
Flexible Querying for SPARQL

Andrea Cal̀ı1,2, Riccardo Frosini1, Alexandra Poulovassilis1,
and Peter T. Wood1

1 Dept. of Computer Science and Inf. Systems, Birkbeck University of London, UK
2 Oxford-Man Institute of Quantitative Finance, University of Oxford, UK

{andrea,riccardo,ap,ptw}@dcs.bbk.ac.uk

Abstract. Flexible querying techniques can be used to enhance users’
access to heterogeneous data sets, such as Linked Open Data. This pa-
per extends SPARQL 1.1 with approximation and relaxation operators
that can be applied to regular expressions for querying property paths
in order to find more answers than would be returned by the exact form
of a user query. We specify the semantics of the extended language and
we consider the complexity of query answering with the new operators,
showing that both data and query complexity are not impacted by our
extensions. We present a query evaluation algorithm that returns results
incrementally according to their “distance” from the original query. We
have implemented this algorithm and have conducted preliminary trials
over the YAGO SPARQL endpoint and the Lehigh University Bench-
mark, showing promising performance for the language extensions.

1 Introduction

Flexible querying techniques are used to enhance access to information stored
within information systems, including in terms of user interaction. In partic-
ular, users querying an RDF dataset are not always aware of how a query
should be formulated in order to correctly retrieve the desired answers. This
problem can be caused by a lack of knowledge about the schema of the
dataset or about the URIs used in the dataset; moreover, both schema and
URIs can change over time. For example, suppose a user wishes to find events
which took place in London on 12th December 2012 and poses the query
(x, on, “12/12/12”) AND (x, in, “London”). This returns no results from the
YAGO knowledge base because there are no property edges named “on” or “in”.
Approximating “on” by “happenedOnDate” (which does appear in YAGO) and
“in” by “happenedIn” still returns no answers, since “happenedIn” does not
connect event instances directly to literals such as “London”. However, relax-
ing (x, happenedIn, “London”) to (x, type, Event) (using knowledge encoded in
YAGO that the domain of “happenedIn” is Event) will return all events that
occurred on 12th December 2012, including those occurring in London. Alter-
natively, instead of relaxing the second triple, another approximation step can
be applied to (x, happenedIn, “London”), inserting the property edge label that
connects URIs to their labels and yielding the query

(x, happenedOnDate, “12/12/12”) AND (x, happenedIn/label, “London”)

R. Meersman et al. (Eds.): OTM 2014, LNCS 8841, pp. 473–490, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

474 A. Cal̀ı et al.

This query now returns every event that occurred on 12th December 2012 in
London.

SPARQL is the most prominent RDF query language and, since the latest
extension of SPARQL 1.1, it supports property path queries1 (i.e. regular path
queries). In this paper we investigate how to extend SPARQL 1.1 with query
approximation and query relaxation operations such as those illustrated in the
above examples, calling the extended language SPARQLAR. We study the com-
putational complexity of the query answering problem; in particular, we show
that the introduction of the new operators does not increase the computational
complexity of the original language. We provide tight complexity bounds for
several SPARQL fragments; we study data complexity (with only the instance
graph as input), query complexity (with only the query as input) and combined
complexity (with both query and instance as input). Our complexity results are
summarised in Figure 3 on page 485. We then provide a query answering al-
gorithm based on query rewriting, and present and discuss some preliminary
experimental results.

Example. Suppose the user wishes to find the geographic coordinates of the “Bat-
tle of Waterloo” event by posing the query (〈Battle of Waterloo〉, happenedIn/
(hasLongitude|hasLatitude), x). We see that this query uses the property paths
extension of SPARQL, specifically the concatenation (/) and disjunction (|) oper-
ators. In the query, the property edge “happenedIn” is concatenated with either
“hasLongitude” or “hasLatitude”, thereby finding a connection in the dataset
between the event and its location (in our case Waterloo) and from the loca-
tion to both its coordinates. This query does not return any answers from YAGO
since YAGO does not store the geographic coordinates of Waterloo. However, by
applying an approximation step, we can insert “isLocatedIn” after “happened-
In” which connects the URI representing Waterloo with the URI representing
Belgium. The resulting query is

Battle of Waterloo, happenedIn/isLocatedIn/(hasLongitude|hasLatitude), x.
Since YAGO does have the geographic coordinates of Belgium, this query will
return some answers that may be relevant for the user. Moreover, YAGO does
store the coordinates of the “Battle of Waterloo” event, so if the query pro-
cessor applies an approximation step that deletes the property edge “happened-
In”, instead of adding “isLocatedIn”, the resulting query (〈Battle of Waterloo〉,
(hasLongitude|hasLatitude), x) returns the desired answers.

Related work. There have been different approaches to applying flexible querying
to the Semantic Web. Most of these use similarity measures to retrieve additional
relevant answers. An example of flexible querying with similarity measures can
be found in [5], where the authors use matching functions for constants such
as strings or numeric values. Similarly in [8] the authors have developed an
extension of SPARQL called iSPARQL (imprecise SPARQL) which computes

1 http://www.w3.org/TR/sparql11-property-paths/

http://www.w3.org/TR/sparql11-property-paths/

Flexible Querying for SPARQL 475

string similarity matching using three different functions. A similarity measure
technique which exploits the structure of the RDF dataset can be found in [4],
where the authors navigate the RDF dataset as a graph in which every path
is matched with respect to the query. Other techniques such as ontology driven
similarity measures have been developed in [7,6,12]. These techniques use the
RDFS ontology to retrieve extra answers and assign a score value to such an-
swers. Finally, [11] shows how a conjunctive regular path query language can be
effectively extended with approximation and relaxation techniques, using similar
notions of approximation and relaxation as we use here.

In contrast to the above work, we focus here on the SPARQL 1.1 language.
We extend, for the first time, this language with query approximation and re-
laxation operators, terming the extended language SPARQLAR. We specify the
semantics of SPARQLAR, study the complexity of query answering, present a
query evaluation algorithm returning answers ranked according to their “dis-
tance” from the original query, and present the results of a preliminary query
performance study. Compared to [11], we focus here on SPARQL 1.1, derive
new complexity results, provide a query rewriting algorithm, and present query
performance results.

2 Preliminaries

In this section we give preliminary definitions needed to describe the syntax
and semantics of SPARQL queries extended with regular expression patterns
(known as ‘property paths’ in the SPARQL documentation) and flexible con-
structs, namely, query approximation and relaxation. For this kind of querying
we will avoid blank nodes, since their use is discouraged for Linked Data because
they represent a resource without specifying its name and are identified by an ID
which may not be unique in the dataset [2]. Therefore we modify the definition
of triples from [9].

