
Anna I. Esparcia-Alcázar et al. (Eds.)

 123

LN
CS

 8
60

2

17th European Conference, EvoApplications 2014
Granada, Spain, April 23–25, 2014
Revised Selected Papers

Applications of
Evolutionary Computation

Lecture Notes in Computer Science 8602

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zürich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Anna I. Esparcia-Alcázar et al. (Eds.)

Applications
of Evolutionary Computation
17th European Conference,
EvoApplications 2014
Granada, Spain, April 23–25, 2014
Revised Selected Papers

ABC

Editors

see next page

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-662-45522-7 ISBN 978-3-662-45523-4 (eBook)
DOI 10.1007/978-3-662-45523-4

Library of Congress Control Number: 2014956223

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

Springer Heidelberg New York Dordrecht London
c© Springer-Verlag Berlin Heidelberg 2014

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broad-
casting, reproduction on microfilms or in any other physical way, and transmission or information storage
and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known
or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Cover illustration: Designed by Laura Pirovano

Printed on acid-free paper

Springer-Verlag GmbH Berlin Heidelberg is part of Springer Science+Business Media
(www.springer.com)

Volume Editors

Anna I. Esparcia-Alcázar
S2 Grupo, Spain
aesparcia@s2grupo.es

Antonio M. Mora
Universidad de Granada, Spain
amorag@geneura.ugr.es

Alexandros Agapitos
University College Dublin, Ireland
alexandros.agapitos@ucd.ie

Paolo Burelli
Aalborg University Copenhagen,
Denmark
pabu@create.aau.dk

William S. Bush
Vanderbilt University, USA
william.s.bush@vanderbilt.edu

Stefano Cagnoni
University of Parma, Italy
cagnoni@ce.unipr.it

Carlos Cotta
Universidad de Málaga, Spain
ccottap@lcc.uma.es

Ivanoe De Falco
ICAR-CNR, Italy
ivanoe.defalco@na.icar.cnr.it

Antonio Della Cioppa
University of Salerno, Italy
adellacioppa@unisa.it

Federico Divina
Universidad Pablo de Olavide, Spain
fdivina@upo.es

Rolf Drechsler
German Research Center for Artificial
Intelligence, Germany
drechsle@informatik.uni-
bremen.de

A.E. Eiben
VU University Amsterdam,
The Netherlands
a.e.eiben@vu.nl

Francisco Fernández de Vega
University of Extremadura, Spain
fcofdez@unex.es

Kyrre Glette
University of Oslo, Norway
kyrrehg@ifi.uio.no

Evert Haasdijk
VU University Amsterdam,
The Netherlands
e.haasdijk@vu.nl

J. Ignacio Hidalgo
Universidad Complutense
de Madrid, Spain
hidalgo@fis.ucm.es

Paul Kaufmann
University of Paderborn, Germany
paul.kaufmann@gmail.com

Trung Thanh Nguyen
Liverpool John Moores University, UK
T.T.Nguyen@ljmu.ac.uk

VI Volume Editors

Petr Pošík
Czech Technical University,
Czech Republic
petr.posik@fel.cvut.cz

Robert Schaefer
AGH University of Science
and Technology, Poland
schaefer@agh.edu.pl

Kevin Sim
Edinburgh Napier University,
UK
k.sim@napier.ac.uk

Anabela Simões
Polytechnic Institute of Coimbra, Portugal
abs@isec.pt

Giovanni Squillero
Politecnico di Torino, Italy
giovanni.squillero@polito.it

Ernesto Tarantino
ICAR-CNR, Italy
ernesto.tarantino@na.icar.
cnr.it

Andrea G.B. Tettamanzi
Université de Nice,
Sophia Antipolis, France
andrea.tettamanzi@unice.fr

Neil Urquhart
Edinburgh Napier University, UK
n.urquhart@napier.ac.uk

Mengjie Zhang
Victoria University of Wellington,
New Zealand
mengjie.zhang@vuw.ac.nz

Nur Zincir-Heywood
Dalhousie University, Canada
zincir@cs.dal.ca

Preface

Evolutionary computation (EC) techniques are efficient, nature-inspired planning and
optimization methods based on the principles of natural evolution and genetics. Due
to their efficiency and simple underlying principles, these methods can be used in the
context of problem solving, optimization, and machine learning. A large and continu-
ously increasing number of researchers and professionals make use of EC techniques
in various application domains. This volume presents a careful selection of relevant EC
examples combined with a thorough examination of the techniques used in EC. The
papers in the volume illustrate the current state of the art in the application of EC and
should help and inspire researchers and professionals to develop efficient EC methods
for design and problem solving.

All the papers in this book were presented during EvoApplications 2014, which
incorporates a range of tracks on application-oriented aspects of EC. Originally estab-
lished as EvoWorkshops in 1998, it provides a unique opportunity for EC researchers to
meet and discuss application aspects of EC and has been an important link between EC
research and its application in a variety of domains. During these 16 years new work-
shops and tracks have arisen, some have disappeared, while others have matured to
become conferences of their own, such as EuroGP in 2000, EvoCOP in 2004, EvoBIO
in 2007, and EvoMUSART in 2012.

EvoApplications is part of EVO*, Europe’s premier colocated event in the field of
evolutionary computing. EVO* was held from April 23 to 25, 2014. Granada, Spain,
home to ‘The Alhambra’ UNESCO World Heritage Site provided the setting, with the
Universidad de Granada, Departamento de Arquitectura y Tecnología de los Computa-
dores representing the venue, and included, in addition to EvoApplications, EuroGP,
the main European event dedicated to genetic programming; EvoCOP, the main Euro-
pean conference on evolutionary computation in combinatorial optimization and Evo-
MUSART the main International Conference on Evolutionary and Biologically Inspired
Music, Sound, Art and Design. The proceedings for all of these events in their 2013 edi-
tion are also available in the LNCS series.

The central aim of the EVO* events is to provide researchers, as well as people
from industry, students, and interested newcomers, with an opportunity to present new
results, discuss current developments and applications, or just become acquainted with
the world of EC. Moreover, it encourages and reinforces possible synergies and in-
teractions between members of all scientific communities that may benefit from EC
techniques.

EvoApplications 2014 consisted of the following individual tracks:

– EvoCOMNET, track on nature-inspired techniques for telecommunication networks
and other parallel and distributed systems,

– EvoCOMPLEX, track on evolutionary algorithms and complex systems,

– EvoENERGY, track on EC in energy applications,

VIII Preface

– EvoFIN, track on evolutionary and natural computation in finance and economics,

– EvoGAMES, track on bio-inspired algorithms in games,

– EvoIASP, track on EC in image analysis signal processing and pattern recognition,

– EvoINDUSTRY, track on nature-inspired techniques in industrial settings,

– EvoNUM, track on bio-inspired algorithms for continuous parameter optimization,

– EvoPAR, track on parallel implementation of evolutionary algorithms,

– EvoRISK, track on computational intelligence for risk management, security, and
defence applications,

– EvoROBOT, track on EC in robotics

– EvoSTOC, track on evolutionary algorithms in stochastic and dynamic environ-
ments, and

– EvoBIO, track on EC and related techniques in bioinformatics and computational
biology.

EvoCOMNET addresses the application of EC techniques to problems in distributed
and connected systems such as telecommunication and computer networks, distribution
and logistic networks, interpersonal and interorganizational networks, etc. To address
the challenges of these systems, this track promotes the study and the application of
strategies inspired by the observation of biological and evolutionary processes that usu-
ally show the highly desirable characteristics of being distributed, adaptive, scalable,
and robust.

EvoCOMPLEX covers all aspects of the interaction of evolutionary algorithms (and
metaheuristics in general) with complex systems. Complex systems are ubiquitous in
physics, economics, sociology, biology, computer science, and many other scientific
areas. Typically, a complex system is composed of smaller aggregated components,
whose interaction and interconnectedness are non trivial. This leads to emergent prop-
erties of the system, not anticipated by its isolated components. Furthermore, when
the system behavior is studied from a temporal perspective, self-organization patterns
typically arise.

EvoFIN is the only European event specifically dedicated to the applications of
EC, and related natural computing methodologies, to finance and economics. Finan-
cial environments are typically hard, being dynamic, high-dimensional, noisy, and co-
evolutionary. These environments serve as an interesting test bed for novel evolutionary
methodologies.

EvoGAMES aims to focus the scientific developments in computational intelligence
techniques that may be of practical value for utilization in existing or future games.
Recently, games, and especially video games, have become an important commercial
factor within the software industry, providing an excellent test bed for application of a
wide range of computational intelligence methods.

EvoIASP, the longest-running of all EvoApplications tracks which celebrates its
15th edition this year, has been the first international event solely dedicated to the
applications of EC to image analysis and signal processing in complex domains of high
industrial and social relevance.

Preface IX

EvoNUM aims at applications of bio-inspired algorithms, and cross-fertilization be-
tween these and more classical numerical optimization algorithms, to continuous opti-
mization problems. It deals with applications where continuous parameters or functions
have to be optimized, in fields such as control, chemistry, agriculture, electricity, build-
ing and construction, energy, aerospace engineering, and design optimization.

EvoPAR covers all aspects of the application of parallel and distributed systems
to EC as well as the application of evolutionary algorithms for improving parallel ar-
chitectures and distributed computing infrastructures. EvoPAR focuses on the applica-
tion and improvement of distributed infrastructures, such as grid and cloud computing,
peer-to-peer (P2P) system, as well as parallel architectures, GPUs, manycores, etc., in
cooperation with evolutionary algorithms.

EvoRISK focuses on challenging problems in risk management, security, and de-
fence, and covers both theoretical developments and applications of computational in-
telligence to subjects such as cyber crime, IT security, resilient and self-healing systems,
risk management, critical infrastructure protection (CIP), military, counter terrorism
and other defence-related aspects, disaster relief, and humanitarian logistics.

EvoSTOC addresses the application of EC in stochastic and dynamic environments.
This includes optimization problems with changing, noisy, and/or approximated fitness
functions and optimization problems that require robust solutions, providing the first
platform to present and discuss the latest research in this field.

EvoBIO brings together experts across multiple fields, who draw inspiration from
biological systems in order to produce solutions to complex biological problems.

And finally, a General track including those papers dealing with applications not
covered by any of the established tracks.

This year’s edition of EvoApplications had 128 submissions, with 55 papers ac-
cepted for oral presentation and 24 for poster presentation.

Many people have helped make EvoApplications a success. We would like to ex-
press our gratitude first to the authors for submitting their work, to the members of the
Program Committees for devoting their energy to reviewing those papers, and to the
audience for their lively participation.

We would also like to thank the Institute for Informatics and Digital Innovation at
Edinburgh Napier University, UK, for their coordination efforts.

The papers were submitted, reviewed, and selected using the MyReview conference
management software. We are sincerely grateful to Marc Schoenauer of Inria, France,
for his great assistance in providing, hosting, and managing the software.

We would like to thank the local organizing team: Juan Julián Merelo Guervós,
Victor M. Rivas Santos, Pedro A. Castillo Valdivieso, María Isabel García Arenas, Pablo
García Sánchez, Antonio Fernández Ares, and Javier Asensio. We thank Kevin Sim
from the Institute for Informatics and Digital Information, Edinburgh Napier University
for creating and maintaining the official Evo* 2014 website, and Pablo García Sánchez
(Universidad de Granada, Spain) and Mauro Castelli (Universidade Nova de Lisboa,
Portugal) for being responsible for Evo* 2014 publicity.

We would also like to express our sincerest gratitude to our invited speakers,
who gave the inspiring keynote talks: Prof. Thomas Schmickl of the University of
Karl-Franzens University, Graz, Austria, Prof. Federico Morán of Universidad Com-
plutense de Madrid, Spain, and Prof. Susan Stepney of the University of York, UK.

X Preface

We especially want to express our genuine gratitude to Jennifer Willies of the In-
stitute for Informatics and Digital Innovation at Edinburgh Napier University, UK. Her
dedicated and continued involvement in Evo* since 1998 has been and remains essential
for building the image, status, and unique atmosphere of this series of events.

April 2014 Anna I. Esparcia-Alcázar
Antonio M. Mora

Alexandros Agapitos
Paolo Burelli

William S. Bush
Stefano Cagnoni

Carlos Cotta
Ivanoe De Falco

Antonio Della Cioppa
Federico Divina

Rolf Drechsler
A.E. Eiben

Francisco Fernández de Vega
Kyrre Glette

Evert Haasdijk
J. Ignacio Hidalgo

Paul Kaufmann
Trung Thanh Nguyen

Petr Pošík
Robert Schaefer

Kevin Sim
Anabela Simões

Andrea G.B. Tettamanzi
Neil Urquhart

Mengjie Zhang
Nur Zincir-Heywood

Organization

Organizing Committee

EvoApplications Chair

Anna I. Esparcia-Alcázar S2 Grupo, Spain

Local Co-chairs

Juan Julián Merelo Universidad de Granada, Spain
Víctor M. Rivas Universidad de Jaén, Spain

Proceedings Chair

Antonio M. Mora Universidad de Granada, Spain

Publicity Co-chairs

Pablo García-Sánchez Universidad de Granada, Spain
Mauro Castelli Universidade Nova de Lisboa, Portugal

Webmaster

Kevin Sim Edinburgh Napier University, UK

EvoCOMNET Co-chairs

Ivanoe De Falco ICAR-CNR, Italy
Antonio Della Cioppa University of Salerno, Italy
Ernesto Tarantino ICAR-CNR, Italy

EvoCOMPLEX Co-chairs

Carlos Cotta Universidad de Málaga, Spain
Robert Schaefer AGH University of Science and Technology,

Poland

XII Organization

EvoENERGY Co-chairs

Paul Kaufmann University of Paderborn, Germany
Kyrre Glette University of Oslo, Norway

EvoFIN Co-chairs

Alexandros Agapitos University College Dublin, Ireland
Andrea G.B. Tettamanzi Université de Nice Sophia Antipolis, France

EvoGAMES Co-chairs

Paolo Burelli Aalborg University Copenhagen, Denmark
Antonio M. Mora Universidad de Granada, Spain

EvoHOT Co-chairs

Rolf Drechsler German Research Center for Artificial Intelligence,
Germany

Giovanni Squillero Politecnico di Torino, Italy

EvoIASP Co-chairs

Stefano Cagnoni University of Parma, Italy
Mengjie Zhang Victoria University of Wellington, New Zealand

EvoINDUSTRY Co-chairs

Neil Urquhart Edinburgh Napier University, UK
Kevin Sim Edinburgh Napier University, UK

EvoNUM Co-chairs

Anna I. Esparcia-Alcázar S2 Grupo, Spain
Petr Pošík Czech Technical University, Czech Republic

EvoPAR Co-chairs

Francisco Fernández de Vega University of Extremadura, Spain
J. Ignacio Hidalgo Universidad Complutense de Madrid, Spain

EvoRISK Co-chairs

Anna I. Esparcia-Alcázar S2 Grupo, Spain
Nur Zincir-Heywood Dalhousie University, Canada

Organization XIII

EvoROBOT Co-chairs

Evert Haasdijk VU University Amsterdam, The Netherlands
A.E. Eiben VU University Amsterdam, The Netherlands

EvoSTOC Co-chairs

Anabela Simões Polytechnic Institute of Coimbra, Portugal
Trung Thanh Nguyen Liverpool John Moores University, UK

EvoBIO Co-chairs

William S. Bush Vanderbilt University, USA
Federico Divina Universidad Pablo de Olavide, Spain

Program Committees

EvoCOMNET Program Committee

Mehmet E. Aydin University of Bedfordshire, UK
Frederick Ducatelle IDSIA, Switzerland
Luca Gambardella IDSIA, Switzerland
Rolf Hoffmann Technical University Darmstadt, Germany
Farrukh Aslam Khan National University of Computer and Emerging

Sciences, Pakistan
Kenji Leibnitz National Institute of Information and

Communications Technology, Japan
Manuel Lozano Marquez Universidad de Granada, Spain
Domenico Maisto ICAR-CNR, Italy
Davide Marocco University of Plymouth, UK
Roberto Montemanni IDSIA, Switzerland
Enrico Natalizio Université de Technologie de Compiègne,

France
Robert Schaefer AGH University of Science and Technology,

Poland
Georgios Sirakoulis Democritus University of Thrace, Greece
Pawel Topa AGH University of Science and Technology,

Poland
Jaroslaw Was AGH University of Science and Technology,

Poland
Lidia Yamamoto University of Strasbourg, France

XIV Organization

EvoCOMPLEX Program Committee

Anca Andreica Babeş-Bolyai University, Romania
Tiago Baptista University of Coimbra, Portugal
Antonio Córdoba University of Seville, Spain
Carlos Fernandes Technical University of Lisbon, Portugal
Carlos Gershenson UNAM, Mexico
Juan Luis Jiménez Laredo University of Luxembourg, Luxembourg
Iwona Karcz-Dulęba Wrocław University of Technology, Poland
Joshua Payne University of Zurich, Switzerland
Katya Rodríguez-Vázquez UNAM, Mexico
Maciej Smołka AGH University of Science and Technology,

Poland
Marco Tomassini University of Lausanne, Switzerland
Alberto Tonda Politecnico di Torino, Italy

EvoENERGY Program Committee

Andy Tyrrell University of York, UK
Frank Neumann University of Adelaide, Australia
Jan Ringelstein Fraunhofer Institure for Wind Technology and

Energy System Technology, Germany
Kalyan Veeramachaneni MIT Computer Science and Artificial

Intelligence Laboratory, USA
Konrad Diwold Fraunhofer Institute for Wind Technology and

Energy System Technology, Germany
Maizura Mokhtar University of Central Lancashire, UK
Martin Middendorf University of Leipzig, Germany
Peter Palensky Austrian Institute of Technology, Austria
Ralph Evins Laboratory of Building Science and

Technology, Switzerland
Sanaz Mostaghim Karlsruhe Institute of Technology, Germany
Una-May O’Reilly MIT Computer Science and Artificial

Intelligence Laboratory, USA

EvoFIN Program Committee

Eva Alfaro Cid Technical University of Valencia, Spain
Anthony Brabazon University College Dublin, Ireland
Shu-Heng Chen National Chengchi University, Taiwan
Wei Cui University College Dublin, Ireland
Manfred Gilli University of Geneva and Swiss Finance

Institute, Switzerland

Organization XV

Ronald Hochreiter University of Vienna, Austria
Mak Kaboudan University of Redlands, USA
Piotr Lipinski University of Wrocław, Poland
Dietmar Maringer University of Basel, Switzerland
Serafin Martinez-Jaramillo Bank of Mexico, Mexico
Wing Lon Ng University of Essex, UK
Michael O’Neill University College Dublin, Ireland
Nikolaos Thomaidis University of the Aegean, Greece
Ruppa Thulasiram University of Manitoba, Canada
Garnett Wilson Afinin Labs Inc. and Dalhousie University,

Canada

EvoGAMES Program Committee

David Camacho Universidad Autónoma de Madrid, Spain
Antonio J. Fernandez Leiva Universidad de Málaga, Spain
Pablo García Sánchez Universidad de Granada, Spain
Antonio González Pardo Universidad Autónoma de Madrid, Spain
Francisco Luís Gutiérrez Vela Universidad de Granada, Spain
Johan Hagelback Blekinge Tekniska Hagskola, Sweden
John Hallam University of Southern Denmark, Denmark
Erin Hastings University of Central Florida, USA
Philip Hingston Edith Cowan University, Australia
Pier Luca Lanzi Politecnico di Milano, Italy
Federico Liberatore Invited Researcher at Universidad de Granada,

Spain
Edgar Galvan Lopes University College Dublin, Ireland
Simon Lucas University of Essex, UK
Rodica Ioana Lung Babes Bolyai University, Romania
Penousal Machado University of Coimbra, Portugal
Hector P. Martínez IT University of Copenhagem, Denmark
Patricia Paderewski Universidad de Granada, Spain
Mike Preuss TU Dortmund, Germany
Jan Quadflieg TU Dortmund, Germany
Jacob Schrum University of Texas at Austin, USA
Noor Shaker IT University of Copenhagen, Denmark
Moshe Sipper Ben-Gurion University, Israel
Terence Soule University of Idaho, USA
Julian Togelius IT University of Copenhagen, Denmark

EvoHOT Program Committee

Marco Gaudesi Politecnico di Torino, Italy
Antonio M. Mora Universidad de Granada, Spain
Julio Perez Universidad de la República, Uruguay
Ernesto Sánchez Politecnico di Torino, Italy
Alberto Tonda Politecnico di Torino, Italy

XVI Organization

EvoIASP Program Committee

Lucia Ballerini University of Dundee, UK
Leonardo Bocchi University of Florence, Italy
Oscar Cordón Universidad de Granada, Spain
Sergio Damas European Center of Soft Computing, Spain
Laura Dipietro Massachusetts Institute of Technology, USA
Francesco Fontanella Université degli studi di Cassino, Italy
Spela Ivekovic University of Strathclyde, UK
Mario Koeppen Kyushu Institute of Technology, Japan
Jean Louchet Inria, France
Evelyne Lutton INRA, France
Pablo Mesejo Santiago University of Parma, Italy
Luca Mussi University of Parma, Italy
Youssef Nashed University of Parma, Italy
Ferrante Neri De Montfort University, UK
Gustavo Olague CICESE, Mexico
Riccardo Poli University of Essex, UK
Sara Silva INESC-ID, Portugal
Stephen Smith University of York, UK
Kyoshi Tanaka Shinshu University, Japan
Andy Tyrrell University of York, UK
Roberto Ugolotti University of Parma, Italy
Leonardo Vanneschi Universidade Nova de Lisboa, Portugal

EvoINDUSTRY Program Committee

Bahriye Basturk Akay Erciyes University, Turkey
Maria Arsuaga Rios CERN, Switzerland
Jason Atkin University of Nottingham, UK
Sima Etaner-Uyar Istanbul Technical University, Turkey
Gurhan Kucuk Yeditepe University, Turkey
John Levine University of Strathclyde, UK
Nysret Musliu Vienna University of Technology, Austria
Sanja Petrovic University of Nottingham, UK
Nelishia Pillay University of KwaZulu-Natal, South Africa
Rong Qu University of Nottingham, UK
Sanem Sariel Istanbul Technical University, Turkey
Shengxiang Yang De Montfort University, UK

Organization XVII

EvoNUM Program Committee

Wolfgang Banzhaf Memorial University of Newfoundland, Canada
Hans-Georg Beyer Vorarlberg University of Applied Sciences,

Austria
Xavier Blasco Universidad Politécnica de Valencia, Spain
Ying-ping Chen National Chiao Tung University, Taiwan
Bill Langdon University College London, UK
Salma Mesmoudi Institut des Systèmes Complexes, France
Christian Lorenz Mueller New York University, USA
Boris Naujoks Cologne University of Applied Sciences,

Germany
Ferrante Neri De Montfort University, UK
Mike Preuss WWU Münster, Germany
Ivo Fabian Sbalzarini Max Planck Institute of Molecular Cell Biology

and Genetics, Germany
Guenter Rudolph TU Dortmund, Germany
P.N. Suganthan Nanyang Technological University, Singapore
Olivier Teytaud Inria, France
Şima Uyar Istanbul Technical University, Turkey
Darrell Whitley Colorado State University, USA

EvoPAR Program Committee

Jose Manuel Colmenar Universidad Complutense de Madrid, Spain
Gianluigi Folino L’ICAR-CNR, Cosenza, Italy
Malcolm Heywood Dalhousie University, Canada
Juan L. Jiménez University of Luxembourg, Luxembourg
William Langdon University College London, UK
Francisco Luna University of Extremadura, Spain
Una-May O’Reilly MIT Computer Science and Artificial

Intelligence Laboratory, USA
Jose Carlos Ribeiro Politechnique Institute of Leiria, Portugal
Marco Tomassini Lausanne University, Switzerland
Garnett Wilson Afinin Labs Inc. and Dalhousie University,

Canada

EvoRISK Program Committee

Hussein Abbass UNSW@Australian Defence Force Academy,
Australia

Robert K. Abercrombie Oak Ridge National Laboratory, USA
Rami Abielmona University of Ottawa, Canada
Anas Abou El Kalam École Nationale Supérieure d’Ingénieurs

de Bourges, France
Nabendu Chaki University of Calcutta, India
Mario Cococcioni NATO Undersea Research Centre, Italy

XVIII Organization

Josep Domingo-Ferrer Rovira i Virgili University, Spain
Stenio Fernandes Federal University of Pernambuco (UFPE),

Brazil
Solange Ghernaouti-Hélie University of Lausanne, Switzerland
Miguel Juan S2 Grupo, Spain
Rabinarayan Mahapatra Texas A&M University, USA
Antonio Manzalini Telecom Italia, Italy
Owen McCusker Sonalysts, USA
David Megias Universitat Oberta de Catalunya, Spain
Javier Montero Universidad Complutense de Madrid, Spain
Frank W. Moore University of Alaska Anchorage, USA
Srinivas Mukkamala New Mexico Tech, USA
Srini Ramaswamy ABB Corporate Research Center, India
Martin Rehak Czech Technical University, Czech Republic
Kouichi Sakurai Kyushu University, Japan
Guillermo Suarez de Tangil Universidad Carlos III de Madrid, Spain
Shamik Sural Indian Institute of Technology, Kharagpur,

India
Kay Chen Tan National University of Singapore, Singapore
Vicenç Torra CSIC, Spain
Shambhu Upadhyaya State University of New York at Buffalo,

USA
Antonio Villalón S2 Grupo, Spain
Xinyuan (Frank) Wang George Mason University, USA
Xin Yao University of Birmingham, UK

EvoROBOT Program Committee

Nicolas Bredeche Institut des Systémes Intelligents et de
Robotique, France

Jeff Clune Cornell University, USA
Stephane Doncieux Institut des Systémes Intelligents et de

Robotique
Marco Dorigo Universite Libre de Bruxelles
Heiko Hamann University of Paderborn, Germany
Jean-Marc Montanier Norwegian University of Science and

Technology, Norwey
Jean-Baptiste Mouret Institut des Systémes Intelligents et de

Robotique, France
Stefano Nolfi Institute of Cognitive Sciences and

Technologies, Italy
Claudio Rossi Universidad Politécnica de Madrid, Spain
Sanem Sariel Istanbul Teknik Universitesi, Turkey
Thomas Schmickl Karl Franzens University Graz, Austria
Juergen Stradner Karl Franzens University Graz, Austria
Jon Timmis University of York, UK

Organization XIX

Andy Tyrrell University of York, UK
Berend Weel Vrije Universiteit, The Netherlands
Alan Winfield University of the West of England,

UK

EvoSTOC Program Committee

Enrique Alba Universidad de Málaga, Spain
Peter Bosman Centre for Mathematics and Computer

Science, The Netherlands
Juergen Branke University of Warwick, UK
Lam Bui Le Quy Don Technical University, Vietnam
Hui Cheng University of Bedfordshire, UK
Ernesto Costa University of Coimbra, Portugal
Andries Engelbrecht University of Pretoria, South Africa
Sima Etaner-Uyar Istanbul Technical University, Turkey
Yaochu Jin University of Surrey, UK
Shayan Kavakeb Liverpool John Moores University,

UK
Changhe Li China University of Geosciences, China
Michalis Mavrovouniotis De Montfort University, UK
Jorn Mehnen Cranfield University, UK
Ferrante Neri De Montfort University, UK
David Pelta Universidad de Granada, Spain
Hendrik Richter HTWK Leipzig University, Germany
Philipp Rohlfshagen SolveIT Software, Australia
Renato Tinos Universidade de São Paulo, Brazil
Krzysztof Trojanowski Polish Academy of Sciences, Poland
Shengxiang Yang De Montfort University, UK
Xin Yao University of Birmingham, UK

EvoBIO Program Committee

Jaume Bacardit University of Nottingham, UK
Jacek Blazewicz Poznan University of Technology, Poland
Florentino Fernández University of Vigo, Spain
Alex Freitas University of Kent, UK
Mario Giacobini University of Turin, Italy
Raffaele Giancarlo University of Palermo, Italy
Rosalba Giugno University of Catania, Italy
Casey Greene Dartmouth College, USA
Jin-Kao Hao University of Angers, France
Ting Hu Dartmouth College, USA
Mehmet Koyuturk Case Western Reserve University, USA

XX Organization

Penousal Machado University of Coimbra, Portugal
Elena Marchiori Radboud University Nijmegen,

The Netherlands
Marco Masseroli Politecnico di Milano, Italy
Brett McKinney University of Tulsa, USA
Pablo Moscato The University of Newcastle, UK
Alison Motsinger-Reif University of North Carolina Raleigh, USA
Vincent Moulton University of East Anglia, UK
Carlotta Orsenigo Politecnico di Milano, Italy
Michael Raymer Wright State University, USA
Simona Rombo ICAR-CNR, Italy
Marc Schoenauer Inria Saclay Ile-de-France, France
Ugur Sezerman Sabanci University, Turkey
Marc Smith Vassar College, USA
Leonardo Vanneschi ISEGI, Universidade Nova de Lisboa, Portugal
Andreas Zell University of Tübingen, Germany
Zhongming Zhao Vanderbilt University, USA

General Track Program Committee

Marco Gaudesi Politecnico di Torino, Italy
Spela Ivekovic University of Strathclyde, UK
Luca Mussi University of Parma, Italy
Ernesto Sánchez Politecnico di Torino, Italy
Giovanni Squillero Politecnico di Torino, Italy
Alberto Tonda Politecnico di Torino, Italy

Sponsoring Organizations

– Free Software Office (OSL) of the University of Granada.
– Granada Excellence Network of Innovation Laboratories (GENIL).
– Institute for Informatics and Digital Innovation at Edinburgh Napier University,

Scotland, UK.
– The EvoCOMNET track has been technically sponsored by the World Federation on

Soft Computing.

Contents

EvoCOMNET

Evolving a Trust Model for Peer-to-Peer Networks Using
Genetic Programming . 3

Ugur Eray Tahta, Ahmet Burak Can, and Sevil Sen

A Hybrid Primal Heuristic for Robust Multiperiod Network Design 15
Fabio D’Andreagiovanni, Jonatan Krolikowski, and Jonad Pulaj

A Trajectory-Based Heuristic to Solve a Three-Objective Optimization
Problem for Wireless Sensor Network Deployment. 27

Jose M. Lanza-Gutiérrez, Juan A. Gómez-Pulido,
and Miguel A. Vega-Rodríguez

Optimizing AEDB Broadcasting Protocol with Parallel Multi-objective
Cooperative Coevolutionary NSGA-II . 39

Bernabé Dorronsoro, Patricia Ruiz, El-Ghazali Talbi,
Pascal Bouvry, and Apivadee Piyatumrong

Improving Extremal Optimization in Load Balancing by Local Search 51
Ivanoe De Falco, Eryk Laskowski, Richard Olejnik, Umberto Scafuri,
Ernesto Tarantino, and Marek Tudruj

Studying the Reporting Cells Planning with the Non-dominated Sorting
Genetic Algorithm II . 63

Víctor Berrocal-Plaza, Miguel A. Vega-Rodríguez,
and Juan M. Sánchez-Pérez

Impact of the Topology on the Performance of Distributed Differential
Evolution . 75

Ivanoe De Falco, Antonio Della Cioppa, Domenico Maisto,
Umberto Scafuri, and Ernesto Tarantino

Modeling the Offloading of Different Types of Mobile Applications
by Using Evolutionary Algorithms . 86

Gianluigi Folino and Francesco S. Pisani

EvoCOMPLEX

Common Developmental Genomes Revisited – Evolution Through
Adaptation . 101

Konstantinos Antonakopoulos

Investigation of Genome Parameters and Sub-transitions to Guide Evolution
of Artificial Cellular Organisms . 113

Stefano Nichele, Håkon Hjelde Wold, and Gunnar Tufte

Training Complex Decision Support Systems with Differential Evolution
Enhanced by Locally Linear Embedding . 125

Piotr Lipinski

A Memetic Framework for Solving Difficult Inverse Problems 138
Maciej Smołka and Robert Schaefer

EvoENERGY

Customizable Energy Management in Smart Buildings Using Evolutionary
Algorithms. 153

Florian Allerding, Ingo Mauser, and Hartmut Schmeck

Dynamic Programming Based Metaheuristic for Energy Planning Problems . . . 165
Sophie Jacquin, Laetitia Jourdan, and El-Ghazali Talbi

Looking for Alternatives: Optimization of Energy Supply Systems without
Superstructure . 177

Mike Preuss, Philip Voll, André Bardow, and Günter Rudolph

Multi-material Compositional Pattern-Producing Networks for Form
Optimisation. 189

Ralph Evins, Ravi Vaidyanathan, and Stuart Burgess

EvoFIN

On Evolving Multi-agent FX Traders . 203
Alexander Loginov and Malcolm I. Heywood

Geometric Semantic Genetic Programming for Financial Data 215
James McDermott, Alexandros Agapitos, Anthony Brabazon,
and Michael O’Neill

On PBIL, DE and PSO for Optimization of Reinsurance Contracts. 227
Omar Andrés Carmona Cortes, Andrew Rau-Chaplin, Duane Wilson,
and Jürgen Gaiser-Porter

Algebraic Level-Set Approach for the Segmentation of Financial Time Series . . . 239
Rita Palivonaite, Kristina Lukoseviciute, and Minvydas Ragulskis

Dynamic Index Trading Using a Gene Regulatory Network Model. 251
Miguel Nicolau, Michael O’Neill, and Anthony Brabazon

XXII Contents

Analysis of Dynamic Properties of Stock Market Trading Experts Optimized
with an Evolutionary Algorithm . 264

Krzysztof Michalak

A Comparative Study on the Use of Classification Algorithms
in Financial Forecasting. 276

Fernando E.B. Otero and Michael Kampouridis

Pattern Mining in Ultra-High Frequency Order Books with
Self-Organizing Maps . 288

Piotr Lipinski and Anthony Brabazon

EvoGAMES

Multi-Criteria Comparison of Coevolution and Temporal Difference
Learning on Othello . 301

Wojciech Jaśkowski, Marcin Szubert, and Paweł Liskowski

Evolving Evil: Optimizing Flocking Strategies Through Genetic Algorithms
for the Ghost Team in the Game of Ms. Pac-Man 313

Federico Liberatore, Antonio M. Mora, Pedro A. Castillo,
and Juan Julián Merelo Guervós

Procedural Content Generation Using Patterns as Objectives 325
Steve Dahlskog and Julian Togelius

Micro and Macro Lemmings Simulations Based on Ants Colonies 337
Antonio González-Pardo, Fernando Palero, and David Camacho

Fast Evolutionary Adaptation for Monte Carlo Tree Search 349
Simon M. Lucas, Spyridon Samothrakis, and Diego Pérez

Automatic Camera Control: A Dynamic Multi-Objective Perspective 361
Paolo Burelli and Mike Preuss

Co-Evolutionary Optimization of Autonomous Agents in a Real-Time
Strategy Game . 374

Antonio Fernández-Ares, Antonio M. Mora, Maribel García-Arenas,
Juan Julián Merelo Guervós, Pablo García-Sánchez, and Pedro A. Castillo

Sharing Information in Adversarial Bandit . 386
David L. St-Pierre and Olivier Teytaud

The Structure of a Probabilistic 1-State Transducer Representation
for Prisoner’s Dilemma . 399

Jeffrey Tsang

Contents XXIII

Tree Depth Influence in Genetic Programming for Generation of Competitive
Agents for RTS Games . 411

Pablo García-Sánchez, Antonio Fernández-Ares, Antonio M. Mora,
Pedro A. Castillo, Jesús González, and Juan Julián Merelo Guervós

EvoHOT

Diagnostic Test Generation for Statistical Bug Localization
Using Evolutionary Computation . 425

Marco Gaudesi, Maksim Jenihhin, Jaan Raik, Ernesto Sanchez,
Giovanni Squillero, Valentin Tihhomirov, and Raimund Ubar

EvoIASP

Evolutionary Algorithm for Dense Pixel Matching in Presence of Distortions. . . 439
Ana Carolina dos-Santos-Paulino, Jean-Christophe Nebel,
and Francisco Flórez-Revuelta

Is a Single Image Sufficient for Evolving Edge Features by
Genetic Programming? . 451

Wenlong Fu, Mark Johnston, and Mengjie Zhang

Improving Graph-Based Image Segmentation Using Automatic Programming . . . 464
Lars Vidar Magnusson and Roland Olsson

New Representations in PSO for Feature Construction in Classification 476
Yan Dai, Bing Xue, and Mengjie Zhang

GPU-Based Point Cloud Recognition Using Evolutionary Algorithms 489
Roberto Ugolotti, Giorgio Micconi, Jacopo Aleotti, and Stefano Cagnoni

A New Binary Particle Swarm Optimisation Algorithm for Feature Selection. . . 501
Bing Xue, Su Nguyen, and Mengjie Zhang

Adaptive Genetic Algorithm to Select Training Data for Support
Vector Machines. 514

Jakub Nalepa and Michal Kawulok

Automatic Selection of GA Parameters for Fragile Watermarking 526
Marco Botta, Davide Cavagnino, and Victor Pomponiu

Classification of Potential Multiple Sclerosis Lesions Through Automatic
Knowledge Extraction by Means of Differential Evolution 538

Ivanoe De Falco

XXIV Contents

EvoINDUSTRY

Reducing the Number of Simulations in Operation Strategy Optimization
for Hybrid Electric Vehicles. 553

Christopher Bacher, Thorsten Krenek, and Günther R. Raidl

Hybridisation Schemes for Communication Satellite Payload Configuration
Optimisation. 565

Apostolos Stathakis, Grégoire Danoy, El-Ghazali Talbi,
Pascal Bouvry, and Gianluigi Morelli

EvoNUM

A Novel Genetic Algorithmic Approach for Computing Real Roots
of a Nonlinear Equation . 579

Vijaya Lakshmi V. Nadimpalli, Rajeev Wankar,
and Raghavendra Rao Chillarige

A Multi-Objective Relative Clustering Genetic Algorithm with Adaptive
Local/Global Search Based on Genetic Relatedness 591

Iman Gholaminezhad and Giovanni Iacca

Noisy Optimization: Convergence with a Fixed Number of Resamplings . . . 603
Marie-Liesse Cauwet

A Differential Evolution Framework with Ensemble of Parameters
and Strategies and Pool of Local Search Algorithms 615

Giovanni Iacca, Ferrante Neri, Fabio Caraffini,
and Ponnuthurai Nagaratnam Suganthan

An Improved Multiobjective Electromagnetism-like Mechanism Algorithm . . . 627
Pedro Carrasqueira, Maria João Alves, and Carlos Henggeler Antunes

Objective Dimension and Problem Structure in Multiobjective
Optimization Problems . 639

Ramprasad Joshi, Bharat Deshpande, and Paritosh Gote

EvoPAR

Hybrid MPI/OpenMP Parallel Evolutionary Algorithms for Vehicle
Routing Problems . 653

Raul Baños, Julio Ortega, and Consolación Gil

Dynamic and Partially Connected Ring Topologies for Evolutionary Algorithms
with Structured Populations . 665

Carlos M. Fernandes, Juan L.J. Laredo, Juan Julián Merelo Guervós,
Carlos Cotta, and Agostinho C. Rosa

Contents XXV

Systolic Genetic Search for Software Engineering: The Test Suite
Minimization Case . 678

Martín Pedemonte, Francisco Luna, and Enrique Alba

Optimization of Application Placement Towards a Greener Cloud
Infrastructure . 690

Tania Lorido-Botran, Jose Antonio Pascual, Jose Miguel-Alonso,
and Jose Antonio Lozano

GridVis: Visualisation of Island-Based Parallel Genetic Algorithms 702
Evelyne Lutton, Hugo Gilbert, Waldo Cancino, Benjamin Bach,
Pierre Parrend, and Pierre Collet

Automated Framework for General-Purpose Genetic Algorithms in FPGAs . . . 714
Liucheng Guo, David B. Thomas, and Wayne Luk

Unreliable Heterogeneous Workers in a Pool-Based Evolutionary Algorithm . . . 726
Mario García-Valdez, Juan Julián Merelo Guervós,
and Francisco Fernández de Vega

EvoRISK

Hyper-Heuristics for Online UAV Path Planning Under Imperfect
Information . 741

Engin Akar, Haluk Rahmi Topcuoglu, and Murat Ermis

Searching for Risk in Large Complex Spaces. 753
Kester Clegg and Rob Alexander

EvoROBOT

Speeding Up Online Evolution of Robotic Controllers with Macro-Neurons. . . 765
Fernando Silva, Luís Correia, and Anders Lyhne Christensen

HyperNEAT Versus RL PoWER for Online Gait Learning in Modular Robots. . . 777
Massimiliano D’Angelo, Berend Weel, and A.E. Eiben

What You Choose to See Is What You Get: An Experiment with Learnt
Sensory Modulation in a Robotic Foraging Task . 789

Tiago Rodrigues, Miguel Duarte, Sancho Oliveira,
and Anders Lyhne Christensen

XXVI Contents

EvoSTOC

Co-evolution of Sensory System and Signal Processing for Optimal Wing
Shape Control . 805

Olga Smalikho and Markus Olhofer

Infeasibility Driven Evolutionary Algorithm with Feed-Forward Prediction
Strategy for Dynamic Constrained Optimization Problems. 817

Patryk Filipiak and Piotr Lipinski

Identifying the Robust Number of Intelligent Autonomous Vehicles
in Container Terminals . 829

Shayan Kavakeb, Trung Thanh Nguyen, Zaili Yang, and Ian Jenkinson

A Multi-objective Evolutionary Approach for Cloud Service Provider
Selection Problems with Dynamic Demands . 841

Hsin-Kai Chen, Cheng-Yuan Lin, and Jian-Hung Chen

An Object-Oriented Library in JavaScript to Build Modular and Flexible
Cross-Platform Evolutionary Algorithms . 853

Víctor M. Rivas, Juan Julián Merelo Guervós, Gustavo Romero López,
Maribel García-Arenas, and Antonio M. Mora

EvoBIO

What Do We Learn from Network-Based Analysis of Genome-Wide
Association Data? . 865

Marzieh Ayati, Sinan Erten, and Mehmet Koyutürk

Benefits of Accurate Imputations in GWAS. 877
Shefali S. Verma, Peggy Peissig, Deanna Cross, Carol Waudby,
Murray Brilliant, Catherine A. McCarty, and Marylyn D. Ritchie

Genotype Correlation Analysis Reveals Pathway-Based Functional
Disequilibrium and Potential Epistasis in the Human Interactome. 890

William S. Bush and Jonathan L. Haines

Determining Positions Associated with Drug Resistance on HIV-1
Proteins: A Computational Approach . 902

Gonzalo Nápoles, Isel Grau, Ricardo Pérez-García, and Rafael Bello

GPMS: A Genetic Programming Based Approach to Multiple Alignment
of Liquid Chromatography-Mass Spectrometry Data 915

Soha Ahmed, Mengjie Zhang, and Lifeng Peng

Contents XXVII

An Integrated Analysis of Genome-Wide DNA Methylation and Genetic
Variants Underlying Etoposide-Induced Cytotoxicity in European
and African Populations. 928

Ruowang Li, Dokyoon Kim, Scott M. Dudek, and Marylyn D. Ritchie

Replication of SCN5A Associations with Electrocardiographic Traits
in African Americans from Clinical and Epidemiologic Studies 939

Janina M. Jeff, Kristin Brown-Gentry, Robert Goodloe, Marylyn D. Ritchie,
Joshua C. Denny, Abel N. Kho, Loren L. Armstrong, Bob McClellan Jr.,
Ping Mayo, Melissa Allen, Hailing Jin, Niloufar B. Gillani,
Nathalie Schnetz-Boutaud, Holli H. Dilks, Melissa A. Basford,
Jennifer A. Pacheco, Gail P. Jarvik, Rex L. Chisholm,
Dan M. Roden, M. Geoffrey Hayes, and Dana C. Crawford

General Track

An Effective Nurse Scheduling by a Parameter Free Cooperative GA. 955
Makoto Ohki and Satoru Kishida

Author Index . 967

XXVIII Contents

EvoCOMNET

Evolving a Trust Model for Peer-to-Peer
Networks Using Genetic Programming

Ugur Eray Tahta1,2(B), Ahmet Burak Can1, and Sevil Sen1

1 Department of Computer Engineering, Hacettepe University, 06800 Ankara, Turkey
eraytahta@gmail.com

2 ASELSAN, 06370 Ankara, Turkey

Abstract. Peer-to-peer (P2P) systems have attracted significant inter-
est in recent years. In P2P networks, each peer act as both a server or
a client. This characteristic makes peers vulnerable to a wide variety of
attacks. Having robust trust management is very critical for such open
environments to exclude unreliable peers from the system. This paper
investigates the use of genetic programming to asses the trustworthiness
of peers without a central authority. A trust management model is pro-
posed in which each peer ranks other peers according to local trust values
calculated automatically based on the past interactions and recommen-
dations. The experimental results have shown that the model could suc-
cessfully identify malicious peers without using a central authority or
global trust values and, improve the system performance.

1 Introduction

In the last decade, with the fast expansion and improvement of peer-to-peer
(P2P) systems, malicious activities have become a major security problem in
P2P systems. Due to openness of P2P systems, unreliable users may occupy
considerable portions of P2P populations. Trust management in such open envi-
ronments is an important and difficult research problem. Trust management
models generally aim to exclude unreliable peers from P2P systems. However
maintaining true trust relationships without a priori knowledge is a very hard
problem. It is difficult to distinguish malicious peers from innocent ones with a
certainty in such environments. Thus, most of the proposed trust models in the
literature offer approximate decision guidelines about peers.

Trust management can be accomplished by a central authority, such as eBay.
Participants in eBay can rate each other at the end of auctions and information
about auctions is stored in the central server. However, having a central authority
conflicts with the nature of P2P systems. Thus peers need to organize themselves
to manage and store information about their trust relationships [1–3]. In pure
P2P networks like Gnutella [4], peers flood trust queries to the network in order
to obtain trust information about others. In such a network, all peers store
trust information about neighbors according to the past interactions [2,5,6].
Queries enable to collect recommendations about the queried peer and make
a decision about it. Some models use distributed hash tables (DHT) to store
c© Springer-Verlag Berlin Heidelberg 2014
A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2014, LNCS 8602, pp. 3–14, 2014.
DOI: 10.1007/978-3-662-45523-4 1

4 U.E. Tahta et al.

trust information [1,3,7]. Each peer stores the trust information about other
peers determined by a DHT algorithm, which enables efficient access to the
information. Thus peers can learn the global trust information about others
without flooding queries to the whole network.

Trust management in P2P systems is a difficult problem due to the lack of
a central authority and uncertain information collected from peers. P2P trust
models should be able to recognize complicated behavioral patterns of malicious
peers and make smart decisions to distinguish malicious peers from benign peers
using this uncertain information. Using machine learning techniques might be a
good choice for such a complex problem. In this paper, we propose a genetic pro-
gramming (GP) based trust management model. Our model intends to determine
characteristics of malicious and benign peers using the features derived from
peers. Two kinds of information are collected by peers: interactions and rec-
ommendations. Peers store their past interactions with other peers and collect
recommendations about peers from their neighbors. These two types of infor-
mation provide bases for the feature set. A trust model is evolved with these
features by using genetic programming in order to measure trustworthiness of
peers. Peers do not collect information about all other peers. A peer creates a
view with the peers interacted in the past or intended to interact with. Each peer
ranks other peers according to the trust values generated by the model which
is evolved by using genetic programming, and makes download decisions using
these values. Using the generated trust values, malicious peers are excluded from
the system.

The paper is organized as follows. Section 2 discusses the related research.
Section 3 introduces the proposed trust model. Section 4 presents the simula-
tion environment and gives the experimental results. Section 5 summarizes the
conclusion.

2 Related Work

P2P systems offer sharing environments for common resources by improving
diversity, prevalence and easy accessibility. On the other hand, these character-
istics make them vulnerable to many attacks. P2P systems can be divided into
two groups; structured and unstructured [8]. In the unstructured overlay net-
works, queries are flooded in the network, such as in Gnutella [9]. The structured
P2P networks generally utilize DHTs for indexing information on peers selected
by the DHT algorithm. For example, Chord system [10] proposes a decentralized
network with a distributed lookup primitive on a circular Chord ring. Peers on
this ring are charged to store information determined by the Chord’s algorithm.

Most of the prominent trust models use the reputation concept and statisti-
cal models to make decisions on trustworthiness of peers. Reputation generally
relies on peer’s past experiences and recommendations from other peers, such as
in XRep [11] or P2PRep [12]. EigenRep [3] uses transitivity of trust to calculate
trust values. Conner et al. [13] proposed a reputation-based trust management
framework supporting synthesis of trust-related feedback from different entities.

Evolving a Trust Model for P2P Networks Using GP 5

In [14], an effective way of calculating reputation has been presented. The model
considers several features such as number, age, or frequency of transactions, how
frequently a given peer attends a common vendor, and the number of common
vendors between the pairs. It aims to investigate the characteristics of transac-
tions executed by malicious peers.

Detecting malicious peer behaviors with the help of machine learning tech-
niques is another promising approach for generating trust management models.
Weihua Song et al. [15] uses neural networks and derives trust values from het-
erogeneous agents based on recommendations. The agents classify recommenda-
tions as qualified or unqualified for choosing the providers. In [16], support vector
machines are used to reduce the cost of communication with less query and to
improve the success rate. In [17] a generic trust framework is proposed by using
linear discriminant analysis and decision trees. An agent uses its own previous
transactions (with other agents) to build a knowledge base and distinguishes
successful transactions from unsuccessful ones.

There are some applications of evolutionary computation techniques to com-
puter and network security in the literature. One of the mostly employed area is
intrusion detection in which either genetic programming (GP) or genetic algo-
rithm (GA) is mainly used. The first GP application to intrusion detection is
given by Crosbie and Stafford [18]. Since then there are many useful applications
to the field. In [19], Abraham and Grosan compare the genetic programming
technique with other machine learning methods for intrusion detection [19] and
show that genetic programming techniques outperform other techniques and are
lightweight. The grammatical evolution technique is successfully employed for
intrusion detection on wired networks [20] and on ad hoc networks [21]. Sen
and Clark [22] employ multi-objective evolutionary computation (MOEC) tech-
niques in order to show how energy usage and detection ability can be traded off
for resource-constrained networks. Moreover, they show the significant potential
of evolutionary computation techniques to explore the suitable intrusion detec-
tion architecture by taking into account the objectives of cooperative intrusion
detection programs. The MOEC techniques are also used to explore how intru-
sion detection system sensors could be best placed on a network in [23].

Even though there are many applications of evolutionary computation tech-
niques to the intrusion detection problem, as far as we know there is only one
application of genetic algorithm in order to detect attackers in P2P domain.
A peer profile based trust model proposed by Selvaraj et al. [24] uses genetic
algorithm. This model combines peer profiling with an anomaly detection tech-
nique. It establishes trust using only local interaction data of the peer. There
is a trusted central authority which manages the peer list to secure peers’ IDs.
Our model have used both interaction data from peer’s own experience and rec-
ommendation data collected from other peers. Additionally, our model does not
depend on a central authority to calculate trust values. This is believed to be a
more suitable approach for P2P systems.

6 U.E. Tahta et al.

3 The Model

The proposed trust model uses genetic programming to make trusting decisions
on peers. Genetic Programming (GP) is a common evolutionary computation
technique, which is introduced to the machine learning community by Koza [25].
Banzhaf [26] comes up with an assertion that GP could produce more successful
results comparing to other machine learning techniques and programs written
by people.

In GP, functions (operators, program statements etc.) and terminals (fea-
tures, constants etc.) build a GP tree. Each GP tree represents an individual.
Basically, a group of individuals which are the candidate solutions to the prob-
lem are generated by GP in each generation. How well the individuals solve the
problem is evaluated by using a fitness function.

3.1 Feature Sets and Operators

Selecting the right feature set is a difficult problem and a key point to obtain suc-
cessful results in GP and other machine learning techniques [27]. In our model,
the information collected from past interactions and recommendations of neigh-
bors form the feature set.

Interaction based features are obtained from the peer’s past experiences with
other peers. These experiences occur directly between two peers who interacted
in the past. Interactions can be any activity specific to the P2P application, such
as file sharing, CPU sharing, and storage sharing. Interaction based features are
listed in Table 1.

Table 1. Interaction Based Features

Feature Symbol

number of interactions f1

number of successful interactions f2

average size of downloaded files f3

average time difference between last two interactions f4

average weight f5

average satisfaction f6

Satisfaction and weight parameters are calculated as in [28]. Successful inter-
actions are the interactions that the file download is finished successfully. Satis-
faction parameter is calculated based on average bandwidth, agreed bandwidth
before the interaction, online, and offline period values of the uploader:

Satisfaction =

{
(AveBw
AgrBw + OnP

OnP+OffP)/2 if AveBw < AgrBw,

(1 + OnP
OnP+OffP)/2 otherwise

(1)

Evolving a Trust Model for P2P Networks Using GP 7

Weight parameter is calculated based on file size, number of uploaders of the
dowloaded file, number of uploaders of the maximum uploaded file:

Weight =

{
(size
100MB + #Uploaders

Uploadermax
)/2 if size < 100MB,

(1 + #Uploaders
Uploadermax

)/2 otherwise
(2)

The second set of features is recommendation based features. When a peer
wants to interact with another peer, it asks its own neighbors about their experi-
ences. The neighbors who have information about the peer requested send their
recommendations. These experiences about another peer are called recommen-
dations. A recommendation contains the following information: average number
of successful interactions, average satisfaction of interactions, average weight of
interactions, and calculated trust value of the queried peer. The recommendation
based features are listed in Table 2:

Table 2. Recommendation Based Features

Feature Symbol

number of recommendations f7

average of neighbours’ average number of successful interactions f8

average of neighbours’ average satisfaction values f9

average of neighbours’ average weight values f10

average of trust values f11

In our genetic model, we use simple operators to generate a formula for trust
calculation. The operators used in our model are addition, subtraction, division,
multiplication, inverse, log, square root, and square.

3.2 Fitness Function

The fitness function is one of the important factors affecting the performance
of evolutionary computation techniques. The fitness function determines how
well a program is able to solve the problem [25,29]. In the evolved trust model,
a fitness function based on the reduction in the number of attacks is used. In
other words, if Rtrust denotes the number of attacks with our trust model and
RnoTrust denotes the number of attacks without any trust model, then our fitness
function is;

fitness = Rtrust/RnoTrust. (3)

If the generated individuals can mitigate the number of attacks, the value
of fitness function decreases and the success of the model increases. Thus, the
fitness function is aimed to be minimized in our genetic model. At the end of
the evolution, the most successful individual is selected as the solution.

8 U.E. Tahta et al.

4 Experiments and Analysis

The experiment environment consists of two integrated modules. First one is
a file sharing simulation program implemented in Java language to asses the
evolved trust model in P2P environments against malicious attacks. The second
one is the ECJ 21 toolkit [30] for the GP implementation. It is integrated with the
simulation program to train the trust model. In the experiments, the population
and generation sizes are chosen as 100 and 300 respectively. The other parameters
are equal to the default parameters of the ECJ toolkit.

4.1 Simulation Module

The simulation module is adapted from the program used in [28]. Each simulation
takes 50.000 cycles, where each cycle represents 10 minutes of network activity.
There are 1000 peers in each simulation. Basically, peers interact with each
other for sharing a file and build a reputation according to their behaviors. At
the beginning of the simulation, peers are strangers to each other. When a peer
uploads a file to another peer, it becomes a neighbor of the peer. A neighbor is
preferred over a stranger if they are equally trustworthy.

Peers build an interaction history while downloading and uploading files.
If a peer intends to download a file, it gets the list of file providers. Then, it
calculates the trust values of these file providers using its own interaction history
and recommendations from its neighbors. Trust values are calculated based on
the formula generated by the genetic programming module using the features
and the fitness function explained in Section 3. If a peer has neighbors in the
file provider list, it prefers the one with the highest trust value. Otherwise, it
downloads the file from the stranger who has the highest trust value. At the
end of a download process, if the file provider uploads a virus infected or an
inauthentic file, it is marked as a malicious peer and is never interacted again.

4.2 GP Module

The GP module works in an integrated manner with the simulation module. It
trains our trust model against various attacker types and tries to find the best
individual in order to evaluate trust values of peers. In the training process, GP
creates individuals by using the features and the operators given in Section 3.1.
Each individual runs the file sharing simulation from start to finish. Reduction
in the number of attacks represents the success of an individual. When the best
individual is found, it is tested on various attacker models on the simulation
module. The general steps of the GP Module are listed in Algorithm 1.

4.3 The Problem

Generally, a P2P network consists of good peers and malicious peers (attacker).
A good peer always gives fair recommendations and uploads authentic files.

Evolving a Trust Model for P2P Networks Using GP 9

Algorithm 1. How Gp Module Works
initialize population
while current generation <= maximum generation do

for all individuals in the current generation do
execute simulation
evaluate the fitness function

end for
apply genetic operators (selection, crossover, reproduction, mutation, etc.) to the individuals
create new population

end while

However, a malicious peer may upload inauthentic files or give unfair recom-
mendations to harm the system. Reducing the number of inauthentic/infected
file uploads and unfair recommendations is the aim of a trust management model.

In our simulation, malicious peers are considered to behave in two different
ways: naive and hypocritical. If malicious peers perform unaccompanied attacks
and do not aware of other malicious peers, they are called individual attackers.
Individual attackers can behave as described below:

– Naive: The attacker always uploads virus infected/inauthentic files and gives
unfair recommendations to others [31].

– Hypocritical: The attacker perform attacks by uploading inauthentic files or
giving unfair recommendations with x% probability. Otherwise, it acts like
a good peer [3,5].

If a group of peers know each other and attack to other peers as a team,
they are called collaborators. Collaborators always upload authentic files to each
other. If a good peer requests a recommendation from a collaborator about
another collaborator, the collaborator might give high recommendations unfairly
in order to improve the queried collaborator’s trust value. The types of attack
carried out by collaborators are be described as follows:

– Naive: Collaborators always upload virus infected/inauthentic files to good
peers and gives unfair recommendations to good peers.

– Hypocritical: Collaborators perform attacks by uploading inauthentic files to
good peers or giving unfair recommendations with x% probability. Other-
wise, it acts like a good peer.

4.4 Experiments

In the experiments, the model is trained for all types of individual attackers
firstly. Training is done with a network setup in which 10% of the peers is
malicious. The best results of 10 runs is chosen for each attack type. Then,
the trained model is tested with 10%, 30% and 50% malicious peers ratio in
the networks. During the experiments, the attack probability of hypocritical
attackers is chosen as 20% in all interactions. If a peer uploads a virus infected
or inauthentic file, it is counted as a file-based attack. Initially, the simulation is
executed without the trust model for each network setting in order to figure out

10 U.E. Tahta et al.

Table 3. Success ratio of the trust model against individual attackers for the file-based
attacks

10% 30% 50%

Naive 83.8 78.9 73.6

Hypocritical 71.8 57.7 47.1

the number of attacks when a trust model does not exist. Then the simulations
are run with the evolved trust model. Success of the trust model is assessed by
the number of attacks prevented with the model.

Table 3 shows the success ratio of the evolved trust model against individual
attackers according to varying malicious peer populations in the network. The
model has a notable success against individual naive attackers. Since identifying
a naive attacker is easy after the first interaction, a high percentage of these
attacks can be prevented. Our model has a good success ratio for individual
hypocritical attackers, which is 71.8% in a network in which 10% of the peers is
malicious. In the network in which 50% of the peers is malicious, the trust model
could prevent nearly half of the attacks as shown in Table 3. In such extremely
malicious networks, this is a good success ratio for hypocritical attackers.

Convergence speed of the trust model is important to identify attacks in a
reasonable time. Figure 1 shows the decrement in the number of attacks by naive
and hypocritical individual attackers when the evolved trust model is used.

0

200

400

600

800

1000

1200

1400

1600

0 10000 20000 30000 40000 50000

Fi
le

-b
as

ed
 A

tt
ac

ks

Cycles

10% Malicious Individual Attackers
Naive Hypocritical

Fig. 1. File-based attacks over time in a network consisting of 10% individual attackers

Unfair recommendations given by malicious peers are considered as
recommendation-based attacks. The evolved trust model has also good perfor-
mance on recommendation-based attacks. Figure 2 shows the decrement in the
recommendation-based attacks over time. In the model, if a peer intends to col-
lect recommendations about another peer, it firstly requests recommendations
from its trustworthy neighbors. Therefore, unfair recommendation rate is miti-
gated over time as peers gain more neighbors. However, unfair recommendations
do not drop as quickly as file-based attacks since determining an unfair recom-
mendation is not easy as determining an infected/inauthentic file.

Evolving a Trust Model for P2P Networks Using GP 11

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 10000 20000 30000 40000 50000

Re
co

m
m

en
da

tio
n-

ba
se

d
At

ta
ck

s
Cycles

10% Malicious Individual Attackers
Naive Hypocritical

Fig. 2. Recommendation-based attacks over time in a network consisting of 10% indi-
vidual attackers

The second step of the experiments is done with collaborative attackers.
Like individual attackers, at first the model is trained against the collaborators,
and then tested on various malicious network setups. Collaborators attack to
other peers as a team and give fair recommendations to each other. The attack
probability of hypocritical attackers is chosen as 20% in all interactions in the
experiments. The team size of collaborators is set to 50 peers.

Table 4. Success ratio of the trust model against collaborators for the file-based attacks

10% 30% 50%

Naive 79.3 75.1 71.9

Hypocritical 61.7 46.3 39.5

Table 4 shows the success ratio of the trust model against collaborators in
networks consisting of varying malicious peer population. Naive collaborators
are identified by good peers after the first interaction. Hence they can not dis-
seminate high recommendations about each other and can not take advantage
of collaboration. The success ratio of preventing attacks in naive collaborators is
79.3% in a network in which 10% of the peers is malicious and, this performance
drops to only 71.9% even the ratio of malicious peers is increased to 50%. How-
ever, hypocritical collaborators are more effective than naive ones. Detection of
hypocritical collaborators is more difficult since they perform attacks intermit-
tently. A hypocritical collaborator can disseminate high recommendations about
its team mates before being identified by good peers. Since the collaborators help
each other in order to evade detection, their identifications become very difficult.
However, the trust model could still prevent 61.7% of file-based attacks carried
out by hypocritical collaborators in a network in which 10% of peers is malicious.
Figure 3 shows the number of file-based attacks over time in a network consist-
ing of 10% collaborators. The model decreases the number of effective attacks
carried out by naive and hypocritical collaborators dramatically.

Recommendation-based attacks carried out by collaborators are presented in
Figure 4. High recommendations given by collaborators unfairly are also counted

12 U.E. Tahta et al.

0

200

400

600

800

1000

1200

0 10000 20000 30000 40000 50000
Fi

le
-b

as
ed

 A
tt

ac
ks

Cycles

10% Malicious Collaborator Attackers
Naive Hypocritical

Fig. 3. File-based attacks over time in a network consisting of 10% collaborators

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

0 10000 20000 30000 40000 50000

Re
co

m
m

en
da

tio
n-

ba
se

d
At

ta
ck

s

Cycles

10% Malicious Collaborator Attackers
Naive Hypocritical

Fig. 4. Recommendation-based attacks over time in a network consisting of 10% col-
laborators

as recommendation-based attacks. Collaboration increases the number of mis-
leading recommendations slightly. However, the trust model still mitigates the
number of recommendation-based attacks. It also prevents misleading recom-
mendations to increase over time.

5 Conclusion

This paper proposes a trust model evolved by using genetic programming. Trust
values of peers are calculated by a formula generated by this model. Malicious
and benign peers are distinguished from each other based on these trust values.
The experimental results show that the model could distinguish different types
of attacks from benign behavior of good peers successfully. Naive and hypocriti-
cal attacker models are studied with individual and collaborative behaviors. The
model is trained against these types of attacks and evaluated on various network
setups containing different ratio of malicious peers. Naive attackers are identi-
fied easily in both individual and collaborator scenarios. Hypocritical attackers
are more difficult to deal with and more successful when they collaborate. The
evolved trust model has decreased the number of file-based attacks in all scenar-
ios with promising success ratios. Recommendation-based attacks are mitigated
but not decreased as much as file-based attacks due to the difficulty of rec-
ognizing misleading recommendations. The evolved model showed that genetic
programming could be employed to build a trust model in peer-to-peer networks.

Evolving a Trust Model for P2P Networks Using GP 13

References

1. Aberer, K., Despotovic, Z.: Managing trust in a peer-2-peer information system. In:
Proc. 10th International Conference on Information and Knowledge Management
(CIKM). ACM (2001)

2. Cornelli, F., Damiani, E., di Vimercati, S.D.C., Paraboschi, S., Samarati, P.:
Choosing reputable servents in a p2p network. In: Proc. of the 11h Int. World
Wide Web Conf., May 7–11 (2002)

3. Kamvar, S.D., Schlosser, M.T., Garcia-Molina, H.: The eigentrust algorithm for
reputation management in p2p networks. In: Proc. of the 12th International Con-
ference on World Wide Web, WWW 2003, pp. 640–651. ACM (2003)

4. Clip2, The gnutella protocol specification v0.4 (document revision 1.2) (2001).
http://www.clip2.com/GnutellaProtocol04.pdf

5. Selcuk, A.A., Uzun, E., Pariente, M.R.: A reputation-based trust management
system for p2p networks. In: Proc. of the IEEE International Symposium on Cluster
Computing and the Grid, CCGRID 2004, pp. 251–258. IEEE Computer Society
(2004)

6. Zhou, R., Hwang, K., Cai, M.: Gossiptrust for fast reputation aggregation in peer-
to-peer networks. IEEE Trans. on Knowl. and Data Eng. 20(9), 1282–1295 (2008)

7. Xiong, L., Liu, L.: Peertrust: Supporting reputation-based trust for peer-to-peer
electronic communities. IEEE Trans. on Knowl. and Data Eng. 16(7), 843–857
(2004)

8. Xiao, L., Liu, Y., Ni, L.M.: Improving unstructured peer-to-peer systems by adap-
tive connection establishment. IEEE Transactions on Computers 54(9), 1091–1103
(2005)

9. Stakhanova, N., Ferrero, S., Wong, J.S., Cai, Y.: A reputation-based trust man-
agement in peer-to-peer network systems. In: ISCA PDCS, ISCA, pp. 510–515
(2004)

10. Brunskill, E.: Building peer-to-peer systems with chord, a distributed lookup ser-
vice. In: Proc. of the Eighth Workshop on Hot Topics in Operating Systems,
HOTOS 2001, p. 81. IEEE Computer Society (2001)

11. Damiani, E., Vimercati, D.C.D., Paraboschi, S., Samarati, P., Violante, F.: A
reputation-based approach for choosing reliable resources in peer-to-peer networks.
In: Proc. of the 9th ACM Conference on Computer and Communications Security,
pp. 207–216. ACM Press (2002)

12. Damiani, E., De Capitani di Vimercati, S., Paraboschi, S., Samarati, P.: Managing
and sharing servents’ reputations in p2p systems. IEEE Transactions on Knowledge
and Data Engineering (TKDE) 15(4) (July/August 2003)

13. Conner, W., Iyengar, A., Mikalsen, T.A., Rouvellou, I., Nahrstedt, K.: A trust
management framework for service-oriented environments. In: WWW 2009. ACM,
pp. 891–900 (2009)

14. Prasad, R.V.V.S.V., Srinivas, V., Kumari, V.V., Raju, K.V.S.V.N.: An effective
calculation of reputation in p2p networks. JNW 4(5), 332–342 (2009)

15. Song, W., Phoha, V.V., Xu, X: An adaptive recommendation trust model in mul-
tiagent system. In: IAT. IEEE Computer Society, pp. 462–465 (2004)

16. Beverly, R., Afergan, M.: Machine learning for efficient neighbor selection in
unstructured p2p networks. In: Proc. of the 2nd USENIX Workshop on Tackling
Computer Systems Problems with Machine Learning Techniques, SYSML 2007,
pp. 1:1–1:6. USENIX Association (2007)

http://www.clip2.com/GnutellaProtocol04.pdf

14 U.E. Tahta et al.

17. Liu, X., Tredan, G., Datta, A.: A generic trust framework for large-scale open
systems using machine learning, CoRR, abs/1103.0086 (2011)

18. Crosbie, M., Stafford, G.: Applying genetic programming to intrusion detection.
In: Proc. of AAAI Symposium on Genetic Programming, pp. 1–8. Cambridge, MA
(1995)

19. Abraham, A., Grosan, C.: Evolving intrusion detection systems. In: Genetic Sys-
tems Programming: Theory and Experiences, vol. 13, pp. 57–79. Springer (2006)

20. Wilson, D., Kaur, D.: Knowledge extraction from kdd’99 intrusion data using gram-
matical evolution. WSEAS Transactions on Information Science and Applications
4, 237–244 (2007)

21. Sen, S., Clark, J.A.: A grammatical evolution approach to intrusion detection on
mobile ad hoc networks. In: Proc. of the Second ACM Conference on Wireless
Network Security, pp. 95–102. ACM (2009)

22. Sen, S., Clark, J.: Evolutionary computation techniques for intrusion detection in
mobile ad hoc networks. Computer Networks 55(15), 3441–3457 (2011)

23. Chen, H., Clark, J.A., Tapiador, J.E., Shaikh, S.A., Chivers, H., Nobles, P.: A
Multi-objective Optimisation Approach to IDS Sensor Placement. In: Herrero, A.,
Gastaldo, P., Zunino, R., Corchado, E. (eds.) CISIS 2009. ASC, vol. 63, pp. 101–
108. Springer, Heidelberg (2009)

24. Selvaraj, C., Anand, S.: Peer profile based trust model for p2p systems using genetic
algorithm. Peer-to-Peer Networking and Applications 5(1), 92–103 (2012)

25. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, Cambridge (1992)

26. Banzhaf, W., Francone, F.D., Keller, R.E., Nordin, P.: Genetic programming: an
introduction: on the automatic evolution of computer programs and its applica-
tions. Morgan Kaufmann Publishers Inc., San Francisco (1998)

27. Hall, M.A.: Correlation-based feature selection for machine learning, Ph.D. disser-
tation (1999)

28. Can, A.B., Bhargava, B.: Sort: A self-organizing trust model for peer-to-peer sys-
tems. IEEE Trans. Dependable Sec. Comput. 10(1), 14–27 (2013)

29. Cramer, N.L.: A representation for the adaptive generation of simple sequential
programs. In: Grefenstette, J.J. (ed.) ICGA, pp. 183–187. Lawrence Erlbaum Asso-
ciates (1985)

30. Ecj 21: A java-based evolutionary computation and genetic programming research
system (2013). http://www.cs.umd.edu/projects/plus/ec/ecj/

31. Dellarocas, C., Immunizing online reputation reporting systems against unfair rat-
ings and discriminatory behavior. In: Proc. of the 2nd ACM Conference on Elec-
tronic Commerce, EC 2000, pp. 150–157. ACM (2000)

http://www.cs.umd.edu/projects/plus/ec/ecj/

A Hybrid Primal Heuristic for Robust
Multiperiod Network Design

Fabio D’Andreagiovanni1,2(B), Jonatan Krolikowski2, and Jonad Pulaj2

1 DFG Research Center MATHEON, Technical University Berlin,
Straße des 17. Juni 135, 10623 Berlin, Germany

2 Department of Optimization, Zuse-Institute Berlin (ZIB),
Takustr. 7, 14195 Berlin, Germany

{d.andreagiovanni,krolikowski,pulaj}@zib.de

Abstract. We investigate the Robust Multiperiod Network Design Prob-
lem, a generalization of the classical Capacitated Network Design Problem
that additionally considers multiple design periods and provides solutions
protected against traffic uncertainty. Given the intrinsic difficulty of the
problem, which proves challenging even for state-of-the art commercial
solvers, we propose a hybrid primal heuristic based on the combination of
ant colony optimization and an exact large neighborhood search. Compu-
tational experiments on a set of realistic instances from the SNDlib show
that our heuristic can find solutions of extremely good quality with low
optimality gap.

Keywords: Multiperiod Network Design · Traffic Uncertainty · Robust
Optimization · Multiband Robustness · Hybrid Heuristics

1 Introduction

The design of a telecommunication network can be essentially described as the
task of establishing the topology of the network and the technological features
(e.g., transmission capacity and rate) of its elements, namely nodes and links.
The dramatic growth that telecommunications have experienced over the last ten
years has greatly increased the complexity and difficulty of the corresponding
design problems. The growing need for taking into account data uncertainty,
such as that of traffic volumes, has made things even more complicated. In this
context, the traditional design approach of professionals, based on a combination
of trial-and-error and simulation, may lead to arbitrarily bad design solutions
and thus the need for optimization-oriented approaches has arisen.

In this paper, we focus on the development of a new Robust Optimization
model to tackle traffic uncertainty in a Multiperiod Network Design Problem

This work was partially supported by the German Research Foundation (DFG),
project Multiperiod Network Optimization, by the DFG Research Center Matheon
(www.matheon.de), Project B3, and by the German Federal Ministry of Education
and Research (BMBF), project ROBUKOM [1], grant 05M10PAA.

c© Springer-Verlag Berlin Heidelberg 2014
A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2014, LNCS 8602, pp. 15–26, 2014.
DOI: 10.1007/978-3-662-45523-4 2

16 F. D’Andreagiovanni et al.

(MP-NDP). This problem constitutes a natural extension of a classical network
design problem, in which we want to decide how to install capacity modules
in the network in order to route traffic flows of communications generated by
users. The extension implies the design over a time horizon made up of multi-
ple periods. Moreover, traffic uncertainty is taken into account to protect design
solutions against deviations of the traffic input data, that may compromise feasi-
bility and optimality of solutions. To the best of our knowledge, the (MP-NDP)
has received little attention and just a few works have investigated it (primarily,
[2] and [3]). These works point out the difficulty of solving multiperiod problems
already for just two periods and (easier) splittable-flow routing [2], and for a pure
routing problem in satellite communications [3]. Our direct and more recent com-
putational experience confirmed this behaviour, even for instances of moderate
size considering a low number of time periods and solved by a state-of-the-art
commercial mixed-integer programming solver.

In this work, our main original contributions are:

1. the first Robust Optimization model for Multiperiod Network Design. The
formulation is developed to tackle traffic uncertainty, modeling data uncer-
tainty by Multiband Robustness [4–6], a new model for Robust Optimization
recently introduced to refine the classical Bertsimas-Sim model [7];

2. a hybrid solution algorithm, based on the combination of an exact large
neighborhood search called RINS [8] with ant colony optimization [9];

3. computational experiments over a set of realistic instances derived from
SNDlib, the Survivable Network Design Library [10], showing that our hybrid
algorithm is able to produce solutions of extremely high quality associated
with very small optimality gap.

The remainder of this paper is organized as follows: in Section 2, we review a
canonical network model for joint routing and capacity installation; in Section
3, we introduce the new formulation for Robust Multiperiod Network Design; in
Sections 4 and 5, we present our hybrid metaheuristic and computational results.

2 Capacitated Network Design

The Capacitated Network Design Problem (CNDP) can be described as follows:
given a network and a set of demands whose flows must be routed between
vertices of the network, we want to install capacities on network edges and
route the flows through the network, so that the capacity constraint of each
edge is respected and the total cost of installing capacity is minimized. The
CNDP has been a central and highly studied problem in Network Optimization,
that appears in a wide variety of real-world applications. For an exhaustive
introduction to the topic, we refer the reader to the well-known book [11].

The CNDP is commonly formalized in the following way: we are given 1) a
network represented by a graph G(V,E), where V is the set of vertices and E
the set of edges; 2) a set of commodities C, each associated with a traffic flow
dc to route from an origin sc to a destination tc; 3) a set of admissible paths Pc

A Hybrid Primal Heuristic for Robust Multiperiod Network Design 17

for routing the flow of each commodity c from sc to tc; 4) a cost γe for installing
one module of capacity φ > 0 on edge e ∈ E. Using this notation, we can model
the problem as an integer linear program:

min
∑

e∈E

γe ye (CNDP-IP)

∑

c∈C

∑

p∈Pc: e∈p

dc xcp ≤ φ ye e ∈ E (1)

∑

p∈Pc

xcp = 1 c ∈ C (2)

xcp ∈ {0, 1} c ∈ C, p ∈ Pc

ye ∈ Z+ e ∈ E ,

The problem uses two families of variables: the binary variables xcp (path-
assignment variables) and the non-negative integer variables ye (capacity
variables). A path-assignment variable xcp is equal to 1 if the entire flow of
a commodity c ∈ C is routed through path p ∈ Pc and 0 otherwise. A capacity
variable ye represents instead the number of capacity modules installed on edge
e ∈ E. The objective function minimizes the total cost of installation. Capac-
ity constraints (1) impose that the summation of all flows routed through an
edge e ∈ E must not exceed the capacity installed on e (equal to the number of
installed modules represented by ye multiplied by the capacity φ granted by a
single module). Constraints (2) impose that flow of each commodity c ∈ C must
be routed through a single path.
Remark 1. This is an unsplittable version of the CNDP, namely the traffic flow
of a commodity c ∈ C cannot be split over multiple paths going from sc to tc, but
must be routed on exactly one path. Moreover, the set of feasible routing paths
Pc of each commodity is pre-established and constitutes an input of the problem.
This is in line with other works based on industrial cooperations (e.g., [12]) and
with our experience [1], in which a network operator typically considers just a few
paths that meet its own specific business and quality-of-service considerations.

3 Multiband-Robust Multiperiod Network Design

We introduce now a generalization of the CNDP, designing the network over mul-
tiple time periods and taking into account traffic uncertainty. The multiperiod
design requires the introduction of a time horizon made up of a set of elemen-
tary time periods T = {1, 2, . . . , |T |}. From a modeling point of view, in the
optimization problem we simply need to add a new index t ∈ T to the decision
variables, to represent routing and capacity installation decisions taken in each
period (we stress however that this greatly increases the size and complexity of
the problem).

Concerning traffic uncertainty, we assume that for each commodity c ∈ C the
demand dc is uncertain, i.e. its value is not known exactly, but lies in a known

18 F. D’Andreagiovanni et al.

range. More specifically, we assume to know a nominal value of traffic d̄c and
maximum negative and positive deviations δ−

c , δ+c from it. The actual value dc

thus belongs to the interval: dc ∈ [d̄c − δ−
c , d̄c + δ+c].

Example 1 (traffic uncertainty). We are given two commodities c1, c2 with
nominal traffic demands d̄c1 = 100 Mb, d̄c2 = 150 Mb and we know that these
values may deviate up to 10%. So the maximum negative and positive deviations
for c1, c2 are δ−

c1 = δ+c1 = 10 Mb, δ−
c2 = δ+c2 = 15 Mb, respectively. The actual

values of traffic are then dc1 ∈ [90, 110] Mb, dc2 ∈ [135, 165] Mb.
The presence of uncertain data in an optimization problem can be very tricky:
it is well-known that even small variations in the value of input data may make
an optimal solution heavily suboptimal, whereas feasible solutions may reveal
to be infeasible and thus completely useless in practice [13]. As a consequence,
in our case we cannot optimize just using the nominal demand values d̄c, but
we must take into account the possibility that demands will vary in the ranges
[d̄c − δ−

c , d̄c + δ+c] that we have characterized. We illustrate the bad effects of
input data deviations by providing an example.
Example 2 (infeasibility caused by deviations). Consider again the com-
modities of Example 1 and suppose that in some link we have installed exactly
the capacity to handle the sum of their nominal values (i.e. we have installed
100+150 Mb of capacity). This capacity dimensioning neglects that the demands
may deviate up to 10%. It is sufficient that one demand increases, while the other
remains the same to violate the capacity constraint of the link, making the design
solution infeasible in practice.
Over the years, many methods such as Stochastic Programming and Robust
Optimization have been proposed in literature for dealing with data uncertainty
in optimization problems. We refer the reader to [13] for a general discussion
about data uncertainty and its effects and for an overview of the most studied
methodologies to deal with them.

In this paper, we tackle data uncertainty by Robust Optimization (RO), a
methodology that has gained a lot of attention over the last decade [7,13]. RO
essentially takes into account data uncertainty by including additional hard con-
straints in the optimization problem. These constraints eliminate those solutions
that are not protected against deviations of the input data from their nominal
values. So a robust optimization problem considers only those solutions that are
completely protected against specified data deviations. The data deviations that
are considered are specified through a so-called uncertainty set. More formally,
suppose that we are given a generic linear program:

v = max c′x with x ∈ F = {Ax ≤ b, x ≥ 0}
and that the coefficient matrix A is uncertain, i.e. we do not know exactly the
value of its entries. However, we are able to identify a family A of coefficient
matrices that represent possible valorizations of the uncertain matrix A, i.e.
A ∈ A. This family represents the uncertainty set of the robust problem. Then
we can produce a robust optimal solution, i.e. a solution that is protected against
data deviations, by considering the robust counterpart of the original problem:

vR = max c′x with x ∈ R = {Ã x ≤ b ∀Ã ∈ A, x ≥ 0} .

A Hybrid Primal Heuristic for Robust Multiperiod Network Design 19

The feasible set R of the robust counterpart contains only those solutions that
are feasible for all the coefficient matrices in the uncertainty set A. Therefore,
R is a subset of the feasible set of the original problem, i.e. R ⊆ F . The choice
of the coefficient matrices included in A should reflect the risk aversion of the
decision maker.

Providing protection entails the so-called price of robustness, namely a dete-
rioration of the optimal value of the robust counterpart w.r.t. the optimal value
of the original problems (i.e., vR ≤ v). This is a consequence of restricting the
feasible set to only robust solutions. The price of robustness reflects the features
of the uncertainty set: uncertainty sets expressing higher risk aversion will take
into account more severe and unlikely deviations, leading to higher protection
but also higher price of robustness; conversely, uncertainty sets expressing risky
attitudes will tend to neglect improbable deviations, offering less protection but
also a reduced price of robustness.
Example 3 (protection against deviations). Following example 2, a simple
way to grant protection would be to install sufficient capacity to deal with the
peak deviations of each commodity. So we should install 110+165 Mb of capacity.

3.1 A Robust Optimization Model for Traffic-Uncertain
Multiperiod Network Design

If we denote by D the uncertainty set associated with the demands of the com-
modities, we can finally state the general form of the robust counterpart of the
multiperiod network design problem as follows:

min
∑

e∈E

∑

t∈T

γet yet

∑

c∈C

∑

p∈Pc: e∈p

d̄ct xcpt + DEVet(x, D) ≤ φ

t∑

τ=1

yeτ e ∈ E, t ∈ T (3)

∑

p∈Pc

xcpt = 1 c ∈ C, t ∈ T

xcpt ∈ {0, 1} c ∈ C, p ∈ Pc, t ∈ T

yet ∈ Z+ e ∈ E, t ∈ T ,

Besides the addition of a new index t ∈ T in the decision variables to represent
decisions taken in each time period, the modifications of the model concentrates
in the robust capacity constraints (3). Each of these constraints considers: 1) the
sum of nominal traffic demands d̄ct of commodities using the edge e in period
t; 2) the overall maximum positive deviation DEVet(x,D) that demands may
experience on edge e in period t and are allowed by the uncertainty set D for
a routing vector x; 3) the overall capacity installed in e since the first period
of the horizon (so we sum up the integer variables yeτ from period 1 to t and
multiply them by the basic capacity φ of a module).
Structuring the Uncertainty Set D. We now have a general definition of the
robust counterpart of the multiperiod problem. A question that is still open is

20 F. D’Andreagiovanni et al.

how to structure the uncertainty set D and deciding which deviations from the
nominal traffic values d̄ct to take into account to produce robust solutions.

To characterize D, we useMultiband Robustness, a new model for Robust Opti-
mization recently introduced to refine and generalize the classical Γ-robustness
model by Bertsimas and Sim [7], while maintaining its accessibility and tractabil-
ity. For a detailed explanation of Multiband Robustness we refer the reader to
[4–6]. Here we directly discuss the adaption of the model to our specific case.
According to the multiband framework, we build a multiband uncertainty set as
follows:
1. for each commodity c ∈ C and time period t ∈ T , we know the nominal value

d̄ct of the traffic coefficient and maximum negative and positive deviations
δ−
ct, δ

+
ct from it. The actual value dct is then such that dct ∈ [d̄ct−δ−

ct, d̄ct+δ+ct];
2. the overall deviation range [d̄ct − δ−

ct, d̄ct + δ+ct] of each coefficient dt
c is par-

titioned into K bands, defined on the basis of K deviation values:
−∞ < δ−

ct = δK−
ct < · · · < δ−1

ct < δ0ct = 0 < δ1ct < · · · < δK+

ct = δ+ct < +∞;
3. through these deviation values, K deviation bands are defined, namely: a set

of positive deviation bands k ∈ {1, . . . , K+} and a set of negative deviation
bands k ∈ {K− + 1, . . . ,−1, 0}, such that a band k ∈ {K− + 1, . . . , K+}
corresponds to the range (δk−1

ij , δk
ij], and band k = K− corresponds to the

single value δK−
ij ;

4. for each capacity constraint (3) defined for an edge e ∈ E, period t ∈ T
and band k ∈ K, a value θetk ≥ 0 is introduced to represent the number
of traffic coefficients of the constraint whose value deviates in band k. Of
course, θetk ≥ 0 must be less or equal than the number of traffic coefficients
that are present in the constraint.

Given the previous characterization of the multiband uncertainty set, the maxi-
mum positive deviation of traffic DEVet(x,D) of a constraint (3) can be found by
solving a binary linear program (see [4] for details). Since the polytope associated
with the binary program is shown to be integral, by considering its relaxation
and by exploiting strong duality, it is possible to reformulate the original trivial
robust counterpart as the following linear and compact robust counterpart (we
refer the reader to [4] for a formal proof of the result):

min
∑

e∈E

∑

t∈T

γet yet (Rob-MP-CNDP)

∑

c∈C

∑

p∈Pc: e∈p

d̄ct xcpt +

+
∑

k∈K

θetk wetk +
∑

c∈C

∑

p∈Pc: e∈p

zecpt ≤ φ

t∑

τ=1

yeτ e ∈ E, t ∈ T

wetk + zecpt ≥ δctk xcpt e ∈ E, c ∈ C, p ∈ Pc : e ∈ p,

t ∈ T, k ∈ K (4)
wetk ∈ R e ∈ E, t ∈ T, k ∈ K (5)
zecpt ≥ 0 e ∈ E, c ∈ C, p ∈ Pc : e ∈ p, t ∈ T

(6)

A Hybrid Primal Heuristic for Robust Multiperiod Network Design 21

∑
p∈Pc

xcpt = 1 c ∈ C, t ∈ T

xcpt ∈ {0, 1} c ∈ C, p ∈ Pc, t ∈ T

yet ∈ Z+ e ∈ E, t ∈ T ,

This formulation includes additional constraints (4) and variables (5),(6) which
are derived from the dualization operation that allow to linearly reformulate the
original (non-linear) problem including the term DEVet(x,D) in each capacity
constraint (see [4] for details).

In principle, we can get a robust optimal solution for (Rob-MP-CNDP) by
using use any commercial mixed-integer programming software. However, as
showed in the computational experiment section, getting feasible solutions to
this problem may be a challenge even for a state-of-the-art solver like IBM
ILOG CPLEX (http://www-01.ibm.com). In the next section, we thus propose
a hybrid exact-ant colony primal heuristic that is able to find solutions of very
high quality.

4 A Hybrid Primal Heuristic for the Rob-MP-CNDP

Attracted by the effectiveness of MIP-based and bio-inspired heuristics in hard
network design problems (see, for example [9,14–16]), we present an original
hybrid primal heuristic based on the combination of Ant Colony Optimization
(ACO) and an exact large neighbourhood search. ACO is a metaheuristic origi-
nally proposed by Dorigo and colleagues for combinatorial optimization [17] and
later extended to integer and continuous problems (e.g., [9]). Over the years sev-
eral refinements of the basic algorithm have been proposed (e.g., [18,19]). ACO
was inspired by the behaviour of ants searching for food and is essentially based
on the definition of a cycle where a number of feasible solutions are iteratively
built in parallel, using information about solutions built in previous executions
of the cycle. An ACO algorithm presents the following general structure:

1. UNTIL an arrest condition is reached DO (Gen-ACO)
(a) Ant-based solution construction
(b) Pheromone trail update

2. Daemon actions

We now proceed to detail each phase of the previous sketch for our hybrid
ACO-exact algorithm for the (Rob-MP-CNDP). Our approach is hybrid since
the canonical ACO construction phase is followed by a daemon-action phase,
based on an exact large neighborhood search formulated as a mixed-integer linear
program.
Ant-Based Solution Construction. In the step 1 of the cycle, m ≥ 0 ants are
defined and each ant iteratively builds a feasible solution for the optimization
problem. At every iteration, the ant is in a state corresponding with a partial
solution of the problem and can further complete the solution by making a move

22 F. D’Andreagiovanni et al.

and thus fixing the value of a new non-fixed variable. The move is chosen prob-
abilistically, evaluating pheromone trail values. For a more detailed description
of the elements and actions of step 1, we refer the reader to the paper [19] by
Maniezzo. This paper presents ANTS, an improved ANT algorithm that we have
taken as reference for our work. We considered ANTS particularly attractive as
it proposes a series of improvements for ACO that allow to better exploit polyhe-
dral information about the problem. Furthermore, ANTS is based on a reduced
number of parameters and uses more efficient mathematical operations.

Before describing how our ANTS implementation is structured, we make
some preliminary considerations. The formulation (Rob-MP-CNDP) is based on
four families of variables: 1) the path assignment variables xcpt; 2) the capacity
variables yet; 3-4) the auxiliary variables wetk, zecpt coming from robust dual-
ization. Though we have to deal with four families, we can notice that routing
decisions taken over the time horizon entirely determine the capacity installation
of minimum cost. Indeed, once the values of all path assignment variables are
fixed, the routing is completely established and the worst traffic deviation term
DEVet(x,D) can be efficiently derived without the auxiliary variables wetk, zecpt

[4,5]. So we can derive the total traffic Det sent over an edge e in period t in
the worst case. The minimum cost installation can then be derived through a
sequential evaluation from period 1 to period T, keeping in mind that we must
have

⌈
Det

φ

⌉
capacity modules on e in t to accommodate the traffic. As a conse-

quence, in the ant-construction phase we can limit our attention to the binary
assignment variables and we introduce the concept of routing state.

Definition 1. Routing state (RS): let P =
⋃

c∈C Pc and let R ⊆ C × P × T
be the subset of triples (c, p, t) representing the assignment of path p ∈ Pc to
commodity c in period t ∈ T . A routing state is an assignment of paths to a
subset of commodities in a subset of time periods which excludes that multiple
paths are assigned to a single commodity. Formally:

RS ⊆ R : � ∃(c1, p1, t1), (c2, p2, t2) ∈ RS : c1 = c2 ∧ p1, p2 ∈ Pc1 ∧ t1 = t2 .

We say that a routing state RS is complete when it specifies the path used by
each commodity in each time period (thus |RS| = |C||T |). Otherwise the RS is
called partial and we have |RS| < |C||T |).

In the ANTS algorithm that we propose, we decided to assign paths con-
sidering time periods and commodities in a pre-established order. Specifically,
we establish the routing in each time period separately, starting from t = 1
and continuing up to t = |T |, and in each time period commodities are sorted
in descending order w.r.t. their nominal traffic demand. Formally, this can be
sketched through the following cycle that builds a complete routing state:

FOR t := 1 TO |T | DO
1. sort c ∈ C in descending order of d̄ct.
2. FOR (sorted c ∈ C) DO

(a) assign a single path p ∈ Pc to c;
END FOR

END FOR

A Hybrid Primal Heuristic for Robust Multiperiod Network Design 23

For an iteration (t, c) of the above nested cycles, the assignment of a path to
a commodity corresponds with an ant moving from a partial routing state RSi

to a partial routing state RSj such that: RSj = RSi ∪ {(c, p, t)} with p ∈ Pc .
We note that by the definitions of routing state a sequence of moves is actually
a sequence of fixings of decision variables, as done in [19].

The probability that an ant k moves from a routing state i to a more complete
routing state j, chosen among a set of feasible routing states, is defined by
the improved formula of [19]: pk

ij = α τij+(1−α) ηij∑
f∈F α τif+(1−α) ηif

, where α ∈ [0, 1] is
a parameter assessing the relative importance of trail and attractiveness. As
discussed in [19], the trail values τij and the attractiveness values ηij should
be provided by suitable lower bounds of the considered optimization problem.
In our particular case: 1) τij is derived from the values of the variables in the
solution associated with the linear relaxation of the robust counterpart (Rob-
MP-CNDP); 2) ηij is equal to the optimal solution of the linear relaxation of
the nominal multiperiod network design problem, i.e. the problem that does not
consider the traffic uncertainty. The optimum of this problem can be quickly
computed and its computation becomes faster as more variables are fixed.
Daemon Actions: Relaxation Induced Neighborhood Search. At the
end of the ant-construction phase, we try to improve the quality of the feasible
solution found by executing an exact local search in a large neighborhood. In
particular, we adopt a modified relaxation induced neighborhood search (RINS)
(see [8] for an exhaustive description of the method). Let (x̄, ȳ) be a feasible
solution of (Rob-MP-CNDP) found by an ant and (xLR, yLR) be an optimal
(continuous) solution of the linear relaxation of (Rob-MP-CNDP) Moreover,
let (x̄, ȳ)j , (xLR, yLR)j denote the j-th component of the vectors. Our modified
RINS (mod-RINS) solves a sub-problem of (Rob-MP-CNDP) where:

1. we fix the variables whose value in (x̄, ȳ) and (xLR, yLR) differs of at most
ε > 0, i.e.:
(x̄, ȳ)j = 0 ∩ (xLR, yLR) ≤ ε =⇒ (x, y)j = 0
(x̄, ȳ)j = 1 ∩ (xLR, yLR) ≥ 1 − ε =⇒ (x, y)j = 1

2. impose a solution time limit of T .

A time limit is imposed since the subproblem may be difficult to solve, so the
exploration of the neighbourhood may need to be truncated. Note that in point
1 we generalize the fixing rule of RINS, in which ε = 0.
Pheromone Trail Update. At the end of each ant-construction phase h, the
pheromone trails of a move τij(h − 1) are updated according to an improved
formula proposed in [19]:

τij(h) = τij(h − 1) +

m∑

k=1

τk
ij with τk

ij = τij(0) ·
(

1 − zk
curr − LB

z̄ − LB

)
, (7)

where the values τij(0) and LB are set by using the linear relaxation of (Rob-MP-
CNDP): τij(0) is set equal to the values of the corresponding optimal decision
variables and LB equal to the optimal value of the relaxation. Additionally, zk

curr

24 F. D’Andreagiovanni et al.

is the value of the solution built by ant k and z̄ is the moving average of the
values of the last ψ feasible solutions built. As noticed in [19], adopting formula
(7) allows to replace the pheromone evaporation factor, a tricky parameter, with
the moving average ψ whose setting has been shown to be much less critical.
Algorithm 1 details the structure of our original hybrid exact-ACO algorithm.
The algorithm includes an outer loop repeated until a time limit is reached. At
each execution of the loop, an inner loop defines m ants to build the solutions.
Pheromone trail updates are done at the end of each execution of the inner loop.
Once the ant construction phase is over, mod-RINS is applied so to try to get
an improvement.

Algorithm 1. Hybrid ACO-exact algorithm for (Rob-MP-CNDP)

1. Compute the linear relaxation of (Rob-MP-CNDP) and initialize the values of
τij(0) by it.

2. UNTIL time limit is reached DO
(a) FOR μ := 1 TO m DO

i. build a complete routing state;
ii. derive a complete feasible solution for (Rob-MP-CNDP);

END FOR
(b) Update τij(t) according to (7).

3. apply mod-RINS to the best feasible solution.

5 Experimental Results

We tested the performance of our hybrid algorithm on a set of 15 instances based
on realistic network topologies from the SNDlib [10] defined in collaboration
with industrial partners from former and ongoing projects. The experiments
were performed on a machine with a 2.40 GHz quad-core processor and 16 GB
of RAM and using IBM ILOG CPLEX 12.4. All the instances led to very large
and hard to solve robust multiperiod network design problems. We observed that
even a state-of-the-art solver like CPLEX had troubles identifying good feasible
solutions and in all the cases the final optimality gap was over 90%. In contrast,
as clear from Table 1, in most cases our hybrid primal heuristic was able to find
very high quality solutions associated with very low optimality gaps.

After executing preliminary tests, we found that an effective setting of the
parameters of the heuristic was: α = 0.5 (balancing attractiveness and trail
level), m = 3 ants, ψ = m (width of the moving average equal to the number
of ants), ε = 0.1 (tolerance of fixing in mod-RINS), T = 20 minutes (time
limit in mod-RINS). The overall time limit for the execution of the heuristic
was 5 hours. The same time limit was imposed on CPLEX when used to solve
the robust counterpart (Rob-MP-CNDP). Each commodity admits 5 feasible
paths, i.e. |Pc| = 5,∀c ∈ C and 3 positive deviations bands including the null
deviation band. For each instance, in Table 1 we report its ID and features
(|V | = no. vertices, |E| = no. edges, |C| = no. commodities, |T | = no. time
periods). Moreover, we show the performance of the hybrid solution approach,

A Hybrid Primal Heuristic for Robust Multiperiod Network Design 25

that is denoted by the three measures c∗(ACO), c∗(ACO+RINS), gapAR%,
which represent the value of the best solution found by pure ACO, the value of
the best solution found by ACO followed by RINS and the corresponding final
optimality gap). We also show the performance of CPLEX, which is denoted by
measures c∗(IP) and gapIP% representing the value of the best solution found
and the corresponding final optimality gap.

The best solutions found by our hybrid algorithm have in most cases a value
that is at least one order of magnitude better than those found by CPLEX
(2700% better on average). The results are of very high quality and, given the
very low optimality gap, we can suppose that some of these solutions are actually
optimal. We notice that in most cases executing RINS after the ant-construction
phase can remarkably improve the value of the best solution found by the ants.

Table 1. Experimental results

ID |V | |E| |C| |T | c∗(ACO) c∗(ACO+RINS) gapAR% c∗(IP) gapIP%

5 1.16E07 5.68E06 29.8 1.37E08 97.1
Germany50 50 88 662 7 2.12E07 9.02E6 15.5 3.48E08 97.8

10 6.66E07 5.75E08 96.2 1.25E09 98.2

5 5.89E06 2.34E06 1.3 9.52E07 97.6
Pioro40 40 89 780 7 1.42E07 5.10E06 3.1 2.40E08 97.9

10 4.78E07 1.62E07 0.4 8.45E08 98.1

5 6.41E06 3.04E06 23.0 6.01E07 96.1
Norway 27 51 702 7 1.44E07 5.73E06 12.8 1.47E08 96.6

10 4.91E07 1.74E07 7.7 5.15E08 96.9

5 1.55E06 6.04E05 2.2 1.74E07 96.6
Geant 22 36 462 7 3.61E06 1.29E06 1.6 4.32E07 97.1

10 1.23E07 4.30E06 0.5 1.24E08 96.5

5 2.55E05 1.02E05 4.9 1.50E06 93.5
France 25 45 300 7 5.97E05 2.18E05 2.2 3.01E06 92.9

10 2.00E06 6.81E05 1.0 1.62E07 95.8

6 Conclusion and Future Work

We studied a Robust Optimization model for the Multiperiod Network Design
Problem to tackle uncertainty of traffic demands. Robust solutions are determin-
istically protected against deviations of input traffic data, that may compromise
the quality of produced solutions. The increase in complexity and dimension
of the problem caused by considering multiple periods and robustness prevents
state-of-the-art commercial solvers from finding good quality solutions, so we
have defined a hybrid heuristic based on the combination of ant colony opti-
mization and an exact large neighborhood search. Computational experiments
on a set of realistic instances from the SNDlib showed that our heuristic can find
solutions of extremely good quality. As future work, we plan to refine the heuris-
tic (for example, by improving the ant-construction phase) and to integrate it
with a branch-and-cut algorithm to enhance its computational performance.

26 F. D’Andreagiovanni et al.

References

1. Bauschert, T., Büsing, C., D’Andreagiovanni, F., Koster, A.M.C.A., Kutschka, M.,
Steglich, U.: Network planning under demand uncertainty with robust optimiza-
tion. IEEECommunicationsMagazine52(2), 178—185 (2014). doi:10.1109/MCOM.
2014.6736760

2. Lardeux, B., Nace, D., Geffard, J.: Multiperiod network design with incremental
routing. Networks 50(1), 109–117 (2007)

3. Gamvros, I., Raghavan, S.: Multi-period traffic routing in satellite networks. Europ.
J. Oper. Res. 219(3), 738–750 (2012)

4. Büsing, C., D’Andreagiovanni, F.: New Results about Multi-band Uncertainty in
Robust Optimization. In: Klasing, R. (ed.) SEA 2012. LNCS, vol. 7276, pp. 63–74.
Springer, Heidelberg (2012)

5. Büsing, C., D’Andreagiovanni, F.: A new theoretical framework for robust opti-
mization under multi-band uncertainty. In: Helber, S., et al. (eds.) Operations
Research Proceedings 2012, pp. 115–121. Springer, Heidelberg (2014)

6. Büsing, C., D’Andreagiovanni, F., Raymond, A.: 0–1 multiband robust optimiza-
tion. In: Huisman, D., et al. (eds.) Operations Research Proceedings 2013, pp.
89–95. Springer, Heidelberg (to appear, 2014)

7. Bertsimas, D., Sim, M.: The price of robustness. Oper. Res. 52(1), 35–53 (2004)
8. Danna, E., Rothberg, E., Le Pape, C.: Exploring relaxation induced neighborhoods

to improve mip solutions. Math. Program. 102, 71–90 (2005)
9. Dorigo, M., Di Caro, G., Gambardella, L.: Ant algorithms for discrete optimization.

Artificial Life 5(2), 137–172 (1999)
10. Orlowski, S., Wessäly, R., Pioro, M., Tomaszewski, A.: SNDlib 1.0 - survivable

network design library. Networks 55(3), 276–286 (2010)
11. Ahuja, R., Magnanti, T., Orlin, J.: Network Flows: Theory, Algorithms, and Appli-

cations. Prentice Hall, Upper Saddle River (1993)
12. Bley, A., Grötschel, M., Wessäly, R.: Design of broadband virtual private networks:

Model and heuristic for the b-win. vol. 53. DIMACS SDMTCS, pp. 1–16 (2000)
13. Ben-Tal, A., El Ghaoui, L., Nemirovski, A.: Robust Optimization. Springer, Hei-

delberg (2009)
14. D’Andreagiovanni, F.: On Improving the Capacity of Solving Large-scale Wireless

Network Design Problems by Genetic Algorithms. In: Di Chio, C., Brabazon, A.,
Di Caro, G.A., Drechsler, R., Farooq, M., Grahl, J., Greenfield, G., Prins, C.,
Romero, J., Squillero, G., Tarantino, E., Tettamanzi, A.G.B., Urquhart, N., Uyar,
A.Ş. (eds.) EvoApplications 2011, Part II. LNCS, vol. 6625, pp. 11–20. Springer,
Heidelberg (2011)

15. D’Andreagiovanni, F., Mannino, C., Sassano, A.: Negative Cycle Separation in
Wireless Network Design. In: Pahl, J., Reiners, T., Voß, S. (eds.) INOC 2011.
LNCS, vol. 6701, pp. 51–56. Springer, Heidelberg (2011)

16. Kambayashi, Y.: A review of routing protocols based on ant-like mobile agents.
Algorithms 6(3), 442–456 (2013)

17. Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: Optimization by a colony of
cooperating agents. IEEE Trans. Syst. Man Cybern. B 26(1), 29–41 (1996)

18. Gambardella, L.M., Montemanni, R., Weyland, D.: Coupling ant colony systems
with strong local searches. Europ. J. Oper. Res. 220(3), 831–843 (2012)

19. Maniezzo, V.: Exact and approximate nondeterministic tree-search procedures for
the quadratic assignment problem. INFORMS J. Comp. 11(4), 358–369 (1999)

http://dx.doi.org/10.1109/MCOM.2014.6736760
http://dx.doi.org/10.1109/MCOM.2014.6736760

A Trajectory-Based Heuristic to Solve
a Three-Objective Optimization Problem
for Wireless Sensor Network Deployment

Jose M. Lanza-Gutiérrez(B), Juan A. Gómez-Pulido,
and Miguel A. Vega-Rodŕıguez

Department of Computers and Communications Technologies,
Polytechnic School, University of Extremadura, Campus Universitario s/n,

10003 Caceres, Spain
{jmlanza,jangomez,mavega}@unex.es

Abstract. Nowadays, wireless sensor networks (WSNs) are widely used
in more and more fields of application. However, there are some impor-
tant shortcomings which have not been solved yet in the current lit-
erature. This paper focuses on how to add relay nodes to previously
established static WSNs with the purpose of optimizing three important
factors: energy consumption, average coverage and network reliability. As
this is an NP-hard multiobjective optimization problem, we consider two
well-known genetic algorithms (NSGA-II and SPEA2) and a multiobjec-
tive approach of the variable neighborhood search algorithm (MO-VNS).
These metaheuristics are used to solve the problem from a freely available
data set, analyzing all the results obtained by considering two multiob-
jective quality indicators (hypervolume and set coverage). We conclude
that MO-VNS provides better performance on average than the standard
algorithms NSGA-II and SPEA2.

Keywords: Coverage · Energy efficiency · Multiobjective optimization ·
NSGA-II · SPEA2 · Relay node · Reliability · VNS · Wireless sensor
network

1 Introduction

At the moment, Wireless Sensor Networks (WSNs) are one of the most emerging
wireless technologies. They are applied in many fields, such as precision agricul-
ture, industrial control, robotic, rescue operations or forest fire detection [18].

A traditional WSN is composed of a set of sensors capturing information (i.e.
physical variables), and a sink node collecting all this information [4]. There are
some important factors that encourage the use of WSNs, where for other tech-
nologies the deployment of the network would be more expensive or impossible.
Some of them are the use of power-autonomous low-cost devices and the absence
of wires. However, WSNs also have important shortcomings affecting important
factors like energy costs and Quality of Service (QoS).
c© Springer-Verlag Berlin Heidelberg 2014
A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2014, LNCS 8602, pp. 27–38, 2014.
DOI: 10.1007/978-3-662-45523-4 3

28 J.M. Lanza-Gutiérrez et al.

Because of sensors are often powered by batteries, WSNs are particulary
sensitive to energy expenditure. The sensors send all the information captured
to the collector node, implying an energy cost. In a star topology, this energy
consumption is similar in all the sensors. However, in a multi-hop topology is
habitual the existence of bottlenecks: some sensors are subject to a higher energy
cost. These bottlenecks adversely affect the behavior of the network. With the
aim of avoiding this situation, a new type of device specialized in communication
tasks called router or relay node was added to WSNs recently [16].

The efficient design of WSNs is defined in the literature as an NP-hard
optimization problem [22]. Consequently, non-conventional techniques are often
used, such as heuristics and metaheuristics. Heuristics are techniques designed to
solve an specific problem. Metaheuristics are procedures to solve very general
types of problems. We find two main lines of research for WSNs, works optimizing
traditional WSNs, and works adding relay nodes to traditional WSNs, the so-
called Relay node Placement Problem (RNPP). Taking the first approach, there
are some relevant contributions using heuristics. Cardei et el. [1] split WSNs into
disjoint set of sensors, deciding which must be active to optimize the network
lifetime. Cheng et al [2] assigned different power transmission levels to the sen-
sors to reduce the energy consumption. Other authors considered metaheuristics
from the Evolutionary Computation (EC) for the same purpose. In this line,
Konstantinidis and Yang assigned power transmission levels to the sensors as
in [11], but optimizing network lifetime and coverage. Hu et al. [10] maximized
the network lifetime splitting WSNs (as do [1]). However, this research line has
two main shortcomings. Firstly, it is habitual the use of redundant sensors to
maximize the network lifetime, implying costly networks. Secondly, network size
is limited because of more sensors implies a higher energy cost.

The works taking the second approach try to overcome these shortcomings
by adding routers. Beginning with heuristics, Wang et al. [22] considered routers
with processing limitations to optimize the energy cost and Han et al. [9] opti-
mized the fault-tolerance. On the other hand, other authors considered EC.
Perez et al. [19] optimized the number of routers and the energy expenditure
and Zhao and Chen [23] optimized both average path length and energy cost.

Our work follows this second line of research. We add relay nodes to pre-
viously established static WSNs in order to optimize three important factors:
average energy consumption, average coverage and network reliability. The fol-
lowing contributions are presented in the curse of this paper:

– The three-objective approach for the RNPP is solved by using three different
metaheuristics: two well-known genetic algorithms NSGA-II [6] and SPEA2
[24], and a multiobjective version of the Variable Neighborhood Search algo-
rithm (MO-VNS) [8].

– All the results obtained are analyzed in depth thought a widely recognized
statistical methodology. Using as quality indicators two multiobjective met-
rics: hypervolume and set coverage.

A Trajectory-Based Heuristic to Solve a Three-Objective Optimization 29

R1 R2 RN

(x1, y1) (x2, y2) . . . (xN, yN)

Ri = (xi,yi) for i=1 , 2 , … , N
where xi [0, Dx] and yi [0, Dy]

2

Chromosome definition

R4

R3

R2

R1

Dx

Chromosome example: surface of size 200x200
R1 R2 R3 R4

(106.10, 29.20) (186.21,90.68) (75.14,176.52) (55.84, 85.46)

Router Sensor Collector

Note: - Coordinates of sensors and collector
are provided by the instance.

- Coordinates of routers are provided
by the optimization process.

Fig. 1. Network definition considered in the RNPP

– In the current literature, some papers use randomly generated data set or
non-public ones. In this work, we consider a freely available data set, implying
that this work can be replicated and improved by other authors.

The remainder of this paper is structured as follows. In Section 2, a formal state-
ment of the RNPP is provided. Algorithms used appear in Section 3. Experi-
mental results are discussed in Section 4. Finally, our concluding remarks are
left for Section 5.

2 A Realistic Approach for the Relay Node Placement
Problem

The WSN considered in the RNPP is composed of three types of wireless static
devices placed on the same 2D-surface of size Dx × Dy: a sink node (also called
collector node), M sensors and N routers or relay nodes (see Fig. 1). Each
sensor obtains information about the environment with a sensibility radius Rs

on a regular basis. This information is sent to the sink node, being this node the
only connection point of the WSN to the outside. The routers only relay all the
received information to the collector node. All the devices communicate among
them with a same communication radius Rc. The routers and the collector node
have an unlimited power supply, and the sensors are powered by batteries. Thus,
a sensor is alive if its battery is not exhausted.

The routing protocol used by sensors and routers is the same. It is based on
the minimum-distance path between devices provided by Dijkstra’s algorithm
[3]. In addition, we consider a perfect synchronization and a perfect medium
access, ensuring that there are no collisions among devices.

Let C and Sr be the collector node and the set of routers, respectively,
and let Ss(t) be the set of alive sensors at time t. With the aim of modeling
the energy expenditure suffered by the sensors, the energy model proposed by
A. Konstantinidis et al. [11] is considered. Then, according to this model, the

30 J.M. Lanza-Gutiérrez et al.

transmission power needed by a sensor i ∈ Ss(t) to reach another device j ∈
Ss(t) ∪ Sr ∪ C at time t is given by

Pi(t) = β · dα
i,j t > 0, (1)

where β > 0 is the transmission quality parameter, di,j is the Euclidean distance
between i and j, and α > 0 is the path loss exponent. Thus, the residual energy
of the sensor i at time t is given by

Ei(t) = Ei(t − 1) − [(ri(t) + 1) · Pi(t) · amp · K], t > 0, (2)

where ri(t) is the number of packets that the sensor i receives and relays to the
collector node at time t, the +1 term is the information packet that the sensor
i captures at this time and sends, amp is the energy consumption per bit of the
power amplifier, and K is the information packet size. Initially, all the sensors
start with the same energy charge IEC in their batteries. Hence,

Ei(t) = IEC ∀i ∈ Ss(t), t = 0. (3)

When the residual energy of a sensor equals 0, the device cannot capture more
information or be linked again. Following this energy model, we assume the energy
expenditure depends only on the most expensive task: the sending. The receiving,
processing and sensing tasks are considered negligible.

The network lifetime (LF) is an important concept in this type of network.
It is the amount of time units over which a WSN is able to provide enough
information about its environment. For this purpose, a coverage threshold (CV)
is often used. If the coverage provided by the alive sensors is lower than CV , we
consider that the network lifetime has come to its end.

In a previous work two important factors were optimized [15]: average energy
consumption and average coverage . Such as in [14], in this paper we include a
third factor which provides a better realism to this problem definition: network
reliability. These three factors are defined as:

– Average energy consumption(AEC, to minimize): It is the average energy
expenditure of the sensors over LF (in Joules), that is

f1 = LF−1

⎡
⎣LF∑

t=1

∑
i∈Ss(t)

(
Ei(t − 1) − Ei(t)

|Ss(t)|
)⎤

⎦ , (4)

where |Ss(t)| is the cardinal of the set Ss(t).
– Average coverage(AC, to maximize): It is the percentage of the surface area

covered by the sensors over LF . There are two main ways to obtain this
value in the literature [21]. Some authors consider that a sensor covers a
circumference of radius Rs. Hence the global coverage is the union of the
M areas. Other authors place a matrix of binary demand points on the
surface, where a demand point equals 1 if there is some alive sensor at a
distance lower than Rs, and 0 otherwise. Finally the activated points are

A Trajectory-Based Heuristic to Solve a Three-Objective Optimization 31

counted. We consider the second approach. Although the first one is a little
bit accurate, the second one is less hard to compute. Thus, AC is given by

f2 = LF−1

⎡
⎣LF∑

t=1

�Dx�∑
x=1

�Dy�∑
y=1

(
Rx,y(t)

�Dx� × �Dy�
)⎤

⎦ , (5)

where Rx,y(t) is the demand point placed at the coordinates (x,y) of the
matrix of �Dx� × �Dy� binary demand points at time t.

– Network reliability(NR, to maximize): It is the average network fault-
tolerance, showing the probability that the sensors successfully send infor-
mation to the sink node. Let Rei be the reliability of the sensor i defined in
[5] as

Rei = 1 −
P∏

l=1

(1 − (1 − Err)hl), (6)

where P is the number of disjoint paths between i and the sink node given
by Suurballe’s Algorithm [20], hl is the number of hops in the l-th disjoint
path, and Err is the local channel error. Thus, NR is defined as

f3 =
∑

i∈Ss(t)

(
Rei

M

)
t = 0. (7)

To summarize, the RNPP is defined as an NP-hard multiobjective optimiza-
tion problem. The objective is to place N routers to optimize a traditional WSN
defined by the parameters Dx, Dy, Rs, Rc, IEC, K, CV , α, β, amp, Err and
the positions of the collector node and the M sensors.

3 Multiobjective Optimization: The Algorithms Used

As stated before, the RNPP is an NP-hard optimization problem. This type of
problem is solved through approximated techniques. Accordingly, we consider
three different metaheuristics. NSGA-II and SPEA2 belong to genetic algo-
rithms, a subtype of evolutionary algorithm characterized by encoding their
individuals as chromosomes. An individual is a possible solution to the opti-
mization problem. The remainder is a trajectory algorithm, solving methods
whose search process follows a trajectory in the search space.

NSGA-II uses two populations Pt and Qt of the same size PS. Pt saves the
parents of generation t, and Qt saves the offspring generated by individuals in
Pt. Initially, Pt is randomly generated and Qt is empty. So long as the stop
condition is not reached, both populations are combined in a new set Rt of
size 2PS. Then, according to both rank and crowding measures, the best PS
solutions of Rt are inserted into the new parent population Pt+1. Next, a new
Qt+1 is generated based on Pt+1. To this end, and so long as Qt+1 is not filled,
a pair of individuals are selected from Pt+1 though binary tournament method.
Then, a new individual is generated and inserted into Qt+1 through crossover

32 J.M. Lanza-Gutiérrez et al.

Algorithm 1. MO-VNS with perturbation mechanism
1: add a random solution to the emply population Pv

2: generate the set of neighborhood structures Ns

3: while not stop condition do
4: while there are solutions non − used during the search in Pv do
5: a ← randomly pick a non − used solution from Pv

6: nsk
← randomly pick a neighborhood structure, k ∈ 1, . . . , kmax, nsk

∈ Ns

7: while k <= kmax do
8: ã ← generate a neighborhood solution of a in nsk

, marking a as used

9: add ã to Pv and remove all the dominated solutions
10: if ã ∈ Pv then
11: k ← 1 and a ← ã
12: else
13: k ← k + 1
14: end if
15: end while
16: end while
17: perform perturbation in Pv to avoid local minima
18: reset all the marks of Pv

19: end while

and mutation operators,. As crossover operator, we consider the usual one-point
crossover. As mutation operator, we assume a greedy strategy: router coordinates
are randomly changed, but only changes that provide a better individual are
accepted. The same encoding is used for the three algorithms. A chromosome is
a 2D-coordinate list of M routers (see Fig. 1).

SPEA2 uses an auxiliary population Pt where the best solutions are saved
along generations, and a regular population Pt with sizes PS and PS respectively.
Initially, Pt is randomly generated and Pt is empty. So long as the stop condition
is not reached, the fitness value for each individual in Pt ∪ Pt is obtained. This
fitness is based on the Pareto dominance concept and additional density infor-
mation. The best solutions according to this fitness are inserted into the new
Pt+1. Next, a new Pt+1 is generated based on Pt+1, using the binary tournament,
mutation and crossover strategies as discussed for NSGA-II.

MO-VNS performs local searches by using neighborhood structures. Let a
neighborhood structure be the maximum displacement that a router experiences
during the local search. Thus, the set of neighborhood structures Ns is given by

Ns =
{

nsk
∈ R / nsk

=
min(Dx,Dy) ∗ k

dv ∗ kmax

}
nsk

< nsk+1 , (8)

for k = 1, . . . , kmax, where kmax is the number of neighborhood structures,
dv is a factor which delimites the displacement, and min(Dx,Dy) provides the
minimum value between Dx and Dy.

As outlined in Algorithm 1, MO-VNS uses a population Pv where only non-
dominated individuals are kept. Each individual in Pv has a flag which deter-
mines if the solution was used during the search. Initially, a random solution
is added to Pv (line 1). Then, so long as the stop condition is not reached, a
non-used solution a ∈ Pv and a neighborhood structure nsk

∈ Ns are randomly
selected (lines 5-6). Next, a new solution is generated through a local search
using a ∈ Pv as base solution (line 8), marking a ∈ Pv as used. The local search

A Trajectory-Based Heuristic to Solve a Three-Objective Optimization 33

Table 1. Instances used in this paper

Instance Dx×Dy M HO AEC HO AC HO NR

100x100 15 30 100x100 15 0.1091 89.24% 95.67%
200x200 15 30 200x200 57 0.2791 87.10% 93.23%
300x300 15 30 300x300 128 0.4225 76.44% 85.28%

Table 2. Hypervolume reference points

Instance Ref AEC Ref AC Ref NR

ideal nadir ideal nadir ideal nadir

100x100 15 30 0.02 0.10 1.00 0.60 1.00 0.50
200x200 15 30 0.10 0.30 1.00 0.60 1.00 0.50
300x300 15 30 0.04 0.50 1.00 0.60 1.00 0.50

Table 3. Parametric sweep

NSGA-II

Parameter Value Range

Mutation 0.80 0.05,0.10,0.15,. . . ,0.95
Crossover 0.80 0.05,0.10,0.15,. . . ,0.95

SPEA2

Parameter Value Range

Mutation 0.70 0.05,0.10,0.15,. . . ,0.95
Crossover 0.60 0.05,0.10,0.15,. . . ,0.95

MO-VNS

Parameter Value Range

Mutation 0.10 0.05,0.1,0.15,. . . ,0.95
kmax 10 3,4,5,6,7,8,. . . ,14
dv 2 1,1.5,2,2.5,3,3.5,. . . ,6.5

is given by

Rãz
= Raz

+
(nsk

2
− rand(nsk

)
)

nsk
∈ Ns, k ∈ 1, . . . , kmax, (9)

for z = 1, . . . , N , where Raz
and Rãz

are the routers placed on the z-th gene of
the solutions a and ã respectively, and rand(nsk

) is a random number between
0 and nsk

. Next, the new solution is added to Pv, removing all the dominated
solutions (line 9). If ã ∈ Pv, the local search provided a good solution, and then
the local search is repeated again using a k value of 1 and taking ã as base
solution (line 11). Otherwise, k is increased, so long as k takes the maximum
value kmax (line 13). Once all the solutions are explored, the marks are reset, and
then all the individuals are eligible for a new selection again (line 18). Before
starting the search process again, a perturbation mechanism is performed to
avoid local minima (line 17). To this end, the greedy mutation operator discussed
for NSGA-II and SPEA2 is used for each solution in Pv.

4 Experimental Methodology

As stated before, non-public data set was found that fit this problem definition.
Hence, in order to study the performance of the metaheuristics, we consider a
data set defined by ourselves in [13]. This data set is composed of three tradi-
tional WSNs (a set of sensors and a collector node). The number of sensors is
the minimum value to cover the whole surface, being placed by a monoobjective
genetic algorithm optimizing the coverage offered by the sensors (see Table 1).
The collector node is placed in the center of the scenario. We assume the fol-
lowing network parameters: Rc = 30m and Rs = 15m from [17], K = 128KB,
CV = 70%, Err = 10%, and the energy parameters EC = 5J , α = 2, β = 1
and amp = 100pJ/bit/m2 from [12]. In a previous work [15], two different Rc

values were assumed, 30 and 60 meters. However, it makes no sense to consider
Rc = 60m for our problem definition, since the network reliability is almost
100% for all the cases.

This data set is optimized by adding relay nodes. We assume the addition
of these devices increases the network cost. Hence, we decide not to include

34 J.M. Lanza-Gutiérrez et al.

Table 4. Hypervolume and standard deviation for each algorithm and test case

NSGA-II (Hyp %, std.dev)

Test case Evaluations (Stop condition)

Instance (routers) 50 000 100 000 200 000 300 000 400 000

100x100 15 30(2) 41.01%, 0.0030 41.25%, 0.0024 41.47%, 0.0002 41.48%, 0.0001 41.48%, 0.0000

100x100 15 30(3) 53.54%, 0.0050 54.15%, 0.0018 54.46%, 0.0019 54.56%, 0.0011 54.63%, 0.0005

200x200 15 30(2) 32.49%, 0.0100 33.22%, 0.0042 33.53%, 0.0025 33.64%, 0.0018 33.74%, 0.0021

200x200 15 30(4) 41.46%, 0.0180 43.21%, 0.0167 45.07%, 0.0109 45.57%, 0.0134 45.96%, 0.0116

200x200 15 30(6) 48.75%, 0.0345 53.12%, 0.0193 55.65%, 0.0161 57.00%, 0.0168 57.68%, 0.0156

200x200 15 30(9) 57.14%, 0.0254 61.82%, 0.0223 65.57%, 0.0211 67.45%, 0.0194 68.31%, 0.0174

300x300 15 30(6) 28.35%, 0.0074 29.44%, 0.0068 30.42%, 0.0061 30.81%, 0.0060 31.05%, 0.0057

300x300 15 30(12) 29.84%, 0.0068 31.53%, 0.0100 32.86%, 0.0098 33.81%, 0.0107 34.37%, 0.0112

300x300 15 30(18) 31.26%, 0.0061 32.92%, 0.0088 34.30%, 0.0107 34.99%, 0.0097 35.41%, 0.0099

300x300 15 30(24) 33.40%, 0.0060 34.99%, 0.0137 36.51%, 0.0157 37.22%, 0.0133 37.86%, 0.0132

SPEA2 (Hyp %, std.dev)

Test case Evaluations (Stop condition)

Instance (routers) 50 000 100 000 200 000 300 000 400 000

100x100 15 30(2) 41.07%, 0.0021 41.24%, 0.0016 41.31%, 0.0015 41.46%, 0.0002 41.46%, 0.0002

100x100 15 30(3) 53.76%, 0.0038 54.27%, 0.0029 54.56%, 0.0011 54.61%, 0.0007 54.64%, 0.0007

200x200 15 30(2) 32.56%, 0.0054 32.88%, 0.0053 33.21%, 0.0032 33.38%, 0.0031 33.47%, 0.0026

200x200 15 30(4) 42.41%, 0.0150 44.03%, 0.0148 45.03%, 0.0153 45.54%, 0.0141 45.72%, 0.0130

200x200 15 30(6) 53.35%, 0.0180 55.98%, 0.0179 57.53%, 0.0072 58.57%, 0.0124 59.09%, 0.0084

200x200 15 30(9) 61.49%, 0.0179 65.42%, 0.0200 67.85%, 0.0184 68.99%, 0.0165 69.70%, 0.0132

300x300 15 30(6) 29.45%, 0.0062 30.55%, 0.0071 31.19%, 0.0072 31.54%, 0.0068 31.78%, 0.0055

300x300 15 30(12) 31.58%, 0.0071 33.19%, 0.0106 34.62%, 0.0116 35.41%, 0.0113 36.00%, 0.0115

300x300 15 30(18) 33.44%, 0.0089 35.22%, 0.0086 36.73%, 0.0092 37.68%, 0.0080 38.34%, 0.0093

300x300 15 30(24) 35.43%, 0.0077 37.04%, 0.0094 38.63%, 0.0076 39.45%, 0.0082 40.20%, 0.0093

MO-VNS (Hyp %, std.dev)

Test case Evaluations (Stop condition)

Instance (routers) 50 000 100 000 200 000 300 000 400 000

100x100 15 30(2) 41.76%, 0.0003 41.79%, 0.0002 41.81%, 0.0002 41.82%, 0.0002 41.82%, 0.0001

100x100 15 30(3) 54.96%, 0.0037 55.21%, 0.0037 55.31%, 0.0019 55.56%, 0.0033 55.61%, 0.0033

200x200 15 30(2) 31.76%, 0.0241 34.04%, 0.0088 34.60%, 0.0126 35.22%, 0.0080 35.92%, 0.0017

200x200 15 30(4) 42.81%, 0.0189 44.38%, 0.0184 45.24%, 0.0165 45.78%, 0.0155 46.14%, 0.0166

200x200 15 30(6) 54.46%, 0.0197 56.37%, 0.0146 56.99%, 0.0127 57.27%, 0.0139 57.47%, 0.0136

200x200 15 30(9) 63.48%, 0.0155 64.21%, 0.0116 65.33%, 0.0104 65.87%, 0.0109 66.45%, 0.0102

300x300 15 30(6) 30.36%, 0.0043 30.93%, 0.0057 31.19%, 0.0050 31.34%, 0.0058 31.40%, 0.0057

300x300 15 30(12) 33.82%, 0.0063 34.56%, 0.0071 35.31%, 0.0070 35.68%, 0.0056 35.83%, 0.0056

300x300 15 30(18) 37.04%, 0.0068 37.83%, 0.0061 38.48%, 0.0056 38.83%, 0.0038 39.01%, 0.0048

300x300 15 30(24) 40.14%, 0.0098 40.91%, 0.0072 41.48%, 0.0067 41.79%, 0.0054 41.95%, 0.0048

more than 20% of routers regarding to the number of sensors. Thus, 10 different
test cases are defined as shown Table 4. Each test case follows the notation
instance name(number of routers).

Before optimizing the data set, the three algorithms were configured by a
parametric sweep [15]. The range of values considered for each parameter is
shown in Table 3, as well as the configuration obtained through this tuning.
After this step, 31 independent runs are performed for each algorithm in order
to obtain statistical validity. With the purpose of studying the convergence of
the algorithms, five different stop conditions are considered: 50 000, 100 000,
200 000, 300 000 and 400 000 evaluations. The solutions obtained are evalu-
ated through hypervolume metric, considering the experimental reference points
shown in Table 2. Thus, average hypervolumes and standard deviation for each

A Trajectory-Based Heuristic to Solve a Three-Objective Optimization 35

Table 5. P-values obtained through Wilcoxon-Mann-Whitney’s test comparing among
hypervolumes

MO-VNS vs SPEA2 SPEA2 vs NSGAII

Instance (routers) 50 000 100 000 200 000 300 000 400 000 50 000 100 000 200 000 300 000 400 000

100x100 15 30(2) 0.0000 0.0000 0.0000 0.0000 0.0000 0.2505 0.9060 1.0000 1.0000 1.0000
100x100 15 30(3) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0486 0.0182 0.0188 0.0370 0.1032

200x200 15 30(2) 0.3431 0.0000 0.0000 0.0000 0.0000 0.3920 0.9938 0.9999 0.9995 0.9999
200x200 15 30(4) 0.1376 0.2843 0.3086 0.2215 0.0871 0.0273 0.0410 0.5530 0.6136 0.7949
200x200 15 30(6) 0.0094 0.1815 0.9750 0.9996 1.0000 0.0000 0.0000 0.0000 0.0001 0.0001
200x200 15 30(9) 0.0000 0.9920 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.0008 0.0005

300x300 15 30(6) 0.0000 0.0099 0.3646 0.8787 0.9953 0.0000 0.0000 0.0000 0.0000 0.0000
300x300 15 30(12) 0.0000 0.0000 0.0079 0.2257 0.7012 0.0000 0.0000 0.0000 0.0000 0.0000
300x300 15 30(18) 0.0000 0.0000 0.0000 0.0000 0.0010 0.0000 0.0000 0.0000 0.0000 0.0000
300x300 15 30(24) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

MO-VNS vs NSGA-II SUMMARY

Instance (routers) 50 000 100 000 200 000 300 000 400 000 50 000 100 000 200 000 300 000 400 000

100x100 15 30(2) 0.0000 0.0000 0.0000 0.0000 0.0000 MO-VNS MO-VNS MO-VNS MO-VNS MO-VNS

100x100 15 30(3) 0.0000 0.0000 0.0000 0.0000 0.0000 MO-VNS MO-VNS MO-VNS MO-VNS MO-VNS

200x200 15 30(2) 0.4691 0.0000 0.0000 0.0000 0.0000 NONE MO-VNS MO-VNS MO-VNS MO-VNS

200x200 15 30(4) 0.0038 0.0148 0.2997 0.2215 0.2299 NONE NONE NONE NONE NONE

200x200 15 30(6) 0.0000 0.0000 0.0006 0.2223 0.6455 MO-VNS NONE SPEA2 SPEA2 SPEA2

200x200 15 30(9) 0.0000 0.0000 0.6764 0.9996 1.0000 MO-VNS SPEA2 SPEA2 SPEA2 SPEA2

300x300 15 30(6) 0.0000 0.0000 0.0000 0.0009 0.0203 MO-VNS MO-VNS NONE NONE SPEA2

300x300 15 30(12) 0.0000 0.0000 0.0000 0.0000 0.0000 MO-VNS MO-VNS MO-VNS NONE NONE

300x300 15 30(18) 0.0000 0.0000 0.0000 0.0000 0.0000 MO-VNS MO-VNS MO-VNS MO-VNS MO-VNS

300x300 15 30(24) 0.0000 0.0000 0.0000 0.0000 0.0000 MO-VNS MO-VNS MO-VNS MO-VNS MO-VNS

test case, stop condition and algorithm are shown in Table 4. The highest hyper-
volumes for 400 000 evaluations are in bold.

Analyzing Table 4, we may note that MO-VNS seems to provide better
results. However, we do not known if the differences are significant. To this end,
we assume a widely used statistical methodology. The first step is to study if the
data follow a normal distribution through Shapiro - Wilk′s and Kolmogrov -
Smirnov - Lilliefors′s tests with the hypothesis: H0 if data follow a normal
distribution, and H1 otherwise. P-values lower than 0.05 were obtained for all
the cases. Hence, we cannot assume data follow a gaussian distribution. Con-
sequently, the median (Me) must be used as average value. The second step is
to check if there are differences among the algorithms. To this end, Wilcoxon
- Mann - Whitney’s test (samples do not follow a normal distribution and are
independent) is used with the hypothesis: H0 Mei is worse or equal than Mej ,
and H1 Mei is better than Mej , with i = 1, 2, 3, j = 2, 3, i < j, 1=MO-VNS,
2=SPEA2 and 3=NSGA-II. The P-values obtained are shown in Table 5. Values
exceed 0.05 are shaded, because of differences are considered not significant.

Based on these p-values, the algorithm which provide the best performance
in each case appears in the part summary of Table 5. Analyzing this summary,
we observe as MO-VNS provides the best results in complex and simple test
cases, but it does not in medium ones. Furthermore, we check as MO-VNS is
quicker than NSGA-II and SPEA2 on average. It is necessary a less number
of evaluations to get similar results, but when the number of evaluations is

36 J.M. Lanza-Gutiérrez et al.

Table 6. Average set coverage C(A,B) among algorithms

A MO-VNS NSGA-II SPEA2

Instance (routers) B NSGA-II SPEA2 SPEA2 MO-VNS NSGA-II MO-VNS

100x100 15 30(2) 98.56% 98.29% 63.26% 0.00% 75.81% 0.00%
100x100 15 30(3) 87.89% 89.89% 39.95% 3.17% 33.10% 1.72%

200x200 15 30(2) 72.29% 76.06% 49.24% 12.36% 42.85% 14.50%
200x200 15 30(4) 70.57% 72.56% 43.05% 9.76% 43.68% 8.17%
200x200 15 30(6) 76.56% 45.83% 17.04% 15.43% 77.67% 30.40%
200x200 15 30(9) 40.41% 17.38% 5.89% 35.33% 77.39% 63.40%

300x300 15 30(6) 85.74% 56.88% 17.67% 4.67% 61.09% 18.19%
300x300 15 30(12) 73.02% 50.02% 11.89% 12.70% 71.56% 31.04%
300x300 15 30(18) 92.48% 67.69% 8.70% 5.53% 75.78% 16.91%
300x300 15 30(24) 96.86% 86.30% 17.94% 0.60% 67.81% 13.51%

Partial average 79.44% 66.09% 27.46% 9.95% 62.68% 19.78%
Average 72.76% 18.71% 41.23%

increased, this advantage is reduced. On average, MO-VNS is the best a 62%,
SPEA2 a 16%, NSGA-II a 0%, and none of them a 22%.

In addition to hypervolume, we consider the set coverage C(A,B). That is
the percentage of solutions from the algorithm B that are weakly dominated
by A. To this end, we obtain the set coverage between each pair of algorithms,
test case and stop condition. For this purpose, we use the medium front of
the distribution of 31 samples. The average set coverage between each pair of
algorithms during the 400 000 evaluations is shown in Table 6. Analyzing this
table, we reach similar conclusions as for hypervolume. MO-VNS provides the
best coverage relation (72.76%), followed by SPEA2 (41.23%) and in the tail
NSGA-II (18.71%).

Finally, some implementation details. The algorithms were programmed by
ourselves in C++, using the Lemon library for graphs (http://lemon.cs.elte.hu).
The IBM SPSS software was used to get the Shapiro-Wilk’s and Kolmogrov-
Smirnov-Lilliefors’s tests. Finally, the Wilcoxon−Mann − Whitney’s test and
hypervolume were taken from [7].

5 Final Remarks

In this paper, we study the addition of relay nodes to previously established
WSNs, with the aim of optimizing three important factors: average energy con-
sumption, average coverage and network reliability. This is the so-called relay
node placement problem, which is an NP-hard optimization problem. To solve
this problem, we consider three different metaheuristics, two well-known genetic
algorithms (NSGA-II and SPEA2), an a novel multiobjective approach of the
VNS. These algorithms are used to optimize a freely available data set. Analyzing
all the obtained results in depth, and using two known multiobjective indicator:
hypervolume and set coverage. As a result, MO-VNS provides the best behavior
on average, followed by SPEA2, and in the tail NSGA-II.

As future lines of research, it would be interesting to consider other meta-
heuristics. One of our aim is to find an algorithm providing good results in

A Trajectory-Based Heuristic to Solve a Three-Objective Optimization 37

general terms. In addition, it would be a good idea to consider a greater number
of test cases, and conduct real world-experiments.

Acknowledgments. This work was partially funded by the Spanish Ministry of Econ-
omy and Competitiveness and the ERDF (European Regional Development Fund),
under the contract TIN2012-30685 (BIO project), and by the Government of
Extremadura, with the aid GR10025 to the group TIC015.

References

1. Cardei, M., Du, D.Z.: Improving wireless sensor network lifetime through power
aware organization. Wireless Networks 11, 333–340 (2005)

2. Cheng, X., Narahari, B., Simha, R., Cheng, M., Liu, D.: Strong minimum energy
topology in wireless sensor networks: Np-completeness and heuristics. IEEE Trans-
actions on Mobile Computing 2, 248–256 (2003)

3. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd edn. The MIT Press (2009)

4. Dargie, W., Poellabauer, C.: Fundamentals of Wireless Sensor Networks: Theory
and Practice. Wiley (2010)

5. Deb, B., Bhatnagar, S., Nath, B.: Reliable information forwarding using multiple
paths in sensor networks. In: Proceedings of IEEE LCN, pp. 406–415 (2003)

6. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast elitist multi-objective
genetic algorithm: Nsga-ii. IEEE Transactions on Evolutionary Computation 6,
182–197 (2000)

7. Fonseca, C., Knowles, J., Thiele, L., Zitzler, E.: Performance assessment tool suite.
http://www.tik.ee.ethz.ch/pisa/?page=assessment.php

8. Geiger, M.J.: Randomised variable neighbourhood search for multi objective opti-
misation. In: Proceedings of the 4th EU/ME Workshop 0809.0271, pp. 34–42 (2008)

9. Han, X., Cao, X., Lloyd, E.L., Shen, C.C.: Fault-tolerant relay node placement in
heterogeneous wireless sensor networks. IEEE Transactions on Mobile Computing
9, 643–656 (2010)

10. Hu, X.M., Zhang, J., Yu, Y., Chung, H.H., Li, Y.L., Shi, Y.H., Luo, X.N.: Hybrid
genetic algorithm using a forward encoding scheme for lifetime maximization of
wireless sensor networks. IEEE Transactions on Evolutionary Computation 14,
766–781 (2010)

11. Konstantinidis, A., Yang, K., Zhang, Q.: An evolutionary algorithm to a multi-
objective deployment and power assignment problem in wireless sensor networks.
In: Proceedings of IEEE GLOBECOM, pp. 1–6 (2008)

12. Konstantinidis, A., Yang, K.: Multi-objective k-connected deployment and power
assignment in wsns using a problem-specific constrained evolutionary algorithm
based on decomposition. Computer Communications 34, 83–98 (2011)

13. Lanza-Gutierrez, J.M., Gomez-Pulido, J.A., Vega-Rodriguez, M.A.: Instance sets
for optimization in wireless sensor networks. http://arco.unex.es/wsnopt (2011)

14. Lanza-Gutierrez, J.M., Gomez-Pulido, J.A., Vega-Rodriguez, M.A.: A new realistic
approach for the relay node placement problem in wireless sensor networks by
means of evolutionary computation. Ad Hoc and Sensor Wireless Networks (2013)
(accepted)

http://www.tik.ee.ethz.ch/pisa/?page=assessment.php
http://arco.unex.es/wsnopt

38 J.M. Lanza-Gutiérrez et al.

15. Lanza-Gutiérrez, J.M., Gómez-Pulido, J.A., Vega-Rodŕıguez, M.A., Sánchez-Pérez,
J.M.: Relay Node Positioning in Wireless Sensor Networks by Means of Evolution-
ary Techniques. In: Kamel, M., Karray, F., Hagras, H. (eds.) AIS 2012. LNCS, vol.
7326, pp. 18–25. Springer, Heidelberg (2012)

16. Lloyd, E.L., Xue, G.: Relay node placement in wireless sensor networks. IEEE
Transactions on Computers 56, 134–138 (2007)

17. Martins, F., Carrano, E., Wanner, E., Takahashi, R., Mateus, G.: A hybrid multi-
objective evolutionary approach for improving the performance of wireless sensor
networks. IEEE Sensors Journal 11, 545–554 (2011)

18. Mukherjee, J.Y.B., Ghosal, D.: Wireless sensor network survey. Computer Net-
works 52, 2292–2330 (2008)

19. Perez, A., Labrador, M., Wightman, P.: A multiobjective approach to the relay
placement problem in wsns. Proceedings of IEEE WCNC 1, 475–480 (2011)

20. Suurballe, J.W.: Disjoint paths in a network. Networks 4, 125–145 (1974)
21. Wang, B.: Coverage problems in sensor networks: A survey. ACM Comput. Surv.

43, 32:1–32:53 (2011)
22. Wang, Q., Xu, K., Takahara, G., Hassanein, H.: Device placement for hetero-

geneous wireless sensor networks: Minimum cost with lifetime constraints. IEEE
Transactions on Wireless Communications 6, 2444–2453 (2007)

23. Zhao, C., Chen, P.: Particle swarm optimization for optimal deployment of relay
nodes in hybrid sensor networks. Proceedings of IEEE CEC. 1, 3316–3320 (2007)

24. Zitzler, E., Laumanns, M., Thiele, L.: Spea 2: Improving the strength pareto evo-
lutionary algorithm. Tech. rep., Computer Engineering and Networks Laboratory
(TIK), ETH Zurich (2001)

Optimizing AEDB Broadcasting Protocol
with Parallel Multi-objective Cooperative

Coevolutionary NSGA-II

Bernabé Dorronsoro1(B), Patricia Ruiz2, El-Ghazali Talbi1, Pascal Bouvry2,
and Apivadee Piyatumrong3

1 LIFL, University of Lille 1, Villeneuve-d’Ascq, France
bernabe.dorronsoro diaz@inria.fr, el-ghazali.talbi@lifl.fr

2 Faculty of Science, Technology and Communication, University of Luxembourg,
Walferdange, Luxembourg

{patricia.ruiz,pascal.bouvry}@uni.lu
3 National Electronics and Computer Technology Centre (NECTEC), Klong Luang,

Pathumthani 12120, Thailand
apivadee.piyatumrong@nectec.or.th

Abstract. Due to the highly unpredictable topology of ad hoc networks,
most of the existing communication protocols rely on different thresh-
olds for adapting their behavior to the environment. Good performance is
required under any circumstances. Therefore, finding the optimal config-
uration for those protocols and algorithms implemented in these networks
is a complex task. We propose in this work to automatically fine tune the
AEDB broadcasting protocol for MANETs thanks to the use of coopera-
tive coevolutionary multi-objective evolutionary algorithms. AEDB is an
advanced adaptive protocol based on the Distance Based broadcasting
algorithm that acts differently according to local information to minimize
the energy and network use, while maximizing the coverage of the broad-
casting process. In this work, it will be fine tuned using multi-objective
techniques in terms of the conflicting objectives: coverage, energy and
network resources, subject to a broadcast time constraint. Because of
the few parameters of AEDB, we defined new versions of the problem in
which variables are discretized into bit-strings, making it more suitable
for cooperative coevolutionary algorithms. Two versions of the proposed
method are evaluated and compared versus the original NSGA-II, pro-
viding highly accurate tradeoff configurations in shorter execution times.

Keywords: Multiobjective optimization · Cooperative coevolutionary
algorithms · Communication protocol · Energy efficiency

1 Introduction

Mobile ad hoc networks, hereinafter MANETs, are spontaneous wireless net-
works that are created between mobile devices without any previously existing
infrastructure. In such networks, devices can appear or disappear at any time,
c© Springer-Verlag Berlin Heidelberg 2014
A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2014, LNCS 8602, pp. 39–50, 2014.
DOI: 10.1007/978-3-662-45523-4 4

40 B. Dorronsoro et al.

quickly change their location, or suddenly adopt a selfish behavior and conse-
quently stop collaborating on the network performance. Additionally, packets
can be dropped because of the presence of physical obstacles that weaken the
signal (or provoke its reflection or diffraction), collisions in the shared medium,
or any other physical phenomena that might affect communications (e.g., the
Doppler effect or fading). Because of all these issues, the topology of MANETs
is highly dynamic and unpredictable.

As a result of the mentioned peculiarities of the topology of MANETs, the
design of communication protocols for this kind of networks is a difficult task.
The behavior of the protocol is highly sensitive to both small changes in the
set of configuration parameters and the network it is tested on. Therefore, fine
tuning the parameters for optimally configuring a communication protocol is
a difficult task. Additionally, because of the important drawbacks present in
MANETs there is not a single goal to be satisfied but several (usually in conflict)
like network resource use, QoS, energy consumption, etc.

Due to the intrinsic broadcast nature of wireless networks, broadcasting is
one of the most suitable protocols for them. Indeed, many high level applications
and even other protocols assume the existence of broadcasting as a low level
operation. In wireless networks, these dissemination algorithms are generally
associated with the broadcast storm problem [11]. However, due to the recently
appearance of MANETs, and all the drawbacks inherited from them, the main
problem in broadcasting is not only reducing the number of forwardings, but
also trying to overcome all these undesirable aspects.

In this work, we tackle the problem of fine tuning the adaptive enhanced
distance based broadcasting algorithm (AEDB) [12] parameters for its opti-
mal performance on MANETs. AEDB is an energy-aware broadcasting algo-
rithm that uses a cross-layer design to reduce the energy consumption. In our
previous work [13], AEDB was optimized using two well known Evolutionary
Algorithms (EAs): a cellular genetic algorithm hybridised with a differential
evolution, CellDE [7], and the Non-dominated Sorting Genetic Algorithm II,
NSGA-II [3]. However, due to the high computational requirements of the net-
work simulator and its stochastic behavior (requiring a number of independent
simulations to evaluate a given protocol configuration), experiments take too
long (over 280 hours per algorithm execution in the densest network). In the
current work, we propose for the first time the use of a parallel cooperative
coevolutionary multi-objective algorithm (CCMOEA) to both speed up the opti-
mization process and find better configurations of the protocol. CCMOEAs are
recent techniques that decompose the problem into several smaller sub-problems
by simply splitting the solutions representation, and they have proved to be
highly accurate and fast for a number of continuous and combinatorial multi-
objective problems [4,5].

The contributions of this paper are detailed next. First, we apply for the first
time a parallel CCMOEA to the AEDB protocol optimization problem to find
accurate solutions in much shorter execution times than those of the previously
existing works. Because the CCMOEA decomposes the solution representation

Optimizing AEDB Broadcasting Protocol with Parallel CCNSGAII 41

into several smaller ones and AEDB has only five variables to tune, we here
propose a novel definition of the problem in which variables are discretized. Two
different discretization levels are considered, and we evaluate their impact on
the performance of the CCMOEA, this was never studied before [4,5]. Another
contribution with respect to those works is the study of the behavior of the
CCMOEA on this highly noisy real-world optimization problem, compared ver-
sus an state-of-the-art technique (the NSGA-II [3] algorithm). Finally, we com-
pare the performance of the optimized parameter configurations of AEDB with
the different algorithms on a large number of networks.

The paper is organized as follows. We revise in the next section the most
relevant works in the literature on protocols optimization for MANETs. Section 3
describes the AEDB protocol and the optimization problem tackled in this work.
The cooperative coevolutionary optimization method is introduced in Sect. 4.
The experimental analysis and results are reported in Sections 5 and 6, just
before formulating the conclusions and main lines for future work in Sect. 7.

2 Related Work

A complete recent survey on the use of evolutionary algorithms for optimizing
different aspects of mobile ad hoc networks can be found in [6]. Focusing on the
protocol optimization problem, as the one we deal with in this paper, we can find
a few papers in the literature. In all cases, the optimization is an offline process
that (usually) looks for the optimal configuration of the protocol to enhance
some aspect of the network, such as QoS, the network use, or the energy used,
as it is the case considered in our work. The first study in this line was probably
the one by Alba et al. [2], in which a broadcasting protocol for MANETs was
optimized using a multi-objective genetic algorithm.

Different metaheuristics have been applied to solve the minimum energy
broadcast (MEB) problem in wireless ad hoc networks (Particle swarm opti-
mization, ant colony optimization, evolutionary algorithms and hybrid evolu-
tionary algorithms) [10,15]. All of them are offline techniques that are limited
to static networks. Abdou et al. [1] optimized a probabilistic broadcasting algo-
rithm in terms of the local density. The multiobjective optimization focuses on
minimizing the channel utilization as well as the broadcasting time.

The optimization of the AODV routing protocol for vehicular ad hoc networks
is presented in [8]. Another routing protocol, OLSR, is optimized with a parallel
EA in [14] in order to minimize the energy used by the algorithm, subject to
acceptable QoS requirements. Both works deal with single-objective problems.

Ruiz et al. [13] optimize the performance of AEDB using two well known
multiobjective algorithms (CellDE and NSGA-II), by maximizing the coverage
achieved in the dissemination process and minimizing both the time and the
energy used.

42 B. Dorronsoro et al.

3 AEDB Protocol Optimisation

The AEDB protocol [12] is a broadcasting algorithm that reduces the transmis-
sion power for disseminating a message, aimed at saving energy in both sparse
and dense networks. As in any distance based algorithm, nodes are candidates
to forward the message if the distance to the source node is higher than a prede-
fined threshold. Thus, there exists a forwarding area, and only nodes located in
it are potential forwarders. In this case, a crosslayer technique is used to inform
the upper layers about the signal strength of messages received. Therefore, the
decision is not taken in terms of distance but power. This predefined value for
the energy is called the borders threshold. Before forwarding, the node sets a
random delay in order to avoid collisions with neighbor devices.

AEDB saves energy by reducing the transmission power when forwarding the
message. The new transmission power is the one that reaches the furthest neigh-
bor. This is estimated according to the reception energy detected in the beacons
exchanged (every 1 second). In order to be aware of the nodes mobility, an extra
fixed amount of energy, the margin threshold, is added to the one estimated.

In denser networks, the probability of having a node close to the transmis-
sion range limit is higher. This would highly reduce the energy saved in such
networks. Indeed, when the network is very dense the connectivity is usually
very high. Thus, reducing the transmission power allowing the loss of some one
hop neighbors will save energy without any detriment in the performance of
the broadcasting process. Contrary, when the network is sparse, the node must
maintain the network connectivity, as not doing so would make more difficult to
spread a message through the whole network. AEDB is able to adapt its behav-
ior to the network density. If many nodes located in the forwarding area are
detected (the neighbors threshold), the transmission range is reduced and some
one hop neighbors are discarded. Next we are describing the problem at hands.

3.1 Problem Description

The performance of a broadcasting algorithm in MANETs is usually related to
some standard metrics. We consider here the most common ones: i) coverage:
the number of devices that after the dissemination process receive the broadcast
message; ii) energy used by the broadcast process: the sum of the energy every
device consumes to forward the message; iii) number of forwardings: the amount
of nodes that after receiving the broadcasting message decide to resend it; and
iv) broadcast time: the time needed to spread a message in the network, since
the source node sends the message until the last node receives it. Long delays
might affect the validity of the message, as it can be outdated.

From the point of view of the broadcasting algorithm designer, the higher
the number of objectives the more complex the optimisation process and the
decision making. Therefore, as it was previously done in [13], in this work AEDB
is optimised in terms of three objectives: coverage, number of forwardings, and
energy used. The broadcasting time is included as a constraint: any solution
longer than 2 seconds is considered not valid [13].

Optimizing AEDB Broadcasting Protocol with Parallel CCNSGAII 43

1: t ← 0
2: {� means parallel run}
3: � i ∈ [1, I] :: setup(P 0 , i) {Initialize every subpopulation}
4: sync() {Synchronization point}
5: {∀ means sequential run}
6: ∀ i ∈ [1, I] :: broadcast(P 0 , i) {Share random local partial solutions in every subpopulation}
7: � i ∈ [1, I] :: evaluate(P 0 , i) {Evaluate solutions in every subpopulation}
8: sync()
9: while not stoppingCondition() do
10: � i ∈ [1, I] :: generation(P t , i) {Perform one generation to evolve the population}
11: sync()
12: ∀ i ∈ [1, I] :: broadcast(P t , i) {Share best local partial solutions in every subpopulation}
13: t ← t + 1 {Increase generations counter}
14: end while
15: mergeParetoFronts() {Merge the Pareto fronts found in the subpopulation into a single one}

Fig. 1. Parallel CCMOEA framework

The main goal of this work is to tune the main AEDB parameters (bor-
ders threshold, margin threshold, max and min delay, and neighbors threshold)
using multi-objective techniques based on Pareto dominance in order to obtain
the best possible protocol behavior, considering the three objectives explained.

Our problem is to optimize F , given by Eq. 1, where s is an AEDB con-
figuration, simulated using the ns3 network simulator on 10 different networks,
and e, c, f , and bt stand for the average energy saved, coverage, number of
broadcastings, and broadcasting time out of the 10 simulations, respectively.

F (s) =

⎧⎨
⎩

min {e}
max {c}
min {f}

; s. t. bt < 2 (1)

4 Cooperative Coevolutionary NSGA-II

The CCNSGAII algorithm we are using in this work was presented in [4,5].
A pseudocode is given in Fig. 1. As previously mentioned, CCNSGAII splits
the solution vector and evolves each subset of the solution using NSGA-II, in
so-called sub-populations. In order to evaluate the partial solutions in the sub-
populations, the algorithm needs to somehow construct a whole solution that
can be evaluated on the original problem. In CCNSGAII, this is done in the
following way. Every sub-population is sharing a number of local best solutions,
randomly chosen from the best non-dominated solutions found so far. Then, to
build a global solution, the sub-population takes the corresponding part from the
solutions shared by the other sub-populations, chosen at random. An example of
how one sub-population, P1, shares four of its best solutions (i.e., Ns = 4) with
the other two populations is presented in Fig. 2. In case the local contains less
than Ns non-dominated solutions, randomly chosen individuals are taken from
the rest of the population to complete the set of Ns solutions.

44 B. Dorronsoro et al.

Solution Construction Solution Construction

Solution Construction

R
A
N
D

R
A
N
D

Fig. 2. In the CCNSGAII, every population (for example, P1) shares with the other
coevolving populations (P2 and P3) its four best partial solutions (bdv11 to bdv14).
The partial solutions are evaluated by building complete solutions with random partial
solutions of the other two subpopulations (bdv2X and bdv3Y).

5 Experimental Analysis

We summarize in this section the results obtained by NSGA-II algorithm and
two versions of CCNSGAII (differing on the discretization granularity of the
problem) on the optimization of AEDB for three different network densities.
As mentioned in Sect. 3.1, we use ns3 simulator to evaluate the performance of
the AEDB configurations given by the individuals in the algorithm. In order to
have confident results, we evaluate each solution in 10 different networks and
the fitness value of each objective is defined as the average value of the 10 runs.
These 10 networks are always the same for evaluating every solution.

The configuration of the studied algorithms is given in Table 1. The chro-
mosome of NSGA-II is composed by the five variables introduced in Sect. 3.1.
All of them are treated as real variables, and the value of neighbors threshold is
rounded to the closest integer one for the simulations. Variables were discretized
to solve the problem with CCNSGAII. We studied two different precisions for
the four real variables of AEDB, namely 16 and 32 bits, while 8 bits were used
to codify the only integer variable. This makes two different discretization levels
(of 72 and 136 bits chromosomes) to represent the same problem in CCNSGAII-
short and CCNSGAII-long, respectively.

Optimizing AEDB Broadcasting Protocol with Parallel CCNSGAII 45

We use 8 subpopulations that run on 8 different threads for CCNSGAII
algorithm, and every subpopulation shares 20 solutions, randomly chosen from
its local Pareto front. All subpopulations are composed by 100 solutions (as the
population of NSGA-II). They are randomly initialized, and binary tournament
is used to choose solutions for recombination. The operators implemented are
the two points recombination and the bit flip mutation for the two CCNSGAII,
while the recommended SBX and polynomial operators are used for NSGA-II.

The termination condition of all algorithms is fixed to 50, 000 evaluations per-
formed, and 30 independent runs of every algorithm are done for each problem.
We use the inverted generational distance (IGD), spread (Δ), and hypervolume
(HV) to quantify the quality of the different Pareto front approximations found
by the algorithms [6], according to accuracy of solutions, diversity, and both of
them, respectively. Because the optimal Pareto front is not known for the consid-
ered problems, and some of the used metrics need it, we build a reference Pareto
front, composed by selected solutions from all the Pareto front approximations
provided by the different algorithms (100 solutions were selected by the Adaptive
Grid technique), and use it in place of the optimal one as in [6]. Additionally,
these reference Pareto fronts are used to normalize the fronts provided by the
algorithms, in order to avoid any bias in the results given by the different order
of magnitude of the objectives.

Table 1. Algorithms configuration

Numb. of subpop.∗ 8

Cores used 8 (1 for NSGA-II)

Number of threads 1 per subpopulation

Population size 100

Final archive size 100, from all subpops.

Migration policy ∗ 20 random

Max. evaluations 50, 000

Pop. initialisation Random

Selection Binary tournament

Recombination DPX

(SBX for NSGA-II)

Probability 0.9

Mutation Bit Flip

(Polynomial for NSGA-II)

Probability 1
number of variables

Independent runs 30
∗ Not applicable for NSGA-II

Table 2. Configuration of ns3

Devices/km2 100-200-300
Speed [0, 2] m/s
Size of the area 500 m × 500 m
Default trans. power 16.02 dBm
Dir. & speed change every 20 s

Table 3. Domain of the variables

minimum delay [0, 1] s
maximum delay [0, 5] s
border Threshold [-95, -70] dBm
margin Threshold [0, 3] dBm
neighbors Threshold [0, 50]

The configuration of ns3 for the simulations performed is summarized in
Table 2. The mobility model used is the random walk [9]. The simulation envi-
ronment used is a square area of 500 m side. The speed of the nodes can vary
from 0 to 2m/s (i.e., between 0 and 7.2km/h). We study three different network
densities in the optimization process. They go from a spare to a dense one, with
100, 200, and 300 devices/km2.

46 B. Dorronsoro et al.

In the simulations, the network evolves for 30 seconds in order to have the
nodes uniformly distributed in the area. Then, after these 30 seconds, a node
starts the broadcasting process. The simulation stops after 40 seconds.

In order to limit the search space, we defined reasonably large intervals for
each of the parameters we are optimising. They are shown in Table 3.

6 Results

In this section, we summarize the results we found after the experiments done.
We provide in Table 4 the average results computed by the three considered
metrics over 30 independent runs of the algorithms. In order to get statistical
confidence in our comparisons, we performed the Wilcoxon matched-pairs signed-
rank test. In the table, we show the results of this pairwise test in the comparison
of the algorithm in the current column versus the others in the left-hand columns.
Symbol � states that the algorithm in the current column is statistically worse,
while � means that the algorithm is statistically better. Finally, ‘−’ is used in
the cases where no significant difference was found.

Table 4. Comparison of the performance of the algorithms according to the three
metrics. Average and standard deviation values.

NSGA-II CCNSGAII-short CCNSGAII-long

H
V

100dev 5.60e − 013.0e−03 5.54e − 012.5e−03 � 5.53e − 012.9e−03 � −
200dev 5.70e − 012.3e−03 5.56e − 013.3e−03 � 5.56e − 013.8e−03 � −
300dev 5.68e − 013.5e−03 5.53e − 013.5e−03 � 5.52e − 015.5e−03 � −

Δ

100dev 8.72e − 016.2e−02 7.94e − 016.6e−02 � 7.85e − 016.2e−02 � −
200dev 9.75e − 015.6e−02 8.41e − 016.0e−02 � 8.27e − 016.7e−02 � −
300dev 1.06e + 003.8e−02 9.08e − 019.3e−02 � 8.73e − 019.0e−02 � −

IG
D

100dev 4.15e − 034.8e−03 4.26e − 032.7e−03 � 5.03e − 033.4e−03 � −
200dev 5.84e − 036.1e−03 8.44e − 033.8e−03 � 9.18e − 036.4e−03 � −
300dev 3.42e − 033.4e−04 8.79e − 035.5e−03 � 1.16e − 026.3e−03 � �

From Table 4, we can clearly observe the good performance of the CCNSGAII
algorithms with respect to NSGA-II. In terms of HV, the differences on the
results provided by the three algorithms are very low, less than 3% in all cases.
Despite that, NSGA-II statistically outperforms the CCNSGAII algorithms.

The two CCNSGAII versions provide more diversified Pareto front approxi-
mations, compared to NSGA-II. We found statistical significance on all com-
parisons between NSGA-II and the two CCNSGAII versions, while there is
no statistical difference between the two CCNSGAII algorithms in any case.
CCNSGAII-long improves the diversity values obtained by NSGA-II by 9.98%,
15.18%, and 14.33% for the sparse, medium, and dense networks, respectively.

According to IGD metric, we found that the NSGA-II algorithm outperforms
the two cooperative coevolutionary ones in terms of accuracy of solutions. Dif-
ferences become larger with the network density, up to one order of magnitude
for the densest network.

If we compare the two CCNSGAII algorithms, we can see that CCNSGAII-
short provides more accurate results than CCNSGAII-long, with 15.31%, 8.06%,

Optimizing AEDB Broadcasting Protocol with Parallel CCNSGAII 47

and 24.22% better values for IGD metric for 100dev, 200dev, and 300dev densi-
ties, respectively. Similar values were found by the two CCNSGAII for HV. In
the case of Δ metric, CCNSGAII-long gets 2.21% better values than CCNSGAII-
short, in average.

0 2 4 6 8 10

100dev

200dev

300dev

Speedup

CCNSGAII−short
CCNSGAII−long

Fig. 3. Speedup results of CCNSGAII-short and CCNSGAII-long with respect to the
original NSGA-II

We show in Fig. 3 the speedup results obtained by the CCNSGAII algorithms.
They are computed as the execution time of the original NSGA-II over the time
of the corresponding CCNSGAII algorithm. The red dashed line indicates the
linear speedup value. As it can be seen, the CCNSGAII algorithms provide close
to linear speedups for all network densities (always over 7), and super-linear in
half of the cases. The best speedup value obtained is 8.52, by CCNSGAII-short.

In order to compare the quality of the AEDB configurations each algorithm
found, we are selecting five of the best non-dominated solutions reported by every
evolutionary algorithm. For that, we built the reference Pareto front for every
algorithm, as explained in Sect. 5, but only taking into consideration all solutions
from the same algorithm. As we are dealing with a broadcasting algorithm, we
are interested in configurations that are actually able to disseminate the message.
Thus, we discarded from the reference Pareto front all solutions with less than
80% coverage. From the remaining solutions we kept only those with less than
30% of forwarding nodes. The five selected solutions are the ones with better
energy saving results from this set.

The selected five solutions for every algorithm are compared in Table 5 on
a large set of 100 different networks. The table shows the average energy used
(E), and the average percentages of coverage (C) and number of forwardings (F)
obtained on these 100 networks. We used the Wilcoxon test to look for statistical
significance on the comparison of the performance of all solutions. Those results
with dark grey background are said to be consistently better than the others

48 B. Dorronsoro et al.

Table 5. Average values of energy used (E), and percentages of coverage (C) and
number of forwardings (F) of a number of selected AEDB configurations over 100
networks

NSGA-II CCNSGAII-short CCNSGAII-long
E %C %F E %C %F E %C %F

1
0
0
d
e
v

Sol1 114.69 80.16 30.44 106.85 74.44 26.92 123.17 82.00 30.96
Sol2 111.97 77.56 29.48 109.64 75.40 29.08 107.98 77.96 28.44
Sol3 96.21 72.84 24.88 116.02 81.20 116.03 97.10 73.40 25.36
Sol4 116.45 80.64 30.68 108.33 76.40 28.28 99.11 78.48 29.76
Sol5 113.20 78.40 29.92 88.78 68.64 22.52 104.36 73.72 25.68

2
0
0
d
e
v

Sol1 91.98 76.18 11.68 138.77 89.00 17.34 98.10 78.58 12.46
Sol2 110.91 82.02 14.26 90.81 74.92 11.58 128.37 85.16 16.44
Sol3 91.45 73.06 11.66 113.70 84.00 14.46 149.80 93.00 18.74
Sol4 87.71 72.48 11.16 145.49 93.70 18.34 153.58 94.20 19.52
Sol5 75.80 66.42 9.60 71.48 63.22 9.06 88.69 73.14 11.26

3
0
0
d
e
v

Sol1 102.34 79.91 8.53 80.10 69.16 6.73 89.42 74.27 7.48
Sol2 101.40 78.69 8.45 91.99 73.97 7.67 165.85 95.63 14.09
Sol3 134.24 90.64 11.17 90.85 73.45 7.57 97.24 77.16 8.11
Sol4 91.48 75.72 7.64 93.12 74.99 7.76 88.58 74.08 7.39
Sol5 88.93 72.83 7.41 171.93 98.25 14.47 116.43 84.27 9.80

(meaning that they are at least statistically better than one other solution and
never statistically worse than any other). Solutions that are consistently worse
than all the others (they are statistically worse than at least one solution and not
better than any other solution) are emphasized with light grey background. The
results in bold face are those dominating the highest number of other solutions
for every density.

We can see that the solutions found by the CCNSGAII are better in coverage
than those of NSGA-II, with 5 consistently best solutions for CCNSGAII-short,
6 for CCNSGAII-long and 4 for NSGA-II. Indeed, none of the solutions pro-
vided by NSGA-II is consistently better than any other one for the 200 and
300 devices/km2 densities. The overall best solutions (those statistically better
than the highest number of solutions) were always found by CCNSGAII-long,
together with CCNSGAII-short in the denser density. We found that NSGA-II
provides only one solution with 90% coverage, while there are 5 solutions from
the CCNSGAII algorithms with higher values, reaching up to 98.25% coverage.

The differences on the results provided by the three algorithms are not so
important in terms of the number of forwardings and energy used. In both cases,
the three algorithms provide 3 solutions that are consistently better than the
others (except CCNSGAII-long for energy used, that provides 2 consistently
better solutions). However, the overall best solutions are in these cases found by
CCNSGAII-short for all networks.

Finally, we found that Sol1 provided by CCNSGAII-short for 300dev networks
stands out as the only one that is consistently better than all the others in some
objectives and is not consistently worse for any other: it is consistently better for
energy used and number of forwardings. The configuration of this solution is:mini-
mum delay= 0.26344701304646373;maximum delay= 0.8817425803006027; bor-
der Threshold= −94.14015411612115;margin Threshold= 0.15202563515678644;
andneighbors Threshold= 41. Ifwe analyze this configuration,we observe that the
value of theneighbors Threshold is high, i.e. it is unlikely thatAEDBdiscards 1-hop

Optimizing AEDB Broadcasting Protocol with Parallel CCNSGAII 49

neighbors, thus no energy reduction will be performed. However, such low value of
the border Threshold means that the forwarding area is very small, and thus, the
number of potential forwarding nodes. If we compute the average of the percentage
of the energy saved per forwarding node for this specific configuration, we obtain
45.92% (in mWatt).

Analyzing the results provided by the solutions, we observe that all the algo-
rithms behave as the designer of a broadcasting algorithm desires. That is, for
sparse networks the solutions provided by the algorithms promote high cover-
age, sacrificing the number of forwarding nodes and energy savings. However,
for denser networks, the solutions obtained by the algorithm pay more attention
to the energy savings, as disseminating the message is easier but reducing the
energy is more difficult.

7 Conclusions and Future Work

We propose in this work the use of a parallel cooperative coevolutionary multi-
objective algorithm to solve the problem of fine-tuning a broadcasting protocol
for mobile ad hoc networks for optimal performance. The number of devices
receiving the broadcasted message, the network use for that, and the global
energy consumption during the process are the three objectives to optimize.
The broadcasting process time was set to be less than 2 seconds, as a constraint
of the problem.

The problem was discretized with two different precisions for real numbers
(namely 16 or 32 bits encodings) in order to being able to handle them with coop-
erative coevolutionary techniques. We found no statistical difference between
the algorithms using these two encodings. In the comparison of NSGA-II with
its cooperative coevolutionary versions, we found that the former was better for
IGD metric, and worse in terms of diversity of solutions provided. Regarding the
hypervolume metric, all algorithms found very close results, even though NSGA-
II was found to outperform the others with statistical significance. However, the
cooperative coevolutionary algorithms are able to find solutions with super linear
speedups in many cases, with respect to NSGA-II. This is an important issue,
since one fitness evaluation implies 10 simulations in ns3, taking among 10 and
94 seconds, depending on the network density, and 10, 000 fitness evaluations are
performed in every run. We observed that the solutions found by CCNSGAII-
long are the best ones in terms of coverage, while CCNSGAII-short provides the
solution with better values of forwarding and energy use. We were able to find
a single best overall solution for all objectives.

As future work, we plan to include robustness to the optimization process in
order to cope with the high uncertainty intrinsic to this problem.

Acknowledgments. B.Dorronsoroacknowledges the supportby theNationalResearch
Fund, Luxembourg, under AFR contract no 4017742.

50 B. Dorronsoro et al.

References

1. Abdou, W., Henriet, A., Bloch, C., Dhoutaut, D., Charlet, D., Spies, F.: Using
an evolutionary algorithm to optimize the broadcasting methods in mobile ad hoc
networks. Journal of Network and Computer Applications 34, 1794–1804 (2011)

2. Alba, E., Bouvry, P., Dorronsoro, B., Luna, F., Nebro, A.J.: A cellular multi-
objective genetic algorithm for optimal broadcasting strategy in metropolitan
MANETs. In: Nature Inspired Distributed Computing (NIDISC), p. 192b (2005)

3. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. on Evol. Comp. 6(2), 182–197 (2002)

4. Dorronsoro, B., Danoy, G., Bouvry, P., Nebro, A.J.: Multi-objective Cooperative
Coevolutionary Evolutionary Algorithms for Continuous and Combinatorial Opti-
mization. In: Bouvry, P., González-Vélez, H., Ko�lodziej, J. (eds.) Intelligent Deci-
sion Systems in Large-Scale Distributed Environments. SCI, vol. 362, pp. 49–74.
Springer, Heidelberg (2011)

5. Dorronsoro, B., Danoy, G., Nebro, A.J., Bouvry, P.: Achieving super-linear perfor-
mance in parallel multi-objective evolutionary algorithms by means of cooperative
coevolution. Computers & Operations Research 40(6), 1552–1563 (2013)

6. Dorronsoro, B., Ruiz, P., Danoy, G., Pigné, Y., Bouvry, P.: Evolutionary Algo-
rithms for Mobile Ad Hoc Networks. Wiley/IEEE Computer Society (2014)

7. Durillo, J.J., Nebro, A.J., Luna, F., Alba, E.: Solving Three-Objective Optimiza-
tion Problems Using a New Hybrid Cellular Genetic Algorithm. In: Rudolph, G.,
Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.) PPSN 2008. LNCS, vol. 5199,
pp. 661–670. Springer, Heidelberg (2008)

8. Garćıa-Nieto, J., Alba, E.: Automatic Parameter Tuning with Metaheuristics of
the AODV Routing Protocol for Vehicular Ad-Hoc Networks. In: Di Chio, C.,
Brabazon, A., Di Caro, G.A., Ebner, M., Farooq, M., Fink, A., Grahl, J., Green-
field, G., Machado, P., O’Neill, M., Tarantino, E., Urquhart, N. (eds.) EvoAppli-
cations 2010, Part II. LNCS, vol. 6025, pp. 21–30. Springer, Heidelberg (2010)

9. Groenevelt, R., Altman, E., Nain, P.: Relaying in mobile ad hoc networks: The
brownian motion mobility model. J. of Wireless Networks, 561–571 (2006)

10. Hsiao, P.-C., Chiang, T.-C., Fu, L.-C.: Particle swarm optimization for the min-
imum energy broadcast problem in wireless ad-hoc networks. In: IEEE Congress
on Evolutionary Computation (CEC), pp. 1–8 (2012)

11. Ni, S., Tseng, Y., Chen, Y., Sheu, J.: The broadcast storm problem in a mobile ad
hoc network. In: Conf. on Mobile Comp. and Networking, pp. 151–162 (1999)

12. Ruiz, P., Bouvry, P.: Distributed energy self-adaptation in ad hoc networks. In:
Proc. of IEEE Int. Workshop on Management of Emerging Networks and Services
(MENS), in Conjunction with IEEE Globecom, pp. 539–543 (2010)

13. Ruiz, P., Dorronsoro, B., Bouvry, P.: Finding scalable configurations for AEDB
broadcasting protocol using multi-objective evolutionary algorithms. Cluster Com-
puting 16(3), 527–544 (2013)

14. Toutouh, J., Nesmachnow, S., Alba, E.: Fast energy-aware OLSR routing in
VANETs by means of a parallel evolutionary algorithm. Cluster Computing 16(3),
435–450 (2013)

15. Wolf, S., Merz, P.: Evolutionary Local Search for the Minimum Energy Broadcast
Problem. In: van Hemert, J., Cotta, C. (eds.) EvoCOP 2008. LNCS, vol. 4972, pp.
61–72. Springer, Heidelberg (2008)

Improving Extremal Optimization in Load
Balancing by Local Search

Ivanoe De Falco1, Eryk Laskowski2(B), Richard Olejnik3, Umberto Scafuri1,
Ernesto Tarantino1, and Marek Tudruj2,4

1 Institute of High Performance Computing and Networking, CNR, Naples, Italy
{ivanoe.defalco,umberto.scafuri,ernesto.tarantino}@na.icar.cnr.it

2 Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland
{laskowsk,tudruj}@ipipan.waw.pl

3 Computer Science Laboratory, University of Science and Technology of Lille,
Villeneuve-d’Ascq, France
richard.olejnik@lifl.fr

4 Polish-Japanese Institute of Information Technology, Warsaw, Poland

Abstract. The paper concerns the use of Extremal Optimization (EO)
technique in dynamic load balancing for optimized execution of dis-
tributed programs. EO approach is used to periodically detect the best
candidates for task migration leading to balanced execution. To improve
the quality of load balancing and decrease time complexity of the algo-
rithms, we have improved EO by a local search of the best computing
node to receive migrating tasks. The improved guided EO algorithm
assumes a two-step stochastic selection based on two separate fitness
functions. The functions are based on specific program models which
estimate relations between the programs and the executive hardware.
The proposed load balancing algorithm is compared against a standard
EO-based algorithm with random placement of migrated tasks and a
classic genetic algorithm. The algorithm is assessed by experiments with
simulated load balancing of distributed program graphs and analysis of
the outcome of the discussed approaches.

Keywords: Distributed program design · Extremal optimization · Load
balancing

1 Introduction

The paper presents Extremal Optimization (EO) [1] based load balancing algo-
rithm for distributed systems. The proposed algorithm is composed of iterative
optimization phases which improve program task placement on processors to
determine the possibly best balance of computational loads and to define peri-
odic migration of tasks. The EO algorithm discovers the candidate tasks for
migration based on a special quality model including the computation and com-
munication parameters of parallel tasks. The paper presents an improved load
balancing algorithm comparing the algorithm given in [2], which was based on
c© Springer-Verlag Berlin Heidelberg 2014
A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2014, LNCS 8602, pp. 51–62, 2014.
DOI: 10.1007/978-3-662-45523-4 5

52 I. De Falco et al.

classical Extremal Optimization approach. In the classical EO the fully ran-
dom selection of a new improved partial solution in the neighbourhood of the
solution being modified is done. The fully random selection has been consid-
ered unsatisfactory, since for a big number of executive processors a degradation
of the quality of obtained result (the parallel speedup of the applications) was
observed. Therefore, we have improved the applied EO algorithm by a replace-
ment of the fully random selection of the target computing node in migration by
the stochastic selection performed with the guidance by some knowledge of the
problem properties. The guidance is based on a formula which estimates how
a migrated task matches the given processor in respect to the global computa-
tional and communicational balance in the system. It should be stressed that we
have maintained the nature-inspired solution improvement but done in the way
which speeds up the convergence of the algorithm. As a result we have obtained
a correct behavior of the algorithm when the cardinality of processor set in the
system increases.

The algorithm is assessed by experiments with simulated load balancing of
distributed program graphs. In particular, the experiments compare three algo-
rithms: the proposed load balancing method including the EO with a guided
stochastic selection of the improved solution, an EO with fully random selection
of the improved solution and a genetic algorithm (GA). The comparison shows
that the quality of load balancing with the guided EO is in most cases better
than with fully random selection and with the GA.

The paper is organized as follows. In Section 2 the related works in load
balancing based on nature inspired algorithms are reported. In Section 3 the
EO principles are shortly explained, and the EO with guided state changes is
introduced. Section 4 describes the theoretical foundations for the discussed algo-
rithm, explains how the EO is applied to the dynamic processor load balancing.
In Section 5 the experiments which assess the proposed algorithms are presented.

2 Related Works

A huge quantity of papers exist in literature dealing with dynamic load balancing
in parallel and distributed systems. Good reviews and classifications of classic
load balancing methods are presented in [3–6].

Genetic algorithms have been the first nature–inspired optimization method
to be used with reference to this issue. Munetomo et al. [7] are among the
first to present a genetic algorithm for stochastic environments and show its
application to dynamic load balancing in distributed systems. Zomaya and Teh
[8] investigate how a genetic algorithm can be employed to solve the dynamic
load balancing problem. To address the problem of dynamic load balancing in
a processing pool, Uyar and Harmanci [9] apply an improved genetic algorithm
called damGA (diploidy-aging-meiosis Genetic Algorithm). Very recently, Lin
and Deung [10] face dynamic load balancing in cloud-based multimedia system
using a genetic algorithm. More recently, other nature–inspired optimization
methods have been investigated for dynamic load balancing, including Particle

Improving Extremal Optimization in Load Balancing by Local Search 53

Swarm Optimization (PSO). A good review of several such methods can be found
in a very recent paper [11].

At the best of our knowledge, no other authors have attempted to use EO for
dynamic load balancing. We feel, instead, that EO has all the desired features
useful to efficiently tackling this problem. Firstly, EO is perfectly suited to face
combinatorial optimization problems where solutions are represented by integer
values. Secondly, evaluating each component of a solution on its own and chang-
ing a bad component only, rather than the whole solution, is highly desirable
when an incremental improvement is necessary. GA or PSO would modify the
solution as a whole, possibly destroying good issues too. So, the proposed app-
roach has clear originality features and enables making profit of EO advantages
such as low computational complexity and limited use of memory space.

3 Extremal Optimization Algorithm Principles

Extremal Optimization was proposed by Boettcher and Percus [1], following the
Bak–Sneppen approach of self–organized dynamic criticality [12]. It represents
a method for NP–hard combinatorial and physical optimization problems. EO
is based on improvements of a single solution S consisting of a given number of
components si, called species. Each component is a variable of the problem. A
local fitness value is assigned to each component. At each time step, S is evolved
by randomly updating the worst variable only in respect to φi, to a solution
S′ belonging to its neighbourhood Neigh(S). After each update, a global fitness
Φ(S) is computed and the modified solution S′ is registered if its global fitness
is better than that of the best solution found so far.

We apply a probabilistic version of EO based on a parameter τ , i.e., τ–EO,
introduced by Boettcher and Percus, which prevents the solutions from staying
in a local optimum. For a minimization problem, the components are first ranked
in the increasing order of local fitness values. Then, a distribution probability k
over ranks is considered as follows: pk ∼ k−τ , 1 ≤ k ≤ |S| for a given value of τ .
At each update of S, a rank k is selected according to pk so that the species si

with i = π(k) randomly changes its state and the solution moves unconditionally
to S′ ∈ Neigh(S).

3.1 Extremal Optimization With Guided State Changes

During our experimental research on load balancing of distributed applications,
reported in [2], we have revealed that EO is able to provide the best results for
almost all combinations of system and application parameters.

However, we have noticed that, when the number of neighbour states of
rank k increases (i.e. the number of processors is higher), the algorithm starts
struggling with the problem of too many possible moves. The probability of
“good” state change decreases. To alleviate this problem we incorporate more
problem-specific information into the algorithm. It is implemented as a local tar-
get function ωs, which is computed for all neighbours Neigh(S) of rank k. Then

54 I. De Falco et al.

Algorithm 1. τ–EO algorithm with Guided State Changes (EO–GS)
initialize configuration S at will
Sbest ← S
while total number of iterations Niter not reached do

evaluate φi for each variable si of the current solution S
rank the variables si based on their fitness φi

choose the rank k according to k−τ so that the variable sj with j = π(k) is selected
evaluate ωs for each neighbour s′ ∈ Neigh(S), generated by sj change
rank neighbours s′ ∈ Neigh(S) based on the value of target function ωs

choose S′ ∈ Neigh(S) according to the exponential distribution Exp(λ)
accept S ← S′ unconditionally
if Φ(S) < Φ(Sbest) then

Sbest ← S
end if

end while
return Sbest and Φ(Sbest)

the neighbours are sorted according to the increasing value of ωs. The new state
S′ ∈ Neigh(S) is selected randomly using the exponential distribution Exp(λ)
over the sorted neighbours Neigh(S). Thus, the stochastic local search towards
“better” neighbours (according to the value of ωs) is performed. The bias to the
“better” values is controlled by the λ parameter of the exponential distribution.
The scheme of the Extremal Optimization with Guided State Changes (EO–GS)
is shown in Algorithm 1.

4 Load Balancing Based on Extremal Optimization

The proposed load balancing algorithm is meant for distributed application pro-
grams composed of T indivisible tasks which are threads (single-thread processes).
Each task is composed of sequences of computational instructions (blocks)
separated by communication instructions with other tasks.

We assume a centralized program execution environment which means that
the executive system works under control of some load balancing infrastructure
responsible for organizing optimized execution of programs. The executive sys-
tem is a cluster of N processor aka computational nodes interconnected by a
message passing network.

Our load balancing problem is formally defined in the following way: during
program execution dynamically map each task tk, k ∈ {1 . . . |T |} of the program
to a computational node n, n ∈ [0, N − 1] in such a way that the total program
execution time is minimized, assuming the program and system definition as
stated earlier in this section. Dynamic task mapping to computational nodes
can change during program execution by means of task migration.

The load balancing method proposed in the paper, consists in execution of
a series of indivisible pairs of two main steps: the detection and the correction
of processor load imbalance. The load imbalance detection step employs some

Improving Extremal Optimization in Load Balancing by Local Search 55

measurement infrastructure to monitor the states of the executive system and
the application program relevant for the detection of system load imbalance. In
parallel with the execution of an application program, computing nodes period-
ically report their loads to a load balancing monitor which evaluates the current
system load imbalance value. Depending on this value, the second step (i.e. the
imbalance correction) is done or step one is repeated. In the second step, we
execute the EO-based algorithm described in next sections, which determines
the set of tasks for migration and the migration target nodes. Based on that,
the physical task migrations are executed and the algorithm goes to step one.

4.1 Detection of Load Imbalance

Two parameters are used to evaluate the state of the system:
Indpower (n) – computing power of a processor node n, which is the sum of nom-
inal computing powers of all cores on the node, in MIPS, MFLOPS or similar,
Time%CPU(n) – the current CPU time availability i.e. percentage of the CPU
computing power currently available for application threads on the node n, peri-
odically estimated by load observation agents on computing nodes.

A load imbalance LI (a boolean) is defined based on the difference of the
current CPU time availability between the most heavily and the least heavily
loaded computing nodes:

LI = max
n∈P

(Time%CPU(n)) − min
n∈P

(Time%CPU(n)) ≥ α

where P is the set of all computing nodes. The detection of load imbalance equal
true requires a load correction. α is determined using an experimental approach
(in our experiments we have set it between 25% and 75%).

4.2 Correction of Load Imbalance

The application is characterized by two metrics, which should be provided by a
programmer based on the volume of computations and communications in tasks:

1. COM(ts, td) is the communication metrics for a pair of tasks ts and td,
2. WP(t) is the load weight metrics introduced by a task t.

COM(ts, td) and WP(t) metrics can constitute exact values, e.g. for well-defined
tasks sizes and inter-task communication in regular parallel applications, or only
some predictions, e.g. when the computation depends on the processed data as
in irregular parallel applications.

A task mapping solution S is represented by a vector μ = (μ1, . . . , μ|T |) of
|T | integers from the interval [0, N − 1], where the value μi = j means that the
solution S under consideration maps the i–th task ti of the application onto the
computing node j.

The global fitness function Φ(S) is defined as

Φ(S) = attrExtTotal(S) ∗ Δ1 + migration(S) ∗ Δ2+
+imbalance(S) ∗ [1 − (Δ1 + Δ2)]

(1)

56 I. De Falco et al.

where Δ1,Δ2 parameters control the weight of components of the global fitness,
1 > Δ1 ≥ 0, 1 > Δ2 ≥ 0 and Δ1+Δ2 < 1. The function attrExtTotal(S) ∈ {0, 1}
represents the impact of the total external communication between tasks on the
quality of a given mapping S. The function migration(S) ∈ {0, 1} is a migration
costs metrics. It is equal to 0 when there is no migration, when all tasks have to
be migrated migration(S) = 1. The function imbalance(S) ∈ {0, 1} represents
the numerical load imbalance metrics in the solution S. It is equal to 1 when
there exists at least one unloaded computing node, otherwise it is equal to the
normalized average absolute load deviation of tasks in S.

The local fitness function of a task φ(t) is designed in such a way that it
forces moving tasks away from overloaded nodes, at the same time preserving
low external (inter-node) communication. The γ parameter (0 < γ < 1) allows
tuning the weight of load metrics.

φ(t) = γ ∗ load(μt) + (1 − γ) ∗ rank(t) (2)

The function load(n) indicates whether the node n, which executes t, is over-
loaded (i.e. it indicates how much its load exceeds the average load of all nodes).
The rank(t) function governs the selection of best candidates for migration. The
chance for migration have tasks, which show low communication with their cur-
rent node (attraction) and low load deviation from the average load. The load
balancing parameters mentioned above are explained in full details in [2].

4.3 Guided Target Node Selection for State Changes

In the standard EO algorithm (see [2]), any neighboring state could be selected
randomly using the uniform probability distribution. The idea of a guided state
changes is based on some “biased” random selection, to enable preferring some
neighbors over others. At each update of rank k, nodes n ∈ N are sorted accord-
ing to ω(n1, n2) function and one of them is selected using the exponential dis-
tribution Exp(λ). The bias to the “better” values, i.e. lower values of ω(n1, n2)
in our case, is controlled by the λ parameter of the exponential distribution.

A “biased” random selection uses formula similar to those used for the local
fitness calculation to qualify the computing nodes for migration of task j:

ω(n1, n2) =
{
relload(n1) − relload(n2) if relload(n1) �= relload(n2)
attrext(j, n2) − attrext(j, n1) otherwise

where:

attrext(j, n) =
∑

e∈T (n)

(COM(e, j) + COM(j, e)), normalized vs. max
e∈N

(attrext(j, e))

relload(n) =
loaddev(n) − minm∈[0,N−1] loaddev(m)

maxm∈[0,N−1] loaddev(m) − minm∈[0,N−1] loaddev(m)

loaddev(n) = NWP(S, n)/Indpower (n) − WP

Improving Extremal Optimization in Load Balancing by Local Search 57

and T (n) = {t ∈ T : μt = n} — the set of threads, placed on node n,
NWP(S, n) =

∑
t∈T :μt=n WP(t), WP =

∑
t∈T WP(t)/

∑
n∈[0,N−1] Indpower (n).

When ω(n1, n2) has a low value, the computational load of node n1 is lower
than that of node n2 or the task j has stronger attraction to node n1. This is
the preferred target of migration. High values of ω(n1, n2) indicate overloading
of node n1 or no communication to this node from task j.

5 Experimental Results

We describe below experimental results obtained by simulated execution of appli-
cation programs with the proposed method of load balancing in a distributed
system. The assumed program parallelization model corresponds to paralleliza-
tion based on message-passing, using the MPI library for communication. The
experiments were run in a simulated cluster of multi–core processors. Each pro-
cessor had its own main memory and a network interface. At the level of the
network interfaces data transfers and communication contention were modeled.

In the experiments, a set of 10 randomly generated synthetic exemplary
programs was used. Their general structures were phase-like, in which they
resembled MPI-based parallel programs which corresponded to numerical com-
putations or simulations of physical phenomena. The programs were represented
as a set of phases (see Fig 1), each composed of parallel tasks (threads). Tasks
of the same phase could communicate. At the boundaries between phases there
was a global exchange of data which corresponded to external communication
between processes. Application programs contained from about 60 to 550 tasks.
Their communication/computation ratio C/E was in the range [0.05, 0.20].

Based on the time properties of tasks two types of applications were dis-
tinguished: regular and irregular. Regular applications had fixed task execution
times. Irregular applications had the execution time of tasks depending on the
processed data. They showed unpredictable both execution times of tasks and
the communication schemes. With irregular tasks, system load imbalance could

Fig. 1. The general structure of exemplary applications

58 I. De Falco et al.

occur even without variations in computing nodes availability. With regular
applications system load imbalance could occur due to the suboptimal placement
of tasks on processors or when runtime conditions had changed. The properties
of the proposed load balancing algorithm for both types of applications were
comparatively examined.

For comparison purposes, the same simulated parallel environment and the
set of graphs were used. We compared EO and EO–GS to genetic algorithm
(GA) which used the same global fitness function. GA used binary-encoded
chromosomes, in which an allele at position i was the processor number of the
task i. Two genetic operators were used: single-point crossover and mutation.
The selection was based on roulette-wheel scheme. We used the following GA
parameters: the size of population – 50, the probability of mutation – 0.015,
the probability of crossover – 0.25, the number of iterations – 500. Half of the
chromosomes of the initial population was generated randomly, the second half
was initialized through cloning of the current placement of application tasks.

5.1 Performance of the Presented Algorithms

In the first series of experiments, load-balanced execution of phase-like appli-
cations was studied in systems containing from 2 to 32 homogeneous proces-
sor nodes. The following parameters for load balancing control were used: α =
0.5,Δ1 = 0.25,Δ2 = 0.25, γ = 0.5, τ = 1.5, for EO–GS λ = 1.0. The number of
iterations for EO and EO–GS was set to 500. The results correspond to aver-
ages of 5 runs of each application. For each run 4 different methods of initial
task placements (random, round-robin, METIS, packed) were tested. METIS is
a graph partitioning optimization software [13]. The packed method consists in
round-robin mapping of equal groups of tasks. In total, 20 runs were executed
for each parameter set to produce an averaged result.

The speedup of both EO–based algorithms and the genetic algorithm as a
function of the number of processors is shown in Fig. 2. For regular applica-
tions (upper curves) the speedup improvement due to EO–based algorithms is
generally bigger (not worse or better) than that of GA. Our exemplary irregular
applications (lower curves) give smaller speedup than regular ones (with or with-
out load balancing) what is an expected result, since parallel execution of such
applications is less efficient. However, for irregular applications the EO-GS algo-
rithm is generally the best comparing all the others. It should be stressed that
EO-GS gives much better results than EO and GA especially for a bigger num-
ber of processors. It is due to completely random placement of migrated tasks
on processors in EO and GA, not supported by any knowledge of the system
and program state. EO-GS uses a more thorough migration target selection.

Since migration costs can be very different (a single migration can be as short
as a simple task activation message, but also it can involve a transfer of the pro-
cessed data, which is usually very costly), we decided to keep the generality of our
experiment results and to approximate the imposed load balancing costs by the
number of task migrations, Fig. 3. The number of migrations is decidedly higher
for irregular applications (upper curves). The average cost imposed by EO–GS

Improving Extremal Optimization in Load Balancing by Local Search 59

algorithm is generally lower than the cost introduced by other approaches. For
irregular applications the migration number with EO-GS is lower than with the
EO and GA. For regular applications the number of task migrations in both EO-
based algorithms is almost halved comparing GA. Experiments revealed that the
GA approach can not work out an efficient migration decision for irregular appli-
cations run on bigger number of processor, thus we notice sudden drop in the
GA (irg) curves both in Fig. 2 and 3.

To generalize comparisons of performance of the discussed load balancing algo-
rithms, we have computed the average speedup improvement of the considered

Fig. 2. Speedup for different number of nodes for tested algorithms

Fig. 3. Cost of the dynamic load balancing as the number of task migrations per single
execution of an application

60 I. De Falco et al.

Fig. 4. Average speedup improvement for different algorithms due to load balancing

Fig. 5. Comparison of speedup obtained by different algorithms and METIS initial
task placement

algorithms over execution without load balancing. The speedup improvement is
calculated as Sb/Su − 1, where Sb is the speedup obtained when load balanc-
ing algorithm is active, Su is the speedup of the unbalanced execution. The best
speedup improvement over the unbalanced execution for both irregular and reg-
ular applications is provided by EO–GS algorithm (see Fig. 4).

To justify the quality of the results, we have compared the speedup obtained
for dynamic load balancing using the analysed algorithms to the speedup based
on static task placement obtained by METIS graph partitioning algorithm. To do
so, we executed regular and irregular applications with initial task placement
by METIS and the same applications starting from imbalanced, random initial
placement with the dynamic load balancing switched on. For regular applications
the improvement due to load balancing with static initial METIS placement is
small (in the range 12% – 16%, see Fig. 5). The improvement indicates that the
compared algorithms are able to work out profitable migration decisions even

Improving Extremal Optimization in Load Balancing by Local Search 61

Fig. 6. Average application speedup and migration number (load balancing cost) for
different values of EO–GS parameters as a function of λ

after METIS initial optimisation of regular applications, resulting in their bal-
anced execution. For irregular applications METIS initial optimisation is not
sufficient for efficient balanced execution up to the end of their task sets. For
irregular applications speedup improvement after METIS initialisation due to
dynamic load balancing is on average several times higher than for regular appli-
cations. We can see that the EO–GS algorithm gives here the best results, better
than other studied algorithms by 15%.

5.2 The Algorithm Parameter Setting

The influence of the setting of λ parameter on overall performance of EO–GS
algorithm is shown in Fig. 6 (EO denotes here the results for the standard EO
algorithm). Increasing value of λ results in a noticeable increase of the speedup
for irregular applications, at the same time reducing the cost of load balancing
(i.e. the number of migrations). Although the cost initially decreases slowly,
for λ = 0.5 or more is much smaller than in the standard EO algorithm. For
regular applications λ has almost no impact on the average speedup (there is a
slight increase) and slightly reduces the number of migrations. Note that regular
applications show already high speedup for standard EO, thus improvement is
possible only through reduction of the number of migrations. For both types of
graphs increasing λ above 1.0 has no longer a significant effect on the results.

6 Conclusions

The paper has presented the dynamic load balancing in distributed systems
based on application of the Extremal Optimization approach. The proposed load
balancing algorithm is an improved version of the classic Extremal Optimization,
in which we replaced the completely random computing node selection by the

62 I. De Falco et al.

stochastic selection where node selection probability is guided by some knowledge
of the problem. Our approach proved to be an efficient method for load balancing,
distinguished by low computational complexity and limited use of memory space.

The proposed algorithm has been assessed by experiments with simulated
load balancing of distributed program graphs. In particular, the experiments
compare load balancing with EO with guided search against the classic EO and
genetic algorithm based on equivalent theoretical foundations. The comparison
shows that the quality of the improved EO-based load balancing outperforms in
most cases that with classical EO and the genetic algorithm.

References

1. Boettcher, S., Percus, A.G.: Extremal optimization: methods derived from coevo-
lution. In: Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO 1999), pp. 825–832. Morgan Kaufmann, San Francisco (1999)

2. Olejnik, R., De Falco, I., Laskowski, E., Scafuri, U., Tarantino, E., Tudruj, M.:
Load Balancing in Distributed Applications Based on Extremal Optimization. In:
Esparcia-Alcázar, A.I. (ed.) EvoApplications 2013. LNCS, vol. 7835, pp. 52–61.
Springer, Heidelberg (2013)

3. Barker, K., Chrisochoides, N.: An evaluation of a framework for the dynamic load
balancing of highly adaptive and irregular parallel applications In: Proceedings of
the ACM/IEEE Conference on Supercomputing, Phoenix. ACM Press (2003)

4. Willebeek-LeMair, M.H., Reeves, A.P.: Strategies for dynamic load balancing on
highly parallel computers. IEEE Trans. on Parallel and Distributed Systems 4,
979–993 (1993)

5. Xu, C., Francis, C., Lau, M.: Load balancing in parallel computers: Theory and
Practice. Kluwer Academic Publishers, Norwell (1997)

6. Khan, R.Z., Ali, J.: Classification of task partitioning and load balancing strate-
gies in distributed parallel computing systems. International Journal of Computer
Applications 60(17), 48–53 (2012)

7. Munetomo, M., Takai, M.N.K., Sato, Y.: A stochastic genetic algorithm for
dynamic load balancing in distributed systems. In: Proceedings of the IEEE Inter-
national Conference on Systems, Man and Cybernetics, vol. 4, pp. 3795–3799.
IEEE Press (1995)

8. Zomaya, A.Y., Teh, Y.-H.: Observations on using genetic algorithms for dynamic
load-balancing. IEEE Trans. on Parallel and Distributed Systems 12(9), 899–911
(2001)

9. Uyar, A.S., Harmanci, A.E.: Application of an improved diploid genetic algorithm
for optimizing performance through dynamic load balancing. In: Proceedings of
2002 WSEAS International Conferences. WSEAS Press (2002)

10. Lin, C.-C., Deng, D.-J.: Dynamic load balancing in cloud-based multimedia system
using genetic algorithm. Chang, R.-S., et al (eds.) Advances in Intelligent Systems
& Applications, SIST 20, pp. 461–470. Springer, Heidelberg (2013)

11. Mishra, M., Agarwal, S., Mishra, P., Singh, S.: Comparative analysis of various
evolutionary techniques of load balancing: a review. International Journal of Com-
puter Applications 63(15) (2013)

12. Sneppen, K., et al.: Evolution as a self-organized critical phenomenon. Proc. Natl.
Acad. Sci. 92, 5209–5213 (1995)

13. Karypis, G., Kumar, V.: Multilevel graph partitioning schemes. In: Proc. 24th
Intern. Conf. Par. Proc., III. pp. 113–122. CRC Press (1995)

Studying the Reporting Cells Planning with the
Non-dominated Sorting Genetic Algorithm II

Vı́ctor Berrocal-Plaza(B), Miguel A. Vega-Rodŕıguez,
and Juan M. Sánchez-Pérez

Department of Computers and Communications Technologies,
University of Extremadura Escuela Politécnica,
Campus Universitario S/N, 10003 Cáceres, Spain

{vicberpla,mavega,sanperez}@unex.es

Abstract. This manuscript addresses a vital task in any Public Land
Mobile Network, the mobile location management. This management
task is tackled following the Reporting Cells strategy. Basically, the
Reporting Cells planning consists in selecting a subset of network cells as
Reporting Cells with the aim of controlling the subscribers’ movement
and minimizing the signaling traffic. In previous works, the Reporting
Cells Planning Problem was optimized by using single-objective meta-
heuristics, in which the two objective functions were linearly combined.
This technique simplifies the optimization problem but has got sev-
eral drawbacks. In this work, with the aim of avoiding such drawbacks,
we have adapted a well-known multiobjective metaheuristic: the Non-
dominated Sorting Genetic Algorithm II (NSGAII). Furthermore, a mul-
tiobjective approach obtains a wide range of solutions (each one related
to a specific trade-off between objectives), and hence, it gives the possi-
bility of selecting the solution that best adjusts to the real state of the
signaling network. The quality of our proposal is checked by means of an
experimental study, where we demonstrate that our version of NSGAII
outperforms other algorithms published in the literature.

Keywords: Reporting Cells Planning Problem · Mobile location man-
agement · Multiobjective optimization · Non-dominated Sorting Genetic
Algorithm II

1 Introduction

In the Public Land Mobile Networks, the desired coverage area is divided into
several smaller regions known as cells, among which the available radio-electric
resources are distributed and reused [1]. In this way, these networks are able
to provide service to a huge number of mobile subscribers with few resources.
Therefore, it is obvious that this cell-based architecture requires of a system that
controls the subscribers’ mobility in order to locate the callee terminals and redi-
rect the incoming calls. Furthermore, the proper mobile location management is

c© Springer-Verlag Berlin Heidelberg 2014
A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2014, LNCS 8602, pp. 63–74, 2014.
DOI: 10.1007/978-3-662-45523-4 6

64 V. Berrocal-Plaza et al.

a critical issue in current mobile networks due to the exponential increment in
the number of mobile terminals that has occurred in the last decade.

There are several strategies to manage the subscriber mobility [2], all of them
consist of two main procedures: the subscriber location update (LU) and the
paging (PA). The subscriber location update is the procedure whereby a mobile
station (or subscriber’s terminal) updates its location in the location register
databases according to a method pre-established by the network operator. Never
Update, Always Update, Reporting Cells, and Registration Areas are examples
of static location updates (static location updates are more used than dynamic
ones because they require fewer network capabilities [3]). In this work, we study a
popular location update: the Reporting Cells strategy [4]. This strategy controls
the subscriber mobility by selecting a subset of network cells as Reporting Cells
(a mobile station only updates its location when it moves to a Reporting Cell).
On the other hand, the paging procedure is the method used by the network to
know the exact cell in which the callee subscribers are located [5]. The different
paging procedures could be classified into two main groups: probabilistic and
non-probabilistic. In this work, we use the same paging procedure as in [6–9]:
the Blanket Polling paging, a non-probabilistic paging in which all the network
cells that have to be paged are polled simultaneously.

The Reporting Cells Planning Problem defines a multiobjective optimization
problem with two conflicting objective functions: minimize the location update
cost (LUcost) and minimize the paging cost (PAcost). However, in recent litera-
ture, this multiobjective optimization problem was tackled by means of different
single-objective metaheuristics [6–9]. For it, these two objective functions were
linearly combined into a single objective function. The linear aggregation of the
objective functions allows simplifying the problem but has got associated several
drawbacks (see Section 3).

With the aim of avoiding such drawbacks, we propose the use of multiob-
jective optimization for finding quasi-optimal configurations of Reporting Cells.
This is a novel contribution because, to the best of our knowledge, there are no
other works in the literature that tackle the Reporting Cells Planning Problem
with a multiobjective approach.

The rest of the paper is organized as follows. The related works are discussed
in Section 2. Section 3 shows a formal description of the Reporting Cells Planning
Problem. Section 4 defines the main features of a multiobjective optimization
problem and presents a detailed explanation of our proposal. Section 5 gathers
the experimental results and comparisons with other works published in the
literature. Finally, our conclusion and future work are discussed in Section 6.

2 Related Work

In the literature, there are several works that tackle the Reporting Cells Plan-
ning Problem (RCPP). This problem was firstly formulated by A. Bar-Noy and I.
Kessler in [4], where the authors demonstrated that the RCPP is an NP-complete
problem. And subsequently, different methodologies were proposed with the aim

Studying the Reporting Cells Planning 65

of solving this location management problem. A. Hac and X. Zhou presented in
[10] a heuristic method to find quasi-optimal solutions of a simplified RCPP (the
RCPP was simplified by considering the paging cost as a constraint). R. Sub-
rata and A. Y. Zomaya proposed in [6] three artificial life techniques of the
single-objective optimization field: Genetic Algorithm (GA), Tabu Search (TS),
and Ant Colony Optimization (ACO). In these algorithms, the RCPP objective
functions were linearly combined with the aim of simplifying the optimization
problem. The same strategy was used in [7–9], where the RCPP was studied with
the algorithms: Geometric Particle Swarm Optimization (GPSO) [7], a combina-
tion of the Hopfield Neural Network with a Ball Dropping mechanism (HNN-BD)
[7], Differential Evolution (DE) [8], and the Scatter Search algorithm (SS) [9].

In contrast to these related works, we propose the use of multiobjective opti-
mization to avoid the drawbacks associated with the linear aggregation of the
objective functions. This approach is a novel contribution because, to the best of
the authors’ knowledge, there are no other authors that tackle the RCPP with
multiobjective optimization.

3 Reporting Cells Planning Problem

The Reporting Cells is a static location management strategy which was pro-
posed by A. Bar-Noy and I. Kessler in [4]. This strategy controls the subscriber
mobility by selecting a subset of network cells as Reporting Cells (RCs). In this
way, a mobile station only updates its location when entering a Reporting Cell.
On the other hand, the paging procedure is only conducted in a subset of net-
work cells (all the network cells of this subset are paged simultaneously). This
subset is determined by means of the vicinity factor (V (i)), which can be defined
as the maximum number of network cells that must be paged to locate a callee
subscriber [6–9]. For an RC (RCi), V (i) corresponds to the number of non-
Reporting Cells (nRC) reachable from this RC (RCi) without passing over other
RC (RCj), and including the RC in question (RCi). And for an nRC (nRCi), due
to the fact that an nRC might be in the vicinity of several RC, V (i) corresponds
to the maximum vicinity factor of all the RC reachable from this nRC (nRCi).
Fig. 1(a) and Fig. 1(b) show an example of the vicinity factor calculation for an
RC and an nRC respectively.

Therefore, the challenge of this location management strategy is to find the
configurations of Reporting Cells that minimize the location update cost (LUcost)
and the paging cost (PAcost). Formally, these two objective functions could be
expressed as Equation 1 and Equation 2 respectively, where N is the number of
network cells. ρi is a binary variable that is equal to 1 when the cell i is an RC,
otherwise ρi is equal to 0. NLU (i) is the number of location updates of the cell
i. NP (i) is the number of incoming calls of the network cell i. And V (i) is the
vicinity factor of the cell i.

f 1 = min

{
LUcost =

N−1∑
i=0

ρi · NLU (i)

}
, (1)

66 V. Berrocal-Plaza et al.

(a) Reporting Cell (b) non-Reporting Cell

Fig. 1. Calculus of the vicinity factor

f 2 = min

{
PAcost =

N−1∑
i=0

NP (i) · V (i)

}
. (2)

Note that these two objective functions are conflicting. The LUcost is reduced
to a minimum when all the network cells are nRC (i.e. there is no location
update). However, in this case, the PAcost is maximum because the callee sub-
scribers should be searched in the whole network. On the other hand, the PAcost

is minimum when all the network cells are RC (i.e. V (i) = 1∀i ∈ [0, N − 1]), but
in this case the LUcost is maximum because a location update will be performed
whenever a mobile station moves from one cell to another.

In previous works [6–9], this problem was tackled by using different meta-
heuristics of the Single-objective Optimization (SO) field. For it, the optimization
problem was simplified by means of the linear aggregation of these two objec-
tive functions, see Equation 3. However, this technique has several drawbacks.
Firstly, a very accurate knowledge of the problem is required when configuring
the weight coefficient (β ∈ �). Secondly, the appropriate value of such coefficient
might be different for different states of the signaling network. And thirdly, a
single-objective optimization algorithm must perform an independent run for
every value of β.

f SO
3 (β) = min {β · LUcost + PAcost} . (3)

In this work, we propose a multiobjective approach with the aim of avoiding
these drawbacks (a multiobjective optimization algorithm treats each objective
function separately). Furthermore, a multiobjective approach gives the possibil-
ity of selecting among a wide range of solutions the one that best adjusts to the
real state of the signaling network.

