

R. Meersman et al. (Eds.): OTM 2014 Workshops, LNCS 8842, pp. 229–240, 2014.
© Springer-Verlag Berlin Heidelberg 2014

Towards a Conceptual Framework for Requirements
Interoperability in Complex Systems Engineering

Anderson Luis Szejka1,2,3, Alexis Aubry1,2, Hervé Panetto1,2,
Osiris Canciglieri Júnior3, and Eduardo Rocha Loures3

1 Centre de Recherche en Automatique de Nancy (CRAN),
University of Lorraine, Vandoeuvre-lès-Nancy Cedex, France

2 CRAN UMR 7039, CNRS, France
{anderson-luis.szejka,alexis.aubry,

herve.panetto}@univ-lorraine.fr
3 Graduate Program in Production Engineering and Systems,

Pontifical Catholic University of Parana, Curitiba, Brazil
{osiris.canciglieri,eduardo.loures}@pucpr.br

Abstract. Requirements Engineering (RE) is an important activity in system
engineering and produces, from the users’ needs, specifications related to what
the final system must be. This process in complex systems engineering is ex-
tremely intense, because there is a large number of stakeholders involved, with
expertise deriving from heterogeneous domains. Moreover, requirements’ im-
provements and variations are common during system life cycle phases. Thus,
there is a risk of inconsistency of requirements during the engineering of a sys-
tem. This paper provides a contribution in requirements engineering as it
explores requirements interoperability in complex systems when multiples di-
mensions are involved. It discusses requirement management according to the
cross-domains dimension, the cross-systems life cycle dimension, the cross-
requirements dimension and the risk of inconsistency when three dimensions
are involved simultaneously during the life cycle phases. The main result is an
overview of the existing gaps in one and/or more dimensions allowing a discus-
sion on the possibilities to cope with the problem of requirements inconsistency
in multiples dimensions.

Keywords: Requirements Engineering, Requirements Interoperability, Com-
plex Systems Engineering, Requirements Consistency.

1 Introduction

Enterprises have been specializing in specific domains and establishing partnerships
with other companies to complement their initial skills to face globalization and
consequently its intensified competition. This approach resulted in the so-called
collaborative network that allows the development of complex systems and
collaborative activities in many industrial domains like aeronautics, nanotechnology,
aerospace, bioengineering, etc. According to [1], for succeeding in these collaborative
engineering processes, it is important to formalize how different partners can work

230 A.L. Szejka et al.

together and, through their interactions, how a common objective can be achieved
within different perspectives. These engineering processes follow best practices
generally defined in the so-called systems engineering domain.

System Engineering (SE) is “an interdisciplinary approach and means to enable the
realization of successful systems” [2]. It focuses on holistically and concurrently
understanding stakeholder needs; exploring opportunities; documenting requirements;
and, synthesizing, verifying, validating and evolving solutions while considering the
complete problem, from system concept exploration throughout all phases until
system disposal. One of the SE processes is dedicated to analysing users and systems
requirements, denominated Requirement Engineering (RE). RE refers to activities of
formulating, documenting and maintaining systems requirements [3] to produce, from
the users’ needs, a set of specification related to what the final system must be.

Requirements provide the basis for all phases of the system development and must
be controlled inside all these phases and domains to avoid misinterpretation and
mistakes that would compromise the final results [2,4,5]. While approaches such as
model-based systems engineering (MBSE) have been studied in [6,7,8], for improving
the definition of requirements based on models, there is still a semantic gap between
all requirements definitions when they are defined in different domains for the same
engineering project and requirement consistency management in different systems life
cycle phases. In order to cope with this challenge, we are working to define a
conceptual framework that aims to formally model requirements interoperation in
term of impact and semantic equivalence or subsumption. This formal definition will
facilitate the verification of the system requirements coherence taking into account the
technical constraints defined by appropriate experts along the systems life cycle
phases.

The paper is structured as follow: Section 2 addresses the problem statement
regarding to the management of requirements when multiple information come from
multiple stakeholders’ needs during the system life cycle phases. Section 3 presents a
literature review concerning the main issues on system requirements considering the
cross-domains dimension, the cross-systems life cycle dimension and the cross-
requirements dimension. Section 4 is devoted to discuss the main drawbacks and
existing gaps in related works. Finally, section 5 concludes and presents perspectives
for the research continuation.

