficient
(see Fig. 1b), which coincides with Prop. 6. Note that as said before, taking the
absolute value of the correlation is not equivalent to HOOD, which is confirmed
in Fig. 1b.

4 Higher-Order Optimal Distinguisher (HOOD) for Any
Order

The claim in [16] that the normalized product combining function cn-prodX in

combination with coptY is optimal4 was only done for d = 1. We now extent
our investigation to (d + 1)th-order distinguishers in order to analyze if the
assumption can straightforwardly be generalized.

Theorem 7 (General HOOD). When ϕ(ω) : Fn
2 → R is known for all ω,

N
(ω)
i i.i.d. across values of i = {1, . . . , q} and independent across the values of

ω = {0, . . . , d}, then the general higher-order optimal distinguisher is

Dd
opt(x

(�), t(�)) = argmax
k∈K

q∏
i=1

∑
m(�)∈M(�)

P(m(�))

d∏
ω=0

pk(x
(ω)
i |t(ω)

i ,m(ω)). (31)

4 Note again, that the authors used the absolute correlation coefficient of the correct
key as a measure of optimality; not the success rate.
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Proof. The proof is a straightforward extension of proof of Theorem 2. 
�

Proposition 8 (HOOD for Gaussian noise). Under the same assumptions

as in Theorem 7 and additionally assuming Gaussian noise, i.e., N
(ω)
i ∼N (0, σ2

ω),
Eq. (31) becomes

Dd,G
opt (x

(�), t) = argmax
k∈K

q∑
i=1

log

⎧⎨⎩ ∑
m(�)∈M(�)

exp
{ d∑

ω=0

1

σ(ω)2

(
x
(ω)
i y

(ω)
i − 1

2
y
(ω)
i

2)}⎫⎬⎭ .

(32)

Proof. As pk(x
(ω)
i |ti,m) = pk,N(ω)(x

(ω)
i − y(ω)(ti, k,m)) we have

argmax
k∈K

q∏
i=1

∑
m(�)∈M(�)

P(m(�))

d∏
ω=0

pk(x
(ω)
i |ti,m(ω)) (33)

= argmax
k∈K

q∏
i=1

∑
m(�)∈M(�)

P(m(�))
d∏

ω=0

1√
2πσ(ω)

exp
{
− 1

2σ(ω)2
(x

(ω)
i − y(ω)(ti, k,m))2

}
.

Now, removing all key-independent constants yields

argmax
k∈K

q∏
i=1

∑
m∈M

d∏
ω=0

exp

{
− 1

2σ(ω)2
(x

(ω)
i − y(ω)(ti, k,m))2

}
Now, as the product of exp{·} is the exp{·} of the sum and expanding the square

and removing the key-independent factor x
(ω)2

i gives the required equation. 
�

Proposition 9 (HOOD for high Gaussian noise). For high Gaussian noise
(low SNR) we can further approximate the HOOD to

Dd,G,σ↑
opt (x(�), t) = argmax

k

q∏
i=1

∑
m∈M

exp

{
d∑

ω=0

1

σ(ω)2
x
(ω)
i y(ω)

}
, (34)

and as σ(ω) becomes large Eq. (34) becomes closer to (d+1)th-order CPA with

cn-prodX (X(�)) =

d∏
ω=0

(X(ω) − E{X(ω)}) and coptY (Y (�)) = E{c∗X(Y (�)(M,k))}.

Proof. As in the case of d = 1, we use the first-order Taylor expansion exp{ε} =
1 + ε+O(ε2). Starting from Eq. (32), we have

Dd,G,σ↑(x(0),x(1), t) = argmax
k

m∏
i=1

∑
m∈M

d∏
ω=0

exp

{
1

2σ(ω)2
x
(ω)
i y

(ω)
i

}
(35)

≈ argmax
k

m∏
i=1

∑
m∈M

d∏
ω=0

(
1 +

1

2σ(ω)2
x
(ω)
i y

(ω)
i

)
. (36)
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Now, in Eq. (36) when factorizing the product over ω all the terms not depend-

ing on all shares 1, . . . , d simultaneously, i.e.,
∏d

ω=0 x
(ω)
i y

(ω)
i , do not depend on

the key due to the perfect masking definition. Moreover, following the same
argumentation as for Prop. 6, we recover that if ∀ω x(ω) are centered, then
cn-prodX =

∏d
ω=0 x

(ω), and coptY =
∑

m∈M
∏d

ω=0 y
(ω)(t, k,m) is the optimal pre-

diction function for higher-order CPA. 
�

Proposition 9 shows that the normalized production combination function
combined with the optimal prediction function is therefore not only optimal for
dth-order CPA in case of d = 1 but for any value of d.

Proposition 10 (HOOD for low Gaussian noise). For low noise variance
σ = σ(0) = · · · = σ(d) the optimal distinguisher (Eq. (32)) is simplified to

Dd,G,σ↓
opt (x(�), t) = argmin

k∈K

q∑
i=1

max
m∈M

d∑
ω=0

(x
(ω)
i − y

(ω)
i )2 (37)

= argmin
k∈K

q∑
i=1

max
m∈M

‖x(�)i − y
(�)
i ‖22. (38)

Proof. The proof is a straightforward extension of the proof for Prop. 5. 
�

5 HOOD for Precomputation Masking Tables

5.1 Classical Attacks

We now consider the attack of a masking scheme using Sbox recomputation as
described in [11]. Appendix A provides a description of the underlying algorithm.

It is noteworthy that the traditional approach to reduce the multiplicity of
leakage samples by a combination cX : X d → R would fail in the setup of mask-
ing tables. Indeed, the combination functions are usually considered symmetric
into its arguments, meaning that any swap of the inputs does not affect the
combination. This (tacit) hypothesis has been made, for instance, for

– the absolute difference cdiffX (X(�)) = (|X(0) −X(1)| = |X(1) −X(0)|), and
– the centered product cn-prodX (X(�)) = ((X(0) − E{X(0)})(X(1) −E{X(1)}) =
(X(1) − E{X(1)})(X(0) − E{X(0)})).

We assume here that the attacker applies the combination function on the
leakages occurring during the Sbox recomputation (see Alg. 1), i.e., the attacker
gains 2n leakages

X(0) = ϕ(0)(M) +N (0) (39)

X(1) = ϕ(1)(M ⊕ 1) +N (1) (40)

...

X(2n−1) = ϕ(2n−1)(M ⊕ (2n − 1)) +N (2n−1), (41)
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and would apply e.g., cdiffX (X(�)) or cn-prodX (X(�)). Additionally, he measures
the leakage X(2n) = ϕ(2n)(T ⊕ k ⊕M) +N (2n) and finally combines it with the
previous combined leakages as c̄X(X(2n), cX(X(0), . . . , X(2n−1))).

Following the methodology in [16] and assuming an equal leakage function on
each share5, i.e., ϕ = ϕ(0) = · · · = ϕ(2n), the optimal function to combine the
predictions would then be

coptY = E{c̄∗X(c∗X(ϕ(M), ϕ(M ⊕ 1), . . . , ϕ(M ⊕ (2n − 1))), ϕ(t⊕ k ⊕M))} (42)

=
1

2n

∑
m∈Fn

2

c̄∗X(c∗X(ϕ(m), ϕ(m ⊕ 1), . . . , ϕ(m⊕ (2n − 1))), ϕ(t⊕ k ⊕m))

=
1

2n

∑
m′∈Fn

2

c̄∗X(c∗X(ϕ(m′ ⊕ k), . . . , ϕ(m′ ⊕ k ⊕ (2n − 1))), ϕ(t⊕m′)) (43)

=
1

2n

∑
m′∈Fn

2

c̄∗X(c∗X(ϕ(M ′), ϕ(m′ ⊕ 1), . . . , ϕ(M ′ ⊕ (2n − 1))), ϕ(t⊕m′)).

(44)

In Eq. (43), we change m for m′ = m⊕ k and in Eq. (44), the input terms at
position ζ are replaced with those at position ζ ⊕ k (because of the symmetry
property of c). Accordingly, coptY does not depend on the key k and is even
constant as the same operation can be done on t⊕k, therefore higher-order CPA
fails.

Of course, the Sbox precomputation masking scheme can be attacked by vari-
ous attacks (e.g., the classic means, collision attacks, second-order attacks) that
concentrate on specific stages of Alg. 1. However, a better attack would consist
in using altogether all the leakages from the Sbox recomputation with one (or
more) of the samples used during the computation proper (starting from line 8,
when the key is involved). One example of such strategy has been exposed in [22],
which we label as 2-stage CPA attack.

Definition 2 (2-stage CPA attack [22])

2×CPAmt(x, t) = argmax
k∈K

ρ(x(2n), y(2
n)(t, k, m̂)), (45)

where ∀i m̂i is the mask that maximizes the correlation between x
(ω)
i and y

(ω)
i =

ω ⊕ mi for ω ∈ [0, 2n[. This attack is a synergy between a horizontal and a
vertical attack. For each trace (separately ∀i), the first attack in Eq. (45) consists
in recovering the mask during the precomputation (lines 2 to 5 in Appendix A).
Second, a regular CPA using a model in which both the plaintext t and the
mask m are assumed as public knowledge is launched. Even if the mask m̂
is not recovered correctly for each trace (since 2n leakage samples during the
precomputation can be seen as small), it can be expected that the value of the

5 This assumption is reasonable for software implementation, which is the adequate
scenario for masking tables.
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mask is recovered by the first horizontal attack probabilistically well enough for
it to be biased, i.e., better guessed than random. This gives a rough idea of the
proof of soundness for this attack.

Nonetheless, this attack is probably not the most efficient, as it uses separately
the information available from the Sbox precomputation and from the leakage of
the AES algorithm proper. The next subsection investigates the optimal attack
and gives approximation for high and low noise.

5.2 HOOD for Precomputation Masking Tables

When using masking tables (Alg. 1) the attacker first has all leaking samples

during the precomputation, i.e., y
(ω)
i = ϕ(ω ⊕m) that are independent of i for

0 ≤ ω ≤ (2n − 1), and, second, the leakage arising from the combination of the

mask m, plaintext ti and the key, i.e., y
(2n)
i = ϕ(ti ⊕ k ⊕ m). Thus, all terms

for ω �= 2n do not depend on the key and the higher-order optimal distinguisher
from Eq. (32) can be further deduced.

Theorem 11 (HOOD for masking tables). When ϕ : Fn
2 → R is known,

N
(ω)
i ∼ N (0, σ2

ω) and i.i.d. across values of i = {1, . . . , q} and independent
across the values of ω = {0, . . . , 2n}, then the higher-order optimal distinguisher
against masking tables takes the form

Dmt,G
opt (x(�), t) =

argmax
k∈K

q∑
i=1

log

⎧⎨⎩ ∑
m∈Fn

2

exp

⎧⎨⎩∑
ω∈Fn

2

1

σ(ω)2

(
x
(ω)
i ϕ(ω ⊕m)− 1

2
ϕ2(ω ⊕m)

)

+
1

σ(2n)2

(
x
(2n)
i ϕ(ti ⊕m⊕ k)− 1

2
ϕ2(ti ⊕m⊕ k)

)}}
. (46)

Proof. Straightforward computation from Eq. (32) yields

argmax
k∈K

q∏
i=1

∑
m∈Fn

2

∏
ω∈Fn

2

exp

{
1

σ(ω)2

(
x
(ω)
i y

(ω)
i − 1

2
y
(ω)
i

2
)}

(47)

= argmax
k∈K

q∑
i=1

log

⎧⎨⎩ ∑
m∈Fn

2

exp

⎧⎨⎩∑
ω∈Fn

2

1

σ(ω)2

(
x
(ω)
i y

(ω)
i − 1

2
y
(ω)
i

2
)⎫⎬⎭

⎫⎬⎭ (48)

Now plugging the respective leakages as described in Subsect. 5.2 gives

= argmax
k∈K

q∑
i=1

log

⎧⎨⎩ ∑
m∈Fn

2

exp

⎧⎨⎩∑
ω∈Fn

2

1

σ(ω)2

(
x
(ω)
i ϕ(ω ⊕m)− 1

2
ϕ2(ω ⊕m)

)

+
1

σ(2n)2

(
x
(2n)
i ϕ(ti ⊕m⊕ k)− 1

2
ϕ2(ti ⊕m⊕ k)

)}}
. 
� (49)
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Proposition 12 (HOOD for masking tables for low SNR). For large
Gaussian noise (or low SNR) the distinguisher becomes

Dmt,G,σ↑
opt (x(�), t) =

argmax
k∈K

∑
ω∈Fn

2

1

σ(ω)2

q∑
i=1

⎛⎜⎜⎜⎝
x
(ω)
i x

(2n)
i

∑
m ϕ(ω ⊕m)ϕ(ti ⊕ k ⊕m)

− 1
2x

(2n)
i

∑
m ϕ(ti ⊕ k ⊕m)ϕ(ω ⊕m)

2

− 1
2x

(ω)
i

∑
m ϕ(ω ⊕m)ϕ(ti ⊕ k ⊕m)

2

+ 1
4

∑
m ϕ(ω ⊕m)

2
ϕ(ti ⊕ k ⊕m)

2

⎞⎟⎟⎟⎠ . (50)

Proof. Due to the lack of space we neglect the term argmaxk∈K in front of
each line. Starting from Eq. (32) we use again the first-order Taylor expansion
exp{ε} = 1 + ε+O(ε2). So,

q∏
i=1

∑
m∈Fn

2

2n∏
ω=0

(
1 +

1

σ(ω)2

(
x
(ω)
i y

(ω)
i − 1

2
y
(ω)
i

2)
+

1

2σ(ω)4

(
x
(ω)
i y

(ω)
i − 1

2
y
(ω)
i

2)2)
.

Furthermore, an expansion at second-order gives

q∏
i=1

∑
m∈Fn

2

(
1 +

2n∑
ω=0

1

σ(ω)2

(
x
(ω)
i y

(ω)
i − 1

2
y
(ω)
i

2)
+

1

2σ(ω)4

(
x
(ω)
i y

(ω)
i − 1

2
y
(ω)
i

2)2
+

2n∑
ω �=ω′

1

σ(ω)2σ(ω′)2
(
x
(ω)
i y

(ω)
i − 1

2
y
(ω)
i

2)(
x
(ω′)
i y

(ω′)
i − 1

2
y
(ω′)
i

2))
. (51)

From the perfect masking condition (see Prop. 1), the first-order term

∑
m∈Fn

2

2n∑
ω=0

1

σ(ω)2

(
x
(ω)
i y

(ω)
i − 1

2
y
(ω)
i

2)
=

2n∑
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1
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(
x
(ω)
i
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2

y
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∑
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(ω)
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is constant as well as

∑
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2

2n∑
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1

2σ(ω)4
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(ω)
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2
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(ω)
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(52)

=
2n∑
ω=0

1

2σ(ω)4

(
x
(ω)
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2 ∑
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2

y
(ω)
i

2
+

1
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∑
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2

y
(ω)
i

4
− x
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2
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(ω)
i
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. (53)

The other terms in ω, ω′ can be written as

2

2n∑
ω<ω′

1
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(
x
(ω)
i x
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2
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. (54)
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Moreover, all terms involving only combinations of ω < d = 2n do not depend
on the key, thus we can further simplify to the required equation

∑
ω∈Fn

2

1

σ(ω)2

(
q∑

i=1

x
(ω)
i x

(2n)
i

∑
m∈Fn

2

y(ω)y(2
n) − 1

2
x
(2n)
i

∑
m∈Fn

2

y(2
n)y(ω)2 (55)

−1

2
x
(ω)
i

∑
m∈Fn

2

y(ω)y(2
n)2 +

1

4

∑
m∈Fn

2

y(ω)2y(2
n)2

⎞⎠ . 
�

Proposition 13 (Relationship between HOOD and CPA for masking
tables). When all noise variances are equal, i.e., σ = σ(ω) ∀ω, Eq. (50) further
simplifies to

Dmt,G,σ↑
opt (x(�), t) = argmax

k∈K

∑
ω∈Fn

2

q∑
i=1

(
x
(ω)
i x

(2n)
i

∑
m∈Fn

2

ϕ(ω ⊕m)ϕ(ti ⊕ k ⊕m)

− 1

2
x
(ω)
i

∑
m∈Fn

2

ϕ(ω ⊕m)ϕ2(ti ⊕ k ⊕m)
)
, (56)

which becomes close to a combination of higher-order CPAs, i.e.,

Dmt,σ↑
C-CPA(x

(�), t) = argmax
k∈K

∑
ω∈Fn

2

ρ(cn-prodX (x(ω),x(2n)), coptY (y(ω),y(2n))) (57)

− 1

2
ρ(x(ω), coptY (y(ω),y(2n)2)).

Proof. If all the variances are equal we have

∑
ω∈Fn

2

ϕ2(ω ⊕m)

σ(ω)
=

1

σ

∑
ω∈Fn

2

ϕ2(ω ⊕m) =
1

σ

∑
ω∈Fn

2

ϕ2(ω). (58)

So, regarding the second term in Eq. (50) we have

∑
ω∈Fn

2

1

σ(ω)2

q∑
i=1

x
(2n)
i

∑
m∈Fn

2

ϕ(ti ⊕ k ⊕m)ϕ(ω ⊕m)2 (59)

=

q∑
i=1

x
(2n)
i

∑
m∈Fn

2

ϕ(ti ⊕ k ⊕m)
∑
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2

1

σ(ω)2
ϕ(ω ⊕m)2 (60)

=

q∑
i=1

x
(2n)
i

∑
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2

ϕ(ti ⊕ k ⊕m)
∑
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1

σ2
ϕ(ω)

2
(61)

=
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i=1

x
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∑
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2
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∑
ω∈Fn

2

1

σ2
ϕ(ω)

2
, (62)
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which clearly does not depend on the key k. The same goes for the fourth term,
which proofs the first part. Now, rewriting Eq. (56) gives

argmax
k∈K

∑
ω∈Fn

2

〈x(ω)x(2n) |
∑

m∈Fn
2

ϕ(ω ⊕m)ϕ(t ⊕ k ⊕m)〉

−〈1
2
x(ω) |

∑
m∈Fn

2

ϕ(ω ⊕m)ϕ2(t⊕ k ⊕m)〉, (63)

and using the same argumentation as in the proof of Prop. 9 gives the required
formula from the second part. 
�

Interestingly, instead of using one CPA to recover the mask and one to recover
the secret key (see Def. 2) we recover that the best methodology is to attack each
share ω < 2n with ω = 2n (minus a regulation term) and then use a combination
of all attacks. Note again that we can make the same relaxations about the
leakage model as done in Subsect. 3.3.

Remark 6. For low noise, we can straightforwardly use Prop. 10, which is vali-
dated in our empirical results.

5.3 Experimental Validation

To empirically validate our theoretical results we use simulations of a first order
masking scheme with precomputation tables. We target the xor operation in the
precomputation phase and the AddRoundKey of the algorithm (see line 3 and
line 8 of Alg. 1 in Appendix A).

Thus, we have the same leakages as depicted in Examples 2, where for com-
putationally reasons for all distinguishers we only target four bits (n = 4).

Remark 7. Targeting the AddRoundKey phase has some advantages. First, it
allows to perform the evaluation on only four bits without the loss of generality
of using a four bits Sbox. Second, in the Sbox precomputation algorithm of
Coron [6] the output masks are different for each entry of the Sbox and could
therefore not be combined with the mask of the precomputation table. However,
as in our analysis the attacker can still take advantage of the 2n leakages of
the masked inputs of the Sbox combined with the leakage of the AddRoundKey
operation.

Similarly to the previous experiments, T is uniformly distributed over F4
2 and

the noise is arising from a Gaussian distribution N ∼ N (0, σ2) for σ = σ(0) =
... = σ(16) ∈ {0.5, 5}. Again to compute the success rate we conducted 500
independent experiments with uniformly distributed k∗ and shaded the success
rate with error bars.

Figure 2 shows the success rates. For low noise (σ = 0.5) the optimal dis-
tinguisher (HOOD) and its approximation for low noise (HOOD-low) perform
similar and better than the 2nd-order CPA (2O-CPA) with normalized product
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(a) σ = 0.5 (b) σ = 5

Fig. 2. Success rate for masking tables

combination function and the 2-stage CPA in Eq. 45 (2xCPA). Naturally, all dis-
tinguishers outperform 2nd-order CPA as it only utilizes two leakages X(0) and
X(256). For higher noise (σ = 5) the HOOD and its approximation for high noise
(HOOD-high) perform better than the 2-stage CPA (2xCPA) and 2nd-order CPA.
Moreover it can be noticed that the distinguisher based on combinations of CPA
(Eq. (57)) (C-CPA) and the optimal ones are equally efficient. Accordingly, we
have empirically validated that our new distinguisher approximated from the
HOOD is valid for high noise and more efficient than the two-stage CPA. In
particular, it requires around 1000 traces less to reach P̂S = 90% for σ = 5.

6 Conclusions and Perspectives

We have found the optimal distinguishers for higher-order masking, and espe-
cially, analyzed the application of second-order distinguisher and distinguisher
against masking tables. This gives the first theoretical proof that for a high noise
non-profiled second-order CPA becomes as efficient as the optimal distinguisher
in terms of success rate. In particular, we explain that the normalized product
combining function with the optimal prediction function [16] is sound and the
optimal one among all (known and unknown) combination functions. We fur-
thermore extended this result to (d + 1)th-order distinguisher, which has not
been analyzed before. For low noise, the optimal distinguisher does not reduce
to any kind of correlation. In the application of masking tables we provide a
new distinguisher based on correlation whose again is as efficient as the optimal
distinguisher in case of high noise. Naturally, this new distinguisher outperforms
all known (non-profiled) distinguisher for this application. Given all these results
we theoretically and empirically show that for high noise the security analysis
with non-profiled distinguisher is sufficient as it coincides with the optimal dis-
tinguisher.
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These results raise various new perspectives. First of all, our methodology of
starting from the optimal distinguisher and deriving approximated distinguisher
could be applied to other scenarios. One application, for example, could be the
scenario used in [17]. Moreover, future work should deal with the exact analysis
of the impact of noise on the masking efficiency in a theoretical manner. This
comes along with an analysis of the impact of the number of shares, in particular,
with an investigation of the arguments done in [15,23] about exponential attack
complexity.
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A Algorithm of Masking Tables

input : t, one byte of plaintext, and k, one byte of key
output : The application of AddRoundKey and SubBytes on t, i.e.,

S(t⊕ k)

1 m←R Fn
2 , m

′ ←R Fn
2 // Draw of random input and output masks ;

2 for ω ∈ {0, 1, . . . , 2n − 1} do // Sbox masking

3 z ← ω ⊕m // Masked input ;
4 z′ ← S[ω]⊕m′ // Masked output ;
5 S′[z] ← z′ // Creating the masked Sbox entry ;

6 end
7 t← t⊕m // Plaintext masking ;
8 t← t⊕ k // Masked AddRoundKey ;
9 t← S′[t] // Masked SubBytes ;

10 t← t⊕m′ // Demasking ;
11 return t

Algorithm 1. Beginning of a block cipher masked by Sbox precomputation

We have indicated the words length of all data as n, typically, n = 8 bit for
AES. Two random masks m and m′ are drawn initially from Fn

2 and all the data
manipulated by the algorithm will be exclusive-ored with one of the two masks.

Masking the plaintext is straightforward (see line 7). Key addition can be done
safely as a second step, as the plaintext is already masked (see line 8). Passing
through the Sbox is less obvious, as this operation is non-linear. Therefore, the
Sbox is recomputed masked, as shown on lines 2 to 5: a new table S′, that has
also size 2n × n bits, is required for this purpose. In the Sbox precomputation
step (lines 2 to 5), the key byte k is not manipulated. The leakage only concerns
the mask.
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Abstract. As one-more problems are widely used in both proving and analyzing
the security of various cryptographic schemes, it is of fundamental importance
to investigate the hardness of the one-more problems themselves. Bresson et al.
(CT-RSA ’08) first showed that it is difficult to rely the hardness of some one-
more problems on the hardness of their “regular” ones. Pass (STOC ’11) then
gave a stronger black-box separation showing that the hardness of some one-
more problems cannot be based on standard assumptions using black-box reduc-
tions. However, since previous works only deal with one-more problems whose
solution can be efficiently checked, the relation between the hardness of the one-
more (static) CDH problem over non-bilinear groups and other hard problems
is still unclear. In this work, we give the first impossibility results showing that
black-box reductions cannot be used to base the hardness of the one-more (static)
CDH problem (over groups where the DDH problem is still hard) on any standard
hardness assumption. Furthermore, we also extend the impossibility results to a
class of generalized “one-more” problems, which not only subsume/strengthen
many existing separations for traditional one-more problems, but also give new
separations for many other interesting “one-more” problems.

1 Introduction

The first one-more problem, n-RSA, was introduced by Bellare et al. [4] for proving
the security of the Chaum’s RSA-based blind signature scheme [17]. Formally, the n-
RSA problem asks an algorithm to invert the RSA-function at n + 1 random points
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with at most n calls to an RSA-inversion oracle. In particular, it is the regular RSA
problem when n = 0. Similar to the n-RSA problem, Bellare et al. [4] also suggested
that a class of one-more inversion problems can be formulated for any family of one-
way functions, which basically asks an algorithm to invert a one-way function at some
random points with a bounded number of queries (i.e., less than the number of given
points) to an inversion oracle. The hardness assumption on this class of problems aims
to capture the intuition that an algorithm cannot gain advantage from the inversion
oracle other than making “trivial” use of it. Instantiated with the discrete logarithm
(DL) function, the one-more DL problem, n-DL, was given in [5]. Later, Boldyreva [8]
constructed a secure blind signature scheme based on the hardness of the one-more
static CDH problem (or chosen-target CDH problem [8]). Roughly, the one-more static
CDH problem (n-sDH for short) defined in [8] is to solve n + 1 static Diffie-Hellman
(sDH) instances [12] with at most n queries to an sDH solution oracle.1

The one-more inversion problems not only make it possible to find security proofs
for many classical cryptographic constructions [7,6,2,3,13,19], but are also used to il-
lustrate the impossibilities of proving the security of some other cryptographic schemes
such as [36,27,42,25], even though the original intention of introducing them is to
“prove security”. Due to plenty of fruitful results, many cryptographic researchers also
put effort into studying the hardness of one-more inversion problems, “to see how they
relate to other problems and to what extent we can believe in them as assumptions” [5].
In CRYPTO ’08, Garg et al. [27] raised it as a major open question “to understand
relationship between the DL problem and the n-DL problem”. Earlier in the same year,
Bresson et al. [10] and Brown [11] presented the first evidence that one-more inversion
problems seem to be weaker than their “regular” ones. Specifically, they showed that
the hardness of some (n + 1)-P problem (e.g., (n + 1)-RSA) cannot be based on the
hardness of “its own” n-P problem (e.g., n-RSA) using some “restricted” black-box
reductions. Later, Pass [37] showed that black-box reductions cannot be used to base
the hardness of a special kind of one-more inversion problems (what was called one-
more problems based on homomorphic certified permutations [37]) on any standard
assumption. However, all the above impossibility results explicitly require the underly-
ing problem P to be efficiently verifiable, and thus cannot apply to the n-sDH problem
over groups where the DDH problem is hard.2

1.1 Our Results

In this paper, we present the first impossibility results showing that black-box reduc-
tions cannot be used to base the hardness of the n-sDH problem (over groups where
the DDH problem is hard) on any standard hardness assumption C. In particular, the
assumption C itself can be n′-sDH problem for smaller n′. Technically, we construct
a meta-reduction (i.e., “reduction against the reduction” [9,24,28,21]) which directly

1 The notation “n-CDH” is used in [10] instead of “n-sDH”. We use “n-sDH” because the
n-CDH problem can be defined directly based on the CDH problem (instead of the sDH prob-
lem), and our separation results apply to such n-CDH problems as well.

2 We note that the computational complexity between the n-sDH problem and the DL problem
over specific groups has also been studied in the literature [31,34,29].
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breaks the assumption C by interacting with any black-box reduction from C to the
n-sDH problem. Due to the nice feature of meta-reductions [28,37], our results also
apply to black-box reductions that may make non-black-box use of the assumption C.
Then, we extend our proof techniques to obtain separation results for a class of more
generalized “one-more” problems, which not only subsume/strengthen many existing
separations for the traditional one-more problems (e.g., n-RSA, n-DL, and the unforge-
ability of blind signatures), but also give new separations for many other interesting
“one-more” problems.

Throughout the paper, the security of a cryptographic problem P is defined via a
game between a challenger C(P) and an adversary A. In particular, the challenger C(P)
provides the adversary A with a stateful (and possibly unbounded) oracle Orcl. The
actual behavior of the oracle Orcl is determined by the description of P. We say that a
problem P is non-interactive if its oracle Orcl = ⊥. Sometimes, we will slightly abuse
the notation, and use C to denote both the problem and its associated challenger. A hard
cryptographic problem C is said to be t-round, if the number of the messages exchanged
between the Orcl and the adversary A is at most t (which might be a priori bounded
polynomial in the security parameter).

Impossibility for One-More Static CDH Problems. By a nice observation that Cash
et al.’s trapdoor test (for the twin Diffie-Hellman problems [16]) allows some form
of verification for the CDH problem, we give the first black-box separations for the
n-sDH problem over general groups by carefully injecting the trapdoor test technique
into our meta-reduction. The difficultly of this approach lies in the fact that the trapdoor
test does not really allow us to publicly and efficiently check the validity of any single
CDH tuple (since it can only check whether or not two carefully prepared tuples are
both CDH tuples by using some private coins. Especially, if one of the two tuples is
not a CDH tuple, it cannot determine which one is not). We overcome this difficulty by
designing an unbounded adversary A with “delay verifications” and a meta-reduction
M with “dynamic decisions” on whether or not to use, and how to use the trapdoor test
in simulating A to the reduction R. Formally, we have the following theorem.

Theorem 1. There is no black-box reduction R for basing the hardness of the n-sDH
problem on any t(k)-round hard problem C (or else C could be solved efficiently), where
k is the security parameter and n = 2 · ω(k + t+ 1).

Since we consider very general black-box reductions, the requirement on n = 2 ·
ω(k+t+1) seems a bit loose. However, if one would like to consider a class of restricted
black-box reductions—single-instance reductions [26,25], a tighter separation result for
n ≥ 2(t+ 1) can be achieved.

Black-Box Separations for Generalized “One-More” Problems. A natural extension
of the traditional one-more problem is defined by “relaxing” the requirement on the
oracle. Formally, we consider a class of generalized “one-more” problems, where each
problem is associated with two non-interactive subproblems P1 and P2. Here, we do
not require P1 = P2. For any integer n ≥ 0, we denote n-(P1,P2) as the problem
which asks an algorithm to solve n + 1 random P1 instances with at most n calls to a
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P2 oracle (e.g., P1 = CDH, P2 = DL). Obviously, the traditional one-more problem
is a special case of our generalization with P1 = P2. In particular, we briefly denote it
as n-P1 if P1 = P2, which coincides with traditional notations (e.g., n-DL). Now, we
consider a class of n-(P1,P2) problems that there exists an efficient reduction T from
P1 to P2 (e.g., from CDH to DL) with the following two properties:

– T solves one P1 instance by using at most γ (non-adaptive) queries to a P2 oracle,
where γ is a constant;

– T always correctly solves its input P1 instance after obtaining γ correct responses
from the P2 oracle, and outputs “⊥” if one of the γ responses is incorrect with
overwhelming probability (we remark that this condition implicity require that T
can somehow verify the correctness of all the γ responses as a whole, but it is not
required to determine which one of the responses is incorrect, e.g., we have γ = 2
for the n-sDH problem).

Then, similar separation results also hold for such class of n-(P1,P2) problems if, in
addition, P1 has unique solution [23,37] and P2 is randomly self-reducible [1]. Note
that here we still do not explicitly require P2 to be efficiently verifiable as for the sDH
problem. Formally, we have the following theorem.

Theorem 2. If there exists an efficient reduction T from P1 to P2 with the above two
properties, P1 has unique solution and P2 is randomly self-reducible, then there is no
black-box reduction R for basing the hardness of the n-(P1,P2) problem on any t(k)-
round hard problem C (or else C could be solved efficiently), where k is the security
parameter and n = γ · ω(k + t+ 1).

Like the discussion after Theorem 1, if only single-instance reductions are consid-
ered, we can get a tighter separation result for n ≥ γ ·(t+1). Note that for the traditional
n-DL, n-RSA and n-sDH over gap Diffie-Hellman groups [35] where P1 = P2, there
is a natural reduction T with γ = 1. The above theorem indeed subsumes/strengthens
existing separations for those problems in the literature [10,37]. Since our generalized
“one-more” problem also captures the “one-more unforgeability” of blind signatures
and many other interesting “one-more” problems (e.g., n-(CDH, DL)), our results actu-
ally give a broad separation for some of those problems. For instance, one can directly
define the one-more CDH problem, n-CDH, based on the CDH problem instead of the
sDH problem, and our impossibility results apply to the n-CDH problem.

1.2 The Idea behind Our Impossibility Results

To better illustrate our techniques, we start from a simple vanilla reduction R (depicted
in Fig.1) from the traditional one-more problem n1-sDH to n2-sDH (i.e., P1 = P2 =
sDH) for integers n2 > n1 ≥ 0, which only runs a single instance of the n2-sDH
adversary A without rewinding [10,26]. Concretely, upon receiving the challenge n1-
sDH instance y from C, the reduction R invokes a single instance of A by simulating
an n2-sDH challenger C′, and tries to find the solution x of y by interacting with A.

Intuitively, if the adversary A can somehow see the n1-sDH instance input y of R, it
can directly solve them by using its own n2 sDH queries to R. This intuition is actually
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n2-sDH
adversary A

n2-sDH

challenger C′

Reduction R

n1-sDH
challenger C

RA

n2-sDH

instance y′

≤n2

n2-sDH

solution x′

n1-sDH instance y

≤n1

n1-sDH solution x

Fig. 1. A single-instance reduction R from n1-sDH to n2-sDH, where n2 > n1 ≥ 0

the basic idea of [10], which constructed a meta-reduction M that runs R with its own
n1-sDH instance, and simulates an n2-sDH adversary A to R. However, this approach
has two technical barriers. First, the sDH queries that A is allowed to make might not
be in the same group or have the same public parameters as the input y of R. Second,
R can cheat M by returning random group elements if DDH is hard in the considered
group. To get around these two barriers, the authors [10] put on additional restrictions
on R (e.g., algebraic or parameter-invariant [10]), and considered the n-sDH problem
over gap Diffie-Hellman groups [35] where the DDH problem is easy.

n2-sDH
adversary A

Testn2-sDH

challenger C′

Reduction RChallenger C

Challenger C

Meta reduction M
MR

n2-sDH

instance y′

≤n2

n2-sDH

solution x′

Instance y

≤n1

Solution x

Instance y

≤n1

Solution x

Fig. 2. Our meta-reduction M against R from n1-round hard problem C to n2-sDH problem,
where n2 > n1 ≥ 0

We remove the restrictions on R by using rewinding technique, which allows our
meta-reduction M (depicted in Fig.2) to directly solve y′ (i.e., to make n2 + 1 sDH
queries to R for all the instances in y′), and outputs whatever R returns as the solution
to its own challenge instance y. In this case, M actually does not care about what y
is. Without loss of generality, we simply denote y as an instance of any n1-round hard
problem C. The requirement n2 ≥ n1 + 1 is still needed to ensure that there is at least
one query that R answers without having interactions with its own challenger C. In
other words, we have to guarantee that there is at least one chance that M can safely
rewind R without affecting the external interactions between R and C.

To deal with the n-sDH problem over general groups where DDH is hard, we use
a good observation on the remarkable trapdoor test algorithm (denoted by Test here-
after) introduced by Cash et al. [16] for twin Diffie-Hellman problems. Informally,
given an element y ∈ G, the algorithm outputs another uniformly distributed element



Black-Box Separations for One-More (Static) Problems and Its Generalization 371

z ∈ G together with some private coins r. Then, for any elements h, f1, f2 ∈ G, the
Test algorithm can use r to determine whether or not both (y, h, f1) and (z, h, f2) are
CDH tuples with overwhelming probability. Briefly, the Test algorithm cannot publicly
check the validity of any single CDH tuple, but it can determine whether or not two
carefully prepared tuples are both CDH tuples (by using the private coins r). Espe-
cially, if one of them is not a CDH tuple, the algorithm cannot determine which one is
not. This “inability” of the Test algorithm poses an obstacle when we try to use it in our
meta-reduction M to prevent the reduction R from cheating, since R might also notice
this. To overcome this obstacle (i.e., to hide the use of the Test algorithm from R), we
first present an unbound adversary A (against the n2-sDH problem) with “delay verifi-
cations” such that it delays the verification of the odd-numbered response to the point
immediately after obtaining the next even-numbered response, and checks the validity
of the responses “two by two”. Then, we construct a meta-reduction M that carefully
tracks all the “private coins”used by the Test algorithm, and (statistically) hides the two
sDH queries needed by the Test algorithm into its own sDH queries to the reduction R.
This requires the meta-reduction M to make “dynamic decisions” on whether or not to
use, and how to use the Test algorithm in preparing each sDH query to R.

To finally establish the separation results for general black-box reductions (i.e., with-
out any additional restrictions on R), we have to deal with two technical issues. First,
R might rewind the (unbounded) adversary A to obtain extra advantage. This is cir-
cumvented by designing a “magical” adversary A such that it performs “determinis-
tically” [37,25]. Second, R might invoke many instances of A, a naive rewinding of
R will result in an exponential running-time due to “nested rewindings” [22,20]. We
deal with this problem by making use of recursive rewinding techniques [41,37], which
allow our meta-reduction M to cleverly find a “safe rewinding chance” and cancel a
rewinding when it has to do too much work [38,20,15].

In all, we finally separate the n-sDH problem from any other (priori bounded) poly-
nomial round hard problems. The impossibility results for generalized “one-more” prob-
lems can be analogously obtained if there is a reduction T for the underlying problem
which can play a similar role as the Test algorithm for the n-sDH problem.

1.3 Related Work, Comparison and Discussion

Relation to Bresson et al. [10]. In CT-RSA ’08, Bresson et al. [10] studied the re-
lations between the traditional one-more inversion problems and their “regular” ones,
and showed that the hardness of the traditional n-P problem cannot be based on the
(n− 1)-P problem using some “restricted” (e.g., algebraic or parameter-invariant [10])
black-box reductions. Concretely, they showed that a class of restricted black-box re-
ductions cannot be used to base the hardness of n-DL, n-RSA, and n-sDH over gap
Diffie-Hellman groups [35], on their corresponding one-more problems with less oracle
queries, e.g., (n− 1)-DL, (n− 1)-RSA, (n− 1)-sDH over gap Diffie-Hellman groups.
As discussed in Section 1.2, the restrictions on R in their results seem unavoidable
since their meta-reductions heavily rely on the “direct” connections between the chal-
lenge n1-P instance input of the reduction R and the n2-P instance output by R, where
n2 ≥ n1 + 1. This is also the reason why separations of the one-more problems from
other hard problems cannot be derived. For comparison, our meta-reduction makes use
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of the “rewinding” technique and the “inner” connections between the instances in the
n-P problem and its associated oracle queries, which allows us to separate the n-P
problem from any other (priori bounded) polynomial round hard problems. In partic-
ular, we rule out the existence of general black-box reductions (i.e., without imposing
any other restrictions on R) for sufficiently large n.

Relation to Pass [37]. In STOC ’11, Pass [37] presented a broad separation result
showing that the security of constant-round, public-coin, (generalized) computational
special-sound arguments for unique witness relations cannot be based on any standard
assumption. Pass’s results apply to many well-known cryptographic problems such as
the traditional one-more inversion problems and the security of the two-move unique
blind signatures (i.e., each message has a unique signature for a fixed verification key).
In particular, Pass showed that the hardness of n-DL and n-RSA cannot be based on any
t-round standard assumption using black-box reductions if n = ω(k + 2t + 1), where
k is the security parameter.3 The use of recursive rewinding in this work is inspired by
Pass [37], which makes our meta-reduction have an analogous structure to that in [37]
and a similar requirement on n = γ · ω(k + t+ 1).

Since Pass’s proof [37] crucially relies on the fact that the underlying problem is
publicly and efficiently verifiable, their results cannot apply to the n-sDH problem over
general groups. Especially, since the Test algorithm [16] does not really allow us to pub-
licly and efficiently check the validity of any single CDH tuple (as discussed in Section
1.2), one cannot trivially use Pass’s separation results and the Test algorithm to obtain
our impossibility results in a “black-box fashion”. Actually, our results are achieved by
carefully combining many known techniques in the literature (e.g., [38,20,15,37,25])
and new techniques such as “delay verifications” and “dynamic decisions” in our meta-
reduction. We also extend our proof techniques to a class of generalized “one-more”
problems, which allows us to obtain separation results for many interesting “one-more”
problems such as the security of a class of two-move blind signatures.

Other Related Work. Fischlin and Schröder [26] showed that a class of “restricted”
black-box reductions cannot be used to prove the security of three-move blind signa-
tures based on any hard non-interactive problem. Katz et al. [33] showed that there is
no black-box construction of blind signatures from one-way permutations. Both results
overlap with ours in the context of two-move blind signatures, and we strengthen the
separation result (in this context) by proving that the security of a class of two-move
blind signatures (including non-black-box constructions) cannot be based on any poly-
nomial round hard problem using black-box reductions.

2 Preliminaries

Let |x| denote the length of a string x, and |S| denote the size of a set S. Denote x‖y as
the bit concatenation of two strings x, y ∈ {0, 1}∗. We use the notation← to indicate the
output of some algorithm, and the notation ←r to denote randomly choosing elements

3 The factor “2” before t is because a knowledge extractor, whose behavior might dependent on
the distribution of its its input transcripts, is used [37]. Please refer to [37] for details.
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from some distribution (or the uniform distribution over some finite set). For example, if
A is a probabilistic algorithm, z ← A(x, y, . . . ; r) means that the output of algorithmA
with inputs x, y, . . . , and randomness r is z. When r is unspecified, we mean runningA
with uniformly random coins. We say that A is a PPT algorithm if it runs in probabilistic
polynomial-time.

The natural security parameter throughout the paper is k, and all other quantities are
implicit functions of k. We use standard notation O and ω to classify the growth of
functions. We say that a function f(k) is negligible if for any constant c > 0, there
exists an N such that f(k) < 1/kc for all k > N .

2.1 Cryptographic Problems

In this subsection, we recall several definitions of cryptographic problems.

Definition 1 (Cryptographic Problem). A cryptographic problem P = (PGen, IGen,
Orcl,Vrfy) consists of four algorithms:

– The parameter generator PGen takes as input the security parameter 1k, outputs
a public parameter param, which specifies the instance space Y and the solution
space X , in brief, param← PGen(1k).

– The instance generator IGen takes as input the public parameter param, outputs
an instance y ∈ Y , i.e., y ← IGen(param).

– The stateful oracle algorithm Orcl(param, ·) takes as input a query q ∈ {0, 1}∗,
returns a response r for q or a special symbol ⊥ if q is an invalid query.

– The deterministic verification algorithm Vrfy takes as inputs the public parameter,
an instance y ∈ Y and a candidate solution x ∈ X , returns 1 if and only if x is a
correct solution of y, else returns 0.

Throughout this paper, we implicitly assume it is easy to check whether an element
y (resp., x) is in Y (resp., X ). We say that a cryptographic problem P = (PGen, IGen,
Orcl,Vrfy) is efficiently verifiable if Vrfy is running in polynomial-time. When Orcl =
⊥, we say that P is a non-interactive problem, and denote P = (PGen, IGen,Vrfy)
in brief. Usually, the two algorithms PGen and IGen are also required to be PPT algo-
rithms, but we do not explicitly need the requirements in this paper.

Definition 2 (Hard Cryptographic Problem). Let k be the security parameter. A cryp-
tographic problem P = (PGen, IGen,Orcl,Vrfy) is said to be hard with respect to a
threshold function μ(k), if for all PPT algorithm A, the advantage of A in the security
game with the challenger C (who provides inputs to A and answers A’s oracle queries)
is negligible in k:

AdvP,A(1
k) = Pr[param ← PGen(1k), y ← IGen(param);

x← AOrcl(param,·)(y) : Vrfy(param, y, x) = 1]− μ(k).

Usually, μ(k) = 0 is used for computational problems (e.g., DL, CDH, n-DL), and
μ(k) = 1/2 is used for decisional problems (e.g., DDH, DBDH).

As in [37], we also put on restrictions on the number of interactions between A and
the oracle in the game, and a hard cryptographic problem is said to be t-round if the
number of the messages exchanged (via oracle queries) between C and A is at most t.
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2.2 Black-Box Reductions

A black-box reduction R from a cryptographic problem P1 to another cryptographic
problem P2 is a PPT oracle algorithm such that RA solves P1 whenever A solves P2

with non-negligible probability. In addition to normally communicating with A, R also
has many powers such as restarting or “rewinding” A. Black-box reductions often take
advantage of these features. For example, R could make use of “rewind” to get out of a
“bad condition” by first rewinding A to a previous state and then trying some different
choices [14,20].

3 Black-Box Separations of One-More Static CDH Problems

In this section, we present the first separation results for one-more static CDH problems
over general groups where the DDH problem may still be hard.

Let k be a security parameter, G be a group of prime order q ≥ 22k, and g be a gen-
erator of G. For any two group elements A = ga, B = gb, we denote CDH(A,B) =
gab = Ab = Ba. Recall that the n-sDH problem is asking an algorithm to solve
n + 1 static Diffie-Hellman (sDH) instances [12] with at most n queries to an ora-
cle that solves sDH problems. Formally, given parameters param = (k,G, q, g, h)
and n + 1 group elements y = (y1, . . . , yn+1), the algorithm is asked to output x =
(x1, . . . , xn+1) such that xi = CDH(yi, h) for all i = {1, . . . , n + 1}, with at most n
queries to an oracle sDH(·, h).

Now, we recall the trapdoor test algorithm (with compatible notations) in the follow-
ing lemma, please refer to [16] for details.

Lemma 1 (Trapdoor Test [16]). Let G be a cyclic group of prime order q, generated
by g ∈ G. Let y ∈ G be an element of G, and r, r′ ∈ Zq are uniformly distributed over
Zq . Define z = gr

′
/yr. Then, for any elements h, f1, f2 ∈ G, we have: 1) z is uniformly

distributed over G; 2) y and z are independent, then the probability that the truth value
of

f r
1f2 = hr

′
(1)

does not agree with the truth value of

f1 = CDH(y, h) ∧ f2 = CDH(z, h) (2)

is at most 1/q; moreover, if (2) holds, then (1) certainly holds.

Note that the probability in the above lemma is over the random choices of r and r′,
and is independent of the choices of h, f1 and f2. This fact is very important for our
separation results. For simplicity, we denote the PPT algorithm in the above lemma as
Test, and assume that it works in two phases. In the initial phase, it takes the parameter
param = (k,G, q, g, h), a group element y ∈ G, and randomness r, r′ ∈ Zq as inputs,
returns a group element z = gr

′
/yr ∈ G, i.e., z ← Test(init, param, y; r, r′). In the

finish phase, it takes another two elements (f1, f2) as inputs, returns a bit e ∈ {0, 1} that
indicates whether the condition f r

1f2 = hr
′

holds, in brief, e ← Test(finish, param,
y, z, f1, f2; r, r

′). Besides, we say that the algorithm Test fails if it returns 1, but at
least one of the two tuples (y, h, f1) and (z, h, f2) is not a CDH tuple. By Lemma 1,
the probability that the Test algorithm fails is at most 1/q (which is negligible in the
security parameter k), where the probability is over random choices of r, r′ ←r Zq .
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3.1 An Unbounded Adversary

In this subsection, we present an unbounded adversaryA (depicted in Fig. 3) that solves
the n-sDH problem for n ≥ 2. Informally, the adversary A only makes random queries
to its oracle, and delays the verification of the odd-numbered response to the point
immediately after obtaining the next even-numbered response from its oracle (i.e., it
verifies the responses from its oracle two by two). Besides, A always makes even num-
ber of queries to its oracle, and omits the last query if n is odd. As in [37,25], a random
functionG is used by A to generate its inner random coins with its own view as input.

V := param||y
G : {0, 1}2k → Z

∗
q , j := 1

rj = G(V ), ρj = grj , V := V ||(j, “send”, ρj)
V := V ||(j, “receive”, τj)
rj+1 = G(V ), ρj+1 = grj+1 ,
V := V ||(j + 1, “send”, ρj+1)
V := V ||(j + 1, “receive”, τj+1)

If either τj �= hrj or τj+1 �= hrj+1, return ⊥ and abort;
else j := j + 2

Find x = (x1, . . . , xn+1) such that xi = CDH(yi, h)

A

param,y

x

ρj

τj

ρj+1

τj+1

m

Fig. 3. The adversary A uses a random function G to generate all its internal randomness

Description of A. Given the public parameter param = (k,G, q, g, h) with security
parameter k, and an n-sDH instance y = (y1, . . . , yn+1), A is asked to compute the
solution of y, with at most n queries to its sDH(·, h) oracle. Let V = param‖y, i.e.,
the view of A. Then, the adversary A randomly chooses a functionG from all functions
{0, 1}2k → Z∗

q , and let m = �n
2 �.

For j = {1, 3, . . . , 2m − 1}, A computes rj ← G(V ), and ρj = grj . Then, it
updates the view V := V ‖(j, “send”, ρj) and sends an external sDH query with ρj .
After obtaining the solution τj of ρj , A updates the view V := V ‖(j, “receive”, τj).
Then, it makes another sDH query ρj+1 in the same way as ρj by using randomness
rj+1 ← G(V ), and obtains τj+1 from its sDH oracle. If τj �= hrj or τj+1 �= hrj+1 , A
returns ⊥ and aborts; else let j := j + 2.

