
Multi-material Compositional
Pattern-Producing Networks

for Form Optimisation

Ralph Evins1,2(B), Ravi Vaidyanathan3, and Stuart Burgess4

1 Empa, Swiss Federal Laboratories for Materials Science and Technology,
Überlandstrasse 129, 8600 Dübendorf, Switzerland

ralph.evins@empa.ch
2 Chair of Building Physics, Swiss Federal Institute of Technology ETH Zürich,

ETH-Hönggerberg, 8093 Zürich, Switzerland
3 Imperial College London, South Kensington Campus, London, UK SW7 2AZ

4 University of Bristol, Tyndall Avenue, Bristol, UK BS8 1TH

Abstract. CPPN-NEAT (Compositional Pattern Producing Networks
and NeuroEvolution for Augmented Topologies) is a representation and
optimisation approach that can generate and optimise complex forms
without any pre-defined structure by using indirect, implicit representa-
tions. CPPN is based on an analogy to embryonic development; NEAT is
based on an analogy to neural evolution. We present new developments
that extend the approach to include multi-material objects, where the
material distribution must be optimised in parallel with the form.

Results are given for a simple problem concerning PV panels to
validate the method. This approach is applicable to a large number of
problems concerning the design of complex forms. There are many such
problems in the field of energy saving and generation, particularly those
areas concerned with solar gain. This work forms a first step in exploring
the potential of this approach.

Keywords: CPPN · NEAT · Form · Multi-material

1 Introduction

1.1 Engineering Form Optimisation

Form is used here to refer to the physical shape of an object, and form opti-
misation refers to the process of finding optimal or high-performing forms for
engineered objects, measured against some metric. Optimisation of form is more
challenging than optimising specific design parameters, as form may be rep-
resented in many ways, making the design space almost infinite. This paper
presents new developments to a systematic way of automatically generating and
evolving forms to find areas of optimal performance.

c© Springer-Verlag Berlin Heidelberg 2014
A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2014, LNCS 8602, pp. 189–200, 2014.
DOI: 10.1007/978-3-662-45523-4 16

190 R. Evins et al.

1.2 Form Representation

Form representations can be divided into two approaches. Direct representations
relate the set of variables being optimised (the genotype) to the associated form
(the phenotype) in a way that is constant throughout the optimisation process.
Classes and types of form are broadly defined at the beginning of the process
through the choice of a particular representation (shapes or mathematical func-
tions) with a fixed number of parameters (also called degrees-of-freedom). The
representation used implicitly affects the forms generated: some forms will be
completely unobtainable, and others will be complicated to describe and there-
fore difficult to discover. Direct representations are appropriate for simple opti-
misations where the design space is limited to an easily-describable set of forms.
Imam [4] discussed a variety of direct representation types, including indepen-
dent nodes, design elements, super curves and superposition of shapes.

Indirect representations, by contrast, use a mapping from genotype to phe-
notype that changes as part of the form-finding process. Indirect representations
have no predefined set of parameters. Instead they generate a means of repre-
senting a form in parallel with the parameters that define it. Types of indirect
representation include generative (generating functions that map parameters to
forms) and ontogenic (based on iterative mapping transformations). For gener-
ative representations, Bentley and Kumar [2] used the term embryogeny: the
process of growth that defines how a genotype is mapped onto a phenotype.
They discuss three types of generative encoding: external (pre-stated, a form
of direct representation), explicit (inherent in the data structure, like a list of
instructions) and implicit (interactive, dynamic rules that depend on context).
Bentley and Kumar found that for the problem they selected, implicit embryo-
genies performed best.

Another approach to indirect form representation is the related field of topol-
ogy optimisation. This is concerned with broad classes of shape (e.g. number of
sides, number of holes). It uses a discrete selection field over a fixed domain, anal-
ogous to the discrete voxels used in this work. An objective function is minimised
over this selection field using a variety of methods, for example the Evolutionary
Structural Optimisation approach [8] progressively eliminates low-stress material
from the structure. The approaches used in topological optimisation are tightly
linked to structural engineering issues, and are not easily adaptable to problems
in other fields, especially if analytical objective functions are not available (i.e.
when using black-box simulations).

