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Abstract. This paper demonstrates the applicability of evolutionary
computation methods to co-evolve a sensor morphology and a suitable
control structure to optimally adjust a virtual adaptive wing structure.
In contrast to approaches in which the structure of a sensor configuration
is fixed early in the design stages, we target the simultaneous generation
of information acquisition and information processing based on the opti-
mization of a target function. We consider two aspects as main advan-
tages. First the ability to generate optimal environmental sensors in the
sense that the control structure can optimally utilize the information pro-
vided and secondly the abdication of detailed prior knowledge about the
problem at hand. In this work we investigate the expected high correla-
tion between the sensor morphology and the signal processing structures
as well the quantity and quality of the information gathered from the
environment.
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1 Introduction

Adaptive systems consist of sensors as well as actuators which allow the improve-
ment of systems in reaction to changes in their environment according to a pre-
defined quality measure. The design of such systems is usually driven by the
utilization of prior knowledge of the problem at hand in order to generate an
effective sensory system which is able to provide all relevant information about
the environmental conditions as well as actuator configurations which can gen-
erate suitable reactions to improve the system’s performance. After the deter-
mination of the sensor and actuator configuration a suitable control structure
which processes information from the environment to effective actuator signals
is generated. This procedure requires a detailed understanding of all phenomena
which influence the behavior of the system. One reason is the necessity of know-
ing what information about the environment is important in order to place the
right sensors at the right place. To acquire this knowledge a priori is challenging
for a wide variety of tasks. Furthermore, the determination of an optimal over-
all system is expected to be challenging due to strong interaction between the
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sensor and actuator configuration with the control system. Therefore it is nec-
essary to solve two tasks. The first is to determine the optimal control structure
for the provided information by sensors, and secondly to determine information
which optimally suits the control system. In this research we demonstrate the
simultaneous evolutionary design of sensor configuration and control structure
for the example of a virtual adaptive wing configuration. Based on the evolved
designs we investigate the influence of the sensory input dimensionality on the
overall system quality. In detail we analyze the trade off between more detailed
information which requires the generation of a more complex information pro-
cessing system and a low dimensional sensory input which is able to acquire
a reduced set of environmental information, however requiring a simpler and
easier to generate control structure. We demonstrate that both factors are in a
trade off relation. Furthermore we invest the co-evolution process of both units
and demonstrate the high dependency between sensor and control structure. A
variety of similar approaches for the evolutionary design of sensor and actuator
configurations have been investigated in the field of evolutionary robotics. Early
work in the field of automatic design of a systems by body-brain co-evolution has
been reported by Sims [1]. He demonstrated the evolutionary development of the
morphology of virtual creatures in a physical simulation fulfilling simple loco-
motion tasks starting from simple building blocks without any prior knowledge.
Parker and Nathan [2] research the design of sensor morphology and controller
for a simulated hexapod robot. For this purpose the type of sensors, the head-
ing angle and the range of the sensors as well as the rules for the controller
are co-evolved. This method enables the system to extract information from the
environment which is relevant to complete a given task by configuring a minimal
controller and number of sensors to increase the system’s overall efficiency. Buga-
jska and Schutz [3] co-evolved the shape and strategies in the design of Micro
Air Vehicles (MAV). The target, similar to Parker and Nathan, was to find a
minimal sensor suite and reactive strategies for navigation and collision avoid-
ance tasks. Sugiura et al. also proposed a system that automatically designs the
sensor morphology of an autonomous robot with two kinds of adaptation: onto-
genetic and phylo-genetic adaptation[4]. Also Auerbach and Bongard [5] have
made extensive research in the field of co-evolution of morphology and control
in evolutionary robotics. In their work they implement a growth mechanism to
create robots using compositional pattern-producing networks and demonstrate
that the concurrent development of the morphological and controller structures
of the simulated adaptive robots can give an advantage for the final system
performance, compared to the approaches with separate design strategies.

