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Abstract. In this work we deal with the issue of optimizing the global
Quality of Service (QoS) of a Grid Federation by means of an aggregation
model specifically designed for intelligent agents assisting Grid nodes.
The proposed model relies on an algorithm, called FGF (Friendship and
Group Formation), by which the nodes select their partners with the
aim of maximizing the QoS they perceive when a computational task re-
quires the collaboration of several Grid nodes. In the proposed solution,
in order to assist the selection of the partners, a suitable trust model has
been designed. Since jobs sent to Grid Federations hold complex require-
ments involving well defined resource sets, trust values are calculated for
specific sets of resources. We also provide a theoretical foundation and
some experiments to prove that, by means of the adoption of the FGF
algorithm suitably supported by the proposed trust model, the Grid Cap-
ital (which reflect the global QoS) of the Grid Federation is eventually
improved.

1 Introduction

Grid Computing [16] has recently evolved to the Federated Grids architec-
ture [25,38], in which Grid brokers [1,16] and Grid institutions can share re-
sources among different types of Grid infrastructures, resulting as a more flexible
approach than that derived by the classical and well known concept of Virtual
Organization (VO).

The development of Federated Grids has been strongly encouraged by the
increasing complexity of Grid tasks [5] submitted by companies and institu-
tions [45] and supported by the quick and recent advancements of Virtualization
technologies [4,26,41]. In particular, such improvements have introduced more
flexibility in managing resources, software deployment activities, configuration of
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software platforms, and so on. As a consequence, Grid infrastructures are char-
acterized by a high dynamic, such that companies and institutions are allowed to
join or leave different Grid infrastructures in a very easy way, reconfigure their
own nodes and resources, modify their own role into the VO, their decisional
processes and so on.

In the above scenario, Grid users are encouraged to send job requests char-
acterized by more and more complex requirements, e.g. jobs might require the
execution of “inter-grid” workflows, composite services, etc. Consequently, on
this base, federated Grid brokers have to deal with complicated tasks of resource
allocation by evaluating requirements involving a huge set of federated resources
in order to satisfy job requirements [8]. This is mainly due to the fact that Grid
Federations are intended to exploit the potential collaboration between Grid VOs
which are able to provide highly specialized, and not trivial, contributions to the
result of the expected computation.

Furthermore, federated resources also need to be allocated by paying par-
ticular attention to use them in an efficient fashion. For instance, complex job
requirements must be satisfied first, and at the same time, choices that might
cause unbalanced resources allocations or poor performances should be avoided
as much as this is possible. It is even conceivable that the establishment of
Grid Federations brings the participants to join with a highly “competitive”
scenario. Although competition usually leads better performances, it enhances
the presence of possible malicious behaviors. Trust-based systems can help to
solve and/or mitigate this problem and, therefore, it is important that compet-
itive Grid Federations are supported by a well suited trust model [7,10,23] in
order to quantify the level of performance and reciprocal trust of Grid nodes.

Basing on the considerations above, in this work we propose an approach
aiming to maximize the measured “performance” or, in other words, the global
Quality of Service (QoS) perceived within the Grid Federation. In this approach
we focus on the concept of resource sets, i.e. the sets of computational resources
characterizing complex jobs in Grid Federations. The proposed solution is based
on the use of software agents [17], which, in our approach, manage every node of
the Grid Federation. Moreover, the concept of agent aggregation (i.e. groups and
friendship) is exploited as the basis of collaboration between federated nodes. By
combining the use of a Trust model, which provides to compute some measures of
reliability and reputation, in turn combined in a unique synthetic trust measure,
we propose an algorithm for agent Friendship and Group Formation (FGF) in
order to maximize the “global utility”, i.e. the Grid Capital of the whole Grid
federation. Finally, we prove that the execution of the FGF algorithm, which
is supported by the dissemination of trust information, allows Grid federated
Brokers/Nodes to improve both individual and global satisfaction.

The plan of the paper is as follows. In Section 2 we describe a reference grid
scenario for competitive agents. Then, Section 3 introduces our trust model.
Section 4 presents the FGF algorithm for forming friendships and groups, while
in Section 5 we provide some theoretical results which prove the validity of
the proposed FGF algorithm. In Section 6, some experiments devoted to verify
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the effectiveness of the FGF algorithm are presented. Finally, in Section 7 we
discuss some related work and in Section 8 draw our conclusions and introduce
our ongoing researches.

2 The Competitive Grid Scenario

This work is based on a generic scenario in which a set N of Grid Nodes provide
Grid Services within a Grid Federation [44] to a set C of clients (Grid Users).

