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Abstract. Nowadays, wireless sensor networks (WSNs) are widely used
in more and more fields of application. However, there are some impor-
tant shortcomings which have not been solved yet in the current lit-
erature. This paper focuses on how to add relay nodes to previously
established static WSNs with the purpose of optimizing three important
factors: energy consumption, average coverage and network reliability. As
this is an NP-hard multiobjective optimization problem, we consider two
well-known genetic algorithms (NSGA-II and SPEA2) and a multiobjec-
tive approach of the variable neighborhood search algorithm (MO-VNS).
These metaheuristics are used to solve the problem from a freely available
data set, analyzing all the results obtained by considering two multiob-
jective quality indicators (hypervolume and set coverage). We conclude
that MO-VNS provides better performance on average than the standard
algorithms NSGA-II and SPEA2.
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1 Introduction

At the moment, Wireless Sensor Networks (WSNs) are one of the most emerging
wireless technologies. They are applied in many fields, such as precision agricul-
ture, industrial control, robotic, rescue operations or forest fire detection [18].

A traditional WSN is composed of a set of sensors capturing information (i.e.
physical variables), and a sink node collecting all this information [4]. There are
some important factors that encourage the use of WSNs, where for other tech-
nologies the deployment of the network would be more expensive or impossible.
Some of them are the use of power-autonomous low-cost devices and the absence
of wires. However, WSNs also have important shortcomings affecting important
factors like energy costs and Quality of Service (QoS).
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Because of sensors are often powered by batteries, WSNs are particulary
sensitive to energy expenditure. The sensors send all the information captured
to the collector node, implying an energy cost. In a star topology, this energy
consumption is similar in all the sensors. However, in a multi-hop topology is
habitual the existence of bottlenecks: some sensors are subject to a higher energy
cost. These bottlenecks adversely affect the behavior of the network. With the
aim of avoiding this situation, a new type of device specialized in communication
tasks called router or relay node was added to WSNs recently [16].

The efficient design of WSNs is defined in the literature as an NP-hard
optimization problem [22]. Consequently, non-conventional techniques are often
used, such as heuristics and metaheuristics. Heuristics are techniques designed to
solve an specific problem. Metaheuristics are procedures to solve very general
types of problems. We find two main lines of research for WSNs, works optimizing
traditional WSNs, and works adding relay nodes to traditional WSNs, the so-
called Relay node Placement Problem (RNPP). Taking the first approach, there
are some relevant contributions using heuristics. Cardei et el. [1] split WSNs into
disjoint set of sensors, deciding which must be active to optimize the network
lifetime. Cheng et al [2] assigned different power transmission levels to the sen-
sors to reduce the energy consumption. Other authors considered metaheuristics
from the Evolutionary Computation (EC) for the same purpose. In this line,
Konstantinidis and Yang assigned power transmission levels to the sensors as
in [11], but optimizing network lifetime and coverage. Hu et al. [10] maximized
the network lifetime splitting WSNs (as do [1]). However, this research line has
two main shortcomings. Firstly, it is habitual the use of redundant sensors to
maximize the network lifetime, implying costly networks. Secondly, network size
is limited because of more sensors implies a higher energy cost.

The works taking the second approach try to overcome these shortcomings
by adding routers. Beginning with heuristics, Wang et al. [22] considered routers
with processing limitations to optimize the energy cost and Han et al. [9] opti-
mized the fault-tolerance. On the other hand, other authors considered EC.
Perez et al. [19] optimized the number of routers and the energy expenditure
and Zhao and Chen [23] optimized both average path length and energy cost.

Our work follows this second line of research. We add relay nodes to pre-
viously established static WSNs in order to optimize three important factors:
average energy consumption, average coverage and network reliability. The fol-
lowing contributions are presented in the curse of this paper:

– The three-objective approach for the RNPP is solved by using three different
metaheuristics: two well-known genetic algorithms NSGA-II [6] and SPEA2
[24], and a multiobjective version of the Variable Neighborhood Search algo-
rithm (MO-VNS) [8].

