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Abstract. Scientific workflows may be used to enable the collaborative
implementation of scientific applications across various domains. Since
each domain has its own requirements and solutions for data handling,
such workflows often have to deal with a highly heterogeneous data en-
vironment. This results in an increased complexity of workflow design.
As scientists typically design their scientific workflows on their own, this
complexity hinders them to concentrate on their core issue, namely the
experiments, analyses, or simulations they conduct. In this paper, we
present a novel approach to a pattern-based abstraction support for the
complex data management in simulation workflows that goes beyond re-
lated work in similar research areas. A pattern hierarchy with different
abstraction levels enables a separation of concerns according to the skills
of different persons involved in workflow design. The goal is that scientists
are no longer obliged to specify low-level details of data management in
their workflows. We discuss the advantages of this approach and show to
what extent it reduces the complexity of simulation workflow design. Fur-
thermore, we illustrate how to map patterns onto executable workflows.
Based on a prototypical implementation of three real-world simulations,
we evaluate our approach according to relevant requirements.

1 Introduction

Nowadays, scientific workflows are increasingly adopted to enable the collabora-
tive implementation of scientific applications across various domains [24]. This
includes applications such as experiments, data analyses, or computer-based sim-
ulations. Simulation workflows, as a sub-area of scientific workflows, are typically
compositions of long-running numeric calculations [5]. These calculations realize
mathematical simulation models, e. g., based on partial differential equations. To
make simulations more realistic and their outcome more precise, scientists cou-
ple simulation models from several scientific domains in simulation workflows [8].
This allows them to cover various levels of granularity in simulation calculations.
The calculations for each of the simulation models have to process huge data sets
from diverse data sources and in multiple proprietary data formats [15]. Further-
more, the results from one simulation model are often used as input for other
simulation models. As different simulation models and underlying simulation
tools typically rely on different solutions for data handling, this even multiplies
the complexity of data management in simulation workflows. So, these workflows
have to embed many sophisticated data provisioning and data integration tasks.
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As an example, consider a simulation of structure changes in human bones,
which combines a bio-mechanical simulation on the macro scale with a systems-
biology simulation on the micro scale [8]. The workflow realizing this coupled
simulation consists of more than 20 activities [15]. Two thirds of these activities
deal with service calls and the complex data management necessary to provide
data for these services. Today, simulation workflow design is typically carried
out by the scientists themselves. Hence, they have to specify many low-level
details of data provisioning, but they usually do not have the necessary skills in
workflow design or data management. This hinders scientists to concentrate on
their core issues, namely the development of mathematical simulation models,
the execution of simulation calculations, and the interpretation of their results.

In a previous publication, we have presented the vision of a pattern-based ap-
proach to make simulation workflow design tailor-made for scientists [15]. This
approach goes beyond related work for artifact-centric business process model-
ing [6,9], for workflow patterns [17], in the scientific workflow domain [11,13,26],
and in the area of data integration [14,19]. Scientists using our approach select
a few abstract patterns and combine them in their simulation workflows to de-
scribe only the main steps of these workflows. The adaptation to a concrete
simulation scenario is achieved by a small set of pattern parameters that mainly
correspond to terms or concepts scientists already know from their simulation
models. Finally, rewrite rules transform such parameterized patterns into exe-
cutable workflows. In this paper, we extend this vision of a pattern-based work-
flow design to a full-fledged and principled abstraction support for the complex
data provisioning in simulation workflows. The main contributions are:

— We identify major requirements for the data provisioning in simulations.

— We derive a comprehensive set of patterns that may be used to alleviate the
design of the data provisioning in several kinds of simulation workflows.

— We show how to organize patterns in a pattern hierarchy with different ab-
straction levels. As a major contribution, this pattern hierarchy facilitates a
separation of concerns between different persons that are involved in work-
flow design, e. g., scientists, data management experts, or workflow engineers.
According to his or her own skills, each person may choose the abstraction
level s/he is familiar with and may provide other workflow developers with
parameterized patterns and workflow fragments at this abstraction level.

— We discuss design considerations for a rule-based transformation of patterns
into executable workflows and show its application to a concrete simulation.

— We evaluate the presented approach based on a prototypical implementation
and based on its application to three real-world simulations.