2 Problem Statement

RE is a key activity in the process of engineering a system. Indeed, complex systems
with multidisciplinary perspectives require special attention to ensure that all
requirements are fulfilled and misinterpretation and mistakes do not occur during
phase’s evolution of the system life cycle [9]. In fact, the misinterpretation and
mistakes may cause significant a posteriori system refactoring, which result in
scheduling overruns and increasing the projects costs [10].

The traditional system requirement approach does not support [11,12,13]:

• the cascading impacts of frequent changes or updates of requirements;
• the dispersion of responsibility and the risk of non-consistency of requirements due

to the number of stakeholders involved in the development process.

 Towards a Conceptual Framework for Requirements Interoperability 231

Specialists normally define each requirement using different expertise from
heterogeneous domains focused on a single domain and a single life cycle phase. This
fact leads to risk of misunderstanding among specialists due to semantic gaps.
However, it is important to enhance the system requirements engineering activity that
identifies the potential risk for the system-of-interest if one requirement is not
satisfied. RE standards, approaches and tools are not able to deal with the risk if the
non-satisfied requirement affects other life cycle phases and/or others domains.

For analysing these issues, the authors intend to consider three dimensions of the
requirements analysis process as illustrated in Figure 1: (i) the domains dimension;
(ii) the system lifecycle phase’s dimension; and (iii) the requirements dimension. The
first dimension concerns the set of domains involved in system engineering process,
for instance mechanical domain, electrical domain, computer science domain. For this
particular case, each expert in these domains must define specific requirements based
on their particular skills. The second dimension is related to different phases of the
systems life cycle, where each phase has its proper constraints represented by specific
requirements. The last dimension represents different requirements as basic elements
defined by the requirements analysis process, which this requirement will represent
accurately the stakeholder’s needs. Each one of these requirements is associated to a
single domain and a single life cycle phase.

Fig. 1. Requirements analysis dimensions and issues

For each dimension, an interoperation issue can be identified. Within the
requirements dimension there are problems of completeness, coherency, uniqueness,
univocity, feasibility, traceability and verifiability (Detail A – Figure 1). The
dimension related to the systems life cycle phases may have some issues concerning

(C) Cross-domains
interoperation issue

System
Requirements

Requirement "a"

Definition

Development

Production

Utilization

Support

Retirement

System
Lifecycle

Phases

Domains

Domain “A”
Domain “B”

Domain “C”

Domain “N”

Requirement "b"

Requirement "c"

Requirement “n"

System Requirements Analysis

Re

in

D
Dom

RequR

(B) Cross-system lifecycle phases
interoperation issue p

D

(D) Risk of non-consistency (

(A) Requirements
interoperation issue e

232 A.L. Szejka et al.

the impact analysis between all phases (Detail B – Figure 1). Finally, the main
scientific issue comes from the heterogeneity of the domains, which imposes some
knowledge representation and analysis for managing requirements and their semantic
relationships (Detail C – Figure 1).

The authors also identified a fourth issue that illustrates the interrelationships
among the three dimensions presented (Detail D – Figure 1). This last issue, which
takes also into account dynamical, interactive and recursive properties of the
requirement analysis process, is the most critical one. For example, if a specific
requirement in one particular domain for a single phase is added or updated, it may
impact other requirements already defined in other domains and/or other phases.

3 Related Works

The related works were structured according to the three issues of this research: (i)
cross-domains requirement interoperation, (ii) cross-systems life cycle requirement
interoperation and (iii) cross-requirement interoperation in a single domain/systems
life cycle phases.

3.1 Cross-Domains Requirements Interoperation Issue

The complex systems development requires the involvement of specialists from
multiples domains to capture the system’s overview as well as the overviews within
the domains and their interactions [14]. This generates a multi-heterogeneous
information environment from different groups of stakeholders, suppliers, analysts’
engineers, etc., to define complex systems. However, the heterogeneity of information
from different domains has generated divergences with requirements like
misinterpretation and mistakes due to a lack of requirements formalism and impacting
in different system life cycle phases [15]. According to [16], the requirement analysts
have expertise in systems development, but their knowledge remains restricted to
their domains. On the other hand, the stakeholders and other customers involved in
the project have different expertise and knowledge that creates a semantic problem,
which reduces the chances of success of the systems development.

