
Compliance Checking of Data-Aware
and Resource-Aware Compliance Requirements

Elham Ramezani Taghiabadi, Vladimir Gromov, Dirk Fahland,
and Wil M.P. van der Aalst

Eindhoven University of Technology, The Netherlands
{e.ramezani,v.gromov,d.fahland,w.m.p.v.d.aalst}@tue.nl

Abstract. Compliance checking is gaining importance as today’s organizations
need to show that their business practices are in accordance with predefined (legal)
requirements. Current compliance checking techniques are mostly focused on
checking the control-flow perspective of business processes. This paper presents
an approach for checking the compliance of observed process executions tak-
ing into account data, resources, and control-flow. Unlike the majority of confor-
mance checking approaches we do not restrict the focus to the ordering of activi-
ties (i.e., control-flow). We show a collection of typical data and resource-aware
compliance rules together with some domain specific rules. Moreover providing
diagnostics and insight about the deviations is often neglected in current compli-
ance checking techniques. We use control-flow and data-flow alignment to check
compliance of processes and combine diagnostics obtained from both techniques
to show deviations from prescribed behavior. Furthermore we also indicate the
severity of observed deviations. This approach integrates with two existing ap-
proaches for control-flow and temporal compliance checking, allowing for multi-
perspective diagnostic information in case of compliance violations. We have im-
plemented our techniques and show their feasibility by checking compliance of
synthetic and real life event logs with resource and data-aware compliance rules.

Keywords: compliance checking, auditing, data-aware and resource-aware com-
pliance requirements, conformance checking.

1 Introduction
Organizations need to comply with an increasing set of laws, regulations, and service
level agreements set by both internal and external stakeholders. Major corporate and ac-
counting scandals including those affecting Enron, Tyco, Adelphia, Peregrine, and World-
Com have fueled the interest in more rigorous auditing practices. Legislation, such as the
Sarbanes-Oxley (SOX) Act of 2002 and the Basel II Accord of 2004, was enacted as a
reaction to such scandals. Failing to comply may be costly, therefore organizations need
to continuously check whether processes are executed within a given set of boundaries.
Moreover organizations seek for a better control of their processes to streamline their
business operation and prevent fraud, malpractices, risks, and inefficiencies.

There are two basic types of compliance checking: (1) forward compliance checking
aims to design and implement processes where compliant behavior is enforced, and (2)
backward compliance checking aims to detect and localize non-compliant behavior. This
paper focuses on backward compliance checking based on event data.

Current backward compliance checking techniques focus on verifying aspects related
to control flow while checking compliance requirements addressing other fundamental

R. Meersman et al. (Eds.): OTM 2014, LNCS 8841, pp. 237–257, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

238 E. Ramezani Taghiabadi et al.

aspects of a process including data handling, and resources are as important. The compli-
ance requirements considered in this paper take into account data, resources, control-flow,
and their interplay. We have collected several compliance requirements found in litera-
ture; we classify these requirements using two main categories and propose two generic
techniques for checking these rules. Our approach seamlessly integrates with control-
flow compliance checking. More important, the technique provides detailed diagnostic
information in case of non-compliant behavior; it shows for each process instance which
attribute(s) (resource or data) in which event violated a requirement and what changes
would have been needed to make the behavior compliant. Our data and resource-aware
compliance checking techniques leverage a recent data-aware alignment technique [11]
that allows to check conformance of a log with respect to a data-aware Petri net. We adapt
and improve this technique for our purpose. Moreover, our collection of data and resource-
aware compliance rules, address the problem of compliance rule elicitation from informal
description of compliance requirements.

The remainder of this paper is organized as follows. We recall some basic definitions
for control-flow and data-flow alignments in Sect. 2. In Sec. 3, we give an overview on
how a compliance requirement may impact different perspectives of a business process
and show different types of data and resource-aware compliance rules. Section 4 intro-
duces the problem of data and resource-aware compliance checking and discusses our
solution through a running example. In Sect. 5 the implementation of the approach in
ProM is showcased. Experimental results are presented and discussed in Sect. 6. We dis-
cuss related work in Sect. 7, and Sect. 8 concludes this paper.

2 Preliminaries

This section recalls basic notions for control-flow alignment [2,5] and data-flow align-
ment [12] on which we build for data and resource-aware compliance checking. Align-
ments relate recorded executions of a process to a formal specification which describes
the boundaries of a compliant process.

Logs. Executions of business processes are recorded in terms of event logs. An event
log L is a multiset of traces. A log trace σL = 〈e1, . . . , en〉 ∈ L describes a par-
ticular process execution as a sequence of events. An event e refers to the execution
of an activity and is a tuple of pairs of distinct attributes and their corresponding val-
ues; e = ((attre1, val

e
1), . . . , (attr

e
k, val

e
k)). Each attribute and its corresponding value

provides information on the executed activity. For instance in the event e = ((name,
approve loan request), (resource, John), (amount , 10000)), the pair (name, approve
loan request) refers to the name of the respective activity executed, (resource, John)
indicates the resource approved the request, and (amount, 10000) records the request
amount.

Let E = {e1, . . . , en} be the set of all events in logL.ATTRe = {attre1, . . . , attrek}
is the set of all k attributes of an event e; and V ALe = {vale1, . . . , valek} is the set of all
values for attributes of an event e. As a shorthand, we write le(attrei) = valei to denote
that event e has value valei for attribute attrei , 1 ≤ i ≤ k . We define ATTRL as the set
of all event attributes in the log;ATTRL = ∪e∈EATTR

e .

Specified Behaviors. A specification describes what is considered compliant and what is
not. In essence, each specification describes a setS of compliant traces. Every compliant

Compliance Checking of Data-Aware and Resource-Aware Compliance Requirements 239

trace σS = 〈a1 , . . . , an〉 ∈ S is a sequence of activities which are allowed to be exe-
cuted. Activities may have attributes with corresponding admissible values that describe
how an activity must be executed in a compliant trace. An activity a is a tuple of pairs
of distinct attributes and their corresponding set of admissible values;
a = ((attra1 ,Val

a
1), . . . ,(attr

a
k ,Val

a
k)) where each Valai is a set of admissible values

that attribute attrai is allowed to take.
For instance for the activity a = ((name, {approve loan request}), (resource,

{John,Elham,Luis}), (amount , {500 , . . . , 1500})), the pair (name, {approve}
loan request}) shows the name of the activity allowed to be executed, (resource,{John,
Elham,Luis}) indicates the resources who are allowed to approve a loan request,
(amount , {500 , . . . , 1500}) specifies the admissible amount for a loan.

As a shorthand, we write la(attrai) = Valai to denote that activity a can take values
Valai for attribute attrai , 1 ≤ i ≤ k . The set ATTRa of all attributes of activity a, and
ATTRS of specificationS are defined similar to attributes of events and logs.

Given an activity a, la assigns a set of admissible values to an attribute of activity a;
la(attrai) = Valai for 1 � i � k. We define ATTRa as the set of all k attributes of an
activity a; ATTRa = {attra1 , . . . , attrak}. ATTRS is the set of all attributes of all the
activities in the specification; ATTRS = ∪a∈AATTR

a , andA is the set of all activities
in specification S; A = {a1, . . . , an}.