The indirect representation used in this work is Compositional Pattern Pro-
ducing Networks (CPPN) with the optimisation method NeuroEvolution for
Augmented Topologies (NEAT), which are explained in detail in the following
section. CPPNs were proposed by Stanley [6]; NEAT was originally developed by
Stanley and Miikkulainen [7]. This work builds upon that of Clune and Lipson
[3], who developed a 3-dimensional formulation of CPPN-NEAT. CPPN-NEAT
has been used on few real problems: to interactively generate artwork, as demon-
strated in the website picbreeder [5], and to evolve forms for simulated robots [1].

Multi-material Compositional Pattern-Producing Networks 191

1.3 Application to the Energy Field

It has been established by Clune and Lipson [3] that CPPN-NEAT can gener-
ate a diverse range of interesting forms. The methods developed here could be
applied to any problem which seeks to optimise abstract forms for objectives
evaluated using black-box simulations. There are many such problems in the
field of energy research; one particularly relevant area is energy use in buildings,
where architectural desires closely interact with engineering requirements.

This paper applied the method developed to a problem concerning a pho-
tovoltaic (PV) collector. It is a very simple validation problem, which seeks to
establish whether the breadth and diversity of solutions produced by CPPN-
NEAT can produce reasonable answers to a specific problem. However, if com-
bined with other constraints, for example the problem of building-integrated PV,
this approach could provide a way to find high-performing, highly diverse forms
that solve a real design problem.

2 Form Generation Method

2.1 Compositional Pattern Producing Networks (CPPNs)

Compositional Pattern Producing Networks (CPPNs), proposed by Stanley [6],
are based upon the biological processes that guide embryonic development: chem-
ical gradients provide information to new cells regarding their position in the
overall structure, which influences how they develop. Stanley [6] details the fol-
lowing desirable properties obtainable via such developmental processes: rep-
etition; repetition with variation; symmetry; imperfect symmetry; elaborated
regularity; preservation of regularity.

The steps in the CPPN process is given below. The predefined coordinate
system is discretised at a chosen resolution over a chosen domain, and the value of
a function is calculated for every point x, y, z. The presence or absence of material
at a given location is determined by whether the output of that function is above
or below a threshold. For an x, y, z coordinate system, the result is a set of voxels
(3 dimensional pixels). Further processing may then be conducted to obtain a
smooth form from the rectilinear cubic voxels. In this work, an isosurface was
generated surrounding the voxel set: each point where a voxel is present has a
value of 1, and points where no voxel is present have a value of 0; the isosurface
was formed for the value 0.5. The resulting surface consists of triangular planar
faces.1

1 It is necessary to threshold the output of the CPPN, which is a continuum across the
complete x, y, z domain, in order to produce a binary distinction between solid and
void. Because the function must be evaluated at discrete points, this results in a set
of voxels whose dimensions correspond to the sampling interval. These must then be
smoothed using an appropriate method (here the MatLab isosurface algorithm) to
obtain planar faces. The impact of threshold value, sampling interval and smoothing
process is an interesting topic for future investigation.

192 R. Evins et al.

– For n points in the discrete domain:
– Evaluate network using coordinates x, y, z as values of input nodes.
– If result is greater than threshold, assign solid voxel to set V .

– (Apply smoothing algorithm to set of voxels V to get surface of polygons
P .)

– Evaluate objective function f(V) (or f(P)).

This process of form generation depends on a functional representation that
takes a set of coordinate values as an input, and produces an output that governs
the form produced. Neural networks are an ideal means of representing such a
function. Each coordinate dimension is an input node to the network, along
with a bias node that is set to 1. Each link in the network has a weight by which
its value is multiplied. Each intermediate node has a functional transformation
associated with it, selected from a set of available functions (linear, sine, cosine,
square...). If there are multiple links into a node, their values are summed. The
output node of the network then produces the numerical output of the function.

An illustration of the process is given in Figure 1, which extends into 3D
the example used by Stanley [6] and Clune and Lipson [3], describing by means
of a CPPN an insect body with several bulbous sections. For simplicity, each
dimension is used by one function only, and the results are then summed. The
square function is used on the dimensions x and z, thus giving a circular cross
section when these are summed (since a circle in that plane has an equation
of the form x2 + z2 = r2). The cosine function is applied to the y dimension,
causing periodic repetition along the long axis.

Fig. 1. Example of the CPPN process. (a) Network of nodes, connections, functions
and weights. (b) Profiles obtained for each dimension based on the functions used in
the network. (c) The final form produced by the network is an isosurface fitted to the
set of voxels defined by f(x, y, z) > threshold.

