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Abstract. The paper concerns the use of Extremal Optimization (EO)
technique in dynamic load balancing for optimized execution of dis-
tributed programs. EO approach is used to periodically detect the best
candidates for task migration leading to balanced execution. To improve
the quality of load balancing and decrease time complexity of the algo-
rithms, we have improved EO by a local search of the best computing
node to receive migrating tasks. The improved guided EO algorithm
assumes a two-step stochastic selection based on two separate fitness
functions. The functions are based on specific program models which
estimate relations between the programs and the executive hardware.
The proposed load balancing algorithm is compared against a standard
EO-based algorithm with random placement of migrated tasks and a
classic genetic algorithm. The algorithm is assessed by experiments with
simulated load balancing of distributed program graphs and analysis of
the outcome of the discussed approaches.

Keywords: Distributed program design · Extremal optimization · Load
balancing

1 Introduction

The paper presents Extremal Optimization (EO) [1] based load balancing algo-
rithm for distributed systems. The proposed algorithm is composed of iterative
optimization phases which improve program task placement on processors to
determine the possibly best balance of computational loads and to define peri-
odic migration of tasks. The EO algorithm discovers the candidate tasks for
migration based on a special quality model including the computation and com-
munication parameters of parallel tasks. The paper presents an improved load
balancing algorithm comparing the algorithm given in [2], which was based on
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classical Extremal Optimization approach. In the classical EO the fully ran-
dom selection of a new improved partial solution in the neighbourhood of the
solution being modified is done. The fully random selection has been consid-
ered unsatisfactory, since for a big number of executive processors a degradation
of the quality of obtained result (the parallel speedup of the applications) was
observed. Therefore, we have improved the applied EO algorithm by a replace-
ment of the fully random selection of the target computing node in migration by
the stochastic selection performed with the guidance by some knowledge of the
problem properties. The guidance is based on a formula which estimates how
a migrated task matches the given processor in respect to the global computa-
tional and communicational balance in the system. It should be stressed that we
have maintained the nature-inspired solution improvement but done in the way
which speeds up the convergence of the algorithm. As a result we have obtained
a correct behavior of the algorithm when the cardinality of processor set in the
system increases.

The algorithm is assessed by experiments with simulated load balancing of
distributed program graphs. In particular, the experiments compare three algo-
rithms: the proposed load balancing method including the EO with a guided
stochastic selection of the improved solution, an EO with fully random selection
of the improved solution and a genetic algorithm (GA). The comparison shows
that the quality of load balancing with the guided EO is in most cases better
than with fully random selection and with the GA.

The paper is organized as follows. In Section 2 the related works in load
balancing based on nature inspired algorithms are reported. In Section 3 the
EO principles are shortly explained, and the EO with guided state changes is
introduced. Section 4 describes the theoretical foundations for the discussed algo-
rithm, explains how the EO is applied to the dynamic processor load balancing.
In Section 5 the experiments which assess the proposed algorithms are presented.

2 Related Works

A huge quantity of papers exist in literature dealing with dynamic load balancing
in parallel and distributed systems. Good reviews and classifications of classic
load balancing methods are presented in [3–6].

Genetic algorithms have been the first nature–inspired optimization method
to be used with reference to this issue. Munetomo et al. [7] are among the
first to present a genetic algorithm for stochastic environments and show its
application to dynamic load balancing in distributed systems. Zomaya and Teh
[8] investigate how a genetic algorithm can be employed to solve the dynamic
load balancing problem. To address the problem of dynamic load balancing in
a processing pool, Uyar and Harmanci [9] apply an improved genetic algorithm
called damGA (diploidy-aging-meiosis Genetic Algorithm). Very recently, Lin
and Deung [10] face dynamic load balancing in cloud-based multimedia system
using a genetic algorithm. More recently, other nature–inspired optimization
methods have been investigated for dynamic load balancing, including Particle
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Swarm Optimization (PSO). A good review of several such methods can be found
in a very recent paper [11].

At the best of our knowledge, no other authors have attempted to use EO for
dynamic load balancing. We feel, instead, that EO has all the desired features
useful to efficiently tackling this problem. Firstly, EO is perfectly suited to face
combinatorial optimization problems where solutions are represented by integer
values. Secondly, evaluating each component of a solution on its own and chang-
ing a bad component only, rather than the whole solution, is highly desirable
when an incremental improvement is necessary. GA or PSO would modify the
solution as a whole, possibly destroying good issues too. So, the proposed app-
roach has clear originality features and enables making profit of EO advantages
such as low computational complexity and limited use of memory space.