Relating Events in a Log to Activities in the Specification. As we already mentioned
every event refers to execution of an activity. We will explain later in this paper how we
use alignment techniques for checking compliance. There, we will pair events in the log
and activities in the specification using the following notation.

For event log L with events E, and attributes ATTRL, we call an attribute
typeL ∈ ATTRL a log type attribute if typeL ∈ ∩e∈EATTR

e, i.e., an attribute present
in all events inL. We assume that at least one typeL exists forL. We defineTYPEVALL

as the set of all values for typeL; TYPEVALL = {le(typeL)|e ∈ E}.
Similarly for specification S with activities A and attributes ATTRS , we call an

attribute typeS ∈ ATTRS a specification type attribute if typeS ∈ ∩a∈AATTR
a, i.e.,

an attribute present in all activities of specification S. We assume that at least one typeS

exists for specification S and attribute typeS has only a single value for each activity i.e.,
la(typeS) = {labela}. We define TYPEVALS as the set of all admissible values for a
specification attribute typeS ; TYPEVALS = ∪a∈Al

a(types).
Note that a log and a specification may have multiple type attributes. Later on, we

relate L to S by picking a specific log type attribute and a specific specification type
attribute each, and mapping the valuesTYPEVALL to the valuesTYPEVALS .

Data-Aware Petri Nets. The specification S representing all compliant traces, can
be expressed in various ways. For instance as a Petri net [2] or in terms of declarative
constraints [12]. Typically, the specificationS is very large, being the semantic notion of
all compliant traces. In this paper, we use Petri nets to specifyS in a concise form. Fig. 1
illustrates a variant of Petri nets called data-aware Petri net. Data-aware Petri nets extend
classical Petri nets with data. They describe which activities are allowed to be executed
and in which sequence. In addition, a data-aware Petri net describes how every activity is
allowed to be executed with respect to its attributes and their values.NS —the data-aware
Petri net shown in Fig. 1— describes a simplified version of a loan application procedure.

240 E. Ramezani Taghiabadi et al.

Fig. 1. NS , a data-aware Petri net example, and some compliant trace examples from
specification S

The process starts with activity a1 which is represented with the transition receive loan
request and continues with a2 represented by check credit of the applicant requesting
the loan. Afterwards the decision for approving or rejecting the request should be taken
either by executing activity a3 or a4, and finally the applicant will be informed about the
decision by executing activity a5. Each activity has an attribute name that we will use
later as a specification attribute typeS for mapping (please see Sect.2). The admissible
value of this attribute is written inside the transition representing each activity.

Moreover NS depicts other admissible attributes as the yellow colored eclipses
including resource, and amount. Some activity attributes may be accessible by all the
activities e.g., resource or may be accessible by specific activities e.g., amount. This is
specified by the dashed line connecting attributes to activities. A specification describes
how an activity must be executed in order to be compliant; hence in a data-aware Petri net
activities may have additional annotations. For instance in NS , activity a3 represented
by the labeled transition approve loan request is guarded. The guard restricts the relation
between activities of a2, and a3 with the help of variable r. The value of the attribute
resource for the recent event produced by the execution of a2 is stored in variable r.
This is expressed by the write statement {r = e2.resource} annotated at a2. The
Execution of activity a3 updates the value of r. This is expressed by the write statement
{r = e3.resource} annotated at a3. The guard on activity a3 [r �= e2.resource]
specifies that the resource executed a3 must be different with the resource executed a2.
That is, the new value of r must be different from its previous value which was written by
the execution of a2. Please note that this guard describes four-eye principle. The firing
sequences of the Petri net NS is the set S given in Fig. 1(bottom).

name rec.req. cred.ch. app.req.
L resource John Luis Luis

amount 10000

Fig. 2. Sample trace σL

Aligning Observed Behavior to Specified Behavior.
An observed trace in a log may deviate from admissi-
ble behaviors; e.g., the non-compliant traceσL shown
in Fig. 2. There are three events and three attributes in

Compliance Checking of Data-Aware and Resource-Aware Compliance Requirements 241

this trace. We choose name as log type attribute typeL (see Sect.2) and map the values of
this attribute occurring in σL to transition labels in NS when they have the same value.
Please note that transition labels inNS denote the admissible values of typeS . If we only
consider the compliance of σL w.r.t. existence and correct sequence of events, we see
that an event e with (name:inform applicant) is missing as the final event in the trace. To
understand where σL deviates from specification S, we apply control-flow alignment [2]
between σL andNS as follows.

name rec.req. cred.ch. app.req.
L resource John Luis Luis

amount 10000
S name rec.req. cred.ch. app.req. inf.client

>>

Fig. 3. A control-flow alignment γc of trace σL

and specification S with typeL = typeS =
name and mapping: R(val) = val

The idea is to find a compliant trace
σS ∈ S that is as similar as possible to
σL; differences between σS and σL then
indicates deviations. We relate σL to any
trace σS ∈ S by pairing events in σL to
activities in S where events and activities
are of the same type with the same value.
For our example typeL = typeS = name.
The obtained alignment is shown in Fig. 3;
top row corresponds to events in σL and
bottom row refers to activities in σS . As is
indicated in γc, an event with (name:inform client) is missing; this is denoted by	 in the
alignment indicating a move on model.

Let L be an event log and S be a specification. We pick a log type attribute typeL

(with values TYPEVALL occurring in L) and a specification type attribute typeS (with
values TYPEVALS occurring in S) as described above. Further, we pick a mappingR :
TYPEVALL to TYPEVALS relating log type attributes to specification type attributes.
A control-flow alignment movemc (wrt. typeL, typeS , andR) is a pair (x , y) ∈ (E∪{	
})× (A ∪ {	})\{(,)}where:

– (x,) is a move on log.
– (, y) is a move on specificationS.
– (x, y) is a synchronous move if x, y �=	 andR(lx(typeL)) ∈ ly(typeS).

A synchronous move (x, y) relates the event x to the activity y based on the log type
attribute typeL and the specification type attribute typeS ; the type value of x has to map
to the type value of y (via mappingR).

A control-flow alignment of a trace σL ∈ L to S is a sequence γc = 〈mc
1, . . . ,m

c
n〉

of control-flow alignment moves such that ignoring 	, the projection x1 . . . xn |E is the
original trace σL, and the projection y1 . . . yn |A = σS ∈ S is described by the specifica-
tion.

The control-flow conformance checking technique of [2,5,14] returns an optimal
control-flow alignment s.t. no other alignment has fewer non-synchronous moves (move
on log or move on specification only). This technique finds an optimal alignment using a
cost-based approach: a cost function κc assigns each control-flow alignment move (x, y)
a cost κc(x, y) s.t. a synchronous control-flow alignment move has cost 0 and all other
types of moves have cost> 0. Then an A∗-based search on the space of (all prefixes of)
all alignments of σL to S is guaranteed to return an optimal alignment for σL and S. In
such an optimal alignment, a move on log (e,) indicates that the trace σL had an event

242 E. Ramezani Taghiabadi et al.

e that was not supposed to happen according to the specification S whereas a move on
specification (, a) indicates that σL was missing an event that was expected accord-
ing to S. As the alignment preserves the position relative to the trace σL , we can locate
exactly where σL had an event too much or missed an event compared to S.

