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Abstract. In this paper, we describe a method for recognizing objects
in the form of point clouds acquired with a laser scanner. This method is
fully implemented on GPU and uses bio-inspired metaheuristics, namely
PSO or DE, to evolve the rigid transformation that best aligns some
references extracted from a dataset to the target point cloud. We compare
the performance of our method with an established method based on
Fast Point Feature Histograms (FPFH). The results prove that FPFH is
more reliable under simple and controlled situations, but PSO and DE
are more robust with respect to common problems as noise or occlusions.
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1 Introduction

The recent spread of 3D sensors has strongly increased the number of systems
that operate on 3D data to perform operations like motion planning, human-
robot interaction, manipulation and grasping.

In this paper, we consider a system which is part of an architecture whose
goal is to help users program robotic tasks. To reach this goal, a sub-system
for object recognition is required (see Figure 1). It receives input data from a
high-resolution planar laser scanner mounted on the wrist of a six degrees of
freedom robot arm. The estimated accuracy of the whole measurement chain is
about 1.5 cm, the main sources of error being the variable remission of objects
and the angle of incidence of the laser. Data undergo several preprocessing steps
to refine the acquisition and are then passed to the FPFH (Fast Point Feature
Histograms) based recognizer, along with a list of models stored in a database.
The output of the recognizer indicates which objects are present in the scene and
in which pose. A thorough description of a preliminary version of this system
can be found in [12].

In [18] we have shown that bio-inspired metaheuristics like Particle Swarm
Optimization (PSO) [5] or Differential Evolution (DE) [17] can successfully per-
form object recognition and registration.

The main goal of this paper is to present an implementation of the method
proposed in [18] to solve the problem of 3D point-cloud registration and recogni-
tion. We will assess its performance in several situations and compare our results
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Fig. 1. Representation of the system within which the FPFH recognizer, or the one
based on PSO as an alternative, is used

to those obtained using FPFH features. Figure 1 shows that this recognizer can
be easily embedded into the existing system.

2 Theoretical Background

In this section, we briefly describe the background of our approach to object
recognition without re-introducing PSO and DE, whose descriptions can be
found in [1] and [14], respectively.

Point Clouds

A point cloud is a set of three-dimensional points expressed within a certain
coordinate system. A point cloud can have several meanings but is usually inter-
preted as a discrete representation of the external surface of an object. It can
be generated artificially, using CAD or 3D editing tools, or by several types of
sensors, like, for instance, RGB cameras, depth cameras or laser scanners. Point
clouds are often used in object recognition and in many other problems related
to the understanding of the environment.

Point-cloud registration is a well-known problem for which many solutions
have been proposed. Approaches that inspired our work can be found in [§],
where Li et al propose a function based on a Gaussian Mixture distance map and
use PSO to optimize it; in [9], where registration of partially overlapped point
clouds is achieved by estimating their Extended Gaussian Images; and in [19]
where DE is used to register a triangular mesh to a point cloud by minimizing
their relative distance.

Model Based Object Recognition

The approach used in this work is an application of the method presented more
in depth in [18]. The general process is quite straightforward:

1. A template of the object to recognize is created off-line, defining the available
range of deformations to which it can be subject;
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2. This model is rotated and deformed during the evolutionary process in order
to match, as much as possible, a target under consideration (we used PSO
and DE, but other metaheuristics can be used);

3. The process stops when a convergence criterion (e.g. alignment reached,
time) is met.

The main goal of this work is to recognize the pose of a known object, so
the first step just consists of reading a point cloud from a database of available
models. Moreover, the model can only be subject to a rigid transformation, so the
search space is defined only by six degrees of freedom (translations and rotations
around the three axes). This means that the dimensionality of the search space
in which DE and PSO operate is six.

CUDA

Graphic Processing Units (GPUs) contain up to several thousands of cores that
can execute the same code at the same time on different data. While originally
used only in gaming and computer graphics, their use has recently spread to a
very large number of applications [13] following the GPGPU (general-purpose
computing on GPU) paradigm, within environments like CUDA or OpenCL.