Additionally, in [6] was verified an increasing in complex systems development
and in systems related with other system. It occurs because simple system does not
support all stakeholders’ needs and different expertise involved in stakeholders’
requirements, resulting in the intensification of heterogeneous domains issues. Thus,
the cross-domains requirements interoperation issue is to manage the complexity of
this heterogeneous knowledge in different systems life cycle phases, ensuring the
requirement coherence and compromising the final outcomes.

Thereby, in [17], the authors designed a conceptual multiple view approach model
using object oriented model and UML (Unified Modelling Language) to structure
information relationships between mechanical and manufacturing domain. Translating
mechanisms propitiated the relationship between different domains. Each mechanism
dealt with a specific knowledge, which is responsible for translating the information

 Towards a Conceptual Framework for Requirements Interoperability 233

from product view to manufacturing view. Despite the cross-domain
approach/solution presented in this research, the mechanisms were restricted to
specific domains. In [18], it was proposed the integration between Model-Driven
Engineering (MDE) and Domain Specific Language (DSL), creating a common
language and a reasoner to analyse information in multiple domains. DSL formalizes
the application structure, behaviour and requirements in a single domain and MDE
structures the link between information through reasoning mechanisms in multiples
domains. This allowed the exchanging information between heterogeneous domains.
However, this approach did not present how to model the domains knowledge in
different phases of the system life cycle and the impact of environment changes,
which the domain is associated.

In [19], a model-driven domain was proposed and described as part of ontology
without axioms and rules. This model provides a common reference point and is used
to manage objects development of the system and automatically supports the
discovery dependency link. It was limited to early system development life cycle
phases (definition and concept) and did not have a mechanism to ensure the
consistency of the requirements after the automatic discovery of dependency links.
[20] employed MBSE to structure requirements from multiples domains during the
system life cycle phases to ensure the requirement consistency. This approach adapted
the Vee-model to specific driven to MBSE models supporting the system building.
However, this approach did not address the model performance in systems that suffer
from frequent requirement changes. In [21], the authors proposed a model-based
design (MBD) methodology adapted from MBSE, integrated to the W model
proposed by [22] to support the complex system development in multiples domains.
For each domain the methodology created a model with their requirements and
specific information allowing in a SysML environment the interaction between
different domains. The information follows the W model that ensures the consistency
of requirements, verification and validation. However, this methodology worked with
early phases of the systems life cycle and did not address the requirements control and
management in different phases of the systems life cycle.

3.2 Cross-Systems Life Cycle Requirements Interoperation Issue

The systems life cycle phases relate all activities of engineering of system, from
definition until retirement as well as rules or verifications to confirm the system
maturity [2]. According to [23], there are standards and models (ISO/IEC/IEEE
29148:2011 [24], ISO/IEC/IEEE 15288:2002 [25], etc.) that standardize each phase of
systems life cycle and rules that define the evolution and verification of the system.
However, for [5] a single view model of the system does not explicitly fit all situation
of the system life cycle. According to [5,7,26], these models or standards can be used
to determine all phases of the life cycle, but they contain particular characteristics that
make them more suitable for specific phases. For instance, the waterfall is suitable for
defining phases, because this model uses the feedback concept ensuring and revising
the information integrity during a single phase [27]. Moreover, the traditional models
ensure the information consistency in the direct flow according to representative life
cycle model proposed by ISO/IEC TR 24748-1:2010 [28], i.e., if it is necessary to

234 A.L. Szejka et al.

change some information in previous phases, these models are not able to manage the
new information [29]. Nevertheless, the systems life cycle does not follow a linear
progression, i.e., iteration and recursion will occur modifying the life cycle flow as
illustrate in Figure 2.

Fig. 2. Life cycle model representation adapted from ISO/IEC TR 24748-1:2010 [28]

In this context, [7] proposed a framework for a model-based requirements
engineering to structure the system requirements in a SysML modelling. Moreover,
they extend this approach to system life cycle, proposing solutions to integrate
requirement in different phases of the system life cycle. However, this approach did
not depict the evolution of the requirement in different phases and if the framework is
able to analysis the change impact in different phases of the system life cycle. In [30]
a methodology to verify the requirement consistency during the system life cycle
phases in a dynamic manner is proposed. The methodology, named vVDR (virtual
Verification of System Design against System Requirement), contributed to three
main steps in the system life cycle phases: system requirement analysis, system
design and system testing. Although, the methodology covered different system life
cycle phases and analysed the requirements consistency, it did not report if there are
consistency checking when the requirements are replaced or if there are impact
analyses in different requirements occasioned by their replacement.

