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Abstract. This paper describes a multi-objective evolutionary approach for 
solving cloud computing service provider selection problems with dynamic de-
mands. In this investigated problem, not only the service purchase costs and 
transmission costs of service providers are different, but the demands of service 
requests also change over the given periods.  The objective of this problem is to 
select a number of cloud service provider while optimizing the total service dis-
tance, the total number of serviced demand points, the total service purchase 
costs, and total transmission costs simultaneously in the given continuous time 
periods. A multi-objective genetic approach with a seeding mechanism is pro-
posed to solve the investigated problems. Four trail benchmark problems are 
designed and solved using the proposed multi-objective evolutionary algorithm. 
The results indicate that the proposed approach is capable of obtaining a num-
ber of non-dominated solutions for decision makers. 

Keywords: Cloud computing · Multi-objective optimization · Dynamic optimi-
zation · Evolutionary algorithms 

1 Introduction 

With the rapid development of computing hardware, high-speed network, web pro-
gramming, distributed and parallel computing, and other storage technologies, cloud 
computing has recently emerged as an effective reuse paradigm, where hardware 
computing power, software functionality, and other computing resources are delivered 
as integrated services through Internet [1]. There are many global and local commer-
cial cloud service providers, offering various kinds of delivered services such as  
Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS) and Software-as-a-
Service (SaaS). Recently, the advantages and features of cloud services has arisen the 
interests of digital entertainment/media/content suppliers to integrate cloud computing 
services into their content delivery networks [2].  

Consider a national-wide area with a number of service request points, the requests 
at each point usually changes in time; and within this area, a number of cloud service 
providers with different locations and pricing options of services are available for 
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chosen. From the point view of digital entertainment/media content suppliers, it is an 
important issue to select suitable cloud computing service providers, which can deliv-
er their contents to massive customers rapidly and smoothly. Therefore, maximizing 
some expected Quality-of-Service (QoS) indictors and minimizing services related 
costs are crucial considerations for decision makers. As a result, considering the re-
quirements of content supplier and the conditions of cloud service providers, we for-
mulated such problems to multi-objective dynamic p-median problems in this paper.  

The classical p-median problem consists of selecting p facilities in a given space 
which minimizes the total costs of serving m demand points at a time. P-median prob-
lem is prominent combinatorial optimization NP-hard problem in location science and 
cluster analysis [3-9]. Many exact and heuristic approaches have been proposed for 
solving p-median problems [3][8][9]. In traditional approaches, the planning of ser-
vice facility centers usually considers the demand of consumers as constant values. 
However, it is not true in the real world applications, because the demands of con-
sumers may change by environments and time. The dynamic p-median problem is 
applicable to all situations modeled by the standard p-median problem whenever de-
mand changes over time in a predictable way.  

In this paper, a multi-objective p-median model with dynamic demands which op-
timizes the total QoS distance, the total number of serviced demand points, the total 
service purchase costs, and the total network transmission costs is investigated. Con-
sidering four different geographical features, we propose an efficient approach based 
on genetic algorithms for content providers to determine the selection of service pro-
viders in different periods and satisfying the dynamic demands of customers. The 
proposed approach can also provide decision-makers a set of non-dominated solutions 
for the selection processes. 

This paper is organized as follows: Section 2 describes the investigated dynamic  
p-median problem and multi-objective optimization. Section 3 describes the mathe-
matical model of the investigated problem. Section 4 presents the proposed multi-
objective genetic algorithm MOGA for solving investigated problems. Section 5 gives 
the experimental results and analysis of the proposed algorithm. Section 6 concludes 
our paper. 

2 Related Work 

2.1 P-median Problems 

The classical p-median problem consists of locating p facilities (medians) in a given 
space (e.g. Euclidean space) which minimizes the total costs of serving m demand 
points, where the pair-wise cost of servicing each point from all facilities is given. 
Each demand point is only served by a single facility and services to demand points 
are not combinable [3-10].  

Exact methods for solving p-median problems include linear programming ap-
proaches, dual-based algorithms. However, these exact methods suffer from the curse 
of dimensionality since the computation costs of calculating all demand points' expec-
tations over all possible future combinations increases exponentially in the number of 
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demand points.  Many heuristic approaches have been proposed to solve p-median 
problems, including greedy heuristic, variable neighbor decomposition search, coop-
erative parallel variable neighborhood search, and Lagrangian-surrogate heuristic. 
Modern meta-heuristics have been applied to solve p-median problems as well [8], 
such as tabu search approaches, simulated annealing approaches and genetic algo-
rithms approaches.  

Recently, considering the real-world conditions, various models of p-median prob-
lems are proposed in the literature, including stochastic p-median problems, progres-
sive p-median problems [3], dynamic p-median problems, and bi-objective p-median 
problems [9]. 

