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Abstract. Process mining is a discipline that aims at discovering, monitoring
and improving real-life processes by extracting knowledge from event logs. Pro-
cess discovery and conformance checking are the two main process mining tasks.
Process discovery techniques can be used to learn a process model from example
traces in an event log, whereas the goal of conformance checking is to compare
the observed behavior in the event log with the modeled behavior. In this paper,
we propose an approach based on temporal logic query checking, which is in the
middle between process discovery and conformance checking. It can be used to
discover those LTL-based business rules that are valid in the log, by checking
against the log a (user-defined) class of rules. The proposed approach is not lim-
ited to provide a boolean answer about the validity of a business rule in the log,
but it rather provides valuable diagnostics in terms of traces in which the rule is
satisfied (witnesses) and traces in which the rule is violated (counterexamples).
We have implemented our approach as a proof of concept and conducted a wide
experimentation using both synthetic and real-life logs.

Keywords: Process Discovery, Business Rules, Linear Temporal Logic, Tempo-
ral Logic Query Checking.

1 Introduction

The increasing availability of event data has stimulated the uptake of automatic process
discovery in research and practice. Discovery techniques typically take event logs as an
input to generate a process model as an output, for instance, in the form of a Petri net.
This works particularly well for structured processes.

However, event logs might not always stem from structured processes, but from
RFID readers, from GPS data of trucks, or from unstructured knowledge-intensive pro-
cesses. Events from these types of processes have often in common that they yield
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spaghetti-like Petri net models. In order to make discovery work for those event logs,
declarative representations have been defined that capture behavioral constraints.

So far, several specifications of declarative behavior have been defined, e.g., De-
clare [23], behavioral profiles [26], or Dynamic Condition Response Graphs [16]. A
standard formalism underneath these notations is Linear Temporal Logic (LTL). How-
ever, existing LTL-based discovery techniques like [12,14,20,22,19] hardly make use
of the flexibility that LTL provides, but rather work with a limited set of predefined
templates. On the other hand, works like [25] for conformance checking with respect to
LTL-based business rules, do not support domain experts in finding classes of LTL rules
that are interesting to check. In this paper, we address this research gap. Our contribu-
tion is an approach for discovering LTL rules from event logs based on temporal logic
query checking using placeholders. The technique produces as outcome activities that
can replace the placeholders in the query to produce rules satisfied in the log. If the ac-
tivities considered for these placeholders cover the full process alphabet, the approach
complements existing process discovery techniques. If a placeholder is replaced by a
single activity, our approach supports conformance checking. In the middle there is the
possibility of choosing the replacement for a placeholder within a (user-defined) set of
activities. The proposed approach is not limited to provide a boolean answer about the
validity of a business rule in the log, but it rather provides diagnostics in terms of traces
in which the solution is satisfied (witnesses) and traces in which the solution is violated
(counterexamples). Our concepts have been implemented and evaluated using synthetic
and real-life logs. In this way, we are able to find behavioral rules that might not have
been visible, e.g., to predefined Declare templates.

Against this background, the paper is structured as follows. Section 2 defines the pre-
liminaries and the research problem. Section 3 defines our approach based on the log
temporal structure and a corresponding query checking algorithm. Section 4 describes
experimental results of using our implementation on synthetic and real-life logs. Sec-
tion 5 reflects our contribution in the light of related work. Finally, Section 6 concludes
the paper.

2 Preliminaries

The research objective of this work is to support the domain expert with a technique to
discover temporal business rules and to define rule templates with placeholders. This
is, on the one hand, a verification problem [3], and, on the other hand, a temporal query
checking problem. We approach this from the perspective of temporal logical query
checking; therefore we first introduce the notions of event logs, linear temporal logic
over finite traces and respective queries, and then we discuss the research problem.

2.1 Event Logs

An event log captures the manifestation of events pertaining to the instances of a single
process. A process instance is also referred to as a case. Each event in the log cor-
responds to a single case and can be related to an activity or a task. Events within a
case need to be ordered. An event may also carry optional additional information like
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timestamp, transaction type, resource, costs, etc. For analysis, we need a function that
maps any event e onto its class e. In this paper, we assume that each event is classified
based on its activity. A denotes the set of activities (log alphabet). A+ is the set of all
non-empty finite sequences. A case is described as a trace over A, i.e., a finite sequence
of activities.

Definition 1 (Trace). Given a finite log alphabetA of events, the trace t = 〈a1, . . . , an〉
is a finite sequence of events ai ∈ A. We denote by t(i) the i-th event in the trace, with
i ∈ [1, n] where n is the length of t, i.e., n = |t|. Thus, t ∈ A+, where A+ denotes the
set of non-empty sequences of elements of A. Two traces t and t′ are defined equivalent
when |t| = |t′| = n and, for all i ∈ [1, n], t(i) = t′(i).

Examples of traces are t1 = 〈a, b, c, d〉 and t2 = 〈a, b, b, b, a, d〉.

Definition 2 (Event Log). An event log L ∈ P (A+) is a finite collection of traces.

For example, L = [〈a, b, c, d〉, 〈a, b, c, d〉, 〈a, b, b, b, a, d〉] is a log consisting of
three cases. Two cases follow the trace 〈a, b, c, d〉 and one case follows the trace
〈a, b, b, b, a, d〉.

2.2 Linear Temporal Logic over Finite Traces

Linear Temporal Logic (LTL) [24] is a language meant to express properties that hold
true in systems that change their state over time. The state of the system is expressed in
terms of propositional formulas. The evolution is defined by transitions between states.
A typical LTL query expressing fairness conditions is �♦Φ, where Φ is a propositional
formula indicating the condition to always (�) eventually (♦) hold true. LTLf [10,9] is
the variant of LTL interpreted over finite system executions. It adopts the syntax of LTL.
Formulas of LTL (and LTLf ) are built from a set A of propositional symbols (atomic
propositions, altogether constituting the alphabet) and are closed under the boolean
connectives (¬, unary, and ∨, ∧, →, ↔, binary) and the temporal operators ◦ (next), ♦
(eventually), � (always), unary, and U (until), binary. The syntax is defined as follows.