3 Extremal Optimization Algorithm Principles

Extremal Optimization was proposed by Boettcher and Percus [1], following the
Bak–Sneppen approach of self–organized dynamic criticality [12]. It represents
a method for NP–hard combinatorial and physical optimization problems. EO
is based on improvements of a single solution S consisting of a given number of
components si, called species. Each component is a variable of the problem. A
local fitness value is assigned to each component. At each time step, S is evolved
by randomly updating the worst variable only in respect to φi, to a solution
S′ belonging to its neighbourhood Neigh(S). After each update, a global fitness
Φ(S) is computed and the modified solution S′ is registered if its global fitness
is better than that of the best solution found so far.

We apply a probabilistic version of EO based on a parameter τ , i.e., τ–EO,
introduced by Boettcher and Percus, which prevents the solutions from staying
in a local optimum. For a minimization problem, the components are first ranked
in the increasing order of local fitness values. Then, a distribution probability k
over ranks is considered as follows: pk ∼ k−τ , 1 ≤ k ≤ |S| for a given value of τ .
At each update of S, a rank k is selected according to pk so that the species si

with i = π(k) randomly changes its state and the solution moves unconditionally
to S′ ∈ Neigh(S).

3.1 Extremal Optimization With Guided State Changes

During our experimental research on load balancing of distributed applications,
reported in [2], we have revealed that EO is able to provide the best results for
almost all combinations of system and application parameters.

However, we have noticed that, when the number of neighbour states of
rank k increases (i.e. the number of processors is higher), the algorithm starts
struggling with the problem of too many possible moves. The probability of
“good” state change decreases. To alleviate this problem we incorporate more
problem-specific information into the algorithm. It is implemented as a local tar-
get function ωs, which is computed for all neighbours Neigh(S) of rank k. Then
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Algorithm 1. τ–EO algorithm with Guided State Changes (EO–GS)
initialize configuration S at will
Sbest ← S
while total number of iterations Niter not reached do

evaluate φi for each variable si of the current solution S
rank the variables si based on their fitness φi

choose the rank k according to k−τ so that the variable sj with j = π(k) is selected
evaluate ωs for each neighbour s′ ∈ Neigh(S), generated by sj change
rank neighbours s′ ∈ Neigh(S) based on the value of target function ωs

choose S′ ∈ Neigh(S) according to the exponential distribution Exp(λ)
accept S ← S′ unconditionally
if Φ(S) < Φ(Sbest) then

Sbest ← S
end if

end while
return Sbest and Φ(Sbest)

the neighbours are sorted according to the increasing value of ωs. The new state
S′ ∈ Neigh(S) is selected randomly using the exponential distribution Exp(λ)
over the sorted neighbours Neigh(S). Thus, the stochastic local search towards
“better” neighbours (according to the value of ωs) is performed. The bias to the
“better” values is controlled by the λ parameter of the exponential distribution.
The scheme of the Extremal Optimization with Guided State Changes (EO–GS)
is shown in Algorithm 1.

4 Load Balancing Based on Extremal Optimization

The proposed load balancing algorithm is meant for distributed application pro-
grams composed of T indivisible tasks which are threads (single-thread processes).
Each task is composed of sequences of computational instructions (blocks)
separated by communication instructions with other tasks.

We assume a centralized program execution environment which means that
the executive system works under control of some load balancing infrastructure
responsible for organizing optimized execution of programs. The executive sys-
tem is a cluster of N processor aka computational nodes interconnected by a
message passing network.

Our load balancing problem is formally defined in the following way: during
program execution dynamically map each task tk, k ∈ {1 . . . |T |} of the program
to a computational node n, n ∈ [0, N − 1] in such a way that the total program
execution time is minimized, assuming the program and system definition as
stated earlier in this section. Dynamic task mapping to computational nodes
can change during program execution by means of task migration.

The load balancing method proposed in the paper, consists in execution of
a series of indivisible pairs of two main steps: the detection and the correction
of processor load imbalance. The load imbalance detection step employs some
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measurement infrastructure to monitor the states of the executive system and
the application program relevant for the detection of system load imbalance. In
parallel with the execution of an application program, computing nodes period-
ically report their loads to a load balancing monitor which evaluates the current
system load imbalance value. Depending on this value, the second step (i.e. the
imbalance correction) is done or step one is repeated. In the second step, we
execute the EO-based algorithm described in next sections, which determines
the set of tasks for migration and the migration target nodes. Based on that,
the physical task migrations are executed and the algorithm goes to step one.