In [31], the authors proposed a formalization of semantic annotation for system
interoperability from different domains views in a Product Life Cycle Management
(PLM) environment. The formalization made explicit the tacit knowledge intrinsic in
application models and act to support all activities during the product life cycle.
Nevertheless, this approach did not depict the annotations in requirements that change
frequently along the life cycle and how to ensure the semantic of these requirements.
[32] proposed a model-driven ontology, which integrate the model-driven architecture
(MDA) and an ontology, to create a manufacturing system interoperable between
design domain and manufacturing domain. The solution emphasized the need of
designing the knowledge in a common-logic-based ontology language to allow
information exchange between domains. But this solution was limited to two
heterogeneous domains and there was no evidence of possibilities to expand
information exchange to multi-domains and integrate them.

Concept

Development

Production Utilization

Support

Retirement C

Development

on

Support

Retirement Concept

D

atio

Suppor

Concept Production UtConcept Producti tilizaon Utilizatio

t

Producti tilizatioUtonProducti tiliza

 Towards a Conceptual Framework for Requirements Interoperability 235

3.3 Cross-Requirements Interoperation Issue in a Single Domain/System Life
Cycle Phases

Requirements are necessary attribute in a system, a statement that identifies
capabilities, characteristics and quality factor of a system to ensure its value and
utility for a customer or a user [2,4,5]. Based on literature and standards, there are
two main types of requirements: Functional Requirements and Non-Functional
Requirements (Quality requirements, Constraints, etc.) [2,5,33]. It is necessary to
certify that among requirements will not have problems with completeness,
coherency, uniqueness and univocity, as well as the traceability between
requirements.

In [12], the complexity of translating customer needs in functional or non-
functional requirements is demonstrated, because the customers or stakeholders
environment was associated with a different requirement environment than the
requirements analyst (RA). Thus, RE emerges as a cooperative, interactive and
incremental process to elicitation, negotiation and documentation of the requirements
and constraints of complex systems. The RE aims to solve the requirements problem
in early stages of the requirements process [3,5,34]. Within RE, beyond elicitation
and negotiation, the traceability stands for a relevant problem. Requirements
traceability is responsible for tracking information from stakeholder to all level of the
engineering of the system as well as providing an understanding about any
requirement change [5]. However, requirements traceability relations are not
automatic generated and maintained [35, 44] and the identification typically occurs
manually [36, 43] making traceability relations susceptible to errors, if changes occur
during the engineering of the system [37].

According to [37], the lacks of automated traceability become a prominent problem
in complex systems once there is a need to establish traceability between large
collections of requirements and other systems documentation. To [38], changes can be
required in any phases of the system life cycle (design, implementation or use).
However, in Dynamic Adaptive Systems (DAS) a large numbers of requirements are
faced changes of environment. Thus, the traditional traceability approach, which
works with static and simple system, does not support this new system development
once it is necessary to analyse simultaneously the changed requirements, identifying
them and tracing the impact of the change in other requirements.

In [39], the authors advocate that if the traceability is consistently maintained it
would prevent a dissemination of potential requirements inconsistencies into different
system life cycle phases. Thus, according to the authors further researches are
necessary to ensure the requirement traceability, making sure that the requirements
information is complete, coherent, unique and univocal. According to [40],
consistency of requirements can be ensured through validation and verification
methods. In this context, [41] proposed an interoperation meta-model to structure the
information transforming from stakeholder requirements (problem space) to
specifications (solution space). This meta-model was responsible to control the
exchange information in collaborative domains, ensuring their consistency and
traceability during all this process. However, this meta-model was limited to early
phases of the system life cycle and did not ensure the requirement exchange in
different phases.