4 Multiobjective Optimization

Formally, a Multiobjective Optimization Problem (MOP) could be defined as the
optimization problem in which two (or more) conflicting objective functions must
be optimized simultaneously [11] (e.g. the Reporting Cells Planning Problem). In

Studying the Reporting Cells Planning 67

Fig. 2. Hypervolume for a minimization problem with two objectives

a MOP, the main challenge is to find a wide range of solutions (each one related to
a specific trade-off between objectives) evenly distributed in the objective space.
These desired solutions are commonly known as non-dominated solutions, and
the set of non-dominated solutions is referred as Pareto Set. If (without loss of
generality) we assume a minimization bi-objective problem (as the RCPP), a
solution xi is said to dominate the solution xj (expressed as xi ≺ xj) if and only
if ∀k ∈ [1, 2] , fk

(
xi

) ≤ fk
(
xj

) ∧ ∃k ∈ [1, 2] : fk
(
xi

)
< fk

(
xj

)
.

There are several multiobjective indicators to measure the quality of a set
of non-dominated solutions (whose representation is the Pareto Front). In this
work, we use one of the most popular indicators: the Hypervolume (IH). This
multiobjective indicator is discussed in Section 4.1. Section 4.2 presents our
version (in terms of our evolutionary operators specific to the RCPP) of the
Non-dominated Sorting Genetic Algorithm II (NSGAII).

4.1 Hypervolume: IH (A)

Assuming a minimization bi-objective MOP, the IH (A) indicator measures the
area of the objective space that is dominated by the Pareto Front A, and is
bounded by the reference points [11]. These reference points are calculated by
using the maximum and minimum value of every objective function. In the
RCPP, this could be done by evaluating the extreme configurations of Reporting
Cells: Never Update (when all the network cells are non-Reporting Cells, LUmin

and PAmax), and Always Update (when all the network cells are Reporting Cells,
LUmax and PAmin). Due to the fact that the main target of a multiobjective opti-
mization algorithm is to find a wide range of solutions evenly distributed in the
objective space, the IH establishes that the set of solutions A is better than the
set B when IH (A) > IH (B). Fig. 2 shows an example of the IH(A) calculation
for a minimization bi-objective MOP, which can be formally defined by means
of Equation 4.

IH(A) =

{⋃
i

areai | ai ∈ A

}
. (4)

68 V. Berrocal-Plaza et al.

Algorithm 1. Pseudo-code of NSGAII
1 % Initialize the parent population
2 Ind ← Initialization (Npop);
3 % Evaluate the parent population
4 Ind ← ObjectiveFunctionsEvaluation (Ind);
5 Ind ← FitnessEvaluation (Ind);
6 % Main loop
7 while stop condition �= TRUE do
8 % Crossover operation
9 Off ← Crossover (Ind, PC , Npop);

10 % Mutation operation
11 Off ← Mutation(Off, PM);
12 % Evaluate the offspring
13 Off ← ObjectiveFunctionsEvaluation(Off);
14 % Evaluate all the individuals
15 [Ind,Off] ← FitnessEvaluation (Ind, Off);
16 % Selection of the fittest individuals
17 Ind ← NaturalSelection (Ind, Off);

18 end

4.2 The Non-dominated Sorting Genetic Algorithm II

The Non-dominated Sorting Genetic Algorithm II (NSGAII) is the multiobjec-
tive evolutionary algorithm proposed by K. Deb et al. in [12]. Basically, the
NSGAII is a population-based algorithm in which the evolutionary operators of
biological systems (recombination of parents, mutation, and natural selection)
are iteratively applied with the aim of improving a set of solutions. Algorithm
1 shows the pseudo-code of NSGAII, where Npop is the population size, PC is
the crossover (or recombination of parents) probability, and PM is the mutation
probability. As we can observe in this pseudo-code, the first step in NSGAII is
the initialization and evaluation of the first population of parents (each individ-
ual of the population is an encoded solution of the problem). Subsequently, a
new set of solutions (offspring) is generated by using the crossover and muta-
tion operations. And finally, the best individuals found so far are selected as the
parent population of the next generation. This last is done by using the natural
selection operator.

Individual Representation. As we mentioned in Section 3, a network cell
might be in two possible states: Reporting Cell (RC) and non-Reporting Cell
(nRC). Therefore, a possible individual representation could be a vector that
stores the state of each network cell, e.g. 1 if the network cell is an RC, and
0 otherwise. In this work, every individual of the first population of parents is
randomly generated by using the discrete uniform distribution.

Studying the Reporting Cells Planning 69

(a) Swap-based mutation (b) Replacement-based mutation

Fig. 3. Mutation operations

Crossover Operation. The crossover is an evolutionary operator which is
performed with probability PC to generate a new population of Npop individuals
(the offspring) [11]. In this work, we use an elitist crossover where the maximum
number of crossover points is equal to 4. This evolutionary operator consists
of the following steps: firstly, four individuals (parents) grouped in pairs are
randomly selected. Secondly, we generate two offspring by recombining the best
parents of both groups. And thirdly, only the best of these two new individuals
is stored in the offspring population.

Mutation Operations. This operator is performed with probability PM to
modify the genome of the offspring [11]. In this work we have defined two muta-
tion operations specific to the RCPP. The first one consists in swapping the
value of two neighboring cells that belong to different states (i.e. RC and nRC).
Fig. 3(a) shows an example of this operation. And the second one consists in
replacing the value of a network cell by the value of one of its neighboring cells
belonging to the other state (see Fig. 3(b)). The mutation operation has been
configured such that these two mutation operations cannot be applied over the
same individual simultaneously.

Natural Selection. The natural selection is the evolutionary operator by
means of which the best individuals (of the whole population, i.e. parents and
offspring) are selected as the parent population of the next generation. In [12], K.
Deb et al. define a fitness function to determine the quality of a solution (or indi-
vidual) in the multiobjective context. This fitness function has two main terms:
the non-dominated sorting and the crowding distance. The non-dominated sort-
ing is used to arrange the solutions in fronts by using the dominance concept.
And the crowding distance is used to estimate the density of solutions surround-
ing a particular point of the objective space. For more information about these
two procedures, please consult [12].

70 V. Berrocal-Plaza et al.

Table 1. Statistics of Hypervolume (IH)

Test Network

Ref. points TN1 TN2 TN3 TN4 TN5 TN6 TN7 TN8 TN9 TN10 TN11 TN12

LUmax 11480 11428 11867 30861 30237 29864 47854 46184 42970 54428 49336 49775

LUmin 0 0 0 0 0 0 0 0 0 0 0 0

PAmax 125184 124576 125248 256500 256788 255636 691008 680000 690112 1691300 1666400 1676400

PAmin 7824 7786 7828 7125 7133 7101 10797 10625 10783 16913 16664 16764

Statistics of IH

Aver.(%) 60.59 61.44 62.58 71.78 71.93 72.73 75.89 76.71 76.95 78.50 79.80 79.65

Dev.(%) 0.00 0.00 0.00 0.04 0.01 0.03 0.16 0.11 0.17 0.28 0.26 0.30

5 Experimental Results

In this section, we present the experimental study conducted to evaluate the qual-
ity of our proposal. For it, we have tested our version of NSGAII in 12 test networks
of different complexity: TN1-TN3 (test networks of 4x4 cells), TN4-TN6 (test net-
works of 6x6 cells), TN7-TN9 (test networks of 8x8 cells), and TN10-TN12 (test
networks of 10x10 cells). These network instances were firstly published in [7],
and were also studied in [8,9]. The reasons why we use these network instances
in our study is because they cover a wide spectrum of the problem (12 test net-
works of different complexity) and because the 12 test networks were generated
by using realistic subscriber’s call and mobility patterns (in contrast to previously
published network instances, where the mobile activity of every network cell was
randomly generated according to a normal distribution [7]).

Furthermore, we have compared our results with those obtained in other works
published in the literature [7–9], where different single-objective metaheuristics
were applied to optimize the same set of test networks: Geometric Particle Swarm
Optimization (GPSO) [7], Hopfield Neural Network hybridized with the Ball
Dropping technique (HNN-BD) [7], Differential Evolution (DE) [8], and Scatter
Search (SS) [9]. This comparative study is discussed in Section 5.1.

Another novel contribution of our work is the use of a high-performance
solver: the IBM ILOG CPLEX Optimizer [13]. A comparison with this well-
known optimizer is also presented in Section 5.1.

With the aim of performing a fair comparison, our proposal is configured
with the same population size (Npop = 175 individuals) and the same stop
condition (Maximum number of generations = 1000) as in [8,9]. Regrettably,
a runtime comparison cannot be conducted because the execution time of SS,
DE, HNN-BD, and GPSO is not available. The other parameters of NSGAII
(crossover probability (PC) and mutation probability (PM)) have been config-
ured by means of a parametric study of 30 independent runs per experiment. The
parameter combination that maximizes the Hypervolumen (IH) is: PC = 0.75 and
PM = 0.25. Table 1 shows statistical data (mean and standard deviation) of the
IH indicator for this configuration. This table also gathers the reference points
for each test network (see Section 4.1). And Fig. 4(a)-Fig. 4(l) show the Pareto
Fronts associated with the mean IH for each test network. These figures reveal
that our proposal achieves good Pareto Fronts, because they extend from the

Studying the Reporting Cells Planning 71

0 2000 4000 6000 8000 10000

2

4

6

8

10

12

x 10
4

f
1

f 2

(a) TN1 (4x4 cells)

0 2000 4000 6000 8000 10000

2

4

6

8

10

12

x 10
4

f
1

f 2
(b) TN2 (4x4 cells)

0 2000 4000 6000 8000 10000

2

4

6

8

10

12

x 10
4

f
1

f 2

(c) TN3 (4x4 cells)

0 0.5 1 1.5 2 2.5 3

x 10
4

0.5

1

1.5

2

2.5
x 10

5

f
1

f 2

(d) TN4 (6x6 cells)

0 0.5 1 1.5 2 2.5 3

x 10
4

0.5

1

1.5

2

2.5
x 10

5

f
1

f 2

(e) TN5 (6x6 cells)

0 0.5 1 1.5 2 2.5

x 10
4

0.5

1

1.5

2

2.5
x 10

5

f
1

f 2

(f) TN6 (6x6 cells)

0 1 2 3 4

x 10
4

1

2

3

4

5

6

x 10
5

f
1

f 2

(g) TN7 (8x8 cells)

0 1 2 3 4

x 10
4

1

2

3

4

5

6

x 10
5

f
1

f 2

(h) TN8 (8x8 cells)

0 1 2 3 4

x 10
4

1

2

3

4

5

6

x 10
5

f
1

f 2

(i) TN9 (8x8 cells)

0 1 2 3 4 5

x 10
4

2

4

6

8

10

12

14

16

x 10
5

f
1

f 2

(j) TN10 (10x10 cells)

0 1 2 3 4

x 10
4

2

4

6

8

10

12

14

16

x 10
5

f
1

f 2

(k) TN11 (10x10 cells)

0 1 2 3 4

x 10
4

2

4

6

8

10

12

14

16

x 10
5

f
1

f 2

(l) TN12 (10x10 cells)

Fig. 4. Pareto Fronts with the mean Hypervolume

72 V. Berrocal-Plaza et al.

Table 2. Comparison with other works: f SO
3 (10). We indicate with ”-” the information

that is not available in the corresponding reference

Test Network

Algorithm TN1 TN2 TN3 TN4 TN5 TN6 TN7 TN8 TN9 TN10 TN11 TN12

Min. 98535 97156 95038 173701 182331 174519 308702 287149 264204 385927 357368 370868

NSGAII Aver. 98535 97156 95038 173701 182331 174605 308859 287149 264396 387416 358777 371349

Dev.(%) 0.00 0.00 0.00 0.00 0.00 0.13 0.05 0.00 0.09 0.20 0.16 0.15

Min. 98535 97156 95038 181677 200990 186481 375103 351505 407457 514504 468118 514514

CPLEX Aver. 98535 97156 95038 181677 200990 186481 375103 351505 407457 514504 468118 514514

Dev.(%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Min. 98535 97156 95038 173701 182331 174519 307695 287149 264204 385927 357714 370868

SS[9] Aver. - - - - - - - - - - - -

Dev. - - - - - - - - - - - -

Min. 98535 97156 95038 173701 182331 174519 308401 287149 264204 386681 358167 371829

DE[8] Aver. - - - - - - - - - - - -

Dev.(%) - - - - - - - - - - - -

Min. 98535 97156 95038 173701 182331 174519 308929 287149 264204 386351 358167 370868

HNN-BD[7] Aver. 98627 97655 95751 174690 182430 176050 311351 287149 264695 387820 359036 374205

Dev.(%) 0.09 0.51 0.75 0.56 0.05 0.87 0.78 0.00 0.18 0.38 0.24 0.89

Min. 98535 97156 95038 173701 182331 174519 308401 287149 264204 385972 359191 370868

GPSO[7] Aver. 98535 97156 95038 174090 182331 175080 310062 287805 264475 387825 359928 373722

Dev.(%) 0.00 0.00 0.00 0.22 0.00 0.32 0.53 0.22 0.10 0.48 0.20 0.76

Never Update to the Always Update (the two extreme configurations of Report-
ing Cells). However, it is noteworthy the existence of gaps in the mean Pareto
Front of the test networks TN4, TN9, TN10, and TN12. The study of such gaps
would be a good challenge for a future work.

5.1 Comparison with Other Works

In this section, we compare our proposal with other algorithms published in
the literature: Geometric Particle Swarm Optimization (GPSO) [7], Hopfield
Neural Network hybridized with the Ball Dropping technique (HNN-BD) [7],
Differential Evolution (DE) [8], and Scatter Search (SS) [9]. Regrettably, all of
these algorithms belong to the single-objective optimization field (to the best
of the authors’ knowledge, there is no other work in which the Reporting Cells
Planning Problem is tackled with a multiobjective approach). So, in order to
perform such comparison, we have searched in our Pareto Fronts the solution
that best fits the objective function used in these works (which is Equation 3
with β equal to 10: f SO

3 (10)).
This comparative study (of 30 independent runs per experiment) is summa-

rized in Table 2, where we present: the minimum cost (Min.), the average cost
(Aver.), and the deviation percentage (Dev.(%)) from the minimum cost [7].
This table highlights that our proposal is very interesting because it achieves a
wide range of solutions (each one related to a specific trade-off between objec-
tives) in a single run (see Fig. 4(a)-Fig. 4(l)) and, at the same time, it provides
better (in average) and more stable results than the single-objective metaheuris-
tics published in [7]. And also better minimum cost than [8], mainly in the more

Studying the Reporting Cells Planning 73

difficult networks (TN10, TN11, and TN12). This is far from trivial because we
are comparing with metaheuristics specialized in finding only one solution (the
one that best fits f SO

3 (10)).
Furthermore, we have optimized each test network by using the IBM ILOG

CPLEX Optimizer [13]. In this study, we have limited the execution time of the
IBM ILOG CPLEX Optimizer to be 10 times higher than the execution time
of our algorithm (which is approximately of 7 minutes for the most complex
test networks: TN10, TN11, and TN12). This comparison (see Table 2) confirms
the virtues of the evolutionary computation, because the IBM ILOG CPLEX
Optimizer is only competitive in the less complex test networks (TN1, TN2, and
TN3).

6 Conclusion and Future Work

In this manuscript, we propose a multiobjective approach for finding quasi-
optimal configurations of Reporting Cells (a strategy to manage the subscribers
mobility in the Public Land Mobile Networks). For it, we have adapted the Non-
dominated Sorting Genetic Algorithm II (NSGAII) [12]. This approach is a novel
contribution because, to the best of the authors’ knowledge, there are no other
works in the literature that tackle this problem with multiobjective optimization
techniques. With a multiobjective approach, we avoid the drawbacks associated
with the linear aggregation of the objective functions and, at the same time, we
obtain a wide range of solutions among which we could select the one that best
adjusts to the real state of the network.

By means of an experimental study, we have demonstrated that our algorithm
is very promising because it achieves good Pareto Fronts and outperforms (in
average) the results provided by single-objective metaheuristics. In this exper-
imental study, we have tested our algorithm in 12 test networks of different
complexity.

As a future work, it would be interesting to adapt other multiobjective meta-
heuristics and compare them with our version of the NSGAII. Furthermore, it
could be a good challenge to study the nature of the gaps that appear in the
Pareto Fronts of the test networks TN4, TN9, TN10, and TN12.

Acknowledgments. This work was partially funded by the Spanish Ministry of Econ-
omy and Competitiveness and the ERDF (European Regional Development Fund),
under the contract TIN2012-30685 (BIO project). The work of Vı́ctor Berrocal-Plaza
has been developed under the Grant FPU-AP2010-5841 from the Spanish Government.

References

1. Agrawal, D., Zeng, Q.: Introduction to Wireless and Mobile Systems. Cengage
Learning (2010)

2. Mukherjee, A., Bandyopadhyay, S., Saha, D.: Location Management and Routing
in Mobile Wireless Networks. Artech House mobile communications series. Artech
House (2003)

74 V. Berrocal-Plaza et al.

3. Taheri, J., Zomaya, A.Y.: A combined genetic-neural algorithm for mobility
management. J. Math. Model. Algorithms, 481–507 (2007)

4. Bar-Noy, A., Kessler, I.: Tracking mobile users in wireless communications net-
works. IEEE Transactions on Information Theory 39(6), 1877–1886 (1993)

5. Boukerche, A.: Handbook of Algorithms for Wireless Networking and Mobile Com-
puting. Chapman & Hall/CRC Computer & Information Science Series. Taylor &
Francis (2005)

6. Subrata, R., Zomaya, A.Y.: A comparison of three artificial life techniques for
Reporting Cell planning in mobile computing. IEEE Trans. Parallel Distrib. Syst.
14(2), 142–153 (2003)

7. Alba, E., Garćıa-Nieto, J., Taheri, J., Zomaya, A.Y.: New Research in Nature
Inspired Algorithms for Mobility Management in GSM Networks. In: Giacobini, M.,
et al. (eds.) EvoWorkshops 2008. LNCS, vol. 4974, pp. 1–10. Springer, Heidelberg
(2008)

8. Almeida-Luz, S.M., Vega-Rodŕıguez, M.A., Gómez-Pulido, J.A., Sánchez-Pérez,
J.M.: Applying differential evolution to the Reporting Cells problem. In: Inter-
national Multiconference on Computer Science and Information Technology, pp.
65–71 (2008)

9. Almeida-Luz, S.M., Vega-Rodŕıguez, M.A., Gómez-Pulido, J.A., Sánchez-Pérez,
J.M.: Solving the Reporting Cells Problem Using a Scatter Search Based Algo-
rithm. In: Szczuka, M., Kryszkiewicz, M., Ramanna, S., Jensen, R., Hu, Q. (eds.)
RSCTC 2010. LNCS, vol. 6086, pp. 534–543. Springer, Heidelberg (2010)

10. Hac, A., Zhou, X.: Locating strategies for Personal Communication Networks: A
novel tracking strategy. IEEE Journal on Selected Areas in Communications 15(8),
1425–1436 (1997)

11. Coello, C.A.C., Lamont, G.B., Veldhuizen, D.A.V.: Evolutionary Algorithms
for Solving Multi-Objective Problems (Genetic and Evolutionary Computation).
Springer-Verlag New York Inc., Secaucus (2006)

12. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjec-
tive genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation
6(2), 182–197 (2002)

13. ILOG Inc: ILOG CPLEX: High-performance software for mathematical program-
ming and optimization (2006). http://www.ilog.com/products/cplex/

http://www.ilog.com/products/cplex/

Impact of the Topology on the Performance
of Distributed Differential Evolution

Ivanoe De Falco1, Antonio Della Cioppa2, Domenico Maisto1(B),
Umberto Scafuri1, and Ernesto Tarantino1

1 ICAR-CNR, Via P. Castellino 111, 80131 Naples, Italy
{ivanoe.defalco,domenico.maisto,umberto.scafuri,

ernesto.tarantino}@na.icar.cnr.it
2 Natural Computation Lab, DIEM, University of Salerno,

Via Ponte don Melillo 1, 84084 Fisciano, SA, Italy
adellacioppa@unisa.it

Abstract. Migration topology plays a key role in designing effective dis-
tributed evolutionary algorithms. In this work we investigate the impact
of several network topologies on the performance of a stepping–stone
structured Differential Evolution model. Although some issues on the
control parameters of the migration process and the way they affect the
efficiency of the algorithm and the solution quality deserve further eval-
uative study, the influence of the topology on the performance both in
terms of solution quality and convergence rate emerges from the empir-
ical findings carried out on a set of test problems.

1 Introduction

Evolutionary Algorithms (EAs) [1–4] have proven to be very effective in dealing
with hard optimization problems whose solution space is so large as to make an
exhaustive search unviable [5,6]. Nonetheless, their main disadvantage is related
to the convergence speed. A popular way for contrasting this drawback and
achieving a speedup is to implement structured versions where the population
is divided into multiple semi–isolated subpopulations (demes) connected each
other according to a particular network topology. These subpopulations evolve
independently and interact by means of a migration operator used to exchange
individuals. The number of individuals that are sent to (received from) other
demes is determined by the migration rate, while a replacement function defines
how to include the immigrants into the target subpopulation. Besides, the migra-
tion interval establishes the exchange frequency among neighboring subpopula-
tions [7]. Concerning the network topology, this distributed framework may be
categorized as following either the island model (fully connected demes) or the
stepping–stone model (interaction restricted to customized logical or physically
connected demes) [8]. The connectivity degree of the topology beneath deter-
mines the number of the neighboring subpopulations and its diameter is the
most important factor influencing the propagation of good individuals [9].

c© Springer-Verlag Berlin Heidelberg 2014
A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2014, LNCS 8602, pp. 75–85, 2014.
DOI: 10.1007/978-3-662-45523-4 7

76 I. De Falco et al.

The separation of demes serves as a natural way to maintain the diversity
reducing the possibility of population stagnation [9], may guide the evolution
in many directions simultaneously, and may allow speedup in computation and
improve solution quality with respect to a single EA evolution [10,11].

Originally developed for Genetic Algorithms (GAs) [1,3], the distributed app-
roach has been employed also for different paradigms. Among these paradigms,
distributed Differential Evolution (dDE) has been the subject of significant
research [12–18]. The choice of DE [19] is due to its simple but powerful search-
ing capability, and to its overall performance with respect to other stochastic
and direct search global optimization techniques on a wide range of benchmark
problems [20] and real world problems [21].

In the following we make reference to the stepping–stone dDE model. To
assess the impact of the migration topology on a dDE algorithm, simulations
have been performed on a range of test problems and for several network topolo-
gies by making use of a standard dDE algorithm, i.e., DDE [22].

Paper structure is as follows: Section 2 illustrates the state of the art; Section
3 presents a description of the parallel framework. In Section 4 the experimental
findings are shown and discussed together, and a statistical analysis is performed.
The last section contains final remarks and future works.

2 State of the Art

Since the distributed models were introduced in connection with parallel GAs,
it is not surprising that all the issues involved, including the migration topology,
have been studied in this context. Several surveys have been published in the
nineties [7,23]. Although in some case the influence of the migration topology has
been neglected [7], research was conducted to analyze its impact [10,24]. Natu-
rally the distributed approach has not been investigated exclusively in relation
to GAs. There is a wide research on the dDE models which can be characterized
on the basis of the neighborhood topology, the migration policy, the selection
function and the replacement function.

In [12] the migration mechanism as well as the algorithmic parameters are
adaptively coordinated according to a criterion based on genotypical diversity.
An adaptive DE is executed on each subpopulation for a fixed number of gen-
erations. Then a migration process, based on a random connection topology, is
started: each individual in each subpopulation can be probabilistically swapped
with a randomly selected individual in a randomly chosen subpopulation (includ-
ing the one containing the initial individual).

Tasoulis et. al [13] propose a dDE, named PDE, characterized by unidirec-
tional ring topology, a selection function that picks up the individuals with the
best performance and, with a given probability, send these individuals to the
neighboring subpopulations. When the migration occurs, the migrating individ-
uals substitute random individuals of the target subpopulations.

In Apolloni et al. [15] a distributed version, known as IBDDE, is presented:
the migration policy is based on a probabilistic criterion depending on five

Impact of the Topology on the Performance 77

parameters. The individuals to migrate are randomly selected and the individ-
uals arriving from other islands replace randomly chosen local individuals only
if the former ones are fitter. The topology is a unidirectional ring in which the
individuals are exchanged with the nearest neighbors.

In De Falco et al. [22] a distributed version of DE, called DDE, has been
proposed. It consists of a set of classical DE schemes, running in parallel, assigned
to different processing elements arranged in a torus topology, in which each
generic DE instance has four neighboring communicating subpopulations. The
individual sent is the best one and it randomly replaces an individual in the
neighboring subpopulation, except the local current best one.

In the paper by Ishimizu and Tagawa [17] a structured DE approach still
based on the stepping–stone model is presented. Different network topologies,
ranging from ring to torus and hypercube, are taken into account. The migration
takes place every fixed number of generations and the exchange involves only
the best individual which migrates towards only one of the adjacent subpopu-
lations on the basis of the topological neighborhood and randomly replaces an
individual, except the best one, in the receiving subpopulation.

An improved version of PDE algorithm which entails the employment of four
different scale factor values within distributed differential evolution structures
is advanced in [18]. The subpopulations are arranged according to a ring or a
torus topology. Although proper choice of a scale factor scheme appears to be
dependent on the distributed structure, any of the proposed simple schemes has
proven to significantly improve upon the single scale factor distributed differen-
tial evolution algorithms.

In [25] a structured DE which uses a biological invasion inspired migration
strategy is advanced. The subpopulations are displaced in a torus topology. Dur-
ing the migration the individuals with the fitness better than the average fit-
ness in their subpopulation are sent to all the neighboring subpolulations and a
replacement strategy is performed to keep unchanged the size of each subpopu-
lation.

3 The Distributed Model

Our Distributed DE (DDE) algorithm is based on the classical coarse–grained
approach to EAs [7] in which a collection of networked subpopulations cooperate
in the solution of a problem by a migration operator. It consists in a locally–
linked strategy, known as stepping stone–model [8], in which each DE instance
is connected to a number of instances according to the connectivity degree of
the topology beneath. Each subpopulation can communicate with the other ones
only through its neighbours.

Decision must be taken for the migrant selection, i.e. the choice of the ele-
ments to be sent, and replacement, i.e the individuals to be replaced by the
migrants. Different strategies can be devised: the migrants can be selected either
according to fitness or randomly, and they might replace the worst individuals
or substitute them only if better, or they might finally replace any individual

78 I. De Falco et al.

(apart from the very best ones, of course) in the neighbouring subpopulation.
Consistently with the biological events, it was noted that the number of migrants
should not be high and the migration should occur after a period of stasis oth-
erwise the subsearch in a subpopulation might be very perturbed by these con-
tinuously incoming elements [7,26].

This mechanism allows attaining both exploitation and exploration, which
are basic features for a good search. Exploration means to wander through the
search space so as to prevent premature convergence to local optima. Exploita-
tion implies that one area is thoroughly examined, so that we can be confident
to state whether this area is promising. In such a way, good solutions will spread
within the network with successive diffusions, so more and more demes will try
to sample that area (exploitation), and, on the other hand, there will exist at
the same time clusters of subpopulations which will investigate different subareas
of the search space (exploration). Therefore, a suitable percentage of migrants
each subpopulation sends to its neighbours, called Migration Rate (MR), and an
appropriate exchange frequency between neighbouring subpopulations every MI

generations, named Migration Interval, are to be introduced to exploit at the
best the potential of this cooperating stepping–stone model. A rigorous theoret-
ical analysis that leads into new insights into the usefulness of migration, how
information is propagated in island models, and how to set parameters such as
the migration interval is reported in [27]. This study is corroborated by empirical
results that investigate the robustness with respect to the choice of the migration
interval and compare various migration topologies using statistical tests.

Within this general framework we have implemented a distributed version
for DE, which consists of a set of classical DE schemes, running in parallel,
assigned to different processing elements arranged in several topologies in which
each generic DE instance has a different number of neighbouring communicating
subpopulations.

4 Experiments

To investigate the influence of the network topologies in DDE we have compared
their performance on a set of benchmark thirty–dimensional functions as defined
in [28]. Namely, the unimodal functions F1 and F3, and among the multimodal,
the basic functions F6 and F10, the expanded functions F13 and F14, and the
hybrid composition functions F16 and F22 have been taken into account. Among
these, F1, F3, and F6 are separable. As suggested in [29], throughout the exper-
iments, the values for the DE parameters have been chosen as follows: scale
factor (F = 0.9) for all the functions and the crossover ratio (CR) has been
set to 0.1 for all the separable functions and 0.9 for all the other functions. The
DE/rand/1/bin [19] mutation mechanism has been used. As topologies a Ring,
a bidirectional ring (Bring), an incomplete binary tree (IBtree), a Torus, a WK–
recursive (WK), and a Hypercube, each constituted by a total of 16 nodes, have
been investigated. Some of these topologies are outlined in Fig. 1.

The total population size has been chosen as 160, which results in sixteen
subpopulations with 10 individuals. The number of generations has been set

Impact of the Topology on the Performance 79

Fig. 1. The network topologies

Table 1. Best migration interval and related average final value for each problem

Ring Bring IBtree Torus WK Hypercube
Problem MI 〈φbf

〉 MI 〈φbf
〉 MI 〈φbf

〉 MI 〈φbf
〉 MI 〈φbf

〉 MI 〈φbf
〉

F1 10 5.68 · 10−14 10 3.18 · 10−14 10 4.32 · 10−14 10 4.09 · 10−14 10 4.09 · 10−14 10 5.00 · 10−14

F3 10 4.85 · 10+5 10 3.62 · 10+5 10 3.62 · 10+5 10 3.40 · 10+5 10 2.89 · 10+5 10 6.41 · 10+5

F6 30 4.37 · 10+1 40 3.66 · 10+1 20 4.67 · 10+1 10 3.74 · 10+1 10 3.53 · 10+1 10 7.47 · 10+1

F10 30 5.07 · 10+1 40 5.10 · 10+1 50 5.40 · 10+1 50 5.34 · 10+1 50 5.31 · 10+1 50 5.84 · 10+1

F13 50 2.17 · 100 50 1.98 · 100 40 2.15 · 100 50 2.64 · 100 50 2.43 · 100 50 2.81 · 100
F14 50 1.24 · 10+1 40 1.26 · 10+1 40 1.27 · 10+1 50 1.26 · 10+1 40 1.26 · 10+1 50 1.27 · 10+1

F16 50 9.21 · 10+1 50 9.36 · 10+1 50 9.93 · 10+1 50 9.81 · 10+1 50 9.86 · 10+1 50 9.39 · 10+1

F22 50 8.68 · 10+2 50 8.75 · 10+2 50 8.77 · 10+2 50 8.83 · 10+2 50 8.84 · 10+2 50 8.81 · 10−2

to 1, 875, so as to have a total number of fitness evaluations equal to 300, 000,
following the rules widely used to face those testbeds, as for example in [29].

The parallel algorithm, which uses the Message Passing Interface is written
in C language. All the experiments have been carried out on a Vega cluster
constituted by 16 Pentium 4 processors with a frequency of 1.5 GHz and 512Mb
of RAM, interconnected by a FastEthernet switch.

A first phase of our investigation has aimed at finding the best possible
value for the migration interval MI for each function and for each topology.
We have considered a given range of possible values, i.e., 10, 20, 30, 40, and
50. For any such value 25 runs have been effected for each function and each
topology, and the averages 〈φbf 〉 of the best final fitness values over the 25 runs
have been computed. Table 1 reports the best values of MI , together with the
corresponding values of 〈φbf 〉.

Examination of the results shows that for the easiest functions F1 and F3

the best value for MI is obtained at the lowest tested migration interval. For
the most difficult problems the results are better and better as the migration
interval increases, and this holds true until a given value for MI is reached; after
this value, the performance worsens more and more as MI further increases.

4.1 Statistical Analysis

To compare the algorithms from a statistical point of view, a classical approach
based on nonparametric statistical tests has been carried out, following [30]. To
do so, the ControlTest package [31] has been used. It is a Java package developed
to compute the rankings for these tests, and to carry out the related post–hoc
procedures and the computation of the adjusted p–values.

80 I. De Falco et al.

Table 2. Average Rankings of the algorithms

Topology Friedman Aligned Friedman Quade
Ring 3.000 24.125 3.083
Bring 2.313 17.938 2.667
IBtree 4.125 25.125 3.944
Torus 3.688 24.813 3.764
WK 2.563 18.688 2.125

Hypercube 5.313 36.313 5.417
statistic 14.286 6.822 4.148
p–value 0.014 0.234 0.005

The results for the one–to–all analysis are reported in the following. Table 2
contains the results of the Friedman, Aligned Friedman, and Quade tests in terms
of average rankings obtained by all the topologies. The last two rows show the
statistic and the p–value for each test, respectively. For Friedman and Aligned
Friedman tests the statistic is distributed according to chi–square with 5 degrees
of freedom, whereas for Quade test it is distributed according to F–distribution
with 5 and 35 degrees of freedom.

In each of the three tests, the lower the value for an algorithm, the better the
algorithm is. Bring turns out to be the best in two out of the three tests while
WK is the best according to the Quade test. Among the other four topologies,
their order is in all the tests the following: Ring is always the third best heuristic,
Torus is the fourth, followed by ITree, and finally the Hypercube is the sixth.

Furthermore, with the aim to examine if some hypotheses of equivalence
between the best performing algorithm and the other ones can be rejected, the
complete statistical analysis based on the post–hoc procedures ideated by Holm,
Hochberg, Hommel, Holland, Rom, Finner, and Li has been carried out following
[30]. Moreover, the adjusted p–values have been computed by means of [31].

Table 3 reports the results of this analysis performed at a level of significance
α = 0.05. In this table the other algorithms are ranked in terms of distance from
the best performing one, and each algorithm is compared against this latter to
investigate whether or not the equivalence hypothesis can be rejected. For each
algorithm each sub–table reports the z value, the unadjusted p–value, and the
adjusted p–values according to the different post-hoc procedures. The variable
z represents the test statistic for comparing the algorithms, and its definition
depends on the main nonparametric test used. In [30] all the different definitions
for z, corresponding to the different tests, are reported. The last row in each sub–
table contains for each procedure the threshold value Th such that the procedure
considered rejects those equivalence hypotheses that have an adjusted p–value
lower than or equal to Th.

Summarizing the results of these tables, the equivalence hypothesis between
WK and Bring cannot be rejected by any test and by any post–hoc procedure.
The hypothesis of their equivalence to the Hypercube, instead, is rejected by all
post–hoc procedures, and that with IBtree in many cases. Finally, their equiva-
lence with Torus and Ring is always excluded by Li post–hoc procedure.

Impact of the Topology on the Performance 81

Table 3. Results of post–hoc procedures for Friedman(top), Aligned Friedman (center),
and Quade (bottom) tests over all tools (at α = 0.05)

i Algorithm z = (R0 − Ri)/SE p Holm/Hochberg/Hommel Holland Rom Finner Li
5 Hypercube 3.207 0.001 0.010 0.010 0.010 0.010 0.011
4 IBtree 1.938 0.053 0.013 0.013 0.013 0.020 0.011
3 Torus 1.470 0.142 0.017 0.017 0.017 0.030 0.011
2 Ring 0.735 0.462 0.025 0.025 0.025 0.040 0.011
1 WK 0.267 0.789 0.050 0.050 0.050 0.050 0.050

Th 0.013/0.010/0.013 0.013 0.011 0.020 0.011

i Algorithm z = (R0 − Ri)/SE p Holm/Hochberg/Hommel Holland Rom Finner Li
5 Hypercube 2.625 0.009 0.010 0.010 0.011 0.010 0.004
4 IBtree 1.027 0.305 0.013 0.013 0.013 0.020 0.004
3 Torus 0.982 0.326 0.017 0.017 0.017 0.030 0.004
2 Ring 0.884 0.377 0.025 0.025 0.025 0.040 0.004
1 WK 0.107 0.915 0.050 0.050 0.050 0.050 0.050

Th 0.013/0.010/0.013 0.013 0.011 0.020 0.004

i Algorithm z = (R0 − Ri)/SE p Holm/Hochberg/Hommel Holland Rom Finner Li
5 Hypercube 1.983 0.047 0.010 0.010 0.010 0.010 0.013
4 IBtree 1.096 0.273 0.013 0.013 0.013 0.020 0.013
3 Torus 0.987 0.323 0.017 0.017 0.017 0.030 0.013
2 Ring 0.577 0.564 0.025 0.025 0.025 0.040 0.013
1 Bring 0.326 0.744 0.050 0.050 0.050 0.050 0.050

Th 0.010/—/0.010 0.010 — 0.010 0.013

4.2 Behavior of the Topologies

A very interesting remark is that the migration frequency corresponding to the
best performance for any given topology has a strong relationship to the degree
of difficulty of the problem: the simpler the problem the lower the value for MI ,
the harder the problem the higher the value. This holds true for all the topologies
and for all the problems. Just to give some examples, Fig. 2 shows four different
situations. Namely, the top–left pane deals with the quite easy function F3 for
the bidirectional ring: the lower the value for MI the better the performance.
Top–right pane reports on the behavior of WK topology over F6 function: this
is a quite easy one, and same conclusions as before hold true. The bottom–left
pane, instead shows the behavior over the more difficult F13 function: now the
situation is reversed, and the higher the value for MI the better the performance.
Similarly, the bottom–right pane sketches the behavior of WK over the difficult
F22 problem: same considerations as before hold true. This seems to imply that
as the problem becomes more and more complex to solve, the demes should
exchange individuals less frequently, probably because each deme needs now to
more deeply perform exploitation.

82 I. De Falco et al.

F3 Bring

0 500 1000 1500 2000

1.0
×1

00
5

1.0
×1

00
6

1.0
×1

00
7

1.0
×1

00
8

1.0
×1

00
9

10
20
30
40
50

Generations

Fit
ne

ss
F6 WK

0 500 1000 1500 20001.0
×1

000
1.0

×1
003

1.0
×1

006
1.1

×1
009

1.1
×1

012

10
20
30
40
50

Generations

Fit
ne

ss
F13 WK

0 500 1000 1500 2000

1
10

10
0

10
00

10
20
30
40
50

Generations

Fit
ne

ss

F22 WK

0 500 1000 1500 200080
0

10
00

12
00

14
00

10
20
30
40
50

Generations

Fit
ne

ss

Fig. 2. A few examples of behavior of some topologies over some functions supporting
the hypothesis that the harder a function, the higher the best value for MI

A second feature worth noting is that WK and Torus topologies have faster
convergence capability to suboptimal solutions than the other topologies. This
takes place in general for any given function, and for any value of MI . It is
interesting to note that this holds true also in the circumstances in which these
two topologies do not reach the best values at the end of the evolutions, rather
they are overtaken by other topologies that start more slowly. Figure 3 shows this
feature for four exemplary situations. Its top–left pane deals with F3 function
at MI = 30, the top–right one reports on F10 at MI = 50, the bottom–left one
sketches the situation for F14 at MI = 50, and finally the bottom–right pane
shows F16 test case at MI = 50. In all the cases Ring topology is the slowest.
This feature could be profitably used whenever speed becomes of paramount
importance in solving a problem: WK and Torus are very appealing, if a good
suboptimal solution is needed in a very low amount of time.

Impact of the Topology on the Performance 83

F3 MI=30

0 500 1000 1500 20001.0
×1

00
5

1.0
×1

00
6

1.0
×1

00
7

1.0
×1

00
8

1.0
×1

00
9

Ring
Bring
IBtree
Hypercube
Torus
WK

Generations

Fit
ne

ss

F10 MI=50

0 500 1000 1500 200010
10

0
10

00

Ring
Bring
IBtree
Hypercube
Torus
WK

Generations

Fit
ne

ss

F14 MI=50

0 500 1000 1500 2000

11
12

13
14

15

Ring
Bring
IBtree
Hypercube
Torus
WK

Generations

Fit
ne

ss

F16 MI=50

0 500 1000 1500 2000

0
20

0
40

0
60

0

Ring
Bring
IBtree
Hypercube
Torus
WK

Generations

Fit
ne

ss

Fig. 3. Some examples of the faster convergence achieved by WK and Torus

5 Conclusions and Future Works

A distributed DE algorithm has been considered to evaluate the impact of the
migration topologies on the stepping–stone model. The simulation results per-
formed on a set of classical test functions and their statistical analysis have been
shown to compare the performance of the different network topologies.

Future works will aim at carrying out a wider evaluation phase. This will
be accomplished by performing sets of experiments with other DE operators, so
as to ascertain that the performance are unchanged independently of the DE
scheme chosen.

References

1. Holland, J.: Adaptation in natural and artificial systems. The University of Michi-
gan Press, Ann Arbor (1975)

2. Schwefel, H.: Numerical optimization of computer models. Wiley & Sons (1981)

84 I. De Falco et al.

3. Goldberg, D.: Genetic algorithms in search, optimization, and machine learning.
Addison-Wesley Professional (1989)

4. Koza, J.: Genetic programming. MIT Press, Cambridge (1992)
5. Bäck, T., Fogel, D.B., Michalewicz, Z. (eds.): Handbook of Evolutionary Compu-

tation. Oxford University Press, Oxford (1997)
6. De Falco, I., Cioppa, D.A., Iazzetta, A., Tarantino, E.: An evolutionary approach

for automatically extracting intelligible classification rules. Knowledge and Infor-
mation Systems 7, 179–201 (2005)

7. Cantú-Paz, E.: A summary of research on parallel genetic algorithms. Technical
Report 95007, University of Illinois, Urbana-Champaign, USA (1995)

8. Mühlenbein, H.: In: Rawlins, G. (ed.) Foundations of Genetic Algorithms. Morgan
Kaufmann, San Mateo (1991)

9. Tomassini, M.: Spatially structured evolutionary algorithms. Springer (2005)
10. Cantú-Paz, E.: Efficient and accurate parallel genetic algorithms, vol. 1. Kluwer

Academic Publisher, Norwell (2000)
11. Alba, E., Tomassini, M.: Parallelism and evolutionary algorithms. IEEE Trans. on

Evolutionary Computation 6, 443–462 (2002)
12. Zaharie, D., Petcu, D.: Parallel implementation of multipopulation differential evo-

lution. In: Proceedings of the Nato Advanced Research Workshop on Concurrent
Information Processing and Computing, pp. 223–232. IOS Press (2003)

13. Tasoulis, D., Pavlidis, N., Plagianakos, V., Vrahatis, M.: Parallel differential evo-
lution. Proceedings of the Congress on Evolutionary Computation. 2, 2023–2029
(2004)

14. De Falco, I., Della Cioppa, A., Scafuri, U., Tarantino, E.: A distributed differ-
ential evolution approach for mapping in a grid environment. In: Proceedings of
the Fifteenth EUROMICRO International Conference on Parallel, Distributed and
Network-Based Processing, pp. 442–449. IEEE Press (2007)

15. Apolloni, J., Leguizamón, G., Garćıa-Nieto, J., Alba, E.: Island based distributed
differential evolution: an experimental study on hybrid testbeds. In: Proceedings
of the Eight International Conference on Hybrid Intelligent Systems, pp. 696–701.
IEEE Press (2008)

16. Weber, M., Neri, F., Tirronen, V.: Distributed differential evolution with
explorative-exploitative population families. Genetic Programming and Evolvable
Machines 10, 343–371 (2009)

17. Ishimizu, T., Tagawa, K.: A structured differential evolution for various network
topologies. International Journal of Computers and Communications 4, 2–8 (2010)

18. Weber, M., Neri, F., Tirronen, V.: A study on scale factor in distributed differential
evolution. Information Sciences 18, 2488–2511 (2011)

19. Price, K., Storn, R.: Differential evolution. Dr. Dobb’s Journal 22, 18–24 (1997)
20. Price, K., Storn, R.M., Lampinen, J.: Differential Evolution - A Practical Approach

to Global Optmization. Springer (2005)
21. Nobakhti, A., Wang, H.: A simple self-adaptive differential evolution algorithm

with application on the alstom gasifier. Applied Soft Computing 8, 350–370 (2008)
22. De Falco, I., Della Cioppa, A., Maisto, D., Scafuri, U., Tarantino, E.: Satellite

Image Registration by Distributed Differential Evolution. In: Giacobini, M. (ed.)
EvoWorkshops 2007. LNCS, vol. 4448, pp. 251–260. Springer, Heidelberg (2007)

23. Alba, E., Troya, J.: A survey of parallel distributed genetic algorithms. Complexity
4, 31–52 (1999)

Impact of the Topology on the Performance 85

24. Alba, E., Luque, G.: Theoretical models of selection pressure for dEAs: topology
influence. In: Proceedings of the IEEE International Conference on Evolutionary
Computation, pp. 214–221 (2005)

25. De Falco, I., Cioppa, D.A., Maisto, D., Scafuri, U., Tarantino, E.: Biological
invasion-inspired migration in distributed evolutionary algorithms. Information
Sciences 207, 50–65 (2012)

26. Skolicki, K., De Jong, K.: The influence of migration sizes and intervals on island
models. In: Proceedings of the Conference of Genetic and Evolutionary Computa-
tion, Association for Computing Machinery Inc, pp. 1295–1302. ACM (2005)

27. Lässig, J., Sudholt, D.: Design and analysis of migration in parallel evolutionary
algorithms. Soft Computing 17, 1121–1144 (2013)

28. Suganthan, P., Hansen, N., Liang, J., Deb, K., Chen, Y., Auger, A., Tiwari, S.:
Problem definitions and evaluation criteria for the CEC 2005 special session on real-
parameter optimization. Technical Report 201212, Zhengzhou University, China
and Nanyang Technological University, Singapore (2005)

29. Rönkkönen, J., Kukkonen, S., Price, K.: Real-parameter optimization with differen-
tial evolution. In: Proceedings of the IEEE Congress on Evolutionary Computation,
vol. 1, pp. 506–513. IEEE (2005)

30. Derrac, J., Garćıa, S., Molina, D., Herrera, F.: A practical tutorial on the use
of nonparametric statistical tests as a methodology for comparing evolutionary
and swarm intelligence algorithms. Swarm and Evolutionary Computation 1, 3–18
(2011)

31. Garćıa, S., Fernández, A., Luengo, J., Herrera, F.: Advanced nonparametric tests
for multiple comparisons in the design of experiments in computational intelligence
and data mining: Experimental analysis of power. Information Sciences 180, 2044–
2064 (2010)

Modeling the Offloading of Different Types
of Mobile Applications by Using

Evolutionary Algorithms

Gianluigi Folino(B) and Francesco S. Pisani

Institute of High Performance Computing and Networking (ICAR-CNR),
Rende, Italy

{folino,fpisani}@icar.cnr.it

Abstract. Modern smartphones permit to run a large variety of applica-
tions, i.e. multimedia, games, social network applications, etc. However,
this aspect considerably reduces the battery life of these devices. A possi-
ble solution to alleviate this problem is to offload part of the application
or the whole computation to remote servers, i.e. Cloud Computing. The
offloading cannot be performed without considering the issues derived
from the nature of the application (i.e. multimedia, games, etc.), which
can considerably change the resources necessary to the computation and
the type, the frequency and the amount of data to be exchanged with
the network. This work shows a framework for automatically building
models for the offloading of mobile applications based on evolutionary
algorithms and how it can be used to simulate different kinds of mobile
applications and to analyze the rules generated. To this aim, a tool
for generating mobile datasets, presenting different features, is designed
and experiments are performed in different usage conditions in order to
demonstrate the utility of the overall framework.

1 Introduction

Modern smartphones boosted their capabilities due to the increasing coverage
of mobile broadband networks, to the new high-performance processors, to the
large-volume storage and to new different types of sensors. All these capabilities
together make it possible for mobile devices to handle much more complex tasks
and to execute different kinds of applications. On the other hand, that consumes
a lot more computing and networking resources and therefore demands much
more energy, while the battery technology has not developed as fast as mobile
computing technology. A possible solution to alleviate this problem is to offload
part of the application or the whole computation to remote servers, as explained
in [4], where software-based techniques for reducing program power consumption
are analyzed, considering both static and dynamic information in order to move
the computation to remote servers.

In the last few years, the emergence of the Cloud Computing technologies
and the consequent large availability of cloud servers [1], encouraged the research

c© Springer-Verlag Berlin Heidelberg 2014
A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2014, LNCS 8602, pp. 86–97, 2014.
DOI: 10.1007/978-3-662-45523-4 8

Modeling the Offloading of Different Types of Mobile Applications 87

into the usage of offloading techniques on cloud computing platforms. A number
of papers were published trying to cope with the main issues of the process of
offloading, mainly oriented toward a particular problematic, i.e. Wifi [7], network
behavior and bandwidth [9], the tradeoff between privacy and quality [8].

In [3], a framework is presented for the automatic offloading of mobile appli-
cation using a genetic programming approach, which attempts to address the
issues listed above. The framework comprises two parts: a module that simulates
the entire offloading process, and an inference engine that builds an automatic
decision model to handle the offloading process. The simulator and the inference
engine both apply a taxonomy that defines four main categories concerning the
offloading process: user, network, device and application. The simulator evalu-
ates the performance of the offloading process of mobile applications on the basis
of user requirements, of the conditions of the network, of the hardware/software
features of the mobile device and of the characteristics of the application. The
inference engine is used to generate decision tree based models that take decisions
concerning the offloading process on the basis of the parameters contained in the
categories defined by the taxonomy. This is based on a genetic programming tool
that generates the models using the parameters defined by the taxonomy and
driven by a function of fitness, giving different weights to the costs, time, energy
depending on the priorities assigned.

However, the offloading cannot be performed without considering the issues
derived from of the nature of the application, i.e. multimedia, games, communi-
cations, which can change the resources necessary to the computation and the
type, the frequency and the amount of data to be exchanged with the network
and consequently the energy consumption profile.

In this paper, we extend the framework, building a generator of artificial
datasets, which using the categories defined in the above-cited work, permits
to simulate different kinds of mobile applications, which present different char-
acteristics in terms of the amount of computation, of the type, the frequency
and the amount of computation and the amount of data to be exchanged. The
generator permits to analyze both the effectiveness of the models built by the
decision-tree based GP approach and the interpretability of the models them-
selves. In addition, the analytical model, showing how the cloud simulator and
the mobile simulator model the different types of applications is shown.

The rest of the paper is structured as follows. Section 2 presents the entire
framework used to perform the offloading process. In Section 3, the mobile simu-
lator is illustrated. In Section 4, we show how the artificial datasets are generated.
In Section 5, some experiments are conducted to verify the effectiveness of the
approach and to analyze the models obtained. Finally, Section 6 concludes the
work.

2 Background: A GP-based Framework to Perform the
Offloading of Mobile Applications

In this section is presented the framework that uses Genetic Programming to
evolve models, in the form of decision trees, which will decide whether it is

88 G. Folino and F.S. Pisani

convenient to perform the offloading of a mobile application on the cloud. The
decision is taken on the basis of the parameters and the properties typical of the
application, of the user and of the environment, with the support of a tool for
simulating both cloud and mobile environments, presented in the next section.

It is necessary to consider that the system is based on a taxonomy of param-
eters and properties of the mobile systems, defined in [3], which will be used to
take decisions in order to build the model that decides the offloading strategy.
The taxonomy only considers aspects that influence the offloading process and
is based on four different categories: Application (parameters associated with
the application itself), User (parameters assigned according to the user needs),
Network (parameters concerning the type and the state of the network), and
Device (parameters reflecting the hardware/software features of the devices).

The overall software architecture of the system, illustrated in Figure 1, will
be helpful in understanding how the framework works.

Fig. 1. The overall software architecture of the system

On the top of the architecture, there are the modules containing the data,
which will be used by the other components of the system. These different
modules will contain a set of data for each of the four taxonomic categories
considered. Afterwards, the sampler module will generate the training and the
validation dataset, simply randomly combing the data estimated by the above-
mentioned models. These two datasets will be used respectively to generate and
validate the decision models.

Analyzing the rest of the software architecture, we find the two main modules,
used respectively for the simulation and for the inference of the mobile offloading
module. The inference part of the designed system consists of a Genetic Program-
ming module, developing a population of models, suitable to decide the possible
offloading of a mobile application. The chosen GP system is BoostCGPC Boost
Cellular Genetic Programming Classifier [2]. One of the advantages of the chosen
GP–based module is that it can run on parallel/distributed architectures, permit-
ting time-saving in the most expensive phase of the training process, described
in the following. Indeed, each single model of the GP population represents a

Modeling the Offloading of Different Types of Mobile Applications 89

decision tree able to decide a strategy for the offloading and must be evaluated
using the simulation module.

The simulation module consists of the GreenCloud simulator [5] (simulating
the cloud part of the offloading process) and of a mobile simulator designed in
order to model the mobile device behavior. In practice, each model generated by
the GP module is passed to the simulator module, which performs the fitness
evaluation directly on the basis of the results obtained simulating the model
using the training dataset.

At the end of the process, the best model (or the best models) will form the
rules adopted by the offloading engine, which will decide whether an application
must be offloaded, considering the defined conditions (user requirements, band-
width, characteristic of the mobile device and so on). All these models must be
validated using the simulation engine with the validation dataset; if the result
of this evaluation exceeds a predefined threshold, the model is added to a model
repository for future use. The rules used to perform the offloading process are
generated using the genetic programming tool. The use of GP supplies the char-
acteristic of adaptivity and the possibility of working with little knowledge of
the domain, which is really useful to this particular aim.

2.1 Fitness, Terminals and Functions

As usual, in order to use GP for a particular domain, it is sufficient to choose an
appropriate terminal and function set and to define a fitness function. We chose
a typical approach to GP for generating decision trees, choosing as terminals
simply the two answers, yes or no to the question “Is the process offloadable?”.
Then, the main parameters/properties that will drive the offloading process are
used as functions. For this particular domain, in order to design an appropriate
fitness function, it is necessary to take into account the energy wasted, the cost
supplied to use the Cloud and the time saved (or wasted) in performing the
offload process.

First of all, we define three normalized functions, representing respectively
the energy saved, the time saved and the cost saved during the process of offload-
ing (actually the latter is a negative value, as it is a cost not a saving): Senergy,
Stime and Scost.

Senergy = Elocal−Eoffload

max(Eoffload,Elocal)
, i.e. the ratio between the energy saved exe-

cuting the process on remote servers and the energy necessary to perform the
offloading. The energy is computed in accordance with the analysis defined in
[6] and the methodology is better detailed in section 3 together with the costs
derived from using the cloud resources.

Stime = Tlocal−Toffload

max(Toffload,Tlocal)
, i.e. the ratio between the time saved executing

the process on remote servers and the time necessary to perform the offloading.
Differently, the cost function is computed as Scost = −Coffload

Csup
, i.e. the ratio

between the cost due to the remote execution and a parameter Csup defining a
threshold of cost (if the cost overcomes Csup , Scost becomes −1).

Finally, the fitness is computed as the weighted sum of the three equations
described above, using three positive parameters (penergy, ptime , pcost), modeling

90 G. Folino and F.S. Pisani

the importance we want to give respectively to the energy saving, to the time
saving and to the cost saving.

Considering an element Ti (representing an application running on a deter-
mined device) of the training set T composed of n tuples, the fitness of this
element is computed as

f(Ti) = penergy ∗ Senergy + ptime ∗ Stime + pcost ∗ Scost and consequently the
total fitness is given by ftot =

∑i=n
i=1 f(Ti)

3 The Mobile and Cloud Simulator

In this section, the simulator used for the process of offloading is described in
detail.

The mobile simulator is written in java and its architecture comprises two
modules. The first computes the (time, energy and cost) models that specify
hardware characteristics of the mobile devices and the costs of the cloud services.
The second module computes the fitness for all the tasks and communicates with
the GreenCloud simulator in order to obtain the estimated values concerning the
cloud environment (cost, execution time, memory used, etc.).

The main aim of the simulator is to estimate the three important components,
which will be used to estimate the goodness (fitness) of a determined model
built by the GP system: the time, the energy and the cost associated with that
model. The equations used to estimate these three functions are based on the
model developed by Kumar [6]. The first element is function of the time required
to perform the task entirely on the mobile device and of the time required to
perform the same task (or at least part of the task) on the cloud server consid-
ering also the overhead associated with the communication; the second element
is determined by the energy wasted on the mobile device and the energy con-
sumed performing the offload; finally, the third module represents the cost of the
cloud computing services. The latter is computed using GreenCloud [5], which
is a simulation environment for energy-aware cloud computing datacenters. It
is derived from NS2 (network simulator) and tracks the power use of all the
components involved in a datacenter: hosts, communication switches, etc. In our
framework, GreenCloud is used to evaluate the execution times of the part of
the application offloaded on the servers and consequently the costs necessary to
use the servers and the energy wasted. Although the main interest of this paper
is on the mobile side, on the Cloud side, we need to simulate the processing
delays, the submitting task rates, the impact of mobile data size in the overall
performance, in order to identify classes of applications that benefit from the
computation offloading.

The time component represents the difference between the time to perform
the task locally or remotely. The time of local computation mainly depends
on three factors: the average execution time, the probability of interruption and
the available memory. A higher probability of interruption corresponds to a large
amount of time to complete the task. The available memory has effects on the

Modeling the Offloading of Different Types of Mobile Applications 91

computation time because the mobile OS performs a time-consuming swapping
operation when memory is not sufficient.

In the case of the offload, the time depends on the computation time on the
server (obtained by the simulator GreenCloud) that corresponds to the waiting
time of the mobile device and the time required to perform the migration of
the data (and of part of the application). These delays depend on the type of
network, on the latency and on the bandwidth available.

The energy component is obtained from the difference of the energy consumed
when the task is executed on the mobile device and the energy consumed when
the task runs on the cloud servers. The term, which represents the local energy,
is given by the product between the energy consumption of the system (Pc) and
the execution time (Tc). The system energy depends on the CPU usage and on
the system resources used (GPS, camera, etc.) that are correlated to complexity
of the task, available battery and system load.

Using the model proposed by Kumar, we indicate with C the number of
instructions required by the computation, with S the speed (instructions for
second) of the cloud server and with M the speed of the mobile server. If the
data to be transferred between the mobile and the cloud system are D (bytes)
and B is the network bandwidth, it takes D

B seconds to transmit and receive data.
In addition, the mobile consumes (watts) are indicated with Pc (computing), Pi

(idle), and Ptr (sending and receiving data). So, the energy consumed on the
mobile system will be Pc ∗ C

M , the energy consumed for the offloading process
and for the computation of the cloud server will be Pi ∗ C

S + Ptr ∗ D
B and the

effective saving (if positive) in energy of the complete offloading process will be
Pc ∗ C

M − Pi ∗ C
S − Ptr ∗ D

B .

4 Generating Artificial Datasets for Different Kinds of
Applications

It is really hard and very costly to measure the behavior and the usage of mobile
devices in a real environment. Furthermore, to the best of our knowledge, in the
literature, there are no real datasets modeling the behavior of mobile devices.
Therefore, we build a tool for building artificial datasets to model a number of
realistic mobile scenarios for our experiments. Using this tool, we generated three
datasets (named A, B and C). A tuple of each dataset is composed from a set of
features, each one modeling a property of the mobile system in accordance with
the taxonomy previously defined and the class represents the decision of offload-
ing or not. Most of the features are intuitive and a detailed description can be
found in [3]; here we report only three relevant features: avgtime represents the
average time of execution of the mobile application, datasize is the average data
size in bytes exchanged by the application, bandwidth is the average bandwidth
available between the mobile device and the cloud. These features are discretized
and can assume the following values: very low, low, medium, high and very high.

A percentage of 70% of the dataset is used as training set and the remainder
for testing. A synthetic description of the datasets, together with the typical

92 G. Folino and F.S. Pisani

Table 1. A synthetic description of the datasets and of the typical applications they
model

Dataset Synthetic Description Use Cases
A Average time and datasize properties are gen-

erated with a zipf distribution. Probability of
interruption property follows a normal distribu-
tion.

Applications usually interrupted by an event
(i.e. a call, a text message, a notification of
another app, etc.). This dataset presents an
equal distribution of long/heavy and short/light
tasks.

B Datasize, average time and probability of inter-
ruption properties are generated with a normal
distribution

Gaming, social networking and messaging appli-
cations, presenting a medium/long execution
time or computationally intensive.

C Probability of interruption, network QoS, aver-
age execution time, network bandwidth, bat-
tery level and cpu available are generated with
a zipf distribution. Datasize, network latency,
network type, memory available and connectiv-
ity are generated with a normal distribution

Most complex scenario (communication, multi-
media, sport and shopping applications). They
are used frequently and for short time and have
very low requirements in terms of time, energy
or performance.

applications they represent, are supplied in Table 1 and described in detail in
the following. The percentage of tuples, which are classified as offloadable, is
reported in Table 2.

Dataset A is modeled using a zipf distribution for the average time and for
the datasize property, while the other properties follow a uniform distribution.
This choice replicates the case in which most part of the applications have short
execution times and very few applications present high execution times, while
the probability of interruption follows a normal distribution. This dataset models
the common mobile user behavior in which an application is interrupted by an
event (a call, a text message, a notification of another app, etc.).

The three main properties in the dataset B (datasize, average time and prob-
ability of interruption) follow a normal distribution so that we have a dataset
that represents the typical case of the top downloaded apps (mainly game, social
and messaging apps), with a similar use behavior. Also in this case, the other
properties are generated with a uniform distribution.

As for the third dataset (C), the probability of interruption, the network
QoS, the average execution time, the network bandwidth, the battery level and
the cpu available are generated using a zipf distribution, while the other prop-
erties are generated using a normal distribution. Using this dataset we want to
model a more complex environment in which most of the applications are defined
by a moderate use of memory and size of data to transmit and average values
for network latency and signal strength in 3G networks, which is the most used
type of network. For these reasons, more energy is required for the transmission.
For values generated with zipf distribution, the applications have low resource
available, poor network performance as mean value and most of the applica-
tions presents a low use time. These characteristics reproduce a scenario where
offloading is less profitable.

It is worth noticing that experts of the domain could find distributions
modeling the real behavior of the previously described properties better than
how defined in this section; however, the aim of this work is not to define the
”best” distributions for the properties of the mobile applications, but to build a
framework able to simulate different distributions and understand the behavior
in terms of cost, energy and time savings.

Modeling the Offloading of Different Types of Mobile Applications 93

Table 2. The different parameters used in the datasets and the resulting percentage
of offloadable tasks. Configurations used: C1 (penergy = 2, ptime = 0.2, pcost = 0.2),
C2 (penergy = 2, ptime = 0.2, pcost = 1), C3 (penergy = 2, ptime = 1, pcost = 1).

Dataset A Dataset B Dataset C

C1 40% 77% 24%

C2 51% 85% 29%

C3 62% 96% 40%

5 Experimental Section

All the experiments were performed on a Linux cluster with 16 Itanium2 1.4GHz
nodes, each having 2 GBytes of main memory and connected by a Myrinet high
performance network. As for the BoostCGPC algorithm, we adopted the same
parameters used in the original paper [2], and no tuning phase has been con-
ducted. In practice, in each experiment, the BoostGCPC module uses a proba-
bility of crossover equal to 0.8 and of mutation equal to 0.1, a maximum depth
equal to 17, and a population of 100 individuals per node. The algorithm was
run for 5 rounds of boosting on 5 nodes, using 100 generations for rounds. The
original training set was partitioned among the 5 nodes. It is worth remembering
that the algorithm produces a different classifier for each round on each node,
generating a final ensemble of 25 classifiers. A parsimony factor of 0.0001 was
used in order to reduce the size of the classifiers. All results were obtained by
averaging 30 runs.

In order to evaluate the behavior of different configurations and types of
mobile applications besides the classical error measure in the classification task
(the ratio between the number of correctly classified cases and the total number
of cases) the two standard metrics of false negative rate and false positive rate
developed for network intrusions, have been used. If with normal we indicate the
process does not need to be offloaded, the false positive (also called false alarm)
rate can be computed as the ratio between the number of normal processes
classified as to be offloaded and the total number of normal processes, that is

FP =
#FalseAlarm

#TrueNegative + #FalseAlarm

while false negative is the opposite case (i.e., the number of ”to be offloaded”
processes classified as normal and the total number of ”to be offloaded” processes.
These metrics are important because they help to understand which of the two
cases is most costly for the offloading process.

5.1 Performance Analysis

In this subsection, a suite of experiments is conducted in order to analyze the
behavior of our algorithm for different categories of mobile applications and
for different experimental setups. The false positive and false negative rate and

94 G. Folino and F.S. Pisani

the overall error is computed by running the framework on the three datasets
described in the previous section (having 15 features and 12,000 tuples each
one), by varying the parameters weighting the energy, the cost and the time. In
this way, we want to understand if the framework is particularly suitable to a
specific distribution or is more oriented toward a specific parameter (i.e. cost),
or it is effective to detect the rate of false positives or false negatives.

(a) (b)

(c)

Fig. 2. The different errors (FP, FN and total) respectively for the dataset A (a), B
(b) and C (c) with different configurations (C1, C2 and C3)

The results of this evaluation are illustrated in Figures 2 a, b and c. For each
dataset, we used three different setup configurations (C1 (penergy = 2, ptime =
0.2, pcost = 0.2), C2 (penergy = 2, ptime = 0.2, pcost = 1), C3 (penergy = 2,
ptime = 1, pcost = 1)). The parameters were chosen to give different importance
to time and cost components of the fitness function.

The dataset A is composed of applications that require medium values of
execution times and hardware requirements are not excessive. The percentage of
the tasks that should be executed in offloading or not is well balanced; therefore,
the model fits well the data both for the metric of FN and of FP.

Modeling the Offloading of Different Types of Mobile Applications 95

Fig. 3. An example of generated model for the dataset A

On the contrary, the dataset B was created to model applications that have
a long execution time and a high use of hardware resources and consequently
most of the tasks have benefits in the offloading process. Therefore, the rate
of FP is very low, but equally, our model performs well for the FN rate. The
dataset C models applications that have a little benefit from using the offload-
ing mechanism. In this scenario, the correct percentage of offloadable tasks is
between 20% and 40%. The False Negatives rate is very low because the number
of tasks for which do offload is relatively low and they are recognized almost
always correctly.

5.2 Analyzing the Models

An example of generated tree for the dataset A is shown in figure 3. It is immedi-
ately evident that the execution time, the amount of data to be transmitted and
the type of network used for transmission are the main discriminating factors
to make offload or not. This is due to the impact that the offloading process
has in terms of energy and time taken to perform the offload. It is useful to
remember that communication has a significant impact on energy consumption
on a mobile device. Indeed, the first and second levels of the tree are sufficient
to classify applications with a very short or very long execution times. If the
data to be transmitted are low then the task of offloading is preferable. This
tree reflects the nature of the applications modeled by this dataset: variables
execution time, very different amount of transmitted data and, in general, no
predominant trend to make offload or not.

As for the dataset B (figure 4), the percentage of offloadable tasks is predom-
inant. The decision to make or not the offloading depends on the situations in
which the power consumption is excessive in relation to the task requirements or
to the condition of the battery. For example, tasks with low avgtime, medium

96 G. Folino and F.S. Pisani

Fig. 4. An example of generated model for the dataset B

Fig. 5. An example of generated model for the dataset C

network and qos and a high-energy network usage do not perform the offloading.
The same decision is taken whether the network type is not specified and the
device has low battery. As for dataset C (figure 5), composed by a low percentage
of tasks that benefits from the offloading, the final decision is mainly determined
by the conditions of the network (bandwidth available, network type, latency)
or by the amount of data to be transferred. The execution time is only used for
the decision only in the rare case of application with a long execution time (i.e.
games).

6 Conclusions and Future Work

An automatic approach to generate models for taking decisions on the process
of offloading of mobile applications on the basis of the user requirements, of
the conditions of the network, of the hardware/software features of the mobile

Modeling the Offloading of Different Types of Mobile Applications 97

device and of the characteristics of the application is presented. Using a tool for
generating artificial datasets, the utility of the framework in simulating different
kinds of mobile applications was demonstrated. The rules generated in the form
of decision trees result really understandable and supply useful information in
deciding whether determined kinds of applications are able to be offloaded and
on the main conditions to be evaluated. Future works include to test the frame-
work with real datasets and to verify whether the models obtained work in real
environments.

References

1. Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J., Brandic, I.: Cloud computing and
emerging it platforms: Vision, hype, and reality for delivering computing as the 5th
utility. Future Generation Computer Systems 25(6), 599–616 (2009)

2. Folino, G., Pizzuti, C., Spezzano, G.: Gp ensembles for large-scale data classification.
IEEE Transactions on Evolutionary Computation 10(5), 604–616 (2006)

3. Folino, G., Pisani, F.S.: A Framework for Modeling Automatic Offloading of Mobile
Applications Using Genetic Programming. In: Esparcia-Alcázar, A.I. (ed.) EvoAp-
plications 2013. LNCS, vol. 7835, pp. 62–71. Springer, Heidelberg (2013)

4. Gurun, S., Krintz, C.: Addressing the energy crisis in mobile computing with devel-
oping power aware software. In UCSB Technical Report, UCSB Computer Science
Department (2003)

5. Kliazovich, D., Bouvry, P., Audzevich, Y., Khan, S.U.: Greencloud: A packet-level
simulator of energy-aware cloud computing data centers. In: Proceedings of the
Global Communications Conference, GLOBECOM 2010, pp. 1–5. IEEE, Miami
(2010)

6. Kumar, K., Yung-Hsiang, L.: Cloud computing for mobile users: Can offloading
computation save energy? IEEE Computer 43(4), 51–56 (2010)

7. Lee, K., Rhee, I., Lee, J., Chong, S., Yi, Y.: Mobile data offloading: how much can
wifi deliver? IEEE/ACM Transactions on Networking 21(2), 536–550 (2013)

8. Liu, J., Kumar, K., Lu, Y-H.: Tradeoff between energy savings and privacy protec-
tion in computation offloading. In: Proceedings of the 2010 International Symposium
on Low Power Electronics and Design, pp. 213–218. ACM, Austin (2010)

9. Wolski, R., Gurun, S., Krintz, C., Nurmi, D.: Using bandwidth data to make com-
putation offloading decisions. In: 22nd IEEE International Symposium on Parallel
and Distributed Processing, IPDPS 2008, pp. 1–8. IEEE, Miami (2008)

EvoCOMPLEX

Common Developmental Genomes Revisited –
Evolution Through Adaptation

Konstantinos Antonakopoulos(B)

Department of Computer and Information Science,
Norwegian University of Science and Technology, Sem Sælandsvei 7-9,

NO-7491 Trondheim, Norway
kostas@idi.ntnu.no

Abstract. Artificial development has been widely used for designing
complex structures and as a means to increase the complexity of an arti-
fact. One central challenge in artificial development is to understand how
a mapping process could work on a class of architectures in a more general
way by exploiting the most favorable properties from each computational
architecture or by combining efficiently more than one computational
architectures (i.e., a true multicellular approach). Computational archi-
tectures in this context comprise structures with connected computa-
tional elements, namely, cellular automata and boolean networks. The
ability to develop and co-evolve different computational architectures has
previously been investigated using common developmental genomes. In
this paper, we extend a previous work that studied their evolvability.
Here, we focus on their ability to evolve when the goal changes over evo-
lutionary time (i.e., adaptation), utilizing a more fair fitness assignment
scheme. In addition, we try to investigate how common developmental
genomes exploit the underlying architecture in order to build the phe-
notypes. The results show that they are able to find very good solutions
with rather simplified solutions than anticipated.

Keywords: Common developmental genomes · Evolvability · Cellular
automata · Boolean network · L-systems

1 Introduction

In artificial systems, a species can be linked to a certain computational archi-
tecture, such as, a cellular automata (CA) [1] or a boolean network (BN) [2].
Here, computational architectures are considered as structures comprising con-
nected computational elements. A computational element may represent a cell
(part of a cellular automaton) or a node (part of a boolean network). Most such
systems include a specific genetic representation (genotype), a mapping process
(genotype-to-phenotype) and have a specific structure as a target (phenotype).

A big challenge in developmental systems is how a genotype-phenotype map-
ping can work on a class of computational architectures (species), towards scal-
able systems for complex computation. So, it is important to investigate whether
c© Springer-Verlag Berlin Heidelberg 2014
A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2014, LNCS 8602, pp. 101–112, 2014.
DOI: 10.1007/978-3-662-45523-4 9

102 K. Antonakopoulos

it is possible to exploit the most favorable properties from each species or to
combine more than one species in a more efficient way (i.e., a true multicellular
approach). To study this concept, an experimental approach was undertaken [3]
and [4], giving rise to common developmental genomes.

Common developmental genomes are genomes constructed in a modular way
(chromosomes), making it possible to develop and evolve more than one species,
towards a common goal [3],[5]. In [3], it was investigated whether common devel-
opmental genomes can favor the evolvability of different species. The species
studied therein were cellular automata and boolean networks. Evaluation of the
fitness was done by averaging the partial fitnesses of the species involved. Even
though common genomes exhibited superior ability to evolve and adapt to the
environment than genomes evolved separately for each species, the fitness evalu-
ation scheme in [3] needs some reconsideration. For example, a CA with a fitness
0.1 and a BN with a fitness 0.9, would have an average fitness of 0.5. On a dif-
ferent case, with the CA having a fitness 0.5 and the BN having a fitness 0.5,
we will also get an average fitness 0.5. As such, there is no way to discriminate
better from worse individuals in a population. Even still, they are all assigned
the same fitness score.

In this paper, we continue the study of [3]. The goal herein is to test the
ability of common developmental genomes to adapt when the goal changes over
evolutionary time (i.e., adaptation), facilitating a more fair fitness assignment
scheme. Through this new fitness evaluation scheme we aim at assigning a more
fair fitness to the evolving species but also, and perhaps more importantly, since
the genetic information (genotype) is common for all species, the scheme may
act as a means to indirectly apply evolutionary pressure towards the inferiorly
evolving species. In addition, we analyze the structures of the best phenotypes by
visual inspection and investigate how common developmental genomes exploit
the underlying architectures in order to build their solutions.

The rest of the article is laid out as follows. The developmental model is
given at Section 2. Section 3 give a brief description of the emergent dynamics
in artificial systems. Section 4 present the experimental setup. Results are given
in Section 5, with the conclusion at Section 6.

2 The Developmental Model

In this section, the genetic representation and the developmental model is given
in brief. For a detailed description, see [5]. Figure 1, shows the genome con-
structed by two parts or chromosomes. The first chromosome creates the cells /
nodes of the species whereas the second chromosome generates the connections.
Each chromosome is governed by rules. The rules for node / cell creation are
different from those for connectivity.

The rules of the first chromosome describe cell processes like growth, differen-
tiation and apoptosis and are used during the development process (ontogeny).
The rules of the second chromosome express the connectivity and are used for
developing the connections of the boolean network. To express the rules in the
chromosomes, an L-system is used as a developmental model.

Common Developmental Genomes Revisited 103

Fig. 1. The genome is split into two chromosomes: Node- and Connectivity-
chromosomes

L-systems are rewriting grammars, able to describe developmental or genera-
tive systems and have successfully been used to simulate biological processes [7],
[8]. Two separate L-systems are used in the representation. The first L-system
processes the first chromosome rules where a second L-system deals with the
connectivity rules of the second chromosome.

2.1 The L-system for the First Chromosome

The L-system used here is context-sensitive. As such, development is using the
strict predecessor/ancestor to determine the applicable production rule. The
rules are able to incorporate all the cell processes of a species. Table 1(a), shows
the type of symbols used by the L-system of the first chromosome.

Table 1. (a) Symbol table for nodes/cell creation, (b) Symbol table for creating con-
nectivity

(a)

Symbol Description

a Add (growth)
b Add (growth)
c Add (growth)
d Delete (apoptosis)
X Substitute (differentiation)
Y Substitute (differentiation)
→ Production

(b)

Symbol Description

x Node (different from y)
y Node (different from x)
+ Connect forward
– Connect backwards
→ Production

Symbol a is the axiom. Apart from the symbols a, b, and c, which perform
growth of the phenotype, symbol d performs apoptosis, aiming at the deletion
of the current rule (i.e., cell/node). Symbols X and Y, represent the differenti-
ation process, replacing the predecessor cell/node. For example, for X→Y the
outcome will be Y. The length of each rule is 4 symbols (i.e., 4x8bits=32bits).
For node/cell generation the L-system runs for n timesteps and then stops. As
such, the intermediate phenotypes generated by development are of variable size.
Figure 2a, gives an example of a first chromosome L-system.

Detailed example with step-by-step development of a 2D-CA architecture
can be found at [5].

104 K. Antonakopoulos

(a) (b)

Fig. 2. (a) L-system rule set for node/cell generation, (b) L-system rule set for con-
nectivity

2.2 The L-system for the Second Chromosome

The rules are able to generate the connections necessary for the wiring of the
nodes. They contain symbols which when executed by the L-system, result in
creating a connection forward or backwards from the current node. Each node
in the network has unique numbering; current node holds number zero and any
nodes starting from the current node forward have positive numbering. Nodes
existing from the current node backwards, have negative numbering. As such,
there is a need to differentiate between the current and the next node, using
different symbols but also to describe when a connection will be created forward
or backwards from the current node.

The length of connectivity rules is also four. The L-system uses a D0L (i.e.,
with zero-sided interactions). The second chromosome L-system is shown at
Figure 2b. Symbols are explained in Table 1(b).

The axiom rule for the second chromosome is x→y. Then, development con-
tinues looking for rules of type xy→+value, or xy→-value. In short, these two
rules imply that if two different (distinct) nodes are found (x�=y), it creates a
connection forward (if the rule includes a ’+’), or similarly a connection back-
wards (if the rule includes a ’-’). The field value is encoded in the genotype and
denotes the node number of the newly created connection. If value=0, a self-
connection is created to the current node. Detailed example with step-by-step
development of a boolean network architecture is presented at [5].

2.3 The Genetic Algorithm for Common Genetic Representation

A genetic algorithm (GA) is utilized to create and evolve the chromosome rules.
Since there are two separate L-systems involved in development, the evolution-
ary process will be consisted of two phases: a. the creation of nodes and b.
the creation of the connections. Mutation and single-point crossover are used as
genetic operators. Mutation may occur anywhere inside the 4-symbol rule, such
as the production symbol (→) remains undistorted after mutation. Single-point
crossover between two parents always takes place at the position of the pro-
duction symbol in the rule. The evolutionary cycle ends after a predetermined
number of generations.

Common Developmental Genomes Revisited 105

3 Emergent Dynamics in Artificial Systems

In biology, development is a process starting from a zygote and develops into
a multicellular organism. Similarly, in the artificial domain, development simu-
lates this biological process; from an given initial condition, the zygote, through
an iterative developmental process, it can develop into a final structure (phe-
notype). Assuming the developmental process is deterministic, i.e,. the outcome
of development is defined by the initial zygote (genome), some initial condition
and a developmental mapping, then an initial configuration (or a set of configu-
rations) exists and is sufficiently defined by the developmental genome and the
initial conditions [6].

Any sparsely connected computational architecture (i.e., CA, BN, etc.) can
be represented in the space time domain. Phenotypic structures can be shown as
nodes and their transitions in time can be shown as developmental paths from the
zygote to the final organism. Development of a structure comprise developmental
steps (DS). Each DS may include one or more developmental processes proposed
by the model (Section 2). Development starts with the zygote (initial genome).

Fig. 3. Developmental path of a structure shown as a trajectory

Figure 3 shows the path of development of a non-uniform 2D-CA. White cells
are considered empty whereas colored cells represent the CA rule of the particular
cell. Solid lines represent consecutive developmental steps (DS 10-11 and DS
99-100). Non-consecutive developmental steps are represented by dashed lines
(zygote-DS 10 and DS 11-99). The path from the zygote until DS 10 has gone
through 10 different intermediate phenotypic structures. Similarly, the path from
DS 11 until DS 99 has produced 88 different intermediate phenotypic structures.
DS 100 has a loop back to DS 99; this type of behavior is a cycle attractor which
indicates whether the structure is stable or not. The path until DS 99 represents
a transient period or phase. The structure at DS 100 is the final phenotype.

The behavior of the system is described by the initial state and the trajec-
tory of all 100 developmental steps of the example. Each developmental step is
further analyzed into state steps (SS). A state includes cell/node information
giving a snapshot of instantaneous behavior. As such, state steps provide infor-
mation about the emergent behavior of intermediate and final phenotypes in the
space/time domain.

The descriptions on emergent dynamics explained above, are useful to better
understand the definitions of the computational goals for the common develop-
mental genomes (Sections 4.3 and 4.4).

106 K. Antonakopoulos

4 Experimental Setup

For the experiments, a 6x6 2D-CA and a N=36 BN is used. The size chosen
for the CA is the minimum possible. By choosing a smaller lattice size, there
will be too many dependencies in the cell states of the CA. Also, the maximum
number of nodes/cells in the species should allow for easy, visual explanation of
the final phenotypic structures. The larger the size of the species, the harder it
is to visually interpret their structure.

For the two species to be comparable, they must have the same state space or
the same amount of possible states. Since the size of each architecture is 36 and
each cell/node can take 2 different distinct values (boolean), the total state space
for each species is 236. The number of outgoing connections per node is K = 5.
When the number of outgoing connections exceeds five, a self-connection to the
originating node is created instead. The number of incoming connections per node
is limited only by the total number of nodes found in the network (N − 1).

For each individual, a random initial state is created and fed into the architec-
ture. We use a total number of 36 rules for node generation and connectivity (i.e.,
32x36=1152bits). Each rule can be reused during L-system development. The
GA program drives a single population of 20 individuals. Development runs for 100
timesteps (DS) for each individual. In each DS, behavior is defined by 1000 state
steps (SS). Generational mixing is used as global selection mechanism and fitness
proportionate for parental selection. Mutation rate is set to .0009 and crossover
rate to .001. We run a total of 20 experiments of 10000 generations each. Evalua-
tion of phenotypes is given by the cell types and functionality of Table 2.

Table 2. Cell types and functionality

Cell Type Function name

a NAND
b OR
c AND
d IDENTITY CELL
X XOR
Y NOT

4.1 Fitness Assignment Scheme

The new fitness evaluation scheme used is described in four steps:

– Run the first 20% of evolutionary time using normal fitness evaluation (final
fitness is the average of the fitnesses of CA and BN), e.g., fitnesstotal =
(fitnessCA + fitnessBN)/2

– In the next 20% – 50% of time and if the partial fitnesses differ more than
30%, there is an extra 10% of fitness credit assigned to the species with the
higher fitness. For example if CA has a 30% higher fitness than BN, then
fitnesstotal = [(fitnessCA + (fitnessCA ∗ 0.1)) + fitnessBN]/2

Common Developmental Genomes Revisited 107

– In the next 50% – 70% of time, species are evolved using normal fitness
evaluation, e.g., fitnesstotal = (fitnessCA + fitnessBN)/2

– In the final 70% – 100% of time and if the partial fitnesses differ more than
30%, there is an extra 10% of fitness credit assigned to the species with the
higher fitness. For example, if BN has a 30% higher fitness than CA, then
fitnesstotal = [(fitnessBN + (fitnessBN ∗ 0.1)) + fitnessCA]/2

The highest assigned fitness score is 100 and the lowest is 2 with a worst-case
of 0.1. The final fitness for the common developmental genome is the average of
the fitness of the species involved. If, for example CA’s fitness is 50 and BN’s
fitness is 20, the final fitness of the common developmental genome will be 35.

4.2 Studying the Dynamic Behavior

To study the evolvability of computational properties, the system must be able
to target different behavior on the architectures chosen (CA and BN). Their
behavior can be evolved through the study of various dynamic problems i.e.,
stable point attractor, short attractors or long repetitive/chaotic behavior.

The computational problems chosen here describe some basic dynamic behav-
ior for CA and BN and the goal is generally expected to be reached. Though, the
problems as such are of minor importance since we are mainly after the ability
of common developmental genomes to adapt during evolution.

4.3 First Problem Definition

Evolution searches for a cycle attractor of size 2-160, at generations 1 - 5000.
A minimal cycle attractor can be found as early as in SS 2, that is, behavior is
stabilized and the final structures are phenotypes obtained at SS 1 and SS 2. On
the other extreme, a maximally big cycle attractor may be found as late as in SS
1000-160=840. Best fitness score is assigned for cycle attractors of size 80. Here,
no fitness credit is assigned for cycle attractors found at an earlier or later stage
i.e., a cycle attractor can occur after any transient phase. Fitnesss distribution
is given at Figure 4(a).

4.4 Second Problem Definition

After generation 5000, the evolutionary goal change. From generation 5000 -
10000, evolution searches for a transient phase of size 1-200, followed by a cycle
attractor of 2-160 steps. Best fitness score is assigned for transient phase 100
and cycle attractor 80. This is a harder problem than the previous one, consid-
ering that the total number of states / developmental step is 1000. No credit
is given for point attractors following a transient phase. Here, separate fitnesses
are assigned for the transient phase and the cycle attractor. The final fitness
is estimated by averaging their respective fitnesses, e.g., for the CA will be
fitnessCA = (fitnesstransient +fitnesscycleattractor)/2. The fitness distribution
for this problem is shown at Figure 4(b).

108 K. Antonakopoulos

0 20 40 60 80 100 120 140 160
0

20

40

60

80

100

Cycle attractor size

Fi
tn

es
s

(%
)

(a)

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

Fi
tn

es
s

(%
)

cycle attractors
transient phase

(b)

Fig. 4. Fitness distributions plots: (a) Cycle attractors, (b) Transient phase & cycle
attractor

5 Results

Figure 5 shows the average fitness evaluation of common developmental genomes
over all runs. The ’AVG’ line shows the average fitness of both species (CA and
BN). The ’CA’ line shows the average fitness of the cellular automata only and
the ’BN’ line gives the average fitness of the boolean network.

The first problem (search for cycle attractor) is studied at generations 1-5000.
During this period, both CA and BN are able to find fairly good solutions. After
generation 2000, the effect of the new fitness assignment scheme can be observed.
BN is constantly being credited with an extra 10% of fitness due to its fitness
difference to the CA. This credit assignment in one of the species in common
developmental genomes, can indirectly act as a means of evolutionary pressure
for the other species, since they share the same genetic information. Though,
the performance of the CA remains constant until the very end. It is not until
generation 4600, where an improvement in performance for both species occurs.

The second problem (search for transient period & cycle attractor) is exam-
ined at generations 5001-10000. At generation 5001, the genome still contains
genetic information optimized for the previous problem (generation 5000). So,
the same genetic information acts as a basis for the second problem, which ini-
tially gives only average solutions. After generation 7000 the new assignment
scheme gets into effect. This is evident from a sharp fitness increase for both
species. Here, the performance of BN has an impact in the performance of the
CA (generation 7350).

Figure 6 shows some evolutionary steps of one of the best CA runs over time.
Solid line shows consecutive generations where dashed lines delineate more than
one generation steps. The figure, shows some of the best evolved phenotypes for
the first problem (gen.2-5000). From generation 5001, the target changes and the
genome tries to adapt to the newly set goal, with a clear impact in the fitness.
Some of the phenotypes for the second problem are shown for generations 5001,
8500 and 10000.

The model managed to find several perfect solutions for the first problem,
but also, many good solutions for the second problem. The solutions achieved by

Common Developmental Genomes Revisited 109

 0

 20

 40

 60

 80

 100

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Fi
tn

es
s

(%
)

Generations

CA
BN

AVG

Fig. 5. Fitness evaluation of common developmental genomes (averaged)

Fig. 6. Some of the best intermediate and final phenotypes of a CA evolution over time

the developmental model with the CA, extended out exploiting the complete CA
lattice for both the problems investigated. In addition, development produced
maximally big genomes at the very beginning of the process (not shown). As we
will see in the next paragraph, this is not the case for the evolved BN phenotypes.

Figure 7 shows two of the best evolved BN solutions for the first problem at
generation 5000. Both solutions solved this problem perfectly (fitness 100), but
with a quite different structure. The solution at Figure 7(a), shows a network
where each node has at least two connections to other nodes and at least one
self-connection.

The numbers at the nodes indicate the node number and the connections are
shown in black solid lines. Since there is no explicit positional information for
the nodes of the BN, the node numbers indicate their sequential position (next,
previous node). The arrow at the end of each connection, indicates the flow of
information between the originating and destination nodes.

On the other hand, the solution at Figure 7(b), shows a network where one
node is rather influential (node nr.1), since the outcome of the majority of the
nodes in the network, is dependent on the outcome of node nr.1. Self-connections
are rare since most of the connections point to a different node than the origi-
nating node.

Some of the near-perfect solutions given by evolution (fitness > 80), include
networks with a rather small number of nodes (not shown). All perfect solutions
(fitness 100), involved networks having the maximum number of nodes allowed by
the model (N=36). This suggests that development initially tries to seek solutions

110 K. Antonakopoulos

13

2

1

36

12

27

8

28

34

31

2314
19

10

3

5

4

20
33

11
16

30 17

21

6 29

7

9

26

2224 15

3518
25

32

(a)

5

26

6

72

23
27

21

32

31

29 33

12

4

24

28 3

18
10 15

25

34
14

13

30

9

22

1

8

20

19

35

36

16

17

11

(b)

Fig. 7. Two of the best evolved boolean networks for the first problem (generation
5000, fitness 100)

4

3

5

6

2

1

(a)

4
5

6

2
3

1

(b)

Fig. 8. The best evolved BNs for the second problem (generation 10000, fitness 76)

using less number of nodes and then extends the networks by introducing more
nodes in the network. This shows an unexpected emergent behavior of the system
since the developmental model was not designed as such.

Figure 8 shows the best evolved BN solutions for the second problem at
generation 10000. Both solutions have a rather small number of nodes (N=6)
and most of the nodes have at least one self-connection. Other, less than perfect
solutions provided networks having the max number of nodes (N=36).

At generation 5001, the goal changes and evolution finds near perfect solu-
tions with networks of similar size as before. At the end of evolution, the solutions
included networks with a rather simplified structure. The latter shows that the
developmental model is able to give both complex and more simplified solutions,
depending on the goal sought.

Next, we investigate how common developmental genomes exploit the under-
lying architectures, in order to build the final solutions. To achieve this, we
focus on the variation of the nodes/cells during evolution. Here, we are inter-
ested only in the change of the value of the cell/node, not if the change has a

Common Developmental Genomes Revisited 111

(a) (b)

Fig. 9. Amount of CA structures that is computing (light gray) versus their static
parts (dark gray). (a) First problem, (b) Second problem.

13

2

1

36

12

27

8

28

34

31

2314
19

10

3

5

4

20
33

11
16

30 17

21

6 29

7

9

26

2224 15

3518
25

32

(a)

22

1
13

30

18
9

14
34

1510

17
36

2429

16
4

33

6

21

26

5

23
27

2

25

7

31
19

11

12 8

35
2832

20
3

(b)

Fig. 10. Computing parts of BN phenotypes for the two of the best evolved networks
for the first problem

positive (i.e., fitness increase), or a neutral (i.e., equal fitness) impact to the fit-
ness. Cells/nodes performing rarely any computation (≺30% of the evolutionary
time) are considered static, where cells/nodes computing more than 30% of the
time is considered that they are actively contribute to the final solution.

Figure 9 shows two 2D-CA of size 6x6. The light-gray colored cells indicate
cells that compute. As such, a total of 70% approximately of the CA structure
is actually computing during evolution. Similarly, the dark-gray colored cells
indicate cells that are static, constituting a total of 30% of the structure.

Next, Figure 10 shows the two best evolved networks for the first problem
(as in Figure 7). The nodes of the networks that are computing are shown in
dark gray color. Figure 10(a) indicates that approximately 55.6% of the network
is computing with the rest 44.4% of the network being static. Similarly, Figure
10(b), shows that a total of approximately 70% of the network is actually active.
The BN solutions found, give quite different statistics; the first network solution
involve more self-connections/node than the network solutions for the second

112 K. Antonakopoulos

problem. Self-connections contribute to the network’s neutrality and this can
partially have an impact on the amount of the network that is actually active.
Regarding the second problem (network solutions of Figure 8), all the nodes in
the networks found to be computing and no static nodes are observed.

6 Conclusion

In this work, we extended a previous study by looking at how common develop-
mental genomes can evolve computational architectures when the goal changes
over time (evolution through adaptation). The focus here was to evolve CA and
BN computational architectures with simple cycle attractor with transient phase
problems as a computational goal and a more fair fitness assignment scheme.
Also, it was investigated how common genetic representation is being exploited
during development, sometimes exhibiting emergent behavior during phenotype
construction. Common developmental genomes where able to adapt fairly well
to each problem, considering the number of available state steps during develop-
ment. In addition, they were able to exploit a large part of the underlying archi-
tectures having on average more than 55% of the total number of cells/nodes
actively computing, for both problems studied.

References

1. Bidlo, M., Vasicek, M.: Evolution of cellular automata with conditionally matching
rules. In: Congress on Evolutionary Computation (CEC 2013), pp. 1178–1185 (2013)

2. Bull, L.: Artificial symbiogenesis and differing reproduction rates. Artificial Life
16(1), 65–72 (2010)

3. Antonakopoulos, K., Tufte, G.: On the Evolvability of Different Computational
Architectures using a Common Developmental Genome. In: Rosa, A., Dourado, A.,
Madani, K., Filipe, J., Kacprzyk J. (eds.) IJCCI 2012, pp. 122–129. SciTePress
Publishing (2012)

4. Antonakopoulos, K., Tufte, G.: Is Common Developmental Genome a Panacea
Towards More Complex Problems? In: 13th IEEE International Symposium on
Computational Intelligence and Informatics (CINTI 2012), pp. 55–61 (2012)

5. Antonakopoulos, K., Tufte, G.: A Common Genetic Representation Capable of
Developing Distinct Computational Architectures. In: IEEE Congress on Evolu-
tionary Computation (CEC 2011), pp. 1264–1271 (2011)

6. Tufte, G.: The discrete dynamics of developmental systems. In: IEEE Congress on
Evolutionary Computation (CEC 2009), pp. 2209–2216 (2009)

7. Lindenmayer, A.: Developmental Systems without Cellular Interactions, their Lan-
guages and Grammars. Journal of Theoretical Biology 30(3), 455–484 (1971)

8. Lindenmayer, A., Prusinkiewicz, P.: Developmental Models of Multicellular Organ-
isms: A Computer Graphics Perspective. In: Langton, C.G. (ed.) Proceedings of
ALife, pp. 221–249. Addison-Wesley Publishing (1989)

© Springer-Verlag Berlin Heidelberg 2014
A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2014, LNCS 8602, pp. 113–124, 2014.
DOI: 10.1007/978-3-662-45523-4_10

Investigation of Genome Parameters and Sub-transitions
to Guide Evolution of Artificial Cellular Organisms

Stefano Nichele(), Håkon Hjelde Wold, and Gunnar Tufte

Department of Computer and Information Science,
Norwegian University of Science and Technology,

Sem Selandsvei 7-9, 7491, Trondheim, Norway
{nichele,gunnart}@idi.ntnu.no, haakonhw@stud.ntnu.no

Abstract. Artificial multi-cellular organisms develop from a single zygote to
complex morphologies, following the instructions encoded in their genomes.
Small genome mutations can result in very different developed phenotypes. In
this paper we investigate how to exploit genotype information in order to guide
evolution towards favorable areas of the phenotype solution space, where the
sought emergent behavior is more likely to be found. Lambda genome parame-
ter, with its ability to discriminate different developmental behaviors, is incor-
porated into the fitness function and used as a discriminating factor for genetic
distance, to keep resulting phenotype’s developmental behavior close by and
encourage beneficial mutations that yield adaptive evolution. Genome activa-
tion patterns are detected and grouped into genome parameter sub-transitions.
Different sub-transitions are investigated as simple genome parameters, or
composed to integrate several genome properties into a more exhaustive com-
posite parameter. The experimental model used herein is based on 2-
dimensional cellular automata.

Keywords: Artificial Development · Evolution · Complexity · Emergence ·
Cellular Automata

1 Introduction

Evolved artificial developmental (EvoDevo) systems have shown many favorable
features that are also present in natural biological systems, such as the ability to
evolve robust genomes [1]. However, robustness and evolvability may not be always
rowing in the same direction. A biological organism may be considered robust if, after
genome mutations, it keeps the same ability or functional properties. In contrast,
evolvability is a property that promotes genetic variation in order to produce adaptive
evolution, being able to evolve through natural selection. One may think that too high
robustness would not provide enough genetic diversity whereas too high evolvability
would cause more disadvantageous mutations, thus annihilating adaptation. In
EvoDevo systems, small changes in the genome often lead to completely different
emergent phenotypes. It is particularly difficult to understand which changes will be
produced to the developing organism by each genetic operator, e.g. mutation, crosso-
ver, and which phenotypic traits will be affected. As such, evolutionary algorithms

114 S. Nichele et al.

spend a relevant amount of time generating low fitness solutions that may not give
any genetic contribution to the population and thus being often discarded. We investi-
gate if genome information could be used to guide evolution. Our results indicate that
genome parameters could predict the developing behavior based on genome composi-
tion and thus help to guide evolutionary search in the right area of the search space,
where the sought behavior is more likely to be found.

The article is laid out as follows: background information and motivation is pre-
sented in Section 2. In Section 3 the developmental model used in the experiments is
presented. Section 4 describes Lambda genome parameter, meaning and usage. The
experimental setup is illustrated in Section 5. In Section 6 and 7 the results of the
experiments are presented together with the discussion. Section 8 concludes the work.

2 Motivation and Background

Artificial developmental systems can be considered as complex systems [2], where
there is no central controller and the developed artificial organisms are the result of an
emergent process out of the local interactions of simple cells. Many developmental
systems target specific phenotypic structures or structural properties [3], whether
some others execute a particular computational task that emerges out of the develop-
ment of the machine’ structure [4]. Programming an artificial developmental system
to produce such emergent computation cannot be done using traditional engineering
approaches. One solution could be to exploit nature’s way of tackling problems,
namely evolution by natural selection. Evolutionary algorithms have been widely
used as population-based metaheuristic optimization algorithms [5]. In general, those
evolutionary techniques do not make any assumption about the underlying fitness
landscape. An indirect genotype-to-phenotype mapping can result in two very similar
genotypes developing into two very different phenotypes. A developmental mapping
may be represented by a function that maps elements in the genotype space to ele-
ments in the phenotype space. Such spaces may have regions where small distances
between genotypes are preserved into small differences between resulting phenotypes,
whether in some other regions distances are hardly preserved at all [12]. In practice,
small mutation can have a huge impact on the emergent phenotype. This can be
problematic if solutions are to be discovered by evolutionary algorithms. Having a
genome parameter that may predict the emergent behavior could be useful to reduce
phenotypic distance. Such information could contribute to guide evolutionary search
throughout the solution space, where the target phenotype may plausibly appear.

3 Evolution and Development

The relation between natural evolution and development in biological systems is still a
fairly unexplored area [13]. Investigation of natural evolution makes it hardly possible
to obtain experimental proofs due to the time scale of evolution. In evolved artificial
systems there is no such problem. It is possible to execute experiments in a reasonable
time and investigate different evolutionary factors that may influence on developmental
paths. However, there is a lack of knowledge of what kind of information must be

 Investigation of Genome Parameters and Sub-transitions to Guide Evolution 115

present in the genome in order to obtain a sought phenotypic behavior. We try to exploit
genome regulatory information in a simple developmental model and investigate if such
information could contribute to guide evolution in the vast solution space, i.e. toward
where the target developmental trajectory is more likely to emerge.

3.1 Cellular Developmental Model

The developmental model used herein is based on cellular automata, i.e. synchronized
cellular updates, parallel operation and discrete cell states. As such, the totality of
regulative inputs can be coded completely in the genome (this does not imply that all
of the genome information is expressed in the phenotype). To be able to have a com-
plete regulatory network for all possible input states the model needs to be minimalis-
tic. However, some features are not reduced to the minimum. The number of cell
states is set to three instead of two. This was done to keep the concept of multi-
cellular organism and cells differentiation, i.e. two types of cells in addition to the
cells that are defined to be dead (void/quiescent). To be able to keep the principle of a
growing (expanding) organism there is a constraint on how a cell can come “alive”.
This constrain is to only allow cells that have at least one neighbor expressing a cell
type different from void to be able to come alive. The organisms develop in a two
dimensional grid world, starting from a single cell placed in the grid (zygote). The
placement of the first cell is of no importance as the grid uses cyclic boundary condi-
tions. The local cellular communication is based on von-Neumann neighborhood (5
neighbors) and includes only cell type information, i.e. no environmental influence.
With three cell types multicellularity is possible and at the same time the number of
all possible cellular states in the defined neighborhood is not extremely large, i.e. max
243 (or 35). A developing organism will consist of different construct of these three
cells. A more detailed description on the developmental model is given in [7, 8].

Fig. 1. Genome developmental table: regulatory input and cellular actions

The table in Figure 1 is a scaled down illustration of all possible regulatory combi-
nations. For the first entry in the table, i.e. all regulatory inputs set to 0, the output of
the development process is fixed at 0. This is done to fulfill the stated constraint
related to growth. All other regulatory inputs have a possibility of regulating the cell
to be at any of the available cell types, indicated by the triplet {0, 1, 2}.

116 S. Nichele et al.

Figure 2 shows an exam
0 the organism consists of
cell has divided and differ
change in phenotypic struc
last shown organism is at D

Fig. 2. Example of d

3.2 Quantification of P

Having defined genetic info
to be identified for the deve
vide information on the dev
changes [11]. For a given o
path and after a transient p
reorganizing cycle. A comp
ism [6, 8] together with mo
an abstract measure that do
chronization or a given ph
trajectory is the computatio
implied and generalization
of phenotypic complexity.

3.3 Evolution of Genom

In the model described e
the cell state of the five cel
represented by the column
gene regulation process. Mo
actions opens the possibil
transitions):

• Growth rules: sub-trans
(type 1 or type 2);

• Differentiation rules: one
• Death rules: one of the a
• No-change rules: the cell

Death sub-transitions ar
differentiate to quiescent c
Lambda parameter, as descr

mple of a developing organism. At Development Step (D
only a single cell of type 1 (the zygote), at DS 1 the f

rentiated into three cells of type 2. At DS 2 – DS 4
cture along the developmental path can be observed. T

DS 2000000.

developing organism at intermediate development steps

Phenotypes

ormation for the cellular model, a quantifiable measure
eloped organisms. Properties that can be used need to p
veloping organism as a whole and the occurring phenoty
organism, the initial cell (zygote) follows a developmen

phase reaches an attractor, i.e. a final stable state or a s
plete trajectory identifies the whole lifecycle of the org
orphology, size and behavior changes. Trajectory length
oes not code for any computational task, e.g. majority, s
henotypic structure, since moving from node to node i
on. For the scope of this research, no specific problem
is crucial. As such, trajectory length is the chosen me

me Information

arlier, the gene regulatory information is composed
lls in the neighborhood. The evolvable information is t

n C(t+1) in Figure 1, which describes the outcome of
oreover, such explicit representation of all possible cellu
lity to identify sub-groups of developmental rules (s

itions that represent a void cell (type 0) becoming al

e of the alive cells switches to the other alive cell type;
live cell types becomes void;
l does not change its state.

re a special case of differentiation rules where alive c
cells. This group of transitions is also used to calcu
ribed in the following section.

DS)
first
the

The

has
pro-
ypic
ntal

self-
gan-
h is

syn-
in a
m is
etric

by
then
the

ular
sub-

live

cells
late

 Investigation of Genome Parameters and Sub-transitions to Guide Evolution 117

The developmental trajectory from zygote to multi-cellular organism can be repre-
sented by the state transition in Figure 2. Such trajectory produces a genome activa-
tion pattern at each development step that can be measured in terms of sub-transitions
activated in the genome. For example, from DS 0 to DS 1 only one differentiation
sub-transition is activated, together with three growth sub-transitions and twenty one
no-change sub-transitions. No death sub-transitions are triggered.

4 Lambda Genome Parameter

Parameters obtained from the genome information can be used to estimate the dynamic
developmental behavior of the emerging organisms. Langton [6] tried to find a relation
between CA behavior and a parameter λ. He observed that the basic functions required
for computation (transmission, storage and modification of information) are more likely
to be achieved in the vicinity of phase transitions between ordered and disordered dy-
namics (edge of chaos). He hypothesized that it is easier to find rules capable of complex
computation in a region where the value of λ is critical. Since the developmental model is
composed by 35 regulatory combinations, all the possible regulatory inputs and relative
outputs (growth, differentiation, death or no action) are fully specified in the develop-
mental table. In order to calculate λ, it is necessary to define a quiescent state, the void
cell (type 0) in our case. Lambda is defined as follows:

(1)

λ can be calculated according to Equation 1, where n represents the number of
transitions to the quiescent (dead) state, K is the number of cells types (three in our
case) and N is the neighborhood size (five in the Von Neumann neighborhood). In
this way, the value of λ is based only on local properties of the neighborhood and in
particular the cellular actions that are present in every cell.

Previous works [6, 7] have shown a clear relation between Lambda parameter and
developed organisms’ trajectory length. In particular, it is possible to identify a pa-
rameter space interval where organisms are more likely to have long life cycles. As
such, Lambda (or other genome parameters) could be used to guide evolution when
the target fitness is based on organisms’ developing trajectories, as the work herein.

As shown in Equation 1, Lambda is determined by the ratio of sub-transitions in
the developmental table that lead to the quiescent state over the total number of sub-
transitions in the regulatory table. As such, λ takes into account only developmental
rules that describe a cell death, i.e. one of the alive cell types becomes void. In other
words, it does not consider other sub-transition groups (growth, differentiation, no-
change). Lambda can be considered a single sub-transition genome parameter.

4.1 Genome Parameter Sub-transitions

Lambda parameter has been shown to be able to differentiate different developmental
behaviors (transient, attractor and trajectory length) for boolean CAs [6, 9, 10] and

118 S. Nichele et al.

with organisms with 3 cell types [7, 8]. When the number of possible cell states gets
bigger, Lambda may not be able to capture genome properties related to transitions to
the chosen quiescent states. This is due to the presence of a growing number of sub-
transition classes. Lambda’s meaning would then be loose and be interpreted just as
one of the many sub-transition classes in the genome table. On the other hand, there
exist many sub-transitions parameters that hold the same parameter distribution as
Lambda. Such sub-transition parameters could be then composed to create a custom
parameter that captures the same genome properties as Lambda does.

5 Experimental Setup

In the experiment herein the presented developmental model with organism size of
4x4 cells is used. This leads to a theoretical maximum trajectory length and attractor
length of 316 development steps.

The genetic algorithm uses a population of 24 genotypes with elitism. The 8 worst
individuals are replaced in each generation by newly generated offspring, selected
through proportionate selection. Each two selected genotypes undergo one-point uni-
form crossover with probability 0.7 and mutation with probability 0.02 per gene. The
genotype initial population is initialized with void genomes, i.e. all the transitions in
the developmental table lead to the quiescent state. This means that the resulting phe-
notypes are the most unfit and difficult to evolve, i.e. dead organisms that end-up in a
point attractor after a single development step. This is done to provide an even start-
ing point for comparison.

In the standard GA (used as reference), the fitness is proportional to the developed
trajectory length (the longer the fitter). In the GA that uses Lambda genome parame-
ter contribution in the fitness function, the combined fitness (CFitness) is calculated
as follows:

 (2)

In Equation 2, the used ratio is 0.2 (1) and HiLambda represents the Lambda value
where the longest trajectory length is more likely to be found (0.66 in our model), i.e.
critical Lambda [6].

6 Genome Parameter to Guide Evolution

In this first experiment, performances of a conventional genetic algorithm are com-
pared to a GA that encapsulates Lambda in the fitness function. The chosen trajectory
length targets are set as 1000, 5000, 10000 and 15000 development steps (average
over 1000 runs for target 1000, average over 20 runs for the other targets due to
runtime). Results are shown in Figures from 3 to 6 respectively. In all the four consid-
ered cases, the effect of Lambda in fitness is clearly visible.

1 The ratio that gave best results for GA with λ in fitness from randomized genomes is 0.05.

Otherwise 0.2 is used in all the plotted results.

 Investigation of Genome Parameters and Sub-transitions to Guide Evolution 119

In Figure 3 the target trajectory length was set as 1000 development steps. The
conventional GA performs better than the one with Lambda contribution in the fitness
function for few generations. From generation 17 the effects of Lambda driving evo-
lution are more evident and the algorithm converges faster toward the target.

Table 1. Comparison of reference GA and GA with Lambda contribution in the fitness
function. Target trajectory length is 1000 development steps. Avg over 1000 runs.

GA Void genomes (plotted) Randomized genomes

Reference GA 443,60 - 372,00 -

Lambda fitness 365,62 -17,57% 351,33 (1) -5,56%

Table 1 shows numerical results when trajectory length target is 1000 development

steps. This is analyzed from two different initial conditions: void initialized genomes
(all the transitions in the developmental table lead to the quiescent state and the or-
ganism are the most unfit, plotted in Figure 3) and randomly initialized genomes (not
plotted here). From void genomes the reference GA needs 443,6 generations on aver-
age (over 1000 runs), whether Lambda parameter in the fitness function is 17,57%
faster (unpaired 2-tail t-test, p<0,0001). From randomized genomes the latter is still
5,56% faster, finding solutions in 351,33 generations on average compared to 372
generations needed by the conventional GA (it is important to mention that the GA
with Lambda in fitness with void initialization is even faster than the reference GA
with randomized initialization).

The same trend is shown in Figure 4, where the target was longer. Here the differ-
ence in convergence speed is more accentuated. Results in Figure 5 and 6 confirm that
there is a point where the two lines cross each other. After that specific generation the
algorithm with Lambda contribution converges faster than the conventional approach.
It is clear that the ability of Lambda to detect longer trajectories in certain areas of the
parameter space is beneficial when trajectory length is the target behavior. In all the
presented scenarios, both approaches show an asymptotic tail towards 0 (minimum
distance from target fitness). The difference is in the speed of convergence to the
asymptotic target distance. Lambda in the fitness function is promising.

As a side experiment, λ was used outside the fitness function with a conventional GA.
In such experiment λ was used as a discard parameter where genomes were discarded
after selection if the parameter value was not matching a defined interval of acceptance.
Here the results were not promising and in some cases the system was not evolvable.

7 Genotype Sub-transitions

Lambda genome parameter measures sub-transitions in the genome developmental
table that lead to the quiescent state. Other sub-transitions are present in the genome
table, i.e. growth, differentiation and no-change. Here it is investigated if other sub-
transition classes could replace Lambda in forecasting the emergent behavior, thus
being able to be used in multi-cellular developmental systems with more cell types. In
such case, Lambda may represent too few genotype properties, thus not being able to

120 S. Nichele et al.

Fig. 3. Comparison of referen
with Lambda contribution
function. Target trajectory l
development steps. Distance
over generations (x). Avg over

Fig. 5. Comparison of referen
with Lambda contribution
function. Target trajectory l
development steps. Distance
over generations (x). Avg ove

drive evolution. Moreover,
custom parameterizations o

Figure 7 shows an examp
developed organism, succes
line represents one of the su
green and no-change in purp
ic sub-transitions class in ea
an attractor has been reached
the grid world where the org
on topologic properties. T
transitions, which is often
(blue) are often overlapping

nce GA and GA

in the fitness
length is 1000
from target (y)

r 1000 runs.

Fig. 4. Comparison of reference GA and
with Lambda contribution in the fitn
function. Target trajectory length is 5
development steps. Distance from target
over generations (x). Avg over 20 runs.

nce GA and GA

in the fitness
ength is 10000
from target (y)

er 20 runs.

Fig. 6. Comparison of reference GA and G
with Lambda contribution in the fitn
function. Target trajectory length is 150
development steps. Distance from target
over generations (x). Avg over 20 runs.

several sub-transitions could be used together to comp
of the rule-space.
ple of sub-transition classes’ activation patterns for a spec
ssfully evolved in the previous set of experiments. Here e
ub-transitions (growth in red, death in blue, differentiation
ple). The plot shows the number of cells that trigger a spe
ach development step. Pattern repetitions may indicate
d or that same pattern repetition happens in different area
ganism is developed. This may indicate self-regulation ba

The top-line (purple) shows activation of no-change s
the most used sub-class, whether growth (red) and de
and seem to have a similar trend.

GA

ness
5000

(y)

GA

ness
000
(y)

pose

cific
each
n in

ecif-
that

as of
ased
sub-
eath

 Investigation of Gen

Fig. 7. Sub-transitions (growth
generations (x) for the given ex

Fig. 8. Cumulative sum of su

Figure 8 plots the cum
same given organism. It is c
This was observed with ta
and no-change rules did not

Figure 9 plots develop
genotypes. As such, the di
and distributed in the rule s
are considered. The plot sh
death sub-transitions captur
the same organisms when
transitions. Here the relati
length is weaker and organ
value. Same results were ob

nome Parameters and Sub-transitions to Guide Evolution

h, death, differentiation, no-change) activation pattern (y) over
xample organism

ub-transitions activation pattern for the given example organis

mulative sub-transition usage during development, for
clear that growth rules and death rules have to be balanc

arget trajectories of different lengths. Differentiation ru
t show any specific trend.
ped trajectory lengths for 100000 randomly genera
stribution of transition rules in the genotype is scramb
sub-transition space. In Figure 9 only death sub-transiti
hows a similar distribution to Lambda parameter, since
re the same genome properties as Lambda. Figure 10 p
the considered genome parameter is differentiation s

ion between the considered sub-parameter and traject
nisms are less concentrated around the critical parame
btained for other sub-transition groups.

121

r the

sm

the
ced.
ules

ated
bled
ions
the

plots
sub-
tory
eter

122 S. Nichele et al.

Fig. 9. Death sub-transition pa
as #development steps (y). 100

Fig. 10. Differentiation sub-tra
measured as #development ste

In Figure 11 a compose
tween number of death and
death rules are balanced it i
experimental work). On the
the organism produces a v
portant at the design stage o
terize the behavioral regim
case, Lambda would be no
lacking a clear relation betw

Finally, Figure 12 show
isms in Figure 9, 10 and 11
develop short trajectories. I
being able to filter-out u
sub-transition class was con
gle-transition parameter.

arameter distribution (x) and resulting trajectory length measu
0000 organisms.

ansition parameter distribution (x) and resulting trajectory len
eps (y). 100000 organisms.

ed sub-parameter is considered, namely the difference
d growth sub-transitions. It is evident that when growth
is possible to develop long trajectories (as the target in
e other hand, when those sub-transitions are not balanc
very short trajectory cycle. This information may be
of an EvoDevo system, when Lambda is not able to char

me due to a larger number of available cell types. In s
more than one out of the many sub-transition groups, t

ween trajectory length and the parameter space.
ws a zoomed-in plot of the same 100000 generated org

, where genomes with unbalanced death-growth differe
In contrast, balanced rule-sets develop longer trajector

unfit genomes. That was not possible if only a sin
nsidered. It is important to highlight that Lambda is a

ured

ngth

be-
and
our

ced,
im-
rac-
uch
thus

gan-
ence
ries,
ngle
sin-

 Investigation of Gen

Fig. 11. Growth-Death sub-tra
measured as #development ste

Fig. 12. Genomes unfiltered

8 Conclusion

The presented experiments
cial cellular organism to g
where the sought phenotyp
mation has been used to c
incorporated into the fitness
as shown in the plots in Fi
Previous work [8] has show
[14], Mean Field Paramete
iors. Thus, it may be intere
tained with other parameter

The used genome repres
than those used to calculate
sub-transition groups (grow
single transition parameter
together to produce a multip
able to characterize the phe
particular, death-growth tr

nome Parameters and Sub-transitions to Guide Evolution

ansition parameter distribution (x) and resulting trajectory len
eps (y). 100000 organisms.

vs. genome filtered with growth-death sub-transition paramet

investigated how to exploit genotype information of art
guide evolution in favorable areas of the solution spa
pic behavior is more likely to be found. Genome inf
alculate Lambda genome parameter. Such parameter w
s function to speed-up convergence to the target trajecto
igure 3, 4, 5 and 6, for different target trajectory leng
wn that other parameters besides Lambda, e.g. Sensitiv

ers [15], have similar abilities to forecast emergent beh
esting to extend the investigation and compare results
rs.
sentation allowed identifying genome sub-transitions ot
e Lambda (transitions to the quiescent state). The identif
wth, differentiation, death, no-change) can be conside
s and thus used as Lambda. They can also be compo
ple-transition genome parameter when Lambda may not
enotype behavior due to increased number of cell types
ansition difference has been shown to be well suited

123

ngth

ter

tifi-
ace,
for-
was
ory,

gths.
vity
hav-
ob-

ther
fied
ered
osed
t be

s. In
d to

124 S. Nichele et al.

identify artificial organisms that produce long trajectory, as in Figure 11, and filter out
organisms with short trajectories, as shown in Figure 12. It may be interesting to in-
vestigate sub-transitions’ potential the same way as Lambda was used here.

The approach used herein shows that exploiting genome information during evolu-
tion could increase the evolvability of the system, when there is an indirect genotype
to phenotype mapping and fitness is a measure of phenotypic properties.

As a future work, it may be possible to investigate the robustness of solutions
evolved with a fitness measure based on both phenotype and genotype information. In
particular, how fragile evolved organisms are to external perturbation, both at geno-
type level, i.e. mutations in the rule table, and at phenotype level, i.e. perturbation of
the system state during development.

References

1. Wagner, A.: Robustness and evolvability: a paradox resolved. Proceedings of the Royal
Society B - Biological Sciences 275(1630), 91–100 (2008)

2. Bar-Yam, Y.: Dynamics of complex systems. Studies in Nonlinearity, p. 864. Westview
Press (1997)

3. Miller, J.F.: Evolving developmental programs for adaptation, morphogenesis, and self-
repair. In: Banzhaf, W., Ziegler, J., Christaller, T., Dittrich, P., Kim, J.T. (eds.) ECAL
2003. LNCS (LNAI), vol. 2801, pp. 256–265. Springer, Heidelberg (2003)

4. Tufte, G., Haddow, P.C.: Towards development on a silicon-based cellular computation
machine. Natural Computation 4(4), 387–416 (2005)

5. Glover, F., Kochenberg, G.A.: Handbook of metaheuristics. International Series on
Operations Research and Management Science, p. 570. Springer (2003)

6. Langton, C.G.: Computation at the edge of chaos: phase transitions and emergant compu-
tation. In: Forrest, S. (ed.) Emergent Computation, pp. 12–37. MIT Press (1991)

7. Tufte, G., Nichele, S.: On the correlations between developmental diversity and genomic
composition. In: 13th Annual Genetic and Evolutionary Computation Conference, GECCO
2011, pp. 1507–1514. ACM (2011)

8. Nichele, S., Tufte, G.: Genome parameters as information to forecast emergent develop-
mental behaviors. In: Durand-Lose, J., Jonoska, N. (eds.) UCNC 2012. LNCS, vol. 7445,
pp. 186–197. Springer, Heidelberg (2012)

9. de Oliveira, G., de Oliveira, P., Omar, N.: Definition and application of a five-parameter
characterization of one-dimensional cellular automata rule space. Artificial Life 7,
277–301 (2001)

10. de Oliveira, G., de Oliveira, P., Omar, N.: Guidelines for dynamics-based parameterization
of one-dimensional cellular automata rule space. Complexity 6(2) (2001)

11. Kowaliw, T.: Measures of complexity for artificial embryogeny. In: GECCO 2008,
pp. 843–850. ACM (2008)

12. Rothlauf, F.: Locality, distance distortion, and binary representations of integers. Working
Paper 11/2003. University of Mannheim

13. Pollard, T.D.: No question about exciting questions in cell biology. PLoS Biol. 11(12),
e1001734 (2013). doi:10.1371/journal.pbio.1001734

14. Binder, P.M.: Parametric ordering of complex systems. Physical Review E 49(3),
2023–2025 (1994)

15. Li, W.: Phenomenology of nonlocal cellular automata. Journal of Statistical Physics
68(5–6), 829–882 (1992)

Training Complex Decision Support Systems
with Differential Evolution Enhanced by Locally

Linear Embedding

Piotr Lipinski(B)

Computational Intelligence Research Group, Institute of Computer Science,
University of Wroclaw, Wroclaw, Poland

lipinski@ii.uni.wroc.pl

Abstract. This paper aims at improving the training process of com-
plex decision support systems, where evolutionary algorithms are used to
integrate a large number of decision rules in a form of a weighted aver-
age. It proposes an enhancement of Differential Evolution by Locally
Linear Embedding to process objective functions with correlated vari-
ables, which focuses on detecting local dependencies among variables of
the objective function by analyzing the manifold in the search space that
contains the current population and transforming it to a reduced search
space. Experiments performed on some popular benchmark functions as
well as on a financial decision support system confirm that the method
may significantly improve the search process in the case of objective
functions with a large number of variables, which usually occur in many
practical applications.

1 Introduction

Contemporary intelligent systems often consist of a large number of independent
subsystems integrated into one application. Different subsystems may be based
on different principles, may use different technologies, may process different data,
may be trained on different datasets with different paradigms. Merging a number
of independent subsystems increases the total efficiency and the total liability of
the entire intelligent system.

Simple examples of such complex intelligent systems include decision sup-
port systems [7], [9], classifier systems [15], multi-agent systems [4], [16] and
rule-selection systems [5], [12], which are composed of a number of indepen-
dent decision entities, agents or rules, integrated using evolutionary algorithms
into one consistent system. Evolutionary algorithms often determine the opti-
mal parameters for the integration of independent subsystems, such as their
importance factors or weights of their impact to the overall system.

Since the number of components in contemporary complex systems is large,
the search space of integration parameters has a high dimension, which consti-
tutes a bottleneck for many optimization algorithms. Although, in general, the
different subsystems are usually assumed to be independent, in fact, there are

c© Springer-Verlag Berlin Heidelberg 2014
A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2014, LNCS 8602, pp. 125–137, 2014.
DOI: 10.1007/978-3-662-45523-4 11

126 P. Lipinski

often some dependencies between them and between their results. Taking these
dependencies into consideration during the optimization process may lead to a
significant reduction in the computing time and may also result in increases of
the overall efficiency of the entire system.

In such cases, although the objective function F : R
n → R is formally a

function of n variables, some of them are correlated, either globally over the
entire search space or locally over a certain subspace containing a global optimum
of the objective function F , so the original objective function F may be replaced
with another function G : Rk → R of k variables and a mapping Φ : Rn → R

k,
where k ≤ n, which maps n-dimensional vectors x ∈ R

n into k-dimensional
vectors y ∈ R

k in such a way that F (x) = G(y).
Therefore, the problem of optimizing the objective function F over the search

space R
n may be reduced to the problem of optimizing the objective function

G over the search space R
k, where k ≤ n, which usually leads to significant

reductions in the optimization algorithm.
Although there are numerous techniques of detecting global dependencies

among variables over the entire search space, usually in a preprocessing phase,
such as the Principal Component Analysis [17], the Linear Discriminant Anal-
ysis [17], the Multidimensional Scaling [1], as well as their extensions capable
of discovering non-linear dependencies, there has been little research on local
dependencies over neighborhoods of optimal solutions and detecting them dur-
ing runtime of the optimization algorithm [10].

The approach presented in this paper is inspired by Estimation of Distri-
bution Algorithms [6] that try to regard the population of candidate solutions
as a data sample with a probability distribution approximating the probability
distribution describing optimal solutions. Similarly, the population of candidate
solution may be used to detect correlations among variables, reduce the search
space and simplify the optimization problem.

This paper proposes an improvement of Differential Evolution [2] for objec-
tive functions with locally correlated variables, which is capable of discovering
local dependencies among variables of the objective function and locally reducing
it to another objective function of a smaller number of variables, using Locally
Linear Embedding [13].

This paper is structured in the following manner: Section 2 discusses the prin-
ciples of Locally Linear Embedding and its application to the current population
in evolutionary algorithms. Section 3 proposes Differential Evolution Enhanced
by Locally Linear Embeddings. Section 4 presents a preliminary evaluation of
the approach on some popular benchmark functions and Section 5 discusses some
experiments on a financial decision support system. Finally, Section 6 concludes
the paper.

2 Locally Linear Embedding in the Search Space

Let P = {x1,x2, . . . ,xN} ⊂ R
d be a population of N individuals, where each

individual xi = (xi1, xi2, . . . , xid)T ∈ R
d, for i = 1, 2, . . . , N , is a data point

Training Complex Decision Support Systems 127

in the search space Ω = R
d, where d is the dimensionality of the optimization

problem.
We may investigate the manifolds in Ω that contain the population. In the

pessimistic case, the population is chaotic and widespread across the entire search
space without any significant dependencies, so the only one reasonable manifold
to consider is the entire search space itself. In the optimistic case, the population
may be chaotic, but focused on a certain manifold in the search space, possibly
of a lower dimensionality than the entire search space. It may happen when some
variables of the objective function are correlated, so there are some dependencies
between values of genes in the chromosome.

It is worth noticing that such dependencies may be local, occurring only in
a certain region of the search space, e.g. in the neighborhood of a local or global
optimum of the objective function, where the current population focuses on, so
they usually cannot be discovered by popular preprocessing methods before the
evolution process starts.

Figure 1 presents a classic example illustrating the approach. The subplot (a)
presents the population P in the original search space R3 with colors denoting the
values of the objective function. It is easy to see that all the individuals lie in a
certain manifold in the search space, the so-called Swiss-Roll manifold, presented
in the subplot (b). Although the manifold is embedded in the 3-dimensional
search space, it is actually a 2-dimensional manifold homeomorphic to a rectan-
gle, so the original population may be transformed from the original search space
a reduced search space R

2 (in fact, to a rectangle embedded in R
2), presented

in the subplot (c). Finally, exploiting the original manifold by the evolutionary
algorithm is equivalent to exploiting the reduced search space.

Assume that the population lies in a certain manifold in the search space.
Although the manifold is embedded in the d-dimensional search space, it may
be homeomorphic to another manifold of a lower dimensionality. However, the
homeomorphism may not be obvious and discovering it may not be simple,
especially in the case of local and non-linear dependencies.

One of the possible approaches, based on the Locally Linear Embeddings
(LLE) [13], is first to determine the K nearest neighbors of each individual in
the population, then to approximate each individual by a linear combination of
its K nearest neighbors, and finally to map the population to a data space of the
lower dimensionality l so that the mapping of each individual was approximated
by the linear combination of mappings of its K nearest neighbors with the same
linear coefficients as in the original data space.

First, for each individual xi ∈ P, we determine its K nearest neighbors in
the population P, which may be formulated as finding a sequence of indices
n
(i)
1 , n

(i)
2 , . . . , n

(i)
K ∈ {1, 2, . . . , N} \ {i} such that

dist(xi,xn
(i)
1

) ≤ dist(xi,xn
(i)
2

) ≤ . . . ≤ dist(xi,xn
(i)
K

) ≤ dist(xi,xj), (1)

for all j ∈ {1, 2, . . . , N} \ ({i} ∪ {n
(i)
1 , n

(i)
2 , . . . , n

(i)
K }), where dist is a distance

function in the search space Ω (usually the euclidean distance in R
d).

128 P. Lipinski

x
1

(b)

x
2

x 3

x
1

(a)

x
2

x 3

y
1

y 2

(c)

Fig. 1. An example of a 2-dimensional population embedded in the 3-dimensional
search space: the population in the original search space (subplot (a)), the manifold
defined by the population (subplot(b)), the population in the reduced search space
(subplot (c))

Second, for each individual xi ∈ P, we approximate it by a linear combination
of its K nearest neighbors, which may be formulated as finding linear coefficients
w

(i)
1 , w

(i)
2 , . . . , w

(i)
K ∈ R minimizing the error function

||xi − x̃i||2, where x̃i =
K∑

k=1

w
(i)
k x

n
(i)
k

, (2)

under the constraint
∑K

k=1 w
(i)
k = 1.

Third, we try to construct a mapping from the original search space to the
reduced search space so that the mapping of each individual was approximated
by the linear combination of mappings of its K nearest neighbors with the same
linear coefficients as in the original search space, which may be formulated as
finding a reduced population R = {y1,y2, . . . ,yN} ⊂ R

l, where each reduced
individual yi = (yi1, yi2, . . . , yil)T ∈ R

l, for i = 1, 2, . . . , N , is a data point in the
reduced search space R

l, minimizing the error function

N∑
i=1

||yi − ỹi||2, where ỹi =
K∑

k=1

w
(i)
k y

n
(i)
k

, (3)

Training Complex Decision Support Systems 129

under the constraint d−1YTY = I, where Y ∈ R
l×N is the matrix with columns

yi and I ∈ R
N×N is the identity matrix (the constraint requires that the covari-

ance matrix of the mapped individuals is the identity matrix).

3 Differential Evolution Enhanced by Locally Linear
Embeddings

Algorithm 1 presents an overview of the Differential Evolution Enhanced by
Locally Linear Embeddings (DEELLE) for an objective function F : Rn → R of
non-linearly correlated variables.

DEELLE begins with generating a random population P0 of N individuals
and evaluating it. In the main evolution loop, for each individual x from the
current population Pt, called the target vector, a new vector v, called the donor
vector, is created, then the donor vector is recombined with the target vector
forming a new vector u, called the trial vector, and finally, if the trial vector out-
performs the target vector, it replaces it in the next population, as in classic DE
[2]. In some main evolution iterations, DEELLE performs a subevolution, which
analyses the current population, transforms it to a reduced search space, and
performs the same routine as the main evolution, but on the selected manifold
only.

The main evolution and the subevolution is run in such a way that first
a number of main iterations is performed in the entire original search space
to move the population to some promising regions of the search space, then
a number of subevolution iterations is performed in a selected manifold and
then the population is restored to the original search space in order to ensure
whether the manifold corresponded to a neighborhood of the global optima or
not. Few next main iterations may correct the population and move it to some
other promising regions of the search space, and then a number of subevolution
iterations exploit the new manifold.

3.1 Search Space and Population Reduction

The subevolution starts with determining the manifold in the search space R
d

that contains the current population Pt and transforming it to a reduced popu-
lation R0 based on Locally Linear Embeddings [13].

First, for each individual xi ∈ Pt, its K nearest neighbors in the current pop-
ulation Pt are determined. Let n

(i)
1 , n

(i)
2 , . . . , n

(i)
K be the indices of the successive

nearest neighbors of the individual xi.
Second, for each data point xi ∈ Pt, linear coefficients w

(i)
1 , w

(i)
2 , . . . , w

(i)
K are

determined by minimizing the error function (2), which may be transformed,
taking into consideration the constraint

∑K
k=1 w

(i)
k = 1, to

||xi − x̃i||2 = ||
K∑

k=1

w
(i)
k xi −

K∑

k=1

w
(i)
k x

n
(i)
k

||2 = ||
K∑

k=1

w
(i)
k (xi − x

n
(i)
k

)||2 = ||
K∑

k=1

w
(i)
k zk||2,

(4)

130 P. Lipinski

Algorithm 1. Differential Evolution Enhanced by Locally Linear Embeddings
(DEELLE)

P0 = Random-Population(N)
Population-Evaluation(P0, F)
t = 0
while not Termination-Condition(Pt) do

for all x ∈ Pt do
pick randomly distinct x1,x2,x3 from Pt \ {x}
v = x1 + α · (x2 − x3)
u = Binomial-Recombination(v,x)
if F (x) ≤ F (u) then

u will replace x in Pt+1

end if
end for
Population-Evaluation(Pt+1, F)
t = t + 1
if Subevolution-Starting-Condition() then

Search-Space-Reduction()
R0 = Population-Reduction(Pt)
s = 0;
while not Subevolution-Termination-Condition(Rs) do

for all x ∈ Rs do
pick randomly distinct x1,x2,x3 from Rs \ {x}
v = x1 + α · (x2 − x3)
u = Binomial-Recombination(v,x)
if F (x) ≤ F (u) then

u will replace x in Rs+1

end if
end for
Reduced-Population-Evaluation(Rs+1, F)
s = s + 1

end while
Search-Space-Restoring()
Pt = Population-Restoring(Rs−1)

end if
end while

where zk = x
n
(i)
k

−xi. Defining the matrix Z ∈ R
d×K as the matrix with columns

zk and the vector w ∈ R
K as the vector with coordinates w

(i)
k (certainly, the

matrix Z and the vector w depends on i, but we omit it here for the sake of
simplicity of the notation), the error function (2) becomes

||
K∑

k=1

w
(i)
k zk||2 = ||Zw||2 = (Zw)T (Zw) = wTZTZw = wTVw, (5)

where V = ZTZ ∈ R
d×d. Moreover, the constraint

∑K
k=1 w

(i)
k = 1 may be

transformed to 1Tw = 1, where 1 ∈ R
K is the vector of ones.

Training Complex Decision Support Systems 131

Therefore, in order to minimize the error function (2), the Lagrange multiplier
method may be used, i.e. the following equation system, with the Lagrange
multiplier λ, must be solved:

∂wTVw
∂wi

= λ
∂1Tw
∂wi

, (6)

for each i = 1, 2, . . . ,K with the constraint 1Tw = 1.
Since

∇wTVw = 2Vw, and ∇1Tw = 1T , (7)

the equation system (6) is equivalent to the matrix equation

2Vw = λ1T , (8)

thus, if V is invertible,

w =
λ

2
V−11T , (9)

and λ must be adjusted to fulfil the constraint 1Tw = 1. If V is not invertible,
the error function should be modified by some regularization component [13]
and minimized in a similar way.

Third, reduced individuals y1,y2, . . . ,yN ∈ R
l are determined by minimizing

the error function (3). Assume at the beginning that l = 1 and then each yi is
just a real number. Thus, the error function (3) may be transformed to

N∑
i=1

||yi − ỹi||2 =
N∑
i=1

||yi −
K∑

k=1

w
(i)
k y

n
(i)
k

||2 =

=
N∑
i=1

(y2
i − yi

K∑
k=1

w
(i)
k y

n
(i)
k

−
K∑

k=1

w
(i)
k y

n
(i)
k

yi + (
K∑

k=1

w
(i)
k y

n
(i)
k

)2) =

=
N∑
i=1

(y2
i) −

N∑
i=1

K∑
k=1

yiw
(i)
k y

n
(i)
k

−
N∑
i=1

K∑
k=1

w
(i)
k y

n
(i)
k

yi +
N∑
i=1

(
K∑

k=1

w
(i)
k y

n
(i)
k

)2) =

= YTY − YT (WY) − (WY)TY + (WY)T (WY) =

= YT (I − W)Y − (WY)T (I − W)Y =

= (YT − (WY)T)(I − W)Y = YT (I − W)T (I − W)Y = YTMY,

where Y ∈ Rl×N is the matrix with columns yi, W ∈ RN×N is the matrix
with elements wij = w

(i)
k if xj is the k-th nearest neighbor of xi and wij = 0

otherwise, I ∈ R
N×N is the identity matrix, and M = (I−w)T (I−w) ∈ R

N×N .
Therefore, in order to minimize the error function(3) under the constraint

d−1YTY = I, the Lagrange multiplier method may be used, i.e. the following
equation system, with the Lagrange multiplier λ, must be solved:

∂YTMY
∂yi

= λ
∂d−1YTY

∂yi
, (10)

132 P. Lipinski

for each i = 1, 2, . . . , N with the constraint d−1YTY = I.
Since

∇YTMY = 2MY and ∇d−1YTY = 2d−1Y, (11)

the equation system (10) is equivalent to the matrix equation

MY = λd−1Y, (12)

thus, Y is an eigenvector of the matrix M. As the error function (3) is being min-
imized, the eigenvector Y should correspond to the smallest non-zero eigenvalue
of the matrix M. In order to generalize the calculation for l > 1, the succes-
sive eigenvectors of the matrix M should be taken to determine the successive
coordinates of the mappings yi [13].

Finally, the reduced population R0 consists of mappings yi of individuals xi

from the original population Pt.

3.2 Reduced Population Evaluation

Although the evolutionary operators of the subevolution are derived from the
main evolution without modifications, i.e. only the chromosome length changes,
the problem occurs in evaluating the reduced population. In the literature con-
cerning LLE, [13], a few solutions are suggested to restore a data point from the
reduced data space to the original data space.

In DEELLE, evaluating a reduced individual y ∈ R
l, begins with finding

the mapping of an original individual from the current population Pt closest to
the reduced individual, i.e. determining the index i ∈ {1, 2, . . . , N} minimizing
the distance ||y − yi||. Next, the reduced individual y is approximated by a
linear combination of mappings y

n
(i)
1

, y
n
(i)
2

, . . ., y
n
(i)
K

of the K nearest neighbors

of the closest original individual xi. Finally, the restored individual x ∈ R
d

corresponding to the reduced individual y is defined as a linear combination of
the K nearest neighbors x

n
(i)
1

, x
n
(i)
2

, . . ., x
n
(i)
K

of the closest original individual xi

with the same linear coefficients as in the reduced search space and the objective
function for the reduced individual is approximated by the objective function of
the restored individual.

3.3 Search Space and Population Restoring

After termination of the subevolution, the current reduced population Rt is
restored to the original search space by applying the same procedure as during
the reduced population evaluation, described in the previous subsection.

4 Experimental Evaluation on Popular Benchmark
Functions

A preliminary evaluation of the approach proposed was performed on a number
of classic benchmark functions usually used in testing evolutionary algorithms for

Training Complex Decision Support Systems 133

continuous problems [18]. The first part of benchmark functions concerns the clas-
sic De Jong test suite composed of the unimodal function F1, the discontinuous
function F3 and the noisy function F4 [18]. The second part of the benchmark func-
tions includes other popular benchmark functions, such as the Rastrigin function
F6, the Schwefel function F7, and the Griewangk function F8 [18].

F1(x) =
∑n

i=1 x2
i F6(x) = 10n +

∑n
i=1(x

2
i − 10 cos(2πxi))

F3(x) =
∑n

i=1�xi	 F7(x) = 418.9829n − ∑n
i=1 xi sin(

√|xi|)
F4(x) =

∑n
i=1 ix4

i + N (0, 1) F8(x) = 1 +
∑n

i=1
x2
i

4000 − ∏n
i=1 cos(xi/

√
i)

Each classic benchmark function F : Rn → R was extended by a mapping
Ψ : Rm → R

n, for m > n, so that the actual objective function f : Rm → R,
called the m-dimensional deceptive objective function, was a composition of
the mapping Ψ and the classic benchmark function F , i.e. f(x) = F (Ψ(x)).
It is easy to see that variables of the final objective function f were correlated
(although the objective function f was formally a function of m variables, the real
dimensionality of the optimization problem was n < m) and the improvement
mechanism proposed in this paper might have a chance to reduce the search
space. Both, the linear mappings Ψ with a random matrix A ∈ R

n×m and a
random vector b ∈ R

n, where Ψ(x) = Ax + b, and the non-linear mappings Ψ
based on polynomial functions with random parameters, were considered.

Furthermore, k-deceptive objective functions were defined by the analogy to
the k-deceptive objective functions used for evaluating the ECGA algorithm [3]:
the entire chromosome x was divided into blocks of successive k genes, then a
chosen k-dimensional deceptive objective function was evaluated on each block,
next the values of the deceptive objective function on all the blocks was summed
and finally returned as the results of the k-deceptive objective function.

Each experiment concerned a classic benchmark function transformed to a
k-deceptive benchmark function with the final chromosome length d = 50, 100,
or 250, divided into blocks of k = 25 genes, where on each block, the k-
dimensional deceptive benchmark function based on a n-dimensional classic
benchmark function, for n = 5, 10, or 15, was evaluated. Parameters of the
transformation Ψ extending the n-dimensional classic benchmark function to a
k-dimensional deceptive benchmark function were generated randomly for each
experiment. Such an optimization problem was solved twice: once with the locally
linear embeddings mechanism turned off, and once with turned on. In both cases,
the population size was N = 500 and the parameter α = 0.5. The original algo-
rithm run for 2500 iterations. The improved algorithm run for 2500 iterations in
total: main evolution was run for 100 iterations, then subevolutions was run for
400 iterations, and it was repeated 5 times. In the LLE part, K = 25 nearest
neighbors were used. Thus, during their run, both algorithms evaluated the same
number of individuals.

Table 1 presents a summary of results for all the benchmark functions. In
order to compare the original algorithm with the improved one, for each exper-
iment, the difference between the best found solution and the actual optimum
of the objective function was evaluated for each algorithm. The difference for

134 P. Lipinski

Table 1. Summary of results on popular benchmark functions

linear mappings Ψ non-linear mappings Ψ

d n f1 f3 f4 f6 f7 f8 f1 f3 f4 f6 f7 f8

50 5 24.66 5.23 385.99 8.10 99.06 8.98 20.12 3.59 717.10 15.82 16.48 19.49
50 10 15.13 4.13 85.62 22.21 30.80 7.55 15.80 3.62 317.57 16.68 11.08 13.86
50 15 11.58 2.80 325.49 10.09 34.46 2.97 7.20 3.37 7.45 2.42 37.99 5.86

100 5 17.83 3.92 197.89 16.30 24.83 7.20 16.14 4.03 98.68 8.55 31.09 20.76
100 10 5.79 3.02 44.30 8.13 49.84 3.58 7.18 2.94 77.16 7.53 19.32 5.40
100 15 3.68 1.97 14.26 2.44 67.19 3.13 1.45 1.50 36.03 3.12 23.42 3.79

250 5 5.60 1.75 61.84 7.12 95.25 3.20 6.09 2.40 49.23 8.59 27.95 7.12
250 10 1.54 1.43 9.14 2.39 43.17 1.56 1.93 1.21 10.73 1.35 38.62 1.38
250 15 1.05 1.07 3.39 0.82 20.15 1.04 0.72 0.94 3.21 1.09 13.34 0.92

the original algorithm was divided by the difference for the improved one and
noted in Table 1. Therefore, the values below 1 mean that the original algorithm
found a better approximation of the optimum of the objective function than the
improved one, while values above 1 correspond to the opposite case. It is easy
to see that the improved algorithm outperformed the original one in most cases.

5 Practical Evaluation on a Decision Support System

Some experiments were also performed on real-world problems, such as con-
structing optimal weights for a rule-based decision support system, where the
weights are highly dependent due to existing similarities in the decision rules.

For practical evaluation of the approach proposed, a stock market trading
decision support system, discussed in details in [7] and similar to the system
with binary encoding presented in [9], was studied. Evolutionary algorithms
were used in the system to combine a number of stock market trading rules
into one trading expert being a weighted average of particular trading rules
with the weights determined by an evolutionary algorithm as a solution to an
optimization problem with an objective function relating to a performance of
the trading expert over a certain training period.

A stock market trading rule is a function f : K �→ s ∈ R that maps a factual
financial knowledge K (e.g. financial time series of recent stock price quotations)
to a real number s encoding a trading signal (low values denote a sell signal,
high values denote a buy signal). Examples of such trading rules may be found
in Technical Analysis [11].

A stock market trading expert e : K �→ s ∈ R is a weighted average of a
number of defined trading rules f1, f2, . . . , fd, available in the decision support
system, with weights w1, w2, . . . , wd ∈ R.

For a given training period, the trading expert may be evaluated in a type
of simulation. It starts with an initial capital: an initial amount of cash and an

Training Complex Decision Support Systems 135

initial number of stocks. In successive days of the training period, the trading
expert produces a trading signal. If it is a buy signal, a part of available cash
is invested in stocks. If it is a sell signal, a part of available stocks is sold. Each
transaction is charged with a transaction fee. Finally, the efficiency of the trading
expert is defined by the Sharpe ratio [14] of daily return rates.

Therefore, constructing efficient trading experts is an optimization problem
of finding the weights vector w ∈ R

d maximizing the efficiency measure being
the Sharpe ratio over a given training period.

Due to the large number of trading rules in the decision support system (in
experiments, d = 500), the dimension of the search space is excessively large
and constitutes a bottleneck for many optimization algorithms. However, many
trading rules are similar, based on similar financial principles, so the variables
of the objective function seems to be correlated [8]. Thus, applying the dimen-
sionality reduction mechanism proposed in this paper may significantly improve
the efficiency of the evolutionary search process.

Experiments were performed on 10 datasets. Each dataset concerned one
stock chosen from the CAC IT 20 index of the Paris Stock Exchange, a training
period from January, 2, 2009 to November, 30, 2009 (234 trading days) and a set
of selected 500 trading rules, based on technical analysis indicators [11]. Each
optimization problem was solved twice: once with the locally linear embeddings
mechanism turned off, and once with turned on. Parameters of the algorithms
were the same as discussed in the previous section.

Table 2 presents a summary of results on learning the financial decision
support system for the 10 datasets. The second and the third column contain
the objective function values for the best solution found by the original and
the improved algorithm, respectively. Both algorithm found similar solutions,
perhaps the quasi-optima, so the values are similar. The forth and the fifth
column contain the objective function values for the best solution found after 500
iterations. Finally, the sixth column contains the improvement factors described

Table 2. Summary of results on learning a financial decision support system for 10
datasets concerning one stock chosen from the CAC IT 20 index of the Paris Stock
Exchange

Stock DE DEELLE DE-500 DEELLE-500 Improvement

Alcatel-Lucent 28.17 28.19 23.63 27.61 1.17
Alstom 19.83 19.99 17.86 19.11 1.07
Cap Gemini 20.98 21.04 17.48 20.68 1.18
France Telecom 10.83 10.76 8.49 10.65 1.25
Legrand 22.96 23.04 22.01 22.74 1.03
Neopost 19.38 19.42 17.09 18.46 1.08
Schneider Electric 25.77 25.93 23.94 25.88 1.08
STMicroelectronics 19.97 20.76 15.45 20.13 1.30
TF1 25.04 25.45 19.86 24.68 1.24
Vivendi 15.87 16.13 11.93 16.08 1.35

136 P. Lipinski

in the previous section (the same as presented in Table 1), i.e. the fifth column
divided by the fourth column. It is easy to see that the improved algorithm
outperformed the original one, but the improvement was lower than in the case
of simple benchmark functions discussed in the previous section.

6 Conclusions

This paper proposes an improvement of Differential Evolution for objective func-
tions with non-linearly correlated variables, which tries to detect non-linear local
dependencies among variables of the objective function by analyzing the mani-
fold in the search space that contains the current population and transforming
individuals to a reduced search space using Locally Linear Embeddings.

A preliminary evaluation performed on some popular benchmark functions
confirmed that the method may significantly improve the search process, espe-
cially in the case of complex objective functions with a large number of variables,
which usually occur in many practical applications.

Further evaluation on a financial decision support system, where the pro-
posed algorithm was used to learn the trading system and discover the impor-
tance weights for the trading rules, confirmed the preliminary results. Applying
Locally Linear Embeddings led to a significant improvement of the evolutionary
algorithm, however, the improvement rate was lower than in the case of simple
benchmark functions.

References

1. Cox, T., Cox, M.: Multidimensional Scaling. Chapman & Hall (2001)
2. Das, S., Suganthan, P.N.: Differential Evolution: A Survey of the State-of-the-Art.

IEEE Transactions on Evolutionary Computation 15(1), 4–31 (2011)
3. Harik, G.: Linkage Learning via Probabilistic Modeling in the ECGA, IlliGAL

Research Report, no. 99010. University of Illinois at Urbana-Champaign (1999)
4. Hilletofth, P., Lattila, L.: Agent based decision support in the supply chain context.

Industrial Management & Data Systems 112(8), 1217–1235 (2012)
5. Ishibuchi, H., Yamamoto, T.: Fuzzy rule selection by multi-objective genetic local

search algorithms and rule evaluation measures in data mining. Fuzzy Sets and
Systems 141(1), 59–88 (2004)

6. Larranaga, P., Lozano, J.A.: Estimation of Distribution Algorithms. Kluwer Aca-
demic Publishers (2002)

7. Korczak, J., Lipinski, P.: Evolutionary Building of Stock Trading Experts in a Real-
Time System. In: Congress on Evolutionary Computation, pp. 940–947 (2004)

8. Lipinski, P.: Dependency Mining in Large Sets of Stock Market Trading Rules. In:
Enhanced Methods in Computer Security, Biometric and Intelligent Systems, pp.
329–336. Kluwer Academic Publishers (2005)

9. Lipinski, P.: A Stock Market Decision Support System with a Hybrid Evolu-
tionary Algorithm for Many-Core Graphics Processors. In: Guarracino, M.R.,
et al. (eds.) Euro-Par-Workshop 2010. LNCS, vol. 6586, pp. 455–462. Springer,
Heidelberg (2011)

Training Complex Decision Support Systems 137

10. Lipinski, P.: Evolution Strategies for Objective Functions with Locally Correlated
Variables. In: Fyfe, C., Tino, P., Charles, D., Garcia-Osorio, C., Yin, H. (eds.)
IDEAL 2010. LNCS, vol. 6283, pp. 352–359. Springer, Heidelberg (2010)

11. Murphy, J.: Technical Analysis of the Financial Markets, NUIF (1998)
12. Nojima, Y., Ishibuchi, H.: Multiobjective genetic fuzzy rule selection with fuzzy

relational rules. In: IEEE International Workshop on Genetic and Evolutionary
Fuzzy Systems, pp. 60–67 (2013)

13. Roweis, S., Saul, L.: Nonlinear Dimensionality Reduction by Locally Linear Embed-
ding. Science 290, 2323–2326 (2000)

14. Sharpe, W.: Capital Asset Prices: A Theory of Market Equilibrium under
Conditions of Risk. Journal of Finance 19, 425–442 (1964)

15. Sirlantzis, K., Fairhurst, M.C., Guest, R.M.: An evolutionary algorithm for classi-
fier and combination rule selection in multiple classifier systems. In: 16th Interna-
tional Conference on Pattern Recognition, pp. 771–774 (2002)

16. Wang, M., Wang, H., Xu, D., Wan, K.K., Vogel, D.: A web-service agent-based
decision support system for securities exception management. Expert Systems with
Applications 27(3), 439–450 (2004)

17. Webb, A.: Statistical Pattern Recognition. John Wiley, London (2002)
18. Whitley, D., Rana, S., Dzubera, J., Mathias, K.: Evaluating evolutionary algo-

rithms. Artificial Intelligence 85(12), 245–276 (1996)

A Memetic Framework for Solving Difficult
Inverse Problems

Maciej Smo�lka(B) and Robert Schaefer

AGH University of Science and Technology,
Al. Mickiewicza 30, 30-059 Kraków, Poland

{schaefer,smolka}@agh.edu.pl

Abstract. The paper introduces a multi-deme, memetic global opti-
mization strategy Hierarchic memetic Strategy (HMS) especially well-
suited to the solution of a class of parametric inverse problems. This
strategy develops dynamically a tree of dependent populations (demes)
searching with the various accuracy growing from the root to the leaves.
The search accuracy is associated with the accuracy of solving direct
problems by hp–adaptive Finite Element Method. Throughout the paper
we describe details of exploited accuracy adaptation and computational
cost reduction mechanisms, an agent-based architecture of the proposed
system, a sample implementation and preliminary benchmark results.

Keywords: Inverse problems · Hybrid optimization methods · Memetic
algorithms

1 Motivation

Inverse problems form an important area of the contemporary research related
to fundamental problems in science and engineering (see e.g. [1]). Among its
numerous applications one can find such activities as oil and gas explorations,
material processing and others. A quite general definition of the inverse problem
is to find a value of a parameter ω∗ ∈ D realizing

min
ω∈D

{f(uo, u(ω)) : A(u(ω)) = 0} (1)

where A is a direct problem operator, u(ω) ∈ U is the direct solution corre-
sponding to ω, uo ∈ O is an observation (typically a measured quantity related
somehow to the direct solution) and f(O, U) −→ R+ is a misfit functional. In a
typical situation U is a Sobolev space and A : U −→ U ′ is a differential opera-
tor between U and its conjugate. When solving such problems one usually faces
some significant obstacles. One of them is the ill-conditioning, i.e. a small change

The work presented in this paper has been partially supported by Polish National
Science Center grants no. DEC-2012/07/B/ST6/01229 and DEC-2011/03/B/ST6/
01393.

c© Springer-Verlag Berlin Heidelberg 2014
A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2014, LNCS 8602, pp. 138–149, 2014.
DOI: 10.1007/978-3-662-45523-4 12

A Memetic Framework for Solving Difficult Inverse Problems 139

in parameters sometimes results in a big change in results. Other noticeable dif-
ficulties are the multi-modality, i.e. the non-uniqueness of solutions, and possible
low regularity of the misfit functional. Both of them significantly reduce the use-
fulness of computationally relatively inexpensive convex optimization methods
(such as gradient-based ones), because in the lack of the misfit differentiability
their use is problematic in general and, even worse, in the case of multiple local
optima they do not deliver the guarantee of finding the global one.

There exist some methods to overcome those difficulties. One of the most
popular is the misfit regularization (see e.g. [2]) providing a modified version of
the misfit, which is regular and convex (hence unimodal). This can be a very
effective technique, however it is not very useful when the considered inverse
problem is inherently multimodal and we need to find all minima. On the other
hand, a careless use of the regularization can lead to the replacement of the orig-
inal problem solution with an artificial solution of the over-regularized misfit. A
different way is to use a stochastic global optimization methods from simple
Monte Carlo type to more sophisticated single- and multi-deme genetic searches
(see e.g. [3–5]). Such methods may handle irregularity and multimodality, but
the price is the high computational cost and the low accuracy. Another pos-
sibility is to perform multiple convex searches from a set of points generated
randomly (multistart strategy). Such methods might be additionally improved
by the sophisticated post-processing leading to the reduction of a random sample
from which local methods are started or the early suspension of non-promising
local searches (see e.g. [6,7]).

The authors intend to synthesize slightly diverse ideas of the inverse analysis
arising from the following sources.

Hierarchic Genetic Strategy (HGS). This strategy develops dynamically a
tree of dependent demes i.e. sub-populations of the total multiset of various
type individuals created by the strategy. The root-deme performs the most global
search with a low accuracy. The search performed by demes located deeper in the
tree is more localized and more accurate. See [8] for details and [9] for HGS float-
ing point encoding implementation. An important HGS extension going towards
the effective solving of the inverse parametric problems is the hp–HGS strategy
(see [10] and references therein) which combines HGS with the hp-adaptive Finite
Element Method (hp–FEM) [11]. This strategy offers the advantageous compu-
tational cost resulting from the common scaling of the hp–FEM error according
to the various accuracy of HGS inverse search in the root deme, branch demes
and leaf demes. The hp–HGS asymptotic guarantee of finding all extremes and
the computational cost reduction rate are discussed in [10].

Memetic algorithms (see e.g. [12]) allow to compose various techniques into
a single population-based stochastic strategy in order to obtain more efficiency
and flexibility. Candidate solutions are represented as software agents, other
agents are responsible for governing populations, which leads to the idea of the
computing Multi-Agent System (MAS) (see e.g. [13,14]). The first attempt to
apply agents in profiling of HGS demes is described in [15]. An example of solv-
ing inverse parametric problem by an Evolutionary Multi-Agent System (EMAS)

140 M. Smo�lka and R. Schaefer

can be found in [16]. The paper [17] shows a different way of a memetic enhance-
ment of genetic search by introducing ’gradient mutation’ into the genetic solving
of inverse problems coming from the computational mechanics.

Clustered Genetic Search (CGS) tries to extract the knowledge from the
genetic sample (the population) or a sequence of samples in order to approximate
central parts of local extreme’s basins of attraction (see e.g. [7]). CGS follows
the simple strategy introduced by Törn [6], which performs a density clustering
of the uniformly sampled population undertaking the elitist selection.

The solution proposed in this paper, called Hierarchic Memetic Strategy
(HMS) combines all mechanisms described above in a form of a loosely coupled
tree of searching demes. The novelty of our proposition consists of the intensive
profiling of searching process towards essential decreasing of computational cost
and exploring multiple extremes. This profiling utilize intensively the knowledge
about the solving problem extracted from the evolving demes and their current
structure.

2 HMS Architecture

The main idea of the HMS is to provide a global optimization tool especially
suited to solving difficult inverse problems. Their difficulty lies in their inherent
multi-modality as well as the nontrivial computational cost of a direct problem
solution, which is necessary for evaluating the misfit. Nevertheless, they also
have some features we can take advantage of. First of all, their global minimum
value is well-known (and equal to 0), which can be used in e.g. the construction
of stopping conditions for stochastic evolution. Second, in some important cases
the cost of the direct problem solution can be modulated by an assumed accuracy
of the solution: it is the case of hp-FEM direct solvers [11].

As a global optimization tool the HMS tries to combine the high-level
exploratory ability with the accuracy and efficiency of a local optimization
method. Contrary to two-phase methods in which the global phase is followed by
local searches, the HMS goes ’memetic way’, i.e. intermixes local-optimization-
oriented mechanisms into a global stochastic search machinery. The global part
follows the multi-population evolutionary approach introduced by the HGS [8].
Namely the global search is performed by a collection of genetic populations. The
populations can evolve in parallel, but they are not mutually independent. The
structure of the dependency relation is hierarchical (i.e. tree-like, see Fig. 1) with
a restricted number of levels. The HGS proved to have considerable exploratory
capabilities together with a good search accuracy especially with floating-point
phenotype encoding [9]. The HMS, naturally, tries to retain these abilities at
the same time going beyond the HGS in some aspects. First of all, it adds local
optimization to the set of operations applied to the genetic individuals. But this
is done with care in order to avoid the premature population convergence on
one hand and the high cost of running instances of a local method from inap-
propriate points on the other hand. Namely some genetic individuals (but not
necessarily all of them) receive an identity and some intelligence hence becoming

A Memetic Framework for Solving Difficult Inverse Problems 141

Level 1

Level 2

Level 3

root deme

branch demes

leaf demes

U1

U2

U3

genetic spaces

low accuracy

high accuracy

Fig. 1. HGS-like evolutionary population tree

independent agents in a multi-agent system (MAS), and the decision of perform-
ing the local search becomes their own responsibility. Moreover the demes are
managed by special controller agents. Note that this is somewhat similar but at
the same time significantly different from the Globally Balanced HGS (GB-HGS)
[15] where only demes have corresponding agents. The idea of turning a passive
genetic individual into an intelligent agent has some further consequences. We
have to redefine the genetic operations in such a way that they can be applied
to agents and while there is no big problem with the mutation and the crossover
(but one has to note that in this case a new agent is activated), the selection
cannot be performed in the simple genetic (or evolutionary) way. Namely we
follow the lines of the EMAS [13,14], thus performing an operation analogous to
the proportional selection but realized as a two-agent rendezvous.

In the sequel we shall present the structure of the HMS starting from a
description of HMS agent types.

2.1 HMS Agent Types

Master Agent (MA). As a global system coordinator it is started as a first agent
in the HMS MAS. Its responsibilities include performing the system initialization
including the activation of other basic agents, i.e. the Objective Agent and a
Local Agent of the deme-tree root. After the initialization, the Master Agent
starts the global loop of deme coordination and checks if the global stopping
condition is satisfied. It is shown in the following algorithm:
1: create OA
2: create root location node
3: repeat
4: receive proposals from DAs and choose one
5: until global stop condition is satisfied.

Deme Agent (DA). It is a deme-tree node coordinator. Each deme has an asso-
ciated level of computational accuracy stored as a property of the corresponding
Local Agent. In fact Deme Agent is an abstract class with two different special-
izations: Evolutionary Agent and Local Agent.

142 M. Smo�lka and R. Schaefer

Evolutionary Agent (EA). This is a simple (passive) evolutionary population
owner. Periodically, after receiving the permission from the Master Agent it lets
its population evolve for a fixed number of generations (this is called a metae-
poch) and then sprouts a new deme from the current best individual unless the
sprout condition is not satisfied (see the algorithm below). Note that similar
agents form the structure of the GB-HGS [15]. The Evolutionary Agent algo-
rithm may be presented in the following way.
1: create initial deme population
2: repeat
3: send a proposal to MA
4: if MA has accepted the proposal then
5: evolve owned population for a fixed step number
6: if the best individual satisfies the sprout condition then
7: create new child DA
8: end if
9: end if

10: until local stop condition is satisfied

Local Agent (LA). The Local Agent owns a population of Computational Agents
and acts as their action local scheduler. Namely it receives action proposals from
Computational Agents, selects one of them according to a probability distribu-
tion, send a proposal to the Master Agent and if the proposal is accepted, lets
the selected Computational Agent perform its action (see the algorithm below).
The Local Agent’s responsibilities include also some action coordination, such
as checking if a pending sprout action is allowed. The Local Agent algorithm is
presented below.
1: create initial deme population
2: repeat
3: send CFP to all active CAs
4: receive action proposals from CAs and choose one
5: send a proposal to MA
6: if MA has accepted the proposal then
7: if CA action creates new individual then
8: create new CA
9: else if chosen action is SPROUT then

10: if sprouting can be performed then
11: create new child DA
12: end if
13: end if
14: end if
15: until local stop condition is satisfied

Computational Agent (CA). It is an active individual of the HMS genetic pop-
ulation. It owns an immutable genotype consisting of an encoded domain point
(a chromosome) and a level of the computational precision. The precision level
must be consistent with the owning Local Agent’s level. The mutable part of a

A Memetic Framework for Solving Difficult Inverse Problems 143

Computational Agent’s state includes a nonnegative memetic parameter called
life energy. The life energy is exchanged during a Computational Agent action
execution such that the total energy remains constant within each deme. Only
agents with the positive life energy are considered active (alive) and take part
in the system evolution. Namely there exists a pool of actions from which an
active Computational Agent can choose one at a time to perform. The available
action pool size depends primarily on the agent’s life energy but can be affected
by other parameters as well. The action selection is determined by a given prob-
ability distribution. Finally, the action is performed only if permitted by the
owning Local Agent (see the algorithm below).
1: request objective computing from OA
2: while life energy > 0 do
3: receive CFP from owning LA
4: choose an available action
5: send the proposal to LA
6: if received permission from LA then
7: perform chosen action
8: update life energy
9: end if

10: end while
There is an energy quantum related to each action, which is spent (during GET
it can sometimes be gained) by a Computational Agent during the action execu-
tion. Currently the following actions are considered (cf. [14]): GET, MUTATE,
CROSSOVER, LOCOPT and SPROUT.

The GET action is the above-mentioned kind of the distributed selection. It
is a two-agent stochastic duel during which the proper quantum energy moves
from the loser to the winner. A Computational Agent with a lower (i.e. better
because closer to the global minimum) objective value has more chances to win.
MUTATE and CROSSOVER are straightforward counterparts of corresponding
genetic (or evolutionary) operations, like e.g. the normal mutation and the arith-
metic crossover. The SPROUT action is inspired by the child branch sprouting
operation, which is fundamental in the HGS [8]. In the HMS it produces a new
deme together with its Local Agent and an initial population of Computational
Agents. The probability of selecting SPROUT increases with the decreasing value
of the objective. Obviously SPROUT makes no sense at the leaf level, where it
can be optionally replaced with LOCOPT. The LOCOPT is a local optimiza-
tion method execution started from the agent’s decoded chromosome. In the
current realization LOCOPT is allowed only at the leaves and, as in the case of
SPROUT, the probability of its selection is high for Computational Agents with
the low objective value.

Objective Agent (OA). In the real HMS use case (i.e. in solving inverse problems)
the objective value is computed externally by a specialized direct solver. The
responsibility of an Objective Agent (typically one in the whole system) is to
provide a proper solver gateway, i.e. to execute the solver process (or several

144 M. Smo�lka and R. Schaefer

parallel processes) properly and to transfer the input data to the solver and
the solver output back to the HMS. Additional Objective Agent activities may
include: caching solver results, solver instance pooling (in the case of the parallel
execution) and scheduling objective computations according to a sophisticated
optimizing policy (e.g. a diffusion-based one [18]).

2.2 Population Structure

As it was stated before the HMS genetic population is decomposed into depen-
dent demes forming a dynamically-changing tree of the fixed maximal depth m.
Genetic individuals, i.e. Computing Agents, located at the tree levels close to
the root perform the chaotic and inaccurate search, whereas going towards the
leaves the search becomes more and more focused and the accuracy is increased
(see Fig. 1). The variability of the search accuracy results from the diversity
of the genotype encoding precision used at different tree levels. The latter of
course depends on the encoding type. In the case of the binary encoding (as in
the Simple Genetic Algorithm) it can be achieved by the binary genotype length
variation, whereas in the case of the real number encoding (as in the Simple
Evolutionary Algorithm) it can be realized by the appropriate phenotype scal-
ing. The latter case is used in the prototype implementation of the HMS so we
present here some details. The description follows the ones presented in papers
[9,15].

In the real number encoding both phenotypes and genotypes are vectors from
R

N . We assume that the solution domain is a box D = [a1, b1] × · · · × [aN , bN]
and we take a sequence of scaling factors ηi ∈ R such that η1 > η2 > . . . ηm−1 >
ηm = 1. Then the genetic universum at the tree level j is

Uj =
[
0,

b1 − a1

ηj

]
× · · · ×

[
0,

bN − aN

ηj

]
(2)

and the encoding mapping at the level j is defined as

D � x �−→
{

xk − ak

ηj

}N

k=1

∈ Uj . (3)

Moreover we define the scaling mapping scalei,j : Ui � x �→ ηi

ηj
x ∈ Uj . In

such a genetic universa the search at lower levels is more chaotic (because the
mutation acts stronger) and less precise (the loss of precision is caused by limita-
tions in the real number representation). One can use various genetic operators
in such an encoding, but among the most important one can find the normal
mutation yi = xi +N (0, σmut

j) for i = 1, . . . , N , where N (0, σmut
j) is a normally-

distributed random variable with the standard deviation σmut
j set separately

for each level j, and the arithmetic crossover yi = x1
i + U([0, 1])(x2

i − x1
i) for

i = 1, . . . , N , where U([0, 1]) is a random variable distributed uniformly over the
interval [0, 1]. Both operators are used in our sample implementation. Further-
more we exploit the classical fitness-proportional (roulette-wheel) selection in

A Memetic Framework for Solving Difficult Inverse Problems 145

passive populations (on Evolutionary Agents) additionally preserving the best
individual of each generation. A newly sprouted deme’s population is sampled
according to the N -dimensional Gaussian distribution centered at the properly
encoded fittest individual of the parent process with the diagonal covariance
matrix with values (σsprout

j)2 on the diagonal. The sprout cannot be performed
in population P at level j if there exists a population P ′ at level j + 1 such that
|y − scalei,i+1(y)| < cj , where y is the best individual in P , y is the average
phenotype of P ′ and cj is a branch comparison constant.

Finally, it should be mentioned that the further utilization of the knowledge
gathered during the multi-level enhanced genetic evolution is possible by means
of the clustering technique, in which better approximation of attraction basins
of the local minima can be developed allowing yet more precise application of
local optimization methods.

3 Sample Implementation

As our algorithmic framework is sophisticated, agent-based one, it also poses
several challenges for the implementation task. Two main goals were especially
considered during the design phase: flexibility and efficiency.

Flexibility. It was quite obvious from the beginning that HMS, being a frame-
work, should be extensively configurable, which means that it has to embrace
changes in such aspects as various particular sub-algorithms (e.g. the computa-
tion of CA action probabilities), local and global stopping conditions, local opti-
mization methods, objective approximations etc. All such issues are addressed
primarily by the extensive use of appropriate design patterns (such as Strategy
or Proxy). Some aspects of configurability are obtained through the inclusion of
scripting capabilities into the solid Java skeleton, namely some sub-algorithms
can be defined in separate JavaScript scripts. There is also a higher level of
flexibility reached by HMS. Through the foundation on the Java Agent Devel-
opment Framework JADE [19] (in version 4.2) it obtained a potential ability of
distributed deployment. The use of JADE is justified by its de facto standard
position in the multi-agent middleware area and the relative easiness to write
code controlling concurrent agents communicating through asynchronous mes-
sage passing. JADE’s FIPA standard compliance encouraged us to base HMS
agent communication protocols on the FIPA solutions as well. Both the location
selection performed by the Master Agent with the cooperation of Local Agents
and the Computational Agent selection conducted by a Local Agent are a mod-
ifications of the FIPA Contract-Net protocol. Another example is the multiple
use of the FIPA Request protocol (e.g. requesting the objective value from the
Objective Agent by a Computational Agent).

Efficiency. A message-intensive multi-agent system may seem not very suitable
for numerical computations. However, one should consider that in our real use
case the cost of solving a direct problem dominates the other costs, including

146 M. Smo�lka and R. Schaefer

agent thread allocation and asynchronous message passing, by far. Hence our
main effort is to reduce the number of the direct solver calls and decrease the cost
of the particular direct solution as far as possible (and this is obtained through
the presented analysis) instead of looking for a more time-effective implementa-
tion environment, which would lack other above-mentioned desired features.

4 Benchmark Tests

Some preliminary benchmark tests were performed. Their aim was basically to
prove the HMS abilities to find the global minimum with the assumed accuracy
in comparison with an already-tested effective tool: GB-HGS [15]. Namely we
took the best accuracy obtained by GB-HGS in the optimization of two popular
benchmark functions and treated this accuracy as the goal for HMS. The chosen
type of tests (i.e. the tests with an assumed accuracy) influenced the setting of
the HMS stopping conditions. Namely the global stopping condition was satisfied
if a leaf approached the global minimum with the given accuracy, whereas a
leaf stopping condition was satisfied if the leaf approached the global minimum
or if a fixed number of its consecutive metaepochs were ineffective, i.e there
was no significant change in the leaf’s population average fitness. As the active
populations do not use the basic notion of metaepoch, for stopping condition
definition we use performing the number of steps equal to the current population
size instead.

As benchmarks we chose the 20-dimensional Rastrigin function over the
box [−512, 512]20 and the 10-dimensional Ackley path function over the box
[−30, 30]10. Both test were repeated 10 times. The tree had 2 levels. At the root
level an Evolutionary Agent (i.e. a passive population) was run, whereas at the
leaf level we executed Local Agents together with populations of Computational
Agents (i.e. active individuals capable of performing the local optimization). The
normal mutation and the arithmetic crossover were used as the genetic opera-
tions. To make the comparison more clear in both benchmarks most of HMS
execution parameters was set exactly (or almost exactly) as in GB-HGS.

In 10D Ackley function minimization we assumed the accuracy of 0.01 (in
this case the obtained accuracy was much better). The execution parameters for
10D Ackley function are summarized in Tab. 1. Note that the metaepoch length
parameter is not directly applicable to Local Agents (see above). Similarly, the
population size in this case is not constant, in our simulations it varied between
10 and 30. The objective call statistics are shown in Tab. 2. The cost of a local
method application is included in the leaf level cost. Note that the average fitness
call number in the case of GB-HGS shows only the order of the actual quantity
but nothing more is available in [15]. In [15], however, one can also find results of
minimizing 10D Ackley function by means of the Simple Evolutionary Algorithm
(SEA). It turns out that SEA after 107 fitness calls approaches the minimum
with the accuracy about 5, which is obviously far from the HMS’s achievement.

In Rastrigin 20D we assumed the accuracy of 1000 (note that this time the
number of local minima is really huge). The execution parameters are summa-
rized in Tab. 3 (the meaning of the parameters is the same as in the Ackley

A Memetic Framework for Solving Difficult Inverse Problems 147

Table 1. HMS execution parameters (Ackley 10D)

Root level Leaf level

Population/initial population 50 10
Metaepoch length 50 -
Encoding scale ηj 4.0 1.0
Mutation rate 0.1 0.03
Crossover rate 0.5 0.5
Mutation standard deviation σmut

j 4.0 0.8

Sprout standard deviation σsprout
j 10.0 2.0

Sprout minimal distances cj 12.0 2.4

Table 2. Average number of objective evaluations (Ackley 10D)

Root level Leaf level Total

GB-HGS 10000000
HMS 147093 4340 151433

Table 3. HMS execution parameters (Rastrigin 20D)

Root level Leaf level

Population/initial population 50 10
Metaepoch length 50 -
Encoding scale ηj 5.0 1.0
Mutation rate 0.1 0.03
Crossover rate 0.5 0.5
Mutation standard deviation σmut

j 68.27 13.65

Sprout standard deviation σsprout
j 170.675 34.125

Sprout minimal distances cj 204.81 40.95

Table 4. Average number of objective evaluations (Rastrigin 20D)

Root level Leaf level Total

GB-HGS 10000000
HMS 194899 3570.1 198469.1

case). The fitness call statistics are gathered in Tab. 4. Note that the number of
fitness calls is much higher at the root level, which is very advantageous from
the point of view of inverse problem solving, because the cost of direct solution
is much less then in case of leaves, because of much lower required accuracy.

Finally let us note that more thorough HMS testing should tackle real inverse
problems (instead of simple benchmark functions). Such tests, involving oil
exploration problems, are planned in the near future.

148 M. Smo�lka and R. Schaefer

5 Conclusions

In the paper we have presented a memetic global optimization framework HMS.
It can be used in general optimization but its main design goal is to solve inverse
problems. The main benefit of the presented framework is a significant reduction
of the computational cost together with the ability of the exploration of multiple
extreme obtained on the several separate, but perfectly focusing ways, namely
(see Sec. 2):

– self-adaptation through construction of a sophisticated deme topology;
– simultaneous error scaling;
– knowledge mining and online search profiling;
– parallel processing.

To develop these features HMS summarizes and improves ideas taken from HGS,
hp-HGS and CGS (see Sec. 1).

The preliminary tests show the advantage of HMS over the refined hierar-
chic genetic strategy GB-HGS dedicated to multimodal problems (number of
fitness calls decreases by two orders) as well as over the single deme evolution-
ary algorithm (here number of fitness call decreases even more). An additional
cost decrement can be obtained by the common error scaling and the deme
clustering, which were not included in the presented series of tests.

References

1. Tarantola, A.: Inverse Problem Theory. Mathematics and its Applications. Society
for Industrial and Applied Mathematics (2005)

2. Engl, H., Hanke, M., Neubauer, A.: Regularization of Inverse Problems. Mathe-
matics and its Applications, vol. 375. Springer, Heidelberg (1996)

3. Pardalos, P., Romeijn, H.: Handbook of Global Optimization (Nonconvex Opti-
mization and its Applications), vol. 2. Kluwer (1995)

4. Chakraborty, U.K. (ed.): Advances in Differential Evolution, vol. 143. Studies in
Computational Intelligence. Springer (2008)

5. Cantú Paz, E.: Efficient and accurate parallel genetic algorithms, vol. 2. Kluwer
(2000)

6. Törn, A.A.: A search clustering approach to global optimization. In: Dixon,
L.C.W., Szegö, G.P. (eds.) Towards Global Optimisation 2, pp. 49–62. North-
Holland, Amsterdam (1978)

7. Schaefer, R., Adamska, K., Telega, H.: Genetic clustering in continuous landscape
exploration. Engineering Applications of Artificial Intelligence 17, 407–416 (2004)

8. Schaefer, R., Ko�lodziej, J.: Genetic search reinforced by the population hierarchy.
In: Foundations of Genetic Algorithms 7, pp. 383–399, Morgan Kaufman (2003)

9. Wierzba, B., Semczuk, A., Ko�lodziej, J., Schaefer, R.: Hierarchical Genetic Strategy
with real number encoding. In: Proceedings of the 6th Conference on Evolutionary
Algorithms and Global Optimization, pp. 231–237 (2003)

10. Barabasz, B., Migórski, S., Schaefer, R., Paszyński, M.: Multi-deme, twin adaptive
strategy hp-HGS. Inverse Problems in Science and Engineering 19(1), 3–16 (2011)

A Memetic Framework for Solving Difficult Inverse Problems 149

11. Demkowicz, L., Kurtz, J., Pardo, D., Paszyński, M., Rachowicz, W., Zdunek, A.:
Computing with hp Finite Elements II. Frontiers: Three-Dimensional Elliptic and
Maxwell Problems with Applications. Chapman & Hall/CRC (2007)

12. Neri, F., Cotta, C., Moscato, P. (eds.): Handbook of Memetic Algorithms. Studies
in Computational Intelligence, vol. 379. Springer, Heidelberg (2012)

13. Cetnarowicz, K., Kisiel-Dorohinicki, M., Nawarecki, E.: The application of evolu-
tion process in multi-agent world (MAW) to the prediction system. In: Tokoro,
M. (ed.) Proceedings of the 2nd International Conference on Multiagent Systems
(ICMAS 1996). AAAI Press (1996)

14. Byrski, A., Schaefer, R., Smo�lka, M., Cotta, C.: Asymptotic guarantee of success for
multi-agent memetic systems. Bulletin of the Polish Academy of Sciences: Technical
Sciences 61(1), 257–278 (2013)

15. Jojczyk, P., Schaefer, R.: Global impact balancing in the hierarchic genetic search.
Computing and Informatics 28(2), 181–193 (2009)

16. Wróbel, K., Torba, P., Paszyński, M., Byrski, A.: Evolutionary multi-agent com-
puting in inverse problems. Computer Science 14(3), 367–383 (2013)

17. Burczyński, T., Orantek, P.: The hybrid genetic-gradient algorithm. In: Proceed-
ings of 3rd KAEGiOG Conference, Potok Z�loty, Poland (1999)

18. Grochowski, M., Smo�lka, M., Schaefer, R.: Architectural principles and scheduling
strategies for computing agent systems. Fundamenta Informaticae 71(1), 15–26
(2006)

19. Bellifemine, F.L., Caire, G., Greenwood, D.: Developing Multi-Agent Systems with
JADE. Wiley (2007)

EvoENERGY

Customizable Energy Management in Smart
Buildings Using Evolutionary Algorithms

Florian Allerding1(B), Ingo Mauser2, and Hartmut Schmeck1

1 Karlsruhe Institute of Technology – Institute AIFB, 76128 Karlsruhe, Germany
{florian.allerding,hartmut.schmeck}@kit.edu

2 FZI Research Center for Information Technology, 76133 Karlsruhe, Germany
mauser@fzi.de

Abstract. Various changes in energy production and consumption lead
to new challenges for design and control mechanisms of the energy sys-
tem. In particular, the intermittent nature of power generation from
renewables asks for significantly increased load flexibility to support
local balancing of energy demand and supply. This paper focuses on
a flexible, generic energy management system for Smart Buildings in
real-world applications, which is already in use in households and office
buildings. The major contribution is the design of a “plug-and-play”-
type Evolutionary Algorithm for optimizing distributed generation, stor-
age and consumption using a sub-problem based approach. Relevant
power consuming or producing components identify themselves as sub-
problems by providing an abstract specification of their genotype, an
evaluation function and a back transformation from an optimized geno-
type to specific control commands. The generic optimization respects
technical constraints as well as external signals like variable energy
tariffs. The relevance of this approach to energy optimization is eval-
uated in different scenarios. Results show significant improvements of
self-consumption rates and reductions of energy costs.

Keywords: Energy Management · Smart Building · Evolutionary Algo-
rithm · Combined Heat and Power Plant · Household Appliances

1 Introduction and Scenario

The world-wide energy supply is currently in a transition phase mainly due to
the increasing share of power generation from renewable sources and the acceler-
ated reduction of nuclear based power generation. The German “Energiewende”
(“energy transition” [7]) is already causing a tremendous change in the structure
of energy supply in Germany. The nuclear power phase-out is supposed to be
completed by 2023. Accordingly, the share of photovoltaic power and wind power
is increasing. The ambitious targets of the German government are to cover 35 %
of electricity consumption in Germany from renewable energy sources by 2020,
50 % by 2030 and at least 80 % by 2050 [7]. In particular, highly decentralized
c© Springer-Verlag Berlin Heidelberg 2014
A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2014, LNCS 8602, pp. 153–164, 2014.
DOI: 10.1007/978-3-662-45523-4 13

154 F. Allerding et al.

photovoltaic systems in the German grid are causing volatile electricity prices
at the European Energy Exchange (EEX) and voltage and congestion problems
in the low-voltage grid [12]. This requires advanced management and optimiza-
tion strategies for the grid as well as for single buildings or households that are
enabling flexibility of electricity consumption.

The heterogeneous structure of households and buildings in general with dif-
ferent setups of appliances and the intermittent character of distributed genera-
tion or storage systems and new types of large consumers (e.g. electric vehicles)
call for a flexible approach towards configuration and optimization. The Energy
Management System (EMS) described in this paper has been developed within
various research projects at the Karlsruhe Institute of Technology (KIT) and the
Research Center for Information Technology (FZI) [3]. It has been deployed in
real-world environments such as the Energy Smart Home Lab (ESHL) on KIT’s
campus1 and the FZI House of Living Labs (HoLL)2.

The ESHL consists of a 60m2 apartment equipped with a combined heat and
power plant (CHP), an air conditioner, thermal storages, intelligent appliances,
and an electric car. The scenario of ESHL focuses clearly on residential buildings,
whereas the HoLL is a mixed environment of a Smart Home, Smart Offices and
Smart Production in a large building. The HoLL is equipped with an extended
set of distributed power generation and storage systems, intelligent appliances
with wireless communication, building automation systems, and electrical cars.
External signals, reflecting the global and local grid state, are sent to the EMS,
which is able to adapt the building’s energy demand and production automati-
cally without constraining the occupants while complying with their preferences.
The electric and thermal loads of appliances and electric cars are being shifted
within user-defined degrees of freedom.

The major contribution of this paper is the description and evaluation of a
novel approach to energy management, which is extending the approach pre-
sented in [2]: Similar to the concept of “plug-and-play”, the components with
shiftable loads or flexible production send a standardized problem part to the
evolutionary optimizer, containing a genotypic description, and a local evaluation
function. Thus, the components provide all the necessary information and the
optimizer can run global optimizations based on the sub-problems. The remain-
der of this paper is structured as follows. Section 2 introduces energy man-
agement in general and state-of-the-art approaches to optimization of energy
production and consumption in buildings. Sect. 3 outlines the overall system
architecture of the EMS presented in this paper – the Organic Smart Home
(OSH) – and the technical systems which are used. The unique feature of the
OSH is its flexibility in integrating the abstract descriptions of sub-problems as
problem parts. This abstraction and the Evolutionary Algorithm are presented
in Sect. 4. The simulation setup and evaluation results are depicted in Sect. 5.
Finally, the conclusions and an outlook are summarized in Sect. 6.
1 http://www.izeus.kit.edu/english/
2 http://www.fzi.de/en/fzi-house-of-living-labs/

http://www.izeus.kit.edu/english/
http://www.fzi.de/en/fzi-house-of-living-labs/

Customizable Energy Management in Smart Buildings Using Evolutionary 155

2 Energy Management and Problem Definition

There are quite a few approaches to autonomous systems for energy management
based on optimization techniques for electricity grids. Often, the optimization
problem is formulated as a linear programming (LP) [9], mixed integer linear pro-
gramming (MILP) [1,6,8,11] or mixed integer non-linear programming (MINLP)
[4] problem. The EMS described in this paper is not only considering electricity
in terms of active power, but also other commodities as reactive power, natu-
ral gas, hot and chilled water consumption, and emissions of greenhouse gases.
Therefore, it has to take into account multiple objectives in the optimization and
to consider the building with all its technical systems, energy production and
consumption in various kinds, no matter whether it is electricity or another form
of energy. This also includes the shift of energy consumption from one energy
carrier to another.

When optimizing the usage of renewable energies in buildings and the elec-
tricity production by cogeneration with respect to variable external signals (e.g.
load limitation signals) and user preferences, it is important to regard time steps
as short as possible to take account of short-time consumption and production
peaks. Usually, building simulation and building energy management, which is
focusing on thermal energy, use time steps in scale of minutes [5], whereas the
OSH works with time steps on a second to second basis. Optimizing this system
for a time horizon of several hours would result in a MILP with thousands of
constraints and variables, which could usually not be solved within adequate
time on normal computers [1]. For that reason and due the fact that embedded
systems with limited resources are applied, we use a metaheuristic to find feasible
solutions for this optimization problem: an Evolutionary Algorithm (EA).

The energy management problem for an exemplary scenario with shiftable
appliances, and a CHP can be formulated as follows: Various external signals
are taken into account by the EMS. These include energy price signals for the
different commodities, which are consumed or produced in the domain of the
EMS, and load limitation signals that are reflecting the current grid state. Based
upon these signals, the EMS has to optimize the operating times of delayable
appliances and the CHP. Hence, for every specific optimization problem (as
already pointed out in [2]) a discrete time horizon T = {0, ..., T}, which can
be exact to the second, has to be defined. This horizon depends on the current
optimization situation and has a variable length.

The user specifies his preferences by providing a latest finishing time dj for
the work-item of a delayable household appliance j, which defines the temporal
degree of freedom (tDoF):

tDoFj = dj − rj − pj

dj latest time by which the appliance j has to finish its work-item
rj release time of appliance j
pj duration of the current work-item of appliance j

156 F. Allerding et al.

The starting time sj can now be chosen by the EMS variably within this tDoF .
Accordingly, the constraint for shifting the start time of appliance j is:

sj = rj + Δt with Δt ≤ tDoF

Based on the specific duration pj for the appliance j, a binary vector (aj,t) can
be defined which indicates whether the appliance j is running in a time slot t.
Additionally, the vector (qj,i) represents the power consumption of the appliance
j during its work-item. An example of these two vectors can be formulated as
follows:

(aj,t)t∈T
=
(
0 0 0 1 1 1 1 1 0 0 0 0

)ᵀ
(qj,i) =

(
50 700 270 2100 500

)ᵀ

It has to be ensured that the active time of the work-item of appliance j is as
long as its duration pj :

∑T
t=0 aj,t = pj and aj,t ∈ {0, 1}, ∀j ∈ J, ∀t ∈ T,

as well as aj,t = 0 for t < rj or t ≥ dj

The operation time of the CHP can be defined by a similar vector (ct). In addition
to this, a second vector indicating the starting times of the CHP (cst) is taken
into account as shown in the following example:

(ct)t∈T =
(
0 1 1 0 0 1 1 0 0 1 1 1

)ᵀ
(cst)t∈T =

(
1 0 0 0 1 0 0 0 1 0 0 0

)ᵀ

With respect to the constraints for the appliances and the CHP above, the typical
inhouse baseload Pbase(t) and the electrical power at the grid connection Pex(t)
can now be calculated as follows:

Pex(t) =
∑

j∈J

aj,t · qj,|t−sj | mod pj

︸ ︷︷ ︸
appliances

+Pbase(t) − pchp · ct︸ ︷︷ ︸
CHP

Different variable prices for the commodities, in form of an active power tariff
EP (t) and a natural gas tariff GP (t), as well as the gas amount g when the CHP
is running and the elevated amount gs during the starting process of the CHP
are being considered. These costs of the commodities as well as the additional
costs COol for load limitation violations of variable lower limit Ll(t) and upper
limit Lu(t) for consumption EPgrid(t) and feed-in EPfeedIn(t) are calculated in
the following way:

COgas =
∑T

t=0 GP (t) · (g · ct + gs · cst)

COel =
∑T

t=0 Pex(t) · (EPgrid(t) · [Pex(t)≥0] + EPfeedIn(t) · [Pex(t)<0]

)

COol =
∑T

t=0 pfu · (Pex(t) − Lu(t)) · (EPgrid(t) · [Pex(t)≥Lu(t)]

)
+

∑T
t=0 pfl · (Ll(t) − Pex(t)) · (EPfeedIn(t) · [Pex(t)<Ll(t)]

)

The variables pfu and pfl describe the penalty factors for the violation of upper
and lower load limit. Finally, the optimization objective can now be formulated
as:

min(COsum) = min(COel + COol + COgas)

This fitness function min(COsum) is used by the approach presented in this
paper.

Customizable Energy Management in Smart Buildings Using Evolutionary 157

3 Organic Smart Home

The architectural design of the OSH is based on the generic Observer/Controller
Architecture (O/C Architecture) [10] as already introduced in [3]. The O/C
Architecture implies a regulatory feedback mechanism, which constitutes one
way to achieve controlled self-organization in technical systems. The O/C Archi-
tecture uses a set of sensors and actuators to measure system variables and to
influence the System under Observation and Control (SuOC). O/C Architec-
ture and SuOC form the so called organic system [10]. Multiple local O/C-loops
enable responses to the behavior and the status of different local agents and
their interactions. The global O/C-loop activates reactions in order to control
the global behavior emerging from interactions between local agents. Every loop
consists of an observer and a controller, the former monitoring the status of the
system through certain attributes and derivation of situation parameters and the
latter influencing the underlying SuOC in an adequate way through aggregation
of the derived information and learning methods. The segmentation into global
and local units is called hierarchical O/C Architecture [10]. This general app-
roach is more closely described in [2,3] and the system architecture is outlined
in Fig. 1.

DRV

CX
WaMA

OX
WaMA

DRV

CX
freezer

OX
freezer

Problem part Collection

next
schedule

longterm
optimization

lo
ca

l O
/C

-u
ni

ts

gl
ob

al
 O

/C
-u

ni
t

current state

provider
signals

user
interaction

COM-
Manager

COM
EX

COM
EX

COM
DRV

realtime
optimization

Internet

COM
DRV

command
set

O C COM-
Managerspecific local management

O C
specific local management

prediction

Fig. 1. Organic Smart Home – architectural overview

In between the local O/C-units and physical hardware components or sim-
ulation agents is the Hardware Abstraction Layer (HAL), which realizes the
abstraction from the manufacturer specific protocols and communication media
of the components, as introduced in [3]. Data of the SuOC is filtered in the local

158 F. Allerding et al.

O/C-units and passed to the global O/C-unit, which aggregates all information
into the current state of the system and calculates a prediction for the future
state within the next optimization horizon.

Based on the predictions by the local O/C-units, the global O/C-unit calcu-
lates an optimized schedule for the components in the building. This schedule
defines actions and procedures for all devices which may be controlled by the
OSH. Nevertheless, the schedule may be overridden by the local O/C-units, if
the user forces so or certain circumstances require immediate action. This could
be the case if, e.g., the temperature of a thermal energy storage is falling below a
defined threshold level. The OSH considers various input values for the optimiza-
tion: energy prices, load limitation, objectives defined by the user, the observed
behavior, status of devices and storages, and external factors (e.g. weather). The
OSH has been deployed on KIT’s ESHL and at the FZI’s HoLL showing that it
can be used for both simulations and real-world applications.

4 Sub-problem Based Optimization by Evolutionary
Algorithms

Households and buildings have usually heterogeneous configurations and dif-
fering optimization objectives. Therefore, a “plug-and-play” approach for the
integration of different appliances, decentralized power plants, and other energy-
related devices into the optimization of an EMS is introduced. For every device, a
specific sub-problem is defined by modeling abstract Problem Parts (PP) which
can be generically used in the global optimization of the building. Every sub-
problem has a device-specific encoding, representing the sub-problem using a
bit string of a specific length, even though the length of the bit string may vary
from 0 bit to hundreds of bits per sub-problem. This abstract representation of a
sub-problem as bit string provides the “plug-and-play” capabilities in the global
optimization, because every specific sub-problem is abstracted to a structurally
identical representation.

For instance, household appliances have usually some degree of freedom
(DoF) as introduced in Sect. 2. This may either be a temporal degree of freedom
(tDoF), which is applicable for delayable appliances, or an energy-related degree
of freedom (eDoF), which is applicable for devices having variations of the same
programs or are able to use different alternative energy sources. Appliances with
a tDoF include dishwashers, washers, and dryers with time preselection. The
eDoF could be used in appliances using, for example, either electricity or gas
(this could also be achieved indirectly by using hot water provided by a central
hot water supply) for the heating phase in their programs, which could be the
case in dishwashers, washing machines, dryers, and heating, ventilation and air
conditioning (HVAC) systems. These DoFs are modeled as PPs.

These PPs are exchanged using a common interface, which allows to han-
dle the heterogeneous PPs of the different devices in order to solve the global
optimization problem of energy management in the household. The PP contains
length and instance of the bit string as well as the function evaluate(), which

Customizable Energy Management in Smart Buildings Using Evolutionary 159

Global O/C-unit

local O/C-unit local O/C-unit local O/C-unit

local O/C-unit local O/C-unit local O/C-unit

P

P

P

t

t

t

6:00pm 5:00pm

PP
WaMa

PP
DishWasher

2h

10 bit

Individual

PP
CHP

43 bit 8 bit

PP
WaMa

PP
DishWasher

PP
CHP

fitness function

1011111101 11001101 1011100111…10111 1010011101 10101101 1011000111…10111 1010010101 10001101 1011010111…10111
10

10
01

01
01

10

00
11

01

10
11

01
01

11
…

10
11

1

P

t

Stopping criteria reached?

1011110101

10101100

1101011111…10011

evaluate()

evaluate()

evaluate()

PP
WaMa

PP
DishWasher

PP
CHP

transform() transform() transform()

PP
WaMa

PP
DishWasher

PP
CHP

Selection

Recombination/
Mutation

inital/current
Population

EA

Signals
and

(user) preferences

Evaluation

Fig. 2. Exemplary execution of the global optimization process in the OSH

160 F. Allerding et al.

returns the expected load profile of the appliance as a function of the current
instance of the bit string. The second function transform() allows to re-transform
the abstract representation into a specific solution for the sub-problem, which
can then be handled by the corresponding device. The methods evaluate() and
transform() consider specific constraints, which are, for instance, the maximum
runtime of a CHP.

A concrete process of the global optimization based on the PPs using an EA
with a binary representation is depicted in Fig. 2. Based on the architecture of
the OSH, presented in Sect. 3, the PPs are constructed in the local O/C-units
which are specific for a class of appliances. In the simplified scenario in Fig. 2
the user fills up a washing machine with laundry in the morning and defines that
the laundry has to be washed by 6:00pm. Additionally, the dishwasher has to
be finished by 5:00pm. In this example, the CHP has to run at least 2h during
the current optimization period in order to fulfill the thermal demand of the
building. In case of the washing machine a PP will be formulated in the local
O/C-unit, where in the present example the encoding for the defined starting
time of the washing machine will need 10 bits.

This abstracted PP will now be communicated to the global O/C-unit together
with the PPs from the other appliances. The amount of PPs in the global O/C-
unit represents the abstracted global optimization problem in the building for the
current optimization period. Based on the bit-count of every PP the individuals
of the initial population for the evolutionary algorithm can be created randomly
as shown in Fig. 2. For the evaluation of every individual, the individual is split up
into different parts, which are representing the encoding of the different PPs. The
PP has the method evaluate() to calculate the resulting load profile by the given
encoding. For every PP and therefore every appliance a partial load profile will
be created this way. These partial profiles will now be combined to the resulting
expected load curve in the household by the given configuration of the individual.
Based on that curve, the given signals, and user preferences, the fitness value can
be calculated using the fitness function.

This evolutionary cycle will run until the stopping criteria has been reached.
In the present approach the stopping criteria is a given maximum number of
generations. The best configuration will be separated into specific bit strings.
These bit strings are combined with the PPs and are communicated back to
the local O/C-units. In the local O/C-units every abstracted problem will now
be transformed to the specific phenotype by the method transform() of the PP.
This solution, in case of the washing machine a shifted starting time within its
degree of freedom, will then be communicated to the physical appliance. For
the other appliances the process can be considered as analog to the washing
machine. In the following we present two concrete examples for PPs, the first
one for appliances like dishwashers and the second one for a CHP as they are
modeled in Sect. 2. For appliances with a tDoF , the length of the encoded bit
string can be formulated as follows:

bit string for tDoF : k bits with k = �log2(tDoF)�

Customizable Energy Management in Smart Buildings Using Evolutionary 161

tstart
t

C
H

P
on

m timeslots encoded with k = 3*m bits

tend
101 010 111 111000101 111 000001 100 010 110 001 101

On Off

{111}

{000}
{0,1}3 \ {111}{0,1}3 \ {000}

Fig. 3. Exemplary binary encoding of a CHP and its automaton

Taking into account an eDoF , supplementary m bits are required:

bit string for eDoF : m bits with m = count(alternative profiles)

bit string for tDoF and eDoF : n bits with n = k + m

This bit string of length n will now be communicated to the global O/C-unit in
addition to the current expected load profile for the function evaluate(). In con-
trast to the appliances, a CHP usually runs discontinuously, because it sometimes
produces more thermal energy and sometimes more electricity than necessary.
Fig. 3 shows an exemplary approach for encoding the bit string in order to inte-
grate the CHP into the global optimization using a PP. A finite optimization
horizon between tstart and tend is given. This interval is segmented into time
periods where every time period is encoded with 3 bits, showing a stable behav-
ior in simulations. Regarding the automaton in Fig. 3 the CHP starts running
(On) if the bits are equal to 111. Otherwise it stays in the state Off and vice
versa for the other state. Due to this a smoother behavior of the CHP can be
reached. The electric generation, the thermal model of the CHP, and the warm
water as well as the heating demand have to be integrated into the PP to realize
the evaluate() function.

5 Simulation and Results

Initially, a set of simulation runs has been executed in order to calibrate the
parameters of the EA. Fig. 4 depicts the outcomes for different mutation and
crossover probabilities. Fig. 4(a) shows the results of 10 generations with 100
individuals (1000 evaluations), whereas Fig. 4(b) shows those of 20 generations
with 100 individuals (2000 evaluations). Increasing the number of generations
improves the simulation results significantly. The best results are obtained by
a mutation probability of 0.05 and a crossover probability of 0.6. The actual
simulation results are based upon more than 200 simulation runs, each simulating
a household consisting of five appliances and a CHP for one year with a different

162 F. Allerding et al.

0

0.2

0.4

0.6

0.8
0.189
0.19

0.191
0.192
0.193

0.194

0.195

0.196

0.197

0

0.2

0.4

0.6

0.8

Mutation
Probability

Av
g.

 E
le

ct
ric

ity
 co

st
s [

Eu
ro

/k
W

h]

Crossover Probability

(a) Avg. electricity costs (1000 evaluations)

0

0.05

0.1

0.15

0.2

0.186
0.187
0.188
0.189
0.19

0.191
0.192
0.193
0.194

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

Mutation
Probability

Av
g.

 E
le

ct
ric

ity
 co

st
s [

Eu
ro

/k
W

h]

Crossover Probability

(b) Avg. electricity costs (2000 evaluations)

Fig. 4. Variation of mutation and crossover probabilities (full opt.)

0%

5%

10%

15%

20%

25%

no opt. chp opt. app. opt. full opt.

Se
lf-

co
ns

um
pt

io
n

ra
te

3 persons 5 persons

(a) Average self-consumption rate

0
200
400
600
800

1000
1200
1400

no opt. chp opt. app. opt. full opt.Ye
ar

ly
 e

le
ct

ric
ity

 co
st

s [
Eu

ro
]

3 persons 5 persons

(b) Yearly electricity costs

Fig. 5. Simulation results of different setups

set of parameters. The starting times of five simulated appliances have been
generated based on typical usage hours. The temporal degree of freedom varies
from 0 seconds for hob and oven to up to several hours for dishwasher, washing
machine and dryer. The variable electricity tariff has been generated based on a
standard load profile and ranges from 0.12 to 0.44 Euro with a mean value of 0.28
Euro per kWh. The feed-in tariff for the CHP of 0.05 Euro per kWh is slightly
lower than the current tariff in Germany, in order to avoid unnecessary operation
times of the CHP. The load limitation has been set to 3 kW and the penalty
factors pfu and pfl are set to a value of 1, which doubles the costs for loads that
are exceeding the load limitation. In this setup, the EA uses binary tournament
selection, single-point-crossover with two offspring and bit-flip-mutation using
an elitist (μ,λ)-strategy with a rank based survivor selection.

Simulation results show that the optimization of the CHP and the appliances
is able to decrease the average expenses for electricity by up to 18 % (see Fig.
5(b)) without increasing the costs for natural gas. The self-consumption rate
is increased from 9 to 17 % for a household size of 3 persons and from 13 to
20 % for a household size of 5 persons (see Fig. 5(a)). This demonstrates the

Customizable Energy Management in Smart Buildings Using Evolutionary 163

-6000

-4000

-2000

0

2000

4000

Fr
 0

0:
00

Sa
 0

0:
00

So
 0

0:
00

M
o

00
:0

0

Di
 0

0:
00

M
i 0

0:
00

Do
 0

0:
00

 e
le

ct
ric

 p
ow

er
 [W

]
CHP household

(a) Week A without optimization

-6000

-4000

-2000

0

2000

4000

Fr
 0

0:
00

Sa
 0

0:
00

So
 0

0:
00

M
o

00
:0

0

Di
 0

0:
00

M
i 0

0:
00

Do
 0

0:
00

 e
le

ct
ric

 p
ow

er
 [W

]

CHP household

(b) Week B with optimization

Fig. 6. Real world results during a trial phase in the ESHL

ability of the optimization in reducing energy costs as well as the successful
abstraction of the optimization problem presented in this paper. Non-optimized
results (non-opt.) have been obtained by starting all appliances immediately,
disregarding their potential DoFs, and controlling the CHP only according to
the temperature thresholds of the thermal storage. Nevertheless, the simulations
also show that the improvements of both energy expenses and self-consumption
rate are only possible if CHP and appliances are optimized together (full opt.).
Optimizing the CHP alone (chp opt.) does increase the self-consumption rate,
though reducing the costs only slightly. The optimization of the appliances (app.
opt.) leads to a greater decrease of electricity costs. However, it slightly decreases
the self-consumption rate (see Fig. 5).

A similar setup using the calibrated parameters mentioned above has been
evaluated in a trial phase with probands in the ESHL in 2013. The comparison
of a week with and a week without optimization (see Fig. 6) visualizes the syn-
chronization of the CHP and the load of the household. Hereby, the optimization
was able to reduce the electricity costs by 23 %.

6 Conclusions and Outlook

In this paper we presented an approach to a “plug-and-play” energy manage-
ment for Smart Buildings, which can be used for simulations as well as for
real-world applications. Optimization problems of the devices are abstracted
into sub-problems, which are solved by an EA with respect to variable tariffs,
load limitation signals and constraints of appliances and the CHP. The simu-
lation results show that expenses for electricity in this setup could be reduced
by up to 18 % using the tDof of the appliances and the flexibility of the CHP.
Additionally, the simulations show that optimizing either CHP or appliances
alone is not sufficient, while the combined optimization of both increases the
self-consumption rate and decreases energy costs significantly. This way we were
able to show the capabilities of the sub-problem based optimization in energy
management. The results of the simulation have been verified using a real-world
scenario with test persons. A systematic variation of parameters for the EA
shows that the numbers of generations and individuals as well as the mutation
and crossover probabilities have to be carefully adjusted in order to obtain good

164 F. Allerding et al.

results. This indicates the potential for introducing a meta-evolution which may
automatically adjust the parameters for different setups, e.g., varying household
sizes, building types, or combinations of devices. In extension of the setup in
this paper, further devices can easily be integrated into the optimization. This
includes interruptible appliances, hybrid appliances, PV systems with battery
storage, electrical cars, heat pumps, chillers and water heaters.

References

1. Abras, S., Ploix, S., Pesty, S., Jacomino, M.: A multi-agent home automation
system for power management. In: Cetto, J.A., Ferrier, J.-L., Costa dias Pereira,
J.M., Filipe, J. (eds.) Informatics in Control Automation and Robotics, vol. 15.
LNEE (LNCS), pp. 59–68. Springer, Heidelberg (2008)

2. Allerding, F., Premm, M., Shukla, P.K., Schmeck, H.: Electrical Load Management
in Smart Homes Using Evolutionary Algorithms. In: Hao, J.-K., Middendorf, M.
(eds.) EvoCOP 2012. LNCS, vol. 7245, pp. 99–110. Springer, Heidelberg (2012)

3. Allerding, F., Schmeck, H.: Organic smart home: architecture for energy manage-
ment in intelligent buildings. In: Proceedings of the 2011 Workshop on Organic
Computing. ACM (2011)

4. Babu, C., Ashok, S.: Peak load management in electrolytic process industries. IEEE
Transactions on Power Systems (2008)

5. Crawley, D.B., Hand, J.W., Kummert, M., Griffith, B.T.: Contrasting the capabil-
ities of building energy performance simulation programs. Building and Environ-
ment (2008)

6. Di Giorgio, A., Pimpinella, L.: An event driven smart home controller enabling
consumer economic saving and automated demand side management. Applied
Energy (2012)

7. Federal Ministry of Economics and Technology (BMWi): Germany’s new energy
policy - Heading towards 2050 with secure, affordable and environmentally sound
energy, Berlin (2012)

8. Ha, D.L., Joumaa, H., Ploix, S., Jacomino, M.: An optimal approach for electrical
management problem in dwellings. Energy and Buildings (2012)

9. Mohsenian-Rad, Leon-Garcia, A.: Optimal residential load control with price pre-
diction in real-time electricity pricing environments. Transactions on Smart Grid
(2010)

10. Müller-Schloer, C., Schmeck, H., Ungerer, T.: Organic Computing - A Paradigm
Shift for Complex Systems. Birkhauser Verlag AG (2011)

11. Sou, K.C., Weimer, J., Sandberg, H., Johansson, K.H.: Scheduling smart home
appliances using mixed integer linear programming. In: Decision and Control and
European Control Conference (CDC-ECC). IEEE (2011)

12. Zipf, M., Möst, D.: Impacts of volatile and uncertain renewable energy sources on
the german electricity system. In: European Energy Market (EEM). IEEE (2013)

Dynamic Programming Based Metaheuristic
for Energy Planning Problems

Sophie Jacquin1,2(B), Laetitia Jourdan1,2, and El-Ghazali Talbi1,2

1 Inria Lille - Nord Europe, DOLPHIN Project-team, 59650 Villeneuve dAscq, France
sophie.jacquin@inria.fz

2 Université Lille 1, LIFL, UMR CNRS 8022, 59655 Villeneuve dAscq cedex, France

Abstract. In this article, we propose DYNAMOP (DYNAmic program-
ming using Metaheuristic for Optimization Problems) a new dynamic
programming based on genetic algorithm to solve a hydro-scheduling
problem. The representation which is based on a path in the graph
of states of dynamic programming is adapted to dynamic structure of
the problem and it allows to hybridize easily evolutionary algorithms
with dynamic programming. DYNAMOP is tested on two case studies
of hydro-scheduling problem with different price scenarios. Experiments
indicate that the proposed approach performs considerably better than
classical genetic algorithms and dynamic programming.