A data-aware alignment [11] extends a control-flow alinement by also comparing ev-
ery event e ∈ σL with all its attributes and their values to its corresponding activity
a ∈ σS with its admissible attributes and their values. If an event e was not executed
in compliance with its corresponding activity, the data-aware alignment technique can
identify the deviation and extent of the deviation.

name rec.req. cred.ch. app.req.
L resource John Luis Luis

amount 10000
name rec.req. cred.ch. app.req. inf.client

resource John Luis John John
amount 10000

>>

S

Fig. 4. The data-aware alignment γd of trace σL

and σS

Given event log L and specifica-
tion S, a control-flow alignment γc =
〈m1, . . . ,mn〉 of a log trace σL ∈ L
to S extends to a data-aware alignment
γd = 〈m1, . . . ,mn〉 by considering all at-
tributes as follows. Log move and model
move are defined as before. A synchronous
move (e, a) is correct iff for each attribute
attr i ∈ ATTRe holds: attr i ∈ ATTRa

and le(attr i) ∈ la(attr i), i.e., each data
attribute of the event has a value admit-
ted by the activity. Otherwise, the syn-
chronous move is called incorrect. Figure 4 shows an example of a data-aware alignment.

Activity a3 named approve loan request is executed by a resource which is not allowed
based on the guard ata3 inNS . The resource (Luis) executed approve loan requestshould
have been different from the resource executed credit check. In addition to finding devi-
ations, γd indicates the correct value for the violating attribute. In our example, from
the resources allowed to execute activity approve loan request, John is suggested as the
correct value.

Similar to the cost-based approach applied in control-flow alignment, a cost function
κd assigns each data-alignment move a cost κd(x, y) s.t, a correct data-alignment move
has cost 0 and an incorrect move has cost> 0. In the data-aware alignment technique
of [11], an ILP solver finds among all synchronous control-flow alignment moves, values
for attributes of S such that the total cost of deviations for an alignment including move
on log, move on model, and incorrect move is minimized. We apply control-flow and
data-aware alignments for data and resource-aware compliance checking.

3 Compliance Requirements

Compliance requirements prescribe how internal or cross-organizational business pro-
cesses have to be designed or executed. They originate from legislations and restrict one
or several perspectives of a process (control flow, data flow, process time or organiza-
tional aspects). Restrictions can be imposed for individual cases or groups of cases, they
can prescribe properties of process executions or process design [14]. These different as-
pects of compliance give rise to the framework shown in Fig. 5. A complex compliance
requirement covering several perspectives of a process can be decomposed into smaller
compliance rules, each covering a single aspect along the dimensions of this framework.

Compliance Checking of Data-Aware and Resource-Aware Compliance Requirements 243

Fig. 5. Compliance Rule Frame-
work [14]

For example, a compliance requirement might state:
“Before approving a loan request, the bank must check
the credit history of the applicant. A request can be
approved if it passes the evaluation. The approval and
credit checking must be done by different agents. Re-
gardless of rejection or approval of the request, appli-
cant must be informed about the bank’s decision within
a weak after submitting the request”.

This requirement can be divided into different com-
pliance rules: i) control flow: ‘Loan request approval
or rejection must be preceded by credit check’, ii) pro-
cess data: ‘A loan may be approved only if it passes
the evaluation’, iii) process resource: ‘Request approval
and check credit must be done with different resources’,
and iv) process time: ‘Every application for requesting a
loan must be processed within one week from the date of
application submission’; each rule taking only one perspective into account. Our earlier
compliance checking techniques of [14,20] are able to check control-flow and tempo-
ral compliance rules, but do not provide a notion of data or resource. In the following,
we present a new approach for checking data and resource-aware compliance rules that
provides diagnostic information about deviations. Before, we will explain the data and
resource-aware rules supported by our approach.

3.1 Data-Aware and Resource-Aware Compliance Rules

We identified some works [22,4,18,7,21,8,19] discussing compliance rules that restrict
process data and resource. Table 1 shows the collection of compliance rules taken from
these sources and some more taken from practise e.g., medical guidelines. We found
some typical restrictions on process data and resources such as four-eye principle (sep-
aration of duties), authorization level or three-way match and some domain specific
compliance rules.

In addition to the classification presented in Table 1, all different types of data-aware
and resource-aware constraints fall into two main categories: (1) constraints that enforce
a restriction on data attributes, and (2) constraints that restrict activities when a certain
data condition holds. For example a compliance rule such as the four-eye principle is of
the first category. This rule specifies that two activities A and B must be executed by
two different resources. The rule assumes that the underlying control-flow sequence is
correct i.e., no matter in which order two activitiesA orB are executed, the restriction is
on the corresponding data attribute (resource). In case A is executed first by resourceR1,
the rule will urge that B must not be executed by R1. Whereas, if B was executed first,
the restriction would be on the resource executing activity A. In contrary with rules like
four-eyes principle, a rule stating “Activity B must not be executed for gold customers”
belongs to the second category. This rule restricts the execution of activity B when a
certain value (gold) for data attribute customer type holds. That is, based on a certain data
condition, the constraint restricts the control-flow i.e., restricting execution of activity B.

244 E. Ramezani Taghiabadi et al.

In Sect. 2 we discussed an example of a rule from the first category. In the next sec-
tion we will discuss examples of both categories in more detail while elaborating on the
differences in corresponding checking technique employed.

4 Data-Aware and Resource-Aware Compliance Checking

This section presents our main contribution, an approach for checking data and resource-
aware compliance on past executions recorded in event logs. We first introduce a motivat-
ing example which we use throughout this section to explain our techniques.

Rule Description Example

Four-eye principle: A security principle that re-
quires segregating the execution of critical tasks
and associated privileges among multiple users.

The person requesting purchase of goods should
not be the one who approves it.
A purchase order approval requires two signa-
tures.

Authorization (Access control): A security prin-
ciple that limits execution of activities or access-
ing a data object to authorized individuals.

Only a financial manager can approve a loan.

Two (three)-way match :An accounting rule that
requires the value of two different data objects to
match.

All vendor invoices that are based on purchase
orders should be matched with purchase order
lines (two-way matching).

Activity T may/must (not) be executed if at-
tributeX has the value v; (X may be local to the
activity T or may appear anywhere in a trace).

An account must not be opened in case risk is
high.
During ventilation, patient must receive “propo-
fol” with dosage of (5mg).

Activity T1 may/must (not) be executed if at-
tribute X has value v at activity T2. (attribute X
is local to activity T2)

In case the respondent bank rating review is re-
jected during evaluation, an account must never
be opened.

Activity T must not change value of attributeX . Bank account data must not change during pay-
ment.

Value of attribute X must not change after activ-
ity T is executed.

All invoices must be archived and no changes
must be made to the document.

Activity T1 may occur only if the value of at-
tribute X is increased/decreased by activity T2

with d.

If gastric tube feeding cannot be increased by
(1,20 kcal/ml), then use ‘Erythromycin’.

If attribute X has value v then resource R must
execute the activity.

Loans with value more than 1000000 Euro must
only be approved by CFO.

If activityT1 is done by agentA, activityT2 must
be done by the same agent.

A customer complain must be handseled with the
same agent registered the customer request.

