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Abstract. Alignment of samples from Liquid chromatography-mass
spectrometry (LC-MS) measurements has a significant role in the detec-
tion of biomarkers and in metabolomic studies.The machine drift causes
differences between LC-MS measurements, and an accurate alignment
of the shifts introduced to the same peptide or metabolite is needed. In
this paper, we propose the use of genetic programming (GP) for multiple
alignment of LC-MS data. The proposed approach consists of two main
phases. The first phase is the peak matching where the peaks from dif-
ferent LC-MS maps (peak lists) are matched to allow the calculation of
the retention time deviation. The second phase is to use GP for multiple
alignment of the peak lists with respect to a reference. In this paper, GP
is designed to perform multiple-output regression by using a special node
in the tree which divides the output of the tree into multiple outputs.
Finally, the peaks that show the maximum correlation after dewarping
the retention times are selected to form a consensus aligned map.The pro-
posed approach is tested on one proteomics and two metabolomics LC-
MS datasets with different number of samples. The method is compared
to several benchmark methods and the results show that the proposed
approach outperforms these methods in three fractions of the protoemics
dataset and the metabolomics dataset with a larger number of maps.
Moreover, the results on the rest of the datasets are highly competitive
with the other methods.

1 Background

LC-MS is commonly applied to both proteomic and metabolomic experiments.
In LC-MS proteomics analysis, the sample is subjected to proteolytic digestion
which results in a mixture of peptides. The resulting fraction of peptides mixture
is then separated by liquid chromatography [1]. The peptides are then eluted at
different retention times and detected by the mass spectrometer after ionization
based on their mass to charge ratios [2]. Therefore, the resulting spectrum is a 3D
map, called LC-MS map, which consists of mass to charge ratio (m/z), retention
time (RT) and ion intensity count (Int). LC-MS can be used for providing quan-
titative and qualitative information about the proteins in a biological sample
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[2]. Such information is useful in several applications including system biology,
functional genomics and biomarker detection. For these applications to be suc-
cessful, ideally the m/z and RT of the same molecule at different spectra among
the LC-MS replicate runs detected in the same LC-MS platform should be the
same. However, this is not always the case. In particular, there is a large shift
and sometimes distortion in RT between different runs [2]. In addition, the m/z
values show smaller distortion which introduces ambiguity in peak matching in
comparative analyses. Moreover, the variations in RT may show non-linear devi-
ations and can be greater than predicted [1]. Therefore, an effective algorithm
is required to address two main tasks, the first is to match the peaks arising
from the same peptides at different runs within certain m/z and RT windows
and the second is to find the correct transformation of the RTs in order to make
comparison [3] between the intensity values effectively.

The methods for alignment of LC-MS spectra can be classified into two
groups. The first group is the raw-based methods, which select the set of sig-
nificant peaks from raw data and use these peaks as a reference for aligning
the data. These methods can avoid the errors due to feature detection but they
have high computational cost [4]. The second group is the peak-based methods
where the alignment is done after extracting features and grouping correspond-
ing features (peaks) from different LC-MS runs [2]. However, feature extraction
and centroidization can introduce some errors [4]. Therefore, the quality of the
alignment algorithm will depend mainly on the quality of these preprocessing
paradigms.

Examples of raw-based methods include the hidden Markov Models (HMMs)
approach presented in [5], where the alignment of RT and the normalization of
the peak intensities were done at the same time. HMMs were used to represent
the correct retention times and the parameters of the model were estimated using
the maximum likelihood estimation. A star-wise manner alignment of either raw
or feature maps was depicted in [1] in the open source platform OpenMS. In
the first phase, features were matched together using pose clustering followed by
linear regression to correct the retention time distortion. In the second phase,
the dewarped maps were combined into a consensus map by using the nearest
neighbor search. The RANdom SAmple Consensus (RANSAC) algorithm was
used in the MZmine2 [6] framework to find features that fit a non-linear model
within a user supplied m/z and RT tolerances. A locally-weighted scatter plot
smoothing regression method was used on all the points obtained from RANSAC.
Genetic algorithms were used in [7] to predict the RT dewarping function.

Most of these approaches for alignment of LC-MS data focus on solving the
pairwise alignment problem, which produces somehow suboptimal results for
multiple alignment problems.