In the remainder of this paper, we firstly detail our running example and
exemplify major requirements for the data provisioning in simulations. In Sec-
tion 3, we introduce the approach of pattern-based simulation workflow design
and detail our set of patterns as well as the pattern hierarchy. The rule-based
transformation of patterns into executable workflows is explained in Section 4.
Section 5 covers information about our prototype and an evaluation of our ap-
proach. Finally, we discuss related work in Section 6 and conclude in Section 7.
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Fig. 1. Coupled simulation of structure changes in bones, cf. [§]
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2 Data Complexity in Simulations

A solution to conquer the complexity of data provisioning in simulation workflow
design has to consider a set of specific requirements. We introduce the discussion
of these requirements by means of an example simulation.

2.1 Simulation of Structure Changes in Bones

As an example, we consider a simulation of time-dependent structure changes in
bones, e.g., to support healing processes after bone fractures [8]. Fig. 1 shows
how this simulation couples simulation models of the domains bio-mechanics and
systems-biology, which involves lots of cooperative work across these domains.
The bio-mechanical simulation model describes the mechanical behavior of a
bone on a macroscopic tissue scale. However, it does not consider any cellular
reactions within the bone tissue. This is where the systems-biological model
comes into play, which determines the microscopic formation or resorption of
the bone tissue as result of the stress-regulated interaction between cells.

The complexity of coupling simulations and providing the appropriate data
for each of the simulation models is increased by the fact that typically separate
simulation tools are employed for each of the models [8]. In our example, the
Pandas framework!, which is based on the Finite Element Method (FEM), of-
fers a numeric implementation of the bio-mechanical simulation. The boundary
conditions of this simulation correspond to the external load on the bone, e.g.,
caused by muscle forces. This external load depends on the motion sequence of

! http://www.mechbau.uni-stuttgart.de/pandas/index.php
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the relevant person. Pandas converts the external load of each relevant motion
sequence into a characteristic solution of the internal stress distribution within
the bone tissue. For each numeric time step and for each nodal point of the FEM
grid, it thereby stores up to 20 mathematical variables in a SQL database. This
results in a data volume between 100 MB and several GBs per motion sequence.

The systems-biological calculation may be implemented via GNU Octave?.
It gets an idealized solution as input that is composed of the characteristic
solutions of Pandas according to the approximated daily routine of the person.
Beforehand, ETL processes filter appropriate data from the database of Pandas
and aggregate these data among all numeric time steps, e.g., by calculating
average values. Furthermore, they define the partitioning of the data among
multiple instances of Octave to enable parallelism, and they store the results
in CSV-based files (comma-separated values). Octave uses these files as input,
calculates the precise bone density until the end of one daily routine, and stores it
in another CSV-based file. This file is then imported into the database of Pandas
to update the bone configuration of the bio-mechanical simulation model with
the bone density. The whole process is repeated for the next daily routine.

2.2 Requirements for Data Provisioning

Such a complex data environment is common for simulations that are coupled
among different scientific domains, since each domain has its own requirements
and solutions for data handling. Due to the heterogeneity and high amount
of involved data, scientists have to implement a multiplicity of complex data
provisioning and data integration tasks. Workflows may help to structure these
tasks [5], but they do not remove the burden from scientists to specify many low-
level details of data management. To design an executable workflow realizing the
simulation depicted in Fig. 1, scientists need to specify at least 22 complex work-
flow tasks [15]. This includes 9 low-level tasks that filter, aggregate, sort, split,
and transform data. Here, scientists need to define sophisticated SQL, XPath, or
XQuery statements. Scientists have much knowledge in their simulation domain,
but rather limited skills regarding workflow or data management, and especially
regarding SQL, XPath, or XQuery. So, they often waste time for workflow design
they actually want to spend on their core issue, namely the simulation.

These issues imply a set of essential requirements that have to be met to
ensure a wide adoption of simulation workflow technology. To identify these re-
quirements, we have analyzed several academic use cases described in literature
(see [20,24]), different workflow systems, and a set of real-world simulation pro-
cesses. Beyond the simulation illustrated in Section 2.1, this set of real-word
processes covers the examples described by Fehr et al. [3] and Rommel et al. [16].
In the following, we discuss the most relevant requirements:

— Requirements relevant for workflow design:
e To conquer the complexity inherently associated with simulation work-
flows, we mainly require an abstraction support for the definition of data

2 http://www.gnu.org/software/octave/
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provisioning and data integration tasks that is suitable for scientists. On
the one hand, this abstraction support should release scientists from
defining complex implementation details or a high number of workflow
tasks. On the other hand, it should enable them to work with terms or
concepts they already know from their simulation models, instead of us-
ing workflow or data modeling languages they are not familiar with [11].

e The second requirement arises directly from the desire for coupling sim-
ulations and heterogeneous data environments of different scientific do-
mains. To enable a seamless simulation coupling across arbitrary do-
mains, an abstraction support has to be sufficiently generic, i.e., it has
to consider all individual requirements of the respective domains [8,15].

