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Abstract. In this work we explore application of XML schema sim-
ilarity mapping in the area of conceptual modeling of XML schemas.
We expand upon our previous efforts to map XML schemas to a com-
mon platform-independent schema using similarity evaluation based on
exploitation of a decision tree. In particular, in this paper a more ver-
satile method is implemented and the decision tree is trained using a
large set of user-annotated mapping decision samples. Several variations
of training that could improve the mapping results are proposed. The
approach is implemented within a modeling and evolution management
framework called eXolutio and its variations are evaluated using a wide
range of experiments.

Keywords: XML schema matching, PSM-to-PIMmapping, model driven
architecture.

1 Introduction

The XML (eXtensible Markup Language) [5] has become one of the leading for-
mats for data representation and data exchange in the recent years. Due to its
extensive usage, large amounts of XML data from various sources are available.
Since it is common that sooner or later user requirements change, it is very
useful to adapt independently created XML schemas that represent the same
reality for common processing. However, such schemas may differ in structure
or terminology. This leads us to the problem of XML schema matching that
maps elements of XML schemas that correspond to each other. Schema match-
ing is extensively researched and there exists a large amount of applications,
such as data integration, e-business, schema integration, schema evolution and
migration, data warehousing, database design and consolidation, biochemistry
and bioinformatics, etc.

Matching a schema manually is a tedious, error-prone and expensive work.
Therefore, automatic schema matching brings significant savings of manual ef-
fort and resources. But it is a difficult task because of the heterogeneity and
imprecision of input data, as well as high subjectivity of matching decisions.
Sometimes the correct matches have to be marked only by a domain expert. As
s compromise, in semi-automatic schema matching the amount of user interven-
tion is significantly minimized. For example, the user can provide information
before matching/mapping, during the learning phase. Or, after creation of a
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mapping (s)he can accept or refuse suggested mapping decisions which could be
later reused for improvement of further matching.

In this work we apply the task of schema matching to a specific applica-
tion of conceptual modeling – MDA (Model-Driven Architecture) [19]. MDA
models the application domain at several levels of abstraction. PSM (Platform-
Specific Model) schemas are integrated using a common conceptual schema
– PIM (Platform-Independent Model) schema. In the optimal case, the PIM
schema for a given domain is first designed and then various PSM schemas are
derived from it for specific applications. In reality, the PIM schema has to be de-
signed to describe a common domain in a situation when various PSM schemas
for specific applications already exist. Or, a new PSM schema may need to be
integrated with an existing hierarchy of PIM and PSM schemas. In both the
cases independent PSM schemas may come from different sources, they may be
of various types and they may use different naming conventions.

Schema matching is used as the key step during this integration process. In
particular, we match elements from independent PSM schemas against elements
in the common PIM schema to establish the respective PSM-to-PIM mapping.
In particular, this work uses a semi-automatic approach to schema matching. We
explore the applicability of decision trees for this specific use case. A decision
tree is constructed from a large set of training samples and it is used for iden-
tification of correct mapping. For our target application various modifications
of the training process are proposed and experimentally evaluated on the ba-
sis of several common hypotheses. The proposed approach extends our previous
work [11] and it was implemented and experimentally tested in the modeling
and evolution management tool called eXolutio [18] which is based on the idea
of MDA.

The paper is structured as follows: In Section 2 we briefly describe the relation
of schema matching and similarity and its usage in our target application. In
Section 3 related work and existing implementations of schema matching are
discussed. The proposed solution is described in Section 4. In Section 5 respective
experiments are presented. Finally, results and possible future improvements are
briefly resumed in Section 6.