Genetic programming (GP) is an evolutionary algorithm which solves a given
problem by automatically evolving computer programs (functions) [8]. Initially,
GP starts with random programs which are then modified using different genetic
operators such as crossover and mutation based on Darwin evolution theory [8].
GP has been successfully used for alignment and forecasting of time series data
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[9] and achieved good results. In particular, GP is well known for symbolic
regression which provides great potential for aligning LC-MS data. However,
GP has not been used for the alignment of LC-MS datasets.

1.1 Goals

The overall goal of this study is to develop a GP based method for multiple
alignment of LC-MS peak maps which can correct the distortion of RT in multi-
ple maps simultaneously. The proposed method is composed of two main phases,
the first is to match the peaks across multiple maps and the second is to find
the best dewarping function for the RT of the matched peaks. The method is
tested on one protoemics dataset and two metabolomics datasets and compared
against five benchmark algorithms. Specifically we will perform the following:

– develop an appropriate peak matching approach across multiple LC-MS
maps with different number of peaks;

– design a GP method to perform multiple-output regression;
– model the terminal set of GP to perform multiple regression simultaneously;

and
– investigate whether the new GP method outperforms the conventional align-

ment methods on these datasets.

1.2 Organisation

The rest of the paper is organised as follows. Section 2 describes the pro-
posed approach and the new GP method. The experimental design, the datasets
description and preprocessing are presented in Section 3. Section 4 reports the
experimental results along with the discussions. The conclusions and future work
are presented in Section 5.

2 The Alignment Approach

The objective of the alignment of LC-MS maps (we refer to each sample or run
as a map) is to produce a consensus map which contains matching peaks of the
same molecules from each map after transformation of RTs. In other words, the
aim is to produce peak lists which have similar m/z and RT values in order to
perform comparison of intensity values effectively.

The alignment approach proposed here works with peak data which has a
much smaller amount of data than the raw maps. Therefore, it can be used to
develop faster dewarping techniques. Figure 1 shows the overview of the pro-
posed alignment approach which starts with taking the peak lists as inputs. The
main aim of alignment is to find the possible transformations that maps the RT
points of one map (reference map) (r1, r2, ..., rn) to the corresponding points of
the other maps (m1,m2, ...,mx). To achieve this objective, the most matched
partners must be detected by the peak matching approach which is used as an
intermediate step to allow GP to search for the optimal transformation. The
peak lists which have different number of peaks are passed to the peak matching
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Fig. 1. Overview of the alignment approach

phase to detect the matched peak lists between the reference map and the other
maps ((r1,m1), (r2,m2)....(rn,mn)).

For pairwise alignment, GP can be used directly to evolve the transformation
function. However, the multiple alignment of multiple maps requires a different
structure of the evolved programs of GP to determine the transformation of the
multiple maps. Therefore, a new GP multi-branch tree approach is developed
for correcting RTs of multiple maps simultaneously. Finally, GP outputs the
corrected peak lists. The two phases of the alignment approach are described
below. For presentation convenience, the new approach is called GPMS.

2.1 Peak Matching

The first phase of the approach is to identify the significant matching peaks
across all maps. The criteria for peak matching is the distance between the m/z
and RT the reference map and the other maps. The procedure for peak matching
is as follows:

1. Randomly select a map from the dataset as a reference map R = (r1, r2, ..., rn).

2. For each peak (m/zi, RTi, Inti) in the reference map, find the list of peaks in
the next map M = (m1,m2, ...,mn) within a predefined m/z (m/zi ± εm/z)
and RT (RTi ± εRT ) tolerances and with the same charge.

3. Select the nearest neighbor (1-NN) peak from the list of peaks in the current
map with respect to m/z, RT and Int, and add the two peaks as significant
peaks of the reference and current maps into the consensus map. The distance
between the peaks is measured using the Euclidean distance between m/z,
RT and Int. More weight is given to m/z due to the fact that RT and Int
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are much more tolerable than m/z. The Euclidean distance is given by:

ED =
√

(W 2
1 ∗ (Rm/z − Mm/z)2 + W 2

2 ∗ (RRT − MRT )2 + W 2
3 ∗ (RInt − MInt)2)

where ED is the Euclidean distance between the two peaks of the reference
(R) and the current (M) maps and W1 =0.7, W2=0.2 and W3=0.1.

4. Mark the selected peak on the current map as a processed peak so that it
will not be selected again as a nearest neighbor to another peak.

5. Repeat step 2- 4 on all the maps until all the peaks in all maps are processed.
If there is no corresponding peak found in half of the maps, all significant
peaks related to this peak are removed from the significant peak lists.

After identifying the matching peaks across all maps, the list of matching pairs
is passed to GP to correct the RT values.