— Requirements relevant for workflow execution:

e The total size of the data involved in particular simulation runs ranges
from a few MBs to several Terabytes. Furthermore, this may include a
dynamically changing data volume, in particular for coupled simulations.
Such a high and varying amount of data emphasizes the need for an
efficient data processing and for optimization opportunities [2,12,21,25].

e Scientists often make ad-hoc changes to workflows at runtime [22]. This
requires an appropriate monitoring of workflow execution. Further rele-
vant aspects are the reproducibility of a simulation and the traceability
of its outcome, which has led to many provenance technologies [4].

In this paper, we propose a novel approach to solve the requirements regarding
workflow design, which have largely been neglected in previous work. In the
evaluation in Section 5, we nevertheless consider all four requirements.

3 Pattern-Based Simulation Workflow Design

In this section, we describe our approach that uses patterns to alleviate the
design of simulation workflows. The core idea is that scientists select and com-
bine only a few number of simulation-specific process patterns that represent
high-level building blocks of simulation processes. These simulation-specific pat-
terns combine several fine-grained workflow tasks, which reduces the number of
tasks that are visible to scientists. Furthermore, they allow for a domain-specific
and thus easy parameterization. After scientists have parameterized chosen pat-
terns, these patterns need to be transformed into executable workflows. This is
achieved by rewrite rules that recursively transform simulation-specific process
patterns into more concrete workflow patterns, templates of workflow fragments,
or services. Depending on their degree of implementation details, these workflow
patterns, workflow fragments, and services may be provided by persons with
different skills, e. g., by data management experts or workflow engineers. In the
following subsections, we firstly discuss how to facilitate such a separation of
concerns between different persons by organizing patterns in a pattern hierarchy
with several abstraction levels. Afterwards, we illustrate the set of patterns and
how they may be used for workflow design at each abstraction level. Information
about the rule-based approach to pattern transformation are given in Section 4.
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3.1 Pattern Hierarchy and Separation of Concerns

Fig. 2 shows the afore-mentioned pattern hierarchy ranging from simulation-
specific process patterns to executable workflow fragments and data services.
To identify individual patterns and to properly arrange them in the hierarchy,
we have analyzed the same uses cases as for the identification of requirements
discussed in Section 2.2. In the following, we mainly focus on data management
patterns that are relevant for data provisioning in simulation workflows.

As a major contribution, the clear distinction between individual abstraction
levels in the pattern hierarchy enables a separation of concerns according to
the skills of different persons involved in workflow design. Fig. 2 illustrates a
possible separation of concerns between application domain experts (in our case
scientists), simulation process experts, data management experts, and workflow
or service engineers. According to his or her skills, each person may choose the
abstraction levels s/he is familiar with. The person then may provide other per-
sons with templates of parameterized patterns or workflow fragments at chosen
levels. Thereby, the individual patterns serve as medium to communicate the re-
quirements between different abstraction levels. For example, workflow or service
engineers may offer executable workflow fragments or services at the lowest level
of the hierarchy. In doing so, they only need to know the basic data management
patterns provided by data management experts one level above, but they do not
need to be aware of simulation-specific patterns at the two top levels.

With an ascending level of the pattern hierarchy, more information about data
management operations and data management technology is aggregated. Hence,
workflow developers need to know less about such operations and technology
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ters for the simulation of structure changes in bones illustrated in Section 2.1

and may specify more abstract parameter values of patterns. Fig. 3 classifies
parameter values and relates the resulting main classes according to their degree
of abstraction, ranging from simulation-specific to data- or ETL-specific values.
In line with current research efforts, we transfer the core idea of artifact-centric
business process modeling [6,9] to simulation workflows and to corresponding
simulation artifacts, such as mathematical simulation models or simulation soft-
ware. Furthermore, we augment the artifact-centric idea by our pattern-based
approach to workflow design. So, workflow developers may use simulation ar-
tifacts and their properties at different abstraction levels to specify parameter
values of patterns. Additional metadata explicitly describe these simulation arti-
facts. This assists workflow developers in that they may choose values of some of
the pattern parameters from the metadata. In the following, we detail patterns
and their parameters at the individual levels of our pattern hierarchy.