– All the results obtained are analyzed in depth thought a widely recognized
statistical methodology. Using as quality indicators two multiobjective met-
rics: hypervolume and set coverage.
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- Coordinates of routers are provided
by the optimization process.

Fig. 1. Network definition considered in the RNPP

– In the current literature, some papers use randomly generated data set or
non-public ones. In this work, we consider a freely available data set, implying
that this work can be replicated and improved by other authors.

The remainder of this paper is structured as follows. In Section 2, a formal state-
ment of the RNPP is provided. Algorithms used appear in Section 3. Experi-
mental results are discussed in Section 4. Finally, our concluding remarks are
left for Section 5.

2 A Realistic Approach for the Relay Node Placement
Problem

The WSN considered in the RNPP is composed of three types of wireless static
devices placed on the same 2D-surface of size Dx × Dy: a sink node (also called
collector node), M sensors and N routers or relay nodes (see Fig. 1). Each
sensor obtains information about the environment with a sensibility radius Rs

on a regular basis. This information is sent to the sink node, being this node the
only connection point of the WSN to the outside. The routers only relay all the
received information to the collector node. All the devices communicate among
them with a same communication radius Rc. The routers and the collector node
have an unlimited power supply, and the sensors are powered by batteries. Thus,
a sensor is alive if its battery is not exhausted.

The routing protocol used by sensors and routers is the same. It is based on
the minimum-distance path between devices provided by Dijkstra’s algorithm
[3]. In addition, we consider a perfect synchronization and a perfect medium
access, ensuring that there are no collisions among devices.

Let C and Sr be the collector node and the set of routers, respectively,
and let Ss(t) be the set of alive sensors at time t. With the aim of modeling
the energy expenditure suffered by the sensors, the energy model proposed by
A. Konstantinidis et al. [11] is considered. Then, according to this model, the
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transmission power needed by a sensor i ∈ Ss(t) to reach another device j ∈
Ss(t) ∪ Sr ∪ C at time t is given by

Pi(t) = β · dα
i,j t > 0, (1)

where β > 0 is the transmission quality parameter, di,j is the Euclidean distance
between i and j, and α > 0 is the path loss exponent. Thus, the residual energy
of the sensor i at time t is given by

Ei(t) = Ei(t − 1) − [(ri(t) + 1) · Pi(t) · amp · K], t > 0, (2)

where ri(t) is the number of packets that the sensor i receives and relays to the
collector node at time t, the +1 term is the information packet that the sensor
i captures at this time and sends, amp is the energy consumption per bit of the
power amplifier, and K is the information packet size. Initially, all the sensors
start with the same energy charge IEC in their batteries. Hence,

Ei(t) = IEC ∀i ∈ Ss(t), t = 0. (3)

When the residual energy of a sensor equals 0, the device cannot capture more
information or be linked again. Following this energy model, we assume the energy
expenditure depends only on the most expensive task: the sending. The receiving,
processing and sensing tasks are considered negligible.

The network lifetime (LF) is an important concept in this type of network.
It is the amount of time units over which a WSN is able to provide enough
information about its environment. For this purpose, a coverage threshold (CV )
is often used. If the coverage provided by the alive sensors is lower than CV , we
consider that the network lifetime has come to its end.

In a previous work two important factors were optimized [15]: average energy
consumption and average coverage . Such as in [14], in this paper we include a
third factor which provides a better realism to this problem definition: network
reliability. These three factors are defined as:

– Average energy consumption(AEC, to minimize): It is the average energy
expenditure of the sensors over LF (in Joules), that is

f1 = LF−1

⎡
⎣

LF∑
t=1

∑
i∈Ss(t)