Compared with the reviewed research in evolutionary robotics, we utilize the
co-evolution of morphology and information processing structure for the optimal
control of an adaptive wing shape. Although the generation of optimal control
for adaptive wings is not in the main focus of our research we argue that this
problem is a suitable test bed for the research on evolutionary design of adaptive
systems. Aerodynamic problems are characterized by highly complex interactions
between flow body and flow field which is in most cases difficult to understand
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in detail. Due to this manual design is generally challenging to achieve. However
excellent tools are available for their simulation and the evaluation. In this work
we demonstrate that evolutionary methods are able to generate systems which
can optimally adapt to environmental conditions, while at the same time we tar-
get shedding some light on the precise synchronization of system parts during
the developmental process. In comparison to the research [2],[3],[4] we changed
the environmental settings randomly in each generation of the evolutionary pro-
cess and thus obtained a robust adaptive system, able to react during random
environmental changes. The target for the development of the adaptive wing is
the reduction of the drag the airfoil generates while still creating a minimum
of lift. Environmental changes are realized by changes in the angle of attack of
the airflow across a wide range. A detailed description of the adaptive wing and
the experimental conditions is given in section 2. In section 3 we summarize
results of standard design optimization tasks for non-adaptive airfoils in order
to generate a baseline for the comparison of the quality achieved by the adaptive
system. An airfoil design optimization for a certain number of the fixed environ-
mental conditions, represented in section 3, shows maximal controller potentials
for these environmental conditions. In Section 4 we describe the experiments we
performed, present results of the experiments and analyze the development pro-
cess realized. Finally we conclude the paper by a summary of the main findings
and an outlook of further work.

2 Framework for Morphology-Controller Co-evolution

In our work we implemented a system, consisting of virtual sensors, actuators
and a signal processing structure. The signal processing structure controls the
adaptive system under changing environmental conditions by generating actua-
tor signals based on sensor signals derived from the environment. The target has
been to achieve a system behavior which reduces the airfoil’s drag, calculated in
a CFD (computational fluid dynamics) simulation of the resulting airfoil shape
while maintaining specified lift value. The actuator signals correspond to changes
of the NURBS [6] control points and define the current airfoil shape. The virtual
sensors of the system have been defined as pressure sensors, at a given position
on the airfoil surface. The values of the virtual sensors correspond to the surface
pressure calculated in the CFD simulation and therefore depend on the blade’s
surface, the angle of attack and the speed of the air flow etc. Fig. 1 (a) shows
the described relations between the single parts of the test-framework. With the
described setup an adaptive behavior can be realized by the actuators in reaction
to the change of the environmental conditions. Furthermore a variable number of
sensors or actuators can be easily realized. The described setup serves as a test
framework for the simulation of the interactions between control structure and
morphology during the operation of the control structure as well during their
evolutionary development.

In our work we implemented the two dimensional airfoil by a non-uniform
rational B-splines (NURBS) as shown in Fig. 1 (b). The shape of the NURBS
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Fig. 1. (a) Adaptive airfoil framework, (b) Example of the airfoil created with NURBS.
Airfoil in white, defined by the initial positions of the spline control points. The airfoil
shape change (in gray) results from the movements of C2 and CN .

curve and with that the shape of the resulting wing profile is determined by the
set of spline control points. The splines, defined by its control points Cn, result
into a unique two dimensional airfoil shape. By moving the control points in
the two dimensional space, a shape change of the airfoil can be achieved. For
the simulation of the aerodynamic airfoil characteristics and pressure distribu-
tion we used the computational fluid dynamic solver Xfoil1 because of its high
speed which is decisive for optimization tasks (less than 5 seconds). Xfoil cal-
culates different aerodynamic characteristics for the given airfoil geometry and
environmental configurations, e.g. angle of attack, Reynolds number etc. In the
simulation we change the angle of attack as a variable input of the system in
order to generate variations of the airfoil environment. The Reynolds number
has been fixed during the optimization(Re = 107). To simulate the sensors we
used the distribution of the pressure coefficient over the airfoil surface. The pres-
sure coefficient Cp [7] is defined as a relative pressure throughout a flow field
in fluid dynamics. In comparison to a gauge pressure value at the point on the
airfoil, the pressure coefficient is dimensionless and independent from effects of
the density and speed of the air. We used Xfoil to calculate the profile of the
pressure coefficients Cp at 160 points on the airfoil surface. A sensor placed on
the airfoil returns a sensor value corresponding to the pressure coefficient at the
airfoil surface.

2.1 Controller

The control system is realized by Parker and Nathan [2] as well as Bugajska
and Schutz [3] as a reactive system that uses “if...then” rules to control a simu-
lated robot. Haller, Ijspeert and Floreano [8] implemented a controller inspired
from the central pattern generators underlying locomotion in animals. In com-
parison to these approaches we use biologically inspired feed forward neural
networks (FFNN). The task of the neural controller is to reduce the drag of the
adaptive airfoil system by morphing the airfoil surface. For the implementation
the SHARK2, open-source C++ machine learning library is used. The neural
1 http://web.mit.edu/drela/Public/web/xfoil/
2 http://image.diku.dk/shark/

http://web.mit.edu/drela/Public/web/xfoil/
http://image.diku.dk/shark/
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network we implemented consists of one input layer, a single hidden layer with
sigmoidal activation function and one output layer with a linear activation func-
tion. In Fig. 2 a schematic overview of the overall system is given.