Grid Services on Competitive Grids. A Grid Service generally involves the ex-
ecution of workflows [46] and/or the provisioning of composite services [36],
therefore a certain amount of different resources is generally required for their
execution, therefore, we assume to classify each Grid Service on the basis of
such required resources. More in detail, we model the set of heterogeneous re-
sources which can be found on N as a finite number of R incremental sets of
resources, where the last set (i.e. the R-th) includes all the resources belonging
to N . Moreover, the Grid scenario we take into consideration is “competitive”
and we assume that when the generic client cj ∈ C benefits for the service sr

(with 1 ≤ r ≤ R) provided by ni, it will have to pay a fixed price p to ni based
on the set r of consumed resources.

Agents, skills and feedbacks. We also assume that each Grid node is assisted
by a software agent [17], supporting it in providing services to Grid Users. Let
A be the set of these agents, where the agent ai ∈ A is associated with the
node ni ∈ N . Furthermore, each agent ai is characterized by a “skill” mapping,
σi(r) ∈ [0, 1] ⊆ R, where 1/0 means the maximum/minimum quality in providing
a service requiring that specific set of resources (i.e. r). When the client cj
benefits from the service sr provided by the agent ai (i.e. node ni), it returns a
feedback f to ai, where f is a real value belonging to [0..1], such that 1 means
the maximum satisfaction perceived by cj for sr and, vice versa, 0 means the
minimum perceived satisfaction.

Agent aggregation. In the presented model we rely on the concepts of agent
friendships and groups, by supposing that each agent ai maintains a set Fi of
friend agents, such that Fi ⊆ A, and a set of groups Gi = {gi1 , . . . , gik} where⋃

1<l<k gil ⊆ A.

Agent collaboration for service provisioning. To satisfy the request for a service
sr, the agent ai can require the support of another node nj (i.e. aj) that in
turn can accept or refuse it1. If aj accepts and it is a friend of ai or it is in
the same group with ai, this contribution will be provided for free; otherwise,
aj will require the payment of a fee ps to the agent ai after the service has
been consumed. In order to select the best agents which can collaborate for the
service sr, the agent ai can ask the opinion of other agents. In particular, ai

1 We assume that each agent can perform at most X support requests.
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can send a request to an agent ak to obtain a recommendation recj(r) about
the skill σj(r) of aj for a given service sr. In turn ak can accept or refuse the
request for recj(r)

2. If ak accepts and it is a friend of ai or it is in the same
group with ai, this recommendation will be provided for free; otherwise, after
the recommendation has been provided by ak, a price pr should be paid by ai
to ak. The final choice is performed by the agent ai based on the Trust model
described into Section 3, which takes into account also the reliability of the node
aj . It is updated by taking into account the feedback provided by the Grid User
who consumed the service.

Looking for agents and groups. In such a scenario, the names of agents, groups
and agents belonging to each group have to be appropriately registered, such that
their names and locations can be easily retrieved. For this aim we assume that
those entities are registered by means of a service named Directory Facilitator
(DF ), which in turn is published by the various Grid VO (Virtual Organizations)
by means of the service infrastructure GIS (Grid Information Services) [11].

3 The Trust Model

In the described grid context, the presence of competitive agents compels us to
also consider their possible misbehaviors. For instance, an agent could receive
from another agent (i) less resources from those corresponding to its actual skill
coefficient σ or (ii) an unfairly recommendation about the skills of a third agent.
To manage such misbehaviors, in multi-agent environments a common solution
is represented by trust systems [24]. To this purpose, in the proposed model, for
each agent aj to which it interacted in the past, each agent ai maintains a triple
of values (α, β, γ), respectively called Reliability, Honesty and Reputation that
belong to [0, 1] ∈ R.

Reliability (αij(r)). The first value, denoted by αij(r), is the reliability of aj
in providing a set r of resources, and represents how much ai trusts aj in its
capability to provide resources for a service sr. More in detail, for each feedback
f received by ai for a service s

r, if ai was supported in its task by aj , the feedback
f includes a contribution f∗

j due to aj , that will be assigned to aj. Obviously, if
ai completely delegated aj to provide sr, then it will be fj = f = f∗

j . Finally, the
reliability is computed as the arithmetical mean of all the feedback received by
ai for all the services which required the set of resources r and the collaboration
of aj :

αi,j(r) =

⎧
⎨

⎩

1
l

∑l
m=1 f

m
j if l �= 0

α if l = 0

(1)

2 We assume that each agent can perform at most Y recommendation requests.
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Honesty (βi,j(r)). The second value, denoted by βi,j(r), is referred as the honesty
of aj in giving a recommendation to ai about the capability of another agent
to provide a set r of resources. It is computed by comparing the feedbacks
fx1 ,...,fxl

obtained by ai for some agents axk
suggested by aj . In other words, it

is the arithmetical mean of all the difference between each fk and the associated
recommendation rec l

j provided by aj about some agents axl
. More formally:

βi,j(r) =

⎧
⎨

⎩

1
l

∑l
m=1 |recmj (r) − fxm(r)| if l �= 0

β if l = 0

(2)

Reputation (γij(r)). The last value is the reputation of aj with respect to the set
of resources r, denoted by γj(r), representing how much the agents interrogated
by ai estimated the capability of aj about the resource set r provided by aj . The
reputation γij(r) is computed as the mean of all the recommendations that each
other agent provided to ai about aj on r weighted by its honesty value. More
formally:

γi,j(r) =

⎧
⎨

⎩

1
l

∑l
m=1 rec

m
j (r)βim(r) if l �= 0

γ if l = 0

(3)

Note that in the equations described above, the values α, β and γ, called “cold
start” values, are used in the case any interaction with other agents occurred in
the past for ai with respect to the considered set of resources r as, for instance,
for the new coming agents.