1 Introduction

Energy planing problems such as hydro-scheduling problem (HSP) aims to find
a schedule of outflows in a hydro-electric network composed of reservoirs, tur-
bines and pumps that maximizes the profit (or minimizes the cost). Dynamic
programming (DP), an algorithm based on the search of the best path on a
graph of states [2] can be used to solve hydro-scheduling problems. But in this
case, the size of the graph grows quickly with the number of time periods, the
number of reservoirs and their capacities. So in practice it is not possible to use
it directly. Nevertheless, some adaptations of dynamic programming have been
proposed for this kind of problems [3–5], but they are very specific to each prob-
lem and only allow to deal with problems of relatively small size. Metaheuristic
algorithms, such as genetic algorithms (GA) could be a solution to overcome
the aforementioned difficulties. They have been used to solve hydro-scheduling
problems [6–10] . However genetic algorithms tend to converge prematurely and
the optimization process can be stuck at a local optimum. Besides, genetic algo-
rithms also take a large number of iterations to reach the global optimal solution.
In the case of hydro-scheduling problems, the flaws of this method could be par-
tially explained by the dynamic structure of the problem.

An interesting way to solve such problems is to hybridize dynamic program-
ming and metaheuristics. A first attempt was made in [11] where a local search
and DP were combined to form Discrete Differential Dynamic Programming
(DDDP). The method replaces the small neighborhood of the local search (LS)

c© Springer-Verlag Berlin Heidelberg 2014
A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2014, LNCS 8602, pp. 165–176, 2014.
DOI: 10.1007/978-3-662-45523-4 14

166 S. Jacquin et al.

by a bigger one defined as a restriction of the graph of states around the path
defined by the current solution. And then the best neighbor is chosen by using
DP in this restricted graph. This method has been generalized to the hybridiza-
tion of any exact method with LS in [12]. Another hybridization between LS and
DP is proposed in [13] and is called dynasearch. The main idea of dynasearch is
using traditional definiton of neighborhood while allowing several moves within
one iteration. The best sequence of possible moves for one iteration is chosen
by using DP. Some hybridizations between DP and GA have also been pro-
posed : the method proposed in [14] can be used for all permutation problems,
the hybridization is to use DP in the crossover operator to find the best solu-
tion having some common characteristics with the parent solutions. In [15,16]
DDDP is applied starting from trial solutions constructed from some solutions
given by a GA. These different hybridizations give promising results. However it
seems that it has never been tried to use a representation of a sequence of states
in a genetic algorithm. In the proposed approach to solve the hydro-scheduling
problem, called DYNAMOP for DYNAmic programming using Metaheuristic for
Optimizations Problems, a genetic algorithm based on a representation taking
into account the dynamic structure of HSP is used. This representation models a
solution as a path in the graph of states (the same as in dynamic programming),
each gene will then be a state traversed by the path. This representation allows
a greater separability of the fitness function in terms of genes. The fitness is the
sum of the edge values and a change on a gene only modifies two edges. This could
result in a better locality properties in the recombination and mutation of the
genotypes. In addition, this partial separability allows to apply an iterative eval-
uation and and hence to speed up the computation time of the fitness. Another
great advantage of this representation is that it allows to build hybridization with
DP easily. In the following section, the hydro-scheduling problem is detailed.
Then DYNAMOP is introduced and its specificities are explained. Section 4
presents the experimental protocol and the datasets. In section 5 the results are
presented and discussed. Finally a conclusion about the potential of this method
and perspectives are given.

2 Hydro-Scheduling Problem Description

The objective is to find a scheduling of water outflow in a hydroelectric system
that maximizes the benefits. The considered hydroelectric system is here a net-
work of several reservoirs. For each tank, the water outflow is directed to a single
other tank passing through one or several turbines. On top of turbines, there is
exactly one pipe out of each tank to discharge water without using it. Figure 1
gives two examples of hydroelectric networks.

Thereafter it will be noted ri,t the spilled water of reservoir i at time t without
being used and qj,t the water used for the turbine j. Therefore, the scheduling
should fix the values of ri,t and qj,t. The benefit to maximize is described as
follows:

profit =
∑

t=1...T

∑
i=1...N

∑
j∈Ti

pricet,j × prodj(qj,t, Vi,t),

Dynamic Programming Based Metaheuristic for Energy Planning Problems 167

where T denotes the number of hours in the time period, N the number of
tanks and Ti the set of turbines that are supplied by tank i, pricet,j is the
price of the energy producted by turbine j at time t, it could correspond to the
spot contract or to a purchasing obligation. The production function prodj of a
turbine j not only depends on the flow qj,t but also on the amount of water on
the corresponding tank at time t Vi,t. This function is very irregular, it is neither
linear nor convex regarding to the decision variables. Actually it is described as
follows:

prodj(q, V) =
∑

l∈IntV,j

∑
k∈Intq,j

(aj,k,l×(min(Bj,k+1, q)−Bj,k)1lV ∈l×1lq≥Bj,k
),

where

– IntV,j is the set of intervals of definition of the function regarding to V .
– Intq,j is the set of intervals of definition of the function regarding to q.
– Bj,k is the lower bound of the kth interval of the production function accord-

ing to the rate q.
– aj,k,l is a linear coefficient of the production function.

Some constraints have to be respected:

1. Reservoirs storage constraints:

Vmin,i,t ≤ Vi,t ≤ Vmax,i.

The minimum limit is dependent on time as, for example, during drought
period of summer it could be necessary to store more water. A natural inflow
NIi,t for each reservoir i at each time t is taken into account to compute
Vi,t.

2. Constraints of max and min flow in pipes:

rmin,i ≤ ri,t ≤ rmax,i.

3. For each turbine i a constraint of minimal production:

prodMini ≤ prodi(qi,t, Vj,t),

where j corresponds to the supply reservoir of turbine i.
4. Constraint of maximum outflow for each turbine i:

qi,t ≤ qmax,i(Vj,t).

This maximal limit is depending on the amount of water on the supply tank
of turbine i.

5. At the end of the time horizon the amount of water in each reservoir i must
be the same than the initial amount:

Vi,T = V init, i.

168 S. Jacquin et al.

Fig. 1. Hydroelectric network case 1 and 2. Tanks are represented by trapezoids, tur-
bines by circles and pipes by edges.

3 DYNAMOP

The main idea of DYNAMOP is to use a GA to run through the graph of
states of DP. Dynamic programming is a method based on Bellman Principle of
Optimality [1]. It is used to solve optimization problems by creating a sequence
of decisions (di)i=1..N such that the choice of dk can have an impact on the choice
of dp (p > k). Besides, this method can be seen as the search of a shortest path
in a graph of states previously constructed (see [2]). Solutions in the proposed
genetic algorithm are represented as path of the graph of states. As explained
previously this methodology is proposed in order to overcome the difficulties
associated with a more classical GA or with the use of a DP. To construct the
individuals used in DYNAMOP, the states and the edges have to be specified
(see section 3.1). Then some evolutionary operators adapted to this kind of
representation are proposed.

3.1 Representation

A solution is represented by the corresponding path in the graph of states. The
graph of states is similar to the one used for dynamic programming and that is
defined as follow:

– A state St is totaly defined by a vector (qSt,i)i=1..N where qSt,i is the total
amount of water having been dispatched from tank i until t. The initial state
S∗ is defined by the zero vector, and the final state ST is also fixed since the
constraints on final amount on tanks imply:

qST ,i =
∑

t=1..T NIi,t +
∑

j∈δ+
i

qST ,j .

where δ+i is the set of tanks flowing into the tank i.

Dynamic Programming Based Metaheuristic for Energy Planning Problems 169

– There is an edge between two states St and St+1 iff for all tank i qi,St
≤

qi,St+1 . The edge is evaluated by the value of the best profit that it is possible
to obtain passing from St to St+1. If it is not possible to pass from St to
St+1 without violating constraints on pipes a penalty is added.

In practice a solution will be encoded in form of a table giving for each time
t the corresponding vector of outflow qs,t except for the initial state (which is
invariant). On top of that the edges values are also stored which will allow to use
a delta evaluation. Figure 2 illustrates this representation process for the simple
case of one reservoir.

Fig. 2. Representation

Initialization: Initializing of such an individual is made iteratively (regarding
to the time period t) by randomly choosing, a feasible state St among those for
which the edge St−1 − St exist.

Fitness Function and Constraint Handling: The fitness function is the
sum of the values of edges. Due to the fact that these values are saved, after
applying an evolutionary operator, only edges that have been modified by this
operator have to be recomputed.

The value of an edge St−1 − St is the sum on i of vi,t, where vi,t is the best
benefits that can be done by discharging the amount of water qty = qi,St

−qi,St−1

of tank i plus a penalty if the constraints on pipe can not be satisfied. This
penalty increases linearly with the error. When it is necessary to solve a dispatch

170 S. Jacquin et al.

problem between many turbines, vi,t is computed by solving a mixed integer
linear program (MILP) with CPLEX.

3.2 Crossover

The idea of the crossover between two paths PA and PB is to replace a portion
of PA by a portion of PB and vice versa. The lenght of the portion is randomly
chosen. Let SB

t1 and SB
t2 the states of start and end of the portion of replacement.

The transition from state SA
t1−1 to SB

t1 or from SB
t2 to SA

t2+1 could be impossible.
However there always exist some states of PA from which SB

t1 can be joined and
states that can be joined from SB

t2 . This is because of the uniqueness of the
initial and final states. So the transition between PA and SB

t1 will always exist
and be constructed by finding the state of PA the closest of SA

t1−1 from which it
is possible to join SB

t1 and randomly build a path between these two states.
Figure 3 shows the crossover process in the simple case of a single tank.

The black path and the white path are recombined to form two offspring. The
transition paths are the gray ones.

Fig. 3. Crossover process

3.3 Mutations

Two different mutations are designed.

A Switch Mutation: The mutation is to modify one state of the path. The
state St to modify is selected randomly. The new state S′

t is selected randomly
among all states adjacent to St−1 and St+1. If there exists some states that allow
to respect the bound constraints on pipes, one of them is preferred.

Dynamic Programming Based Metaheuristic for Energy Planning Problems 171

A Hybrid Ameliorative Mutation: The main idea is to randomly select
two states of the path P separated by L locus and to replace the intermediate
states by those of a better path between these two states. This better sub-path
is computed in choosing randomly a tank and in computing the better way to
use the water used in P for this tank during the L time periods considering
that the outflow of other tanks remain unchanged. So, DP is used in a graph of
states restricted in length and width. This is similar to the idea of finding the
best neighbor in the DDDP [11] where the reduction of the width of the graph
is used to define the neighborhood. The step-size used for DP is set in advance.

4 Experimental Protocol

The hydroelectric networks used for the study are those of Figure 1.

4.1 A Basic Genetic Algorithm for Comparison

To be able to compare our algorithm we also propose a genetic algorithm with
more classical representation and operators. It will be noted BGA for Basic
Genetic Algorithm.

In this version solution is represented as vector of N × T elements of [0,1].
The first T elements give information on the scheduling of the first tank then the
following T elements give information on the scheduling of the second tank, etc..
For a tank i each element gives the percentage of the amount of available water
that is used on top of the minimum required quantity. This minimum quantity
is the quantity that has to be discharged in order to respect the minimum bound
on the reservoir content. It allows to obtain a solution that will always respect
the bounds constraints on tanks. So, It is a kind of dynamic representation that
allows to avoid proposing unrealistic solutions, where more water is discharged
than the tank contains. This representation has also been used in [17] for the
same kind of problem, except that it has been done with a binary representation.

The evolutionary operators chosen are very classical in GA. The crossover
is a 2-points crossover, and the mutation is to randomly choose a gene and to
change its value by a quantity randomly chosen in [0,1].

4.2 Cases of Study

The first case study is to find the schedule of outflows in a hydro-electric network
composed of a single tank, two turbines and a pipe as shown in Figure 1. Tank
capacity is very large and the outflow is not limited on the pipe. Therefore with
a discretization step of 20m3/s for the flow rate the number of states in the
graph of states for one year horizon is 3 × 106. This number is important as the
evaluation of edges (adapted to any number of turbines) is time consuming.

The second case corresponds to the second network presented in Figure 1.
In this case the outflows on pipes and turbines have bounds that are depending

172 S. Jacquin et al.

to the upstream tank content. This restricts the search space but complicates
finding feasible solutions. As the size of the graph of states grows exponentially
with the number of tanks, even with a large step of discretization this case is
not solvable by dynamic programming in a reasonable time (9 × 1011 states in
the graph for a coarse discretization).

4.3 Parameter Setting

Proper settings of a GAs parameters are required to achieve the best perfor-
mance. For this reason, a sensitivity analysis was carried out for each algorithm,
to determine the effect of the crossover rate, the mutation rate, the population
size and the replacement strategy. Two strategies of replacement are tested. The
first one consists of replacing the whole current generation by the offspring and
applying weak elitism. The second strategy is to generate No offspring and to
apply a strong elitism. In this case the number of offspring has also to be set.
This analysis is done thanks to Irace [18]. Irace is a package for R (a statistical
software) that implements the iterated racing procedure. This procedure is an
extension of the Iterated F-race procedure. Its main purpose is to automatically
configure optimization algorithms by finding the most appropriate settings given
a set of instances of an optimization problem. Here the instances were 10 differ-
ent price scenarios. For each algorithm and each case the parameters are first set
for a period of one day and then the size of the population and of the offspring
is reanalyzed for each time period.

5 Results

Each algorithm is tested on the two cases of study on different time hori-
zons. DYNAMOP is also tested without using the hybridization, this version
will be denoted DYNAMOP-H. DYNAMOP-H uses the same parameters as
DYNAMOP except that the hybrid mutation does not occurred. For each test
10 runs have been made with a maximum time as stopping criteria. The results
are presented in Tables 1 and 2. On top of GA, a Mixed Integer Linear Pro-
gram (MILP) and a DP are also applied in order to have an idea to the optimal
solution when it is possible.

For each algorithm the mean of the solution for the 10 runs is given in the
line ”Mean” the standard deviation between these different solutions is given in
the line ”std”. The line ”Best” gives the best result over the 10 runs. The line
”Gap” gives a percentage which is : Bestfound−Bestalgo

Bestfound
×100. Where Bestfound is

the best feasible solution found for the problem, and Bestalgo is the best solution
obtained by the algorithm tested. The value of Bestfound is noted in bold in the
table. The line ”Computation time” gives the execution time of each methods
in seconds. Futhermore, for each simulation, Kruskall Wallis test is applied to
the samples obtained on different runs followed by a post hoc test in order to
compare the different algorithms.

Dynamic Programming Based Metaheuristic for Energy Planning Problems 173

5.1 First Case: Simple Hydro System

In Table 1, we can notice that if we compare the three genetic algorithms results
to dynamic programming results the performance are quite different. For 720h
horizon of planification, DYNAMOP-H and BGA have quite similar results and
their gap with the DP solution is more than 16%. Whereas DYNAMOP is not
far from the DP solution (only 1.7% of difference in a time twice shorter). In
this case, the hybridization improves the results a lot although the time used by
the algorithm is the half of that is used by DP. A Kruskal Wallis test applied
to the samples obtained on different runs followed by a post hoc test allows to
confirm the superiority of DYNAMOP on the two other algorithms with a risk
of 0.01%.

For 8760h horizon of planification, we can observe a real gap between all the
genetic algorithms. The representation used in both version of DYNAMOP and
DYNAMOP-H allows to have a gap of 32.34% whereas BGA is at 54.24%. With
an hybridization with DP, the performance of the algorithm is really improved
and DYNAMOP is near the optimal solution found by DP. The gap is then only
at 3.27% with a computation time that is 4 times less than DP. The significance
of the results is again confirmed by the statistical tests with a risk of 0.01 %.
The results are promising for the simple hydro system. In next section, we test
DYNAMOP with a more complex hydraulic system.

Table 1. Results on first case: Simple hydro system. The best solutions found are
bolded and used to compute the gaps.

planification horizon BGA DYNAMOP DYNAMOP-H DP

720h Mean (×106) 2.3524 2.9391 2.3548 3.0999
std (×106) 0.1540 0.0651 0.1866
Best (×106) 2.5949 3.0473 2.6007

Gap 16.29 % 1.7% 16.11 % 0 %
Time (s) 2420 5030

8760h Mean (×107) 1.4549 3.0620 2.1428 3.2209
std (×107) 0.0123 0.0410 0.031
Best (×107) 1.4740 3.1156 2.1793

Gap 54.24 % 3.27 % 32.34 % 0%
Time (s) 20000 79376.82

5.2 Second Case: Multi-reservoirs Hydro System

In this second case, the system has several reservoirs. On top of that it has strict
constraints on minimum and maximum rates on pipes and turbines that make it
difficult to find a feasible solution. In Table 2, different simulations are presented
with a different planning horizon (24h, 720h and 8760h). The solutions given in
the last column of this table are obtained by solving a MILP with the software
CPLEX. For the 24 h period, this solution is the optimal one. For the period of

174 S. Jacquin et al.

720 h this solution is not the optimal one, because the program is stopped before
reaching the optimal solution due to a lack of memory. So it is the best feasible
solution found before the program has to stop. For the period of one year the
data size is too big to obtain any result with DP or with CPLEX (denoted NA
in the table).

As before, all the evolutionary algorithms have the same amount of time to
solve the problem.

We can first remark that in some case, the classical genetic algorithm (BGA)
is not able to find a feasible solution and so gives negative result. In this specific
case, the proposed representation allows to find easily feasible solutions.

Table 2. Results on second case: Multi-reservoirs hydro system. The best solutions
found are bolded and used to compute the gaps.

planification horizon BGA DYNAMOP DYNAMOP-H MILP

24h Mean (×104) -5.6342 4.3049 4.2850 4.4786
std 417.2407 272.035 257.921

Best (×104) -5.5642 4.3524 4.3132
Gap - 2.8 % 3.69% 0 %

Time (s) 1650 3030.129

720h Mean (×106) 2.1507 2.5848 2.5785 0.0553
std 65054.11 7671.21 10662.3

Best (×106) 2.2474 2.5956 2.5912
Gap 13% 0% 0.17% 97%

Time (s) 20000 345656.23

8760h Mean (×107) 1.6683 2.6022 2.5565 NA
std 292521.6 1849345 0 1319762

Best (×107) 1.7010 2.8071 2.7133
Gap 39.4% 0% 3.34%

Time (s) 40000 -

For a 24h planification horizon a test of Kruskal Wallis allows to say that
there is a significant difference between the 3 algorithms with a risk of 0.01%.
Then the test post hoc shows that the difference is significant with a risk of
0.01% between BGA and DYNAMOP in the hybrid and non hybrid version,
whereas there is no significant difference between DYNAMOP and DYNAMOP-
H. This is consistent with the numerical results that show that DYNAMOP
outperformed BGA with or without hybridization. Actually, the gap with the
optimal solution is less than 3% for DYNAMOP whereas BGA cannot find any
feasible solution.

Similarly for a 720h horizon there is a statistical difference between BGA and
the two versions of DYNAMOP with and without hybridization but there is no
statistical difference between DYNAMOP and DYNAMOP-H. In 17 times less
from time that MIP, DYNAMOP allows to obtain a feasible solution that is 47

Dynamic Programming Based Metaheuristic for Energy Planning Problems 175

times better. The difference between the solution given by DYNAMOP and the
solution given by BGA is to 13%, so DYNAMOP is highly better than BGA.

For a larger time horizon, 8760h which corresponds to a time horizon of one
year, the MILP is not able to find a solution with CPLEX. This is denoted by
NA in the table 2. Again DYNAMOP provides the best results. Statistically
the difference between DYNAMOP and DYNAMOP-H is not significant, but
DYNAMOP and DYNAMOP-H are statistically better than BGA. The differ-
ence between the best solution provided by DYNAMOP and the best solution
provided by BGA is 39.4%.

In this case of study the impact of the hybridization is not substantial, actu-
ally it is not surprising because it could modify only the schedule of one of the
7 tanks.

6 Conclusion

In this paper we have presented DYNAMOP, an original approach using evolu-
tionary algorithms to guide dynamic programming. This approach has many
advantages and allows to overcome the drawbacks of DP and classical GA.
Firstly, due to the use of a path representation of a solution, the hybridization
with dynamic programming is easy to realize and allows to significantly improve
the obtained results. This hybrid approach shows its efficiency and effective-
ness in solving real instances associated to the problem. However, even without
hybridization, the representation itself is advantageous, indeed DYNAMOP-H
outperformed BGA when the size of the problem becomes bigger. This could be
due to the fact that the better separability of the fitness function regarding to
the genes leads to a better logic in the recombination of individuals. This greater
separability also allows to apply an incremental evaluation, only the values of the
modified edges have to be recomputed after applying an evolutionary operator.
This allows to speed up the fitness computation and then allows obtaining more
generation than with a classical genetic algorithm (BGA) in the same time.

Such an algorithm offers great potential to solve a large set of other combina-
torial problems. Actually this methodology could be generalized to any problem
which holds the Bellman property. It involves many different cases of applica-
tions, such as graph routing problems, sequencing problems, selection problems,
partitioning problems, distribution problems, production or inventory problems
or string processing problems. Therefore, we believe that extending DYNAMOP
methodology to solve problems with dynamic structure could be a new and
interesting line of research.

References

1. Bellman, R.E.: Dynamic Programming. Princeton University Press (1957)
2. Lew, A., Mauch, H.: Dynamic Programming. Springer (2006)
3. Wall, A.: Hall and Buras. The dynamic programming approach to water resources

development. Journal of Geophysical Research 66, 517–520 (1961)

176 S. Jacquin et al.

4. Ferrero, R.W., Rivera, J.F., Shahidehpour, S.M.: A dynamic programming two-
stage algorithm for long-term hydrothermal scheduling of multireservoir systems.
IEEE Transaction on Power System 13(4), 1534–1540 (1998)

5. Yakowitz, S.: Dynamic programming applications in water resources. Water
Resources Research 18, 673–696 (1983)

6. Wardlaw, R., Sharif, M.: Evaluation of genetic algorithms for optimal reservoir
system operation. Journal of Water Resources Planning and Management 125,
25–33 (1999)

7. Wardlaw, R., Sharif, M.: Multireservoir systems optimization using genetic algo-
rithms: Case study. Journal of Computing in Civil Engineering 14, 255–263 (2000)

8. Kumar, S., Naresh, R.: Efficient real coded genetic algorithm to solve the non-
convex hydrothermal scheduling problem. International Journal of Electrical Power
& Energy Systems 29, 738–747 (2007)

9. Orero, S.O., Irving, M.R.: A genetic algorithm modelling framework and solution
technique for short term optimal hydrothermal scheduling. IEEE Transactions on
Power Systems 13, 501–518 (1998)

10. Zoumas, C.E., Bakirtzis, A.G., Theocharis, J.B., Petridis, V.: A genetic algorithm
solution approach to the hydrothermal coordination problem. IEEE Transactions
on Power Systems 19, 1356–1364 (2004)

11. Heidari, M., Te Chow, V., Kokotovifa, P.V., Meredith, D.D.: Discrete differential
dynamic programing approach to water resources systems optimization. Water
Resources Research 7(2), 273–282 (1971)

12. Sniedoviech, M., Voss, S.: The corridor method: a dynamic programming inspired
metaheuristic. Control and Cybernetics 35, 551–578 (2006)

13. Congram, R.K., Potts, C.N.: An iterated dynasearch algorithm for the single-
machine total weighted tardiness scheduling problem. INFORMS Journal on Com-
puting 14, 52–67 (1998)

14. Yagiura, M., Ibaraki, T.: The use of dynamic programming in genetic algorithms
for permutation problems. European Journal of Operational Research 92, 387–401
(1996)

15. Park, Y.M., Park, J.B., Won, J.R.: A hybrid genetic algorithm/ dynamic pro-
gramming approach to optimal long-term generation expansion planning. Elservier
Science 20, 295–303 (1998)

16. Tospornsampan, J., Kita, I., Ishii, M., Kitamura, Y.: Optimization of a multiple
reservoir system operation using a combination of genetic algorithm and discrete
differential dynamic programming: a case study in mae klong system, thailand.
Paddy and Water Environment 3(1), 29–38 (2005)

17. Miranda, V., Srinivasan, D., Proena, L.M.: Evolutionary computation in power
systems. Elservier Science 20, 89–98 (1998)

18. Lpez-Ibez, M., Dubois-Lacoste, J., Sttzle, T., Birattari, M.: The irace package, iter-
ated race for automatic algorithm configuration. Technical report, IRIDIA (2011)

Looking for Alternatives: Optimization of
Energy Supply Systems without Superstructure

Mike Preuss1(B), Philip Voll2, André Bardow2, and Günter Rudolph3

1 Chair of Information Systems and Statistics, ERCIS, WWU Münster,
Münster, Germany

mike.preuss@uni-muenster.de
2 Institute of Technical Thermodynamics, RWTH Aachen University,

Schinkelstr. 8, 52062 Aachen, Germany
{philip.voll,andre.bardow}@ltt.rwth-aachen.de

3 Computational Intelligence Group, TU Dortmund, Dortmund, Germany
guenter.rudolph@tu-dortmund.de

Abstract. We investigate different evolutionary algorithm (EA) vari-
ants for structural optimization of energy supply systems and compare
them with a deterministic optimization approach. The evolutionary algo-
rithms enable structural optimization avoiding to use an underlying
superstructure model. As result of the optimization, we are interested
in multiple good alternative designs, instead of the one single best solu-
tion only. This problem has three levels: On the top level, we need to
fix a structure; based on that structure, we then have to select facility
sizes; finally, given the structure and equipment sizing, on the bottom
level, the equipment operation has to be specified to satisfy given energy
demands. In the presented optimization approach, these three levels are
addressed simultaneously. We compare EAs acting on the top level (the
lower levels are treated by a mixed-integer linear programming (MILP)
solver) against an MILP-only-approach and are highly interested in the
ability of both methods to deliver multiple different solutions and the
time required for performing this task.

Neither state-of-the-art EA for numerical optimization nor standard
measures or visualizations are applicable to the problem. This lack of
experience makes it difficult to understand why different EA variants
perform as they do (e.g., for stating how different two structures are),
we introduce a distance concept for structures. We therefore introduce
a short code, and, based on this short code, a distance measure that is
employed for a multidimensional scaling (MDS) based visualization. This
is meant as first step towards a better understanding of the problem land-
scape. The algorithm comparison shows that deterministic optimization
has advantages if we need to find the global optimum. In contrast, the
presented EA variants reliably find multiple solutions very quickly if the
required solution accuracy is relaxed. Furthermore, the proposed distance
measure enables visualization revealing interesting problem properties.

c© Springer-Verlag Berlin Heidelberg 2014
A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2014, LNCS 8602, pp. 177–188, 2014.
DOI: 10.1007/978-3-662-45523-4 15

178 M. Preuss et al.

1 Introduction

We address the problem of synthesizing energy supply systems with regard to
time-dependent heating and cooling demands. This problem can be treated on
several different scales from a single building to urban systems. In the present
study, we focus on medium-scale problems, e.g., an industrial site or a university
campus comprising of several, but not very many buildings. In this class of
problems, the energy demands are distributed spatially, so that heating and
cooling can be supplied in both centralized and distributed fashion. Of course,
any mixture between these two extremes may be suitable – as is usually the case.

Energy supply systems incorporate energy conversion plants (e.g., boilers),
energy distribution infrastructure (e.g., heating pipelines and power cables), and
energy storages. The synthesis of these integrated systems is a complex problem
that has to be considered on three levels [2] (Fig. 1): on the top level, the syn-
thesis level, the structure or configuration of the energy system is fixed; on the
intermediate level, the design level, the technical specifications of the employed
technical components have to be specified (e.g., nominal capacities and operating
limits); finally, on the bottom level, the operation level, technical components’
operation modes need to be specified for each instant of time. The three decision
levels directly influence each other, and thus, for optimal synthesis, all three
levels must be considered simultaneously.

For the optimization-based synthesis of energy supply systems, most com-
monly superstructure-based optimization methods are employed [5].The general
superstructure optimization problem for energy supply systems synthesis is given
by a mixed-integer nonlinear programming (MINLP) problem:

min
s,d,o

f(s, d, o), s.t. h(s, d, o) = 0, g(s, d, o) ≤ 0, s ∈ S, d ∈ D, o ∈ O (1)

where the values of the decision variable vectors s, d, and o must be determined
to minimize the objective function f . The decision variables are part of the
continuous and/or integer variables space S, D, and O, which represent the
synthesis (i.e., (non-)existence of a unit), design (i.e., unit sizing, etc.), and

120 kW 450 kW

100 kW

100 kW

Technology selection
and configuration

Technical specifications

Unit commitment

Synthesis level

Design level

Operation level

Fig. 1. Hierarchically-structured problem of energy systems synthesis on three levels

Looking for Alternatives 179

operation (i.e., flow rates, on/off-status of a unit, etc.) decision variable spaces,
respectively.

It is crucial to understand that the designer has to decide a priori which
alternatives should be included in the superstructure: On the one hand, the
designer thereby runs the risk to exclude the optimal solution from consideration;
on the other hand, to circumvent this problem, excessively large superstructures
can be employed, which however lead to prohibitive computational effort for the
solution of the optimization problem [4].

To avoid these issues, recently two methods have been proposed for the auto-
mated optimization-based synthesis of energy supply systems; an automated
superstructure-based synthesismethodology [8] andanautomated superstructure-
free synthesis methodology [7]:

a) The superstructure-based synthesis methodology employs algorithms for
automated superstructure generation and deterministic optimization. To find
the optimal solution of a synthesis problem, this methodology performs suc-
cessive superstructure expansion and optimization to continuously increase
the number of units embedded in the superstructure until the final super-
structure incorporating the optimal solution is found.

b) The superstructure-free methodology simultaneously generates and opti-
mizes candidate solutions in search for the optimal solution. The methodol-
ogy is based on a knowledge-integrated evolutionary algorithm that applies a
handful of generic replacement rules for the evolution of solution structures.

In this work, linearized MILP formulation is employed for synthesis of energy
supply systems [7]. For reasonably small test cases, synthesis problems can then
be solved exactly in seconds or minutes, but for large-scale problems, the solution
can take up to hours. However, if the structure is fixed – as is the case for the
candidate solutions arising in the superstructure-free approach – the underlying
design and operation problems can usually be solved as an MILP in a matter of
seconds. In case of the superstructure-free approach, the problem is not solved
exactly, however, it might be faster to find a very good solution heuristically
than to wait for the optimum generated through deterministic search. But the
main asset of the metaheuristic search is that we obtain several good solutions
in one run. This is a major benefit for real-world planning problems because a
single solution has only limited significance, , and thus decision makers usually
prefer to obtain several promising alternatives that can be further evaluated with
regard to further constraints arising in practice (e.g., changing constraints such
as energy tariffs and energy demands).

The main task of this work is to investigate under which conditions a meta-
heuristic has advantages when compared to exact optimization algorithms for
the type of structural problems we are dealing with, especially if several alter-
native solutions are desired. Therefore, first, the test case is described in detail
in §2. We will experimentally compare an exact solution and the metaheuristic
optimization in §6. However, we start with describing the superstructure-free
synthesis methodology in §3. In order to quickly recognize the produced struc-
tures and be able to compute a distance between possible alternatives, we define

180 M. Preuss et al.

a shortcode, and based on that, a distance measure between structures in §4.
Being equipped with a distance matrix, we can establish a multidimensional
scaling (MDS) based visualization of our non-numerical search space in order to
get a first idea of difficulties this problem contains and use this in order to select
suitable optimization techniques. In §5, the different employed EA approaches
are introduced and the different ways to solve an MILP by means of a solver
alone (based on an successively extended superstructure) or in combination with
an EA are explained.

2 Test Case

The test case represents a real-world problem from the pharmaceutical indus-
try. The test case has already been analyzed in detail in [7]. The analyzed site
consists of six building complexes housing offices, production and research facil-
ities (Fig. 2). A public road separates the considered site into main site (A) and
secondary site (B). On site A, all building complexes are connected by a central
heating and cooling network. In the base case, site B is not connected to the
cooling network, but only to the heating network. The connection of site B to
the cooling network on site A is not allowed due the public road. Both sites
are connected to the regional natural gas grid (gas tariff: 6 ct/kWh) and the
regional electricity grid (electricity tariff: 16 ct/kWh; feed-in tariff: 10 ct/kWh).
Electricity generated by the combined heat and power (CHP) engines can be
used on-site to meet electricity demands or to run compression chillers, or else it
can be fed to the regional electricity grid. All heat generators have to be installed
on site A.

The described site has time-varying demands for heating, cooling, and electric-
ity. modeled by monthly-averaged demand time series. The annual demands for
electricity, heating, and cooling amount to 47.7 GWh, 28.1 GWh, and 27.3 GWh,
respectively. The demand profiles are symmetric around the summer months July

Fig. 2. Schematic plant layout of the considered site. On site A (main site), a central
heating and cooling network connects five building complexes. The building complex on
site B (secondary site) is only connected to the central heating network. Establishing
new connections between both sites is impossible due to a separating public road. [7]

Looking for Alternatives 181

Fig. 3. Optimal flowsheet of the real-world synthesis problem. For simplicity, the elec-
tricity demand is not shown in the figure. [7]

and August. Thus, they are further simplified by aggregation to only six time
steps.In addition, the minimum and maximum demands are taken into account.
These demands occur only during few hours per year, however, it is important
to incorporate them in the demand profiles to guarantee adequate equipment siz-
ing. In total, the energy demands are modeled by eight time steps including the
peak-load time steps.

The existing supply system consists of three boilers, one CHP engine, and
three compression chillers. However, one boiler and one compression chiller can-
not be further operated, and thus require substitution. Next to the given com-
ponent types, we will also consider absorption coolers.

The optimal solution installs existing as well as new equipment. The optimal
net present value adds up to −46.99 ·106 EUR (Table 1) improving the base case
by 39 %.

Table 1. Economic parameters of base case and NPV-optimal solution [7]

solution
NPV investments energy cost maintenance cost

/ 106 EUR / 106 EUR / 106 EUR p.a. / 106 EUR p.a.

base case solution −76.36 0 11.27 0.11
NPV-optimal solution −46.99 2.35 6.44 0.22

3 Superstructure-Free Synthesis Methodology

The superstructure-free synthesis methodology proposed by [8] employs a hybrid
optimization algorithm combining metaheuristic with deterministic optimiza-
tion [6]. Metaheuristic optimization is realized by an evolutionary algorithm
employing a mutation operator that randomly replaces substructure from a can-
didate solution by alternative structures. This approach allows for simultaneous

182 M. Preuss et al.

alternatives generation (on the synthesis level) and optimization (on the design
and operation levels). The mutation operated is based upon a hierarchically-
structured graph, the so-called energy conversion hierarchy (ECH) that classi-
fies the considered energy conversion units according to their functions. This
enables an efficient definition of all reasonable connections between the regarded
technologies. Thus, a minimal set of generic replacement rules is then sufficient
to employ structural mutation for the generation of any solution structure. For
more details on this concept, the reader is kindly referred to [8].

The general mathematical programming problem for single-objective opti-
mization based synthesis of energy supply systems is given by (1). Here, the
decision variable vectors s, d, and o are part of the continuous and/or integer
variable spaces S, D, and O, which represent the synthesis, design, and opera-
tion decision variable spaces, respectively. The three synthesis levels feature an
inherent hierarchical structure, and thus the mathematical programming formu-
lation can be decomposed into an upper level dealing with the synthesis, and
a lower level dealing with the design and operation. Thus, the mathematical
programming formulation can be reformulated as

min
s

f̂(s), s.t. min
d, o

f (s)(d, o).

Instead of explicitly modeling structural decisions in a superstructure, the
presented mutation operator is embedded in an evolutionary algorithm that con-
tinuously evolves new configuration alternatives to perform optimization on the
synthesis level. For equipment sizing and operation, rigorous MILP optimization
is used as local refinement strategy; i.e., for each configuration alternative gener-
ated by mutation, an MILP problem is solved to identify the optimal equipment
sizing and operation that maximizes the net present value. With net present
value CtCF as objective function, the problem formulation of the hybrid opti-
mization is given by

max
σ

ĈtCF(σ), σ ∈ Σ, s.t. max
d,o

C
(σ)
tCF

(d, o), (2)

where σ represents a structure evolved by mutation, and Σ represents the set of
all possible structures.

In this paper, the hybrid optimization is based on the MILP formulation
presented by [7]. However, it should be noted again that the generic component-
based modeling enables to use any other programming formulation as well.

4 Shortcode and Distance Measure

To simplify recognition of structures contained in actually evaluated solutions, a
shortcode is defined that provides the types and numbers of the employed energy
conversion plants. Note that the topology is omitted from this notation, so that
it is possible that two solutions appear to be identical but have different topolo-
gies and thus different target values. The four different technology types boiler,

Looking for Alternatives 183

absorption chiller, compression chiller, and combined heat and power (CHP)
engine are matched to the tokens Bo, AC, CC, and CE, followed by the number
of plants per type encoded in a structure. As an example, Bo1CC1 represents a
structure that embeds one boiler and one compression chiller.

On base of this short code, we define a distance function over the different
structures to obtain a numerical value. The function is given in (3) and resembles
the euclidean distance with each of the four types (in alphabetical order, AC=1,
Bo=2, CC=3, and CE=4), with Ni1 and Ni2 denoting the two structures. Two
structures that embed a certain type of technology or not are considered more
diverse than two structures that incorporate the same types of technologies but
in different numbers. Thus, the second term in (3) with the signum function
makes sure that the distance of two structures containing 0 and 1 units of a
specific technology type are considered larger than for 1 and 2 or higher unit
numbers.

dist1(N1, N2) =

√√√√ 4∑
i=1

(|Ni1 − Ni2| + sgn (|Ni1 − Ni2|))2 (3)

For so-called retrofit optimization, where a number of plants is already
installed, it is necessary to add means that reveal if a plant is new or retained
from the base case. We express the difference in the shortcode by writing exist-
ing plants with small letters, such that AC1ac1bo2 denotes one new and one
existing absorption chiller and two boilers. The distance function is adjusted
appropriately in (4) with the introduction of n1 und n2 for the existing plants.
The correction factor r (set to 2) in the last term connects old and new plants
of the same types by adding the sum of these as additional ‘dimension’.

dist2(N1, N2, n1, n2) :=
(4∑

i=1

(|Ni1 − Ni2| + sgn (|Ni1 − Ni2|))2

+(|ni1 − ni2| + sgn (|ni1 − ni2|))2 + r(|Ni1 + ni1 − Ni2 − ni2|)2
)1/2

(4)

We obtain figure 4 by computing a distance matrix from 100 randomly chosen
solutions by means of dist2 and then using multidimensional scaling (MDS) as
dimension reduction technique in order to map it into a 2-dimensional space.
The best solutions are found in the middle, on the border to several invalid
regions. Note that invalid solutions have the same objective function values, and
thus evalution of these solutions provides no information for the optimization
method on the search direction to reach an area of valid solutions. However,
the chosen distance function appears to be meaningful because the resulting
topology looks intuitive (as expected, similar structures are mapped to the same
region of the target area).

184 M. Preuss et al.

Coordinate 1

C
oo

rd
in

at
e

2

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

7.6

7.8

8.0

8.2

8.4

8.6

8.8

9.0

AC2Bo1CC1CE2bo2cc1ce1

AC2Bo3CC1CE3bo1cc1ce1

AC2Bo1CC1CE2bo2cc1ce2

AC1Bo2CC2CE2bo2cc1ce1

AC1Bo1CC2CE2bo1cc1ce2

AC1Bo1CC2CE2bo1cc1ce1

AC2Bo1CC2CE2bo2ce1

AC1CC3CE1bo2cc1ce1

AC1Bo2CC2CE2bo2cc1ce3 AC1CC2CE1bo2cc1ce1

AC1Bo1CC2CE1bo1cc1ce1

AC1Bo1CC2CE1bo2cc1ce1
AC1Bo2CC2CE1bo1cc1ce1

AC2Bo1CC1CE2bo1cc1ce1

AC2Bo2CC1CE1bo1cc1ce2

AC1CC2CE1bo1cc1ce2

AC1Bo1CC2CE1bo2cc1ce2
AC1Bo2CC2CE1bo1cc1ce2

AC1Bo1CC2CE1bo1cc2ce2

AC1CC3CE1bo2ce1
AC1CC1CE2bo1cc2ce2

AC1CC2CE3bo2cc1ce1

AC2Bo1CC1CE1bo1cc1ce1

AC1CC3CE1bo2ce2

AC1Bo2CC2CE2bo1cc1ce1

AC1Bo2CC1CE2bo2cc2

AC2CC1CE1bo1cc1ce2

AC1Bo1CC1CE1bo2cc2ce1

AC1Bo2CC1CE1bo2cc2ce1

AC1CC1CE1bo2cc2ce1

AC1Bo1CC1CE2bo2cc2ce1

AC2Bo2CE2bo1cc2ce1

AC1Bo1CC1CE1bo1cc2ce2

AC1Bo3CC1CE1bo2cc2ce2

AC1Bo1CC1CE1bo1cc2ce1

AC2Bo1CC1bo1cc1ce2

AC1Bo1CC1CE1bo2cc2ce2

AC2CE2bo1cc2ce2

AC2CE2bo2cc2ce2

AC2Bo1CE1bo1cc2ce1

AC2Bo2CE1bo2cc2ce1

AC1CC1CE1bo2cc2ce2

AC1Bo2CC2CE1bo1cc1

AC1Bo1CC1bo1cc2ce2

AC1Bo1CC1bo2cc2ce2

AC1Bo1CC2CE1bo2cc1

Bo1CC2CE2bo2cc2

CC3CE1bo2cc1ce1

Bo1CC3CE1bo1cc1ce1

Bo1CC3CE1bo2cc1ce1

Bo1CC2CE2bo1cc2ce1

Bo2CC2CE2bo2cc2ce1

AC2CE1bo2cc2ce1

CC3CE1bo1cc1ce2

Bo1CC3CE1cc1ce2

CC2CE1bo2cc2ce1

Bo1CC2CE1bo1cc2ce1

Bo1CC2CE1bo2cc2ce1

Bo2CC2CE1bo2cc2ce1

CC2CE1bo1cc2ce2

Bo1CC2CE1bo1cc2ce2

Bo2CC2CE1bo1cc2ce2

CC2CE2bo2cc2ce3

Bo1CC2CE1bo2cc2

AC1Bo1CC1CE1bo2cc2

AC1Bo1CC2bo1cc1ce1

AC1Bo1CC2bo2cc1ce1

Bo1CC2bo1cc2ce2

Bo1CC3bo2cc1ce1

CC2bo2cc2ce2

Bo1CC2bo2cc2ce1

AC1CC2bo2cc1ce1

AC1CC2bo2cc2ce1

AC1Bo1CC1bo2cc2ce1

CC2bo2cc2ce1CC2bo2cc2ce1.1

AC2Bo2CC1bo2cc1ce1

AC1Bo2CC1bo1cc2ce1

AC1CC1bo2cc2ce1

AC1Bo1CC1bo1cc2ce1

AC2Bo1bo1cc2ce1

AC2bo2cc2ce1

AC1Bo2CC2bo1cc1

Bo1CC2bo2cc2

AC1Bo1CC2bo2cc1

AC1Bo2CC1bo2cc2

AC2Bo1CC1bo2cc1

AC1Bo1CC1bo2cc2

AC2Bo1bo2cc2

AC1Bo1CC2CE1bo1cc2ce1
AC1CC1CE1bo1cc2ce2

AC1CC2CE3bo2cc1ce2

AC1Bo1CC1CE2bo1cc2ce1

CC2CE1bo2cc2ce2

AC2Bo1CC1CE1bo2cc1ce2

AC2CE1bo2cc2ce2

Bo1CC2bo1cc2ce1

CC2CE2bo2cc2ce2

AC2Bo2bo2cc2ce3

Bo2CC2CE2bo1cc2

AC1Bo2CC2CE1bo2cc1ce1

Fig. 4. Multidimensional scaling (MDS) based visualizaton of a random sample of size
100. The contour reveals the (log10 transformed) objective function values (NPV) of
the different solutions, with invalid ones having a cost of e109.

5 MILP Solving and Evolutionary Approaches

As explained in §2, we are dealing with a 3-level hierarchical problem that may be
approached in two very different ways: 1) by means of an MILP solver that solves
a series of successively extended superstructure-based optimization problems (in
the following referred to as the purely MILP-based approach) to return the exact
global optimum (in case it can be solved) – however, depending on the problem
size at considerably computational cost, i.e. long solution times; and 2), by means
of a superstructure-free EA (in the following referred to as the mixed approach)
that works on the top synthesis level of the optimization problem and uses an
MILP solver to determine the solutions for the underlying design and operation
levels. In both cases, the necessary computing times are usually much smaller
for infeasible solutions, however, the computing times for feasible solutions can
vary significantly due to the different complexities of the underlying design and

Looking for Alternatives 185

operation problems. From sensitivity analyses concerning result stability under
shifts in demand data (introducing new time steps or changing values of existing
time steps), we know that the optimal solution can easily vary by up to 2%. For
this reason, we do not necessarily have to find the global optimal solution, but
we strive for solutions with at most 1% deviation from the global optimum. In
case of the combined approach, the same accuracy is required for the lower level
MILP optimization.

As MILP solver, we employ SCIP [1], version 3.0.0, one of the fastest available
non-commercial solvers. Note that exchanging the solver with a quicker commer-
cial solver will reduce computing times for both approaches approximately by a
factor of 10, according to our tests.

In our first tests with the mixed approach, we found that a lot of precious
running time is lost by re-evaluating already considered solutions. Therefore,
a tabu search-like [3] list of forbidden structures is implemented for all meta-
heuristics to follow. During the algorithm run, we keep track of the shortcodes
for evaluated solutions. New solution candidates are produced by applying the
mutation operator described in §3. However, they are only evaluated if they are
either not yet contained in the list, or if 103 successive attempts fail to obtain
an untested structure. Note that the topologies of solution candidates are not
regarded, and multiple topologies may map to the same shortcode. It thus makes
sense to allow the evaluation of a candidate with an already recorded shortcode
as it may have a different topology. However, at least at the beginning of a run,
this rarely happens because many different plant combinations are available.

In order to roughly estimate the size of the set of different structures (neglect-
ing differences in the topology), we first consider the choice of already existing
plants. We can choose any combination of 0 to 2 boilers, one or none CHP engine,
and 0 to 2 absorption chillers, leading to 3 ·2 ·3 = 18 possibilities. Let us assume
that for each of these, we can add up to 10 new plants of 4 + 1 types (AC, Bo,
CC, CE, and none). Drawing 10 times from this set with replacement and with-
out considering order results in (n+k−1)!

(n−1)!k! = (5+10−1)!
(5−1)!10! = 1001 possibilities for the

added plants. This results in 18 · 1001 − 1 = 18017 type combinations without
taking the topology into account. However, this is only a rough estimate because
we allowed for a greater number of new plants, but this was only rarely real-
ized during our relatively short runs as it requires a high number of successive
mutations into one direction.

As algorithm types, we consider random search, random walk (implemented
as (1,1)-EA), a (10+10)-EA and a (50+10)-EA, each of these utilizing a tabu list
as described above. The reasoning behind using a population was to enable more
parallelized search. Our EA employs an evolution strategy (ES) type selection,
structural mutation as described above in §3, and no recombination.

6 Experimental Comparison

The two goals of the algorithm comparison are to find out, a) which metaheuristic-
based approach reliably detects at least one near-optimal solution (objective value

186 M. Preuss et al.

≤ 1% from global optimum) faster than the integrated MILP-based approach, and
b) which of the approaches can be recommended concerning the number of good
alternatives it produces quickly.

Pre-experimental planning. During first tests, we found that, in most cases, 30
seconds suffice to solve the design and operation problem for a given structure.
Therefore, the maximum time for this solution phase is constrained to 30 seconds.
This means that the concerned evaluations return an objective value that is
worse than it will be if the underlying optimization problem is solved to global
optimality. On the other hand, we save precious time as the overall run length
should be less than one day (24 h).

An additional test with a (1+1)-EA revealed that it usually gets stuck very
early, and thus is mostly not able to reach the desired objective function value
level. This may be surprising because the (1+1)-EA was allowed to perform
restarts. However, it can be explained with the relatively short run length that
did not enable more than a small number of restarts. This variant is therefore
disregarded in the following.

Setup. The purely MILP-based (deterministic) approach is run until the desired
accuracy of 1% is reached; the corresponding solution time is recorded. The 4
mixed approaches are run 10 times until 3000 evaluations have been spent. Note
that the actual computing time for this is limited by 0.5minutes · 3000 = 1500
minutes. However, the true computing time varies between runs and usually
takes about 60% of this value (the time consumed by the underlying MILP-
solving cannot be predicted). The average number of mutations is set to 1.5 for
the random walk and population-based EAs.

Task. A mixed approach is considered reliable only if it produces a solution
within the 1% bound before reaching the time spent by the purely MILP-based
approach in every run. We consider one metaheuristic better than another if it
consistently provides more satisfactory solutions within a smaller average time.

Results/Visualization. For the given problem, the purely MILP-based approach
via SCIP needs 619 minutes to reach the 1% bound. This is depicted as red line in
the diagrams for the mixed approaches in fig. 5. Each row of the plot represents
one of the 10 runs, and blue dots each stand for one (structurally different)
solution with satisfactory quality. The number on the bottom right corner of
each plot denotes the average number of satisfactory solutions obtained over the
runs, at the top right corner the average time for reaching a satisfactory solution
is depicted.

Observations. Random search generates only few satisfactory solutions, whose
generation is not even necessarily faster than the solution provided by the purely
MILP-based approach. Random walk, (10+10)-EA and (50+10)-EA produce
many near-optimal solutions, however on average at proportionally larger com-
putation times. We would like to add that during the runs, technical problems
with SCIP were observed because it sometimes (in about 1 of 500 cases) crashed
during the design and operation level optimization.

Looking for Alternatives 187

RETRO−mc tol=0.01

time (min/2)

ru
n

2

4

6

8

10

500 1000 1500 2000 2500

● ● ●

● ● ● ● ●

● ● ● ● ● ● ● ●

● ● ● ●

● ● ●●

● ● ●● ● ● ● ●

●● ● ● ●

● ● ●●● ●

● ● ● ● ●

● ● ● ● ●

avg sols=5.3

avg time=1703.22641

RETRO−random−walk tol=0.01

time (min/2)

ru
n

2

4

6

8

10

500 1000 1500 2000 2500

●●●●●●●●●●● ● ●●● ● ●● ● ●●●●●● ●● ●●● ●

●●●●●● ●●●●●● ● ● ● ●●●●●●●●●● ●●● ●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●● ● ●● ● ●

●●●●●● ●●●●●●●●●●●●● ●● ● ● ● ● ● ● ● ● ●● ● ● ●●● ●

●●●●●●●●●●●●●●●●●● ●●● ●● ● ●● ● ● ● ● ● ● ● ●●●●●●●●●●●●●●

●●● ● ●●●●● ● ●●●●●● ● ● ●● ●●● ●● ● ● ● ● ● ● ●

●●●●●●●●●●●●●●●● ●●● ●●● ● ● ●●● ● ● ● ● ● ● ●

●●●●●●●●●● ●●●●●● ● ● ● ●● ● ● ● ● ●

●● ●●●● ●● ●●●● ● ●● ● ●● ●● ●

●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●● ●●●● ●●●●● ●● ● ● ● ● ● ● ● ● ●●

●●●●●●●●●●●●●●●●●●●●●●●● ●●●● ●●●●●●●●●●●●●●●●● ● ● ● ●●●●● ● ●●●●●●●●●●●●●●●●●● ●●●●●● ●●●●● ●● ●●●●●●● ●● ●●● ●● ● ●●

avg sols=53.4

avg time=927.157303

RW−RETRO−10p10−sigma1.5 tol=0.01

time (min/2)

ru
n

2

4

6

8

10

500 1000 1500 2000 2500

● ●● ●●●●●●●●●●●●●●●●●● ●●●●●●●● ●● ●●●●● ●●●●● ●●● ● ●●●● ●● ●●●●● ● ● ●● ● ●●

● ●● ●●●● ●●●●●● ●●●●●●●● ●● ● ●●●●● ● ● ●● ●● ●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●● ● ●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●● ●●● ●●●● ●●●●●●● ● ●●● ● ● ● ●

●●● ●●●●●●●●●●●●● ● ●●●● ●●● ●●●●● ●●●●●● ●●●● ●●●●●●● ●●●●●●●●● ●● ●

●● ●● ● ●●● ● ●●●●●● ●●●●●● ● ●● ● ● ●● ●●●●

●● ●●●●●● ●●●● ● ●●●●●●●●● ●●● ●●● ●●●●●●●●●●● ●●●●●●●●●●●● ● ●● ●● ●●●● ●●●●● ●● ●●●●●●● ● ●

●●● ● ●● ● ●●● ●●● ● ● ● ● ● ● ●● ●● ●

●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●● ●●●● ● ●●● ●● ● ● ●●● ● ● ● ●●●● ●●

●● ●●● ● ● ●● ●●●●●●●● ●● ●● ● ●● ●● ● ● ● ●● ●●

●●● ●●● ●●●● ●●●●●●●● ● ●● ● ●●● ● ●● ● ● ● ● ● ●

avg sols=109.9

avg time=964.257506

RW−RETRO−50p10−sigma1.5 tol=0.01

time (min/2)

ru
n

2

4

6

8

10

500 1000 1500 2000 2500

●● ●●● ●● ●●●●● ●●●●●●●●●●●●●●●●●●

● ●●● ●●● ● ●●●● ●● ●●●●● ●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●● ● ●●●●● ●●●●●●●●●●●●● ●

●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●● ●●●●●●● ● ● ●

●●● ●●● ●●●●●●●● ●●●●●●●

●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●● ●●●● ●●●●●●●●●●● ● ●●●● ●●

●●● ●●●●●●●●●●●●●●●●● ●●●●●●● ●●●●●●●●●● ● ● ●●● ●●●●● ●●●●●●

●● ●● ●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●

● ●●● ●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●● ● ● ● ●●●●● ●●●●●●● ●● ●

●● ●● ●●● ●●●● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●● ● ●●●●●

● ● ●● ●●●●●●● ●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●●● ●●●●●●

avg sols=195.5

avg time=1376.75089

Fig. 5. Performance comparison of different random search and EA variants (all
with tabu list), from left to right and top to bottom: random search, random walk,
(10+10)-EA and (50+10)-EA. The red line represents the required time of the purely
MILP-based approach to reach the desired accuracy. The blue dots each represent one
satisfactory solution provided by the mixed approach.

Discussion. From the results we deduce that random search is obviously not
the method of choice, as it is unreliable and does not generate many satisfactory
solutions. The other three algorithms each have different strenghts: the (tabu list
enhanced) random walk provides good solutions very quickly, but obtains much
fewer of them if compared to the (10+10)-EA and the (50+10)-EA. With the
two criteria given above, it is not possible to take a decision between them, they
are uncomparable. If only response time is considered, the (tabu list) random
walk appears best, if more solutions are needed, the slightly slower (10+10)-EA
is recommended.

7 Conclusions

We compare several EA variants that employ an underlying MILP solver in
order to solve a structural optimization problem without using superstructure
models to a MILP-only approach that solves a series of successively extended
superstructure models. The latter may have an advantage if we need to find
the exact global optimum, while some of the proposed tabu-list enhanced EA
variants reliably find multiple solutions very quickly if the required accuracy is
relaxed a bit. Furthermore, our distance measure enables a visualization that
reveals interesting problem properties. This should be helpful for improving the
optimization process in the future. Additionally, we need to carefully analyze
the distribution of the obtained solutions.

188 M. Preuss et al.

References

1. Achterberg, T.: SCIP: solving constraint integer programs. Mathematical Program-
ming Computation 1(1), 1–41 (2009)

2. Frangopoulos, C.A., von Spakovsky, M.R., Sciubba, E.: A brief review of methods
for the design and synthesis optimization of energy systems. Int. J. Appl. Therm.
5(4), 151–160 (2002)

3. Glover, F.: Future paths for integer programming and links to artificial intelligence.
Comput. Oper. Res. 13(5), 533–549 (1986)

4. Kallrath, J.: Mixed integer optimization in the chemical process industry: Experi-
ence, potential and future perspectives. Chem. Eng. Res. Des. 78(6), 809–822 (2000)

5. Liu, P., Georgiadis, M.C., Pistikopoulos, E.N.: Advances in energy systems engi-
neering. Ind. Eng. Chem. Res. 50(9), 4915–4926 (2011)

6. Puchinger, J., Raidl, G.R.: Combining Metaheuristics and Exact Algorithms in
Combinatorial Optimization: A Survey and Classification. In: Mira, J., Álvarez,
J.R. (eds.) IWINAC 2005. LNCS, vol. 3562, pp. 41–53. Springer, Heidelberg (2005)

7. Voll, P., Klaffke, C., Hennen, M., Bardow, A.: Automated superstructure-based
synthesis and optimization of distributed energy supply systems. Energy 50,
374–388 (2013)

8. Voll, P., Lampe, M., Wrobel, G., Bardow, A.: Superstructure-free synthesis
and optimization of distributed industrial energy supply systems. Energy 45(1),
424–435 (2012)

Multi-material Compositional
Pattern-Producing Networks

for Form Optimisation

Ralph Evins1,2(B), Ravi Vaidyanathan3, and Stuart Burgess4

1 Empa, Swiss Federal Laboratories for Materials Science and Technology,
Überlandstrasse 129, 8600 Dübendorf, Switzerland

ralph.evins@empa.ch
2 Chair of Building Physics, Swiss Federal Institute of Technology ETH Zürich,

ETH-Hönggerberg, 8093 Zürich, Switzerland
3 Imperial College London, South Kensington Campus, London, UK SW7 2AZ

4 University of Bristol, Tyndall Avenue, Bristol, UK BS8 1TH

Abstract. CPPN-NEAT (Compositional Pattern Producing Networks
and NeuroEvolution for Augmented Topologies) is a representation and
optimisation approach that can generate and optimise complex forms
without any pre-defined structure by using indirect, implicit representa-
tions. CPPN is based on an analogy to embryonic development; NEAT is
based on an analogy to neural evolution. We present new developments
that extend the approach to include multi-material objects, where the
material distribution must be optimised in parallel with the form.

Results are given for a simple problem concerning PV panels to
validate the method. This approach is applicable to a large number of
problems concerning the design of complex forms. There are many such
problems in the field of energy saving and generation, particularly those
areas concerned with solar gain. This work forms a first step in exploring
the potential of this approach.

Keywords: CPPN · NEAT · Form · Multi-material

1 Introduction

1.1 Engineering Form Optimisation

Form is used here to refer to the physical shape of an object, and form opti-
misation refers to the process of finding optimal or high-performing forms for
engineered objects, measured against some metric. Optimisation of form is more
challenging than optimising specific design parameters, as form may be rep-
resented in many ways, making the design space almost infinite. This paper
presents new developments to a systematic way of automatically generating and
evolving forms to find areas of optimal performance.

c© Springer-Verlag Berlin Heidelberg 2014
A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2014, LNCS 8602, pp. 189–200, 2014.
DOI: 10.1007/978-3-662-45523-4 16

190 R. Evins et al.

1.2 Form Representation

Form representations can be divided into two approaches. Direct representations
relate the set of variables being optimised (the genotype) to the associated form
(the phenotype) in a way that is constant throughout the optimisation process.
Classes and types of form are broadly defined at the beginning of the process
through the choice of a particular representation (shapes or mathematical func-
tions) with a fixed number of parameters (also called degrees-of-freedom). The
representation used implicitly affects the forms generated: some forms will be
completely unobtainable, and others will be complicated to describe and there-
fore difficult to discover. Direct representations are appropriate for simple opti-
misations where the design space is limited to an easily-describable set of forms.
Imam [4] discussed a variety of direct representation types, including indepen-
dent nodes, design elements, super curves and superposition of shapes.

Indirect representations, by contrast, use a mapping from genotype to phe-
notype that changes as part of the form-finding process. Indirect representations
have no predefined set of parameters. Instead they generate a means of repre-
senting a form in parallel with the parameters that define it. Types of indirect
representation include generative (generating functions that map parameters to
forms) and ontogenic (based on iterative mapping transformations). For gener-
ative representations, Bentley and Kumar [2] used the term embryogeny: the
process of growth that defines how a genotype is mapped onto a phenotype.
They discuss three types of generative encoding: external (pre-stated, a form
of direct representation), explicit (inherent in the data structure, like a list of
instructions) and implicit (interactive, dynamic rules that depend on context).
Bentley and Kumar found that for the problem they selected, implicit embryo-
genies performed best.

Another approach to indirect form representation is the related field of topol-
ogy optimisation. This is concerned with broad classes of shape (e.g. number of
sides, number of holes). It uses a discrete selection field over a fixed domain, anal-
ogous to the discrete voxels used in this work. An objective function is minimised
over this selection field using a variety of methods, for example the Evolutionary
Structural Optimisation approach [8] progressively eliminates low-stress material
from the structure. The approaches used in topological optimisation are tightly
linked to structural engineering issues, and are not easily adaptable to problems
in other fields, especially if analytical objective functions are not available (i.e.
when using black-box simulations).

The indirect representation used in this work is Compositional Pattern Pro-
ducing Networks (CPPN) with the optimisation method NeuroEvolution for
Augmented Topologies (NEAT), which are explained in detail in the following
section. CPPNs were proposed by Stanley [6]; NEAT was originally developed by
Stanley and Miikkulainen [7]. This work builds upon that of Clune and Lipson
[3], who developed a 3-dimensional formulation of CPPN-NEAT. CPPN-NEAT
has been used on few real problems: to interactively generate artwork, as demon-
strated in the website picbreeder [5], and to evolve forms for simulated robots [1].

Multi-material Compositional Pattern-Producing Networks 191

1.3 Application to the Energy Field

It has been established by Clune and Lipson [3] that CPPN-NEAT can gener-
ate a diverse range of interesting forms. The methods developed here could be
applied to any problem which seeks to optimise abstract forms for objectives
evaluated using black-box simulations. There are many such problems in the
field of energy research; one particularly relevant area is energy use in buildings,
where architectural desires closely interact with engineering requirements.

This paper applied the method developed to a problem concerning a pho-
tovoltaic (PV) collector. It is a very simple validation problem, which seeks to
establish whether the breadth and diversity of solutions produced by CPPN-
NEAT can produce reasonable answers to a specific problem. However, if com-
bined with other constraints, for example the problem of building-integrated PV,
this approach could provide a way to find high-performing, highly diverse forms
that solve a real design problem.

2 Form Generation Method

2.1 Compositional Pattern Producing Networks (CPPNs)

Compositional Pattern Producing Networks (CPPNs), proposed by Stanley [6],
are based upon the biological processes that guide embryonic development: chem-
ical gradients provide information to new cells regarding their position in the
overall structure, which influences how they develop. Stanley [6] details the fol-
lowing desirable properties obtainable via such developmental processes: rep-
etition; repetition with variation; symmetry; imperfect symmetry; elaborated
regularity; preservation of regularity.

The steps in the CPPN process is given below. The predefined coordinate
system is discretised at a chosen resolution over a chosen domain, and the value of
a function is calculated for every point x, y, z. The presence or absence of material
at a given location is determined by whether the output of that function is above
or below a threshold. For an x, y, z coordinate system, the result is a set of voxels
(3 dimensional pixels). Further processing may then be conducted to obtain a
smooth form from the rectilinear cubic voxels. In this work, an isosurface was
generated surrounding the voxel set: each point where a voxel is present has a
value of 1, and points where no voxel is present have a value of 0; the isosurface
was formed for the value 0.5. The resulting surface consists of triangular planar
faces.1

1 It is necessary to threshold the output of the CPPN, which is a continuum across the
complete x, y, z domain, in order to produce a binary distinction between solid and
void. Because the function must be evaluated at discrete points, this results in a set
of voxels whose dimensions correspond to the sampling interval. These must then be
smoothed using an appropriate method (here the MatLab isosurface algorithm) to
obtain planar faces. The impact of threshold value, sampling interval and smoothing
process is an interesting topic for future investigation.

192 R. Evins et al.

– For n points in the discrete domain:
– Evaluate network using coordinates x, y, z as values of input nodes.
– If result is greater than threshold, assign solid voxel to set V .

– (Apply smoothing algorithm to set of voxels V to get surface of polygons
P .)

– Evaluate objective function f(V) (or f(P)).

This process of form generation depends on a functional representation that
takes a set of coordinate values as an input, and produces an output that governs
the form produced. Neural networks are an ideal means of representing such a
function. Each coordinate dimension is an input node to the network, along
with a bias node that is set to 1. Each link in the network has a weight by which
its value is multiplied. Each intermediate node has a functional transformation
associated with it, selected from a set of available functions (linear, sine, cosine,
square...). If there are multiple links into a node, their values are summed. The
output node of the network then produces the numerical output of the function.

An illustration of the process is given in Figure 1, which extends into 3D
the example used by Stanley [6] and Clune and Lipson [3], describing by means
of a CPPN an insect body with several bulbous sections. For simplicity, each
dimension is used by one function only, and the results are then summed. The
square function is used on the dimensions x and z, thus giving a circular cross
section when these are summed (since a circle in that plane has an equation
of the form x2 + z2 = r2). The cosine function is applied to the y dimension,
causing periodic repetition along the long axis.

Fig. 1. Example of the CPPN process. (a) Network of nodes, connections, functions
and weights. (b) Profiles obtained for each dimension based on the functions used in
the network. (c) The final form produced by the network is an isosurface fitted to the
set of voxels defined by f(x, y, z) > threshold.

2.2 NeuroEvolution of Augmenting Topologies (NEAT)

Since CPPN describes a form by means of a particular network (nodes, con-
nections, functions and weights), in order to evolve object forms, it is necessary
to evolve network representations. The method used here is NeuroEvolution for

Multi-material Compositional Pattern-Producing Networks 193

Augmented Topologies (NEAT), originally developed by Stanley and Miikku-
lainen [7] for evolving neural networks but also commonly applied to CPPN
problems. The steps are given below

– Initialise network (random connections and weights).
– Assign species (used in selection process).
– Evaluate CPPN (see above).
– For each generation:

– Check for stagnation or refocus.
– For each space in new population:
– Select parents (based on shared fitness of species).
– Generate new individual by crossover (splice networks) and mutation

(Add node, add connection, change function, perturb weight).
– For each individual in new population:

– Assign species.
– Evaluate CPPN.

– Select individuals to continue.

The method begins with a very simple network (just input nodes, bias node
and output node, directly connected) and increases its complexity by adding
connections and nodes, mutating connection weights and node function types,
and crossing over network segments. The number of input nodes is equal to the
number of dimensions of the CPPN. This may be 2D, 3D or include other pos-
sibilities like distance from centre. There is only one output node. Recurrence
in networks is not used at all in this work (it was found by Clune and Lipson
[3] to produce highly fractal forms). The process of crossover is complicated in
variable-structure representations: it is necessary to know which segments of two
individuals can be interchanged without breaking connectivity or introducing
spurious deformity. This is achieved in NEAT by means of historical innovation
tracking: each alteration to a network is recorded, and this historical informa-
tion allows only correctly-aligned network segments to be exchanged (a process
termed artificial synapsis, see [7]). The parameters used are given in Table 1.

2.3 Implementation

The NEAT code used in this work is loosely based on the MatLab implementa-
tion by Christian Mayr2, which was based on the original C++ code of Kenneth
Stanley3. An improvement here is to construct an explicit function string that is
evaluated very easily for each set of inputs. The function string was constructed
iteratively by substituting placeholders for upstream nodes, working backwards
from the output node.

This approach to form optimisation require a very large number of function
evaluations (up to 150,000 evaluations per run). The code was run on the Uni-
versity of Bristol Advanced Computing Research Centre machine BlueCrystal.
2 http://nn.cs.utexas.edu/?neatmatlab
3 http://nn.cs.utexas.edu/?neat original

http://nn.cs.utexas.edu/?neatmatlab
http://nn.cs.utexas.edu/?neat_original

194 R. Evins et al.

Table 1. Parameters used for NEAT algorithm

Maximum generations 10000 [3]
Refocus

Threshold 10
Population size 15 [3] # generations 100

Selection

Pressure 1.1

Mutation

Add node 0.25 [3]
Kill percentage 0.2 [7] Add connection 0.3 [6]
Number kill 5 [7] Change function 0.1
Number copy 1 [7] Perturb weight 0.9 [6]

Speciation

Threshold 4 Gene re-enabled 0.25 [6]
C1 1 [6] Weight cap -100
C2 1 [6] Weight range -10
C3 0.4 [6]

Crossover

Overall 0.75 [6]
C4 2 Interspecies 0.001 [6]

Stagnation
Threshold 10 Multipoint 0.75 [6]
generations 15 [7]

In order to minimize the need for parallel-specific coding, each optimisation run
was split across 8 local cores using the Matlab parfor syntax for parallel loops.
Separate processors were used for each repeat of a run.

3 Multi-material Formulation

3.1 New Development

The new development presented in this work is the extension of CPPN-NEAT
to multi-material forms. Engineered objects usually consist of more than one
material, and the interactions between them can have a significant effect on
performance. This makes it difficult to determine the optimal placement of each
material independently; they must be developed in harmony to take advantage
of synergies between them. It is highly desirable that the two materials together
should make up the whole form (no holes) and nothing else (no dislocations) so
as not to affect the performance of the form-finding process. The CPPN-NEAT
method has been extended to allow the evolution of separate material placements
in parallel with the overall form-finding process. This has been applied to thin
shelled forms, assuming a hollow object consisting of triangular planar panels.

Material placement could be optimised using a lower level optimisation pro-
cess, i.e. for each proposed form, a second-level optimisation would be performed
to determine the optimal placement of the materials. However, this would be
computationally much more demanding: if the form optimisation is order O, per-
forming an optimisation of material placement for every evaluated form would
be of order O2. It is much more efficient to optimise both the form and the
material division in parallel as part of the same optimisation, this being of order
2O. This has been achieved by evolving two CPPN representations using a single
NEAT loop (separate NEAT processes were used for each CPPN to allow dif-
ferent parameters for each, but both used a common generation iteration). The
first network represents the overall form as before; the second network maps the
placement of materials onto the form generated by the first network. The second

Multi-material Compositional Pattern-Producing Networks 195

CPPN is queried only at locations where material is present (as determined by
the first CPPN). If the output value from the second CPPN is greater than the
threshold it indicates the primary material; if it is less than the threshold it
indicates the secondary material. In this way since the network provides a value
for all solid locations and no others, holes and dislocations are avoided.

For thin shell objects a mapping has been used that operates on the polygon
mesh rather than on the voxel set. This allows the use of local coordinates: the
orientation and inclination of each polygon. This permits changes of material
between horizontal and vertical, North and South facing and top and bottom
sides, independently of position in the overall form. Figure 2(a) shows this map-
ping: the solid voxels from the form CPPN are used to produce a shell consisting
of the set of polygons P , for which the orientation θ and inclination γ values
are determined; these are used as the input coordinates to the material CPPN,
which provides the primary and secondary material polygons P1, P2.

Instead of distinguishing between two discrete material types, some property
of the material can be treated as continuously variable. This could correspond
to thickness, reinforcement, void ratio, glazing ratio etc. The process for this
is very similar to above, but rather than applying a threshold to the output
of the material CPPN to give a binary choice, the value is scaled from 0 to 1
to provide the continuous property M for each polygon. This is presented as a
second option of the new development (see Figure 2(b)).

Input
coordinates

CPPN 1

x
y
z

FORM V

Solid
voxels

SURFACE

Isosurface
fitting

P

Polygons

θ
φ

Local angle
coordinates

MATERIAL

CPPN 2
Material 1 & 2

polygons

P1
P2

Input
coordinates

CPPN 1

x
y
z

FORM V

Solid
voxels

SURFACE

Isosurface
fitting

P

Polygons

θ
φ

Local angle
coordinates

MATERIAL

CPPN 2
Material

value

M

(a) Twin material

(b) Variable material

Fig. 2. Process diagrams for using two CPPNs to determine form and material distri-
bution in parallel, for (a) two-material forms and (b) variable-material forms. CPPN
1 produces voxel set V ; an isosurface is fitted to V to give polygon set P ; CPPN 2 is
applied to P to find material division P1, P2 or continuous property M .

3.2 Objective Functions

An example problem is used to validate the multi-material formulation in which
the second material represents PV panels, and the objective function takes the
ratio of energy generated to total cost. Two different options were addressed.

196 R. Evins et al.

The first option assumed a discrete material distribution, using the formula-
tion in Figure 2(a). A highly simplified calculation is used for the energy genera-
tion potential, which was taken as proportional to the total area of PV polygons
that are within 55 degrees of South and with an inclination of 0 or greater (i.e.
not angled downwards). Cost is taken as the sum of the total area of PV panels
multiplied by a price factor (here 10, i.e. the PV panel cost is ten times that
of the support), plus the total area of both materials (i.e. the support system).
Thus the objective function was:∑

P2|θ>125, θ<235, γ≥0

10
∑

P1 +
∑

(P1 + P2)
(1)

where θ is the angle of orientation of the polygon from north, γ is the angle
from horizontal, P1 is the area of support polygons, and P2 is the area of PV
polygons. For a proper analysis of the energy generated from the PV panels, a
more detailed simulation would be necessary. This could be using a table lookup
for different angles, if self-shading is ignored, or using a detailed ray tracing
simulaton, if self shading is important. Both are beyond the scope of this paper,
where the aim is to validate the new material representation with a very simple
case.

The second option assumed a variable-material property using the formula-
tion in Figure 2(b), taking the percentage of a polygon surface covered by PV
to be a continuous variable. The generation from a polygon was determined by
the percentage of PV (the property M) and the cosine of the angle between the
polygon normal vector and the optimum alignment vector for the chosen latitude
(here taken to be South, 45 degree inclination). Thus the objective function was:

∑
P2M

√
2
2 (sin(θ) − cos(γ))

10
∑

P1 +
∑

(P1 + P2)
(2)

4 Results

4.1 Two Materials

This case demonstrates two things: that the CPPN-NEAT method can produce
forms that respond to the optimisation objective, and that the two-material
formulation can also adjust the material distribution in accordance with the
objective. Figure 3 shows the final forms from all twenty runs of the two-material
case, ordered by fitness value. It is clear that a very wide range of forms can be
produced. Nuances of the objective function become apparent, such as the way
the isosurface fitting to the voxels affects the range of angles of polygons.

Fitness values ranged from 76.7 to 81.3 with a mean of 79.0 and a standard
error of 1.4. The objective can be split into the following components, in rough
order of priority: maximise the area of PV panel that is broadly south-facing;
minimise the area of PV panel that does not meet the above conditions; minimise
the total surface area. There are a number of different approaches evident in the

Multi-material Compositional Pattern-Producing Networks 197

Fig. 3. All final optimised two-material forms with fitness values. Support is red, PV
panel material is blue.

198 R. Evins et al.

solutions found. The greatest total south-facing area is given by an inclined
plane, either as a pyramid (solutions 4, 9) or wedge (2, 5, 7); the total surface
area can then be reduced by making it thinner (8, 10, 14, 16), culminating in
making it as thin as possible (1 voxel) (18). The greatest broadly south-facing
area per total surface area is given by a section of a sphere (6); this may be
approximated by a section of a cylinder, aligned either horizontally (12, 15) or
vertically (17). The simplest form with reasonable performance is a thin obloid
(1, 3, 11, 13, 19, 20). Because the PV panels need not face exactly south, there
is scope to increase the surface area by adding undulations (2), steps (5, 8,
9, 12) and bulges (1, 10, 19, 20). Similarly the area of the top surface can
be increased by including slopes (19) or dips (20). There was no limitation on
single-block forms for this problem. However, generally dividing a form adds
extra material without increasing south-facing area, and whilst multiple high-
performing forms would maintain high fitness they would be likely to require
more complex representations than single forms. Only one run resulted in a
multiple block solution (17).

Material distribution is clearly adapting to the objective of the optimisation.
All forms have the PV panel material predominantly on the south-facing side
only none of the forms have any significant PV panel material on the rear or
under sides (not shown). There is some variation in how well the PV panel covers
the south face, with some obvious gaps (2, 8 10, 15) and missing upper edges
(3, 11, 13). In general the material placement errors are low: on average across
the 20 solutions, 1.8% by area has ‘missing’ PV (would fit the criteria but not
present) and 0.9% incorrect PV (does not meet the criteria). It is interesting to
note that the high-fitness solutions (nearer to number 20) do not have notably
lower material placement errors (e.g. the highest error of 7.2% is for solution
18), although the errors are more likely to be in missing south-facing area rather
than erroneous non-south-facing areas. There is clearly a balance between the
performance of the form and the accuracy of the material distribution.

4.2 Continuously-Variable Material

The second option, to optimise a continuously-variable material parameter, is a
more challenging and subtle problem. Because the angle of the surface relative
to the average sun position is taken into account in calculating energy gener-
ated, it is now more important that the PV should face directly south at 45
degree inclination. This eliminated the curved surfaces from the previous case.
Figure 4 shows selected forms from the continuously-variable material option.
These examples cover all the forms found: there were three low fitness forms like
(1), fourteen mid fitness forms like (2), and the unique forms (3, 4, 5). Fitness
values ranged from 54.7 to 78.0 with a mean of 68.9 and a standard error of 5.5.
The types repeat many those of the previous section: horizontal cylinder (2),
wedge (4) and thin angled plan (3, 5); there is also the notably low-performing
horizontal plane (1) where the algorithm was unable to progress beyond the
simple plane. This occurred in 4 out of 20 runs, whereas there are no such low-
performing solutions in the previous case. Additional complexity is introduced

Multi-material Compositional Pattern-Producing Networks 199

Fig. 4. Selected optimised variable-material shell forms with fitness value

to the problem by the variable-material formulation, which appears to be pre-
venting the algorithm finding good solutions in some cases. The distribution of
the PV is sometimes almost binary (1, 2, 4), where the material mapping falls
almost entirely to one end of the scale or the other. This is to be expected, as it
provides solutions with reasonable performance that have very simple material
distributions and are therefore very easy for the algorithm to find. The distribu-
tion in form (3) is a gradual progression, with low PV ratio at the bottom and
high at the top, demonstrating that the formulation is able to produce this sort
of distribution. The highest performing solution (5) uses a precise distribution
in which the main face has a high PV ratio (100%), the top edge (at an angle
to the sun that is sizeable but less than 90 degrees) has an intermediate ratio,
and the rest has a ratio of zero.

5 Conclusions

The multi-material implementation was demonstrated on an example problem
concerned with PV panels. The algorithm was successful, generating solutions
that combine high-performance forms with appropriate material distributions.
For the discrete problem, the diversity of solutions found across 20 runs was large,
highlighting the range of shapes and distributions obtainable. This also included
solutions that exploited aspects of the process, for example using curved edges to
increase surface area. For the continuously-variable problem, there was a greater
range of fitness values, showing that the algorithm sometimes fails to find good
solutions. It is inevitable that the continuous problem will be harder, but future
work could investigate how to overcome this barrier, perhaps by approximating
the gradient as bands.

The algorithm is exploring a very large search space, and the great variety of
solutions make it useful to compare several runs of the algorithm rather than to
take only one solution as indicative. Form optimisation problems are by nature
very complicated, and problems may not be solved completely. The algorithms
developed can be used to guide the design process, but are unlikely to generate
a perfect result.

200 R. Evins et al.

There are clearly many simpler ways of approaching the problem of form
optimisation, especially for the problems examined here. However, the method
used offers the potential for breadth and adaptability: the range of forms avail-
able is limitless. On that basis, the initial demonstration of the method has been
satisfactory: from the vast realm of possible configurations, finding solutions
to conceptually simple problems is not trivial. This paper is the first step in
developing this approach to indirect form representation and optimisation into
a usable method. Future work will extend the application to other cases where
complex forms are required, for example the trade-off between winter solar gain,
summer solar gain and light availability in passive building design.

Acknowledgments. Funded by the Industrial Doctorate Centre in Systems, Univer-
sities of Bristol and Bath, UK (EPSRC Grant EP/G037353/1) and Buro Happold Ltd,
UK.

References

1. Auerbach, J.E., Bongard, J.C.: Evolving complete robots with CPPN-NEAT: the
utility of recurrent connections. In: Proceedings of the 13th Annual Conference on
Genetic and Evolutionary Computation, GECCO 2011, pp. 1475–1482. ACM, New
York (2011)

2. Bentley, P., Kumar, S.: Three ways to grow designs: A comparison of evolved
embryogenies for a design problem. In: Genetic and Evolutionary Computation Con-
ference, pp. 35–43. Morgan Kaufmann (1999)

3. Clune, J., Lipson, H.: Evolving 3D objects with a generative encoding inspired by
developmental biology. SIGEVOlution 5(4), 2–12 (2011)

4. Imam, M.H.: Three-dimensional shape optimization. International Journal for
Numerical Methods in Engineering 18(5), 661–673 (1982)

5. Secretan, J., Beato, N., D’Ambrosio, D.B., Rodriguez, A., Campbell, A., Folsom-
Kovarik, J.T., Stanley, K.O.: Picbreeder: A case study in collaborative evolutionary
exploration of design space. Evolutionary Computation 19(3), 373–403 (2010)

6. Stanley, K.O.: Compositional pattern producing networks: A novel abstraction of
development. Genetic Programming and Evolvable Machines 8(2), 131–162 (2007)

7. Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting
topologies. Evolutionary Computation 10(2), 99–127 (2002)

8. Xie, Y.M., Steven, G.P.: A simple evolutionary procedure for structural optimiza-
tion. Computers & Structures 49(5), 885–896 (1993)

EvoFIN

On Evolving Multi-agent FX Traders

Alexander Loginov and Malcolm I. Heywood(B)

Faculty of Computer Science, Dalhousie University, Halifax, NS, Canada
a.loginov@yahoo.ca, mheywood@cs.dal.ca

http://www.cs.dal.ca

Abstract. Current frameworks for identifying trading agents using
machine learning are able to simultaneously address the characteriza-
tion of both technical indicator and decision tree. Moreover, multi-agent
frameworks have also been proposed with the goal of improving the relia-
bility and trust in the agent policy identified. Such advances need weigh-
ing against the computational overhead of assuming such flexibility. In
this work a framework for evolutionary multi-agent trading is introduced
and systematically benchmarked for FX currency trading; including the
impact of FX trading spread. It is demonstrated that simplifications can
be made to the ‘base’ trading agent that do not impact on the qual-
ity of solutions, but provide considerable computational speedups. The
resulting evolutionary multi-agent architecture is demonstrated to pro-
vide significant benefits to the profitability and improve the reliability
with which profitable policies are returned.

Keywords: Non-stationary · Forex · Genetic Programming · Multi-
agent Teams

1 Introduction

Machine learning (ML) has had a widespread impact on the automatic identifi-
cation of trading agents for identifying profitable trading strategies under stock
or currency markets. From the perspective of a generic process, multiple factors
should be considered. For example, technical indicators (TI) are used to provide
temporal features from which a decision tree (DT) defines the training strategy
(e.g., buy–stay–sell). Although the TI might be designed independently before
a DT is constructed – such as in the manner that attribute selection might be
performed independently of classifier construction – the quality of the resulting
trading strategy will be dependent on the quality of the initial set of TI. This
sequential dependence has lead authors to adopt various strategies in which:

1. as wide a set of TI are initially included as possible after which the DT
selects the most appropriate. For example, [1] used genetic programming
(GP) to define the DT and inso doing noted that combinations of TI lead
to better currency trading strategies. Other authors report similar findings
using different ML paradigms e.g., [2];

c© Springer-Verlag Berlin Heidelberg 2014
A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2014, LNCS 8602, pp. 203–214, 2014.
DOI: 10.1007/978-3-662-45523-4 17

204 A. Loginov and M.I. Heywood

2. mechanisms are pursued that permit temporal feature construction at the
same time as identifying a suitable DT. For example, the coevolutionary app-
roach suggested by [3,4] evolves two populations simultaneously representing
TI and DT respectively.

Naturally, the design of TI has a considerable impact on how the trading data
is ‘interfaced’ to the DT. Thus, not only the type of TI, but the parameterization
of the TI needs to be considered [5]. Moreover, trading data is non-stationary,
thus an agent strategy that is appropriate for one period of trading will become
unprofitable under a future period. This has lead to the adoption of various
schemes for re-training or incremental evolution e.g., [4,6,7].

Finally, we note that it has been known for a while that in the general
machine learning setting, stronger models for regression or classification result
when multiple models are combined in an ‘ensemble’ e.g., [8,9]. Indeed, boost-
ing has been reported for identifying multiple DT in the case of a ‘multi-level’
framework for stock trading [2].1 More generally, multiple frameworks have been
proposed for the purpose of constructing ‘teams’ of multiple GP individuals from
one or more populations (e.g., [10,11]). However, such approaches assume that
the application is stationary, whereas this is frequently observed not to be the
case in financial applications [12,13].

Constructing GP teams through some form of voting on some form of stream-
ing data has certainly been previously reported (e.g., [13,14]). However, in this
work we take a closer look at specific caveats that make the application of ensem-
ble methods (cf., multi-population architectures) challenging under a trading
agent scenario. Specifically, an attempt is made to quantify the following: 1)
computational overhead of constructing multiple solutions; 2) non-stationary
nature of the task implies that ensemble content is likely to (at best) go stale or
(at worst) over-learn, and 3) how to recombine multiple GP solutions (say, one
from each population) into a single cohesive solution.

With this in mind, we assume the general framework of FXGP [3,4] for
coevolving TI and DT (Section 2) and concentrate on assessing to what degree
combining multiple DT from different populations has on the quality of
the resulting agent strategy. The computational overhead of maintaining multi-
ple populations is addressed by adopting an approach closer to the ‘weak learner’
methodology in which we reduce the functionality in the TI and DT, resulting in
a threefold speedup in the time to evolve a single population. The non-stationary
nature of the task is addressed through the use of the behavioural criteria for
triggering re-training, as in the original FXGP framework. In the case of com-
bining solutions from each population, an approach to voting is adopted which
enables us to avoid the need to maintain a large number of parallel populations
i.e., a computational overhead for real-time operation. Benchmarking is then
performed with the original FXGP framework, the proposed simplified frame-
work (sFXGP) and sFXGP deployed to construct multiple agents concurrently.
1 Such a scheme does not naturally carry over to the currency trading scenario investi-

gated here on account of the DT being used for predicting the one-step-ahead return
relative to a sample of β-portfolio of stocks.

On Evolving Multi-agent FX Traders 205

All benchmarking is performed using the most recent 3 year period available for
the EURUSD currency pair i.e., the most widely traded foreign exchange pair.

2 The FXGP Algorithm Overview

FXGP is based on the biological metaphor of symbiosis. Specifically, a host
organism aggregates symbionts under an egalitarian transition that is most
famously associated with the origin of mitochondria within eukaryotic cells (e.g.,
[15]). Fitness can potentially be represented at the level of symbiont or host. As
we are not interested in attempting to model the transition from (lower level)
symbiont to (higher level) host we assume that fitness is only evaluated at the
level of the host; thus, providing the basis for host–symbiont fitness to exceed
the mere sum of its (symbiont) parts. With this in mind, it is only the host which
is explicitly associated with fitness. Symbionts exist for as long as they are used
in at least one host. Variation operators have the potential to introduce new
symbionts and manipulate symbiont-to-host membership, resulting in a fixed
size host (DT) population but variable sized symbiont (TI) population. Within
the context of designing trading agents, pursuing a symbiotic coevolutionary
enables us to evolve host DT using a representation specifically appropriate for
expressing conditions for deploying trading actions (buy, hold, sell); whereas
the symbiont population is designed to express TI [3,4]. We take the view that
the only ‘true’ measure of fitness is at the level of the host (i.e., some aggregate
measure of trading quality). Thus, TI are only deemed useful if they promote
good DT.

The TI population in the original FXGP framework consists of TI of the
three following types [3,4]: Value, Moving Average (MA) or Weighted Moving
Average (WMA). The MA and WMA types of TI are calculated as follows:

MAi =
∑n

i=1 Vi

n
(1)

WMAi =

∑n
i=1

Vi

i+1∑n
i=1

1
i+1

(2)

where Vi is a TI value and the TI program assumes the form of linear GP and
be composed from any of seven available functions (Table 1).

At the same time, the DT population consists of the individual trees that can
include variable number of nodes and each node consists of one of the following
conditional statements [3,4]:

– if(Xi > Yi) then else
– if((Xi > Yi) and (Xi+m < Yi+m)) then else

where Xi and Yi can be 0, price or a TI and then and else can be the next node
or one of the trading signals (buy, sell or stay).

206 A. Loginov and M.I. Heywood

Table 1. Original set of a TI functions. Functions marked with † are redundant.

Function Definition

Addition R[x] ← R[x] + R[y]

Subtraction R[x] ← R[x] − R[y]

Division R[x] ← R[x] ÷ 2

Multiplication† R[x] ← R[x] × R[y]

Square root† R[x] ← √
R[y]

Division† R[x] ← R[x] ÷ R[y]

Division† R[x] ← 1 ÷ R[x]

In addition FXGP assumed an interface to the (stream) trading data in
which re-training was triggered by a set of trading criteria (Figure 1) [3,4]. That
is to say, after an initial period of training, a champion individual is identified
(validation) and deployed for trading until one of three trading criteria flag a
deterioration in trading performance. FXGP utilized three criteria: 1) max. single
drawdown, 2) max. number of consecutive loss making trades, 2) max. number
of bars without variation [3]. At this point a new DT–TI population is coevolved
relative to training–validation data leading up to the point of failure (Figure 1).
In the case of the FX task, such a scheme was demonstrated to be more effective
than continuously evolving against the trading data [4].

Fig. 1. The Train–Validate–Trade cycle. Independent populations are coevolved during
Training partition Nat and the champion trading agent is selected using the Validation
partition Nav.

3 Multi-agent FXGP

This section describes the new version of the algorithm in which teams of FXGP
individuals suggest the trading action; hereafter FXGPT. As indicated in Section
1 we perceive several potential pathologies that could detract from realizing the
benefits of pursuing a multi-agent / ensemble approach to currency trading.
Section 3.1 will address simplifications that we introduce to reduce the com-
putational footprint of the original FXGP framework; hereafter simple FXGP
(sFXGP). FXGPT is then defined relative to sFXGP (Section 3.2).

On Evolving Multi-agent FX Traders 207

3.1 simple FXGP

FXGP as originally defined assumed a set of seven TI functions (Table 1),
whereas analysis of the resulting solutions indicated that four of them are redun-
dant (marked with † in the Table 1) and can be removed from the original set.
In addition, operations removed from the instruction set, when they were used
by FXGP typically resulted in intron behaviour. Thus, multiplication often pro-
duced a TI with the wrong scale, whereas two of the division functions and the
square root function frequently resulted in illegal operations (e.g. division by
zero or square root of negative value). Needless to say, this also removes instruc-
tion types that have a longer (computational) latency i.e., division and square
root; thus an expected improvement to TI execution, where it is the evaluation
of TI that account for the majority of CPU time. Thus, sFXGP will assume the
first three TI functions from Table 1.

Originally three types of TI were supported (Section 2), whereas sFXGP
will be limited to supporting two types of TI (Table 2). The calculation of the
Weighted Moving Average (WMA) requires more computational resources com-
pared to estimation of the Moving Average (MA). At the same time experimen-
tation indicated that the effectiveness of the WMA failed to improve on that
using TI based on MA alone, resulting in the simplified set of TI parameters
and a smaller search space.

Table 2. TI parameters

Parameter Description

TI type Value or Moving Average (MA)

TI scale TI that crosses 0 or TI that crosses price

Period n Number of hours (n) in a price history to calculate MA

Shift m Price m hours back in a history

3.2 Constructing FXGP Teams

FXGP populations are evolved relative to the current historical trading data with
trading criteria used to re-trigger training (Section 2). That is to say, each time
the retraining criteria flags poor trading behaviour, all populations will be re-
evolved. In order to construct multiple sFXGP populations we will concentrate
on the interface to the (streaming) data, and assume the following two modes:

Mode 0: Given P independent sFXGP populations, identify one champion
trading agent from each using the validation data, Nav (Figure 2).

Mode 1: As per mode 0, however, all sFXGP individuals passing the validation
criteria form the basis for a new population, p∗. This population continues
evolution with respect to partition Ntt (Figure 2). Note that each individual
from p∗ is still treated as an independent trading agent.

208 A. Loginov and M.I. Heywood

Such a comparison enables us to look at the relative tradeoff between complete
independence in identifying team champions (mode 0) versus conducting a final
evolutionary cycle in which credit assignment between individual may take place
(mode 1).

Train teams (Ntt)

Retrain signal is detected

Trade

Train agents (Nat) Validate agents (Nav) Trade

Train agents (Nat) Validate agents (Nav)

Train teams (Ntt)

Fig. 2. The team mode Train–Validate–Train–Trade cycle. Independent populations
are evolved during Training partition Nat and a subset of sFXGP individual identified
from each using the Validation partition Nav. The FXGP teams are trained over
partition Ntt (mode 1 only). The point at which retraining is invoked corresponds to
three trading criteria.

Post evolution, each trading agent in the team returns one of three actions
per trading ‘tick’ (hourly in this work), where actions are mapped to an integer
value using the following assignment: Sell = −1; Stay = 0; Buy = 1. The scheme
adopted for combining the recommendation from each agent assumes the follow-
ing form: a =

∑
i∈A ai where ai ∈ {−1, 0, 1} corresponds to the three possible

actions that each champion can assume and A is the strongest subset of agents
from p∗ at the last generation. The resulting number line is then re-mapped into
one of the three actions using the following rule:

IF (a ≥ γ) THEN (buy) ELSE IF (a ≤ −γ) THEN (sell) ELSE (hold) (3)

Naturally, the value for the threshold γ needs to be defined by the user and
remains the same throughout the trading activity. We note that the generic
form of this model has been adopted in the past for discretizing the output of
(single) neural network trading agents into long and short positions [16] and ‘risk
management’ in the case of boosted DT (γ0 parameter in [2]).

4 Experimental Setup

4.1 Source Data

The EURUSD tick-by-tick prices2 were converted into one hour bars and used
to define market activity during the period from January 3, 2010 to November
2 http://www.truefx.com

http://www.truefx.com

On Evolving Multi-agent FX Traders 209

30, 2012. We used the same period of time as in [4] to establish a baseline for
comparison. The distribution of floating spreads (the difference between Ask and
Bid prices) of the hour bars during trading (Open, High, Low and Close prices)
are shown in the Figures 3(a) and 3(b). The results in [4] were obtained with the
assumption of a fixed spread value of 0.00002 USD based on the FxPro Group
average EURUSD spread value.3

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●
●●
●
●●●●●●

●

●●●●●●●●
●
●●●●●●●●●●●●●●●
●
●●●●
●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●
●
●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●
●●●●●●●●
●
●●●●
●●
●
●
●●

●
●●
●
●●●●●●
●●
●●●●●●●
●
●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●
●
●●●●●●●●●●●●●●●●●●●

●

●●●
●
●●●●●●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●
●
●●●●●●●●●

●
●●●
●●●●●●●
●●●●●●
●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●

●

●

●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●

●

●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●

●

●

●

●●●●
●●●●●●●●●

●

●●●●●●●●●
●
●●●●●
●●●●●●●●●●●●
●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●

●

●●●●●●●●
●
●

●

●●●●●
●
●●●

●

●●●

●

●

●

●●●●●●●●●●●●●

●

●

●

●●●●●●●●●●

●

●●●●●●
●
●●●●●

●

●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●

●

●●●●

●

●●●●●●●●●●●

●

●

●

●●●
●●●●●●
●
●●●

●

●

●

●●●●
●
●●
●
●●●●

●

●●●●●●●●●●●●●

●

●●

●

●●●●●●●●●●●

●

●●●●

●

●●●●●●●●●●●●●●●●

●

●
●
●●●●●●●●●●

●

●●
●

●●●●●●●●●

●

●

●

●●●●●●●

●
●

●●

●

●●●●
●
●●

●

●●●●●●
●
●●●●●

●
●

●

●

●
●

●

●●

●

●

●

●●●●●
●●●
●

●

●●
●

●

●●●
●
●●●●●●●●●●

●

●●●●●●●●
●
●●●●●●
●
●●
●
●

●●●●●●●

●

●

●

●●●●
●
●
●
●●●●
●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●
●
●●
●
●●●●●●●●●●

●
●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●
●
●●●●
●
●●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●

●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●

●

●●●
●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●
●
●●●●●

●

●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●
●
●●●

●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●
●●●●●●●●●
●
●●●●
●
●●●●●●●●●
●●
●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●

●

●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●
●
●●●●●●●●●●●
●
●●●●●●●
●
●●●●●
●
●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●
●●●●●●

●
●●●●●
●
●●●●●●
●

●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●
●
●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●
●●●●●●●●●●

●

●●●

●

●●●●●●●●●●●
●
●●●●●●●
●●●
●●
●
●●●●
●
●●●●●●
●
●●●●●●●●●●●●●●●●●●●
●
●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●
●
●●●●●●●●●●●●●●●●●●●●
●

●

●

●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●
●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●
●●●●●●●
●●●●●●●●●
●●●●
●
●●●●●●●●●

●●●
●●●●●●●●●●●●●●
●
●●●●●●●
●
●●●●●●●●
●
●●●●●●●●●●●●●●●●●
●●
●
●●●

●

●●●
●
●●●●●●●●

●

●●●●●●●●●●
●
●●●●●●●
●
●●●●●●●●
●●
●
●
●●●●

●

●
●
●●●●●●
●
●●

●
●●●●●

●
●●●●
●
●●●
●
●

●
●●

●

●●
●
●

●
●●
●
●
●
●
●
●●
●
●●
●
●
●●
●●●●●●●●●

●

●●
●
●●
●●

●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●
●●●●●●●●●●●●●
●●●
●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●

●

●
●●●●●●●●●●●●●●●●●●
●
●●●●●

●

●●●●●●●
●
●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●
●
●●●●●●●●●●●

●
●
●●●
●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●
●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●
●
●●●
●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●
●
●●●●●●●●●

●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●
●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●
●
●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●●●●●
●
●●
●
●●●●●●●●●●●●●●●●●●●●●●●
●●

●

●

●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●

●

●●●●●●●●
●
●●●
●
●●●●●●●●●●●
●
●●
●
●●●●●●●●●●
●
●●●●●●●●●●●●●●●
●

●

●●●●●
●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●

●●●
●
●●●●●●●●●●●●●●●●
●
●●

●●

●●●
●
●●●
●●
●●
●
●●●●

●

●

●

●●●●●●

●

●●

●
●●●●●●●●

●
●●
●
●
●
●
●●
●●
●●
●
●
●
●
●

●

●●
●
●●●●●
●
●●

●

●
●
●
●
● ●●●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●●●●●●●●
●
●●
●
●●
●●
●
●●●
●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●
●
●●●●●●●●
●●
●●●●●●●●
●●
●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●
●
●●●
●
●●●●●●
●
●●●●●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●
●●
●●●●●●●
●
●●●●●●●●●
●
●●
●
●●●●●●●

●
●
●●●●

●

●●●●●●●●●●●●●●●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●●●
●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●

●
●
●●●●●
●
●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●
●●●●●●●●●●●
●●●
●
●●●●●●●●●●
●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●
●
●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●
●

Open High Low Close

0

0.005

0.01

0.015

Spread

(a) All spreads (0. . . 0.02 USD)

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●●
●●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●
●

●

●

●●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●●
●

●

●●

●

●
●

●

●

●●●

●

●

●
●
●

●

●

●

●

●

●
●

●●

●●●

●

●●
●

●

●●

●●
●

●

●

●

●

●

●

●
●●
●●

●

●

●
●●

●

●

●●

●

●
●

●

●

●

●●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●
●●

●
●

●

●

●

●

●

●

●

●●●
●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●●

●

●●

●
●

●

●

●●●

●

●
●●

●

●●
●●●

●

●

●

●

●●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●●

●

●●

●
●

●●

●●

●

●

●

●

●●
●

●

●
●

●

●●●

●

●

●●●
●

●

●●

●

●

●●●●●
●●

●●

●

●●

●

●

●
●

●

●
●

●
●
●

●

●
●●

●

●●●

●●

●●●

●

●●●

●

●●

●

●●●
●

●

●

●

●

●
●

●●

●

●

●●●

●

●

●●●●

●

●●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●
●●

●

●●

●

●●

●

●

●

●

●

●●

●●

●

●●●●
●●

●

●
●●

●

●●

●

●

●●

●●

●
●●

●
●

●

●

●

●●

●

●
●

●

●

●●

●

●●

●

●●
●

●

●

●

●
●
●

●

●
●●●
●

●
●

●

●●●●

●

●

●●

●

●

●

●

●●

●●

●

●

●
●

●●●

●

●●

●

●

●

●

●

●●

●

●●●

●

●

●

●●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●
●

●

●

●
●

●

●

●●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●
●

●

●●

●●

●

●

●

●

●

●●

●
●

●

●

●

●●
●

●●

●

●●

●

●●

●

●

●●

●

●

●●

●
●

●●

●

●●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●
●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●●

●●●

●

●●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●
●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●●●

●

●

●

●

●
●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●●

●●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●●●
●●

●

●

●●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●
●

●

●

●

●

●●●

●●
●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●
●●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●
●

●●
●●●

●
●

●●

●

●

●

●

●●

●

●
●●

●

●

●●

●
●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●●

●●●●

●

●

●

●

●●

●

●

●●●

●

●
●

●

●

●

●

●●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●
●
●

●

●

●

●

●

●

●●

●

●

●●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●●

●●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●●
●●

●

●●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●
●●

●●

●

●●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●

●

●●●

●

●

●

●●

●

●●
●

●

●

●●●

●

●

●

●
●●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

●●●
●

●

●

●

●●●●●

●

●

●

●●

●

●●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●●●

●

●

●

●

●●

●

●

●

●

●
●

●●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●●●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●
●
●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●
●

●
●

●●

●
●●

●
●

●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●
●

●

●●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●●

●
●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●●

●

●

●●

●

●●
●

●

●●

●

●
●

●
●

●
●

●

●

●

●

●

●

●●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●●●●
●

●

●

●

●●●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●
●

●

●●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●●
●
●●

●

●

●

●
●

●

●

●
●

●
●

●●

●

●●

●

●

●

●●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●●

●●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●
●

●

●

●

●●●●
●●

●
●

●

●

●●

●

●
●●

●
●

●

●

●

●●

●

●●●

●

●

●

●
●
●

●

●●

●

●●

●

●

●

●
●

●

●

●●

●

●●

●
●●●

●
●●
●

●

●

●
●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●●●●●

●

●
●

●

●
●●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●
●

●●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●●●●

●

●

●

●●●
●

●
●

●●●

●

●
●

●

●

●

●

●

●●●●●●●●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●●

●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●●
●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●●

●

●

●●

●
●●

●

●
●●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●
●

●

●

●
●

●

●

●●●
●
●

●

●

●

●

●

●

●

●

●●

●●●●
●
●

●

●●
●

●●

●●

●
●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●●●

●
●

●●

●

●●●

●

●
●
●

●●●

●

●

●

●●

●

●

●

●●
●

●●

●

●

●

●●

●
●
●

●

●

●

●

●●
●

●

●

●

●

●●
●●

●●

●

●

●

●

●

●●

●●

●
●●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●
●

●

●

●●●

●
●

●

●●

●

●

●●

●

●

●

●

●
●

●●●

●

●

●●●●●●

●

●

●
●
●●

●

●●

●

●

●

●●●

●

●

●

●

●●

●
●

●

●●●

●

●
●

●

●●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●●

●

●
●

●●●
●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●
●
●

●

●●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●
●●

●
●

●

●

●
●
●

●

●●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●
●●

●

●

●

●●

●

●

●
●●
●

●

●●●
●

●

●

●
●

●

●●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●
●●

●

●●●●

●●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●●●
●●

●●
●

●

●

●

●

●

●●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●●

●

●●
●

●

●

●

●●
●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●●●

●●

●●●●●●●
●

●

●

●●

●●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
●

●

●

●●

●●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●●

●

●●●●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●●

●

●

●

●

●

●

●

●●●

●

●

●●

●●

●

●
●

●

●

●

●
●
●

●

●

●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●
●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●

●●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●
●●●●

●

●
●●

●

●●
●●
●

●

●

●

●●

●

●

●●●

●●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●●●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●●●
●
●●

●

●

●

●

●●

●

●

●
●

●

●●●●
●

●

●

●●

●

●

●

●●●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●
●
●

●

●

●●

●
●

●●

●●●

●

●

●●

●

●
●

●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●
●

●●

●

●

●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●
●

●

●●●

●

●

●

●●

●

●●

●

●●
●

●

●

●

●

●
●●
●●

●

●●●

●●

●●

●●

●

●

●

●

●

●

●

●
●

●

●●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●●

●

●●

●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●●●

●

●●

●●●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●●

●

●●

●

●

●

●
●

●

●

●

●
●

●●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●
●●●

●

●

●●

●

●●●●

●

●

●

●

●

●●●

●
●

●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●●●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●

●

●●

●

●●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●
●
●

●
●●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●●

●

●

●
●
●
●

●

●

●●

●

●●
●●

●

●

●●

●

●

●

●
●

●●

●

●

●●

●

●

●●

●

●

●

●●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●
●
●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●
●

●

●
●●

●

●

●

●

●●

●

●

●

●
●
●

●

●●●●

●●

●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●●●

●●

●●

●●

●

●

●

●

●

●●

●●●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●●●●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●●●●

●

●●

●●●●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●●●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●●

●

●

●

●
●

●

●

●●
●●
●●

●
●

●

●

●

●●

●●

●●●

●

●

●

●

●

●●

●●

●●

●

●

●●
●●●

●●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●
●●
●

●

●

●

●
●

●

●●

●●
●

●
●

●●

●

●

●

●

●

●●
●

●

●

●●●

●

●

●

●

●

●

●●

●

●●●

●

●●

●

●●
●●

●

●

●●

●

●

●

●
●●●
●

●

●

●●

●

●

●

●
●
●●

●

●
●

●●

●

●●

●

●

●●●

●

●●
●

●

●

●

●

●

●

●●●●●●

●

●
●
●

●

●●
●

●

●

●●●●●●●

●

●

●
●
●

●●
●●

●

●

●●
●●●

●

●●●
●

●

●

●

●
●●
●

●●

●●●●

●
●
●

●●●

●

●

●

●●●●●

●
●

●

●●

●●
●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

●●

●●●●

●
●

●

●

●
●
●●

●

●●●

●●

●

●

●

●

●●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●●
●●

●●●

●

●

●

●

●

●

●
●
●
●
●

●

●

●

●●●

●

●

●
●●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●

●
●

●
●●

●●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●
●

●
●●
●

●

●

●
●

●●●

●

●

●

●

●

●●●●

●
●

●●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●
●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●●
●

●

●

●●●

●

●●●●●

●

●●

●

●

●●
●

●

●

●

●
●●

●

●●

●●●●

●

●
●●

●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●
●
●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●●

●

●
●

●

●●

●

●

●

●●

●

●
●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●
●
●

●

●

●

●

●●

●●●
●

●

●

●●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

Open High Low Close

0

0.0001

0.0002

0.0003

0.0004

Spread

(b) Spreads within the range
0. . . 0.0005 USD

Fig. 3. Spreads distributions. Internal box-plot provides quartile statistics. Violin pro-
file characterizes the distribution.

Both versions of the algorithm (unmodified and the version we describe in
this work) allow user to specify the limit spread value to open the trades. If the
spread exceeds the limit, the algorithm will not generate buy or sell signals to
open a new trade. However, if the position was already opened, buy or sell signals
to close an existing position will be generated regardless of the spread value. In
this research the spread limit was selected empirically and set to 0.00025 USD
for all cases i.e., a less conservative limit (relative to the earlier FXGP work),
making the role of policy identification more prominent.

4.2 Parameterization

Both updated versions of the algorithm (sFXGP and FXGPT) inherit the param-
eterization of the original FXGP (as described in [3,4]) with the addition of the
parameters, specific for the evolution of teams (Table 3). All runs were performed
on a 2.8 GHz iMac computer with Intel Core i7 CPU, 16GB RAM and Mac OS X
10.7.2. Where indicated, use is also made of the Apple GCD enqueue application
which identifies tasks for simultaneous execution against the available CPU cores.

3 http://www.fxpro.co.uk

http://www.fxpro.co.uk

210 A. Loginov and M.I. Heywood

Table 3. Team specific parameters

Parameter Value Description

A 3 Number of trading agents in a team (number of independent
DT–TI populations)

γ 2 Team’s trading signal threshold (Equ. (3))

mode 0 or 1 0 - team is built with champion agents, 1 - team is evolved

teams 100 Teams’ population size (|p∗|)
teamsGap 25 Number of teams to be replaced in each generation

teamsGnrts 1000 Max number of teams’ population generations

teamsPlt 200 Number of generations without best score improvement to
stop training

testSize 500 The data partition size to evolve teams (i.e., Ntt = Nav)

5 Results

The following experiments were performed within this research to distinguish
between the various components of the system:

• FXGP – original FXGP version of the algorithm as described in [3,4] i.e.,
wider range of TI and DT.

• sFXGP – simple FXGP version of the algorithm i.e., limited TI and DT
(Section 3.1).

• FXGPT(3) – teams formed using three sFXGP champions under teaming
mode 0 (Section 3.2).

• FXGPT(3e) – teams formed using three sFXGP champions under teaming
mode 1 (Section 3.2)

The results of all three experiments are summarized in the Table 4 where the
last line (FXGP†) repeats the best sFXGP result from [4] for a fixed spread of
0.00002 USD. Such a decision can only be made given suitable priori knowledge
of the market behaviour. This assumption is not made in the case of sFXGP
or FXGPT. Each experiment includes 100 simulation runs. FXGP and sFXGP
make no use of GCD style parallelization, however, both forms of FXGPT are
able to.

Table 4 provides the overview of both the number of profitable runs and the
respective quartile statistics. Comparing FXGP to FXGP†indicates that remov-
ing the prior knowledge regarding spread limits results in an immediate signifi-
cant reduction in performance. The simplifications introduced to define sFXGP
(from FXGP) have no measurable impact on the quality of trades. Introducing
the simplest form of multi-agent behaviour, FXGPT(3) (mode 0: sampling a sin-
gle champion from each independently evolved population), results in a ≈ 13%
improvement to the median score. Introducing evolution using teaming mode 1
(FXGPT(3e)) results in a tightening of the distribution of scores, as well as pro-
viding a 50% improvement relative to the single agent case (Table 3). This also

On Evolving Multi-agent FX Traders 211

Table 4. Quartile performance of trading agents (pips). FXGP†was the best previous
result using the original FXGP algorithm with prior knowledge of spread. FXGP is
the same algorithm without accurate spread information. sFXGP, FXGPT(3) and
FXGPT(3e) represent the proposed single agent and two 3 agent formulations (mode
0 and 1 respectively).

Algorithm Profitable Score (pips)
runs (%) min 1st quartile median 3rd quartile max

FXGP 73 -3459.0 -63.3 996.2 1905.3 4159.5

sFXGP 74 -3153.8 -94.8 988.5 1917.8 4054.6

FXGPT(3) 78 -2219.2 70.2 1117.3 2144.5 6291.0

FXGPT(3e) 81 -1876.6 288.5 1489.2 2462.8 4362.4

FXGP† 82 -3087.9 383.4 1522.5 2639.5 5298.6

●

FXGP sFXGP FXGPT 3 FXGPT 3e

−4000

−3000

−2000

−1000

0

1000

2000

3000

4000

Pips

Fig. 4. Distribution of scores in pips over trading simulation period of time. Quartile
information appears in the box plot (illustrating the information from Table 4). The
contours of the violin mimic the actual distribution of the underlying data.

results in FXGPT(3e) managing to match the performance of FXGP†, where
the latter makes use of prior information in selecting an optimal spread.4

In order to characterize the computational costs of each algorithm, we report
the total number of retraining events and the cost of any single retraining event.
Figure 5 summarizes the total count of retraining events over the three year
trading period. In the case of both single agent algorithms (FXGP and sFXGP),
a significant reduction in the number of retraining events occurs. Given that
there was no trading benefit in assuming the (original) FXGP framework over

4 The p-values for a Student t-test at the 95% confidence interval as applied between
each pairwise test of FXGPT(3e) against FXGPT(3), sFXGP and FXGP is 0.161,
0.047 and 0.008 respectively.

212 A. Loginov and M.I. Heywood

●

FXGP sFXGP FXGPT 3 FXGPT 3e

50

60

70

80

90

Retrains

Fig. 5. Distribution of number of retraining events over trading simulation period of
time. Box plot define the quartile information and violin the actual distribution.

sFXGP, this reduction in the number of retraining intervals appears to indicate
that sFXGP agents are more general. Conversely, there is a significant increase
in the number of retraining events when teams of trading agents are assumed
(either mode of FXGPT).

Figure 6 summarizes the cost of performing any single retraining event. It is
immediately apparent that sFXGP is significantly faster than FXGP as origi-
nally conceived. Thus, the cost of supporting multiple types of moving average

●

●

FXGP sFXGP FXGPT 3 FXGPT 3e

0

5

10

Seconds

Fig. 6. Distribution of average training times (over a run) per population (FXGP and
sFXGP) and per team of three populations (FXGPT)

On Evolving Multi-agent FX Traders 213

and division operators as well as a square root operator (TI population) does
not result in any better trading performance, while sFXGP reduces the compu-
tational overhead by 65 – 70 %. FXGPT is able to maintain the computational
overhead at ≈ 40%, albeit with use of the coarse grained parallelism available
through Apple GCD.5

6 Conclusion

We can make following conclusions based on the obtained results:

• The use of real prices with floating spreads (Table 4, sFXGP) significantly
affects the trading results and reduces the number of profitable solutions
and scores compared to trading with assumed fixed spreads as previously
reported (Table 4, FXGP†).

• Both single agent variants (FXGP and sFXGP) return a very similar number
of profitable solutions and scores (Table 4). We conclude that the simplifica-
tions introduced to sFXGP did not reduce the performance of the algorithm
and, at the same time, the training time was reduced by 65% (Figure 6).
The average number of retrains was also reduced (Figure 5).

• The use of teams of champion trading agents (Table 4, FXGPT(3)) improves
the negative spread of runs compared to that of a single trading agent (Table
4, sFXGP). At the same time the CPU cost for maintaining a team of
champion agents is still significantly ≈ 40% lower than that for the original
FXGP.

• The use of evolved teams (Table 4, FXGPT(3e)) outperformed all other
configurations and demonstrated the best results in all categories: trusta-
bility (the percentage of profitable runs) and quartile scores. Indeed, this
configuration provides statistically significant improvements over the single
population models (95 percentile) and adds > 350 pips to the median per-
formance of FXGPT(3).

Acknowledgments. The authors gratefully acknowledge support from the NSERC
CRD grant program (Canada).

References

1. Dempster, M., Payne, T.W., Romahi, Y., Thompson, G.: Computational learn-
ing techniques for intraday FX trading using popular technical indicators. IEEE
Transactions on Neural Networks 12, 744–754 (2001)

2. Creamer, G., Freund, Y.: Automated trading with boosting and expert weighting.
Quantitative Finance 10(4), 401–410 (2010)

3. Loginov, A., Heywood, M.I.: On the Utility of Trading Criteria Based Retraining
in Forex Markets. In: Esparcia-Alcázar, A.I. (ed.) EvoApplications 2013. LNCS,
vol. 7835, pp. 192–202. Springer, Heidelberg (2013)

5 GCD does not facilitate speeding up evaluation of a single population.

214 A. Loginov and M.I. Heywood

4. Loginov, A., Heywood, M.I.: On the impact of streaming interface heuristics on GP
trading agents: an FX benchmarking study. In: ACM Genetic and Evolutionary
Computation Conference, pp. 1341–1348 (2013)

5. Fernandez-Blanco, P., Bodas-Sagi, D., Soltero, F., Hidalgo, J.: Technical market
indicators optimization using evolutionary algorithms. In: ACM Conference Com-
panion on Genetic and Evolutionary Computation, pp. 1851–1858 (2008)

6. Dempsey, I., O’Neill, M., Brabazon, A.: Adaptive trading with grammatical evo-
lution. In: IEEE Congress on Evolutionary Computation, pp. 2587–2592 (2006)

7. Wilson, G., Banzhaf, W.: Interday and Intraday Stock Trading Using Probabilis-
tic Adaptive Mapping Developmental Genetic Programming and Linear Genetic
Programming. In: Brabazon, A., O’Neill, M., Maringer, D.G. (eds.) Natural Com-
puting in Computational Finance. SCI, vol. 293, pp. 191–212. Springer, Heidelberg
(2010)

8. Freund, Y.: Boosting a weak learning algorithm by majority. Information and Com-
putation 121(2), 256–285 (1996)

9. Wolpert, D.H.: Stacked generalization. Neural Networks 5(2) 241–259
10. Brameier, M., Banzhaf, W.: Evolving teams of predictors with linear genetic pro-

gramming. Genetic Programming and Evolvable Machines 2(4), 381–408 (2001)
11. Soule, T., Komireddy, P.: Orthogonal evolution of teams. In: Riolo, R., Soule,

T., Worzel, B. (eds.) Genetic Programming Theory and Practice IV, pp. 79–95.
Springer (2007)

12. Larkin, F., Ryan, C.: Modesty Is the Best Policy: Automatic Discovery of Viable
Forecasting Goals in Financial Data. In: Di Chio, C., Brabazon, A., Di Caro, G.A.,
Ebner, M., Farooq, M., Fink, A., Grahl, J., Greenfield, G., Machado, P., O’Neill,
M., Tarantino, E., Urquhart, N. (eds.) EvoApplications 2010, Part II. LNCS, vol.
6025, pp. 202–211. Springer, Heidelberg (2010)

13. Mayo, M.: Evolutionary Data Selection for Enhancing Models of Intraday Forex
Time Series. In: Di Chio, C., et al (eds.) EvoApplications 2012. LNCS, vol. 7248,
pp. 184–193. Springer, Heidelberg (2012)

14. Folino, G., Papuzzo, G.: Handling Different Categories of Concept Drifts in Data
Streams Using Distributed GP. In: Esparcia-Alcázar, A.I., Ekárt, A., Silva, S.,
Dignum, S., Uyar, A.Ş. (eds.) EuroGP 2010. LNCS, vol. 6021, pp. 74–85. Springer,
Heidelberg (2010)

15. Margulis, L., Fester, R.: Symbiosis as a Source of Evolutionary Innovation. MIT
Press (1991)

16. Dunis, C.L., Laws, J., Sermpinis, G.: Higher order and recurrent neural archi-
tectures for trading the EUR / USD exchange rate. Quantitative Finance 11(4),
615–629 (2011)

Geometric Semantic Genetic Programming
for Financial Data

James McDermott1,2(B), Alexandros Agapitos1,
Anthony Brabazon1,3, and Michael O’Neill1

1 Natural Computing Research and Applications Group,
Complex and Adaptive Systems Lab, University College Dublin, Dublin, Ireland

jmmcd@jmmcd.net, {alexandros.agapitos,anthony.brabazon,m.oneill}@ucd.ie
2 Management Information Systems, Lochlann Quinn School of Business,

University College Dublin, Dublin, Ireland
3 Accountancy, Lochlann Quinn School of Business, University College Dublin,

Dublin, Ireland

Abstract. We cast financial trading as a symbolic regression problem
on the lagged time series, and test a state of the art symbolic regression
method on it. The system is geometric semantic genetic programming,
which achieves good performance by converting the fitness landscape
to a cone landscape which can be searched by hill-climbing. Two novel
variants are introduced and tested also, as well as a standard hill-climbing
genetic programming method. Baselines are provided by buy-and-hold
and ARIMA. Results are promising for the novel methods, which produce
smaller trees than the existing geometric semantic method. Results are
also surprisingly good for standard genetic programming. New insights
into the behaviour of geometric semantic genetic programming are also
generated.

Keywords: Automated trading · Commodity · Exchange rate · Index ·
Genetic programming · Semantics · Fitness landscape · Hill-climbing

1 Introduction

Trading on financial markets is an important problem in its own right, and an
interesting and difficult test problem for machine learning methods. It is a source
of unending difficulty because of feedbacks between traders: each trader changes
the environment for others, so no particular solution can win in the long run.

It is common to cast trading as a regression problem, where the goal is to
predict the next price in a time series in terms of the current price and some
lagged prices. Trading proceeds by interpreting negative predictions as short
signals and positive predictions as buy signals.

A standard method of time-series modelling is ARIMA, the auto-regressive
integrated moving average [11]. ARIMA and related methods use linear combi-
nations of the lagged time-series. The autocorrelation is used to indicate which
lags contain significant information, in the form of linear correlations with the
c© Springer-Verlag Berlin Heidelberg 2014
A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2014, LNCS 8602, pp. 215–226, 2014.
DOI: 10.1007/978-3-662-45523-4 18

216 J. McDermott et al.

present value. If it is hypothesized that even lags which are not significantly
correlated with the present value may contain information which can by taken
advantage of by using them non-linearly and in combination, then there is a
motivation for using other non-linear regression methods.

Genetic programming symbolic regression (GPSR) is an example. In compar-
ison to a method like ARIMA, GPSR is more flexible, because it allows nonlinear
combination of variables. However it is less reliable, due to its stochastic nature.
For time series with simple structure, ARIMA will generally be faster and more
reliable, and will produce a simpler and more readable model. For more complex
time series, GPSR has the potential to out-perform ARIMA.

In recent years, several advances have been made in the state of the art in
GPSR. One example is the geometric semantic genetic programming (GSGP)
approach of Moraglio et al. [9], described in detail in Sect. 3.1. A geometric
semantic mutation operator causes the fitness landscape to become a cone, easily
searched using hill-climbing. However the GSGP operators bring about a very
large increase in the size of the trees produced, so it is interesting to consider
variations which avoid creating such large trees while retaining the geometric
property. We propose two new mutation operators (see Sect. 3.2). The first, one-
tree GSGP mutation, is very similar to the standard GSGP mutation operator,
but adds less genetic material at each mutation step, helping to keep trees small.
The other, optimal-step GSGP mutation, also uses this idea, and also chooses an
optimal mutation step-size at each step: this may allow the search to approach
the optimum much faster, requiring fewer steps, so that again the tree eventually
produced has accumulated fewer nodes.

It is interesting to test GSGP in financial trading because it has not yet,
to our knowledge, been tested on financial data or on any type of time-series
modelling. In this paper we compare ARIMA, GSGP, and a standard GP hill-
climber. We run our tests over 3 datasets of 1400 points each, derived from Gold,
GBP/USD, and S&P500 markets.

Sect. 2, next, describes some related work. The GSGP methods are described
in Sect. 3. Experiments and results are given in Sect. 4; Sect. 5 analyses these
results; and Sect. 6 gives conclusions and future work.

2 Related Work

Many authors have used evolutionary methods, and particularly GP, for financial
trading: see [2,3] and references therein. Previous work has shown the potential
benefit of exploring new GP representations in particular [1]. Out-performing a
buy-and-hold strategy was found to be surprisingly difficult by several authors
as described by Lohpetch and Corne [5]. They can more reliably out-perform
buy-and-hold when trading at a monthly level, with less reliability when trading
daily. They do not attempt 5-minute trading as in the current paper.

The GSGP method was developed by Moraglio et al. [9]. It is rooted in the
unifying theory of geometric operators [8]. A geometric mutation operator pro-
duces new individuals distributed in a ball surrounding the original. A geometric

Geometric Semantic Genetic Programming for Financial Data 217

crossover operator produces children distributed in the line segment between the
two parents. The radius of the ball, and the line segment, are defined using a suit-
able metric. In the case of geometric semantic GP, the metric is on the semantic
space of programs. In this space, each element is a vector of the outputs from
some program on the vector of fitness cases. The key achievement of Moraglio
et al. [9] in relation to GPSR is to define mutation and crossover operators which
are geometric according to Euclidean distance on the semantic space. Because
symbolic regression fitness is equivalent to Euclidean distance from the target
in the semantic space, the fitness landscape becomes a cone. This means that
search will encounter no local optima and can proceed reliably and efficiently,
an important step forward for GP.

In fact, the absence of local optima, and the consensus of previous results [9,
12], suggests that a hill-climber is a sufficient search algorithm: a population and
a crossover operator are unnecessary. Standard GP, using the subtree mutation
operator, also encounters no local optima. For this paper, then, we consider
mutation and hill-climbing only.

GSGP has previously been used for symbolic regression on real-world data
[12]. However, the results achieved there were no better than predicting a con-
stant for all data points1. On the other hand, the fact that the landscape becomes
a cone promises very good performance; and results on randomly-generated sym-
bolic regression problems have been very good [9].

One disadvantage of the GSGP operators is that they bring about a very
large increase in the size of the trees produced. The mutation operator adds two
random trees plus four nodes to the tree at each step. The new variants proposed
in the following sections aim to mitigate this.

3 GP, GSGP, and Variations

A key concept in understanding GSGP is semantic space. Individuals’ values
on the vector of fitness cases give their position in semantic space. For example,
consider a dataset of three input variables x0, x1, and x2, and one output variable
y, with 2 fitness cases:

x0 x1 x2 y
Fitness case 0 3 4 1 10
Fitness case 1 7 8 2 12

Consider an individual (* x0 x1). Its values on the two fitness cases are (12, 56).
These two values give the individual’s position in the 2-dimensional semantic
space, which is depicted in Fig. 1. The target y = (10, 12) is also a point in
semantic space.

1 For example, for a problem in predicting the bioavailability of certain drugs [12], the
mean of the target values on all fitness cases is approximately 66.4%. Predicting this
value for all fitness cases produces a fitness value of 30.4%.

218 J. McDermott et al.

Fitness
case 0

Fitness
case 1

y

t

t+s(t1-t2)

Fitness
case 0

Fitness
case 1

y

t1

t
t+st1

Fitness
case 0

Fitness
case 1

y

t1

t
t+st1

GSGP One-tree Optimal-step

Fig. 1. GSGP and variations. Individuals are shown in the semantic space. In a dataset
of two fitness cases, an individual’s values on the two cases give its position in this space.
In GSGP, left, the tree resulting from a mutation is expected to lie in a ball surrounding
the original (in semantic space). The same is true of one-tree GSGP, centre. In one-tree
optimal-step GSGP, right, the optimal value of the mutation step size s is found, in
order to scale the effect of the new random tree and bring the resulting tree as close
to the optimum as possible. The new random tree t1 is seen as a vector with a fixed
direction. Changing the scalar moves the resulting tree back and forth along a line
through t parallel with that vector. Choosing the optimal s brings the new point as
close as possible to the target y.

3.1 GSGP

The GSGP mutation operator for symbolic regression problems [9] works by
taking the difference of two randomly-generated trees t1 and t2, scaled by a
positive constant s giving the step-size, and combining that with the original
tree t, to give a new tree tnew as shown in Fig 2.

Fig. 2. The new tree produced by the GSGP mutation
operator: tnew = t + s(t1 − t2) t1

t

s

*

-

+

t2

In the semantic space, the new individual is distributed in a ball of radius s,
because for each dimension of the semantic space, the added tree (t1 − t2) has
expected value 0. See Fig. 1. One disadvantage of the operator, mentioned in
previous work [12], is that the resulting tree grows by 4 + |t1| + |t2| nodes per
step, where | · | indicates the number of nodes in a tree. The 4 comes from the
s, +, −, and ∗ nodes.

Geometric Semantic Genetic Programming for Financial Data 219

Running for many generations then results in very large trees, which have
some disadvantages. They are for practical purposes unreadable. They require
very large CPU and memory resources, though correct implementation can mit-
igate this issue: Moraglio et al. [9] avoid storing the trees themselves by restrict-
ing attention to a space of polynomials in which simplification of large trees is
automatic; the implementation of Vanneschi et al. [12] uses pointers to previous
results; our implementation2 uses memoisation [7]. Large trees are often also
associated with a decrease in generalisation ability (i.e. overfitting), but this is
shown by Vanneschi et al. [12] to be bounded above.

3.2 Novel GSGP Variations

It is interesting to consider variations on the GSGP mutation operator, with the
goal of avoiding the large trees it produces, but retaining the beneficial geometric
property.

We propose a one-tree GSGP mutation operator which instead uses only a
single new random tree and draws s from a normal distribution centred at 0:

tnew = t + st1

For each dimension, the tree st1 has expected value 0, because of the distribution
of s. This operator adds 3 + |t1| nodes per step, so it approximately halves the
number of nodes in the eventual result.

We also propose an optimal-step one-tree GSGP mutation operator, defined
by the same equation as the one-tree operator, which again uses only one new
random tree, and again adds 3 + |t1| nodes per step. The difference is that
instead of drawing s from a normal distribution, it finds the optimal value for
s at each mutation event. The optimal value of s is the positive or negative
constant which minimises the distance of the resulting tree from the optimum.
This value can be calculated by differentiation. In the following, y is the target
vector in semantic space, i.e. the vector of target values at the fitness cases; t
and t1 are to be interpreted as the vectors of the corresponding tree’s outputs
at the fitness cases. Multiplication and other operators are to be interpreted
element-wise.

The distance of the resulting tree from the optimum, which we wish to min-
imise, is RMSE(y, t + st1). Minimising RMSE is equivalent to minimising MSE.

MSE(y, t + st1) = mean((y − (t + st1))2)

= mean(((y − t) − st1)2)

= mean((y − t)2 − 2(y − t)st1 + s2t21)

2 All code and data used in this study is available for download from https://github.
com/jmmcd/PODI.

https://github.com/jmmcd/PODI
https://github.com/jmmcd/PODI

220 J. McDermott et al.

To find the optimal s, we differentiate with respect to s:

d(MSE)/ds = mean (−2(y − t)t1 + 2st21)

= −2 mean((y − t)t1) + 2s mean(t21)

This is zero when:
2 mean((y − t)t1) = 2s mean(t21)

Therefore the optimum value for s is:

s = mean((y − t)t1)/mean(t21)

All the values t and t1 are known; in the symbolic regression setting, the values y
are also known. Therefore, the optimal value of s can be calculated. This results
in using the new random tree t1 to always step in the direction of the target
vector in semantic space (not guaranteed using the other mutation operators);
and to take the step of precisely the right length, to minimise the new distance
to the target vector. The process is visualised in Fig. 1.

A GP method using a standard GP mutation operator, or the GSGP or
GSGP-one-tree operators, is black-box: it requires only the ability to call the
fitness function. In contrast, GSGP-optimal-ms requires knowledge of the values
y, and so is not a fully black-box method.

3.3 Standard GP

As a control we also used a GP operator which is not geometric in the semantic
space: the subtree mutation of standard GP. In our implementation, subtree
mutation cuts at any node (even the root), and replaces with a new subtree
created using the grow method. Again, we use a mutation-only hill-climber. Due
to the ability to cut even at the root, the subtree mutation operator can, by itself,
reach any point in the search space; and it induces a landscape with no local
optima. GP hill-climbing is known to perform surprisingly well [10]. It provides
a direct comparison with the GSGP hill-climbers.

4 Experiments and Results

4.1 Trading Strategy

We cast trading on time series as a symbolic regression problem. GP attempts
to predict the time series as a function of the lagged variables. More precisely,
we use the log-returns time series Lt = log(vt/vt−1). The goal is to estimate a
function f(x) = Lt, x = (Lt−19, Lt−18, . . . , Lt−1).

The predictor is operationalised as a trader with a simple strategy: at each
time-step either a long or short position is opened, depending on the sign of the
predicted log-return. It is closed at the next time-step and returns are collected.
The returns consist of the simple return rt = (vt−vt−1)/vt−1 if the open position

Geometric Semantic Genetic Programming for Financial Data 221

was long, or the negative of the simple return if the open position was short. This
is summarised by saying the returns are sgn(L̂t)rt. The returns are accumulated
over time. Such a model is useful only for testing, since it ignores real-world
issues such as trading costs and interest.

We also define the classification accuracy CA = #(sgn(L̂t) = sgn(Lt))/N ,
i.e. the proportion of time-steps on which the predicted sign is correct.

4.2 Experimental Setup

Three price histories were used: Gold (GOLD), GBP/USD (GU), and the Stan-
dard & Poor 500 index (SP500), each taken at 5-minute intervals for 1400 time-
steps. (1-hour data was also considered, but discarded after pilot experiments
on the theory that the structure in the time series being exploited by GP was
rather short-term.) The data is available for download: see https://github.com/
jmmcd/PODI. The log-return at time-step t was calculated as log(vt/vt−1). The
data was split into training and test data (418 test points), omitting the first 19
points for use as lags.

Two baselines were used. For each dataset we calculate an ARIMA model
using the R function auto.arima, available in the forecast package. It auto-
matically chooses the model order to minimise the AIC (Akaike information
criterion). For our datasets, it chose ARIMA models as follows: GOLD (3, 0, 3),
GU (4, 0, 1), and SP500 (2, 0, 2). The first integer indicates the auto-regression
order, the second the degree of differencing, and the third the moving aver-
age order. In all cases the degree of differencing is zero, as expected because
the log-return time series is stationary. Having chosen these models, it then fits
the model using the training sets. Accumulated returns are calculated over the
testing set. For each dataset we also calculate the returns accumulated using a
buy-and-hold strategy over the testing set.

The GP alphabet consists of one variable for each of 19 lags, the constants
-1, -0.1, 0.1, and 1, and the functions +, -, *, /, sin, sqrt, and square. A fitness
evaluation budget of 20,000 was used, with 40 generations of 500 individuals
each. At each generation a single best individual was selected as the parent of
the next generation. For GP subtree mutation, a maximum depth of 12 was used.
For GSGP, the mutation step was s = 0.001, as used by Moraglio et al. [9] and
found to perform well by Vanneschi et al. [12].

Previous work [9,12] has not reported the algorithm or parameters used to
generate the trees t1 and t2, but it is likely that non-trivial trees are being
generated. We use the grow algorithm. Pilot experiments found that using a
maximum depth of 3 offered no advantage over a maximum depth of 2, so 2
is used in all experiments to be reported (a tree of a single node is counted as
depth 0, so maximum depth 2 allows a tree of up to 7 nodes).

The hypotheses to be tested are:

– Can any GP/GSGP methods out-perform the buy-and-hold and ARIMA
baselines in trading on test data?

– Which of the GP/GSGP methods performs the best?

https://github.com/jmmcd/PODI
https://github.com/jmmcd/PODI

222 J. McDermott et al.

4.3 Results

Table 1 shows the main results. For each dataset, the ARIMA and buy-and-hold
performance are shown first. For each type of mutation (GP, GSGP, GSGP-one-
tree, GSGP-optimal-ms), the best run out of 30 (chosen by classification accuracy
on the training set) is then considered. Its classification accuracy on training and
test sets is shown. Finally, a 0 or 1 indicates whether its accumulated returns
after 50, 100, and then all 418 time-steps of the test data have out-performed
both ARIMA and buy-and-hold.

Table 1. Results. ARIMA and buy-and-hold performance are shown for each market.
For GP, GSGP, and variants, the best result out of 30 runs, as measured by classification
accuracy on the training set, is shown. Its classification accuracy on the training set
and test set are shown (CA train and CA test), followed by a 0 or 1 indicating whether
its returns were better than both ARIMA and buy-and-hold after 50, 100, or all 418
time-steps of the test data.

Market Method CA (train) CA (test) R@50 R@100 R@End

GOLD5m Buy and hold n/a n/a -0.00070 -0.00071 0.00026
ARIMA 0.54 0.54 0.00432 -0.00464 0.01367
GP 0.61 0.59 0 0 0
GSGP 0.58 0.57 0 0 0
GSGP-one-tree 0.57 0.58 1 0 0
GSGP-optimal-ms 0.58 0.58 1 0 0

GU5m Buy and hold n/a n/a -0.00040 -0.00005 0.00016
ARIMA 0.50 0.50 -0.00177 -0.00200 0.00095
GP 0.56 0.59 0 0 1
GSGP 0.55 0.59 1 1 1
GSGP-one-tree 0.57 0.54 1 0 1
GSGP-optimal-ms 0.58 0.55 1 1 1

SP5005m Buy and hold n/a n/a 0.00000 0.00044 -0.00076
ARIMA 0.64 0.65 -0.00051 -0.00145 -0.00089
GP 0.78 0.80 1 0 1
GSGP 0.65 0.65 0 1 0
GSGP-one-tree 0.67 0.62 1 0 0
GSGP-optimal-ms 0.65 0.64 0 0 0

The results show that GP and the GSGP variants can perform well. Classifi-
cation accuracy is 54-65%, with an exceptional 80%, on the test data: enough to
accumulate positive returns in trading and out-perform the classification accu-
racy achieved by ARIMA. Note that each of GP and the GSGP variants are
represented by a single individual here, hence no statistical test is carried out.

However the returns accumulated by the ARIMA method can be quite good,
in particular on the GOLD dataset. Its performance near the end of the test
data is unbeatable using GP or GSGP variants. The trading performance on the
GOLD dataset is shown in Fig. 3. However, in other cases both ARIMA and
buy-and-hold can be beaten (indicated by a 1 in the final three columns).

Geometric Semantic Genetic Programming for Financial Data 223

Accumulated returns using the GP/GSGP methods are particularly strong,
and more reliable, in the short term – up to about 50 time-steps. This suggests
that a good strategy is to retrain the model frequently with up-to-date data.
This tends to confirm the previously-stated theory that the 1-hour data is less
amenable to GP/GSGP learning.

(a) GP (b) GSGP

(c) One tree (d) Optimal step

(e) ARIMA/BH

Fig. 3. Returns on the Gold 5-minute data with ARIMA and buy-and-hold shown for
comparison. Many of the GP/GSGP variants do well early on, but ARIMA’s perfor-
mance near the end of the trading period is very good.

Fig. 3 shows the accumulated returns on the Gold data only. As shown,
ARIMA does well in the first 50 time-steps, then quite badly before achieving
large gains near the end. The buy-and-hold strategy does not do well with these
datasets, because there is no consistent upward trend. Neither is there a con-
sistent downward trend, so a “sell-and-hold” strategy would not perform well

224 J. McDermott et al.

either. Buy-and-hold and “sell-and-hold” are equivalent to predicting constant
True and constant False, respectively.

Next, the different GP mutation types were compared. Two out-of-sample
criteria were used: the classification accuracy on the test set (higher is better)
and the returns after 50 time-steps of the test set (higher is better). Mann-
Whitney U tests were used, to avoid requiring an assumption of normality. The
significance threshold was α = 0.05. For each dataset, 6 pairwise tests were
performed (GP v GSGP, GP v GSGP-one-tree, GP v GSGP-optimal-ms, etc.)
A Bonferroni correction was applied, in other words p-values were multiplied by
6 to compensate for the multiple tests. Results are shown in Table 2.

Table 2. Comparison of GP mutation types. The ordering of the median value is shown
as < if the difference is non-significant and as <<< if significant. GSGP-one-tree is
notated as “1t” and GSGP-optimal-ms as “Opt”.

Data Criterion

GOLD CA Opt < 1t < GSGP <<< GP
GOLD R@50 GP <<< GSGP < Opt < 1t
GU CA GP < 1t <<< Opt <<< GSGP
GU R@50 1t < Opt <<< GSGP < GP
SP500 CA Opt < GSGP < 1t <<< GP
SP500 R@50 Opt <<< GSGP < GP < 1t

The two criteria (classification accuracy and Returns@50) often disagreed
in the ordering of the values. In fact, results are very mixed: all four mutation
types “won” at least once, counting cases where two “winners” tied with non-
significant differences. However, in summary it seems that GP has performed
quite well, certainly holding its own overall against the GSGP variants; whereas
the GSGP-optimal-ms method has not demonstrated any great advantage, at
least using these two out-of-sample criteria.

One possible interpretation of the results is that the time series contain a
limited amount of structure to be exploited by learning methods, and that both
ARIMA and standard GP are sufficient to capture most of this structure. Hence
the extra modelling ability of GSGP, seen in previous work, is unneeded.

The improvement in fitness over the generations (not shown for lack of space)
is relatively slight for all GP/GSGP methods. Again, this suggests that whatever
structure is present is being exploited easily in the early generations, and that
longer evolution is not needed.

The computational time required for the different methods was not recorded.
However, all GP methods are roughly comparable in this, and are far slower than
deterministic methods such as ARIMA.

5 Discussion

One interesting effect of the GSGP variants was observed in pilot experiments.
GSGP is “greedy”: once added, a subtree cannot be deleted from a GSGP

Geometric Semantic Genetic Programming for Financial Data 225

individual. If a subtree displays a division by zero or other “pathological”
behaviour known to occur in GP [4], it may be difficult for evolution to counter-
act, and performance on the entire run may be affected. Usually, such subtrees
are simply not selected, so the problem does not arise. However, GSGP and
variants are vulnerable to a poor choice of initial individual. If it is chosen ran-
domly, there may be a substantial probability of choosing a subtree of patholog-
ical behaviour. Instead, it is safer to select the initial individual from an initial
population. Experiments to measure the size of this effect are ongoing.

Previous work has not exhibited any solution trees produced using GSGP
methods. The trees produced by [12] were too large to reconstruct on computer,
never mind in print. The individuals evolved by [9] used the functions +, -, and *
only, so implicit simplification into polynomials was possible, so the trees’ “true
form” (i.e. the form produced prior to simplification) could be avoided. That
simplification is not possible with our alphabet. So, it is interesting to look at an
example tree produced using the GSGP-one-tree variant after just three steps
(random constants have been rounded off):

(+ (+ (+ (* (/ x3 0.1) (sin x0)) (* 1.346 (* (/ x0 x5) (sin -0.1))))

(* -0.0506 (+ (+ x6 x1) x1))) (* 0.165 (sin (sin x3)))).

It is a linear combination of random subtrees, with both positive and nega-
tive coefficients. GSGP-optimal-ms produces trees of similar form. The original
GSGP method also produces a linear combination of random subtrees, though
using both addition and subtraction, and with all coefficents equal to 0.001. In
fact, it is useful to see GSGP and variants as ad-hoc approaches to generalised
linear models (GLMs). This relationship has not been explored in previous work.
It suggests that previous research into using GP in a GLM context is of relevance,
in particular the Fast Function Extraction system of [6].

The form of trees produced by GSGP and variants may be limiting. They
cannot use non-linear behaviour at the root. Although non-linearities arise in
the random subtrees, these are crucially never subject to gradual improvement,
only re-weighting.

6 Conclusions and Future Work

Although somewhat mixed, our results are perhaps the first positive results using
GSGP on real-world data. We have shown that GP, GSGP, and variants can
perform well out-of-sample over short time horizons. The novel GSGP variants
produce smaller trees, relative to the original GSGP. It is clear that for each
setup, some runs (out of 30) are far more successful than others. Therefore,
future work will consist of using a validation dataset to pick out the individuals
created during the most successful runs, and then trade on the test set only using
those. In the meantime, using the best classification accuracy on the training set
to choose the best runs seems to work well.

226 J. McDermott et al.

References

1. Agapitos, A., O’Neill, M., Brabazon, A.: Stateful program representations for
evolving technical trading rules. In: Proceedings of the 13th Annual Conference
Companion on Genetic and Evolutionary Computation GECCO, pp. 199–200.
ACM (2011)

2. Brabazon, A., O’Neill, M.: Biologically inspired algorithms for financial modelling.
Springer, Berlin (2006)

3. Brabazon, A., O’Neill, M.: Natural computing in computational finance, vol. 1-3.
Springer (2008)

4. Keijzer, M.: Improving symbolic regression with interval arithmetic and linear scal-
ing. In: Ryan, C. et al. (eds.): EuroGP 2003. LNCS, vol. 2610, pp. 70–82. Springer
Heidelberg (2003)

5. Lohpetch, D., Corne, D.: Outperforming Buy-and-Hold with Evolved Technical
Trading Rules: Daily, Weekly and Monthly Trading. In: Di Chio, C., Brabazon,
A., Di Caro, G.A., Ebner, M., Farooq, M., Fink, A., Grahl, J., Greenfield, G.,
Machado, P., O’Neill, M., Tarantino, E., Urquhart, N. (eds.) EvoApplications 2010,
Part II. LNCS, vol. 6025, pp. 171–181. Springer, Heidelberg (2010)

6. McConaghy, T.: FFX: Fast, scalable, deterministic symbolic regression technology.
In: Genetic Programming Theory and Practice IX, pp. 235–260. Springer (2011)

7. Michie, D.: Memo functions and machine learning. Nature 218(5136), 19–22 (1968)
8. Moraglio, A.: Towards a geometric unification of evolutionary algorithms. Ph.D.

thesis, University of Essex (November 2007). http://eden.dei.uc.pt/∼moraglio/
9. Moraglio, A., Krawiec, K., Johnson, C.G.: Geometric Semantic Genetic Program-

ming. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M.
(eds.) PPSN 2012, Part I. LNCS, vol. 7491, pp. 21–31. Springer, Heidelberg (2012)

10. O’Reilly, U.M., Oppacher, F.: Program search with a hierarchical variable length
representation: Genetic programming, simulated annealing and hill climbing. In:
Davidor, Y., Schwefel, H.P., Manner, R. (eds.) Parallel Problem Solving from
Nature - PPSN III. LNCS, vol. 866, pp. 397–406. Springer, Jerusalem (1994).
http://www.springer.de/cgi-bin/search book.pl?isbn=3-540-58484-6

11. Tsay, R.S.: Analysis of financial time series, 3rd edn. Wiley, Hoboken (2010)
12. Vanneschi, L., Castelli, M., Manzoni, L., Silva, S.: A New Implementation of Geo-

metric Semantic GP and Its Application to Problems in Pharmacokinetics. In:
Krawiec, K., Moraglio, A., Hu, T., Etaner-Uyar, A.Ş., Hu, B. (eds.) EuroGP 2013.
LNCS, vol. 7831, pp. 205–216. Springer, Heidelberg (2013)

http://eden.dei.uc.pt/~moraglio/
http://www.springer.de/cgi-bin/search_book.pl?isbn=3-540-58484-6

On PBIL, DE and PSO for Optimization
of Reinsurance Contracts

Omar Andrés Carmona Cortes1(B), Andrew Rau-Chaplin2, Duane Wilson2,
and Jürgen Gaiser-Porter3

1 Instituto Federal do Maranhão, São Luis, MA, Brasil
omar@ifma.edu.br

2 Risk Analytics Lab, Dalhousie University, Halifax, NS, Canada
arc@cs.dal.ca, dwilson@gmail.com

3 Global Analytics, Willis Group, London, UK
gaiserporterj@willis.co

Abstract. In this paper, we study from the perspective of an insur-
ance company the Reinsurance Contract Placement problem. Given a
reinsurance contract consisting of a fixed number of layers and a set of
expected loss distributions (one per layer) as produced by a Catastrophe
Model, plus a model of current costs in the global reinsurance market,
identifying optimal combinations of placements (percent shares of sub-
contracts) such that for a given expected return the associated risk value
is minimized. Our approach explores the use bio-inspired metaheuristics
with the goal of determining which evolutionary optimization approach
leads to the best results for this problem, while being executable in a
reasonable amount of time on realistic industrial sized problems.

Keywords: Reinsurance Analytics · Reinsurance Contract Placement ·
Particle Swarm Optimization · Differential Evolution · Population-Based
Incremental Learning · Financial Risk · Optimization

1 Introduction

Risk hedging strategies are at the heart of prudent risk management. Individuals
often hedge risks to their property, particularly from infrequent but expensive
events such as fires, floods and robberies, by entering into risk transfer contracts
with insurance companies. Insurance companies collect premium from those indi-
vidual with the expectation that at the end of the year they will have taken in
more money than they have had to pay out in losses and overhead, and there-
fore remain profitable or at least solvent. Perhaps not surprisingly insurance
companies themselves try to hedge their risks, particularly from the potentially
enormous losses often associated with natural catastrophes such as earthquakes,
hurricanes and floods. Much of this hedging is facilitated by the global “prop-
erty cat” reinsurance market [1], where reinsurance companies insure primary
insurance companies against the massive claims that can occur due to natural
catastrophes.
c© Springer-Verlag Berlin Heidelberg 2014
A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2014, LNCS 8602, pp. 227–238, 2014.
DOI: 10.1007/978-3-662-45523-4 19

228 O.A.C. Cortes et al.

Analytics in the reinsurance market is becoming increasingly complex for at
least three reasons. Firstly, factors like climate change are skewing the data in
ways that are not fully understood making experience a less useful guide in deci-
sion making. Secondly, the global distribution of economic activity is changing
rapidly with key supply-chain now having significant exposure to parts of the
world where catastrophic risk is less well understood. For example, few in 2011
understood that a Thailand flood event could cost $47 Billion USD in property
losses and cause a global shortage of hard disk drives that lasted throughout
2012. Lastly, there is a tendency for risk transfer contracts to become ever more
complex, in large part by increasing the number of sub-contracts (called layers)
that make up a contract. This in turn makes it increasingly important to have
good computational tools that can help underwriters understand the interaction
between layers and to decide on placement percentages, that is which layers to
buy and how large a share or percentage of them to buy, in order to minimize
risk for a given expected return.

In this paper, we study from the perspective of an insurance company the
Reinsurance Contract Placement problem. Given a reinsurance contract consist-
ing of a fixed number of layers and a set of expected loss distributions (one per
layer) as produced by a Catastrophe Model [2], plus a model of current costs in
the global reinsurance market, identifying optimal combinations of placements
(percent shares of sub contracts) such that for a given expected return the associ-
ated risk value is minimized. Our approach is to explore the use of metaheuristics
(evolutionary and swarm algorithms) with the goal of determining which app-
roach leads to the best results for this problem, while being executable in a
reasonable amount of time of realistic industrial sized problems.

There are many bio-inspired metaheuristics that can be applied to optimize
problems like this, such as Particle Swarm Optimization (PSO) [3], Differential
Evolution (DE) [4,5], Genetic Algorithms (GA) [6], Evolution Strategies (ES) [7]
and Population-Based Incremental Learning (PBIL) [8]. Indeed, the broader area
of computational finance is a field that has been gaining attention lately in the
evolutionary computation community driven by the increasing availability of
financial data for analysis and improvements in computer processing power [9].
Some notable examples of metaheuristics in computational finance include [9],
[10], [11], [12].

Recently, risk and reinsurance problems have also been tackled using bio-
inspired algorithms such as in [13], [17] and [14]. Here the focus has been
on stop loss and ruin predictions, a somewhat different problem than the con-
tract placement problem studied in this paper. The initial work on contract
placement [15] which has been applied in an industrial setting used a paral-
lel discretized enumeration method. Unfortunately, while this method worked
well when the number of layers was small (for example 2-5 layers), it expe-
rienced exponentially growing runtimes as the number of layers is increased.
For instance, a problem with just 7 layers and using a discretization of 5%
requires more than a week to be solved using an R-based implementation of this
method, while problems of more than 7 layers or finer discretization might run

On PBIL, DE and PSO for Optimization of Reinsurance Contracts 229

for months or years and are therefore practically infeasible. Initial work address-
ing the Reinsurance Contract Placement problem using evolutionary techniques
was described in [16]. The approach taken was to compare the Population-Based
Incremental Learning (PBIL) [8] method to the previously studied enumeration
method to try and determine if the evolutionary method could find results that
were comparable in quality to the exact enumeration approach, and if the use of
PBIL would allow larger problems, that is those with more layers, to be solved
in a feasible amount of time. While [16] demonstrated that PBIL worked for this
problem it generated as many questions as it answered. For example, 1) is PBIL
the best approach or would newer evolutionary methods like PSO, or DE be bet-
ter? 2) How good are the results in high dimensions given that we have no other
method to compare against?, and 3) what values for key parameters like number
of iterations or population size work best for each method and at what point do
the benefits of larger values (and corresponding larger run-times) diminish? It
is these questions that this paper sets out to answer. In the remainder of this
paper, we first formally define our reinsurance contract placement problem in
Section 2. Then we describe the evolutionary methods PSO, DE and PBIL in
Section 3. Thereafter, we present a detailed performance analysis comparing our
results in terms of quality and performance on real-world data, in Section 4.

2 The Reinsurance Contract Placement Problem

Insurance organizations, with the help of the global reinsurance market, look to
hedge their risk against potentially large claims, or losses [1]. This transfer of risk
is done in a manner similar to how a consumer cedes part of the risk associated
with their private holdings. However, unlike the case of the consumer, who is
usually given options as to the type of insurance structures to choose from, the
insurer has the ability to set its own structures and offers them to the reinsur-
ance market. Involved in this process are decisions around what the type and
the magnitude of financial structures, such as deductibles and limits, as well as
the amount of risk the insurer wishes to maintain. The deductible describes the
amount of loss that the insurer must incur before being able to claim a loss to the
reinsurance contract, the limit describes the maximum amount in excess of
the deductible that is claimable and the placement describes the percentage
of the claimed loss that will be covered by the reinsurer.

In the reinsurance placement problem an insurer given a fixed number of lay-
ers and loss distributions is then faced with the problem of selecting an optimal
combination of placements. As with most financial structures, the central prob-
lem is in selecting an optimal proportion, or placement, of each layer such for
a given expected return on the contracts the associated risk is minimized. This
means, from the perspective of the insurer, they wish to maximize the amount
claimable for a given risk value. In doing so they minimize amount of loss the
insurer may face in a year. This formulation leads to a optimization problem as
depicted in Equation 1.

230 O.A.C. Cortes et al.

maximize V aRα(R(π))
s.t. E(R(π)) = a

(1)

Given that the expected return a is specified in Equation 1 we can rewrite it
as a Pareto Frontier problem as shown in Equation 2, where q is a risk tolerance
factor greater than zero. More details about the math involved in this particular
optimization problem can be seen in [1], [20] and [16].

maximize V aRα(R(π)) − qE(R(π)) (2)

3 Evolutionary/Swarm Algorithms

Evolutionary/Swarm algorithms are population-based stochastic algorithms that
originate from nature and provide attractive features for solving both continuous
and discrete problems [24]. In this section we briefly describe the three meta-
heuristics we will be evaluating for treaty placement problem.

3.1 Differential Evolution

The Differential Evolution (DE) was proposed by Rainer Storn and Kenneth
Price in 1995 [4,5] to solve optimization problems [21]. The basic structure of
the approach is given in the Algorithm 1, in which F is the scaling vector within
the domain [0, 2] and CR is the crossover rate. Initially, a population of real-
coded individuals XD

i = (x1
i , x

2
i , ..., x

D
i) is randomly created within the domain

[aD
i , bD

i] where D represents the problem dimension. Then a vector of differences
is created based on the equation x

′
i = x3

i +F × (x2
i −x1

i), where three member of
the population are selected at random, x1

i ,x
2
i and x3

i . As we can see, F is used to
weight the contribution of the vectors x2

i and x3
i . This calculation is commonly

referred as mutation.
Actually, each gene of an individual(n) is chosen taking into account the

Crossover Rate (CR), i.e., if the random number is less than CR then the new
gen assumes the value computed by the vector of differences, otherwise the new
gene is the same of xi, where i is the index of the individual that can be replaced
in the current population. The new individual will replace the current one only
if the new one has the best fitness. This strategy is called DE/rand/1/bin. If the
best individual is used for creating the vector of differences the strategy is called
DE/best/1/bin.

3.2 Particle Swarm Optimization

The particle swarm optimization was firstly proposed by Kennedy and Eber-
hart [3] also in 1995. The algorithm consists of particles that are placed into the
search space. Each particle moves combining some aspects of its own history posi-
tion and the global position. All particles move around the search space and prob-
ably the swarm will move towards the potential optimum in the next iterations.

On PBIL, DE and PSO for Optimization of Reinsurance Contracts 231

Generate a population X of size n within the domain [ai, bi]
for i = 1 to pop size do

Choose 3 individuals of population x1
i ,x

2
i and x3

i

x
′
= x3 + F × (x2 − x1)

for j = 1 to D do
Chose a number r at random within [0, 1]
if (r < CR) then

nij = x
′
j

else
nij = xj

end

end
if (f(ni) < f(xi)) then

xi = ni

end

end

Algorithm 1. Differential Evolution(DE)

A particle represents a position in the search space as XD
i = (x1

i , x
2
i , ..., x

D
i).

Further, a particle has a velocity V D
i = (v1

i , v2
i , ..., vD

i) which is used to deter-
mine its new position in the next iteration, where D represents the problem
dimension. The new position is determined by means of the Equations 3 and 4,
where w represents the inertia weight, cl and c2 are acceleration constants, rl

and r2 are random number in the range [0, 1], pd
i is the best position reached by

the particle P , and gd is a vector stores the global optima of the swarm so far.

vd
i = w × vd

i + c1r1 × (pd
i − xd

i) + c2r2 × (gd − xd
i) (3)

xd
i = xd

i + vd
i (4)

The Algorithm 2 outlines how PSO works. Initially, the swarm is created at
random, where each particle has to be within the domain [ad

i , b
d
i]. Then particles

are evaluated in order to initialize the P matrix and the gd vector, which are
the best experience of each particle and the best solution that has been found
up to now, respectively. Thereafter, the velocity and the position of a particle
are updated within a loop that obeys some stop criteria.

3.3 Population-Based Incremental Learning

Population based incremental learning (PBIL) was first proposed by Baluja [8]
in 1994. In the original version of the algorithm, the population were encoded
using binary vectors and an associated probability vector, which was then updated
based on the best members of a population. Unlike other evolutionary algorithms,
a new population is generated at random using the updated probability vector for
each generation. Since Baluja’s initial work, extensions to the algorithm have been
proposed for continuous and base-n represented search spaces [19,22].

232 O.A.C. Cortes et al.

Generate a swarm of particles X of size s from [ad
i , b

d
i] ;

for i = 1 to swarm size do
Evaluate swarm;
Update the best position g
Update p of the particles
for j = 1 to D do

Update velocity V using Equation 3
Update position X using Equation 4

end

end
Verify if the current g is better than the best of the current swarm

Algorithm 2. Particle Swarm Optimization (PSO)

Here we substitute the intervals for equidistant increments in the lower and
upper bounds of the search space. The Algorithm 3 describes the discretized
PBIL (DiPBIL) method used in this paper in terms of the following tunable
parameters: I = Number of Increments (i.e. the discretization), LR2 = Learning
Rate in base 2, NLR2 = Negative Learning Rate in base 2, MR = Mutation Rate,
MS = Mutation Shift and q = Number of best results to be used in updating.
In the same spirit as the original PBIL, the probability matrix is initialized
with all increments having an uniform distribution and is updated after every
generation with the best combinations member (see Algorithm 1). The updating
of each vector in the matrix, however, is done using the base-n method, with an
adjusted learning rate and updating function [23]. To ensure more population
diversity from across generations, the probability matrix is updated with best
member from previous generations as well as the top q members from the current
generation. This modifies the updating process as shown in Equation 5, where
LFijk is the ith learning factor, as described in [23], for the kth best result for
the jth variable.

for i = 1 to pop size do
Generate a population X of size n from Pij ;
Evaluate f = fun(X);

Find xbest
G from the current and previous populations;

Find xbest
i for top q-1 members of the current population;

Update Pij based on xbest
G ∪ xbest

i using LRN and NLRN ;

end

Algorithm 3. DiPBIL

pNEW
ij =

q∑
k=1

pOLD
ij

LFijk

q
(5)

On PBIL, DE and PSO for Optimization of Reinsurance Contracts 233

4 Experimental Results

In this section we compare the reinsurance contract optimization technique
against the three algorithms discussed previously, using an anonymized 7 layered
real world data set composed by information such as: recoveries, reinstatements,
loss table and rate on line (rol). Further, the level of discretization is 5%. Each
algorithm was executed 31 trials, thus we can guarantee that the distribution
of the outcomes of the experiments follows a normal distribution (central limit
theorem) [25], allowing us to make parametric tests. Further, the test has been
conducted considering three different number of iterations (500, 1000, 2000) and
three population sizes (100, 200, 400), leading the complete experiment to a 837
executions. The parameters were chosen empirically and all tests have been done
using R version 2.15.0 and RStudio on a Windows 7 64-bit Operating System
running on an Intel i7 3.4 Ghz processor, with 16 GB of RAM. The PBIL algo-
rithm was completely implemented in R language, whereas DE and PSO were
obtained from R packages. It is important to notice that the DE package for R
uses the strategy DE/best/1/bin. Moreover, the PSO package is based on the
implementation of SPSO 2007 [26].

4.1 Quality Analysis

The quality analysis comprises two parts. The first one makes a comparison
within each algorithm, i.e., we have tried to identify how the changes on both
the number of iterations and the population size affect the precision of a partic-
ular algorithm. The second one compares the quality of the solutions between
algorithms. All evaluations are supported by Analysis of Variance (ANOVA) and
Tukey test. Furthermore, the experiments aim to answer all questions which were
done in Section 1.

Comparison Within Metaheuristics. Table 1 presents the mean (average),
the best, the worst, and the standard deviation of the risk (in dollars) for the algo-
rithms considering a given expected return, where the best results are empha-
sized. The mean represents the average on 31 executions and results going toward
zero mean lower risk, therefore, better results. Doing so, we are answering the
second question. Each algorithm was evaluated for varying population size and
number of iterations. The results given by DE were omitted because no differ-
ences were found, the outcome -1014986645 was reached regardless the increas-
ing on both the number of iterations and the population size. Thus, considering
these results we can state the following observations: (i) The DE algorithm is
not sensitive neither to the number of iterations nor to the population size, get-
ting stuck in a local optima; (ii) PSO got some good results, however it can not
evolve properly as long as we increase both the number of iterations and the
population size, reaching the best value (-1014569720) at least once only with a
population size of 100; (iii) PBIL evolves properly and reaches the best solution
at least once in all configurations, allowing to find out a good Pareto frontier if
necessary.

234 O.A.C. Cortes et al.

Table 1. Results in terms of quality for PSO and PBIL

PSO

500 iterations

100 pop 200 pop 400 pop

Mean -1014797783 -1014914071 -1014894134
Worst -1014986645 -1016020335 -1014986645
Best -1014569720 -1014694720 -1014699862
Stdev 157117.8977 327431.8272 136276.6568

1000 iterations

Mean -1014848734 -1014912637 -1014931139
Worst -1014986645 -1014986645 -1014986645
Best -1014569720 -1014699862 -1014699862
Stdev 157584.0928 127561.8282 115174.7963

2000 iterations

Mean -1014964318 -1014977394 -1014977394
Worst -1016020335 -1014986645 -1014986645
Best -1014694720 -1014699862 -1014699862
Stdev 227266.6245 51507.73476 51507.73476

PBIL

500 iterations

100 pop 200 pop 400 pop

Mean -1015360605 -1015127063 -1014956575
Worst -1016280747 -1016176585 -1016176585
Best -1014569720 -1014569720 -1014569720
Stdev 723154.6754 552965.2035 432175.8289

1000 iterations

Mean -1015142297 -1015028435 -1014924013
Worst -1016176585 -1016176585 -1016020335
Best -1014569720 -1014569720 -1014569720
Stdev 617360.1748 503103.4937 347988.6081

2000 iterations

Mean -1015253346 -1015022019 -1014959747
Worst -1019014085 -1016020335 -1014986645
Best -1014569720 -1014569720 -1014569720
Stdev 904081.2636 364027.6174 104119.1131

Comparison Between Metaheuristics. The purpose of this experiment is to
compare the performance, in terms of quality, between algorithm, allowing us to
answer the first question. In order to do so, we define the number of iterations
and vary the population size. Figure 1 shows the average result of each algorithm,
where the graphs depict 500, 1000 and 2000 iterations, respectively. Considering
the number of iterations, the PSO algorithm presented the best overall results
using 500 iterations. An interesting thing to noticed is that as long as we increase
both the iteration number and the population size the algorithms tend to present
more similar results, however three observations have to be made: (i) PBIL shows
clearly how evolve itself as long as we change the population size; (ii) PSO starts
presenting better solutions than the other algorithms in the initial configurations,

On PBIL, DE and PSO for Optimization of Reinsurance Contracts 235

nonetheless the algorithm worse in terms of quality when the population size
changes; and (iii) as previously mentioned, DE gets trapped in a local optima.
In this context, if we applied an ANOVA test in all of those combinations, the
statistical meaning start disappearing when 2000 iterations and population size
of 200 are used which ends up answering the third question. In other words, using
a population size of 200 or 400 leads to similar outcomes. Moreover, extending
this statistical evaluations to the other configurations we will see that PSO and
DE some times provide similar quality of solution, whereas PBIL improves the
results based mainly on the variation of the population size.

Fig. 1. Results of the different AEs for 500, 1000 and 2000 iterations, respectively

4.2 Performance

It is important to be aware that both DE and PSO have implementations in C
language linked with R. Thus, we have used the compiler package 1 from R just
in our PBIL code in order to improve its performance as well. Figure 3 presents
the performance of the algorithms in terms of elapsed time.

It is clear that DE has the best performance in terms of time. On the other
hand, it is not possible to identify if the difference between PSO and PBIL is
significant. Thus, in order to compare theses algorithms we did a two-tailed t-
test with α = 0.01, where t has to be in the range [−1.645, 1.645] for accept the
null hypothesis (h0) we consider as “there are no differences between means”. As
illustrated in Table 2, we can observe that the null hypothesis is rejected in four
1 The compiler package improves the performance of R code creating a byte-code.

236 O.A.C. Cortes et al.

cases as follows: (i) 500 iterations and population size equals to 100: PBIL; (ii)
1000 iterations and population size equals to 200: PSO; (iii) 1000 iterations and
population size equals to 400: PSO; and, (iv) 2000 iterations and population
size equals to 100: PBIL.

Looking at the results we can state the compiler package is more efficient in
compiling the outer loop than the inner one, which deals with the population
size, this might be the reason why PBIL is faster with small populations and
higher number of iterations. Anyway, the PBIL presented a good performance
because it is not written in C, but in pure R.

Table 2. A t-test between PSO and PBIL

500 iterations

100pop Stdev 200pop Stdev 400pop Stdev

PSO 82.1648 9.7339 159.2845 7.4825 320.1658 13.57

PBIL-C 77.39 8.3282 160.74 46.8142 350.26 101.65

t 2.0752 -0.1709 -1.6339

1000 iterations

PSO 171.5858 12.2129 333.6309 17.7405 656.7248 21.46

PBIL-C 166.58 34.5330 368.35 102.0374 758.53 216.93

t 0.7609 -1.8665 -2.6002

2000 iterations

PSO 414.0819 75.7310 738.6980 77.8075 1475.4380 92.61

PBIL-C 344.11 86.4658 703.9 237.0902 1534.6525 444.91

t 3.3894 0.7764 -0.7254

In spite of using packages, parallel computing represents a viable alternative
in order to speedup the Pareto frontier calculation because points are computed
independently (one per given expected return). In this context, Figure 2 shows the
speedup obtained for each algorithm increasing the thread count. The experiment
was conducted in a SunBlade server x6440, with four Quad-core AMD Opteron
8384 (2.7GHz) processors and 32 GB Ram, running Red Hat Enterprise Linux 4.8.

Fig. 2. The achieved speedup increas-
ing the thread count

Fig. 3. Performance of the evolution-
ary algorithms

On PBIL, DE and PSO for Optimization of Reinsurance Contracts 237

As we can see in the Figure 2, the best speedup was reached by the PBIL
algorithm, where 8 threads leaded to a speedup close to 6. DE and PBIL had
similar outcomes until 4-5 threads and then PBIL start improving a little faster.
Whereas PSO presented the worse efficiency when the number of threads were
increased.

5 Conclusions

This paper presented an evaluation of three different algorithms (Differential
Evolution, Particle Swarm Optimization and Population-Based Incremental
Learning) optimizing the problem of the Reinsurance Contract, answering rel-
evant questions. Future implementations include a real multi-objective PBIL,
PSO and DE versions, i.e, optimizing the risk value and the expected return at
the same time. Furthermore, we plan to extend the PBIL approach evaluating
the performance gains achievable with an optimized C/OpenMP implementa-
tion.

References

1. Cai, J., et al.: Optimal reinsurance under VaR and CTE risk measures. Insurance:
Mathematics and Economics 43, 185–196 (2008)

2. Grossi, P., Kunreuther, H.: Catastrophe Modeling: A New Approach to Managing
Risk. International Series on Risk, Insurance and Economic Scurity. Springer (2005)

3. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the
IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)

4. Storn, R., Price, K.: Differential Evolution A simple and efficient adaptive scheme
for global optimization over continuous spaces, Technical Report TR-95-012
(March 1995). ftp.ICSI.Berkeley.edu/pub/techreports/1995/tr-95-012.ps.Z

5. Storn, R., Price, K.: Minimizing the real functions of the ICEC 1996 contest by
differential evolution. In: Proc. of IEEE International Conference on Evolutionary
Computation, Nagoya, Japan (1996)

6. Michalewicz, Z.: Genetic Algorithms + Data Structure = Evolution Programs, 3rd
edn Springer (1996)

7. Yao, X., Liu, Y., Lin, G.: Evolutionary programming made faster. IEEE Transac-
tions on Evolutionary Computation 3(2), 82–102 (1999)

8. Baluja, S.: Population based incremental learning. Technical Report, Carnegie Mel-
lon University

9. Edward Tsang, P.K., Martinez-Jaramillo, S.: Computational finance feature article.
IEEE Computational Intelligence Society (2004)

10. Gilli, M., Schumann, E.: Heuristic optimisation in nancial modelling. COMISEF
wps-007 (2009)

11. Maringer, D.G., Meyer, M.: CSmooth transition autoregressive models: New
approaches to the model selection problem. Studies in Nonlinear Dynamics and
Econometrics 12(1), 1–19 (2008)

12. Krink, T., Paterlini, S.: Multiobjective optimization using Differential Evolution
for real-world portfolio optimization. Computational Management Science 8, 157–
179 (2011)

ftp.ICSI.Berkeley.edu/pub/techreports/1995/tr-95-012.ps.Z

238 O.A.C. Cortes et al.

13. Shapiro, A.F., Gorman, R.P.: Implementing adaptive nonlinear models. Insurance:
Mathematics and Economics 26(2–3), 289–307 (2000)

14. Salcedo-Sanz, S., Carro Calvo, L., Claramunt Bielsa, M., Castañer, A., Marmol, M.:
An Analysis of Black-Box Optimization Problems in Reinsurance: Evolutionary-
Based Approache (2013). Available at SSRN: http://ssrn.com/abstract=2260320
or http://dx.doi.org/10.2139/ssrn.2260320

15. Mistry, S. (n.d.), et al.: Parallel Computation of Reinsurance Models (unpublished
manuscript)

16. Cortes, O.A.C., Rau-Chaplin, A., Wilson, D., Gaiser-Porterz, J.: Efficient Opti-
mization of Reinsurance Contracts using Discretized PBIL. In: Proceedings of Data
Analytics, London (2013)

17. Pośık, P., Huyer, W., Pál, L.: A comparison of global search algorithms for con-
tinuous black box optimization. Evolutionary Computation 20, 509–541 (2012)

18. Sebag, M., Ducoulombier, A.: Extending Population-Based Incremental Learning
to Continuous Search Spaces. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel,
H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 418–427. Springer, Heidelberg (1998)

19. Bureerat, S.: Improved Population-Based Incremental Learning in Continuous
Spaces. In: Gaspar-Cunha, A., Takahashi, R., Schaefer, G., Costa, L. (eds.)
Soft Computing in Industrial Applications. AISC, vol. 96, pp. 77–86. Springer,
Heidelberg (2011)

20. Mitschele, A., Oesterreicher1, I., Schlottmann, F., Seese1, D.: Heuristic optimiza-
tion of reinsurance programs and implications for reinsurance buyers. In: Interna-
tional Conference of the German Operations Research Society (2006)

21. Sun, C., Zhou, H., Chen, L.: Improved differential evolution algorithms. In:
IEEE International Conference on Computer Science and Automation Engineering,
vol. 3, pp. 142–145 (2012)

22. Yuan, B., Gallagher, M.: Playing in continuous spaces: Some analysis and extension
of population-based incremental learning. In: CEC 2003, CA, USA, pp. 443–450
(2003)

23. Servais, M.P., Jager, G., Greene, J.R.: Function optimisation using multi-base pop-
ulation based incremental learning. In: PRASA 1997. Rhodes University (1997)

24. Pehlivanoglu, Y.V.: A New Particle Swarm Optimization Method Enhanced With
a Periodic Mutation Strategy and Neural Networks. IEEE Transactions on Evolu-
tionary Computation 17(3), 436–452 (2013)

25. Schefler, B.: Statistics: Concepts and Applications. Benjamin-Cummings Pub. Co.
(1988)

26. Clerc, M.: A method to improve Standard PSO, Open access archive HAL (2009).
Available at http://hal.archives-ouvertes.fr/hal-00394945 (last Visit June 6, 2013)

http://ssrn.com/abstract=2260320
http://dx.doi.org/10.2139/ssrn.2260320
http://hal.archives-ouvertes.fr/hal-00394945

Algebraic Level-Set Approach
for the Segmentation of Financial Time Series

Rita Palivonaite(B), Kristina Lukoseviciute, and Minvydas Ragulskis

Research Group for Mathematical and Numerical Analysis of Dynamical Systems,
Kaunas University of Technology, Studentu 50-222, LT-51368 Kaunas, Lithuania
{rita.palivonaite,kristina.lukoseviciute,minvydas.ragulskis}@ktu.lt

http://www.personalas.ktu.lt/~mragul

Abstract. Adaptive algebraic level-set segmentation algorithm of finan-
cial time series is presented in this paper. The proposed algorithm is
based on the algebraic one step-forward predictor with internal smooth-
ing, which is used to identify a near optimal algebraic model. Particle
swarm optimization algorithm is exploited for the detection of a base
algebraic fragment of the time series. A combinatorial algorithm is used
to detect intervals where predictions are lower than a predefined level.
Moreover, the combinatorial algorithm does assess the simplicity of the
identified near optimal algebraic model. Automatic adaptive identifica-
tion of quasi-stationary segments can be employed for complex financial
time series.

Keywords: Segmentation · Financial time series · Particle swarm
optimization

1 Introduction

Financial time series prediction is a challenging task for researchers and practi-
tioners in different fields of science and engineering. Many different techniques
are used to analyze time series. Data mining community consider such major
tasks as indexing, clustering, classification, segmentation, prediction and sum-
marization [1]. Discovering information from massive data becomes a challenge,
which leads to the necessity to present data in reduced form. The dimensionality
reduction of the data is the first step to efficiently deal with data mining tasks [2].
Segmentation in time series analysis is often referred to as a dimensionality
reduction algorithm. Most time series segmentation algorithms can be grouped
into one of the following three categories: sliding windows [3], top-down [4],
bottom-up [5]. Segments are usually used for representing financial time series.
One frequently used segmentation method is Piecewise Linear Approximation
(PLA) [6,7]. PLA has been applied for pattern matching [8] and predicting the
trading points [9] in the stock market. In predicting stock movement, financial
analysts not only consider the trend identified by the curve but also take into
account certain points on the time series data. Segments extracted from financial
c© Springer-Verlag Berlin Heidelberg 2014
A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2014, LNCS 8602, pp. 239–250, 2014.
DOI: 10.1007/978-3-662-45523-4 20

240 R. Palivonaite et al.

time series are widely used in trend analysis as well as in predicting future ten-
dency of the price movement. Time series segmentation method based on turning
points, which are extracted from the maximum or minimum points of the time
series is proposed in [10]. This method generates segments at different levels of
details and achieves satisfactory results in preserving higher number of trends
compared to other segmentation approach.

A novel time series segmentation algorithm based on algebraic predictor with
internal smoothing and an adaptive level-set method for the assessment of pre-
diction errors is presented in this paper. The algebraic prediction method with
internal smoothing (APIS) is used to forecast time series, build a model of the
process and then use this model for the segmentation of financial time series [11].

2 Preliminaries

Time series prediction is a challenging task in many fields of economics and
finance. Despite of plenty forecasting techniques, there is no single method out-
performing all others in all situations. In this paper we will use an algebraic
one point forward prediction technique. The main difference of the algebraic
prediction technique first introduced in [12] and developed in [11] from other
alternative time series predictors is in the fact that the algebraic predictor iden-
tifies the algebraic complexity of the time series by means of the Hankel rank
(or H-rank) of a sequence. The identification of the H-rank will serve as key
computational tool in the segmentation procedure of the analyzed time series.

The definition of the H-rank is presented in [12], but we will give a brief
overview of the computational techniques used for the identification of H-ranks.

Let S be a sequence of real numbers:

S := (x0, x1, x2, . . .) (1)

The Hankel matrix H(n) constructed from the elements of the sequence S is
defined as follows:

H(n) :=

∣∣∣∣∣∣∣∣
x0 x1 · · · xn−1

x1 x2 · · · xn

· · · · · · · · · · · ·
xn xn+1 · · · x2n−2

∣∣∣∣∣∣∣∣
(2)

where n denotes the order of the square matrix. The determinant of the Hankel
matrix is denoted by d(n) = det H(n); n ≥ 1. The H-rank of the sequence is such
natural number m = Hr (xk; k ∈ Z0) that satisfies the following condition[12]:

dm+k = 0 (3)

for all k ∈ 1, 2, . . ., but dm �= 0.
Let us assume that the H-rank of the sequence is m, m ≤ +∞. Then the

elements of the deterministic algebraic sequence S are expressed in the form[12]:

Algebraic Level-Set Approach for the Segmentation of Financial Time Series 241

xn =
r∑

k=1

nk−1∑
l=0

μkl

(
n
l

)
ρn−l
k ; n = 0, 1, 2, . . . (4)

where the characteristic roots ρk ∈ C; k = 1, 2, . . . , r can be determined from
the Hankel characteristic equation∣∣∣∣∣∣∣∣∣∣

x0 x1 · · · xm

x1 x2 · · · xm+1

· · ·
xm−1 xm · · · x2m−1

1 ρ · · · ρm

∣∣∣∣∣∣∣∣∣∣
= 0; (5)

the recurrence indexes of these roots nk (nk ∈ N) satisfy the equality n1 +
n2 + . . . + nr = m ; coefficients μkl ∈ C; k = 1, 2, . . . , r; l = 0, 1, . . . , nk − 1
can be determined from a system of linear algebraic equations which can be
formed from the systems of equalities in Eq. (4), and this system has a unique
solution [13].

Thealgebraicprediction technique in [12] exploits the conceptof theH-rankand
performs the extrapolation of the reconstructed algebraic model into the future.
But a random sequence does not have a rank simply due to an inevitable contami-
nation by noise. Thus special evolutionary computational strategies are developed
in [12] for the identification of a closest skeleton algebraic sequence to the real-world
time series, but due to variability of forecasted values the algebraic predictor in [12]
is applicable for estimation of local minimums and maximums in day-ahead fore-
casting applications. In this paper for financial time series segmentation task we
employ enhanced algebraic method with procedure of internal smoothing (APIS)
[11]. Internalsmoothingprocedureenablereachingahealthybalancebetweenexcel-
lent variability of skeleton algebraic sequences andvaluable properties of predictors
based on the moving averaging method which is widely used in financial time series
primary analysis and forecasting.

The forecasting idea is based on the assumption that the sequence S̃ is pro-
duced by adding noise to some unknown algebraic sequence:

S̃ := (x0 − ε0, x1 − ε1, x2 − ε2, . . .) = (x̃0, x̃1, x̃2, . . .) (6)

We will try to indentify algebraic relationships in the available observation
data and to smooth the forecast before the prediction is done. In order to remove
inherent random variation we employ simple moving average smoothing tech-
nique:

x̄k =
1
s

s−1∑
s=1

xk−i−1 (7)

where x̄k is a smoothed value at the moment k; s is the averaging window.
The width of averaging window s should be preselected for each time series,
though some general recommendations are given in [11]. It is common that for
financial time series forecasting the best result is achieved with s = 1, it is so

242 R. Palivonaite et al.

called the näıve method [14]. In this paper according to these recommendations
we set s = 1.

The schematic diagram of the algebraic prediction with internal smoothing
process is illustrated in Fig. 1.

1210 ,...,, −mxxx

P
ar

tic
le

1

P
ar

tic
le

 2

P
ar

tic
le

 N

… …

Compute moving average mx2

PSO

Fitness function
mm

m

k
kk xx 22

12

0

~

1

−+∑
−

=

ελα

∑
−

=

12

0

m

k
kk ελ Compute

mm xx 22
~ −

*
12

*
1

*
0 ,...,, −mεεε

Predict mx2
~

Compute from eq.mx2
~

()02 =mε

R
ep

ea
t

pr
ed

ic
ti

on
 a

lg
or

it
hm

 n
 t

im
es

Repetitive predictions of

Final prediction = arithmetic average of all trials mx2
~

mx2
~

02211

1100

=−−
−−

LLL

L

L

εε
εε

xx

xx

Near optimal corrections

��
��

⋮
�����

Fig. 1. The illustration of the algebraic prediction with internal smoothing (APIS)
forecasting procedure

Let the H-rank of that unknown algebraic sequence is assumed to be equal
to m; 2m observations x0, x1, x2, . . . , x2m−1 are available for the building the
algebraic model of the process; x2m−1 is the value of the observation at the
present moment. The first task is to compute the moving average forecast value
x̄2m with parameter s = 1. Secondly, the set of corrections {ε0, ε1, . . . , ε2m−1}
must be identified before any algebraic predictions could be made.

Evolutionary algorithms will be used to identify the near-optimal set of cor-
rections. Particle swarm optimization (PSO) techniques have been successfully
employed for the identification of the skeleton algebraic sequence in [11]. We will
also use PSO for the selection of a near-optimal set of corrections. Though the
selection of the parameters of PSO remains mostly empirical and depends on
the structure of the fitness function [15], we fix w = 0.6 and c1 = c2 = 1.7 as
recommended by Trelea [16] (c1 and c2 are two positive constants, called accel-
eration constants, representing weightings of the stochastic acceleration terms
that pull each particle toward the particle’s best and the global best ; w is the
inertia weight balancing the global and the local search). Due to the indication
that the effect of the population size on the performance of the PSO method is

Algebraic Level-Set Approach for the Segmentation of Financial Time Series 243

of minimum significance [17] and most researchers use a swarm size of 10 to 60
[18], we set the swarm size for PSO to 30 particles.

As the black thick arrow in Fig. 1 illustrates, a new set of near-optimal
corrections {ε0, ε1, . . . , ε2m−1} is generated every time when the PSO algorithm
is executed. The next step is to determine the element x̃2m from the following
equality based on the eq. (3), when the H-rank is assumed to be m:∣∣∣∣∣∣∣∣

x0 − ε0 x1 − ε1 · · · xm − εm
x1 − ε1 x2 − ε2 · · · xm+1 − εm+1

· · · · · · · · · · · ·
xm − εm xm+1 − εm+1 · · · x̃2m

∣∣∣∣∣∣∣∣
= 0; (8)

The goal of selecting the set of corrections {ε0, ε1, . . . , ε2m−1} is to minimize
any distortions from original time series. Therefore, the fitness function for the
set of corrections {ε0, ε1, . . . , ε2m−1} has to be maximized [11]:

F (ε0, , ε1, . . . , ε2m−1) =
1

α
2m−1∑
k=0

λk |εk| + |x̃2m − x̄2m|
; α > 0; (9)

where α is the penalty proportion between the sum of weighted corrections
and the difference of forecasts based on skeleton algebraic sequences and moving
averages; coefficients λk determine the tolerance corridor for the corrections (all
corrections would be the same if λk = 1/ (2m); k = 0, 1, . . . , 2m − 1) [12].

3 The Construction of the Segmentation Algorithm

3.1 Time Series Prediction Procedure

As mentioned previously, we will use the time series prediction algorithm based
on algebraic prediction with internal smoothing (APIS) [11] for the segmentation
of the time series. But instead of trying to identify the most appropriate H-rank
of the time series at the beginning of the prediction process, we will perform the
prediction at different preset values of the H-rank.

In general, the selection of the effective range of H-ranks can be free, though
too wide range of H-ranks would raise the computational costs required by the
proposed technique. We preselect 2 ≤ Hr ≤ 10 for the artificial time series with
additive noise. We started with Hr = 2 for an elementary arithmetic progression,
which is quite acceptable for financial time series segmentation task. On the
other hand, the length of the vector of corrections {εk} is equal to 20 already
at Hr = 10 (what raises computational costs of the prediction algorithm and
increases the complexity of the identified algebraic model).

The prediction algorithm extrapolates the skeleton sequence by one element
into the future: x̃2m is the algebraic prediction of the sequence (x0, x1, . . . , x2m−1)
(Fig. 1). Next, we shift the observation window by one element and predict x̃2m+1.
The process is continued until the last element of the original data sequence is
predicted.

244 R. Palivonaite et al.

The next step is the selection of the tolerable error level L for the algebraic
prediction of the analyzed time series. The basic idea of the proposed tech-
nique is straightforward: the preselected algebraic model is sufficiently accurate
if extrapolation errors of the prediction are lower than predefined error level L.
All continuous time series prediction intervals with extrapolation errors lower
than the level L are considered as the segments. Recommendations for selection
of tolerable error level for time series segmentation are developed in [19].

3.2 Combinatorial Aspects of the Segmentation Algorithm

The proposed segmentation algorithm is based on two important concepts:
a) The algorithm must automatically identify the longest time interval where

the current algebraic model does not produce forecasting errors higher than the
predetermined level L;

b) The segmentation algorithm must also evaluate the simplicity of algebraic
model in each identified segment.

In other words, the segmentation algorithm should find a conciliation between
two extremities which are graphically represented in Fig. 2. The x -axis repre-
sents the order of the algebraic model (H-rank), the vertical axis illustrates the
adaptive preference of the segmentation algorithm.

β

1

0

()βϕ ,kHr

kHr
minHr maxHr

Fig. 2. The schematic diagram of the preference function ϕ (Hrk, β) illustrated by the
thick solid line going through points (Hrmin;β) and (Hrmax;1)

The preference function ϕ (Hrk, β) is defined as linear function with param-
eter β, 0 ≤ β ≤ 1:

ϕ (Hrk, β) = β +
Hrk − Hrmin

Hrmax − Hrmin
(1 − β) (10)

The preference function ϕ (Hrk, β) does not assess the simplicity of the alge-
braic model at β = 1. On the contrary, the preference function ϕ (Hrk, β) gives
the highest priority to the simplest algebraic model at β = 0. We will use the
arithmetic average between these two cases by set at β = 0.5 (Fig. 2). Then

Algebraic Level-Set Approach for the Segmentation of Financial Time Series 245

the segmentation procedure can be illustrated by the following example. The
longest segment l

(i)
n is identified in the first step of the algorithm – note that

before taking the decision which segment is given a highest priority we divide
the length of each segment by the value of the preference function ϕ (Hrk, β):

l
(i)
k =

l
(i)
k

ϕ (Hrk, β)
(11)

where l
(i)
n is the length of the segment, Hrk – the k -th H-rank, i – an iteration

of combinatorial algorithm.
Thus a shorter segment can be given a higher priority than a longer segment if

only the algebraic model of the shorter segment is sufficiently simpler compared
to the algebraic model of the longer model.

A schematic diagram of combinatorial segmentation algorithm for the iden-
tification of longest continuous intervals of successful predictions in the effective
range of H-ranks is illustrated in Fig. 3.

The main idea of combinatorial segmentation algorithm is characterized by
this illustrative example.

Step 1. Set the level L and perform the algebraic forecasting of the given
data at different preselected H-ranks. Mark intervals of the time series where
forecasting errors are lower than L. Such marking is schematically illustrated in
Fig. 3 (a). Horizontal lines denote continuous intervals for each discrete H-rank
(the vertical axis stands for the H-rank). The length of intervals is denoted as
l
(i)
k , where the index k stands for the k-th H-rank and i is the iteration of the
segmentation process (at the beginning of the process it is set to zero). As we
introduced previously the evaluation of the length of the interval depends on
the H-rank: the smaller is the H-rank – the prior is the interval of this H-rank.
In this schematic example we set the parameter β = 0.5 of function ϕ (Hrk, β)
(eq. 10). It means that the interval of the lowest H-rank is twice important as
the interval of the highest H-rank.

Step 2. Identify the longest continuous interval. Though in our schematic
example the interval (t2; t7) of the highest H-rank is the longest with length l

(0)
5 ,

but after evaluation of all segments by the preference function ϕ (Hrk, β), the
longest picked interval is l

(0)
1 (with the lowest H-rank). We considered that the

length l
(0)
1 = 2 · l

(0)
5 with β = 0.5. We marked the longest evaluated continuous

interval by gray shaded box in Fig. 3 (a).
Step 3. Denote the marked interval as the segment associated to the according

H-rank; erase all the information about the other H-ranks above and below
the marked segment. The selected segment (t0; t3) is marked by a thick solid
horizontal line in Fig. 3 (b).

Step 4. With preference function ϕ (Hrk, β) evaluate the longest continuous
interval in the zones not occupied by the marked segments (return to the Step
2). Though the longest interval is with the highest H-rank (t3; t7) (note that it
was truncated after the Step 2), but after evaluation by function ϕ (Hrk, β) it
is not considered as the segment. Besides, though the lengths of l

(1)
2 and l

(1)
3

246 R. Palivonaite et al.

Hr

t6t5t4t3t2t1t 9t8t7t

(a)

(b)

()0
1l

()0
2l

()0
3l

()0
4l

()0
5l

��
��
��
��
��
��
��

Hr

t6t5t4t3t2t1t 9t8t7t

()1
2l

()1
3l

()1
4l

()1
5l

���
���
���
���
���
���
���
���
���
���
���
���
���

Hr

t6t5t4t3t2t1t 9t8t7t

()2
3l

()2
4l

()2
5l���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������

(c)

Hr

t6t5t4t3t2t1t 9t8t7t

(d)

0t

0t

0t

0t

Fig. 3. The illustration of the combinatorial segmentation algorithm. Horizontal lines
in part (a) show intervals where algebraic prediction errors are lower than the pre-set
level L (the height of a line stands for the appropriate H-rank). The length of the

longest weighted interval above the level L for all H-ranks is denoted as l
(i)
k , where

indexes k indicate the k -th H-rank Hr and i indicates the iteration of combinatorial
segmentation algorithm. The parameter β is set to 0.5. The gray-shaded area in part
(a) illustrates the longest preferred continuous line interval which is associated to a
separate segment in part (b). The process is continued through parts (b - d) until the
whole sequence is split into separate segments. Thick solid lines represent the result of
the segmentation algorithm.

are the same size, the interval (t5; t8) is selected due to the lowest H-rank. It is
marked as gray shaded box.

Step 5. Erase all the information below and above the selected segment and
evaluate the rest segments. At the final step we select two not overlapping inter-
vals (t3; t5) and (t8; t9) as the last segments.

Finally, the segmentation algorithm identifies four distinct segments (t0; t3),
(t3; t5), (t5; t8) and (t8; t9) (Fig. 3 (d)). Note that in the real world time series

Algebraic Level-Set Approach for the Segmentation of Financial Time Series 247

it might be that in some intervals any particular segment could not be selected
due to high forecasting errors exceeding the predefined level L.

4 Computational Experiments with Financial Time
Series

We test the functionality of the proposed segmentation algorithm using real-
world finance time series. We select a standard STLFSI (St. Louis Fed Financial
Stress Index) time series describing 230 consecutive measures of the degree of
financial stress in the markets (we selected mounthly data range from 1993-
Dec-01 to 2013-Mar-31) [20]. Financial STFSI time series is constructed from 18
weekly data series: seven interest rate series, six yield spreads and five other indi-
cators. Each of these variables captures some aspect of financial stress. Accord-
ingly, as the level of financial stress in the economy changes, the data series
are likely to move together. Note that vertical axis is transformed to interval
[0; 1]. Due to specific properties of APIS forecasting method, this transforma-
tion ensures lower time series prediction errors[11]. We set parameter β = 0.5 and
the tolerable error level L = 0.05 (we consider that algebraic model is sufficiently
accurate if extrapolation errors of the prediction are lower than 5 % length of all
range of time series data values). The segmentation result of STLFSI time series
is presented in Fig. 4. The PSO algorithm is iterated 30 times and the averaged
result of APIS is presented.

Our segmentation method has singled out the following mounthly intervals:
1994-May-31 – 1998-Mar-31, 1998-Jul-31 – 2001-Apr-30, 2001-May-31 – 2002-
Jan-31, 2002-Mar-31 – 2007-Mar-31, 2008-Nov-30 – 2009-Dec-31, 2010-Jan-31 –
2011-Mar-31, 2011-Apr-30 - 2013-Jan-31.

A comparative assessment of the functionality of the proposed technique with
other typical segmentation methods is required in order to understand if our
methodology does outperform other methods or not. One of the most commonly
used representations is piecewise linear approximation. In the context of data
mining, it supports change point detection.

The first comparison is performed with sliding-windows segmentation method.
This method is based on growing, usually linear, segment until it exceeds some
user-specified criteria. The process repeats with the next data point [3]. Due to
comparison we have chosen the same tolerable error level L = 0.05. The results
of the change point detection are presented in Fig. 4(c). It is clear that linear
approximation is not as precise as APIS and approximation errors exceed the pre-
set tolerable error level L more common. Naturally, this leads to the higher number
of segments. Such approximation becomes greatly over-fragmented for real-world
datasets with inevitable additive noise [5].

The secondcomparison isperformedwith thebottom-upsegmentationmethod.
Starting from the finest approximation, segments are merged until some stopping
criterion is met [5]. In our case, the stopping criterion is the maximum error per
segment exceeding the preset error level L = 0.05. The segmentation results are
presented in Fig. 4(d). The bottom-up algorithm is the natural complement to the

248 R. Palivonaite et al.

0

0.2

0.4

0.6

0.8
(a)

t

x(t)

2
4
6
8

10
(b)

t

Hr

0

0.2

0.4

0.6

0.8
(c)

t

x(t)

Dec 31 Jun 30 Dec 31 Jun 30 Dec 31 Jun 30 Dec 1 Jun 30
0

0.2

0.4

0.6

0.8
(d)

t

x(t)

1993 1996 1998 2001 2003 2006 2008 2011

Fig. 4. The segmentation of STLFSI time series. The time series is illustrated in part
(a); The result of the segmentation with APIS at tolerable error level L = 0.05 is
presented in part (b). The result of the segmentation with sliding-windows method
is presented in part (c); The result of the segmentation with bottom-up method is
presented in part (d).

top-downalgorithm.Top-down: the time series is recursivelypartitioneduntil some
stopping criterion is met. Empirical comparison of the major segmentation algo-
rithmsonaverydiverse collectionofdatasetsdoes showthat top-downandbottom-
up algorithms produce similar results [5] - and thus (due to the space limitations)
the results of top-down algorithm are excluded.

Generally, we are able to locate different algebraic relationships while other
segmentation methods are approximated only by one type of function, usually
by a low order polynomial.

5 Conclusions

Anytimeseries segmentationalgorithmmust complywith twomajor requirements:
the time series must be approximated by the simplest possible mathematical model

Algebraic Level-Set Approach for the Segmentation of Financial Time Series 249

(the model identification is a task of the data mining process) and finding change
points, which are used as markers between appropriate segments. The main advan-
tageofourproposedmethod isbasedonthe fact thatwedo identifyalgebraicmodels
of the process – but the order of this algebraic model is detected completely auto-
matically. In other words, one does not have to analyze the time series employing
different methods and techniques.

The proposed segmentation algorithm reveals that the hidden structure of
the time series is able to identify potential changes in the evolution of the process
and exploits predictability as a tool for the characterization of complexity. Such
predactability can be directly used for the decision-making analysis in financial
time series analysis.

Acknowledgments. This research was funded by a grant (No. MIP-100/2012) from
the Research Council of Lithuania.

References

1. Esling, P., Agon, C.: Time-series data mining. ACM Computing Surveys (CSUR)
45(1), 12 (2012)

2. Ralanamahatana, C.A., Lin, J., Gunopulos, D., Keogh, E., Vlachos, M., Das,
G.: Mining Time Series Data, Data Mining and Knowledge Discovery Handbook.
pp. 1069–1103 Springer, (2005)

3. Qu, Y., Wang, C., Wang, S.: Supporting fast search in time series for movement
patterns in multiples scales. In: Proceedings of the 7th International Conference
on Information and Knowledge Management, CIKM 1998, pp. 251–258 (1998)

4. Lavrenko, V., Schmill, M., Lawrie, D., Ogilvie, P., Jensen, D., Allan, J.: Mining of
Concurent Text and Time Series. In: Proceedings of the 6th International Confer-
ence on Knowledge Discovery and Data Mining, pp. 37–44 (2000)

5. Keogh, E.J., Chu, S., Hart, D., Pazzani, M.: Segmenting time series: a survey and
novel approach. Data Mining in Time Series Databasis 57, 1–22 (2003)

6. Keogh, E.J., Pazzani, M.J.: Relevance feedback retrieval of time series data. In:
Proceedings of the 22nd Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, Berkeley, California, United States,
pp. 183–190 (1999)

7. Li, C.S., Yu, P.S., Castelli, V.: MALM: a framework for mining sequence database
at multiple abstraction levels. In: Proceedings of the 7th International Conference
on Information and Knowledge Management, Bethesda, Maryland, United States,
pp. 267–272 (1998)

8. Zhang, Z., Jiang, J., Liu, X., Lau, W.C., Wang, H., Wang, S.-S., Song, X., Xu,
D.: Pattern Recognition in Stock Data Based on a New Segmentation Algo-
rithm. In: Zhang, Z., Siekmann, J.H. (eds.) KSEM 2007. LNCS (LNAI), vol. 4798,
pp. 520–525. Springer, Heidelberg (2007)

9. Chang, P.C., Fan, C.Y., Liu, C.H.: Integrating a piecewise linear representation
method and a neural network model for stock trading points prediction. IEEE
Transactions on Systems, Man, and Cybernetics Part C 39(1), 80–92 (2009)

10. Yin, J., Si, Y.W., Gong, Z.: Financial Time Series segmentation Based On Turning
Points. In: Proceedings of 2011 International Conference on System Science and
Engineering, Macau, China, pp. 394–399 (2011)

250 R. Palivonaite et al.

11. Palivonaite, R., Ragulskis, M.: Short-term time series algebraic forecasting with
internal smoothing. Neurocomputing (article in press) (2014)

12. Ragulskis, M., Lukoseviciute, K., Navickas, Z., Palivonaite, R.: Short-term time
series forecasting based on the identification of skeleton algebraic sequences.
Neurocomputing 74, 1735–1747 (2011)

13. Navickas, Z., Bikulciene, L.: Expressions of solutions of ordinary differential equa-
tions by standard functions. Mathematical Modeling and Analysis 11, 399–412
(2006)

14. Lacina, M., Lee, B.B., Xu, R.Z.: An evaluation of financial analysts and näıve
methods in forecasting long-term earnings. Advances in Business and Management
Forecasting 8, 77–101 (2011)

15. Eberhart, R.C., Kennedy, J.: Particle swarm optimization: developments, applica-
tions and resources. In: Proceedings of IEEE Congress on Evolutionary Computa-
tion, Seoul, Korea. pp. 81–86. IEEE Service Center, Piscataway, (2000)

16. Trelea, I.: C.: The particle swarm optimization algorithm: convergence analysis
and parameter selection. Information Processing Letters 85(6), 317–325 (2003)

17. Shi, Y.H., Eberhart, R.C.: Parameter selection in particle swarm optimization. In:
Proceedings of Seventh Annual Conference on Evolutionary Programming, San
Diego, CA, pp. 591–600. Springer, New York (1998)

18. Kennedy, J., Eberhart, R.C., Shi, Y.H.: Swarm Intelligence. Morgan Kaufman
(2001)

19. Palivonaite, R., Lukoseviciute, K., Ragulskis, M.: Algebraic segmentation of short
nonstationary time series based on evolutionary prediction algorithms. Neurocom-
puting 121, 1354–364 (2013)

20. St. Louis Fed Financial Stress Index News Releases (2013) (accessed November 1,
2013). http://www.stlouisfed.org/newsroom/financial-stress-index

http://www.stlouisfed.org/newsroom/financial-stress-index

Dynamic Index Trading Using a Gene
Regulatory Network Model

Miguel Nicolau(B), Michael O’Neill, and Anthony Brabazon

Natural Computing Research and Applications Group, University College Dublin,
Dublin, Ireland

{Miguel.Nicolau,M.ONeill,Anthony.Brabazon}@ucd.ie

Abstract. This paper presents a realistic study of applying a gene
regulatory model to financial prediction. The combined adaptation of
evolutionary and developmental processes used in the model highlight
its suitability to dynamic domains, and the results obtained show the
potential of this approach for real-world trading.

1 Introduction

Recent work in the Evolutionary Computation field has seen a surge of interest in
Genetic Regulatory Networks (GRNs) as models for computation [1,4,9,10,13].
In nature, GRNs are a key element of temporal gene expression regulation in
biological organisms, providing the remarkable capacity of cells to respond to
their ever-changing surrounding environment.

GRN-based algorithms combine the adaptive power of evolutionary processes
with regulatory mechanisms that differential gene expression provides, leading to
life-long conditional adaptation to the environment. This makes these algorithms
especially useful for noisy and dynamic environments.

One such dynamic and hard to predict environment are financial markets.
In this study, a GRN model is applied to the problem of index trading. Exper-
iments were designed to make this problem as realistic as possible, hence using
only raw historical prices and their transformations, and relatively short trading
periods, focusing on the dynamic adaptation of the system. The results obtained
again highlight the advantages and limitations of current GRN models, and their
potential as computational devices, and further pave the future for their contin-
ued adaptation in the EC community.

This paper starts with a brief introduction to GRNs and the model used, in
Section 2. This is followed by an overview of index trading and the methodology
used (Section 3). Section 4 presents and analyses the results obtained, and finally
conclusions and future work directions are drawn in Section 5.

2 Artificial Gene Regulatory Model

2.1 Background

Gene Regulatory Networks (GRNs) refer to the complex networks of gene regu-
lation occurring in cell environments. Given a suitable environment, segments of
c© Springer-Verlag Berlin Heidelberg 2014
A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2014, LNCS 8602, pp. 251–263, 2014.
DOI: 10.1007/978-3-662-45523-4 21

252 M. Nicolau et al.

DNA encoding genes are transcribed into RNA strands, which, through a trans-
lation process, are used to form sequences of amino-acids, thus creating proteins.
Some of these proteins are called Transcription Factors, and their role is to help
create an environment that either enhances or inhibits the expression of genes.
This leads to complex networks of regulation, with genes encoding proteins that
themselves enhance or inhibit the expression of proteins from other genes.

2.2 The Model

Typically, artificial GRN models are a broad simplification of their biological
counterpart. In this work, a model originally presented by Wolfgang Banzhaf
[1] is used; it was shown to exhibit similar dynamics to real world GRNs [2],
and has been applied to dynamic control problems (such as the pole-balancing
benchmark [13] and index trading [12]).

The model consists of a binary linear genome, which is scanned for 32 bit
binary promoter sequences, identifying gene locations. Once a promoter is found,
the 2 × 32 bits preceding it represent two regulatory sites (an enhancer and a
inhibitor), and the following 5 × 32 bits represent the gene contents (used to
encode a protein); this is shown in Fig. 1.

1101010101011010100110100010101011010001001010101010101010110111110101101010101010101010101001101011010101111000111010100100100101010101110110110101101010101101010111010101101010110101010101010110101010100101011010101010000101010110100101010101101010110110001010110110101001101110101010010101

X Y Z 0 1 0 0 01 1 1

32 bits32 bits

Enhancer

site

Inhibitor

site

Promoter

site

Gene

information

160 bits32 bits

Protein

32 bits

Fig. 1. Bit string encoding of a gene. If a promoter site is found, the gene information
is used to create a protein, whose quantity is regulated by the attachment of proteins
to the enhancer and inhibitor sites.

Each protein encoded by a gene is a Transcription Factor (TF), that is,
it is a regulatory protein, whose role is to affect the rate of expression of all
genes (including the one that produced it). Proteins are 32 bit binary sequences,
extracted using a majority rule from the 5 sequences of 32 bits that compose
the gene information (i.e., if 3 or more equally located bits are set to 1, then the
corresponding bit in the protein is also set to 1).

Dynamic Index Trading Using a Gene Regulatory Network Model 253

Proteins are bound to regulatory sites via an exclusive-or matching of their
respective 32 bit signatures (i.e., the number of different bits in protein signatures
and regulatory sites determines the regulatory strength). The enhancing and
inhibiting signals regulating the production of each protein pi are calculated as:

ei, hi =
1
N

N∑
j=1

cj exp(β(uj − umax)) , (1)

where N is the total number of proteins, cj is the concentration of protein j,
uj is the number of complementary bits between the (enhancing or inhibitory)
regulatory site and protein j, umax is the maximum match observed in the
current genome, and β is a positive scaling factor.

The concentration of protein pi is calculated using a differential equation:

dci
dt

= δ(ei − hi)ci , (2)

where δ is a positive scaling factor (representing a time unit). All the concentra-
tions are normalised at each time step, ensuring that

∑
i ci = 1.0 at all times;

this results in competition for resources within the cell environment.

Input and Output. This model has been extended with the notion of inputs
and outputs [13], to facilitate its application to computation. In order to encode
inputs, extra regulatory proteins (EPs) are injected into the system. These are
not produced by any gene, yet also contribute to the regulation of gene expres-
sion. They represent the variables required to describe the state of the environ-
ment, and their concentrations reflect the (normalised) value of those inputs.

To extract output signals, genes are divided into two classes: TF-genes (genes
encoding transcription factors), and P-genes (encoding product proteins). The
concentration of proteins produced by P-genes can then be used as output signals
of the system. The approach taken here is the same as in previous studies [12].

3 Index Trading

In the Financial domain, an index is a composite measure of price changes in a
portfolio of shares in a market. Investors who wish to proxy the return of the
index can trade it using index funds (EFTs), which offer low expense ratios and
high liquidity. These investments are very popular and are the focus of our study.

Evolutionary algorithms have been successfully applied to financial mod-
elling; the reasons for their applicability include their ability to efficiently explore
the search space, and uncover dependencies between input variables, leading to
their proper inclusion in the final models [5]. Brabazon and O’Neill [3] provide an
overview of the application of evolutionary computation to financial modelling.

254 M. Nicolau et al.

3.1 Methodology

The trading methodology is based in previous studies [7,12,14], where a trader
issues buy, sell, or do nothing signals for each day of the training or test periods.
Starting with a capital of $10000, if a buy signal is issued, 10% of the total
funds (initial capital plus earnings) are invested in the index; this position is
automatically closed after a ten day period. If a sell signal is issued, an investment
of 10% is sold short, and also closed after ten days. This ensures that the system
cannot overtrade at any point (i.e., issue a trade signal with no funds available)1.