236 A.L. Szejka et al.

In [35], the authors presented a systematization approach to ensure the requirement
consistency in different phases of system life cycle. This approach consists of some
mechanisms: (i) mechanism to formalize the requirements and its features, (ii)
mechanisms to consistency checking and (iii) mechanisms to correct the
inconsistency problems. Moreover, the authors proposed a mechanism to manage the
variability of information in different phases of the system life cycle, its consistency
in all system life cycle. The authors did not depict if there are consistency impacts
with requirements changing during the system life cycle and if this systematization is
able to identify these impacts. In [42], the authors proposed a model to integrate the
goal-oriented approach to RELAX, based on KAOS (Knowledge Acquisition in
automated specification) and DSL (Domain Specific Language). This model supports
the constant requirements changing, but it does not support the requirements
evolution during different life cycle phases.

4 Discussion

This research is working to evidence the relevant issues to the requirements
engineering in order to ensure all requirements coherency and consistency in all
systems life cycle phases. These issues provided support to a conceptual framework
proposal that aims to formally model requirements interoperation in term of impact
and semantic equivalence or subsuming. Therefore, the authors proposed three
dimensions to investigate the related issues: the cross-domain, the cross-systems life
cycle phases’ and the cross-requirements dimensions.

Related works were found for each dimension regarding requirements engineering
and particular solutions proposals. Thus, based on the related works issues/solutions,
the Table 1 is proposed, which shows specific analysis by categorization, positioning
each paper according to their subjects and degree of importance for the research. The
adopted classification criteria were:

─ (D1) Particular cases – Papers/articles concerning the requirements exchange
limited to two specific domains;

─ (D2) Ability to be generic – Papers/articles concerning the requirements exchange
among different domains and that can be adapted to other domains;

─ (D3) Generality of the approach – Papers/articles concerning the requirements
exchange among different domains whose approaches do not need any adaptation;

─ (LC4) Yes – For papers/articles that concerns the requirement exchange among
one or more phases of the system life cycle;

─ (LC5) No – For papers/articles that do not concern the requirement exchange
among one or more phases of the system life cycle;

─ (R6) Requirements Traceability - Papers/articles regarding the requirements
traceability in one or more system life cycle phases and different domains;

─ (R7) Requirements Interoperability – Papers/articles regarding the exchange of
requirements between one or more systems lifecycle phases and different domains.
This interoperability issue does not consider any requirements changes during the
systems life cycle phases;

─ (R8) Requirements Impacts - Papers/articles regarding the exchange of
requirements between one or more systems lifecycle phases and different domains.
This interoperability issue considers the impacts caused by any requirements
changes during the systems life cycle phases.

 Towards a Conceptual Framework for Requirements Interoperability 237

Table 1. Related works classification according to each research issue

Authors and Publication Year
Cross-Domains issue

Cross-Systems
Life Cycle issue

Cross-Requirements issue

(D1) (D2) (D3) (LC4) (LC5) (R6) (R7) (R8)