ϕ, ψ = a | ρ | τ (with a ∈ A)

ρ = ¬ϕ | ϕ ∨ ψ | ϕ ∧ ψ | ϕ → ψ | ϕ ↔ ψ

τ = ◦ϕ | ♦ϕ | �ϕ | ϕUψ

Intuitively, ◦ϕ means that ϕ holds true in the next instant in time, ♦ϕ signifies that
ϕ holds eventually before the last instant in time (included), �ϕ expresses the fact
that from the current state until the last instant in time ϕ holds, ϕU ψ says that ψ
holds eventually in the future and ϕ holds until that point. The semantics of LTLf is
provided in terms of finite runs,1 i.e., finite sequences of consecutive instants in time,
represented by finite words π over the alphabet 2A. The instant i in run π is denoted as
π(i), with i ∈ [1, |π|], |π| being the length of the run. We remark here that the alphabet

1 Called “traces” in the literature [10], here renamed in order to avoid confusions with the se-
quences of events in logs.
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of finite words for LTLf runs do not correspond to A, but to any possible propositional
interpretation of the propositional symbols in A (2A). In the following, we indicate that,
e.g., a is interpreted as true (
) at instant i in π by a ∈ π(i). Conversely, if a /∈ π(i),
a is interpreted as false (⊥). Given a finite run π, we inductively define when an LTLf

formula ϕ (resp. ψ) is true at an instant i, denoted as π, i |= ϕ (resp., π, i |= ψ), as:
π, i |= a for a ∈ A, iff a ∈ π(i) (a is interpreted as true in π(i));
π, i |= ¬ϕ iff ϕ, i � π(i);
π, i |= ϕ ∧ ψ iff π, i |= ϕ and π, i |= ψ;
π, i |= ϕ ∨ ψ iff π, i |= ϕ or π, i |= ψ;
π, i |= ◦ϕ iff π, i+1 |= ϕ, having i < |π|;
π, i |= ϕUψ iff for some j ∈ [i, |π|], we have that π, j |= ψ, and for all k ∈ [i, j−1],

we have that π, k |= ϕ.
The semantics of remaining operators can be derived by recalling that:

ϕ ∨ ψ ≡ ¬(¬ϕ ∧ ¬ψ);
ϕ ↔ ψ ≡ (ϕ → ψ) ∧ (ψ → ϕ);

♦ϕ ≡ 
Uϕ;
�ϕ ≡ ¬♦¬ϕ.

2.3 Temporal Logic Query Checking

Model checking [8] was originally proposed as a verification technique: given a model
of a software system and a specification, formal methods are adopted to prove the com-
pliance of the model to the specification. Temporal model checking focuses on the au-
tomated verification of temporal logic formulas over temporal structures, modeled as
Kripke structures. Kripke structures are finite state automata having sets of states, a
labeling function mapping states to atomic propositions interpreted as true, and a left-
total transition relation among states, i.e., every state leads to a transition. Initial states
are those states from which runs of the model enactment can start.

Temporal logic query checking [3] aims at discovering properties of the model which
are not known a priori. Therefore, the extra input element as compared to model check-
ing is a query, i.e., a temporal logic formula containing so-called placeholders, typically
denoted as ?x. The output of the query checking technique is a set of temporal logic
formulas, which derive from the input query. Every output formula stems from the re-
placement of placeholders by propositional formulas, which make the overall temporal
logic formula satisfied in the given Kripke structure.

The seminal work of Chan considered Computation Tree Logic (CTL) [7] as the
language for expressing queries. Unlike LTL, which adopts a linear time assumption,
CTL is a branching-time logic: the evaluation of the formula is based on a tree-like
structure, where different evolutions of the system over time are simultaneously con-
sidered in different branches of the computation model. Consider as an example the
CTL query AG(?x ∨ p). This query states that for every evolution of the system (A), it
is globally true (G) that p or ?x hold. In order to drive the verification by limiting the
search space of possible satisfying replacements for placeholders, Chan introduced the
opportunity to limit the propositional symbols involved. For instance, a CTL query like
AG(?x){a, b} would restrict the possible solutions returned to the ones including only
a and b as proposition letters.
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3 Proposed Approach

In this section, we describe the proposed approach in detail. The starting point is an
event log and an LTLf query. The outcome is a set of formulas derived from the query
by placeholder replacement, along with diagnostics about the validity of each formula
in the input log.

3.1 From the Event Log to a Log Temporal Structure

Here, we illustrate the steps to obtain from the log a behaviorally equivalent temporal
structure, for evaluating LTLf formulas over it. The first step consists in creating a trace
temporal structure for each trace in the log. The only allowed run for such a temporal
structure is the trace itself. Then, we combine the collection of trace temporal struc-
tures into a single entity (community). Thereupon, we derive a log temporal structure,
bisimilar to such a community, by joining the common suffixes of traces. This translates
to joining the states of trace temporal structures for which all next successor states are
pairwise interpreted as the same atomic propositions. The resulting polytree is the input
for the query checking algorithm described later in Section 3.2.

Definition 3 (Trace temporal structure). A trace temporal structure is a tuple T =
〈S, �, s1, sf , L〉 over alphabet A where:

S is a finite non-empty set of states.
s1, sf ∈ S are the initial and final state of T .
L : S → (A → {
,⊥}) is the labeling function, associating each state s ∈ S to an in-

terpretation of each propositional literal a ∈ A, either assigned as true, 
, or false,
⊥. If, e.g., a is interpreted as true in state s, we indicate it as follows: L (s, a) → 
.

