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Abstract. Migration topology plays a key role in designing effective dis-
tributed evolutionary algorithms. In this work we investigate the impact
of several network topologies on the performance of a stepping–stone
structured Differential Evolution model. Although some issues on the
control parameters of the migration process and the way they affect the
efficiency of the algorithm and the solution quality deserve further eval-
uative study, the influence of the topology on the performance both in
terms of solution quality and convergence rate emerges from the empir-
ical findings carried out on a set of test problems.

1 Introduction

Evolutionary Algorithms (EAs) [1–4] have proven to be very effective in dealing
with hard optimization problems whose solution space is so large as to make an
exhaustive search unviable [5,6]. Nonetheless, their main disadvantage is related
to the convergence speed. A popular way for contrasting this drawback and
achieving a speedup is to implement structured versions where the population
is divided into multiple semi–isolated subpopulations (demes) connected each
other according to a particular network topology. These subpopulations evolve
independently and interact by means of a migration operator used to exchange
individuals. The number of individuals that are sent to (received from) other
demes is determined by the migration rate, while a replacement function defines
how to include the immigrants into the target subpopulation. Besides, the migra-
tion interval establishes the exchange frequency among neighboring subpopula-
tions [7]. Concerning the network topology, this distributed framework may be
categorized as following either the island model (fully connected demes) or the
stepping–stone model (interaction restricted to customized logical or physically
connected demes) [8]. The connectivity degree of the topology beneath deter-
mines the number of the neighboring subpopulations and its diameter is the
most important factor influencing the propagation of good individuals [9].
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The separation of demes serves as a natural way to maintain the diversity
reducing the possibility of population stagnation [9], may guide the evolution
in many directions simultaneously, and may allow speedup in computation and
improve solution quality with respect to a single EA evolution [10,11].

Originally developed for Genetic Algorithms (GAs) [1,3], the distributed app-
roach has been employed also for different paradigms. Among these paradigms,
distributed Differential Evolution (dDE) has been the subject of significant
research [12–18]. The choice of DE [19] is due to its simple but powerful search-
ing capability, and to its overall performance with respect to other stochastic
and direct search global optimization techniques on a wide range of benchmark
problems [20] and real world problems [21].

In the following we make reference to the stepping–stone dDE model. To
assess the impact of the migration topology on a dDE algorithm, simulations
have been performed on a range of test problems and for several network topolo-
gies by making use of a standard dDE algorithm, i.e., DDE [22].

Paper structure is as follows: Section 2 illustrates the state of the art; Section
3 presents a description of the parallel framework. In Section 4 the experimental
findings are shown and discussed together, and a statistical analysis is performed.
The last section contains final remarks and future works.

2 State of the Art

Since the distributed models were introduced in connection with parallel GAs,
it is not surprising that all the issues involved, including the migration topology,
have been studied in this context. Several surveys have been published in the
nineties [7,23]. Although in some case the influence of the migration topology has
been neglected [7], research was conducted to analyze its impact [10,24]. Natu-
rally the distributed approach has not been investigated exclusively in relation
to GAs. There is a wide research on the dDE models which can be characterized
on the basis of the neighborhood topology, the migration policy, the selection
function and the replacement function.

In [12] the migration mechanism as well as the algorithmic parameters are
adaptively coordinated according to a criterion based on genotypical diversity.
An adaptive DE is executed on each subpopulation for a fixed number of gen-
erations. Then a migration process, based on a random connection topology, is
started: each individual in each subpopulation can be probabilistically swapped
with a randomly selected individual in a randomly chosen subpopulation (includ-
ing the one containing the initial individual).

Tasoulis et. al [13] propose a dDE, named PDE, characterized by unidirec-
tional ring topology, a selection function that picks up the individuals with the
best performance and, with a given probability, send these individuals to the
neighboring subpopulations. When the migration occurs, the migrating individ-
uals substitute random individuals of the target subpopulations.

