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Abstract. Cloud infrastructures are designed to simultaneously service
many, diverse applications that consist of collections of Virtual Machines
(VMs). The policy used to map applications onto physical servers (place-
ment policy) has important effects in terms of application performance
and resource efficiency. This paper proposes enhancing placement poli-
cies with network-aware optimizations trying to simultaneously improve
application performance, resource efficiency and, as a consequence, power
efficiency. The per-application placement decision is formulated as a
bi-objective optimization problem (minimizing communication cost and
minimizing the number of physical servers assigned to the application)
whose solution is searched using an evolutionary algorithm with problem-
specific crossover and mutation operators. Experiments carried out with
a simulator demonstrate how a low-cost optimization technique results
in improved placements that achieve all the target objectives.

Keywords: Cloud computing · Tree-network topology · VM placement ·
Multi-objective optimization · Energy consumption

1 Introduction

In recent years, the utilization of cloud infrastructures to host applications has
spread widely. The characteristic that makes these cloud systems so appealing
is their elasticity, that is, resources can be acquired on-demand, depending on
the time-varying application needs, but paying only for those actually booked
(a scheme known as pay-as-yo-go). Virtualization technologies enable the cloud
infrastructure to provide such elastic usage. The resources offered by physical
servers, organized in several data centers, are provided in the form of abstract
compute units that are implemented as Virtual Machines (VMs). Each VM is
assigned a pre-configured set of resources: number of cores, amount of memory,
disk and network-bandwidth.

Virtualized data centers support a large variety of applications, including
batch jobs (scientific applications), and web applications (e.g. an online book-
shop or a blog hosting site). Each application is deployed on a set of VMs,
which can be allocated to any collection of physical servers in the data center.
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The problem of assigning a physical location to each VM is known as VM place-
ment and it is performed by the manager of the cloud infrastructure. This man-
ager is typically called the Infrastructure-as-a-Service (IaaS) provider.

The challenge for the provider is to host a large and diverse set of applications
(VM sets from different clients) in the infrastructure trying to (1) maximize its
revenue and (2) provide a good service to the clients. An adequate application
placement would be able to maximize the resource usage of physical servers and
reduce the energy consumption of the data center, for example by turning off
(or setting to idle state) the inactive servers and switches. At the same time, the
infrastructure management policies should balance the obtained revenue with
the Quality of Service (QoS) agreed with the client, guaranteeing that each
application receives the resources payed for.

The VM placement problem has been extensively explored in the literature
[11] [12]. Most efforts have been directed towards optimizing the usage of CPU,
memory and disk resources, and reducing the energy consumption of physical
servers. However, not enough attention has been paid to the utilization of the net-
work. An inappropriate placement of VMs with heavy communication require-
ments could lead to the saturation of certain network links, with the subsequent
negative impact on applications (longer execution or response times). Besides,
as stated in [9], the network power has been estimated at 10-20% of the overall
power consumption. For this reason, the VM placement policy should try to
reduce not only the use of physical servers, but also the use of network links and
switches to reduce the total power footprint.

The most common topology of data center networks is a tree of switches
arranged in several tiers. The communication latency of any pair of VMs depends
on the distance between the physical servers in which they are allocated. This, in
turn, depends on their position in the tree. Distance is measured as the number
of hops from the sender VM to the recipient one. The collection of VMs forming
an application communicate between them following a certain communication
pattern. In batch jobs implementing, for example, a scientific computation, the
pattern may be all-to-all. In web applications, the VMs are arranged into several
layers and there may be intra- and inter-layer communication. Other patterns
are possible, depending on the particular characteristics of the application.

Based on the communication pattern of an application, it is straightforward
to compute the input/output network bandwidth needed by each VM. The most
communicative VM subsets should be placed as close as possible (minimizing
the distance between them in terms of network hops). This means using the
minimum number of physical servers, because intra-server communication is the
cheapest. The constraint is that the external aggregated bandwidth required by
the all the VMs in a server, from the same or from different applications, cannot
exceed the bandwidth of its network connection.

