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Preface

Evolutionary computation (EC) techniques are efficient, nature-inspired planning and
optimization methods based on the principles of natural evolution and genetics. Due
to their efficiency and simple underlying principles, these methods can be used in the
context of problem solving, optimization, and machine learning. A large and continu-
ously increasing number of researchers and professionals make use of EC techniques
in various application domains. This volume presents a careful selection of relevant EC
examples combined with a thorough examination of the techniques used in EC. The
papers in the volume illustrate the current state of the art in the application of EC and
should help and inspire researchers and professionals to develop efficient EC methods
for design and problem solving.

All the papers in this book were presented during EvoApplications 2014, which
incorporates a range of tracks on application-oriented aspects of EC. Originally estab-
lished as EvoWorkshops in 1998, it provides a unique opportunity for EC researchers to
meet and discuss application aspects of EC and has been an important link between EC
research and its application in a variety of domains. During these 16 years new work-
shops and tracks have arisen, some have disappeared, while others have matured to
become conferences of their own, such as EuroGP in 2000, EvoCOP in 2004, EvoBIO
in 2007, and EvoMUSART in 2012.

EvoApplications is part of EVO*, Europe’s premier colocated event in the field of
evolutionary computing. EVO* was held from April 23 to 25, 2014. Granada, Spain,
home to ‘The Alhambra’ UNESCO World Heritage Site provided the setting, with the
Universidad de Granada, Departamento de Arquitectura y Tecnologia de los Computa-
dores representing the venue, and included, in addition to EvoApplications, EuroGP,
the main European event dedicated to genetic programming; EvoCOP, the main Euro-
pean conference on evolutionary computation in combinatorial optimization and Evo-
MUSART the main International Conference on Evolutionary and Biologically Inspired
Music, Sound, Art and Design. The proceedings for all of these events in their 2013 edi-
tion are also available in the LNCS series.

The central aim of the EVO* events is to provide researchers, as well as people
from industry, students, and interested newcomers, with an opportunity to present new
results, discuss current developments and applications, or just become acquainted with
the world of EC. Moreover, it encourages and reinforces possible synergies and in-
teractions between members of all scientific communities that may benefit from EC
techniques.

EvoApplications 2014 consisted of the following individual tracks:

— EvoCOMNET, track on nature-inspired techniques for telecommunication networks
and other parallel and distributed systems,

— EvoCOMPLEX, track on evolutionary algorithms and complex systems,
— EvoENERGY, track on EC in energy applications,
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— EvoFIN, track on evolutionary and natural computation in finance and economics,
— EvoGAMES, track on bio-inspired algorithms in games,

— EvoIASP, track on EC in image analysis signal processing and pattern recognition,

— EvoINDUSTRY, track on nature-inspired techniques in industrial settings,

— EvoNUM, track on bio-inspired algorithms for continuous parameter optimization,

— EvoPAR, track on parallel implementation of evolutionary algorithms,

— EvoRISK, track on computational intelligence for risk management, security, and
defence applications,

EvoROBOT, track on EC in robotics

EvoSTOC, track on evolutionary algorithms in stochastic and dynamic environ-
ments, and

— EvoBIO, track on EC and related techniques in bioinformatics and computational
biology.

EvoCOMNET addresses the application of EC techniques to problems in distributed
and connected systems such as telecommunication and computer networks, distribution
and logistic networks, interpersonal and interorganizational networks, etc. To address
the challenges of these systems, this track promotes the study and the application of
strategies inspired by the observation of biological and evolutionary processes that usu-
ally show the highly desirable characteristics of being distributed, adaptive, scalable,
and robust.

EvoCOMPLEX covers all aspects of the interaction of evolutionary algorithms (and
metaheuristics in general) with complex systems. Complex systems are ubiquitous in
physics, economics, sociology, biology, computer science, and many other scientific
areas. Typically, a complex system is composed of smaller aggregated components,
whose interaction and interconnectedness are non trivial. This leads to emergent prop-
erties of the system, not anticipated by its isolated components. Furthermore, when
the system behavior is studied from a temporal perspective, self-organization patterns
typically arise.

EvoFIN is the only European event specifically dedicated to the applications of
EC, and related natural computing methodologies, to finance and economics. Finan-
cial environments are typically hard, being dynamic, high-dimensional, noisy, and co-
evolutionary. These environments serve as an interesting test bed for novel evolutionary
methodologies.

EvoGAMES aims to focus the scientific developments in computational intelligence
techniques that may be of practical value for utilization in existing or future games.
Recently, games, and especially video games, have become an important commercial
factor within the software industry, providing an excellent test bed for application of a
wide range of computational intelligence methods.

EvoIASP, the longest-running of all EvoApplications tracks which celebrates its
15th edition this year, has been the first international event solely dedicated to the
applications of EC to image analysis and signal processing in complex domains of high
industrial and social relevance.
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EvoNUM aims at applications of bio-inspired algorithms, and cross-fertilization be-
tween these and more classical numerical optimization algorithms, to continuous opti-
mization problems. It deals with applications where continuous parameters or functions
have to be optimized, in fields such as control, chemistry, agriculture, electricity, build-
ing and construction, energy, aerospace engineering, and design optimization.

EvoPAR covers all aspects of the application of parallel and distributed systems
to EC as well as the application of evolutionary algorithms for improving parallel ar-
chitectures and distributed computing infrastructures. EvoPAR focuses on the applica-
tion and improvement of distributed infrastructures, such as grid and cloud computing,
peer-to-peer (P2P) system, as well as parallel architectures, GPUs, manycores, etc., in
cooperation with evolutionary algorithms.

EvoRISK focuses on challenging problems in risk management, security, and de-
fence, and covers both theoretical developments and applications of computational in-
telligence to subjects such as cyber crime, IT security, resilient and self-healing systems,
risk management, critical infrastructure protection (CIP), military, counter terrorism
and other defence-related aspects, disaster relief, and humanitarian logistics.

EvoSTOC addresses the application of EC in stochastic and dynamic environments.
This includes optimization problems with changing, noisy, and/or approximated fitness
functions and optimization problems that require robust solutions, providing the first
platform to present and discuss the latest research in this field.

EvoBIO brings together experts across multiple fields, who draw inspiration from
biological systems in order to produce solutions to complex biological problems.

And finally, a General track including those papers dealing with applications not
covered by any of the established tracks.

This year’s edition of EvoApplications had 128 submissions, with 55 papers ac-
cepted for oral presentation and 24 for poster presentation.

Many people have helped make EvoApplications a success. We would like to ex-
press our gratitude first to the authors for submitting their work, to the members of the
Program Committees for devoting their energy to reviewing those papers, and to the
audience for their lively participation.

We would also like to thank the Institute for Informatics and Digital Innovation at
Edinburgh Napier University, UK, for their coordination efforts.

The papers were submitted, reviewed, and selected using the MyReview conference
management software. We are sincerely grateful to Marc Schoenauer of Inria, France,
for his great assistance in providing, hosting, and managing the software.

We would like to thank the local organizing team: Juan Julidn Merelo Guervos,
Victor M. Rivas Santos, Pedro A. Castillo Valdivieso, Maria Isabel Garcia Arenas, Pablo
Garcia Sanchez, Antonio Fernandez Ares, and Javier Asensio. We thank Kevin Sim
from the Institute for Informatics and Digital Information, Edinburgh Napier University
for creating and maintaining the official Evo* 2014 website, and Pablo Garcia Sanchez
(Universidad de Granada, Spain) and Mauro Castelli (Universidade Nova de Lisboa,
Portugal) for being responsible for Evo* 2014 publicity.

We would also like to express our sincerest gratitude to our invited speakers,
who gave the inspiring keynote talks: Prof. Thomas Schmickl of the University of
Karl-Franzens University, Graz, Austria, Prof. Federico Moran of Universidad Com-
plutense de Madrid, Spain, and Prof. Susan Stepney of the University of York, UK.



X Preface

We especially want to express our genuine gratitude to Jennifer Willies of the In-
stitute for Informatics and Digital Innovation at Edinburgh Napier University, UK. Her
dedicated and continued involvement in Evo* since 1998 has been and remains essential
for building the image, status, and unique atmosphere of this series of events.
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Abstract. Peer-to-peer (P2P) systems have attracted significant inter-
est in recent years. In P2P networks, each peer act as both a server or
a client. This characteristic makes peers vulnerable to a wide variety of
attacks. Having robust trust management is very critical for such open
environments to exclude unreliable peers from the system. This paper
investigates the use of genetic programming to asses the trustworthiness
of peers without a central authority. A trust management model is pro-
posed in which each peer ranks other peers according to local trust values
calculated automatically based on the past interactions and recommen-
dations. The experimental results have shown that the model could suc-
cessfully identify malicious peers without using a central authority or
global trust values and, improve the system performance.

1 Introduction

In the last decade, with the fast expansion and improvement of peer-to-peer
(P2P) systems, malicious activities have become a major security problem in
P2P systems. Due to openness of P2P systems, unreliable users may occupy
considerable portions of P2P populations. Trust management in such open envi-
ronments is an important and difficult research problem. Trust management
models generally aim to exclude unreliable peers from P2P systems. However
maintaining true trust relationships without a priori knowledge is a very hard
problem. It is difficult to distinguish malicious peers from innocent ones with a
certainty in such environments. Thus, most of the proposed trust models in the
literature offer approximate decision guidelines about peers.

Trust management can be accomplished by a central authority, such as eBay.
Participants in eBay can rate each other at the end of auctions and information
about auctions is stored in the central server. However, having a central authority
conflicts with the nature of P2P systems. Thus peers need to organize themselves
to manage and store information about their trust relationships [1-3]. In pure
P2P networks like Gnutella [4], peers flood trust queries to the network in order
to obtain trust information about others. In such a network, all peers store
trust information about neighbors according to the past interactions [2,5,6].
Queries enable to collect recommendations about the queried peer and make
a decision about it. Some models use distributed hash tables (DHT) to store

© Springer-Verlag Berlin Heidelberg 2014
A.I. Esparcia-Alcdzar et al. (Eds.): EvoApplications 2014, LNCS 8602, pp. 3-14, 2014.
DOI: 10.1007/978-3-662-45523-4_1
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trust information [1,3,7]. Each peer stores the trust information about other
peers determined by a DHT algorithm, which enables efficient access to the
information. Thus peers can learn the global trust information about others
without flooding queries to the whole network.

Trust management in P2P systems is a difficult problem due to the lack of
a central authority and uncertain information collected from peers. P2P trust
models should be able to recognize complicated behavioral patterns of malicious
peers and make smart decisions to distinguish malicious peers from benign peers
using this uncertain information. Using machine learning techniques might be a
good choice for such a complex problem. In this paper, we propose a genetic pro-
gramming (GP) based trust management model. Our model intends to determine
characteristics of malicious and benign peers using the features derived from
peers. Two kinds of information are collected by peers: interactions and rec-
ommendations. Peers store their past interactions with other peers and collect
recommendations about peers from their neighbors. These two types of infor-
mation provide bases for the feature set. A trust model is evolved with these
features by using genetic programming in order to measure trustworthiness of
peers. Peers do not collect information about all other peers. A peer creates a
view with the peers interacted in the past or intended to interact with. Each peer
ranks other peers according to the trust values generated by the model which
is evolved by using genetic programming, and makes download decisions using
these values. Using the generated trust values, malicious peers are excluded from
the system.

The paper is organized as follows. Section 2 discusses the related research.
Section 3 introduces the proposed trust model. Section 4 presents the simula-
tion environment and gives the experimental results. Section 5 summarizes the
conclusion.

2 Related Work

P2P systems offer sharing environments for common resources by improving
diversity, prevalence and easy accessibility. On the other hand, these character-
istics make them vulnerable to many attacks. P2P systems can be divided into
two groups; structured and unstructured [8]. In the unstructured overlay net-
works, queries are flooded in the network, such as in Gnutella [9]. The structured
P2P networks generally utilize DHT's for indexing information on peers selected
by the DHT algorithm. For example, Chord system [10] proposes a decentralized
network with a distributed lookup primitive on a circular Chord ring. Peers on
this ring are charged to store information determined by the Chord’s algorithm.

Most of the prominent trust models use the reputation concept and statisti-
cal models to make decisions on trustworthiness of peers. Reputation generally
relies on peer’s past experiences and recommendations from other peers, such as
in XRep [11] or P2PRep [12]. EigenRep [3] uses transitivity of trust to calculate
trust values. Conner et al. [13] proposed a reputation-based trust management
framework supporting synthesis of trust-related feedback from different entities.
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In [14], an effective way of calculating reputation has been presented. The model
considers several features such as number, age, or frequency of transactions, how
frequently a given peer attends a common vendor, and the number of common
vendors between the pairs. It aims to investigate the characteristics of transac-
tions executed by malicious peers.

Detecting malicious peer behaviors with the help of machine learning tech-
niques is another promising approach for generating trust management models.
Weihua Song et al. [15] uses neural networks and derives trust values from het-
erogeneous agents based on recommendations. The agents classify recommenda-
tions as qualified or unqualified for choosing the providers. In [16], support vector
machines are used to reduce the cost of communication with less query and to
improve the success rate. In [17] a generic trust framework is proposed by using
linear discriminant analysis and decision trees. An agent uses its own previous
transactions (with other agents) to build a knowledge base and distinguishes
successful transactions from unsuccessful ones.

There are some applications of evolutionary computation techniques to com-
puter and network security in the literature. One of the mostly employed area is
intrusion detection in which either genetic programming (GP) or genetic algo-
rithm (GA) is mainly used. The first GP application to intrusion detection is
given by Crosbie and Stafford [18]. Since then there are many useful applications
to the field. In [19], Abraham and Grosan compare the genetic programming
technique with other machine learning methods for intrusion detection [19] and
show that genetic programming techniques outperform other techniques and are
lightweight. The grammatical evolution technique is successfully employed for
intrusion detection on wired networks [20] and on ad hoc networks [21]. Sen
and Clark [22] employ multi-objective evolutionary computation (MOEC) tech-
niques in order to show how energy usage and detection ability can be traded off
for resource-constrained networks. Moreover, they show the significant potential
of evolutionary computation techniques to explore the suitable intrusion detec-
tion architecture by taking into account the objectives of cooperative intrusion
detection programs. The MOEC techniques are also used to explore how intru-
sion detection system sensors could be best placed on a network in [23].

Even though there are many applications of evolutionary computation tech-
niques to the intrusion detection problem, as far as we know there is only one
application of genetic algorithm in order to detect attackers in P2P domain.
A peer profile based trust model proposed by Selvaraj et al. [24] uses genetic
algorithm. This model combines peer profiling with an anomaly detection tech-
nique. It establishes trust using only local interaction data of the peer. There
is a trusted central authority which manages the peer list to secure peers’ IDs.
Our model have used both interaction data from peer’s own experience and rec-
ommendation data collected from other peers. Additionally, our model does not
depend on a central authority to calculate trust values. This is believed to be a
more suitable approach for P2P systems.
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3 The Model

The proposed trust model uses genetic programming to make trusting decisions
on peers. Genetic Programming (GP) is a common evolutionary computation
technique, which is introduced to the machine learning community by Koza [25].
Banzhaf [26] comes up with an assertion that GP could produce more successful
results comparing to other machine learning techniques and programs written
by people.

In GP, functions (operators, program statements etc.) and terminals (fea-
tures, constants etc.) build a GP tree. Each GP tree represents an individual.
Basically, a group of individuals which are the candidate solutions to the prob-
lem are generated by GP in each generation. How well the individuals solve the
problem is evaluated by using a fitness function.

3.1 Feature Sets and Operators

Selecting the right feature set is a difficult problem and a key point to obtain suc-
cessful results in GP and other machine learning techniques [27]. In our model,
the information collected from past interactions and recommendations of neigh-
bors form the feature set.

Interaction based features are obtained from the peer’s past experiences with
other peers. These experiences occur directly between two peers who interacted
in the past. Interactions can be any activity specific to the P2P application, such
as file sharing, CPU sharing, and storage sharing. Interaction based features are
listed in Table 1.

Table 1. Interaction Based Features

Feature Symbol
number of interactions f1
number of successful interactions f2
average size of downloaded files 3
average time difference between last two interactions f4
average weight 5
average satisfaction 6

Satisfaction and weight parameters are calculated as in [28]. Successful inter-
actions are the interactions that the file download is finished successfully. Satis-
faction parameter is calculated based on average bandwidth, agreed bandwidth
before the interaction, online, and offline period values of the uploader:

AveBw OnP -
+ 2if AveBw < AgrBuw,
suiguction = { (B0 L 2 e
OnP+OffP
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Weight parameter is calculated based on file size, number of uploaders of the
dowloaded file, number of uploaders of the maximum uploaded file:

i Upload .
Weight = (108(;174:5;[ (?%lfagz-:;i )/2if size < 100M B, &)
(1+ %)/2 otherwise

The second set of features is recommendation based features. When a peer
wants to interact with another peer, it asks its own neighbors about their experi-
ences. The neighbors who have information about the peer requested send their
recommendations. These experiences about another peer are called recommen-
dations. A recommendation contains the following information: average number
of successful interactions, average satisfaction of interactions, average weight of
interactions, and calculated trust value of the queried peer. The recommendation
based features are listed in Table 2:

Table 2. Recommendation Based Features

Feature Symbol
number of recommendations f7
average of neighbours’ average number of successful interactions 8
average of neighbours’ average satisfaction values 9
average of neighbours’ average weight values f10
average of trust values f11

In our genetic model, we use simple operators to generate a formula for trust
calculation. The operators used in our model are addition, subtraction, division,
multiplication, inverse, log, square root, and square.

3.2 Fitness Function

The fitness function is one of the important factors affecting the performance
of evolutionary computation techniques. The fitness function determines how
well a program is able to solve the problem [25,29]. In the evolved trust model,
a fitness function based on the reduction in the number of attacks is used. In
other words, if Rys¢ denotes the number of attacks with our trust model and
Ry orrust denotes the number of attacks without any trust model, then our fitness
function is;

ﬁtness = Rtrust/RnoTrust- (3)

If the generated individuals can mitigate the number of attacks, the value
of fitness function decreases and the success of the model increases. Thus, the
fitness function is aimed to be minimized in our genetic model. At the end of
the evolution, the most successful individual is selected as the solution.
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4 Experiments and Analysis

The experiment environment consists of two integrated modules. First one is
a file sharing simulation program implemented in Java language to asses the
evolved trust model in P2P environments against malicious attacks. The second
one is the ECJ 21 toolkit [30] for the GP implementation. It is integrated with the
simulation program to train the trust model. In the experiments, the population
and generation sizes are chosen as 100 and 300 respectively. The other parameters
are equal to the default parameters of the ECJ toolkit.

4.1 Simulation Module

The simulation module is adapted from the program used in [28]. Each simulation
takes 50.000 cycles, where each cycle represents 10 minutes of network activity.
There are 1000 peers in each simulation. Basically, peers interact with each
other for sharing a file and build a reputation according to their behaviors. At
the beginning of the simulation, peers are strangers to each other. When a peer
uploads a file to another peer, it becomes a neighbor of the peer. A neighbor is
preferred over a stranger if they are equally trustworthy.

Peers build an interaction history while downloading and uploading files.
If a peer intends to download a file, it gets the list of file providers. Then, it
calculates the trust values of these file providers using its own interaction history
and recommendations from its neighbors. Trust values are calculated based on
the formula generated by the genetic programming module using the features
and the fitness function explained in Section 3. If a peer has neighbors in the
file provider list, it prefers the one with the highest trust value. Otherwise, it
downloads the file from the stranger who has the highest trust value. At the
end of a download process, if the file provider uploads a virus infected or an
inauthentic file, it is marked as a malicious peer and is never interacted again.

4.2 GP Module

The GP module works in an integrated manner with the simulation module. It
trains our trust model against various attacker types and tries to find the best
individual in order to evaluate trust values of peers. In the training process, GP
creates individuals by using the features and the operators given in Section 3.1.
Each individual runs the file sharing simulation from start to finish. Reduction
in the number of attacks represents the success of an individual. When the best
individual is found, it is tested on various attacker models on the simulation
module. The general steps of the GP Module are listed in Algorithm 1.

4.3 The Problem

Generally, a P2P network consists of good peers and malicious peers (attacker).
A good peer always gives fair recommendations and uploads authentic files.
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Algorithm 1. How Gp Module Works

initialize population
while current generation <= maximum generation do
for all individuals in the current generation do
execute simulation
evaluate the fitness function
end for
apply genetic operators (selection, crossover, reproduction, mutation, etc.) to the individuals
create new population
end while

However, a malicious peer may upload inauthentic files or give unfair recom-
mendations to harm the system. Reducing the number of inauthentic/infected
file uploads and unfair recommendations is the aim of a trust management model.

In our simulation, malicious peers are considered to behave in two different
ways: naive and hypocritical. If malicious peers perform unaccompanied attacks
and do not aware of other malicious peers, they are called individual attackers.
Individual attackers can behave as described below:

— Naive: The attacker always uploads virus infected /inauthentic files and gives
unfair recommendations to others [31].

— Hypocritical: The attacker perform attacks by uploading inauthentic files or
giving unfair recommendations with x% probability. Otherwise, it acts like
a good peer [3,5].

If a group of peers know each other and attack to other peers as a team,
they are called collaborators. Collaborators always upload authentic files to each
other. If a good peer requests a recommendation from a collaborator about
another collaborator, the collaborator might give high recommendations unfairly
in order to improve the queried collaborator’s trust value. The types of attack
carried out by collaborators are be described as follows:

— Naive: Collaborators always upload virus infected/inauthentic files to good
peers and gives unfair recommendations to good peers.

— Hypocritical: Collaborators perform attacks by uploading inauthentic files to
good peers or giving unfair recommendations with x% probability. Other-
wise, it acts like a good peer.

4.4 Experiments

In the experiments, the model is trained for all types of individual attackers
firstly. Training is done with a network setup in which 10% of the peers is
malicious. The best results of 10 runs is chosen for each attack type. Then,
the trained model is tested with 10%, 30% and 50% malicious peers ratio in
the networks. During the experiments, the attack probability of hypocritical
attackers is chosen as 20% in all interactions. If a peer uploads a virus infected
or inauthentic file, it is counted as a file-based attack. Initially, the simulation is
executed without the trust model for each network setting in order to figure out
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Table 3. Success ratio of the trust model against individual attackers for the file-based
attacks

10%|30% |50%
Naive 83.8 |78.9 |73.6
Hypocritical |71.8 [57.7 [47.1

the number of attacks when a trust model does not exist. Then the simulations
are run with the evolved trust model. Success of the trust model is assessed by
the number of attacks prevented with the model.

Table 3 shows the success ratio of the evolved trust model against individual
attackers according to varying malicious peer populations in the network. The
model has a notable success against individual naive attackers. Since identifying
a naive attacker is easy after the first interaction, a high percentage of these
attacks can be prevented. Our model has a good success ratio for individual
hypocritical attackers, which is 71.8% in a network in which 10% of the peers is
malicious. In the network in which 50% of the peers is malicious, the trust model
could prevent nearly half of the attacks as shown in Table 3. In such extremely
malicious networks, this is a good success ratio for hypocritical attackers.

Convergence speed of the trust model is important to identify attacks in a
reasonable time. Figure 1 shows the decrement in the number of attacks by naive
and hypocritical individual attackers when the evolved trust model is used.

10% Malicious Individual Attackers
—o—Naive —a—Hypocritical
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Fig. 1. File-based attacks over time in a network consisting of 10% individual attackers

Unfair recommendations given by malicious peers are considered as
recommendation-based attacks. The evolved trust model has also good perfor-
mance on recommendation-based attacks. Figure 2 shows the decrement in the
recommendation-based attacks over time. In the model, if a peer intends to col-
lect recommendations about another peer, it firstly requests recommendations
from its trustworthy neighbors. Therefore, unfair recommendation rate is miti-
gated over time as peers gain more neighbors. However, unfair recommendations
do not drop as quickly as file-based attacks since determining an unfair recom-
mendation is not easy as determining an infected/inauthentic file.
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Fig. 2. Recommendation-based attacks over time in a network consisting of 10% indi-
vidual attackers

The second step of the experiments is done with collaborative attackers.
Like individual attackers, at first the model is trained against the collaborators,
and then tested on various malicious network setups. Collaborators attack to
other peers as a team and give fair recommendations to each other. The attack
probability of hypocritical attackers is chosen as 20% in all interactions in the
experiments. The team size of collaborators is set to 50 peers.

Table 4. Success ratio of the trust model against collaborators for the file-based attacks

10%|30%|50%
Naive 79.3 |75.1 |71.9

Hypocritical |61.7 [46.3 [39.5

Table 4 shows the success ratio of the trust model against collaborators in
networks consisting of varying malicious peer population. Naive collaborators
are identified by good peers after the first interaction. Hence they can not dis-
seminate high recommendations about each other and can not take advantage
of collaboration. The success ratio of preventing attacks in naive collaborators is
79.3% in a network in which 10% of the peers is malicious and, this performance
drops to only 71.9% even the ratio of malicious peers is increased to 50%. How-
ever, hypocritical collaborators are more effective than naive ones. Detection of
hypocritical collaborators is more difficult since they perform attacks intermit-
tently. A hypocritical collaborator can disseminate high recommendations about
its team mates before being identified by good peers. Since the collaborators help
each other in order to evade detection, their identifications become very difficult.
However, the trust model could still prevent 61.7% of file-based attacks carried
out by hypocritical collaborators in a network in which 10% of peers is malicious.
Figure 3 shows the number of file-based attacks over time in a network consist-
ing of 10% collaborators. The model decreases the number of effective attacks
carried out by naive and hypocritical collaborators dramatically.

Recommendation-based attacks carried out by collaborators are presented in
Figure 4. High recommendations given by collaborators unfairly are also counted



12 U.E. Tahta et al.

10% Malicious Collaborator Attackers

——Naive —e—Hypocitical

1200
800 \A

600
400
200

0

0 10000 20000 30000 40000 50000
Cycles

File-based Attacks

Fig. 3. File-based attacks over time in a network consisting of 10% collaborators
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Fig. 4. Recommendation-based attacks over time in a network consisting of 10% col-
laborators

as recommendation-based attacks. Collaboration increases the number of mis-
leading recommendations slightly. However, the trust model still mitigates the
number of recommendation-based attacks. It also prevents misleading recom-
mendations to increase over time.

5 Conclusion

This paper proposes a trust model evolved by using genetic programming. Trust
values of peers are calculated by a formula generated by this model. Malicious
and benign peers are distinguished from each other based on these trust values.
The experimental results show that the model could distinguish different types
of attacks from benign behavior of good peers successfully. Naive and hypocriti-
cal attacker models are studied with individual and collaborative behaviors. The
model is trained against these types of attacks and evaluated on various network
setups containing different ratio of malicious peers. Naive attackers are identi-
fied easily in both individual and collaborator scenarios. Hypocritical attackers
are more difficult to deal with and more successful when they collaborate. The
evolved trust model has decreased the number of file-based attacks in all scenar-
ios with promising success ratios. Recommendation-based attacks are mitigated
but not decreased as much as file-based attacks due to the difficulty of rec-
ognizing misleading recommendations. The evolved model showed that genetic
programming could be employed to build a trust model in peer-to-peer networks.
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Abstract. We investigate the Robust Multiperiod Network Design Prob-
lem, a generalization of the classical Capacitated Network Design Problem
that additionally considers multiple design periods and provides solutions
protected against traffic uncertainty. Given the intrinsic difficulty of the
problem, which proves challenging even for state-of-the art commercial
solvers, we propose a hybrid primal heuristic based on the combination of
ant colony optimization and an exact large neighborhood search. Compu-
tational experiments on a set of realistic instances from the SNDIib show
that our heuristic can find solutions of extremely good quality with low
optimality gap.

Keywords: Multiperiod Network Design - Traffic Uncertainty - Robust
Optimization + Multiband Robustness - Hybrid Heuristics

1 Introduction

The design of a telecommunication network can be essentially described as the
task of establishing the topology of the network and the technological features
(e.g., transmission capacity and rate) of its elements, namely nodes and links.
The dramatic growth that telecommunications have experienced over the last ten
years has greatly increased the complexity and difficulty of the corresponding
design problems. The growing need for taking into account data uncertainty,
such as that of traffic volumes, has made things even more complicated. In this
context, the traditional design approach of professionals, based on a combination
of trial-and-error and simulation, may lead to arbitrarily bad design solutions
and thus the need for optimization-oriented approaches has arisen.

In this paper, we focus on the development of a new Robust Optimization
model to tackle traffic uncertainty in a Multiperiod Network Design Problem
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(MP-NDP). This problem constitutes a natural extension of a classical network
design problem, in which we want to decide how to install capacity modules
in the network in order to route traffic flows of communications generated by
users. The extension implies the design over a time horizon made up of multi-
ple periods. Moreover, traffic uncertainty is taken into account to protect design
solutions against deviations of the traffic input data, that may compromise feasi-
bility and optimality of solutions. To the best of our knowledge, the (MP-NDP)
has received little attention and just a few works have investigated it (primarily,
[2] and [3]). These works point out the difficulty of solving multiperiod problems
already for just two periods and (easier) splittable-flow routing [2], and for a pure
routing problem in satellite communications [3]. Our direct and more recent com-
putational experience confirmed this behaviour, even for instances of moderate
size considering a low number of time periods and solved by a state-of-the-art
commercial mixed-integer programming solver.

In this work, our main original contributions are:

1. the first Robust Optimization model for Multiperiod Network Design. The
formulation is developed to tackle traffic uncertainty, modeling data uncer-
tainty by Multiband Robustness [4—6], a new model for Robust Optimization
recently introduced to refine the classical Bertsimas-Sim model [7];

2. a hybrid solution algorithm, based on the combination of an exact large
neighborhood search called RINS [8] with ant colony optimization [9];

3. computational experiments over a set of realistic instances derived from
SNDIlib, the Survivable Network Design Library [10], showing that our hybrid
algorithm is able to produce solutions of extremely high quality associated
with very small optimality gap.

The remainder of this paper is organized as follows: in Section 2, we review a
canonical network model for joint routing and capacity installation; in Section
3, we introduce the new formulation for Robust Multiperiod Network Design; in
Sections 4 and 5, we present our hybrid metaheuristic and computational results.

2 Capacitated Network Design

The Capacitated Network Design Problem (CNDP) can be described as follows:
given a network and a set of demands whose flows must be routed between
vertices of the network, we want to install capacities on network edges and
route the flows through the network, so that the capacity constraint of each
edge is respected and the total cost of installing capacity is minimized. The
CNDP has been a central and highly studied problem in Network Optimization,
that appears in a wide variety of real-world applications. For an exhaustive
introduction to the topic, we refer the reader to the well-known book [11].

The CNDP is commonly formalized in the following way: we are given 1) a
network represented by a graph G(V, E), where V is the set of vertices and E
the set of edges; 2) a set of commodities C, each associated with a traffic flow
d. to route from an origin s, to a destination t.; 3) a set of admissible paths P,
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for routing the flow of each commodity ¢ from s. to t.; 4) a cost 7, for installing
one module of capacity ¢ > 0 on edge e € E. Using this notation, we can model
the problem as an integer linear program:

min » " ve e (CNDP-IP)

ecE

Z Z de Tep < @ Ye ec FE (1)

ceC pEP.: e€Ep

chpzl ceC (2)

pEPe
Zep € {0,1} ceC,peP.
yeeZ+ BEE,

The problem uses two families of variables: the binary variables z., (path-
assignment variables) and the non-negative integer variables y. (capacity
variables). A path-assignment variable z., is equal to 1 if the entire flow of
a commodity ¢ € C' is routed through path p € P, and 0 otherwise. A capacity
variable y. represents instead the number of capacity modules installed on edge
e € E. The objective function minimizes the total cost of installation. Capac-
ity constraints (1) impose that the summation of all flows routed through an
edge e € F must not exceed the capacity installed on e (equal to the number of
installed modules represented by y. multiplied by the capacity ¢ granted by a
single module). Constraints (2) impose that flow of each commodity ¢ € C' must
be routed through a single path.

Remark 1. This is an unsplittable version of the CNDP, namely the traffic flow
of a commodity ¢ € C' cannot be split over multiple paths going from s, to t., but
must be routed on exactly one path. Moreover, the set of feasible routing paths
P, of each commodity is pre-established and constitutes an input of the problem.
This is in line with other works based on industrial cooperations (e.g., [12]) and
with our experience [1], in which a network operator typically considers just a few
paths that meet its own specific business and quality-of-service considerations.

3 Multiband-Robust Multiperiod Network Design

We introduce now a generalization of the CNDP, designing the network over mul-
tiple time periods and taking into account traffic uncertainty. The multiperiod
design requires the introduction of a time horizon made up of a set of elemen-
tary time periods T = {1,2,...,|T|}. From a modeling point of view, in the
optimization problem we simply need to add a new index t € T to the decision
variables, to represent routing and capacity installation decisions taken in each
period (we stress however that this greatly increases the size and complexity of
the problem).

Concerning traffic uncertainty, we assume that for each commodity ¢ € C the
demand d. is uncertain, i.e. its value is not known exactly, but lies in a known
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range. More specifically, we assume to know a nominal value of traffic d. and
maximum negative and positive deviations ¢ ,dF from it. The actual value d.

thus belongs to the interval: d. € [d.— 6., d.+ 6F].

Example 1 (traffic uncertainty). We are given two commodities ¢y, ce with
nominal traffic demands d., = 100 Mb, d., = 150 Mb and we know that these
values may deviate up to 10%. So the maximum negative and positive deviations
for ¢, ¢ are 6, = 05 = 10 Mb, o_, = d7, = 15 Mb, respectively. The actual
values of traffic are then d., € [90,110] Mb, d., € [135,165] Mb.

The presence of uncertain data in an optimization problem can be very tricky:
it is well-known that even small variations in the value of input data may make
an optimal solution heavily suboptimal, whereas feasible solutions may reveal
to be infeasible and thus completely useless in practice [13]. As a consequence,
in our case we cannot optimize just using the nominal demand values d., but
we must take into account the possibility that demands will vary in the ranges
[de — 67, d.+ 0F] that we have characterized. We illustrate the bad effects of
input data deviations by providing an example.

Example 2 (infeasibility caused by deviations). Consider again the com-
modities of Example 1 and suppose that in some link we have installed exactly
the capacity to handle the sum of their nominal values (i.e. we have installed
100+150 Mb of capacity). This capacity dimensioning neglects that the demands
may deviate up to 10%. It is sufficient that one demand increases, while the other
remains the same to violate the capacity constraint of the link, making the design
solution infeasible in practice.

Over the years, many methods such as Stochastic Programming and Robust
Optimization have been proposed in literature for dealing with data uncertainty
in optimization problems. We refer the reader to [13] for a general discussion
about data uncertainty and its effects and for an overview of the most studied
methodologies to deal with them.

In this paper, we tackle data uncertainty by Robust Optimization (RO), a
methodology that has gained a lot of attention over the last decade [7,13]. RO
essentially takes into account data uncertainty by including additional hard con-
straints in the optimization problem. These constraints eliminate those solutions
that are not protected against deviations of the input data from their nominal
values. So a robust optimization problem considers only those solutions that are
completely protected against specified data deviations. The data deviations that
are considered are specified through a so-called uncertainty set. More formally,
suppose that we are given a generic linear program:

v=max ¢z with z € F={Az <b, >0}
and that the coefficient matrix A is uncertain, i.e. we do not know exactly the
value of its entries. However, we are able to identify a family A of coefficient
matrices that represent possible valorizations of the uncertain matrix A, i.e.
A € A. This family represents the uncertainty set of the robust problem. Then
we can produce a robust optimal solution, i.e. a solution that is protected against
data deviations, by considering the robust counterpart of the original problem:
R =max ¢z with te R={Az<b VAc A z>0}.
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The feasible set R of the robust counterpart contains only those solutions that
are feasible for all the coefficient matrices in the uncertainty set A. Therefore,
R is a subset of the feasible set of the original problem, i.e. R C F. The choice
of the coeflicient matrices included in A should reflect the risk aversion of the
decision maker.

Providing protection entails the so-called price of robustness, namely a dete-
rioration of the optimal value of the robust counterpart w.r.t. the optimal value
of the original problems (i.e., v®® < v). This is a consequence of restricting the
feasible set to only robust solutions. The price of robustness reflects the features
of the uncertainty set: uncertainty sets expressing higher risk aversion will take
into account more severe and unlikely deviations, leading to higher protection
but also higher price of robustness; conversely, uncertainty sets expressing risky
attitudes will tend to neglect improbable deviations, offering less protection but
also a reduced price of robustness.

Example 3 (protection against deviations). Following example 2, a simple
way to grant protection would be to install sufficient capacity to deal with the
peak deviations of each commodity. So we should install 1104165 Mb of capacity.

3.1 A Robust Optimization Model for Traffic-Uncertain
Multiperiod Network Design

If we denote by D the uncertainty set associated with the demands of the com-
modities, we can finally state the general form of the robust counterpart of the
multiperiod network design problem as follows:

min Z Z Yet Yet

ecEteT
t
Z Z Jct m¢:pt + DEVct(x7D) S ¢Zye7' ec E,t S T (3)
ceC peEP.:e€p T=1
Z:ﬂcptzl ceCiteT
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Besides the addition of a new index ¢ € T in the decision variables to represent
decisions taken in each time period, the modifications of the model concentrates
in the robust capacity constraints (3). Each of these constraints considers: 1) the
sum of nominal traffic demands d.; of commodities using the edge e in period
t; 2) the overall maximum positive deviation DEV,.(z,D) that demands may
experience on edge e in period ¢t and are allowed by the uncertainty set D for
a routing vector x; 3) the overall capacity installed in e since the first period
of the horizon (so we sum up the integer variables y., from period 1 to ¢ and
multiply them by the basic capacity ¢ of a module).

Structuring the Uncertainty Set D. We now have a general definition of the
robust counterpart of the multiperiod problem. A question that is still open is
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how to structure the uncertainty set D and deciding which deviations from the
nominal traffic values d; to take into account to produce robust solutions.

To characterize D, we use Multiband Robustness, a new model for Robust Opti-
mization recently introduced to refine and generalize the classical I'-robustness
model by Bertsimas and Sim [7], while maintaining its accessibility and tractabil-
ity. For a detailed explanation of Multiband Robustness we refer the reader to
[4-6]. Here we directly discuss the adaption of the model to our specific case.

According to the multiband framework, we build a multiband uncertainty set as
follows:

1. for each commodity ¢ € C' and time period ¢t € T, we know the nominal value
de; of the traffic coefficient and maximum negative and positive deviations
8.4, 04, from it. The actual value d.; is then such that de; € [det—0,;, det+62];

2. the overall deviation range [de; — 6., de; + 6] of each coefficient d?, is par-
titioned into K bands, defined on the basis of K deviation values:

—00 <6, =085 <.i<ot < 00 =0 < 0L < <K =6 < too;

3. through these deviation values, K deviation bands are defined, namely: a set
of positive deviation bands k € {1,..., KT} and a set of negative deviation
bands k € {K~ +1,...,—1,0}, such that a band k € {K~ +1,..., KT}
corresponds to the range (5?{1, 55], and band £ = K~ corresponds to the
single value 05 ;

4. for each capacity constraint (3) defined for an edge e € E, period t € T
and band k € K, a value 6. > 0 is introduced to represent the number
of traffic coefficients of the constraint whose value deviates in band k. Of
course, fq, > 0 must be less or equal than the number of traffic coefficients
that are present in the constraint.

Given the previous characterization of the multiband uncertainty set, the maxi-
mum positive deviation of traffic DEV,,(x, D) of a constraint (3) can be found by
solving a binary linear program (see [4] for details). Since the polytope associated
with the binary program is shown to be integral, by considering its relaxation
and by exploiting strong duality, it is possible to reformulate the original trivial
robust counterpart as the following linear and compact robust counterpart (we
refer the reader to [4] for a formal proof of the result):

min » > " Yer yer (Rob-MP-CNDP)
ecEteT

Z Z Jct Tept +

ceC pEP.: e€Ep

t
+Zeetkwetk+z Z Zecpt§¢zyer ec E,teT
T=1

keEK c€C peP.: ecp
Wetk + Zecpt = Octk Tept e€c E,ceC,pc P.:ecp,
teT,ke K (4)
Werr € R ecEteTke K (5)
Zeept > 0 ecE,ceCpeP.:eepteT

(6)
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Zxcptzl ceC,teT

pEP:

ZTept € {0,1} ceCpeP.,teT
Yet € Ly ecE.teT,

This formulation includes additional constraints (4) and variables (5),(6) which
are derived from the dualization operation that allow to linearly reformulate the
original (non-linear) problem including the term DEV,.(z, D) in each capacity
constraint (see [4] for details).

In principle, we can get a robust optimal solution for (Rob-MP-CNDP) by
using use any commercial mixed-integer programming software. However, as
showed in the computational experiment section, getting feasible solutions to
this problem may be a challenge even for a state-of-the-art solver like IBM
ILOG CPLEX (http://www-01.ibm.com). In the next section, we thus propose
a hybrid exact-ant colony primal heuristic that is able to find solutions of very
high quality.

4 A Hybrid Primal Heuristic for the Rob-MP-CNDP

Attracted by the effectiveness of MIP-based and bio-inspired heuristics in hard
network design problems (see, for example [9,14-16]), we present an original
hybrid primal heuristic based on the combination of Ant Colony Optimization
(ACO) and an exact large neighbourhood search. ACO is a metaheuristic origi-
nally proposed by Dorigo and colleagues for combinatorial optimization [17] and
later extended to integer and continuous problems (e.g., [9]). Over the years sev-
eral refinements of the basic algorithm have been proposed (e.g., [18,19]). ACO
was inspired by the behaviour of ants searching for food and is essentially based
on the definition of a cycle where a number of feasible solutions are iteratively
built in parallel, using information about solutions built in previous executions
of the cycle. An ACO algorithm presents the following general structure:

1. UNTIL an arrest condition is reached DO (Gen-ACO)
(a) Ant-based solution construction
(b) Pheromone trail update

2. Daemon actions

We now proceed to detail each phase of the previous sketch for our hybrid
ACO-exact algorithm for the (Rob-MP-CNDP). Our approach is hybrid since
the canonical ACO construction phase is followed by a daemon-action phase,
based on an exact large neighborhood search formulated as a mixed-integer linear
program.

Ant-Based Solution Construction. In the step 1 of the cycle, m > 0 ants are
defined and each ant iteratively builds a feasible solution for the optimization
problem. At every iteration, the ant is in a state corresponding with a partial
solution of the problem and can further complete the solution by making a move
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and thus fixing the value of a new non-fixed variable. The move is chosen prob-
abilistically, evaluating pheromone trail values. For a more detailed description
of the elements and actions of step 1, we refer the reader to the paper [19] by
Maniezzo. This paper presents ANTS, an improved ANT algorithm that we have
taken as reference for our work. We considered ANTS particularly attractive as
it proposes a series of improvements for ACO that allow to better exploit polyhe-
dral information about the problem. Furthermore, ANTS is based on a reduced
number of parameters and uses more efficient mathematical operations.

Before describing how our ANTS implementation is structured, we make
some preliminary considerations. The formulation (Rob-MP-CNDP) is based on
four families of variables: 1) the path assignment variables z.,; 2) the capacity
variables ye; 3-4) the auxiliary variables weik, Zecps coming from robust dual-
ization. Though we have to deal with four families, we can notice that routing
decisions taken over the time horizon entirely determine the capacity installation
of minimum cost. Indeed, once the values of all path assignment variables are
fixed, the routing is completely established and the worst traffic deviation term
DEV,,(z,D) can be efficiently derived without the auxiliary variables Weik, Zecpt
[4,5]. So we can derive the total traffic D.; sent over an edge e in period ¢ in
the worst case. The minimum cost installation can then be derived through a

sequential evaluation from period 1 to period T, keeping in mind that we must

have [%—‘ capacity modules on e in ¢t to accommodate the traffic. As a conse-

quence, in the ant-construction phase we can limit our attention to the binary
assignment variables and we introduce the concept of routing state.

Definition 1. Routing state (RS): let P = J,cc P and let R € C x P x T
be the subset of triples (c,p,t) representing the assignment of path p € P, to
commodity c in period t € T. A routing state is an assignment of paths to a
subset of commodities in a subset of time periods which excludes that multiple
paths are assigned to a single commodity. Formally:

RSCR: E(Cl,pl,t1)7(02,p2,t2) €ERS: co=co N p1,p2 € ]Dc1 Nty =ty.

We say that a routing state RS is complete when it specifies the path used by
each commodity in each time period (thus |RS| = |C||T|). Otherwise the RS is
called partial and we have |RS| < |C||T)).

In the ANTS algorithm that we propose, we decided to assign paths con-
sidering time periods and commodities in a pre-established order. Specifically,
we establish the routing in each time period separately, starting from ¢ = 1
and continuing up to ¢t = |T|, and in each time period commodities are sorted
in descending order w.r.t. their nominal traffic demand. Formally, this can be
sketched through the following cycle that builds a complete routing state:

FOR ¢ := 1 TO |T| DO
1. sort ¢ € C in descending order of dc;.
2. FOR (sorted ¢ € C) DO
(a) assign a single path p € P. to c;
END FOR
END FOR
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For an iteration (¢, c) of the above nested cycles, the assignment of a path to
a commodity corresponds with an ant moving from a partial routing state R.S;
to a partial routing state RS; such that: RS; = RS; U{(c,p,t)} withpe P, .
We note that by the definitions of routing state a sequence of moves is actually
a sequence of fixings of decision variables, as done in [19].

The probability that an ant & moves from a routing state ¢ to a more complete
routing state j, chosen among a set of feasible routing states, is defined by

the improved formula of [19]: pf; = Zfa Tgt(flJrg) Z)J o7 » Where a € [0,1] is
er X Ti i

a parameter assessing the relative importance of trail and attractiveness. As
discussed in [19], the trail values 7;; and the attractiveness values 7;; should
be provided by suitable lower bounds of the considered optimization problem.
In our particular case: 1) 7;; is derived from the values of the variables in the
solution associated with the linear relaxation of the robust counterpart (Rob-
MP-CNDP); 2) n;; is equal to the optimal solution of the linear relaxation of
the nominal multiperiod network design problem, i.e. the problem that does not
consider the traffic uncertainty. The optimum of this problem can be quickly
computed and its computation becomes faster as more variables are fixed.