� : S \ {sf} → S is the bijective successor state function, associating each state s ∈
S\{sf} to one following state s′ ∈ S. For the sake of conciseness, when (s, s′) ∈ �,
we also refer to s′ as s�.

The successor state function � constitutes the transition relation for the temporal struc-
ture. It is bijective over the domain of S \ {sf} and the codomain of S. As such, an in-
verse function exists, which we refer to as 	 (predecessor state function). When (s, s′) ∈
�, we also refer to s as 	s′. With a slight abuse of notation, we define predecessors and

successors for sets of states too: given Ŝ ⊆ S, we have 	Ŝ
.
=

{
s ∈ S|s = 	ŝ, ŝ ∈ Ŝ

}

and Ŝ�
.
=

{
s ∈ S|s = ŝ�, ŝ ∈ Ŝ

}
. We denote by AT the universe of possible trace

temporal structures over alphabet A.
Figs. 1a and 1b show two trace temporal structures. They stem from two traces, i.e.,

〈a, b, d, c〉 and 〈a, b, a, c〉. Indeed, in order to check LTLf formulas on traces, we apply
a mapping function M, defined as follows. The M-mapping of an element of t to an

element of T is denoted by the infix notation
M−−→.

Definition 4 (M-mapping from a trace to a trace temporal structure). Let t =
〈a1, . . . , an〉 ∈ A+ be a trace, and T = 〈S, �, s1, sf , L〉 ∈ AT a trace temporal
structure, both defined over the common alphabet A.
A mapping M : A+ → AT is such that:
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a b d c

(a) States satisfying �(a →
♦b) in trace temporal struc-
ture T1, derived from t1 =
〈a, b, d, c〉.

a b a c

(b) States satisfying �(a →
♦b) in trace temporal struc-
ture T2, derived from t2 =
〈a, b, a, c〉.

a b d

c

aba

(1) (1) (1)

(1)(1)(1)

(2)

s1,1 s1,2 s1,3

s2,3s2,2s2,1

sf

(c) States satisfying �(a →
♦b) in log temporal structure
L for log L, consisting of t1
and t2.

Fig. 1. Trace temporal structures and log temporal structure for log L = [〈a, b, d, c〉, 〈a, b, a, c〉]
and evaluation of formula �(a → ♦b) over them. In Fig. 1c, weights are specified among paren-
theses above states. State identifiers are below states.

– for all i ∈ [1, n], t(i) M−−→ si, with si ∈ S;

for all si ∈ S, there exists i ∈ [1, n] such that t(i) M−−→ si;
given i, j ∈ [1, n], if i �= j then si �= sj (M preserves bijection over events and
states);

– given a ∈ A s.t. a = t(i), then L (s, a) → 
, and for all a′ ∈ A s.t. a′ �= a,
L (s, a) → ⊥;

– t(1) M−−→ s1; t(n) M−−→ sf .

Fig. 1a and Fig. 1b show the trace temporal structures T1 and T2 to which t1 =
〈a, b, d, c〉 and t2 = 〈a, b, a, c〉 M-map respectively. The reader can notice that each
trace corresponds to the only allowed run of the M-mapped temporal structure (see
Section 2.2). As a log L is a collection of traces (see Section 2.1), we denote a collection
of mapped temporal structures by M(L), with a slight abuse of notation. By definition,
M(L) ⊆ AT . In order to evaluate the LTLf formula over a representation of the entire
log, seen as a whole, we introduce the following temporal structure.

Definition 5 (Log weighted temporal structure). A log weighted temporal structure
(or log temporal structure, for short) is a tuple L = 〈S, �, S1, Sf , L,W 〉 over alphabet
A where:

S is a finite non-empty set of states.
S1, Sf ∈ S are the initial and final sets of states in L.
L : S → (A → {
,⊥}) is the labeling function, associating each state s ∈ S to an

interpretation of each propositional literal a ∈ A.
� : S \ Sf → S is the surjective successor state function, which associates each state

s ∈ S \ Sf to one following state s′ ∈ S.
W : S → N

+ is the weighing function, associating each state s ∈ S to a positive
integer W (s) > 0 (weight).

The successor state function � constitutes the transition relation for the temporal struc-
ture. Unlike the successor state function of trace temporal structures, the successor
state function of log temporal structures is only surjective and not injective: in other
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words, it can happen that s �= s′ but s� = s′�, i.e., different states share the same
successor. Therefore, no inverse function can be derived. Nonetheless, with a slight
abuse of notation, we denote as 	s′ the set of states whose successor is s′ ∈ S:
	s′

.
= {s ∈ S|s′ = s�}. Fig. 1c shows the log temporal structure derived from the

collections of temporal structures depicted in Figs. 1a and 1b. We denote the universe
of possible log temporal structures defined over A as AL.

We introduce now the community of trace temporal structures C, which is needed to
pass from a collection of tuples to a single-tuple equivalent representation. It consists of
the union of trace temporal structures. For the sake of clarity, we adopt the “.” symbol
in the remainder to specify to which temporal structure a given element belongs to. For
instance, the set of states of community C is denoted as C.S, whereas the set of states
of trace temporal structure Ti is denoted as Ti.S. We define the community of trace
temporal structures C = 〈S, �, S1, Sf , L〉, derived from a collection of trace temporal
structures {T1, . . . , Tm}, as follows:

C.S =
⋃m

i=1 Ti.S
C.S1 =

⋃m
i=1 {Ti.s1}

C.Sf =
⋃m

i=1 {Ti.sf}
C.L =

⋃m
i=1 Ti.L

C.� =
⋃m

i=1 Ti.�

We denote the universe of possible communities of trace temporal structures over
A as AC . Based on the concept of community C that jointly represents single traces
Ti, . . . , Tm ∈ M(L), we can define the R-mapping. The R-mapping of an element of

C to an element of L is denoted by the infix notation
R−→.