After completing 2m sDH queries without abort, A computes xi = CDH(yi, h) for
all i ∈ {1, . . . , n + 1} by brute-force search (which is not necessarily done in poly-
nomial time), and outputs x = (x1, . . . , xn+1) as the solution to its own challenge
y = (y1, . . . , yn+1).



376 J. Zhang et al.

The use of the random function G brings us two benefits. First, the distribution of
each sDH query of A is uniformly random over G, which allows our meta-reduction
M to (statistically) hide its real “intention”. Second, it is hard for the reduction R to
obtain (significant) advantage by rewinding A, since A always generates the same sDH
query at the same view, and a random sDH query at a freshly different view.

Besides, the way that the adversary A verifies the responses from its oracle two
by two is very crucial for our separation results, which allows our meta-reduction M
to “delay” the verification of the odd-numbered sDH response from the reduction R
(actually, it cannot efficiently do the verification if DDH is hard), and to embed two
sDH queries needed by the Test algorithm into two consecutive sDH queries to R.

3.2 The Meta-reduction for One-More Static CDH Problems

Let R be a black-box reduction from some hard problem C to the n-sDH problem,
namely, RA can solve the hard problem C with non-negligible probability. Basically,
the reduction R is given access to the deterministic “next-messages” function of the
adversary A, i.e., the function, given a partial view (x,m1, . . . ,mj) of A, computes the
next message output by A, where x is the input (which includes the randomness that R
chooses for A), and (m1, . . . ,mj) are the transcripts of the interactions between R and
A(x). As in [37], we use the following (standard) assumptions about R to simplify our
presentation:

– R never feeds the same partial view twice to its oracle A;
– When R feeds a partial view q to its oracle A, the transcripts contained in q are

generated in previous interactions between R and A.

Both of the two assumptions are without loss of generality, since the oracle A is a
“deterministic function” and we can easily modify R to satisfy the two conditions.
Besides, in order to better illustrate how our meta-reduction works, and how the Test
algorithm is injected, we denote instance Ai as a copy of A on a specified input x (i.e.,
A(x)). In particular, a unique positive integer i is used for each different input x (recall
that x includes the randomness that R chooses for A).

In the concurrent zero-knowledge protocols [41,40,38], the term “slot” usually de-
notes the point where a rewinding is possible. We adapt this notion to our case, which
is slightly different from that in [37]. Intuitively, a slot in our context always opens with
an odd-numbered query and ends with the response of the immediately followed even-
numbered query. Formally, let VR be the view of R, which includes all the messages
sent and received by R in the interactions with both the adversary A and the challenger
C. A partial view of VR is a prefix of VR. For some integer j ≥ 1, we say that a slot si
of Ai opens at a partial view V si

o if Ai sends the (2j−1)-th query q1 to R immediately
after V si

o (note that q1 must be a “fresh” query of Ai by our simplification assumption),
and we say that a slot si of Ai closes at a partial view V si

c if Ai receives a response r2
to the 2j-th query q2 from R at the end of V si

c . In particular, we denote the partial view
V si
o as the opening of si, and the partial view V si

c as the closing of si. Since a slot may
open without being closed (i.e., R may never respond to some query qi sent by Ai), we
uniquely identify a slot si by its opening. We also denote a particular closed slot si as
a pair of its opening and closing for convenience, i.e., si = (V si

o , V si
c ).
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Definition 3 (Good Slot). Let M = M(k) be the maximum number of the messages
sent and received by the reductionR on input the security parameter k. For any positive
integer d, we say that a closed slot si = (V si

o , V si
c ) (of Ai) is d-good if the following

two conditions hold:

– Between the time that si opens and the time that si closes, R does not interact with
the challenger C;

– Between the time that si opens and the time that si closes, the number of slots that
open is at most M

nd .

Informally, the definition of a good slot brings us three benefits. First, since the
reduction R does not interact with the challenger C during the slot, rewinding the re-
duction R to the opening of a good slot will not affect the interactions between R and
C. Second, each slot always contains two consecutive (fresh) queries, which allows our
meta-reduction M to embed two sDH queries in a slot. Third, each slot always opens
with an odd-numbered query, M can delay the verification of the response to the first
query, and simultaneously check the validity of the two responses from R (by using the
Test algorithm).

We make use of recursive rewinding techniques in [41,38,20,15] to rule out general
black-box reductions (i.e., without any additional restrictions on the reductions), which
was recently introduced by Pass [37] to give impossibility results for a class of witness-
hiding protocols. Basically, we provide the meta-reduction M with many rewinding
chances (i.e., slots), and let M be always “on the lookout” for good slots to rewind
R such that the rewinding will not “blow up” the running time of M too much (e.g.,
running in an exponential time). Formally, we have the following theorem.

Theorem 3 (Black-Box Separations for One-More Static CDH Problems). For any
integers t(k) and n = 2 · ω(k + t + 1), there is no black-box reduction R for basing
the hardness of the n-sDH problem on any t-round hard problem C (or else C could be
solved efficiently), where k is the security parameter.4

Proof. We now proceed to give the description of our meta-reduction M, which re-
cursively calls a procedure SOLVE to rewind the reduction R. In the simulation of the
adversary A to R, the meta-reduction M has to maintain three technical tables L1, L2

and L3. Informally, the first table L1 is used to record all the n-sDH instances (that
M has to solve) and the corresponding solutions (that have been found by M). The
other two tables are used to successfully inject the Test algorithm into the simulation,
where table L2 records the randomness used by the Test algorithm (for each target sDH
instance) and table L3 records the randomness used to re-randomize each sDH query
made by the Test algorithm. For functionality, table L1 is used in a “call by reference”
method, namely, the changes of L1 at the (d+ 1)-th recursive level will be reflected at
the d-th recursive level. But this is not required for table L2 and table L3. Formally,

4 Basically, the constant ‘2’ can be safely absorbed by the asymptotic function ‘ω(·)’. We leave
it here mainly because it is introduced by our “delay verification” proof technique, which is
different from previous results, e.g., [37]. We also hope this can give a clear relation between
the results in Theorem 3 and its generalized results in Theorem 4.
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– Table L1 consists of four tuples (i, parami‖yi, bi,xi) and indicates that 1) R in-
vokes the i-th instance of A with parameter parami and n + 1 sDH instances
yi = (yi,1, · · · , yi,n+1) as inputs; 2) M has found the first bi solutions of yi, and
stored them in xi (i.e., |xi| = bi). Thus, L1 = ⊥ when R is invoked (by M), and
(bi = 0,xi = ⊥) when a new instance of A is invoked (by R).

– Table L2 consists of six tuples (i, ti, yi,ti , ri,ti , r
′
i,ti , zi,ti) and indicates that the

i-th instance of A prepares an “aided” element zi,ti with randomness ri,ti and
r′i,ti , and aims to find the solution of the ti-th sDH instance yi,ti , i.e., zi,ti ←
Test(init, parami, yi,ti ; ri,ti , r

′
i,ti).

– Table L3 consists of five tuples (i, ti, δ, ui, ρi) that indicates the actual query made
by Ai, where δ ∈ {0, 1} and ui ∈ Z∗

q . If δ = 0, it means that Ai sends an odd-
numbered sDH query with ρi = yui

i,ti
. Else if δ = 1, it means that Ai sends an

even-numbered sDH query with ρi = zui

i,ti
.

Description of M. Given a security parameter k, a description of C instance, let VR =
k‖C, M runs R with C, and executes SOLVE(1k, 0, VR,⊥,⊥,⊥) to simulate the un-
bounded adversary A. Whenever R outputs the solution of C, M outputs it and halts.
Let c = �logkM�, for each level 0 ≤ d ≤ c, procedure SOLVE works as follows:

SOLVE(1k, d, V,L1,L2,L3):
On input a security parameter k, the current recursive level d, the partial view V of R
and three tables L1, L2 and L3, let v = V and repeat the following steps:

1. If d = 0 and R makes external interactions with C, simply relay the messages
between R and C, and update the view v.

2. If d > 0 and R attempts to make external interactions with C or the number
of slots opened after V in v exceeds M

kd , cancel the current recursive level and
return. (Note that this case happens if and only if the probability that V becomes
the opening of a d-good slot is non-negligible. Thus, the algorithm can simply
cancel the current recursive rewinding at level d and return to the (d−1)-th level
whenever the slot starting from V cannot be d-good anymore.)

3. If R feeds A with a partial view which only contains the input message, denote
(param, y) as the corresponding n-sDH instance.5 Choose an unused smallest
positive integer i for this instance Ai of A, and add (i, param‖y, 0,⊥) to L1.
Finally, update the view v.

4. If R feeds Ai with a partial view which contains a response τi to a previous sDH
instance query ρi from Ai, update the view v and proceed as follows:

– If ρi is the (2j − 1)-th query of Ai for some j ≥ 1, continue;
– If ρi is the 2j-th query ofAi for some j ≥ 1, let (ρ′i, τ

′
i) and (ρi, τi) be the last

two consecutive pairs of query and response of Ai, retrieve (i, ti, 0, u
′
i, ρ

′
i)

and (i, ti, 1, ui, ρi) from L3, and (i, ti, yi,ti , ri,ti , r
′
i,ti , zi,ti) from L2, such

that ρ′i = y
u′
i

i,ti
and ρi = zui

i,ti
, and compute f1 = (τ ′i)

1/u′
i , f2 = (τi)

1/ui .
Then, if Test(finish, parami, yi,ti , zi,ti , f1, f2; ri,ti , r

′
i,ti

) = 0, abort
the simulation of Ai. Otherwise, retrieve (i, parami‖yi, bi,xi) from

5 Recall that the input message contains the n-sDH instance and the randomness thatR chooses
for A. Besides, R never fed the same input to A before by our simplification assumptions.
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L1. If ti = bi + 1, update the tuple (i, parami‖yi, bi,xi) in L1 by let-
ting bi = ti and xi = xi‖f1 (or else, we must have ti ≤ bi, which means
the solution of yi,ti has been found previously). Finally, let si = (V si

o , v) be
the slot with closing v, and distinguish the following cases:
• If si opened before V (i.e., si did not open at the current recursive level),

continue;
• Else if V si

o = V (i.e., si opened at V ) and d > 0, end the current
recursive level and return.6

• Else if V si
o �= V (i.e., si opened after V ) and si is a (d + 1)-good slot,

repeat the procedureSOLVE(1k, d+1, V si
o ,L1,L2,L3) until bi = n+1.

• Otherwise, continue;
5. If R is expecting a message from Ai, retrieve (i, bi, parami‖yi, xi) from L1

(recall that parami = (k,G, p, g, h)), and proceed as follows:
– If Ai has completed 2m = 2 · �n

2 � sDH queries (i.e., Ai has to send the
solution of yi to R), send xi to R if bi = n + 1 (i.e., the solution xi of yi

has been found), else output “fail” and halt.
– Else if it is the (2j − 1)-th query for some j ≥ 1, let ti = bi + 1 if bi <
n + 1, else ti = n + 1. If there is no tuple (i, ti, yi,ti , ∗, ∗, ∗) in L2, choose
ri,ti , r

′
i,ti

←r Zq , compute zi,ti ← Test(init, parami, yi,ti ; ri,ti , r
′
i,ti

), and
add the tuple (i, ti, yi,ti , ri,ti , r

′
i,ti , zi,ti) to L2. Then, choose ui ←r Z∗

q ,
send ρi = yui

i,ti
to R, and add the tuple (i, ti, 0, ui, ρi) to L3.

– Else if it is the 2j-th query for some j ≥ 1, let ρi be the (2j − 1)-th query
of Ai, retrieve (i, ti, 0, ui, ρi) and (i, ti, yi,ti , ∗, ∗, zi,ti) from L3 and L2,

respectively, such that ρi = yui

i,ti
. Then, choose u′i ←r Z∗

q , send ρ′i = z
u′
i

i,ti
to

R, and add the tuple (i, ti, 1, u′i, ρ
′
i) to L3.

Finally, update the view v accordingly.
6. If R returns the solution of C, output the solution and halt.

Remark 1. By our simplification assumptions, R never feeds the same partial view
twice to A. This allows M to simply prepare each sDH query (on behalf of A) by
using freshly chosen randomness, since our unbounded adversary A (in Section 3.1)
uses a random functionG to deterministically generate its “inner” randomness by using
the interaction transcripts with R as input.

To show that our meta-reduction M can efficiently solve problem C (with
non-negligible probability), we only have to show that 1) M perfectly simulates the
unbounded adversaryA except with negligible probability; 2)M runs in expected poly-
nomial time. We prove the two claims in the following two lemmas.

Lemma 2. M perfectly simulates the unbounded adversary A except with negligible
probability.

6 This means that the rewinding at the partial view V (at level d) is successful, and the algorithm
returns to the (d− 1)-th level to check whether it has found all the solutions of yi for instance
Ai (i.e., to check whether bi = n+ 1).
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Proof. Since M always randomizes its sDH queries to R (on behalf of A) by using
uniformly chosen randomness from Z∗

q (i.e., ui or u′i in step 5), the distribution of these
queries is essentially the same to that of A (which always makes random sDH queries
to R). We finish the proof of this lemma by proving the following two cases: 1) If R
cheats in the interactions (i.e., by returning a false answer to an sDH query), M will
reject it in the same way as A except with negligible probability; 2) If R does not cheat,
M can find the correct solution xi of the n-sDH input yi of instance Ai from table L1

(i.e., it will not output “fail” in step 5).
For the first case, since both the meta-reduction M and the unbounded adversary A

do not immediately check the validity of any odd-numbered response, the simulation
of A after receiving an odd-numbered response from R (i.e., the first case in step 4) is
essentially the same as that of the real adversary A. After receiving an even-numbered
query, the unbounded adversary A will check the validity of the previous two consecu-
tive responses, and will always return ⊥ and abort if one of the previous two responses
is invalid. As for the meta-reduction M, it always embeds the first query of the Test
algorithm in an odd-numbered query, and the second query of the Test algorithm in
the immediately followed even-numbered query, and then checks the two consecutive
responses by using the Test algorithm. Obviously, if the Test algorithm does not fail,
M can perfectly detect whether R cheats or not, which is essentially the same as A.
Now, we show that the probability that the Test algorithm fails at least one time is neg-
ligible. Recall that the total number of the messages sent and received by R is bounded
by M(k), for any partial view v of R, there are at most M(k) messages in v. Thus,
M has to run the Test algorithm at most (n + 1)M(k) times (since R can invoke at
most M(k) instances of A, and for each instance Ai, M has to run the Test algorithm
at most (n+ 1) times). Since M always independently and randomly chooses the ran-
domness for each time running of the Test algorithm (in step 5), the probability that the
Test algorithm will fail at least one time is at most (n+1)M(k)

q by Lemma 1, which is
negligible in k.

For the second case, let v be the partial view of R, at which R expects the simu-
lated instance Ai to provide the solution of its input n-sDH yi. Since the unbounded
adversary A always sequentially makes 2m = 2 · �n

2 � sDH queries, there must exist
at least m slots of Ai in the partial view v. Recall that the total number of recursive
levels is bounded by c = �logkM� (which is a constant if R runs in polynomial time),
there must exist some recursive level d such that there are at least m

c+1 slots of Ai in
the partial view v (by the pigeon hole principle). Since n = 2 · ω(k + t+ 1), we have
m
c+1 ≥ k + t + 1 for sufficiently large k. Hereafter, we always assume that there is at
least k + t + 1 slots of Ai at level d. By the definition of SOLVE, the total number of
slots opened at level d is at most M

kd (this obviously holds at level d = 0). Thus, there
are at least t+1 slots of Ai that contain at most M

kd+1 slots (or else there are at least k+1

slots of Ai that contain more than M
kd+1 slots, which makes the total number of slots

opened at level d exceeds M
kd , and the recursive rewinding at level d will be canceled).

Since C is t-round, there is at least one slot of Ai (in those t+ 1 slots) during which R
has no interactions with the challenger C. Obviously, such a slot is (d + 1)-good, thus
will be rewound. In all, we have proven that for each complete instance Ai, there must
exist at least one good slot that would be rewound. Since M will end the recursive calls
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to SOLVE at the opening of a (d+1)-good slot in step 4 until bi = n+1, M can always
find the solution xi of the input n-sDH instance yi of Ai from table L1 before it has
to send the solution of yi to R (i.e., M will not output “fail” in step 5). Since R does
not cheat in this case, xi must be the correct (unique) solution of yi. This completes the
proof of Lemma 2.

Lemma 3. M runs in expected polynomial time.

Proof. We estimate the maximum running time of M that never outputs “fail” and
halts in the simulation. Since the total number of the messages sent and received by
R is bounded by M(k), there are at most M(k) good slots that might be rewound at
each recursive level. Let v be a partial view (at level d) immediately after which a slot s
opens. Then, let δ be the probability that s becomes (d+1)-good, where the probability
is over all the randomness used in the interactions between M and R after v. Now,
assume that we arrived at a partial view v′ such that s = (v, v′) is (d+ 1)-good, then if
M rewinds R to v (i.e., rewinding R to the opening of s at recursive level d + 1), the
probability that the slot becomes (d+ 1)-good is essentially close to δ. This is because
the behavior of the simulated adversary (by M) after rewinding R to v (i.e., at level
d+ 1) is almost identically distributed to that starting from v at level d. Since δ is non-
negligible (or else it is unlikely to arrive at the partial view v′), M can expect to obtain
a (d + 1)-good slot with probability negligibly close to 1 by rewinding R polynomial
times at v. Let p(k) be such a polynomial. Then, M can expect to find the solution
of some yi,j for Ai with probability negligibly close to 1 by rewinding R at most p(k)
times. Thus, for each of those good slots, the expected number of rewindings is bounded
by (n + 1)p(k) (recall that M has to find the solutions of (n + 1) sDH instances for
each Ai), and the total number of rewindings at each recursive level is expected at most
(n + 1)p(k)M(k). By an induction computation, we have the expected number of the
messages sent and received by M is bounded by ((n + 1)p(k)M(k))c+1, which is a
polynomial in k if M(k) is a polynomial in k. This completes the proof of Lemma 3.

4 More Black-Box Separations for One-More Problems

Let P1 = (PGen, IGen1,Vrfy1) and P2 = (PGen, IGen2,Vrfy2) be two non-interactive
cryptographic problems with the same parameter generator PGen. Now, we give the
definition of the generalized “one-more” problems.

Definition 4 (Generalized “One-More” Problems). For any integer n ≥ 0, the gen-
eralized “one-more” problem n-(P1,P2) = (PGen, IGen,Orcl,Vrfy) associated with
two subproblems P1 and P2 is defined as follows:

– The parameter generatorPGen(1k) algorithm returns the public parameter param
for P1 and P2.

– The instance generator IGen(param) independently runs the IGen1(param) algo-
rithm n + 1 times to generate (n + 1) random P1 instances {yi}i∈{1,...,n+1}, and
returns an instance y = (y1, . . . , yn+1).
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– The stateful oracle algorithm Orcl takes as inputs a public parameter param, and
a P2 instance y, returns the solution x of y or a special symbol ⊥ if y is an invalid
query. (If P2 is not a unique solution problem, the oracle can return one of the
candidate solutions in a predefined rule, e.g., the first one in lexicographic order.)

– The verification algorithmVrfy takes the public parameter param, an instancey =
(y1, . . . , yn+1), and a candidate solution x = (x1, . . . , xn+1) as inputs, returns 1
if and only if Vrfy1(param, yi, xi) = 1 for all i ∈ {1, . . . , n+ 1}.

In particular, if P1 = P2, we briefly denote n-(P1,P2) as n-P1. Besides, the n-
(P1,P2) problem is said to be hard if for any PPT adversary A, the advantage of A
in solving all the (n + 1) random P1 instances in y with at most n P2 queries to the
oracle Orcl is negligible.

This class of problems not only subsumes the traditional one-more problems (where
P1 = P2, e.g., n-RSA, n-DL), the unforgeability of two-move blind signatures (where
it is likelyP1 �= P2) and so forth, but also encompasses many other interesting problems
that have not been (well) studied in the literature. For example, to solve n + 1 BDH
instances by using n DL queries, i.e., n-(BDH,DL) in our notation [18].

Our separation results in Theorem 3 can be generalized to the n-(P1,P2) problem if
there is a PPT reduction T which can be used to solve one P1 instance by only using
γ (non-adaptive) queries to a P2 oracle, where γ can be any constant (e.g., γ = 2 for
the n-sDH problem). In particular, we assume that reduction T works in two phases:
Given the public parameter param, a P1 instance y, and a randomness r, it enters into
the query phase and outputs a vector of P2 instances z = (z1, . . . , zγ). In brief, z ←
T(query, param, y; r). After being fed back with the solution vector f = (f1, . . . , fγ)
of z where fi is a candidate solution of zi, T enters into the finish phase, and returns
the solution x of y or a special symbol⊥. In brief, x/⊥ ← T(finish, param, y, z, f ; r).
Informally, we say that a reduction T is a “promise reduction” if it always tries to return
a correct answer, otherwise returns ⊥ to indicate that “some of its inputs are invalid”.

Definition 5 (Promise Reduction). Let Ωt be the randomness space of T, we say that
a reduction T from P1 to P2 is a promise reduction if it satisfies the following two
properties:

Efficient Computability: There is a PPT algorithm that computes T.
Correctness-Preserving: Fixing the parameter (param, y), for any z ← T(query,

param, y; r), any candidate solutions f of z, and x← T(finish, param, y, z, f ; r),
we have

– If Vrfy2(param, zi, fi) = 1 holds for all i ∈ {1, . . . , γ}, we have that x �= ⊥
and Vrfy1(param, y, x) = 1 hold;

– If there exists i ∈ {1, . . . , γ} such that Vrfy2(param, zi, fi) = 0, then we have
x = ⊥ with overwhelming probability;

where the probabilities are over the random choice of r ←r Ωt.

Remark 2. The first requirement on the correctness-preserving property of T can be re-
laxed to “hold with non-negligible probability” if P1 is efficiently verifiable (i.e., Vrfy1
is a PPT algorithm). Since we can repeat the reduction T polynomial times (at a cost
of slightly increasing the running time of M) to get a correct solution with probability
negligibly close to 1. The strong requirement is used here for simplicity.
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Theorem 4 (Black-Box Separation for Generalized “One-More” Problems). For
integer n > 0, let n-(P1,P2) be defined as in Definition 4. If P1 has unique solution,
P2 is randomly self-reducible and there is a promise reduction T from P1 to P2 with
at most γ queries. Then, there is no black-box reduction R for basing the hardness of
the n-(P1,P2) problem on any t(k)-round hard problem C (or else C could be solved
efficiently), where k is the security parameter and n = γ · ω(k + t+ 1).

The proof is very similar to the proof of Theorem 3, we defer it to the full version.

Remark 3. The requirement on n = γ ·ω(k+ t+1) is needed to successfully apply “re-
cursive rewinding” [41,38,20,15] to rule out general black-box reductions. However,
if one would like to consider restricted black-box reductions—single-instance reduc-
tions [26,25], a tighter separation result for n ≥ γ · (t+ 1) can be achieved.

Since our generalized “one-more” problems abstract many interesting problems,
Theorem 4 actually gives a very broad impossibility result for a large class of problems.
For the three traditional one-more inversion problems we have the following corollary.

Corollary 1. There is no black-box reduction R for basing the hardness of n-DL, n-
RSA, or n-sDH over gap Diffie-Hellman groups on any t(k)-round hard problem C
(or else C could be solved efficiently), where k is the security parameter and n =
ω(k + t+ 1).

Actually, our separation results naturally apply to the n-CDH problem, which can be
directly defined based on CDH problems as in Definition 4 (i.e., P1 = P2 = CDH).

Corollary 2. There is no black-box reduction R for basing the hardness of the n-CDH
problem over general groups on any t(k)-round hard problem C (or else C could be
solved efficiently), where k is the security parameter and n = 2 · ω(k + t+ 1).

Since the one-more unforgeability of blind signatures can be treated as a standard
generalized “one-more” problems, our separation results actually apply to a class of
two-move blind signatures [17,8,30] that are statistically blinding [32,39] and allow
statistical signature-derivation check [26]. We defer the details to the full version.

Corollary 3. If a two-move (unique) blind signature BS is statistically blinding and
allows statistical signature-derivation check, then there is no black-box reduction R
for basing the one-more unforgeability of BS on any polynomially round hard problem
C (or else C could be solved efficiently).

Besides, our results also apply to many other interesting problems that may not have
been (well) studied in the literature. For example, if P2 is the DL problem, P1 can be
any other DL-based problems such as CDH, DDH and BDH.

Finally, we clarify that our impossibility result only rules out black-box reductions
from other (standard) hard problems to this class of problems, it does not mean the
problems in the class are easy to solve, or there are no non-black-box reductions basing
the hardness of these problems on other (standard) hard problems. In fact, some of them
might be very useful in proving or analyzing cryptographic constructions.

Acknowledgments. We thank Yi Deng, Phong Q. Nguyen, and the anonymous review-
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Abstract. We study the maximal achievable accuracy of distributed dif-
ferentially private protocols for a large natural class of boolean functions,
in the computational setting.

In the information theoretic model, McGregor et al. [FOCS 2010] and
Goyal et al. [CRYPTO 2013] demonstrate several functionalities whose
differentially private computation results in much lower accuracies in the
distributed setting, as compared to the client-server setting.

We explore lower bounds on the computational assumptions underwhich
this accuracy gap can possibly be reduced for two-party boolean output
functions. In the distributed setting, it is possible to achieve optimal accu-
racy, i.e. the maximal achievable accuracy in the client-server setting, for
any function, if a semi-honest secure protocol for oblivious transfer exists.
However, we show the following strong impossibility results:

– For any general boolean function and fixed level of privacy, the max-
imal achievable accuracy of any (fully) black-box construction based
on existence of key-agreement protocols is at least a constant smaller
than optimal achievable accuracy. Since key-agreement protocols im-
ply the existence of one-way functions, this separation also extends
to one-way functions.

– Our results are tight for the AND and XOR functions. For AND,
there exists an accuracy threshold such that any accuracy up to
the threshold can be information theoretically achieved; while no
(fully) black-box construction based on existence of key-agreement
can achieve accuracy beyond this threshold. An analogous statement
is also true for XOR (albeit with a different accuracy threshold).

Our results build on recent developments in black-box separation tech-
niques for functions with private input [1,16,27,28]; and translate infor-
mation theoretic impossibilities into black-box separation results.

Keywords: Differentially Private Protocols, Computational Complexity,
Random Oracle, Key-agreement Protocols, Black-box Separation.

� Research supported in part from a DARPA/ONR PROCEED award, NSF grants
1228984, 1136174, 1118096, and 1065276, a Xerox Faculty Research Award, a Google
Faculty Research Award, an equipment grant from Intel, and an Okawa Foundation
Research Grant. This material is based upon work supported by the Defense Ad-
vanced Research Projects Agency through the U.S. Office of Naval Research under
Contract N00014-11-1-0389. The views expressed are those of the author and do
not reflect the official policy or position of the Department of Defense, the National
Science Foundation, or the U.S. Government.

P. Sarkar and T. Iwata (Eds.): ASIACRYPT 2014, PART II, LNCS 8874, pp. 386–405, 2014.
c© International Association for Cryptologic Research 2014



Black-Box Separations for Differentially Private Protocols 387

1 Introduction

Differential privacy [7] provides strong input privacy guarantees to individuals
participating in a statistical query database. Consider the quintessential example
of trying to publish some statistic computed on a database holding confidential
data hosted by a trusted server [31]. For example, consider a query that checks
if there is an empirical correlation between smoking and lung cancer instances
from the medical records of patients stored at a hospital. The server wants
to provide privacy guarantees to each record holder as well as help the client
compute the statistic accurately. Even in this setting, where privacy concerns lie
at the server’s end only, it is clear that privacy and accuracy are antagonistic
to each other. The tradeoff between accuracy and privacy is non-trivial and well
understood only for some classes of functions (for e.g. [30,15]). For any level of
privacy, we refer to the maximal achievable accuracy in the client-server setting
for a particular functionality, as the optimal accuracy.

In the distributed setting, where multiple mutually distrusting servers host
parts of the database, privacy concerns are further aggravated. Continuing the
previous example, consider the case of two hospitals interested in finding whether
a correlation exists between smoking and lung cancer occurrences by consider-
ing their combined patient records. In such a setting, we want the servers to
engage in a protocol, at the end of which the privacy of each record of both
the servers is guaranteed without a significant loss in accuracy. Note that the
privacy requirements must be met for both servers, even given their view of the
protocol transcript, not just the computed output ; thus, possibly, necessitating an
additional loss in accuracy.

At a basic level, we wish to study privacy-accuracy tradeoffs that arise in the
distributed setting. Following [15], in order to obtain results for a wide class of
functions, we focus on the computation of functions with Boolean output, with
accuracy defined (very simply) as the probability that the answer is correct. The
intuition that privacy in the distributed setting is more demanding is, in fact,
known to be true in the information theoretic setting: For any fixed level of pri-
vacy, it was shown that for all boolean functions that the maximal achievable
accuracy in the distributed setting is significantly lower than the optimal accu-
racy achievable in the client-server setting [15], as long as the boolean function
depends on both server’s inputs. But in the computational setting, this gap van-
ishes if a (semi-honest1) protocol for oblivious-transfer exists. The two servers
would then be able to use secure multi-party computation [14] to simulate the
client-server differentially private computation, thereby achieving optimal accu-
racy on the union of their databases. Although this computational assumption
suffices, it is not at all clear whether this assumption is necessary as well.

Indeed, this is a fascinating question because even for very simple functions,
like XOR, that require no computational assumptions to securely compute in

1 In this work, as in previous works on distributed differential privacy, we restrict
ourselves to the semi-honest setting where all parties follow the specified protocol,
but remember everything they have seen when trying to break privacy.
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the semi-honest setting, the question of differentially private computation is
non-trivial. Could there be any simple functions that can be computed differen-
tially privately with weaker assumptions? For the general class of boolean output
functions, our paper considers the following problem:

“What are the computational assumptions under which there exist distributed
differentially private protocols for boolean f with close to optimal accuracy?”

Goyal et al. [15] showed that for any boolean function such that both parties’
inputs influence the outcome, achieving close to optimal accuracy would imply
the existence of one-way functions. Could one-way functions also be sufficient
to achieve optimal accuracy for certain simple functions?

Our results give evidence that the answer is no. Indeed, we provide evidence
that achieving optimal accuracy for any boolean function that depends on both
parties’ inputs is not possible based on one-way functions. We go further and
provide similar evidence that this goal is not possible even based on the exis-
tence of key-agreement protocols (which also implies one-way functions; and,
thus, is a stronger computational assumption). More precisely, we show a (fully
black-box) separation [35] of the computational assumptions necessary to bridge
the accuracy gap from the existence of key-agreement protocols. A black-box
separation between two cryptographic primitives has been widely acknowledged
as strong evidence that they are distinct [23]. Indeed, we note that a black-box
separation is particularly meaningful in the context of protocols with guarantees
only against semi-honest adversaries, like the differentially private protocols we
consider in this work. (Recall that an impossibility result like ours is strongest
when it applies to the weakest security setting possible – this is why we focus
on just semi-honest security.) This is because the most common non-black-box
techniques used in cryptography typically apply only to the setting of malicious
adversaries: for example, cryptographic proof systems like zero-knowledge proofs
are sometimes applied in a non-black-box manner in order for a party to prove
that it behaves honestly. However, in the semi-honest security context, such
proofs are never needed since even adversarial parties must follow the protocol
as specified. We crucially employ recently developed separation techniques for
protocols with private inputs from key-agreement protocols [27,28].

Our work is reminiscent of, but also quite different from, the work of
Haitner et al. [16], who proved that the information theoretic impossibility of
accurate distributed differentially private evaluation of the inner-product func-
tionality [30] could be extended to a black-box separation result from one-way
functions. Our results are different both qualitatively and technically: Quali-
tatively, our results differ in that they apply to the wide class of all boolean
functions where the output of the function is sensitive to both parties’ inputs.
Furthermore, we show separations from key-agreement protocols as well. More-
over, our separation results for extremely simple binary functions like AND and
XOR show that differentially private distributed computation even of very simple
functions may also require powerful computational assumptions.

At a technical level, a crucial ingredient of our proofs is the recently developed
toolset of [27,28] which deal with private inputs of parties even in presence of
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the “idealized key-agreement oracle,” while Haitner et al. [16] adapt the analysis
of McGregor et al. [30] to a setting where the input is part of the local random
tape of parties, i.e. parties have no private inputs.

1.1 Our Contribution

Before we elaborate upon our results, we briefly summarize what is known so far
about accuracy gaps in boolean distributed differentially private computation.

Suppose Alice and Bob have inputs x and y, respectively; and they are inter-
ested in computing f(x, y) in a differentially private manner in the distributed
setting. An ε-differentially private protocol for some functionality f ensures
that the probability of Alice’s views conditioned on y and y′ are λ:= exp(ε)
multiplicatively-close to each other, where y and y′ represented as bit-strings
differ only in one coordinate (i.e. they are adjacent inputs). Let x and y be the
private inputs of parties Alice and Bob respectively. A protocol between them
is α-accurate if for any x and y, the output of the protocol agrees with f(x, y),
with probability at least α.

For boolean functions, the optimal accuracy (in the client-server model) is
α∗
ε:=

λ
(λ+1) , where λ = exp(ε).2 Goyal et al. [15] showed that, in the information

theoretic setting, f = AND can only be computed ε-differentially privately up to

accuracy α
(AND)
ε :=λ(λ2+λ+2)

(λ+1)3 . Similarly, when f = XOR the maximal achievable

accuracy is α
(XOR)
ε := (λ2+1)

(λ+1)2 . Note that α
(XOR)
ε < α

(AND)
ε < α∗

ε, for any finite

ε > 0. By observing that any boolean function f which is sensitive to both
parties’ inputs either contains an embedded XOR or AND3 [3], the maximal
achievable accuracy is bounded by:

α(f)
ε :=

{
α
(XOR)
ε , if f contains an embedded XOR

α
(AND)
ε , otherwise.

(1)

Note that in the computational setting, if semi-honest secure protocol for
oblivious-transfer exists then we can achieve accuracy α = α∗

ε for any boolean
f . We explore the necessary computational assumptions for which this gap in
accuracy in the distributed and client-server setting vanishes. Although Goyal
et al. [15] showed that achieving close to optimal accuracy implies one-way func-
tions, we show that it is highly unlikely that such constructions can solely be
based on one-way functions. In fact, we show a (fully) black-box separation from
a weaker variant of differential privacy, namely computational differential privacy
(see Section 2).

2 In the client-server setting, any boolean function f can be computed ε-differentially
privately by evaluating a suitably noisy version of f .

3 We say that f contains an embedded XOR if there exists x0, x1, y0, y1, z0, z1 such
that f(xa, yb) = zXOR(a,b) for all a, b ∈ {0, 1}. Similarly, we define en embedded
AND. Note that embedded OR is identical to embedded AND (by interchanging z0
and z1).
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Informal Theorem 1. For any boolean f and privacy threshold ε > 0, there
exists a constant c > 0 such that any ε-differentially private α-accurate evalua-
tion of f (in the distributed setting) which uses key-agreement protocols in fully
black-box manner cannot have accuracy α > (α∗

ε − c), where α∗
ε = λ

(λ+1) and

λ = exp(ε).

Further, our result is tight for f ∈ {AND,XOR} and, in fact, a stronger lower
bound is exhibited. We show that for f ∈ {AND,XOR}: 1) In the information
theoretic setting, it is possible to ε-differentially privately α-accurately evaluate f

in the distributed setting [15], if α � α
(f)
ε , and 2) In the computational setting,

it is impossible to construct (by using key-agreement protocols in black-box

manner) an ε-differentially private α-accurate evaluation of f , for α � α
(f)
ε +

1/poly(κ) (where, κ is the statistical security parameter). In fact, this gives a
(fully) black-box separation of a weaker notion of differential privacy, namely
computational differential privacy (see Section 2). Note that it suffices to just
consider f ∈ {AND,XOR} because the maximal achievable accuracy for a general

boolean function is bounded in terms of α
(AND)
ε and α

(XOR)
ε . As a primer, we begin

with the separation result from existence of one-way functions.

Separation from One-Way Functions. Random oracles serve as an idealization
of one-way functions because they cannot be inverted at non-negligible fraction
of their image by any algorithm whose query complexity is polynomial in query-
length of the random oracle [23,12].

Suppose there exists a purported ε-differentially private α-accurate protocol
for f ∈ {AND,XOR} in the random oracle world, where parties have unbounded
computational power and their query complexity is at most n. We show that

if α � α
(f)
ε + σ then one of the parties could perform additional poly(n/σε)

queries to the random oracle and break the ε-differential privacy of the protocol.
The existence of this strategy relies on the recent progress of “Eavesdropper
strategies in the random oracle setting” for protocols with private inputs [27].
For more details, refer to Imported Theorem 1.

This impossibility result easily translates into a fully black-box separation as
defined in [35]. This translation of impossibility in the random-oracle model into
a black-box separation uses techniques introduced in [23,13,1,5,16,27].

Informal Theorem 2 (Separation from One-way Functions). For f ∈
{AND,XOR}, ε > 0 and α � α

(f)
ε +1/poly(κ), where κ is the security parameter,

there cannot exist an ε-differentially private α-accurate protocol for f in the
distributed setting which uses one-way functions in fully black-box manner.

Note that this separation also extends to primitives which can be con-
structed from one-way functions in black-boxmanner, like pseudorandom genera-
tors [21,18,19] and digital signatures/universal one-way hash functions [33,36,26].
Moreover, it is also applicable to other computational primitives like ideal-
ciphers [4,20] (which are indifferentiable [29] from random oracles) and one-way
permutations (which themselves cannot be based on one-way function [37,25]).
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Separation from Public-Key Encryption. To show a similar separation result
from key-agreement protocols, it suffices to show a separation from public-key
encryption; because public-key encryption is equivalent to two-round key agree-
ment which in turn directly implies (any round) key-agreement protocols. Before
we proceed further, we introduce the idealization of public-key encryption as an
oracle [13].

Our public-key encryption oracle is a triplet of correlated oracles PKE ≡
(Gen,Enc,Dec). The key-generation oracle Gen is a length tripling random oracle

which maps sk ∈ {0, 1}n to pk ∈ {0, 1}3n, i.e. Gen(sk) = pk. The encryption or-
acle, is a collection of 23n independent length-tripling oracles which maps a mes-
sage m, using a public-key pk ∈ {0, 1}3n, to a cipher text c, i.e. Enc(m; pk) = c.

The decryption oracle Dec decrypts a cipher text c ∈ {0, 1}3n using a secret key
sk ∈ {0, 1}n. It maps it to (the lexicographically first) m such that Gen(sk) = pk
and Enc(m; pk) = c; otherwise outputs ⊥, i.e. Dec(c, sk) ∈ {m,⊥}.

This oracle is too powerful and yields a semi-honest secure protocol for
oblivious-transfer (see discussion in [13]). Thus, it cannot be used to show the
intended separation result. An additional Test oracle is provided, which allows
testing of whether pk lies in the range of the Gen oracle, and whether c lies
in the range of the Enc oracle with public key pk. Intuitively, the Test oracle
can be thought of as part of Gen and Enc oracles themselves. Such oracles with
image-testability are referred to as image-testable random oracles (ITRO) [28].

To tackle the decryption oracle, we follow the technique introduced by [28].
Suppose there exists a purported ε-differentially private α-accurate protocol for
f in the PKE-oracle world. Then there exists an (ε + γ)-differentially private
(α − γ)-accurate protocol for f in the “PKE minus decryption oracle” world,
i.e. in the (Gen,Enc) oracle world (with implicitly included Test oracles), with
query complexity poly(n/γε) and identical round complexity. The slight loss in
parameter γ can be made arbitrarily small 1/poly(n).

Finally, similar to the separation from one-way functions, we show that if

(α− γ) � α
(f)
ε+γ +(σ/2) then one of the parties can perform poly(n/σγε) queries

and violate the (ε + γ)-differential privacy of this protocol. This part of the
result crucially relies on the recently proven result of [28] which shows that
image-testable random oracles mimics several properties of random-oracles and
the “eavesdropper strategies” in the random oracle model extend to (collections
of) image-testable random oracles as well. Hence, we have the following result.

Informal Theorem 3 (Separation from Key-Agreement). For f ∈
{AND,XOR}, ε > 0 and α � α

(f)
ε +1/poly(κ), where κ is the security parameter,

there cannot exist an ε-differentially private α-accurate protocol for f in the
distributed setting which uses key-agreement protocols in fully black-box manner.

We emphasize that our negative results not only hold for ε-differential pri-
vacy, but also hold for a weaker (ε, δ)-indistinguishability based computational
differential privacy (see Section 2 for definition). For a precise statement refer
to our main theorem, Theorem 1.
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1.2 Related Work

Differential Privacy. Differential privacy [8,7,10,11,6] has been popular as a
strong privacy guarantee to participants of statistical databases. In settings
where the database could possibly be split among various parties, Dwork et al.
[9] obtained distributed differential privacy via SFE and secure noise genera-
tion. Subsequently, [2] studied trade-offs between distributed privacy and SFE.
A computational relaxation of differential privacy was defined by Mironov et al.
[31], that would help improve the range of achievable accuracies while still main-
taining this relaxed notion of privacy.

A gap in the maximal achievable accuracy of differentially private protocols,
between the client-server and distributed settings, was first observed by McGre-
gor et al. [30] for specific large functions such as the inner product and hamming
distance. Recently, Goyal et al. [15] showed the existence of a constant informa-
tion theoretic gap between the accuracies of boolean output functions, in the
client-server and distributed settings. They also showed that any hope of bridg-
ing this gap necessitates the assumption that one-way functions exist.

Black-Box Separations. Impagliazzo and Luby [22] showed that most non-trivial
cryptographic primitives imply existence of one-way functions. Subsequently,
it turned out that several primitives like pseudorandom generators [21,18] and
digital signatures/universal one-way hash functions [33,36] can indeed be con-
structed from one-way functions; thus, establishing equivalence of these primi-
tives to existence of one-way functions. It is highly unlikely, on the other hand,
that primitives like key-agreement [23] protocols and semi-honest secure
oblivious-transfer protocol [13] can be securely constructed from one-way func-
tions using black-box construction. A black-box separation result between two
cryptographic primitives is widely acknowledged as an evidence that they should
be treated as separate computational assumptions.

Reingold et al. [35] formally defined (several variants of) black-box separa-
tions. And Gertner et al. [12] provided a technique to translate information the-
oretic impossibility results in random oracle model into unconditional black-box
separation results.

Recently, there has been significant progress in black-box separation tech-
niques where parties have private inputs due to [27,28]. They show that if semi-
honest secure function evaluation of any two-party deterministic function exists
by using one-way functions or key-agreement protocols in black-box manner then
there exists a semi-honest secure protocol for that function in the information
theoretic plain model itself. Haitner et al. [16] show that the information the-
oretic impossibility of evaluating the inner-product functionality both differen-
tially privately and accurately [30], in the client-server model, can be translated
into a black-box separation result from one-way functions.

1.3 Technical Outline

Our black-box separation results are a consequence of amalgamation of the
following techniques: 1) Information theoretic lower bounds for ε-differentially
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private α-accurate protocols for f ∈ {AND,XOR} in the distributed setting [15],
and 2) Recent progress in black-box separation techniques as introduced in
[1,16,27,28]. Our separation from key-agreement protocols especially relies on
the recent results of [28]. We essentially show that based on computational as-
sumptions like “existence of one-way functions” and “existence of (any round)
key-agreement protocol” it is highly unlikely to construct ε-differentially private

α-accurate protocols for f ∈ {AND,XOR}, if α � α
(f)
ε .

Henceforth, we shall assume that f ∈ {AND,XOR} and understand the com-
putational assumptions necessary to realize ε-differentially private α-accurate

protocols for f , where α > α
(f)
ε .

Information Theoretic Result. Before we begin, we sketch an intuitive summary
of the proof technique of Goyal et al. [15]. They leveraged the Markov-chain prop-
erty of distribution of next-message function in the information theoretic setting,
i.e. the next message sent by a party is solely a (deterministic) function of its cur-
rent view. Suppose the public transcript generated thus far ism. Then, using this
Markov-chain property of protocols in the information theoretic setting and the
fact that they begin with independent views, one can obtain the following proto-
col compatibility constraint: Pr[m|x, y] ·Pr[m|x′, y′] = Pr[m|x, y′] ·Pr[m|x′, y], for
private inputs x, x′ ∈ X and y, y′ ∈ Y. By considering every complete transcript
m, the protocol compatibility constraint implies a set of constraints. For every
privacy parameter ε � 0, they show that there exists an ε-differentially private

α-accurate protocol for f , if α ∈ [0, α
(f)
ε ].

Separation from One-Way Functions. Although the result presented in this sec-
tion is subsumed by our main theorem, we feel that an independent presentation
of this result adds clarity to the overall proof.

Suppose we have a (purportedly) ε-differentially private α-accurate protocol
for f in the random oracle model, where each party performs at most n private
queries to the random oracle. A random oracle randomly maps κ-length bit-
strings to κ-length bit-strings, where κ is the statistical security parameter.

Assume that α � α
(f)
ε +σ, where σ = 1/poly(κ). To show a black-box separation

result from one-way functions, we need to show that if α is significantly larger

than α
(f)
ε , then differential privacy must be violated by one of the parties.

But, the Markov-chain property (upon which the information theoretic char-
acterization crucially relies) is not a priori guaranteed in the random oracle
model. So, a logical starting point is to consider an algorithm which perform
additional queries to the random oracle to kill correlations between parties
and ensures this property (with high probability), cf. [23,1,5,16,27]. For any
ρ > 0, there exists a (deterministic) algorithm Eveρ which performs additional
poly(n/ρ) queries to the random oracle based on the public transcript; and ap-
pends the sequence of query-answer pairs to the current transcript. This Eveρ
ensures that when she stops, the joint view of Alice and Bob is ρ-close to a
product distribution with (1 − ρ) probability. Being agnostic to the private in-
puts used by the parties, Eveρ can ensure this Markov-chain property only when,
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for any complete transcript m, the probabilities Pr[y|m] and Pr[x|m], for every
x ∈ {0, 1} and y ∈ {0, 1}, is at least a constant [27].

Note that the ε-differential privacy constraint implies that Pr[x|m] andPr[x′|m]
are λ = exp(ε) (multiplicative) approximations of each other for all adjacent x
and x′. If f is a function such that both parties’ inputs influence the output,
then it has an embedded AND or XOR minor in its truth table. Let X and Y
be the respective input sets of Alice and Bob such that f restricted to X × Y
is an AND or XOR minor. Given such a minor, our negative result shall exhibit
violation of the differential privacy guarantee. So, for all our negative results
we have |X | = |Y| = 2. Consequently, Pr[x|m] is a constant for every x ∈ X ;
otherwise the complete transcript m is a witness to violation of ε-differential
privacy. Analogously, the same holds for every y ∈ Y.

For Alice inputs in X and Bob inputs in Y, for any ρ > 0, there exists Eveρ
with query complexity poly(n/ρ) such that, with probability (1−ρ) over the gen-
erated public transcript, the joint view of Alice-Bob is ρ-close to a product distri-
bution. Now, consider the augmented protocol where the original ε-differentially
private α-accurate protocol is augmented with Eveρ, who adds her sequence
of query-answer pairs to the public transcript. In this augmented protocol, we

show that ε-differentially private α-accurate protocol implies α � α
(f)
ε,ρ , which

can be made arbitrarily close to α
(f)
ε by choosing suitably small value of ρ. In-

tuitively, this result relies on the fact that the polytope of feasible solutions to
the constraints in the information theoretic setting cannot change significantly
if each of them has bounded slope and is weakened slightly (see full version for

details). When α = α
(f)
ε + σ, where σ = 1/poly(n), by choosing suitably small

ρ = poly(σε), one of the parties can violate the ε-differential privacy guarantee
by performing poly(n/ρ) additional queries to the random oracle.

This technique is applied in a significantly sophisticated manner to show the
separation from key-agreement protocols.

Separation from Key-Agreement. We show a separation from public-key encryp-
tion, which is equivalent to a 2-round key-agreement protocol. Separation from
2-round key-agreement implies separation from (any round) key-agreement pro-
tocols. This separation relies on the recent results pertaining to the “ideal public-
key encryption oracle” (PKE-oracle, introduced by [13]) as shown in [28].

Our result depends on two technical results proven in [28]. First, they show
that, against semi-honest adversaries, queries to the decryption-oracle of PKE-
oracle are (nearly) useless; and, finally, the PKE-oracle minus the decryption-
oracle (closely) mimics properties of (collection of) random oracles.

The first part shows that if there exists an ε-differentially private α-accurate
protocol for f in the PKE-oracle world, then there exists another (closely re-
lated) (ε + γ)-differentially private (α − γ)-differentially private protocol for f
in the “PKE-oracle minus the decryption-oracle” world with query complexity
poly(n/γ). Here, the parameter γ can be made arbitrarily small 1/poly(n).

Finally, we use the property that “PKE-oracle minus decryption-oracle” is
similar to the random oracle world [28]. We use the fact that, relative to this
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oracle, there exists an Eveρ which can make the joint distribution of Alice-Bob

joint views ρ-close to product with high probability. Since (α− γ) > α
(f)
ε+γ,ρ, one

of the parties can violate the (ε+ γ)-differential privacy of the protocol.