In Apolloni et al. [15] a distributed version, known as IBDDE, is presented:
the migration policy is based on a probabilistic criterion depending on five
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parameters. The individuals to migrate are randomly selected and the individ-
uals arriving from other islands replace randomly chosen local individuals only
if the former ones are fitter. The topology is a unidirectional ring in which the
individuals are exchanged with the nearest neighbors.

In De Falco et al. [22] a distributed version of DE, called DDE, has been
proposed. It consists of a set of classical DE schemes, running in parallel, assigned
to different processing elements arranged in a torus topology, in which each
generic DE instance has four neighboring communicating subpopulations. The
individual sent is the best one and it randomly replaces an individual in the
neighboring subpopulation, except the local current best one.

In the paper by Ishimizu and Tagawa [17] a structured DE approach still
based on the stepping–stone model is presented. Different network topologies,
ranging from ring to torus and hypercube, are taken into account. The migration
takes place every fixed number of generations and the exchange involves only
the best individual which migrates towards only one of the adjacent subpopu-
lations on the basis of the topological neighborhood and randomly replaces an
individual, except the best one, in the receiving subpopulation.

An improved version of PDE algorithm which entails the employment of four
different scale factor values within distributed differential evolution structures
is advanced in [18]. The subpopulations are arranged according to a ring or a
torus topology. Although proper choice of a scale factor scheme appears to be
dependent on the distributed structure, any of the proposed simple schemes has
proven to significantly improve upon the single scale factor distributed differen-
tial evolution algorithms.

In [25] a structured DE which uses a biological invasion inspired migration
strategy is advanced. The subpopulations are displaced in a torus topology. Dur-
ing the migration the individuals with the fitness better than the average fit-
ness in their subpopulation are sent to all the neighboring subpolulations and a
replacement strategy is performed to keep unchanged the size of each subpopu-
lation.

3 The Distributed Model

Our Distributed DE (DDE) algorithm is based on the classical coarse–grained
approach to EAs [7] in which a collection of networked subpopulations cooperate
in the solution of a problem by a migration operator. It consists in a locally–
linked strategy, known as stepping stone–model [8], in which each DE instance
is connected to a number of instances according to the connectivity degree of
the topology beneath. Each subpopulation can communicate with the other ones
only through its neighbours.

Decision must be taken for the migrant selection, i.e. the choice of the ele-
ments to be sent, and replacement, i.e the individuals to be replaced by the
migrants. Different strategies can be devised: the migrants can be selected either
according to fitness or randomly, and they might replace the worst individuals
or substitute them only if better, or they might finally replace any individual
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(apart from the very best ones, of course) in the neighbouring subpopulation.
Consistently with the biological events, it was noted that the number of migrants
should not be high and the migration should occur after a period of stasis oth-
erwise the subsearch in a subpopulation might be very perturbed by these con-
tinuously incoming elements [7,26].

This mechanism allows attaining both exploitation and exploration, which
are basic features for a good search. Exploration means to wander through the
search space so as to prevent premature convergence to local optima. Exploita-
tion implies that one area is thoroughly examined, so that we can be confident
to state whether this area is promising. In such a way, good solutions will spread
within the network with successive diffusions, so more and more demes will try
to sample that area (exploitation), and, on the other hand, there will exist at
the same time clusters of subpopulations which will investigate different subareas
of the search space (exploration). Therefore, a suitable percentage of migrants
each subpopulation sends to its neighbours, called Migration Rate (MR), and an
appropriate exchange frequency between neighbouring subpopulations every MI

generations, named Migration Interval, are to be introduced to exploit at the
best the potential of this cooperating stepping–stone model. A rigorous theoret-
ical analysis that leads into new insights into the usefulness of migration, how
information is propagated in island models, and how to set parameters such as
the migration interval is reported in [27]. This study is corroborated by empirical
results that investigate the robustness with respect to the choice of the migration
interval and compare various migration topologies using statistical tests.