Table 1. Collection of data-aware and resource-aware compliance rules

Compliance Checking of Data-Aware and Resource-Aware Compliance Requirements 245

4.1 Motivating Example

A process model, expressed in BPMN notation, describing a simplified procedure for pro-
curement in a company is shown in Fig. 6. The process starts with activity receive request
for purchasing goods. Afterwards the sub-process for choosing supplier is activated. Ev-
ery purchase requisition carries a risk which is calculated based on a set of factors such as
history of supplier’s business, legal background, and etc. Consequently the risk is classi-
fied as high or low. If risk is high and not acceptable, the procurement expert investigates
about risk reduction measures. These measures may lead to a low risk or the risk may stay
still high. The procurement expert must decide based on the new information to continue
with risk reduction measures or accept the risk. If risk is accepted purchase order can be
prepared. For every purchase order two approvals are required by two different agents.
An approved purchase order is sent to supplier. The process continues with receiving
invoice. After receiving goods, the payment is done and the process terminates.

Receive request
for purchasing

goods
(Rec-Req)

Choose
supplier

(Cho)

Evaluate
purchase

requisition
(Eva)

Risk reduction
measures

(Red)

Prepare
purchase order

(Pre)

Purchase order
approval (II)

(App-II)

Purchase order
approval (I)

(App-I)

Send purchase
order to supplier

(Sen)

Receive
invoice

(Rec-Inv)

Receive
products
(Rec-Pro)

Payment
(Pay)

N-OK

OK

Fig. 6. A process model for procurement

To prevent fraud, the
company has defined vari-
ous compliance rules. The
employees may deviate
from the modelled process
as long as they do not
violate the compliance
rules. Here, we present just
two of the rules that must be followed:

– Rule 1 (Four-eye principle): purchase order approval(I) and purchase order ap-
proval(II) must be executed by two different agents.

– Rule 2: If risk of procurement from a supplier is calculated high, risk reduction mea-
sures must be executed at least once.

During auditing, the company checks if the procurement process were executed in
compliance with relevant compliance rules including above mentioned ones. Therefore,
executions of this process are recorded in terms of an event log and are used for compli-
ance checking. These rules cannot be checked by solely considering the execution order
of events; instead, specific event attribute values need to be taken into account.

name Rec-Req Cho Eva Pre App-I App-II Sen Rec-Inv Rec-Pro Pay
resource John Luis Luis Sara Arash Clara Luis Luis John Luis

role clerk expert expert clerk director manager expert expert clerk expert
inventory

level
500 pce. 300 pce.

risk low high high high high high high high high
�me 20-Jan-14 21-Jan-14 22-Jan-14 24-Jan-14 26-Jan-14 26-Jan-14 28-Jan-14 28-Jan-14 29-Jan-14 29-Jan-14

L

Fig. 7. Trace σ recorded an instance of the procurement process execution

The synthetic event log L contains the executions of the procurement process for Jan-
uary of 2014. The trace σ shown in Fig. 7 is taken from the event log L.

246 E. Ramezani Taghiabadi et al.

4.2 Methodology

As discussed in 3, compliance rules fall into two main categories. The techniques we
employ to check compliance of rules varies per category. Figure 8 depicts the approach
we use for checking the compliance rules of the first category. For these rules, we need
to check if a restricted activity was executed with a correct data or resource. Hence, the
restriction on data attributes must be checked and the underlying control-flow is assumed
to be correct. For this, as is shown in Fig 8, we prepare the log and enrich it with some
necessary information in steps 1, and 2. To check every compliance rule, we need to
capture the scope of the rule i.e., we identify when a compliance rule is triggered. The
scope of the rule is defined based on the occurrence of an activity or sequence of activities
creating a control-flow alignment. In step 3, we specify the scope of the compliance rule
in form of a classical Petri net and create a control-flow alignment in step 4. We generate
a log using the alignment result and enrich it in step 5 with diagnostics we obtained in the
previous step. Later in step 6, we create a data-aware alignment using a data-aware Petri
net to check if the data condition specified in the rule, holds.

Event
Log

Petri-net
Specification

Alignment

Event log
preparation
(steps 1,2)

Data-Aware
Petri-net

specification

Data-flow
alignment

A

Data or
resource

restriction Control-flow
alignment

(step 4)

Log enrichment
(step 5)

Projected log
enriched with

diagnostics

Specify scope of the
compliance rule

(step 3)

Data-flow
alignment

(step 6)

Data or
resource

restriction

Fig. 8. Compliance checking approach for compliance rules restricting a data attribute

The compliance rules of the second category restrict the execution of activities when a
certain data or resource condition holds. These rules assume the data-flow is correct and
the control-flow i.e., the execution of activities under a certain data condition, must be
checked. For this, we create a data-aware alignment to identify all the situations where
a compliance rule must hold. Then creating a control-flow alignment we can check if
activities were executed correctly under the specified data condition. Fig. 9 describes
the approach we employ for checking compliance rules of the second category. In this ap-
proach after preparation of the event log in steps 1, 2, and 3, in step 4 we apply data-aware
alignment technique to identify all the situations where the compliance rule must hold.
In step 5 we enrich the log with diagnostics obtained in data-aware alignment. We define
the scope of the compliance rule in step 6 and apply control-flow alignment technique in
step 7 to check if activities were executed correctly under the specified data condition. In
the following we will elaborate on both approaches by checking the sample compliance
rules defined for the motivating example.

Compliance Checking of Data-Aware and Resource-Aware Compliance Requirements 247

Event
Log

Petri-net
Specification

Data-aware
alignment

Event log preparation
(steps 1,2,3)

Data-Aware
Petri-net

specification

Alignment

AData or resource
restriction

Data-flow
alignment

(step 4)

Log enrichment
(step 5)

Projected log
enriched with

diagnostics
Specify scope of the

compliance rule
(step 6)

Control-flow
alignment

(step7)

Fig. 9. Compliance checking approach for compliance rules restricting activities when a certain
data or resource condition holds

4.3 Compliance Checking of Rules Restricting Data Attributes

From the compliance rules listed for the motivating example in Sect. 4.1, Rule 1 falls in
the first category of compliance rules. For checking such rules we employ the approach
shown in Fig. 8. In the following we will explain the technique step by step for this
example.

Compliance Rule 1 (four-eye principle): Purchase order approval(I) and purchase order
approval(II) must be executed by two different agents.

Step 1. In this step we abstract the log from event attributes and their values which are
not relevant for the rule. This rule restricts the data attribute resource of activities with
(name: App-I), and (name: App-II). Therefore we can focus on event attributes name, and
resource and discard other event attributes of σ. Consequently we obtain σ11 shown in
Fig. 10.

name Rec-Req Cho Eva Pre App-I App-II Sen Rec-Inv Rec-Pro Pay
resource John Luis Luis Sara Arash Clara Luis Luis John Luis

L

Fig. 10. Trace σ11 obtained from step 1

Step 2. In the second step we abstractσ11 further from information that is not relevant for
checking Rule 1. Therefore we keep the value of data attribute name when (name: App-I),
and (name: App-II) and replace all other values of attribute name with a generic valueΩ.
Rule 1 restricts the value of data attribute resource at activities with (name: App-I) and
(name: App-II); hence we keep the value of resource at these activities and discard its
value at any other event. As a result of this step we obtain the trace σ12 shown in Fig. 11.

name Ω Ω Ω Ω App-I App-II Ω Ω Ω Ω
resource Arash Clara

L

Fig. 11. Trace σ12 obtained from step 2

Step 3. The four-eye rule belongs to
the first category (Fig. 8). Hence, the
control-flow is assumed to be correct.
For this rule activities with (name: App-
I), (name: App-II) may be executed in
any order. Considering this informa-
tion, in this step we decide where the

248 E. Ramezani Taghiabadi et al.

compliance rule is triggered. As soon as any of the events with (name: App-I) or (name:
App-II) occurs, the rule is activated.