Overall, if δ is at least α
(AND)
ε + σ, where σ = 1/poly(n), we can choose

γ, ρ = poly(σε) to show that the ε-differential privacy is violated by performing
only poly(n/σε) queries to the PKE-oracle. In fact, our final theorem rules out
a stronger form of differentially private protocols, namely, (ε, δ)-computational
differential privacy (see Section 2 for definitions). Intuitively, δ = 0 corresponds
to the previously discussed notion of ε-differential privacy. Our final theorem is:

Theorem 1. For any boolean function f whose output is sensitive to both par-

ties’ inputs, ε > 0 and λ = eε, define α
(f)
ε as follows:

α(f)
ε :=

{
α
(XOR)
ε = λ2+1

(λ+1)2 , if f contains an embedded XOR

α
(AND)
ε = λ(λ2+λ+2)

(λ+1)3 , otherwise.

Then for any α � α
(f)
ε + σ, where σ = 1/poly(κ) and κ is the statistical security

parameter, there exists a δ̂ = poly(σε) such that any (ε, δ)-computational differ-
entially private α-accurate protocol for f in the distributed setting constructed
in a fully black-box manner from key-agreement protocols must have δ � δ̂.
Further, when f ∈ {AND,XOR} and ε > 0, there exists an ε-differentially private

α-accurate protocol for f , if α � α
(f)
ε .

The negative result rules out fully-BB constructions of ε indistinguishable
computationally differentially private (ε-IND-CDP) α-accurate protocols with

α > α
(f)
ε , based on existence of key agreement. The second part of the theorem

(the positive result) is with respect to the stronger notion of ε-differential privacy.
An overview of the separation from one-way functions is provided in Section 3.

An overview of the proof of Theorem 1 is presented in Section 4. Compplete
proofs are deferred to the full version.

2 Preliminaries

We introduce important definitions in this section, with details in the full version.

Differential Privacy. The following definitions of differential privacy are provided
for the distributed setting:

Definition 1 ((ε, δ)-Differential Privacy). A two-party protocol Π is (ε, δ)-
differentially private, referred to as (ε, δ)-DP, if for any subset S of Alice-views,
for all Alice inputs x and for any pair of adjacent4 Bob inputs y, y′, we have:

Pr[S|x, y] � exp(ε) · Pr[S|x, y′] + δ

The same condition also holds for adjacent Alice inputs x, x′ and all Bob’s inputs
y with respect to Bob private views.

4 Two inputs are adjacent if they differ only in one coordinate.
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Definition 2 ((ε, δ)-(IND)-Computational Differential Privacy). A two-
party protocol Π is (ε, δ)-computational differentially private, referred to as
(ε, δ)-IND-CDP, if for any efficient adversary A, for all Alice inputs x and any
pair of adjacent Bob inputs y, y′, we have:

Pr[A(VA, 1
κ) = 1|x, y] � exp(ε) · Pr[A(VA, 1

κ) = 1|x, y′] + δ

The same condition also holds for adjacent Alice inputs x, x′ and all Bob’s inputs
y, with respect to Bob private views.

We refer (ε, negl(κ))-IND-CDP as ε-IND-CDP, defined first in [31]. We note that
this indistinguishability based definition is weaker than the simulation based one
(SIM-CDP privacy [31]). Our separations hold even for this weaker differential
privacy definition. In the above definition, the protocol Π , ε and δ are param-
eterized by the security parameter κ as well, but is not explicitly mentioned
for ease of presentation. Without loss of generality, we assume that ε is not an
increasing function (of κ); and in all our analysis we shall have δ as a decreasing
function.

Accuracy. Following [15] we measure the accuracy of two-party protocols in
evaluating a boolean function as follows:

Definition 3 (α-Accuracy). A two party protocol Π evaluates a function f
α-accurately, if, for every private input x and y of Alice and Bob respectively,
the output of the protocol is identical to f(x, y) with probability at least α.

Information theoretic bounds on the maximal achievable accuracy for ε-DP pro-
tocols computing the AND and XOR functions, are known in the Plain Model [15].

Define λ = exp(ε), then α
(AND)
ε = λ(λ2+λ+2)

(λ+1)3 is the maximal achievable accuracy

of any protocol for the AND function, and α
(XOR)
ε = λ2+1

(λ+1)2 , is the maximal

achievable accuracy of any protocol for the XOR function.

Black-Box Separations. We use the definition of fully black-box construction
as introduced by Reingold et al. [35]. To show a separation of (ε, δ)-IND-CDP
α-accurate protocol from key-agreement protocols, we need to show existence
of an oracle relative to which key-agreement protocol exists but there exists an
adversary which violates the (purported) (ε, δ)-IND-CDP guarantee.

3 Separation from One-Way Functions

Our main result shows a separation from key-agreement protocols. Despite the
fact that the separation from one-way functions will be subsumed by our sepa-
ration from key-agreement protocols, we present this result separately because
it is conceptually simpler and captures several of the crucial ideas required to
show such black-box separation results.
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For ε > 0 differential privacy parameter, suppose α ∈ [α
(f)
ε + 1/poly(κ), α∗

ε ].
We shall show that, for such choices of α, we cannot construct ε-IND-CDP α-
accurate protocols for boolean f , in the information theoretic random oracle
world. It suffices to show this result for f ∈ {AND,XOR}. This is done by
showing an impossibility result in the random oracle model against information
theoretic adversaries but with polynomially bounded query complexity. However,
we shall show existence of an adversary who can break the ε-IND-CDP.

3.1 Notations and Definitions

We introduce some notations for our separation result. For security parameter
κ, let Oκ denote the set of all functions from {0, 1}κ → {0, 1}κ.

We will consider private-input randomized two party protocols Π , such that

Alice and Bob have access to a common random oracle O
$← Oκ. As in the

plain model, parties send messages to each other in alternate rounds, starting
with Alice in the first round. However, they have (private) access to a common
random oracle.

For odd i, at the beginning of the ith round, Alice queries the random oracle
multiple times based on her current view (private input x, local randomness
rA, private query-answer pairs and the transcript m(i−1) so far). She appends
the new set of query-answer pairs PA,i to her partial sequence of query-answers.

The complete set of private query-answers at this point is denoted by P
(i)
A .

She then computes her next-message mi as a function of her current view,

(x, rA,m
(i−1), P

(i)
A ). The ith round ends when she sends message mi. Her view

at the end of round i is V
(i)
A ≡ (x, rA,m

(i), P
(i)
A ). Similarly, Bob queries the

oracle followed by computing and sending his message in even rounds as a func-
tion of his view. His view at the end of round i is (analogously) defined to be

V
(i)
B ≡ (y, rB ,m

(i), P
(i)
B ). At the end of n rounds, both parties locally obtain

outputs as an efficiently computable deterministic function out of their view,

zA = out(V
(n)
A ) and zB = out(V

(n)
B ). We note at this point, that we our analysis

will only be over functions with boolean output, such that zA, zB ∈ {0, 1}. Our
underlying sample space in the random oracle world is the joint distribution over

Alice-Bob views when rA, rB ∼ U and O
$←Oκ.

Two-Party Protocols in the Random Oracle World. Before we present
our separation result, we need to introduce the notion of public-query strategy
and augmentation of a protocol with a public-query strategy.

Definition 4 (Public Query strategy). A public query strategy is a deter-
ministic algorithm, which, after every round of the protocol, queries the oracle
multiple times based on the transcript generated thus far. It then adds this se-
quence of query-answers to the transcript being generated.

Definition 5 (Augmented Protocol). Given a protocol Π, the augmented
protocol Π+:=(Π,Eve) denotes Π augmented with a public query strategy “Eve”



398 D. Khurana, H.K. Maji, and A. Sahai

which generates public query-answer sequences after every message in Π and
appends them to the protocol transcript after the messages in Π.

Now, we define the views of parties (Alice, Bob and Eve) in an augmented
protocol Π+:=(Π,Eve). The protocol Π proceeds with parties sending messages
in alternate rounds and Eve appending query-answer pairs after the message of
the underlying protocol Π is sent.

Formally, consider an odd i. Alice is supposed to generate the message mi

in round i. Round i begins with Alice querying the random oracle based on

her view (x, rA,m
(i−1), P

(i−1)
A , P

(i−1)
E ), where P

(i−1)
E is the sequence of query-

answer pairs added by Eve thus far. Alice performs additional queries PA,i and
sends the next message mi. Thereafter, the public query strategy Eve performs
additional queries to the random oracle and adds the corresponding sequence of
query-answer pairs PE,i to the transcript. This marks the end of round i. At this

point, the views of parties Alice, Bob and Eve are: V
(i)
A ≡ (x, rA,m

(i), P
(i)
A , P

(i)
E ),

V
(i)
B ≡ (y, rB,m

(i), P
(i)
B , P

(i)
E ) and V

(i)
E ≡ (m(i), P

(i)
E ), respectively.

(ε, δ)-IND-CDP in the Random Oracle Model

Definition 6 ((�, n) Two-party Protocol). An (�, n) two-party protocol is a
two-party protocol of round complexity at most n such that both parties have
query complexity at most �.

Definition 7 ((ε, δ)-IND-CDP (�, n) Protocol)
A two-party protocol Π is (ε, δ)-IND-CDP if for any computationally un-

bounded adversary (but polynomial-query complexity) A and any pair of adjacent
Bob inputs y, y′, we have:

Pr[AO(VA, 1
κ) = 1|y] � exp(ε) · Pr[AO(VA, 1

κ) = 1|y′] + δ

The same condition also holds for adjacent Alice inputs x, x′ with respect to Bob
private views.

We emphasize that the adversary A gets access to an oracle O with respect to
which the view VA is generated. Accuracy is defined identically as in the plain
model.

Remark: We briefly motivate the reasons behind choosing A as computationally
unbounded adversary with polynomially bounded query complexity. Consider a
world where “random oracle plus PSPACE” oracle is provided. A computation-
ally bounded adversary in that oracle world shall correspond to an unbounded
computational power adversary with polynomially bounded query complexity in
the random oracle world. Therefore, we define ε-IND-CDP with respect to such
adversaries because we shall exhibit such an adversary to show the separation
from one-way functions. Note that we allow the adversary A to perform addi-
tional queries to the random oracle, because, in the computational setting, a
computationally bounded adversary can perform additional queries to the one-
way function itself.

We shall use the following definition on “closeness to product distribution.”
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Definition 8 (Close to Product Distribution). A joint distribution (X,Y)
is ρ-close to product distribution if Δ ((X,Y),X×Y) � ρ. Here, X and Y are
the respective marginal distributions.

3.2 Imported Results

The crux of the information theoretic bounds derived by [15] was the leveraging
of an important Markov-chain property of the distribution of the next-message
function of parties in the information theoretic setting. More specifically, the
next message sent by a party is solely a deterministic function of its current
view. Then, using the Markov chain property of protocols in the information
theoretic plain model, it is easy to conclude that if the views of both parties were
independent before protocol execution, they remain independent conditioned on
the public transcript m(n). For any private inputs x, x′ ∈ X and y, y′ ∈ Y, the
following protocol compatibility constraint can be obtained directly:

Pr[m(n)|x, y] · Pr[m(n)|x′, y′] = Pr[m(n)|x′, y] · Pr[m(n)|x, y′]

We begin with the observation that this constraint is not guaranteed a-priori
in the information theoretic random oracle world. Intuitively, the views of both
parties may be correlated via the common random oracle and not just the tran-
script. However, there are algorithms which query the random oracle polynomi-
ally many times to obtain independent views [23,1,5,16,27]. The state of the
art (where parties have private inputs) is due to [27], from where we import the
following theorem.

Imported Theorem 1 (Independence of Views inROWorld [27]).Given
any two-party (�, n) protocol Π (where parties have private inputs), there exists a
public query strategy Eveρ which performs at most poly(n�/ρ) queries such that
in the augmented protocol Π+:=(Π,Eveρ), with probability (1 − ρ) over VE ∼
VE, we have: For all (x, y) ∈ X ×Y, if Pr[x, y|VE ] > ρ, then (VA,VB|VE , x, y)
is ρ-close to product distribution, i.e.

Δ ((VA,VB|VE , x, y), (VA|VE , x)× (VB |VE , y)) � ρ

3.3 Impossibility in the RO World

Instead of a key agreement enabling oracle, if we just have a random oracle, it
suffices to show the following lemma:

Lemma 1 (Key Lemma for RO-Separation). Suppose f ∈ {AND,XOR}.
Consider any ε > 0, α ∈ [α

(f)
ε + σ, α∗

ε ] and (positive) decreasing δ. If there
exists an (ε, δ)-IND-CDP α-accurate protocol for f in the information theoretic
random oracle world, then there exists a public query strategy Eveρ with query
complexity poly(n�/ρ), where ρ = σ2ε/ exp(2ε), such that in the augmented pro-
tocol Π+:=(Π,Eveρ), (at least) one of the following is true:
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1. There exists (ŷ, ŷ′, x̂) so that: With probability δ̃ = poly(σ) over VE ∼ VE

we have:
Pr[VE |x̂, ŷ] > exp(ε) · Pr[VE |x̂, ŷ′] + δ′ Pr[VE ] ,

where δ′ = poly(σ).
2. There exists (x̂, x̂′, ŷ) so that: With probability δ̃ = poly(σ) over VE ∼ VE

we have:
Pr[VE |ŷ, x̂] > exp(ε) · Pr[VE |ŷ, x̂′] + δ′ Pr[VE ] ,

where δ′ = poly(σ).

Proof Overview: Let pVE denote the probability of obtaining public transcript
VE over the sample space. Let pVE |x,y denote the probability of obtaining public
transcript VE from Π , when inputs of Alice and Bob are x ∈ X , y ∈ Y.

We first observe that if some input occurs with very low probability, then
ε-IND-CDP can be trivially broken. Therefore, we can directly invoke Imported
Theorem 1 such that Eveρ generates a close-to product distribution on the
views of both parties with high probability. This gives an approximate protocol
compatibility constraint on most transcripts.

Next, we observe that if the views of parties are nearly independent, then
with high probability, for any inputs x, x′ ∈ X and y, y′ ∈ Y the distributions
pVE |x,y · pVE |x′,y′ and pVE |x,y′ · pVE |x′,y must be close. We obtain the following
equation (refer full version for proof),

pVE |x,y · pVE |x′,y′ = pVE |x,y′ · pVE |x′,y ± 96ρp2VE

Next, using the differential privacy constraint we mimic the proof of Goyal et
al. [15] to obtain that for some transcript VE , for some adjacent (x, y, y′), there

are δ̂ = poly(σ) transcripts such that for δ′ = poly(σ):

pVE |x,y > λpVE |x,y′ + δ′pVE

Using averaging arguments, it is possible to show the existence of a tuple
(ŷ, ŷ′, x̂) or (x̂, x̂′, ŷ) satisfying the conditions of the lemma. 
�

4 Separation from Key-Agreement Protocols

For ε > 0 differential privacy parameter, suppose α ∈ [α
(f)
ε + 1/poly(κ), α∗

ε ]. In
this section, we shall show that, for such choices of α, there exists an oracle rel-
ative to which public-key encryption exists but ε-IND-CDP α-accurate protocols
for boolean f do not exist. It suffices to show this result for f ∈ {AND,XOR}.
This is done by showing an impossibility result in the key agreement world
against information theoretic adversaries but with polynomially bounded query
complexity. However, we shall show existence of an adversary who can break the
ε-IND-CDP.

Note that public-key encryption is equivalent to 2-round key-agreement pro-
tocols and hence this separation translates into a separation of non-trivial (ε, δ)-
differentially private protocols for AND or XOR from (any round) key-agreement
protocols.
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4.1 Notations and Definitions

We give some notation and definitions. These definitions were introduced in [28].

Oracle Classes

Image-Testable Random Oracle Class. This is the setOκ consisting of all possible
pairs of correlated oracles O ≡ (R, T ) of the form:

– R : {0, 1}κ → {0, 1}3κ which is a length-tripling (injective) random oracle.
– T : {0, 1}3κ → {0, 1} which is a test oracle defined by: T (β) = 1 if there

exists α ∈ {0, 1}κ such that R(α) = β; otherwise T (β) = 0.

The length of a query uniquely determines whether it is a query to the R
oracle (called R-query) or to the T oracle (called T -query).

Keyed Version of Image-Testable Random Oracle Class. Given a set K of keys,

consider oracle O
(K)

such that for every k ∈ K, O(k) ∈ Ok (the class of image-
testable random oracles). A query is parsed as 〈k, q〉, the answer to which is

O(k)(q). Let O
(K)
k denote the set of all possible oracles O(K). Then, O

(K)
k is the

keyed version of the class of image-testable random oracles.

Public Key Encryption Oracle Class. We define a class of “PKE-enabling” ora-
cles, from [28]. With access to this oracle, a semantically secure PKE scheme can
be readily constructed, yet we shall show that it does not give (ε, δ)-IND-CDP
protocols with any better than information theoretic accuracy. This oracle, called
PKEκ is a collection of oracles (Gen,Enc,Test1,Test2,Dec) defined as follows:

– Gen: A length-tripling injective random oracle {0, 1}κ → {0, 1}3κ that takes
as input a secret key sk and returns the corresponding public key pk, i.e.,
Gen(sk) = pk. A public key pk is valid only if it is in the range of Gen.

– Enc: A collection of keyed length-tripling injective random oracles, with keys
in {0, 1}3κ. For each pk ∈ {0, 1}3κ, the oracle implements a random injective
function {0, 1}κ → {0, 1}3κ. When queried on any (possibly invalid) random
public key pk, the oracle provides the corresponding ciphertext c ∈ {0, 1}3κ.

– Test1: This is a function that tests if a public key pk is valid, that is, it
returns 1 if and only if pk is in the range of Gen

– Test2: This is a function that tests if a public key and ciphertext pair is valid,
i.e., it returns 1 if and only if c is in the range of the Enc oracle keyed by pk.

– Dec: This is the decryption oracle, {0, 1}κ×{0, 1}3κ → {0, 1}κ∪{⊥}, which
takes as input a secret key, ciphertext pair and returns the unique m, such
that Enc(Gen(sk),m) = c. If such an m does not exist, it returns ⊥.

We note that Enc produces ciphertexts for public key pk irrespective of whether
there exists sk satisfying Gen (sk) = pk. This is crucial because we want the key
set K to be defined independent of the Gen oracle.

We also note that PKEκ without Dec is exactly the same as the image-testable

random oracleO
(K)
k , with K = {0, 1}3κ∪{⊥}. This fact will be used very crucially

in the sections that follow, where we compile out the Decryption oracle and work

with the resulting image-testable random oracle O
(K)
k .
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Our Setting. We will consider private-input randomized two party protocols Π ,
such that Alice and Bob have access to a common oracle PKEκ. As in the plain
model, parties send messages to each other in alternate rounds, starting with
Alice in the first round. However, they have (private) access to a the common
PKEκ oracle consisting of (Gen,Enc,Test1,Test2,Dec).

The views with respect to the PKEκ oracle remain the same as views in the
random oracle world. Our underlying sample space in the random oracle world is
the joint distribution over Alice-Bob views when rA, rB ∼ U and PKEκ ∼ PKEκ.

We use the definition of (ε, δ)-IND-CDP protocols in the oracle world and
accuracy of protocols as introduced in previous section.

4.2 Compiling Out the Decryption Oracle

Using the query techniques of [28], for any arbitrarily small γ, it is possible to
construct an (ε + γ, δ + γ) differentially private protocol with accuracy α − γ,

that uses only the family of image testable random oracles O
(K)
k oracle from an

(ε, δ) differentially private protocol that uses the PKEk oracle.

Imported Theorem 2 (Decryption Queries are Useless [28]). Suppose Π
is an (�, n) (ε, δ)-differentially private α-accurate protocol for f in the PKEκ ora-
cle world. For every γ > 0, there exists a protocol Π ′ in the (Gen,Enc,Test1,Test2)
oracle world which is an (ε+ γ, δ + γ) differentially private (α − γ)-accurate
(poly(n�/γ), n) protocol for f .

4.3 Impossibility in ITRO World

Recall that the PKE-oracle without the decryption oracle is in fact a collection
of keyed image-testable random oracles, where the key-set is K = {0, 1}3κ∪{⊥}.
We import the following result of eavesdropper strategy:

Imported Theorem 3 (Independence of Views in ITRO World [28]).
For any key-set K and any (�, n) protocol Π (where parties have private inputs),
there exists a public query strategy Eveρ which performs at most poly(�/ρ) queries
such that in the augmented protocol Π+:=(Π,Eveρ), the following holds over
the views of Eveρ, when VE ∼ VE, with probability at least (1 − ρ): For all
(x, y) ∈ X × Y, if Pr[x, y|VE ] > ρ then (VA,VB|VE , x, y) is ρ-close to product
distribution, i.e.

Δ ((VA,VB|VE , x, y), (VA|VE , x)× (VB |VE , y)) � ρ

This gives us exactly the same independence characterization as Section 3.3,
and we can obtain the following Lemma for the ITRO world (analogously to the
random oracle world).

Lemma 2 (Key Lemma for ITRO-Separation). Suppose f ∈ {AND,XOR}.
Consider any ε > 0, α ∈ [α

(f)
ε + σ, α∗

ε ] and (positive) decreasing δ. For any key-
set K, if there exists an (ε, δ)-IND-CDP α-accurate protocol for f in the image-
testable random oracle world with respect to key-set K, then there exists a public
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query strategy Eveρ with query complexity poly(n�/ρ), where ρ = σ2ε/ exp(2ε),
such that in the augmented protocol Π+:=(Π,Eveρ), (at least) one of the follow-
ing is true:

1. There exists (ŷ, ŷ′, x̂) so that: With probability δ̃ = poly(σ) over VE ∼ VE

we have:
Pr[VE |x̂, ŷ] > exp(ε) · Pr[VE |x̂, ŷ′] + δ′ Pr[VE ] ,

where δ′ = poly(σ).
2. There exists (x̂, x̂′, ŷ) so that: With probability δ̃ = poly(σ) over VE ∼ VE

we have:
Pr[VE |ŷ, x̂] > exp(ε) · Pr[VE |ŷ, x̂′] + δ′ Pr[VE ] ,

where δ′ = poly(σ).

4.4 Impossibility in Key Agreement World

To prove Theorem 1, it suffices to show the following Lemma:

Lemma 3 (Key Lemma for KA-Separation). Suppose f ∈ {AND,XOR}.
Consider any ε > 0, α ∈ [α

(f)
ε + σ, α∗

ε ] and (positive) decreasing δ. If there
exists an (ε, δ)-IND-CDP α-accurate protocol for f in the PKEκ world, then for
γ = σ3, the corresponding protocol Π ′ as defined in Imported Theorem 2 is an

(ε+ γ, δ+ γ)-IND-CDP (α− γ)-accurate (poly(n�/γ), n) protocol in O
(K)
k , where

K = {0, 1}3κ ∪ {⊥}. Then, there exists a public query strategy Eveρ with query
complexity poly(n�/γρ), where ρ = σ2ε/ exp(2ε), such that in the augmented
protocol Π ′+:=(Π ′,Eveρ), δ + γ > γ5/6.

Proof Overview: Note that we can use Imported Theorem 2 to compile any
given two-party (ε, δ)-IND-CDP (�, n) protocol Π in the key agreement world

with accuracy α > α
(AND)
ε +σ for the AND function (resp. α > α

(XOR)
ε +σ for the

XOR function), to an (ε + γ, δ + γ)-IND-CDP (�, n) protocol Π ′ with accuracy
(α− γ) in the ITRO world (which closely mimics the RO world).

In fact, while moving from the key agreement to the ITRO world, there is
a γ-loss in protocol accuracy and a corresponding (say γ′) increase in maximal
achievable accuracy. These parameters can be carefully tied to σ such that setting
γ + γ′ = σ6, helps obtain δ + γ > γ5/6, thereby giving δ = poly(σ) transcripts
violating the differential privacy constraint.

In fact, we can show (refer full version) that if σ = 1/poly(κ), it is possible to
construct an adversary that breaks (ε+γ)-IND-CDP of the (ε+γ, δ+γ)-IND-CDP
(�, n) protocol Π ′ in the ITRO world, with accuracy (α − γ) according to Defi-
nition 2. This gives a contradiction and completes the proof. 
�
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1 Introduction

1.1 Background

It is unknown in what form quantum computers will be built. One possibil-
ity is that large quantum servers may take a role similar to that occupied by
massive superclusters today. They would be available as important components
in large information processing clouds, remotely accessed by clients using their
home-based simple devices. The issue of the security and the privacy of the
computation is paramount in such a setting.

Childs [16] proposed the first such delegated quantum computation (DQC)
protocol, which hides the computation from the server, i.e., the computation is
blind. This was followed by Arrighi and Salvail [2], who introduced a notion of
verifiability— checking that the server does what is expected— but only for a
restricted class of public functions. In recent years, this problem has gained a
lot of interest, with many papers proposing new protocols, e.g., [1,11,15,19–21,
28, 31–36,41], and even small-scale experimental realizations [7, 8].

However, with the exception of recent work by Broadbent, Gutoski and Ste-
bila [12], none of the previous DQC papers consider the composability of the
protocol. They prove security by showing that the states held by the client and
server fulfill some local condition: the server’s state must not contain any infor-
mation about the input and the client’s final state must either be the correct
outcome or an error flag. Even though this means that the server cannot— from
the information leaked during a single execution of the protocol in an isolated
environment— learn the computation or produce a wrong output without be-
ing detected, it does not guarantee any kind of security in any realistic setting.
In particular, if a server treats two requests simultaneously or if the delegated
computation is used as part of a larger protocol (such as the quantum coins of
Mosca and Stebila [37]), these works on DQC cannot be used to infer security.
A composable security framework must be used for a protocol to be secure in an
arbitrary environment. In the following, we use the expression local to denote
the non-composable security conditions previously used for DQC. This term is
chosen, because these criteria consider the state of a (local) subsystem, instead
of the global system as seen by a distinguisher in composable security.1

In fact, exactly these local properties have been proven to be insufficient to
define secure communication. There exist protocols which are shown to both en-
crypt and authenticate messages by fulfilling local criteria equivalent to the ones
used in DQC—the scheme is secure if the eavesdropper obtains no information
about the message from the ciphertext and authentic if the receiver either gets
the original message or an error flag. But if the eavesdropper learns whether the
message was transmitted faithfully or not, she learns some information about
this message [9,27,30]. Since any secure communication protocol can be seen as
delegated computation for the identity operation—Eve is required to apply the

1 Standard terms for various forms of non-composable security, e.g., stand-alone or
sequential, have precise definitions which do not apply to these security criteria.
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identity operation to the message, but may cheat and try to learn or modify it—
there is a strict gap between security of DQC and previously used local criteria.2

Composable frameworks have the further advantage that they require the
interaction between different entities to be modeled explicitly, and often make
hidden assumptions apparent. For example, it came as a surprise when Barrett
et al. [6] showed that device independent quantum key distribution (DIQKD) is
insecure if untrusted devices (with internal memory) are used more than once.
It is however immediate when one models the security of DIQKD in a compos-
able framework, that existing security proofs make the assumption that devices
are used only once. Another example, the security definitions of zero-knowledge
protocols [22] and coin expansion [26] make the assumption that the dishonest
party executes his protocol without interaction with the environment.3 By ex-
plicitly modeling this restriction,4 these proofs can be lifted to a composable
framework. This has been used by, e.g., Unruh [44], who explicitly limits the
number of parallel executions of a protocol to achieve security in the bounded
storage model.

Correctly defining the security of a cryptographic task is fundamental for a
protocol and proof to have any usefulness or even meaning. In this paper we solve
this problem for DQC, which has been open since the first version of Childs’s
work [16] was made available in 2001.

1.2 Scope and Security of DQC

A common feature of all DQC protocols is that the client, while not being capa-
ble of full-blown quantum computation, has access to limited quantum-enriched
technology, which she needs to interact with the server. One of the key points
upon which the different DQC protocols vary, is the complexity and the techni-
cal feasibility of the aforementioned quantum-enriched technology. In particular,
in the proposal of Childs [16], the client has quantum memory, and the capac-
ity to perform local Pauli operations. The protocol of Arrighi and Salvail [2]
requires the client to have the ability to generate relatively involved superposi-
tions of multi-qubit states, and perform a family of multi-qubit measurements.

2 An alternative example of this gap is as follows. The task is to compute a witness
for a positive instance of an NP problem, and we do so with the following protocol:
the server simply picks a witness at random and sends it to the client. Although
the protocol does not achieve completeness, it appears to be sound: the protocol
obviously does not leak any information about the input, since no information is sent
from the client to the server. The client can also verify that the solution received
is correct, and never accepts a wrong answer. But if the server ever learns whether
the witness was accepted— e.g., it is composed with another protocol which makes
this information public—he learns something about the input. If there are only two
choices for the input with distinct witnesses, he learns exactly which one was used.

3 The security definitions for these two problems are instances of what is generally
known as stand-alone security [23].

4 This can be done by introducing a resource— e.g., a trusted third party— that
runs whatever circuits Alice and Bob give it in an isolated system, then returns the
transcript of the protocol to both players.
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Aharonov, Ben-Or and Eban [1], for the purposes of studying quantum prover
interactive proof systems, considered a DQC protocol in which the client has a
constant-sized quantum computer. The blind DQC protocol proposed by Broad-
bent, Fitzsimons and Kashefi [11] has arguably the lowest requirements on the
client. In particular, she does not need any quantum memory,5 and is only re-
quired to prepare single qubits in separable states randomly chosen from a small
finite set analogous to the BB84 states.6 Alternatively, Morimae and Fujii [32,35]
propose a DQC protocol in which the client only needs to measure the qubits
she receives from the server to perform the computation.

A second important distinction between these protocols is in the types of
problems the protocol empowers the client to solve. Most protocols, e.g., [1, 11,
16,20,32,35], allow a client to perform universal quantum computation, whereas
in [2] the client is restricted to the evaluation of random-verifiable7 functions.

Finally, an important characteristic of these protocols is the flavor of security
guaranteed to the client. Here, one is predominantly interested in two distinct
features: privacy of computation (generally referred to as blindness) and veri-
fiability of computation. Blindness characterizes the degree to which the com-
putational input and output, and the computation itself, remain hidden from
the server. This is the main security concern of, e.g., [11, 16, 35]. Verifiability
ensures that the client has means of confirming that the final output of the com-
putation is correct. In addition to blindness, some form of verifiability is given
by, e.g., [1, 2, 20, 32]. These works do however not concern themselves with the
cryptographic soundness of their security notions. In particular, none of them
consider the issue of composability of DQC. A notable exception is the recent
work of Broadbent, Gutoski and Stebila [12], who, independently from our work,
prove that a variant of the DQC protocol of Aharonov, Ben-Or and Eban [1]
provides composable security.8

1.3 Composable Security

The first frameworks for defining composable security were proposed indepen-
dently by Canetti [13,14] and by Backes, Pfitzmann and Waidner [3,4,39], who
dubbed them Universally Composable (UC) security and Reactive Simulatability,
respectively. These security notions have been extended to the quantum setting
by Ben-Or and Mayers [10] and Unruh [42, 43].

5 This holds in the case of classical input and output. If quantum inputs and/or
outputs are considered, then the client has to be able to apply a quantum one-time
pad to the input state, and also decrypt a quantum one-time pad of the output state.

6 The states needed by the protocol of [11] are {(|0〉 + eikπ/4|1〉)/
√
2}k for k ∈

{0, . . . , 7}.
7 Roughly speaking, a function f is random-verifiable if pairs of instances and solutions
(x, f(x)) can be generated efficiently, where x is sampled according to the uniform
distribution from the function’s domain.

8 The work of Broadbent et al. [12] is on one-time programs. Their result on the com-
posability of DQC is obtained by modifying their main one-time program protocol
and security proof so that it corresponds to a variant of the DQC protocol from [1].
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More recently, Maurer and Renner proposed a new composable framework,
Abstract Cryptography (AC) [29]. Unlike its predecessors that use a bottom-up
approach to defining models of computation, algorithms, complexity, efficiency,
and then security of cryptographic schemes, the AC approach is top-down and
axiomatic, where lower abstraction levels inherit the definitions and theorems
(e.g., a composition theorem) from the higher level, but the definition or con-
cretization of low levels is not required for proving theorems at the higher levels.
In particular, it is not hard-coded in the security notions of AC whether the
underlying computation model is classical or quantum, and this framework can
be used equally for both.

Even though these frameworks differ considerably in their approach, they all
share the common notion that composable security is defined by the distance
between the real world setting and an ideal setting in which the cryptographic
task is accomplished in some perfect way. We use AC in this work, because
it simplifies the security definitions by removing many notions which are not
necessary at that level of abstraction. But the same results could have been
proven using another framework, e.g., a quantum version of UC security [43].

1.4 Results

In this paper, we define a composable framework for analyzing the security of
delegated quantum computing, using the aforementioned AC framework [29].
We model DQC in a generic way, which is independent of the computing re-
quirements or universality of the protocol, and encompasses to the best of our
knowledge all previous work on DQC. We then define composable blindness
and composable verifiability in this framework. The security definitions are thus
applicable to any DQC protocol fitting in our model.

We study the relations between local security criteria used in previous works
[1,2,11,16,20,32,35] and composable security of DQC. We show that by strength-
ening the existing notion of local-verifiability, we can close the gap between these
local criteria and composable security of DQC. To do this we introduce the no-
tion of independent local-verifiability. Intuitively, this captures the idea that the
acceptance probability of the client should not depend on the input or computa-
tion performed, but rather only on the activities of the (dishonest) server. Our
main theorem is as follows.

Theorem 1. If a DQC protocol implementing a unitary9 transformation pro-
vides εbl-local-blindness and εind-independent εver-local-verifiability for all inputs
ψACAQ , where AC is classical and AQ is quantum, then it is δN2-secure, where
δ = 4

√
2εver + 2εbl + 2εind and N = dimHAQ .

Note that by choosing the parameters such that δ is exponentially small in the
size of the quantum input (logN) negates the factor N2 blow-up in the overall
error (see also Remark 13).

9 Any quantum operation can be written as a unitary on a larger system, effectively
allowing this theorem to apply to all quantum operations, see Remark 12.
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Proving that a DQC protocol is secure then reduces to proving that these
local criteria are satisfied.10 For instance, the protocols of Morimae [32] and
Fitzsimons and Kashefi [20] are shown to satisfy definitions of local-correctness,
local-blindness and local-verifiability, equivalent to the ones considered here. To
prove that these protocols are secure, it only remains to show that they also
satisfy the stronger notion of independent local-verifiability introduced in this
work, which we sketch in Sect. 6.1.

Finally, we analyze the security of two protocols— Broadbent, Fitzsimons
and Kashefi [11] and Morimae and Fujii [35]— that do not provide any form of
verifiability, so the generic reduction cannot be used. Instead we directly prove
that both these protocols satisfy the definition of composable blindness, without
verifiability (Theorems 14 and 15).

Interestingly—and somewhat unexpectedly— even though the local security
definitions used in previous works are insufficient to guarantee composable se-
curity, the previously proposed protocols studied in this work are all still secure
given the stronger security notions.

1.5 Structure of This Paper

In Sect. 2 we introduce two-party protocols and distance measures that we use
in this work.11 In Sect. 3 we explain delegated quantum computation, and model
composable security for such protocols. In Sect. 4 we show that composable veri-
fiability (which encompasses blindness) is equivalent to the distance between the
real protocol and some ideal map that simultaneously provides both local-blind-
ness and local-verifiability. This map is however still more elaborate than local
criteria used in previous works. In Sect. 5 we break this map down into individ-
ual notions of local-blindness and independent local-verifiability, and prove that
these are sufficient to achieve security. Finally, in Sect. 6 we look at the security
of some existing protocols. We first discuss how our results can be applied to
protocols that already provide local-verifiability. Then we prove that the DQC
protocols of Broadbent, Kashefi and Fitzsimons [11] and Morimae and Fujii [35]
are composably blind.

10 This is similar in nature to the result on the composable security of quantum key
distribution (QKD) [40], which shows that a QKD protocol that satisfies definitions
of robustness, correctness and secrecy is secure in a composable sense. These individ-
ual notions are all expressed with trace-distance-type criteria, e.g., a QKD protocol
is ε-secret if (1 − pabort)‖ρKE − τK ⊗ ρE‖tr ≤ ε, where pabort is the probability of
aborting, ρKE the joint state of the final key and the eavesdropper’s system and τK
is the fully mixed state. To prove that a QKD protocol is secure, it is thus sufficient
to prove that it satisfies these individual notions.

11 These are an instantiation of the abstract systems defined in AC. We refer to the
full version of this work [18, Sections 2] for an introduction to the AC framework,
that is essential to understand the details of the current paper.
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2 Quantum Systems

2.1 Two-Party Protocols

A two-party protocol can in be modeled by a sequence of CPTP maps πA =
{Ei : L(HAC) → L(HAC)}i and πB = {Fi : L(HCB) → L(HCB)}i, where A and
B are Alice and Bob’s registers, and C represents a communication channel.
Initially Alice and Bob place their inputs in their registers, and the channel C is
in some fixed state |0〉. The players then apply successively their maps to their
respective registers and the channel. For example, in the first round Alice applies
E1 to the joint system AC, and sends C to Bob, who applies F1 to CB, and
returns C to Alice. Then she applies E2, etc.

Such a sequence of maps, {Ei : L(HAC) → L(HAC)}i, has been called a
quantum strategy by Gutoski and Watrous [24, 25] and a quantum N -comb by
Chiribella, D’Ariano and Perinotti [17]. In particular, these authors derived in-
dependently a concise representation of combs/strategies in terms of the Choi-
Jamio�lkowski isomorphism. They also define the appropriate distance measure
between two combs/strategies, corresponding to the optimal distinguishing ad-
vantage, which we sketch in the next section.

2.2 Distance Measures

The trace distance between two states ρ and σ is given by D(ρ, σ) = 1
2‖ρ−σ‖tr,

where ‖ · ‖tr denotes the trace norm and is defined as ‖A‖tr := tr
√
A†A. If

D(ρ, σ) ≤ ε, we say that the two states are ε-close and often write ρ ≈ε σ. This
corresponds to the distinguishing advantage between two resources R and S,
which take no input and produce ρ and σ, respectively, as output: the probability
of a distinguisher guessing correctly whether he holds R or S is exactly 1

2 +
1
2D(ρ, σ).

Another common metric which corresponds to the distinguishing advantage
between resources of a certain type is the diamond norm. If the resources R

and S take an input ρ ∈ S(HA) and produce an output σ ∈ S(HB), the dis-
tinguishing advantage between these resources is the diamond distance between
the correspond maps E ,F : L(HA) → L(HB). A distinguisher can generate a
state ρAR, input the A part to the resource, and try to distinguish between the
resulting states E(ρAR) and F(ρAR). We have d(R, S) = ,(E ,F) = 1

2‖E − F‖�,
where

‖Φ‖� := max{‖(Φ⊗ idR)(ρ)‖tr : ρ ∈ S(HAR)}

is the diamond norm. Note that the maximum of the diamond norm can always
be achieved for a system R with dimHR = dimHA. Here too, we sometimes
write E ≈ε F if two maps are ε-close.

If the resources considered are halves of two player protocols, say πi or πj ,
the above reasoning can be generalized for obtaining the distinguishing advan-
tage. The distinguisher can first generate an initial state ρ ∈ S(HAR)—which for
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convenience we define as a map on no input ρ := D0()— and input the A part of
the state into the resource. It receives some output ρCR from the resource, can
apply some arbitrary map D1 : L(HCR) → L(HCR) to the state, and input the C
part of the new state in the resource. Let it repeat this procedure with different
maps Di until the end of the protocol, after which it holds one of two states:
ϕAR if it had access to πi and ψAR if it had access to πj . The trace distance
D(ϕAR, ψAR) defines the advantage the distinguisher has of correctly guessing
whether it was interacting with πi or πj , and by maximizing this over all possible
initial inputs ρAR = D0(), and all subsequent maps {Di : L(HCR) → L(HCR)}i,
the distinguishing advantage between these resources becomes

d(πi, πj) = max
{Di}i

D(ϕAR, ψAR). (1)

This has been studied by both Gutoski [24] and Chiribella et al. [17], and we
refer to their work for more details.

3 Delegated Quantum Computation

In the (two-party) delegated quantum computation (DQC) model, Alice asks a
server, Bob, to execute some quantum computation for her. Intuitively, Alice
plays the role of a client, and Bob the part of a computationally more pow-
erful server. Alice has several security concerns. She wants the protocol to be
blind, that is, she wants the server to execute the quantum computation without
learning anything about the input other than what is unavoidable, e.g., an upper
bound on its size, and possibly whether the output is classical or quantum. She
may also want to know if the result sent to her by Bob is correct, which we refer
to as verifiability.

In Sect. 3.1 we model the ideal resource that a DQC protocol constructs and
the structure of a generic DQC protocol. And in Sect. 3.2 we give the correspond-
ing security definitions. This section uses the AC cryptography nomenclature,
which is explained in detail in the full version [18].

3.1 DQC Model

Ideal Resource. To model the security (and correctness) of a delegated quan-
tum computation protocol, we need to model the ideal delegated computation
resource S that we wish to build. We start with an ideal resource that provides
blindness, and denote it Sblind.

The task Alice wants to be executed is provided as an input to the resource
Sblind at the A-interface. It could be modeled as having two parts, some quantum
state ψA1 and a classical description ΦA2 of some quantum operation that she
wants to apply to ψ, i.e., she wishes to compute Φ(ψ). This can alternatively
be seen as applying a universal computation U to the input ψA1 ⊗ |Φ〉〈Φ|A2

.
We adopt this view in the remainder of this paper, and model the resource as
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performing some fixed computation U on an input ψA that may be part quantum
and part classical.12

Any DQC protocol must reveal to the server an upper bound on the size
of the computation it is required to execute. Other information might also be
made intentionally available, such as whether the output of the computation
is classical or quantum. Although one could imagine a generic DQC model in
which these “permitted leaks” are entangled with the rest of the input, we restrict
our considerations to classical information, i.e., a subsystem of the input ψA is
classical12 and contains a string �ψA ∈ {0, 1}∗ that is copied and provided to
the server Bob at the start of the protocol, so that he may set up the required
resources and programs for the computation. Alternatively, this string can be
taken to be some fixed publicly available information, not modeled explicitly.
We do so in the following sections to simplify the notation, but prefer make it
explicit in this section so as not to hide the fact that some information about
the input is always given to the server.

The ideal resource Sblind thus takes this input ψA at its A-interface, and, if
Bob does not activate his filtered functionalities— which can be modeled by a
bit b, set to 0 by default, and which a simulator σB can flip to 1 to signify that
it is activating the cheating interface— Sblind outputs U(ψA). This ensures both
correctness and universality (in the case where U is a universal computation).
Alternatively, Sblind can be restricted to work for inputs corresponding to a
certain class of computational problems, if we desire a construction only designed
for such a class.

If the cheating B-interface is activated, the ideal resource outputs a copy
of the string �ψA at this interface. Bob also has another filtered functionality,
one which allows him to tamper with the final output. The most general op-
eration he could perform is to give Sblind a quantum state ψB —which could
be entangled with Alice’s input ψA — along with the description of some map
E : L(HAB) → L(HA), and ask it to output E(ψAB) at Alice’s interface. Since
Sblind only captures blindness, but says nothing about Bob’s ability to manip-
ulate the final output, we define it to perform this operation and output any
E(ψAB) at Bob’s request. This is depicted in Fig. 1 with the filtered functional-
ities in gray.

Definition 2. The ideal DQC resource Sblind which provides both correctness
and blindness takes an input ψA at Alice’s interface, but no honest input at
Bob’s interface. Bob’s filtered interface has a control bit b, set by default to 0,
which he can flip to activate the other filtered functionalities. The resource Sblind

then outputs the permitted leak �ψA at Bob’s interface, and accepts two further

12 Alternatively, the input can be modeled as entirely quantum, and both Alice and
the ideal resource first measure the part of the input that should be classical, before
executing πA and the universal computation U , respectively. This corresponds to
plugging an extra measurement converter into the A-interfaces of both the real and
ideal systems (that converts the quantum input into a classical-quantum input),
which can only decrease the distance between the real and ideal systems, i.e., increase
the security.
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Blind DQC resource Sblind

ρA =

{
U(ψA) if b = 0,

E(ψAB) if b = 1.

ψA

ρA

b

�ψA

E , ψB

Fig. 1. An ideal DQC resources. The client Alice has access to the left interface, and
the server Bob to the right interface. The double-lined input flips a bit set by default
to 0. The functionalities provided at Bob’s interface are grayed to signify that they
are accessible only to a cheating server. If Bob is honest, this interface is obstructed
by a filter, which we denote by ⊥B in the following. Sblind provides blindness— it only
leaks the permitted information at Bob’s interface— but allows Bob to choose Alice’s
output.

inputs, a state ψB and map description |E〉〈E|. If b = 0, it outputs the correct
result U(ψA) at Alice’s interface; otherwise it outputs Bob’s choice, E(ψAB).

A DQC protocol is verifiable if it provides Alice with a mechanism to detect
a cheating Bob and output an error flag err instead of some incorrect compu-
tation. This is modeled by weakening Bob’s filtered functionality: an ideal DQC
resource with verifiability, Sblindverif , only allows Bob to input one classical bit c,
which specifies whether the output should be U(ψA) or some error state |err〉,
which by construction is orthogonal to the space of valid outputs. The ideal
resource thus never outputs a wrong computation. This is illustrated in Fig. 2.

Secure DQC resource Sblind
verif

ρA =

{
U(ψA) if c = 0,

|err〉〈err| if c = 1.

ψA

ρA

b

�ψA

c

Fig. 2. Another ideal DQC resources. Sblind
verif provides both blindness and verifiability—

in addition to leaking only the permitted information, it never outputs an erroneous
computation result.

Definition 3. The ideal DQC resource Sblindverif which provides correctness, blind-
ness and verifiability takes an input ψA at Alice’s interface, and two filtered
control bits b and c (set by default to 0). If b = 0, it simply outputs U(ψA) at
Alice’s interface. If b = 1, it outputs the permitted leak �ψA at Bob’s interface,
then reads the bit c, and conditioned on its value, it either outputs U(ψA) or
|err〉 at Alice’s interface.



416 V. Dunjko et al.

E1

E2

E3

...

EN

πA

F1

F2

...

FN−1

πB

...

R

ψA

ρA

Fig. 3. A generic run of a DQC protocol. Alice has access to the left interface and Bob
to the right interface. The entire system builds one CPTP operation which maps ψA

to ρA.

Concrete Setting. In the concrete (or real) setting, the only resource that
Alice and Bob need is a (two-way) communication channel R. Alice’s protocol
πA receives ψA as an input on its outside interface. It then communicates through
R with Bob’s protocol πB , and produces some final output ρA. For the sake of
generality we assume that the operations performed by πA and πB, and the
communication between them, are all quantum. Of course, a protocol is only
useful if Alice has very few quantum operations to perform, and most of the
communication is classical. However, to model security, it is more convenient to
consider the most general case possible, so that it applies to all possible protocols.

As described in Sect. 2.1, their protocols can be modeled by a sequence of
CPTP maps {Ei : L(HAC) → L(HAC)}Ni=1 and {Fi : L(HCB) → L(HCB)}N−1

i=1 .
We illustrate a run of such a protocol in Fig. 3. The entire system consisting of
the protocol (πA, πB) and the channel R is a map which transforms ψA into ρA.
If both players played honestly and the protocol is correct, this should result in
ρA = U(ψA).

In the following, when we refer to a DQC protocol, we simply mean any
protocol satisfying the model of Fig. 3. Whether the protocol actually performs
delegated quantum computation depends on whether it satisfies the correctness
condition, which we define in Sect. 3.2.

3.2 Security of DQC

Applying the AC security definition (see the full version, [18, Definition 2.1]) to
the DQC model from the previous section, we get that a protocol π constructs
a blind quantum computation resource Sblind from a communication channel R
within ε if there exists a simulator σB such that

πARπB ≈ε S
blind⊥B and πAR ≈ε S

blindσB , (2)
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≈ε

πA
ψA

ρA

R S
ψA

ρA

σB

Fig. 4. An illustration of the second terms of (2) and (3). If a distinguisher cannot
guess with advantage greater than ε whether it is interacting with the real construct
on the left or the ideal construct on the right, the two are ε-close and the protocol
ε-secure against a cheating Bob.

where ⊥B is a filter which obstructs Bob’s cheating interface.13 The fist condi-
tion in (2) captures the correctness of the protocol, and we say that a protocol
provides ε-correctness if this condition is fulfilled. The second condition, which
we illustrate in Fig. 4, measures the security. If it is fulfilled, we have ε-blindness.
If ε = 0 we say that we have perfect blindness.

Likewise in the case of verifiability, the ideal resource Sblindverif is constructed by
π from R if there exists a simulator σB such that,

πARπB ≈ε S
blind
verif ⊥B and πAR ≈ε S

blind
verif σB . (3)

The first condition from (3) is identical to the first condition of (2), and captures
ε-correctness. The second condition in (3) (also illustrated by Fig. 4) guarantees
both blindness and verifiability, and if it is satisfied we say that the we have
ε-blind-verifiability.

Note that the exact metrics used to distinguish between the resources from
(2) and (3) are defined in Sect. 2.2. πARπB and S⊥B — as can be seen from
their depictions in Figs. 3 and 2 (with a filter blocking the cheating interface
of the latter)— are resources which implement a single map, so the diamond
distance corresponds to the distinguishing advantage. πAR and SσB are half of
two-party protocols, so the distinguishing metric corresponds to the distance
between quantum strategies/combs introduced by Gutoski and Watrous [24,25]
and Chiribella et al. [17], and described in Sect. 2.2.