The profit or loss at the end of each trading period uses a conservative
estimate of one-way trading costs and slippage of 0.2% and 0.3%, respectively.
Uncommitted funds take into account a risk-free rate of return, which is approx-
imated using the average interest rate over the entire dataset.

3.2 Datasets

The work presented here follows closely the methodology of previous applica-
tions of Grammatical Evolution [3,14] and GRNs [12] to index trading, and uses
three datasets, from the UK FTSE 100 index, the Japan Nikkei index, and the
German Dax index. To keep the results comparable, all data is drawn from the
period between 16/4/1991 and 21/10/1996; Fig. 2 plots each dataset. These were
divided into four training periods and twelve test periods, of 90 days each, with
the latter representing the period where the system has gone live.

These datasets highlight the potential risk of overfitting the training period.
The FTSE training period exhibits a very unstable, slightly downwards trend,
whereas the test period exhibits a clear growth trend. The Dax index shows a
slight growth in the training period, with a sudden drop towards the end, which
is somewhat consistent with the test period. Finally, the Nikkei training period
exhibits a very strong decline in index value, followed by an unstable test period,
consisting of medium term upwards and downwards trends.

3.3 Data Preprocessing

In previous studies [3,12], the data was pre-processed prior to evolution, with
the raw prices initially transformed into a moving average with a 75 day gap,
and then normalised into the range of 0 to 1. However, as the current study
focuses on application to real market trading, both of these pre-processing steps
are troublesome, as detailed below, and hence were not used.

Moving Average. Working with a moving average smoothes the price curve,
but at a cost - the description of trends is also smoothed out. This is exemplified
in Fig. 3, for the FTSE market. In the first year of data, for example, the market
switches from upwards to downwards trends in a short period of time. This is
clearly visible at the beginning of test period 1 (T1), where the index value is
1 In the final 10 days of each period, all trade actions are ignored.

Dynamic Index Trading Using a Gene Regulatory Network Model 255

 2200

 2400

 2600

 2800

 3000

 3200

 3400

 3600

 3800

 4000

 4200

1 90 180 270 360 450 540 630 720 810 900 990 1080 1170 1260 1350 1440

P
ric

e

Day

FTSE Index

TR1 TR2 TR3 TR4 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 2800

1 90 180 270 360 450 540 630 720 810 900 990 1080 1170 1260 1350 1440

P
ric

e

Day

Dax Index

TR1 TR2 TR3 TR4 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12

 14000

 16000

 18000

 20000

 22000

 24000

 26000

 28000

1 90 180 270 360 450 540 630 720 810 900 990 1080 1170 1260 1350 1440

P
ric

e

Day

Nikkei Index

TR1 TR2 TR3 TR4 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12

Fig. 2. Plots of the three markets used in this study, along with their training and live
(test) periods. Each period consists of 90 traiding days; data ranges from 16/4/1991
to 21/10/1996.

256 M. Nicolau et al.

growing, but the MA(75) is still reflecting the previous downwards trend. As the
current experiment uses fairly short trading periods (90 days), a 75 day moving
average is too slow to indicate the current trend of the index. Working with a
smaller value (MA(10)) reduces this problem, but as all trading periods are of
10 days, the indication of trends is still sometimes deceptive.

 2200

 2400

 2600

 2800

 3000

 3200

 3400

 3600

 3800

 4000

 4200

1 90 180 270 360 450 540 630 720 810 900 990 1080 1170 1260 1350 1440

P
ric

e

Day

FTSE Index

TR1 TR2 TR3 TR4 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12

Index MAVG(10) MAVG(75)

Fig. 3. Index closing values and 10 and 75-day moving average, for the FTSE market

Normalisation. Normalisation can also introduce problems. As the range of
future index values cannot be known, a minimum and maximum value must be
set for normalisation. On certain markets, this is problematic for model induc-
tion, because the range of values encountered in training might be quite different
from the range of the test period. Fig. 4 highlights this problem on the FTSE
market. As the training period has the range [2281.0, 2737.8], normalising over
this range would mean that all normalised values from test period T2 onwards
would have a capped value of 1.0. Even if the full range of prices [2281.0, 4073.1]
were somehow guessed at the start, this would still be problematic, as the train-
ing period would only expose the models to a [0, 0.255] range.

3.4 Technical Indicators

Rather than just working with raw and historical market price data, it is typi-
cal in the financial domain to derive information from the raw data series into
technical indicators. These look to predict future price levels, or more generally
market trends. Although a potentially infinite number of such indicators may
exist, certain classes of indicators are regularly used by investors [7,15]. The
following were used in this study2:

2 To minimise price range issues, all price data used is logarithmic; the n-day periods
used are typical values from the literature.

Dynamic Index Trading Using a Gene Regulatory Network Model 257

2281.0

2400

2600

2737.8

3000

3200

3400

3600

3800

4073.1

1 90 180 270 360 450 540 630 720 810 900 990 1080 1170 1260 1350 1440
 0

 0.2
 0.255

 0.4

 0.6

 0.8

 1

P
ric

e

Day

FTSE Index Normalised

TR1 TR2 TR3 TR4 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12

Index

Fig. 4. FTSE index, normalised over the range [2281.0, 4073.1]

– Moving Average Convergence Divergence (MACD). The MACD [11]
is a popular indicator: it is typically calculated by subtracting the exponen-
tial moving average (EMA) of the last 12 days from the 26-day EMA.

– Relative Strength Index (RSI). The RSI is a momentum indicator; it
calculates an upward or downward charge per trading period, and returns
the ratio of the EMA of these charges [17]. A 14-day RSI is used.

– Stochastic Oscillator (sOsc). This indicator returns the relative location
of the current price in relation to its full price range over a period of n days
(a 14-day period was used); it tries to predict price turning points [6].

– Premier Stochastic Oscillator (psOsc). The psOsc is based on an 8-day
sOsc, which is smoothed using a 5-day double EMA [8]. This smooths and
evens out the response to market changes.

4 Setup and Results

4.1 Encoding

The four technical indicators used (MACD(26, 12), RSI(14), sOsc(14) and
psOsc(8, 5)) were encoded using EPs, as explained in section 2.2. The choice
of binary signature for the EPs can influence the system. In previous studies
[12], signatures as different as possible from each other were chosen, but this
created dependencies between them (i.e., for a regulatory site to fully match
one, it had to fully ignore another). To try to minimise these dependencies, the
following encodings were used:

MACD(26, 12): 00000000000000000000000000000000
RSI(14): 00000000000000001111111111111111

sOsc(14): 00000000111111110000000011111111

psOsc(8, 5): 00000000111111111111111100000000

258 M. Nicolau et al.

The initial rate of expression of all genes in a model was initially the same,
and the system was first allowed to settle for a maximum of 100000 regulatory
iterations, or until all protein concentrations were stabilised; after this period,
the trading session begins. To synchronise the GRN with the trading simulator,
a trading signal was extracted every 2000 protein iterations.

To extract a trading signal from the network, the concentration of a given
P-gene is used (all P-genes are tested, and the best result is chosen):

ci >= 66% → BUY 66% > ci > 33% → D/N ci <= 33% → SELL

This methodology thus encodes technical indicators as regulatory proteins,
which influence the internal regulatory process of the genome, and therefore
influence the resulting concentration of P-genes, which can then be interpreted
as a trading signal. It is a very similar process as seen in previous applications
of GRNs to time-series datasets [12,13].

4.2 Evolutionary Setup

A (250+250)−ES evolutionary strategy was used to evolve the binary genomes:
a population of 250 individuals is used to create 250 offspring, and the best 250
of all parents and offspring are used as the new parent population (a maximum of
100 iterations were allowed). The variation operator used was a bit-flip mutation,
set to 1% and adapted by the 1/5 rule of Evolution Strategies [16].

4.3 Evaluation

Two approaches were used when deriving models: the first denominated Fixed,
and the second Dynamic. Each was run independently on the three markets; the
training periods (TR1→TR4, see Fig. 2) were used to derive a trading model.

At the end of the evolutionary process, the best Fixed approach model is
applied to all test periods (T1→T12). The Dynamic approach, however, is only
tested on period T1; it is then reprocessed in a smaller evolutionary process (50
ES iterations), using a moving window of 4 training periods each time: train in
TR2→T1, test in T2; train in TR3→T2, test in T3; and so on.

As noted in Section 3, long term investments tend to produce good returns
in historically upwards return indexes. A common passive investment strategy
is Buy & Hold (B&H), where an investment is made and held for a long time.
In order to evaluate the performance of the evolved traders, their performance
was compared to a B&H strategy in both the training and test datasets.

As seen in previous studies [3,12,14], it would be inadequate to simply calcu-
late fitness as the profit return, as this does not consider the risk of deploying an

Dynamic Index Trading Using a Gene Regulatory Network Model 259

evolved trader. A measurement of this risk is provided by the maximum draw-
down, that is, the maximum cumulative loss of the system during each of the
datasets. This can be incorporated into the fitness calculation by subtracting
the maximum cumulative loss from the profit of each period.

4.4 Results and Analysis

For both approaches, 50 independent runs were done for each market. Table 1
shows the best models in each market, chosen by their TR1→TR4 training
performance. As expected, both evolved traders do quite well on the train-
ing periods, both due to the obvious fact that they were optimised for those
periods, but also because of the downwards trend of period TR1→TR4 on all
markets (as highlighted in Section 3.2), which hampers the gains of the B&H
benchmark.

Once the traders go live, the figures change considerably. In upwards trend
markets like FTSE and DAX, the B&H benchmark performs very well, and
is very hard to improve on that performance; only the dynamic approach was
able to achieve better test performance, in the FTSE market. In the Nikkei
market, however, with its fluctuating and slightly downwards trend, both traders
achieved better performance. The Dynamic trader in particular is on par or
superior to similar EC approaches found in the literature [3,12,14].

It is interesting to observe the behaviour of both evolved traders; Fig. 5 plots
the best Fixed and Dynamic FTSE traders. As the training period TR1→TR4
has no clear trend, cautious traders that mostly take no risk are evolved, profiting
from rate of interest returns in funds not invested. Only the TR4 period exposes
the system to a downwards trend.

Once the evolved Fixed trader goes live, it can be seen that it keeps the same
cautious behaviour. However, in the periods T1→T12, the market exhibits an
upwards trend, which the trader seldom identifies. This is clearly visible in the
period T8→T12. The Dynamic trader, however, is constantly exposed to the
changing market trend, and adapts to a more aggressive (and profitable) buying
behaviour. This is again clearly visible in the period T8→T12, where at each
new live period, more and more buy actions are generated.

Although the better approach, the Dynamic trader is not always the best.
In the Nikkei market, for example, it is not fast enough to adapt to the insta-
bility of the index, leading to periods (T3, T4, T6, T9 and T11) where the
Fixed approach generates more profit; these are periods of sudden trend change,
where the Dynamic trader has been trained on the previous period. At the
end of all test periods, however, the Dynamic trader performance is still clearly
superior.

260 M. Nicolau et al.

T
a
b
le

1
.
B
es
t
ev
o
lv
ed

tr
a
d
er
s
co
m
p
a
re
d
to

B
u
y
&

H
o
ld

b
en

ch
m
a
rk
,
o
n
th
e
F
T
S
E
,
D
a
x
a
n
d
N
ik
k
ei

m
a
rk
et
s
(n
et

p
ro
fi
t
in

d
o
ll
a
rs
)

F
T
S
E

D
a
x

N
ik
k
ei

P
er
io
d

B
u
y
&

H
o
ld

S
ta
ti
c
D
y
n
a
m
ic

B
u
y
&

H
o
ld

S
ta
ti
c
D
y
n
a
m
ic

B
u
y
&

H
o
ld

S
ta
ti
c
D
y
n
a
m
ic

T
ra
in

T
R
1
(1

to
9
0
)

3
5
.6
9

2
0
9
.5
9

2
0
9
.5
9

-1
4
1
3
.5
8

2
8
4
.9
0

2
8
4
.9
0

-4
0
9
4
.9
6

1
1
5
6
.8

1
1
5
6
.8

T
R
2
(9
1
to

1
8
0
)

-1
7
3
4
.9
9

1
3
7
.1
6

1
3
7
.1
6

3
4
.7
6
4
8

2
5
9
.9
2

2
5
9
.9
2

-1
6
.3
4

9
5
5
.4
6

9
5
5
.4
6
4

T
R
3
(1
8
1
to

2
7
0
)

1
1
0
0
.9

1
2
6
7
.0
2

1
2
6
7
.0
2

1
2
6
7
.7
7

1
6
1
.9
6

1
6
1
.9
6

-3
9
8
9
.7
6

2
1
2
6
.3
9

2
1
2
6
.3
9

T
R
4
(2
7
1
to

3
6
0
)

-2
6
5
0
.9
8

9
2
8
.8
7

9
2
8
.8
7

-2
3
4
1
.5
9

1
4
4
7
.9
4

1
4
4
7
.9
4

2
5
5
.1
2

2
7
1
8
.9
3

2
7
1
8
.9
3

T
o
ta

l
-3
2
4
9
.3
8

2
5
4
2
.6
4

2
5
4
2
.6
4

-2
4
5
2
.6
4
2
1
5
4
.7
2

2
1
5
4
.7
2

-7
8
4
5
.9
4
6
9
5
7
.5
8

6
9
5
7
.5
8

T
es
t

T
1
(3
6
1
to

4
5
0
)

2
4
0
2
.8
5

2
2
7
.7
1

2
2
7
.7
1

3
4
.8
2

-5
8
1
.0
2

-5
8
1
.0
2

-9
4
0
.4
4

1
7
5
.9
3

1
7
5
.9
3

T
2
(4
5
1
to

5
4
0
)

-1
2
4
.5
1

3
9
.1
9

5
9
8
.7
8

2
8
9
.7
2

2
0
0
.1
6

1
9
6
.4
8

2
4
5
1
.6
3

5
1
.9
1

4
5
0
.6
1

T
3
(5
4
1
to

6
3
0
)

6
1
7
.8
2

7
1
9
.4
0

7
9
9
.4
6

1
5
3
8
.5
2

3
6
3
.9
6

5
9
4
.4
7

4
9
.8
1

5
7
.7
8

3
6
.7
8

T
4
(6
3
1
to

7
2
0
)

1
2
0
6
.9

1
0
6
8
.9
2

1
3
0
0
.3
0

1
3
1
7
.4
7

-2
6
.3
3

1
2
1
3
.6
2

-2
2
2
1
.3
3

1
3
9
3
.6
1

9
7
6
.8
1

T
5
(7
2
1
to

8
1
0
)

-2
0
1
0
.0
4

2
0
9
.5
9

2
8
5
.0
5

5
9
4
.2
3

2
9
5
.8
8

3
1
9
.7
5

1
0
6
0
.1
5

-9
3
5
.9
9

-6
0
5
.4
2

T
6
(8
1
1
to

9
0
0
)

-6
7
5
.9
1

2
4
7
.5
5

1
0
8
.7
2

-1
2
8
1
.4
2

2
0
4
.6
1

2
4
9
.8
7

-8
8
2
.8
2

2
1
4
.3
2

6
3
.3
7

T
7
(9
0
1
to

9
9
0
)

-1
8
1
.4
6

3
5
5
.1
3

2
7
1
.3
8

-3
2
8
.6
1

1
6
5
.4
7

2
2
0
.0
7

-8
3
4
.9
7

-2
3
3
.1
7

-1
7
4
.0
9

T
8
(9
9
1
to

1
0
8
0
)

1
2
3
9
.5
5

2
0
9
.5
9

1
9
6
.8
5

5
2
0
.6
4

1
2
0
.7
9

6
2
4
.0
1

-3
0
5
1
.2
6

2
1
1
4
.4
6

2
1
5
9
.6
2

T
9
(1
0
8
0
to

1
1
7
0
)

3
3
7
.9
1

2
0
9
.5
9

1
9
8
.4
4

5
5
.5
1

2
3
6
.7
8

3
6
5
.1
8

1
9
0
1
.6

2
8
4
.2
8

-4
7
9
.7
5

T
1
0
(1
1
7
1
to

1
2
6
0
)

7
2
2
.7
1

2
0
9
.5
9

5
6
4
.6
4

1
3
0
4
.4
2

2
1
7
.0
9

3
1
4
.0
8

1
1
3
6
.0
3

-1
4
7
5
.3
9

1
2
4
9
.4
6

T
1
1
(1
2
6
1
to

1
3
5
0
)

-2
3
.4
9

2
0
9
.5
9

2
1
6
.0
8

4
1
2
.7
5

1
9
2
.7
3

3
2
8
.6
3

6
5
3
.6
5
1

6
1
4
.3
7

-2
8
2
.4
8

T
1
2
(1
3
5
1
to

1
4
4
0
)

7
9
5
.6
1

2
0
9
.5
9

3
2
7
.0
7

6
6
9
.4
3

-1
0
2
.7
8

5
1
6
.8
6

-1
0
2
1
.3
6

1
4
1
.9
3

4
8
8
.7
2

T
o
ta

l
4
3
0
7
.0
9
3
9
1
5
.4
4
3

5
0
9
4
.4
8

5
1
2
7
.4
8
1
2
8
7
.3
4

4
3
6
2
.0
0

-1
6
9
9
.9
4
2
4
0
4
.0
4

4
0
5
9
.5
6

Dynamic Index Trading Using a Gene Regulatory Network Model 261

0

0.5

1.0

2000

3000

4000

1 90 180 270 360 450 540 630 720 810 900 990 1080 1170 1260 1350 1440

SELL

D/N

BUY

 P

ric
e

Day

FTSE Trader - Fixed Training

TR1 TR2 TR3 TR4 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12

S
ig

na
ls

Raw Price
sOsc(14)

RSI(14)
MACD(26,12)

psOsc(8,5)
Output signal

Trade Signal

0

0.5

1.0

2000

3000

4000

1 90 180 270 360 450 540 630 720 810 900 990 1080 1170 1260 1350 1440

SELL

D/N

BUY

 P

ric
e

Day

FTSE Trader - Dynamic Training

TR1 TR2 TR3 TR4 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12

S
ig

na
ls

Raw Price
sOsc(14)

RSI(14)
MACD(26,12)

psOsc(8,5)
Output signal

Trade Signal

Fig. 5. Best Fixed (top) and Dynamic (bottom) traders for the FTSE market. The
top of each plot shows the index value and the generated trade action (buy, sell or do
nothing), and the bottom shows the inputs to the GRN (technical indicators) and the
generated output signal.

262 M. Nicolau et al.

5 Conclusion

In this study, a realistic simulation of applying a GRN model to index trading
was presented. Different aspects of feature selection were analysed, and two
approaches were applied to three market indexes.

The results obtained show the potential of applying developmental systems
to real-world dynamic problems, but also their limitations, The applied devel-
opmental system seems unable to adapt to all market fluctuations in unseen
data (Static approach), and still requires an extra evolutionary process to adapt
to new market tendencies (Dynamic approach). But even the latter approach
exhibits signs of overfitting its training data.

Future work will address these issues. The field of Epigenetics shows us that
states of cellular organisms can be transmitted to offspring: a similar artifi-
cial process could transmit the regulatory state of parents to offspring (in the
Dynamic approach), transferring the state of the market to new models, which
will trade in later periods. This will allow newly created models to retain a better
historical state, derived from trading in all previous periods.

References

1. Banzhaf, W.: Artificial regulatory networks and genetic programming. In: Riolo,
R., Worzel, B. (eds.) Genetic Programming Theory and Practice, ch. 4, pp. 43–62.
Kluwer Publishers, Boston (November 2003)

2. Banzhaf, W., Kuo, P.D.: Network motifs in natural and artificial transcriptional
regulatory networks. Biological Physics and Chemistry 4(2), 85–92 (2004)

3. Brabazon, A., O’Neill, M.: Biologically Inspired Algorithms for Financial Mod-
elling. Springer (2006)

4. Cussat-Blanc, S., Bredeche, N., Luga, H., Duthen1, Y., Schoenauer, M.: Artificial
gene regulatory networks and spatial computation: A case study. In: Lenaerts, T.,
et al. (ed.) Proceedings of ECAL 2011, pp. –. MIT Press (2011)

5. Iba, H., Nikolaev, N.: Genetic programming polynomial models of financial data
series. In: Proceedings of CEC 2000, vol. 2, pp. 1459–1466 (2000)

6. Lane, G.C.: Lanes stochastics. Technical Analysis of Stocks and Commodities 2(3),
80 (1984)

7. LeBaron, B., Lakonishok, J., Brock, W.: Simple technical trading rules and the
stochastic properties of stock returns. Journal of Finance 47(5), 1731–1764 (1992)

8. Leibfarth, L.: Premier stochastic oscillator. Stocks and Commodities V 26(8),
30–36 (2008)

9. Leier, A., Kuo, P.D., Banzhaf, W., Burrage, K.: Evolving Noisy Oscillatory Dynam-
ics in Genetic Regulatory Networks. In: Collet, P., Tomassini, M., Ebner, M.,
Gustafson, S., Ekárt, A. (eds.) EuroGP 2006. LNCS, vol. 3905, pp. 290–299.
Springer, Heidelberg (2006)

10. Lopes, R.L., Costa, E.: ReNCoDe: A Regulatory Network Computational Device.
In: Silva, S., Foster, J.A., Nicolau, M., Machado, P., Giacobini, M. (eds.) EuroGP
2011. LNCS, vol. 6621, pp. 142–153. Springer, Heidelberg (2011)

11. Murphy, J.J.: Technical Analysis of the Financial Markets: A Comprehensive Guide
to Trading Methods and Applications. Prentice Hall Pr. (1999)

Dynamic Index Trading Using a Gene Regulatory Network Model 263

12. Nicolau, M., O’Neill, M., Brabazon, A.: Applying Genetic Regulatory Networks to
Index Trading. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G.,
Pavone, M. (eds.) PPSN 2012, Part II. LNCS, vol. 7492, pp. 428–437. Springer,
Heidelberg (2012)

13. Nicolau, M., Schoenauer, M., Banzhaf, W.: Evolving Genes to Balance a Pole. In:
Esparcia-Alcázar, A.I., Ekárt, A., Silva, S., Dignum, S., Uyar, A.Ş. (eds.) EuroGP
2010. LNCS, vol. 6021, pp. 196–207. Springer, Heidelberg (2010)

14. O’Neill, M., Brabazon, A., Ryan, C., Collins, J.J.: Evolving Market Index Trad-
ing Rules Using Grammatical Evolution. In: Boers, E.J.W., Gottlieb, J., Lanzi,
P.L., Smith, R.E., Cagnoni, S., Hart, E., Raidl, G.R., Tijink, H. (eds.) EvoIASP
2001, EvoWorkshops 2001, EvoFlight 2001, EvoSTIM 2001, EvoCOP 2001, and
EvoLearn 2001. LNCS, vol. 2037, p. 343. Springer, Heidelberg (2001)

15. Pring, M.J.: Technical Analysis Explained: The Successful Investor’s Guide to
Spotting Investment Trends and Turning Points. McGraw-Hill (1991)

16. Rechenberg, I.: Evolutionsstrategie 1994. Frommann-Holzboog, Stuttgart (1994)
17. Wilder, J.W.: New Concepts in Trading Technical Systems. Trend Research (1978)

Analysis of Dynamic Properties of Stock Market
Trading Experts Optimized

with an Evolutionary Algorithm

Krzysztof Michalak(B)

Department of Information Technologies, Institute of Business Informatics,
Wroclaw University of Economics, Wroclaw, Poland

krzysztof.michalak@ue.wroc.pl

Abstract. This paper concerns optimization of trading experts that are
used for generating investment decisions. A population of trading experts
is optimized using a dynamic evolutionary algorithm. In the paper a new
method is proposed which allows analyzing and visualizing the behaviour
of optimized trading experts over a period of time. The application of this
method resulted in an observation that during certain intervals of time
the behaviour of the optimized trading experts becomes more stable.

Keywords: Trading rules · Dynamic optimization · Usage patterns ·
Trading expert optimization · Trading expert stability

1 Introduction

Softcomputing methods are commonly used in the context of financial problems.
Neural networks are used for time series prediction [8] (sometimes combined
with population-based methods [3]) and also for the detection of rare events
[12,15]. Evolutionary methods perform well on problems like portfolio optimiza-
tion [2,10,13] and trading strategies optimization [1,6]. Optimization of trading
experts based on stock market trading rules is one of the approaches to develop-
ing trading strategies using computational methods [4,14]. Apart from trading
expert optimization one of the interesting topics is the analysis of trading rules
interactions and usage patterns [9,11].

In this paper dynamic evolutionary optimization approach is used for trading
experts optimization. The variability of the experts optimized by the evolution-
ary algorithm over time is then analyzed and a visualization method is proposed.
Results presented in this paper suggest that there exist time periods in which
there is little change in the optimal set of trading rules.

2 Dynamic Optimization of Trading Experts

Algorithmic trading requires making decisions about buying and selling financial
instruments based on information obtained from the market. Trading experts
c© Springer-Verlag Berlin Heidelberg 2014
A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2014, LNCS 8602, pp. 264–275, 2014.
DOI: 10.1007/978-3-662-45523-4 22

Analysis of Dynamic Properties of Stock Market Trading Experts Optimized 265

analyzed in this paper generate ”buy” and ”sell” signals at consecutive time
instants for each stock separately based on technical analysis indicators, stock
price, volume, etc. The working of these experts is based on a set of trading rules
which generate individual ”buy” and ”sell” signals using various relationships
between the observed values. An example of a trading rule based on two mov-
ing averages is presented in Algorithm 1. The ”buy” signal is represented by a
numeric value ”1” and the ”sell” signal is represented by a numeric value ”-1”.
A rule can also output ”0” which can be interpreted as ”no decision”. These
numeric values are used for calculating composite signals which are based on
averages of values returned by many trading rules.

Algorithm 1. An example of a trading rule based on two moving averages.
IN:

τfast = 10 - the period of the fast moving average
τslow = 80 - the period of the slow moving average
t - the time instant for which to generate the decision

OUT:
A decision for the time instant t

if MAτfast(t) <MAτslow (t) then
return -1 // Sell

else
if MAτfast(t) >MAτslow (t) then

return 1 // Buy
else

return 0 // No suggestion
end if

end if

In this paper the following structure of a trading expert is used:

b1, . . . , bNrules
, s1, . . . , sNrules

, Θbuy, Θsell (1)

where:
Nrules - the number of trading rules,
bi - a binary variable that determines if the i-th rule is used for generating

”buy” signals,
si - a binary variable that determines if the i-th rule is used for generating

”sell” signals,
Θbuy, Θsell - decision thresholds for ”buy” and ”sell” decisions respectively.

As presented in Equation (1), trading experts used in this paper turn indi-
vidual rules on and off separately for generation of ”buy” and ”sell” signals.
Also, the Θbuy and Θsell decision thresholds are adjusted separately. The indi-
vidual trading rules generate their own ”buy” and ”sell” signals represented by

266 K. Michalak

numbers −1, 0 or 1. The composite ”buy” signal ybuy is calculated as an average
from those rules for which bi = 1:

ybuy =
∑Nrules

i=1 biyi
Nrules

, (2)

where:
yi - the signal generated by the i-th rule.

The composite ”sell” signal is calculated likewise. Buy and sell transactions
are made when the respective signal exceeds a given threshold (ybuy > Θbuy or
ysell > Θsell). The parameters of an expert can be directly used as a chromosome
in an evolutionary algorithm.

The situation in the economy and on the market changes continually. Thus,
one can expect that the applicability of various trading rules may change over
time. Therefore, the optimization of trading experts can be treated as a dynamic
optimization problem. In this paper we assume that changes in the environment
occur at certain time instants and the algorithm can evolve for a preset number
of generations Ngen after each change. This scenario is depicted in Figure 1.
Because the situation on the market changes quickly only a limited number of
generations can be allowed within each time interval.

t

Ngen generations Ngen generations

* *

interval ti interval ti+1

*

* = a change in the environment

Fig. 1. An overview of dynamic optimization scenario. Ngen generations of the evolu-
tionary algorithm are executed between every two changes in the environment.

A well-known fact concerning the dynamic optimization is that in an evolution-
ary algorithm the population may converge to an optimum for a given time instant
which decreases variability in the population and makes it very hard to adapt to
new conditions in the time instants that follow. One of the methods of preventing
such loss of diversity is the addition of random immigrants [7]. In this paper three
methods of introducing random immigrants to the population are presented.

Reinit - the population is initialized randomly for each new interval. This is
equivalent to a static optimization - optimizing the trading experts separately for
each interval without using any prior knowledge gathered from previous intervals.

Every Interval - random immigrants are added to the population when
the optimization starts to handle a new time interval. The number of random
immigrants was set to be equal to the population size.

Analysis of Dynamic Properties of Stock Market Trading Experts Optimized 267

Every Generation - random immigrants are added in the same way as
in the Every Interval approach, plus some random immigrants are added at
the beginning of each generation. The number of immigrants arriving at the
beginning of each generation was set to 20% of the population size.

In all the proposed approaches a single-objective evolutionary algorithm with
roulette-wheel selection is used. The genetic operators are bit-flip mutation with
probability 0.02 for bi and si, polynomial mutation [5] with distribution index
20 for Θbuy and Θsell and a single-point crossover with crossover probability
0.9. An overview of the evolutionary algorithm used in this paper is given in
Algorithm 2.

The Evaluate(P, tk) procedure evaluates all the specimens in a given popu-
lation P on data from time interval tk. The fitness of a specimen that represents
trading expert parameters (cf. Equation (1)) is the return obtained when invest-
ing during the time interval tk using the trading signals calculated according to
Equation (2). The bi, si, Θbuy and Θsell parameters are taken from the specimen
for which the fitness is calculated.

The optimization of trading experts described in this paper was performed
using minute quotations of 50 stocks and ETF shares: AA, AAPL, AIG, ALU,
AMD, ANR, BAC, BSX, C, CHK, CSCO, DELL, EEM, EFA, EMC, EWJ,
EWZ, F, FAZ, FCX, FXI, GE, GLW, HPQ, INTC, IWM, JPM, MS, MSFT,
MU, NOK, NWSA, ORCL, PBR, PFE, QQQ, RF, S, SDS, SIRI, SPY, T, TZA,
VALE, VWO, VXX, WFC, XLF, XLI and YHOO. The range of available data
contains quotation from the period from 2011.10.17 to 2013.05.20. The above-
mentioned companies were selected as 50 companies with the largest total volume
of transactions in the available data range.

The dynamic optimization was performed for a number of time intervals
tk, k ∈ {1, . . . , Ntime}. Each time interval tk corresponded to an 8-week period
starting at the week number k. Therefore, the population was first optimized with
respect to the performance on an interval week1, . . . , week8, then week2, . . . , week9,

and so on. The number of time intervals was set to Ntime = 76 with the first day
of week1 on 2011.10.17 and the last day of week76 on 2013.05.20. Specimen fitness
for each time instant tk was calculated as the overall return obtained by using the
trading expert encoded in the specimen over the interval weekk, . . . , weekk+7.
In this paper intra-day trading was assumed: all the remaining stocks were sold
at the end of the day. Commission was set to 0.4% per transaction. In every
method a population of 50 specimens was evolved for 30 generations for each
time interval tk.

3 Analysis of Trading Rules Usage

This section analyzes the usage of trading rules in experts optimized using the
evolutionary algorithm described in the previous section. In dynamic optimiza-
tion context an interesting question is how often and in what way does the usage
of individual trading rules change over time.

268 K. Michalak

Algorithm 2. An overview of the evolutionary algorithm used for optimization
of trading experts.

IN:
variant - a method of introducing random immigrants to the population
Npop - number of specimens in the population
Ngen - number of generations

// — In the ”reinit” variant the population is initialized —
// — for every interval separately, not only at the beginning —
if variant �= ”reinit” then

P = InitPopulation(Npop)
end if

// — Time interval —
for k = 1 → Ntime do

if variant = ”reinit” then
// — Initialize new population —
P = InitPopulation(Npop)

else
// — Random immigrants —
R = InitPopulation(Npop)
P = P ∪ R

end if
Evaluate(P , tk)

// — Generation —
for g = 1 → Ngen do

if variant = ”every generation” then
// — Random immigrants —
R = InitPopulation(0.2 ∗ Npop)
P = P ∪ R

end if

Evaluate(P , tk)
P = Select(P , Npop)
Crossover(P)
Mutation(P)

end for
end for

To address this question the following method is proposed. For each time
interval tk the population Pk optimized to give the highest return on the interval
weekk, . . . , weekk+7 is processed. A fraction P

(best)
k of q(best)% best specimens

from the population Pk is extracted. For visualization of the usage of trading
rules for generating the ”buy” signals a matrix ANtime×Nrules

is calculated in
which the k-th row contains average values of parameters bi found in P

(best)
k for

k = 1, . . . , Ntime. For visualization of the usage of trading rules for generating

Analysis of Dynamic Properties of Stock Market Trading Experts Optimized 269

the ”sell” signals a similar, but separate matrix is built based on si parameters
from the same fraction P

(best)
k of the population Pk.

Visualization of trading rules usage
For visualization the columns of matrix A are clustered using an agglomerative
hierarchical algorithm. In this clustering algorithm the center of a cluster is defined
as the average value of those columns of the matrix A that belong to this clus-
ter. The hierarchical clustering algorithm builds a tree structure in which nodes
contain nested subsets of columns of matrix A. Each tree node T contains a list
of columns T.C and two references T.left and T.right to child nodes. The child
nodes represent subsets that were clustered together to form the cluster T.C. The
structure built by the clustering algorithm is shown in Figure 2.

Fig. 2. The structure built by the clustering algorithm

After clustering the SortNode procedure is used to change the ordering of
columns in all clusters in such a way that there is minimal difference between
adjacent columns from neighbouring clusters. The SortNode procedure works as
follows when called for a tree node T . First, if the T.left and T.right subtrees
are non-empty, the procedure is called recursively: SortNode(T.left), SortNode
(T.right). Then, depending of which distance between columns is the smallest
one, the SortNode procedure reorders columns in child nodes. Using notation
shown in Figure 2 we have the C ′ = T.left.C and C ′′ = T.right.C.

The reordering of columns in child nodes is done according to which of the
conditions is found to be true when comparing distances between the first and
the last columns of C ′ and C ′′:

– if d(C ′.first, C ′′.first) is the smallest, C ′ is reversed,
– if d(C ′.last, C ′′.last) is the smallest, C ′′ is reversed,
– if d(C ′.first, C ′′.last) is the smallest, both C ′ and C ′′ are reversed,
– if d(C ′.last, C ′′.first) is the smallest, no reordering is performed,

270 K. Michalak

The procedure of construction and clustering of the matrix A is performed
separately for parameters bi and si. The clustered matrix can be visualized as
a checkerboard plot. Examples of checkerboard plots for the AAPL stock are
presented in Figure 3. The plots are based on q(best) = 20% of populations after
30 generations of the dynamic optimization evolutionary algorithm.

What can be easily seen from the clustered checkerboard plots is that there
are many rules that are activated (black areas) or deactivated (white areas)
together. Also, it can be observed that there are prolonged periods when no
change to the best trading experts is introduced.

From the visual exploration two questions arise. First, how often are the
rules used for generation of both ”buy” and ”sell” signals? Second, what is the
stability of the best rule sets generated by the evolutionary algorithm?

The usage of the trading rules for generation of ”buy” and ”sell”
signals

As shown in Equation (1) each trading expert contains separate variables for
enabling the ”buy” signals from individual rules (the bi variables) and separate
ones for the ”sell” signals (the si variables). In order to get some insight on how
the rules are used (for generating ”buy” signals, ”sell” signals, both or none)
the percentage of specimens in which each of the four situations occurred for
each of the rules i = 1, . . . , Nrules was calculated. The observed percentages
calculated from 380000 specimens (50 stocks, 10 best specimens (q(best) = 20%),
76 intervals, 10 iterations) are presented in Tables 1-3.

The results shown in Tables 1-3 motivate using separate variables bi and
si for determining whether to use individual rules for generating ”buy” and
”sell” signals. In about 25% of specimens the rules are used for generating both
the ”buy” and ”sell” signals, but equally often the trading expert is optimized
towards using distinct rules for generating each of the signals.

The stability of the results produced by the optimal rule sets

Based on the visual exploration of the plots representing the usage of the trading
rules with respect to time it can be observed that there exist certain periods of
time in which the rules used by the best specimens remain the same.

Figures 4 and 5 present the average return (calculated over 10 iterations)
obtained by the best specimens in the population after 30 generations of the

Table 1. The percentages of specimens in which rules were used for generating ”buy”
signals, ”sell” signals, both or none in the populations optimized using the ”Every
Generation” method

Usage Mean Std. dev.

Not used 0.24387 0.01316
Buy 0.25827 0.013
Sell 0.24171 0.013111
Both 0.25614 0.013346

Analysis of Dynamic Properties of Stock Market Trading Experts Optimized 271

Random immigrants every generation Random immigrants every interval

0 10 20 30 40 50 60 70 80
0.992

0.994

0.996

0.998

1

1.002

1.004

1.006

1.008

1.01

Interval

R
et

ur
n

Every Generation
Every Interval
Reinit

Population reinitialization

Fig. 3. Visualization of the usage of trading rules for generating ”buy” signals for the
AAPL stock. Black represents used rules, white represents unused rules.

Table 2. The percentages of specimens in which rules were used for generating ”buy”
signals, ”sell” signals, both or none in the populations optimized using the ”Every
Interval” method

Usage Mean Std. dev.

Not used 0.24205 0.026379
Buy 0.26194 0.026503
Sell 0.2378 0.02493
Both 0.25821 0.026473

272 K. Michalak

Table 3. The percentages of specimens in which rules were used for generating ”buy”
signals, ”sell” signals, both or none in the populations optimized using the ”Reinit”
method

Usage Mean Std. dev.

Not used 0.24395 0.0091361
Buy 0.25763 0.0099813
Sell 0.24265 0.0096086
Both 0.25577 0.0090758

evolution. As can be seen in the graphs, the best results are obtained when
random immigrants are added to every generation of the evolutionary algorithm.
On the other hand, totally reinitializing the entire population produces the worst
results. This suggests that while high diversity is required for the algorithm to be
able to track changing optimal rule set, some useful information can be obtained
from previous time intervals. This information is lost when the population is
reinitialized and the results deteriorate.

0.99

1

1.01

1.02

1.03

1.04

Stock

R
et

ur
n

A
A

A
A

P
L

A
IG

A
LU

A
M

D

A
N

R

B
A

C

B
S

X C

C
H

K

C
S

C
O

D
E

LL

E
E

M

E
F

A

E
M

C

E
W

J

E
W

Z F

F
A

Z

F
C

X

F
X

I

G
E

G
LW

H
P

Q

IN
T

C

Every Generation
Every Interval
Reinit

Fig. 4. The average return achieved by the best specimens after 30 generations (stocks
AA to INTC)

Figure 6 presents the dependence between the return obtained in time inter-
vals tk (x axis) and tk+1 (y axis), where k = 1, . . . , Ntime − 1 by specimens that
had not changed for at least 3 intervals. Clearly, adding immigrants to every
generation causes the optimized rule set to produce similar returns repetitively
over several time intervals. In most cases the returns obtained in time intervals

Analysis of Dynamic Properties of Stock Market Trading Experts Optimized 273

0.99

1

1.01

1.02

1.03

1.04

Stock

R
et

ur
n

IW
M

JP
M

M
S

M
S

F
T

M
U

N
O

K

N
W

S
A

O
R

C
L

P
B

R

P
F

E

Q
Q

Q R
F S

S
D

S

S
IR

I

S
P

Y T

T
Z

A

V
A

LE

V
W

O

V
X

X

W
F

C

X
LF X
LI

Y
H

O
O

Every Generation
Every Interval
Reinit

Fig. 5. The average return achieved by the best specimens after 30 generations (stocks
IWM to YHOO)

tk and tk+1 are very similar (most of the points are placed near the y = x line).
Conversely, when immigrants are only added at the beginning of every inter-
val there is much more difference between the return obtained in interval tk and
interval tk+1. This suggests that when using the Every Interval method the algo-
rithm does not adapt too well and the optimal rule set may remain unchanged
even though the obtained returns vary significantly. Note, that in the case of
immigrants added to every generation the diversity of the population may be
expected to increase, but the returns given by optimized rule sets are less diverse.
This can be indicative of a fact, that in the case of immigrants added to every
generation the algorithm is not only able to find good solutions more easily than

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
0.5

0.6

0.7

0.8

0.9

1

1.1

Return t
k

R
et

ur
n

t k+
1

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
0.5

0.6

0.7

0.8

0.9

1

1.1

Return t
k

R
et

ur
n

t k+
1

Every Generation Every Interval

Fig. 6. The dependence between the return obtained in interval tk (x axis) and interval
tk+1 (y axis). The specimens that had not changed for at least 3 intervals were used.

274 K. Michalak

in the case of immigrants added once every interval only, but also that the opti-
mized rule sets seem to be more universal i.e. they can produce good results for
several consecutive time intervals.

4 Conclusion

In this paper dynamic properties of trading experts optimized using a dynamic
evolutionary algorithm were analyzed. A new method of analyzing and visual-
izing the behaviour of trading experts over a period of time was proposed. The
application of this method to trading experts generating decisions for 50 stocks
and ETF shares resulted in several observations:

– Introducing additional random immigrants at the beginning of every genera-
tion allows the evolutionary algorithm to produce specimens with higher fit-
ness values compared to the algorithm where random immigrants are added
only once for every interval at the beginning of the evolution.

– On the other hand, reinitializing the entire population for each new time
interval deteriorates the results significantly. This means that despite the
large variability of trading rules usage, useful information can be extracted
from trading experts optimized for past time intervals.

– Visualization of trading rules usage shows prolonged periods of time when
the same set of rules produces the best investment returns.

– The evolutionary algorithm can produce good rule sets that are relatively
stable - they produce similar return values for consecutive time intervals.

– Among the fittest specimens the fraction of rules used at the same time
for generating ”buy” and ”sell” signals is approximately 1/4. This result
suggests, that in order to build good trading experts one should allow using
trading rules separately for generating ”buy” and ”sell” signals.

Further work may include development of methods that allow early detection
of time intervals during which the optimal set of rules remains the same or very
similar. It is worth investigating if the analysis of the stability of optimal trading
rule sets could be useful for deciding if a given trading expert should be used for
making decision at a given time or not.

References

1. Bauer, R.: Genetic Algorithms and Investment Strategies. Wiley, Chichester (1994)
2. Best, M.J.: Portfolio Optimization. Chapman&Hall/CRC (2010)
3. Cai, X., Zhang, N., Venayagamoorthya, G.K., Wunsch II, D.C.: Time series pre-

diction with recurrent neural networks trained by a hybrid PSOEA algorithm.
Neurocomputing 70(13–15), 2342–2353 (2007)

4. Chiam, S.C., Tan, K.C., Al Mamun, A.: Investigating technical trading strategy
via an multi-objective evolutionary platform. Expert Systems with Applications
36(7), 10408–10423 (2009)

Analysis of Dynamic Properties of Stock Market Trading Experts Optimized 275

5. Deb, K., Goyal, M.: A Combined Genetic Adaptive Search (GeneAS) for Engineer-
ing Design. Computer Science and Informatics 26, 30–45 (1996)

6. Dempster, M., Jones, C.: A Real-Time Adaptive Trading System using Genetic
Programming. Quantitative Finance 1, 397–413 (2001)

7. Grefenstette, J.J.: Genetic algorithms for changing environments. In: Manner, R.,
Manderick, B. (eds.) Parallel Problem Solving from Nature, pp. 137–144. Elsevier
Science Publisher (1992)

8. Inoussa, G., Peng, H., Wu, J.: Nonlinear time series modeling and prediction using
functional weights wavelet neural network-based state-dependent AR model. Neu-
rocomputing 86(1), 59–74 (2012)

9. Lipinski, P.: Dependency Mining in Large Sets of Stock Market Trading Rules. In:
Pejas, J., Piegat, A. (eds.) Enhanced Methods in Computer Security, Biometric
and Intelligent Systems, pp. 329–336. Kluwer Academic Publishers (2005)

10. Michalak, K., Filipiak, P., Lipiński, P.: Evolutionary Approach to Multiobjective
Optimization of Portfolios That Reflect the Behaviour of Investment Funds. In:
Ramsay, A., Agre, G. (eds.) AIMSA 2012. LNCS, vol. 7557, pp. 202–211. Springer,
Heidelberg (2012)

11. Michalak, K., Filipiak, P., Lipinski, P.: Usage Patterns of Trading Rules in Stock
Market Trading Strategies Optimized with Evolutionary Methods. In: Esparcia-
Alcázar, A.I. (ed.) EvoApplications 2013. LNCS, vol. 7835, pp. 234–243. Springer,
Heidelberg (2013)

12. Michalak, K., Lipinski, P.: Prediction of high increases in stock prices using neural
networks. Neural Network World, 15, 4, 359–366 (2005)

13. Radziukyniene, I., Zilinskas, A.: Evolutionary Methods for Multi-Objective Port-
folio Optimization. In: Proceedings of the World Congress on Engineering 2008,
pp. 1155–1159. Newswood Limited (2008)

14. Wang, F., Yu, P.L.H., Cheung, D.W.: Combining technical trading rules using par-
ticle swarm optimization. Expert Systems with Applications (in press), Available
online 24 October 2013. http://dx.doi.org/10.1016/j.eswa.2013.10.032

15. Yu, L., Wang, S., Lai, K.K., Wen, F.: A multiscale neural network learning
paradigm for financial crisis forecasting. Neurocomputing 73(4–6), 716–725 (2010)

http://dx.doi.org/10.1016/j.eswa.2013.10.032

A Comparative Study
on the Use of Classification Algorithms

in Financial Forecasting

Fernando E.B. Otero(B) and Michael Kampouridis

School of Computing, University of Kent, Chatham Maritime, Kent, UK
{F.E.B.Otero,M.Kampouridis}@kent.ac.uk

Abstract. Financial forecasting is a vital area in computational finance,
where several studies have taken place over the years. One way of view-
ing financial forecasting is as a classification problem, where the goal
is to find a model that represents the predictive relationships between
predictor attribute values and class attribute values. In this paper we
present a comparative study between two bio-inspired classification algo-
rithms, a genetic programming algorithm especially designed for financial
forecasting, and an ant colony optimization one, which is designed for
classification problems. In addition, we compare the above algorithms
with two other state-of-the-art classification algorithms, namely C4.5
and RIPPER. Results show that the ant colony optimization classifica-
tion algorithm is very successful, significantly outperforming all other
algorithms in the given classification problems, which provides insights
for improving the design of specific financial forecasting algorithms.

Keywords: Financial forecasting · Classification · Genetic program-
ming · Ant Colony optimization

1 Introduction

Financial forecasting is a vital area in computational finance [13]. There are
numerous works that attempt to forecast the future price movements of a stock;
several examples can be found in [1].

In this study, we approach the financial forecasting problem as a classification
problem [5,14]. In a classification problem, the aim is to create a model that
places objects (examples) into pre-defined categories (classes). The model is
able to determine the category of an object by analysing patterns (attribute-
values) between objects of that category. Classification problems can therefore
be viewed as optimisation problems, where the goal is to find the best model that
represents the predictive relationships in the data. Classification algorithms can
be grouped by the type of the model representation that they produce: as ‘black-
box’ models (e.g., the models produced by support vector machines using kernels
and artificial neural networks, which are difficult to interpret); and ‘white-box’
models (e.g., decision tree and classification rule models, which are more readily
c© Springer-Verlag Berlin Heidelberg 2014
A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2014, LNCS 8602, pp. 276–287, 2014.
DOI: 10.1007/978-3-662-45523-4 23

A Comparative Study on the Use of Classification Algorithms 277

interpreted). Since ‘white-box’ models have the advantage of being easier to
interpret, they can be used to further understand the data—i.e., they can be
used to understand how the predictions are made by the model. This enhanced
understanding leads to a greater degree of trust in the models produced, which
is crucial in various domains—e.g., medical and financial domains, where the
predictions usually need to be validated by doctors/experts.

In this paper, our goal is to report and analyse the performance of such ‘white-
box’ models, one from the domain of genetic programming (GP) [8], and one from
the field of ant colony optimization (ACO) [3]. We also compare the performance
of these two algorithms with two other state-of-the-art algorithms, namely C4.5
and RIPPER. For the purposes of the GP, we will be using EDDIE [7], an
algorithm especially designed for classification financial forecasting problems.
For the purposes of ACO, we will be using the Unordered cAnt-MinerPB [10],
which is a classification algorithm.

The remainder of this paper is organised as follows. In Section 2 we discuss
the financial forecasting problem and how it can be viewed as a classification
problem. Section 3 presents the research goals of this study. The datasets used
in our experiments are described in Section 4, while the algorithms are described
in Section 5. Section 6 presents and discusses the computational results. Finally,
Section 7 concludes this paper.

2 Problem Description

2.1 Financial Forecasting

One of the most common methods used in the financial forecasting area is tech-
nical analysis [4]. This method assumes that patterns exist in historical data
and that these patterns will repeat themselves. Consequently, it is worth identi-
fying these patterns, so that we can exploit them in the future and make profit.
As part of technical analysis, several indicators are used. These technical anal-
ysis indicators are formulas that measure different aspects of a given financial
dataset, such as trend, volatility and momentum.

An example of such indicators is the Moving Average (MA), which calculates
the averages of a given dataset under sliding windows of a fixed length L. One
way of using MAs is to compare a short-term MA with a long-term one; for
instance, when the short-term MA goes above the long-term one, this would
indicate that the market is in an upward trend and thus it would be a good
indication to buy.

The above method has been extensively used in both the literature and in
the industry. However, what is evident is that both academics and people who
work in the industry tend to use very specific L lengths for the indicators; for
instance, 20 days is a common short-length period and 50 days is a common
long-term period. In [7], it was argued that this method is not very flexible and
cannot guarantee that specific pre-specified indicators are necessarily the best
ones. For example, nobody can guarantee that a 20 days MA is definitely more
effective than a 25 days MA, under all possible datasets.

278 F.E.B. Otero and M. Kampouridis

In our current work, we will be building on the above idea by allowing all
algorithms tested in this paper to use any period lengths within a parameterised
length [MinP,MaxP], which is set to [2, 65] days. This will add flexibility to
all algorithms and enable them to create new indicators. However, one has to
keep in mind that this will also add to the complexity of the problem. While
traditionally a financial forecasting algorithm would have to deal with a low
number of indicators, e.g. 6 technical indicators with two period lengths—a
short (20 days) and a long (50 days) term—leading to a total number of 12
indicators, in our framework each algorithm would have to choose among 6×64 =
384 indicators. Hence, the problem is much more complex than the traditional
classification financial forecasting problems, as the number of combinations for
all available indicators is much higher.

2.2 The Classification Problem

Each algorithm tested in this work will be attempting to answer the question
‘Will the price of the X stock rise by r% within the next n days?’ Thus, the
classes are calculated by looking ahead of the closing price for a time horizon of
n days, trying to detect if there is an increase of the price by r%. For this set
of experiments, n is set to 20 and r to 4%. In other words, the algorithms will
be trying to forecast whether the daily closing price is going to increase by 4%
within the following 20 days.

Depending on the classification of the predictions, we can have four cases:
True Positive (TP), False Positive (FP), True Negative (TN), and False Negative
(FN). As a result, we can use the metrics presented in Equations 1, 2 and 3:

Rate of Correctness
RC =

TP + TN

TP + TN + FP + FN
(1)

Rate of Missing Chances

RMC =
FN

FN + TP
(2)

Rate of Failure
RF =

FP

FP + TP
(3)

It should also be noted that we chose to use RMC and RF instead of the more
‘traditional’ classification Recall and Precision measures, because they are met-
rics related to the financial forecasting problem. Thus, it would make more sense
to an investor to know how many times an algorithm returns FP predictions,
because this could have a very negative impact on his portfolio.

3 Research Goals

The goal of this study is to analyse the performance of state-of-the-art clas-
sification algorithms when applied to financial forecasting, and compare it to

A Comparative Study on the Use of Classification Algorithms 279

two well-known bio-inspired algorithms, namely EDDIE and Unordered cAnt-
MinerPB. EDDIE is a GP financial forecasting algorithm, as it was designed
specifically for the purposes of financial forecasting and that has been previ-
ously successfully applied to datasets from different international markets. The
Unordered cAnt-MinerPB algorithm is an established ant colony optimization
(ACO) [3] classification algorithm which has been found efficient in discovering
comprehensible and accurate classification models [10].

As we discussed in Section 2.2, financial forecasting can be modelled as a
classification problem. Thus, we can summarise the goals of this study as follows:

– How do EDDIE and Unordered cAnt-MinerPB compare to state-of-the-art
classification algorithms in terms of Rate of Correctness, Rate of Missing
Chances and Rate of Failure?

– Can we get insights on the differences in the search behaviour between GP
and ACO, based on their performance as classification algorithms in the
given financial forecasting problem?

4 Data Preparation

The set of data used in this work is composed of three parts: (i) daily closing
price of a stock, (ii) a number of attributes, and (iii) signals. Stocks’ daily closing
prices can be obtained online on websites such as http://finance.yahoo.com and
also from financial statistics databases like Datastream.1 The attributes are indi-
cators commonly used in technical analysis [4]; which indicators to use depends
on the user and his belief of their relevance to the prediction. The technical
indicators that are used in this work are: Moving Average (MA), Trade Break
Out (TBR), Filter (FLR), Volatility (Vol), Momentum (Mom), and Momentum
Moving Average (MomMA).2 Also, as already explained in Section 2, the signals
are calculated by looking ahead of the closing price for a time horizon of n days,
trying to detect if there is an increase of the price by r%.

As we are approaching the financial forecasting problem as a classification
problem, the training set is created using the daily closing price of a stock for
a fixed time window. For each training day (each example in our training set),
we calculate the aforementioned technical indicators MA, TBR, FLR, Vol, Mom
and MomMA for the periods from 2 to 65 days—the predictor attributes values
of the problem. There are 384 predictor attribute in total: 6 indicators and 64
possible periods (6 × 64 = 384). We also calculate the signals for each of the
training days by ‘looking ahead’ if the value of the stock increased by r% or not
(0=no increase, 1=increase)—the class attribute values of the problem. The test
set is created in a similar fashion, with the difference that the test set is used
1 Available at: http://thomsonreuters.com/datastream-professional/
2 We use these indicators because they have been proved to be quite useful in devel-

oping decision trees in [9]. Of course, there is no reason not to use other information
like fundamentals or limit order book. However, the aim of this work is not to find
the ultimate indicators for financial forecasting.

http://thomsonreuters.com/datastream-professional/

280 F.E.B. Otero and M. Kampouridis

<Tree> ::= If-Then-Else <Condition> <Tree> <Tree> | Decision
<Condition> ::= <Condition> AND <Condition> |

<Condition> OR <Condition> |
NOT <Condition> |
<VarConstructor> <RelationOperation> Threshold

<VarConstructor> ::= MA period | TBR period | FLR period | Vol period
| Mom period | MomMA period

<RelationOperation> ::= “>” | “<” | “=”
Terminals:

MA, TBR, FLR, Vol, Mom, MomMA are function symbols
Period is an integer within a parameterised range, [MinP, MaxP]
Decision is an integer, Positive or Negative implemented
Threshold is a real number

Fig. 1. The Backus Normal Form of EDDIE 8

only to evaluate the performance of the algorithm and the algorithms have no
access to the test set during training.

Using the above procedure, we created 25 datasets. These datasets consist of
daily closing prices from 18 stocks from FTSE 100, and 7 international indices.
The 18 FTSE 100 stocks are: Aggreko, Amlin, Barclays, British Petroleum
(BP), Cadbury, Carnival, Easyjet, First, Hammerson, Imperial Tobacco, Marks
& Spencer, Next, Royal Bank of Scotlland (RBS), Schroders, Sky, Tesco, Voda-
fone and Xstrata. The 7 indices are: Athens Stock Exchange (Greece), DJIA
(USA), HSI (Hong Kong), MDAX (Germany), and NASDAQ (USA), NIKEI
(Japan), and NYSE (USA). For each of the datasets, the training set is 1000
days and the test set 300.

5 Algorithms

5.1 EDDIE

EDDIE 8 is a Genetic Programming (GP) [8] financial forecasting algorithm,
which learns and extracts knowledge from a set of data. After feeding the data
to the system, EDDIE creates and evolves a population of decision trees. Figure 1
presents the Backus Normal Form (BNF) (grammar) of EDDIE 8. As we can see,
the root of the tree is an If-Then-Else statement. The first branch is either a
boolean (testing whether a technical indicator is greater than/less than/equal to
a threshold), or a logic operator (AND, OR, NOT), which can hold multiple boolean
conditions. The Then and Else branches can be a new tree, or a decision, to buy
or not-to-buy (denoted by 1 and 0). The threshold is a real number, which is
randomly generated within the range of the minimum and maximum values of
the respective indicator.

As we can observe from the grammar in Figure 1, there is a function called
‘VarConstructor’, which takes two children. The first one is the indicator, and the
second one is the ‘Period’. ‘Period’ is an integer within the parameterized range
[MinP, MaxP] that the user specifies. The advantage of this approach is that it
makes the GP more dynamic, as EDDIE 8 is not constrained to pre-specified

A Comparative Study on the Use of Classification Algorithms 281

If

<=

VarConstructor

MA 20

6.4

Buy(1) If

>

VarConstructor

MomMA 50

5.57

Not-Buy(0) Buy(1)

Fig. 2. Sample decision tree generated by EDDIE 8. As we can see, if the 20 days
MA is less than or equal to 6.4, then the user is advised to buy; otherwise, the user is
advised to consult another tree, which is located in the third branch (‘else-branch’) of
the tree. This tree checks if the 50 days Momentum Moving Average is greater than
5.57; if it is, it advises to not-buy, otherwise to buy.

periods, as is usually the case in literature and industry.As a consequence, it is
up to the GP and the evolutionary process to look for the optimal periods values
from the period range provided. For instance, if this range is 2 to 65 days, then
EDDIE 8 can create Moving Averages with any of these periods, e.g., 20 days
MA, 25 days MA, and so on. Furthermore, the periods are leaf nodes and are
thus subject to genetic operators, such as crossover and mutation. A sample tree
of EDDIE 8 is presented in Figure 2. The periods 20 and 50 of the figure’s sample
tree are leaf nodes; the advantage of this being that the GP can replace them
with more effective periods, which might have come up during the evolutionary
process.

EDDIE’s fitness function is a weighted formula, combining Equations 1-3:

ff = w1 ∗ RC − w2 ∗ RMC − w3 ∗ RF (4)

where w1, w2 and w3 are the weights for RC, and the financial-based metrics
RMC and RF. These weights are given in order to reflect the preferences of
investors. For instance, a conservative investor would want to avoid failure; thus
a higher weight for RF should be used. For the experiments in this paper, the
focus is on strategies that mainly target correctness and reduced failure.

5.2 Unordered cAnt-MinerPB

Unordered cAnt-MinerPB [10] is an ACO classification algorithm that employs an
improved sequential covering strategy [11] to search for the best set of classifica-
tion rules. The use of this improved strategy avoids the potential problem of rule
interaction arising from the greedy nature of the sequential covering commonly

282 F.E.B. Otero and M. Kampouridis

IF MA_20 <= 6.4 THEN Buy(1)

IF MA_20 > 6.4 AND MM_50 > 5.57 THEN Buy(0)

IF MA_20 > 6.4 AND MM_50 <= 5.57 THEN Buy(1)

Fig. 3. Sample of a set of classification rules representing the same conditions of
EDDIE’s tree from Figure 2

used by rule induction algorithms. Instead of creating a rule and then determine
its consequent (the prediction of the rule) based on the majority class value of
the covered training examples, as the majority of ACO classification algorithms,
an ant creates rules for each class value in turn using as negative examples all
the examples associated with different class values. The advantage of discovering
a set of classification rules (unordered rules) is that the order in which the rules
are discovered is not important to the interpretation of the individual rules, in
contrast to rule induction algorithms that discover a list of classification rules
(ordered rules). A sample of a set of classification rules is presented in Figure 3.

In summary, the Unordered cAnt-MinerPB works as follows. Each ant starts
with an empty set of rules and iteratively adds a new rule to this set. In order
to create a rule, an ants adds one term at a time to the rule antecedent by
choosing terms to be added to the current partial rule based on their values of
the amount of pheromone (τ) and a problem-dependent heuristic information
(η). After a rule is created and pruned, it is added to current set of rules and
the training examples correctly covered by the rule are removed. At the end
of an iteration, when all ants have created a set of rules, the best set of rules
(determined by the highest predictive accuracy on the training data) is used to
update pheromone values, providing a positive feedback on the terms present
in the rules—the higher the pheromone value of a term, the more likely it will
be chosen to create a rule. This iterative process is repeated until a maximum
number of iterations is reached or until the algorithm stagnates.

Since the consequent of a rule is fixed during its creation, the Unordered
cAnt-MinerPB uses a class-specific heuristic information3 and dynamic discreti-
sation procedure of continuous values. Hence, when a particular indicator value
is selected (e.g., 20 days MA), the algorithm determines the threshold value by
looking at the training data and selecting the one that gives the highest informa-
tion gain, instead of choosing them in a random way as EDDIE does. Therefore,
the selection of threshold values in the Unordered cAnt-MinerPB algorithm is
tailored for the current available data—only suitable values are considered as
candidate threshold values to create indicator conditions.
3 The heuristic information represents a priori information about the quality of the

candidate components of the antecedent of a rule and it is used in the stochastic
rule construction process. The Unordered cAnt-MinerPB uses the information gain
measure [12] as the heuristic information.

A Comparative Study on the Use of Classification Algorithms 283

MA 20

Buy (1)

<=
6.4

MM 50

Buy (1)

<=
5.5

7

Buy (0)

>
5.57

>
6.4

Fig. 4. Sample decision tree generated by C4.5 representing the same conditions of
EDDIE’s tree from Figure 2

5.3 C4.5 (J48)

J48 is Weka’s implementation [14] of the well-known C4.5 algorithm [12]. The
C4.5 algorithm, probably the most known decision tree induction algorithm,
employs an entropy-based criterion in order to select the best attribute to cre-
ate a node. C4.5 has been successfully applied to a wide range of classification
problems and it is usually used on evaluative comparisons of new classification
algorithms.

5.4 RIPPER (JRip)

JRip is Weka’s implementation [14] of the RIPPER algorithm [2]. RIPPER
sequentially creates a set of rules that is subject to a global post-processing
step by implementing a rule induction procedure with a reduced error pruning
strategy [12]. The final set of rules created by JRip has a similar structure than
the one created by the Unordered cAnt-MinerPB algorithm (Figure 3).

6 Results

The experiments were carried out using 25 datasets created using the procedure
described in Section 4. The parameters used for both stochastic algorithms are:
EDDIE 8 {max. initial depth = 6, max. depth = 8, generations = 50, population
size = 500, tournament size = 2, reproduction probability = 0.1, crossover prob-
ability = 0.9, mutation probability = 0.01, w1 = 0.6, w2 = 0.1, w3 = 0.3} and
Unordered cAnt-MinerPB {colony size = 5, evaporation factor = 0.90, minimum
number of examples = 10}. The other algorithms were used with the default val-
ues proposed by their correspondent authors, which typically represent robust
values that work well across different datasets. We did not attempt to opti-
mise the parameters to individual datasets. Since both EDDIE 8 and Unordered
cAnt-MinerPB are stochastic algorithms, each algorithm is run 50 times for each
dataset; C4.5 and RIPPER are deterministic algorithms, hence they are run once
per dataset.

284 F.E.B. Otero and M. Kampouridis

Table 1. Summary of the results concerning the rate of correctness (RC). The best
RC value for a given dataset is in bold.

EDDIE 8 U-cAnt-MinerPB C4.5 RIPPER

Aggreko 0.549 0.594 0.573 0.450
Amlin 0.518 0.523 0.453 0.467
Athens 0.535 0.515 0.467 0.413
Barclays 0.549 0.533 0.503 0.470
BP 0.533 0.534 0.467 0.510
Cadbury 0.654 0.625 0.527 0.553
Carnival 0.506 0.500 0.587 0.503
DJI 0.653 0.696 0.670 0.667
Easyjet 0.451 0.564 0.540 0.550
First 0.509 0.506 0.593 0.577
Hammerson 0.533 0.524 0.507 0.593
HIS 0.603 0.687 0.573 0.627
Imperial Tobacco 0.566 0.630 0.593 0.567
Marks & Spencer 0.500 0.572 0.527 0.660
MDAX 0.492 0.499 0.503 0.487
NASDAQ 0.549 0.594 0.573 0.450
Next 0.465 0.595 0.470 0.450
NIKEI 0.516 0.556 0.617 0.380
NYSE 0.546 0.564 0.563 0.500
RBS 0.529 0.569 0.567 0.493
Schroders 0.570 0.602 0.493 0.643
Sky 0.516 0.599 0.583 0.427
Tesco 0.613 0.621 0.587 0.600
Vodafone 0.501 0.555 0.633 0.450
Xstrata 0.607 0.685 0.677 0.590

The results of our experiments are presented in Table 1 for Rate of Cor-
rectness; Table 2 for Rate of Missing Chances; and Table 3 for Rate of Failure.
For EDDIE 8 and Unordered cAnt-MinerPB algorithms, a value on those tables
corresponds to the average value measured over the 50 runs of the algorithm.
Table 4 presents the results of the non-parametric Friedman statistical test with
the post-hoc Hommel’s test [6]. The information presented in Table 4 corre-
sponds to the average rank (first column), where the lower the rank the better
the algorithm’s performance, and the adjusted pHomm value. Statistically sig-
nificant differences amongst the algorithm with the best rank (the control ‘(c)’
algorithm) are determined by the pHomm value: if the p value is less than 0.05,
the difference in the rank is statistically significant at the α = 0.05 level—i.e.,
the algorithm with the best rank significantly outperforms the other algorithm.

Our results showed that the Unordered cAnt-MinerPB algorithm achieved
the best average rank in terms of both Rate of Correctness (RC) and Rate of
Missing Chances (RMC), outperforming all the other algorithms with statis-
tically significant differences. It achieved the best RC value in 13 out of the
25 datasets and the best RMC value in 23 out of 25 datasets. Both C4.5 and
EDDIE 8 achieved similar results for RC and RMC, while RIPPER was the
worst performing algorithm. The results for Rate of Failure (RF) did not show
any significant differences between the algorithms; all algorithms achieved simi-
lar average ranks.

The results provide interesting insights of the strengths the Unordered cAnt-
MinerPB algorithm when compared to EDDIE. Both algorithms are stochastic

A Comparative Study on the Use of Classification Algorithms 285

Table 2. Summary of the results concerning the rate of missing changes (RMC). The
best RMC value for a given dataset is in bold.

EDDIE 8 U-cAnt-MinerPB C4.5 RIPPER

Aggreko 0.283 0.164 0.426 0.427
Amlin 0.429 0.294 0.457 0.531
Athens 0.252 0.159 0.276 0.394
Barclays 0.444 0.355 0.500 0.464
BP 0.421 0.346 0.474 0.438
Cadbury 0.166 0.145 0.350 0.433
Carnival 0.153 0.142 0.239 0.337
DJI 0.161 0.013 0.062 0.118
Easyjet 0.458 0.668 0.404 0.498
First 0.530 0.498 0.403 0.461
Hammerson 0.382 0.233 0.331 0.396
HIS 0.267 0.002 0.248 0.150
Imperial Tobacco 0.449 0.182 0.355 0.452
Marks & Spencer 0.474 0.263 0.435 0.253
MDAX 0.204 0.031 0.397 0.493
NASDAQ 0.416 0.267 0.396 0.584
Next 0.477 0.206 0.482 0.568
NIKEI 0.300 0.008 0.062 0.677
NYSE 0.207 0.157 0.364 0.525
RBS 0.373 0.281 0.332 0.370
Schroders 0.328 0.065 0.276 0.309
Sky 0.469 0.317 0.497 0.626
Tesco 0.287 0.231 0.429 0.278
Vodafone 0.303 0.231 0.261 0.380
Xstrata 0.259 0.044 0.122 0.244

Table 3. Summary of the results concerning the rate of failure (RF). The best RF
value for a given dataset is in bold.

EDDIE 8 U-cAnt-MinerPB C4.5 RIPPER

Aggreko 0.514 0.522 0.509 0.508
Amlin 0.405 0.427 0.469 0.450
Athens 0.533 0.539 0.576 0.621
Barclays 0.397 0.431 0.443 0.480
BP 0.337 0.363 0.400 0.363
Cadbury 0.331 0.359 0.403 0.354
Carnival 0.631 0.631 0.593 0.659
DJI 0.285 0.298 0.303 0.287
Easyjet 0.305 0.284 0.266 0.276
First 0.285 0.305 0.241 0.224
Hammerson 0.427 0.444 0.449 0.350
HIS 0.293 0.312 0.332 0.316
Imperial Tobacco 0.293 0.335 0.318 0.311
Marks & Spencer 0.388 0.365 0.367 0.284
MDAX 0.513 0.507 0.508 0.526
NASDAQ 0.305 0.314 0.282 0.359
Next 0.392 0.337 0.380 0.377
NIKEI 0.452 0.410 0.597 0.477
NYSE 0.445 0.435 0.411 0.458
RBS 0.386 0.369 0.359 0.420
Schroders 0.365 0.388 0.438 0.290
Sky 0.335 0.304 0.222 0.407
Tesco 0.284 0.295 0.235 0.299
Vodafone 0.514 0.480 0.410 0.558
Xstrata 0.281 0.295 0.275 0.303

286 F.E.B. Otero and M. Kampouridis

Table 4. Statistical test results according to the non-parametric Friedman test with
the Hommel’s post-hoc test. Statistically significant differences at the α = 0.05 level
are in bold.

Algorithm Average Rank Adjusted pHomm

(i) Rate of Correctness

U-cAnt-MinerPB (c) 1.76 –
C4.5 2.52 0.0374
EDDIE 8 2.72 0.0171
RIPPER 3.00 0.0020

(ii) Rate of Missing Chances

U-cAnt-MinerPB (c) 1.12 –
C4.5 2.68 5.1E-9
EDDIE 8 2.88 2.8E-6
RIPPER 3.32 1.9E-5

(iii) Rate of Failure

EDDIE 8 (c) 2.26 –
C4.5 2.34 0.8265
U-cAnt-MinerPB 2.52 0.8265
RIPPER 2.88 0.2685

algorithms, which can perform a more global search than the deterministic C4.5
and RIPPER algorithms. While EDDIE is a GP algorithm tailored for financial
forecasting, it does not use heuristics to guide the search. In this sense, the
search of the GP is ‘blind’, using the training examples just as an oracle: it
can query the quality of a solution on the training data, but it does not ‘look’
into the training data to shape the solutions. The Unordered cAnt-MinerPB is
an ACO algorithm, which uses the information gain of the predictor attributes
as heuristic information in the rule construction process. It also incorporates a
dynamic discretisation procedure to find threshold values to create the indicator
conditions (e.g., MA 20 < 6.4); and the consequent (decision) of the rules are fixed
during creation, so the conditions selected to create the antecedent are relevant
for this particular consequent. In summary, it uses more information available
from the training data to guide the search.

Given our findings, we hypothesise that in order to improve EDDIE’s perfor-
mance, there is a need to incorporate more background information to the GP
search. While the creation of the conditions can be left to the GP, the choice of
the value of the decision can be determined using the training data. A similar
procedure can be applied to the selection of threshold values, where instead of
selecting values at random, the values can be selected based on the training data.
In this way, the GP search is focused in finding a good structure to represent
the conditions, and there is less pressure for the GP to find the correct values to
be used as the decision and threshold.

7 Conclusion

In this paper we presented a comparative study of different classification algo-
rithms in financial forecasting. Our first research goal was to analyse the

A Comparative Study on the Use of Classification Algorithms 287

performance of state-of-the-art classification algorithms and compare their per-
formance to two well-known bio-inspired algorithms: EDDIE, a GP algorithm
designed specifically for financial forecasting; and Unordered cAnt-MinerPB (U-
cAnt-MinerPB), an ACO algorithm designed for classification. Our results show
that the U-cAnt-MinerPB algorithm was significantly better than all the other
algorithms tested. Regarding our second research goal, we identified potential
strengths of the U-cAnt-MinerPB search, when compared to EDDIE: the use of
a data-driven procedures to determine the prediction of the classification rules
and to determine threshold values for the indicator conditions.

As a future research direction, we aim to investigate whether heuristics pro-
cedures, such as the ones used by U-cAnt-MinerPB, can be applied to GP algo-
rithms, like EDDIE, and lead to improved solutions. Our hope is that the GP’s
search can benefit from using such data-driven processes, and select the thresh-
olds and decision values in a more sophisticated manner.

References

1. Chen, S.H.: Genetic Algorithms and Genetic Programming in Computational
Finance. Springer-Verlag New York, LLC (2002)

2. Cohen, W.: Fast effective rule induction. In: Proceedings of the 12th International
Conference on Machine Learning, pp. 115–123. Morgan Kaufmann (1995)

3. Dorigo, M., Stützle, T.: Ant Colony Optimization. 328 pages MIT Press (2004)
4. Edwards, R., Magee, J.: Technical analysis of stock trends. NYIF (1992)
5. Fayyad, U., Piatetsky-Shapiro, G., Smith, P.: From data mining to knowledge

discovery: an overview. In: Advances in Knowledge Discovery & Data Mining, pp.
1–34. MIT Press (1996)

6. Garćıa, S., Herrera, F.: An Extension on “Statistical Comparisons of Classifiers over
Multiple Data Sets” for all Pairwise Comparisons. Journal of Machine Learning
Research 9, 2677–2694 (2008)

7. Kampouridis, M., Tsang, E.: EDDIE for investment opportunities forecasting:
Extending the search space of the GP. In: Proceedings of the IEEE World Congress
on Computational Intelligence, Barcelona, Spain pp. 2019–2026 (2010)

8. Koza, J.: Genetic Programming: On the programming of computers by means of
natural selection. MIT Press, Cambridge, MA (1992)

9. Martinez-Jaramillo, S.: Artificial Financial Markets: An agent-based Approach
to Reproduce Stylized Facts and to study the Red Queen Effect. Ph.D. thesis,
CFFEA, University of Essex (2007)

10. Otero, F., Freitas, A.: Improving the Interpretability of Classification Rules Dis-
covered by an Ant Colony Algorithm. In: Proceedings of the 2013 Genetic and
Evolutionary Computation Conference, pp. 73–80. ACM Press (July 2013)

11. Otero, F., Freitas, A., Johnson, C.: A New Sequential Covering Strategy for Induc-
ing Classification Rules With Ant Colony Algorithms. IEEE Transactions on Evo-
lutionary Computation 17(1), 64–76 (2013)

12. Quinlan, J.R.: C4.5: programs for machine learning. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA (1993)

13. Tsang, E., Martinez-Jaramillo, S.: Computational finance. IEEE Computational
Intelligence Society Newsletter, 3–8 (2004)

14. Witten, H., Frank, E.: Data Mining: Practical Machine Learning Tools and Tech-
niques, 2nd edn. Morgan Kaufmann (2005)

Pattern Mining in Ultra-High Frequency Order
Books with Self-Organizing Maps

Piotr Lipinski1(B) and Anthony Brabazon2

1 Computational Intelligence Research Group, Institute of Computer Science,
University of Wroclaw, Wroclaw, Poland

lipinski@ii.uni.wroc.pl
2 Natural Computing Research and Applications Group, Complex and Adaptive

Systems Laboratory, University College Dublin, Dublin, Ireland
anthony.brabazon@ucd.ie

Abstract. This paper addresses the issue of discovering frequent pat-
terns in order book shapes, in the context of the stock market depth,
for ultra-high frequency data. It proposes a computational intelligence
approach to building frequent patterns by clustering order book shapes
with Self-Organizing Maps. An experimental evaluation of the approach
proposed on the London Stock Exchange Rebuild Order Book database
succeeded with providing a number of characteristic shape patterns and
also with estimating probabilities of some typical transitions between
shape patterns in the order book.

1 Introduction

Analyzing ultra high-frequency data still remains a grand challenge for con-
temporary time series analysis, usually because of the large amount of data
required to be processed and because of the noisy nature of the data. However,
insights gleaned from ultra high-frequency data is crucial for understanding mar-
ket microstructure. As noted by Goodhart and O’Hara [2]: . . . the issue of learn-
ing from high frequency data is fundamental to understanding market behavior
. . . (p. 80).

Since the early days of market microstructure research, a considerable amount
has been uncovered about the behaviour of markets under differing forms of reg-
ulation. Some of the classical and best-known stylised facts arising from early
market microstructure research on the NYSE or LSE are the intraday patterns
which arise on trade volume, price volatility and bid-ask quote spreads, which
typically exhibit a ‘reverse J’ intraday seasonality pattern. Another issue which
has become clear from the literature on market microstructure is that the mea-
surement of returns and their associated volatility is particularly difficult at high
frequencies, due to microstructure noise. However, as noted by Engle et al. [1],
measurement of facets of liquidity such as market depth (and its associated vari-
ability) is much easier than measuring the volatility of returns at high frequencies
(as the latter is contaminated by microstructure noise) and this suggests that

c© Springer-Verlag Berlin Heidelberg 2014
A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2014, LNCS 8602, pp. 288–298, 2014.
DOI: 10.1007/978-3-662-45523-4 24

Pattern Mining in Ultra-High Frequency Order Books 289

liquidity risk metrics could be a useful supplement when attempting to design
and evaluate potential high-frequency trading strategies.

In this study we employ data drawn from the LSE Rebuild Order Book
database and aim to address the issue of frequent patterns in order book shapes
in the context of the market depth, which indicates the quantity of an asset on
offer at each tick level in the order book. Initially, it focuses on an examination
of a number of possible definitions of order book shapes facilitating a further
clustering of order book shapes and the discovery of frequent patterns. In addi-
tion to providing useful insight which could assist with theory development, this
knowledge could prove useful for the design of trade execution strategies, or
more generally, for the design of trading strategies via enhanced understanding
of trading costs and the likely carrying capacity of a strategy.

The remainder of this paper is organised as follows. Section 2 provides a
short introduction to the LSE Rebuild Order Book database. This is followed in
Section 3 by a short discussion on the order book shape concept which is used in
this study. Section 4 proposes a method of clustering order book shapes and dis-
covering shape patterns, followed in section 5 by a discussion on frequent order
book patterns discovered. Section 6 refers to the issue of dynamic transitions
between different shape patterns in the order book and estimating their proba-
bilities. Section 7 summarizes the computational experiments, and the paper is
concluded in section 8, with some suggestions for future work being provided.

2 Order Book Data

The London Stock Exchange Rebuild Order Book (LSE ROB) database contains
intraday order information and trading data for all order book driven securities
on the LSE. For each trading day, it provides all orders on the order book at the
beginning of the trading day (the opening position), details of all orders entered
onto and deleted from the order book during the trading day, details of all
modifications to visible orders and changes to orders resulting from executions,
as well as details of all manual and automatically executed trades. It facilitates
the reconstruction of the LSE order book system.

In this research, we extracted order book snapshots from the LSE ROB
database for a selected list of 100 securities with the highest number of orders
registered over a chosen 15-day period (from April 1, 2010 to April 15), selected
from 1977 securities available in total. For some basic statistics, the highest
number of orders registered for a single security was 1652471 (RIO TINTO).
There were 109501999 orders registered over the period under study in total. The
total volume of the database for the period under study was about 15GB. As the
LSE ROB database was published as a set of raw text files, which were usually
unsorted, the extraction of the order book snapshots required some efficient
algorithms such as the B-Trees routines, mainly for sorting and searching.

Snapshots were extracted for each selected security, for each 5 seconds of each
trading day and were used later to form order book shapes, described in the next
section, and to discover some characteristic patterns in order book shape. It is

290 P. Lipinski and A. Brabazon

worth noticing that each snapshot contained all the bid and ask orders registered
on the stock market and not yet deleted or executed until the snapshot time,
not only the 5 best bid and 5 best ask orders, as published in many popular
financial services.

3 Order Book Shape

The shape of the order book is defined on the basis of the best bid and ask offers
in the order book.

Consider a snapshot of the current order book at certain time t containing
the list of all the bid and ask orders registered on the stock market and not
deleted until time t. The bid and ask orders may be aggregated in such a way
that the all the orders with the same price are listed together with the total
volume. Let (p(B)

1 , v
(B)
1), (p(B)

2 , v
(B)
2), . . ., (p(B)

hB
, v

(B)
hB

) be the list of aggregated

bid orders, sorted decreasingly according to the price, where p
(B)
i is the price

and v
(B)
i is the volume of the i-th aggregated bid order and hB is the length of

the list. Let (p(A)
1 , v

(A)
1), (p(A)

2 , v
(A)
2), . . ., (p(A)

hA
, v

(A)
hA

) be the list of aggregated

ask orders, sorted increasingly according to the price, where p
(A)
i is the price and

v
(A)
i is the volume of the i-th aggregated ask order and hA is the length of the

list.
Figure 1 illustrates some characteristics of the order book snapshot. Figure

1(a) presents a bar diagram of order prices, i.e. the sequence p
(B)
15 , . . . , p

(B)
1 ,

p
(A)
1 , . . . , p

(A)
15 . Figure 1(b) presents prices after subtracting the mean price.

Figure 1(c) presents prices after subtracting the mean price and dividing by
it. It is easy to see that the shapes of order prices cannot well characterize the
order book snapshot, because the prices of orders are rather similar with only
some minor regular differences.

Figure 1(d) presents a bar diagram of order volumes, i.e. the sequence v
(B)
15 , . . . ,

v
(B)
1 , v

(A)
1 , . . . , v

(A)
15 and Figure 1(e) presents volumes after dividing by the total

volume of the order book. It is easy to see that the shapes of order volumes are
more irregular than prices and may contain some interesting knowledge

Therefore, in our research, we focus on order book shapes combining the price
information with the volume information and we define the order book shape of
the size 2h, for some h ∈ N lower or equal to hA and hB , as the vector

s = (s(B)
h , s

(B)
h−1, . . . , s

(B)
1 , s

(A)
1 , . . . , s

(A)
h−1, s

(A)
h) ∈ R

2h, (1)

where

s
(B|A)
i = (p(B|A)

i − p̄)
v
(B|A)
i

v̄
, p̄ =

p
(B)
1 + p

(A)
1

2
, v̄ =

n∑
i=1

v
(B)
i +

n∑
i=1

v
(A)
i . (2)

Figure 1(f) presents the order book shape of the size 30. Additional examples
of order book shapes may be found on Figure 4, Figure 5 and Figure 6 described
later.

Pattern Mining in Ultra-High Frequency Order Books 291

1000

2000

3000

(a)

−5

0

5

10

(b)

−2

−1

0

1

2

x 10
−3 (c)

2000

4000

6000

(d)

0.05

0.1

0.15

(e) (f)

Fig. 1. The order book snapshot of the RIO TINTO company from the London Stock
Exchange (ISIN GB0007188757) for April 1, 2010 9:00:00: (a) 15 best bid (increasingly,
i.e. the worst first) and 15 best ask (increasingly, i.e. the best first) prices, (b) prices
after subtracting the mean price, (c) prices after subtracting the mean price and divid-
ing by the mean price, (d) volumes of 15 best bid and 15 best ask aggregated orders,
(e) volumes after dividing by the total volume of the order book, (f) the shape of the
order book.

4 Discovering Shape Patterns

Each order book shape of size 2h may be treated as a data point in the data space
R

2h. Similarities between order book shapes may be found by applying some
clustering techniques, such as Self-Organizing Maps (SOM) [4] by Kohonen, to
the cloud of the data points.

A Self-Organizing Map consists of M so-called codebook vectors, v1,v2, . . . ,
vM ∈ R

2h embedded in the data space and a topology structure in a form of a
regular two dimensional hexagonal lattice defining a neighborhood relation for
the codebook vectors. Figure 2(a) and (b) illustrates the neighborhood relation
on a plane and Figure 2(c) illustrates it in the data space (projected to two
dimensions). Therefore, the codebook vectors, connected each to other according
to the neighborhood relation, form an elastic net embedded in the data space,
which will be adjusted to the given data sample in the training process in order
to fold onto the cloud of given data points.

292 P. Lipinski and A. Brabazon

(a) (b)

−10 −5 0 5
−1

0

1

2

3

4
(c)

Fig. 2. A Self-Organizing Map with 180 codebook vectors: (a) the hexagonal lattice
of the size 15 × 12 defining the neighborhood relation for the codebook vectors, (b)
the lattice where each cell corresponds to one codebook vector and adjoining cells
correspond to neighbor codebook vectors, (c) the codebook vectors embedded in the
data space (projected to two dimensions)

First, the training algorithm places the codebook vectors in a regular grid
on the plane defined by the two first principal components of the given data
sample. Next, in successive iterations of the training algorithm, one data point s
is randomly picked from the given data sample, distances between each codebook
vector v and the picked data point s are evaluated and the nearest codebook
vector u, the so-called Best Matching Unit (BMU), is determined. The BMU
and its neighbor codebook vectors are moved towards the picked data point s
using the updating formula

v := v + α · θ(s,u,v) · (s − v), (3)

where v is the codebook vector to be updated, s is the selected data point, α is
a learning coefficient decreasing in successive iterations of the training algorithm
and θ(s,u,v) is a neighborhood function determining the size of the movement,
usually θ(s,u,v) is larger for v close to u according to the neighborhood relation
and smaller for other codebook vectors. The training algorithm iterates adjusting
the net to the data sample either for a set number of iterations or until the net
fits the given data sample sufficiently well.

Assigning each data point from the given data sample to the nearest codebook
vector defines a clustering of the given data sample, where data points assigned
to the same codebook vector constitute a cluster.

Self-Organizing Maps were applied to order book shapes to split them into
a number of groups and try to find some frequent shape patterns characteristic
to each group.

The data sample consisted of N = 21600 order book shapes corresponding to
the order book snapshots of the RIO TINTO company from the London Stock

Pattern Mining in Ultra-High Frequency Order Books 293

(a) (b)

Fig. 3. Results of clustering the 21600 order book shapes with a Self-Organizing Map
of 736 codebook vectors with the hexagonal topology of the size 32 × 23: (a) the hits
diagram presenting the number of order book shapes in each cluster, (b) the U-Matrix
presenting the distances between codebook vectors in the data space

Exchange (ISIN GB0007188757) from April 1, 2010 to April 9, 2010 (5 working
days) taken each 5 seconds from 9:00:00 to 14:59:55 each day. Each order book
shape was a vector of length d = 30 in the data space R

30. Self-Organizing Maps
with M = 736 codebook vectors and the Gaussian neighborhood function θ were
used.

Figure 3(a) presents the hits diagram of the SOM. Each cell corresponds
to one codebook vector and adjoining cells correspond to neighbor codebook
vectors. Cells are filled according to the number of order book shapes assigned
to the codebook vector, i.e. an empty cell denotes that no order book shapes
were assigned to the codebook vector, while a full cell denotes that many order
book shapes were assigned to the codebook vector. It is easy to see that there
is a number of large clusters grouping many similar order book shapes and a
number of small clusters grouping few order book shapes. Future studies focus
on the large clusters, because they reveal more general similarities, while the
small clusters may be rather incidental.

Figure 3(b) presents the U-Matrix of the SOM, which shows the distances
between codebook vectors in the data space. The red color denotes that adjoin-
ing codebook vectors are far apart, while the blue color denotes that adjoining
codebook vectors are close. It is easy to see that the majority of the large clusters
are well separated and well established in the data space.

294 P. Lipinski and A. Brabazon

5 Frequent Order Book Patterns

Although all the order book shapes in a cluster are closer to the codebook vector
of that cluster than to of another, particular order book shapes may significantly
differ. In order to define significant order book patterns, we investigate the large
clusters and differences between a certain number of order book shapes nearest
to the codebook vector of the cluster representing the order book pattern. If
the majority of the shapes in the cluster is similar each to other, the pattern is
well-established. If not, the pattern is rather insignificant.

Figure 4 presents three order book shapes assigned to the first largest cluster,
namely the 1st, 50th and 100th order book shape nearest to the codebook vector
of the cluster. Figure 5 and Figure 6 presents the same concerning the third and
the fifth largest cluster, respectively. It is easy to see that the order book shapes
within each cluster are similar. Certainly, in each cluster, there might be some
order book shapes different from the other and far from the codebook vector

10 20 30

−0.4

−0.2

0

0.2

10 20 30

−1.5

−1

−0.5

0

10 20 30

−0.6

−0.4

−0.2

0

0.2

0.4

Fig. 4. Three order book shapes from the first largest cluster: the 1st, 50th and 100th
order book shape nearest to the codebook vector of the cluster

10 20 30

0

0.5

1

1.5

10 20 30

0

0.5

1

1.5

10 20 30

0

0.5

1

1.5

Fig. 5. Three order book shapes from the third largest cluster: the 1st, 50th and 100th
order book shape nearest to the codebook vector of the cluster

Pattern Mining in Ultra-High Frequency Order Books 295

10 20 30

−1

−0.5

0

10 20 30

−1.5

−1

−0.5

0

10 20 30
−1

−0.5

0

0.5

Fig. 6. Three order book shapes from the fifth largest cluster: the 1st, 50th and 100th
order book shape nearest to the codebook vector of the cluster

Fig. 7. The Hinton diagram of the transition probability matrix for 50 largest clusters
of order book shapes

of that cluster, which was assigned to that cluster only because of that the
other codebook vectors were even farer, but focusing on a selected number of
order book shapes nearest to the codebook vector may guarantee that they are
consistent.

296 P. Lipinski and A. Brabazon

10 20 30

−0.4

−0.2

0

0.2

10 20 30
−0.6

−0.4

−0.2

0

0.2

0.4

10 20 30

0

0.5

1

1.5

10 20 30

−1.5

−1

−0.5

0

10 20 30

−1

−0.5

0

10 20 30

0

0.5

1

1.5

2

10 20 30

0

1

2

10 20 30

−0.5

0

0.5

1

10 20 30

−0.4

−0.2

0

0.2

10 20 30
0

0.5

1

1.5

2

10 20 30
−0.4

−0.2

0

0.2

0.4

0.6

10 20 30

−2

−1

0

Fig. 8. The 12 most frequent order book patterns discovered on the order book snap-
shots of the 100 instruments from the London Stock Exchange with the highest numbers
of order registered during the period from April 1, 2010 to April 15, 2010

Pattern Mining in Ultra-High Frequency Order Books 297

6 Transitions Between Order Book Patterns

In further research, we focus on the 50 largest clusters, defined respectively by the
codebook vectors v1,v2, . . . ,v50, and the 100 order book shapes s(k)1 , s(k)2 , . . . ,
s100(k) nearest to the codebook vector vk, for each k = 1, 2, . . . , 50.

First, for each cluster k = 1, 2, . . . , 50 and for each successive shape i =
1, 2, . . . , 100 in the cluster, let t

(k,i)
0 denote the time when the order book shape

occurred and let t
(k,i)
l > t

(k,i)
0 denote the earliest time after t

(k,i)
0 when any shape

of the l-th cluster occurred (t(k,i)l = −1 if no shape from the l-th cluster occurred
after t

(k,i)
0), for each l = 1, 2, . . . , 50. Let δi,k,l = 1 if 0 < t

(k,i)
l − t0(k,i) < 300, i.e.

if the first shape from the l-th cluster occurred within 5 minutes after the i-th
shape from the k-th cluster, and δi,k,l = 0 otherwise.

Next, a transition probability matrix T ∈ R
50×50 with elements tkl may be

defined by

tkl =
1

100

100∑
i=1

δi,k,l, (4)

which corresponds to the frequency of the event that after a shape from the k-th
cluster, a shape from the l-th cluster will occur within 5 minutes.

Figure 7 presents the Hinton diagram of the transition probability matrix T.
Each cell of the Hinton diagram corresponds to a cell of the transition probability
matrix T and the size of the square in the cell of the Hinton diagram corresponds
to the value in the cell of the transition probability matrix T (large squares -
values close to 1, small square - values close to 0).

One may see that probabilities of transitions between some patterns are high,
while between other are low. The high values on the diagonal of the matrix
mean that occurring a shape of the same cluster within 5 minutes has a large
probability, which is rather obvious, because changing the order book shape in
a short time requires the occurance of a large order, which is not common.

Probabilities of transitions between order book patterns might be further
used in financial decision support systems for automatic trading to predict some
changes on the stock market.

7 Summary of Experiments

In the previous sections, we focused on the order book snapshots of the RIO
TINTO company (being the equity with the highest number of orders registered
during the period from April 1, 2010 to April 15, 2010) from April 1, 2010 to
April 9, 2010 (5 working days) taken each 5 seconds from 9:00:00 to 14:59:55
each day. Experiments on other instruments were also performed and results are
rather similar.

Figure 8 presents 12 most frequent patterns discovered on the order book
snapshots of the 100 instruments from the London Stock Exchange with the
highest numbers of orders registered during the period from April 1, 2010 to
April 15, 2010.

298 P. Lipinski and A. Brabazon

In all the experiments discussed here, the order book shapes of the size 30
were investigated, however different size of the shapes may be also considered.
Popular financial services usually publish order book snapshots with 5 best bid
and 5 best ask orders, so order book shapes of the size 10 were also studied, but
the results obtained were worse, perhaps because of the fact that shorter shapes
do not allow us to distinguish as many patterns as longer shapes.

8 Conclusions and Perspectives

In this paper, we present the results of initial research on order book shape, fre-
quent patterns in these shapes, dependencies between these patterns and knowl-
edge extraction from order book shape.

Additional research is needed to improve the clustering techniques for dis-
covering common patterns and in order to increase their reliability. It may be
achieved by studies on the intra-cluster similarities and inter-cluster dissimilar-
ities. Using additional outlier detection methods may also eliminate some small
clusters corresponding to patterns arising due to noisy data. Reducing dimen-
sionality, especially in the case of shapes of larger sizes, may improve the quality
of clustering as well as making the computational process faster.

Order book shape patterns may constitute an interesting source of knowl-
edge for financial decision support systems for automatic trading. However, more
effort is needed to incorporate the knowledge extracted, for instance the transi-
tion probabilities, into expert trading systems.

Some extensions of order book shape may be also studied, such as dynamic
order book shape, i.e. a sequence of a number of successive order book shapes
revealing a certain phenomena of the stock market, such as the behavior of the
stock market after a large order is put onto the order book.

References

1. Engle, R., Fleming, M., Ghysels, E., Nguyen, G.: Liquidity and Volatility in the U.S.
Treasury Market: Evidence From A New Class of Dynamic Order Book Models.
http://www.unc.edu/maguilar/metrics/Giang.pdf, (accessed February 21 2012)

2. Goodhart, C., O’Hara, M.: High frequency data in financial markets: Issues and
applications. Journal of Empirical Finance 4, 73–114 (1997)

3. Heston, S., Korajczyk, R., Sadka, R.: Intraday patterns in the crosssection of stock
returns. Journal of Finance 65(4), 1369–1407 (2010)

4. Kohonen, T.: Self-Organizing Maps. Springer (2000)
5. Lee, Y., Fok, R., Liu, Y.: Explaining intraday pattern of trading volume from the

order flow data. Journal of Business Finance and Accounting 28(3), 199–230 (2001)
6. McInish, T., Wood, R.: An analysis of intraday patterns in bid-ask spreads for nyse

stocks. Journal of Finance 47(2), 753–764 (1992)
7. O’Hara, M.: Market Microstructure Theory. Blackwell, Oxford (1995)
8. Tian, G., Guo, M.: Interday and intraday volatility: additional evidence from the

shanghai stock exchange. Review of Quantitative Finance and Accounting 28(3),
287–306 (2007)

http://www.unc.edu/maguilar/metrics/Giang.pdf

EvoGAMES

Multi-Criteria Comparison of Coevolution
and Temporal Difference Learning on Othello

Wojciech Jaśkowski(B), Marcin Szubert, and Pawe�l Liskowski

Institute of Computing Science, Poznan University of Technology,
Poznań, Poland

{wjaskowski,mszubert,pliskowski}@cs.put.poznan.pl

Abstract. We compare Temporal Difference Learning (TDL) with
Coevolutionary Learning (CEL) on Othello. Apart from using three pop-
ular single-criteria performance measures: (i) generalization performance
or expected utility, (ii) average results against a hand-crafted heuristic
and (iii) result in a head to head match, we compare the algorithms using
performance profiles. This multi-criteria performance measure character-
izes player’s performance in the context of opponents of various strength.
The multi-criteria analysis reveals that although the generalization per-
formance of players produced by the two algorithms is similar, TDL is
much better at playing against strong opponents, while CEL copes better
against weak ones. We also find out that the TDL produces less diverse
strategies than CEL. Our results confirms the usefulness of performance
profiles as a tool for comparison of learning algorithms for games.

Keywords: Reinforcement learning ·Coevolutionary algorithm ·Reversi ·
Othello · Board evaluation function · Weighted piece counter · Interactive
domain

1 Introduction

The board game of Othello constitutes a non-trivial interactive domain, which
has become a popular testbed for evaluating and comparing different compu-
tational intelligence algorithms [1–3]. The most popular algorithms used for
learning Othello-playing strategies include competitive coevolutionary learning
(CEL) [4] and temporal difference learning (TDL) [5]. TDL is a well-recognized
example of reinforcement learning [6], in which the playing agent aims to find a
value function for predicting chances of winning a game from a particular state.
CEL, on the other hand, searches the space of strategies directly by maintaining
a set of candidate solutions that compete against each other and are randomly
tweaked by means of evolutionary operators such as mutation or crossover. The
essential difference between TDL and CEL is that TDL guides the learning using
the whole course of the game while CEL uses only the final game outcome.

Since both CEL and TDL can be applied to the same problem of learning
game-playing strategies, it is not surprising that they have been the subject

c© Springer-Verlag Berlin Heidelberg 2014
A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2014, LNCS 8602, pp. 301–312, 2014.
DOI: 10.1007/978-3-662-45523-4 25

302 W. Jaśkowski et al.

of comparative investigations. In one of the first such comparisons for Othello,
Lucas and Runarsson [1] found out that when learning strategies represented
with simple weighted piece counters “TDL learns much faster than CEL, but
properly tuned CEL can learn better playing strategies”. However, Szubert et al.
[7] showed that the difference between TDL and CEL largely depends on the per-
formance measure used: CEL and TDL perform similarly when playing against a
random player, but TDL is superior to CEL when compared against a heuristic
hand-crafted player. These results were confirmed also for a non-linear, complex
n-tuples strategy representation [8], for which CEL is substantially worse than
TDL while a hybrid of CEL and TDL works even better [3]. Interestingly, in the
context of Backgammon game, Darwen showed that CEL can beat TDL [9].

Therefore, the general conclusions of the results of research comparing CEL
and TDL are not clear and they depend, among others, on selected objective
performance measure whether this is a fixed hand-crafted opponent, a random
player or a round robin tournament [3]. This insight led to devising performance
profiles [10], a multi-criteria method for comparison players and algorithms. Per-
formance profiles allow to analyze and present graphically the performance of
different players when facing opponents of various strength. Thus performance
profile conveys much more information about player’s characteristics than the
commonly used single-criteria performance measures which are prone to com-
pensation due to aggregation of results: the awards received in interactions with
a certain group of tests can cancel out the penalties incurred in interactions with
another group of tests.

Our main contribution in this paper is the comparison of CEL and TDL
using the multi-criteria performance measure based on performance profiles. In
this way we are able to precisely pin-point performance differences between the
strategies learned by the two analyzed algorithms and explain the differences
in results obtained on single-criteria performance measures. We notice that it
is easy to misjudge relative algorithms strength basing only on a single-criteria
performance measure.

2 Othello

2.1 Game Rules Description

Othello is a perfect information, zero-sum, two-player strategy game played on
a 8 × 8 board. There are 64 identical disks which are white on one side and
black on the other. The game begins with each player having two disks placed
diagonally in the center of the board. Players alternate placing disks on the
board, with the black player moving first. A move is legal if the newly placed
piece is adjacent to an opponent’s piece and causes one or more of the opponent’s
pieces to become enclosed from both sides of a horizontal, vertical or diagonal
line. The enclosed disks are then flipped. The game ends when neither player has
a legal move. A player who has more pieces on the board wins. If both players
have the same number of pieces, the game ends in a draw.

Multi-Criteria Comparison of Coevolution and Temporal Difference Learning 303

2.2 Weighted Piece Counter (WPC) Strategy Representation

We represent strategies using WPC, a simple, linear board state evaluation func-
tion, which indicates how desirable a given board state is. WPC assigns weight
wi to board location i and uses scalar product to calculate the value f of a board
state b: f (b) =

∑8×8
i=1 wibi, where bi is 0, +1 or −1 for empty location, black

piece or white piece, respectively. The players interpret f(b) in a complemen-
tary manner: the black player prefers moves leading towards states with a higher
value, whereas lower values are favored by the white player.

All algorithms considered in this paper employ WPC as a state evaluator in
1-ply setup: given the current board state, the player generates all legal moves
and applies f to the resulting states. The state gauged as the most valuable
determines the move to be made. Ties are resolved at random.

3 Coevolutionary Learning

Coevolutionary algorithms [11] are variants of evolutionary computation in which
an individual’s fitness depends on other individuals. Similarly to the evolutionary
one, coevolutionary algorithm use mechanisms such as selection and variation
that mimic the natural evolution. The driving force of coevolutionary algorithms
is the continuous Darwinian arms race taking place between one or two com-
peting populations [12]. The difference between coevolutionary and evolutionary
methods lies in the evaluation phase, when the fitness of individuals is assessed.
Evolutionary algorithms that solve optimization problems have access to the
objective function of a problem, thus individuals’ fitness is directly computed.
In coevolutionary algorithms, individuals’ fitness is typically only estimated by
aggregating results of multiple interactions between individuals from the main-
tained populations.

In this paper we use a one-population variant of competitive coevolution
and apply it to learn Othello board evaluation function. The algorithm uses
mutation as the only variation operator while fitness of an individual is defined
as a sum of two values: i) the average result of games played against other
individuals from the population (a round robin tournament) and ii) the average
result of games played against a sample of random WPC players. This particular
coevolutionary algorithm has been recently found superior to a typical one-
population coevolution [10].

4 Temporal Difference Learning

Temporal Difference Learning (TDL) is a reinforcement learning (RL) method
which has become a popular approach for elaborating game-playing strategies
[1,2,13]. The use of RL techniques for such applications stems from modeling
a game as a sequential decision problem, where the task of the learner is to
maximize the expected reward in the long run (game outcome).

304 W. Jaśkowski et al.

In this paper we use TD(λ) algorithm [5], which solves prediction learning
problem that consists in estimating the future behavior of an unknown system
from the past experience. Learning occurs whenever systems state changes over
time and is based on the error between the temporally successive predictions. Its
goal is to make the preceding prediction to match more closely the current pre-
diction (taking into account distinct system states observed in the corresponding
time steps). Technically, at a certain time step t, prediction Pt can be considered
as a function of two arguments: current system state and the vector of weights
w. The TD(λ) algorithm is expressed by the following weight update rule:

Δwt = α(Pt+1 − Pt)
t∑

k=1

λt−k∇wPk,

where α is the learning rate, and λ is the decay parameter, which influences
the magnitude of changes applied to all the preceding predictions within a single
learning episode. When applied to the problem of learning game-playing strategy
represented as WPC, Pt estimates the chances of winning from the game state
bt, by mapping the outcome of the WPC function f to a closed interval [−1, 1]
using hyperbolic tangent, so that Pt = tanh(f(bt)).

The process of learning consists of applying the above formulas to the WPC
vector after each move of a self-play game. During game play, moves are selected
on the basis of the most recent evaluation function. Othello is a deterministic
game, thus the course of the game between two deterministic players is always the
same. This feature reduces the number of possible states a learner can explore,
which makes learning ineffective. To remedy this situation, at each turn, a ran-
dom move is forced with a certain probability ε. As a result, players are con-
fronted against a wider spectrum of possible behaviors.

5 Experimental Setup and Parameters Tuning

In order to fairly compare the algorithms, we set them up so that their total
computational effort is the same and it is equal to 2, 000, 000 training games. To
evaluate a given algorithm we measure the performance of its best-of-run player.
In CEL this is the individual from the last generation with the highest fitness,
while in TDL this is simply the only learning player. Since both considered
algorithms are stochastic, we compare their average results over 100 runs.

Instead of selecting arbitrary values of parameters for CEL and TDL, we
perform a series of preliminary experiments to optimize them. As the optimiza-
tion goal we use the performance measure of generalization performance [14]
(also known as expected utility [10]). Generalization performance of a player is
defined as its expected score over all possible opponents. To approximate this
measure we compute the average game result of the player against 50, 000 ran-
dom players. A random player is a random weighted piece counter player that
weights are drawn uniformly at random from a fixed interval of [−1, 1]. In each
game players are rewarded 1 point for a win and 0.5 point for a draw.

Multi-Criteria Comparison of Coevolution and Temporal Difference Learning 305

5.1 Temporal Difference Learning

The TD(λ) algorithm described in Section 4 has two parameters: learning rate α
and decay λ ∈ [0, 1]. Additionally, since the algorithm learns on the basis of self-
play games, there is another important parameter — random move probability
ε. The results of different combinations of α and ε for λ = 0 are presented in
Table 1.

Table 1. The results obtained by TDL players for different α and ε. Generalization
performance values are presented in percent points.

α = .01 .02 .03 .04 .05 .06 .07 .08 .09 .1

ε = .0 81.4 82.3 84.2 84.0 84.3 82.1 79.9 75.4 71.5 72.0
ε = .05 84.0 81.1 82.7 86.2 87.9 87.7 87.4 87.4 87.0 86.8
ε = .1 84.4 81.5 82.4 84.4 87.3 87.7 87.2 86.4 85.4 85.4
ε = .15 84.9 82.7 82.2 83.3 86.1 87.8 86.7 85.5 84.6 84.5

On the basis of these results we chose α = 0.05 and ε = 0.05 as the best
parameters. In the second stage, we checked different values of decay λ. However,
changing λ did not provide statistically better results than those obtained with
λ = 0. This observation confirms previous results [2].

5.2 Coevolution

CEL has several quantitative and qualitative parameters. The former include
population size, random sample size, mutation probability and mutation range,
while the latter mutation and selection operators. The weights of the individuals
in the initial population were drawn at random from the [−0.1, 0.1] interval.

For each of the parameters we considered several possible values. We chose
to test six population sizes and six random sample sizes: 4, 10, 20, 50, 100, 200.
We selected four selection strategies:

– tournament selection, with tournament size 5,
– stochastic universal sampling [15], a variant of a roulette-wheel selection that

guarantees that the frequency of selection for each individual is consistent
with its expected frequency of selection,

– (μ + λ) evolutionary strategy, where μ = 1
2popsize and λ = 1

2popsize, and
– (μ, λ) evolutionary strategy, where μ = 1

2popsize and λ = popsize.

Additionally, we considered Gaussian mutation and uniform mutation. These
mutation operators perturb each weight of the WPC with probability p by adding
to it a random value drawn uniformly from the interval [−r, r] in case of uniform
mutation, or from N (0, σ) for Gaussian mutation. For parameters p, r, and σ
we considered values of .05, .1, .2, .3, .4, .5, .6, .7, .8, .9 and 1.0.

306 W. Jaśkowski et al.

Results

We carried out the tuning of CEL parameters in two stages. In the first stage,
we fixed the mutation operator to Gaussian mutation with p = 0.1 and σ = 0.25
and focused on finding the best selection strategy and best values of population
size and random sample size. For this purpose, we evaluated all 6 × 6 × 4 = 144
combinations of population size, random sample size and selection operators.

The results of optimization are shown in Fig. 1. On this basis, we decided to
use (μ, λ)-ES, population size of 20 and random sample size of 200.

Fig. 1. The impact of population size, random sample size and selection operator on
the generalization performance of CEL. The values are presented in percent points.

In the second stage, we evaluated Gaussian mutation and uniform muta-
tion for every combination of mutation probability, mutation operator and their
parameters, 7 × 7 × 2 = 98 experiments in total. Surprisingly, we have found
no evidence of any statistical differences between either the mutation types or
their parameters with the sole exception of the combination of Gaussian muta-
tion with σ = .05 and p ∈ {.05, .1} that were statistically (t-test, α = 0.05)
inferior to other combinations. As a result, for the rest of the experiments we
use Gaussian mutation with p = 1.0 and σ = 1.0.

6 Comparison of Coevolution and Temporal Difference
Learning

6.1 Single-Criteria Comparison

We start the comparison between CEL and TDL by applying three commonly
used [1,16,17] single-criteria performance measures:

Multi-Criteria Comparison of Coevolution and Temporal Difference Learning 307

– generalization performance — the average performance against randomly
generated WPC players (see Section 5).

– heuristic performance — the average performance against a “standard” hand-
crafted WPC heuristic player [3,18]. Since this player is deterministic, follow-
ing earlier work [1], we force players to make random moves with probability
ε = 0.1, and thus we slightly alter the game definition.

– head to head — indicates how well a set of players copes in games against
players from another set.

Table 2. Comparison of CEL and TDL using three performance measures: i) gener-
alization performance, ii) heuristic performance, and iii) the result of head to head
match. The results are shown in percent points, where 100% means getting all possible
points (winning all games). Values of generalization performance and heuristic perfor-
mance are accompanied by 95% confidence intervals. Note that the results of head to
head match sum up to 100%.

Performance measure [%]

Algorithm generalization heuristic head to head

Coevolutionary Learning (CEL) 86.97±0.21 32.31±0.62 21.2
Temporal Difference Learning (TDL) 87.26±0.32 46.14±0.96 78.8

Table 2 presents the results for CEL and TDL using the above-described
single-criteria performance measures. To compute generalization performance
and heuristic performance we played 50, 000 games for each best-of-run player.
The results were averaged over 100 best-of-run players for each algorithm.

The comparison using the three single-criteria performance measures is equiv-
ocal. The performance measure of generalization performance shows no statisti-
cal difference between CEL and TDL (t-test, α = 0.01). However, TDL is clearly
superior to CEL when playing against a heuristic player and in a head to head
match. Can we then claim with a confidence that TDL is “better” than CEL?

6.2 Multi-Criteria Comparison with Performance Profiles

Performance Profiles. Single-criteria methods of performance evaluation do
not draw a clear picture of the relative performance of analyzed methods. To
better understand the characteristics of compared methods we use performance
profiles [10]. They compare performance of players using sets of opponents of
various strength, treating the result of match against opponents of each such set
as a separate performance criteria.

To prepare a performance profile, we first generate a number of opponents
and group them into bins according to their strength. To this aim, we randomly
generated about 1,000,000 players (opponents) by sampling WPC weights uni-
formly and independently from the [−1, 1] interval. Next, the generalization per-
formance of each opponent was estimated by taking average from the results of

308 W. Jaśkowski et al.

games 2,000 against random WPC strategies. The range of possible performance
values, i.e., [0%, 100%], is then divided into 100 bins of equal 1%-performance
width, and each opponent is assigned to one of these bins based on its general-
ization performance.

However, finding extremely strong or weak strategies in this way is very dif-
ficult, if not impossible. To overcome this, the strongest (performance > 81%)
and the weakest (performance < 13%) opponents were obtained using multiple
independent runs of evolutionary learning with random sampling [10]. In this
way, we were able to fill 93 bins (4%− 96%), each one of containing 1, 000 oppo-
nents. Note that building the opponents database is computationally expensive.
However, once created, it can be reused1.

The set of opponents partitioned into bins form the basis for building perfor-
mance profiles. The player to be assessed plays games against all the opponents
from each bin, and the average game outcome is plotted against the bins. Per-
formance profile is a multi-criteria performance evaluation method since the
performance of a given player is measured separately on every bin, each being a
different criterion.

Results. We apply this multi-criteria method to inspect the best-of-run individ-
uals of the two algorithms considered in this paper. The resulting performance
profiles are presented in Fig. 2. Since we have 100 runs per algorithm, we aver-
age the profiles over 100 best-of-run players. A point of coordinates (x, y) in a
plot means that the best-of-run individuals have on average performance y when
playing against opponents of performance x. For example, the performance of
CEL is nearly 95% for opponents with performance of 20%. The whiskers in the
plots mark 95% confidence intervals.

The decreasing trend in each data series confirms the intuition that it is
harder to win against stronger opponents than against the weaker ones.

The most important observation from the plots is that TDL players are
significantly better when facing the strong opponents. Moreover, the stronger
the opponents the wider the performance gap between CEL and TDL players.
On the other hand, CEL players are better than TDL players against the weakest
opponents. For example, CEL players win nearly 98% games against the weakest
opponents in our database of performance of 4%, while TDL players win only
94% games against them.

6.3 Discussion

In Section 6.1 we showed that there is no statistical difference in generaliza-
tion performance between CEL and TDL, but TDL is better than CEL in a
game against a hand-crafted heuristic player and in a head to head tournament.
Performance profiles could explain this discrepancy.
1 The data and Java code for creating performance profiles for Othello are available

at http://www.cs.put.poznan.pl/wjaskowski/projects/performance-profiles.

http://www.cs.put.poznan.pl/wjaskowski/projects/performance-profiles

Multi-Criteria Comparison of Coevolution and Temporal Difference Learning 309

Fig. 2. Performance profiles of coevolutionary learning (CEL) and temporal difference
learning (TDL). Each point (x, y) means player performance y against opponents of
performance x. Confidence intervals for each point are less than 1%. Right side of the
plot indicates that TDL copes much better than CEL against stronger opponents.

First, we can see that in Fig. 2 CEL and TDL curves cross at about 50%, both
obtaining performance about 87% at this point. This value precisely matches
the generalization performance results obtained by CEL and TDL (cf. Table 2),
because the 50%-bin contains average players of performance equal to a random
WPC player.

Second, we should realize that the heuristic performance and the result in
head to head match determine how a player copes against strong opponents,
rather than average ones. Performance profile analysis confirms that TDL fares
much better than CEL against strong opponents (cf. Fig 2).

Third, what the three single-criteria performance measure miss is that CEL
is better than TDL for weaker opponents.

The three single-criteria measures are like three points sampled from a signal;
we can hypothesize about its shape, but they are not enough to fully understand
it. Performance profiles allow us to not only understand the single-criteria results
but also to see the trade-offs between TDL and CEL.

7 Strategies Comparison

The average performance against particular type of opponents allows us to draw
conclusions about the superiority of some approaches over others, but it says

310 W. Jaśkowski et al.

0.4 0.2 0.0 0.2 0.4

PC1 [43.33%]

0.4

0.2

0.0

0.2

0.4

P
C
2
[3
1
.8
5
%
]

Estimated number of clusters: 4

(a) Temporal Difference Learning (TDL)

1.0 0.5 0.0 0.5 1.0 1.5

PC1 [16.88%]

1.0

0.5

0.0

0.5

1.0

P
C
2
[1
0
.7
3
%
]

Estimated number of clusters: 1

(b) Coevolutionary Learning (CEL)

Fig. 3. Learned strategies represented as points in the PCA-reduced space. Different
colors indicate clusters identified by the mean-shift algorithm.

Fig. 4. WPC strategies produced by TDL corresponding to centers of the clusters
identified by the mean-shift algorithm (cf. Fig. 3) illustrated as Othello boards with
locations shaded accordingly to corresponding weights

nothing about the weights of elaborated WPC strategies. For this reason, we
investigate the distribution of final strategies learned by TDL and CEL.

To analyze the WPC strategies, we treat them as points in a 64-dimensional
space. First, we linearly scale all their weights to [0, 1] interval. Finally, we clus-
tered them using the mean-shift algorithm [19]. Figure 3 illustrates the results
of clustering the strategies produced by TDL and CEL in a two dimensional
space, which was obtained by applying PCA (Principle Component Analysis).
For TDL, we can clearly see four clusters, while CEL strategies are randomly
spread in the space. It appears that the players produced by CEL are much more
diversified than those produced by CEL.

Selected WPCs are presented graphically in weight-proportional gray-scale
in Figures 4 and 5 for TDL and CEL, respectively. In the figures darker squares
denote larger weights, which correspond to more desirable board locations.

Interestingly, TDL strategies exhibit some symmetries. In particular, the
corners are the most desirable, while their immediate neighbors have very low
weights. The only difference between these four strategies is the weight in one

Multi-Criteria Comparison of Coevolution and Temporal Difference Learning 311

Fig. 5. Selected WPC strategies found by CEL and illustrated as Othello boards with
locations shaded accordingly to corresponding weights. The first two strategies from
the left are the most distant ones in the 64-dimensional space, the third one is the
centroid of the set of all CEL strategies while the right-most one is the best strategy
with respect to the generalization performance.

of the board corners — it is significantly lower than in the other three corners.
In contrast, CEL strategies are less symmetrical and, apart from the typically
black corners, they do not exhibit any regularities nor symmetries.

8 Conclusions

This study presents an evidence that while temporal difference learning (TDL)
and coevolutionary learning (CEL) obtain similar results against average oppo-
nents, TDL copes much better against stronger ones. This was observed using
single-criteria performance measures, but the full picture was only revealed using
multi-criteria performance profiles. The characteristics of the strategies learned
by TDL and CEL differ significantly and this is reflected in strategy weights.

Despite their usefulness, performance profiles have some limitations. Their
computation requires numerous opponents of specific performances to be pre-
pared, what is computationally expensive. Therefore, profiling game-playing
strategies seems to be only possible for simple and linear representations (like
WPC) and for games which can be quickly played (1-ply only). Nevertheless,
such settings are perfectly acceptable when the emphasis of the research is put
not on the absolute performance of the players, but on the learning algorithms.

Acknowledgments. This work has been supported by the Polish National Science
Centre grant no. DEC-2013/09/D/ST6/03932. M. Szubert has been supported by Pol-
ish Ministry of Science and Education, grant no. 2012/05/N/ST6/03152.

References

1. Lucas, S.M., Runarsson, T.P.: Temporal difference learning versus co-evolution
for acquiring othello position evaluation. In: IEEE Symposium on Computational
Intelligence and Games, 52–59 IEEE (2006)

2. van den Dries, S., Wiering, M.A.: Neural-Fitted TD-Leaf Learning for Playing
Othello With Structured Neural Networks. IEEE Transactions on Neural Networks
and Learning Systems 23(11), 1701–1713 (2012)

312 W. Jaśkowski et al.

3. Szubert, M., Jaśkowski, W., Krawiec, K.: On scalability, generalization, and
hybridization of coevolutionary learning: a case study for othello. IEEE Trans-
actions on Computational Intelligence and AI in Games 5(3), 214–226 (2013)

4. Axelrod, R.: The evolution of strategies in the iterated prisoner’s dilemma. In:
Davis, L., (ed.) Genetic Algorithms in Simulated Annealing, London pp. 32–41
(1987)

5. Sutton, R.S.: Learning to predict by the methods of temporal differences. Machine
learning 3(1), 9–44 (1988)

6. Sutton, R., Barto, A.: Reinforcement learning, Vol. 9. MIT Press (1998)
7. Szubert, M., Jaśkowski, W., Krawiec, K.: Learning board evaluation function for

othello by hybridizing coevolution with temporal difference learning. Control and
Cybernetics 40(3), 805–831 (2011)

8. Lucas, S.M.: Learning to play Othello with N-tuple systems. Australian Journal
of Intelligent Information Processing Systems, Special Issue on Game Technology
9(4), 01–20 (2007)

9. Darwen, P.J.: Why co-evolution beats temporal difference learning at backgammon
for a linear architecture, but not a non-linear architecture. In: Proceedings of the
2001 Congress on Evolutionary Computation, Vol. 2, pp. 1003–1010. IEEE (2001)

10. Jaśkowski, W., Liskowski, P., Szubert, M., Krawiec, K.: Improving coevolution by
random sampling. In: Blum, C. (ed.) GECCO’13: Proceedings of the 15th Annual
Conference on Genetic and Evolutionary Computation, pp. 1141–1148. ACM, Ams-
terdam (2013)

11. Popovici, E., Bucci, A., Wiegand, R.P., de Jong, E.D.: Coevolutionary Principles.
In: Handbook of Natural Computing. Springer (2011)

12. Nolfi, S., Floreano, D.: Coevolving Predator and Prey Robots: Do Arms Races
Arise in Artificial Evolution? Artificial Life 4(4), 311–335 (1998)

13. Tesauro, G.: Temporal difference learning and td-gammon. Communications of the
ACM 38(3), 58–68 (1995)

14. Chong, S.Y., Tino, P., Yao, X.: Relationship between generalization and diversity
in coevolutionary learning. IEEE Transactions on Computational Intelligence and
AI in Games 1(3), 214–232 (2009)

15. Baker, J.E.: Reducing bias and inefficiency in the selection algorithms (1985)
16. Chong, S.Y., Tino, P., Ku, D.C., Xin, Y.: Improving Generalization Performance

in Co-Evolutionary Learning. IEEE Transactions on Evolutionary Computation
16(1), 70–85 (2012)

17. Szubert, M., Jaśkowski, W., Krawiec, K.: Coevolutionary temporal difference learn-
ing for othello. In: IEEE Symposium on Computational Intelligence and Games,
Milano, Italy, pp. 104–111 (2009)

18. Samothrakis, S., Lucas, S., Runarsson, T., Robles, D.: Coevolving Game-Playing
Agents: Measuring Performance and Intransitivities. IEEE Transactions on Evo-
lutionary Computation 99, 1–15 (2012)

19. Comaniciu, D., Meer, P., Member, S.: Mean shift: A robust approach toward feature
space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence
24, 603–619 (2002)

Evolving Evil: Optimizing Flocking Strategies
Through Genetic Algorithms for the Ghost

Team in the Game of Ms. Pac-Man

Federico Liberatore(B), Antonio M. Mora, Pedro A. Castillo,
and Juan Julián Merelo Guervós

Departamento de Arquitectura y Tecnoloǵıa de Computadores. CITIC-UGR,
ETSIIT, University of Granada, Granada, Spain

federico.liberatore@urjc.es,

{amorag,pacv,jmerelo}@geneura.ugr.es

Abstract. Flocking strategies are sets of behavior rules for the interac-
tion of agents that allow to devise controllers with reduced complexity
that generate emerging behavior. In this paper, we present an application
of genetic algorithms and flocking strategies to control the Ghost Team in
the game Ms. Pac-Man. In particular, we define flocking strategies for the
Ghost Team and optimize them for robustness with respect to the stochas-
tic elements of the game and effectivity against different possible oppo-
nents by means of genetic algorithm. The performance of the methodology
proposed is tested and compared with that of other standard controllers.
The results show that flocking strategies are capable of modeling complex
behaviors and produce effective and challenging agents.

Keywords: Flocking Strategies · Genetic Algorithms · Artificial Intel-
ligence · Ms. Pac-Man · Videogames · Evolutionary Computation

1 Introduction

The game of Ms. Pac-Man was released in 1981 and, albeit similar to the orig-
inal Pac-Man, it features a female protagonist, new maze designs, and several
other gameplay changes over the original game, such as a stochastic event that
reverses the direction of movement of the ghosts. Videogames such as Ms. Pac-
Man are an ideal testbed for computational intelligence (CI) methods as they
allow for the confrontation of multiple intelligent agents in a simple, yet chal-
lenging, context. A Ms. Pac-Man vs Ghosts competition has been run since 2009
[12]. Participants can submit controllers for either Ms. Pac-Man or the Ghost
Team. During the competition, the controllers are ranked according to the results
of random matches between two controllers of the same kind (e.g., Ghosts con-
trollers) against two other controllers of the opposite kind (e.g., Ms.Pac-Man
controllers). The controllers of each type that get the best score win the match
and increase their rank. The competition is won by the controller of each kind
having the highest rank.
c© Springer-Verlag Berlin Heidelberg 2014
A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2014, LNCS 8602, pp. 313–324, 2014.
DOI: 10.1007/978-3-662-45523-4 26

314 F. Liberatore et al.

As the Ghost Team is a group of individuals that perform simple actions (i.e.,
moving up, down, left, or right), it seems a natural proving ground for algorithms
based on the paradigm of Swarm Intelligence (SI). For this reason, in this work
an evolved controller for the Ghost Team based on Genetic Algorithms (GAs)
and Flocking Strategies (FSs) is proposed. FSs [17] consist of simple rules for
the interactions of the agents that determine the next move of a ghost according
to its distance to the other agents in the game. Despite their simplicity, FSs
often result in complex emerging behaviors which, in turn, might result in a
performance improvement or lead to a more entertaining gameplay. GAs are
used to design FSs for the Ghost Team that are effective at minimizing Ms. Pac-
Man final score and that are also robust with respect to the stochastic elements
of the game. To the best of the authors knowledge this is the first work to
actually applying flocking algorithms to the game of Pac-Man. Our objective is
to understand how the proposed methodology would perform in comparison to
controllers that use different approaches.

2 Ms. Pac-Man. The Game and the Problem

The game of Pac-Man needs no presentation. Since its release in 1980 many vari-
ants have been proposed and Ms. Pac-Man was one of them. Released in 1981, Ms.
Pac-Man presented several features that extended on the original game, such as
a female character, new maze designs, and several game-play changes.

In this game, Ms. Pac-Man has to collect all the pills in the maze while
avoiding the four ghosts chasing her. If Ms. Pac-Man is touched by a ghost
the player loses one life, Ms. Pac-Man is relocated at the initial position, and
the ghosts respawn from the center of the maze. The powerpills turn the ghosts
vulnerable for a short time, allowing Ms. Pac-Man to “eat” them. When a ghost
gets eaten, it disappears from the game and respawns at the center of the maze
after a certain amount of time. As the levels are cleared, the game becomes
more difficult by changing certain parameters such as respawn time, length of
time the ghosts are vulnerable, and ghosts’ speed. Differently from the game of
Pac-Man, this game has elements of randomness, firstly included to make the
game more engaging. In fact, occasionally there is a global reversal event when
all the ghosts suddenly change direction.

Given its multiple challenges, the game has been chosen for the Ms. Pac-Man
vs Ghosts competition, a game AI competition where participants can submit
controllers for both Ms. Pac-Man and the Ghost Team. The aim of Ms. Pac-Man
agents is to maximize the final score, while the aim of Ghost Team controllers
is to minimize it. The version of the game implemented for the competitions
differs slightly from the original one. A thorough description of the game rules
can be found in [18]. For the purposes of this work, the relevant restrictions for
the Ghost Team are briefly enlisted in the following:

– A ghost can never stop and, when it is in a corridor, it can only move forward.
– A ghost can choose its direction only at a junction. Specifically, a ghost can

only move into a corridor different from the one it is coming from. As a
result, a ghost cannot turn back on itself.

Evolving Evil: Optimizing Flocking Strategies Through Genetic Algorithms 315

– Every time a ghost is at a junction the controller has to provide a direction
(i.e., UP, DOWN, LEFT, or RIGHT) from the set of feasible directions, i.e.,
those directions corresponding to corridors different from the one the ghost
is coming from. If no direction or an unfeasible direction is returned by the
controller, the game framework chooses a random direction from the set of
feasible directions.

– At every tick of the game all the ghosts obligatorily reverse their direction
according to a small random probability, set in the game implementation to
0.005.

– After 2000 game ticks, a level is considered completed: Ms. Pac-Man is
rewarded with the points of the remaining pills and the game moves on
to the next level.

3 Background and State of the Art

In this section, the main techniques applied in the development of this work are
briefly described, along with some relevant bibliography.

SI [3] is the term used to describe the type of coordinated intelligence that
arises from the collective behavior of decentralized, self-organized systems, either
natural or artificial. SI techniques have been widely used in many fields including
medicine, robotics, defense, astronomy, optimization, telecommunication, art,
cinematography, and videogames. Flocking refers to a SI technique proposed by
Reynolds [17] for the coordinated movement of multiple AI agents. Originally,
flocking algorithms have been developed to mimic lifelike behaviors of groups of
beings such as herds of animals and schools of fishes. A flocking system typically
consists of a population of simple agents (or boids) interacting locally with one
another depending on the distance between them. The agents follow very simple
steering behaviors:

– Separation makes the agent steer away from close flock mates.
– Alignment makes the agent steer toward the average heading of the flock.
– Cohesion makes the agent steer toward the average position of distant flock

mates.

Despite the lack of a centralized control structure dictating how individual
agents should behave, the interactions between such agents lead to the emer-
gence of “intelligent” global behavior, unknown to the individual agents [21].
Due to this desirable property, the easiness of implementation, and the reduced
computational cost, flocking algorithms have been extensively applied to many
fields, such as cinematography, art, medicine, etcetera. A presentation of flocking
algorithms applications in videogames can be found in [19] and [16].

In the last years, a number of works regarding the Ghost Team have been
proposed. Nguyen and Thawonmas [14,15] presented a controller based on Monte
Carlo Tree Search where the behavior of Ms. Pac-Man is simulated. Their con-
troller won the Ms. Pac-Man Versus Ghost Team Competition held in 2011.
Svensson and Johansson [22] exploited the behavior emerging capabilities of

316 F. Liberatore et al.

Influence Maps. A different line of research is pursued by Sombat et al. [20] that
analyzed Ms. Pac-Man matches to classify Ghost Team controllers according to
their enjoyability and, therefore, understand the attribute that a NPC should
posses for players to be engaged. In the last decade, a number of EAs have been
proposed to address different aspects of the game of Pac-Man. One of the first
works in the subject is the paper by Gallagher [8] that optimized rule-based
fine state machines through population-based incremental learning to devise an
adaptive Pac-Man agent. More recently, Galvan-Lopez [9] explored and com-
pared the performance of two types of Grammatical Evolution (GE) mappings
to generate controllers for Ms. Pac-Man. Alhejali and Lucas [1] applied Genetic
Programming (GP) to evolve a diverse set of behaviors using different versions of
the game. The resulting controller proved to be competitive with the best reac-
tive controllers reported at the time. In a subsequent article [2], the same authors
extended their work by applying a “training camp framework” to GP, where a
set of specialized behaviors is evolved according to specific training scenarios. A
different approach is presented by Brandstetter and Ahmadi [4] that proposed
a GP-based controllers that relies exclusively on information retrieval terminals
rather than action-issuing terminals. Thawonmas [23] applied a GA to optimize
the parameters of the Ms. Pac-Man controller ICE Pambush 3, winner of the
IEEE CEC 2009 Ms. Pac-Man competition. A number of authors made use of
EAs to design neural network-based controllers, both for Ms. Pac-Man [5,11]
and the ghosts [10]. Gagne and Congdon [7] evolved rule-based intelligent agent
for the ghost team. Finally, Cardona et al. [6] explored competitive co-evolution
techniques to generate at the same time optimal Ms. Pac-Man and Ghost Team
controllers.

In this work, an offline GA is applied to a flocking model for the Ghost Team,
in order to improve its decision engine, which will be used later during game. To
the best of the authors’ knowledge, this is the first time FS have been applied
to the game of Ms. Pac-Man.

4 Ghost Team AI: Evolutionary Flocking

In this section the evolutionary FS model developed for designing controllers for
the Ghost Team is described. In the flocking system described, each one of the
four ghosts is an independent agent. Nevertheless, all the ghosts determine their
movement according to the same FS, as explained in the following.

4.1 Generalized Flocking Strategies

We define a Flocking Rule (FR) for boids (ghosts, in this case), φ, as a set of
two vectors, φd and φm, that jointly describe the steering behavior of a ghost
under certain conditions. Each FR considers a number N of concentric ring-
shaped neighborhoods centered on the ghost. The limits of each neighborhood
are specified by vector φd ∈ N

N ; please note that the elements of vector φd are
always sorted in ascending order as they represent the radii of the concentric

Evolving Evil: Optimizing Flocking Strategies Through Genetic Algorithms 317

neighborhoods . The last element of this vector, φd
N , is set to ∞ by default to

cover the whole space. Vector φm ∈ [−1, 1]N defines the magnitude of the steering
force applied on the ghost when an agent falls into one of the neighborhoods.

To find the steering force on an agent A, located at position va, resulting
from the interaction with agent B, located at position vb, the difference vector
vδ and the Euclidean distance δ between the two agents are calculated:

vδ = vb − va (1)

δ = ‖vδ‖ (2)
To identify the magnitude φm

N we need to determine the neighborhood 0 < n ≤ N
where agent B belongs, by applying the following condition:

φd
n−1 < δ ≤ φd

n (3)

where φd
0 = 0. Finally, the steering force on agent A resulting from the interaction

with agent B is given by:
fB = φm

n · vδ

δ
(4)

A negative magnitude corresponds to the behavior of separation, while a pos-
itive magnitude corresponds to the behavior of cohesion. No alignment behavior
is included in this strategy model as it would make the ghosts very predictable.

Differently from the basic flocking algorithm where only one type of agent is
considered, in the game Ms. Pac-Man a variety of different actors are present.
Also, the ghosts can be in different states (e.g., normal or edible). To be effective,
a strategy for the Ghost Team should take into account at least all the elements
presented to the player on the screen. Let S be the set of possible ghost states:

S = {HUNTER, HUNTED, BLINKING} (5)

HUNTER is the “normal” state of a ghost (i.e., kills Ms. Pac-Man if touched).
When Ms. Pac-Man eats a powerpill all the ghosts become HUNTED for a
certain length of time (i.e., is killed by Ms. Pac-Man on contact). When this
period is about to expire, every ghost blinks to warn the player; we call this
state BLINKING. Let A be the set of all the actors in the game:

A = {PACMAN, POWERPILL, HUNTER, HUNTED, BLINKING}
HUNTER, HUNTED, and BLINKING refers to ghosts in that state. We
can now define a Flocking Strategy (FS) for the Ghost Team, Φ, as:

Φ : S × A → φ

A FS is a function that, given a ghost state and the type of actor considered,
returns the flocking rule that has to be applied to calculate the steering force on
the ghost resulting from the interaction with the actor.

As explained in Section 2, every time a ghost is at a junction the game needs
to calculate its next move. The controller based on the FS provides the next
move by following the steps illustrated in Algorithm 1.

318 F. Liberatore et al.

Algorithm 1. Flocking Strategy-based Ghost Controller.
s ← status of the current ghost G;
va ← position of the current ghost G;
for all actor b in the game do

φ ← Φ(s, b); {Determine the Flocking Rule to be applied.}
vδ ← vb − va; {Calculate the difference vector (Equation 1).}
δ ← ‖vδ‖; {Calculate the Euclidean distance (Equation 2).}
n ← n′|φd

n′−1 < δ ≤ phidn′ ; {Identify the neighborhood (Equation 3).}
fb ← φm

n · vδ
δ

; {Compute the steering force (Equation 4).}
end for
f ←∑b fb; {Calculate the total steering force.}
{Translate the steering force in a ranking for the next ghost direction as follows:}
UP ← −f2;
DOWN ← f2;
LEFT ← −f1;
RIGHT ← f1;
return the feasible direction (see restrictions in Section 2) having maximum rank;

4.2 Devising Optimized Flocking Strategies by Means of GAs

In this work we are dealing with a two-player competitive game with stochastic
elements. A FS could be manually designed by an expert with decent results.
Nevertheless,given as the number of parameters and the inherent complexity of
the game, it is desirable to automatize the definition of an effective strategy by
means of an optimization algorithm. Given the characteristics of the problem
and the reduced number of constraints involved, GAs appear to be a sensible
choice.

In the following, the elements comprising the GA implemented are described.

Initial Population. Each individual is represented by a FS Φ. The initial
population is created as a random set of FSs defined as:

∀s ∈ S, a ∈ A, i = 1, . . . , N, φd
i ∼ U(φd

i−1, ∞) (6)

∀s ∈ S, a ∈ A, i = 1, . . . , N, φm
i ∼ N(0, 1/3), φm

i ∈ [−1, 1] (7)

The elements of φd have a uniform distribution, while the elements of φm have a
truncated normal distribution. The parameters of the normal distribution have
been set so as to generate most of the magnitudes close to zero and assign
similar probabilities to the appearance of cohesion, separation, and no interaction
behaviors.

Fitness Function. The definition of the fitness function is one of the most criti-
cal aspects in a GA. The proposed optimization algorithm should generate Ghost
Team strategies that perform well against any possible Ms. Pac-Man strategy
and, at the same time, should be resilient to the random ghosts reverse direction
events (see Section 2). To achieve this result, each flocking strategy is pitted

Evolving Evil: Optimizing Flocking Strategies Through Genetic Algorithms 319

against two different Ms. Pac-Man controllers included in the Ms. Pac-Man vs
Ghosts competition framework: StarterPacMan (SPM) and NearestPillPacMan
(NPPM) (for a description of the controllers, please refer to the competition
framework documentation1). The game is simulated 30 times for each Ms. Pac-
Man controller. Thanks to that we can take advantage of the central limit the-
orem to compute a relatively precise 95% confidence interval of the final score
obtained by the Ms. Pac-Man controllers. This is done to minimize the effect
of noise present in this problem and in videogames in general [13]. In fact, due
to the stochastic elements of the game, the same FS could perform very well
sometimes and quite bad some others. Let μSPM, σSPM, μNPPM, σNPPM be the
average score obtained by controller SPM in the 30 runs, the standard deviation
of the SPM’s scores, the average score obtained by controller NPPM in the 30
runs, and the standard deviation of the NPPM’s scores, respectively. The upper
limits of the confidence intervals for the scores of the two controllers are:

CISPM = μSPM + Z · σSPM√
30

(8)

CINPPM = μNPPM + Z · σNPPM√
30

(9)

where Z is the 95% percentile of the standard normal distribution. Therefore,
95% the Ms. Pac-Man controllers should get score below the upper limits of the
confidence intervals. Our objective is to obtain a Ghost Team controller that
minimizes these two values. The fitness function is defined as the average of the
confidence intervals’ inverses:

FITNESS =
1

CISPM

+
1

CINPPM

(10)

Selection, Recombination, and Mutation. After all the individuals (FSs) of
the current generation have been evaluated, the offspring will be generated. For
each Φ to be generated, two individuals Φ1 and Φ2 are chosen by roulette-wheel
selection (i.e., every member of the population has a probability of being chosen
proportional to its fitness). The children individual Φ is created by random
recombination of the parameters of parents Φ1 and Φ2:

∀s ∈ S, a ∈ A, i = 1, . . . , N, φd
i = rand(φd

i ∈ Φ1(s, a), φd
i ∈ Φ2(s, a)) (11)

∀s ∈ S, a ∈ A, i = 1, . . . , N, φm
i = rand(φd

i ∈ Φ1(s, a), φd
i ∈ Φ2(s, a)) (12)

where rand is a function that returns a random value chosen among its argu-
ments.

During the recombination, mutations can occur with probability pmut. When
a mutation happens, the current parameter is re-initialized to a random value,
according to Equations 6 and 7. The mutation probability pmut is determined
dynamically. Initially, its value is set to pmut = 0.00125. At each iteration t, its
value changes depending on the coefficient of variation of the current population
fitness, cv:

cv =
σt

FITNESS

|μt
FITNESS | (13)

1 http://www.pacman-vs-ghosts.net/, last visited on February 6, 2014

http://www.pacman-vs-ghosts.net/

320 F. Liberatore et al.

where μt
FITNESS and σt

FITNESS are the current population fitness’ average
and standard deviation, respectively. cv measures the degree of variability of
the population in terms of fitness. When the variability is low, we increment the
mutation probability to introduce new chromosomes in the genetic pool of the
population. When the variability is too big, the mutation probability is set to a
low initial value:

pmut
t =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0.00125 if cv > 0.6
pmut

t−1 if 0.3 < cv ≤ 0.6
2 · pmut

t−1 if 0.2 < cv ≤ 0.3
4 · pmut

t−1 if 0.1 < cv ≤ 0.2
8 · pmut

t−1 if cv ≤ 0.1

(14)

Once the recombination is done, vectors φd
i and φm

i are sorted in ascending
order with respect to the values of φm

i to preserve their feasibility. In fact, by
definition vector φm

i are required to be always sorted in ascending order, and
the recombination and the mutation operators might generate vectors that do
not comply with this rule.

5 Experiments and Results

In this section, it will be tested how well a GA evolved controller performs,
compared to non-evolutionary strategies. The standard Ghost Team controllers
included in the competition framework will be used as a comparative basis. In
the experiments, the GA described in the previous chapter has been run for
50 generations with a population of 50 candidate strategies. At each iteration,
the next generation was constituted by 49 recombined individuals plus the best
solution of the current generation.

All the algorithm have been implemented in Java within the framework pro-
vided for the Ms Pac-Man vs Ghosts competition. The final program run on a
Intel(R) Core(TM) i5-2500K @ 3.3GHz with four cores and 4GB of RAM. Each
experiment run on a single core and made use of less than 300MB of memory.

The first experiment performed regards the comparison of the performance
of the Ghost Team controllers obtained with different values of the parameter N
(i.e., the number of neighborhoods considered in the Flocking Rules). The best
strategy found with a certain number of neighborhoods should be at least as good
as those found with a lower number of neighborhoods, as the solution space of
the former is bigger and contains the others’. Nevertheless, as the number of
neighborhoods increases, the solution space increases substantially, that in turn
could affect the actual performance of the GA. In this section we use the inverse
fitness, FITNESS−1, as a measure of performance as it is easier to interpret
than the fitness function that takes values close to zero. Being the inverse of the
fitness value, a lower FITNESS−1 value corresponds to a better controller, and
vice-versa.

Table 1 shows the performance of the evolved controllers over 10 runs of the
GA with N = 1, . . . , 5. Each column is associated to a different number of neigh-
borhoods. The first row displays the inverse fitness of the best individual found.
The second row presents the average controllers fitness; the standard deviation

Evolving Evil: Optimizing Flocking Strategies Through Genetic Algorithms 321

Table 1. Performance of the controllers for the Ghost Team obtained by the GA using
different numbers of neighborhoods.

N = 1 N = 2 N = 3 N = 4 N = 5

Best FITNESS−1 783.38 726.84 815.66 766.96 720.20

Avg. FITNESS−1 871.30±55.45 861.57±70.13 876.31±65.06 905.86±62.66 863.17±72.15

Worst FITNESS−1 951.75 969.20 1,032.39 986.48 980.50

Avg. CPU time (s) 1373±150.66 1484.3±122.01 1561±193.94 1562.60±109.90 1473.00±74.02

is also reported after the plus-minus sign. Next, the third row illustrates the
fitness value of the worst controller found. Finally, the last row reports the aver-
age optimization CPU time in seconds over the 10 runs and the corresponding
standard deviation. By observing the table some conclusions can be drawn.

– The best controller is obtained when N = 5. This result suggests that
increasing the complexity of the FS benefits the controller.

– No clear pattern can be identified in the values taken by Best FITNESS−1,
nor Avg. FITNESS−1, with respect to variations in the value of N . This
could be due to the increased complexity in the search space resulting from
the high number of parameters to be optimized by the GA.

– The gap between the best and the worst fitness in each column and the fitness
standard deviation suggest that the problem presents many local optima in
the solution space.

When playing against the best Ghost Team controller obtained by the GA
it is possible to observe interesting behaviors. A sample video2 shows the best
Ghost Team controller pitted against the Ms. Pac-Man controller StarterPac-
Man, included in the competition framework. The video illustrates that, despite
the lack of explicit coordination between them, the ghosts show complex strate-
gic behaviors:

– Initially, Blinky (red ghost) and Inky (blue ghost) entrap Ms. Pac-Man in
a small corridor. It can be observed that Pinky (pink ghost) is not heading
directly toward Ms. Pac-Man using the shortest route, therefore allowing
room for alternative strategies.

– In the second round, Blinky chases Ms. Pac-Man and pushes her through
the tunnel, at the end of which Pinky is waiting for her. It is interesting to
notice that, would Ms. Pac-Man have chosen to move away from the tunnel,
she would have moved toward a conveniently located Inky.

– In the last round, Ms. Pac-Man eats a powerpill. Immediately, the ghosts flee
in the opposite direction. After getting caught, Blinky takes advantage of the
situation to interpose between Ms. Pac-Man and the vulnerable ghosts. This
forces Ms. Pac-Man to take a detour and waste precious time, which results
in Ms. Pac-Man losing the game because of a recently invulnerable-turned
Pinky.

2 https://www.youtube.com/watch?v=I9rL0jUwHhk, visited on February 6, 2014

https://www.youtube.com/watch?v=I9rL0jUwHhk

322 F. Liberatore et al.

Without including complex rules, which is a desirable feature in this type
of problems (i.e., AI in games), the proposed methodology generates emerging
behaviors. This, in turn, results in the ghosts behaving in a “intelligent” fashion
although they are not explicitly programmed with this objective in mind.

In the next experiment, we compare our controllers to the five Ghost Team
controllers included in the competition framework. Their FITNESS−1 values,
computed exactly as per the GA solutions, are illustrated in Table 2.

Table 2. Performance of the standard Ghost Team controllers included in the compe-
tition framework

Controller AggressiveGhosts Legacy Legacy2TheReckoning RandomGhosts StarterGhosts

FITNESS−1 1893.13 2210.94 1429.20 4200.70 1603.49

According to these results, the best controller is Legacy2TheReckoning, fol-
lowed by StarterGhosts. Nevertheless, their FITNESS−1 value is twice that of
the best evolved FS found, approximately. These results support the claim that
FSs are a viable option for the definition of intelligent controllers.

6 Conclusions and Future Work

In this paper, a new controller for the Ghost Team based on FSs is proposed. FSs
are sets of behavior rules that determine the next move of an agent as a force
resulting from the interaction of the agents in the game. A GA is presented to
design optimized strategies offline. The fitness function evaluates each individual
by pitting it against two Ms. Pac-Man controller 30 times, so as to avoid noise in
the function. Parents are chosen by roulette-wheel selection and the children are
generated by random recombination of the parents’ chromosomes. The mutation
probability is adaptive and increases when the population is homogeneous, while
it decreases when the population is too heterogeneous. The methodology has
been empirically tested: the fitness of the best individual found by the GA has
been compared to the fitness of the five standard controller included in the
competition framework. The results show that FSs model complex behaviors and
that the GA successfully optimize the design of the ghosts controller, producing
effective and challenging agents.

This work is just scratching the surface and there is still a lot to be inves-
tigated. Some possible future lines of research are highlighted in the following.
The fitness function can be easily extended by including more Ms. Pac-Man
controllers. This should result in a Ghost Team controller that performs better
against a wider range of opponents. By considering in the GA fitness function
the best Ms. Pac-Man controllers that took part to the competitions, it would
be possible to generate Ghost Team controllers that are capable of tackling the
best known Ms. Pac-Man strategies.

Moreover, it would be interesting to compare the controllers obtained by
applying the presented methodology with the best Ghost Team controllers that
took part to the Ms. Pac-Man vs Ghosts competition. This would allow us to
really understand the limits of FSs.

Evolving Evil: Optimizing Flocking Strategies Through Genetic Algorithms 323

The GAs as a means to optimize FSs have proven to be satisfactory. Neverthe-
less, the recombination step causes abrupt changes in the solutions’ parameters
and might generate individuals that are very different from the initial ones. It
would be interesting to investigate the effectiveness of optimization methods that
allows for small changes in the solutions parameters. Particle Swarm Optimiza-
tion (PSO) algorithms might be a sensible choice. In fact, on top of making few
or no assumptions about the problem, PSO algorithm are particularly effective
with problems that are noisy and present many multiple optima, such as this
one.

Acknowledgments. This work has been supported in part by CANUBE (CEI2013-
P-14) and ANYSELF (TIN2011-28627-C04-02), awarded by the Spanish Ministry of
Science and Innovation. Liberatore’s research was financed by the Government of Spain
(TIN2012-32482). All the supports are gratefully acknowledged. In addition, Liberatore
would like to thanks the GeNeura research group at University of Granada for their
kind hospitality.

References

1. Alhejali, A., Lucas, S.: Evolving diverse Ms. Pac-Man playing agents using genetic
programming. In: Proceedings of the 2010 UK Workshop on Computational Intel-
ligence (UKCI 2010), pp. 1–6 (2010)

2. Alhejali, A., Lucas, S.: Using a training camp with Genetic Programming to evolve
Ms. Pac-Man agents. In: Proceedings of the 2011 IEEE Conference on Computa-
tional Intelligence and Games (CIG 2011), pp. 118–125 (2011)

3. Beni, G., Wang, J.: Swarm intelligence in cellular robotic systems. In: Robots and
Biological Systems: Towards a New Bionics?. NATO ASI Series F: Computer and
Systems Sciences, vol. 102, pp. 703–712 (1993)

4. Brandstetter, M., Ahmadi, S.: Reactive control of Ms. Pac Man using informa-
tion retrieval based on Genetic Programming. In: Proceedings of the 2012 IEEE
Conference on Computational Intelligence and Games (CIG 2012), pp. 250–256
(2012)

5. Burrow, P., Lucas, S.: Evolution versus Temporal Difference Learning for learning
to play Ms. Pac-Man. In: Proceedings of the IEEE Symposium on Computational
Intelligence and Games (CIG 2009), pp. 53–60 (2009)

6. Cardona, A., Togelius, J., Nelson, M.: Competitive coevolution in Ms. Pac-Man.
In: Proceedings of the 2013 IEEE Congress on Evolutionary Computation (CEC
2013), pp. 1403–1410 (2013)

7. Gagne, D., Congdon, C.: FRIGHT: A flexible rule-based intelligent ghost team
for Ms. Pac-Man. In: Proceedings of the 2012 IEEE Conference on Computational
Intelligence and Games (CIG 2012), pp. 273–280 (2012)

8. Gallagher, M.: Learning to play Pac-Man: an evolutionary, rule-based approach.
In: Proceedings of the 2003 Congress on Evolutionary Computation (CEC 2003),
pp. 2462–2469 (2003)

9. Galván-López, E.: Comparing the performance of the evolvable πGrammatical
Evolution genotype-phenotype map to Grammatical Evolution in the dynamic Ms.
Pac-Man environment. In: Proceedings of the 2010 IEEE Congress on Evolutionary
Computation (CEC 2010), pp. 1–8 (2010)

324 F. Liberatore et al.

10. Jia-Yue, D., Yan, L., Jun-Fen, C., Feng, Z.: Evolutionary neural network for ghost
in Ms. Pac-Man. In: Proceedings of the 2011 International Conference on Machine
Learning and Cybernetics (ICMLC 2011), vol. 2, pp. 732–736 (2011)

11. Lucas, S.: Evolving a neural network location evaluator to play Ms. Pac-Man. In:
Proceedings of the IEEE Symposium on Computational Intelligence and Games
(CIG 2005), pp. 203–210 (2005)

12. Lucas, S.: Ms. Pac-Man versus ghost-team competition. In: Procedings of IEEE
Symposium on Computational Intelligence and Games (CIG 2009), p. 1 (2009)

13. Mora, A.: Fernández-Ares, A., Guervós, J.M., Garćıa-Sánchez, P., Fernandes, C.:
Effect of noisy fitness in real-time strategy games player behaviour optimisation
using evolutionary algorithms. Journal of Computer Science and Technology 27(5),
1007–1023 (2012)

14. Nguyen, K., Thawonmas, R.: Applying Monte-Carlo Tree Search to collaboratively
controlling of a Ghost Team in Ms. Pac-Man. In: Proceedings of the 2011 IEEE
International Games Innovation Conference (IGIC 2011), pp. 8–11 (2011)

15. Nguyen, K., Thawonmas, R.: Monte Carlo Tree Search for collaboration control of
ghosts in Ms. Pac-Man. IEEE Transactions on Computational Intelligence and AI
in Games 5(1), 57–68 (2013)

16. Rabin, S.: Artificial Intelligence: Agents, Architecture, and Techniques. In: Intro-
duction to Game Development, 2nd edn., pp. 521–557. Charles River Media (2010)

17. Reynolds, C.: Flocks, herds and schools: a distributed behavioral model. Computer
Graphics 21(4), 25–34 (1987)

18. Rohlfshagen, P., Lucas, S.: Ms. Pac-Man versus Ghost Team CEC 2011 compe-
tition. In: Proceedings of the 2011 IEEE Congress on Evolutionary Computation
(CEC 2011), pp. 70–77. IEEE Press (2011)

19. Scutt, T.: Simple swarms as an alternative to flocking. In: AI Game Programming
Wisdom, pp. 202–208. Charles River Media (2002)

20. Sombat, W., Rohlfshagen, P., Lucas, S.: Evaluating the enjoyability of the ghosts
in Ms. Pac-Man. In: Proceedings of the 2012 IEEE Conference on Computational
Intelligence and Games (CIG 2012), pp. 379–387 (2012)

21. Spector, L., Klein, J., Perry, C., Feinstein, M.: Emergence of collective behavior
in evolving populations of flying agents. In: Proceedings of the Genetic and Evo-
lutionary Computation Conference (GECCO 2003), pp. 61–73 (2003)

22. Svensson, J., Johansson, S.: Influence Map-based controllers for Ms. PacMan and
the ghosts. In: Proceedings of the 2012 IEEE Conference on Computational Intel-
ligence and Games (CIG 2012), pp. 257–264 (2012)

23. Thawonmas, R.: Evolution strategy for optimizing parameters in Ms Pac-Man
controller ICE Pambush 3. In: Proceedings of the 2010 IEEE Symposium on Com-
putational Intelligence and Games (CIG 2010), pp. 235–240 (2010)

Procedural Content Generation Using Patterns
as Objectives

Steve Dahlskog1(B) and Julian Togelius2

1 Malmö University, Ö. Varvsgatan 11a, Malmö, Sweden
steve.dahlskog@mah.se

2 IT University of Copenhagen, Rued Langaards Vej 7, 2300 Copenhagen, Denmark
julian@togelius.com

Abstract. In this paper we present a search-based approach for pro-
cedural generation of game levels that represents levels as sequences of
micro-patterns and searched for meso-patterns. The micro-patterns are
“slices” of original human-designed levels from an existing game, whereas
the meso-patters are abstractions of common design patterns seen in the
same levels. This method generates levels that are similar in style to the
levels from which the original patterns were extracted, while still allowing
for considerable variation in the geometry of the generated levels. The
evolutionary method for generating the levels was tested extensively to
investigate the distribution of micro-patterns used and meso-patterns
found.

1 Introduction

The study of Procedural Content Generation (PCG), i.e. how game content
such as levels, items, quests and characters can be created algorithmically, is
currently one of the most active topics within academic research on artificial
and computational intelligence in games. A large variety of methods have been
proposed to generate an even larger variety of types of game content, subject
to various objectives and constraints [1]. The work is motivated both by a real
industry need for lowering the cost and saving time of content production and
enabling endless user-adaptive games, and by academic interest in formalising
game design and building creative machines. A recent “vision paper” for PCG
research lists a number of open research challenges [2]. One of them is to learn
to imitate style: could you build a content generator that was shown a number
of examples of the creative output of a human or team of humans, and that then
learned to produce more artefacts in the same style that were clearly original
but still recognisably of the same style?

Another active research area has been that of game design patterns. A design
pattern is a general concept, which has its roots in architecture, but has been
applied both to software design and to game design. Game design patterns have
so far been identified manually, and the investigation on how to integrate pat-
terns into PCG has just started.

c© Springer-Verlag Berlin Heidelberg 2014
A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2014, LNCS 8602, pp. 325–336, 2014.
DOI: 10.1007/978-3-662-45523-4 27

326 S. Dahlskog and J. Togelius

In this paper we demonstrate how practical game design patterns can be com-
bined with procedural content generation to generate game levels that imitate
a certain design style, and report the results of a series of experiments using a
platform game benchmark. We have previously analysed the classic game Super
Mario Bros. (SMB) [3] and suggested a collection of patterns and a PCG tool
that produce levels by randomly picking copies of these patterns and modifying
them according to a desired length and difficulty level [4].

Our prototype is based on evolutionary computation, where we will search the
solution space of combinations of simple building blocks for levels that contain
structures at a higher level. This way, we introduce a certain measure of control
and constrain the shape of the final level through both the objective function and
the choice of building blocks, while allowing a significant amount of variation. In
the prototype the representation is relying on existing content in SMB, namely
on one tile wide vertical slices, which we will also refer to as micro-patterns. The
micro-patterns are extracted from the original SMB levels. A level is simply a
sequence (or string) of micro-patterns — this applies both to the original levels
and our generated levels. However, not any sequence is interesting but in our
prototype we search for specific sequences or patterns that exists in the original
game. These sequences will we refer to as meso-patterns and they are our search
objective for our evolutionary approach.

We have previously reported initial work on this idea in a workshop paper [5].
Compared to that paper, the current paper describes a more mature system, and
reports more in-depth results with several variations of the fitness function and
a better characterisation of the generator output.

1.1 Background

In the seventies, Alexander et al. proposed a pattern language for architectural
application on all levels (regions, cities, neighbourhoods, buildings and rooms)
thus allowing everybody the ability to express design. Not only structural and
material issues are covered but also life experience like the Street Cafe-pattern.
The pattern language consists of a set of problems in an environment together
with a core solution to its corresponding problem [6] thus giving a designer a tool
to handle reoccurring problems. This powerful idea has spread to other areas like
object-oriented software development where Gamma et al. have defined a set of
templates for solving general design and programming problems [7]. In the context
of games have Björk and Holopainen suggested an extensive collection of patterns
for game design [8]. Similarly, others have looked into game mechanics [9] and
specific game contexts like FPSs [10], RPGs [11], and action games [12]. There
have also been some attempts to formulate abstract level design patterns that can
be specialised to concrete metrics for different level types [13].

Procedural content generation refers to the (semi-)automatic process of creat-
ing game content. One common approach to PCG is the search-based approach,
to use evolutionary computation or other stochastic global search/optimisation
algorithms [14] for searching the content space. An oft-encountered trade-off in
PCG is between control and variation. Methods that have a high variation in

Procedural Content Generation Using Patterns as Objectives 327

output according to some measure usually afford little designer control. Varia-
tion can be measured as expressive range, the variation along relevant metrics of
generated artefacts [15,16]. Control comes in several flavours: control over style,
player experience, difficulty or even playability (e.g. specifying that there is a
path from start to end of a level).

1.2 Examples of Patterns

Because of the limited space available we can only briefly mention the patterns
that were found [4] in (SMB). The patterns can be grouped into 5 groups; 1)
Enemies and hordes, (single and multiple variations), 2) Gaps (single, multiple,
variable length, combined with enemies and structures), 3) Valleys (a boxed-in
area with structures, possible combined with enemies), 4) Multiple paths (struc-
tures horizontally dividing game space combined with enemies and rewards)
and 5) Stairs (structures supporting vertical repositioning combined with ene-
mies and gaps). In figure 2 we can see two instances of the 3-Horde pattern
(Enemies) and in figure 1 we have a 3-Horde-pattern, a Pillar Gap-pattern and
a Enemy-pattern.

Fig. 1. Three consecutive patterns in SMB

2 Rationale

Our application domain in this paper is the classic 2-dimensional platformer,
Super Mario Bros. (SMB) [3] and our generator is implemented using the Java-
based Mario AI Benchmark1 [17].

The levels of SMB could be seen as 2D matrices where the cells contain
various items such as blocks, coins, enemies, etc.; this is also the internal repre-
sentation of levels in the Mario AI benchmark. Mario (when small) has the size
1 The benchmark is based on the clone Infinite Mario Bros by Markus “Notch”
Persson.

328 S. Dahlskog and J. Togelius

of 1 cell, and most levels have a length of 100-300 cells and a height of 20 cells.
A slice, or micro-pattern, is simply a vertical column of this array – a subarray
with length 1. By analysing the levels of the original SMB, we have identified a
library of such slices. New levels could be created by combining slices from this
library, drawn at random. Such levels would have some similarity to the original
levels, as they would not contain any slices that did not exist in the original
game. They would not, for example, contain slices where enemies stack on top
of each other or the player starts in mid-air. However, these levels would be
uninteresting at best, and probably unplayable, as they might contain too long
gaps, unclimbable walls, long stretches of nothing, and generally no discernible
structure. However, in the space of all possible sequences of slices there should
be many permutations that are well-designed, playable levels that are similar to
the original SMB levels not only on micro level but also on meso- and macro-
levels. How can we find those levels? In order to guarantee playability we punish
unplayable sequences.

2.1 Representation

Our level representation is a sequence of symbols of length 200, where each sym-
bol stands for a specific micro-pattern (a vertical slice) taken from the original
human created content. The slice is one tile wide and in our example we have a
slice containing a Goomba standing on a ground tile. This tile could be copied in
sequence two or three times to make a 2-Horde or 3-Horde pattern (as in fig. 2).

Fig. 2. To the far left we have a vertical slice (micro-pattern) with a Goomba on low
ground. To the left a sequence of copies of the same slice making up a 3-Horde meso-
pattern that in the original game can be found quite often as in World 8, Level 1 seen
to the centre-right and in World 1, Level 2 to the far right.

By adding new slices the solution space grows. The levels of the original
SMB contain fewer than 200 slices like this. In our representation, we use an

Procedural Content Generation Using Patterns as Objectives 329

alphabet consisting of 23 frequently occurring micro-patterns. Most of the slices
come from unique-looking levels like W1L2 (the first level under ground) and
are not reused elsewhere in the game. The advantage of the representation is
the ease with which one can generate a level either by the constructive or the
generate-and-test approach [14]. One could for example base a constructive PCG
algorithm on a phrase-structure grammar with pre-checked production rules or
by randomly picking slices and evaluate according to constraints. However, we
will suggest another approach in the next section.

2.2 Evolutionary Algorithm

The search-based approach taken in this paper is based on a fitness function that
rewards the presence of meso-patterns, the higher presence the likelier a member
is selected. We apply a simple μ + λ evolution strategy where μ = λ = 100 is
combined with single-point mutation and one-point crossover. In other words,
of a population of 200 we apply selection (discarding half of the population),
reproduction (keeping half of the population and using pairwise breeding to
generate new members), recombination (fixed one-point-crossover) and mutation
(the slice at a randomly chosen position in the level has its symbol replaced by
a randomly chosen slice).

2.3 Fitness Function

In order to understand how our micro- and meso-patterns interact in the search
space we implemented three fitness functions (FF 1-3). The fitness functions
were designed in the following way; FF1) a simple uniform reward value for
every unique pattern, FF2) a simple uniform reward value for every occurrence
of patterns, and finally FF3) a non-uniform reward weighted value for every
occurrence of patterns. The first fitness function worked as a validation of the
strings indicating that they could be found (i.e. more than one out of our meso-
patterns can be found). The second fitness function was used to explore the
frequency of how meso-patterns “appear” in the search space (i.e. how common
are the different meso-patterns). The third fitness function was used to explore
how the use of weighted values affects the frequency of meso-patterns.

In order to have some input on the weights to use we chose a simple strategy
of calculate a weight by inverting the average occurrence of the patterns giving an
infrequent pattern a high weight and a frequent pattern a low weight. By doing
so, we propose that we can counter the effect of normal distribution while picking
random symbols during the task of initiating and mutating the members of the
population. Another issue this strategy would counter, is the varying complexity
that the individual patterns have. If we would continue to use a uniform reward
strategy for the fitness function, complex strings would run a greater risk to be
starved to death in our population due the space it takes over uncomplicated
patterns (i.e. short patterns are easily fitted into a member in relation to a long
pattern). In order to find different variations of the patterns we designed a set
of 43 strings of symbols in different categories of the patterns (i.e. 5 categories

330 S. Dahlskog and J. Togelius

of patterns and 23 patterns [4]). These strings, (which we will refer to as rules)
were used for a simple linear search, covering each member of the population in
each generation.

3 Results and Evaluation

We performed the experiments in three stages. First, we evolved a large number
of levels using the “unique patterns” version of the evaluation function (FF1).
We then repeated this experiment using the “all occurrences” version of the eval-
uation function (FF2). Based on these runs, we evaluated which micro-patterns
were most commonly used, and which meso-patterns were most commonly found.
These evaluations were used to calculate the weights for a weighted version of
the fitness function (FF3). The third and final experiment, using the weighted
version of the evaluation function, aimed to see if we could bring about that all
patterns were found in a more balanced way.

3.1 Finding Patterns

For each fitness function, we made 1000 independent runs and recorded the
fitness values based on the strings. The fitness value worked as a simple ”count
a rule when it is fulfilled”, but only the first time it occur in a level for FF1, for
every time it occurred in FF2 and with weighted values in FF3. We can see that

Table 1. Fitness value variation for 1000 levels counting fitness value based on rules;
only one occurrence (FF1), multiple occurrences (FF2) and weighted multiple occur-
rences (FF3)

Generations MIN MAX MEAN DEV. MED.

0 (FF1) 3 8 4.61 0.81 5

10 (FF1) 5 11 7.47 1.02 7

100 (FF1) 8 27 14.94 2.51 15

500 (FF1) 8 31 18.18 3.17 18

1000 (FF1) 9 31 18.97 3.23 19

0 (FF2) 4 10 5.7 1.12 6

10 (FF2) 7 18 11.17 1.74 11

100 (FF2) 13 86 36.98 10.46 37

500 (FF2) 16 183 68.62 30.17 63

1000 (FF2) 18 227 82.17 37.38 73

0 (FF3) 4 202 77.83 36.16 77

10 (FF3) 8 301 121.92 62.83 118

100 (FF3) 20 1030 264.07 149.64 241

500 (FF3) 34 2361 430.33 348.98 337

1000 (FF3) 34 2449 486.20 401.76 374

Procedural Content Generation Using Patterns as Objectives 331

the evolutionary approach manages to find more meso-patterns over time. In
order to measure the effect of our efforts of guiding the evolution to find more
elaborate patterns we recorded which rules were present in the best member out
of our 1000 runs (see table 2).

Measuring the occurrences of a rule in large population should give an indi-
cation on how complicated it is to generate an instance of a meso-pattern (rule)
in relation to the micro-patterns. Several of the meso-patterns use the same
micro-patterns and since the micro-patterns initial occurrence is based on equal
chance to be present in the population and a member we can be certain that,
given enough time, the search-based approach will affect the distribution of
micro-patterns.

Table 2. Found patterns (rules) in FF1-FF3 together with the calculated weight for
FF3 based on 1000 runs

Pattern Mesa StraightMulti-way

Occurrence in FF1682 686 1001 239 193 50 93 68 193 168 239 197 132 136

Average in FF1 0.68 0.69 1.00 0.24 0.19 0.05 0.09 0.07 0.19 0.17 0.24 0.20 0.13 0.14

Occurrence in FF2498 480 523 25 83 221 329 11 83 37 25 13 120 127

Average in FF2 0.5 0.48 0.52 0.03 0.08 0.22 0.33 0.01 0.08 0.04 0.03 0.01 0.12 0.13

Weight 2.01 2.08 1.91 40 12.054.53 3.04 90.9112.0527.0340 76.928.33 7.87

Occurrence in FF31042 1118 1317 574 264 317 40 559 264 298 574 589 697 687

Average in FF3 1.04 1.12 1.32 0.57 0.26 0.32 0.04 0.56 0.26 0.30 0.57 0.59 0.70 0.69

Pattern Enemy Hordes Gaps

Occurrence in FF12605 1198 572 2606 1208 525 920 931 1007 1007 892 111 286 269 286

Average in FF1 2.61 1.20 0.57 2.61 1.21 0.53 0.92 0.93 1.01 1.01 0.89 0.11 0.29 0.27 0.29

Occurrence in FF213751 104111897 135848678 722 3694 4995 8209 8209 3563 14 83 68 132

Average in FF2 13.75 10.4 1.9 13.6 8.68 0.72 3.69 5 8.21 8.21 3.56 0.01 0.08 0.07 0.13

Weight 0.07 0.1 0.53 0.07 0.12 1.39 0.27 0.2 0.12 0.12 0.28 71.4312.0514.717.58

Occurrence in FF3444 50 8 444 33 16 0 90 93 93 0 1720 44 33 88

Average in FF3 0.44 0.05 0.01 0.44 0.03 0.02 0.00 0.09 0.09 0.09 0.00 1.72 0.04 0.03 0.09

Pattern Valley Stair Pipes

Occurrence in FF187 81 61 845 846 664 705 716 66 47 43 46 61 67

Average in FF1 0.09 0.08 0.06 0.85 0.85 0.66 0.71 0.72 0.07 0.05 0.04 0.05 0.06 0.07

Occurrence in FF217 14 17 355 352 257 289 287 28 14 9 14 8 10

Average in FF2 0.02 0.01 0.02 0.36 0.35 0.26 0.29 0.29 0.03 0.01 0.01 0.01 0.01 0.01

Weight 58.82 71.43 58.82 2.82 2.84 3.89 3.46 3.48 35.7171.43111.171.43125 100

Occurence in FF3 193 178 162 1233 1197 1110915 1025 5 43 57 12 966 30

Average in FF3 0.19 0.18 0.16 1.23 1.20 1.11 0.92 1.03 0.01 0.04 0.06 0.01 0.97 0.03

For FF1, the distribution of fulfilled rules show promise on only 12 of the rules
(with occurrence value of 845–2605) and all rules have been fulfilled. However,
this is not sufficient to answer the question on how easy they are to find in
relation to each other. It is possible that the more complex rules are starved
to death in an evolutionary search. In order to explore this we ran FF2 and
counted multiple occurrences. The effect of counting multiple instances gives

332 S. Dahlskog and J. Togelius

the conclusion that Enemies and Hordes starves most other rules (except two
instances of Multi-way and only mildly two other Multi-way). Problematically
as it is, we apply weights for FF3 to counter the multiple-occurrence starvation
effect. The weights were calculated as the inverse function (1

x when x �= 0) of
the average occurrence. The result for FF3 show positive effect for most of the
meso-patterns (26 out of the 43 rules) except for the Gaps-, Enemy- and Horde-
patterns for which the result, on the other hand, is absolute catastrophic (in
table 2 the negative change is indicated in italic).

4 Expressive Range

Smith & Whitehead [15] introduced the concept of expressive range of a level
generator and suggested a set of possible metrics that illustrates diversity of the
generated content. For PCG-tools it is interesting to show if the tool is able to
generate content that is not identical. Linearity and Leniency were suggested as
metrics for platform levels.

Fig. 3. The distribution of levels generated with FF1 on the two expressivity dimen-
sions

We have implemented versions of these metrics thus: Leniency is calculated
across the whole level with +1 for gaps and enemies, and the reverse for the
opposite −1 (for jumps with no gap associated, because jumps associated with
danger is harder than jumps without danger). Linearity will be counted from the
lowest point of the level, due to the fact that most micro patterns are connected
to that and therefore all micro patterns forcing the player to jump due to a height
difference of more than 1 tile will be considered as raising the non-linearity of
the level.

Procedural Content Generation Using Patterns as Objectives 333

Fig. 4. The distribution of levels generated with FF2 on the two expressivity dimen-
sions

In figure 3, 4 and 5 we show a density plot based on the two metrics; leniency
(LEN) and linearity (LIN) with 1000 generated levels for the fitness functions 1,
2 respectively 3 (FF1-3). FF1 have an expressive range in LEN of −75 to +50
with a concentration of levels around −20 to ±0 as well as an expressive range in
LIN of −20 to +130 with a concentration in the range +50 to +100. FF2 gives
LEN: −75 to +100 and LIN: −20 to +170. FF2 has two clusters; LEN/LIN −75
to −25/ ± 0 to +50 and −25 to 30/ + 85 to 160. Comparing the two fitness
functions (FF1 & FF2) expressiveness yields that FF2 can generate both more
difficult and more linear levels. The correlation that may exist is due to the gap
and enemy placement in linear space in SMB (and in the micro-patterns) and
it is more apparent due to the higher alignment to meso-patterns in FF2 than
in FF1, which is more affected by the normal distribution in the variation of
micro-patterns and get a less apparent cluster and range. FF3, however differ on
all ranges; LEN: −105 to +80 & LIN −50 to +160. The two clusters; LEN/LIN:
−100 to −30/−25 to +25 and −30 to +20/+50 to 130, are less apparent divided
from each other and most of the individual members are not spread out as thin
as before. The weighted fitness value gives a wider expressive range but the levels
are more close if we observe the outliers suggesting that we could say that the
expressive spread is affected with weighted patterns. The levels are more easy
but also less linear. This is no surprise due to the low presence of meso-patterns
of Gap-, Enemy- and Horde-type.

5 Discussion

Our approach could be viewed from a level designer’s standpoint if we see the
design process as handled by our three pattern levels; 1) at the micro-level,

334 S. Dahlskog and J. Togelius

Fig. 5. The distribution of levels generated with FF3 on the two expressivity dimen-
sions

Fig. 6. An example of a generated level

which contain the smallest representation level, in our approach the vertical
slices function, 2) at the meso-level, where the combined slices in a certain order
function to solve the challenges the designer wants to expose to the players
to, and 3) at the macro-level handling the flow and overall (play-)experience
of a level and/or game. If we implemented a planner that solved the issue of
deciding on order of meso-patterns, difficulty (perhaps with the aid of metrics like
leniency), training and educating the player, the full task of the level-designer,
namely; to “... use a toolkit or ‘level editor’ to develop new missions, scenarios,
or quests for the players. They lay out the components that appear on the level
or map and work closely with the game designer to make these fit into the overall
theme of the game” [18], could be solved for an entire game or genre.

In our fitness functions FF2 and FF3, we used weighted sums of the meso-
pattern counters. There are well-known problems with fitness functions based
on weighted sums, in particular that not all components are maximised at the
same rate. An alternative would be to treat the problem as a multi-objective
optimisation problem, and use specially designed evolutionary algorithms for
this purpose. However, most such algorithms are designed for only a handful of
objectives, which is problematic as our problem has dozens.

Procedural Content Generation Using Patterns as Objectives 335

6 Conclusion

In this paper, we have introduced a pattern-based level generator for plat-
form games. The general principle is to identify both micro-patterns and meso-
patterns in the original game levels, represent new levels as combinations of
micro-patterns and search for such combinations that express as many meso-
patterns as possible. This way, micro-patterns are used as building blocks and
meso-patterns as objectives. This principle, and the generator based on it, can
easily be extended to a large range of different game types and game content
types. To validate and explore the workings of our prototype level generator,
we ran experiments with three different variations of our fitness function. We
found that the generator could easily find certain patterns whereas others where
harder to find, but that a rebalancing made it possible to find other patterns,
sometimes at the cost of more frequent patterns.

Acknowledgments. We would like to thank Noor Shaker for the generated level
image.

References

1. Shaker, N., Togelius, J., Nelson, M.J. (eds.): Procedural Content Generation in
Games: a Textbook and an Overview of Current Research (2013). http://www.
pcgbook.com

2. Togelius, J., Champandard, A.J., Lanzi, P.L., Mateas, M., Paiva, A., Preuss, M.,
Stanley, K.O.: Procedural content generation: Goals, challenges and actionable
steps. In: Dagstuhl Seminar 12191: Artificial and Computational Intelligence in
Games, Dagstuhl (2013)

3. Nintendo: Super Mario Bros. [Digital game] (1985)
4. Dahlskog, S., Togelius, J.: Patterns and Procedural Content Generation: Revisiting

Mario in World 1 Level 1. In: Proceedings of the First Workshop on Design Patterns
in Games, DPG 2012, pp. 1:1–1:8. ACM, New York (2012)

5. Dahlskog, S., Togelius, J.: Patterns as Objectives for Level Generation. In: Pro-
ceedings of the Second Workshop on Design Patterns in Games, DPG 2013 (2013)

6. Alexander, C., Ishikawa, S., Silverstein, M.: A pattern language - Towns, Buildings,
Construction. Oxford University Press, New York (1977)

7. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns Elements of
Reusable Object-Oriented Software. Addison-Wesley, Reading (1994)

8. Björk, S., Holopainen, J.: Patterns in Game Design. Cengage Learning (2005)
9. Adams, E., Dormans, J.: Game Mechanics: Advanced Game Design. Voices That

Matter. Pearson Education, Limited (2012)
10. Hullett, K., Whitehead, J.: Design Patterns in FPS Levels. In: FDG 2010: Proceed-

ings of the Fifth International Conference on the Foundations of Digital Games,
pp. 78–85. ACM, New York (2010)

11. Smith, G., Anderson, R., Kopleck, B., Lindblad, Z., Scott, L., Wardell, A., White-
head, J., Mateas, M.: Situating Quests: Design Patterns for Quest and Level Design
in Role-Playing Games. In: Si, M., Thue, D., André, E., Lester, J., Tanenbaum,
J., Zammitto, V. (eds.) ICIDS 2011. LNCS, vol. 7069, pp. 326–329. Springer, Hei-
delberg (2011)

http://www.pcgbook.com
http://www.pcgbook.com

336 S. Dahlskog and J. Togelius

12. Cermak-Sassenrath, D.: Experiences with design patterns for oldschool action
games. In: Proceedings of the 8th Australasian Conference on Interactive Enter-
tainment: Playing the System. IE 2012, pp. 14:1–14:9. ACM, New York (2012)

13. Liapis, A., Yannakakis, G.N., Togelius, J.: Towards a generic method of evaluating
game levels. In: Proceedings of the AAAI Artificial Intelligence for Interactive
Digital Entertainment Conference (2013)

14. Togelius, J., Yannakakis, G., Stanley, K., Browne, C.: Search-based procedural
content generation: A taxonomy and survey. IEEE Transactions on Computational
Intelligence and AI in Games 3(3), 172–186 (2011)

15. Smith, G., Whitehead, J.: Analyzing the expressive range of a level generator. In:
Proceedings of the 2010 Workshop on Procedural Content Generation in Games.
PCGames 2010, pp. 4:1–4:7. ACM, New York (2010)

16. Shaker, N., Yannakakis, G., Togelius, J.: Crowdsourcing the aesthetics of platform
games. IEEE Transactions on Computational Intelligence and AI in Games 5(3),
276–290 (2013)

17. Karakovskiy, S., Togelius, J.: The mario ai benchmark and competitions. IEEE
Transactions on Computational Intelligence and AI in Games 4(1), 55–67 (2012)

18. Fullerton, T.: Game Design Workshop - A Playcentric Approach to Creating Inno-
vative Games, 2nd edn. Morgan Kaufmann, New York (2008)

Micro and Macro Lemmings Simulations
Based on Ants Colonies

Antonio González-Pardo(B), Fernando Palero, and David Camacho

Computer Science Department, Universidad Autónoma de Madrid, Madrid, Spain
{antonio.gonzalez,david.camacho}@uam.es, fernando.palero@inv.uam.es

http://aida.ii.uam.es

Abstract. Ant Colony Optimization (ACO) has been successfully
applied to a wide number of complex and real domains. From classi-
cal optimization problems to video games, these kind of swarm-based
approaches have been adapted, to be later used, to search for new meta-
heuristic based solutions. This paper presents a simple ACO algorithm
that uses a specifically designed heuristic, called common-sense, which
has been applied in the classical video game Lemmings. In this game a
set of lemmings must reach the exit point of each level, using a subset
of finite number of skills, taking into account the contextual informa-
tion given from the level. The paper describes both the graph model and
the context-based heuristic, designed to implement our ACO approach.
Afterwards, two different kind of simulations have been carried out to
analyse the behaviour of the ACO algorithm. On the one hand, a micro
simulation, where each ant is used to model a lemming, and a macro
simulation where a swarm of lemmings is represented using only one
ant. Using both kind of simulations, a complete experimental compari-
son based on the number and quality of solutions found and the levels
solved, is carried out to study the behaviour of the algorithm under dif-
ferent game configurations.

Keywords: Lemmings video game · Micro and Macro simulations · Ant
Colony Optimization algorithms

1 Introduction

Bio-inspired computation has been widely used in different areas from combina-
torial optimization problems to stochastic search in a huge number of application
domains. From industrial or engineering applications [10] to theoretical devel-
opments [13], they have been applied to study new bio-inspired approaches able
to deal with NP-complete, or NP-hard, problems [1]. From the set of different
methods and techniques that can be considered as bio-inspired: Artificial Neural
Networks, Fuzzy Logic, Evolutionary Computation and Swarm Intelligence, this
paper will be focused on the later.

Swarm Intelligence (SI) algorithms are focused on the collective behaviour
of self-organizing systems [14], where the iterations among individuals generate
c© Springer-Verlag Berlin Heidelberg 2014
A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2014, LNCS 8602, pp. 337–348, 2014.
DOI: 10.1007/978-3-662-45523-4 28

338 A. González-Pardo et al.

collective knowledge based on social colonies [17]. Some examples of this type
of algorithms are Ant Colony Optimization (ACO) [4,7,11,12]; Particle Swarm
Optimization (PSO) [20]; Bee Colony Optimization (BCO) [18]; Bird Flocking
[23] or Bacterial Foraging [9]. In these algorithms, the population travels through
the solution space in order to obtain the best solution to the problem. Each
solution is evaluated by a quality function and the resulting value is used to
guide the whole population, or swarm, to the optimal solution. This quality
function is usually designed as part of the meta-heuristic used by this kind of
algorithms.

From the different available methods related to Swarm Intelligence, the selec-
tion of ant colonies (ACO) algorithms has been made taking into account two
main characteristics. On the one hand, ACO algorithms work with a popula-
tion that allow us to make a simple analogy between the concept of a swarm
of creatures, and the ants used to model and solve the problem. On the other
hand, the video game selected (Lemmings Game) has several characteristics that
makes particularly interesting the application of ACO algorithms, such as the
possibility to include some physics in the context-based information, to have a
set of finite skills which can be used to model an optimization problem, or the
necessity to find the optimum path taking into account previous features, among
others (see Section 2 for a detailed description).

The increasing interest in the utilization of different techniques in video
games [22] from areas like Artificial Intelligence (AI), Computational Intelli-
gence (CI) or Machine Learning (ML), has originated a wide number of game-
based software platforms. In these platforms different classical video games, such
as Pac-Man (Ms Pac-Man [21]), Tetris [5], Mario Bros (Platformer AI [24,25]),
Mastermind [2], Asteroids (Physical Traveller Salesman Problem [6]) or Starcraft
(StarCraft [3]) among others, have been adapted as a new benchmark environ-
ment for testing classical and new methods from previous areas. The Lemmings
Game is a popular proven NP-hard puzzle game [8] that can be used as a bench-
mark for CI algorithms. In spite of the popularity that this game obtained in
the 1990s, few research has been applied to it.

This paper presents a simple ACO algorithm that uses a specifically designed
heuristic to be applied in the Lemmings video game, where a set of creatures
(Lemmings) must reach the exit point of each level using a subset of finite number
of skills. The heuristic designed, named common-sense, takes into account the
”contextual information” that must be used in this game to solve a level. In order
to do that, each level is represented as a contextual graph where the edges store
the allowed movements inside the world. The goal of the algorithm is to assign
the best skills in each position on a particular level, to guide the Lemmings to
reach the exit. The common-sense heuristic allows to select the best skill to be
applied by the Lemming in a particular level, using the current state of the level
represented by this contextual graph. The paper describes both, the contextual
graph model designed and the common-sense heuristic.

On the other hand, two different kind of simulations have been carried out
to analyse the behaviour of the ACO algorithms. It has been designed a micro

Micro and Macro Lemmings Simulations Based on Ants Colonies 339

simulation, where each ant is used to model a Lemming, and a macro sim-
ulation where a complete swarm of Lemmings is represented using only one
ant. In the micro simulations two different approaches have been used: the first
one only allows one action from each Lemming per step, therefore any Lemming
must take into account the previous modifications made by the rest of the Lem-
mings. In the second kind of micro simulations, a set of parallel modifications
(one per Lemming available) is made in the same step, so these actions ignore
the context information from the environment. In the macro simulations, only
the first Lemming of the swarm can execute an action in a step, whereas the rest
of the Lemmings must follow the ”leader”.

Finally, the paper provides a complete experimental evaluation between these
three different kinds of simulations, based on the number and quality of solu-
tions found, and the number and complexity of the levels solved. The main
goal of these experiments will be to analyse the behaviour of the meta-heuristic
designed, when different modifications are applied in the contextual graph that
have been designed to model a level game.

The rest of the paper is structured as follows: Section 2 provides a detailed
description of the Lemmnings video game; Section 3 presents the basics on both,
the model design to implement the contextual graph, and the main features of
the ACO algorithm proposed; Section 4 analyses the two different simulations
approaches (micro and macro) considered in this work; Section 6 provides a
complete description of the experimental settings, and the results obtained from
the simulations; finally, Section 5 summarizes the conclusions and introduces
some futures lines of work.

2 The Lemmings Video Game

The Lemmings are creatures that need to be saved. In each level, Lemmings
start in a specific point of the stage and must be guided to the exit point by
the player. They live in a two-dimensional space and are affected by gravity.
They start walking in a specific direction until they find an obstacle. In this case
the Lemming will change the direction and walk back. In the case where the
Lemming encounters a hole, it will fall down. The only two ways, considered in
this work, by which a Lemming can die is by falling beyond a certain distance,
or by falling from the bottom of the level. In order to make Lemmings to reach
the exit point, players have a set of skills that must be assigned (not necessarily
all of them) to the Lemmings. Using these skills, Lemmings can modify the
environment creating tunnels, or bridges, and thus creating a new way to reach
the exit. Following, the basic skills that can be used by any lemming, and the
basic features to build the game levels are described.

On the one hand, there are eight different skills, with different features, that
are shown in Table 1. Some of these skills have No Restrictions (NR). This means
that although the number of times that these skills can be assigned is limited,
once it is assigned to the Lemming, it does not have any restriction to use it (i.e.
Climber or Floater) several times in the same level. Other are Restricted (RE)

340 A. González-Pardo et al.

Table 1. Lemmings skills and basic features (NR:No Restrictions, NE: No Exit, and
RE: Restricted)

Skill Description Features

Climber A Lemming given the climber skill can scale vertical walls NR
Floater This skill allow the Lemming to open an umbrella if it

falls beyond a high distance, avoiding its dead.
NR

Exploder The Lemming will explode after a short delay NE
Blocker Using this skill, a Lemming will halt and the rest of Lem-

ming will turn around
NE

Builder The Lemming with this skill will build a bridge of a spe-
cific length

RE

Basher To create horizontal tunnels if the environment allows it RE
Miner This skill is similar to the previous one, but in this case

the tunnel is dug in diagonal direction
RE

Digger The Lemming will dig vertically downwards until it found
air or a solid material

RE

skills, so the Lemming only can use it a maximum number of times (i.e. Builder,
Miner or Digger). For example, if the a Lemming has to dig in two separated
locations this lemming must be assigned the Digger skill twice. Finally, there are
some skills that do Not allow to reach the Exit (NE) to the Lemming, because
the Lemming will die (i.e Exploder), or because it will not be able to make more
movements (i.e. Blocker).

On the other hand, in the Lemmings’ world there are a huge number of
materials, but all of them can be grouped into two different classes: the ones
that can be modified (i.e. it can be dug) and the ones that cannot be altered. In
the former type, skills like Basher, Miner and Digger are allowed. In the case that
a Lemming is digging and finds a material that cannot be dug, the Lemming will
stop digging and start walking. Furthermore, each game level has its own skill
configuration, where each skill can be used (i.e. assigned) a maximum number
of times. It is not necessary to use all of the skills in the levels. Based on both
kind of materials, editable and non editable, three different kinds of levels have
been designed:

– Easy. These levels use both kind of materials, and the human-likes solution is
a short path (few lemmings actions) with few skills are required to reach the
exit. When non editable material is used, the lemmings colonies are ”guided”
to the exit because those skills related to ”digging” abilities cannot be used
(therefore the search space is reduced).

– Medium. In these kind of levels, both materials can be used and the solu-
tions can be a mixture of actions. In the level, it is possible to find parts with
a high level of freedom for the lemmings (they can use all of the available
skills), and some other parts where the number of skills that can be used are
reduced.

Micro and Macro Lemmings Simulations Based on Ants Colonies 341

– Hard. These type of levels only use editable materials, and the solution to
reach the exit needs from a large number of skills and actions (large solution
paths) to be taken.

The Lemmings’ game can be considered an interesting research video game
problem specially for optimization algorithms. Three main objectives are nec-
essary to optimize in this game: to save the maximum number of Lemmings in
each level, to minimize the use of skills needed to reach the exit of the level, and
finally to find the best path that allows to save as many Lemmings as possible
using the less number of skills.

The Lemmings’ game have been studied in [19]. In this work, authors apply
a genetic algorithm to solve the different levels and the goal is the study of how
the individuals initialization can affect to the performance of the GA.

Summarizing, the Lemmings video game provides (at least) two new inter-
esting features. On the one hand, the video game provides different kind of
terrains, that the algorithm must take into account to avoid a premature dead
of the lemming, or to decide an adequate selection from the available skills. This
characteristic provides an interesting ”context” that should be handled by the
algorithm (for instance, by using a constraint-based modelling of the environ-
ment or a meta-heuristic to select the best skill). On the other hand, the game
itself needs from the management and control of a colony of Lemmings. It is
necessary to coordinate those lemmings to look for the best solution (which is
based on a mixture of different goals).

3 The ACO Approach for the Lemmings Video Game

The Lemmings Game can be seen as a Constraint Satisfaction Problem (CSP),
where the variables (denoted as X) represent the different positions of the levels,
and the possible values (D) represent are the skills that Lemmings can execute in
each position. The set of constraints, C, is composed by the number of lemmings
that must be saved, the maximum number of skills that can be applied in each
level, or the different destination from a given position taking into account the
applied skill (i.e. given a position the set of possible destination nodes is different
whether the skill is Builder or Digger). In order to execute an ACO algorithm
to solve a CSP, traditionally authors model the CSP as a graph where the nodes
represent the variable/value pairs (< variable, value >) and the edges connect
those nodes whose variable X are different.

The problem with this representation is the size of the resulting graph. In
this work, the model used to represent CSP as a graph is the one described in
[15]. If the Lemmings level is mapped into a graph using the classical approach
for each position, the resulting graph would have eight nodes (each of them
represents the action that can be applied in the corresponding position). With
the approach used in this work, each node only represents a position and the
ants are in charge of selecting a specific skill to be applied in this position.

The adaptation of a Lemmings level into the simplified approach is performed
in two different phases. First of all, the level is represented in a two-dimensional

342 A. González-Pardo et al.

representation that contains information about the starting point, the exit point
and the terrain information of the level. In Figure 1 there are shown an original
lemmings level (Figure 1(a)) and the simplification of this level into a two-
dimensional representation (Figure 1(b)). This representation is mapped into
a constraint-based graph as Figure 1(c) shows. The constraint-based graph, or
contextual graph, contains as many nodes as squares are contained in the two
dimensional representation and the edges represent the default movement that
ants can performed. It is important to note that the application of different skills
in the graph will produce the creation of new edges in the graph, thus ants deal
with a dynamic graph.

(a) (b) (c)

Fig. 1. An easy Lemmings level. The Figure a) shows one of the Lemmings level
designed for the experiments carried out in this paper, the Figure b) shows a two
dimensional representation of this level where only the starting and exit point, and the
walls are represented. Finally, the Figure c) shows the constraint-based graph model
for this level.

This work uses a classical ACO approach to search for the best paths of the
levels. In this case, the nest of the colony is located in the node that represents
the level starting point (marked as a ”S” node in Figure 1(c)), and the food
is located in the node that represents the level exit point (marked as a ”G”
node in Figure 1(c)). From the nest, ants start building their own local solution
while they travel through the graph. In order to do that, each ant executes the
behaviour shown in Algorithm 1.

The first step in the algorithm corresponds to the heuristic information
retrieval (line 2). In this work, a heuristic called Common-Sense has been used.
Using this heuristic, ants can perceive the environment (i.e. ants know the type
of terrain of the surrounding nodes) and filter the skills that they can apply
depending on this environment. For example, given an ant if the type of the
node where the ant is placed and their surrounding are Air, the ant knows
that the Lemming is falling and a possible skill to apply is Floater but not
Builder. Once the ants have the values for the different skills, corresponding to
the heuristic function and the pheromones, the decision of selecting one of them
is computed using the classical proportional selection.

Micro and Macro Lemmings Simulations Based on Ants Colonies 343

Algorithm 1. ACO algorithm for the Lemmings game
Parameter: A contextual graph.

A Swarm Sw composed by L Lemmings
A set of available skills Sk

Result: A path plan P to reach the Exit G, from the Start S.
1 foreach li ∈ L do
2 HeuristicSkillList ← getSkillsUsingHeuristic
3 PheromoneV alues ← getPheromoneValues
4 newAction ← selectAction(HeuristicSkillList, PheromoneV alues)
5 if newAction �= currenAction then
6 if newAction canBeExecuted then
7 putPheromone
8 updateRemainingActions
9 currentAction ← newAction

10 add currentAction to P
11 end

12 end
13 goToNextNodeAccordingTo(currentAction)

14 end

4 The Micro and Macro Lemmings Simulations

In [16], some initial experiments were made using the common-sense heuristic
and a simplified contextual graph.In our initial experiments, the model and
the heuristic were compared (using some few levels and a simple configuration)
against a Genetic Algorithm approach. No modifications were allowed in the
contextual graph during the simulation process and the experimental results
were used to demonstrate the feasibility of the approach. In this new work, the
contextual graph will be modified by the ants (Lemmings) inside a simulation
step, considering (or not) the context of the level.

Therefore, two different kinds of simulations have been carried out to analyse
the behaviour of the ACO algorithm. On the one hand, a micro simulation, where
each ant is used to model a Lemming, and a macro simulation where a complete
swarm of Lemmings is represented using only one ant. The main characteristics
of both simulations can be summarized as follows:

1. In the micro simulations two different approaches have been used: ”one
to one sequential” (1to1S) and ”one to one parallel” (1to1P). In the 1to1S
simulations, only one action (the application of one skill) from each Lemming
is allowed per step. Therefore, any Lemming must take into account the
modifications than the rest of the Lemmings previously have made in the
environment, so this kind of simulation can be considered as contextual-
based, because the actions previously made by others Lemmings will affect
to the current (scheduled) Lemming decision. In the 1to1P simulations, in
each step all of the available Lemmings can make one action ignoring the

344 A. González-Pardo et al.

contextual information from the environment. The main difference between
both kind of algorithms is related to the contextual graph modification, the
first one will provide a smooth modification of the graph, increasing the
importance of the common-sense heuristic. The second approach will allow
a fast modification of the graph, so the relevance of the meta-heuristic will
be lower in the solution process.

2. In the macro simulations, denoted as 1toN (one to N), only the first Lem-
ming from the swarm can execute an action (skill) in a particular step,
whereas the rest of the Lemmings must follow the ”leader” [16]. This kind
of simulations provides a semi-static modification of the contextual graph.
The graph is slowly modified, so the relevance of the meta-heuristic and the
pheromone values will be increased. The parallel simulation is similar to the
1to1S ones, but the latter allows to explore better the solution space (any
Lemming has an opportunity to apply an skill), whereas the first reduce the
solution space by following a particular Lemming leader.

Previous simulations allows to analyse the behaviour of our approach by
modifying three essential features: how fast the graph could be modified, how
affects the contextual information to the searching process, and finally the impor-
tance of the pheromone concentration in the searching process. Table 2 shows a
summary of both, the simulations designed and their basic features.

Table 2. Lemmings simulations and their related basic features.

Simulation Graph modification Contextual inf. Num. Pheromones

1to1S medium high high
1to1P high low low
1toN low very high very high

5 Experimental Results

Fifteen different levels1 have been designed, by hand, to measure the efficiency
our approach under different simulations configurations. The complexity of the
levels is based on the size of the level, the different blocks contained into each
level, the distance from the entry point to the exit point, the number of skills
needed to solve the level, the type of terrains contained in the levels, etc. In this
work, three different complexity levels are considered: easy, medium and hard,
and 5 different levels have been designed per category. All the experiments have
been repeated 50 times, using the described contextual graph and the common-
sense heuristic. In each experiment, the ant colony is composed by 100 ants that
execute during 500 steps. The evaporation rate of the system is 1% and α and β
parameters (needed to measure the influence of the heuristic and the pheromone
values) are fixed to 1. The number, and quality of the different found paths
(solutions), have been used to compare the performance of our approach.

1 http://aida.ii.uam.es/researchers/facultystaff/gonzalez-pardo-antonio/

http://aida.ii.uam.es/researchers/facultystaff/gonzalez-pardo-antonio/

Micro and Macro Lemmings Simulations Based on Ants Colonies 345

The quality of any solution is composed by the number of lemmings that
reach the exit (Eq. 1), the time needed to solve the problem (2) and the number
of skills used (Eq. 3). The goal is to maximize the number of lemmings saved
while the time needed to solve the problem and the number of skills used are
minimized, but instead of facing this multi-objective problem, Eq. 4 is used and
the goal is to maximize it.

S(p) = TotalLemm − Blockers − ExplodedLemmings (1)
T (p) = MaxTime − ExpendedT ime (2)

A(p) = TotalActGiv − ActionUsed(p) (3)

Q(p) =
T (p) + A(p) + S(p)

MaxTime + TotalActGiv + TotalLemm
(4)

Table 3 and Figure 2, shows the results of our approach with the three dif-
ferent simulations carried out. Figure 2 shows the number of different paths
(solutions) found by each algorithm, whereas Table 3 shows the average and
standard deviation of the solutions quality.

Table 3. Average and standard deviation of the best solutions found by the ACO
algorithm under different simulation configurations. These results have been obtained
executing the different algorithms 50 different times.

Level Complexity 1to1S 1to1P 1toN

1 Easy 0,86 ± 0,009 0,69 ± 0,084 0,65 ± 0,089
2 Easy 0,88 ± 0,021 0,85 ± 0,032 0,83 ± 0,040
3 Easy 0,94 ± 0,038 0,94 ± 0,012 0,90 ± 0,024
4 Easy 0,82 ± 0,021 0,78 ± 0,030 0,77 ± 0,030
5 Easy 0,96 ± 0,015 0,95 ± 0,008 0,94 ± 0,019

6 Medium 0,91 ± 0,005 0,88 ± 0,031 0,85 ± 0,040
7 Medium 0,94 ± 0,000 0,89 ± 0,027 0,86 ± 0,037
8 Medium 0 ± 0,000 0,90 ± 0,020 0,91 ± 0,044
9 Medium 0 ± 0,000 0,93 ± 0,006 0,63 ± 0,018
10 Medium 0,69 ± 0,034 0,69 ± 0,093 0,78 ± 0,110

11 Hard 0 ± 0,000 0 ± 0,000 0,67 ± 0,052
12 Hard 0 ± 0,000 0 ± 0,000 0,88 ± 0,050
13 Hard 0,72 ± 0,061 0,91 ± 0,013 0,75 ± 0,034
14 Hard 0,78 ± 0,002 0,82 ± 0,029 0,90 ± 0,052
15 Hard ± 0,000 0,95 ± 0,003 0,94 ± 0,020

Analyzing the quality of the solutions (Table 3) the 1to1S approach obtains
better solutions that 1to1P and 1toN in easy and medium levels. This is produced
by two different reasons. On the one hand, with easy and medium levels the
solution approach is not as bigger as the one in hard levels. So a sequential
depth-first search is able to find good solutions, in the maximum number of
simulation steps allowed. In this kind of levels is better to strongly use the

346 A. González-Pardo et al.

contextual information than to make a wide parallel search. On the other hand,
1to1S approach performs a depth-first search in the solution space, while 1to1P
and 1toN algorithms make a breadth-first search.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

lo
g(

 #
S

ol
ut

io
ns

)

Levels

One-to-One(Sequential)
One-to-One(Parallel)

One-to-N

Fig. 2. The figure shows the number of different solutions found by the algorithms.
The Y axis represent the log2 of the different solutions found by the algorithms.

The Figure 2 shows the number of different paths that each algorithm is able
to identify. In general, 1toN and 1to1P finds more paths than 1to1S . This effect
is produced because the solution space is more explored by the 1toN and 1to1P
than 1to1S . In a single execution of 1to1P and 1toN , the number of parallel
searches are equals to the number of ants that compose the colony, while in
1to1S al the ants compose a single search. Comparing 1to1P and 1toN can be
seen that 1toN , in general, finds more different paths that 1to1P . This is an
expected results because although both algorithms make a breadth-first search,
1toN makes more parallel searches than 1to1P .

6 Conclusions

This paper analyses the behaviour of three different ACO-based approaches
related to the automatic solving level problem in games. The application domain
of this work is the well-known Lemmings game, where a set of Lemmings need
to apply different skills in order to reach the exit. Three different categories of
levels have been designed, with five levels per each category. The complexity of
each level is defined by the size of the level, the number of available skills that
can be applied, and the different types of terrains that compose the level.

The three different approaches considered in this work are: macro simula-
tions, denoted as 1toN (one to N) where a swarm of lemmings is represented
using only one ant, and two micro simulations denoted as 1to1S and 1to1P . In
the 1to1S simulations, only one action (the application of one skill) to each Lem-
ming is allowed per step. Also, the Lemmings share the context, this means that

Micro and Macro Lemmings Simulations Based on Ants Colonies 347

any modification performed by one Lemming is visible to the rest of them, so
the contextual information will be used by the rest of the Lemmings. However,
in the 1to1P simulations, in each step all of the available Lemmings can make
one action, therefore they can ignore the contextual information from the envi-
ronment. One of the main differences between previous approaches (macro and
micro) is related to the global behaviour of the searching algorithm for those
kinds of simulations. In 1toN and 1to1P the algorithm makes a parallel search
because they allow the application of different skills at the same time with dif-
ferent lemmings. On the other hand, the 1to1S approach is likely a sequential
search because the Lemmings must apply their skills in order taking into account
the contextual information.

From the experimental results shown in Table 3 and Figure 2, two main con-
clusions can be summarized. On the one hand, for easy and some (few) medium
levels, the 1to1S approach obtains the highest quality solutions because in those
simple levels the ants are able to find short paths (solutions) from the exit
using the contextual information. However, once the complexity of the level is
increased, this approach has problems to find good quality solutions, or even a
solution. In these levels the parallel approaches, 1toN and 1to1P , find the best
solutions. From both approaches, the 1toN simulation, is able to find solutions
for all the levels considered. This means that the contextual information, used
through the common-sense heuristic, guides efficiently the algorithm enabling it
to solve the hardest designed levels.

Acknowledgments. This work has been partly supported by Spanish Ministry of Sci-
ence and Education under grant TIN2010-19872 (ABANT) and Savier project (Airbus
Defense & Space project, FUAM-076914).

References

1. Abraham, A., Ramos, V.: Web usage mining using artificial ant colony clustering
and linear genetic programming. In: The 2003 Congress on Evolutionary Compu-
tation, CEC 2003, vol. 2, pp. 1384–1391 (December 2003)

2. Berghman, L., Goossens, D., Leus, R.: Solving mastermind using genetic algo-
rithms. Computers & Operations Research 36, 1880–1885 (2009)

3. Blickle, T., Thiele, L.: A comparison of selection schemes used in evolutionary
algorithms. Evolutionary Computation 4(4), 361–394 (1996)

4. Blum, C., Merkle, D.: Swarm Intelligence: Introduction and Applications, 1st edn.
Springer Publishing Company (2008) (incorporated)

5. Chen, X., Wang, H., Wang, W., Shi, Y., Gao, Y.: Apply ant colony optimization to
tetris. In: Proceedings of the 11th Annual Conference on Genetic and Evolutionary
Computation (GECCO), pp. 1:1741–1:1742 (2009)

6. Coldridge, J., Amos, M.: Genetic algorithms and the art of zen. Technical report,
Manchester Metropolitan University (2010)

7. Colorni, A., Dorigo, M., Maniezzo, V.: Distributed optimization by ant colonies.
In: European Conference on Artificial Life, pp. 134–142 (1991)

8. Cormode, G.: The hardness of the lemmings game, or oh no, more np-completeness
proofs. In: Proceedings of Third International Conference on Fun with Algorithms,
pp. 65–76 (2004)

348 A. González-Pardo et al.

9. Das, S., Biswas, A., Dasgupta, S., Abraham, A.: Bacterial foraging optimization
algorithm: theoretical foundations, analysis, and applications. Foundations of Com-
putational Intelligence 203, 2355 (2009)

10. Das, T.K.: Bio-inspired algorithms for the design of multiple optimal power sys-
tem stabilizers: Sppso and bfa. IEEE Transactions on Industry Applications 44(5)
(September/October 2008)

11. Dorigo, M.: Ant colony optimization: A new meta-heuristic. In: Proceedings of the
Congress on Evolutionary Computation, pp. 1470–1477. IEEE Press (1999)

12. Engelbrecht, A.P.: Computational Intelligence: An Introduction, 2nd edn. Wiley
Publishing (2007)

13. Akan, O.B., Dressler, F.: Bio-inspired networking: From theory to practice. IEEE
Communications Magazine, 177–183 (November 2010)

14. Farooq, M.: Bee-Inspired Protocol Engineering: From Nature to Networks. Springer
(2008) (incorporated)

15. Gonzalez-Pardo, A., Camacho, D.: A new csp graph-based representation for ant
colony optimization. In: 2013 IEEE Conference on Evolutionary Computation,
June 20–23, vol. 1, pp. 689–696 (2013)

16. Gonzalez-Pardo, A., Camacho, D.: Environmental influence in bio-inspired game
level solver algorithms. In: Zavoral, F., Jung, J.J., Badica, C. (eds.) IDC 2013. SCI,
vol. 511, pp. 157–162. Springer, Heidelberg (2013)

17. Karaboga, D.: An idea based on honey bee swarm for numerical optimization.
Techn. Rep. TR06 Erciyes Univ. Press Erciyes, 129(2) p. 2865 (2005)

18. Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical func-
tion optimization: artificial bee colony (abc) algorithm. J. of Global Optimization
39, 459–471 (2007)

19. Kendall G., Spoerer, K.: Scripting the game of lemmings with a genetic algo-
rithm. In: Proceedings of the 2004 IEEE Congress on Evolutionary Computation,
pp. 117–124 (2004)

20. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the
Congress on Evolutionary Computation, vol. 4, pp. 1942–1948 (1995)

21. Martin, E., Martinez, M., Recio, G., Saez, Y.: Pac-mant: Optimization based on
ant colonies applied to developing an agent for ms. pac-man. In: Proceedings of
the Symposium on Computational Intelligence and Games (CIG), pp. 1:458–1:464
(2010)

22. Miikkulainen, R., Bryant, B.D., Cornelius, R., Karpov, I.V., Stanley, K.O., Yong,
C.H.: Computational intelligence in games. In: Computational Intelligence: Prin-
ciples and Practice (2006)

23. Reynolds, C.W.: Flocks, herds and schools: A distributed behavioral model.
SIGGRAPH Comput. Graph. 21, 25–34 (1987)

24. Shaker, N., Togelius, J., Yannakakis, G.N., Weber, B.G., Shimizu, T., Hashiyama,
T., Sorenson, N., Pasquier, P., Mawhorter, P.A., Takahashi, G., Smith,
G., Baumgarten, r: The 2010 mario ai championship: Level generation track. IEEE
Trans. Comput. Intellig. and AI in Games 3(4), 332–347 (2011)

25. Togelius, J.: Mario ai competition. In: Lanzi, P.L. (ed.) CIG. IEEE (2009)

Fast Evolutionary Adaptation
for Monte Carlo Tree Search

Simon M. Lucas(B), Spyridon Samothrakis, and Diego Pérez

University of Essex, Colchester, UK
sml@essex.ac.uk

Abstract. This paper describes a new adaptive Monte Carlo Tree Search
(MCTS) algorithm that uses evolution to rapidly optimise its performance.
An evolutionary algorithm is used as a source of control parameters to
modify the behaviour of each iteration (i.e. each simulation or roll-out) of
the MCTS algorithm; in this paper we largely restrict this to modifying
the behaviour of the random default policy, though it can also be applied
to modify the tree policy.