ADELSON and SOLOWAY, 1985 [45]
✔ ✔

RAMESH and JARK, 2001 [35] ✔ ✔

EGYED and GRÜNBACHER, 2002 [44] ✔ ✔

CLELAND-HUANG et al., 2002 [36] ✔ ✔

CANCIGLIERI JR. and YOUNG, 2003 [17] ✔ ✔ ✔ ✔

SPANOUDAKIS et al., 2004 [37] ✔ ✔

RATCHEV, URWIN, MULLER, PAWAR and
MOULEK, 2003 [12] ✔ ✔

KECECI, GARBAJOSA and BOURQUE, 2006
[43] ✔ ✔ ✔

SCHMIDT, 2006 [18] ✔ ✔ ✔

STECHERT and FRANKE, 2008 [46] ✔ ✔ ✔ ✔ ✔

WELSH AND SAWYER, 2009 [38] ✔ ✔ ✔

HOLT and PIERRY, 2010 [7] ✔ ✔

SCHAMAI et al., 2010 [30] ✔ ✔ ✔

MONEVA, HAMBERG AND PUNTER, 2011
[15] ✔ ✔ ✔

AHMAD and BRUEL, 2012 [42] ✔ ✔ ✔ ✔

BOUFFARON et al., 2012 [41] ✔ ✔ ✔

CMYREV et al., 2012 [39] ✔ ✔ ✔

STRASUNSKAS and HAKKARAINEN, 2012
[19] ✔ ✔ ✔ ✔

OERTEL and JOSKO, 2012 [40] ✔ ✔ ✔

LIAO et al., 2012 [31] ✔ ✔ ✔

CHANDLER and MATTHEWS, 2013 [26] ✔ ✔ ✔

CHUNGOORA et al., 2013 [32] ✔ ✔ ✔ ✔

HAVEMAN and BONNEMA, 2013 [20] ✔ ✔ ✔ ✔

BARBIERI et al., 2014 [21] ✔ ✔ ✔

It is observed in Table 1 that there are some poorly explored gaps: in cross-domain
issue, items (D2) and (D3) and in cross-requirement issue, item (R8). In cross-domain
issue, it was verified that existing approaches proposed by the literature solve specific
information exchange between domains. But, when this approach is extended to
multiples domains (more than three), there are strict and/or limited solutions. This
issue makes evident the problem with the semantic gap in multiples domains as well
as the risk of mistakes and misinterpretation. In cross-requirement issue was noticed
that there are researches addressing the requirement traceability and interoperability.
Nevertheless, these researches did not consider the impact, which frequents
requirements improvements and variations may cause to the consistency and
coherency among requirements as well as ensuring the requirement consistency
during different systems life cycle phases.

238 A.L. Szejka et al.

These results represent a preliminary evaluation about the models, frameworks and
methodologies found in the literature, concerning the three dimensions. However, it is
important to consider that requirements are not static, i.e. requirements’ variations,
advances and improvements may occur during the system life cycle phases’ evolution.
Although, the three dimensions consider the inherent relationship to each of them, it is
important address all three issues simultaneously. Therefore, it is necessary explore or
develop methodologies to support the systems-of-system, focusing on the three
dimensions concurrently. The authors consider this approach as the fourth issue in
order to ensuring the system requirements consistency and coherence.

5 Conclusion

This research points towards a conceptual framework for requirements
interoperability in complex system engineering in order ensure the system
requirements consistency and coherence in all life cycle phases. Requirements are not
static, i.e., they may suffer changes, updates or removals during the system life cycle
phase’s evolution. Thus, it is necessary to manage these relationships to avoid
misinterpretation and mistakes with requirements.

The authors proposed four issues to be investigated. Three of them are directly
generated from the different presented dimensions (cross-domain, cross-systems life
cycle phases and cross-requirements). The last one is the interrelationship among
these issues. From these issues, an extensive literature review has been provided and
the related works has been classified in order to identify the gaps that were not
explored and/or need further researches. Whilst, the literature review and its
classification highlighted the gaps in the same issue and/or the relationship among
them such as: the need of requirement’s language formalization or standardization in
order to avoid misinterpretation and mistakes in multiples domains and the impact
that frequent requirement changes/updates cause in the system requirements during
system life cycle.

The continuity of the research should therefore identify and determine scientific
methods identification and determination that are able to conceptually represent these
3 dimensions and the dependencies existing among them. It should also explore how
to cope with the impact of requirements changes can cause among requirements in
multiples domains during the system life cycle phases.

References
1. Mallek, S., Daclin, N., Chapurlat, V.: The application of interoperability requirement spe-

cification and verification to collaborative process in industry. Computers in Industry 63,
643–658 (2002)

2. Haskins, C.: INCOSE, INCOSE Systems Engineering Handbook: A Guide for Life Cycle
Processes and Activities. The International Council on Systems Engineering, 3rd edn
(2006)

3. Young, R.R.: The Requirements Engineering Handbook, 1st edn. Artech House, Boston
(2004)

4. Afis, C.: Guide Bonnes Pratiques en Ingénierie des Exigences, 1st edn. Cépadules, Paris
(2012)

5. Sebok, Guide to the Systems Engineering Body of Knowledge (SEBoK), version 1.2
(2013), http://www.sebokwiki.org

 Towards a Conceptual Framework for Requirements Interoperability 239

6. Haskins, C.: INCOSE, INCOSE Systems Engineering Vision 2020, The International
Council on Systems Engineering, 2nd edn. (2007)

7. Holt, J., Perry, S., Brownsword, M.: Model-Based Requirement Engineering, 1st edn., p.
340. The Institution of Engineering and Technology, London (2011)