3.2 Simulation-Specific Process Patterns

The top level of the pattern hierarchy shown in Fig. 2 comprises simulation-
specific process patterns that focus on use cases scientists are interested in. Fig. 4
illustrates how such patterns may be used to describe the process of the bone
simulation introduced in Section 2.1. The whole process consists of only four pat-
terns that may be completely parameterized by simulation-specific values. These
values correspond to artifacts scientists know from their domain-specific simula-
tion methodology and are thus familiar with. Major examples of such artifacts
are simulation models or mathematical variables of these models, as well as sim-
ulation methods such as the FEM. As such artifacts are often domain-specific,
ontologies may be a good basis for metadata describing these artifacts [11,26].
Altogether, the strong relation to simulation-specific artifacts and to the use
cases scientists are interested in makes simulation-specific process patterns good
candidates to be selected and parameterized by scientists (see Fig. 2).

The main part of the process shown in Fig. 4 is a Simulation Model Coupling
Pattern having the coupled simulation models for bone structure changes de-
scribed in Section 2.1 as first parameter assigned. In addition, it defines the con-
crete bone to be simulated. The coupling pattern embeds one Simulation Model
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Table 1. Simulation-oriented Data Management Patterns and their parameters

Pattern Parameters (<n..m> indicates cardinality)

Simulation- — Simulation model <1>

oriented Data — Mathematical variables <1..n>

Provisioning — Target <1>: reference to software instance or service
Stmulation- — Simulation models <2>

oriented Data  — Relationship between mathematical variables:
Interoperability e From first to second model <1..n>

e From second to first model <0..n>
— Partitioning mode <0..1>
Parameter — Parameter List <1>
Sweep — Operation <1>: workflow fragment, pattern, or service to
be executed for each parameter in the list
— Completion Condition <0..1>
— Parallel <0..1>: 7yes” / "no”, default is "no”

Realization Pattern for each of the two coupled simulation models, as well as the
order in which they are executed. Such a pattern represents the complete real-
ization of a simulation model, from initial data provisioning over calculations to
result de-provisioning. The whole process executes the bio-mechanical model be-
fore the systems-biological one and repeats these executions for a certain number
of coupling cycles. A further parameter of the overall coupling pattern completes
this control flow definition by assigning the coupling strategy to be applied, e. g.,
the strategy illustrated in Fig. 1. The next parameter defines the daily routines
and its composition of individual motion sequences. In addition, the cycle length
determines the frequency in which the whole process re-iterates among both
coupled simulation models. In our example, we consider a cycle length of one
day and a total duration of five days, each corresponding to the typical working
day of the relevant person. When all cycles, i.e., all days have been simulated,
the process starts the result interpretation by means of a corresponding pat-
tern. The pattern parameters specify which results of which simulation model
shall be interpreted via which interpretation method, e. g., a visualization of the
time-dependent bone density calculated by the systems-biological simulation.

3.3 Simulation-Oriented Data Management Patterns

Table 1 shows examples of simulation-oriented data management patterns that
retain the abstraction level of simulation-specific values for most of their param-
eters. So, they may still be parameterized by scientists. Nevertheless, these pat-
terns focus on use cases related to data management. As depicted in Fig. 2, this
is where simulation process experts come into play who may assist scientists with
orchestrating these patterns in their workflows. The Simulation-oriented Data
Provisioning Pattern abstracts from data provisioning processes for simulation
calculations or output visualizations, e.g., as part of the process patterns Sim-
ulation Model Realization or Simulation Result Interpretation shown in Fig. 4.
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Table 2. Basic Data Management Patterns and their parameters

Pattern Parameters (<n..m> indicates cardinality)

Data Transfer — Sources <1..n>: references to data containers
and — Targets <1..n>: references to data containers
Transformation — ETL processes for sources and targets <0..n>
Data Iteration — Data set <1>: one or a set of data containers

— Operation <1>: workflow fragment, pattern, or service to
be executed for each relevant subset of the data set

— Resources <0..n>: e. g., references to data resources

— Completion Condition <0..1>

— Parallel <0..1>: 7yes” / ”no”, default is "no”

— Data split <1>: e.g., data-specific partitioning mode or
parameters of Data Transfer and Transformation Pattern

— Data merge <0..1>: similar to data split

The data to be provisioned is represented by a simulation model and by a set of
its mathematical variables. In the example depicted in Fig. 1, the mathematical
variables serving as input for the bio-mechanical simulation include its bound-
ary conditions, e. g., the muscle forces. Only the target of the data provisioning
needs to be specified via less abstract software- or service-specific parameter val-
ues, i. e., via a reference to a software instance or to a service that needs the data
as input. Metadata describing software and services (and also data resources) as
simulation artifacts may be based on common repository solutions.