Definition 6 (R-mapping of a community of trace temporal structures to a log
temporal stucture). Let C = 〈S, �, S1, Sf , L〉 ∈ AC be a community of trace temporal
structures and L = 〈S, �, S1, Sf , L,W 〉 ∈ AL be a log temporal structure, defined
over the common alphabet A.
R : AC → AL is such that:

– given a state sC ∈ C.S, and a state sL ∈ L.S,

• sC
R−→ sL iff

∗ C.L(sC) = L.L(sL), i.e., the two states are interpreted in the same way
over alphabet A, and

∗ either sC ∈ C.Sf (sC is a final state of C) or (sC�)
R−→ (sL�), i.e., the

successor state of sC maps to the successor state of sL;

• W (sL) =
∣∣∣
{
sC ∈ C.S|sC R−→ sL

}∣∣∣, i.e., the weight of a state sL in the log

temporal structure L is equal to the number of states in C that map to sL;
– given states sL, s′L ∈ L.S and sC , s

′
C ∈ C.S, (sL, s′L) ∈ L.� iff (sC , s′C) ∈ C.�;

– sLf
∈ L.Sf iff sCf

∈ C.Sf and sCf

R−→ sLf
, i.e., final states in C correspond to

final states in L;

– sL1 ∈ L.S1 iff sC1 ∈ C.S1 and sC1

R−→ sL1 , i.e., initial states in C correspond to
initial states in L.

R establishes a biunivocal correspondence for every element of C and L, except states.
The technique that we adopt to obtain the R-mapping log temporal structure L from a
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collection of trace temporal structuresM(L), represented as a community C, is depicted
in Fig. 3. All final states that are associated by the labeling function to the same literal in
A are joint in one single final state. It is associated with the same shared literal and has
a weight amounting to the sum of joined states. The state successor function is modified
by linking the predecessors to the new joint state. Those operations are repeated step by
step along the predecessors of the final states in the trace temporal structures, up to the
initial ones.

The topology of the resulting log temporal structure is always an inverted polytree.
We name it inverted to highlight that every subtree of the polytree has one root and
multiple leaves only if we consider the inverse transition relation 	 for the direction of
arcs (see Fig. 3e).

We conclude this section with a theorem, allowing us to solve the problem of LTLf

query checking over event logs by analyzing the corresponding log temporal structure.
We omit its proof due to space reasons.

Theorem 1. If a community of trace temporal structures C R-maps to a log temporal
structure T , C and T are bisimilar.

Temporal logics are bisimulation-invariant [11,8]. As a consequence, we can evaluate
LTLf formulas on the log temporal structure in order to show whether the correspond-
ing business rules were satisfied or not in the log.

Corollary 1. Given a log L, a community of trace temporal structures C derived from
M(L), and a log temporal structure L s.t. C R-maps to it, the weight of an initial state
s1 of L is equal to the number of equivalent traces t, t′, . . . , tm ∈ L s.t. t(1) = t′(1) =
. . . = tm(1) = L(s1).

For space reasons, we omit the proof here. However, it can be verified by considering
the construction of the log temporal structure. An example is given in Fig. 3, where
Fig. 3a and Fig. 3f highlight the states satisfying the same formula.

3.2 Query Checking Algorithm

Algorithm 1 describes the main procedure of our approach. The check procedure
takes as input the log temporal structure L (obtained from a log through the steps

Algorithm 1. check (L, Φ(?x1{Ax1}, . . . , ?xn{Axn}),A), checking LTLf query
Φ(?x1{Ax1}, . . . , ?xn{Axn}) on temporal structure L, defined over alphabet A

Input: L = 〈S, �, S1, Sf , L,W 〉, LTLf query Φ(?x1{Ax1}, . . . , ?xn{Axn}) with placeholders
?x1 . . .?xn resp. bounded to literals Ax1 . . . ,Axn , subsets of alphabet A

Output: BŜ
Φ =

{〈
ŜΦ, Φ

〉}∗
, set of initial states of witnesses (ŜΦ) for each LTLf formula Φ, obtained through

the replacement of placeholders with the bounded literals.

1 BŜ
Φ : ∅

2 foreach {a1, . . . , an} ∈
(
Ax1 × · · · × Axn

)
do

3 Φ : Φ(a1, . . . , an)

4 BŜ
Φ : BŜ

Φ ∪
〈
evalForm

(
L, Φ, S,A

)
, Φ

〉

5 return BŜ
Φ
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�

→

a ♦

b

(a) �(a → ♦b)

∨

U

¬

b

a

�

¬

b

(b) (¬b Ua) ∨�¬b
Fig. 2. Evaluation trees

described in Section 3.1) and the query expressing the business rule template, de-
noted as Φ(?x1{Ax1}, . . . , ?xn{Axn}). To each placeholder ?xi a set of symbols Axi

is associated, restricting the possible assignments of placeholders. The sets of sym-

bols are contained in the log alphabet A. The output is a set of tuples
〈
ŜΦ, Φ

〉
,

where ŜΦ is the set of states in L satisfying formula Φ. By Φ we indicate the for-
mula stemming from Φ(?x1{Ax1}, . . . , ?xn{Axn}) where every placeholder ?xi is as-
signed to a symbol in Axi . Take, for example, the temporal structure L associated to
log L = [〈a, b, d, c〉, 〈a, b, a, c〉] and the query �(?x{a, c} → ♦(?y{b, d})). Starting
from this query, we need to evaluate the LTLf rules in set F = {�(a → ♦b),�(a →
♦d),�(c → ♦b),�(c → ♦d)} over L.