4.1 Detection of Load Imbalance

Two parameters are used to evaluate the state of the system:
Indpower (n) – computing power of a processor node n, which is the sum of nom-
inal computing powers of all cores on the node, in MIPS, MFLOPS or similar,
Time%CPU(n) – the current CPU time availability i.e. percentage of the CPU
computing power currently available for application threads on the node n, peri-
odically estimated by load observation agents on computing nodes.

A load imbalance LI (a boolean) is defined based on the difference of the
current CPU time availability between the most heavily and the least heavily
loaded computing nodes:

LI = max
n∈P

(Time%CPU(n)) − min
n∈P

(Time%CPU(n)) ≥ α

where P is the set of all computing nodes. The detection of load imbalance equal
true requires a load correction. α is determined using an experimental approach
(in our experiments we have set it between 25% and 75%).

4.2 Correction of Load Imbalance

The application is characterized by two metrics, which should be provided by a
programmer based on the volume of computations and communications in tasks:

1. COM(ts, td) is the communication metrics for a pair of tasks ts and td,
2. WP(t) is the load weight metrics introduced by a task t.

COM(ts, td) and WP(t) metrics can constitute exact values, e.g. for well-defined
tasks sizes and inter-task communication in regular parallel applications, or only
some predictions, e.g. when the computation depends on the processed data as
in irregular parallel applications.

A task mapping solution S is represented by a vector μ = (μ1, . . . , μ|T |) of
|T | integers from the interval [0, N − 1], where the value μi = j means that the
solution S under consideration maps the i–th task ti of the application onto the
computing node j.

The global fitness function Φ(S) is defined as

Φ(S) = attrExtTotal(S) ∗ Δ1 + migration(S) ∗ Δ2+
+imbalance(S) ∗ [1 − (Δ1 + Δ2)]

(1)
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where Δ1,Δ2 parameters control the weight of components of the global fitness,
1 > Δ1 ≥ 0, 1 > Δ2 ≥ 0 and Δ1+Δ2 < 1. The function attrExtTotal(S) ∈ {0, 1}
represents the impact of the total external communication between tasks on the
quality of a given mapping S. The function migration(S) ∈ {0, 1} is a migration
costs metrics. It is equal to 0 when there is no migration, when all tasks have to
be migrated migration(S) = 1. The function imbalance(S) ∈ {0, 1} represents
the numerical load imbalance metrics in the solution S. It is equal to 1 when
there exists at least one unloaded computing node, otherwise it is equal to the
normalized average absolute load deviation of tasks in S.

The local fitness function of a task φ(t) is designed in such a way that it
forces moving tasks away from overloaded nodes, at the same time preserving
low external (inter-node) communication. The γ parameter (0 < γ < 1) allows
tuning the weight of load metrics.

φ(t) = γ ∗ load(μt) + (1 − γ) ∗ rank(t) (2)

The function load(n) indicates whether the node n, which executes t, is over-
loaded (i.e. it indicates how much its load exceeds the average load of all nodes).
The rank(t) function governs the selection of best candidates for migration. The
chance for migration have tasks, which show low communication with their cur-
rent node (attraction) and low load deviation from the average load. The load
balancing parameters mentioned above are explained in full details in [2].

4.3 Guided Target Node Selection for State Changes

In the standard EO algorithm (see [2]), any neighboring state could be selected
randomly using the uniform probability distribution. The idea of a guided state
changes is based on some “biased” random selection, to enable preferring some
neighbors over others. At each update of rank k, nodes n ∈ N are sorted accord-
ing to ω(n1, n2) function and one of them is selected using the exponential dis-
tribution Exp(λ). The bias to the “better” values, i.e. lower values of ω(n1, n2)
in our case, is controlled by the λ parameter of the exponential distribution.