2.2 GP Multi-Branch Regression for Multiple Alignment

Unlike most of the previous RT alignment algorithms, our GP method cor-
rects RTs of all maps simultaneously. The main advantage of this regression GP
technique is that it can work efficiently. Another advantage is not having the
requirement of a specific gold standard reference map for alignment of the rest
of the maps. In other words, any map can be selected as a reference to align the
rest of the maps. In this approach, we use the tree-based GP [10] for this task
but we modified the tree structure as multi-branch tree. In the multi-branch
GP approach, each individual is composed of several branches and each branch
is responsible for evolving a part of the solution [10,11]. The final solution is
integrating all these partial solutions through a special node which represents
the root node [12,13]. The number of children of the special node is equal to the
number of maps to be aligned. The children of the root node are the functions.
The function node can also take other function nodes as its children. The termi-
nal nodes of each branch are the RTs of a specific map and a random constant.
The same branch cannot contain RTs from different maps. The structure of the
multiple-output regression tree is shown in Figure 2.

In the rest of the section, we will describe terminal set, function set and the
fitness function of the new GP method.

2.3 Terminal and Function Sets

An LC-MS sample is a 3D map composed of the m/z values, RTs and the
intensity counts (Ints). The objective here is to correct the RTs of all maps
to the corresponding RTs of the reference map. Therefore, the terminal set is
composed of the RTs of N maps. We consider each input to GP as N RTs
dimensions (equal to number of maps). For example, if we have three maps,
each input to the terminal set is composed of three RT variables. We also used
a random generated constant in the range of [-10,10] in the terminal set. Hence,
our terminal set is composed of RTs values of all maps and random constants
values. The function set used for this problem is F = {+,−,×,%, cos}, where
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Fig. 2. Tree structure in the Multiple Alignment GP

% is the protected division operator which returns zero if the division is by zero.
The aim of using cos operator is to evolve non-linear function for prediction and
regression of the complex RTs deviations. The outputs (Oi) of each map are
collected by the special node which is the root of the tree.

2.4 Fitness Function

For function approximation tasks, the performance can be measured as an error
between the predicted and the real target values. As we have multiple outputs,
each output corresponds to RTs of one map in the dataset, we calculate the sum
of errors between the multiple outputs (which are the estimated outputs of the
genetic programs) and the reference map output. The root mean square error
(RMSE) is used as a fitness function. Thus the GP framework is to minimize
the fitness so that the generated programs lead to minimum error between the
RTs to be predicted. The RMSE fitness function is given by:

RMSE =

√∑N
i=1

∑M
j=1(RTij − R̂T ij)2

N

where N and M are the number of maps and the number of RTs to be corrected
in each map respectively. RTij is the ith real RT value of the jth map while R̂T ij

is the ith estimated RT value of the jth map by the GP program.

3 Experimental Design

3.1 Data Sets

We tested the proposed approach on one proteomics dataset (P1) and two
metabolomics datasets (M1, M2) obtained from the Open Proteomics Database
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(OPD) [14] and Lange et al. [1]. Dataset P1 contains two LC-MS runs with
six different fractions and it originates from an E.coli sample. For this dataset
each fraction is composed of pairs of LC-MS runs. The dataset was analyzed
using LC/MS/MS with an ESI ion trap mass spectrometer (ThermoFinnigan
Dexa XP Plus). It was exported into mzXML centroided mode and prepro-
cessed using TOPP tools [15] to produce the peak lists which consist of the m/z,
RT, intensity values and ignoring the charge states. The numbers of peaks in
each fraction run were between 400 to 5800. A partial ground truth was pro-
duced using the first fraction of the dataset by linking the LC-MS spectra to
the MS/MS of the SEQUEST search. More details about the steps for datasets
preparation, analysis, preprocessing and parameters optimisation can be found
in [1]. For the two metabolomics datasets, Arabidopsis thaliana leaf tissues were
analyzed using two different LC-MS setups. An API QSTAR Pulsar i (Applied
Biosystems/MDS Sciex) was used to produce 44 spectra for the M1 dataset and
a MicrOTOF-Q (Bruker Daltonics) to produce 24 spectra for the M2 dataset.
Peak extraction was done using XCMS software [16] resulting in 4000 to 17600
peaks in each spectrum. The ground truth was generated in the same study by
selecting the high confident peaks. Those were the peaks found in more than
four runs, having the same RT and also showing a high correlation in their peak
shapes.