2.2 NeuroEvolution of Augmenting Topologies (NEAT)

Since CPPN describes a form by means of a particular network (nodes, con-
nections, functions and weights), in order to evolve object forms, it is necessary
to evolve network representations. The method used here is NeuroEvolution for

Multi-material Compositional Pattern-Producing Networks 193

Augmented Topologies (NEAT), originally developed by Stanley and Miikku-
lainen [7] for evolving neural networks but also commonly applied to CPPN
problems. The steps are given below

– Initialise network (random connections and weights).
– Assign species (used in selection process).
– Evaluate CPPN (see above).
– For each generation:

– Check for stagnation or refocus.
– For each space in new population:
– Select parents (based on shared fitness of species).
– Generate new individual by crossover (splice networks) and mutation

(Add node, add connection, change function, perturb weight).
– For each individual in new population:

– Assign species.
– Evaluate CPPN.

– Select individuals to continue.

The method begins with a very simple network (just input nodes, bias node
and output node, directly connected) and increases its complexity by adding
connections and nodes, mutating connection weights and node function types,
and crossing over network segments. The number of input nodes is equal to the
number of dimensions of the CPPN. This may be 2D, 3D or include other pos-
sibilities like distance from centre. There is only one output node. Recurrence
in networks is not used at all in this work (it was found by Clune and Lipson
[3] to produce highly fractal forms). The process of crossover is complicated in
variable-structure representations: it is necessary to know which segments of two
individuals can be interchanged without breaking connectivity or introducing
spurious deformity. This is achieved in NEAT by means of historical innovation
tracking: each alteration to a network is recorded, and this historical informa-
tion allows only correctly-aligned network segments to be exchanged (a process
termed artificial synapsis, see [7]). The parameters used are given in Table 1.

2.3 Implementation

The NEAT code used in this work is loosely based on the MatLab implementa-
tion by Christian Mayr2, which was based on the original C++ code of Kenneth
Stanley3. An improvement here is to construct an explicit function string that is
evaluated very easily for each set of inputs. The function string was constructed
iteratively by substituting placeholders for upstream nodes, working backwards
from the output node.

This approach to form optimisation require a very large number of function
evaluations (up to 150,000 evaluations per run). The code was run on the Uni-
versity of Bristol Advanced Computing Research Centre machine BlueCrystal.
2 http://nn.cs.utexas.edu/?neatmatlab
3 http://nn.cs.utexas.edu/?neat original

http://nn.cs.utexas.edu/?neatmatlab
http://nn.cs.utexas.edu/?neat_original

194 R. Evins et al.

Table 1. Parameters used for NEAT algorithm

Maximum generations 10000 [3]
Refocus

Threshold 10
Population size 15 [3] # generations 100

Selection

Pressure 1.1

Mutation

Add node 0.25 [3]
Kill percentage 0.2 [7] Add connection 0.3 [6]
Number kill 5 [7] Change function 0.1
Number copy 1 [7] Perturb weight 0.9 [6]

Speciation

Threshold 4 Gene re-enabled 0.25 [6]
C1 1 [6] Weight cap -100
C2 1 [6] Weight range -10
C3 0.4 [6]

Crossover

Overall 0.75 [6]
C4 2 Interspecies 0.001 [6]

Stagnation
Threshold 10 Multipoint 0.75 [6]
generations 15 [7]

In order to minimize the need for parallel-specific coding, each optimisation run
was split across 8 local cores using the Matlab parfor syntax for parallel loops.
Separate processors were used for each repeat of a run.

3 Multi-material Formulation

3.1 New Development

The new development presented in this work is the extension of CPPN-NEAT
to multi-material forms. Engineered objects usually consist of more than one
material, and the interactions between them can have a significant effect on
performance. This makes it difficult to determine the optimal placement of each
material independently; they must be developed in harmony to take advantage
of synergies between them. It is highly desirable that the two materials together
should make up the whole form (no holes) and nothing else (no dislocations) so
as not to affect the performance of the form-finding process. The CPPN-NEAT
method has been extended to allow the evolution of separate material placements
in parallel with the overall form-finding process. This has been applied to thin
shelled forms, assuming a hollow object consisting of triangular planar panels.