Definition 1 (Sets, triples and variables). Assume there are pairwise dis-
joint infinite sets U and L (URIs and literals). A tuple 〈s, p, o〉 ∈ U×U×(U∪L)
is called an RDF triple. In this tuple, s is the subject, p the predicate and o the
object. We also assume an infinite set V of variables disjoint from the above
sets. We abbreviate any union of these sets as, for instance, UL = U ∪ L

To accomodate our formalisation of flexible querying, we add weights to the
edges of an RDF-Graph (changing again the definition from [9]). Initially these
weights are all 0.

Definition 2 (RDF-Graph). An RDF-Graph G = (N,D,E) is defined as a
finite set of nodes N such that N ⊂ UL, a finite set of predicates D used in the
graph, where D ⊂ U , and a finite set of labelled weighted edges E, where each
edge is of the form 〈〈s, p, o〉, c〉 with subject s ∈ N ∩ U , object o ∈ N , predicate
p ∈ D and c being the weight, or cost, of the edge.

476 A. Cal̀ı et al.

We discuss in the next section our query relaxation operator, which is based on
the RDF-Schema (RDFS) data modelling vocabulary representing the ontology
of an RDF dataset.

Definition 3 (RDF-Schema). An ontology K = (NK , EK) is a directed graph
where each node in NK represents either a class or a property, and each edge
EK is labelled with a symbol from the set {sc, sp, dom, range}. These edge labels
in EK encompass a fragment of the RDFS vocabulary, namely rdfs:subClassOf,
rdfs:subPropertyOf, rdfs:domain, rdfs:range.

In an RDF-graph G = (N,D,E), each node in N represents an instance or a
class and each edge in E a property. In an ontology K = (NK , EK), each node
in NK represents a class (a “class node”) or a property (a “property node”).
The intersection of N and NK is contained in the set of class nodes of K. D is
contained in the set of property nodes of K. The predicate type, representing
the RDF vocabulary rdf:type can be used in G to connect an instance of a class
to a node representing that class.

Finally we define the notion of triple patterns, needed to construct queries,
and mappings. Again we modify the definitions from [9] to exclude blank nodes.

Definition 4 (Triple patterns). A triple pattern is a tuple 〈x, z, y〉 ∈ UV ×
UV × UV L. Given a triple pattern 〈x, z, y〉, var(〈x, z, y〉) is the set of variables
occurring in it.

Definition 5 (Mapping). A mapping μ from ULV to UL is a partial function
μ : ULV → UL. We assume that μ(x) = x for all x ∈ UL i.e. μ maps URIs and
literals to themselves. The set var(μ), is the subset of V on which μ is defined.
Given a triple pattern 〈x, z, y〉 and a mapping μ such that var(〈x, z, y〉) ⊆ var(μ),
μ(〈x, z, y〉) is the triple obtained by replacing the variables in 〈x, z, y〉 by their
image according to μ.

2.1 Query Syntax

For regular expression patterns in SPARQLAR we will use the definitions given
in [3], conforming to the W3C syntax2.

Definition 6 (Regular expression pattern). A regular expression pattern
P ∈ RegEx(U) is defined as follows:

P := ε | | p | (P1|P2) | (P1/P2) | P ∗

where ε represents the empty pattern, p ∈ U and is a symbol that denotes the
disjunction of all URIs in U .

The syntax of query patterns is based on that of [3] but also includes, in our
case, the query approximation and relaxation operators APPROX and RELAX:

2 http://www.w3.org/TR/sparql11-property-paths/

Flexible Querying for SPARQL 477

Definition 7 (Query Pattern). A SPARQLAR query pattern Q is defined as
follows:

Q := UV × V ×UV L | UV ×RegEx(U)×UV L | Q1 AND Q2 | Q FILTER R |
RELAX(UV ×RegEx(U)× UV L) | APPROX(UV ×RegEx(U)× UV L)

where R is a SPARQL built-in condition and Q, Q1, Q2 are query patterns. We
denote by var(Q) the set of all variables occurring in Q.

In the W3C SPARQL syntax, a dot (.) is used as the AND operator, but we avoid
it for clarity and use AND instead. Note also that ε and cannot be specified in
property paths in SPARQL 1.1.

A SPARQL query has the form SELECT−→w WHERE Q, with −→w ⊆ var(Q) (we
may omit here the keyword WHERE for simplicity). Given Q′ = SELECT−→wQ,
the head of the query, head(Q′), is −→w if −→w
= ∅ and var(Q) otherwise.

3 Semantics of SPARQLAR

The semantics of SPARQL including regular expression query patterns is defined
in [3]. For SPARQLAR to handle the weight/cost of edges in an RDF-Graph and
subsequently the cost of the approximation and relaxation operators (which we
will describe in the following sections), we need to extend the notion of SPARQL
query evaluation from returning a set of mappings to returning a set of pairs of
the form 〈μ, cost〉 where μ is a mapping and cost is its cost.

Two mappings μ1 and μ2 are said to be compatible if ∀x ∈ var(μ1)∩ var(μ2),
μ1(x) = μ2(x). The union of two mappings μ = μ1 ∪μ2 can be computed only if
μ1 and μ2 are compatible. The resulting μ is a mapping where var(μ) = var(μ1)∪
var(μ2) and: for each x in var(μ1)∩ var(μ2), we have μ(x) = μ1(x) = μ2(x); for
each x in var(μ1) but not in var(μ2), we have μ(x) = μ1(x); and for each x in
var(μ2) but not in var(μ1), we have μ(x) = μ2(x).

We next define the union and join of two sets of query evaluation results, M1

and M2:

M1 ∪M2 = {〈μ, cost〉 | 〈μ, cost1〉 ∈ M1 or 〈μ, cost2〉 ∈ M2 with cost = cost1
if �cost2.〈μ, cost2〉 ∈ M2, cost = cost2 if �cost1.〈μ, cost1〉 ∈ M1, and cost =
min(cost1, cost2) otherwise}.
M1 �� M2 = {〈μ1∪μ2, cost1+ cost2〉 | 〈μ1, cost1〉 ∈ M1 and 〈μ2, cost2〉 ∈ M2

with μ1 and μ2 compatible mappings}.