2.2 Multi-objective Evolutionary Optimization 

Assume the multi-objective functions are to be minimized. Mathematically, MOOPs 
can be represented as the following vector mathematical programming problems  

)},(...,),(),({)( 21 YFYFYFYFMinimize i=   (1)

where Y denotes a solution and fi(Y) is generally a nonlinear objective function. Pareto 
dominance relationship and some related terminologies are introduced below. When 
the following inequalities hold between two solutions Y1 and Y2, Y2 is a non-
dominated solution and is said to dominate Y1 (Y2  Y1): 

).()(:)()(: 2121 YFYFjYFYFi jjii >∃∧>∀  (2)

When the following inequality hold between two solutions Y1 and Y2, Y2 is said to 
weakly dominate Y1 (Y2  Y1): 

).()(: 21 YFYFi ii ≥∀
 

 (3)

A feasible solution Y * is said to be a Pareto-optimal solution if and only if there 
does not exist a feasible solution Y where Y dominates Y *, and the corresponding 
vector of Pareto-optimal solutions is called Pareto-optimal front. 

By making use of Pareto dominance relationship, multi-objective evolutionary algo-
rithms (MOEAs) are capable of performing the fitness assignment of multiple objec-
tives without using relative preferences of multiple objectives. Thus, all the objective 
functions can be optimized simultaneously. As a result, MOEA seems to be an alterna-
tive approach to solving the investigated service provider selection problems on the 
assumption that no prior preference and domain knowledge is available [10-11]. 

3 Cloud Service Selection Problems with Dynamic Demands 

In this paper, the investigated dynamic service provider selection problem (DSPSP) is 
to select p service providers from n service providers in each season, in order to satis-
fy the dynamic demands of m service requests from end-users. The following condi-
tions are assumed in this problem: 
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1) Each service provider has different pricing options for purchasing services and 
network transmission. 

2) Although contents can be deliver to anywhere though internet, end-users still 
expects no delays during network transmission. Therefore, each service provid-
er has a pre-assumed maximum QoS distance. 

3) The number of demand points that a service provider can service is unlimited. 

4) The Euclidean distance is used to calculate the distances between demand 
points and points of service provider. 

5) Each demand point can only serviced by a nearest point of service provider 
within the maximum QoS distance. 

6) In order to satisfying the dynamic demands, content supplier may select p dif-
ferent service providers in the next following season. 

The investigated problem can be formulated to multi-objective p-median problems 
with dynamic demands. The objectives of DSPSP are while optimizing four compet-
ing objective functions: the total QoS distance, the total number of serviced demand 
points, the total service purchase costs, and the total network transmission costs. 

3.1 Problem Notations 

i  , j：i∈{1,2,3,…m},  j∈{1,2,3,…,n}. 
m：The total number of demand points. 
n：The total number of service provider points for selection. 
Li：The index of demand points, Li =  i. 
Sj：The index of the service provider points. Service providers points usually co-
locate with some demand points, therefore Sj∈{L1,L2,…Lm}. 
Dj：The maximum QoS distance of the service provider point j. 
T：The total service periods. 
tj：The time period that the service provider Sj served, 0=t1<t2<…<tp<tp+1<T. 
dij：The distance between Li and Sj. 
mdij：The nearest distance of the demand point Li between the nearest service provid-
er point, mdij=min{dij}. 
wi(t)：The demanding function of the demand points Li at time t, 0 ≤ t<T. 
wij：The total demanding amount of the demand point Li from time tj to time tj+1,
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Aj：The network transmission cost of the service provider point Sj  per demand unit. 
Cj：The monthly service purchase cost of the service provider point Sj. 
Xi： The serviced index of the demand point Li. If the demand point service Li is ser-
viced within the maximum QoS distance of a provider point, then Xi = 1, otherwise Xi 

= 0.  
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Zj： The selection index of the service provider point Sj. If the service provider point 
Sj is chosen and serves demand points in the specific time period, then Zj = 1, other-
wise Zj = 0. 

3.2 Problem Objectives 

1. Minimization of QoS distance  
2. In the classical p-median problem, the demands in each demands points are usually 

considered to a constant. However, considering the real-world applications, de-
mands are known to be changed dynamically. Given the demanding function of 
each demand points, the QoS distance of each demand to its nearest service pro-
vider points can be expressed as follows: 
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3. Minimization of  network transmission cost  

Considering the cloud computing environments, the costs of network transmissions 
between service provider points and demand points are not fixed. Given the network 
transmission cost of each service point per time unit, the transmission costs of each 
facility can be expressed as follows: 
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4. Minimization of service purchase cost 

In additional to the network transmission cost, the service purchase cost on a spe-
cific service provider point is also an important factor for content suppliers, because 
the service cost in different service provider point are different. Given the service 
purchase cost for each service provider points, the total service purchase costs of se-
lected service provider points can be expressed as follows: 