(
Ei(t − 1) − Ei(t)

|Ss(t)|
)⎤

⎦ , (4)

where |Ss(t)| is the cardinal of the set Ss(t).
– Average coverage(AC, to maximize): It is the percentage of the surface area

covered by the sensors over LF . There are two main ways to obtain this
value in the literature [21]. Some authors consider that a sensor covers a
circumference of radius Rs. Hence the global coverage is the union of the
M areas. Other authors place a matrix of binary demand points on the
surface, where a demand point equals 1 if there is some alive sensor at a
distance lower than Rs, and 0 otherwise. Finally the activated points are
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counted. We consider the second approach. Although the first one is a little
bit accurate, the second one is less hard to compute. Thus, AC is given by

f2 = LF−1

⎡
⎣

LF∑
t=1

�Dx�∑
x=1

�Dy�∑
y=1

(
Rx,y(t)

�Dx� × �Dy�
)⎤

⎦ , (5)

where Rx,y(t) is the demand point placed at the coordinates (x,y) of the
matrix of �Dx� × �Dy� binary demand points at time t.

– Network reliability(NR, to maximize): It is the average network fault-
tolerance, showing the probability that the sensors successfully send infor-
mation to the sink node. Let Rei be the reliability of the sensor i defined in
[5] as

Rei = 1 −
P∏

l=1

(1 − (1 − Err)hl), (6)

where P is the number of disjoint paths between i and the sink node given
by Suurballe’s Algorithm [20], hl is the number of hops in the l-th disjoint
path, and Err is the local channel error. Thus, NR is defined as

f3 =
∑

i∈Ss(t)

(
Rei

M

)
t = 0. (7)

To summarize, the RNPP is defined as an NP-hard multiobjective optimiza-
tion problem. The objective is to place N routers to optimize a traditional WSN
defined by the parameters Dx, Dy, Rs, Rc, IEC, K, CV , α, β, amp, Err and
the positions of the collector node and the M sensors.

3 Multiobjective Optimization: The Algorithms Used

As stated before, the RNPP is an NP-hard optimization problem. This type of
problem is solved through approximated techniques. Accordingly, we consider
three different metaheuristics. NSGA-II and SPEA2 belong to genetic algo-
rithms, a subtype of evolutionary algorithm characterized by encoding their
individuals as chromosomes. An individual is a possible solution to the opti-
mization problem. The remainder is a trajectory algorithm, solving methods
whose search process follows a trajectory in the search space.

NSGA-II uses two populations Pt and Qt of the same size PS. Pt saves the
parents of generation t, and Qt saves the offspring generated by individuals in
Pt. Initially, Pt is randomly generated and Qt is empty. So long as the stop
condition is not reached, both populations are combined in a new set Rt of
size 2PS. Then, according to both rank and crowding measures, the best PS
solutions of Rt are inserted into the new parent population Pt+1. Next, a new
Qt+1 is generated based on Pt+1. To this end, and so long as Qt+1 is not filled,
a pair of individuals are selected from Pt+1 though binary tournament method.
Then, a new individual is generated and inserted into Qt+1 through crossover



32 J.M. Lanza-Gutiérrez et al.

Algorithm 1. MO-VNS with perturbation mechanism
1: add a random solution to the emply population Pv

2: generate the set of neighborhood structures Ns

3: while not stop condition do
4: while there are solutions non − used during the search in Pv do
5: a ← randomly pick a non − used solution from Pv

6: nsk
← randomly pick a neighborhood structure, k ∈ 1, . . . , kmax, nsk

∈ Ns

7: while k <= kmax do
8: ã ← generate a neighborhood solution of a in nsk

, marking a as used

9: add ã to Pv and remove all the dominated solutions
10: if ã ∈ Pv then
11: k ← 1 and a ← ã
12: else
13: k ← k + 1
14: end if
15: end while
16: end while
17: perform perturbation in Pv to avoid local minima
18: reset all the marks of Pv

19: end while

and mutation operators,. As crossover operator, we consider the usual one-point
crossover. As mutation operator, we assume a greedy strategy: router coordinates
are randomly changed, but only changes that provide a better individual are
accepted. The same encoding is used for the three algorithms. A chromosome is
a 2D-coordinate list of M routers (see Fig. 1).