4 Blind and Verifiable DQC

Finding a simulator to prove the security of a protocol can be challenging.
In this section we reduce the task of proving that a DQC protocol constructs
the ideal resource Sblindverif to proving that the map implemented by the
protocol is close to some ideal map that intuitively provides some form of

13 These equations are to be interpreted graphically: πA is plugged into the left interface
of R, and πB is plugged into the right interface, see the illustrations in Figs. 3 and
4 or the full version [18] for further explanations.
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local-blindness-and-verifiability. The converse also holds: any protocol which con-
structs Sblindverif must be close to this ideal map.

A malicious server Bob will not apply the CPTP maps assigned to him by
the protocol, but his own set of cheating maps {Fi : L(HCB) → L(HCB)}N−1

i=1 .
Furthermore, he might hold (the B part of) a purification of Alice’s input, ψABR.
Intuitively, a protocol provides local-blindness14 if the final state held by Bob
could have been generated by a local map on his system— say, F — indepen-
dently from Alice’s input, but which naturally depends on his behavior given by
the maps {Fi}i. It provides local-verifiability14 if the final state held by Alice is
either the correct outcome or some error flag. Combining the two gives an ideal
map of the from U ⊗ Fok + Eerr ⊗ Ferr, where Fok and Ferr break F down in
two maps which result in the correct outcome and an error flag, respectively.

Definition 4 (local-blind-verifiability). We say that a DQC protocol pro-
vides ε-local-blind-verifiability, if, for all adversarial behaviors {Fi}i, there exist
two completely positive, trace non-increasing maps Fok

B and Ferr
B , such that

PAB ≈ε UA ⊗Fok
B + Eerr

A ⊗Ferr
B , (4)

where PAB : L(HAB) → L(HAB) is the map corresponding to a protocol run
with Alice behaving honestly and Bob using his cheating operations {Fi}i, and
Eerr
A discards the A system and produces an error flag |err〉〈err| orthogonal to all

possible valid outputs. We say that the protocol provides ε-local-blind-verifiability
for a set of initial states B, if (4) holds when applied to these states, i.e., for all
ψABR ∈ B,

PAB(ψABR) ≈ε

(
UA ⊗Fok

B + Eerr
A ⊗Ferr

B

)
(ψABR).

Remark 5. For simplicity, this definition assumes the allowed leaks (e.g., input
size, computation size) to be fixed, and applies to all protocols PAB tailored for
inputs with an identical leak (e.g., identical size). These leaks could be explicitly
modeled by allowing the maps Fok

B and Ferr
B to depend on them.

We now state the main theorem of this section, namely that it is both nec-
essary and sufficient for a DQC protocol to satisfy Definition 4 to be blind-
verifiable, i.e., to satisfy the second condition of Equation (3). A proof is is given
in the full version [18]. In order to construct Sblindverif , a DQC protocol also needs
to be ε-correct, that is, satisfy the first condition from Equation (3). We show
in Appendix A that this is fulfilled, if, when Bob behaves honestly, Equation (4)
is satisfied for Fok

B = idB and Ferr
B = 0.

Theorem 6. Any DQC protocol which provides ε-local-blind-verifiability is 2ε-
blind-verifiable. And any DQC protocol which is ε-blind-verifiable provides ε-lo-
cal-blind-verifiability.

14 We provide formal definitions of local-blindness and local-verifiability in Sect. 5.
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5 Reduction to Local Criteria

Although the notion of local-blind-verifiability defined in the previous section
captures the security of DQC in a single equation, it is still more elaborate than
existing definitions found in the literature, that treat blindness and verifiability
separately.

In this section we provide separate definitions for these local notions, and
strengthen local-verifiability by requiring that the server Bob be able to infer
on his own whether the client Alice will reject his response— learning whether
Alice did reject will then not provide him with any information that he could not
obtain on his own. We then show that in the case where Bob does not hold a state
entangled with the input (e.g., when the input is entirely classical), these notions
are sufficient to obtain local-blind-verifiability with a similar error parameter.
In the case where Bob’s system is entangled to Alice’s input, we show that the

same holds, albeit with an error increased by a factor
(
dimHAQ

)2
, where AQ is

the subsystem of Alice’s input which is quantum.
This can be used to show that the protocol of Fitzsimons and Kashefi [20]

and Morimae [32], which have already been analyzed using (insufficient) local
criteria, are secure. We provide a proof sketch of the missing steps for both these
protocols in the full version of this paper [18].

Local-blindness can be seen as a simplification of local-blind-verifiability, in
which we ignore Alice’s outcome and only check that Bob’s system could have
been generated locally, i.e., is independent from Alice’s input (and output).

Definition 7 (Local-blindness). A DQC protocol provides ε-local-blindness,
if, for all adversarial behaviors {Fi}i, there exists a CPTP map F : L(HB) →
L(HB) such that

trA ◦PAB ≈ε F ◦ trA, (5)

where ◦ is the composition of maps, trA the operator that trace out the A-system,
and PAB : L(HAB) → L(HAB) is the map corresponding to a protocol run with
Alice behaving honestly and Bob using his cheating operations {Fi}i. We say
that the protocol provides ε-local-blindness for a set of initial states B, if (5)
holds when applied to these states, i.e., for all ψABR ∈ B,

trA ◦PAB(ψABR) ≈ε F ◦ trA(ψABR).

Likewise, local-verifiability can also be seen as a simplification of local-blind-
verifiability, in which we ignore Bob’s system and only check that Alice holds
either the correct outcome or an error flag |err〉, which by construction is orthog-
onal to any possible valid output. In the following we define local-verifiability
only for the case where Bob’s system is not entangled to Alice’s input, since oth-
erwise the correct outcome depends on Bob’s actions, and cannot be modeled
by describing Alice’s system alone.15

15 The resulting definition is equivalent to that of [20] and non-composable authenti-
cation definitions [5], which bound the probability of projecting the outcome on the
space of invalid results.
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Definition 8 (Local-verifiability). A DQC protocol provides ε-local-verifia-
bility, if, for all adversarial behaviors {Fi}i and all initial states ψAR1 ⊗ ψR2B,
there exists a 0 ≤ pψ ≤ 1 such that

ρψAR1
≈ε p

ψ(U ⊗ idR1)(ψAR1) + (1− pψ)|err〉〈err| ⊗ ψR1 , (6)

where ρψAR1
is the final state of Alice and the first part of the reference system.

We say that the protocol provides ε-local-verifiability for a set B of initial states
in product form, if (6) holds for all ψAR1 ⊗ ψR2B ∈ B.

As mentioned in Sect. 1, local-blindness and local-verifiability together do
not provide the security guarantees one expects from DQC. This seems to be
because the verification procedure can depend on the input (as in the example
from Footnote 2), and thus if Bob learns the result of this measurement, he
learns something about the input. This motivates us to define a stronger notion,
in which Bob can reconstruct on his own whether the output will be accepted—
the outcome of Alice’s verification procedure must thus be independent of her
input. To do this, we introduce a new qubit in a system B̄, which contains a
copy of the information whether Alice accepts or rejects, i.e., for a final state

ρψARB = φokARB + |err〉〈err| ⊗ φerrRB , (7)

we define

ρψ
ARBB̄

:= φokARB ⊗ |ok〉〈ok|+ |err〉〈err| ⊗ φerrRB ⊗ |err〉〈err|. (8)

Note that (8) can be generated from (7) by introducing a system B̄ in the state
|ok〉 and changing its value to |err〉 conditioned on A being in the state |err〉.
Let QAB̄ : L(HA) → L(HAB̄) be such an operation, i.e., ρψ

ARBB̄
= QAB̄(ρ

ψ
ARB).

Equation (7) can then be recovered from (8) by tracing out the system B̄.
The notion of verifiability is strengthened by additionally requiring that leak-

ing this system B̄ to the adversary does not provide him with more information
about the input, i.e., Bob could (using alternative maps) generate the system B̄
on his own.

Definition 9. A DQC protocol provides ε̄-independent ε-local-verifiability, if,
in addition to providing ε-local-verifiability, for all adversarial behaviors {Fi :
L(HCB) → L(HCB)}i there exist alternative maps {F ′

i : L(HCBB̄) →
L(HCBB̄)}i (for an initially empty system B̄), such that

trA ◦QAB̄ ◦ PAB ≈ε̄ trA ◦P ′
ABB̄, (9)

where ◦ is the composition of maps, PAB : L(HAB) → L(HAB) and P ′
ABB̄

:
L(HAB) → L(HABB̄) are the maps corresponding to runs of the protocol with
Alice being honest and Bob using maps {Fi}i and {F ′

i}i respectively, and QAB̄ :
L(HA) → L(HAB̄) is a map which generates from A a system B̄ holding a
copy of the information whether Alice accepts or rejects. We say that a protocol
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provides ε̄-independent ε-local-verifiability for a set of initial states B, if the same
conditions hold for all states in B, i.e., if we have ε-local-verifiability for B, and
if for all ψABR ∈ B,

trA ◦QAB̄ ◦ PAB(ψABR) ≈ε̄ trA ◦P ′
ABB̄(ψABR).

Remark 10. By the triangle inequality, if a protocol provides both ε-local-
blindness and ε̄-independent ε′-local-verifiability, then there exists a map F ′ :
L(HB) → L(HBB̄) such that

trA ◦QAB̄ ◦ PAB ≈ε+ε̄ F ′ ◦ trA . (10)

We are now ready to state the main theorem, namely that the above local
definitions are sufficient to achieve composable security.

Theorem 11 (Theorem 1 restated). If a DQC protocol implementing a uni-
tary transformation provides εbl-local-blindness and εind-independent εver-local-
verifiability for all inputs ψACAQ , where AC is classical and AQ is quantum, then
it is δN2-blind-verifiable, where δ = 4

√
2εver+2εbl+2εind and N = dimHAQ . If

additionally it provides εcor-local-correctness,
16 it constructs Sblindverif from a com-

munication channel within ε = max{δN2, εcor}.

Independent local-verifiability makes a statement about Alice’s system at the
end of the protocol— it is either in the correct state or contains an error flag.
Local-blindness makes a statement about Bob’s system at the end of the proto-
col— it contains no information about the input. To prove Theorem 11, we need
to combine these two definitions to make a statement about the joint system of
Alice and Bob at the end of the protocol, equivalent to local-blind-verifiability
(Definition 4). The result then follows from Theorem 6.

The main idea of the proof is to show that, in the case of an input in product
form between Alice and Bob, Uhlmann’s theorem can be used to extend the
statement about Alice’s system being close to ideal to a joint AB system. We
then show that if the input is entangled between Alice and Bob, the error can
increase at most by a multiplicative factor of N2. A complete proof is given in
the full version [18].

Remark 12. This theorem only hold for protocols that construct a DQC resource
for which the implemented operation U is unitary. Since any quantum operation
can be written as a unitary on a larger system [38], this effectively allows the
theorems to apply to any CPTP operation E as long as the necessary qubits for
the unitary implementation are appended to the in- and outputs. For example,
instead of defining universal computation as a unitary, most papers— e.g., [11,
20, 32, 35]— describe how to perform any (arbitrary) unitary operation Ux on
any arbitrary input ρin. By appending the description x of the unitary Ux to
the input and output, this is equivalent to applying the unitary transformation
U :=

∑
x Ux ⊗ |x〉〈x| to the input ρin ⊗ |x〉〈x|.

16 See Definition 16 in Appendix A.
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Remark 13. If the input is entirely classical (e.g., the client wants to factor a
number), the failure ε is polynomial in the error parameters of the different
local criteria, and the reduction is tight. If the input is quantum, the failure is
multiplied by the dimension squared of the quantum (sub)system, and the errors
of the local criteria need to be exponentially small in the size of the quantum
input to compensate.

6 Existing Protocols

6.1 Applying the Security Reduction

The definitions of local-blindness and local-verifiability used in this work are
equivalent to those used to prove local-security for most protocols in the litera-
ture, e.g., by Fitzsimons and Kashefi [20] and Morimae [32]. To prove that such
protocols are secure, it remains to show that they satisfy the stronger definition
of independent local-verifiability introduced in this work. We sketch in this sec-
tion that this is the case for [20] and [32], and refer to the full version [18] for a
longer discussion.

Both these works achieve local-verifiability by introducing randomly posi-
tioned trap qubits in the protocol: these are states which are independent of
Alice’s input, and for which she knows the outcome of the operation that the
server, Bob, should perform. If the server does not trigger any of the traps, then
with high probability he is running the correct program [20,32].

This technique used to achieve local-verifiability also provides independent
local-verifiability, because the position of the traps and whether they get trigged
are independent of the input. Thus, Bob could run the protocol on his own—
without knowing Alice’s input and choosing himself the position of the trap
qubits— and would end up holding exactly the same bit as Alice that decides if
the output is accepted or rejected.

6.2 Blindness

We present in this section the security results for two different DQC protocols
proposed in the literature: we show that they construct the ideal blind quantum
computation resource Sblind defined in Definition 2. The protocols and proofs
appear in the full version [18], we only give a brief overview here. Note that since
these protocols do not provide verifiability, we cannot use the generic results from
Sect. 5 to prove that they are blind.

In the DQC protocol of Broadbent, Fitzsimons and Kashefi [11], Alice hides
the computation by encrypting all the communication with a one-time pad. The
main idea of the security proof is for the simulator to replace the encrypted
states sent to the distinguisher by halves of EPR pairs. It then forwards the
other halves to the ideal DQC resource, which gate teleports the real inputs.
The distinguisher is then oblivious to whether it is interacting with the real
protocol or the ideal resource and simulator.

Theorem 14. The DQC protocol of Broadbent, Fitzsimons and Kashefi [11]
provides perfect blindness.
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Morimae and Fujii [34] proposed a DQC protocol with one-way communica-
tion from Bob to Alice, in which Alice simply measures each qubit she receives,
one at a time. We show that the general class of protocols with one-way com-
munication is perfectly blind.

Theorem 15. Any DQC protocol π with one-way communication from Bob to
Alice provides perfect blindness.

A Correctness

Intuitively, a protocol is correct if, when Bob behaves honestly, Alice ends up
with the correct output. This must also hold with respect to a purification of
the input.

Definition 16. A DQC protocol provides ε-local-correctness, if, when both par-
ties behave honestly, for all initial states ψAR, the map implemented by the pro-
tocol on Alice’s input, PA : L(HA) → L(HA) is

PA ≈ε U . (11)

It is straightforward, that this is equivalent to the composable notion defined
in Equations (2) and (3) in Sect. 3.2.

Lemma 17. A DQC protocol which provides ε-local-correctness is also ε-correct.

A proof is given in the full version [18].
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Abstract. We present a general framework for constructing non-
interactive universally composable (UC) commitment schemes that are
secure against adaptive adversaries in the non-erasure model under a re-
usable common reference string. Previously, such “fully-equipped” UC
commitment schemes have been known only in [5, 6], with strict ex-
pansion factor O(κ); meaning that to commit λ bits, communication
strictly requires O(λκ) bits, where κ denotes the security parameter.
Efficient construction of a fully-equipped UC commitment scheme is
a long-standing open problem. We introduce new abstraction, called
all-but-many encryption (ABME), and prove that it captures a fully-
equipped UC commitment scheme. We propose the first fully-equipped
UC commitment scheme with optimal expansion factor Ω(1) from our
ABME scheme related to the DCR assumption. We also provide an all-
but-many lossy trapdoor function (ABM-LTF) [18] from our DCR-based
ABME scheme, with a better lossy rate than [18].

1 Introduction

1.1 Motivating Application: Fully-Equipped UC Commitments

Universal composability (UC) framework [4] guarantees that if a protocol is
proven secure in the UC framework, it remains secure even if it is run concur-
rently with arbitrary (even insecure) protocols. This composable property gives
a designer a fundamental benefit, compared to the classic definitions, which only
guarantee that a protocol is secure if it is run in the standalone setting. UC com-
mitments are an essential ingredient to construct high level UC-secure protocols,
which imply UC zero-knowledge protocols [5, 10] and UC oblivious transfer [6],
thereby meaning that any UC-secure two-party and multi-party computations
can be realized in the presence of UC commitments. Since UC commitments
cannot be realized without an additional set-up assumption [5], the common
reference string (CRS) model is widely used. A commitment scheme consists of
a two-phase protocol between two parties, a committer and a receiver. In the
commitment phase, a committer gives a receiver the digital equivalent of a sealed
envelope containing value x, and, in the opening phase, the committer reveals x
in a way that the receiver can verify it. From the original concept, it is required
that a committer cannot change the value inside the envelope (binding prop-
erty), whereas the receiver can learn nothing about x (hiding property) unless

P. Sarkar and T. Iwata (Eds.): ASIACRYPT 2014, PART II, LNCS 8874, pp. 426–447, 2014.
c© International Association for Cryptologic Research 2014
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the committer helps the receiver opens the envelope. Informally, a UC commit-
ment scheme maintains the above binding and hiding properties under any con-
current composition with arbitrary protocols. To achieve this, a UC commitment
scheme requires equivocability and extractability at the same time. Informally,
equivocability of UC commitments in the CRS model can be interpreted as fol-
lows: An algorithm (called the simulator) that takes the secret behind the CRS
string can generate an equivocal commitment that can be opened to any value.
On the other hand, extractability can be interpreted as the ability of the sim-
ulator extracting the contents of a commitment generated by any adversarial
algorithm, even after the adversary saw many equivocal commitments generated
by the simulator.

Several factors as shown below feature UC commitments:

Non-Interactivity. If an execution of a commitment scheme is completed, sim-
ply by sending each one message from the committer to the receiver both in the
commitment and opening phases, then it is called non-interactive; otherwise,
interactive. From a practical viewpoint, non-interactivity is definitely favorable
– non-interactive protocols are much easier to implement and more resilient to
real threats such as denial of service attacks. Even from a theoretical viewpoint,
non-interactive protocols generally make security proofs simpler.

CRS Re-usability. The CRS model assumes that CRS strings are generated
in a trusted way and given to every party. For practical use, it is very important
that a global single CRS string can be fixed beforehand and it can be re-usable
in an unbounded number of executions of cryptographic protocols. Otherwise, a
new CRS string must be set up in a trusted way every time when a new execution
of a protocol is invoked.

Adaptive Security. If an adversary decides to corrupt parities only before a
protocol starts, it is called a static adversary. On the other hand, if an adversary
can decide to corrupt parties at any point in the executions of protocols, it
is called an adaptive adversary. The attacks of adaptive adversaries are more
realistic in the real world. So, adaptive UC security is more desirable.

Non-Erasure Model. When a party is corrupted, its complete inner state is
revealed, including the randomness being used. Some protocols are only proven
UC-secure under the assumption that the parties can securely erase their inner
states at any point of an execution. However, reliable erasure is a difficult task
on a real system. So, it is desirable that a non-erasure protocol is proven secure.

1.2 Previous Works

Canetti and Fischlin [5] presented the first UC secure commitment schemes. One
of their proposals is “fully-equipped” – non-interactive and adaptively secure in
the non-erasure model under a global re-usable common reference string. By
construction, however, the proposal strictly requires, to commit to λ-bit secret,
O(λκ) bits in communication andO(λ) modular exponentiations in computation.
Canetti et al. [6] also proposed another fully-equipped UC commitment scheme
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only from (enhanced) trapdoor permutations. It requires general non-interactive
zero knowledge proofs and is simply inefficient.

So far, these two have been the only known fully-equipped UC commitment
schemes. The known subsequent constructions of UC commitments [3,8,10,13,20,
22] have improved efficiency, but sacrifice at least one or a few requirements1.
Efficient construction of a fully-equipped UC commitment scheme is a long-
standing open problem.

1.3 Our Contribution

The UC framework is complicated with many subtleties. Therefore, it is
desirable to translate the essence of basic UC secure protocols into simple cryp-
tographic primitives. We introduce special tag-based public key encryption (Tag-
PKE) that we call all-but-many encryption (ABME), and prove that it implies
“fully-equipped” UC commitments. We propose a compact ABME scheme re-
lated to the DCR assumption and thereby the first fully-equipped UC commit-
ment scheme with optimal expansion factor Ω(1). To commit λ bit, it requires
Ω(κ) bits and a constant number of modular exponentiations. We also present
an all-but-many lossy trapdoor function (ABM-LTF) [18] from our DCR-based
ABME scheme, with a better lossy rate than [18].

In the full version [14], we present an ABME scheme from the DDH assump-
tion with overhead Ω(κ/log κ), which is slightly better than the prior work (with
Ω(κ)). We also present a fully-equipped UC commitment scheme from a weak
ABME scheme under the general assumption (where (enhanced) trapdoor per-
mutations exist), which is far more efficient than the prior scheme [6] under the
same assumption.

Our Approach: All-But-Many Encryption. In an ABME scheme, a secret-
key holding user (i.e., the simulator in the UC framework) can generate a fake
ciphertext, which can be opened to any message with consistent randomness.
On the other hand, it must be infeasible for a secret-key non-holding user (i.e.,
the adversary in the UC framework) (1) to distinguish a fake ciphertext from
a real (honestly generated) ciphertext, even after the message and randomness
are revealed, and (2) to produce a fake ciphertext (on a fresh tag) even given
many fake ciphertexts.

To realize such a scheme, we divide its functionality into two primitives, called
probabilistic pseudo random functions (PPRF) and extractable sigma protocols
(extΣ). The former is a kind of a probabilistic version of a pseudo random func-
tion (family) in the public parameter model. The latter is special sigma (i.e.,
canonical 3-round public-coin HVZK) protocols [7] with some extractability.
The concept of extractable sigma protocols is not completely new. A weaker
notion, called weak extractable sigma protocols, appears in [15] to construct a
few (interactive) simulation sound trapdoor commitment (SSTC) schemes. See

1 Only [22] and [13] satisfy all but one requirement. [22] does not satisfy CRS re-
usability, whereas [13] does not support the non-erasure model.
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also [16, 17, 21] for SSTC. This paper requires a stronger notion and its real-
ization, which employed in a different framework. If two primitives are success-
fully combined, an ABME scheme can be constructed. We discuss more in the
following.

Probabilistic Pseudo-Random Function (PPRF). A PPRF = (Genspl, Spl) is a
probabilistic version of a pseudo random function family in the public param-
eter model. Genspl(1

κ) generates a pair of public-key/seed (pk, w), and A PPT
algorithm Spl takes (pk, w, t) and outputs (or samples) u ← Spl(pk, w, t). Let
Lpk(t) = {u|∃(w, v) : u = Spl(pk, w, t, v)}. Informally, a PPRF requires that (a)
u looks pseudo-random on any t (pseudo randomness) and (b) it is infeasible

for any adversary to find u∗ in some super set, L̂pk(t
∗), of Lpk(t

∗) on any fresh

t∗, even after it has access to oracle Spl(pk, w, ·) (unforgeability on L̂pk), where

L̂pk := {(t, u) |u ∈ L̂pk(t)}. The super set L̂pk will be clear later.
Extractable Sigma Protocols. An extractable sigma protocol is a special sigma

protocol associated with a language-generation algorithm and a decryption algo-
rithm. Recall the sigma protocols [7]. A sigma protocol Σ on NP language L is
a canonical 3-round public coin interactive proof system such that the prover
can convince the verifier that he knows the witness w behind common input
x ∈ L, where the prover first sends commitment a; the verifier sends back chal-
lenge (public-coin) e; the prover responds with z; and the verifier finally accepts
or rejects the conversation (a, e, z) on x. A sigma protocol is associated with a
simulation algorithm simΣ that takes x (regardless of whether x ∈ L or not)
and challenge e, and produces an accepting conversation (a, e, z) ← simΣ(x, e)
without witness w. It is guaranteed that, if x ∈ L, the distributions (a, e, z)
produced by simΣ(x, e) on random e is statistically indistinguishable from the
transcript generated between two honest parties, called honest-verifier statisti-
cally zero knowledge (HVSZK). If x �∈ L, for every a, there is unique e if there
is an accepting conversation (a, e, z), which is called special soundness.

An extractable sigma protocol extΣ = (Genext, Σ,Dec) uses two more algo-
rithms: The language-generation algorithm Genext outputs a pair of public/secret
keys, (pk, sk), where pk determines two disjoint sets Lpk and Lext

pk . Here sigma
protocol Σ works on Lpk and the decryption algorithm Dec works on Lext

pk , mean-
ing that Dec(sk, x, a) outputs challenge e if x ∈ Lext

pk and if an accepting conver-
sation (a, e, z) exists on x. Due to special soundness, e is uniquely determined if
x �∈ Lpk. Therefore, the decryption algorithm is well defined.

Combining them. Suppose extΣ and PPRF are so well combined that, for
(Lpk, L

ext
pk ) generated by Genext, Lpk is the language derived from PPRF and

PPRF is unforgeable on L̂pk (:= U ′
pk\Lext

pk ), where U
′
pk denotes the entire set

with respects to pk. We can then transform the extractable sigma protocol into
an ABME scheme in the similar way that a sigma protocol is converted to an
instance-dependent commitment scheme [2, 19]. To encrypt message e on tag t,
a sender picks random u, runs simΣ on instance (t, u) with challenge e, to get
(a, e, z) ← simΣ(pk, (t, u), e), and finally outputs (t, u, a). Due to unforgeability

of PPRF, it holds that (t, u) ∈ U ′
pk\L̂pk with an overwhelming probability. Then,

e is uniquely determined given ((t, u), a), as long as an accepting conversation
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(a, e, z) exists on (t, u). By our precondition, we can decrypt (t, u, a) using sk, as
e = Dec(sk, (t, u), a) because (t, u) ∈ Lext

pk . On the other hand, a fake ciphertext
on tag t is produced using (w, v) as follows: one sets u := Spl(pk, w, t; v), with
random v, where (t, u) ∈ Lpk, and computes a, as similarly as an honest prover
computes the first message on common input (t, u) with witness (w, v). To open
a to e, he produces the third message z in the sigma protocol. It is obvious by
construction that he can open a to any e because (t, u) ∈ Lpk.

Realizing Extractable Sigma Protocols.Although sigma protocols (with HVSZK)
exist on many NP languages, it is not known how to extract the challenge as
discussed above. The following is our key observation to realize the functional-
ity. Sigma protocols are often implemented on Abelian groups associated with
homomorphic maps, in which the first message of such sigma protocols implies
a system of linear equations with e and z. Hence, there is a matrix derived from
the linear systems. Due to completeness and special soundness, there is an in-
vertible (sub) square matrix if and only if x �∈ Lpk (provided that the linear
system is defined in a finite field). Therefore, if one knows the contents of the
matrix, one can solve the linear systems when x �∈ Lpk and obtain e if its length
is logarithmic. Suppose for instance that Lpk is the DDH language – it does
not form a PPRF, but a good toy case to explain how to extract the challenge.
Let (g1, g2, h1, h2) �∈ Lpk, meaning that x1 �= x2 where x1 := logg1(h1) and
x2 := logg2(h2). The first message (A1, A2) of a canonical sigma protocol on Lpk

implies linear equations (
a1
a2

)
=

(
1 x1
α αx2

)(
z
e

)
(1)

where A1 = ga1
1 , A2 = ga2

2 , and g2 = gα1 . The above matrix is invertible if and
only if (g1, g2, h1, h2) �∈ Lpk. We note that e is expressed as a linear combination
of a1 and a2, i.e., β1a1 + β2a2, where the coefficients are determined by the
matrix. Therefore, if the decryption algorithm takes (α, x1, x2) and the length

of e is logarithmic, it can find out e by checking whether ge1 = Aβ1

1 A
β2

2 or not.
In the case when a partial information on the values of the matrix is given, the
decryption algorithm can still find logarithmic-length e if the matrix is made
so that e can be expressed as a linear combination of unknown values – the
unknown values do not appear with a quadratic form or a more degree of forms
in the equations.

In some case, we might be able to invert a homomorphic map, such as f(a) =
ga, using trapdoor f−1. Then, the decryption algorithm can obtain (a1, a2) as
well as the entire values of the matrix and hence extract the entire (polynomial-
length) e. This happens in our DCR based implementation. In the case, the

equivalent condition that the matrix is invertible is, not x �∈ Lpk, but x �∈ L̂pk for

some superset L̂pk, since the corresponding linear system is defined not on a finite
field, but on a finite ring, such as Znd . This means that we require unforgeability
on L̂pk, so as to make an adversary output x = (t, u) in Lext

pk = U ′
pk\L̂pk.
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1.4 Other Related Works

Simulation-based selective opening CCA (SIM-SO-CCA) secure PKE [12] is re-
lated to ABME, but both are incomparable. Indeed, the SIM-SO-CCA secure
PKE scheme proposed in [12] does not satisfy the notion of ABME. On the other
hand, ABME does not satisfy SIM-SO-CCA PKE, because it does not support
CCA security. Although the scheme in [12] could be tailored to a fully-equipped
UC commitment scheme, it cannot overcome the barrier of expansion factor
O(κ), because it strictly costs O(λκ) bits to encrypt λ bit.

Hofheinz has presented the notion of all-but-many lossy trapdoor function
(ABM-LTF) [18], mainly to construct indistinguishable-based selective opening
CCA (IND-SO-CCA) secure PKE schemes. ABM-LTF is lossy trapdoor function
(LTF) [25] with (unbounded) many lossy tags. The relation between ABM-LTF
and ABME is a generalized analogue of LTF and lossy encryption [1, 24] with
unbounded many loss tags. However, unlike the other primitives, ABME always
enjoys an efficient “opening” algorithm that can open a ciphertext on a “lossy”
tag to any message with consistent randomness. Hofheinz has proposed two
instantiations. One is related to the DCR assumption and the other is based on
pairing groups of a composite order. In the DCR-based ABM-LTF, lossy tags
are an analogue of Waters signatures defined in DJ PKE. Such tags are carefully
embedded in a matrix so that it can be non-invertible if tags are lossy; otherwise
invertible. We were inspired by the lossy tag idea and have generalized it as
PPRF. In the latest e-print version [18], Hofheinz has proven that his DCR-
based ABM-LTF can be converted to a SIM-SO-CCA PKE scheme. To realize
this, an opening algorithm for ABM-LTF is needed, and he converted his DCR-
based ABM-LTF into one with an opening algorithm, by sacrificing efficiency.
We note that ABM-LTF with an opening algorithm meets the notion of ABME.
We will show in Sect. 8 how Hofheinz’s DCR-based ABM-LTF is converted to an
ABME scheme. Its expansion factor is Ω(1). However, compared to our DCR-
based ABME scheme in Sect. 7, Hofheinz’s ABM-LTF based ABME scheme is
rather inefficient for practical use. Indeed, its expansion rate of ciphertext length
per message length is ≥ 31. In addition, you must use a modulus of ≥ n6. On
the other hand, our DCR-based ABME scheme has a small expansion rate of
(5 + 1/d) and you can use modulus of nd+1 for any d ≥ 1. We compare them in
Sect. 8. We remark that Hofheinz has not shown that his DCR-based ABM-LTF
can be converted to a UC commitment scheme.

2 Preliminaries

We write PPT and DPT algorithms to denote probabilistic polynomial-time and
deterministic poly-time algorithms, respectively. For random variables, Xκ and
Yκ, ranging over {0, 1}κ, the (statistical) distance between Xκ and Yκ is defined
as Dist(Xκ, Yκ) � 1

2 · |Prs∈{0,1}κ [X = s] − Prs∈{0,1}κ [Y = s]|. We say that
two probability ensembles, X = {Xκ}κ∈N and Y = {Yκ}κ∈N, are statistically

indistinguishable (in κ), denoted X
s≈ Y , if Dist(Xκ, Yκ) = negl(κ). We say that
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X and Y are computationally indistinguishable (in κ), denoted X
c≈ Y , if for

every PPT D (with one-bit output), {D(1κ, Xκ)}κ∈N

s≈ {D(1κ, Yκ)}κ∈N.

3 Building Blocks: Definitions

We now formally define probabilistic pseudo random functions and extractable
sigma protocols.

3.1 Probabilistic Pseudo Random Function (PPRF)

PPRF = (Genspl, Spl) consists of the following two algorithms:

– Genspl, the key generation algorithm, is a PPT algorithm that takes 1κ as
input, creates pk and picks up w ← KSPspl

pk to outputs (pk, w), where pk

uniquely determines KSPspl
pk.

– Spl, the sampling algorithm, is a PPT algorithm that takes (pk, w) and
t ∈ {0, 1}κ, picks up inner random coins v ← COINspl, and outputs u.

Here we require that pk determines set Upk. Let us define U
′
pk = {0, 1}κ × Upk,

Lpk(t) = {u ∈ Upk | ∃w, ∃ v : u = Spl(pk, w, t; v)}, and Lpk = {(t, u) | t ∈
{0, 1}κ and u ∈ Lpk(t)}. We are only interested in the case that Lpk is relatively
small in U ′

pk, in order to avoid sampling from U ′
pk by chance. We require that

PPRFs satisfy the following security requirements:

Efficiently Samplable and Explainable Domain: For every pk given by
Genspl, set U is efficiently samplable and explainable [12], that is, there is an
efficient sampling algorithm on U that takes pk and random coins R and out-
puts u uniformly from Upk. In addition, for every u ∈ Upk, there is an efficient
explaining algorithm that takes pk and u and outputs random coins R behind
u, where R is uniformly distributed subject to sample(Upk;R) = u.

Pseudo Randomness: Any adversary A, given pk generated by Genspl(1κ),
cannot distinguish whether it has had access to Spl(pk, w, ·) or U(·). Here U is the
following oracle: If Spl(pk, w, ·) is a deterministic algorithm, U : {0, 1}κ → Upk

is a random oracle. (Namely, it returns the same (random) value on the same
input.) If Spl(pk, w, ·) is probabilistic, then U(·) picks up a fresh randomness

u
U← Upk for each query t. We say that PPRF is pseudo random if, for all non-

uniform PPT A, AdvprfPPRF,A(κ) =
∣∣∣Pr[ExptprfPPRF,A(κ) = 1]− Pr[ExptprfU,A(κ) = 1]

∣∣∣
is negligible in κ, where ExptprfPPRF,A(κ) and ExptprfU,A(κ) are defined in Fig. 1.

Unforgeability (on L̂pk): Let L̂pk(t) be some super set of Lpk(t). Let L̂pk =

{(t, u) | t ∈ {0, 1}κ and u ∈ L̂pk(t)}. We define the game of unforgeability on

L̂pk as follows: An adversary A takes pk generated by Genspl(1κ) and may have

access to Spl(pk, w, ·). The aim of the adversary is to output (t∗, u∗) ∈ L̂pk such

that t∗ has not been queried. We say that PPRF is unforgeable on L̂pk if, for all
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ExptprfPPRF,A(κ):

(pk,w) ← Genspl(1κ)

b← ASpl(pk,w,·)(pk)
return b.

ExptprfU,A(κ):

(pk,w)← Genspl(1κ)

b← AU(·)(pk)
return b.

Fig. 1. The experiments, ExptprfPPRF,A(κ) and ExptprfU,A(κ)

Expteuf-L̂PPRF,A(κ):

(pk,w) ← Genspl(1κ)

(t∗, u∗)← ASpl(pk,w,·)(pk)
If t∗ has not been queried

and u∗ ∈ L̂pk(t
∗),

return 1; otherwise 0.

Exptseuf-L̂PPRF,A(κ):

(pk,w)← Genspl(1κ)

(t∗, u∗)← ASpl(pk,w,·)(pk)
(t∗, u∗) ∈ QA

and u∗ ∈ L̂pk(t
∗),

return 1; otherwise 0.

Fig. 2. The experiments of unforgeability (in the left) and strong unforgeability (in the
right)

non-uniform PPT A, Adveuf-L̂PPRF,A(κ) = Pr[Expteuf-L̂PPRF,A(κ) = 1] (where Expteuf-L̂PPRF,A

is defined in Fig. 2) is negligible in κ.
In some application, we require a stronger requirement, where in the same

experiment above, it is difficult for the adversary to output (t∗, u∗) in L̂pk,
which did not appear in the query/answer list QA. We say that PPRF is

strongly unforgeable on L̂pk if, for all non-uniform PPT A, Advseuf-L̂PPRF,A(κ) =

Pr[Exptseuf-L̂PPRF,A(κ) = 1] (where Exptseuf-L̂PPRF,A is defined in Fig. 2) is negligible
in κ.

We remark that (strong) unforgeability implies (1) that L̂pk should be small

enough in U ′
pk to avoid sampling from L̂pk by chance, and (2) that, if Spl is a

DPT algorithm and L̂pk = Lpk, it is implied by pseudo randomness.

3.2 Extractable Sigma Protocol

An extractable sigma protocol, extΣ = (Genext, comΣ, chΣ, ansΣ, simΣ, Vrfy,
Dec) is a sigma protocol, associated with two algorithms, Genext and Dec, with
the following properties.

– Genext is an PPT algorithm that takes 1κ and outputs (pk, sk), such that
pk defines the entire set U ′

pk, and two sub disjoint sets, Lpk and Lext
pk , i.e.,

Lpk ∪ Lext
pk ⊂ U ′

pk and Lpk ∩ Lext
pk = ∅. We also require that Lpk determines

binary efficiently recognizable set Rpk such that Lpk = {x|∃w : (x,w) ∈
Rpk}.

– comΣ is a PPT algorithm that takes pk and (x,w) ∈ Rpk, picks up inner
coins ra, and outputs a.

– chΣ(pk) is a publicly-samplable set determined by pk.
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– ansΣ is a DPT algorithm that takes (pk, x, ra, e), where e ∈ chΣ(pk), and
outputs z.

– Vrfy is a DPT algorithm that accepts or rejects (pk, x, a, e, z).

– simΣ is a PPT algorithm that takes (pk, x, e) and outputs (a, e, z) = simΣ
(pk, x, e; rz), where rz ← COINsim. We additionally require that rz = z.
Namely, (a, e, rz) = simΣ(pk, x, e; rz).

– Dec is a DPT algorithm that takes (sk, x, a) and outputs e or ⊥.

We require that extΣ satisfies the following properties:

Completeness: For every (pk, sk) ∈ Genext(1κ), every (x,w) ∈ Rpk, every ra
(in an appropriate specified domain) and every e ∈ chΣ(pk), it always holds that
Vrfy(x, comΣ(x,w; ra), e, ansΣ(x,w, ra, e)) = 1.

Special Soundness: For every (pk, sk) ∈ Genext(1κ), every x ∈ U ′
pk\Lpk and

every a, there is unique e ∈ chΣ(pk) if there is an accepting conversation for a
on x. We say that a pair of two different accepting conversations for the same a
on x, i.e., (a, e, z) and (a, e′, z′), with e �= e′, is a collision on x.

Enhanced Honest-Verifier Statistical Zero-Knowledgeness (eHVSZK):
For every (pk, sk) ∈ Genext(1κ), every (x,w) ∈ Rpk, and every e ∈ chΣ(pk), the
following ensembles are statistically indistinguishable in κ:

{(comΣ(pk, x, w; ra), e, ansΣ(pk, x, w, ra, e))} (pk, sk) ∈ Genext(1κ), (x,w) ∈ Rpk,
e ∈ chΣ(pk), κ ∈ N.

s≈{simΣ(pk, x, e; rz)}(pk,sk)∈Genext(1κ),(x,w)∈Rpk,e∈chΣ(pk),κ∈N

Here the probability of the left-hand side is taken over random variable rz
and the right-hand side is taken over random variable ra. We remark that
since (a, e, rz) = simΣ(pk, x, e; rz), we have Vrfy(pk, x, a, e, z) = 1 if and only
if (a, e, z) = simΣ(pk, x, e; z). Therefore, one can instead use simΣ to verify
(a, e, z) on x.

Extractability: For every (pk, sk) ∈ Genext(1κ), every x ∈ Lext
pk , and every a

such that there is an accepting conversation for a on x, Dec always outputs
e = Dec(sk, x, a) such that (a, e, z) is an accepting conversation on x. We note
that, when x �∈ Lpk, e is unique given a, due to the special soundness property.
Therefore, the extractability is well defined because Lpk ∩ Lext

pk = ∅.

4 ABM Encryption

All-but-many encryption scheme ABM.Enc = (ABM.gen, ABM.spl, ABM.enc,
ABM.dec, ABM.col) consists of the following algorithms:

– ABM.gen is a PPT algorithm that takes 1κ and outputs (pk, (sk, w)), where
pk defines a set Upk. We let U ′

pk = {0, 1}κ × Upk. pk also determines two

disjoint sets, Ltd
pk and Lext

pk , such that Ltd
pk ∪ Lext

pk ⊂ U ′
pk.



All-But-Many Encryption 435

– ABM.spl is a PPT algorithm that takes (pk, w, t), where t ∈ {0, 1}κ, picks up
inner random coins v ← COINspl, and computes u ∈ Upk. We write Ltd

pk(t) to
denote the image of ABM.spl on t under pk, i.e.,

Ltd
pk(t) := {u ∈ Upk | ∃w, ∃ v : u = ABM.spl(pk, w, t; v)}.

We require Ltd
pk = {(t, u) | t ∈ {0, 1}κ and u ∈ Ltd

pk(t)}. We set L̂td
pk :=

U ′
pk\Lext

pk . Since L
td
pk ∩ Lext

pk = ∅, we have Ltd
pk ⊆ L̂td

pk ⊂ U ′
pk.

– ABM.enc is a PPT algorithm that takes pk, (t, u) ∈ U ′
pk, and message x

∈ MSP, picks up inner random coins r ← COINenc, and computes c =
ABM.enc(t,u)(pk, x; r), where MSP denotes the message space uniquely de-
termined by pk, whereas COINenc denotes the inner coin space uniquely de-
termined by pk and x2.

– ABM.dec is a DPT algorithm that takes sk, (t, u), and ciphertext c, and

outputs x = ABM.dec(t,u)(sk, c).
– ABM.col = (ABM.col1,ABM.col2) is a pair of PPT and DPT algorithms,

respectively, such that

• ABM.col1 takes (pk, (t, u), w, v) and outputs (c, ξ) ← ABM.col
(t,u)
1 (pk, w,

v), where v ∈ COINspl.
• ABM.col2 takes ((t, u), ξ, x), with x ∈ MSP, and outputs r ∈ COINenc.

We require that all-but-many encryption schemes satisfy the following prop-
erties:

1. Adaptive All-but-many property: (ABM.gen,ABM.spl) is a probabilistic
pseudo random function (PPRF) as defined in Sect. 3.1 with unforgeability

on L̂td
pk(= U ′

pk\Lext
pk ).

2. Dual mode property:
– (Decryption mode) For every κ∈N, every (pk, (sk, w)) ∈ ABM.gen(1κ),

every (t, u)∈Lext
pk , and every x ∈ MSP, it always holds that

ABM.dec(t,u)(sk,ABM.enc(t,u)(pk, x)) = x.

– (Trapdoor mode) Define the following random variables:
distenc(t, pk, sk, w, x) denotes random variable (u, c, r) defined as follows:

v ← COINspl; u = ABM.spl(pk, w, t; v); r ← COINenc; c=ABM.enc(t,u)(pk,
x; r). distcol(t, pk, sk, w, x) denotes random variable (u, c, r) defined as fol-

lows: v ← COINspl; u = ABM.spl(pk, w, t; v); (c, ξ) =ABM.col
(t,u)
1 (pk, w,

v); r = ABM.col
(t,u)
2 (ξ, x). Then, the following ensembles are statistically

indistinguishable in κ:

2 We allow the inner coin space to depend on messages to be encrypted, in order
to be consistent with our weak ABM encryption scheme from general assumption
appeared in the full version [14]
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distenc(t, pk, sk, w, x)

}
(pk,(sk,w))∈ABM.gen(1κ),t∈{0,1}κ,x∈MSP,κ∈N

s≈
{
distcol(t, pk, sk, w, x)

}
(pk,(sk,w))∈ABM.gen(1κ),t∈{0,1}κ,x∈MSP,κ∈N

We say that a ciphertext c on (t, u) under pk is valid if there exist x ∈ MSP and

r ∈ COINenc such that c = ABM.enc(t,u)(pk, x; r). We say that a valid ciphertext
c on (t, u) under pk is real if (t, u) ∈ Lext

pk , otherwise fake. We remark that as
long as c is a real ciphertext, regardless of how it is generated, there is only one
consistent x in MSP and it is equivalent to ABM.dec(t,u)(sk, c).

5 ABME from extΣ on Language Derived from PPRF

Let PPRF = (Genspl, Spl) be a PPRF and let extΣ = (Genext, Σ,Dec) be an
extractable sigma protocol.

Assume the following conditions hold.

– The first output of Genext(1κ) is distributed identically to the first output of
Genspl(1κ).

– For every Lpk generated by Genext, Lpk is the language derived from PPRF;
namely, Lpk = {(t, u) | ∃(w, v) : t ∈ {0, 1}κ, u = Spl(pk, w, t; v)}.

– For (Lpk, L
ext
pk , U

′
pk) generated by Genext, PPRF is unforgeable on L̂pk, where

L̂pk := U ′
pk\Lext

pk .

Then, we can construct an ABME scheme as described in Fig. 3.

– ABM.gen(1κ) runs Genext(1κ) to output (pk, sk). It chooses w ← KSPspl
pk and

finally outputs (pk, (sk, w)). We note that by a precondition the distribution
of pk from Genext(1κ) is identical to that of Genspl(1κ).

– ABM.spl(pk,w, t; v) outputs u := Spl(pk,w, t; v) where v
U← COINspl.

– ABM.enc(t,u)(pk,m; r) runs (a,m, r)← simΣ(pk, (t, u),m; r) to return the first

output a, where r
U← COINenc

pk (:= COINsim
pk ).

– ABM.dec(t,u)(sk, c) outputs m = Dec(sk, (t, u), c).

– ABM.col
(t,u)
1 (pk,w, v; ra) outputs (c, ξ) such that c :=

comΣ(pk, (t, u), (w, v); ra), and ξ := (pk, t, u, w, v, ra).

– ABM.col
(t,u)
2 (ξ,m) outputs r := ansΣ(pk, (t, u), w, v, ra,m), where ξ =

(pk, t, u, w, v, ra).

Fig. 3. ABME from extΣ on language derived from PPRF

By construction, the adaptive all-but-many property holds in the resulting
scheme. The dual mode property also holds because: (a) If (t, u) ∈ Lext

pk , the first
output of simΣ(pk, (t, u),m) is perfectly binding to challenge m due to special
soundness (because Lext

pk ⊂ U ′
pk\Ltd

pk, with L
td
pk := Lpk), and m can be extracted
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given (pk, (t, u), a) using sk due to extractability. (b) If (t, u) ∈ Ltd
pk, ABM.col

runs the real sigma protocol with witness (w, v). Therefore, it can produce a fake
commitment that can be opened in any way, while it is statistically indistinguish-
able from that of the simulation algorithm simΣ (that is run by ABM.enc), due
to enhanced HVSZK. Therefore, the resulting scheme is ABME.

6 Fully-Equipped UC Commitment from ABME

We show that ABME implies fully-equipped UC commitment.
We work in the standard universal composability (UC) framework of Canetti

[4]. We concentrate on the same model in [5] where the network is asynchronous,
the communication is public but ideally authenticated, and the adversary is
adaptive in corrupting parties and is active in its control over corrupted parties.
Any number of parties can be corrupted and parties cannot erase any of their
inner state. We consider UC commitment schemes that can be used repeatedly
under a single common reference string. The multi-commitment ideal function-
ality FMCOM from [6] is the ideal functionality of such commitments, which is
given in Figure 4.

A fully-equipped UC commitment scheme is constructed as follows: A trusted
party chooses and puts pk of ABME in the common reference string. In the
commit phase, committer Pi takes tag t = (sid, ssid, Pi, Pj) and message x
committed to. It then picks up random u from Upk and compute an ABM en-

cryption c = ABM.enc(t,u)(pk, x; r) to send (t, u, c) to receiver Pj , which outputs
(receipt, sid, ssid, Pi, Pj). In the reveal phase, Pi sends (x, r) to Pj and Pj

accepts if and only if c = ABM.enc(t,u)(pk, x; r). If Pj accepts, he outputs x,
otherwise do nothing. The formal description is given in the full version [14].

Theorem 1. The proposed commitment scheme from ABME UC-securely real-
izes the FMCOM functionality in the FCRS-hybrid model in the presence of adaptive
adversaries in the non-erasure model.

Proof (Sketch). The formal proof is given in the full version [14]. We here

sketch the essence. We consider the man-in-the-middle attack, where we show
that the view of environment Z in the real world (in the CRS model) can be
simulated in the ideal world. Let Pi, Pj be honest players and let Pi′ be a
corrupted player controlled by adversary A. In the man-in-the-middle attack,
Pi′ (i.e., A) is simultaneously participating in the left and right interactions. In
the left interactions, A interacts with Pi, as playing the role of the receiver. In
the right interactions, A interacts with Pj , as playing the role of the committer.

The following sketch corresponds to security proof in the (static) man-in-the-
middle attack. It is not difficult to handle the adaptive case if this case has been
proven secure.