3.1 Exact Semantics

The semantics of a triple pattern t that may include regular expression patterns
as its second component, with respect to a graph G, denoted [[t]]G, is defined
recursively as follows:

478 A. Cal̀ı et al.

[[〈x, ε, y〉]]G = {〈μ, 0〉 | var(μ) = var(〈x, ε, y〉) ∧ ∃c ∈ N . μ(x) = μ(y) = c}
[[〈x, z, y〉]]G = {〈μ, cost〉 | var(μ) = var(〈x, z, y〉) ∧ 〈μ(〈x, z, y〉), cost〉 ∈ E}

[[〈x, P1|P2, y〉]]G = [[〈x, P1, y〉]]G ∪ [[〈x, P2, y〉]]G
[[〈x, P1/P2, y〉]]G = [[〈x, P1, z〉]]G �� [[〈z, P2, y〉]]G

[[〈x, P ∗, y〉]]G = [[〈x, ε, y〉]]G ∪ [[〈x, P, y〉]]G ∪
⋃

n≥1

{〈μ, cost〉 | 〈μ, cost〉 ∈

[[〈x, P, z1〉]]G �� [[〈z1, P, z2〉]]G �� · · · �� [[〈zn, P, y〉]]G}
where P , P1, P2 are regular expression patterns, x, y, z are in ULV , and
z, z1, . . . , zn are fresh variables.

A mapping satisfies a condition R, denoted μ |= R, as follows:

R is x = c: μ |= R if x ∈ var(μ), c ∈ L and μ(x) = c
R is x = y: μ |= R if x, y ∈ var(μ) and μ(x) = μ(y)
R is isURI(x): μ |= R if x ∈ var(μ) and μ(x) ∈ U
R is isLiteral(x): μ |= R if x ∈ var(μ) and μ(x) ∈ L
R is R1 ∧R2: μ |= R if μ |= R1 and μ |= R2

R is R1 ∨R2: μ |= R if μ |= R1 or μ |= R2

R is ¬R1: μ |= R if it is not the case that μ |= R1

Given the above definitions, the overall semantics of queries (excluding AP-
PROX and RELAX) is as follows, where Q, Q1, Q2 are query patterns and the
projection operator π−→w selects only the subsets of the mappings relating to the
variables in −→w :

[[Q1 AND Q2]]G = [[Q1]]G �� [[Q2]]G

[[Q FILTER R]]G = {〈μ, cost〉 ∈ [[Q]]G | μ |= R}
[[SELECT−→wQ]]G = π−→w ([[Q]]G)

We will omit the SELECT keyword from a query Q if −→w = vars(Q).

3.2 Query Relaxation

Our relaxation operator is based on that in [11] and relies on RDFS entailment.
We give a summary here and refer the reader to that paper for full details.

An RDFS graph K1 entails an RDFS graph K2, denoted K1 |=RDFS K2, if
we can derive K2 by applying the rules in Figure 1 iteratively to K1. For the
fragment of RDFS that we consider, K1 |=RDFS K2 if and only if K2 ⊆ cl(K1),
with cl(K1) being the closure of the RDFS Graph K1 under these rules.

In order to apply relaxation to queries, we need to define the extended reduc-
tion of an ontology K. Given an ontology K, its extended reduction extRed(K)
is computed as follows: (i) compute cl(K); (ii) apply rules of Figure 2 in reverse
until no longer applicable (applying a rule in reverse means deleting a triple de-
ducible by the rule); (iii) apply rules 1 and 3 of Figure 1 in reverse until no longer

Flexible Querying for SPARQL 479

applicable. Henceforth, we assume that K = extRed(K), which allows us to per-
form direct relaxations on queries (see below) that correspond to the ‘smallest’
relaxation steps. This is necessary if we are to return query answers to users
incrementally in order of increasing cost. We also need K to be acyclic in order
for direct relaxation to be well-defined. We say that a triple pattern 〈x, p, y〉

Subproperty (1)
(a, sp, b)(b, sp, c)

(a, sp, c)
(2)

(a, sp, b)(x, a, y)

(x, b, y)

Subclass (3)
(a, sc, b)(b, sc, c)

(a, sc, c)
(4)

(a, sc, b)(x, type, a)

(x, type, b)

Typing (5)
(a, dom, c)(x, a, y)

(x, type, c)
(6)

(a, range, d)(x, a, y)

(y, type, d)

Fig. 1. RDFS entailment rules

(e1)
(b, dom, c)(a, sp, b)

(a, dom, c)
(e2)

(b, range, c)(a, sp, b)

(a, range, c)

(e3)
(a, dom, b)(b, sc, c)

(a, dom, c)
(e4)

(a, range, b)(b, sc, c)

(a, range, c)

Fig. 2. Additional rules for extended reduction of an RDFS ontology

directly relaxes to a triple pattern 〈x′, p′, y′〉, denoted 〈x, p, y〉 ≺i 〈x′, p′, y′〉, if
vars(〈x, p, y〉) = vars(〈x′, p′, y′〉) and applying rule i from Figure 1 we can de-
rive 〈x′, p′, y′〉 from 〈x, p, y〉. There is a cost ci associated with the application
of a rule i. We note that since rule 6 changes the position of y, which we want
to avoid when it comes to relaxing regular expression patterns (see below), we
actually use (d, type−, y) as the consequent of rule 6; and we also allow a modi-
fied form of rule 4 where the triples involving type appear with their arguments
in reverse order and type is replaced by type−.

We say that a triple pattern 〈x, p, y〉 relaxes to a triple pattern 〈x′, p′, y′〉, de-
noted 〈x, p, y〉 ≤K 〈x′, p′, y′〉, if starting from 〈x, p, y〉 there is a sequence of direct
relaxations that derives 〈x′, p′, y′〉. The relaxation cost of deriving 〈x, p, y〉 from
〈x′, p′, y′〉, denoted rcost(〈x, p, y〉, 〈x′, p′, y′〉), is the minimum cost of applying
such a sequence of direct relaxations.