CUDA (Compute Unified Distributed Architecture) [11] is a general purpose
parallel computing environment distributed by nVIDIA™ which exploits the
massively parallel computation capabilities of its GPUs. CUDA C/C++ is an
extension of the C language that allows development of GPUs routines (named
kernels), that run in parallel as a number of different CUDA threads, following
the Single Instruction Multiple Thread (SIMT) model. Each kernel is executed
on different threads, which run all the same code, but on different data. These
threads may be grouped into blocks. A block can be seen as a group of threads
that share the same information and can exploit fast, local memory instead of
using the slow, global one.

Algorithms with high arithmetic intensity, low memory requirements and few
interactions between independent threads, like evolutionary algorithms (EAs),
are very well suited for GPGPU. Therefore, in the last years, many GPU-based
implementations of EAs have been presented. The first implementations of PSO
and DE based on CUDA were developed in 2009 and 2010, respectively [2,3];
after that, several other implementations have been proposed. Two comprehen-
sive reviews regarding GPU implementations of PSO [6] and DE [7] have been
recently presented by Kromer et al.

3 FPFH

Fast Point Feature Histograms [15] (an evolution of PFH [16]) are pose-invariant
local features which represent the underlying surface model properties for all
the elements composing a point cloud. These features form a full description
of a point cloud, therefore they can be used for several tasks, like aligning a
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target to a reference (registration). These descriptors are computed for each
point of a given point cloud and are generated by comparing the normal of a
specific point with the normals of the points within a certain radius, which is a
fundamental parameter of the algorithm. For a more detailed description, please
refer to [16]. Once all descriptors of the two point clouds (target and reference)
have been computed, a particular version of the RANSAC algorithm (RANdom
SAmple Consensus) [4] is used to find a raw alignment between the clouds. This
version is called SAC-TA (SAmple Consensus - Initial Alignment) and is followed
by a second step, which attempts to refine the previous alignment, using the
Iterative Closest Point algorithm. Eventually, the two transformations found by
the algorithms are composed in order to compute the full transformation needed
to align the two clouds.

4 Evolutionary Implementation

In this section we describe the fitness function used by PSO and DE, as well
as the system’s GPU-based implementation. From now on, we will refer only to
PSO, but DE could also play exactly the same role.

4.1 Fitness Function

The fitness function used by PSO is relatively straightforward. We compare the
target cloud T to be recognized (composed of Nr points), with a reference cloud
R extracted from a database, composed of N points. This reference is subject
to a transformation M encoded by a PSO particle, to obtain R’ = M(R). The
fitness of a particle is the average of the minimum distances of each point of T
to the closest point of the roto-translated reference R’. More formally:

F(T,R') = NLT Z ;Ielifltl’ <dz’5t(p, q)>
peT
where dist() is a valid distance metric between points; in this case we selected
the squared euclidean distance.

Each point cloud is expressed within a local reference frame centered around
its centroid. A model can do a full rotation around each axis while the range of
translation is limited to 10 cm in each direction, which is good enough to satisfy
the requirements of the environment we are considering.

4.2 GPU Implementation

The entire system, including the computation of the fitness function, has been
implemented on GPU. Several implementation designs have been tested. In the
final one, two degrees of parallelism are exploited:

1. The i-th PSO particle represents a possible transformation M; of the refer-
ence R and relies on a CUDA block, so all M;s can be computed in parallel;
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Fig. 2. Scheme of the implementation of the fitness function on CUDA. Target points
are computed sequentially. The parallel implementation relies on the fact that each
point is compared (potentially) in parallel to all reference models (10 in this case),
where each of the 24 PSO particles represents a possible transformation; 512 points
are processed simultaneously for each particle.

2. Within each particle (so, within each block), each of many parallel threads
processes a limited number of points of R, by firstly computing a portion of
the transformed point cloud R’ and then comparing it with all points of T

The points of T" are actually processed sequentially, but a significant speedup
can be obtained anyway because each of them is compared at the same time to
several points of the reference cloud, and to different transformations of R. A
further level of parallelization has been tested where each particle is represented
by more blocks, and each block considers a sub-portion of T', since different
parts of the target can be computed independently. This choice was discarded
because it does not bring any speedup of the fitness function computation. This is
probably caused by the large amount of resources (especially number of threads)
needed for its computation, which prevents a full parallelization and forces the
GPU to schedule some CUDA blocks sequentially.