This method of tightly integrating evolution into the MCTS algorithm
means that evolutionary adaptation occurs on a much faster time-scale
than has previously been achieved, and addresses a particular problem
with MCTS which frequently occurs in real-time video and control prob-
lems: that uniform random roll-outs may be uninformative.

Results are presented on the classic Mountain Car reinforcement learn-
ing benchmark and also on a simplified version of Space Invaders. The
results clearly demonstrate the value of the approach, significantly out-
performing “standard” MCTS in each case. Furthermore, the adaptation
is almost immediate, with no perceptual delay as the system learns: the
agent frequently performs well from its very first game.

1 Introduction

Monte Carlo Tree Search (MCTS) is a powerful selective search method that has
had a profound impact on Game AI since its introduction in 2006 by a number
of researchers; see the recent survey paper by Browne et al [3] for more details
of its history, algorithm, variations and applications.

One of the most appealing features of MCTS is that it can operate without
the need for any heuristic: it works reasonably well in its vanilla form on a
variety of problems. However, it is also well known and not surprising that the
appropriate use of heuristics can significantly boost performance, and all leading
Go programs use these.

MCTS selectively builds an asymmetric tree. The algorithm works by follow-
ing a tree policy until it finds a node to expand, at which point it performs a
roll-out (also called play-out or simulation) until the end of the game (or until
some other stopping condition is met). The value found at the end of the roll-out
is then back-propagated up the tree, updating the mean value and the number of
visits to each node. Perhaps the most popular tree policy is based on the Upper
c© Springer-Verlag Berlin Heidelberg 2014
A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2014, LNCS 8602, pp. 349–360, 2014.
DOI: 10.1007/978-3-662-45523-4 29

350 S.M. Lucas et al.

Confidence Bounds equation (UCB) which for MCTS is known as UCT (Upper
Confidence bounds for Trees). This aims to optimally balance exploitation (visit
the child of the current node with the best mean value, left term in equation 1)
versus exploration (visit the least explored child, right term in equation 2).

UCB1c = µc + k

√
lnN
nc

(1)

where k is an exploration constant, N is the number of times the parent has
been visited, and for child c, µc is the mean value and nc the number of visits.

Although some efforts have already been made to incorporate automated
learning procedures into MCTS, the current state of the art usually involves a
great deal of hand-programming and leaves some important problems largely
unanswered, namely:

• The action-space may be too fine-grained; it may be necessary to work in
some space of macro-actions in order to perform well. Designing the macro-
actions could be done by evolution.

• Uniform random roll-outs may cause insufficient exploration of the state
space. They may all end in a similar or even identical degree of failure,
rendering them devoid of information. In the worst case, the µc values for
each child may be identical, meaning there is nothing to exploit.

In this paper we address the second of these problems: this is important
since it will aid the development of general video game bots able to play a wide
range of games to a high standard without being explicitly programmed for any
particular game. This is useful for providing an automatic range of opponents for
new video games, and also for evaluating automatically designed video games.
Although there have been some very interesting efforts along these lines, for
instance [15] [4] [5], the richness of the games that have been evolved so far has
been arguably limited by the intelligence of the evolved bots [15], or the NPC
rules [4] or the search algorithms used to evaluate them [5].

2 Related Research

Silver et al [13] incorporated temporal difference learning (TDL) into an MCTS
algorithm, and drew the distinction between the transient values learned by the
MCTS procedure and the long-term heuristic information learned by TDL.

Robles et al [11] used a similar procedure for learning in Othello, where they
used TDL to learn a value function both for controlling the tree policy and for
controlling the roll-outs.

Although TDL utilises more of the available information during learning than
evolution [6], evolution can be more robust due to its direct emphasis on the end
goal (such as winning the most games) rather than some proxy of this such as
minimising the residual errors.

Evolutionary learning has also been used to tune MCTS algorithms. Benbas-
sat and Sipper [2] used Genetic Programming, in conjunction with MCTS, for

Fast Evolutionary Adaptation for Monte Carlo Tree Search 351

several classic games such Othello and Dodgem. In their work, each individual in
the evolutionary algorithm represents a function that evaluates a board position.
During the rollout step of MCTS, each move is chosen by selecting the action
that maximizes the value of the next board state, according to this function.

Independently, Alhejali and Lucas [1] used evolution to tune the weights of the
heuristic value function used to guide the roll-outs in an MCTS Pac-Man player.
In both these approaches evolution was able to improve on the default MCTS
performance, though in both cases the evolutionary algorithm was applied at the
level of the individual, where each fitness evaluation involved playing one or more
complete games. This approach leads to relatively expensive evolutionary runs,
since for most games reasonable standard MCTS players cannot operate much
faster than real-time. The approach developed in this paper is very different, since
now each roll-out contributes immediately to the fitness evaluation of the policy
that guided it.

The main use of the fast evolutionary adaptation used in this paper is to bias
the simulation or roll-out policy after the tree policy has found a leaf node to
expand. Most previous ways of doing this have relied on the information gained
from the simulations; a good example is the recent work by Powley et al [10],
where they learn n-gram models to bias the roll-outs. This works well when the
simulations are informative, but breaks down when the simulations all terminate
in identical or very similar values.

The approach developed in this paper is intended to complement the roll-out
mining methods by initially hypothesizing useful “directions” for the roll-outs to
take in the absence of any evidence. As the evidence accumulates, the aim is for the
evolutionary algorithm to adapt the distribution of roll-out policies accordingly.

One of the most general approaches for optimizing MCTS algorithms is that
of Maes et al [7] where they formulate a grammar for describing a general class of
Monte Carlo Tree Search algorithms and then search the space induced by that
grammar to find high performance ones. However, as with most other methods
this requires relatively extensive evaluation in order to determine the fitness of
each algorithm instance.

Recently MCTS has found application in video games, with Ms Pac-Man being
a good example [12], supported by strong results in competitions both for control-
ling the Pac-Man agent [9] and the ghost team [8]. However, all these cases relied
on some hand-designed heuristics such as disallowing Pac-Man reversals during
roll-outs. This was found to be necessary since if the Pac-Man is allowed to reverse
then it makes insufficient progress through the maze due to excessive dithering.

This is analogous to the problem observed running vanilla MCTS on the Moun-
tain Car problem described below, and in this case is easily solved by the fast
evolutionary adaptation approach.

3 Fast Evolutionary MCTS

The main contribution of this paper is the introduction of a new approach to
using an evolutionary algorithm to rapidly adapt the behaviour of an MCTS

352 S.M. Lucas et al.

algorithm. The main idea is to tightly integrate evolution’s fitness evaluation
process with the MCTS algorithm. Previous evolutionary approaches (e.g. [2],
[1]) have been loosely coupled in the sense that each fitness evaluation was based
on the performance of the MCTS agent over an entire game or set of games, where
the MCTS agent was seen as a black box with a set of tunable parameters.

In the Fast Evolutionary method each iteration (roll-out) of the MCTS
algorithm contributes directly to a statistical evaluation of an individual, where
each individual is characterised by a vector of parameters. As a result of this
change the evolutionary algorithm has access to a much higher bandwidth of
information and consequently is able to adapt more rapidly.

Within this fast evolutionary approach there are at least two distinct ways
in which it could work: evaluate each individual within the same MCTS tree, or
create a new MCTS tree for each individual.

The former approach aggregates the statistics of each individual within the
same tree and has the advantage of throwing nothing away. The latter approach
is more wasteful since each time an individual is discarded from the population
all the statistics are lost; however it can also be used more flexibly and can be
used to search the space of different macro-actions for example. In this paper we
limit the investigation to the former approach.

Algorithm 1 outlines the main steps. The while loop describes the MCTS
algorithm executed in order to make each decision. Here the condition is listed
as being within a computational budget: this could be measured as elapsed time
or as a fixed number of iterations.

For each iteration a parameter vector w is drawn from the evolutionary algo-
rithm by calling evo.getNext() as shown on line 2. Line 3 initialises a statistics
object to track the performance of this control vector. The for loop (line 4)
is there to enable a particular MCTS control policy to be sampled K times
before returning its performance statistics to the evolutionary algorithm. There
are many statistics that can be used to rate how well an MCTS algorithm is
performing: our basic statistics object includes calculation of the mean, standard
deviation, min and max. All these can be important, though in this initial
study we only use the mean. Alternatively, the K parameter can be seen as
the responsibility of the evolutionary algorithm, in which case the for loop can
be removed.

The parameter vector could be used to control both the tree policy and the
default policy as indicated on lines 5 and 6 respectively, with the default policy
being used to generate a roll-out that ends in a state with the value of Δ. Apart
from the influence of the control parameters, the MCTS algorithm operates as
normal with line 7 showing the backup of the tree statistics. Line 8 indicates the
statistics object S being updated with the roll-out value Δ.

After running the MCTS algorithm for the allowed computational budget,
the while loop exits. The algorithm returns the estimate of the best control
vector found to date via a call to evo.getBest() (line 12). This suggests another
use case for the algorithm: to find good control vectors and then use these to fix
the bias. In the results tables below we refer to this mode of use as Pre-Evolved.

Fast Evolutionary Adaptation for Monte Carlo Tree Search 353

Algorithm 1. Fast Evolutionary MCTS. The evolutionary algorithm
provides a source of parameter sets used to control the MCTS algorithm.
input : Parameter K, the number of roll-outs per fitness evaluation, v0 is root state
output : weight vector w and action a

; // initialize evolutionary algorithm evo,
1 while within computational budget do
2 Set w ← evo.getNext()

3 Initialise statistics object S.

4 for i := 1 to K do

5 vl ← TreePolicy(v0, T (w)) ; // Tree policy is influenced by T (w)
6 Δ ← DefaultPolicy(s(vl), D(w)) ; // Default policy is influenced by D(w)

7 Backup(vl,Δ)
8 UpdateStats(S,Δ)

9 end
10 evo.setFitness(w, S)

11 end
12 Return w ← evo.getBest()
13 Return a ← recommend(vo)

Finally, the algorithm returns the selected action for the current root state
using a recommendation policy (line 13), which is usually different from the tree
policy. In this paper we mainly choose the action with the highest mean value,
though for Space Invaders we also experimented with biasing the recommenda-
tion directly.

3.1 Biasing Rollouts

The main idea here is to use features associated with a given state to bias the
action selection process. The biasing process works as follows: we map from state
space S to feature space F with N features and then from feature space to a
probability distribution over the set of actions. This is currently implemented
using a hand-coded feature space for each problem. There are A actions available
and the relative strength ai of each action i is then calculated as a weighted sum
of feature values. The weights are stored in a matrix W where entry wij is the
weighting of feature j for action i:

ai =
N∑
j=1

wijfj (2)

These relative action values then feed into a softmax function in order to
calculate the probability P (ai) of taking each action.

P (ai) =
e−ai∑A
j=1 e

−aj

(3)

The bias is therefore controlled by two things: the features and the weight
matrix W . As previously mentioned, for the moment the features are hand-coded

354 S.M. Lucas et al.

though in future they could be evolved using GP or auto-constructed in some
other way. The weight matrix is evolved: every roll-out is biased using a W
drawn from the evolutionary algorithm.

4 Test Problems

For proof of concept we choose two initial test problems: Mountain Car and
Space Invaders. The first one is a simple reinforcement learning problem, but
one that MCTS with uniform roll-outs fails on badly. Space Invaders is a more
interesting challenge, and even the simplified version used in this paper involves
precise shooting of fast moving targets (the aliens move quickly when there
are only a few left), and strategic considerations regarding the order in which
to shoot the aliens. In each case the MCTS tree policy was UCB1 with the
exploration constant k set to 0.3 after some experimentation. The algorithm ran
for 200 iterations per action selection. When calculating the mean values of each
child in the UCT tree we tried scaling the scores to be in a smaller range, but
this tended to degrade performance.

We used a (1 + 1) Evolution Strategy (ES) for the evolutionary algorithm
(i.e. the source of roll-out control vectors). This is the simplest possible choice,
and most likely far from optimal. A better choice might be to use a bandit-based
algorithm in order to maintain a multi-modal distribution of roll-out policies.
Nonetheless, even the (1+1) ES is able to produce some interesting results.

4.1 Mountain Car

The mountain car problem is a classic reinforcement learning benchmark prob-
lem; here we use a version identical to that described by Sutton and Barto [14]
(page 214) apart from limiting the number of steps per episode to 500 instead
of 2,500. The problem is illustrated in Figure 1: the aim is to reach the line at
the top of the hill on the right, but the engine has insufficient force to overcome
gravity. The state of the system is fully specified by two scalar values: position s
and velocity v. The state space is small but continuous and there are many ways
of constructing features for this. For these experiments we take the most direct
approach and simply use s and v scaled to be in the same range from −1 to +1.
The three possible actions are accelerate left, neutral and accelerate right.

The difficulty of any particular instance of this problem depends on the initial
state. For example, if the car starts close to the goal with a large velocity towards
the goal then many action sequences will lead to success. All experiments in this
paper used a start state of (s = −0.3, v = 0). Starting in this way, close to the
centre of the valley and with zero velocity, is relatively hard and a few oscillations
are required in order to reach the goal. We limit the number of steps in each
episode to 500, and the score (to be minimised) is simply the number of steps
taken to reach the goal, or 500 if the goal was never reached. Configured in
this way MCTS with uniform random roll-outs reaches the goal around 1 in 30
episodes.

Fast Evolutionary Adaptation for Monte Carlo Tree Search 355

4.1.1 Analysing Trajectories
Figure 2 shows 20 random roll-outs using (a) uniform random actions and (b)
random actions biased by Equations 2 and 3, where the weights of matrix W were
drawn from a Gaussian distribution with zero mean and a standard deviation of
5. Each illustrative roll-out lasted for 1, 000 steps (though for the experiments, we
limited episode length to 500). This clearly illustrates the value of the approach.
When taking uniform random moves none of the roll-outs reached the goal and
therefore, in the standard mountain car reward scheme, would each have a value
of -1000 (-1 for each step).

The biases introduce a more directed policy: sometimes this is even worse
than the uniform policy but sometimes it is much better, and plot (b) shows
several trajectories reaching the goal.

4.1.2 Results
Table 1 shows three sets of results based on the roll-out bias. Each roll-out ran
until a terminal state was reached. Uniform roll-outs perform worst, with a mean
of 497 and only 4 successes out of 100. The fast evolutionary method (Fast-Evo)
reaches the goal in all but one case. From the 100 fast evolutionary runs we
saved the bias matrix W with the best result and performed 100 trials with this
Pre-Evolved bias. This gave the best result with a mean of 99 and no failures.

Fig. 1. A depiction of the mountain car reinforcement learning benchmark. The
objective is to get to the top of the hill on the right, but the force of the engine is
insufficient to directly overcome gravity. To solve the problem (depending on the start
state) it is usually necessary to accelerate away from the goal and up the left hill before
accelerating toward the goal.

4.2 Space Invaders

Space invaders was released by Taito in 1978 and is one of the classic arcade
games of all time, taking gameplay to new levels. There is still significant inter-
est in developing better versions of this type of game, as evidenced by the
highly playable and commercially successful Space Invaders Extreme published
by SquareEnix for the Sony PlayStation Portable (PSP). The original ROM code
is available on line and can be played using the Multi Arcade Machine Emulator
(MAME). We encourage the interested reader to try this: the original game is
superior to all of the clones we have found on the Web.

356 S.M. Lucas et al.

Table 1. Mean scores and standard errors for each method based on 100 trials each.
The score is the number of steps taken to reach the goal state, so lower scores are
better. Each episode was terminated after 500 steps, so the worst possible score is 500.
An episode was deemed successful if it found the goal in under 500 steps.

Roll-out Mean Score (s.e.) Successes

Pre-Evolved 99 (2.8) 100
Fast-Evo 233 (13) 99

Uniform Random 497 (1.8) 4

Suitable MCTS agents could be used to play-test variations of these games to
assess the difficulty of each level and also to feed into the fitness function when
automatically evolving new variants. However, in this paper we use the game as
an initial benchmark.

Figure 3 shows a screenshot with an MCTS software agent playing the game.
This version has the following features:

• The same number of aliens as the original game: 55 arranged in 11 columns,
5 rows.

• Similar movement patterns. On each tick of the game loop just one alien is
moved, each missile is moved, and the player cannon is moved. This leads
to the dog-legged movement pattern that can be observed in the original
game, and naturally leads to the effect of the aliens moving more quickly as
more are shot - with extremely fast movement when just one alien is left.
Note that many clones of the game ignore this feature and move the aliens
together in lock-step.

Fig. 2. Random roll-outs through the two-dimensional state space (position: horizontal,
velocity: vertical) of the Mountain Car problem: (a) uniform random roll-outs are
unlikely to reach the goal and wander through the state-space with no purpose. (b)
biased roll-outs encourage more purposeful trajectories through state space, some of
which may reach the goal. The set of goal states is shown as the hatched area to the
right of each plot.

.

Fast Evolutionary Adaptation for Monte Carlo Tree Search 357

• Currently there are no alien missiles: the game is over either when an alien
lands (reaches the bottom of the screen) or when all the aliens have been
shot.

• The aliens are of three types (as with the original game) differing only in
the score for shooting each one: scores are 10, 20, 30 for cyan (bottom two
rows), magenta (next two rows) and blue (top row) respectively.

• No alien flying saucers along the top. In the original game these were worth
between 50 and 300 points, and one strategy involved shooting out some
middle columns in order to ensure a clear shot at the flying saucers. Our
version is currently missing these.

Despite the limitations compared to the original game, the version used in
this paper is nonetheless an appropriate challenge for the MCTS players under
study. Actually, the game required some tuning in order to make the difficulty
suitable for clearly distinguishing between weak and strong players. We did this
by slowing down the speed of the player’s missiles1, and by lowering the starting
point of the block of aliens. The latter difficulty adjustment happens in the
original game, with the aliens starting lower down as the levels progress. This
means they have to be cleared in a more constrained order to prevent them from
landing.

Fig. 3. A Space Invaders game in progress. The aim of this is to shoot all the alien
invaders before they land. In this cut-down version there are no bases and the invaders
do not drop missiles. Nonetheless when play-testing the game we found that clearing
the level required a reasonable level of shooting skill and also that a suitable strategy
be employed such as shooting away the end columns first. In the depicted game the AI
player has made the mistake of shooting away too many of the central aliens, and the
aliens look set to land.

1 Only one player missile can be fired at a time so this limits the rate at which aliens
can be shot, and increases the punishment for missing, since the player must wait
until the missile has left the top of the screen before firing the next one.

358 S.M. Lucas et al.

Here the problem of constructing suitable features is much more complicated
than for the mountain car problem. There are many elements to good Space
Invaders strategy, and sometimes it is desirable to shoot away the end columns,
but on other occasions emergency measures are needed and to avoid immediate
death it is necessary to shoot away the aliens closest to landing. After some
agonising over the best choice of features we made some initial experiments with
just a single feature! We call this nearest edge column displacement and calculate
it as follows. First, we find the minimum (leftmost) and maximum (rightmost)
x-coordinates of the set of aliens. We then pick the one closest to the player’s
missile cannon and subtract the x-coordinate of the cannon.

The fact that this worked rather well was a surprise, but provides interesting
insight into the nature of biasing roll-outs for MCTS. The fact is that MCTS
is already a powerful adaptive algorithm, and the roll-out bias is just needed to
nudge it into more interesting regions of the search space. It may be unnecessary
for the roll-out bias to be especially clever.

There are six possible actions, formed by the cartesian product of the move-
ment actions {left, dontMove, right} and the firing action {dontShoot, shoot}.
Since there is only one feature this leads to 6 weights to learn in the matrix W .

4.2.1 Results
We tested a number of approaches. Given the simplicity of the parameters to
learn, we were able to include a hand-coded set of parameters. The intuition
behind these is to bias the roll-outs in order to move to the closest end column
most of the time, firing occasionally.

When designing the roll-out bias by hand we also observed a frustrating
aspect of this process: although the roll-outs were biased, the behaviour of the
agent very often failed to reflect this. The reason for this is that the actions
involving more movement may not necessarily lead to better scores, and hence
may not be selected at the root level.

In order to force the effect of the bias we also created an option of adding
the bias directly into the recommendation policy (i.e. the move actually chosen
to play). We refer to this as µ + Q action selection. We were also interested to
see the effects of not using MCTS at all, but simply playing uniform random
moves, or random moves according to the hand-coded bias.

Each roll-out ran to a maximum depth of 50 from the root or until the end
of the game, whichever condition was met first. This meant that every move
in the game required a maximum of 10,000 game-ticks to be simulated; in our
simulator this achieves real-time performance at 50 frames (actions) per second.

Table 2 shows the mean and standard error of these variations. The difference
in scores between methods is significant (t-test, p = 0.01) if separated by a
horizontal line. The MCTS approaches are described by the roll-out policy and
the recommendation policy. The biases are: Qhand: hand-designed, Qevo: evolved
for each of the 100 trials using Algorithm 1 and Qprevo: a fixed high scoring bias
matrix selected from the 100 trials of the Qevo method. The Qevo approach
sometimes (about 5 - 10% of the time) obtains the maximum score of 990; we
just selected an arbitrary one of these solutions to fix the Qprevo bias.

Fast Evolutionary Adaptation for Monte Carlo Tree Search 359

The results are interesting. The first thing to note is that the non-MCTS
methods perform poorly: clearly it is not enough just to make uniform or biased
random moves. Secondly, the best MCTS approach was the hand-coded one
with action selection bias. Interestingly, evolution was able to find some good
solutions, but not on every run (remember here that an evolutionary run corre-
sponds to a single game being played). The high performance of Qprevo is very
encouraging.

Table 2. Mean scores and standard errors for each method based on 100 games each.
The maximum possible score is 990. The minimum possible score is zero.

Roll-out Action selection Mean Score (s.e.)

Qhand µ + Qhand 953 (20)

Qprevo µ 885 (11)
Qhand µ 877 (17)

Qevo µ 683 (19)
Uniform Random µ 674 (16)

Qevo µ + Qevo 593 (23)

— Uniform Random 127 (5.1)
— Biased Random Qhand 119 (6.2)

5 Conclusions

This paper introduced a novel fast evolutionary algorithm for adapting Monte
Carlo Tree Search. The algorithm has an important role to play in real-time
control problems and video games where uniform random roll-outs may be
uninformative. To counter this the evolutionary algorithm is used as a source
of roll-out policy control vectors to encourage more decisive simulations that
explore more diverse parts of the state space. When it works this enables the
MCTS algorithm to work with more informative statistics.

We tested the algorithm on the Mountain Car RL benchmark, and on a
reduced but interesting version of space invaders. The algorithm learns extremely
quickly and can adapt the roll-outs to great effect during the playing of a single
game. The estimated best control-vectors can also be used to fix the bias for a
set of runs, a process we call pre-evolving the bias, and this led to good results
on both problems under test.

So far the algorithm has been learning a small number of parameters — just
six in each case, yet appropriate setting of these was sufficient to significantly
improve performance on both test problems. Future work includes more thorough
testing of the method, including cases involving complex feature sets with large
numbers of parameters to tune.

Given the fact that simple features can lead to significant performance boosts,
and the fact that they can be evaluated so rapidly, this suggests that GP could
work well for automated feature construction.

360 S.M. Lucas et al.

References

1. Alhejali, A., Lucas, S.: Using Genetic Programming to Evolve Heuristics for a Mon-
teCarlo Tree Search Ms Pac-Man Agent, In: IEEE Conference on Computational
Intelligence and Games, pp. 65–72 (2013)

2. Benbassat, A., Sipper, M.: EvoMCTS: Enhancing MCTS-Based Players through
Genetic Programming, In: IEEE Conference on Computational Intelligence and
Games, pp. 57–64 (2013)

3. Browne, C., Powley, E., Whitehouse, D., Lucas, S., Cowling, P., Rohlfshagen, P.,
Tavener, S., Perez, D., Samothrakis, S., Colton, S.: A Survey of Monte Carlo
Tree Search Methods. IEEE Transactions on Computational Intelligence and AI
in Games 4(1), 1–43 (2012)

4. Cook, M., Colton, S.: Multi-faceted Evolution of Simple Arcade Games. In: IEEE
Conference on Computational Intelligence in Games (CIG), pp. 289–296 (2011)

5. Cook, M., Colton, S., Raad, A., Gow, J.: Mechanic Miner: Reflection-Driven Game
Mechanic Discovery and Level Design. In: IEEE Conference on Computational
Intelligence in Games (CIG), pp. 284–293 (2013)

6. Lucas, S.: Investigating learning rates for evolution and temporal difference
learning. In: IEEE Symposium on Computational Intelligence and Games, CIG
2008, pp. 1–7 (December 2008)

7. Maes, F., St-Pierre, D., Ernst, D.: Monte Carlo Search Algorithm Discovery for
Single-Player Games. IEEE Transactions on Computational Intelligence and AI in
Games 5(3), 201–213 (2013)

8. Nguyen, K.Q., Thawonmas, R.: Monte Carlo Tree Search for Collaboration Control
of Ghosts in Ms. Pac-Man. IEEE Transactions on Computational Intelligence and
AI in Games 5(1), 57–68 (2013)

9. Pepels, T., Winands, M.: Enhancements for Monte-Carlo Tree Search in Ms Pac-
Man. In: IEEE Conference on Computational Intelligence and Games (CIG), pp.
265–272 (2012)

10. Powley, E.J., Whitehouse, D., Cowling, P.I.: Bandits all the way down: UCB1
as a simulation policy in Monte Carlo Tree Search. In: IEEE Conference on
Computational Intelligence in Games (CIG), pp. 81–88 (2013)

11. Robles, D., Rohlfshagen, P., Lucas, S.M.: Learning Non-Random Moves for Playing
Othello: Improving Monte Carlo Tree Search. In: Proceedings IEEE Conf. Comput.
Intell. Games, Seoul, pp. 305–312 (2011)

12. Samothrakis, S., Robles, D., Lucas, S.: Fast Approximate Max-n Monte Carlo Tree
Search for Ms Pac-Man. IEEE Transactions on Computational Intelligence and AI
in Games 3(2), 142–154 (2011)

13. Silver, D., Sutton, R.S., Müller, M.: Sample-Based Learning and Search with
Permanent and Transient Memories. In: Proceedings 25th Annu. Int. Conf. Mach.
Learn., pp. 968–975, Helsinki (2008)

14. Sutton R., Barto, A.: Introduction to Reinforcement Learning. MIT Press (1998)
15. Togelius, J., Schmidhuber, J.: An Experiment in Automatic Game Design. In:

IEEE Symposium on Computational Intelligence and Games, pp. 111–118 (2008)

Automatic Camera Control: A Dynamic
Multi-Objective Perspective

Paolo Burelli1 and Mike Preuss2(B)

1 Department of Architecture, Design and Media Technology,
Aalborg University Copenhagen, Copenhagen, Denmark

pabu@create.aau.dk
2 European Research Center for Information Systems (ERCIS),
Westfälische Wilhelms-Universität Münster, Münster, Germany

mike.preuss@uni-muenster.de

Abstract. Automatically generating computer animations is a challeng-
ing and complex problem with applications in games and film produc-
tion. In this paper, we investigate how to translate a shot list for a
virtual scene into a series of virtual camera configurations — i.e auto-
matically controlling the virtual camera. We approach this problem by
modelling it as a dynamic multi-objective optimisation problem and show
how this metaphor allows a much richer expressiveness than a classical
single objective approach. Finally, we showcase the application of a multi-
objective evolutionary algorithm to generate a shot for a sample game
replay and we analyse the results.

1 Introduction

Three-dimensional computer animation is an established technique employed in
the production of films, video-games, commercials and many other visual media.
The idea behind 3D computer animation is to produce a virtual environment,
containing elements such as lights, objects and buildings, and animate these
elements while rendering the frames of a video from a specific point of view
within the environments. Producing an animation, like an animated film or a
game cut-scene, is a rather complex task, involving 3D modelling, animation,
camera work, lighting and a number of other technical and artistic tasks. Such
productions often require the work of several professionals for a span of several
months. On the other hand, In the last two decades, the availability of cheap or
free animation tools and the advent of customisable game engines has produced
a drastic change in the demography of the virtual film makers [14]. New forms of
the film medium became popular, such as machinima or game replays, created
by non-professional or semi-professional cinematographers or game players.

Automating the generation of an animation or parts of it is potentially ben-
eficial as a mean to reduce the costs of professional productions as well as to
increase the quality of amateur ones. Furthermore, many of the problems con-
nected with the automation of the cinematographic process in animations are
present also in computer games — e.g. effective viewpoint animation, lighting,
c© Springer-Verlag Berlin Heidelberg 2014
A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2014, LNCS 8602, pp. 361–373, 2014.
DOI: 10.1007/978-3-662-45523-4 30

362 P. Burelli and M. Preuss

shot definition and selection — making this a common basic problem for most
virtual reality applications. In particular, the problem of virtual camera place-
ment and animation is a common basic virtual reality problem which has received
a lot of attention from different researchers throughout the last two decades [9].
Automatic camera control can be described as the process of finding optimal
camera positions and movements in a virtual three dimensional environment
given a set of requirements describing how the produced images should look
like.

In the state-of-the-art of automatic camera control the problem is modelled
as a real-valued optimisation problem in which the search space is defined by
the possible combinations of different camera parameters (e.g. position, rotation
or field of view) and the objective function is based on the level of satisfaction
of a series of high-level and environment-independent requirements, such as the
visibility of a particular object or the size of that object on the screen. The prob-
lem has been addressed from two perspectives: off-line generation of shots from
static environments and real-time animation of camera parameters in dynamic
and interactive environments.

For off-line generation of shots, the optimisation process is executed until
an optimal configuration of the camera is found at each frame that needs to be
generated. This approach can be used to generate static pictures; however it is
not suitable for dynamic scenes either in real-time or off-line, as each shot is
considered as a separated optimisation problem; therefore, subsequent optimi-
sations might end up with very different optimal solutions and this would result
in a flickering, unstable view. In the second group of approaches, the search
process is performed while the virtual scene is changing — e.g. the game is
played. These approaches have been successfully employed in games [4,5] and
are particularly suitable for real-time tracking of optimal cameras in interactive
and unpredictable virtual environments. However, due to their reactive nature,
they are ill suited in situations where the optimum at a certain moment is not
necessary the best solution. This is often the case in automatic camera control,
in which many types of shot constraint the movement of the camera — e.g. the
camera shout be fixed in one position while the characters move. In these situ-
ations the camera should be configured so that is can maximise the satisfaction
of the requirements for the whole length of the shot.

The limitations of the current approaches constrain the applicability of the
available automatic camera control methods; for this reason, we propose a novel
approach based on multi-objective optimisation in dynamic environments. The
proposed method is designed for off-line calculation of camera configuration
sequences that can be used to visualise a computer animation, a game replay
or to automatically place camera view-points during the design of a game level.
Given a virtual environment, a set of events over time and a shot list — i.e.
a list of shot description with starting condition and ending condition — the
proposed method executes multiple multi-objective optimisations at key events
or key points in time. The resulting solutions from each optimisation are subse-
quently used to identify the solution (or sequence of solutions) for each shot.

Automatic Camera Control: A Dynamic Multi-Objective Perspective 363

While the problem is dynamic, the computation of the solutions is executed
off-line — i.e. after the dynamic actions is has taken place — therefore, the
problem is tackled as a sequence of static problems rather than as a single
dynamic optimisation problem. By addressing the camera optimisation problem
from this perspective, it is possible to select solutions not only based on their
instant quality, but also based on their overall performance in the shot. Fur-
thermore, uding multi-objective optimisation, it is possible to generate different
types of shots, both static and dynamic, just by changing the principle used
to select the solutions from the pool of possible solutions given by the various
optimisation sequences. For instance a static shot, can be picked by finding the
camera configuration which is for the longest period of time on the Pareto front
during the shot.

We demonstrate the application of the approach in a 3D shooter game as a
mean to automatically produce cinematographic replays of the game actions. The
resulting animations are showcased and evaluated both visually and numerically
against a generic single objective optimisation approach, showing that the multi-
objective approach performs extremely well and shall be pursued in future works.

2 Related Work

Since the introduction of virtual reality, virtual camera control attracted the atten-
tion of a large number of researchers (refer to [9] for a comprehensive review).
Early approaches focused on the mapping between the degrees of freedom (DOF)
for input devices to 3D camera movement [22]. While these metaphors are cur-
rently still common in many virtual reality applications, direct manipulation of
the several degrees of freedom of the camera soon demonstrated to be problem-
atic for the user, leading researchers to investigate how to simplify camera control
[12,16].

In parallel to the research on control metaphors, a number of researchers
investigated the automation of the camera configuration process. Automatic
camera control identifies the process of automatically configuring the camera
in a virtual environment according to a set of requirements. It is a non-linear
automatic control problem [18]: the system’s input are the requirements on com-
position and motion, while the internal state of the system is defined by the cam-
era parameters — e.g. position and rotation. The first seminal works addressing
automatic camera control according to this model [1,13,15] defined the con-
cept of frame constraint and camera optimisation. These approaches require the
designer to define a set of required frame properties which are then modelled
either as an objective function to be maximised by the solver or as a set of con-
straints that the camera configuration must satisfy. These properties describe
how the frame should look like in terms of object size, visibility and positioning.

Olivier et al. [15] modelled these properties — also known as frame constraints
[1] — as a series of objective functions describing how much each property is satis-
fied by a certain camera configuration. The different objective functions are com-
bined linearly to produce a single objective function which can be optimised either

364 P. Burelli and M. Preuss

in a static environment or in a dynamic one. A variety of algorithms have been
employed in the two cases including, among others, Genetic Algorithms [15,17]
and Particle Swarm Optimisation [6] for static scenes, and Hill Climbing [4] and
Artificial Potential Fields [7] for real-time optimisation in dynamic scenes. The
first two approaches are used to generate still images with specific composition
characteristics, while the last two are designed to animate a camera in real-time
interactive virtual environment — e.g. computer games.

Among other applications for automatic camera control emerged also the
automatic generation of animated films or cinematographic game replays.
Dominguez et al. [11] and Cheong et al. [8] investigated the process of automat-
ically analysing a game log to generate a sequence of shot descriptions that can
be used to visualise the actions recorded in the game log. Finding the best cam-
era configurations that fit the shot description poses a slightly different problem
than the previously described ones, making classical single objective approaches
not suitable. The problem is an off-line dynamic optimisation problem, that
requires to find a sequence of camera configurations that optimise a given set of
requirements over time in a changing virtual environment.

Using a static single-objective optimisation approach per each frame would
produce sequences of camera configurations with potentially very different param-
eters — i.e. the camera would be jumping from one position to a potentially very
different one in one frame —; moreover, there would be no possibility to control
the camera’s dynamic behaviour to produce, for instance, static shots as the cam-
era will always move to the next optimal position. A local search algorithm might
reduce the jerkiness of the produce animation, guaranteeing a continuity from
one solution to the next one; however, such an approach would not necessarily
produce the best camera configurations and it is heavily dependent on the initial
configuration.

In this article, we approach this problem as a dynamic multi-objective opti-
misation problem. Thanks to the diversity of the solutions that can be generated
trough this approach, it is possible to produce hight quality camera solutions
in dynamic environment, while having full control over the dynamic behaviour
of the solution. This makes possible to generate from the same set of frame
constraint, different types of shots — e.g static or dolly —. In the rest of the
document, we explain the details of this approach and we showcase the advan-
tages of such approach over the current state-of-the art.

3 Multi-Objective Camera Optimisation

Even for a static optimization problem with multiple objectives, a multi-objective
approach would have an advantage over a single-objective, weighted approach:
depending on the shape of the Pareto front (the set of all optimal compromises
for which it is not possible to further improve in one objective without deteriorat-
ing), there are situations in which any weighted approach cannot reach the front
at the position that is indicated by the concrete weights, while a multi-objective
algorithm can do that.

Automatic Camera Control: A Dynamic Multi-Objective Perspective 365

But even if we do not experience such a situation, a multi-objective approach
has its advantages: its solution set is well spread over all possible weightings, such
that it should contain appropriate solutions even if the problem changes slightly.
A single-objective algorithm would come up with good solutions for each concrete
case, but even with the same weighting, if the front changes because the problem
changes, these solutions would be in a different region of the objective space, and
thus most likely also somewhere else in the decision space. This would severely
hamper transferability: we cannot find a good compromise solution that works
well for all the points in time of a dynamic setting.

It is our basic assumption that the spread of the multi-objective result set
allows for easier detection of such transferable solutions which work quite well
for all time steps of a dynamic problem than the highly specialized result sets
of weighted single-objective optimization runs. The results of the case study
that is presented in the next section will show if this is indeed the case. Of
course, the multi-objective approach also has a disadvantage because spreading
a population over a Pareto front shall be more costly than approaching just a
single point on the front. However, in an offline setting as the one we treat here
this disadvantage should not be too much of a problem, as there is no realtime
constraint that enforces providing a solution hastily. Note that the difference
between both approaches is a principle one: letting the single-objective approach
run longer does not help because we may get a little bit nearer to the front, but
still our best solutions would all be very similar.

In the following, we will in short explain the multi-objective algorithm we
employ and then fix a criterion that enables assessing the quality of a single
solution over multiple time steps, which is by nature a multi-objective measuring
problem.

Our algorithm of choice is the SMS-EMOA [2], because it is known to deal
well with a higher number of objectives (more than 3), and usually outperforms
older approaches as the NSGA-II [10] on these settings. However, these two
algorithms are conceptually not much different, we can still use the variation
operators of the NSGA-II1.

The striking differences are that a) the SMS-EMOA uses the dominated
hypervolume within its selection step, and that b) only one solution is generated
in every iteration and the worst is removed. This is more greedy than for the
NSGA-II, but it has been shown that this leads to a false local optimum (of
the multi-objective problem) only in very rare, hard to construct cases (see [3]).
The hypervolume is based on the objective value differences to a fixed (bad)
reference point.

Constraints can be added in a straightforward way into the algorithm, we
follow the approach of a modified selection scheme as utilized in [20]: search
points within infeasible regions get a penalty that resembles the distance to
the next feasible region. During the selection phase, individuals that carry the
highest penalties are always removed first, disregarding the quality of their other
1 This refers to the simulated binary crossover (SBX) and polynomial mutation (PM)

operators from [10] with (near) default parameter values of ηc = 20 and ηm = 15.

366 P. Burelli and M. Preuss

objective values. We therefore never remove a valid individual in the presence of
an invalid one.

If we want to detect which of a given set of solutions is most suitable over
multiple time steps and thus multiple slightly different problems, we need to
define a measure and base it on a multi-objective notion. It is unlikely to find
a solution that is near to specific points that are selected from different fronts
by a weighting if the fronts themselves move. Thus, we relax this requirement
and strive for single points that are at least very near to all fronts, regardless of
which region of the front they approximate. So they are at least near optimal in
some sense, even if not optimal concerning the given weighting. Our measure is
related to the generational distance as defined in [21], although this was intended
to assess the quality of complete populations (front approximations) and not
single points. Also see [19] for a list of other frequently used measures in the
multi-objective context.

At first, we need a (not necessarily optimal) reference front for every problem
instance (time step) that is considered. By definition, none of the contained
solutions can dominate any other.2 For a given test point and a given front, we
find all members of the reference front that dominate it or are dominated (note
that a point can either dominate or be dominated by one or multiple points
of the reference front, but not both). Points that are incomparable (neither
dominated nor dominate) are assigned a value of 0. If the test point dominates
some points, we choose the one of them with the highest Manhattan distance
(added differences per objective) and assign to it the negative value of this
distance. If it is dominated, we do the same but with a positive value. Then, we
iterate over the reference fronts and sum up the resulting values. This criterion
is to be minimized: a value of 0 means that it is situated on all reference fronts,
a negative value that it is on average better than the fronts, and a positive value
means that it is on average worse than the fronts.

Note that by applying such measure, we virtually create a higher dimensional
problem: if we have 5 objectives per front and 5 time steps, the resulting prob-
lem would have 25 dimensions. In principle, one could try to directly achieve a
good solution by solving this 25 dimensional problem. However, present multi-
objective algorithms are not at all good at working in such a setting, and it is
not very likely that alternatives will emerge soon.

4 Case Study

The objective of this article is to investigate the applicability of the multi-
objective optimisation to the automatic generation of cinematics. Therefore,
inspired by the article by Dominguez at al. [11] on automatic generation of game
replays, we employ an instance of this problem to evaluate the advantages and
disadvantages of our approach. In this case-study, we have modified an existing
2 A point dominates another in the objective space if it at least as good as the second

point in all objectives and better in at least one.

Automatic Camera Control: A Dynamic Multi-Objective Perspective 367

action game called Angry Bots3, so that we could log all the actions and posi-
tion of the 3D element during a game session and we could replay these using a
custom view-point. The game used in this study is an action/shooter game, in
which the player controls a humanoid avatar and must explore a science fiction
dungeon while been attacked by various forms for enemies. The player can move
around the area and shoot at the enemies.

We recorded a short 5 seconds sequence, in which the player is approached
by an enemy (both can be seen in Fig.1j). The objectives that the algorithms
have to optimise correspond to the satisfaction of the following requirements for
the camera:

– Full visibility for the avatar.
– Full visibility for the enemy.
– The enemy should be viewed from the back — i.e. the vantage angle should

be equal to 180◦ horizontally and 0◦ vertically.
– The enemy should cover half of the screen — i.e. the projection size should

be equal to 0.5.
– The enemy should be portrayed in the bottom left corner of the screen — i.e.

the frame position should be equal to 0.3 both horizontally and vertically.

Each requirement has a satisfaction value that depends on the comera configu-
ration picked as solutions. Each of these satisfaction values is defined between
0 (completely satisfied) and 1 (completely unsatisfied), and corrispond to and
objective function which has to be minimised. For a fully detailed description of
the objective function corresponding to each of these requerements, please refer
to [5].

On this short game log, we have applied a multi-objective approach based
on SMS-EMOA and a single-objective approach based on a standard genetic
algorithm to produce a static and a follow version of the shot. In a static shot,
the camera does not move for the whole shot sequence, while in a follow shot
the camera moves to keep close track of the subjects on the screen.

While the GA employs elitism selection, a mutation rate of 0.5, and a crossover
rate of 0.8, both algorithms (SMS-EMOA mutation/crossover parameters were
given in sec. 3) run with a population of 50 individuals. The GA is allowed to run
2000 generations, summing up to 105 evaluations, and the SMS-EMOA runs up
to 50000 evaluations but many more generations (producing only one new indi-
vidual per generation). While the multi-objective approach uses the 5 objectives
given above in their original form, the GA equally weights them and thus opti-
mizes their mean value. However, for the visibility objectives, we constrained the
SMS-EMOA in a way that values worse than 0.9 (0 being optimal) for these two
objectives were regarded as infeasible. Not doing so would mean that we encourage
the algorithm to also search for solutions were avatar or enemy or both are not vis-
ible at all, which is clearly undesired. The reference point for the SMS-EMOA was
set to (1, 1, 1, 1, 1), which means that the maximal hypervolume measure value is
1, and this would be attained by a single best solution that resides at (0, 0, 0, 0, 0),
meaning that it is optimal in all objectives.
3 Unity Technologies - http://unity3d.com/gallery/demos/live-demos#angrybots

http://unity3d.com/gallery/demos/live-demos#angrybots

368 P. Burelli and M. Preuss

4.1 Optimal Solution Difference Estimation

At first we are interested in seeing how different the optimal solutions over the
whole sequence of 5 seconds actually are. As the front approximation obtained
by means of a multi-objective approach contain much more information on a
problem instance than the end population of a single-objective algorithm (as
it tends to converge to a very small region of the search space), we ran the
SMS-EMOA 10 times on the start time (0 seconds) and re-evaluated the final
populations (which contain very different, but in the Pareto sense near optimal
solutions) over the successive time steps after 1, 2, 3, and 4 seconds. The S-metric
(hypervolume) measures degrade from 0.954 to 0.634, 0.299, 0.163, and 0.074. We
deduce that the problem instances at the different time steps are quite different,
and that good solutions for time 0 are probably quite bad for the last time steps.
We can also state that the obtained final fronts usually contained between 40
and 50 individuals (50 being the theoretical maximum, the whole population is
spread over the Pareto front). This means that the 5 different objectives are at
least partly in conflict (not necessarily all combinations of them), and that it
is highly unlikely that a solution that achieves the optimum for all 5 objectives
exists.

4.2 Static and Follow Shot Comparison

We now embark on numerically and visually comparing the results of the single-
and multi-objective approach for the static and follow shot. Such a comparison is
not trivial, because the two approaches have very different properties concerning
the provided solution set: while the MO-approach generates a whole population
of different solutions in every run, the GA comes up with only one and slight
variations of it. Selection of a suitable solution thus is no issue for the GA,
but it is for the SMS-EMOA. Thus, in addition to comparing the results of
one MO run and one GA run (each repeated for the 5 time steps), we also
have a look at the behavior of the single-objective approach if run 10 times (50
runs altogether), taking only the best obtained solution for each time step into
account. This should on the one hand make the results more valuable from a
statistical viewpoint, and on the other hand allow conclusions concerning the
achievable improvement if for the single-objective approach also a larger pool of
solutions exists.

The considered performance measure for both shot types is the average best
fitness value (ABFV), which here resembles sum of the fitness values over the 5
objectives, averaged over the 5 time steps. For the static shot, only one solution
is selected and the average is computed over this single solution. For the follow
shot, we select the best solution returned for each time step on the GA side, and
the best (in terms of averaged objectives) solution returned by the SMS-EMOA
for the first time step, and the subsequently nearest solutions contained in the
fronts for the next time steps.

The results of the comparison are displayed in table 1, also containing the
variance over the 10 GA runs as last column. The corresponding screenshots for

Automatic Camera Control: A Dynamic Multi-Objective Perspective 369

(a) 0 s (b) 0 s

(c) 1 s (d) 1 s

(e) 2 s (f) 2 s

(g) 3 s (h) 3 s

(i) 4 s (j) 4 s

Fig. 1. Sequences of 5 frames representing a follow shot. Images a,c,e,g,i (left side)
are produced using single-objective approach, while images b,d,f,h,j (right side) are
produced with a multi-objective approach.

370 P. Burelli and M. Preuss

Table 1. Average objective values (ABFV) for the two approaches, static and follow
shot

shot MO GA best GA average GA avg. variance

static 0.849 1.031 1.827 0.146
follow 0.466 0.810 1.341 0.557

the follow shot are provided in figure 1. We can state that the multi-objective
approach leads to better results than the single-objective one on the average,
and even if only the best GA solution from 10 runs is considered.

For the static shot, the visual difference is not really perceivable, it is therefore
not depicted. In the follow shot, the solutions provided by the single objective
are often very different, which is a big disadvantage for a video (meaning that
the camera would need to make fast movements across very different solutions).
This gets especially clear while looking at the first 3 frames, where the scene is
shot from pretty different angles.

The multi objective approach solves this problem, because there is a large
set of near-optimal but different solutions to choose from, and we can reason in
objective space level. It is thus possible to find a set of solutions with minimal
objective space distance, corresponding to small visual differences. In conse-
quence, this makes the shot sequence much more smooth. Whereas the single-
objective approach may lead to a video with jumpy and unsteady camera, the
multi-objective approach enables a much more smooth and coherent camera
positioning.

4.3 Front Approximation Distance Comparison

As a last test, we would like to know how far the single solutions generated
in 10 × 5 GA runs and 5 SMS-EMOA runs are located from the Pareto front
approximations obtained by the SMS-EMOA runs (as an average over the time
steps). This tells us something about the stability of single solutions over the
time steps, and also about the potential improvements that can be made (if we
obtain solutions below the front). As measure, we employ the average Manhattan
distance to the most dominating/dominated point as laid out in section 3. This
comparison is again difficult to conduct fairly, as the MO algorithm provides
many solutions per run and the GA only one. The overall number of solutions
considered is 220 for the SMS-EMOA, and 50 for the GA.

The results are contained in table 2 and show that the GA sometimes achieves
very good solutions, but mostly converges to much worse solutions than the MO
approach. The best overall solution is provided by one GA run and is slightly
better than the best MO generated one. As can be guessed from the high stan-
dard deviation, it is good on average because it gets below the front for at
least one time step (actually, it does so for 2 time steps). However, if we review
the average GA performance (averaged over each of the 10 run groups, each

Automatic Camera Control: A Dynamic Multi-Objective Perspective 371

Table 2. Average front distance (Manhattan) and averaged distance standard devia-
tions over the 5 time steps for the GA and SMS-EMOA approaches

MO MO sd GA best GA best sd GA average GA avg. sd

3.444 0.438 2.876 1.159 6.445 0.453

containing 5 runs over the different time steps), we recognize that such an event
rarely happens. On average, the best GA solution is about a factor 2 farther
apart from the consecutive fronts than the best MO solution (and consistently
so because the average standard deviation is much lower).

We can state that in terms of average distance to the 5 consecutive time step
fronts, the GA is not very stable: it may sometimes come up with very good
solutions, but usually remains far from the front. However, the single very good
GA solution shows that the fronts themselves are far from optimal, it should be
possible to improve them, e.g., by tuning the parameters of the SMS-EMOA.
This may also be done for the GA of course, but again, we deduce that the big
advantage of the MO approach lies in the multitude of solutions generated per
run. There seems to be a good chance that we find a suitable solution for very
different applications within the delivered Pareto front approximation.

5 Conclusion

We have tested the multi-objective approach to automated camera positioning
proposed in this paper for different shot types and have also conducted 2 addi-
tional tests in order to find out a) how complete Pareto front approximations
generated for one time step degrade for subsequent time steps of a dynamic scene,
and b) what solution quality can be expected for multiple single-objective runs
in relation to the Pareto front approximations generated by our multi-objective
approach.

As this it a first study in the direction of automated generation of dynamic
shots for dynamic scenes, it is clear that the performance of both approaches
can be improved, e.g. by tuning or the selection of more suitable algorithms (as
the CMA-ES as a most capable algorithm for the single-objective case) or search
operators. However, the tackled problem is multi-objective even if only one time
step is considered, and it gets only higher-dimensional (in objective space) for
multiple time steps. Therefore, applying a multi-objective algorithm seems most
appropriate, and indeed it shows that the high number of good but different
solutions obtained from running a multi-objective algorithm pays off: it is much
more likely to find suitable solutions for multiple purposes in the result set of a
multi-objective algorithm than to do so even for several runs of a single-objective
algorithm (which would be more costly in terms of computation time).

This work shall be extended in various ways: our implementation of different
types of shots is preliminary, we ought to find better heuristics to select the most

372 P. Burelli and M. Preuss

appropriate solutions, and also describe other types of shots and conduct more
rigorous tests on more and different scenes. However, the key advantage of the
proposed multi-objective approach is that we can reason on the fronts and in
the objective space. Thus we can make informed choices when picking solutions
for different shots.

References

1. Bares, W.H., McDermott, S., Boudreaux, C., Thainimit, S.: Virtual 3D camera
composition from frame constraints. In: ACM Multimedia, pp. 177–186. ACM
Press, Marina del Rey (2000)

2. Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: Multiobjective selection
based on dominated hypervolume. European Journal of Operational Research
181(3), 1653–1669 (2007)

3. Beume, N., Naujoks, B., Preuss, M., Rudolph, G., Wagner, T.: Effects of 1-Greedy-
Metric-Selection on Innumerably Large Pareto Fronts. In: Ehrgott, M., Fonseca,
C.M., Gandibleux, X., Hao, J.-K., Sevaux, M. (eds.) EMO 2009. LNCS, vol. 5467,
pp. 21–35. Springer, Heidelberg (2009)

4. Bourne, O., Sattar, A., Goodwin, S.: A Constraint-Based Autonomous 3D Camera
System. Journal of Constraints 13(1–2), 180–205 (2008)

5. Burelli, P.: Interactive Virtual Cinematography. PhD thesis, IT University of
Copenhagen (2012)

6. Burelli, P., Di Gaspero, L., Ermetici, A., Ranon, R.: Virtual Camera Composition
with Particle Swarm Optimization. In: Butz, A., Fisher, B., Krüger, A., Olivier, P.,
Christie, M. (eds.) SG 2008. LNCS, vol. 5166, pp. 130–141. Springer, Heidelberg
(2008)

7. Burelli, P., Jhala, A.: Dynamic Artificial Potential Fields for Autonomous Cam-
era Control. In: AAAI Conference on Artificial Intelligence in Interactive Digitale
Entertainment Conference. AAAI, Palo Alto (2009)

8. Cheong, Y.-G., Jhala, A., Bae, B.-C., Young, R.M.: Automatically Generating
Summary Visualizations from Game Logs. In: AAAI Conference on Artificial Intel-
ligence in Interactive Digitale Entertainment, pp. 167–172 (2008)

9. Christie, M., Olivier, P., Normand, J.-M.: Camera Control in Computer Graphics.
Computer Graphics Forum 27, 2197–2218 (2008)

10. Deb, R., Pratap, R., Agarwal, S.: A fast and elitist multi-objective genetic algo-
rithm: NSGA-II. IEEE Trans. on Evolutionary Computation 6(8) (2002)

11. Dominguez, M., Young, R.M., Roller, S.: Design and Evaluation of Afterthought, A
System that Automatically Creates Highlight Cinematics for 3D Games. In: AAAI
Conference on Artificial Intelligence in Interactive Digitale Entertainment (2011)

12. Drucker, S.M., Zeltzer, D.: Intelligent camera control in a virtual environment. In:
Graphics Interface, pp. 190–199 (1994)

13. Jardillier, F., Languénou, E.: Screen-Space Constraints for Camera Movements:
the Virtual Cameraman. Computer Graphics Forum 17(3), 175–186 (1998)

14. Lowood, H.: High-performance play: The making of machinima. Journal of Media
Practice 7(1), 25–42 (2006)

15. Olivier, P., Halper, N., Pickering, J., Luna, P.: Visual Composition as Optimisation.
In: Artificial Intelligence and Simulation of Behaviour (1999)

16. Phillips, C.B., Badler, N.I., Granieri, J.: Automatic viewing control for 3D direct
manipulation. In: ACM SIGGRAPH Symposium on Interactive 3D Graphics, pp.
71–74. ACM Press, Cambridge (1992)

Automatic Camera Control: A Dynamic Multi-Objective Perspective 373

17. Pickering, J.: Intelligent Camera Planning for Computer Graphics. PhD thesis,
University of York (2002)

18. Pontriagin, L.S.: Mathematical Theory of Optimal Processes. Interscience Publish-
ers (1962)

19. Sarker, R., Coello, C.A.C.: Assessment methodologies for multiobjective evolution-
ary algorithms. In: Evolutionary Optimization. International Series in Operations
Research & Management Science, vol. 48, pp. 177–195. Springer, US (2002)

20. Togelius, J., Preuss, M., Beume, N., Wessing, S., Hagelbäck, J., Yannakakis, G.N.,
Grappiolo, C.: Controllable procedural map generation via multiobjective evolu-
tion. Genetic Programming and Evolvable Machines 14(2), 245–277 (2013)

21. Van Veldhuizen, D.A., Lamont, G.B.: Evolutionary computation and convergence
to a pareto front. In: Koza, J.R. (ed.) Late Breaking Papers at the Genetic Pro-
gramming 1998 Conference. Stanford University Bookstore (1998)

22. Ware, C., Osborne, S.: Exploration and virtual camera control in virtual three
dimensional environments. ACM SIGGRAPH 24(2), 175–183 (1990)

Co-Evolutionary Optimization of Autonomous
Agents in a Real-Time Strategy Game

Antonio Fernández-Ares(B), Antonio M. Mora, Maribel Garćıa-Arenas,
Juan Julián Merelo Guervós, Pablo Garćıa-Sánchez, and Pedro A. Castillo

Departamento de Arquitectura y Tecnoloǵıa de Computadores,
Universidad de Granada, Granada, Spain

antares.es@gmail.com,
{amorag,mgarenas,jmerelo,pgarcia,pedro}@geneura.ugr.es

Abstract. This paper presents an approach based in an evolutionary
algorithm, aimed to improve the behavioral parameters which guide the
actions of an autonomous agent (bot) inside the real-time strategy game,
Planet Wars. The work describes a co-evolutionary implementation of a
previously presented method GeneBot, which yielded successful results,
but focused in 4vs matches this time. Thus, there have been analyzed the
effects of considering several individuals to be evolved (improved) at the
same time in the algorithm, along with the use of three different fitness
functions measuring the goodness of each bot in the evaluation. They
are based in turns and position, and also in mathematical computations
of linear regression and area regarding the number of ships belonging to
the bot/individual to be evaluated. In addition, the variance of using an
evolutionary algorithm with and without previous knowledge in the co-
evolution phase is also studied, i.e., respectively using specific rivals to
perform the evaluation, or just considering to this end individuals in the
population being evolved. The aim of these co-evolutionary approaches
are mainly two: first, reduce the computational time; and second find a
robust fitness function to be used in the generation of evolutionary bots
optimized for 4vs battles.

1 Introduction

Planet Wars is a very famous Real-Time Strategy game (RTS), introduced in
Google AI Challenge 20101 as a framework where the contenders could create
their own autonomous players (bots). A match in the game takes place on a
map that contains several planets (neutral, enemies’ or owned), having everyone
an associated growth rate and number of hosted ships. The aim of the game is
to defeat all the ships in the opponent’s planets. At the end of the match, the
winner is the player that remains alive, or that which owns more ships if more
than one survives (a limit of turns is reached). This is a pseudo-turn-based game,
rather than a real-time one, since it considers one second micro-turns for the bots
decide their next set of actions, which then happen at the same simulated time.
1 http://planetwars.aichallenge.org/

c© Springer-Verlag Berlin Heidelberg 2014
A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2014, LNCS 8602, pp. 374–385, 2014.
DOI: 10.1007/978-3-662-45523-4 31

http://planetwars.aichallenge.org/

Co-Evolutionary Optimization of Autonomous Agents 375

Our first approach in this field was the so-called GeneBot [1], which is an
evolutionary approach for the improvement of a bot’s decision engine. It consists
in a set of parametrised rules that model the behaviour of the bot, and which
was defined by an expert human player. Then, a Genetic Algorithm (GA) was
applied offline (not during the game) for evolving these parameters.

GeneBot was designed and optimized for 1 vs 1 battles, using a turn-based
fitness function. It evaluated all the individuals in the population by playing five
different matches (in five different maps) against a sparring bot provided by the
competition, trying to avoid with these repetitions the noisy factor present in
this problems (videogames) [2].

Thus, the fitness value for an individual could dramatically vary in different
matches, because it depends on the pseudo-stochastic opponent’s actions, and
also on its own non-deterministic decisions.

In this paper, the aim is to face 4vs matches, trying to define an evolutionary
approach which improves the cited behavioural engine (set of rules) to this type
of play. Thus, a co-evolutionary method has been proposed.

Co-evolutionary algorithms (CEA) [3] are those which consider different
groups of potential solutions (individuals) evolving inside an environment, some-
times interacting with it, and at the same time, being affected by it. Every set
of individuals which interact with the environment in the same way is called a
specie. In CEAs several species (usually two) are able to live and evolve in the
same environment grouped in populations.

The fitness of the individuals is usually calculated using some individuals of
other populations, according to the dependencies between species (interactions
among populations). Depending on these interactions the CEAs are classified in:

– Competitive co-evolutionary algorithms [4], where the fitness of an individual
depends on competition with other individuals from other species.

– Cooperative co-evolutionary algorithms [5], where the aim is to find individ-
uals from which better environment can be constructed. The fitness of an
individual depends on its ability to cooperate in solving the target problem
with individuals from other species.

In this work, both types have been implemented since the evolution is per-
formed following two different shapes for the four contenders in every match (in
the evaluation step): on one approach two of the contenders are individuals being
evolved at a specific generation, and the other two opponents with a fixed Artifi-
cial Intelligence (AI) engine. On the other approach, four different players corre-
sponding to four individuals being evolved are considered. These are respectively
baptised as previously knowledge-based approach and non-previously-knowledge-
based one. So, according to the previous taxonomy, both algorithms are competi-
tive in the fitness calculation step and cooperative regarding the problem solving
(find the best agents for this type of battles).The aim of using co-evolution is
mainly to reduce the computational time, since a set of individuals are evaluated
at a time (two or four, depending on the approach).

Moreover, three different fitness functions are also tested in the work, hav-
ing three different types: one based in the bot’s position and number of turns;

376 A. Fernández-Ares et al.

another one based in the computation of a linear regression based on the per-
centage of ships with respect to the total; and the last calculating the integral
of the function which represents these numbers.

Several experiments have been conducted analyzing the robustness of the
different fitness functions, and the influence and performance of the previous
knowledge consideration (or not) in the evolution.

2 State of the Art

Evolutionary Computation (EC) has been widely applied in the videogames
area, including the RTS games, in different issues, such as: automated tactics
generation [6], decision making improvement [7], or parameter optimisation in
behavioural engines [9]. This work is enclosed in the latter category, since it
considers a set of rules, initially defined by an expert, which model a bot’s AI in
the RTS Planet Wars. These rules are optimised regarding the set of parameters
which determine how the bot behaves. This kind of improvement was previously
performed by the authors by means of off-line (before the game) Evolutionary
Algorithms [1,8]. In the present paper the optimisation have been performed
using a Co-Evolutionary approach.

Co-Evolutionary Algorithms (CEAs) have been previously used in this scope,
initially regarding puzzle and board games such as Backgammon [10], or Go
[11]. The first work proposed a very simple hillclimbing algorithm to evolve a
population of neural networks, playing among them as rivals, in a competitive
co-evolutionary approach. The latter paper presented a co-evolutionary learning
approach which performed well once the EA was correctly tuned, moreover, this
method yields better players to solve small Go boards since every individual
is evaluated against a diverse population of rivals. In the same line, there are
some other works in the card games area, such as [12], aimed to create Poker
agents, considering a co-evolution process in which the players are part of the
learning process. This meant a difficult process to get robust strategies, due to
the variation in opponents, but the results shown to fit with some recommended
strategies according experts. The aim of the present work is to conduct a study
implementing a similar co-evolutionary approach, being competitive in the fit-
ness calculation, but cooperative since all the opponents are also part of the
same learning process (same population).

In recent years, this type of EAs has been also applied to videogames, enclosed
in the Computational Intelligence (CI) branch of AI. For instance Togelius et al.
[13] studied the co-evolution effects of some populations in car racing controllers,
comparing the performance of a single population against various, implementing
both generational and a steady-state approaches. Avery and Michalewicz intro-
duced in [14] a co-evolutionary algorithm (for the game TEMPO) which used
humans as rivals for the individuals in the evolutionary process. Cook et al. [15]
presented a cooperative co-evolutionary approach for the automated design of
levels in simple platform games. And recently Cardona et al. [16] studied the per-
formance of a competitive algorithm for the simultaneous evolution of controllers
to both Ms. PacMan and the Ghost Team which has to chase her.

Co-Evolutionary Optimization of Autonomous Agents 377

Regarding the RTS scope, there are also several related works, such as the
study by Livingstone [17], who compared several AI-modelling approaches for
RTS games, and proposed a framework to create new models by means of co-
evolutionary methods. He considered two levels of learning in a hierarchical AI
model (inside an own-created RTS), evolving at the same time different partners
in different strategic levels, so it was a cooperative approach. It is different to
the one proposed here, since in the present work the co-evolution occurs at the
same level for all the individuals. The work by Smith et al. [18] presents an
analysis on how a co-evolutionary algorithm can be used for improving students’
playing tactics in RTS games. Other authors proposed using co-evolution for
evolving team tactics [19]. However, the problem is how tactics are constrained
and parametrised and how the overall score is computed. Nogueira et al. [20]
considered in a recent publication the use of a Hall of Fame as a set of rivals (in
the evaluation function) inside a co-evolutionary algorithm to create autonomous
agents for the RTS RobotWars. This is an approach based in a self-learning
algorithm as the one we are proposing, but focused in a subset of individuals (the
elite) which can have a negative effect in the generalisation factor or the bots’
knowledge. We have tested our method considering different rivals, in different
studies. One of them is a previously optimized (and good-performing) bot, in
order to deal with the so-called previous knowledge (Section 3.1).

3 Cooperative and Competitive Evolution: Co-Bots

There are two types of co-evolution attending to the interaction between the
individuals in the population: cooperative and competitive. In this paper, it is
described a co-evolutionary algorithm that considers both sides.

Thus, on the one hand, there are simulated 4 on 4 battles where several bots
fight for the same goal: win the battle. That means that every bot competes
against each other, or in EA-based concepts, every individual in the population
competes for perpetuating its species. On the other hand, the cooperative factor
arises because every 4 on 4 battle is all versus all, so a single individual could
have assistance from others for killing a (temporary) common rival, since at the
end, only one must remain (the winner).

In addition, in the GA the individuals are sharing knowledge, because they
are living (and fighting) together. If the population is improved, the new off-
spring born of the previous parents will behave better.

One of the main problems of using EAs for training bots in this problem is the
huge amount of computational time needed for the evaluation, since it consists
in a simulation of several complete battles (in five different and representative
maps), moreover a reevaluation process will be performed in every generation
(of every individual). The aim of both processes is dealing with the noisy nature
of the fitness function due to the pseudo-stochasticity of the problem [2].

Theoretically, the use of a co-evolutionary approach would allow to reduce the
number of simulations needed, because the individuals are evaluated in groups.

For instance, in a population of 100, the use of co-evolution considering two
individuals per evaluation would reduce the number of evaluations in a half.

378 A. Fernández-Ares et al.

We will test two different approaches, considering both 4 bots simulations
and 2 bots simulations. The use of two or four individuals of the population in
the experiments depends respectively on the use (or not) of previous knowledge.

3.1 Previous Knowledge vs Auto-Generated Knowledge

In this work we understand as previous knowledge the consideration of a rival
evolved in a precedent work [1], GeneBot, which proved to be a very competent
rival in 1 on 1 battles. This bot will be used as a part of the evaluation process in
4vs battles. The aim is to study the influence of this so-called ‘previous knowl-
edge’ in the performance of the proposed Co-Evolutionary Genetic Algorithm
(Co-GA). To this end, several experiments have been conducted considering an
approach in which two of the rivals are GeneBots, and some others in which all
the rivals are individuals of the population being evolved. These are:

– Co-evolution with Previous Knowledge: In this case, battles between
two individuals of the population versus two of the best bots (GeneBots)
have been simulated in the evaluation process. It is expected that the Co-
Bots are able to learn the basis of the GeneBots, and improve for be better
rivals in 4 on 4 battles. To this end the algorithm rewards bots that, at least,
win in a battle against GeneBots. Since the approach will evaluate Co-Bots
in groups of two, the running time of this approach, will not be reduced in
a great factor during the training phase of the bots.

– Co-evolution with Auto-generated Knowledge: In this case, battles
with four individuals of the population have been tested. For this approach
the knowledge is included into the individual when it fights in previous bat-
tles, i.e., the rivals are included in the learning process. In this approach
a considerable running time reduction with respect to the previous one is
expected, because the number of evaluations has been reduced to the half.

3.2 Fitness Functions

In previous works, a bot was evaluated always versus the same bot (a reference
bot), several times (in different maps). The fitness function is defined depending
of the result of the battle (if the bot wins all its battles or loses in any of them)
and the number of turns needed for ending the game. For two bots, A and B the
fitness was defined as Fig. 1a shows.

This fitness works well for 1vs1, but in this work we have redefined it for 4vs
matches. Moreover two additional evaluation functions have been proposed.

Fitness Based in Position and Turns. This fitness is the natural evolution
of the previous one, applied to 4 bots battles. Again, the evaluations are done in
several maps. In this case, both the position (1th to 4th) of the bot in the battle,
and the number of turns needed, are included into the formula.

We define the term ferocity, regarding a bot that wins all its battles. This
factor is included in the fitness computation as the sum of turns the bot has

Co-Evolutionary Optimization of Autonomous Agents 379

A,B ∈ Population
if A WINs always then

if B LOSEs some battle then
A is better than B

else if A take less turns than B then
A is better than B

else
B is better than A

end if
else

if B WINs always then
B is better than A

else if A take less turns than B then
B is better than A

else
A is better than B

end if
end if

(a) Fitness considered in 1 vs 1 battles

A,B ∈ Population
if A average position < B average position then

A is better than B
else if A average position > B average position then

B is better than A
else

if A,B is always 1th then
if A take less turns than B then

A is better than B
else

B is better than A
end if

else
if A take less turns than B then

B is better than A
else

A is better than B
end if

end if
end if

(b) Fitness considered in 4vs battles

Fig. 1. Fitness functions based in turns and positions

needed to win. This sum is considered to select the best bot when more than
one wins all its battles, since a bot that wins in less turns is better than other
that wins needing more. In some other cases, the sum of turns is called sturdy,
and opposite to the ferocity, it is desirable a bot that take more turns in being
defeated. In Fig. 1b there is a formal definition of this fitness.

In this fitness, we are only interested in the final result (position and number
of turns). We do not include in the analysis how the bot has reached them. The
problem of this function is that the consideration of two different terms makes
it difficult the comparison between different evaluations. In order to let easier
comparisons two other fitness functions have been defined.

Both of them are based in the percentage of ships belonging to each player
in every turn. They are normalized considering the total number of ships in the
game for that turn (including neutrals ships in neutral planets). For each player,
we have a different cloud of ships.

Below, are described the two alternatives to deal with this cloud of points
for the fitness function: the use of slopes and areas.

Fitness Based in Slope. For this fitness, a square regression analysis is com-
puted in order to transform the cloud of points into a simple line. The line is
represented as y = α×x+β, where α and β are calculated as shown in Equations
1 and 2, computing a least squares regression. For every bot in the simulation we
calculate α and (slope). This slope is the fitness of every bot for that simulation.

α =
∑n

i=1(Xi − X̄i)(Yi − Ȳi)∑n
i=1(Xi − X̄i)2

(1)

β = Ȳ − αX̄ (2)

Theoretical maximum and minimum values are set for this fitness. An opti-
mum bot that wins in the first turn, has an ideal slope of 1, so this is the
maximum value of our fitness. On the other hand, a bot that loses in the first
turn, has a slope of −1. Thus, if we calculate the slope, we know if the bot

380 A. Fernández-Ares et al.

WINs (slope > 0) or LOSEs slope < 0. The values of the different battles are
summed to compute the global slope. Then, the bot with the highest value will
be the best is each turn or battle.

3.3 Fitness Based in Area

In this case, the integral of the curve of the bot’s live-line is used for calculating
the area that is ‘covered’ by the fitness cloud of points (see Equation 3). This
area is normalized considering the number of turns, and thus it represents the
average percentage of ships during the battle for each player.

area =

∫ t

0
%ships(x)dx

t
(3)

As in previous case, maximum and minimum values has been set for this
fitness. If an optimal bot wins in the first turn, the area of each live-line is close
to 1, so this is the maximum value of the fitness. Otherwise, if a bot loses in the
first turn, its live-line area is close to 0. In this case, we do not extract additional
about which bot wins the battle, because the area of the live-line is not related
with the winner of the battle. Thus, we are losing some information.

4 Experiments and Results

Several experiments have been conducted in order to study different issues of
the proposed approaches, but having in mind that the main objective is the
improvement of bots using a co-evolutionary algorithm. The set of parameters
considered in the Co-GA are: 100 individuals, 200 generations, 0.6 crossover
prob., 0.1 mutation prob., 20 elitism, and 2-tournament size. For each one of the
presented approaches (combinations of fitness functions and knowledge-related
methods), ten executions of the Co-GA have been performed.

As a first set of results, the average time consumed in the run of every
generation is plotted in Fig. 2. The values are, as expected, reduced in a half
in the previous knowledge approach (2 individuals per evaluation), and in 3/4
in the auto-generated knowledge (4 individuals per evaluation). This could be
non-surprising results, but there should be considered than the original method
evaluated 1vs1 battles, which are usually finished in less time than 4vs matches.

The second analysis concerns the fitness evolution. To this end the best,
worst, median and average (with standard deviation) fitness values are studied.
In Fig. 3 it can be seen the corresponding values to the best execution in every
case, i.e. that of the 10 runs which obtained the considered as the best bot.

In auto-generated knowledge fitness (Fig. 3b) it can be observed an homoge-
neous distribution throughout the generations, because the individuals are learn-
ing all of all, so the differences among them remain equal (in some limits) along
the whole evolutionary process. That figure shows a high variability (or oscilla-
tions) in the best fitness graph, due to the rivals (in evaluation) are included in
the learning process, so the population is not adapted to a common behavioural

Co-Evolutionary Optimization of Autonomous Agents 381

Turns Slope Area
1Bot (Original) 437.54
2Bots 228.329297 211.731592 236.6276169
4Bots 114.2168607 114.6121294 118.6207363

0
50

100
150
200
250
300
350
400
450
500

Av
er

ag
e S

ec
on

ds
Fitness

Fig. 2. Average time per generation (secs)

(a) Methods with previous knowledge:
from top to down Turns/Position, Slope
and Area

(b) Methods with auto-generated knowl-
edge: from top to down Turns/Position,
Slope and Area

Fig. 3. Best, worst, average, median and Std.Dev for fitness in every generation

pattern, but every individual must learn to compete against (potentially) N-1
different bots. This means that the best individual varies frequently.

In the case of previously knowledge fitness (Fig. 3a), it can be noticed a
slight improvement, on the average fitness in the first generations. This happens
because more and more individuals are able to beat the bots considered as rivals

382 A. Fernández-Ares et al.

Fig. 4. Results (positions) of 500 4vs battles between 3 GeneBots and a bot per each
method

(GeneBots), an expected result. In addition, and due to this behavioural pattern
to fight with, the evolution of the best fitness presents less variations.

Anyway, the noisy nature of the fitness function due to the problem itself [2],
remains here and this means that traditional evolution graphs (fitness improve-
ment with slight variations along generations) could not be obtained.

Next a comparison between the methods has been performed. The fitness
computation function is different for each method, so they can not be directly
compared (as they have different magnitudes). So it is necessary to perform
simulations in a wide range of maps and enemies to study how good they are.

First a fool bot (GoogleBot) has been chosen to simulate 400 battles. In these
battles, every bot obtained by Co-GA has to fight against 3 of these bots. The
results have been excellent, with 100% of victories of the Co-Bots against them.

Then, a tough set of rivals has been considered, being three copies of the
best bot previously obtained in other work, namely three GeneBots. 500 battles
against them have been simulated, and the results are shown in Fig. 4. The best
average results are obtained for the Co-Bots obtained using previous knowledge,
since they were trained to deal with at least two of them during the evolution.
However, the scenario here is quite different since there is another GeneBot
as rival. As a general result, in both cases, the worst performance is achieved
considering turns/position based fitness.

To study whether the bots actually achieved by the turn-based fitness are
really less competitive, we have conducted a simulation (3 vs 3) matching the
three bots achieved by the three fitness methods using, separately per knowledge
approach. Fig. 5a shows the results for each knowledge method. It is comple-
mented with the summed results plotted in Fig. 5b, which shows the sum per

Co-Evolutionary Optimization of Autonomous Agents 383

(a) Results (positions) per knowledge app-
roach

(b) Total sum of results (same posi-
tions) per fitness method, considering both
knowledge approches

Fig. 5. Results of 1000 3 vs 3 battles between the obtained bots

fitness method (for the two knowledge approaches). As it can be seen the bots
obtained with the fitness based in turns/positions perform clearly worse than
the others.

Finally, the top four of the yielded bots are tested in 500 battles between
them. There is one bot per fitness function, without considering the turn-based
ones (since they are worse). Fig. 6 shows how the bots have performed and
their position in the battles. As it can be seen Slope-based Co-Bots are better
than Area-based ones. Similarly, bots trained with previous knowledge, perform
better than those with auto-generated knowledge.

Fig. 6. Results (positions) of 500 4vs battles matching the four best bots obtained (one
per approach)

5 Conclusions and Future Work

This paper presents some cooperative co-evolutionary approaches for improving
autonomous agents for playing the RTS game Planet Wars. They are trained for
4 on 4 battles, considering two types of evaluation: based in previous knowledge
(i.e. against a previously obtained bot), and with auto-generated knowledge (i.e.
the rivals are included in the learning process). In addition three different fitness
functions have been tested for each method: a position/turns based one, linear
regression model and area computation, regarding the number of ships belonging
to the bot/individual to be evaluated in the last cases.

384 A. Fernández-Ares et al.

The first remarkable result is the significant reduction of the training time
needed, due to the use of co-evolution.

It has been shown that a position/turn-based fitness function is less effective
for training than one based on the study of curve resources (ships in this paper),
in co-evolutionary approaches. Regarding the two mathematical fitness, the one
based on the slope has proven to be slightly better, possibly due to a better
representation of the bots victories against losses. Another interesting result
point to that the use of previous knowledge can make a difference, but not very
significant. In the future it may be interesting to go deep in the study on the
real influence of the previous knowledge.

Moreover this paper opens up new lines of research on the proposed problem.
Such as the study of different ways for extracting knowledge from the population
for co-evolution, for example the use of a Hall of Fame as proposed by the authors
in [20], or the study of other mathematical fitness approximations. Regarding
the co-evolution, it could be studied a competitive approach in which there could
be different subpopulations devoted to improve different controllers for agents.

Acknowledgments. This paper has been partially funded by projects CANUBE
(CEI2013-P-14) and ANYSELF (TIN2011-28627-C04-02). The authors would also like
to thank the FEDER of European Union for financial support via project “Sistema de
Información y Predicción de bajo coste y autónomo para conocer el Estado de las Car-
reteras en tiempo real mediante dispositivos distribuido” (SIPEsCa) of the ”Programa
Operativo FEDER de Andalućıa 2007-2013”.

References

1. Fernández-Ares, A., Mora, A.M., Merelo, J.J., Garćıa-Sánchez, P., Fernandes,
C.: Optimizing player behavior in a real-time strategy game using evolution-
ary algorithms. In: IEEE Congress on Evolutionary Computation (CEC 2011),
pp. 2017–2024 (2011)

2. Mora, A.M., Fernández-Ares, A., Merelo, J.J., Garćıa-Sánchez, P., Fernandes,
C.M.: Effect of noisy fitness in real-time strategy games player behaviour optimi-
sation using evolutionary algorithms. J. Comput. Sci. Technol. 27(5), 1007–1023
(2012)

3. Paredis, J.: Coevolutionary computation. Artif. Life 2(4), 355–375 (1995)
4. Rosin, C.D., Belew, R.K.: New methods for competitive coevolution. Evol. Com-

put. 5(1), 1–29 (1997)
5. Potter, M.A., De Jong, K.A.: A cooperative coevolutionary approach to function

optimization. In: Davidor, Y., Männer, Reinhard, Schwefel, Hans-Paul (eds.) PPSN
1994. LNCS, vol. 866, pp. 249–257. Springer, Heidelberg (1994)

Co-Evolutionary Optimization of Autonomous Agents 385

6. Ponsen, M., Munoz-Avila, H., Spronck, P., Aha, D.W.: Automatically generating
game tactics through evolutionary learning. AI Magazine 27(3), 75–84 (2006)

7. Jang, S.H., Yoon, J.W., Cho, S.B.: Optimal strategy selection of non-player char-
acter on real time strategy game using a speciated evolutionary algorithm. In: Pro-
ceedings of the 5th IEEE Symposium on Computational Intelligence and Games
(CIG 2009), pp. 75–79. IEEE Press, Piscataway (2009)

8. Fernández-Ares, A., Garćıa-Sánchez, P., Mora, A.M., Merelo, J.J.: Adaptive bots
for real-time strategy games via map characterization. In: 2012 IEEE Conference
on Computational Intelligence and Games, CIG 2012, pp. 417–721. IEEE (2012)

9. Fernández-Ares, A., Mora, A.M., Merelo, J.J., Garćıa-Sánchez, P., Fernandes,
C.M.: Optimizing Strategy Parameters in a Game Bot. In: Cabestany, J., Rojas,
I., Joya, G. (eds.) IWANN 2011, Part II. LNCS, vol. 6692, pp. 325–332. Springer,
Heidelberg (2011)

10. Pollack, J.B., Blair, A.D.: Co-evolution in the successful learning of backgammon
strategy. Mach. Learn. 32, 225–240 (1998)

11. Runarsson, T.P., Lucas, S.M.: Co-evolution versus self-play temporal difference
learning for acquiring position evaluation in smallboard go. IEEE Trans. Evol.
Comput. 9(6), 628–640 (2005)

12. Thompson, T., Levine, J., Wotherspoon, R.: Evolution of counter-strategies: Appli-
cation of co-evolution to texas hold’em poker. In: IEEE Symposium on Computa-
tional Intelligence and Games (CIG 2008), pp. 16–22. IEEE (2008)

13. Togelius, J., Burrow, P., Lucas, S.M.: Multi-population competitive co-evolution
of car racing controllers. In: IEEE Congress on Evolutionary Computation (CEC
2007), pp. 4043–4050 (2007)

14. Avery, P.M., Michalewicz, Z.: Adapting to human game play. In: IEEE Symposium
on Computational Intelligence and Games (CIG 2008), pp. 8–15 (2008)

15. Cook, M., Colton, S., Gow, J.: Initial Results from Co-operative Co-evolution for
Automated Platformer Design. In: Di Chio, C., et al. (eds.) EvoApplications 2012.
LNCS, vol. 7248, pp. 194–203. Springer, Heidelberg (2012)

16. Cardona, A., Togelius, J., Nelson, M.: Competitive coevolution in Ms. Pac-Man. In:
IEEE Congress on Evolutionary Computation (CEC 2013), pp. 1403–1410 (2013)

17. Livingstone, D.: Coevolution in hierarchical ai for strategy games. In: IEEE Sym-
posium on Computational Intelligence and Games (CIG 2005). IEEE (2005)

18. Smith, G., Avery, P., Houmanfar, R., Louis, S.: Using co-evolved rts opponents
to teach spatial tactics. In: IEEE Symposium on Computational Intelligence and
Games (CIG 2010), pp. 146–153 (2010)

19. Avery, P., Louis, S.: Coevolving team tactics for a real-time strategy game. In:
IEEE Congress on Evolutionary Computation (CEC 2010), pp. 1–8 (2010)

20. Nogueira, M., Cotta, C., Fernández-Leiva, A.J.: An Analysis of Hall-of-Fame
Strategies in Competitive Coevolutionary Algorithms for Self-Learning in RTS
Games. In: Nicosia, G., Pardalos, P. (eds.) LION 7. LNCS, vol. 7997, pp. 174–188.
Springer, Heidelberg (2013)

Sharing Information in Adversarial Bandit

David L. St-Pierre1,2(B) and Olivier Teytaud2

1 Montefiore Institute, Department of Electrical Engineering and Computer Science,
Liège University, 4000 Liège, Belgium

dlspierre@ulg.ac.be
2 TAO, Inria, Université Paris-Sud, UMR CNRS 8623, Paris, France

Abstract. 2-Player games in general provide a popular platform for
research in Artificial Intelligence (AI). One of the main challenges com-
ing from this platform is approximating a Nash Equilibrium (NE) over
zero-sum matrix games. While the problem of computing such a Nash
Equilibrium is solvable in polynomial time using Linear Programming
(LP), it rapidly becomes infeasible to solve as the size of the matrix
grows; a situation commonly encountered in games. This paper focuses
on improving the approximation of a NE for matrix games such that
it outperforms the state-of-the-art algorithms given a finite (and rather
small) number T of oracle requests to rewards. To reach this objective, we
propose to share information between the different relevant pure strate-
gies. We show both theoretically by improving the bound and empirically
by experiments on artificial matrices and on a real-world game that infor-
mation sharing leads to an improvement of the approximation of the NE.

Keywords: Bandit problem · Monte-Carlo · Nash Equilibrium · Games

1 Introduction

2-Player games in general provide a popular platform for research in Artifi-
cial Intelligence (AI). One of the main challenges coming from this platform
is approximating the Nash Equilibrium (NE) over zero-sum matrix games. To
name a few games where the computation (or approximation) of a NE is rel-
evant, there is Rock-Paper-Scissor, Battleship, partially observable variants of
Chess [4,10], and all games with a simultaneous metagaming part (e.g. choos-
ing a deck in a card game) or simultaneous moves [12]. Such a challenge is not
only important for the AI community. To efficiently approximate a NE can also
help solving several real life problems. One can think, for example, of financial
applications [5] or psychology [7].

While the problem of computing a Nash Equilibrium is solvable in polynomial
time using Linear Programming (LP), it rapidly becomes infeasible to solve as
the size of the matrix grows; a situation commonly encountered in games. Thus,
an algorithm that can approximate a NE faster than polynomial time is required.
[3,6,8] show that it is possible to ε-approximate a NE for a zero-sum game by

c© Springer-Verlag Berlin Heidelberg 2014
A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2014, LNCS 8602, pp. 386–398, 2014.
DOI: 10.1007/978-3-662-45523-4 32

Sharing Information in Adversarial Bandit 387

accessing only O(K log(K)
ε2) elements in a K × K matrix. In other words, in far

less than the total number of elements in the matrix.
The early studies assume that there is an exact access to reward values for

a given element in a matrix. It is not always the case. In fact, the exact value
of an element can be difficult to know, as for instance when solving difficult
games. In such cases, the value is only computable approximately. [1] considers
a more general setting where each element of the matrix is only partially known
from a finite number of measurements. They show that it is still possible to
ε-approximate a NE provided that the average of the measurements converges
quickly enough to the real value.

[11,12] propose to improve the approximation of a NE for matrix games by
exploiting the fact that often the solution is sparse. A sparse solution means that
there are many pure (i.e. deterministic) strategies, but only a small subset of
these strategies are part of the NE. They used artificial matrix games and a real
game, namely Urban Rivals, to show a dramatic improvement over the current
state-of-the art algorithms. The idea behind their respective algorithms is to
prune uninteresting strategies, the former in an offline manner and the latter
online.

This paper focuses on further improving the approximation of a NE for zero-
sum matrix games such that it outperforms the state-of-the-art algorithms given
a finite (and rather small) number T of oracle requests to rewards. To reach
this objective, we propose to share information between the different relevant
strategies. To do so, we introduce a problem dependent measure of similarity
that can be adapted for different challenges. We show that information sharing
leads to a significant improvement of the approximation of a NE.

The rest of the paper is divided as follow. Section 2 formalizes the prob-
lem and introduces notations. The algorithm is defined in Section 3. Section
4 evaluates our approach from a theoretical point of view. Section 5 evaluates
empirically the proposed algorithm and Section 6 concludes.

2 Problem Statement

We now introduce the notion of Nash Equilibrum in Section 2.1, define a generic
bandit algorithm in Section 2.2 and Section 2.3 states the problem that we
address in this paper.

2.1 Nash Equilibrium

Consider a matrix M of size K1 × K2 with rewards bounded in [0, 1], player 1
chooses an action i ∈ K1 and player 2 chooses an action j ∈ K2

1. In order to
keep the notations short and because the extension is straightforward, we will
assume that K1 = K2 = K. Then, player 1 gets reward Mi,j and player 2 gets
reward 1 − Mi,j . The game therefore sums to 1. We consider games summing
to 1 for commodity of notations, but 0-sum games are equivalent. A NE of the
1 From here on in, we will do a small abuse of notation by stating Kp = [[1, Kp]] ∀

player p and where [[·, ·]] represents a discrete set.

388 D.L. St-Pierre and O. Teytaud

game is a pair (x∗, y∗) both in [0, 1]K such that if i and j are chosen according
to the distribution x∗ and y∗ respectively (i.e i = k with probability x∗

k and
j = k with probability y∗

k with k ∈ K), then neither player can expect a better
average reward through a change in their strategy distribution.

As mentioned previously, [11,12] observe that in games, the solution often
involves only a small number of actions when compared to the cardinality of the
set K. In other words, often {i;x∗

i > 0} and {j; y∗
j > 0} both have cardinality

<< K. The sparsity assumption is not a necessity to ensure convergence, but it
makes convergence faster.

2.2 Generic Bandit Algorithm

The main idea behind a bandit algorithm (adversarial case) is that it iteratively
converges towards a NE. Bandit algorithms have the characteristic of being ‘any-
time’, which means they can stop after any number of iterations and still output
a reasonably good approximation of the solution. For a given player p ∈ P where
P = [[1, 2]] for a 2-player game, each possible action is represented as an arm
ap ∈ Kp and the purpose is to determine a probability distribution θp over
the set of actions, representing a mixed (randomized) strategy as a probability
distribution over deterministic (pure) strategies.

During the iteration process, each player selects an arm from their own set
of actions Kp, forming a pair of action (a1, a2), according to their current dis-
tribution θp and their selection policy πp(·). A selection policy πp(·) ∈ Kp is
an algorithm that selects an action ap ∈ Kp based on the information at hand.
Once the pair of action (a1, a2) is selected, a reward rt is computed for the tth

iteration. Based upon the reward, both distributions θ1 and θ2 are updated. A
detailed description of the selection policies and the distribution updates used
in this paper are provided in Section 3.

Such a process is repeated until the allocated number of iterations T has
been executed. Afterward, the action to be executed consists in choosing an arm
âp according to the information gathered so far. The pseudo code for a generic
bandit algorithm up to the recommendation of âp is provided in Algorithm 1.

2.3 Problem Statement

In most of the bandit literature, it is assumed that there is no structure over
the action set Kp. Consequently, there is essentially only one arm updated for
any given iteration t ∈ T . In games however, the reasons for sharing information
are threefolds. First, each game possesses a specific set of rules. As such, there
is inherently an underlying structure that allows information sharing. Second,
the sheer number of possible actions can be too large to be efficiently explored.
Third, to get a precise reward rt can be a difficult task. For instance, computing
rt from a pair of arms (a1 and a2) can be time consuming or/and involve highly
stochastic processes. Under such constraints, sharing information along Kp seems
a legitimate approach. Given ψ = (ψ1, ψ2) that describes some structure of the
game, we propose an algorithm αψ that shares information along the set of

Sharing Information in Adversarial Bandit 389

Algorithm 1. Generic Bandit Algorithm. The problem is described through
the “get reward” function and the action sets. The “return” method is formally
called the recommendation policy. The selection policy is also commonly termed
exploration policy.
Require: T > 0: Computational budget
Require: P = [[1, 2]]: Set of players
Require: Kp: Set of actions specific for each p ∈ P
Require: πp: Selection policy

Initialize θp: Distribution over the set of actions Kp

for t = 1 to T do
Select ap ∈ Kp based upon πp(θp) (for p ∈ [[1, 2]])
Get reward rt = getReward(a1, a2): player 1 receives rt and player 2 receives

1 − rt.
Update θp using rt (for p ∈ [[1, 2]])

end for
Return âp

actions Kp. To do so, we propose to include a measure of similarity ψp(·, ·)
between actions of player p. Based upon the measure ψp(·, ·), the algorithm αψ

shares the information with all other arms deemed similar. The sharing process
is achieved by changing the distribution update of θp.

3 Selection Policies and Updating Rules

As mentionned in Section 2.2, a selection policy π(·) is an algorithm that selects
an action ap ∈ Kp based upon information gathered so far. There exist several
selection policies in the context of bandit algorithms, [9] studied the most popu-
lar, comparing them in a Monte-Carlo Tree Search architecture. Here we develop
a variant of a selection policy π(·) relevant in the adversarial case called EXP3
[3]. Throughout this section, the reference to a specific player p is avoided to
keep the notation short.

Section 3.1 describes the EXP3 selection policy. Section 3.2 presents a rec-
ommendation policy, TEXP3 [12] dedicated to sparse Nash Equilibria. Finally,
Section 3.3 introduces the notion of similarity and define our new updating rule.

3.1 EXP3

This selection policy is designed for adversarial problems. For each arm a ∈ K,
we gather the following quantities:

– ta, the number of simulations involving arm a, or its visit count.
– θa, the current probability to select this arm
– wa, a weighted sum of rewards

The idea is to keep a cumulative weighted sum of reward per arm and use it to
infer a distribution of probability over the different arm. An interesting fact is

390 D.L. St-Pierre and O. Teytaud

that it is not the probability θa that converges to the Nash, but the counter ta.
More formally, every time an arm a receives a reward rt, the value wa is updated
as follows:

wa ← wa +
rt

θa
(1)

for the player which maximizes its reward (rt is replaced by 1 − rt for the oppo-
nent).

At any given time, the probability θa to select an action a is defined as:

θa � (1 − γ)
exp(ηwa)∑

k∈K

exp(ηwk)
+

γ

C
, (2)

where η > 0 and γ ∈]0; 1] and C ∈ R are three parameters to tune. � stands for
“is proportional to”.

3.2 TEXP3

This recommendation policy is an extension of EXP3. It is a process that is
executed only once before choosing â, the arm to be pulled. Basically, it uses the
property that, over time, the probability to pull an arm a, given by the ratio ta

T ,
that is not part of the optimal solution will tend toward 0. Therefore, for all arms
a ∈ K deemed to be outside the optimal solution, it artificially truncates these
arms. The decision whether an arm is part of the NE is based upon a threshold
c. Following [12], the constant c is chosen as max

a∈K

(T×ta)
α

T , where α ∈]0, 1]. If

the ratio ta

T of an arm a ∈ K is below such threshold, it is removed and the
remaining arms have their probability rescaled accordingly.

3.3 Structured EXP3

As mentioned previously, one of the main reason for sharing information is to
exploit a priori regularities that are otherwise time consuming to let an algo-
rithm find by itself. The core idea is that simliar arms are likely to produce
similar results. The sharing of information is mostly important in the early iter-
ations because afterwards the algorithm gathers enough information to correctly
evaluate each individual relevant arms.

EXP3 uses an exponential at its core combined with cumulative rewards.
One must be careful about the sharing of information under such circumstance.
The exponential makes the algorithm focus rapidly on a specific arm. The use of
cumulative reward is also problematic. For example, sharing several times a low
reward can, over time, mislead the algorithm into thinking an arm is better than
one that received only once a high reward. To remedy this situation, we only
share when the reward is interesting. To keep it simple, the decision whether to
share or not is made by a threshold ζ that is domain specific.

Lets define ϕa ⊆ K as a set of arms that are considered similar to a based
upon the measure ψ(a, k), i.e. ϕa = {k;ψ(a, k) > 0}. If rt > ζ, for all k ∈ ϕa we
update as follow:

wk ← wk +
rt

θk
. (3)

Sharing Information in Adversarial Bandit 391

The probability θk to select an action k is still defined as:

θk � (1 − γ)
exp(ηwk)∑

k′∈K

exp(ηwk′)
+

γ

C
, (4)

where η > 0, γ ∈]0; 1] and C ∈ R are three parameters to tune. In the case where
rt ≤ ζ, the update is executed following (1) and (2).

4 Theoretical Evaluation

In this section we present a simple result showing that structured-EXP3 performs
roughly S times faster when classes of similar arms have size S. The result is
basically aimed at showing the rescaling of the update rule.

A classical EXP3 variant (from [1]) uses, as explained in Alg. 2, the update
rule

θa = γ/C + (1 − γ)
exp(ηωa)∑

k∈K

exp(ηωk)
,

where C = K, γ = min(0.8

√
log(K)

Kt
, 1/K) and η = γ.

Note that the parameters γ and η depend on t, removed for shorter notation.
The pseudo-regret L after T iterations is defined as:

LT = max
k∈K

E

(
T∑

t=1

rt(k) − rt

)

where rt is the reward obtained at iteration t and rt(k) is the reward which would
have been obtained at iteration t by choosing arm k at iteration t. Essentially,
the pseudo-regret is non-negative, and is zero if we always choose an arm that
gets optimal reward. With this definition, EXP3 verifies the following[1,2]:

Theorem 1: Pseudo-regret L of EXP3.
Consider a problem with K arms and 1-sum rewards in [0, 1]. Then, EXP3 verifies

LT ≤ 2.7
√

TKln(K).

It is known since [6] that it is not possible to do better than the bound above,
within logarithmic factors, in the general case.

We propose a variant, termed Structured-EXP3 or sEXP3, for the case
in which for each arm a, there is a set ϕa (of cardinality S) containing arms
similar to a. Under mild assumptions upon ϕa, the resulting algorithms has
some advantages over the baseline EXP3. The parameters γ and η for sEXP3
are defined by Eq. (5) (C = K is preserved, as in EXP3).

γ = min(0.8

√
S log(K/S)

Kt
, S/K) and η = γ/S. (5)

392 D.L. St-Pierre and O. Teytaud

Algorithm 2. The EXP3 algorithm as in [1] (left) and TEXP3, sEXP and
sTEXP3 variants (right). Strategies are given for player 1. Player 2 use 1 − rt

instead of rt.

for each iteration t ∈ [[1, T]] do
Selection policy π: choose arm a

with probability θa (Eq. 4).
Get reward rt.
Update ωa:

wa ← wa +
rt

θa
.

end for
Recommendation: choose arm â with
probability nT (a) = ta

T
.

for each iteration t ∈ [[1, T]] do
Selection policy π: choose arm a

with probability θa (Eq. 4).
Get reward rt.
Update ωa: wa ← wa + rt

θa
.

if sEXP3 or sTEXP3 and rt < ζ
then

for each b ∈ ϕ(a) \ a do

wb ← wb +
rt

θb
.

end for
end if

end for
if TEXP3/sTEXP3 then

if ta/T ≤ c then
Set ta = 0.

end if
Rescale ta: ta ← ta/

∑
b∈K

tb.

end if
Recommendation: choose arm â with
probability nT (a) = ta

T
.

In other words, γ is designed (as detailed in the theorem below) for mimicking
the values corresponding to the problem with K/S arms instead of K arms and
η is designed for avoiding a too aggressive pruning.

The following theorem is aimed at showing that parameters in Eq. (5) ensure
that Structured-EXP3 emulates EXP3 on a bigger problem with a particular
structure.
Theorem 2: Structured-EXP3 and Pseudo-regret.
Consider a problem where there are K ′ classes of S similar arms i.e. K = K ′ ×S
(arms from different classes have no similarity); ϕa is the set of arms of the same
class as arm a. Assume that all arms in a class have the same distribution of
rewards, i.e. a ∈ ϕb implies that a and b have the same distribution of rewards
against any given strategy of the opponent. Set ζ = −∞. Then, Structured-EXP3
verifies

LT ≤ 2.7
√

T (K/S)ln(K/S),

where S is the cardinal of ϕa (whereas the EXP3 bound is 2.7
√

TKlnK).
Proof: For this proof, we compare the Structured-EXP3 algorithm with K arms
including classes of S similar arms (i.e. ∀ a ∈ [[1,K]], ϕa = S) and an EXP3
algorithm working on an ad hoc problem with K/S arms. The ad hoc problem
is built as follows.

Sharing Information in Adversarial Bandit 393

Instead of arms A = [[1,K]] (ordered by similarity, so that blocks of S
successive arms are similar) for the Structured-EXP3 bandit, consider arms
A′ = [[1, S + 1, 2S + 1, . . . , K − S + 1]] for the EXP3 bandit. Consider the
same reward as in the Structured-EXP3 bandit problem.

Any mixed strategy on the EXP3 problem can be transformed without chang-
ing its performance into a mixed strategy on the Structured-EXP3 problem
by arbitrarily distributing the probability of choosing arm k ∈ A′ onto arms
[[k, k + 1, . . . , k + S − 1]] ⊂ A.

Let us use θ′
a′ , the probability that EXP3 chooses a′ ∈ A′; and ω′

a′ , the sum
of rewards associated to a′ ∈ A′ for EXP3 (notations with no “prime” are for
Structured-EXP3). We now show by induction that

– ωa = S ×ω′
a′ for a ∈ A similar to a′ ∈ A′ when EXP3 and Structured-EXP3

have the same history2;
– θa = 1

S θ′
a′ for a ∈ A similar to a′ ∈ A′.

The proof is based on the following steps, showing that when the induction
properties hold at some time step then they also hold at the next time step. We
assume that ωa = S ×ω′

a′ (for all a′ ∈ A′ similar to a) at some iteration, and we
show that it implies θa = 1

S θ′
a′ at the same iteration (also for all a′ ∈ A′ similar

to a) and that ωa = S × ω′
a′ at the next iteration (also for all a′ ∈ A′ similar to

a). More formally, we show that

∀(a, a′) ∈ A × A′, a ∈ ϕa′ , ωa = S × ω′
a′ (6)

implies ∀(a, a′) ∈ A × A′, a ∈ ϕa′ , θa =
1
S

× θ′
a′ (7)

and at next iteration Eq. (6) still holds. The properties of Eq. (6) and Eq. (7)
hold at the initial iteration (we have only zeros) and the induction from one step
to the next is as follows:

– Let us show that Eq. (6) implies Eq. (7), i.e. if, for all a, ωa for
Structured-EXP3 is S times more than ω′

a′ for a′ ∈ A′ similar to a,
then the probability for Structured-EXP3 to choose an arm a ∈ A
similar to a′ ∈ A′ is exactly S times less than the probability for
EXP3 to choose a′. The probability that Structured-EXP3 chooses arm
a at iteration t given an history a1, . . . , at−1 of chosen arms with rewards
r1, . . . , rt−1 until iteration t − 1 is

θa = (1 − γ)
exp(ηwa)∑

k∈K

exp(ηwk)
+

γ

K
, (8)

which is exactly S times less than the probability that EXP3 chooses arm
�(a−1)/S�+1 given a history �(a1−1)/S�+1, �(a2−1)/S�+1,. . . ,�(at−1−
1)/S� + 1. Thus,

θa =
1
S

θ′
a′ .

2 The set of arms are not the same in Structured-EXP3 and EXP3. By same history
we mean up to the projection a → a′ = �(a − 1)/S� + 1.

394 D.L. St-Pierre and O. Teytaud

This is the case because the S additional factor in ωa is compensated by
the S denominator in Eq. (5) so that terms in the exponential are the same
as in the Structured-EXP3 case; but the numerator is S times bigger. This
concludes the proof that Eq. (7) holds.

– We now show that the probability that Structured-EXP3 chooses an
arm in [[a′, a′ + 1, . . . , a′ + S − 1]] similar to a′ ∈ A is the same as the
probability that EXP3 chooses a′ ∈ A′ (given the same history).
The update rule in Structured-EXP3 ensures that ωa = ωb as soon as a and
b are similar. So the probability of an arm of the same class as a ∈ A to be
chosen by Structured-EXP3 is exactly the probability of a′ ∈ A′ (similar to
A) being chosen by EXP3: ∑

a similar to a′

θa = θ′
a′ . (9)

– Let us now show that Eq. (6) and Eq. (7) implies Eq. (6) at the
next iteration, i.e. the weighted sum of rewards ωa for a ∈ A is
S times more than the weighted sum of rewards ω′

a′ for a similar
to a′ (given the same histories). This is because (i) probabilities that
Structured-EXP3 chooses an arm a among those similar to an arm a′ is the
same as the probability that EXP3 chooses a′ (given the same history), as
explained by Eq. (9), and (ii) probabilities used in the update rule are divided
by S in the case of Structured-EXP3 (updates have K at the denominator).
This concludes the induction, from an iteration to the next.

5 Experiments

This section describes a set of experiments that evaluates the quality of our
approach. The first testbed is automatically generated sparse matrices and the
results are presented in section 5.1. The second testbed, presented in section 5.2,
is the game Urban Rivals (UR), an internet card game. Throughout this section,
we used 3 baselines: EXP3, TEXP3 and Random. The parameters γ, η and
C were tuned independantly for each testbed (and each algorithm) to ensure
they are performing as good as they can. For the automatically generated sparse
matrices, the set of parameters that gave the best results are η = 1√

t
, γ = 1√

t
,

C = 0.65 and α = 0.8. In the game Urban Rivals, the best values found for the
parameters are η = 1√

t
, γ = 1√

t
, C = 0.7 and α = 0.75.

As a reminder, we add the prefix s when we exploit the notion of distance.
The distance ψ(·, ·) is specific to the testbed and is thus defined in each section.

5.1 Artificial Experiments

First we test on automatically generated matrices that have a sparse solution
and contain an exploitable measure of distance between the arms. We use matrix
M defined by Mi,j = 1

2 + 1
5 (1 + cos(i × 2 × π/100))χi mod ω − 1

5 (1 + cos(j × 2 ×

Sharing Information in Adversarial Bandit 395

pi/100))χj mod ω, where ω ∈ N is set to 5 and M is of size 50 × 50. The distance
ψ(·, ·) is based on the position of the arm in the matrix. It is defined such that
the selected arm a and k ∈ K have a similarity

ψ(a, k) =

{
1 if (k′ − a′) mod ω = 0
0 otherwise,

(10)

where k′ and a′ are the position of respectively k and a in the matrix M . The
set ϕa includes all k where ψ(a, k) = 1. At any t ∈ T the reward is given by the
binomial distribution rt ∼ B(20,M(i, j)), where 20 is the number of Bernoulli
trials with parameter M(i, j). The threshold ζ is fixed at 0.8 and for any given
T , the experiment is repeated 100 times.

Figure 1 analyses the score (%) in relation to the maximal number of itera-
tions T of our approach playing against the baselines. Figure 1(a) presents the
results of sEXP3 and EXP3 playing against the baseline Random. Figure 1(b)
shows sTEXP3 and TEXP3 also playing against the baseline Random. Figure
1(c) depicts the results of sEXP3 playing against EXP3 and sTEXP3 playing
against TEXP3.

0 100 200 300 400 500 600 700 800 900 1000
0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

sEXP3
EXP3

(a) Without Truncation
0 100 200 300 400 500 600 700 800 900 1000

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

sTEXP3
TEXP3

(b) With Truncation
0 100 200 300 400 500 600 700 800 900 1000

0.5

0.52

0.54

0.56

0.58

0.6

0.62

(a)
(b)

(c) Exploit Structure vs
Not

Fig. 1. Performance (%) in relation to the number of iterations T of our approach
compared to different baselines. Each of the 99 different positive abscissa is an inde-
pendent run, so the null hypothesis of an average ordinate ≤ 50% is less than 10−29.
We see that (a) sEXP3 converges faster than EXP3 (in terms of success rate against
random), (b) sTEXP3 converges faster than TEXP3 (in terms of success rate against
random), (c.a) sEXP3 outperforms EXP3 (direct games of sEXP3 vs EXP3) and (c.b)
sTEXP3 outperforms TEXP3 (direct games of sTEXP3 vs TEXP3).

Figure 1(a) shows that sEXP3 significantly outperforms EXP3. It requires
as little as T = 30 iterations to reach a significant improvement over EXP3. As
the maximal number of iterations T grows, sEXP3 still clearly outperforms its
counterpart EXP3.

Figure 1(b) shows again a clear improvement of exploiting the structure
(as in sTEXP3) versus not (as in TEXP3). It requires T = 30 iterations to
reach a significant improvement. The score in Figure 1(b) are clearly higher

396 D.L. St-Pierre and O. Teytaud

than in Figure 1(a), which is in line with previous findings. Moreover, a Nash
player would score 87.64% versus the Random baseline. The best score 75.68% is
achieved by sTEXP3 which is fairly close to the Nash, using only 1 000 requests
to the matrix.

The results in Figure 1(c) are in line with Figure 1(a) and 1(b). The line
representing sEXP3 versus EXP3 (labeled (a) in reference to Figure 1(a))
shows that even after T = 1 000 iterations, EXP3 does not start to close the
gap with sEXP3. The line representing sTEXP3 versus TEXP3 shows that
it takes around T = 500 iterations for TEXP3 to start filling the gap with the
algorithm that shares information sTEXP3. Yet even after T = 1 000 it is still
far from performing as well.

Overall for this testbed, the sharing of information greatly increases the per-
formance of the state-of-the-art algorithms. The good behavior of sparsity tech-
niques such as TEXP3 is also confirmed.

5.2 Urban Rivals

Urban Rivals (UR) is a widely played internet card game, with partial informa-
tion. As pointed out in [12], UR can be consistently solved by a Monte-Carlo
Tree Search algorithm (MCTS) thanks to the fact that the hidden information
is frequently revealed. A call for getting a reward leads to 20 games played by
a Monte-Carlo Tree Search with 1 000 simulations before an action is chosen.
Reading coefficients in the payoff matrices at the root is quite expensive, and we
have to solve the game approximately.

We consider a setting in which two players choose 4 cards from a finite set of
10 cards. We use two different representations. In the first one, each arm a ∈ K is
a combination of 4 cards and K = 104. In the second representation, we remove
redundant arms. There remain K = 715 different possible combinations if we
allow the same card to be used more than once in the same combination.

There are two baseline methods tested upon UR, namely EXP3 and TEXP3.
The distance ψ(·, ·) is based on the number of similar cards. It is defined

such that the selected arm a and k ∈ K have a distance ψ(a, k) = 1
if k and a share more than 2 cards and 0 otherwise. The set ϕa includes all k
where ψ(a, k) = 1. At any t ≤ T the reward rt is given by 20 games played with
the given combinations. The threshold ζ is fixed at 0.8 and for any given T .

For a given number of iterations T , each algorithm is executed 10 times
and the output is saved. To compute the values in Figure 2, we play a round-
robin (thus comparing 10×10 different outputs) where each comparison between
two outputs consist in repeating 100 times the process of selecting an arm and
executing 20 games.

Figure 2 presents the score (%) in relation to the maximal number of itera-
tions T of our approach playing against their respective baselines. Figure 2(a)
presents the results of sEXP3 playing against EXP3. Figure 2(b) shows
sTEXP3 playing against TEXP3. In both cases, we present the results for
2 different representations (K = 104, and K = 715).

Figure 2(a) shows that sEXP3 significantly outperforms EXP3 indepen-
dently of the representation since the values are far behond 50%. Even at the

Sharing Information in Adversarial Bandit 397

100 200 300 400 500 600 700 800 900 1000
0.55

0.56

0.57

0.58

0.59

0.6

0.61

0.62

0.63

0.64

0.65

K = 104

K = 715

(a) sEXP3 vs EXP3
100 200 300 400 500 600 700 800 900 1000

0.58

0.59

0.6

0.61

0.62

0.63

0.64

0.65

0.66

0.67

K = 104

K = 715

(b) sTEXP3 vs TEXP3

Fig. 2. Performance (%) in relation to the number of iterations T of our approach
compared to different baselines. Standard deviations are smaller than 1%. We see that
(a) sEXP3 outperforms EXP3 in both versions (game with 10K arms and game with
715 arms) (b) sTEXP3 outperforms TEXP3 in both versions (game with 10K arms
and game with 715 arms).

lowest number of iterations (T = 100), there is a significant improvement over
EXP3 with both representations (K = 104 and K = 715). As the maximal
number of iterations T grows, sEXP3 still clearly outperforms its counterpart
EXP3. Moreover, Figure 2(a) shows that the representation impacts greatly on
the quality of the results. The discrepancy between the two lines is probably
closely related to the ratio T

K . For instance, when T = 1 000 and K = 104 the
score is equal to 60.88%. If we compare such a result to T = 100 and K = 715,
a ratio T

K relatively close, the score (60.22%) is rather similar.
Figure 2(b) shows that sTEXP3 significantly outperforms TEXP3 inde-

pendently of the representation since the values are also far beyond 50%. The
conclusion drawn from Figure 2(b) are quite similar to the ones from Figure
2(a). However, the sudden drop at T = 1 000 and K = 715 indicates that
TEXP3 also start to converge toward the Nash Equilibrium, thus bringing the
score relatively closer to the 50% mark.

For the game UR, it seems that sharing information does also greatly improve
the performance of the state-of-the-art algorithms.

6 Conclusion

In this paper, we present an improvement over state-of-the-art algorithms to
compute an ε-approximation of a Nash Equilibrium for zero-sum matrix games.
The improvement consist in exploiting the similarities between arms of a bandit
problem through a notion of distance and share information among them.

From a theoretical point of view, we compute a bound for our algorithm that
is better than the state-of-the-art by a factor roughly based on the number of
similar arms.

398 D.L. St-Pierre and O. Teytaud

Moreover, empirical results on the game of Urban Rival and automatically
generated matrices show a significant better performance of the algorithms that
share information compared to the ones that do not. This is when results are
compared on the basis of EXP3 parameters that are optimized on the applica-
tion.

As future work, the next step is to create a parameter free version of our
algorithm, for instance by automatically fixing the parameter ζ. Also, so far we
solely focus on problem where the total number of iterations T is too small for
converging to the NE. As the maximal number of iterations T gets bigger, there
would be no reason for sharing information anymore. A degradation function can
be embedded into the updating rule to ensure convergence. We do not know for
the moment whether we should stop sharing information depending on rewards
(using ζ; if the game is symmetric, this implicitly eventually stops sharing),
depending on iterations (using a limit on t/T) or more sophisticated criteria.

References

1. Audibert, J., Bubeck, S.: Minimax policies for adversarial and stochastic bandits.
In: 22nd Annual Conference on Learning Theory (COLT), Montreal (June 2009)

2. Auer, P.: Using confidence bounds for exploitation-exploration trade-offs. The
Journal of Machine Learning Research 3, 397–422 (2003)

3. Auer, P., Cesa-Bianchi, N., Freund, Y., Schapire, R.E.: Gambling in a rigged casino:
the adversarial multi-armed bandit problem. In: Proceedings of the 36th Annual
Symposium on Foundations of Computer Science, pp. 322–331. IEEE Computer
Society Press, Los Alamitos (1995)

4. Ciancarini, P., Favini, G.P.: Monte carlo tree search in kriegspiel. Artif. Intell.
174(11), 670–684 (2010)

5. Grenadier, S.R.: Option exercise games: An application to the equilibrium invest-
ment strategies of firms. Review of financial studies 15(3), 691–721 (2002)

6. Grigoriadis, M.D., Khachiyan, L.G.: A sublinear-time randomized approximation
algorithm for matrix games. Operations Research Letters 18(2), 53–58 (1995)

7. Hedden, T., Zhang, J.: What do you think i think you think?: Strategic reasoning
in matrix games. Cognition 85(1), 1–36 (2002)

8. Lipton, R.J., Markakis, E., Mehta, A.: Playing large games using simple strategies.
In: Proceedings of the 4th ACM Conference on Electronic Commerce, pp. 36–41.
ACM (2003)

9. Perrick, P., St-Pierre, D., Maes, F., Ernst, D.: Comparison of different selection
strategies in Monte-Carlo tree search for the game of Tron. In: Proceedings of the
IEEE Conference on Computational Intelligence and Games (CIG 2012), Granada,
Spain (2012)

10. Russell, S., Wolfe, J.: Efficient Belief-State AND-OR Search, with Application to
Kriegspiel. In: IJCAI, pp. 278–285 (2005)

11. St-Pierre, D.L., Louveaux, Q., Teytaud, O.: Online Sparse Bandit for Card Games.
In: van den Herik, H.J., Plaat, A. (eds.) ACG 2011. LNCS, vol. 7168, pp. 295–305.
Springer, Heidelberg (2012)

12. Teytaud, O., Flory, S.: Upper Confidence Trees with Short Term Partial Informa-
tion. In: Di Chio, C., et al. (eds.) EvoApplications 2011, Part I. LNCS, vol. 6624,
pp. 153–162. Springer, Heidelberg (2011)

The Structure of a Probabilistic 1-State
Transducer Representation for Prisoner’s

Dilemma

Jeffrey Tsang(B)

Department of Mathematics and Statistics, University of Guelph, Guelph, Canada
jeffrey.tsang@ieee.org

Abstract. In the study of evolutionary game theory, a tool called the
fingerprint was developed. This mathematical technique generates a func-
tional summary of an arbitrary game-playing strategy independent of
representational details. Using this tool, this study expands the bound-
aries of investigating an entire small state space of strategies, to wit the
probabilistic 1-state tranducers, as a representation for playing iterated
Prisoner’s Dilemma. A sampled grid of 35,937 strategies out of the con-
tinuous cube was used: they are fingerprinted and pairwise distances com-
puted. A subsampled grid of 4,913 strategies was analyzed using metric
multidimensional scaling. The results show that the known 3-dimensional
manifold can be embedded into around 4–5 Euclidean dimensions with-
out self-intersection, and the curvature of the fingerprint metric with
respect to standard distance is not too extreme; there is also similarity
with analogous results on other state spaces.

1 Introduction

The mathematical game is an easily understood model for simulating various
interactions, whether cooperative or competitive. In theoretical work, the abso-
lute simplest game, a simultaneous, symmetric two-move game (e.g. Prisoner’s
Dilemma) is already difficult to understand. To preserve possibilities for com-
plex strategies, we iterate the game, allowing response and counter-response to
your opponent. A commonly used method of experimentation is via evolution-
ary game theory, by using (co)evolutionary algorithms to generate an unlimited
population of strategies.

To enable analysis, the concept of fingerprinting is presented in a series of
papers [1–3]: this turns the strategies into normal mathematical functions record-
ing the strategy’s behaviour against a continuous set of reference strategies, after
which handling them becomes much easier. This has led to studies in evolution-
ary time and population size [8], the effect of noise [4,5], and representational
sensitivity [6,7] among other parameters.

The model in [2] was updated in [15], avoiding some problems in the original
specification, which include discontinuities and pairs of indistinguishable strate-
gies. One main thrust of the latter paper is that we can define a distance on the
space of fingerprints, thus quantifying the notion of “similar” strategies.
c© Springer-Verlag Berlin Heidelberg 2014
A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2014, LNCS 8602, pp. 399–410, 2014.
DOI: 10.1007/978-3-662-45523-4 33

400 J. Tsang

Investigating the entirety of representations for evolutionary games is extrem-
ely difficult: to have any chance of encountering interesting strategies, sufficient
power has to be given to the representation, along with the inevitable combi-
natorial explosion. This is exacerberated by considering probabilistic strategies:
now the space is inherently continuous and only sampling is possible. We attempt
here to analyze the most basic probabilistic space: that of the memoryless, equiv-
alently reactive or probabilistic 1-state transducers.

This can be represented succinctly as the unit cube; we will sample a grid of
35,937 strategies from it and see whether the known cube structure (in genotype
space) is preserved under fingerprint distance (in phenotype distinction). We can
also look into what curvature is imposed by phenotypic distance, and whether
there exist nontrivial pairs of small fingerprint distance but large parameter
distance.

The rest of this paper is organized as follows: the fingerprint definition
is briefly given in Section 2, the experimental methodology is detailed and
described in Section 3, the results and interpretations follow in Section 4, and
finally the discussion and conclusions are reported in Section 5.

2 Background

As developed in [15] and used in [16,17], the fingerprint operator used in this
study is based on the length-weighted probability of each move pair occuring,
when the agent plays against a parametrized k-state probabilistic finite state
transducer probe. We will restrict our consideration to memoryless, or 1-state
machines, which can be parametrized as (x, y, z) ∈ [0, 1]3, where x is the prob-
ability of cooperating on the initial move, y is the probability of cooperating in
response to a cooperate, and z the probability of cooperating in response to a
defect.

The operator takes as input a specification of a game playing agent P , which
is a function ρP that gives the probability the agent plays as an input move
history s (a string of moves) up to its length, given that its opponent plays as
another input move history w (of length 1 shorter due to the simultaneity of the
game) as directed. That is, ρP (s, w) = Pr(∀i P plays si in turn i | ∀j opponent
plays wj in turn j). Call the parametrized opponent O1(v) with v = (x, y, z),
and define ρO1(v) similarly.

Denote by FP the output of the operator on P ; the (m1,m2)th component
of the fingerprint function is defined as

FP (v)m1m2 =
∞∑

n=1

μ(n)
∑

(s,w) has length n−1
s ends with m1
w ends with m2

ρO1(v)(wm2, s)ρP (sm1, w)

the first sum is the two-way probability the players play (m1,m2) respectively on
the nth move, weighting that by a given function μ(n). For special properties, we

The Structure of a Probabilistic 1-State Transducer Representation 401

will use the family of geometric distributions: μ(n;α) = (1 − α)αn−1, α ∈ [0, 1),
at α = 0.8 in continuity with prior work [15,17].

For agents representable by finite state transducers (such as ours), we can
create the following Markov chain: the state space is Q × {C,D}2, the states of
the agent adjoined with the last moves of P then O1. The transition matrix T
has entries (q1,m1,m2) → (q2,m3,m4) equal to Pr(P transitions from q1 to q2
outputting m3 on input m2) × Pr(O1 outputs m4 on input m1).

The fingerprint function is then

FP (x, y, z;α)m1m2 = (1 − α)χT
m1m2

(
I − αT (y, z)

)−1
Q0(x)

where χm1m2 be the indicator vector whose entry is 1 if the state indexed has
last move-pair (m1,m2), 0 otherwise, and Q0(x) is the initial state probability
vector of P .

Now that the strategies have been transformed into mathematical functions,
we can define the distance between two fingerprints using the L1 distance (also
named statistical, or total variation [9]):

‖FP1 − FP2‖ =
∫
[0,1]3

∑
m1m2

|(FP1 − FP2)(x, y, z)m1m2 | dxdydz

3 Methodology

We will study a probabilistic 1-state finite transducer representation for playing
iterated Prisoner’s Dilemma. This can be described by (x, y, z) ∈ [0, 1]3, where
x is the probability of cooperating on the initial move, y is the probability of
cooperating in response to a cooperate, and z the probability of cooperating in
response to a defect.

As we have mentioned, this is the continuous unit cube, hence we must
sample the space. We will use a grid of 33 values {0, 1

32 , 2
32 , . . . , 31

32 , 1} for each
parameter, a total of 333 = 35, 937 strategies. Each of these 35,937 strategies
was fingerprinted, computed using the matrix formula using the LAPACK linear
algebra package into a 4-component function of y, z for x = 0, 1 at α = 0.8, a
value found in previous studies to have good separation properties [16].

Approximate pairwise distances are calculated with a composite third order
product Gaussian cubature method (4 points at (±1/

√
3,±1/

√
3) for the region

[−1, 1]2, see [14]) with a grid of 512 × 512 evenly spaced squares (1,048,576
evaluation points). These are summed in a binary divide-and-conquer fashion
to decrease roundoff error. From results in previous studies [17], the integration
error is at most on the order of 10−10, where distances are bounded above by 1.
For all intents and purposes, the integral is basically exact.

Since this dataset consists of over 645 million numbers, we simply cannot use
cubic or worse analysis methods. Several tests on the structure of this space can
still be performed though.

One simple test is whether there are pairs of strategies that differ in the
parameter values (genotype) but not in fingerprint distance (phenotype). This

402 J. Tsang

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 0.5 1 1.5 2 2.5 3

M
in

im
um

 d
is

ta
nc

e
in

 fi
ng

er
pr

in
t s

pa
ce

Distance in parameter space

Manhattan distance
Euclidean distance

Fig. 1. Minimal fingerprint distance, over all pairs of strategies at a given distance in
parameter space, as measured using L1 or normal L2 distance

is a direct linear search through the dataset, minimizing the fingerprint distance
for a given parameter distance. A second test is through hierarchical clustering:
we can plot the distance between each pair of clusters as they are merged and
possibly detect strong jumps, which would indicate abnormalities in the struc-
ture. For this purpose we use the standard UPGMA (unweighted pair group
with arithmetic mean) algorithm [13].

A final test on the full dataset directly measures the curvature of the space.
We have two distinct methods of moving from strategy A to strategy B: we can
take the straight line in fingerprint space, which is well-defined as a space of
mathematical functions. On the other hand, we can also take the straight line in
parameter space, which is just the unit cube. We can then quantify how a straight
line in genotype space is distorted into a curve via phenotypic expression.

Having done extensive tests on the dataset, we note that since this is fun-
damentally a sampled space, we can without restriction downsample until more
expensive analysis tools are within range. We subsample with a grid of 17 values
{0, 1

16 , 2
16 , . . . , 15

16 , 1} for each parameter, reducing to 173 = 4, 913 strategies.
It is now feasible to use standard metric multidimensional scaling to embed

these points into the Euclidean plane. This works by minimizing the stress loss
function ∑

i,j

(δi,j − di,j)2

where δi,j is the true distance between strategies i, j, and di,j is the distance
between the points on the plane representing i, j. The stress majorization SMA-
COF algorithm [12] is used for this purpose, with the best fit chosen from around
1,000 runs starting at uniformly random initial points.

The Structure of a Probabilistic 1-State Transducer Representation 403

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 1 10 100 1000 10000

M
ea

n
in

te
r-

cl
us

te
r

fin
ge

rp
rin

t d
is

ta
nc

e

Cluster number

Fig. 2. Averaged inter-cluster distances at the joining of each cluster as done by the
UPGMA algorithm. Note the logarithmic x axis.

After the points are placed in R
n, many more analysis techniques can be

employed. We will rotate the points using principal component analysis: this
aligns the axes to be uncorrelated with ordered variance. With this, we can
attempt to find explanatory variables in the strategies themselves that form the
most important dimensions in strategy space.

4 Results

4.1 Parameter Distance vs. Minimum Fingerprint Distance

We tabulate the minimum fingerprint distance for some values of parameter
distance in the unit cube, as measured using the Manhattan distance (absolute
sum over coordinate differences or the L1 distance) or the normal Euclidean
distance (L2) in Figure 1. That is, we take all pairs of (parameter distance,
fingerprint distance), and sort on the first value. For all pairs with the same
parameter distance, we find the strategies with the minimal fingerprint distance
and plot that. The diameter of the cube is 3 in L1, and

√
3 in L2.

The graph for Euclidean distance is more cluttered due to the much larger
possible values of distances achievable; in Manhattan distance all possible dis-
tances are multiples of 1

32 . The main result of this graph is that there are clearly
no nontrivial parameter pairs that are indistinguishable under the fingerprint
distance: in fact, there is a piecewise linear trend, indicating the distances have
some direct correlation to each other.

We can thus conclude that the basic structure of genotypic space is preserved
under the phenotypic measurement of fingerprint distance — the cubic shape
does not have self-intersections or other extremely weird distortions.

404 J. Tsang

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000 10000

C
lu

st
er

 s
iz

e

Cluster number

Fig. 3. Cluster size at the joining of each cluster as done by the UPGMA algorithm.
Note the log-log scales of both axes.

4.2 Hierarchical Clustering

We plot here the mean inter-cluster distance at the joining of the nth and n+1th
clusters in the operation of the UPGMA algorithm in Figure 2. Recall that
UPGMA recursively joins the two clusters with the minimal inter-cluster dis-
tance; after the joining, the distance between any two clusters is defined to be
the arithmetic mean of all the distances between any point in the first cluster
and any point in the second. The distance increases smoothly as the later clus-
ters are grouped; no obvious jumps or other discontinuities appear in the earlier
clusters, which would indicate unusual structure.

We also plot the cluster size after joining the nth and n+1th clusters in Figure
3, on a log-log scale. The linear trend is now extremely clear: this is highly
consistent with the space being essentially evenly distributed, with UPGMA
mostly joining clusters in a balanced manner. Once again we confirm that there
are no extraordinary deformations of the cubic structure.

4.3 Curvature of the Parameter Space

We have a full 3-dimensional sampled grid in the unit cube. We can pick a
value for x, z, hold them fixed, and consider the points for the grid-sampled
values of y = 0, 1

32 , 2
32 , . . . , 31

32 , 1. Since we know all pairwise distances, we can
find the distance as traced by this 32-segment line, versus the distance directly
(in fingerprint space) between the two points for y = 0, 1. These two distances
are plotted against each other (for all sampled values of x, z) in Figure 4. The
identity function, which represents a straight line, is also plotted for comparison
and reference.

The Structure of a Probabilistic 1-State Transducer Representation 405

 0.406

 0.408

 0.41

 0.412

 0.414

 0.416

 0.418

 0.42

 0.406 0.407 0.408 0.409 0.41 0.411 0.412 0.413

F
in

ge
rp

rin
t d

is
ta

nc
e

ov
er

 p
ar

am
et

er
 s

pa
ce

Straight-line fingerprint distance

y=x

Fig. 4. Plot of the straight-line fingerprint distance between y = 0 and y = 1 holding
x, z fixed, versus the total fingerprint distance as traced by the curve using the grid-
sampled values of y. The identity function is given for reference.

Note that due to the functional symmetry of the space between y and z, the
graph for z is identical; also since the fingerprint is explicitly linear in x, there
is no curvature at all from changing x.

Several salient points can be gleaned from that figure: first, that the distances
for completely flipping y lie in the relatively narrow band of 0.406 to 0.413; that
there is some curvature in the parameter space due to the fingerprint metric,
but that it is on the order of 1% and so is negligible.

4.4 Multidimensional Scaling

We can repeat the multidimensional scaling algorithm with different numbers of
dimensions allowed for the points: the error obviously monotonically decreases
as we use more dimensions, but when the improvement starts vanishing we can
claim this is the essential dimension of the dataset. This is shown in Figure 5.

As expected, dimensions beyond 3 contribute little to the embedding; the 4th
gives a small improvement, the 5th and 6th a tiny one, and all further dimensions
do not improve the result at all. A commonly quoted goodness-of-fit statistic is
Kruskal’s normalized stress, computed as√∑

i,j(δi,j − di,j)2∑
i,j δ2i,j

which is unity for the trivial solution for putting all the strategies in one single
point. Stress below 0.05 is considered good [11]; our stress for embedding into
R

2 is 0.0498, into R
3 is 0.0234, into R

6 is 0.0200.

406 J. Tsang

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 1 2 3 4 5 6 7 8 9 10R
M

S
 e

rr
or

 in
 e

m
be

dd
in

g
di

st
an

ce
s

Dimensions

Fig. 5. The best-fit root mean square error in embedding the pairwise distance matrix
for the 173 points into R

n, for various n. For comparison the root mean square of the
distances themselves is 0.1916.

The reason the error does not decrease towards 0 is that the data, com-
puted under L1, is inherently not Euclidean and cannot be exactly embedded
into Euclidean space of any dimension whatsoever. This residual error, which is
relatively small, is some measure of the non-Euclidean property of our data.

We will take the best 2-dimensional fit and plot it in Figure 6.

4.5 Colouring Scheme

We describe the colouring schema used in the left scatterplot of Figure 6. Since
our strategies are a sampling of the unit cube, we can assign each strategy a
colour in the RGB space to succinctly distinguish each of them visually. The
method is simple: we let x (∈ [0, 1]) be the red channel, y be the green channel,
and z be the blue channel.

To avoid using colours that are too close to white and hence invisible, we pro-
portionally reduce the channels if their sum is above 1. Thus the 8 deterministic
strategies are given the major colours:

– (0,0,0): ALLD, always defect — black
– (1,0,0): C-ALLD, cooperate first move, then defect thereafter — red
– (1,1,0): TFT, tit-for-tat — yellow
– (0,1,0): D-TFT, defect first move, then tit-for-tat — green
– (0,1,1): D-ALLC, defect first move, cooperate thereafter — cyan
– (0,0,1): PSY, psycho (reverse tit-for-tat) — blue
– (1,0,1): C-PSY, cooperate first move, then psycho — magenta
– (1,1,1): ALLC, always cooperate — white (scaled to light grey)

Also, to emphasize the outer faces of the cube, we change the point glyphs
depending on the parameters. If all the parameters are extremal (0 or 1) — one
of the deterministic corners, we use a double cross; if two of three are extremal,

The Structure of a Probabilistic 1-State Transducer Representation 407

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

-0.15 -0.1 -0.05 0 0.05 0.1 0.15

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

-0.15 -0.1 -0.05 0 0.05 0.1 0.15

Fig. 6. Left: scatter plot of the reduced grid of 4913 strategies, projected to 2D with
metric MDS. For colouring and point glyphs see section 4.5; axes are rotated to principal
components, positive orientation is arbitrary. Right: connectivity network of the same.
Variation along x, y and z only are red, green and blue lines respectively.

408 J. Tsang

that is we are on an edge of the cube, we use a cross; if one is extremal, that is
we are on a face, we use an open circle. For the rest of the points, in the interior
of the cube, we use a closed circle.

6 of the 8 deterministic strategies, except C-ALLD and D-ALLC, are clearly
marked as corners in this space. The edge network of the outside of the cube is
also visible. One feature of note is that C-ALLD and D-ALLC are asymmetrically
off to one side (in the horizontal direction). This is actually different from prior
results [17], but upon closer inspection, particularly the edges that connect to
it, it is a complete artifact.

Notice that the edge from the opposite horizontal corner that connects to
these strategies ends up not going to C-ALLD (or D-ALLC), but to its mirror
position in the horizontal direction. This shows that C-ALLD and D-ALLC are
actually corners in the third dimension, and forced by using only two dimensions,
they are swept to one side with a resultant huge jump in the edge.

The right side of Figure 6 shows the connectivity network of the unit cube
(changing one parameter by one step, holding the other two fixed). Varying only
x, y, and z is shown by the grid of red, green, and blue lines respectively. The
symmetry between y and z is clearly shown, the green lines running diagonally
from top-right to bottom-left, the blue lines from top-left to bottom-right.

It is likely that the combination of increasing both y and z by one grid value
corresponds to a move directly upwards. Conversely, if we increase y by one
notch and lower z by one, that looks to be a move directly horizontally. We will
test these hypotheses in the upcoming section.

These lines are mostly straight, except for the mentioned huge jumps into
C-ALLD and D-ALLC, visible as marked bends. x, the probability of initially
cooperating, creates mostly curved lines, most marked in between TFT and D-
TFT (PSY and C-PSY respectively). From comparison to Figure 4, where the
red lines are actually exactly straight, it is clear it is another form of imprecision.
Although distorted, the structure of the cube can still be seen through this grid.

4.6 The Principal Components of the Space

For our final analysis, we will take the 6-dimensional MDS embedded points,
rotated using principal component analysis, and attempt to correlate the param-
eter variables with the important dimensions of the space.

It turns out that we can quantitatively calculate the rotated dimensions of
the space easily. The leading dimension can be predicted by (1 − α)x + α y+z

2 ,
which can be seen to be the α-geometrically weighted probability of cooperating
against a completely random opponent (our α is 0.8). The second dimension can
be predicted by y − z, which can be seen to be the difference in probability of
cooperation depending on the opponent’s last move, or “responsiveness”. The
third dimension can be predicted by x

1−α − y+z
2α , which is harder to interpret,

but it subtracts the probability of cooperation between the first move and the
subsequent moves.

The Pearson linear correlation coefficient between these three predictors and
the actual MDS-found coordinate values were computed. The leading dimension

The Structure of a Probabilistic 1-State Transducer Representation 409

is predicted with correlation 0.999946, the second with correlation 0.984808, and
the third 0.991375. These values are extraordinarily high, indicating that we have
indeed found the correct interpretation of these dimensions.

5 Discussion and Conclusions

We have studied a basic probabilistic 1-state transducer representation for Pris-
oner’s Dilemma. Notwithstanding that this space is too simplistic to have many
interesting strategies, we can build on knowledge from the smaller state spaces
to generalize to the larger, far more intractable ones.

Multiple independent tests were applied to a 35,937-point grid of the contin-
uous cube for this space, with all results in concord with the conclusion that the
genotype (parameter space) — phenotype (strategic behaviour as measured by
the fingerprint) distinction for this space indeed exists, but is not a severe effect.

No null mutation-pairs (identical phenotype but distinct genotype) were
found, meaning the known cubical structure can be embedded into usual space
without self-intersection. The results from running the UPGMA clustering algo-
rithm do not show any significant level of structural detail, which is to be
expected from a continuous sampling grid. Also, the parameter space is found
to be slightly curved with respect to the fingerprint distance, but not highly so.

Multidimensional scaling on a subsampled grid reveal a lot more about the
structure. First, we know it has a true dimension of 3; it can be very well embed-
ded into R

3, and there is no improvement after about 6 dimensions. This tells
us that the fingerprint distance does indeed mostly respect the metric structure
of the cube.

From directly plotting the 2-dimensional embedded points, we can see that
the deterministic automata form the corners of the space as expected, but
since we are coercing a 3-dimensional object into 2 dimensions, several arti-
facts appear. Notably, the deterministic strategies C-ALLD and D-ALLC are
essentially mapped to two points at once, with a resulting discontinuity in the
cube; also the known-straight lines from varying the x parameter are completely
curved, even more so than the nonlinear y, z parameters.

Lastly, we have found a fully quantitative explanation for the three (hence
all) most important dimensions in the space: they correspond to general cooper-
ativity, responsivity to the opponent, and change in cooperativity from the first
to subsequent moves.

For future work, we would like to continue investigating other relatively small
state spaces and either discover new dimensions to game-playing strategies, or
prove their similarity.

Acknowledgments. The author would like to thank Rajesh Pereira, University of
Guelph. This work was made possible by the facilities of the Shared Hierarchical
Academic Research Computing Network (SHARCNET:www.sharcnet.ca) and Com-
pute/Calcul Canada.

410 J. Tsang

References

1. Ashlock, D., Kim, E.-Y.: Techniques for analysis of evolved prisoner’s dilemma
strategies with fingerprints. In: Proceedings of the 2005 Congress on Evolutionary
Computation, pp. 2613–2620 (2005)

2. Ashlock, D., Kim, E.-Y., von Roeschlaub, W.K.: Fingerprints: enabling visualiza-
tion and automatic analysis of strategies for two player games. In: Proceedings of
the 2004 Congress on Evolutionary Computation, pp. 381–387 (2004)

3. Ashlock, D., Kim, E.-Y.: Fingerprinting: visualization and automatic analysis of
Prisoner’s Dilemma strategies. IEEE Transactions on Evolutionary Computation
12(5), 647–659 (2008)

4. Ashlock, D., Kim, E.-Y., Ashlock, W.: Fingerprint analysis of the noisy Prisoner’s
Dilemma using a finite state representation. IEEE Transactions on Computational
Intelligence and AI in Games 1(2), 157–167 (2009)

5. Ashlock, D., Kim, E.-Y.: Fingerprint analysis of the noisy Prisoner’s Dilemma. In:
Proceedings of the 2007 Congress on Evolutionary Computation, pp. 4073–4080
(2007)

6. Ashlock, D., Kim, E.-Y., Leahy, N.: Understanding representational sensitivity in
the iterated Prisoner’s Dilemma with fingerprints. IEEE Transactions on Systems,
Man and Cybernetics C 36(4), 464–475 (2006)

7. Ashlock, D., Kim, E.-Y.: The impact of cellular representation on finite state agents
for Prisoner’s Dilemma. In: Proceedings of the 2005 Genetic and Evolutionary
Computing Conference, pp. 59–66 (2005)

8. Ashlock, W., Ashlock, D.: Changes in Prisoner’s Dilemma strategies over evolu-
tionary time with different population sizes. In: Proceedings of the Congress on
Evolutionary Computation 2006, pp. 297–304 (2006)

9. Gibbs, A.L., Su, F.E.: On choosing and bounding probability metrics. International
statistical review 70(3), 419–435 (2002)

10. Ishibuchi, H., Ohyanagi, H., Nojima, Y.: Evolution of strategies with different rep-
resentation schemes in a spatial iterated Prisoner’s Dilemma game. IEEE Trans-
actions on Computational Intelligence and AI in Games 3(1), 67–82 (2011)

11. Kruskal, J.B.: Multidimensional scaling by optimizing goodness of fit to a non-
metric hypothesis. Psychometrika 29(1), 1–27 (1964)

12. de Leeuw, J.: Applications of convex analysis to multidimensional scaling. In:
Barra, J.R., et al. (eds.) Recent Developments in Statistics. pp. 133–145. North-
Holland, Amsterdam, (1977)

13. Sneath, P.H.A., Sokal, R.R.: Numerical Taxonomy: The Principles and Practice of
Numerical Classification. Freeman, CA (1973)

14. Stroud, A.H.: Approximate Calculation of Multiple Integrals. Englewood Cliffs,
Prentice-Hall, NJ (1971)

15. Tsang, J.: The parametrized probabilistic finite state transducer probe game player
fingerprint model. IEEE Transactions on Computational Intelligence and AI in
Games 2(3), 208–224 (2010)

16. Tsang, J.: The structure of a depth-3 lookup table representation for Prisoner’s
Dilemma. In: Proceedings of the IEEE Conference on Computational Intelligence
in Games 2010, pp. 54–61 (2010)

17. Tsang, J.: The structure of a 3-state finite transducer representation for Prisoner’s
Dilemma. In: Proceedings of the IEEE Conference on Computational Intelligence
in Games 2010, pp. 307–313 (2013)

Tree Depth Influence in Genetic Programming
for Generation of Competitive Agents

for RTS Games

Pablo Garćıa-Sánchez(B), Antonio Fernández-Ares, Antonio M. Mora,
Pedro A. Castillo, Jesús González, and Juan Julián Merelo Guervós

Department of Computer Architecture and Technology and CITIC-UGR,
University of Granada, Granada, Spain

pgarcia@atc.ugr.es

Abstract. This work presents the results obtained from comparing dif-
ferent tree depths in a Genetic Programming Algorithm to create agents
that play the Planet Wars game. Three different maximum levels of the
tree have been used (3, 7 and Unlimited) and two bots available in the lit-
erature, based on human expertise, and optimized by a Genetic Algorithm
have been used for training and comparison. Results show that in average,
the bots obtained using our method equal or outperform the previous ones,
beingthemaximumdepthof thetreearelevantparameter for thealgorithm.

1 Introduction

Real Time Strategy (RTS) games are a type of videogame where the play takes
action in real time (that is, there are not turns, as in chess). Well-known games
of this genre are Age of EmpiresTM or WarcraftTM. In this kind of game the
players have units, structures and resources and they have to confront with other
players to win battles. Artificial Intelligence (AI) in these games is usually very
complex, because they are dealing with many actions and strategies at the same
time.

The Planet Wars game, presented under the Google AI Challenge 20101 has
been used by several authors for the study of computational intelligence in RTS
games [1–3]. This is because it is a simplification of the elements that are present
in the complex games previously mentioned (only one type of resource and one
type of unit).

The objective of the player is to conquer enemy and neutral planets in a space-
like simulator. Each player has planets (resources) that produce ships (units)
depending on a growth-rate. The player must send these ships to other planets
(literally, crashing towards the planet) to conquer them. A player win if he is
the owner of all the planets. As requirements, the limit to calculate next actions
(this time window is called turn2) is only a second, and no memory about the
1 http://planetwars.aichallenge.org/
2 Although in this work we are using this term, note that the game is always performed

in real time.

c© Springer-Verlag Berlin Heidelberg 2014
A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2014, LNCS 8602, pp. 411–421, 2014.
DOI: 10.1007/978-3-662-45523-4 34

http://planetwars.aichallenge.org/

412 P. Garćıa-Sánchez et al.

Fig. 1. Example of execution of the Player Wars game. White planets and ships are
owned by the player and dark gray ones are controlled by the enemy. Clear gray are
neutral planets (not invaded).

previous turns must be used. Figure 1 shows a screen capture of the game. The
reader is referred to [1–3] for more details of the game.

In this work Genetic Programming (GP) is used to obtain agents that play
the Planet Wars game. The objective of GP is to create functions or programs
to solve determined problems. Individual representation is usually in form of a
tree, formed by operators (or primitives) and variables (terminals). These sets
are usually fixed and known. The genome size is, therefore, variable, but the
maximum size (depth) of the individuals is usually fixed, to avoid high evaluation
costs. GP has been used to evolve LISP (LISt Processing) programs [4], or XSLT
(eXtensible Stylesheet Language Transformations) scripts [5], among others.

We try to solve the next questions:

– Can a tree-generated behaviour of an agent defeat an agent hand-coded by
a player with experience and whose parameters have been also optimized?

– Can this agent beat a more complicated opponent that is adapted to the
environment?

– How does the maximum depth affect the results?

The rest of the work is structured as follows: after the state of the art, the
description of our agent is presented in Section 3. Then, the experimental setup
conduced with the GP is shown (Section 4). Finally, results, conclusions and
future works are discussed.

Tree Depth Influence in Genetic Programming 413

2 State of the Art

RTS games have been used extensively in the computational intelligence area
(see [6] for a survey).

Among other techniques, Evolutionary Algorithms (EAs) have been widely
used in computational intelligence in RTS games [6]. For example, for parameter
optimization [7], learning [8] or content generation [9].

One of these types, genetic programming, has been proved as a good tool
for developing strategies in games, achieving results comparable to human, or
human-based competitors [10]. They also have obtained higher ranking than
solvers produced by other techniques or even beating high-ranking humans [11].
GP has also been used in different kind of games, such as board-games [12],
or (in principle) simpler games such as Ms. Pac-Man [13] and Spoof [14] and
even in modern video-games such as First Person Shothers (FPS) (for example,
UnrealTM [15]).

Planet Wars, the game used in this work, has also been used as experimental
environment for testing agents in other works. For example, in [2] the authors
programmed the behaviour of a bot (a computer-controlled player) with a deci-
sion tree of 3 levels. Then, the values of these rules were optimized using a
genetic algorithm to tune the strategy rates and percentages. Results showed a
good performance confronting with other bots provided by the Google AI Chal-
lenge. In [3] the authors improved this agent optimizing it in different types of
maps and selecting the set of optimized parameters depending on the map where
the game was taking place, using a tree of 5 levels. These results outperformed
the previous version of the bot with 87% of victories.

In this paper we use GP to create the decision tree, instead of expert human
gaming experience to model it, and the resulting agent is compared with the two
presented before.

3 Proposed Agent

The proposed agent receives a tree to be executed. The generated tree is a binary
tree of expressions formed by two different types of nodes:

– Decision: a logical expression formed by a variable, a less than operator (<),
and a number between 0 and 1. It is the equivalent to a “primitive” in the
field of GP.

– Action: a leave of the the tree (therefore, a “terminal”). Each decision is
the name of the method to call from the planet that executes the tree. This
method indicates to which planet send a percentage of available ships (from
0 to 1).

The different variables for the decisions are:

– myShipsEnemyRatio: Ratio between the player’s ships and enemy’s ships.

414 P. Garćıa-Sánchez et al.

– myShipsLandedFlyingRatio: Ratio between the player’s landed and flying
ships.

– myPlanetsEnemyRatio: Ratio between the number of player’s planets and
the enemy’s ones.

– myPlanetsTotalRatio: Ratio between the number of player’s planet and total
planets (neutrals and enemy included).

– actualMyShipsRatio: Ratio between the number of ships in the specific planet
that evaluates the tree and player’s total ships.

– actualLandedFlyingRatio: Ratio between the number of ships landed and
flying from the specific planet that evaluates the tree and player’s total
ships.

The decision list is:

– Attack Nearest (Neutral—Enemy—NotMy) Planet: The objective is the near-
est planet.

– Attack Weakest (Neutral—Enemy—NotMy) Planet: The objective is the
planet with less ships.

– Attack Wealthiest (Neutral—Enemy—NotMy) Planet: The objective is the
planet with higher lower rate.

– Attack Beneficial (Neutral—Enemy—NotMy) Planet: The objective is the
more beneficial planet, that is, the one with growth rate divided by the
number of ships.

– Attack Quickest (Neutral—Enemy—NotMy) Planet: The objective is the
planet easier to be conquered: the lowest product between the distance from
the planet that executes the tree and the number of ships in the objective
planet.

– Attack (Neutral—Enemy—NotMy) Base: The objective is the planet with
more ships (that is, the base).

– Attack Random Planet.
– Reinforce Nearest Planet: Reinforce the nearest player’s planet to the planet

that executes the tree.
– Reinforce Base: Reinforce the player’s planet with higher number of ships.
– Reinforce Wealthiest Planet: Reinforce the player’s planet with higher grown

rate.
– Do nothing.

An example of a possible tree is shown in Figure 2. This example tree has a
total of 5 nodes, with 2 decisions and 3 actions, and a depth of 3 levels.

The bot behaviour is explained in Algorithm 1.

4 Experimental Setup

Sub-tree crossover and 1-node mutation evolutionary operators have been used,
following other researchers’ proposals that have used these operators obtaining
good results [15]. In this case, the mutation randomly changes the decision of

Tree Depth Influence in Genetic Programming 415

if(myShipsLandedFlyingRatio <0.796)

if(actualMyShipsRatio <0.201)

attackWeakestNeutralPlanet (0.481);

else

attackNearestEnemyPlanet (0.913);

else

attackNearestEnemyPlanet (0.819);

Fig. 2. Example of a generated Java tree

At the beginning of the execution the agent receives the tree;
tree← readTree();
while game not finished do

// starts the turn

calculateGlobalPlanets();// e.g. Base or Enemy Base

calculateGlobalRatios();// e.g. myPlanetsEnemyRatio

foreach p in PlayerPlanets do
calculateLocalPlanets(p);// e.g. NearestNeutralPlanet to p

calculateLocalRatios(p);// e.g actualMyShipsRatio

executeTree(p,tree);// Send a percentage of ships to destination

end

end

Algorithm 1. Pseudocode of the proposed agent. The tree is fixed during
all the agent’s execution

a node or mutate the value with a step-size of 0.25 (an adequate value empiri-
cally tested). Each configuration is executed 30 times, with a population of 32
individuals and a 2-tournament selector for a pool of 16 parents.

To test each individual during the evolution, a battle with a previously cre-
ated bot is performed in 5 different (but representative) maps provided by Google
is played. Hierarchical fitness is used, as proposed in [2]. Thus, an individual is
better than another if it wins in a higher number of maps. In case of equality of
victories, then the individual with more turns to be defeated (i.e. the stronger
one) is considered better. The maximum fitness is, therefore 5 victories and 0
turns. Also, as proposed by [2], and due to the noisy fitness effect, all individuals
are re-evaluated in every generation.

Two publicly available bots have been chosen for our experiments3. The first
bot to confront is GeneBot, proposed in [2]. This bot was trained using a GA to
optimize the 8 parameters that conforms a set of hand-made rules, obtained from
an expert human player experience. The second one is an advanced version of
the previous, called Exp-Genebot (Expert Genebot) [3]. This bot outperformed
Genebot widely. Exp-Genebot bot analyses the distribution of the planets in the

3 Both can be downloaded from https://github.com/deantares/genebot

https://github.com/deantares/genebot

416 P. Garćıa-Sánchez et al.

map to chose a previously optimized set of parameters by a GA. Both bots are
the best individual obtained of all runs of their algorithm (not an average one).

After running the proposed algorithm without tree limitation in depth, it
has also been executed with the lower and average levels obtained for the best
individuals: 3 and 7, respectively, to study if this number has any effect on the
results. Table 1 summarizes all the parameters used.

Table 1. Parameters used in the experiments

Parameter Name Value

Population size 32

Crossover type Sub-tree crossover

Crossover rate 0.5

Mutation 1-node mutation

Mutation step-size 0.25

Selection 2-tournament

Replacement Steady-state

Stop criterion 50 generations

Maximum Tree Depth 3, 7 and unlimited

Runs per configuration 30

Evaluation Playing versus Genebot [2] and Exp-Genebot [3]

Maps used in each evaluation map76.txt map69.txt map7.txt map11.txt map26.txt

After all the executions we have evaluated the obtained best individuals in all
runs confronting to the bots in a larger set of maps (the 100 maps provided by
Google) to study the behaviour of the algorithm and how good are the obtained
bots in maps that have not been used for training.

The used framework is OSGiLiath, a service-oriented evolutionary framework
[16]. The generated tree is compiled in real-time and injected in the agent’s code
using Javassist4 library. All the source code used in this work is available under
a LGPL V3 License in http://www.osgiliath.org.

5 Results

Tables 2 and 3 summarize all the obtained results of the execution of our EA.
These tables also show the average age, depth and number of nodes of the best
individuals obtained and also the average population at the end of the run. The
average turns rows are calculated only taking into account the individuals with
a number of victories lower than 5, because this number is 0 if they have won
the five battles.

As can be seen, the average population fitness versus Genebot is nearest
to the optimum than versus Exp-Genebot, even with the lowest depth. Highest

4 www.javassist.org

http://www.osgiliath.org
www.javassist.org

Tree Depth Influence in Genetic Programming 417

Table 2. Average results obtained from each configuration versus Genebot. Each one
has been tested 30 times.

Depth 3 Depth 7 Unlimited Depth

Best Fitness Victories 4.933 ± 0.25 4.83 ± 0.53 4.9 ± 0.30
Turns 244.5 ± 54.44 466 ± 205.44 266.667 ± 40.42

Population Ave. Fitness Victories 4.486± 0.52 4.43 ± 0.07 4.711 ± 0.45
Turns 130.77± 95.81 139.43 ± 196.60 190.346 ± 102.92

Depth Best 3 ± 0 5.2 ± 1.78 6.933 ± 4.05
Population 3 ± 0 5.267 ± 1.8 7.353 ± 3.11

Nodes Best 7 ± 0 13.667 ± 7.68 22.133 ± 22.21
Population 7 ± 0 13.818 ± 5.86 21.418 ± 13.81

Age Best 8.133 ± 3.95 5.467 ± 2.95 5.066 ± 2.11
Population 4.297 ± 3.027 3.247 ± 0.25 3.092 ± 1.27

Table 3. Average results obtained from each configuration versus Exp-Genebot. Each
one has been tested 30 times.

Depth 3 Depth 7 Unlimited Depth

Best Fitness Victories 4.133 ± 0.50 4.2 ± 0.48 4.4 ± 0.56
Turns 221.625 ± 54.43 163.667 ± 106.38 123.533 ± 112.79

Population Ave. Fitness Victories 3.541 ± 0.34 3.689 ± 0.37 4.043 ± 0.38
Turns 200.086 ± 50.79 184.076 ± 57.02 159.094 ± 61.84

Depth Best 3 ± 0 5.2 ± 1.84 6.966 ± 4.44
Population 3 ± 0 5.216 ± 0.92 6.522 ± 1.91

Nodes Best 7 ± 0 12.6 ± 6.44 18.466 ± 15.46
Population 7 ± 0 13.05 ± 3.92 16.337 ± 7.67

Age Best 4.266 ± 5.01 4.133 ± 4.26 4.7 ± 4.72
Population 3.706 ± 0.58 3.727 ± 0.62 3.889 ± 0.71

performance in the population is also with the depth of 3 levels. On the contrary,
confronting with Exp-Genebot the configuration with unlimited depth achieves
better results. This make sense as more decisions should be taken because the
enemy can be different in each map.

In the second experiment, we have confronted the 30 bots obtained in each
configuration again with Genebot and Exp-Genebot, but in the 100 maps pro-
vided by Google. This experiment has been used to validate if the obtained indi-
viduals of the proposed method can be competitive in terms of quality in maps
not used for evaluation. Results are shown in Table 4 and boxplots in Figure 3.
It can be seen that in average, the bots produced by the proposed algorithm
perform equal or better than the best obtained by the previous authors. Note
that, even obtaining individuals with maximum fitness (5 victories) that have
been kept in the population several generations (as presented before in Tables 2
and 3) cannot be representative of a extremely good bot in a wider set of maps
that have not been used for training. As the distributions are not normalized, a
Kruskal-Wallis test has been used, obtaining significant differences in turns for
the experiment versus Genebot (p-value = 0.0028) and victories in Exp-genebot

418 P. Garćıa-Sánchez et al.

(p-value = 0.02681). Therefore, there are differences using a maximum depth in
the generation of bots. In both configurations, the trees created with 7 levels of
depth as maximum have obtained the better results.

Table 4. Results confronting the 30 best bots attained from each configuration in the
100 maps each

Configuration Average maps won Average turns
Versus Genebot

Depth 3 47.033 ± 10.001 133.371 ± 16.34
Depth 7 48.9 ± 10.21 141.386 ± 15.54

Unlimited Depth 50.23 ± 11.40 133.916 ± 10.55
Versus Exp-Genebot

Depth 3 52.367 ± 13.39 191.051 ± 67.79
Depth 7 58.867 ± 7.35 174.694± 47.50

Unlimited Depth 52.3 ± 11.57 197.492 ± 72.30

3G 7G UG 3E 7E UE

10
20

30
40

50
60

70

Configuration

P
er

ce
nt

ag
e

of
 v

ic
to

rie
s

(a) Victories

3G 7G UG 3E 7E UE

10
0

20
0

30
0

40
0

50
0

Configuration

P
er

ce
nt

ag
e

of
 v

ic
to

rie
s

(b) Turns

Fig. 3. Average of executing the 30 best bots in each configuration (3, 7 and U) versus
Genebot (G) and Exp-Genebot (E)

To explain why results versus Genebot (a weaker bot than Exp-Genebot)
are slightly worse than versus Exp-Genebot, even when the best individuals
produced by the GP have higher fitness, it is necessary to analyse how the
best individual and the population are being evolved. Figure 4 shows that best
individual using Genebot reaches the optimal before Exp-Genebot, and also the
average population converges quicker. This could lead to over-specialization: the

Tree Depth Influence in Genetic Programming 419

generated bots are over-trained to win in the five maps. This is due because
these individuals are being re-evaluated, and therefore, they are still changing
after they have reached the optimal.

Fig. 4. Evolution of the best individual and the average population during one run for
depth 7 versus Genebot and Exp-Genebot

6 Conclusions

This work presents a Genetic Programming algorithm that generates agents for
playing the Planet Wars game. A number of possible actions to perform and
decision variables have been presented. Two competitive bots available in the
literature (Genebot and Exp-Genebot) have been used to calculate the fitness of
the generated individuals. These two bots were the best obtained from several
runs and the behaviour to be optimized was extracted from human expertise.
Three different maximum depth for the trees have been used: 3, 7 and unlimited.
Results show that the best individuals outperform these agents during the evo-
lution in all configurations. These individuals have been tested against a larger
set of maps not previously used during the evolution, obtaining equivalent or
better results than Genebot and Exp-Genebot.

In future work, other rules will be added to the proposed algorithm (for
example, the ones that analyse the map, as the Exp-Genebot does) and different
enemies will be used. Other games used in the area of computational intelligence
in videogames, such as UnrealTM or Super MarioTM will be tested.

420 P. Garćıa-Sánchez et al.

Acknowledgments. This work has been supported in part by FPU research grant
AP2009-2942 and projects SIPESCA (G-GI3000/IDIF, under Programa Operativo
FEDER de Andalućıa 2007-2013), EvOrq (TIC-3903), CANUBE (CEI2013-P-14) and
ANYSELF (TIN2011-28627-C04-02).

References

1. Lara-Cabrera, R., Cotta, C., Fernández-Leiva, A.J.: A procedural balanced map
generator with self-adaptive complexity for the real-time strategy game planet
wars. In: Esparcia-Alcázar, A.I. (ed.) EvoApplications 2013. LNCS, vol. 7835, pp.
274–283. Springer, Heidelberg (2013)

2. Mora, A.M., Fernández-Ares, A., Guervós, J.J.M., Garćıa-Sánchez, P., Fernandes,
C.M.: Effect of noisy fitness in real-time strategy games player behaviour optimi-
sation using evolutionary algorithms. J. Comput. Sci. Technol. 27(5), 1007–1023
(2012)

3. Fernández-Ares, A., Garćıa-Sánchez, P., Mora, A.M., Guervós, J.J.M.: Adaptive
bots for real-time strategy games via map characterization. In: 2012 IEEE Con-
ference on Computational Intelligence and Games, CIG 2012, Granada, Spain,
September 11–14, pp. 417–721. IEEE (2012)

4. Koza, J.R.: Genetically breeding populations of computer programs to solve prob-
lems in artificial intelligence. In: Proceedings of the 2nd International IEEE Con-
ference on Tools for Artificial Intelligence, pp. 819–827 (1990)

5. Garcia-Sanchez, P., Merelo, J.J., Laredo, J.L.J., Mora, A.M., Castillo, P.A.: Evolv-
ing xslt stylesheets for document transformation. In: Rudolph, G., Jansen, T.,
Lucas, S., Poloni, C., Beume, N. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 1021–
1030. Springer, Heidelberg (2008)

6. Lara-Cabrera, R., Cotta, C., Fernández-Leiva, A.J.: A review of computational
intelligence in rts games. In: FOCI, pp. 114–121. IEEE (2013)

7. Esparcia-Alcázar, A.I., Garćıa, A.I.M., Garćıa, A.M., Guervós, J.J.M., Garćıa-
Sánchez, P.: Controlling bots in a first person shooter game using genetic algo-
rithms. In: IEEE Congress on Evolutionary Computation, pp. 1–8. IEEE (2010)

8. Stanley, K.O., Bryant, B.D., Miikkulainen, R.: Real-time neuroevolution in the
nero video game. In: IEEE Transactions on Evolutionary Computation, pp. 653–
668 (2005)

9. Mahlmann, T., Togelius, J., Yannakakis, G.N.: Spicing up map generation. In:
Di Chio, C., et al. (eds.) EvoApplications 2012. LNCS, vol. 7248, pp. 224–233.
Springer, Heidelberg (2012)

10. Sipper, M., Azaria, Y., Hauptman, A., Shichel, Y.: Designing an evolutionary
strategizing machine for game playing and beyond. IEEE Transactions on Systems,
Man and Cybernetics Part C: Applications and Reviews 37(4), 583–593 (2007)

11. Elyasaf, A., Hauptman, A., Sipper, M.: Evolutionary design of freecell solvers.
IEEE Transactions on Computational Intelligence and AI in Games 4(4), 270–281
(2012)

12. Benbassat, A., Sipper, M.: Evolving both search and strategy for reversi players
using genetic programming, 47–54 (2012)

Tree Depth Influence in Genetic Programming 421

13. Brandstetter, M., Ahmadi, S.: Reactive control of ms. pac man using information
retrieval based on genetic programming, 250–256 (2012)

14. Wittkamp, M., Barone, L., While, L.: A comparison of genetic programming and
look-up table learning for the game of spoof, 63–71 (2007)

15. Esparcia-Alcázar, A.I., Moravec, J.: Fitness approximation for bot evolution in
genetic programming. Soft Computing 17(8), 1479–1487 (2013)

16. Garćıa-Sánchez, P., González, J., Castillo, P.A., Arenas, M.G., Guervós, J.J.M.:
Service oriented evolutionary algorithms. Soft Comput. 17(6), 1059–1075 (2013)

EvoHOT

© Springer-Verlag Berlin Heidelberg 2014
A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2014, LNCS 8602, pp. 425–436, 2014.
DOI: 10.1007/978-3-662-45523-4_35

Diagnostic Test Generation for Statistical Bug
Localization Using Evolutionary Computation

Marco Gaudesi1, Maksim Jenihhin2, Jaan Raik2, Ernesto Sanchez1,
Giovanni Squillero1(), Valentin Tihhomirov2, and Raimund Ubar2

1 Politecnico di Torino, Torino, Italy
{marco.gaudesi,ernesto.sanchez,giovanni.squillero}@polito.it

2 Tallinn University of Technology, Tallinn, Estonia
{maksim.jenihhin,jaan.raik,raimund.ubar,

valentin.tihhomirov}@ati.ttu.ee

Abstract. Verification is increasingly becoming a bottleneck in the process of
designing electronic circuits. While there exists several verification tools that
assist in detecting occurrences of design errors, or bugs, there is a lack of solu-
tions for accurately pin-pointing the root causes of these errors. Statistical bug
localization has proven to be an approach that scales up to large designs and is
widely utilized both in debugging hardware and software. However, the accura-
cy of localization is highly dependent on the quality of the stimuli. In this paper
we formulate diagnostic test set generation as a task for an evolutionary algo-
rithm, and propose dedicated fitness functions that closely correlate with the
bug localization capabilities. We perform experiments on the register-transfer
level design of the Plasma microprocessor coupling an evolutionary test-pattern
generator and a simulator for fitness evaluation. As a result, the diagnostic reso-
lution of the tests is significantly improved.

Keywords: Diagnostic test pattern generation · Design error localization ·
Evolutionary computation · MicroGP · ZamiaCAD

1 Introduction

It is widely acknowledged that verification is consuming the major part of the design
cycle of electronic circuits [1]. In turn, most of the verification effort is spent in the
loop of locating and correcting the design errors [2]. Therefore, solutions allowing
the designer to quickly pin-point the root causes of bugs would significantly decrease
the cost of the entire design process.

In order to address this problem, several formal [3-5] and simulation-based [6-8]
design error localization approaches have been developed in the past. The formal
approaches have high reasoning power and many of them do not require test stimuli.
However, their scalability is low, and therefore, they can only be applied to small
portions extracted from the real design project, or oversimplified parts. The simula-
tion-based approaches scale reasonably with the size of the design and are limited
mainly by the speed of simulation. However, the results are highly dependent on the

426 M. Gaudesi et al.

quality of the test stimuli applied. Thus, it is imperative to develop efficient diagnostic
test pattern generation methods to increase the accuracy of the simulation-based bug
localization.

In this paper, we consider statistical bug localization, an approach that has been
successfully applied both to software [7, 8, 10] and hardware [11] debugging. The
general rationale behind the statistical localization lies in collecting and analyzing the
pass/fail data of the simulation traces and supplementing these with HDL (hardware
description language) code level structural information of the design. Based on this
analysis, reasoning on bug locations is carried out.

As mentioned above, the efficiency of this reasoning is highly dependent on the
quality of input stimuli. Moreover, adding new stimuli to the existing ones may in fact
adversely affect the localization accuracy. Thus, there is a need for approaches
providing generation of diagnostic tests that allow accurate bug localization by statis-
tical approaches. The initial promising results on assessing diagnostic capability of
diagnostic tests for automated statistical bug localization have been presented in [12],
however it did not consider particular approach for diagnostic test stimuli generation.

Evolutionary Computation (EC) has been used by the Computer Aided Design
community for years, also involving it for the tasks of automatic test-pattern genera-
tion and semi-formal verification. The main obstacle that prevented the exploitation of
EC in bug localization was the difficulty of defining a suitable fitness function: a bug
is either caught or not caught, with no intermediate state.

In this paper, we propose an approach for diagnostic test generation for statistical
bug localization using evolutionary computation. For this purpose we exploit a gen-
eral-purpose evolutionary toolkit µGP (also spelled MicroGP) and investigate dedi-
cated diagnostic capability metrics to be used as the fitness function. The flow starts
from a previously existing functional test set provided by the designer and iteratively
generates new test stimuli increasing the diagnostic properties of the test set. The
approach does not address diagnosis of a specific design error but rather attempts to
generate a test that has a high diagnostic resolution throughout the complete RTL
design implementation (i.e. hardware description language code).

The advantage of such flow is twofold. First, it significantly saves the test genera-
tion time by avoiding experiments for a specific bug to be carried out iteratively
during the evolutionary optimization process. Second, it provides a more flexible test
set that can be reused even in the case of later modifications to the code while still
yielding high overall diagnostic resolution. To the authors’ knowing, this is the first
approach to generate diagnostic tests for statistical bug localization implementing
evolutionary methods.

The paper is organized as follows. Section 2 presents an overview of the related
works in the field of diagnostic test pattern generation for locating design errors.
Section 3 summarizes the bug localization implementing design analysis framework
zamiaCAD. In Section 4, the general diagnosis concept is explained and the diagnos-
tic metrics are presented. Section 5 sketches the evolutionary optimization tool µGP.
and explains the diagnostic test pattern generation flow. Experimental results are
provided in Section 6. Finally, Section 7 concludes the paper.

 Diagnostic Test Generation for Statistical Bug Localization Using EC 427

2 Overview of Related Works

Several works on Diagnostic Test Pattern Generation (DTPG) have been proposed in
the past. Deng et al. [13] propose mutant-based DTPG combined with Bounded Mod-
el-Checking (BMC) for generating test stimuli assisting statistical bug localization.
The approach is prohibitively time consuming since the number of injected mutants is
extremely high and both, BMC and the diagnosis algorithm have to be executed in a
loop for all the mutants. Bernardi et al. [14] apply evolutionary algorithms in DTPG
for manufacturing defects. However, the task of diagnosing defects in integrated cir-
cuits is fundamentally different from locating design errors that is addressed here.

Evolutionary diagnostic test pattern generation requires a suitable fitness function.
Abreau et al. [15] and Repinski et al. [16] have studied the effect of different diagno-
sis metrics. However, these metrics are targeted towards minimizing the error
candidates to be corrected by formal design error correction methods and they are not
targeting DTPG. In [12] Tihhomirov et al. proposed metrics for assessing the diagno-
sis capabilities of the test set. The work shows good correlation with the localization
accuracy but does not consider the DTPG step. Lisherness et al. introduced metrics to
assess the quality of functional tests [17]. However, the metrics are optimized towards
coverage and not the diagnostic resolution.

In this paper, we formulate for the first time diagnostic test pattern generation for
design errors as an evolutionary algorithm using the diagnostic metrics as the fitness
function. The main challenges to be addressed include selecting a suitable metric as a
fitness function for EC and to generate a test that has a high diagnostic resolution
throughout the complete design implementation in terms of HDL code.

3 Statistical Bug Localization with zamiaCAD

The bug localization method described here has been implemented on top of an open
source RTL design and debug framework zamiaCAD [18]. The front-end of
zamiaCAD includes a parser and an elaboration engine that both support full VHDL-
2002 standard specification and a set of VHDL-2008 extensions. On the back-end
side, the framework allows design simulation, static analysis and other applications
for debug. zamiaCAD has an Eclipse IDE plug-in based graphical user interface for
advanced design entry and navigation. The framework is highly optimized for scala-
bility and performance and is capable of handling very large industrial multi-core
designs consisting of tens of millions of VHDL code lines [19].

The statistical bug localization method assumes that design verification has been
performed and an erroneous behavior at observable outputs of the design has been
detected. Figure 1 presents the statistical bug localization flow. The method is based
on four main phases: (1) static slicing, (2) dynamic slicing, (3) statistical suspicious-
ness ranking of the HDL code items and, an optional, (4) cone inspection phase. First,
the design is simulated in order to obtain the list of executed statements and infor-
mation about passed and failed test cases from the test set. A test case is considered to
be passed if the simulated output responses match with expected ones and it is regard-
ed as failed otherwise. Then, static slicing is performed based on generating reference
graphs. Subsequently, dynamic slicing reduces the debugging analysis to all the code

428 M. Gaudesi et al.

items that actually affect the design’s faulty behavior for a given test case. Finally, the
statistical suspiciousness ranking assigns a suspiciousness score to each code item
based on its presence in the dynamic slices and on the information of passed/failed
test cases. Intuitively, if a code item occurs very frequently in executions revealing
the error, it is very likely to contain a bug. The ranking is performed for the statement
items in the HDL code. In order to reveal the bug locations more accurately, the sus-
piciousness ranking can be performed hierarchically considering also the branches
and conditions that the highly ranked statements may have.

In this paper, we consider debugging as a process of locating the failure, with the
correction task being left to the designer. After the latter has received the ranked list
of code items the following task is to localize the root cause of the erroneous behav-
ior. Likely locations for bugs are in those code items having the highest suspicious-
ness scores in the list. In a simple case the designer has to inspect code items at the
top of the ranked list, whose score is higher than a preselected threshold value
Sthreshold.

However, there exist cases where the statistical ranking does not directly pin-point
the root location of the error. The main reasons for this is either very sophisticated
nature of the bug (e.g. a long complex sequential scenario required for bug activation)
or more often weak diagnostic properties of the diagnostic test. The issue is specifi-
cally addressed in this paper.

In case if the automated statistical bug localization fails zamiaCAD also allows ap-
plication of the cone inspection phase. Our previous case studies show that often it is
possible to locate the bug by activating depth-limited forward and backward cones
from the signals included to the highest ranked items. Therefore, the diagnostic test
quality used for statistical ranking is also crucial for this step.

Fig. 1. Statistical bug localization in ZamiaCAD

4 Diagnostic Metrics for Statistical Bug Localization

In the following we propose two metrics for assessment of the diagnostic capability of
the given test to locate bugs in the given design. Both metrics can be used by evolu-
tionary methods as fitness functions in generation of high quality tests for design error
diagnosis.

The metrics described below reflect the cause-effect relationships between the er-
ror hypotheses and the expected test results derived from simulation of the design for
the given test.

 Diagnostic Test Generation for Statistical Bug Localization Using EC 429

4.1 Cause-Effect Relationships Between Errors and Test Results

Let us describe first how we model the cause-effect relationships between error-
hypotheses and the expected test results.

Consider the approach based on statistical suspiciousness ranking criterion pro-
posed in [11], which is based on design simulation with the given diagnostic test set.
Let the diagnostic test set T consist of n tests, T = (t1, t2,... tn), and the design’s HDL
code C consist of m code items C = (c1, c2,... cm). Without loose of generality under
code items we will consider the design statements. Consider a table D = || di,j || where
d i,j = 1 if the test ti is covering the code item cj, and d i,j = 0 otherwise. Such a table
can be derived by finding the dynamic slices in the HDL code for all the tests of T by
simulation.

Let us interpret the table D as a hypothetic Bug Table where d i,j = 1 has a meaning of
the hypothesis that the test ti covers the statement cj in the design description, and does
not covet it in case of d i,j = 0. An example of such a Bug Table is given in Table 1.

Let TF ⊆ T be the subset of failed tests, and TP ⊆ T be the subset of passed tests for
the given simulation experiment for a given buggy design. Obviously, T = TP ∪ TF
and TP ∩ TF = ∅. Denote by T(ci) the subset of tests which cover the code item ci.

Table 1. A Bug Table for error localization in a design

t1 t2 t3 t4 t5 t6 S(i)

c1 1 1 0,5
c2 1 1 1 0,33
c3 1 1 1 0
c4 1 0
c5 1 1 1 1 1 0,6
c6 1 1 1 1

4.2 Ranking of Suspected Bug Candidates

The statistical suspiciousness score for ranking the HDL code item i as the bug candi-
date during the design error localization is calculated by the following Formula (1):

 (1)

where S(i) is the suspiciousness score value of the code item ci, Passed(i) = | TP ∩
T(ci) | and Failed(i) = | TF ∩ T(ci) | are the counts of passing and failing tests that cov-
ered the code item ci in the dynamic slice (depicted in the rows of table D), while
TotalPassed = |TP| and TotalFailed = |TF| are the total numbers of the passing and
failing tests in the complete diagnostic test, respectively. The value of
Failed(i)/TotalFailed can be interpreted as the conditional probability of the error in
the code item ci for the given test result, and the value of Passed(i)/TotalPassed can
be interpreted as the conditional probability of the correctness of the code item ci for

dTotalPasse

iPassed

dTotalFaile

iFailed
dTotalFaile

iFailed

iS
)()(

)(

)(
+

=

430 M. Gaudesi et al.

the given test result. Accordingly, the value of S(i) can be interpreted as the condi-
tional probability that the code item ci is faulty for the given test result. Let us intro-
duce a threshold Sthreshold determining the code items ci with scores S(i)≤Sthreshold that
should not be considered as the bug location candidates. In case of Formula (1) the
default value for Sthreshold is 0.5.

In Table 1, the entries in the column S(i) correspond to the suspiciousness score
values for all the code items (conditional probabilities), given the tests t1, t5 and t6
have failed. In the process of design error diagnosis, the ranking of the code items as
being the faulty candidate will proceed according to the values S(i).

4.3 Statistical Assessment of Diagnostic Capability with WHATIF Method

Previous experience has demonstrated the efficiency of Formula (1) is guiding the
bug localization process [11]. When looking for the suitable fitness function for eval-
uation the diagnostic capability of the given test to be used in evolutionary test gener-
ation we may mimic real diagnosis procedures using the information in table D and
derive estimations of the diagnostic capability for the given tests from it.

Such a procedure is described in [12] as a WHATIF algorithm which is based on
using Formula (1) for statistical assessment of suspiciousness scores for the mimicked
test experiments targeting bug localization. We refer to WHATIF because it consecu-
tively estimates the quality of the given diagnostic test for each of the code items by
performing probabilistic simulation of diagnosis experiments i.e. AS IF a bug is lo-
cated in one of the code items.

For assessment of the test set T, calculate for each code item ci the conditional
suspiciousness score values S(i|j) in condition that the tests in T(cj) have failed. The
values of S(i|j) can be interpreted as conditional probabilities P(ci|cj) of errors in ci ,
given the tests in T(cj) have failed.

Let us consider a threshold Sthreshold for S(i|j). If S(i|j) > Sthreshold then include ci into
the suspected error candidates together with cj . Otherwise ci is not included. Denote
the number of all error candidates for the case of failed T(cj) as W(cj). Based on the
values of W(cj) we can assess the diagnostic capability of the given test set as the
average of bug candidates over all sub-tests T(cj) as

 (2)

The lower the value of W(T) the better diagnostic capability the given test set has.

4.4 GENERIC Coverage-Based Approach to Assessment of Diagnostic
Resolution

An alternative heuristic procedure for calculating the suspiciousness score values can
be derived by interpreting the entries in table D in a way where d i,j = 1 means that if
the test ti has passed, the statement cj, it cannot be an error candidate. We use here a
simplifying hypothesis that possible bugs can be related only to single statements, and


=

=
n

j

jcW
n

TW
1

)(
1

)(

 Diagnostic Test Generation for Statistical Bug Localization Using EC 431

not to combinations of them. Regarding the general case of multiple errors, the entries
of d i,j = 1 are overestimated (the bug in cj covered by ti in reality may not be able to
cause ti to fail).

Consider again the table D with n columns for sub-tests and m rows for statements.
If all columns are different then the diagnosability is evaluated as equal to 1 (denoting
the best resolution where the result of the diagnostic procedure at a failing test will be
exactly a single buggy statement), otherwise we can calculate the average
diagnosability as follows.

Let Mk be a subset of rows which are equivalent. If a subset Mk contains k rows, it
means that the result of the diagnosis provides k statements as indistinguishable error
candidates. Let q be the number of different subsets Mk. where 1 ≤ q ≤ n. The average
diagnosability of the design by the given test T can be calculated as

 (3)

The value of G(T) means the number of average diagnostic resolution as a measure
for estimating the diagnosability of the design for the given test set used for debugging.

5 Evolutionary Diagnostic Test Pattern Generation

Evolutionary Computation (EC) has been little, but steadily, used by the Computer
Aided Design community during the past 20 years. In the early works of the 1980s, it
was mainly seen as a means to optimize numeric coefficients; in the 1990s, the first
Evolutionary Algorithms (EAs) eventually gathered recognition. As the complexity of
the circuits dramatically increased, evolutionary heuristics started to be seen as prom-
ising alternatives to classic approaches. Researchers proposed EA-based methodolo-
gies for several well-known NP-hard problems, such as placement, floorplanning, and
routing [20]. Since 2000, the possibility to evolve full assembly programs was also
exploited [21].

EAs have long been demonstrated as efficient stimuli generators for automatic test-
pattern generation and semi-formal verification. Evolutionary computation is based
on the idea of promoting imperceptible differences that produce small, yet quantifia-
ble, differences in the fitness. Such a smooth fitness functions is easily definable
when the goal is test, because the number of detected faults or other standard metrics
can be used. Tackling verification, researchers usually resorted to proxy measures like
code coverage metrics [22, 23]. The main obstacle that prevented the exploitation of
EC in bug localization was the difficulty of defining a suitable fitness function: a bug
is either caught or not caught, with no intermediate state.

The concept of statistical bug localization enables the definition of a rather smooth
fitness function: the amount by which a test program will increase or decrease the
diagnostic power of an existing test set. Thus, an EA can be used to add a single ele-
ment to an existing test suite. Then, the process might be iterated by adding more
content, until a stopping condition is eventually met.


=

=
q

j

j

q

M
TG

1

)(

432 M. Gaudesi et al.

5.1 Evolutionary Optimizer µGP

The EA used in the experiment is µGP (also spelled MicroGP), a general-purpose
evolutionary toolkit developed at Politecnico di Torino [24, 25]. µGP allows a high
degree of customization of evolutionary operators, stop criteria, and algorithm param-
eters. Internally it represents an individual as a multi-graph, where each node roughly
corresponds to a locus of the genome. It is interesting to notice that, differently from
most EAs, loci can be occupied by alleles with different characteristics, e.g. integer,
float or fixed values, and the probability of appearance of each allele can be tuned.

In µGP, the internal parameter mu (µ) indicates the size of the population; lambda
(λ) the number of genetic operators applied at each step, and, thus, indirectly the off-
spring size; tau (τ) the number of individuals in the tournament selection used to se-
lect the parent individuals; and sigma (σ) the initial strength of the genetic operators,
tweaking the similarity between parents and offspring.

µGP implement quite a large variety of genetic operators that can handle the spe-
cific characteristics of the individuals’ genome: different mutations (single parent),
and crossovers (multiple parents). Moreover, two operators mimic differential evolu-
tion to efficiently handle real-valued parameters, and one operator perform a pseudo
exhaustive search on a single parameter. All different operators are activated with a
specific probability.

Self-adaptation in EA can be used to shift the focus of the algorithm between
exploration and exploitation, depending on the state of the search, improving both
the efficiency and the quality of the result. In µGP, the mechanism also regulates
all activation probabilities, rewarding the most effective operators. Moreover, the
self-adaptation mechanism tweaks σ, regulating the difference between parent and
offspring. As a result, the only parameters that need to be set by the user are µ, λ, and
τ. However, default values are usually appropriate and no tuning is necessary.

5.2 Evolutionary Diagnostic Test Set Generation Flow

The general flow of the evolutionary diagnostic test generation is presented in
Figure 2. It is composed of two main parts: an Evolutionary Algorithm (EA) repre-
sented by µGP and an EVALUATOR represented by the zamiaCAD framework.

First, a Test Set is composed of the original functional test, i.e. a set of programs
manually developed by the processor designers themselves. Then, an evolutionary
optimizer devises a set of new test programs by evolving a population of candidate
solutions. The usefulness of each candidate test program is evaluated with respect to
the existing Test Set by the zamiaCAD framework and is reported back to the µGP
core in form of fitness values. The best individual from the population, i.e. the one
with the highest fitness, is added to the Test Set. Then, the process iterates.

 Diagnostic Test Generation for Statistical Bug Localization Using EC 433

Fig. 2. A general flow of the evolutionary system developed in this work

The evolutionary optimizer evolves the population until some stopping condition is
met - usually a steady state condition is detected (i.e., non-improvement is recorded
for a given number of generations). The outer loop, on the other hand, is repeated
until the Test Set reaches a satisfying diagnostic capability.

6 Experimental Results

We have performed experiments on an open-source RTL VHDL design of a MIPS-I
architecture microprocessor Plasma [26] available from the OpenCores.org website.
The zamiaCAD framework was used as an environment to elaborate and simulate the
RTL design and served as the evaluator while evolutionary diagnostic test generation
was performed by µGP. Both frameworks are open-source and available under the
GNU Public License.

µGP is fully controlled by XML configuration files. The most critical one defines
the format of the individual. In the current context an individual is an Assembler pro-
gram, it describes the instructions set architecture of the processor. The configuration
file for the Plasma microprocessor consists of about 500 lines, and can be generated
almost mechanically from the assembler specification. The other files contain all the
variables controlling evolution. As it was mentioned before, the user is not required to
modify them since they are self-adapted during the evolution. The only significant
parameters were the population size, the number of evolutionary operators and the
tournament size. They were set to, respectively, µ = 30, λ = 20, and τ = 2 (correspond-
ing to a roulette wheel on linearized fitness).

The Plasma RTL VHDL design has in total 1068 concurrent and sequential state-
ments (4,618 lines of VHDL code without libraries). Its original functional test TO
created by the designer for the verification purposes was split into 26 independent test
programs and was used as a starting point for the diagnostic test generation.

In the experiment to improve the diagnostic properties of the test set TO, we have
extended it with 10 additional tests by the following three approaches:

1) pseudorandom test generation resulting in the diagnostic test set TR
2) µGP-based test generation using WHATIF metric W(T) as a fitness function,

resulting in the diagnostic test set TW
3) µGP-based test generation using GENERIC metric G(T) as a fitness function,

resulting in the diagnostic test set TG.

434 M. Gaudesi et al.

Here the resulting diagnostic tests TR, TW, TG each consist of 36 test programs. The
pseudorandom test generation exploits the infrastructure of µGP and relies on its As-
sembler templates for the Plasma design.

To evaluate real bug localization quality by the different test sets we introduced for
the Plasma design 46 realistic bugs. They were latter injected one at a time and the
automated statistical localization procedure as described in Section 3 was performed.
An example of such bug is shown in Figure 3.

Fig. 3. An example design error Bug_bus-mux_101-cbus in the Plasma RTL design

Table 2. Experimental results for diagnostic test generation

Diagnostic
quality

Diagnostic tests
TO TR TW TG

of programs 26 36 36 36

W(T) ↓ 266.86 279.90 262.57 (285.68)

G(T) ↑ 54.00 82.00 (64.00) 103.00

Real quality ↓ 29.02 29.89 22.78 22.24

Time: TPG As-
sessment

Localization

-
39s

 38m

1s
54s
53m

2h 27m
54s
53m

1h 50m
54s
53m

Table 2 presents the experimental results. The diagnostic quality of each test TO TR,

TW, TG was measured using the WHATIF W(T) and GENERIC G(T) metrics. Where
the lower the W(T) value the better, and G(T) is the opposite. Real quality is the worst
number of candidates that need to be considered in average to locate the 46 bugs.
Here, if n bug location candidates all have the same score Sn and they are preceded by
m candidate locations with higher scores then we consider that our localization result
for the actual bug location with Sn to be on the (m+n)th place, i.e. the worst case. The
Assessment time reported is the time required to calculate W(T) and G(T)for the gen-
erated diagnostic tests and the Localization time is the time spent on performing sta-
tistical localization of all the 46 case-study bugs. The experiments were run on a
workstation with Intel Core i5 2.9GHz, 16GB RAM.

As an example consider the following individual results for the localization of the
bug Bug_bus-mux_101-cbus shown in Figure 3 by the diagnostic test sets. Using TO
has immediately allowed zamiaCAD to assign the actual bug location with the highest
suspiciousness score 1.0, i.e. place it to the first rank group of candidates. The size of
this group was 34. It means that the engineer has to check in the worst case 34 candi-
dates to get to this location. Test sets TR, TW, TG had changed the size of this group
from 34 to 42, 15 and 18 respectively. Therefore TW was the best improved diagnostic
test for this particular bug localization.

 Diagnostic Test Generation for Statistical Bug Localization Using EC 435

The experimental results demonstrate (a) accuracy of the proposed metrics for di-
agnostic capability assessment, (b) efficiency of µGP to optimize diagnostic tests in
using the proposed metrics as fitness functions and (c) overall feasibility of the evolu-
tionary system developed in this work.

7 Conclusions

This paper was the first to propose an approach for diagnostic test generation for
statistical bug localization using evolutionary computation. For this purpose, we ex-
ploited an evolutionary toolkit µGP (MicroGP) and investigated dedicated diagnostic
capability metrics integrated into an open source design analysis tool zamiaCAD to be
used as the fitness function for the computation. The proposed approach significantly
saves the test generation time by avoiding experiments for each bug to be carried out
iteratively during the evolutionary optimization process. Second, it supports reuse of
the test set in the case of later modifications to the code.

The experimental results on a Plasma processor showed significantly improved
diagnostic resolution of localizing design bugs by the test sets generated implement-
ing the proposed approach.

Acknowledgements. The work has been supported in part by EU FP7 STREP project
BASTION, Estonian ICT Program project FUSETEST, by European Union through the Euro-
pean Structural and Regional Development Funds, by Estonian SF grants 8478, 9429, and by
ELIKO Technology Centre.

References

1. ITRS. International Technology Roadmap for Semiconductors report.
http://www.itrs.net/

2. FP6 PROSYD (2004). PROSYD (Property-Based System Design), FP6 funded STREP.
http://www.prosyd.org/

3. Peischl, B., Wotawa, F.: Automated Source-Level Error Localization in Hardware
Designs. Design & Test of Computers 23(1), 8–19 (2006)

4. Smith, A., Veneris, A., Viglas, A.: Design Diagnosis Using Boolean Satisfiability. In:
Proc. Asia and South Pacific Design Automation Conference (ASPDAC), pp. 218–223
(2004)

5. Chang, K.-H., Wagner, I., Bertacco, V., Markov, I.L.: Automatic Error Diagnosis and Cor-
rection for RTL Designs. In: Proceedings International Workshop on Logic and Synthesis
(IWLS), pp. 106–113 (May 2007)

6. Liblit, B., Naik, M., Zheng, A.X., Aiken, A., Jordan, M.I.: Scalable statistical bug isola-
tion. ACM SIGPLAN Notices 40(6), 15–26 (2005)

7. Liu, G., Fei, L., Yan, X., Han, J., Midkiff, S.P.: Statistical debugging: A hypothesis
testing-based approach. IEEE Trans. on Software Engineering 32(10), 831–848 (2006)

8. Wong, W.E., Debroy, V., Choi, B.: A family of code coverage-based heuristics for effec-
tive fault localization. J. of Systems and Software 83(2), 188–208 (2010)

436 M. Gaudesi et al.

9. Cleve, H., Zeller, A.: Locating causes of program failures. In: Proceedings Int. Conf. on
Software Engineering, pp. 342–351 (2005)

10. Jones, J.A., Harrold, M.J.: Empirical evaluation of the Tarantula automatic fault-
localization technique. In: Int. Conf. on Automated Software Engineering, pp. 273–283
(2005)

11. Tšepurov, A., Tihhomirov, V., Jenihhin, M., Raik, J., Bartsch, G., Meza Escobar, J.H.,
Wuttke, H.D.: Localization of Bugs in Processor Designs Using zamiaCAD Framework.
In: 13th International Workshop on Microprocessor Test and Verification (MTV 2012)
Common Challenges and Solutions (2012)

12. Tihhomirov, V., Tšepurov, A., Jenihhin, M., Raik, J., Ubar, R.: Assessment of diagnostic
test for automated bug localization. In: 14th Latin American Test Workshop (LATW), p. 6
(2013)

13. Deng, S., Cheng, K.-T., Bian, J., Kong, Z.: Mutation-based diagnostic test generation for
hardware design error diagnosis. In: IEEE International Test Conference (ITC) (2010)

14. Bernardi, P., Sánchez, E.E., Schillaci, M., Squillero, G., Sonza Reorda, M.: An Effective
Technique for the Automatic Generation of Diagnosis-Oriented Programs for Processor
Cores. IEEE Transactions on CAD of ICs and Systems 27(3), 570–574 (2008)

15. Abreu, R., Zoeteweij, P., van Gemund, A.J.C.: On the Accuracy of Spectrum-based Fault
Localization. In: Testing: Academic and Industrial Conference Practice and Research
Techniques – MUTATION, TAICPART-MUTATION 2007, pp. 89–98 (2007)

16. Repinski, U., Raik, J.: Comparison of Model-Based Error Localization Algorithms for C
Designs. In: Proc. of 10th East-West Design & Test Symposium (2012)

17. Lisherness, P., Cheng, K.-T.: Coverage discounting: A generalized approach for testbench
qualification. In: IEEE International High Level Design Validation and Test Workshop
(HLDVT), pp. 49–56 (November 9-11, 2011)

18. zamiaCAD framework web page. http://zamiaCAD.sf.net
19. Tšepurov, A., Bartsch, G., Dorsch, R., Jenihhin, M., Raik, J., Tihhomirov, V.: A Scalable

Model Based RTL Framework zamiaCAD for Static Analysis. In: IFIP/IEEE International
Conference on Very Large Scale Integration (VLSI-SoC), Santa Cruz, USA (2012)

20. Drechsler, R.: Evolutionary Algorithms for VLSI CAD. Springer (1998) ISBN: 978-1-
4419-5040-6

21. Squillero, G.: Artificial evolution in computer aided design: from the optimization of pa-
rameters to the creation of assembly programs. Computing 93(2-4), 102–120 (2011)

22. Corno, F., Sonza Reorda, M., Squillero, G.: RT-level ITC’99 benchmarks and first ATPG
results. IEEE Design & Test of Computers 17(3), 44–53 (2000)

23. Corno, F., Sanchez, E., Sonza Reorda, M., Squillero, G.: Automatic test generation for
verifying microprocessors. IEEE Potentials 24(1), 34–37 (2005)

24. Squillero, G.: MicroGP—An Evolutionary Assembly Program Generator. Genetic
Programming and Evolvable Machines 6(3), 247–263 (2005)

25. Sanchez, E., Schillaci, M., Squillero, G.: Evolutionary Optimization: the µGP toolkit.
Springer (2011) ISBN: 978-0-387-09426-7

26. Plasma CPU project. http://opencores.org/project,plasma

EvoIASP

Evolutionary Algorithm for Dense Pixel
Matching in Presence of Distortions

Ana Carolina dos-Santos-Paulino1, Jean-Christophe Nebel2,
and Francisco Flórez-Revuelta2(B)

1 Télécom Physique Strasbourg, Université de Strasbourg,
Bld. Sebastién Brant, F 67400 Illkirch-Graffenstaden, France

acdossantos@etu.unistra.fr
2 Faculty of Science, Engineering and Computing, Kingston University,

Penrhyn Road, Kingston upon Thames, UK KT1 2EE
{J.Nebel,F.Florez}@kingston.ac.uk

Abstract. Dense pixel matching is an essential step required by many
computer vision applications. While a large body of work has addressed
quite successfully the rectified scenario, accurate pixel correspondence
between an image and a distorted version remains very challenging.
Exploiting an analogy between sequences of genetic material and images,
we propose a novel genetics inspired algorithm where image variability
is treated as the product of a set of image mutations. As a consequence,
correspondence for each scanline of the initial image is formulated as the
optimisation of a path in the second image minimising a fitness function
penalising mutations. This optimisation is performed by a evolution-
ary algorithm which, in addition to provide fast convergence, implicitly
ensures consistency between successive scanlines. Performance evalua-
tion on locally and globally distorted images validates our bio-inspired
approach.

Keywords: Evolutionary algorithm · Dense pixel matching · Unrecti-
fied images · Distorted images

1 Introduction

Despite indubitable progress in last decades, success of current image process-
ing algorithms is largely constrained to controlled environments. In addition,
attempting to control the huge number of parameters involved in scene variabil-
ity is a very clumsy and inefficient way of dealing with real-life situations. In
contrast, in the field of bioinformatics, dealing with data variability is at the
core of most algorithms since genetic mutations are a reality which cannot be
ignored. Based on this observation, the authors have worked on a novel genetics-
inspired paradigm for image analysis. This new paradigm relies on the idea that
by making an analogy between sequences of genetic material and images, image
variability can be interpreted as the product of image mutations. Since many
computer vision systems rely either on pixel matching or optical flows, this task
c© Springer-Verlag Berlin Heidelberg 2014
A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2014, LNCS 8602, pp. 439–450, 2014.
DOI: 10.1007/978-3-662-45523-4 36

440 A.C. dos-Santos-Paulino et al.

has been the core of our investigations [14]. The novel dense pixel matching algo-
rithm we proposed based on this paradigm has demonstrated its robustness not
only to camera rotation and translation, but also to local and global distortions
[14], so that stereo matching can be freed from the constraint of working with
rectified images.

Despite these achievements, the proposed algorithm displays two main limi-
tations: lack of consistency between matches of successive scanlines and a high
computational complexity due to the selection of a dynamic programming algo-
rithm to optimise pixel matching. In this work, we propose to address those
drawbacks by performing optimisation using an algorithm fitting our bio-inspired
paradigm, i.e. a cellular evolutionary algorithm.

A cellular evolutionary algorithm (cGA) is a specific type of evolutionary
algorithm where the individuals in the populations are connected establishing a
neighbourhood relation between them. Particularly, individuals are conceptually
set in a toroidal mesh, and are only allowed to recombine with close individuals
[1]. This model fits well with the structure of a image composed by neighbouring
lines. Besides, the distortion of a line is quite similar to the distortions of the
neighbouring lines. This fact introduces a modification to the original cellular
evolutionary model: there is not a single fitness function to optimise, but each
individual will optimise the distortion for a specific line in the images.

2 Related Work

The main application of dense pixel matching has been 3D reconstruction from
a pair of stereo images. A large body of research has been devoted to the sce-
nario which assumes that images have been rectified so that the problem can
be reduced to finding correspondences between a pair of scanlines, see reviews
[13][15]. Image rectification has been mainly focused on addressing global dis-
tortions associated with camera rotation and translation, and lens distortions.
Standard approaches include planar [5], cylindrical [10] and spherical [17] rectifi-
cations. In addition to their reliance on finding a set of accurate matching points,
pixel interpolations and usage of simple camera models, they are not able to deal
with local distortions such as those produced by raindrops and dust.

Although the alternative is the design of dense pixel matching approaches
which do not require prior image rectification, very few algorithms have been
proposed. [18] offered a solution using multi-resolution image correlation. How-
ever, since it was developed to address the particular task of 3D reconstruction
of a unique convex object, applications have focused on either face or body part
modelling [6][2]. [8] offered a variation of a motion estimation algorithm used
for JVT/H.264 video coding to perform a 2-dimensional search. However, the
lack of contextual constraints makes the matching process particularly difficult
in poorly textured regions. More recently, [11] presented a modification of how
the cost volume is created during matching which, they claim, can be integrated
in any disparity estimation framework. However, since they only present results
on slightly misaligned images, behaviour of their approach in more complicated

Evolutionary Algorithm for Dense Pixel Matching in Presence of Distortions 441

scenarios remains unknown. Finally, we proposed a novel algorithm, whose fit-
ness function was inspired by our genetics-inspired paradigm. Although it has
demonstrated robustness to many camera transformations and distortions [14],
it suffers from using a dynamic programming approach for optimisation of the
pixel matching process. First, disparity maps display horizontal streaking due to
the absence of consistency constraint between successive matched lines. Second,
it has a high computational complexity (O(n3), assuming an image of size n2).

Although dynamic programming techniques based on tree structures [16][3]
have been proposed to allow optimisations across both vertical and horizontal
dimensions, they do not provide true 2D optimisation since optimisation is per-
formed along a tree structure instead of a whole image. Moreover, they display a
higher computational cost and have only been applied to the rectified scenario.
As a consequence, we have investigated alternative approaches to optimise our
fitness function. Although dense pixel matching using a genetic algorithm has
only been proposed in the rectified image scenario [12][4], an elegant approach
allowing optimising matching fitness functions has recently shown a 20% quality
improvement while performing fast convergence [7]. In this work, we propose to
adopt a similar scheme, but adapted to the unrectified scenario.

3 Bio-inspired Algorithm

Data explosion in sequencing of genetic material gives researchers the oppor-
tunity to compare sequences of genetic material to establish evolutionary rela-
tionship between proteins. Since protein sequences have an average length of 400
characters and mutate through substitution, insertion and deletion of characters,
the alignment of a protein pair is not a trivial matter. The ’Needleman-Wunsch’
algorithm [9] has provided an effective automatic method to produce an exact
solution to the global alignment of two protein sequences which is still at the core
of the latest protein search tools. It is based on a dynamic programming (DP)
approach which optimises the global alignment of character strings according
to a scoring function taking into account possible mutations. In practice, align-
ments are produced in two steps. First, a 2D scoring matrix is filled where each
cell stores the maximum value which can be achieved by extending a previous
alignment. This can be done either by aligning the next character of the first
sequence with the next character of the second sequence (’match’) or extending
either sequence by an empty character to record a character insertion or deletion
(’gap’). Second, a ’backtracking’ process extracts the optimal path in the matrix,
which leads to finding the best alignment between the two sequences.

An analogy can be drawn between aligning protein sequences and matching
pixels belonging to scanlines, since both tasks aim at establishing optimal corre-
spondence between two strings of characters: the second image of a pair can be
seen as a mutated version of the first image where noise, distortions and indi-
vidual camera sensitivity alter pixel values (i.e. character substitutions); and a
different view angle reveals previously occluded data and introduces new occlu-
sions (i.e. insertion and deletion of characters). In earlier work, taking advantage

442 A.C. dos-Santos-Paulino et al.

Fig. 1. Each individual in the population represents the path of a scanline in the
distorted image. Individuals are linearly connected.

of this analogy, the authors proposed a novel dense pixel matching algorithm
able to find correspondence between unrectified images [14]. That approach was
shown robust not only to camera rotation and translation, but also to local and
global distortions since, instead of restricting itself to finding pixel correspon-
dences between scanlines, it does it between a scanline and an entire image. This
was achieved by using a 3D scoring matrix, which allowed taking into account
a larger range of ’mutations’, see Table 1, so that image distortions could be
addressed.

Since pixel matching relies on a DP algorithm operating in a 3D matrix,
that approach has a high computational complexity. Moreover, the processing of
each scanline independently does not ensure any consistency between matches of
neighbouring scanlines. Here, we address those drawbacks by replacing the DP
based optimisation by an evolutionary algorithm. Its main principle is the evolu-
tion, for each scanline of the first image, of a path within the second image which
optimises a scoring function maximising pixel matches and minimising gaps.
Moreover, since our evolutionary algorithm relies on recombination between close
neighbours, this proposed optimisation implicitly provides consistency between
successive scanlines.

4 Evolutionary Proposal

Let I1 and I2 be a pair of images composed of n lines, where I2 is a distorted
version of I1. Each individual in the population represents the path of one line
in I1 (scanline) within I2 (Fig. 1). Therefore, the number of individuals in the
population is equal to the number of lines in the image I1.

The approach taken is very similar to the behaviour of a linear Cellular
Genetic Algorithm with the exception that fitness varies between individuals.
However, as neighbouring scanlines have similar distortions, each individual will
optimise a similar fitness function. Similarly to cGAs, recombination will take
place between close neighbours propagating good solutions to the neighbourhood
(Algorithm 1). As a result, the final population will represent distortions between
images.

Evolutionary Algorithm for Dense Pixel Matching in Presence of Distortions 443

Algorithm 1. Evolutionary process

Initialise the population (see Section 4.3) with a number of individuals equal to the
number of lines in the image
repeat

Select an individual I at random
Select a couple of parents I1 and I2 in the neighbourhood of I (Section 4.4)
Recombine I1 and I2 by crossover generating Inew (Section 4.5)
Mutate Inew (Section 4.6)
if fitness(Inew) < fitness(I) then

Substitute I by Inew

end if
until an ending condition is fulfilled

Fig. 2. Different possible matches according to the direction. Stay directions follow the
same nomenclature.

Besides, since the individuals correspond to different lines of the image, the
topology of the population is linear, unlike standard cGAs operating in 2D which
evolve in a toroidal structure. That is coherent, as the first and the last lines of
an image are neither spatially related, nor likely to present a similar distortion
pattern.

4.1 Individual’s Representation

Each individual represents the path that a scanline in the original image follows
in the distorted image. Each gene takes one of the 11 values described in Table 1.
A match is achieved when a pixel in the scanline has a correspondence in the
boundaries of the previous pixel in the distorted image. This match can be
located in either the north, south, east, northeast or southeast direction of the
pixel previously analysed (Fig. 2). Moreover, due to distortion or occlusion (if
the images are captured from different view points), a pixel of the original image
may not be found in any of the previously defined adjacent positions or a pixel in
the distorted image may not have any correspondence in the original image. In
the first case, a stay (making reference to stay in the scanline, while moving in
the distorted image) may be placed in the sequence of directions. In the second
case, a gap is placed in the distorted image.

444 A.C. dos-Santos-Paulino et al.

Table 1. Possible gene values, and associated penalties and motions considered in
Algorithm 2

Gene values Representation Penalty Motion in the Motion in the
original image distorted image

Match North MN d(POrig, PDist) → ↑
Match South MS d(POrig, PDist) → ↓

Match Northeast MNE

√
2 · d(POrig, PDist) → ↗

Match Southeast MSE

√
2 · d(POrig, PDist) → ↘

Match East ME d(POrig, PDist) → →
Stay North SN g – ↑
Stay South SS g – ↓

Stay Northeast SNE

√
2 · g – ↗

Stay Southeast SSE

√
2 · g – ↘

Stay East SE g – →
Gap G g → –

Algorithm 2. Fitness calculation

Let POrig = (xOrig, yOrig) and PDist = (xDist, yDist) be the first pixels in associated
lines in both the original and the distorted image. Therefore, xOrig = 1, xDist = 1
and yOrig = yDist

Set fitness=0
for i = 1 to length of the individual do

Obtain the value Vi for the gene i in the individual
Increase the fitness with the penalty associated to Vi following Table 1 between

POrig and PDist where d(POrig, PDist) = ‖RGB(PDist)−RGB(POrig)‖ and RGB(P)
is the RGB value of P

Update the coordinates for POrig and PDist according to the motions
described in Table 1
end for

4.2 Fitness

The fitness function is a measure of the discrepancy between a scanline and its
correspondence in the distorted image. It is calculated following Algorithm 2
where successive comparisons are carried out between each pair of pixels that
are associated by the path represented by the individual.

We follow the same approach as [14] where matches or stays in NE and SE
directions are more penalised since they imply moving by a distance of

√
2 pixels

in the image. The value g represents a constant penalty when there is no match.

4.3 Initialisation

Each individual is initialised to represent a trajectory beginning from the left
of the distorted image. We propose two types of initialisation strategies: either
the selection of a sequence of symbols at random, or the generation of a ”locally
optimised” path, where the addition of each new symbol relies on keeping the
individual fitness minimal.

Evolutionary Algorithm for Dense Pixel Matching in Presence of Distortions 445

Fig. 3. Illustration of an one-point crossover

The path creation process is completed when (i) the path reaches one of the
borders (top, bottom rows or right column) of the distorted image and (ii) it
provides correspondence for all pixels of the scanline. If a border is reached first,
gaps are included at random positions in the chromosome until all scanline pixels
have correspondence. Otherwise, if there is a correspondence for every pixel in
the scanline, stay symbols are included at random in the chromosome until the
path reaches one of the borders.

4.4 Selection of Parents

As mentioned previously, a new individual I is evolved from a pair of individuals
in its neighbourhood1 . Selection of the parents could be performed in different
ways. For instance:

– according to their proximity to I: the probability of an individual to be
chosen is calculated according to a gaussian distribution centered in I, or

– according to their fitness using a roulette-wheel method, where the probabil-
ity of an individual is a function of its fitness and its neighbours’ as described
by:

PIi =
fitness(Ii)∑

∀j∈Neighbourhood(Ii)
fitness(Ij)

(1)

4.5 Crossover

Since individuals have different lenghts and representations (paths), which makes
their alignments difficult, a typical crossover strategy, where a point (or more)
in both parents is selected and the different parts are swapped, is not suitable.
Therefore, we propose to select one or more columns in the initial image so
that offsprings are generated by swapping the path portions that are defined by
those columns (Figure 3). With this procedure, we ensure that each offspring
completes a path from the left to the right part of the image.