Two examples of VM placement policies that can be used in data centers are
first fit (FF) and round robin (RR). Each of them has a different characteristic
that makes it appropriate for its use in the data center. The objective of FF is to
reduce the number of physical servers in use, saving energy. RR tries to equalize
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the utilization of all servers to avoid excessive wearing-out of server subsets
and thermal peaks. We demonstrate how it is possible to take these policies as
starting points and use optimization techniques to improve the benefits for both
the infrastructure provider and the application.

The remaining of this paper is organized as follows. After a review of the
literature (Section 2), we provide in Section 3 models for cloud applications,
data center organizations, and the energy consumed by servers and switches.
Then we formulate VM placement as a multi-objective optimization problem
(Section 4). We assess the benefits of our approach using the experiments defined
in Section 5, whose results are discussed in Section 6. We end in Section 7 with
some conclusions and future lines of work.

2 Related Work

Open-source tools for cloud management use rather simple placement policies.
For example, Eucalyptus [1] implements FF and RR strategies that only con-
sider the VM requirements and the availability of resources. It also implements a
PowerSave policy that is similar to the ranking algorithm available in OpenNeb-
ula [4]: choosing first the most used servers (with room for the new demand) with
the objective of minimizing the number of used servers and, therefore, the power
consumption. Commercial tools for capacity planning, such as NetIQ PlateSpin
Recon [3], VMware Capacity Planner [5] and IBM Workload Deployer [2] also
focus on maximizing the resource usage and power consumption savings. None
of these tools explain how VM placement is carried out.

Neither open-source nor commercial tools consider the impact of network
topology and the communication patterns of applications, but it has been ana-
lyzed in several research works [7] [8] [9] [11] [12]. For example, Meng et al.
[11] propose grouping VMs and servers into clusters, addressing VM placement
for each (VM-cluster, server-cluster) pair as a Quadratic Assignment Problem
(QAP). The VM clustering tries to maximize the intra-cluster communication
and reduce the inter-cluster communication, but all VM-clusters have equal size.
The server set assigned to a VM-cluster is fixed. This work does not consider
the energy consumed by physical servers. Mann et al. [9] propose an approach
similar to ours, but using a greedy heuristic. However, their work does not con-
sider the large variety of applications that can run in the cloud. Georgiou et al.
[8] also propose a greedy heuristic to improve the network utilization, but they
do not try to consolidate the VMs in the minimum number of physical servers.

3 Application, Data Center and Power Models

This section presents several models that will be later used to define and solve the
VM placement problem. First, we present an application model, which covers
a wide range of application types that run on cloud environments. Next, we
define a general model for describing the interconnection network topology of
tree-based data centers. Finally, a power model is introduced to estimate the
power consumption of physical servers and switches.
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Fig. 1. Simplification of the communication matrix for each application type (defined
per layer instead of per VM)

3.1 Modeling Applications

A cloud environment is suitable to run a diversity of applications, formed by a
collection of VMs typically organized in one or more layers. The way VMs com-
municate among them determine the communication pattern of the application.

We propose a simple model that allows us to represent the structure of any
kind of application providing a few parameters: number of layers of the applica-
tion (L), the number of VMs in each layer (Ni being i the layer identifier) and a
matrix of the communication needs (or bandwidth, measured in Mb/s) between
each pair of VMs i and j (BW = [bwi,j ]) and with the external world.

For this work, we particularize this model to define two classes of applica-
tions: (1) batch jobs, typical of scientific workloads, and (2) web applications.
Batch jobs represent the execution of parallel applications, or workflows compris-
ing parallel tasks. The main characteristic of a batch job is the intense internal
communication (between tasks-VMs of the same application). In this work, we
model them as a single-layer application, with communications following pat-
terns such as all-to-all, neighbour-to-neighbour in a 2D (virtual) arrangement,
and neighbour-to-neighbour in 3D.