In the first step of our approach, we generate a set of LTLf formulas by replacing
the placeholders in the input query with all the possible combination of events specified
with the query (possibly all the events in the input log). Each LTLf formula is then
passed to evalForm procedure, together with L, the set of states of L, namely S, and
the alphabet A.

The first call to procedure evalForm starts a sequence of recursive calls, aiming
at decomposing query Φ into subformulas, thus building an evaluation tree. This tree
is meant to unfold the (possibly nested) subformulas up to atomic propositions (the
leaves). All parent nodes are therefore LTLf or propositional operators. The number
of child nodes depend on the arity of the operator (e.g., 1 for ¬ and X , 2 for ∧ and
U ). For example, from �(a → ♦b) (every occurrence of a is followed by at least one
occurrence of b) and from (¬bUa)∨�¬b (every occurrence of b is preceded by at least
one occurrence of a) the evaluation trees in Fig. 2 are generated. Once the recursive call
returns the set of states in which the subformula holds true, these states are treated by
the calling procedure, back to the root of the evaluation tree.

For evaluating an atomic proposition l (i.e., a leaf in the evaluation tree) in a set of
states Ŝ, we use the procedure evalAtom (Algorithm 2). In particular, if l is 
, the
procedure returns all the states of Ŝ. If l is ⊥, the empty set is returned. If l is an atomic
proposition corresponding to the occurrence of an event, the procedure returns all the
states of Ŝ in which such event occurs.

For evaluating an LTLf formula Φ in a set of states Ŝ, we use the procedure
evalForm (Algorithm 3). If Φ is the negation of a child expression ϕ, a recursive invo-
cation of evalForm is used to retrieve all the states in Ŝ in which ϕ holds. Then, the
procedure returns the complement of Ŝ with respect to this set. If Φ is the disjunction
of two expressions ϕ and ψ, the procedure evalForm identifies the sets containing all
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the states in Ŝ in which ϕ and ψ hold respectively. The procedure returns the union of
these two sets. Similarly, if Φ is the conjunction of ϕ and ψ, the sets containing all the
states in Ŝ in which ϕ and ψ hold are built and the procedure returns the intersection
of these sets. The implication and the equivalence of two expressions are determined
as combination of negation, disjunction and conjunction considering that ϕ → ψ is
equivalent to ¬(ϕ) ∨ ψ and that ϕ ↔ ψ is equivalent to (¬(ϕ) ∨ ψ) ∧ (¬(ψ) ∨ ϕ).

If Φ consists of the next operator applied to a child expression ϕ, a recursive invoca-
tion of evalForm is used to retrieve all the states in Ŝ� (the set of the successors of Ŝ) in
which ϕ holds. The output set Ŝ◦ is the set of all the predecessors of these states. If Φ is
the future operator applied to a child expression ϕ, a recursive invocation of evalForm
is used to retrieve all the states in Ŝ in which ϕ holds. The output set Ŝ	 is initialized
with these states. Iteratively all the predecessors of the states in Ŝ	 are added to Ŝ	 up
to the initial states. If Φ is the globally operator applied to a child expression ϕ, the al-
gorithm identifies the final states in which ϕ is satisfied. The output set Ŝ� is initialized
with these states. Iteratively all the predecessors of the states in Ŝ� in which ϕ holds
are added to Ŝ� up to the initial states. Finally, if Φ is the until operator applied to two
expressions ϕ and ψ, the procedure identifies the states in Ŝ in which ψ is satisfied. The
output set ŜU is initialized with these states. Iteratively all the predecessors of the states
in ŜU in which ϕ holds are added to ŜU up to the initial states.

Consider, for example, the evaluation tree in Fig. 2a and the log temporal structure L
stemmed from L = [〈a, b, d, c〉, 〈a, b, a, c〉] (Fig. 1c). To check if formula �(a → ♦b)
holds in L, the algorithms just described are invoked recursively from the root to the
leaves of the evaluation tree of �(a → ♦b). The evaluation of the atomic proposi-
tion corresponding to the occurrence of a produces as result Ŝa = {s1,1, s2,1, s2,3}.
The same algorithm applied to the node of the tree corresponding to activity b pro-
duces as result Ŝb = {s1,2, s2,2}. Then, starting from Ŝb, procedure evalForm pro-
duces Ŝ♦b = {s1,1, s1,2, s2,1, s2,2}. Starting from Ŝa and Ŝ♦b, evalForm produces
Ŝa→♦b = {s1,1, s1,2, s1,3, sf , s2,1, s2,2}. The final outcome of the recursive invo-
cation of evalForm is Ŝ�(a→♦b) = {s1,1, s1,2, s1,3, sf}. Since S�(a→♦b) contains
the initial state s1,1, mapped to the first element of t1, t1(1), we can conclude that
�(a → ♦b) holds in t1, i.e., t1 is a witness for�(a → ♦b). In the same way,�(a → ♦b)
does not hold in s2,1 (mapped to the first element of t2), i.e., t2 is a counterexample for
�(a → ♦b).