Daemon Actions: Relaxation Induced Neighborhood Search. At the
end of the ant-construction phase, we try to improve the quality of the feasible
solution found by executing an exact local search in a large neighborhood. In
particular, we adopt a modified relazation induced neighborhood search (RINS)
(see [8] for an exhaustive description of the method). Let (Z, ) be a feasible
solution of (Rob-MP-CNDP) found by an ant and (z%%,y%%) be an optimal
(continuous) solution of the linear relaxation of (Rob-MP-CNDP) Moreover,
let (Z,9);, (zIF, yLf); denote the j-th component of the vectors. Our modified
RINS (mod-RINS) solves a sub-problem of (Rob-MP-CNDP) where:

1. we fix the variables whose value in (z,7) and (z©f,y"®) differs of at most

€>0,1ie.:
(#,5); =0 N @Ry ) <e = (a,y), =0
(z,9);=1n @y >1-c = (z,9);=1
2. impose a solution time limit of 7.

A time limit is imposed since the subproblem may be difficult to solve, so the
exploration of the neighbourhood may need to be truncated. Note that in point
1 we generalize the fixing rule of RINS, in which € = 0.

Pheromone Trail Update. At the end of each ant-construction phase h, the
pheromone trails of a move 7;;(h — 1) are updated according to an improved
formula proposed in [19]:

Tij(h) = Tij(h— 1) + ZT.Z With Tikj = Tij(O) . (1 — %) ) (7)
k=1

where the values 7;;(0) and LB are set by using the linear relaxation of (Rob-MP-
CNDP): 7;;(0) is set equal to the values of the corresponding optimal decision

variables and LB equal to the optimal value of the relaxation. Additionally, z*,,.,.
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is the value of the solution built by ant k£ and Z is the moving average of the
values of the last ¢ feasible solutions built. As noticed in [19], adopting formula
(7) allows to replace the pheromone evaporation factor, a tricky parameter, with
the moving average 1 whose setting has been shown to be much less critical.

Algorithm 1 details the structure of our original hybrid exact-ACO algorithm.
The algorithm includes an outer loop repeated until a time limit is reached. At
each execution of the loop, an inner loop defines m ants to build the solutions.
Pheromone trail updates are done at the end of each execution of the inner loop.
Once the ant construction phase is over, mod-RINS is applied so to try to get
an improvement.

Algorithm 1. Hybrid ACO-exact algorithm for (Rob-MP-CNDP)

1. Compute the linear relaxation of (Rob-MP-CNDP) and initialize the values of
Tij (O) by it.
2. UNTIL time limit is reached DO
(a) FOR p:=1TO m DO
i. build a complete routing state;
ii. derive a complete feasible solution for (Rob-MP-CNDP);
END FOR
(b) Update 7;(t) according to (7).
3. apply mod-RINS to the best feasible solution.

5 Experimental Results

We tested the performance of our hybrid algorithm on a set of 15 instances based
on realistic network topologies from the SNDIib [10] defined in collaboration
with industrial partners from former and ongoing projects. The experiments
were performed on a machine with a 2.40 GHz quad-core processor and 16 GB
of RAM and using IBM ILOG CPLEX 12.4. All the instances led to very large
and hard to solve robust multiperiod network design problems. We observed that
even a state-of-the-art solver like CPLEX had troubles identifying good feasible
solutions and in all the cases the final optimality gap was over 90%. In contrast,
as clear from Table 1, in most cases our hybrid primal heuristic was able to find
very high quality solutions associated with very low optimality gaps.

After executing preliminary tests, we found that an effective setting of the
parameters of the heuristic was: a = 0.5 (balancing attractiveness and trail
level), m = 3 ants, ¥ = m (width of the moving average equal to the number
of ants), € = 0.1 (tolerance of fixing in mod-RINS), " = 20 minutes (time
limit in mod-RINS). The overall time limit for the execution of the heuristic
was b hours. The same time limit was imposed on CPLEX when used to solve
the robust counterpart (Rob-MP-CNDP). Each commodity admits 5 feasible
paths, ie. |P.| = 5,Ve € C and 3 positive deviations bands including the null
deviation band. For each instance, in Table 1 we report its ID and features
(IV| = no. vertices, |E| = no. edges, |C| = no. commodities, |T| = no. time
periods). Moreover, we show the performance of the hybrid solution approach,
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that is denoted by the three measures ¢*(ACO), ¢*(ACO+RINS), gapAR%,
which represent the value of the best solution found by pure ACO, the value of
the best solution found by ACO followed by RINS and the corresponding final
optimality gap). We also show the performance of CPLEX, which is denoted by
measures ¢*(IP) and gapIP% representing the value of the best solution found
and the corresponding final optimality gap.

The best solutions found by our hybrid algorithm have in most cases a value
that is at least one order of magnitude better than those found by CPLEX
(2700% better on average). The results are of very high quality and, given the
very low optimality gap, we can suppose that some of these solutions are actually
optimal. We notice that in most cases executing RINS after the ant-construction
phase can remarkably improve the value of the best solution found by the ants.

Table 1. Experimental results

ID [VIE| |C] |T| c¢"(ACO) ¢*(ACO+RINS) gapAR% c*(IP) gapIP%

5 1.16E07 5.68E06 29.8 1.37E08 97.1

Germany50 50 88 662 7  2.12E07 9.02E6 15.5 3.48E08 97.8
10  6.66E07 5.75E08 96.2 1.25E09 98.2

5  5.89E06 2.34E06 1.3 9.52E07 97.6

Pioro40 40 89 780 7  1.42E07 5.10E06 3.1  2.40E08 97.9
10  4.78E07 1.62E07 0.4  8.45E08 98.1

5 6.41E06 3.04E06 23.0 6.01E07 96.1

Norway 27 51 702 7  1.44E07 5.73E06 12.8  1.47E08 96.6
10  4.91E07 1.74E07 7.7  5.15E08 96.9

5 1.55E06 6.04E05 2.2 1.74E07 96.6

Geant 22 36 462 7  3.61E06 1.29E06 1.6 4.32E07 97.1
10 1.23E07 4.30E06 0.5  1.24E08 96.5

5  2.55E05 1.02E05 4.9  1.50E06 93.5

France 25 45 300 7  5.9TE05 2.18E05 2.2 3.01E06 92.9
10  2.00E06 6.81E05 1.0  1.62E07 95.8

6 Conclusion and Future Work

We studied a Robust Optimization model for the Multiperiod Network Design
Problem to tackle uncertainty of traffic demands. Robust solutions are determin-
istically protected against deviations of input traffic data, that may compromise
the quality of produced solutions. The increase in complexity and dimension
of the problem caused by considering multiple periods and robustness prevents
state-of-the-art commercial solvers from finding good quality solutions, so we
have defined a hybrid heuristic based on the combination of ant colony opti-
mization and an exact large neighborhood search. Computational experiments
on a set of realistic instances from the SNDIib showed that our heuristic can find
solutions of extremely good quality. As future work, we plan to refine the heuris-
tic (for example, by improving the ant-construction phase) and to integrate it
with a branch-and-cut algorithm to enhance its computational performance.
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Abstract. Nowadays, wireless sensor networks (WSNs) are widely used
in more and more fields of application. However, there are some impor-
tant shortcomings which have not been solved yet in the current lit-
erature. This paper focuses on how to add relay nodes to previously
established static WSNs with the purpose of optimizing three important
factors: energy consumption, average coverage and network reliability. As
this is an NP-hard multiobjective optimization problem, we consider two
well-known genetic algorithms (NSGA-II and SPEA2) and a multiobjec-
tive approach of the variable neighborhood search algorithm (MO-VNS).
These metaheuristics are used to solve the problem from a freely available
data set, analyzing all the results obtained by considering two multiob-
jective quality indicators (hypervolume and set coverage). We conclude
that MO-VNS provides better performance on average than the standard
algorithms NSGA-II and SPEA2.

Keywords: Coverage * Energy efficiency - Multiobjective optimization -
NSGA-IT - SPEA2 - Relay node - Reliability + VNS - Wireless sensor
network

1 Introduction

At the moment, Wireless Sensor Networks (WSNs) are one of the most emerging
wireless technologies. They are applied in many fields, such as precision agricul-
ture, industrial control, robotic, rescue operations or forest fire detection [18].

A traditional WSN is composed of a set of sensors capturing information (i.e.
physical variables), and a sink node collecting all this information [4]. There are
some important factors that encourage the use of WSNs, where for other tech-
nologies the deployment of the network would be more expensive or impossible.
Some of them are the use of power-autonomous low-cost devices and the absence
of wires. However, WSNs also have important shortcomings affecting important
factors like energy costs and Quality of Service (QoS).
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Because of sensors are often powered by batteries, WSNs are particulary
sensitive to energy expenditure. The sensors send all the information captured
to the collector node, implying an energy cost. In a star topology, this energy
consumption is similar in all the sensors. However, in a multi-hop topology is
habitual the existence of bottlenecks: some sensors are subject to a higher energy
cost. These bottlenecks adversely affect the behavior of the network. With the
aim of avoiding this situation, a new type of device specialized in communication
tasks called router or relay node was added to WSNs recently [16].

The efficient design of WSNs is defined in the literature as an NP-hard
optimization problem [22]. Consequently, non-conventional techniques are often
used, such as heuristics and metaheuristics. Heuristics are techniques designed to
solve an specific problem. Metaheuristics are procedures to solve very general
types of problems. We find two main lines of research for WSNs, works optimizing
traditional WSNs, and works adding relay nodes to traditional WSNs, the so-
called Relay node Placement Problem (RNPP). Taking the first approach, there
are some relevant contributions using heuristics. Cardei et el. [1] split WSNs into
disjoint set of sensors, deciding which must be active to optimize the network
lifetime. Cheng et al [2] assigned different power transmission levels to the sen-
sors to reduce the energy consumption. Other authors considered metaheuristics
from the Evolutionary Computation (EC') for the same purpose. In this line,
Konstantinidis and Yang assigned power transmission levels to the sensors as
n [11], but optimizing network lifetime and coverage. Hu et al. [10] maximized
the network lifetime splitting WSNs (as do [1]). However, this research line has
two main shortcomings. Firstly, it is habitual the use of redundant sensors to
maximize the network lifetime, implying costly networks. Secondly, network size
is limited because of more sensors implies a higher energy cost.

The works taking the second approach try to overcome these shortcomings
by adding routers. Beginning with heuristics, Wang et al. [22] considered routers
with processing limitations to optimize the energy cost and Han et al. [9] opti-
mized the fault-tolerance. On the other hand, other authors considered EC.
Perez et al. [19] optimized the number of routers and the energy expenditure
and Zhao and Chen [23] optimized both average path length and energy cost.

Our work follows this second line of research. We add relay nodes to pre-
viously established static WSNs in order to optimize three important factors:
average energy consumption, average coverage and network reliability. The fol-
lowing contributions are presented in the curse of this paper:

— The three-objective approach for the RNPP is solved by using three different
metaheuristics: two well-known genetic algorithms NSGA-II [6] and SPEA2
[24], and a multiobjective version of the Variable Neighborhood Search algo-
rithm (MO-VNS) [8].

— All the results obtained are analyzed in depth thought a widely recognized
statistical methodology. Using as quality indicators two multiobjective met-
rics: hypervolume and set coverage.
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Fig. 1. Network definition considered in the RNPP

— In the current literature, some papers use randomly generated data set or
non-public ones. In this work, we consider a freely available data set, implying
that this work can be replicated and improved by other authors.

The remainder of this paper is structured as follows. In Section 2, a formal state-
ment of the RNPP is provided. Algorithms used appear in Section 3. Experi-
mental results are discussed in Section 4. Finally, our concluding remarks are
left for Section 5.

2 A Realistic Approach for the Relay Node Placement
Problem

The WSN considered in the RNPP is composed of three types of wireless static
devices placed on the same 2D-surface of size D, x D, a sink node (also called
collector node), M sensors and N routers or relay nodes (see Fig. 1). Each
sensor obtains information about the environment with a sensibility radius R
on a regular basis. This information is sent to the sink node, being this node the
only connection point of the WSN to the outside. The routers only relay all the
received information to the collector node. All the devices communicate among
them with a same communication radius R.. The routers and the collector node
have an unlimited power supply, and the sensors are powered by batteries. Thus,
a sensor is alive if its battery is not exhausted.

The routing protocol used by sensors and routers is the same. It is based on
the minimum-distance path between devices provided by Dijkstra’s algorithm
[3]. In addition, we consider a perfect synchronization and a perfect medium
access, ensuring that there are no collisions among devices.

Let C and S, be the collector node and the set of routers, respectively,
and let Ss(t) be the set of alive sensors at time t. With the aim of modeling
the energy expenditure suffered by the sensors, the energy model proposed by
A. Konstantinidis et al. [11] is considered. Then, according to this model, the
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transmission power needed by a sensor i € S¢(t) to reach another device j €
Ss(t) U S, UC at time t is given by

P(t)=p-d;  t>0, (1)

where 3 > 0 is the transmission quality parameter, d; ; is the Euclidean distance
between ¢ and j, and « > 0 is the path loss exponent. Thus, the residual energy
of the sensor ¢ at time ¢ is given by

Ei(t) = Ei(t = 1) = [(ri(t) + 1) - Pi(t) -amp - K], >0, (2)

where 7;(t) is the number of packets that the sensor i receives and relays to the
collector node at time ¢, the 4+1 term is the information packet that the sensor
i captures at this time and sends, amp is the energy consumption per bit of the
power amplifier, and K is the information packet size. Initially, all the sensors
start with the same energy charge I EC in their batteries. Hence,

Ei(t)=IEC Vi€ Sy(t), t=0. (3)

When the residual energy of a sensor equals 0, the device cannot capture more
information or be linked again. Following this energy model, we assume the energy
expenditure depends only on the most expensive task: the sending. The receiving,
processing and sensing tasks are considered negligible.

The network lifetime (LF) is an important concept in this type of network.
It is the amount of time units over which a WSN is able to provide enough
information about its environment. For this purpose, a coverage threshold (C'V)
is often used. If the coverage provided by the alive sensors is lower than C'V, we
consider that the network lifetime has come to its end.

In a previous work two important factors were optimized [15]: average energy
consumption and average coverage . Such as in [14], in this paper we include a
third factor which provides a better realism to this problem definition: network
reliability. These three factors are defined as:

— Average energy consumption(AEC, to minimize): It is the average energy
expenditure of the sensors over LF' (in Joules), that is

R Ei(t—1) — E;(t
fi=LEH) 2 ( : |ss)<t>| ”) ’ @

t=14cS,(t)

where |S,(t)] is the cardinal of the set S,(t).

— Average coverage(AC, to maximize): It is the percentage of the surface area
covered by the sensors over LF. There are two main ways to obtain this
value in the literature [21]. Some authors consider that a sensor covers a
circumference of radius Rs. Hence the global coverage is the union of the
M areas. Other authors place a matrix of binary demand points on the
surface, where a demand point equals 1 if there is some alive sensor at a
distance lower than R, and 0 otherwise. Finally the activated points are
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counted. We consider the second approach. Although the first one is a little
bit accurate, the second one is less hard to compute. Thus, AC' is given by

LF [D.] fDﬂ
_ t
=LETHD D) ( %ﬂ) ! )

t=1 z=1 y=1

where Rg ,(t) is the demand point placed at the coordinates (x,y) of the
matrix of [D,| x [D,] binary demand points at time ¢.

— Network reliability(N R, to maximize): It is the average network fault-
tolerance, showing the probability that the sensors successfully send infor-
mation to the sink node. Let Re; be the reliability of the sensor i defined in
[5] as

P
Re;=1-[J1—(@1— Err)), (6)
I=1
where P is the number of disjoint paths between i and the sink node given
by Suurballe’s Algorithm [20], k; is the number of hops in the I-th disjoint
path, and Err is the local channel error. Thus, NR is defined as

fa= > (?;) t=0. (7)

1€8s(t)

To summarize, the RNPP is defined as an NP-hard multiobjective optimiza-
tion problem. The objective is to place N routers to optimize a traditional WSN
defined by the parameters D,, D,, Rs, R, IEC, K, CV, «, 3, amp, Err and
the positions of the collector node and the M sensors.

3 Multiobjective Optimization: The Algorithms Used

As stated before, the RNPP is an NP-hard optimization problem. This type of
problem is solved through approximated techniques. Accordingly, we consider
three different metaheuristics. NSGA-IT and SPEA2 belong to genetic algo-
rithms, a subtype of evolutionary algorithm characterized by encoding their
individuals as chromosomes. An individual is a possible solution to the opti-
mization problem. The remainder is a trajectory algorithm, solving methods
whose search process follows a trajectory in the search space.

NSGA-II uses two populations P; and Q; of the same size PS. P; saves the
parents of generation ¢, and ); saves the offspring generated by individuals in
P;. Initially, P; is randomly generated and ; is empty. So long as the stop
condition is not reached, both populations are combined in a new set R; of
size 2PS. Then, according to both rank and crowding measures, the best PS
solutions of R; are inserted into the new parent population P;;;. Next, a new
Q41 is generated based on P;11. To this end, and so long as Q41 is not filled,
a pair of individuals are selected from P.;; though binary tournament method.
Then, a new individual is generated and inserted into Q¢4 through crossover
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Algorithm 1. MO-VNS with perturbation mechanism

1: add a random solution to the emply population P,
2: generate the set of neighborhood structures Ng
3: while not stop condition do

4 while there are solutions non — used during the search in P, do

5 a «— randomly pick a non — used solution from P,

6: Mgy < randomly pick a neighborhood structure,k € 1,..., kmaax, ngs, € Ny
7 while k <= kmao do

8: a < generate a neighborhood solution of a in ns, ,marking a as used
9: add a to P, and remove all the dominated solutions

10: if a € P, then

11: k—1landa+<—a

12: else

13: kEe—k+1

14: end if

15: end while

16: end while

17: per form perturbation in P, to avoid local minima

18: reset all the marks of P,

19: end while

and mutation operators,. As crossover operator, we consider the usual one-point
crossover. As mutation operator, we assume a greedy strategy: router coordinates
are randomly changed, but only changes that provide a better individual are
accepted. The same encoding is used for the three algorithms. A chromosome is
a 2D-coordinate list of M routers (see Fig. 1).

SPEA2 uses an auxiliary population P, where the best solutions are saved
along generations, and a regular population P; with sizes PS and PS respectively.
Initially, P; is randomly generated and P, is empty. So long as the stop condition
is not reached, the fitness value for each individual in P, U P; is obtained. This
fitness is based on the Pareto dominance concept and additional density infor-
mation. The best solutions according to this fitness are inserted into the new
P,;. Next, a new P, is generated based on P;1, using the binary tournament,
mutation and crossover strategies as discussed for NSGA-II.

MO-VNS performs local searches by using neighborhood structures. Let a
neighborhood structure be the maximum displacement that a router experiences
during the local search. Thus, the set of neighborhood structures Ny is given by

min(Dy, Dy) x k
N, = {nsk ER /ng, = T km; } Ny, < Migyoyrs (8)
for k = 1,..., kmaz, Where kpq. is the number of neighborhood structures,

dv is a factor which delimites the displacement, and min(D,, D,) provides the
minimum value between D, and D,,.

As outlined in Algorithm 1, MO-VNS uses a population P, where only non-
dominated individuals are kept. Each individual in P, has a flag which deter-
mines if the solution was used during the search. Initially, a random solution
is added to P, (line 1). Then, so long as the stop condition is not reached, a
non-used solution a € P, and a neighborhood structure ns, € N, are randomly
selected (lines 5-6). Next, a new solution is generated through a local search
using a € P, as base solution (line 8), marking a € P, as used. The local search



A Trajectory-Based Heuristic to Solve a Three-Objective Optimization 33

Table 1. Instances used in this paper Table 3. Parametric sweep

Instance D.xD, M HO_AEC HO_AC HO_-NR NSGA-IL
100x100_15.30 100x100 15 0.1091 89.24% 95.67% Parameter Value Range
200x200_15.30  200x200 57 0.2791 87.10% 93.23% Mutation 0.80 0.05,0.10,0.15,...,0.95
300x300_15_30  300x300 128 0.4225 76.44% 85.28% Crossover 0.80 0.05,0.10,0.15,...,0.95
SPEA2
Table 2. Hypervolume reference points Parameter Value Range
Mutation 0.70 0.05,0.10,0.15,...,0.95
Tnst T ARC RefAc i NE Crossover 0.60 0.05,0.10,0.15,...,0.95
nstance v ef-. F ef_ . ef- v MO-VNS
e e e M T
X _1O . B . . B o L0 y N
200x200-15_30  0.10 0.30 1.00 0.60 1.00 0.50 glutatlon 01100 0'%540%160%13"”’?495
300x300-.15_30  0.04 0.50 1.00 0.60 1.00 0.50 maz 14,5,6,7.8,. ...,
e i dv 2 1,15335335....65

is given by

Ng,

RaZZRaz"F( 5

— mnd(nsk)) ng, € N5, k€l,... knas, (9)

for z=1,...,N, where R,_ and R;_ are the routers placed on the z-th gene of
the solutions a and a respectively, and rand(ns, ) is a random number between
0 and ng, . Next, the new solution is added to P,, removing all the dominated
solutions (line 9). If a € P,, the local search provided a good solution, and then
the local search is repeated again using a k value of 1 and taking a as base
solution (line 11). Otherwise, k is increased, so long as k takes the maximum
value kpqz (line 13). Once all the solutions are explored, the marks are reset, and
then all the individuals are eligible for a new selection again (line 18). Before
starting the search process again, a perturbation mechanism is performed to
avoid local minima (line 17). To this end, the greedy mutation operator discussed
for NSGA-II and SPEA2 is used for each solution in P,.

4 Experimental Methodology

As stated before, non-public data set was found that fit this problem definition.
Hence, in order to study the performance of the metaheuristics, we consider a
data set defined by ourselves in [13]. This data set is composed of three tradi-
tional WSNs (a set of sensors and a collector node). The number of sensors is
the minimum value to cover the whole surface, being placed by a monoobjective
genetic algorithm optimizing the coverage offered by the sensors (see Table 1).
The collector node is placed in the center of the scenario. We assume the fol-
lowing network parameters: R, = 30m and R; = 15m from [17], K = 128 K B,
CV = 70%, Err = 10%, and the energy parameters EC = 5J, a =2, =1
and amp = 100pJ/bit/m? from [12]. In a previous work [15], two different R,
values were assumed, 30 and 60 meters. However, it makes no sense to consider
R, = 60m for our problem definition, since the network reliability is almost
100% for all the cases.

This data set is optimized by adding relay nodes. We assume the addition
of these devices increases the network cost. Hence, we decide not to include
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Table 4. Hypervolume and standard deviation for each algorithm and test case

NSGA-II (Hyp %, std.dev)
Test case Evaluations (Stop condition)
Instance (routers) 50 000 100 000 200 000 300 000 400 000

100x100_15_30(2) 41.01%, 0.0030 41.25%, 0.0024 41.47%, 0.0002 41.48%, 0.0001 41.48%, 0.0000
100x100-15_30(3 53.54%, 0.0050 54.15%, 0.0018 54.46%, 0.0019 54.56%, 0.0011 54.63%, 0.0005

)
200x200-15_30(2) 32.49%, 0.0100 33.22%, 0.0042 33.53%, 0.0025 33.64%, 0.0018 33.74%, 0.0021
200x200-15-30(4)  41.46%, 0.0180 43.21%, 0.0167 45.07%, 0.0109 45.57%, 0.0134 45.96%, 0.0116
200x200-15_30(6) 48.75%, 0.0345 53.12%, 0.0193  55.65%, 0.0161 57.00%, 0.0168 57.68%, 0.0156
200x200-15_30(9) 57.14%, 0.0254 61.82%, 0.0223 65.57%, 0.0211 67.45%, 0.0194 68.31%, 0.0174

300x300-15_30(6) 28.35%, 0.0074 29.44%, 0.0068 30.42%, 0.0061 30.81%, 0.0060 31.05%, 0.0057
300x300-15_30(12)  29.84%, 0.0068 31.53%, 0.0100 32.86%, 0.0098 33.81%, 0.0107 34.37%, 0.0112
300x300-15_30(18)  31.26%, 0.0061 32.92%, 0.0088 34.30%, 0.0107 34.99%, 0.0097 35.41%, 0.0099
300x300-15_30(24)  33.40%, 0.0060 34.99%, 0.0137 36.51%, 0.0157 37.22%, 0.0133 37.86%, 0.0132

SPEA2 (Hyp %, std.dev)
Test case Evaluations (Stop condition)
Instance (routers) 50 000 100 000 200 000 300 000 400 000

100x100-15_.30(2)  41.07%, 0.0021 41.24%, 0.0016 41.31%, 0.0015 41.46%, 0.0002 41.46%, 0.0002
100x100-15_30(3) 53.76%, 0.0038 54.27%, 0.0029 54.56%, 0.0011 54.61%, 0.0007 54.64%, 0.0007

200x200-15-30(2) 32.56%, 0.0054 32.88%, 0.0053 33.21%, 0.0032 33.38%, 0.0031 33.47%, 0.0026
200x200-15.30(4)  42.41%, 0.0150 44.03%, 0.0148 45.03%, 0.0153 45.54%, 0.0141 45.72%, 0.0130
200x200-15_30(6) 53.35%, 0.0180 55.98%, 0.0179 57.53%, 0.0072 58.57%, 0.0124 59.09%, 0.0084
200x200-15-30(9) 61.49%, 0.0179 65.42%, 0.0200 67.85%, 0.0184 68.99%, 0.0165 69.70%, 0.0132

300x300-15_30(6) 29.45%, 0.0062  30.55%, 0.0071 31.19%, 0.0072 31.54%, 0.0068 31.78%, 0.0055
300x300-15_-30(12)  31.58%, 0.0071 33.19%, 0.0106 34.62%, 0.0116 35.41%, 0.0113 36.00%, 0.0115
300x300-15_30(18)  33.44%, 0.0089 35.22%, 0.0086 36.73%, 0.0092 37.68%, 0.0080 38.34%, 0.0093
300x300-15_30(24)  35.43%, 0.0077 37.04%, 0.0094 38.63%, 0.0076 39.45%, 0.0082 40.20%, 0.0093

MO-VNS (Hyp %, std.dev)
Test case Evaluations (Stop condition)
Instance (routers) 50 000 100 000 200 000 300 000 400 000

100x100-15_.30(2)  41.76%, 0.0003 41.79%, 0.0002 41.81%, 0.0002 41.82%, 0.0002 41.82%, 0.0001
100x100-15-30(3 54.96%, 0.0037 55.21%, 0.0037 55.31%, 0.0019 55.56%, 0.0033 55.61%, 0.0033

)
200x200-15_30(2) 31.76%, 0.0241  34.04%, 0.0088 34.60%, 0.0126 35.22%, 0.0080 35.92%, 0.0017
200x200-15_30(4) 42.81%, 0.0189 44.38%, 0.0184 45.24%, 0.0165 45.78%, 0.0155 46.14%, 0.0166
200x200-15-30(6) 54.46%, 0.0197 56.37%, 0.0146 56.99%, 0.0127 57.27%, 0.0139 57.47%, 0.0136
200x200-15_30(9) 63.48%, 0.0155 64.21%, 0.0116 65.33%, 0.0104 65.87%, 0.0109 66.45%, 0.0102

300x300-15-30(6) 30.36%, 0.0043 30.93%, 0.0057 31.19%, 0.0050 31.34%, 0.0058 31.40%, 0.0057
300x300-15_30(12)  33.82%, 0.0063 34.56%, 0.0071 35.31%, 0.0070 35.68%, 0.0056 35.83%, 0.0056
300x300-15_30(18)  37.04%, 0.0068 37.83%, 0.0061 38.48%, 0.0056 38.83%, 0.0038 39.01%, 0.0048
300x300-15_30(24)  40.14%, 0.00908 40.91%, 0.0072 41.48%, 0.0067 41.79%, 0.0054 41.95%, 0.0048

more than 20% of routers regarding to the number of sensors. Thus, 10 different
test cases are defined as shown Table 4. Each test case follows the notation
instance_name(number of routers).

Before optimizing the data set, the three algorithms were configured by a
parametric sweep [15]. The range of values considered for each parameter is
shown in Table 3, as well as the configuration obtained through this tuning.
After this step, 31 independent runs are performed for each algorithm in order
to obtain statistical validity. With the purpose of studying the convergence of
the algorithms, five different stop conditions are considered: 50 000, 100 000,
200 000, 300 000 and 400 000 evaluations. The solutions obtained are evalu-
ated through hypervolume metric, considering the experimental reference points
shown in Table 2. Thus, average hypervolumes and standard deviation for each
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Table 5. P-values obtained through Wilcoxon-Mann-Whitney’s test comparing among
hypervolumes

MO-VNS vs SPEA2 SPEA2 vs NSGAII
Instance (routers) 50 000 100 000 200 000 300 000 400 000 50 000 100 000 200 000 300 000 400 000
100x100-15-30(2)  0.0000 0.0000 0.0000 0.0000 0.0000 = 0.2505 0.9060 1.0000 1.0000 1.0000
100x100-15_30(3)  0.0000 0.0000 0.0000 0.0000 0.0000 0.0486 0.0182 0.0188 0.0370 = 0.1032

) 0.3431 0.0000 0.0000 0.0000 0.0000 = 0.3920 0.9938 0.9999 0.9995 0.9999
) 0.1376 0.2843 0.3086 0.2215 0.0871 0.0273 0.0410  0.5530 0.6136 0.7949
0.0094 0.1815 0.9750 0.9996 1.0000 0.0000 0.0000 0.0000 0.0001 0.0001
0.0000 = 0.9920 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.0008 0.0005

) 0.0000 0.0099 0.3646 0.8787 0.9953 0.0000 0.0000 0.0000 0.0000 0.0000
2) 0.0000 0.0000 0.0079 0.2257 0.7012 0.0000 0.0000 0.0000 0.0000 0.0000
8) 0.0000 0.0000 0.0000 0.0000 0.0010 0.0000 0.0000 0.0000 0.0000 0.0000
4) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

MO-VNS vs NSGA-II SUMMARY
Instance (routers) 50 000 100 000 200 000 300 000 400 000 50 000 100 000 200 000 300 000 400 000

100x100-15_30(2)  0.0000 0.0000 0.0000 0.0000 0.0000
100x100-15-30(3)  0.0000 0.0000 0.0000 0.0000 0.0000

(
200x200-15_30(2
200x200_15_30(
200x200_15_30(
200x200-15_30(
(
(
(
(

300x300-15_30
300x300-15_30
300x300-15_30

4
6
9
6
1
1
300x300-15_30(2

@3

200x200-15-30(2) | 0.4691 0.0000 0.0000 0.0000 0.0000 NONE MO-VNS
200x200-15-30(4)  0.0038 0.0148 | 0.2997 0.2215 0.2299 NONE NONE NONE NONE NONE
200x200-15-30(6)  0.0000 0.0000 0.0006 0.2223 0.6455 NONE = SPEA2 SPEA2 SPEA2
200x200-15-30(9)  0.0000 0.0000 ' 0.6764 0.9996 1.0000 SPEA2 SPEA2 SPEA2 SPEA2
300x300-15_30(6)  0.0000 0.0000 0.0000 0.0009 0.0203 NONE NONE = SPEA2
300x300-15-30(12) 0.0000 0.0000 0.0000 0.0000 0.0000 NONE  NONE
300x300-15-30(18) 0.0000 0.0000 0.0000 0.0000 0.0000

300x300-15-30(24) 0.0000 0.0000 0.0000 0.0000 0.0000

test case, stop condition and algorithm are shown in Table 4. The highest hyper-
volumes for 400 000 evaluations are in bold.

Analyzing Table 4, we may note that MO-VNS seems to provide better
results. However, we do not known if the differences are significant. To this end,
we assume a widely used statistical methodology. The first step is to study if the
data follow a normal distribution through Shapiro - Wilk's and Kolmogrov -
Smirnov - Lilliefors's tests with the hypothesis: Hy if data follow a normal
distribution, and H; otherwise. P-values lower than 0.05 were obtained for all
the cases. Hence, we cannot assume data follow a gaussian distribution. Con-
sequently, the median (Me) must be used as average value. The second step is
to check if there are differences among the algorithms. To this end, Wilcoxon
- Mann - Whitney'’s test (samples do not follow a normal distribution and are
independent) is used with the hypothesis: Hy Me; is worse or equal than Me;;,
and H; Me; is better than Me;, with ¢ = 1,2,3, j = 2,3, i < j, 1=MO-VNS,
2=SPEA2 and 3=NSGA-II. The P-values obtained are shown in Table 5. Values
exceed 0.05 are shaded, because of differences are considered not significant.

Based on these p-values, the algorithm which provide the best performance
in each case appears in the part summary of Table 5. Analyzing this summary,
we observe as MO-VNS provides the best results in complex and simple test
cases, but it does not in medium ones. Furthermore, we check as MO-VNS is
quicker than NSGA-IT and SPEA2 on average. It is necessary a less number
of evaluations to get similar results, but when the number of evaluations is
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Table 6. Average set coverage C(A,B) among algorithms

A MO-VNS NSGA-II SPEA2
Instance (routers) B NSGA-II SPEA2 SPEA2 MO-VNS NSGA-II MO-VNS

100x100-15-30(2) 98.56% 98.29%  63.26%  0.00% 75.81%  0.00%
100x100-15-30(3) 87.89% 89.89%  39.95% 3.17% 33.10% 1.72%

200x200-15_30(2) 72.29% 76.06%  49.24% 12.36% 42.85% 14.50%
200x200-15-30(4) 70.57% 72.56%  43.05% 9.76% 43.68%  8.17%
200x200-15_30(6) 76.56% 45.83%  17.04% 15.43% T7.67%  30.40%
200x200-15_30(9) 40.41% 17.38%  5.89% 35.33% 77.39%  63.40%

300x300-15-30(6) 85.74% 56.88% 17.67% 4.67% 61.09% 18.19%
300x300-15_30(12) 73.02% 50.02%  11.89% 12.70% 71.56%  31.04%
300x300-15_30(18) 92.48% 67.69%  8.70%  5.53% 75.78%  16.91%
300x300-15-30(24) 96.86% 86.30%  17.94% 0.60% 67.81% 13.51%

Partial average 79.44% 66.09% 27.46% 9.95% 62.68% 19.78%
Average 72.76% 18.71% 41.23%

increased, this advantage is reduced. On average, MO-VNS is the best a 62%,
SPEA2 a 16%, NSGA-IT a 0%, and none of them a 22%.

In addition to hypervolume, we consider the set coverage C(A,B). That is
the percentage of solutions from the algorithm B that are weakly dominated
by A. To this end, we obtain the set coverage between each pair of algorithms,
test case and stop condition. For this purpose, we use the medium front of
the distribution of 31 samples. The average set coverage between each pair of
algorithms during the 400 000 evaluations is shown in Table 6. Analyzing this
table, we reach similar conclusions as for hypervolume. MO-VNS provides the
best coverage relation (72.76%), followed by SPEA2 (41.23%) and in the tail
NSGA-IT (18.71%).

Finally, some implementation details. The algorithms were programmed by
ourselves in C++, using the Lemon library for graphs (http://lemon.cs.elte.hu).
The IBM SPSS software was used to get the Shapiro-Wilk’s and Kolmogrov-
Smirnov-Lilliefors’s tests. Finally, the Wilcoton—Mann — Whitney’s test and
hypervolume were taken from [7].

5 Final Remarks

In this paper, we study the addition of relay nodes to previously established
WSNs, with the aim of optimizing three important factors: average energy con-
sumption, average coverage and network reliability. This is the so-called relay
node placement problem, which is an NP-hard optimization problem. To solve
this problem, we consider three different metaheuristics, two well-known genetic
algorithms (NSGA-II and SPEA2), an a novel multiobjective approach of the
VNS. These algorithms are used to optimize a freely available data set. Analyzing
all the obtained results in depth, and using two known multiobjective indicator:
hypervolume and set coverage. As a result, MO-VNS provides the best behavior
on average, followed by SPEA2, and in the tail NSGA-II.

As future lines of research, it would be interesting to consider other meta-
heuristics. One of our aim is to find an algorithm providing good results in
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general terms. In addition, it would be a good idea to consider a greater number
of test cases, and conduct real world-experiments.
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Abstract. Due to the highly unpredictable topology of ad hoc networks,
most of the existing communication protocols rely on different thresh-
olds for adapting their behavior to the environment. Good performance is
required under any circumstances. Therefore, finding the optimal config-
uration for those protocols and algorithms implemented in these networks
is a complex task. We propose in this work to automatically fine tune the
AEDB broadcasting protocol for MANETSs thanks to the use of coopera-
tive coevolutionary multi-objective evolutionary algorithms. AEDB is an
advanced adaptive protocol based on the Distance Based broadcasting
algorithm that acts differently according to local information to minimize
the energy and network use, while maximizing the coverage of the broad-
casting process. In this work, it will be fine tuned using multi-objective
techniques in terms of the conflicting objectives: coverage, energy and
network resources, subject to a broadcast time constraint. Because of
the few parameters of AEDB, we defined new versions of the problem in
which variables are discretized into bit-strings, making it more suitable
for cooperative coevolutionary algorithms. T'wo versions of the proposed
method are evaluated and compared versus the original NSGA-II, pro-
viding highly accurate tradeoff configurations in shorter execution times.

Keywords: Multiobjective optimization - Cooperative coevolutionary
algorithms - Communication protocol + Energy efficiency

1 Introduction

Mobile ad hoc networks, hereinafter MANETS, are spontaneous wireless net-
works that are created between mobile devices without any previously existing
infrastructure. In such networks, devices can appear or disappear at any time,
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quickly change their location, or suddenly adopt a selfish behavior and conse-
quently stop collaborating on the network performance. Additionally, packets
can be dropped because of the presence of physical obstacles that weaken the
signal (or provoke its reflection or diffraction), collisions in the shared medium,
or any other physical phenomena that might affect communications (e.g., the
Doppler effect or fading). Because of all these issues, the topology of MANETS
is highly dynamic and unpredictable.

As a result of the mentioned peculiarities of the topology of MANETS, the
design of communication protocols for this kind of networks is a difficult task.
The behavior of the protocol is highly sensitive to both small changes in the
set of configuration parameters and the network it is tested on. Therefore, fine
tuning the parameters for optimally configuring a communication protocol is
a difficult task. Additionally, because of the important drawbacks present in
MANETS there is not a single goal to be satisfied but several (usually in conflict)
like network resource use, QoS, energy consumption, etc.

Due to the intrinsic broadcast nature of wireless networks, broadcasting is
one of the most suitable protocols for them. Indeed, many high level applications
and even other protocols assume the existence of broadcasting as a low level
operation. In wireless networks, these dissemination algorithms are generally
associated with the broadcast storm problem [11]. However, due to the recently
appearance of MANETS, and all the drawbacks inherited from them, the main
problem in broadcasting is not only reducing the number of forwardings, but
also trying to overcome all these undesirable aspects.

In this work, we tackle the problem of fine tuning the adaptive enhanced
distance based broadcasting algorithm (AEDB) [12] parameters for its opti-
mal performance on MANETSs. AEDB is an energy-aware broadcasting algo-
rithm that uses a cross-layer design to reduce the energy consumption. In our
previous work [13], AEDB was optimized using two well known Evolutionary
Algorithms (EAs): a cellular genetic algorithm hybridised with a differential
evolution, CellDE [7], and the Non-dominated Sorting Genetic Algorithm II,
NSGA-II [3]. However, due to the high computational requirements of the net-
work simulator and its stochastic behavior (requiring a number of independent
simulations to evaluate a given protocol configuration), experiments take too
long (over 280 hours per algorithm execution in the densest network). In the
current work, we propose for the first time the use of a parallel cooperative
coevolutionary multi-objective algorithm (CCMOEA) to both speed up the opti-
mization process and find better configurations of the protocol. CCMOEAs are
recent techniques that decompose the problem into several smaller sub-problems
by simply splitting the solutions representation, and they have proved to be
highly accurate and fast for a number of continuous and combinatorial multi-
objective problems [4,5].

The contributions of this paper are detailed next. First, we apply for the first
time a parallel CCMOEA to the AEDB protocol optimization problem to find
accurate solutions in much shorter execution times than those of the previously
existing works. Because the CCMOEA decomposes the solution representation
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into several smaller ones and AEDB has only five variables to tune, we here
propose a novel definition of the problem in which variables are discretized. Two
different discretization levels are considered, and we evaluate their impact on
the performance of the CCMOEA, this was never studied before [4,5]. Another
contribution with respect to those works is the study of the behavior of the
CCMOEA on this highly noisy real-world optimization problem, compared ver-
sus an state-of-the-art technique (the NSGA-II [3] algorithm). Finally, we com-
pare the performance of the optimized parameter configurations of AEDB with
the different algorithms on a large number of networks.

The paper is organized as follows. We revise in the next section the most
relevant works in the literature on protocols optimization for MANETS. Section 3
describes the AEDB protocol and the optimization problem tackled in this work.
The cooperative coevolutionary optimization method is introduced in Sect. 4.
The experimental analysis and results are reported in Sections 5 and 6, just
before formulating the conclusions and main lines for future work in Sect. 7.

2 Related Work

A complete recent survey on the use of evolutionary algorithms for optimizing
different aspects of mobile ad hoc networks can be found in [6]. Focusing on the
protocol optimization problem, as the one we deal with in this paper, we can find
a few papers in the literature. In all cases, the optimization is an offline process
that (usually) looks for the optimal configuration of the protocol to enhance
some aspect of the network, such as QoS, the network use, or the energy used,
as it is the case considered in our work. The first study in this line was probably
the one by Alba et al. [2], in which a broadcasting protocol for MANETS was
optimized using a multi-objective genetic algorithm.

Different metaheuristics have been applied to solve the minimum energy
broadcast (MEB) problem in wireless ad hoc networks (Particle swarm opti-
mization, ant colony optimization, evolutionary algorithms and hybrid evolu-
tionary algorithms) [10,15]. All of them are offline techniques that are limited
to static networks. Abdou et al. [1] optimized a probabilistic broadcasting algo-
rithm in terms of the local density. The multiobjective optimization focuses on
minimizing the channel utilization as well as the broadcasting time.

The optimization of the AODYV routing protocol for vehicular ad hoc networks
is presented in [8]. Another routing protocol, OLSR, is optimized with a parallel
EA in [14] in order to minimize the energy used by the algorithm, subject to
acceptable QoS requirements. Both works deal with single-objective problems.

Ruiz et al. [13] optimize the performance of AEDB using two well known
multiobjective algorithms (CellDE and NSGA-II), by maximizing the coverage
achieved in the dissemination process and minimizing both the time and the
energy used.
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3 AEDB Protocol Optimisation

The AEDB protocol [12] is a broadcasting algorithm that reduces the transmis-
sion power for disseminating a message, aimed at saving energy in both sparse
and dense networks. As in any distance based algorithm, nodes are candidates
to forward the message if the distance to the source node is higher than a prede-
fined threshold. Thus, there exists a forwarding area, and only nodes located in
it are potential forwarders. In this case, a crosslayer technique is used to inform
the upper layers about the signal strength of messages received. Therefore, the
decision is not taken in terms of distance but power. This predefined value for
the energy is called the borders_threshold. Before forwarding, the node sets a
random delay in order to avoid collisions with neighbor devices.

AEDB saves energy by reducing the transmission power when forwarding the
message. The new transmission power is the one that reaches the furthest neigh-
bor. This is estimated according to the reception energy detected in the beacons
exchanged (every 1 second). In order to be aware of the nodes mobility, an extra
fixed amount of energy, the margin_threshold, is added to the one estimated.

In denser networks, the probability of having a node close to the transmis-
sion range limit is higher. This would highly reduce the energy saved in such
networks. Indeed, when the network is very dense the connectivity is usually
very high. Thus, reducing the transmission power allowing the loss of some one
hop neighbors will save energy without any detriment in the performance of
the broadcasting process. Contrary, when the network is sparse, the node must
maintain the network connectivity, as not doing so would make more difficult to
spread a message through the whole network. AEDB is able to adapt its behav-
ior to the network density. If many nodes located in the forwarding area are
detected (the neighbors_threshold), the transmission range is reduced and some
one hop neighbors are discarded. Next we are describing the problem at hands.

3.1 Problem Description

The performance of a broadcasting algorithm in MANETS is usually related to
some standard metrics. We consider here the most common ones: i) coverage:
the number of devices that after the dissemination process receive the broadcast
message; ii) energy used by the broadcast process: the sum of the energy every
device consumes to forward the message; iii) number of forwardings: the amount
of nodes that after receiving the broadcasting message decide to resend it; and
iv) broadcast time: the time needed to spread a message in the network, since
the source node sends the message until the last node receives it. Long delays
might affect the validity of the message, as it can be outdated.

From the point of view of the broadcasting algorithm designer, the higher
the number of objectives the more complex the optimisation process and the
decision making. Therefore, as it was previously done in [13], in this work AEDB
is optimised in terms of three objectives: coverage, number of forwardings, and
energy used. The broadcasting time is included as a constraint: any solution
longer than 2 seconds is considered not valid [13].
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l: t«o0

2: {4 means parallel run}

3: di € [1,1] = setup( PO, i) {Initialize every subpopulation}

4: sync() {Synchronization point}

5: {V means sequential run}

6: Vi€ [1,I] :: broadcast( P° , i ) {Share random local partial solutions in every subpopulation}
7: di € [1,I] :: evaluate( P° , i ) {Evaluate solutions in every subpopulation}

8: sync()

9: while not stoppingCondition( ) do

10: 44 € [1,I] :: generation( P' , i ) {Perform one generation to evolve the population}

11: sync()
12: Vi € [1,1] :: broadcast( P’ , i ) {Share best local partial solutions in every subpopulation}
13: t < t + 1 {Increase generations counter}

14: end while
15: mergeParetoFronts( ) {Merge the Pareto fronts found in the subpopulation into a single one}

Fig. 1. Parallel CCMOEA framework

The main goal of this work is to tune the main AEDB parameters (bor-
ders_threshold, margin_threshold, maz and min delay, and neighbors_threshold)
using multi-objective techniques based on Pareto dominance in order to obtain
the best possible protocol behavior, considering the three objectives explained.

Our problem is to optimize F', given by Eq. 1, where s is an AEDB con-
figuration, simulated using the ns3 network simulator on 10 different networks,
and e, ¢, f, and bt stand for the average energy saved, coverage, number of
broadcastings, and broadcasting time out of the 10 simulations, respectively.

min {e}
F(s) = { mazx{c} ;s. t. bt <2 (1)
min {f}

4 Cooperative Coevolutionary NSGA-II

The CCNSGAII algorithm we are using in this work was presented in [4,5].
A pseudocode is given in Fig. 1. As previously mentioned, CCNSGAII splits
the solution vector and evolves each subset of the solution using NSGA-II, in
so-called sub-populations. In order to evaluate the partial solutions in the sub-
populations, the algorithm needs to somehow construct a whole solution that
can be evaluated on the original problem. In CCNSGAII, this is done in the
following way. Every sub-population is sharing a number of local best solutions,
randomly chosen from the best non-dominated solutions found so far. Then, to
build a global solution, the sub-population takes the corresponding part from the
solutions shared by the other sub-populations, chosen at random. An example of
how one sub-population, Pj, shares four of its best solutions (i.e., Ny = 4) with
the other two populations is presented in Fig. 2. In case the local contains less
than Ng non-dominated solutions, randomly chosen individuals are taken from
the rest of the population to complete the set of Ny solutions.
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Fig. 2. In the CCNSGALII, every population (for example, P1) shares with the other
coevolving populations (P> and Ps) its four best partial solutions (bdvii to bdvia).
The partial solutions are evaluated by building complete solutions with random partial
solutions of the other two subpopulations (bdv2x and bdvsy ).