SPEA2 uses an auxiliary population Pt where the best solutions are saved
along generations, and a regular population Pt with sizes PS and PS respectively.
Initially, Pt is randomly generated and Pt is empty. So long as the stop condition
is not reached, the fitness value for each individual in Pt ∪ Pt is obtained. This
fitness is based on the Pareto dominance concept and additional density infor-
mation. The best solutions according to this fitness are inserted into the new
Pt+1. Next, a new Pt+1 is generated based on Pt+1, using the binary tournament,
mutation and crossover strategies as discussed for NSGA-II.

MO-VNS performs local searches by using neighborhood structures. Let a
neighborhood structure be the maximum displacement that a router experiences
during the local search. Thus, the set of neighborhood structures Ns is given by

Ns =
{

nsk
∈ R / nsk

=
min(Dx,Dy) ∗ k

dv ∗ kmax

}
nsk

< nsk+1 , (8)

for k = 1, . . . , kmax, where kmax is the number of neighborhood structures,
dv is a factor which delimites the displacement, and min(Dx,Dy) provides the
minimum value between Dx and Dy.

As outlined in Algorithm 1, MO-VNS uses a population Pv where only non-
dominated individuals are kept. Each individual in Pv has a flag which deter-
mines if the solution was used during the search. Initially, a random solution
is added to Pv (line 1). Then, so long as the stop condition is not reached, a
non-used solution a ∈ Pv and a neighborhood structure nsk

∈ Ns are randomly
selected (lines 5-6). Next, a new solution is generated through a local search
using a ∈ Pv as base solution (line 8), marking a ∈ Pv as used. The local search
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Table 1. Instances used in this paper

Instance Dx×Dy M HO AEC HO AC HO NR

100x100 15 30 100x100 15 0.1091 89.24% 95.67%
200x200 15 30 200x200 57 0.2791 87.10% 93.23%
300x300 15 30 300x300 128 0.4225 76.44% 85.28%

Table 2. Hypervolume reference points

Instance Ref AEC Ref AC Ref NR

ideal nadir ideal nadir ideal nadir

100x100 15 30 0.02 0.10 1.00 0.60 1.00 0.50
200x200 15 30 0.10 0.30 1.00 0.60 1.00 0.50
300x300 15 30 0.04 0.50 1.00 0.60 1.00 0.50

Table 3. Parametric sweep

NSGA-II

Parameter Value Range

Mutation 0.80 0.05,0.10,0.15,. . . ,0.95
Crossover 0.80 0.05,0.10,0.15,. . . ,0.95

SPEA2

Parameter Value Range

Mutation 0.70 0.05,0.10,0.15,. . . ,0.95
Crossover 0.60 0.05,0.10,0.15,. . . ,0.95

MO-VNS

Parameter Value Range

Mutation 0.10 0.05,0.1,0.15,. . . ,0.95
kmax 10 3,4,5,6,7,8,. . . ,14
dv 2 1,1.5,2,2.5,3,3.5,. . . ,6.5

is given by

Rãz
= Raz

+
(nsk

2
− rand(nsk

)
)

nsk
∈ Ns, k ∈ 1, . . . , kmax, (9)

for z = 1, . . . , N , where Raz
and Rãz

are the routers placed on the z-th gene of
the solutions a and ã respectively, and rand(nsk

) is a random number between
0 and nsk

. Next, the new solution is added to Pv, removing all the dominated
solutions (line 9). If ã ∈ Pv, the local search provided a good solution, and then
the local search is repeated again using a k value of 1 and taking ã as base
solution (line 11). Otherwise, k is increased, so long as k takes the maximum
value kmax (line 13). Once all the solutions are explored, the marks are reset, and
then all the individuals are eligible for a new selection again (line 18). Before
starting the search process again, a perturbation mechanism is performed to
avoid local minima (line 17). To this end, the greedy mutation operator discussed
for NSGA-II and SPEA2 is used for each solution in Pv.

