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Abstract. Multiobjective optimization seeks simultaneous minimiza-
tion of multiple scalar functions on R

n. Unless weighted sums are made to
replace the vector functions arising thus, such an optimization requires
some partial- or quasi-ordering of points in the search space based on
comparisons between the values attained by the functions to be opti-
mized at those points. Many such orders can be defined, and search-
based (mainly heuristic) optimization algorithms make use of such orders
implicitly or explicitly for refining and accelerating search. In this work,
such relations are studied by modeling them as graphs. Information
apparent in the structure of such graphs is studied in the form of degree
distribution. It is found that when the objective dimension grows, the
degree distribution tends to follow a power-law. This can be a new begin-
ning in the study of escalation of hardness of problems with dimension,
as also a basis for designing new heuristics.

1 Introduction

Multiobjective optimization requires various nontrivial choices of the algorithm
designer as well as solution deployer. Acceptable solution criteria themselves
are subject to complicated choices affecting many other decisions down the
line. Design of evolutionary algorithms for multiobjective optimization involves
choosing the search heuristic, designing appropriate representation, designing
appropriate variation operators, defining ordering relations, designing selection
strategies, and possibly designing adaptation among one or several of all these
parameters. Because of the complexity of these choices and designs, and because
slight variations in them can produce widely varying behaviours and perfor-
mances, analysing problem hardness or even defining a problem hardness notion
that is not dependent on the semantics and the intuition behind algorithm
designs has been a vexatious exercise. We argue here that making the geomet-
ric intuition that usually underlies algorithm designs also the basis of analysing
problem structure will go a long way in the prediction of problem hardness with
respect to specific design primitives in algorithms. For this purpose, studying the
partial orders induced by the geometry of problems, and applying probability
measure theory, can be a starting point.
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1.1 Moraglio et al.’s Geometric View of Variation Operators

Moraglio et al., in a series of works (e.g.[4],[3],[6]) have investigated and estab-
lished a geometric-topological view of the search performed by evolutionary
and other population-based heuristic algorithms. They unify the heuristic ideas
behind the varied designs of variation (mutation and crossover) operators, and
demonstrate that (most) evolutionary algorithms perform convex search, convex
in the geometry induced by the neighbourhood structure and metric imposed on
the search space by the algorithms’ operators.

1.2 A Similar View for Selection Operators

In order to combine such a unified and powerful framework with analyses of
problems so that a composite theory of evolutionary computation (of algorithms
and problems) can be developed, we propose to use probability measure theory
on the spaces of partial- and quasi-order relations that are imposed by the com-
parison operators and used by the selection operators of evolutionary and other
heuristic algorithms. We unify the discrete nature of computed sequences and
orders of sampled search points with probability measure theory on the most
general continuous search spaces using simple graph models.

The rest of the paper is organized as follows. In Section 2 the basic definitions
and their motivation are discussed. Subsequent Section 3 develops elementary
tools of analysis of problem structure, especially from probability theory. Section
4 follows up on this development to make a conjecture, which is substantiated
by computational experiments described in Section 5. Conclusions (in Section
6) sum up the paper.

1.3 Discovery of the Power Law

Power law distributions (see Clauset et al.[1]) arise in many natural as well as
social mass processes, such as the World Wide Web. Among other things, a power
law distribution over degrees in a graph indicate a certain scale-freeness[5]. Below
(Section 5) we provide evidence that initial populations for optimization prob-
lems of many objectives tend to have a power-law distribution over the counts
of points dominated by each point, indicating that variation and selection oper-
ators that depend on dominance relationships among individuals in the popula-
tion (e.g. tournament selection) will not be able to distinguish between different
solutions and identify niche areas. We investigated only the initial population
genrated by uniform random sampling, but it opens up a new way of examining
the properties of graphs arising in an optimization by heuristic search process
induced by the dominance relationships and following various generative distri-
butions, thereby providing useful information about the hardness of a problem
or about tunability of algorithm performance.