Finally, it is possible to compute the synthetic measure of trust of ai about
an agent aj with respect to the set of resources r, denoted by τi,j(r), as:

τi,j(r) = δi · αi,j(r) + (1− δi) · γj(r)
where δ ∈ [0, 1] ⊂ R is used to weight the relevance assigned by ai to the
reliability with respect to the reputation.

4 The Friendship and Group Formation (FGF) Algorithm

As described in Section 2, when an agent ai asks for a contribution or a recom-
mendation to another agent aj which is a friend or a member of its same groups,
it will be for free. The difference is that in the first case ai and aj mutually
accepted to become friends in the past, while in the latter aj could be only a
group mate and not also a friend for ai.

In the above context, ai can build two sets of preferred agents for each set of
resources r, namely:

– a set PCr
i storing the preferred contributors agents which ai interacted in

the past for a contribution falling in r and having (i) the X highest trust
values τ(r) and (ii) a trust value greater than the threshold τmin.
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– a set PRr
i storing the preferred recommenders agents which ai interacted in

the past for a suggestion falling in r and having (i) the Y highest honesty
values β(r) and (ii) a honesty value greater than the threshold βmin.

Basing on the definition of trust and honesty provided in Section 3, in order
to maximize the performance of the services provided by ai in collaboration with
other agents, its own sets Fi (friends) and g ∈ Gi (groups) should only include
the agents belonging to PCr

i and PRr
i for all the set of resources:

⋃

r∈R

(
PCr

i ∪ PRr
i

)
= Fi

⋃( ⋃

g∈Gi

g
)

(4)

In order to adopt a convenient notation, we will use the following definitions:

PAr
i = PCr

i ∪ PRr
i ; AGi =

⋃

g∈Gi

g

and therefore Equation 4 can be written as

⋃

r∈R

PAr
i = Fi

⋃
AGi (5)

In particular, when Equation 5 is not verified, we have to take into account
the two cases described below.

Loss of performance (L):
(⋃

r∈R PAr
i

) − (
Fi

⋃
AGi

) �= ∅, i.e. there are
some agents belonging to the set

⋃
r∈R PAr

i but not to the set Fi

⋃
AGi. The

consequence is represented by the possible loss of performance, in providing
Grid Services, due to the selection of one of these agents. The issue above can be
measured by calculating, for the set

⋃
r∈R PCr

i (resp.
⋃

r∈R PRr
i ), the difference

|τi,j(r∗)−τi,altj (r
∗)|, where r∗ is the resource sets in which aj is a preferred con-

tributors (resp. preferred recommender) agent and altj is the agent in Fi

⋃
AGi

having the best trust (resp. honesty) value on r∗. Therefore, we compute the
factor Loss of Performance (Li), for an agent i, as the average of the sum of the
two contributions described above:

Li =
L
(τ)
i + L

(β)
i

2

where

L
(τ)
i =

∑

j∈
(⋃

r∈R PCr
i −Fi

⋃
AGi

)
(
τi,j(r

∗)− τi,altj (r
∗)
)

‖⋃r∈R PCr
i − Fi

⋃
AGi‖

and

L
(β)
i =

∑

j∈
(⋃

r∈R PRr
i−Fi

⋃
AGi

)
(
βi,j(r

∗)− βi,altj (r
∗)
)

‖⋃r∈R PRr
i − Fi

⋃
AGi‖
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If aj is a preferred contributor (recommender) agent on more resources sets,

r∗ will be the set having the highest trust (honesty) value, then the factor L
(τ)
i

(resp. L
(β)
i ) is obtained by computing the average of all these contributions.

Additional Cost (C):
(
Fi

⋃
AGi

)− (⋃
r∈R PAr

i

) �= ∅. It means that some
agents belong to the set Fi

⋃
AGi but not to the set

⋃
r∈R PAr

i . In this case we
measure the ratio of agents that will be never contacted by ai to obtain help for
free by computing the factor Additional Cost as:

Ci =
‖ Fi

⋃
AGi −

⋃
r∈R PAr

i ‖
‖ Fi

⋃
AGi ‖

As a consequence, we can measure the “disadvantage” of ai as the average of
the sum of the factors Lτ

i , L
β
i and Ci as follows:

Di =
Lτ
i + Lβ

i + Ci

3
(6)

4.1 The FGF Algorithm

Here we provide an algorithm to be executed by each agent ai in order to mini-
mize, during various epochs, the disadvantage Di provided by Equation 6.