3.2 Genetic Operators and Parameters

The initial populations of GP are generated using the ramped half-and-half
method. Each population consists of 1000 individuals in order to reduce the early
convergence probability. The tournament selection method is used to select the
individuals which can perform well for reproducing the new generations. The
size of the tournament is set to 5. The standard crossover and mutation are used
here with ratios of 80%, 19% respectively. Elitism is also used with a ratio of 1%.
The depth of each individual is kept between 2 and 8. Each evolutionary process
stops at the maximum generation 30 unless a perfect error of zero is found. The
process is repeated for 30 independent runs. The random seed for each of the
30 runs in each set of experiments are all different. The peak matching phase
parameters are as follows: the m/z tolerance and RT tolerance are set to 1.5, 100
respectively for dataset P1 for all the fractions. For datasets M1, M2 the m/z
tolerance and RT tolerance are set to 0.011, 20 respectively for both of them.
Those parameters were selected after several tuning and they achieved the best
results for our method. The GP implementation used in our experiments is the
Evolutionary Computing Java-based (ECJ) package [17]. Table 1 describes the
run time parameters used in the experiments.

3.3 Benchmark Algorithms

We compared our approach with previous published results of five publicly avail-
able benchmark algorithms for alignment of LC-MS maps which are: msInspect
[18], MZmine [19], SpecArray [20], XAlign [21] and XCMS [16]. msInspect [18]
works in a star-wise manner which aligns all maps with respect to a specific
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Table 1. GP run time parameters

Parameter Value
Initialization method Ramped Half-and Half
Initial tree Depth 2
Maximum tree depth 8
Generations 30
Mutation probability 19%
Crossover Rate 80%
Elitisim 1%
Population Size 1000
Selection type Tournament
Tournament Size 5
m/z tolerance 1.5, 0.011,0.011 for P1, M1, M2 respectively
RT tolerance before correction 100, 20, 20 for P1, M1, M2 respectively

reference map, which is the map with minimum number of peaks. The process
starts with the selection of the most intense peak within a certain RT toler-
ance and the removal of the rest of the peaks. After that, pairing the remaining
peaks with peaks of similar m/z is performed. Smoothing spline regression is
used for dewarping and finally divisive clustering is used to obtain the consen-
sus map. The main disadvantage of this approach is the removal of less intense
peaks which might cause the loss of many important peaks. MZmine [19] works
by scoring the similarity of all features against a master list and if the score is
“good enough” the feature is assigned to the best matched row. MZmine does
not perform any transformation of RT. SpecArray [20] schema works as pair-
wise alignment and combine the pairwise aligned maps into a consensus map
until all maps are aligned. SpecArray is not applicable to a dataset with a big
number of maps. XAlign [21] also works in a star-wise manner and selects the
most intense peaks within a user defined m/z and RT tolerance, the map with
the minimum difference to the average RTs is chosen as a reference map. After
dewarping the RT, the features with high correlation coefficient are selected to
form the consensus map. XCMS [16] works as a multiple alignment approach
where peak matching is performed in the first phase by using a fixed interval bin
and using kernel density estimation to determine the distribution of the features.
Boundaries of regions with features that have similar RTs are selected. Finally
non-linear regression is used to correct RTs.

3.4 Performance Evaluation

The performance of the proposed approach is measured through the precision
(PR) and recall (RE) measures. Precision is the probability that a found item
is relevant, which is in our case the percentage of the correctly aligned peaks
among all the peaks aligned by the approach.

PR =
Number of correctly aligned peaks

Total number of peaks aligned

Whereas, recall is the probability that a relevant item is found (the percentage
of the correctly aligned peaks among the peaks in the ground truth [22]).

RE =
Number of correctly aligned peaks

Total number of peaks in the ground truth
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The harmonic mean of the precision and recall is measured through the F-
measure [22].

F-measure =
2*PR*RE
PR+RE

Precision and recall of alignment were calculated using the evaluation script
provided by Lang et al. [1].