Algorithm 2. evalAtom(L, l, Ŝ,A), evaluating atomic propositions l in states Ŝ
of temporal structure T defined over alphabet A

Input: L = 〈S, �, S1, Sf , L,W 〉, atomic proposition l, set of states Ŝ ⊆ S, alphabet A
Output: Ŝl ⊆ Ŝ where l is evaluated as true

1 if l = � then return Ŝ
2 if l = ⊥ then return ∅
3 if l = a with a ∈ A then

4 return
{
s ∈ Ŝ | L (s, a) �→ �

}
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Algorithm 3. evalForm(L, Φ, Ŝ,A), evaluating LTLf formula Φ in states Ŝ of
temporal structure T defined over alphabet A

Input: Temporal Structure L = 〈S, �, S1, Sf , L,W 〉, LTLf formula Φ, set of states Ŝ ⊆ S, alphabet A
Output: ŜΦ ⊆ Ŝ where Φ holds true

1 if Φ ≡ � or Φ ≡ ⊥ or Φ ≡ a, with a ∈ A then
2 return evalAtom(T , Φ, Ŝ,A)

3 else if Φ ≡ ¬ϕ, with ϕ LTLf formula over A then
4 return Ŝ \ evalForm(T , ϕ, Ŝ,A)

5 else if Φ ≡ ϕ ∨ ψ, with ϕ,ψ LTLf formulas over A then
6 return evalForm(T , ϕ, Ŝ,A) ∪ evalForm(T , ψ, Ŝ,A)

7 else if Φ ≡ ϕ ∧ ψ, with ϕ,ψ LTLf formulas over A then
8 return evalForm(T , ϕ, Ŝ,A) ∩ evalForm(T , ψ, Ŝ,A)

9 else if Φ ≡ ϕ → ψ, with ϕ,ψ LTLf formulas over A then
10 return evalForm(T ,¬ϕ ∨ ψ, Ŝ,A)

11 else if Φ ≡ ϕ ↔ ψ, with ϕ,ψ LTLf formulas over A then
12 return evalForm(T , ϕ → ψ, Ŝ,A) ∩ evalForm(T , ψ → ϕ, Ŝ,A)

13 else if Φ ≡ ◦ϕ, with ϕ LTLf formula over A then
14 Ŝ�

◦ : evalForm(T , ϕ, Ŝ�,A)

15 Ŝ◦ : �Ŝ�
◦

16 return Ŝ◦
17 else if Φ ≡ ♦ϕ, with ϕ LTLf formula over A then
18 Ŝ� : evalForm(T , ϕ, Ŝ,A)

19 Ŝ�
� : �Ŝ�

20 while |Ŝ�
� | > 0 do

21 Ŝ� : Ŝ� ∪ Ŝ�
�

22 Ŝ�
� : �Ŝ�

�
23 return Ŝ�
24 else if Φ ≡ �ϕ, with ϕ LTLf formula over A then
25 Ŝ� : evalForm(T , ϕ, sf ,A)

26 Ŝ�
� : evalForm(T , ϕ, �Ŝ�,A)

27 while |Ŝ�
�| > 0 do

28 Ŝ� : Ŝ� ∪ Ŝ�
�

29 Ŝ�
� : evalForm(T , ϕ, �Ŝ�

�,A)

30 return Ŝ�
31 else if Φ ≡ ϕUψ, with ϕ,ψ LTLf formulas over A then
32 ŜU : evalForm(T , ψ, Ŝ,A)

33 Ŝ�
U : evalForm(T , ϕ, �ŜU ,A)

34 while |Ŝ�
U | > 0 do

35 ŜU : ŜU ∪ Ŝ�
U

36 Ŝ�
U : evalForm(T , ϕ, �Ŝ�

U ,A)

37 return ŜU

Given
〈
ŜΦ, Φ

〉
∈ BŜ

Φ, where BŜ
Φ is the result of the call of

eval(L, Φ(?x1{Ax1}, . . . , ?xn{Axn}),A), for a formula Φ, we compute:

– the number of witnesses, as
∑

ŝ∈(ŜΦ ∩L.Si)W (ŝ), and

– the number of counterexamples, as
∑

s̄∈(L.Si\ ŜΦ)W (s̄).
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Fig. 3. Transformation into log temporal structure L of log L =
{〈a, b, c, d〉 , 〈a, b, c, d〉 , 〈d, e, c, d〉 , 〈a, c, e〉 , 〈b, c, d, d〉}, defined over log alphabet
A = {a, b, c, d, e}. Fig. 3a and Fig. 3f highlight the states satisfying �(a → ♦b).

The number of witnesses corresponds to the sum of weights of initial states of L which
are contained in the sets of states that satisfy Φ, ŜΦ. Conversely, the number of coun-
terexamples corresponds to the sum of weights of initial states of L which are not in
ŜΦ. Such calculation directly derives from Corollary 1.

4 Experimentation

We implemented the algorithms illustrated in the previous sections as a software en-
coded in C.2 All tests have been executed on a machine running Windows 7 operating
system on an Intel Core i7 CPU with 8GB of main memory.

2 Source and executable files are available at https://github.com/r2im/pickaxe.

https://github.com/r2im/pickaxe
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4.1 Benchmarks

In order to evaluate the performance of the algorithm, we have run a series of experi-
ments aiming at showing evidence of the effect of input parameters on execution time.
Logs have been artificially generated by the log generator module of MINERful [14,13],
a declarative process mining tool. Traces in artificial logs were created by distributing
symbols in the input log alphabet uniformly at random. The results of such tests, de-
picted in Fig. 4, show the trend of the computation time w.r.t. the change in the input
parameters: size of the alphabet, number of traces, and length of traces. By default,
parameters regarding the log and the log alphabet were initialized as follows: the log
consisted of 100 traces (|L| = 100), each being a sequence of 10 events (|t| = 10),
drawn from a log alphabet comprising 10 activities (|A| = 10). The queries taken into
account were those corresponding to the class of 18 constraint templates defined by
the declarative process modeling language Declare [9] (see Sections 1 and 5) listed in
[22,14], including, e.g., �(?x → ♦?y) and (¬?y U?x)∨�¬?y . Placeholders have been
set free to be assigned to any symbol in the log alphabet. The reported computation time
is the sum of the computation times for each query. Fig. 4a, Fig. 4b and Fig. 4c show
the trend of computation time when altering, resp.: (i) the size of the alphabet, from 5
to 50; (ii) the number of traces, from 400 to 4000; (iii) the length of traces, from 5 to
50. The first and the second graph show a linear trend, whereas the third one draws an
exponential curve. The reason resides in the construction of the log temporal structure:
its states tend to linearly increase with the length of traces. Therefore, the search space
grows exponentially. The folding of traces into the polytree of the log temporal struc-
ture seems to limit the state space increase when the number of traces or the number of
activities grow.