2 Schema Matching

The semi-automatic or automatic process of finding correspondences between el-
ements of two schemas is called schema matching. In this paper the term schema
matching is used for simplicity in a general way, but there are various specific
types. Schema-to-schema matching has as an input two XML schemas. Instance-
to-instance matching has as an input two XML documents. And schema-to-
instance matching has as an input an XML document and an XML schema.
Similarity is a measure that expresses the level of correspondence. Its value is
from interval [0, 1], where 0 means no similarity and 1 means that the compared
items are equal in the selected similarity meaning. Matcher is an algorithm that
evaluates similarity of schemas according to particular criteria.
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2.1 Usage of Schema Matching in MDA

Assume that an XSD1 was created and we would like to integrate it now with
a set of PSM schemas having a common PIM schema. Elements of the XSD
are first converted to their corresponding PSM schema representatives. This
conversion is straightforward, as it is proven in [20]. For the full integration we
need to find the interpretation of its elements against the PIM elements. This
could be done either manually or using schema matching. We explore usage of
schema matching for this task in our work. A PSM element – PIM element pair
is thus identified as an interpretation of PSM element against PIM element if it
is suggested as a match by schema matching.

3 Related Work

In this section existing schema matching approaches are described. As we have
mentioned, since the number of the approaches is high, we have selected only
the key classical and most popular representatives.

3.1 COMA

COMA matcher [1] is an example of a composite approach. Individual match-
ers are selected from an extensible library of match algorithms. The process of
matching is interactive and iterative. A match iteration has the following three
phases: (1) User feedback and selection of the match strategy, (2) Execution of
individual matchers, and (3) Combination of the individual match results.

Interactive Mode. The first step in the iteration is optional. The user is able
to provide feedback (to confirm or reject previously proposed match candidates
or to add new matches) and to define a match strategy (selection of matchers,
strategies to combine individual match results). In automatic mode there is only
one iteration and the match strategy is specified by input parameters.

Reuse of Match Results. Since many schemas to be matched are very sim-
ilar to the previously matched schemas, match results (intermediate similarity
results of individual matchers and user-confirmed results) are stored for later
reuse.

Aggregation of Individual Matcher Results. Similarity values from indi-
vidual matchers are aggregated to a combined similarity value. Several aggregate
functions are available, for example Min, Max or Average.

Selection of Match Candidates. For each schema element its best match
candidate from another schema is selected, i.e. the ones with the highest sim-
ilarity value according to criteria like MaxN (n elements from schema S with
maximal similarity are selected as match candidates), MaxDelta (an element
from schema S with maximal similarity is determined as match candidate plus
all S elements with a similarity differing at most by a tolerance value d which can

1 XML Schema Definition.
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be specified either as an absolute or relative value), or Threshold (all S elements
showing a similarity exceeding a given threshold value t are selected).

The COMA++ [2], an extension of COMA, supports a number of other fea-
tures like merging, saving and aggregating match results of two schemas.

3.2 Similarity Flooding

Similarity Flooding [4] can be used to match various data structures – data
schemas, data instances or a combination of both. The algorithm is based on
the idea that the similarity of an element is propagated to its neighbors. The
input data is converted into directed labeled graphs. Every edge in the graphs
is represented as a triple (s, l, t), where s is a source node, t is a target node,
and l is a label of the edge. The algorithm has the following steps: (1) Conver-
sion of input schemas to internal graph representation, (2) Creation of auxiliary
data structures, (3) Computation of initial mapping, (4) Iterative fix-point com-
putation and (5) Selection of relevant match candidates. The accuracy of the
algorithm is calculated as the number of needed adjustments. Output mapping
of elements is checked and if necessary, corrected by the user.

Matcher. The main matcher is structural and is used in a hybrid combination
with a simple name matcher that compares common affixes for initial mapping.
The matcher is iterative and based on fixpoint computation with initial mapping
as a starting point.

Fixpoint Computation. The similarity flooding algorithm is based on an
iterative computation of σ-values. The computation of the σ-values for a map
pair (x, y) is performed iteratively until the Euclidean length of the residual
vector Δ(σn, σn − 1) becomes less than ε for some n > 0 (i.e. the similarities
stabilize):

σi+1(x, y) = σi(x, y) +
∑

(a,l,x)∈EA
(b,l,y)∈EB

σi(a, b)w((a, b), (x, y)) +
∑

(x,l,c)∈EA
(y,l,d)∈EB

σi(c, d)w((x,y), (c, d)) (1)

where σi(x, y) is the similarity value in i-th iteration of nodes x and y and σ0 is
the value computed in the initial mapping.