If the target is compared with more than one reference (for instance, to
recognize which object has been scanned), a further level of parallelism can be
added: several optimization processes can be executed in parallel using different
reference models. For the same reason explained in the previous paragraph, the
parallelism is not perfect and the difference with respect to a version in which
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all references are analyzed sequentially is not very significant. Figure 2 outlines
how the work is subdivided among CUDA blocks and threads.

The GPU-based implementation of the metaheuristics employed in this paper
has been presented in [10]'. The parallel PSO implementation is structured as
three distinct kernels: (i) the first one generates the solutions that is going to
be evaluated, (ii) the second one computes the fitness function described before,
and (iii) the last one updates the population.

5 Results

We performed the experimented tests on a PC equipped with a 64-bit Intel Core
i7 CPU running at 3.40 GHz using CUDA v. 5.0 on an nVidia GeForce GTX680
graphics card with 1536 cores working at 1.20 GHz and compute capability 3.0.

The PSO and DE parameters (unless specified otherwise) were set as in
Table 1. They have been chosen by manually generating 40 possible combina-
tions, and testing them on the problem described in the next subsection. The
configuration that gave the best average fitness was finally selected. We com-
pared DE and two PSO versions (with global and ring topologies).

Table 1. Parameters used by DE and PSO. Refer to [1] and [14] for the meaning of
the parameters

DE PSO., PSO,
Cr=20.9 ¢1 =119 ¢1=1.8
F=05 ¢2 =1.19 ¢2=0.7

Exponential Crossover w=20.5 w=0.72

Target-to-best Mutation|Ring Topology (K = 1)| Global Topology
Population Size = 24 | Population Size = 24 |Population Size = 24
Generations = 90 Generations = 90 Generations = 90

5.1 Error vs Fitness

We performed several experiments under different conditions. Firstly, we wanted
to prove that our fitness function is correct, i.e., a good fitness value actually
corresponds to a good match between the reference and the target. In these
tests (and in all the following, except the ones presented in Section 5.4), we
used the same model (a wooden mallet) as target and as reference, with random
roto-translations applied to the target. So, it was actually possible to achieve a
perfect matching if the recognition process identified the correct transformation.
We define the translation applied to the target as ¢ and the rotation as rp to
show that, the closer to (¢, rr) the transformation applied to the reference, the
better its fitness, i.e. there exists a direct correlation between error and fitness
values.

! The code is available online at http://sourceforge.net/projects/libcudaoptimize,/
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Figure 3 shows the relationship between errors in the transformation and fitness
values. Each point represents an independent repetition of the recognition task.
Its position on the graph represents the error in terms of translation (euclidean
distance between translation obtained at the end of the experiment and ¢7) and
rotation (angle between rotation computed and rr). The color is related to the
fitness value: dark colors stand for good (low, since this is a minimization problem)
fitness values and light colors represent bad values. As can be seen, the closer a
point is to the optimum (0, 0), the darker it is. Computing the correlation coefficient
between these two distances and the fitness, the results are 0.825 (translation error)
and 0.726 (rotation error) showing a significant direct relationship.
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Fig. 3. Relation between error in translation (shown on the x axis of the graph) and
rotation (on the y axis) and fitness value (color)

5.2 Time Comparison

We tested different PSO, DE and FPFH parameters (varying the number of
generations in the first two, of RANSAC and ICP iterations for the other) in
order to see how they behave within different time constraints. We set four dif-
ferent time limits: 0.7 s, 1.3 s, 2.3 s and 3.2 s. Figure 4 shows that FPFH reaches
good results very quickly, but cannot improve them any further, while meta-
heuristics use their exploitation abilities to constantly refine their results. This
is confirmed by statistical tests (Friedman test with the Dunn-Sidak correction,
p = 0.01) which show that within the first two time limits FPFH is statistically
better than the other methods considering translation and rotation errors.
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Fig. 4. Error versus processing time allowed for optimization, computed over 100 exper-
iments. Solid lines represent average values, while dotted lines represent medians.