Fig. 2. Schematic view of the overall control structure

3 Baseline Optimization

The target of the baseline optimization has been to find shapes for the airfoils
with minimal drag in order to generate a baseline which allows the evaluation
of the blade shapes generated by the adaptive system. A second reason for the
experiments was to investigate the influence of the number of spline control
points on the optimization behavior. To determine the maximal achievable qual-
ity of the airfoils conventional evolutionary design optimization was performed.
We used a CMA-ES(4,8) strategy with standard population size [9] to find the
optimal shapes of the airfoil for the individual angles of attack with lift con-
straint. Minimal lift constraint has been set to a lift coefficient of NACA 2410
airfoil, Cmin

l = CNACA2410
l . NACA airfoils are the aircraft wing shapes, devel-

oped by the National Advisory Committee for Aeronautics in 1948 [10] and
define since that time a set of standard airfoil shapes. Fig. 3.a) shows the result
of the design optimization with fixed number of spline control points, Cp = 6.
The maximal thickness of the airfoil was set to the maximal thickness of the
NACA 2410 airfoil which is equal to 10% of the chord. For a set of 5 angles of
attack the optimal airfoil shapes have been determined experimentally with the
resulting drag and lift coefficients given in Table 1. We found specialized solu-
tions for each angle of attack, which have significantly lower drag and higher lift
than a single NACA 2410 airfoil being rather robust for wide range of different
angles of attack.

The results of the optimization runs can be seen as the maximal achiev-
able performance for the given settings and therefore form the baseline for the
evaluation of all further experiments. From here on we concentrate on the sensor-
controller optimisation. In a first set of experiments we investigate the influence
of the number of spline control points on the optimization results. In the design
optimization runs with only 3 variable control points per airfoil we observe a
very high improvement of the blade quality in an early phase of the optimiza-
tion, however with a low final quality. With a higher number of spline control
points the airfoil quality improves slower, but the final quality of the airfoil is
significantly improved.
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Fig. 3. (a) Optimized airfoil shapes, (b) Averaged quality history of CMA optimisation
runs for different number of spline control points. Angle of attack was set to 3◦, slightly
different start airfoils were used in all 5 of the otherwise identical simulations which
were used for averaging.

Table 1. Best baseline performance with 6 spline control points, compared with NACA
2410 airfoil

α, degree Copt
d 10−3 Copt

l CNACA2410
d 10−3 CNACA2410

l

1◦ 3.091 0.401 4.950 0.355
2◦ 3.192 0.497 5.070 0.467
3◦ 3.391 0.617 5.390 0.576
4◦ 3.434 0.845 5.910 0.686
5◦ 3.860 0.931 6.140 0.791

4 Robust Sensor-Controller Optimization

We implemented the optimization of sensor positions on the airfoil surface and
the optimization of neural network weights. We realized the proposed opti-
mization task with a standard Evolution Strategy (ES), developed by Bienert,
Rechenberg and Schwefel as well as with a CMA Evolution Strategy [11], [9].
We achieved significantly better results with a standard ES(50,200) with two
different self adapted step sizes, for sensor positions and neural network weights
adaptation. Detailed results are given in section 4.2.

4.1 System Performance Evaluation

The task for the controller is the improve the airfoil drag after a variation of the
inflow angle. Therefore the drag coefficient of the airfoil before any modifications
took place C1

d is evaluated and after the modification of the airfoil blade C2
d . The

ratio of these two values shows if the neural network outputs realizing an actuator
adjustment, perform well and reduce the airfoil drag. The total fitness of the
individual has been defined as the sum of the drag coefficient value ratios summed
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Fig. 4. Overview of the system evaluation

over the set of different angles of attack given in the experimental setup. Fig. 4
shows the structural diagram of individual evaluation. Optimization starts with
randomly initiated sensor positions between 0 (trailing edge, wing upper-side)
and 2 (trailing edge, wing under-side) and neural network weights, uniformly
randomly initialized between -0.01 and 0.01. The trailing edge is defined as rear
edge, where the airflow split by the leading edge rejoins [7]. After the change of
the angle of attack we evaluated 3 cycles of geometry change in order to let the
system convert to a final state. The main reason is that the system goes through
a set of partial update steps until the optimal geometry is reached. After the first
update the adjusted geometry is therefore likely to be influenced by the shape
in the previous step as visible in the final results. The final fitness value for
the individual is calculated as the sum of drag value ratios over all tree steps of
spline control point adjustments for a single angle of attack and additionally over
a cascade of different angles of attack, which however stayed the same during the
first experiment. In the second experiment, in each generation a set of angles of
attack have been randomly changed between 2◦ and 4◦. The random change was
introduced to avoid that only shape transitions which are predefined by the set
of given inflow angles are possible. As mentioned, the size of the controller was
defined by the number of neurons in the input layer which is equal to the number
of sensors, the number of neurons in the output layer equal to the number of
actuators and a fixed number of 20 hidden neurons.