Web applications are usually implemented using a three-layer architecture:
a load balancer that receives end-user requests, a business layer that processes
those requests (and replies to them), a and database (DB) or persistence layer.
The load balancer distributes the input requests evenly along the VMs of the
business layer; it may be implemented on a hardware device, or as a DNS-
based redirection—thus, we do not include it in the application model. The
number of VMs at the persistence layer depends on the database requirements
of the applications. A light workload can be managed by a single DB server that
supports both read and write operations; we represent this class of applications
as L-WA. For applications with heavy database demands (H-WA), a master-
slave replication scheme may be applied: one of the VMs of the persistence layer
is the master node that processes all the write operations, while the queries
(read operations) are evenly distributed along the remaining VMs in the layer.
Whenever a change (write) is done on the master node, it is propagated to the
read VMs.
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(a) 3-tier fattree build with 8-port switches (b) 24-port access switch

Fig. 2. Representation of the physical configuration of a data center (network and
servers)

IaaS providers offer different types of VMs, with different resource sets. In
this work, we will consider small, medium and large instances, with different
characteristics only in terms of allotted network bandwidth (in Mb/s): bws=50,
bwm=150 and bwl=300, respectively. Our batch applications use a single layer L1

of large instances. For L-WA web applications, the business layer (L1) uses small
instances and the database is represented as a single, large VM in layer (L2).
For H-WA applications, the database is modelled as a L2 layer for reading, with
several medium-size VMs, and a single-VM (of large size) layer L3 for writing.
Figure 1 shows the communication pattern between layers for each application
type, that is reflected on the BW matrix. The additional layer LE represents
the traffic to/from the Internet and the application itself.

3.2 Describing the Data Center Structure

As stated before, current data centers are usually built using tree-based topolo-
gies, such as fat tree and VL-2 [11]. This kind of networks are composed of
several tiers of switches (we assume homogeneous switches) and several servers
connected to the bottom tier of the tree (the edge or access tier). Each server is
divided into several slots, where each slot can be a fraction of a core, an entire
core or several cores. Application VMs are assigned to different slots of the data
center servers. Throughout this work we assume that a VM consumes a slot, and
that one slot is equivalent to one core of a multi-core server.

The physical configuration of a data center is defined as the number of servers
(P ), the number of cores per server (Cp) and the network topology. In particular,
a tree-based topology is defined by the number of uplinks and downlinks of
the switches (Sup and Sdown), the bandwidth (Mb/s) offered by each switch
port (Sbw) and the number of tiers of the tree (T ). The communication latency
between two cores i and j depends on the distance between them, measured in
terms of hops. Matrix D = [di,j ] defines the distance between any pair of cores
(actually, the servers to which they belong).

We have focused on data centers built using fat trees as interconnection
network, composed of three tiers (as depicted in Figure 2(a)) with the same
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Table 1. Parameter values of energy utilization in physical servers and switches

Consumption at Server value (W) Switch value (W)

Emax 100% utilization 200 100

Eidle Idle state 10 10

Eactive One active core/port 160 31

Erem Remaining Uactive − 1 cores/ports 40 69

number of switches in each one of them (see Figure 2(b)). We consider that
core switches are directly connected to the Internet. In this kind of tree the
distance between two servers (matrix D) is computed as follows: cores in the same
physical server are at distance 0; servers connected to the same access switch
are at distance 2; if aggregation or core switches are required, distance grows to
4 and 6 respectively. The physical configuration of the data center used in this
work is: (P = 1728 servers, Cp = 8 cores, T = 3 tiers, Sup = 12 ports, Sdown =
12 ports, Sbw = 1000 Mb/s).

3.3 Modeling Power Requirements

Energy is consumed by servers and switches, and also by cooling and energy
distribution systems. Reducing power use has direct benefits for the infrastruc-
ture provider (lowering the energy bill), while reducing the data center carbon
footprint.

PowerNap [10] aims to reduce the consumption of unused servers by switching
off memory, disk and other elements. In this work we assume that a strategy like
this is used in the data center: unloaded servers and switches operate in an idle
state that minimizes energy waste. We define a general model of power utilization
of a device (server or switch), inspired in the one provided in [10].