Initial Ist

Final

Start

End

App-I

Ω

App-II
Icmp

Ω

Ω

Fig. 12. Petri net specifying the
scope of Rule 1

Some compliance rules may hold several times in
a trace. To elaborate more on this, consider the com-
pliance rule stating : “every time activity A occurs it
must be followed by activity B.”. If A occurs multiple
times in a trace, we will have different instances of
this rule in a trace and every occurrence of A must be
followed by activity B. When deciding on the scope
of a compliance rule, we need to consider if multiple
instances of a compliance rule is allowed or not.

After defining the rule scope, we design a Petri net
which describes the rule. For this, we can apply the compliance elicitation technique
available in [15]. The Petri net describing Rule 1 is shown in Fig. 12. This net starts by
firing transition Start and a token in place Final represents a completed trace. The part
between transitions Ist and Icmp represents an instance of the compliance rule. Please
note that several instances of the compliance rule are allowed and captured in the structure
of the net. The rule becomes active when Ist fires and it ends when Icmp fires. After the
instantiation of every compliance rule, activities with (name: App-I), and (name: App-II)
may occur in any order. The Ω transition represents any event in the trace with name:Ω.
The hollow transitions (Start , Ist , Icmp , andEnd) are invisible.

name Ω Ω Ω Ω App-I App-II Ω Ω Ω Ω
resource Arash Clara

S name Start Ω Ω Ω Ω I-st App-I App-II I-cmp Ω Ω Ω Ω End

L >> >> >> >>

Fig. 13. Alignment γc
1 obtained from step 4

Step 4: Having trace σ12 and
the Petri net, we apply our
control-flow alignment tech-
nique to capture the scope
where the compliance rule must
hold. This alignment indicates
deviations of σ12 from the Petri
net and diagnostics about the
deviations. For control-flow compliance checking we ignore attributes other than name
and use this attribute for mapping events and activities in aligning trace σ12 to the Petri
net. γc

1 in Fig. 13 shows the resulting alignment.

name Start Ω Ω Ω Ω I-st App-I App-II I-cmp Ω Ω Ω Ω End
resource Arash Clara

L

Fig. 14. Trace σ15 enriched with additional information ob-
tained from control-flow alignment

The alignment shows that
trace σ12 can be replayed with-
out any real violation on the
Petri net. Please note that the
missing events () indicated in
the top row of the alignment are
related to invisible transitions
in the Petri net and are not con-
sidered as real violations i.e., costs of deviation for these events are 0.

Step 5: In this step we enrich trace σ12 with the additional information we obtained from
the control-flow alignment as follows. We insert artificial events with attribute name and
values (Start , Ist , Icmp ,End) in the trace where the alignment identified missing events
(). As a result we obtain trace σ15 shown in Fig. 14. This additional information marks

Compliance Checking of Data-Aware and Resource-Aware Compliance Requirements 249

the scope of the compliance rule in the trace and it shows that Rule 1 was triggered once
in the trace.

Initial

Ist

Final

Start

End App-I

Ω

App-II

Icmp

{W: r=undef.}

{W: r=e.resource}

{W: r=e.resource}
[r=undef. | | r’≠ e.resource]

resource [r=undef. | | r’≠ e.resource]
Ω

Ω

Fig. 15. Data-aware Petri net of Rule1

Step 6: In this step we apply the
data-aware alignment technique on
the enriched log (σ15) obtained
from step 5 and the extended Petri
net with data annotations. Fig-
ure 15 shows the data-aware Petri-
net describing the restriction on
data attribute resource w.r.t. Rule 1.

The data attribute resource is
shown as the yellow eclipse in
Fig. 15. The dotted line which as-
sociates attribute resource to tran-
sitions App-I, App-II indicates that
the value of attribute resource can get updated by occurrence of any of these activi-
ties. As explained in Sect. 2, we define a variable R that takes the value of attribute
resource whenever this attribute is updated by any of the transitions App-I or App-II.
This is shown by the annotation {W : r = e.resource} on these two transitions. Please
note that we annotate the transition Ist with {W : r = undef .} to express that as soon
as the compliance rule is activated the value of variable r is set to undefined. The re-
striction on data attribute resource which is specified in Rule 1 is expressed by the guard
[r = undef .||r ′ �= e.resource] annotated at transition App-I and App-II. This guard spec-
ifies that the variable r is allowed to get a new value if its previous value is undefined
[r = undef .] or in case it has already a value, the new value must be different with cur-
rent value [r ′ �= e.resource.]; implying activities App-I and App-II must be executed
with different resources. The data-aware alignment of σ15 against the data-aware Petri
net is shown in Fig. 16. The alignment illustrates that both guards are evaluated to correct.
Hence the trace is compliant with Rule 1.

4.4 Compliance Checking of Rules Restricting Activities When a Certain Data
Condition Holds

name Start Ω Ω Ω Ω I-st App-I App-II I-cmp Ω Ω Ω Ω End
resource Arash Clara

name Start Ω Ω Ω Ω I-st App-I App-II I-cmp Ω Ω Ω Ω End
resource Arash Clara

L

S

Fig. 16. Data-aware alignment γd
1 obtained from step 6

The compliance Rule 2 listed for
the motivating example in Sect. 4.1
falls in the second category of
compliance rules. For checking
these rules we employ the approach
shown in Fig. 9. Next we will ex-
plain this technique step by step for
Rule 2.

Compliance Rule 2: If risk of pro-
curement from a supplier is calculated high, risk reduction measures must be executed at
least once.

250 E. Ramezani Taghiabadi et al.

name Rec-Req Cho Eva Pre App-I App-II Sen Rec-Inv Rec-Pro Pay
risk low high high high high high high high high

L

Fig. 17. Trace σ21 obtained from step 1

Step 1. Similar to
the log preparation
procedure we fol-
lowed in the pre-
vious approach, we
first abstract the log
from event attributes and their values which are not relevant for the rule. Therefore we
remove other attributes apart from name and risk from the trace and we obtain σ21 in
Fig. 17.

Fig. 18. Traces σ22, and σ23 obtained respectively from steps 1, and 2

Step 2. We keep the value of event attribute name for risk reduction measure and substi-
tute all other values of attribute name with the generic value Ω. In addition we keep the
attribute risk with all its values. Trace σ22 shown in Fig. 18 is the result of step 2. As is
shown in σ22, activity risk reduction measure was never executed.