4.2 Robust Optimization Results

Fig. 5 shows the filtered fitness curves of the robust optimization described in
section 4.1 averaged over 10 runs. The fitness function was defined as following:
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Fitness(Individual) =

∑N
α=1

∑M
i=1

Cd(α,changed airfoil)
Cd(α,unchanged airfoil)

N ∗ M
(1)

where M is a number of controller actions for the same angle of attack (M = 3)
,α is the angle of attack, N is the total number of angles of attack applied and
the individual has been evaluated on, Cd is the drag coefficient. The number of

0 50 150 250 350 450
0.95

0.96

0.97

0.98

0.99

1

1.01

1 sensor
2 sensors
3 sensors

3 sensors

1 sensor

15 sensors

5 sensors

2 sensors

15 sensors
5 sensors

Generations

Fi
tn

es
s v

al
ue

0.8

0.85

0.9

0.95

1

0
5
10
15
20
25

1 2 3 5 7 10 15

1 2 3 5 7 10 15

Number of sensors

Number of sensors

Fi
tn

es
s v

al
ue

Fa
ilu

re
 ra

te
, %

(a)

(b)

(c)

Fig. 5. (a) Robust optimization results filtered with moving average over 10 genera-
tions. Fitness curves has been averaged over 10 runs with different starting parameters.
(b) Box plot of the optimization runs for each number of sensors, (c) Percentage of
the cases in which controller lead to a failure performance, for scenario of 10 random
angles of attack between 1◦ and 7◦.

optimization parameters results from the size of system controller (number of
neurons in a hidden layer), the number of sensors and actuators (control points
of the spline). The total number of parameter is

NParam = Ni ∗ Nh + (Ni + Nh) ∗ No + Nh + No + Ni + Ns (2)

where Ni is the number of sensors, Nh the number of neurons in the hidden layer
(was fixed to Nh = 20), No is the number of actuators (was fixed to No = 6)
and Ns is the number of optimization step-sizes (Ns = 2). As an example, for
the system, using 5 sensors, we need to optimize 283 parameters.

The results show that the system development progress depends on the num-
ber of sensors. For the systems, using between 1 and 5 sensors, we observed a
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clear trend of averaged performance improvement with an enlargement of the
sensory system (see Fig. 5 (a) and (b)). Starting with 7 sensors the averaged
performance does not improve. Additionally in Fig.5 (c) we see, that on average
the failure of controller actions, defined as an action, that lead to an invalid
solution, increases gradually for the systems with more than 5 sensors,although
the maximal achievable quality given in Fig. 5 (b) is better with a larger sensor
number.
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Fig. 6. (a) Development of the position of the sensors during the optimization (b)
Optimization of the robust system, using 3 sensors. Evaluation on the random angles
of attack between 1◦ and 5◦, Hinton diagrams of the neural controller of the system at
generation 800 (c) and 900 (d).

An example of the dynamics of the concurrent sensor-controller adjustment
during the optimization experiment is given in Fig. 6. As mentioned, we use
single hidden layer, consisting of 20 neurons with sigmoid activation function.
To investigate the internal functionality of the neural network as a controller,
we visualize converted network connections between sensors and actuators of the
adaptive airfoil, omitting the non-linearity of the hidden layer. The connection
strengths between neurons have been calculated as following:

Sio =

∑j=Nh

j=1 WijVjo

Nh
(3)
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The variable Sio is the converted connection strength between input i and
output o, Nh is the number of neurons in a hidden layer, W and V - input and
output weights of the neural network. Fig. 6 (c) and (d) show corresponding
diagrams of the neural strengths of the system at the 800th and 900th gen-
eration. For visualizing of the converted neural connection strengths a Hinton
diagrams has been used [12]. The size of the boxes corresponds to the value of
the connection strength. The boxes color (gray and black) represents positive or
negative sign of the connection strength respectively. The values of the connec-
tion strengths lie between zero (no box) and one (box of maximum size). In Fig.
6 (b) we see a significant performance improvement at the generation 900. Fig. 6
(a) shows the development of the sensory system configuration. Sensor 3 changes
its position gradually at around the 900th generation. The corresponding change
in a controller system can be observed in Fig. 6 (c) and (d). Compared with the
controller at generation 800, we can see a significant change of the controller
connection strengths at generation 900 for the first and the third sensor. The
connections of the second sensor stay nearly constant. Regarding Fig. 6 (a), (b),
(c) and (d), a precise sensor-controller adjustment takes place. This results show
that the development of the signal measurement and signal processing modules
are tightly coupled and precisely coordinated.