4.6 Mutation

Mutations produce local changes in the path of an offspring. Those changes can
take the following forms:
1 Note that the neighbourhood also includes individual I.

446 A.C. dos-Santos-Paulino et al.

– gene alteration by selecting at random an alternative direction,
– gene deletion,
– gene replication over a contiguous interval of the path,
– simultaneous deletion of a gene pair gaps/stays in the scanline, as they

correspond to inverse operations, and
– local optimisation by substituting an interval of the path by an optimised

path following the methodology presented in Section 4.3.

If the mutation process leads to the generation of an individual whose path
does not reach the end of the scanline or one of the borders of the distorted
image, it is corrected by employing a process similar to the one presented in
Section 4.3. Alternatively, if the path exceeds either the length of the scanline
or the distorted image, it is cropped.

5 Experimentation

In order to evaluate our evolutionary based dense pixel matching algorithm we
have tested it with different image pairs presenting either global distortions, i.e.
distortions affecting the whole image, or local distortions where various distor-
tion filters are applied to different areas of the image. Given that pixel values
for each colour channel range from 0 to 255 we have set a penalty g = 181,
similarly to [14], when a ’gap’ or a ’stay’ is included in a path. We have also
considered all the mutation types stated in Section 4.6 with equal probability. As
stopping condition, the evolutionary process finishes if there is no changes in the
population for 10,000 generations (i.e. the creation of 10,000 new individuals).

Figure 4 presents matching results between an image 4a and its global sinu-
soidal distortion 4b. While Figure 4c shows paths representing different individ-
uals in the image, Figure 4d displays how the individuals represent the distortion
between the original and the distorted images. All individuals, except those in
the top and bottom lines, converged towards very similar distortions. In those
border areas, there is no continuity in the distorted stripes. Therefore the algo-
rithm minimises the fitness function by either inserting gaps or jumping to a
neighbouring stripe with a similar colour. Finally, Figure 4e shows a reconstruc-
tion of the original image using the distorted image and the paths coded in the
individuals. The original image is recovered quite satisfactorily, except in the
border areas previously mentioned.

Figure 5 shows results for an image pair, proposed by [14], where local distor-
tions were applied on the original image (Figure 5c). Figure 5e and 5f highlight
the algorithm’s ability to detect and correct the distortion on the rim of the mug.
However, in this case, it fails to address the distortion affecting the three straws.
One can speculate that, due to the choice of fitness function, the algorithm finds
easier to deal with distortions involving matches than gaps or stays.

Next, we studied how the choice of initialisation strategy, see section 4.3,
affects performance. As seen in in Figure 6, usage of locally optimised initialisa-
tion instead of random one conducts to the generation of an original population
which is composed of paths representing quite well the actual distortion. One

Evolutionary Algorithm for Dense Pixel Matching in Presence of Distortions 447

(a) Original image (b) Distorted image

(c) Distortions ob-
tained by evolution

(d) Final result on the
distorted image

(e) Reconstructed image

Fig. 4. Image matching in presence of a global sinusoidal distortion. In (c) colours
represent different directions. The reconstructed image (d) is generated by pasting the
distorted image pixels according to the path estimated for each line.

Table 2. Comparison between different initialisation methods. Ten runs were carried
out with the stripes images using the roulette method with a neighbourhood size 5 to
select parents in the crossover.

Iterations until Final
Percentage of random convergence (in millions) Initial fitness
individuals created Average Best σ fitness Average Best σ

0 2.91 2.00 0.74 12,739.58 6,003.22 5,802.13 107.63

50 3.06 2.24 0.54 48,818.54 6,113.75 5,992.04 98.75

100 7.92 5.07 2.23 58,397.66 6,720.27 5,983.65 739.10

may wonder if this optimised initialisation compromises exploration of the solu-
tion space and leads to convergence towards a worse fitness. Results in Table 2
reveal that actually optimised initialisation leads to better solutions and faster
convergence of the algorithm.

Another important aspect of the algorithm is parents selection. First, Figure 7
shows how the fitness function evolves according to the size of the neighbourhood
considered when selecting parents by roulette taking into account the fitness of
the individuals. In the case of the stripes image (Figure 7a) where the distortion
is global, the larger the neighbourhood the better the results, as good solutions
propagate faster. In the case of local distortions (Cones image - 7b), the best
result is obtained for a neighbourhood of size 15, whereas there is no significant

448 A.C. dos-Santos-Paulino et al.

(a) Original image (b) Distorted image (c) Ground truth of dis-
tortions

(d) Final result (e) Detail of the final
result

(f) Detail of the recon-
structed image

Fig. 5. Results obtained with an image with local distortions

(a) All individuals are
initialised to the ”local
optimal” path

(b) 50% of the individ-
uals are optimised

(c) All individuals are
initialised at random

Fig. 6. Initial populations generated from different initialisation methods

difference between usage of sizes 5 and 25. The best neighbourhood seems to
be related to the actual size of the distorted areas. These figures also confirm
the superiority of locally optimised initialisation over the random one, since in
both cases it provides faster convergence towards a lower fitness value. Note that
results for random initialisation of all individuals are not shown for the Cones
images as they would not fit on the graph.

Second, comparison was performed between two of the methods proposed
in Section 4.4 for the selection of parents, i.e. roulette and proximity to the
individual to be evolved. As shown on Figure 8, no significant differences are

Evolutionary Algorithm for Dense Pixel Matching in Presence of Distortions 449

(a) Stripes images (b) Cones images

Fig. 7. Influence of parents selection and initialisation strategies (Prox indicates the
number of individuals considered in the neighbourhood and Rand the percentage of
individuals initialised at random)

Fig. 8. Influence of the selection method and the neighbourhood size

observed. Therefore, the evolution seems to be more affected by the size of the
neighbourhood than the method used to select the parents.

6 Conclusion

We have introduced a novel dense pixel matching algorithm suitable for the
unrectified scenario. Based on a bio-inspired approach, our main contribution
has been the design of an evolutionary algorithm able to optimise a different fit-
ness function for each scanline while ensuring consistency between neighbouring
lines. As demonstrated in experiments involving locally and globally distorted
images, the proposed approach is valid, since processing converges towards satis-
factory solutions which do not display any horizontal streaking. Moreover, study
of different population initialisation and parents selection strategies has revealed
that locally optimised initialisation provides a better performance, while the
selection of parents is more affected by the choice of the chromosome pool than
the method used to extract the actual genitors. As future work, we propose to
further develop our system so that it could produce 3D reconstruction in real
time from data generated by two uncalibrated video cameras.

450 A.C. dos-Santos-Paulino et al.

References

1. Alba, E., Dorronsoro, B.: Cellular genetic algorithms. vol. 42. Springer (2008)
2. Cockshott, W.P., Hoff, S., Nebel, J.C.: Experimental 3-D digital TV studio. IEE

Proceedings of the Vision, Image and Signal Processing 150(1), 28–33 (2003)
3. Deng, Y., Lin, X.: A Fast Line Segment Based Dense Stereo Algorithm Using Tree

Dynamic Programming. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006.
LNCS, vol. 3953, pp. 201–212. Springer, Heidelberg (2006)

4. Han, K.P., Song, K.W., Chung, E.Y., Cho, S.J., Ha, Y.H.: Stereo matching using
genetic algorithm with adaptive chromosomes. Pattern Recognition 34(9), 1729–
1740 (2001)

5. Hartley, R.I.: Theory and practice of projective rectification. International Journal
of Computer Vision 35(2), 115–127 (1999)

6. Khambay, B., Nebel, J.C., Bowman, J., Ayoub, A., Walker, F., Donald, H.D.: A
pilot study: 3D stereo photogrammetric image superimposition on to 3D CT scan
images - the future of orthognathic surgery. The International Journal of Adult
Orthodontics and Orthognathic Surgery 17(4), 331–341 (2002)

7. Kiperwasser, E., David, O., Netanyahu, N.S.: A hybrid genetic approach for stereo
matching. In: Proceeding of the 15th Genetic and Evolutionary Computation Con-
ference, pp. 1325–1332. ACM, New York (2013)

8. Nalpantidis, L., Amanatiadis, A., Sirakoulis, G., Kyriakoulis, N., Gasteratos, A.:
Dense disparity estimation using a hierarchical matching technique from uncali-
brated stereo vision. In: IEEE International Workshop on Imaging Systems and
Techniques, pp. 427–431 (2009)

9. Needleman, S.B., Wunsch, C.D.: A general method applicable to the search for sim-
ilarities in the amino acid sequence of two proteins. Journal of Molecular Biology
48(3), 443–453 (1970)

10. Roy, S., Meunier, J., Cox, I.J.: Cylindrical rectification to minimize epipolar distor-
tion. In: Proceedings of the 1997 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, pp. 393–399 (1997)

11. Rzeszutek, R., Tian, D., Vetro, A.: Disparity estimation of misaligned images in a
scanline optimization framework. In: IEEE International Conference on Acoustics,
Speech and Signal Processing, pp. 1523–1527 (2013)

12. Saito, H., Mori, M.: Application of genetic algorithms to stereo matching of images.
Pattern Recognition Letters 16(8), 815–821 (1995)

13. Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo
correspondence algorithms. Intl. Journal of Computer Vision 47(1–3), 7–42 (2002)

14. Thevenon, J., Martinez del Rincon, J., Dieny, R., Nebel, J.C.: Dense pixel matching
between unrectified and distorted images using dynamic programming. In: Intl.
Conference on Computer Vision Theory and Applications, pp. 216–224 (2012)

15. Tippetts, B., Lee, D., Lillywhite, K., Archibald, J.: Review of stereo vision algo-
rithms and their suitability for resource-limited systems. Journal of Real-Time
Image Processing, 1–21 (2013)

16. Veksler, O.: Stereo correspondence by dynamic programming on a tree. In: IEEE
Computer Society Conference on Computer Vision and Pattern Recognition, vol.
2, pp. 384–390 (2005)

17. Wan, D., Zhou, J.: Self-calibration of spherical rectification for a ptz-stereo system.
Image and Vision Computing 28(3), 367–375 (2010)

18. Zhengping, J.: On the multi-scale iconic representation for low-level computer
vision systems. PhD thesis, The Turing Institute and the U. of Strathclyde (1988)

Is a Single Image Sufficient for Evolving Edge
Features by Genetic Programming?

Wenlong Fu1(B), Mark Johnston1, and Mengjie Zhang2

1 School of Mathematics, Statistics and Operations Research,
Victoria University of Wellington, P.O. Box 600, Wellington, New Zealand

wenlong.fu@msor.vuw.ac.nz
2 School of Engineering and Computer Science,

Victoria University of Wellington, P.O. Box 600, Wellington, New Zealand
{mark.johnston,mengjie.zhang}@vuw.ac.nz

Abstract. Typically, a single natural image is not sufficient to train a
program to extract edge features in edge detection when only training
images and their ground truth are provided. However, a single train-
ing image might be considered as proper training data when domain
knowledge, such as used in Gaussian-based edge detection, is provided.
In this paper, we employ Genetic Programming (GP) to automatically
evolve Gaussian-based edge detectors to extract edge features based on
training data consisting of a single image only. The results show that a
single image with a high proportion of true edge points can be used to
train edge detectors which are not significantly different from rotation
invariant surround suppression. When the programs separately evolved
from eight single images are considered as weak classifiers, the combina-
tions of these programs perform better than rotation invariant surround
suppression.

Keywords: Genetic Programming · Edge Detection · Gaussian Filter

1 Introduction

In computer vision, a large number of training images are usually required in
a machine learning algorithm. In order to reduce the computational cost of
learning, one-shot learning has been applied to object recognition [8,23]. After
obtaining prior knowledge from existing datasets, such as learnt classifiers or
predefined feature distributions, one-shot learning can employ a minimal set of
training examples to train new classifiers. The prior knowledge used in one-shot
learning is fundamental. In object recognition, the prior knowledge based on pre-
defined features in existing datasets are helpful to effectively train new classifiers
based on a few images. For example, the similarity between previously learned
classes and new classes have been exploited for the reuse of model parameters [9].

However, edge detection is a subjective task [22,24], and edge features are
implicit. Here, edge features in edge detection are functions of raw pixel values
in an image relative to a local point, and they are used to classify pixels as edge
c© Springer-Verlag Berlin Heidelberg 2014
A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2014, LNCS 8602, pp. 451–463, 2014.
DOI: 10.1007/978-3-662-45523-4 37

452 W. Fu et al.

points or non-edge points. When edge features need to be extracted by Genetic
Programming (GP) [13], and only a few training images and their ground truth
are provided without predefined features, it is hard to obtain the prior knowl-
edge on these training images from existing datasets because of the unknown
characteristics of edge features.

GP has been used to evolve Gaussian-based edge detectors to extract edge
features [13]. Gaussian-based edge detection techniques have some advantages for
detecting edges, such as filtering noise [1]. In a Gaussian-based GP system [13],
a program including Gaussian filters has some ability to extract edges. The
domain knowledge, i.e., Gaussian-based edge detection, might be helpful to train
new Gaussian-based edge detectors when a small set of training images is used,
although there is no prior knowledge from datasets. It is desirable to investigate
whether a single training image can be used to train effective Gaussian-based
edge detectors using GP.

The overall goal of this paper is to investigate using a single image as the
training data to evolve Gaussian-based edge detectors by GP. Note that there are
no predefined features for detecting edges, and the Gaussian-based knowledge
used in GP comes only from general applications for edge detection. Different
from common one-shot learning algorithms [8,9,23], GP selects a single train-
ing image without considering the other images in the dataset. When a single
training image is used to train GP edge detectors, there is no prior knowledge
relative to the training image and its dataset. The performance of the edge detec-
tor evolved by GP is strongly dependent on the single image used. In order to
investigate the influence from different single training images, eight images from
the 20 training image used in [13] are selected as the training data, respectively.
Specifically, we investigate the research objectives: (1) whether GP edge detec-
tors evolved by a single training image outperform existing Gaussian-based edge
feature extraction techniques, such as the Gaussian gradient and surround sup-
pression [16]; and (2) whether a combination of the GP edge detectors evolved
independently from the eight training images can outperform the GP edge detec-
tors evolved by the full 20 images used in [13].

In the remainder of the paper, Section 2 gives some background on Gaussian-
based edge detection and related work on GP for edge detection. Section 3
describes how GP is used to evolve Gaussian-based edge detectors. After giv-
ing the design of experiments in Section 4, Section 5 presents the results with
discussions. Section 6 draws conclusions and suggests future work directions.

2 Background

This section firstly gives some background on Gaussian-based edge detection and
then describes related work in edge detection using GP.

2.1 Gaussian-Based Edge Detection

In edge detection, Gaussian filters have been popularly applied for many years [1].
Since varying scales of Gaussian filters have different responses on edges,

Is a Single Image Sufficient for Evolving Edge Features by GP 453

Gaussian filters have been used to detect boundaries between different regions
[21,27]. Note that a Gaussian filter here does not mean a filter only removing
noise. There are different types of Gaussian filters, such as Difference of Gaus-
sians (DoG) and Laplacian of Gaussian (LoG) [21].

Differentiation-based approaches have widely utilised Gaussian filters to
extract edge features [1]. Here, we only focus on rotation invariant edge feature
extraction in grayscale images. Given a Gaussian filter gσ(x, y) in Equation (1),
the gradient magnitude of a Gaussian filter is defined in Equation (4). Here, σ
is a scale parameter, and x and y are the offset position from a discriminated
pixel. The Gaussian gradient filter ∇g(x, y) combines the horizontal derivative
∂g(x,y)

∂x (see Equation (2)) and the vertical derivative ∂g(x,y)
∂y (see Equation (3)).

gσ(x, y) =
1

2πσ2
exp

(
−x2 + y2

2σ2

)
(1)

∂g(x, y)
∂x

= − x

2πσ4
exp

(
−x2 + y2

2σ2

)
(2)

∂g(x, y)
∂y

= − y

2πσ4
exp

(
−x2 + y2

2σ2

)
(3)

∇g(x, y) =

√(
∂g(x, y)

∂x

)2

+
(

∂g(x, y)
∂y

)2

(4)

The Canny edge detector [5] is one popular edge detector based on the Gaus-
sian gradient. In the Canny edge detector, after extracting the Gaussian gradient,
adaptive thresholding with hysteresis is used to eliminate breaking of edge con-
tours. However, the Canny edge detector is slightly sensitive to weak edges and
susceptible to spurious and unstable boundaries with non-significant change in
intensity [1,24].

Besides the Gaussian gradient, the second-order derivative has also been
employed to extract edge features [1]. The LoG is given in Equation (5). LoG
∇2g(x, y) is a zero-crossing detector [1]. DoG is a second derivative filter [28],
approximating LoG well. The DoG is shown in Equation (6), where σ1 and σ2 are
different scale parameters. Since DoG is based on the difference of two Gaussians
gσ1(x, y) and gσ2(x, y), it is a kind of band filter, and suppresses noise with a
high spatial frequency, but decreases overall image contrast [21].

∇2g(x, y) =
x2 + y2 − 2σ2

2πσ6
exp

(
−x2 + y2

2σ2

)
(5)

DoGσ1,σ2(x, y) = gσ1(x, y) − gσ2(x, y) (6)

In general, one single Gaussian filter is not sufficient to extract edge fea-
tures. The same type of Gaussian filters have been combined to extract edge
features based on responses at different scales [1,3]. Assuming that there are
typically varying noise and different types of edges in an image, multi-scale edge
detectors employ multiple Gaussian filters to smooth the image. In the multi-
scale technique, three directions are generally used. The first direction is from a

454 W. Fu et al.

coarse solution (high σ) to a fine solution (small σ), namely edge focusing [3].
In this direction, firstly, edges are extracted by a Gaussian filter with a high σ,
and then the localisation of edges are discriminated by a Gaussian filter with
the next smaller σ. The aim of using multi-scale Gaussian filters is to reverse
the effect of the blurring caused by large scale Gaussian filters. The threshold
at the coarsest level determines the detected edge quality. However, it is hard
to set each level scale and choose the threshold in each level [1]. The second
direction is from fine to coarse [20]. Since large scale blurs detected edges, the
problem of localisation error still exists in the coarse solutions. Again, how to
choose scales is not clear. The third direction is to adaptively control scales of
Gaussian filters [2]. These scales are adapted to both the local variance and the
noise characteristics from a small area in an image. This direction assumes that
noise is modelled by a Gaussian distribution with a known variance, and smooths
areas based on a scale relative to the estimated Gaussian distribution.

Additionally, different types of Gaussian filters have also been combined for
edge detection [15]. In order to detect edges and filter noise, surround suppres-
sion [15,16] has been developed. This technique utilises contextual information
to suppress responses on textures via combining the Gaussian gradient and the
DoG. Surround suppression normally chooses Gabor filters to extract edge fea-
tures [16]. A two-dimensional Gabor filter can be considered as a Gaussian filter
transformed by a sinusoidal function. After applying surround suppression, some
noise caused by textures are filtered [24].

2.2 Related Work to GP for Edge Detection

GP has been mainly employed for low-level edge feature extraction. Filter func-
tions were approximated by GP based on one-dimensional step edge responses [17].
These functions are employed to design filters to extract edge features. Pixels in
a fixed window of size 13 × 13 were used as terminals in GP to evolve programs
for edge feature extraction based on multiple objectives [30]. The results from GP
can compete with the results from the Canny edge detector. Bolis et al [4] used
GP to evolve programs to walk in images for searching edges. In hardware design,
digital circuits using bits of the pixel intensity in a 4 × 4 window as inputs were
evolved by GP to detect edges [14]. The Sobel detector was approximated by GP
using gates as functions and the relationship between a pixel and its neighbours
as terminals [18].

Rather than using a moving window, programs based on full images have also
been evolved by GP. Four directional shifting operations with one pixel distance,
similar to the four macros suggested by Poli [25] for image processing using GP,
were used to approximate the Canny detector by GP [7]. A shifting function with
more than one pixel distance movement, developed from the shifting operations,
was used to evolve low-level edge detectors by GP based on the training images
and their ground truth [10,12].

Also, GP has employed normal image operators to construct programs for
edge features extraction. Morphological erosion and dilation as terminals were
used to detect edges in binary images [26,29]. A rotation variant edge feature

Is a Single Image Sufficient for Evolving Edge Features by GP 455

was constructed by GP using image filters, and it was combined with texture
gradients to train a logistic regression classifier for boundary detection [19].
Three basic features were employed to construct composite edge features by GP,
and these composite features combine advantages of three basic features [11].

In summary, when GP is used to extract edge features, the domain knowledge
from edge detection used in GP can help to improve detection performance.
However, a large set of training images is generally required. How to choose a
minimal set of training images needs to be investigated when some degrees of
domain knowledge are employed.

3 Gaussian-Based GP System

A Gaussian-based GP system extended from [13] is introduced in this section.
The domain knowledge used in Gaussian-based edge detection is employed in
the proposed Gaussian-based GP system.

3.1 Terminals Based on Gaussian Models

To rapidly find a Gaussian-based edge detector, the terminal set in the proposed
GP system includes the Gaussian gradient, LoG, DoG, and random constants
rnd (real numbers) in the range from −10 to 10. The Gaussian gradient, LoG and
DoG (on full images) have been developed by human for extracting edge features.
In this terminal set, the parameter σ is randomly generated in the range from 1
to 5. Given the small σ in the DoG, we use 2σ in the large scale Gaussian filter.
Therefore, the scale range of all Gaussian filters in the DoG is from 1 to 10, and
the coarsest scale has the range from 2 to 10. The coarsest scale covers the range
from 3 to 6 as suggested in [3] so that more scale values are used in Gaussian
filters randomly generated in the GP system.

3.2 Function Set

The full function set is {+,−, ∗,÷,C, sn,m}. Here, ÷ is protected division, pro-
ducing a result of 1 for a 0 divisor; C is a combination function from surround sup-
pression, which takes two arguments; and sn,m is a shifting function to shift its
argument (a single two-dimensional matrix input) by n columns and m rows [10].

The definition of f1(u, v)Cf2(u, v) involves two steps, where f1(u, v) and
f2(u, v) are image intensities or outputs of subtrees for a pixel with position
(u, v). The first step extracts the neighbours of pixel (u, v) within a 7×7 window
from f1(u, v) and f2(u, v). The intensities of the neighbours from f2(u, v) are
transformed by Equations (7) and (8), where, x and y (x′ and y′) are horizontal
and vertical offsets, and

∑
x′,y′ is the sum of positiveN(x′, y′, f(u, v)) in the 7×7

window. If
∑

x′,y′ is equal to 0, normN(x, y, f(u, v)) will return 0. In the second
step, convolution of the intensities of the neighbours from f1(u, v) and f2(u, v)
is performed to get a final value for f1(u, v)Cf2(u, v).

positiveN(u, v, f(x, y)) = max{f(x + u, v + y), 0} (7)

456 W. Fu et al.

normN(u, v, f(x, y)) =
positiveN(u, v, f(x, y))∑

u′,v′ positiveN(u′, v′, f(x, y))
(8)

3.3 Fitness Function

A fitness function, which has been successfully used in [12], is also employed
as the fitness function in our GP system. The fitness function Fd is defined in
Equation (10), where oi is the output of a program for pixel i, v is the threshold
for discriminating pixel i as an edge point or a non-edge point, d1 is a constant,
wP,1 and wP,2 are constant weights, Ni is used to penalise oi around threshold
v, ti is the ground truth (0 for a non-edge point and 1 for a true edge point),
STP is the number of true edge points correctly predicted, ST is the number of
true edge points, and

∑
i Ni is the sum of Ni for all pixels. We use v = 0, d1 = 1,

wP,1 = 0.0001, and wP,2 = 0.001, the same as [12].

Ni =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

wP,1 if oi ∈ (v − d1, v] & ti = 0
1 + wP,2 if oi ∈ (v, v + d1) & ti = 1
1 if oi ∈ [v + d1,∞) & ti = 1
0 otherwise

(9)

Fd =
2STP

ST +
∑

i Ni
(10)

3.4 Combinations of Results From Single Training Images

When a set of single images are used to train edge detectors independently, the
evolved results might be different. We combine the binary outputs of evolved
results from these single training images based on a voting technique. When a
fixed random seed is used in the experiments of evolving edge detectors with these
single training images, respectively, the initialised populations are the same.
The combinations of the results from these single training images are based on
the same initialised population, and the results from these images are binary.
An evolved edge detector from a single training image is considered as a weak
“classifier”. In the voting technique, the intensity level for a pixel is increased
by one if the pixel is considered as an edge point by an evolved edge detector.
Therefore, the highest graylevel of the combination results is the same as the
number of single training images used.

4 Experiment Design

The Berkeley Segmentation Dataset (BSD) [22] has been employed to evolve
Gaussian-based edge detectors by GP [13]. The BSD dataset provides ground
truth for training images and test images, and the training and test images
are independent. Each image has 481 × 321 pixels and comes from the natural
world. There are 200 training images and 100 test images. The ground truth are
combined from five to ten persons as graylevel images.

Is a Single Image Sufficient for Evolving Edge Features by GP 457

23080 42078 68077 106020

189011 216053 236017 385028

Fig. 1. The eight training images from BSD dataset and their ground truth

In [13], 20 images with rich edge contents as the training data were used to
obtain Gaussian-based edge detectors which are better than surround suppres-
sion [13]. Here, we select eight images from the 20 images, and Fig. 1 shows the
eight images. In the ground truth, black pixels (graylevel 0) are true non-edge
points, and white pixels are true edge points. Two images (42078 and 106020)
have high contrast intensities between objects and background (expected to be
not good for training edge detectors), and the other six images have high pro-
portions of true edge points (expected to be good for training edge detectors).

The parameter values for GP are: population size 200; maximum generations
200; and probabilities for mutation 0.15, crossover 0.80 and elitism (reproduc-
tion) 0.05. The maximum depth (of a program) is 8, one larger than the setting
in [13]. We perform 30 independent runs for the experiment.

The binary outputs of Gaussian-based edge detectors evolved by GP are
directly evaluated without non-maximum suppression and other techniques for
linking edge points and removing standalone edge points. Here, binary edges
are obtained after using the fixed threshold 0 to indicate positive values for
edge points and the others for non-edge points. The popular F -measure [6,22]
is employed in the testing phase for performance evaluation. The F -measure
F = 2recall∗precision

recall+precision is a combination of recall and precision. Here, recall is the
number of pixels on the true edges correctly detected as a proportion of the
total number of pixels on the true edges; and precision is the number of pixels
on the true edges correctly detected as a proportion of the total number of pixels
detected as edges.

5 Results and Discussion

This section describes the results with discussions. The results from the single
training images and their combinations will be compared with the results from
20 images and two existing Gaussian-based edge detectors.

458 W. Fu et al.

Table 1. Test performance F values (mean ± standard deviation of 30 runs) for
the Gaussian-based edge detectors from the single training images, all eight images
(eight), their combinations (voting) based on a single image, the Gaussian gradient
(GG), surround suppression (SS), and a set of 20 images (S20), and p-values of the
comparisons among these results from t-tests on the BSD test image dataset (100
images)

F
p-values

eight voting GG SS S20

23080 0.5154 ± 0.0238 0.0000 ↓ 0.0000 ↓ 0.9892 0.0000 ↓ 0.0000 ↓
42078 0.4296 ± 0.0590 0.0000 ↓ 0.0000 ↓ 0.0000 ↓ 0.0000 ↓ 0.0000 ↓
68077 0.5161 ± 0.0168 0.0000 ↓ 0.0000 ↓ 0.8071 0.0000 ↓ 0.0000 ↓

106020 0.4576 ± 0.0339 0.0000 ↓ 0.0000 ↓ 0.0000 ↓ 0.0290 ↓ 0.0000 ↓
189011 0.5187 ± 0.0189 0.0000 ↓ 0.0000 ↓ 0.3440 0.0000 ↓ 0.0000 ↓
216053 0.5327 ± 0.0160 0.0001 ↓ 0.0000 ↓ 0.0000 ↑ 0.0766 0.0000 ↓
236017 0.5093 ± 0.0445 0.0000 ↓ 0.0000 ↓ 0.4740 0.0016 ↓ 0.0000 ↓
385028 0.5243 ± 0.0093 0.0000 ↓ 0.0000 ↓ 0.0000 ↑ 0.0000 ↓ 0.0000 ↓

eight 0.5525 ± 0.0203 0.3513 0.0000 ↑ 0.0000 ↑ 0.0244 ↓
voting 0.5562 ± 0.0068 0.3513 0.0000 ↑ 0.0000 ↑ 0.0190 ↓

GG 0.5153 0.0000 ↓ 0.0000 ↓ 0.0000 ↓
SS 0.5381 0.0000 ↓ 0.0000 ↓ 0.0000 ↓
S20 0.5628 ± 0.0131 0.0244 ↑ 0.0190 ↑ 0.0000 ↑ 0.0000 ↑

5.1 Overall Results

Table 1 gives the means and standard deviations of the F values on the 100 BSD
test images, and the p-values for the comparisons among the Gaussian-based
edge detectors from the eight single training images, all eight images together
as the training data (eight), their combinations (voting), the 20 images (S20)
used in [13], the Gaussian gradient, and surround suppression (SS). Here, the
p-values are based on t-tests. Based on significance level of 0.05, ↑ indicates that
the relevant item in the first column is significantly better than the relevant
item in the first row, and ↓ indicates that the relevant item in the first column
is significantly worse than the relevant item in the first row. The results from
voting are based on the highest F , and the results from the Gaussian gradient
and surround suppression come from [13].

There are five interesting observations from Table 1. Firstly, the results from
the eight single training images, except for 216053, are significantly worse than
the results detected by surround suppression. However, compared to the Gaus-
sian gradient, only images 42078 and 106020 have significantly worse results,
images 216053 and 385028 have significantly better results, and the other four
images have no significant differences, in terms of F . It seems that only a few
of the single training images can be used as the training data in the GP system
for effectively evolving good edge detectors. Secondly, the combinations of the
results from the eight training images are significantly improved, compared with
the results from each single training image. The combination results based on the
simple voting technique are significantly better than the result from surround

Is a Single Image Sufficient for Evolving Edge Features by GP 459

23080 42078 68077 106020 189011 216053 236017 385028 voting eight S20

0.35

0.4

0.45

0.5

0.55

0.6

F

Fig. 2. Boxplot of 30 GP edge detectors’ performances on the BSD test image dataset

suppression. Although the combinations are significantly worse than the results
from S20, the difference between their means of F is 0.0066 only. Thirdly, in
general, the results from a single training image are not stable, such as results
from images 42078 and 236017, but image 385028 has very stable test perfor-
mance. Compared to the results from S20, the results from image 385028 are
more stable in terms of the standard deviation of F values. It is possible to use
a single image without prior knowledge on a whole dataset to evolve edge detec-
tors which have similar test detection performance. Fourthly, the combinations
of the results from the eight training images have very stable test performance
(low standard deviation). A potential reason for this is that the eight single
images include different edge information so that the combinations can improve
the accuracy of predicting edge points. Lastly, the results from using the eight
images together are not significantly different from the results using the voting
technique. However, the average training time of using one single image is 8861.3
seconds, and the training time of using the eight images is 85738.3 seconds. The
total training time of independently using single images is obviously shorter than
the training time of using all eight images together.

Fig. 2 gives boxplots of the test performance of these edge detectors on the
BSD test image dataset. For the images 42078 and 106020 with high contrast
intensities between background and objects, the F values of the evolved edge
detectors are located in a large range, and most of these detectors are not good
to extract edges. For image 23080, a few of the evolved edge detectors have
similar performance to the evolved edge detectors from S20. It seems that a
single image can be used to evolve good edge detectors, but how to choose the
single image to evolve good edge detectors needs to be further investigated.

5.2 Visual Results

Fig. 3 shows four example detected images from the best evolved edge detector
(F = 0.5731) from training image 23080, and the best evolved edge detector (F =
0.5879) from S20 and surround suppression using the threshold with the maximum
F . There are no obvious differences between the results detected by the GP edge

460 W. Fu et al.

Fig. 3. Example detected images by the best GP edge detectors from single training
image 23080, S20 and surround suppression (SS). Note that GT is ground truth.

detectors from image 23080 and S20. Compared to the detected results from sur-
round suppression, the detected results from single training image 23080 have a
higher precision value. The visual results also show that a single training image
can be used for the GP system to evolve good edge detectors.

5.3 Further Discussion

The results from the eight training images, respectively, show that using a single
training image might obtain bad test performance (low F), such as image 42078.
Since the 100 BSD test images are generally different from the single training
images, a training image with high contrast intensities between background and
objects may cause GP to evolve bad edge detectors to extract edges in different
test images, such as an image with low contrast intensities between background
and objects. However, “high contrast” here is subjective. It is hard to define
a quantitative measure to determine whether a single image is good for the
GP system to evolve edge detectors. Additionally, what types of natural images
could be detected well by the evolved edge detectors with a single training is
unknown. Natural images come from various sources, and the training images
and test images are grouped by human observations. The training image and
test image datasets are generally subjective.

Since there are no predefined features for extracting edges in the GP sys-
tem, the prior knowledge of a single training image from the whole dataset is
difficult to obtain. Different from one-shot learning, using a single image in the
GP system is much harder to evolve good candidates. Table 1 shows the differ-
ences among the results from the 20 images, the eight images and the voting

Is a Single Image Sufficient for Evolving Edge Features by GP 461

technique are not obvious, but the computational cost of evolving edge detec-
tors by independently using single images is obviously lower than using a set
of images together. Therefore, the voting technique is suggested to extract edge
features.

6 Conclusions

The overall goal of this paper was to investigate using single images as the
training data to evolve Gaussian-based edge detectors by GP. Based on the
results from eight training images, it is possible to use a single training image
for GP to evolve Gaussian-based edge detectors which are better than Gaussian
gradient and surround suppression on the BSD test image dataset. Although bad
edge detectors may be evolved by using a single image only, the voting technique
is suggested to effectively combine the edge detectors evolved by independently
using single images.

In future work, we will investigate a quantitative measure for effectively
selecting single images to evolve edge detectors by GP. How to obtain prior
knowledge of a single image from its whole dataset will be investigated for effec-
tively evolving edge detectors when the single image is used as the training data.

References

1. Basu, M.: Gaussian-based edge-detection methods: a survey. IEEE Transactions on
Systems, Man, and Cybernetics, Part C: Applications and Reviews 32(3), 252–260
(2002)

2. Bennamoun, M., Boashash, B., Koo, J.: Optimal parameters for edge detection.
Proceedings of the IEEE International Conference on Systems, Man and Cyber-
netics 2, 1482–1488 (1995)

3. Bergholm, F.: Edge focusing. IEEE Transactions on Image Processing 9, 726–741
(1987)

4. Bolis, E., Zerbi, C., Collet, P., Louchet, J., Lutton, E.: A GP Artificial Ant for
Image Processing: Preliminary Experiments with EASEA. In: Miller, J., Tomassini,
M., Lanzi, P.L., Ryan, C., Tetamanzi, A.G.B., Langdon, W.B. (eds.) EuroGP 2001.
LNCS, vol. 2038, pp. 246–255. Springer, Heidelberg (2001)

5. Canny, J.: A computational approach to edge detection. IEEE Transactions on
Pattern Analysis and Machine Intelligence 8(6), 679–698 (1986)

6. Dollar, P., Tu, Z., Belongie, S.: Supervised learning of edges and object boundaries.
Proceedings of the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition 2, 1964–1971 (2006)

7. Ebner, M.: On the edge detectors for robot vision using genetic programming. In:
Proceedings of Horst-Michael Groβ, Workshop SOAVE 97 - Selbstorganisation von
Adaptivem Verhalten, pp. 127–134 (1997)

8. Fei-Fei, L., Fergus, R., Perona, P.: One-shot learning of object categories. IEEE
Transactions on Pattern Analysis and Machine Intelligence 28(4), 594–611 (2006)

9. Fink, M.: Object classification from a single example utilizing class relevance met-
rics. In: Proceedings of the Neural Information Processing Systems Conference, pp.
449–456 (2004)

462 W. Fu et al.

10. Fu, W., Johnston, M., Zhang, M.: Genetic programming for edge detection: a global
approach. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp.
254–261 (2011)

11. Fu, W., Johnston, M., Zhang, M.: Automatic Construction of Invariant Features
Using Genetic Programming for Edge Detection. In: Thielscher, M., Zhang, D.
(eds.) AI 2012. LNCS, vol. 7691, pp. 144–155. Springer, Heidelberg (2012)

12. Fu, W., Johnston, M., Zhang, M.: Soft edge maps from edge detectors evolved
by genetic programming. In: Proceedings of the IEEE Congress on Evolutionary
Computation, pp. 24–31 (2012)

13. Fu, W., Johnston, M., Zhang, M.: Automatic Construction of Gaussian-Based Edge
Detectors Using Genetic Programming. In: Esparcia-Alcázar, A.I. (ed.) EvoAppli-
cations 2013. LNCS, vol. 7835, pp. 365–375. Springer, Heidelberg (2013)

14. Golonek, T., Grzechca, D., Rutkowski, J.: Application of genetic programming to
edge detector design. In: Proceedings of the International Symposium on Circuits
and Systems, pp. 4683–4686 (2006)

15. Grigorescu, C., Petkov, N., Westenberg, M.: Contour detection based on nonclassi-
cal receptive field inhibition. IEEE Transactions on Image Processing 12(7), 729–
739 (2003)

16. Grigorescu, C., Petkov, N., Westenberg, M.A.: Contour and boundary detection
improved by surround suppression of texture edges. Image and Vision Computing
22(8), 609–622 (2004)

17. Harris, C., Buxton, B.: Evolving edge detectors with genetic programming. In:
Proceedings of the First Annual Conference on Genetic Programming, pp. 309–
314 (1996)

18. Hollingworth, G., Smith, S., Tyrrell, A.: Design of highly parallel edge detection
nodes using evolutionary techniques. In: Proceedings of the Seventh Euromicro
Workshop on Parallel and Distributed Processing, pp. 35–42 (1999)

19. Kadar, I., Ben-Shahar, O., Sipper, M.: Evolution of a local boundary detector for
natural images via genetic programming and texture cues. In: Proceedings of the
11th Annual Conference on Genetic and Evolutionary Computation, pp. 1887–1888
(2009)

20. Lacroix, V.: The primary raster: a multiresolution image description. In: Proceed-
ings of the 10th International Conference on Pattern Recognition, vol. I, pp. 903–
907 (1990)

21. Marr, D., Hildreth, E.: Theory of edge detection. Proceedings of the Royal Society
of London, Series B, Biological Sciences 207(1167), 187–217 (1980)

22. Martin, D., Fowlkes, C., Malik, J.: Learning to detect natural image boundaries
using local brightness, color, and texture cues. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence 26(5), 530–549 (2004)

23. Miller, E., Matsakis, N., Viola, P.: Learning from one example through shared
densities on transforms. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition vol. 1, pp. 464–471 (2000)

24. Papari, G., Petkov, N.: Edge and line oriented contour detection: state of the art.
Image and Vision Computing 29, 79–103 (2011)

25. Poli, R.: Genetic programming for image analysis. In: Proceedings of the First
Annual Conference on Genetic Programming, pp. 363–368 (1996)

Is a Single Image Sufficient for Evolving Edge Features by GP 463

26. Quintana, M.I., Poli, R., Claridge, E.: Morphological algorithm design for binary
images using genetic programming. Genetic Programming and Evolvable Machines
7, 81–102 (2006)

27. Schunck, B.: Edge detection with Gaussian filters at multiple scales. In: Proceedings
of the IEEE Workshop on Computer Vision, Representation and Control, pp. 208–
210 (1987)

28. Song, D.M., Li, B.: Derivative computation by multiscale filters. Image and Vision
Computing 16(1), 43–53 (1998)

29. Wang, J., Tan, Y.: A novel genetic programming based morphological image anal-
ysis algorithm. In: Proceedings of the 12th Annual Conference on Genetic and
Evolutionary Computation, pp. 979–980 (2010)

30. Zhang, Y., Rockett, P.I.: Evolving optimal feature extraction using multi-objective
genetic programming: a methodology and preliminary study on edge detection. In:
Proceedings of the Conference on Genetic and Evolutionary Computation, pp.
795–802 (2005)

Improving Graph-Based Image Segmentation
Using Automatic Programming

Lars Vidar Magnusson(B) and Roland Olsson

IT Department, Østfold University College, Halden, Norway
lars.v.magnusson@hiof.no

Abstract. This paper investigates how Felzenszwalb’s and Huttenlo-
cher’s graph-based segmentation algorithm can be improved by auto-
matic programming. We show that computers running Automatic Design
of Algorithms Through Evolution (ADATE), our system for automatic
programming, have induced a new graph-based algorithm that is 12 per-
cent more accurate than the original without affecting the runtime effi-
ciency. The result shows that ADATE is capable of improving an effective
image segmentation algorithm and suggests that the system can be used
to improve image analysis algorithms in general.

Keywords: Image segmentation · Graph algorithm · Evolutionary com-
putation · Automatic programming

1 Introduction

Image segmentation involves partitioning an image into segments or components
corresponding to objects in the image. Image segmentation has many applica-
tions and is typically used as an early step in a series of image processing tech-
niques. As a result, accurate image segmentation is important; it is likely that it
will affect the quality of all image processing that follows. Image segmentation
algorithms employ a set of visual cues, such as intensity, texture or shape, to
partition an image into its constituent objects. Combining two or more of these
cues has been shown to improve the accuracy of an algorithm, but it also requires
more processing time. There are also applications for image segmentation that
require extremely fast processing, in which case, accuracy has to be sacrificed
for runtime performance.

Here we show that it is possible to use evolutionary computation to automat-
ically improve the core algorithm of a highly efficient graph-based segmentation
technique [6] – without having to incorporate any additional visual cues, and
without altering its overall computational efficiency. By using the ADATE auto-
matic programming system, we have been able to automatically generate a new
algorithm with 12 percent better segmentation accuracy on a popular image
database.

c© Springer-Verlag Berlin Heidelberg 2014
A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2014, LNCS 8602, pp. 464–475, 2014.
DOI: 10.1007/978-3-662-45523-4 38

Improving Graph-Based Image Segmentation Using Automatic Programming 465

The scientific contributions of this paper can be summarized as follows.

1. An automatically generated and significantly more accurate graph-based
image segmentation algorithm that runs as fast as the algorithm on which
it was based.

2. Further evidence to support the hypothesis that ADATE can generate new
and improve image analysis algorithms in general.

2 Background

Two scientific areas provide the background for this paper. The first is the rela-
tively new machine learning discipline of automatic programming, and the sec-
ond is the well studied discipline of image segmentation. The following sections
present the background considered directly relevant for this paper.

2.1 Automatic Design of Algorithms Through Evolution (ADATE)

ADATE [12] is a system for automatic programming which infers purely func-
tional programs through incremental program transformations – guided by
evolutionary principles. The system is capable of inventing auxiliary functions,
generating general recursive patterns, and creating and optimizing numerical
constants. It can be used either to create entirely new programs, or to improve
existing ones.

All programs generated by the ADATE system are evaluated with a user-
specified evaluation function – allowing anything from simple input/output pairs
to complex simulations. This flexible evaluation system, along with the search-
based approach of incremental transformations, make the system useful in many
cases where other automatic programming systems would fall short [3,4,9].

The program transformations performed by the ADATE system are grouped
into four categories. The first, and most fundamental, category is called Replace-
ment (R). A replacement can either replace an entire expression with a synthe-
sized expression, or it can reuse parts of it, as subexpressions. Replacements are
separated into two groups to facilitate the evolution process. In one group are
the synthesized expressions that change the semantics of the original program.
These provide a mechanism for introducing improvements into the program. The
replacements in the other group typically maintain the semantics of the origi-
nal program. More precisely, they do not harm the performance of the original
program. These are referred to as replacements preserving equality (REQ), and
they are important in the evolution process, as they provide a mechanism for
doing neutral walks in the search landscape.

The remaining program transformation categories are Abstraction (ABSTR),
Case-distribution (CASE-DIST) and Embedding (EMB). These are responsible
for creating new auxiliary functions, changing the scope of variables and func-
tion, and introducing new function parameters respectively. They maintain the
semantics of the original program, and are far less combinatorially challenging
than replacements.

466 L.V. Magnusson and R. Olsson

The problems are provided to ADATE in specifications containing any code
needed to run the algorithm, along with any predefined functions, the training
instances and the evaluation function that will be used to evaluate the generated
programs. ADATE operates using a bare-bone subset of SML [11] called ADATE
ML. The language has been stripped of all syntactic sugar to simplify the evolu-
tion – essentially reducing the language down to functions and case-expressions.

2.2 Graph-Based Image Segmentation

Graph-based image segmentation is a generic term covering image segmentation
algorithms that use a graph-theoretic approach to partition an image into its
constituent objects. In this respect, images are typically represented as a graph
G = (V,E), where each element in the set of vertices V represents a pixel in
the image, and the set E contains edges that connect the vertices in the image
according to a neighborhood relation. Each edge has an associated weight that
represents some attribute derived from the vertices that it connects.

Wu and Leahy [17] proposed a graph-based data clustering algorithm based
on a minimum cut – the set of edges with the smallest weights that partitions
a graph into two disjoint subgraphs – and a graph compacting technique. The
algorithm employs an efficient multi-terminal network flow algorithm to find
the maximum flow between all the nodes in the image graph. This makes it
possible to optimally divide the input graph into K regions by removing the edges
belonging to the K − 1 minimum cuts. The weights in the graph represent the
difference in intensity between neighboring pixels in the image being segmented.
The runtime performance of the algorithm is polynomial in the number of nodes
in the graph, but the algorithm is biased towards small regions.

This shortcoming was addressed by Shi and Malik [15] with the introduction
of a normalized cut, which normalize the value of each cut using the sum of the
weights of the edges between the nodes in a subgraph and the entire graph. This
criterion removes the bias towards small regions, but it is computationally ineffi-
cient compared to the minimum cut – the decision variant is NP-complete. They
show that an approximation can be found by solving a generalized eigenvalue
system. This makes the problem tractable, but it still requires long runtimes
due to the size of the matrix required to represent the images. Shi and Malik
proposed a set of cues suitable for different applications, but only one can be
used at any particular time. The framework was extended further by Malik et
al. [10] by incorporating a combination of contour and texture cues. They pro-
posed combining the two cues using a simple gating mechanism triggered by the
texturedness of a region. After an initial over-segmentation, they recalculate the
weights and combine regions until a normalized cut threshold is reached.

Felzenszwalb and Huttenlocher [6] introduced a graph-based algorithm for
image segmentation that – while operating solely on local attributes – manages
to satisfy certain desirable global properties, by producing segmentations that, as
defined by the authors, are neither too fine nor too coarse. Unlike the algorithms
presented above, this algorithm starts out with each pixel as a separate region
and continues to merge regions in a bottom-up fashion. The proposed algorithm

Improving Graph-Based Image Segmentation Using Automatic Programming 467

employs an adaptive segmentation strategy that keeps track of the similarity of
the pixels within a segmented region and the dissimilarity between the different
regions. The algorithm is O(n log n), where n is the number of pixels in the image
– a significant improvement over the algorithms above – and most of the time
is spent sorting the edges. The proposed algorithm is simple and efficient in its
design, and it employs intensity cues only.

Alpert et al. [1] proposed a Bayesian probabilistic framework for combining
visual cues. The framework was designed to work with any bottom-up merge
based image segmentation algorithm, but it was demonstrated using a Segmen-
tation by Weighted Aggregation (SWA) algorithm as proposed by Galun et al.
[7] and Sharon et al. [14]. The algorithm starts with each pixel in the image
being represented by a node in the graph. In each iteration, the graph is made
coarser by merging seed nodes with their neighbors according to their similarity.
A segmentation hierarchy is formed by relating nodes in the coarser graph with
the nodes in the previous step. Edge weights are updated recursively by averag-
ing the features, or cues, from earlier steps through weighted aggregation. The
algorithm is linear in the number of pixels in the image, but the actual runtime
is high due to large matrices and large runtime constants. The two original vari-
ants of the SWA algorithm use a wide set of visual cues, whereas the Bayesian
framework proposed by Alpert et al. [1] was demonstrated using only intensity
and texture cues. The reported runtime for the algorithm with the full feature-
set [7] is between 5 and 10 seconds on a 400 × 400 image using a 1.6 Xeon GHz
processor.

It is apparent from the research presented above that the algorithm proposed
by Felzenszwalb and Huttenlocher [6], though relatively simple both in terms of
the overall design and its use of a single intensity cue, is capable of competing
with more complex algorithms [2]. As such, it is a good starting point for an
attempt to improve a leading image segmentation algorithm using automatic
programming. Preliminary work by Huyen and Olsson [8] indicated that the
algorithm can be improved. However, this preliminary study had serious limita-
tions. The images used were scaled down to reduce the memory required, and
the specification lacked essential features, such as noise filtering, available in the
original algorithm. As a consequence, the algorithm is less general than the orig-
inal and practically useless on the full-sized images. All of these limitations have
been addressed in our work to allow the evolution of an algorithm that can
perform well even if the conditions change.

3 Experiments

This section describes the most important parts of converting the problem into
the proper format for ADATE.

3.1 The Implementation of the Original Algorithm

The original algorithm had to be ported in its entirety to ADATE ML – the lan-
guage in which ADATE evolves programs. The C++ code provided by

468 L.V. Magnusson and R. Olsson

Felzenszwalb and Huttenlocher, in addition to the actual segmentation algo-
rithm, features a Gaussian noise reduction filter and a post-processing step that
merges any neighboring components under a certain size. Both these features
have been included in our ADATE ML implementation to ensure identical oper-
ational semantics for both implementations.

The most important parts of the code in the ADATE ML implementation are
located in two functions main and f, where the definition of the latter contains
the code to be modified and improved by ADATE. The main function is executed
once per image, and is responsible for transforming the pre-processed image data
into a graph by letting each pixel be represented by a node, which is connected
to its eight immediate neighbors by weighted edges corresponding to the dis-
similarity of the pixels. All of the edges are sorted in non-decreasing order, and
the data structures used to represent the components during the segmentation
process are initialized. Each node in the graph starts out as a component with
a threshold corresponding to a constant C that controls how large the resulting
segments will be. After these initial tasks, the function invokes the recursive f
function to do the actual segmentation, the result of which is post-processed to
merge components that are smaller than a certain size.

Every invocation of f selects the next candidate edge from the list of sorted
edges. Its weight is compared to the thresholds of the two components that it
connects – if they do not belong to the same component already. If the weight
W is smaller than the thresholds of both components, the two connected com-
ponents are merged into a new component, and the threshold of the component
is set according to the following equation.

TN = W +
C

|N | . (1)

Here N represents the new component, |N | is the cardinality of N , and TN is
the threshold of N .

The ADATE ML implementation of the algorithm was tested both with a
third-party ML compiler and with ADATE’s internal compiler before the evo-
lution was started, and it produced the exact same results as the original C++
implementation in both cases.

3.2 The Training and Test Images

There are several image databases available that provide natural images man-
ually annotated by humans, but two of them distinguish themselves from the
others in terms of quality, the Berkeley Segmentation Data Set (BSDS) [2] and
the Weizmann Segmentation Evaluation Database (WSED) [1]. The way the
BSDS evaluates segmentations arguably favors algorithms that are either based
on or include some form of edge detection. This makes the dataset unsuitable
for evaluating region growing algorithms like the algorithm by Felzenszwalb and
Huttenlocher [6]. We therefor chose to use the WSED instead, even though it
has fewer images and contains only images with one foreground object.

Improving Graph-Based Image Segmentation Using Automatic Programming 469

The dataset contains a total of 100 images with a single foreground object
that have been annotated by three or more individuals. Of these 100, 50 were
used for training, and 50 were used for testing.

3.3 Measuring the Accuracy of Generated Programs

We have used the same means of measuring the performance of the generated
programs that is used in the WSED to determine the accuracy of a segmentation,
the F-measure [13] as defined in (2). Precision (P) is the ratio of the number of
true-positive pixels to the sum of the number of true-positive and the number
of false-positive pixels, and Recall (R) is the ratio of the number of true-positive
pixels to the sum of the number of true-positive and the number of false-negative
pixels.

F =
PR

0.5(P + R)
(2)

The Felzenszwalb and Huttenlocher algorithm produce segmentations that
partition an image into its objects, rather than just foreground and background.
To determine the quality of any segmentation the regions are all evaluated and
the region with the highest score is selected.

3.4 Selecting the Constant Values

There are three constants in the original algorithm: the standard deviation of
the Gaussian noise reduction filter, the threshold for merging components in
post-processing, and the constant C that controls the tendency for components
to merge.

The standard deviation for the noise filter was set to 0.5, which produced
marginally better results on our dataset than the one used by Felzenszwalb and
Huttenlocher [6]. The component size threshold for merging components in the
post-processing step was not discussed in their article, but it is included in the
C++ code provided. We therefore had no reference for choosing this value, and,
due to the way the post-processor operates, it could not simply be chosen by
optimizing its value. This might interfere with the evolution of an improved
algorithm by forcing it to produce suboptimal segmentations to fit the post-
processor. Based on this, we decided to use a relative small threshold of 20 to
keep the interference with the evolution to a minimum, but at the same time
ensure that drastic over-segmentations do not slow down the evaluation.

The third constant C – the only constant used directly in the algorithm – was
chosen by running the algorithm on the entire image dataset with values ranging
from 500 to 2500. Based on the results, we decided to run our experiments with
a value of 1000 for the C constant.

4 Results

In this section the evolved algorithm is presented, along with an analysis of how
it behaves and performs in terms of segmentation quality.

470 L.V. Magnusson and R. Olsson

4.1 The Improved Algorithm

The program shown in Listing 1 was evolved over only ten generations – an
incredibly low number when compared to other problems tackled by ADATE in
the past. This shows that it was quite easy for ADATE to improve the Felzen-
szwalb and Huttenlocher algorithm [6]. We will discuss the changes separately
to highlight the semantic difference between the two algorithms, then we will
discuss how the changes in semantics collectively affect the behavior of the algo-
rithm.

1 fun f (Universe , SortedEdges , Constant) =
2 case SortedEdges of
3 e n i l => Universe
4 | econs (CurrentEdge as edge (A, B, W, X) , RestEdges) =>
5 let
6 val (ComponentA , ThresholdA) = f i nd (A, Universe)
7 val (ComponentB , ThresholdB) = f i nd (B, Universe)
8 in
9 i f di f ferentComp (ComponentA , ComponentB) then

10 i f W < ThresholdA andalso W < ThresholdB then
11 let
12 val NewUniverse =
13 updateThresholdValue (
14 ComponentB ,
15 W+Constant/
16 getComponentSize (
17 i f Constant < ThresholdA then
18 ComponentB
19 else
20 ComponentA) ,
21 union (Universe , ComponentA , ComponentB))
22 in
23 f (NewUniverse , RestEdges , Constant)
24 end
25 else i f W > ThresholdA andalso W > ThresholdB then
26 f (Universe , RestEdges , getComponentSize (ComponentB))
27 else
28 f (Universe , RestEdges , Constant)
29 else
30 f (Universe , RestEdges , Constant)
31 end

Listing 1. The improved algorithm – written in Standard ML to simplify the syntax.

The two algorithms are identical in terms of semantics until the if-expression
on lines 10 through 24. The first case of this if-expression – when the edge weight
is smaller than both the thresholds of the components that the edge connects –
cause the components to be joined and the threshold to be updated. But, instead
of setting the threshold on the new component like in the original algorithm,

Improving Graph-Based Image Segmentation Using Automatic Programming 471

it is set on the second connected component. The threshold is also calculated
differently by no longer using the size of the joined component to divide the
constant as in (1), but instead uses the size of one of the connected components
– depending on a test to see if the constant is less than the threshold of the first
connected component. The new algorithm has also introduced a new test on line
25 that checks whether the edge weight is bigger than both the thresholds of the
components that the edge connects. In these situations the value of the constant
is changed to the size of the second connected component. This, technically,
makes the value a variable, but, for the sake of convenience, we will continue to
refer to it as the constant.

The deceptively simple change that sets the new threshold on the second
connected component, rather than the joined component, has the obvious effect
that only about half the threshold updates will make a difference. Due to the
way the components are represented, the second connected component has to
be the component with the highest rank – a disjoint-set heuristic used to keep
the trees shallow [16]. In most cases this translates into to the second connected
component being the largest of the two. This is exploited on line 17 where
a comparison of the current constant and the threshold of the first connected
component determines which size of the components to use to calculate the new
threshold. If the constant is equal to or greater than the threshold, the size of the
first component is used, and in 98 percent of the cases, the size of this component
is equal to or less than the size of the second component.

The new test on line 25 culminates into a recursive call that changes the
constant value to the size of the second connected component when the current
edge weight is larger than both the thresholds of the connected components.
This normally occurs only after the components have been growing for some
time, and as a result the new value is normally much larger than the original
value. This changes how the algorithm operates on the remaining edges of the
image. Any components merged after this will have much higher threshold than
normal, essentially marking it with a high degree of variance and drastically
increasing the chance of it being merged again.

Whereas the component threshold in the original algorithm is strictly decreas-
ing and inversely proportional to the size of the component, the threshold in the
improved algorithm fluctuates depending on the conditions under which two
components are joined together. This allows the algorithm to react to patterns
that occur during the segmentation.

4.2 Comparison of the Segmentation Quality

The segmentation accuracy of the new algorithm drastically exceeds the segmen-
tation accuracy of the original algorithm. The images in Fig. 1 are some of the
examples that showcase the differences between the segmentations produced by
the two algorithms.

The first three images are all instances where the new algorithm is far more
accurate than the original. In all three images the original algorithm has joined
most, if not all, of the foreground object with the background, while the improved

472 L.V. Magnusson and R. Olsson

Fig. 1. A selected set of images and their segmentations. From left to right: The original
images, the ground-truth images, the segmentation produced by the original algorithm,
the segmentation produced by the improved algorithm, the best segment from the
original segmentation, and the best segment from the improved segmentation.

algorithm has managed to keep them separate. The segmentation of the fourth
image is also improved with the new algorithm, but not by the same amount
as the first three. The original segmentation suffers from being over-segmented,
while the improved segmentation is an under-segmentation. In the fourth image
the score of the segmentation produced by the improved algorithm is slightly
lower than the original. In the last image, the reduced quality of the improved
algorithm is plainly visible – in the form of an over-segmentation.

4.3 Algorithm Benchmarks

The algorithms were benchmarked separately on both the 50 training images
and the 50 test images. We used the same means of measurement as we did

Improving Graph-Based Image Segmentation Using Automatic Programming 473

during the evolution; we used the F-measure as defined in (2) to determine the
accuracy of each segment, and the maximum score to represent the quality of
the segmentation.

We tested both algorithms on both the full-sized images and on image reduced
in size, where the latter were included to establish whether or not the new algo-
rithm is specialized to the conditions under which it was evolved. The algorithms
were all tested using the same noise filter and post-processor settings as during
the evolution. The remaining constant were optimized using the 50 training
images.

Table 1. The average results from running the two algorithms on the full-sized images.
The columns P, R and F represent the average Precision, Recall and F-measure respec-
tively.

Train Test Total

Algorithm P R F P R F P R F

New 0.79 0.86 0.79 0.81 0.82 0.78 0.80 0.84 0.79
Original 0.75 0.82 0.71 0.76 0.76 0.69 0.75 0.79 0.70

Table 2. The average results from running the two algorithms on the images that have
been reduced to a quarter of their original size. The columns P, R and F represent the
average Precision, Recall and F-measure respectively.

Train Test Total

Algorithm P R F P R F P R F

New 0.73 0.79 0.73 0.76 0.81 0.75 0.75 0.80 0.74
Original 0.75 0.76 0.70 0.78 0.78 0.73 0.77 0.77 0.71

The average results from running both algorithms on all the full-sized images
can be seen in Table 1. It is apparent from this data that the improved algorithm,
on average, outperforms the original algorithm in terms of both precision and
recall – yielding an average F-measure 11.5 percent, or 9 percentage points,
better than the original. We also did a pairwise comparison of the two algorithms
using student-t distribution on the differences, and we can say with 99 percent
confidence that the new algorithm is between 1 and 17 percentage points better
than the original on the test images.

The benchmark averages are directly comparable to the one segment cover-
age test in Alpert et al. [1] due to using the exact same images and performance
measure. Among the algorithms in this test are both the three SWA based algo-
rithms [1,7,14] and the normalized cut with gated intensity and texture cues

474 L.V. Magnusson and R. Olsson

[10]. From their results we can see that the algorithm algorithm presented here
is still not as good as the two best algorithms [1,7], but it manages to outperform
the remaining two [10,14]. All of these algorithms employ two or more cues, and
they are, based on their efficiency and reported runtime, an order of magnitude
slower.

Alpert et al [1] also tested another very popular algorithm [5] that only uses
intensity cues to segment an image. This makes it comparable to the algorithms
tested here, but the results show that the accuracy of this algorithm is far worse.

The average results from running the algorithms on the images reduced in
size can be seen in Table 2. The improved algorithm outperforms the original
here as well, but only by 3.4 percent. Based on the data, this seems to be due to a
slight under-segmentation, when compared to the segmentations of the full-sized
images.

5 Conclusions

We have successfully been able to improve a leading image segmentation algorithm
by using automatic programming, and the new algorithm is both small, efficient
and superior to comparable algorithms. The algorithm evolved by ADATE has
kept the runtime efficiency of the original algorithm, and the segmentation qual-
ity has been improved by 12 percent on full-sized images. This improvement has
been achieved without adding any additional visual cues. Instead it has been made
possible by the adaptive mechanisms automatically invented by the ADATE sys-
tem.

The success of our attempt at using ADATE for this purpose provides further
evidence that the system is capable of improving state of the art image segmen-
tation algorithms – if not image processing algorithms in general. The ADATE
system, through its evolutionary strategy, is highly suitable for problems, like
image segmentation, where we typically are looking for the best approximation,
not the exact solution. These situations typically require a good heuristic, and
the ADATE system has proven several times to be capable of creating customized
code to fit this need.

References

1. Alpert, S., Galun, M., Basri, R., Brandt, A.: Image segmentation by probabilistic
bottom-up aggregation and cue integration. In: Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (June 2007)

2. Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical
image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 33, 898–916 (2011)

3. Berg, H., Olsson, R., Lindblad, T., Chilo, J.: Automatic design of pulse coupled
neurons for image segmentation. Neurocomputing 71(10-12), 1980–1993 (2008);
Neurocomputing for Vision Research; Advances in Blind Signal Processing

Improving Graph-Based Image Segmentation Using Automatic Programming 475

4. Berg, H., Olsson, R., Rusas, P.O., Jakobsen, M.: Synthesis of control algorithms
for autonomous vehicles through automatic programming. In: Proceedings of the
2009 Fifth International Conference on Natural Computation, ICNC 2009, vol. 4,
pp. 445–453. IEEE Computer Society (2009)

5. Comaniciu, D., Meer, P.: Mean shift: A robust approach toward feature space
analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(5),
603–619 (2002)

6. Felzenszwalb, P., Huttenlocher, D.: Efficient graph-based image segmentation.
International Journal of Computer Vision 59, 167–181 (2004)

7. Galun, M., Sharon, E., Basri, R., Brandt, A.: Texture segmentation by multiscale
aggregation of filter responses and shape elements. In: Proceedings of the Ninth
IEEE International Conference on Computer Vision, vol. 1, pp. 716–723. IEEE
(2003)

8. Vu, H., Olsson, R.: Automatic Improvement of Graph Based Image Segmentation.
In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Fowlkes, C., Wang, S., Choi,
M.-H., Mantler, S., Schulze, J., Acevedo, D., Mueller, K., Papka, M. (eds.) ISVC
2012, Part II. LNCS, vol. 7432, pp. 578–587. Springer, Heidelberg (2012)

9. Løkketangen, A., Olsson, R.: Generating meta-heuristic optimization code using
adate. Journal of Heuristics 16, 911–930 (2010)

10. Malik, J., Belongie, S., Leung, T., Shi, J.: Contour and texture analysis for image
segmentation. International Journal of Computer Vision 43(1), 7–27 (2001)

11. Milner, R., Tofte, M., Harper, R., MacQueen, D.: The Definition of Standard ML
- Revised. The MIT Press (1997)

12. Olsson, R.: Inductive functional programming using incremental program tranfor-
mation. Artificial Intelligence 74, 55–81 (1995)

13. Rijsbergen, C.J.V.: Information Retrieval, 2nd edn. Butterworth-Heinemann, New-
ton (1979)

14. Sharon, E., Galun, M., Sharon, D., Basri, R., Brandt, A.: Hierarchy and adaptivity
in segmenting visual scenes. Nature 442(7104), 810–813 (2006)

15. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Transactions on
Pattern Analysis and Machine Intelligence 22, 888–905 (2000)

16. Tarjan, R.E.: Efficiency of a good but not linear set union algorithm. Journal of
the ACM (JACM) 22(2), 215–225 (1975)

17. Wu, Z., Leahy, R.: An optimal graph theoretic approach to data clustering: Theory
and its application to image segmentation. IEEE Trans. Pattern Anal. Mach. Intell.
15(11), 1101–1113 (1993)

New Representations in PSO for Feature
Construction in Classification

Yan Dai, Bing Xue(B), and Mengjie Zhang

School of Engineering and Computer Science, Victoria University of Wellington,
PO Box 600, Wellington, New Zealand

{Yan.Dai,Bing.Xue,Mengjie.Zhang}@ecs.vuw.ac.nz

Abstract. Feature construction can improve the classification perfor-
mance by constructing high-level features using the original low-level
features and function operators. Particle swarm optimisation (PSO) is
an powerful global search technique, but it cannot be directly used for
feature construction because of its representation scheme. This paper
proposes two new representations, pair representation and array repre-
sentation, which allow PSO to direct evolve function operators. Two PSO
based feature construction algorithms (PSOFCPair and PSOFCArray)
are then developed. The two new algorithms are examined and compared
with the first PSO based feature construction algorithm (PSOFC), which
employs an inner loop to select function operators. Experimental results
show that both PSOFCPair and PSOFCArray can increase the classifi-
cation performance by constructing a new high-level feature. PSOFCAr-
ray outperforms PSOFCPair and achieves similar results to PSOFC, but
uses significantly shorter computational time. This paper represents the
first work on using PSO to directly evolve function operators for feature
construction.

Keywords: Particle swarm optimisation · Feature construction · Clas-
sification

1 Introduction

In classification, the quality of the data that is defined by a set of features is an
important factor. A classification algorithm usually can not achieve good clas-
sification performance using the original feature set. Therefore, feature manipu-
lation techniques are proposed to improve the quality of the feature space, two
of which are feature selection and feature construction [11]. Feature selection is
to select a subset of original features to reduce the dimensionality and improve
the classification performance [7]. Feature construction is a means of enhanc-
ing the quality of feature space by constructing new high-level features [6,7].
The constructed feature(s) should be able to discover the hidden relationship
between the original low-level features, which is particularly useful when the
original features could not provide enough information for classification. This
work will mainly focus on feature construction for classification.
c© Springer-Verlag Berlin Heidelberg 2014
A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2014, LNCS 8602, pp. 476–488, 2014.
DOI: 10.1007/978-3-662-45523-4 39

New Representations in PSO for Feature Construction in Classification 477

A constructed feature is usually a function of original low-level features and
mathematical operators. Therefore, the selection of the original features and
function operators is the key issue in feature construction, but it is a difficult
problem due mainly to the large search space. The size of the search space grows
exponentially with the number of original features and the candidate operators.
As a result, feature construction approaches often suffer from the problem of
being stagnation in local optima and computationally expensive. Therefore, a
global search technique is needed to develop an effective and efficient feature
construction algorithm.

Evolutionary computation (EC) techniques are a group of powerful arguably
global search algorithms, which have been successfully applied to many areas [3].
Most of the EC based feature construction approaches rely on genetic program-
ming (GP) due to its tree-like representation [6,9,10]. Particle swarm optimisa-
tion (PSO) is a powerful EC technique and is argued to be computationally less
expensive than GP [3]. PSO has been used for feature selection [3,14,16], but
there is only one work successfully using PSO for feature construction [17]. How-
ever, since the original representation in PSO does not allow it to evolve nominal
values, the function operators in [17] are selected by a time-consuming inner loop
rather than evolved by PSO itself. Therefore, in order to further investigate the
use of PSO for feature construction, a new representation scheme needs to be
developed to allow PSO itself to select function operators during the evolutionary
process.

1.1 Goals

The overall goal of this paper is to propose a new representation scheme in PSO
to develop a PSO based feature construction approach to binary classification. To
achieve this goal, we develop two new representations named pair representation
and array representation, based on which two PSO based feature construction
algorithms are developed. We expect each new algorithm to construct a single
high-level feature, which can benefit the classification performance either being
used solely or combined with the original features. The two proposed algorithms
are examined and compared with the first PSO based feature construction app-
roach (PSOFC) [17] on seven commonly used binary classification problems.
Specifically, we will investigate:

– whether PSO using the pair representation can automatically construct a
new high-level feature to improve the classification performance either by
the new feature itself or combined with the original features;

– whether PSO using the array representation can successfully construct a new
high-level feature to improve the classification performance and outperforms
the pair representation; and

– whether the two new algorithms can use a shorter computational time to
achieve similar classification performance to PSOFC.

478 Y. Dai et al.

2 Background

2.1 Particle Swarm Optimisation (PSO)

PSO stimulates social behaviours of birds flocking and fish schooling [5,13].
In PSO, each candidate solution is encoded as a particle. A PSO algorithm
starts with randomly initialising a population or swarm of particles. During the
evolution of PSO, all the particles move or “fly” in the search space to find the
optimal solutions. For any particle i, a vector xi = (xi1, xi2, ..., xiD,) is used to
represent its position and a vector vi = (vi1, vi2, ..., viD,) represents its velocity,
where D is the dimensionality of the search space. During the search process,
each particle can remember its best position visited so far called personal best
(denoted by pbest), and the best previous position visited so far by the whole
swarm called global best (denoted by gbest). Based on pbest and gbest, PSO
iteratively updates the xi and vi of particle i to search for the optimal solutions
according to Equations 1 and 2.

xt+1
id = xt

id + vt+1
id (1)

vt+1
id = w ∗ vtid + c1 ∗ ri1 ∗ (pid − xt

id) + c2 ∗ ri2 ∗ (pgd − xt
id) (2)

where t shows the tth iteration. d ∈ D shows the dth dimension. w is the inertia
weight, which can balance the local search and global search of PSO. c1 and c2 are
acceleration constants. ri1 and ri2 are random constants uniformly distributed in
[0, 1]. pid and pgd denote the values of pbest and gbest in the dth dimension. vt+1

id

is limited by a predefined maximum velocity, vmax and vt+1
id ∈ [−vmax, vmax].

2.2 Related Work on Feature Construction

Feature construction has a long research history and a large number of fea-
ture construction approaches have been developed [7]. Based on whether a clas-
sification algorithm is included in the evaluation procedure, existing feature
construction methods can be broadly divided into two categories, which are
wrapper approaches and filter approaches [7]. In wrapper approaches, a clas-
sification algorithm is used to evaluate the classification performance of the
constructed features. A filter feature construction process is a separate, inde-
pendent preprocessing stage and the new features are constructed before the
classification algorithm is applied to build the classifier [6]. Different filter and
wrapper feature construction methods have been developed and more details can
be seen in [6,7,11]. Due to the page limit, this section will briefly review typical
evolutionary feature construction approaches only.

In evolutionary approaches to feature construction, most of the work relies
on GP due to its tree-based representation, which can naturally evolve functions
of features and mathematical expressions [6]. Muharram and Smith [9] devel-
oped two fitness functions in GP for feature construction, which are based on
information gain and gini index, respectively. Experimental results show that
the classification performance of four different classification algorithms can be
be improved by using the constructed features. Krawiec [6] extends the standard

New Representations in PSO for Feature Construction in Classification 479

GP for feature construction framework aiming to preserve the valuable compo-
nents in GP individuals, which may be destructed by mutation or crossover
operators. Neshatian at al. [12] develop a GP based filter feature construction
algorithm, where the class dispersion and entropy are used to form the fitness
function. Experiments show that these algorithms can improve the classification
performance by constructing new high-level features. Later, Neshatian at al. [10]
develop a GP based filter system to construct multiple high-level features. New
features are constructed by GP with an entropy-based fitness function to max-
imise the purity of class intervals. Constructing multiple features is achieved
by using a decomposable objective function. The experiments show that the
constructed features can significantly increase the classification performance.

2.3 PSO for Feature Manipulation

PSO has been used to solve problems in many areas [3,14–16]. In terms of feature
manipulation, PSO has been successfully used for feature selection, but there is
only one existing work on PSO for feature construction [17]. Typical PSO based
manipulation methods will be reviewed in this section.

Marinakis et al. [8] propose a wrapper feature selection approach based on
PSO and K-nearest neighbour (KNN) for a real-world medical diagnosis problem
called Pap-smear cell classification. The results show that this method removes
around half of the features and achieves good classification performance. Azevedo
et al. [1] proposed a wrapper feature selection algorithm using PSO and support
vector machine (SVM) for personal identification in a keystroke dynamic sys-
tem. However, the proposed algorithm obtained a relatively high false acceptance
rate, which should be low in most identification systems. Unler and Murat [14]
develop a modified PSO algorithm for feature selection. In the proposed algo-
rithm, whether a feature is chosen or not depends on two criteria, which are
the likelihood calculated by PSO and the relevance of the feature to the already
selected features. The experiments show that the proposed algorithm achieves
better performance than scatter search and tabu search algorithms. Xue et a. [16]
proposed a PSO based multi-objective feature selection approach. Experimental
results show that the proposed approach outperforms other three well-known
EC based multi-objective feature selection algorithms.

Existing works have shown that PSO can be successfully used for feature
selection. However, there is only one existing work to investigate the use of PSO
for feature construction [17]. Xue et al. [17] apply PSO to feature construc-
tion (PSOFC) to construct a high-level feature, where PSO is used to select
original features and a inner loop is used to exhaustively evaluate all the can-
didate operators to search for an operator for each of the selected features. The
experiments have shown that PSOFC can successfully construct a high-level
feature to improve the classification performance of three different classification
algorithms, i.e. KNN, decision trees (DT), and näıve bayes (NB). However, the
operators are not evolved by PSO itself, but selected by the inner loop, which
is computationally expensive, especially when the number of features is large.
This is due mainly to the major limitation of PSO in feature construction, i.e.

480 Y. Dai et al.

the standard representation does not allow PSO to evolve function operators.
Therefore, a new representation scheme is needed in PSO to evolve function
operators to further investigate its potential in feature construction.

3 Proposed Approaches

In order to address the major problem in PSO for feature construction, we
propose two new representations, which are the pair representation and the
array representation. These two new representations allow PSO to directly evolve
function operators for feature construction.

3.1 Pair Representation

In this representation, the position shows a candidate solution of the problem,
i.e. a constructed feature. The dimensionality of each particle/search space is
n, where n is the total number of features in the dataset. Different from the
traditional representation in PSO, the meaning/function of each dimension in
the pair representation is two-folded. The first one is the probability of a feature
being selected and the second one is the operator chosen for this feature if it
is selected. By using the pair representation, a PSO based feature construction
algorithm is proposed and named PSOFCPair.

F1 O4, F4O3, F3O2, F2 ... On, FnOn-1, Fn-1

x1 x4x3x2 ... xnxn-1

Fig. 1. Pair Representation

Fig. 1 shows a particle in the pair representation. xi is the value of a particle
in the ith dimension with i ∈ [1, n]. Fi represents feature i and Oi represents the
operator for feature i. xi ∈ [0, 1] represents the probability of Fi being selected.
A position determines the selected features and operators, which is regarded as
a constructed feature. The selected features and operators are read from left to
right and used as input to the feature construction function. The function starts
with the first selected feature, followed by a number of pairs of an operator
and a selected feature, and ends with the last selected feature. For example, a
constructed feature can F = F1 ∗ F3 + F5 − F10. Since there is no need to put
any operator before the first selected feature, x1 in the position only determines
whether F1 is selected or not. Note that the order of features in the dataset will
not significantly effect the performance of the constructed feature because PSO
is expected to automatically evolve the solutions during the evolutionary process
and overcome the influence of the features being ordered.

New Representations in PSO for Feature Construction in Classification 481

F1 O3 F2O2 On-1...F3 Fn-1 FnOn

x1 x4x3x2 x(2n-4)...x5 x(2n-3) x(2n-1)x(2n-2)

Fig. 2. Array Representation

To determine whether a feature is selected or not, a threshold θ ∈ [0, 1] is
used here. If xi > θ, Fi is selected. Otherwise, Fi is not selected. If Fi is selected,
an operator is needed to select for Fi according to the value of xi. Given Fi

being selected, θ < xi ≤ 1. According to the number of candidate operators,
the interval of [θ, 1] can be divided into a number of sub intervals. The operator
is selected according to which sub interval xi belongs to. For example, if there
are four candidate operators, three numbers (α1, α2, α3) can be used here to
divide [θ, 1] into three sub intervals. If θ < xi < α1, the first operator is selected.
If α1 ≤ xi < α2, the second operator is selected. If α2 ≤ xi < α3, the third
operator is selected. If α3 ≤ xi ≤ 1, the fourth operator is selected.

3.2 Array Representation

The pair representation could allow PSO to be directly used for feature con-
struction without increasing the dimensionality of the search space, but using
one variable to determine the selection of both features and operators may limit
the search of the their best combination. Therefore, we propose an array rep-
resentation, where the feature selection and operator selection are determined
separately. By using the pair representation, a PSO based feature construction
algorithm is proposed and named PSOFCArry.

Fig. 2 shows the position of a particle in the proposed array representation.
The dimensionality of the particle is 2n − 1, where n is the total number of
features in the dataset. A dimension is used to determine the selection of either
the feature or the operator. The (2 ∗ i − 1)th dimension determines whether Fi

is selected or not, where i ∈ [1, n]. The (2 ∗ i − 2)th dimension determines which
operator is selected for Fi, where i ∈ [2, n] since the first feature does not need
any operator. Meanwhile, the operator i is selected only when Fi is selected.

The threshold θ is also used in the (2∗i−1)th dimension to determine whether
Fi is selected or not. θ performs the same way as in the pair representation.
According to the number of candidate operators, the interval [0,1] is divided
into a number of sub intervals. An operators is selected according to which sub
interval xi in the (2 ∗ i − 2)th dimension belongs to, which is the same as in the
pair representation.

3.3 Pesuode Code of the Proposed Approaches

Both PSOFCPair and PSOFCArry follow the basic steps in PSO and each of
them produces a single high-level feature. An important step in PSOFCPair and

482 Y. Dai et al.

Algorithm 1. Pseudo-code of PSOFCArry and PSOFCPair
begin

split the instances into a Training and a Test set;
initialise x and v of each particle;
while Maximum Iterations has been not met do

construct a new high-level feature for each particle according to the Pair
or Array representation;
calculate the classification performance of the constructed high-level
feature;
for i=1 to Swarm Size do

update the personal best (pbest) of particle i;
update the global best (gbest) of particle i;

for i=1 to Swarm Size do
for d=1 to Dimensionality do

calculate vi according to Equation 2
calculate xi according to Equation 1

calculate the classification performance of the constructed feature on the
test set using 0 as the threshold or using other classification algorithms;
return gbest, the training and testing classification performance.

Table 1. Datasets

Dataset No. of Features No. of Classes No.of Instances
Australian 14 2 690
Ionosphere 34 2 351
WBCD 30 2 569
Sonar 60 2 208

Hillvalley 100 2 606
Musk1 166 2 476
Madelon 500 2 4400

PSOFCArry is the evaluation of a particle, which is shown in Line 1. In both
PSOFCPair and PSOFCArry, the algorithm first constructs a new high-level
feature according to the low-level features and the operators selected by the
particle. The fitness of the particle is evaluated by the classification performance
of the newly constructed high-level feature. Since binary classification problems
are considered here, we use 0 as the threshold for the constructed feature to
determine an instance to be class 1 or class 2. The purpose of using 0 as the
threshold for classification rather than using a classification algorithm is to speed
up the classification (i.e. the fitness evaluation) process by avoiding a complex
process to train a classifier.

4 Design of Experiments

A set of experiments have been conducted to examine the performance of PSOFC-
Pair and PSOFCArry on seven binary datasets (see Table 1) chosen from the
UCI machine learning repository [4]. The seven datasets are chosen to have dif-
ferent numbers of features and instances. On each dataset, 70% of the instances

New Representations in PSO for Feature Construction in Classification 483

Table 2. Operator Selection

PSOFCPair PSOFCArry
Interval Operator Interval Operator
[0.5, 0.625) + [0.0, 0.25) +
[0.625, 0.7) - [0.25, 0.5) -
[0.7, 0.825) * [0.5, 0.75) *
[0.825, 1] / [0.75, 1] /

are randomly selected as training examples and the rest 30% are used as the
testing set, following the settings in [17] to make a fair comparison.

The parameters in PSOFCPair and PSOFCArry are set as follows [2]: w =
0.7298, c1 = c2 = 1.49618. The swarm size is 30 and the fully connected topology
is used. The maximum number of iterations is 100. θ in both PSOFCPair and
PSOFCArry is set as 0.5, which means each original feature has 50% probabil-
ity to be selected for constructing the new high-level feature. Four commonly
used function operators in GP for feature construction [11] are used in both
PSOFCPair and PSOFCArry, which are “+”, “-”, “*” and “/” (protected divi-
sion). The operators are selected according to which interval the corresponding
position value falls into and details can be seen in Table 2. The four operators
are considered equally important. Therefore, the four intervals in PSOFCPair
or PSOFCArry have the same range to ensure that the four operators have the
same probability to be selected.

Both PSOFCPair and PSOFCArry are run 50 independent times on each
dataset. To test the generality of the constructed feature, three different learning
algorithms are used to test its classification performance on the testing set.
The three classifiers are DT, KNN with K = 5 and NB. To further test the
performance of PSOFCPair and PSOFCArry, they are compared with the first
and the only existing PSO based feature construction algorithm (PSOFC) [17].

5 Results and Discussions

The results of PSOFCPair and PSOFCArry are shown in Tables 3 and 4. In
the tables, “Org” means all the original features are used for the classification.
“CF” means only the single constructed feature is used for the classification.
“OrgCF” means the constructed feature and the original features are combined
together for classification. “#Fea” represents the total number of features in
the datasets. “Best”, “Avg” and “Std” represent the best, the average and the
standard deviation of the testing classification performance obtained from the
50 runs.

5.1 Results of the PSOFCPair

As can be seen from Table 3, by using only the single constructed feature for
classification, DT, KNN and NB can achieve similar or better classification per-
formance than using all the original features on a few datasets only. The results
suggest that the simple pair representation in PSO has potential to construct

484 Y. Dai et al.

Table 3. Result of PSOFCPair

Dataset #Fea Method
DT KNN NB

Best Avg Std Best Avg Std Best Avg Std

Australian 14
Org 85.99 70.05 85.51
CF 77.29 65 4.13 74.4 61.99 4.28 59.9 53.93 1.84
OrgCF 85.99 85.99 0 74.88 69.05 3.01 85.99 85.34 45.1E-2

WBCD 30
Org 92.98 92.98 90.64
CF 95.32 86.5 8.66 95.32 85.94 9.06 61.99 61.41 8.26E-2
OrgCF 97.08 93.2 92.1E-2 95.91 92.13 4.12 90.64 90.64 0

Ionosphere 34
Org 86.67 83.81 28.57
CF 84.76 75.47 5.65 84.76 73.45 5.66 84.76 80.86 2.36
OrgCF 89.52 86.88 93.8E-2 89.52 84.7 1.57 28.57 28.57 0

Sonar 60
Org 71.43 76.19 53.97
CF 69.84 53.14 7.7 65.08 53.05 7.23 47.62 47.62 0
OrgCF 73.02 71.11 1.42 79.37 66.25 11.9 53.97 53.97 0

Musk1 166
Org 71.33 83.92 42.66
CF 67.13 58.95 4.17 64.34 55.37 5.09 60.14 59.38 36.6E-2
OrgCF 75.52 71.41 58.7E-2 85.31 62.69 13.7 72.73 72.73 0

Hillvalley 100
Org 62.09 56.59 52.2
CF 83.79 54.56 7.99 83.52 53.38 7.84 47.8 47.8 0
OrgCF 85.99 63.47 5.84 83.79 53.56 7.95 52.2 52.2 0

Madelon 500
Org 76.79 70.9 49.49
CF 57.31 50.98 2.34 54.23 50.27 1.69 49.49 49.49 0
OrgCF 77.69 76.79 16E-2 72.44 52.24 5.85 55.51 55.51 1.84E-2

a high-level feature to provide useful information for classification and using
only the single constructed needs much less computational time than using the
original full set of features. However, the limitation of PSOFCPair is that a fea-
ture and its operator share the same value to determine whether the feature is
selected or not and which operator is chosen. During the evolution, the shared
dimension may not reach the ideal value for both feature and operator selection.
Therefore, only using the constructed feature could not improve the classifica-
tion performance on most cases, but adding it to the original feature set may
increase the classification accuracy.

According to Table 3, by adding the constructed feature to the original fea-
ture set, the classification performance of all the three classification algorithms
(DT, KNN and NB) can be increased. Specifically, the average accuracy of DT is
increased on four of the seven datasets and similar on the other three datasets.
The best accuracy is higher than using only the original features on six of the
seven datasets and the same on one dataset. The performance of using both the
constructed feature and the original features on KNN and NB shows a similar
pattern to DT, where the classification performance is increased in most cases.
These results indicate that adding the constructed feature can provide useful
information to the feature set to achieve better classification performance than
using only the original features, but the computational time cost by adding only
one feature can be safely ignored. Although there is a preprocessing step to con-
structed the new feature, its computation time is very short (details can be seen
in Section 5.3).

5.2 Results of PSOFCArry

According to Table 4, it can be seen that when using only the single constructed
high-level feature for classification, the best classification performance of DT is

New Representations in PSO for Feature Construction in Classification 485

Table 4. Results of PSOFCArry

Dataset #Fea Method
DT KNN NB

Best Avg Std Best Avg Std Best Avg Std

Australian 14
Org 85.99 70.05 85.51
CF 88.41 85.05 1.63 87.44 66.59 17.3 76.33 55.21 5.02
OrgCF 87.92 85.87 98.8E-2 87.92 79.54 4.17 88.89 86.59 67.4E-2

WBCD 30
Org 92.98 92.98 90.64
CF 95.91 91.47 2.36 95.91 90.98 2.49 61.4 61.4 0
OrgCF 97.08 93.45 1.07 95.91 92.65 1.5 90.64 90.64 0

Ionosphere 34
Org 86.67 83.81 28.57
CF 83.81 76.71 4.79 85.71 76.32 5.07 87.62 82.32 1.56
OrgCF 92.38 85.96 3.27 87.62 84.46 1.18 28.57 28.57 0

Sonar 60
Org 71.43 76.19 53.97
CF 73.02 63.33 6.14 74.6 61.27 5.45 47.62 47.62 0
OrgCF 76.19 68.67 4.17 80.95 71.08 6.42 53.97 53.97 0

Musk1 166
Org 71.33 83.92 42.66
CF 67.13 58.77 5.29 67.13 57.86 4.39 60.14 59.36 43.5E-2
OrgCF 73.43 71.32 58.6E-2 84.62 66.99 12.7 72.73 72.73 0

Hillvalley 100
Org 62.09 56.59 52.2
CF 99.45 96.98 1.71 99.45 96.87 1.85 50 47.86 31.6E-2
OrgCF 99.45 97.15 1.51 76.92 62.86 5.34 52.47 52.21 3.81E-2

Madelon 500
Org 76.79 70.9 49.49
CF 64.36 57.28 4.16 58.33 53.33 2.34 49.49 49.49 0
OrgCF 77.05 76.77 24.6E-2 70.9 66.4 8.08 49.49 49.49 0

better than when using all the original features on four of the seven datasets. For
example, on the Hillvalley dataset, the classification performance of DT using all
the 100 original features is 62.09%. By using only the single constructed features,
DT achieved the average classification performance of 96.98% and the best accu-
racy of 99.45%. The best classification performance of KNN and NB using only
the constructed feature is better than using all the original low-level features
on most datasets. The results suggests that PSOFCArry can effectively evolve a
number of original low-level features and function operators to construct a single
high-level feature, which is possible to achieve better classification performance
than using all the original features.

According to Table 4, it can be observed that when combing the single con-
structed feature with the original features, the best classification performance
of DT is better than using only the original features on all the seven datasets.
The average classification accuracy is similar or better than using only the orig-
inal features on almost all datasets. KNN and NB shows a similar patter to
DT, which is the average accuracy is better or similar on most datasets and the
best accuracy is higher than using only the original features on most cases. The
results suggest that adding the constructed feature to the original features brings
useful information to the feature set, which can help a classification algorithm
(DT, KNN or NB) to achieve better classification performance than using only
the original features.

5.3 Further Comparisons

Table 5 shows of the classification performance of PSOFCPair, PSOFCArray and
PSOFC using DT as the classification algorithm, where“CF” means DT using
only the constructed high-level feature and “CFOrg” means the combination of

486 Y. Dai et al.

Table 5. Results of PSOFCPair,PSOFCArray and PSOFC using DT

Feature Method
Australian WBCD Ionosphere Sonar

Ave±Std Test Ave±Std Test Ave±Std Test Ave±Std Test

CF

PSOFC 85.35±1.13 93.31±1.07 81.01±2.85 63.11±2.26
PSOFCPair 65±4.13 - 86.5±8.66 - 75.47±5.65 - 53.14±7.7 -
PSOFCArray 85.05±1.63 = 91.47±2.36 - 76.71±4.79 - 63.33±6.14 =

Method
Musk1 Hillvalley Madelon

Ave±Std Test Ave±Std Test Ave±Std Test
PSOFC 65.96±3.24 85.93±12.5 53.97±4.26E-14
PSOFCPair 58.95±4.17 - 54.56±7.99 - 50.98±2.34 -
PSOFCArray 58.77±5.29 - 96.98±1.71 + 57.28±4.16 +

Feature Method
Australian WBCD Ionosphere Sonar

Ave±Std Test Ave±Std Test Ave±Std Test Ave±Std Test

CFOrg

PSOFC 85.93±66E-2 93.81±1.1 86.55±3.13 71.43±2.8E-14
PSOFCPair 85.99±9.9E-14 = 93.2±92.1E-2 - 86.88±93.8E-2 = 71.11±1.42 =
PSOFCArray 85.87±98.8E-2 = 93.45±1.07 = 85.96±3.27 = 68.67±4.17 -

Method
Musk1 Hillvalley Madelon

Ave±Std Test Ave±Std Test Ave±Std Test
PSOFC 71.54±3.09 85.63±12.4 76.79±8.53E-14
PSOFCPair 71.41±58.7E-2 = 63.47±5.84 - 76.79±16E-2 =
PSOFCArray 71.32±58.5E-2 = 97.15±1.51 + 76.77±24.6E-2 =

the constructed feature and original features. “Test” shows the results of the
statistical significant T-test (Z-test) comparing the classification performance
achieved by PSOFC and PSOFCPair(or PSOFCArray). The results of using
KNN or NB as the classification algorithm show a similar patter to DT and the
results are not listed here due to the page limit. The average computational time
(in seconds) of the three algorithms in each run is shown in Table 6.

According to Table 5, when DT using only the constructed feature for clas-
sification, PSOFC achieved better performance than PSOFCPair in all cases,
better than PSOFCArray in three cases and worse than PSOFCArray in two
cases. When using the combination of the constructed feature and the origi-
nal features, PSOFC achieved slightly better performance than PSOFCPair and
similar performance to PSOFCArray. The main reason is that PSOFC using a
inner loop for operator selection, which conducts an exhaustive search of all the
candidates operators to find the optimal operator for each feature, can obtain
a better set of operators. PSOFCPair has a potential limitation due to the use
of one dimension for both features and operators. However, the inner loop in
PSOFC is time-consuming. From Table 6, it can be observed that the time
used by PSOFCPair and PSOFCArray is around 100 times shorter than that of
PSOFC. The main reason is that the inner loop in PSOFC causes a much larger
number of evaluations than PSOFCPair and PSOFCArray. The operators in
PSOFCPair and PSOFCArray are evolved by PSO itself and not need extra cal-
culations. Since the dimensionality of PSOFCArray is higher than PSOFCPair,
the computational time used by PSOFCArray is slightly larger than PSOFCPair,
but still around 100 times shorter than PSOFC.

Tables 5 and 6 suggest that the new representations in PSOFCPair and
PSOFCArray can effectively evolve operators to construct a new high-level fea-
ture to achieve similar classification performance to PSOFC, but use significantly
shorter computational time.

New Representations in PSO for Feature Construction in Classification 487

Table 6. Computation Time used by PSOFCPair,PSOFCArray and PSOFC

Method Australian Ionosphere WBCD Hillvalley Musk1 Semeion Madelon
PSOFCPair 94.6E-2 84.2E-2 54.4E-2 41.6E-2 1.46 2.68 18.8
PSOFCArray 93.3E-2 88E-2 59E-2 44.5E-2 1.93 3.45 25.6
PSOFC 31.4 65.4 47.1 65.6 7.2E2 8.2E2 6.1E4

6 Conclusion and Future Work

The goal of this research was to develop a new representation scheme in PSO for
feature construction to construct a high-level feature to improve the classification
performance. The goal was successfully achieved by proposing two new repre-
sentations, which are the pair representation (PSOFCPair) and the array rep-
resentation (PSOFCArray). PSOFCPair and PSOFCArray were examined and
compared with the first and only existing PSO based feature construction algo-
rithm (PSOFC) on seven benchmark datasets. The experimental results show
that PSOFCPair increased the classification performance in most cases by adding
the constructed feature to the original feature set, but it has a limitation because
of using one dimension in the particle for both the feature selection and opera-
tor selection. By using a larger dimensionality, PSOFCArray could increase the
classification performance by using only the constructed feature and increase the
classification performance in almost all cases by adding the constructed feature
to the original feature set. PSOFCArray achieved similar classification perfor-
mance to PSOFC, but used significantly shorter computational time.

This paper is the first work that uses PSO to automatically select original
low-level features and function operators for feature construction. In the future,
we will further investigate the use of PSO for feature construction and compare
its performance with GP based feature construction approaches.

References

1. Azevedo, G., Cavalcanti, G., Filho, E.: An approach to feature selection for
keystroke dynamics systems based on PSO and feature weighting. In: IEEE
Congress on Evolutionary Computation (CEC 2007), pp. 3577–3584 (2007)

2. Clerc, M., Kennedy, J.: The particle swarm- explosion, stability, and convergence
in a multidimensional complex space. IEEE Transactions on Evolutionary Com-
putation 6(1), 58–73 (2002)

3. Engelbrecht, A.P.: Computational intelligence: an introduction, 2. ed. Wiley (2007)
4. Frank, A., Asuncion, A.: UCI machine learning repository (2010)
5. Kennedy, J., Eberhart, R.: Particle swarm optimization. IEEE International Con-

ference on Neural Networks. 4, 1942–1948 (1995)
6. Krawiec, K.: Genetic programming-based construction of features for machine

learning and knowledge discovery tasks. Genetic Programming and Evolvable
Machines 3(4), 329–343 (2002)

7. Liu, H., Motada, H. (eds.): Feature extraction, construction and selection: A data
mining perspective. Kluwer Academic Publishers, Norwell (1998)

8. Marinakis, Y., Marinaki, M., Dounias, G.: Particle swarm optimization for pap-
smear diagnosis. Expert Systems with Applications 35(4), 1645–1656 (2008)

488 Y. Dai et al.

9. Muharram, M.A., Smith, G.D.: Evolutionary Feature Construction Using Informa-
tion Gain and Gini Index. In: Keijzer, M., O’Reilly, U.-M., Lucas, S., Costa, E.,
Soule, T. (eds.) EuroGP 2004. LNCS, vol. 3003, pp. 379–388. Springer, Heidelberg
(2004)

10. Neshatian, K., Zhang, M., Andreae, P.: A filter approach to multiple feature con-
struction for symbolic learning classifiers using genetic programming. IEEE Trans-
actions on Evolutionary Computation 16(5), 645–661 (2012)

11. Neshatian, K.: Feature Manipulation with Genetic Programming. PhD thesis,
Victoria University of Wellington, Wellington, New Zealand (2010)

12. Neshatian, K., Zhang, M., Johnston, M.: Feature Construction and Dimension
Reduction Using Genetic Programming. In: Orgun, M.A., Thornton, J. (eds.) AI
2007. LNCS (LNAI), vol. 4830, pp. 160–170. Springer, Heidelberg (2007)

13. Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: IEEE International
Conference on Evolutionary Computation (CEC 1998), pp. 69–73 (1998)

14. Unler, A., Murat, A.: A discrete particle swarm optimization method for fea-
ture selection in binary classification problems. European Journal of Operational
Research 206(3), 528–539 (2010)

15. Xue, B., Cervante, L., Shang, L., Browne, W.N., Zhang, M.: A multi-objective par-
ticle swarm optimisation for filter based feature selection in classification problems.
Connection Science (2012)

16. Xue, B., Zhang, M., Browne, W.: Particle swarm optimization for feature selection
in classification: A multi-objective approach. IEEE Transactions on Cybernetics
43(6), 1656–1671 (2013)

17. Xue, B., Zhang, M., Dai, Y., Browne, W.N.: PSO for feature construction and
binary classification. In: Proceeding of the Fifteenth Annual Conference on Genetic
and Evolutionary Computation Conference, GECCO 2013, 137–144 (2013)

GPU-Based Point Cloud Recognition Using
Evolutionary Algorithms

Roberto Ugolotti(B), Giorgio Micconi, Jacopo Aleotti, and Stefano Cagnoni

Department of Information Engineering, University of Parma, Parma PR, Italy
{rob ugo,micconi,aleotti,cagnoni}@ce.unipr.it

Abstract. In this paper, we describe a method for recognizing objects
in the form of point clouds acquired with a laser scanner. This method is
fully implemented on GPU and uses bio-inspired metaheuristics, namely
PSO or DE, to evolve the rigid transformation that best aligns some
references extracted from a dataset to the target point cloud. We compare
the performance of our method with an established method based on
Fast Point Feature Histograms (FPFH). The results prove that FPFH is
more reliable under simple and controlled situations, but PSO and DE
are more robust with respect to common problems as noise or occlusions.

Keywords: Particle Swarm Optimization · Differential Evolution · Pat-
tern Recognition · GPGPU · Point Clouds

1 Introduction

The recent spread of 3D sensors has strongly increased the number of systems
that operate on 3D data to perform operations like motion planning, human-
robot interaction, manipulation and grasping.

In this paper, we consider a system which is part of an architecture whose
goal is to help users program robotic tasks. To reach this goal, a sub-system
for object recognition is required (see Figure 1). It receives input data from a
high-resolution planar laser scanner mounted on the wrist of a six degrees of
freedom robot arm. The estimated accuracy of the whole measurement chain is
about 1.5 cm, the main sources of error being the variable remission of objects
and the angle of incidence of the laser. Data undergo several preprocessing steps
to refine the acquisition and are then passed to the FPFH (Fast Point Feature
Histograms) based recognizer, along with a list of models stored in a database.
The output of the recognizer indicates which objects are present in the scene and
in which pose. A thorough description of a preliminary version of this system
can be found in [12].

In [18] we have shown that bio-inspired metaheuristics like Particle Swarm
Optimization (PSO) [5] or Differential Evolution (DE) [17] can successfully per-
form object recognition and registration.

The main goal of this paper is to present an implementation of the method
proposed in [18] to solve the problem of 3D point-cloud registration and recogni-
tion. We will assess its performance in several situations and compare our results
c© Springer-Verlag Berlin Heidelberg 2014
A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2014, LNCS 8602, pp. 489–500, 2014.
DOI: 10.1007/978-3-662-45523-4 40

490 R. Ugolotti et al.

Fig. 1. Representation of the system within which the FPFH recognizer, or the one
based on PSO as an alternative, is used

to those obtained using FPFH features. Figure 1 shows that this recognizer can
be easily embedded into the existing system.

2 Theoretical Background

In this section, we briefly describe the background of our approach to object
recognition without re-introducing PSO and DE, whose descriptions can be
found in [1] and [14], respectively.

Point Clouds

A point cloud is a set of three-dimensional points expressed within a certain
coordinate system. A point cloud can have several meanings but is usually inter-
preted as a discrete representation of the external surface of an object. It can
be generated artificially, using CAD or 3D editing tools, or by several types of
sensors, like, for instance, RGB cameras, depth cameras or laser scanners. Point
clouds are often used in object recognition and in many other problems related
to the understanding of the environment.

Point-cloud registration is a well-known problem for which many solutions
have been proposed. Approaches that inspired our work can be found in [8],
where Li et al propose a function based on a Gaussian Mixture distance map and
use PSO to optimize it; in [9], where registration of partially overlapped point
clouds is achieved by estimating their Extended Gaussian Images; and in [19]
where DE is used to register a triangular mesh to a point cloud by minimizing
their relative distance.

Model Based Object Recognition

The approach used in this work is an application of the method presented more
in depth in [18]. The general process is quite straightforward:

1. A template of the object to recognize is created off-line, defining the available
range of deformations to which it can be subject;

GPU-Based Point Cloud Recognition Using Evolutionary Algorithms 491

2. This model is rotated and deformed during the evolutionary process in order
to match, as much as possible, a target under consideration (we used PSO
and DE, but other metaheuristics can be used);

3. The process stops when a convergence criterion (e.g. alignment reached,
time) is met.

The main goal of this work is to recognize the pose of a known object, so
the first step just consists of reading a point cloud from a database of available
models. Moreover, the model can only be subject to a rigid transformation, so the
search space is defined only by six degrees of freedom (translations and rotations
around the three axes). This means that the dimensionality of the search space
in which DE and PSO operate is six.

CUDA

Graphic Processing Units (GPUs) contain up to several thousands of cores that
can execute the same code at the same time on different data. While originally
used only in gaming and computer graphics, their use has recently spread to a
very large number of applications [13] following the GPGPU (general-purpose
computing on GPU) paradigm, within environments like CUDA or OpenCL.

CUDA (Compute Unified Distributed Architecture) [11] is a general purpose
parallel computing environment distributed by nVIDIATM which exploits the
massively parallel computation capabilities of its GPUs. CUDA C/C++ is an
extension of the C language that allows development of GPUs routines (named
kernels), that run in parallel as a number of different CUDA threads, following
the Single Instruction Multiple Thread (SIMT) model. Each kernel is executed
on different threads, which run all the same code, but on different data. These
threads may be grouped into blocks. A block can be seen as a group of threads
that share the same information and can exploit fast, local memory instead of
using the slow, global one.

Algorithms with high arithmetic intensity, low memory requirements and few
interactions between independent threads, like evolutionary algorithms (EAs),
are very well suited for GPGPU. Therefore, in the last years, many GPU-based
implementations of EAs have been presented. The first implementations of PSO
and DE based on CUDA were developed in 2009 and 2010, respectively [2,3];
after that, several other implementations have been proposed. Two comprehen-
sive reviews regarding GPU implementations of PSO [6] and DE [7] have been
recently presented by Kromer et al.

3 FPFH

Fast Point Feature Histograms [15] (an evolution of PFH [16]) are pose-invariant
local features which represent the underlying surface model properties for all
the elements composing a point cloud. These features form a full description
of a point cloud, therefore they can be used for several tasks, like aligning a

492 R. Ugolotti et al.

target to a reference (registration). These descriptors are computed for each
point of a given point cloud and are generated by comparing the normal of a
specific point with the normals of the points within a certain radius, which is a
fundamental parameter of the algorithm. For a more detailed description, please
refer to [16]. Once all descriptors of the two point clouds (target and reference)
have been computed, a particular version of the RANSAC algorithm (RANdom
SAmple Consensus) [4] is used to find a raw alignment between the clouds. This
version is called SAC-IA (SAmple Consensus - Initial Alignment) and is followed
by a second step, which attempts to refine the previous alignment, using the
Iterative Closest Point algorithm. Eventually, the two transformations found by
the algorithms are composed in order to compute the full transformation needed
to align the two clouds.

4 Evolutionary Implementation

In this section we describe the fitness function used by PSO and DE, as well
as the system’s GPU-based implementation. From now on, we will refer only to
PSO, but DE could also play exactly the same role.

4.1 Fitness Function

The fitness function used by PSO is relatively straightforward. We compare the
target cloud T to be recognized (composed of NT points), with a reference cloud
R extracted from a database, composed of NR points. This reference is subject
to a transformation M encoded by a PSO particle, to obtain R′ = M(R). The
fitness of a particle is the average of the minimum distances of each point of T
to the closest point of the roto-translated reference R′. More formally:

F (T,R′) =
1
NT

∑
p∈T

min
q∈R′

(
dist(p, q)

)

where dist() is a valid distance metric between points; in this case we selected
the squared euclidean distance.

Each point cloud is expressed within a local reference frame centered around
its centroid. A model can do a full rotation around each axis while the range of
translation is limited to 10 cm in each direction, which is good enough to satisfy
the requirements of the environment we are considering.

4.2 GPU Implementation

The entire system, including the computation of the fitness function, has been
implemented on GPU. Several implementation designs have been tested. In the
final one, two degrees of parallelism are exploited:

1. The i-th PSO particle represents a possible transformation Mi of the refer-
ence R and relies on a CUDA block, so all Mis can be computed in parallel;

GPU-Based Point Cloud Recognition Using Evolutionary Algorithms 493

Fig. 2. Scheme of the implementation of the fitness function on CUDA. Target points
are computed sequentially. The parallel implementation relies on the fact that each
point is compared (potentially) in parallel to all reference models (10 in this case),
where each of the 24 PSO particles represents a possible transformation; 512 points
are processed simultaneously for each particle.

2. Within each particle (so, within each block), each of many parallel threads
processes a limited number of points of R, by firstly computing a portion of
the transformed point cloud R′ and then comparing it with all points of T .

The points of T are actually processed sequentially, but a significant speedup
can be obtained anyway because each of them is compared at the same time to
several points of the reference cloud, and to different transformations of R. A
further level of parallelization has been tested where each particle is represented
by more blocks, and each block considers a sub-portion of T , since different
parts of the target can be computed independently. This choice was discarded
because it does not bring any speedup of the fitness function computation. This is
probably caused by the large amount of resources (especially number of threads)
needed for its computation, which prevents a full parallelization and forces the
GPU to schedule some CUDA blocks sequentially.

If the target is compared with more than one reference (for instance, to
recognize which object has been scanned), a further level of parallelism can be
added: several optimization processes can be executed in parallel using different
reference models. For the same reason explained in the previous paragraph, the
parallelism is not perfect and the difference with respect to a version in which

494 R. Ugolotti et al.

all references are analyzed sequentially is not very significant. Figure 2 outlines
how the work is subdivided among CUDA blocks and threads.

The GPU-based implementation of the metaheuristics employed in this paper
has been presented in [10]1. The parallel PSO implementation is structured as
three distinct kernels: (i) the first one generates the solutions that is going to
be evaluated, (ii) the second one computes the fitness function described before,
and (iii) the last one updates the population.

5 Results

We performed the experimented tests on a PC equipped with a 64-bit Intel Core
i7 CPU running at 3.40 GHz using CUDA v. 5.0 on an nVidia GeForce GTX680
graphics card with 1536 cores working at 1.20 GHz and compute capability 3.0.

The PSO and DE parameters (unless specified otherwise) were set as in
Table 1. They have been chosen by manually generating 40 possible combina-
tions, and testing them on the problem described in the next subsection. The
configuration that gave the best average fitness was finally selected. We com-
pared DE and two PSO versions (with global and ring topologies).

Table 1. Parameters used by DE and PSO. Refer to [1] and [14] for the meaning of
the parameters

DE PSOr PSOg

Cr = 0.9 φ1 = 1.19 φ1 = 1.8
F = 0.5 φ2 = 1.19 φ2 = 0.7

Exponential Crossover ω = 0.5 ω = 0.72
Target-to-best Mutation Ring Topology (K = 1) Global Topology

Population Size = 24 Population Size = 24 Population Size = 24
Generations = 90 Generations = 90 Generations = 90

5.1 Error vs Fitness

We performed several experiments under different conditions. Firstly, we wanted
to prove that our fitness function is correct, i.e., a good fitness value actually
corresponds to a good match between the reference and the target. In these
tests (and in all the following, except the ones presented in Section 5.4), we
used the same model (a wooden mallet) as target and as reference, with random
roto-translations applied to the target. So, it was actually possible to achieve a
perfect matching if the recognition process identified the correct transformation.
We define the translation applied to the target as tT and the rotation as rT to
show that, the closer to (tT , rT) the transformation applied to the reference, the
better its fitness, i.e. there exists a direct correlation between error and fitness
values.
1 The code is available online at http://sourceforge.net/projects/libcudaoptimize/

http://sourceforge.net/projects/libcudaoptimize/

GPU-Based Point Cloud Recognition Using Evolutionary Algorithms 495

Figure 3 shows the relationship between errors in the transformation andfitness
values. Each point represents an independent repetition of the recognition task.
Its position on the graph represents the error in terms of translation (euclidean
distance between translation obtained at the end of the experiment and tT) and
rotation (angle between rotation computed and rT). The color is related to the
fitness value: dark colors stand for good (low, since this is a minimization problem)
fitness values and light colors represent bad values. As can be seen, the closer a
point is to the optimum(0, 0), the darker it is.Computing the correlation coefficient
between these twodistances and the fitness, the results are 0.825 (translation error)
and 0.726 (rotation error) showing a significant direct relationship.

Fig. 3. Relation between error in translation (shown on the x axis of the graph) and
rotation (on the y axis) and fitness value (color)

5.2 Time Comparison

We tested different PSO, DE and FPFH parameters (varying the number of
generations in the first two, of RANSAC and ICP iterations for the other) in
order to see how they behave within different time constraints. We set four dif-
ferent time limits: 0.7 s, 1.3 s, 2.3 s and 3.2 s. Figure 4 shows that FPFH reaches
good results very quickly, but cannot improve them any further, while meta-
heuristics use their exploitation abilities to constantly refine their results. This
is confirmed by statistical tests (Friedman test with the Dunn-Sidak correction,
p = 0.01) which show that within the first two time limits FPFH is statistically
better than the other methods considering translation and rotation errors.

496 R. Ugolotti et al.

Fig. 4. Error versus processing time allowed for optimization, computed over 100 exper-
iments. Solid lines represent average values, while dotted lines represent medians.

Moreover, PSO/DE have usually a lower median and higher average when
compared to FPFH. This result (that will be confirmed in all other tests) proves
that evolutionary methods have a better ability of finding more precise solutions,
but sometimes they fall in local minima and fail completely. On the contrary,
FPFH steadily obtains good results, though worse than the ones obtained in the
successful runs of the metaheuristics.

The sequential single-thread CPU implementation of the PSO recognizer
takes an average of 60.5 s for 90 generations, which means it is 18.9 times slower
than the GPU version. If we parallelize the evolutionary process over the 8 cores
available on the CPU, the time needed is reduced to 16.4 s, so the GPU is still
5.1 times faster.

5.3 Noise and Occlusions

In this section, we simulated some situations that can hamper object recognition,
like noise and occlusions. We simulated the former by adding to each point of
T a random value from a uniform distribution (we chose ranges of 0.001, 0.002,
0.005, 0.01 m), and the latter by removing all points above a certain percentile
along a given dimension (we “occluded” 20%, 40%, 60% and 80% of the target).
Figure 5 shows that FPFH is less robust to this kind of difficulties than PSO.
Starting from an occlusion level of 60%, and for a noise range of 0.01 m, FPFH
is significantly worse than all the EA-based methods in translation and rotation
errors.

Figure 6 shows, as in Figure 3, how PSO and FPFH react to noise. Each
color represents a different value of noise added to the target. It can be seen
on the left that there is no clear difference between the different levels of noise

GPU-Based Point Cloud Recognition Using Evolutionary Algorithms 497

Fig. 5. Variation of errors in the presence of occlusions (top) and noise (bottom) added
to the target over 100 experiments. Solid lines represents average values, while dotted
lines represents medians.

when using PSO, while, on the right, the points corresponding to different noise
levels can be easily clustered as different clouds. In particular, when the noise
is low, there is almost no difference among the solutions found but, when noise
increases, the dots are scattered over a large area.

5.4 Object Recognition

After assessing the behavior of these two methods under different conditions, we
performed some tests on a different problem: object recognition. In this case,

498 R. Ugolotti et al.

Fig. 6. Errors versus noise level (color) using PSO (left) and FPFH (right) over 100
experiments for each level. The results of FPFH are more consistent, while the ones
obtained by PSO are more scattered.

Fig. 7. Percentage of correct recognitions over 500 experiments (50 repetitions for
10 different objects) for every entry of the bar chart. Again, one can see how FPFH
performance degrades in the presence of occlusions.

the goal was not only to understand where the object was located, but also to
recognize the target object, within a set of ten reference objects: the wooden
mallet previously used, a ewer, a burner, a toy horse, a mug and five different
boxes of different shapes and sizes. We performed 50 independent tests in which
each object was used as target and compared to all the others both under nor-
mal conditions and simulating the presence of noise and occlusions. Results are
presented in Figure 7.

GPU-Based Point Cloud Recognition Using Evolutionary Algorithms 499

6 Conclusions

We applied a method based on Particle Swarm Optimization or Differential
Evolution to recognize objects acquired with a laser scanner in the form of a
point cloud. Each PSO or DE particle encodes a possible roto-translation of
a point cloud used as reference; its optimization process tries to minimize the
squared euclidean distance between the points of the target and the reference.
We compared our method with a well-known method used for this task, FPFH.
The main conclusions can be summarized as follows:

– FPFH reaches good results in a very short time, but it is not able to further
improve them. Vice versa, the longer the time allowed to run EAs, the better
the results they obtain;

– FPFH reaches good results almost always in ideal conditions, while EAs are
able to achieve higher precision most of the times, but sometimes fail;

– EAs are more robust to noise and occlusions than FPFH.

As previously stated, PSO and DE parameters were selected among a few
manually selected alternatives. It has been largely proved that, in many tasks,
a good parameter setting can improve the performance of metaheuristics signif-
icantly. As future work, we will try to see if better performance can be achieved
by automatically selecting such parameters.

The fitness function currently implemented for PSO can work properly only
when the point cloud represents a single target. In some situations, it may be
useful to recognize and localize more than one object in the scene at the same
time. This can be obtained by moving the focus on the reference instead of focus-
ing on the target: in other words, instead of finding the pose that minimizes the
average distance of the points of the target cloud, one should find the trans-
formation that minimizes the same metric regarding the points in the reference
cloud. This will be the next step of our work.

References

1. Das, S., Suganthan, P.: Differential Evolution: A Survey of the State-of-the-Art.
IEEE Transactions on Evolutionary Computation 15(1), 4–31 (2011)

2. de Veronese, L., Krohling, R.: Swarm’s flight: Accelerating the particles using C-
CUDA. In: Proc. IEEE Congress on Evolutionary Computation, pp. 3264–3270
(2009)

3. de Veronese, L., Krohling, R.: Differential Evolution algorithm on the GPU with
C-CUDA. In: Proc. IEEE Congress on Evolutionary Computation, pp. 1–7 (2010)

4. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model
fitting with applications to image analysis and automated cartography. Communi-
cations of the ACM 24(6), 381–395 (1981)

5. Kennedy, J., Eberhart, R.: Particle Swarm Optimization. In: Proc. IEEE Interna-
tional Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)

6. Kromer, P., Platos, J., Snasel, V.: A brief survey of advances in Particle Swarm
Optimization on Graphic Processing Units. In: IEEE World Congress on Nature
and Biologically Inspired Computing (NaBIC), pp. 182–188 (2013)

500 R. Ugolotti et al.

7. Kromer, P., Platos, J., Snasel, V.: A brief survey of Differential Evolution on
Graphic Processing Units. In: Symp. on Differential Evolution, pp. 157–164 (2013)

8. Li, H., Shen, T., Huang, X.: Approximately global optimization for robust align-
ment of generalized shapes. IEEE Transactions on Pattern Analysis and Machine
Intelligence 33(6), 1116–1131 (2011)

9. Makadia, A., Patterson, A., Daniilidis, K.: Fully automatic registration of 3D point
clouds. In: Conf. on Computer Vision and Pattern Recognition, pp. 1297–1304
(2006)

10. Nashed, Y.S.G., Ugolotti, R., Mesejo, P., Cagnoni, S.: libCudaOptimize: an open
source library of GPU-based metaheuristics. In: Proc. of the Genetic and Evolu-
tionary Computation Conference (GECCO) Companion, pp. 117–124. ACM (2012)

11. nVIDIA Corporation: nVIDIA CUDA Programming Guide v. 5.0. (2012)
12. Oleari, F., Lodi Rizzini, D., Caselli, S.: A low-cost stereo system for 3D object

recognition. In: IEEE International Conference on Intelligent Computer Commu-
nication and Processing (ICCP), pp. 127–132 (2013)

13. Owens, J.D., Luebke, D., Govindaraju, N., Harris, M., Krüger, J., Lefohn, A.E.,
Purcell, T.J.: A Survey of General-Purpose Computation on Graphics Hardware.
Computer Graphics Forum 26, 80–113 (2007)

14. Poli, R., Kennedy, J., Blackwell, T.: Particle Swarm Optimization. Swarm Intelli-
gence 1(1), 33–57 (2007)

15. Rusu, R.B., Blodow, N., Beetz, M.: Fast point feature histograms (FPFH) for
3D registration. In: IEEE International Conference on Robotics and Automation
(ICRA), pp. 3212–3217 (2009)

16. Rusu, R.B., Marton, Z.C., Blodow, N., Beetz, M.: Learning informative point
classes for the acquisition of object model maps. In: IEEE International Conference
on Control, Automation, Robotics and Vision (ICARCV), pp. 643–650 (2008)

17. Storn, R., Price, K.: Differential Evolution - a simple and efficient adaptive scheme
for global optimization over continuous spaces. Technical report, International
Computer Science Institute (1995)

18. Ugolotti, R., Nashed, Y.S., Mesejo, P., Ivekovič, Š., Mussi, L., Cagnoni, S.: Particle
Swarm Optimization and Differential Evolution for model-based object detection.
Applied Soft Computing 13(6), 3092–3105 (2013)

19. Urfalolu, O., Mikulastik, P.A., Stegmann, I.: Scale Invariant Robust Registration
of 3D-Point Data and a Triangle Mesh by Global Optimization. In: Blanc-Talon,
J., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2006. LNCS, vol. 4179,
pp. 1059–1070. Springer, Heidelberg (2006)

A New Binary Particle Swarm Optimisation
Algorithm for Feature Selection

Bing Xue(B), Su Nguyen, and Mengjie Zhang

School of Engineering and Computer Science, Victoria University of Wellington,
PO Box 600, Wellington 6140, New Zealand

{Bing.Xue,Su.Nguyen,Mengjie.Zhang}@ecs.vuw.ac.nz

Abstract. Feature selection aims to select a small number of features
from a large feature set to achieve similar or better classification perfor-
mance than using all features. This paper develops a new binary particle
swarm optimisation (PSO) algorithm (named PBPSO) based on which
a new feature selection approach (PBPSOfs) is developed to reduce the
number of features and increase the classification accuracy. The perfor-
mance of PBPSOfs is compared with a standard binary PSO based fea-
ture selection algorithm (BPSOfs) and two traditional feature selection
algorithms on 14 benchmark problems of varying difficulty. The results
show that PBPSOfs can be successfully used for feature selection to select
a small number of features and improve the classification performance
over using all features. PBPSOfs further reduces the number of features
selected by BPSOfs and simultaneously increases the classification accu-
racy, especially on datasets with a large number of features. Meanwhile,
PBPSOfs achieves better performance than the two traditional feature
selection algorithms. In addition, the results also show that PBPSO as
a general binary optimisation technique can achieve better performance
than standard binary PSO and uses less computational time.

Keywords: Binary particle swarm optimisation · Feature selection ·
Classification

1 Introduction

Feature selection is an important task in classification, which aims to select a
subset of features and achieve similar or even better classification performance
than using all features [3]. By removing irrelevant or redundant features and
selecting only relevant features for classification, feature selection can reduce the
dimensionality, simplify the learned classifiers, and/or increases the classification
accuracy [3]. Feature selection is a difficult combinatorial problem with a large
search space. The size of the search space grows exponentially along with the
total number of features in the dataset. Therefore, it is usually impractical to
perform an exhaustive search and most of the existing methods suffer from the
problem of being computationally expensive or becoming stuck in local optima.
Therefore, feature selection tasks need an efficient global search method.
c© Springer-Verlag Berlin Heidelberg 2014
A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2014, LNCS 8602, pp. 501–513, 2014.
DOI: 10.1007/978-3-662-45523-4 41

502 B. Xue et al.

Evolutionary computation (EC) techniques are a group of powerful global
search algorithms. Particle swarm optimisation (PSO) [8,13] is a relatively recent
EC technique, which is easy to implement, computationally less expensive, and
has fewer parameters than other EC algorithms, such as genetic programming
(GP) and genetic algorithms (GAs) [4]. Therefore, PSO has gained much atten-
tion since it was first proposed [8]. In PSO, each candidate solution is encoded
as an individual or a particle in the search space. Each particle i has a position
shown by xi = (xi1, xi2, ..., xiD) and a velocity shown by vi = (vi1, vi2, ..., viD),
where D is the dimensionality of the search space. During the evolutionary pro-
cess, the best previous position of a particle is recorded as the personal best pbest
and the best position obtained by the population thus far is called gbest. PSO
searches for the optimal solutions by updating the velocity and the position of
each particle according to pbest and gbest. There are two main categories of PSO,
which are continuous PSO [13] and binary PSO (BPSO) [9]. Both continuous
PSO and BPSO have been used for feature selection [2,16,18].

Feature selection is a binary problem, where BPSO is a more appropriate
method than continuous PSO [2]. In BPSO, all elements in the position are
either 1 or 0. The velocity in BPSO indicates the probability of the corresponding
element in the position vector taking value 1. A sigmoid function is introduced
to transform vid to the range of (0, 1). BPSO updates the position and velocity
of each particle according to the following formulae:

xt+1
id =

{
1, if rand() < 1

1+e
−v

t+1
id

0, otherwise
(1)

vt+1
id = w ∗ vt

id + c1 ∗ r1i ∗ (yid − xt
id) + c2 ∗ r2i ∗ (ŷd − xt

id) (2)

where t denotes the tth iteration. d ∈ D denotes the dth dimension in the search
space. rand() is a random number uniformly distributed in [0,1]. w is inertia
weight. c1 and c2 are acceleration constants. r1i and r2i are random values uni-
formly distributed in [0, 1]. yid and ŷd represent the elements of pbest and gbest
in the dth dimension.

There have been a large number of works on PSO [4], but most of them
focus on continuous PSO and there is not much work on BPSO [14] perhaps
because there are some limitations on the current standard BPSO. For example,
the velocity shows the momentum of a particle’s movement in a direction in a
particular dimension of the search space. However, this was originally designed
for continuous spaces. For binary problems, xid can only be 1 or 0, which means
particles cannot keep moving in one direction of a particular dimension. Mean-
while, the parameters in velocity were also designed for continuous PSO. When
applying the velocity to BPSO, the parameters cannot produce the effects they
were designed for and in fact, they produce an opposite effect compared with in
the original continuous PSO (detailed discussions can be seen in [10]). Therefore,
the velocity in PSO for continuous space is not meaningful any more in binary
space. Since the influence of personal best and global best is reflected through the

A New Binary Particle Swarm Optimisation Algorithm for Feature Selection 503

velocity updating equation, the personal experience and global experience can-
not effectively utilised in BPSO. Therefore, in order to address feature selection
problems, a new BPSO algorithm is needed.

1.1 Goals

The overall goal of this paper is to develop a new BPSO algorithm for feature
selection to select a small feature subset and achieve better classification perfor-
mance than using all features. To achieve this goal, we propose a new updating
mechanism to develop a new BPSO algorithm based on which a new feature
selection approach is proposed to reduce the number of features and increases
the classification accuracy. Specifically, we will investigate:

– whether the new feature selection approach can be used to address feature
selection problems to reduce the number of features and increase the classi-
fication accuracy,

– whether the new feature selection approach can achieve better performance
than two traditional feature selection algorithms, and

– whether the new BPSO algorithm as a general binary optimisation tech-
nique can achieve better performance than the standard BPSO in a shorter
computational time.

2 Proposed Approach

To overcome the limitations of standard BPSO [9], we develop a new binary PSO
algorithm, where two important issues are considered. The first is to follow the
key ideas of the standard (continuous) PSO algorithm, which is that particles
are updated according to the best experience of its own (i.e. personal best, pbest)
and the best experience of its neighbours (i.e. global best, gbest). The second
is to keep advantages of PSO compared to other EC techniques, i.e. PSO is
simple, has fewer parameters and computationally cheaper. Therefore, we aim
to develop a new BPSO algorithm, which is simpler than standard BPSO, but
has a more powerful search ability.

Since the velocity component in BPSO is not as meaningful as in continuous
PSO, we propose a new probability based BPSO named PBPSO, where a “flip-
ping” probability is introduced to replace the velocity to update each particle
during the evolutionary process. p shows the “flipping” probability, which is a
D−dimensional vector. pi = (pi1, pi2, ..., piD) shows the “flipping” probability for
particle i. pid shows the probability of xid being “flipped”, i.e. update xt+1

id = 1
if xt

id = 0 or update xt+1
id = 0 if xt

id = 1, where t means the tth iterations in the
evolutionary process. The new position updating equation is shown by Equation
3. p is calculated based on the current position of a particle, pbest and gbest,
where the updating formula is shown by Equation 4.

xt+1
id =

{
1 − xt

id, if random() < pid

xt
id, otherwise

(3)

504 B. Xue et al.

pid = p0 + ppd + pgd (4)

where

ppd =

{
p1, if xt

id �= yt
id

0, otherwise

and

pgd =

{
p2, if xt

id �= ŷt
d

0, otherwise

In Equation 3, (1 − xt
id) is used to update xt+1

id from 1 to 0 or from 0 to 1.
ppd and pgd reflect the influence of personal best pbest and global best gbest.
p0, p1 and p2 are real numbers in (0,1). 0 < p0 is used to ensure that there is
always a probability to change the value of xt

id. The values of ppd and pgd are
calculated for each dimension in every iteration, but they are not stored through
the evolutionary process, which is cheaper than the standard BPSO in terms of
memory. p0 + p1 + p2 = 1 ensures that when xt

id is different from both yt
id and

ŷt
id, the probability for xt

id to change equals to 1.

2.1 PBPSOfs for Feature Selection

Based on the proposed PBPSO, a new feature selection approach named PBP-
SOfs is developed and the Pseudo-code of PBPSOfs is shown by Algorithm 1.
Two key components that need to be shown are the encoding scheme and the
fitness function.

In PBPSOfs, the dimensionality (D) of the search space equals to the total
number of features in the dataset. So each particle is a D-dimensional binary
string, where “1” means the corresponding feature is selected and “0” means the
corresponding feature is not selected.

Feature selection has two main objectives, which are maximising the clas-
sification accuracy (minimising the error rate) and minimising the number of
features. Therefore, a fitness function that combines the two objectives is used
in PBPSOfs, which is shown by Equation 5.

Fitness = α ∗ ErrorRate + (1 − α) ∗ #Features

#All Features
(5)

where ErrorRate represents the classification error rate of the selected features.
#Features shows the number of selected features and #All Features shows
the total number of features in the datasets. α and (1 − α) reflect the relative
importance of the classification performance and the number of selected features.
α ∈ (0.5, 1] because the classification performance is regarded as more important
than the number of features.

A New Binary Particle Swarm Optimisation Algorithm for Feature Selection 505

Algorithm 1. Pseudo-code of PBPSOfs
Input : p0, p1, p2; P : the population size; T : maximum iterations;

D: dimensionality of search space (i.e. total number of features)
Output: gbest (i.e. selected features), training and testing accuracies of the

selected features

begin
randomly initialise the position each particle;
for t=1 to T do

evaluate fitness of each particle;
for i=1 to P do

update the pbest of particle i;
update the gbest of particle i;

for i=1 to P do
for d=1 to D do

if xt−1
id �= yt−1

id then
ppd = p1 ; // personal experience, pbest

else
ppd = 0

if xt−1
id �= ŷt−1

d then
pgd = p2 ; // neighbourhood’s experience, gbest

else
pgd = 0

pid = p0 + ppd + pgd;
if rand < prob then

xid = 1 − xid ; // xid from 1 to 0 or from 0 to 1

else
xid = xid

return gbest, training and testing accuracies of the selected features;

3 Experiment Design

3.1 Benchmark Techniques

To examine the performance of the proposed algorithm (PBPSOfs), it is com-
pared with a standard BPSO based feature selection algorithm (BPSOfs) [17].
BPSOfs shares the same encoding scheme, fitness function and random seeds
with PBPSOfs for fair comparisons.

Two traditional methods are also used to test the performance of PBPSOfs,
which are linear forward selection (LFS) [6] and greedy stepwise backward selec-
tion (GSBS) [1]. LFS and GSBS were driven from two typical traditional feature
selection algorithms, i.e. sequential forward selection (SFS) [15] and sequential
backward selection (SBS) [12]. LFS [6] performs a forward selection, but restricts
the number of features that are considered in each step. LFS is computation-
ally less expensive than SFS because it reduces the number of evaluations. More

506 B. Xue et al.

Table 1. Datasets

Dataset
No. of No. of No. of

Dataset
No. of No. of No. of

Features Classes Instances Features Classes Instances

Australian 14 2 690 Zoo 17 7 101
Wisconsin Breast Cancer
(Diagnostic) (WBCD) 30 2 569 Vehicle 18 4 846
Ionosphere 34 2 351 German 24 2 1000
Hillvalley 100 2 606 Lung 56 3 32
Musk Version1(Musk1) 166 2 476 Sonar 60 2 208
Arrhythmia 279 16 452 Madelon 500 2 4400
Multiple Features 649 10 2000 Isolet5 617 2 1559

details can be seen in [6]. The greedy stepwise based selection method is imple-
mented in Weka [7], which can perform both forward and backward selection [1].
Given that LFS is based on forward selection, the greedy stepwise search is set
to be backward to conduct a greedy stepwise backward selection (GSBS). GSBS
starts with all available features and stops when the deletion of any remaining
feature results in a decrease in classification accuracy.

3.2 Datasets and Parameter Settings

14 datasets were chosen from the UCI machine learning repository [5] to test
the performance of PBPSOfs, BPSOfs, LFS and GSBS. The datasets are shown
in Table 1. The 14 datasets were chosen to have different numbers of features,
classes and instances. For each dataset, the instances are randomly divided into
two sets: 70% as the training set and 30% as the test set.

As wrapper approaches, all the algorithms need a learning/classification algo-
rithm. A simple and commonly used learning algorithm [2], K-nearest neighbour
(KNN), was used in the experiment and K=5 (5NN). During the evolution-
ary training process, the classification error rate used in the fitness function is
calculated using 10-fold cross-validation on the training set. Note that 10-fold
cross-validation is performed as an inner loop in the training process to evaluate
the classification performance of a single feature subset on the training set and
it does not generate 10 feature subsets. After the training process, the selected
features are evaluated on the test set to obtain the testing classification perfor-
mance of the selected features. A detailed discussion of why and how 10-fold
cross-validation is applied in this way is given by [11].

PBPSOfs only involves three parameters, which are p0, p1 and p2. p0 = 0.05
is to make sure that there is always at least a very small probability to update the
particle. p1 = 0.35 and p2 = 0.65 are to ensure that the global best has slightly
more influence than the personal best. The parameters of BPSOfs are set as
follows [13]: w = 0.7298, c1 = c2 = 1.49618. For both BPSOfs and PBPSOfs, the
population size is 50, and the maximum number of iterations is 100. The fully
connected topology is used. α = 0.9 is used in the fitness function to make sure
that the classification performance is much more important than the number of

A New Binary Particle Swarm Optimisation Algorithm for Feature Selection 507

features. Both PBPSOfs and BPSOfs have been conducted for 40 independent
runs on each dataset.

To test their classification performance, the non-parametric statistical signif-
icance test, Wilcoxon test, is performed compare the classification performance
of BPSOfs (or PBPSOfs) and that of all features. The significance test is used
to compare the classification performance between BPSOfs and PBPSOfs. The
significance level is selected as 0.05 (or confidence interval is 95%).

4 Results and Discussions

4.1 Results of PBPSOfs and BPSOfs in Testing Process

Table 2 shows the experimental results of PBPSOfs and BPSOfs on the unseen
test sets, where “All” means that all of the available features are used for clas-
sification, “AveSize” shows the average number of features selected in the 40
independent runs, “BestAcc”, “AveAcc” and “StdAcc” show the best, the aver-
age and the standard deviation of the 40 testing accuracies. “Test 1” shows
the results of the Wilcoxon significance tests between PBPSOfs (or BPSOfs)
and “All”, where “+” (-) means PBPSOfs or BPSOfs is significantly better (or
worse) than “All”, and “=” means they are similar (no significant difference).
“Test 2” shows the Wilcoxon significance tests between PBPSOfs and BPSOfs.

Results of BPSOfs. According to Table 2, it can be seen that in most cases
(i.e. 12 out of the 14 datasets), the classification performance of the feature
subsets selected by BPSOfs is significantly better or similar to that of using all
features. In all cases, the average number of features selected by BPSOfs is less
than half of the total number of original features. However, on the six datasets
with a large number of features (100 or more), the classification performance of
BPSOfs is better than using all features on only two datasets.

The results show that BPSOfs with the standard BPSO algorithm can be
used to address feature selection problems to reduce the number of features and
maintain or even increase the classification performance. However, the results
also show the BPSOfs cannot scale well for high-dimensional problems, where
feature selection is important and necessary on such problems.

Results of PBPSOfs. From Table 2, it can be seen that the classification per-
formance of the feature subsets selected by PBPSOfs is significantly better than
using all features on all datasets. In most cases, the average number of features
selected by PBPSOfs is less than one third of the total number of features. For
example, on the WBCD dataset, PBPSOfs selected only 6.73% (i.e. on average
2.02 of 30) of the original features and achieved significantly better classification
performance than using all features.

The results show that PBPSOfs with the new updating mechanism can suc-
cessfully evolve a smaller feature subset to increase the classification accuracy.

508 B. Xue et al.

Table 2. Experimental Results in Testing Process

Dataset Method AveSize BestAcc AveAcc ± StdAcc Test 1 Test 2

Australian

All 14 70.05
BPSOfs 3.18 87.44 82.46 ± 7.3131 +
PBPSOfs 2.82 85.51 81.96 ± 7.7095 + =

Zoo

All 17 80.95
BPSOfs 4.15 97.14 95.12 ± 0.6455 +
PBPSOfs 3.35 95.24 95.17 ± 0.2508 + =

Vehicle

All 18 83.86
BPSOfs 5.38 86.22 84.21 ± 0.8119 +
PBPSOfs 5.02 84.84 84.09 ± 0.434 + =

German

All 24 68.0
BPSOfs 7.9 73.33 68.89 ± 2.0768 +
PBPSOfs 5.95 72.67 69.09 ± 1.7842 + =

WBCD

All 30 92.98
BPSOfs 7.92 94.74 93.57 ± 1.2474 +
PBPSOfs 2.02 94.74 94.4 ± 0.8049 + +

Ionosphere

All 34 83.81
BPSOfs 8.92 93.33 88.14 ± 2.3128 +
PBPSOfs 4.58 91.43 88.45 ± 2.0447 + =

Lung

All 56 70.0
BPSOfs 23.28 90 74.75 ± 7.0666 +
PBPSOfs 6.78 80 77.25 ± 5.9108 + =

Sonar

All 60 76.19
BPSOfs 23.02 85.71 78.57 ± 3.4594 +
PBPSOfs 14.28 87.3 78.21 ± 3.0323 + =

Hillvalley

All 100 56.59
BPSOfs 39.35 60.16 56.88 ± 1.6322 =
PBPSOfs 31.08 61.26 58.25 ± 1.6952 + +

Musk1

All 166 83.92
BPSOfs 75.52 90.91 84.21 ± 2.8401 =
PBPSOfs 69.3 88.81 85.38 ± 1.8087 + +

Arrhythmia

All 279 94.46
BPSOfs 99.7 95.14 94.21 ± 0.3937 -
PBPSOfs 63.42 95.48 94.71 ± 0.3405 + +

Madelon

All 500 70.9
BPSOfs 243.85 78.59 75.81 ± 1.4905 +
PBPSOfs 212.42 81.15 78.91 ± 1.2565 + +

Isolet5

All 617 98.45
BPSOfs 225.15 98.59 98.25 ± 0.1354 -
PBPSOfs 169.35 98.87 98.61 ± 0.1248 + +

Multiple Features

All 649 98.63
BPSOfs 237.05 99.1 98.89 ± 0.0923 +
PBPSOfs 176.15 99.27 99.01 ± 0.1043 + +

Comparisons Between PBPSOfs and BPSOfs. From Table 2, it can be
seen that on all the 14 datasets, PBPSOfs selected a smaller number of fea-
tures and achieved similar or significantly better classification performance than
BPSOfs. The results of the significance tests (Test 2) show that the classifica-
tion performance of PBPSOfs is similar to BPSOfs in seven cases. Particularly,
PBPSOfs is significantly better than BPSOfs on all the six datasets with a large
number of features, and the number of features is much smaller in PBPSOfs
than in BPSOfs. For example, on the Isolet5 dataset, PBPSOfs further reduced
around 24.78% of the number of features selected by BPSOfs to reduce the aver-
age number of selected features from 225.15 to 169.35, but PBPSOfs significantly
increased the classification accuracy. Meanwhile, in almost all cases, the stan-
dard deviation values of PBPSOfs is smaller than that of BPSOfs, which shows
that PBPSOfs is more stable than BPSOfs.

A New Binary Particle Swarm Optimisation Algorithm for Feature Selection 509

Table 3. Comparisons with LFS and GSBS

Dataset
Australian Zoo Vehicle German WBCD Ionosphere Lung

Size Acc T Size Acc T Size Acc T Size Acc T Size Acc T Size Acc T Size Acc T
LFS 4 70.05 + 8 79.05 + 9 83.07 + 3 68.67 = 10 88.89 + 4 86.67 + 6 90.0 -
GSBS 12 69.57 + 7 80.0 + 16 75.79 + 18 64.33 + 25 83.63 + 30 78.1 + 33 90.0 -

Dataset
Sonar Hillvalley Musk1 Arrhythmia Madelon Isolet5 MultipleF.

Size Acc T Size Acc T Size Acc T Size Acc T Size Acc T Size Acc T Size Acc T
LFS 3 77.78 = 8 57.69 + 10 85.31 = 11 94.46 + 7 64.62 + 24 98.34 + 18 99.0 =
GSBS 48 68.25 + 90 49.45 + 122 76.22 + 130 93.55 + 489 51.28 + 560 97.16 + +

The comparisons show that PBPSOfs using the newly developed updating
mechanisms can better explore the search space of a feature selection task to
further reduce the number of features and simultaneously maintain or increase
the classification performance.

Comparisons with LFS and GSBS. Table 3 shows the results of LFS and
GSBS. Both LFS and GSBS are deterministic methods, which produce a unique
solution/feature subset on each dataset. In the table, “T” shows the results of
the significance tests between the classification accuracy of LFS (or GSBS) and
PBPSOfs. “+” (or “-”) means the PBPSOfs is significantly better than LFS
or GSBS. Note that the results of GSBS on the Multiple Features (MultipleF.)
dataset are not available because the experiment cannot finish within a week.

According to Table 3, it can be seen that PBPSOfs achieved significantly
better classification performance than LFS on nine of the 14 datasets and sim-
ilar classification performance on four datasets. The best accuracy of PBPSOfs
is better than LFS on 13 out of the 14 datasets, although the number of features
is larger. PBPSOfs selected a smaller or much number of features than GSBS in
all cases and achieved significantly better classification performance than GSBS
on 13 out of the 14 datasets. Only on the Lung dataset, the classification per-
formance of LFS and GSBS is better than PBPSOfs. The main reason is that
the Lung dataset has a small number of examples, where it is easy to have over-
fitting problems. PBPSOfs clearly has such a problem because it achieved the
training accuracy of 100% in 39 of the 40 independent runs.

4.2 Results of PBPSOfs and BPSOfs in Training Process

Analysing the performance of PBPSOfs and BPSOfs in the training process can
further show the search abilities of PBPSO and BPSO as general optimisation
techniques rather than specific feature selection algorithms.

Evolutionary Process. We take the Lung and Musk1 datasets as two exam-
ples to analyse the evolutionary process. Other datasets show a similar pattern.
Figure 1 shows the change of the gbest during the evolutionary process, where
the horizontal axis shows the number of iterations and the vertical axis shows
the average fitness value of the gbest in the 40 independent runs.

510 B. Xue et al.

Lung

BPSOfs
PBPSOfs

Number of Iterations

F
itn

es
s

1 20 40 60 80 100
0.0121

0.0429

0.0737

0.1045

0.1353

Musk1

BPSOfs
PBPSOfs

Number of Iterations

F
itn

es
s

1 20 40 60 80 100
0.1040

0.1220

0.1400

0.1580

0.1761

Fig. 1. Evolutionary Process of BPSOfs and PBPSOfs (colour)

According to Figure 1, it can be observed that the gbest in PBPSOfs and
BPSOfs have the same average fitness value at the first iteration because they
were set to start from the same points for fair comparisons. However, even start-
ing from the same points, PBPSOfs using the newly developed updating mecha-
nisms can better explore the solution space to optimise (i.e. minimise) the fitness
value to obtain much better results than BPSOfs. Considering the training pro-
cess only, feature selection is a binary/combinatorial problem with a large and
complex search space. The superior performance of PBPSOfs during the training
process shows that the proposed PBPSO algorithm can successfully address dif-
ficult binary/combinatorial problems, as a general binary optimisation technique
(not only specifically designed for feature selection tasks).

Training Performance. Table 4 shows the experimental results of PBPSOfs
and BPSOfs from the training process. The average size of the feature subsets
in Table 4 is the same as in Table 2 because they are the same feature subsets,
but their classification performances are different because they are used on dif-
ferent sets of data, i.e. the training set and test set, respectively. The average
computational time of PBPSOfs and BPSOfs are also listed in the last column
of Table 4, where the numbers are expressed in minutes.

From Table 4, it can be seen that both PBPSOfs and BPSOfs can reduce
the number of features and maintain or even increase the training classification
accuracy in almost all cases. Comparing PBPSOfs with BPSOfs, for all the
fourteen datasets, PBPSOfs selected a smaller number of features than BPSOfs.
On 12 out of the 14 datasets, the training classification accuracy of PBPSOfs is
similar or significantly better than BPSOfs. Particularly, on all the nine datasets
with more than 30 features/dimensions, PBPSOfs achieved significantly better
performance than BPSOfs, i.e., selected a much smaller number of features and
achieved significantly better classification accuracy. For some datasets, e.g. Lung,
PBPSOfs has the problem of over-fitting and we will address this in future work.

The results show that PBPSOfs with the newly developed updating mech-
anisms can improve the search ability over BPSOfs, especially for the high-
dimensional problems, where the search space is larger and more complex than
low-dimensional problems.

A New Binary Particle Swarm Optimisation Algorithm for Feature Selection 511

Table 4. Experimental Results in Training Process

Dataset Method AveSize BestAcc AveAcc ± StdAcc Test 1 Test 2 Time

Australian

All 14 75.78
BPSOfs 3.18 88.2 83.25 ± 7.0772 + 4.91
PBPSOfs 2.82 86.96 83.41 ± 7.7095 = = 4.59

Zoo

All 17 86.72
BPSOfs 4.15 98.39 97.37 ± 0.3484 + 0.12
PBPSOfs 3.35 97.99 97.33 ± 0.2327 = = 0.11

Vehicle

All 18 88.18
BPSOfs 5.38 90.54 89.45 ± 0.6187 + 8.48
PBPSOfs 5.02 90.37 89.44 ± 0.4998 = = 8.28

German

All 24 80.14
BPSOfs 7.9 82.71 80.11 ± 2.3069 = 13.2
PBPSOfs 5.95 82.71 79.7 ± 1.5259 - - 12.3

WBCD

All 30 94.97
BPSOfs 7.92 96.73 95.6 ± 0.5919 + 4.62
PBPSOfs 2.02 96.48 95.13 ± 0.396 = - 3.32

Ionosphere

All 34 85.77
BPSOfs 8.92 93.5 91.09 ± 1.1403 + 1.92
PBPSOfs 4.58 95.53 94.08 ± 0.7378 + + 1.76

Lung

All 56 81.82
BPSOfs 23.28 100 95.68 ± 2.02 + 0.04
PBPSOfs 6.78 100 99.89 ± 0.7097 + + 0.02

Sonar

All 60 83.45
BPSOfs 23.02 93.1 89.12 ± 1.7137 + 0.97
PBPSOfs 14.28 94.48 91.03 ± 1.895 + + 0.77

Hillvalley

All 100 71.46
BPSOfs 39.35 73.94 72.28 ± 1.0503 + 50.28
PBPSOfs 31.08 75.94 73.75 ± 1.0739 + + 46.1

Musk1

All 166 92.19
BPSOfs 75.52 95.5 93.15 ± 1.1531 + 13.96
PBPSOfs 69.3 97.3 94.83 ± 1.0976 + + 12.7

Arrhythmia

All 279 94.79
BPSOfs 99.7 95.37 94.93 ± 0.2288 + 16.97
PBPSOfs 63.42 95.86 95.55 ± 0.1657 + + 12.44

Madelon

All 500 83.24
BPSOfs 243.2 87.69 85.93 ± 0.7274 + 991.6
PBPSOfs 212.42 90.55 88.91 ± 0.6204 + + 953.63

Isolet5

All 617 99.15
BPSOfs 225.15 99.28 99.14 ± 0.0826 = 384.16
PBPSOfs 169.35 99.49 99.36 ± 0.0643 + + 328.34

Multiple Features

All 649 99.36
BPSOfs 237.05 99.51 99.41 ± 0.0533 + 692.54
PBPSOfs 176.15 99.63 99.52 ± 0.0542 + + 551.44

4.3 Analysis on Computational Time

According to Table 4, it can be seen that on datasets with a small number of
features or instances, both PBPSOfs and BPSOfs can finish the evolutionary
feature selection process in a very short time, which is even less than one minute
on the Zoo and Lung datasets. In all the 14 benchmark problems, PBPSOfs used
a shorter time than BPSOfs. There are two main reasons. The first reason is that
the newly developed PBPSO has a simpler updating equation than the standard
BPSO. The second reason is that as wrapper approaches, the majority part of
the computational time in PBPSOfs and BPSOfs are used on fitness evaluations,
which needs to calculate the classification error rate of the selected features. For
the same dataset, a large number of selected features needs longer time to calcu-
late the error rate than a small number of selected features. Since PBPSOfs and

512 B. Xue et al.

BPSOfs have the same number of evaluations during the evolutionary training
process and PBPSOfs usually selected a smaller number of features, PBPSOfs
is faster than BPSOfs.

5 Conclusions and Future Work

This paper developed a new probability based updating mechanism based on
which a new BPSO named PBPSO was proposed. A new feature selection app-
roach named PBPSOfs was developed to maximise the classification accuracy
and minimise the number of features. PBPSOfs was examined and compared
with a standard BPSO based feature selection approach (BPSOfs) and two tra-
ditional feature selection algorithms on 14 datasets of varying difficulty. The
experimental results show that PBPSOfs achieved better performance than the
two traditional feature selection algorithms. Meanwhile, PBPSOfs outperformed
BPSOfs in terms of both the classification performance and the number of fea-
tures, especially on high-dimensional problems. The performances of PBPSOfs
and BPSOfs in the training process show that PBPSO as a general method has
better optimisation capability than standard BPSO. Additionally, PBPSOfs is
computationally less expensive than BPSOfs due to its simple calculation of the
new updating mechanism and selecting a smaller number of features. Overall,
the newly developed PBPSO algorithm outperformed the standard BPSO in
terms of both the effectiveness and the efficiency.

This work mainly focuses on binary problems, but in future, we will inves-
tigate a new PSO algorithm for general discrete problems. We will also further
investigate and improve the performance of BPSO by developing new updating
mechanisms and new representation or encoding schemes. From the classifica-
tion point of view, the proposed algorithm may have over-fitting problems, which
will also be addressed in future. Meanwhile, we also intend to develop a multi-
objective feature selection approach to find a set of trade-off solutions to meet
different requirements in real-world applications.

References

1. Caruana, R., Freitag, D.: Greedy attribute selection. In: International Conference
on Machine Learning (ICML 1994), pp. 28–36. Morgan Kaufmann (1994)

2. Chuang, L.Y., Chang, H.W., Tu, C.J., Yang, C.H.: Improved binary PSO for fea-
ture selection using gene expression data. Computational Biology and Chemistry
32(29), 29–38 (2008)

3. Dash, M., Liu, H.: Feature selection for classification. Intelligent Data Analysis
1(4), 131–156 (1997)

4. Engelbrecht, A.P.: Computational intelligence: an introduction, 2nd edn. Wiley
(2007)

5. Frank, A., Asuncion, A.: UCI machine learning repository (2010)
6. Gutlein, M., Frank, E., Hall, M., Karwath, A.: Large-scale attribute selection using

wrappers. In: IEEE Symposium on Computational Intelligence and Data Mining
(CIDM 2009), pp. 332–339 (2009)

A New Binary Particle Swarm Optimisation Algorithm for Feature Selection 513

7. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The
weka data mining software: An update. SIGKDD Explorations 11, 931–934 (2009)

8. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: IEEE International
Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)

9. Kennedy, J., Eberhart, R.: A discrete binary version of the particle swarm algo-
rithm. In: IEEE International Conference on Systems, Man, and Cybernetics
(1997), Computational Cybernetics and Simulation, vol. 5, pp. 4104–4108 (1997)

10. Khanesar, M., Teshnehlab, M., Shoorehdeli, M.: A novel binary particle swarm
optimization. In: Mediterranean Conference on Control Automation (MED 2007),
pp. 1–6 (2007)

11. Kohavi, R., John, G.H.: Wrappers for feature subset selection. Artificial Intelligence
97, 273–324 (1997)

12. Marill, T., Green, D.: On the effectiveness of receptors in recognition systems.
IEEE Transactions on Information Theory 9(1), 11–17 (1963)

13. Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: IEEE International
Conference on Evolutionary Computation (CEC 1998), pp. 69–73 (1998)

14. Sudholt, D., Witt, C.: Runtime analysis of binary PSO. In: Proceedings of the 10th
Annual Conference on Genetic and Evolutionary Computation (GECCO 2008),
pp. 135–142. ACM, New York (2008)

15. Whitney, A.: A direct method of nonparametric measurement selection. IEEE
Transactions on Computers C-20(9), 1100–1103 (1971)

16. Xue, B., Cervante, L., Shang, L., Browne, W.N., Zhang, M.: A multi-objective par-
ticle swarm optimisation for filter based feature selection in classification problems.
Connection Science (2012)

17. Xue, B., Zhang, M., Browne, W.N.: New fitness functions in binary particle swarm
optimisation for feature selection. In: IEEE Congress on Evolutionary Computation
(CEC 2012), pp. 2145–2152 (2012)

18. Xue, B., Zhang, M., Browne, W.: Particle swarm optimization for feature selection
in classification: A multi-objective approach. IEEE Transactions on Cybernetics
43(6), 1656–1671 (2013)

Adaptive Genetic Algorithm to Select Training
Data for Support Vector Machines

Jakub Nalepa(B) and Michal Kawulok

Silesian University of Technology, Gliwice, Poland
{jakub.nalepa, michal.kawulok}@polsl.pl

Abstract. This paper presents a new adaptive genetic algorithm (AGA)
to select training data for support vector machines (SVMs). SVM train-
ing data selection strongly influences the classification accuracy and time,
especially in the case of large and noisy data sets. In the proposed AGA, a
population of solutions evolves with time. The AGA parameters, includ-
ing the chromosome length, are adapted according to the current state
of exploring the solution space. We propose a new multi-parent crossover
operator for an efficient search. A new metric of distance between individ-
uals is introduced and applied in the AGA. It is based on the fast analysis
of the vectors distribution in the feature space obtained using principal
component analysis. An extensive experimental study performed on the
well-known benchmark sets along with the real-world and artificial data
sets, confirms that the AGA outperforms a standard GA in terms of the
convergence capabilities. Also, it reduces the number of support vectors
and allows for faster SVM classification.

Keywords: Adaptive genetic algorithm · Support vector machines ·
Training data selection

1 Introduction and Related Work

Support vector machines (SVMs) have been used in various classification prob-
lems over the years [6]. SVM determines a hyperplane, defined by a subset of
the labeled training samples called support vectors, which separates linearly two
classes in the kernel space of high dimensionality. Then, it is used to classify the
input data of the same dimensionality as the training set data.

The time and memory complexity of the SVM training (O(n3) and O(n2)
respectively, where n is the number of samples in the training set) is an impor-
tant limitation of SVMs in the case of large real-world data sets. Also, the
computational complexity of the SVM decision function scales with respect to
the number of selected support vectors. Thus, a number of approaches emerged
over the years to deal with large and noisy data sets. In the technique proposed
by Balcázar et al. [1], a subset of training vectors is drawn randomly. The ran-
dom selection was the basis of reduced support vector machines introduced by

This work has been supported by the Polish Ministry of Science and Higher Educa-
tion under research grant no. IP2012 026372 from the Science Budget 2013–2015.

c© Springer-Verlag Berlin Heidelberg 2014
A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2014, LNCS 8602, pp. 514–525, 2014.
DOI: 10.1007/978-3-662-45523-4 42

Adaptive Genetic Algorithm to Select Training Data 515

Lee and Huang [10]. There exist numerous methods exploiting the geometry
information of the training data in the input space, including k-means cluster-
ing [4] and crisp clusters with safety regions analysis [9]. The clustering can be
performed near the decision boundary to boost its performance. The estimation
of the decision boundary, which is unknown before the SVM training, based
on the heterogeneity analysis, was proposed by Shin and Cho [14]. The mutual
Mahalanobis distances between the training data were studied in [16] to select
the vectors closest to the decision boundary. A method operating in the kernel
space has been proposed recently [2].

An approach embedding the training data with the convex hulls and analyz-
ing distances between the convex hulls of opposite classes was given by Wang
et al. [17]. Reducing training and testing time by interpreting the training set as
a graph and applying the β-skeleton algorithm was proposed in [19]. The meth-
ods based on the minimum enclosing ball and the smallest enclosing ball with a
ring region were discussed in [15,18]. In the active learning techniques operating
on an unlabeled set of data, the data labels are determined dynamically [11,13].

Applying evolutionary algorithms for selecting the SVM training set has not
been explored extensively. Recently, we proposed a novel genetic algorithm (GA)
for this purpose [8]. Noteworthy, this method is not dependent on the training
set size, which was a significant drawback of the geometry-based approaches.
In the GA, a population of solutions, each representing a subset of 2K ′ (where
K ′ is constant) vectors from the entire training set, evolves with time. It was
shown that the GA outperforms random sampling after a very small number of
generations. Its important shortcoming is an unclear selection of the chromosome
size 2K ′ to avoid the premature search convergence and to cope with noisy data
sets. This issue is addressed in the work reported here.

In this paper we propose a new adaptive genetic algorithm (AGA) to select
the SVM training set, which incrementally improves a “good” subset of samples
from the entire training set. Its parameters are being adapted according to the
state of the search. We introduce a new metric of distance between the individu-
als based on the distribution of vectors in the n-dimensional input space obtained
using principal component analysis (where n < N , and N is a dimensionality
of the input data). This measure is used in a proposed multi-parent crossover
operator. It is worth noting that the size of an individual 2K is also adapted in
the AGA, and it is not necessary to estimate it a priori. Our work was motivated
by the problems related to skin detection. In this field the amount of available
data is enormously large and requires a proper selection for the SVM training.
An extensive experimental study confirms that the AGA outperforms a standard
GA in terms of the convergence capabilities and selection time. Also, it reduces
the number of support vectors and allows for faster SVM classification.

The paper is organized as follows. The AGA, along with a new multi-parent
crossover operator and the proposed distance measure are presented in Section 2.
Section 3 discusses the experimental results. Conclusions and directions for our
future work are given in Section 4.

516 J. Nalepa and M. Kawulok

2 Adaptive Genetic Algorithm

In this section we present the proposed adaptive genetic algorithm (AGA) for
selecting a valuable training set for SVMs. We discuss a new adaptive multi-parent
crossover operator (AMPC), and elaborate on a novel metric used for assessing the
distance between individuals, which is incorporated into the suggested AGA.

2.1 Algorithm Outline

In the AGA, the initial population of solutions is generated randomly (Alg. 1,
line 1). In each individual, the indexes of vectors forming a subset of the training
set T , containing labeled samples belonging to two classes C1 and C2, are stored.
The length of an individual pi is given as L(pi) = K(C1)+K(C2), where K(C1)
and K(C2) are the numbers of samples from the C1 and C2, respectively. To
avoid biasing a chromosome by the samples of a single class (e.g., in the case of
imbalanced data sets), we assume K(C1) = K(C2) = K, and L(pi) = 2K. Thus,
2K distinct samples are drawn randomly for N chromosomes. It is worth noting
that the size of an individual is independent from the cardinality of T [8].

First, the steady state counters cB and cA, along with the steady state flag uB

indicating the change of the best individual’s fitness, are initialized (line 2). The
cB and cA counters depict the number of consecutive generations during which
the best fitness ηB and the average fitness ηA have not been improved. Then, the
N pairs of chromosomes are determined (line 4) according to the pre-selection
scheme (see Section 2.2). A child pC is generated for each pair of parents using
the proposed AMPC. It is mutated with the probability Pm (line 8), which is
based on substituting pC ’s vectors from both classes C1 and C2 with the random
vectors drawn from T . Finally, the fitness η(pC) is determined according to the
SVM classification score obtained for the training set T . If the difference between
η(pC) and the current best fitness ηB is larger than the minimum improvement
threshold ε, then ηB is updated (line 11) along with the flag uB.

The individuals from the children pool and the i-th generation are selected
in order to form the (i+1)-th generation (line 14). Here, the N best individuals
are chosen from the set of size 2N containing the individuals from the previ-
ous generation and child solutions. The difference between the previous average
population fitness ηP

A and the current average fitness ηA is verified, the average
steady state counter cA is increased if necessary, and the ηP

A is updated (lines 16–
21). If the numbers of consecutive generations with no improvement in the best
fitness ηB and the average fitness ηA exceed thresholds sB and sA respectively,
then the search is in the steady state (line 25). In order to diversify the search and
to avoid the diversity crisis [5], we re-generate a population of size N (line 27).
If the number of re-generations surpasses the limit RC , then the population size
is increased according to the increase factor α (line 30). In both re-generation
scenarios we copy βN best individuals from the current population and draw
the N − βN ones randomly. Finally, if the number of re-generations exceeds the
limit of re-generations RI , then the chromosome length is increased by a factor
λ, i.e., L(pi) = 2λK. It is worth noting, that the population is re-generated using
the previous LP (line 35), and the length of individuals may change to the new

Adaptive Genetic Algorithm to Select Training Data 517

Algorithm 1. Adaptive Genetic Algorithm (AGA).
1: Generate an initial population of size N ; � Random sampling
2: cB ← 0; cA ← 0; uB ← false; � Initialize the counters cB and cA, and flag uB

3: while (τ ≤ τM) do
4: Determine N pairs (pA, pB); � Pre-selection
5: uB ← false; ηB ← 0; � Reset uB flag
6: for all (pA, pB) do
7: pC ← Crossover(pA, pB , pH); � AMPC
8: pC ← Mutate(pC);
9: η(pC) ← FindFitness(pC , T); � Find fitness η(pC)

10: if (|ηB − η(pC)| ≥ ε) then
11: ηB ← η(pC); uB ← true; cB ← 0; � Update ηB and set uB

12: end if
13: end for
14: Form the next generation G; � Post-selection
15: ηA ← CalculateAverageFitness(G);
16: if (

∣∣ηA − ηP
A

∣∣ ≤ ε) then
17: cA ← cA + 1; � Increase cA counter
18: else
19: cA ← 0;
20: end if
21: ηP

A ← ηA; � Update the previous average fitness ηP
A

22: if (not uB) then
23: cB ← cB + 1; � Increase cB counter
24: end if
25: fS ← (cB ≥ sB) and (cA ≥ sA); � Get steady state flag
26: if fS and (r ≤ RC) then
27: Re-generate population of size N ;
28: r ← r + 1; � Increase re-generation counter r
29: else if fS and (r > RCand r ≤ RI) then
30: Re-generate population of size αN ; � Increase population size
31: r ← r + 1; � Increase re-generation counter r
32: else if fS and (r > RI) then
33: LP ← L; L ← λL; � Store the current length L and increase L
34: r ← 0; � Reset re-generation counter r
35: Re-generate population of size N using LP ;
36: end if
37: end while
38: return solution with the highest fitness ηB ;

L during the AMPC. Thus, the population may contain individuals of various
lengths. Finally, the best individual in the last population is returned (line 38),
when the execution time of AGA exceeds the limit τM (line 3).

2.2 Adaptive Multi-Parent Crossover

In the proposed adaptive multi-parent crossover operator (AMPC), an interme-
diate child pA+B of the length L(pA+B) = L(pA) + L(pB) is generated for each

518 J. Nalepa and M. Kawulok

pair of parents pA and pB (Fig. 1). Here, we randomized a well-known high-low
fit (HLF) pre-selection scheme [7] which proved to be asymptotically best in
terms of the GA classification score [8]. For each well-fitted individual pA (out of
chN individuals) we select either a well-fitted chromosome or the one from the
less-fitted part of the population with the probability P = 0.5. The third parent
pH is selected from the well-fitted part using a tournament selection of size 2. To
avoid competing between similar individuals, for the first chromosome p1 in the
tournament we select a second one p2 such that d(p1, p2) ≥ dm (see Section 2.3).
Then, the intermediate children pA+B is crossed over with the individual pH as
discussed in [8]. The vectors from pA+B and pH are drawn to generate a child
pC with probability P(pA+B) and P(pH), respectively. Noteworthy, L(pC) = L,
and L is adaptively tuned in the AGA (see Alg. 1).

R-HLF

pA,L(pA)

pB ,L(pB)

CA
1

CA
2

CB
1

CB
2

CH
1

CH
2

CC
1

CC
2

CA+B

1

CA+B

2

pH ,L(pH)

pA+B ,L(pA+B)

pC ,L(pC)

N individuals

P(pA+B)

P(pH)

Fig. 1. Adaptive multi-parent crossover

2.3 New Distance Metric Between Individuals

In order to assess the distance between two individuals, i.e., two sets of vectors
from the training set T , we define a new similarity measure. Here, we compare
the distribution of the vectors in each set. First, we transform the N -dimensional
input space using principal component analysis (PCA) to select n most discrim-
inating dimensions indicated by the eigenvectors (υi) sorted in the descending
order by the corresponding eigenvalues. Subsequently, each i-th dimension is
divided into C intervals. The endpoints of the intervals (r(0)i , r

(1)
i , . . . , r

(C)
i) are

determined so as the same number of vectors from the training set fall into
every interval. This splits the training set into Cn clusters, which are assigned
with the indices 1, 2, . . . , Cn. Each chromosome is characterized by the indices
histogram H, and the similarity between two individuals p and q is given:
S(p, q) = (

∑
i min(hp

i , h
q
i)) /min(L(p),L(q)), where hp

i is the i-th bin of a his-
togram Hp. Thus, the distance between p and q equals d(p, q) = 1−S(p, q). The
population diversity φ is defined as the average distance between the individuals.

The clustering process is illustrated in Fig. 2. Here, for M = 50 vectors, the
dimensionality was reduced to n = 2, and every dimension was split into C = 5

Adaptive Genetic Algorithm to Select Training Data 519

(1)
(2)

(5)

(21)

(25)

υ1

υ2

r
(0)

1

r
(1)

1
r
(2)

1

r
(3)

1
r
(4)

1

r
(5)

1

r
(0)

2

r
(1)

2

r
(3)

2

r
(5)

2

Fig. 2. Cluster identifiers in the PCA feature space

intervals, each containing M/C = 10 vectors from the training set. This divided
the training set into Cn = 25 clusters. This is a fairly simple clustering technique,
but we found it sufficient to compare the chromosomes. We have considered to
proceed with the clustering directly in the input space, however in the case of
high-dimensional data, the number of clusters would become very high even for
low values of C, leading to sparse histograms. This was the reason for applying
the dimensionality reduction using PCA prior to the clustering.

3 Experimental Results

Extensive computational experiments were performed to compare the perfor-
mance of AGA with a GA. The AGA was validated using four data sets: 1)
Adult and Mushroom benchmark sets (available at http://archive.ics.uci.edu/
ml/datasets.html), 2) real-world Skin data derived from the ECU skin image
database [12] containing 560732 pixels (as discussed in [8]), and 3) artificial set
of 2D points. Each set is divided randomly into two equinumerous sets, namely
the training set T from which the training samples are selected and on which the
fitness of individuals is evaluated in AGA, and the validation set V (|T | = |V |).
Note that for the 2D artificial set T = V . Clearly, the validation sets were not
used during the AGA set selection for Adult, Mushroom and Skin data sets, and
all the results presented in this paper were obtained for V .

The AGA was implemented in C++ language and the experiments were
performed using an Intel Xeon 3.2 GHz computer with 16 GB RAM. We used
LIBSVM [3] with RBF kernel: K (u , v) = exp

(
−‖u − v‖2/σ2

)
, where σ is the

kernel width. SVM parameters (i.e., σ and C) were selected based on a grid search
with an exponential step [3]. The kernel parameters are given in Tab. 1. The AGA
parameters were tuned experimentally in a similar manner. The following values
were used: N = 10, Pm = 0.3, ch = 0.5, ε = 0.001, sa = 3, sb = 5, RC = 1,
RI = 2, α = 2.0, λ = 2.0, 2m = 2K = 20 (the initial chromosome length L),
β = 0.1, n = 3, P(pH) = P(pA+B) = 0.5, dm = 0.7, τM = 60 min.

http://archive.ics.uci.edu/ml/datasets.html
http://archive.ics.uci.edu/ml/datasets.html

520 J. Nalepa and M. Kawulok

Table 1. SVM kernel parameters C and σ for the investigated data sets

Set C σ
Adult 1000 0.1
Mushroom 64 4.0
Skin 10 1.0
2D 32 32.0

The results obtained for the AGA along with the results obtained for the
GA are given in Tab. 2 for three data sets. The Mushroom data set is omitted
here, since both the GA with K = 20m and AGA converged to the correct
classification (ηB = 100.00%) in τ < τ0 + Δτ . The corresponding average num-
bers of support vectors for the Mushroom data set are as follows: AGA – 120,
GA(K = 20m) – 200. As mentioned earlier, it is not clearly defined how to spec-
ify the chromosome length in the GA. Here, to ensure the fair comparison with
the proposed AGA, we run two versions of GA with K = m and K = 20m. Also,
the population size in GA was set to N = 40, which is the maximum number of
individuals in a population after the re-generation with increase in the AGA.

Table 2. The best fitness ηB (in %) along with its standard deviation σ among 10
independent AGA executions, the number of support vectors s of the best individual
and the generation g, averaged for 10 independent AGA executions, shown for the
execution time step Δτ = 12 min

S
e
t AGA GA, K = 20m GA, K = m

τ ηB ± σ s g ηB ± σ s g ηB ± σ s g

A
d
u
lt

τ0 66.48 ± 4.84 16 — 78.81 ± 0.43 345 — 72.77 ± 2.80 18 —
τ0 + Δτ 79.49 ± 0.10 28 111 79.45 ± 0.33 345 3 79.01 ± 0.77 15 62
τ0 + 3Δτ 79.50 ± 0.01 52 169 79.91 ± 0.33 339 9 79.12 ± 0.83 15 183
τ0 + 5Δτ 79.59 ± 0.17 169 199 80.09 ± 0.22 346 14 79.26 ± 0.44 14 306

S
k
in

τ0 84.37 ± 1.31 12 — 88.85 ± 0.31 145 — 86.22 ± 1.12 12 —
τ0 + Δτ 88.78 ± 0.13 20 85 89.32 ± 0.09 146 5 88.45 ± 0.16 12 37
τ0 + 3Δτ 89.49 ± 0.13 64 154 89.54 ± 0.12 147 14 88.83 ± 0.18 13 108
τ0 + 5Δτ 89.87 ± 0.01 114 192 89.57 ± 0.09 147 22 88.98 ± 0.12 13 178

2
D

τ0 80.97 ± 0.91 17 — 97.40 ± 0.12 73 — 84.37 ± 0.85 17 —
τ0 + Δτ 98.74 ± 0.17 103 283 98.41 ± 0.15 81 132 92.90 ± 0.47 18 384
τ0 + 3Δτ 99.27 ± 0.06 219 328 98.57 ± 0.12 81 395 94.28 ± 0.47 17 1144

It can be noted that the generation of an initial population corresponds to
the random sampling approach. Thus, the result ηB in τ0 is the averaged best
fitness among 10N random draws, where N is the population size. Clearly, the
quality of an initial population depends on the number of training samples in
each individual (i.e., the individual length), and the number of random draws
(i.e., the population size). Thus, the initial populations were of higher quality
for the GA with K = 20m. The number of support vectors is incremented more
rapidly in the AGA (see s in Tab. 2). It is worth mentioning that the AGA
converged quickly to the high-quality training sets, and the increment in the
fitness function is significantly larger than in case of the GA, e.g., ΔηB ≈ 13%
in the AGA compared with ΔηB ≈ 1.2% and ΔηB ≈ 6.5% in the GA with
K = 20m and K = m, respectively. The number of generations g in the presented
time interval is dependent on the chromosome length. Thus, the g values are

Adaptive Genetic Algorithm to Select Training Data 521

the largest for GA with small K. However, the best fitness is not improved
significantly. This indicates that the training set cannot be further improved for
a given number of samples and corresponding support vectors (see Skin and 2D
data sets).

The increase in the number of support vectors highlights the exploration pos-
sibilities of the AGA. Once the relatively small solution space region is exploited,
the number of training samples is increased. This prevents the search from being
stuck in the local minima. The approach of increasing the training set according
to the state of search is shown in Fig. 3 for the artificial 2D data set. Here, the
training set samples are visualized as white and black crosses. Similarly, the AGA
converges to the very good final results faster than the GA for various K. First,
the K value is relatively small and starts increasing when the search progresses.
Noteworthy, the maximum number of samples need not to be specified for the
AGA (see Fig. 3d) and it is being adapted during the algorithm execution. This
makes it possible to tackle the trade-off between the SVM classification accuracy
and time by breaking the AGA execution once the desired ηB is obtained, or the
maximum number of s is exceeded.

3.1 Sensitivity Analysis on Method Components

A number of factors influence the performance of the proposed adaptive genetic
algorithm. In this section we measure the impact of the AGA components on the
quality of final SVM training data sets. We analyze the best and average fitness
in a population (ηB and η̄ respectively), its diversity φ, the average number of
support vectors s̄, the number of support vectors of the best individual s, and
the average execution time τ̄g, obtained for three versions of AGA with certain
method components removed. The average execution time τ̄g depicts the average
execution time of a single AGA generation up to the g-th generation.

The following versions of the algorithm were analyzed: AGA, AGA with the
adaptive pre-selection and multi-parent crossover removed (No AMPC), and
AGA with the variable chromosome length removed (No VLC). In the No
AMPC version of AGA we replaced the AMPC (see Fig. 1) by the standard
high-low fit pre-selection scheme and the crossover operator applied for two
parents pA and pB [8]. The chromosomes of a constant length L, where L = C1+
C2 = 2K, were used in AGA with No VLC. Here, we set K = m+(M −m)/2,
where m and M are the minimum and maximum number of a class vectors in a
chromosome in the VLC scheme. The chromosome length settings for each data
set are summarized in Tab. 3. We set the initial population size N = 10 and
RI = 1, so as the maximum population size after the increase equals 20. The
other AGA settings remain unchanged. Each data set was split into two sets V
and T of equal size. Moreover, we divided the Mushroom set so as |T | = 9 |V |
(see Mushroom (B)), in order to compare the number of support vectors obtained
for both configurations (for Mushroom (A) we have |T | = |V |).

The experimental results obtained for three versions of AGA are given in
Tab. 4. We show the results for various generations g for each data set. It is easy
to see that applying the AMPC results in converging to the solutions of higher

522 J. Nalepa and M. Kawulok

a) τ0 b) τ0 + Δτ c) τ0 + 2Δτ d) τ0 + 3Δτ

g = 1, η = 80.68, g = 218, η = 95.90, g = 307, η = 98.63, g = 368, η = 99.26,

K = 10, s = 19 K = 40, s = 36 K = 160, s = 91 K = 305, s = 124

A
G

A

g = 1, η = 83.82, g = 226, η = 93.25, g = 331, η = 93.41, g = 484, η = 95.24,

s = 16 s = 17 s = 19 s = 19

G
A
,
K

=
1
0

g = 1, η = 98.85 g = 32, η = 99.05 g = 66, η = 99.15 g = 100, η = 99.17

s = 145 s = 143 s = 139 s = 123

G
A
,
K

=
6
4
0

Fig. 3. Examples of training set selection for 2D data set using AGA, GA with K = 10,
and GA with K = 640, Δτ = 4 min

quality faster than using the HLF scheme and standard crossover operator. Even
if the randomly drawn initial populations contain better individuals, the AMPC
outperforms HLF asymptotically (see e.g., ηB for AGA and No AMPC, g =
200, Adult) in similar time τ . This indicates the better converging capabilities of
the AMPC. This is confirmed by the resulting number of support vectors in both
configurations – in the AMPC, the last s is slightly larger than for No AMPC,

Table 3. The AGA settings for each data set

Set m M
Adult 10 320
Mushroom 10 80
Skin 10 400
2D 10 320

Adaptive Genetic Algorithm to Select Training Data 523

T
a
b
le

4
.

T
h
e

b
es

t
fi
tn

es
s

η
B

(i
n

%
)

a
lo

n
g

w
it

h
it

s
st

a
n
d
a
rd

d
ev

ia
ti

o
n

σ
a
m

o
n
g

2
0

a
lg

o
ri

th
m

ex
ec

u
ti

o
n
s,

th
e

av
er

a
g
e

fi
tn

es
s

η̄
(i

n
%

),
th

e
st

a
n
d
a
rd

d
ev

ia
ti

o
n

o
f
th

e
p
o
p
u
la

ti
o
n

fi
tn

es
s

σ
η
,
th

e
p
o
p
u
la

ti
o
n

d
iv

er
si

ty
φ
,
th

e
n
u
m

b
er

o
f
su

p
p
o
rt

v
ec

to
rs

s
o
f
th

e
b
es

t
in

d
iv

id
u
a
l,

th
e

av
er

a
g
e

n
u
m

b
er

o
f
su

p
p
o
rt

v
ec

to
rs

s̄
a
n
d

th
e

g
en

er
a
ti

o
n

g
,
th

e
av

er
a
g
e

ex
ec

u
ti

o
n

ti
m

e
τ̄ g

(i
n

se
co

n
d
s)

–
th

e
ti

m
e

re
q
u
ir

ed
fo

r
g
en

er
a
ti

n
g

th
e

in
it

ia
l
p
o
p
u
la

ti
o
n

(i
.e

.,
th

e
ra

n
d
o
m

sa
m

p
li
n
g
)

is
o
m

it
te

d
,
av

er
a
g
ed

fo
r

2
0

in
d
ep

en
d
en

t
a
lg

o
ri

th
m

ex
ec

u
ti

o
n
s

Set

A
G

A
N

o
A
M

P
C

N
o

V
L
C

g
η

B
±

σ
η̄

σ
η

φ
s

s̄
τ̄

g
η

B
±

σ
η̄

σ
η

φ
s

s̄
τ̄

g
η

B
±

σ
η̄

σ
η

φ
s

s̄
τ̄

g

Adult

1
6
7
.3
5

±
5
.6
7

5
3
.3
2

0
.0
9

0
.8
7

1
8

1
7

—
6
8
.4
3

±
5
.0
7

5
4
.0
6

0
.0
9

0
.8
7

1
7

1
7

—
7
3
.5
4

±
4
.8
0

5
7
.3
0

0
.1
3

0
.5
8

1
4
6

1
4
5

—
2
5

7
8
.6
5

±
0
.7
7

7
1
.4
8

0
.0
3

0
.5
3

1
8

1
7

4
.1

7
8
.5
8

±
0
.9
8

7
1
.6
6

0
.0
3

0
.5
5

1
8

1
7

3
.9

7
9
.1
5

±
0
.4
1

7
5
.9
9

0
.0
2

0
.4
0

1
4
7

1
4
7

3
4
.0

5
0

7
9
.1
7

±
0
.1
9

7
4
.3
7

0
.0
3

0
.5
7

1
7

1
7

4
.4

7
9
.1
1

±
0
.2
9

7
1
.6
4

0
.0
3

0
.5
6

1
7

1
7

4
.2

7
9
.4
9

±
0
.2
9

7
5
.2
7

0
.0
3

0
.4
3

1
4
8

1
4
6

4
1
.0

7
5

7
9
.3
2

±
0
.1
5

7
3
.3
8

0
.0
3

0
.5
2

2
0

2
4

5
.1

7
9
.2
0

±
0
.2
2

7
5
.6
8

0
.0
2

0
.5
9

1
9

2
0

5
.0

7
9
.6
0

±
0
.3
1

7
8
.0
5

0
.0
1

0
.4
2

1
4
9

1
4
6

4
2
.9

1
0
0

7
9
.3
6

±
0
.1
2

7
3
.4
7

0
.0
3

0
.5
4

2
8

3
2

6
.1

7
9
.2
4

±
0
.2
3

7
5
.9
9

0
.0
2

0
.5
6

2
2

2
6

6
.0

7
9
.6
9

±
0
.2
8

7
7
.1
9

0
.0
1

0
.4
4

1
4
8

1
4
5

4
3
.4

1
5
0

7
9
.4
3

±
0
.0
7

7
5
.0
6

0
.0
3

0
.4
2

6
7

9
2

9
.7

7
9
.3
7

±
0
.0
9

7
6
.8
1

0
.0
1

0
.5
1

3
9

5
6

9
.3

7
9
.8
8

±
0
.3
1

7
4
.1
9

0
.0
3

0
.4
3

1
4
8

1
4
6

4
4
.1

2
0
0

7
9
.9
7

±
0
.2
9

7
6
.9
4

0
.0
2

0
.3
1

2
2
9

2
4
4

1
9
.3

7
9
.4
7

±
0
.1
3

7
7
.0
3

0
.0
2

0
.4
6

1
1
4

1
4
7

1
8
.5

7
9
.9
1

±
0
.2
9

7
7
.8
0

0
.0
1

0
.4
4

1
4
8

1
4
8

4
4
.7

Mush.(A)

1
9
5
.6
3

±
1
.1
3

8
9
.6
6

0
.0
5

0
.4
5

2
0

2
0

—
9
5
.2
2

±
5
.0
7

8
8
.0
6

0
.0
6

0
.4
5

2
0

2
0

—
9
9
.3
8

±
0
.2
1

9
7
.7
9

0
.0
1

0
.2
4

9
0

9
0

—
2
0

9
8
.2
5

±
0
.4
8

9
6
.6
6

0
.0
1

0
.2
8

2
0

2
0

0
.7

9
8
.2
1

±
0
.9
8

9
6
.3
6

0
.0
1

0
.2
8

2
0

2
0

0
.7

9
9
.8
7

±
0
.0
7

9
9
.4
2

<
0
.0
1

0
.2
0

9
0

9
0

3
.2

4
0

9
8
.6
9

±
0
.3
9

9
7
.3
7

0
.0
1

0
.3
3

2
2

2
2

0
.9

9
8
.6
3

±
0
.2
9

9
7
.6
7

<
0
.0
1

0
.3
2

2
5

2
4

0
.9

9
9
.9
1

±
0
.1
0

9
9
.4
4

<
0
.0
1

0
.1
8

9
0

9
0

3
.5

6
0

9
9
.4
2

±
0
.2
9

9
8
.5
1

<
0
.0
1

0
.2
4

4
0

4
0

1
.1

9
9
.4
6

±
0
.2
2

9
8
.7
3

<
0
.0
1

0
.2
4

3
9

3
9

1
.0

9
9
.9
6

±
0
.0
6

9
9
.4
5

<
0
.0
1

0
.2
1

9
0

9
0

3
.6

8
0

9
9
.7
0

±
0
.1
1

9
9
.0
7

<
0
.0
1

0
.2
0

6
1

6
3

1
.3

9
9
.6
6

±
0
.2
3

9
8
.7
7

0
.0
1

0
.2
3

6
0

5
8

1
.2

9
9
.9
8

±
0
.0
4

9
9
.4
0

<
0
.0
1

0
.2
0

9
0

9
0

3
.7

1
0
0

9
9
.9
1

±
0
.1
1

9
9
.5
6

<
0
.0
1

0
.1
6

1
2
0

1
2
7

1
.8

9
9
.8
3

±
0
.0
9

9
9
.3
5

<
0
.0
1

0
.1
8

1
0
5

1
0
7

1
.6

9
9
.9
8

±
0
.0
4

9
9
.3
0

<
0
.0
1

0
.2
0

9
0

9
0

3
.7

Mush.(B)

1
9
4
.6
3

±
1
.5
3

8
8
.6
4

0
.0
5

0
.5
6

2
0

2
0

—
9
4
.7
0

±
1
.6
7

8
7
.7
8

0
.0
6

0
.5
6

2
0

2
0

—
9
7
.2
8

±
1
.0
1

9
1
.7
9

0
.0
4

0
.5
0

3
0

3
0

—
1
0

9
7
.2
5

±
0
.6
1

9
6
.1
1

0
.0
1

0
.3
7

2
0

2
0

0
.7

9
8
.0
9

±
0
.4
5

9
6
.8
0

<
0
.0
1

0
.4
5

2
0

2
0

0
.7

9
9
.2
9

±
0
.3
5

9
7
.6
3

0
.0
1

0
.3
4

3
0

3
0

0
.9

2
0

9
8
.6
9

±
0
.4
9

9
6
.8
4

0
.0
1

0
.4
0

2
0

2
0

0
.7

9
8
.6
5

±
0
.4
8

9
6
.7
6

0
.0
1

0
.3
7

2
0

2
0

0
.7

9
9
.3
5

±
0
.3
7

9
7
.9
7

<
0
.0
1

0
.3
6

3
0

3
0

0
.9

4
0

9
9
.4
2

±
0
.5
6

9
8
.2
3

<
0
.0
1

0
.3
5

3
0

3
0

0
.8

9
9
.2
3

±
0
.4
7

9
7
.6
5

<
0
.0
1

0
.4
2

2
6

2
5

0
.8

9
9
.4
1

±
0
.2
9

9
8
.0
7

0
.0
1

0
.3
9

3
0

3
0

1
.1

8
0

9
9
.9
8

±
0
.0
5

9
9
.2
3

<
0
.0
1

0
.2
8

7
2

7
2

1
.2

9
9
.9
6

±
0
.1
1

9
8
.3
2

0
.0
1

0
.3
4

5
0

5
0

1
.1

9
9
.8
0

±
0
.2
6

9
8
. 2
1

0
.0
1

0
.3
8

3
0

3
0

1
.2

Skin

1
8
2
.8
8

±
2
.0
1

7
5
.0
2

0
.0
7

0
.9
8

1
1

1
2

—
8
2
.9
8

±
2
.2
9

7
3
.8
7

0
.0
6

0
.9
8

1
2

1
2

—
8
7
.5
6

±
1
.8
9

7
3
.2
7

0
.1
4

0
.7
8

1
6
7

1
6
9

—
2
5

8
8
.0
4

±
0
.3
0

8
6
.3
9

0
.0
1

0
.5
4

1
2

1
2

4
.0

8
7
.8
6

±
0
.5
8

8
4
.5
7

0
.0
2

0
.5
9

1
3

1
2

4
.6

8
9
.5
5

±
0
.1
0

8
8
.3
9

0
.0
1

0
.5
8

1
7
9

1
7
5

6
0
.4

5
0

8
8
.3
4

±
0
.2
1

8
6
.3
0

0
.0
1

0
.4
9

1
3

1
5

5
.4

8
8
.1
4

±
0
.7
0

8
7
.1
4

0
.0
1

0
.6
5

1
2

1
3

5
.5

8
9
.6
6

±
0
.1
0

8
7
.9
1

0
.0
1

0
.6
0

1
8
1

1
6
9

7
1
.6

7
5

8
8
.6
4

±
0
.2
6

8
7
.3
1

0
.0
1

0
.6
6

1
9

2
0

6
.2

8
8
.4
6

±
0
.3
5

8
7
.8
0

<
0
.0
1

0
.5
9

1
7

1
9

6
.4

8
9
.7
0

±
0
.0
6

8
8
.9
4

<
0
.0
1

0
.5
3

1
8
3

1
7
4

7
4
.8

1
0
0

8
9
.0
1

±
0
.1
2

8
6
.4
5

0
.0
1

0
.6
3

3
4

3
5

7
.5

8
8
.7
6

±
0
.4
1

8
7
.2
4

0
.0
1

0
.5
4

3
0

3
0

7
.7

8
9
.7
2

±
0
.0
6

8
8
.7
9

0
.0
1

0
.5
8

1
7
9

1
7
2

7
5
. 8

1
2
5

8
9
.2
5

±
0
.1
3

8
7
.7
3

0
.0
1

0
.6
1

5
6

6
1

9
.6

8
9
.1
8

±
0
.1
1

8
7
.8
6

<
0
.0
1

0
.5
7

4
9

4
4

9
.3

8
9
.7
2

±
0
.0
6

8
6
.9
5

0
.0
2

0
.5
6

1
8
1

1
8
1

7
6
.0

2D

1
8
1
.0
2

±
1
.7
0

7
4
.3
5

0
.0
5

0
.7
2

1
7

1
7

—
8
1
.2
3

±
2
.1
6

7
3
.9
0

0
.0
5

0
.7
2

1
7

1
7

—
9
6
.6
9

±
0
.3
5

9
5
.0
1

0
.0
1

0
.2
5

6
5

6
5

—
5
0

8
9
.6
9

±
1
.3
1

8
5
.2
5

0
.0
2

0
.4
5

1
8

1
7

1
.3

8
9
.1
9

±
1
.2
2

8
4
.8
1

0
.0
2

0
.4
8

1
8

1
7

0
.9

9
7
.8
7

±
0
.2
3

9
6
.6
6

<
0
.0
1

0
.2
0

7
3

7
0

3
.5

1
0
0

9
3
.4
0

±
0
.7
5

9
1
.3
6

0
.0
1

0
.3
6

2
7

2
7

1
.5

9
3
.1
2

±
0
.9
8

9
0
.7
3

0
.0
1

0
.3
5

2
7

2
6

1
.1

9
7
.9
9

±
0
.1
7

9
6
.8
9

<
0
.0
1

0
.1
9

7
3

6
9

3
.7

2
0
0

9
6
.7
3

±
0
.4
4

9
5
.6
8

<
0
.0
1

0
.2
2

4
9

5
1

1
.8

9
6
.3
7

±
0
.3
6

9
4
.8
9

0
.0
1

0
.2
8

4
1

4
3

1
.3

9
8
.1
3

±
0
.1
4

9
7
.0
8

<
0
.0
1

0
.1
9

7
4

7
2

3
.9

3
0
0

9
8
.7
2

±
0
.1
1

9
7
.9
8

<
0
.0
1

0
.1
4

9
8

9
5

2
.6

9
8
.5
4

±
0
.5
7

9
7
.8
1

<
0
.0
1

0
.1
5

9
6

9
2

2
.1

9
8
.2
1

±
0
. 1
4

9
6
.8
4

<
0
.0
1

0
.1
8

7
4

7
1

4
.0

524 J. Nalepa and M. Kawulok

which means that the full AGA explores the larger region of the solution space
faster, after the currently analyzed region is sufficiently exploited. Thus, the
multi-parent crossover contributes significantly to the search performance. Note-
worthy, the full AGA and No AMPC version of the algorithm managed to
converge to very good final results for both version of Mushroom data set in
similar time. The No VLC required noticeably larger execution time for the
equinumerous training and validation sets (see τ̄ for Mushroom (A) and (B)).

The number of support vectors, both s and averaged s̄, drastically increases
for the No VLC version of AGA. Here, the initial number of training samples
for each class in a chromosome is relatively large. This strongly influences the
classification time of the SVM. In case of the Skin data set, the number of vectors
s obtained using the AGA is more than 3 times smaller than using the No VLC
(the corresponding execution time necessary to converge to this result is almost 8
times lower for the full AGA). However, there exist data sets for which obtaining
the high classification score requires a large number of support vectors. In these
cases the AGA iteratively increments the training set if necessary. This approach
is not possible in the No VLC scheme, since the number of vectors ought to be
set a priori (see Adult). It leads to saturating the population with individuals
of similar quality (see decreasing ση and φ), which can cause the diversity crisis.
This phenomenon is mitigated by subsequent population re-generations.

4 Conclusions and Future Work

In this paper we proposed a new adaptive genetic algorithm to select a valuable
training set for support vector machines. In the presented approach the algorithm
settings are being adapted during the execution. It increments the size of the
training set when the current region of the solution space is sufficiently exploited
for better exploration. We proposed a new multi-parent crossover operator for
enhancing the exploration and exploitation capabilities of our approach. We show
how adapting the number of training samples in an individual affects the search
progress and convergence along with final classification score. A new metric for
measuring the distance between two individuals was presented. The metric is
based on analyzing the vectors distribution in the feature space obtained using
principal component analysis. An extensive experimental study proved that the
adaptive genetic algorithm helps reduce the number of support vectors compared
with the standard genetic algorithm which decreases the SVM classification time.

Our ongoing research includes incorporating the geometry-based methods
into the adaptive algorithm, designing a new memetic algorithm for an efficient
training data selection and comparing the proposed algorithms with other state-
of-the-art approaches. Also, our aim is to design and implement a parallel version
of the algorithm. Finally, we plan to utilize the proposed technique for unlabeled
data sets, and to confirm its performance for imbalanced sets.

Adaptive Genetic Algorithm to Select Training Data 525

References

1. Balcázar, J., Dai, Y., Watanabe, O.: A Random Sampling Technique for Training
Support Vector Machines. In: Abe, N., Khardon, R., Zeugmann, T. (eds.) ALT
2001. LNCS (LNAI), vol. 2225, pp. 119–134. Springer, Heidelberg (2001)

2. Chang, C.C., Pao, H.K., Lee, Y.J.: RSVM based two-teachers-one-student semi-
supervised learning algorithm. Neural Networks 25, 57–69 (2012)

3. Chang, C.C., Lin, C.J.: LIBSVM: A library for support vector machines. ACM
Trans. on Intell. Systems and Technology 2, 27:1–27:27 (2011)

4. Chien, L.J., Chang, C.C., Lee, Y.J.: Variant methods of reduced set selection for
reduced support vector machines. J. Inf. Sci. Eng. 26(1), 183–196 (2010)

5. Corne, D., Dorigo, M., Glover, F., Dasgupta, D., Moscato, P., Poli, R., Price, K.V.:
New ideas in optimization, pp. 219–234. McGraw-Hill Ltd. (1999)

6. Cortes, C., Vapnik, V.: Support-Vector Networks. Mach. Learn. 20(3), 273–297
(1995)

7. Elamin, E.E.A.: A proposed genetic algorithm selection method. In: 1st National
Symposium (NITS), pp. 1–8 (2006)

8. Kawulok, M., Nalepa, J.: Support vector machines training data selection using a
genetic algorithm. In: Hancock, E. Imiya, A., Kuijper, A. Kudo, M., Omachi, S.,
Windeatt, T., Yamada, K.: (eds.): SSPR & SPR 2012, LNCS 7626, pp. 557-565.
Springer, Heidelberg (2012)

9. Koggalage, R., Halgamuge, S.: Reducing the number of training samples for fast
support vector machine classification. Neural Inf. Process. Lett. and Reviews 2(3),
57–65 (2004)

10. Lee, Y.J., Huang, S.Y.: Reduced support vector machines: A statistical theory.
IEEE Trans. on Neural Networks 18(1), 1–13 (2007)

11. Musicant, D.R., Feinberg, A.: Active set support vector regression. IEEE Trans.
on Neural Networks 15(2), 268–275 (2004)

12. Phung, S.L., Chai, D., Bouzerdoum, A.: Adaptive skin segmentation in color
images. In: IEEE Int. Conf. on Acoustics, Speech and Signal Proc., pp. 353–356
(2003)

13. Schohn, G., Cohn, D.: Less is more: Active learning with support vector machines.
In: 17th Int. Conf. on Mach. Learn., pp. 839–846. Morgan Kaufmann Inc. (2000)

14. Shin, H., Cho, S.: Neighborhood property-based pattern selection for support vec-
tor machines. Neural Comput. 19(3), 816–855 (2007)

15. Tsang, I.W., Kwok, J.T., Cheung, P.M.: Core vector machines: Fast SVM training
on very large data sets. J. of Machine Learn. Res. 6, 363–392 (2005)

16. Wang, D., Shi, L.: Selecting valuable training samples for SVMs via data structure
analysis. Neurocomputing 71, 2772–2781 (2008)

17. Wang, J., Neskovic, P., Cooper, L.N.: Training Data Selection for Support Vector
Machines. In: Wang, L., Chen, K., S. Ong, Y. (eds.) ICNC 2005. LNCS, vol. 3610,
pp. 554–564. Springer, Heidelberg (2005)

18. Zeng, Z.Q., Xu, H.R., Xie, Y.Q., Gao, J.: A geometric approach to train SVM on
very large data sets. Intell. Sys. and Knowl. Eng. 1, 991–996 (2008)

19. Zhang, W., King, I.: Locating support vectors via β-skeleton technique. In: Int.
Conf. on Neural Inf. Process., 1423–1427 (2002)

© Springer-Verlag Berlin Heidelberg 2014
A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2014, LNCS 8602, pp. 526–537, 2014.
DOI: 10.1007/978-3-662-45523-4_43

Automatic Selection of GA Parameters
for Fragile Watermarking

Marco Botta1(), Davide Cavagnino1, and Victor Pomponiu2

1 Dipartimento di Informatica, Università degli Studi di Torino
Corso Svizzera 185, 10149 Torino, Italy

{marco.botta,davide.cavagnino}@unito.it
2 Department of Radiology, University of Pittsburgh

3362 Fifth Avenue, Pittsburgh, 15213, PA, USA
vpomponiu@acm.org

Abstract. Genetic Algorithms (GAs) are known to be valuable tools for optimi-
zation purposes. In general, GAs can find good solutions by setting their config-
uration parameters, such as mutation and crossover rates, population size, etc., to
standard (i.e., widely used) values. In some application domains, changing the
values of these parameters does not improve the quality of the solution, but
might influence the ability of the algorithm to find such solution. In other appli-
cation domains, fine tuning these parameters could result into a significant im-
provement of the solution quality. In this paper we present an experimental study
aimed at finding how fine tuning the parameters of a GA used for the insertion of
a fragile watermark into a bitmap image influences the quality of the resulting
digital object. However, when proposing a GA based new tool to non-expert us-
ers, selecting the best parameter setting is not an easy task. Therefore, we will
suggest how to automatically set the GA parameters in order to meet the quality
and/or running time performances requested by the user.

Keywords: Information hiding · Fragile watermarking · Genetic algorithms ·
Karhunen-Loève Transform

1 Introduction

The digital revolution of the last decade, in which every piece of information is repre-
sented, manipulated, stored and reproduced in digital form, brought about new oppor-
tunities along with new challenges. One important issue, that is deserving a lot of
attention in the literature, is how to determine if a digital object is genuine, i.e., it has
not been altered with respect to its original version.

A possible solution to ensure the protection of the media content is digital watermark-
ing [5]. In general, the watermarking process consists of two phases: the embedding
phase and the verification phase. During embedding, the digital host object is modified to
carry a watermark signal. Then the watermarked object is released into an environment
that may alter it. The aim of the verification is to look for the presence of the watermark
into the (possibly) altered object. To improve the security, in case the host object is an
image the watermark can be embedded in transform domains like the discrete cosine
transform (DCT) or the Karhunen-Loève transform (KLT).

 Automatic Selection of GA Parameters for Fragile Watermarking 527

The watermark embedded into the host object could be robust against manipula-
tions or fragile. Fragile watermarking is a particular class of schemes that uses the
watermark to alert for any alterations induced to the host signal. There are three main
properties required for a fragile watermarking algorithm: 1) the ability of the fragile
watermark to detect alterations, 2) the capacity of the fragile watermark to localize the
tampered areas and 3) the preservation of the quality of the host signal.

In this paper we evaluate the performance of a Genetic Algorithm (GA) used for
embedding a watermark into a bitmap image. The watermark is inserted into a secret
space of features extracted from the image, and the GA is used to modify the pixels of
the image in such a way that these features contain the intended watermark. In this
way, only the entities having knowledge of the secret space will be able to detect
modifications to the image by extracting the watermark and comparing it with the one
that was inserted, providing a tool to check the authenticity of the image. Moreover,
without the knowledge of the secret space it is highly unlikely to successfully tamper
(parts of) the image without altering the watermark.

The performance of the GA will be evaluated by varying some of its parameters
and measuring the time required for the watermark insertion and the quality of the
resulting images. It should be pointed out that in the presented application, the GA is
run multiple times, depending on the size of the image to be watermarked, and we
must use the best settings that results in lower running times and highest quality.
Therefore, after observing the relation among quality, time and GA parameters, we
extended the algorithm with the ability to automatically select the appropriate GA
parameter settings in order to fulfill the user requirements in terms of quality.

The rest of the paper is organized as follows: in the next section some previous
works related to the use of GA for watermarking will be analyzed, while in section 3
the watermarking algorithm will be briefly presented. Section 4 will discuss the ex-
perimental results and an analysis of the GA parameters tuning. The final section will
draw some conclusions.

2 GA-Based Watermarking Schemes

There are two main techniques to improve the performances of a watermarking sys-
tem. The first is to use statistical properties during the watermark verification (e.g. in
detection). The latter is to employ genetic optimization to find the values of the em-
bedding features that generate almost optimal performances, in terms of impercepti-
bility and efficacy. This is the most common approach, due to the simplicity of the
technique (does not imply mathematical analysis) and the ease in adapting it to many
different types of watermarking systems.

Wang et al. [16] optimized a Least Significant Bit (LSB) substitution watermarking
method with the use of GA. The insertion works in the spatial domain, and is based
on a mapping function that is optimized by a GA in order to find one that achieves
both robustness and imperceptibility. The fitness function takes into consideration
the distortion induced by the watermark insertion. A similar approach is adopted by
Wu et al. [17] who generates optimal mapping functions for finer regions (blocks) of
the host image in order to increase the quality of the watermarked image.

528 M. Botta et al.

Shieh et al. [12] introduce a GA-based watermarking in DCT domain. The water-
mark insertion is performed via the manipulation of the polarity between the water-
mark and the DCT coefficients. The GA is employed to find the DCT coefficients that
give the optimal trade-off between robustness and image quality. The same strategy
was used by Lu et al. [11] for the DWT coefficients to embed the watermark in a
color image while Huang et al. [8] adopt a slight variation of [12].

In order to optimize a DCT-based watermarking method Díaz and Romay [6] use a
Pareto-based Multi-Objective Genetic Algorithm. The parameters considered for the
optimization are the DCT coefficients. The fidelity and robustness are measured di-
rectly on the selected coefficients.

Usman et al. [15] present an algorithm that uses the DCT domain for embedding a
fragile watermark with the purpose of content integrity. The host image is divided
into blocks of size 8×8, and a GA is used to select five DCT coefficients per block for
storing the watermark; at the same time, to deal with possible attacks, the non-
selected coefficients of the block and of its neighbours are also involved in the wa-
termark embedding. The GA selects the coefficients using a fitness function that con-
siders the distortion w.r.t. the host image.

Aslantas et al. [1] compare some optimization methods by applying them to an al-
gorithm that inserts a fragile watermark into the DCT coefficients of an image. Given
that the inverse transformation in the pixel domain may alter some of the inserted bits
due to the integer rounding of the pixels, an optimization step is required to restore
the correct watermark values. Differential evolution, clonal selection, particle swarm
optimization and genetic algorithms are evaluated varying the parameters of each
algorithm and comparing the resulting fitness values, computation times and water-
mark imperceptibility.

Lee and Ho [9] describe the insertion of a fragile watermark in the LSBs of the
pixels of an image. The image is divided into blocks that are classified according to
the type of edge content (using the discrete cosine transform coefficients). The edge
block classification is used in the fitness function of a genetic algorithm employed for
the insertion of the watermark bits.

Shih and Wu [13, 14] applied a GA in order to cope with rounding errors that can oc-
cur in the DCT coefficients during the embedding stage. The basic issue is that in DCT
embedding, integer pixel values are transformed into real value DCT coefficients fol-
lowed by the insertion of the watermark. Afterwards, the watermarked coefficients are
transformed back to integer pixel values by an inverse DCT. However, information might
be lost due to rounding errors. The fitness function applied by the scheme is based on the
normalized correlation (NC) between embedded and detected watermark and the distor-
tion between host and watermarked images.

3 The Watermarking Algorithm

Some of the previously cited papers compute a linear transform1 from pixels to a coef-
ficient space (e.g., DCT), also called frequency space or frequency domain, insert the
watermark into the coefficients, inverse transform the coefficients into the pixel do-
main, and then use a GA to improve the quality of the watermarked image by either

1 For a presentation of linear transforms refer to [7].

 Automati

selecting the best coefficien
ing problems.

The insertion into the co
needed when using a GA. In
a way that when transforme
carry the watermark bits. In
is an improvement of the o
inserting the watermark bit
the pixel values in every b
KLT coefficients is the int
mark embedding scheme.

Fig. 1. B

Firstly, a KLT basis is co
termarking many host imag
image, which must be kep
blocks, a Karhunen-Loève
from the space of pixels to
transformed with this basis,

In the watermark genera
pixels of the key image k an
sequence that will be used
vent cut-and-paste attacks, b

Then, the host image is s
into chunks of s bits and e
raster scan order). For eve
individuals that define a m
when the KLT basis is appl
erated, and the s selected co
bits. Thus, an individual of
the range [‒3, 3]) that add
mark bit b is extracted from

where p is the position (in t
stored.

ic Selection of GA Parameters for Fragile Watermarking

nts or optimizing the pixel values in order to solve rou

oefficients and their inverse transformation are actually
ndeed, the GA can be used to optimize pixel values in s
ed to the coefficient space, the selected coefficients alre
n the following, we give a description of the algorithm t
one presented in [3], and implements this new idea of
ts into the KLT coefficients but let the GA free to mod
lock in such a way that the watermark extracted from
ended one. Figure 1 shows a block diagram of the wa

Block diagram of the watermark embedding

omputed from a key image k: its result may be used for w
ges, and is performed only once per key image. The

pt secret, is divided into blocks of size n×n and from
basis is derived. This basis defines a linear transformat

o a frequency domain [7]. When a block of n×n pixel
, it will produce n2 coefficients.
ation, a cryptographic hash function is applied to a se
nd of the host image x, to generate a pseudo-random bin
as fragile watermark w for the host image, in order to p
birthday attacks and transplantation attacks [2].
split into sub-images of size n×n, the watermark is divi
each chunk is assigned to one sub-image (for example
ry sub-image, the GA is run and evolves a population

modification of the sub-image pixels, in such a way t
lied to the sub-image, a secret set of n2 coefficients is g
oefficients of the KL transformation store the s waterm
the GA population is composed of n2 integers (typically

ded to the pixels produce a modified sub-image. A wa
m a coefficient c according to the following rule:

the binary representation of c) where the watermark bits

529

und-

not
uch

eady
that
not

dify
the

ater-

wa-
key
the

tion
ls is

t of
nary
pre-

ided
e in
n of
that

gen-
mark

y in
ater-

 (1)

are

530 M. Botta et al.

The GA usually runs for a maximum number of generations, but it can be termi-
nated as soon as a viable solution is found. The GA fitness function may take into
account many parameters; typically, the distortion of the modified sub-image w.r.t.
the original one is a considered factor, and the other is the fact that the modified sub-
image should store the s watermark bits. The fitness function F we used for our GA
takes into account these two terms: the Bit Error Rate (BER), i.e., the correct extrac-
tion of the watermark bits from the KLT coefficients, and the Mean Square Error
(MSE), i.e., the distortion w.r.t. the host image:

ܨ ൌ ߙ · ܴܧܤ ൅ minሺߚ, ሻ (2)ܧܵܯ

where α > β are chosen so that if F ≤ β then BER = 0; this allows to verify if the GA
found a viable solution. Moreover, we adopted the convention the smaller F is, the
better the individual.

The result of running the GA optimization on all the host sub-images is the water-
mark stored in a secret space, so it cannot be easily extracted by an attacker; more-
over, any modification to the watermarked image y will result in the modification of
one or more watermark bits stored into the coefficients.

A measure of the objective image quality is the Peak Signal-to-Noise Ratio (PSNR)

computed as ܴܲܵܰ ൌ 10 logଵ଴ ଶହହమ௠.௦.௘. (for 256 grey levels images) where m.s.e. is the

mean square error between the host image pixels and the watermarked image pixels.
The higher this value the better is the resulting watermarked image.

To verify the integrity of a previously watermarked image the secret KLT basis is
used to compute the coefficients: from these the watermark bits may be extracted as
specified in (1), and compared to the original ones; possibly differing bits reveal a
tampering.

4 Experimental Results

Almost all previously cited works did not perform a thorough analysis and tuning of
GA parameters, but just reported the used settings. In a previous study [4], we also
focused on the analysis of the watermarking algorithm properties, by setting the GA
parameters to default values (population size=100, mutation probability pm=0.05,
crossover probability pc=0.8, terminate if best individual does not change in the last
10 generations or 2000 generations reached) and obtaining good quality results (PSNR
between 53 and 54 dB).