5 Experimental Analysis

We summarize in this section the results obtained by NSGA-II algorithm and
two versions of CCNSGAII (differing on the discretization granularity of the
problem) on the optimization of AEDB for three different network densities.
As mentioned in Sect. 3.1, we use ns3 simulator to evaluate the performance of
the AEDB configurations given by the individuals in the algorithm. In order to
have confident results, we evaluate each solution in 10 different networks and
the fitness value of each objective is defined as the average value of the 10 runs.
These 10 networks are always the same for evaluating every solution.

The configuration of the studied algorithms is given in Table 1. The chro-
mosome of NSGA-II is composed by the five variables introduced in Sect. 3.1.
All of them are treated as real variables, and the value of neighbors_threshold is
rounded to the closest integer one for the simulations. Variables were discretized
to solve the problem with CCNSGAII. We studied two different precisions for
the four real variables of AEDB, namely 16 and 32 bits, while 8 bits were used
to codify the only integer variable. This makes two different discretization levels
(of 72 and 136 bits chromosomes) to represent the same problem in CCNSGATI-
short and CCNSGAII-long, respectively.
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We use 8 subpopulations that run on 8 different threads for CCNSGAII
algorithm, and every subpopulation shares 20 solutions, randomly chosen from
its local Pareto front. All subpopulations are composed by 100 solutions (as the
population of NSGA-II). They are randomly initialized, and binary tournament
is used to choose solutions for recombination. The operators implemented are
the two points recombination and the bit flip mutation for the two CCNSGAII,
while the recommended SBX and polynomial operators are used for NSGA-II.

The termination condition of all algorithms is fixed to 50, 000 evaluations per-
formed, and 30 independent runs of every algorithm are done for each problem.
We use the inverted generational distance (IGD), spread (A), and hypervolume
(HV) to quantify the quality of the different Pareto front approximations found
by the algorithms [6], according to accuracy of solutions, diversity, and both of
them, respectively. Because the optimal Pareto front is not known for the consid-
ered problems, and some of the used metrics need it, we build a reference Pareto
front, composed by selected solutions from all the Pareto front approximations
provided by the different algorithms (100 solutions were selected by the Adaptive
Grid technique), and use it in place of the optimal one as in [6]. Additionally,
these reference Pareto fronts are used to normalize the fronts provided by the
algorithms, in order to avoid any bias in the results given by the different order
of magnitude of the objectives.

Table 1. Algorithms configuration

Table 2. Configuration of ns3

Numb. of subpop.™ 8
Cores used 8 (1 for NSGA-I.I) Devices, 100-200-300
Number of threads 1 per subpopulation Speed [0, 2] m/s
Population size 100 Size of the area 500 m X 500 m
Final archive size| 100, from all subpops. Dgfault trans. power 16.02 dBm
Migration policy * 20 random Dir. & speed change every 20 s
Max. evaluations 50,000
Pop. initialisation Random
Selection Binary tournament
Recombination DPX
(SBX for NSGA-II) Table 3. Domain of the variables
Probability 0.9 _
Mutation Bit Flip MANVIMAUTI Zdlay %87 é% S
. mazimum delay ,5]s
- (Polynomial lfor NSGA-II) border_Threshold [-95, -70] dBm
Probability number_of-variables margin_Threshold [0, 3] dBm
Independent runs 30 neighbors_Threshold [0, 50]

* Not applicable for NSGA-II

The configuration of ns3 for the simulations performed is summarized in
Table 2. The mobility model used is the random walk [9]. The simulation envi-
ronment used is a square area of 500 m side. The speed of the nodes can vary
from 0 to 2m/s (i.e., between 0 and 7.2km/h). We study three different network
densities in the optimization process. They go from a spare to a dense one, with
100, 200, and 300 devices/km?.
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In the simulations, the network evolves for 30 seconds in order to have the
nodes uniformly distributed in the area. Then, after these 30 seconds, a node
starts the broadcasting process. The simulation stops after 40 seconds.

In order to limit the search space, we defined reasonably large intervals for
each of the parameters we are optimising. They are shown in Table 3.

6 Results

In this section, we summarize the results we found after the experiments done.
We provide in Table 4 the average results computed by the three considered
metrics over 30 independent runs of the algorithms. In order to get statistical
confidence in our comparisons, we performed the Wilcoxon matched-pairs signed-
rank test. In the table, we show the results of this pairwise test in the comparison
of the algorithm in the current column versus the others in the left-hand columns.
Symbol V states that the algorithm in the current column is statistically worse,
while A means that the algorithm is statistically better. Finally, ‘—’ is used in
the cases where no significant difference was found.

Table 4. Comparison of the performance of the algorithms according to the three
metrics. Average and standard deviation values.

NSGA-II CCNSGAII-short ~CCNSGAII-long
N 100dev 5.60e — 013 ge—03 5.54e — 012 5¢—03 V 5.53e — 012 9e—03 V —
o 200dev [5.70e — 012 3.—03 5.56e — 013.3c—03 V 5.56e — 013.8¢—03 V —
300dev 5.68e — 013 5.—03 5.53e — 013 5¢c—03 V 5.52¢ — 01l5.5¢—03 V —
100dev 8.72e¢ — 0lg.2¢—02 7.94e — 0lg.ge—02 A 7.85€¢ — 0lg 2.—02 A —
<1 200dev 9.75¢ — 015.6e—02 8.41le — 01lg.0e—02 A 8.27e — 0lg.7¢—02 A —
300dev 1.06e + 003_36,02 9.08¢e — 019,36_02 A 8.73e — 019,05_02 A —
Q 100dev 4.15e — 034.8¢—03 4.26e — 035 7¢—03 V 5.03¢ — 033.4¢—03 V —
O 200dev 5.84e — 036.1¢—03 8.44e — 033.8¢—03 V 9.18¢ — 036.4¢—03 V —
=~ 300dev 3.42e — 033 404 8.79¢ — 035.5¢_03 V 1.16e — 025.3._03 V V

From Table 4, we can clearly observe the good performance of the CCNSGAII
algorithms with respect to NSGA-II. In terms of HV, the differences on the
results provided by the three algorithms are very low, less than 3% in all cases.
Despite that, NSGA-II statistically outperforms the CCNSGAII algorithms.

The two CCNSGAII versions provide more diversified Pareto front approxi-
mations, compared to NSGA-II. We found statistical significance on all com-
parisons between NSGA-II and the two CCNSGAII versions, while there is
no statistical difference between the two CCNSGAII algorithms in any case.
CCNSGAII-long improves the diversity values obtained by NSGA-II by 9.98%,
15.18%, and 14.33% for the sparse, medium, and dense networks, respectively.

According to IGD metric, we found that the NSGA-II algorithm outperforms
the two cooperative coevolutionary ones in terms of accuracy of solutions. Dif-
ferences become larger with the network density, up to one order of magnitude
for the densest network.

If we compare the two CCNSGAII algorithms, we can see that CCNSGAII-
short provides more accurate results than CCNSGAII-long, with 15.31%, 8.06%,
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and 24.22% better values for IGD metric for 100dev, 200dev, and 300dev densi-
ties, respectively. Similar values were found by the two CCNSGAII for HV. In
the case of A metric, CCNSGAII-long gets 2.21% better values than CCNSGATI-
short, in average.

Il CCNSGAIl-short
[ JCCNSGAlI-long
I

300dev

200dev

100dev

U

o=} R
o

4
Speedup

o
L

Fig. 3. Speedup results of CCNSGAII-short and CCNSGAII-long with respect to the
original NSGA-II

We show in Fig. 3 the speedup results obtained by the CCNSGAII algorithms.
They are computed as the execution time of the original NSGA-II over the time
of the corresponding CCNSGAII algorithm. The red dashed line indicates the
linear speedup value. As it can be seen, the CCNSGAII algorithms provide close
to linear speedups for all network densities (always over 7), and super-linear in
half of the cases. The best speedup value obtained is 8.52, by CCNSGAII-short.

In order to compare the quality of the AEDB configurations each algorithm
found, we are selecting five of the best non-dominated solutions reported by every
evolutionary algorithm. For that, we built the reference Pareto front for every
algorithm, as explained in Sect. 5, but only taking into consideration all solutions
from the same algorithm. As we are dealing with a broadcasting algorithm, we
are interested in configurations that are actually able to disseminate the message.
Thus, we discarded from the reference Pareto front all solutions with less than
80% coverage. From the remaining solutions we kept only those with less than
30% of forwarding nodes. The five selected solutions are the ones with better
energy saving results from this set.

The selected five solutions for every algorithm are compared in Table 5 on
a large set of 100 different networks. The table shows the average energy used
(E), and the average percentages of coverage (C) and number of forwardings (F)
obtained on these 100 networks. We used the Wilcoxon test to look for statistical
significance on the comparison of the performance of all solutions. Those results
with dark grey background are said to be consistently better than the others
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Table 5. Average values of energy used (E), and percentages of coverage (C) and
number of forwardings (F) of a number of selected AEDB configurations over 100
networks

NSGA-II CCNSGAII-short CCNSGAII-long
E %C %F E %C %F E %C %F
Sol1[114.69 80.16 30.44|106.85 74.44 26.92(123.17 82.00 30.96
% Sol2|111.97 77.56 29.48(109.64 [775:40 29.08|107.98 | 77.96 28.44
S Sol3|96.21 72.84 24.88(116.02 81.20 116.03| 97.10 73.40 25.36
= Sol4[116.45 [80.64 30.68|108.33 | 76.40 28.28| 99.11 78.48 29.76
Sol5/113.20 78.40 29.92| 88.78 68.64 22.52|104.36 73.72 25.68
Soll| 91.98 76.18 11.68[138.77 89.00 17.34| 98.10 78.58 12.46
ESOIZ 110.91 82.02 14.26| 90.81 74.92 11.58|128.37 85.16 16.44
IS Sol3| 91.45 73.06 11.66|113.70 84.00 14.46|149.80 93100 18.74
S Sol4| 87.71 72.48 11.16(145.49 J93¥70] 18.34[153.58 94.20 19.52
Sol5| 75.80 66.42 9.60| 71.48 63.22' 9.06| 88.69 73.14 11.26
Sol1[102.34 79.91 8.53|80.10 69.16 6.73| 89.42 74.27 7.48
% Sol2|101.40 78.69 8.45| 91.99 73.97 7.67|165.85/95.63 14.09
S Sol3[134.24 90.64 11.17| 90.85 73.45 7.57| 97.24 77.16 8.11
R Sol4| 91.4875.72 7.64| 93.12 74.99 7.76| 88.58 74.08 7139
Sol5| 88.93 72.83  7.41|171.93 98.25 14.47|116.43 84.27 9.80

(meaning that they are at least statistically better than one other solution and
never statistically worse than any other). Solutions that are consistently worse
than all the others (they are statistically worse than at least one solution and not
better than any other solution) are emphasized with light grey background. The
results in bold face are those dominating the highest number of other solutions
for every density.

We can see that the solutions found by the CCNSGALII are better in coverage
than those of NSGA-II, with 5 consistently best solutions for CCNSGAII-short,
6 for CCNSGAII-long and 4 for NSGA-II. Indeed, none of the solutions pro-
vided by NSGA-II is consistently better than any other one for the 200 and
300 devices/km? densities. The overall best solutions (those statistically better
than the highest number of solutions) were always found by CCNSGAII-long,
together with CCNSGAII-short in the denser density. We found that NSGA-II
provides only one solution with 90% coverage, while there are 5 solutions from
the CCNSGAII algorithms with higher values, reaching up to 98.25% coverage.

The differences on the results provided by the three algorithms are not so
important in terms of the number of forwardings and energy used. In both cases,
the three algorithms provide 3 solutions that are consistently better than the
others (except CCNSGAIl-long for energy used, that provides 2 consistently
better solutions). However, the overall best solutions are in these cases found by
CCNSGAII-short for all networks.

Finally, we found that Soll provided by CCNSGAII-short for 300dev networks
stands out as the only one that is consistently better than all the others in some
objectives and is not consistently worse for any other: it is consistently better for
energy used and number of forwardings. The configuration of this solution is: mini-
mum delay = 0.26344701304646373; mazimum delay = 0.8817425803006027; bor-
der_Threshold= —94.14015411612115; margin_Threshold = 0.15202563515678644;
and neighbors_Threshold = 41.If we analyze this configuration, we observe that the
value of the neighbors_Threshold ishigh, i.e. it is unlikely that AEDB discards 1-hop
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neighbors, thus no energy reduction will be performed. However, such low value of
the border_Threshold means that the forwarding area is very small, and thus, the
number of potential forwarding nodes. If we compute the average of the percentage
of the energy saved per forwarding node for this specific configuration, we obtain
45.92% (in mWatt).

Analyzing the results provided by the solutions, we observe that all the algo-
rithms behave as the designer of a broadcasting algorithm desires. That is, for
sparse networks the solutions provided by the algorithms promote high cover-
age, sacrificing the number of forwarding nodes and energy savings. However,
for denser networks, the solutions obtained by the algorithm pay more attention
to the energy savings, as disseminating the message is easier but reducing the
energy is more difficult.

7 Conclusions and Future Work

We propose in this work the use of a parallel cooperative coevolutionary multi-
objective algorithm to solve the problem of fine-tuning a broadcasting protocol
for mobile ad hoc networks for optimal performance. The number of devices
receiving the broadcasted message, the network use for that, and the global
energy consumption during the process are the three objectives to optimize.
The broadcasting process time was set to be less than 2 seconds, as a constraint
of the problem.

The problem was discretized with two different precisions for real numbers
(namely 16 or 32 bits encodings) in order to being able to handle them with coop-
erative coevolutionary techniques. We found no statistical difference between
the algorithms using these two encodings. In the comparison of NSGA-IT with
its cooperative coevolutionary versions, we found that the former was better for
IGD metric, and worse in terms of diversity of solutions provided. Regarding the
hypervolume metric, all algorithms found very close results, even though NSGA-
IT was found to outperform the others with statistical significance. However, the
cooperative coevolutionary algorithms are able to find solutions with super linear
speedups in many cases, with respect to NSGA-II. This is an important issue,
since one fitness evaluation implies 10 simulations in ns3, taking among 10 and
94 seconds, depending on the network density, and 10, 000 fitness evaluations are
performed in every run. We observed that the solutions found by CCNSGAII-
long are the best ones in terms of coverage, while CCNSGAII-short provides the
solution with better values of forwarding and energy use. We were able to find
a single best overall solution for all objectives.

As future work, we plan to include robustness to the optimization process in
order to cope with the high uncertainty intrinsic to this problem.
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Abstract. The paper concerns the use of Extremal Optimization (EO)
technique in dynamic load balancing for optimized execution of dis-
tributed programs. EO approach is used to periodically detect the best
candidates for task migration leading to balanced execution. To improve
the quality of load balancing and decrease time complexity of the algo-
rithms, we have improved EO by a local search of the best computing
node to receive migrating tasks. The improved guided EO algorithm
assumes a two-step stochastic selection based on two separate fitness
functions. The functions are based on specific program models which
estimate relations between the programs and the executive hardware.
The proposed load balancing algorithm is compared against a standard
EO-based algorithm with random placement of migrated tasks and a
classic genetic algorithm. The algorithm is assessed by experiments with
simulated load balancing of distributed program graphs and analysis of
the outcome of the discussed approaches.

Keywords: Distributed program design - Extremal optimization - Load
balancing

1 Introduction

The paper presents Extremal Optimization (EO) [1] based load balancing algo-
rithm for distributed systems. The proposed algorithm is composed of iterative
optimization phases which improve program task placement on processors to
determine the possibly best balance of computational loads and to define peri-
odic migration of tasks. The EO algorithm discovers the candidate tasks for
migration based on a special quality model including the computation and com-
munication parameters of parallel tasks. The paper presents an improved load
balancing algorithm comparing the algorithm given in [2], which was based on
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classical Extremal Optimization approach. In the classical EO the fully ran-
dom selection of a new improved partial solution in the neighbourhood of the
solution being modified is done. The fully random selection has been consid-
ered unsatisfactory, since for a big number of executive processors a degradation
of the quality of obtained result (the parallel speedup of the applications) was
observed. Therefore, we have improved the applied EO algorithm by a replace-
ment of the fully random selection of the target computing node in migration by
the stochastic selection performed with the guidance by some knowledge of the
problem properties. The guidance is based on a formula which estimates how
a migrated task matches the given processor in respect to the global computa-
tional and communicational balance in the system. It should be stressed that we
have maintained the nature-inspired solution improvement but done in the way
which speeds up the convergence of the algorithm. As a result we have obtained
a correct behavior of the algorithm when the cardinality of processor set in the
system increases.

The algorithm is assessed by experiments with simulated load balancing of
distributed program graphs. In particular, the experiments compare three algo-
rithms: the proposed load balancing method including the EO with a guided
stochastic selection of the improved solution, an EO with fully random selection
of the improved solution and a genetic algorithm (GA). The comparison shows
that the quality of load balancing with the guided EO is in most cases better
than with fully random selection and with the GA.

The paper is organized as follows. In Section 2 the related works in load
balancing based on nature inspired algorithms are reported. In Section 3 the
EQO principles are shortly explained, and the EO with guided state changes is
introduced. Section 4 describes the theoretical foundations for the discussed algo-
rithm, explains how the EO is applied to the dynamic processor load balancing.
In Section 5 the experiments which assess the proposed algorithms are presented.

2 Related Works

A huge quantity of papers exist in literature dealing with dynamic load balancing
in parallel and distributed systems. Good reviews and classifications of classic
load balancing methods are presented in [3-6].

Genetic algorithms have been the first nature—inspired optimization method
to be used with reference to this issue. Munetomo et al. [7] are among the
first to present a genetic algorithm for stochastic environments and show its
application to dynamic load balancing in distributed systems. Zomaya and Teh
[8] investigate how a genetic algorithm can be employed to solve the dynamic
load balancing problem. To address the problem of dynamic load balancing in
a processing pool, Uyar and Harmanci [9] apply an improved genetic algorithm
called damGA (diploidy-aging-meiosis Genetic Algorithm). Very recently, Lin
and Deung [10] face dynamic load balancing in cloud-based multimedia system
using a genetic algorithm. More recently, other nature—inspired optimization
methods have been investigated for dynamic load balancing, including Particle
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Swarm Optimization (PSO). A good review of several such methods can be found
in a very recent paper [11].

At the best of our knowledge, no other authors have attempted to use EO for
dynamic load balancing. We feel, instead, that EO has all the desired features
useful to efficiently tackling this problem. Firstly, EO is perfectly suited to face
combinatorial optimization problems where solutions are represented by integer
values. Secondly, evaluating each component of a solution on its own and chang-
ing a bad component only, rather than the whole solution, is highly desirable
when an incremental improvement is necessary. GA or PSO would modify the
solution as a whole, possibly destroying good issues too. So, the proposed app-
roach has clear originality features and enables making profit of EO advantages
such as low computational complexity and limited use of memory space.

3 Extremal Optimization Algorithm Principles

Extremal Optimization was proposed by Boettcher and Percus [1], following the
Bak—Sneppen approach of self-organized dynamic criticality [12]. It represents
a method for NP-hard combinatorial and physical optimization problems. EO
is based on improvements of a single solution S consisting of a given number of
components s;, called species. Each component is a variable of the problem. A
local fitness value is assigned to each component. At each time step, S is evolved
by randomly updating the worst variable only in respect to ¢;, to a solution
S’ belonging to its neighbourhood Neigh(S). After each update, a global fitness
®(S) is computed and the modified solution S’ is registered if its global fitness
is better than that of the best solution found so far.

We apply a probabilistic version of EO based on a parameter 7, i.e., 7—-EQO,
introduced by Boettcher and Percus, which prevents the solutions from staying
in a local optimum. For a minimization problem, the components are first ranked
in the increasing order of local fitness values. Then, a distribution probability k
over ranks is considered as follows: pi, ~ k77, 1 < k < |S| for a given value of 7.
At each update of S, a rank k is selected according to py so that the species s;
with ¢ = 7(k) randomly changes its state and the solution moves unconditionally
to S’ € Neigh(S).

3.1 Extremal Optimization With Guided State Changes

During our experimental research on load balancing of distributed applications,
reported in [2], we have revealed that EO is able to provide the best results for
almost all combinations of system and application parameters.

However, we have noticed that, when the number of neighbour states of
rank k increases (i.e. the number of processors is higher), the algorithm starts
struggling with the problem of too many possible moves. The probability of
“good” state change decreases. To alleviate this problem we incorporate more
problem-specific information into the algorithm. It is implemented as a local tar-
get function wg, which is computed for all neighbours Neigh(S) of rank k. Then
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Algorithm 1. 7EO algorithm with Guided State Changes (EO-GS)

initialize configuration S at will

Sbest — S

while total number of iterations Niter not reached do
evaluate ¢; for each variable s; of the current solution S
rank the variables s; based on their fitness ¢;
choose the rank k according to k™7 so that the variable s; with j = (k) is selected
evaluate ws for each neighbour s’ € Neigh(S), generated by s; change
rank neighbours s’ € Neigh(S) based on the value of target function ws
choose S’ € Neigh(S) according to the exponential distribution Exp(\)
accept S «— S’ unconditionally
if (5) < ®(Shest) then

Sbest — S

end if

end while

return Shest and P (Shest)

the neighbours are sorted according to the increasing value of ws. The new state
S’ € Neigh(S) is selected randomly using the exponential distribution Exp(A)
over the sorted neighbours Neigh(S). Thus, the stochastic local search towards
“better” neighbours (according to the value of wy) is performed. The bias to the
“better” values is controlled by the \ parameter of the exponential distribution.
The scheme of the Extremal Optimization with Guided State Changes (EO-GS)
is shown in Algorithm 1.

4 Load Balancing Based on Extremal Optimization

The proposed load balancing algorithm is meant for distributed application pro-
grams composed of T' indivisible tasks which are threads (single-thread processes).
Each task is composed of sequences of computational instructions (blocks)
separated by communication instructions with other tasks.

We assume a centralized program execution environment which means that
the executive system works under control of some load balancing infrastructure
responsible for organizing optimized execution of programs. The executive sys-
tem is a cluster of N processor aka computational nodes interconnected by a
message passing network.

Our load balancing problem is formally defined in the following way: during
program execution dynamically map each task tx, k € {1...|T|} of the program
to a computational node n, n € [0, N — 1] in such a way that the total program
execution time is minimized, assuming the program and system definition as
stated earlier in this section. Dynamic task mapping to computational nodes
can change during program execution by means of task migration.

The load balancing method proposed in the paper, consists in execution of
a series of indivisible pairs of two main steps: the detection and the correction
of processor load imbalance. The load imbalance detection step employs some
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measurement infrastructure to monitor the states of the executive system and
the application program relevant for the detection of system load imbalance. In
parallel with the execution of an application program, computing nodes period-
ically report their loads to a load balancing monitor which evaluates the current
system load imbalance value. Depending on this value, the second step (i.e. the
imbalance correction) is done or step one is repeated. In the second step, we
execute the EO-based algorithm described in next sections, which determines
the set of tasks for migration and the migration target nodes. Based on that,
the physical task migrations are executed and the algorithm goes to step one.

4.1 Detection of Load Imbalance

Two parameters are used to evaluate the state of the system:

Ind power(n) — computing power of a processor node n, which is the sum of nom-
inal computing powers of all cores on the node, in MIPS, MFLOPS or similar,

TimegPU(n) — the current CPU time availability i.e. percentage of the CPU
computing power currently available for application threads on the node n, peri-
odically estimated by load observation agents on computing nodes.

A load imbalance LI (a boolean) is defined based on the difference of the
current CPU time availability between the most heavily and the least heavily
loaded computing nodes:

LI = max(Time&py(n)) — min( TimeZpy (n)) > o
nepP nepP
where P is the set of all computing nodes. The detection of load imbalance equal
true requires a load correction. « is determined using an experimental approach
(in our experiments we have set it between 25% and 75%).

4.2 Correction of Load Imbalance

The application is characterized by two metrics, which should be provided by a
programmer based on the volume of computations and communications in tasks:

1. COM(ts,tq) is the communication metrics for a pair of tasks ts and t4,
2. WP(t) is the load weight metrics introduced by a task ¢.

COM(ts,tq) and WP(¢) metrics can constitute exact values, e.g. for well-defined
tasks sizes and inter-task communication in regular parallel applications, or only
some predictions, e.g. when the computation depends on the processed data as
in irregular parallel applications.

A task mapping solution S is represented by a vector pu = (1, ..., 7)) of
|T| integers from the interval [0, N — 1], where the value p; = j means that the
solution S under consideration maps the i—th task ¢; of the application onto the
computing node j.

The global fitness function ®(5) is defined as

®(S) = attrEztTotal(S) * Ay + migration(S) x Ao+ (1)
+imbalance(S) * [1 — (A1 + Ag)]
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where A1, As parameters control the weight of components of the global fitness,
1>A;>0,1>A>0and Aj+As < 1. The function attrExtTotal(S) € {0,1}
represents the impact of the total external communication between tasks on the
quality of a given mapping S. The function migration(S) € {0,1} is a migration
costs metrics. It is equal to 0 when there is no migration, when all tasks have to
be migrated migration(S) = 1. The function imbalance(S) € {0,1} represents
the numerical load imbalance metrics in the solution S. It is equal to 1 when
there exists at least one unloaded computing node, otherwise it is equal to the
normalized average absolute load deviation of tasks in S.

The local fitness function of a task ¢(t) is designed in such a way that it
forces moving tasks away from overloaded nodes, at the same time preserving
low external (inter-node) communication. The v parameter (0 < v < 1) allows
tuning the weight of load metrics.

¢(t) = v load(ps) + (1 — ) * rank(t) (2)

The function load(n) indicates whether the node n, which executes ¢, is over-
loaded (i.e. it indicates how much its load exceeds the average load of all nodes).
The rank(t) function governs the selection of best candidates for migration. The
chance for migration have tasks, which show low communication with their cur-
rent node (attraction) and low load deviation from the average load. The load
balancing parameters mentioned above are explained in full details in [2].

4.3 Guided Target Node Selection for State Changes

In the standard EO algorithm (see [2]), any neighboring state could be selected
randomly using the uniform probability distribution. The idea of a guided state
changes is based on some “biased” random selection, to enable preferring some
neighbors over others. At each update of rank k, nodes n € N are sorted accord-
ing to w(nl,n2) function and one of them is selected using the exponential dis-
tribution Exp(A). The bias to the “better” values, i.e. lower values of w(nl,n2)
in our case, is controlled by the A parameter of the exponential distribution.

A “biased” random selection uses formula similar to those used for the local
fitness calculation to qualify the computing nodes for migration of task j:

relload(nl) — relload(n2)  if relload(nl) # relload(n2)
attrext(j,n2) — attrext(j,nl) otherwise

w(nl,n2) = {
where:

attrezt(j,n) = Z (COM(e, j) + COM(j,€)), normalized vs. rne%((attrext(j, e))
ecT(n)

loaddev(n) — min,,c(o, n—1) loaddev(m)

lload =
relload(n) max,, (o, n—1] loaddev(m) — min,,cp, n—1] loaddev(m)

loaddev(n) = NWP(S,n)/Ind power(n) — WP
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and T(n) = {t € T : ux = n} — the set of threads, placed on node n,
NWP(S,n) = ZteT:ut:n WP(t), WP =3, . WP(t)/ Zne[O’N_l] Ind power(n).

When w(nl,n2) has a low value, the computational load of node n1 is lower
than that of node n2 or the task j has stronger attraction to node nl. This is
the preferred target of migration. High values of w(nl,n2) indicate overloading
of node nl or no communication to this node from task j.

5 Experimental Results

We describe below experimental results obtained by simulated execution of appli-
cation programs with the proposed method of load balancing in a distributed
system. The assumed program parallelization model corresponds to paralleliza-
tion based on message-passing, using the MPI library for communication. The
experiments were run in a simulated cluster of multi—core processors. Each pro-
cessor had its own main memory and a network interface. At the level of the
network interfaces data transfers and communication contention were modeled.
In the experiments, a set of 10 randomly generated synthetic exemplary
programs was used. Their general structures were phase-like, in which they
resembled MPI-based parallel programs which corresponded to numerical com-
putations or simulations of physical phenomena. The programs were represented
as a set of phases (see Fig 1), each composed of parallel tasks (threads). Tasks
of the same phase could communicate. At the boundaries between phases there
was a global exchange of data which corresponded to external communication
between processes. Application programs contained from about 60 to 550 tasks.
Their communication/computation ratio C//E was in the range [0.05,0.20].
Based on the time properties of tasks two types of applications were dis-
tinguished: regular and irregular. Regular applications had fixed task execution
times. Irregular applications had the execution time of tasks depending on the
processed data. They showed unpredictable both execution times of tasks and
the communication schemes. With irregular tasks, system load imbalance could

phasea N
BN
‘ > 5...> ‘
o=y
| /phase b \‘ | }phase c \‘
N g e N SR
N 2l N
AN . AN _ -

Kaa Woaa]

Fig. 1. The general structure of exemplary applications
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occur even without variations in computing nodes availability. With regular
applications system load imbalance could occur due to the suboptimal placement
of tasks on processors or when runtime conditions had changed. The properties
of the proposed load balancing algorithm for both types of applications were
comparatively examined.

For comparison purposes, the same simulated parallel environment and the
set of graphs were used. We compared EO and EO-GS to genetic algorithm
(GA) which used the same global fitness function. GA used binary-encoded
chromosomes, in which an allele at position i was the processor number of the
task 7. Two genetic operators were used: single-point crossover and mutation.
The selection was based on roulette-wheel scheme. We used the following GA
parameters: the size of population — 50, the probability of mutation — 0.015,
the probability of crossover — 0.25, the number of iterations — 500. Half of the
chromosomes of the initial population was generated randomly, the second half
was initialized through cloning of the current placement of application tasks.

5.1 Performance of the Presented Algorithms

In the first series of experiments, load-balanced execution of phase-like appli-
cations was studied in systems containing from 2 to 32 homogeneous proces-
sor nodes. The following parameters for load balancing control were used: a =
0.5,A1 =0.25,Ay = 0.25,v = 0.5,7 = 1.5, for EO-GS X\ = 1.0. The number of
iterations for EO and EO-GS was set to 500. The results correspond to aver-
ages of 5 runs of each application. For each run 4 different methods of initial
task placements (random, round-robin, METIS, packed) were tested. METIS is
a graph partitioning optimization software [13]. The packed method consists in
round-robin mapping of equal groups of tasks. In total, 20 runs were executed
for each parameter set to produce an averaged result.

The speedup of both EO—based algorithms and the genetic algorithm as a
function of the number of processors is shown in Fig. 2. For regular applica-
tions (upper curves) the speedup improvement due to EO-based algorithms is
generally bigger (not worse or better) than that of GA. Our exemplary irregular
applications (lower curves) give smaller speedup than regular ones (with or with-
out load balancing) what is an expected result, since parallel execution of such
applications is less efficient. However, for irregular applications the EO-GS algo-
rithm is generally the best comparing all the others. It should be stressed that
EO-GS gives much better results than EO and GA especially for a bigger num-
ber of processors. It is due to completely random placement of migrated tasks
on processors in EO and GA, not supported by any knowledge of the system
and program state. EO-GS uses a more thorough migration target selection.

Since migration costs can be very different (a single migration can be as short
as a simple task activation message, but also it can involve a transfer of the pro-
cessed data, which is usually very costly), we decided to keep the generality of our
experiment results and to approximate the imposed load balancing costs by the
number of task migrations, Fig. 3. The number of migrations is decidedly higher
for irregular applications (upper curves). The average cost imposed by EO-GS



Improving Extremal Optimization in Load Balancing by Local Search 59

algorithm is generally lower than the cost introduced by other approaches. For
irregular applications the migration number with EO-GS is lower than with the
EO and GA. For regular applications the number of task migrations in both EO-
based algorithms is almost halved comparing GA. Experiments revealed that the
GA approach can not work out an efficient migration decision for irregular appli-
cations run on bigger number of processor, thus we notice sudden drop in the
GA (irg) curves both in Fig. 2 and 3.

To generalize comparisons of performance of the discussed load balancing algo-
rithms, we have computed the average speedup improvement of the considered
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algorithms over execution without load balancing. The speedup improvement is
calculated as S,/S, — 1, where Sy, is the speedup obtained when load balanc-
ing algorithm is active, .S,, is the speedup of the unbalanced execution. The best
speedup improvement over the unbalanced execution for both irregular and reg-
ular applications is provided by EO-GS algorithm (see Fig. 4).

To justify the quality of the results, we have compared the speedup obtained
for dynamic load balancing using the analysed algorithms to the speedup based
on static task placement obtained by METIS graph partitioning algorithm. To do
so, we executed regular and irregular applications with initial task placement
by METIS and the same applications starting from imbalanced, random initial
placement with the dynamic load balancing switched on. For regular applications
the improvement due to load balancing with static initial METIS placement is
small (in the range 12% — 16%, see Fig. 5). The improvement indicates that the
compared algorithms are able to work out profitable migration decisions even
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Fig. 6. Average application speedup and migration number (load balancing cost) for
different values of EO—GS parameters as a function of A

after METIS initial optimisation of regular applications, resulting in their bal-
anced execution. For irregular applications METIS initial optimisation is not
sufficient for efficient balanced execution up to the end of their task sets. For
irregular applications speedup improvement after METIS initialisation due to
dynamic load balancing is on average several times higher than for regular appli-
cations. We can see that the EO-GS algorithm gives here the best results, better
than other studied algorithms by 15%.

5.2 The Algorithm Parameter Setting

The influence of the setting of A parameter on overall performance of EO-GS
algorithm is shown in Fig. 6 (EO denotes here the results for the standard EO
algorithm). Increasing value of A results in a noticeable increase of the speedup
for irregular applications, at the same time reducing the cost of load balancing
(i.e. the number of migrations). Although the cost initially decreases slowly,
for A = 0.5 or more is much smaller than in the standard EO algorithm. For
regular applications A has almost no impact on the average speedup (there is a
slight increase) and slightly reduces the number of migrations. Note that regular
applications show already high speedup for standard EO, thus improvement is
possible only through reduction of the number of migrations. For both types of
graphs increasing A above 1.0 has no longer a significant effect on the results.

6 Conclusions

The paper has presented the dynamic load balancing in distributed systems
based on application of the Extremal Optimization approach. The proposed load
balancing algorithm is an improved version of the classic Extremal Optimization,
in which we replaced the completely random computing node selection by the
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stochastic selection where node selection probability is guided by some knowledge
of the problem. Our approach proved to be an efficient method for load balancing,
distinguished by low computational complexity and limited use of memory space.

The proposed algorithm has been assessed by experiments with simulated

load balancing of distributed program graphs. In particular, the experiments
compare load balancing with EO with guided search against the classic EO and
genetic algorithm based on equivalent theoretical foundations. The comparison
shows that the quality of the improved EO-based load balancing outperforms in
most cases that with classical EO and the genetic algorithm.

References

1.

10.

11.

12.

13.

Boettcher, S., Percus, A.G.: Extremal optimization: methods derived from coevo-
lution. In: Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO 1999), pp. 825-832. Morgan Kaufmann, San Francisco (1999)

Olejnik, R., De Falco, I., Laskowski, E., Scafuri, U., Tarantino, E., Tudruj, M.:
Load Balancing in Distributed Applications Based on Extremal Optimization. In:
Esparcia-Alcdzar, A.I. (ed.) EvoApplications 2013. LNCS, vol. 7835, pp. 52-61.
Springer, Heidelberg (2013)

Barker, K., Chrisochoides, N.: An evaluation of a framework for the dynamic load
balancing of highly adaptive and irregular parallel applications In: Proceedings of
the ACM/IEEE Conference on Supercomputing, Phoenix. ACM Press (2003)
Willebeek-LeMair, M.H., Reeves, A.P.: Strategies for dynamic load balancing on
highly parallel computers. IEEE Trans. on Parallel and Distributed Systems 4,
979-993 (1993)

Xu, C., Francis, C., Lau, M.: Load balancing in parallel computers: Theory and
Practice. Kluwer Academic Publishers, Norwell (1997)

Khan, R.Z., Ali, J.: Classification of task partitioning and load balancing strate-
gies in distributed parallel computing systems. International Journal of Computer
Applications 60(17), 48-53 (2012)

Munetomo, M., Takai, M.N.K., Sato, Y.: A stochastic genetic algorithm for
dynamic load balancing in distributed systems. In: Proceedings of the IEEE Inter-
national Conference on Systems, Man and Cybernetics, vol. 4, pp. 3795-3799.
IEEE Press (1995)

Zomaya, A.Y., Teh, Y.-H.: Observations on using genetic algorithms for dynamic
load-balancing. IEEE Trans. on Parallel and Distributed Systems 12(9), 899-911
(2001)

. Uyar, A.S., Harmanci, A.E.: Application of an improved diploid genetic algorithm

for optimizing performance through dynamic load balancing. In: Proceedings of
2002 WSEAS International Conferences. WSEAS Press (2002)

Lin, C.-C., Deng, D.-J.: Dynamic load balancing in cloud-based multimedia system
using genetic algorithm. Chang, R.-S., et al (eds.) Advances in Intelligent Systems
& Applications, SIST 20, pp. 461-470. Springer, Heidelberg (2013)

Mishra, M., Agarwal, S., Mishra, P., Singh, S.: Comparative analysis of various
evolutionary techniques of load balancing: a review. International Journal of Com-
puter Applications 63(15) (2013)

Sneppen, K., et al.: Evolution as a self-organized critical phenomenon. Proc. Natl.
Acad. Sci. 92, 5209-5213 (1995)

Karypis, G., Kumar, V.: Multilevel graph partitioning schemes. In: Proc. 24th
Intern. Conf. Par. Proc., III. pp. 113-122. CRC Press (1995)



Studying the Reporting Cells Planning with the
Non-dominated Sorting Genetic Algorithm II

Victor Berrocal-Plaza™), Miguel A. Vega-Rodriguez,
and Juan M. Sanchez-Pérez

Department of Computers and Communications Technologies,
University of Extremadura Escuela Politécnica,
Campus Universitario S/N, 10003 Céceres, Spain

{vicberpla,mavega,sanperez}@unex.es

Abstract. This manuscript addresses a vital task in any Public Land
Mobile Network, the mobile location management. This management
task is tackled following the Reporting Cells strategy. Basically, the
Reporting Cells planning consists in selecting a subset of network cells as
Reporting Cells with the aim of controlling the subscribers’ movement
and minimizing the signaling traffic. In previous works, the Reporting
Cells Planning Problem was optimized by using single-objective meta-
heuristics, in which the two objective functions were linearly combined.
This technique simplifies the optimization problem but has got sev-
eral drawbacks. In this work, with the aim of avoiding such drawbacks,
we have adapted a well-known multiobjective metaheuristic: the Non-
dominated Sorting Genetic Algorithm IT (NSGAII). Furthermore, a mul-
tiobjective approach obtains a wide range of solutions (each one related
to a specific trade-off between objectives), and hence, it gives the possi-
bility of selecting the solution that best adjusts to the real state of the
signaling network. The quality of our proposal is checked by means of an
experimental study, where we demonstrate that our version of NSGAIIL
outperforms other algorithms published in the literature.

Keywords: Reporting Cells Planning Problem - Mobile location man-
agement - Multiobjective optimization + Non-dominated Sorting Genetic
Algorithm 1T

1 Introduction

In the Public Land Mobile Networks, the desired coverage area is divided into
several smaller regions known as cells, among which the available radio-electric
resources are distributed and reused [1]. In this way, these networks are able
to provide service to a huge number of mobile subscribers with few resources.
Therefore, it is obvious that this cell-based architecture requires of a system that
controls the subscribers’ mobility in order to locate the callee terminals and redi-
rect the incoming calls. Furthermore, the proper mobile location management is
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a critical issue in current mobile networks due to the exponential increment in
the number of mobile terminals that has occurred in the last decade.

There are several strategies to manage the subscriber mobility [2], all of them
consist of two main procedures: the subscriber location update (LU) and the
paging (PA). The subscriber location update is the procedure whereby a mobile
station (or subscriber’s terminal) updates its location in the location register
databases according to a method pre-established by the network operator. Never
Update, Always Update, Reporting Cells, and Registration Areas are examples
of static location updates (static location updates are more used than dynamic
ones because they require fewer network capabilities [3]). In this work, we study a
popular location update: the Reporting Cells strategy [4]. This strategy controls
the subscriber mobility by selecting a subset of network cells as Reporting Cells
(a mobile station only updates its location when it moves to a Reporting Cell).
On the other hand, the paging procedure is the method used by the network to
know the exact cell in which the callee subscribers are located [5]. The different
paging procedures could be classified into two main groups: probabilistic and
non-probabilistic. In this work, we use the same paging procedure as in [6-9]:
the Blanket Polling paging, a non-probabilistic paging in which all the network
cells that have to be paged are polled simultaneously.

The Reporting Cells Planning Problem defines a multiobjective optimization
problem with two conflicting objective functions: minimize the location update
cost (LUcost) and minimize the paging cost (PAcost). However, in recent litera-
ture, this multiobjective optimization problem was tackled by means of different
single-objective metaheuristics [6-9]. For it, these two objective functions were
linearly combined into a single objective function. The linear aggregation of the
objective functions allows simplifying the problem but has got associated several
drawbacks (see Section 3).

With the aim of avoiding such drawbacks, we propose the use of multiob-
jective optimization for finding quasi-optimal configurations of Reporting Cells.
This is a novel contribution because, to the best of our knowledge, there are no
other works in the literature that tackle the Reporting Cells Planning Problem
with a multiobjective approach.

The rest of the paper is organized as follows. The related works are discussed
in Section 2. Section 3 shows a formal description of the Reporting Cells Planning
Problem. Section 4 defines the main features of a multiobjective optimization
problem and presents a detailed explanation of our proposal. Section 5 gathers
the experimental results and comparisons with other works published in the
literature. Finally, our conclusion and future work are discussed in Section 6.

2 Related Work

In the literature, there are several works that tackle the Reporting Cells Plan-
ning Problem (RCPP). This problem was firstly formulated by A. Bar-Noy and I.
Kessler in [4], where the authors demonstrated that the RCPP is an NP-complete
problem. And subsequently, different methodologies were proposed with the aim
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of solving this location management problem. A. Hac and X. Zhou presented in
[10] a heuristic method to find quasi-optimal solutions of a simplified RCPP (the
RCPP was simplified by considering the paging cost as a constraint). R. Sub-
rata and A. Y. Zomaya proposed in [6] three artificial life techniques of the
single-objective optimization field: Genetic Algorithm (GA), Tabu Search (TS),
and Ant Colony Optimization (ACO). In these algorithms, the RCPP objective
functions were linearly combined with the aim of simplifying the optimization
problem. The same strategy was used in [7—9], where the RCPP was studied with
the algorithms: Geometric Particle Swarm Optimization (GPSO) [7], a combina-
tion of the Hopfield Neural Network with a Ball Dropping mechanism (HNN-BD)
[7], Differential Evolution (DE) [8], and the Scatter Search algorithm (SS) [9].

In contrast to these related works, we propose the use of multiobjective opti-
mization to avoid the drawbacks associated with the linear aggregation of the
objective functions. This approach is a novel contribution because, to the best of
the authors’ knowledge, there are no other authors that tackle the RCPP with
multiobjective optimization.

3 Reporting Cells Planning Problem

The Reporting Cells is a static location management strategy which was pro-
posed by A. Bar-Noy and I. Kessler in [4]. This strategy controls the subscriber
mobility by selecting a subset of network cells as Reporting Cells (RCs). In this
way, a mobile station only updates its location when entering a Reporting Cell.
On the other hand, the paging procedure is only conducted in a subset of net-
work cells (all the network cells of this subset are paged simultaneously). This
subset is determined by means of the vicinity factor (V (¢)), which can be defined
as the maximum number of network cells that must be paged to locate a callee
subscriber [6-9]. For an RC (RC;), V (i) corresponds to the number of non-
Reporting Cells (nRC) reachable from this RC (RC;) without passing over other
RC (RC;), and including the RC in question (RC;). And for an nRC (nRC;), due
to the fact that an nRC might be in the vicinity of several RC, V' (i) corresponds
to the maximum vicinity factor of all the RC reachable from this nRC (nRC;).
Fig. 1(a) and Fig. 1(b) show an example of the vicinity factor calculation for an
RC and an nRC respectively.

Therefore, the challenge of this location management strategy is to find the
configurations of Reporting Cells that minimize the location update cost (LU ost)
and the paging cost (PA.ost). Formally, these two objective functions could be
expressed as Equation 1 and Equation 2 respectively, where N is the number of
network cells. p; is a binary variable that is equal to 1 when the cell i is an RC,
otherwise p; is equal to 0. Ny (7) is the number of location updates of the cell
i. Np (i) is the number of incoming calls of the network cell ¢. And V (i) is the
vicinity factor of the cell 1.

N-1
f1=min {LUCOSt = Z pi- Ny (z)} , (1)

=0
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(a) Reporting Cell (b) non-Reporting Cell

Fig. 1. Calculus of the vicinity factor

N-1
fo =min {PACOSt => Np(i)-V (i)} . (2)
i=0

Note that these two objective functions are conflicting. The LU,y is reduced
to a minimum when all the network cells are nRC (i.e. there is no location
update). However, in this case, the PA ot is maximum because the callee sub-
scribers should be searched in the whole network. On the other hand, the PA .o
is minimum when all the network cells are RC (i.e. V (i) = 1Vi € [0, N — 1]), but
in this case the LU,qs is maximum because a location update will be performed
whenever a mobile station moves from one cell to another.

In previous works [6-9], this problem was tackled by using different meta-
heuristics of the Single-objective Optimization (SO) field. For it, the optimization
problem was simplified by means of the linear aggregation of these two objec-
tive functions, see Equation 3. However, this technique has several drawbacks.
Firstly, a very accurate knowledge of the problem is required when configuring
the weight coefficient (8 € R). Secondly, the appropriate value of such coefficient
might be different for different states of the signaling network. And thirdly, a
single-objective optimization algorithm must perform an independent run for
every value of (.

§9(8) = min {8 LUcost + PAcost } - (3)

In this work, we propose a multiobjective approach with the aim of avoiding
these drawbacks (a multiobjective optimization algorithm treats each objective
function separately). Furthermore, a multiobjective approach gives the possibil-
ity of selecting among a wide range of solutions the one that best adjusts to the
real state of the signaling network.