Within this general framework we have implemented a distributed version
for DE, which consists of a set of classical DE schemes, running in parallel,
assigned to different processing elements arranged in several topologies in which
each generic DE instance has a different number of neighbouring communicating
subpopulations.

4 Experiments

To investigate the influence of the network topologies in DDE we have compared
their performance on a set of benchmark thirty–dimensional functions as defined
in [28]. Namely, the unimodal functions F1 and F3, and among the multimodal,
the basic functions F6 and F10, the expanded functions F13 and F14, and the
hybrid composition functions F16 and F22 have been taken into account. Among
these, F1, F3, and F6 are separable. As suggested in [29], throughout the exper-
iments, the values for the DE parameters have been chosen as follows: scale
factor (F = 0.9) for all the functions and the crossover ratio (CR) has been
set to 0.1 for all the separable functions and 0.9 for all the other functions. The
DE/rand/1/bin [19] mutation mechanism has been used. As topologies a Ring,
a bidirectional ring (Bring), an incomplete binary tree (IBtree), a Torus, a WK–
recursive (WK), and a Hypercube, each constituted by a total of 16 nodes, have
been investigated. Some of these topologies are outlined in Fig. 1.

The total population size has been chosen as 160, which results in sixteen
subpopulations with 10 individuals. The number of generations has been set
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Fig. 1. The network topologies

Table 1. Best migration interval and related average final value for each problem

Ring Bring IBtree Torus WK Hypercube
Problem MI 〈φbf

〉 MI 〈φbf
〉 MI 〈φbf

〉 MI 〈φbf
〉 MI 〈φbf

〉 MI 〈φbf
〉

F1 10 5.68 · 10−14 10 3.18 · 10−14 10 4.32 · 10−14 10 4.09 · 10−14 10 4.09 · 10−14 10 5.00 · 10−14

F3 10 4.85 · 10+5 10 3.62 · 10+5 10 3.62 · 10+5 10 3.40 · 10+5 10 2.89 · 10+5 10 6.41 · 10+5

F6 30 4.37 · 10+1 40 3.66 · 10+1 20 4.67 · 10+1 10 3.74 · 10+1 10 3.53 · 10+1 10 7.47 · 10+1

F10 30 5.07 · 10+1 40 5.10 · 10+1 50 5.40 · 10+1 50 5.34 · 10+1 50 5.31 · 10+1 50 5.84 · 10+1

F13 50 2.17 · 100 50 1.98 · 100 40 2.15 · 100 50 2.64 · 100 50 2.43 · 100 50 2.81 · 100
F14 50 1.24 · 10+1 40 1.26 · 10+1 40 1.27 · 10+1 50 1.26 · 10+1 40 1.26 · 10+1 50 1.27 · 10+1

F16 50 9.21 · 10+1 50 9.36 · 10+1 50 9.93 · 10+1 50 9.81 · 10+1 50 9.86 · 10+1 50 9.39 · 10+1

F22 50 8.68 · 10+2 50 8.75 · 10+2 50 8.77 · 10+2 50 8.83 · 10+2 50 8.84 · 10+2 50 8.81 · 10−2

to 1, 875, so as to have a total number of fitness evaluations equal to 300, 000,
following the rules widely used to face those testbeds, as for example in [29].

The parallel algorithm, which uses the Message Passing Interface is written
in C language. All the experiments have been carried out on a Vega cluster
constituted by 16 Pentium 4 processors with a frequency of 1.5 GHz and 512Mb
of RAM, interconnected by a FastEthernet switch.

A first phase of our investigation has aimed at finding the best possible
value for the migration interval MI for each function and for each topology.
We have considered a given range of possible values, i.e., 10, 20, 30, 40, and
50. For any such value 25 runs have been effected for each function and each
topology, and the averages 〈φbf 〉 of the best final fitness values over the 25 runs
have been computed. Table 1 reports the best values of MI , together with the
corresponding values of 〈φbf 〉.