Similarity Flooding can be further improved for example by usage of another
matcher for initial mapping or auxiliary source of information – e.g. dictionary.

3.3 Decision Tree

In [3] a new method of combining independent matchers was introduced. It is
based on the term decision tree.

Definition 1. A decision tree is a tree G = (V,E), where Vi is the set of internal
nodes (independent match algorithms), Vl is the set of leaf nodes (output decision
whether elements do or do not match), V = Vi ∪ Vl is the set of all nodes, E is
the set of edges (conditions that decide to which child node the computation will
continue).
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The decision tree approach does not have the following disadvantages of ag-
gregation of result of independent matchers used, e.g., in COMA:

– Performance: In the composite approach with an aggregate function, all
of the match algorithms have to run. The time required is worse than with
a decision tree.

– Quality: Aggregation can lower the match quality, e.g., if we give higher
weights to several matchers of the same type that falsely return a high sim-
ilarity value.

– Extendability is worse, because adding a new matcher means updating the
aggregation function.

– Flexibility is limited, because an aggregation function needs manual tuning
of weights and thresholds.

– Common Threshold: Each match algorithm has its own value distribution,
thus it should have own threshold.

The main disadvantage of Decision Trees is a need of a set of training data.

3.4 Advantages and Disadvantages

A general comparison of the previously discussed methods is introduced in Ta-
ble 1. The decision tree approach seems to be the most promising for our ap-
plication – it is dynamic and versatile. Furthermore it has desirable values of
compared properties – it is highly extensible, quick and has a low level of user
intervention and a low level of required auxiliary information.

Table 1. A comparison of the selected existing solutions

Extensibility Speed User intervention Auxiliary info
COMA Low Low High Low

Similarity Flooding None High None None
Decision Tree High High Low Low

4 Proposed Solution

First, we will briefly describe the algorithm for construction of decision tree
proposed in [11] which we used for PSM-to-PIM mapping in our preliminary
implementation called eXolutio [18] (as described later in Section 5). Then we
will follow with a description of C5.0 algorithm [16] that we utilized in our work
for training of the decision tree. As we will show, it solves several problems of
the original algorithm.

4.1 Original Decision Tree Construction

The decision tree in [11] is constructed as follows: The matchers are split into
three groups (called feature groups) according to the main feature that they
compare: class name (if the matcher compares names of the model classes), data
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type (if the matcher compares similarity of data types of the given elements)
and structural similarity (if the similarity is measured by the analysis of the
models structures – relations of the nodes). In each feature group the matchers
are assigned with a priority according to their efficiency. Then the matchers are
sorted in ascending order according to importance of group (where for example
in our case the class name group is the most important one) and their priority
inside the group. Finally, the decision tree is built. The first matcher is selected
as the root of the tree and other matchers are taken in sequence and added to
the tree. If we want to add matcher M to the actual node n (i.e. use function
addMatcherToT ree(M,n)), there are the following possible situations:

– If node n has no child, method M is added as a child of n.
– If node n has children c1, ..., cn from the same feature group that M belongs

to and it has the same priority, then matcher M is added as the next child
of node n.

– If node n has children c1, ..., cn from the different feature group that M be-
longs to or it has a different priority, then for each node ci; i ∈ (1, n) we call
addMatcherToT ree(M, ci).

Though we have used the algorithm as the preliminary approach in our im-
plementation, it has several drawbacks. First, it does not propose a method for
automatic determination of conditions on edges and thresholds for continuous
matchers. They have to be either set by the user or the default values are used.
Furthermore, the decision tree does not suggest mapping results automatically.
It computes an aggregated similarity score. During the traversal of the decision
tree for each of the feature groups the maximal similarity value returned by
the matcher from this group is stored. Then the aggregated similarity score is
computed as an average of the maximal similarity value for each of the feature
groups. For each PSM element it returns possible match candidates – PIM ele-
ments evaluated by the aggregate similarity score sorted in the descending order.
This helps to find matches, but it is not done automatically – the user has to
evaluate each mapping.