4 Multiobjective Optimization

Formally, a Multiobjective Optimization Problem (MOP) could be defined as the
optimization problem in which two (or more) conflicting objective functions must
be optimized simultaneously [11] (e.g. the Reporting Cells Planning Problem). In
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2.min

1,min 1,max

Fig. 2. Hypervolume for a minimization problem with two objectives

a MOP, the main challenge is to find a wide range of solutions (each one related to
a specific trade-off between objectives) evenly distributed in the objective space.
These desired solutions are commonly known as non-dominated solutions, and
the set of non-dominated solutions is referred as Pareto Set. If (without loss of
generality) we assume a minimization bi-objective problem (as the RCPP), a
solution x! is said to dominate the solution xJ (expressed as x! < xJ) if and only
if Vk € [1,2], fx (xi) < f& (xj) ATk e€1,2]: fx (xi) < fr (Xj).

There are several multiobjective indicators to measure the quality of a set
of non-dominated solutions (whose representation is the Pareto Front). In this
work, we use one of the most popular indicators: the Hypervolume (Ig). This
multiobjective indicator is discussed in Section 4.1. Section 4.2 presents our
version (in terms of our evolutionary operators specific to the RCPP) of the
Non-dominated Sorting Genetic Algorithm IT (NSGAII).

4.1 Hypervolume: Iy (A)

Assuming a minimization bi-objective MOP, the Iy (A) indicator measures the
area of the objective space that is dominated by the Pareto Front A, and is
bounded by the reference points [11]. These reference points are calculated by
using the maximum and minimum value of every objective function. In the
RCPP, this could be done by evaluating the extreme configurations of Reporting
Cells: Never Update (when all the network cells are non-Reporting Cells, LU iy
and PA,.x), and Always Update (when all the network cells are Reporting Cells,
LUpax and PA,i,). Due to the fact that the main target of a multiobjective opti-
mization algorithm is to find a wide range of solutions evenly distributed in the
objective space, the Iy establishes that the set of solutions A is better than the
set B when Iy (A) > Iy (B). Fig. 2 shows an example of the Iyy(A) calculation
for a minimization bi-objective MOP, which can be formally defined by means
of Equation 4.

In(A) = {U area; | a' € A} . (4)
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Algorithm 1. Pseudo-code of NSGAII

% Initialize the parent population

Ind « Initialization ( Npop );

% FEvaluate the parent population

Ind < ObjectiveFunctionsEvaluation ( Ind );
Ind <« FitnessEvaluation ( Ind );

% Main loop

while stop condition # TRUE do

% Crossover operation

Off «— Crossover ( Ind, Pc, Npop );

% Mutation operation

Off «— Mutation( Off, P );

% Evaluate the offspring

Off < ObjectiveFunctionsEvaluation( Off );
% Evaluate all the individuals

[Ind, Off] « FitnessEvaluation ( Ind, Off );
% Selection of the fittest indwiduals

Ind < NaturalSelection ( Ind, Off );

end
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4.2 The Non-dominated Sorting Genetic Algorithm II

The Non-dominated Sorting Genetic Algorithm IT (NSGAII) is the multiobjec-
tive evolutionary algorithm proposed by K. Deb et al. in [12]. Basically, the
NSGALII is a population-based algorithm in which the evolutionary operators of
biological systems (recombination of parents, mutation, and natural selection)
are iteratively applied with the aim of improving a set of solutions. Algorithm
1 shows the pseudo-code of NSGAII, where N, is the population size, Pc is
the crossover (or recombination of parents) probability, and Py is the mutation
probability. As we can observe in this pseudo-code, the first step in NSGAII is
the initialization and evaluation of the first population of parents (each individ-
ual of the population is an encoded solution of the problem). Subsequently, a
new set of solutions (offspring) is generated by using the crossover and muta-
tion operations. And finally, the best individuals found so far are selected as the
parent population of the next generation. This last is done by using the natural
selection operator.

Individual Representation. As we mentioned in Section 3, a network cell
might be in two possible states: Reporting Cell (RC) and non-Reporting Cell
(nRC). Therefore, a possible individual representation could be a vector that
stores the state of each network cell, e.g. 1 if the network cell is an RC, and
0 otherwise. In this work, every individual of the first population of parents is
randomly generated by using the discrete uniform distribution.
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(a) Swap-based mutation (b) Replacement-based mutation

Fig. 3. Mutation operations

Crossover Operation. The crossover is an evolutionary operator which is
performed with probability P to generate a new population of N, individuals
(the offspring) [11]. In this work, we use an elitist crossover where the maximum
number of crossover points is equal to 4. This evolutionary operator consists
of the following steps: firstly, four individuals (parents) grouped in pairs are
randomly selected. Secondly, we generate two offspring by recombining the best
parents of both groups. And thirdly, only the best of these two new individuals
is stored in the offspring population.

Mutation Operations. This operator is performed with probability Py; to
modify the genome of the offspring [11]. In this work we have defined two muta-
tion operations specific to the RCPP. The first one consists in swapping the
value of two neighboring cells that belong to different states (i.e. RC and nRC).
Fig. 3(a) shows an example of this operation. And the second one consists in
replacing the value of a network cell by the value of one of its neighboring cells
belonging to the other state (see Fig. 3(b)). The mutation operation has been
configured such that these two mutation operations cannot be applied over the
same individual simultaneously.

Natural Selection. The natural selection is the evolutionary operator by
means of which the best individuals (of the whole population, i.e. parents and
offspring) are selected as the parent population of the next generation. In [12], K.
Deb et al. define a fitness function to determine the quality of a solution (or indi-
vidual) in the multiobjective context. This fitness function has two main terms:
the non-dominated sorting and the crowding distance. The non-dominated sort-
ing is used to arrange the solutions in fronts by using the dominance concept.
And the crowding distance is used to estimate the density of solutions surround-
ing a particular point of the objective space. For more information about these
two procedures, please consult [12].
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Table 1. Statistics of Hypervolume (Ig)

Test Network
Ref. points TN1 TN2 TN3 TN4 TN5 TN6 TN7 TN8 TN9 TN10 TNI11 TN12
LUmax 11480 11428 11867 30861 30237 29864 47854 46184 42970 54428 49336 49775
LUwmin 0 0 0 0 0 0 0 0 0 0 0 0
PAmax 125184 124576 125248 256500 256788 255636 691008 680000 690112 1691300 1666400 1676400
PAmin 7824 7786 7828 7125 7133 7101 10797 10625 10783 16913 16664 16764
Statistics of I
Aver.(%) 60.59 61.44 62.58 7178 71.93 7273 75.89 76.71  76.95 78.50 79.80 79.65
Dev.(%)  0.00 0.00 0.00 0.04 0.01 0.03 0.16 0.11 0.17 0.28 0.26 0.30

5 Experimental Results

In this section, we present the experimental study conducted to evaluate the qual-
ity of our proposal. For it, we have tested our version of NSGAII in 12 test networks
of different complexity: TN1-TN3 (test networks of 4x4 cells), TN4-TN6 (test net-
works of 6x6 cells), TN7-TN9 (test networks of 8x8 cells), and TN10-TN12 (test
networks of 10x10 cells). These network instances were firstly published in [7],
and were also studied in [8,9]. The reasons why we use these network instances
in our study is because they cover a wide spectrum of the problem (12 test net-
works of different complexity) and because the 12 test networks were generated
by using realistic subscriber’s call and mobility patterns (in contrast to previously
published network instances, where the mobile activity of every network cell was
randomly generated according to a normal distribution [7]).

Furthermore, we have compared our results with those obtained in other works
published in the literature [7-9], where different single-objective metaheuristics
were applied to optimize the same set of test networks: Geometric Particle Swarm
Optimization (GPSO) [7], Hopfield Neural Network hybridized with the Ball
Dropping technique (HNN-BD) [7], Differential Evolution (DE) [8], and Scatter
Search (SS) [9]. This comparative study is discussed in Section 5.1.

Another novel contribution of our work is the use of a high-performance
solver: the IBM ILOG CPLEX Optimizer [13]. A comparison with this well-
known optimizer is also presented in Section 5.1.

With the aim of performing a fair comparison, our proposal is configured
with the same population size (Npop = 175 individuals) and the same stop
condition (Mazimum number of generations = 1000) as in [8,9]. Regrettably,
a runtime comparison cannot be conducted because the execution time of SS,
DE, HNN-BD, and GPSO is not available. The other parameters of NSGAII
(crossover probability (Pc) and mutation probability (Pas)) have been config-
ured by means of a parametric study of 30 independent runs per experiment. The
parameter combination that maximizes the Hypervolumen (Iy) is: Po = 0.75 and
Py; = 0.25. Table 1 shows statistical data (mean and standard deviation) of the
Iy indicator for this configuration. This table also gathers the reference points
for each test network (see Section 4.1). And Fig. 4(a)-Fig. 4(1) show the Pareto
Fronts associated with the mean Iy for each test network. These figures reveal
that our proposal achieves good Pareto Fronts, because they extend from the
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Table 2. Comparison with other works: 5 (10). We indicate with ”-” the information
that is not available in the corresponding reference

Test Network

Algorithm TN1 TN2 TN3 TN4 TN5 TNG6 TN7 TNS8 TN9 TN10 TNI11 TNI12

Min. 98535 97156 95038 173701 182331 174519 308702 287149 264204 385927 357368 370868

NSGAII Aver. 98535 97156 95038 173701 182331 174605 308859 287149 264396 387416 358777 371349
Dev.(%) 0.00 0.00 0.00 0.00 0.00 0.13 0.05 0.00 0.09 0.20 0.16 0.15

Min. 98535 97156 95038 181677 200990 186481 375103 351505 407457 514504 468118 514514

CPLEX Aver. 98535 97156 95038 181677 200990 186481 375103 351505 407457 514504 468118 514514
Dev.(%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Min. 98535 97156 95038 173701 182331 174519 307695 287149 264204 385927 357714 370868

SS[9] Aver. - - - - - - - - - - - -
Dev. - - - - - - - - - - - -

Min. 98535 97156 95038 173701 182331 174519 308401 287149 264204 386681 358167 371829
DE[8] Aver. - - - - - - - - - - - -
Dev.(%) - - - - - - - - - - - -

Min. 98535 97156 95038 173701 182331 174519 308929 287149 264204 386351 358167 370868

HNN-BD|7] Aver. 98627 97655 95751 174690 182430 176050 311351 287149 264695 387820 359036 374205
Dev.(%) 0.09 0.51 0.75 0.56 0.05 0.87 0.78 0.00 0.18 0.38 0.24 0.89

Min. 98535 97156 95038 173701 182331 174519 308401 287149 264204 385972 359191 370868

GPSO[7] Aver. 98535 97156 95038 174090 182331 175080 310062 287805 264475 387825 359928 373722
Dev.(%) 0.00 0.00 0.00 0.22 0.00 0.32 0.53 0.22 0.10 0.48 0.20 0.76

Never Update to the Always Update (the two extreme configurations of Report-
ing Cells). However, it is noteworthy the existence of gaps in the mean Pareto
Front of the test networks TN4, TN9, TN10, and TN12. The study of such gaps
would be a good challenge for a future work.

5.1 Comparison with Other Works

In this section, we compare our proposal with other algorithms published in
the literature: Geometric Particle Swarm Optimization (GPSO) [7], Hopfield
Neural Network hybridized with the Ball Dropping technique (HNN-BD) [7],
Differential Evolution (DE) [8], and Scatter Search (SS) [9]. Regrettably, all of
these algorithms belong to the single-objective optimization field (to the best
of the authors’ knowledge, there is no other work in which the Reporting Cells
Planning Problem is tackled with a multiobjective approach). So, in order to
perform such comparison, we have searched in our Pareto Fronts the solution
that best fits the objective function used in these works (which is Equation 3
with 3 equal to 10: £5° (10)).

This comparative study (of 30 independent runs per experiment) is summa-
rized in Table 2, where we present: the minimum cost (Min.), the average cost
(Aver.), and the deviation percentage (Dev.(%)) from the minimum cost [7].
This table highlights that our proposal is very interesting because it achieves a
wide range of solutions (each one related to a specific trade-off between objec-
tives) in a single run (see Fig. 4(a)-Fig. 4(1)) and, at the same time, it provides
better (in average) and more stable results than the single-objective metaheuris-
tics published in [7]. And also better minimum cost than [8], mainly in the more
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difficult networks (TN10, TN11, and TN12). This is far from trivial because we
are comparing with metaheuristics specialized in finding only one solution (the
one that best fits £5 (10)).

Furthermore, we have optimized each test network by using the IBM ILOG
CPLEX Optimizer [13]. In this study, we have limited the execution time of the
IBM ILOG CPLEX Optimizer to be 10 times higher than the execution time
of our algorithm (which is approximately of 7 minutes for the most complex
test networks: TN10, TN11, and TN12). This comparison (see Table 2) confirms
the virtues of the evolutionary computation, because the IBM ILOG CPLEX
Optimizer is only competitive in the less complex test networks (TN1, TN2, and
TN3).

6 Conclusion and Future Work

In this manuscript, we propose a multiobjective approach for finding quasi-
optimal configurations of Reporting Cells (a strategy to manage the subscribers
mobility in the Public Land Mobile Networks). For it, we have adapted the Non-
dominated Sorting Genetic Algorithm IT (NSGAII) [12]. This approach is a novel
contribution because, to the best of the authors’ knowledge, there are no other
works in the literature that tackle this problem with multiobjective optimization
techniques. With a multiobjective approach, we avoid the drawbacks associated
with the linear aggregation of the objective functions and, at the same time, we
obtain a wide range of solutions among which we could select the one that best
adjusts to the real state of the network.

By means of an experimental study, we have demonstrated that our algorithm
is very promising because it achieves good Pareto Fronts and outperforms (in
average) the results provided by single-objective metaheuristics. In this exper-
imental study, we have tested our algorithm in 12 test networks of different
complexity.

As a future work, it would be interesting to adapt other multiobjective meta-
heuristics and compare them with our version of the NSGAII. Furthermore, it
could be a good challenge to study the nature of the gaps that appear in the
Pareto Fronts of the test networks TN4, TN9, TN10, and TN12.
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Abstract. Migration topology plays a key role in designing effective dis-
tributed evolutionary algorithms. In this work we investigate the impact
of several network topologies on the performance of a stepping—stone
structured Differential Evolution model. Although some issues on the
control parameters of the migration process and the way they affect the
efficiency of the algorithm and the solution quality deserve further eval-
uative study, the influence of the topology on the performance both in
terms of solution quality and convergence rate emerges from the empir-
ical findings carried out on a set of test problems.

1 Introduction

Evolutionary Algorithms (EAs) [1-4] have proven to be very effective in dealing
with hard optimization problems whose solution space is so large as to make an
exhaustive search unviable [5,6]. Nonetheless, their main disadvantage is related
to the convergence speed. A popular way for contrasting this drawback and
achieving a speedup is to implement structured versions where the population
is divided into multiple semi-isolated subpopulations (demes) connected each
other according to a particular network topology. These subpopulations evolve
independently and interact by means of a migration operator used to exchange
individuals. The number of individuals that are sent to (received from) other
demes is determined by the migration rate, while a replacement function defines
how to include the immigrants into the target subpopulation. Besides, the migra-
tion interval establishes the exchange frequency among neighboring subpopula-
tions [7]. Concerning the network topology, this distributed framework may be
categorized as following either the island model (fully connected demes) or the
stepping—stone model (interaction restricted to customized logical or physically
connected demes) [8]. The connectivity degree of the topology beneath deter-
mines the number of the neighboring subpopulations and its diameter is the
most important factor influencing the propagation of good individuals [9].

© Springer-Verlag Berlin Heidelberg 2014
A.I. Esparcia-Alcdzar et al. (Eds.): EvoApplications 2014, LNCS 8602, pp. 75-85, 2014.
DOI: 10.1007/978-3-662-45523-4_7
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The separation of demes serves as a natural way to maintain the diversity
reducing the possibility of population stagnation [9], may guide the evolution
in many directions simultaneously, and may allow speedup in computation and
improve solution quality with respect to a single EA evolution [10,11].

Originally developed for Genetic Algorithms (GAs) [1,3], the distributed app-
roach has been employed also for different paradigms. Among these paradigms,
distributed Differential Evolution (dDE) has been the subject of significant
research [12-18]. The choice of DE [19] is due to its simple but powerful search-
ing capability, and to its overall performance with respect to other stochastic
and direct search global optimization techniques on a wide range of benchmark
problems [20] and real world problems [21].

In the following we make reference to the stepping—stone dDE model. To
assess the impact of the migration topology on a dDE algorithm, simulations
have been performed on a range of test problems and for several network topolo-
gies by making use of a standard dDE algorithm, i.e., DDE [22].

Paper structure is as follows: Section 2 illustrates the state of the art; Section
3 presents a description of the parallel framework. In Section 4 the experimental
findings are shown and discussed together, and a statistical analysis is performed.
The last section contains final remarks and future works.

2 State of the Art

Since the distributed models were introduced in connection with parallel GAs,
it is not surprising that all the issues involved, including the migration topology,
have been studied in this context. Several surveys have been published in the
nineties [7,23]. Although in some case the influence of the migration topology has
been neglected [7], research was conducted to analyze its impact [10,24]. Natu-
rally the distributed approach has not been investigated exclusively in relation
to GAs. There is a wide research on the dDE models which can be characterized
on the basis of the neighborhood topology, the migration policy, the selection
function and the replacement function.

In [12] the migration mechanism as well as the algorithmic parameters are
adaptively coordinated according to a criterion based on genotypical diversity.
An adaptive DE is executed on each subpopulation for a fixed number of gen-
erations. Then a migration process, based on a random connection topology, is
started: each individual in each subpopulation can be probabilistically swapped
with a randomly selected individual in a randomly chosen subpopulation (includ-
ing the one containing the initial individual).

Tasoulis et. al [13] propose a dDE, named PDE, characterized by unidirec-
tional ring topology, a selection function that picks up the individuals with the
best performance and, with a given probability, send these individuals to the
neighboring subpopulations. When the migration occurs, the migrating individ-
uals substitute random individuals of the target subpopulations.

In Apolloni et al. [15] a distributed version, known as IBDDE, is presented:
the migration policy is based on a probabilistic criterion depending on five
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parameters. The individuals to migrate are randomly selected and the individ-
uals arriving from other islands replace randomly chosen local individuals only
if the former ones are fitter. The topology is a unidirectional ring in which the
individuals are exchanged with the nearest neighbors.

In De Falco et al. [22] a distributed version of DE, called DDE, has been
proposed. It consists of a set of classical DE schemes, running in parallel, assigned
to different processing elements arranged in a torus topology, in which each
generic DE instance has four neighboring communicating subpopulations. The
individual sent is the best one and it randomly replaces an individual in the
neighboring subpopulation, except the local current best one.

In the paper by Ishimizu and Tagawa [17] a structured DE approach still
based on the stepping—stone model is presented. Different network topologies,
ranging from ring to torus and hypercube, are taken into account. The migration
takes place every fixed number of generations and the exchange involves only
the best individual which migrates towards only one of the adjacent subpopu-
lations on the basis of the topological neighborhood and randomly replaces an
individual, except the best one, in the receiving subpopulation.

An improved version of PDE algorithm which entails the employment of four
different scale factor values within distributed differential evolution structures
is advanced in [18]. The subpopulations are arranged according to a ring or a
torus topology. Although proper choice of a scale factor scheme appears to be
dependent on the distributed structure, any of the proposed simple schemes has
proven to significantly improve upon the single scale factor distributed differen-
tial evolution algorithms.

In [25] a structured DE which uses a biological invasion inspired migration
strategy is advanced. The subpopulations are displaced in a torus topology. Dur-
ing the migration the individuals with the fitness better than the average fit-
ness in their subpopulation are sent to all the neighboring subpolulations and a
replacement strategy is performed to keep unchanged the size of each subpopu-
lation.

3 The Distributed Model

Our Distributed DE (DDE) algorithm is based on the classical coarse—grained
approach to EAs [7] in which a collection of networked subpopulations cooperate
in the solution of a problem by a migration operator. It consists in a locally—
linked strategy, known as stepping stone—model [8], in which each DE instance
is connected to a number of instances according to the connectivity degree of
the topology beneath. Each subpopulation can communicate with the other ones
only through its neighbours.

Decision must be taken for the migrant selection, i.e. the choice of the ele-
ments to be sent, and replacement, i.e the individuals to be replaced by the
migrants. Different strategies can be devised: the migrants can be selected either
according to fitness or randomly, and they might replace the worst individuals
or substitute them only if better, or they might finally replace any individual
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(apart from the very best ones, of course) in the neighbouring subpopulation.
Consistently with the biological events, it was noted that the number of migrants
should not be high and the migration should occur after a period of stasis oth-
erwise the subsearch in a subpopulation might be very perturbed by these con-
tinuously incoming elements [7,26].

This mechanism allows attaining both ezploitation and exploration, which
are basic features for a good search. Exploration means to wander through the
search space so as to prevent premature convergence to local optima. Exploita-
tion implies that one area is thoroughly examined, so that we can be confident
to state whether this area is promising. In such a way, good solutions will spread
within the network with successive diffusions, so more and more demes will try
to sample that area (exploitation), and, on the other hand, there will exist at
the same time clusters of subpopulations which will investigate different subareas
of the search space (exploration). Therefore, a suitable percentage of migrants
each subpopulation sends to its neighbours, called Migration Rate (Mg), and an
appropriate exchange frequency between neighbouring subpopulations every My
generations, named Migration Interval, are to be introduced to exploit at the
best the potential of this cooperating stepping—stone model. A rigorous theoret-
ical analysis that leads into new insights into the usefulness of migration, how
information is propagated in island models, and how to set parameters such as
the migration interval is reported in [27]. This study is corroborated by empirical
results that investigate the robustness with respect to the choice of the migration
interval and compare various migration topologies using statistical tests.

Within this general framework we have implemented a distributed version
for DE, which consists of a set of classical DE schemes, running in parallel,
assigned to different processing elements arranged in several topologies in which
each generic DE instance has a different number of neighbouring communicating
subpopulations.

4 Experiments

To investigate the influence of the network topologies in DDE we have compared
their performance on a set of benchmark thirty—dimensional functions as defined
in [28]. Namely, the unimodal functions F; and Fs, and among the multimodal,
the basic functions Fg and Fig, the expanded functions Fi3 and Fi4, and the
hybrid composition functions Fig and Fss have been taken into account. Among
these, Fy, F3, and Fy are separable. As suggested in [29], throughout the exper-
iments, the values for the DE parameters have been chosen as follows: scale
factor (F = 0.9) for all the functions and the crossover ratio (C'R) has been
set to 0.1 for all the separable functions and 0.9 for all the other functions. The
DE/rand/1/bin [19] mutation mechanism has been used. As topologies a Ring,
a bidirectional ring (Bring), an incomplete binary tree (IBtree), a Torus, a WK-
recursive (WK), and a Hypercube, each constituted by a total of 16 nodes, have
been investigated. Some of these topologies are outlined in Fig. 1.

The total population size has been chosen as 160, which results in sixteen
subpopulations with 10 individuals. The number of generations has been set
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Fig. 1. The network topologies
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Table 1. Best migration interval and related average final value for each problem

Ring Bring IBtree Torus WK Hypercube

Problem| My (bv,)  [Mr (Pv,)  [Mi1 (bv,)  [Mr (bv,)  [Mi1 (v,) M1 (dv,)
Fy 10 [5.68 - 10~ ™[ 10 [3.18 - 10~ ™[ 10 [4.32- 10~ "*| 10 [4.09 - 10~ T*] 10 [4.09 - 10~ %[ 10 [5.00 - 10— 1%
F3 10 | 4.85-10%° [ 10| 3.62-107° [ 10 | 3.62 - 107° | 10 | 3.40 - 107° | 10 | 2.89 - 10" | 10 | 6.41 - 10F®
Fg 30|4.37-107" | 40| 3.66-10"" |20 | 4.67-10"" |10 |3.74-10"" | 10| 3.53- 101" | 10| 7.47 - 101"
Fio [30]5.07-10"" [ 40|5.10-10%! | 50 | 5.40 - 10T* | 50 | 5.34 - 107! | 50 | 5.31 - 10" | 50 | 5.84 - 107!
Fiz |[50] 2.17-10° | 50| 1.98-10° | 40| 2.15-10° |50 | 2.64-10° |50 | 2.43-10° |50 | 2.81-10°
Fiqs | 50|1.24-10% |40 |1.26-107 | 40| 1.27-10" | 50| 1.26-10"! |40 | 1.26-10%" | 50 | 1.27 - 10T
Fis [50]9.21-10%' | 50]9.36-10%! | 50| 9.93- 107" | 50 | 9.81- 107" [ 50 | 9.86 - 10" | 50 | 9.39 - 101!
Fay |50 |8.68-1012 |50 |8.75-1072 |50 |8.77-10%2 | 50| 8.83-10"2 | 50 | 8.84 - 1072 | 50 | 8.81 - 102

to 1,875, so as to have a total number of fitness evaluations equal to 300, 000,
following the rules widely used to face those testbeds, as for example in [29].

The parallel algorithm, which uses the Message Passing Interface is written
in C language. All the experiments have been carried out on a Vega cluster
constituted by 16 Pentium 4 processors with a frequency of 1.5 GHz and 512Mb
of RAM, interconnected by a FastEthernet switch.

A first phase of our investigation has aimed at finding the best possible
value for the migration interval M; for each function and for each topology.
We have considered a given range of possible values, i.e., 10, 20, 30, 40, and
50. For any such value 25 runs have been effected for each function and each
topology, and the averages (¢, ) of the best final fitness values over the 25 runs
have been computed. Table 1 reports the best values of M;, together with the
corresponding values of (¢, ).

Examination of the results shows that for the easiest functions F; and F3
the best value for M; is obtained at the lowest tested migration interval. For
the most difficult problems the results are better and better as the migration
interval increases, and this holds true until a given value for M7 is reached; after
this value, the performance worsens more and more as M; further increases.

4.1 Statistical Analysis

To compare the algorithms from a statistical point of view, a classical approach
based on nonparametric statistical tests has been carried out, following [30]. To
do so, the ControlTest package [31] has been used. It is a Java package developed
to compute the rankings for these tests, and to carry out the related post—hoc
procedures and the computation of the adjusted p—values.
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Table 2. Average Rankings of the algorithms

Topology |Friedman|Aligned Friedman|Quade
Ring 3.000 24.125 3.083
Bring 2.313 17.938 2.667
IBtree 4.125 25.125 3.944
Torus 3.688 24.813 3.764
WK 2.563 18.688 2.125

Hypercube| 5.313 36.313 5.417

statistic 14.286 6.822 4.148

p—value 0.014 0.234 0.005

The results for the one—to—all analysis are reported in the following. Table 2
contains the results of the Friedman, Aligned Friedman, and Quade tests in terms
of average rankings obtained by all the topologies. The last two rows show the
statistic and the p—value for each test, respectively. For Friedman and Aligned
Friedman tests the statistic is distributed according to chi-square with 5 degrees
of freedom, whereas for Quade test it is distributed according to F—distribution
with 5 and 35 degrees of freedom.

In each of the three tests, the lower the value for an algorithm, the better the
algorithm is. Bring turns out to be the best in two out of the three tests while
WK is the best according to the Quade test. Among the other four topologies,
their order is in all the tests the following: Ring is always the third best heuristic,
Torus is the fourth, followed by ITree, and finally the Hypercube is the sixth.

Furthermore, with the aim to examine if some hypotheses of equivalence
between the best performing algorithm and the other ones can be rejected, the
complete statistical analysis based on the post—hoc procedures ideated by Holm,
Hochberg, Hommel, Holland, Rom, Finner, and Li has been carried out following
[30]. Moreover, the adjusted p—values have been computed by means of [31].

Table 3 reports the results of this analysis performed at a level of significance
« = 0.05. In this table the other algorithms are ranked in terms of distance from
the best performing one, and each algorithm is compared against this latter to
investigate whether or not the equivalence hypothesis can be rejected. For each
algorithm each sub—table reports the z value, the unadjusted p—value, and the
adjusted p—values according to the different post-hoc procedures. The variable
z represents the test statistic for comparing the algorithms, and its definition
depends on the main nonparametric test used. In [30] all the different definitions
for z, corresponding to the different tests, are reported. The last row in each sub—
table contains for each procedure the threshold value Th such that the procedure
considered rejects those equivalence hypotheses that have an adjusted p—value
lower than or equal to Th.

Summarizing the results of these tables, the equivalence hypothesis between
WK and Bring cannot be rejected by any test and by any post-hoc procedure.
The hypothesis of their equivalence to the Hypercube, instead, is rejected by all
post—hoc procedures, and that with IBtree in many cases. Finally, their equiva-
lence with Torus and Ring is always excluded by Li post—hoc procedure.
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Table 3. Results of post—hoc procedures for Friedman(top), Aligned Friedman (center),
and Quade (bottom) tests over all tools (at a = 0.05)

i [Algorithm |z = (Ro — R;)/SE] p [Holm/Hochberg/Hommel[Holland|Rom [Finner| Li
5 |Hypercube 3.207 0.001 0.010 0.010 [0.010] 0.010 [0.011
4 IBtree 1.938 0.053 0.013 0.013 [0.013] 0.020 [0.011
3 Torus 1.470 0.142 0.017 0.017 [0.017] 0.030 [0.011
2 Ring 0.735 0.462 0.025 0.025 [0.025] 0.040 [0.011
1 WK 0.267 0.789 0.050 0.050 [0.050| 0.050 [0.050
Th 0.013/0.010/0.013 0.013 [0.011] 0.020 [0.011
¢ | Algorithm |z = (Ryp — R;)/SE| p |Holm/Hochberg/Hommel|Holland|Rom |Finner| Li
5 |Hypercube 2.625 0.009 0.010 0.010 [0.011] 0.010 [0.004
4 IBtree 1.027 0.305 0.013 0.013 [0.013] 0.020 |0.004
3 Torus 0.982 0.326 0.017 0.017 [0.017| 0.030 [0.004
2 Ring 0.884 0.377 0.025 0.025 [0.025| 0.040 [0.004
1 WK 0.107 0.915 0.050 0.050 [0.050| 0.050 |0.050
Th 0.013/0.010/0.013 0.013 [0.011] 0.020 [0.004
¢ | Algorithm |z = (Ro — R;)/SE| p |Holm/Hochberg/Hommel|Holland|Rom |Finner| Li
5 |Hypercube 1.983 0.047 0.010 0.010 [0.010] 0.010 [0.013
4 IBtree 1.096 0.273 0.013 0.013 [0.013] 0.020 [0.013
3 Torus 0.987 0.323 0.017 0.017 [0.017| 0.030 [0.013
2 Ring 0.577 0.564 0.025 0.025 [0.025| 0.040 [0.013
1 Bring 0.326 0.744 0.050 0.050 [0.050| 0.050 |0.050
Th 0.010/—/0.010 0.010 | — ] 0.010 [0.013

4.2 Behavior of the Topologies

A very interesting remark is that the migration frequency corresponding to the
best performance for any given topology has a strong relationship to the degree
of difficulty of the problem: the simpler the problem the lower the value for M7y,
the harder the problem the higher the value. This holds true for all the topologies
and for all the problems. Just to give some examples, Fig. 2 shows four different
situations. Namely, the top—left pane deals with the quite easy function F3 for
the bidirectional ring: the lower the value for M; the better the performance.
Top-right pane reports on the behavior of WK topology over Fg function: this
is a quite easy one, and same conclusions as before hold true. The bottom-left
pane, instead shows the behavior over the more difficult Fi3 function: now the
situation is reversed, and the higher the value for M; the better the performance.
Similarly, the bottom-right pane sketches the behavior of WK over the difficult
F55 problem: same considerations as before hold true. This seems to imply that
as the problem becomes more and more complex to solve, the demes should
exchange individuals less frequently, probably because each deme needs now to
more deeply perform exploitation.
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Fig. 2. A few examples of behavior of some topologies over some functions supporting
the hypothesis that the harder a function, the higher the best value for My

A second feature worth noting is that WK and Torus topologies have faster
convergence capability to suboptimal solutions than the other topologies. This
takes place in general for any given function, and for any value of M;. It is
interesting to note that this holds true also in the circumstances in which these
two topologies do not reach the best values at the end of the evolutions, rather
they are overtaken by other topologies that start more slowly. Figure 3 shows this
feature for four exemplary situations. Its top—left pane deals with F3 function
at M; = 30, the top-right one reports on Fig at M; = 50, the bottom—left one
sketches the situation for Fj4 at M7 = 50, and finally the bottom-right pane
shows Fig test case at M; = 50. In all the cases Ring topology is the slowest.
This feature could be profitably used whenever speed becomes of paramount
importance in solving a problem: WK and Torus are very appealing, if a good
suboptimal solution is needed in a very low amount of time.
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Fig. 3. Some examples of the faster convergence achieved by WK and Torus

5 Conclusions and Future Works

A distributed DE algorithm has been considered to evaluate the impact of the
migration topologies on the stepping—stone model. The simulation results per-
formed on a set of classical test functions and their statistical analysis have been
shown to compare the performance of the different network topologies.

Future works will aim at carrying out a wider evaluation phase. This will
be accomplished by performing sets of experiments with other DE operators, so
as to ascertain that the performance are unchanged independently of the DE
scheme chosen.
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Abstract. Modern smartphones permit to run a large variety of applica-
tions, i.e. multimedia, games, social network applications, etc. However,
this aspect considerably reduces the battery life of these devices. A possi-
ble solution to alleviate this problem is to offload part of the application
or the whole computation to remote servers, i.e. Cloud Computing. The
offloading cannot be performed without considering the issues derived
from the nature of the application (i.e. multimedia, games, etc.), which
can considerably change the resources necessary to the computation and
the type, the frequency and the amount of data to be exchanged with
the network. This work shows a framework for automatically building
models for the offloading of mobile applications based on evolutionary
algorithms and how it can be used to simulate different kinds of mobile
applications and to analyze the rules generated. To this aim, a tool
for generating mobile datasets, presenting different features, is designed
and experiments are performed in different usage conditions in order to
demonstrate the utility of the overall framework.

1 Introduction

Modern smartphones boosted their capabilities due to the increasing coverage
of mobile broadband networks, to the new high-performance processors, to the
large-volume storage and to new different types of sensors. All these capabilities
together make it possible for mobile devices to handle much more complex tasks
and to execute different kinds of applications. On the other hand, that consumes
a lot more computing and networking resources and therefore demands much
more energy, while the battery technology has not developed as fast as mobile
computing technology. A possible solution to alleviate this problem is to offload
part of the application or the whole computation to remote servers, as explained
in [4], where software-based techniques for reducing program power consumption
are analyzed, considering both static and dynamic information in order to move
the computation to remote servers.

In the last few years, the emergence of the Cloud Computing technologies
and the consequent large availability of cloud servers [1], encouraged the research
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into the usage of offloading techniques on cloud computing platforms. A number
of papers were published trying to cope with the main issues of the process of
offloading, mainly oriented toward a particular problematic, i.e. Wifi [7], network
behavior and bandwidth [9], the tradeoff between privacy and quality [8].

In [3], a framework is presented for the automatic offloading of mobile appli-
cation using a genetic programming approach, which attempts to address the
issues listed above. The framework comprises two parts: a module that simulates
the entire offloading process, and an inference engine that builds an automatic
decision model to handle the offloading process. The simulator and the inference
engine both apply a taxonomy that defines four main categories concerning the
offloading process: user, network, device and application. The simulator evalu-
ates the performance of the offloading process of mobile applications on the basis
of user requirements, of the conditions of the network, of the hardware/software
features of the mobile device and of the characteristics of the application. The
inference engine is used to generate decision tree based models that take decisions
concerning the offloading process on the basis of the parameters contained in the
categories defined by the taxonomy. This is based on a genetic programming tool
that generates the models using the parameters defined by the taxonomy and
driven by a function of fitness, giving different weights to the costs, time, energy
depending on the priorities assigned.

However, the offloading cannot be performed without considering the issues
derived from of the nature of the application, i.e. multimedia, games, communi-
cations, which can change the resources necessary to the computation and the
type, the frequency and the amount of data to be exchanged with the network
and consequently the energy consumption profile.

In this paper, we extend the framework, building a generator of artificial
datasets, which using the categories defined in the above-cited work, permits
to simulate different kinds of mobile applications, which present different char-
acteristics in terms of the amount of computation, of the type, the frequency
and the amount of computation and the amount of data to be exchanged. The
generator permits to analyze both the effectiveness of the models built by the
decision-tree based GP approach and the interpretability of the models them-
selves. In addition, the analytical model, showing how the cloud simulator and
the mobile simulator model the different types of applications is shown.

The rest of the paper is structured as follows. Section 2 presents the entire
framework used to perform the offloading process. In Section 3, the mobile simu-
lator is illustrated. In Section 4, we show how the artificial datasets are generated.
In Section 5, some experiments are conducted to verify the effectiveness of the
approach and to analyze the models obtained. Finally, Section 6 concludes the
work.

2 Background: A GP-based Framework to Perform the
Offloading of Mobile Applications

In this section is presented the framework that uses Genetic Programming to
evolve models, in the form of decision trees, which will decide whether it is
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convenient to perform the offloading of a mobile application on the cloud. The
decision is taken on the basis of the parameters and the properties typical of the
application, of the user and of the environment, with the support of a tool for
simulating both cloud and mobile environments, presented in the next section.

It is necessary to consider that the system is based on a taxonomy of param-
eters and properties of the mobile systems, defined in [3], which will be used to
take decisions in order to build the model that decides the offloading strategy.
The taxonomy only considers aspects that influence the offloading process and
is based on four different categories: Application (parameters associated with
the application itself), User (parameters assigned according to the user needs),
Network (parameters concerning the type and the state of the network), and
Device (parameters reflecting the hardware/software features of the devices).

The overall software architecture of the system, illustrated in Figure 1, will
be helpful in understanding how the framework works.

Device
Data

Sampler Module

| Training Data | Validation Data |

N e

L—_»l GreenCloud
[ Mobile Simulator “Simulator J g

GP GP
Individual Fitness
Genetic Programming GPM
Module GP Model repository

Fig. 1. The overall software architecture of the system
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On the top of the architecture, there are the modules containing the data,
which will be used by the other components of the system. These different
modules will contain a set of data for each of the four taxonomic categories
considered. Afterwards, the sampler module will generate the training and the
validation dataset, simply randomly combing the data estimated by the above-
mentioned models. These two datasets will be used respectively to generate and
validate the decision models.

Analyzing the rest of the software architecture, we find the two main modules,
used respectively for the simulation and for the inference of the mobile offloading
module. The inference part of the designed system consists of a Genetic Program-
ming module, developing a population of models, suitable to decide the possible
offloading of a mobile application. The chosen GP system is Boost CGPC Boost
Cellular Genetic Programming Classifier [2]. One of the advantages of the chosen
GP-based module is that it can run on parallel/distributed architectures, permit-
ting time-saving in the most expensive phase of the training process, described
in the following. Indeed, each single model of the GP population represents a
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decision tree able to decide a strategy for the offloading and must be evaluated
using the simulation module.

The simulation module consists of the GreenCloud simulator [5] (simulating
the cloud part of the offloading process) and of a mobile simulator designed in
order to model the mobile device behavior. In practice, each model generated by
the GP module is passed to the simulator module, which performs the fitness
evaluation directly on the basis of the results obtained simulating the model
using the training dataset.

At the end of the process, the best model (or the best models) will form the
rules adopted by the offloading engine, which will decide whether an application
must be offloaded, considering the defined conditions (user requirements, band-
width, characteristic of the mobile device and so on). All these models must be
validated using the simulation engine with the validation dataset; if the result
of this evaluation exceeds a predefined threshold, the model is added to a model
repository for future use. The rules used to perform the offloading process are
generated using the genetic programming tool. The use of GP supplies the char-
acteristic of adaptivity and the possibility of working with little knowledge of
the domain, which is really useful to this particular aim.

2.1 Fitness, Terminals and Functions

As usual, in order to use GP for a particular domain, it is sufficient to choose an
appropriate terminal and function set and to define a fitness function. We chose
a typical approach to GP for generating decision trees, choosing as terminals
simply the two answers, yes or no to the question “Is the process offloadable?”.
Then, the main parameters/properties that will drive the offloading process are
used as functions. For this particular domain, in order to design an appropriate
fitness function, it is necessary to take into account the energy wasted, the cost
supplied to use the Cloud and the time saved (or wasted) in performing the
offload process.

First of all, we define three normalized functions, representing respectively
the energy saved, the time saved and the cost saved during the process of offload-
ing (actually the latter is a negative value, as it is a cost not a saving): Senergy,

Stime and Scost~
Eiocat—Eoffioad
mam(EoffloadyElocal) ?
cuting the process on remote servers and the energy necessary to perform the
offloading. The energy is computed in accordance with the analysis defined in
[6] and the methodology is better detailed in section 3 together with the costs
derived from using the cloud resources.
. _ Tiocal—Tof fload : . . .
Stime = maw (T fracaieen)? 116 the ratio between the time saved executing
the process on remote servers and the time necessary to perform the offloading.
Differently, the cost function is computed as S.,5r = —w, i.e. the ratio
aup

Senergy = i.e. the ratio between the energy saved exe-

between the cost due to the remote execution and a parameter Cy,, defining a
threshold of cost (if the cost overcomes Cgyp , Scost becomes —1).

Finally, the fitness is computed as the weighted sum of the three equations
described above, using three positive parameters (Penergy, Ptime > Peost ), modeling



90 G. Folino and F.S. Pisani

the importance we want to give respectively to the energy saving, to the time
saving and to the cost saving.

Considering an element T; (representing an application running on a deter-
mined device) of the training set T composed of n tuples, the fitness of this
element is computed as

f(n) = Penergy * Senergy + ptime * Stime + Deost * Scost and Consequently the
total fitness is given by fior = > i f(T3)

3 The Mobile and Cloud Simulator

In this section, the simulator used for the process of offloading is described in
detail.

The mobile simulator is written in java and its architecture comprises two
modules. The first computes the (time, energy and cost) models that specify
hardware characteristics of the mobile devices and the costs of the cloud services.
The second module computes the fitness for all the tasks and communicates with
the GreenCloud simulator in order to obtain the estimated values concerning the
cloud environment (cost, execution time, memory used, etc.).

The main aim of the simulator is to estimate the three important components,
which will be used to estimate the goodness (fitness) of a determined model
built by the GP system: the time, the energy and the cost associated with that
model. The equations used to estimate these three functions are based on the
model developed by Kumar [6]. The first element is function of the time required
to perform the task entirely on the mobile device and of the time required to
perform the same task (or at least part of the task) on the cloud server consid-
ering also the overhead associated with the communication; the second element
is determined by the energy wasted on the mobile device and the energy con-
sumed performing the offload; finally, the third module represents the cost of the
cloud computing services. The latter is computed using GreenCloud [5], which
is a simulation environment for energy-aware cloud computing datacenters. It
is derived from NS2 (network simulator) and tracks the power use of all the
components involved in a datacenter: hosts, communication switches, etc. In our
framework, GreenCloud is used to evaluate the execution times of the part of
the application offloaded on the servers and consequently the costs necessary to
use the servers and the energy wasted. Although the main interest of this paper
is on the mobile side, on the Cloud side, we need to simulate the processing
delays, the submitting task rates, the impact of mobile data size in the overall
performance, in order to identify classes of applications that benefit from the
computation offloading.

The time component represents the difference between the time to perform
the task locally or remotely. The time of local computation mainly depends
on three factors: the average execution time, the probability of interruption and
the available memory. A higher probability of interruption corresponds to a large
amount of time to complete the task. The available memory has effects on the
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computation time because the mobile OS performs a time-consuming swapping
operation when memory is not sufficient.

In the case of the offload, the time depends on the computation time on the
server (obtained by the simulator GreenCloud) that corresponds to the waiting
time of the mobile device and the time required to perform the migration of
the data (and of part of the application). These delays depend on the type of
network, on the latency and on the bandwidth available.

The energy component is obtained from the difference of the energy consumed
when the task is executed on the mobile device and the energy consumed when
the task runs on the cloud servers. The term, which represents the local energy,
is given by the product between the energy consumption of the system (P.) and
the execution time (7). The system energy depends on the CPU usage and on
the system resources used (GPS, camera, etc.) that are correlated to complexity
of the task, available battery and system load.

Using the model proposed by Kumar, we indicate with C the number of
instructions required by the computation, with S the speed (instructions for
second) of the cloud server and with M the speed of the mobile server. If the
data to be transferred between the mobile and the cloud system are D (bytes)
and B is the network bandwidth, it takes % seconds to transmit and receive data.
In addition, the mobile consumes (watts) are indicated with P. (computing), P;
(idle), and Py (sending and receiving data). So, the energy consumed on the
mobile system will be P, %, the energy consumed for the offloading process
and for the computation of the cloud server will be P; x % + Py * % and the
effective saving (if positive) in energy of the complete offloading process will be
PC*%—PZ»*%—PW*%.

4 Generating Artificial Datasets for Different Kinds of
Applications

It is really hard and very costly to measure the behavior and the usage of mobile
devices in a real environment. Furthermore, to the best of our knowledge, in the
literature, there are no real datasets modeling the behavior of mobile devices.
Therefore, we build a tool for building artificial datasets to model a number of
realistic mobile scenarios for our experiments. Using this tool, we generated three
datasets (named A, B and C). A tuple of each dataset is composed from a set of
features, each one modeling a property of the mobile system in accordance with
the taxonomy previously defined and the class represents the decision of offload-
ing or not. Most of the features are intuitive and a detailed description can be
found in [3]; here we report only three relevant features: avgtime represents the
average time of execution of the mobile application, datasize is the average data
size in bytes exchanged by the application, bandwidth is the average bandwidth
available between the mobile device and the cloud. These features are discretized
and can assume the following values: very low, low, medium, high and very high.

A percentage of 70% of the dataset is used as training set and the remainder
for testing. A synthetic description of the datasets, together with the typical
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Table 1. A synthetic description of the datasets and of the typical applications they

model
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Synthetic Description

Use Cases

Dataset
A

Average time and datasize properties are gen-
erated with a zipf distribution. Probability of
interruption property follows a normal distribu-
tion.

Applications usually interrupted by an event
(i.e. a call, a text message, a notification of
another app, etc.). This dataset presents an
equal distribution of long/heavy and short/light
tasks.

Datasize, average time and probability of inter-
ruption properties are generated with a normal
distribution

Gaming, social networking and messaging appli-
cations, presenting a medium/long execution
time or computationally intensive.