In the Ideal World, A actually interacts with simulator S in both interactions,
where S pretends to be Pi and Pj respectively. In the left interactions, environ-
ment Z sends (commit, sid, ssid, Pi, Pi′ , x) to the ideal commitment function-
ality FMCOM (via honest Pi). After receiving (receipt, sid, ssid, Pi, Pi′ ) from
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FMCOM, S starts the commitment protocol as the committer without given mes-
sage x. It sends to A (u, c) on t = (sid, ssid, Pi, Pi′) as computed in Table 1. In
the decommitment phase when Z sends (open, sid, ssid) to FMCOM (via hon-

est Pi), S receives x from FMCOM and then computes r = ABM.col
(t,u)
2 (ξ, x) to

send (t, x, r) to A. In the right interactions, S receives (t′, u′, c′) from A where

t′ = (sid′, ssid′, Pi′ , Pj). It then extracts x̃ = ABM.dec(t
′,u′)(sk, c′) to send to

FMCOM. FMCOM then sends (receipt, sid, ssid, Pi′ , Pj) to environment Z (via
honest Pj). In the decommitment phase when A opens (t′, u′, c′) correctly with
(x′, r′), S sends (open, sid, ssid) to FMCOM; otherwise, do nothing. Upon receiv-
ing (open, sid, ssid), if the same (sid, ssid, ..) was previously recorded, FMCOM

sends stored x̃ to environment Z (via honest Pj); otherwise, do nothing. We
note that in the ideal world, honest parties convey inputs from Z to the ideal
functionalities and vice versa. The view of Z consists of the view of A plus the
value sent by FMCOM.

In HybridFcrs (the real world in the CRS model), A interacts with real
(committer) Pi in the left interactions, and real (receiver) Pj in the righ interac-
tions. In the right interactions, at the end of the decommitment phase, Pj sends
x′ to Z if A has opened (t′, u′, c′) correctly with (x′, r′). The view of Z consists
of the view of A plus the value sent by Pj .

The goal is to prove that the two views of Z above are computationally
indistinguishable. As usual, we consider a sequence of hybrid games on which
the probability spaces are identical, but we change the rules of games step by
step. See Table 1 for summary.

Hybrid Game 1 is identical to the ideal world except that in the left inter-
actions, at the beginning of the commitment phase, S (as Pi) is given message x on
tag t = (sid, ssid, Pi, Pi′) by FMCOM. S computes u ← ABM.spl(pk, w, t), and

c = ABM.enc(t,u)(pk, x; r), picking up random r, to send (t, u, c) to adversary A.
In the decommitment phase, S sends (t, x, r) to A.

Hybrid Game 2 is identical to Hybrid Game 1 except that in the right
interactions, after receiving (t′, u′, c′), S2 sends ε to FMCOM. In the decommitment
phase when A opens (t′, u′, c′) correctly with (x, r), S sends (open, sid, ssid, x′)
to FMCOM. FMCOM sends x′ to environment Z (via ideal P̃j), instead of sending ε.

Hybrid Game 3 is identical to Hybrid Game 2 except that in the left interac-
tions, S instead picks up random u← Upk and computes c = ABM.enc(t,u)(pk, x; r),
to send (t, u, c) to A.

[Ideal ⇒ Hybrid1] The two views of Z between the ideal world and Hybrid1 are
statistically close, due to the trapdoor mode property.

[Hybrid1 ⇒ Hybrid2] We note that the distance of the two views of Z between
Hybrid1 and Hybrid2 is bounded by the following event. Let BDI denote the event
in Hybrid Game I (I ∈ {1, 2}) that S receives a fake ciphertext (t′, u′, c′) from
A, i.e., (t′, u′) ∈ Ltd

pk, in the right intersections. If this event does not occur,
the view of Z in both games are identical, which means ¬BD1 = ¬BD2. Hence,
the distance of the views of Z in the two games is bounded by Pr[BD], where
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BD := BD1 = BD2. We then evaluate Pr[BD] in Hybrid Game 2. (We note that
we might not generally evaluate the probability in Hybrid Game 1, because S
must decrypt (t′, u′, c′), which seems that it needs sk, but knowing sk implies
some information on w.) We want to suppress Pr[BD] by using the assumption

that (ABM.gen, ABM.spl) is unforgeable on L̂td
pk. In Hybrid Game 2, we can

construct an adversary B that breaks unforgeability of (ABM.gen,ABM.spl) on

L̂td
pk as follows. In the left and right interactions, B simulates the role of S and

interacts withA. B uses ABM.spl(pk, w, ·) as oracle to play the role of S in the left
interaction. After A halts, B outputs (t′, u′) at random from the communication
with A in the right interactions. We note that, since the communication channel
is fully authenticated, it holds that t′ �= t for all t, t′, because t = (", ", Pi, Pi′)

and t′ = (", ", Pi′ , Pj). If (t
′, u′) ∈ L̂td

pk, B succeeds in breaking unforgeability on

L̂td
pk, which is upper-bounded by some negligible function. Since event BD occurs

at most with the success probability of B. Hence, its probability is negligible,
too.

[Hybrid2 ⇒ Hybrid3] It is obvious by construction that the distance of the
two views of Z between Hybrid2 and Hybrid3 is bounded by the advantage of
pseudo-randomness of (ABM.gen, ABM.spl).

[Hybrid3 ⇒ HybridFMCOM] By construction, the two views of Z between Hybrid3

and HybridFMCOM are identical.
Therefore, the two views of Z between the ideal world and HybridFMCOM are

computationally close.

Table 1. The man-in-the-midle attack in the hybrid games

Games Pi(S)
(t,u,c)−→ Corr. Pi′ (A)

(t′,u′,c′)−→ Pj(S)
(t′,x̃)−→ FMCOM

u = ABM.spl(pk, w, t; v)

Ideal (c, ξ) = ABM.col
(t,u)
1 (pk, w, v) (t′, u′, c′) x̃ = x̃

open: x, r = ABM.col
(t,u)
2 (ξ, x) open: (x′, r′) ABM.dec(t

′,u′)(sk, c′)
u ← ABM.spl(pk, w, t)

Hybrid1 c = ABM.enc(t,u)(pk, x, r) (t′, u′, c′) x̃ = x̃

open: x, r open: (x′, r′) ABM.dec(t
′,u′)(sk, c′)

u ← ABM.spl(pk, w, t)

Hybrid2 c = ABM.enc(t,u)(pk, x, r) (t′, u′, c′) x̃ = ε x′

open: x, r open: (x′, r′)
u ← Upk

Hybrid3 c = ABM.enc(t,u)(pk, x, r) (t′, u′, c′) x̃ = ε x′

open: x, r open: (x′, r′)

Pi
(t,u,c)−→ Corr. Pi′ (A)

(t′,u′,c′)−→ Pj Pj

u ← Upk

HybridFcrs c = ABM.enc(t,u)(pk, x, r) (t′, u′, c′) x′

open: x, r open: (x′, r′)

Here t = (sid, ssid, Pi, Pi′) and t′ = (sid′, ssid′, Pi′ , Pj). The view of Z consists
of the view of A plus the contents in the rightest column.
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7 Compact ABME from Damg̊ard-Jurik PKE

Damg̊ard-Jurik PKE. LetΠ = (K,E,D) be a tuple of algorithms of Damg̊ard-
Jurik (DJ) PKE [9]. A public key of DJ PKE is pkdj = (n, d) and the corre-
sponding secret-key is skdj = (p, q) where n = pq is a composite number of
distinct odd primes, p and q, and 1 ≤ d < p, q is a positive integer (when
d = 1 it is Paillier PKE [23]). We often write Π(d) to clarify parameter d. We
let g := (1 + n). To encrypt message x ∈ Znd , one computes Epkdj

(x;R) =

gxRnd

(mod nd+1) where R ← Z×
n
3. For simplicity, we write E(x) instead of

Epkdj
(x), if it is clear. DJ PKE is enhanced additively homomorphic, mean-

ing that, for every x1, x2 ∈ Znd and every R1, R2 ∈ Z×
n , one can efficiently

compute R such that E(x1 + x2;R) = E(x1;R1) · E(x2;R2). Actually it can
be done by computing R = gγR1R2 (mod n), where γ is an integer such that
x1 + x2 = γnd + ((x1 + x2) mod nd). It is known that Z×

nd+1 is isomorphic to

Znd ×Z×
n (the product of a cyclic group of order nd and a group of order φ(n)),

and, for any d < p, q, element g = (1 + n) has order nd in Z×
nd+1 [9]. Therefore,

Z×
nd+1 is the image of E(·; ·). We note that it is known that Z×

nd+1 is efficiently
samplable and explainable [10,12]. It is also known that DJ PKE is IND-CPA if
the DCR assumption holds true [9].

Construction Idea. (ABM.gen,ABM.spl) below forms Waters-like signature
scheme based on DJ PKE, where there is no verification algorithm and the
signatures look pseudo random assuming that DJ PKE is IND-CPA. We then
construct an extractable sigma protocol on the language derived from (ABM.gen,
ABM.spl), as discussed in Sect. 5. Here, the decryption algorithm works only
when the matrix below in (3) is invertible, which is equivalent to that (t, (ur, ut))
∈ Lext

pk , where L
ext
pk =

{(t, (ur, ut))|D(ut) ≡ x1x2 + y(t)D(ur) mod p ∧ D(ut) ≡ x1x2 + y(t)D(ur) mod q}.

Therefore, we require that (ABM.gen,ABM.spl) should be unforgeable on L̂td
pk(=

U ′
pk\Lext

pk ). To prove this, we additionally require two assumptions on DJ PKE,
called the non-multiplication assumption and the non-trivial divisor assumption,
described in Appendix C. The first one is an analogue of the DH assumption
in an additively homomorphic encryption. If we consider unforgeability on Ltd

pk,

this assumption suffices, but we require unforgeability on L̂td
pk. Then we need the

latter assumption, too. These two assumptions are originally introduced in [18]
to obtain a DCR-based ABM-LTF.

3 In the original scheme, R is chosen from Z×
nd+1 . However, since Z×

n is isomorphic to

the cyclic group of order nd in Z×
nd+1 by mapping R ∈ Z×

n to Rnd ∈ Z×
nd+1 , we can

instead choose R from Z×
n .
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7.1 ABME from Damg̊ard-Jurik with Optimal Expansion Factor
Ω(1)

– ABM.gen(1κ): It gets (pkdj, skdj) ← K(1κ) (the key generation algorithm for

DJ PKE), where pkdj = (n, d) and skdj = (p, q). It then picks up x1, x2
U←

Znd , R1, R2
U← Z×

nd+1 , and computes g1 = E(x1;R1) and g2 = E(x2;R2). It

then picks up h̃← E(1) and computes h = (h0, . . . , hκ) such that hj := h̃yj

where yj
U← Znd+1 for j = 0, 1, . . . , κ. Let H(t) = h0

∏κ
i=1 h

ti
i (mod nd+1)

and let y(t) = y0 +
∑κ

i=1 yiti (mod nd), where (t0, . . . , tκ) represents the

bit string of t. We note that H(t) = h̃y(t). It outputs (pk, (sk, w)) where
pk := (n, d, g1, g2,h), sk := (p, q) and w := x2, where we define U ′

pk :=

{0, 1}κ×(Z×
nd+1)

2 that contains the disjoint sets of Ltd
pk and Lext

pk as described
below.

– ABM.spl(pk, x2, t; (r, Rr, Rt)): It chooses r ← Znd and outputs u := (ur, ut)
such that ur := E(r;Rr) and ut := gx2

1 E(0;Rt)·H(t)
r
whereRr, Rt ← Z×

nd+1 .

We let Ltd
pk = {(t, (ur, ut)) | ∃(x2, (r, Rr, Rt)) : ur = E(r, ;Rr) and ut =

gx2
1 E(0;Rt)H(t)r}. We then define Lext

pk = {(t, (ur, ut)) |D(ut) �≡ x1x2 +
y(t)D(ur) mod p ∧ D(ut) �≡ x1x2 + y(t)D(ur) mod q}. Since (t, (ur, ut)) ∈
Ltd
pk holds if and only if D(ut) ≡ x1x2 + y(t)D(ur) (mod nd), it implies that

D(ut) ≡ x1x2 + y(t)D(ur) (mod n). Hence, Ltd
pk ∩ Lext

pk = ∅.
– ABM.enc(t,(ur,ut))(pk,m; (z, s, RA, Ra, Rb)): To encrypt message m ∈ Znd ,

it chooses z, s
U← Znd and computes A := gz1H(t)sumt R

nd

A (mod nd+1),
a := E(z;Ra) · gm2 (mod nd+1) and b := E(s;Rb) · umr (mod nd+1), where

RA, Ra, Rb
U← Z×

nd+1 . It outputs c := (A, a, b) as the ciphertext of m on
(t, (ur, ut)).

– ABM.dec(t,(ur,ut))(sk, c): To decrypt c = (A, a, b), it outputs

m :=
x1D(a) + y(t)D(b)−D(A)

x1x2 − (D(ut)− y(t)D(ur))
mod nd. (2)

– ABM.col
(t,(ur,ut))
1 (pk, x2, (r, Rr, Rt)): It picks up ω, η

U← Znd , R′
A, R

′
a, R

′
b

U←
Z×
nd+1 . It then computes A := gω1 · H(t)η · R′

A
nd

(mod nd+1), a := gωR′
a
nd

(mod nd+1), and b := gηR′
b
nd

(mod nd+1). It outputs c := (A, a, b) and
ξ := (x2, (r, Rr, Rt), (ur, ut), ω, η, R

′
A, R

′
a, R

′
b).

– ABM.col2(ξ,m): To open c to m, it computes z = ω − mx2 mod nd, s =
η−mr mod nd, α = �(ω−mx2−z)/nd�, and β = �(η−mr−s)/nd�. It then
sets RA := R′

A ·R−m
t ·gα1 ·H(t)

β
(mod nd+1), Ra := R′

a·R−m
2 ·gα (mod nd+1),

and Rb := R′
b · R−m

r · gβ (mod nd+1). It outputs (z, s, RA, Ra, Rb), where

A = gz1H(t)sumt R
nd

A (mod nd+1), a = E(z;Ra) · gm2 (mod nd+1), and b =
E(s;Rb) · umr (mod nd+1).

We note that ABM.col runs a canonical sigma protocol on Ltd
pk to prove

that the prover knows (x2, (r, Rr, Rt)) such that ur = Epk(r;Rr) and ut =
gx2
1 Epk(0;Rt)H(t)r . Hence, the trapdoor mode works correctly when (t, (ur, ut))
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∈ Ltd
pk. On the contrary, ABM.enc runs a simulation algorithm of the sigma pro-

tocol with message (challenge) x. Notice that (A, a, b) implies the following linear
system on Znd , ⎛⎝D(A)

D(a)
D(b)

⎞⎠ =

⎛⎝x1 y(t) D(ut)
1 0 x2
0 1 D(ur)

⎞⎠⎛⎝ z
s
m

⎞⎠ (3)

The matrix is invertible if

D(ut) �= (x1x2+y(t)D(ur)) (mod p) and D(ut) �= (x1x2+y(t)D(ur)) (mod q),

which means that (t, (ur, ut)) ∈ Lext
pk . Hence, the decryption mode works cor-

rectly.

Lemma 1 (Implicit in [18]). (ABM.gen,ABM.spl) is PPRF with unforgeabil-

ity on L̂td
pk(= U ′

pk\Lext
pk ), under the assumptions, 3, 4, and 5.

The proof is given in the full version [14]. By this lemma, we have:

Theorem 2. The scheme constructed as above is an ABME scheme if the DCR
assumption (Assumption 3), the non-tirvial divisor assmuption (Assumption 4),
and the non-multiplication assumption (Assumption 5) hold true.

This scheme has a ciphertext consisting of only 5 group elements (including
(ur, ut)) and optimal expansion factor Ω(1). This scheme requires a public-key
consisting of κ+ 3 group elements along with some structure parameters.

8 ABM-LTF Based ABME and Vice Versa

Hofheinz [18] has presented the notion of all-but-many lossy trapdoor func-
tion (ABM-LTF). We provide the definition in Appendix B. We remark that
ABM-LTF requires that, in our words, (ABM.gen, ABM.spl) be strongly un-
forgeable, whereas ABME only requires it be unforgeable. However, as shown
in [18], unforgeable PPRF can be converted into strongly unforgeable PPRF via
a chameleon commitment scheme. Therefore, this difference is not important.
We note that we can regard Hofheinz’s DCR-based ABM-LTF (with only un-
forgeability) as a special case of our DCR-based ABME scheme by fixing a part
of the coin space as (RA, Ra, Rb) = (1, 1, 1). Although the involved matrix of his
original scheme is slightly different from ours, the difference is not essential. In
the end, we can regard Hofheinz’s DCR-based ABM-LTF as

ABM.eval(t,(ur ,ut))(pk, (m, z, s)) := ABM.enc(t,(ur,ut))(pk,m; (z, s, 1, 1, 1)),

where (m, z, s) denotes a message. This ABM-LTF has ((d− 1) logn)-lossyness.
In the latest e-print version [18], Hofheinz has shown that his DCR-based ABM-
LTF can be converted to SIM-SO-CCA PKE. To construct it, Hofheinz implicitly
considered the following PKE scheme such that

ABM.enc(t,(ur,ut))(pk,M ; (m, z, s)) :=(ABM.eval(t,(ur ,ut))(pk, (m, z, s)),

M ⊕H(m, z, s)),
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where H is a suitable 2-universal hash function from (Znd)3 to {0, 1}κ (κ <
n). According to the analysis in Sect. 7.2 in [18], if d ≥ 5, it can open an
ciphertext arbitrarily using Barvinok’s alogorithm, when (t, (ur, ut)) ∈ Lloss.
Then it turns out ABME in our words. For practical use, it is rather inefficient,
because its expansion rate of ciphertext length per message length is ≥ 31, and
the modulus of ≥ n6 is required. The opening algorithm is also costly. Table 2
shows comparison.

Table 2. Comparison among ABMEs

ABME expansion factor ciphertext-length message-length pk-length

ABME from [18] ≥ 31∗ (5(d+ 1) + 1) log n log n (κ+ 3)d log n

Sect. 7.1 (d ≥ 1) 5 + 1/d 5(d + 1) log n d log n (κ+ 3)d log n

∗ : d ≥ 5 is needed.

On the contrary, our DCR-based ABME (strengthened with strong unforge-
ability) can be converted to ABM-LTF. Remember that (A, a, b) =

ABM.enc(t,(ur,ut)) (pk,m; (z, s, RA, Ra, Rb)). It is obvious that we can extract
not only message m but (z, s) by inverting the corresponding matrix, but we
point out that we can further retrieve (RA, Ra, Rb), too. This mean that our
DCR based ABME turns out ABM-LTF. Indeed, after extracting (m, z, s) from

(A, a, b), we have (RA)
nd

, (Ra)
nd

, (Rb)
nd

in Z×
nd+1 . We remark that RA, Ra, Rb lie

not in Z×
nd+1 but in (Z/nZ)×. So, letting α = rn

d

mod nd+1 where r ∈ (Z/nZ)×,

r = α(nd)−1

mod n is efficiently solved by φ(n). Thus, our DCR based ABME
turns out ABM-LTF with (d logn)-lossyness for any d ≥ 1, whereas Hofheinz’s
DCR based ABM-LTF is ((d− 3) logn)-lossy.

Table 3. Comparison among ABM-LTFs

ABM-LTF exp. factor output-length input-length lossyness

ABM-LTF [18] 5/3 (5(d+ 1) + 1) log n 3d log n (d− 3) log n

ABM-LTF from Sect. 7 5/3 (5(d+ 1) + 1) log n 3(d+ 1) log n d log n
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A Ideal Multi-commitment Functionality

Functionality FMCOM

FMCOM proceeds as follows, running with parties, P1, . . . , Pn, and an adversary S :

– Commit phase: Upon receiving input (commit, sid, ssid, Pi, Pj , x) from
Pi, proceed as follows: If a tuple (commit, sid, ssid, . . . ) with the same
(sid, ssid) was previously recorded, does nothing. Otherwise, record the tuple
(sid, ssid, Pi, Pj , x) and send (receipt, sid, ssid, Pi, Pj) to Pj and S .

– Reveal phase: Upon receiving input (open, sid, ssid) from Pi, proceed as
follows: If a tuple (sid, ssid, Pi, Pj , x) was previously recorded, then send
(reveal, sid, ssid, Pi, Pj , x) to Pj and S . Otherwise, does nothing.

Fig. 4. The ideal multi-commitment functionality

B All-But-Many Lossy Trapdoor Functions

We recall all-but-many lossy trapdoor functions (ABM-LTF) [18], by slightly
modifying the notation to fit our purpose. All-but-many lossy trapdoor function
ABM.LTF = (ABM.gen,ABM.spl,ABM.eval,ABM.inv) consists of the following
algorithms:

– ABM.gen is a PPT algorithm that takes 1κ and outputs (pk, (sk, w)), where
pk defines a set Upk. We let U ′

pk = {0, 1}κ × Upk. pk also determines two

disjoint sets, Lloss
pk and Linj

pk, such that Lloss
pk ∪ Linj

pk ⊂ U ′
pk.

http://eprint.iacr.org/2011/180
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– ABM.spl is a PPT algorithm that takes (pk, w, t), where t ∈ {0, 1}κ, picks up
inner random coins v ← COINspl, and computes u ∈ Upk. We write Lloss

pk (t)
to denote the image of ABM.spl on t under pk, i.e.,

Lloss
pk (t) := {u ∈ Upk | ∃w, ∃ v : u = ABM.spl(pk, w, t; v)}.

We require Lloss
pk = {(t, u) | t ∈ {0, 1}κ and u ∈ Lloss

pk (t)}. We set L̂loss
pk :=

U ′
pk\L

inj
pk. Since L

loss
pk ∩ Linj

pk = ∅, we have Lloss
pk ⊆ L̂loss

pk ⊂ U ′
pk.

– ABM.eval is a DPT algorithm that takes pk, (t, u), and message x ∈ MSP and

computes c = ABM.eval(t,u)(pk, x), where MSP denotes the message space
uniquely determined by pk.

– ABM.inv is a DPT algorithm that takes sk, (t, u), and c, and computes x

= ABM.inv(t,u)(sk, c).

All-but-many encryption schemes require the following properties:

1. Adaptive All-but-many property: (ABM.gen,ABM.spl) is a probabilistic
pseudo random function (PPRF), as defined in Sect. 3.1, with strongly un-

forgeability on L̂loss
pk = U ′

pk\L
inj
pk. Strong unforgeability in this paper is called

evasiveness in [18].
2. Inversion For every κ ∈ N, every (pk, (sk, w)) ∈ ABM.gen(1κ), every (t, u) ∈
Linj
pk, and every x ∈ MSP, it always holds that

ABM.inv(t,u)(sk,ABM.eval(t,u)(pk, x)) = x.

3. �-Lossyness For every κ ∈ N, every (pk, (sk, w)) ∈ ABM.gen(1κ), and every

(t, u) ∈ Lloss
pk , the image set ABM.eval(t,u)(pk,MSP) is of size at most |MSP| ·

2−�.

Here Lloss
pk (resp. Linj

pk) in ABM-LTFs corresponds to Ltd
pk (resp. L

ext
pk ) in ABMEs.

We remark that ABM-LTFs [18] require that (ABM.gen,ABM.spl) should be
strongly unforgeable, whereas ABMEs requires that (ABM.gen,ABM.spl) be just
unforgeable.

C Assumptions and Some Useful Lemmas

Let us write Π(d) to denote DJ PKE with parameter d.

Assumption 3. We say that the DCR assumption holds if for every PPT A,
there exists a key generation algorithm K such that AdvdcrA (κ) =

Pr[Exptdcr−0
A (κ) = 1]− Pr[Exptdcr−1

A (κ) = 1]

is negligible in κ, where

Exptdcr−0
A (κ) :

n← K(1κ); R
U← Z×

n2

c = Rn mod n2

return A(n, c).

Exptdcr−1
d,A (κ) :

n← K(1κ); R
U← Z×

n2

c = (1 + n)Rn mod n2

return A(n, c).
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Assumption 4 ( [18]). We say that the non-trivial divisor assumption holds on
Π(d) if for every PPT A, AdvdivisorA,Π(d)(κ) = negl(κ) where

AdvdivisorA,Π(d)(κ) = Pr[(pk, sk) ← K(1κ); A(pk) = c : 1 < gcd(D(c), n) < n].

This assumes that an adversary cannot compute an encryption of a non-trivial
divisor of n, i.e., E(p), under given public-key pkdj only. Since the adversary is
only given pkdj, the assumption is plausible.

Lemma 2. If A is an adversary against Π(d), there is adversary A′ against
Π(1) such that

AdvdivisorA,Π(d)(κ) ≤ AdvdivisorA′,Π(1)(κ).

Assumption 5 ( [18]). We say that the non-multiplication assumption holds on
DJ PKE Π(d) if for every PPT adversary A, the advantage of A, Advmult

A,Π(d)(κ) =

negl(κ), where Advmult
A,Π(d)(κ) = Pr[(pk, sk) ← K(1κ); c1, c2 ← Z×

nd+1 ; c
∗ ←

A(pk, c1, c2) : Dsk(c
∗) = Dsk(c1) ·Dsk(c2)].

This assumes that an adversary cannot compute E(x1 ·x2) for given (pkdj,E(x1),
E(x2)). If the multiplicative operation is easy, DJ PKE turns out a
fully-homomorphic encryption (FHE), which is unlikely. Although breaking the
non-multiplication assumption does not mean that DJ PKE turns out a FHE,
this connection gives us some feeling that this assumption is plausible.

Lemma 3. If A is an adversary against DJ PKE Π(d), there is an adversary
A′ against Π(1) such that

Advmult
A,Π(d)(κ) ≤ Advmult

A′,Π(1)(κ).
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Abstract. Byzantine broadcast is a distributed primitive that allows a
specific party to consistently distribute a message among n parties in the
presence of potential misbehavior of up to t of the parties. All known pro-
tocols implementing broadcast of an �-bit message from point-to-point
channels tolerating any t < n Byzantine corruptions have communica-
tion complexity at least Ω(�n2). In this paper we give cryptographically
secure and information-theoretically secure protocols for t < n that com-
municateO(�n) bits when � is sufficiently large. This matches the optimal
communication complexity bound for any protocol allowing to broadcast
�-bit messages. While broadcast protocols with the optimal communica-
tion complexity exist for t < n/2, this paper is the first to present such
protocols for t < n.

1 Introduction

1.1 Byzantine Broadcast

The Byzantine broadcast problem (aka Byzantine generals) is stated as fol-
lows [PSL80]: A specific party (the sender) wants to distribute a message among
n parties in such a way that all correct parties obtain the same message, even
when some of the parties are malicious. The malicious misbehavior is modeled
by a central adversary who corrupts up to t parties and takes full control of
their actions. Corrupted parties are called Byzantine and the remaining parties
are called correct. Broadcast requires that all correct parties agree on the same
value v, and if the sender is correct, then v is the value proposed by the sender.
Broadcast is one of the most fundamental primitives in distributed computing.
It is used to implement various protocols like voting, bidding, collective contract
signing, etc. Basically, this list can be continued with all protocols for secure
multi-party computation as defined by Yao [Yao82,GMW87].

There exist various implementations of Byzantine broadcast from synchronous
point-to-point communication channels with different security guarantees. In the
model without trusted setup, perfectly-secure Byzantine broadcast is achievable
when t < n/3 [PSL80,BGP92,CW92]. In the model with trusted setup, crypto-
graphically or information-theoretically secure Byzantine broadcast is achievable
for any t < n [DS83,PW96].
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Closely related to the broadcast problem is the consensus problem. In consen-
sus each party holds a value as input, and then parties agree on a common value
as output of consensus. In this paper we consider the case where any number of
parties may be Byzantine. In this case the consensus problem is not well-defined,
and hence we do not treat it here.

1.2 Efficiency of Byzantine Broadcast

In this paper we focus on the efficiency of broadcast protocols. In particular, we
are interested in optimizing their communication complexity. The communication
complexity of a protocol is defined by Yao [Yao79] to be the number of bits
sent/received by correct parties during the protocol run.1

Historically, the broadcast problem was introduced for binary values [PSL80].
However, in various applications long values are broadcast rather than bits. Ex-
amples of such applications are general purpose multi-party computation pro-
tocols and specific tasks like voting. Such a broadcast of long values is called
multi-valued broadcast. In this paper we study the communication complexity
of multi-valued broadcast protocols.

Many known protocols for multi-valued broadcast [TC84,FH06,LV11,Pat11]
are actually constructions from a broadcast of short messages and point-to-point
channels. Communication complexity of such constructions is computed in terms
of the point-to-point channels and the broadcast for short messages usage. The
security of the protocol is based on the security of the construction and the
security of the broadcast for short messages.

Let us denote the communication complexity of a short s-bit message broad-
cast with B(s). The most trivial construction is to broadcast the message bit
by bit, which is perfectly secure for t < n and has communication complexity
�B(1). The construction by Turpin and Coan [TC84] is perfectly secure and tol-
erates t < n/3 while communicating O(�n2 + nB(1)) bits. The construction by
Fitzi and Hirt [FH06] is information-theoretically secure and tolerates t < n/2
while communicating O(�n+ n3κ+ nB(n+ κ)) bits, where κ denotes a security
parameter. The construction by Liang and Vaidya [LV11] is perfectly secure and
tolerates t < n/3 while communicating O(�n +

√
�n2B(1) + n4B(1)) bits. This

construction can even be extended to tolerate more than n/3 corruptions [LV11].
However, the extended protocol inherently requires t < n/2 (see Appendix A for
the details). The construction by Patra [Pat11] is perfectly secure and tolerates
t < n/3 while communicating O(�n+ n2B(1)) bits.

In this paper we consider the case where t < n. In this model existing proto-
cols [DS83,PW96] were designed to broadcast bits, but they can be easily adopted
to broadcast long messages. A simple modification of the protocol by Dolev and
Strong [DS83] is cryptographically secure and has communication complexity
Ω(�n2 + n3κ). Analogously, the protocol by Pfitzmann and Waidner [PW96] is
information-theoretically secure and has communication complexityΩ(�n2+n6κ)

1 When counting the number of bits received by correct players, we take into account
only messages which were actively received by them, i.e., messages which should be
received according to the protocol specification.
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[Fit03]. Also the protocols of [HMR14] can be seen as multi-valued constructions
for t < n. However, their resulting communication complexity is Ω(�n3).

Another measure of protocol efficiency often considered is round complex-
ity. There are two principal classes of protocols with respect to this measure:
constant-round and non-constant round. In the model without trusted setup,
constant-round binary Byzantine broadcast is achievable when t < n/3 [FM88].
In the model where public-key infrastructure (PKI) has been set up via a trusted
party, constant-round binary Byzantine broadcast is achievable for t < n/2
[KK06], but is not achievable for t < n [GKKO07].

1.3 Contributions

Consider any protocol for multi-valued broadcast. Since every correct player
must learn the value proposed by the sender, the communication costs of the
broadcast protocol must be at least O(�n). In this paper we give two generic
constructions for a multi-valued broadcast which allow to achieve optimal
communication complexity ofO(�n) bits for t < n. The first construction is cryp-
tographically secure and communicates O(�n+ n(B(κ) + nB(1))) bits. The sec-
ond construction is information-theoretically secure and communicates O(�n +
n3(B(κ)+nB(1))) bits. The constructions take O(n2) and O(n3) rounds, respec-
tively. Table 1 summarizes the complexity costs of the existing constructions for
multi-valued broadcast.2

Table 1. The overview of multi-valued broadcast constructions

Threshold Security Bits Communicated Literature

t < n/3 perfect

O(�n2 + nB(1)) [TC84]

O(�n+ (
√
�n2 + n4)B(1)) [LV11]

O(�n+ n2B(1)) [Pat11]

t < n/2 inf.-theor. O(�n+ n3κ+ (n2 + nκ)B(1)) [FH06]

t < n

perfect �B(1) Trivial

inf.-theor. O(�n+ (n4 + n3κ)B(1)) This paper

cryptographical O(�n+ (n2 + nκ)B(1)) This paper

In order to obtain a concrete protocol for multi-valued broadcast one takes
the above constructions and composes them with the existing protocols for a bit
broadcast (e.g., [BGP92,DS83,PW96]). The security of the composed protocol
is then the “minimal” security provided by the construction and the bit broad-
cast protocol employed. For example, when composing information-theoretical

2 In order to facilitate comparison we substitute B(s) with sB(1) in the communication
complexity of the constructions, which is trivially possible since B(s) ≤ sB(1) for all
s and such arguments appear as summands inside the big O.
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construction for t < n/2 [FH06] with cryptographically secure protocol for
t < n [DS83] we obtain multi-valued broadcast protocol with cryptographic
security tolerating t < n/2 and communication complexity O(�n + n4(n + κ)).
Further instantiations are described in Table 2.

Table 2. Instantiations of multi-valued broadcast constructions

Threshold Security Bits Communicated Literature

t < n/3 perfect

O(�n2) Trivial with [BGP92]

O(�n+
√
�n4 + n6) [LV11] with [BGP92]

O(�n+ n4) [Pat11] with [BGP92]

t < n/2
inf.-theor. O(�n+ n7κ) [FH06] with [PW96]

cryptogr. O(�n+ n4(n+ κ)) [FH06] with [DS83]

t < n

inf.-theor.
Ω(�n2 + n6κ) [PW96]

O(�n+ n10κ) This with [PW96]

cryptogr.
Ω(�n2 + n3κ) [DS83]

O(�n+ n5κ) This with [DS83]

We note that all multi-valued constructions are only asymptotically optimal
in �, i.e., they only outperform the trivial construction when relatively long
messages are broadcast. Such long messages appear, for example, in voting pro-
tocols [CGS97] (where the set of authorities agree on the set of ballots), or in
multi-party computation protocols [GMW87] (when all gates on a particular level
of the circuit are evaluated in parallel). In particular, multi-party computation
protocols for t < n (e.g., [AJLA+12,GGHR14]) achieve better communication
complexity when combined with the broadcast constructions presented in this
paper.

Furthermore, we investigate the round complexity of constructions for multi-
valued broadcast. While for the case of t < n/2 constant-round constructions
exist (e.g., [FH06]), we prove that in the settings with t < n constant-round
constructions do not exist.3 This is a generalization of the impossibility result
given in [GKKO07], because the underlying broadcast procedure for small mes-
sages can be used to distribute PKI (by letting the parties broadcast their public
keys) and hence PKI cannot be sufficient to implement broadcast in a constant
number of rounds.

2 Model and Definitions

Parties.We consider a setting consisting of n parties (players) P = {P1, . . . , Pn}
with some designated party called the sender, which we denote with Ps for some

3 In the notation of [HMR14] this means that no non-trivial constant-round broadcast-
amplification protocols tolerating t < n exist.
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s ∈ {1, . . . , n}. For a set of parties A ⊆ P let A denote P \ A. We assume that
the parties are connected with a synchronous authentic point-to-point network.
Synchronous means that all parties share a common clock and that the message
delay in the network is bounded by a constant.
Broadcast definition. A broadcast protocol allows the sender Ps to distribute
a value vs among parties P such that:

Termination: Every correct party Pi ∈ P terminates.
Consistency: All correct parties in P decide on the same value.
Validity: If the sender Ps is correct, then every correct party Pi ∈ P decides

on the value proposed by the sender vi = vs.

Adversary. The faultiness of parties is modeled in terms of a central adversary
corrupting up to t < n parties, making them deviate from the protocol in any
desired manner. We distinguish two types of security in this paper: cryptographic
and information-theoretic. Cryptographic security guarantees that the protocol
is secure based on some computational assumptions (e.g., signatures and/or
collision-resistant hash functions), while information-theoretical (also called sta-
tistical) security captures the fact that even a computationally unbounded adver-
sary cannot violate the security of the protocol with a non-negligible probability.

3 Protocols Overview

We present cryptographically and information-theoretically secure constructions
for multi-valued broadcast. Both constructions are built over point-to-point
channels and an oracle for broadcasting short messages. When describing pro-
tocols we often say that players broadcast messages, while meaning that they
actually use the given broadcast oracle.

On the highest level both constructions broadcast the long message block by
block, where each block is broadcast using a special protocol for block broadcast.
This block broadcast protocol achieves optimal communication complexity only
in good executions, while in bad executions more bits need to be communicated.
We select the number of blocks in such a way that good executions outnumber
bad ones and the total communication complexity is optimal. Whether an execu-
tion is good or bad is determined using the Dispute Control Framework [BH06].
Dispute control is a technique which keeps track of disputes (also called conflicts)
between players and ensures that occurred disputes cannot show up again. In-
tuitively, an execution is good if it is dispute-free, and bad otherwise.

We employ the dispute control framework as follows. We consider a set of
unordered pairs of parties Δ, where {Pi, Pj} ∈ Δ represents the fact that parties
Pi and Pj accuse each other of being Byzantine. Parties start a protocol by
setting Δ to be the empty set. Then during the protocol run they add new
disputes to Δ when they learn about new accusations. We ensure that Δ always
remains valid, meaning that if {Pi, Pj} ∈ Δ then at least one of the players Pi, Pj

is Byzantine.
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4 Cryptographically Secure Construction

First, we present a protocol CryptoBlockBC for broadcasting blocks. The proto-
col CryptoBlockBC makes use of an external procedure for broadcasting short
values and a set of disputes Δ. Then we plug CryptoBlockBC in the proto-
col CryptoBC, which broadcasts an �-bit message block by block q times. In
each invocation of CryptoBlockBC we will use the same global variable Δ with
the disputes among the players. This means that if parties Pi and Pj con-
flict during some block broadcast, then they conflict in all later invocations of
CryptoBlockBC. Then, we count the communication complexity of the resulting
construction and select q which makes its optimal.

4.1 Block Broadcast Protocol CryptoBlockBC

The protocol CryptoBlockBC employs a collision-resistant hash function CRHash,
i.e., no efficient algorithm can find two different inputs v, v′ with CRHash(v) =
CRHash(v′).4 In the beginning of the protocol the sender broadcasts a hash
h = CRHash(vs) of the value it holds. The goal of the protocol is to ensure that
all correct players learn vs. All parties during the protocol run are divided into
two sets:H andH . The set H consists of happy players who have already learned
vs, and H who have not. At each iteration of CryptoBlockBC we try to move a
player from H to H . We select a pair of players Px, Py such that Px ∈ H and
Py ∈ H . Then Px sends the value it holds to Py. This procedure is meaningless
if parties Px, Py are in the dispute, so the pair is chosen such that {Px, Py} �∈ Δ.
Once Py receives a value from Px it verifies that its hash is h; in the positive
case Py is included in H and in the negative case a conflict between Px and
Py is found. Hence at each iteration we either include one player into H or we
discover a new conflict between a pair of players.

Protocol CryptoBlockBC(vs):
1. Parties initialize happy set H to be {Ps}.
2. Sender Ps: Broadcast h := CRHash(vs).
3. While ∃ Px, Py ∈ P s.t. Px ∈ H and Py ∈ H and {Px, Py} �∈ Δ do
r.1 Px: Send vx to player Py . Denote received value by vy.
r.2 Py : If h = CRHash(vy) broadcast 1, else broadcast 0.
r.3 If Py broadcasted 1 then parties add Py to H , otherwise they add

{Px, Py} to Δ.
4. ∀Pi ∈ P : If Pi ∈ H decide on vi, otherwise decide on ⊥.

Lemma 1. Given that the initial dispute set Δs is valid and CRHash is a
collision-resistant hash function, protocol CryptoBlockBC achieves broadcast

4 This is rather informal definition of collision resistance for unkeyed hash functions,
for a more formal treatment see [Rog06].
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(of vs) and terminates with a valid dispute set Δe. Furthermore, the protocol
terminates in O(n+d) rounds communicating at most B(|h|)+(n+d)(|vs|+B(1))
bits, where d = |Δe| − |Δs|, |h| is the output length of CRHash, and |vs| is the
block length.

Proof. First, we prove that at each iteration of the while loop all correct players
in H always hold the same value v such that CRHash(v) = h. A player is included
into H under condition that it broadcasts 1 at Step r.2, which he does only
if it holds a value v with CRHash(v) = h. Hence for any two correct players
Pi, Pj ∈ H it must hold that CRHash(vi) = h and CRHash(vj) = h. Since
CRHash is collision-resistant it implies that vi = vj .

5

(Validity of Δe).We show that whenever Px and Py are correct then {Px, Py} is
not added to Δ at Step r.3. A correct Px ∈ H holds vx with CRHash(vx) = h and
sends vx = vy to Py at Step r.1, who successfully verifies that CRHash(vy) = h
and broadcasts 1 at Step r.2, hence {Px, Py} is not added to Δ at Step r.3.

(Termination). At each iteration of the while loop either the happy set H or
the dispute set Δ grows. |H | is limited by n and |Δ| is limited by n2, hence the
number of iterations is limited.

(Consistency). We prove that in the end of the protocol all correct players
belong either to H (and decide on the same value v) or to H (and decide on
⊥). As shown above Δ remains valid in all iterations, hence for correct players
Px and Py the pair {Px, Py} �∈ Δ. Hence, if Px ∈ H and Py ∈ H then the while
loop does not terminate.

(Validity). The sender Ps is always in H . If Ps is correct then it decides on
vs and due to the consistency criterion all other correct players decide on vs as
well.

(Complexity Analysis). At each iteration of the while loop either H or Δ
grows. Hence, the total number of iterations of the while loop is upper bounded
by n + d where d is |Δe| − |Δs|. This implies that the number of rounds the
construction employs is O(n + d). Furthermore, the total communication costs
of the protocol are upper bounded by B(|h|) + (n+ d)(|vs|+ B(1)). 
�

4.2 Constructing Broadcast for Long Messages

Now we plug in CryptoBlockBC in the protocol CryptoBC which broadcasts a
message block by block.

5 More formally, when an adversary can provoke two correct players to hold colliding
values for CRHash with non-negligible probability, then this adversary can be used
to construct an efficient collision-finding algorithm for CRHash.
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Protocol CryptoBC(vs, q):
1. Parties initialize dispute set Δ with the empty set.
2. Sender Ps: Cut vs in q pieces v1, . . . , vq (add padding if required).
3. For r = 1, . . . , q invoke CryptoBlockBC(vr), denote the output of party Pi

by vri .
4. ∀Pi ∈ P : If one of vri = ⊥ then output ⊥, otherwise output v1i || · · · ||v

q
i .

Since block broadcast is invoked q times, due to Lemma 1 the total commu-
nication complexity is at most

q∑
i=1

[
B(|h|) + (n+ di)(�/q + B(1))

]
= qB(|h|) + (qn+

q∑
i=1

di)(�/q + B(1))

bits. We know that the sum of di is upper bounded by the total number of
possible disputes n2. Hence we have that communication complexity is upper
bounded by qB(|h|) + (qn + n2)(�/q + B(1)). By setting q = n we get that the
total communication is at most 2�n+2n2B(1)+nB(|h|) which is O(�n+n(B(κ)+
nB(1))).

The number of rounds the construction employs is
∑q

i=1 ri, where each ri ∈
O(n+ di). Hence, for q = n we have that the total number of rounds is O(n2).

The following theorem summarizes the cryptographically secure construction
presented in this section:

Theorem 1. In the setting with t < n, the construction CryptoBC with q = n
achieves cryptographically secure broadcast of �-bit messages in O(n2) rounds by
communicating O(�n + n(B(κ) + nB(1))) bits (where κ is a security parameter
and B(s) is the complexity of the underlying broadcast for short s-bit messages).

In order to obtain a concrete multi-valued broadcast protocol we instantiate
CryptoBC with the protocol [DS83]:

Theorem 2. Instantiating the construction CryptoBC with q = n and [DS83]
as underlying broadcast for short messages results in a cryptographically secure
multi-valued broadcast protocol for t < n with communication complexity O(�n+
n5κ) (where κ is a security parameter).

5 Information-Theoretically Secure Construction

This section is organized similar to the cryptographic case. First, we
present a protocol ITBlockBC for broadcasting blocks which is analogous to
CryptoBlockBC, with the difference that it relies on a universal hash function
instead of a collision-resistant one. As in the cryptographic case we then plug
ITBlockBC in the ITBC protocol, which broadcasts a message block by block q
times. Then, we count the communication complexity of the resulting protocol
ITBC, and select the number of blocks q which makes it optimal.
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5.1 Universal Hash Functions

Consider a family of functions U = {Uk}k∈K indexed with a key set K, where
each function Uk maps elements of some set X to a fixed set of bins Y. The
family U is called ε-universal if for any two distinct messages v1 and v2,

|{k ∈ K | Uk(v1) = Uk(v2)}|
|K| ≤ ε.6

A ε-universal hash function can for example be constructed as follows: Let
X = {0, 1}�, K = Y = GF(2ν), and any value v ∈ {0, 1}� be interpreted as a
polynomial fv over GF(2ν) of degree ��/ν� − 1. The hash function is defined as
Uk(v) = fv(k). We know that two distinct polynomials of degree ��/ν� − 1 can
match in at most ��/ν� − 1 points. Hence, for any two distinct v1, v2 ∈ {0, 1}�,

|{k ∈ {0, 1}ν | Uk(v1) = Uk(v2)}|
2ν

≤ ��/ν� − 1

2ν
≤ 2−ν�.

So, {Uk}k∈{0,1}ν is a family of (2−ν�)-universal hash functions.
We will denote a ε-universal hash function with ITHash.

5.2 Block Broadcast Protocol ITBlockBC

Similarly to the cryptographic case all parties during the run of the protocol
ITBlockBC are divided into two sets: H and H. The set H consists of happy
players who have already learned vs, and H who have not. The difference to
the cryptographic case is that the set H is not monotonically growing—it may
happen that the same player may be added/removed from H several times. At
each iteration of ITBlockBC we try to move a player from H to H . We select
a pair of players Px, Py such that Px ∈ H , Py ∈ H and {Px, Py} �∈ Δ. Then
Px sends the value it holds to Py. Now player Py needs to verify that the value
received from Px is the value that correct parties in H hold. In order to do so, Py

broadcasts a key k for ε-universal hash function ITHash, and then Ps broadcasts
a hash h for this key. As long as Py honestly chooses k uniformly at random,
with overwhelming probability correct players will obtain different hashes if they
hold different values. If a party in H ∪ {Py} \ {Ps} holds a value with a hash h,
then he broadcasts 1, and 0 otherwise (the sender Ps does not broadcast because
if he is correct he can broadcast only 1). If every party broadcasts 1, then the
iteration was successful and Py is added to H . Otherwise, some of the parties in
H ∪ {Py} do not hold the right value and we search for new disputes.

An important difference from the cryptographic case is that disputes may
occur not only between Px and Py, but between any two parties in H . In order
to find such disputes, one must be able to reason about the history of how H was
formed. We will keep a history set T which will contain pairs of players (Px, Py)
such that Py learned the value it holds from Px.

6 This is a combinatorial definition of a universal hash function, usually the last con-

dition is written probabilistically as Pr[k
$←− K : Uk(v1) = Uk(v2)] ≤ ε.



Multi-valued Byzantine Broadcast: The t < n Case 457

Protocol ITBlockBC(vs):
1. Parties initialize happy set H to be {Ps} and history set T to be ∅.
2. While ∃ Px, Py ∈ P s.t. Px ∈ H and Py ∈ H and {Px, Py} �∈ Δ do
r.1 Px: Send vx to player Py. Denote received value by vy. Add (Px, Py)

to T .
r.2 Py : Generate random k ∈ K and broadcast it.

Sender Ps: Broadcast h := ITHashk(vs).
r.3 ∀Pi ∈ H ∪ {Py} \ {Ps}: If h = ITHashk(vi) then broadcast 1, otherwise

0.
r.4 If all parties broadcasted 1

- Add Py to H .
else
- For all (Pi, Pj) ∈ T s.t. Pi broadcasted 1 (resp. Pi = Ps) and
Pj broadcasted 0, add {Pi, Pj} to Δ.

- Set H to {Ps}, T to ∅.
3. ∀Pi ∈ P : If Pi ∈ H decide on vi, otherwise decide on ⊥.

Lemma 2. Given that the initial dispute set Δs is valid and ITHash is a
universal hash function, protocol ITBlockBC achieves broadcast (of vs) and ter-
minates with a valid dispute set Δe (except with negligible probability). Fur-
thermore, the protocol terminates in O(n + nd) rounds communicating at most
(n + nd)(|vs| + B(|h|) + B(|k|) + nB(1)) bits, where d = |Δe| − |Δs|, |h| is the
output length of ITHash, |k| is the key length of ITHash, and |vs| is the block
length.

Proof. First, we prove that at each iteration of the while loop all correct players
in H always hold the same value v. More precisely, we need to show that if a
correct player Py is added to H , then, given that all correct players in H hold
the same value v, it holds that vy = v. We have that all parties in H ∪ {Py} \
{Ps} broadcast 1 at Step r.3. This implies that Py successfully verifies that
ITHashk(vy) = h, and all correct parties in H verify that ITHashk(v) = h. Due
to the fact that Py is correct, the key k is chosen uniformly at random, so given
that ITHashk(vy) = ITHashk(v), it must hold with overwhelming probability
1− ε that vy = v.
Second, we show that if the condition at Step r.4 is false then at least one new
conflict is found. We have that not all players in H ∪ {Py} \ {Ps} broadcasted
1. Consider two possible cases:
(Exists Pz ∈ H \ {Ps} which broadcasts 0 at step r.3) Since Pz is in H there

must exist a sequence of players Pi1 , Pi2 , . . . , Pik in H such that Pi1 =
Ps, Pik = Pz and (Pij , Pij+1 ) ∈ T for all j = 1, . . . , k − 1 (see illustration
in Figure 1). In the rth iteration some of the players in H stayed happy (Ps

and those who broadcasted 1) and some become unhappy (broadcasted 0).
We know that Ps stayed happy and Pz became unhappy. Hence in a row
Pi1 , Pi2 , . . . , Pik there are players of both types. Then we have that exist two
players Piu , Piu+1 such that Piu stays happy and Piu+1 becomes unhappy. By
construction of T , (Piu , Piu+1) ∈ T implies that {Piu , Piu+1} is not yet in Δ.
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Ps

H
Stay happy

(Ps and those
who broadcasted 1)

Become unhappy
(broadcasted 0)

PzPiu

Piu+1

Conflict

Fig. 1. Conflict finding in ITBlockBC

Consequently, the pair {Piu , Piu+1} will be identified as having a conflict and
will be added to Δ.