We assume that the period of time between two consecutive epochs is set to a
pre-fixed value T and that, in each epoch, some preferred agents join with the set
Fi

⋃
AGi to replace agents having the worst trust or honesty values. The FGF

algorithm is composed by two parts: the former (Task A) is a procedure designed
to improve the coefficient Di given by the Equation 6 by means of some requests
which shall be initiated by the agent executing the procedure itself. The second
(Task B) is designed to manage the requests coming from the other agents due
to execution of the Task A.

Task A
Each agent ai periodically executes the task A to obtain the friendship or the
membership in a group of Gi for those agents belonging to the set

⋃
r∈R PAr

i but
not yet to the set Fi

⋃
AGi. The Task A is composed by the following ordered

sequence of steps (refer to Figure 1):

1. The sets Fi

⋃
AGi, and

⋃
r∈R PAr

i are computed (Figure 1, step 1).

2. A friendship request is sent to each agent aj ∈ (⋃
r∈R PAr

i − Fi

⋃
AGi

)

(Figure 1, step 2).
3. If aj accepts the friendship request, then it is added to Fi (Figure 1, step 3).
4. If aj does not accept the friendship request, then ai executes the following

steps:

(a) the set Gj of all the groups having aj as a member is required by ai to
the DF (for a description of the DF see Section 2).

(b) for each group g ∈ Gj , aj computes the disadvantage D∗
i .

(c) a joining request is sent to the group g ∈ Gj (Figure 1, step 4) such that
D∗

i < Di and D∗
i is minimum.
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1.

Computing Fi and Gi

Agent a

4.

Joining request for a group

5.

Adding an accepted

group / removing

the worst friend

3.

Adding an accepted friend /

removing the worst friend

6.

Call for a new group

7.

Formation of a new group with an accepting agent

2.

Friendship request

Gi

Fi

Ci

Fig. 1. The task A of an agent

(d) If g accepts the membership request then g is added to Gi (Figure 1,
step 5), otherwise aj is added to a set Ci.

5. If Ci is not empty, then ai sends a call for a new group (Figure 1, step 6) to
all the agents belonging to it. If some agents agree with constituting a new
group, then it is formed (Figure 1, step 7) and registered to the DF.

6. Whenever an agent aj is added to the set Fi, then an agent ak, the worst
friend, is removed from Fi (Figure 1, steps 3 and 5). The agent ak is selected
as follows:
– if aj ∈ PCr

i , then select ak �∈ (⋃
r∈R PAr

i

)
having the worst trust value

τi,k(r) or
– if aj ∈ PRr

i , then select ak �∈ (⋃
r∈R PAr

i

)
having the worst honesty

value βi,k(r).

Task B
Task B is a set of three subtasks designed to manage the friendship requests
of the other agents, as well as the requests of joining that other agents send to
groups with which ai is joined or is a leader (administrator). The execution of
one of these subtasks depends both on the role of the agent and on the nature
of the received request, as specified in the following.

– Friendship Request. When such a request coming from an agent aj arrives
to an agent ai then ai:
1. computes a new disadvantage D∗

i by adding the agent aj to the set Fi

and removing an agent ak as described by step 5 of Task A (Figure 2,
Step 1).
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Agent i

2.

Voting for acceptin

an agent in a group

3.

Evaluating a request for a new group

1.

Accepting a new friend based on Di

computation and removing the worst

friend with an accepted

Gi

Fi

Fig. 2. The task B of an agent

2. will accept the request of aj it D∗
i ≤ Di. Otherwise, the request will be

refused.
– Membership Request.When such a request coming from an agent aj arrives to

the administrator of a group g (Figure 2, Step 2), it requires a vote (positive
or negative) to all the agents belonging to g. The request will be accepted
by majority, otherwise it will be refused. Each agent ak will give a positive
vote if the insertion of aj in the group g will not increase the disadvantage
Dk (Figure 2, step 3).

– Call for a new group. Such a request coming from an agent aj is accepted by
ai if the insertion of aj in the set Fi

⋃
AGi does not increase the disadvantage

Di (Figure 2, step 3).

5 Theoretical Results

In this Section we theoretical prove the benefits coming from the adoption of the
described friendships and groups model as well as the FGF algorithm presented
in Sections 3 and 4.

To this purpose, let the Grid Capital (GC) be the mean value of all the

contributions (1−Di) given by each agent ai, computed as GC =
∑

ai∈A(1−Di)

‖A‖ .

The Grid Capital increases at each iteration of the FGF algorithm because the
FGF is able to optimize the global grid utility by searching new relationships
among agents.

Theorem 1. The Grid Capital increases at each iteration of the FGF algorithm.