Objective Dimension and Problem Structure 641

2 The Structure of the Explored Search Space

Heuristic (including evolutionary) as well as classical (Newton-like) algorithms
explore the search space in an iterative manner: beginning with some initial set
of points, they try to figure out, in either geometric, or algebraic, or analytical
manner, the next set of points which potentially may be better in the previous
set. Similar to the geometric-topological view of Moraglio et al. we here look at
the informative structure contained in the explored set of points (either the set
under consideration in one iteration or all the points explored till some iteration)
by examining the structure of the (transitive) graph that represents the transitive
partial order on these points obtained by a strict dominance relation.

2.1 The Search Space

For simplicity, we take a closed bounded Euclidean space X � R
n, n ≥ 1 as the

search space, and a bounded continuous function f : X �→ R
m,m ≥ 1 as the

multiobjective optimization (minimization) problem. We call f(X) the objective
space.

2.2 The Partial Order

The partial order we consider is ≺� X × X : x ≺ y ⇔ fi(x) < fi(y), i ∈
{1, 2, . . . ,m}. It is obvious that ≺ is a transitive, irreflexive, antisymmetric rela-
tion. The transitivity is important to our analysis, in a practical way: it ren-
ders making graphs and computing their properties easier. However, it does
not take away much of generality: the usual dominance relation that is used
extensively in EC literature x � y ⇔ (∀i ∈ {1, 2, . . . ,m}fi(x) ≤ fi(y)) ∧ (∃i ∈
{1, 2, . . . ,m}fi(x) < fi(y)) considers for any given x additionally (to our ≺)
only a null set of points y, x � y that has measure 0 as long as the measure is
absolutely continuous with respect to the Lebesgue measure. Moreover, in prac-
tical floating-point calculations, strict equality comparison does not yield more
accurate resutls; it can be counterproductive on the contrary.

2.3 The Graph

We consider the simple directed acyclic graph G = (V,E), for V ⊂ X, |V |< ∞,
induced by the ≺ relation: ∀x �= y ∈ V, (x, y) ∈ E ⇔ x ≺ y. There are no
self loops in G because ≺ is irreflexive. G is transitively closed. Such a graph is
depicted in figure 1, in which the points are numbered. Thus, in the figure,

1 ≺ 5, 1 ≺ 6; 2 ≺ 7, 2 ≺ 8 ≺ 12 ≺ 15; 3 ≺ 9 ≺ 13, 3 ≺ 10 ≺ 14; 4 ≺ 10 ≺ 14, 4 ≺ 11.

Inset is a possible scenario in a 2-D objective space that can give rise to this
graph partially.
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Fig. 1. A Transitive Graph induced by ≺

2.4 The Properties of ≺ and G Relevant to the Search Space
Structure

Any EA (or, many other population-based heuristics too) will make decisions
(viz. parental selection, survival selection, variation operators’ specific geometry)
based on some dominance relationships among the set of points under considera-
tion in one iteration (e.g. a population in a generation in an EA run). “Differen-
tiation” among the population in objective space is a major theme in EA design
and performance, as also nearness or similarity between points in the search
space. “Locating the pareto-optimal front” means identifying the nearness crite-
ria among the population that lead to differentiation (towards more dominance)
of similar or near points from the rest of the search space. For differentiation,
one of the criteria used is the “hypervolume”, or a rough estimate of the mea-
sure ν≺(x) = ν(Hx = {y ∈ X : x ≺ y}) of points Hx dominated by each point x
where ν is some volumetric measure, usually taken to be the usual Euclidean vol-
ume (Lebesgue measure). Although densities in the search and objective space
can be quite different, though related, and can be nonuniform throughout the
objective space, the main technique used is taking a reference point in R

m, not
necessarily in f(X), and take the Euclidean volume (the Lebesgue measure) of
the hypercube defined by the two corners, one the image f(x) of the point x,
and the other the reference point, as the hypervolume hyp(x) dominated by x.
It is obvious that the ≺ relation respects hypervolumes (for a suitable reference
point not in the interior of the objective space):

Hx � Hy ⇔ x ≺ y ⇒ hyp(x) > hyp(y). (1)