We now define the semantics of the RELAX operator in SPARQLAR as fol-
lows:

[[RELAX(x, p, y)]]G = [[〈x, p, y〉]]G ∪ {〈μ, cost+ rcost(〈x, p, y〉, 〈x′, p′, y′〉)〉 |
〈x, p, y〉 ≤K 〈x′, p′, y′〉 ∧ 〈μ, cost〉 ∈ [[〈x′, p′, y′〉]]G}

[[RELAX(x, P1|P2, y)]]G = [[RELAX(x, P1, y)]]G ∪ [[RELAX(x, P2, y)]]G

[[RELAX(x, P1/P2, y)]]G = [[RELAX(x, P1, z)]]G �� [[RELAX(z, P2, y)]]G

[[RELAX(x, P ∗, y)]]G = [[〈x, ε, y〉]]G ∪ [[RELAX(x, P, y)]]G∪
⋃

n≥1

{〈μ, cost〉 | 〈μ, cost〉 ∈ [[RELAX(x, P, z1)]]G ��

�� [[RELAX(z1, P, z2)]]G �� · · · �� [[RELAX(zn, P, y)]]G}

480 A. Cal̀ı et al.

where P , P1, P2 are regular expression patterns, x, x′, y, y′ are in ULV , p, p′

are in U , and z, z1, . . ., zn are fresh variables.

3.3 Query Approximation

Regarding query approximation, we consider a set of edit operations which trans-
form a regular expression pattern P into a new expression pattern P ′. We focus
here on the edit operations deletion, insertion and substitution (leaving other
possible edit operations such as transposition and inversion for future work)
which are defined as follows:

A/p/B �(A/ε/B) deletion

A/p/B �(A/ /B) substitution

A/p/B �(A/ /p/B) left insertion

A/p/B �(A/p/ /B) right insertion

Here, A and B denote any regular expression and the symbol represents every
URI from U — so the edit operations allow us to insert any URI and substitute
a URI by any other in U . The application of an edit operation op has a cost cop
associated with it.

We can apply the above set of rules to a URI p in order to approximate it
to a regular expression P . We write p �∗ P if we can apply a sequence of
edit operations to p to derive P . The edit cost of deriving P from p, denoted
ecost(p, P), is the minimum cost of applying such a sequence of edit operations.

We now define the semantics of the APPROX operator in SPARQLAR as fol-
lows:

[[APPROX(x, p, y)]]G = [[〈x, p, y〉]]G ∪
⋃

{〈μ, cost+ ecost(p, P)〉 |
p �∗ P ∧ 〈μ, cost〉 ∈ [[〈x, P, y〉]]G}

[[APPROX(x, P1|P2, y)]]G = [[APPROX(x, P1, y)]]G ∪ [[APPROX(x, P2, y)]]G

[[APPROX(x, P1/P2, y)]]G = [[APPROX(x, P1, z)]]G �� [[APPROX(z, P2, y)]]G

[[APPROX(x, P ∗, y)]]G = [[〈x, ε, y〉]]G ∪ [[APPROX(x, P, y)]]G∪
⋃

n≥1

{〈μ, cost〉 | 〈μ, cost〉 ∈ [[APPROX(x, P, z1)]]G ��

�� [[APPROX(z1, P, z2)]]G �� · · · �� [[APPROX(zn, P, y)]]G}
where P , P1, P2 are regular expression patterns, x, y are in ULV , p, p′ are in
U , and z, z1, . . ., zn are fresh variables.

4 Complexity of Query Answering

In this section we study the combined, data and query complexity of SPARQL
including regular expression patterns, the new APPROX and RELAX operators

Flexible Querying for SPARQL 481

and weighted edges in the RDF graph. Our work extends the complexity results
in [9,10,13] for simple SPARQL queries and in [1] for SPARQL with regular
expression patterns to include our new flexible query constructs in SPARQLAR.

The complexity of query evaluation is based on the following decision problem,
which we denote EVALUATION: given as input a graph G, a query Q and a
pair 〈μ, cost〉, is it the case that 〈μ, cost〉 ∈ [[Q]]G?

Queries without regular expression patterns (i.e. where there are only triple
patterns of the form UV ×UV ×UV L) and without the flexible query constructs,
can be evaluated in polynomial time if they include only the operators AND
and FILTER. This result can be achieved by adapting the algorithm given in
[9,10,13], adding the cost of the mappings in our setting:

Theorem 1. EVALUATION can be solved in time O(|E| · |Q|) for query pattern
expressions constructed using only AND and FILTER operators.

Proof. We give an algorithm for the EVALUATION problem that runs in poly-
nomial time: first, for each i such that the triple pattern 〈x, z, y〉i is in Q, we
verify that 〈μ(〈x, z, y〉i), costi〉 ∈ E for some costi. If this is not the case, or if∑

i costi
= cost we return False. Otherwise we check if μ satisfies the FILTER
condition and return True or False accordingly. It is evident that the algorithm
runs in polynomial time since verifying that 〈μ(〈x, z, y〉i), costi〉 ∈ E can be done
in time |E|.

When we add regular expression patterns to queries, the complexity of query
evaluation increases slightly. To show this, we start by building an NFA MP =
(S, T) that recognises L(P), the language denoted by the regular expression P ,
where S is the set of states (including s0 and sf representing the initial and
final states respectively) and T is the set of transitions, each of cost 0. We then
construct the weighted product automaton, H , of G and MP as follows:

– The states of H are the Cartesian product of the set of nodes N of G and
the set of states S of MP .

– For each transition 〈〈s, p, s′〉, 0〉 in MP and each edge 〈〈a, p, b〉, cost〉 in E,
there is a transition 〈〈s, a〉, 〈s′, b〉, cost〉 in H .

Then we check if there exists a path from 〈s0, μ(x)〉 to 〈sf , μ(y)〉 in H . In
case there is more than one path, we select one with the minimum cost using
Dijkstra’s algorithm. Knowing that the number of nodes inH is equal to |N |·|S|,
the number of edges is at most |E| · |T |, and that |T | ≤ |S|2, the evaluation can
be performed in time O(|E| · |S|2+ |N | · |S| · log(|N | · |S|)). Noting that the query
size is proportional to |S|, on the assumption that |E| ≥ |N | we therefore have:

Theorem 2. EVALUATION can be solved in time O(|E| · |Q|2) for query pat-
tern expressions constructed using only AND, FILTER and regular expression
patterns.

Next, we discuss how adding the SELECT operator increases the complexity
even if FILTER is excluded (i.e. including costs in the graph G and regular
expression patterns, the complexity given by [9,10] does not change):

482 A. Cal̀ı et al.

Theorem 3. EVALUATION is NP-complete for query pattern expressions con-
structed using only AND and regular expression patterns, and including the pro-
jection operator SELECT.