Proof. Taking into account the activities performed by the agent ai at each
iteration of the Task A (Section 4), we obtain that Di: (i) increases if one or
more preferred contributor or recommender agents accept its joining request; (ii)
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is unvaried; (iii) decreases if one or more preferred contributor or recommender
agents exit from Fi or from a group belonging to Gi. Therefore, let aj be a
preferred contributor or recommender agent in a resources set r∗. The agent
aj will exit from Fi or from a group belonging to Gi only if ai is not one of its
preferred contributors or recommenders agents and it implies thatDj decrements
by 1, while Di will increase of τi,j(r

∗) − τi,altj (r
∗), that is lesser than 1, due to

the replacement of aj with the best alternative altj . Consequently, we can derive
that the sum of all the agent disadvantages decreases at each iteration, while the
sum of all the contributions (1−Di) increases and this proves the Theorem 1.

In order to specify the global trustworthiness that an agent ai receives from
the whole agent community in a resources set r, we assume that: (i) let the Merit
of an agent ai in the resources set r (ϕr

i ) be the number of agents for which ai is
preferred as contributor or recommender; (ii) let the Expected Gain of an agent
ai (ωi) be the expected gain of ai at a given step; (iii) let Pi(x) be the expected
value of the probability distribution such that ωi = x .

Based on this assumptions, we can state that if ai and aj are two agents, such
that ϕr

i < ϕr
j at a given iteration, then the number nci of clients contacting ai

for a service request falling in the resources set r will be lesser than the number
ncj of clients contacting aj. It seems to be a reasonable consequence because if
ϕr
i < ϕr

j , this implies that the global satisfaction of the agent community for the
ai performances is lesser than for aj . Since the global satisfaction of the agent
community is based on the clients feedbacks, it is reasonable to suppose that
similarly also the clients will prefer to contact ai instead of aj . In other words,
the choices of the clients reflect as a mirror the choices of the agents. It is true
when the trustworthiness of an agent, represented by the number of other agents
that consider it as a preferred interlocutor, actually capture its expertise. The
mirror assumption can be considered as much valid as (i) the agent trust models
are strictly based on the clients’ feedbacks, similarly to that presented in Section
3 and (ii) reflects the real situation as much as the adopted trust model is able
to capture the actual expertises of the agents.

Theorem 2. For each pair of agents ai and aj, such that at each iteration
ϕr
i < ϕr

j , the expected gain ωi will be lesser than the expected gain ωj.

Proof. Supposing as valid the theorem statement, it implies that the number
nci of clients contacting ai for a service request related to r will be lesser than
the number ncj of clients contacting aj. Consequently, the probability Pi that
a contribution or a recommendation related to r can be requested by other xi

agents to ai is lesser than the corresponding probability Pj that xj agents can
require it to aj . Similarly, the expected number yi of agents contacted by ai for
the resources set r is greater than the expected number yj of agents contacted by
aj ; it is due to the high probability that the expertise of ai is smaller than that
of aj . For sake of simplicity, suppose that a contribution or a recommendation
have the same price p∗, thus at the end of the current iteration the expected
gain ωi is ui · p+ xi · p∗ − yi · p∗, that is smaller than the corresponding gain ωj

for the agent aj and this proves the Theorem 2.



A Qos-Aware, Trust-Based Aggregation Model for Grid Federations 287

6 Experiments

In this Section we present the results of some experiments by which we study
the behavior of the proposed model as a function of the parameters previously
introduced. More in detail, the results shown in this Section have been obtained
by a set of simulations performed on the Octave numerical tool [22] and based
on a set of parameters that we summarize in Table 1.

Table 1. Simulation parameters

Simulation Parameter Value

Nnodes 1000
Ngrids 10
r sets {r1, r2, r3}
No. of HP Grids G1–G4

No. of MP Grids G5–G7

No. of LP Grids G8–G10

H.P. feedbacks, (range of gen. values) {0.6 . . . 0.8}
M.P. feedbacks, (range of gen. values) {0.4 . . . 0.6}
L.P. feedbacks, (range of gen. values) {0.1 . . . 0.4}
Recommendations (range of gen. values) τ ± (0.1τ )
Average no. of generated Feedbacks (per step)

{
N
10
. . . N

2

}

Average no. of generated Reccomendations (per step)
{

N
10

. . . N
2

}

(α, β, γ) (0.5, 0.5, 0.5)

Average no. of friends (random) � √
N

Average no. of groups � N
2

Average level of group membership (random) �
√

N
2

for T = 1 : END

advance_epoch() // It serves as key for collected data

simulate_feedbacks() // Parallel

simulate_recc() // Parallel

update_tau_for_all_nodes() // Parallel

update_disadvantage_for_all_nodes() // Parallel

for a = 1 : N

task_A(a); // Functions of Task B are consequently invoked.