In this work we decided to generate the decision tree using machine learning
techniques. This approach solves the above mentioned problems, as we would like
to use the advantages of the decision tree approach and minimize the previous
disadvantages.

4.2 Decision Tree Training via C5.0

Currently, there are several algorithms for the induction of a decision tree from
training data, such as ID3 [6], CLS [9], CART [8], C4.5 [7], or SLIQ [10], to
name just a few. The C5.0 [16] algorithm is exploited and utilized in this paper
for training of the decision tree. We decided to utilize for our purposes the C5.0
because this algorithm and its predecessors are widely used and implemented in
various tools, e.g. Weka [22]. First, we introduce a notation that is used in the
rest of the section.
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S – a set of training samples. (An example of training samples
is depicted in Figure 1.)

S(v,M) – a set of examples from S that have value v for matcher
M .

S((i1, i2),M) – a set of examples from S that have value from
interval (i1, i2) for matcher M .

C = {C1, C2} – the decision tree algorithm classifies S into two subsets
with
possible outcomes C1 = match and C2 = mismatch.

Info(S) – entropy of the set S.
freq(Ci, S) – the number of examples in S that belong to class Ci.
|S| – the number of samples in the set S.
Gain(M,S) – the value of information gain for matcher M and set of

samples S.
InfoM (S) – entropy for matcher M .

The entropy of the set of training samples S is computed as follows:

Info(S) = −
2∑

i=1

(
freq(Ci, S)

|S| log2

(
freq(Ci, S)

|S|
))

(2)

The set S has to be partitioned in accordance with the outcome of matcher M .
There are two possibilities:

1. Matcher M has n discrete values. In that case the entropy for matcher M
and set S is computed as follows (using the above defined notation):

InfoM (S) =

n∑

i=1

( |S(i,M)|
|S| Info(S(i,M))

)
(3)

2. Matcher M has values from continuous interval [a, b], that is why threshold
t ∈ [a, b] that brings the most information gain has to be selected by Algo-
rithm 1. Entropy for matcher M and set S is then computed according to
the following formulae:

InfoM(S) =

( |S([a, t],M)|
|S| Info([a, t],M)

)
+

( |S((t, b],M)|
|S| Info((t, b],M)

)
(4)

The gain value for a set of samples S and matcher M is computed as follows:

Gain(M,S) = Info(S)− InfoM (S) (5)

Then the decision tree is constructed by Algorithm 2 (which differs from the
algorithm described in Section 4.1). There are the following possibilities for the
content of the set of training samples S in the given node parent of the decision
tree:

1. If S is empty, then the decision tree is a leaf identifying class Ci – the most
frequent class at the parent of the given node parent. This leaf is added as
a child to node parent.
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2. If S contains only examples from one class Ci, then the decision tree is a leaf
identifying class Ci. This leaf is added as a child to node parent.

3. If S contains examples from different classes, then S has to be divided into
subsets. Matcher M with the highest value of information gain is selected.
There are two possibilities:

(a) If matcher M has n discrete mutually exclusive values v1, ..., vn, then set
S is partitioned into subsets Si where Si contains samples with value vi
for matcher M .

(b) If matcher M has values (v1, ..., vn) from continuous interval [a, b], then
threshold t ∈ [a, b] has to be determined. Subsets S1, S2 contain samples
with values from interval [a, t], [t, b], respectively, for matcher M .

MatcherM is added as a child to node parent. For all the subsets Si subtrees
are constructed and added to node M as children.

The threshold for matcher M with values (v1, ..., vn) from continuous interval
[a, b] is selected as follows:

– Values are sorted in the ascending order, duplicates are removed. Let us
denote them u1, ..., um.