The Simulation-oriented Data Interoperability Pattern defines data dependen-
cies between two simulation models via simulation-specific parameter values [15].
This includes the relationship between their mathematical variables. Furthermore,
a partitioning mode may define whether and how underlying data should be par-
titioned, e.g., to enable parallel executions of subsequent calculations. The Pa-
rameter Sweep Pattern supports processes that iterate over a list of simulation-
specific parameters and execute an operation for each parameter in this list [12].
An optional completion condition defines whether and when the iteration should
be finished before the whole parameter list is processed [7]. Another pattern
parameter indicates whether the operation shall be executed in parallel or not.

3.4 Basic Data Management Patterns

On the way to executable workflows, these simulation-oriented patterns are in-
termediately mapped onto basic data management patterns whose parameters
only may have service-, data-, or ETL-specific values. According to the sepa-
ration of concerns depicted in Fig. 2, data management experts may use their
knowledge to provide such less abstract parameter values or templates of them.
Examples of basic data management patterns are listed in Table 2. The Data
Transfer and Transformation Pattern may implement the Simulation-oriented
Data Provisioning Pattern. The sources and targets of the corresponding data
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provisioning process are specified as data-specific references to data containers,
i.e., to identifiable collections of data, such as database tables or files. Further-
more, the pattern typically covers ETL processes including ETL operations to
extract data sets from the source data containers, to transform these extracted
data sets, and to load the transformation results into the target data containers.
The underlying principle of the Data Iteration Pattern is the iteration over a
data set and the execution of an operation, where this data set serves as input.
The operation may be executed on a set of resources, until an optional completion
condition holds, and either in parallel or not. A data split parameter defines how
to partition the data set among the resources, e. g., to enable parallelism based on
MapReduce [1]. A possible value of this data split parameter is a data-specific
partitioning mode, e.g., the equal distribution of tuples in a database table.
As alternative, this data split may also be defined by means of parameters of
a Data Transfer and Transformation Pattern. In a similar way, a data merge
parameter may define how to integrate the results of the operation back into
the data set. Altogether, this pattern may realize the Simulation-oriented Data
Interoperability Pattern and the Parameter Sweep Pattern (see Section 4.2).

4 Rule-Based Pattern Transformation

The proposed pattern-based approach to simulation workflow design needs to be
complemented by a strategy that transforms abstract patterns into executable
workflows. In the following, we discuss basic design considerations of a rule-based
transformation of patterns. Afterwards, we illustrate this pattern transformation
for the simulation of structure changes in bones discussed in Section 2.1.

4.1 Basic Design Considerations of the Pattern Transformation

The processing model of the rule-based pattern transformation, shown in Fig. 5,
extends some basic ideas of Vrhovnik et al. [25]. It traverses the graph of param-
eterized patterns given by the workflow. For each pattern, the pattern transfor-
mation engine tries to apply rewrite rules. Each rule includes a condition part
that specifies the circumstances under which the remaining parts of the rule
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Hierarchy Level | Patterns and their Transformation to other Patterns or Workflow Fragments
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Fig. 6. Main transformation steps from the simulation-specific process model shown in
Fig. 4 to the executable workflow illustrated by Reimann et al. [15]

may be applied to the pattern. The fragment part of the rule then identifies a
template of a workflow fragment via a query to a workflow fragment library [18].
The action part defines transformation steps that add implementation details to
the workflow fragment. Thereby, this action part may also map parameter values
from high to low abstraction levels as shown in Fig. 3. Finally, the rule applica-
tion replaces the pattern with the resulting workflow fragment. This workflow
fragment may either be executable, which finishes the transformation of the pat-
tern, or it may embed other patterns. In the latter case, the pattern transformer
applies further rewrite rules to the workflow fragment and to its patterns until
all final workflow fragments are executable. In addition, each level of the pattern
hierarchy is associated with a rule sequence defining the set of rules that may be
applied to corresponding patterns and the order in which these rules are tested
for applicability. The first rule in a sequence whose condition part evaluates to
true is applied to a pattern, while all remaining rules are neglected. Note that
rewrite rules are not defined by scientists, but by other experts shown in Fig. 2,
i.e., usually by those that also provide relevant workflow fragments.