Material placement could be optimised using a lower level optimisation pro-
cess, i.e. for each proposed form, a second-level optimisation would be performed
to determine the optimal placement of the materials. However, this would be
computationally much more demanding: if the form optimisation is order O, per-
forming an optimisation of material placement for every evaluated form would
be of order O2. It is much more efficient to optimise both the form and the
material division in parallel as part of the same optimisation, this being of order
2O. This has been achieved by evolving two CPPN representations using a single
NEAT loop (separate NEAT processes were used for each CPPN to allow dif-
ferent parameters for each, but both used a common generation iteration). The
first network represents the overall form as before; the second network maps the
placement of materials onto the form generated by the first network. The second

Multi-material Compositional Pattern-Producing Networks 195

CPPN is queried only at locations where material is present (as determined by
the first CPPN). If the output value from the second CPPN is greater than the
threshold it indicates the primary material; if it is less than the threshold it
indicates the secondary material. In this way since the network provides a value
for all solid locations and no others, holes and dislocations are avoided.

For thin shell objects a mapping has been used that operates on the polygon
mesh rather than on the voxel set. This allows the use of local coordinates: the
orientation and inclination of each polygon. This permits changes of material
between horizontal and vertical, North and South facing and top and bottom
sides, independently of position in the overall form. Figure 2(a) shows this map-
ping: the solid voxels from the form CPPN are used to produce a shell consisting
of the set of polygons P , for which the orientation θ and inclination γ values
are determined; these are used as the input coordinates to the material CPPN,
which provides the primary and secondary material polygons P1, P2.

Instead of distinguishing between two discrete material types, some property
of the material can be treated as continuously variable. This could correspond
to thickness, reinforcement, void ratio, glazing ratio etc. The process for this
is very similar to above, but rather than applying a threshold to the output
of the material CPPN to give a binary choice, the value is scaled from 0 to 1
to provide the continuous property M for each polygon. This is presented as a
second option of the new development (see Figure 2(b)).

Input
coordinates

CPPN 1

x
y
z

FORM V

Solid
voxels

SURFACE

Isosurface
fitting

P

Polygons

θ
φ

Local angle
coordinates

MATERIAL

CPPN 2
Material 1 & 2

polygons

P1
P2

Input
coordinates

CPPN 1

x
y
z

FORM V

Solid
voxels

SURFACE

Isosurface
fitting

P

Polygons

θ
φ

Local angle
coordinates

MATERIAL

CPPN 2
Material

value

M

(a) Twin material

(b) Variable material

Fig. 2. Process diagrams for using two CPPNs to determine form and material distri-
bution in parallel, for (a) two-material forms and (b) variable-material forms. CPPN
1 produces voxel set V ; an isosurface is fitted to V to give polygon set P ; CPPN 2 is
applied to P to find material division P1, P2 or continuous property M .

3.2 Objective Functions

An example problem is used to validate the multi-material formulation in which
the second material represents PV panels, and the objective function takes the
ratio of energy generated to total cost. Two different options were addressed.

196 R. Evins et al.

The first option assumed a discrete material distribution, using the formula-
tion in Figure 2(a). A highly simplified calculation is used for the energy genera-
tion potential, which was taken as proportional to the total area of PV polygons
that are within 55 degrees of South and with an inclination of 0 or greater (i.e.
not angled downwards). Cost is taken as the sum of the total area of PV panels
multiplied by a price factor (here 10, i.e. the PV panel cost is ten times that
of the support), plus the total area of both materials (i.e. the support system).
Thus the objective function was:

∑
P2|θ>125, θ<235, γ≥0

10
∑

P1 +
∑

(P1 + P2)
(1)

where θ is the angle of orientation of the polygon from north, γ is the angle
from horizontal, P1 is the area of support polygons, and P2 is the area of PV
polygons. For a proper analysis of the energy generated from the PV panels, a
more detailed simulation would be necessary. This could be using a table lookup
for different angles, if self-shading is ignored, or using a detailed ray tracing
simulaton, if self shading is important. Both are beyond the scope of this paper,
where the aim is to validate the new material representation with a very simple
case.