A “biased” random selection uses formula similar to those used for the local
fitness calculation to qualify the computing nodes for migration of task j:

ω(n1, n2) =
{
relload(n1) − relload(n2) if relload(n1) �= relload(n2)
attrext(j, n2) − attrext(j, n1) otherwise

where:

attrext(j, n) =
∑

e∈T (n)

(COM(e, j) + COM(j, e)), normalized vs. max
e∈N

(attrext(j, e))

relload(n) =
loaddev(n) − minm∈[0,N−1] loaddev(m)

maxm∈[0,N−1] loaddev(m) − minm∈[0,N−1] loaddev(m)

loaddev(n) = NWP(S, n)/Indpower (n) − WP
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and T (n) = {t ∈ T : μt = n} — the set of threads, placed on node n,
NWP(S, n) =

∑
t∈T :μt=n WP(t), WP =

∑
t∈T WP(t)/

∑
n∈[0,N−1] Indpower (n).

When ω(n1, n2) has a low value, the computational load of node n1 is lower
than that of node n2 or the task j has stronger attraction to node n1. This is
the preferred target of migration. High values of ω(n1, n2) indicate overloading
of node n1 or no communication to this node from task j.

5 Experimental Results

We describe below experimental results obtained by simulated execution of appli-
cation programs with the proposed method of load balancing in a distributed
system. The assumed program parallelization model corresponds to paralleliza-
tion based on message-passing, using the MPI library for communication. The
experiments were run in a simulated cluster of multi–core processors. Each pro-
cessor had its own main memory and a network interface. At the level of the
network interfaces data transfers and communication contention were modeled.

In the experiments, a set of 10 randomly generated synthetic exemplary
programs was used. Their general structures were phase-like, in which they
resembled MPI-based parallel programs which corresponded to numerical com-
putations or simulations of physical phenomena. The programs were represented
as a set of phases (see Fig 1), each composed of parallel tasks (threads). Tasks
of the same phase could communicate. At the boundaries between phases there
was a global exchange of data which corresponded to external communication
between processes. Application programs contained from about 60 to 550 tasks.
Their communication/computation ratio C/E was in the range [0.05, 0.20].

Based on the time properties of tasks two types of applications were dis-
tinguished: regular and irregular. Regular applications had fixed task execution
times. Irregular applications had the execution time of tasks depending on the
processed data. They showed unpredictable both execution times of tasks and
the communication schemes. With irregular tasks, system load imbalance could

Fig. 1. The general structure of exemplary applications
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occur even without variations in computing nodes availability. With regular
applications system load imbalance could occur due to the suboptimal placement
of tasks on processors or when runtime conditions had changed. The properties
of the proposed load balancing algorithm for both types of applications were
comparatively examined.

For comparison purposes, the same simulated parallel environment and the
set of graphs were used. We compared EO and EO–GS to genetic algorithm
(GA) which used the same global fitness function. GA used binary-encoded
chromosomes, in which an allele at position i was the processor number of the
task i. Two genetic operators were used: single-point crossover and mutation.
The selection was based on roulette-wheel scheme. We used the following GA
parameters: the size of population – 50, the probability of mutation – 0.015,
the probability of crossover – 0.25, the number of iterations – 500. Half of the
chromosomes of the initial population was generated randomly, the second half
was initialized through cloning of the current placement of application tasks.

5.1 Performance of the Presented Algorithms

In the first series of experiments, load-balanced execution of phase-like appli-
cations was studied in systems containing from 2 to 32 homogeneous proces-
sor nodes. The following parameters for load balancing control were used: α =
0.5,Δ1 = 0.25,Δ2 = 0.25, γ = 0.5, τ = 1.5, for EO–GS λ = 1.0. The number of
iterations for EO and EO–GS was set to 500. The results correspond to aver-
ages of 5 runs of each application. For each run 4 different methods of initial
task placements (random, round-robin, METIS, packed) were tested. METIS is
a graph partitioning optimization software [13]. The packed method consists in
round-robin mapping of equal groups of tasks. In total, 20 runs were executed
for each parameter set to produce an averaged result.

The speedup of both EO–based algorithms and the genetic algorithm as a
function of the number of processors is shown in Fig. 2. For regular applica-
tions (upper curves) the speedup improvement due to EO–based algorithms is
generally bigger (not worse or better) than that of GA. Our exemplary irregular
applications (lower curves) give smaller speedup than regular ones (with or with-
out load balancing) what is an expected result, since parallel execution of such
applications is less efficient. However, for irregular applications the EO-GS algo-
rithm is generally the best comparing all the others. It should be stressed that
EO-GS gives much better results than EO and GA especially for a bigger num-
ber of processors. It is due to completely random placement of migrated tasks
on processors in EO and GA, not supported by any knowledge of the system
and program state. EO-GS uses a more thorough migration target selection.