4.2 Pattern Transformation in the Example Simulation

Now, we discuss how the pattern transformation is applied to the simulation-
specific process model depicted in Fig. 4. Fig. 6 shows the main transformation
steps over simulation-oriented data management patterns and basic patterns
to the executable workflow. The workflow resulting from the simulation-specific
process model after the transformation steps 1 and 2 consists of three simulation-
oriented data management patterns and one service call. As a result of transfor-
mation step 1, the overall Parameter Sweep Pattern 1 implements the control
flow of the coupling strategy that is specified as a parameter of the Simulation
Model Coupling Pattern shown in Fig. 4. The simulation-specific parameter list
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of the Parameter Sweep Pattern (see Table 1) defines the list of daily routines of
the relevant person. The pattern sequentially iterates over this list and executes
the two embedded patterns for each day. The first embedded pattern, i. e., Param-
eter Sweep Pattern 2, iterates in parallel over the list of motion sequences of the
current day. The operation to be executed for each motion sequence is a service
that implements the bio-mechanical Simulation Model Realization Pattern. The
subsequent Simulation-oriented Data Interoperability Pattern abstracts from the
data integration process required to couple the bio-mechanical and the systems-
biological simulation models. It therefore defines the relationships between their
mathematical variables as described by Reimann et al. [15]. Some patterns may
also be directly mapped to an executable workflow fragment or service without
traversing the whole pattern hierarchy depicted in Fig. 2. In our example, this
is the case for the Simulation Result Interpretation Pattern, which is mapped to
the afore-mentioned final service call (transformation step 2 in Fig. 6).

After transformation steps 3 to 5, the workflow consists of three basic data
management patterns and two service calls as shown in Fig. 6. At this abstraction
level, the patterns are specified mainly via data-, service-, and ETL-specific
parameter values. Finally, rewrite rules of the last transformation steps 6 to 8
transform these basic patterns into executable workflow fragments to create the
executable workflow illustrated by Reimann et al. [15].

5 Evaluation and Discussion

In this section, we discuss the results of our evaluation of the pattern-based
approach to simulation workflow design. This evaluation has been backed by a
prototypical implementation, which we have applied to three real-world simula-
tions. This includes the bone simulation introduced in Section 2.1, as well as the
examples described by Fehr et al. [3] and Rommel et al. [16]. The prototype is
based on the workflow language BPEL [7], on the workflow design tool Eclipse
BPEL Designer?® Version 0.8.0, and on the workflow execution engine Apache
Orchestration Director Engine* (ODE) Version 1.3.5. We use a PostgreSQLS?
Version 9.2 database system to store the metadata of simulation artifacts de-
picted in Fig. 3. For the rule-based pattern transformation depicted in Fig. 5,
we have extended the JRuleEngine® to support rewrite rules and rule sequences
for the three example simulations stated above. In the following, we evaluate
to what extent our approach fulfills the requirements regarding workflow design
and the requirements regarding workflow execution discussed in Section 2.2.

5.1 Assessment of the Abstraction Support

Fig. 7a shows the number of workflow tasks to be specified for the bone simu-
lation introduced in Section 2.1 at the different abstraction levels depicted in

3 http://www.eclipse.org/bpel/

4 http://ode.apache.org/

® http://www.postgresql.org/

5 http://jruleengine.sourceforge.net/
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Fig. 7. No. of workflow tasks and parameters to be specified for the example workflow
at different abstraction levels; The partitioning among different types of workflow tasks
or parameters is shown in pie charts; "DM” means ”data management”

Fig. 6. Furthermore, pie charts in Fig. 7a illustrate the partitioning of these
workflow tasks among abstract patterns and among different types of executable
tasks. With an increasing design complexity, the executable tasks range from
simple loop structures over service calls to complex BPEL assigns or SQL activ-
ities [25]. BPEL assigns implement complex XPath or XQuery expressions, while
SQL activities cover even more sophisticated SQL statements [15]. If scientists
were designing the executable simulation workflow at the lowest abstraction level
as illustrated by Reimann et al. [15], they would need to define a total number of
22 workflow tasks and many complex implementation details. In particular, this
would include 9 sophisticated tasks for assigns and SQL activities with complex
XPath, XQuery, or SQL statements. Since scientists are typically not familiar
with defining such low-level statements, they would not accept this huge design
effort. As shown in Fig. 7a, the three pattern abstraction levels depicted in Fig. 6
not only reduce the complexity of workflow tasks, but also their total number
to 5 and 4, respectively. This constitutes a total reduction by a factor of 5.5.
We have furthermore analyzed the number and complexity of pattern parame-
ters to be specified at each of the three pattern abstraction levels. Fig. 7b shows
these numbers of pattern parameters and illustrates their partitioning accord-
ing to their complexity, i.e., according to the parameter classes given in Fig. 3.
With an increasing abstraction level, the total number of pattern parameters
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is nearly divided in half. The basic data management patterns mainly require
data- and ETL-specific parameter values, namely 13 of all 19. The other abstrac-
tion levels however completely neglect these complex parameter classes. In fact,
they mainly consider simulation-specific parameter values that abstract from any
implementation details and that are particularly suitable for scientists.