The second option assumed a variable-material property using the formula-
tion in Figure 2(b), taking the percentage of a polygon surface covered by PV
to be a continuous variable. The generation from a polygon was determined by
the percentage of PV (the property M) and the cosine of the angle between the
polygon normal vector and the optimum alignment vector for the chosen latitude
(here taken to be South, 45 degree inclination). Thus the objective function was:

∑
P2M

√
2
2 (sin(θ) − cos(γ))

10
∑

P1 +
∑

(P1 + P2)
(2)

4 Results

4.1 Two Materials

This case demonstrates two things: that the CPPN-NEAT method can produce
forms that respond to the optimisation objective, and that the two-material
formulation can also adjust the material distribution in accordance with the
objective. Figure 3 shows the final forms from all twenty runs of the two-material
case, ordered by fitness value. It is clear that a very wide range of forms can be
produced. Nuances of the objective function become apparent, such as the way
the isosurface fitting to the voxels affects the range of angles of polygons.

Fitness values ranged from 76.7 to 81.3 with a mean of 79.0 and a standard
error of 1.4. The objective can be split into the following components, in rough
order of priority: maximise the area of PV panel that is broadly south-facing;
minimise the area of PV panel that does not meet the above conditions; minimise
the total surface area. There are a number of different approaches evident in the

Multi-material Compositional Pattern-Producing Networks 197

Fig. 3. All final optimised two-material forms with fitness values. Support is red, PV
panel material is blue.

198 R. Evins et al.

solutions found. The greatest total south-facing area is given by an inclined
plane, either as a pyramid (solutions 4, 9) or wedge (2, 5, 7); the total surface
area can then be reduced by making it thinner (8, 10, 14, 16), culminating in
making it as thin as possible (1 voxel) (18). The greatest broadly south-facing
area per total surface area is given by a section of a sphere (6); this may be
approximated by a section of a cylinder, aligned either horizontally (12, 15) or
vertically (17). The simplest form with reasonable performance is a thin obloid
(1, 3, 11, 13, 19, 20). Because the PV panels need not face exactly south, there
is scope to increase the surface area by adding undulations (2), steps (5, 8,
9, 12) and bulges (1, 10, 19, 20). Similarly the area of the top surface can
be increased by including slopes (19) or dips (20). There was no limitation on
single-block forms for this problem. However, generally dividing a form adds
extra material without increasing south-facing area, and whilst multiple high-
performing forms would maintain high fitness they would be likely to require
more complex representations than single forms. Only one run resulted in a
multiple block solution (17).

Material distribution is clearly adapting to the objective of the optimisation.
All forms have the PV panel material predominantly on the south-facing side
only none of the forms have any significant PV panel material on the rear or
under sides (not shown). There is some variation in how well the PV panel covers
the south face, with some obvious gaps (2, 8 10, 15) and missing upper edges
(3, 11, 13). In general the material placement errors are low: on average across
the 20 solutions, 1.8% by area has ‘missing’ PV (would fit the criteria but not
present) and 0.9% incorrect PV (does not meet the criteria). It is interesting to
note that the high-fitness solutions (nearer to number 20) do not have notably
lower material placement errors (e.g. the highest error of 7.2% is for solution
18), although the errors are more likely to be in missing south-facing area rather
than erroneous non-south-facing areas. There is clearly a balance between the
performance of the form and the accuracy of the material distribution.

4.2 Continuously-Variable Material

The second option, to optimise a continuously-variable material parameter, is a
more challenging and subtle problem. Because the angle of the surface relative
to the average sun position is taken into account in calculating energy gener-
ated, it is now more important that the PV should face directly south at 45
degree inclination. This eliminated the curved surfaces from the previous case.
Figure 4 shows selected forms from the continuously-variable material option.
These examples cover all the forms found: there were three low fitness forms like
(1), fourteen mid fitness forms like (2), and the unique forms (3, 4, 5). Fitness
values ranged from 54.7 to 78.0 with a mean of 68.9 and a standard error of 5.5.
The types repeat many those of the previous section: horizontal cylinder (2),
wedge (4) and thin angled plan (3, 5); there is also the notably low-performing
horizontal plane (1) where the algorithm was unable to progress beyond the
simple plane. This occurred in 4 out of 20 runs, whereas there are no such low-
performing solutions in the previous case. Additional complexity is introduced

Multi-material Compositional Pattern-Producing Networks 199

Fig. 4. Selected optimised variable-material shell forms with fitness value

to the problem by the variable-material formulation, which appears to be pre-
venting the algorithm finding good solutions in some cases. The distribution of
the PV is sometimes almost binary (1, 2, 4), where the material mapping falls
almost entirely to one end of the scale or the other. This is to be expected, as it
provides solutions with reasonable performance that have very simple material
distributions and are therefore very easy for the algorithm to find. The distribu-
tion in form (3) is a gradual progression, with low PV ratio at the bottom and
high at the top, demonstrating that the formulation is able to produce this sort
of distribution. The highest performing solution (5) uses a precise distribution
in which the main face has a high PV ratio (100%), the top edge (at an angle
to the sun that is sizeable but less than 90 degrees) has an intermediate ratio,
and the rest has a ratio of zero.