E =
{

Eidle Uactive = 0
Eactive + Erem·(Uactive−1)

Utotal−1 Uactive > 0

The energy consumption E of a server/switch (in Watts) depends on the
number of active cores or ports Uactive. At idle state, the consumption is equal
to Eidle. The transition from the idle state to the activation of the first core/port
implies an important increase in the energy utilization, because it requires turn-
ing on other resources (memory, disk) or internal fans. The consumption of
each additional, active core/port is directly proportional to the active number
of cores/ports. Table 1 shows the energy consumption values used in this work,
for both servers and switches. Values for servers are based on those in [10].

4 Topology-Aware Optimization

The aim of this work is to find a suitable placement for the VMs forming an
application onto a set of available cores (slots) in the data center servers. We
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perform an initial selection of free cores using FF or RR (see Section 5); then,
a bi-objective optimization algorithm fine-tunes the VM placement taking into
account the communication needs of the application—and the corresponding
cost considering the assigned cores and the topology of the data center network.

4.1 Problem Definition

Given an application A with a VM set V of size N , and a subset of available cores
C ′ ⊂ C, where C is the whole set of cores in the data center (note that usually
|C ′| >> N), the VM placement problem involves finding a mapping function ϕ
that assigns each VM, v ∈ V to a core c ∈ C ′:

ϕ :V → C ′

v �→ ϕ(v) = c

A solution of the VM placement problem has the form s = (c1, c2, . . . , cN )
representing that the VM i has been assigned to core ci.

Two major selection criteria will be considered to choose a VM placement.
First, we favor solutions that minimize communication latency. For this reason,
the VM placement will try to allocate the most communicative VMs onto phys-
ically close cores, in terms of network distance. The second criterion focuses
on reducing the number of servers allocated to the application. An allocation
solution that fulfills the first criterion may not satisfy the second one. For exam-
ple, given an application A = {v1, v2, v3, v4} in which communication occurs
between v1-v2 and v3-v4, the first criterion may place each pair of VMs on a
different physical server. However, according to the second criterion, it would be
better to place all the VMs in the same server. Both criteria try to improve the
use of data center resources, by means of reducing the number of active servers
and switches, but the first one specifically tries to benefit the application, opti-
mizing its performance. Placement solutions must obey a restriction: external
communication demands by all the VMs assigned to a server cannot exceed the
bandwidth of its network link Sbw. This constraint does not take into account
communication between VMs in the same server.

More formally, we describe VM placement as a bi-objective optimization
problem subject to one constraint. The first objective function to minimize is
defined as follows:

f1 :
N∑

i,j∈V

bwi,j · ds(i),s(j) (1)

where ds(i),s(j) is the distance between the cores assigned to VMs i and j and
bwi,j is the bandwidth required by VMs i and j.

Given the function σ(c) = p that returns the server p to which core c belongs
to, and a solution s, we define the set of active servers for this solution as
P s = {p|∃i ∈ {1, . . . , N} s.t. σ(s(i)) = p}. The second objective function to
minimize is defined as:
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f2 : |P s| (2)

The solutions are subject to the following constraint:

∀p ∈ P s : Sbw − Sp
bw ≥ 0 (3)

where Sbw is the bandwidth available for each physical server and Sp
bw is the

reserved bandwidth of server i, considering the previously allocated applications
and also the new one.

4.2 Multi-objective Optimization with NSGA-II

We have chosen the evolutionary algorithm NSGA-II [6] to solve the multi-
objective VM placement problem. A solution or individual is represented as
a vector that assigns each VM of the application to one available core. After
generating an initial population of Npop individuals, an offspring is created from
it applying a crossover and a mutation operator with probability pcross and pmut

respectively. The resulting population 2Npop is sorted, in order to select the best
Npop individuals for the next generation. These steps are iterated along Ngen

generations. For further information about NSGA-II, please refer to [6].

Guided Crossover. The crossover operator is applied with probability pcross.
It combines two individuals to generate a new one, considering the specific char-
acteristics of the problem. Given two parents s1 and s2 the crossover operator
generates a new child ch as follows. We define φ(i, s) as the communication cost
of VM i in a candidate solution s, considering all the destinations with which it
communicates, the corresponding input/output bandwidths, and the distances:

∀i ∈ {1, . . . , N} : φ(i, s) =
N∑

j=1,j �=i

(bwi,j + bwj,i) · ds(i),s(j) (4)

Child ch will be constructed taking from the parents those cores that cause
the lowest communication cost. That is, for each VM i, if φ(i, s1) < φ(i, s2),
then core s1(i) is assigned to VM i of child ch. A correction step to remove any
possible repeated position (cores) of each child may be required.