However, we must also take into consideration the fact that algorithms in
practice tend to calculate hypervolumes in the objective space. Densities in
search and objective spaces can be quite different. We need to take up the ques-
tion of the relation between the graph G and hypervolumes as calculated by
the existing algorithms. Observe that hypervolumes are computed using a refer-
ence point in such a way that the putatively dominated sets contain the actual
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dominated sets, most often properly. The reference point itself must be dom-
inated by every point that dominates anything else in f(X). In other words,
the reference point must be well-nigh “high above and outside” the objective
space f(X). This makes hypervolume calculations easier. Therefore, in this set-
ting ∀x ∈ X, hyp(x) ≥ ν(Hx) where ν is the Lebesgue measure normalized over
the search space. Still, because inclusion is equivalent to ≺ relation for the dom-
inated sets, and the reference point does not change that inclusion in the first
part of (1), the implication in its second part must hold too. Now we can take
the ≺ relation and its induced graph to represent information that practical
heuristic algorithms in EC use for decisions, whether based on ranking or order-
ing, or based on hypervolumes. For maintaining rigour, however, we confine the
discussion to the actual measures of dominated sets.

From the foregoing, it is clear that the hypervolume dominated by a given
graph G induced by ≺ over f over X, is the total hypervolume (of a union
discounting intersections) dominated by the nondominated points, or the vertices
of G that have indegree 0. Such points are easily identified by a depth-first (DFS)
traversal of G, that follows a directed path in the graph until a potential cycle
or a dead-end is visited, restarting at unvisited vertices and down unexplored
paths. Such a traversal results in a set of (possibly several, disjoint) tree, in which
cycle-forming edges are omitted, and intersecting paths are explored short of the
intersecting edge. This set is called a DFS-forest. The nondominated points in
a given V of G = (V,E) will be the roots of the trees in this forest. In figure
1, vertices 1,2,3,4 are the roots of DFS trees in and DFS run (regardless of the
sequence of vertices taken). If the usual order of natural numbers is taken, then
such a DFS run on this graph will yield a DFS forest that is the whole graph
except the edge (4 → 10).

Let us call the paths in G that go across two disjoint trees in this DFS-forest
as bridges. Thus in figure 1, the edge (4 → 10) is the only bridge. If there are
too many bridges in G itself, then the sets dominated by the nondominated
points are also intersecting too often. When the bridges are near the roots of the
DFS-forest trees, the intersection sets are large too. It can be seen now that the
more the disjoint paths in G, the closer (from below) is the total hypervolume
dominated by G to the simple sum of the hypervolumes dominated by the non-
dominated points, because there will be fewer and smaller intersections among
the dominated sets. Of course, there is the possibility that the chosen V is such
that intersections among the dominated sets are not reflected in the intersecting
paths. How is V to be chosen such that this probability is negligible? We address
this question in Section 3.

3 Choosing V to Minimize Intersection Without Bridges

The simplest scheme to choose V so that there is a fair correspondence between
the number of bridges and intersections of dominated sets is to choose it uni-
formly randomly. Our next simple proposition tells that the proportion of vertices
in V sampled uniformly from any closed connected set of nonzero measure in X

is sharply concentrated around its measure by the uniform probability measure.
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Proposition 1. Let X ⊂ R
n be a bounded measurable set and ν be the Lebesgue

measure normalized on and restricted to X, such that ν(X) = 1. If V is sampled
uniformly at random from X, with |V |= q < ∞, then for Y ⊂ X Borel,

P[|{v ∈ V ∩ Y }|≥ qν(Y ) + t] ≤ exp
( −t2

2(qν(Y ) + t/3)

)

and

P[|{v ∈ V ∩ Y }|≤ qν(Y ) − t] ≤ exp
( −t2

2(qν(Y ))

)
.

Proof: Observe that when sampled uniformly, |{v ∈ V ∩ Y }| is a binomial
random variable that is the sum of the Bernoulli trials over 1Y with

p = P[x ∈ Y ] = ν(Y ); P[x �∈ Y ] = 1 − p.