5 Conclusions

The multi-material implementation was demonstrated on an example problem
concerned with PV panels. The algorithm was successful, generating solutions
that combine high-performance forms with appropriate material distributions.
For the discrete problem, the diversity of solutions found across 20 runs was large,
highlighting the range of shapes and distributions obtainable. This also included
solutions that exploited aspects of the process, for example using curved edges to
increase surface area. For the continuously-variable problem, there was a greater
range of fitness values, showing that the algorithm sometimes fails to find good
solutions. It is inevitable that the continuous problem will be harder, but future
work could investigate how to overcome this barrier, perhaps by approximating
the gradient as bands.

The algorithm is exploring a very large search space, and the great variety of
solutions make it useful to compare several runs of the algorithm rather than to
take only one solution as indicative. Form optimisation problems are by nature
very complicated, and problems may not be solved completely. The algorithms
developed can be used to guide the design process, but are unlikely to generate
a perfect result.

200 R. Evins et al.

There are clearly many simpler ways of approaching the problem of form
optimisation, especially for the problems examined here. However, the method
used offers the potential for breadth and adaptability: the range of forms avail-
able is limitless. On that basis, the initial demonstration of the method has been
satisfactory: from the vast realm of possible configurations, finding solutions
to conceptually simple problems is not trivial. This paper is the first step in
developing this approach to indirect form representation and optimisation into
a usable method. Future work will extend the application to other cases where
complex forms are required, for example the trade-off between winter solar gain,
summer solar gain and light availability in passive building design.

Acknowledgments. Funded by the Industrial Doctorate Centre in Systems, Univer-
sities of Bristol and Bath, UK (EPSRC Grant EP/G037353/1) and Buro Happold Ltd,
UK.

References

1. Auerbach, J.E., Bongard, J.C.: Evolving complete robots with CPPN-NEAT: the
utility of recurrent connections. In: Proceedings of the 13th Annual Conference on
Genetic and Evolutionary Computation, GECCO 2011, pp. 1475–1482. ACM, New
York (2011)

2. Bentley, P., Kumar, S.: Three ways to grow designs: A comparison of evolved
embryogenies for a design problem. In: Genetic and Evolutionary Computation Con-
ference, pp. 35–43. Morgan Kaufmann (1999)

3. Clune, J., Lipson, H.: Evolving 3D objects with a generative encoding inspired by
developmental biology. SIGEVOlution 5(4), 2–12 (2011)

4. Imam, M.H.: Three-dimensional shape optimization. International Journal for
Numerical Methods in Engineering 18(5), 661–673 (1982)

5. Secretan, J., Beato, N., D’Ambrosio, D.B., Rodriguez, A., Campbell, A., Folsom-
Kovarik, J.T., Stanley, K.O.: Picbreeder: A case study in collaborative evolutionary
exploration of design space. Evolutionary Computation 19(3), 373–403 (2010)

6. Stanley, K.O.: Compositional pattern producing networks: A novel abstraction of
development. Genetic Programming and Evolvable Machines 8(2), 131–162 (2007)

7. Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting
topologies. Evolutionary Computation 10(2), 99–127 (2002)

8. Xie, Y.M., Steven, G.P.: A simple evolutionary procedure for structural optimiza-
tion. Computers & Structures 49(5), 885–896 (1993)

	Multi-material Compositional Pattern-Producing Networks for Form Optimisation
	1 Introduction
	1.1 Engineering Form Optimisation
	1.2 Form Representation
	1.3 Application to the Energy Field

	2 Form Generation Method
	2.1 Compositional Pattern Producing Networks (CPPNs)
	2.2 NeuroEvolution of Augmenting Topologies (NEAT)
	2.3 Implementation

	3 Multi-material Formulation
	3.1 New Development
	3.2 Objective Functions

	4 Results
	4.1 Two Materials
	4.2 Continuously-Variable Material

	5 Conclusions
	References