Moreover, PSO/DE have usually a lower median and higher average when
compared to FPFH. This result (that will be confirmed in all other tests) proves
that evolutionary methods have a better ability of finding more precise solutions,
but sometimes they fall in local minima and fail completely. On the contrary,
FPFH steadily obtains good results, though worse than the ones obtained in the
successful runs of the metaheuristics.

The sequential single-thread CPU implementation of the PSO recognizer
takes an average of 60.5 s for 90 generations, which means it is 18.9 times slower
than the GPU version. If we parallelize the evolutionary process over the 8 cores
available on the CPU, the time needed is reduced to 16.4 s, so the GPU is still
5.1 times faster.

5.3 Noise and Occlusions

In this section, we simulated some situations that can hamper object recognition,
like noise and occlusions. We simulated the former by adding to each point of
T a random value from a uniform distribution (we chose ranges of 0.001, 0.002,
0.005, 0.01 m), and the latter by removing all points above a certain percentile
along a given dimension (we “occluded” 20%, 40%, 60% and 80% of the target).
Figure 5 shows that FPFH is less robust to this kind of difficulties than PSO.
Starting from an occlusion level of 60%, and for a noise range of 0.01 m, FPFH
is significantly worse than all the EA-based methods in translation and rotation
errors.

Figure 6 shows, as in Figure 3, how PSO and FPFH react to noise. Each
color represents a different value of noise added to the target. It can be seen
on the left that there is no clear difference between the different levels of noise
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Fig. 5. Variation of errors in the presence of occlusions (top) and noise (bottom) added
to the target over 100 experiments. Solid lines represents average values, while dotted
lines represents medians.

when using PSO, while, on the right, the points corresponding to different noise
levels can be easily clustered as different clouds. In particular, when the noise
is low, there is almost no difference among the solutions found but, when noise
increases, the dots are scattered over a large area.

5.4 Object Recognition

After assessing the behavior of these two methods under different conditions, we
performed some tests on a different problem: object recognition. In this case,
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Fig. 6. Errors versus noise level (color) using PSO (left) and FPFH (right) over 100
experiments for each level. The results of FPFH are more consistent, while the ones

obtained by PSO are more scattered.
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Fig. 7. Percentage of correct recognitions over 500 experiments (50 repetitions for
10 different objects) for every entry of the bar chart. Again, one can see how FPFH
performance degrades in the presence of occlusions.

the goal was not only to understand where the object was located, but also to
recognize the target object, within a set of ten reference objects: the wooden
mallet previously used, a ewer, a burner, a toy horse, a mug and five different
boxes of different shapes and sizes. We performed 50 independent tests in which
each object was used as target and compared to all the others both under nor-
mal conditions and simulating the presence of noise and occlusions. Results are

presented in Figure 7.
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6 Conclusions

We applied a method based on Particle Swarm Optimization or Differential
Evolution to recognize objects acquired with a laser scanner in the form of a
point cloud. Each PSO or DE particle encodes a possible roto-translation of
a point cloud used as reference; its optimization process tries to minimize the
squared euclidean distance between the points of the target and the reference.
We compared our method with a well-known method used for this task, FPFH.
The main conclusions can be summarized as follows:

— FPFH reaches good results in a very short time, but it is not able to further
improve them. Vice versa, the longer the time allowed to run EAs, the better
the results they obtain;

— FPFH reaches good results almost always in ideal conditions, while EAs are
able to achieve higher precision most of the times, but sometimes fail;

— EAs are more robust to noise and occlusions than FPFH.

As previously stated, PSO and DE parameters were selected among a few
manually selected alternatives. It has been largely proved that, in many tasks,
a good parameter setting can improve the performance of metaheuristics signif-
icantly. As future work, we will try to see if better performance can be achieved
by automatically selecting such parameters.

The fitness function currently implemented for PSO can work properly only
when the point cloud represents a single target. In some situations, it may be
useful to recognize and localize more than one object in the scene at the same
time. This can be obtained by moving the focus on the reference instead of focus-
ing on the target: in other words, instead of finding the pose that minimizes the
average distance of the points of the target cloud, one should find the trans-
formation that minimizes the same metric regarding the points in the reference
cloud. This will be the next step of our work.
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