endfor

endfor

Fig. 3. Simulation flow

We simulated (1) a Grid federation composed by 1000 nodes equally dis-
tributed into 10 different Grid Virtual Organizations,G1–G10, each one exposing
different performance levels, i.e. High performance (HP), Middle Performance
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 0
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Quartiles
Median
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Median

Fig. 4. Disadvantage (D). Min, 1st Quartile, Median, 3th quartile, Max. Left: X=Y=10
Right: X=Y=40, τmin = βmin = 0.2

Fig. 5. Median value of disadvantage, Left: τmin = βmin = 0.2. Right: τmin = βmin =
0.5

(MP), and Low Performance (LP). The term “performance” is used in this con-
text to indicate the level of simulated reliability of the considered Grid infras-
tructure or, in other words, of the related nodes providing services. Therefore,
the different levels of performance are simulated by generating different values
for feedbacks – and, on the consequence, different values of recommendations –
for different services.

Since we were interested to confirm the theoretical results provided into the
previous Section about a lowering of the Disadvantage (D) (i.e. a rices of the

average Grid Capital GC =
∑

ai∈A(1−Di)

‖A‖ ) caused by the execution of the FGF

algorithm presented into Section 4, we did not make any distinction between
resource sets among different Grids. Then we assumed, as shown into Table 1,
that all the Grids have the same “bag” of resource sets, r1, r2, r3. Moreover,
Table 1 also shows the average number of friends and groups. In particular, the
“average level of group membership” indicates the average number of groups to
which the Grid nodes have been attached during the network generation.

To let the reader better understand how we simulated the proposed model,
we provide in Figure 3 a very simple listing of pseudo code, which represents
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the basic simulation flow we employed for the experiments. The code is serial for
that concerning the execution of taskA, but we have made parallel the code for
which no critical races can occur, indicating them as Parallel into Figure 3 3.

We report into Figure 4 the median values, quartiles and outliers of the Dis-
advantage for a set of simulations for which we set τmin = βmin = 0.2, i.e. the
minimum value of trust and honesty to select the set PC and PR (see Section 3).
We report only the first five steps of the simulation because the trend stabilizes
very quickly and, although the initial groups and friends are initially random,
after the first step of execution of the Task A the average disadvantage becomes
very low. While on the left part of Figure 4 we present results for (X = Y = 10),
where X and Y are the maximum size of the sets PC and PR (see Section 3),
the results shown on the right concern (X = Y = 40). We observed that the
median value of the disadvantage has a downward trend, thus confirming the
theoretical results presented into the previous Section 5. More important, we
remark that, as the sets PC and PR grow in size (from (X = Y = 10) – left
part of Figure 4 to (X = Y = 40) – right part of Figure 4), the median (so the
quartiles) assumes lower values very quickly, which is an expected behavior.

Furthermore, the behavior explained above is better described by results pro-
vided into Figure 5, on which we plotted only the median value of the Disadvan-
tage, and X and Y ranging from 10 to 40 by steps of 10. Moreover, by comparing
the results on the left part of Figure 5 with those shown in the right part of Fig-
ure 5, we observed that the more selective is the parameter τmin (i.e. βmin) (i.e.
the minimum value of trust (i.e. honesty) to put a node into the set PC (i.e.
PR), the greater will be, in average, the disadvantage. Also this behavior seems
to be conform with the described model and theoretical results.

Summarizing, the results of the experiments presented in this Section clearly
show as the proposed model is correct and the execution of the FGF algorithm,
supported by the adopted trust model, it is effectively capable to allow Grid
federations to improve their provided/perceived QoS.

7 Related Work

The various aspects related to the partner/node selection and collaboration is-
sues in the context of self-interested agents and grid systems have been dealt
in a large number of models and architectures. Their overall discussion would
require too much space and, therefore, the examined approaches will be only
those that, to the best of our knowledge, come closest to our proposal.

In the literature different metrics have been proposed to select the most ap-
propriate partners, for instance by exploiting local decision and models [30,37]
or by promoting agent interactions to realize a distributed social control mech-
anism for evaluating other agents or their provided services [14]. Many of such
models consider direct observations and/or communications with other agents
and different criteria as trust, reputation, provided QoS, etc. In this context,

3 We used the package parallel provided with Gnu Octave.
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the concept of belief can be considered as a situational awareness, and its mod-
ification can require to select the most appropriate providers for information.
To this purpose, in multi-agent systems the beliefs of the agents might consider
the preferred agents to obtain suitable information [2,18], where the preferred
agents could be selected, for instance, on the basis of trustworthiness [2] or sta-
tistical [18] criteria. Note that these techniques usually result computational
expansive [28,35] and therefore some approximate and less expensive solutions
have been proposed in the context of specific beliefs [9,27].