(Each Pi ∈ H \ {Ps} broadcasts 1 at step r.3) It means that Px broadcasts 1 (or
Px = Ps) and Py broadcasts 0. Hence the new dispute {Px, Py} will be added
to Δ.

Now we proceed with the proof of the current lemma.

(Validity of Δe). We show that whenever Pi and Pj are correct then {Pi, Pj}
is never added to Δ. The pair {Pi, Pj} is added to Δ only when Pi sent some v
to Pj (i.e., (Pi, Pj) ∈ T ), and they disagree for some key k whether ITHashk(v)
equals h. Hence, Pi or Pj is corrupted.

(Termination). There can be at most n successive iterations where the set H
grows (condition at Step r.4 is true). As shown above whenever condition at
Step r.4 is false a new conflict is found. The number of conflicts is limited and
so must be the number of the while loop iterations.

(Consistency). We prove that in the end of the protocol all correct players
belong either to H (and decide on the same value v) or to H (and decide on
⊥). As shown above Δ remains valid in all iterations, hence for any two correct
players Px, Py, the pair {Px, Py} �∈ Δ. Hence, if Px ∈ H and Py ∈ H then the
while loop does not terminate.

(Validity). The correct sender Ps is always in H . The sender Ps decides on vs
and due to the consistency criterion all other correct players decide on vs as well.

(Complexity Analysis). There can be at most n consecutive iterations, where
no conflict is found, hence the total number of iterations is at most n+nd, where
d = |Δe|−|Δs|. This implies that the number of rounds the construction employs
is O(n+ nd). Furthermore, since the communication costs of each iteration are
at most |vs|+B(|h|)+B(|k|)+nB(1), we have that the total communication costs
of the protocol are upper bounded by (n+nd)(|vs|+B(|h|)+B(|k|)+nB(1)). 
�
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5.3 Constructing Broadcast for Long Messages

Similarly to the cryptographic case, we plug ITBlockBC in the protocol ITBC
which simply broadcasts a message block by block. The protocol ITBC is a copy
of the protocol CryptoBC with the only difference that CryptoBlockBC is sub-
stituted with ITBlockBC.

Due to Lemma 2 the total communication complexity of ITBC is at most

q∑
i=1

[
(n+ din)(�/q + B(|h|) + B(|k|) + nB(1))

]
=

n(q +

q∑
i=1

di)(�/q + B(|h|) + B(|k|) + nB(1)).

This expression is bound by n(q+n2)(�/q+B(|h|)+B(|k|)+nB(1)). By setting
q = n2 we have that communication costs are at most 2�n+2n3(B(|h|)+B(|k|)+
nB(1))) which is O(�n+ n3(B(κ) + nB(1))).

The number of rounds the construction employs is
∑q

i=1 ri, where each ri ∈
O(n+ndi). Hence, for q = n2 we have that the total number of rounds is O(n3).

The following theorem summarizes the information-theoretically secure con-
struction presented in this section:

Theorem 3. In the setting with t < n, the construction ITBC with q = n2

achieves information-theoretically secure broadcast of �-bit messages in O(n3)
rounds by communicating O(�n+ n3(B(κ) + nB(1))) bits (where κ is a security
parameter and B(s) is the complexity of the underlying broadcast for short s-bit
messages).

In order to obtain a concrete multi-valued broadcast protocol we instantiate
ITBC with the protocol [PW96]:

Theorem 4. Instantiating the construction ITBC with q = n2 and [PW96] as
underlying broadcast for short messages results in an information-theoretically
secure multi-valued broadcast protocol for t < n with communication complexity
O(�n+ n10κ) (where κ is a security parameter).

6 On the Round Complexity of Multi-valued
Constructions

While the primary goal of this paper is to build communication efficient pro-
tocols, one often optimizes the protocols with respect to another measure of
the protocols’ efficiency, number of rounds employed by a protocol. According
to this measure there are two principal classes of the protocols: constant-round
and non-constant round. In the following we investigate whether it is possible to
obtain protocols optimal in both measures, that is, constant-round multi-valued
broadcast protocols with optimal communication complexity for t < n.
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The goal of this paper is to build protocols for efficient multi-valued construc-
tions. We stress that by construction we understand a protocol for n players
which realizes multi-valued broadcast on top of bilateral channels and a special
procedure for broadcasting bits. We explicitly distinguish such constructions
and plain multi-valued broadcast protocols (e.g., [DS83, PW96]) that directly
implement broadcast from bilateral channels.

When t < n/2 both communication and round optimal multi-valued broadcast
protocols can be built by combining constant-round construction [FH06] with
a constant-round binary broadcast protocol (e.g., [KK06, GKKO07]). For the
case of arbitrary t < n it has been shown that no plain protocol can achieve
broadcast in a constant number of rounds [GKKO07]. In the context of this
paper this shows that no concrete instantiation of a multi-valued construction
and a procedure for broadcasting bits can be constant-round. However, it is still
interesting to understand whether a non-trivial constant-round construction for
multi-valued broadcast exists separately. Next we show that this is not possible,
i.e., there is a separation between t < n/2 and t < n cases not only for broadcast
protocols but between constructions for multi-valued broadcast as well.

A Construction’s Failure Probability (Based on [GY89]). Consider any
multi-valued construction protocol π = (π1, . . . , πn). A scenario is a triple
(v,B,A) where v ∈ {0, 1}� is a value that the sender broadcasts, B ⊆ P is
a set of malicious players controlled with an adversarial strategy A. We call
an execution of the protocol π in a scenario successful if the outputs of honest
parties P \ B satisfy broadcast properties (validity and consistency). We define
the error επ,v,B,A to be the probability of an unsuccessful execution over the
randomness used by honest parties and the adversary in the corresponding sce-
nario.7 Then the failure probability of π is defined as max

v,B,A
επ,v,B,A, i.e., as the

maximum failure among all scenarios.

Impossibility Framework. We employ a standard indistinguishability argu-
ment that is used to prove that certain security goals cannot be achieved by any
protocol in the Byzantine environment [PSL80]. Such a proof goes by contra-
diction, i.e., by assuming that the security goals can be satisfied by means of
some protocol π = (π1, . . . , πn). Then the programs πi are used to build a con-
figuration with contradictory behavior. The configuration consists of (possibly)
multiple copies of πi connected with bilateral channels and given admissible in-
puts. Once the configuration is built, one simultaneously starts all the programs
in the configuration and analyzes the outputs produced by the programs locally.
By arguing that the view of some programs πi and πj in the configuration is
indistinguishable from their view when run by the corresponding players Pi and
Pj (while the adversary corrupts the remaining players in P \ {Pi, Pj}) we can
deduce consistency conditions on the outputs by πi and πj that lead to a contra-
diction. The main novelty in the following proof is that we consider an extended
communication model where in addition to bilateral channels players are given

7 In all executions we assume that the procedure to broadcast bits is perfectly secure,
i.e., the values broadcast with it are consistently delivered to the parties.
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access to a special procedure for broadcasting short messages. While following
the path described above, we need to additionally describe how the calls to this
procedure are handled.

Theorem 5. Every non-trivial 8multi-valued broadcast construction for t < n
which takes less than n− 1 rounds fails with probability at least 1/(2n).

Proof. Take any non-trivial construction π = (π1, . . . , πn) which requires q <
n − 1 rounds and has error probability ε. Without loss of generality, assume
as well that the sender is P1, i.e., the sender’s program is π1. On the highest
level our proof consists of three steps. (i) we define a configuration (inspired
by [GKKO07]). (ii) we show that all programs in the configuration must output
the same value v with probability 1− nε. (iii) we use an information flow argu-
ment to prove that there is a program in the configuration that outputs v with
probability at most 1/2. Finally, we combine the probability inequalities given
by (ii) and (iii) to conclude that ε ≥ 1/(2n).

(i) Consider a chain of n programs π1, π2, π3, . . . , πn connected with bilateral
channels as shown in Figure 2. In this configuration only programs that are
connected communicate, i.e., π1 communicates only with π2 and receives no
messages from parties in P\{P1, P2}. Let π1 be given as input a uniform random
variable V chosen from the input domain {0, 1}�. Now we execute the programs.
Whenever any program broadcasts any value using the broadcast procedure this
value is delivered to all programs in the configuration.

(ii) First, we prove that any pair of connected programs (πi, πi+1) in the chain
outputs the same value. One can view the configuration as the player Pi run-
ning the program πi and Pi+1 running πi+1 while the adversary corrupting
P \ {Pi, Pi+1} is simulating the programs π1, . . . , πi−1 and πi+2, . . . , πn. Due
to the consistency property, πi and πi+1 must output the same value with prob-
ability at least 1−ε. Since every connected pair of programs in the chain outputs
the same value with probability at least 1− ε, then all the programs in the con-
figuration output the same value with probability at least 1−(n−1)ε. Moreover,
the configuration can be viewed as P1 executing π1 while the adversary corrupts
P \ {P1} and simulates the remaining programs. Due to the validity property,
π1 must output V with probability at least 1 − ε. Finally, all the programs in
the chain output V with probability 1− nε.

(iii) Let Sr
i be a random variable denoting the state of the program πi in the

chain after r rounds of the protocol execution. By state we understand the in-
put that the program has, the set of all messages that the program received up
to the rth round over point-to-point channels and via the underlying broadcast
procedure together with the random coins it has used. Let Br be a random

8 By non-trivial we mean every construction which broadcasts strictly less bits with
the broadcast procedure than the length of the message broadcast �.
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π1 π2 π3 π4 π5 . . . πn

V

Fig. 2. The configuration to show the impossibility of non-trivial construction

variable denoting the list of the values that have been broadcast with the broad-
cast procedure up to the rth round.

After r rounds only programs π1, π2, . . . , πr+1 can receive full information about
V . The remaining programs in the chain πr+2, πr+3, . . . , πn can receive only
the information that was distributed with the broadcast procedure, i.e., the
information contained in Br. That is, one can verify by induction that for any
r and for all i ≥ r+2 holds I(V ;Sr

i |Br) = 0. Hence, for the last program in the
chain πn after q rounds of computation it holds that I(V ;Sq

n|Bq) = 0 and hence
I(V ;Sq

n) ≤ H(Bq). Because we assumed that the construction is non-trivial, at
most �− 1 bits can be broadcast with the broadcast procedure. Hence, we have
that H(Bq) ≤ �− 1. Combining these facts we get that I(V ;Sq

n) ≤ �− 1. Hence,
the last program πn outputs V with probability at most 1/2. However, we have
shown above that all programs (including πn) output V with probability at least
1− nε. Hence, we have that 1/2 ≥ 1− nε which implies that ε ≥ 1/(2n). 
�

7 Conclusions

Existing multi-valued broadcast protocols achieve optimal communication com-
plexity only for t < n/3 [LV11] or t < n/2 [FH06]. In this paper we proposed
the first multi-valued broadcast protocols that tolerate any t < n Byzantine cor-
ruptions and achieve optimal communication complexity O(�n) for sufficiently
long messages of � bits. One of the proposed protocols is cryptographically se-
cure and the other one is information-theoretically secure. The cryptographically
secure protocol is based on the security of the signature scheme and a collision-
resistance of the hash function employed. It communicates O(�n+n5κ) bits. The
information-theoretically secure protocol may fail with a negligible probability
and needs to communicate O(�n+ n10κ) bits.

The presented constructions CryptoBC and ITBC require O(n2) and O(n3)
rounds, respectively. While constant-round constructions are unachievable, it
is still unresolved whether more round-efficient constructions exist. We leave
round-complexity optimizations and proving stronger lower bounds as open
questions.
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G., Roy, M. (eds.) OPODIS 2011. LNCS, vol. 7109, pp. 34–49. Springer,
Heidelberg (2011)

[PSL80] Pease, M.C., Shostak, R.E., Lamport, L.: Reaching agreement in the pres-
ence of faults. Journal of the ACM 27(2), 228–234 (1980)

[PW96] Pfitzmann, B., Waidner, M.: Information-theoretic pseudosignatures and
Byzantine agreement for t ≥ n/3. Technical report, IBM Research (1996)

[Rog06] Rogaway, P.: Formalizing human ignorance. In: Nguyên, P.Q. (ed.) VI-
ETCRYPT 2006. LNCS, vol. 4341, pp. 211–228. Springer, Heidelberg
(2006)

[TC84] Turpin, R., Coan, B.A.: Extending binary Byzantine agreement to multi-
valued Byzantine agreement. Information Processing Letters 18(2), 73–76
(1984)

[Yao79] Yao, A.C.: Some complexity questions related to distributive computing
(preliminary report). In: Proceedings of the Eleventh Annual ACM Sym-
posium on Theory of Computing, STOC 1979, pp. 209–213. ACM, New
York (1979)

[Yao82] Yao, A.C.: Protocols for secure computations. In: Proceedings of the 23rd
Annual Symposium on Foundations of Computer Science, SFCS 1982, pp.
160–164. IEEE Computer Society, Washington, DC (1982)

http://www.crhc.illinois.edu/wireless/papers/ba_sum_capacity_0729.pdf
http://www.crhc.illinois.edu/wireless/papers/ba_sum_capacity_0729.pdf
http://arxiv.org/abs/1101.3520


Multi-valued Byzantine Broadcast: The t < n Case 465

A On the Constructions of Liang and
Vaidya [LV11,LV10a,LV10b]

In [LV11] it is stated that the broadcast constructions presented there can be
extended to tolerate t ≥ n/3. We contacted the authors and they said that this
statement is misleading and it should have been “t < n/2” instead of “t ≥ n/3”
to be more clear [LV14]. Below we detail why [LV11] inherently requires t < n/2
and cannot be extended beyond this bound (this reasoning applies to the related
constructions [LV10a,LV10b]).

Essentially, the construction relies on a player set S such that all players in S
have the same value v and S is guaranteed to contain at least one correct player.
The value v is the value that should be agreed on. This technique requires that
such S is unique. Uniqueness of S can be guaranteed only when t < n/2. When
t ≥ n/2, even if all correct players do share the same value v, the Byzantine
players can always pretend to have a different value v′ and create a larger player
set S′ just among themselves to prevent protocol from reaching agreement.
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Abstract. In the setting of secure multiparty computation, a set of
parties wish to compute a joint function of their private inputs. The
computation should preserve security properties such as privacy, correct-
ness, independence of inputs, fairness and guaranteed output delivery. In
the case of no honest majority, fairness and guaranteed output delivery
cannot always be obtained. Thus, protocols for secure multiparty com-
putation are typically of two disparate types: protocols that assume an
honest majority (and achieve all properties including fairness and guar-
anteed output delivery), and protocols that do not assume an honest
majority (and achieve all properties except for fairness and guaranteed
output delivery). In addition, in the two-party case, fairness and guaran-
teed output delivery are equivalent. As a result, the properties of fairness
(which means that if corrupted parties receive output then so do the hon-
est parties) and guaranteed output delivery (which means that corrupted
parties cannot prevent the honest parties from receiving output in any
case) have typically been considered to be the same.

In this paper, we initiate a study of the relation between fairness and
guaranteed output delivery in secure multiparty computation. We show
that in the multiparty setting these properties are distinct and proceed
to study under what conditions fairness implies guaranteed output de-
livery (the opposite direction always holds). We also show the existence
of non-trivial functions for which complete fairness is achievable (with-
out an honest majority) but guaranteed output delivery is not, and the
existence of non-trivial functions for which complete fairness and guar-
anteed output delivery are achievable. Our study sheds light on the role
of broadcast in fairness and guaranteed output delivery, and shows that
these properties should sometimes be considered separately.

1 Introduction

1.1 Background

In the setting of secure multiparty computation, a set of mutually distrusting
parties wish to jointly and securely compute a function of their inputs. This
computation should be such that each party receives its correct output, and none
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of the parties learn anything beyond their prescribed output. In more detail, the
most important security properties that we wish to capture are: privacy (no party
should learn anything more than its prescribed output), correctness (each party is
guaranteed that the output that it receives is correct), independence of inputs (the
corrupted parties must choose their inputs independently of the honest parties’
inputs), fairness1 (corrupted parties should receive their output if and only if
honest parties do), and guaranteed output delivery (corrupted parties should not
be able to prevent honest parties from receiving their output). The standard
definition today, [3,7] formalizes the above requirements (and others) in the
following general way. Consider an ideal world in which an external trusted party
is willing to help the parties carry out their computation. An ideal computation
takes place in this ideal world by having the parties simply send their inputs to
the trusted party, who then computes the desired function and passes each party
its prescribed output. The security of a real protocol is established by comparing
the outcome of the protocol to the outcome of an ideal computation. Specifically,
a real protocol that is run by the parties (without any trusted party) is secure,
if an adversary controlling a coalition of corrupted parties can do no more harm
in a real execution than in the above ideal execution.

The above informal description is “overly ideal” in the following sense. It is
a known fact that unless an honest majority is assumed, it is impossible to ob-
tain generic protocols for secure multi-party computation that guarantee output
delivery and fairness [4]. The definition is therefore typically relaxed when no
honest majority is assumed. In particular, under certain circumstances, honest
parties may not receive any output, and fairness is not always guaranteed. Re-
cently, it was shown that it is actually possible to securely compute some (in fact,
many) two-party functionalities fairly [11,1]. In addition, it is possible to even
compute some multiparty functionalities fairly, for any number of corrupted par-
ties; in particular, the majority function may be securely computed fairly with
3 parties, and the Boolean OR function may be securely computed for any num-
ber of parties [10]. This has promoted interest in the question of fairness in the
setting of no honest majority.

1.2 Fairness versus Guaranteed Output Delivery

The two notions of fairness and of guaranteed output delivery are quite similar
and are often interchanged. However, there is a fundamental difference between
them. If a protocol guarantees output delivery, then the parties always obtain
output and cannot abort. In contrast, if a protocol is fair, then it is only guaran-
teed that if one party receives output then all parties receive output. Thus, it is
possible that all parties abort. In order to emphasize the difference between the
notions, we note that every protocol that provides guaranteed output delivery
can be transformed into a protocol that provides fairness but not guaranteed

1 Throughout this paper, whenever we say “fair” we mean “completely fair”, and so
if any party learns anything then all parties receive their entire output. This is in
contrast to notions of partial fairness that have been studied in the past.
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output delivery, as follows. At the beginning every party broadcasts OK; if one
of the parties did not send OK then all the parties output ⊥; otherwise the
parties execute the original protocol (that ensures guaranteed output delivery).
Clearly every party can cause the protocol to abort. However, it can only do so
before any information has been obtained. Thus, the resulting protocol is fair,
but does not guarantee output delivery.

It is immediate to see that guaranteed output delivery implies fairness, since
if all parties must receive output then it is not possible for the corrupted parties
to receive output while the honest do not. However, the opposite direction is
not clear. In the two-party case, guaranteed output delivery is indeed implied
by fairness since upon receiving abort the honest party can just compute the
function on its own input and a default input for the other party. However, when
there are many parties involved, it is not possible to replace inputs with default
inputs since the honest parties do not necessarily know who is corrupted (and
security mandates that honest parties’ inputs cannot be changed; otherwise, this
could be disastrous in an election-type setting). This leads us to the following
fundamental questions, which until now have not been considered at all (indeed,
fairness and guaranteed output delivery are typically used synonymously):

Does fairness imply guaranteed output delivery? Do there exist function-
alities that can be securely computed with fairness but not with guaranteed
output delivery? Are there conditions on the function/network model for
which fairness implies guaranteed output delivery?

The starting point of our work is the observation that the broadcast functionality
does actually separate guaranteed output delivery and fairness. Specifically, let
n denote the overall number of parties, and let t denote an upper bound on the
number of corrupted parties. Then, it is well known that secure broadcast can
be achieved if and only if t < n/3 [14,13]. However, it is also possible to achieve
weak broadcast (which means that either all parties abort and no one receives
output, or all parties receive and agree upon the broadcasted value) for any t < n
[6]. In our terms, this is a secure computation of the broadcast functionality with
fairness but no guaranteed output delivery. Thus, we see that for t ≥ n/3 there
exist functionalities that can be securely computed with fairness but not with
guaranteed output delivery (the fact that broadcast cannot be securely computed
with guaranteed output delivery for t ≥ n/3 follows directly from the bounds
on Byzantine Generals [14,13]). Although broadcast does provide a separation,
it is an atypical function. Specifically, there is no notion of privacy, and the
functionality can be computed information theoretically for any t < n given a
secure setup phase [15]. Thus, broadcast is a trivial functionality.2 This leaves
the question of whether fairness and guaranteed output delivery are distinct still
holds for more “standard” secure computation tasks.

It is well known that for t < n/2 any multiparty functionality can be securely
computed with guaranteed output delivery given a broadcast channel [8,16].

2 We stress that “trivial” does not mean easy to achieve or uninteresting. Rather, it
means that cryptographic hardness is not needed to achieve it in the setting of no
honest majority [12].
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Thus, using the weak broadcast of [6] in the protocols of [8,16] we have that
any functionality can be securely computed with fairness for t < n/2. This
leaves open the question as to whether there exist functionalities (apart from
broadcast) that cannot be securely computed with guaranteed output delivery
for n/3 ≤ t < n/2.

In [10], they showed that the 3-party majority function and multiparty Boolean
OR function can be securely computed with guaranteed output delivery for any
number of corrupted parties (in particular, with an honest minority). However,
the constructions of [10] use a broadcast channel. This leads us to the following
questions for the range of t ≥ n/3:

1. Can the 3-party majority function and multiparty Boolean OR function be
securely computed with guaranteed output delivery without broadcast?

2. Can the 3-party majority function and multiparty Boolean OR function be
securely computed with fairness without a broadcast channel?

3. Does the existence of broadcast make a difference with respect to fairness
and/or guaranteed output delivery in general?

We remark that conceptually guaranteed output delivery is a stronger notion
of security and that it is what is required in some applications. Consider the
application of “mental poker”; if guaranteed output delivery is not achieved,
then a corrupted party can cause the execution to abort in case it is dealt a bad
hand. This is clearly undesirable.

1.3 Our Results

Separating Fairness and Guaranteed Output Delivery. We show that the
3-party majority function that can be securely computed with fairness [10] can-
not be securely computed with guaranteed output delivery. Thus, there exist non-
trivial functionalities (i.e., functionalities that cannot be securely computed in the
information theoretic setting without an honestmajority) for which fairness canbe
achievedbut guaranteed output delivery cannot.Technically,we show this by prov-
ing that the 3-party majority function can be used to achieve broadcast, implying
that it cannot be securely computed with guaranteed output delivery.

Theorem 1. Consider a model without a broadcast channel and consider any
t ≥ n/3. Then, there exist non-trivial functionalities f (e.g., the majority func-
tion) such that f can be securely computed with fairness but f cannot be securely
computed with guaranteed output delivery.

This proves that fairness and guaranteed output delivery are distinct, at least
in a model without a broadcast channel.

Feasibility of Guaranteed Output Delivery without Broadcast. The
protocols of [10] for majority and Boolean OR both use a broadcast channel to
achieve guaranteed output delivery. As we have seen in Theorem 1 this is essential
for achieving their result for the majority function. However, is this also the case
for the Boolean OR function? In general, do there exist non-trivial functionalities
for which guaranteed output delivery is achievable without a broadcast channel
and for any number of corrupted parties?
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Theorem 2. Consider a model without a broadcast channel and consider any
number of corruptions. Then, there exist non-trivial functionalities f (e.g., the
Boolean OR function) such that f can be securely computed with guaranteed
output delivery.

On the Role of Broadcast. We show that the existence or non-existence of
broadcast is meaningless with respect to fairness, but of great significance with
respect to guaranteed output delivery. Specifically, we show the following:

Theorem 3. Let f be a multiparty functionality. Then:

1. There exists a protocol for securely computing f with fairness with a broadcast
channel if and only if there exists a protocol for securely computing f with
fairness without a broadcast channel.

2. If there exists a protocol for securely computing f with fairness (with or with-
out a broadcast channel), then there exists a protocol for securely computing
f with guaranteed output delivery with a broadcast channel.

Thus, fairness and guaranteed output delivery are equivalent in a model with
a broadcast channel, and distinct without a broadcast channel. In contrast, by
Theorem 1 we already know that without broadcast it does not hold that fair-
ness implies guaranteed output delivery (otherwise, the separation in Theorem 1
would not be possible). We also show that under black-box reductions, fairness
never helps achieve guaranteed output delivery. That is:

Theorem 4. Let f be a multiparty functionality and consider a hybrid model
where a trusted party computes f fairly for the parties (i.e., either all parties
receive output or none do). Then, there exists a protocol for securely computing
f with guaranteed output delivery in the hybrid model if and only if there exists
a protocol for securely computing f with guaranteed output delivery in the real
model with no trusted party.

Intuitively, Theorem 4 follows from the fact that an adversary can always
cause the result of calls to f to be abort in which case they are of no help. This
does not contradict item (2) of Theorem 3 since given a broadcast channel and
nonblack-box access to the protocol that computes f with fairness, it is possible
to apply a variant of the GMW compiler [8] and detect which party cheated and
caused the abort to occur.

Conditions under Which Fairness Implies Guaranteed Output Deliv-
ery. We have already seen that fairness implies guaranteed output delivery given
broadcast. We also consider additional scenarios in which fairness implies guar-
anteed output delivery. We prove that if a functionality can be securely computed
with fairness and identified abort (meaning that the identity of the cheating party
is detected) then the functionality can be securely computed with guaranteed
output delivery. Finally, we show that in the fail-stop model (where the only
thing an adversary can do is instruct a corrupted party to halt prematurely),
fairness is always equivalent to guaranteed output delivery. This follows from
the fact that broadcast is trivial in the fail-stop model.
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Identified Abort and Broadcast. In the model of identified abort, the iden-
tity of the cheating party is revealed to the honest parties. This definition was
explicitly used by [2], who remarked that it is met by most protocols (e.g., [8]),
but not all (e.g., [9]). This model has the advantage that a cheating adversary
who runs a “denial of service” attack and causes the protocol to abort cannot
go undetected. Thus, it cannot repeatedly prevent the parties from obtaining
output. An interesting corollary that comes out of our work—albeit not related
to fairness and guaranteed output delivery—is that security with identified abort
cannot be achieved in general for t ≥ n/3 without broadcast. This follows from
the fact that if identified abort can be achieved in general (even without fairness),
then it is possible to achieve broadcast. Thus, we conclude:

Corollary 1. Consider a model without a broadcast channel and consider any
t ≥ n/3. Then, there exist functionalities f that cannot be securely computed
with identified abort.

Summary of Feasibility. The table below summarizes the state of affairs re-
garding feasibility for secure computation with fairness and guaranteed output
delivery, for different ranges regarding the number of corrupted parties.

Num. of Corrupted With Broadcast Without Broadcast

t < n/3 All f can be securely computed
with guaranteed output delivery

n/3 ≤ t < n/2 All f can be computed with OR can be computed with
guaranteed output delivery guaranteed output delivery

t ≥ n/2 Fairness implies guaran- MAJ cannot be computed with
teed output delivery guaranteed output delivery

- If f can be securely computed fairly with broadcast
then it can be securely computed fairly without broadcast

Preliminaries. Full definitions can be found in the full version [5]. We consider
a number of different ideal models: security with guaranteed output delivery,
with fairness, with abort, with identified abort (meaning that in the case of
abort one of the corrupted parties is identified by the honest parties), and fair-
ness with identified abort. The ideal models for these models are respectively
denoted IDEAL

g.d., IDEAL
fair, IDEAL

abort, IDEAL
id-abort, IDEAL

fair,id-abort. We also con-
sider hybrid model protocols where the parties send regular messages to each
other, and also have access to a trusted party who computes some function f
for them. The trusted party may compute according to any of the specified ideal
model. Letting type ∈ {g.d., fair, abort, id-abort, (fair, id-abort)}, we call this the
(f, type)-hybrid model, and denote it HYBRID

f,type. The security parameter is de-
noted by κ, and the set of corrupted parties by I. Unless stated otherwise, all
adversaries considered are malicious.

2 Separating Fairness from Guaranteed Output Delivery

In this section we prove Theorem 1. As we have mentioned in the Introduction,
it is known that secure broadcast can be t-securely computed with guaranteed
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output delivery if and only if t < n/3. In addition, secure broadcast can be
computed with fairness, for any t ≤ n, using the protocol of [6]. Thus, broad-
cast already constitutes a separation of fairness from guaranteed output deliv-
ery; however, since broadcast can be information theoretically computed (and
is trivial in the technical sense; see Footnote 2), we ask whether or not such a
separation also exists for more standard secure computation tasks.

In order to show a separation, we need to take a function for which fairness
in the multiparty setting is feasible. Very few such functions are known, and
the focus of this paper is not the construction of new protocols. Fortunately, in
[10], it was shown that the 3-party majority function can be securely computed
with fairness. (In [10] they use a broadcast channel. However, as we show in
Section 4.1, this implies the result also without a broadcast channel.) We stress
that the 3-party majority function is not trivial, and in fact the ability to securely
compute it with any number of corruptions implies the existence of oblivious
transfer (this is shown by reducing the 2-party greater-than functionality to it
and applying [12]).

We show that the 3-party majority function fmaj cannot be securely computed
with guaranteed output delivery and any number of corrupted parties in the
point-to-point network model by showing that it actually implies broadcast. The
key observation is that there exists an input (1, 1, 1) for which the output of fmaj

will be 1, even if a single corrupted party changes its input to 0. Similarly, there
exists an input (0, 0, 0) for which the output of fmaj will be 0, even if a single
corrupt party changes its input to 1. Using this property, we show that if fmaj

can be computed with guaranteed output delivery, then there exists a broadcast
protocol for 3 parties that is secure against a single corruption. Given an input
bit β, the sender sends β to each other party, and all parties compute fmaj on
the input they received. This works since a corrupted dealer cannot make two
honest parties output inconsistent values, since fmaj provides the same output to
all parties. Likewise, if there is one corrupted receiver, then it cannot change the
majority value (as described above). Finally, if there are two corrupted receivers,
then it makes no difference what they output anyway.

Theorem 5. Let t be a parameter and let fmaj : {0, 1}3 → {0, 1}3 be the majority
functionality for 3 parties fmaj(x1, x2, x3) = (y, y, y) where y = (x1 ∧ x2) ∨
(x3∧(x1⊕x2)). If fmaj can be t-securely computed with guaranteed output delivery
in a point-to-point network, then there exists a protocol that t-securely computes
the 3-party broadcast functionality for any t.

Proof: We construct a protocol π for securely computing the 3-party broad-
cast functionality fbc(x, λ, λ) = (x, x, x) in the (fmaj, g.d.)-hybrid model (i.e.,
in a hybrid model where a trusted party computes the fmaj functionality with
guaranteed output delivery). Protocol π works as follows:

1. The sender P1 with input x ∈ {0, 1} sends x to P2 and P3.
2. Party P1 sends x to the trusted party computing fmaj. Each party Pi (i ∈

{2, 3}) sends the value it received from P1 to fmaj.
3. Party P1 always outputs x. The parties P2 and P3 output whatever they

receive from the trusted party computing fmaj.
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Let A be an adversary attacking the execution of π in the (fmaj, g.d.)-hybrid
model; we construct an ideal model adversary S in the ideal model for fbc with
guaranteed output delivery. S invokes A and simulates the interaction of A with
the honest parties and with the trusted party computing fmaj. S proceeds based
on the following corruption cases:

– P1 alone is corrupted: S receives from A the values x2, x3 ∈ {0, 1} that it
sends to parties P2 and P3, respectively. Next, S receives the value x1 ∈ {0, 1}
that A sends to fmaj. S computes x = fmaj(x1, x2, x3) and sends x to the
trusted party computing fbc. S simulates A receiving x back from fmaj, and
outputs whatever A outputs.

– P1 and one of P2 or P3 are corrupted: the simulation is the same as in the
previous case except that if P2 is corrupted then the value x2 is taken from
what A sends in the name of P2 to fmaj (and not the value that A sends first
to P2); likewise for P3. Everything else is the same.

– P1 is honest: S sends an empty input λ to the trusted party for every cor-
rupted party, and receives back some x ∈ {0, 1}. Next, S simulates P1 sending
x to both P2 and P3. If both P2 and P3 are corrupted, then S obtains from
A the values x2 and x3 that they send to fmaj, computes x′ = fmaj(x, x2, x3)
and simulates the trusted party sending x′ back to all parties. If only one of
P2 and P3 are corrupted, then S simulates the trusted party sending x back
to all parties. Finally, S outputs whatever A outputs.

The fact that the simulation is good is straightforward. If P1 is corrupted, then
only consistency is important, and S ensures that the value sent to fbc is the
one that the honest party/parties would output. If P1 is not corrupted, and both
P2 and P3 are corrupted, then P1 always outputs the correct x as required, and
the outputs of P2 and P3 are not important. Finally, if P1 and P2 are corrupted,
then S sends fbc the value that P3 would output in the real protocol as required;
likewise for P1 and P3 corrupted.

Theorem 5 implies that fmaj cannot be securely computed with guaranteed
output delivery for any t < 3 in a point-to-point network; this follows immedi-
ately from the fact that the broadcast function can be securely computed if and
only if t < n/3. Furthermore, by [10], fmaj can be securely computed fairly given
oblivious transfer (and as shown in Section 4.1 this also holds in a point-to-point
network). Thus, we have:

Corollary 2. Assume that oblivious transfer exists. Then, there exist non-trivial
functionalities f such that f can be securely computed with fairness but cannot
be securely computed with guaranteed output delivery, in a point-to-point network
and with t ≥ n/3.

Three-Party Functionalities That Imply Broadcast. It is possible to gen-
eralize the property that we used to show that fmaj implies broadcast. Specifi-
cally, consider a functionality f with the property that there exist inputs
(x1, x2, x3) and (x′1, x

′
2, x

′
3) such that f(x1, x2, x3) = 0 and f(x′1, x

′
2, x

′
3) = 1,

and such that if either of x2 or x3 (resp., x′2 or x′3) are changed arbitrarily, then
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the output of f remains the same. Then, this function can be used to achieve
broadcast. We describe the required property formally inside the proof of the
theorem below. We show that out of the 256 functions over 3-bit inputs, there
are 110 of them with this property. It follows that none of these can be se-
curely computed with guaranteed output delivery in the presence of one or two
corrupted parties. We prove the following:

Theorem 6. There are 110 functions from the family of all 3-party Boolean
functions {f : {0, 1}×{0, 1}×{0, 1}→ {0, 1}} that cannot be securely computed
with guaranteed output delivery in a point-to-point network with t = 1 or t = 2.

Proof: We provide a combinatorial proof of the theorem, by counting how many
functions have the property that arbitrarily changing one of the inputs does not
effect the output, and there are inputs that yield output 0 and inputs that yield
output 1. As we have seen in the proof of Theorem 5, it is possible to securely
realize the broadcast functionality given a protocol that securely computes any
such functionality with guaranteed output delivery.

We prove that there are 110 functions f : {0, 1}3 → {0, 1} in the union of the
following sets F1, F2, F3:

1. Let F1 be the set of all functions for which there exist (a, b, c), (a′, b′, c′) ∈
{0, 1}3 such that f(a, b, ·) = f(a, ·, c) = 1 and f(a′, b′, ·) = f(a′, ·, c′) = 0.

2. Let F2 be the set of all functions for which there exist (a, b, c), (a′, b′, c′) ∈
{0, 1}3 such that f(a, b, ·) = f(·, b, c) = 1 and f(a′, b′, ·) = f(·, b′, c′) = 0.

3. Let F3 be the set of all functions for which there exist (a, b, c), (a′, b′, c′) ∈
{0, 1}3 such that f(·, b, c) = f(a, ·, c) = 1 and f(·, b′, c′) = f(a′, ·, c′) = 0.

Observe that any function in one of these sets can be used to achieve broadcast, as
described above. Based on the inclusion-exclusion principle and using Lemma 2
proven below, it follows that:

|F1 ∪ F2 ∪ F3| = 3 · 50− 3 · 16 + 8 = 110,

as required. We first prove the following lemma:

Lemma 1. If f ∈ F1, then a �= a′, if f ∈ F2 then b �= b′ and if f ∈ F3 then c �= c′.

Proof: Let f ∈ F1 and let a, a′, b, b′, c, c′ ∈ {0, 1} be inputs fulfilling the condi-
tion for set F1. Assume by contradiction that a = a′. Thus,

f(a, b, c) = f(a, b̄, c) = f(a, b, c̄) = 1 and f(a, b′, c′) = f(a, b̄′, c′) = f(a, b′, c̄′) = 0.

If b = b′ then f(a, b, c′) = f(a, b′, c′) = 0. However, f(a, b, c) = f(a, b, c̄) = 1
and so f(a, b, c′) = 1 for any c′, in contradiction. Thus b �= b′. Similarly, c �= c′.
Therefore, b′ = b̄ and c′ = c̄ and by the condition, f(a, b, c) = 1 and f(a, b̄, c̄) = 0.

Consider f(a, b̄, c). From the condition, f(a, b, c) = f(a, b̄, c) = 1. However,
changing the c coordinate to c̄ gives us f(a, b̄, c̄) which by the condition equals 0
(because b′ = b̄ and c′ = c̄). We therefore derive a contradiction, and so conclude
that a′ = ā.

It remains to prove the following lemma, to derive the theorem.
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Lemma 2. The following hold:

1. |F1| = |F2| = |F3| = 50.
2. |F1 ∩ F2| = |F1 ∩ F3| = |F2 ∩ F3| = 16.
3. |F1 ∩ F2 ∩ F3| = 8.

Proof: Let f : {0, 1}3 → {0, 1} be a function represented by the Boolean string
(β0β1β2β3β4β5β6β7) as shown in Table 1:

Table 1. Representation of a Boolean function {0, 1}3 → {0, 1}

0 0 0 β0

0 0 1 β1

0 1 0 β2

0 1 1 β3

1 0 0 β4

1 0 1 β5

1 1 0 β6

1 1 1 β7

1. Assume f ∈ F1 (the proof for F2, F3 is similar). The first quadruple
(β0β1β2β3) corresponds to a = 0 and the second quadruple (β4β5β6β7)
corresponds to a = 1. There exists b, c such that f(a, b, c) = f(a, b̄, c) =
f(a, b, c̄) and b′, c′ such that f(ā, b′, c′) = f(ā, b̄′, c′) = f(ā, b′, c̄′), in addi-
tion, f(a, b, c) �= f(ā, b′, c′). Therefore, in each such quadruple there must be
a triplet of 3 identical bits, and the two triplets have opposite values.
Denote β = f(a, b, c), there are 5 options for (β0β1β2β3) in which 3 of the
bits equal β:

(ββββ), (ββββ̄), (βββ̄β), (ββ̄ββ), (β̄βββ).

For each such option, there are 5 options for (β4β5β6β7) in which 3 of the
bits equal β̄:

(β̄β̄β̄β̄), (β̄β̄β̄β), (β̄β̄ββ̄), (β̄ββ̄β̄), (ββ̄β̄β̄).

There are 2 options for the value of β, so in total |F1| = 2 · 5 · 5 = 50.
2. Assume f ∈ F1 ∩ F2 (the proof for F1 ∩ F3, F2 ∩ F3 is similar). In this case
a′ = ā and b′ = b̄ and the constraints are

f(a, b, c) = f(ā, b, c) = f(a, b̄, c) = f(a, b, c̄)

�= f(ā, b̄, c′) = f(a, b̄, c′) = f(ā, b, c′) = f(ā, b̄, c̄′).

Therefore, the string is balanced (there are 4 zeros and 4 ones), where 3 of
the bits (β0β1β2β3) are equal to β and one to β̄, and 3 of the bits (β4β5β6β7)
are equal to β̄ and one to β.
There are 4 options to select 3 bits in (β0β1β2β3), and 2 options to select one
bit in (β4β5β6β7). These two options correspond either to (ā, b, c) or (ā, b̄, c̄).
Hence, |F1 ∩ F2| = 2 · 4 · 2 = 16.

3. Assume f ∈ F1 ∩ F2 ∩ F3. In this case a′ = ā, b′ = b̄ and c′ = c̄ and the
constraints are

f(a, b, c) = f(ā, b, c) = f(a, b̄, c) = f(a, b, c̄)

�= f(ā, b̄, c̄) = f(a, b̄, c̄) = f(ā, b, c̄) = f(ā, b̄, c).
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Therefore, the string is of the form (β0β1β2β3β̄0β̄1β̄2β̄3), where 3 of the bits
(β0β1β2β3) are equal to β and one to β̄.
There are 4 options to select 3 bits in (β0β1β2β3), and setting them to the
same value determines the rest of the string. Hence, |F1∩F2∩F3| = 2 ·4 = 8.

This completes the proof of Theorem 6.

As we have mentioned in the Introduction, in the case that t = 1 (i.e., when
there is an honest majority), all functions can be securely computed with fairness
in a point-to-point network. Thus, we have that all 110 functions of Theorem 6
constitute a separation of fairness from guaranteed output delivery. That is,
in the case of n/3 ≤ t < n/2, we have that many functions can be securely
computed with fairness but not with guaranteed output delivery. In addition, 8
out of these 110 functions reduce to 3-majority and so can be computed fairly
for any t ≤ n. Thus, these 8 functions form a separation for the range of t ≥ n/2.

3 Fairness Implies Guaranteed Output Delivery for
Default-Output Functionalities

In this section we prove Theorem 2. In fact, we prove a stronger theorem, stating
that fairness implies guaranteed output delivery for functions with the property
that there exists a “default value” such that any single party can fully determine
the output to that value. For example, the multiparty Boolean AND and OR
functionalities both have this property (for the AND functionality any party
can always force the output to be 0, and for the OR functionality any party can
always force the output to be 1). We call such a function a default-output func-
tionality. Intuitively, such a function can be securely computed with guaranteed
output delivery if it can be securely computed fairly, since the parties can first
try to compute it fairly. If they succeed, then they are done. Otherwise, they all
received abort and can just output their respective output in the default value
for the functionality. This can be simulated since any single corrupted party in
the ideal model can choose an input that results in the default output value.

Definition 1. Let f : ({0, 1}∗)n → ({0, 1}∗)n be an n-ary functionality. f is
called a default-output functionality with default output (ỹ1, . . . , ỹn), if for every
i ∈ {1, . . . , n} there exists a special input x̃i such that for every xj with j �= i it
holds that f(x1, . . . , x̃i, . . . , xn) = (ỹ1, . . . , ỹn).

Observe that (0, . . . , 0) is a default output for the Boolean AND function, and
(1, . . . , 1) is a default output for the Boolean OR function. We now prove that if
a functionality f has a default output value, then the existence of a fair protocol
for f implies a protocol with guaranteed output delivery for f .

Theorem 7. Let f : ({0, 1}∗)n → ({0, 1}∗)n be a default-output functionality. If
f can be t-securely computed with fairness (with or without a broadcast channel),
then f can be t-securely computed with guaranteed output delivery, in a point-
to-point network.
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Proof: Let f be as in the theorem statement, and let the default output be
(ỹ1, . . . , ỹn). Assume that f can be securely computed with fairness with or
without a broadcast channel. By Theorem 9, f can be securely computed with
fairness without a broadcast channel. We now construct a protocol π that se-
curely computes f with guaranteed output delivery in the (f, fair)-hybrid model:

1. Each Pi sends its input xi to the trusted party computing f .
2. Denote by yi the value received by Pi from the trusted party.
3. If yi �= ⊥, Pi outputs yi, otherwise Pi outputs ỹi.

Let A be an adversary attacking the execution of π in the (f, fair)-hybrid model.
We construct an ideal model adversary S in the ideal model with guaranteed
output delivery. Let I be the set of corrupted parties, let i ∈ I be one of the
corrupted parties (if no parties are corrupted then there is nothing to simulate),
and let x̃i be the input guaranteed to exist by Definition 1. Then, S invokes A
and simulates the interaction ofA with the trusted party computing f (note that
there is no interaction between A and honest parties). S receives the inputs that
A sends to f . If any of the inputs equal abort then S sends x̃i as Pi’s input to its
own trusted party computing f (with guaranteed output delivery), and arbitrary
inputs for the other parties. Then, S simulates the corrupted parties receiving
⊥ as output from the trusted party in π, and outputs whatever A outputs. Else,
if none of the inputs equal abort, then S sends its trusted party the inputs that
A sent. S then receives the outputs of the corrupted parties from its trusted
party, and internally sends these to A as the corrupted parties’ outputs from the
trusted party computing f in π. Finally, S outputs whatever A outputs.

If A sends abort, then in the real execution every honest party Pj outputs
ỹj . However, since S sends the input x̃i to the trusted party computing f , by
Definition 1 we have that the output of every honest party Pj in the ideal
execution is also ỹj . Furthermore, if A does not send abort, then S just uses
exactly the same inputs that A sent. It is clear that the view of A is identical
in the execution of π and the simulation with S. We therefore conclude that π
securely computes f with guaranteed output delivery, as required.

We have proven that fairness implies guaranteed output delivery for default-
output functionalities; it remains to show the existence of fair protocols for some
default-output functionalities. Fortunately, this was already proven in [10]. The
only difference is that [10] uses a broadcast channel. Noting that the multiparty
Boolean OR functionality is non-trivial (in the sense of Footnote 2), and that it
has default output (1, . . . , 1) as mentioned above, we have the following corollary.

Corollary 3. Assume that oblivious transfer exists. Then, there exist non-trivial
functionalities f that can be securely computed with guaranteed output delivery
in a point-to-point network, for any t < n.

Feasibility of Guaranteed Output Delivery. In Theorem 8, we prove that
16 non-trivial functionalities can be securely computed with guaranteed output
delivery in a point-to-point network (by showing that they are default-output



478 R. Cohen and Y. Lindell

functionalities). Thus, guaranteed output delivery can be achieved for a signifi-
cant number of functions.

Theorem 8. There are 16 non-trivial functions from the family of all 3-party
Boolean functions {f : {0, 1} × {0, 1} × {0, 1} → {0, 1}} that can be securely
computed with guaranteed output delivery in a point-to-point network for any
number of corrupted parties.

Proof: When represented using its truth table as a Binary string (see Table 1),
the 3-party Boolean OR function is (01111111), similarly, the Boolean AND
function is (00000001). Every function (β0β1β2β3β4β5β6β7) such that there ex-
ists i for which βi = β and for every j �= i βj = β̄ can be reduced to computing
Boolean OR. Since there are 8 ways to choose i and 2 ways to choose β, we
conclude that there are 16 such functions.

4 The Role of Broadcast

In this section, we prove Theorem 3, and show that a functionality can be se-
curely computed fairly with broadcast if and only if it can be securely computed
fairly without broadcast. In addition, we show that if a functionality can be se-
curely computed with fairness, then with a broadcast channel it can be securely
computed with guaranteed output delivery.

4.1 Fairness Is Invariant to Broadcast

Gordon and Katz construct two fair multiparty protocols in [10], both of them
require a broadcast channel. In this section we show that fairness holds for both
even without a broadcast channel. More generally, fairness can be achieved with
a broadcast channel if and only if it can be achieved without a broadcast channel.

It is immediate that fairness without broadcast implies fairness with broad-
cast. The other direction follows by using the protocol of [6] for detectable broad-
cast. In the first stage, the parties execute a protocol that establishes a public key
infrastructure. This protocol is independent of the parties’ inputs and is com-
puted with abort. If the adversary aborts during this phase, it learns nothing
about the output and fairness is retained. If the adversary does not abort, the
parties can use the public key infrastructure and execute multiple (sequential)
instances of authenticated broadcast, and so can run the original protocol with
broadcast that is fair.

One subtlety arises since the composition theorem replaces every ideal call to
the broadcast functionality with a protocol computing broadcast. However, in
this case, each authenticated broadcast protocol relies on the same public key
infrastructure that is generated using a protocol with abort. We therefore define
a reactive ideal functionality which allows abort only in the first “setup” call.
If no abort was sent in this call, then the functionality provides a fully secure
broadcast (with guaranteed output delivery) from there on. The protocol of [6]
securely computes this functionality with guaranteed output delivery, and thus
constitutes a sound replacement of the broadcast channel (unless an abort took
place).
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Theorem 9. Let f be an n-ary functionality and let t ≤ n. Then, f can be
t-securely computed with fairness assuming a broadcast channel if and only if f
can be t-securely computed with fairness in a point-to-point network.

Proof Sketch: If f can be t-securely computed with fairness in a point-to-point
network, then it can be t-securely computed with fairness with a broadcast
channel by just having parties broadcast messages and stating who the intended
recipient is. (Recall that in the point-to-point network we assume authenticated
but not private channels.)

Next, assume that f can be t-securely computed with fairness assuming a
broadcast channel. We now show that it can be t-securely computed with fairness
in a point-to-point network. We define the reactive functionality for conditional
broadcast fcondbc. In the first call to fcondbc, the functionality computes the AND
function, i.e., each party has an input bit bi and the functionality returns b =
b1 ∧ . . . ∧ bn to each party. In addition, the functionality stores the bit b as its
internal state for all future calls. In all future calls to fcondbc, if b = 1 it behaves
exactly like fbc, whereas if b = 0 it returns ⊥ to all the parties in the first
call and halts. By inspection, it is immediate that the protocol of [6] securely
computes fcondbc with guaranteed output delivery, for any t ≤ n in a point-to-
point network.