Proof. We first show that the evaluation problem is in NP. Given a pair 〈μ, cost〉
and a query SELECT−→wQ where Q does not include FILTER, we have to check
whether 〈μ, cost〉 is in [[SELECT−→wQ]]G. We can guess a new mapping μ′ such
that π−→w (〈μ′, cost〉) = 〈μ, cost〉 and consequently check that 〈μ′, cost〉 ∈ [[Q]]G
(which can be done in polynomial time as we have seen in Theorem 2). The
number of guesses is bounded by the number of variables in Q and values from
G to which they can be mapped.

For NP-hardness we first define the problem of graph 3-colourability, which is
known to be NP-complete: given a graph Γ = (NΓ , EΓ) and three colours r, g,
b, is it possible to assign a colour to each node in NΓ such that no pair of nodes
connected by an edge in EΓ are of the same colour?

We next define the following RDF graph G = (N,D,E):

N ={r, g, b, a} D = {a, p}
E ={〈〈r, p, g〉, 0〉, 〈〈r, p, b〉, 0〉, 〈〈g, p, b〉, 0〉, 〈〈g, p, r〉, 0〉,

〈〈b, p, r〉, 0〉, 〈〈b, p, g〉, 0〉, 〈〈a, a, a〉, 0〉}
Now we construct the following query Q such that there is a variable xi corre-
sponding to each node ni of Γ and there is a triple pattern of the form 〈xi, p, xj〉
in Q if and only if there is an edge (ni, nj) in Γ :

Q = SELECTx((xi, p, xj) AND . . . AND (x′
i, p, x

′
j) AND (a, a, x))

It is easy to verify that the graph Γ is colourable if and only if 〈μ, 0〉 ∈ [[Q]]G
with μ = {x → a}.

The following lemma will help us to show that adding the APPROX and
RELAX operators will not increase the complexity.

Lemma 1. EVALUATION of [[APPROX(x, P, y)]]G and [[RELAX(x, P, y)]]G
can be done in polynomial time.

Proof (Premise). Given a pair 〈μ, cost〉 we have to verify in polynomial time
that 〈μ, cost〉 ∈ [[APPROX(x, P, y)]]G or 〈μ, cost〉 ∈ [[RELAX(x, P, y)]]G. We
start by building an NFA MP = (S, T) as described earlier.

Proof (Approximation). An approximate automaton AP = (S, T ′) is constructed
starting from MP and adding the following additional transitions (similarly to
the construction in [11]):

– For each state s ∈ S there is a transition 〈〈s, , s〉, α〉, where α is the cost of
insertion.

– For each transition 〈〈s, p, s′〉, 0〉 in MP , where p ∈ D, there is a transition
〈〈s, ε, s′〉, β〉, where β is the cost of deletion.

Flexible Querying for SPARQL 483

– For each transition 〈〈s, p, s′〉, 0〉 in MP , where p ∈ D, there is a transition
〈〈s, , s′〉, γ〉, where γ is the cost of substitution.

We then form the weighted product automaton, H , of G and AP as follows:

– The states of H will be the Cartesian product of the set of nodes N of G
and the set of states S of AP .

– For each transition 〈〈s, p, s′〉, cost1〉 in AP and each edge 〈〈a, p, b〉, cost2〉 in
E, there is a transition 〈〈s, a〉, 〈s′, b〉, cost1 + cost2〉 in H .

– For each transition 〈〈s, ε, s′〉, cost〉 in AP and each node a ∈ N , there is a
transition 〈〈s, a〉, 〈s′, a〉, cost〉 in H .

– For each transition 〈〈s, , s′〉, cost1〉 in AP and each edge 〈〈a, p, b〉, cost2〉 in
E, there is a transition 〈〈s, a〉, 〈s′, b〉, cost1 + cost2〉 in H .

Finally we check if there exists a path from 〈s0, μ(x)〉 to 〈sf , μ(y)〉 in H .
Again, if there exists more than one path we select one with minimum cost
using Dijkstra’s Algorithm. Knowing that the number of nodes in H is |N | · |S|
and that the number of edges in H is at most (|E| + |N |) · |S|2, the evaluation
can therefore be computed in O((|E| + |N |) · |S|2 + |N | · |S| · log(|N | · |S|)).
Proof (Relaxation). Given an ontology K = extRed(K) we build the relaxed
automaton RP = (S′, T ′, S0, Sf) starting from MP (similarly to the construction
in [11]). S0 and Sf represent the sets of initial and final states, and S′ contains
every state in S plus the states in S0 and Sf . Initially S0 and Sf contain s0 and
sf respectively. Each initial and final state in S0 and Sf is labelled with either
a constant or the symbol ∗; in particular, s0 is labelled with x if x is a constant
or ∗ if it is a variable and similarly sf is labelled with y if y is a constant or
∗ if it is a variable. An incoming (outgoing) clone of a state s is a new state s′

such that s′ is an initial or final state if s is, s′ has the same set of incoming
(outgoing) transitions as s, and has no outgoing (incoming) transitions. Initially
T ′ contains all the transitions in T . We recursively add states to S0 and Sf , and
transitions to T ′ as follows until we reach a fixpoint:

– For each transition 〈〈s, p, s′〉, cost〉 ∈ T ′ and 〈p, sp, p′〉 ∈ K add the transition
〈〈s, p′, s′〉, cost+ α〉 to T ′, where α is the cost of applying rule 2.

– For each transition 〈〈s, type, s′〉, cost〉 ∈ T ′, s′ ∈ Sf and 〈c, sc, c′〉 ∈ K such
that s′ is annotated with c add an outgoing clone s′′ of s′ annotated with
c′ to Sf and add the transition 〈〈s, type, s′′〉, cost+ β〉 to T ′, where β is the
cost of applying rule 4.

– For each transition 〈〈s, type−, s′〉, cost〉 ∈ T ′, s ∈ S0 and 〈c, sc, c′〉 ∈ K such
that s is annotated with c add an incoming clone s′′ of s annotated with c′

to S0 and add the transition 〈〈s′′, type−, s′〉, cost+ β〉 to T ′, where β is the
cost of applying rule 4.

– For each 〈〈s, p, s′〉, cost〉 ∈ T ′, s′ ∈ Sf and 〈p, dom, c〉 such that s′ is anno-
tated with a constant, add an outgoing clone s′′ of s′ annotated with c to
Sf , and add the transition 〈〈s, type, s′′〉, cost+ γ〉 to T ′, where γ is the cost
of applying rule 5.

484 A. Cal̀ı et al.

– For each 〈〈s, p, s′〉, cost〉 ∈ T ′, s ∈ S0 and 〈p, range, c〉 such that s is anno-
tated with a constant, add an incoming clone s′′ of s annotated with c to S0,
and add the transition 〈〈s′′, type−, s′〉, cost+ δ〉 to T ′, where δ is the cost of
applying rule 6.