With respect to the other simulation examples described by Fehr et al. [3]
and Rommel et al. [16], we have gained nearly similar results as reported in
Fig. 7a and 7b. The reduced number and complexity of both workflow tasks
and pattern parameters represent a considerable simplification for simulation
workflow design. The distribution of these numbers and of the complexity among
individual abstraction levels also complies with the skills of different persons
involved in workflow design, as it is depicted in Fig. 2. This finally shows the
suitability of the separation of concerns introduced by our pattern hierarchy.

5.2 Generic Data Management in Workflows

We also used our prototype to asses whether our patterns are generic enough to
cover all relevant data provisioning steps in different simulations [3,16]. In the
example described by Rommel et al. [16], we have been able to use the differ-
ent simulation-specific process patterns depicted in Fig. 4 to describe the whole
simulation process. This is because these patterns cover common use cases in
simulations. In a similar way as shown in Fig. 6, we also mapped them to the Pa-
rameter Sweep Pattern and Simulation-oriented Data Interoperability Pattern,
as well as to the Data Iteration Pattern. Model reduction, i.e., the reduction of
the number of degrees of freedom in a simulation model to reduce computational
costs, is another important issue for simulations [3]. This is one of the rare use
cases that benefits from a new simulation-specific process pattern incorporating
domain-specific parameters. These pattern parameters are (1) the simulation
model to be reduced, (2) the concrete reduction method to be employed, (3) the
desired number of degrees of freedom, and (4) the required quality of the reduced
model. The patterns at lower hierarchy levels nevertheless consider more generic
parameters that are independent of the concrete simulation domain. Using our
prototype, we again mapped the domain-specific model reduction pattern to the
Parameter Sweep Pattern and subsequently to the Data Iteration Pattern.

5.3 Efficient Data Processing and Optimization

The rule-based pattern transformation may cause an overhead when applied at
workflow runtime. We have carried out experiments to evaluate this overhead.
Our prototype ran on a 64 bit system with 32 GB RAM and an Intel Xeon CPU
with 8 cores. We have run the pattern transformation for the 8 transformation
steps depicted in Fig. 6 100 times and have determined its average duration. To
assume a worst-case scenario, our implementation of the pattern transformation
checks 100 rules for each transformation step before the 100" rule is applied. The
resulting worst-case duration of the pattern transformation is 0.36 seconds. We
have also measured the duration of the executable workflow for the simulation of
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Table 3. Overhead of pattern transformation for its worst-case duration of 0.36 seconds

Number of tuples 1 million 10 million 100 million
Workflow duration 140 seconds 1410 seconds 14095 seconds
Worst-case overhead 0.26 % 0.026 % 0.0026 %

structure changes in bones [15]. The workflow and the simulation services it calls
ran in parallel on seven computers, each equipped with the hardware resources
described above. We have executed the workflow 10 times and for a varying num-
ber of tuples as Pandas typically stores them in its output database table, i.e.,
1, 10, and 100 million tuples. Table 3 illustrates the respective average workflow
durations. Furthermore, it shows the overheads caused by the pattern transfor-
mation for its worst-case duration of 0.36 seconds. The maximum overhead is
0.26 % and thus negligible compared to the workflow duration.

The rule-based approach for pattern transformation furthermore enables a
seamless integration of rule-based optimization decisions [12,25]. When we in-
crease the number of tuples Pandas stores in its database to 1 billion, our mea-
surements reveal that the workflow realizing the simulation of structure changes
in bones [15] lasts about six hours. The ETL processes that are depicted in
Fig. 1 and that are part of this workflow may be executed independently for each
nodal point of the FEM grid and thereby drastically reduce the data sizes. This
makes these ETL processes good candidates to be realized via MapReduce [1,10].
Rewrite rules may choose such more efficient realizations at workflow runtime.

5.4 Monitoring and Provenance Support

While our approach reduces the number and complexity of workflow tasks that
are visible to scientists, this may cause a problem for monitoring and prove-
nance. The workflow execution environment is only aware of the more complex
executable workflows resulting from the pattern transformation. This may lead
to a missing correlation between patterns visible in a workflow design compo-
nent and audit or provenance information captured by an execution environment.
Scientists might be confused when they monitor workflow executions or try to re-
produce simulations. A possible solution to this problem could be a view concept
on workflows [23]. After each application of a rewrite rule in the pattern trans-
formation, the input pattern is not replaced by the resulting workflow fragment,
but it is defined as view on this fragment. Such views enable an aggregation of
audit or provenance information to recover their correlation to individual pat-
terns [23]. Furthermore, views also allow scientists to look into specific low-level
details of data provisioning tasks if this is required for monitoring purposes.