Let π be the protocol that t-securely computes f assuming a broadcast chan-
nel; stated differently, π t-securely computes f in the (fbc, g.d.)-hybrid model.
We construct a protocol π′ for t-securely computing f in the (fcondbc, fair)-hybrid
model. π′ begins by all parties sending the bit 1 to fcondbc and receiving back out-
put. If a party receives back b = 0, it aborts and outputs ⊥. Else, it runs π with
the only difference that all broadcast messages are sent to fcondbc instead of to
fbc. Since fcondbc behaves exactly like fbc as long b = 1 is returned from the first
call, we have that in this case the output of π and π′ is identical. Furthermore,
π′ is easily simulated by first invoking the adversary A′ for π′ and obtaining the
corrupted parties’ inputs to fcondbc in the first call. If any 0 bit is sent, then the
simulator S ′ for π′ sends abort to the trusted party, outputs whatever A′ outputs
and halts. Otherwise, it invokes the simulator S that is guaranteed to exist for
π on the residual adversary A that is obtained by running A′ until the end of
the first call to fcondbc (including A′ receiving the corrupted parties’ output bits
from this call). Then, S ′ sends whatever S wishes to send to the trusted party,
and outputs whatever S outputs. Since fcondbc behaves exactly like fbc when
b = 1 in the first phase, we have that the output distribution generated by S ′ is
identical to that of S when b = 1. Furthermore, when b = 0, it is clear that the
simulation is perfect.

4.2 Fairness with Identified Abort Implies Guaranteed Output
Delivery

Before proceeding to prove that fairness implies guaranteed output delivery in a
model with a broadcast channel, we first show that fairness with identified abort
implies guaranteed output delivery. Recall that a protocol securely computes a
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functionality f with identified abort, if when the adversary causes an abort all
honest parties receive ⊥ as output along with the identity of a corrupted party.
If a protocol securely computes f with fairness and identified abort, then it is
guaranteed that if the adversary aborts, it learns nothing about the output and
all honest parties learn an identity of a corrupted party. In this situation, the
parties can eliminate the identified corrupted party and execute the protocol
again, where an arbitrary party emulates the operations of the eliminated party
using a default input. Since nothing was learned by the adversary when an abort
occurs, the parties can rerun the protocol from scratch (without the identified
corrupted party) and nothing more than a single output will be revealed to
the adversary. Specifically, given a protocol π that computes f with fairness
and identified abort, we can construct a new protocol π′ that computes f with
guaranteed output delivery. In the protocol π′, the parties iteratively execute π,
where in each iteration, either the adversary does not abort and all honest parties
receive consistent output, or the adversary aborts without learning anything and
the parties identify a corrupted party, who is eliminated from the next iteration.

Theorem 10. Let f be an n-ary functionality and let t ≤ n. If f can be t-
securely computed with fairness and identified abort, then f can be t-securely
computed with guaranteed output delivery.

Proof: We prove the theorem by constructing a protocol π that t-securely com-
putes f with guaranteed output delivery in the (f, fair-id-abort)-hybrid model.
For every party Pi, we assign a default input value x̃i and construct the protocol
π as follows:

1. Let P1 = {1, . . . , n} denote the set of indices of all participating parties.
2. For i = 1, . . . , t+ 1

(a) All parties in Pi send their inputs to the trusted party computing f ,
where the party with the lowest index in Pi simulates all parties in
P1 \ Pi, using their predetermined default input values.
For each j ∈ Pi, denote the output of Pj from f by yj .

(b) For every j ∈ Pi, party Pj checks if yj is a valid output, if so Pj outputs
yj and halts. Otherwise all parties receive (⊥, i∗) as output, where i∗

is an index of a corrupted party. If i∗ /∈ Pi (and so i∗ is a previously
identified corrupted party), then all parties set i∗ to be the party with
the lowest index in Pi.

(c) Set Pi+1 = Pi \ {i∗}.

First note that there are at most t + 1 iterations; therefore π terminates in
polynomial time. Let A be an adversary attacking π and let I be the set of
corrupted parties. We construct a simulator S for the ideal model with f and
guaranteed output delivery, as follows. S invokes A and receives its inputs to
f in every iteration. If an iteration contains an abort, then S simulates sending
the response (⊥, i∗) to all parties, and proceeds to the next iteration. In the
first iteration in which no abort is sent (and such an iteration must exist since
there are t+1 iterations and in every iteration except for the last one corrupted
party is removed), S sends the inputs of the corrupted parties that A sent to the
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trusted party computing f . In addition, S sends the values for any corrupted
parties that were identified in previous iterations: if the lowest index remaining
is honest, then S sets these values to be the default values; else, it sets these
values to be the values sent by A for these parties. Upon receiving the output
from its trusted party, S hands it to A as if it were the output of the corrupted
parties in the iteration of π, and outputs whatever A outputs.

The simulation in the (f, fair-id-abort)-hybrid model is perfect since S can
perfectly simulate the trusted party for all iterations in which an abort is sent.
Furthermore, in the first iteration for which an abort is not sent, S sends f the
exact inputs upon which the function f is computed in the protocol. Thus, the
view of A and the output of the honest parties in the simulation with S are
identical to their view and output in an execution of π in the (f, fair-id-abort)-
hybrid model.

4.3 Fairness with Broadcast Implies Guaranteed Output Delivery

In Section 4.2, we saw that if a functionality can be securely computed with
fairness and identified abort, then it can be securely computed with guaran-
teed output delivery. In this section, we show that assuming the existence of a
broadcast channel, there is a protocol compiler that given a protocol computing
a functionality f with fairness, outputs a protocol computing f with fairness
and identified abort. Therefore, assuming broadcast, fairness implies guaranteed
output delivery.

The protocol compiler we present is a modification of the GMW compiler,
which relies on the code of the underlying fair protocol and requires non-black-
box access to the protocol. (Therefore, this result does not contradict the proof
in Section 5 that black box access to an ideal functionality that computes f with
fairness does not help to achieve guaranteed output delivery.) The underlying
idea is to use the GMW compiler [8,7]. However, instead of enforcing semi-
honest behaviour, the compiler is used in order to achieve security with identified
abort. This is accomplished by tweaking the GMW compiler so that first only
public-coin zero-knowledge proofs are used, and second if an honest party detects
dishonest behaviour—i.e., if some party does not send a message or fails to
provide a zero knowledge proof for a message it sent—the honest parties record
the identity i∗ of the cheating party. We stress that the parties do not abort the
protocol at this point, but rather continue until the end to see if they received
⊥ or not. If they received ⊥, then they output (⊥, i∗) and halt. Else, if they
received proper output, then they output it. Note that if the parties were to halt
as soon as they detected a cheating party, then this would not be secure since
it is possible that some of the corrupted parties already received output by that
point. Thus, they conclude the protocol to determine whether they should abort
or not.

The soundness of this method holds because in the GMW compiler with
public-coin zero-knowledge proofs, a corrupted party cannot make an honest
party fail, and all parties can verify if the zero-knowledge proof was successful
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or not. A brief description of the GMW compiler appears in full version [5]. We
prove the following:

Theorem 11. Assume the existence of one way functions and let t ≤ n. If a
functionality f can be t-securely computed with fairness assuming a broadcast
channel, then f can be t-securely computed with guaranteed output delivery.

Proof: We begin by proving that fairness with a broadcast channel implies
fairness with identified abort.

Lemma 3. Assume the existence of one way functions and let t ≤ n. Then,
there exists a polynomial-time protocol compiler that receives any protocol π,
running over a broadcast channel, and outputs a protocol π′, such that if π t-
securely computes a functionality f with fairness then π′ t-securely computes f
with fairness and identified abort.

Proof Sketch: Since the protocol is run over a single broadcasts channel, if at
any point a party does not broadcast a message when it is suppose to, then all
the parties detect it and can identify this party as corrupted, in case the protocol
outputs ⊥. Therefore, we can assume that no party halts the protocol by not
sending messages.

We consider a tweaked version of the GMW compiler. The input commitment
phase and the coin generation phase are kept the same. In the protocol emu-
lation phase, when a sender transmits a message to a receiver, they execute a
strong zero knowledge proof of knowledge with perfect completeness, in which
the sender acts as the prover and the receiver as the verifier. The statement is
that the message was constructed by the next message function, based on the
sender’s input, random coins and the history of all the messages the sender re-
ceived in the protocol. However, if the prover fails to prove the statement, unlike
in the GMW compiler, the verifier does not immediately broadcast the verifica-
tion coins, but stores the verification coins along with the identity of the sender
in memory, and resumes the protocol.

At the end of the protocol emulation, each party checks if it received an
output, if so it outputs it and halts. If a party did not receive an output and it
received a message for which the corresponding zero knowledge proof failed, it
broadcasts the verification coins it used during the zero knowledge proof. In this
case, the other parties verify if this is a justified reject, and if so they output
⊥ along with the identity of the prover. If the reject is not justified, the parties
output ⊥ along with the identity party that sent the false verification coins.

Since the zero knowledge proof has perfect completeness, a corrupted party
cannot produce verification coins that will falsely reject an honest party. Hence,
only parties that deviate from the protocol can be identified as corrupted.

It case each honest party finishes the execution of the compiled protocol with
some output, the compiled protocol remains secure, based on the security of the
underlying protocol and of the zero knowledge proof.

In case one of the honest parties did not get an output, there must be at
least one message that does not meet the protocol’s specification, hence at least
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one honest party received a message without a valid proof. Therefore, all the
honest parties output ⊥ along with an identity of a corrupted party. However,
in this situation, the adversary does not learn anything about the output, since
otherwise there exists an attack violating the fairness of the underlying protocol
π. Hence, the compiled protocol retains fairness.

Applying Theorem 10 to Lemma 3 we have that f can be t-securely computed
with guaranteed output delivery, completing the proof of the theorem.

5 Black-Box Fairness Does Not Help for Guaranteed
Output Delivery

In this section we show that the ability to securely compute a functionality with
complete fairness does not assist in computing the functionality with guaranteed
output delivery, at least in a black box manner. More precisely, a functionality f
can be securely computed with guaranteed output delivery in the (f, fair)-hybrid
model if and only if f can be securely computed with guaranteed output delivery
in the plain model.

The idea is simply that any protocol that provides guaranteed output delivery
in the (f, fair)-hybrid model has to work even if the output of every call to the
trusted party computing f fairly concludes with an abort. This is because a
corrupted party can always send abort to the trusted party in every such call.

Proposition 1. Let f be an n-ary functionality and let t ≤ n. Then, f can be
t-securely computed in the (f, fair)-hybrid model with guaranteed output delivery
if and only if f can be t-securely computed in the real model with guaranteed
output delivery.

Proof Sketch: If f can be t-securely computes f in the real model with guaran-
teed output delivery, then clearly it can be t-securely computed in the (f, fair)-
hybrid model with guaranteed output delivery by simply not sending anything
to the trusted party.

For the other direction, let π be a protocol that t-securely computes f in the
(f, fair)-hybrid model with guaranteed output delivery. We construct a protocol
π′ in the real model which operates exactly like π, except that whenever there
is a call in π to the ideal functionality f , the parties in π′ emulate receiving ⊥
as output. It is immediate that for every adversary A′ for π′, there exists an
adversary A for π so that the output distributions of the two executions are
identical (A just sends abort to every ideal call in π, and otherwise sends the
same messages that A′ sends). By the assumption that π is secure, there exists
a simulator S for the ideal model for f with guaranteed output delivery. This
implies that S is also a good simulator for A′ in π′, and so π′ t-securely computes
f with guaranteed output delivery in the real model.
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6 Additional Results

In this section we prove two additional results. First, there exist functionali-
ties for which identified abort cannot be achieved (irrespective of fairness), and
fairness and guaranteed output delivery are equivalent for fail-stop adversaries.

6.1 Identified Abort Cannot Be Achieved without Broadcast

We show that security with identified abort cannot be achieved in general with-
out assuming a broadcast channel.

Proposition 2. Assume the existence of one-way functions. There exist func-
tionalities that cannot be securely computed with identified abort, in the point-
to-point network model and with t ≥ n/3.

Proof Sketch: Assume by contradiction that the PKI setup functionality de-
fined by

fPKI(λ, . . . , λ) = ((pk, sk1), . . . , (pk, skn)),

can be t-securely computed with identified abort for some t = n/3, where pk =
(pk1, . . . , pkn) and each (pki, ski) are a public/private key pair for secure digital
signature scheme (that exists if one-way function exists). Then, we can t-securely
compute fbc by running the protocol π that is assumed to exist for fPKI, where
π is t-secure with identified abort. As in the proof of Theorem 10, if π ends with
abort then the party who is identified as corrupted is removed (unless the dealer
is identified as corrupted, in which case all parties just output 0 and halt). This
continues iteratively until the π terminates without abort, in which case a valid
PKI is established between all remaining parties. Given this PKI, the parties can
run authenticated broadcast in order to securely compute fbc. Since fbc cannot
be securely computed for t = t/3, we have a contradiction.

6.2 Fairness Implies Guaranteed Output Delivery for Fail Stop
Adversaries

In the presence of malicious adversaries, fairness and guaranteed output delivery
are different notions, since there exist functionalities that can be computed with
complete fairness but cannot be computed with guaranteed output delivery. In
the presence of semi-honest adversaries, it is immediate that both notions are
equivalent, since the adversary cannot abort. In this section, we show that in
the presence of the fail-stop adversaries, i.e., when the corrupted parties follow
the protocol with the exception that the adversary is allowed to abort, fairness
implies guaranteed output delivery.

The underlying idea is that if a corrupted party does not send a message to an
honest party during the execution of a fair protocol, the honest party can inform
all parties that it identified a corrupted party. Since the adversary is fail-stop,
corrupted parties cannot lie and falsely incriminate an honest party. Similarly to
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the proof of Theorem 11, the parties do not halt if a party is detected cheating
(i.e., halting early). Rather, the parties continue to the end of the protocol: if the
protocol ended with output then they take the output and halt; otherwise, they
remove the cheating party and begin again. Since the original protocol is fair,
this guarantees that nothing is learned by any party if anyone receives abort;
thus, they can safely run the protocol again. As in the proof of Theorem 10, this
process is repeated iteratively until no abort is received. We conclude that:

Theorem 12. Let f be a, n-ary functionality and let t ≤ n. Then, f can be
t-securely computed with fairness in the presence of fail-stop adversaries, if and
only if f can be t-securely computed with guaranteed output delivery in the pres-
ence of fail-stop adversaries.
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Abstract. We propose the first general framework for designing actively
secure private function evaluation (PFE), not based on universal circuits.
Our framework is naturally divided into pre-processing and online stages
and can be instantiated using any generic actively secure multiparty
computation (MPC) protocol.

Our framework helps address the main open questions about efficiency
of actively secure PFE. On the theoretical side, our framework yields the
first actively secure PFE with linear complexity in the circuit size. On
the practical side, we obtain the first actively secure PFE for arithmetic
circuits with O(g · log g) complexity where g is the circuit size. The best
previous construction (of practical interest) is based on an arithmetic
universal circuit and has complexity O(g5).

We also introduce the first linear Zero-Knowledge proof of correctness
of “extended permutation” of ciphertexts (a generalization of ZK proof
of correct shuffles) which maybe of independent interest.

Keywords: Secure Multi-Party Computation, Private Function Evalu-
ation, Malicious Adversary, Zero-Knowledge Proof of Shuffle.

1 Introduction

Private Function Evaluation (PFE) is a special case of Multi-Party Computation
(MPC), where the parties compute a function which is a private input of one
of the parties, say party P1. The key additional security requirement is that
all that should leak about the function to an adversary, who does not control
P1, is the size of the circuit (i.e. the number of gates and distinct wires within
the circuit). Clearly, PFE follows immediately from MPC by designing an MPC
functionality which implements a universal machine/circuit; thus the only open
questions in PFE research are those of efficiency. Using universal circuits one can
achieve complexity of O(g5) in case of arithmetic circuits [23] and O(g · log g)
for boolean circuits [26]. For ease of exposition we ignore the factors depending
on the number of parties and the security parameters as they depend on the
particular underlying MPC being used. We still provide some numbers for the
specific SPDZ instantiation in section 5.
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A number of previous work [1,2,4,12,14,15,16,17,22,24] have considered the
design and implementation of more efficient general- and special-purpose private
function evaluation. A major motivation behind these solutions (and PFE in
general) is to hide the function being computed since it is proprietary, private
or contains sensitive information. Some applications of interest considered in
the literature are software diagnostic [4], medical applications [2], and intrusion
detection systems [20].

But all prior solutions are in the semi-honest model and fail in the presence
of an active adversary who does not follow the steps of the protocol (with the
exception of the generic approach of applying an actively secure MPC to uni-
versal circuits). For example, a malicious party who does not own the function
can cheat to learn the proprietary function or modify the outcome of compu-
tation without the function-holders’ knowledge. Or a malicious function-holder,
can learn information about honest parties’ inputs.

One may question the need for actively secure PFE as the function-holder can
cheat and use a malicious function, which reveals information about the other
party’s input. While we consider the general scenario in our protocols, there
are common practical scenarios where the function-holder has no output in the
computation, and therefore maliciously changing the function still does not let
him learn anything even if he is actively cheating.

1.1 Our Contribution

In this work, we present the first general framework for designing actively se-
cure PFE, not based on universal circuits. Our framework can be instantiated
upon a generic actively secure MPC protocol satisfying quite general properties;
namely that they are secret sharing based, actively secure (either robust or with
aborts), can implement reactive functionalities, and have an ability to open vari-
ous sharings securely, as well as generate (efficiently) sharings of random values.
Suitable actively secure MPC protocols include BDOZ [3] and SPDZ [8] (for the
case of arithmetic circuits and an arbitrary number of players with a dishonest
majority), Tiny-OT [19] (for binary circuits and two players), or protocols such
as that implemented in VIFF [7] utilizing Shamir secret sharing with a threshold
of t < n/3.

Our framework helps address the main open questions about efficiency of
actively secure PFE. On a theoretical note, we use it to show that actively secure
PFE with linear complexity (in circuit size) is indeed feasible while avoiding
strong primitives such as fully-homomorphic encryption (FHE).1 On a practical
note, we obtain a practical actively secure PFE for arithmetic circuit with O(g ·
log g) complexity (a significant reduction from O(g5) [23]), and the first actively
secure PFE in the information-theoretic setting.

1 Note that with the use of the right circuit-private FHE scheme [21], and appropriate
ZK proofs for correctness of the computation on encrypted data, it is likely possible
to achieve linear PFE based on FHE, but we are interested in the use of much weaker
primitives such as singly homomorphic encryption.
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Our Framework. Our framework can be seen as an extension of the new
framework of [17] which is only secure against passive adversaries. The key idea
in [17] is to divide the problem into two sub-problems, the problem of hiding
the topology of the wiring between individual gates (topology hiding), and the
problem of hiding exactly what gate is evaluated (gate hiding), i.e. an addition
or a multiplication (or AND/OR/XOR in case of boolean circuits).

This framework yields better asymptotic and practical efficiency for passively
secure PFE compared to the universal circuit approach (see [17] for a detailed
efficiency comparison). An important open question is then how to extend their
solution to the case of active adversaries efficiently. In this paper we do exactly
that by providing a recipe for turning any actively secure MPC protocol that
satisfies our general requirements into an actively secure PFE protocol.

Our framework operates in two phases, an offline phase and an online phase.
As in the case of standard MPC in the pre-processing model, our offline phase is
input independent but it depends on the function. The offline phase is use-once,
in the sense that the data produced cannot be reused for multiple invocations
of the online phase. We note that a similar function-dependent pre-processing
model (referred to as dedicated pre-processing) was recently considered in [9].
Dedicated pre-processing is particularly natural in PFE applications where the
sensitive/proprietary function stays fixed for a period of time and is used in mul-
tiple executions (clearly in the latter case we need to execute the pre-processing
multiple times, but this can be done in advance). Of course, if one is not willing
to count a function-dependent offline phase as valid, then our complexities would
be the combination of the two phases. It maybe the case that our underlying
MPC protocol is itself in the pre-processing model (e.g. [3,8,19]), in which case
that pre-processing will be essentially independent of the input and function
being evaluated. Our framework shows the feasibility of offline computation in-
dependent of inputs, which was not the case in [17]. We elaborate on the two
phases next:

Offline Phase. Roughly speaking, our offline phase generates two vectors of ran-
dom values, maps the second to a new vector using a mapping that captures the
topology of the circuit (referred to as extended permutation in [17]), and sub-
tracts the result from the first. The result of the subtraction (difference vector)
is opened while the two original vectors are shared among the parties. The two
random vectors are used as one-time pads of all the intermediate values in the
circuit, while the “difference vector” is used by the function-holder to connect
the output of one gate to the input of another without learning the values or
revealing the circuit topology. The offline phase also generates one-time MACs
of all the components of the “difference vector” computed above, using a fixed
global MAC key. These MACs are used to check the function-holder’s work in the
online phase of the protocol. These steps commit P1 privately to the topology of
the circuit. We also privately commit P1 to gate types, hence fully committing
him to the function being computed.
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Online Phase. Our online, or circuit evaluation, phase is very distinct from that
deployed in the underlying MPC protocol we use. In existing instantiations of
our underlying MPC protocol, parties evaluate gates on values whose secrecy is
maintained due to the fact that one is working on secret shared values only. In
our protocol the parties have public one-time pad encryptions of the values being
computed on, but the encryption keys, which are the random values generated in
the offline phase, remain secret-shared. Party P1 (the function holder) then uses
the random vectors computed in the offline phase to transform the encrypted
output of one gate to the encrypted input of the upcoming gate while maintaining
one-time MACs of all the values he computes. These MACs allow all other parties
to check P1’s work without learning the circuit topology. These operations are
carried out securely using the underlying MPC protocol.

In both the online and the offline phase, all parties check P1’s work by checking
the MACs of the values he computes locally. If any of the MACs fail, in case of
security with abort, parties can simply end the protocol. But in case of robust
MPC (e.g. t < n/3 for robust information theoretically secure protocols) the
protocol needs to continue without P1. To achieve this, honest parties jointly
recover P1’s function and play his role in the remainder of the protocol.

In our protocols, if any adversary deviates from the protocol then, except with
negligible probability, the honest parties will either abort, or be able to recover
from the introduced error. The exact response depends on the underlying MPC
protocol on which our PFE protocol is built. In all cases the privacy of the
honest players inputs is preserved, bar what can be obtained from the output
of the private function chosen by player P1. Note that P1 may or may not be a
recipient of output, but many application of PFE are concerned with scenarios
where the function-holder has no output.

Efficient Instantiations. One can efficiently instantiate our online phase with
a linear complexity, using any actively secure MPC satisfying our requirements.
The main challenge, therefore, lies in efficient instantiation of the offline phase.
It is possible to implement our offline phase using any actively secure MPC
sub-protocol as well (by securely computing a circuit that performs the above
mentioned task) but the resulting constructions would neither be linear nor
constant-round.

– We introduce a instantiation with O(g) complexity, proving the feasibility of
linear actively secure PFE for the first time. Our main new technical ingredi-
ent is a linear zero-knowledge (ZK) proof of “correct extended permutation”
of ElGamal ciphertexts. While linear ZK proofs of shuffles are well-studied, it
is not clear how to extend the techniques to extended permutation (see our
incomplete attempt in the full version [18]) Instead, we propose a generic
and linear solution that uses ZK proof of a correct shuffle in a black-box
manner, and may be of independent interest. Our solution is based on the
switching network construction of EP [17]. This construction consists of three
components, two of which are permutation networks. Instead of evaluating
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switches, we use singly homomorphic encryption to evaluate each component,
and then re-randomize. We use existing ZK proofs of shuffle to prove the
correctness of first and third components which perform permutation. The
middle component requires a separate compilation of ZK protocols. Note that
generically applying ZK proofs to UC circuit evaluation does not provide a
linear solution, and applying ZK proofs for the EP component also does not
work. Our customized linear ZKEP gets around these problems.

– We introduce a constant-round instantiation with O(g · log g) complexity
(contrast with O(g5) complexity for universal arithmetic circuits) that is
also of practical interest. Our technique is itself an extension of ideas from
[17]. In particular the basic algorithm is that of [17] for oblivious evaluation
of a switching network, but some care needs to be taken to make sure the
protocol is actively secure. This is done by applying MACs to the data being
computed on. However, instead of having the MAC values being secret shared
(as in SPDZ) or kept secret (as in BDOZ and Tiny-OT), the MAC values are
public with the keys remaining secret shared. Nevertheless, the MACs used
are very similar to those used in the BDOZ and Tiny-OT protocols [3,19],
since they are two-key MACs in which one key is a per message key and one
is a global key. While using MAC’s is quite standard for ensuring consistency
of data, our efficient deployment in the framework is non-trivial and novel.
For example, while addition of MACs in the offline phase is done using a
generic MPC, the circuit evaluation (online phase) does not use an MPC.
This is different from [17]’s approach and previous MPC work. General active
security techniques can not be directly employed in this context. It is not
clear how to use cut-and-choose in case of PFE, e.g. it is not clear how not
to reveal the function in the opening, and there are additional components
(i.e. EP) in a PFE protocol which cut-and-choose does not seem to resolve.

Efficiency Discussion. We emphasize that our linear complexity solution is a
feasibility result at it was an open question whether active PFE with linear
complexity in circuit size is possible given simple crypto primitive such as singly
homomorphic encryption (as opposed FHE). Our “efficient” arithmetic PFE
only requires O(g log g) multiplication gates and it is a significant improvement
in comparison with applying of arithmetic MPC to universal arithmetic circuit
of size O(g5) [23]. If we apply active secure MPC for arithmetic circuits to this
universal circuit the complexity cannot get better than O(g5). One can turn an
arithmetic circuit into a boolean circuit and use Valiant’s boolean UC [26] to
obtain a PFE. But this is highly inefficient, and therefore we do not discuss this
in detail.

2 Notation and the Underlying MPC Protocol

We assume our function f to be evaluated will eventually be given by player
P1 as an arithmetic circuit over a finite field Fp; note p may not necessarily be
prime. We let g(f) denote the number of gates in the circuit representing f .
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For gates with fan-out greater than one, we count each seperate output wire as
a different wire. We also select a value k such that pk > 2sec, where sec is the
security parameter; this is to ensure security of our MAC checking procedure in
the online phase.

We assume n parties P1, . . . , Pn, of which an adversary may corrupt (stati-
cally) up to t of them; the value of t being dependent on the specific underlying
MPC protocol. The corrupted adversaries could include party P1. The MPC
protocol should implement the functionality described in Figure 1. This func-
tionality is slightly different from standard MPC functionalities in that we try to
capture both the honest majority and the dishonest majority setting; and in the
latter setting the adversary can force the functionality to abort at any stage of
the computation and not just the output. We also introduce another operation
called Cheat which will be useful in what follows.

It is clear that modern actively secure MPC protocols such as [7,8,19], im-
plement this functionality in different settings. Thus various different settings
(i.e. different values of n, p and t) will be able to be dealt with in our resulting
PFE protocol by simply plugging in a different underlying MPC protocol. To
ease exposition later we express our MPC protocol as evaluating functions in
the finite field Fpk . Clearly such an MPC protocol can be built out of one which
evaluates functions over the base finite field Fp.

To ease notation in what follows we shall let [varid ] denote the value stored
by the functionality under (varid , a); and will write [z] = [x]+ [y] as a shorthand
for calling Add and [z] = [x] · [y] as a shorthand for calling Multiply. And by
abuse of notation we will let varid denote the value, x, of the data item held in
location (varid , x).

3 Our Active PFE Framework

In this section we describe our active PFE framework in detail. We start by
describing the offline functionality which pre-processes the function/circuit the
parties want to compute (Section 3.1). Then, in Section 3.2, we show that given
a secure implementation of FOffline, one can efficiently (linear complexity) con-
struct an actively secure PFE based on any actively secure MPC. We postpone
efficient instantiations of FOffline to later sections.

3.1 The Function Pre-processing (Offline) Phase

In this section we detail the requirements of our pre-processing step once player
P1 has decided on the function f to be evaluated. P1 is only required to enter
a valid circuit, equivalent to his function f into the protocol. Each non-output
wire w in the circuit is connected at one end (which we shall call the outgoing
wire or left point) to a source, this is either the output of a (non-output) gate
or an input wire. Conversely each non-output wire is connected at the other
end (which we shall call the incoming wire or right point) to a destination point
which is always an input to a gate. We denote the number of distinct Incoming
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Functionality FMPC

The functionality consists of seven externally exposed commands Initialize,
Cheat, Input Data, Random, Add, Multiply, and Output and one internal
subroutine Wait.

Initialize: On input (init , p, k,flag) from all parties, the functionality activates
and stores p and k; and a representation of Fpk . The value of flag is assigned
to the variable dhm, to signal whether the MPC functionality should operate
in the dishonest majority setting. The set of “valid” players is initially set to
all players. In what follows we denote the set of adversarial players by A.

Cheat: This is a command which takes as input a player index i, it models the
case of (most) robust MPC protocols in the honest majority case. On execution
the functionality aborts if dhm is set to true . Otherwise the functionality waits
for input from all players. If a majority of the players return OK then the
functionality reveals all inputs made by player i, and player i is removed from
the list of “valid” players (the functionality continues as if player i does not
exist).

Wait: This does two things depending on the value of dhm.
– If dhm is set to true then it waits on the environment to return a

GO/NO-GO decision. If the environment returns NO-GO then the func-
tionality aborts.

– If dhm is set to false then it waits on the environment. The environment
will either return GO , in which case it does nothing, or the environment
returns a value i ∈ A, in which case Cheat(i) is called.

Input Data: On input (input , Pi, varid , x) from Pi and (input , Pi, varid , ?) from
all other parties, with varid a fresh identifier, the functionality stores (varid , x).
The functionality then calls Wait.

Random: On command (random , varid) from all parties, with varid a fresh iden-
tifier, the functionality selects a random value r in Fpk and stores (varid , r).
The functionality then calls Wait.

Add: On command (add , varid1, varid2, varid3) from all parties (if varid1, varid2

are present in memory and varid3 is not), the functionality retrieves (varid1, x),
(varid2, y) and stores (varid3, x+ y). The functionality then calls Wait.

Multiply: On input (multiply, varid1, varid2, varid3) from all parties (if
varid1, varid2 are present in memory and varid3 is not), the functionality re-
trieves (varid1, x), (varid2, y) and stores (varid3, x · y). The functionality then
calls Wait.

Output: On input (output , varid) from all honest parties (if varid is present in
memory), the functionality retrieves (varid , x) and outputs it to the environ-
ment. The functionality then calls Wait, and only if Wait does not abort then
it outputs x to all players.

Fig. 1. The required ideal functionality for MPC
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Wires on the right by iw(f). We let ow(f) denote the number of Outgoing Wires
on the left. Note that iw(f) = 2g and ow(f) = n+g−o where o is the number of
output gates in the circuit. Since we are dealing with arbitrary fan out we have
that ow(f) ≤ iw(f).

Functionality FOffline

Initialize: As for FMPC.
Wait: As for FMPC.
Input Data: As for FMPC.
Cheat: As for FMPC.
Random: As for FMPC.
Add: As for FMPC.
Multiply: As for FMPC.
Output: As for FMPC.
Input Function: On input (inputfunction , π, f) from player P1 the functionality

performs the following operations
– The functionality calls (random ,K).
– If f is not a valid arithmetic circuit then the functionality aborts.
– For i ∈ {1, . . . , iw(f)} the functionality calls (random , ri) and (random , si).
– For j ∈ {1, . . . , ow(f)} the functionality calls (random , lj) and (random , tj).
– The functionality then computes, for all i ∈ {1, . . . , iw(f)}

[pi] = [ri]− [�π(i)], [qi] = ([si]− [tπ(i)]) + ([ri]− [�π(i)]) · [K]

– The functionality then outputs (pi, qi) to all players, for i ∈ {1, . . . , iw(f)},
by calling (output , pi) and (output , qi).

– For i ∈ {1, . . . , g} the functionality calls (input , P1, Gi, 0) if gate i in the
description of f is an addition gate, and (input , P1, Gi, 1) if gate i is a
multiplication gate.

Fig. 2. The required ideal functionality for the Offline Phase

To fully capture the topology of the circuit we give each outgoing wire and
incoming wire in the circuit a unique label. The labels for the outgoing wires will
be {1, . . . , ow(f)} starting from the input wires and then moving to the output
wires of each gate in a topological order decided by P1, whilst the labels for the
incoming wires will be {1, . . . , iw(f)} labelling the input wires to each gate in
the same topological order. The topology is then defined by a mapping from
outgoing wires to incoming wires and is called an “extended permutation” in
[17]. We denote the inverse of this mapping by a function π from {1, . . . , iw(f)}
onto {1, . . . , ow(f)}. If w is a wire in the circuit with incoming wire label i, then
it’s outgoing wire label is given by j = π(i).

To execute the function pre-processing, player P1 on input of f determines
a mapping π corresponding to f . The offline phase functionality FOffline which
is described in Figure 2, extends the FMPC functionality of Figure 1 by adding an
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additional operation Input Function. The Input Function generates a vector
of random (but correlated) values and their one-time MACs using a fixed global
MAC key K. In particular, the functionality first stores a vector of random
values (ri) for each incoming wire and another vector of random values (�i) for
the outgoing wires in the circuit. These random values will play the role of “pads”
for one-time encryption of the computed wire values in the online phase. The
functionality then computes pi, the difference between each outgoing wire’s value
ri and the corresponding incoming wires’ value �π(i), and reveals pi to all parties.
This difference vector will allow P1 to maintain one-time encryption of each
wire value in the online phase without revealing the circuit topology. Additional
random values (si, ti) and the global MAC key K are used to compute one-time
MACs of each pi, namely qi. These MACs will be used to check P1’s actions in
the online phase. The Input Function also commits P1 to the function of each
gate in his circuit by storing a bit (0 for addition and 1 for multiplication) for
each gate.

3.2 The Function Evaluation (Online) Phase

We can now present our framework for actively secure PFE. We wish to imple-
ment the functionality in Figure 3. We express the functionality as evaluating a
function f provided by P1 which takes as input n inputs in Fpk , one from each
player. Again we present the functionality in both the honest majority and the
dishonest majority settings.

Functionality FOnline

Initialize: On input (init, p, k,flag) from all players, the functionality activates
and stores p and k; and a representation of Fpk . The value of flag is assigned to
the variable dhm, to signal whether the underlying MPC functionality should
operate in the dishonest majority setting.

Wait: If dhm is set to false then this does nothing. Otherwise it waits on the envi-
ronment to return a GO/NO-GO decision. If the environment returns NO-GO
then the functionality aborts.

Input Function: On input (inputfunction , f) from player P1 the functionality
stores (function, f). The functionality now calls Wait.

Input Data: On input (input , Pi, xi) from player Pi the functionality stores
(input , i, xi). The functionality now calls Wait.

Output: On input (output) from all honest players the functionality retrieves the
data xi stored in (input , i, xi) for i ∈ {1, . . . , n} (if all do not exist then the
functionality aborts). The functionality then retrieves f from (function, f) and
computes y = f(x1, . . . , xn) and outputs it to the environment (or aborts if
(function, f) has not been stored). The functionality now calls Wait. Only on
a successful return from Wait will the functionality output y to all players.

Fig. 3. The required ideal functionality for PFE
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Realizing FOnline Given FOffline and FMPC. A generic instantiation of
FOffline based on any MPC is give in Figure 5. The idea is to work with one-time
pad encryptions of the values for all intermediate wires and the corresponding
one-time MACs. Here, the pads (r, �, s, t values), as well as the MAC Key K are
generated by the offline functionality, and shared among the parties so no party
can learn intermediate values or forge MACs on his own.

In more detail, the protocol proceeds as follows. Initially, parties compute one-
time encryption of the input values to the circuit (pads are the corresponding
� values). Then, the following process is repeated for every gate in the circuit
until every gate is processed. Parties then open the outcome of the output gates
as their final result.

For each gate, party P1 uses the “difference vectors” (pi values) from the offline
phase to transform the one-time encryption of output of the previous gate to
the one-time encryption of input of the current gate (the result is denoted by
di0 , di1 for the i-th gate.), without revealing the topology or learning the actual
wire values. This is diagrammatically presented in Figure 4 to aid the reader. A
similar transformation is done on MACs of the wire values (using qi values) in
order to keep P1 honest in his computation (denoted by mi0 ,mi1).

�π(i)

ri

pi = ri − �π(i)POffline

uπ(i) = xπ(i) + �π(i)

POnline

di = uπ(i) + pi

1. Prepare outgoing wire

2. P1 computes the incomming wires’

di = xπ(i) + �π(i) + ri − �π(i)
di = xπ(i) + ri

π

Fig. 4. Transformation of one-time encryption of an outgoing wire to the one-time
encryption of an incoming wire using the values computes in POffline protocol

Then, the protocol proceeds by jointly removing the one-time pads for the two
inputs of the current gate and evaluating it together in order to compute a shared
output zi. Note that in this gate evaluation the gate type Gi is secret and shared
among the players. This step can be performed using the FMPC operations. Then,
parties compute a one-time encryption of zi using the corresponding � value as
the pad, and denote the result by uj , just a relabeling where j is the outgoing
wire’s label of the output wire of the gate (note that j = n+ i since the outgoing
wires are labeled starting with the n input wires and then the output wire of
each gate).

Note, that if P1 tries to deviate from the protocol in his local computation
(i.e. when he connects outgoing wires to incoming wires) the generated MACs
will not pass the jointly performed verifications and he will be caught. In that
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case, either the protocol aborts (in the case of dishonest majority) or his input
(i.e. the function) is revealed (in the case of honest majority).

This leads to the following theorem, whose proof is given in full version [18].

Theorem 1. In the FOffline-hybrid model the protocol in Figure 5 securely im-
plements the PFE functionality in Figure 3, with complexity O(g).

4 Implementing FOffline with Linear Complexity

In this section we give a linear instantiation of the offline phase of the framework.
Since our online phase has linear complexity, a linear offline phase implementa-
tion leads to a linear actively secure PFE. The main challenge in obtaining a
linear solution is to design a linear method for applying the extended permuta-
tion π to values {[�i]} and {[ti]} to produce shared values {[�π(i)]} and {[tπ(i)]}. In
the semi-honest case [17], linear complexity solution for this problem is achieved
by employing a singly homomorphic encryption. The shared values are jointly
encrypted; P1 applies the extended permutation to the resulting ciphertexts and
re-randomizes them in order to hide π; parties jointly decrypt in order to obtain
the shares of the resulting plaintexts. To obtain active security, we need to make
each step of the following computation actively secure:

1. Players encrypt the shared input (all of which lie in Fpk) using an encryption
scheme, with respect to a public key for which the players can execute a
distributed decryption protocol. The resulting ciphertexts are sent to P1.

2. Player P1 applies the EP and re-randomizes the ciphertexts and sends them
back. He then uses the ZKEP protocol to prove his operation has been done
correctly.

3. The players then decrypt the permuted ciphertexts and recover shares of the
plaintexts.

To implement the first and last steps we use an an instantiation based on El-
Gamal encryption, see full version [18]. The middle step is more tricky, and we
devote the rest of this section to describing this. For the middle step we need
a linear zero-knowledge protocol to prove that P1 applied a valid EP to the ci-
phertexts. Proof of a correct shuffle is a well studied problem in the context of
Mix-Nets, and linear solutions for it exist [11]. As discussed in full version[18],
however, extending these linear proofs to the case of extended permutations faces
some subtle difficulties which we leave as an open question. Instead we aim for
a more general construction that uses the currently available proofs of shuffling,
in a black-box way.

4.1 Linear ZKEP Protocol

After players compute the encryption of the shared inputs, P1 knowing the cir-
cuit topology, applies the corresponding extended permutation to the cipher-
texts. He then re-randomizes the ciphertexts and then “opens” the ciphertexts.
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Protocol POnline

The protocol is described in the FOffline-hybrid model.
Input Function: Player P1 given f selects the switching network mapping π and

then calls (inputfunction, π, f) on the functionality FOffline.
Input Data: On input (input , Pi, xi) from player Pi the protocol executes the

(input , i, xi) operation of the functionality FOffline.
Output: The evaluation of the function proceeds as follows; where for ease of

exposition we set xπ(h) = yh for all h, i.e. if a wire has input xi on the left (as
outgoing wire) then it has the same value yh on the right (as incoming wire)
where i = π(h)
– Preparing Inputs to the Circuit:

• For each input wire i (1 ≤ i ≤ n) the players execute [ui] = [xi] + [�i],
where i is the outgoing wire’s label corresponding to that input wire,
and [vi] = [ti]+ ([xi]+ [�i]) · [K] using the FMPC functionality available
via FOffline.

• Parties then call (output , ui) and (output , vi) to open [ui] and [vi].
– Evaluating the Circuit: For every gate 1 ≤ i ≤ g in the circuit players

execute the following (here we assume that the gates are indexed in the
same topological order P1 chose to determine π):
• P1 Prepares the Two Inputs for Gate i.

∗ Note that the two input wires for gate i have incoming wire labels
i0 = 2i−1 and i1 = 2i, and the (u, v) value for their corresponding
outgoing wire labels are already determined, i.e. uπ(ij) and vπ(ij)

are already opened for j ∈ {0, 1}.
∗ Player P1 computes, for j = 0, 1,

dij = uπ(ij) + pij
.
= (yij + �π(ij)) + (rij − �π(ij))
.
= yij + rij ,

mij = vπ(ij) + qij
.
= (tπ(ij) + (yij + �π(ij)) ·K)

+
(
(sij − tπ(ij)) + (rij − �π(ij))) ·K

)

.
= sij + (yij + rij ) ·K.

∗ Player P1 then broadcasts the values dij and mij to all players.
• Players Check P1’s Input Preparation.

∗ All players then use the FMPC operations available (via the in-
terface to the FOffline functionality) so as to store in the FMPC

functionality the values [nij ] = [sij ] + (yij + rij ) · [K]. The value
is then opened to all players by calling (Output , nij ).

∗ If nij = mij then the players call Cheat(1) on the FMPC function-
ality. This will either abort, or return the input of P1 (and hence
the function), in the latter case the players can now proceed with
evaluating the function using standard MPC and without the need
for P1 to be involved.

• Players Jointly Evaluate Gate i.
∗ The players store the value [yij ] = dij − [rij ] in the FMPC func-

tionality.
∗ The FMPC functionality is then executed so as to compute the

output of the gate as

[zi] = (1− [Gi]) · ([yi0 ] + [yi1 ]) + [Gi] · [yi0 ] · [yi1 ].
∗ Note that the outgoing wire label corresponding to the output wire

of the ith gate is j = n+ i so we just relabel [zi] to [zj ].
∗ If Gi is an output gate, players call (Output , zi) to obtain zi, dis-

regard next steps and continue to evaluate next gate.
∗ The players compute via the MPC functionality [uj ] = [zj ] + [�j ].
∗ The players call (Output , uj) so as to obtain uj .
∗ The players then compute via the MPC functionality

[vj ] = [tj ] + uj · [K]
.
= [tj + (zj + �j) ·K].

∗ The players call (Output , vj) so as to obtain vj .

Fig. 5. The Protocol for implementing PFE
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Next, we give a linear zero-knowledge protocol ZKEP, which enables P1 to prove
the correctness of his operation (i.e final ciphertexts are the result of P1 apply-
ing a valid EP to the input ciphertexts). As our first attempt we considered the
possibility of extending existing linear proofs of shuffle to get linear proofs of
extended permutation. While plausible there are subtle difficulties that need to
be addressed. For more details regarding our attempt on extending the method
of Furukawa [11,10], refer to full version[18]. We leave this approach as an open
problem. Instead we give a more general construction which makes black-box
calls to proof of shuffle. This construction is inspired by the switching network
construction of EP given in [17]. We first revisit the extended permutation con-
struction of [17].

Assume the EP mapping represented by the function: π : {1...n} → {1...m}
(Which maps m input wires to n output wires (n ≥ m)). Note that in this
section we use n and m to denote the size of EP. In a switching network, the
number of inputs and outputs are the same, therefore, the construction takes m
real inputs of the EP and n−m additional dummy inputs. The construction is
divided into three components. Each component takes the output of the previous
one as input. Instead of applying the EP in one step, P1 applies each component
separately and uses a zero-knowledge protocol to prove its correctness. Figure 6
demonstrates the components. Next, we describe each component and identify
the required ZK proof.

Dummy Placement

ct
(1)
2

PermutationReplication
Phase Phase Phase

ZKShuffleZKShuffle

ct
(1)
1

ct
(1)
3

ct
(1)
4

ct
(2)
2

ct
(2)
1

ct
(2)
3

ct
(2)
4

ct2

ct1

ct3

ct4

ct′2

ct′1

ct′3

ct′4

ZKRep

Fig. 6. EP construction. Components’ names are written underneath. The zero-
knowledge protocol for each component is written inside it’s component box.

Table 1 lists the zero-knowledge protocols that we make a black-box use in
our ZKEP protocol. Note that we use P and Q for our EC instantiation instead
of g and h.

– Dummy-Value Placement Component: This takes the real and dummy
ciphertexts as input and for each ciphertexts of a real value that is mapped
to k different outputs according to π, outputs the real ciphertexts followed
by k − 1 dummy ciphertexts. This is repeated for each real ciphertext. The
resulting output ciphertexts are all re-randomized. The dummy replacement
step can be seen as a shuffling of the input ciphertexts. We use a proof of
correct shuffle, ZKShuffle, for correctness of this component.
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Table 1. List of zero-knowledge protocols used in our ZKEP protocol. Generator g
and public key h = gsk.

ZK Protocol Relation/Language Ref.

ZKShuffle({cti}, {ct′i}) RShuffle = {(G, g, h, {cti}, {ct′i})|∃π, st. [11]

C′
1
(i)

= griC1
(π(i)) ∧ C′

2
(i)

= hriC2
(π(i)) ∧ π is perm.}

ZKEq(ct1, ct2) REq = {(G, g, h, cti = 〈αi, βi〉i∈{1,2})|∃(m1, m2), st. [5]
αi = gri ∧ βi = mih

ri ∧m1 = m2}
ZKno(ct) Lno = {(G, g, h, ct = 〈α, β〉)|∃(m1 = 1), st. [13]

α = gr ∧ β = m1h
r}

– Replication Component: This takes the output of the previous compo-
nent as input. It directly outputs each real ciphertext but replaces each
dummy ciphertext with an encryption of the real input that precedes it.
At the end of this step, we have the necessary copies for each real input
and the dummy inputs are eliminated. Naturally, all the ciphertexts are re-
randomized. To prove correctness of this step, we need ZK proofs that the
i-th output ciphertext has a plaintext equal to that of either the i-th input
ciphertext or (i− 1)-th output ciphertext (these can be achieved using pro-
tocol ZKEq defined in Table 1 as a building block). But this is not sufficient
to guarantee a correct EP, as we also have to make sure that after the repli-
cation component there are no dummy ciphertexts left. For this, we assume
that all dummy ciphertexts are encryptions of one. Then for each output
ciphertext in the replication component we use a protocol ZKno, i.e. a ZK
proof that the underlying plaintext is not one. The ZKRep zero-knowledge
protocol, is a compilation of three ZK protocols, two checking for equality
of ciphertexts and one checking the inequality of plaintext to one.

– Permutation Component: This takes the output of the replication com-
ponent as input and permutes each element to its final location as prescribed
by π. We again use the proof of correct shuffle, ZKShuffle. for this compo-
nent.

ZKEP Protocol Description. We assumed the inputs to the ZKEP, to be the
outputs of our encryption functionality. Prover applies the extended permutation

to the ciphertexts (ct1, . . . , ctn), where cti = (C
(i)
1 , C

(i)
2 ). The prover obtains a re-

randomized (ct′1, . . . , ct
′
n), where ct′i = (C

′(i)
1 , C

′(i)
2 ). We employ the techniques

of Cramer et al. [6], to combine HVZK proof systems corresponding to each
component, at no extra cost, into HVZK proof systems of the same class for any
(monotonic) disjunctive and/or conjunctive formula over statements proved in
the component proof systems. Figure 7 shows the complete description of our
ZKEP protocol. Note that we can choose dummy values from any set of random
values Sd and substitute the ZKno(x) with ∨∀y∈Sd

(ZKEq(x, y)).
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Protocol ZKEP({cti}, {ct′i})

Shared Input: Ciphertexts (ct1, . . . , ctn)
P1’s Input: Extended permutation π
P1 Evaluates the components.

– Player P1 finds the corresponding permutation π1, and π2 for Dummy-
placement component and permutation components.

– P1 applies the Dummy-placement component to (ct1, . . . , ctn), and re-

randomizes to find (ct
(1)
1 , . . . , ct

(1)
n ).

– P1 applies the Replication component to (ct
(1)
1 , . . . , ct

(1)
n ), and re-

randomizes them to find (ct
(2)
1 , . . . , ct

(2)
n ).

– P1 applies the permutation component to (ct
(2)
1 , . . . , ct

(2)
n ), and re-

randomizes them to find (ct′1, . . . , ct
′
n).

P1 Computes the ZK proofs and sends everything
– Player P1 uses the ZKShuffle({cti}, {ct(1)i }) and ZKShuffle({ct(2)i }, {ct′i})

protocols to produce proof of correctness for his evaluation of Dummy-
placement component and permutation component.

– Player P1 used the ZKRep({ct(1)i }, {ct(2)i }) to produce proof of correctness
for his evaluation of Replication component as follows(using [6] for combi-

nation) (and ZK1
Rep

= ZKno

(
ct

(2)
1

)
∧ ZKEq(ct

(1)
1 , ct

(2)
1 )):

• For 2 ≤ i ≤ n:

ZKi
Rep

=
(
ZKEq(ct

(1)
i , ct

(2)
i ) ∨ ZKEq(ct

(2)
i−1, ct

(2)
i )

)
∧ ZKno

(
ct

(2)
i

)
.