– All possible thresholds Ai ∈ [ui, ui+1] have to be explored.
– For each interval [ui, ui+1] the midpoint Ai is chosen as a split to two subsets

[u1, Ai] and (Ai, um].
– For each midpoint the information gain is computed and the midpoint Amax

with the highest value of information gain is selected.
– The threshold is then returned as a lower bound of interval [umax, umax+1].

Algorithm 1. Selection of threshold for continuous values v1, ..., vn for matcher
M and set of samples S
1: function ComputeThreshold((v1, ..., vn), S,M)
2: /∗ sorts values in the ascending order, duplicate values are removed ∗/
3: (u1, ..., um) ← SortAscDistinct((v1, ..., vn))
4: for i ← 1, m − 1 do
5: /∗ average of values U[i] and U[i+1] ∗/
6: A[i] ← Avg(U [i], U [i + 1])
7: L[i] ← U [i]
8: H[i] ← U [i + 1]
9: end for
10: /∗ um the highest value from the continuous interval, u1 the lowest value from the continuous

interval ∗/
11: for i ← 1, m − 1 do
12: gaini ← Gain(M,S([u1, A[I]], (A[I], um],M))
13: end for
14: maxGain ← maxm−1

i=1 gaini

15: max ← i|gaini = maxGain
16: t ← L[max]
17: threshCost ← cost of splitting interval into two subintervals [u1, t] and (t, um]
18: result.gain ← maxGain − −threshCost
19: result.threshold ← t
20: return result

21: end function
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Algorithm 2. Construction of a decision tree T from a set S of user-evaluated
training samples
1: function BuildTree(S, parent, condition)
2: T empty tree
3: if S is empty then
4: c ← the most frequent class at the parent of the given node parent
5: /∗ adds node c as a child to node parent with condition condition on edge ∗/
6: AddLeaf(parent, c, condition)
7: else if S contains only results from one class Ci then
8: c ← Ci

9: /∗ adds node c as a child to node parent with condition condition on edge ∗/
10: AddLeaf(parent, c, condition)
11: else
12: M ← matcher with the highest value of information gain Gain(M,S)
13: /∗ adds node M as a child to node parent with condition condition on edge ∗/
14: AddNode(parent, M , condition)
15: if M has n discrete mutually exclusive values v1, ..., vn then
16: S′ ← {S1, ..., Sn}|Si = S(vi,M)
17: ci ← vi
18: else if M has values (v1, ..., vn) from continuous interval [a, b] then
19: t ← ComputeThreshold((v1, ..., vn),M, S)
20: /∗ samples with values from interval [a, t] for matcher M ∗/
21: S1 ← S([a, t],M)
22: c1 ← [a, t]
23: /∗ samples with values from interval (t, b] for matcher M ∗/
24: S2 ← S((t, b],M)
25: c2 ← (t, b]
26: S′ ← {S1, S2}
27: end if
28: for all Si ∈ S′ do
29: /∗ constructs subtree Ti from subset Si and adds it as a child to node M with

condition ci on edge ∗/
30: Ti ← BuildTree(Si, M , ci)
31: end for
32: end if
33: return T

34: end function

Example. To conclude, let us provide a simple illustrative example. For sim-
plicity only three matchers are used: Matched Thesauri (which uses previous
confirmed matching results for the evaluation), Levenshtein Distance (which
computes the shortest edit distance from one string to another for operations
insert, update and delete of a character) and N-gram (which computes the num-
ber of the same N-grams in two string where an N-gram is a sequence of N
characters in a given string). The C5.0 algorithm works in the following steps:

– In the beginning, the training set S contains 14 samples. Matched Thesauri

has discrete values 0 and 1. Levenshtein Distance and N-gram have values
from continuous interval [0, 1]. Gain values are computed for all matchers.
Matched Thesauri has the highest gain value of 0.371, that is why Matched

Thesauri is selected as the root of the constructed decision tree. Set S is di-
vided into two parts S(0, Matched Thesauri) and S(1, Matched Thesauri).