4 Experimental Methodology

As stated before, non-public data set was found that fit this problem definition.
Hence, in order to study the performance of the metaheuristics, we consider a
data set defined by ourselves in [13]. This data set is composed of three tradi-
tional WSNs (a set of sensors and a collector node). The number of sensors is
the minimum value to cover the whole surface, being placed by a monoobjective
genetic algorithm optimizing the coverage offered by the sensors (see Table 1).
The collector node is placed in the center of the scenario. We assume the fol-
lowing network parameters: Rc = 30m and Rs = 15m from [17], K = 128KB,
CV = 70%, Err = 10%, and the energy parameters EC = 5J , α = 2, β = 1
and amp = 100pJ/bit/m2 from [12]. In a previous work [15], two different Rc

values were assumed, 30 and 60 meters. However, it makes no sense to consider
Rc = 60m for our problem definition, since the network reliability is almost
100% for all the cases.

This data set is optimized by adding relay nodes. We assume the addition
of these devices increases the network cost. Hence, we decide not to include
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Table 4. Hypervolume and standard deviation for each algorithm and test case

NSGA-II (Hyp %, std.dev)

Test case Evaluations (Stop condition)

Instance (routers) 50 000 100 000 200 000 300 000 400 000

100x100 15 30(2) 41.01%, 0.0030 41.25%, 0.0024 41.47%, 0.0002 41.48%, 0.0001 41.48%, 0.0000

100x100 15 30(3) 53.54%, 0.0050 54.15%, 0.0018 54.46%, 0.0019 54.56%, 0.0011 54.63%, 0.0005

200x200 15 30(2) 32.49%, 0.0100 33.22%, 0.0042 33.53%, 0.0025 33.64%, 0.0018 33.74%, 0.0021

200x200 15 30(4) 41.46%, 0.0180 43.21%, 0.0167 45.07%, 0.0109 45.57%, 0.0134 45.96%, 0.0116

200x200 15 30(6) 48.75%, 0.0345 53.12%, 0.0193 55.65%, 0.0161 57.00%, 0.0168 57.68%, 0.0156

200x200 15 30(9) 57.14%, 0.0254 61.82%, 0.0223 65.57%, 0.0211 67.45%, 0.0194 68.31%, 0.0174

300x300 15 30(6) 28.35%, 0.0074 29.44%, 0.0068 30.42%, 0.0061 30.81%, 0.0060 31.05%, 0.0057

300x300 15 30(12) 29.84%, 0.0068 31.53%, 0.0100 32.86%, 0.0098 33.81%, 0.0107 34.37%, 0.0112

300x300 15 30(18) 31.26%, 0.0061 32.92%, 0.0088 34.30%, 0.0107 34.99%, 0.0097 35.41%, 0.0099

300x300 15 30(24) 33.40%, 0.0060 34.99%, 0.0137 36.51%, 0.0157 37.22%, 0.0133 37.86%, 0.0132

SPEA2 (Hyp %, std.dev)

Test case Evaluations (Stop condition)

Instance (routers) 50 000 100 000 200 000 300 000 400 000

100x100 15 30(2) 41.07%, 0.0021 41.24%, 0.0016 41.31%, 0.0015 41.46%, 0.0002 41.46%, 0.0002

100x100 15 30(3) 53.76%, 0.0038 54.27%, 0.0029 54.56%, 0.0011 54.61%, 0.0007 54.64%, 0.0007

200x200 15 30(2) 32.56%, 0.0054 32.88%, 0.0053 33.21%, 0.0032 33.38%, 0.0031 33.47%, 0.0026

200x200 15 30(4) 42.41%, 0.0150 44.03%, 0.0148 45.03%, 0.0153 45.54%, 0.0141 45.72%, 0.0130