• ZKRep = ∧i=1,...,n(ZKi
Rep

)

– Player P1 sends (ct
(1)
1 , . . . , ct

(1)
n ), (ct

(2)
1 , . . . , ct

(2)
n ), (ct′1, . . . , ct

′
n) and all

proofs to other players.
Players verify P1 operations

– Players verify P1’s operations by verifying the the proofs sent by P1.

Fig. 7. The protocol for zero-knowledge proof of extended permutation
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Theorem 2. The protocol described in Figure 7 is HVZK proof of an extended
permutation π, (ct1, . . . , ctn) and (ct′1, . . . , ct

′
n) in the ZKShuffle, ZKEq, ZKno

hybrid model, for the following relation:

REP = {(G, g, h, {cti}, {ct′i})|∃π, st.
C′

1
(i)

= griC1
(π(i)) ∧ C′

2
(i)

= hriC2
(π(i)) ∧ π is EP.}

Proof. Refer to the full version [18] for proof.

Offline Protocol. Having all the parts of the puzzle, we can give the complete
O(g) protocol for the offline phase. Figure 8 shows the description, with the
proof of security given in full version [18].

Linear Implementation of Protocol POffline-Linear

The protocol is described in the FMPC-hybrid model, thus the only operation we
need to specify is the Input Function one.
Input Function:
P1 Shares his Circuit/Function.

– Player P1 calls (input , Gj) for all j ∈ {1, . . . , g}.
– Players evaluate and open [Gj ] · (1 − [Gj ]) for j ∈ {1, . . . , g}. If any of

them is not 0, players abort (since in this case P1 has not entered a valid
function).

Players Generate Randomness for inputs and outputs of EP.
– Players call (random, ·) of FMPC to generate shared random values for

inputs � = ([�1], . . . , [�ow(f)]) and outputs ([r1], . . . , [riw(f)]) of EP.
– Players call (random, ·) of FMPC to generate shared random values for

the MAC value corresponding to inputs t = ([t1], . . . , [tow(f)]) and outputs
([s1], . . . , [siw(f)]) of EP.

P1 applies the EP to � and t.
– The players call KeyGen on the EncElg functionality.
– The playes call Encrypt on the EncElg functionality with the plaintexts

([�1], . . . , [�ow(f)]) and the plaintexts ([t1], . . . , [tow(f)]), to obtain ciphertexts

ct1, . . . , ctow(f) and ct†1, . . . , ct
†
ow(f).

– Player P1 applies the extended permutation to (ct1, . . . , ctow(f)) and re-

randomize to get (ct′1, . . . , ct
′
ow(f)), the same is done with (ct†1, . . . , ct

†
ow(f))

to obtain (ct′†1 , . . . , ct
′†
ow(f)).

– Player P1 uses the ZKEP to prove that he has used a valid extended per-
mutation.

– Players call the Decrypt on the EncElg functionality (given in full ver-
sion [18]) with ciphertexts (ct′1, . . . , ct

′
ow(f)) and (ct′†1 , . . . , ct

′†
ow(f)) so as to

obtain ([�π(1)], . . . , [�π(ow(f))]) and ([tπ(1)], . . . , [tπ(ow(f))]).
Players Compute pi, qi.

– For i ∈ {1, . . . , iw(f)} players call FMPC to compute:

[pi] = [ri]−[�π(i)]
.
= [ri−�π(i)], [qi] = [si]−[tπ(i)]+pi·[K]

.
= [si−tπ(i)+pi·K]

Fig. 8. The protocol for linear implementation of the Offline Phase
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5 A Practical Implementation of FOffline with O(g · log g)
Complexity

A O(g · log g) protocol to implement FOffline is given in full version [18], and
is in the FMPC-hybrid model. Following the ideas in [17], we implement the
functionality via secure evaluation of a switching network corresponding to the
mapping πf .

Switching Networks. A switching network SN is a set of interconnected switches
that takes N inputs and a set of selection bits, and outputs N values. Each
switch in the network accepts two �-bit strings as input and outputs two �-bit
strings. In this paper we need to use a switching network that contains two
switch types. In the first type (type 1), if the selection bit is 0 the two inputs
remain intact and are directly fed to the two outputs, but if the selection bit is
1, the two input values swap places. In the second type (type 2), if the selection
bit is 0, as before, the inputs are directly fed to outputs but if it is 1, the value
of the first input is used for both outputs. For ease of exposition, in our protocol
description we assume that all switches are of type 1, but the protocol can be
easily extended to work with both switch types.

The mapping π : {1 . . .N} → {1 . . .N} corresponding to a switching network
SN is defined such that π(j) = i if and only if after evaluation of SN on the N
inputs, the value of the input wire i is assigned to the output wire j (assuming
a standard numbering of the input/output wires). In [17] it is shown how to
represent any mapping with a maximum of N inputs and outputs via a network
with O(N · logN) type 1 and 2 switches (We refer the reader to [17] for the
details). This yields a switching network with O(g · log g) switches to represent
the mapping for a circuit with g gates.

High Level Description. It is possible to implement the FOffline by securely
computing a circuit for the above switching network using the FMPC. But for all
existing MPC that meet our requirements, this would require O(log g) rounds
of interaction which is the depth of the circuit corresponding to the switching
network. We show an alternative constant-round approach with similar compu-
tation and communication efficiency. It follows the same idea as the OT-based
protocol of [17] where the OT is replaced with an equivalent functionality imple-
mented using FMPC. The main challenge in our case is to achieve active security
and in particular to ensure that P1 cannot cheat in his local computation. We
do so by checking P1’s actions using one-time MACs of the values he computes
on, and allow the other parties to learn his input and proceed without him, if
he is caught cheating (or aborting).

Next we give an overview of the protocol. The protocol has four main compo-
nents (as described in full version [18]). In the first step, P1 converts his mapping
π to selection bits for the switching network (i.e. bis) and shares them with all
players. He also shares a bit Gi indicating the function of gate i, with other
players. In the second step, players generate random values for every wire in
the network. P1, based on his selection bit for the switch, learns two of the four
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possible “subtractions” of the random values for two output wires from those of
the input wires i.e. u�,i0 and u�,i1 . A similar process is performed for the t values

to obtain ut,i0 and ut,i1 (Figure 9 shows this process in a diagram). These sub-
tractions enable P1 to transform a pair of values blinded with the random values
of input wires, to the same pair of values permuted (based on the selection bit)
and blinded with the random values of the output wires. All of the above can
be implemented using the operations provided by the FMPC.

bi

in�,id,0

in�,id,1

out�,id,0

out�,id,1

u�,i0 = out�,id,0 − in�,id,0

bi = 0

u�,i1 = out�,id,1 − in�,id,1

u�,i0 = out�,id,1 − in�,id,0

bi = 1

u�,i1 = out�,id,0 − in�,id,1

Fig. 9. The i-th switch. (superscripts: label of value subject to permute (� or t), and
switch index i) (subscripts: d refers to data, m refers to MAC, wire index 0 denotes
the top wire in switch and 1 the bottom wire in switch).

In the third step, P1 obtains the blinded � and t values where the blinding for
each is the random value for the corresponding input wire to the network (these

are h�,id , ht,id , etc). Party P1 can now process each switch as discussed above using
the subtraction values in order to evaluate the entire network. At the end of this
process, P1 holds blinded values of the outputs of the switching network (blinded
with randomness of the output wires).

In the final step, parties check that P1 has not cheated during his evaluation,
since he performed this step locally and not through the FMPC operations. We
use one-time MACs to achieve this goal. In particular, besides mapping blinded
values through the network, P1 also maps the corresponding one-time MACs
(generated using the fixed-key K). This is done using a similar process described

above and via the v�,ij , vt,ij values. At the end of this process, P1 holds one-time
MACs for the blinded outputs of the switching network, in addition to the values
themselves. Players then use the MPC functionality to jointly verify that the
MACs indeed verify the values P1 shared with them (i.e. n�,i and m�,i are the
same, etc). As a result, P1 can only cheat by forging the MACs which only
happens with a negligible probability. If the MACs pass, parties compute and
open the “difference vectors” by subtracting the mapped � and t-value vectors
from the r and s-value vectors. Refer to full version [18] for more details. If one
instantiates the FMPC by SPDZ [8], which has the m. log(pk) complexity, then
our complexity would be m (10(2g log 2g − 2g + 1) + 4g) . log(pk). Refer to full
version [18] for the proof of the following theorem.

Theorem 3. In the FMPC-hybrid model the protocol POffline in full version [18]
securely implements the functionality in Figure 2, with complexity O(g · log g).
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Abstract. We present oblivious implementations of several data struc-
tures for secure multiparty computation (MPC) such as arrays, dictio-
naries, and priority queues. The resulting oblivious data structures have
only polylogarithmic overhead compared with their classical counter-
parts. To achieve this, we give secure multiparty protocols for the ORAM
of Shi et al. (Asiacrypt ‘11) and the Path ORAM scheme of Stefanov
et al. (CCS ‘13), and we compare the resulting implementations. We
subsequently use our oblivious priority queue for secure computation of
Dijkstra’s shortest path algorithm on general graphs, where the graph
structure is secret. To the best of our knowledge, this is the first imple-
mentation of a non-trivial graph algorithm in multiparty computation
with polylogarithmic overhead.

We implemented and benchmarked most of our protocols using the
SPDZ protocol of Damg̊ard et al. (Crypto ‘12), which works in the pre-
processing model and ensures active security against an adversary cor-
rupting all but one players. For two parties, the online access time for
an oblivious array of size one million is under 100 ms.

Keywords: Multiparty computation, data structures, oblivious RAM,
shortest path algorithm.

1 Introduction

In a secure multi-party computation (MPC) protocol, parties wish to perform
some computation on their inputs without revealing the inputs to one another.
The typical approach to securely implementing an algorithm for MPC is to
rewrite the algorithm as a boolean circuit (or arithmetic circuit in some finite
field) and then execute each gate of the circuit using addition or multiplication
in the MPC protocol. For non-trivial functionalities, however, the resulting cir-
cuit can incur a large blow-up compared with the normal runtime. For example,
algorithms that use a secret index as a lookup to an array search over the en-
tire array when implemented näıvely in MPC, to avoid revealing which element
was accessed. This means that the advantages of using complex data structures
such as hash tables and binary trees cannot be translated directly to secure
computation programs.

Oblivious RAM (ORAM) allows a client to remotely access their private data
stored on a server, hiding the access pattern from the server. Ostrovsky and
Shoup first proposed combining MPC and ORAM for a two-server writable PIR

P. Sarkar and T. Iwata (Eds.): ASIACRYPT 2014, PART II, LNCS 8874, pp. 506–525, 2014.
c© International Association for Cryptologic Research 2014
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protocol [25], and Gordon et al. further explored this idea in a client-server
setting, constructing a secure two-party computation protocol with amortized
sublinear complexity in the size of the server’s input using Yao’s garbled cir-
cuits [16]. In the latter work, the state of an ORAM client is secret shared
between two parties, whilst one party holds the server state (encrypted under
the client’s secret key). A secure computation protocol is then used to execute
each ORAM instruction, which allows a secure lookup to an array of size N in
polylog(N) time, in turn enabling secure computation of general RAM programs.

1.1 Our Contributions

Motivated by the problem of translating complex algorithmic problems to the
setting of secure computation, we build on the work of Ostrovsky and Shoup [25]
and Gordon et al. [16] by presenting new, efficient data structures for MPC, and
applying this to the problem of efficient, secure computation of a shortest path
on general graphs using Dijkstra’s algorithm. Our contributions are outlined
below.

Oblivious Array and Dictionary. In the context of MPC, we define an oblivious
array as a secret shared array that can be accessed using a secret index, without
revealing this index. Similarly, an oblivious dictionary can be accessed by a
secret-shared key, which may be greater than the size of the dictionary.

We give efficient, polylogarithmic MPC protocols for oblivious array lookup
based on two ORAM schemes, namely the SCSL ORAM of Shi et al. [27] (with
an optimization of Gentry et al. [14]) and the Path ORAM scheme of Stefanov
et al. [28], and evaluate the efficiency of both protocols. Our approach differs
from that of Gordon et al., who consider only a client-server scenario where the
server has a very large input. Instead, we use a method first briefly mentioned by
Damg̊ard et al. [10], where all inputs are secret shared across all parties, who also
initially share the client state of the ORAM. The server’s ORAM state is then
constructed from the secret shared inputs using MPC and so is secret shared
across all parties, but does not need to be encrypted since secret sharing ensures
the underlying data is information theoretically hidden. This approach has two
benefits: firstly, it scales naturally to any number of parties by simply using any
secret-sharing based MPC protocol, and secondly it avoids costly decryption and
re-encryption operations within MPC. Furthermore, Gordon et al. only achieve
passive security, while our solution naturally provides active security when using
an adequate MPC scheme such as SPDZ. Their approach of letting the server
store the memory encrypted under a one-time pad for which the client generates
the keys does not seem to extend to active security without losing efficiency.

Since the benefits of using ORAM only become significant for large input
sizes (> 1000), we have also paid particular effort to creating what we call
Trivial ORAM techniques for searching and accessing data on small input sizes
with linear overhead, when full ORAM is less practical. The naive method for
searching a list of size N involves performing a secure comparison between every



508 M. Keller and P. Scholl

Data structure Based on Access complexity Section

Oblivious array Demultiplexing [21] O(N) 3.1

Oblivious dictionary
{

Trivial ORAM O(N · �) 3.2
Trivial ORAM O(N + � · logN) 3.3

Oblivious array
{

SCSL ORAM O(log4 N) 4.2
Path ORAM O(log3 N) 4.3

Oblivious priority queue
{

Oblivious array O(log4 N) 5.1
Modified Path ORAM O(log3 N) Full ver. [19]

Fig. 1. Overview of our oblivious data structures. For the dictionary, � is the maximal
size of keys.

element and the item being searched for, which takes time O(N · �) when com-
paring �-bit integers. In Section 3 we present two O(N) methods for oblivious
array and dictionary lookup. These techniques come in useful for implementing
the ORAM schemes for large inputs, but could also be used for applications on
their own.

Figure 1 gives an overview of our algorithms. Note that the complexities may
appear slightly higher than expected, due to the overhead of secure comparison
in MPC. In a standard word model of computation, a logN -bit comparison costs
1 operation, whereas in MPC this requires O(logN) operations, leading to the
extra O(logN) factor seen in many of our data structures. As parameters for
the complexity we use N for the size and � for the maximal bit length of keys.
Note that an oblivious dictionary implies an oblivious array with � = logN .
Furthermore, when choosing parameters for ORAM schemes we assume that
the number of accesses to these data structures is in O(N log(N)).

Secure Priority Queue and Dijkstra’s Algorithm. In Section 5 we use our oblivi-
ous array to construct an oblivious priority queue, where secret shared items can
be efficiently added and removed from the queue without revealing any informa-
tion (even the type of operation being performed) and show how to use this to
securely implement Dijkstra’s shortest path algorithm in time O(|E| log4 |E| +
|V | log3|V |), when only the number of vertices and edges in the graph is public.
The previous best known algorithm [2] for this takes time in O(|V |3). In the full
version [19], we also show how to modify the underlying ORAM to implement a
priority queue directly, where each priority queue operation essentially takes just
one ORAM access (instead of log |V | accesses), but we have not implemented
this variant.

Secure Stable Matching. With our oblivious array, it is straightforward to im-
plement the preference matrix used in the Gale-Shapley algorithm for stable
matching. The resulting protocol again has polylogarithmic overhead compared
to the complexity of Gale-Shapley, which is O(N2) for N agents of both kinds.
Previous work by Franklin et al. [12] achieved O(N4) for two-party computa-
tion using semi-homomorphic encryption. We also implemented the case of every
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agent only having a constant number of preferences. In this case, secure stable
matching takes quasi-linear time in the worst case.

Novel MPC and ORAM Techniques. We introduce several new techniques for
MPC and ORAM that are used in our protocols, and may be of use in other
applications. In Section 4.3 we describe a new method for obliviously shuffling
a list of secret shared data points, actively secure against a dishonest majority
of corrupted adversaries, using permutation networks. To the best of our knowl-
edge, in the multi-party setting this has previously only been done for threshold
adversaries. Section 4.4 describes a method for batch initialization of the SCSL
ORAM in MPC using oblivious shuffling and sorting, which saves an O(log3N)
factor compared with naively performing an ORAM access for each item, in
practice giving a speedup of 10–100 times.

Implementation. We implemented and benchmarked the oblivious array and Di-
jkstra’s algorithm using various ORAM protocols. Our implementation uses the
SPDZ protocol of Damg̊ard et al. [9,11], which is in the preprocessing model,
separating the actual computation from a preprocessing phase where secret ran-
dom multiplication triples and random bits are generated. The resulting online
protocol is actively secure against a dishonest majority, so up to n−1 of n parties
may be corrupted. We use the MPC compiler and framework of Keller et al. [20]
to ensure that the minimal round complexity is achieved for each protocol.

1.2 Related Work

Other than the works already discussed [10,16,25], Gentry et al. [14] describe
how to use homomorphic encryption combined with ORAM for reducing the
communication cost of ORAM and also for secure computation in a client-server
situation. These works are in a similar vein to ours, but our work is the first
to thoroughly explore using ORAM for oblivious data structures, and applies to
general MPC rather than a specific client-server scenario. We also expect that
the access times from our interactive approach are much faster than what could
be obtained using homomorphic encryption.

Gentry et al. [15] recently showed how to garble RAM programs for two party
computation, which is an elegant theoretical result but does not seem to be
practical at this time.

Toft described an oblivious secure priority queue with deterministic operations
for use in MPC, without using ORAM [29]. The priority queue is based on a
bucket heap, and supports insertion and removal in amortized O(log2N) time,
but cannot support the decrease-key operation needed for Dijkstra’s algorithm,
unlike our ORAM-based priority queue.

In a recent, independent work, Wang et al. [31] consider oblivious data struc-
tures in the classical ORAM model. Their techniques are very similar to our
oblivious priority queue shown in the full version [19], but the general method
does not directly translate to the MPC setting due to the use of branching and
a client-side cache.
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Brickell and Shmatikov [4] were the first to consider graph algorithms in an
MPC setting. Their solution only works for two parties and achieves only passive
security because they rely on local computation by the two parties. Furthermore,
the result is always public whereas our protocols allow for further secure com-
putation without publishing the result.

Secure variants of shortest path and maximum flow algorithms were presented
for use in MPC by Aly et al. [2]. They operate on a secret-shared adjacency ma-
trix without using ORAM, which leads to an asymptotic complexity in O(|V |3)
for Dijkstra’s algorithm. More recently, Blanton et al. [3] presented an oblivi-
ous algorithm for finding shortest paths in a graph with complexity in O(|V |2).
The same complexity is achieved in another recent work by Liu et al. [22]. All
solutions do not come close to O(|E| + |V | log |V |) for the implementation on
a single machine except for the case of dense graphs. Our solution incurs only
an overhead in O(log4|E| + log3|V |) over the classical algorithm for arbitrary
graphs, improving upon previous solutions when the graph is relatively sparse.

Gentry et al. [14] also show how to modify their ORAM scheme to allow for
lookup by key instead of index, by taking advantage of the tree-like structure in
recursive ORAM. This was the inspiration for our second priority queue protocol
given in the full version [19].

2 Preliminaries

The usual model of secure multiparty computation is the so-called arithmetic
black box over a finite field. The parties have pointers to field elements inside
the box, and they can order the box to add, multiply, or reveal elements. The
box will follow the order if a sufficient number of parties (depending of the MPC
scheme used) support it. In the case of the SPDZ protocol that we use for our
experiments, only the full set of parties is sufficient. There is a large body of
works in this model, some of which we refer to in the next section.

2.1 Building Blocks

In this section, we will refer to a few sub-protocols that we use later.

• b ← EQZ([a], �) computes whether the �-bit value a is zero. Catrina and de
Hoogh [5] provide implementations for prime order fields that require either
O(log �) rounds or a constant number of rounds. For fields of characteris-
tic two, EQZ can be implemented by computing the logical OR of the bit
decomposition of a. Generally, a simple protocol requires O(�) invocations
in O(log �) rounds, and PreMulC by Damg̊ard et al. [7] allows for constant
rounds. However, the constant-round version turns out to be slower in our
implementation.

• ([b0], . . . , [b�−1]) ← PreOR([a0], . . . , [a�−1]) computes the prefix OR of the
� input bits. Catrina and de Hoogh [5] presented an implementation that
requires O(�) invocations in O(log �) rounds, while Damg̊ard et al. [7] showed
that a constant-round implementation is feasible. Again, the constant-round
implementation is slower in our implementation.
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• IfElse([c], [a], [b]) emulates branching by computing [a] + [c] · ([b] − [a]). If c
is zero, the result is a, if c is one, the result is b. Similarly, CondSwap swaps
two secret-shared values depending on a secret-shared bit.

• [b0], . . . , [b2n−1] ← Demux([a0], . . . , [an]) computes a vector of bits such that
the a-th element is 1 whereas all others are 0 if (a0, . . . , an) is the bit
decomposition of a. We use this for our O(N) oblivious array as well as
the position map in Tree ORAM. Our implementation of Demux is due to
Launchbury et al. [21]. It requires O(2�) invocations in �log �� rounds because
one call of Demux with � inputs induces 2� multiplications in one round and
two parallel calls to Demux with at most ��/2� inputs.

• Sort([x0], . . . , [xn−1]) sorts a list of n values. This can be done using Batcher’s
odd-even mergesort with O(n log2 n) secure comparisons, or more efficiently
using the method of Jónsson et al. [18] in O(n log n), with our oblivious shuf-
fling protocol in Section 4.3. The latter is secure only if the sorted elements
are unique.

2.2 Tree ORAM Overview

The ORAM schemes we use for our MPC protocols have the same underlying
structure as the recursive Tree ORAM of Shi et al. [27] (SCSL), where N ORAM
entries are stored in a complete binary tree withN leaves and depthD = �logN�,
encrypted under the client’s secret key. Nodes in the tree are buckets, which each
hold up to Z entries encrypted under the client’s secret key, where the choice
of Z affects statistical security. Each entry within a bucket consists of a triple
(a, da, La), where a is an address in {0, . . . , N−1}, da is the corresponding data,
and La is a leaf node currently identified with a. The main invariant to ensure
correctness is that at any given time, the entry (a, da, La) lies somewhere along
the path from the root to the leaf node La.

The client stores a position map, which is a table mapping every address a
to its corresponding leaf node La. To access the entry at address a, the client
simply requests all buckets on the path to La, decrypts them and identifies the
matching entry. If a write is being performed, the value is updated with a new
value. Next, the client chooses a new leaf L′

a uniformly at random, updates the
entry with L′

a and places the entry in the root node bucket of the tree. The path
is then re-encrypted and sent back to the server.

Since a new leaf mapping is chosen at random every time an entry is accessed,
the view of the server is identical at every access. Note that buckets are always
padded to their full capacity, even if empty. To distribute the entries on the
tree, an eviction procedure is used, which pushes entries further down the tree
towards the leaves to spread out the capacity more evenly.

The original eviction method of Shi et al. is as follows:

• Client chooses at random two buckets from each level of the tree except the
leaves, and requests these and each of their two children from server.
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• For each chosen bucket, push an entry down into one of its child buckets,
choosing the child based on the entry’s corresponding leaf node.

• Re-encrypt the buckets and their children before sending them to the server.

Shi et al. showed that if the bucket size Z is set to k, the probability that any
given bucket will overflow (during a single ORAM access) can be upper bounded
by 2−k.

Reducing Client Storage via Recursion. The basic ORAM described above re-
quires a linear amount of client-side storage, due to the position map. To reduce
this, the position map can itself be recursively implemented as an ORAM of
size N/χ, by packing χ indices into a single entry. If, say, χ = 2 then recursing
this logχN times results in a final position map of a single node. However, the
communication and computation cost is increased by a factor of O(logN/ logχ).
Note that the entry size must be at least χ times as large as the index size, to
be able to store χ indices in each entry.

Gentry et al. ORAM Optimizations. Gentry et al. [14] proposed two modifica-
tions to the SCSL ORAM to improve the parameter sizes. The first of these is
to use a shallower tree, with only N/k instead of N leaves, for an ORAM of size
N . The expected size of each leaf bucket is now k, so to avoid overflow it can be
shown using a Chernoff bound that it suffices to increase the bucket size of the
leaves to 2k.

Gentry et al. also suggest k to be between 50 and 80, but do not justify their
choices any further. By experimenting with probabilities calculated from the
Chernoff bound, we found that the access complexity is actually minimized for
bucket size 4k, and choosing k between 12 and 24 (depending on the ORAM
size) gives overflow probability at most 2−20 when the number of accesses is in
Õ(N).

The second optimization of Gentry et al. is to use higher degree trees to make
the tree even shallower, which requires a more complex eviction procedure. We
did not experiment with this variant, since working with higher degree trees and
the new eviction method in MPC does not seem promising to us. When we refer
to our implementation of the SCSL ORAM, we therefore mean the protocol with
the first modification only.

Path ORAM. Path ORAM is another variant of tree ORAM proposed by Ste-
fanov et al. [28]. It uses a small piece of client side storage, called the ‘stash’,
and a new eviction method, which allows the bucket size Z to be made as small
as 4.

For an ORAM query, the client first proceeds as usual by looking up the
appropriate leaf node in the position map and requesting the path from the
root to this leaf. The accessed entry is found on this path, reassigned another
random leaf, and then every entry in the path and the stash is pushed as far down
towards the leaf as possible, whilst maintaining the invariant that entries lie on
the path towards their assigned leaves. In the case of bucket overflow, entries are
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placed in the client-stored stash. The proven overflow bound for Path ORAM is
not currently very tight, so for our implementation we chose parameters based
on simulation results instead of a formal analysis, again looking to achieve an
overall overflow probability of 2−20 for our applications.

3 Oblivious Data Structures with Linear Overhead

The general model of our oblivious array and dictionary protocols is to secret
share both the server and client state of an ORAM between all parties. This
means that there is no distinction between client and server anymore because
both roles are replaced by the same set of parties.

Since secret sharing hides all information from all parties, the server memory
does not need to be encrypted; any requests from the client to the server that
are decrypted in the original ORAM protocol are implemented by revealing
the corresponding secret shared data. For server memory accesses, the address
must be available in public, which allows the players to access the right shares.
Computation on client memory is implemented as a circuit, as required for MPC.
This means that any client memory access depending on secret data must be
replaced by a scan of the whole client memory, similarly to a Trivial ORAM
access. Note that we cannot use the ORAM scheme we are trying to implement
for the client memory as this would introduce a circularity. Given the overhead
for accessing the client memory, ORAM schemes with small client memory are
most efficient in our model.

In this section, we outline our implementations based on Trivial ORAM, where
all access operations are conducted by loading and storing the entire list of en-
tries, and thus have linear overhead. In the context of MPC, the main cost factor
is not memory accesses1, but the actual computation on them. Nevertheless, the
two figures are closely related here.

In our experiments (Section 6) we found that, for sizes up to a few thousand,
the constructions in this section prove to be more efficient than the ones with
better asymptotic complexity despite the linear overhead.

3.1 Oblivious Array

A possible way for obliviously searching an array of size N was proposed by
Launchbury et al. [21], which we refer to as demultiplexing. It involves expanding
the secret-shared index i < N to a vector of size N that contains a one in the
i-th position and zeroes elsewhere. The inner product of this index vector and
the array of field elements gives the desired field element. The index vector can
likewise be used to replace this field element by a new one while leaving the other
field elements intact. The index expansion corresponds to a bit decomposition
of the input followed by the demultiplexing operation. This procedure has cost
in O(N).

1 In fact, just accessing the share of an entry comes at no cost because the shares are
stored locally.
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Storing an empty flag in addition to the array value proves useful for some
applications. Thus, we require that the players store a list of tuples ([vi], [ei])

N−1
i=0

containing the values and empty flags.

3.2 Oblivious Dictionary

We will use the dictionary in this section as a building block for implementing
Tree ORAM in MPC. Previous work refers to the Trivial ORAM used in this
section as non-contiguous ORAM, meaning that the index of an entry can be
any number, in particular greater than the size of the array.

For simplification, we assume that the dictionary consists of index-value pairs
(u, v) where both are field elements of the underlying field. The extension to
several values is straightforward. In addition to one index-value pair per entry
we store a bit e indicating whether the entry is empty. We will see shortly that
this proves to be useful. In summary, the players store a list of tuples of secrets-
shared elements ([ui], [vi], [ei])

N−1
i=0 for a dictionary of size N . Initially, ei must

be 1 for all i.
The Tree ORAM construction requires the dictionary to provide the following

operations:

• ReadAndRemove([u]) returns and removes the value associated with index u
if it is present in the dictionary, and a default entry otherwise.

• Add([u], [v], [e]) adds the entry (u, v, e) to the dictionary assuming that no
entry with index v exists.

• Pop() returns and removes a non-empty entry (u, v, 0) if the dictionary is
not empty, and the default empty entry (0, 0, 1) otherwise. Shi et al. [27]
showed how to implement Pop using ReadAndRemove and Add, but for Trivial
ORAM a dedicated implementation is more efficient.

In MPC, ReadAndRemove is the most expensive part because it contains a
comparison for every entry. Essentially, it computes an index vector as in the
previous section using comparison instead of demultiplexing. The complexity is
dominated by the N calls to an equality test which cost O(N · �) invocations
in O(log �) or O(1) rounds for �-bit keys, depending on the protocol used for
equality testing.

Our implementations of Add and Pop make use of the bits indicating whether
an entry is empty. This way, we avoid comparing every index in finding the first
non-empty or empty entry, respectively. Both protocols requireO(N) invocations
in O(logN) or O(1) rounds, depending on the exact implementation.

Theorem 1. An algorithm using arrays but no branching other than conditional
writes to arrays can be securely implemented in MPC with linear overhead.

Proof (Sketch). Implement arrays as described above and use a circuit for con-
ditional writes. Since there is no branching otherwise, this effectively results in
a circuit that can be securely executed using the arithmetic blackbox provided
by MPC schemes.



Efficient, Oblivious Data Structures for MPC 515

3.3 Oblivious Dictionary in O(N)

The complexity of ReadAndRemove in the oblivious dictionary can be reduced
to only O(N + � · logN) instead of O(N · �), at the cost of increasing the round
complexity from O(1) to O(logN).

The protocol (see the full version [19]) starts by subtracting the item to be
searched for from each input, and builds themultiplication tree from these values,
which is a complete binary tree where each node is the product of its two children.
The original values lie at the leaves, and at each level a single node will be zero,
directing us towards the leaf where the item to be found lies. Now we can traverse
the tree in a binary search-like manner, at each level obliviously selecting the
next element to be compared until we reach the leaves. We do this by computing
a bit vector indicating the position of a node which is equal to zero on the current
level and then use this to determine the comparison to be performed next. Note
that only a single call to an equality test is needed at each level of the tree, but a
linear number of multiplications are needed to select the item on the next level.

The main caveat here is that, since the tree of multiplications can cause values
to grow arbitrarily, we need to be able to perform an equality test on any field
element. In GF(2n) this works as usual, and in GF(p) this can be done by a
constant-round protocol by Damg̊ard et al. [7].

4 Oblivious Array with Polylogarithmic Overhead

In this section we give polylogarithmic oblivious array protocols based on the
SCSL ORAM and Path ORAM schemes described in Section 2.2. These both
have the same recursive Tree ORAM structure, so first we describe how to im-
plement the position map, which is the same for both schemes.

4.1 Position Map in Tree ORAM

The most intricate part of implementing Tree ORAM in MPC is the position
map. Since we implement an oblivious array, the positions can be stored as
an ordered list without any overhead. Recall that for the ORAM recursion to
work it is essential that at least two positions are stored per memory address
of the lower-level ORAM. In an MPC setting, there are two ways of achieving
this: storing several field elements in the same memory cell and packing several
positions per field element. We use both approaches.

To simplify the indexing, we require that both the number of positions per
field element and number of field elements per memory cell are powers of two.
This allows to compute the memory address and index within a memory cell by
bit-slicing. For example, if there are two positions per field element and eight
field elements per memory cell, the least significant bit denotes the index within
a field element, the next three bits denote the index within the memory cell,
and the remaining bits denote the memory address. Because these parameters
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are publicly known, the bit-slicing is relatively easy to compute with MPC. In
prime order fields, one can use Protocol 3.2 by Catrina and de Hoogh [5], which
computes the remainder of the division by a public power of two; in fields of
characteristic two one can simply extract the relevant bits by bit decomposition.

The bit-slicing used to extract a position from a field element is more in-
tricate because the index is secret and must not be revealed. For prime-order
fields, Aliasgari et al. [1] provide a protocol that allows to compute the modulo
operation of a secret number and two raised to the power of a secret number.
For fields of characteristic two, see the full version [19] for a similar protocol.
The core idea of both protocols is to compute [2m] (or [Xm]) where m is the
integer representation of secret-shared number. The bit decomposition of [2m]
can then be used to mask the bit decomposition of another secret-shared num-
ber. Moreover, multiplying with Inv([2m]) allows to shift a number with the m
least significant bits being zero by m positions to the right. The complexity of
both versions of Mod2m is O(�) invocations in O(log �) rounds or in a constant
number of rounds if the protocols by Damg̊ard et al. [7] are used. The latter
proved to be less efficient in our experiments.

Finally, if the position map storage contains several field elements per memory
cell, one also needs to extract the field element indexed by a secret number. This
can be done using demultiplexing in the same way as for the oblivious array in
Section 3.1.

4.2 SCSL ORAM

Many parts of Tree ORAM are straightforward to implement using the Trivial
ORAM procedures from the last section.

For ReadAndRemove, the position is retrieved from the position map and
revealed. All buckets on the path can then be read in parallel. Combining the
results can be done similarly to the Trivial ORAM ReadAndRemove because
the latter returns a value indicating whether the searched index was found in a
particular bucket.

The Add procedure starts with adding the entry to the root bucket followed
by the eviction algorithm. The randomness used for choosing the buckets to
evict from does not have to be secret because the choice has to be made public.
It is therefore sufficient to use a pseudorandom generator seeded by a securely
generated value in order to reduce communication. However, it is crucial that
the eviction procedure does not reveal which child of a bucket the evicted en-
try is added to. Therefore, we use a conditional swapping circuit. See the full
version [19] for algorithmic descriptions of ReadAndRemove and Add.

Using ReadAndRemove and Add, it is straightforward to implement the uni-
versal access operation that we will later use in our implementation of Dijkstra’s
algorithm. Essentially, we start by ReadAndRemove and then write back the
value just read or the new value depending on the write flag. Similarly, one can
construct a read-only or write-only operation.
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Complexity. Since the original algorithm by Shi et al. [27] does not involve
branching, it can be implemented in MPC with asymptotically the same number
of memory accesses. However, the complexity of an MPC protocol is determined
by the amount of computation carried out. In ReadAndRemove, the index of
every accessed element is subject to a comparison. These indices are logN -bit
numbers for an array of size N . Because the access complexity of the ORAM is in
O(log3N), the complexity of all comparisons in ReadAndRemove is in O(log4N).
It turns out that this dominates the complexity of the SCSL ORAM operations
because Add and Pop do not involve comparisons. Furthermore, the algorithms
in Section 4.1 have complexity in O(logN) and are only executed once per index
structure and access. This leads to a minor contribution in O(log2N) per access
of the oblivious array.

Theorem 2. An algorithm using arrays but no branching other than conditional
writes to arrays can be securely implemented in MPC with polylogarithmic over-
head and negligible probability of an incorrect result.

Proof (Sketch). Implement arrays as described above and use a circuit for con-
ditional writes. Since there is no branching otherwise, this effectively results in a
circuit that can be securely executed using the arithmetic blackbox provided by
MPC schemes. The ORAM scheme accounts for the polylogarithmic overhead
and the negligible failure probability.

For a complete simulation, we connect the ORAM and the MPC simulation
in the following way: The ORAM simulation outputs the random paths used
in ReadAndRemove. We input these values to the simulation of the arithmetic
blackbox as they are revealed in the MPC protocol. Further random values are
revealed by statistically secure algorithms. We sample those value according to
the relevant distributions and input them to the MPC simulation as well. The
indistinguishability of the resulting transcript follows using a hybrid argument
with the two simulators.

4.3 Path ORAM

The Path ORAM access protocol is initially the same as in the Shi et al. and
Gentry et al. schemes (with smaller bucket size), but differs in its eviction pro-
cedure. For eviction a leaf � is chosen, either at random or in a deterministic
bit-reversed order as in [14], and we consider the path from the root down to the
leaf �. For each entry E = ([i], [�i], [di]) on the path we want to push E as far
down the path as it can go, whilst still being on the path towards �i and avoid-
ing bucket overflow. The high-level strategy for doing this in MPC is to first
calculate the final position of each entry in the stash and the path to �, then
express this as a permutation and evaluate the resulting, secret permutation by
oblivious shuffling. Since oblivious shuffling has only previously been studied in
either the two party or threshold adversary setting, we describe a new protocol
for oblivious shuffling with m− 1 out of m corrupted parties.

The eviction protocol for MPC first does the following for each entry E =
([i], [�i], [di]) in the path to � and the stash:
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• Compute the least common ancestor, LCA(�, [�i]), of each entry’s assigned
leaf and the random leaf by XORing the bit-decomposed leaves together
and identifying the first non-zero bit of this.

• For each level k in the path, compute a bit determining whether entry E
goes to the bucket on level k or not, and bit indicating whether E ends up
in the stash. To do this we maintain bits uk,i for i = 0 to �log2 Z� that keep
track of the size of bucket k, updating these as we go.

Now for each entry in the path, we have a list of bits, one of which is set to
one to indicate the level we need to obliviously place the entry. At this point
it might seem that we could just obliviously shuffle the entries and then reveal
each level, but this is insecure. This is because in addition to the real entries in
the path there are (an unknown number of) empty entries, which haven’t been
assigned a level. To be able to safely shuffle and reveal the real entries’ levels,
we first must assign a level to each empty entry, ensuring that every space in
every bucket has had an entry assigned to it, so revealing the distribution of all
levels gives no information.

To assign the empty entries with levels we use oblivious sorting: first the
entries are sorted to separate the real and empty entries, and then the bucket
positions are sorted to separate those that have already been used from the free
ones. By aligning these two sorted lists, the free bucket levels can be assigned
to the empty entries. Correctly aligning the two lists is actually slightly more
involved than this due to the stash and some details have been omitted.

Parameters. In our implementation, we chose deterministic eviction with
bucket size 2 and stash size 24. We estimate this gives an overflow probability of
2−75 for a single access, which should be comfortable for most applications. See
the full version [19] for a complete description and extensive simulation results
used to choose parameters.

Complexity. Computing the level that each entry ends up at requiresO(log2N)
multiplications. Our protocols for oblivious shuffling and bitwise sorting have
complexity O(n logn) where here n = |S|+Z · logN , so the total complexity of
the access protocol is O(log2N). Adding in the recursion gives an extra O(logN)
factor, for an overall complexity of O(log3N).

For ReadAndRemove, the complexity is in O(log3N) instead of O(log4N) (for
SCSL ORAM) because of the constant bucket size. This results in an overall
access complexity in O(log3N).

Oblivious Shuffling with a Dishonest Majority. To carry out the obliv-
ious shuffling above, we use a protocol based on permutation networks, which
are circuits with N input and output wires, consisting only of CondSwap gates
with the control bit for each gate hard-wired into the circuit. Given any per-
mutation, there is an algorithm that generates the control bits such that the
network applies this permutation to its inputs. The Waksman network [30] is
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an efficient permutation network with a recursive structure, with O(N logN)
gates and depth O(logN). It has been used previously in cryptography for two-
party oblivious shuffling [17], and also in fully homomorphic encryption [13] and
private function evaluation [23].

Computing the control bits requires iterating through the orbits of the per-
mutation, which seems expensive to do in MPC when the permutation is secret
shared. Instead, for m players we use a composition of m permutations, as fol-
lows:

1. Each player generates a random permutation, and locally computes the con-
trol bits for the associated Waksman network 2

2. Each player inputs (i.e. secret shares) their control bits.
3. For each value [b] input by a player, open [b] · [b − 1] and check this equals

0, to ensure that b is a bit.
4. The resulting permutation is evaluated by composing together all the Waks-

man networks.

Step 3 ensures that all permutation network values input by the players are
bits, even for malicious parties, so the composed networks will always induce a
permutation on the data. As long as at least one player generates their input
honestly, the resulting permutation will be random, as required. The only values
that are revealed outside of the arithmetic black box are the bits in step 3, which
do not reveal information other than identifying any cheaters. For m players, the
complexity of the protocol for an input of size n is O(mn log n).

4.4 Batch Initialization of SCSL ORAM

The standard way of filling up an ORAM with N entries is to execute the
access protocol once for each entry. This can be quite expensive, particularly for
applications where the number of ORAM accesses is small relative to the size of
the input. In the full version of this paper [19], we describe a new method for
initializing the SCSL ORAM with N entries in time O(N logN), saving a factor
of O(log3N) over the standard method. Note that this technique could also
be used for standard ORAM (not in MPC), and then the complexity becomes
O(N), which seems optimal for this task. In practice our experiments indicate
that this improves performance by at least 1-2 orders of magnitude, depending
on the ORAM size.

5 Applications

In this section, we will use the oblivious array from the previous section to con-
struct an oblivious priority queue, which we then will use in a secure multiparty
computation of Dijkstra’s shortest path algorithm.

2 Note that generating the control bits randomly does not produce a random per-
mutation, since for a circuit with m gates, there are 2m possible paths and so any
permutation will occur with probability k2−m for some integer k. However, for a
uniform permutation we require k2−m = 1

n!
.



520 M. Keller and P. Scholl

5.1 Oblivious Priority Queue

A simple priority queue follows the design of a binary heap: a binary tree where
every child has a higher key than its parent. The key-value pairs are put in an
oblivious array, with the root at index 1, the left and right child of the root at
indices 2 and 3, respectively, and so on. In order to be able to decrease the key of
a value, we maintain a second array that links the keys to the respective indices
in the first one.

The usage of ORAM requires that we set an upper limit on the size of the
queue. We store the actual size of the heap in a secret-shared variable, which is
used to access the first free position in the heap. Depending on the application,
the size of the heap can be public and thus stored in clear. However, our im-
plementation of Dijkstra’s algorithm necessitates the size to be secret. This also
means that the bubbling-up and -down procedures have to be executed on the
tree of maximal size. The bubble-down procedure works similarly, additionally
deciding whether to proceed with the left or the right child. Note that unlike
the presentation in Sections 3 and 4, we allow tuples as array values here. This
extension is straightforward to implement. Furthermore, we require a universal
access operation for conditional writing. If such an operation is not available yet,
it can implemented by reading first and then either writing the value just read
or a new value depending on the write flag.

Our application also requires a procedure that combines insertion and
decrease-key (depending on whether the value already is in the queue) and that
can be controlled by a secret flag deciding whether the procedure actually should
be executed or not. The combination is straightforward since both employ bub-
bling up, and the decision flag can be implemented using the universal access
operation mentioned above. We refer to the full version [19] for exact descriptions
of the procedures.

For a priority queue of maximal size N , both bubbling up and down run over
logN levels accessing oblivious arrays of size in O(N). Using Path ORAM there-
fore results in a complexity in O(log4N) per access operation. In the full version
[19], we show how to modify the Tree ORAM structure to reduce the overhead to
O(log3N) per access, similarly to the binary search ORAM of Gentry et al. [14]
and, very recently, the oblivious priority queue of Wang et al. [31]. Unlike the
latter, this priority queue supports decrease key so can be used for Dijkstra’s
algorithm, but we have not currently implemented this variant.

5.2 Secure Dijkstra’s Algorithm

In this section we show how to apply the oblivious priority queue to a secure
variant of Dijkstra’s algorithm, where both the graph structure and the source
vertex are initially secret shared across all parties. In our solution, the only
information known by all participants is the number of vertices and edges. It is
straightforward to have public upper bounds instead while keeping the actual
figures secret. However, the upper bounds then determine the running time. This
is inevitable in the setting of MPC because the parties are aware of the amount
of computation carried out.
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In the usual presentation [6], Dijkstra’s algorithm contains a loop nested in
another one. The outer loop runs over all vertices, and the inner loop runs over
all neighbours of the current vertex. Directly implementing this in MPC would
reveal the number of neighbours of the current vertex and thus some of the graph
structure. On the other hand, executing the inner loop once for every other vertex
incurs a performance punishment for graphs other than the complete graph. As
a compromise, one could execute the inner loop as many times as the maximum
degree of the graph, but even that would reveal some extra information about
the graph structure. Therefore, we replaced the nested loops by a single loop
that runs over all edges (twice in case of an undirected graph). Clearly, this has
the same complexity as running over all neighbours of every vertex. The key idea
of our variant of Dijkstra’s algorithm is to execute the body of the outer loop for
every edge but ignoring the effects unless the current vertex has changed. For
this, conditional writing to an oblivious array plays a vital role.

In the following, we explain the data structure used by our implementation.
Assume that the N vertices are numbered by 0 to N − 1. We use two oblivious
arrays to store the graph structure. The first is a list of neighbours ordered by
vertex: it starts with all neighbours of vertex 0 (in no particular order) followed
by all neighbours of vertex 1 and so on. In addition, we store for every neighbour a
bit indicating whether this neighbour is the last neighbour of the current vertex.
The length of this list is the twice the number of edges for an undirected graph.
In another array, we store for every vertex the index of its first neighbour in
the first array. A third array is used to store the results, i.e., the distance from
the source to every vertex. For the sake of simpler presentation, we omit storing
the predecessor on the shortest path. Finally, we use a priority queue to store
unprocessed vertices with the shortest encountered distance so far. See the full
version [19] for our algorithm.

The main loop accesses a priority queue of size NV and arrays of size NE and
NV . Furthermore, we have to initialize a priority queue and an array of size NV .
Using the Path ORAM everywhere, this gives a complexity in O(NV log3NV +
NE(log

4NV + log3NE)). More concretely, for sparse graphs with NE ∈ O(NV )
(such as cycle graphs) the complexity is in O(NV log4NV ), whereas for dense
graphs with NE ∈ O(N2

V ) (such as complete graphs), the complexity is in
O(N2

V log4NV ). The most efficient implementation of Dijkstra’s algorithm on
a single machine has complexity in O(NE + NV logNV ), and thus the penalty
of using MPC is in O(log4NV + log3NE).

6 Experiments

We implemented our protocols for oblivious arrays using the system described
by Keller et al. [20], and ran experiments on two directly connected machines
running Linux on an eight-core i7 CPU at 3.1 GHz. The online access times for
different implementations of oblivious arrays containing one element of GF(240)
per index are given in Figure 2. Most notably, the linear constructions are more
efficient for sizes up to a few thousand. For these timings, we have also used the
packing strategies described in Section 4.1 at the top level.
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To estimate the offline time required to generate the necessary preprocessing
data, we used the figures of Damg̊ard et al. [8,9] for the finite fields GF(2n) and
GF(p), respectively. The offline time for accessing an oblivious array of size 220

using Path ORAM would be 117 minutes in GF(2n) and 32 minutes in GF(p),
for active security with cheating probability 2−40. Note that this could be easily
improved using multiple cores, since the offline phase is trivially parallelizable,
and also the GF(2n) times could be cut further by using the offline phase from
TinyOT [24].
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Fig. 2. Oblivious data structure online access times

6.1 Dijkstra’s Algorithm

We have benchmarked Dijkstra’s algorithm on cycle graphs of varying size. The
edges of a cycle graph form a cycle passing every vertex exactly once. We chose
it as a simple example of a graph with low degree. Figure 3 shows the timings
of our implementation of the algorithm without ORAM techniques by Aly et
al. [2] as well as our implementation using the oblivious array in Section 3.1
and the SCSL ORAM in Section 4.2. In all cases, we used MPC over a finite
field modulo a 128-bit prime to allow for integer arithmetic. We generated our
estimated figures using a fully functional secure protocol but running the main
loop only a fraction of the times necessary.

For reference, we have also included timings for the offline phase, estimated
using the costs given by Damg̊ard et al. [9]. Note that these timings are to be
understood as core seconds because the offline phase is highly parallelizable,
unlike the online phase. It follows that the wall time of the offline phase can
be brought down to the same order of magnitude of the online phase using ten
thousand cores.
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Our algorithms perform particularly well in comparison to the one by Aly
et al. because cycle graphs have very low degree. For complete graphs, the full
version [19] shows a different picture. The overhead for using ORAM is higher
than the asymptotic advantage for all graph sizes that we managed to run our
algorithms on.
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Fig. 3. Dijkstra’s algorithm on cycle graphs

6.2 Gale-Shapley Algorithm for the Stable Marriage Problem

Using an oblivious array, it is straightforward to implement the Gale-Shapley
algorithm in MPC. We have implemented a worst case example, where the main
loop is executed O(N2) times. However, initialization of the preference matrices
costs O(N2) in any case. With the overhead of the oblivious array, we get an
overall complexity in O(N2 log3N). Running a fully functional program for a
limited time, we estimate that computing Gale-Shapley for 8192 pairs takes
9.1·107 seconds online and 1.5·1012 seconds offline, using the figures by Damg̊ard
et al. [9] for the latter estimate. See the full version [19] for more timings.

Gale-Shapley with Limited Preferences. It does not always make sense
to have full ranking of preferences. For example, it is hard to imagine that a
human could ranking a thousand options. Therefore, we investigated the case of
every agent only having a top twenty and feeling indifferent about the rest. In
this case, both initialization and the worst-case main loop of a slightly modified
algorithm become linear in the number of agents. Using the same techniques
as above, we estimate that computing Gale-Shapley with 20 preferences for 220

pairs takes 3.5 · 107 seconds online and 7.1 · 1011 seconds offline.
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