Table 1 summarizes the changes in the execution time when query parameters
change, namely (i) the LTLf operator (either temporal or propositional), and (ii) the
number of placeholders. Results are depicted, respectively, in Table 2a and Table 2b.
In both cases, the log is created using the following parameters: |L| = 4000, |t| = 10,
|A| = 10. Remarkably, Table 2a shows that the possibility to visit the temporal struc-
ture only once per formula makes the evaluation of ◦?x the fastest to be performed (see
Algorithm 3). Conversely, ♦?x turns out to be the most expensive in this regard. Ta-
ble 2b highlights that the increase of placeholders entails an increase in the execution
time approx. by an order of 10. This is due to the invocation of the evalForm proce-
dure for every combination of symbols in the alphabet, assigned to placeholders (see
Algorithm 1).

4.2 Case Study

We have conducted a case study by using the BPI challenge 2011 [1] event log. This log
pertains to a healthcare process and, in particular, contains the executions of a process
related to the treatment of patients diagnosed with cancer in a large Dutch academic hos-
pital. The whole event log contains 1, 143 cases and 150, 291 events distributed across
623 event classes (activities). Each case refers to the treatment of a different patient.
The event log contains domain specific attributes that are both case attributes and event
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Query Time [msec] Query Time [msec]

?x 78 ¬(?x) 109

?x∨ ?y 592 ?x∧ ?y 94

?x → ?y 249 ?x ↔ ?y 686

♦?x 4 930 � ?x 422

◦?x 93 ?x U ?y 1 357

(a) Varying query template

Query Time [msec]

�(?x → ♦(?y0)) 37 628

�(?x → ♦(?y0∨ ?y1)) 281 362

�(?x → ♦(?y0∨ ?y1∨?y2)) 2 027 832

(b) Varying number of placeholders

Table 1. Performance evaluation w.r.t. query properties
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Fig. 4. Performance evaluation w.r.t. log properties and log alphabet.

attributes in addition to the standard XES attributes.3 For example, Age, Diagnosis, and
Treatment code are case attributes and Activity code, Number of executions, Specialism
code, and Group are event attributes.

To investigate the behavior of the process as recorded in the log, we have used the
following LTLf queries (in which the original Dutch language is not translated):

1. �((aanname laboratoriumonderzoek) → ♦?x{ca-19.9 tumormarker, cea - tu-
mormarker mbv meia, ca-125 mbv meia});

2. �?x{ureum, albumine, creatinine} ∧ �?y{calcium, glucose, natrium vlamfo-
tometrisch, kalium potentiometrisch};

3. (¬?x{vervolgconsult poliklinisch, 1e consult poliklinisch, telefonisch consult} U
(aanname laboratoriumonderzoek)) ∨ �(¬?x{vervolgconsult poliklinisch, 1e consult
poliklinisch, telefonisch consult});

4. ¬(�(aanname laboratoriumonderzoek) ∧ �?x{ct abdomen, ct thorax, ct boven-
buik, ct hersenen, thorax}).

In Table 2, we show the solutions of these queries. For each solution, we show
the number of cases in which the solution holds (witnesses) and the number of

3 XES (eXtensible Event Stream) is an XML-based standard for event logs proposed by the
IEEE Task Force on Process Mining (www.xes-standard.org).

www.xes-standard.org


Log-Based Understanding of Business Processes 89

Ws Cs Solution

344 799 �((aanname laboratoriumonderzoek) → ♦(ca-19.9 tumormarker))

431 712 �((aanname laboratoriumonderzoek) → ♦(cea - tumormarker mbv meia))

517 626 �((aanname laboratoriumonderzoek) → ♦(ca-125 mbv meia))

(a) Solutions for query �((aanname laboratoriumonderzoek) → ♦?x{ca-19.9 tumormarker,
cea - tumormarker mbv meia, ca-125 mbv meia})

Ws Cs Solution Ws Cs Solution

627 516 ♦(ureum) ∧ ♦(calcium) 627 516 ♦(albumine) ∧ ♦(calcium)

640 503 ♦(creatinine) ∧ ♦(glucose) 627 516 ♦(ureum) ∧ ♦(glucose)

623 520 ♦(albumine) ∧ ♦(glucose) 693 450 ♦(creatinine) ∧ ♦(natrium vlamfotometrisch)

663 480 ♦(ureum) ∧ ♦(natrium vlamfotometrisch) 640 503 ♦(albumine) ∧ ♦(natrium vlamfotometrisch)

697 446 ♦(creatinine) ∧ ♦(kalium potentiometrisch) 665 478 ♦(ureum) ∧ ♦(kalium potentiometrisch)

642 501 ♦(albumine) ∧ ♦(kalium potentiometrisch) 634 509 ♦(creatinine) ∧ ♦(calcium)

(b) Solutions for query �?x{ureum, albumine, creatinine} ∧ �?y{calcium, glucose, natrium
vlamfotometrisch, kalium potentiometrisch}

Ws Cs Solution

797 346 ¬(vervolgconsult poliklinisch)U(aanname laboratoriumonderzoek) ∨ �(¬(vervolgconsult poliklinisch))

1046 97 ¬(1e consult poliklinisch)U(aanname laboratoriumonderzoek) ∨ �(¬(1e consult poliklinisch))

1041 102 ¬(telefonisch consult) U(aanname laboratoriumonderzoek) ∨ �(¬(telefonisch consult))