To solve coalition formation issues among self-interested agents, negotiation
mechanisms (requiring peer-to-peer communications) can be used to find the
best candidates to join with. The Contract Net Protocol (CNP) [12,43] is a fully
automated negotiation protocol where each agent can be an initiator or a par-
ticipant of a call for proposal and where only the best participants bids on that
call are selected by the initiator. This (relatively) simple partner selection mech-
anism might result computationally expensive on large-scale systems due to the
message approach and, moreover, it does not guarantee the real execution of
the “contract”. However, the CNP has been embedded into the Transportation
Cooperation Net (TRACONET) [42] for a vehicle routing application according
to the Foundation for Intelligent Physical Agents (FIPA) standard. Another ne-
gotiation partner selection scheme is the Adaptive Decision Making Framework
(ADMF) [3]; it has been designed for systems where agents, assumed to be coop-
erative, share global goals to be maximized and allows a dynamic adjustment of
agents relationships, although also this proposal has a low scalability in presence
of large-scale systems.

In a multi-agent system the coalition formation provides to partition agents
in groups in order to optimize groups and/or agents utility. The agents partition
activity, might be modeled as a function game [42] involving a) the generation of
the coalition structure, b) the solution of optimization problems (for each coali-
tion) and c) the pay-off distribution. Activities a and b provide to search suitable
partnerships from a set of cluster of agents, while the last activity distributes
the coalition gain among the participants and, as important collateral effects, it
promotes the agents’ collaboration and the stability of the coalition. Recently,
some proposals adopted trust in competitive agent systems [21,39], for instance,
to constitute clusters of agents [6,20] and for generating recommendations in
social network contexts [13] or to detect group of actors in a competitive social
community [31,32,40].

Summarizing, none of the cited proposals deal with the issue to improve the
social capital of the agent community on the basis of a meritocracy criterion. On
the contrary, such approaches exploit trust measures to provide an agent with
suggestions about the best agents to contact as fruitful interlocutors, but without
to face the issue of the possible advantages for its community. Differently, our
proposal introduce a meritocratic principle in order to obtain such an advantage,
also by encouraging the actors to assume correct behaviors to improve their
reputation.
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On the other hand, employing software agents into Grid systems has always
been a subject of research [15]. Several works in the literature focused on the
optimization of various aspects of Grid jobs scheduling and resources allocation.
Most of them rely on the adoption of economical models as, for instance, in [7].
In [29] a strategy for optimizing the QoS into the Grid is presented. The work
is based on a distributed iterative algorithm behind a mathematical model. The
authors mainly deal with task optimization and resource optimization, by means
of software agents. Even their goal is maximizing the global utility of the sys-
tem, their approach is not distributed, indeed the different agents collaborate to
perform optimization activities for the whole system. Authors of [10] analyze the
interactions between Grid user agents and the Grid providers in order to max-
imize the whole utility of all Grid users. They propose a price-based resource
allocation model by defining a Grid User Utility as a function of the user’s allo-
cated resources by using a nonlinear optimization theory, in order to incorporate
Grid resource capacity constraint and job completion times. Nevertheless, they
do not deal with the the heterogeneity of resources, and do not rely on the
concept of meritocracy (reliability and trust) to improve the overall QoS.

Authors of [19] combined the principles and the concepts found in social net-
works to design decentralized and adaptive resource discovery approach in com-
plex Grid systems. Experimental results show as the relationship among clusters
can improve the resource discovery processes, allows different resource distribu-
tions and user request patterns to a better adaptation, but the approach lacks
of a component permitting to improve the social capital of the agent (node)
community by improving meritocracy.

8 Conclusions and Future Work

In this paper, we presented an agent based model to optimise the global QoS of a
“competitive” Grid Federation, on which computational nodes are supported by
intelligent agents, which manage friendships and group memberships.Our pro-
posal focused on the concepts of (i) computational resource sets characterising
jobs in Grid Federations, (ii) agent aggregation (i.e. friendships and group mem-
berships) as basis of collaboration between federated nodes, which, in turn, are
supported by (iii) a trust model conceived to compute a unique synthetic trust
measure from reliability, honesty and reputation measures. We designed an algo-
rithm, called Friendship and Group Formation (FGF), which allows Grid nodes
to select their partners (friends and group memberships) in order to improve the
global QoS. For this aim the algorithm uses the trust information to compute
two measures, the (i) disadvantage (D), which represents a local indication of
the QoS that the single node is able to provide to the other Grid nodes, and
the (ii) Grid Capital (GC), which is a global index, telling us how well the Bro-
kers/Nodes of the Grid Federations can work together when a computational
task requires an inter-Grid collaboration. The validity of the proposed model
has been supported by theoretical evidences and by some experimental results,
by which we have shown that the adoption of the FGF algorithm, suitably sup-
ported by the proposed trust model, the Grid Capital (which reflects the global
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QoS) of the Grid Federation is effectively improved. In our ongoing research,
we plan to better study the influence of several parameters characterising our
model also by considering very large Grid Federations. Moreover, we plan to
compare the performance of the FGF algorithm with other similar approaches
which are based on aggregations and trust information. For this aim, we will
possibly use ComplexSim [33,34], which is a C-based complex network parallel
simulator written by some of the authors.
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Ricerca e Competitività” 2007-2013, Distretto Tecnologico CyberSecurity funded
by the Italian Ministry of Education, University and Research.