Guided Mutation. The mutation is applied with a probability pmut. There
are two types of mutation, that are selected based on another probability pmtype.
The first type performs a simple swap between any two elements of the chosen
solution, without considering cores in the same server because this change would
not affect the values of the objective functions. With probability 1-pmtype, the
second type of mutation is applied: one of the cores assigned to the solution is
replaced with any free core c from the whole network C, selected randomly using
a distance-based distribution that favors physically close cores.
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Selection Criterion for Solutions in the Pareto Front. The bi-objective
optimization algorithm generates a collection of solutions for a given application
(Pareto set), with different trade-offs between locality and number of allocated
servers. As all Pareto optimal solutions are considered equally good, a selection
criterion is required to choose one. We select the solution that is most beneficial
for the provider: one that minimizes the global number of active servers in the
data center Pactive.

5 Experimental Framework

This section presents the experimental framework used to evaluate the VM
placement strategies. The experiments have been performed using an in-house
developed scheduling simulator. The initial mapping is generated with a topology-
agnostic approach: FF that searches free cores sequentially, always starting at the
first one, or RR that also performs a sequential search but starting from the last
core used in the previous placement. We then apply the multi-objective optimiza-
tion over this set of cores. Using this set, the initial population for NSGA-II is
generated performing random reorderings of the cores. In all, four VM placement
algorithms are considered: FF and RR, without and with optimization, in all cases
obeying the bandwidth constraint.

Three initial workload scenarios have been considered, designed to generate
low (25%), medium (50%) and high (75%) use of data center resources (servers).
Each scenario consists of a sequence of arrival/departure operations (new appli-
cations, applications that end). Experiments carried out in the simulator are
divided into two phases: first, a warming up until the target load of the scenario
is reached and the system arrives to an steady state; then, 10 batches with sets
of 1000 operations (equally distributed between arrivals and departures). The
simulator gathers different per-batch metrics.

NSGA-II has been used with these parameters: Npop=100, Ngen=100, pcross=
0.8, pmut=0.8 and pmtype=0.5. Parameter tuning for the optimization process
falls outside the scope of this work. For this parameter configuration, a run of
NGSA-II in a desktop PC takes on average just 3”. Given the Stochastic nature
of the NSGA-II algorithm, we perform five repetitions for each scenario, using
the same list of operations as input. Results gathered in the tables are obtained
by calculating the mean of those repetitions.

6 Analysis of Results

In this section we discuss the results provided by the simulator, with special focus
on the effects that the different placement policies have on applications (which
policy is most beneficial in terms of improving communications locality?) and
the data center (which policy uses less resources and, therefore, requires less
power?). Two approaches are compared, topology-agnostic RR/FF (Without
Optimization, WO) and topology-aware RR/FF (with Optimization, O).
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Table 2. Values of objective functions, WO - Without Optimization, O - with
Optimization

First fit Round Robin
μf1 σf1 μf2 σf2 μf1 σf1 μf2 σf2

High
WO 264316.60 32567.10 14.40 2.42 174689.20 19749.78 10.40 0.49
O 225017.80 32522.66 14.20 2.14 145600.60 18661.38 9.40 0.49

Medium
WO 296971.20 18588.08 16.40 3.26 172445.80 11480.79 8.60 0.49
O 257856.60 20687.72 15.80 3.12 148800.00 11933.78 8.00 0.00

Low
WO 278839.00 10491.40 19.60 4.08 159689.60 6721.03 7.80 0.40
O 240159.00 12813.12 17.80 3.37 138890.00 7062.93 7.00 0.00

6.1 Application-Related Metrics

Table 2 gathers the mean μ and standard deviation σ of both objective func-
tions f1 (communications locality) and f2 (number of servers assigned to the
application). If we focus on topology-agnostic policies, clearly RR is better for
applications, as it provides lower communication costs than FF in all scenarios
(see f1 values), while simultaneously providing better (smaller) f2 values (num-
ber of servers per application). The most relevant result, though, is that applying
optimization improves values of both objective functions for FF and also for RR.