Step 3. In Rule 2, the restriction is on the number of occurrences of activity risk reduction
measures when data attribute risk has value high, hence the rule is triggered as soon as
attribute risk gets value high. Not all the events have access to attribute risk i.e., not all
events can update the value of attribute risk. Therefore, we need to capture the existence
and changes in the value of risk. To this end we introduce a new event attribute named
data condition which gets the value risk write whenever an event records a value for its
attribute risk. The data condition gets the value Ω if risk doesn’t have any value in an
event. Trace σ23 shown in Fig. 18 is obtained from step 3.

Step 4. As discussed in Sect. 2, we express data and resource-aware compliance rules
using a data-aware Petri net. The corresponding alignments of a data-aware Petri net to
a log will then allow to check these rules. For the alignment we use the abstracted and
enriched log σ23 obtained from step 3.

Initial

risk writeΩ

End Final

name

risk

[e.risk=high]

Fig. 19. The data-aware Petri net of Rule 2

The data-aware Petri net shown in Fig. 19 has
two transitions Ω and risk write where we map
them respectively to the values of event attribute
data condition in the log. Therefore, events with
(data condition:risk write) are mapped to tran-
sition risk write in the data aware Petri net and
events with (data condition:Ω) are mapped to
the transition labelled Ω. The other event at-
tributes name and risk are mapped respectively
to data attributes name and risk.

Compliance Checking of Data-Aware and Resource-Aware Compliance Requirements 251

We would like to capture all situations where the data condition of Rule 2 holds. That
is, we want to capture the events where risk is high and check if such an event is followed
at least once by the activity risk reduction measure. Hence the transition risk write in the
data-aware Petri net (Fig. 19) is guarded with [e.risk = high].

We check the conformance of the trace σ23 against the data-aware Petri net of Rule
2 applying data-aware alignment. The data-aware alignment technique checks if events
with data condition:risk write were executed with the admissible value (high) for its risk
attribute. As a result the data-aware conformance checking technique will return a data-
aware alignmentγd

2 as is shown in Fig. 20. The columns colored in red indicate the events
with (data condition:risk write) which didn’t have the value high for attribute risk (yellow
eclipses in the data-aware Petri net).

name Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω
risk low high high high high high high high high

data
condi�on

Ω risk
write

risk
write

risk
write

risk
write

risk
write

risk
write

risk
write

risk
write

risk
write

name Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω
risk high high high high high high high high high

data
condi�on

Ω risk
write

risk
write

risk
write

risk
write

risk
write

risk
write

risk
write

risk
write

risk
write

L

S

Fig. 20. Data alignment γd
2 of trace σ23 for compliance Rule 2

Step 5. In this step we enrich trace σ23 with diagnostics we obtained from the data-aware
alignment in the previous step as follows:

i) We insert an event attribute condition holds to all events in the trace. This new event
attribute gets no value () if no value is recorded for the attribute risk of the events. When-
ever a deviation is indicated in the alignment (columns colored in red), condition holds
gets value false, else it gets the value true. Note that value false for attribute condition
holds indicates all the situations in the trace where risk was not high.

ii) We insert event attribute admissible risk to the violating events. This new attribute
shows the admissible value; for our example (admissible risk:high).

iii) We insert event attribute combined name&condition to all events. The value of this
attribute for every event is the combination of the value for the corresponding attributes
name and condition holds of that event. This event attribute is added to enable us in the
next step to check if an activity was executed with the right data or resource.

As a result of above mentioned modifications, we obtain trace σ24 (shown in Fig. 21)
enriched with diagnostics and added information.

Step 6. In this step we define the scope of the compliance rule. Rule 2 is triggered
whenever risk is calculated high and it is satisfied as soon as activity risk reduction
measure is executed. Please note that afterwards the risk may stay high or risk reduc-
tion measure may occur arbitrary number of times. If we interpret this rule in context
of the trace σ24, we can rephrase the rule to: “occurrence of an event with (combined
name&condition:Ω − true)must be followed at least once by an event having value risk

252 E. Ramezani Taghiabadi et al.

Fig. 21. Trace σ24 enriched with diagnostics obtained from data-aware alignment

reduction measures-true or risk reduction measures-false for event attribute combined
name&condition. In other words, an event with Ω − true indicates that first activity
which calculated (risk:high) is executed. In addition any of the events with risk reduc-
tion measures-true or risk reduction measures-false indicates that activity risk reduction
measures was executed.

When defining the scope of Rule 2, we need to consider whether multiple instances of
the rule are allowed. In case of Rule 2, only fulfilling one instance of the rule is enough
and after fulfilling it once, it won’t be triggered again although risk may still be high.
After deciding about the scope of the rule we can design a Petri net which describes the
rule. The result is shown in Fig. 22.

Ω-true
Red-false

Initial IcmpIst

Ω-
false

Final

Start

End

End

Ω-
true

Red-true
Ω-

true

Ω-
false

Ω->>
Ω->> Ω->>

Red-
true

Red-
true

Fig. 22. Petri net specifying compliance Rule 2

Step 7. Having trace σ24 and
the Petri net specification of in
Fig. 22, we apply control-flow con-
formance checking to get an align-
ment between σ24 and the specifi-
cation. This alignment indicates de-
viations and diagnostics about the
deviations. For control-flow align-
ment we ignore attributes other
than ‘combined name&condition’
and align the trace σ24 to the net
shown in Fig. 22. γc

2 in Fig. 23 shows the alignment obtained.
The alignment indicates a deviation in trace σ24 implying that risk has been high,

hence activity risk reduction measure should have happened but it didn’t.

5 Implementation

The presented technique is supported by two novel plugins in the ComplianceFramework
package of ProM 6.3 1. The Data and Resource Compliance Checking-Rules Restricting
Activities plug-in checks the compliance of event logs against rules of the first category

1 Available from www.processmining.org

www.processmining.org

Compliance Checking of Data-Aware and Resource-Aware Compliance Requirements 253

name Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω
risk low high high high high high high high high

data
condi�on

Ω risk
write

risk
write

risk
write

risk
write

risk
write

risk
write

risk
write

risk
write

risk
write

condi�on
holds

>> false true true true true true true true true

admissible
risk

>> high high high high high high high high high

combined
name&

condi�on
Ω->> Ω-false Ω-true Ω-true Ω-true Ω-true Ω-true Ω-true Ω-true Ω-true

S
combined

name&
condi�on

Start Ω->> Ω-false I-st Ω-true Ω-true Ω-true Ω-true Ω-true Ω-true Ω-true Ω-true Red-true I-cmp End

L >>>> >> >>>>

Fig. 23. Data-aware alignment γc
2 obtained from step 7

and takes an event log and a data-aware Petri net as input. The Data and Resource Compli-
ance Checking-Rules Restricting Attributes checks the compliance of event logs against
rules of the second category and takes an event log, a data-aware Petri net, and a classical
Petri net as input. Both return diagnostics about deviations in the from of an alignment.
The resulting alignments provide diagnostics by showing data and resource violations
and control-flow violations projected over the original log.

6 Experimental Results

We applied our approach and toolset in two case studies: one for checking compliance
of a personal loan process within a global financial organization and one for analyzing
the process of patient treatment in ICU department of a Dutch hospital against a medical
guideline.