6 Related Work

According to our focus on data provisioning in workflows, we now discuss re-
lated work for data- and artifact-centric business process modeling, for workflow
patterns, as well as from the areas of scientific workflows and data integration.
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Artifact-centric approaches to business process modeling leverage data as first-
class citizens in processes [6,9]. The data is represented by so-called business
artifacts that correspond to business-relevant objects, e.g., a customer order or
an invoice. The artifacts manage relevant information about these business ob-
jects and about their life cycle, and they control how services may be invoked
on the objects. As described in Section 3.1, we transfer the core idea of busi-
ness artifacts to simulation workflow design and to simulation artifacts, e.g.,
mathematical simulation models. In addition, we augment the artifact-centric
idea by our pattern-based approach to workflow design and by the separation
of concerns with clearly distinguished abstraction levels as depicted in Fig. 2.
From the perspective of scientists, the patterns significantly reduce both the
number and complexity of workflow tasks. This is an important issue for the ac-
ceptability of simulation workflow technology. Altogether, the combination of an
artifact-centric approach with explicitly described patterns of typical workflow
tasks considerably improves the way of how to design simulation workflows.

Russel et al. discuss common workflow data patterns [17]. The authors primar-
ily consider fine-grained patterns serving as benchmark to evaluate and compare
different workflow languages or workflow systems. For instance, some of the pat-
terns deal with the question whether workflow activities may exchange data by
value or by reference. Due to their less technical background, scientists would
typically not accept such fine-grained patterns as building blocks for simulation
workflow design. Instead, these patterns rather classify implementation details
of executable workflow fragments at the lowest level of our pattern hierarchy.

Related work from the scientific workflow domain makes use of ontologies to
allow for an abstract parameterization of scientific workflow tasks, i.e., the pa-
rameters of these tasks correspond to domain-specific terms or concepts known
from the ontologies [11,26]. Furthermore, logical rules may define mappings of
such abstract workflow tasks or ontology terms to executable workflows, services,
or low-level data types [11,13]. However, the mentioned approaches only moder-
ately reduce the number of workflow tasks that are visible to scientists, while
our patterns significantly reduce both the number and the complexity of these
tasks. Furthermore, the sole use of ontologies often entails that these approaches
are restricted to certain application domains, e. g., life sciences or geophysics. In
contrast and as discussed in Section 5.2, our patterns are generic enough to be
applied in various domains of simulation applications.

Federated information systems integrate diverse data sources and provide a
uniform data schema and a uniform query language [19]. Such uniform schemas
and languages however still do not remove the burden from scientists to specify
low-level details in terms of complex queries, e.g., based on SQL or XQuery.
Furthermore, federated schemas often lack the generality needed to support dif-
ferent scientific domains. Common ETL tools or approaches to schema mapping
and matching may help to define ETL processes in basic data management
patterns [14]. However and as discussed in Section 3, scientists rather prefer
simulation-oriented data management patterns or even simulation-specific pro-
cess patterns that do not explicitly consider ETL processes.
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7 Conclusion and Outlook

Simulations often involve multiple, highly complex data provisioning and data
integration tasks, particularly when they are coupled among different scientific
domains. In order that scientists are able to concentrate on their core issue,
namely on simulation modeling, an abstraction support for this complex data
management is indispensable. In this paper, we have presented a novel approach
for a pattern-based design of the data provisioning in simulation workflows that
conquers the data complexity in such workflows. A pattern hierarchy with dif-
ferent abstraction levels enables a separation of concerns according to the skills
of different persons involved in workflow design. For example, scientists select
and parameterize a few abstract, simulation-specific process patterns to only
describe the core aspects of simulation processes. We use a transformation ap-
proach based on a set of rewrite rules that map such abstract process models and
patterns onto executable simulation workflows. A prototypical implementation
and its application to several simulation applications, e.g., to bio-mechanical
and systems-biological problems, has served as basis to evaluate this approach.
The patterns significantly reduce both the number and the complexity of work-
flow tasks that are visible to scientists. The generality of patterns furthermore
enables their seamless application in various simulation domains.

As part of future work, we will even increase this generality by working on
additional patterns and by applying our approach to other application domains
than simulations, e. g., to business processes. To further evaluate the abstraction
support and user satisfaction offered by our approach, we will conduct usability
studies with real scientists. Furthermore, we will investigate how to integrate
optimization decisions into rewrite rules to increase the efficiency of workflows.
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