Examination of the results shows that for the easiest functions F1 and F3

the best value for MI is obtained at the lowest tested migration interval. For
the most difficult problems the results are better and better as the migration
interval increases, and this holds true until a given value for MI is reached; after
this value, the performance worsens more and more as MI further increases.

4.1 Statistical Analysis

To compare the algorithms from a statistical point of view, a classical approach
based on nonparametric statistical tests has been carried out, following [30]. To
do so, the ControlTest package [31] has been used. It is a Java package developed
to compute the rankings for these tests, and to carry out the related post–hoc
procedures and the computation of the adjusted p–values.
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Table 2. Average Rankings of the algorithms

Topology Friedman Aligned Friedman Quade
Ring 3.000 24.125 3.083
Bring 2.313 17.938 2.667
IBtree 4.125 25.125 3.944
Torus 3.688 24.813 3.764
WK 2.563 18.688 2.125

Hypercube 5.313 36.313 5.417
statistic 14.286 6.822 4.148
p–value 0.014 0.234 0.005

The results for the one–to–all analysis are reported in the following. Table 2
contains the results of the Friedman, Aligned Friedman, and Quade tests in terms
of average rankings obtained by all the topologies. The last two rows show the
statistic and the p–value for each test, respectively. For Friedman and Aligned
Friedman tests the statistic is distributed according to chi–square with 5 degrees
of freedom, whereas for Quade test it is distributed according to F–distribution
with 5 and 35 degrees of freedom.

In each of the three tests, the lower the value for an algorithm, the better the
algorithm is. Bring turns out to be the best in two out of the three tests while
WK is the best according to the Quade test. Among the other four topologies,
their order is in all the tests the following: Ring is always the third best heuristic,
Torus is the fourth, followed by ITree, and finally the Hypercube is the sixth.

Furthermore, with the aim to examine if some hypotheses of equivalence
between the best performing algorithm and the other ones can be rejected, the
complete statistical analysis based on the post–hoc procedures ideated by Holm,
Hochberg, Hommel, Holland, Rom, Finner, and Li has been carried out following
[30]. Moreover, the adjusted p–values have been computed by means of [31].

Table 3 reports the results of this analysis performed at a level of significance
α = 0.05. In this table the other algorithms are ranked in terms of distance from
the best performing one, and each algorithm is compared against this latter to
investigate whether or not the equivalence hypothesis can be rejected. For each
algorithm each sub–table reports the z value, the unadjusted p–value, and the
adjusted p–values according to the different post-hoc procedures. The variable
z represents the test statistic for comparing the algorithms, and its definition
depends on the main nonparametric test used. In [30] all the different definitions
for z, corresponding to the different tests, are reported. The last row in each sub–
table contains for each procedure the threshold value Th such that the procedure
considered rejects those equivalence hypotheses that have an adjusted p–value
lower than or equal to Th.

Summarizing the results of these tables, the equivalence hypothesis between
WK and Bring cannot be rejected by any test and by any post–hoc procedure.
The hypothesis of their equivalence to the Hypercube, instead, is rejected by all
post–hoc procedures, and that with IBtree in many cases. Finally, their equiva-
lence with Torus and Ring is always excluded by Li post–hoc procedure.
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Table 3. Results of post–hoc procedures for Friedman(top), Aligned Friedman (center),
and Quade (bottom) tests over all tools (at α = 0.05)

i Algorithm z = (R0 − Ri)/SE p Holm/Hochberg/Hommel Holland Rom Finner Li
5 Hypercube 3.207 0.001 0.010 0.010 0.010 0.010 0.011
4 IBtree 1.938 0.053 0.013 0.013 0.013 0.020 0.011
3 Torus 1.470 0.142 0.017 0.017 0.017 0.030 0.011
2 Ring 0.735 0.462 0.025 0.025 0.025 0.040 0.011
1 WK 0.267 0.789 0.050 0.050 0.050 0.050 0.050