8. OBJECT MANAGEMENT GROUP (OMG): MDA Guide, Version 1.0.1 (2003)
9. Colombo, P., Khendek, F., Lavazza, L.: Bridging the gap between requirements and de-

sign: An approach based on Problem Frames and SysML. Journal of Systems and Soft-
ware 85(3), 717–745 (2012)

10. Flanigan, D., Brouse, P.: System of Systems Requirements Capacity Allocation. Procedia
Computer Science 8, 112–117 (2012)

11. Brooks, R.T., Sage, A.P.: System of System Integration and Test. Information Knowledge
and Systems Management 5, 261–280 (2006)

12. Ratchev, S., Urwin, E., Muller, D., Pawar, K.S., Moulek, L.: Knowledge based require-
ment engineering for one-of-a-kind complex systems. Knowledge-Based Systems 16(1),
1–5 (2003)

13. Bernard, Y.: Requirements management within a full model-based engineering approach.
Systems Engineering 15, 119–139 (2012)

14. Bjørner, D.: From domain to requirements. In: Degano, P., De Nicola, R., Meseguer, J.
(eds.) Montanari Festschrift. LNCS, vol. 5065, pp. 278–300. Springer, Heidelberg (2008)

15. Moneva, H., Hamberg, R., Punter, T.: A Design Framework for Model-Based Develop-
ment of Complex Systems. In: 32nd IEEE Real-Time Systems Symposium and 2nd Ana-
lytical Virtual Integration of Cyber-Physical Systems Workshop, Vienna, pp. 1–8 (2011)

16. Vitharana, P., Jain, H., Zahedi, F.M.: A knowledge based component/service repository to
enhance analysts’ domain knowledge for requirements analysis. Information & Manage-
ment 49(1), 24–35 (2012)

17. Canciglieri Jr., O., Young, R.I.M.: Information sharing in multiviewpoint injection mould-
ing design and manufacturing. International Journal of Production Research 41(7), 1565–
1586 (2003)

18. Schmidt, D.C.: Model-Driven Engineering. IEEE Computer 39(2), 25–31 (2006)
19. Strasunskas, D., Hakkarainen, S.E.: Domain model-driven software engineering: A method

for discovery of dependency links. Information and Software Technology 54(11), 1239–
1249 (2012)

20. Haveman, S.P., Bonnema, G.M.: Requirements for High Level Models Supporting Design
Space Exploration in Model-based Systems Engineering. Procedia Computer Science 16,
293–302 (2013)

21. Barbieri, G., Fantuzzi, C., Borsari, R.: A model-based design methodology for the devel-
opment of mechatronic systems. Mechatronics (in press, 2014)

22. Nattermann, R., Reiner, A.: Approach for a data-management-system and a proceeding-
model for the development of adaptronic systems. In: International Mechanical Engineer-
ing Congress and Exposition (ASME), pp. 1–10 (2010)

23. Schneider, F., Berenbach, B.: A Literature Survey on International Standards for Systems
Requirements Engineering. Procedia Computer Science 16, 796–805 (2013)

24. International Organization for Standardization: ISO/IEC/IEEE 29148:2008 – Systems and
software engineering – Life cycle processes and Requirement Engineering (2011)

25. International Organization for Standardization: ISO/IEC/IEEE 15288:2002 – Systems and
software engineering – System life cycle processes, ISO/IEC (2002)

26. Chandler, S.R., Matthews, P.C.: Through-Life Systems Engineering Design & Support
with SysML. Procedia CIRP 11, 425–430 (2013)

27. Ruparelia, N.B.: Software Development Lifecycle Models. ACM SIGSOFT Software En-
gineering Notes 35(3), 8–13 (2010)

240 A.L. Szejka et al.

28. International Organization for Standardization: ISO/IEC TR 24748:2010 – Systems and
software engineering – Life cycle management – Part 1: Guide for life cycle management,
ISO/IEC (2011)

29. Gausemeier, J., Gaukstern, T., Tschirner, C.: System Engineering Management Based on a
Discipline-Spanning System Model. Procedia Computer Science 16, 303–312 (2013)

30. Schamai, W., Helle, P., Fritzson, P., Paredis, C.J.J.: Virtual Verification of System Designs
against System Requirements. In: Models 2010 ACES-MB Workshop Proceedings, vol. 1,
pp. 53–67 (2010)