Probability of interruption, network QoS, aver-
age execution time, network bandwidth, bat-
tery level and cpu available are generated with
a zipf distribution. Datasize, network latency,

Most complex scenario ( communication, multi-
media, sport and shopping applications). They
are used frequently and for short time and have
very low requirements in terms of time, energy

network type, memory available and connectiv-
ity are generated with a normal distribution

or performance.

applications they represent, are supplied in Table 1 and described in detail in
the following. The percentage of tuples, which are classified as offloadable, is
reported in Table 2.

Dataset A is modeled using a zipf distribution for the average time and for
the datasize property, while the other properties follow a uniform distribution.
This choice replicates the case in which most part of the applications have short
execution times and very few applications present high execution times, while
the probability of interruption follows a normal distribution. This dataset models
the common mobile user behavior in which an application is interrupted by an
event (a call, a text message, a notification of another app, etc.).

The three main properties in the dataset B (datasize, average time and prob-
ability of interruption) follow a normal distribution so that we have a dataset
that represents the typical case of the top downloaded apps (mainly game, social
and messaging apps), with a similar use behavior. Also in this case, the other
properties are generated with a uniform distribution.

As for the third dataset (C), the probability of interruption, the network
QoS, the average execution time, the network bandwidth, the battery level and
the cpu available are generated using a zipf distribution, while the other prop-
erties are generated using a normal distribution. Using this dataset we want to
model a more complex environment in which most of the applications are defined
by a moderate use of memory and size of data to transmit and average values
for network latency and signal strength in 3G networks, which is the most used
type of network. For these reasons, more energy is required for the transmission.
For values generated with zipf distribution, the applications have low resource
available, poor network performance as mean value and most of the applica-
tions presents a low use time. These characteristics reproduce a scenario where
offloading is less profitable.

It is worth noticing that experts of the domain could find distributions
modeling the real behavior of the previously described properties better than
how defined in this section; however, the aim of this work is not to define the
"best” distributions for the properties of the mobile applications, but to build a
framework able to simulate different distributions and understand the behavior
in terms of cost, energy and time savings.
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Table 2. The different parameters used in the datasets and the resulting percentage
of offloadable tasks. Configurations used: C1 (penergy = 2, Ptime = 0.2, Peost = 0.2),
C2 (pene'rgy = 27 Ptime = 027 Pcost = 1), C3 (pene'rgy = 27 DPtime = 1, Pecost = 1)

Dataset A|Dataset B|Dataset C
C1 40% 7% 24%
C2| 51% 85% 29%
C3 62% 96% 40%

5 Experimental Section

All the experiments were performed on a Linux cluster with 16 Itanium2 1.4GHz
nodes, each having 2 GBytes of main memory and connected by a Myrinet high
performance network. As for the BoostCGPC algorithm, we adopted the same
parameters used in the original paper [2], and no tuning phase has been con-
ducted. In practice, in each experiment, the Boost GCPC module uses a proba-
bility of crossover equal to 0.8 and of mutation equal to 0.1, a maximum depth
equal to 17, and a population of 100 individuals per node. The algorithm was
run for 5 rounds of boosting on 5 nodes, using 100 generations for rounds. The
original training set was partitioned among the 5 nodes. It is worth remembering
that the algorithm produces a different classifier for each round on each node,
generating a final ensemble of 25 classifiers. A parsimony factor of 0.0001 was
used in order to reduce the size of the classifiers. All results were obtained by
averaging 30 runs.

In order to evaluate the behavior of different configurations and types of
mobile applications besides the classical error measure in the classification task
(the ratio between the number of correctly classified cases and the total number
of cases) the two standard metrics of false negative rate and false positive rate
developed for network intrusions, have been used. If with normal we indicate the
process does not need to be offloaded, the false positive (also called false alarm)
rate can be computed as the ratio between the number of normal processes
classified as to be offloaded and the total number of normal processes, that is

B #FalseAlarm
~ #TrueNegative + #FalseAlarm

FP

while false negative is the opposite case (i.e., the number of "to be offloaded”
processes classified as normal and the total number of ”to be offloaded” processes.
These metrics are important because they help to understand which of the two
cases is most costly for the offloading process.

5.1 Performance Analysis

In this subsection, a suite of experiments is conducted in order to analyze the
behavior of our algorithm for different categories of mobile applications and
for different experimental setups. The false positive and false negative rate and
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the overall error is computed by running the framework on the three datasets
described in the previous section (having 15 features and 12,000 tuples each
one), by varying the parameters weighting the energy, the cost and the time. In
this way, we want to understand if the framework is particularly suitable to a
specific distribution or is more oriented toward a specific parameter (i.e. cost),
or it is effective to detect the rate of false positives or false negatives.
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Fig. 2. The different errors (FP, FN and total) respectively for the dataset A (a), B
(b) and C (c) with different configurations (C1, C2 and C3)

The results of this evaluation are illustrated in Figures 2 a, b and c. For each
dataset, we used three different setup configurations (C1 (penergy = 2, Ptime =
0.2, peost = 02)7 C2 (penergy = 2, Ptime = 0.2, Peost = 1)7 C3 (penergy = 2,
Dtime = 1, Peost = 1)). The parameters were chosen to give different importance
to time and cost components of the fitness function.

The dataset A is composed of applications that require medium values of
execution times and hardware requirements are not excessive. The percentage of
the tasks that should be executed in offloading or not is well balanced; therefore,
the model fits well the data both for the metric of FN and of FP.
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Fig. 3. An example of generated model for the dataset A

On the contrary, the dataset B was created to model applications that have
a long execution time and a high use of hardware resources and consequently
most of the tasks have benefits in the offloading process. Therefore, the rate
of FP is very low, but equally, our model performs well for the FN rate. The
dataset C models applications that have a little benefit from using the offload-
ing mechanism. In this scenario, the correct percentage of offloadable tasks is
between 20% and 40%. The False Negatives rate is very low because the number
of tasks for which do offload is relatively low and they are recognized almost
always correctly.

5.2 Analyzing the Models

An example of generated tree for the dataset A is shown in figure 3. It is immedi-
ately evident that the execution time, the amount of data to be transmitted and
the type of network used for transmission are the main discriminating factors
to make offload or not. This is due to the impact that the offloading process
has in terms of energy and time taken to perform the offload. It is useful to
remember that communication has a significant impact on energy consumption
on a mobile device. Indeed, the first and second levels of the tree are sufficient
to classify applications with a very short or very long execution times. If the
data to be transmitted are low then the task of offloading is preferable. This
tree reflects the nature of the applications modeled by this dataset: variables
execution time, very different amount of transmitted data and, in general, no
predominant trend to make offload or not.

As for the dataset B (figure 4), the percentage of offloadable tasks is predom-
inant. The decision to make or not the offloading depends on the situations in
which the power consumption is excessive in relation to the task requirements or
to the condition of the battery. For example, tasks with low avgtime, medium
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Fig. 5. An example of generated model for the dataset C

network and qos and a high-energy network usage do not perform the offloading.
The same decision is taken whether the network type is not specified and the
device has low battery. As for dataset C (figure 5), composed by a low percentage
of tasks that benefits from the offloading, the final decision is mainly determined
by the conditions of the network (bandwidth available, network type, latency)
or by the amount of data to be transferred. The execution time is only used for
the decision only in the rare case of application with a long execution time (i.e.
games).

6 Conclusions and Future Work

An automatic approach to generate models for taking decisions on the process
of offloading of mobile applications on the basis of the user requirements, of
the conditions of the network, of the hardware/software features of the mobile
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device and of the characteristics of the application is presented. Using a tool for
generating artificial datasets, the utility of the framework in simulating different
kinds of mobile applications was demonstrated. The rules generated in the form
of decision trees result really understandable and supply useful information in
deciding whether determined kinds of applications are able to be offloaded and
on the main conditions to be evaluated. Future works include to test the frame-
work with real datasets and to verify whether the models obtained work in real
environments.
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Abstract. Artificial development has been widely used for designing
complex structures and as a means to increase the complexity of an arti-
fact. One central challenge in artificial development is to understand how
a mapping process could work on a class of architectures in a more general
way by exploiting the most favorable properties from each computational
architecture or by combining efficiently more than one computational
architectures (i.e., a true multicellular approach). Computational archi-
tectures in this context comprise structures with connected computa-
tional elements, namely, cellular automata and boolean networks. The
ability to develop and co-evolve different computational architectures has
previously been investigated using common developmental genomes. In
this paper, we extend a previous work that studied their evolvability.
Here, we focus on their ability to evolve when the goal changes over evo-
lutionary time (i.e., adaptation), utilizing a more fair fitness assignment
scheme. In addition, we try to investigate how common developmental
genomes exploit the underlying architecture in order to build the phe-
notypes. The results show that they are able to find very good solutions
with rather simplified solutions than anticipated.

Keywords: Common developmental genomes + Evolvability - Cellular
automata - Boolean network - L-systems

1 Introduction

In artificial systems, a species can be linked to a certain computational archi-
tecture, such as, a cellular automata (CA) [1] or a boolean network (BN) [2].
Here, computational architectures are considered as structures comprising con-
nected computational elements. A computational element may represent a cell
(part of a cellular automaton) or a node (part of a boolean network). Most such
systems include a specific genetic representation (genotype), a mapping process
(genotype-to-phenotype) and have a specific structure as a target (phenotype).

A big challenge in developmental systems is how a genotype-phenotype map-
ping can work on a class of computational architectures (species), towards scal-
able systems for complex computation. So, it is important to investigate whether
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it is possible to exploit the most favorable properties from each species or to
combine more than one species in a more efficient way (i.e., a true multicellular
approach). To study this concept, an experimental approach was undertaken [3]
and [4], giving rise to common developmental genomes.

Common developmental genomes are genomes constructed in a modular way
(chromosomes), making it possible to develop and evolve more than one species,
towards a common goal [3],[5]. In [3], it was investigated whether common devel-
opmental genomes can favor the evolvability of different species. The species
studied therein were cellular automata and boolean networks. Evaluation of the
fitness was done by averaging the partial fitnesses of the species involved. Even
though common genomes exhibited superior ability to evolve and adapt to the
environment than genomes evolved separately for each species, the fitness evalu-
ation scheme in [3] needs some reconsideration. For example, a CA with a fitness
0.1 and a BN with a fitness 0.9, would have an average fitness of 0.5. On a dif-
ferent case, with the CA having a fitness 0.5 and the BN having a fitness 0.5,
we will also get an average fitness 0.5. As such, there is no way to discriminate
better from worse individuals in a population. Even still, they are all assigned
the same fitness score.

In this paper, we continue the study of [3]. The goal herein is to test the
ability of common developmental genomes to adapt when the goal changes over
evolutionary time (i.e., adaptation), facilitating a more fair fitness assignment
scheme. Through this new fitness evaluation scheme we aim at assigning a more
fair fitness to the evolving species but also, and perhaps more importantly, since
the genetic information (genotype) is common for all species, the scheme may
act as a means to indirectly apply evolutionary pressure towards the inferiorly
evolving species. In addition, we analyze the structures of the best phenotypes by
visual inspection and investigate how common developmental genomes exploit
the underlying architectures in order to build their solutions.

The rest of the article is laid out as follows. The developmental model is
given at Section 2. Section 3 give a brief description of the emergent dynamics
in artificial systems. Section 4 present the experimental setup. Results are given
in Section 5, with the conclusion at Section 6.

2 The Developmental Model

In this section, the genetic representation and the developmental model is given
in brief. For a detailed description, see [5]. Figure 1, shows the genome con-
structed by two parts or chromosomes. The first chromosome creates the cells /
nodes of the species whereas the second chromosome generates the connections.
Each chromosome is governed by rules. The rules for node / cell creation are
different from those for connectivity.

The rules of the first chromosome describe cell processes like growth, differen-
tiation and apoptosis and are used during the development process (ontogeny).
The rules of the second chromosome express the connectivity and are used for
developing the connections of the boolean network. To express the rules in the
chromosomes, an L-system is used as a developmental model.
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Fig.1. The genome is split into two chromosomes: Node- and Connectivity-
chromosomes

L-systems are rewriting grammars, able to describe developmental or genera-
tive systems and have successfully been used to simulate biological processes [7],
[8]. Two separate L-systems are used in the representation. The first L-system
processes the first chromosome rules where a second L-system deals with the
connectivity rules of the second chromosome.

2.1 The L-system for the First Chromosome

The L-system used here is context-sensitive. As such, development is using the
strict predecessor/ancestor to determine the applicable production rule. The
rules are able to incorporate all the cell processes of a species. Table 1(a), shows
the type of symbols used by the L-system of the first chromosome.

Table 1. (a) Symbol table for nodes/cell creation, (b) Symbol table for creating con-
nectivity

Substitute (differentiation)
Production

(a) (b)
Symbol Description Symbol Description
a  Add (growth) x  Node (different from y)
b Add (growth) y  Node (different from x)
¢ Add (growth) +  Connect forward
d  Delete (apoptosis) —  Connect backwards
X Substitute (differentiation) —  Production
Y
—

Symbol a is the aziom. Apart from the symbols a, b, and ¢, which perform
growth of the phenotype, symbol d performs apoptosis, aiming at the deletion
of the current rule (i.e., cell/node). Symbols X and Y, represent the differenti-
ation process, replacing the predecessor cell/node. For example, for X—Y the
outcome will be Y. The length of each rule is 4 symbols (i.e., 4x8bits=32bits).
For node/cell generation the L-system runs for n timesteps and then stops. As
such, the intermediate phenotypes generated by development are of variable size.
Figure 2a, gives an example of a first chromosome L-system.

Detailed example with step-by-step development of a 2D-CA architecture
can be found at [5].
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Fig. 2. (a) L-system rule set for node/cell generation, (b) L-system rule set for con-
nectivity

2.2 The L-system for the Second Chromosome

The rules are able to generate the connections necessary for the wiring of the
nodes. They contain symbols which when executed by the L-system, result in
creating a connection forward or backwards from the current node. Each node
in the network has unique numbering; current node holds number zero and any
nodes starting from the current node forward have positive numbering. Nodes
existing from the current node backwards, have negative numbering. As such,
there is a need to differentiate between the current and the next node, using
different symbols but also to describe when a connection will be created forward
or backwards from the current node.

The length of connectivity rules is also four. The L-system uses a DOL (i.e.,
with zero-sided interactions). The second chromosome L-system is shown at
Figure 2b. Symbols are explained in Table 1(b).

The aziom rule for the second chromosome is x—y. Then, development con-
tinues looking for rules of type xy—+value, or xy—-value. In short, these two
rules imply that if two different (distinct) nodes are found (x#£y), it creates a
connection forward (if the rule includes a ’'+’), or similarly a connection back-
wards (if the rule includes a ’-’). The field value is encoded in the genotype and
denotes the node number of the newly created connection. If value=0, a self-
connection is created to the current node. Detailed example with step-by-step
development of a boolean network architecture is presented at [5].

2.3 The Genetic Algorithm for Common Genetic Representation

A genetic algorithm (GA) is utilized to create and evolve the chromosome rules.
Since there are two separate L-systems involved in development, the evolution-
ary process will be consisted of two phases: a. the creation of nodes and b.
the creation of the connections. Mutation and single-point crossover are used as
genetic operators. Mutation may occur anywhere inside the 4-symbol rule, such
as the production symbol (—) remains undistorted after mutation. Single-point
crossover between two parents always takes place at the position of the pro-
duction symbol in the rule. The evolutionary cycle ends after a predetermined
number of generations.



Common Developmental Genomes Revisited 105

3 Emergent Dynamics in Artificial Systems

In biology, development is a process starting from a zygote and develops into
a multicellular organism. Similarly, in the artificial domain, development simu-
lates this biological process; from an given initial condition, the zygote, through
an iterative developmental process, it can develop into a final structure (phe-
notype). Assuming the developmental process is deterministic, i.e,. the outcome
of development is defined by the initial zygote (genome), some initial condition
and a developmental mapping, then an initial configuration (or a set of configu-
rations) exists and is sufficiently defined by the developmental genome and the
initial conditions [6].

Any sparsely connected computational architecture (i.e., CA, BN, etc.) can
be represented in the space time domain. Phenotypic structures can be shown as
nodes and their transitions in time can be shown as developmental paths from the
zygote to the final organism. Development of a structure comprise developmental
steps (DS). Each DS may include one or more developmental processes proposed
by the model (Section 2). Development starts with the zygote (initial genome).

L————-al

zygote

Fig. 3. Developmental path of a structure shown as a trajectory

Figure 3 shows the path of development of a non-uniform 2D-CA. White cells
are considered empty whereas colored cells represent the CA rule of the particular
cell. Solid lines represent consecutive developmental steps (DS 10-11 and DS
99-100). Non-consecutive developmental steps are represented by dashed lines
(zygote-DS 10 and DS 11-99). The path from the zygote until DS 10 has gone
through 10 different intermediate phenotypic structures. Similarly, the path from
DS 11 until DS 99 has produced 88 different intermediate phenotypic structures.
DS 100 has a loop back to DS 99; this type of behavior is a cycle attractor which
indicates whether the structure is stable or not. The path until DS 99 represents
a transient period or phase. The structure at DS 100 is the final phenotype.

The behavior of the system is described by the initial state and the trajec-
tory of all 100 developmental steps of the example. Each developmental step is
further analyzed into state steps (SS). A state includes cell/node information
giving a snapshot of instantaneous behavior. As such, state steps provide infor-
mation about the emergent behavior of intermediate and final phenotypes in the
space/time domain.

The descriptions on emergent dynamics explained above, are useful to better
understand the definitions of the computational goals for the common develop-
mental genomes (Sections 4.3 and 4.4).



106 K. Antonakopoulos

4 Experimental Setup

For the experiments, a 6x6 2D-CA and a N=36 BN is used. The size chosen
for the CA is the minimum possible. By choosing a smaller lattice size, there
will be too many dependencies in the cell states of the CA. Also, the maximum
number of nodes/cells in the species should allow for easy, visual explanation of
the final phenotypic structures. The larger the size of the species, the harder it
is to visually interpret their structure.

For the two species to be comparable, they must have the same state space or
the same amount of possible states. Since the size of each architecture is 36 and
each cell/node can take 2 different distinct values (boolean), the total state space
for each species is 236. The number of outgoing connections per node is K = 5.
When the number of outgoing connections exceeds five, a self-connection to the
originating node is created instead. The number of incoming connections per node
is limited only by the total number of nodes found in the network (N — 1).

For each individual, a random initial state is created and fed into the architec-
ture. We use a total number of 36 rules for node generation and connectivity (i.e.,
32x36=1152bits). Each rule can be reused during L-system development. The
GA program drives a single population of 20 individuals. Development runs for 100
timesteps (DS) for each individual. In each DS, behavior is defined by 1000 state
steps (SS). Generational mizing is used as global selection mechanism and fitness
proportionate for parental selection. Mutation rate is set to .0009 and crossover
rate to .001. We run a total of 20 experiments of 10000 generations each. Evalua-
tion of phenotypes is given by the cell types and functionality of Table 2.

Table 2. Cell types and functionality

Cell Type Function name

NAND
OR
AND
IDENTITY CELL
XOR
NOT

<X oo o

4.1 Fitness Assignment Scheme
The new fitness evaluation scheme used is described in four steps:

— Run the first 20% of evolutionary time using normal fitness evaluation (final
fitness is the average of the fitnesses of CA and BN), e.g., fitnessiotar =
(fitnessca + fitnesspn)/2

— In the next 20% — 50% of time and if the partial fitnesses differ more than
30%, there is an extra 10% of fitness credit assigned to the species with the
higher fitness. For example if CA has a 30% higher fitness than BN, then
fitnessiorar = [(fitnessca + (fitnessca *0.1)) + fitnesspn]/2
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— In the next 50% — 70% of time, species are evolved using normal fitness
evaluation, e.g., fitnessiora = (fitnessca + fitnessgn)/2

— In the final 70% — 100% of time and if the partial fitnesses differ more than
30%, there is an extra 10% of fitness credit assigned to the species with the
higher fitness. For example, if BN has a 30% higher fitness than CA, then
fitnessiorar = [(fitnesspn + (fitnesspy % 0.1)) + fitnesscal/2

The highest assigned fitness score is 100 and the lowest is 2 with a worst-case
of 0.1. The final fitness for the common developmental genome is the average of
the fitness of the species involved. If, for example CA’s fitness is 50 and BN’s
fitness is 20, the final fitness of the common developmental genome will be 35.

4.2 Studying the Dynamic Behavior

To study the evolvability of computational properties, the system must be able
to target different behavior on the architectures chosen (CA and BN). Their
behavior can be evolved through the study of various dynamic problems i.e.,
stable point attractor, short attractors or long repetitive/chaotic behavior.

The computational problems chosen here describe some basic dynamic behav-
ior for CA and BN and the goal is generally expected to be reached. Though, the
problems as such are of minor importance since we are mainly after the ability
of common developmental genomes to adapt during evolution.

4.3 First Problem Definition

Evolution searches for a cycle attractor of size 2-160, at generations 1 - 5000.
A minimal cycle attractor can be found as early as in SS 2, that is, behavior is
stabilized and the final structures are phenotypes obtained at SS 1 and SS 2. On
the other extreme, a maximally big cycle attractor may be found as late as in SS
1000-160=840. Best fitness score is assigned for cycle attractors of size 80. Here,
no fitness credit is assigned for cycle attractors found at an earlier or later stage
i.e., a cycle attractor can occur after any transient phase. Fitnesss distribution
is given at Figure 4(a).

4.4 Second Problem Definition

After generation 5000, the evolutionary goal change. From generation 5000 -
10000, evolution searches for a transient phase of size 1-200, followed by a cycle
attractor of 2-160 steps. Best fitness score is assigned for transient phase 100
and cycle attractor 80. This is a harder problem than the previous one, consid-
ering that the total number of states / developmental step is 1000. No credit
is given for point attractors following a transient phase. Here, separate fitnesses
are assigned for the transient phase and the cycle attractor. The final fitness
is estimated by averaging their respective fitnesses, e.g., for the CA will be
fitnessca = (fitnessiransient + fitnesscycicattractor)/2. The fitness distribution
for this problem is shown at Figure 4(b).
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Fig. 4. Fitness distributions plots: (a) Cycle attractors, (b) Transient phase & cycle
attractor

5 Results

Figure 5 shows the average fitness evaluation of common developmental genomes
over all runs. The ’AVG’ line shows the average fitness of both species (CA and
BN). The ’CA’ line shows the average fitness of the cellular automata only and
the BN’ line gives the average fitness of the boolean network.

The first problem (search for cycle attractor) is studied at generations 1-5000.
During this period, both CA and BN are able to find fairly good solutions. After
generation 2000, the effect of the new fitness assignment scheme can be observed.
BN is constantly being credited with an extra 10% of fitness due to its fitness
difference to the CA. This credit assignment in one of the species in common
developmental genomes, can indirectly act as a means of evolutionary pressure
for the other species, since they share the same genetic information. Though,
the performance of the CA remains constant until the very end. It is not until
generation 4600, where an improvement in performance for both species occurs.

The second problem (search for transient period & cycle attractor) is exam-
ined at generations 5001-10000. At generation 5001, the genome still contains
genetic information optimized for the previous problem (generation 5000). So,
the same genetic information acts as a basis for the second problem, which ini-
tially gives only average solutions. After generation 7000 the new assignment
scheme gets into effect. This is evident from a sharp fitness increase for both
species. Here, the performance of BN has an impact in the performance of the
CA (generation 7350).

Figure 6 shows some evolutionary steps of one of the best CA runs over time.
Solid line shows consecutive generations where dashed lines delineate more than
one generation steps. The figure, shows some of the best evolved phenotypes for
the first problem (gen.2-5000). From generation 5001, the target changes and the
genome tries to adapt to the newly set goal, with a clear impact in the fitness.
Some of the phenotypes for the second problem are shown for generations 5001,
8500 and 10000.

The model managed to find several perfect solutions for the first problem,
but also, many good solutions for the second problem. The solutions achieved by
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Fig. 6. Some of the best intermediate and final phenotypes of a CA evolution over time

the developmental model with the CA, extended out exploiting the complete CA
lattice for both the problems investigated. In addition, development produced
maximally big genomes at the very beginning of the process (not shown). As we
will see in the next paragraph, this is not the case for the evolved BN phenotypes.

Figure 7 shows two of the best evolved BN solutions for the first problem at
generation 5000. Both solutions solved this problem perfectly (fitness 100), but
with a quite different structure. The solution at Figure 7(a), shows a network
where each node has at least two connections to other nodes and at least one
self-connection.

The numbers at the nodes indicate the node number and the connections are
shown in black solid lines. Since there is no explicit positional information for
the nodes of the BN, the node numbers indicate their sequential position (next,
previous node). The arrow at the end of each connection, indicates the flow of
information between the originating and destination nodes.

On the other hand, the solution at Figure 7(b), shows a network where one
node is rather influential (node nr.1), since the outcome of the majority of the
nodes in the network, is dependent on the outcome of node nr.1. Self-connections
are rare since most of the connections point to a different node than the origi-
nating node.

Some of the near-perfect solutions given by evolution (fitness > 80), include
networks with a rather small number of nodes (not shown). All perfect solutions
(fitness 100), involved networks having the maximum number of nodes allowed by
the model (N=36). This suggests that development initially tries to seek solutions
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Fig. 7. Two of the best evolved boolean networks for the first problem (generation
5000, fitness 100)

Fig. 8. The best evolved BNs for the second problem (generation 10000, fitness 76)

using less number of nodes and then extends the networks by introducing more
nodes in the network. This shows an unexpected emergent behavior of the system
since the developmental model was not designed as such.

Figure 8 shows the best evolved BN solutions for the second problem at
generation 10000. Both solutions have a rather small number of nodes (N=6)
and most of the nodes have at least one self-connection. Other, less than perfect
solutions provided networks having the max number of nodes (N=36).

At generation 5001, the goal changes and evolution finds near perfect solu-
tions with networks of similar size as before. At the end of evolution, the solutions
included networks with a rather simplified structure. The latter shows that the
developmental model is able to give both complex and more simplified solutions,
depending on the goal sought.

Next, we investigate how common developmental genomes exploit the under-
lying architectures, in order to build the final solutions. To achieve this, we
focus on the variation of the nodes/cells during evolution. Here, we are inter-
ested only in the change of the value of the cell/node, not if the change has a
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(a) (b)

Fig. 9. Amount of CA structures that is computing (light gray) versus their static
parts (dark gray). (a) First problem, (b) Second problem.
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Fig. 10. Computing parts of BN phenotypes for the two of the best evolved networks
for the first problem

positive (i.e., fitness increase), or a neutral (i.e., equal fitness) impact to the fit-
ness. Cells/nodes performing rarely any computation (<30% of the evolutionary
time) are considered static, where cells/nodes computing more than 30% of the
time is considered that they are actively contribute to the final solution.

Figure 9 shows two 2D-CA of size 6x6. The light-gray colored cells indicate
cells that compute. As such, a total of 70% approximately of the CA structure
is actually computing during evolution. Similarly, the dark-gray colored cells
indicate cells that are static, constituting a total of 30% of the structure.

Next, Figure 10 shows the two best evolved networks for the first problem
(as in Figure 7). The nodes of the networks that are computing are shown in
dark gray color. Figure 10(a) indicates that approximately 55.6% of the network
is computing with the rest 44.4% of the network being static. Similarly, Figure
10(b), shows that a total of approximately 70% of the network is actually active.
The BN solutions found, give quite different statistics; the first network solution
involve more self-connections/node than the network solutions for the second
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problem. Self-connections contribute to the network’s neutrality and this can
partially have an impact on the amount of the network that is actually active.
Regarding the second problem (network solutions of Figure 8), all the nodes in
the networks found to be computing and no static nodes are observed.

6 Conclusion

In this work, we extended a previous study by looking at how common develop-
mental genomes can evolve computational architectures when the goal changes
over time (evolution through adaptation). The focus here was to evolve CA and
BN computational architectures with simple cycle attractor with transient phase
problems as a computational goal and a more fair fitness assignment scheme.
Also, it was investigated how common genetic representation is being exploited
during development, sometimes exhibiting emergent behavior during phenotype
construction. Common developmental genomes where able to adapt fairly well
to each problem, considering the number of available state steps during develop-
ment. In addition, they were able to exploit a large part of the underlying archi-
tectures having on average more than 55% of the total number of cells/nodes
actively computing, for both problems studied.
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Abstract. Artificial multi-cellular organisms develop from a single zygote to
complex morphologies, following the instructions encoded in their genomes.
Small genome mutations can result in very different developed phenotypes. In
this paper we investigate how to exploit genotype information in order to guide
evolution towards favorable areas of the phenotype solution space, where the
sought emergent behavior is more likely to be found. Lambda genome parame-
ter, with its ability to discriminate different developmental behaviors, is incor-
porated into the fitness function and used as a discriminating factor for genetic
distance, to keep resulting phenotype’s developmental behavior close by and
encourage beneficial mutations that yield adaptive evolution. Genome activa-
tion patterns are detected and grouped into genome parameter sub-transitions.
Different sub-transitions are investigated as simple genome parameters, or
composed to integrate several genome properties into a more exhaustive com-
posite parameter. The experimental model used herein is based on 2-
dimensional cellular automata.

Keywords: Artificial Development - Evolution - Complexity - Emergence -
Cellular Automata

1 Introduction

Evolved artificial developmental (EvoDevo) systems have shown many favorable
features that are also present in natural biological systems, such as the ability to
evolve robust genomes [1]. However, robustness and evolvability may not be always
rowing in the same direction. A biological organism may be considered robust if, after
genome mutations, it keeps the same ability or functional properties. In contrast,
evolvability is a property that promotes genetic variation in order to produce adaptive
evolution, being able to evolve through natural selection. One may think that too high
robustness would not provide enough genetic diversity whereas too high evolvability
would cause more disadvantageous mutations, thus annihilating adaptation. In
EvoDevo systems, small changes in the genome often lead to completely different
emergent phenotypes. It is particularly difficult to understand which changes will be
produced to the developing organism by each genetic operator, e.g. mutation, crosso-
ver, and which phenotypic traits will be affected. As such, evolutionary algorithms
© Springer-Verlag Berlin Heidelberg 2014
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spend a relevant amount of time generating low fitness solutions that may not give
any genetic contribution to the population and thus being often discarded. We investi-
gate if genome information could be used to guide evolution. Our results indicate that
genome parameters could predict the developing behavior based on genome composi-
tion and thus help to guide evolutionary search in the right area of the search space,
where the sought behavior is more likely to be found.

The article is laid out as follows: background information and motivation is pre-
sented in Section 2. In Section 3 the developmental model used in the experiments is
presented. Section 4 describes Lambda genome parameter, meaning and usage. The
experimental setup is illustrated in Section 5. In Section 6 and 7 the results of the
experiments are presented together with the discussion. Section 8 concludes the work.

2 Motivation and Background

Artificial developmental systems can be considered as complex systems [2], where
there is no central controller and the developed artificial organisms are the result of an
emergent process out of the local interactions of simple cells. Many developmental
systems target specific phenotypic structures or structural properties [3], whether
some others execute a particular computational task that emerges out of the develop-
ment of the machine’ structure [4]. Programming an artificial developmental system
to produce such emergent computation cannot be done using traditional engineering
approaches. One solution could be to exploit nature’s way of tackling problems,
namely evolution by natural selection. Evolutionary algorithms have been widely
used as population-based metaheuristic optimization algorithms [5]. In general, those
evolutionary techniques do not make any assumption about the underlying fitness
landscape. An indirect genotype-to-phenotype mapping can result in two very similar
genotypes developing into two very different phenotypes. A developmental mapping
may be represented by a function that maps elements in the genotype space to ele-
ments in the phenotype space. Such spaces may have regions where small distances
between genotypes are preserved into small differences between resulting phenotypes,
whether in some other regions distances are hardly preserved at all [12]. In practice,
small mutation can have a huge impact on the emergent phenotype. This can be
problematic if solutions are to be discovered by evolutionary algorithms. Having a
genome parameter that may predict the emergent behavior could be useful to reduce
phenotypic distance. Such information could contribute to guide evolutionary search
throughout the solution space, where the target phenotype may plausibly appear.

3 Evolution and Development

The relation between natural evolution and development in biological systems is still a
fairly unexplored area [13]. Investigation of natural evolution makes it hardly possible
to obtain experimental proofs due to the time scale of evolution. In evolved artificial
systems there is no such problem. It is possible to execute experiments in a reasonable
time and investigate different evolutionary factors that may influence on developmental
paths. However, there is a lack of knowledge of what kind of information must be
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present in the genome in order to obtain a sought phenotypic behavior. We try to exploit
genome regulatory information in a simple developmental model and investigate if such
information could contribute to guide evolution in the vast solution space, i.e. toward
where the target developmental trajectory is more likely to emerge.

3.1 Cellular Developmental Model

The developmental model used herein is based on cellular automata, i.e. synchronized
cellular updates, parallel operation and discrete cell states. As such, the totality of
regulative inputs can be coded completely in the genome (this does not imply that all
of the genome information is expressed in the phenotype). To be able to have a com-
plete regulatory network for all possible input states the model needs to be minimalis-
tic. However, some features are not reduced to the minimum. The number of cell
states is set to three instead of two. This was done to keep the concept of multi-
cellular organism and cells differentiation, i.e. two types of cells in addition to the
cells that are defined to be dead (void/quiescent). To be able to keep the principle of a
growing (expanding) organism there is a constraint on how a cell can come “alive”.
This constrain is to only allow cells that have at least one neighbor expressing a cell
type different from void to be able to come alive. The organisms develop in a two
dimensional grid world, starting from a single cell placed in the grid (zygote). The
placement of the first cell is of no importance as the grid uses cyclic boundary condi-
tions. The local cellular communication is based on von-Neumann neighborhood (5
neighbors) and includes only cell type information, i.e. no environmental influence.
With three cell types multicellularity is possible and at the same time the number of
all possible cellular states in the defined neighborhood is not extremely large, i.e. max
243 (or 3°). A developing organism will consist of different construct of these three
cells. A more detailed description on the developmental model is given in [7, 8].
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Fig. 1. Genome developmental table: regulatory input and cellular actions

The table in Figure 1 is a scaled down illustration of all possible regulatory combi-
nations. For the first entry in the table, i.e. all regulatory inputs set to 0, the output of
the development process is fixed at 0. This is done to fulfill the stated constraint
related to growth. All other regulatory inputs have a possibility of regulating the cell
to be at any of the available cell types, indicated by the triplet {0, I, 2}.
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Figure 2 shows an example of a developing organism. At Development Step (DS)

0 the organism consists of only a single cell of type 1 (the zygote), at DS 1 the first

cell has divided and differentiated into three cells of type 2. At DS 2 — DS 4 the

change in phenotypic structure along the developmental path can be observed. The
. _____

last shown organism is at DS 2000000.

DSO0 DS1 DS2 DS3 DS4 DS 2000000

Fig. 2. Example of developing organism at intermediate development steps

3.2  Quantification of Phenotypes

Having defined genetic information for the cellular model, a quantifiable measure has
to be identified for the developed organisms. Properties that can be used need to pro-
vide information on the developing organism as a whole and the occurring phenotypic
changes [11]. For a given organism, the initial cell (zygote) follows a developmental
path and after a transient phase reaches an attractor, i.e. a final stable state or a self-
reorganizing cycle. A complete trajectory identifies the whole lifecycle of the organ-
ism [6, 8] together with morphology, size and behavior changes. Trajectory length is
an abstract measure that does not code for any computational task, e.g. majority, syn-
chronization or a given phenotypic structure, since moving from node to node in a
trajectory is the computation. For the scope of this research, no specific problem is
implied and generalization is crucial. As such, trajectory length is the chosen metric
of phenotypic complexity.

3.3 Evolution of Genome Information

In the model described earlier, the gene regulatory information is composed by
the cell state of the five cells in the neighborhood. The evolvable information is then
represented by the column C(t+1) in Figure 1, which describes the outcome of the
gene regulation process. Moreover, such explicit representation of all possible cellular
actions opens the possibility to identify sub-groups of developmental rules (sub-
transitions):

e Growth rules: sub-transitions that represent a void cell (type 0) becoming alive
(type 1 or type 2);

e Differentiation rules: one of the alive cells switches to the other alive cell type;

e Death rules: one of the alive cell types becomes void;

e No-change rules: the cell does not change its state.

Death sub-transitions are a special case of differentiation rules where alive cells
differentiate to quiescent cells. This group of transitions is also used to calculate
Lambda parameter, as described in the following section.
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The developmental trajectory from zygote to multi-cellular organism can be repre-
sented by the state transition in Figure 2. Such trajectory produces a genome activa-
tion pattern at each development step that can be measured in terms of sub-transitions
activated in the genome. For example, from DS 0O to DS 1 only one differentiation
sub-transition is activated, together with three growth sub-transitions and twenty one
no-change sub-transitions. No death sub-transitions are triggered.

4 Lambda Genome Parameter

Parameters obtained from the genome information can be used to estimate the dynamic
developmental behavior of the emerging organisms. Langton [6] tried to find a relation
between CA behavior and a parameter A. He observed that the basic functions required
for computation (transmission, storage and modification of information) are more likely
to be achieved in the vicinity of phase transitions between ordered and disordered dy-
namics (edge of chaos). He hypothesized that it is easier to find rules capable of complex
computation in a region where the value of A is critical. Since the developmental model is
composed by 3’ regulatory combinations, all the possible regulatory inputs and relative
outputs (growth, differentiation, death or no action) are fully specified in the develop-
mental table. In order to calculate A, it is necessary to define a quiescent state, the void
cell (type 0) in our case. Lambda is defined as follows:

A= ey

A can be calculated according to Equation 1, where n represents the number of
transitions to the quiescent (dead) state, K is the number of cells types (three in our
case) and N is the neighborhood size (five in the Von Neumann neighborhood). In
this way, the value of A is based only on local properties of the neighborhood and in
particular the cellular actions that are present in every cell.

Previous works [6, 7] have shown a clear relation between Lambda parameter and
developed organisms’ trajectory length. In particular, it is possible to identify a pa-
rameter space interval where organisms are more likely to have long life cycles. As
such, Lambda (or other genome parameters) could be used to guide evolution when
the target fitness is based on organisms’ developing trajectories, as the work herein.

As shown in Equation 1, Lambda is determined by the ratio of sub-transitions in
the developmental table that lead to the quiescent state over the total number of sub-
transitions in the regulatory table. As such, A takes into account only developmental
rules that describe a cell death, i.e. one of the alive cell types becomes void. In other
words, it does not consider other sub-transition groups (growth, differentiation, no-
change). Lambda can be considered a single sub-transition genome parameter.

4.1 Genome Parameter Sub-transitions

Lambda parameter has been shown to be able to differentiate different developmental
behaviors (transient, attractor and trajectory length) for boolean CAs [6, 9, 10] and
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with organisms with 3 cell types [7, 8]. When the number of possible cell states gets
bigger, Lambda may not be able to capture genome properties related to transitions to
the chosen quiescent states. This is due to the presence of a growing number of sub-
transition classes. Lambda’s meaning would then be loose and be interpreted just as
one of the many sub-transition classes in the genome table. On the other hand, there
exist many sub-transitions parameters that hold the same parameter distribution as
Lambda. Such sub-transition parameters could be then composed to create a custom
parameter that captures the same genome properties as Lambda does.

5 Experimental Setup

In the experiment herein the presented developmental model with organism size of
4x4 cells is used. This leads to a theoretical maximum trajectory length and attractor
length of 3'® development steps.

The genetic algorithm uses a population of 24 genotypes with elitism. The 8 worst
individuals are replaced in each generation by newly generated offspring, selected
through proportionate selection. Each two selected genotypes undergo one-point uni-
form crossover with probability 0.7 and mutation with probability 0.02 per gene. The
genotype initial population is initialized with void genomes, i.e. all the transitions in
the developmental table lead to the quiescent state. This means that the resulting phe-
notypes are the most unfit and difficult to evolve, i.e. dead organisms that end-up in a
point attractor after a single development step. This is done to provide an even start-
ing point for comparison.

In the standard GA (used as reference), the fitness is proportional to the developed
trajectory length (the longer the fitter). In the GA that uses Lambda genome parame-
ter contribution in the fitness function, the combined fitness (CFitness) is calculated
as follows:

- rie R Abs(HiLambda —Lambda) 5 2)
2] — . 2. X X
itness = Fitness + Fitness Hilambda Tt

In Equation 2, the used ratio is 0.2 "’ and HiLambda represents the Lambda value
where the longest trajectory length is more likely to be found (0.66 in our model), i.e.
critical Lambda [6].

6 Genome Parameter to Guide Evolution

In this first experiment, performances of a conventional genetic algorithm are com-
pared to a GA that encapsulates Lambda in the fitness function. The chosen trajectory
length targets are set as 1000, 5000, 10000 and 15000 development steps (average
over 1000 runs for target 1000, average over 20 runs for the other targets due to
runtime). Results are shown in Figures from 3 to 6 respectively. In all the four consid-
ered cases, the effect of Lambda in fitness is clearly visible.

! The ratio that gave best results for GA with A in fitness from randomized genomes is 0.05.
Otherwise 0.2 is used in all the plotted results.
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In Figure 3 the target trajectory length was set as 1000 development steps. The
conventional GA performs better than the one with Lambda contribution in the fitness
function for few generations. From generation 17 the effects of Lambda driving evo-
Iution are more evident and the algorithm converges faster toward the target.

Table 1. Comparison of reference GA and GA with Lambda contribution in the fitness
function. Target trajectory length is 1000 development steps. Avg over 1000 runs.

GA Void genomes (plotted) Randomized genomes
Reference GA 443,60 - 372,00 -
Lambda fitness 365,62 -17,57% 351,33 @ -5,56%

Table 1 shows numerical results when trajectory length target is 1000 development
steps. This is analyzed from two different initial conditions: void initialized genomes
(all the transitions in the developmental table lead to the quiescent state and the or-
ganism are the most unfit, plotted in Figure 3) and randomly initialized genomes (not
plotted here). From void genomes the reference GA needs 443,6 generations on aver-
age (over 1000 runs), whether Lambda parameter in the fitness function is 17,57%
faster (unpaired 2-tail t-test, p<0,0001). From randomized genomes the latter is still
5,56% faster, finding solutions in 351,33 generations on average compared to 372
generations needed by the conventional GA (it is important to mention that the GA
with Lambda in fitness with void initialization is even faster than the reference GA
with randomized initialization).

The same trend is shown in Figure 4, where the target was longer. Here the differ-
ence in convergence speed is more accentuated. Results in Figure 5 and 6 confirm that
there is a point where the two lines cross each other. After that specific generation the
algorithm with Lambda contribution converges faster than the conventional approach.
It is clear that the ability of Lambda to detect longer trajectories in certain areas of the
parameter space is beneficial when trajectory length is the target behavior. In all the
presented scenarios, both approaches show an asymptotic tail towards 0 (minimum
distance from target fitness). The difference is in the speed of convergence to the
asymptotic target distance. Lambda in the fitness function is promising.

As a side experiment, A was used outside the fitness function with a conventional GA.
In such experiment A was used as a discard parameter where genomes were discarded
after selection if the parameter value was not matching a defined interval of acceptance.
Here the results were not promising and in some cases the system was not evolvable.

7 Genotype Sub-transitions

Lambda genome parameter measures sub-transitions in the genome developmental
table that lead to the quiescent state. Other sub-transitions are present in the genome
table, i.e. growth, differentiation and no-change. Here it is investigated if other sub-
transition classes could replace Lambda in forecasting the emergent behavior, thus
being able to be used in multi-cellular developmental systems with more cell types. In
such case, Lambda may represent too few genotype properties, thus not being able to
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Fig. 3. Comparison of reference GA and GA
with Lambda contribution in the fitness
function. Target trajectory length is 1000
development steps. Distance from target (y)
over generations (x). Avg over 1000 runs.

10000
— lambda fitness
9000

— reference GA
8000

7000

\
LA

development steps
w & w9
g g8 8 8
g &8 8 8

2000

1000

1 10 100 1000
generations (log)
Fig. 5. Comparison of reference GA and GA
with Lambda contribution in the fitness
function. Target trajectory length is 10000
development steps. Distance from target (y)
over generations (x). Avg over 20 runs.

generations (log)

Fig. 4. Comparison of reference GA and GA
with Lambda contribution in the fitness
function. Target trajectory length is 5000
development steps. Distance from target (y)
over generations (x). Avg over 20 runs.
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Fig. 6. Comparison of reference GA and GA
with Lambda contribution in the fitness
function. Target trajectory length is 15000
development steps. Distance from target (y)
over generations (x). Avg over 20 runs.

drive evolution. Moreover, several sub-transitions could be used together to compose
custom parameterizations of the rule-space.

Figure 7 shows an example of sub-transition classes’ activation patterns for a specific
developed organism, successfully evolved in the previous set of experiments. Here each
line represents one of the sub-transitions (growth in red, death in blue, differentiation in
green and no-change in purple). The plot shows the number of cells that trigger a specif-
ic sub-transitions class in each development step. Pattern repetitions may indicate that
an attractor has been reached or that same pattern repetition happens in different areas of
the grid world where the organism is developed. This may indicate self-regulation based
on topologic properties. The top-line (purple) shows activation of no-change sub-
transitions, which is often the most used sub-class, whether growth (red) and death
(blue) are often overlapping and seem to have a similar trend.
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Fig. 7. Sub-transitions (growth, death, differentiation, no-change) activation pattern (y) over the
generations (x) for the given example organism
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Fig. 8. Cumulative sum of sub-transitions activation pattern for the given example organism

Figure 8 plots the cumulative sub-transition usage during development, for the
same given organism. It is clear that growth rules and death rules have to be balanced.
This was observed with target trajectories of different lengths. Differentiation rules
and no-change rules did not show any specific trend.

Figure 9 plots developed trajectory lengths for 100000 randomly generated
genotypes. As such, the distribution of transition rules in the genotype is scrambled
and distributed in the rule sub-transition space. In Figure 9 only death sub-transitions
are considered. The plot shows a similar distribution to Lambda parameter, since the
death sub-transitions capture the same genome properties as Lambda. Figure 10 plots
the same organisms when the considered genome parameter is differentiation sub-
transitions. Here the relation between the considered sub-parameter and trajectory
length is weaker and organisms are less concentrated around the critical parameter
value. Same results were obtained for other sub-transition groups.
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Fig. 9. Death sub-transition parameter distribution (x) and resulting trajectory length measured
as #development steps (y). 100000 organisms.
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Fig. 10. Differentiation sub-transition parameter distribution (x) and resulting trajectory length
measured as #development steps (y). 100000 organisms.

In Figure 11 a composed sub-parameter is considered, namely the difference be-
tween number of death and growth sub-transitions. It is evident that when growth and
death rules are balanced it is possible to develop long trajectories (as the target in our
experimental work). On the other hand, when those sub-transitions are not balanced,
the organism produces a very short trajectory cycle. This information may be im-
portant at the design stage of an EvoDevo system, when Lambda is not able to charac-
terize the behavioral regime due to a larger number of available cell types. In such
case, Lambda would be no more than one out of the many sub-transition groups, thus
lacking a clear relation between trajectory length and the parameter space.