(c) Solutions for query (¬?x{vervolgconsult poliklinisch, 1e consult poliklinisch, telefonisch
consult} U (aanname laboratoriumonderzoek)) ∨ �(¬?x{vervolgconsult poliklinisch, 1e
consult poliklinisch, telefonisch consult})

Ws Cs Solution

811 332 ¬(♦(aanname laboratoriumonderzoek) ∧ ♦(ct abdomen))

1012 131 ¬(♦(aanname laboratoriumonderzoek) ∧ ♦(ct thorax))

1127 16 ¬(♦(aanname laboratoriumonderzoek) ∧ ♦(ct bovenbuik))

1122 21 ¬(♦(aanname laboratoriumonderzoek) ∧ ♦(ct hersenen))

637 506 ¬(♦(aanname laboratoriumonderzoek) ∧ ♦(thorax))

(d) Solutions for query ¬(�(aanname laboratoriumonderzoek) ∧ �?x{ct abdomen, ct thorax,
ct bovenbuik, ct hersenen, thorax})

Table 2. Query solutions for the proposed case study (in column headers,“Ws” stands for “Wit-
nesses” and “Cs” for “Counterexamples”)

cases in which the solution is not valid (counterexamples). For all the queries
in Table 2a, there are more counterexamples than witnesses. For example, for
�((aanname laboratoriumonderzoek) → ♦(ca-19.9 tumormarker)), there are 799
counterexamples and only 344 witnesses meaning that in 821 cases out of 1, 143 at
least one occurrence of aanname laboratoriumonderzoek (assumption laboratory) is
not eventually followed by ca-19.9 tumormarker in the same case. For queries in Ta-
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bles 2b, 2c, and 2d the number of witnesses is higher than the number of counterex-
amples. The number of witnesses and the number of counterexamples for solutions in
Table 2b are more balanced. For example, for ♦(albumine)∧♦(glucose), there are 623
witnesses and 520 counterexamples. This means that in 623 cases albumine and glu-
cose coexist in the same case and in 520 cases they do not. For solutions in Tables 2c
and 2d, there are more witnesses supporting the validity of the rules. From Table 2c,
we can derive that very often a medical consultation is preceded by laboratory tests
(assumption laboratory). For example, in 1, 041 cases out of 1, 143, telefonisch consult
(telephonic consultation) is preceded by aanname laboratoriumonderzoek (assumption
laboratory). In 1, 046 cases out of 1, 143, 1e consult poliklinisch (First outpatient visit)
is preceded by aanname laboratoriumonderzoek. From Table 2d, we can conclude that
very rarely laboratory tests coexists with computed tomography (ct) tests. For example,
for ¬(♦(aanname laboratoriumonderzoek) ∧ ♦(ct bovenbuik)), there are 1, 127 wit-
nesses and only 16 counterexamples meaning that in 1, 127 cases out of 1, 143 aan-
name laboratoriumonderzoek and ct bovenbuik (ct upper abdomen) do not coexist in
the same case.

5 Related Work

Several approaches in the literature focus on the discovery of declarative process models
[6,14,18,20,21,22,19]. In particular, the technique proposed in [12,14] is based on a
two-step approach. First, the input event log is parsed to generate a knowledge base
containing information useful to discover a Declare model. Then, in a second phase, the
knowledge base is queried to find the set of Declare constraints that hold on the input
log. The work proposed in [20] is based on an Apriori algorithm for association rule
mining. In [19], the authors propose an algorithm for the online discovery of Declare
rules. These works propose “ad hoc” algorithms for the discovery of a limited class of
business rules. In contrast, our method can be used to discover any type of LTLf -based
constraint.

The approaches proposed in [6,18] are more general and allow for the specification
of rules that go beyond the traditional Declare templates. However, these approaches
can be hardly used in real-life settings since they are based on supervised learning
techniques and, therefore, they require negative examples. In [21], a first-order variant
of LTL is used to specify a set of data-aware patterns. Although this approach supports
constraints involving data conditions, it can only be applied to discover the (limited) set
of standard Declare rules.

Several approaches exist for temporal logic query checking. For example, Chan pro-
pose an approach that can cope with single placeholders in queries only appearing once
as positive literals [3]. To overcome these limitations, Bruns and Godefroid propose a
theoretical approach based on Extended Alternating Automata (EEA) [2,17]. Gurfinkel
et al. describe their query checking tool named TLQSolver, capable of dealing with mul-
tiple placeholders, both appearing as negated or positive, and occurring several times
in the query [15]. It is also proved that query checking is an instance of multi-valued
model checking [5], i.e., a generalization of a classical model checking problem, where
the model remains such that both transition relations and atomic propositions are two-
valued, but lattice values are allowed to appear as constants in temporal logic formulas.
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Indeed, their solution is based on their existing multi-valued model checker, XCheck
[4]. These approaches have been implemented to deal with CTL query checking. Our
approach is inspired by these works, but adapts them efficiently to LTLf , in order to
become applicable also in a real-life context.

6 Conclusion

In this paper, we have introduced an approach in the middle between process discovery
and conformance checking, based on temporal logic query checking. In particular, our
proposed technique produces as outcome a set of LTL-based business rules as well as
diagnostics in terms of witnesses (traces of the input log in which each rule is satisfied)
and counterexamples (traces of the input log in which each rule is violated). There are
several directions for future work. It is possible to optimize the checking algorithms
for improving performances, by further exploiting the characteristics of the contexts in
which our technique is applied, such as the finiteness of the traces in an event log. More
sophisticated techniques can be used to choose the best replacements for placeholders
in a query. For example, the Apriori algorithm proposed in [20] can be used to automat-
ically choose the set of activities to be assigned as replacements based on the frequency
of their co-occurrence in a case.
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