Here we evaluate the performances of the proposed algorithm and further investi-
gate whether a wise selection of parameters for the GA may further improve the
quality of the resulting watermarked images.

We ran a large number of experiments, for a total of more than 90000 watermarked
images, on about 100 different combinations of the four GA parameters we studied in
this paper, namely population size, number of stable generations (i.e. the minimum
number of generations the best solution found so far by the GA does not improve),
mutation and crossover probabilities, and collected quality and running times.

 Automatic Selection of GA Parameters for Fragile Watermarking 531

For every parameter combination, we report average values computed by inserting
a watermark of 8 bits per block (of size 8×8) into 1000 images taken from OPTIMOL
[10]: the images are 256 gray levels bitmaps of 256×256 pixels. All experiments have
been performed on a set of workstations, each equipped with 4GB RAM and an In-
tel(R) Xeon(R) E5410 2.33GHz processor. As a multi-dimensional plot would not be
easily readable, we will project some of the results obtained along the dimensions we
investigated and show simpler plots.

4.1 Convergence Ability

In this application we faced two aspects of convergence: for some sub-images there is
a large number of easy reachable solutions and the GA might premature converge to a
local minima, while for other sub-images a solution might not even exist, and the GA
does not converge at all. To address the premature convergence issue, we varied the
number of stable generations as we report in the following. For what concern the se-
cond issue, Figure 2 reports the number of images for which the GA failed to find a
solution: with population sizes smaller than 50, even setting 70 stable generations,
there are a few images on which the GA fails. We also noted that with mutation prob-
ability smaller than 0.03 the algorithm does not find a solution in all the cases, even
setting population size = 100 and stable generations = 70.

Fig. 2. The covergence of the algorithm vs the size of the population, varying the number of
stable generations required to terminate. The labels report the number of images the GA failed
for 70 stable generations.

As we would not allow for GA failures (i.e., we want that the watermark is always
carried by the image after running the algorithm), we performed experiments and
report results for population sizes larger than 50 individuals and pm ≥ 0.03.

532 M. Botta et al.

4.2 Image Quality

The first experiment was aimed at analyzing how smaller populations than the default
(100) influence the performances of the algorithm, in order to find an optimal trade-
off between quality and running time. Moreover, for every population size, we varied
the number of stable generations, from 0 (stops as soon as a solution is found) to 70
(stops when the best solution does not change for 70 consecutive generations), in
steps of 10. Figure 3(a) reports the average quality of the watermarked images as a
function of population size (different lines) and number of stable generations, by set-
ting pc = 0.8 and pm = 0.05 (similar behaviours were obtained with other combinations
of pc and pm). As expected, increasing the GA population size slightly improves the
quality of the resulting images, but the gain becomes less meaningful for increasingly
larger populations. This is probably due to the fact that the exploration ability of the
GA in this context does not depend so much on the number of individuals, but rather
on other GA parameters. Indeed, as it can be seen from Figure 3(a), the PSNR in-
creases by 6 dB for an increasing number of stable generations in which the GA was
left running after having reached a solution. This behavior was not anticipated even
though it is not really surprising: the fitness function we used has a lot of local mini-
ma, so by letting the GA run for longer, a better solution can be found. Anyway, by
analyzing the running times (see Figure 3(b)) larger populations and larger number of
stable generations result in longer running times. It should be pointed out that there is
a linear correlation between PSNR and time, on one side, and population size and
stable generations on the other side. We will exploit these correlations later on.

Fig. 3. The PSNR (a) and Running Time (b) vs the number of stable generations, varying the
size of the population, pc = 0.8, pm = 0.05

4.3 Crossover Probability

Figure 4(a) shows the influence of the crossover probability on the image quality.
Again, the population size has been set to 100, stable generations to 10 and the muta-
tion probability varies between 0.03 and 0.06. We note that large crossover probabili-
ties do not significantly increase the PSNR of the watermarked images, as crossing
good individuals better explores solutions that may be quasi optimal. Running times
are not very affected by crossover probability (Figure 4(b)), even though pc=0.9 is
consistently faster than pc=0.8.

 (a) (b)

 Automatic Selection of GA Parameters for Fragile Watermarking 533

Fig. 4. (a) The watermarked image quality (measured in dB) vs the crossover probability and
(b) the average running time for one image vs the crossover probability

4.4 Mutation Probability

Figure 5 reports the quality and running times of the watermarked images when vary-
ing the mutation probability used by the GA, and by setting the population size to
100, stable generations to 10 and pc from 0.6 to 0.9 (in steps of 0.1). As pointed out
above for mutation probabilities lower than 0.03, the algorithm does not always find a
solution. Both PSNR and running times decrease with larger mutation probabilities, so
the algorithm is faster but with lower quality. This is due to the fact that once a solu-
tion is found, it is likely that it remains the best for the requested stable generations,
as new offsprings will undergo mutation at a higher rate and explore far from optimal
solutions. There is no significant difference in terms of PSNR, even though pc = 0.8 is
faster than the other settings for increasing values of pm; nonetheless a value of pm
larger than 0.04 worsen the achievable results.

Fig. 5. (a) Quality of the watermarked images (in terms of PSNR) vs the probability of
mutation. (b) Running time (for a single image) of the insertion algorithm vs the probability of
mutation.

 (a) (b)

 (a) (b)

534 M. Botta et al.

4.5 Sensitivity to Modifications

Given that the objective of fragile image watermarking is the detection of unauthor-
ized pixel modifications, a set of tests aimed at verifying the ability of the algorithm
to detect modifications to a single pixel in an image block were performed. In particu-
lar, we wanted to verify if the images with increased quality (i.e. PSNR) obtained
from a fine tuning of the GA parameters, were still bearing a watermark able to detect
the modification of a single pixel by a single gray level. Figure 6 reports the percent-
age of image blocks from which an alteration of a single pixel (by ±1 gray level, Fig-
ure 6(a), and ±2 gray levels, Figure 6(b)) was detected by the verification algorithm.

As it can be seen the sensitivity does not significantly increase for increasing popu-
lations for small number of stable generations, while for larger values of stable genera-
tions the sensitivity of the detection algorithm raises of 6-8% for ±1 and 3% for ±2. We
can conclude that a larger number of stable generations not only results in higher quali-
ty watermarked images, but also increases the probability of detecting alterations.

Fig. 6. The percentage of recognized tampered blocks (changing the gray level by ±1 (a) and by
±2 (b)) vs the size of the population, varying the number of generations required for a stable
fitness value, pc = 0.8, pm = 0.05

5 Discussion and Conclusions

The GA-based optimization techniques have been efficiently applied in many differ-
ent watermarking scenarios. A base line watermarking system, due to its modular
nature, can be easily extended to incorporate a GA.

However, the use of a GA rises several important concerns such as the dimension-
ality of the parameters to be adjusted in order to achieve an optimum tradeoff between
robustness and quality, the time overhead, and the statistic assumption (i.e., Gaussian)
of the host signal and noise source. Moreover, for a non-expert user to optimally set
GA parameters is even more difficult.

In this paper, by fine tuning the parameters of the GA, we significantly improved
(> 5dB) the performances of a watermarking system without affecting the sensitivity
of the embedded watermark, but at the expense of larger computation times. It should
be pointed out that from a pure statistical point of view, all the reported results are
statistically significant (p<0.0001), due to the large number of images used for testing,
but from an application point of view, only changes of PSNR greater than 1dB can be
considered a real improvement.

 Automati

From these results, we c
lect the best combination of

As shown in the reporte
tween PSNR, on one side,
side, so we used a linear reg

PSNR = 1.7906*pc‒87.0244

A similar expression can
ing an image:

time = 96.3561*pc‒466.523

As we obtained slightly
(3) and (4) one can derive
tions that provide a given P

Figure 7 shows a knob t
allows the user to set the de
ing on this setting, the syst
rameters, according to the s
results in the fastest running

For instance, if the user
pm=0.03, pc=0.9, a populati
lowest running time of 135
is related to a specific hardw
user’s computer. Here it is
stable generations and not t

Fig. 7. Th

As a final consideration
algorithm is 59.78 dB (pc=
inserting 8 bits-per-block, c
Section 2 of 57.66 dB, wh
noted that in many cases th
different payloads and inse
the papers. Anyway, the dif
to a statistical t-test (p<0.00

The aim of this study w
the best performances, but
optimization problems such
ard GA (SteadyStateGA fr
known techniques to contro

ic Selection of GA Parameters for Fragile Watermarking

can provide the user with an easy tool to automatically
f GA parameters that provides the requested performanc
ed graphs, there seems to be a quasi-linear correlation
 and population size and stable generations on the ot
gression algorithm to come up with the following formu

4*pm+0.0265*popsize+0.0757*stableGen+53.8123

n be derived for the expected running time for waterma

39*pm+1.8742*popsize+5.1698*stableGen‒223.1268

better quality results by setting pc= 0.9 and pm= 0.03, fr
the minimum values of population size and stable gene

PSNR value in the lowest running times.
that is presented in the user interface of the application
esired quality of the resulting watermarked image. Depe
tem automatically selects the best combination of GA
solution of expressions (3) and (4), as outlined above, t
g times.
sets the knob to 57 dB, the system automatically choo

ion size of 70 and number of stable generations = 30, fo
.88 seconds. It should be pointed out that the running ti
ware configuration, and it might be lower or greater on
s just used to find the best values of population size
to predict the running time.

he knob for selecting the desired quality in dB

n, we point out that the overall best performance of
=0.9, pm=0.03, popsize=100, stable generations=50) w
compared to a best performance among the papers cited
en inserting only 4 bits-per-block. Moreover, it should

he comparison with other algorithms is not easy due to
ertion methods used, so we referred to the data reported
fference in quality at this level is very significant accord
01).

was not only that of finding the GA parameters that deli
also to analyze how they influence the GA performance
h the one considered here: in our system, we used a sta
rom GALib) that already implements a number of w
ol how the population evolves. From our experiments,

535

se-
ces.
be-

ther
ula:

(3)

ark-

(4)

rom
era-

n: it
end-
pa-
that

oses
or a
ime
the
and

our
when

d in
d be

the
d in
ding

iver
e in

and-
well-

we

536 M. Botta et al.

found that changing the common GA parameters, such as mutation and crossover
probabilities or population size, does not influence the performances as much as
changing the number of stable generations. We think that this is mainly due to the fact
that the optimization problem has a large number of solutions, so finding a viable one
is pretty simple, but letting the GA running for more generations helps improving the
quality of the solution returned. This should be taken into consideration when using
GAs in other application domains in which there are a lot of possible solutions.

As future work, we are planning to investigate the implications of automatically
choose different GA parameter settings for different sub-images, by predicting the
effort necessary to store the watermark bits in each of them, instead of using the same
configuration on every sub-image.

References

1. Aslantas, V., Ozer, S., Ozturk, S.: Improving the performance of DCT-based fragile wa-
termarking using intelligent optimization algorithms. Optics Communications 282(14),
2806–2817 (2009)

2. Barreto, P.S.L.M., Kim, H.Y., Rijmen, V.: Toward secure publickey blockwise fragile
authentication watermarking. In: IEE Proceedings - Vision, Image and Signal Processing
2002, vol. 148(2), pp. 57–62 (2002)

3. Botta, M., Cavagnino, D., Pomponiu, V.: KL-F: Karhunen-Loève Based Fragile
Watermarking. In: 5th International Conference on Network and System Security
NSS 2011, pp. 65–72 (2011)

4. Botta, M., Cavagnino, D., Pomponiu, V.: Fragile watermarking using Karhunen-Loève
transform: the KLT-F approach. Accepted for publication in Soft Computing, Springer
(2014)

5. Cox, I.J., Miller, M.L., Bloom, J.A., Fridrich, J., Kalker, T.: Digital Watermarking and
Steganography, 2nd edn. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA
(2008)

6. Díaz, D.S., Romay, M.G.: Introducing a watermarking with a multi-objective genetic algo-
rithm. In: Proceedings of the 2005 conference on Genetic and evolutionary computation
(GECCO), pp. 2219–2220 (2005)

7. Gonzalez, R.C., Wintz, P.: Digital Image Processing, 2nd ed. Addison-Wesley Publishing
Company (1987)

8. Huang, H.-C., Chu, C.-M., Pan, J.-S.: The optimized copyright protection system with ge-
netic watermarking. Soft Computing 13(4), 333–343 (2009)

9. Lee, S.-K., Ho, Y.-S.: Fragile watermarking scheme using a simple genetic algorithm. In:
International Conference on Consumer Electronics, pp. 190–191 (2002)

10. Li, L.-J., Wang, G., Fei-Fei, L.: OPTIMOL: automatic Object Picture collecTion via
Incremental MOdel Learning. In: IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 1–8 (2007)

11. Lu, Yinghua, Han, Jialing, Kong, Jun, Yang, Yulong, Hou, Gang: A Novel Color Image
Watermarking Method Based on Genetic Algorithm and Hybrid Neural Networks.
In: Greco, Salvatore, Hata, Yutaka, Hirano, Shoji, Inuiguchi, Masahiro, Miyamoto,
Sadaaki, Nguyen, Hung Son, Słowiński, Roman (eds.) RSCTC 2006. LNCS (LNAI),
vol. 4259, pp. 806–814. Springer, Heidelberg (2006)

12. Shieh, C.-S., Huang, H.-C., Wang, F.-H., Pan, J.-S.: Genetic watermarking based on trans-
form-domain techniques. Pattern Recognition 37(3), 555–565 (2004)

 Automatic Selection of GA Parameters for Fragile Watermarking 537

13. Shih, F.Y., Wu, Y.-T.: Robust watermarking and compression for medical images based
on genetic algorithms. Information Sciences 175(3), 200–216 (2005)

14. Shih, F.Y., Wu, Y.-T.: Enhancement of image watermark retrieval based on genetic algo-
rithms. Journal of Visual Communication and Image Representation 16(2), 115–133
(2005)

15. Usman, I., Khan, A., Chamlawi, R., Majid, A.: Image Authenticity and Perceptual Optimi-
zation via Genetic Algorithms and a Dependence Neighborhood. International Journal of
Applied Mathematics and Computer Sciences 4(1), 37–42 (2007)

16. Wang, R.-Z., Lin, C.-F., Lin, J.-C.: Image hiding by optimal LSB substitution and genetic
algorithm. Pattern Recognition 34(3), 671–683 (2001)

17. Wu, Ming-Ni, Lin, Min-Hui, Chang, Chin-Chen: A LSB Substitution Oriented Image
Hiding Strategy Using Genetic Algorithms. In: Chi, Chi-Hung, Lam, Kwok-Yan (eds.)
AWCC 2004. LNCS, vol. 3309, pp. 219–229. Springer, Heidelberg (2004)

Classification of Potential Multiple Sclerosis
Lesions Through Automatic Knowledge

Extraction by Means of Differential Evolution

Ivanoe De Falco(B)

ICAR-CNR, Via P. Castellino 111, 80131 Naples, Italy
ivanoe.defalco@na.icar.cnr.it

Abstract. In this paper a classifier, designed by taking into account
the user–friendliness issue, is described and is used to tackle the problem
of classification of potential lesions in Multiple Sclerosis. This tool is
based on the idea of making use of Differential Evolution (DE) to extract
explicit knowledge from a database under the form of a set of IF–
THEN rules, can use this set of rules to carry out the classification
task, and can also provide clinicians with this knowledge, thus explaining
the motivation for each of the proposed diagnoses. Each DE individual
codes for a set of rules. The tool is compared over a database of Multiple
Sclerosis potential lesions against a set of nine classification tools widely
used in literature. Furthermore, the usefulness and the meaningfulness
of the extracted knowledge have been assessed by comparing it against
that provided by Multiple Sclerosis experts. No great differences have
turned out to exist between these two forms of knowledge.

Keywords: Pattern Recognition · Classification · Differential Evolu-
tion · Automatic Rule Extraction · Multiple Sclerosis Diagnosis

1 Introduction

Multiple Sclerosis (MS) is an autoimmune disease characterized by the fact that
the immune system acts harmfully on the Central Nervous System [2], causing
nerve demyelination. Normally the larger part of MS lesions are small, yet they
can sometimes have a diameter of some centimeters. The only way to check
the development of this disease consists in clinical examination substantiated
by laboratory investigations. Within these latter, magnetic resonance imaging
(MRI) is very commonly used to visualize lesions [9].

MRI is currently considered as the most reliable paraclinical test with
reference to the issues of diagnosis of the MS disease, evaluation of its evolution,
and medical care of its effects. As a matter of fact, the use of MR images as a
marker for MS requires the advice of experts and the exploitation of all their
knowledge to correctly identify MS lesions.

In general, the process of finding out actual lesions for Multiple Sclerosis can
be seen as a pipelining procedure composed by three tasks: the segmentation of
c© Springer-Verlag Berlin Heidelberg 2014
A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2014, LNCS 8602, pp. 538–549, 2014.
DOI: 10.1007/978-3-662-45523-4 44

Classification of Potential Multiple Sclerosis Lesions Through Automatic 539

the MRI images into groups of homogeneous pixels/voxels representing tissues,
the labeling of those tissues, and finally the actual classification step, meaning
with this the assignment of each potential lesion detected to one of the possible
classes, i.e. either actual lesion or non–lesion.

Yet, this process is very laborious because of the high number of MR images
that must be examined and of the variability in the number of MS lesions per
image, as well as in their size and spatial distribution. Furthermore, the result
of the analysis of an MRI image is a set of potential lesions, some of which
are actually lesions whereas others are not. Therefore, it is very important to
correctly distinguish among them. This is a typical classification task, that has
been up to now carried out prominently by human experts only.

In recent years Clinical Decision Support Systems (CDSSs) are becoming
more and more popular in the medical domain, aiming at supporting clinicians
in their whole clinical process from diagnosis and investigation to treatment and
long-term care. CDSSs have been defined as ‘active knowledge systems which
use two or more items of patient data to generate case-specific advice’ [14].

Among the many tasks that should be dealt with by clinicians, classification
[7] is one of the most important and delicate, and is closely related to diagnosis.
To point out its significance suffice it to say that a wrong classification leads
either to false positive cases, so causing unnecessary worries and medical cares,
or, even worse, to false negative diagnoses, which may cause serious illnesses
to patients, and even their premature death. So it is not surprising that many
classification tools have recently started to be used in the medical domain.

A desirable feature for a classifier is that it should be user–friendly as concerns
both its use and the output information it can provide. Of course, this feature
becomes even more important when the medical diagnostic process is considered:
even if a method can correctly assign patients to diagnoses, it should not be a
kind of a black–box or an oracle. Rather, it should provide clinicians with useful
information on the reasons why any patient is categorized in the given way.

In this paper a tool, designed by carefully taking the above user–friendliness
issue into account, is described and is used to tackle the problem of classification
in Multiple Sclerosis. This system is based on Differential Evolution (DE) [11].

It is important to say here that we wish to make reference to the third above
mentioned step only, i.e. the classification of potential lesions.

Starting from DE, a classifying tool is designed that can extract explicit
knowledge from a database under the form of a set of IF–THEN rules, can use
this set of rules to carry out classification, can output the class assigned to each
instance, and can also provide clinicians with this knowledge, thus explaining
the motivation for each of the proposed diagnoses. Of course, this extracted
knowledge should never be seen as a substitute of doctor’s experience, rather
both as a confirmation of his/her knowledge and as a set of possible suggestions
to complement doctor’s knowledge, to be clinically validated.

The tool described here is based on DE and performs Rule Extraction, so
it is referenced within this paper as DEREx. The originality of the approach
presented here lies in the fact that up to now DE has been used in classification

540 I. De Falco

tasks in combination with other tools as neural networks e.g. [10], bayes–based
methods [13], fuzzy logic tools [1], nearest neighbor [12], and so on, but just
seldom has it been applied on its own [8]. More importantly, in all cases in
which DE has been used on its own, it has never been assigned the task of
extracting by itself classification rules from databases, as it can be noted in [3],
where a wide list of applications of DE is reported. Rather, DE is used for other
tasks, such as optimizing parameters, optimizing membership functions, etc.

DEREx is used here for multiple sclerosis because recent experiments over
other medical databases [4] showed its superiority over other classifiers.

A paramount issue when automatically extracting knowledge from databases
is the investigation about whether or not the set of rules found is useful and
meaningful for the clinicians. In fact, the extracted knowledge could allow
achieving very good classification accuracy, yet it could be very far from the one
a doctor would ever use, and it could even be just a kind of a tricky combination
of values for the database attributes, without any actual medical meaning. This
issue should always be addressed when using one of these rule–extracting tools.

In Section 2 our rule extractor DEREx is shortly described. Section 3 reports
on the experimental results on a real Multiple Sclerosis database. The resulting
explicit rules are given in Section 4. In Section 5 the extracted knowledge is
compared with that provided by Multiple Sclerosis experts. Finally, in Section
6 conclusions are given and future works are outlined.

2 The Rule Extractor: DEREx

To face this problem of supervised classification, we have taken advantage of
our DEREx tool [4] to carry out the automatic extraction of a set of explicit
IF-THEN rules from the database. This tool relies on Differential Evolution.

Due to lack of space, describing DEREx with sufficient details is here
impossible, and reference to [4] should be made. Just to give some necessary
information, each solution in the DE population codes for a set of IF–THEN
rules, each of which contains AND–connected literals on the database variables.
For each class more than one rule can be contained in the individual solution, and
these rules can be seen as logically connected in OR. A very important parameter
is the maximum number of rules that can be contained in a set, denoted as NR.

During evolution, the fitness of each individual is the percentage of the cases
in the training set that are correctly classified by using the set of rules encoded in
that individual. Indeterminate items, i.e. the items assignable to either no class
or to more than one through the set of rules encoded by the individual being
evaluated, are treated as incorrectly classified during training, whereas they are
assigned to exactly one class during testing by a recovery mechanism [4].

In the top pane of Fig. 1 the uppermost part says that each DE individual is in
this case a vector, containing real values, representing a set of NR classification
rules written in sequence in the individual.

The middle part of the top pane shows that each rule is represented by a set
of fields. Namely, each rule consists in a Rule Active field, followed by a number

Classification of Potential Multiple Sclerosis Lesions Through Automatic 541

of NV Literal Representation groups (where NV is the number of variables in
the database), and finally by a Class field. In the rule, database variables are
listed sequentially, meaning that the generic i-th Literal Representation deals
with the i-th variable of the database. Rule Active tells whether or not the rule
should be considered during classification. This is decided by comparing the real
value contained in this field against a real value Rule Threshold (RT), which is
a parameter for our tool: if the former value is higher, then this rule is seen as
active in the current individual and should be used in the classification process.

Each Literal Representation field encodes a zero-th order literal, i.e. a literal
in which only one variable is contained and is compared with one or two real
values by means of relation operators. As shown in the bottom part of the top
pane, on its turn this field consists of four fields, each containing a real value, as
it is detailed in the following paragraphs.

The first field is the Literal Active field. Similarly to the Rule Active field,
it determines whether or not the literal is present in the rule. Also here, a real-
valued parameter Literal Threshold (LT) is defined, and the generic literal under
account is active if and only if the value in this field is higher than LT .

The second field is called Literal Type. It encodes the relation operator that
compares the variable and the constant value(s). We have decided to take the
following seven different operators into account: <,≤,=,≥, >, IN,OUT . The
first five operators need one constant value, i.e. C1, whereas the latter two
need two constant values C1 and C2. The operator IN checks if the value of
the variable contained in the literal is within the numerical range expressed by
C1 and C2 in their order of appearance in the individual. The operator OUT ,
instead, checks if the value taken on by the variable in the literal is outside the
range [C1 - C2], meaning that either it is lower than C1 or it is greater than C2.

The third and the fourth fields of the Literal Representation field hold,
respectively, the real values for the constants C1 and C2. C1 will be used for
each active literal, while C2 only if the Literal Type field contains IN or OUT.

Finally, the Class field contains the value representing the class to which all
the database instances that satisfy the considered rule are assigned.

The bottom pane of Fig. 1, instead, shows an example for a database with
two variables var1 and var2, in which we have set NR = 3, RT = 0.50, and
LT = 0.50. Starting from the values contained in each field, it can be realized
that rules 1 and 3 are active, whereas rule 2 is not. In rule 1, both literals
are active, whereas in rule 3 just the literal about var2 is. Therefore, the DE
individual in the figure encodes the following set of rules:

IF (var1 ≤ 6.14) AND (var2 ≥ 3.41) THEN class=2

IF (var2 ≤ 3.12) THEN class=1

3 Experiments

DEREX has been evaluated on a dataset, opportunely anonymized, collected at
the Department of Bio-Morphological and Functional Sciences of the University

542 I. De Falco

Fig. 1. Top: general structure of individuals in DEREx. Bottom: an example of an
individual and its decoding into a set of IF–THEN rules.

Table 1. The sclerosis database

variable unit range description
surrounding white matter 0.32 - 1.00 Amount of White Matter enclosing a lesion

compactness 0.31 - 1.98 Degree of compactness of a lesion. For a given shape,
compactness is high either if the volume is large or if
the enclosing surface is small, i.e. the object is strongly
compact

tissue contrast 0.56 - 1.00 Minimum color contrast to detect a WML in the
multiparametric space

volume 3 - 10,522 Lesion volume in terms of the number of voxels
sphericity 0.01 - 1.23 Degree of sphericity of a lesion. The more elongated the

lesion is and the more it deviates from a sphere, the lower
sphericity will be

of Naples Federico II. In particular, starting from MR brain images of 120
patients with clinically definite MS, a multiparametric segmentation procedure
has been preliminarily applied to the whole data set in order to identify normal
brain tissues or clusters of potentially abnormal white matter voxels, labeled
as White Matter Potential Lesions (WMPLs). For each WMPL, the features
described in Table 1 represent the actual input data for the DSS.

Classification of Potential Multiple Sclerosis Lesions Through Automatic 543

The resulting database contains 2844 items, 1905 of which represent actual
lesions (class 2) and 939 showing no actual lesions (class 1).

As concerns DEREx, a DE/rand–to–best/1/bin mutation strategy has been
used, and the values for the parameters have been set as follows: population size
NPop = 30, number of generations Gen = 500, crossover ratio CR = 0.5, scale
factor F = 0.5, NR = 10, RT = 0.50, and LT = 0.50. No preliminary tuning
phase has been specifically effected over this sclerosis problem for the choice of
these values, rather the same values as in [4] have been used.

In each run 10–fold cross-validation has been carried out, so that, for the
generic i-th fold, the i-th 10% of the data, in their order of appearance in the
database, is kept for testing, and training takes place on the remaining 90%. For
the generic i-th fold the result is represented by the classification accuracy over
the related testing set %Ci

Te. Then, the result for the whole run is the average,
over the 10 folds, of the 10 %Ci

Te values achieved, i.e. AvC = 〈%Ci
Te〉.

A total number of 25 runs, each of them being a 10–fold cross-validation, has
been effected. The results have been collected in terms of average percentage of
correct classification over the testing set over the 25 runs AvCC = 〈AvC〉.

As concerns the other classification techniques used in the comparison on
this MS problem, reference has been made to the Waikato Environment for
Knowledge Analysis (WEKA) system release 3.4 [6] that contains a large number
of such techniques, divided into groups (Bayesian, based on functions, lazy, meta-
techniques, tree-based, rule-based, other). From each such group at least one
representative has been chosen. Due to lack of space, their names are shown in
Tab. 2. Three rule–based classifiers have been considered, i.e. OneR, Part, and
Ridor, since we are of course more interested in this kind of tools.

Similarly to what was done for DEREx, no preliminary parameter tuning has
been carried out for all of the above techniques as well, so the parameter values
used for each such method are those set as default in WEKA.

Furthermore, since also for these classification techniques results must be
provided in terms of average results over 25 runs, for each of them either
the starting seeds or some parameter values have been varied. Actually, RBF,
AdaBoost, Part, and Ridor are based on a random starting seed so that the
25 runs for them have been carried out by varying this value. Some other
techniques, instead, do not depend on any starting seed, so the 25 runs have
been carried out as a function of a parameter typical of the technique: alpha for
Bayes Net, globalBlend for KStar, bias for VFI, and minBucketSize for OneR.
Finally, NBTree depends neither on an initial seed nor on any parameter, so only
one run has been performed for it on the database.

Also for all of these tools 10–fold cross–validation has been carried out.
Table 2 shows the results, achieved by each technique on the database,

expressed in terms of AvCC . Namely, for each tool the average accuracy AvCC

over the 25 runs, the highest value of AvC (best acc), and the lowest one
(worst acc) are shown. Also the standard deviation std dev is reported for the
techniques for which multiple runs are carried out. Finally, the last row of the
table reports the rank for each tool based on AvCC .

544 I. De Falco

Table 2. The 10-fold classification accuracy for all the classifiers

DEREx Bayes Net RBF Kstar AdaBoost
AvCC 87.49 78.07 82.20 85.60 82.35
best acc 88.54 78.09 82.24 85.90 82.35
worst acc 86.90 78.02 82.14 85.27 82.35
std dev 0.46 0.03 0.04 0.21 0.00
rank 1 8 7 5 6

NBTree OneR Part Ridor VFI
AvCC 86.81 72.03 87.20 86.14 72.40
best acc — 73.91 87.20 87.03 72.40
worst acc — 65.30 87.20 85.44 72.40
std dev — 2.89 0.00 0.59 0.00
rank 3 10 2 4 9

DEREx turns out to be the best tool, the runner-up being Part. It is worth
noting that DEREx performs better than all the other rule–based tools.

4 The Advantage of DEREx: The IF-THEN Rules

The clear advantage of DEREx consists in the fact that it provides users with
explicit knowledge automatically extracted from the database under the form
of IF-THEN rules. In fact, it can straightforwardly express rules to perform
diagnosis. Furthermore, DEREx can also perform feature extraction, since the
achieved rules may contain some of the database attributes only, which can be
seen as an extremely useful support for a correct diagnosis. This has turned out
to be true in [4] where seven medical databases have been faced. In this way,
physicians are helped with useful information. Of course, their opinion about
the correctness and the usefulness of these rules is of paramount importance for
medical practice. In the following the best set of rules found for the Multiple
Sclerosis problem is reported. Namely, they are those with the highest percentage
of correct classification on the testing set achieved on a fold in all the executions.

IF (surrounding white matter < 0.81) AND (compactness IN (1.56 - 1.88)) AND
(volume IN (7,224 - 10,395)) THEN lesion

IF (surrounding white matter > 0.40) AND (compactness ≥ 0.36) AND
(tissue contrast > 0.63) THEN lesion

IF (compactness IN (0.60 - 1.62)) AND (tissue contrast > 0.65) AND
(volume > 8, 498) THEN no lesion

IF (surrounding white matter ≥ 0.68) AND (compactness OUT (0.88 - 1.85))
AND (volume ≤ 4, 230) AND (sphericity ≥ 0.02) THEN lesion

IF (surrounding white matter IN (0.41 - 0.57)) AND (tissue contrast ≤ 0.58)
AND (volume > 1, 817) AND (sphericity IN (0.15 - 0.19)) THEN lesion

IF (compactness OUT (1.39 - 1.47)) THEN no lesion

As it can be seen, the best individual has six active rules, four of which
classify for lesion and two for no lesion. Thus, even if the OR connector is not

Classification of Potential Multiple Sclerosis Lesions Through Automatic 545

Table 3. Statistics of the best set of rules

Correct Classification Rate Sensitivity Specificity
Training Set 89.11% 89.83% 87.78%
Testing Set 93.43% 90.52% 98.80%

Table 4. Linguistic variables and terms

variable Terms
surrounding white matter bit, partially, almost completely, completely

compactness weak, strong
tissue contrast little, great

volume small, medium, large
sphericity low, moderate, high

tissue structure normal, abnormal

explicitly present in DEREx, the set of rules performs implicitly an OR over each
class by using as many rules as needed to achieve good classification accuracy.

This set of rules has been obtained for fold 7, and its values of correct
classification rate, sensitivity, and specificity over both the training set and the
testing set are reported in Tab. 3.

5 Comparison Between Extracted Knowledge and
Experts’ Knowledge

Once we have seen that DEREx is able to extract knowledge that allows
classifying with a good accuracy, the question arises whether or not this
automatically extracted knowledge is useful, and, even more important, if it is
meaningful for experts. To investigate this, we need to compare the knowledge
provided by the experts against that provided by DEREx.

The medical knowledge needed to classify WMPLs has been defined in
cooperation with a team of physicians, starting from the sclerosis features
contained in the faced database, and can be stated, in natural language, as
follows. The tissue composing a WMPL is abnormal if the lesion is somewhat
surrounded by WM, characterized by a strong compactness and greatly contrasted
in the multiparametric space. The sphericity is moderate or high in small lesions,
whereas, as their volume increases, the sphericity starts decreasing progressively.
Finally, as volume increases and sphericity starts lessening, a lesion can be
surrounded by gradually decreasing WM and its compactness still remains high.

As it can be seen, the experts’ knowledge is based on a fuzzy view, given
the use of words such as somewhat, small, volume increases, starts decreasing,
gradually decreasing, and so on. Furthermore, as it is often the case in the medical
domain, this knowledge is based on positive evidence only, i.e. it contains only
sentences representing the presence of an actual lesion.

In accordance with this knowledge, the linguistic variables and the fuzzy
values shown in Table 4 have been identified.

546 I. De Falco

Table 5. IF–THEN form of experts’ knowledge

1) IF [Sphericity is (Moderate OR High)] AND [Compactness is Strong]AND [Volume is
Small] AND [TissueContrast is Great] AND [SurroundingWhiteMatter is Completely] THEN
[TissueStructure is Abnormal]

2) IF [Sphericity is Moderate] AND [Compactness is Strong]AND [Volume is Medium] AND
[TissueContrast is Great] AND [SurroundingWhiteMatter is (AlmostCompletely ORCompletely)]
THEN [TissueStructure is Abnormal]

3) IF [Compactness is Strong]AND [Volume is Large] AND [TissueContrast is Great]
AND [SurroundingWhiteMatter is (Partially OR AlmostCompletely OR Completely)] THEN
[TissueStructure is Abnormal]

4) ELSE [TissueStructure is Normal]

Table 6. Values for the shapes of the trapezoids

Variables Terms α1 α2 α3 α4
Surrounding Bit 0.32 0.32 0.33 0.38

White Partially 0.33 0.38 0.40 0.41
Matter Almost Completely 0.40 0.41 0.46 0.95

Completely 0.46 0.95 1.00 1.00
Compactness Weak 0.31 0.31 0.36 0.74

Strong 0.36 0.74 1.98 1.98
Tissue Little 0.56 0.56 0.61 0.92

Great 0.61 0.92 1.00 1.00
Volume Small 3 3 3,177 3,529

Medium 3,177 3,529 7,051 7,697
Large 7,051 7,697 10,522 10,522

Sphericity Low 0.01 0.01 0.03 0.10
Moderate 0.03 0.10 1.02 1.03

High 1.02 1.03 1.23 1.23

These linguistic variables and values have been used to write the three if-then
rules aimed at identifying the positive cases, i.e. when a potential lesion is an
actual one. Table 5 shows those rules and the default ELSE one.

It is to be noted that the knowledge provided by the experts is in a fuzzy form,
whereas that extracted by DEREx contains crisp rules. To effectively compare
these two sets of rules, that proposed by DEREx should be reformulated into
a fuzzy form. So, it is important to transform the crisp values contained into
suitable fuzzy values. To this aim, reference can be made to [5], where a DE tool
was used to tune the parameters of a fuzzy system working on this database.
Each fuzzy value was there represented as a trapezoid, so four real values were
needed to identify the shape of each trapezoid. Those values represent the x–
values for the bottom–left, top–left, top–right, and bottom–right vertices of the
trapezoid, the y–values being 0 for the bottom vertices and 1 for the top ones.
Table 6 shows the results of the tuning of the fuzzy values and the correspondence
between the crisp values and the fuzzy ones for each database variable.

By making use of those values, the set of crisp rules found by DEREX and
shown in the previous subsection can now be rewritten as shown in Tab. 7.

The correspondence between the two kinds of knowledge can be visually
understood by looking at Fig. 2. The figure contains both the sets of fuzzy
rules for the presence of lesions only, namely the top pane shows the knowledge

Classification of Potential Multiple Sclerosis Lesions Through Automatic 547

Table 7. Fuzzy form of DEREX knowledge

1) IF (white matter IS (bit surrounded OR partially surrounded OR almost completely
surrounded)) AND (compactness IS strong) AND (volume IS large) THEN lesion

2) IF (white matter IS (almost completely surrounded OR completely surrounded)) AND
(compactness IS strong) AND (contrast IS great) THEN lesion

3) IF (white matter IS completely) AND (compactness IS weak) AND (volume IS small) AND
(sphericity IS (moderate OR high)) THEN lesion

4) IF (white matter IS almost completely) AND (contrast IS little) AND (volume IS (medium OR
large)) AND (sphericity IS moderate) THEN lesion

Fig. 2. Extracted knowledge (top pane) and experts’ knowledge (bottom pane), and
their correspondence

extracted, whereas the bottom one reports the experts’ knowledge. In the figure
similar concepts are represented by a same color in both sets.

As it can be noted, the rule 1 of DEREx almost completely corresponds to
the rule 3 as stated by the experts (both are represented in green color). The
variables involved are the same, apart from sphericity that is accounted for by
experts whereas DEREx does not mention it, and the fuzzy values taken on by
the variables are the same in both cases. Rule 2 found by our system corresponds
to rule 1 (blue color represents them both). In this case the correspondence is
perfect: the variables involved are the same in both rules, and so are the fuzzy
values they take on. Rule 3 of DEREx corresponds to the first part of experts’ rule
2 (red color represents them), and the two common variables take on exactly the

548 I. De Falco

same values in both rules, whereas DEREX uses two more variables. Finally, rule
4 of DEREx corresponds to the second part of rule 2 (they both are represented
in yellow): also in this case DEREx uses two more variables.

In summary, from the analysis of the two kinds of knowledge it appears
evident that the knowledge automatically extracted by DEREx is extremely
similar to that provided by experts, hence proving that the proposed system is
capable of extracting knowledge that is useful and meaningful.

The slight differences in the two sets of rules can be seen as further suggestions
for the experts. For example, rule 1 of DEREx, very similar to the third rule
by the experts, might suggest the doctors the question whether, in that general
frame proposed by their rule, a decrease in sphericity is really important. Vice
versa, rule 3 of DEREx might suggest doctors to take into account white matter
and compactness too, when volume is small and sphericity is moderate or high.

6 Conclusions and Future Work

In this paper, an approach based on Differential Evolution for the automatic
classification of potential lesions in a Multiple Sclerosis database has been
followed. Namely, a tool called DEREx has been used, which automatically
extracts explicit knowledge from the database under the form of IF–THEN rules
containing AND–connected literals on the database variables.

Firstly, DEREx has been run and the most effective set of rules in terms
of highest classification accuracy in a ten–fold cross–validation has been found.
Secondly, the tool has been compared over the same database against a set of
nine classification tools widely used in literature.

The results have proven the viability and the effectiveness of the proposed
approach, since this turns out to provide the highest classification accuracy.

The advantage of DEREx consists in providing users with explicit knowledge
automatically extracted from the database, since it can straightforwardly express
IF-THEN rules to perform diagnosis, differently from many of its competitors.

Attention has been paid to the usefulness of the extracted knowledge, by
comparing it against that provided by Multiple Sclerosis experts. Results have
shown that the two different kinds of knowledge are actually quite similar, thus
proving the quality of the approach followed, at least for this problem.

Future work will involve investigation about the influence of the parameters
NR, RT , and LT on solution quality.

Another issue is that DEREx is based on the basic version of DE. Yet, more
recently, several enhanced DE versions have appeared that aim at softening the
main problem DE suffers from, i.e. that of a limited amount of search moves.
So, we aim to use some new versions to further improve DEREx performance.

Moreover, closer cooperation with physicians will be set. This will involve
receiving other real databases from them, also with reference to different diseases.

Finally, since physicians make often reference to fuzzy concepts as small,
high, etc., the tool will be improved to automatically extract fuzzy rules too.

Classification of Potential Multiple Sclerosis Lesions Through Automatic 549

References

1. Aliev, R.A., Pedrycz, W., Guirimov, B.G., Aliev, R.R., Ilhan, U., Babagil, M.,
Mammadli, S.: Type-2 fuzzy neural networks with fuzzy clustering and differential
evolution optimization. Information Sciences 181(9), 1591–1608 (2011)

2. Bobholz, J.A., Gremley, S.: Multiple sclerosis and other demyelinating disorders.
In: Schoenberg, M.R., Scott, J.G. (eds.) The Little Black Book of Neuropsychology:
A Syndrome-Based Approach, pp. 647–662. Springer (2011)

3. Das, S., Suganthan, P.N.: Differential evolution: A survey of the state-of-the-art.
IEEE Transactions on Evolutionary Computation 15(1), 4–31 (2011)

4. De Falco, I.: Differential evolution for automatic rule extraction from medical
databases. Applied Soft Computing 13(2), 1265–1283 (2013)

5. Esposito, M., De Falco, I., De Pietro, G.: An evolutionary-fuzzy dss for assessing
health status in multiple sclerosis disease. International Journal of Medical
Informatics 80(12), e245–e254 (2011)

6. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The
weka data mining software: An update. SIGKDD Explorations 11(1), 10–18 (2009)

7. Han, J., Kamber, M.: Data mining: concept and techniques. Morgan Kaufmann
(2001)

8. Maulik, U., Saha, I.: Automatic fuzzy clustering using modified differential
evolution for image classification. IEEE Transactions on Geoscience and Remote
Sensing 48(9), 3503–3510 (2010)

9. Miller, D., Grossman, R., Reingold, S., McFarland, H.F.: The role of magnetic
resonance techniques in understanding and managing multiple sclerosis. Brain 121
3–24 (1998)

10. Özbakir, L., Baykasoğlu, A., Kulluka, S.: A soft computing-based approach for
integrated training and rule extraction from artificial neural networks: Difaconn-
miner. Applied Soft Computing 10(1), 304–317 (2010)

11. Price, K., Storn, R.: Differential evolution: Numerical optimization made easy. Dr.
Dobb’s Journal, 18–24 (1997)

12. Triguero, I., Garćıa, S., Herrera, F.: Differential evolution for optimizing the
positioning of prototypes in nearest neighbor classification. Pattern Recognition
44, 901–916 (2011)

13. Wu, J., Cai, Z.: Attribute weighting via differential evolution algorithm for
attribute weighted naive bayes (wnb). Journal of Computational Information
Systems 7(5), 1672–1679 (2011)

14. Wyatt, J.C., Spiegelhalter, D.J.: Field trials of medical decision-aids: potential
problems and solutions. In: Proceedings of the Annual Symposium on Computer
Application in Medical Care, pp. 3–7 (1991)

EvoINDUSTRY

Reducing the Number of Simulations
in Operation Strategy Optimization

for Hybrid Electric Vehicles

Christopher Bacher1(B), Thorsten Krenek2, and Günther R. Raidl1

1 Institute of Computer Graphics and Algorithms,
Vienna University of Technology, Vienna, Austria

{bacher,raidl}@ads.tuwien.ac.at
2 Institute for Powertrains and Automotive Technology,

Vienna University of Technology, Vienna, Austria
thorsten.krenek@ifa.tuwien.ac.at

Abstract. The fuel consumption of a simulation model of a real Hybrid
Electric Vehicle is optimized on a standardized driving cycle using meta-
heuristics (PSO, ES, GA). Search space discretization and metamodels
are considered for reducing the number of required, time-expensive simu-
lations. Two hybrid metaheuristics for combining the discussed methods
are presented. In experiments it is shown that the use of hybrid meta-
heuristics with discretization and metamodels can lower the number of
required simulations without significant loss in solution quality.

Keywords: Hybrid Electric Vehicles · Hybrid metaheuristics · Search
space discretization · Metamodels

1 Introduction

For the automotive industry these days are game changing. Todays customer
expectations and up-coming legal restrictions require the continuous development
of vehicles with lower fuel consumptions and less emissions. Ongoing improve-
ment of Internal Combustion Engines (ICEs) is one way to meet this challenge.
But increasingly, hybridization of drives is seen as a promising alternative too —
especially when the improvement of traditional drives reaches its limits.

The most popular form of hybridization today are different variants of hybrid
electric powertrains built into Hybrid Electric Vehicles (HEVs). They integrate
an ICE with one or more Electric Machines (EMs) and complement their fuel
tank with electro-chemical energy storages (typically). The powertrain structure
defines how different machines are able to interoperate; e.g., in a series hybrid
the ICE and an EM generate electricity for storage while a second EM propels the
vehicle, and in a parallel hybrid all machines are used for propulsion concurrently.
Some HEVs, like the HEV considered in this paper, combine multiple concepts.

Operational modes specify the concrete interaction behaviour of a HEV’s
components. Specific driving situations constrain the allowed operational modes
c© Springer-Verlag Berlin Heidelberg 2014
A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2014, LNCS 8602, pp. 553–564, 2014.
DOI: 10.1007/978-3-662-45523-4 45

554 C. Bacher et al.

according to internal and environmental factors, like the State of Charge (SOC)
of the battery, axle torques or requirements of driving dynamics. Performance
and efficiency of HEVs depend strongly on the active mode chosen by the oper-
ation strategy for different driving situations. Optimizing the parameters of the
operation strategy’s decision criteria is therefore of utmost importance for the
HEV’s fuel efficiency. As specifics of HEVs and operation strategies are often
vastly different, experience in manual adjustment is sparse. Therefore, auto-
mated algorithmic approaches pose promising alternatives.

In this paper we investigate how to efficiently adjust the (continuous) param-
eters of a new operation strategy for a “real” HEV1 by applying metaheuristic
optimization methods in combination with metamodels and simple, but effective
post-processing techniques.

Our metaheuristic optimization techniques rely on the evaluation of a simu-
lation model of the considered HEV to test different parameter configurations,
i.e. candidate solutions, for the operation strategy. Parameter configurations are
evaluated by simulating the HEV on a standardized driving cycle defining a
required velocity for each second of the cycle. Fuel consumption and SOC of the
battery are measured throughout the driving cycle and are used to compute an
objective value for a candidate solution, as described in Section 7. Besides mea-
suring these output values of the simulated HEV, the simulation is considered
to be a black box function. No further information about the internal state and
calculations of the simulation software is currently available to the optimization.

A major challenge for the metaheuristic optimization are the considerably
long simulation times, limiting the overall number of simulations which can
be performed in practice. For the model at hand the mean simulation time is
about seven minutes per candidate solution.Some parameter configurations even
lead to simulation times up to twenty minutes, hamstringing the optimization
significantly. Further soft constraints in the context of practical application have
to be considered. In our concrete case, license restrictions of the simulation soft-
ware2 constrain the maximum number of parallel simulations to only eight.

The main goal of this paper is therefore to explore ways to reduce the num-
ber of necessary simulations during optimization, while adhering to the solution
quality of well known, unmodified reference algorithms. We intend to achieve this
by training neural networks and ensemble methods as regression models of the
simulations. We also consider how to evaluate the performance of the regression
models under the aspect of their integration in the optimization process. Further
we exploit a priori characteristics of the search space to limit its effective size.
This is done in two ways. First by considering inter-parameter constraints in the
form of inequalities and correspondingly repairing infeasible solutions. Second
by exploiting the experience that the search space in similar HEV optimiza-
tion problems often contain many plateaus or areas with shallow slopes. This
1 Due to Non-Disclosure Aggrements we are a not allowed to disclose the actual vehicle.
2 We use the automotive simulation package GT Suite 7.2 from Gamma Technologies,

Inc. http://www.gtisoft.com

http://www.gtisoft.com

Reducing the Number of Simulations in Operation Strategy Optimization 555

observation allows to discretize the continuous domains of the problem to finite
sets, without losing significant solution quality.

In Section 2 we give an overview of related work. Section 3 describes the used
metaheuristics, and Section 4 details the search constraints. Section 5 introduces
the employed regression models, while Section 6 integrates the mentioned mod-
ifications into a hybrid, phased metaheuristic. In Section 7 we describe the con-
sidered HEV model, its operation strategy and the objective function in more
detail and present our experimental results. Finally Section 8 concludes this
paper and gives an outline of possible future work.

2 Related Work

Concerning HEV optimization, in [13] a control strategy for a parallel HEV is
optimized by Sequential Quadratic Programming (SQP). Optimization is applied
on a response surface fit to data from a Design of Experiments (DOE). Their
results indicate that building metamodels for simulations of a driving cycle can
be done in principle.

Several metaheuristics are studied for a multi-objective HEV optimization
in [10]. The methods try to find pareto-optimal solutions that minimize fuel
consumption and multiple emission type like CO, Hydrocarbons, and NOx. In
contrast, we focus solely on minimizing the fuel consumption.

The current paper builds upon previous work in [15], where a new and effec-
tive hybrid metaheuristic — PSAGADO — for fuel consumption optimization
has been presented, and the first author’s master thesis [3]. The hybrid meta-
heuristic combines a Particle Swarm Optimization, a Genetic Algorithm, and a
Downhill-Simplex to improve the overall performance of the heuristic. Here, we
pick up some of the open questions regarding approximation of fitness functions
by surrogate models and search space properties.

An overview of basic techniques for simulation-based optimization is given in
[1]. The paper describes the use of metamodels/surrogates as replacements for
the original simulation, for reducing high computation times, e.g., by using the
metamodel as filter for the simulation.

In [12] a framework for combining neural networks with an Evolution Strategy
(ES), with Covariance Matrix Adaption (CMA), is proposed. Their strategies are
evaluated on a set of standard test functions. Two approaches are described. The
first approach, called “controlled individuals”, falls back to the original fitness
function for a specified fraction of the population, after all individuals have
been evaluated with the approximative fitness function. Depending on how the
reevaluated individuals are chosen, the approximative fitness function acts as a
filter. The second approach is termed “controlled generations”, where every few
generations the whole population is evaluated with the original fitness function.
Further the authors of [12] propose a method for managing the approximative
fitness functions and an online training schedule for selecting and weighting new
training data, based on the covariance matrix of the ES.

556 C. Bacher et al.

3 Used Metaheuristics

Optimization of the HEV’s operation strategy is carried out by population-
based metaheuristics. A priori, no information is available which metaheuristic
performs best on the given problem, especially with the modifications to reduce
running times in place. Based on our experience from [15], the following, well-
known metaheuristics have been selected and tested in different usage scenarios,
as described in Section 6.
Canonical Particle Swarm Optimization. As first metaheuristic we con-
sider a Canonical Particle Swarm Optimization (CPSO) in the “velocity update
with inertia”-form as described in [17]. Originally proposed in [14], Particle
Swarm Optimization (PSO) is a population-based metaheuristic where each par-
ticle, i.e. candidate solution, possesses a position xi and a velocity vi in the
search space. The algorithm proceeds every iteration by evaluating the objective
function at positions xi, updating the velocities according to

vi := ωvi + φ1 · rand[0,1] · (xLi
− xi) + φ2 · rand[0,1] · (xG − xi) (1)

where the constants φ1 and φ2 control the influence of their respective terms on
the update and rand[0,1] returns uniform random vectors in [0, 1]. The velocity
update in (1) decreases the velocity in the particle’s previous direction, and
reorients it towards its local best solution xLi

and global best solution xG. The
updated velocity is used to move each particle to xi := xi + vi. We modified
the standard algorithm s.t. a particle repositions itself randomly if it has not
improved after l iterations.
Evolution Strategy with Active Covariance Matrix Adaption. An ES
with Active Covariance Matrix Adaption (A-CMA)3 has been implemented, as
described in [11]. In each generation the ES samples λ individuals around a
mutation center xw according to a N (0,C) normal distribution. After evaluating
the new population, the mutation center is moved towards the averaged position
of the μ best individuals. The direction of the search, stored in C, and the actual
step size σ are decoupled and are updated seperately. The covariance matrix
C is updated s.t. existing covariance information is reduced and augmented
by information from the evolution path pc and information about the current
population Z:

C := (1 − ccov)C + ccovpcp
T
c + βZ (2)

The evolution path pc stores weighted information about the averaged best
search directions of the μ best individuals, over all generations. The popula-
tion term Z modifies the original covariance matrix by rotating and stretching
C towards the μ best individuals and away from the μ worst individuals of the
current generation. Constants ccov and β weight the update terms. The update
scheme is a variant of [9], with the intent to increase the adaption speed of C,
by actively penalizing bad mutation steps.
3 As the algorithm description is rather complex, we recap only the intention of the

algorithm. For a complete description we refer to [11].

Reducing the Number of Simulations in Operation Strategy Optimization 557

Sampling Genetic Algorithm. Last but not least, a very simple Genetic
Algorithm (GA) is implemented for sampling purposes, which are described in
detail in Section 6. The GA controls a population of N individuals xi, i =
1, . . . , N . In each generation the population is evaluated and a new population
is generated. The new population is formed by two mechanisms. The remaining
�R · N� individuals, 0 ≤ R ≤ 1, are randomly sampled from the search space to
introduce variance into the population and to generate a diverse set of training
data. The remaining �(1 − R) · N� individuals are created by recombination: By
a tournament selection of size k, to select two parents xp1 , xp2 are selected and
an offspring is derived, by treating the selected parents as corners of a hypercube
from within which a point is chosen uniformly at random.

4 Employed Post-Processing Techniques

The developed optimization framework allows to integrate post-processors for
modifying solutions generated by the afore-mentioned metaheuristics. Modifi-
cation of solutions is used to enforce search space constraints, like parameter
domains or interdependencies between parameters. Interdependencies occur, for
the HEV model at hand, in the form of simple inequalities like maxi∈L bi ≤ a ≤
minj∈U bj bounding some parameter a by lower bound parameters L and upper
bound parameters U . Violation of inequalities renders a solution infeasible for
simulation. The post-processor repairs infeasible solutions by assigning parame-
ter a of the violated inequality a feasible random value. Feasible values can be
easily determined by considering the parameter’s domain and the inequalities to
be satisfied.

Besides constraining parameters, a post-processor is used to discretize selected
dimensions of the search space. Experience shows that search spaces for HEV mod-
els contain many plateaus with solutions of similar fitness. Evaluation of multiple
solutions on such a plateau is costly and should therefore be avoided. Discretiza-
tion supports this, as it limits the domains of the selected parameters to a fixed
number of equidistant points. Parameter values are then mapped to the closest
discretization point in the parameter’s domain.

Currently this mapping is performed in a Lamarckian way i.e. the discretized
solution actually replaces the original one. Temporary discretization i.e. map-
ping only for the evaluation process and retaining the original solution for the
optimization process, is also an option which might be considered in future work.

In our implementation discretization points are always equidistantly dis-
tributed and their number is adapted during the optimization process, starting
with very few points and progressing to a finer resolution of the search space.
Different ways to refine the number of discretization points during optimization
have been considered, like adapting them according to a linear function every
iteration or adapting them only two or three times during optimization, in a
step-wise fashion. Discretization makes it reasonable to store all computed solu-
tions in a database, which acts as cache for objective function values. Preliminary
experiments have shown that step-wise adaption is beneficial, as the number of

558 C. Bacher et al.

cache hits is higher due to the fact that the positions of the discretization points
is not modified every iteration.

5 Regression Models as Approximative Fitness Functions

Another way to decrease the number of simulations is to use regression models
as approximative fitness functions, as done in [12] and [1]. Information about
previous solutions is integrated into regression models to either act as a filter for
bad solutions or to stretch the gathered information for several generations. In
Section 6 we present hybrid metaheuristics for both approaches.

The range of functions which the regression models can fit to the gathered
data is extremely important, as both over- and underfitting may have a negative
impact on the optimization performance. As an ideal shape of the regression
function cannot be known before the optimization is finished, a heuristic app-
roach has to be considered. Therefore different regression techniques — so called
ensemble methods [16] — based on Multilayer Perceptrons (MLPs) are evaluated
beforehand and the “best” model is chosen for use.

A typical error function used for regression is the Sum-of-Squares Error:

SSE(ϕ(.),X) =
|X|∑
i=1

(yi − ϕ(xi))2 (3)

The set X denotes all inputs {x1, . . . ,x|X|} and target values yi over which the
SSE is computed. The trained regression function ϕ(.) : Rd → R receives the d
input parameters of the HEV model as input.

For our purpose, however, SSE is not an appropriate error function for model
selection. If the described metaheuristics are considered, it can be seen that the
exact objective value of a solution is not required. Rather the order of candidate
solutions is important to the metaheuristics’ selection criteria.

Therefore Mean Total Order Deviation is proposed as error function:

MTOD(X) =
1

|X|2
|X|∑
i=1

|πo(xi) − πϕ(xi)| (4)

Where πo(xi) denotes the rank of solution xi ∈ X, when all solutions in X are
ordered according to their real objective value yi. Similar, πϕ(xi) denotes the
rank of solution xi ∈ X, when all solutions in X are ordered according to their
predicted objective value ϕ(xi).

MTOD is designed to indicate the mean ordering shift of a solution within
the evaluated solution set X. Unfortunately, MTOD is inappropriate for classical
MLP training methods due to lack of differentiability. Therefore we resort to
Sum-of-Squares Error (SSE) for training — under the assumption that SSE is a
close approximation of MTOD in many cases — and to MTOD for selection.

MLPs form the base learners for all further methods, as they are able to
express a wide range of functions depending on the number of hidden neurons,

Reducing the Number of Simulations in Operation Strategy Optimization 559

i.e., neurons between the input and output layer. The considered MLP archi-
tectures consist of one or two hidden layers, with different numbers of hidden
neurons. Hidden layers use sigmoid activation functions, while the output layer
uses a linear activation function. The neural networks are trained with a (mod-
ified) Levenberg-Marquardt algorithm [8] provided by the used neural network
library ALGLIB4

To improve the generalization performance of the regression models, we con-
sider different ensemble methods for combining multiple neural networks. Bag-
ging [4] is the first evaluated approach, which trains multiple models on sets
randomly sampled from the original training set X. Bagging then averages the
outputs of these models to reduce their variance and to improve generalization
performance.

Second, (Stochastic) Gradient Boosting as described in [6] and [5] is adapted
for using neural networks. In Gradient Boosting several regression models are
used in succession. The first model ϕ0(.) is the mean over all target values
yi of X. Then different neural networks are trained successively on the errors
(yi − ϕj(xi)) and a new candidate regression model is formed by

ϕj(x) = ϕj−1(x) + ρφ(x), j = 1, . . . , E (5)

where ρ weights the newly added model φ(.) and is determined by treating the
SSE as a function of ρ only and setting its gradient to zero. At each step j the
candidate with the lowest SSE over the training set X is chosen. The algorithm
repeats these steps E-times to build the final model.

Third a partitioning approach similar to [7] is used. The training set X is
clustered using the K-means++ algorithm [2] and different neural networks are
trained for each cluster Ck ⊂ X. Selecting a neural network for a cluster uses
a validation approach. Validation is done by splitting Ck into a training and
a validation set and using the validation set for measuring the generalization
performance. This is repeated several times and the model architecture with the
lowest mean validation error is chosen.

Last a partial simulation and extrapolation approach is explored. The [0, p]-
fraction of the driving cycle, with p ∈ (0, 1), is simulated with the HEV model
and its output values are recorded, i.e., the fuel consumption. The simulated
parameter set x is then augmented with the recorded output values to form
x[0,p]. The collected set X [0,p] of all x[0,p]

i is then used to train neural networks
for predicting the [p, 1]-fraction of the driving cycle. Using the additional input
data is expected to improve the prediction performance at the cost of higher
computation times.

6 A Two-Phase Optimization Approach

We propose an approach for integrating the different metaheuristics, the described
post-processing techniques, and regression models into new hybrid metaheuris-
tics. Thereby the optimization is split into two phases.
4 For all (single) neural networks, (ALGLIB (www.alglib.net), Sergey Bochkanov) in

version 3.6 is used; accessed: 2013-11-04

560 C. Bacher et al.

The first phase is responsible for aggregating the initial training data. We
decided to use the GA from Section 3 for this sampling purpose, as preliminary
experiments showed that it produces a more diverse and larger set of training
data than the CPSO or the ES. Further we use a step-wise adaption of the
number of discretization points, where the times of adjustment correspond to the
phases of the optimization algorithm. At the end of this first phase, the different
regression models are evaluated. Their performance is measured by averaging
the Mean Total Order Deviation (MTOD) values of a 10-fold crossvalidation.
The regression model with the lowest validation error is chosen to be used in the
optimization. In the second phase the resolution of the search space is enhanced
by increasing the number of values per dimensions. Two different approaches for
regression model integration have been tested.

A generational approach, similar to the one in [12], in combination with
the CPSO is implemented. Optimization uses the regression models as main
objective function and switches to the simulation model every m generations.
Another integration method pairs the described ES with regression models as
filter, as in [1], before passing the best to the simulation model. Far higher
numbers of individuals can be sampled this way and only the best κ individuals
are simulated each generation.

Further the regression models are updated every τ iterations to include the
newly evaluated solutions. For the model update, a regression model with the
same architecture as selected at the end of the first phase is used.

7 Experimental Results and Discussion

The considered HEV model possesses an ICE and two EMs — the “generator”
and the “motor”. ICE and generator are situated on the same shaft, while the
“motor” is coupled to the former with a planetary gear set. The HEV is able
to operate in two different mode types: pure-electric (EV) and range-extended
(ER), with two modes each. The first electric mode uses only the motor-EM
for propulsion and is designed for low speeds. The second mode activates both
EMs, disables the ICE and decouples it by opening a clutch. It is intended
for higher velocities to lower the machine speeds, increasing the efficiency. The
first range-extended mode — a so called series mode — targets lower velocities.
The motor-EM propels the HEV, while the ICE/generator unit is decoupled
from the driving shaft and is solely used to charge the battery. In difference,
the second range-extended mode uses a power-split setup, where both ICE and
motor-EM are propelling the HEV, but the power output of the ICE is split s.t.
the generator-EM is used to charge the battery.

Twelve parameters of the HEV model are optimized. A switch between
modes of the same type is performed above specific speeds speedupEV/ER if the
axle torque is below specified thresholds torqueupEV/ER, respectively. Switching
from EV to ER is done at a defined speed speedminER, which has to be less
than speedupER. Further the allowed percental deviation from the initial SOC
of the battery socband is optimized. It contributes to the decision of switch-
ing between different mode types. Also dependent on the socband is the power

Reducing the Number of Simulations in Operation Strategy Optimization 561

used to charge the battery, which is further determined by the interpolation
between charge powers for low and high SOC deviations chargepowerL/H. The
required charge power is influenced by the decision if the current power demand
of the motor-EM is to be covered by the generator, regulated by the powerde-
mand switch, too. Last generatorpowermin determines the minimal output of
the generator-EM. Beside these parameters of the operation strategy, the teeth
count of the ring and sun gear of the planetary gear set, connecting the engine-
and driving shafts, is optimized too. Ring and sun gear require the constraint
that their teeth difference has to be even.

The objective function which shall be minimized sums the HEV’s fuel con-
sumption in L/100km and a penalization term for SOC deviations between its
initial and final state. The driving cycle we considered for optimization is the
standardized EPA US-065 driving cycle. The penalization term estimates the
fuel needed (measured in L) to charge the battery to the initial SOC state with
the integrated ICE/generator unit, if the SOC is lower at the end of the cycle:

EΔSOC

Efuelρfuel
· 100
Geff

· 105

scycle
(6)

where EΔSOC is the energy equivalent to the SOC difference, Efuel ≈ 43MJ kg−1

denotes the energy density of the fuel, ρfuel ≈ 0.75kg L−1 the fuel density, Geff

specifies the average generator efficiency estimated during simulation and scycle

the length of the driving cycle in m. Penalization is included to favour SOC-
balanced solutions, to be comparable to other HEVs. If the SOC is higher at the
end than initially, then the penalization term becomes negative and even pro-
motes the solution. The effect is limited by high energy losses during conversion.

A major challenge for proper experimental examination of the optimization
problem at hand is the limited number of experiments which we could perform
in a reasonable time. The number of simulations was restricted to 16 per
iteration.

First, experiments with the unmodified CPSO and the unmodified ES, as
described in Section 3, have been performed. Due to high computation times,
we have only been able to run 3 experiments per unmodified algorithm. Best
solutions for the experiments and information about the number of simulations
are given in Table 2. The algorithms’ parameters are given in Table 1. For the
two-phase optimization the number of discretization points, for each dimension,
changes from 6 in the first phase to 16 in the second.

The results for the unmodified metaheuristics clearly indicate that the CPSO
dominates the ES. A closer analysis in [3] shows that the ES exhibits problems
regarding the solution variance, which we attribute to the existence of plateaus
in the search space. The results for the first phase in Table 3 show that the
CPSO outperforms the GA if the search space is discretized. Although, the GA
generates more distinct solutions — 777 on average — and has therefore been
selected as the first phase for all further algorithms.
5 See http://www.fueleconomy.gov/feg/fe test schedules.shtml for more information;

accessed: 2013-11-11

http://www.fueleconomy.gov/feg/fe_test_schedules.shtml

562 C. Bacher et al.

Table 1. Algorithm parameters

Algorithm #Iterations Parameters

unmod. CPSO 200 #Part. = 16, ω = 0.7298, φ1 = φ2 = 1.496, l = 20
unmod. A-CMA-ES 200 λ = 16, μ = 4, init. as in [11]
CPSO-Phase I 65 #Part. = 16, ω = 0.7298, φ1 = φ2 = 2.0, l = 20
GA-Phase I 65 N = 16, R = 0.3, k = 2
CPSO-Phase II 480 as Phase I; m = 8, τ = 15
A-CMA-ES-Phase II 60 λ = 100, κ = 16, μ = 4, τ = 15

Table 2. Results for the unmodified optimization algorithms

Experiment Fuel c. #Simbest

unmod. CPSO 1 5.86 3168
unmod. CPSO 2 5.83 1872
unmod. CPSO 3 5.83 2816

Experiment Fuel c. #Simbest

unmod. A-CMA-ES 1 6.00 528
unmod. A-CMA-ES 2 6.00 2176
unmod. A-CMA-ES 3 6.00 2050

Table 3. Results for Phase I

Experiment Fuel c. #Simbest

CPSO 1 5.95 320
CPSO 2 6.11 211
CPSO 3 6.02 48
CPSO 4 5.95 105
CPSO 5 5.97 191
CPSO 6 5.96 266
CPSO 7 5.93 148
CPSO 8 6.07 210
CPSO 9 5.96 476
CPSO 10 5.91 87

Experiment Fuel c. #Simbest

GA 1 6.01 136
GA 2 5.98 501
GA 3 6.04 121
GA 4 6.04 625
GA 5 6.00 727
GA 6 6.06 694
GA 7 5.99 631
GA 8 6.02 594
GA 9 6.00 433
GA 10 6.04 357

Table 4 depicts the best results for each type of regression model. Extrap-
olation after simulating 75% of the driving cycle clearly outperforms the other
models. Nevertheless, due to the still high simulation costs, Bagging has been
selected for further experiments.

In the second phase the variants described in Section 6 are evaluated. Prelim-
inary experiments have shown that the CPSO performs better if it is randomly
initialized as opposed to starting from a set of good solutions. For the ES, on
the other hand, it is beneficial to estimate the mutation center xw, the covari-
ance matrix C and the step size σ from the 30 best solutions and 20 random
solutions. The results for the second phase are given in Table 5. Both algorithms
have been able to reach solutions below 5.9L/100km. The difference in solution
quality compared to the unmodified algorithms is negligible as the HEV model
itself exhibits errors at similar magnitude. Comparing the best cases of these
algorithms to the unmodified CPSO’s best case, then the two-phase optimiza-
tion with CPSO reaches its best solution at 57.64% and the more consistent

Reducing the Number of Simulations in Operation Strategy Optimization 563

ES variant at 80.07% of the number of simulations. This implies that using
discretization and metamodels reduces the required runtime significantly if com-
pared to the unmodified reference algorithms. Further the performance of the
ES improved considerably if compared to the unmodified variant. We attribute
this to the local search behaviour of the used ES variant.

Table 4. Results for the best regression models per type

Model Parameters tMSE vMSE tMTOD vMTOD

Neural network L = (12), ω = 1.0 1.37 6.25 0.0746 0.0952
Gradient Boosting E = 16, S = 1.0 0.16 5.49 0.0330 0.0984
Bagging E = 24, L = (24, 24), ω = 1.0, S = 1.25 0.89 5.00 0.0339 0.0783
Partitioning Op = 50%, K = 5 3.25 15.89 0.0749 0.1298
Partial simulation p = 0.25, L = (13), ω = 0.1 0.01 0.02 0.0615 0.0810
Partial simulation p = 0.50, L = (13, 13), ω = 1.0 0.00 0.01 0.0489 0.0703
Partial simulation p = 0.75, L = (78), ω = 1.0 0.00 0.00 0.0351 0.0387

L — the number of neurons per layer
ω — the value for the weight decay parameter of the training algorithm
Op — percentage of closest solutions taken from each neighbouring cluster
E — number of (internal) regression models
S — size factor of the new training set sampled from the original training set X

tXXX . . . training XXX, vXXX . . . validation, MSE = 1
|X| SSE

Table 5. Results for Phase II

Experiment Fuel c. #Sim1
best

CPSO 1 5.93 189 (966)
CPSO 2 5.97 294 (1071)
CPSO 3 5.97 535 (1312)
CPSO 4 5.89 277 (1054)
CPSO 5 6.10 127 (904)
CPSO 6 5.97 428 (1205)
CPSO 7 6.01 46 (823)
CPSO 8 5.88 302 (1079)
CPSO 9 5.98 192 (969)
CPSO 10 5.93 149 (926)

Experiment Fuel c. #Sim1
best

ES 1 5.87 893 (1670)
ES 2 5.92 803 (1580)
ES 3 5.89 334 (1111)
ES 4 5.90 508 (1285)
ES 5 5.87 722 (1499)

1 Numbers in braces give the number of simulations combined with
the average number of simulations (777) of the GA in phase I

8 Conclusion and Future Work

We optimized the continuous parameters of an operation strategy for a HEV
model based on a real HEV. We explored different ways to reduce the number of
simulations required by the optimization by employing search space discretiza-
tion and metamodels. Search space discretization has proven to be a valuable
tool in the presence of search spaces with plateaus. Bagging ensembles have been
used to improve the generalization performance and mixing partial simulation
and extrapolation yielded even better results. The presented hybrid two-phase
metaheuristics have been able to reach similar results as the reference algorithms,
while reducing the number of simulations to 57.64% and 80.07%, depending
on the metaheuristic. In future work, advanced ways for incorporating meta-
models should be studied, like integrating partial simulation into the optimiza-
tion process, or using metamodels early in the optimization process. Different

564 C. Bacher et al.

performance measures for metamodels, e.g., measures capturing the performance
for solutions expected to be generated by the algorithms, should be considered.

References

1. April, J., Glover, F., Kelly, J.P., Laguna, M.: Practical introduction to simulation
optimization. In: Proceedings of the 2003 of the Winter Simulation Conference,
vol. 1, pp. 71–78. IEEE Press (2003)

2. Arthur, D., Vassilvitskii, S.: k-means++: The advantages of careful seeding.
In: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete
Algo-rithms. pp. 1027–1035. Society for Industrial and Applied Mathematics,
Philadelphia (2007)

3. Bacher, C.: Metaheuristic optimization of electro-hybrid powertrains using machine
learning techniques. Master’s thesis, Vienna University of Technology, Vienna,
Austria (2013)

4. Breiman, L.: Bagging predictors. Machine Learning 24(2), 123–140 (1996)
5. Friedman, J.H.: Stochastic gradient boosting. Computational Statistics and Data

Analysis 38, 367–378 (1999)
6. Friedman, J.H.: Greedy function approximation: A gradient boosting machine.

Annals of Statistics 29, 1189–1232 (2000)
7. Frosyniotis, D., Stafylopatis, A., Likas, A.: A divide-and-conquer method for multi-

net classifiers. Pattern Analysis & Applications 6(1), 32–40 (2003)
8. Hagan, M., Menhaj, M.: Training feedforward networks with the Marquardt algo-

rithm. IEEE Transactions on Neural Networks 5(6), 989–993 (1994)
9. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution

strategies. Evolutionary Computation 9, 159–195 (2001)
10. Hu, X., Wang, Z., Liao, L.: Multi-objective optimization of HEV fuel economy and

emissions using evolutionary computation. In: Society of Automotive Engineers
World Congress and Exhibition, vol. SP-1856, pp. 117–128 (2004)

11. Jastrebski, G., Arnold, D.: Improving evolution strategies through active covari-
ance matrix adaptation. In: IEEE Congress on Evolutionary Computation,
pp. 2814–2821. IEEE Press (2006)

12. Jin, Y., Olhofer, M., Sendhoff, B.: A framework for evolutionary optimization with
approximate fitness functions. IEEE Transactions on Evolutionary Computation
6(5), 481–494 (2002)

13. Johnson, V.H., Wipke, K.B., Rausen, D.J.: HEV control strategy for real-time opti-
mization of fuel economy and emissions. Society of Automotive Engineers Trans-
actions 109(3), 1677–1690 (2000)

14. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the
IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948. IEEE
Press (1995)

15. Krenek, T., Ruthmair, M., Raidl, G.R., Planer, M.: Applying (Hybrid) Metaheuris-
tics to Fuel Consumption Optimization of Hybrid Electric Vehicles. In: Di Chio,
C., et al. (eds.) EvoApplications 2012. LNCS, vol. 7248, pp. 376–385. Springer,
Heidelberg (2012)

16. Mendes-Moreira, J.A., Soares, C., Jorge, A.M., Sousa, J.F.D.: Ensemble approaches
for regression: A survey. ACM Comput. Surv. 45(1), 10:1–10:40 (2012)

17. Poli, R., Kennedy, J., Blackwell, T.: Particle swarm optimization. Swarm Intelli-
gence 1(1), 33–57 (2007)

Hybridisation Schemes for Communication
Satellite Payload Configuration Optimisation

Apostolos Stathakis1(B), Grégoire Danoy2, El-Ghazali Talbi3,
Pascal Bouvry2, and Gianluigi Morelli4

1 Interdisciplinary Centre for Security, Reliability, and Trust,
University of Luxembourg, Walferdange, Luxembourg

apostolos.stathakis@uni.lu
2 CSC Research Unit, University of Luxembourg, Walferdange, Luxembourg

3 INRIA-Lille Nord Europe, Université Lille 1, Villeneuve-d’Ascq, France
4 SES Engineering, Betzdorf, Luxembourg

Abstract. The increasing complexity of current telecommunication
satellite payloads has made their manual management a difficult and
error prone task. As a consequence, efficient optimisation techniques are
re- quired to help engineers to configure the payload. Recent works focus-
ing on exact approaches faced scalability issues while metaheuristics pro-
vided unsatisfactory solution quality. This work therefore proposes three
hybridisation schemes that combine both metaheuristics and an exact
method. We focus on the initial configuration problem case and we con-
sider as objective to minimise the length of the longest channel path.
Experimental results on realistic payload sizes demonstrate the advan-
tage of those approaches in terms of efficiency within a strict operational
time constraint of ten minutes on a single CPU core.

Keywords: Satellite payload configuration · Optimisation · Hybrid
metaheuristics

1 Introduction

The communication satellite consists of the payload and the platform. The pay-
load, which plays the main role in the transmission of the signals, includes all
the necessary electronic equipment like multiplexers, switches and amplifiers, as
well as the receiving and transmitting antennas. The platform consists of all
the subsystems that allow the payload to function, like the electric power sup-
ply. In the payload the routing of the signals is achieved through reconfigurable
switches organised in switch matrices. But the modern operational requirements
and the increasing demands of the market have led to large and complex pay-
loads. Numerous amplifiers and large switch matrices are used to ensure flexi-
bility in signal routings and functionality in case of failures (redundancy). As
a consequence, the current manual management of the payload, with the use
of computerised schematics, is becoming hard and time consuming. Commercial

c© Springer-Verlag Berlin Heidelberg 2014
A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2014, LNCS 8602, pp. 565–576, 2014.
DOI: 10.1007/978-3-662-45523-4 46

566 A. Stathakis et al.

software solutions exist for payload configuration that have built-in optimisers,
but as they are closed packages, they do not provide the advantage of the flexi-
bility achieved with the computerised schematics.

To deal with this challenging problem, Stathakis et. al. have proposed an
integer linear programming (ILP) model aiming to find solutions using exact
methods [8][10]. It was demonstrated though that some instances could not be
solved exactly within a time constraint of ten minutes defined by engineers. To
overpass this limitation the same authors proposed to apply genetic algorithms
for the first time to the considered problem [9] and more instances were solved
successfully within the time constraint, with a difference though in the quality
of the obtained solutions compared to the optimal ones.

In this article we propose three hybridisation schemes that integrate a local
search, a cellular genetic algorithm and the ILP based exact method. We target
to solve the real size problem instances within the strict constraint of ten minutes.
The experimental results denote the efficiency of the proposed approaches when
tackling large payload instances, in both computational time and fitness values.

The remainder of this paper is organized as follows. The next section presents
the related works in the subject. Section 3 addresses the considered problem in
more details and in Section 4 the proposed hybridisation schemes are detailed.
The experimental results are analysed in Section 5 and finally the conclusions
and some perspectives for future work are provided.

2 Related Works

In order to meet the modern demands of the market and to achieve the current
operational requirements, the satellite industry needs to reach several levels of
flexibility as they have been described in [4]. They concern among others flexibil-
ity in power allocation (assigning various power levels to channels to cope with
traffic allocations), in coverage definition (shape of coverage, number and size
of beams in case of multi-beam coverage) and at the channel routing level that
we are focusing on. To ensure such flexibility the current payloads are composed
with numerous amplifiers and large switch matrices.

The design of the optimal switch matrix topology that will satisfy the given
operational requirements is the first optimisation problem which is faced by
satellite manufacturers, when constructing the spacecrafts. Switches are expen-
sive components and thus designing a topology that will satisfy all the routing
requirements, given a number of channels and amplifiers, while minimising the
cost, is of importance. Research works have tackled this design problem, like
in [3] where a graph-based analysis is used to minimise the number of needed
switches, while ensuring a fault-tolerant switch matrix design.

From the satellite operator point of view, which is of our interest, efficient
techniques are also required to find optimal configurations when new opera-
tional and business demands arise. Commercial software packages exist, like
TRECS [12] and Smartrings [6]. Details concerning the algorithms and the mod-
els used by both packages are not accessible due to commercial restrictions.

Hybridisation Schemes for Communication Satellite Payload Configuration 567

Smartrings applies a recursive search to compute all possible payload configura-
tions, while the algorithm is controlled by constraints like the number of switches
used or the number of the interrupted channel paths. Similarly, TRECS uses an
algorithm to find all feasible solutions and sorts them by output signal quality,
while rejecting many millions of non-feasible solutions. However those packages
lack flexibility. Their closed APIs do not allow efficient interaction and integra-
tions in company workflows. Besides, they use a black-box solver that can not
be changed or customised based on the problem that has to be solved, which
would allow the application of different single or multi-objective algorithms.

On the academic side, few works have been proposed that deal with the
considered problem. In [7] a recursive algorithm was proposed to perform a
breadth-first-search (BFS) in order to find all feasible paths that connect chan-
nels to amplifiers. Experiments showed the efficiency of the proposed method on
a small switch network. However, it can be expected that for larger problems
the BFS algorithm will be limited due to its time complexity as every vertex
and every edge will be explored in the worst case.

Stathakis et al. [9] proposed and validated an Integer Linear Programming
(ILP) optimisation model that can be used for applying single and multi objec-
tive algorithms. The model allows the optimisation of specific objectives like
the number of switch changes. Instead of enumerating all feasible solutions, the
authors aim at a single optimal solution or a set of non-dominated solutions.
The same authors extended their mathematical model to minimise the channel
interruptions for the reconfiguration problem [10]. As has been demonstrated,
not all instances could be solved exactly within the ten minutes constraint. To
overcome this limitation metaheuristics were applied for the first time to the con-
sidered problem [9], which permitted to solve more instances with a degradation
though between their fitness and the one found by the exact.

In this work, we propose novel hybridisation schemes for the considered prob-
lem that integrate a local search with a cellular genetic algorithm and the ILP
based exact method. The experimental results confirmed the efficiency of those
schemes, and thus can be used when tackling even larger payload problem sizes.
The proposed methods are high-level relay hybrids according to the taxonomy
of hybrid algorithms used in [11].

3 Problem Description

A simplified payload switch matrix example is shown in Fig.1, which is composed
by 16 switches. The input channel signals are crossing the switch matrix and are
guided for amplification. Different types of switches may be used and each one
has different positions allowing different paths. The four possible positions of an
R-type switch are shown in Fig.2, whereas the C-type switch has only 2 possible
positions. A link (connector between any two payload components) can be used
by only a single channel. The switch matrix can have any design topology (not
symmetric necessarily) and channels can be placed at any location of the matrix.

The problem of payload configuration can be decomposed into three related
subproblems. The first one is the initial configuration problem, which consists in

568 A. Stathakis et al.

Input
channels

Input
switch matrix Amplifiers

Input
channels

Input
switch matrix Amplifiers

Initial Payload Solution example

Fig. 1. Simplified initial payload instance and solution that connects channels 1 and 3
to amplifiers 2 and 4

finding an optimal configuration for connecting an initial set of channels in a pay-
load without any pre-connected channels. The second case is the reconfiguration
problem, which occurs when there exists a set of pre-connected channel paths
that carry services and some additional channels have to be activated. The third
one is the restoration problem, which arises when a set of channels is already
connected and one or more failures occur to the amplifiers or to the switches. In
this case, the channels affected by these failure(s) have to be rerouted through
different paths.

In this work we are focusing on the initial configuration problem. More pre-
cisely, given a set of channels to connect, the initial payload configuration prob-
lem consists in finding the positions of the switches that permit to establish
the path from each required channel to an amplifier. Among several important
objectives that are of interest, we choose to minimise the length of the longest
channel paths. Long paths imply high signal attenuation and they cause restric-
tions on future reconfiguration processes. In Fig.1 one solution example is shown
for connecting channel 1 to amplifier 2 and channel 3 to amplifier 4, where chan-
nel 1 follows a path of 7 switch crossings and channel 3 follows a path with 6
switch crossings i.e number of switches used in the path.

Position 1 Position 2

Position 3 Position 4

Fig. 2. Positions of one R-type switch

More formally, let k be the number of switches in the switch network and
the set C, of size n, the set of channels to connect. Let pathc, c ∈ C be the

Hybridisation Schemes for Communication Satellite Payload Configuration 569

length of the channel path c in switch crossings. The solution vector of size k:
P = {pos1, . . . , posk} denotes the position of each switch. The objective is to
find a solution P which connects the n channels and minimises

maxc∈C(pathc) (1)

4 Proposed Methodology

An illustration of the three schemes with their components is provided in Fig.3.
The first one, referred to as LSM, combines a local search with a cellular genetic
algorithm. The rest two hybrids, referred to as LSMExB and LSMExP, combine
LSM with the ILP based exact method. The local search and cellular genetic
algorithm components are presented in the next two subsections. The ILP model
is a variation of the one presented in [8]. In the last three subsections, the three
hybrids are presented in details.

Local Search

Cellular Genetic
Algorithm

 seed to the
 initial population

LSM

LSM

Exact Method
(ILP)

Upper Bound

LSMExB

LSM

Exact Method
(ILP)

Partitioning
of decision
variables

LSMExP

Fig. 3. The three hybrid schemes and their components

4.1 The Local Search Algorithm

The target of the local search algorithm is to find fast approximated payload
configurations. The problem is regarded as a permutation problem. Since each
path uses an available amplifier and defines positions on the switches, the order-
ing of channels to connect will influence the quality of the final solution. The
next channels will be restricted in both the possible paths, and their final des-
tination (amplifier). For n channels to connect, the solution of the local search
algorithm is thus represented as a permutation of size n. We used a simple hill
climbing method where starting from a random solution (random permutation),
at each iteration the current solution is replaced by a neighbor, using the first
improvement strategy. The neighbors are generated with the use of the exchange
operator. The local search terminates when there is no improvement. Each solu-
tion is evaluated using a greedy method to construct the paths.

570 A. Stathakis et al.

A Greedy Method for Constructing Paths. The payload can be repre-
sented as a graph G = (V,E), where V is the set of payload components
(switches, channels, amplifiers), and E the set of connectors (links) between
them. We consider the length of each link to be equal to 1. Each component
u ∈ V , has some coordinates (x, y) and at most 4 neighbor nodes (vertices)
namely us, uw, ue, un, where s,w,e,n stand for south, west, east and north. The
pseudocode of the greedy method used for finding the path of each channel is
provided in Algorithm 1. Initially, the destination amplifier is chosen to be the
closest available amplifier based on the Manhattan distance. We assume that
any channel can be connected to any amplifier. If not, the destination will be
chosen among the suitable amplifiers for each channel.

Algorithm 1. Pseudo-code of a greedy method to construct one channel path
1: Input channel node c; path c = {}
2: dest = closest to c available amplifier
3: current = switch node neighboring to c
4: path c.add(current)
5: prec node = channel node c
6: while (current != dest) do
7: next node = closest to dest available neighbor
8: if (next node) then
9: updateNeighborhood(prec node, current, next node)

10: prec node = current
11: current = next node
12: path c.add(current)
13: else
14: path c.clear
15: break
16: end if
17: end while
18: if (path c is empty) then
19: reset All neighbors()
20: else
21: dest.available = false
22: end if

The next step is to set as current node the unique switch that is neighbor
to the channel and the current node is added to the path (lines 3,4). As prece-
dent node is set the channel node (line 5). To find the next node, the available
neighbors of the current node are retrieved and the one which is closest to the
destination is selected (line 7). Given the localities of the next and the prece-
dent nodes compared to the current node, the position of the current switch
is defined. The updateNeighborhood function which is then called (line 9) will
update the available neighbors. In this function, the current switch defines which
of its neighbors are available from now on. Besides, each of the neighbors of the
current switch determines whether the current switch is considered as one of

Hybridisation Schemes for Communication Satellite Payload Configuration 571

Selection Crossover

Mutation

Replacement

Fig. 4. cGA reproduction cycle with 5 × 5 population and L5 neighborhood

their available neighbors. The same process is repeated until the destination is
reached. If the path can not be found, the neighbors of each switch are reset to
the initial status (line 19). As long as a channel path is constructed, the used
amplifier is set as not available (line 21).

4.2 The Cellular Genetic Algorithm

The cellular genetic algorithm (cGA) uses a single and structured population [2].
Individuals are spread in a two dimensional toroidal mesh and are only allowed
to interact with their neighbors. An illustration of the cGA breeding loop is
presented in Fig.4. The individuals are arranged on a 5X5 toroidal grid. The
neighborhood of the center individual, linear 5, is presented as dashed lines. The
representation of the solution is similar to the one used in [9], i.e. one individual
represents the set of positions of all the switches. A binary encoding is used
where a switch position is encoded using two bits. The binary vector is thus of
size 2 ∗ n with n the number of switches in the payload. Each solution describes
a unique static graph. To assign a fitness value to the candidate solutions, we
use the objective function:

F = rc +
lpl

1000
(2)

where rc is the number of channels that have not been connected to an
amplifier, from the set of n channels to connect, and lpl is the length of the
longest found path, i.e. the number of switches used in this path.

4.3 The First Hybrid (LSM)

In the first hybrid, a seed individual provided by the local search is inserted in the
initial population of cGA. The rest individuals are created uniformly at random.
The global problem is solved by both methods. The two algorithms are applied
in sequence. At first the problem is solved using local search and the solution is
included to the initial population of the second metaheuristic. According to the
taxonomy presented in [11], this hybrid is classified as High Level Relay Hybrid
(HRH)(heterogenous, global, general) and is denoted as LSM.

572 A. Stathakis et al.

4.4 The Second Hybrid (LSMExB)

The motivation for the second hybridisation scheme comes from the good per-
formance of the cGA as demonstrated in [9]. The solution provided by the LSM
can thus be considered as a good upper bound (length of the longest path) for
the exact method. We applied this collaborative scheme aiming to improve the
hit rate of the exact method (percentage of problems that were solved exactly
within ten minutes). Thus, the upper bound of the objective function is set in the
ILP model, based on the solution found by LSM and the exact method is then
called. The global problem is solved by both methods. The two algorithms are
applied in sequence. According to the taxonomy presented in [11], this hybrid is
classified as High Level Relay Hybrid (HRH)(heterogenous, global, general) and
is denoted as LSMExB.

4.5 Third Hybrid (LSMExP)

In this scheme we propose to partition the decision variables, as indicated in [11].
The decision variables can be partitioned in two sets X and Y. The variables of
the set X will be fixed based on the solution found by LSM and the exact
method will optimize the problem over the set Y. Hence, the generated problem
is subject to free variables in the set Y and freesed variables in the set X. The
decision variables that we fix are the positions of the switches based on some
paths generated by the solution obtained by LSM. To summarise this hybrid,
the global problem is solved by LSM and the partial problem is solved by the
exact method. The two algorithms are applied in sequence. At first the problem
is solved using metaheuristics, the values of some decision variables are set and
the exact method is then called. According to the taxonomy presented in [11],
this hybrid is classified as High Level Relay Hybrid (HRH)(heterogenous, partial,
general), and is denoted as LSMExP.

5 Experimental Results

In this section we review the performances of the proposed schemes related to
the hit rate (percentage of successfully solved instances), the fitness value and
the required computational time.

5.1 Experimental Setup

All our experiments were carried out using the HPC facility of the University
of Luxembourg, on a single CPU core of an Intel Xeon L5640 at 2.26GHz. The
implementation of the metaheuristic algorithms was done using Paradiseo frame-
work v.1.3 [5]. For the exact method CPLEX 12.4.0.0 was used [1].

For the local search and the cGA we used default parameters that are pro-
vided in Table 1. The problem instances tackled are the same as in [9], i.e switch
matrix with 50 switches and and 23 amplifiers (maximum channels to connect).

Hybridisation Schemes for Communication Satellite Payload Configuration 573

Table 1. Parameters used for local search and cGA

L
S

Algorithm Hill Climbing

Selection Strategy First Improvment

Neighbor operator Exchange

c
G

A
Population 49, 7 × 7

Selection Binary tournament (BT),
Current indiv. + BT

Neighborhood L5

Crossover DPX, pc=0.8

Mutation Bit flip, pm = 1
chrom length

Replacement strategy Replace if better

Elitism 1 individual

30 channel instances of size 8, 13, 18 and 23 were randomly selected to connect.
For the LSMExP we selected to fix the positions of the switches used by 4, 7, 10
and 12 randomly selected paths respectively.

5.2 Numerical Results

The results obtained after applying the ILP based exact method are displayed
in Table 2. The hit rate, which represents for the exact method the percentage
of instances that were solved exactly within ten minutes, decreases significantly
from 90%, when 8 channels are connected, to 13.333% for the cases of 13 channels
to connect. When connecting 18 channels only 6.666% of the instances were
solved and none instance for the case of 23 channels (maximum size on a switch
matrix with 23 amplifiers).

Table 2. Exact Method

Channels Hit Rate(%) Aver. Fitness Aver. Time(sec)

8 90 0.00181±0.0004 3.199±12.896

13 13.333 0.002±0 10.67±13.647

18 6.666 0.002±0 4.525±4.122

23 0 − −

Concerning the comparison of LS, cGA and LSM, the average fitness and the
hit rate are provided in Table 3. As can be seen the hybrid LSM outperforms the
other methods. In terms of hit rate, which in this case denotes the percentage of
instances where valid solutions were found (all paths constructed), LSM and cGA
have both 100% for the instances of 8, 13 and 18 channels, but LSM has hit rate
82.333% when 23 channels are connected, compared to 80.888% for cGA. The
hit rate of LS is 90%, 42.222%, 23.333% and 4.888% for 8, 13, 18 and 23 channels
respectively. LSM provides also better fitness values, for example 0.00194 and

574 A. Stathakis et al.

0.00304 when 8 and 13 channels are connected compared to 0.00195 and 0.00317
for cGA and for 18 and 23 channels LSM has average fitness 0.00365 and 0.18183
respectively compared to 0.00367 and 0.19879 for cGA. In terms of fitness, LSM
outperforms cGA with statistical confidence for the case of 23 channels after
performing the Wilcoxon test [13]. LSM has also smaller standard deviation in
all cases except for the case of 18 channels. The fitness values of LS itself are
0.10346, 0.69998, 1.18435 and 2.84213 for 8, 13, 18 and 23 channels respectively.

Table 3. Fitness and Hit Rate(%)

#Ch LS cGA LSM

Fitness Hit Rate Fitness Hit Rate Fitness Hit Rate

8 0.10346±0.3 90 0.00195±0.0006 100.0 0.00194±0.0005 100

13 0.69998±0.69 42.222 0.00317±0.0006 100.0 0.00304±0.0005 100

18 1.18435±0.88 23.333 0.00367±0.0007 100.0 0.00365±0.0007 100

23 2.84213±1.33 4.888 0.19879±0.4 80.888 0.18183±0.381 82.333

The average convergence time of cGA and LSM, which denotes the average
time needed by each method to reach the best solution found, is provided in
Table 4. LSM converges faster in all cases. The highest difference occurs for 23
channels where LSM converged after 79.48sec and cGA in average after 91.85sec.

Table 4. Metaheuristics - Convergence Time(sec)

Channels cGA LSM

8 9.41 5.26

13 27.98 26.94

18 46.81 44.11

23 91.85 79.48

For the next hybrids LSMExB and LSMExP, LSM will run for the time
provided in Table 4 and then the ILP based exact method is called so as the
total termination condition is ten minutes in all experiments. The comparison
between LSMExB and LSMExP in terms of fitness and hitrate is presented in
Table 5.

LSMExP method achieved 89.222% hit rate for the maximum case of con-
necting 23 channels compared to 0% for LSMExB. For 18 channels LSMExP
solved 89.444% of instances compared to 6.666% of LSMExB. With LSMExP,
the process is significantly accelerated since the exact method is optimising over
a subset of the decision variables. LSMExB performed better compared to the
ILP based exact method for the case of 13 channels as the hit rate of LSMExB
is 16.666% compared to 13.333%. In Table 6 the average fitness is compared

Hybridisation Schemes for Communication Satellite Payload Configuration 575

Table 5. Fitness and Hit Rate(%)

#Ch LSMExB LSMExP

Fitness Hit Rate Fitness Hit Rate

8 0.00181±0.0004 90 0.00191±0.0005 97.888

13 0.00260±0.0005 16.666 0.00300±0.0005 93

18 0.00200±0 6.666 0.00363±0.0008 89.444

23 − − 0.00487±0.0009 89.222

between LSM, LSMExB and LSMExP for the commonly solved instances. We
observe that LSMExP provided the optimal solution for these instances (same
fitness with LSMExB) and LSM provided solutions of less good quality.

Table 6. Fitness comparison on the commonly solved instances

Channels LSMExB LSM LSMExP

8 0.00181±0.0004 0.00182±0.0003 0.00181±0.0004

13 0.00260±0.0005 0.00261±0.0005 0.00260±0.0005

18 0.00200±0 0.00200±0 0.00200±0

When connecting 8 channels, both LSMExB and LSMExP provided average
fitness 0.00181 on the same instances compared to 0.00182 for LSM, and for 13
channels LSM has fitness 0.00261 compared to 0.00260 for the other two hybrids.
For the 6.666% instances of 18 channels to connect the three methods had the
same performance.

6 Conclusions and Perspectives

In this work we tackled the problem of optimal telecommunication satellite pay-
load configuration. In order to further improve state-of-the-art results and solve
the difficult problem instances within ten minutes on a single CPU core, we
proposed three hybridisation schemes. The first hybrid (LSM) is a high level
relay hybrid that integrates a local search method with a cGA which improved
the performance of the metaheuristic. The second hybrid (LSMExB) uses the
solution of LSM as an upper bound for the exact method and permitted to solve
more problem instances and in much shorter time. The last one (LSMExP)
freezes a subset of decision variables based on the best solution obtained by
LSM and uses the exact method to optimise the problem over the set of decision
variables. With this last hybridisation method, the hitrate of solved instances
was significantly increased. Future work will therefore focus on further improving
this scheme, for instance by using a more intelligent way of choosing the number
and the decision variables to fix. Its scalability will be experimented by using
even larger payload instances.

576 A. Stathakis et al.

References

1. Ibm ilog cplex. http://www.ilog.com/products/cplex/
2. Alba, E., Dorronsoro, B.: Cellular Genetic Algorithms. Operations

Research/Compuer Science Interfaces. Springer, Heidelberg (2008)
3. Amini, O., Giroire, F., Prennes, S., Huc, F.: Minimal selectors and fault tolerant

networks. Networks 55(4), 326–340 (2010). http://dx.doi.org/10.1002/net.20326
4. Balty, C., Gayrard, J.D., Agnieray, P.: Communication satellites to enter a new

age of flexibility. Acta Astronautica 65(1–2), 75–81 (2009)
5. Cahon, S., Melab, N., Talbi, E.G.: Paradiseo: A framework for the reusable design

of parallel and distributed metaheuristics. Journal of Heuristics 10(3), 357–380
(2004). http://dx.doi.org/10.1023/B:HEUR.0000026900.92269.ec

6. Chaumon, J., Gil, J., Beech, T., Garcia, G.: Smartrings: advanced tool for commu-
nications satellite payload reconfiguration. In: 2006 IEEE Aerospace Conference,
p. 11 (2006)

7. Gulgonul, S., Koklukaya, E., Erturk, I., Tesneli, A.Y.: Communication satellite
payload redundancy reconfiguration. In: 2012 IEEE First AESS European Confer-
ence on Satellite Telecommunications (ESTEL), pp. 1–4 (October 2012)

8. Stathakis, A., Danoy, G., Bouvry, P., Morelli, G.: Satellite Payload Reconfiguration
Optimisation: An ILP Model. In: Pan, J.-S., Chen, S.-M., Nguyen, N.T. (eds.)
ACIIDS 2012, Part II. LNCS, vol. 7197, pp. 311–320. Springer, Heidelberg (2012)

9. Stathakis, A., Danoy, G., Schleich, J., Bouvry, P., Morelli, G.: Minimising longest
path length in communication satellite payloads via metaheuristics. In: Proceeding
of the Fifteenth Annual Conference on Genetic and Evolutionary Computation
Conference, GECCO 2013, pp. 1365–1372. ACM, New York (2013). http://doi.
acm.org/10.1145/2463372.2463535

10. Stathakis, A., Danoy, G., Veneziano, T., Schleich, J., Bouvry, P.: Optimising satel-
lite payload reconfiguration: An ILP approach for minimising channel interrup-
tions. In: 2nd ESA Workshop on Advanced Flexible Telecom Payloads. pp. 1–8.
European Space Agency (2012)

11. Talbi, E.G.: Metaheuristics - From Design to Implementation. Wiley (2009)
12. TRECS: Transponder reconfiguration system. http://www.integ.com/trecs.html
13. Wilcoxon, F.: Individual Comparisons by Ranking Methods. Biometrics Bulletin

1(6), 80–83 (1945)

http://www.ilog.com/products/cplex/
http://dx.doi.org/10.1002/net.20326
http://dx.doi.org/10.1023/B:HEUR.0000026900.92269.ec
http://doi.acm.org/10.1145/2463372.2463535
http://doi.acm.org/10.1145/2463372.2463535
http://www.integ.com/trecs.html

EvoNUM

© Springer-Verlag Berlin Heidelberg 2014
A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2014, LNCS 8602, pp. 579–590, 2014.
DOI: 10.1007/978-3-662-45523-4_47

A Novel Genetic Algorithmic Approach
for Computing Real Roots of a Nonlinear Equation

Vijaya Lakshmi V. Nadimpalli1(), Rajeev Wankar2,
and Raghavendra Rao Chillarige2

1 ACRHEM, University of Hyderabad, Hyderabad, 500046, India
nvvlakshmi@gmail.com

2 School of Computer Information Sciences, University of Hyderabad,
Hyderabad, 500046, India

{wankarcs,crrcs}@uohyd.ernet.in

Abstract. Novel Pre-processing and Post-processing methodologies are de-
signed to enhance the performance of the classical Genetic Algorithms (GA)
approach so as to obtain efficient interval estimates in finding the real roots of a
given nonlinear equation. The Pre-processing methodology suggests a mecha-
nism that adaptively fixes the parameter-‘length of chromosome’ in GA. The
proposed methodologies have been implemented and demonstrated through a
set of benchmark functions to illustrate the effectiveness.

Keywords: Genetic Algorithms · Interval based method · Interval estimates ·
Tuning GA parameters

1 Introduction

The emerging fields such as soft computing, computational intelligence provide
solutions for even complex real world problems through hybridization of various het-
erogeneous techniques. Here we consider the classical problem of solving a non-linear
equation for its roots. There are various conventional numerical methods such as New-
ton method, Bisection method [1] for solving a nonlinear equation but these methods
have many limitations such as sensitivity to initial guess, slow convergence etc.
To overcome the drawbacks associated with conventional numerical methods, some
meta-heuristic algorithms such as Genetic Algorithms (GA) [2, 3], Particle Swarm
Optimization (PSO) [4], Simulated Annealing (SA) [5] have been proposed in the past.
Dai et al. [6] utilized mixed GA and quasi-Newton method for solving systems of non-
linear equations. Brits et al [7] proposed a method for finding all roots of systems of
nonlinear equations based on the new PSO method called neighborhood best method.

GA are simulation programs [8] that create an environment which would allow on-
ly the fittest population to survive. Thus, GA handles a variety of problems and pro-
vide some possible solutions and the solutions are represented as chromosomes. The
search ability of ordinary GA increases if the GA parameters are tuned suitable to the
domain environment. Several approaches are suggested [9-11] to tune GA parameters
through explorative methods, fuzzy search methods etc. Uncertainty due to the lack

580 V.L.V. Nadimpalli et al.

of knowledge about the solution leads to the ill formulation of the problem and its
solving strategies. To overcome this, it is essential to acquire knowledge about the
function characteristics more precisely through machine learning approaches. The
proposed methodology develops GA based knowledge acquisition method for compu-
ting all roots in a given closed interval of a nonlinear equation, named as Pre-
processor. Further, it is coupled with conventional GA along with a Post-processor to
enhance the accuracy by producing narrow interval estimates for the roots.

Two real numbers are considered to be the interval estimates for a root if the function
attains zero at a point in that interval. The aim of the present study is to identify the
interval estimates for all the real roots. These interval estimates constitute a sequence of
real numbers in the region of interest. It is natural to represent the genes or chromo-
somes as real numbers for optimization problems of parameters with variables in con-
tinuous domains [12]. Hence for the problem of identifying interval estimates in the
interested zone ሾܽ, ܾሿ, a chromosome is defined as a finite, monotonically increasing
sequence of real numbers starting with ‘a’ and ending with ‘b’. A subinterval ሾܽ௜, ܽ௜ାଵሿ ؿ ሾܽ, ܾሿ of a chromosome is known as potential interval for the function ݂, if ݂ሺܽ௜ሻ݂ሺܽ௜ାଵሻ ൏ 0. Further, the number of such potential sub-intervals of a chromo-
some has been considered as a fitness function. A chromosome is said to be better than
other chromosome if it possesses more potential and compact sub-intervals i.e., better
fitness value. The uncertainty about the number of roots of the function in the given
zone of interest impacts the performance of GA and knowledge about the number of
roots of function will significantly improve its performance. Thus a Pre-processor is
designed as an evolutionary method to learn about the number of roots. If the selected
intervals are narrow, then the root computation will be efficient through any interval
based root computation method. This lead to another novel Post-processing operator for
effective enhancement of outcome of GA.

2 Pre-processing Algorithm to Fix the Length of Chromosome
(LC)

The number of roots for a given nonlinear equation in the region of interest is general-
ly unknown in advance. If LC is arbitrarily chosen to be small, then one or more of
the existing roots might be lost. Further, with a small LC, it is possible that the width
of the selected potential intervals may not turn out to be narrow. In general, if LC is
large, it is not only expected that the number of potential intervals selected are more
but also that they are narrow. Considering a large ‘LC’ for arbitrary problem influ-
ences the resource utilization and computational time, more so when the numbers of
roots as well as their distribution over the zone are unknown. These observations
made the present study to develop an adaptive procedure to arrive at the apt ‘LC’ for
any given problem, rather than assuming an arbitrary abnormal value.

We develop the methodology starting with a continuous real valued function ݂ሺ. ሻ
having finite number of simple roots ߙ௜ א ሾܽ, ܾሿ such that ݂ሺߙ௜ሻ ൌ ݅׊ 0 ൌ 1,2, … ݇.
Without loss of generality, assume ܽ ൏ ଵߙ ൏ ଶߙ ൏ ڮ ൏ ௞ߙ ൏ ܾ. ݂ being a continuous
function, we have ݂ሺߙ௜ష ሻ ൌ ݂ሺߙ௜ሻ ൌ ݂ሺߙ௜శ ሻ ݅׊, for each root. Further, by mean val-
ue theorem, ߜ ׌ ൐ 0 such that ݂ሺߙ௜ െ ௜ߙሻ݂ሺߜ ൅ ሻߜ ൏ 0, when ݂ሺߙ௜ሻ ൌ 0 .Thus one

Novel Genetic Algorithmic Approach for Computing Real Roots of a Nonlinear Equation 581

can have a set of points in the interval such as ܽ ൏ ଵߙ െ ଵߜ ൏ ଵߙ ൅ ଵߜ ൏ ଶߙ െ ଶߜ ൏ߙଶ ൅ ଶߜ ൏ ڮ ൏ ௞ߙ െ ௞ߜ ൏ ௞ߙ ൅ ௞ߜ ൏ ܾ which brackets all the roots of the ݂ሺ. ሻ.
This can be made abstract as ܽ ൏ ଵݔ ൏ ଶݔ ൏ ڮ ൏ ଶ௞ିଵݔ ൏ ଶ௞ݔ ൏ ܾ. Hence, there are
2k+2 points in ሾܽ, ܾሿ producing 2k+1 intervals as a partition of ሾܽ, ܾሿ, out of these ሾݔଵ, ,ଶሿݔ ሾݔଷ, ସሿݔ … ሾݔଶ௞ିଵ , -௜ satߙ ଶ௞ሿ are ‘k’ potential intervals containing the rootsݔ
isfying the condition ݂ሺݔଶ௜ିଵሻ݂ሺݔଶ௜ሻ ൏ 0, ݅ ݎ݋݂ ൌ 1,2. . ݇. One can consider a se-
quence of numbers of size n+2 such that ܽ ൌ ଴ݔ ൏ ଵݔ ൏ ଶݔ ൏ ڮ ൏ ௡ݔ ൏ ௡ାଵݔ ൌ ܾ ,
as solution to the problem of finding all potential sub intervals that bracket the roots of
the function ݂ሺ. ሻ. For this sequence, one can attach a non-negative integer k (referred
as potential value) calculated from ݇ ൌ ∑ ௜ାଵሻݔ௜ሻ݂ሺݔሺ݂ሺߜ ൏ 0 ሺ1ሻ௡௜ୀ଴ , where ߜ(.) is
Kronecker’s delta function. Hence, one can find or construct a sequence that will have
the maximum k and this maximum k will turn out to be the number of roots. In this
manner one can get the knowledge about the number of roots of given ݂ሺ. ሻ in the
zone of interest ሾܽ, ܾሿ. Discovering the number of roots can be mathematical pro-
gramming problem given by ݔܽܯ ݇ ൌ ෍ ௜ାଵሻݔ௜ሻ݂ሺݔሺ݂ሺߜ ൏ 0ሻ ሺ2ሻ௡

௜ୀ଴

Let U ൌ ሾܽ, ܾሿ and let ଵܲ, ଶܲ, . . ௠ܲ be m partitions of U, each of size ‘n+2’ with corre-
sponding potential values ݇ଵ, ݇ଶ, … ݇௠. Here potential value of a partition corre-
sponds to the number of potential intervals satisfying the condition (1) with respect
to ݂ሺ. ሻ in a considered partition. Let ΠሺUሻ denote the set of all partitions of U. Define
a binary operation * on ΠሺUሻ such that ௜ܲ כ ௝ܲ consists of the set of intersection of
every element of ௜ܲ with every element of ௝ܲ . The operation * on ΠሺUሻ is called the
product (refinement) of partitions. The following is a recommended Pre-processing
algorithm to decide about apt size of partition of a given interval ሾܽ, ܾሿ with the novel-
ty that it starts with the LC to be minimum and it fixes the LC that is suitable for the
given problem. Probability of crossover and mutation Pc, Pm are assigned to be 0.3, 0.1
for all algorithms. The following notation is used in the algorithm.
LC ← Length of Chromosome (or size of the partition).
Max_FV ← Maximum fitness value among all chromosomes (maximum potential
value among all partitions).
FV_Refined ← Fitness value obtained though Post-processing Refinement technique,
i.e., by concatenating all chromosomes in to a single array and then applying the fitness
function to select all potential intervals satisfying condition that the product of func-
tion values at the end points of each interval is < 0.

Algorithm 1. Pre-processing algorithm

// Fixes length of Chromosome //
• Given function ݂ሺ. ሻ and zone of interest ሾܽ, ܾሿ
 // ՚ 2 // Length of Chromosome is initially fixed at 2 ܥܮ •
• ଵܰ← Population size

 ଵ← Number of generationsܭ •
OUTPUT: ሾݓ݁݊_ܥܮሿ // Adaptive ݓ݁݊_ܥܮ that is suitable for the given problem //

582 V.L.V. Nadimpalli et al.

METHOD: ݊ ՚ ܥܮ ൅ 2 // As default, end points ‘a’ and ‘b’ are added to each chromosome //
Step 1: Generate population of ଵܰ chromosomes, each of length n and store in ܣேభൈ௡
Repeat Step 2 to Step 6 ܭଵ times in step of 1
Step 2: Fitness function: ݆ ՚ 0 while ሺ݆ ൏ ଵܰሻ ݆ ՚ ݆ ൅ 1 ܺ ՚ ݆௧௛ ݒ݂ ܣ ݂݋ ݓ݋ݎሺܺሻ ൌ ∑ ௜ାଵሻݔ௜ሻ݂ሺݔ൫ሺ݂ሺߜ ൏ 0ሻ൯௡ିଵ௜ୀଵ end while
Step 3: Crossover and mutation: Apply crossover (single point) and mutation op-
erators on chromosomes of ܣ, store offsprings in ܤ and then obtain the corresponding
fitness value of these offsprings
Step 4: Selection:

 ܤ with offsprings ܣ ՚ Append the population ܥ :4.1
 ܥ ՚ Select best ଵܰ chromosomes ሺwith respective to fitness value) of ܣ :4.2
 ܣ maximum among fitness values of chromosomes of ← ܸܨ_ݔܽܯ :4.3

Step 5: Refinement:
 ՚ Concatenate all rows of A in to one row, organize in ascending order by ܦ :5.1
removing the duplicates // Will be referred as refined chromosome. //
5.2: m ՚ length of D
5.3: FV_Refined ՚ ݂ݒሺܦሻ // where ݂ݒሺܦሻ ൌ ∑ ௜ାଵሻݔ௜ሻ݂ሺݔ൫ሺ݂ሺߜ ൏ 0ሻ൯,௠ିଵ௜ୀଵ݂݅݁݉݋ݏ݋݉݋ݎ݄ܿ ݂݀݁݊݅݁ݎ ݂݋ ݁ݑ݈ܽݒ ݏݏ݁݊ݐ //

Step 6: if ሺܸܨ_ ܴ݂݁݅݊݁݀ ൒ 1.5 כ ሻܸܨ_ݔܽܯ
՚ ܥܮ :6.1 3 כ ݂ܴ݀݁݊݅݁_ܸܨ
6.2: n ՚ ܥܮ ൅ 2
6.3: Generate population of ଵܰ chromosomes, each of length n and store in ܣேభൈ௡
6.4: Repeat process from Step 2 to Step 6
 elseifሺܭଵ ൐ 2ሻ break; // To have at least two generations of GA //

 end if
Step 7: Set ݓ݁݊_ܥܮ ՚ 3 כ ݂ܴ݀݁݊݅݁_ܸܨ
End; //Pre-processing //

3 Post-processor

Generally by employing GA, only one chromosome with maximum fitness value is
given as the solution. The prominent advantage of the proposed methodology com-
pared to traditional GA is that the entire knowledge about all chromosomes is utilized
by concatenating all the chromosomes to get a more refined partition of ሾܽ, ܾሿ, i.e., if
we assume each chromosome to be a partition of ሾܽ, ܾሿ, we are now considering the
product of partitions. The following is Post-processing algorithm which enhances the
efficiency of output of Conventional_GA. This algorithm makes root computation
efficient by selecting potential intervals enclosing roots, wherein the width of each
selected interval is significantly narrow.

Novel Genetic Algorithmic Approach for Computing Real Roots of a Nonlinear Equation 583

Algorithm 2. Post-processing algorithm

// Selects potential, narrow intervals enclosing roots //
INPUT:

• Given function ݂ሺ. ሻ and zone of interest ሾܽ, ܾሿ
 // Output from Pre-processing algorithm // ݓ݁݊_ܥܮ •

• n ՚ // new+ 2 // As default, end points are added to each chromosome_ܥܮ

• ଶܰ ← Population size

 ଶ ← Number of generationsܭ •

.ሺ݂ሺܣܩ_݈ܽ݊݋݅ݐ݊݁ݒ݊݋ܥ ← ேమൈ݊ܧ • ሻ, ݊, ଶܰ, ,ଶܭ ௖ܲ , ௠ܲሻ // random population gen-

erated from Conventional GA that is given as output and is stored in ܧேమൈ݊ //
OUTPUT: ሾݔ௟௢௪௘௥, ௨௣௣௘௥ represent the arrays having lowerݔ ௟௢௪௘௥ andݔ // ௨௣௣௘௥ሿݔ
and upper bounds of selected potential intervals that are narrow //

METHOD: Refinement Technique:
Step 1: Concatenate all rows of E in to one row, organize in ascending order by re-
moving the duplicates // Will be referred as refined chromosome //
Step 2: m ՚ length of E
Step 3: From array E, pick up xi’s such that ݂ሺݔ௜ሻ݂ሺݔ௜ାଵሻ ൏ 0 , ݅ ൌ 1,2 … ݉ െ 1 and
store as ݔ௟௢௪௘௥ ՚ ; ௜ݔ ௨௣௣௘௥ݔ ՚ ௜ାଵ // Selecting intervals from array E such thatݔ
product of function values at the end points of each interval is negative //
End; // Post-processing algorithm //

4 Addressing a Function Possessing Multiple Roots

The procedure developed for functions possessing simple roots needs to be modified
to address functions having roots with multiplicity. The following transformation,
suggested by [13], converts roots with multiplicity of the problem ݂ሺݔሻ ൌ 0, as a
problem ݃ሺݔሻ ൌ 0, with simple roots

 ݃ሺݔሻ ൌ ൝ ௙ሺ௫ሻ௙ᇲሺ௫ሻ , ݂ᇱሺݔሻ ് 00, ݂ᇱሺݔሻ ൌ 0 ൡ ሺ3ሻ

Due to this transformation, every root of ݂ሺݔሻ ൌ 0 is a simple root of ݃ሺݔሻ ൌ 0,
however every root of ݃ሺݔሻ ൌ 0 need not be root of ݂ሺݔሻ ൌ 0. Hence, to address a
function having multiple roots, we first make a transformation on ݂ሺݔሻ. Now, ݃ሺݔሻis
considered for the initial population in the place of ݂ሺݔሻ in Pre-processing algorithm.
All the simple roots for ݃ሺݔሻ ൌ 0 are found through the proposed methodology.
Among these roots ߙ௜ of ݃ሺݔሻ, roots satisfying |݂ሺߙ௜ሻ| ൏ є are given as the roots
for ݂ሺݔሻ ൌ 0 and the respective multiplicity of each root is found based on conven-
tional method [13].

584 V.L.V. Nadimpalli et al.

5 General Algorithm for Function with Known Points of
Discontinuity and with Multiple Roots

The real world problems may lead to a situation that ݂ሺ. ሻ may not be continuous always,
further the points and type of discontinuity may not be known. When ݂ሺ. ሻ has known
finite number of points of discontinuity in the region of interest, then the proposed meth-
od can be adapted to address discontinuous functions with known points of discontinuity
say ሼݔଵ ,ݔଶ ,. . , ௗ ሽ. Any discontinuous function can be written as a linear combination ofݔ
piecewise continuous functions, hence, for known ‘݀’ points of discontinuity, we get ሺ݀ ൅ 1ሻ intervals, (in each of these intervals, ݂ሺ. ሻ is continuous), thus the problem is
decomposed to ሺ݀ ൅ 1ሻ problems with respective zone of interest restriction. The follow-
ing algorithm is an integration of algorithms, namely, Pre-processing–to get an estima-
tion of number of roots and Post-processing–for selecting the narrow intervals enclosing
roots, thereby improving the efficiency of interval based root computation method.

Algorithm 3. Proposed method with Pre-processing and Post-processing method-
ologies integrated with Conventional GA
// Finds all interval estimates enclosing all real roots in the given interval ሾܽ, ܾሿ //

INPUT:
• Given function ݂ሺ. ሻ and zone of interest ሾܽ, ܾሿ
• ݀ ՚ Number of points of discontinuity say ሼݔଵ, ,ଶݔ . . , ௗሽݔ
• ଵܰ ՚ Population size in Pre-processing algorithm
ଵܭ • ՚ Number of generations in Pre-processing algorithm
• ଶܰ ՚ Population size in Post-processing algorithm
 ଶ← Number of generations in Post-processing algorithmܭ •
• Pc , Pm ՚ Probability of crossover, mutation
• є ←10-6 // Tolerance //

OUTPUT: All potential intervals enclosing roots of transformed function ݃ሺ. ሻ
METHOD:
Step 0: Initialization: ݅ ← 1; ܥܮ ՚ 2; n ՚ ܥܮ ൅ 2
Repeat Step 1 through Step 6 while ሺ݅ ൑ ݀ ൅ 1ሻ
Step 1: Initialize ݅௧௛ interval ሾݔ௜, .௜ାଵሿ // ௜݂ሺݔ ሻ is continuous in each of ሾݔ௜ , //௜ାଵሿݔ
Step 2: ݃ሺݔሻ ՚ ௙೔ሺ௫ሻ௙೔ᇲሺ௫ሻ, if ௜݂ ᇱሺݔሻ ് 0 else ݃ሺݔሻ←0

Step 3: ሾݓ݁݊_ܥܮሿ ՚ ݁ݎܲ െ .ሺ݃ሺ ݃݊݅ݏݏ݁ܿ݋ݎ݌ ሻ, ݊, ଵܰ, K1, Pc, Pmሻ
Step 4: n ՚ ݓ݁݊_ܥܮ ൅ 2
Step 5: ܧேమൈ௡← ܣܩ_݈ܽ݊݋݅ݐ݊݁ݒ݊݋ܥ ሺ݃ሺ. ሻ, ݊, ଶܰ, ,ଶܭ ௖ܲ , ௠ܲሻ // Here, ‘ܧேమൈ௡’

 is random population given as output by applying Conventional_GA//
Step 5: ൣݔ௜_௟௢௪௘௥, ௜_௨௣௣௘௥൧ݔ ՚ ݐݏ݋ܲ െ .ሺ݃ሺ݃݊݅ݏݏ݁ܿ݋ݎ݌ ሻ, ேమൈ௡ሻܧ
Step 6: ݅ ՚ ݅ ൅ 1
end while

End; // Algorithm 3 //

Thus we get the interval estimates of roots for ݃ሺ. ሻ and in each of the selected in-
terval above, any bracketing root method such as regula-falsi method [1] can be ap-
plied to find all the simple roots of ݃. Among these roots ߙ௜ of ݃ሺݔሻ, roots satisfying

Novel Genetic Algorithmic Approach for Computing Real Roots of a Nonlinear Equation 585

|݂ሺߙ௜ሻ| ൏ є are given as the roots for ݂ሺݔሻ ൌ 0 and the respective multiplicity of each
root is calculated based on conventional method [13].

6 Numerical Experiments

In this section we present 8 examples to illustrate the efficiency and novelty of the
proposed method. All computations were done using MATLAB 7.6 on Intel(R)
Core(TM) 2 Duo CPU 3.00 GHz Processor and 2 GB RAM. Here tolerance is taken as

є =10-6. Define ݃ܽ݅݊ ݂ܽܿݎ݋ݐ ൌ ቀ1 െ ௐೢௐ೚ ቁ כ 100, where ௪ܹ denotes the sum of

widths of selected intervals by applying GA with Pre-processing & Post-processing
techniques and ܹ௢ denotes the sum of widths of the selected intervals through con-
ventional GA.

Table 1. A set of bench mark functions and the results with the proposed method are listed
below. Here, ‘m’ in 7th column denotes the multiplicity of root.

From the Table 1, it is apparent that average gain factor is significant with the pro-

posed method and average per root computational time is quite less. We wish to
demonstrate through an example ݂ସ that has 7 simple roots in [-10, 10], the strength of
Pre-processing in fixing the LC adaptive to the problem environment and the strength

Function

Zone

LC_
New
Pre-
pro

Avg
gain
%

No. of selected roots

Avg.
comp.

time per
root
(sec) total sim-

ple
multi-

ple ࢌ૚ ൌ ࢞࣊ሺܖܑܛ ሻܛܗ܋ ቀ࢞࣊૛ ቁ ࢞ࢋ ૛ࢌ 0.0169 - 4 4 92.75 6 [4.5,4.5-] ൌ ࢞ࢋ െ ૚࢞ࢋ െ ૜ࢌ 0.0154 - 3 3 96.99 9 [10 ,10-] ࢞૜ ൌ ሺ࢞ െ ૚ሻ૛ ૝࢞࣊ሺܖ܉ܜ ሻ [-6, 5] 21 96.28 5 3
1

(m=2)
0.0302

૝ࢌ ൌ ܘܠ܍࢞૛࢔࢏ࡿ ቀ࢞૛ቁ െ ૚ [-10, 10] 21 95.79 7 7 - 0.0126

૞ࢌ ൌ ૛૜ െ ሺ૙. ૚࢞૚૚ሻ ࢋሺ૛ି࢞૛ሻ [-1 , 1] 9 98.22 3 3 - 0.0183

૟ࢌ ൌ ૛ࢋ ሻሻ࣊ି࢞ሺ૟ሺܖܑܛ ൅ ࢞ െ ૚ [-1.5, 2] 15 97.18 5 5 - 0.0131 ࢌૠሺ࢙࢛࢕࢛࢔࢏࢚࢔࢕ࢉ࢙࢏ࢊ ሻൌ െ࢔࢕࢏࢚ࢉ࢔࢛ࢌ ܖ܉ܜ ቀ࢞ െ ૝ቁ, െ࣊ ૟ ൑ ࢞ ൑ െ૛࢞ࢋ ሻ, െ࢞ሺ૚૙ܖܑܛ ૛ ൏ ݔ ൑ 2ሺ࢞ െ ૞. ૞ሻሺ࢞ െ ૜ሻ૜, ૛ ൏ ݔ ൑ ૟

{-2, 2} are
points of
disconti-
nuity in
 [-6,6]

54 96.74 19 16
1

(m=3)
0.0220

ૡࢌ ൌ .ሺ૙ܖܑܛ ૛࢞ሻ .ሺ૙ܛܗ܋ ૞࢞ሻ [-50, 50] 111 96.26 23 15
4

(m=2)
0.0188

586 V.L.V. Nadimpalli et al.

of Post-processing in selecting narrow intervals, thus making root computation effi-
cient with less computational time per root. Further, Pre-processing also facilitates to
choose the GA parameters such as population size, number of generations in the GA
process. Statistical analysis is carried out by repeating each experiment 50 times for
varying population size from10 to 100, in steps of 10.

6.1 Pre-processing – Fixing the LC

Fig. 1. Explains about the output of Pre-processing algorithm that fixes LC as 21 for ݂ସ . In the
first iteration, ܥܮ ݈ܽ݅ݐ݅݊ܫ ൌ 2, ܸܨ_ݔܽܯ ൌ3, ݂ܴ݀݁݊݅݁_ܸܨ ൌ7, hence, LC is reset as 3*7 = 21. In
second iteration, ܸܨ_ݔܽܯ ൌ 7, ݂ܴ݀݁݊݅݁_ܸܨ ൌ7. As given in Pre-processing Algorithm, it
continues for one more generation of GA.

Fig. 2. Displays the average of 50 experiments for minimum, mean, maximum and standard
deviation (which tends to zero) of Pre-processor iterations. It can be clearly seen that the aver-
age number of iterations in Pre-processing algorithm Kଵ ൑ 4 .Various functions considered by
several researchers are taken as test cases and experiments are conducted. It is observed exper-
imentally that more often in Pre-processing algorithm, Kଵ ൑ 4.
6.2 Post-processing

Considering ݂ସ of Table 1 with adaptive LC = 21 as input, GA with Post-processing-
Refinement is carried out, which produces seven non-overlapping potential intervals
that are narrow. It is observed that always the number of intervals selected
before Post-processing is less than or equal to that of number of intervals selected after

1 1.5 2 2.5 3
0

10

20

30

Iteration no.

 M
ax

−F
V

, F
V−

R
ef

in
ed

 ,
LC

 Pre−processing Algorithm −−− Fixing LC

Max−FV
FV−Refined
LC

10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

 Population Size
 M

in
,

 M
ea

n,

M
ax

,
 S

td
 Avg no. of Pre−proc Iterations

 min iter in Pre−Pro
 mean iter in Pre−Pro
 max iter in Pre−Pro
 std of iter in Pre−Pro

Novel Genetic Algorithmic Approach for Computing Real Roots of a Nonlinear Equation 587

Post-processing. Here for this problem, the number of intervals selected before Post-
processing is 5 whereas, the number of intervals selected after Post-processing is 7.

Furthermore, it is observed that Pre- and Post-processing algorithms also influ-
ence various other parameters of GA such as population size, number of iterations etc.
It is found experimentally for various test functions that when we start the GA process
with the adaptive LC, even though the population size is reduced from ଶܰ ൌ100 to ଶܰ ൌ 75, 50, 25, this method resulted in selecting maximum number of potential in-
tervals. The statistical analysis of ଶܰ in GA with respect to mean, maximum, standard
deviation of selected intervals facilitates to tune the parameter ଶܰ. Additionally, it is
observed through statistical analysis that the number of generations ܭଶ in GA can also
be fine-tuned in a similar way. For the function ݂ସ , mean of selected intervals suggests
that all the seven potential intervals are selected even when ܭଶ ൌ 2. Experimental test
cases suggest that ܭଶ ൌ 3 worked effectively for majority of functions considered,
even for functions possessing dense roots also.

6.3 Comparison Between Conventional GA and Proposed Method for ࢌ૝ሺ࢞ሻ

The strength of the proposed methodology can be well understood through the compar-
ison between the conventional GA and proposed method (with Pre-processing + Post-
processing-Refinement), considering same fitness function in both cases. Since in
conventional GA the value of LC is unknown, we have selected LC = 5, 15, 20, 50, 70,
80 and each experiment is repeated 50 times with varying population size (ଵܰ) from 10
to 100. Now, the same process is repeated with the proposed method (GA with Pre-
processing and Post-processing) which adaptively fixes LC as 21 for this problem. It
may be noted that for all the following figures, legend is same as given in Fig. 3.

Fig. 3. The average time elapsed up to the selection of “all possible intervals” is depicted here.
It can be observed that the average time elapsed to find “all 7 intervals” with adaptive ܥܮ ൌ 21,
for population size ଶܰ ൌ 100 with the proposed method is 0.03142 sec which is much less
compared to that of any value of LC with conventional GA. This supports the efficiency of
Post-processing.

10 20 30 40 50 60 70 80 90 100
0.02

0.03

0.04

0.05

0.06

0.07

0.08

X: 100
Y: 0.03142

Population Size

 T
im

e
(s

ec
)

Avg Time Elapsed upto selection of intervals

Proposed method with adaptive LC 21
GA with LC 5
GA with LC 15
GA with LC 20
GA with LC 50
GA with LC 70
GA with LC 80

588 V.L.V. Nadimpalli et al.

Fig. 4. This figure displays the average number of roots for different Nଶ. It can be clearly seen
that average number of roots found by the proposed method (denoted by ‘*’) is consistent when
compared to conventional GA with arbitrary LC.

Fig. 5. The statistical analysis about the average of mean, maximum and standard deviation of
selected roots with the proposed method indicate that average of standard deviation of selected
roots tends to zero for ଶܰ ൐ 30 in GA indicating that all the roots are selected. Thus, the popu-
lation size ଶܰ for this problem is suggested to be fine-tuned to approximately 40.

Fig. 6. This figure explains about the comparison between conventional GA with arbitrarily
chosen LC and the proposed method with adaptive LC (denoted by ‘*’) with regard to computa-
tional time per root. The average computational time per root with proposed method for ଶܰ ൌ 100 is 0.01258 seconds. The very fact that the selected intervals are narrow makes root compu-
tation efficient, reducing computational time.

20 40 60 80 100
0

1

2

3

4

5

6

7

Population Size

Av
g.

No
 of

 ro
ots

Avg No of roots in 50 Experiments

10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

Population Size

M
in,

 M
ea

n,
 M

ax
,

St
d

Statistical analysis of Selected roots

mean−no−roots
max−no−roots
std−no−roots

10 20 30 40 50 60 70 80 90 100
0.01

0.02

0.03

0.04

X: 100
Y: 0.01258

Population Size

T
im

e
(s

ec
)

Avg Time Elapsed per root

Novel Genetic Algorithmic Approach for Computing Real Roots of a Nonlinear Equation 589

Table 2. The following table depicts the lower and upper bounds of each selected interval with
and without Post-processor and % of gain factor for each root

Selected

Intervals

for ସ݂ሺݔሻ

Selected Intervals –GA with

Pre-processor, but
 without Post-processor

Selected Intervals–GA with

Pre-processor and with Post-
processor

Gain fac-
tor=

(1-Ww/Wo)
*100

Roots
 Interval estimates

 Lower Upper

Interval

Width W0
Interval estimates

Lower Upper

Interval

Width

Ww

1 -10.00 -9.3945 0.6055 -9.5304 -9.5084 0.0219 96.3832 -9.5176

2 -9.3945 -7.9416 1.4529 -9.3305 -9.2990 0.0315 97.8319 -9.3275

3 -7.9416 -6.4798 1.4618 -6.4989 -6.4645 0.0343 97.6536 -6.4823

4 -6.4798 -5.1598 1.3200 -6.0789 -6.0140 0.0648 95.0884 -6.0617

5 -5.1598 -3.4636 1.6962 -3.5663 -3.5327 0.0336 98.0191 -3.5642

6 -3.3333 -2.4203 0.9130 -2.5920 -2.5481 0.0438 95.2026 -2.5909

7 -1.6193 -0.7609 0.8584 -0.9203 -0.8373 0.0830 90.3308 -0.9186

It can be observed from the table that the selected intervals with the proposed method
with Post-processing are very narrow and gain factor is significant, which high lights
the novelty of Post-processing.

7 Conclusion

The demonstrations reveal that GA coupled with Pre-processing module could arrive
at apt length of chromosome (ܥܮ) even though one starts with ܥܮ as two. Further,
Post-processing (Refinement) coupled with GA produces significantly narrow inter-
vals resulting in root computation to be highly efficient as well as enhances the
power of capturing all the roots, i.e., missing a root in the zone of interest has less
probability. It is also observed that these novel Pre-processing and Post-processing
modules embedded within the GA help to converge faster, more often less than four
iterations.

The sensitivity and robustness of this novel GA has come out by capturing an in-

terval for 31st root of a function ݔଶ ൅ sin ଵ ௫ in [0.01, 1.0] besides intervals for all the

known 30 roots as reported in [14].
Additionally, it is noticed that Pre-processing and Post-processing algorithms also

influence various other parameters of GA such as population size, number of itera-
tions etc. The work is in progress to analyze the above and its merits and limitations
compared with existing methodologies.

Acknowledgements. The authors are grateful to anonymous reviewers and track chairs for
helpful suggestions. The first author is thankful to the Director, ACRHEM, UoH and to the
Director, HEMRL, Pune for the financial support.

590 V.L.V. Nadimpalli et al.

References

1. Numerical Recipes. The Art of Scientific Computing, 3rd edn. Cambridge University Press
2. Holland J.H.: Adaption in natural and artificial systems: an introductory analysis with

applications to biology, control, and artificial intelligence. University of Michigan Press
3. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning.

Addison-Wesley Publishing
4. Castillo, O., Melin, P., Pedrycz, W. (eds.): Soft Computing for Hybrid Intelligent Systems
5. Annealing, S., Kirkpatrick, S., Gelatt; C.D., Vecchi, M.P.: Optimization. Science, New

Series 220(4598), 671–680 (1983)
6. Dai, J., Wu, G., Wu, Y., Zhu, G.: Helicopter trim research based on hybrid genetic

algorithm. In: Proceedings of World Congress on Intelligent Control and Automation,
pp. 2007–2011 (2008)

7. Brits, R., Engelbrecht, A.P., van den Bergh, F.: Solving systems of unconstrained equa-
tions using PSO. In: Proceedings of International Conference on Systems, Man and
Cybermetics, vol. 3, pp. 6–9 (2002)

8. Deb, K.: Multi-objective Optimization Using Evolutionary Algorithms. Wiley (2001)
9. Angelova, M., Pencheva, T.: Tuning Genetic Algorithm parameters to improve conver-

gence time. International Journal of Chemical Engineering 2011, Article ID 646917, 7
10. Brain, Z., Addicoat, M.: Using Meta-Genetic Algorithms to tune parameters of Genetic

Algorithms to find lowest energy Molecular Conformers. In: Proc. of the Alife XII Con-
ference, Odense, Denmark (2010)

11. Yuan, B., Gallagher, M.: A Hybrid Approach to Parameter Tuning in Genetic Algorithms.
In: CEC 2005 (2005)

12. Herrera, F., Lozano, M., Verdegay, J.L.: Tackling Real-Coded Genetic Algorithms: Opera-
tors and Tools for Behavioural Analysis. Artificial Intelligence Review 12, 265–319
(1998)

13. Traub, J.F.: Iterative Methods for the Solution of Equations. Prentice Hall, Englewood
(1964)

14. Loudas, C.A., Pardalos, P.M. (ed.): Encyclopedia of Optimization, vol. 5, p. 1725. Kluwer
Academic Publishers

A Multi-Objective Relative Clustering Genetic
Algorithm with Adaptive Local/Global Search

Based on Genetic Relatedness

Iman Gholaminezhad1 and Giovanni Iacca2(B)

1 Department of Mechanical Engineering, University of Guilan, Guilan, Iran
i.gholaminezhad@gmail.com

2 INCAS3, Dr. Nassaulaan 9, 9401 HJ Assen, The Netherlands
giovanniiacca@incas3.eu

Abstract. This paper describes a new evolutionary algorithm for multi-
objective optimization, namely Multi-Objective Relative Clustering
Genetic Algorithm (MO-RCGA), inspired by concepts borrowed from
gene relatedness and kin selection theory. The proposed algorithm clus-
ters the population into different families based on individual kinship,
and adaptively chooses suitable individuals for reproduction. The idea
is to use the information on the position of the individuals in the search
space provided by such clustering schema to enhance the convergence
rate of the algorithm, as well as improve its exploration. The proposed
algorithm is tested on ten unconstrained benchmark functions proposed
for the special session and competition on multi-objective optimizers held
at IEEE CEC 2009. The Inverted Generational Distance (IGD) is used
to assess the performance of the proposed algorithm, in comparison with
the IGD obtained by state-of-the-art algorithms on the same benchmark.

Keywords: Multi-objective optimization · Relative clustering · Genetic
relatedness · Inverted generational distance

1 Introduction

According to classic Darwinian theory, natural selection promotes those indi-
viduals which behave in their own selfish interests, rather than for the good of
their species or for the good of the group in which they live. However, nature
offers many examples of social animals (such as eusocial insects, e.g. bees and
ants) which do not behave selfishly all the time, but under some conditions they
rather tend to cooperate with other members of their colony, for the good of the
group as a whole. In fact, in these cases natural selection favors individuals who
maximize their genetic contribution to future generations through cooperation
with their kin, even if this altruistic behaviour comes with an individual cost [8].

In the last two decades, many evolutionary algorithms (EAs) have been devel-
oped based on Darwin’s theory and social behaviour, and applied to the solution
of complex optimization problems. Successful examples of EAs can be found in
c© Springer-Verlag Berlin Heidelberg 2014
A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2014, LNCS 8602, pp. 591–602, 2014.
DOI: 10.1007/978-3-662-45523-4 48

592 I. Gholaminezhad and G. Iacca

particular in the context of multi-objective and dynamic optimization [20,25].
Nonetheless, rarely EAs have shown the full range of properties exhibited by
natural evolution, being instead limited to a coarse and somewhat simplistic
approximation of what happens in nature.

A typical technique used to improve multi-objective EAs, as well as swarm
intelligence algorithms, is clustering. Clustering is generally considered to facili-
tate the exploitation process and decrease the computational time to reach con-
vergence. Several examples of clustering-based algorithms exist in the literature.
Gong et al. suggested a clustering-based selection strategy of non-dominated
individuals by partitioning the non-dominated solutions in each Pareto front
into the desired clusters [6]. Tsang and Lau proposed a clustering-based artificial
immune system focusing on distributed self-organization, by means of popula-
tion decomposition and independent evolutionary processes [17]. Moubayed et
al. used a clustering-based approach for leader selection in multi-objective parti-
cle swarm optimization. In this method better leaders are identified by indirect
mapping between objectives and solution clusters [12]. Wang et al. introduced a
clustering multi-objective evolutionary algorithm based on orthogonal and uni-
form design. In this case the orthogonal design generates an initial population
of solutions that are scattered uniformly over the search space, while cluster-
ing is applied in later stages of the optimization [19]. A similar approach was
proposed also by Gao and Zhong, who developed a clustering-based two-phase
multi-objective particle swarm optimization in which clustering is applied after
a distribution-based generation of the initial population [4].

In this paper we use clustering to build a model of social behaviour and
apply it to a multi-objective evolutionary algorithm. As mentioned before, social
animals transmit to the next generations not only their own genes, but also - by
means of kin selection - their kin’s genes (i.e., offspring and/or siblings, which
are all characterized by some level of genetic relatedness). In order to develop a
simulated model of such behaviour and use it in an optimization algorithm, the
first step is to determine the kinship between the individuals in the population,
and use it as basis for clustering the whole population into different families. To
decompose the current population into different families, each couple of parents
must be clustered together with their corresponding offspring (generated by
means of crossover and mutation) as well as possible half-siblings (which can
be generated because each parent could be selected for reproduction more than
once, with different partners). By considering that individuals laying in the same
family have some similar genes (i.e., similar variables), it is then possible to
design an algorithm in which both family competition and individual competition
occur, with the purpose of transmitting individual and kin’s genes to the next
generations. Here, we use this concept to devise a novel selection strategy which,
different from classic selection schemes such as tournament selection or fitness-
proportionate selection, embeds naturally local and global search. The proposed
multi-objective optimization algorithm based on such strategy, namely Multi-
Objective Relative Clustering Genetic Algorithm (MO-RCGA), is tested on ten

A Multi-Objective Relative Clustering Genetic Algorithm with Adaptive 593

unconstrained functions taken from the IEEE CEC 2009 benchmark [23], and
compared against 15 state-of-the-art multi-objective optimization algorithms.

The rest of the paper is structured as follows: the next section illustrates
the working principles of the proposed MO-RCGA, while Section 3 presents the
numerical results. Finally, Section 4 concludes this work and suggests possible
future research lines.

2 Relative Clustering Genetic Algorithm with Adaptive
Local/Global Search

As anticipated in the previous section, the proposed MO-RCGA clusters the
individuals into different families, based on their level of kinship (in particu-
lar, parents, their children, half-siblings, and cousins lay in the same family).
This is done by indexing all parents and their associated offspring produced by
recombination and mutation.

Recombination is performed by means of n-point crossover, being n a number
between 0 and the individual length (i.e., the problem dimension): for each gene
of the parents which are selected for crossover, a uniform random number is
drawn in [0, 1]; if this number is bigger than a predefined probability of crossover
alteration (PCA), the corresponding gene of the two parents are swapped.

In the mutation operator, the genes of each parent can be chosen to mutate
depending on a predefined probability of mutation alteration (PMA). If the gene
xi,j is selected for mutation (where i and j are respectively the individual and
gene index), a uniform random number is drawn within the interval [−var,+var]
(being var a given parameter), and the latter number is added to xi,j .

Considering the fact that each individual can participate more than once
in crossover, its genes may exist in different families. Hence, parents with their
associate offspring produced by crossover and mutation, as well as offspring
which have only one of the two parents in common (i.e., half-siblings), lay in
the same family. By clustering the whole population into different families after
the execution of the genetic operators (i.e., crossover and mutation), each family
contains individuals which have some similar genes and thus are close to each
other in the problem search space.

After such clustering, the algorithm selects the fittest individuals by com-
paring the individuals from the previous generation with the newly crossed and
mutated individuals, and transmits them to the next generation. Selection is
performed using the clustered families to choose suitable individuals for repro-
duction. A first rank-based method is used to select the fittest families. This
is done by ranking all families in terms of number of individuals evolved from
each family to the next generation. Hence, the higher the number of individuals
passed from a family to the next generation, the fittest that family is.

Now, remembering that individuals within the same family are closer to
each other than with respect to individuals from different families, it is obvious
that choosing for reproduction individuals within the same family (kin selec-
tion) is equivalent to perform a local search in the neighbourhood of that family.

594 I. Gholaminezhad and G. Iacca

The latter is very important especially in the later stages of the optimization,
when the algorithm needs to refine the search. On the other hand, if the indi-
viduals selected for reproduction are from different families (selfish selection),
they are probably far from each other in the search space (especially in the ear-
lier stages of the algorithm), thus allowing for a more global exploration. The
latter is more important at the beginning of the optimization process, when the
algorithm needs to search for the global optimum region and avoid local optima.

In order to control which strategy must be used, the algorithm adaptively
adjusts the probability of local and global search in each generation. At the early
iterations, when global exploration is more essential, the algorithm has a higher
chance of choosing individuals from different families. Such inter-family selection
is performed by comparing the family ranks, so that it is more probable that the
selected individual belongs to the highest ranked family (roulette-wheel selec-
tion). On the other hand, as the number of iterations increases, the probability
of performing intra-family selection (i.e., selecting for reproduction individuals
within the same family) is increased. Also in this case, families selected for repro-
duction are chosen through a rank-based roulette-wheel. It should be noted that
for the initial generation, when families do not exist yet, a classic tournament
selection scheme is used to select individuals for crossover and mutation.

Basically, by such adaptation of global and local search based on the indi-
vidual relatedness, the algorithm is able to control the population diversity, a
mechanism similar to the classic incest prevention scheme used in the CHC algo-
rithm [3]. To adapt the probability of global and local search smoothly along the
generations, we use the following set of equations:

range = range1 +
ngen

Ngen
· (range2 − range1) (1)

{
ProbG = range
ProbL = 1 − range

(2)

where range1 and range2 are predetermined boundary probability values for
the global search, while ngen and Ngen are respectively the index of the current
generation and the maximum number of generations allotted to the evolution-
ary algorithm. ProbG and ProbL indicate respectively the probability of global
search and local search.

The flowchart of MO-RCGA is illustrated in Figure 1. For the sake of clarity,
we also report its pseudo-code in Algorithm 1. With reference to the pseudo-code,
Npop indicates the population size, rand(0, 1) is a uniform random number drawn
in [0, 1], and PC and PM are respectively the individual probability of crossover
and mutation (i.e., the probability that an individual is chosen for crossover and
mutation; on the other hand, PCA and PMA, as defined above, are applied at
gene level).

3 Numerical Results

In this section, the performance of the proposed MO-RCGA is assessed on the
optimization of ten real-parameter multi-objective benchmark functions defined

A Multi-Objective Relative Clustering Genetic Algorithm with Adaptive 595

Fig. 1. Flowchart of MO-RCGA

at the CEC 2009 special session on multi-objective optimization [23]. Among
these functions, UF1-UF7 are two-objective while UF8-UF10 are three-objective
optimization problems. The detailed formulations of the considered test functions
are given in [23]. As suggested in the CEC 2009 platform, in the present work the
total number of function evaluations Nfevals is set as 300000 for each algorithm
execution. As also indicated in [23], the population size Npop is set to 100 for
two-objective problems and 150 for three-objective functions. It should be noted
that the maximum number of generations Ngen used in eq. (1) is computed
based on the predefined number of function evaluations and population size (i.e.,
Ngen = Nfevals/Npop). All the other specific parameters of MO-RCGA used in
the experimental setup are given in Table 1.

The proposed algorithm has been executed 30 times for each test function,
and the average results obtained by MO-RCGA were compared with the results
of all the algorithms participating in the CEC 2009 competition [2,5,7,9–11,
13,15,16,18,19,21,22], as well as two more recent multi-objective optimization
algorithms [1,14]. The performance indicator used to quantify the quality of the
obtained results is the IGD (Inverted Generational Distance) metric [23]. The
IGD is defined as follows. Let P ∗ be a set of uniformly distributed points (in the
objective space) along the Pareto Front (PF). Let A be an approximate set of
the PF. The IGD is then defined as average distance from P ∗ to A, namely:

IGD(A,P ∗) =
∑

v∈P∗ d(v, a)
|P ∗| (3)

where d(v,A) is the minimum Euclidean distance between each point v in the PF
and all the points in the approximate set A. |P ∗| indicates the cardinality of the
PF. If |P ∗| is large enough to represent the PF well, IGD(A,P ∗) can be used as a
measure of both diversity and convergence ofA to the PF. If the setA is close to the
PF and covers it entirely, IGD(A,P ∗) will obviously take a low (tending to zero)
value. In our experiments, the number of solutions used for computing the IGD
(i.e., the cardinality of the approximate set A) is set equal to the population size,
therefore 100 for two-objective problems and 150 for three-objective problems.

596 I. Gholaminezhad and G. Iacca

Algorithm 1. Pseudo-code of MO-RCGA.
// initialization
random initialization of the initial population

{
x1, x2, . . . , xNpop

}

ngen = 0
while ngen < Ngen do

// select individuals for reproduction
if ngen == 0 then

for i = 1 . . . Npop do
tournament selection

end for
else

// family clustering and ranking
family clustering based on individual kinship
family ranking based on number of individuals evolved from each family
// global/local search adaptation
update of ProbL and ProbG according to eq. (1) and (2)
for i = 1 . . . Npop do

if rand(0, 1) < ProbG then
// global search
rank-based selection from different families
selection of individuals from the selected families

else
// local search
rank-based selection of a family
selection of individuals from the selected family

end if
end for

end if
// genetic operators (reproduction)
for i = 1 . . . Npop do

if rand(0, 1) < PC then
n-point crossover

end if
if rand(0, 1) < PM then

mutation
end if

end for
// Pareto dominance selection
next generation population selection based on dominance
ngen = ngen + 1

end while

Numerical results are reported in Table 2-3. More specifically, Table 2 shows
the minimum (Min), maximum (Max), Mean, and Standard Deviation (SD) of
the IGD obtained in the 30 runs of MO-RCGA. Table 3 shows the comparative
results of the proposed algorithm with those of the competing algorithms, in

A Multi-Objective Relative Clustering Genetic Algorithm with Adaptive 597

the form of mean IGD and its SD obtained through the 30 independent runs.
It can be observed that MO-RCGA outperforms in terms of mean IGD all the
other algorithms for all the functions except UF7, where it ranks second after
the MOEAD algorithm. Finally, Figures 2-11 show the Pareto Front obtained
by the proposed algorithm in the best run and the optimal (theoretical) Pareto
Front of the ten test problems. It can be seen visually that MO-RCGA is able
to detect uniformly the PF on all the test functions, except for the case of UF7
where it fails at covering only the upper leftmost part of it.

Table 1. Parameter
setting of MO-RCGA

Parameter Value

range1 0.8
range2 0.2
PC 1
PM 0.2
var 0.1
PCA 0.5
PMA 0.2

Table 2. IGD values obtained with MO-RCGA on
functions UF1-UF10 from the CEC 2009 benchmark
(30 independent runs)

Function Minimum Maximum Mean Std. Dev.

UF1 0.00414 0.00431 0.00419 5.22E-04
UF2 0.00407 0.00502 0.00443 1.89E-04
UF3 0.00423 0.00584 0.00491 8.12E-03
UF4 0.00401 0.00522 0.00489 2.66E-04
UF5 0.01283 0.01511 0.01377 5.22E-03
UF6 0.00441 0.00668 0.00536 9.98E-02
UF7 0.00692 0.00882 0.00703 7.32E-03
UF8 0.04308 0.07640 0.0522 3.03E-02
UF9 0.02681 0.03985 0.0297 4.53E-03
UF10 0.06112 0.08321 0.0765 8.24E-03

Fig. 2. Final PF set on UF1 Fig. 3. Final PF set on UF2

598 I. Gholaminezhad and G. Iacca
T
a
b
le

3
.

C
o
m

p
a
ri

so
n

o
f

m
ea

n
IG

D
a
n
d

st
a
n
d
a
rd

d
ev

ia
ti

o
n

(S
D

)
o
b
ta

in
ed

b
y

M
O

-R
C

G
A

a
n
d

1
5

co
m

p
et

in
g

a
lg

o
ri

th
m

s
o
n

fu
n
ct

io
n
s

U
F
1
-U

F
1
0

fr
o
m

C
E

C
2
0
0
9

b
en

ch
m

a
rk

(3
0

ru
n
s)

.

A
lg

o
ri

th
m

IG
D

U
F
1

U
F
2

U
F
3

U
F
4

U
F
5

U
F
6

U
F
7

U
F
8

U
F
9

U
F
1
0

M
O

-R
C

G
A

M
ea

n
0
.0
0
4
1
9

0
.0
0
4
4
3

0
.0
0
4
9
1

0
.0
0
4
8
9

0
.0
1
3
7
7

0
.0
0
5
3
6

0
.0

0
7
0
3

0
.0
5
2
2

0
.0
2
9
7

0
.0
7
6
5

S
D

5
.2
2
E
-0
4
1
.8
9
E
-0
4
8
.1
2
E
-0
3
2
.6
6
E
-0
4
5
.2
2
E
-0
3
9
.9
E
-0
2

7
.3

2
E

-0
3

3
.0
3
E
-0
2
4
.5
3
E
-0
3
8
.2
4
E
-0
3

M
O

-I
T

L
B

O
M

ea
n

0
.0

0
4
2
1

0
.0

0
5
1
9

0
.0

4
6
8
1

0
.0

4
3
7
8

0
.0

7
4
8
2

0
.0

1
1
4
4

0
.0

4
1
2
7

0
.0

6
1
2
6

0
.1

2
3
7
9

0
.1

4
7
1
4

S
D

8
.0

4
E

-0
4

1
.7

3
E

-0
3

6
.4

8
E

-0
3

1
.0

7
E

-0
2

8
.6

2
E

-0
3

1
.0

1
E

-0
2

2
.3

8
E

-0
2

1
.6

5
E

-0
3

8
.9

7
E

-0
2

1
.2

9
E

-0
2

M
O

A
B

C
M

ea
n

0
.0

0
6
1
8

0
.0

0
4
8
4

0
.0

5
1
2

0
.0

5
8
0
1

0
.0

7
7
7
5

0
.0

6
5
3
7

0
.0

5
5
7
3

0
.0

6
7
2
6

0
.0

6
1
5

0
.1

9
4
9
9

S
D

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

M
T

S
M

ea
n

0
.0

0
6
6

0
.0

0
6
1
5

0
.0

5
3
1

0
.0

2
3
5
6

0
.0

1
4
8
9

0
.0

5
9
1
7

0
.0

4
0
7
9

0
.1

1
2
5
1

0
.1

1
4
4
2

0
.1

5
3
0
6

S
D

3
.4

9
E

-0
4

5
.0

8
E

-0
4

1
.1

7
E

-0
2

6
.6

4
E

-0
4

3
.2

8
E

-0
3

1
.0

6
E

-0
2

1
.4

4
E

-0
2

1
.2

9
E

-0
2

2
.5

5
E

-0
2

1
.5

8
E

-0
2

D
M

O
E

A
D

D
M

ea
n

0
.0

1
0
3
8

0
.0

0
6
7
9

0
.0

3
3
3
7

0
.4

2
6
8

0
.3

1
4
5
4

0
.0

6
6
7
3

0
.0

1
0
3
2

0
.0

6
8
4
1

0
.0

4
8
9
6

0
.3

2
2
1
1

S
D

2
.3

7
E

-0
3

2
.0

2
E

-0
3

5
.6

8
E

-0
3

1
.3

9
E

-0
3

4
.6

6
E

-0
2

1
.0

3
E

-0
2

9
.4

6
E

-0
3

9
.1

2
E

-0
3

2
.2

3
E

-0
2

2
.8

6
E

-0
1

L
iu

L
i
A

lg
o
ri

th
m

M
ea

n
0
.0

0
7
8
5

0
.0

1
2
3

0
.0

1
4
9
7

0
.0

4
3
5

0
.1

6
1
8
6

0
.1

7
5
5
5

0
.0

0
7
3

0
.0

8
2
3
5

0
.0

9
3
9
1

0
.4

4
6
9
1

S
D

2
.0

9
E

-0
3

3
.3

2
E

-0
3

2
.4

E
-0

2
6
.5

E
-0

4
2
.8

2
E

-0
2

8
.2

9
E

-0
2

8
.9

E
-0

4
7
.3

3
E

-0
3

4
.7

1
E

-0
2

1
.3

E
-0

1

G
D

E
3

M
ea

n
0
.0

0
5
3
4

0
.0

1
1
9
5

0
.1

0
6
3
9

0
.0

2
6
5

0
.0

3
9
2
8

0
.2

5
0
9
1

0
.0

2
5
2
2

0
.2

4
8
5
5

0
.0

8
2
4
8

0
.4

3
3
2
6

S
D

3
.4

2
E

-0
4

1
.5

4
E

-0
3

1
.2

9
E

-0
2

3
.7

2
E

-0
4

3
.9

5
E

-0
3

1
.9

6
E

-0
2

8
.8

9
E

-0
3

3
.5

5
E

-0
2

2
.2

5
E

-0
2

1
.2

3
E

-0
2

M
O

E
A

D
M

ea
n

0
.0

0
4
3
5

0
.0

0
6
7
9

0
.0

0
7
4
2

0
.0

6
3
8
5

0
.1

8
0
7
1

0
.0

0
5
8
7

0
.0
0
4
4
4

0
.0

5
8
4

0
.0

7
8
9
6

0
.4

7
4
1
5

S
D

2
.9

0
E

-0
4

1
.8

2
E

-0
3

5
.8

9
E

-0
3

5
.3

4
E

-0
3

6
.8

1
E

-0
2

1
.7

1
E

-0
3
1
.1
7
E
-0
3

3
.2

1
E

-0
3

5
.3

2
E

-0
2

7
.3

6
E

-0
2

M
O

E
A

D
G

M
M

ea
n

0
.0

0
6
2

0
.0

0
6
4

0
.0

4
2
9

0
.4

7
6

1
.7

9
1
9

0
.5

5
6
3

0
.0

0
7
6

0
.2

4
4
6

0
.1

8
7
8

0
.5

6
4
6

S
D

1
.1

3
E

-0
3

4
.3

E
-0

4
3
.4

1
E

-0
2

2
.2

2
E

-0
3

5
.1

2
E

-0
1

1
.4

7
E

-0
1

9
.4

E
-0

4
8
.5

4
E

-0
2

2
.8

7
E

-0
2

1
.0

2
E

-0
1

N
S
G

A
II

L
S

M
ea

n
0
.0

1
1
5
3

0
.0

1
2
3
7

0
.1

0
6
0
3

0
.0

5
8
4

0
.5

6
5
7

0
.3

1
0
3
2

0
.0

2
1
3
2

0
.0

8
6
3

0
.0

7
1
9

0
.8

4
4
6
8

S
D

7
.3

E
-0

3
9
.1

1
E

-0
3

6
.8

6
E

-0
2

5
.1

2
E

-0
3

1
.8

3
E

-0
1

1
.9

1
E

-0
1

1
.9

5
E

-0
2

1
.2

4
E

-0
2

4
.5

E
-0

2
1
.6

3
E

-0
1

O
W

M
O

S
a
D

E
M

ea
n

0
.0

1
2
2

0
.0

0
8
1

0
.1

0
3

0
.0

5
1
3

0
.4

3
0
3

0
.1

9
1
8

0
.0

5
8
5

0
.0

9
4
5

0
.0

9
8
3

0
.7

4
3

S
D

1
.2

E
-0

3
2
.3

E
-0

3
1
.9

E
-0

2
1
.9

E
-0

3
1
.7

4
E

-0
2

2
.9

E
-0

2
2
.9

1
E

-0
2

1
.1

9
E

-0
2

2
.4

4
E

-0
2

8
.8

5
E

-0
2

C
lu

st
er

in
g

M
O

E
A

M
ea

n
0
.0

2
9
9

0
.0

2
2
8

0
.0

5
4
9

0
.0

5
8
5

0
.2

4
7
3

0
.0

8
7
1

0
.0

2
2
3

0
.2

3
8
3

0
.2

9
3
4

0
.4

1
1
1

S
D

3
.3

E
-0

3
2
.3

E
-0

3
1
.4

7
E

-0
2

2
.7

E
-0

3
3
.8

4
E

-0
2

5
.7

E
-0

3
2
.0

E
-0

3
2
.3

E
-0

2
7
.8

1
E

-0
2

5
.0

1
E

-0
2

A
M

G
A

M
ea

n
0
.0

3
5
8
8

0
.0

1
6
2
3

0
.0

6
9
9
8

0
.0

4
0
6
2

0
.0

9
4
0
5

0
.1

2
9
4
2

0
.0

5
7
0
7

0
.1

7
1
2
5

0
.1

8
8
6
1

0
.3

2
4
1
8

S
D

1
.0

3
E

-0
2

3
.1

7
E

-0
3

1
.4

E
-0

2
1
.7

5
E

-0
3

1
.2

1
E

-0
2

5
.6

6
E

-0
2

6
.5

3
E

-0
2

1
.7

2
E

-0
2

4
.2

1
E

-0
2

9
.5

7
E

-0
2

M
O

E
P

M
ea

n
0
.0

5
9
6

0
.0

1
8
9

0
.0

9
9

0
.0

4
2
7

0
.2

2
4
5

0
.1

0
3
1

0
.0

1
9
7

0
.4

2
3

0
.3

4
2

0
.3

6
2
1

S
D

1
.2

E
-0

2
3
.8

E
-0

3
1
.3

2
E

-0
2

8
.3

5
E

-0
4

3
.4

4
E

-0
2

3
.4

5
E

-0
2

7
.5

1
E

-0
4

5
.6

5
E

-0
2

1
.5

8
E

-0
1

4
.4

4
E

-0
2

D
E

C
M

O
S
A

-S
Q

P
M

ea
n

0
.0

7
7
0
2

0
.0

2
8
3
4

0
.0

9
3
5

0
.0

3
3
9
2

0
.1

6
7
1
3

0
.1

2
6
0
4

0
.0

2
4
1
6

0
.2

1
5
8
3

0
.1

4
1
1
1

0
.3

6
9
8
5

S
D

3
.9

4
E

-0
2

3
.1

3
E

-0
2

1
.9

8
E

-0
1

5
.3

7
E

-0
3

8
.9

5
E

-0
2

5
.6

2
E

-0
1

2
.2

3
E

-0
2

1
.2

1
E

-0
1

3
.4

5
E

-0
1

6
.5

3
E

-0
1

O
M

O
E

A
II

M
ea

n
0
.0

8
5
6
4

0
.0

3
0
5
7

0
.2

7
1
4
1

0
.0

4
6
2
4

0
.1

6
9
2

0
.0

7
3
3
8

0
.0

3
3
5
4

0
.1

9
2

0
.2

3
1
7
9

0
.6

2
7
5
4

S
D

4
.0

7
E

-0
3

1
.6

1
E

-0
3

3
.7

6
E

-0
2

9
.6

7
E

-0
4

3
.9

E
-0

3
2
.4

5
E

-0
3

1
.7

4
E

-0
3

1
.2

3
E

-0
2

6
.4

8
E

-0
2

1
.4

6
E

-0
1

A Multi-Objective Relative Clustering Genetic Algorithm with Adaptive 599

Fig. 4. Final PF set on UF3 Fig. 5. Final PF set on UF4

Fig. 6. Final PF set on UF5 Fig. 7. Final PF set on UF6

Fig. 8. Final PF set on UF7 Fig. 9. Final PF set on UF8

600 I. Gholaminezhad and G. Iacca

Fig. 10. Final PF set on UF9 Fig. 11. Final PF set on UF10

4 Conclusion

In this work we introduced a new algorithm for solving multi-objective optimiza-
tion problems, namely Multi-Objective Relative Clustering Genetic Algorithm
(MO-RCGA). Inspired by the concepts of kin selection and genetic relatedness,
the proposed algorithm iteratively clusters the individuals in the population
into different families, based on their level of kinship (i.e., parents, offspring
and half-siblings). Selection of individuals for reproduction is thus performed at
both intra-family and inter-family level. Since individuals within a family have
some similar genes and hence are closer to each other in the search space than
individuals from different families, by selecting intra-family individuals the algo-
rithm favors local search, while selecting inter-family individuals global search
is promoted. An adaptive scheme is presented which balances the two levels of
selection during the different stages of the optimization process, thus guarantee-
ing an optimal trade-off between exploration and exploitation. The performance
of MO-RCGA is assessed in comparison with 15 state-of-the-art multi-objective
optimization algorithms on ten benchmark functions from the CEC 2009 testbed.
Numerical results, expressed in terms of Inverted Generational Distance, show
that the proposed algorithm is extremely competitive on all the different func-
tions and against all the considered competing algorithms.

In our future research, we will extend this study on a larger experimental
setup, possibly including real-world applications. Also, we will include in the
comparison alternative adaptive mechanisms, such as the ensemble of neigh-
bourhood sizes proposed in [24], and we will try to apply the proposed adaptive
selection scheme to single-objective optimization. Finally, from an algorithmic
point of view, we will try to improve upon the current implementation of MO-
RCGA, for example introducing into the algorithm a two-phase scheme including
an efficient design of the initial population.

Acknowledgments. INCAS3 is co-funded by the Province of Drenthe, the Munic-
ipality of Assen, the European Fund for Regional Development and the Ministry of
Economic Affairs, Peaks in the Delta.

A Multi-Objective Relative Clustering Genetic Algorithm with Adaptive 601

References

1. Akbari, R., Ziarati, K.: Multi-Objective bee swarm optimization. International
Journal of Innovative Computing Information and Control 8(1B), 715–726 (2012)

2. Chen, C.M., Chen, Y.P., Zhang, Q.: Enhancing MOEA/D with guided mutation
and priority update for multi-objective optimization. In: IEEE Congress on Evo-
lutionary Computation, pp. 209–216 (2009)

3. Eshelman, L.J.: The CHC Adaptive Search Algorithm: How to Have Safe Search
When Engaging in Nontraditional Genetic Recombination. Foundations of Genetic
Algorithms pp. 265–283 (1991)

4. Gao, H., Zhong, W.: Multiobjective Optimization Using Clustering Based Two
Phase Particle Swarm Optimization. International Conference on Natural Compu-
tation 6, 520–524 (2008)

5. Gao, S., Zeng, S., Xiao, B., Zhang, L., Shi, Y., Tian, X., Yang, Y., Long, H., Yang,
X., Yu, D., Yan, Z.: An orthogonal multi-objective evolutionary algorithm with
lower-dimensional crossover. In: IEEE Congress on Evolutionary Computation,
pp. 1959–1964 (2009)

6. Gong, M., Cheng, G., Jiao, L., Liu, C.: Clustering-based selection for evolution-
ary multi-objective optimization. In: IEEE International Conference on Intelligent
Computing and Intelligent Systems (2009)

7. Huang, V.L., Zhao, S.Z., Mallipeddi, R., Suganthan, P.N.: Multi-objective opti-
mization using self-adaptive differential evolution algorithm. In: IEEE Congress
on Evolutionary Computation, pp. 190–194 (2009)

8. Krebs, J.R., Davies, N.B.: An Introduction to Behavioural Ecology. Blackwell Pub-
lishing, Inc. (1993)

9. Kukkonen, S., Lampinen, J.: Performance assessment of Generalized Differential
Evolution 3 with a given set of constrained multi-objective test problems. In: IEEE
Congress on Evolutionary Computation, pp. 1943–1950 (2009)

10. Liu, H.L., Li, X.: The multiobjective evolutionary algorithm based on determined
weight and sub-regional search. In: IEEE Congress on Evolutionary Computation,
pp. 1928–1934 (2009)

11. Liu, M., Zou, X., Chen, Y., Wu, Z.: Performance assessment of DMOEA-DD with
CEC 2009 MOEA competition test instances. In: IEEE Congress on Evolutionary
Computation, pp. 2913–2918 (2009)

12. Moubayed, N.A., Petrovski, A., McCall, J.: Clustering-Based Leaders’ Selection in
Multi-Objective Particle Swarm Optimisation. In: Yin, H., Wang, W., Rayward-
Smith, V. (eds.) IDEAL 2011. LNCS, vol. 6936, pp. 100–107. Springer, Heidelberg
(2011)

13. Qu, B.Y., Suganthan, P.N.: Multi-objective evolutionary programming without
non-domination sorting is up to twenty times faster. In: IEEE Congress on Evolu-
tionary Computation, pp. 2934–2939 (2009)

14. Rao, V., Patel, V.: Comparative performance of an elitist teaching-learning-based
optimization algorithm for solving unconstrained optimization problems. Interna-
tional Journal of Industrial Engineering Computations 4(1), 29–50 (2013)

15. Sindhya, K., Sinha, A., Deb, K., Miettinen, K.: Local search based evolutionary
multi-objective optimization algorithm for constrained and unconstrained prob-
lems. In: IEEE Congress on Evolutionary Computation, pp. 2919–2926 (2009)

16. Tiwari, S., Fadel, G., Koch, P., Deb, K.: Performance assessment of the hybrid
Archive-based Micro Genetic Algorithm (AMGA) on the CEC 2009 test problems.
In: IEEE Congress on Evolutionary Computation, pp. 1935–1942 (2009)

602 I. Gholaminezhad and G. Iacca

17. Tsang, W.W.P., Lau, H.Y.K.: Clustering-Based Multi-objective Immune Optimiza-
tion Evolutionary Algorithm. In: Coello Coello, C.A., Greensmith, J., Krasnogor,
N., Liò, P., Nicosia, G., Pavone, M. (eds.) ICARIS 2012. LNCS, vol. 7597, pp.
72–85. Springer, Heidelberg (2012)

18. Tseng, L.Y., Chen, C.: Multiple trajectory search for unconstrained/constrained
multi-objective optimization. In: IEEE Congress on Evolutionary Computation,
pp. 1951–1958 (2009)

19. Wang, Y., Dang, C., Li, H., Han, L., Wei, J.: A clustering multi-objective evolu-
tionary algorithm based on orthogonal and uniform design. In: IEEE Congress on
Evolutionary Computation, pp. 2927–2933 (2009)

20. Yang, S., Ong, Y.S., Jin, Y. (eds.): Evolutionary Computation in Dynamic and
Uncertain Environments, vol. 51. SCI. Springer (2007)

21. Zamuda, A., Brest, J., Boškovič, B., Zumer, V.: Differential Evolution with Self-
adaptation and Local Search for Constrained Multiobjective Optimization. In:
IEEE Congress on Evolutionary Computation, pp. 195–202 (2009)

22. Zhang, Q., Liu, W., Li, H.: The performance of a new version of MOEA/D on
CEC 2009 unconstrained MOP test instances. In: IEEE Congress on Evolutionary
Computation, pp. 203–208 (2009)

23. Zhang, Q., Zhao, A., Suganthan, P.N., Liu, W., Tiwari, S.: Multi-objective opti-
mization test instances for the CEC 2009 special session and competition. Tech.
Rep. CES 487, University of Essex and Nanyang Technological University (2008)

24. Zhao, S.Z., Suganthan, P.N., Zhang, Q.: Decomposition-Based Multiobjective Evo-
lutionary Algorithm With an Ensemble of Neighborhood Sizes. IEEE Transactions
on Evolutionary Computation 16(3), 442–446 (2012)

25. Zhou, A., Qu, B.Y., Li, H., Zhao, S.Z., Suganthan, P.N., Zhang, Q.: Multiobjective
evolutionary algorithms: A survey of the state of the art. Swarm and Evolutionary
Computation 1(1), 32–49 (2011)

Noisy Optimization: Convergence with a Fixed
Number of Resamplings

Marie-Liesse Cauwet(B)

TAO (Inria), LRI, UMR 8623 (CNRS - Univ. Paris-Sud), Orsay, France
marie-liesse.cauwet@inria.fr

Abstract. It is known that evolution strategies in continuous domains
might not converge in the presence of noise [3,14]. It is also known that,
under mild assumptions, and using an increasing number of resamplings,
one canmitigate the effect of additive noise [4] and recover convergence.We
show new sufficient conditions for the convergence of an evolutionary algo-
rithm with constant number of resamplings; in particular, we get fast rates
(log-linear convergence) provided that the variance decreases around the
optimum slightly faster than in the so-called multiplicative noise model.

Keywords: Noisy optimization · Evolutionary algorithm · Theory

1 Introduction

Given a domain D ∈ R
d, with d a positive integer, a noisy objective function is

a stochastic process f : (x, ω) �→ f(x, ω) with x ∈ D and ω a random variable
independently sampled at each call to f . Noisy optimization is the search of
x such that E [f(x, ω)] is approximately minimum. Throughout the paper, x∗

denotes the unknown exact optimum, supposed to be unique. For any positive
integer n, x̃n denotes the search point used in the nth function evaluation. We
here consider black-box noisy optimization, i.e we can have access to f only
through calls to a black-box which, on request x, (i) randomly samples ω (ii)
returns f(x, ω). Among zero-order methods proposed to solve noisy optimiza-
tion problems, some of the most usual are evolution strategies; [1] has studied
the performance of evolution strategies in the presence of noise, and investi-
gated its robustness by tuning the population size of the offspring and the muta-
tion strength. Another approach consists in using resamplings of each individual
(averaging multiple resamplings reduces the noise), rather than increasing the
population size. Resampling means that, when evaluating f(x, ω), several inde-
pendent copies ω1, . . . , ωr of ω are used (i.e. the black-box oracle is called several
times with a same x) and we use as an approximate fitness value 1

r

∑r
i=1 f(x, ωi)

in the optimization algorithm. The key point is how to choose r, number of
resamplings, for a given x. Another crucial point is the model of noise. Different
models of noise can be considered: additive noise (Eq. 3), multiplicative noise
(Eq. 4) or a more general model (Eq. 5). Notice that, in Eq. 5 when z > 0, the
noise decreases to zero near the optimum; this setting is not artificial as we can
observe this behavior in many real problems.
c© Springer-Verlag Berlin Heidelberg 2014
A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2014, LNCS 8602, pp. 603–614, 2014.
DOI: 10.1007/978-3-662-45523-4 49

604 M.-L. Cauwet

Let us give an example in which the noise variance decreases to zero around
the optimum. Consider a Direct Policy Search problem, i.e. the optimization of
a parametric policy on simulations. Assume that we optimize the success rate of
a policy. Assume that the optimum policy has a success rate 100%. Then, the
variance is zero at the optimum.

1.1 Convergence Rates: Log-Linear Convergence and Log-log
Convergence

Depending on the specific class of optimization problems and on some internal
properties of the algorithm considered, we obtain different uniform rates of con-
vergence (where the convergence can be almost sure, in probability or in expec-
tation, depending on the setting); a fast rate will be a log-linear convergence, as
follows:

Fast rate: lim sup
n

log ||x̃n − x∗||
n

= −A < 0, (1)

In the noise-free case, evolution strategies typically converge linearly in log-linear
scale, as shown in [5,7,8,15,18].
The algorithm presents a slower rate of convergence in case of log-log conver-
gence, as follows:

Slow rate: lim sup
n

log ||x̃n − x∗||
log n

= −A < 0, (2)

The log-log rates are typical rates in the noisy case (see [2,4,9–11,16,17]). Nev-
ertheless, we will here show that, under specific assumptions on the noise (if
the noise around the optimum decreases “quickly enough”, see section 1.4), we
can reach faster rates: log-linear convergence rates as in Eq. 1, by averaging a
constant number of resamplings of f(x, ω).

1.2 Additive Noise Model

Additive noise refers to:

f(x, ω) = ||x − x∗||p + noiseω, (3)

where p is a positive integer and where noiseω is sampled independently with
a fixed given distribution. In this model, the noise has lower bounded variance,
even in the neighborhood of the optimum. The uniform rate typically converges
linearly in log − log scale (cf Eq. 2) as discussed in [2,9–11,16,17]. This important
case in applications has been studied in [9,11,12,16] where tight bounds have
been shown for stochastic gradient algorithms using finite differences. When
using evolution strategies, [4] has shown mathematically that an exponential
number of resamplings (number of resamplings scaling exponentially with the
index of iterations) or an adaptive number of resamplings (scaling as a polyno-
mial of the inverse step-size) can both lead to a log-log convergence rate.

Noisy Optimization: Convergence with a Fixed Number of Resamplings 605

1.3 Multiplicative Noise Model

Multiplicative noise, in the unimodal spherical case, refers to

f(x, ω) = ||x − x∗||p + ||x − x∗||p × noiseω (4)

and some compositions (by increasing mappings) of this function, where p is a
positive integer and where noiseω is sampled independently with a fixed given
distribution. [14] has studied the convergence of evolution strategies in noisy
environments with multiplicative noise, and essentially shows that the result
depends on the noise distribution: if noiseω is conveniently lower bounded, then
some standard (1 + 1) evolution strategy converges to the optimum; if arbitrar-
ily negative values can be sampled with non-zero probability, then it does not
converge.

1.4 A More General Noise Model

Eqs. 3 and 4 are particular cases of a more general noise model:

f(x, ω) = ||x − x∗||p + ||x − x∗||pz/2 × noiseω. (5)

where p is a positive integer, z ≥ 0 and noiseω is sampled independently with
a fixed given distribution. Eq. 5 boils down to Eq. 3 when z = 0 and to Eq. 4
when z = 2. We will here obtain fast rates for some larger values of z. More
precisely, we will show that when z > 2, we obtain log-linear rates, as in Eq.
1. Incidentally, this shows some tightness (with respect to z) of conditions for
non-convergence in [14].

2 Theoretical Analysis

Section 2.1 is devoted to some preliminaries. Section 2.2 presents results for
constant numbers of resamplings on our generalized noise model (Eq. 5) when
z > 2.

2.1 Preliminary: Noise-Free Case

Typically, an evolution strategy at iteration n:

– generates λ individuals using the current estimate xn−1 of the optimum x∗

and the so-called mutation strength (or step-size) σn−1,
– provides a pair (xn, σn) where xn is a new estimate of x∗ and σn is a new

mutation strength.

From now on, for the sake of notation simplicity, we assume that x∗ = 0.

606 M.-L. Cauwet

For some evolution strategies and in the noise-free case, we know (see e.g.
Theorem 4 in [5]) that there exists a constant A such that :

log(||xn||)
n

a.s−−−−→
n→∞ −A (6)

log(σn)
n

a.s−−−−→
n→∞ −A (7)

This paper will discuss cases in which an algorithm verifying Eqs. 6, 7 in the
noise-free case also verifies them in a noisy setting.
Remarks: In the general case of arbitrary evolution strategies (ES), we don’t
know if A is positive, but:

– in the case of a (1 + 1)-ES with generalized one-fifth success rule, A > 0 see
[6];

– in the case of a self-adaptive (1, λ)-ES with gaussian mutations, the estimate
of A by Monte-Carlo simulations is positive [5].

Property 1. For some δ > 0, for any α, α′ such that α < A and α′ > A, there
exist C > 0, C ′ > 0, V > 0, V ′ > 0, such that with probability at least 1 − δ

∀n ≥ 1, C ′ exp(−α′n) ≤ ||xn|| ≤ C exp(−αn); (8)
∀n ≥ 1, V ′ exp(−α′n) ≤ σn ≤ V exp(−αn). (9)

Proof. For any α < A, almost surely, log(||xn||) ≤ −αn for n sufficiently large.
So, almost surely, supn≥1 log(||xn||)+αn is finite. Consider V the quantile 1− δ

4

of exp
(
supn≥1 log(||xn||) + αn

)
. Then, with probability at least 1 − δ

4 , ∀n ≥
1, ||xn|| ≤ V exp(−αn). We can apply the same trick for lower bounding ||xn||,
and upper and lower bounding σn, all of them with probability 1 − δ

4 , so that
all bounds hold true simultaneously with probability at least 1 − δ.

2.2 Noisy Case

The purpose of this Section is to show that if some evolution strategies perform
well (linear convergence in the log-linear scale, as in Eqs. 6, 7), then, just by
considering Y resamplings for each fitness evaluation as explained in Alg. 1,
they will also be fast in the noisy case.

Our theorem holds for any evolution strategy satisfying the following con-
straints:

– At each iteration n, a search point xn is defined and λ search points are
generated and have their fitness values evaluated.

– The noisy fitness values are averaged over Y (a constant) resamplings.
– The jth individual evaluated at iteration n is randomly drawn by xn +σnNd

with Nd a d-dimensional standard Gaussian variable.

This framework is presented in Alg. 1.
We now state our theorem, under log-linear convergence assumption (cf

assumption (ii) below).

Noisy Optimization: Convergence with a Fixed Number of Resamplings 607

Algorithm 1. A general framework for evolution strategies. For simplicity, it
does not cover all evolution strategies, e.g. mutations of step-sizes as in self-
adaptive algorithms are not covered; yet, our proof can be extended to a more
general case (xn,i distributed as xn + σN for some noise N with exponentially
decreasing tail). The case Y = 1 is the case without resampling. Our theorem
basically shows that if such an algorithm converges linearly (in log-linear scale)
in the noise-free case then the version with Y large enough converges linearly in
the noisy case when z > 2.

Initialize x0 and σ0.
n ← 1
while not finished do

for i ∈ {1, . . . , λ} do
Define xn,i = xn + σnNd.
Define yn,i = 1

Y

∑Y
k=1 f(xn,i, ωk).

end for
Update: (xn+1, σn+1) ←update(xn,1, . . . , xn,λ,yn,1, . . . , yn,λ, σn).
n ← n + 1

end while

Theorem 1. Consider the following assumptions:

(i) the fitness function f satisfies E [f(x, ω)] = ‖x‖p and has a limited vari-
ance:

V ar(f(x, ω)) ≤ (E [f(x, ω)])z for some z > 2; (10)

(ii) in the noise-free case, the ES with population size λ under consideration is
log-linearly converging, i.e. for any δ > 0, for some α > 0, α′ > 0, there
exist C > 0, C ′ > 0, V > 0, V ′ > 0, such that with probability 1-δ, Eqs. 8
and 9 hold;

(iii) the number Y of resamplings per individual is constant.

Then, if z > max
(

2(pα′−(α−α′)d)
pα , 2(2α′−α)

α

)
, for any δ > 0, there is Y0 > 0 such

that for any Y ≥ Y0, Eqs. 8 and 9 also hold with probability at least (1 − δ)2 in
the noisy case.

Corollary 1. Under the same assumptions, with probability at least (1 − δ)2,

lim sup
n

log(||x̃n||)
n

≤ − α

λY

Proof of Corollary 1 : Immediate consequence of Theorem 1, by applying
Eq. 8 and using lim sup

n

log(||x̃n||)
n = lim sup

n

log(||xn||)
λY n .

Remarks:

– Interpretation: Informally speaking, our theorem shows that if an algo-
rithm converges in the noise-free case, then it also converges in the noisy
case with the resampling rule, at least if z and Y are large enough.

608 M.-L. Cauwet

– Notice that we can choose constants α and α
′
very close to each other. Then

the assumption z > max
(

2(pα′−(α−α′)d)
pα , 2(2α′−α)

α

)
boils down to z > 2.

– We show a log-linear convergence rate as in the noise-free case. This means
that we get log ||x̃n|| linear in the number of function evaluations. This is
as Eq. 1, and faster than Eq. 2 which is typical for noisy optimization with
constant variance.

– In the previous hypothesis, the new individuals are drawn following xn+σnNd

with Nd a d-dimensional standard Gaussian variable, but we could substitute
Nd for any random variable with an exponentially decreasing tail.

Proof of Theorem 1 : In all the proof, Nk denotes a standard normal random
variable in dimension k.
Sketch of proof: Consider an arbitrary δ > 0 and δn = exp(−γn) for some
n ≥ 1 and γ > 0.
We compute in Lemma 2 the probability that at least two generated points xn,i1

and xn,i2 at iteration n are “close”, i.e are such that | ||xn,i1 ||p −||xn,i2 ||p | ≤ δn;
then we calculate the probability that the noise of at least one of the λ evaluated
individuals of iteration n is bigger than δn

2 in Lemma 3. Thus, we can conclude
in Lemma 4 by estimating the probability that at least two individuals are
misranked due to noise.
We first begin by showing a technical lemma.

Lemma 1. Let u ∈ R
d be a unit vector and Nd a d-dimensional standard normal

random variable. Then for S > 0 and � > 0, there exists a constant M > 0 such
that :

max
v≥0

P(| ||u + SNd||p − v| ≤ �) ≤ MS−d max
(
�, �d/p

)
.

Proof. For any v ≥ �, we denote Ev≥� the set :

Ev≥� = {x ; | ||x||p − v | ≤ �} =
{

x ; (v − �)
1
p ≤ ||x|| ≤ (v + �)

1
p

}
.

We first compute μ(Ev≥�), the Lebesgue measure of Ev≥� :

μ(Ev≥�) = Kd

{
(v + �)

d
p − (v − �)

d
p

}
,

with Kd = (2π)d/2

2×4×···×d if d is even, and Kd = 2(2π)(d−1)/2

1×3×···×d otherwise. Hence, by Tay-

lor expansion, μ(Ev≥�) ≤ Kv
d
p −1�, where K = Kd

(
2d

p + sup
v≥�

sup
0<ζ< �

v

q′′(ζ)
2

�
v

)
,

with q(x) = (1 + x)
d
p .

• If v ≥ �:

P(| ||u + SNd||p − v| ≤ �) = P(u + SNd ∈ Ev≥�),

≤ S−d sup
x∈Ev≥�

(
1√
2π

exp(−||S−1(x − u)||2
2

)
)

μ(Ev≥�),

≤ M1S
−d�,

≤ M1S
−d max

(
�, �d/p

)
.

Noisy Optimization: Convergence with a Fixed Number of Resamplings 609

where M1 = K√
2π

sup
v≥�

sup
x:||x||≤(v+�)

1
p

[
v

d
p −1 exp

(
− ||S−1(x−u)||2

2

)]
.

• If v < �, P(| ||u + SNd||p − v| ≤ �) ≤ M2S
−d�d/p ≤ M2S

−d max
(
�, �d/p

)
,

where M2 = 2
d
p Kd√

2π
. Hence the result follows by taking M = max(M1,M2).

Lemma 2. Let us denote by P
(1)
n the probability that, at iteration n, there exist

at least two points xn,i1 and xn,i2 such that | ||xn,i1 ||p − ||xn,i2 ||p | ≤ δn. Then

P (1)
n ≤ Bλ2 exp(−γ′n),

for some B > 0 and γ′ > 0 depending on γ, d, p, C, C ′, V , α, α′.

Proof. Let us first compute the probability P
(0)
n that, at iteration n, two given

generated points xn,i1 and xn,i2 are such that | ||xn,i1 ||p − ||xn,i2 ||p | ≤ δn.
Let us denote by N 1

d and N 2
d two d-dimensional standard independent random

variables, u ∈ R
d a unit vector and Sn = σn

||xn|| .

P (0)
n = P

(| ||xn + σnN 1
d ||p − ||xn + σnN 2

d ||p | ≤ δn

)
,

= P

(
| ||u + SnN 1

d ||p − ||u + SnN 2
d ||p | ≤ δn

||xn||p
)

,

≤ max
v≥0

P

(
| ||u + SnN 1

d ||p − v| ≤ δn

||xn||p
)

.

Hence, by Lemma 1, there exists a M > 0 such that P
(0)
n ≤ MS−d

n

(
δn

||xn||p
)m

,

where m is such that
(

δn

||xn||p
)m

= max
(

δn

||xn||p ,
(

δn

||xn||p
)d/p

)
. Moreover Sn ≥

V ′C−1 exp(−(α′ − α)n) by Assumption (ii). Thus P
(0)
n ≤ B exp(−γ′n), with

B = MV ′−dCdC ′−mp and γ′ = d(α − α
′
) + mγ − mpα′. In particular, γ′ is

positive, provided that γ is sufficiently large.
By union bound, P

(1)
n ≤ (λ−1)λ

2 P
(0)
n ≤ Bλ2 exp(−γ′n).

We now provide a bound on the probability P
(3)
n that the fitness value of

at least one search point generated at iteration n has noise (i.e. deviation from
expected value) bigger than δn

2 in spite of the Y resamplings.

Lemma 3.

P (3)
n := P

⎛
⎝∃i ∈ {1, . . . , λ} ;

∣∣∣∣∣∣
1
Y

Y∑
j=1

f(xn,i, ωj) − E [f(xn,i, ωj)]

∣∣∣∣∣∣ ≥ δn

2

⎞
⎠

≤ λB′ exp(−γ′′n)

for some B′ > 0 and γ′′ > 0 depending on γ, d, p, z, C, Y , α, α′.

610 M.-L. Cauwet

Proof. First, for one point xn,i0 , i0 ∈ {1, . . . , λ} generated at iteration n, we write
P

(2)
n the probability that when evaluating the fitness function at this point, we

make a mistake bigger than δn

2 .
P

(2)
n = P(| 1Y

∑Y
j=1 f(xn,i0 , ωj)−E [f(xn,i0 , ωj)] | ≥ δn

2) ≤ B′ exp(−γ′′n) by using
Chebyshev’s inequality, where B′ = 4Y −1Cpz and γ′′ = αzp − 2γ. In particular,
γ′′ > 0 if z > 2(mpα′−(α−α′)d)

pαm ; hence, if z ≥ max
(

2(pα′−(α−α′)d)
pα , 2(2α′−α)

α

)
, we

get γ′′ > 0.
Then, P

(3)
n ≤ λP

(2)
n by union bound.

Lemma 4. Let us denote by Pmisranking the probability that in at least one
iteration, there is at least one misranking of two individuals. Then, if z >

max
(

2(pα′−(α−α′)d)
pα , 2(2α′−α)

α

)
and Y is large enough, Pmisranking ≤ δ.

This lemma implies that with probability at least 1− δ, provided that Y has
been chosen large enough, we get the same rankings of points as in the noise free
case. In the noise free case Eqs. 8 and 9 hold with probility at least 1 − δ - this
proves the convergence with probability at least (1 − δ)2, hence the expected
result; the proof of the theorem is complete.

Proof. (of the lemma)
We consider the probability P

(4)
n that two individuals xn,i1 and xn,i2 at iter-

ation n are misranked due to noise, so

||xn,i1 ||p ≤ ||xn,i2 ||p (11)

and
1
Y

Y∑
j=1

f(xn,i1 , ωj) ≥ 1
Y

Y∑
j=1

f(xn,i2 , ωj) (12)

Eqs. 11 and 12 occur simultaneously if either two points have very similar
fitness (difference less than δn) or the noise is big (larger than δn

2). Therefore,
P

(4)
n ≤ P

(1)
n + P

(3)
n ≤ λ2P

(0)
n + λP

(2)
n ≤ (B + B′)λ2 exp(−min(γ′, γ′′)n).

Pmisranking is upper bounded by
∑

n≥1 P
(4)
n < δ if γ′ and γ′′ are positive and

constants large enough. γ′ and γ′′ can be chosen positive simultaneously if z >

max
(

2(pα′−(α−α′)d)
pα , 2(2α′−α)

α

)
.

3 Experiments: How to Choose the Right Number of
Resampling?

We consider in our experiments a version of multi-membered evolution strategies,
the (μ,λ)-ES, where μ denotes the number of parents and λ the number of
offspring (μ ≤ λ; see Alg. 2). We denote (x1

n, . . . , xμ
n) the μ parents at iteration

n and (σ1
n, . . . , σμ

n) their corresponding step-size. At each iteration, a (μ,λ)-ES
noisy algorithm : (i) generates λ offspring by mutation on the μ parents, using
the corresponding mutated step-size, (ii) selects the μ best offspring by ranking

Noisy Optimization: Convergence with a Fixed Number of Resamplings 611

the noisy fitness values of the individuals. Thus, the current approximation of
the optimum x∗ at iteration n is x1

n, to be consistent with the previous notations,
we denote xn = x1

n and σn = σ1
n.

Algorithm 2. An evolution strategy, with constant number of resamplings. If
we consider Y = 1, we obtain the case without resampling. Nk is a k-dimensional
standard normal random variable.

Parameters : Y > 0, λ ≥ μ > 0, a dimension d > 0.
Input : μ initial points x1

1, . . . , x
μ
1 ∈ R

d and initial step size σ1
1 > 0, . . . , σμ

1 > 0.
n ← 1
while (true) do

Generate λ individuals indenpendently using :

σj = σmod(j−1,μ)+1
n × exp(

1

2d
× N1)

ij = xmod(j−1,μ)+1
n + σjNd

∀j ∈ {1, . . . , λ}, evaluate ij Y times. Let yj be the averaging over these Y evalu-
ations.
Define j1, . . . , jλ so that yj1 ≤ yj2 ≤ · · · ≤ yjλ .
Update : compute σk

n+1 and xk
n+1 for k ∈ {1, . . . , μ}:

σk
n+1 = σjk

xk
n+1 = xjk

n ← n + 1
end while

Experiments are performed on the fitness function f(x, ω) = ||x||p+||x||pz/2N ,
with x ∈ R

15, p = 2, z = 2.1, λ = 4, μ = 2, and N a standard gaussian random
variable, using a budget of 500000 evaluations. The results presented here are the
mean and the median over 50 runs. The positive results are proved, above, for a
given quantile of the results. This explains the good performance in Fig. 1 (median
result) as soon as the number of resamplings is enough. The median performance
is optimal with just 12 resamplings. On the other hand, Fig. 2 shows the mean
performance of Alg. 2 with various numbers of resamplings. We see that a limited
number of runs diverge so that the mean results are bad even with 16 resamplings;
results are optimal (on average) for 20 resamplings.

Results are safer with 20 resamplings (for the mean), but faster (for the
median) with a smaller number of resamplings.

612 M.-L. Cauwet

-15

-10

-5

0

5

0 100000 200000 300000 400000 500000

lo
g
(|

|c
u
rr

e
n
t
e
s
ti
m

a
te

 o
f
th

e
 o

p
ti
m

u
m

||
)

number of evaluations

 mu=2,lambda=4,dimension=15, budget=500000 ,p=2,z=2.1, median on 50 runs

 8
 12
 16
 20
 24
 28
 32
 64

128

Fig. 1. Convergence of Self-Adaptive Evolution Strategies: Median results

-10

-5

0

5

10

15

0 100000 200000 300000 400000 500000

lo
g
(|

|c
u
rr

e
n
t
e
s
ti
m

a
te

 o
f
th

e
 o

p
ti
m

u
m

||
)

number of evaluations

 mu=2,lambda=4,dimension=15, budget=500000 ,p=2,z=2.1, average on 50 runs

 8
 12
 16
 20
 24
 28
 32
 64

128

Fig. 2. Convergence of Self-Adaptive Evolution Strategies: Mean results

Noisy Optimization: Convergence with a Fixed Number of Resamplings 613

4 Conclusion

We have shown that applying evolution strategies with a finite number of resam-
plings when the noise in the function decreases quickly enough near the optimum
provides a convergence rate as fast as in the noise-free case. More specifically,
if the noise decreases slightly faster than in the multiplicative model of noise,
using a constant number of revaluation leads to a log-linear convergence of the
algorithm. The limit case of a multiplicative noise has been analyzed in [14]; a
fixed number of resamplings is not sufficient for convergence when the noise is
unbounded.

Further Work. We did not provide any hint for choosing the number of resam-
plings. Proofs based on Bernstein races [13] might be used for adaptively choosing
the number of resamplings.

Acknowledgments. This paper was written during a stay in Ailab, Dong Hwa Uni-
versity, Hualien, Taiwan.

References

1. Arnold, D., Beyer, H.-G.: Investigation of the (μ, λ)-es in the presence of noise.
In: Proc. of the IEEE Conference on Evolutionary Computation (CEC 2001),
pp. 332–339. IEEE (2001)

2. Arnold, D., Beyer, H.-G.: Local performance of the (1 + 1)-es in a noisy environ-
ment. IEEE Transactions on Evolutionary Computation 6(1), 30–41 (2002)

3. Arnold, D.V., Beyer, H.-G.: A general noise model and its effects on evolution
strategy performance. IEEE Transactions on Evolutionary Computation 10(4),
380–391 (2006)

4. Astete-Morales, S., Liu, J., Teytaud, O.: log-log convergence for noisy optimization.
In: Proceedings of EA 2013. LNCS. Springer (2013) (page accepted)

5. Auger, A.: Convergence results for (1,λ)-SA-ES using the theory of ϕ-irreducible
Markov chains. Theoretical Computer Science 334(1–3), 35–69 (2005)

6. Auger, A.: Linear convergence on positively homogeneous functions of a
comparison-based step-size adaptive randomized search: the (1+1)-es with gen-
eralized one-fifth success rule (2013) (submitted)

7. Auger, A., Jebalia, M., Teytaud, O.: (x, sigma, eta): quasi-random mutations for
evolution strategies. In: EA, p. 12 (2005)

8. Beyer, H.-G.: The Theory of Evolution Strategies. Natural Computing Series.
Springer, Heidelberg (2001)

9. Chen, H.: Lower rate of convergence for locating the maximum of a function.
Annals of statistics 16, 1330–1334 (1988)

10. Coulom, R.: CLOP: Confident Local Optimization for Noisy Black-Box Parameter
Tuning. In: van den Herik, H.J., Plaat, A. (eds.) ACG 2011. LNCS, vol. 7168,
pp. 146–157. Springer, Heidelberg (2012)

11. Fabian, V.: Stochastic Approximation of Minima with Improved Asymptotic
Speed. Annals of Mathematical statistics 38, 191–200 (1967)

12. Fabian, V.: Stochastic Approximation. SLP. Department of Statistics and Proba-
bility, Michigan State University (1971)

614 M.-L. Cauwet

13. Heidrich-Meisner, V., Igel, C.: Hoeffding and bernstein races for selecting policies in
evolutionary direct policy search. In: ICML 2009: Proceedings of the 26th Annual
International Conference on Machine Learning, pp. 401–408. ACM, New York
(2009)

14. Jebalia, M., Auger, A., Hansen, N.: Log linear convergence and divergence of the
scale-invariant (1+1)-ES in noisy environments. Algorithmica (2010)

15. Rechenberg, I.: Evolutionstrategie: Optimierung Technischer Systeme nach
Prinzipien des Biologischen Evolution. Fromman-Holzboog Verlag, Stuttgart
(1973)

16. Shamir, O.: On the complexity of bandit and derivative-free stochastic convex
optimization. CoRR, abs/1209.2388 (2012)

17. Teytaud, O., Decock, J.: Noisy Optimization Complexity. In: FOGA - Foundations
of Genetic Algorithms XII - 2013, Adelaide, Australie (February 2013)

18. Teytaud, O., Fournier, H.: Lower Bounds for Evolution Strategies Using
VC-Dimension. In: Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.)
PPSN 2008. LNCS, vol. 5199, pp. 102–111. Springer, Heidelberg (2008)

A Differential Evolution Framework with
Ensemble of Parameters and Strategies and Pool

of Local Search Algorithms

Giovanni Iacca1(B), Ferrante Neri2,3, Fabio Caraffini2,3,
and Ponnuthurai Nagaratnam Suganthan4

1 INCAS3, Dr. Nassaulaan 9, 9401 HJ Assen, The Netherlands
giovanniiacca@incas3.eu

2 Centre for Computational Intelligence, School of Computer Science
and Informatics, De Montfort University, The Gateway, LE1 9BH Leicester, UK

{fneri,fcaraffini}@dmu.ac.uk
3 Department of Mathematical Information Technology, University of Jyväskylä,

P.O. Box 35 (Agora), 40014 Jyväskylä yliopisto, Finland
{ferrante.neri,fabio.caraffini}@jyu.fi

4 School of Electrical & Electronic Engineering, College of Engineering,
Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore

epnsugan@ntu.edu.sg

Abstract. The ensemble structure is a computational intelligence
supervised strategy consisting of a pool of multiple operators that com-
pete among each other for being selected, and an adaptation mecha-
nism that tends to reward the most successful operators. In this paper
we extend the idea of the ensemble to multiple local search logics. In a
memetic fashion, the search structure of an ensemble framework coopera-
tively/competitively optimizes the problem jointly with a pool of diverse
local search algorithms. In this way, the algorithm progressively adapts
to a given problem and selects those search logics that appear to be the
most appropriate to quickly detect high quality solutions. The result-
ing algorithm, namely Ensemble of Parameters and Strategies Differen-
tial Evolution empowered by Local Search (EPSDE-LS), is evaluated on
multiple testbeds and dimensionality values. Numerical results show that
the proposed EPSDE-LS robustly displays a very good performance in
comparison with some of the state-of-the-art algorithms.

Keywords: Differential Evolution · Global Optimization · Ensemble ·
Parameter Adaptation · Mutation Strategy Adaptation

1 Introduction

Differential Evolution (DE) [24] is a simple, fast and efficient stochastic algorithm
with few parameters to tune [4,21]. After the early DE implementations, impor-
tant efforts have been made to improve the performance by introducing differ-
ent mutation and crossover strategies [4,5,21,26,36]. The choice of appropriate
c© Springer-Verlag Berlin Heidelberg 2014
A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2014, LNCS 8602, pp. 615–626, 2014.
DOI: 10.1007/978-3-662-45523-4 50

616 G. Iacca et al.

mutation and crossover strategies (as well as their related control parameters)
is not easy due to the complex interaction between them [1]. An inappropriate
choice of strategies or parameters may lead to an efficient behaviour of the algo-
rithm. Thus, various empirical guidelines were suggested for choosing a muta-
tion strategy and its associated control parameter settings, see e.g. [17] and [35].
Although these guidelines are rather useful for choosing the mutation parame-
ters, the performance of DE is still sensitive to the combination of the mutation
and crossover strategies, with their associated parameters. Furthermore, the best
setting of mutation strategy, crossover strategy and control parameters can be
different for different optimization problems. Based on these observations, differ-
ent adaptation schemes have been proposed in the past years, see e.g [1,25,34]
to overcome the time consuming trial-and-error procedure and let the algorithm
self-adapt to the fitness landscape.

As an alternative to adaptation, in [16] a DE framework with an ensemble
of mutation and crossover strategies and parameter values (known as EPSDE:
Ensemble of Parameters and Strategies in DE) was proposed. EPSDE contains a
pool of mutation and crossover strategies along with a pool of values correspond-
ing to each associated parameter which compete to produce successful offspring.
Due to its richness of search moves, EPSDE has proved so far extremely suc-
cessful on many different optimization problems. In different contexts, a similar
logic has been employed, see e.g. [32].

In this paper, we extend the concept of ensemble by combining the ensem-
ble of strategies and parameters proposed in [16] with a pool of local search
algorithms, as suggested in [30]. More specifically, three different local search
algorithms, which co-exist and compete to produce better solutions, are embed-
ded within the EPSDE framework in order to improve upon its performance.
The proposed algorithm, referred to as EPSDE-LS, is evaluated on two different
benchmarks in comparison with three state-of-the-art optimization algorithms.

The reminder of this paper is organized as follows. Section 2 presents the
proposed EPSDE-LS algorithm. Section 3 presents the numerical results. Finally,
Section 4 concludes the paper and suggests some possible future developments.

2 Ensemble of Parameters and Strategies Differential
Evolution Empowered by Local Search

This paper proposes an extension of the concept of EPSDE in a memetic fash-
ion. More specifically, the proposed algorithm, namely Ensemble of Parameters
and Strategies Differential Evolution empowered by Local Search (EPSDE-LS),
integrates within a EPSDE framework also a pool of local search algorithms (see
Alg. 1). The main motivation behind the proposed design, besides the benefits
of DE memetic schemes, see e.g. [12], [19] and [20], is that an a priori design of
an algorithm should take into account the features of the optimization problems,
such as ill-conditioning, separability, multimodality, see [2] and [11]. Thus, mul-
tiple search logics are here blended within the same framework. The algorithm

A Differential Evolution Framework with Ensemble of Parameters 617

should progressively “learn” how each component can successfully tackle the fea-
tures of the optimization problem and progressively adapt to the problem and
solve it efficiently.

Let us describe the proposedEPSDE-LSmore in detail, considering theEPSDE
framework first and then the pool of local search algorithms. As described in [16],
EPSDE makes use of the following pools of strategies:

– Pool of mutation strategies: Pmut = {cur-to-pbest/1, cur-to-rand/1}
– Pool of crossover strategies: Pcross = {bin, exp}

In addition to that, two pools of mutation an crossover parameters are defined,
namely PF and PCR. The mutation strategies are defined as:

– DE/cur-to-pbest/1: x′
off = xi + F (xp

best − xi) + F (xs − xt)
– DE/cur-to-rand/1: xoff = xi + K (xr − xi) + F (xs − xt).

Regarding DE/cur-to-rand/1, it should be observed that the crossover oper-
ation is not applied, as this mutation strategy contains an implicit arithmetic
crossover, see [25]. On the contrary, when DE/cur-to-pbest/1 strategy is selected,
a crossover completes the offspring generation, see [36]. Moreover, xp

best is an indi-
vidual randomly selected amongst the best 100 · p% where p is a dynamic value
that varies between 0 and 1 according to the following rule:

p = �0.005 · (1 − neval/Neval)� (1)

where neval and Neval indicate, respectively, the current and maximum number
of fitness evaluation. In this way, at the beginning of the optimization (neval = 0)
the mutation uses a random solution among the top 50% individuals in the cur-
rent population: this guarantees a higher chance of taking a suboptimal solution,
thus increasing the exploration pressure. Later on (neval → Neval), the percent-
age of top individuals will progressively decrease, thus making the mutation
strategy more exploitative.

The selection of these strategies is motivated by the consideration that they
offer diverse and complementary search moves. As a general observation, as
highlighted in [21], DE is characterized by a limited amount of search moves.
Hence, the employment of multiple mutations and crossover compensates the
lack of DE search moves. However, it is important to note that in order to
have an effective ensemble, the candidate pools of mutation/crossover strategies
and parameters must be chosen so to avoid the unfavorable influences of less
effective mutation strategies and parameters [27]. In other words, the strategies
and parameters present in the pools should have diverse characteristics, so that
they can exhibit distinct performance during different stages of the evolution, as
well as when dealing with different problems, see [21].

In the EPSDE framework, the mutation and crossover strategies have been
chosen as they correspond to two diverse search logics. More specifically, the
DE/cur-to-rand/1 mutation strategy attempts to enhance upon the performance
of each population individual by adding to it two randomized vectors:

xoff = xi + K (xr − xi) + F (xs − xt). (2)

618 G. Iacca et al.

This operation is rather exploratory as it can potentially reach every point of the
decision space and each offspring is loosely related to the generating parent (e.g.
no sequences of design variables are copied from the parent to the offspring).
Conversely, DE/cur-to-pbest/1 is a fairly exploitative mutation strategy as it
makes use of a fitness based criterion to increase the selection pressure. Since
part of the mutation takes into account only those solutions that display the best
fitness values, the mutation excludes some search moves and exploit only those
search directions that appear the most promising. In addition, the crossover
application makes the offspring more similar to the parent that has generated
it, thus further increasing the exploitation. The two crossover strategies allow
different degrees of exploration/exploitation balance. The DE/cur-to-pbest/1
mutation followed by exponential crossover is the most exploitative option while
the offspring generation by DE/cur-to-pbest/1 mutation and binomial crossover
contains a higher exploratory potential, see [31]. The exponential crossover leads
to a copy of contiguous design variables while the binomial tends to copy scat-
tered variables. This fact has an impact especially in non-separable problems
where the inter-variable interaction can be strong.

Regarding the ensemble coordination and adaptation, EPSDE operates as
follows. At the beginning of the optimization, each member in the initial pop-
ulation is randomly assigned a mutation/crossover strategy and the associated
parameter values taken from the respective pools. Then, during each gener-
ation, the population members (target vectors) produce offspring (trial vec-
tors) using the assigned mutation/crossover strategies and parameter values.
If the trial vector is better than the target vector, in the next generation the
mutation/crossover strategies—and the corresponding parameter values—are
retained, while the trial vector replaces its parent (target vector). Otherwise,
the target vector is retained and randomly associated, with equal probability,
to new mutation/crossover strategies and associated parameter values from the
respective pools. Thus, this mechanism relies on the selection properties of evo-
lution to increase, while the optimization process goes on, the probability of
producing offspring by the best combinations of strategies and parameters. In
summary, the ensemble is a simple and straightforward self-adaptation where
the fittest strategies survive along with the solutions that have generated.

Let us consider now the pool of local search algorithms. The proposed EPSDE-
LS employs a pool PLS containing three algorithms, namely Nelder-Mead simplex
[18], Powell’s conjugate direction method [22], and Rosenbrock’s algorithm [28].
As in the case of offspring generation within EPSDE, the pool has been selected
in order to empower the algorithm with multiple and diverse search operators.

As an initial note, the three local search algorithms can be divided into two
groups. We should remark indeed, that while Powell’s and Rosenbrock’s algo-
rithms require only an initial point to start the search, the simplex algorithm
requires n + 1 points. In our case, for the first two algorithms we initialize the
initial point to the current best solution in the EPSDE population. In Nelder-
Mead algorithm, we instead initialize the first point of polytope to the current
best solution, while the remaining n points are initialized randomly. Moreover,

A Differential Evolution Framework with Ensemble of Parameters 619

while Rosenbrock’s and Powell’s algorithms are purely deterministic local search
operators, Nelder-Mead algorithm contains some randomization features due to
the random initialization of n points that generate the polytope. Since these n
points can be sampled apart from each other within the decision space, Nelder-
Mead algorithm contains some global search features and thus has the potential
of jumping outside a basin of attraction and detect new promising search direc-
tions. On the contrary, Rosenbrock’s and Powell’s algorithms tend to exploit the
starting solution and detect the closest optimum.