Finally, Figure 12 shows a zoomed-in plot of the same 100000 generated organ-
isms in Figure 9, 10 and 11, where genomes with unbalanced death-growth difference
develop short trajectories. In contrast, balanced rule-sets develop longer trajectories,
being able to filter-out unfit genomes. That was not possible if only a single

sub-transition class was considered. It is important to highlight that Lambda is a sin-
gle-transition parameter.
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Fig. 11. Growth-Death sub-transition parameter distribution (x) and resulting trajectory length
measured as #development steps (y). 100000 organisms.
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Fig. 12. Genomes unfiltered vs. genome filtered with growth-death sub-transition parameter

8 Conclusion

The presented experiments investigated how to exploit genotype information of artifi-
cial cellular organism to guide evolution in favorable areas of the solution space,
where the sought phenotypic behavior is more likely to be found. Genome infor-
mation has been used to calculate Lambda genome parameter. Such parameter was
incorporated into the fitness function to speed-up convergence to the target trajectory,
as shown in the plots in Figure 3, 4, 5 and 6, for different target trajectory lengths.
Previous work [8] has shown that other parameters besides Lambda, e.g. Sensitivity
[14], Mean Field Parameters [15], have similar abilities to forecast emergent behav-
iors. Thus, it may be interesting to extend the investigation and compare results ob-
tained with other parameters.

The used genome representation allowed identifying genome sub-transitions other
than those used to calculate Lambda (transitions to the quiescent state). The identified
sub-transition groups (growth, differentiation, death, no-change) can be considered
single transition parameters and thus used as Lambda. They can also be composed
together to produce a multiple-transition genome parameter when Lambda may not be
able to characterize the phenotype behavior due to increased number of cell types. In
particular, death-growth transition difference has been shown to be well suited to
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identify artificial organisms that produce long trajectory, as in Figure 11, and filter out
organisms with short trajectories, as shown in Figure 12. It may be interesting to in-
vestigate sub-transitions’ potential the same way as Lambda was used here.

The approach used herein shows that exploiting genome information during evolu-
tion could increase the evolvability of the system, when there is an indirect genotype
to phenotype mapping and fitness is a measure of phenotypic properties.

As a future work, it may be possible to investigate the robustness of solutions
evolved with a fitness measure based on both phenotype and genotype information. In
particular, how fragile evolved organisms are to external perturbation, both at geno-
type level, i.e. mutations in the rule table, and at phenotype level, i.e. perturbation of
the system state during development.
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Abstract. This paper aims at improving the training process of com-
plex decision support systems, where evolutionary algorithms are used to
integrate a large number of decision rules in a form of a weighted aver-
age. It proposes an enhancement of Differential Evolution by Locally
Linear Embedding to process objective functions with correlated vari-
ables, which focuses on detecting local dependencies among variables of
the objective function by analyzing the manifold in the search space that
contains the current population and transforming it to a reduced search
space. Experiments performed on some popular benchmark functions as
well as on a financial decision support system confirm that the method
may significantly improve the search process in the case of objective
functions with a large number of variables, which usually occur in many
practical applications.

1 Introduction

Contemporary intelligent systems often consist of a large number of independent
subsystems integrated into one application. Different subsystems may be based
on different principles, may use different technologies, may process different data,
may be trained on different datasets with different paradigms. Merging a number
of independent subsystems increases the total efficiency and the total liability of
the entire intelligent system.

Simple examples of such complex intelligent systems include decision sup-
port systems [7], [9], classifier systems [15], multi-agent systems [4], [16] and
rule-selection systems [5], [12], which are composed of a number of indepen-
dent decision entities, agents or rules, integrated using evolutionary algorithms
into one consistent system. Evolutionary algorithms often determine the opti-
mal parameters for the integration of independent subsystems, such as their
importance factors or weights of their impact to the overall system.

Since the number of components in contemporary complex systems is large,
the search space of integration parameters has a high dimension, which consti-
tutes a bottleneck for many optimization algorithms. Although, in general, the
different subsystems are usually assumed to be independent, in fact, there are
© Springer-Verlag Berlin Heidelberg 2014
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often some dependencies between them and between their results. Taking these
dependencies into consideration during the optimization process may lead to a
significant reduction in the computing time and may also result in increases of
the overall efficiency of the entire system.

In such cases, although the objective function F' : R” — R is formally a
function of n variables, some of them are correlated, either globally over the
entire search space or locally over a certain subspace containing a global optimum
of the objective function F', so the original objective function F' may be replaced
with another function G : R¥ — R of k variables and a mapping & : R — RF,
where k£ < n, which maps n-dimensional vectors x € R" into k-dimensional
vectors y € R¥ in such a way that F(x) = G(y).

Therefore, the problem of optimizing the objective function F' over the search
space R” may be reduced to the problem of optimizing the objective function
G over the search space R*, where k < n, which usually leads to significant
reductions in the optimization algorithm.

Although there are numerous techniques of detecting global dependencies
among variables over the entire search space, usually in a preprocessing phase,
such as the Principal Component Analysis [17], the Linear Discriminant Anal-
ysis [17], the Multidimensional Scaling [1], as well as their extensions capable
of discovering non-linear dependencies, there has been little research on local
dependencies over neighborhoods of optimal solutions and detecting them dur-
ing runtime of the optimization algorithm [10].

The approach presented in this paper is inspired by Estimation of Distri-
bution Algorithms [6] that try to regard the population of candidate solutions
as a data sample with a probability distribution approximating the probability
distribution describing optimal solutions. Similarly, the population of candidate
solution may be used to detect correlations among variables, reduce the search
space and simplify the optimization problem.

This paper proposes an improvement of Differential Evolution [2] for objec-
tive functions with locally correlated variables, which is capable of discovering
local dependencies among variables of the objective function and locally reducing
it to another objective function of a smaller number of variables, using Locally
Linear Embedding [13].

This paper is structured in the following manner: Section 2 discusses the prin-
ciples of Locally Linear Embedding and its application to the current population
in evolutionary algorithms. Section 3 proposes Differential Evolution Enhanced
by Locally Linear Embeddings. Section 4 presents a preliminary evaluation of
the approach on some popular benchmark functions and Section 5 discusses some
experiments on a financial decision support system. Finally, Section 6 concludes
the paper.

2 Locally Linear Embedding in the Search Space

Let P = {x1,X2,...,Xn} C R? be a population of N individuals, where each
individual x; = (21, 2i2,...,2:q)7 € RY, for i = 1,2,..., N, is a data point
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in the search space 2 = R? where d is the dimensionality of the optimization
problem.

We may investigate the manifolds in {2 that contain the population. In the
pessimistic case, the population is chaotic and widespread across the entire search
space without any significant dependencies, so the only one reasonable manifold
to consider is the entire search space itself. In the optimistic case, the population
may be chaotic, but focused on a certain manifold in the search space, possibly
of a lower dimensionality than the entire search space. It may happen when some
variables of the objective function are correlated, so there are some dependencies
between values of genes in the chromosome.

It is worth noticing that such dependencies may be local, occurring only in
a certain region of the search space, e.g. in the neighborhood of a local or global
optimum of the objective function, where the current population focuses on, so
they usually cannot be discovered by popular preprocessing methods before the
evolution process starts.

Figure 1 presents a classic example illustrating the approach. The subplot (a)
presents the population P in the original search space R? with colors denoting the
values of the objective function. It is easy to see that all the individuals lie in a
certain manifold in the search space, the so-called Swiss-Roll manifold, presented
in the subplot (b). Although the manifold is embedded in the 3-dimensional
search space, it is actually a 2-dimensional manifold homeomorphic to a rectan-
gle, so the original population may be transformed from the original search space
a reduced search space R? (in fact, to a rectangle embedded in R?), presented
in the subplot (c). Finally, exploiting the original manifold by the evolutionary
algorithm is equivalent to exploiting the reduced search space.

Assume that the population lies in a certain manifold in the search space.
Although the manifold is embedded in the d-dimensional search space, it may
be homeomorphic to another manifold of a lower dimensionality. However, the
homeomorphism may not be obvious and discovering it may not be simple,
especially in the case of local and non-linear dependencies.

One of the possible approaches, based on the Locally Linear Embeddings
(LLE) [13], is first to determine the K nearest neighbors of each individual in
the population, then to approximate each individual by a linear combination of
its K nearest neighbors, and finally to map the population to a data space of the
lower dimensionality [ so that the mapping of each individual was approximated
by the linear combination of mappings of its K nearest neighbors with the same
linear coeflicients as in the original data space.

First, for each individual x; € P, we determine its K nearest neighbors in
the population P, which may be formulated as finding a sequence of indices
n&z),ng), .. ,nﬁ? €{1,2,...,N}\ {i} such that

dist(xi,xngm) < dist(xi,xngn) <...< dist(xi,xn%)) < dist(x;,x;5), (1)

for all j € {1,2,...,N}\ ({i} U {ngi),ng), e ,n([?}), where dist is a distance
function in the search space 2 (usually the euclidean distance in R?).
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Fig.1. An example of a 2-dimensional population embedded in the 3-dimensional
search space: the population in the original search space (subplot (a)), the manifold
defined by the population (subplot(b)), the population in the reduced search space
(subplot (c))

Second, for each individual x; € P, we approximate it by a linear combination

of its K nearest neighbors, which may be formulated as finding linear coefficients
@) () ()

wy Wy, ..., Wy, € R minimizing the error function
K
P = (#)
[|x; — %;]|°, where X;= E Wi X, 0, (2)
k=1

under the constraint Zle w,(j) =1

Third, we try to construct a mapping from the original search space to the
reduced search space so that the mapping of each individual was approximated
by the linear combination of mappings of its K nearest neighbors with the same
linear coefficients as in the original search space, which may be formulated as
finding a reduced population R = {y1,y2,...,yn} C R!, where each reduced
individual y; = (yi1, %2, - - -, ya)T € R, fori =1,2,..., N, is a data point in the
reduced search space R', minimizing the error function

N K
Sollyi =il where 3= wi’y, 0, (3)
=1 k=1
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under the constraint d-'YTY = I, where Y € R”>*V is the matrix with columns
y; and I € R¥*N is the identity matrix (the constraint requires that the covari-
ance matrix of the mapped individuals is the identity matrix).

3 Differential Evolution Enhanced by Locally Linear
Embeddings

Algorithm 1 presents an overview of the Differential Evolution Enhanced by
Locally Linear Embeddings (DEELLE) for an objective function F' : R® — R of
non-linearly correlated variables.

DEELLE begins with generating a random population Py of N individuals
and evaluating it. In the main evolution loop, for each individual x from the
current population P, called the target vector, a new vector v, called the donor
vector, is created, then the donor vector is recombined with the target vector
forming a new vector u, called the trial vector, and finally, if the trial vector out-
performs the target vector, it replaces it in the next population, as in classic DE
[2]. In some main evolution iterations, DEELLE performs a subevolution, which
analyses the current population, transforms it to a reduced search space, and
performs the same routine as the main evolution, but on the selected manifold
only.

The main evolution and the subevolution is run in such a way that first
a number of main iterations is performed in the entire original search space
to move the population to some promising regions of the search space, then
a number of subevolution iterations is performed in a selected manifold and
then the population is restored to the original search space in order to ensure
whether the manifold corresponded to a neighborhood of the global optima or
not. Few next main iterations may correct the population and move it to some
other promising regions of the search space, and then a number of subevolution
iterations exploit the new manifold.

3.1 Search Space and Population Reduction

The subevolution starts with determining the manifold in the search space R?
that contains the current population P; and transforming it to a reduced popu-
lation Ry based on Locally Linear Embeddings [13].

First, for each individual x; € P;, its K nearest neighbors in the current pop-
ulation P; are determined. Let ngi), ngi), e ,ng? be the indices of the successive
nearest neighbors of the individual x;.

Second, for each data point x; € P;, linear coefficients wgi), wéi), ceey wﬁ? are
determined by minimizing the error function (2), which may be transformed,

taking into consideration the constraint Zszl w,(f) =1, to

K K K K
= 112 i i 2 i 2 i 2
s = a* = 13w =D wx ol = 11Dl e =, )P = 113wz,
k=1 k=1 k=1 k=1

(4)
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Algorithm 1. Differential Evolution Enhanced by Locally Linear Embeddings
(DEELLE)

Po = Random-Population(N)
Population-Evaluation(Po, F')
t=20
while not Termination-Condition(P;) do
for all x € P; do
pick randomly distinct xi,X2,x3 from Py \ {x}
vV=x1+a-(x2—X3)
u = Binomial-Recombination(v, x)
if F(x) < F(u) then
u will replace x in Piy1
end if
end for
Population-Evaluation(Ps41, F)
t=t+1
if Subevolution-Starting-Condition() then
Search-Space-Reduction()
Ro = Population-Reduction(P;)
s =0;
while not Subevolution-Termination-Condition(Rs) do
for all x € Rs do
pick randomly distinct xi,X2,x3 from R, \ {x}
v=x1+a-(x2—x3)
u = Binomial-Recombination(v, x)
if F(x) < F(u) then
u will replace x in Rgst1
end if
end for
Reduced-Population-Evaluation(Rs1, F)
s=s4+1
end while
Search-Space-Restoring)()
‘P: = Population-Restoring(Rs—1)
end if
end while

where z;, = X, () —Xj. Defining the matrix Z € R X as the matrix with columns
k

z and the vector w € R¥ as the vector with coordinates wl(;) (certainly, the

matrix Z and the vector w depends on i, but we omit it here for the sake of

simplicity of the notation), the error function (2) becomes
K .
13" w2l = ||Zw|? = (Zw)" (Zw) = wTZ7Zw = w"Vw,  (5)
k=1

where V = ZTZ € R4, Moreover, the constraint Zle wl(j) = 1 may be
transformed to 17w = 1, where 1 € R¥ is the vector of ones.
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Therefore, in order to minimize the error function (2), the Lagrange multiplier
method may be used, i.e. the following equation system, with the Lagrange
multiplier A, must be solved:

owIvVw 017w

=A 6
8wi 6wi ’ ( )
for each i = 1,2, ..., K with the constraint 17w = 1.
Since
Vw!Vw =2Vw, and V17w =17, (7)
the equation system (6) is equivalent to the matrix equation
2Vw = 17, (8)
thus, if V is invertible,
A
w = §V‘11T, 9)

and A must be adjusted to fulfil the constraint 17w = 1. If V is not invertible,
the error function should be modified by some regularization component [13]
and minimized in a similar way.

Third, reduced individuals y;,ys,...,yn € R! are determined by minimizing
the error function (3). Assume at the beginning that ! = 1 and then each y; is
just a real number. Thus, the error function (3) may be transformed to

N N
Dollyi—willP =D llyi —
i=1 i=1

N K
= Z( —Yi Zwk Yn — ng)yn;ﬂ}’z Zwk Ynli ))°) =
= =1

i=1 =1
N ) N K K @ N K
_;(yi) —lz::z:: wl! y @ —;’;wk Y, 0¥+ ; zzlwk Y,0)7) =
=YY - Y'(WY) - (WY)'Y + (WY) (WY) =
=YTI-W)Y - (WY)TI-W)Y =
=Y - wWY)"H @-W)Y=Y'O-W)'1T-W)Y =Y'MY,
where Y € RPN g the matrix with columns y;, W € RY¥*¥ is the matrix

with elements w;; = wk if x; is the k-th nearest neighbor of x; and w;; = 0
otherwise, I € RV*¥ is the identity matrix, and M = (I—w)? (I—w) € RV*V,

Therefore, in order to minimize the error function(3) under the constraint
d~'YTY =1, the Lagrange multiplier method may be used, i.e. the following
equation system, with the Lagrange multiplier A\, must be solved:

OYTMY od—'YTY
= A
dyi dyi

; (10)
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for each i = 1,2,..., N with the constraint d-'Y7TY =1.
Since

VY'MY =2MY and Vd'YTY =2d7'Y, (11)

the equation system (10) is equivalent to the matrix equation
MY = 'Y, (12)

thus, Y is an eigenvector of the matrix M. As the error function (3) is being min-
imized, the eigenvector Y should correspond to the smallest non-zero eigenvalue
of the matrix M. In order to generalize the calculation for [ > 1, the succes-
sive eigenvectors of the matrix M should be taken to determine the successive
coordinates of the mappings y; [13].

Finally, the reduced population R consists of mappings y; of individuals x;
from the original population P;.

3.2 Reduced Population Evaluation

Although the evolutionary operators of the subevolution are derived from the
main evolution without modifications, i.e. only the chromosome length changes,
the problem occurs in evaluating the reduced population. In the literature con-
cerning LLE [13], a few solutions are suggested to restore a data point from the
reduced data space to the original data space.

In DEELLE, evaluating a reduced individual y € R!, begins with finding
the mapping of an original individual from the current population P; closest to
the reduced individual, i.e. determining the index ¢ € {1,2,..., N} minimizing
the distance ||y — y;||. Next, the reduced individual y is approximated by a
linear combination of mappings MEORS MOTRERD M0 of the K nearest neighbors

of the closest original individual x;. Finally, the restored individual x € R?
corresponding to the reduced individual y is defined as a linear combination of
the K nearest neighbors Xngi)7 Xngi)7 ce xn;‘) of the closest original individual x;
with the same linear coefficients as in the reduced search space and the objective
function for the reduced individual is approximated by the objective function of
the restored individual.

3.3 Search Space and Population Restoring

After termination of the subevolution, the current reduced population R; is
restored to the original search space by applying the same procedure as during
the reduced population evaluation, described in the previous subsection.

4 Experimental Evaluation on Popular Benchmark
Functions

A preliminary evaluation of the approach proposed was performed on a number
of classic benchmark functions usually used in testing evolutionary algorithms for
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continuous problems [18]. The first part of benchmark functions concerns the clas-
sic De Jong test suite composed of the unimodal function Fj, the discontinuous
function F3 and the noisy function Fj [18]. The second part of the benchmark func-
tions includes other popular benchmark functions, such as the Rastrigin function
Fg, the Schwefel function Fy, and the Griewangk function Fg [18].

Fi(x) =YY" a? Fs(x) =10n+ Y7, (27 — 10 cos(27x;))
F3(x) =>"" | Fr(x) = 418.9829n — Y| @;sin(y/|xz;])
Fy(x) = Z?:l ixf +N(0,1) Fg(x) =1+ Z?:l ﬁzo - H?:l cos(xi/\ﬂ)

Each classic benchmark function F' : R® — R was extended by a mapping
v : R™ — R", for m > n, so that the actual objective function f : R™ — R,
called the m-dimensional deceptive objective function, was a composition of
the mapping ¥ and the classic benchmark function F, ie. f(x) = F(¥(x)).
It is easy to see that variables of the final objective function f were correlated
(although the objective function f was formally a function of m variables, the real
dimensionality of the optimization problem was n < m) and the improvement
mechanism proposed in this paper might have a chance to reduce the search
space. Both, the linear mappings ¥ with a random matrix A € R®*™ and a
random vector b € R™, where ¥(x) = Ax + b, and the non-linear mappings ¥
based on polynomial functions with random parameters, were considered.

Furthermore, k-deceptive objective functions were defined by the analogy to
the k-deceptive objective functions used for evaluating the ECGA algorithm [3]:
the entire chromosome x was divided into blocks of successive k genes, then a
chosen k-dimensional deceptive objective function was evaluated on each block,
next the values of the deceptive objective function on all the blocks was summed
and finally returned as the results of the k-deceptive objective function.

Each experiment concerned a classic benchmark function transformed to a
k-deceptive benchmark function with the final chromosome length d = 50, 100,
or 250, divided into blocks of k = 25 genes, where on each block, the k-
dimensional deceptive benchmark function based on a n-dimensional classic
benchmark function, for n = 5,10, or 15, was evaluated. Parameters of the
transformation ¥ extending the n-dimensional classic benchmark function to a
k-dimensional deceptive benchmark function were generated randomly for each
experiment. Such an optimization problem was solved twice: once with the locally
linear embeddings mechanism turned off, and once with turned on. In both cases,
the population size was N = 500 and the parameter o = 0.5. The original algo-
rithm run for 2500 iterations. The improved algorithm run for 2500 iterations in
total: main evolution was run for 100 iterations, then subevolutions was run for
400 iterations, and it was repeated 5 times. In the LLE part, K = 25 nearest
neighbors were used. Thus, during their run, both algorithms evaluated the same
number of individuals.

Table 1 presents a summary of results for all the benchmark functions. In
order to compare the original algorithm with the improved one, for each exper-
iment, the difference between the best found solution and the actual optimum
of the objective function was evaluated for each algorithm. The difference for
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Table 1. Summary of results on popular benchmark functions

linear mappings ¥ non-linear mappings ¥

dn i fs Jo fo  fr fs fi fs fa fe fr fs

50 5 24.66 5.23 385.99 8.10 99.06 8.98 20.12 3.59 717.10 15.82 16.48 19.49
5010 15.13 4.13 85.62 22.21 30.80 7.55 15.80 3.62 317.57 16.68 11.08 13.86
50 15 11.58 2.80 325.49 10.09 34.46 2.97  7.20 3.37 7.45 2.42 37.99 5.86

100 5 17.83 3.92197.89 16.30 24.83 7.20 16.14 4.03 98.68 8.55 31.09 20.76
10010  5.79 3.02 44.30 8.1349.84 3.58 7.182.94 77.16 7.5319.32 5.40
10015 3.68 1.97 14.26 2.4467.19 3.13 1.451.50 36.03 3.1223.42 3.79

250 5 5.601.75 61.84 7.1295.253.20 6.09 2.40 49.23 8.59 27.95 7.12
25010 154143 9.14 23943.171.56 193121 10.73 1.3538.62 1.38
25015 1.051.07 3.39 0.8220.151.04 0.720.94 3.21 1.09 13.34 0.92

the original algorithm was divided by the difference for the improved one and
noted in Table 1. Therefore, the values below 1 mean that the original algorithm
found a better approximation of the optimum of the objective function than the
improved one, while values above 1 correspond to the opposite case. It is easy
to see that the improved algorithm outperformed the original one in most cases.

5 Practical Evaluation on a Decision Support System

Some experiments were also performed on real-world problems, such as con-
structing optimal weights for a rule-based decision support system, where the
weights are highly dependent due to existing similarities in the decision rules.

For practical evaluation of the approach proposed, a stock market trading
decision support system, discussed in details in [7] and similar to the system
with binary encoding presented in [9], was studied. Evolutionary algorithms
were used in the system to combine a number of stock market trading rules
into one trading expert being a weighted average of particular trading rules
with the weights determined by an evolutionary algorithm as a solution to an
optimization problem with an objective function relating to a performance of
the trading expert over a certain training period.

A stock market trading rule is a function f : I — s € R that maps a factual
financial knowledge K (e.g. financial time series of recent stock price quotations)
to a real number s encoding a trading signal (low values denote a sell signal,
high values denote a buy signal). Examples of such trading rules may be found
in Technical Analysis [11].

A stock market trading expert e : £ — s € R is a weighted average of a
number of defined trading rules f1, fo,..., fq, available in the decision support
system, with weights wi, wa,...,wg € R.

For a given training period, the trading expert may be evaluated in a type
of simulation. It starts with an initial capital: an initial amount of cash and an
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initial number of stocks. In successive days of the training period, the trading
expert produces a trading signal. If it is a buy signal, a part of available cash
is invested in stocks. If it is a sell signal, a part of available stocks is sold. Each
transaction is charged with a transaction fee. Finally, the efficiency of the trading
expert is defined by the Sharpe ratio [14] of daily return rates.

Therefore, constructing efficient trading experts is an optimization problem
of finding the weights vector w € R¢ maximizing the efficiency measure being
the Sharpe ratio over a given training period.

Due to the large number of trading rules in the decision support system (in
experiments, d = 500), the dimension of the search space is excessively large
and constitutes a bottleneck for many optimization algorithms. However, many
trading rules are similar, based on similar financial principles, so the variables
of the objective function seems to be correlated [8]. Thus, applying the dimen-
sionality reduction mechanism proposed in this paper may significantly improve
the efficiency of the evolutionary search process.

Experiments were performed on 10 datasets. Each dataset concerned one
stock chosen from the CAC IT 20 index of the Paris Stock Exchange, a training
period from January, 2, 2009 to November, 30, 2009 (234 trading days) and a set
of selected 500 trading rules, based on technical analysis indicators [11]. Each
optimization problem was solved twice: once with the locally linear embeddings
mechanism turned off, and once with turned on. Parameters of the algorithms
were the same as discussed in the previous section.

Table 2 presents a summary of results on learning the financial decision
support system for the 10 datasets. The second and the third column contain
the objective function values for the best solution found by the original and
the improved algorithm, respectively. Both algorithm found similar solutions,
perhaps the quasi-optima, so the values are similar. The forth and the fifth
column contain the objective function values for the best solution found after 500
iterations. Finally, the sixth column contains the improvement factors described

Table 2. Summary of results on learning a financial decision support system for 10
datasets concerning one stock chosen from the CAC IT 20 index of the Paris Stock
Exchange

Stock DE DEELLE DE-500 DEELLE-500 Improvement
Alcatel-Lucent 28.17 28.19 23.63 27.61 1.17
Alstom 19.83 19.99 17.86 19.11 1.07
Cap Gemini 20.98 21.04 17.48 20.68 1.18
France Telecom 10.83 10.76 8.49 10.65 1.25
Legrand 22.96 23.04 22.01 22.74 1.03
Neopost 19.38 19.42 17.09 18.46 1.08
Schneider Electric  25.77 25.93 23.94 25.88 1.08
STMicroelectronics 19.97 20.76 15.45 20.13 1.30
TF1 25.04 25.45 19.86 24.68 1.24

Vivendi 15.87 16.13 11.93 16.08 1.35
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in the previous section (the same as presented in Table 1), i.e. the fifth column
divided by the fourth column. It is easy to see that the improved algorithm
outperformed the original one, but the improvement was lower than in the case
of simple benchmark functions discussed in the previous section.

6 Conclusions

This paper proposes an improvement of Differential Evolution for objective func-
tions with non-linearly correlated variables, which tries to detect non-linear local
dependencies among variables of the objective function by analyzing the mani-
fold in the search space that contains the current population and transforming
individuals to a reduced search space using Locally Linear Embeddings.

A preliminary evaluation performed on some popular benchmark functions
confirmed that the method may significantly improve the search process, espe-
cially in the case of complex objective functions with a large number of variables,
which usually occur in many practical applications.

Further evaluation on a financial decision support system, where the pro-
posed algorithm was used to learn the trading system and discover the impor-
tance weights for the trading rules, confirmed the preliminary results. Applying
Locally Linear Embeddings led to a significant improvement of the evolutionary
algorithm, however, the improvement rate was lower than in the case of simple
benchmark functions.
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Abstract. The paper introduces a multi-deme, memetic global opti-
mization strategy Hierarchic memetic Strategy (HMS) especially well-
suited to the solution of a class of parametric inverse problems. This
strategy develops dynamically a tree of dependent populations (demes)
searching with the various accuracy growing from the root to the leaves.
The search accuracy is associated with the accuracy of solving direct
problems by hp—adaptive Finite Element Method. Throughout the paper
we describe details of exploited accuracy adaptation and computational
cost reduction mechanisms, an agent-based architecture of the proposed
system, a sample implementation and preliminary benchmark results.
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1 Motivation

Inverse problems form an important area of the contemporary research related
to fundamental problems in science and engineering (see e.g. [1]). Among its
numerous applications one can find such activities as oil and gas explorations,
material processing and others. A quite general definition of the inverse problem
is to find a value of a parameter w* € D realizing

min { f (uo, u(w)) : A(u(w)) = 0} (1)

weD
where A is a direct problem operator, u(w) € U is the direct solution corre-
sponding to w, u, € O is an observation (typically a measured quantity related
somehow to the direct solution) and f(O,U) — Ry is a misfit functional. In a
typical situation U is a Sobolev space and A : U — U’ is a differential opera-
tor between U and its conjugate. When solving such problems one usually faces
some significant obstacles. One of them is the ill-conditioning, i.e. a small change
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in parameters sometimes results in a big change in results. Other noticeable dif-
ficulties are the multi-modality, i.e. the non-uniqueness of solutions, and possible
low regularity of the misfit functional. Both of them significantly reduce the use-
fulness of computationally relatively inexpensive convex optimization methods
(such as gradient-based ones), because in the lack of the misfit differentiability
their use is problematic in general and, even worse, in the case of multiple local
optima they do not deliver the guarantee of finding the global one.

There exist some methods to overcome those difficulties. One of the most
popular is the misfit regularization (see e.g. [2]) providing a modified version of
the misfit, which is regular and convex (hence unimodal). This can be a very
effective technique, however it is not very useful when the considered inverse
problem is inherently multimodal and we need to find all minima. On the other
hand, a careless use of the regularization can lead to the replacement of the orig-
inal problem solution with an artificial solution of the over-regularized misfit. A
different way is to use a stochastic global optimization methods from simple
Monte Carlo type to more sophisticated single- and multi-deme genetic searches
(see e.g. [3-5]). Such methods may handle irregularity and multimodality, but
the price is the high computational cost and the low accuracy. Another pos-
sibility is to perform multiple convex searches from a set of points generated
randomly (multistart strategy). Such methods might be additionally improved
by the sophisticated post-processing leading to the reduction of a random sample
from which local methods are started or the early suspension of non-promising
local searches (see e.g. [6,7]).

The authors intend to synthesize slightly diverse ideas of the inverse analysis
arising from the following sources.

Hierarchic Genetic Strategy (HGS). This strategy develops dynamically a
tree of dependent demes i.e. sub-populations of the total multiset of various
type individuals created by the strategy. The root-deme performs the most global
search with a low accuracy. The search performed by demes located deeper in the
tree is more localized and more accurate. See [8] for details and [9] for HGS float-
ing point encoding implementation. An important HGS extension going towards
the effective solving of the inverse parametric problems is the hp—HGS strategy
(see [10] and references therein) which combines HGS with the hp-adaptive Finite
Element Method (hp—FEM) [11]. This strategy offers the advantageous compu-
tational cost resulting from the common scaling of the hp—FEM error according
to the various accuracy of HGS inverse search in the root deme, branch demes
and leaf demes. The hp—HGS asymptotic guarantee of finding all extremes and
the computational cost reduction rate are discussed in [10].

Memetic algorithms (see e.g. [12]) allow to compose various techniques into
a single population-based stochastic strategy in order to obtain more efficiency
and flexibility. Candidate solutions are represented as software agents, other
agents are responsible for governing populations, which leads to the idea of the
computing Multi-Agent System (MAS) (see e.g. [13,14]). The first attempt to
apply agents in profiling of HGS demes is described in [15]. An example of solv-
ing inverse parametric problem by an Evolutionary Multi-Agent System (EMAS)
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can be found in [16]. The paper [17] shows a different way of a memetic enhance-
ment of genetic search by introducing 'gradient mutation’ into the genetic solving
of inverse problems coming from the computational mechanics.

Clustered Genetic Search (CGS) tries to extract the knowledge from the
genetic sample (the population) or a sequence of samples in order to approximate
central parts of local extreme’s basins of attraction (see e.g. [7]). CGS follows
the simple strategy introduced by Té6rn [6], which performs a density clustering
of the uniformly sampled population undertaking the elitist selection.

The solution proposed in this paper, called Hierarchic Memetic Strategy
(HMS) combines all mechanisms described above in a form of a loosely coupled
tree of searching demes. The novelty of our proposition consists of the intensive
profiling of searching process towards essential decreasing of computational cost
and exploring multiple extremes. This profiling utilize intensively the knowledge
about the solving problem extracted from the evolving demes and their current
structure.

2 HMS Architecture

The main idea of the HMS is to provide a global optimization tool especially
suited to solving difficult inverse problems. Their difficulty lies in their inherent
multi-modality as well as the nontrivial computational cost of a direct problem
solution, which is necessary for evaluating the misfit. Nevertheless, they also
have some features we can take advantage of. First of all, their global minimum
value is well-known (and equal to 0), which can be used in e.g. the construction
of stopping conditions for stochastic evolution. Second, in some important cases
the cost of the direct problem solution can be modulated by an assumed accuracy
of the solution: it is the case of hp-FEM direct solvers [11].

As a global optimization tool the HMS tries to combine the high-level
exploratory ability with the accuracy and efficiency of a local optimization
method. Contrary to two-phase methods in which the global phase is followed by
local searches, the HMS goes 'memetic way’, i.e. intermixes local-optimization-
oriented mechanisms into a global stochastic search machinery. The global part
follows the multi-population evolutionary approach introduced by the HGS [8].
Namely the global search is performed by a collection of genetic populations. The
populations can evolve in parallel, but they are not mutually independent. The
structure of the dependency relation is hierarchical (i.e. tree-like, see Fig. 1) with
a restricted number of levels. The HGS proved to have considerable exploratory
capabilities together with a good search accuracy especially with floating-point
phenotype encoding [9]. The HMS, naturally, tries to retain these abilities at
the same time going beyond the HGS in some aspects. First of all, it adds local
optimization to the set of operations applied to the genetic individuals. But this
is done with care in order to avoid the premature population convergence on
one hand and the high cost of running instances of a local method from inap-
propriate points on the other hand. Namely some genetic individuals (but not
necessarily all of them) receive an identity and some intelligence hence becoming
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Fig. 1. HGS-like evolutionary population tree

independent agents in a multi-agent system (MAS), and the decision of perform-
ing the local search becomes their own responsibility. Moreover the demes are
managed by special controller agents. Note that this is somewhat similar but at
the same time significantly different from the Globally Balanced HGS (GB-HGS)
[15] where only demes have corresponding agents. The idea of turning a passive
genetic individual into an intelligent agent has some further consequences. We
have to redefine the genetic operations in such a way that they can be applied
to agents and while there is no big problem with the mutation and the crossover
(but one has to note that in this case a new agent is activated), the selection
cannot be performed in the simple genetic (or evolutionary) way. Namely we
follow the lines of the EMAS [13,14], thus performing an operation analogous to
the proportional selection but realized as a two-agent rendezvous.

In the sequel we shall present the structure of the HMS starting from a
description of HMS agent types.

2.1 HMS Agent Types

Master Agent (MA). As a global system coordinator it is started as a first agent
in the HMS MAS. Its responsibilities include performing the system initialization
including the activation of other basic agents, i.e. the Objective Agent and a
Local Agent of the deme-tree root. After the initialization, the Master Agent
starts the global loop of deme coordination and checks if the global stopping
condition is satisfied. It is shown in the following algorithm:

1: create OA
create root location node
repeat

receive proposals from DAs and choose one

until global stop condition is satisfied.

Deme Agent (DA). It is a deme-tree node coordinator. Each deme has an asso-
ciated level of computational accuracy stored as a property of the corresponding
Local Agent. In fact Deme Agent is an abstract class with two different special-
izations: Evolutionary Agent and Local Agent.
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Evolutionary Agent (EA). This is a simple (passive) evolutionary population
owner. Periodically, after receiving the permission from the Master Agent it lets
its population evolve for a fixed number of generations (this is called a metae-
poch) and then sprouts a new deme from the current best individual unless the
sprout condition is not satisfied (see the algorithm below). Note that similar
agents form the structure of the GB-HGS [15]. The Evolutionary Agent algo-
rithm may be presented in the following way.

1: create initial deme population

2: repeat

3: send a proposal to MA

4 if MA has accepted the proposal then

5: evolve owned population for a fixed step number

6: if the best individual satisfies the sprout condition then
T create new child DA

8: end if

9: end if

10: until local stop condition is satisfied

Local Agent (LA). The Local Agent owns a population of Computational Agents
and acts as their action local scheduler. Namely it receives action proposals from
Computational Agents, selects one of them according to a probability distribu-
tion, send a proposal to the Master Agent and if the proposal is accepted, lets
the selected Computational Agent perform its action (see the algorithm below).
The Local Agent’s responsibilities include also some action coordination, such
as checking if a pending sprout action is allowed. The Local Agent algorithm is
presented below.

1: create initial deme population

2: repeat

3: send CFP to all active CAs

4: receive action proposals from CAs and choose one
5: send a proposal to MA
6: if MA has accepted the proposal then
7 if CA action creates new individual then
8: create new CA
9: else if chosen action is SPROUT then
10: if sprouting can be performed then
11: create new child DA
12: end if
13: end if
14: end if

15: until local stop condition is satisfied

Computational Agent (CA). It is an active individual of the HMS genetic pop-
ulation. It owns an immutable genotype consisting of an encoded domain point
(a chromosome) and a level of the computational precision. The precision level
must be consistent with the owning Local Agent’s level. The mutable part of a



A Memetic Framework for Solving Difficult Inverse Problems 143

Computational Agent’s state includes a nonnegative memetic parameter called
life energy. The life energy is exchanged during a Computational Agent action
execution such that the total energy remains constant within each deme. Only
agents with the positive life energy are considered active (alive) and take part
in the system evolution. Namely there exists a pool of actions from which an
active Computational Agent can choose one at a time to perform. The available
action pool size depends primarily on the agent’s life energy but can be affected
by other parameters as well. The action selection is determined by a given prob-
ability distribution. Finally, the action is performed only if permitted by the
owning Local Agent (see the algorithm below).

1: request objective computing from OA
2: while life energy > 0 do
3: receive CFP from owning LA
choose an available action
send the proposal to LA
if received permission from LA then
perform chosen action
update life energy
9: end if
10: end while
There is an energy quantum related to each action, which is spent (during GET
it can sometimes be gained) by a Computational Agent during the action execu-
tion. Currently the following actions are considered (cf. [14]): GET, MUTATE,
CROSSOVER, LOCOPT and SPROUT.

The GET action is the above-mentioned kind of the distributed selection. It
is a two-agent stochastic duel during which the proper quantum energy moves
from the loser to the winner. A Computational Agent with a lower (i.e. better
because closer to the global minimum) objective value has more chances to win.
MUTATE and CROSSOVER are straightforward counterparts of corresponding
genetic (or evolutionary) operations, like e.g. the normal mutation and the arith-
metic crossover. The SPROUT action is inspired by the child branch sprouting
operation, which is fundamental in the HGS [8]. In the HMS it produces a new
deme together with its Local Agent and an initial population of Computational
Agents. The probability of selecting SPROUT increases with the decreasing value
of the objective. Obviously SPROUT makes no sense at the leaf level, where it
can be optionally replaced with LOCOPT. The LOCOPT is a local optimiza-
tion method execution started from the agent’s decoded chromosome. In the
current realization LOCOPT is allowed only at the leaves and, as in the case of
SPROUT, the probability of its selection is high for Computational Agents with
the low objective value.

Objective Agent (OA). In the real HMS use case (i.e. in solving inverse problems)
the objective value is computed externally by a specialized direct solver. The
responsibility of an Objective Agent (typically one in the whole system) is to
provide a proper solver gateway, i.e. to execute the solver process (or several
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parallel processes) properly and to transfer the input data to the solver and
the solver output back to the HMS. Additional Objective Agent activities may
include: caching solver results, solver instance pooling (in the case of the parallel
execution) and scheduling objective computations according to a sophisticated
optimizing policy (e.g. a diffusion-based one [18]).

2.2 Population Structure

As it was stated before the HMS genetic population is decomposed into depen-
dent demes forming a dynamically-changing tree of the fixed maximal depth m.
Genetic individuals, i.e. Computing Agents, located at the tree levels close to
the root perform the chaotic and inaccurate search, whereas going towards the
leaves the search becomes more and more focused and the accuracy is increased
(see Fig. 1). The variability of the search accuracy results from the diversity
of the genotype encoding precision used at different tree levels. The latter of
course depends on the encoding type. In the case of the binary encoding (as in
the Simple Genetic Algorithm) it can be achieved by the binary genotype length
variation, whereas in the case of the real number encoding (as in the Simple
Evolutionary Algorithm) it can be realized by the appropriate phenotype scal-
ing. The latter case is used in the prototype implementation of the HMS so we
present here some details. The description follows the ones presented in papers
[9,15].

In the real number encoding both phenotypes and genotypes are vectors from
RY. We assume that the solution domain is a box D = [ay,b1] X - X [an, by]
and we take a sequence of scaling factors n; € R such that 1 >ne > ...npm_1 >
Nm = 1. Then the genetic universum at the tree level j is

Uj—[o,bl_al}x..-x{o,bN_“N} (2)
n;j ;5

and the encoding mapping at the level j is defined as

LTk — Qg

Dax'—>{
Nj

}kN_l e U;. (3)

Moreover we define the scaling mapping scale; ; : U; 3 = — %m € U;. In
such a genetic universa the search at lower levels is more chaotic (because the
mutation acts stronger) and less precise (the loss of precision is caused by limita-
tions in the real number representation). One can use various genetic operators
in such an encoding, but among the most important one can find the normal
mutation y; = x; +N (0,07 for i = 1,..., N, where N'(0, 07*"") is a normally-
distributed random variable with the standard deviation a;-"“t set separately
for each level j, and the arithmetic crossover y; = z} + U([0,1])(2? — x}) for
i=1,...,N, where U([0,1]) is a random variable distributed uniformly over the
interval [0, 1]. Both operators are used in our sample implementation. Further-
more we exploit the classical fitness-proportional (roulette-wheel) selection in
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passive populations (on Evolutionary Agents) additionally preserving the best
individual of each generation. A newly sprouted deme’s population is sampled
according to the N-dimensional Gaussian distribution centered at the properly
encoded fittest individual of the parent process with the diagonal covariance
matrix with values (03" "2 on the diagonal. The sprout cannot be performed
in population P at level j if there exists a population P’ at level j + 1 such that
[g — scale; ;+1(y)| < c¢j, where y is the best individual in P, g is the average
phenotype of P’ and ¢; is a branch comparison constant.

Finally, it should be mentioned that the further utilization of the knowledge
gathered during the multi-level enhanced genetic evolution is possible by means
of the clustering technique, in which better approximation of attraction basins
of the local minima can be developed allowing yet more precise application of
local optimization methods.

3 Sample Implementation

As our algorithmic framework is sophisticated, agent-based one, it also poses
several challenges for the implementation task. Two main goals were especially
considered during the design phase: flexibility and efficiency.

Flexibility. It was quite obvious from the beginning that HMS, being a frame-
work, should be extensively configurable, which means that it has to embrace
changes in such aspects as various particular sub-algorithms (e.g. the computa-
tion of CA action probabilities), local and global stopping conditions, local opti-
mization methods, objective approximations etc. All such issues are addressed
primarily by the extensive use of appropriate design patterns (such as Strategy
or Proxy). Some aspects of configurability are obtained through the inclusion of
scripting capabilities into the solid Java skeleton, namely some sub-algorithms
can be defined in separate JavaScript scripts. There is also a higher level of
flexibility reached by HMS. Through the foundation on the Java Agent Devel-
opment Framework JADE [19] (in version 4.2) it obtained a potential ability of
distributed deployment. The use of JADE is justified by its de facto standard
position in the multi-agent middleware area and the relative easiness to write
code controlling concurrent agents communicating through asynchronous mes-
sage passing. JADE’s FIPA standard compliance encouraged us to base HMS
agent communication protocols on the FIPA solutions as well. Both the location
selection performed by the Master Agent with the cooperation of Local Agents
and the Computational Agent selection conducted by a Local Agent are a mod-
ifications of the FIPA Contract-Net protocol. Another example is the multiple
use of the FIPA Request protocol (e.g. requesting the objective value from the
Objective Agent by a Computational Agent).

Efficiency. A message-intensive multi-agent system may seem not very suitable
for numerical computations. However, one should consider that in our real use
case the cost of solving a direct problem dominates the other costs, including



146 M. Smolka and R. Schaefer

agent thread allocation and asynchronous message passing, by far. Hence our
main effort is to reduce the number of the direct solver calls and decrease the cost
of the particular direct solution as far as possible (and this is obtained through
the presented analysis) instead of looking for a more time-effective implementa-
tion environment, which would lack other above-mentioned desired features.

4 Benchmark Tests

Some preliminary benchmark tests were performed. Their aim was basically to
prove the HMS abilities to find the global minimum with the assumed accuracy
in comparison with an already-tested effective tool: GB-HGS [15]. Namely we
took the best accuracy obtained by GB-HGS in the optimization of two popular
benchmark functions and treated this accuracy as the goal for HMS. The chosen
type of tests (i.e. the tests with an assumed accuracy) influenced the setting of
the HMS stopping conditions. Namely the global stopping condition was satisfied
if a leaf approached the global minimum with the given accuracy, whereas a
leaf stopping condition was satisfied if the leaf approached the global minimum
or if a fixed number of its consecutive metaepochs were ineffective, i.e there
was no significant change in the leaf’s population average fitness. As the active
populations do not use the basic notion of metaepoch, for stopping condition
definition we use performing the number of steps equal to the current population
size instead.

As benchmarks we chose the 20-dimensional Rastrigin function over the
box [—512,512]?® and the 10-dimensional Ackley path function over the box
[—30, 30]1°. Both test were repeated 10 times. The tree had 2 levels. At the root
level an Evolutionary Agent (i.e. a passive population) was run, whereas at the
leaf level we executed Local Agents together with populations of Computational
Agents (i.e. active individuals capable of performing the local optimization). The
normal mutation and the arithmetic crossover were used as the genetic opera-
tions. To make the comparison more clear in both benchmarks most of HMS
execution parameters was set exactly (or almost exactly) as in GB-HGS.

In 10D Ackley function minimization we assumed the accuracy of 0.01 (in
this case the obtained accuracy was much better). The execution parameters for
10D Ackley function are summarized in Tab. 1. Note that the metaepoch length
parameter is not directly applicable to Local Agents (see above). Similarly, the
population size in this case is not constant, in our simulations it varied between
10 and 30. The objective call statistics are shown in Tab. 2. The cost of a local
method application is included in the leaf level cost. Note that the average fitness
call number in the case of GB-HGS shows only the order of the actual quantity
but nothing more is available in [15]. In [15], however, one can also find results of
minimizing 10D Ackley function by means of the Simple Evolutionary Algorithm
(SEA). It turns out that SEA after 107 fitness calls approaches the minimum
with the accuracy about 5, which is obviously far from the HMS’s achievement.