4 Results and Discussions

4.1 Effectiveness Performance

GPMS is initially tested for the pairwise alignment on P1 which is available
in six different fractions. P1 shows a large deviation in RT values which is a
challenge for the alignment tool to correct the RT. Tables 2 and 3 show the
results of the five conventional approaches compared to our approach notated as
GPMS. As shown in Tables 2 and 3, GPMS achieved much better performance
than msInspect and SpecArray in all the three datasets. GPMS outperformed
all other methods in three fractions of P1. For the first fraction (00), the mean
of the 30 runs of GPMS is better than msInspect by 44 % in terms of precision,
30% in terms of recall and 38% in terms of F-measure. For the other approaches
GPMS improves the precision by 1-25%, the recall and F-measure by 1-21%.
For fraction (20), GPMS achieves similar performance as XCMS and has the
third rank after MZmine and XAlign. GPMS performs better than msInspect,
SpecArray and XCMS for fraction 40. Furthermore, our new method is the third
best after MZmine and XAlign for the same fraction. For fractions (60) and (100),
GPMS outperforms all other methods in terms of precision (which reaches 1.00
for fraction (100)) and F-measure. The proposed method has the best recall in
fraction (60) while in fraction (100) it has the third best recall after Xalign and
XCMS. Finally for fraction (40), the performance of GPMS was slightly better
to XCMS and it is the second best after MZmine. In general, for P1 the proposed
method outperforms the other methods in three fractions, the second best in two
fractions and third best in one fraction.

For datasets M1 and M2 which contain 44 and 24 maps respectively, the
challenge for the alignment approach on these complex metabolomics datasets
is to assign the most suitable matches and to correct the RT distortion across
multiple maps. SpecArray did not manage to produce any results for these com-
plex alignment tasks. As shown in Table 3, GPMS appears to be more powerful
in aligning a large number of maps as in the dataset M1 (44 maps). For M1,
it has better performance than other methods by 1-31% in terms of precision
and 2- 49% with respect to F-measure. This suggests that the proposed method
can be more powerful for multiple map alignment. The performance of GPMS
outperforms msInspect in terms of precision by 41.87%, XCMS by 1% and it is
equal to XCMS for M2. In terms of recall, it is much better than msInspect and
SpecArray. GPMS is better than msInspect by 53% and it outperforms SpecAr-
ray which did not manage to achieve results in terms of F-measure. Overall, the
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Table 2. Proteomics dataset P1 alignment results

Fraction Measure msInspect MZmine SpecArray XAlign XCMS GPMS
Min Max Mean ±St.Dev.

00
Precision 0.38 0.81 0.61 0.82 0.58 0.82 0.83 0.83±0.003
Recall 0.52 0.75 0.61 0.82 0.62 0.82 0.83 0.82±0.004

F-measure 0.44 0.78 0.61 0.82 0.60 0.82 0.83 0.82±0.004

20
Precision 0.45 0.88 0.62 0.85 0.80 0.80 0.82 0.81±0.0100
Recall 0.56 0.87 0.62 0.85 0.81 0.80 0.80 0.80±0.0000

F-measure 0.50 0.87 0.62 0.85 0.80 0.80 0.81 0.81±0.0060

40
Precision 0.48 0.90 0.75 0.87 0.80 0.83 0.84 0.84±0.002
Recall 0.63 0.87 0.75 0.87 0.81 0.81 0.81 0.81±0.0

F-measure 0.54 0.88 0.75 0.87 0.80 0.82 0.82 0.82±0.003

60
Precision 0.54 0.84 0.71 0.87 0.75 0.91 0.91 0.91±0.000
Recall 0.73 0.79 0.71 0.87 0.78 0.92 0.92 0.92±0.000

F-measure 0.62 0.81 0.71 0.87 0.76 0.91 0.91 0.91±0.005

80
Precision 0.57 0.94 0.74 0.90 0.88 0.90 0.90 0.90±0.000
Recall 0.70 0.92 0.74 0.90 0.89 0.89 0.89 0.89±0.0000

F-measure 0.63 0.93 0.74 0.90 0.88 0.90 0.90 0.90±0.0040

100
Precision 0.56 0.92 0.77 0.96 0.96 1.00 1.00 1.00±0.000
Recall 0.82 0.94 0.77 0.96 0.96 0.94 0.94 0.94±0.000

F-measure 0.67 0.93 0.77 0.96 0.96 0.97 0.97 0.97±0.000

Table 3. Metabolomics datasets M1 and M2 alignment results

Fraction Measure msInspect MZmine SpecArray XAlign XCMS GPMS
Min Max Mean ±St.Dev.

M1

Precision 0.46 0.74 - 0.70 0.70 0.77 0.77 0.77±0.003
Recall 0.27 0.89 - 0.88 0.94 0.89 0.91 0.9±0.004

F-measure 0.34 0.81 - 0.78 0.80 0.83 0.83 0.83±0.001

M2

Precision 0.47 0.84 - 0.79 0.78 0.79 0.79 0.79±0.001
Recall 0.23 0.98 - 0.93 0.98 0.90 0.90 0.90±0.000

F-measure 0.31 0.90 - 0.85 0.87 0.84 0.84 0.84±0.001

performance of GPMS is the second best with respect to precision, third best
with respect to recall and F-measure in M2. In general, GPMS is among the top
two methods or even performs best (00, 60, 100 of P1, M1).