. 
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5. Maximum of total number of serviced demand points 

Because different service providers has different QoS distance, therefore the num-
ber of demand points that a service provider points may serviced could be different. 
Given the maximum QoS distance of each service provider, the number of serviced 
demand points can be calculated as follows: 
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3.3 An Illustrative Example 

An example is given here to explain our mathematical formation. Assumed that a content 
supplier plans to select three service provider points (p=3) from six providers (n=6) with-
in twelve months (T=12), in order to service ten demanding points (m=10). The maxi-
mum QoS Dj is 3 for all the service provider points. The coordination, demanding  
function of demand points, the service purchase costs and transmission costs of service 
provider points are listed in Table 1. Assumed a selection plan for four seasons is deter-
mined (as shown in Table 2), three service provider S2, S3, S6 are select in the first sea-
son, and finally three service provider S1, S3, S5 are select in the fourth season.  

Take the selection plan of Season 4 for example, the total amount of each demand 
points during Season 4 can be calculated, as shown in Table 3. The distance of each 
demand point to different service provider points can be calculated, as shown in Table 
4. The demand points with Dj are marked as bold. Hereafter, according to all the ta-
bles, the objective functions in Season 4 can be calculated, F1 = 10.12242, F2 = 
1507.5, F3 = 1650, F4 = 8. 

Table 1. The information of demand and service points Li ,Sj 

Li Sj coord. wi(t) Aj Cj 

L1 S1 (1,8) 10+6t 1 500 

L2 S2 (2,5) 3+4t 1 700 

L3  (0,9) 16+2t 1  

L4  (10,2) 25+3t 1  

L5 S3 (4,5) 50-2t 1 700 

L6 S4 (3,7) 99-3t 1 450 

L7 S5 (12,3) 6+7t 1 450 

L8  (6,16) 24+4t 1  

L9  (2,10) 10+10t 1  

L10 S6 (8,4) 5+5t 1 500 

Table 2. representation of four selection plan for four seasons 

SEASON 1  SEASON 2  SEASON 3  SEASON 4 

2, 6, 3  3, 6, 4  5, 4, 3  3, 1, 5 

Table 3. The total amount of demands in season 4, according to the selection plan 

 t = 0~3 t = 3~6 t = 6~9 t = 9~12 

L1 57 111 165 219 

L2 27 63 99 135 

L3 57 75 93 111 

L4 88.5 115.5 142.5 169.5 

L5 141 123 105 87 

L6 283.5 256.5 229.5 202.5 

L7 49.5 112.5 175.5 238.5 

L8 90 126 162 198 

L9 75 165 255 345 

L10 37.5 82.5 127.5 172.5 
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Table 4. The distance of each demand point to selected service provider points in quarther 4 

 S3(=L5) S1(=L1) S5(=L7) 

L1 4.24264 0 12.083 

L2 2 3.16228 10.198 

L3 5.65685 1.41421 13.4164 

L4 6.7082 10.8167 2.23607 

L5 0 4.24264 8.24621 

L6 2.23607 2.23607 9.84886 

L7 8.24621 12.083 0 

L8 11.1803 9.43398 14.3178 

L9 5.38516 2.23607 12.2066 

L10 4.12311 8.06226 4.12311 

4 The Proposed Multi-objective Genetic Algorithm 

In this section, the proposed multi-objective genetic algorithm to find a selection plan 
within four seasons for DSPSP is described. 

4.1 Chromosome Representation 

A chromosome has gene information for solving the problem in DSPSP. In the pro-
posed approach, each chromosome of has p genes. When a season is finished, the 
non-dominated solutions will be selected as seed chromosomes for the initial popula-
tion of the next season. The chromosome can be regarded as a selection plan for a 
season. 

4.2 Fitness Assignment 

We use a generalized Pareto-based scale-independent fitness function (GPSIFF) con-
sidering the quantitative fitness values in Pareto space for both dominated and non-
dominated individuals [10]. GPSIFF makes the best use of Pareto dominance relation-
ship to evaluate individuals using a single measure of performance. The used GPSIFF 
is briefly described below. Let the fitness value of an individual Y be a tournament-
like score obtained from all participant individuals by the following function: 

( ) .cNqNpXF +−= , (8)

where Np is the number of individuals which can be dominated by the individual 
Y, and Nq is the number of individuals which can dominate the individual Y in the 
objective space. Generally, a constant c can be optionally added in the fitness function 
to make fitness values positive. c is usually set to the number of all participant indi-
viduals. 
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4.3 Procedure of MOGA 

The procedure of MOGA is written as follows:  

Input: population size Npop, recombination probability pc, mutation probability pm, 
the number of maximum generations Gmax. Current Season Index q=1. 
Output: The optimum solutions ever found in P.  
Step 1: Initialization Randomly generate chromosomes to fill in the population P until 

Npop individuals are reached. Each chromosome is consists of p genes for a 
season.  