(We note that because queries and graphs do not contain edges labelled sc or sp,
rules 1 and 3 in Figure 1 are inapplicable as far as query relaxation is concerned.)

We then form the weighted product automaton, H , of G and RP as follows:

– For each node a ∈ N of G and each state s ∈ S′ of RP , then 〈s, a〉 is a state
of H if s is labelled with either ∗ or a, or is unlabelled.

– For each transition 〈〈s, p, s′〉, cost1〉 in RP and each edge 〈〈a, p, b〉, cost2〉
in E such that 〈s, a〉 and 〈s′, b〉 are states of H , then there is a transition
〈〈s, a〉, 〈s′, b〉, cost1 + cost2〉 in H .

– For each transition 〈〈s, type−, s′〉, cost1〉 in RP and each edge 〈〈a, type, b〉,
cost2〉 in E such that 〈s, b〉 and 〈s′, a〉 are states of H , then there is a tran-
sition 〈〈s, b〉, 〈s′, a〉, cost1 + cost2〉 in H .

Finally we check if there exists a path from 〈s, μ(x)〉 to 〈s′, μ(y)〉 in H , where
s ∈ S0 and s′ ∈ Sf . Again, if there exists more than one path we select one with
minimum cost using Dijkstra’s Algorithm. Knowing that the number of nodes
in H is at most |N | · |S′| and the number of edges in H is at most |E| · |S′|2, the
evaluation can therefore be computed in O(|E| · |S′|2 + |N | · |S′| · log(|N | · |S′|)).
Proof (Conclusion). We can conclude that both query approximation and query
relaxation can be evaluated in polynomial time. In particular, the evaluation can
be done in O(|E|) time with respect to the data and in polynomial time with
respect to the query.

Through the previous lemma we can conclude our combined complexity study
with the following theorem:

Theorem 4. EVALUATION is NP-complete for query pattern expressions con-
structed using regular expression patterns and the operators AND, FILTER,
RELAX, APPROX and SELECT.

With the next theorem, we consider the behaviour of our extended SPARQL
language in terms of data complexity. In particular we extend what we have
already shown in Theorems 3 and 4 by changing the decision problem stated
earlier to the following: given as input a graph G and a pair 〈μ, cost〉, is it the
case that 〈μ, cost〉 ∈ [[Q]]G, with Q a fixed query?

Theorem 5. EVALUATION is PTIME in data complexity for query pattern ex-
pressions constructed using regular expression patterns, and the operators AND,
FILTER, RELAX, APPROX and SELECT.

Flexible Querying for SPARQL 485

Proof. In order to prove the theorem, we devise an algorithm that runs in poly-
nomial time with respect to the size of the graph G. We start by building a new
mapping μ′ such that each variable x ∈ var(μ′) appears in var(Q) but not in
var(μ), and to each we assign a different constant from ND. We then verify in
polynomial time that 〈μ∪μ′, cost〉 is in [[Q]]G. The number of mappings we can
generate is O(|ND||var(Q)|). Since the query is fixed we can therefore say that
the evaluation with respect to the data is in polynomial time.

Results for the query complexity of our extended SPARQL language follow
directly from Lemma 1 and Theorems 1, 2 and 3. In fact, Lemma 1 and Theorems
1 and 2 show an algorithm that evaluates AND queries with APPROX, RELAX
and regular expression patterns in polynomial time with respect to the query.
The proof of Theorem 3 reduces the problem of EVALUATION from the graph 3-
colourability problem, and since the graph constructed for the reduction does not
change with respect to the input problem, we can affirm that query complexity
remains NP-complete.

We summarise the complexity study of our extended SPARQL language in
Figure 3, where we show the combined, data and query complexity for the lan-
guage fragments identified by the operators included.

Operators Data Complexity Query Complexity
Combined
Complexity

AND, FILTER O(|E|) O(|Q|) O(|E| · |Q|)
AND, FILTER,

RegEx
O(|E|) O(|Q|2) O(|E| · |Q|2)

RELAX, APPROX O(|E|) P-Time P-Time

RELAX, APPROX,
AND, FILTER,

RegEx
O(|E|) P-Time P-Time

AND, SELECT P-Time NP-Complete NP-Complete

RELAX, APPROX,
AND, FILTER,
RegEx, SELECT

P-Time NP-Complete NP-Complete

Fig. 3. Complexity of various SPARQL fragments

5 Query Evaluation

In this section we describe how to compute the relaxed and approximated answer
of a SPARQLAR query by making use of a query rewriting algorithm, following
a similar approach to [6,7,12]. In particular, given a query Q with the APPROX
and/or RELAX operators, our goal is to incrementally build a set of queries
{Q0, . . . , Qn} that do not contain these operators such that

⋃
i[[Qi]]G = [[Q]]G.

Moreover we need to produce answers in order of increasing cost.

486 A. Cal̀ı et al.

The query rewriting algorithm starts by considering the queryQ0 which returns
the exact answer of the query Q, i.e., ignoring the APPROX and RELAX opera-
tors. To keep track of which triple patterns need to be relaxed or approximated, we
label such triple patterns with A for approximation andR for relaxation. For each
triple pattern 〈xi, Pi, yi〉 inQ0 labelled withA (R) and each URI p that appears in
Pi, we construct a new query applying one step of approximation (relaxation) to
p, and to each query we assign the cost of applying such a step. From each query
constructed in this way, we next produce a new set of queries applying a second
step of approximation or relaxation. The cost of each query is equal to the cost of
the original query plus the cost of the sequence of approximations or relaxations
applied to it. For practical reasons we limit the number of queries generated by
bounding the cost of the queries up to a maximum value c.