200x200 15 30(6) 53.35%, 0.0180 55.98%, 0.0179 57.53%, 0.0072 58.57%, 0.0124 59.09%, 0.0084

200x200 15 30(9) 61.49%, 0.0179 65.42%, 0.0200 67.85%, 0.0184 68.99%, 0.0165 69.70%, 0.0132

300x300 15 30(6) 29.45%, 0.0062 30.55%, 0.0071 31.19%, 0.0072 31.54%, 0.0068 31.78%, 0.0055

300x300 15 30(12) 31.58%, 0.0071 33.19%, 0.0106 34.62%, 0.0116 35.41%, 0.0113 36.00%, 0.0115

300x300 15 30(18) 33.44%, 0.0089 35.22%, 0.0086 36.73%, 0.0092 37.68%, 0.0080 38.34%, 0.0093

300x300 15 30(24) 35.43%, 0.0077 37.04%, 0.0094 38.63%, 0.0076 39.45%, 0.0082 40.20%, 0.0093

MO-VNS (Hyp %, std.dev)

Test case Evaluations (Stop condition)

Instance (routers) 50 000 100 000 200 000 300 000 400 000

100x100 15 30(2) 41.76%, 0.0003 41.79%, 0.0002 41.81%, 0.0002 41.82%, 0.0002 41.82%, 0.0001

100x100 15 30(3) 54.96%, 0.0037 55.21%, 0.0037 55.31%, 0.0019 55.56%, 0.0033 55.61%, 0.0033

200x200 15 30(2) 31.76%, 0.0241 34.04%, 0.0088 34.60%, 0.0126 35.22%, 0.0080 35.92%, 0.0017

200x200 15 30(4) 42.81%, 0.0189 44.38%, 0.0184 45.24%, 0.0165 45.78%, 0.0155 46.14%, 0.0166

200x200 15 30(6) 54.46%, 0.0197 56.37%, 0.0146 56.99%, 0.0127 57.27%, 0.0139 57.47%, 0.0136

200x200 15 30(9) 63.48%, 0.0155 64.21%, 0.0116 65.33%, 0.0104 65.87%, 0.0109 66.45%, 0.0102

300x300 15 30(6) 30.36%, 0.0043 30.93%, 0.0057 31.19%, 0.0050 31.34%, 0.0058 31.40%, 0.0057

300x300 15 30(12) 33.82%, 0.0063 34.56%, 0.0071 35.31%, 0.0070 35.68%, 0.0056 35.83%, 0.0056

300x300 15 30(18) 37.04%, 0.0068 37.83%, 0.0061 38.48%, 0.0056 38.83%, 0.0038 39.01%, 0.0048

300x300 15 30(24) 40.14%, 0.0098 40.91%, 0.0072 41.48%, 0.0067 41.79%, 0.0054 41.95%, 0.0048

more than 20% of routers regarding to the number of sensors. Thus, 10 different
test cases are defined as shown Table 4. Each test case follows the notation
instance name(number of routers).

Before optimizing the data set, the three algorithms were configured by a
parametric sweep [15]. The range of values considered for each parameter is
shown in Table 3, as well as the configuration obtained through this tuning.
After this step, 31 independent runs are performed for each algorithm in order
to obtain statistical validity. With the purpose of studying the convergence of
the algorithms, five different stop conditions are considered: 50 000, 100 000,
200 000, 300 000 and 400 000 evaluations. The solutions obtained are evalu-
ated through hypervolume metric, considering the experimental reference points
shown in Table 2. Thus, average hypervolumes and standard deviation for each
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Table 5. P-values obtained through Wilcoxon-Mann-Whitney’s test comparing among
hypervolumes

MO-VNS vs SPEA2 SPEA2 vs NSGAII

Instance (routers) 50 000 100 000 200 000 300 000 400 000 50 000 100 000 200 000 300 000 400 000

100x100 15 30(2) 0.0000 0.0000 0.0000 0.0000 0.0000 0.2505 0.9060 1.0000 1.0000 1.0000
100x100 15 30(3) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0486 0.0182 0.0188 0.0370 0.1032