– Set S(1, Matched Thesauri) contains samples that have value 1 for matcher
Matched Thesauri and it contains only samples from the same match class.
New leaf match is added as a child to node Matched Thesauri.
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– Set SMT0 = S(0, Matched Thesauri) consists of samples with value 0 for
matcher Matched Thesauri and results from various classes, so this set has
to be further divided. Gain values are computed and matcher with the high-
est gain value, i.e. N-gram, is added as a child of node Matched Thesauri.
The threshold value for N-gram matcher with continuous range is 0.071
and set SMT0 is divided into two subsets SN1 = S([0, 0.071], N-gram) and
SN2 = S((0.071, 1], N-gram).

– There are only mismatch results in set SN1, so leaf mismatch is added as
a child to node N-gram.

– Set SN2 also contains results from one class – match. Another leaf match
is added to node N-gram.

The final trained decision tree is displayed in Figure 2.

Fig. 1. Data used for training of decision tree in example

5 Experiments

For the purpose of evaluation of the described approach we have performed an
extensive set of experiments. Due to space limitations and complexity of the
experiments, this section contains description of only one of the experiments
and a discussion of its results. The complete set of experiments can be found
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Fig. 2. Sample decision tree

in [21]. Particular experiments differ in used sets of matchers, training sets, etc.
- efficiency of measure methods depending on element types ; usage of different
matchers ; comparison of domain thesaurus and user-confirmed matches ; quality
of matching of decision trees trained from different sets.

The proposed approach was implemented in the eXolutio [18] tool and replaces
the original approach [11] (whose disadvantages were described in Section 4.1).
eXolutio is based on the MDA approach and models XML schemas at two levels
– PIM and PSM. eXolutio allows the user to manually design a common PIM
schema and multiple PSM schemas with interpretations against the PIM schema.
Mapping between the two levels allows to propagate a change to all the related
schemas.

All experiments were run on a standard personal computer with the following
configuration: Intel(R) Core(TM) i5-3470 3.20 GHz processor, 8 GB RAM,

OS 64-bit Windows 7 Home Premium SP1.

The following sets of XML schemas have been used for training of the decision
tree:

– BMEcat is a standard for exchange of electronic product catalogues2.
– OpenTransAll is a standard for business documents3.
– OTA focuses on the creation of electronic message structures for communica-

tion between the various systems in the global travel industry4.

PIM Schemas. A PIM schema used for experiments describes a common
interface for planning various types of holidays. It can be found in [21].

XML Schemas for Experiments. For evaluation the following XML
schemas were used:

– Artificial XML schema 01 Hotel designed for the purpose of this work. It
describes basic information about hotels.

– Realistic XML schemas: 02 HotelReservation5, 03 HotelAvailabilityRQ6

2 www.bmecat.org
3 www.opentrans.de
4 www.opentravel.org
5 http://kusakd5am.mff.cuni.cz/hb/schema/reservation
6 http://itins4.madisoncollege.edu/IT/152121advweb/XMLExamples/unit3/

schemaSimple/HotelAvailabilityRQ.xsd

www.bmecat.org
www.opentrans.de
www.opentravel.org
http://kusakd5am.mff.cuni.cz/hb/schema/reservation
http://itins4.madisoncollege.edu/IT/152121advweb/XMLExamples/unit3/schemaSimple/HotelAvailabilityRQ.xsd
http://itins4.madisoncollege.edu/IT/152121advweb/XMLExamples/unit3/schemaSimple/HotelAvailabilityRQ.xsd
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Domain Thesaurus. The domain thesaurus contains sets of words that are
related semantically. The thesauri are used during matching by Dictionary

matcher. The domain thesaurus for the domain of hotels is as follows (related
words are marked by ∼): address ∼ location, accommodation ∼ hotel, boarding
∼ meal, count ∼ amount, lengthOfStay ∼ numberOfNights.

5.1 Separate Decision Trees and Common Decision Tree for Classes
and Attributes Experiment

The presented experiment is designed from the following observation: Efficiency
of methods used to measure similarity between elements depends on the type of
elements – if they are classes or if they are attributes. In this experiment two
sets of decision tree are used: two separate trees for classes and for attributes
and one common tree for classes and attributes.