So E[|{v ∈ V ∩Y }|] = qp = qν(Y ). The result follows from the direct application
of Chernoff bounds. �

Let u, v ∈ V be two uniformly randomly chosen points, let ν(Hu ∩ Hv) = h
and let the number of points in V that are descendents of u, v both be denoted
by the random variable N . That means |{w ∈ V ∩ Hu ∩ Hv}|= N . Then by
Proposition 1, with |V |= q, if h �= 0, P[N = 0] ≤ e

−qh
2 . This precisely is an

upper bound on the probability of an intersection among dominated sets not
being represented by any bridge in the graph G; and this is tight (upto multi-
plicative fractional constants) by Chernoff bounds. For a large graph, this rapidly
diminishes. Hence we can conclude that

Proposition 2. When there is no bridge in G between DFS trees rooted in two
vertices u, v ∈ V , then Hu ∩ Hv = Φ, with a high probability ≥ 1 − ε, wherein
ε ↓ 0 as q ↑ ∞. �

4 Degree Distribution in a Graph with No Bridges

In each DFS tree (on the graph G obtained as in Section 3 above) containing
qr vertices, the (out-)degrees (in G) of the vertices in the tree are distributed as
follows. For each degree in {0, 1, . . . , qr − 1}, the number of vertices with that
degree diminishes as the degree rises. With degree qr − 1, there is exactly 1
vertex in the tree, and if there are no bridges, then there is exactly one vertex
of degree qr − 1 in G for each DFS tree with qr vertices. Take r ∈ [0, 1] and
qr = qr. Suppose r1, r2, . . . , rk ∈ [0, 1] are the fractions associated with all the k
DFS trees of sizes qr1 etc. in the bridgeless graph G. Then

∑
i ri = 1, and each

ri = hi ± ti
q for some small ti, where hi = ν(Hxi

), xi the root of the ith tree.
Thus

∑
i(hi ± ti

q ) = 1. By Proposition 1, the set dominated by the root xi of a
qri-tree has this bound:

P[qhi − ti < qri − 1 < qhi + ti] ≥ 1 − exp
( −t2i

2(qhi + ti/3)

)
− exp

( −t2i
2qhi

)
.
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Rearranging and simplifying the inequalities, we get

P

[
ri − 1 + ti

q
< hi < ri − 1 − ti

q

]
≥ 1 − 2 exp

( −t2i
2(qhi + ti/3)

)
.

Now, if k is large and ri not varying much, then each hi has to be small. But then
the lack of bridges means that the corresponding Hxi

are all pairwise disjoint
and cover most of the search space, which, with each hi small, is possible only
if the overwhelming majority of xi lie on the Pareto-optimal front, and their
images are as distant as possible in the objective space. This argument needs to
be made more rigorous, but we are justified here in claiming that

Conjecture 1. A bridgeless forest of a large number of trees of sizes that do not
vary much indicates that a good approximation to the Pareto-optimal front is
contained in it.

For an initial graph generated by uniform random sampling, this occurrence
is highly unlikely for large m. But for small m, this is plausible. In case of large
m, we can expect the more likely scenarios of a large variation in ri, over small or
large k, with a small or large number of bridges. Then the more the bridges, the
more uniform is the degree distribution. As the dimension m grows, the variation
in ri will be larger, k larger, and the number of bridges smaller. Trees with large
ri will be less in proportion, and vice versa. Progressively this should lead to a
situation that sees a rapid decrease in the number of trees with large size, hence
a rapid decrease in the number of vertices with large degree. One would suspect a
power-law distribution lurking here. In computational experiments on the DTLZ
suite, we found this to be the case. We take a look at those results in Section
5. Note that the discussion of the out-degree distribution carries over with little
change to in-degree distribution. Our computational results too confirm this,
though we have omitted the graphs due to space constraints here.