31. Liao, Y., Lezoche, M., Loures, E.F.R., Panetto, H., Boudjlida, N.: Formalization of Se-
mantic Annotation for System Interoperability in a PLM environment. In: Proceeding of
OTM Federated conferences and workshops and 2nd Workshop on Industrial and Business
Application of Semantic Web Technologies (INBAST), Rome, vol. (1), pp. 1–7 (2002)

32. Chungoora, N., Young, R.I., Gunendran, G., Palmer, C., Usman, Z., Anjum, N.A., Cut-
ting-Decelle, A.F., Harding, J.A., Case, K.: A model-driven ontology approach for manu-
facturing system interoperability and knowledge sharing. Computers in Industry 64(4),
392–401 (2013)

33. Insitute of Electrical and Electronics Engineers, IEEE Std 830-1998 - Recommended Prac-
tice for Software Requirements Specifications. IEEE Computer Society, New York (1998)

34. Pohl, K.: The three Dimensions of Requirements Engineering: A framework and its appli-
cations. Informatic Systems 19(3), 243–258 (1994)

35. Ramesh, B., Jarke, M.: Toward reference models for requirements traceability. IEEE
Transactions on Software Engineering 27, 58–93 (2001)

36. Cleland-Huang, J., Chang, C.K., Sethi, G., Javvaji, K., Haijian, H., Jinchun, X.: Automat-
ing speculative queries through event-based requirements traceability. In: Proceedings of
IEEE Joint International Conference on Requirements Engineering, pp. 289–296 (2002)

37. Spanoudakis, G., Zisman, A., Pérez-Miñana, E., Krause, P.: Rule-based generation of re-
quirements traceability relations. Journal of Systems and Software 72(2), 105–127 (2004)

38. Welsh, K., Sawyer, P.: Requirements tracing to support change in dynamically adaptive
systems. In: Glinz, M., Heymans, P. (eds.) REFSQ 2009 Amsterdam. LNCS, vol. 5512,
pp. 59–73. Springer, Heidelberg (2009)

39. Cmyrev, A., Noerenberg, R., Hopp, D., Reissing, R.: Consistency Checking of Feature
Mapping between Requirements and Test Artefacts. CESAR Project 1, 1–12 (2012)

40. Oertel, M., Josko, B.: Interoperable Requirements Engineering: Tool Independent Specifi-
cation, Validation and Impact Analysis. In: Embedded World 2012 Exhibition and Confe-
rence, pp. 3–7. Nuremberg (2012)

41. Bouffaron, F., Gouyon, D., Dobre, D., Morel, G.: Revisiting the interoperation relation-
ships between System Engineering collaborative processes. In: 14th IFAC Symposium on
Information Control Problems in Manufacturing, INCOM 2012, Romania, pp. 1–6 (2012)

42. Ahmad, M., Bruel, J.M., Laleau, R., Gnaho, C.: Using RELAX, SysML and KAOS for
Ambient Systems Requirements Modeling. Procedia Computer Science 10, 474–481
(2012)

43. Kececi, N., Garbajosa, J., Bourque, P.: Modelling functional requirements to support tra-
ceability analysis. In: IEEE International Symposium on Industrial Electronics, vol. 4, pp.
3305–3310 (2006)

44. Egyed, A., Grunbacher, P.: Automating requirements traceability: Beyond the record &
replay paradigm. In: 17th IEEE International Conference on Automated Software Engi-
neering, pp. 163–171. IEEE Press, New York (2002)

45. Adelson, B., Soloway, E.: The Role of Domain Expenence in Software Design. IEEE
Transactions on Software Engineering 11, 1351–1360 (1985)

46. Stechert, C., Franke, H.J.: Managing requirements as the core of multi-disciplinary product
development. CIRP Journal of Manufacturing Science and Technology 1(3), 153–158
(2009)

	Towards a Conceptual Framework for Requirements Interoperability in Complex Systems Engineering
	1 Introduction
	2 Problem Statement
	3 Related Works
	3.1 Cross-Domains Requirements Interoperation Issue
	3.2 Cross-Systems Life Cycle Requirements Interoperation Issue
	3.3 Cross-Requirements Interoperation Issue in a Single Domain/System Life Cycle Phases

	4 Discussion
	5 Conclusion
	References