0 5 10 15 20 25
0

Drag reduction ratio
Angle of attack

4

2

350

100

D
ra

g 
re

du
ct

io
n,

 %

(a)                                                                 (b)

 

0.4 0.5 0.6 0.7 0.8 0.9 1
3

3.5

4

4.5

5

5.5

6

6.5

6 5
7*10

−3 Baseline
System with optimized
sensor-controller 
configuration

NACA 2410

1° 2°
3°

5°
4°

Lift coefficient

D
ra

g 
co

ef
fic

ie
nt

2.9°
3° 3.5°

3.6°3.7°

2°
2.1°

1° 2°
3° 4°

5°A
ng

le
 o

f a
tta

ck

Time steps

Fig. 7. (a) Percentage of the airfoil drag reduction for a scenario of 7 angles of attack
between 2◦ and 4◦, using 7 sensors. (b) Comparison of the robust system performance
given in Fig.7 (a) with baseline design optimization in Fig. 3 (a), Tab. 1 and NACA
2410.

Finally we analyzed the results of the robust sensor-controller optimization
in Fig. 5. The performance of the optimized system with 7 sensors was again
evaluated this time with a set of 7 randomly chosen angles. The result is illus-
trated in) Fig. 7 (a). As mentioned, the controller adjusts the actuators for the
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current angle of attack in 3 steps. We observe the drag reduction after almost
each controller action. The highest drag reduction takes place in the first of 3
controller actions for the same angle of attack. For example the drag reduction
for the angles of attack of 3.5◦ and 3.6◦ was above 50% through the first con-
troller adjustment. The fitness value of the system in Fig. 7 (a) is equal to 0.85.
Fig. 7 (b) shows a final comparison of the airfoils resulting from a concurrent
sensor-controller development, from the standard design optimization and the
NACA 2410 airfoil. We observed, that on the test scenario the system with a
concurrently optimized sensor and controller configuration does not perform as
well as the individual design optimization with respect to a drag, but performs
better than NACA 2410 airfoil. Regarding the lift coefficient, the co-evolved sys-
tem creates higher lift than the profiles of baseline optimization and NACA 2410
for the same angles of attack.

5 Conclusions

This work investigates the generation of an adaptive system realized by an adap-
tive wing. The system consists of a sensor and actuator configuration as well as
a related control structure. The target for the adaptive wing is the minimization
of the airfoil drag while the angle in which the air is approaching the airfoil is
changed randomly. Sensors as well as the control structure of the adaptive wing
design are defined during an evolutionary process, resulting in a concurrent and
coordinated development of the overall system. The experimental results demon-
strate the expected high correlation between the development of the sensory sys-
tem and the control systems. Furthermore we observe a strong influence of the
number of the environmental sensors, which is related to the amount of infor-
mation which is available to the control structure, and the final performance
of the system. On the one hand the system needs sufficient sensory information
defined by the number and position of the sensors for an optimal control strategy
in the randomly changing environment. On the other hand the achieved quality
of the optimized solution degenerates with very high numbers of optimization
parameters, which are determined by the complexity of the control structure
which in turn is defined by the number of sensory inputs. Both aspects can be
observed in the experimental results. A small number of sensors results in simple
and low dimensional control structures which converge quickly in the evolution-
ary process to a local optimum, yet they have an overall low quality measured
by a high drag value due to insufficient sensory information. In the case of a
high dimensional sensory input of the system we observe low convergence speed
toward an optimum due to the high dimensional optimization problem or even
an early convergence to local optima. These results suggest the existence of an
optimal number of system parameters for the evolutionary design process. Unfor-
tunately neither the optimal dimensionality of the sensory input nor the optimal
number of optimization parameter is known for the problem at hand. Further-
more it is likely that the optimal number of parameters depend on the progress
of the optimization process. These findings suggest the necessity of a variable
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number of free parameters in the system, which is addressed in future work by
the realization of a growth process during the evolutionary design process.
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