Th 0.013/0.010/0.013 0.013 0.011 0.020 0.011

i Algorithm z = (R0 − Ri)/SE p Holm/Hochberg/Hommel Holland Rom Finner Li
5 Hypercube 2.625 0.009 0.010 0.010 0.011 0.010 0.004
4 IBtree 1.027 0.305 0.013 0.013 0.013 0.020 0.004
3 Torus 0.982 0.326 0.017 0.017 0.017 0.030 0.004
2 Ring 0.884 0.377 0.025 0.025 0.025 0.040 0.004
1 WK 0.107 0.915 0.050 0.050 0.050 0.050 0.050

Th 0.013/0.010/0.013 0.013 0.011 0.020 0.004

i Algorithm z = (R0 − Ri)/SE p Holm/Hochberg/Hommel Holland Rom Finner Li
5 Hypercube 1.983 0.047 0.010 0.010 0.010 0.010 0.013
4 IBtree 1.096 0.273 0.013 0.013 0.013 0.020 0.013
3 Torus 0.987 0.323 0.017 0.017 0.017 0.030 0.013
2 Ring 0.577 0.564 0.025 0.025 0.025 0.040 0.013
1 Bring 0.326 0.744 0.050 0.050 0.050 0.050 0.050

Th 0.010/—/0.010 0.010 — 0.010 0.013

4.2 Behavior of the Topologies

A very interesting remark is that the migration frequency corresponding to the
best performance for any given topology has a strong relationship to the degree
of difficulty of the problem: the simpler the problem the lower the value for MI ,
the harder the problem the higher the value. This holds true for all the topologies
and for all the problems. Just to give some examples, Fig. 2 shows four different
situations. Namely, the top–left pane deals with the quite easy function F3 for
the bidirectional ring: the lower the value for MI the better the performance.
Top–right pane reports on the behavior of WK topology over F6 function: this
is a quite easy one, and same conclusions as before hold true. The bottom–left
pane, instead shows the behavior over the more difficult F13 function: now the
situation is reversed, and the higher the value for MI the better the performance.
Similarly, the bottom–right pane sketches the behavior of WK over the difficult
F22 problem: same considerations as before hold true. This seems to imply that
as the problem becomes more and more complex to solve, the demes should
exchange individuals less frequently, probably because each deme needs now to
more deeply perform exploitation.
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Fig. 2. A few examples of behavior of some topologies over some functions supporting
the hypothesis that the harder a function, the higher the best value for MI

A second feature worth noting is that WK and Torus topologies have faster
convergence capability to suboptimal solutions than the other topologies. This
takes place in general for any given function, and for any value of MI . It is
interesting to note that this holds true also in the circumstances in which these
two topologies do not reach the best values at the end of the evolutions, rather
they are overtaken by other topologies that start more slowly. Figure 3 shows this
feature for four exemplary situations. Its top–left pane deals with F3 function
at MI = 30, the top–right one reports on F10 at MI = 50, the bottom–left one
sketches the situation for F14 at MI = 50, and finally the bottom–right pane
shows F16 test case at MI = 50. In all the cases Ring topology is the slowest.
This feature could be profitably used whenever speed becomes of paramount
importance in solving a problem: WK and Torus are very appealing, if a good
suboptimal solution is needed in a very low amount of time.
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Fig. 3. Some examples of the faster convergence achieved by WK and Torus

5 Conclusions and Future Works

A distributed DE algorithm has been considered to evaluate the impact of the
migration topologies on the stepping–stone model. The simulation results per-
formed on a set of classical test functions and their statistical analysis have been
shown to compare the performance of the different network topologies.

Future works will aim at carrying out a wider evaluation phase. This will
be accomplished by performing sets of experiments with other DE operators, so
as to ascertain that the performance are unchanged independently of the DE
scheme chosen.
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