4.2 Efficiency Performance

Another comparison is done in terms of the run time of each of the methods and
the results are shown in Table 4. For all the datasets, GPMS average run time
is much better than all other approaches. The computational cost (in terms of
time) of GPMS is more lower than the rest of methods, which represents another
advantage of GPMS. For all the datasets, GPMS improves the efficiency by an
order of magnitude than the rest of the methods except for XCMS. GPMS is
also more efficient than XCMS in terms of computational time for P1 and M2.
Moreover, the efficiency of GPMS for M2 in one of the runs is also better than
XCMS.

Table 4. Comparison of run time of GPMS with other approaches (in seconds)

Dataset msInspect MZmine SpecArray XAlign XCMS GPMS
Min Max Mean ±St.Dev.

P1 60 40.2 111 69 54 4.1 9.8 6.1±1.20

M1 720 1200 - 3060 54 36.34 64.92 64.92±4.97

M2 2160 2640 - 2100 348 81.10 94.20 87.37±3.23
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(SPE T0 (- (- T1 9.05) (cos T1)))

Input Output
T0 T1 T0 T1

1263.95 1271.96 1263.95 1263.89
1307.84 1315.58 1307.84 1307.09
1708.72 1717.28 1708.72 1708.10

(a)

(SPE T0 (+ T1 17.56))

Input Output
T0 T1 T0 T1

182.95 165.425 182.95 182.98
111.45 94.12 111.45 111.68
455.08 438.12 455.08 455.68

(b)

Fig. 3. (a) An evolved model for fraction (00) with some examples of inputs and outputs
of the model. (b) An evolved model for fraction (100).

4.3 Interpretation of the Evolved Regression Models

Some examples of the evolved regression models are shown below:
Figure 3 shows some examples of the evolved models for fractions (00) and

(100). SPE refers to the special node which is the root node collecting the
multiple outputs of the tree. T0 refers to the RTs of the first map while T1 refers
to the RTs of the second map. The first map (T0) is selected as the reference
map in which the RTs of both maps should be corrected according to it. The
dewarping functions of both inputs are determined simultaneously through the
multiple branches. As shown in Figure 3 (a), GP managed to determine the
correct amount of shift for the RTs of the second map (T1) through a non linear
dewarping model in the second branch of the tree. The RTs of first map (T0) (the
first branch of the tree) is kept the same as it has been selected as the reference
map. Some examples are shown in the same figure where the inputs to the models
and the mapped outputs after correction shows that GP has successfully aligned
the maps with respect to the reference map. The evolved model for fraction
(100) is shown in Figure 3 (b) where the GP dewarping function has managed
to correct the distortion of RTs through a linear function. Examples of inputs
and outputs of fraction (100) are also shown in Figure 3 (b).

5 Conclusions and Future Works

In this paper, we propose a new method for multiple alignment of LC-MS peak
data. The proposed method has two phases. In the first phase, the partner peaks
across multiple maps are detected in order to form the matched peak lists. In
the second phase, the matched peak lists are passed to GP to perform the cor-
rection of RTs of all maps simultaneously. The new GP approach is depicted
by dividing the tree into multiple branches, in which each branch produces the
output dewarping function of each map with respect to the reference map. The
proposed GP-based method (GPMS) was tested on one protoemics dataset of
six different fractions and two metabolomics datasets. The results show that
GPMS achieves better precision, recall and F-measure than five other LC-MS
benchmark alignment methods for three fractions of the protoemics dataset and
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one metabolomic dataset which has larger number of maps. This suggests that
GPMS is more powerful in multiple alignment of LC-MS data. The proposed
method also shows very competitive results in the rest of the datasets. GPMS
in general is always either the best or among the two top methods for these
datasets. Furthermore, the proposed GP method is much more efficient in terms
of computational time than the benchmark methods.

Although very preliminary, this paper represents the first work of GP for
multiple alignment of LC-MS data, and the competitive results of the proposed
method encourages us to do further investigation in this direction in the future.

For future works, we will consider merging a clustering scheme to the first
phase of the approach. This will relate to another interesting but challenging
research direction, i.e. using GP for peak matching through a clustering approach
which can match the partner peaks better.
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