200x200 15 30(2) 0.3431 0.0000 0.0000 0.0000 0.0000 0.3920 0.9938 0.9999 0.9995 0.9999
200x200 15 30(4) 0.1376 0.2843 0.3086 0.2215 0.0871 0.0273 0.0410 0.5530 0.6136 0.7949
200x200 15 30(6) 0.0094 0.1815 0.9750 0.9996 1.0000 0.0000 0.0000 0.0000 0.0001 0.0001
200x200 15 30(9) 0.0000 0.9920 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.0008 0.0005

300x300 15 30(6) 0.0000 0.0099 0.3646 0.8787 0.9953 0.0000 0.0000 0.0000 0.0000 0.0000
300x300 15 30(12) 0.0000 0.0000 0.0079 0.2257 0.7012 0.0000 0.0000 0.0000 0.0000 0.0000
300x300 15 30(18) 0.0000 0.0000 0.0000 0.0000 0.0010 0.0000 0.0000 0.0000 0.0000 0.0000
300x300 15 30(24) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

MO-VNS vs NSGA-II SUMMARY

Instance (routers) 50 000 100 000 200 000 300 000 400 000 50 000 100 000 200 000 300 000 400 000

100x100 15 30(2) 0.0000 0.0000 0.0000 0.0000 0.0000 MO-VNS MO-VNS MO-VNS MO-VNS MO-VNS

100x100 15 30(3) 0.0000 0.0000 0.0000 0.0000 0.0000 MO-VNS MO-VNS MO-VNS MO-VNS MO-VNS

200x200 15 30(2) 0.4691 0.0000 0.0000 0.0000 0.0000 NONE MO-VNS MO-VNS MO-VNS MO-VNS

200x200 15 30(4) 0.0038 0.0148 0.2997 0.2215 0.2299 NONE NONE NONE NONE NONE

200x200 15 30(6) 0.0000 0.0000 0.0006 0.2223 0.6455 MO-VNS NONE SPEA2 SPEA2 SPEA2

200x200 15 30(9) 0.0000 0.0000 0.6764 0.9996 1.0000 MO-VNS SPEA2 SPEA2 SPEA2 SPEA2

300x300 15 30(6) 0.0000 0.0000 0.0000 0.0009 0.0203 MO-VNS MO-VNS NONE NONE SPEA2

300x300 15 30(12) 0.0000 0.0000 0.0000 0.0000 0.0000 MO-VNS MO-VNS MO-VNS NONE NONE

300x300 15 30(18) 0.0000 0.0000 0.0000 0.0000 0.0000 MO-VNS MO-VNS MO-VNS MO-VNS MO-VNS

300x300 15 30(24) 0.0000 0.0000 0.0000 0.0000 0.0000 MO-VNS MO-VNS MO-VNS MO-VNS MO-VNS

test case, stop condition and algorithm are shown in Table 4. The highest hyper-
volumes for 400 000 evaluations are in bold.

Analyzing Table 4, we may note that MO-VNS seems to provide better
results. However, we do not known if the differences are significant. To this end,
we assume a widely used statistical methodology. The first step is to study if the
data follow a normal distribution through Shapiro - Wilk′s and Kolmogrov -
Smirnov - Lilliefors′s tests with the hypothesis: H0 if data follow a normal
distribution, and H1 otherwise. P-values lower than 0.05 were obtained for all
the cases. Hence, we cannot assume data follow a gaussian distribution. Con-
sequently, the median (Me) must be used as average value. The second step is
to check if there are differences among the algorithms. To this end, Wilcoxon
- Mann - Whitney’s test (samples do not follow a normal distribution and are
independent) is used with the hypothesis: H0 Mei is worse or equal than Mej ,
and H1 Mei is better than Mej , with i = 1, 2, 3, j = 2, 3, i < j, 1=MO-VNS,
2=SPEA2 and 3=NSGA-II. The P-values obtained are shown in Table 5. Values
exceed 0.05 are shaded, because of differences are considered not significant.