To compute the query answers, we incrementally apply an evaluation function,
eval, to each query generated by the rewriting algorithm in ranked order of the
cost of the queries, and to each mapping returned by eval we assign the cost
of the query. If we generate a particular mapping more than once we keep the
one with the lowest cost. The eval function takes as input a query Q and a
graph G and returns [[Q]]G. The overall query evaluation algorithm is defined
below where rew is the query rewriting algorithm and we assume that the set of
mappings M is maintained in order of increasing cost (e.g. as a priority queue):

Algorithm 1. Flexible Query Evaluation

input : Query Q; approx/relax max cost c; Graph G; Ontology K.
output: List of pairs mapping/cost M sorted by cost.
M := ∅;
foreach 〈Q′, cost〉 ∈ rew(Q,c,K) do

foreach 〈μ, 0〉 ∈ eval(Q′,G) do
M := M ∪ {〈μ, cost〉}

return M;

Example 1. Consider the following ontology K (satisfying K = extRed(K)),
which is a fragment of the YAGO knowledge base3 derived from multiple sources
such as Wikipedia, WordNet and GeoNames:

K =({happenedIn, placedIn, happenedOnDate, Event},
{〈happenedIn, sp, placedIn〉, 〈happenedIn, dom,Event〉})

Suppose a user wishes to find every event which took place in London on 12th
December 2012 and poses the following query Q:

APPROX(x, happenedOnDate, “12/12/12”) AND RELAX(x, happenedIn,
“London”).
Without applying APPROX or RELAX, this query does not return any answers
when evaluated on the YAGO endpoint (because “happenedIn” connects to URIs
representing places and “London” is a literal, not a URI). After the first step of
approximation and relaxation, the following queries are generated:

3 http://www.mpi-inf.mpg.de/yago-naga/yago/

http://www.mpi-inf.mpg.de/yago-naga/yago/

Flexible Querying for SPARQL 487

Q1 =(x, ε, ”12/12/12”)A AND (x, happenedIn, ”London”)R

Q2 =(x, happenedOnDate/ , ”12/12/12”)A AND (x, happenedIn, ”London”)R

Q3 =(x, /happenedOnDate, ”12/12/12”)A AND (x, happenedIn, ”London”)R

Q4 =(x, , ”12/12/12”)A AND (x, happenedIn, ”London”)R

Q5 =(x, happenedOnDate, ”12/12/12”)A AND (x, placedIn, ”London”)R

Q6 =(x, happenedOnDate, ”12/12/12”)A AND (x, type, Event)R

Each of these also returns empty results, with the exception of query Q6 which
returns every event occurring on 12/12/12 (including amongst them the events
occurring in London that are of interest to the user).

We have conducted a theoretical study of the correctness and termination of
the Rewriting Algorithm which can be found in the extended version of the paper
(http://www.dcs.bbk.ac.uk/~riccardo/ODBASE2014Extended.pdf), where
the Rewriting Algorithm itself is also specified in detail.

6 Experimental Results

We have implemented our query evaluation algorithm and have conducted pre-
liminary trials over the YAGO SPARQL endpoint and the Lehigh University
Benchmark (LUBM)4. Using the latter we generated 3 datasets:D1 with 149, 973
triples (13Mb in XML format), D2 with 421, 562 triples (44Mb), and D3 with
673, 416 triples (65Mb). The LUBM ontology5 consists of 355 statements and de-
scribes a university domain. We ran our experiments on a Windows 7 computer
with 4Gb of RAM and a quadcore-core i7 CPU at 2.0Ghz. The query evaluation
algorithm was implemented in Java and we used Jena for the SPARQL query
execution6.

In Figure 4 we show the number of answers and the number of seconds it takes
to answer a set of exact queries, Q1 - Q4. In Figure 5 we show both the number
of answers and the number of seconds it takes to answer approximated and/or
relaxed versions of the same queries, Q′

1 - Q′
4. For these experiments, the cost

of all edit and relaxation operations was set to 1 (in practice the user may set
different costs depending on the query or application). The maximum cost was
also fixed at 1 for each of Q′

1 - Q′
4 (in practice the user would set a small cost –

0 or 1 – to begin with, explore the results returned, and iteratively request more
results at greater cost as necessary).

Query Q1, which returns every university and its head, is as follows:

SELECT ?X ?Z WHERE {?X ub:headOf ?Z}

For Q′
1, we RELAX the triple pattern to find other people who work at a univer-

sity. With the maximum cost set to 1, the rewriting algorithm generated only 1

4 http://swat.cse.lehigh.edu/projects/lubm/
5 http://swat.cse.lehigh.edu/onto/univ-bench.owl
6 https://jena.apache.org/

http://www.dcs.bbk.ac.uk/~riccardo/ODBASE2014Extended.pdf
http://swat.cse.lehigh.edu/projects/lubm/
http://swat.cse.lehigh.edu/onto/univ-bench.owl
https://jena.apache.org/

488 A. Cal̀ı et al.

more query. The new query generated 817 answers at cost 1 for the first dataset,
2263 answers at cost 1 for the second and finally 3606 answers for the third.

QueryQ2 returns people who work for department Department0.University0
with their email address and phone number:

SELECT *

WHERE {?X ub:worksFor <http://www.Department0.University0.edu> .

?X ub:name ?Y1 . ?X ub:emailAddress ?Y2 . ?X ub:telephone ?Y3}

For Q′
2, we APPROX the first triple pattern, allowing details to be returned of

people who have other relationships with the department. Even with a maximum
cost of 1, Q′

2 returns many more answers than Q2.
Query Q3 returns every sub-organization of organizations affiliated with

University0:

SELECT ?Y ?Z

WHERE {?Y ub:subOrganizationOf* ?Z .

?Z ub:affiliatedOrganizationOf <http://www.University0.edu>}

ForQ′
3 we RELAX the first triple pattern and APPROX the second one, allowing

answers to be returned relating to organizations that have other relationships
with University0.

Query Q4 returns students along with courses they attend which are taught
by their advisor:

SELECT ?X ?Z

WHERE {?X ub:advisor/ub:teacherOf ?Z . ?X ub:takesCourse ?Z}

For Q′
4 we RELAX the first triple pattern and APPROX the second one.

Dataset Q1 Q2 Q3 Q4

D1 23/0.001s 34/0.004s 0/0.197s 331/0.129s

D2 63/0.006s 34/0.005s 0/0.64s 883/0.296s

D3 100/0.007s 34/0.006s 0/1.67s 1381/0.517s

Fig. 4. Exact queries (number of answers/time)

Dataset Q′
1 Q′

2 Q′
3 Q′

4

D1 840/0.015s 605/0.421s 743/0.924s 348/60.7s

D2 2326/0.055s 605/1s 756/3.17s 925/451s

D3 3706/0.105s 605/1.6s 767/4.44s 1461/1492s

Fig. 5. Approx/relax queries (number of answers/time)

We see that response times are good for Q′
1 - Q

′
3, allowing many more answers

to be returned than for Q1 - Q3 within a reasonable amount of time. However,
response times for Q′

4 are poor and show a large amount of time required to

Flexible Querying for SPARQL 489

return relatively few additional answers compared with Q4. The rewriting algo-
rithm generates three new queries at distance 1 starting from Q4. One of these
queries takes almost all the time shown in the figure (57 seconds on D1, 435 sec-
onds on D2 and 1470 seconds on D3). This query returns students and courses
that they did not attend which were taught by their advisor:

SELECT ?X ?Z

WHERE {?X ub:advisor/ub:teacherOf ?Z . ?X !ub:takesCourse ?Z}

(Since SPARQL does not accept the symbol “ ” in triple patterns, we exploit
the symbol “!” instead. The predicate !ub:takesCourse is generated as a re-
sult of a substitution operation in which ub:takesCourse is substituted by “ ”.
It is sufficient to use !ub:takesCourse to match every predicate other than
ub:takesCourse since the latter will already have been matched.) Since the
triple pattern ?X !ub:takesCourse ?Z matches a large number of triples in the
dataset and most of these do not match the first triple pattern, the query returns
a limited number of answers in a very long time.