Case study 1: The event log related to the first case study is taken from BPI challenge
of 20122 and it has 13.087 traces. A compliance rule restricting this process states: “loan
applications with requesting amount less that 5000 and more than 50000 must not be
approved”. This compliance rule is of second type of data-aware compliance rules. We
found 117 number of deviations from the compliance rule out of all 13.087 traces exe-
cuted, i.e., 117 approved application requested an amount for more than 50000 or less
than 5000.

Case study 2: In this case study we investigated the compliance of an event log taken from
ICU department of a Dutch hospital with a medical guideline restricting tube feeding
nutrition of patients. The event log has 1207 traces; each trace recorded the treatment
that a patient received in ICU department. The compliance requirement states: “ If gastric
tube feeding cannot be increased then use Domperidone or Metoclopramide. The starting
dosage is usually (12 · 50ml) and it is recommended that the increase follows the pattern
(12 · 50ml, 12 · 100ml, 12 · 120ml)”.

2 This event log is publicly available at:
dx.doi:10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f

dx.doi:10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f

254 E. Ramezani Taghiabadi et al.

The guideline is not precise here, hence we check two different data-aware rules: i)
The nutrition must increase, else Domperidone or Metoclopramide must be administered
to the patient. ii) the increase must follow the pattern (12 ·50ml, 12 ·100ml, 12 ·120ml).

We first checked if the nutrition has been increased for respective patients and if not,
did they receive either Domperidone or Metoclopramide. We observed that from 1207
patients treated in ICU, 209 received tube feeding nutrition. In addition we found that
Metoclopramide has not been administered for these patient; only one patient has re-
ceived this medicine and it has been independent from tube feeding nutrition. For 72 pa-
tients, the tube feeding nutrition has increased without any problem. 56 patients received
Domperidone when nutrition was not increased.

We observed in total 81 violating traces. We identified several patterns for these vio-
lations. In some of violating traces, we observed that although nutrition has increased,
patients received Domperidone. It could be that that Domperidone was administered to
these patients independent from nutrition and for other purposes.

Another group of violations are related to patients that did not receive Domperidone
although nutrition was not increased for them. We checked these traces further and found
that this violation occurs in two situations. One group contained real violations because
patients never received Domperidone despite the nutrition was not increased. However
for another group of patients we observed several iterations of tube feeding nutrition with
an increase inside every iteration. For example a patient has received nutrition following
two times the pattern (12 · 50ml, 12 · 100ml, 12 · 120ml). That is we see the increase in
every occurrence of the pattern, yet the second occurrence of the pattern starts again from
(12 · 50ml).

We also investigated if the recommended pattern of increase has been followed
or not. We found out that only for less than 20% of patients the recommended pat-
tern of the guideline is followed. From the remaining we identified 3 groups of pa-
tients. One group of course were the 56 patients that the nutrition was not increased
for them. For the second group of patients, the nutrition was increased with the pat-
tern (12 · 50ml, 12 · 100ml, 12 · 140ml). The third group mostly followed the pattern
(500ml, 1000ml, 1500ml, 1700ml). These patients received Domperidone once in every
24 hours, unlike the other groups that received Domperidone every two hours a day.

Applying the technique presented in this paper, we were able to check compliance of
all the traces in the event logs rather than being limited to sample based compliance check-
ing. The technique works on large event logs because we can focus on events relevant to
a specific compliance rule and abstract from all other events. Our technique identified
and located the deviations by visualizing for each trace the difference between admis-
sible and observed behavior in the alignment. The extent of the deviation is reported in
two ways: (1) The alignment visualizes observed and expected values of deviating events.
(2) We compute statically information about the number of deviations per case, in total,
etc. A domain specialists can use this information to assess their severity and analyze
root-causes.

7 Related Work

Existing work in data and resource compliance checking mainly focuses on design time
verification. In [6], authors incorporate data in specification of compliance rules. These

Compliance Checking of Data-Aware and Resource-Aware Compliance Requirements 255

rules are expressed using a query language which is an extended version of BPMN-Q and
they are formalized by mapping into PLTL. They can visualize violations by indicating
execution paths in a process model causing them.

In [17] the control-flow is modeled and object life-cycles model other perspectives.
Later object state change becomes explicit in the process model and then the process
model is used to generate life-cycles for each object type used in the process. The con-
sistency between business process models and life-cycles of business objects is checked.
Apart from the fact that this approach also focuses on verification of models, it is not
discussed how deviation points represented and if further diagnostics are provided.

Other approaches such as [9,19,21] enforce compliance of business processes through
the use of compliance patterns. These patterns include some of the data and resource-
aware compliance requirements such as four-eye principle. However, specific checking
technique are not discussed. Further on, the work in [10] addresses the verification of
process models for data-aware compliance requirements. The authors do not apply a par-
ticular modeling language for specifying compliance rules, but introduce a general notion
for data-aware conditions. For checking data-aware requirements, abstraction strategies
are introduced to reduce complexity of data-aware compliance checking and deal with
state explosion issues. This is achieved by abstracting from concrete state of data objects.
The approach automatically derives an abstract process model and an abstract compli-
ance rule.

Process mining techniques [1] offer a means to more rigorously check compliance
and ascertain the validity of information about an organization’s core processes. The
challenge is to compare the prescribed behavior (e.g., a process model or set of rules)
to observed behavior (e.g., audit trails, workflow logs, transaction logs, message logs,
and databases). Various techniques have been proposed for checking control-flow com-
pliance rules based on event data including LTL-based checking [3] . In [13] both LTL-
based and SCIFF-based (i.e., abductive logic programming) approaches are used to check
compliance with respect to a declarative process model and an event log. Dozens of
approaches have been proposed to check conformance given a Petri-net and an event
log [2,16].

The classical data-aware conformance checking [11] that we have applied in our ap-
proach, allows for aligning event logs and process models for multi-perspective confor-
mance checking but it has some limitations; as we can only check the compliance rules
of the first category we discussed earlier. In addition if a deviation is observed for an
activity that is restricted with several data attributes at the same time, the classical data-
aware conformance checking can only indicate the deviation but not the specific data
attribute(s) causing the deviation; resulting in less precise diagnostics. Moreover using
classical data-aware conformance checking, we cannot focus only on specific rules and
abstracting from other activities that are not restricted by respective compliance rule. That
is we need to provide a data-aware Petri net that captures the behavior of the whole pro-
cess; consequently make the checking less flexible. We have covered above mentioned
limitations in our approach by extending the classical data-aware conformance checking.

256 E. Ramezani Taghiabadi et al.

8 Conclusion and Future Work

In this paper, we provided an approach for data and resource-aware compliance checking
of behavior recorded in execution logs. We show a collection of different compliance con-
straints restricting process data and resources. In addition, we provide two generic tech-
niques for checking these rules based on alignments. Our technique separates control-
flow, data and resource compliance checking to the possible extent, and provides inte-
grated diagnostic information about both control-flow violations, and data and resource
related compliance violations. In particular, our technique is capable of showing diag-
nostic information about violations of a compliance rule in a process instance. We have
shown this technique to be feasible for compliance rules on data dependencies between
two or three data attributes. More complex rules are possible but require additional pre-
processing and data-aware alignment steps. A more scalable technique is subject to fur-
ther research.