References

1. Bandieramonte, M., Di Stefano, A., Morana, G.: An ACO inspired strategy to
improve jobs scheduling in a grid environment. In: Bourgeois, A.G., Zheng, S.Q.
(eds.) ICA3PP 2008. LNCS, vol. 5022, pp. 30–41. Springer, Heidelberg (2008)

2. Barber, K.S., Kim, J.: Soft security: Isolating unreliable agents from society. In:
Falcone, R., Barber, S.K., Korba, L., Singh, M.P. (eds.) AAMAS 2002. LNCS
(LNAI), vol. 2631, pp. 224–233. Springer, Heidelberg (2003)

3. Barber, K.S., Martin, C.E.: Dynamic reorganization of decision-making groups. In:
Proc. of the 5th Int. Conf. on Autonomous Agents, pp. 513–520. ACM (2001)

4. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R.,
Pratt, I., Warfield, A.: Xen and the art of virtualization. ACM SIGOPS Operating
Systems Review 37(5), 164–177 (2003)

5. Boghosian, B., Coveney, P., Dong, S., Finn, L., Jha, S., Karniadakis, G., Karo-
nis, N.: Nektar, spice and vortonics: using federated grids for large scale scientific
applications. Cluster Computing 10(3), 351–364 (2007)

6. Buccafurri, F., Comi, A., Lax, G., Rosaci, D.: A trust-based approach to clustering
agents on the basis of their expertise. In: Proc. of Advances in Agent and Multi-
Agent Systems 2014, AMSTA 2014. ACM Press (2014)

7. Buyya, R., Abramson, D., Giddy, J., Stockinger, H.: Economic models for resource
management and scheduling in grid computing. Concurrency and computation:
practice and experience 14(13-15), 1507–1542 (2002)

8. Buyya, R., Ranjan, R.: Special section: Federated resource management in grid and
cloud computing systems. Future Generation Computer Systems 26(8), 1189–1191
(2010)

9. Chopra, S., Parikh, R., Wassermann, R.: Approximate belief revision preliminary
report. Journal of IGPL (2000)

10. Chunlin, L., Layuan, L.: Multi economic agent interaction for optimizing the aggre-
gate utility of grid users in computational grid. Applied Intelligence 25(2), 147–158
(2006)

11. Czajkowski, K., Fitzgerald, S., Foster, I., Kesselman, C.: Grid information services
for distributed resource sharing. In: 2001 Proc. 10th IEEE Int. Symp. on High
Performance Distributed Computing, pp. 181–194. IEEE (2001)



A Qos-Aware, Trust-Based Aggregation Model for Grid Federations 293

12. Davis, R., Smith, R.G.: Negotiation as a metaphor for distributed problem solving.
Artificial intelligence 20(1), 63–109 (1983)

13. De Meo, P., De Meo, A., Rosaci, D., Ursino, D.: Recommendation of reliable users,
social networks and high-quality resources in a social internetworking system. AI
Communications 24(1), 29–50 (2011)

14. Decker, K., Sycara, K., Williamson, M.: Middle-agents for the internet. In: IJCAI
(1), pp. 578–583 (1997)

15. Foster, I., Jennings, N.R., Kesselman, C.: Brain meets brawn: Why grid and agents
need each other. In: Proc. of the 3rd Int. Joint Conf. on Autonomous Agents and
Multiagent Systems, vol. 1, pp. 8–15. IEEE Computer Society (2004)

16. Foster, I., Kesselman, C., Tuecke, S.: The anatomy of the grid: Enabling scalable
virtual organizations. International Journal of High Performance Computing Ap-
plications 15(3), 200–222 (2001)

17. Franklin, S., Graesse, A.: Is it an agent, or just a program?: A taxonomy for
autonomous agents. In: Jennings, N.R., Wooldridge, M.J., Müller, J.P. (eds.) ECAI-
WS 1996 and ATAL 1996. LNCS, vol. 1193, Springer, Heidelberg (1997)

18. Fullam, K.K., Barber, K.S.: Using policies for information valuation to justify
beliefs. In: Proc. of the 3rd Int. Joint Conf. on Autonomous Agents and Multiagent
Systems, pp. 404–411. IEEE (2004)

19. Gao, L., Ding, Y.S., Ying, H.: An adaptive social network-inspired approach to
resource discovery for the complex grid systems. International Journal of General
Systems 35(3), 347–360 (2006)

20. Garruzzo, S., Rosaci, D.: Agent clustering based on semantic negotiation. ACM
Transactions on Autonomous and Adaptive Systems 3(2) (2008)
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