6.2 Data Center-Related Metrics

The objective functions were designed to have a positive impact on the whole
data center as well as on applications. This section evaluates the impact in terms
of the number of active physical servers and the power consumption.

Table 3 contains the number of active servers Pactive. Pmin is the minimum
number of servers that would be necessary to allocate all applications. So, the
cost in terms of servers of each VM placement policy can be evaluated as the
extra number of servers used relative to Pmin. FF policy obtains a lower number
of extra servers than RR, thus being more appealing for the IaaS provider. The
use of optimization makes this number even lower (Pdif ), while simultaneously
improving application-related characteristics.

These benefits in terms of number of active servers translate immediately
into lower power requirements for servers. But optimization is focused on com-
munications, and benefits are also expected in terms of reduction of the power
required for switching. We have used the energy models described previously to
measure power requirements, separately for servers/switches, and total. Results
are summarized in Table 4. We see that RR requires more power than FF for
servers (globally it uses more servers) but less for switches (makes better use of
the network, because individual applications are allocated in fewer servers, and
the upper-tier switches are used less). Using optimization we are able to improve
both figures and, therefore, the total power required by the data center.
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Table 3. Number of active servers in the data center used by the different VM place-
ment strategies

First fit Round Robin
Pmin Pactive Pactive-Pmin Pdif Pactive Pactive-Pmin Pdif

High
WO

1311
1461.20 150.20

33.40
1601.80 290.80

17.60
O 1427.80 116.80 1584.20 273.20

Medium
WO

871
988.20 117.20

22.00
1193.80 322.80

36.40
O 966.20 95.20 1157.40 286.40

Low
WO

429
492.00 63.00

9.40
605.20 176.20

21.20
O 482.40 53.40 584.00 155.00

Table 4. Energy consumption (in Watts) of physical servers and switches. O* values
represent the energy savings with respect to the WO approach.

First fit Round Robin
Eserver Eswitch Etotal Eserver Eswitch Etotal

High
WO 287532.5 30359.4 317891.9 307835.8 24397.9 332233.7

O* 4858.7 1322.8 6181.5 2547.7 1412.9 3960.6

Medium
WO 199533.5 22097.8 221631.2 229187.8 17927.0 247114.8

O* 3193.2 651.4 3844.6 5256.8 1587.5 6844.4

Low
WO 108183.5 13317.1 121500.6 124508.5 10942.6 135451.1

O* 1385.8 325.6 1711.5 3010.6 913.9 3924.5

7 Conclusions and Future Work

Throughout this paper we have demonstrated that a IaaS provider can improve
the VM placement policy in use by applying an optimization strategy, with
benefits not only for the provider but also for the user. And this optimization
can be done at a negligible cost: it is applied when allocating a new application,
and it takes a few seconds. Benefits for the provider are measured in terms of used
servers and switches, and immediately translate into power demands (resulting
in a greener use of the data center). Benefits for the applications are achieved
by reducing communication latencies.

This work can be improved in several aspects. One of them is taking into
account that providers usually over-subscribe resources: users rarely exploit the
100% of the assigned resources (including cores, memory, network bandwidth,
etc.) Therefore it is common practice to assign to a server “extra” slots. This
practice rarely affects the QoS perceived by users, although it has to be carefully
monitored in the rare event aggregated actual demands exceed server capac-
ity. VM migration is the common solution to this problem, but it does not
come for free: it affects QoS and network utilization. We plan to introduce over-
subscription and VM migration in our models and experiments.
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The elastic capacity of cloud environments allows the applications to dynam-
ically scale the acquired resources (the number of VMs in horizontal scaling)
depending on the input workload. Thus, the number of VMs will vary with time
and the infrastructure provider should be able to optimize not only the initial
placement, but also the addition of new VMs. We plan to adapt our proposal to
deal with auto-scalable applications.
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