We provide an implementation of our techniques in the ComplianceFarmework pack-
age of ProM. The software has been tested in synthetic logs and two case studies involving
real-life logs from a financial institute and ICU department of a hospital. The results are
encouraging: we were able to uncover various violations and no performance issues were
encountered. Future research aims at making the approach more user-friendly. While the
compliance checking itself is fully automatic, the user still has to create formal compli-
ance rules and interpret the results. Formal data-aware compliance rules could be elicited
in questionnaire-based approach similar to [15]. Further, a higher-level compliance lan-
guage and a dashboard for integrating results of control-flow, temporal, and data and
resource-aware compliance checking to provide a multi-perspective view on data are re-
quired.

References

1. van der Aalst, W.M.P.: Process Mining - Discovery, Conformance and Enhancement of Busi-
ness Processes, pp. 1–352. Springer (2011)

2. van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.F.: Replaying history on process models
for conformance checking and performance analysis. Wiley Interdisc. Rew.: Data Mining and
Knowledge Discovery 2(2), 182–192 (2012)

3. van der Aalst, W.M.P., de Beer, H.T., van Dongen, B.F.: Process Mining and Verification of
Properties: An Approach Based on Temporal Logic. In: Meersman, R., Tari, Z. (eds.) OTM
2005. LNCS, vol. 3760, pp. 130–147. Springer, Heidelberg (2005)

4. Accorsi, R., Stocker, T.: On the exploitation of process mining for security audits: the confor-
mance checking case. In: SAC, pp. 1709–1716. ACM (2012)

5. Adriansyah, A., van Dongen, B.F., van der Aalst, W.M.P.: Conformance checking using cost-
based fitness analysis. In: EDOC, pp. 55–64. IEEE Computer Society (2011)

6. Awad, A., Weidlich, M., Weske, M.: Specification, verification and explanation of violation for
data aware compliance rules. In: Baresi, L., Chi, C.-H., Suzuki, J. (eds.) ICSOC-ServiceWave
2009. LNCS, vol. 5900, pp. 500–515. Springer, Heidelberg (2009)

7. Botha, R.A., Eloff, J.H.P.: Separation of duties for access control enforcement in workflow
environments. IBM Systems Journal 40(3), 666–682 (2001)

Compliance Checking of Data-Aware and Resource-Aware Compliance Requirements 257

8. Elgammal, A., Turetken, O., van den Heuvel, W.-J., Papazoglou, M.: On the formal specifica-
tion of regulatory compliance: A comparative analysis. In: Maximilien, E.M., Rossi, G., Yuan,
S.-T., Ludwig, H., Fantinato, M. (eds.) ICSOC 2010. LNCS, vol. 6568, pp. 27–38. Springer,
Heidelberg (2011)

9. Elgammal, A., Turetken, O., van den Heuvel, W.-J., Papazoglou, M.: Root-cause analysis of
design-time compliance violations on the basis of property patterns. In: Maglio, P.P., Weske,
M., Yang, J., Fantinato, M. (eds.) ICSOC 2010. LNCS, vol. 6470, pp. 17–31. Springer,
Heidelberg (2010)

10. Knuplesch, D., Ly, L.T., Rinderle-Ma, S., Pfeifer, H., Dadam, P.: On enabling data-aware com-
pliance checking of business process models. In: Parsons, J., Saeki, M., Shoval, P., Woo, C.,
Wand, Y. (eds.) ER 2010. LNCS, vol. 6412, pp. 332–346. Springer, Heidelberg (2010)

11. de Leoni, M., van der Aalst, W.M.P.: Aligning event logs and process models for multi-
perspective conformance checking: An approach based on integer linear programming. In:
Daniel, F., Wang, J., Weber, B. (eds.) BPM 2013. LNCS, vol. 8094, pp. 113–129. Springer,
Heidelberg (2013)

12. de Leoni, M., Maggi, F.M., van der Aalst, W.M.P.: Aligning event logs and declarative process
models for conformance checking. In: Barros, A., Gal, A., Kindler, E. (eds.) BPM 2012. LNCS,
vol. 7481, pp. 82–97. Springer, Heidelberg (2012)

13. Montali, M., Pesic, M., van der Aalst, W.M.P., Chesani, F., Mello, P., Storari, S.: Declarative
specification and verification of service choreographiess. TWEB 4(1) (2010)

14. Ramezani, E., Fahland, D., van der Aalst, W.M.P.: Where did I misbehave? Diagnostic infor-
mation in compliance checking. In: Barros, A., Gal, A., Kindler, E. (eds.) BPM 2012. LNCS,
vol. 7481, pp. 262–278. Springer, Heidelberg (2012)

15. Ramezani, E., Fahland, D., van der Aalst, W.M.P.: Supporting domain experts to select and
configure precise compliance rules. In: Lohmann, N., Song, M., Wohed, P. (eds.) BPM 2013
Workshops. LNBIP, vol. 171, pp. 498–512. Springer, Heidelberg (2014)

16. Rozinat, A., van der Aalst, W.M.P.: Conformance checking of processes based on monitoring
real behavior. Inf. Syst. 33(1), 64–95 (2008)

17. Ryndina, K., Küster, J.M., Gall, H.: Consistency of business process models and object life
cycles. In: Kühne, T. (ed.) MoDELS 2006. LNCS, vol. 4364, pp. 80–90. Springer, Heidelberg
(2007)

18. Samarati, P., di Vimercati, S.D.C.: Access control: Policies, models, and mechanisms. In:
Focardi, R., Gorrieri, R. (eds.) FOSAD 2000. LNCS, vol. 2171, pp. 137–196. Springer,
Heidelberg (2001)

19. Schumm, D., Turetken, O., Kokash, N., Elgammal, A., Leymann, F., van den Heuvel, W.-J.:
Business process compliance through reusable units of compliant processes. In: Daniel, F.,
Facca, F.M. (eds.) ICWE 2010. LNCS, vol. 6385, pp. 325–337. Springer, Heidelberg (2010)

20. Ramezani Taghiabadi, E., Fahland, D., van Dongen, B.F., van der Aalst, W.M.P.: Diagnos-
tic information for compliance checking of temporal compliance requirements. In: Salinesi,
C., Norrie, M.C., Pastor, Ó. (eds.) CAiSE 2013. LNCS, vol. 7908, pp. 304–320. Springer,
Heidelberg (2013)

21. Türetken, O., Elgammal, A., van den Heuvel, W.J., Papazoglou, M.P.: Enforcing compliance
on business processes through the use of patterns. In: ECIS (2011)

22. di Vimercati, S.D.C., Paraboschi, S., Samarati, P.: Access control: principles and solutions.
Softw., Pract. Exper. 33(5), 397–421 (2003)

	Compliance Checking of Data-Aware and Resource-Aware Compliance Requirements
	1 Introduction
	2 Preliminaries
	3 Compliance Requirements
	3.1 Data-Aware and Resource-AwareCompliance Rules

	4 Data-Aware and Resource-Aware Compliance Checking
	4.1 Motivating Example
	4.2 Methodology
	4.3 Compliance Checking of Rules Restricting Data Attributes
	4.4 Compliance Checking of Rules Restricting ActivitiesWhen a Certain Data ConditionHolds

	5 Implementation
	6 Experimental Results
	7 Related
Work
	8 Conclusion and Future
Work
	References