Experiment Setup

– Used Schemas: 01 Hotel, 02 HotelReservation,03 HotelAvailabilityRQ

– Decision Tree:

• Separate decicion tree for attributes (in Figure 3) and for classes (in
Figure 4)

• Common decision tree (in Figure 5)

– Decision Tree Training Set:

• Set of XSD Schemas: OTA

• Sample count:

∗ Separate decision tree for attributes: 27,942 match pairs

∗ Separate decision tree for classes: 27,793 match pairs

∗ Common decision tree: 55,815 match pairs

– Thesaurus for Dictionary: None

– Thesaurus for Matched Thesauri: None

– Matchers: Children (which compares the structural similarity of child
nodes or neighboring nodes of classes), DataType (which compares data
types), Dictionary, Length Ratio (which computes the ratio of lengths
of two input strings), Levenshtein Distance, Matched Thesauri, Prefix
(which compares whether the string s1 is a prefix of the string s2 or the
other way around)

In the presented experiment no additional source of information was used.
Both sets of decision trees were trained without domain thesauri and with-
out previous user matches. Both sets of decision trees are induced from the
same set of training samples OTA, particularly match pairs of XML schema
OTA_HotelAvailGetRQ.xsd and XML schema OTA_HotelAvailGetRS.xsd. A
separate decision tree for classes and attributes is trained only from match pairs
of classes and attributes respectively. The common tree is trained from both sets
together. The final decision trees are shown in Figures 3, 4 and 5.
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Fig. 3. A separate decision tree for at-
tributes for experiment SeperateTrees

Fig. 4. Separate decision tree for classes
for experiment SeparateTrees

The root of the separate decision tree for attributes is Matched Thesauri, all
the other trees in this experiment have Levenshtein Distance. The matcher at
the second level is the same for both branches and they have the same thresh-
old. Especially the subtree for mapping pairs that are contained in Matched

Thesauri is interesting. We would assume that this subtree should be smaller
or even a leaf with the value ‘match‘. This could be explained by errors in user
annotation of mapping results – the same match pair is annotated with different
matching decision than the previous one or some mapping pairs have different
meaning in different context.

The separate decision tree for classes is relatively simple. It contains only
matchers Levenshtein Distance, Matched Thesauri and Length Ratio, other
matchers are not used. It corresponds with the original observation that some
methods are more effective for certain types of elements. Matchers whose sim-
ilarity values do not distinguish mapping pairs enough are not included. Pairs
that are contained in the thesaurus are directly suggested as matches.

The threshold value for Matched Thesaurimatcher in the root of the common
tree and the separate tree for classes is nearly similar. The common decision tree
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Fig. 5. Common decision tree for experiment SeparateTrees

is the most complex from the above mentioned. The common tree also contains
two subtrees for Matched Thesauri. The first one is at the second level and it
contains two full subtrees for both the values. The right subtree for pairs that
are contained in thesauri is more complex than the tree in the separate tree for
attributes. This could be caused by a larger number of training samples that
allows for more detail resolution. The second one, i.e. Matched Thesauri, is
directly a parent of the leaves.

In Figures 6, 7, 8 and 9 there are displayed the histograms of the match
quality measures – Precision, Recall, F-Measure and Overall respectively. All
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Fig. 6. Precision for experiment Sepearate-
Trees

Fig. 7. Recall for experiment Separate-
Trees

the measures are at first computed for both types of elements together and then
separately for attribute and class elements.

In Figure 6 Precision is high for classes in all schemas and for both types
of trees. The quality of mapping decision differs significantly with the type
of element, but the training set contains a similar number of match pairs for
classes (27,793 match pairs) and attributes (27,942 match pairs). The sepa-
rate tree for classes did not suggest any mapping pair as a match for schema
03_HotelAvailabilityRQ, just as the separate tree for attributes for schema
02_HotelReservation. Attributes in schema 03_HotelAvailabilityRQ are dif-
ficult to identify for all the decision trees. All Precision values are from the in-
terval [0.545, 0.769] – they identified almost the same number of relevant results
as irrelevant.