Step 2: Evaluation For each individual in the population, compute all objective func-
tion values F1, F2, F3.and F4.  

Step 3: Fitness Assignment Assign each individual a fitness value by using the equa-
tion (8) GPSIFF.  

Step 4: Selection Select Npop individuals from the population to form a new popula-
tion using the binary tournament selection without replacement,.  

Step 5: Recombination Perform the uniform crossover operation with a recombination 
probability pc.  

Step 6: One Point Mutation Apply the one point mutation operators to each gene with 
a mutation probability pm. If the mutated gene is duplicated with other genes 
in the same chromosome, mutate the gene again. 

Step 7: Termination test If the maximum generations have reached, store all the  
non-dominated solutions in season q, and then go to Step 8. Otherwise, go to 
Step 2. 

Step 8: Seeding q=q+1. If q>4, stop the algorithm. Otherwise, select and copy non-
dominated solutions to the initial population of the next season. If the number 
of non-dominated solutions is greater than the population size Npop, random-
ly delete solutions until the population size is equal to Npop. Then, go to  
Step 1. 

5 Result and Discussions 

5.1 Simulation Environment and Parameter Settings 

In this paper, four benchmarks are designed for experiments, as shown in Fig. 1. Each 
problem has different distribution of demand points on different grid sizes, described 
as follows: 

 Circle: 100 demand points and 36 service providers on a 18*18 grid. The 
number of providers to be chosen p=10, and the maximum QoS distance 
Dj=2.2. 

 Rectangle: Square with empty space. 100 demand points and 36 service pro-
viders on a 16*16 grid. The number of providers to be chosen p=10, and the 
maximum QoS distance Dj=3. 
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 Square: 100 demand points and 36 service providers on a 110*110 grid. The 
number of providers to be chosen p=10, and the maximum QoS distance 
Dj=10. 

 Triangle: 100 demand points and 36 service providers on a 14*14 grid. The 
number of providers to be chosen p=10, and the maximum QoS distance Dj=2. 

Ten service providers will be select for each season. The total number of season is 
4. The parameter settings of MOGA are listed as follows: population size Npop=100, 
recombination probability pc=0.9, mutation probability pm=0.1, the number of maxi-
mum generations Gmax=100. Fifteen independent runs are conducted for each  
problem. 

5.2 Discussions 

For each benchmarks, 30 independent runs are conducted using MOGA with seeding 
mechanism and MOGA without mechanism. Figure 2-5 use boxplot to depict the 
values F1 of non-dominated solutions in solving the circle benchmark at different 
seasons. From these figures, it shows that seeding mechanism can help MOGA ob-
tains better solutions and converge faster. Figure 5-8 use boxplot to depict the values 
of F1, F2, F3, and F4 of non-dominated solutions in solving the circle benchmark at the 
Season 4. Figure 9-12 use boxplot to depict the values of F1, F2, F3, and F4 of non-
dominated solutions in solving the Rectangle benchmark at the Season 4. Due to the 
page limit, the results of Square and Triangle are not shown in this paper. The results 
indicate that the proposed MOGA is capable of solving DSPSP and optimize four 
objectives simultaneously, considering different geographic distribution of demand 
points. 
 

Fig. 1. Distributions of demand points in 
four benchmark problems 

Fig. 2. F1 of non-dominated solutions for circle 
benchmark in Season 1 

 



850 H.-K. Chen et al. 

 

Fig. 3. F1 for circle benchmark in Season 2 Fig. 4. F1 for circle benchmark in Season 3 

 

Fig. 5. F1 for circle benchmark in Season 4 Fig. 6. F2 for circle benchmark in Season 4 

 

Fig. 7. F3 for circle benchmark in Season 4 Fig. 8. F4 for Rectangle benchmark in  
Season 4 
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Fig. 9. F1 for Rectangle benchmark in 
Season 4 

Fig. 10. F2 for Rectangle benchmark in  
Season 4 

 

Fig. 11. F3 for Rectangle benchmark in 
Season 4 

Fig. 12. F4 for Rectangle benchmark in  
Season 4 

6 Conclusions 

In this paper, a multi-objective evolutionary approach is proposed to solve dynamic 
service provider selection problems. Experimental results demonstrated the proposed 
approach is capable of optimizing the QoS distance, the total network transmission 
cost, the total service purchase cost, and the total number of demands points simulta-
neously. Moreover, the proposed approach can provide mission planers a set of non-
dominated solutions for construction plan of service facilities. Our future work is to 
apply our approach in solving some real cases. 
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