Since migration costs can be very different (a single migration can be as short
as a simple task activation message, but also it can involve a transfer of the pro-
cessed data, which is usually very costly), we decided to keep the generality of our
experiment results and to approximate the imposed load balancing costs by the
number of task migrations, Fig. 3. The number of migrations is decidedly higher
for irregular applications (upper curves). The average cost imposed by EO–GS
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algorithm is generally lower than the cost introduced by other approaches. For
irregular applications the migration number with EO-GS is lower than with the
EO and GA. For regular applications the number of task migrations in both EO-
based algorithms is almost halved comparing GA. Experiments revealed that the
GA approach can not work out an efficient migration decision for irregular appli-
cations run on bigger number of processor, thus we notice sudden drop in the
GA (irg) curves both in Fig. 2 and 3.

To generalize comparisons of performance of the discussed load balancing algo-
rithms, we have computed the average speedup improvement of the considered

Fig. 2. Speedup for different number of nodes for tested algorithms

Fig. 3. Cost of the dynamic load balancing as the number of task migrations per single
execution of an application
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Fig. 4. Average speedup improvement for different algorithms due to load balancing

Fig. 5. Comparison of speedup obtained by different algorithms and METIS initial
task placement

algorithms over execution without load balancing. The speedup improvement is
calculated as Sb/Su − 1, where Sb is the speedup obtained when load balanc-
ing algorithm is active, Su is the speedup of the unbalanced execution. The best
speedup improvement over the unbalanced execution for both irregular and reg-
ular applications is provided by EO–GS algorithm (see Fig. 4).

To justify the quality of the results, we have compared the speedup obtained
for dynamic load balancing using the analysed algorithms to the speedup based
on static task placement obtained by METIS graph partitioning algorithm. To do
so, we executed regular and irregular applications with initial task placement
by METIS and the same applications starting from imbalanced, random initial
placement with the dynamic load balancing switched on. For regular applications
the improvement due to load balancing with static initial METIS placement is
small (in the range 12% – 16%, see Fig. 5). The improvement indicates that the
compared algorithms are able to work out profitable migration decisions even



Improving Extremal Optimization in Load Balancing by Local Search 61

Fig. 6. Average application speedup and migration number (load balancing cost) for
different values of EO–GS parameters as a function of λ

after METIS initial optimisation of regular applications, resulting in their bal-
anced execution. For irregular applications METIS initial optimisation is not
sufficient for efficient balanced execution up to the end of their task sets. For
irregular applications speedup improvement after METIS initialisation due to
dynamic load balancing is on average several times higher than for regular appli-
cations. We can see that the EO–GS algorithm gives here the best results, better
than other studied algorithms by 15%.

5.2 The Algorithm Parameter Setting

The influence of the setting of λ parameter on overall performance of EO–GS
algorithm is shown in Fig. 6 (EO denotes here the results for the standard EO
algorithm). Increasing value of λ results in a noticeable increase of the speedup
for irregular applications, at the same time reducing the cost of load balancing
(i.e. the number of migrations). Although the cost initially decreases slowly,
for λ = 0.5 or more is much smaller than in the standard EO algorithm. For
regular applications λ has almost no impact on the average speedup (there is a
slight increase) and slightly reduces the number of migrations. Note that regular
applications show already high speedup for standard EO, thus improvement is
possible only through reduction of the number of migrations. For both types of
graphs increasing λ above 1.0 has no longer a significant effect on the results.

6 Conclusions

The paper has presented the dynamic load balancing in distributed systems
based on application of the Extremal Optimization approach. The proposed load
balancing algorithm is an improved version of the classic Extremal Optimization,
in which we replaced the completely random computing node selection by the
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stochastic selection where node selection probability is guided by some knowledge
of the problem. Our approach proved to be an efficient method for load balancing,
distinguished by low computational complexity and limited use of memory space.

The proposed algorithm has been assessed by experiments with simulated
load balancing of distributed program graphs. In particular, the experiments
compare load balancing with EO with guided search against the classic EO and
genetic algorithm based on equivalent theoretical foundations. The comparison
shows that the quality of the improved EO-based load balancing outperforms in
most cases that with classical EO and the genetic algorithm.
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