Recall is lower than Precision in all the cases except for schema 01_Hotel

and the separate tree for attributes in Figure 7. There were no true positives
attributes for schema 02_HotelReservation for both trees and no true positives
classes for schema 03_Hotel- AvailabilityRQ for separate tree. Values of Recall
are lower for attributes than Recall for classes.

In Figure 8 the values for F-Measure are equal for schema 02 HotelReserva-

tion for classes for both trees. Post-match effort for adding false negatives (FN)
and removing false positives (FP) is quite high in all cases in Figure 9. The
highest value of Overall is 0.6.

The hypothesis was not confirmed, all similarity measures are higher for the
common decision tree that is trained from a bigger set of training examples,
the quality of the decision tree seems to depend more on the size of the set of
training samples. The best score was achieved for Precision. Both trees in this
experiment had a larger number of FN than FP. They miss a match suggestion
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Fig. 8. F-Measure for experiment Seper-
ateTrees

Fig. 9. Overall for experiment Separate-
Trees

more than they incorrectly suggest it as a match pair. It could be improved by
adding an auxiliary source of information or a new matcher.

Examples of matching results from this experiment are shown in Table 2.
Match pair numberOfNights – LengthOfStay is difficult to identify without
an auxiliary source of information for both sets of decision tree. Match pairs
CheckOutDate – CheckOut, ContactInfo – Contact and BedType – Reservation-
Type were identified correctly by the common tree and incorrectly by separate
decision trees.

Table 2. Examples of mapping results for experiment SeparateTrees

XSD PIM DT type DT User Result
C ContactInfo Contact Separate Mismatch Match FN
C ContactInfo Contact Common Match Match TP
A Fax FaxNumber Separate Match Match TP
A Fax FaxNumber Common Match Match TP
A numberOfNights LengthOfStay Separate Mismatch Match FN
A numberOfNights LengthOfStay Common Mismatch Match FN
A CheckOutDate CheckOut Separate Mismatch Match FN
A CheckOutDate CheckOut Common Match Match TP
A BedType ReservationType Separate Match Mismatch FP
A BedType ReservationType Common Mismatch Mismatch TN

Further experiments with various hypotheses, e.g. training with sets of differ-
ent sizes, with different sets of matchers, or with usage of auxiliary information,
can be found in [21].
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6 Conclusion

Schema matching, i.e. the problem of finding correspondences, relations or map-
pings between elements of two schemas, has been extensively researched and has
a lot of different applications. In this paper a particular application of schema
matching in MDA is explored. We have implemented our approach within a
modeling and evolution management tool called eXolutio [18] which is based
on the idea of MDA. This mapping is very useful in case of a change, because
changes in one place are propagated to all the related schemas. The presented
schema matching approach is used to identify mappings between PIM and PSM
level of MDA, representing an interpretation of a PSM element against a PIM
element.

We have explored various approaches to schema matching and selected the
most promising possible approach for our application – schema matching using a
decision tree. This solution is dynamic, versatile, highly extensible, quick and has
a low level of user intervention and a low level of required auxiliary information.
We have extended the previous work [11] by utilization of the C5.0 algorithm
for training of decision tree from a large set of user-annotated schema pairs. Our
approach is now more versatile, extensible and reusable. Further we evaluated
our approach on a wide range of experiments and implemented a module that
is easily extensible. We also implemented a user-friendly interface for evaluation
of mappings suggested by the decision tree, i.e. a solid background for further
experiments.

A straightforward extension of this work is to expand the set of availablematch-
ers with more powerful matchers, e.g. with a matcher that uses theWordNet7 the-
saurus for synonyms.Further possibilities are for example stringmatchers8 and the
Soundex matcher9. Also the user interface leaves a space for
improvement.We could addan interface for evaluation ofmatches during the prepa-
ration phase of decision tree training or dynamic editing of trained decision tree –
remove, move, add matcher node, change results in leaves or threshold on edges.
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