Based on these p-values, the algorithm which provide the best performance
in each case appears in the part summary of Table 5. Analyzing this summary,
we observe as MO-VNS provides the best results in complex and simple test
cases, but it does not in medium ones. Furthermore, we check as MO-VNS is
quicker than NSGA-II and SPEA2 on average. It is necessary a less number
of evaluations to get similar results, but when the number of evaluations is
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Table 6. Average set coverage C(A,B) among algorithms

A MO-VNS NSGA-II SPEA2

Instance (routers) B NSGA-II SPEA2 SPEA2 MO-VNS NSGA-II MO-VNS

100x100 15 30(2) 98.56% 98.29% 63.26% 0.00% 75.81% 0.00%
100x100 15 30(3) 87.89% 89.89% 39.95% 3.17% 33.10% 1.72%

200x200 15 30(2) 72.29% 76.06% 49.24% 12.36% 42.85% 14.50%
200x200 15 30(4) 70.57% 72.56% 43.05% 9.76% 43.68% 8.17%
200x200 15 30(6) 76.56% 45.83% 17.04% 15.43% 77.67% 30.40%
200x200 15 30(9) 40.41% 17.38% 5.89% 35.33% 77.39% 63.40%

300x300 15 30(6) 85.74% 56.88% 17.67% 4.67% 61.09% 18.19%
300x300 15 30(12) 73.02% 50.02% 11.89% 12.70% 71.56% 31.04%
300x300 15 30(18) 92.48% 67.69% 8.70% 5.53% 75.78% 16.91%
300x300 15 30(24) 96.86% 86.30% 17.94% 0.60% 67.81% 13.51%

Partial average 79.44% 66.09% 27.46% 9.95% 62.68% 19.78%
Average 72.76% 18.71% 41.23%

increased, this advantage is reduced. On average, MO-VNS is the best a 62%,
SPEA2 a 16%, NSGA-II a 0%, and none of them a 22%.

In addition to hypervolume, we consider the set coverage C(A,B). That is
the percentage of solutions from the algorithm B that are weakly dominated
by A. To this end, we obtain the set coverage between each pair of algorithms,
test case and stop condition. For this purpose, we use the medium front of
the distribution of 31 samples. The average set coverage between each pair of
algorithms during the 400 000 evaluations is shown in Table 6. Analyzing this
table, we reach similar conclusions as for hypervolume. MO-VNS provides the
best coverage relation (72.76%), followed by SPEA2 (41.23%) and in the tail
NSGA-II (18.71%).

Finally, some implementation details. The algorithms were programmed by
ourselves in C++, using the Lemon library for graphs (http://lemon.cs.elte.hu).
The IBM SPSS software was used to get the Shapiro-Wilk’s and Kolmogrov-
Smirnov-Lilliefors’s tests. Finally, the Wilcoxon−Mann − Whitney’s test and
hypervolume were taken from [7].

5 Final Remarks

In this paper, we study the addition of relay nodes to previously established
WSNs, with the aim of optimizing three important factors: average energy con-
sumption, average coverage and network reliability. This is the so-called relay
node placement problem, which is an NP-hard optimization problem. To solve
this problem, we consider three different metaheuristics, two well-known genetic
algorithms (NSGA-II and SPEA2), an a novel multiobjective approach of the
VNS. These algorithms are used to optimize a freely available data set. Analyzing
all the obtained results in depth, and using two known multiobjective indicator:
hypervolume and set coverage. As a result, MO-VNS provides the best behavior
on average, followed by SPEA2, and in the tail NSGA-II.

As future lines of research, it would be interesting to consider other meta-
heuristics. One of our aim is to find an algorithm providing good results in
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general terms. In addition, it would be a good idea to consider a greater number
of test cases, and conduct real world-experiments.
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