In Rastrigin 20D we assumed the accuracy of 1000 (note that this time the
number of local minima is really huge). The execution parameters are summa-
rized in Tab. 3 (the meaning of the parameters is the same as in the Ackley
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Table 1. HMS execution parameters (Ackley 10D)

Root level|Leaf level

Population/initial population 50 10

Metaepoch length 50 -

Encoding scale 7; 4.0 1.0
Mutation rate 0.1 0.03
Crossover rate 0.5 0.5
Mutation standard deviation a}m‘t 4.0 0.8
Sprout standard deviation U;pm“t 10.0 2.0
Sprout minimal distances c; 12.0 2.4

Table 2. Average number of objective evaluations (Ackley 10D)

Root level|Leaf level| Total
GB-HGS 10000000
HMS 147093 4340 151433

Table 3. HMS execution parameters (Rastrigin 20D)

Root level|Leaf level

Population/initial population 50 10
Metaepoch length 50 -
Encoding scale 7; 5.0 1.0
Mutation rate 0.1 0.03
Crossover rate 0.5 0.5

Mutation standard deviation ajmut 68.27 13.65

Sprout standard deviation Ujs-pm“t 170.675 | 34.125
Sprout minimal distances c; 204.81 40.95

Table 4. Average number of objective evaluations (Rastrigin 20D)

Root level|Leaf level| Total
GB-HGS 10000000
HMS 194899 3570.1 |198469.1

case). The fitness call statistics are gathered in Tab. 4. Note that the number of
fitness calls is much higher at the root level, which is very advantageous from
the point of view of inverse problem solving, because the cost of direct solution
is much less then in case of leaves, because of much lower required accuracy.

Finally let us note that more thorough HMS testing should tackle real inverse
problems (instead of simple benchmark functions). Such tests, involving oil
exploration problems, are planned in the near future.
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5 Conclusions

In the paper we have presented a memetic global optimization framework HMS.
It can be used in general optimization but its main design goal is to solve inverse
problems. The main benefit of the presented framework is a significant reduction
of the computational cost together with the ability of the exploration of multiple
extreme obtained on the several separate, but perfectly focusing ways, namely
(see Sec. 2):

— self-adaptation through construction of a sophisticated deme topology;
— simultaneous error scaling;

knowledge mining and online search profiling;

— parallel processing.

To develop these features HMS summarizes and improves ideas taken from HGS,
hp-HGS and CGS (see Sec. 1).

The preliminary tests show the advantage of HMS over the refined hierar-
chic genetic strategy GB-HGS dedicated to multimodal problems (number of
fitness calls decreases by two orders) as well as over the single deme evolution-
ary algorithm (here number of fitness call decreases even more). An additional
cost decrement can be obtained by the common error scaling and the deme
clustering, which were not included in the presented series of tests.
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Abstract. Various changes in energy production and consumption lead
to new challenges for design and control mechanisms of the energy sys-
tem. In particular, the intermittent nature of power generation from
renewables asks for significantly increased load flexibility to support
local balancing of energy demand and supply. This paper focuses on
a flexible, generic energy management system for Smart Buildings in
real-world applications, which is already in use in households and office
buildings. The major contribution is the design of a “plug-and-play”-
type Evolutionary Algorithm for optimizing distributed generation, stor-
age and consumption using a sub-problem based approach. Relevant
power consuming or producing components identify themselves as sub-
problems by providing an abstract specification of their genotype, an
evaluation function and a back transformation from an optimized geno-
type to specific control commands. The generic optimization respects
technical constraints as well as external signals like variable energy
tariffs. The relevance of this approach to energy optimization is eval-
uated in different scenarios. Results show significant improvements of
self-consumption rates and reductions of energy costs.

Keywords: Energy Management - Smart Building - Evolutionary Algo-
rithm - Combined Heat and Power Plant - Household Appliances

1 Introduction and Scenario

The world-wide energy supply is currently in a transition phase mainly due to
the increasing share of power generation from renewable sources and the acceler-
ated reduction of nuclear based power generation. The German “Energiewende”
(“energy transition” [7]) is already causing a tremendous change in the structure
of energy supply in Germany. The nuclear power phase-out is supposed to be
completed by 2023. Accordingly, the share of photovoltaic power and wind power
is increasing. The ambitious targets of the German government are to cover 35 %
of electricity consumption in Germany from renewable energy sources by 2020,
50 % by 2030 and at least 80 % by 2050 [7]. In particular, highly decentralized
© Springer-Verlag Berlin Heidelberg 2014
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photovoltaic systems in the German grid are causing volatile electricity prices
at the European Energy Exchange (EEX) and voltage and congestion problems
in the low-voltage grid [12]. This requires advanced management and optimiza-
tion strategies for the grid as well as for single buildings or households that are
enabling flexibility of electricity consumption.

The heterogeneous structure of households and buildings in general with dif-
ferent setups of appliances and the intermittent character of distributed genera-
tion or storage systems and new types of large consumers (e.g. electric vehicles)
call for a flexible approach towards configuration and optimization. The Energy
Management System (EMS) described in this paper has been developed within
various research projects at the Karlsruhe Institute of Technology (KIT) and the
Research Center for Information Technology (FZI) [3]. It has been deployed in
real-world environments such as the Energy Smart Home Lab (ESHL) on KIT’s
campus' and the FZI House of Living Labs (HoLL)?.

The ESHL consists of a 60m? apartment equipped with a combined heat and
power plant (CHP), an air conditioner, thermal storages, intelligent appliances,
and an electric car. The scenario of ESHL focuses clearly on residential buildings,
whereas the HoLL is a mixed environment of a Smart Home, Smart Offices and
Smart Production in a large building. The HoLL is equipped with an extended
set of distributed power generation and storage systems, intelligent appliances
with wireless communication, building automation systems, and electrical cars.
External signals, reflecting the global and local grid state, are sent to the EMS,
which is able to adapt the building’s energy demand and production automati-
cally without constraining the occupants while complying with their preferences.
The electric and thermal loads of appliances and electric cars are being shifted
within user-defined degrees of freedom.

The major contribution of this paper is the description and evaluation of a
novel approach to energy management, which is extending the approach pre-
sented in [2]: Similar to the concept of “plug-and-play”, the components with
shiftable loads or flexible production send a standardized problem part to the
evolutionary optimizer, containing a genotypic description, and a local evaluation
function. Thus, the components provide all the necessary information and the
optimizer can run global optimizations based on the sub-problems. The remain-
der of this paper is structured as follows. Section 2 introduces energy man-
agement in general and state-of-the-art approaches to optimization of energy
production and consumption in buildings. Sect. 3 outlines the overall system
architecture of the EMS presented in this paper — the Organic Smart Home
(OSH) — and the technical systems which are used. The unique feature of the
OSH is its flexibility in integrating the abstract descriptions of sub-problems as
problem parts. This abstraction and the Evolutionary Algorithm are presented
in Sect. 4. The simulation setup and evaluation results are depicted in Sect. 5.
Finally, the conclusions and an outlook are summarized in Sect. 6.

! http://www.izeus kit.edu/english/
2 http://www.fzi.de/en/fzi-house-of-living-labs/
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2 Energy Management and Problem Definition

There are quite a few approaches to autonomous systems for energy management
based on optimization techniques for electricity grids. Often, the optimization
problem is formulated as a linear programming (LP) [9], mixed integer linear pro-
gramming (MILP) [1,6,8,11] or mixed integer non-linear programming (MINLP)
[4] problem. The EMS described in this paper is not only considering electricity
in terms of active power, but also other commodities as reactive power, natu-
ral gas, hot and chilled water consumption, and emissions of greenhouse gases.
Therefore, it has to take into account multiple objectives in the optimization and
to consider the building with all its technical systems, energy production and
consumption in various kinds, no matter whether it is electricity or another form
of energy. This also includes the shift of energy consumption from one energy
carrier to another.

When optimizing the usage of renewable energies in buildings and the elec-
tricity production by cogeneration with respect to variable external signals (e.g.
load limitation signals) and user preferences, it is important to regard time steps
as short as possible to take account of short-time consumption and production
peaks. Usually, building simulation and building energy management, which is
focusing on thermal energy, use time steps in scale of minutes [5], whereas the
OSH works with time steps on a second to second basis. Optimizing this system
for a time horizon of several hours would result in a MILP with thousands of
constraints and variables, which could usually not be solved within adequate
time on normal computers [1]. For that reason and due the fact that embedded
systems with limited resources are applied, we use a metaheuristic to find feasible
solutions for this optimization problem: an Evolutionary Algorithm (EA).

The energy management problem for an exemplary scenario with shiftable
appliances, and a CHP can be formulated as follows: Various external signals
are taken into account by the EMS. These include energy price signals for the
different commodities, which are consumed or produced in the domain of the
EMS, and load limitation signals that are reflecting the current grid state. Based
upon these signals, the EMS has to optimize the operating times of delayable
appliances and the CHP. Hence, for every specific optimization problem (as
already pointed out in [2]) a discrete time horizon T = {0,...,7'}, which can
be exact to the second, has to be defined. This horizon depends on the current
optimization situation and has a variable length.

The user specifies his preferences by providing a latest finishing time d; for
the work-item of a delayable household appliance j, which defines the temporal
degree of freedom (tDoF):

tDoF; =dj —rj — pj
d; latest time by which the appliance j has to finish its work-item
T release time of appliance j
p;  duration of the current work-item of appliance j
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The starting time s; can now be chosen by the EMS variably within this ¢DoF.
Accordingly, the constraint for shifting the start time of appliance j is:

s; =r; + At with At <tDoF

Based on the specific duration p; for the appliance j, a binary vector (a;¢) can
be defined which indicates whether the appliance j is running in a time slot t.
Additionally, the vector (g;,) represents the power consumption of the appliance
j during its work-item. An example of these two vectors can be formulated as
follows:

(@j)per = (000111110000)7 (g;,:) = (50 700 270 2100 500)"

It has to be ensured that the active time of the work-item of appliance j is as
long as its duration p;:

Z?:O aj =p; and a;: € {0,1}, Vje JVteT,

aswellas a;; =0 fort<rjort>d;

The operation time of the CHP can be defined by a similar vector (¢;). In addition
to this, a second vector indicating the starting times of the CHP (cs;) is taken
into account as shown in the following example:

(ct)ter=(011001100111)" (cse)eer=(100010001000)"

With respect to the constraints for the appliances and the CHP above, the typical
inhouse baseload Ppgse(t) and the electrical power at the grid connection P, ()
can now be calculated as follows:

Pex(t) = Za’j,t . qj,\t—sﬂ mod p; +Pba.se(t) — Pchp * Ct

i CHP

appliances

Different variable prices for the commodities, in form of an active power tariff
EP(t) and a natural gas tariff GP(t), as well as the gas amount g when the CHP
is running and the elevated amount gs during the starting process of the CHP
are being considered. These costs of the commodities as well as the additional
costs CO,,; for load limitation violations of variable lower limit L;(¢) and upper
limit L, (t) for consumption EPy,;q(t) and feed-in EPfccqrn(t) are calculated in
the following way:

COgas = ZtT:O GP(t)-(g-ct + gs - cst)
COa = Z;’FZO Pex(t) - (EPgria(t) ©  (Poy(ty>0] + EPfeedin(t) - (pon(t)<0])
COu =31 opfu- (Pealt) = Lu(t)) - (EPgraa(t) - (Popty>Lum)) +

Sisopfi (Li(t) = Pea(t)) - (EPjecarn(t) - (pouty<ri(1)])
The variables pf, and pf; describe the penalty factors for the violation of upper
and lower load limit. Finally, the optimization objective can now be formulated
as:
min(COsym) = min(COe¢ + COo + COyqs)
This fitness function min(COgym) is used by the approach presented in this
paper.
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3 Organic Smart Home

The architectural design of the OSH is based on the generic Observer/Controller
Architecture (O/C Architecture) [10] as already introduced in [3]. The O/C
Architecture implies a regulatory feedback mechanism, which constitutes one
way to achieve controlled self-organization in technical systems. The O/C Archi-
tecture uses a set of sensors and actuators to measure system variables and to
influence the System under Observation and Control (SuOC). O/C Architec-
ture and SuOC form the so called organic system [10]. Multiple local O/C-loops
enable responses to the behavior and the status of different local agents and
their interactions. The global O/C-loop activates reactions in order to control
the global behavior emerging from interactions between local agents. Every loop
consists of an observer and a controller, the former monitoring the status of the
system through certain attributes and derivation of situation parameters and the
latter influencing the underlying SuOC in an adequate way through aggregation
of the derived information and learning methods. The segmentation into global
and local units is called hierarchical O/C Architecture [10]. This general app-
roach is more closely described in [2,3] and the system architecture is outlined
in Fig. 1.

Problem part Collection E

realtime
optimization

H
g@eé prediction _ =
-
I

5 _l -

longterm

global O/C-unit

local O/C-units

S
com

HAL

provid

signals

Smart-Home

user !
interaction

Fig. 1. Organic Smart Home — architectural overview

In between the local O/C-units and physical hardware components or sim-
ulation agents is the Hardware Abstraction Layer (HAL), which realizes the
abstraction from the manufacturer specific protocols and communication media
of the components, as introduced in [3]. Data of the SuOC is filtered in the local
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O/C-units and passed to the global O/C-unit, which aggregates all information
into the current state of the system and calculates a prediction for the future
state within the next optimization horizon.

Based on the predictions by the local O/C-units, the global O/C-unit calcu-
lates an optimized schedule for the components in the building. This schedule
defines actions and procedures for all devices which may be controlled by the
OSH. Nevertheless, the schedule may be overridden by the local O/C-units, if
the user forces so or certain circumstances require immediate action. This could
be the case if, e.g., the temperature of a thermal energy storage is falling below a
defined threshold level. The OSH considers various input values for the optimiza-
tion: energy prices, load limitation, objectives defined by the user, the observed
behavior, status of devices and storages, and external factors (e.g. weather). The
OSH has been deployed on KIT’s ESHL and at the FZI’s HoLL showing that it
can be used for both simulations and real-world applications.

4 Sub-problem Based Optimization by Evolutionary
Algorithms

Households and buildings have usually heterogeneous configurations and dif-
fering optimization objectives. Therefore, a “plug-and-play” approach for the
integration of different appliances, decentralized power plants, and other energy-
related devices into the optimization of an EMS is introduced. For every device, a
specific sub-problem is defined by modeling abstract Problem Parts (PP) which
can be generically used in the global optimization of the building. Every sub-
problem has a device-specific encoding, representing the sub-problem using a
bit string of a specific length, even though the length of the bit string may vary
from 0 bit to hundreds of bits per sub-problem. This abstract representation of a
sub-problem as bit string provides the “plug-and-play” capabilities in the global
optimization, because every specific sub-problem is abstracted to a structurally
identical representation.

For instance, household appliances have usually some degree of freedom
(DoF) as introduced in Sect. 2. This may either be a temporal degree of freedom
(tDoF), which is applicable for delayable appliances, or an energy-related degree
of freedom (eDoF’), which is applicable for devices having variations of the same
programs or are able to use different alternative energy sources. Appliances with
a tDoF include dishwashers, washers, and dryers with time preselection. The
eDoF could be used in appliances using, for example, either electricity or gas
(this could also be achieved indirectly by using hot water provided by a central
hot water supply) for the heating phase in their programs, which could be the
case in dishwashers, washing machines, dryers, and heating, ventilation and air
conditioning (HVAC) systems. These DoF's are modeled as PPs.

These PPs are exchanged using a common interface, which allows to han-
dle the heterogeneous PPs of the different devices in order to solve the global
optimization problem of energy management in the household. The PP contains
length and instance of the bit string as well as the function evaluate(), which
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returns the expected load profile of the appliance as a function of the current
instance of the bit string. The second function transform() allows to re-transform
the abstract representation into a specific solution for the sub-problem, which
can then be handled by the corresponding device. The methods evaluate() and
transform() consider specific constraints, which are, for instance, the maximum
runtime of a CHP.

A concrete process of the global optimization based on the PPs using an EA
with a binary representation is depicted in Fig. 2. Based on the architecture of
the OSH, presented in Sect. 3, the PPs are constructed in the local O/C-units
which are specific for a class of appliances. In the simplified scenario in Fig. 2
the user fills up a washing machine with laundry in the morning and defines that
the laundry has to be washed by 6:00pm. Additionally, the dishwasher has to
be finished by 5:00pm. In this example, the CHP has to run at least 2h during
the current optimization period in order to fulfill the thermal demand of the
building. In case of the washing machine a PP will be formulated in the local
O/C-unit, where in the present example the encoding for the defined starting
time of the washing machine will need 10 bits.

This abstracted PP will now be communicated to the global O/C-unit together
with the PPs from the other appliances. The amount of PPs in the global O/C-
unit represents the abstracted global optimization problem in the building for the
current optimization period. Based on the bit-count of every PP the individuals
of the initial population for the evolutionary algorithm can be created randomly
as shown in Fig. 2. For the evaluation of every individual, the individual is split up
into different parts, which are representing the encoding of the different PPs. The
PP has the method evaluate() to calculate the resulting load profile by the given
encoding. For every PP and therefore every appliance a partial load profile will
be created this way. These partial profiles will now be combined to the resulting
expected load curve in the household by the given configuration of the individual.
Based on that curve, the given signals, and user preferences, the fitness value can
be calculated using the fitness function.

This evolutionary cycle will run until the stopping criteria has been reached.
In the present approach the stopping criteria is a given maximum number of
generations. The best configuration will be separated into specific bit strings.
These bit strings are combined with the PPs and are communicated back to
the local O/C-units. In the local O/C-units every abstracted problem will now
be transformed to the specific phenotype by the method transform() of the PP.
This solution, in case of the washing machine a shifted starting time within its
degree of freedom, will then be communicated to the physical appliance. For
the other appliances the process can be considered as analog to the washing
machine. In the following we present two concrete examples for PPs, the first
one for appliances like dishwashers and the second one for a CHP as they are
modeled in Sect. 2. For appliances with a tDoF', the length of the encoded bit
string can be formulated as follows:

bit string for tDoF: k bits with k = [log,(tDoF)]
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Fig. 3. Exemplary binary encoding of a CHP and its automaton

Taking into account an eDoF’, supplementary m bits are required:
bit string for eDoF: m bits with m = count(alternative profiles)

bit string for tDoF and eDoF: n bits with n=%k+m

This bit string of length n will now be communicated to the global O/C-unit in
addition to the current expected load profile for the function evaluate(). In con-
trast to the appliances, a CHP usually runs discontinuously, because it sometimes
produces more thermal energy and sometimes more electricity than necessary.
Fig. 3 shows an exemplary approach for encoding the bit string in order to inte-
grate the CHP into the global optimization using a PP. A finite optimization
horizon between tgs4,+ and tenq is given. This interval is segmented into time
periods where every time period is encoded with 3 bits, showing a stable behav-
ior in simulations. Regarding the automaton in Fig. 3 the CHP starts running
(On) if the bits are equal to 111. Otherwise it stays in the state Off and vice
versa for the other state. Due to this a smoother behavior of the CHP can be
reached. The electric generation, the thermal model of the CHP, and the warm
water as well as the heating demand have to be integrated into the PP to realize
the evaluate() function.

5 Simulation and Results

Initially, a set of simulation runs has been executed in order to calibrate the
parameters of the EA. Fig. 4 depicts the outcomes for different mutation and
crossover probabilities. Fig. 4(a) shows the results of 10 generations with 100
individuals (1000 evaluations), whereas Fig. 4(b) shows those of 20 generations
with 100 individuals (2000 evaluations). Increasing the number of generations
improves the simulation results significantly. The best results are obtained by
a mutation probability of 0.05 and a crossover probability of 0.6. The actual
simulation results are based upon more than 200 simulation runs, each simulating
a household consisting of five appliances and a CHP for one year with a different
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Fig. 5. Simulation results of different setups

set of parameters. The starting times of five simulated appliances have been
generated based on typical usage hours. The temporal degree of freedom varies
from 0 seconds for hob and oven to up to several hours for dishwasher, washing
machine and dryer. The variable electricity tariff has been generated based on a
standard load profile and ranges from 0.12 to 0.44 Euro with a mean value of 0.28
Euro per kWh. The feed-in tariff for the CHP of 0.05 Euro per kWh is slightly
lower than the current tariff in Germany, in order to avoid unnecessary operation
times of the CHP. The load limitation has been set to 3kW and the penalty
factors pf, and pf; are set to a value of 1, which doubles the costs for loads that
are exceeding the load limitation. In this setup, the EA uses binary tournament
selection, single-point-crossover with two offspring and bit-flip-mutation using
an elitist (p,\)-strategy with a rank based survivor selection.

Simulation results show that the optimization of the CHP and the appliances
is able to decrease the average expenses for electricity by up to 18 % (see Fig.
5(b)) without increasing the costs for natural gas. The self-consumption rate
is increased from 9 to 17 % for a household size of 3 persons and from 13 to
20 % for a household size of 5 persons (see Fig. 5(a)). This demonstrates the
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Fig. 6. Real world results during a trial phase in the ESHL

ability of the optimization in reducing energy costs as well as the successful
abstraction of the optimization problem presented in this paper. Non-optimized
results (non-opt.) have been obtained by starting all appliances immediately,
disregarding their potential DoFs, and controlling the CHP only according to
the temperature thresholds of the thermal storage. Nevertheless, the simulations
also show that the improvements of both energy expenses and self-consumption
rate are only possible if CHP and appliances are optimized together (full opt.).
Optimizing the CHP alone (chp opt.) does increase the self-consumption rate,
though reducing the costs only slightly. The optimization of the appliances (app.
opt.) leads to a greater decrease of electricity costs. However, it slightly decreases
the self-consumption rate (see Fig. 5).

A similar setup using the calibrated parameters mentioned above has been
evaluated in a trial phase with probands in the ESHL in 2013. The comparison
of a week with and a week without optimization (see Fig. 6) visualizes the syn-
chronization of the CHP and the load of the household. Hereby, the optimization
was able to reduce the electricity costs by 23 %.

6 Conclusions and Outlook

In this paper we presented an approach to a “plug-and-play” energy manage-
ment for Smart Buildings, which can be used for simulations as well as for
real-world applications. Optimization problems of the devices are abstracted
into sub-problems, which are solved by an EA with respect to variable tariffs,
load limitation signals and constraints of appliances and the CHP. The simu-
lation results show that expenses for electricity in this setup could be reduced
by up to 18 % using the tDof of the appliances and the flexibility of the CHP.
Additionally, the simulations show that optimizing either CHP or appliances
alone is not sufficient, while the combined optimization of both increases the
self-consumption rate and decreases energy costs significantly. This way we were
able to show the capabilities of the sub-problem based optimization in energy
management. The results of the simulation have been verified using a real-world
scenario with test persons. A systematic variation of parameters for the EA
shows that the numbers of generations and individuals as well as the mutation
and crossover probabilities have to be carefully adjusted in order to obtain good
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results. This indicates the potential for introducing a meta-evolution which may
automatically adjust the parameters for different setups, e.g., varying household
sizes, building types, or combinations of devices. In extension of the setup in
this paper, further devices can easily be integrated into the optimization. This
includes interruptible appliances, hybrid appliances, PV systems with battery
storage, electrical cars, heat pumps, chillers and water heaters.
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Abstract. In this article, we propose DYNAMOP (DYNAmic program-
ming using Metaheuristic for Optimization Problems) a new dynamic
programming based on genetic algorithm to solve a hydro-scheduling
problem. The representation which is based on a path in the graph
of states of dynamic programming is adapted to dynamic structure of
the problem and it allows to hybridize easily evolutionary algorithms
with dynamic programming. DYNAMOP is tested on two case studies
of hydro-scheduling problem with different price scenarios. Experiments
indicate that the proposed approach performs considerably better than
classical genetic algorithms and dynamic programming.

1 Introduction

Energy planing problems such as hydro-scheduling problem (HSP) aims to find
a schedule of outflows in a hydro-electric network composed of reservoirs, tur-
bines and pumps that maximizes the profit (or minimizes the cost). Dynamic
programming (DP), an algorithm based on the search of the best path on a
graph of states [2] can be used to solve hydro-scheduling problems. But in this
case, the size of the graph grows quickly with the number of time periods, the
number of reservoirs and their capacities. So in practice it is not possible to use
it directly. Nevertheless, some adaptations of dynamic programming have been
proposed for this kind of problems [3-5], but they are very specific to each prob-
lem and only allow to deal with problems of relatively small size. Metaheuristic
algorithms, such as genetic algorithms (GA) could be a solution to overcome
the aforementioned difficulties. They have been used to solve hydro-scheduling
problems [6-10] . However genetic algorithms tend to converge prematurely and
the optimization process can be stuck at a local optimum. Besides, genetic algo-
rithms also take a large number of iterations to reach the global optimal solution.
In the case of hydro-scheduling problems, the flaws of this method could be par-
tially explained by the dynamic structure of the problem.

An interesting way to solve such problems is to hybridize dynamic program-
ming and metaheuristics. A first attempt was made in [11] where a local search
and DP were combined to form Discrete Differential Dynamic Programming
(DDDP). The method replaces the small neighborhood of the local search (LS)

© Springer-Verlag Berlin Heidelberg 2014
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by a bigger one defined as a restriction of the graph of states around the path
defined by the current solution. And then the best neighbor is chosen by using
DP in this restricted graph. This method has been generalized to the hybridiza-
tion of any exact method with LS in [12]. Another hybridization between LS and
DP is proposed in [13] and is called dynasearch. The main idea of dynasearch is
using traditional definiton of neighborhood while allowing several moves within
one iteration. The best sequence of possible moves for one iteration is chosen
by using DP. Some hybridizations between DP and GA have also been pro-
posed : the method proposed in [14] can be used for all permutation problems,
the hybridization is to use DP in the crossover operator to find the best solu-
tion having some common characteristics with the parent solutions. In [15,16]
DDDP is applied starting from trial solutions constructed from some solutions
given by a GA. These different hybridizations give promising results. However it
seems that it has never been tried to use a representation of a sequence of states
in a genetic algorithm. In the proposed approach to solve the hydro-scheduling
problem, called DYNAMOP for DYNAmic programming using Metaheuristic for
Optimizations Problems, a genetic algorithm based on a representation taking
into account the dynamic structure of HSP is used. This representation models a
solution as a path in the graph of states (the same as in dynamic programming),
each gene will then be a state traversed by the path. This representation allows
a greater separability of the fitness function in terms of genes. The fitness is the
sum of the edge values and a change on a gene only modifies two edges. This could
result in a better locality properties in the recombination and mutation of the
genotypes. In addition, this partial separability allows to apply an iterative eval-
uation and and hence to speed up the computation time of the fitness. Another
great advantage of this representation is that it allows to build hybridization with
DP easily. In the following section, the hydro-scheduling problem is detailed.
Then DYNAMOP is introduced and its specificities are explained. Section 4
presents the experimental protocol and the datasets. In section 5 the results are
presented and discussed. Finally a conclusion about the potential of this method
and perspectives are given.

2 Hydro-Scheduling Problem Description

The objective is to find a scheduling of water outflow in a hydroelectric system
that maximizes the benefits. The considered hydroelectric system is here a net-
work of several reservoirs. For each tank, the water outflow is directed to a single
other tank passing through one or several turbines. On top of turbines, there is
exactly one pipe out of each tank to discharge water without using it. Figure 1
gives two examples of hydroelectric networks.

Thereafter it will be noted r; ; the spilled water of reservoir ¢ at time ¢ without
being used and g;; the water used for the turbine j. Therefore, the scheduling
should fix the values of 7;; and ¢;;. The benefit to maximize is described as
follows:

profit=>3 1 1> i1 N ZjeTi pricet j X prod;(gje, Vi),
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where T denotes the number of hours in the time period, N the number of
tanks and T; the set of turbines that are supplied by tank ¢, price;; is the
price of the energy producted by turbine j at time t, it could correspond to the
spot contract or to a purchasing obligation. The production function prod; of a
turbine j not only depends on the flow g;; but also on the amount of water on
the corresponding tank at time ¢ V; ;. This function is very irregular, it is neither
linear nor convex regarding to the decision variables. Actually it is described as
follows:

prod; (¢, V) = 2 iciney; 2anernt, ,; (@ik i X (Min(Bjki1,q)—Bjk)lver x 1>, ,.),

where

Inty; is the set of intervals of definition of the function regarding to V.

— Inty ; is the set of intervals of definition of the function regarding to g.

— Bj is the lower bound of the k*" interval of the production function accord-
ing to the rate q.

— aj, is a linear coefficient of the production function.

Some constraints have to be respected:
1. Reservoirs storage constraints:
Vmin,i,t S ‘/i,t S Vmaw,i~

The minimum limit is dependent on time as, for example, during drought
period of summer it could be necessary to store more water. A natural inflow
NI;; for each reservoir ¢ at each time ¢ is taken into account to compute
Vi

2. Constraints of max and min flow in pipes:

T'min,i S it S Tmax,i-
3. For each turbine i a constraint of minimal production:
prodMin; < prod;(¢;.¢, Vi),

where j corresponds to the supply reservoir of turbine .
4. Constraint of maximum outflow for each turbine i:

qit S Qmaw,i(‘/j,t)~

This maximal limit is depending on the amount of water on the supply tank
of turbine 3.

5. At the end of the time horizon the amount of water in each reservoir ¢ must
be the same than the initial amount:

Vi = Vinit,i.
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\Rf

Fig. 1. Hydroelectric network case 1 and 2. Tanks are represented by trapezoids, tur-
bines by circles and pipes by edges.

3 DYNAMOP

The main idea of DYNAMOP is to use a GA to run through the graph of
states of DP. Dynamic programming is a method based on Bellman Principle of
Optimality [1]. It is used to solve optimization problems by creating a sequence
of decisions (d;);=1..; such that the choice of dj can have an impact on the choice
of d, (p > k). Besides, this method can be seen as the search of a shortest path
in a graph of states previously constructed (see [2]). Solutions in the proposed
genetic algorithm are represented as path of the graph of states. As explained
previously this methodology is proposed in order to overcome the difficulties
associated with a more classical GA or with the use of a DP. To construct the
individuals used in DYNAMOP, the states and the edges have to be specified
(see section 3.1). Then some evolutionary operators adapted to this kind of
representation are proposed.

3.1 Representation

A solution is represented by the corresponding path in the graph of states. The
graph of states is similar to the one used for dynamic programming and that is
defined as follow:

— A state S; is totaly defined by a vector (gg,,;)i=1..n Where gs, ; is the total
amount of water having been dispatched from tank ¢ until ¢. The initial state
S* is defined by the zero vector, and the final state S is also fixed since the
constraints on final amount on tanks imply:

Gsri = =17 Nlit + 3 jes+ 45r.5-

where (52»+ is the set of tanks flowing into the tank 3.
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— There is an edge between two states S; and Sy iff for all tank @ ¢; 5, <
Gi,S,4,- The edge is evaluated by the value of the best profit that it is possible
to obtain passing from S; to S;y1. If it is not possible to pass from S; to
Si41 without violating constraints on pipes a penalty is added.

In practice a solution will be encoded in form of a table giving for each time
t the corresponding vector of outflow ¢+ except for the initial state (which is
invariant). On top of that the edges values are also stored which will allow to use
a delta evaluation. Figure 2 illustrates this representation process for the simple
case of one reservoir.

quantity

( J —/ N time
S1:q1{S2:92|S3:q3 ST-1: qT-1 ST :qT
vl v2 v3 vT-1 VT

Fig. 2. Representation

Initialization: Initializing of such an individual is made iteratively (regarding
to the time period ¢) by randomly choosing, a feasible state S; among those for
which the edge S;_1 — S; exist.

Fitness Function and Constraint Handling: The fitness function is the
sum of the values of edges. Due to the fact that these values are saved, after
applying an evolutionary operator, only edges that have been modified by this
operator have to be recomputed.

The value of an edge S;_; — S; is the sum on ¢ of v; ¢, where v; ; is the best
benefits that can be done by discharging the amount of water gty = ¢; s, —¢i,s,_,
of tank ¢ plus a penalty if the constraints on pipe can not be satisfied. This
penalty increases linearly with the error. When it is necessary to solve a dispatch
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problem between many turbines, v;: is computed by solving a mixed integer
linear program (MILP) with CPLEX.

3.2 Crossover

The idea of the crossover between two paths P4 and Ppg is to replace a portion
of P4 by a portion of Pp and vice versa. The lenght of the portion is randomly
chosen. Let Sf and S£ the states of start and end of the portion of replacement.
The transition from state Sj}_; to S§ or from SZ to StAﬁ_1 could be impossible.
However there always exist some states of P4 from which S5 can be joined and
states that can be joined from Sg . This is because of the uniqueness of the
initial and final states. So the transition between P4 and S5 will always exist
and be constructed by finding the state of P4 the closest of S{}_; from which it
is possible to join S5 and randomly build a path between these two states.

Figure 3 shows the crossover process in the simple case of a single tank.
The black path and the white path are recombined to form two offspring. The
transition paths are the gray ones.

t2

quantity

\/ time

Fig. 3. Crossover process

3.3 Mutations

Two different mutations are designed.

A Switch Mutation: The mutation is to modify one state of the path. The
state Sy to modify is selected randomly. The new state S; is selected randomly
among all states adjacent to S;_1 and S;y1. If there exists some states that allow
to respect the bound constraints on pipes, one of them is preferred.
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A Hybrid Ameliorative Mutation: The main idea is to randomly select
two states of the path P separated by L locus and to replace the intermediate
states by those of a better path between these two states. This better sub-path
is computed in choosing randomly a tank and in computing the better way to
use the water used in P for this tank during the L time periods considering
that the outflow of other tanks remain unchanged. So, DP is used in a graph of
states restricted in length and width. This is similar to the idea of finding the
best neighbor in the DDDP [11] where the reduction of the width of the graph
is used to define the neighborhood. The step-size used for DP is set in advance.

4 Experimental Protocol

The hydroelectric networks used for the study are those of Figure 1.

4.1 A Basic Genetic Algorithm for Comparison

To be able to compare our algorithm we also propose a genetic algorithm with
more classical representation and operators. It will be noted BGA for Basic
Genetic Algorithm.

In this version solution is represented as vector of N x T elements of [0,1].
The first T" elements give information on the scheduling of the first tank then the
following T" elements give information on the scheduling of the second tank, etc..
For a tank i each element gives the percentage of the amount of available water
that is used on top of the minimum required quantity. This minimum quantity
is the quantity that has to be discharged in order to respect the minimum bound
on the reservoir content. It allows to obtain a solution that will always respect
the bounds constraints on tanks. So, It is a kind of dynamic representation that
allows to avoid proposing unrealistic solutions, where more water is discharged
than the tank contains. This representation has also been used in [17] for the
same kind of problem, except that it has been done with a binary representation.

The evolutionary operators chosen are very classical in GA. The crossover
is a 2-points crossover, and the mutation is to randomly choose a gene and to
change its value by a quantity randomly chosen in [0,1].

4.2 Cases of Study

The first case study is to find the schedule of outflows in a hydro-electric network
composed of a single tank, two turbines and a pipe as shown in Figure 1. Tank
capacity is very large and the outflow is not limited on the pipe. Therefore with
a discretization step of 20m3/s for the flow rate the number of states in the
graph of states for one year horizon is 3 x 10%. This number is important as the
evaluation of edges (adapted to any number of turbines) is time consuming.
The second case corresponds to the second network presented in Figure 1.
In this case the outflows on pipes and turbines have bounds that are depending
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to the upstream tank content. This restricts the search space but complicates
finding feasible solutions. As the size of the graph of states grows exponentially
with the number of tanks, even with a large step of discretization this case is
not solvable by dynamic programming in a reasonable time ( 9 x 10! states in
the graph for a coarse discretization).

4.3 Parameter Setting

Proper settings of a GAs parameters are required to achieve the best perfor-
mance. For this reason, a sensitivity analysis was carried out for each algorithm,
to determine the effect of the crossover rate, the mutation rate, the population
size and the replacement strategy. Two strategies of replacement are tested. The
first one consists of replacing the whole current generation by the offspring and
applying weak elitism. The second strategy is to generate N, offspring and to
apply a strong elitism. In this case the number of offspring has also to be set.
This analysis is done thanks to Irace [18]. Irace is a package for R (a statistical
software) that implements the iterated racing procedure. This procedure is an
extension of the Iterated F-race procedure. Its main purpose is to automatically
configure optimization algorithms by finding the most appropriate settings given
a set of instances of an optimization problem. Here the instances were 10 differ-
ent price scenarios. For each algorithm and each case the parameters are first set
for a period of one day and then the size of the population and of the offspring
is reanalyzed for each time period.

5 Results

Each algorithm is tested on the two cases of study on different time hori-
zons. DYNAMOP is also tested without using the hybridization, this version
will be denoted DYNAMOP-H. DYNAMOP-H uses the same parameters as
DYNAMOP except that the hybrid mutation does not occurred. For each test
10 runs have been made with a maximum time as stopping criteria. The results
are presented in Tables 1 and 2. On top of GA, a Mixed Integer Linear Pro-
gram (MILP) and a DP are also applied in order to have an idea to the optimal
solution when it is possible.

For each algorithm the mean of the solution for the 10 runs is given in the
line ”Mean” the standard deviation between these different solutions is given in
the line ”std”. The line "Best” gives the best result over the 10 runs. The line

) . 2 Bestound—Bestaige ;
"Gap” gives a percentage which is : == %esff e: 122 % 100. Where Best found is
oun

the best feasible solution found for the problem, and Best,i4, is the best solution
obtained by the algorithm tested. The value of Best foynq is noted in bold in the
table. The line ”Computation time” gives the execution time of each methods
in seconds. Futhermore, for each simulation, Kruskall Wallis test is applied to
the samples obtained on different runs followed by a post hoc test in order to
compare the different algorithms.
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5.1 First Case: Simple Hydro System

In Table 1, we can notice that if we compare the three genetic algorithms results
to dynamic programming results the performance are quite different. For 720h
horizon of planification, DYNAMOP-H and BGA have quite similar results and
their gap with the DP solution is more than 16%. Whereas DYNAMOP is not
far from the DP solution ( only 1.7% of difference in a time twice shorter). In
this case, the hybridization improves the results a lot although the time used by
the algorithm is the half of that is used by DP. A Kruskal Wallis test applied
to the samples obtained on different runs followed by a post hoc test allows to
confirm the superiority of DYNAMOP on the two other algorithms with a risk
of 0.01%.

For 8760h horizon of planification, we can observe a real gap between all the
genetic algorithms. The representation used in both version of DYNAMOP and
DYNAMOP-H allows to have a gap of 32.34% whereas BGA is at 54.24%. With
an hybridization with DP, the performance of the algorithm is really improved
and DYNAMOP is near the optimal solution found by DP. The gap is then only
at 3.27% with a computation time that is 4 times less than DP. The significance
of the results is again confirmed by the statistical tests with a risk of 0.01 %.
The results are promising for the simple hydro system. In next section, we test
DYNAMOP with a more complex hydraulic system.

Table 1. Results on first case: Simple hydro system. The best solutions found are
bolded and used to compute the gaps.

planification horizon BGA |[DYNAMOP|DYNAMOP-H DP

720h Mean (X 106) 2.3524 2.9391 2.3548 3.0999
std (x10°) | 0.1540 | 0.0651 0.1866
Best (x10°) | 2.5949 3.0473 2.6007

Gap 16.29 % 1.7% 16.11 % 0 %

Time (s) 2420 5030

8760h Mean (X 107) 1.4549 3.0620 2.1428 3.2209
std (><107) 0.0123 0.0410 0.031
Best (x107) [ 1.4740 3.1156 2.1793

Gap 54.24 %|  3.27 % 32.34 % 0%

Time (s) 20000 79376.82

5.2 Second Case: Multi-reservoirs Hydro System

In this second case, the system has several reservoirs. On top of that it has strict
constraints on minimum and maximum rates on pipes and turbines that make it
difficult to find a feasible solution. In Table 2, different simulations are presented
with a different planning horizon (24h, 720h and 8760h). The solutions given in
the last column of this table are obtained by solving a MILP with the software
CPLEX. For the 24 h period, this solution is the optimal one. For the period of
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720 h this solution is not the optimal one, because the program is stopped before
reaching the optimal solution due to a lack of memory. So it is the best feasible
solution found before the program has to stop. For the period of one year the
data size is too big to obtain any result with DP or with CPLEX (denoted NA
in the table).

As before, all the evolutionary algorithms have the same amount of time to
solve the problem.

We can first remark that in some case, the classical genetic algorithm (BGA)
is not able to find a feasible solution and so gives negative result. In this specific
case, the proposed representation allows to find easily feasible solutions.

Table 2. Results on second case: Multi-reservoirs hydro system. The best solutions
found are bolded and used to compute the gaps.

planification horizon BGA |[DYNAMOP|DYNAMOP-H[ MILP

24h Mean (x107)| -5.6342 [ 4.3049 4.2850 4.4786
std 417.2407| 272.035 257.921
Best (x10%) | -5.5642 |  4.352 4.3132

Gap - 2.8 % 3.69% 0%

Time (s) 1650 3030.129

720h Mean (x10%)] 2.1507 [ 2.5848 2.5785 0.0553
std 65054.11| 7671.21 10662.3
Best (x10°) | 2.2474 | 2.5956 2.5912

Gap 13% 0% 0.17% 97%

Time (s) 20000 345656.23

8760h Mean (x107)] 1.6683 2.6022 2.5565 NA
std 292521.6| 1849345 0 1319762
Best (x107) | 1.7010 | 2.8071 2.7133
Gap 39.4% 0% 3.34%

Time (s) 40000 -

For a 24h planification horizon a test of Kruskal Wallis allows to say that
there is a significant difference between the 3 algorithms with a risk of 0.01%.
Then the test post hoc shows that the difference is significant with a risk of
0.01% between BGA and DYNAMOP in the hybrid and non hybrid version,
whereas there is no significant difference between DYNAMOP and DYNAMOP-
H. This is consistent with the numerical results that show that DYNAMOP
outperformed BGA with or without hybridization. Actually, the gap with the
optimal solution is less than 3% for DYNAMOP whereas BGA cannot find any
feasible solution.

Similarly for a 720h horizon there is a statistical difference between BGA and
the two versions of DYNAMOP with and without hybridization but there is no
statistical difference between DYNAMOP and DYNAMOP-H. In 17 times less
from time that MIP, DYNAMOP allows to obtain a feasible solution that is 47
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times better. The difference between the solution given by DYNAMOP and the
solution given by BGA is to 13%, so DYNAMOP is highly better than BGA.

For a larger time horizon, 8760h which corresponds to a time horizon of one
year, the MILP is not able to find a solution with CPLEX. This is denoted by
NA in the table 2. Again DYNAMOP provides the best results. Statistically
the difference between DYNAMOP and DYNAMOP-H is not significant, but
DYNAMOP and DYNAMOP-H are statistically better than BGA. The differ-
ence between the best solution provided by DYNAMOP and the best solution
provided by BGA is 39.4%.

In this case of study the impact of the hybridization is not substantial, actu-
ally it is not surprising because it could modify only the schedule of one of the
7 tanks.

6 Conclusion

In this paper we have presented DYNAMOP, an original approach using evolu-
tionary algorithms to guide dynamic programming. This approach has many
advantages and allows to overcome the drawbacks of DP and classical GA.
Firstly, due to the use of a path representation of a solution, the hybridization
with dynamic programming is easy to realize and allows to significantly improve
the obtained results. This hybrid approach shows its efficiency and effective-
ness in solving real instances associated to the problem. However, even without
hybridization, the representation itself is advantageous, indeed DYNAMOP-H
outperformed BGA when the size of the problem becomes bigger. This could be
due to the fact that the better separability of the fitness function regarding to
the genes leads to a better logic in the recombination of individuals. This greater
separability also allows to apply an incremental evaluation, only the values of the
modified edges have to be recomputed after applying an evolutionary operator.
This allows to speed up the fitness computation and then allows obtaining more
generation than with a classical genetic algorithm (BGA) in the same time.

Such an algorithm offers great potential to solve a large set of other combina-
torial problems. Actually this methodology could be generalized to any problem
which holds the Bellman property. It involves many different cases of applica-
tions, such as graph routing problems, sequencing problems, selection problems,
partitioning problems, distribution problems, production or inventory problems
or string processing problems. Therefore, we believe that extending DYNAMOP
methodology to solve problems with dynamic structure could be a new and
interesting line of research.
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Abstract. We investigate different evolutionary algorithm (EA) vari-
ants for structural optimization of energy supply systems and compare
them with a deterministic optimization approach. The evolutionary algo-
rithms enable structural optimization avoiding to use an underlying
superstructure model. As result of the optimization, we are interested
in multiple good alternative designs, instead of the one single best solu-
tion only. This problem has three levels: On the top level, we need to
fix a structure; based on that structure, we then have to select facility
sizes; finally, given the structure and equipment sizing, on the bottom
level, the equipment operation has to be specified to satisfy given energy
demands. In the presented optimization approach, these three levels are
addressed simultaneously. We compare EAs acting on the top level (the
lower levels are treated by a mized-integer linear programming (MILP)
solver) against an MILP-only-approach and are highly interested in the
ability of both methods to deliver multiple different solutions and the
time required for performing this task.

Neither state-of-the-art EA for numerical optimization nor standard
measures or visualizations are applicable to the problem. This lack of
experience makes it difficult to understand why different EA variants
perform as they do (e.g., for stating how different two structures are),
we introduce a distance concept for structures. We therefore introduce
a short code, and, based on this short code, a distance measure that is
employed for a multidimensional scaling (MDS) based visualization. This
is meant as first step towards a better understanding of the problem land-
scape. The algorithm comparison shows that deterministic optimization
has advantages if we need to find the global optimum. In contrast, the
presented EA variants reliably find multiple solutions very quickly if the
required solution accuracy is relaxed. Furthermore, the proposed distance
measure enables visualization revealing interesting problem properties.
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1 Introduction

We address the problem of synthesizing energy supply systems with regard to
time-dependent heating and cooling demands. This problem can be treated on
several different scales from a single building to urban systems. In the present
study, we focus on medium-scale problems, e.g., an industrial site or a university
campus comprising of several, but not very many buildings. In this class of
problems, the energy demands are distributed spatially, so that heating and
cooling can be supplied in both centralized and distributed fashion. Of course,
any mixture between these two extremes may be suitable — as is usually the case.

Energy supply systems incorporate energy conversion plants (e.g., boilers),
energy distribution infrastructure (e.g., heating pipelines and power cables), and
energy storages. The synthesis of these integrated systems is a complex problem
that has to be considered on three levels [2] (Fig. 1): on the top level, the syn-
thesis level, the structure or configuration of the energy system is fixed; on the
intermediate level, the design level, the technical specifications of the employed
technical components have to be specified (e.g., nominal capacities and operating
limits); finally, on the bottom level, the operation level, technical components’
operation modes need to be specified for each instant of time. The three decision
levels directly influence each other, and thus, for optimal synthesis, all three
levels must be considered simultaneously.

For the optimization-based synthesis of energy supply systems, most com-
monly superstructure-based optimization methods are employed [5]. The general
superstructure optimization problem for energy supply systems synthesis is given
by a mixed-integer nonlinear programming (MINLP) problem:

mdinf(s,d, 0), s.t. h(s,d,0)=0, g(s,d,0) <0, se€SdeD,ocO (1)
s,d,o

where the values of the decision variable vectors s, d, and o must be determined
to minimize the objective function f. The decision variables are part of the

continuous and/or integer variables space S, D, and O, which represent the
synthesis (i.e., (non-)existence of a unit), design (i.e., unit sizing, etc.), and

Synthesis level ' :7
Technology selection = F
and configuration ﬂ #’
I
I
X I
1120 KW 450 kW I
]

Design level '
Technical specifications : 100 kW

I
|
Operation level :
Unit commitment 1 1

Fig. 1. Hierarchically-structured problem of energy systems synthesis on three levels
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operation (i.e., flow rates, on/off-status of a unit, etc.) decision variable spaces,
respectively.