5 Computational Experiments and Results

For the DTLZ suite of scalable test problems[2], we generated the graphs G as
described in Section 3 above, for 30,000 points chosen uniformly randomly, for
each objective dimension 2 through 10. The degree distributions were plotted
in a log-log graph to see if power-law behaviour is apparent, which was found
to be the case. The out-degree distribution graphs for dimensions 2 and 10,
for problems DTLZ1, DTLZ2, DTLZ3, DTLZ4 are shown below (figures 2-5).
In each graph, on the x-axis is the logarithm of the out-degree counts (strictly
speaking an offset of 1 added, in order to avoid logarithm of 0), going from
100 through 104.48 for out-degree counts going from 0 to 30,000. The almost-
straight line of slope -1 except for DTLZ4 shows the power-law behaviour. The
DTLZ4 exception needs explanation, which follows in the next paragraph. It is
noteworthy that the graphs gradually take the power-law shapes as the objective
dimension grows, though we cannot show all the graphs here. The programs used
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to carry out this data generation and analysis and the generated graphs are all
available with the first author.

In their original paper describing the design of the DTLZ test problems,
Deb et al.[2] have explained the goal in the design of DTLZ4 as testing “an
MOEA’s ability to maintain a good distribution of solutions”, resulting in a
modification of DTLZ2 that allows “a dense set of solutions to exist near” the
plane of intersection of two dimensions in the objective space. This requires
good diversity in the initial population itself, and therefore the performance of
an MOEA on DTLZ4 in terms of quality of solutions depends sensitively on
many parameters chosen at the time of a run. In a product measure absolutely
continuous with the Lebesgue measure on the Euclidean space, the measure of
points in this intersection region will be null because of the mapping, but their
inverse image will be non-null. This will affect the degree distribution in a unique
way, because a dense set in the search space will be a set of mutually indifferent
points. In figure 6, the dimension 10 in-degree distribution is shown in a similar
log-log plot for DTLZ2 and DTLZ4. DTLZ4 is a variation on DTLZ2, and the
outlier in the plot for DTLZ4 (near [30,000,8]) shows the effect of the variation,
due to the dense set of solutions depicted here, seen in the right-bottom corner.

The specificity of problem structure is even more apparent in the degree-
difference graphs shown in the figures 7-10. Here the difference is out-degree
minus in-degree. The difference (-30,000 to +30,000) is plotted on the x-axis,
and the counts of points having that difference between their out- and in-degrees
are plotted on the y-axis. These are not log-log plots, and the sharp concentra-
tion around the 0 difference is very obvious for the higher dimension. What is
remarkable is that DTLZ4 has this concentration even more prominent, and in
both lower and higher dimensions.
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Fig. 2. DTLZ1, Out-degree distribution
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Fig. 3. DTLZ2, Out-degree distribution
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Fig. 4. DTLZ3, Out-degree distribution
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Fig. 5. DTLZ4, Out-degree distribution
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Fig. 6. DTLZ2 and DTLZ4, In-degree distribution
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Fig. 7. DTLZ1, Degree-difference distribution
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Fig. 9. DTLZ3, Degree-difference distribution
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Fig. 10. DTLZ4, Degree-difference distribution

6 Conclusions and Future Work

In the graphs, it is apparent that specific problem strucure becomes progressively
less important in the degree distribution as the dimension grows. The more
the generated points, say 100,000, the more the behaviour is sharply tending
towards power-law distribution as the dimension grows. This is not shown here
yet. However, even in this there is a variation seen between DTLZ1,2,3 on the
one hand and DTLZ4 on the other. This can be a starting point in separating
problem-specific and class-general features of test problems and suites.

Examining graphs arising in a similar way but on populations generated
by sampling other distributions than the uniform will be a new direction in
analysing EA behaviour. Computational experiments with existing MOEAs and
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analytical framework for a family of distributions progressively sampled by such
algorithms will open up the possibility of a new perspective on problem hardness
and algorithm performance. The insights thus obtained can be useful in tuning
algorithms by assessing the performance during a run.

This is an ongoing work, in which the present paper serves only as a proof-
of-concept. Rigorous analysis of the conditions necessary and/or sufficient for
obtaining various distributions in the degrees of the partial-order graphs is ongo-
ing, in which other aggregate properties of the graphs are also being considered.
For various orders, generated under various conditions such as adaptive or fixed
sampling distributions for choosing points, which aggregate properties are pre-
served will be an interesting question for investigation. Combining this direction
of work with Moraglio et al.’s work on algorithms ought to be the main goal in
the long run.
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