An advantage of our query rewriting approach is that existing techniques
for SPARQL query optimisation and evaluation can be reused. Even though
this initial experimental study is promising, we will investigate optimizing the
rewriting algorithm since it can generate a large number of queries. Moreover,
we will also investigate optimization techniques to deal with queries such as Q4

which cannot be evaluated efficiently using a naive approach.

7 Concluding Remarks and Future Work

We have presented in this paper a study of flexible querying for an extended frag-
ment of the SPARQL 1.1 language. We have shown that adding approximation
and relaxation operators to this fragment does not increase the complexity of
query answering, and that such operators can be useful in finding more answers
than would be returned by the exact form of a user’s query.

We have specified the semantics of our extended language, and have described
a query evaluation algorithm based on query rewriting that returns results incre-
mentally according to their “distance” from the original query. Our preliminary
experimental studies show promising query performance. Regarding the relative
ranking of relaxation and approximation, this depends on the user’s query, the
data and the user’s knowledge of the data structuring: if the user uses appropri-
ate predicates but they are too specialised, then RELAX may be more useful; if
the user omits part of the necessary structure from their query or uses incorrect
predicates, then APPROX may be more useful.

Our ongoing work involves a study of query containment in our extended
SPARQL language, and how query costs influence this. Through an investiga-
tion of query containment we plan to devise optimizations for our rewriting
algorithm. For example, it is possible to decrease the number of queries gener-
ated by the rewriting algorithm if Q = Q1 AND Q2 and [[Q1]]G ⊆ [[Q2]]G, then
[[Q]]G = [[Q1]]G. Our ongoing work also comprises a deeper empirical investi-
gation of the performance of our query evaluation algorithm, and of possible

490 A. Cal̀ı et al.

optimizations. Another direction of research is application of our approximation
and relaxation operators, query evaluation and query optimization techniques
to federated query processing for SPARQL 1.1.

References

1. Alkhateeb, F., Baget, J.-F., Euzenat, J.: Extending SPARQL with regular expres-
sion patterns (for querying RDF). Web Semant. 7(2), 57–73 (2009)

2. Bizer, C., Cyganiak, R., Heath, T.: How to publish linked data on the web. Web
page (2007) (Revised 2008) (accessed February 22, 2010)

3. Chekol, M.W., Euzenat, J., Genevès, P., Layäıda, N.: PSPARQL Query Contain-
ment. Research report, EXMO - INRIA Grenoble Rhône-Alpes / LIG Laboratoire
d’Informatique de Grenoble, WAM - INRIA Grenoble Rhône-Alpes / LIG Labo-
ratoire d’Informatique de Grenoble (June 2011)

4. De Virgilio, R., Maccioni, A., Torlone, R.: A similarity measure for approximate
querying over RDF data. In: Proceedings of the Joint EDBT/ICDT 2013 Work-
shops, EDBT 2013, pp. 205–213. ACM, New York (2013)

5. Hogan, A., Mellotte, M., Powell, G., Stampouli, D.: Towards fuzzy query-relaxation
for RDF. In: Simperl, E., Cimiano, P., Polleres, A., Corcho, O., Presutti, V. (eds.)
ESWC 2012. LNCS, vol. 7295, pp. 687–702. Springer, Heidelberg (2012)

6. Huang, H., Liu, C.: Query relaxation for star queries on RDF. In: Chen, L., Tri-
antafillou, P., Suel, T. (eds.) WISE 2010. LNCS, vol. 6488, pp. 376–389. Springer,
Heidelberg (2010)

7. Huang, H., Liu, C., Zhou, X.: Computing relaxed answers on RDF databases. In:
Bailey, J., Maier, D., Schewe, K.-D., Thalheim, B., Wang, X.S. (eds.) WISE 2008.
LNCS, vol. 5175, pp. 163–175. Springer, Heidelberg (2008)

8. Kiefer, C., Bernstein, A., Stocker, M.: The fundamentals of iSPARQL: A virtual
triple approach for similarity-based semantic web tasks. In: Aberer, K., et al. (eds.)
ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 295–309. Springer, Heidelberg
(2007)

9. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of SPARQL. In:
Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M.,
Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 30–43. Springer, Heidelberg
(2006)

10. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of SPARQL. ACM
Trans. Database Syst. 34(3), 16:1–16:45 (2009)

11. Poulovassilis, A., Wood, P.T.: Combining approximation and relaxation in semantic
web path queries. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang,
L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part I. LNCS, vol. 6496,
pp. 631–646. Springer, Heidelberg (2010)

12. Reddy, B.R.K., Kumar, P.S.: Efficient approximate SPARQL querying of web of
linked data. In: Bobillo, F., Carvalho, R.N., da Costa, P.C.G., d’Amato, C., Fanizzi,
N., Laskey, K.B., Laskey, K.J., Lukasiewicz, T., Martin, T., Nickles, M., Pool, M.
(eds.) URSW. CEUR Workshop Proceedings, vol. 654, pp. 37–48. CEUR-WS.org
(2010)

13. Schmidt, M.: Foundations of SPARQL Query Optimization. PhD thesis,
Albert-Ludwigs-Universitat Freiburg (2009)

	Flexible Querying for SPARQL
	1 Introduction
	2 Preliminaries
	2.1 Query Syntax

	3 Semantics ofSPARQLAR
	3.1 Exact Semantics
	3.2 Query Relaxation
	3.3 Query Approximation

	4 Complexity of Query Answering
	5 Query Evaluation
	6 Experimental Results
	7 Concluding Remarks and Future Work
	References