It is crucial to understand that the designer has to decide a priori which
alternatives should be included in the superstructure: On the one hand, the
designer thereby runs the risk to exclude the optimal solution from consideration;
on the other hand, to circumvent this problem, excessively large superstructures
can be employed, which however lead to prohibitive computational effort for the
solution of the optimization problem [4].

To avoid these issues, recently two methods have been proposed for the auto-
mated optimization-based synthesis of energy supply systems; an automated
superstructure-based synthesis methodology [8] and an automated superstructure-
free synthesis methodology [7]:

a) The superstructure-based synthesis methodology employs algorithms for
automated superstructure generation and deterministic optimization. To find
the optimal solution of a synthesis problem, this methodology performs suc-
cessive superstructure expansion and optimization to continuously increase
the number of units embedded in the superstructure until the final super-
structure incorporating the optimal solution is found.

b) The superstructure-free methodology simultaneously generates and opti-
mizes candidate solutions in search for the optimal solution. The methodol-
ogy is based on a knowledge-integrated evolutionary algorithm that applies a
handful of generic replacement rules for the evolution of solution structures.

In this work, linearized MILP formulation is employed for synthesis of energy
supply systems [7]. For reasonably small test cases, synthesis problems can then
be solved exactly in seconds or minutes, but for large-scale problems, the solution
can take up to hours. However, if the structure is fixed — as is the case for the
candidate solutions arising in the superstructure-free approach — the underlying
design and operation problems can usually be solved as an MILP in a matter of
seconds. In case of the superstructure-free approach, the problem is not solved
exactly, however, it might be faster to find a very good solution heuristically
than to wait for the optimum generated through deterministic search. But the
main asset of the metaheuristic search is that we obtain several good solutions
in one run. This is a major benefit for real-world planning problems because a
single solution has only limited significance, , and thus decision makers usually
prefer to obtain several promising alternatives that can be further evaluated with
regard to further constraints arising in practice (e.g., changing constraints such
as energy tariffs and energy demands).

The main task of this work is to investigate under which conditions a meta-
heuristic has advantages when compared to exact optimization algorithms for
the type of structural problems we are dealing with, especially if several alter-
native solutions are desired. Therefore, first, the test case is described in detail
in §2. We will experimentally compare an exact solution and the metaheuristic
optimization in §6. However, we start with describing the superstructure-free
synthesis methodology in §3. In order to quickly recognize the produced struc-
tures and be able to compute a distance between possible alternatives, we define
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a shortcode, and based on that, a distance measure between structures in §4.
Being equipped with a distance matrix, we can establish a multidimensional
scaling (MDS) based visualization of our non-numerical search space in order to
get a first idea of difficulties this problem contains and use this in order to select
suitable optimization techniques. In §5, the different employed EA approaches
are introduced and the different ways to solve an MILP by means of a solver
alone (based on an successively extended superstructure) or in combination with
an EA are explained.

2 Test Case

The test case represents a real-world problem from the pharmaceutical indus-
try. The test case has already been analyzed in detail in [7]. The analyzed site
consists of six building complexes housing offices, production and research facil-
ities (Fig. 2). A public road separates the considered site into main site (A) and
secondary site (B). On site A, all building complexes are connected by a central
heating and cooling network. In the base case, site B is not connected to the
cooling network, but only to the heating network. The connection of site B to
the cooling network on site A is not allowed due the public road. Both sites
are connected to the regional natural gas grid (gas tariff: 6 ct/kWh) and the
regional electricity grid (electricity tariff: 16 ct/kWh; feed-in tariff: 10 ct/kWh).
Electricity generated by the combined heat and power (CHP) engines can be
used on-site to meet electricity demands or to run compression chillers,; or else it
can be fed to the regional electricity grid. All heat generators have to be installed
on site A.

The described site has time-varying demands for heating, cooling, and electric-
ity. modeled by monthly-averaged demand time series. The annual demands for
electricity, heating, and cooling amount to 47.7 GWh, 28.1 GWh, and 27.3 GWh,
respectively. The demand profiles are symmetric around the summer months July

- Heating network
=== Cooling network P

’ Productlon Y
incorporates /facnmes B1 y

Site B /) Site A

4 Research b
,\ facilities A5 y

new cooling o
demand - =
F “Research” 3
N facmtles A4 4

Public road

L L L - :/ - Offlce z
F + buildings A3, !
L al -
/’ Office ” >\ 4 Produchon b
L bundlngs Al ) « facilities A2,

Fig. 2. Schematic plant layout of the considered site. On site A (main site), a central
heating and cooling network connects five building complexes. The building complex on
site B (secondary site) is only connected to the central heating network. Establishing
new connections between both sites is impossible due to a separating public road. [7]
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Fig. 3. Optimal flowsheet of the real-world synthesis problem. For simplicity, the elec-
tricity demand is not shown in the figure. [7]

and August. Thus, they are further simplified by aggregation to only six time
steps.In addition, the minimum and maximum demands are taken into account.
These demands occur only during few hours per year, however, it is important
to incorporate them in the demand profiles to guarantee adequate equipment siz-
ing. In total, the energy demands are modeled by eight time steps including the
peak-load time steps.

The existing supply system consists of three boilers, one CHP engine, and
three compression chillers. However, one boiler and one compression chiller can-
not be further operated, and thus require substitution. Next to the given com-
ponent types, we will also consider absorption coolers.

The optimal solution installs existing as well as new equipment. The optimal
net present value adds up to —46.99-10° EUR (Table 1) improving the base case
by 39 %.

Table 1. Economic parameters of base case and NPV-optimal solution [7]

NPV  investments energy cost maintenance cost

solution / 10° EUR / 10° EUR / 10° EUR p.a. / 10° EUR p.a.
base case solution —76.36 0 11.27 0.11
NPV-optimal solution —46.99 2.35 6.44 0.22

3 Superstructure-Free Synthesis Methodology

The superstructure-free synthesis methodology proposed by [8] employs a hybrid
optimization algorithm combining metaheuristic with deterministic optimiza-
tion [6]. Metaheuristic optimization is realized by an evolutionary algorithm
employing a mutation operator that randomly replaces substructure from a can-
didate solution by alternative structures. This approach allows for simultaneous
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alternatives generation (on the synthesis level) and optimization (on the design
and operation levels). The mutation operated is based upon a hierarchically-
structured graph, the so-called energy conversion hierarchy (ECH) that classi-
fies the considered energy conversion units according to their functions. This
enables an efficient definition of all reasonable connections between the regarded
technologies. Thus, a minimal set of generic replacement rules is then sufficient
to employ structural mutation for the generation of any solution structure. For
more details on this concept, the reader is kindly referred to [8].

The general mathematical programming problem for single-objective opti-
mization based synthesis of energy supply systems is given by (1). Here, the
decision variable vectors s, d, and o are part of the continuous and/or integer
variable spaces S, D, and O, which represent the synthesis, design, and opera-
tion decision variable spaces, respectively. The three synthesis levels feature an
inherent hierarchical structure, and thus the mathematical programming formu-
lation can be decomposed into an upper level dealing with the synthesis, and
a lower level dealing with the design and operation. Thus, the mathematical
programming formulation can be reformulated as

min  f(s), s.t. rcrllin f&(d, o).

Instead of explicitly modeling structural decisions in a superstructure, the
presented mutation operator is embedded in an evolutionary algorithm that con-
tinuously evolves new configuration alternatives to perform optimization on the
synthesis level. For equipment sizing and operation, rigorous MILP optimization
is used as local refinement strategy; i.e., for each configuration alternative gener-
ated by mutation, an MILP problem is solved to identify the optimal equipment
sizing and operation that maximizes the net present value. With net present
value Cy.,. as objective function, the problem formulation of the hybrid opti-
mization is given by

max Crop(0), oceX, st max Ct(gz (d, o), (2)
where o represents a structure evolved by mutation, and X represents the set of
all possible structures.

In this paper, the hybrid optimization is based on the MILP formulation
presented by [7]. However, it should be noted again that the generic component-
based modeling enables to use any other programming formulation as well.

4 Shortcode and Distance Measure

To simplify recognition of structures contained in actually evaluated solutions, a
shortcode is defined that provides the types and numbers of the employed energy
conversion plants. Note that the topology is omitted from this notation, so that
it is possible that two solutions appear to be identical but have different topolo-
gies and thus different target values. The four different technology types boiler,
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absorption chiller, compression chiller, and combined heat and power (CHP)
engine are matched to the tokens Bo, AC, CC, and CE, followed by the number
of plants per type encoded in a structure. As an example, Bo1CC1 represents a
structure that embeds one boiler and one compression chiller.

On base of this short code, we define a distance function over the different
structures to obtain a numerical value. The function is given in (3) and resembles
the euclidean distance with each of the four types (in alphabetical order, AC=1,
Bo=2, CC=3, and CE=4), with N;; and N;2 denoting the two structures. Two
structures that embed a certain type of technology or not are considered more
diverse than two structures that incorporate the same types of technologies but
in different numbers. Thus, the second term in (3) with the signum function
makes sure that the distance of two structures containing 0 and 1 units of a
specific technology type are considered larger than for 1 and 2 or higher unit
numbers.

4
dist1 (N1, N2) = | > (INix = Nio| + sgn (|Nix — Nia|))? 3)

i=1

For so-called retrofit optimization, where a number of plants is already
installed, it is necessary to add means that reveal if a plant is new or retained
from the base case. We express the difference in the shortcode by writing exist-
ing plants with small letters, such that AClaclbo2 denotes one new and one
existing absorption chiller and two boilers. The distance function is adjusted
appropriately in (4) with the introduction of n; und ns for the existing plants.
The correction factor r (set to 2) in the last term connects old and new plants
of the same types by adding the sum of these as additional ‘dimension’.

4
dista(N1, Na,n1,na) := (Z(|Nzl — Nig| + sgn (|Nix — Niz|))?

i=1
) N\ 172
+(|nin — naz| +sgn (Jnin — na2l))” + (| Nin + nin — Nig — o)) ) 4)

We obtain figure 4 by computing a distance matrix from 100 randomly chosen
solutions by means of disty and then using multidimensional scaling (MDS) as
dimension reduction technique in order to map it into a 2-dimensional space.
The best solutions are found in the middle, on the border to several invalid
regions. Note that invalid solutions have the same objective function values, and
thus evalution of these solutions provides no information for the optimization
method on the search direction to reach an area of valid solutions. However,
the chosen distance function appears to be meaningful because the resulting
topology looks intuitive (as expected, similar structures are mapped to the same
region of the target area).
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Fig. 4. Multidimensional scaling (MDS) based visualizaton of a random sample of size
100. The contour reveals the (logl0 transformed) objective function values (NPV) of
the different solutions, with invalid ones having a cost of €10°.

5 MILP Solving and Evolutionary Approaches

As explained in §2, we are dealing with a 3-level hierarchical problem that may be
approached in two very different ways: 1) by means of an MILP solver that solves
a series of successively extended superstructure-based optimization problems (in
the following referred to as the purely MILP-based approach) to return the exact
global optimum (in case it can be solved) — however, depending on the problem
size at considerably computational cost, i.e. long solution times; and 2), by means
of a superstructure-free EA (in the following referred to as the mized approach)
that works on the top synthesis level of the optimization problem and uses an
MILP solver to determine the solutions for the underlying design and operation
levels. In both cases, the necessary computing times are usually much smaller
for infeasible solutions, however, the computing times for feasible solutions can
vary significantly due to the different complexities of the underlying design and
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operation problems. From sensitivity analyses concerning result stability under
shifts in demand data (introducing new time steps or changing values of existing
time steps), we know that the optimal solution can easily vary by up to 2%. For
this reason, we do not necessarily have to find the global optimal solution, but
we strive for solutions with at most 1% deviation from the global optimum. In
case of the combined approach, the same accuracy is required for the lower level
MILP optimization.

As MILP solver, we employ SCIP [1], version 3.0.0, one of the fastest available
non-commercial solvers. Note that exchanging the solver with a quicker commer-
cial solver will reduce computing times for both approaches approximately by a
factor of 10, according to our tests.

In our first tests with the mixed approach, we found that a lot of precious
running time is lost by re-evaluating already considered solutions. Therefore,
a tabu search-like [3] list of forbidden structures is implemented for all meta-
heuristics to follow. During the algorithm run, we keep track of the shortcodes
for evaluated solutions. New solution candidates are produced by applying the
mutation operator described in §3. However, they are only evaluated if they are
either not yet contained in the list, or if 10% successive attempts fail to obtain
an untested structure. Note that the topologies of solution candidates are not
regarded, and multiple topologies may map to the same shortcode. It thus makes
sense to allow the evaluation of a candidate with an already recorded shortcode
as it may have a different topology. However, at least at the beginning of a run,
this rarely happens because many different plant combinations are available.

In order to roughly estimate the size of the set of different structures (neglect-
ing differences in the topology), we first consider the choice of already existing
plants. We can choose any combination of 0 to 2 boilers, one or none CHP engine,
and 0 to 2 absorption chillers, leading to 3-2-3 = 18 possibilities. Let us assume
that for each of these, we can add up to 10 new plants of 4 4+ 1 types (AC, Bo,
CC, CE, and none). Drawing 10 times from this set with replacement and with-

out considering order results in ((7; tkl;,}c),' = ((5;;110)!_13! = 1001 possibilities for the
added plants. This results in 18 - 1001 — 1 = 18017 type combinations without
taking the topology into account. However, this is only a rough estimate because
we allowed for a greater number of new plants, but this was only rarely real-
ized during our relatively short runs as it requires a high number of successive
mutations into one direction.

As algorithm types, we consider random search, random walk (implemented
as (1,1)-EA), a (10410)-EA and a (504+10)-EA, each of these utilizing a tabu list
as described above. The reasoning behind using a population was to enable more
parallelized search. Our EA employs an evolution strategy (ES) type selection,
structural mutation as described above in §3, and no recombination.

6 Experimental Comparison

The two goals of the algorithm comparison are to find out, a) which metaheuristic-
based approach reliably detects at least one near-optimal solution (objective value
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< 1% from global optimum) faster than the integrated MILP-based approach, and
b) which of the approaches can be recommended concerning the number of good
alternatives it produces quickly.

Pre-experimental planning. During first tests, we found that, in most cases, 30
seconds suffice to solve the design and operation problem for a given structure.
Therefore, the maximum time for this solution phase is constrained to 30 seconds.
This means that the concerned evaluations return an objective value that is
worse than it will be if the underlying optimization problem is solved to global
optimality. On the other hand, we save precious time as the overall run length
should be less than one day (24 h).

An additional test with a (141)-EA revealed that it usually gets stuck very
early, and thus is mostly not able to reach the desired objective function value
level. This may be surprising because the (1+1)-EA was allowed to perform
restarts. However, it can be explained with the relatively short run length that
did not enable more than a small number of restarts. This variant is therefore
disregarded in the following.

Setup. The purely MILP-based (deterministic) approach is run until the desired
accuracy of 1% is reached; the corresponding solution time is recorded. The 4
mixed approaches are run 10 times until 3000 evaluations have been spent. Note
that the actual computing time for this is limited by 0.5 minutes - 3000 = 1500
minutes. However, the true computing time varies between runs and usually
takes about 60% of this value (the time consumed by the underlying MILP-
solving cannot be predicted). The average number of mutations is set to 1.5 for
the random walk and population-based EAs.

Task. A mixed approach is considered reliable only if it produces a solution
within the 1% bound before reaching the time spent by the purely MILP-based
approach in every run. We consider one metaheuristic better than another if it
consistently provides more satisfactory solutions within a smaller average time.

Results/Visualization. For the given problem, the purely MILP-based approach
via SCIP needs 619 minutes to reach the 1% bound. This is depicted as red line in
the diagrams for the mixed approaches in fig. 5. Each row of the plot represents
one of the 10 runs, and blue dots each stand for one (structurally different)
solution with satisfactory quality. The number on the bottom right corner of
each plot denotes the average number of satisfactory solutions obtained over the
runs, at the top right corner the average time for reaching a satisfactory solution
is depicted.

Observations. Random search generates only few satisfactory solutions, whose
generation is not even necessarily faster than the solution provided by the purely
MILP-based approach. Random walk, (10410)-EA and (50+10)-EA produce
many near-optimal solutions, however on average at proportionally larger com-
putation times. We would like to add that during the runs, technical problems
with SCIP were observed because it sometimes (in about 1 of 500 cases) crashed
during the design and operation level optimization.
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Fig. 5. Performance comparison of different random search and EA variants (all
with tabu list), from left to right and top to bottom: random search, random walk,
(10410)-EA and (50+10)-EA. The red line represents the required time of the purely
MILP-based approach to reach the desired accuracy. The blue dots each represent one
satisfactory solution provided by the mixed approach.

Discussion. From the results we deduce that random search is obviously not
the method of choice, as it is unreliable and does not generate many satisfactory
solutions. The other three algorithms each have different strenghts: the (tabu list
enhanced) random walk provides good solutions very quickly, but obtains much
fewer of them if compared to the (104+10)-EA and the (50+10)-EA. With the
two criteria given above, it is not possible to take a decision between them, they
are uncomparable. If only response time is considered, the (tabu list) random
walk appears best, if more solutions are needed, the slightly slower (10+10)-EA
is recommended.

7 Conclusions

We compare several EA variants that employ an underlying MILP solver in
order to solve a structural optimization problem without using superstructure
models to a MILP-only approach that solves a series of successively extended
superstructure models. The latter may have an advantage if we need to find
the exact global optimum, while some of the proposed tabu-list enhanced EA
variants reliably find multiple solutions very quickly if the required accuracy is
relaxed a bit. Furthermore, our distance measure enables a visualization that
reveals interesting problem properties. This should be helpful for improving the
optimization process in the future. Additionally, we need to carefully analyze
the distribution of the obtained solutions.
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Abstract. CPPN-NEAT (Compositional Pattern Producing Networks
and NeuroEvolution for Augmented Topologies) is a representation and
optimisation approach that can generate and optimise complex forms
without any pre-defined structure by using indirect, implicit representa-
tions. CPPN is based on an analogy to embryonic development; NEAT is
based on an analogy to neural evolution. We present new developments
that extend the approach to include multi-material objects, where the
material distribution must be optimised in parallel with the form.

Results are given for a simple problem concerning PV panels to
validate the method. This approach is applicable to a large number of
problems concerning the design of complex forms. There are many such
problems in the field of energy saving and generation, particularly those
areas concerned with solar gain. This work forms a first step in exploring
the potential of this approach.

Keywords: CPPN - NEAT - Form - Multi-material

1 Introduction

1.1 Engineering Form Optimisation

Form is used here to refer to the physical shape of an object, and form opti-
misation refers to the process of finding optimal or high-performing forms for
engineered objects, measured against some metric. Optimisation of form is more
challenging than optimising specific design parameters, as form may be rep-
resented in many ways, making the design space almost infinite. This paper
presents new developments to a systematic way of automatically generating and
evolving forms to find areas of optimal performance.

© Springer-Verlag Berlin Heidelberg 2014
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1.2 Form Representation

Form representations can be divided into two approaches. Direct representations
relate the set of variables being optimised (the genotype) to the associated form
(the phenotype) in a way that is constant throughout the optimisation process.
Classes and types of form are broadly defined at the beginning of the process
through the choice of a particular representation (shapes or mathematical func-
tions) with a fixed number of parameters (also called degrees-of-freedom). The
representation used implicitly affects the forms generated: some forms will be
completely unobtainable, and others will be complicated to describe and there-
fore difficult to discover. Direct representations are appropriate for simple opti-
misations where the design space is limited to an easily-describable set of forms.
Imam [4] discussed a variety of direct representation types, including indepen-
dent nodes, design elements, super curves and superposition of shapes.

Indirect representations, by contrast, use a mapping from genotype to phe-
notype that changes as part of the form-finding process. Indirect representations
have no predefined set of parameters. Instead they generate a means of repre-
senting a form in parallel with the parameters that define it. Types of indirect
representation include generative (generating functions that map parameters to
forms) and ontogenic (based on iterative mapping transformations). For gener-
ative representations, Bentley and Kumar [2] used the term embryogeny: the
process of growth that defines how a genotype is mapped onto a phenotype.
They discuss three types of generative encoding: external (pre-stated, a form
of direct representation), explicit (inherent in the data structure, like a list of
instructions) and implicit (interactive, dynamic rules that depend on context).
Bentley and Kumar found that for the problem they selected, implicit embryo-
genies performed best.

Another approach to indirect form representation is the related field of topol-
ogy optimisation. This is concerned with broad classes of shape (e.g. number of
sides, number of holes). It uses a discrete selection field over a fixed domain, anal-
ogous to the discrete voxels used in this work. An objective function is minimised
over this selection field using a variety of methods, for example the Evolutionary
Structural Optimisation approach [8] progressively eliminates low-stress material
from the structure. The approaches used in topological optimisation are tightly
linked to structural engineering issues, and are not easily adaptable to problems
in other fields, especially if analytical objective functions are not available (i.e.
when using black-box simulations).

The indirect representation used in this work is Compositional Pattern Pro-
ducing Networks (CPPN) with the optimisation method NeuroEvolution for
Augmented Topologies (NEAT), which are explained in detail in the following
section. CPPNs were proposed by Stanley [6]; NEAT was originally developed by
Stanley and Miikkulainen [7]. This work builds upon that of Clune and Lipson
[3], who developed a 3-dimensional formulation of CPPN-NEAT. CPPN-NEAT
has been used on few real problems: to interactively generate artwork, as demon-
strated in the website picbreeder [5], and to evolve forms for simulated robots [1].
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1.3 Application to the Energy Field

It has been established by Clune and Lipson [3] that CPPN-NEAT can gener-
ate a diverse range of interesting forms. The methods developed here could be
applied to any problem which seeks to optimise abstract forms for objectives
evaluated using black-box simulations. There are many such problems in the
field of energy research; one particularly relevant area is energy use in buildings,
where architectural desires closely interact with engineering requirements.

This paper applied the method developed to a problem concerning a pho-
tovoltaic (PV) collector. It is a very simple validation problem, which seeks to
establish whether the breadth and diversity of solutions produced by CPPN-
NEAT can produce reasonable answers to a specific problem. However, if com-
bined with other constraints, for example the problem of building-integrated PV,
this approach could provide a way to find high-performing, highly diverse forms
that solve a real design problem.

2 Form Generation Method

2.1 Compositional Pattern Producing Networks (CPPN5s)

Compositional Pattern Producing Networks (CPPNs), proposed by Stanley [6],
are based upon the biological processes that guide embryonic development: chem-
ical gradients provide information to new cells regarding their position in the
overall structure, which influences how they develop. Stanley [6] details the fol-
lowing desirable properties obtainable via such developmental processes: rep-
etition; repetition with variation; symmetry; imperfect symmetry; elaborated
regularity; preservation of regularity.

The steps in the CPPN process is given below. The predefined coordinate
system is discretised at a chosen resolution over a chosen domain, and the value of
a function is calculated for every point x, y, z. The presence or absence of material
at a given location is determined by whether the output of that function is above
or below a threshold. For an x, y, z coordinate system, the result is a set of voxels
(3 dimensional pixels). Further processing may then be conducted to obtain a
smooth form from the rectilinear cubic voxels. In this work, an isosurface was
generated surrounding the voxel set: each point where a voxel is present has a
value of 1, and points where no voxel is present have a value of 0; the isosurface
was formed for the value 0.5. The resulting surface consists of triangular planar
faces.!

! It is necessary to threshold the output of the CPPN, which is a continuum across the
complete xz,y, z domain, in order to produce a binary distinction between solid and
void. Because the function must be evaluated at discrete points, this results in a set
of voxels whose dimensions correspond to the sampling interval. These must then be
smoothed using an appropriate method (here the MatLab isosurface algorithm) to
obtain planar faces. The impact of threshold value, sampling interval and smoothing
process is an interesting topic for future investigation.



192 R. Evins et al.

— For n points in the discrete domain:
— Evaluate network using coordinates z,y, z as values of input nodes.
— If result is greater than threshold, assign solid voxel to set V.
— (Apply smoothing algorithm to set of voxels V' to get surface of polygons
P.)
— Evaluate objective function f(V) (or f(P)).

This process of form generation depends on a functional representation that
takes a set of coordinate values as an input, and produces an output that governs
the form produced. Neural networks are an ideal means of representing such a
function. Each coordinate dimension is an input node to the network, along
with a bias node that is set to 1. Each link in the network has a weight by which
its value is multiplied. Each intermediate node has a functional transformation
associated with it, selected from a set of available functions (linear, sine, cosine,
square...). If there are multiple links into a node, their values are summed. The
output node of the network then produces the numerical output of the function.

An illustration of the process is given in Figure 1, which extends into 3D
the example used by Stanley [6] and Clune and Lipson [3], describing by means
of a CPPN an insect body with several bulbous sections. For simplicity, each
dimension is used by one function only, and the results are then summed. The
square function is used on the dimensions x and z, thus giving a circular cross
section when these are summed (since a circle in that plane has an equation
of the form 22 + 22 = r2). The cosine function is applied to the y dimension,
causing periodic repetition along the long axis.

(a) Network (b) Function profiles (c) Anal form

a z y 1

Input nodes

0.35

Intermediate
nodes

Output node
=10(0.35x)?+0.35c0s(6y)+10(0.352)%

Fig. 1. Example of the CPPN process. (a) Network of nodes, connections, functions
and weights. (b) Profiles obtained for each dimension based on the functions used in
the network. (c) The final form produced by the network is an isosurface fitted to the
set of voxels defined by f(z,y,2) > threshold.

2.2 NeuroEvolution of Augmenting Topologies (NEAT)

Since CPPN describes a form by means of a particular network (nodes, con-
nections, functions and weights), in order to evolve object forms, it is necessary
to evolve network representations. The method used here is NeuroEvolution for
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Augmented Topologies (NEAT), originally developed by Stanley and Miikku-
lainen [7] for evolving neural networks but also commonly applied to CPPN
problems. The steps are given below

— Initialise network (random connections and weights).
Assign species (used in selection process).
— Evaluate CPPN (see above).
— For each generation:
— Check for stagnation or refocus.
— For each space in new population:
Select parents (based on shared fitness of species).
— Generate new individual by crossover (splice networks) and mutation
(Add node, add connection, change function, perturb weight).
— For each individual in new population:
— Assign species.
— Evaluate CPPN.
— Select individuals to continue.

The method begins with a very simple network (just input nodes, bias node
and output node, directly connected) and increases its complexity by adding
connections and nodes, mutating connection weights and node function types,
and crossing over network segments. The number of input nodes is equal to the
number of dimensions of the CPPN. This may be 2D, 3D or include other pos-
sibilities like distance from centre. There is only one output node. Recurrence
in networks is not used at all in this work (it was found by Clune and Lipson
[3] to produce highly fractal forms). The process of crossover is complicated in
variable-structure representations: it is necessary to know which segments of two
individuals can be interchanged without breaking connectivity or introducing
spurious deformity. This is achieved in NEAT by means of historical innovation
tracking: each alteration to a network is recorded, and this historical informa-
tion allows only correctly-aligned network segments to be exchanged (a process
termed artificial synapsis, see [7]). The parameters used are given in Table 1.

2.3 Implementation

The NEAT code used in this work is loosely based on the MatLab implementa-
tion by Christian Mayr?, which was based on the original C++ code of Kenneth
Stanley®. An improvement here is to construct an explicit function string that is
evaluated very easily for each set of inputs. The function string was constructed
iteratively by substituting placeholders for upstream nodes, working backwards
from the output node.

This approach to form optimisation require a very large number of function
evaluations (up to 150,000 evaluations per run). The code was run on the Uni-
versity of Bristol Advanced Computing Research Centre machine BlueCrystal.

2 http://nn.cs.utexas.edu/?neatmatlab
3 http://nn.cs.utexas.edu/?neat_original
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Table 1. Parameters used for NEAT algorithm

Maximum generations 10000 [3] Threshold 10
Population size 15 [3] Refocus 4 generations 100
Pressure 1.1 Add node 0.25 [3]
Kill percentage 0.2 [7] Add connection 0.3 [6]
Selection Number kill 5 7 Change function 0.1
Number copy 1 7] Perturb weight 0.9 [6]
Threshold 4 . Gene re-enabled 0.25 [6]
C1 1 [6) Mutation yeioht cap -100
C2 1 [6] Weight range -10
Speciation C3 0.4 6] Overall 0.75 [6]
C4 2 Interspecies 0.001 [6]
Threshold 10 Crossover \ 1 itipoint 0.75 [6]

Stagnation 4 generations 15 [7]

In order to minimize the need for parallel-specific coding, each optimisation run
was split across 8 local cores using the Matlab parfor syntax for parallel loops.
Separate processors were used for each repeat of a run.

3 Multi-material Formulation

3.1 New Development

The new development presented in this work is the extension of CPPN-NEAT
to multi-material forms. Engineered objects usually consist of more than one
material, and the interactions between them can have a significant effect on
performance. This makes it difficult to determine the optimal placement of each
material independently; they must be developed in harmony to take advantage
of synergies between them. It is highly desirable that the two materials together
should make up the whole form (no holes) and nothing else (no dislocations) so
as not to affect the performance of the form-finding process. The CPPN-NEAT
method has been extended to allow the evolution of separate material placements
in parallel with the overall form-finding process. This has been applied to thin
shelled forms, assuming a hollow object consisting of triangular planar panels.
Material placement could be optimised using a lower level optimisation pro-
cess, i.e. for each proposed form, a second-level optimisation would be performed
to determine the optimal placement of the materials. However, this would be
computationally much more demanding: if the form optimisation is order O, per-
forming an optimisation of material placement for every evaluated form would
be of order O2. It is much more efficient to optimise both the form and the
material division in parallel as part of the same optimisation, this being of order
20. This has been achieved by evolving two CPPN representations using a single
NEAT loop (separate NEAT processes were used for each CPPN to allow dif-
ferent parameters for each, but both used a common generation iteration). The
first network represents the overall form as before; the second network maps the
placement of materials onto the form generated by the first network. The second
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CPPN is queried only at locations where material is present (as determined by
the first CPPN). If the output value from the second CPPN is greater than the
threshold it indicates the primary material; if it is less than the threshold it
indicates the secondary material. In this way since the network provides a value
for all solid locations and no others, holes and dislocations are avoided.

For thin shell objects a mapping has been used that operates on the polygon
mesh rather than on the voxel set. This allows the use of local coordinates: the
orientation and inclination of each polygon. This permits changes of material
between horizontal and vertical, North and South facing and top and bottom
sides, independently of position in the overall form. Figure 2(a) shows this map-
ping: the solid voxels from the form CPPN are used to produce a shell consisting
of the set of polygons P, for which the orientation 6 and inclination v values
are determined; these are used as the input coordinates to the material CPPN,
which provides the primary and secondary material polygons P, Ps.

Instead of distinguishing between two discrete material types, some property
of the material can be treated as continuously variable. This could correspond
to thickness, reinforcement, void ratio, glazing ratio etc. The process for this
is very similar to above, but rather than applying a threshold to the output
of the material CPPN to give a binary choice, the value is scaled from 0 to 1
to provide the continuous property M for each polygon. This is presented as a
second option of the new development (see Figure 2(b)).

(a) Twin material

SURFACE MATERIAL

CPPN 1 CPPN 2

Input Solid Isosurface Local angle Material 1 & 2
coordinates polygons

coordinates voxels fitting Polygons

(b) Variable material

SURFACE MATERIAL
CPPN 2
Input Solid Isosurface Pol Local angle Material
coordinates voxels fitting OVEONS  ordinates value

Fig. 2. Process diagrams for using two CPPNs to determine form and material distri-
bution in parallel, for (a) two-material forms and (b) variable-material forms. CPPN
1 produces voxel set V; an isosurface is fitted to V to give polygon set P; CPPN 2 is
applied to P to find material division P;, P> or continuous property M.

3.2 Objective Functions

An example problem is used to validate the multi-material formulation in which
the second material represents PV panels, and the objective function takes the
ratio of energy generated to total cost. Two different options were addressed.
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The first option assumed a discrete material distribution, using the formula-
tion in Figure 2(a). A highly simplified calculation is used for the energy genera-
tion potential, which was taken as proportional to the total area of PV polygons
that are within 55 degrees of South and with an inclination of 0 or greater (i.e.
not angled downwards). Cost is taken as the sum of the total area of PV panels
multiplied by a price factor (here 10, i.e. the PV panel cost is ten times that
of the support), plus the total area of both materials (i.e. the support system).
Thus the objective function was:

ZP2‘9>125,0<235¢20 (1)
10 P+ (P + P)

where 6 is the angle of orientation of the polygon from north, v is the angle
from horizontal, P; is the area of support polygons, and P, is the area of PV
polygons. For a proper analysis of the energy generated from the PV panels, a
more detailed simulation would be necessary. This could be using a table lookup
for different angles, if self-shading is ignored, or using a detailed ray tracing
simulaton, if self shading is important. Both are beyond the scope of this paper,
where the aim is to validate the new material representation with a very simple
case.

The second option assumed a variable-material property using the formula-
tion in Figure 2(b), taking the percentage of a polygon surface covered by PV
to be a continuous variable. The generation from a polygon was determined by
the percentage of PV (the property M) and the cosine of the angle between the
polygon normal vector and the optimum alignment vector for the chosen latitude
(here taken to be South, 45 degree inclination). Thus the objective function was:

> PgMg (sin(#) — cos(7¥))
103 P+ (P + P)

(2)

4 Results

4.1 Two Materials

This case demonstrates two things: that the CPPN-NEAT method can produce
forms that respond to the optimisation objective, and that the two-material
formulation can also adjust the material distribution in accordance with the
objective. Figure 3 shows the final forms from all twenty runs of the two-material
case, ordered by fitness value. It is clear that a very wide range of forms can be
produced. Nuances of the objective function become apparent, such as the way
the isosurface fitting to the voxels affects the range of angles of polygons.
Fitness values ranged from 76.7 to 81.3 with a mean of 79.0 and a standard
error of 1.4. The objective can be split into the following components, in rough
order of priority: maximise the area of PV panel that is broadly south-facing;
minimise the area of PV panel that does not meet the above conditions; minimise
the total surface area. There are a number of different approaches evident in the
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Fig. 3. All final optimised two-material forms with fitness values. Support is red, PV
panel material is blue.
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solutions found. The greatest total south-facing area is given by an inclined
plane, either as a pyramid (solutions 4, 9) or wedge (2, 5, 7); the total surface
area can then be reduced by making it thinner (8, 10, 14, 16), culminating in
making it as thin as possible (1 voxel) (18). The greatest broadly south-facing
area per total surface area is given by a section of a sphere (6); this may be
approximated by a section of a cylinder, aligned either horizontally (12, 15) or
vertically (17). The simplest form with reasonable performance is a thin obloid
(1, 3, 11, 13, 19, 20). Because the PV panels need not face exactly south, there
is scope to increase the surface area by adding undulations (2), steps (5, 8,
9, 12) and bulges (1, 10, 19, 20). Similarly the area of the top surface can
be increased by including slopes (19) or dips (20). There was no limitation on
single-block forms for this problem. However, generally dividing a form adds
extra material without increasing south-facing area, and whilst multiple high-
performing forms would maintain high fitness they would be likely to require
more complex representations than single forms. Only one run resulted in a
multiple block solution (17).

Material distribution is clearly adapting to the objective of the optimisation.
All forms have the PV panel material predominantly on the south-facing side
only none of the forms have any significant PV panel material on the rear or
under sides (not shown). There is some variation in how well the PV panel covers
the south face, with some obvious gaps (2, 8 10, 15) and missing upper edges
(3, 11, 13). In general the material placement errors are low: on average across
the 20 solutions, 1.8% by area has ‘missing’ PV (would fit the criteria but not
present) and 0.9% incorrect PV (does not meet the criteria). It is interesting to
note that the high-fitness solutions (nearer to number 20) do not have notably
lower material placement errors (e.g. the highest error of 7.2% is for solution
18), although the errors are more likely to be in missing south-facing area rather
than erroneous non-south-facing areas. There is clearly a balance between the
performance of the form and the accuracy of the material distribution.

4.2 Continuously-Variable Material

The second option, to optimise a continuously-variable material parameter, is a
more challenging and subtle problem. Because the angle of the surface relative
to the average sun position is taken into account in calculating energy gener-
ated, it is now more important that the PV should face directly south at 45
degree inclination. This eliminated the curved surfaces from the previous case.
Figure 4 shows selected forms from the continuously-variable material option.
These examples cover all the forms found: there were three low fitness forms like
(1), fourteen mid fitness forms like (2), and the unique forms (3, 4, 5). Fitness
values ranged from 54.7 to 78.0 with a mean of 68.9 and a standard error of 5.5.
The types repeat many those of the previous section: horizontal cylinder (2),
wedge (4) and thin angled plan (3, 5); there is also the notably low-performing
horizontal plane (1) where the algorithm was unable to progress beyond the
simple plane. This occurred in 4 out of 20 runs, whereas there are no such low-
performing solutions in the previous case. Additional complexity is introduced
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Fig. 4. Selected optimised variable-material shell forms with fitness value

to the problem by the variable-material formulation, which appears to be pre-
venting the algorithm finding good solutions in some cases. The distribution of
the PV is sometimes almost binary (1, 2, 4), where the material mapping falls
almost entirely to one end of the scale or the other. This is to be expected, as it
provides solutions with reasonable performance that have very simple material
distributions and are therefore very easy for the algorithm to find. The distribu-
tion in form (3) is a gradual progression, with low PV ratio at the bottom and
high at the top, demonstrating that the formulation is able to produce this sort
of distribution. The highest performing solution (5) uses a precise distribution
in which the main face has a high PV ratio (100%), the top edge (at an angle
to the sun that is sizeable but less than 90 degrees) has an intermediate ratio,
and the rest has a ratio of zero.

5 Conclusions

The multi-material implementation was demonstrated on an example problem
concerned with PV panels. The algorithm was successful, generating solutions
that combine high-performance forms with appropriate material distributions.
For the discrete problem, the diversity of solutions found across 20 runs was large,
highlighting the range of shapes and distributions obtainable. This also included
solutions that exploited aspects of the process, for example using curved edges to
increase surface area. For the continuously-variable problem, there was a greater
range of fitness values, showing that the algorithm sometimes fails to find good
solutions. It is inevitable that the continuous problem will be harder, but future
work could investigate how to overcome this barrier, perhaps by approximating
the gradient as bands.

The algorithm is exploring a very large search space, and the great variety of
solutions make it useful to compare several runs of the algorithm rather than to
take only one solution as indicative. Form optimisation problems are by nature
very complicated, and problems may not be solved completely. The algorithms
developed can be used to guide the design process, but are unlikely to generate
a perfect result.
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There are clearly many simpler ways of approaching the problem of form
optimisation, especially for the problems examined here. However, the method
used offers the potential for breadth and adaptability: the range of forms avail-
able is limitless. On that basis, the initial demonstration of the method has been
satisfactory: from the vast realm of possible configurations, finding solutions
to conceptually simple problems is not trivial. This paper is the first step in
developing this approach to indirect form representation and optimisation into
a usable method. Future work will extend the application to other cases where
complex forms are required, for example the trade-off between winter solar gain,
summer solar gain and light availability in passive building design.
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1

Machine learning (ML) has had a widespread impact on the automatic identifi-
cation of trading agents for identifying profitable trading strategies under stock
or currency markets. From the perspective of a generic process, multiple factors
should be considered. For example, technical indicators (TT) are used to provide
temporal features from which a decision tree (DT) defines the training strategy
(e.g., buy—stay—sell). Although the TI might be designed independently before
a DT is constructed — such as in the manner that attribute selection might be
performed independently of classifier construction — the quality of the resulting
trading strategy will be dependent on the quality of the initial set of TI. This
sequential dependence has lead authors to adopt various strategies in which:
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Abstract. Current frameworks for identifying trading agents using
machine learning are able to simultaneously address the characteriza-
tion of both technical indicator and decision tree. Moreover, multi-agent
frameworks have also been proposed with the goal of improving the relia-
bility and trust in the agent policy identified. Such advances need weigh-
ing against the computational overhead of assuming such flexibility. In
this work a framework for evolutionary multi-agent trading is introduced
and systematically benchmarked for FX currency trading; including the
impact of FX trading spread. It is demonstrated that simplifications can
be made to the ‘base’ trading agent that do not impact on the qual-
ity of solutions, but provide considerable computational speedups. The
resulting evolutionary multi-agent architecture is demonstrated to pro-
vide significant benefits to the profitability and improve the reliability
with which profitable policies are returned.

Keywords: Non-stationary : Forex - Genetic Programming - Multi-
agent Teams

Introduction

as wide a set of TI are initially included as possible after which the DT
selects the most appropriate. For example, [1] used genetic programming
(GP) to define the DT and inso doing noted that combinations of TT lead
to better currency trading strategies. Other authors report similar findings
using different ML paradigms e.g., [2];
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2. mechanisms are pursued that permit temporal feature construction at the
same time as identifying a suitable DT. For example, the coevolutionary app-
roach suggested by [3,4] evolves two populations simultaneously representing
TT and DT respectively.

Naturally, the design of TT has a considerable impact on how the trading data
is ‘interfaced’ to the DT. Thus, not only the type of TI, but the parameterization
of the TT needs to be considered [5]. Moreover, trading data is non-stationary,
thus an agent strategy that is appropriate for one period of trading will become
unprofitable under a future period. This has lead to the adoption of various
schemes for re-training or incremental evolution e.g., [4,6,7].

Finally, we note that it has been known for a while that in the general
machine learning setting, stronger models for regression or classification result
when multiple models are combined in an ‘ensemble’ e.g., [8,9]. Indeed, boost-
ing has been reported for identifying multiple DT in the case of a ‘multi-level’
framework for stock trading [2].! More generally, multiple frameworks have been
proposed for the purpose of constructing ‘teams’ of multiple GP individuals from
one or more populations (e.g., [10,11]). However, such approaches assume that
the application is stationary, whereas this is frequently observed not to be the
case in financial applications [12,13].

Constructing GP teams through some form of voting on some form of stream-
ing data has certainly been previously reported (e.g., [13,14]). However, in this
work we take a closer look at specific caveats that make the application of ensem-
ble methods (cf., multi-population architectures) challenging under a trading
agent scenario. Specifically, an attempt is made to quantify the following: 1)
computational overhead of constructing multiple solutions; 2) non-stationary
nature of the task implies that ensemble content is likely to (at best) go stale or
(at worst) over-learn, and 3) how to recombine multiple GP solutions (say, one
from each population) into a single cohesive solution.

With this in mind, we assume the general framework of FXGP [3,4] for
coevolving TT and DT (Section 2) and concentrate on assessing to what degree
combining multiple DT from different populations has on the quality of
the resulting agent strategy. The computational overhead of maintaining multi-
ple populations is addressed by adopting an approach closer to the ‘weak learner’
methodology in which we reduce the functionality in the TT and DT, resulting in
a threefold speedup in the time to evolve a single population. The non-stationary
nature of the task is addressed through the use of the behavioural criteria for
triggering re-training, as in the original FXGP framework. In the case of com-
bining solutions from each population, an approach to voting is adopted which
enables us to avoid the need to maintain a large number of parallel populations
i.e., a computational overhead for real-time operation. Benchmarking is then
performed with the original FXGP framework, the proposed simplified frame-
work (sFXGP) and sFXGP deployed to construct multiple agents concurrently.

! Such a scheme does not naturally carry over to the currency trading scenario investi-
gated here on account of the DT being used for predicting the one-step-ahead return
relative to a sample of B-portfolio of stocks.
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All benchmarking is performed using the most recent 3 year period available for
the EURUSD currency pair i.e., the most widely traded foreign exchange pair.

2 The FXGP Algorithm Overview

FXGP is based on the biological metaphor of symbiosis. Specifically, a host
organism aggregates symbionts under an egalitarian transition that is most
famously associated with the origin of mitochondria within eukaryotic cells (e.g.,
[15]). Fitness can potentially be represented at the level of symbiont or host. As
we are not interested in attempting to model the transition from (lower level)
symbiont to (higher level) host we assume that fitness is only evaluated at the
level of the host; thus, providing the basis for host—symbiont fitness to exceed
the mere sum of its (symbiont) parts. With this in mind, it is only the host which
is explicitly associated with fitness. Symbionts exist for as long as they are used
in at least one host. Variation operators have the potential to introduce new
symbionts and manipulate symbiont-to-host membership, resulting in a fixed
size host (DT) population but variable sized symbiont (TI) population. Within
the context of designing trading agents, pursuing a symbiotic coevolutionary
enables us to evolve host DT using a representation specifically appropriate for
expressing conditions for deploying trading actions (buy, hold, sell); whereas
the symbiont population is designed to express TI [3,4]. We take the view that
the only ‘true’ measure of fitness is at the level of the host (i.e., some aggregate
measure of trading quality). Thus, TT are only deemed useful if they promote
good DT.

The TI population in the original FXGP framework consists of TI of the
three following types [3,4]: Value, Moving Average (MA) or Weighted Moving
Average (WMA). The MA and WMA types of TT are calculated as follows:

Y
n
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where V; is a TI value and the TT program assumes the form of linear GP and
be composed from any of seven available functions (Table 1).
At the same time, the DT population consists of the individual trees that can

include variable number of nodes and each node consists of one of the following
conditional statements [3,4]:

WMA; = (2)

— if(X; > Y;) then else
—if((X; > Y;) and (Xiym < Yiym)) then else

where X; and Y; can be 0, price or a TT and then and else can be the next node
or one of the trading signals (buy, sell or stay).



206 A. Loginov and M.I. Heywood

Table 1. Original set of a TI functions. Functions marked with { are redundant.

Function Definition
Addition R[z] < R[z] + R[y]
Subtraction  |R[z] «— R[z] — R[y]
Division Rlz] «— R|z| +2
Multiplicationt|R[z] < R[z] X R[y]
Square roott |R[z] — VR[y]
Divisionf R[z] < R[z] + R|y]
Divisionf R[z] — 1+ Rz]

In addition FXGP assumed an interface to the (stream) trading data in
which re-training was triggered by a set of trading criteria (Figure 1) [3,4]. That
is to say, after an initial period of training, a champion individual is identified
(validation) and deployed for trading until one of three trading criteria flag a
deterioration in trading performance. FXGP utilized three criteria: 1) max. single
drawdown, 2) max. number of consecutive loss making trades, 2) max. number
of bars without variation [3]. 