Furthermore, although both Rosenbrock’s and Powell’s algorithms belong
to the same local search category, they present different features in terms of
search logic. While Rosenbrock’s algorithm follows the local gradient by means
of a rotation matrix that changes the coordinate system, Powell’s algorithm
makes use of the conjugate search directions. This fact causes that Rosenbrock’s
algorithm performs a single diagonal move while Powell’s algorithm performs a
diagonal move as the result of n conjugate steps where the fitness has separately
been optimized along each direction.

As for the coordination of the local search within the EPSDE framework, we
adopted the following scheme. Every FLS generations of the EPSDE framework
(being FLS a prefixed parameter, namely the local search activation frequency),
the algorithm selects randomly one of the three locals search methods from the
pool PLS . The local search is then applied to the individual of the EPSDE
population displaying the best performance, with a fixed computational budget
(number of fitness evaluations) BLS .

We should note that the employed coordination of local search has been
chosen in consideration of the Ockham’s Razor in Memetic Computing, i.e. an
algorithmic design should be performed avoiding unnecessary components and
attempting at first to achieve the desired performance in the simplest way. In
this light, the local search activation by random selection of the meme/operator
is likely one of the simplest way to perform the design of a hybrid algorithm.

Moreover, a straightforward extension to local search of the ensemble logic
cannot be efficiently performed. In EPSDE, the trial of a strategy is based on a
single fitness evaluation. On the contrary, in order to observe an improvement
with the local search, a certain budget allocation must be considered. Thus, if
a reward is given to the most successful local search algorithm, there is a high
risk that only one algorithm is used while the remaining two are disregarded.
This action would inhibit the logic of multiple and diverse search logics thus
resulting in a biased search. In other words, the selection pressure over the suc-
cessful local search strategy (that is applied in EPSDE with the most successful
mutation/crossover strategies) is implicit in this case, since the same operator
is anyway applied iteratively until budget exhaustion.

As a final remark, we should note that the choice of performing the local search
over the best individual of the population is due to the DE nature/structure of
the EPSDE scheme. As shown in [10], DE frameworks appear to work successfully
when one solution displays a much better fitness than the average population per-
formance. The best solution, namely super-fit, guides the search and allows quick

620 G. Iacca et al.

progression of the population. Thus, if the local search is always applied to the
best solution there is the highest likelihood to generate a super-fit individual.

Algorithm 1. EPSDE-LS pseudo-code
initialize a pool of mutation strategies Pmut and crossover strategies Pcross

initialize a pool of scale factors PF and crossover probabilities PCR

generate Np individuals of the initial population pseudo-randomly
for i = 1 : Np do

assign to xi random strategies/parameters from {Pmut, Pcross, PF , PCR}
compute f (xi)

end for
g = 1
while budget condition do

for i = 1 : Np do
generate x′

off through mutation strategy/parameter associated to xi

generate xoff through crossover strategy/parameter associated to xi

if f (xoff) � f (xi) then
save index i for replacing xi = xoff (including mutation and crossover strate-
gies as well as parameters) in the next generation

else
assign to xi new random strategies/parameters from the pools

end if
end for
perform replacements
g = g + 1
if (g mod FLS) = 0 then

select a local search algorithm from the pool PLS

apply it to xbest, until the budget condition BLS

end if
end while

3 Numerical Results

In order to assess the performance of EPSDE-LS on a broad set of real-parameter
optimization problems, we evaluated the minimization results obtained by the
proposed algorithm on two different benchmarks, namely:

– the benchmark used at the CEC 2013 [15], composed of 28 test functions;
– the large-scale optimization benchmark used at CEC 2010 [29], composed of

20 test functions.

Furthermore, we studied the scalability properties of the proposed algorithm
testing the CEC 2013 benchmark in 10, 30 and 50 dimensions, and the CEC 2010
benchmark in 1000 dimensions. We compared EPSDE-LS performance (i.e., the
quality of the final solutions) with that of the following algorithms:

– Modified Differential Evolution + pBX crossover (MDE-pBX) [13], with pop-
ulation size equal to 100 individuals and group size q equal to 15% of the
population size;

A Differential Evolution Framework with Ensemble of Parameters 621

– Cooperatively Coevolving Particle Swarms Optimizer (CCPSO2) [14], with
population size equal to 30 individuals, Cauchy/Gaussian sampling selection
probability p = 0.5 and set of potential group sizes S = {2, 5}, S = {2, 5, 10},
S = {2, 5, 10, 25}, for experiments in 10, 30 and 50 dimensions, respectively;

– Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [8], with the
default parameter setting of the original implementation [7], namely λ =
�4 + 3 ln(D)�, μ = �λ/2�, and initial step-size σ = 0.2.

As for EPSDE-LS, we set Np = 50, FLS = 200, and BLS = 1000, while the
parameter pools were chosen as PCR = {0.1, 0.5, 0.9} and PF = {0.5, 0.9}. As
said before we selected the following pools of strategies: Pcross = {bin, exp}
and Pmut = {cur-to-pbest/1, cur-to-rand/1}. The local search methods were
configured as follows:

– Powell, with 100 fitness evaluations per each bi-directional line search. The
Brent’s line search algorithm was implemented and configured as in [23].

– Nelder-Mead: reflection coefficient α = 1, contraction coefficient β = 0.5,
expansion coefficient γ = 2 and shrinkage coefficient δ = 0.5.

– Rosenbrock: positive perturbation factor α = 2, negative perturbation factor
β = −0.5, and threshold for coordinate system rotation ε = 10−5.

For each algorithm, we executed 100 independent runs, with a computational
budget of 10000 × D fitness evaluations (where D is the problem dimension), as
suggested by the CEC 2013 competition rules. As an additional note, a toroidal
handling of the bounds was used for all the algorithms in this study. This means
that, given an interval [a, b], if xi = b + ζ, i.e. the i-th design variable exceeds
the upper bound by a quantity ζ, its value is replaced with a + ζ. A similar
mechanism was applied for the lower bound.

The entire experimental setup (fitness functions and algorithms) was coded
in Java and executed on a hybrid network composed of Linux and Mac comput-
ers, using the distributed optimization platform Kimeme [3]. Numerical results,
reporting for each test function the average of the fitness error (with respect
to the global optimum) obtained by each algorithm at the end of the allotted
budget, with its standard deviation, are shown in Tables 1, 2, 3, and 4. Next to
the average error, we report the outcome of the Wilcoxon Rank-Sum test [33]
applied, with confidence level 0.95, to each pair-wise comparison between the
final fitness errors shown by EPSDE-LS (taken as reference) and those shown
by the algorithm in the corresponding column name. To simplify the interpre-
tation of this test, we indicate with “=” an acceptance of the null-hypothesis
(that the two algorithms under comparison are statistically equivalent from an
optimization point of view), and with “+” (“-”) a superior (worse) performance
of EPSDE-LS with respect to the algorithm in the column label. Finally, the
bold face indicates the algorithms showing the best average fitness error.

From the numerical results, it can be seen that the proposed EPSDE-LS
outperforms, on a regular basis, the competing algorithms at all dimensionalities.
In particular, EPSDE-LS seems particularly competitive against CMA-ES and
CCPSO2, while in low-mid dimensionalities (10-50) MDE-pBX shows in many

622 G. Iacca et al.

Table 1. Average Error ± Standard Deviation and Wilcoxon Rank-Sum Test (reference
=EPSDE-LS) on CEC2013 [15] in 10 dimensions

EPSDE-LS CMAES MDE-pBX CCPSO2
f1 0.00e + 00 ± 0.00e + 00 0.00e + 00± 0.00e + 00 = 0.00e + 00± 2.27e − 14 = 3.08e − 03± 1.05e − 02 +
f2 1.09e + 03 ± 1.15e + 03 0.00e + 00± 0.00e + 00 - 2.54e + 03± 5.07e + 03 + 1.80e + 06± 1.21e + 06 +
f3 6.86e + 02 ± 2.61e + 03 7.69e − 02± 6.40e − 01 - 1.41e + 05± 1.23e + 06 + 7.41e + 07± 1.12e + 08 +
f4 1.64e + 01 ± 1.46e + 01 0.00e + 00± 0.00e + 00 - 3.82e + 00± 3.15e + 01 - 1.05e + 04± 2.69e + 03 +
f5 0.00e + 00 ± 0.00e + 00 0.00e + 00± 0.00e + 00 = 0.00e + 00± 7.01e − 14 = 2.20e − 02± 6.13e − 02 +
f6 8.05e + 00 ± 3.77e + 00 6.95e + 00± 8.44e + 00 - 5.70e + 00± 4.83e + 00 - 4.67e + 00± 7.85e + 00 =
f7 1.16e + 00 ± 6.98e − 01 6.36e + 13± 6.32e + 14 + 7.37e + 00± 1.02e + 01 + 3.99e + 01± 1.26e + 01 +
f8 2.04e + 01 ± 1.02e − 01 2.04e + 01± 1.16e − 01 = 2.05e + 01± 9.69e − 02 + 2.04e + 01± 7.48e − 02 +
f9 6.00e + 00 ± 1.02e + 00 1.51e + 01± 4.02e + 00 + 2.16e + 00± 1.39e + 00 - 5.48e + 00± 8.99e − 01 -
f10 1.44e − 01 ± 8.94e − 02 1.60e − 02± 1.36e − 02 - 1.06e − 01± 8.03e − 02 - 1.93e + 00± 9.27e − 01 +
f11 1.31e − 10 ± 5.64e − 10 2.56e + 02± 2.89e + 02 + 2.89e + 00± 1.72e + 00 + 2.76e + 00± 1.85e + 00 +
f12 1.13e + 01 ± 4.34e + 00 3.30e + 02± 3.15e + 02 + 1.02e + 01± 4.53e + 00 - 3.39e + 01± 1.02e + 01 +
f13 1.55e + 01 ± 6.17e + 00 2.29e + 02± 2.76e + 02 + 1.94e + 01± 8.85e + 00 + 4.22e + 01± 8.88e + 00 +
f14 3.90e + 01 ± 3.62e + 01 1.78e + 03± 4.21e + 02 + 1.08e + 02± 9.77e + 01 + 8.67e + 01± 6.15e + 01 +
f15 9.43e + 02 ± 2.74e + 02 1.78e + 03± 4.00e + 02 + 7.56e + 02± 2.63e + 02 - 1.03e + 03± 2.70e + 02 +
f16 7.49e − 01 ± 2.83e − 01 3.90e − 01± 3.24e − 01 - 5.74e − 01± 4.62e − 01 - 1.31e + 00± 2.35e − 01 +
f17 1.03e + 01 ± 1.08e − 01 9.74e + 02± 3.03e + 02 + 1.32e + 01± 1.92e + 00 + 1.79e + 01± 2.64e + 00 +
f18 2.32e + 01 ± 5.90e + 00 1.03e + 03± 3.15e + 02 + 2.02e + 01± 5.18e + 00 - 5.82e + 01± 6.30e + 00 +
f19 5.43e − 01 ± 1.52e − 01 1.18e + 00± 4.76e − 01 + 6.57e − 01± 2.22e − 01 + 1.00e + 00± 3.69e − 01 +
f20 2.99e + 00 ± 3.46e − 01 4.79e + 00± 2.72e − 01 + 2.73e + 00± 6.04e − 01 - 3.59e + 00± 2.16e − 01 +
f21 3.80e + 02 ± 6.01e + 01 3.87e + 02± 5.04e + 01 = 3.98e + 02± 1.99e + 01 + 3.68e + 02± 6.68e + 01 -
f22 1.73e + 02 ± 5.65e + 01 2.32e + 03± 4.07e + 02 + 1.77e + 02± 1.37e + 02 = 1.23e + 02± 6.60e + 01 -
f23 1.08e + 03 ± 2.89e + 02 2.24e + 03± 4.28e + 02 + 8.43e + 02± 3.48e + 02 - 1.37e + 03± 2.82e + 02 +
f24 2.11e + 02 ± 1.24e + 01 3.73e + 02± 1.36e + 02 + 2.05e + 02± 5.21e + 00 - 2.11e + 02± 1.80e + 01 +
f25 2.12e + 02 ± 5.16e + 00 2.61e + 02± 5.29e + 01 + 2.01e + 02± 8.24e + 00 - 2.12e + 02± 1.46e + 01 -
f26 1.83e + 02 ± 3.10e + 01 2.57e + 02± 1.09e + 02 + 1.40e + 02± 4.16e + 01 - 1.71e + 02± 2.37e + 01 -
f27 4.87e + 02 ± 5.37e + 01 4.01e + 02± 9.94e + 01 - 3.04e + 02± 1.72e + 01 - 4.33e + 02± 5.71e + 01 -
f28 2.96e + 02 ± 2.80e + 01 1.22e + 03± 1.13e + 03 + 3.04e + 02± 5.53e + 01 + 4.01e + 02± 1.63e + 02 +

cases the lowest average error, although with a larger standard deviation and
thus lower robustness. Similarly, in 1000 dimensions CMA-ES obtains in most
cases the lowest error, but statistically proves equivalent to EPSDE-LS. All in
all, among the selected algorithms, EPSDE-LS shows the best characteristics in
terms of robustness and scalability.

In order to give a further insight into the results presented above, we ranked
the algorithms under study by means of the Holm-Bonferroni procedure [9], as
described in [6], with level of confidence set to 0.05. For the sake of complete-
ness, in this analysis we included also the original EPSDE algorithm [16] (whose
results are not reported in Tables 1-4 due to space limitations), executed with
the same setting of EPSDE-LS but without pool of local search. Table 5 displays
the ranks, zj values, pj values, and corresponding δ/j obtained in this way. The
rank of EPSDE-LS is shown in parentheses in the table caption. Moreover, we
indicate whether the null-hypothesis (that the two algorithms have indistinguish-
able performances) is “Rejected”, i.e. EPSDE-LS statistically outperforms the
algorithm under consideration, or “Accepted” if the distribution of values can be
considered the same (there is no statistic out-performance). It can be seen that
the proposed EPSDE-LS has the highest rank amongst all the algorithms consid-
ered in this study. It can be observed also that the null-hypothesis is rejected in
all the cases, i.e. the global performance of EPSDE-LS over the two benchmarks
is superior to the global performance of all the other algorithms considered in
this study.

A Differential Evolution Framework with Ensemble of Parameters 623

Table 2. Average Error ± Standard Deviation and Wilcoxon Rank-Sum Test (reference
=EPSDE-LS) on CEC2013 [15] in 30 dimensions

EPSDE-LS CMAES MDE-pBX CCPSO2
f1 0.00e + 00 ± 0.00e + 00 0.00e + 00± 1.18e − 13 = 2.27e − 13± 4.86e − 13 + 1.36e − 12± 6.01e − 12 +
f2 1.68e + 06 ± 8.26e + 05 0.00e + 00± 1.54e − 13 - 2.70e + 05± 2.62e + 05 - 2.14e + 06± 1.04e + 06 +
f3 1.03e + 06 ± 2.13e + 06 9.24e + 01± 4.00e + 02 - 5.19e + 07± 1.18e + 08 + 1.13e + 09± 1.18e + 09 +
f4 2.17e + 04 ± 5.55e + 03 0.00e + 00± 1.29e − 13 - 3.49e + 02± 3.18e + 02 - 5.64e + 04± 2.09e + 04 +
f5 0.00e + 00 ± 3.01e − 14 9.09e − 13± 2.46e − 12 + 1.09e − 10± 1.00e − 09 + 3.04e − 07± 8.74e − 07 +
f6 1.05e + 01 ± 5.75e + 00 4.83e + 00± 1.28e + 01 - 3.41e + 01± 2.77e + 01 + 3.44e + 01± 2.78e + 01 +
f7 2.78e + 01 ± 9.88e + 00 3.51e + 08± 3.49e + 09 + 5.61e + 01± 1.90e + 01 + 1.19e + 02± 2.33e + 01 +
f8 2.10e + 01 ± 6.30e − 02 2.10e + 01± 5.49e − 02 + 2.10e + 01± 5.93e − 02 + 2.10e + 01± 5.44e − 02 +
f9 3.14e + 01 ± 1.65e + 00 4.42e + 01± 7.09e + 00 + 2.16e + 01± 4.36e + 00 - 3.02e + 01± 2.20e + 00 -
f10 2.60e − 02 ± 1.60e − 02 2.01e − 02± 1.71e − 02 - 1.81e − 01± 1.10e − 01 + 2.00e − 01± 9.45e − 02 +
f11 2.18e − 03 ± 3.82e − 03 1.05e + 02± 2.55e + 02 + 4.68e + 01± 1.54e + 01 + 5.76e − 01± 6.49e − 01 +
f12 6.63e + 01 ± 2.02e + 01 8.08e + 02± 9.37e + 02 = 6.91e + 01± 2.20e + 01 = 2.13e + 02± 5.62e + 01 +
f13 1.06e + 02 ± 2.51e + 01 1.65e + 03± 1.67e + 03 + 1.50e + 02± 3.56e + 01 + 2.58e + 02± 4.39e + 01 +
f14 5.69e + 02 ± 2.06e + 02 5.39e + 03± 7.64e + 02 + 1.20e + 03± 4.25e + 02 + 6.57e + 00± 3.69e + 00 -
f15 4.71e + 03 ± 8.51e + 02 5.29e + 03± 6.36e + 02 + 4.01e + 03± 7.00e + 02 - 4.03e + 03± 4.77e + 02 -
f16 1.63e + 00 ± 4.89e − 01 1.23e − 01± 1.06e − 01 - 1.32e + 00± 8.61e − 01 - 2.40e + 00± 4.03e − 01 +
f17 3.27e + 01 ± 7.89e − 01 4.07e + 03± 8.51e + 02 + 6.89e + 01± 1.24e + 01 + 3.13e + 01± 4.89e − 01 -
f18 8.87e + 01 ± 2.31e + 01 3.95e + 03± 7.79e + 02 + 8.31e + 01± 1.66e + 01 = 2.44e + 02± 5.78e + 01 +
f19 2.46e + 00 ± 5.06e − 01 3.50e + 00± 9.05e − 01 + 9.10e + 00± 4.94e + 00 + 8.55e − 01± 1.71e − 01 -
f20 1.19e + 01 ± 5.30e − 01 1.50e + 01± 4.97e − 02 + 1.09e + 01± 7.97e − 01 - 1.39e + 01± 4.52e − 01 +
f21 3.00e + 02 ± 7.94e + 01 3.09e + 02± 8.58e + 01 + 3.09e + 02± 7.63e + 01 + 2.58e + 02± 7.21e + 01 =
f22 7.70e + 02 ± 2.52e + 02 6.92e + 03± 9.35e + 02 + 1.11e + 03± 5.46e + 02 + 1.21e + 02± 7.28e + 01 -
f23 4.86e + 03 ± 6.99e + 02 6.78e + 03± 7.36e + 02 + 4.47e + 03± 7.32e + 02 - 5.26e + 03± 7.22e + 02 +
f24 2.79e + 02 ± 7.17e + 00 7.93e + 02± 5.89e + 02 + 2.31e + 02± 1.11e + 01 - 2.81e + 02± 1.08e + 01 +
f25 2.92e + 02 ± 5.00e + 00 3.81e + 02± 1.54e + 02 + 2.75e + 02± 1.55e + 01 - 3.03e + 02± 6.25e + 00 +
f26 2.16e + 02 ± 5.13e + 01 4.66e + 02± 4.25e + 02 + 2.16e + 02± 4.31e + 01 - 2.02e + 02± 4.53e + 00 -
f27 1.09e + 03 ± 4.99e + 01 8.17e + 02± 2.09e + 02 - 6.55e + 02± 1.13e + 02 - 1.07e + 03± 1.13e + 02 =
f28 3.00e + 02 ± 2.16e − 13 1.94e + 03± 3.38e + 03 + 3.11e + 02± 1.11e + 02 + 5.43e + 02± 5.77e + 02 +

Table 3. Average Error ± Standard Deviation and Wilcoxon Rank-Sum Test (reference
=EPSDE-LS) on CEC2013 [15] in 50 dimensions

EPSDE-LS CMAES MDE-pBX CCPSO2
f1 0.00e + 00 ± 0.00e + 00 2.27e − 13± 0.00e + 00 + 3.32e − 11± 2.60e − 10 + 7.05e − 12± 3.53e − 11 +
f2 6.61e + 06 ± 2.72e + 06 2.27e − 13± 0.00e + 00 - 9.06e + 05± 4.90e + 05 - 4.37e + 06± 2.29e + 06 -
f3 7.35e + 06 ± 1.79e + 07 2.32e + 04± 9.57e + 04 - 1.42e + 08± 1.57e + 08 + 3.09e + 09± 3.03e + 09 +
f4 5.51e + 04 ± 9.43e + 03 2.27e − 13± 0.00e + 00 - 1.09e + 03± 8.33e + 02 - 1.08e + 05± 3.86e + 04 +
f5 1.14e − 13 ± 1.97e − 14 1.95e − 09± 9.17e − 10 + 2.54e − 05± 2.52e − 04 + 3.92e − 04± 3.89e − 03 +
f6 4.36e + 01 ± 9.69e − 01 4.29e + 01± 5.98e + 00 - 5.67e + 01± 2.24e + 01 + 4.74e + 01± 1.34e + 01 +
f7 7.50e + 01 ± 1.59e + 01 1.98e + 04± 1.96e + 05 + 6.81e + 01± 1.22e + 01 - 1.43e + 02± 2.39e + 01 +
f8 2.12e + 01 ± 3.93e − 02 2.11e + 01± 3.75e − 02 = 2.12e + 01± 4.36e − 02 + 2.12e + 01± 3.86e − 02 =
f9 6.06e + 01 ± 2.04e + 00 7.66e + 01± 8.71e + 00 + 4.27e + 01± 6.99e + 00 - 5.87e + 01± 3.26e + 00 -
f10 5.21e − 02 ± 4.01e − 02 2.70e − 02± 1.55e − 02 - 4.09e − 01± 5.57e − 01 + 2.03e − 01± 1.80e − 01 +
f11 1.86e − 01 ± 2.65e − 01 2.46e + 02± 5.29e + 02 + 1.21e + 02± 2.97e + 01 + 9.07e − 01± 8.53e − 01 +
f12 1.53e + 02 ± 3.83e + 01 2.28e + 03± 1.53e + 03 + 1.62e + 02± 3.45e + 01 = 4.55e + 02± 8.03e + 01 +
f13 2.44e + 02 ± 4.17e + 01 3.26e + 03± 1.25e + 03 + 3.22e + 02± 5.39e + 01 + 5.69e + 02± 8.18e + 01 +
f14 7.52e + 02 ± 2.41e + 02 8.74e + 03± 1.05e + 03 + 2.79e + 03± 8.06e + 02 + 7.35e + 00± 3.55e + 00 -
f15 9.07e + 03 ± 1.21e + 03 9.04e + 03± 8.70e + 02 = 7.58e + 03± 8.01e + 02 - 8.31e + 03± 8.71e + 02 -
f16 2.24e + 00 ± 5.52e − 01 8.00e − 02± 4.27e − 02 - 1.93e + 00± 8.76e − 01 - 2.75e + 00± 5.96e − 01 +
f17 5.66e + 01 ± 1.60e + 00 6.84e + 03± 1.10e + 03 + 1.79e + 02± 3.56e + 01 + 5.16e + 01± 3.28e − 01 -
f18 1.96e + 02 ± 6.47e + 01 7.01e + 03± 9.83e + 02 + 1.86e + 02± 3.17e + 01 = 4.87e + 02± 9.77e + 01 +
f19 4.71e + 00 ± 8.61e − 01 6.26e + 00± 1.54e + 00 + 3.94e + 01± 2.10e + 01 + 1.49e + 00± 2.32e − 01 -
f20 2.15e + 01 ± 6.05e − 01 2.50e + 01± 9.74e − 02 + 2.01e + 01± 9.17e − 01 - 2.33e + 01± 8.19e − 01 +
f21 6.20e + 02 ± 4.37e + 02 7.95e + 02± 3.57e + 02 + 8.91e + 02± 3.44e + 02 + 4.42e + 02± 3.45e + 02 =
f22 9.07e + 02 ± 3.04e + 02 1.18e + 04± 1.34e + 03 + 3.22e + 03± 1.06e + 03 + 1.11e + 02± 9.60e + 01 -
f23 9.37e + 03 ± 1.26e + 03 1.18e + 04± 9.41e + 02 + 9.08e + 03± 1.05e + 03 = 1.09e + 04± 1.34e + 03 +
f24 3.54e + 02 ± 7.63e + 00 1.74e + 03± 1.02e + 03 + 2.88e + 02± 1.56e + 01 - 3.60e + 02± 9.64e + 00 +
f25 3.81e + 02 ± 6.60e + 00 5.07e + 02± 2.06e + 02 + 3.68e + 02± 1.48e + 01 - 3.97e + 02± 1.08e + 01 +
f26 3.99e + 02 ± 1.02e + 02 7.71e + 02± 8.75e + 02 + 3.55e + 02± 7.46e + 01 - 2.15e + 02± 4.95e + 01 -
f27 1.86e + 03 ± 5.99e + 01 1.32e + 03± 3.23e + 02 - 1.23e + 03± 1.49e + 02 - 1.82e + 03± 8.56e + 01 -
f28 6.49e + 02 ± 8.45e + 02 2.80e + 03± 4.35e + 03 + 5.05e + 02± 5.99e + 02 - 7.24e + 02± 1.08e + 03 +

624 G. Iacca et al.

Table 4. Average Error ± Standard Deviation and Wilcoxon Rank-Sum Test (reference
=EPSDE-LS) on CEC2010 [29] in 1000 dimensions.

EPSDE-LS CMAES MDE-pBX CCPSO2
f1 1.99e + 02 ± 9.10e + 02 6.95e + 04± 9.91e + 03 + 1.05e + 09± 6.58e + 08 + 6.47e − 14± 1.41e − 13 -
f2 3.70e + 02 ± 8.88e + 01 1.01e + 04± 4.63e + 02 + 7.02e + 03± 2.38e + 02 + 1.36e + 02± 1.11e + 02 -
f3 1.04e + 01 ± 1.32e + 00 1.99e + 01± 1.12e − 02 + 1.93e + 01± 4.76e − 02 + 7.34e − 11± 1.05e − 10 -
f4 3.93e + 11 ± 1.78e + 11 5.55e + 10± 4.75e + 09 - 3.21e + 12± 9.76e + 11 + 2.14e + 12± 1.27e + 12 +
f5 7.97e + 07 ± 1.29e + 07 6.65e + 08± 1.19e + 08 + 1.54e + 08± 2.77e + 07 + 3.92e + 08± 7.98e + 07 +
f6 1.93e + 01 ± 1.73e − 01 1.98e + 07± 5.87e + 04 + 3.65e + 06± 1.75e + 06 + 1.71e + 07± 4.45e + 06 +
f7 3.24e + 03 ± 1.88e + 04 3.08e + 06± 2.04e + 05 + 6.79e + 06± 1.01e + 07 + 7.60e + 09± 9.72e + 09 +
f8 3.47e + 07 ± 2.14e + 07 4.44e + 06± 3.21e + 05 - 2.03e + 08± 1.63e + 08 + 5.46e + 07± 4.16e + 07 +
f9 5.77e + 07 ± 1.96e + 07 7.27e + 04± 1.07e + 04 - 1.68e + 09± 1.00e + 09 + 5.01e + 07± 7.68e + 06 -
f10 4.77e + 03 ± 1.76e + 02 1.03e + 04± 4.04e + 02 + 7.33e + 03± 2.55e + 02 + 4.57e + 03± 2.75e + 02 -
f11 1.53e + 02 ± 1.65e + 01 2.18e + 02± 1.77e − 01 + 2.06e + 02± 2.40e + 00 + 2.00e + 02± 5.98e + 00 +
f12 2.70e + 04 ± 5.91e + 03 1.64e − 19± 4.18e − 20 - 2.92e + 05± 6.60e + 04 + 6.12e + 04± 8.14e + 04 +
f13 1.45e + 03 ± 8.16e + 02 4.53e + 01± 6.59e + 01 - 2.88e + 09± 3.17e + 09 + 1.14e + 03± 5.42e + 02 -
f14 2.83e + 08 ± 2.44e + 07 7.69e + 04± 1.06e + 04 - 1.04e + 09± 1.97e + 08 + 1.60e + 08± 3.35e + 07 -
f15 9.12e + 03 ± 4.17e + 02 1.04e + 04± 5.58e + 02 + 7.44e + 03± 2.80e + 02 - 9.31e + 03± 5.52e + 02 +
f16 3.99e + 02 ± 2.34e + 00 3.97e + 02± 2.92e − 01 - 3.84e + 02± 1.22e + 00 - 3.95e + 02± 1.45e + 00 -
f17 1.36e + 05 ± 1.42e + 04 4.17e − 19± 7.23e − 20 - 4.35e + 05± 8.33e + 04 + 1.41e + 05± 1.44e + 05 +
f18 9.01e + 04 ± 4.09e + 05 1.59e + 02± 1.67e + 02 - 3.73e + 10± 1.95e + 10 + 5.62e + 03± 4.13e + 03 -
f19 2.95e + 06 ± 1.90e + 05 3.38e + 01± 1.36e + 01 - 9.22e + 05± 1.06e + 05 - 1.14e + 06± 1.22e + 06 -
f20 1.74e + 04 ± 4.61e + 04 7.51e + 02± 9.99e + 01 - 4.18e + 10± 2.02e + 10 + 1.42e + 03± 1.19e + 02 -

Table 5. Holm test on the Fitness, reference algorithm = EPSDE-LS (Rank =
3.50e+00)

j Optimizer Rank zj pj δ/j Hypothesis
1 MDE-pBX 3.08e+00 -2.36e+00 9.06e-03 5.00e-02 Rejected
2 EPSDE 2.98e+00 -2.90e+00 1.86e-03 2.50e-02 Rejected
3 CCPSO2 2.79e+00 -3.97e+00 3.53e-05 1.67e-02 Rejected
4 CMAES 2.47e+00 -5.75e+00 4.55e-09 1.25e-02 Rejected

4 Conclusions

This paper proposes a Memetic Computing structure composed of a DE frame-
work, which makes use of an ensemble of crossover/mutation strategies and
parameters, and a pool of three local search methods.

The ensemble is a simple and efficient self-adaptive technique that allows the
successful strategies to be propagated in the future generations while blocking the
propagation of unsuccessful strategies. This framework is empowered by a pool
of three local search algorithms whose activation is coordinated by a random-
ized criterion. These three local search algorithms are Nelder-Mead, Powell, and
Rosenbrock algorithms. The proposed algorithm has been tested over a diverse
testbed in various dimensions ranging from 10 to 1000 and compared against
modern meta-heuristics representing the state-of-the-art in optimization. The
EPSDE-LS should be considered as a first successful attempt to extend the con-
cept of ensemble to structures composed of multiple local search operators. This
algorithmic design has been performed by following the philosophy of Memetic
Computing and the simplistic combination of its operators has been inspired by
the Ockham’s Razor principle applied to algorithmic design. Despite its simplic-
ity in the meme coordination, the resulting algorithm displays a great ability to
adapt to diverse fitness landscapes, thus proving a powerful tool for addressing
complex optimization problems.

A Differential Evolution Framework with Ensemble of Parameters 625

Acknowledgments. INCAS3 is co-funded by the Province of Drenthe, the Munic-
ipality of Assen, the European Fund for Regional Development and the Ministry of
Economic Affairs, Peaks in the Delta. The numerical experiments have been carried
out on the network of the De Montfort University with the software for distributed
optimization Kimeme [3].

References

1. Brest, J., Greiner, S., Bošković, B., Mernik, M., Žumer, V.: Self-Adapting Control
Parameters inDifferentialEvolution:AComparativeStudyonNumericalBenchmark
Problems. IEEE Transactions on Evolutionary Computation 10(6), 646–657 (2006)

2. Caraffini, F., Neri, F., Iacca, G., Mol, A.: Parallel memetic structures. Information
Sciences 227, 60–82 (2013)

3. Cyber Dyne Srl Home Page: Kimeme (2013). http://cyberdynesoft.it/
4. Das, S., Suganthan, P.: Differential Evolution: A Survey of the State-of-the-Art.

IEEE Transactions on Evolutionary Computation 15(1), 4–31 (2011)
5. Das, S., Abraham, A., Chakraborty, U.K., Konar, A.: Differential Evolution with

a Neighborhood-based Mutation Operator. IEEE Transactions on Evolutionary
Computation 13(3), 526–553 (2009)

6. Garcia, S., Fernandez, A., Luengo, J., Herrera, F.: A study of statistical tech-
niques and performance measures for genetics-based machine learning: accuracy
and interpretability. Soft Computing 13(10), 959–977 (2008)

7. Hansen, N.: The CMA Evolution Strategy (2012). http://www.lri.fr/∼hansen/
cmaesintro.html

8. Hansen, N., Müller, S.D., Koumoutsakos, P.: Reducing the Time Complexity of the
Derandomized Evolution Strategy with Covariance Matrix Adaptation (CMA-ES).
Evolutionary Computation 11(1), 1–18 (2003)

9. Holm, S.: A simple sequentially rejective multiple test procedure. Scandinavian
Journal of Statistics 6(2), 65–70 (1979)

10. Iacca, G., Mallipeddi, R., Mininno, E., Neri, F., Suganthan, P.N.: Super-fit and
Population Size Reduction Mechanisms in Compact Differential Evolution. In: Pro-
ceedings of IEEE Symposium on Memetic Computing, pp. 21–28 (2011)

11. Iacca, G., Neri, F., Mininno, E., Ong, Y.S., Lim, M.H.: Ockham’s Razor in Memetic
Computing: Three Stage Optimal Memetic Exploration. Information Sciences 188,
17–43 (2012)

12. Iacca, G., Caraffini, F., Neri, F.: Multi-strategy coevolving aging particle optimiza-
tion. International Journal of Neural Systems 24(01), 1450008 (2014)

13. Islam, S., Das, S., Ghosh, S., Roy, S., Suganthan, P.: An Adaptive Differential
Evolution Algorithm With Novel Mutation and Crossover Strategies for Global
Numerical Optimization. IEEE Transactions on Systems, Man, and Cybernetics,
Part B: Cybernetics 42(2), 482–500 (2012)

14. Li, X., Yao, X.: Cooperatively Coevolving Particle Swarms for Large Scale Opti-
mization. IEEE Transactions on Evolutionary Computation 16(2), 210–224 (2012)

15. Liang, J.J., Qu, B.Y., Suganthan, P.N., Hernndez-Daz, A.G.: Problem Definitions
and Evaluation Criteria for the CEC 2013 Special Session on Real-Parameter Opti-
mization. Tech. Rep. 201212, Zhengzhou University, Zhengzhou, China (2013)

16. Mallipeddi, R., Suganthan, P.N., Pan, Q.K., Tasgetiren, M.F.: Differential evo-
lution algorithm with ensemble of parameters and mutation strategies. Applied
Soft Computing 11(2), 1679–1696 (2011), the Impact of Soft Computing for the
Progress of Artificial Intelligence

http://cyberdynesoft.it/
http://www.lri.fr/~hansen/cmaesintro.html
http://www.lri.fr/~hansen/cmaesintro.html

626 G. Iacca et al.

17. Mezura-Montes, E., Velazquez-Reyes, J., Coello Coello, C.: Modified differential
evolution for constrained optimization. In: IEEE Congress on Evolutionary Com-
putation, pp. 25–32 (2006)

18. Nelder, A., Mead, R.: A simplex method for function optimization. Computation
Journal 7, 308–313 (1965)

19. Neri, F., Iacca, G., Mininno, E.: Disturbed Exploitation compact Differential Evo-
lution for Limited Memory Optimization Problems. Information Sciences 181(12),
2469–2487 (2011)

20. Neri, F., Tirronen, V.: On Memetic Differential Evolution Frameworks: a Study of
Advantages and Limitations in Hybridization. In: Proceedings of the IEEE World
Congress on Computational Intelligence, pp. 2135–2142 (2008)

21. Neri, F., Tirronen, V.: Recent Advances in Differential Evolution: A Review and
Experimental Analysis. Artificial Intelligence Review 33(1–2), 61–106 (2010)

22. Powell, M.J.D.: An efficient method for finding the minimum of a function of several
variableswithoutcalculatingderivatives.TheComputerJournal7(2),155–162(1964)

23. Press, W., Teukolsky, S., Vetterling, W., Flannery, B.: Numerical Recipes in C,
2nd edn. Cambridge University Press, Cambridge (1992)

24. Price, K., Storn, R.: Differential evolution: A simple evolution strategy for fast
optimization. Dr. Dobb’s J. Software Tools 22(4), 18–24 (1997)

25. Price, K.: An Introduction to Differential Evolution. In: Corne, D., Dorigo, M.,
Glover, F., Dasgupta, D., Moscato, P., Poli, R., Price, K.V. (eds.) New Ideas in
Optimization, pp. 79–108. McGraw-Hill (1999)

26. Price, K.V., Storn, R., Lampinen, J.: Differential Evolution: A Practical Approach
to Global Optimization. Springer (2005)

27. Qin, A.K., Huang, V.L., Suganthan, P.N.: Differential Evolution Algorithm With
Strategy Adaptation for Global Numerical Optimization. IEEE Transactions on
Evolutionary Computation 13(2), 398–417 (2009)

28. Rosenbrock, H.H.: An automatic Method for finding the greatest or least Value of
a Function. The Computer Journal 3(3), 175–184 (1960)

29. Tang, K., Li, X., Suganthan, P.N., Yang, Z., Weise, T.: Benchmark Functions for
the CEC’2010 Special Session and Competition on Large-Scale Global Optimiza-
tion. Tech. rep., University of Science and Technology of China (USTC), School of
Computer Science and Technology, Nature Inspired Computation and Applications
Laboratory (NICAL): Hefei, Anhui, China (2010)

30. Tirronen, V., Neri, F., Kärkkäinen, T., Majava, K., Rossi, T.: An Enhanced Memetic
DifferentialEvolution inFilterDesign forDefectDetection inPaperProduction.Evo-
lutionary Computation 16(4), 529–555 (2008)

31. Weber,M.,Neri,F.,Tirronen,V.:AStudyonScaleFactor/CrossoverInteractioninDis-
tributedDifferentialEvolution.Artificial IntelligenceReview 39(3), 195–224 (2013)

32. Wessing, S., Preuss, M., Rudolph, G.: When parameter tuning actually is param-
eter control. In: Proceesings of the Conference on Genetic and Evolutionary Com-
putation, pp. 821–828. ACM (2011)

33. Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics Bulletin
1(6), 80–83 (1945)

34. Zaharie, D.: Control of population diversity and adaptation in differential evo-
lution algorithms. In: Matousek, D., Osmera, P. (eds.) Proceedings of MENDEL
International Conference on Soft Computing, pp. 41–46 (2003)

35. Zaharie, D.: Influence of crossover on the behavior of differential evolution algo-
rithms. Appl. Soft Comput. 9(3), 1126–1138 (2009)

36. Zhang, J., Sanderson,A.: Jade:Adaptive differential evolutionwith optional external
archive. IEEE Transactions on Evolutionary Computation, 13(5), 945–958 (2009)

An Improved Multiobjective
Electromagnetism-like Mechanism Algorithm

Pedro Carrasqueira1(B), Maria João Alves2, and Carlos Henggeler Antunes3

1 INESC Coimbra, Coimbra, Portugal
pmcarrasqueira@net.sapo.pt

2 Faculty of Economics, University of Coimbra / INESC Coimbra, Coimbra, Portugal
mjalves@fe.uc.pt

3 Department of Electrical Engineering and Computers,
University of Coimbra / INESC Coimbra, Coimbra, Portugal

ch@deec.uc.pt

Abstract. Electromagnetism-likeMechanism(EM) is apopulationbased
optimization approach, which has been recently adapted to solve multiob-
jective (MO) problems (MOEM). In this work, an enhanced multiobjec-
tive Electromagnetism-like Mechanism algorithm is proposed (EMOEM).
To assess this new algorithm, a comparison with MOEM algorithm is per-
formed. Our aim is to assess the ability of both algorithms in a wide range
of continuous optimization problems including benchmark problems with
two and three objective functions. Experiments show that EMOEM per-
forms better in terms of convergence and diversity when compared with
the MOEM algorithm.

Keywords: Electromagnetism-like mechanism · Multiobjective
continuous optimization

1 Introduction

Multiobjective optimization problems arise in different fields, such as engineer-
ing design and economics, among others. These problems are, in general, hard
to solve due to the number of objective functions, the size and shape of the
search space associated with nonlinear and/or combinatorial characteristics.
Meta-heuristics are, in general, inspired on natural or physical mechanisms.
Population-based meta-heuristics are specially fitted to solve multiobjective opti-
mization problems because they are able to produce a set of solutions in a single
run. This is relevant because in multiobjective problems a non-dominated front
should be identified. The population-based meta-heuristic Electromagnetism-like
Mechanism (EM) was initially designed to solve single objective optimization
problems. Later, it has been adapted to multiobjective optimization (MOEM).
The Electromagnetism-like Mechanism (EM) was first proposed by [2] and is
inspired on the electromagnetism theory. Each point is a charged particle. The
charge of a particle depends on its objective function value. The movement of
particles resembles the Coulomb‘s Law. The principle is that the force exerted
c© Springer-Verlag Berlin Heidelberg 2014
A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2014, LNCS 8602, pp. 627–638, 2014.
DOI: 10.1007/978-3-662-45523-4 51

628 P. Carrasqueira et al.

by one particle on another particle is directly proportional to the product of
their charges and is inversely proportional to the distance between the particles.
Then, particles move themselves by an attraction-repulsion mechanism. Particles
with higher charge values attract other particles while the poor charged particles
repel the others. The charge of each particle is influenced by the charge of all
other particles. Because of the good performance EM has demonstrated [6] [14],
it was extended to solve multiobjective optimization problems (MOEM) [9], in
particular to solve a problem of inventory control [10] [11]. As far as we know,
these are the only attempts to adapt the EM algorithm to solve multiobjective
optimization problems.

In this work we present an Enhanced MOEM algorithm, EMOEM. The main
components of the MOEM algorithm [9] are changed and a crowding mechanism
to guarantee diversity of solutions is used. We test the new algorithm on bench-
mark problems and compare its results with those of existing MOEM algorithm.
We perform statistical tests to validate results and guarantee the significance of
the conclusions.

This paper is organized as follows. In section 2 the fundamental concepts
of multiobjective optimization are presented. In Section 3 we propose the new
EMOEM algorithm. In Section 4, experimental results are shown. The analysis
of results is presented in section 5. The last section provides conclusions and
future research directions.

2 Fundamental Concepts of Multiobjective Optimization

A multiobjective optimization problem is defined as

Min
−→
f (−→x) = (f1(−→x), f2(−→x), · · · , fm(−→x))

S.t.−→x ∈ Ω,
Ω = {−→x ∈ Rd|gi(−→x) ≤ 0, i = 1, 2, · · · , p},

(1)

where f(−→x) is the vector of objective functions to optimize, −→x = (x1, x2, · · · , xd)
is the decision vector, d is the number of variables and gi(−→x) are the constraints.

Definition 1. A vector −→x ∈ Ω dominates a vector −→y ∈ Ω and we say −→x � −→y ,
if fi(−→x) ≤ fi(−→y), ∀i = 1, · · · ,m and ∃j ∈ {1, · · · ,m} : fj(−→x) < fj(−→y).

If the vector −→x ∈ Ω is strictly better than vector −→y ∈ Ω in all m objective
functions, we say −→x strongly dominates −→y and we denote −→x ≺ −→y .

Definition 2. A solution −→x ∈ Ω is said efficient if �−→y ∈ Ω : −→y � −→x . The
corresponding objective point

−→
f (−→x) is a non-dominated point.

The set of all non-dominated solutions to a multiobjective optimization problem
is called the Pareto optimal front. Our goal is to approximate the entire Pareto
optimal front (PF) of the problem.

An Improved Multiobjective Electromagnetism-like Mechanism Algorithm 629

3 Multiobjective Electromagnetism-like Mechanism

3.1 MOEM Algorithm

The first attempt to design a MOEM algorithm was presented in [9]. The algo-
rithm is based on three main components: individual charge, total force, and
local search procedure. After initializing the initial population, each individ-
ual is evaluated to obtain its objective vector. Then, the population is scru-
tinized to identify the non-dominated individuals, which constitute the initial
non-dominated archive. Then, local search, individual charge and force evalu-
ation, and population movement are performed, while a predefined criterion is
not met. The MOEM algorithm is described below in algorithm 1.
The local search procedure is applied to each particle of the local archive (S̃).
Each variable of the particle is changed by a random value. When all the variables
are changed the particle is evaluated. If the new generated particle dominates
the old particle, this is replaced. This process is repeated lsiter times for each
particle in one generation.
The charge of an individual depends on its objective function values and the
ones of all other population members. In MOEM, the charge of a particle i is
given by

qi = exp(−d
min−→xp∈S̃ ‖−→

f (−→x i) − −→
f (−→x p)‖∑n

j=1 min−→xp∈S̃ ‖−→
f (−→x j) − −→

f (−→x p)‖
), i = 1, · · · , n, (2)

where S̃ is the subset of the external archive used in the local search procedure.
We obtain the individual forces of each −→x j exerts on −→x i evaluating the expres-
sion (3):

−→
F ij =

{
(−→x i − −→x j)

qiqj
‖−→x i−−→x j‖2 if −→x i ≺ −→x j

(−→x j − −→x i)
qiqj

‖−→x i−−→x j‖2 otherwise
, j = 1, · · · , n (j
= i) (3)

The total force exerted on individual i is the sum of individual forces:

−→
F i =

n∑
j �=i

−→
F ij (4)

After obtaining the total force vector the movement of each individual i is per-
formed according to expression (5)

xk+1
ir =

⎧⎨
⎩

xk
ir + λ

F i
r

‖−→
F i‖ (ur − xk

ir) if F i
r > 0

xk
ir + λ

F i
r

‖−→
F i‖ (xk

ir − lr) if F i
r ≤ 0

, r = 1, · · · , d (5)

where λ is a random number such that λ ∼ U(0, 1) and lr, ur are the lower and
upper bounds for each component r of particle −→x i, respectively.
The non-dominated particles obtained during the algorithm execution are stored
in an external archive. In [9], the clustering technique proposed in [13] was used,
to maintain the diversity of the non-dominated archive.

630 P. Carrasqueira et al.

Algorithm 1. MOEM pseudo code
1: Initialize iteration counter, k = 1
2: Randomly initialize each population individual −→x k

i , i = 1, · · · , n

3: Assess each particle −→x k
i , evaluating

−→
f (−→x k

i) = (f1(
−→x k

i), f2(
−→x k

i), · · · , fm(−→x k
i)), i =

1, · · · , n
4: Insert non-dominated particles into archive Ã
5: while stop criterion is not met do
6: Randomly select the particles to insert into the local archive S̃ from archive Ã
7: Do local search on S̃
8: for i = 1, · · · , n do
9: Compute the charge (qi) of the particle i using (2)

10: Compute total force (
−→
F i) exerted on particle i using (3) and (4)

11: Move particle i using (5)

12: Update non-dominated archive Ã
13: end for
14: end while
15: Return non-dominated archive Ã

3.2 EMOEM Algorithm

We propose herein a new algorithm modifying some of the MOEM main compo-
nents. Analyzing the charge operator expression in MOEM (2), it can be seen that
the number of variables is the factor used to increase charge differences between
particles performing significantly different in the objective space. However, when
the ratio of the number of variables to population size is small, the problem of
small differentiation among particle charges arises, as poor performing particles
have very similar charge values to those of good performing particles. Then, in
EMOEM the charge factor is modified, using the population size instead of the
number of variables. Substituting this factor in (2), the new charge evaluation
expression for each particle i of the population in EMOEM is obtained (6).

qi = exp(−n
min−→xp∈S̃ ‖−→

f (−→x i) − −→
f (−→x p)‖∑n

j=1 min−→xp∈S̃ ‖−→
f (−→x j) − −→

f (−→x p)‖
), i = 1, · · · , n. (6)

This change aims at increasing differences among particle charges making them
more influenced by the particle’s objective function values. Then, charge values
of better particles are increased and those of worse particles become lower. This
contributes to increase the total force of better particles and inversely decrease
the others.
In the MOEM algorithm, each individual moves itself according to expression (5).
The individual movement may be performed in a different direction from that
indicated by the force vector for two reasons. The first reason is: each coordinate
of the force vector is multiplied by the corresponding coordinate of a range vec-
tor, the limits of which are −→x i and one of the variable lower/upper bounds. As
the range vector has not all coordinates equal, the direction of the movement is
changed. This situation is represented in fig. 1, where a movement of the particle−→x k

i = (xk
i1, x

k
i2) is considered. Since u1 − xk

i1
= u2 − xk
i2, then the new position of

An Improved Multiobjective Electromagnetism-like Mechanism Algorithm 631

the particle is out of the direction defined by the force vector. This situation occurs
always except when the distance from −→x i to the respective bounds is the same in
all dimensions. The second reason to deviate the direction of the movement is that
the chosen bound depends on the force component sign. There are many situations
in which the individual force components have different signs. In such situations
different range vectors are used, which deviates the individual from the direction
indicated by its force vector. In sum, we conclude that in most cases the direction
of movement is different from the direction defined by the force. This may bias
the particle movement. The use of a range vector in the original MOEM algorithm
guarantees that the new position of a particle always lies within the bounds of the
variables, as we can observe in (5). This results from the fact that the term λ

F i
r

‖−→
F i‖

belongs to the range [0, 1]. Then the movement is always performed in the direc-
tion defined by a linear combination of each component of that vector.
To overcome the limitations of the individual updating process in the MOEM
algorithm, a modified update position mechanism is proposed herein. In the new
position updating expression, the vector of the allowed range of movement is
dropped to guarantee that the movement performed by a particle follows to
the direction of its force vector. Then, in the EMOEM algorithm, each particle
moves itself according to the expression

xk+1
ir = xk

ir + λ
F i
r

‖−→
F i‖

, r = 1, · · · , d. (7)

where λ is a random uniform value in the interval [0, 1]. Since the force vector is
normalized, variables should be considered in [0, 1]. To satisfy this requirement,
a change of variables is performed. Then, before updating the particle position,
its variables are mapped onto the [0, 1] interval using the expression

xir ← xir − lr
ur − lr

, r = 1, · · · , d. (8)

where lr and ur are the lower and upper bounds of variable r, respectively. Now it
is ensured that each variable of the particle lies in [0, 1] and the particle is ready
to be updated. The direction of the movement does not change with the position
occupied by the individual in the search space. Then, the movement performed
in EMOEM algorithm overcomes the biased situations identified in the MOEM
algorithm and at the same time guarantees the feasibility of solutions. In some
cases one individual may become infeasible (i.e., outside the bounds) but in such
case it is moved to the corresponding bounds. Fig. 2 exemplifies the movement
of the particle −→xj

k in EMOEM algorithm. The deviation occurring in MOEM,
such as in fig. 1, is then corrected.
As in the MOEM algorithm, EMOEM also uses an external archive to store the
non-dominated solutions obtained. We use the crowding operator presented in
[3] both to substitute one particle of the non-dominated archive when it is full
and to select individuals of the non-dominated archive to insert into the local
archive. In each of these situations a particle is chosen, by binary tournament,

632 P. Carrasqueira et al.

selecting the most crowded individual to be removed from the archive and the
least crowded to enter the local archive.

Fig. 1. Update position in MOEM
algorithm

Fig. 2. Update position in EMOEM
algorithm

4 Performance Metrics

In multiobjective optimization, the quality of solutions should be assessed in two
ways: convergence to the true Pareto Optimal Front and spread of solutions in
the non-dominated front obtained. To assess the performance of the proposed
EMOEM algorithm we use two performance metrics: Inverted Generational Dis-
tance (IGD) and Hypervolume [13]. IGD is the sum of the distances from each
point of the true non-dominated front to the nearest point of the non-dominated
set found by the algorithm. The hypervolume measures the volume of the space
delimited by the non-dominated front obtained and a reference point (generally
the nadir point, which is composed by the worst objective function values in the
non-dominated set). Both IGD and hypervolume measure convergence and the
spread of solutions in the non-dominated front obtained.
Inverted Generational Distance (IGD): Consider P ∗ a set of points representa-
tive of the whole true Pareto Front of the problem and let S be a set of points
approximating the Pareto Front. Then, the IGD metric of S relatively to P ∗ is
given by:

IGD(S, P ∗) =
∑

v∈P∗ d(v, S)
|P ∗| , (9)

where d(v, S) is the Euclidean distance from v ∈ P ∗ to the nearest point in S.
The lower the IGD metric, the better the approximation set S. Note that we can
only use this metric when the Pareto front of the problem is known.
Hypervolume (HV): This metric is evaluated using the algorithm presented in
[5]. The bigger the HV value, the better the approximation set.
In order to confirm the significance of the results, a statistical analysis is also
conducted. Since the results do not follow a normal distribution, non-parametric
tests are used. The Mann-Whitney test is used to compare the algorithms.

An Improved Multiobjective Electromagnetism-like Mechanism Algorithm 633

5 Experimentation

In this section we present the details of the comparative analysis performed,
identifying the problems, the algorithm parameterization, the performance indi-
cators and the methodology used in the experimentation.
We consider 11 problems, 5 from benchmark ZDT [12], 3 from benchmark DTLZ
[4] and 3 constrained problems. The problems zdt1, zdt2, zdt3, zdt4 and zdt6
are selected from the benchmark set ZDT. From the group DTLZ, the problems
dtlz1, dtlz2 and dtlz3 are selected, considering the case of three objectives. The
problems of both groups are unconstrained. The set of problems is completed
with the constrained problems CONSTR, SRN and TNK [3].
The IGD and hypervolume indicators are used to assess the performance of the
algorithms. We performed 30 independent runs of each algorithm for each prob-
lem. The population size was set to 100 individuals and the size of the archive
of non-dominated solutions was limited to 100 individuals. The stop criterion
adopted was the number of objective function evaluations. The algorithms end
when 25000 function evaluations are completed in case of two objective problems,
and after 50000 function evaluations for three objective problems.

5.1 Comparative Analysis of EMOEM and MOEM

In figures 3-6, the non-dominated fronts obtained by EMOEM and MOEM algo-
rithms are displayed. As a qualitative indicator we can say that EMOEM per-
forms much better than MOEM both in convergence and spread of solutions
in all problems except in TNK, where the results are similar. Observing the
graphics of zdt1 and zdt3 problems, it can be seen that most non-dominated
solutions computed by the MOEM algorithm are dominated by at least one
non-dominated solution obtained by EMOEM. In general, MOEM obtains much
less non-dominated solutions and less spread than EMOEM.

Detailed values in tables 1 and 2 confirm the perception given by the graph-
ics. Table 1 presents hypervolume values for both algorithms in all benchmark
problems. EMOEM outperformed MOEM in zdt1, zdt2, zdt3, zdt6, CONSTR
and SRN problems. EMOEM performed slightly worse in zdt4, dtlz2 and TNK
problems.
In table 1, the cases in which the hypervolume median is 0 means that none of
the non-dominated solutions obtained by the algorithm is inside the hypercube
defined by the non-dominated front of the problem and the reference point. It can
be observed that in the case of the zdt2 problem, the MOEM algorithm was not
able to solve it in any run (thus its hypervolume is always 0) and EMOEM algo-
rithm could give a good approximation of its Pareto front in some of the runs.
The Mann-Whitney test confirms the significance of the differences registered at
α = 0.05 level in all problems except in dtlz1 and dtlz3. In these two problems
none of the two algorithms achieved the region corresponding to the hypercube
defined for hypervolume evaluation, then there are no differences in terms of
hypervolume values.

634 P. Carrasqueira et al.

Fig. 3. Problem zdt1

Fig. 4. Problem zdt3

Fig. 5. Problem SRN: (a) MOEM algorithm; (b) EMOEM algorithm

An Improved Multiobjective Electromagnetism-like Mechanism Algorithm 635

Fig. 6. Problem TNK: (a) MOEM algorithm; (b) EMOEM algorithm

Table 1. Median and Inter-Quartile Range (IQR) of hypervolume values obtained by
MOEM and EMOEM algorithms

Problem EMOEM MOEM
Median IQR Median IQR

zdt1 0.6114 0.0321 0.5544 0.1718

zdt2 0.0828 0.3040 0.0000 0.0000

zdt3 0.6705 0.0751 0.0001 0.1024

zdt4 0.1077 0.0107 0.1491 0.0256

zdt6 0.0053 0.0087 0.0000 0.0000

dtlz1 0.0000 0.0000 0.0000 0.0000

dtlz2 0.1537 0.0140 0.2176 0.0267

dtlz3 0.0000 0.0000 0.0000 0.0000

CONSTR 3.2852 0.3925 3.1830 0.0847

SRN 24616 130.53 23872 297.03

TNK 0.2979 0.0076 0.3200 0.0029

As it can be observed in table 2, MOEM has a great difficulty in generating a
large number of non-dominated solutions. EMOEM increases significantly the
number of non-dominated solutions generated in all problems except in TNK
and it is able to completely fill the archive in most problems.
To compute the IGD metric it is necessary to have a representative set of the
true non-dominated front of the problem. Since we do not have the true non-
dominated set for the TNK problem, the IGD metric is not evaluated for this
problem. In table 3 the results of the IGD performance measure are reported.
These results confirm the better performance of EMOEM algorithm in most
problems. Although both algorithms have obtained a hypervolume 0 in dtlz1
and dtlz3 problems, in case of the IGD measure MOEM attained better results.
The only case in which the results are not significant at α = 0.05 level is in zdt4

636 P. Carrasqueira et al.

Table 2. Median and Inter-Quartile Range (IQR) of number of particles in the non-
dominated archive at the end of each run of MOEM and EMOEM algorithms

Problem EMOEM MOEM
Median IQR Median IQR

zdt1 100 0 49.5 23.75
zdt2 10.5 96 1 1
zdt3 100 0.75 20.5 22
zdt4 33 12.75 14 3
zdt6 16 5 5 2
dtlz1 99.5 76.75 6 1.25
dtlz2 100 0 100 0
dtlz3 24.5 21 8 2
CONSTR 100 0 100 0
SRN 100 0 100 0
TNK 22 2.75 100 0.63

problem, so in this problem the MOEM algorithm is not significantly better than
EMOEM.

Table 3. Median and Inter-Quartile Range (IQR) of IGD values obtained in each run
of MOEM and EMOEM algorithms

Problem EMOEM MOEM
Median IQR Median IQR

zdt1 0.0780 0.0568 0.1041 0.1231

zdt2 0.3342 0.5925 0.7722 0.1257

zdt3 0.1306 0.0535 0.8544 0.6901

zdt4 0.5658 0.0136 0.5473 0.0513

zdt6 0.5643 0.0574 2.9764 0.6501

dtlz1 8.1697 3.3059 1.3785 1.0316

dtlz2 0.2267 0.0179 0.1763 0.0205

dtlz3 68.9354 50.297 17.482 7.7891

CONSTR 0.6249 0.5340 1.1218 0.1394

SRN 1.4089 0.1864 2.7933 0.7269

The new EMOEM algorithm performs globally better as it generally obtains
better values in both metrics analyzed, improving convergence and spread rel-
atively to MOEM. Only in cases of three-objective problems dtlz1, dtlz2 and
dtlz3 a better performance of MOEM algorithm can be observed, but none of
the algorithms attains the hypercube defined for the problems dtlz1 and dtlz3.
In cases of CONSTR and SRN constrained problems, the EMOEM algorithm
is better as it achieves better results than those obtained by MOEM in both
metrics.

An Improved Multiobjective Electromagnetism-like Mechanism Algorithm 637

6 Conclusions and Future Work

The Electromagnetism-like Mechanism has proven to be effective in single opti-
mization [1] [8]. In addition, several modifications of the initial algorithm have
been proposed in the literature, which performed better than the initial
algorithm in several test problems. However, in the case of multiobjective opti-
mization the results have not been so encouraging. The MOEM algorithm has
demonstrated a poor performance in comparison with other representative
population-based algorithms in benchmark problems. Our intention has been
to redesign the EMOEM algorithm in order to take advantage of the EM ability
to solve hard continuous multiobjective optimization problems.
Our motivation to design the EMOEM algorithm derives from experiments in
which the MOEM algorithm experienced strong difficulties with several prob-
lems. The EMOEM algorithm herein presented is intended to address the bias
of individual charge and update position MOEM mechanisms. The behavior of
EMOEM represents an improvement relatively to MOEM, increasing the quality
of solutions and the number of non-dominated solutions computed.
Future directions of research include designing more effective local search pro-
cedures and address more challenging problems. Work is underway to compare
EMOEM algorithm with state-of-the-art approaches OMOPSO [7] and NSGA-
II [3].

Acknowledgments. This R&D work has been partially supported by the Portuguese
Foundation for Science and Technology (FCT) under projects grants MIT/SET/0014/
2009 and PEst-C/EEI/UI0308/2011, and Project EMSURE (Energy and Mobility for
Sustainable Regions, CENTRO 07 0224 FEDER 002004).

References

1. Alikani, M.G., Javadian, N., Tavakkoli-Moghaddan, R.: A novel hybrid approach
combining electromagnetism-like method with Solis and Wets local search for con-
tinuous optimization problems. Journal of Global Optimization 44, 227–234 (2009)

2. Birbil, S.I., Fang, S.: An electromagnetism-like mechanism for global optimization.
Journal of Global Optimization 25, 263–282 (2003)

3. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A Fast and Elitist Multiobjective
Genetic Algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation
6(2), 182–197 (2002)

4. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable Test Problems for Evo-
lutionary Multiobjective Optimization. In: Abraham, L.J.A. (ed.), Evolutionary
Multiobjective Optimization. Theoretical Advances and Applications, pp. 105–145
(2005)

5. Fonseca, C.M., Paquete, L., López-Ibáñez, M.: An Improved Dimension-Sweep
Algorithm for the Hypervolume. In: Proceedings of 2006 IEEE Congress on Evo-
lutionary Computation, pp. 1157–1163 (2006)

6. Naji-Azimi, Z., Toth, P., Galli, L.: An electromagnetism metaheuristic for the
unicost set covering problem. European Journal of Operational Research 205, 290–
300 (2010)

638 P. Carrasqueira et al.

7. Sierra, M.R., Coello, C.A.C.: Improving PSO-Based Multi-objective Optimization
Using Crowding, Mutation and ε-Dominance. In: Coello Coello, C.A., Hernández
Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 505–519. Springer,
Heidelberg (2005)

8. Tavakkoli-Moghaddam, R., Khalili, M., Naderi, B.: A hybridization of simulated
annealing and electromagnetic-like mechanism for job shop problems with machine
availability and sequence-dependent setup times to minimize total weighted tardi-
ness. Soft Computing 13(10), 995–1006 (2009)

9. Tsou, C.-S., Kao, C.-H.: An Electromagnetism-Like Meta-Heuristic for Multi-
Objective Optimization. In: Proceedings of 2006 IEEE Congress on Evolutionary
Computation, pp. 1172–1178 (2006)

10. Tsou, C.S., Kao, C.-H.: Multi-objective inventory control using electromagnetism-
like meta-heuristic. International Journal of Production Research 46(14), 3859–
3874 (2008)

11. Tsou, C.S., Hsu, C.-H., Yu, F.-J.: Using multi-objective electromagnetism-like opti-
mization to analyze inventory tradeoffs under probabilistic demand. Journal of
Scientific & Industrial Research 67, 569–573 (2008)

12. Zitzler, E., Deb, K., Thiele, L.: Comparison of Multiobjective Evolutionary Algo-
rithms: Empirical Results. Evolutionary Computation 8, 173–195 (2000)

13. Zitzler, E., Thiele, L.: Multiobjective Evolutionary Algorithms: A Comparative
Case Study and the Strength Pareto Approach. IEEE Transactions on Evolutionary
Computation 3(4), 257–271 (1999)

14. Zhang, C., Li, X., Gao, L., Wu, Q.: An improved electromagnetism-like mecha-
nism algorithm for constrained optimization. Expert Systems with Applications
40, 5621–5634 (2013)

Objective Dimension and Problem Structure
in Multiobjective Optimization Problems

Ramprasad Joshi(B), Bharat Deshpande, and Paritosh Gote

BITS, Pilani - K K Birla Goa Campus, Zuarinagar 403726, Goa, India
{rsj,bmd}@goa.bits-pilani.ac.in, paritosh.gote@gmail.com

Abstract. Multiobjective optimization seeks simultaneous minimiza-
tion of multiple scalar functions on Rn. Unless weighted sums are made to
replace the vector functions arising thus, such an optimization requires
some partial- or quasi-ordering of points in the search space based on
comparisons between the values attained by the functions to be opti-
mized at those points. Many such orders can be defined, and search-
based (mainly heuristic) optimization algorithms make use of such orders
implicitly or explicitly for refining and accelerating search. In this work,
such relations are studied by modeling them as graphs. Information
apparent in the structure of such graphs is studied in the form of degree
distribution. It is found that when the objective dimension grows, the
degree distribution tends to follow a power-law. This can be a new begin-
ning in the study of escalation of hardness of problems with dimension,
as also a basis for designing new heuristics.

1 Introduction

Multiobjective optimization requires various nontrivial choices of the algorithm
designer as well as solution deployer. Acceptable solution criteria themselves
are subject to complicated choices affecting many other decisions down the
line. Design of evolutionary algorithms for multiobjective optimization involves
choosing the search heuristic, designing appropriate representation, designing
appropriate variation operators, defining ordering relations, designing selection
strategies, and possibly designing adaptation among one or several of all these
parameters. Because of the complexity of these choices and designs, and because
slight variations in them can produce widely varying behaviours and perfor-
mances, analysing problem hardness or even defining a problem hardness notion
that is not dependent on the semantics and the intuition behind algorithm
designs has been a vexatious exercise. We argue here that making the geomet-
ric intuition that usually underlies algorithm designs also the basis of analysing
problem structure will go a long way in the prediction of problem hardness with
respect to specific design primitives in algorithms. For this purpose, studying the
partial orders induced by the geometry of problems, and applying probability
measure theory, can be a starting point.

c© Springer-Verlag Berlin Heidelberg 2014
A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2014, LNCS 8602, pp. 639–650, 2014.
DOI: 10.1007/978-3-662-45523-4 52

640 R. Joshi et al.

1.1 Moraglio et al.’s Geometric View of Variation Operators

Moraglio et al., in a series of works (e.g.[4],[3],[6]) have investigated and estab-
lished a geometric-topological view of the search performed by evolutionary
and other population-based heuristic algorithms. They unify the heuristic ideas
behind the varied designs of variation (mutation and crossover) operators, and
demonstrate that (most) evolutionary algorithms perform convex search, convex
in the geometry induced by the neighbourhood structure and metric imposed on
the search space by the algorithms’ operators.

1.2 A Similar View for Selection Operators

In order to combine such a unified and powerful framework with analyses of
problems so that a composite theory of evolutionary computation (of algorithms
and problems) can be developed, we propose to use probability measure theory
on the spaces of partial- and quasi-order relations that are imposed by the com-
parison operators and used by the selection operators of evolutionary and other
heuristic algorithms. We unify the discrete nature of computed sequences and
orders of sampled search points with probability measure theory on the most
general continuous search spaces using simple graph models.

The rest of the paper is organized as follows. In Section 2 the basic definitions
and their motivation are discussed. Subsequent Section 3 develops elementary
tools of analysis of problem structure, especially from probability theory. Section
4 follows up on this development to make a conjecture, which is substantiated
by computational experiments described in Section 5. Conclusions (in Section
6) sum up the paper.

1.3 Discovery of the Power Law

Power law distributions (see Clauset et al.[1]) arise in many natural as well as
social mass processes, such as the World Wide Web. Among other things, a power
law distribution over degrees in a graph indicate a certain scale-freeness[5]. Below
(Section 5) we provide evidence that initial populations for optimization prob-
lems of many objectives tend to have a power-law distribution over the counts
of points dominated by each point, indicating that variation and selection oper-
ators that depend on dominance relationships among individuals in the popula-
tion (e.g. tournament selection) will not be able to distinguish between different
solutions and identify niche areas. We investigated only the initial population
genrated by uniform random sampling, but it opens up a new way of examining
the properties of graphs arising in an optimization by heuristic search process
induced by the dominance relationships and following various generative distri-
butions, thereby providing useful information about the hardness of a problem
or about tunability of algorithm performance.

Objective Dimension and Problem Structure 641

2 The Structure of the Explored Search Space

Heuristic (including evolutionary) as well as classical (Newton-like) algorithms
explore the search space in an iterative manner: beginning with some initial set
of points, they try to figure out, in either geometric, or algebraic, or analytical
manner, the next set of points which potentially may be better in the previous
set. Similar to the geometric-topological view of Moraglio et al. we here look at
the informative structure contained in the explored set of points (either the set
under consideration in one iteration or all the points explored till some iteration)
by examining the structure of the (transitive) graph that represents the transitive
partial order on these points obtained by a strict dominance relation.

2.1 The Search Space

For simplicity, we take a closed bounded Euclidean space X � Rn, n ≥ 1 as the
search space, and a bounded continuous function f : X �→ Rm,m ≥ 1 as the
multiobjective optimization (minimization) problem. We call f(X) the objective
space.

2.2 The Partial Order

The partial order we consider is ≺� X × X : x ≺ y ⇔ fi(x) < fi(y), i ∈
{1, 2, . . . ,m}. It is obvious that ≺ is a transitive, irreflexive, antisymmetric rela-
tion. The transitivity is important to our analysis, in a practical way: it ren-
ders making graphs and computing their properties easier. However, it does
not take away much of generality: the usual dominance relation that is used
extensively in EC literature x � y ⇔ (∀i ∈ {1, 2, . . . ,m}fi(x) ≤ fi(y)) ∧ (∃i ∈
{1, 2, . . . ,m}fi(x) < fi(y)) considers for any given x additionally (to our ≺)
only a null set of points y, x � y that has measure 0 as long as the measure is
absolutely continuous with respect to the Lebesgue measure. Moreover, in prac-
tical floating-point calculations, strict equality comparison does not yield more
accurate resutls; it can be counterproductive on the contrary.

2.3 The Graph

We consider the simple directed acyclic graph G = (V,E), for V ⊂ X, |V |< ∞,
induced by the ≺ relation: ∀x �= y ∈ V, (x, y) ∈ E ⇔ x ≺ y. There are no
self loops in G because ≺ is irreflexive. G is transitively closed. Such a graph is
depicted in figure 1, in which the points are numbered. Thus, in the figure,

1 ≺ 5, 1 ≺ 6; 2 ≺ 7, 2 ≺ 8 ≺ 12 ≺ 15; 3 ≺ 9 ≺ 13, 3 ≺ 10 ≺ 14; 4 ≺ 10 ≺ 14, 4 ≺ 11.

Inset is a possible scenario in a 2-D objective space that can give rise to this
graph partially.

642 R. Joshi et al.

1 2 3 4

5 6 7 8 9
10 11

12
13 14

15

3

9
10

14

114

13

Fig. 1. A Transitive Graph induced by ≺

2.4 The Properties of ≺ and G Relevant to the Search Space
Structure

Any EA (or, many other population-based heuristics too) will make decisions
(viz. parental selection, survival selection, variation operators’ specific geometry)
based on some dominance relationships among the set of points under considera-
tion in one iteration (e.g. a population in a generation in an EA run). “Differen-
tiation” among the population in objective space is a major theme in EA design
and performance, as also nearness or similarity between points in the search
space. “Locating the pareto-optimal front” means identifying the nearness crite-
ria among the population that lead to differentiation (towards more dominance)
of similar or near points from the rest of the search space. For differentiation,
one of the criteria used is the “hypervolume”, or a rough estimate of the mea-
sure ν≺(x) = ν(Hx = {y ∈ X : x ≺ y}) of points Hx dominated by each point x
where ν is some volumetric measure, usually taken to be the usual Euclidean vol-
ume (Lebesgue measure). Although densities in the search and objective space
can be quite different, though related, and can be nonuniform throughout the
objective space, the main technique used is taking a reference point in Rm, not
necessarily in f(X), and take the Euclidean volume (the Lebesgue measure) of
the hypercube defined by the two corners, one the image f(x) of the point x,
and the other the reference point, as the hypervolume hyp(x) dominated by x.
It is obvious that the ≺ relation respects hypervolumes (for a suitable reference
point not in the interior of the objective space):

Hx � Hy ⇔ x ≺ y ⇒ hyp(x) > hyp(y). (1)

However, we must also take into consideration the fact that algorithms in
practice tend to calculate hypervolumes in the objective space. Densities in
search and objective spaces can be quite different. We need to take up the ques-
tion of the relation between the graph G and hypervolumes as calculated by
the existing algorithms. Observe that hypervolumes are computed using a refer-
ence point in such a way that the putatively dominated sets contain the actual

Objective Dimension and Problem Structure 643

dominated sets, most often properly. The reference point itself must be dom-
inated by every point that dominates anything else in f(X). In other words,
the reference point must be well-nigh “high above and outside” the objective
space f(X). This makes hypervolume calculations easier. Therefore, in this set-
ting ∀x ∈ X, hyp(x) ≥ ν(Hx) where ν is the Lebesgue measure normalized over
the search space. Still, because inclusion is equivalent to ≺ relation for the dom-
inated sets, and the reference point does not change that inclusion in the first
part of (1), the implication in its second part must hold too. Now we can take
the ≺ relation and its induced graph to represent information that practical
heuristic algorithms in EC use for decisions, whether based on ranking or order-
ing, or based on hypervolumes. For maintaining rigour, however, we confine the
discussion to the actual measures of dominated sets.

From the foregoing, it is clear that the hypervolume dominated by a given
graph G induced by ≺ over f over X, is the total hypervolume (of a union
discounting intersections) dominated by the nondominated points, or the vertices
of G that have indegree 0. Such points are easily identified by a depth-first (DFS)
traversal of G, that follows a directed path in the graph until a potential cycle
or a dead-end is visited, restarting at unvisited vertices and down unexplored
paths. Such a traversal results in a set of (possibly several, disjoint) tree, in which
cycle-forming edges are omitted, and intersecting paths are explored short of the
intersecting edge. This set is called a DFS-forest. The nondominated points in
a given V of G = (V,E) will be the roots of the trees in this forest. In figure
1, vertices 1,2,3,4 are the roots of DFS trees in and DFS run (regardless of the
sequence of vertices taken). If the usual order of natural numbers is taken, then
such a DFS run on this graph will yield a DFS forest that is the whole graph
except the edge (4 → 10).

Let us call the paths in G that go across two disjoint trees in this DFS-forest
as bridges. Thus in figure 1, the edge (4 → 10) is the only bridge. If there are
too many bridges in G itself, then the sets dominated by the nondominated
points are also intersecting too often. When the bridges are near the roots of the
DFS-forest trees, the intersection sets are large too. It can be seen now that the
more the disjoint paths in G, the closer (from below) is the total hypervolume
dominated by G to the simple sum of the hypervolumes dominated by the non-
dominated points, because there will be fewer and smaller intersections among
the dominated sets. Of course, there is the possibility that the chosen V is such
that intersections among the dominated sets are not reflected in the intersecting
paths. How is V to be chosen such that this probability is negligible? We address
this question in Section 3.

3 Choosing V to Minimize Intersection Without Bridges

The simplest scheme to choose V so that there is a fair correspondence between
the number of bridges and intersections of dominated sets is to choose it uni-
formly randomly. Our next simple proposition tells that the proportion of vertices
in V sampled uniformly from any closed connected set of nonzero measure in X
is sharply concentrated around its measure by the uniform probability measure.

644 R. Joshi et al.

Proposition 1. Let X ⊂ Rn be a bounded measurable set and ν be the Lebesgue
measure normalized on and restricted to X, such that ν(X) = 1. If V is sampled
uniformly at random from X, with |V |= q < ∞, then for Y ⊂ X Borel,

P[|{v ∈ V ∩ Y }|≥ qν(Y) + t] ≤ exp
(−t2

2(qν(Y) + t/3)

)

and

P[|{v ∈ V ∩ Y }|≤ qν(Y) − t] ≤ exp
(−t2

2(qν(Y))

)
.

Proof: Observe that when sampled uniformly, |{v ∈ V ∩ Y }| is a binomial
random variable that is the sum of the Bernoulli trials over 1Y with

p = P[x ∈ Y] = ν(Y); P[x �∈ Y] = 1 − p.

So E[|{v ∈ V ∩Y }|] = qp = qν(Y). The result follows from the direct application
of Chernoff bounds. �

Let u, v ∈ V be two uniformly randomly chosen points, let ν(Hu ∩ Hv) = h
and let the number of points in V that are descendents of u, v both be denoted
by the random variable N . That means |{w ∈ V ∩ Hu ∩ Hv}|= N . Then by
Proposition 1, with |V |= q, if h �= 0, P[N = 0] ≤ e

−qh
2 . This precisely is an

upper bound on the probability of an intersection among dominated sets not
being represented by any bridge in the graph G; and this is tight (upto multi-
plicative fractional constants) by Chernoff bounds. For a large graph, this rapidly
diminishes. Hence we can conclude that

Proposition 2. When there is no bridge in G between DFS trees rooted in two
vertices u, v ∈ V , then Hu ∩ Hv = Φ, with a high probability ≥ 1 − ε, wherein
ε ↓ 0 as q ↑ ∞. �

4 Degree Distribution in a Graph with No Bridges

In each DFS tree (on the graph G obtained as in Section 3 above) containing
qr vertices, the (out-)degrees (in G) of the vertices in the tree are distributed as
follows. For each degree in {0, 1, . . . , qr − 1}, the number of vertices with that
degree diminishes as the degree rises. With degree qr − 1, there is exactly 1
vertex in the tree, and if there are no bridges, then there is exactly one vertex
of degree qr − 1 in G for each DFS tree with qr vertices. Take r ∈ [0, 1] and
qr = qr. Suppose r1, r2, . . . , rk ∈ [0, 1] are the fractions associated with all the k
DFS trees of sizes qr1 etc. in the bridgeless graph G. Then

∑
i ri = 1, and each

ri = hi ± ti
q for some small ti, where hi = ν(Hxi

), xi the root of the ith tree.
Thus

∑
i(hi ± ti

q) = 1. By Proposition 1, the set dominated by the root xi of a
qri-tree has this bound:

P[qhi − ti < qri − 1 < qhi + ti] ≥ 1 − exp
(−t2i

2(qhi + ti/3)

)
− exp

(−t2i
2qhi

)
.

Objective Dimension and Problem Structure 645

Rearranging and simplifying the inequalities, we get

P

[
ri − 1 + ti

q
< hi < ri − 1 − ti

q

]
≥ 1 − 2 exp

(−t2i
2(qhi + ti/3)

)
.

Now, if k is large and ri not varying much, then each hi has to be small. But then
the lack of bridges means that the corresponding Hxi

are all pairwise disjoint
and cover most of the search space, which, with each hi small, is possible only
if the overwhelming majority of xi lie on the Pareto-optimal front, and their
images are as distant as possible in the objective space. This argument needs to
be made more rigorous, but we are justified here in claiming that

Conjecture 1. A bridgeless forest of a large number of trees of sizes that do not
vary much indicates that a good approximation to the Pareto-optimal front is
contained in it.

For an initial graph generated by uniform random sampling, this occurrence
is highly unlikely for large m. But for small m, this is plausible. In case of large
m, we can expect the more likely scenarios of a large variation in ri, over small or
large k, with a small or large number of bridges. Then the more the bridges, the
more uniform is the degree distribution. As the dimension m grows, the variation
in ri will be larger, k larger, and the number of bridges smaller. Trees with large
ri will be less in proportion, and vice versa. Progressively this should lead to a
situation that sees a rapid decrease in the number of trees with large size, hence
a rapid decrease in the number of vertices with large degree. One would suspect a
power-law distribution lurking here. In computational experiments on the DTLZ
suite, we found this to be the case. We take a look at those results in Section
5. Note that the discussion of the out-degree distribution carries over with little
change to in-degree distribution. Our computational results too confirm this,
though we have omitted the graphs due to space constraints here.

5 Computational Experiments and Results

For the DTLZ suite of scalable test problems[2], we generated the graphs G as
described in Section 3 above, for 30,000 points chosen uniformly randomly, for
each objective dimension 2 through 10. The degree distributions were plotted
in a log-log graph to see if power-law behaviour is apparent, which was found
to be the case. The out-degree distribution graphs for dimensions 2 and 10,
for problems DTLZ1, DTLZ2, DTLZ3, DTLZ4 are shown below (figures 2-5).
In each graph, on the x-axis is the logarithm of the out-degree counts (strictly
speaking an offset of 1 added, in order to avoid logarithm of 0), going from
100 through 104.48 for out-degree counts going from 0 to 30,000. The almost-
straight line of slope -1 except for DTLZ4 shows the power-law behaviour. The
DTLZ4 exception needs explanation, which follows in the next paragraph. It is
noteworthy that the graphs gradually take the power-law shapes as the objective
dimension grows, though we cannot show all the graphs here. The programs used

646 R. Joshi et al.

to carry out this data generation and analysis and the generated graphs are all
available with the first author.

In their original paper describing the design of the DTLZ test problems,
Deb et al.[2] have explained the goal in the design of DTLZ4 as testing “an
MOEA’s ability to maintain a good distribution of solutions”, resulting in a
modification of DTLZ2 that allows “a dense set of solutions to exist near” the
plane of intersection of two dimensions in the objective space. This requires
good diversity in the initial population itself, and therefore the performance of
an MOEA on DTLZ4 in terms of quality of solutions depends sensitively on
many parameters chosen at the time of a run. In a product measure absolutely
continuous with the Lebesgue measure on the Euclidean space, the measure of
points in this intersection region will be null because of the mapping, but their
inverse image will be non-null. This will affect the degree distribution in a unique
way, because a dense set in the search space will be a set of mutually indifferent
points. In figure 6, the dimension 10 in-degree distribution is shown in a similar
log-log plot for DTLZ2 and DTLZ4. DTLZ4 is a variation on DTLZ2, and the
outlier in the plot for DTLZ4 (near [30,000,8]) shows the effect of the variation,
due to the dense set of solutions depicted here, seen in the right-bottom corner.

The specificity of problem structure is even more apparent in the degree-
difference graphs shown in the figures 7-10. Here the difference is out-degree
minus in-degree. The difference (-30,000 to +30,000) is plotted on the x-axis,
and the counts of points having that difference between their out- and in-degrees
are plotted on the y-axis. These are not log-log plots, and the sharp concentra-
tion around the 0 difference is very obvious for the higher dimension. What is
remarkable is that DTLZ4 has this concentration even more prominent, and in
both lower and higher dimensions.

100

101

102

100
101

102
103

104
105

outdegdtlz1dim2

(a) Dimension 2

100

101

102

103

100
101

102
103 104 105

outdegdtlz1dim10

(b) Dimension 10

Fig. 2. DTLZ1, Out-degree distribution

Objective Dimension and Problem Structure 647

100

101

102

103

100
101

102
103 104 105

outdegdtlz2dim2

(a) Dimension 2

100

101

102

103

104

100 101

102
103

104
105

outdegdtlz2dim10

(b) Dimension 10

Fig. 3. DTLZ2, Out-degree distribution

100

101

102

100 101

102
103

104
105

outdegdtlz3dim2

(a) Dimension 2

100

101

102

103

100 101 102 103

104
105

outdegdtlz3dim10

(b) Dimension 10

Fig. 4. DTLZ3, Out-degree distribution

100

101

102

103

104

105

100 101 102 103 104 105

outdegdtlz4dim2

(a) Dimension 2

100

101

102

103

104

105

100
101

102
103

104

outdegdtlz4dim10

(b) Dimension 10

Fig. 5. DTLZ4, Out-degree distribution

648 R. Joshi et al.

100

101

102

103

104

105

100 101 102 103 104 105

indegdtlz2dim10

(a) DTLZ2, Dimension 10

100

101

102

103

104

105

100 101

102 103

104 105

indegdtlz4dim10

(b) DTLZ4, Dimension 10

Fig. 6. DTLZ2 and DTLZ4, In-degree distribution

1

2

3

4

5

6

7

-100000 -50000 0 50000 100000

sdiffdtlz1dim2

(a) Dimension 2

0

10

20

30

40

50

-100000 -50000 0 50000 100000

sdiffdtlz1dim10

(b) Dimension 10

Fig. 7. DTLZ1, Degree-difference distribution

0

2

4

6

8

10

12

-40000 -20000 0 20000 40000 60000

sdiffdtlz2dim2

(a) Dimension 2

0

50

100

150

200

250

300

350

-60000 -40000 -20000 0 20000 40000

sdiffdtlz2dim10

(b) Dimension 10

Fig. 8. DTLZ2, Degree-difference distribution

Objective Dimension and Problem Structure 649

1

2

3

4

5

6

7

8

-100000 -50000 0 50000 100000

sdiffdtlz3dim2

(a) Dimension 2

0

5

10

15

20

25

30

35

-100000 -50000 0 50000 100000

sdiffdtlz3dim10

(b) Dimension 10

Fig. 9. DTLZ3, Degree-difference distribution

0

5000

10000

15000

20000

-100000 -50000 0 50000 100000

sdiffdtlz4dim2

(a) Dimension 2

0

5000

10000

15000

20000

25000

30000

35000

-40000 -30000 -20000 -10000 0 10000

sdiffdtlz4dim10

(b) Dimension 10

Fig. 10. DTLZ4, Degree-difference distribution

6 Conclusions and Future Work

In the graphs, it is apparent that specific problem strucure becomes progressively
less important in the degree distribution as the dimension grows. The more
the generated points, say 100,000, the more the behaviour is sharply tending
towards power-law distribution as the dimension grows. This is not shown here
yet. However, even in this there is a variation seen between DTLZ1,2,3 on the
one hand and DTLZ4 on the other. This can be a starting point in separating
problem-specific and class-general features of test problems and suites.

Examining graphs arising in a similar way but on populations generated
by sampling other distributions than the uniform will be a new direction in
analysing EA behaviour. Computational experiments with existing MOEAs and

650 R. Joshi et al.

analytical framework for a family of distributions progressively sampled by such
algorithms will open up the possibility of a new perspective on problem hardness
and algorithm performance. The insights thus obtained can be useful in tuning
algorithms by assessing the performance during a run.

This is an ongoing work, in which the present paper serves only as a proof-
of-concept. Rigorous analysis of the conditions necessary and/or sufficient for
obtaining various distributions in the degrees of the partial-order graphs is ongo-
ing, in which other aggregate properties of the graphs are also being considered.
For various orders, generated under various conditions such as adaptive or fixed
sampling distributions for choosing points, which aggregate properties are pre-
served will be an interesting question for investigation. Combining this direction
of work with Moraglio et al.’s work on algorithms ought to be the main goal in
the long run.

References

1. Clauset, A., Shalizi, C.R., Newman, M.E.J.: Power-law distributions in empirical
data. CoRR abs/0706.1062v2 (February 2009)

2. Deb, K., Thiele, L., Laumanns, M., Ziztler, E.: Scalable multi-objective optmization
test problems. In: Proceedings of the 2002 Congress on Evolutionary Computation,
vol. 1, pp. 825–830. IEEE (2002)

3. Moraglio, A.: Abstract convex evolutionary search. In: FOGA. pp. 151–162 (2011)
4. Moraglio, A.: Geometry of evolutionary algorithms. In: GECCO (Companion),

pp. 1317–1344 (2012)
5. Newman, M.E.J.: The structure and function of complex networks. CoRR abs/cond-

mat/0303516v1 (March 2003)
6. Yoon, Y., Kim, Y.H., Moraglio, A., Moon, B.R.: A mathematical unification of

geometric crossovers defined on phenotype space. CoRR abs/0907.3200 (2009)

EvoPAR

Hybrid MPI/OpenMP Parallel Evolutionary
Algorithms for Vehicle Routing Problems

Raul Baños1,2(B), Julio Ortega2, and Consolación Gil3

1 Department of Business Administration and Management, Catholic University
of Murcia, Campus de los Jerónimos s/n, E-30107 Guadalupe, Murcia, Spain

rbanos@ucam.edu
2 Department of Computer Architecture and Technology, CITIC-UGR,

University of Granada, C/Periodista Daniel Saucedo s/n, E-18071 Granada, Spain
jortega@ugr.es

3 Department of Informatics, ceiA3, University of Almeŕıa,
La Cañada de San Urbano s/n, E-04120 Almeŕıa, Spain

cgilm@ual.es

Abstract. The traditional fields of improvement in parallelism have
been orientated to experimentation on high-budget equipment, such as
clusters of computers or shared memory machines thanks to their high-
performance and scalability. In recent years, the generalization of multi-
core microprocessors in almost all the computing platforms makes it
possible to take advantage of parallel processing even for the desktop
computer user. This paper analyzes how to improve the performance
of population-based meta-heuristics using MPI, OpenMP, and hybrid
MPI/OpenMP implementations in a workstation having a multi-core
processor. The results obtained when solving large scale instances of
the Capacitated Vehicle Routing Problem with hard Time Windows
(VRPTW) show that, in all cases, the parallel implementations produce
better quality solutions for a given amount of runtime than the sequential
algorithm, and also solutions of similar quality in less runtime.

Keywords: Multi-core processors · Parallel Evolutionary Algorithms ·
MPI · OpenMP · Hybrid MPI/OpenMP · Vehicle Routing Problems

1 Introduction

Heuristics and meta-heuristics have proven to be very effective for complex com-
binatorial optimization problems appearing in several economic, industrial, and
scientific domains. Nevertheless, these methods often require large runtimes to
obtain high quality solutions when solving large instances of difficult problems.
In this context, parallel processing becomes an interesting tool to reduce the
runtime required to obtain similar quality solutions than those obtained by the
sequential algorithms and/or higher quality solutions than the sequential ver-
sions without increasing the runtime required by the latter. Parallel computing
has been successfully applied to improve the performance of bio-inspired heuris-
tic approaches to solve complex optimization problems [17]. While in the past,
c© Springer-Verlag Berlin Heidelberg 2014
A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2014, LNCS 8602, pp. 653–664, 2014.
DOI: 10.1007/978-3-662-45523-4 53

654 R. Baños et al.

parallel computing was mainly applied on high cost multiple-processor systems,
such as high-performance computer clusters or shared memory architectures,
in recent years the introduction of multi-core processors with multi-threading
technology in the commercial market [3] has intrinsically implied that parallel
processing can be also implemented in low-cost computers and workstations u-
sing standard software components [14].

Given a parallel architecture, the decisions to be taken before to parallelize
the sequential code are to determine which parallel model is more suitable to
implement the algorithm, and the software library to be used. According to the
literature [7], the parallel models that are often used to determine the imple-
mentation strategy are: (i) The master-worker paradigm, where the master pro-
cess divides the work amongst the workers, who complete the required work
and return the result to the master. The master then organizes the received
information, being the master processor responsible for synchronizing commu-
nications, collecting and distributing data, etc.; (ii) the diffusion, also known as
fine-grained paradigm, that considers a conceptual population like the master-
worker paradigm, but this population contains only a few individuals; (iii) the
island-based paradigm, also termed distributed or coarse-grained paradigm, con-
sists in dividing the entire population of the sequential algorithm into several
sub-populations distributed among different processors. These sub-populations
or islands evolve, mainly in isolation, by executing all the steps of the algo-
rithm, although it is possible to share information by migrating solutions between
islands. The performance of island-based parallelizations is often influenced by
two main design parameters: the migration topology and the frequency of these
migrations; (iv) hybrid models that combine different implementation strategies.

Two standard software libraries often used for parallel processing are MPI [18]
and OpenMP [5]. The MPI (Message Passing Interface) [18] is a portable, effi-
cient, and flexible standard specification for the developers and users of message
passing libraries. MPI runs on virtually any hardware platform, including those
that based on shared, distributed, and hybrid memory architectures, and allows
to write parallel programs by providing routines to initiate and configure the me-
ssage environment as well as managing some of the tasks of the parallelization,
such as decomposing and distributing the starting points of search, moments of
communication, synchronization of communications, etc. The OpenMP [5] is a
portable and scalable model for specifying shared memory parallelism in Fortran
and C/C++ programs in platforms ranging from laptop computers to supercom-
puters. The standard OpenMP allows the multi-threaded execution of a program
thanks to the fact that compiler directives exploit loop level parallelism using
the well-known fork-and-join execution model. Further, it is also possible to use
a hybrid programming model which uses OpenMP for parallelization inside the
node and MPI for message passing between nodes [6]. In the context of multi-core
architectures, the question arises whether it might be advantageous or not to use
more than one MPI process with multiple threads running on a node so that
there is at least some explicit intra-node communication. The Vehicle Routing
Problem and its multiple variants have been extensively tackled by sequential

Hybrid MPI/OpenMP Parallel Evolutionary Algorithms for VRP 655

[4] and parallel [2] meta-heuristics, but no hybrid MPI/OpenMP implementa-
tions have been reported for solving the VRPTW. Since both, the OpenMP
and the MPI paradigms, have different advantages and disadvantages, and as
the VRPTW is a problem whose cost functions are relatively easy to compute
but the search space is very large, a priori it is not possible to determine which
implementation strategy and software library would obtain the best results.

The paper is organized as follows: Section 2 formally describes the VRPTW.
Section 3 presents the framework of this research, including a population-based
meta-heuristic (MT-SA) which is parallelized using different parallel models and
software libraries. Section 4 presents the results of the empirical analysis carried
out in a multi-core workstation, while conclusions are drawn in Section 5.

2 The Vehicle Routing Problem with Time Windows

The Vehicle Routing Problem (VRP) and its multiple variants are NP-hard
multi-constrained combinatorial optimization problems that consists in provi-
ding goods from a supply point to several geographically dispersed demand
points by satisfying a usually large number of constraints. The Vehicle Rou-
ting Problem with Time Windows (VRPTW) [9] involves the routing of a set
of vehicles with identical capacity stationed at a central depot (logistic center)
which operate within a certain time windows and are used to visit and fully
supply the demands of set of customers. Routes are designed to start and end
at the depot and the total demand met by any route cannot exceed the vehicle
capacity. The customers, whose demands can only be supplied once by exactly
one vehicle within a certain time window, are placed in diverse geographical
locations and have pre-established requirements of goods and service time. The
aim is to minimize the total distance travelled by all the vehicles while sat-
isfying the imposed constraints. Some exact methods have been proposed for
routing problems, including Lagrange relaxation-based methods, column gener-
ation, and dynamic programming [9]. Moreover, meta-heuristics have shown a
good performance when solving VRPs [4].

The VRPTW can be modeled as a graph theoretical problem [9]. Let G =
(V,E) be a non-directed complete graph, where the vertices V = {1, ..., N}
correspond to the depot and the customers, and the edges e ∈ E{(i, j) : i, j ∈ V }
to the links between them.

Decision variable

Xk
ij =

{
1 if vehicle k travels from node i to node j
0 otherwise

Parameters
aj is the earliest time for customer j to allow the service,
bj is the latest time for customer j to allow the service,
Cij is the cost for travelling from node i to node j (here, Cij is considered as
the distance or time required for travelling from node i to node j),

656 R. Baños et al.

dj is the demand at customer j,
K is the maximum number of vehicles that can be used,
N is the number of customers plus the depot (the depot is noted with number
1, and the customers are noted as 2,...N),
Qk is the loading capacity of vehicle k.

The objective function is to minimize: TD =
K∑

k=1

N∑
i=1

N∑
j=1

Xk
ijCij (1)

subject to:

Xk
ii = 0 (∀i ∈ {1, ...,N}, ∀k ∈ {1, ...,K}) (2)

Xk
ij ∈ {0, 1} (∀i,j ∈ {1, ...,N},∀k ∈ {1, ...,K}) (3)

K∑
k=1

N∑
i=1

Xk
ij = 1 (∀j ∈ {2, ..,N}) (4)

N∑
i=1

N∑
j=2

Xk
ijdj ≤ Qk (∀k ∈ {1, ..,K}) (5)

K∑
k=1

N∑
j=2

Xk
1j ≤ K (6)

N∑
j=2

Xk
1j −

N∑
j=2

Xk
j1 = 0 (∀k ∈ {1, ...,K}) (7)

aj ≤ skj ≤ bj (∀i,j ∈ {1, ..,N},∀k ∈ {1, ...,K}) (8)

ski + Cij − L(1 − Xk
ij) ≤ skj (∀i,j ∈ {1, ...,N},∀k ∈ {1, ...,K}) (9)

Equation (1) is the objective function of the problem. Equation (2) denotes
that a vehicle must travel from one node to a different one. Equation (3) indicates
that Xk

ij is equal to 1 if vehicle k goes from node i to node j, and it is equal
to 0 otherwise, i.e. a route between two customers can or cannot be covered
by a vehicle. Equation (4) states that a customer is visited once by exactly one
vehicle. By specifying the constraint of Equation (5), it is taken into account that
for a given vehicle k, the load that has to be transported to complete the routes
assigned to such vehicle cannot exceed its capacity Qk (it is considered that all
vehicles have the same capacity, Qk=Q). Equation (6) specifies that there are
up to K routes going out of the delivery depot. Equation (7) guarantees that the
vehicles depart from and return to the depot. Let skj be the sum of the distances
travelled by vehicle k before arriving at customer j. Equation (8) ensures that
time windows are observed. Given a large scalar, L, the inequality represented in
Equation (9) specifies that, if vehicle k is travelling from customer i to customer

Hybrid MPI/OpenMP Parallel Evolutionary Algorithms for VRP 657

j, the vehicle cannot arrive at customer j before ski + Cij . As specified by [9],
variable skj corresponds to the time vehicle k starts to service customer j. If
vehicle k does not service j, skj is not calculated. Figure 1 provides an example
of how the skj values are obtained.

C +C +C =3+3+4=10

C =3

s = C +C =3+3=6

s =

s =

14 12 23 34

231213

12 12

route={1,2,3,4,1}
vehicle k=1vehicle k=2

route={1,5,6,7,8,1}

s = C =5
25 15

C +C =5+2=7s =
26 15 56

C +C +C =5+2+3=10s =
1527 56 67

s =
15 56 67 78

C +C +C +C =5+2+3+4=14
28

C =3

41 34C =4C =2
56

(3)

23
C =312

(4)

(5)

(7) C =4
78

(6)

C =367

(8)

C =2

(1)
81

C =2
(2)

15
C =5

Fig. 1. Determining ski from a sample solution

3 Algorithms

3.1 The Multi-Temperature Simulated Annealing (MT-SA)

The Multi-Temperature Simulated Annealing (MT-SA) [1] is population-based
algorithm that uses mutation operators to vary the individuals of the population,
and Simulated Annealing [12] as selection criterion for each individual of the
population. Results obtained by MT-SA in single- and multi-objective contexts
[1,2] show its good performance when solving vehicle routing problems.

MT-SA manages the population of solutions P using an integer represen-
tation. P consists of p individuals (solutions), P={I1, I2, . . . , Ip}, where each
individual represents the routes travelled by K vehicles to deliver all the cus-
tomers. Thus, each individual, Ii, is represented by a set of chromosomes, Cik,
which consists of a variable number of genes, Cik = {1, G1

ik, G
2
ik, ..., G

l
ik, 1} rep-

resenting the route of the k -th vehicle in the i -th individual (2 ≤ Gj
ik ≤ N). For

example, chromosome C3,4 = {1, 17, 7, 35, 1} indicates that the fourth vehicle of
the third individual departs from the depot and visits customers 17, 7, and 35,
before returning to the depot, which is represented by identifier 1. The first and
last genes are necessary to verify the constraint described in Equation 7.

The initial routes are built by assigning customers to vehicles until all the
former are visited by the latter, such that the constraints are fulfilled.

The individuals are optimized by applying ten variation operators often used
in this context [9,19]. Some of them are based on choosing one customer and
reallocating it in a different visiting order of the same vehicle (the so called Cus-
tomer random reallocation operator, and the Customer best reallocation oper-
ator), other operators modify the vehicle assigned to the customers (Customer
random migration, Customer best migration, Customer random exchange, Cus-
tomer best exchange, Customer exchange with similar time-window), while other

658 R. Baños et al.

operators divide (Route partition), create (New route), or remove (Route elimi-
nation) a given route. When applying variation operators, MT-SA accepts or
rejects offspring individuals according to the Metropolis criterion [15] often used
by Simulated Annealing (SA) [12]. SA optimizes a solution by exposing it to a
high initial temperature, Ti, cooling it by means of a cooling rate, Tcooling, until
the temperature falls below a given threshold, Tstop. Therefore, better neigh-
bouring solutions are always accepted, whereas worse solutions are accepted
with a certain probability, which is dependent on the current temperature, t
(when t diminishes, the probability of accepting worse solutions decreases). Our
approach considers an interval of initial temperatures [Timin, T imax], so that the
initial temperature of individual I1 is Timin, while individual Ip starts in Timax,
and the others are equally distributed along this interval.

3.2 Parallelization of MT-SA

Since VRPs are very hard problems, there is an increasing interest on the design
of faster methods for solving VRPs incorporating parallel processing techniques
[4]. Several parallel algorithms have been implemented for solving VRPs [13],
including some approaches that have applied parallel simulated annealing using
clustered SMP architectures by using OpenMP and MPI [8]. The goal of the
parallel implementations presented here is to obtain solutions of a higher quality
than the sequential algorithms and also to obtain higher quality solutions than
the sequential versions without increasing the runtime required by the latter.
With the aim of implementing parallel algorithms that present the same charac-
teristics of the sequential code (a parallel simulation of the sequential code), both
the master-worker and the island implementations have been implemented using
synchronous communications, i.e. asynchronous message passing (MPI) and the
nowait clause (OpenMP) have not been considered. Both paradigms have been
adapted to our problem in the following way:

• Master-worker paradigm with OpenMP: the master thread initializes the
population of solutions (each one containing a valid set of routes to visit all
the customers satisfying the constraints), and, in each iteration, the master
thread distributes the p individuals of population P into the number of
threads executed (NTH), including itself, so that each thread is in charge of
optimizing p/NTH individuals according to the variation operators and the
Metropolis function. Once the worker threads have computed their assigned
solutions, they return them to the master thread, which computes which is
the global best solution, replaces a given percentage of individuals with that
solution, and distributes again the work among all the available threads. The
master thread is also responsible of controlling the termination condition.

• Island paradigm with MPI: each process initializes and optimizes p/NP indi-
viduals autonomously, where NP is the number of processes (islands). Peri-
odically, the best solution of each island is sent to a central process which,
temporally, is responsible of determining the global best solution and dis-
tributing it between the remaining islands. These islands are responsible for

Hybrid MPI/OpenMP Parallel Evolutionary Algorithms for VRP 659

copying the received solution in a given percentage of solutions of the popu-
lation, after which they continue the search process. When the termination
condition is fulfilled, all the islands send the solutions to the central process,
which returns the global best solution.

• Hybrid MPI/OpenMP parallel implementation: the hybrid implementation
is based on extending the Island paradigm implemented with MPI, such that
the solutions of each island are improved using a parallel scheme based on the
master-worker implemented with OpenMP, while MPI is used to establish
the communications between the islands by means of message passing.

4 Empirical Analysis

The parallel computer used in our empirical study is a workstation with a single
Intel Core 2 Quad Processor Q6600 (4 cores, 2.40 GHz, 1066 MHz front-side bus,
8MB Cache, 4 GB RAM). The sequential algorithm, coded in C++, has been
parallelized using MPI (MPICH2 version 1.2.1p1), and OpenMP (version 3.1).

4.1 Test Problems and Parameter Settings

The performance evaluation of the implemented algorithms is analyzed using
some of the Gehring & Homberger test problems [10]. In particular, a subset
of benchmarks included in the sets of 200, 400, and 600 customers have been
considered, as it is displayed in the first column of the tables.

In reference to the parameter settings, the sequential algorithm uses a popu-
lation of 160 individuals (|P |=p=160). The individuals of the population are ini-
tialized using the three heuristics described above. The probability of applying a
mutation operator is 25%. If mutation is applied, each of the ten mutation vari-
ants is applied with a probability that oscillates between 5% and 15% (all them
sum 100%). As was previously commented, each individual has its own particular
annealing scheduling, so that an initial interval of temperatures Ti=[1,100] and
a slow cooling rate (Tcooling=0.995) is considered, while the minimum tempera-
ture is Tstop=0.001. If the termination condition is not fulfilled and the current
temperature falls below Tstop, the temperature is reinitialized (t=Ti) and the
search process continues. When processes or threads communicate to share their
best found solutions, the best one is copied in the 25% of the solutions of the
population (master-worker paradigm) or each island (island paradigm). Accord-
ing to our experiments, this percentage (25%) is an accurate trade-off between
the search process independence derived from the island model and the elitism
of the meta-heuristic, while a higher percentage becomes disruptive.

With the aim of analyzing the advantages provided by the multi-core processor,
the parallel implementations using the master-worker model with OpenMP, the
island paradigm with MPI, and the hybrid MPI/OpenMP implementations are
compared in a single processor using several versions having different number of
processes and threads. When comparing different algorithms or implementations,
it is possible to determine that one technique is better than another one if it obtains

660 R. Baños et al.

a better performance at a given amount of computational cost. For computational
optimization practitioners, this cost is typically measured considering a maximum
number of fitness evaluations for all the methods, but this criterion assumes that
the cost of other operations is either the same or almost the same in both algo-
rithms. However, the VRPTW requires not only the evaluation of the fitness of the
solutions and the constraints satisfaction, but also the performance of other expen-
sive operations such as updating the temperature, accepting or rejecting solutions
according to the Metropolis criterion, etc. Moreover, it is unknown whether the
island paradigm using MPI would expend more clock cycles to perform the mes-
sage passing than the master-worker parallelization using OpenMP to manage the
fork-and-join executionmodel or not.Thus, the runtime seems to be the bestway to
measure the computational cost and it has been recently used as termination crite-
rion in the context of routing problems. A total of 15 independent runs with each of
these configurations are executed, then analyzing the statistical results obtained.

4.2 Results and Discussion

Table 1 shows the results obtained by 15 independent executions per benchmark
of the parallel implementations, when establishing a runtime of 60 seconds as
termination criterion. This runtime can be considered an acceptable trade-off
runtime in order to compare their performance in fast applications. Columns
2 to 10 in Table 1 provide the average deviation of the solutions obtained by
each implementation with respect to the best average results obtained by any
configuration (as it is being considered a minimization problem, lower deviation
is better, and that implementation having the best mean results is denoted by
0.00%). Each column is marked by two numbers: NP/NTH, where NP indicates
the number of processes, and NTH the number of threads. Therefore, column 1/1
denotes the sequential algorithm (MT-SA), columns having values of NP or NTH
equal or higher than 2 denote executions of MPI or OpenMP (OMP), respec-
tively, while hybrid MPI/OpenMP implementations correspond to those columns
where both, the value of NP and NTH, are equal or higher than 2. The results
displayed are the percentage of increment of the average fitness obtained by each
configuration in comparison with the best average result. It is observed as, given
a fixed number of processes (NP), the use of additional threads increases the
quality of the results, but not when the product NP*NTH>4, i.e. a performance
degradation is observed in the presence of oversubscription [11]. Similarly, a fixed
number of threads (NTH), the use of additional processes increases the quality
of the results, but not when the product NP*NTH>4. On overall, the results are
obtained by the configuration that uses NP=4 processes and NTH=1 thread, i.e.
the parallel implementation that considers the island model with MPI using a
number of processes (islands) equal to the number of physical cores available, are
slightly better than those obtained by the other parallel versions, while hybrid
MPI/OpenMP implementations also obtain good solutions. It can be seen that,
when using two processes, the hybrid MPI/OpenMP implementations (columns
7 and 8 of Table 1) outperform to the results obtained by the implementation
that only uses MPI (column 6). However, it is seen that the best results are

Hybrid MPI/OpenMP Parallel Evolutionary Algorithms for VRP 661

obtained by the configuration NP=4/NTH=1, i.e. a pure MPI implementation.
The reason arises from the fact that the population size of each island when using
NP=4 is smaller (40 individuals per island) than in case of using NP=1 (160
individuals) or NP=2 (80 individuals). This involves that former configuration is
able to perform more iterations within the same runtime (higher intensification),
which leads to the rapid convergence of the parallel algorithm.

Table 1. Comparing MT-SA and pMT-SA using different number of processes/islands
and threads (15 executions per parallel version and benchmark)

version Serial OMP OMP OMP MPI Hybrid Hybrid MPI Hybrid (ANOVA)

NP/NTH 1/1 1/2 1/4 1/8 2/1 2/2 2/4 4/1 4/2 p-critical

R1 2 3 22.86 15.86 12.36 13.31 8.73 2.81 3.60 0.00 1.45 9.5E-62

R1 2 8 24.34 15.60 13.42 14.07 10.21 3.84 4.28 0.00 1.49 1.2E-61

R2 2 3 21.98 14.27 12.20 12.73 9.10 4.75 5.73 0.00 1.76 5.3E-55

R2 2 8 27.00 17.99 13.77 12.83 11.42 4.20 4.82 0.36 0.00 3.9E-59

C1 2 3 26.67 18.62 14.08 15.39 10.51 4.33 6.22 0.00 1.49 4.0E-56

C1 2 8 22.00 15.32 11.32 12.36 8.93 3.91 4.10 0.38 0.00 1.9E-48

C2 2 3 31.16 24.58 17.45 20.49 16.95 10.78 10.12 0.00 5.92 3.5E-55

C2 2 8 7.87 6.31 6.08 5.86 5.12 4.17 3.15 0.00 0.87 4.0E-21

R1 4 3 10.06 7.02 5.30 5.41 7.24 3.58 4.08 0.00 2.81 4.4E-41

R1 4 8 7.51 4.33 2.59 2.52 2.94 1.47 1.26 0.00 0.13 9.0E-49

R2 4 3 8.03 5.90 3.80 3.78 3.30 1.83 1.24 0.00 0.54 2.9E-26

R2 4 8 8.32 6.02 3.39 3.94 2.31 1.60 0.12 0.38 0.00 5.9E-33

C1 4 3 5.77 3.73 2.17 1.41 3.33 1.44 1.45 0.00 0.54 1.9E-48

C1 4 8 3.35 2.14 1.09 1.14 2.60 1.02 1.26 0.00 0.40 1.9E-48

C2 4 3 8.26 5.80 3.75 3.30 4.59 2.34 2.24 0.00 1.41 4.9E-35

C2 4 8 3.14 1.62 0.54 0.19 2.27 1.81 1.18 0.00 0.18 2.9E-14

R1 6 3 2.49 1.72 0.81 0.78 1.52 0.39 0.43 0.13 0.00 4.1E-26

R1 6 8 2.79 2.02 1.17 1.04 1.76 1.01 0.93 0.14 0.00 4.1E-26

R2 6 3 4.64 3.04 2.31 1.46 1.70 1.31 1.49 0.00 0.24 2.1E-07

R2 6 8 5.58 3.22 2.59 1.53 3.33 1.27 1.99 0.00 1.08 2.9E-22

C1 6 3 2.58 1.80 1.24 1.33 1.94 0.66 0.81 0.18 0.00 3.4E-28

C1 6 8 1.13 0.80 0.71 0.67 0.41 0.16 0.22 0.00 0.20 5.9E-22

C2 6 3 4.27 2.55 1.67 1.66 2.53 1.01 0.58 0.12 0.00 4.4E-34

C2 6 8 1.17 0.75 0.92 0.61 0.72 0.34 0.25 0.00 0.34 9.9E-06

Average 12.33 8.48 6.31 6.46 5.79 2.81 2.88 0.08 0.98

Whenever several experiments are performed it is important to determine
whether or not the variation in the results is significant, i.e. the observed spread
of mean values that would not normally arise from the chance variation within
groups. With the aim of determining if there is a significant difference between
these groups of results obtained in the experiments, which are shown in the first
columns, an one-way ANOVA test is applied. Given the typical confidence level

662 R. Baños et al.

Table 2. Runtime (seconds) required by pMT-SA to obtain a solution of similar quality
than that obtained by the serial MT-SA with a runtime of 60 seconds

1/4 (OMP) 2/2 (Hybrid) 4/1 (MPI)

mean avg. dev. mean avg. dev. mean avg. dev.

R1 2 3 30.91 3.99 25.17 1.87 30.22 4.36

R1 2 8 34.54 3.29 29.49 3.80 40.34 4.95

R2 2 3 31.34 4.10 24.61 4.00 31.62 7.29

R2 2 8 34.06 2.90 29.07 4.40 36.03 4.62

C1 2 3 29.97 4.75 29.15 3.05 38.27 5.29

C1 2 8 35.61 5.94 30.11 4.13 42.88 9.54

C2 2 3 35.17 4.58 31.56 2.78 40.20 5.65

C2 2 8 38.57 8.39 40.10 8.53 45.58 7.26

R1 4 3 34.30 4.54 42.34 7.79 46.48 5.85

R1 4 8 29.52 3.49 38.52 8.09 40.67 6.33

R2 4 3 33.96 6.83 40.65 7.30 44.00 9.10

R2 4 8 41.73 5.59 49.08 3.93 47.94 3.19

C1 4 3 32.75 4.11 47.83 4.14 42.75 8.08

C1 4 8 34.96 7.02 47.26 4.84 43.81 6.32

C2 4 3 37.30 3.45 45.64 5.95 36.25 4.39

C2 4 8 42.87 7.10 47.39 3.13 45.49 9.34

R1 6 3 29.89 8.57 39.87 4.32 33.38 4.92

R1 6 8 39.31 7.61 45.54 5.84 40.18 7.36

R2 6 3 39.60 8.67 44.72 4.41 44.23 6.15

R2 6 8 31.72 6.18 39.73 5.74 45.25 4.86

C1 6 3 30.32 5.45 38.23 5.01 43.35 4.46

C1 6 8 24.74 9.20 33.69 8.08 30.06 7.84

C2 6 3 28.41 4.80 31.68 6.01 29.79 7.59

C2 6 8 39.10 9.51 32.28 8.06 40.98 8.10

of 95%, the null hypothesis is rejected if the probability value (p-value) is smaller
than or equal to the critical value (p-critical=0.05)). The last column of Table
1 show that p-value≤0.05, the null hypothesis is rejected in all cases, i.e. there
is a significant variation between the results of the different groups.

Taking into account the previous results, it is now analyzed how the paral-
lel implementations are able to reduce the runtime required to obtain a solution
of equal or better quality than the median result obtained by MT-SA after exe-
cuting 15 independent runs during 60 seconds. Three configurations are analyzed:
an OpenMP implementation ({NP=1,NTH=4}), a MPI implementation {NP=4,
NTH=1}, and a hybrid OpenMP/MPI implementation {NP=2,NTH=2}.
Table 2 shows the mean, and average deviation of the 15 independent runs ca-
rried out by these configurations of pMT-SA. These results show that the parallel
implementations in all cases need less than 60 seconds to reach a solution of at
least the same quality than that obtained by the serial algorithm, i.e. the paral-
lel algorithms obtain an improvement in terms of speedup. At first sight, yielding

Hybrid MPI/OpenMP Parallel Evolutionary Algorithms for VRP 663

speedups of 2 could be considered poor in terms of scalability, but it should be
considered that MT-SA is a stochastic approach, which is why it is possible that
some threads do not perform a given instruction (e.g.: if the conditional expression
of a while structure results as false when computed on its own data), and therefore
this stream processor is simply put into idle mode during the remaining loops per-
formed by the others. This phenomenon, known as thread divergence [16], often
causes serious performance degradation.

5 Conclusions

The generalization of multi-core processors allows us to take advantage of para-
llel processing even on desktop and laptop computers. The design of efficient
methods for solving vehicle routing problems has become an area of research
that has attracted much attention due to its influence in transportation, logis-
tics, and supply chain management. Since this problem is NP-hard, most algo-
rithms presented to solve this problem are based on heuristic and meta-heuristic
approaches. Nevertheless, whenever the number of customers is very large, it is
necessary to apply techniques, such as parallel processing, to improve the effi-
ciency of these heuristics. This paper analyzes the advantages provided by multi-
core processors to obtain good quality solutions to the vehicle routing problem
with time windows. With this aim, a population-based meta-heuristic based on
Simulated Annealing has been parallelized using MPI, OpenMP, and hybrid
MPI/OpenMP schemes. Results obtained in a workstation with a multi-core
processor show that these parallel implementations outperform the performance
of the sequential algorithm. Moreover, it is observed that the use of additional
processes and threads often increase the quality of the solutions, but always con-
sidering the existence of oversubscription when the number of processes or islands
(managed by MPI) multiplied by the number of threads (managed by OpenMP)
is higher than the number of available processing cores. As future work, it is
planned to analyze the behavior of the parallel algorithms in a cluster, and also
to apply them to solve multi-objective formulations of this problem.

Acknowledgments. This work has been partially supported by the Spanish Ministry
of Economy and Competitiveness and FEDER funds under project TIN2012-32039.
R.Baños also acknowledges the support of a Juan de la Cierva postdoctoral fellowship.

References

1. Baños, R., Ortega, J., Gil, C., Fernández, A., de Toro, F.: A multi-start hybrid
algorithm for vehicle routing problems with time windows. In: World Online Con-
ference on Soft Computing in Industrial Applications (2011)

2. Baños, R., Ortega, J., Gil, C., Fernández, A., de Toro, F.: A simulated annealing-
based parallel multi-objective approach to vehicle routing problems with time win-
dows. Expert Systems with Applications 40(5), 1696–1707 (2013)

3. Blake, G., Dreslinski, R.G., Mudge, T.: A survey of multicore processors. IEEE
Signal Processing Magazine 26(6), 26–37 (2009)

664 R. Baños et al.

4. Bräysy, O., Gendreau, M.: Vehicle routing problem with time windows, part II:
Metaheuristics. Transportation Science 39(1), 119–139 (2005)

5. Chapman, B., Jost van der Pas, R., Kuck (foreword), D.J.: Using OpenMP:
Portable shared memory parallel programming. The MIT Press (2007)

6. Chorley, M.J., Walker, D.W.: Performance analysis of a hybrid MPI/OpenMP
application on multi-core clusters. Journal of Computational Science 1(3), 168–
174 (2010)

7. Coello, C.A., Lamont, G.B., Van Veldhuizen, D.A.: Evolutionary algorithms for
solving multi-objective problems. Genetic and Evolutionary Computation Series.
Springer (2007)

8. Czech, Zbigniew J., Mikanik, Wojciech, Skinderowicz, Rafa�l: Implementing a par-
allel simulated annealing algorithm. In: Wyrzykowski, Roman, Dongarra, Jack,
Karczewski, Konrad, Wasniewski, Jerzy (eds.) PPAM 2009, Part I. LNCS, vol.
6067, pp. 146–155. Springer, Heidelberg (2009)

9. El-Sherbeny, N.A.: Vehicle routing with time windows: An overview of exact,
heuristic and metaheuristic methods. Journal of King Saud University (Science)
22(3), 123–131 (2010)

10. Gehring, H., Homberger, J.: A parallel two-phase metaheuristic for rout-
ing problems with time windows. Asia-Pacific Journal of Operations
Research 18(1), 35–47 (2001). http://www.sintef.no/Projectweb/TOP/VRPTW/
Homberger-benchmark/

11. Iancu, C., Hofmeyr, S., Zheng, Y., Blagojevi, F.: Oversubscription on multicore
processors. In: IEEE International Parallel and Distributed Processing Symposium,
pp. 1–11 (2010)

12. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing.
Science 220(4598), 671–680 (1983)

13. Le Bouthillier, A., Crainic, T.G.: A cooperative parallel meta-heuristic for the
vehicle routing problem with time windows. Computers & Operations Research
32(7), 1685–1708 (2005)

14. Márquez, A.L., Gil, C., Baños, R., Gómez, J.: Parallelism on multicore processors
using Parallel.FX. Advances in Engineering Software 42(6), 259–265 (2011)

15. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A., Teller, E.: Equa-
tion of state calculations by fast computing machines. The Journal of Chemical
Physics 21(6), 1087–1092 (1953)

16. Robilliard, D., Marion, V., Fonlupt, C.: High performance genetic programming
on GPU. In: Proceedings of the 2009 Workshop on Bio-inspired Algorithms for
Distributed Systems, pp. 85–94 (2000)

17. Santander-Jimenez, S., Vega-Rodriguez, M.A., Gómez-Pulido, J.A., Sánchez-Pérez,
J.M.: Evaluating the performance of a parallel multiobjective Artificial Bee Colony
Algorithm for inferring phylogenies on multicore architectures. In: Proceedings of
the 2012 IEEE 10th International Symposium on Parallel and Distributed Process-
ing with Applications, pp. 713–720 (2012)

18. Snir, M., Otto, S., Huss-Lederman, S., Walter, D., Dongarra, J.: MPI: The complete
reference. MIT Press, Boston (1996)

19. Tan, K.C., Chew, Y.H., Lee, L.H.: A hybrid multiobjective evolutionary algorithm
for solving vehicle routing problem with time windows. Computational Optimiza-
tion and Applications 34(1), 115–151 (2006)

http://www.sintef.no/Projectweb/TOP/VRPTW/Homberger-benchmark/
http://www.sintef.no/Projectweb/TOP/VRPTW/Homberger-benchmark/

© Springer-Verlag Berlin Heidelberg 2014
A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2014, LNCS 8602, pp. 665–677, 2014.
DOI: 10.1007/978-3-662-45523-4_54

Dynamic and Partially Connected Ring Topologies
for Evolutionary Algorithms with Structured Populations

Carlos M. Fernandes1,2(), Juan L.J. Laredo3, Juan Julián Merelo2,
 Carlos Cotta4, and Agostinho C. Rosa1

1 LaSEEB-ISR-IST, University of Lisbon, Lisbon, Portugal
{cfernandes,acrosa}@laseeb.org

2 Department of Architecture and Computer Technology,
University of Granada, Granada, Spain

jjmerelo@gmail.com
3 Faculty of Sciences, Technology and Communications,

University of Luxembourg, Luxembourg City, Luxembourg
juan.jimenez@uni.lu

4 Departamento de Lenguages y Ciencias de la Computación,
University of Malaga, Malaga, Spain

ccottap@lcc.uma.es

Abstract. This paper investigates dynamic and partially connected ring topolo-
gies for cellular Evolutionary Algorithms (cEA). We hypothesize that these
structures maintain population diversity at a higher level and reduce the risk of
premature convergence to local optima on deceptive, multimodal and NP-hard
fitness landscapes. A general framework for modelling partially connected to-
pologies is proposed and three different schemes are tested. The results show
that the structures improve the rate of convergence to global optima when com-
pared to cEAs with standard topologies (ring, rectangular and square) on quasi-
deceptive, deceptive and NP-hard problems. Optimal population size tests
demonstrate that the proposed topologies require smaller populations when
compared to traditional cEAs.

1 Introduction

In standard Evolutionary Algorithms (EAs), all individuals are potential partners, i.e.,
there are no mating restrictions in the population preventing the pair-wise recombina-
tion of individuals. In genetics, this behavior is called panmixia, and the respective
populations are called panmictic. For that reason, standard EAs without mating re-
strictions are also called panmictic EAs.

In panmictic EAs, genotypic representation, operators, selection schemes and pop-
ulation size are typical working mechanisms that require design choices. However, a
population structure may be also introduced in the design scheme of EAs. The struc-
ture then specifies a network of acquaintances over which individuals can interact:
mating or selection is restricted to neighborhoods within the network. The non-
panmictic EAs that use this scheme are known as spatially structured EAs [12]. Spa-
tially structured EAs include fine-grained approaches such as cellular EAs (cEAs) 1

666 C.M. Fernandes et al.

and coarse-grained approaches such as island models [3]. In cEAs, the population is
distributed in a grid and the interaction is restricted to the the individuals’ neighbor-
hood. In island EAs, different subpopulations evolve isolated from each other and
occasionally exchange individuals using a predefined strategy which specifies the rate
and quantity of information to transfer.

The main disadvantage of island and cellular EAs is that their base-structures re-
quire extra designing and tuning effort. In addition, the chosen structure affects the
connectivity and the performance of the algorithm. In the case of island models, this
added complexity translates in deciding policies for the migration frequency, selection
and replacement of migrants and the topology itself. As for traditional cEAs, they use
static structures that impose a rigid connectivity between the individuals. The investi-
gation in this paper is an attempt to design a simple dynamic topology for cEAs, with
a varying neighborhood degree and an intrinsic clustering behavior that approaches
the cEA to an island model. In fact, the resulting structure may be considered a hy-
bridization between a cellular and an island-based EA. This study is restricted to 1-
dimensional structures, also known as ring topologies. The case of 2-dimensional
population structures is left for a future investigation.

In the proposed partially connected ring topology the individuals are distributed in
a 1-dimensional grid with size 1 ൈ ܻ, where 1 ൈ ܻ ൐ ݊ and ݊ is the population size.
Therefore, there are ܻ െ ݊ empty nodes or gaps in the network. Every time-step, each
individual tries to recombine with one of its left or right neighbors (decided by tour-
nament). If the individual has only one neighbor, it recombines with that neighbor. If
there are no neighbors, there is no crossover and only mutation is applied. The struc-
ture is dynamic: in each time-step, every solution is allowed to move to neighboring
nodes (if there are empty nodes in the individual’s neighborhood).

With this scheme different niches may appear and disappear at run-time as the flow
of information is interrupted by gaps. However, these gaps change during the run: the
resulting cEA has certain resemblance with an island model, with dynamic clusters
(or sub-populations) of individuals with varying size. We hypothesize that with this
scheme the population diversity decreases at a lower rate (when compared to a stand-
ard ring topology), the optimal populations for a high rate of convergence are smaller,
and the performance of the cEA on deceptive and hard problems is improved. The
results of the experiments confirm the assumptions.

The remaining of the paper is structured as follows: Section 2 gives a background
review on cEAs and on the effects of the topology on the diversity; Section 3 de-
scribes the proposed partially connected topologies; Section 4 describes the experi-
ments and the results; Section 5 concludes the paper and outlines future lines of work.

2 Background Review

The initial objective of spatially structured EAs was to develop a framework for stud-
ying massive parallelization. However, the need to provide traditional EAs with a
proper balance between exploration and exploitation motivated several lines of re-
search that explore the potentiality of different population structures in maintaining
genetic diversity 11. The primary focus of the field has been on static regular lattices:
every individual has a fixed number of potential interaction partners. Additionally,

 Dynamic and Partially Connected Ring Topologies for Evolutionary Algorithms 667

complex population structures have been studied (see 8 and 12), many of them using
recent developments in network theory.

In standard cEAs, the most typical population structure is a toroidal 2-dimensional
grid with size ܺ ൈ ܻ. The grid may be square or rectangular. The neighborhood of an
individual is then defined according to a radius centered in the individual location. In
this paper, we restrict the study to von Neumann neighborhood with radius 1, i.e., the
neighborhood of each individual consists of the individual itself and the individuals at
adjacent North, East, South and West nodes. When the size of the grid is set to 1 ൈܻ (ring), the neighborhood consists of the individual and its left and right neighbors.

Standard cEAs have some drawbacks: synchronicity (in most cases) and a strong
dependence on the problem, since the genetic diversity promoted by a prefixed topol-
ogy is uncorrelated to the problem structure. In addition, the rigid connectivity of
static structures may negatively affect the convergence abilities of the algorithms on
some kind of problems, in which genetic diversity is crucial for escaping local optima.

For that reason, dynamic population structures have recently raised the interest of
cEAs researchers. To the extent of our knowledge, only three works address explicitly
the issue of dynamic population structures in cellular EAs. In 1, Alba and Dorronsoro
dynamically change the ratio that defines the neighborhood of interaction. Since the
ratio may affect selection pressure, the authors analyze the influence of its value on
the balance between exploration and exploitation. However, the base-structure of the
cellular EA is maintained throughout the run. In 12, Whitacre et al. focus on two im-
portant conditions missing in EA populations: a self-organized definition of locality
and interaction epistasis. With that purpose in mind, they propose a dynamic structure
and conclude that the two features, when combined, provide behaviors not present in
the traditional spatially structured EAs. The most noticeable change is an unprece-
dented capacity for sustainable coexistence of genetically distinct individuals within a
single population. The authors state that the capacity for sustained genetic diversity is
not imposed on the population; instead, it emerges as a natural consequence of the
dynamics of the system. Laredo et al. 7 proposed a framework for EAs based on peer-
to-peer networks 10. Within a simulated network, they model the dynamics of real
networks and conclude that their system is able to achieve better performance than
traditional EAs on a wide range of problems, while being scalable and resilient to the
volatility of nodes in the network.

In this paper we try a different approach. The radius of the neighborhood is fixed,
and the typical grid structure is maintained. However, the size of the grid, which is
usually set to ܺ ൈ ܻ ൌ ݊, is increased so that ܺ ൈ ܻ ൐ ݊ and some cells remain unoc-
cupied. With empty cells in the grid, the individuals are then allowed to move to adja-
cent cells, according to a specific movement rule. Three different movement strategies
are tested. The proposed scheme has been inspired by the work on a self-organized
population of simple particles described in 2. Recently, a similar structure has been
used for defining the interaction network of the Particle Swarm algorithm 6 with
promising results 3. The following section describes the original system and its appli-
cation to the particular case of the cEA.

668 C.M. Fernandes et al.

3 Partially Connected Ring Topologies

As stated above, traditionally, cEAs are structured on 2-dimensional toroidal grids
with size ܺ ൈ ܻ, and the population size ݊ is set to ݊ ൌ ܺ ൈ ܻ. The main idea of this
paper is to use populations structured in grids such that ݊ ൏ ܺ ൈ ܻ. For that purpose,
the dynamic complex system proposed by Fernandes et al. in 2 has been adapted for
structuring populations.

1. Randomly place ݊ particles in a grid of node with size ܺ ൈ ܻ
2. Randomly attribute a fitness value to each particle
3. For each particle do

4. check neighborhood for marks and other particles
5. if no marks in the neighborhood

6. move to a free node in the neighborhood (if any)
7. if there are marks in the neighborhood

8. move to the site of the nearest mark
9. leave a mark in the previous site
10. erase the mark in the new site

11. if stop criteria not met return to 3

Fig. 1. Pseudo-code of the original complex system 2

The algorithm in 2 is a discrete complex adaptive system described by a set of lo-
cal rules. These rules define the actions of a population of ݊ simple particles that
move on a 2-dimensional toroidal grid of nodes with size ܺ ൈ ܻ. In each time-step,
every particle tries to move to an adjacent node. The rules that control the particles’
movements and the detailed description of the system are given below (please see also
the pseudo-code in Figure 1).

At ݐ ൌ 0, the particles are assigned a random fitness value in the range ሾ0,1ሿ and
randomly distributed in a ܺ ൈ ܻ grid of nodes. Then, at each time-step, each particle
moves to an adjacent free node (if any), leaving a mark with information on its cur-
rent status in the previous node.

The particles decide where to go by inspecting their neighborhood. If there are no
free nodes in the neighborhood (i.e., all the cells are occupied by particles), the parti-
cle stays in that same node until the next iteration. If it finds free nodes, the particle
checks for marks. If it finds no marks, it just randomly chooses a destination node
between the free neighboring nodes. If marks are found, the particle moves to the
node with the most similar mark. Whenever a particle changes its position, it leaves a
mark in its previous location. Furthermore, the marks only remain in the habitat for
one iteration. Communicating, by depositing and following information, is the base-
rule of the system.

This simple set of rules leads to a dynamic global behavior that displays signs of
self-organization. A structure of particles, formed by clusters and paths, emerges on
the habitat. However, these clusters are far from being static and, in a few genera-
tions, the distribution of the whole population may change dramatically (while main-
taining a typical configuration of clusters and paths). The population’s behavior is not
ordered (nor chaotic).

 Dynamic and Partially Connected Ring Topologies for Evolutionary Algorithms 669

The translation of this system to a population structure for cEAs can be straight-
forwardly done. For instance, the particles can be the individuals of the algorithm and
the marks can be the fitness of the individuals. Moreover, other rules may be easily
implemented and tested. In order to investigate the potentiality of partially connected
grid topologies, three different movement rules have been used.
1) Fitness-based movement rule (݂): as in the original model, the marks are the fit-

ness of the individuals.
2) Similarity-based movement rule (ݏ): the marks are the genotype of the individual

that visited the node in the previous iteration; when deciding the destination node,
the individual computes the Hamming distance between its own genotype and the
mark. Then, it moves to the node that minimizes the Hamming distance. (As in
the original model, if there are no marks in the neighbourhood the individual
chooses randomly an empty adjacent node).

3) Random movement rule (ݎ): there are no marks and the individuals move to adja-
cent cells, select randomly amongst the empty ones.

Since the proposed population structure generates islands of individuals, we hy-
pothesize that the genetic diversity of the population is maintained at a higher level
(when compared to the standard ring topology). Therefore, exploration is increased
and exploitation is performed at the local level by several subpopulations. Such char-
acteristics could benefit the cEA when optimizing deceptive and multimodal hard
problems. The results in the following section confirm these hypotheses.

1. For each individual ݅ ՚ 1 to ݊:

1.1. Initialize individual ݅
1.2. Evaluate individual i: ݂ሺݔపሬሬሬԦሻ

2. Set grid size: ܺ ൈ ܻ: ܺ ൈ ܻ ൐ ݊
3. Place the individuals randomly on the grid
4. For each individual ݅ ՚ 1 to ݊:

4.1. Compute neighborhood
4.2. Parent 1 is individual ݅
4.3. Parent 2 is the best of the neighbors
4.3 Crossover (parent 1, parent 2)
4.4. Select randomly one of the offspring: offspring ݅
4.5. Mutation (offspring ݅)
4.6. Evaluate offspring ݅: ݂ሺݔᇱపሬሬሬሬሬԦሻ
4.6. Insert offspring ݅ in temporary population ௧ܲ

5. For each individual ݅ ՚ 1 to ݊:
 5.1. Replace individual i by offspring I if ݂൫ݔᇱపሬሬሬሬሬԦ൯ ൐ ݂ሺݔపሬሬሬԦሻ (maximization prob-

lems)
 5.1. Compute empty adjacent nodes.
 5.2. If at least one empty node, select destination node using movement rule.

6. If the stop criterion is not met, go to 4

Fig. 2. cEA on a partially connected grid

670 C.M. Fernandes et al.

The proposed structure and the three update schemes can be applied to the general
case of 2-dimensional grid with size ܺ ൈ ܻ. However, in this paper we restrict the
study to the 1-dimensional case and compare the proposed structure to standard ring
topologies. The 1-dimensional base-model display interesting properties, which are
described in [2]. The system shows a mixture of order and randomness which is typi-
cal, for instance, of class 4 cellular automata 5. Some clusters of particles move up or
down, while free particles randomly move through the grid until they are “captured”
by a cluster. Meanwhile, clusters disaggregate, freeing more “wandering” particles.
The main goal and the motivation behind this work are to explore these emergent
properties of the model, adding a self-organized dynamics to cEAs that may help
them to escape more often from local optima traps.

The resulting cEA is described in Figure 2. Please note that the main differences to
a standard cEA are that the grid size is larger than ݊ and that when computing the
neighborhood the algorithm may find two, one or zero potential partners, while in the
standard ring topology an individual has always two potential partners for recombina-
tion. The following section tests the structures on a set of problems with deceptive
landscapes and other characteristics that make them hard for standard EAs to solve.

4 Test Set and Results

In order to investigate their performance, the proposed partially connected ring to-
pologies have been tested on trap functions with increasing degree of difficulty. The
results were then compared to the standard square, rectangular and ring structures.

A trap function is a piecewise-linear function defined on unitation (the number of
ones in a binary string) that has two distinct regions in the search space, one leading
to the global optimum and the other leading to a local optimum. Depending on its
parameters, trap functions may be deceptive or not. The trap functions in these exper-
iments are defined by: ܨሺݔԦሻ ൌ ൜ ݇, ݂݅ Ԧሻݔሺݑ ൌ ݇݇ െ 1 െ ,Ԧሻݔሺݑ (1) ݁ݏ݅ݓݎ݄݁ݐ݋

where u(ݔԦ) is the unitation function and ݇ is the problem size (and also the fitness of
the global optimum). With these definitions, order-3 traps are in the region between
deceptive and non-deceptive, while order-2 are non-deceptive and order-4 are fully
deceptive. Under these settings, it is possible to investigate not only how the algo-
rithms scale on order-k trap functions but also to observe how that performance varies
when moving from non-deceptive to deceptive search spaces. For that purpose, ݈-bit
decomposable functions are constructed by juxtaposing m trap functions and sum-
ming the fitness of each sub-function to obtain the total fitness, obtaining the so-
called ݉−݇ trap problems. Then, by increasing m it is possible to investigate how an
algorithm scales.

In the first experiments, order-2, -3 and -4 trap functions were constructed by jux-
taposing, respectively, 250, 125 and 75 subproblems, generating 500- (2-trap), 375-
(3-trap) and 300-bit (4-trap) problems.

 Dynamic and Partially Connected Ring Topologies for Evolutionary Algorithms 671

All the cEAs used in the experiments are synchronous (i.e., the offspring are placed
in a temporal population and replacement is done after every individual generates one
child). Parameterization was done after [1]: population size was set to 400; the re-
combination operator is the double point crossover with ݌௖ ൌ 1.0; mutation is bit-flip
with ݌௠ ൌ 1/݈, where ݈ is the chromosome length. Only one offspring is placed in the
temporal population (randomly chosen from the set of two children). In the replace-
ment stage, the offspring replaces its parent if it’s better.

The stop criteria are: to find the global optimum or to achieve a maximum of
3,000,000 function evaluations. The number of iterations required to meet the best
solution is recorded and averaged over 50 runs. A success measure (successful runs)
is defined as the number of runs in which an algorithm attains the global optimum.

Please note that the tests are not intended to show that the proposed structure is
better than the standard ring topologies in a wide range of problems. We are first in-
terested in understanding the behaviour of the partially connected rings, in general,
and their performance on quasi-deceptive and deceptive problems, in particular.

In the proposed topologies, the empty nodes are obstacles for the flow of informa-
tion through the population, which means that the search is performed by several
subpopulations, although highly dynamic. It is expected therefore that the increase in
exploration slows down the convergence speed of the algorithms. However, we ex-
pect the payoff to be to an increasing robustness, with the partially connected topolo-
gies being able to find the global optimum more often.

The results of the experiments on trap functions are shown in Table 1. The first
relevant result is that the standard ring topology (1 ൈ 400) outperforms the other
static structures, not only on deceptive and quasi-deceptive functions, but also on the
non-deceptive 2-trap function, finding the global optimum in every run. In this func-
tion, the partially connected topologies — random (r), fitness-based (f) and similarity-
based (s) — also find the optimum in every run. However, they converge more
slowly, probably due to their own balance between exploration and exploitation,
which favours exploration (when compared to the standard ring). In 3-trap and 4-trap
functions the partially connected rings are also slower (in general, they require about 10% more evaluations to reach the optimum), but in this case they converge more
often to the global optimum. As expected, the empty nodes in the ring slow down the
convergence speed but increase the convergence probability.

In the previous tests, the grid size of the partially connected topologies was set to 1 ൈ 500. It is expected that the size affects the speed and the convergence rate of the
algorithm. A sparser structure increases exploration (at the expenses of convergence
speed); with higher exploration the algorithm converges more often to the optimum.

 Table 1 shows the performance of the partially connected rings with different ra-
tios between population size and grid size. The population is set to 400 and the grid
size is varied from 450 to 800. As in the previous experiments, the stop criteria are
reaching the global optimum or 3,000,000 function evaluations. As expected, conver-
gence speed decreases when the grid size is larger. But the number of successful runs
also increases with the size of the structure. Increasing exploration slows down the
search process but improves the success in reaching the optimum. By adjusting the
size, it is possible to balance global and local search.

672 C.M. Fernandes et al.

Table 1. Averaged function evaluations to a solution (AES), successful runs (SR) and averaged
best fitness (FIT)

 20 ൈ 20 10 ൈ 40 1 ൈ 400 1 ൈ 500 ሺݎሻ 1 ൈ 500 ሺ݂ሻ 1 ൈ 500ሺݏሻ

2-trap ݈ ൌ 500

AES
1084612.8

±380406.03
892547.4

±513403.61
567944.0

±40322.30
620104.0

±42747.69
608922.4

±44761.51
622936.0

±56503.71
SR (47) (38) (50) (50) (50) (50)
FIT 0.08±0.34 0.24±0.43 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 3-trap ݈ ൌ 375

AES -
161066.7

±21289.96
697671.8

±108269.7
752178.7

±81058.45
752853.3
±83956.6

738248.9
±146850.3

SR (0) (3) (39) (49) (50) (47)
FIT 5.86±2,53 3.60±1.94 0.04±0.47 0.02±0.14 0.00±0.00 0.06±0.24

4-trap ݈ ൌ 300

AES - -
773238.7

±93423.95
842491.0

±121666.5
845810.5

±91364.75
869936.8

±126965.1

SR (0) (0) (31) (35) (38) (43)

FIT 6.56±2.09 5.06±2.10 0.42±0.57 0.38±0.66 0.30±0.57 0.16±0.42

Table 2. Order-4 trap functions. Varying the size of the grid. ݊ ൌ 400.

݂ ݎ ݏ

1 ൈ 450
835837.8

±146794.4
774148.6

±112251.3
868514.3

±214231.8
(37) (35) (35)

1 ൈ 500
842491.0

±121666.5
845810.5

±139281.9
869936.8

±154717.9

(35) (38) (38)

1 ൈ 600
978195.1

±108800.1
984120.0

±183584.7
959930.0

±110843.9
(41) (40) (40)

1 ൈ 700
1122688.4
±132330.9

1126234.2
±147857.3

1160488.9
±176815.8

(43) (41) (45)

1 ൈ 800
1327351.1
±118173.3

1343266.7
±144683.4

1301502.2
±127471.9

(45) (42) (45)

Finding the optimal population size for a given problem is a fundamental step

when optimizing the performance of a given EA. In order to investigate the optimal
population sizes for the different structures, we have used a selecto-recombinative
version of the cEAs (i.e., without mutation) and the bisection method 9 (please note
the bi-section method requires EAs without mutation).

The bisection method, described in Figure 3, is a simple but effective technique
used to determine the optimal population size of selectorecombinative EAs. For this
particular case the threshold ܶ was set to 0.1 and initial population size was set to 50.
Every configuration was run for 30 times before updating and the convergence

 Dynamic and Partially Connected Ring Topologies for Evolutionary Algorithms 673

 1. Start with small n
 2. Double n until GA convergence criteria is met
 3. (min,max)=(n/2,n)
 4. repeat until (max-min)/min < T
 n =(min+max)/2
 if n leads to convergence criteria
 then max = n
 else min = n
 5. Compute the statistics for this problem size using population size = max

Fig. 3. The bisection method for determining the optimal population size of a GA

Table 3. Optimal population size and averaged evaluations to a solution

.݌ ݃݊݅ݎ ܿ. ݃݊݅ݎ ሺݎሻ ݌. ܿ. ݃݊݅ݎ ሺ݂ሻ ݌. ܿ. ݈ ሻ 4-trapݏሺ ݃݊݅ݎ ൌ 52

݊ 200 175 175 175

AES
29376.0
±6235.7

30183.7
±5422.3

29207.2
±6796.6

29830.1
±6973.7 4-trap ݈ ൌ 100

݊ 350 300 275 300

AES
111271.4
±15166.4

100383.2
±12045.6

93848.3
±13075.7

100306.6
±11337.6 4-trap ݈ ൌ 200

݊ 600 500 500 500

AES
401706.1
±44220.1

357428.4
±29096.9

369945.3
±45849.2

367833.3
±39049.3

criteria is met if 29 of those 30 runs converge towards the global optimum. The algo-
rithms were tested with ݌௖ ൌ 1.0. Mutation probability was set to 0. After determin-
ing the optimal population size, the configuration with that n value was executed
for 50 times and the number of evaluations necessary to reach the optimum was
averaged over the successful runs. The results (optimal population size and averaged
evaluations to a solution with that particular size) are given in Table 3.

The main conclusions are that, as expected, the partially connected topologies
require smaller populations than the fully connected ring. In the case of the quasi-
deceptive and deceptive functions, smaller populations lead to faster algorithms.
Therefore, and according to the results in Tables 2 and 3, we conclude that the pro-
posed topologies are more robust, although slower, when the population size is set to
the same value, and faster when the population size is set to a size that assures a con-
vergence rate close to 100%.

A final set of experiments aims at comparing the standard ring cEA with the ran-
dom movement version of the proposed ring topology on a wider set of problems. For
that purpose, MMDP and Trident problems have been added to the test set. Trident
functions are needle in the haystack problems that exploit the ability of EAs to mix
good but significantly different solutions. The fitness function of the Trident used

674 C.M. Fernandes et al.

in this work has two components, base and contribution: ܨሺݔԦሻ ൌ baseሺݔԦሻ ൅contributionሺݔԦሻ. The base depends on unitation and is described by: ܾܽ݁ݏሺݔԦሻ ൌ ԡ2. uሺݔԦሻ െ lԡ (4)

where ݈ is the chromosome length. The contribution rewards certain configurations of
strings that an equal number of 0’s and 1’s.

Table 4. MMDP. Contribution of each subproblem configuration to the fitness value. uሺݔԦሻ 0 1 2 3 4 5 Ԧሻ 1.000000 0.000000 0.360384 0.640576 0.360384 0.000000 1.000000ݔሺܨ 6

Let ܮ be the first half of the binary string ݔ of length ݈ and ܴ the second half. The
contribution is described by Equation 5: ܿ݊݋݅ݐݑܾ݅ݎݐ݊݋ሺݔԦሻ ൌ ൜ 2. ݈, ܴ ൌ തܴ0, (5) ݁ݏ݅ݓݎ݄݁ݐ݋

where തܴ is the bitwise negation of R. The Trident accepts strings of length 2݇, where ݇ ൒ 2. For this paper, 64-bit strings were used.
The MMDP is an NP-hard problem that has been designed to be difficult for EAs.

Like the trap functions with order ൒ 3, MMDP is deceptive, but it is also multimodal.
It consists of ݇ 6-bits subproblems with two global optima and a deceptive attractor in
the middle of the fitness landscape. Each subproblem fitness values depend on the
unitiation function. Table 4 shows the contribution of each subproblem to the fitness
value of a string. For the experiments, 240-bit strings were used.

Table 5. Selecto-recombinative standard ring topology cEA and partially connected ring cEA
with random movement. Optimal population size, average evaluations to a solution and
Kolmogorov-Smirnov statistical tests with 0.05 level of significance.

2-trap

(݈ ൌ 400)
3-trap

(݈ ൌ 300)
4-trap

(݈ ൌ 200)
MMDP

(݈ ൌ 240)
Trident
(݈ ൌ 64)

1 ൈ ݊
݊ ൌ 500 ݊ ൌ 600 ݊ ൌ 550 ݊ ൌ 750 ݊ ൌ 350
455620.7

±45848.64
524524.1
±80506.1

372881.0
±53921.9

520551.7
±47646.71

91374.14
±36194.35

1 ൈ ሺ1.5݊ሻ

݊ ൌ 450 ݊ ൌ 500 ݊ ൌ 475 ݊ ൌ 600 ݊ ൌ 300

444171.8
±32089.3

(+ ~)

427207.6
±34671.3

(+ +)

350769.8
±36278.0

(+ +)

466453.1
±56597.55

(+ +)

78352.55
±19654.27

(+ ~)

The first test determines the optimal population size of each algorithm for each
problem using the bi-section method. The standard ring is compared to the partially
connected version with random selection of destination nodes. The results are in Ta-
ble 5. Statistical tests (Kolmogorov-Smirnov statistical tests with 0.05 level of signif-
icance) that compare the AES of each algorithm in each function are also given: (+~)

 Dynamic and Partially Connected Ring Topologies for Evolutionary Algorithms 675

means that the partially connected ring is faster than the standard ring but the differ-
ences in the AES values are not statistically significant; (+ +) means that the partially
connected ring is better and the differences are statistically significant.

The proposed topology outperforms the AES of the standard cEA in every func-
tion. The differences are statistically significant in order-3 and -4 traps and in the
MMDP. The algorithm seems to be particularly suited for deceptive problems.

In the second experiment, the cEAs are provided with mutation: mutation probabil-
ity was set to 1/݈ for every test. The population size of both strategies is set to half of
the optimal population size of the standard cEA, in order to investigate how the cEAs
behave when the supply of raw building blocks is reduced and part of the genetic
diversity is assured by mutation. (The bisection method determines the optimal popu-
lation size for the selecto-recombinative version of the algorithm. When using muta-
tion, that minimal population, which guarantees a high rate of convergence, may be
reduced.) Results are in Table 6.

Table 6. Standard ring topology cEA and partially connected ring cEA with random
movement. Evaluations to a solution, successful runs and best fitness.

 2-trap 3-trap 4-trap MMDP Trident

1 ൈ ݊

AES
306562.5
±56485.3

424021.6
±77027.02

351001.9
±67053.15

610437.5
±408323.2

24027.5
±5782.976

SR (48) (37) (27) (36) (50)
FIT 0.40±0.20 0.260±0.44 0.60±0.75 0.11±0.18 0.0±0.0

1 ൈ ሺ1.5݊ሻ

AES
352105.0
±37759.4

530622
±87469.522

446441.1
±89766.2

638250.0
±243028.4

27895.0
±6424.288

SR (50) (50) (45) (45) (50)

FIT 0.0±0.0 0.0±0.0 0.12±0.38 0.04±0.12 0.0±0.0

With these settings, the success rates of the standard ring are significantly reduced

in the deceptive problems, while the partially connected structure attains success rates
above 90% in every problem. In the 2-trap and Trident functions the results are simi-
lar: there are no statistical differences between the AES values.

A final note on the implementation of the proposed algorithm: Although uniproces-
sor implementations are common, cEAs have been initially conceived for parallel
computing frameworks, in which several processors are structured in a static grid or
ring topology. The proposed schemes could model some properties of networks of
processors (such as fail or delays in the communication, represented here by empty
cells), but they may be hard to implement in a multiprocessor framework. It is neces-
sary to devise a probability-based partially connected ring topology, where the size of
the ring is maintained and links between the nodes are connected and disconnected
according to probability values, adjacency rules or even self-organized properties. The
results described in this section, which show that the proposed partially connected
rings for cEAs are able to improve standard structures in hard problems with deceptive
landscapes, are promising and motivate future research on alternative models of the
proposed scheme that do not requires empty nodes in the network.

676 C.M. Fernandes et al.

5 Conclusions and Future Work

This paper describes a partially connected 1-dimensional cellular Evolutionary Algo-
rithm (cEA). The structure consists of a population of ݊ individuals randomly distrib-
uted in a grid with size 1 ൈ ܻ, where ܻ ൐ ݊. In every time-step, the individuals try to
move to adjacent nodes, according to specific rules. The resulting structure displays
an island-model behaviour that promotes genetic diversity and reduces the minimum
population size that assures a high rate of convergence to a global optimum.

Three movement rules have been tested: random, fitness based and similarity based
rules. The results of the different schemes are similar and further investigation is re-
quired in order to understand the potential of each one. The most important outcome
here is that the partially connected structure significantly improves the success rates
of the standard structure on quasi-deceptive and deceptive problems. Optimal popula-
tion size tests with selecto-recombinative cEAs show that the proposed algorithm
requires smaller populations for attaining the optimum, which means that it has a
better ability to recombine the raw building-blocks provided by the initial population
and maintain genetic diversity.

Two main lines of research are planned for the future. First, we will investigate the
behaviour of general 2-dimensional partially connected grids and compare it to square
and rectangular static topologies. The second line of research is dedicated to model-
ling the partially connected rings in a probability-based model, without empty nodes
between the individuals. This way, a multiprocessor approach may be implemented.

Acknowledgements. The first author wishes to thank FCT, Ministério da Ciência e
Tecnologia, his Research Fellowship SFRH/BPD/66876/2009. The work was supported by
FCT PROJECT [PEst-OE/EEI/LA0009/2013], Spanish Ministry of Science and Innovation
project TIN2011-28627-C04-02, Andalusian Regional Government P08-TIC-03903, CEI-
BioTIC UGR project CEI2013-P-14, and UL-EvoPerf project.

References

1. Alba, E., Dorronsoro, B.: The exploration/exploitation tradeoff in dynamic cellular genetic
algorithms. IEEE Transactions Evolutionary Computation 9, 126–142 (2005)

2. Fernandes, C.M., Laredo, J.L.L., Merelo, J.J., Cotta, C., Rosa, A.C.: Towards a 2-
dimensional Framework for Structured Population-based Metaheuristics. In: Proceedings
of IEEE International Conference on Complex Systems, pp. 1–6 (2012)

3. Fernandes, C.M., Laredo, J.L.L., Merelo, J.J., Cotta, C., Rosa, A.C.: A Study on Time-
Varying Partially Connected Topologies for the Particle Swarm. In: Proceedings of the
IEEE Congress on Evolutionary Computation, pp. 2450–2456. IEEE (2013)

4. Gordon, V., Whitley, L.: Serial and Parallel Genetic Algorithms as Function Optimizers.
In: Proceedings 5th ICGA, pp. 177–183 (1993)

5. Ilachinski, A.: Cellular Automata: A Discrete Universe. World Scientific (2001)
6. Kennedy, J., Eberhart, R.C.: Swarm Intelligence. Morgan Kaufmann, San Francisco (2001)

 Dynamic and Partially Connected Ring Topologies for Evolutionary Algorithms 677

7. Laredo, J.L.J., Castillo, P.A., Mora, A.M., Merelo, J.J., Fernandes, C.M.: Resilience to
churn of a peer-to-peer evolutionary algorithm. International Journal of High Performance
Systems Architecture 1(4), 260–268 (2008)

8. Payne, J.L., Eppstein, M.J.: Emergent mating topologies in spatially structured genetic
algorithms. In: Proc. 8th GECCO, pp. 207–214 (2006)

9. Sastry, K.: Evaluation-relaxation schemes for Genetic and Evolutionary Algorithms. Msc
Thesis, University of Illinois, Urbana, IL, USA (2001)

10. Steinmetz, R., Wehrle, K. (eds.): Peer-to-Peer Systems and Applications. LNCS, vol.
3485. Springer, Heidelberg (2005)

11. Tomassini, M.: Spatially Structured Evolutionary Algorithms. Springer, Heidelberg (2005)
12. Whitacre, J.M., Sarker, R.A., Pham, Q.: The self-organization of interaction networks

for nature-inspired optimization. IEEE Transactions on Evolutionary Computation 12,
220–230 (2008)

Systolic Genetic Search for Software
Engineering: The Test Suite Minimization Case

Mart́ın Pedemonte1(B), Francisco Luna2, and Enrique Alba3

1 Universidad de la República, Montevideo, Uruguay
mpedemon@fing.edu.uy

2 Universidad de Extremadura, Mérida, Spain
fluna@unex.es

3 Universidad de Málaga, Málaga, Spain
eat@lcc.uma.es

Abstract. The Test Suite Minimization Problem (TSMP) is a NP-
hard real-world problem that arises in the field of software engineering.
It lies in selecting the minimal set of test cases from a large test suite,
ensuring that the test cases selected cover a given set of elements of
a computer program under test. In this paper, we propose a Systolic
Genetic Search (SGS) algorithm for solving the TSMP. We use the global
concept of SGS to derive a particular algorithm to explicitly exploit the
high degree of parallelism available in modern GPU architectures. The
experimental evaluation on seven real-world programs shows that SGS
is highly effective for the TSMP, as it obtains the optimal solution in
almost every single run for all the tested software. It also outperforms
two competitive Genetic Algorithms. The GPU-based implementation of
SGS has achieved a high performance, obtaining runtime reductions of
up to 40× compared to its sequential implementation, and solving all
the instances considered in less than nine seconds.

Keywords: Systolic Genetic Search · Evolutionary Algorithms · Paral-
lel Metaheuristics · GPU · GPGPU · Search-based Software Engineering

1 Introduction

Search-based software engineering (SBSE) [6] is one recent field in Software Engi-
neering (SE) that is based in applying search-based optimization techniques, like
Evolutionary Algorithms (EAs), to SE problems. SBSE has been applied to prob-
lems fromall the phases of the software developmentprocess, being software testing
one of the most addressed issues [6]. Regression testing is the activity performed
within the development process to ensure that changes made to an existing piece of
software do not introduce errors. When a piece of software evolves, it grows in com-
plexity and size so the number of test cases of the regression test suite also grows.
For this reason, the direct execution of the entire test suite can be impracticable.
As a consequence, different approaches have been proposed to reduce the effort
devoted to regression testing [16]. The Test Suite Minimization Problem (TSMP)
is a NP-hard real-world software testing problem that is based on reducing a large
c© Springer-Verlag Berlin Heidelberg 2014
A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2014, LNCS 8602, pp. 678–689, 2014.
DOI: 10.1007/978-3-662-45523-4 55

Systolic Genetic Search for Software Engineering 679

test suite ensuring that a set of test goals are satisfied [16]. The goal is to find the
minimal number of test cases of the suite that covers a given set of elements of the
piece of software that is being tested.

As realistic software programs and the test suite proposed for its testing involve
thousands of lines of code and thousands of test cases, exact algorithms are dis-
carded as solution approach of the TSMP. Metaheuristics are our choice here. The
point is that even metaheuristics may be highly computationally expensive when
addressing such real-world TSMP instances. In order to tackle these problems
properly, we make use of parallelism, which comes out as a reliable strategy to
speed up the search of those kind of optimizers. Parallel metaheuristics [1] do not
only allow to reduce the runtime of the algorithms, but also usually provide new
enhanced search engines that allow to improve the quality of results obtained by
traditional sequential algorithms. Despite its advantages, there are very few works
that use parallel metaheuristics for solving SBSE problems [17,18].

Systolic Genetic Search (SGS) [12,13] is a recently proposed optimization
algorithm that combines ideas from systolic computing and metaheuristics. SGS
was explicitly designed to exploit the high degree of parallelism available in mod-
ern GPU architectures. SGS algorithm has already shown its potential for tack-
ling the Knapsack Problem finding optimal solutions in short execution times
in [12,13]. This paper presents a SGS algorithm for the TSMP. Sequential and
GPU-based implementations of SGS are studied in order to understand the
numerical efficacy of the proposed algorithm and the performance benefits of
its deployment on a GPU card. The main contributions of this paper are:

– It presents a new success of SGS for solving an optimization problem in a
unexplored domain. The results obtained are also relevant for the TSMP, as
SGS is highly effective for solving seven real-world instance of the problem.

– It shows that the GPU-based implementation of SGS is able to achieve a high
performance, obtaining a high runtime reduction compared to the sequential
implementation for solutions with similar quality.

– It presents an example of new research based on making algorithms spe-
cially tailored for the GPU architecture, instead of porting already existing
algorithms originally designed for the CPU.

This article is organized as follow. The next section discusses the related
papers in the literature. Section 3 formally introduces the TSMP. Section 4
describes the SGS algorithm, how it is instantiated for tackling the TSMP, and
its implementation on a GPU. Section 5 presents the details and the analysis of
the empirical study. Finally, in Section 6, we outline the conclusions of this work
and suggest future research directions.

2 Related Work

Several specific heuristics for the TSMP have been proposed, like a greedy app-
roach [11], the Algorithm H [7] and variations of the greedy algorithm (GR and
GRE algorithms) [3]. However, these heuristics have only been used on relatively
small test instances. An empirical evaluation was conducted on larger scenarios

680 M. Pedemonte et al.

using randomly generated instances [4]. This evaluation concluded that there is
no single technique that is better than the others for all the scenarios considered.

In the last years, the research community has paid more attention to the multi-
objective (MO) TSMP than to the single objective (SO) TSMP. It has been pro-
posed a bi-objective formulation [15,17,18] that considers the coverage and the
cost (number of code instructions executed in a profiling tool) as the conflict-
ing goals. There is also a three objective formulation [15] that also includes the
fault history as a goal. Despite the existence of these formulations, we believe that
the SO TSMP is still an interesting problem. The MO formulations are aimed to
obtain solutions that allow to reduce the cost by reducing the coverage. However,
it does not seem acceptable to reduce the coverage of test goals in a realistic sce-
nario, even within a tight schedule to execute the regression test.

Recently, the optimal solution of several TSMP instances was found by trans-
forming the instances in a Boolean satisfiability (SAT) problem and solving it
using a SAT solver [2]. As the runtime of the proposed algorithm is very high, the
authors reduced the original instances using a highly aggressive strategy (remov-
ing all test cases whose coverage is contained in another test case from the test
suite). For this reason, the largest instance addressed has only 215 test cases.
Most instances were solved in less than 3 seconds, but for one that required more
than 300 seconds. However, the authors did not report the runtime of neither
the transformation between TSMP and SAT nor the reduction of the instances.

AlthoughSBSEisusuallyacomputationallydemandingareabecausemostprob-
lemshastobesolvedwithinatightscheduleandthe largesizeof the instancessolved,
the application of parallelism to SBSE has been scarce. Up to 2011 there were only
three works about using distributed memory architecture platforms to speedup the
computation of SBSE (a state-of-the-art on this subject can be found in [17]).

Recently, there have been a couple works that use GPUs in order to solve
SBSE problems. In [17,18] the MO TSMP is addressed using a GPU to speedup
the fitness calculation of a multi-objective EA. In order to do this, the evaluation
of the population is transformed into a matrix-matrix multiplication that is
programmed by the authors. The proposed implementation in each generation
has to transfer the entire population from the CPU to the GPU, evaluate the
fitness function on the GPU and transfer the results back to the CPU. It should
be noted that transfers between CPU and GPU in both directions is one of the
most costly operation for an hybrid CPU-GPU platform.

3 Test Suite Minimization Problem

The Test Suite Minimization Problem (TSMP) is a real-world problem from the
field of software engineering [16]. This problem arises in regression testing and
belongs to the class of NP-hard problems since it is equivalent to the Minimal
Hitting Set Problem. It consists in reducing a test suite by eliminating redundant
test cases, and the goal is to select the minimal set of test cases that cover a set
of test goals. It is formally defined as follows.

Let T = {t1, . . . , tn} be a test suite for a program that consist of n test
cases and R = {r1, . . . , rm} the set of all the test goals (requirements) that has

Systolic Genetic Search for Software Engineering 681

to be covered with the test cases. Each test case covers several test goals and
this relation could be represented by a matrix M = [mij] of dimension n × m
(coverage matrix), whose entries are either 0 or 1. If mij = 1 the test case i
covers the test goal j, otherwise it does not covers the test goal.

The single objective TSMP consists in finding a subset of test cases with a
minimum number of elements that covers all the test goals (100% of coverage).
The single objective TSMP can be formulated as the integer programming model
presented in Equations 1, 2, and 3, being xi the binary decision variables of the
problem that indicate whether the test case i is included or not in the test suite.

(TSMP) minimize
n∑

i=1

xi (1)

subject to:
n∑

i=1

mijxi � 1,∀j = 1, . . . ,m (2)

xi ∈ {0, 1},∀i = 1, . . . , n (3)

4 Systolic Genetic Search

The idea of Systolic Computing [9,10] emerged in the late 70’s. It consists in
a network of simple data processing units connected in a simple and regular
fashion allowing data flow between neighboring units. These units, which are
called cells, are capable of performing simple operations to data that is then
passed through the system. This kind of architecture offers understandable and
manageable, but still quite powerful parallelism.

Systolic computing based metaheuristics adapt this idea to optimization
using as a basis the systolic computing architecture. This family of algorithms
are characterized by the flow of solutions through data processing units following
a synchronous and structured plan. Each cell applies operators to the circulating
tentative solutions in order to obtain new solutions that continue moving across
the processing units. In this way, the circulating solutions are refined again and
again by means of simple low complexity search operators. In particular, Systolic
Genetic Search (SGS) [12,13] applies adapted evolutionary operators when two
solutions meet in a cell in order to refine the tentative solutions.

The rest of this section is structured as follows. First, in the next subsection
the SGS algorithm used in this work is described. Then, it is shown how it is
instanciated for tackling the TSMP. Finally, the design and implementation of
the GPU-based SGS is commented.

4.1 SGSB: A Systolic Genetic Search Algorithm

In order to characterize a systolic computing based optimization algorithm three
basic points has to be precisely defined: the interconnection topology of the
systolic structure, the data flow of solutions, and the computation of the cells.

In particular, SGS algorithms use a bidimensional grid of cells in which the
solutions circulate synchronously through an horizontal and a vertical data flow.

682 M. Pedemonte et al.

The data flow determines the flavour of the SGS algorithm. In this work, we use
the SGSB flavour (B stands for both flows), in which a solution moving through
the vertical data flow that reaches the last row of the grid is passed on to the cell
of the first row of the next column of the grid, while a solution moving through
the horizontal data flow that reaches the last column of the grid is passed on
to the cell of the first column of the next row of the grid. The interconnection
topology and solution flows of SGSB it is shown in Figure 1. Other data flows
have been studied in [12,13].

...

...

...

...

...
... ...

Fig. 1. Interconnection topology and solution flows of SGSB

The computation performed by the cells is described next. Initially, each cell
generates two random solutions which are aimed at moving horizontally and ver-
tically, respectively. At each step of SGS, two solutions enter each cell, one from
the horizontal data flow and one from the vertical data flow. Then, it applies
adapted genetic operators (crossover and mutation) to generate two new solu-
tions. Later, the cell uses elitism to determine which solution continues moving
through the grid for each flow, choosing between the incoming solution and the
newly generated one by the genetic operators. The use of elitism is critical, as
there is no selection process like in standard genetic algorithms. Finally, each
cell sends the outgoing solutions to the next cells of the data flows.

The general idea of the SGS algorithm can be adapted to any solution rep-
resentation and any particular operator. In this work, since we are addressing
a binary problem, we encode the solutions as binary strings, and use bit-flip
mutation and two-point crossover as evolutionary search operators.

Even though the idea of SGS is to have a relatively large number of cells in
order to allow the algorithm to achieve a good exploration and to take advantage
of the parallel computation capabilities offered by devices such as the GPUs, the
number of cells should not increase up to values that compromise performance.
We consider that a proper balance is to have at least l cells (the length of the
tentative solutions). To this end, the length and width of the grid is �√l�. If
�√l� is an integer, the grid has exactly l cells, otherwise it has some additional
cells. In this way, each circulating solution returns to its starting cell in SGSB

after �√l� × �√l� steps.
The bit-flip mutation operator flips a single bit in each solution of each cell.

With the aim of reducing the generation of random numbers during the execution

Systolic Genetic Search for Software Engineering 683

of SGS, the mutation point for each cell is preprogrammed at fixed positions of
the tentative solutions, which is defined by considering the location of the cell
in the grid. In order to change different bits of the solutions through the grid,
the formula for calculating the mutation point of the cell (i, j) is:

i × �
√
l� + j mod l , (4)

where mod is the modulus of the integer division.
As the two-point crossover is applied on each cell, two different crossover

point values are chosen randomly for each cell.

4.2 A SGS for the TSMP

In order to tackle the TSMP with a SGS, it is necessary to define a fitness
function for this problem. As it is possible to build solutions that are not feasible,
i.e., that do not cover all the test goals, the fitness function has to deal with this
issue. Our approach applies a penalty function for each test goal that it is not
satisfied. Equation 5 shows the fitness function, being k the number of test cases
of #»x and c the number of test goals covered by #»x .

f(#»x) =
n − k

m − c + 1
. (5)

4.3 A GPU-Based Implementation of SGS

As a straightforward implementation of the fitness function on the GPU would
not properly exploit the massive parallelism available, we followed an idea pre-
viously proposed in [17,18] that transforms the evaluation into a matrix-matrix
multiplication. However, as there are available libraries that compute linear alge-
bra operations efficiently, we decided to use the matrix-matrix multiplication
routine from CUBLAS library. As a consequence, each systolic step requires to
invoke two kernels, one for computing the crossover and mutation of the solu-
tions in a cell (crossoverAndMutation kernel) and one for completing the fitness
calculation and applying the elitist replacement (fitnessReductionAndElitism
kernel), besides the invocation to CUBLAS. Algorithm 1 presents the pseudocode
of the SGS algorithm for the host side (CPU).

All the kernels are implemented following the idea used in [12], in which oper-
ations are assigned to a whole block and all the threads of the block cooperate
to perform a given operation, i.e. each block processes one cell of the grid. If the
solution length is larger than the number of threads in the block, each thread
processes more than one element of the solution but the elements used by a
single thread are not contiguous. Thus, each operation is applied to a solution
in chunks of the size of the thread block.

5 Experimental Results

This section describes the instances of the TSMP used for the experimental
study, the parameters setting, and the execution platforms. Then, the results
obtained are presented and analyzed.

684 M. Pedemonte et al.

Algorithm 1. SGS Host Side Pseudocode
1: transfer seed for random number generation to GPU
2: transfer constant data to GPU’s global memory
3: invoke initPop kernel to initialize population
4: invoke matrix-matrix multiplication from CUBLAS
5: invoke fitnessReduction kernel to calculate fitness of the population
6: for i = 1 to maxGeneration do
7: invoke crossoverAndMutation kernel to compute systolic step
8: invoke matrix-matrix multiplication from CUBLAS
9: invoke fitnessReductionAndElitism kernel to complete the systolic step

10: end for
11: transfer results from GPU to CPU

5.1 TSMP Instances

The instances used in this work are several real world programs that belong to the
Siemens benchmark suite [8]. The Siemens benchmark suite is publicly available
at the Software-artifact Infrastructure Repository (SIR) website [5]. The suite
includes an aircraft collision avoidance system (tcas), a statistic computation
program (totinfo), two priority schedulers (schedule and schedule2), two
lexical analyzers (printtokens and printtokens2) and a program that performs
pattern matching and substitution (replace).

Table 1 presents the instances used in this work including the number of test
cases and the number of test goals that is directly taken from the benchmark.
However, a simple inspection of the coverage matrix shows that there are several
test cases that cover exactly the same goals. For this reason, and as we are
addressing the single objective TSMP, we preprocessed the instances by removing
test cases with exactly the same coverage (Reduced Test Suite Size in Table 1).
This process takes less than a second in the same PC that was used in the
experimental evaluation. Finally, the table includes the number of test cases of
the optimal solution of each instance [2].

Table 1. TSMP instances used in the evaluation and their exact optimal solutions

Instance Original Test Reduced Test Test Optimal
Suite Size Suite Size Goals Solution [2]

tcas 1608 8 54 4
totinfo 1052 173 117 5
schedule 2650 492 126 3
schedule2 2710 770 119 4
printtokens2 4115 1721 192 4
printtokens 4130 1856 195 5
replace 5542 2023 208 8

Systolic Genetic Search for Software Engineering 685

5.2 Algorithms

In addition to the SGSB algorithm, we have included two algorithms, a simple
Genetic Algorithm (GA) with and without elitism, in order to set an actual
comparison basis. The GAs have been chosen because they share the same basic
search operator (crossover and mutation) that SGSB so we can properly evaluate
the underlying search engine of the techniques. The details of the algorithms used
in this work are:

– Simple Genetic Algorithm (SGA): It is a generational GA with binary tour-
nament, two-point crossover and bit-flip mutation.

– Elitist Genetic Algorithm (EGA): It is similar to SGA but children solutions
replace parent solutions only if they have a better (higher) fitness value.

– SGSB: The algorithm described in Sect. 4.

5.3 Parameters Setting and Test Environment

The SGA and EGA parameter values used are 0.9 for the crossover probabil-
ity and 1/l for the mutation probability, where l is the length of the tentative
solutions (the number of test cases). The population size and the number of gen-
erations of both GAs were defined by considering the features of SGSB. For this
reason, the population size is 2×�√l�×�√l� and the generations are �√l�×�√l�.
The number of generations was chosen so that each circulating solution returns
to its starting cell in SGSB after that number of iterations.

The execution platform for the CPU implementation is a PC with a Quad
Core Intel i7 2600 processor at 3.40 GHz. with 16 GB RAM using Linux O.S.
All CPU implementations were executed as single-threaded applications. The
GPU implementations were run in an Nvidia’s GeForce GTX 680 (1536 CUDA
cores at 1006 MHz., Kepler architecture) connected to the PC used for the CPU
executions. CPU and GPU implementations were compiled using the -O3 flag.

All the results reported in the next subsection are averaged over fifty inde-
pendent runs. The transference times of data between CPU and GPU are always
included in the reported total runtime of the GPU version. As the algorithms
used in the experimental evaluation are all stochastic, the following statistical
procedure [14] has been used to provide statistical significance. If the samples
are distributed according to a normal distribution and the variances are homo-
geneous (homocedasticity), an ANOVA I test is performed; otherwise a Kruskal-
Wallis test is performed. All the statistical tests are performed with a confidence
level of 95%. As more than two algorithms are considered in the study, a post-
hoc phase which consist in a pairwise comparison of all the cases compared using
the Bonferroni-Dunn method has been performed. The results are displayed in
tabular form, ‘�’ states that there is statistical significance, while ‘−’ states that
there is no statistically significant differences.

5.4 Experimental Analysis: Numerical Performance

Let us first analyze the numerical efficiency for TSMP of the GPU implementa-
tions. Table 2 shows, for each algorithm, its hit rate (i.e., the number of times it

686 M. Pedemonte et al.

Table 2. Hit rate, numerical efficacy (mean error ± std. dev.) and statistical assesment
of GPU versions

Hit rate Numerical efficiency Statistical assessment

Instance SGA EGA SGSB SGA EGA SGSB
SGA- SGA- EGA-
EGA SBSB SBSB

tcas 72% 100% 100% 0.28±0.45 0.00±0.00 0.00±0.00 � � -
totinfo 8% 100% 100% 1.16±0.55 0.00±0.00 0.00±0.00 � � -
schedule 0% 48% 92% 8.52±2.51 0.58±0.61 0.08±0.27 � � �
schedule2 0% 66% 100% 9.96±5.09 0.34±0.48 0.00±0.00 � � �
printtokens2 0% 72% 100% 14.68±7.41 0.28±0.45 0.00±0.00 � � �
printtokens 0% 44% 100% 9.58±1.99 0.60±0.57 0.00±0.00 � � �
replace 0% 4% 100% 12.60±2.49 1.34±0.59 0.00±0.00 � � �

hits the optimal solution), the quality of solutions it reaches (measured in terms
of distance to the optimal solution), and the result of the statistical assessment.

The Hit Rate results show that SGSB is able to always find the optimal solu-
tion for all the instances, but schedule (46 out of 50 trials). This means almost
full effectiveness (hit rate of 98.8% over then entire testbed). EGA also performs
well, finding the optimal solution for all the instances, but it is noticeable that
SGSB is clearly superior to EGA in five instances. On average, EGA reaches a
hit rate of 62%. It is remarkable the ability of SGSB to scale properly with the
size of the instances as it has consistently find the optimal solutions regardless
of the number of test cases (which ranges from 8 to 2023). Finally, SGA has a
poor numerical efficiency and it is only able to find the optimal solution in the
two smallest instances.

The next group of columns in Table 2 includes the average number of addi-
tional test cases from that of the optimal solution required for each suite to
cover 100% program statements in the seven TSMP program instances. Besides
confirming the Hit Rate results, these values point out very tight differences
between SGSB and EGA, with statistical confidence though (as shown in the
very last columns of the table). SGA has reported the higher (worse) number of
test cases. The search engine of SGSB based on the flow of solutions has allowed
this algorithm to identify the region where the optimal solution is located for
the considered instances. Within the context of this experimental evaluation, it
has been shown that SGSB provides a highly robust search for the TSMP. The
numerical efficiency of the CPU implementations has been also evaluated and
roughly the same conclusions are drawn as that of the GPU implementations.
However, due to room constraints, they have not been included in this paper.

5.5 Experimental Analysis: Parallel Performance

Since the numerical efficiency of SGA was rather poor, we do not include this
algorithm in this study. Table 3 shows the mean runtime and the standard
deviation, in seconds, for EGA and SGSB when executed on CPU. The runtime
for tcas instance of the two algorithms is not included in the table as it is below
0.001 seconds, i.e., there are executions which runtime cannot be measured.

Systolic Genetic Search for Software Engineering 687

Table 3. Runtime in seconds of the CPU versions (mean ± std. dev.)

Instance EGA SGSB

totinfo 0.23 ± 0.01 0.25 ± 0.01
schedule 3.71 ± 0.05 4.46 ± 0.03
schedule2 11.46 ± 0.11 13.16 ± 0.06
printtokens2 157.73 ± 1.44 253.51 ± 1.28
printtokens 188.06 ± 1.67 275.16 ± 1.25
replace 225.99 ± 1.86 346.61 ± 1.67

It is pretty clear that EGA has performed much faster than SGSB. Indeed,
the larger the TSMP instances the higher the difference in the runtime. This
is somewhat surprising as the search engine of the algorithms is built upon the
same genetic components. There is a fundamental reason for such results: the
fitness function has a variable runtime. For each test case that is included in
a tentative solution, it has to be computed which test goals are covered, as a
consequence, computing the fitness value of a solution strongly depends on the
number of test cases used in the solution. The higher the number of test cases of
the solution, the longer the runtime. In this context, we have tracked the runs
of the algorithms and it has been shown that EGA converges very quickly to
solutions with a few number of test cases due to its elitist strategy, thus making
the computation of the fitness function quite fast. SGSB is also endowed with an
elitist mechanism, but it is limited to the scope of the SGS cells and the solution
flow. That is, SGSB promotes a higher solution diversification which, for TSMP,
penalizes its runtime.

Now, we analyze the performance of the GPU implementations. Table 4 shows
the mean runtime and the standard deviation, in seconds, of EGA and SGSB

executed on a GeForce GTX 680, as well as runtime reduction of each algorithm
versus its sequential counterpart. The extremely short execution times of the
tcas has driven us to avoid including it here.

Table 4. Performance efficiency of the GPU versions

Instance EGA SGSB

Runtime in s. Reduction Runtime in s. Reduction
(mean ± std.) vs. CPU (mean ± std.) vs. CPU

totinfo 0.031 ± 0.001 7.42 0.027 ± 0.001 9.26
schedule 0.210 ± 0.001 17.67 0.167 ± 0.001 26.71
schedule2 0.549 ± 0.001 20.87 0.397 ± 0.001 33.15
printtokens2 7.858 ± 0.029 20.07 5.785 ± 0.016 43.82
printtokens 8.948 ± 0.021 21.02 6.726 ± 0.023 40.91
replace 11.112 ± 0.031 20.34 8.671 ± 0.024 39.97

688 M. Pedemonte et al.

The first main conclusion drawn is that SGSB has the shortest runtime in
all the instances studied of the TSMP. Indeed, SGSB needs only 8.67 seconds
for solving the replace instance, which is nearly 30% faster than EGA, which
follows a similar scheme of implementation. The differences with respect to the
CPU implementations has not only vanished, but reversed. The reason for such
a result has to do, again, with the computation time of the fitness function: its
GPU implementation developed is that suitable for such a massively parallel
computing platform that the number of test cases of each solution makes no
different in its runtime. This comparison mainly reveals the different performance
of the GPU implementation for the search engine of the algorithms, being that
of SGSB faster. This has a clear impact on the runtime reductions: SGSB has
reached a peak of 43.82× for printtokens2, and averages 32.3% over the six
instances; EGA in turn averages 17.9% (with a maximum value of 21.02% for
printtokens. We want to remark that we are not providing EGA with a low
quality GPU implementation as it runs around 20 time faster.

Although there are several differences between the approach taken in [17,18]
and in this work it should be highlighted that the maximal speedup achieved
by those authors for the instances considered in this work is 5.26. The most
important differences are: they tackle the multi-objective TSMP, while we tackle
the single-objective variant; their proposal only uses the GPU to speedup the
fitness evaluation, while our proposal implements the whole algorithm in the
GPU; and the number of fitness evaluations and the population size are different.
Additionally, it should be noted that it is very difficult to evaluate if both CPU-
GPU platforms have a similar relative performance.

In summary, the GPU implementation of SGSB is not only able to reach
excellent quality solutions for the TSMP, but it is also able to do it faster.
This makes possible to solve real-world software testing environments in which
decisions have to be taken within a tight schedule. The improvements in the per-
formance achieved are satisfactory, but there is still room for improvement since
the GPU implementation can be further fine tuned to the Kepler architecture.

6 Conclusions and Future Work

In this work, we have proposed a SGS algorithm for solving the single objective
TSMP. The experimental evaluation conducted over seven instances from real-
world programs, with up to 2023 test cases and 208 test goals, showed that the
SGS was able to find the optimal solution on almost every execution, as well as
outperforming two GAs for solving instances. The results have also shown that
the GPU implementation of SGS speeds up the runtime up to 43 times.

Three main areas that deserve further study were identified. A first issue is to
fine tune the GPU implementation of our algorithm for the Kepler architecture.
A second line of interest is to evaluate the improved implementation in a Tesla
K20 GPU, which is specially designed for high performance computing. And,
finally, we aim to evaluate our algorithm with other real-world benchmarks,
specially with instances with a larger number of test goals than in this work.

Systolic Genetic Search for Software Engineering 689

Acknowledgments. M. Pedemonte acknowledges support from Programa de Desar-
rollo de las Ciencias Básicas, Universidad de la República, and Agencia Nacional de
Investigación e Innovación, Uruguay. F. Luna and E. Alba acknowledge partial sup-
port from the Spanish Ministry of Economy and Competitiveness and FEDER under
contract TIN2011-28194.

References

1. Alba, E., (ed.): Parallel Metaheuristics: A New Class of Algorithms. Wiley (2005)
2. Arito, F., Chicano, F., Alba, E.: On the application of sat solvers to the test suite

minimization problem. In: Fraser, G., Teixeira de Souza, J. (eds.) SSBSE 2012.
LNCS, vol. 7515, pp. 45–59. Springer, Heidelberg (2012)

3. Chen, T.Y., Lau, M.F.: Heuristics towards the optimization of the size of a test suite.
In: Procs. of the 3rd Int. Conf. on Software Quality Management, pp. 415–424 (1995)

4. Chen, T.Y., Lau, M.F.: A simulation study on some heuristics for test suite reduc-
tion. Information and Software Technology 40(13), 777–787 (1998)

5. Do, H., Elbaum, S., Rothermel, G.: Supporting controlled experimentation with
testing techniques: An infrastructure and its potential impact. Empirical Softw.
Engg. 10(4), 405–435 (2005)

6. Harman, M., Mansouri, S.A., Zhang, Y.: Search-based software engineering:
Trends, techniques and applications. ACM Comput. Surv. 45(1), 11 (2012)

7. Harrold, M.J., Gupta, R., Soffa, M.L.: A methodology for controlling the size of a
test suite. ACM Trans. Softw. Eng. Methodol. 2(3), 270–285 (1993)

8. Hutchins, M., Foster, H., Goradia, T., Ostrand, T.: Experiments of the effectiveness
of dataflow- and controlflow-based test adequacy criteria. In: Proc. of the 16th Int.
Conf. on Software Engineering, pp. 191–200 (1994)

9. Kung, H.T.: Why systolic architectures? Computer 15(1), 37–46 (1982)
10. Kung, H.T., Leiserson, C.E.: Systolic arrays (for VLSI). In: Sparse Matrix Pro-

ceedings, pp. 256–282 (1978)
11. Offutt, J., Pan, J., Voas, J.: Procedures for reducing the size of coverage-based test

sets. In: Procs. of the Twelfth Int. Conf. on Testing Computer Software (1995)
12. Pedemonte, M., Alba, E., Luna, F.: Towards the design of systolic genetic search.

In: IEEE 26th International Parallel and Distributed Processing Symposium Work-
shops & PhD Forum, pp. 1778–1786 IEEE Computer Society (2012)

13. Pedemonte, M., Luna, F., Alba, E.: New ideas in parallel metaheuristics on gpu:
Systolic genetic search. In: Tsutsui, S., Collet, P.: Massively Parallel Evolution-
ary Computation on GPGPUs. Natural Computing Series, pp. 203–225, Springer
(2013)

14. Sheskin, D.J.: Handbook of Parametric and Nonparametric Statistical Procedures,
Fifth edition, Chapman and Hall/CRC (2011)

15. Yoo, S., Harman, M.: Pareto efficient multi-objective test case selection. In: Pro-
ceedings of the 2007 Int. Symposium on Software Testing and Analysis, pp. 140–150
(2007)

16. Yoo, S., Harman, M.: Regression testing minimization, selection and prioritization:
a survey. Softw. Test. Verif. Reliab. 22(2), 67–120 (2012)

17. Yoo, S., Harman, M., Ur, S.: Highly scalable multi objective test suite minimisation
using graphics cards. In: Proceedings of the Third International Conference on
Search Based Software Engineering, pp. 219–236 (2011)

18. Yoo, S., Harman, M., Ur, S.: Gpgpu test suite minimisation: search based software
engineering performance improvement using graphics cards. Empirical Software
Engineering 18(3), 550–593 (2013)

Optimization of Application Placement Towards
a Greener Cloud Infrastructure

Tania Lorido-Botran(B), Jose Antonio Pascual, Jose Miguel-Alonso,
and Jose Antonio Lozano

Intelligent Systems Group, University of the Basque Country, UPV/EHU,
Paseo Manuel Lardizábal, 1 20018 Donostia-San Sebastian, Spain

{tania.lorido,joseantonio.pascual,j.miguel,ja.lozano}@ehu.es

Abstract. Cloud infrastructures are designed to simultaneously service
many, diverse applications that consist of collections of Virtual Machines
(VMs). The policy used to map applications onto physical servers (place-
ment policy) has important effects in terms of application performance
and resource efficiency. This paper proposes enhancing placement poli-
cies with network-aware optimizations trying to simultaneously improve
application performance, resource efficiency and, as a consequence, power
efficiency. The per-application placement decision is formulated as a
bi-objective optimization problem (minimizing communication cost and
minimizing the number of physical servers assigned to the application)
whose solution is searched using an evolutionary algorithm with problem-
specific crossover and mutation operators. Experiments carried out with
a simulator demonstrate how a low-cost optimization technique results
in improved placements that achieve all the target objectives.

Keywords: Cloud computing · Tree-network topology · VM placement ·
Multi-objective optimization · Energy consumption

1 Introduction

In recent years, the utilization of cloud infrastructures to host applications has
spread widely. The characteristic that makes these cloud systems so appealing
is their elasticity, that is, resources can be acquired on-demand, depending on
the time-varying application needs, but paying only for those actually booked
(a scheme known as pay-as-yo-go). Virtualization technologies enable the cloud
infrastructure to provide such elastic usage. The resources offered by physical
servers, organized in several data centers, are provided in the form of abstract
compute units that are implemented as Virtual Machines (VMs). Each VM is
assigned a pre-configured set of resources: number of cores, amount of memory,
disk and network-bandwidth.

Virtualized data centers support a large variety of applications, including
batch jobs (scientific applications), and web applications (e.g. an online book-
shop or a blog hosting site). Each application is deployed on a set of VMs,
which can be allocated to any collection of physical servers in the data center.
c© Springer-Verlag Berlin Heidelberg 2014
A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2014, LNCS 8602, pp. 690–701, 2014.
DOI: 10.1007/978-3-662-45523-4 56

Optimization of Application Placement 691

The problem of assigning a physical location to each VM is known as VM place-
ment and it is performed by the manager of the cloud infrastructure. This man-
ager is typically called the Infrastructure-as-a-Service (IaaS) provider.

The challenge for the provider is to host a large and diverse set of applications
(VM sets from different clients) in the infrastructure trying to (1) maximize its
revenue and (2) provide a good service to the clients. An adequate application
placement would be able to maximize the resource usage of physical servers and
reduce the energy consumption of the data center, for example by turning off
(or setting to idle state) the inactive servers and switches. At the same time, the
infrastructure management policies should balance the obtained revenue with
the Quality of Service (QoS) agreed with the client, guaranteeing that each
application receives the resources payed for.

The VM placement problem has been extensively explored in the literature
[11] [12]. Most efforts have been directed towards optimizing the usage of CPU,
memory and disk resources, and reducing the energy consumption of physical
servers. However, not enough attention has been paid to the utilization of the net-
work. An inappropriate placement of VMs with heavy communication require-
ments could lead to the saturation of certain network links, with the subsequent
negative impact on applications (longer execution or response times). Besides,
as stated in [9], the network power has been estimated at 10-20% of the overall
power consumption. For this reason, the VM placement policy should try to
reduce not only the use of physical servers, but also the use of network links and
switches to reduce the total power footprint.

The most common topology of data center networks is a tree of switches
arranged in several tiers. The communication latency of any pair of VMs depends
on the distance between the physical servers in which they are allocated. This, in
turn, depends on their position in the tree. Distance is measured as the number
of hops from the sender VM to the recipient one. The collection of VMs forming
an application communicate between them following a certain communication
pattern. In batch jobs implementing, for example, a scientific computation, the
pattern may be all-to-all. In web applications, the VMs are arranged into several
layers and there may be intra- and inter-layer communication. Other patterns
are possible, depending on the particular characteristics of the application.

Based on the communication pattern of an application, it is straightforward
to compute the input/output network bandwidth needed by each VM. The most
communicative VM subsets should be placed as close as possible (minimizing
the distance between them in terms of network hops). This means using the
minimum number of physical servers, because intra-server communication is the
cheapest. The constraint is that the external aggregated bandwidth required by
the all the VMs in a server, from the same or from different applications, cannot
exceed the bandwidth of its network connection.

Two examples of VM placement policies that can be used in data centers are
first fit (FF) and round robin (RR). Each of them has a different characteristic
that makes it appropriate for its use in the data center. The objective of FF is to
reduce the number of physical servers in use, saving energy. RR tries to equalize

692 T. Lorido-Botran et al.

the utilization of all servers to avoid excessive wearing-out of server subsets
and thermal peaks. We demonstrate how it is possible to take these policies as
starting points and use optimization techniques to improve the benefits for both
the infrastructure provider and the application.

The remaining of this paper is organized as follows. After a review of the
literature (Section 2), we provide in Section 3 models for cloud applications,
data center organizations, and the energy consumed by servers and switches.
Then we formulate VM placement as a multi-objective optimization problem
(Section 4). We assess the benefits of our approach using the experiments defined
in Section 5, whose results are discussed in Section 6. We end in Section 7 with
some conclusions and future lines of work.

2 Related Work

Open-source tools for cloud management use rather simple placement policies.
For example, Eucalyptus [1] implements FF and RR strategies that only con-
sider the VM requirements and the availability of resources. It also implements a
PowerSave policy that is similar to the ranking algorithm available in OpenNeb-
ula [4]: choosing first the most used servers (with room for the new demand) with
the objective of minimizing the number of used servers and, therefore, the power
consumption. Commercial tools for capacity planning, such as NetIQ PlateSpin
Recon [3], VMware Capacity Planner [5] and IBM Workload Deployer [2] also
focus on maximizing the resource usage and power consumption savings. None
of these tools explain how VM placement is carried out.

Neither open-source nor commercial tools consider the impact of network
topology and the communication patterns of applications, but it has been ana-
lyzed in several research works [7] [8] [9] [11] [12]. For example, Meng et al.
[11] propose grouping VMs and servers into clusters, addressing VM placement
for each (VM-cluster, server-cluster) pair as a Quadratic Assignment Problem
(QAP). The VM clustering tries to maximize the intra-cluster communication
and reduce the inter-cluster communication, but all VM-clusters have equal size.
The server set assigned to a VM-cluster is fixed. This work does not consider
the energy consumed by physical servers. Mann et al. [9] propose an approach
similar to ours, but using a greedy heuristic. However, their work does not con-
sider the large variety of applications that can run in the cloud. Georgiou et al.
[8] also propose a greedy heuristic to improve the network utilization, but they
do not try to consolidate the VMs in the minimum number of physical servers.

3 Application, Data Center and Power Models

This section presents several models that will be later used to define and solve the
VM placement problem. First, we present an application model, which covers
a wide range of application types that run on cloud environments. Next, we
define a general model for describing the interconnection network topology of
tree-based data centers. Finally, a power model is introduced to estimate the
power consumption of physical servers and switches.

Optimization of Application Placement 693

0

0

bwl

0

0bwl 0

bwl

0

00

0

0

0

0

0

L1 L2 L3

L1

L2

L3

LE

LE

(a) Batch

0

0

bws

0

0bws 0

0

0

00

0

0

bwl

0

bws

L1 L2 L3

L1

L2

L3

LE

LE

(b) L-WA

0

0

bws

0

0bws 0

0

0

bwmbwl

0

bws

bwm

0

bws

L1 L2 L3

L1

L2

L3

LE

LE

(c) H-WA

Fig. 1. Simplification of the communication matrix for each application type (defined
per layer instead of per VM)

3.1 Modeling Applications

A cloud environment is suitable to run a diversity of applications, formed by a
collection of VMs typically organized in one or more layers. The way VMs com-
municate among them determine the communication pattern of the application.

We propose a simple model that allows us to represent the structure of any
kind of application providing a few parameters: number of layers of the applica-
tion (L), the number of VMs in each layer (Ni being i the layer identifier) and a
matrix of the communication needs (or bandwidth, measured in Mb/s) between
each pair of VMs i and j (BW = [bwi,j]) and with the external world.

For this work, we particularize this model to define two classes of applica-
tions: (1) batch jobs, typical of scientific workloads, and (2) web applications.
Batch jobs represent the execution of parallel applications, or workflows compris-
ing parallel tasks. The main characteristic of a batch job is the intense internal
communication (between tasks-VMs of the same application). In this work, we
model them as a single-layer application, with communications following pat-
terns such as all-to-all, neighbour-to-neighbour in a 2D (virtual) arrangement,
and neighbour-to-neighbour in 3D.

Web applications are usually implemented using a three-layer architecture:
a load balancer that receives end-user requests, a business layer that processes
those requests (and replies to them), a and database (DB) or persistence layer.
The load balancer distributes the input requests evenly along the VMs of the
business layer; it may be implemented on a hardware device, or as a DNS-
based redirection—thus, we do not include it in the application model. The
number of VMs at the persistence layer depends on the database requirements
of the applications. A light workload can be managed by a single DB server that
supports both read and write operations; we represent this class of applications
as L-WA. For applications with heavy database demands (H-WA), a master-
slave replication scheme may be applied: one of the VMs of the persistence layer
is the master node that processes all the write operations, while the queries
(read operations) are evenly distributed along the remaining VMs in the layer.
Whenever a change (write) is done on the master node, it is propagated to the
read VMs.

694 T. Lorido-Botran et al.

(a) 3-tier fattree build with 8-port switches (b) 24-port access switch

Fig. 2. Representation of the physical configuration of a data center (network and
servers)

IaaS providers offer different types of VMs, with different resource sets. In
this work, we will consider small, medium and large instances, with different
characteristics only in terms of allotted network bandwidth (in Mb/s): bws=50,
bwm=150 and bwl=300, respectively. Our batch applications use a single layer L1

of large instances. For L-WA web applications, the business layer (L1) uses small
instances and the database is represented as a single, large VM in layer (L2).
For H-WA applications, the database is modelled as a L2 layer for reading, with
several medium-size VMs, and a single-VM (of large size) layer L3 for writing.
Figure 1 shows the communication pattern between layers for each application
type, that is reflected on the BW matrix. The additional layer LE represents
the traffic to/from the Internet and the application itself.

3.2 Describing the Data Center Structure

As stated before, current data centers are usually built using tree-based topolo-
gies, such as fat tree and VL-2 [11]. This kind of networks are composed of
several tiers of switches (we assume homogeneous switches) and several servers
connected to the bottom tier of the tree (the edge or access tier). Each server is
divided into several slots, where each slot can be a fraction of a core, an entire
core or several cores. Application VMs are assigned to different slots of the data
center servers. Throughout this work we assume that a VM consumes a slot, and
that one slot is equivalent to one core of a multi-core server.

The physical configuration of a data center is defined as the number of servers
(P), the number of cores per server (Cp) and the network topology. In particular,
a tree-based topology is defined by the number of uplinks and downlinks of
the switches (Sup and Sdown), the bandwidth (Mb/s) offered by each switch
port (Sbw) and the number of tiers of the tree (T). The communication latency
between two cores i and j depends on the distance between them, measured in
terms of hops. Matrix D = [di,j] defines the distance between any pair of cores
(actually, the servers to which they belong).

We have focused on data centers built using fat trees as interconnection
network, composed of three tiers (as depicted in Figure 2(a)) with the same

Optimization of Application Placement 695

Table 1. Parameter values of energy utilization in physical servers and switches

Consumption at Server value (W) Switch value (W)

Emax 100% utilization 200 100

Eidle Idle state 10 10

Eactive One active core/port 160 31

Erem Remaining Uactive − 1 cores/ports 40 69

number of switches in each one of them (see Figure 2(b)). We consider that
core switches are directly connected to the Internet. In this kind of tree the
distance between two servers (matrix D) is computed as follows: cores in the same
physical server are at distance 0; servers connected to the same access switch
are at distance 2; if aggregation or core switches are required, distance grows to
4 and 6 respectively. The physical configuration of the data center used in this
work is: (P = 1728 servers, Cp = 8 cores, T = 3 tiers, Sup = 12 ports, Sdown =
12 ports, Sbw = 1000 Mb/s).

3.3 Modeling Power Requirements

Energy is consumed by servers and switches, and also by cooling and energy
distribution systems. Reducing power use has direct benefits for the infrastruc-
ture provider (lowering the energy bill), while reducing the data center carbon
footprint.

PowerNap [10] aims to reduce the consumption of unused servers by switching
off memory, disk and other elements. In this work we assume that a strategy like
this is used in the data center: unloaded servers and switches operate in an idle
state that minimizes energy waste. We define a general model of power utilization
of a device (server or switch), inspired in the one provided in [10].

E =
{

Eidle Uactive = 0
Eactive + Erem·(Uactive−1)

Utotal−1 Uactive > 0

The energy consumption E of a server/switch (in Watts) depends on the
number of active cores or ports Uactive. At idle state, the consumption is equal
to Eidle. The transition from the idle state to the activation of the first core/port
implies an important increase in the energy utilization, because it requires turn-
ing on other resources (memory, disk) or internal fans. The consumption of
each additional, active core/port is directly proportional to the active number
of cores/ports. Table 1 shows the energy consumption values used in this work,
for both servers and switches. Values for servers are based on those in [10].

4 Topology-Aware Optimization

The aim of this work is to find a suitable placement for the VMs forming an
application onto a set of available cores (slots) in the data center servers. We

696 T. Lorido-Botran et al.

perform an initial selection of free cores using FF or RR (see Section 5); then,
a bi-objective optimization algorithm fine-tunes the VM placement taking into
account the communication needs of the application—and the corresponding
cost considering the assigned cores and the topology of the data center network.

4.1 Problem Definition

Given an application A with a VM set V of size N , and a subset of available cores
C ′ ⊂ C, where C is the whole set of cores in the data center (note that usually
|C ′| >> N), the VM placement problem involves finding a mapping function ϕ
that assigns each VM, v ∈ V to a core c ∈ C ′:

ϕ :V → C ′

v �→ ϕ(v) = c

A solution of the VM placement problem has the form s = (c1, c2, . . . , cN)
representing that the VM i has been assigned to core ci.

Two major selection criteria will be considered to choose a VM placement.
First, we favor solutions that minimize communication latency. For this reason,
the VM placement will try to allocate the most communicative VMs onto phys-
ically close cores, in terms of network distance. The second criterion focuses
on reducing the number of servers allocated to the application. An allocation
solution that fulfills the first criterion may not satisfy the second one. For exam-
ple, given an application A = {v1, v2, v3, v4} in which communication occurs
between v1-v2 and v3-v4, the first criterion may place each pair of VMs on a
different physical server. However, according to the second criterion, it would be
better to place all the VMs in the same server. Both criteria try to improve the
use of data center resources, by means of reducing the number of active servers
and switches, but the first one specifically tries to benefit the application, opti-
mizing its performance. Placement solutions must obey a restriction: external
communication demands by all the VMs assigned to a server cannot exceed the
bandwidth of its network link Sbw. This constraint does not take into account
communication between VMs in the same server.

More formally, we describe VM placement as a bi-objective optimization
problem subject to one constraint. The first objective function to minimize is
defined as follows:

f1 :
N∑

i,j∈V

bwi,j · ds(i),s(j) (1)

where ds(i),s(j) is the distance between the cores assigned to VMs i and j and
bwi,j is the bandwidth required by VMs i and j.

Given the function σ(c) = p that returns the server p to which core c belongs
to, and a solution s, we define the set of active servers for this solution as
P s = {p|∃i ∈ {1, . . . , N} s.t. σ(s(i)) = p}. The second objective function to
minimize is defined as:

Optimization of Application Placement 697

f2 : |P s| (2)

The solutions are subject to the following constraint:

∀p ∈ P s : Sbw − Sp
bw ≥ 0 (3)

where Sbw is the bandwidth available for each physical server and Sp
bw is the

reserved bandwidth of server i, considering the previously allocated applications
and also the new one.

4.2 Multi-objective Optimization with NSGA-II

We have chosen the evolutionary algorithm NSGA-II [6] to solve the multi-
objective VM placement problem. A solution or individual is represented as
a vector that assigns each VM of the application to one available core. After
generating an initial population of Npop individuals, an offspring is created from
it applying a crossover and a mutation operator with probability pcross and pmut

respectively. The resulting population 2Npop is sorted, in order to select the best
Npop individuals for the next generation. These steps are iterated along Ngen

generations. For further information about NSGA-II, please refer to [6].

Guided Crossover. The crossover operator is applied with probability pcross.
It combines two individuals to generate a new one, considering the specific char-
acteristics of the problem. Given two parents s1 and s2 the crossover operator
generates a new child ch as follows. We define φ(i, s) as the communication cost
of VM i in a candidate solution s, considering all the destinations with which it
communicates, the corresponding input/output bandwidths, and the distances:

∀i ∈ {1, . . . , N} : φ(i, s) =
N∑

j=1,j �=i

(bwi,j + bwj,i) · ds(i),s(j) (4)

Child ch will be constructed taking from the parents those cores that cause
the lowest communication cost. That is, for each VM i, if φ(i, s1) < φ(i, s2),
then core s1(i) is assigned to VM i of child ch. A correction step to remove any
possible repeated position (cores) of each child may be required.

Guided Mutation. The mutation is applied with a probability pmut. There
are two types of mutation, that are selected based on another probability pmtype.
The first type performs a simple swap between any two elements of the chosen
solution, without considering cores in the same server because this change would
not affect the values of the objective functions. With probability 1-pmtype, the
second type of mutation is applied: one of the cores assigned to the solution is
replaced with any free core c from the whole network C, selected randomly using
a distance-based distribution that favors physically close cores.

698 T. Lorido-Botran et al.

Selection Criterion for Solutions in the Pareto Front. The bi-objective
optimization algorithm generates a collection of solutions for a given application
(Pareto set), with different trade-offs between locality and number of allocated
servers. As all Pareto optimal solutions are considered equally good, a selection
criterion is required to choose one. We select the solution that is most beneficial
for the provider: one that minimizes the global number of active servers in the
data center Pactive.

5 Experimental Framework

This section presents the experimental framework used to evaluate the VM
placement strategies. The experiments have been performed using an in-house
developed scheduling simulator. The initial mapping is generated with a topology-
agnostic approach: FF that searches free cores sequentially, always starting at the
first one, or RR that also performs a sequential search but starting from the last
core used in the previous placement. We then apply the multi-objective optimiza-
tion over this set of cores. Using this set, the initial population for NSGA-II is
generated performing random reorderings of the cores. In all, four VM placement
algorithms are considered: FF and RR, without and with optimization, in all cases
obeying the bandwidth constraint.

Three initial workload scenarios have been considered, designed to generate
low (25%), medium (50%) and high (75%) use of data center resources (servers).
Each scenario consists of a sequence of arrival/departure operations (new appli-
cations, applications that end). Experiments carried out in the simulator are
divided into two phases: first, a warming up until the target load of the scenario
is reached and the system arrives to an steady state; then, 10 batches with sets
of 1000 operations (equally distributed between arrivals and departures). The
simulator gathers different per-batch metrics.

NSGA-II has been used with these parameters: Npop=100, Ngen=100, pcross=
0.8, pmut=0.8 and pmtype=0.5. Parameter tuning for the optimization process
falls outside the scope of this work. For this parameter configuration, a run of
NGSA-II in a desktop PC takes on average just 3”. Given the Stochastic nature
of the NSGA-II algorithm, we perform five repetitions for each scenario, using
the same list of operations as input. Results gathered in the tables are obtained
by calculating the mean of those repetitions.

6 Analysis of Results

In this section we discuss the results provided by the simulator, with special focus
on the effects that the different placement policies have on applications (which
policy is most beneficial in terms of improving communications locality?) and
the data center (which policy uses less resources and, therefore, requires less
power?). Two approaches are compared, topology-agnostic RR/FF (Without
Optimization, WO) and topology-aware RR/FF (with Optimization, O).

Optimization of Application Placement 699

Table 2. Values of objective functions, WO - Without Optimization, O - with
Optimization

First fit Round Robin
μf1 σf1 μf2 σf2 μf1 σf1 μf2 σf2

High
WO 264316.60 32567.10 14.40 2.42 174689.20 19749.78 10.40 0.49
O 225017.80 32522.66 14.20 2.14 145600.60 18661.38 9.40 0.49

Medium
WO 296971.20 18588.08 16.40 3.26 172445.80 11480.79 8.60 0.49
O 257856.60 20687.72 15.80 3.12 148800.00 11933.78 8.00 0.00

Low
WO 278839.00 10491.40 19.60 4.08 159689.60 6721.03 7.80 0.40
O 240159.00 12813.12 17.80 3.37 138890.00 7062.93 7.00 0.00

6.1 Application-Related Metrics

Table 2 gathers the mean μ and standard deviation σ of both objective func-
tions f1 (communications locality) and f2 (number of servers assigned to the
application). If we focus on topology-agnostic policies, clearly RR is better for
applications, as it provides lower communication costs than FF in all scenarios
(see f1 values), while simultaneously providing better (smaller) f2 values (num-
ber of servers per application). The most relevant result, though, is that applying
optimization improves values of both objective functions for FF and also for RR.

6.2 Data Center-Related Metrics

The objective functions were designed to have a positive impact on the whole
data center as well as on applications. This section evaluates the impact in terms
of the number of active physical servers and the power consumption.

Table 3 contains the number of active servers Pactive. Pmin is the minimum
number of servers that would be necessary to allocate all applications. So, the
cost in terms of servers of each VM placement policy can be evaluated as the
extra number of servers used relative to Pmin. FF policy obtains a lower number
of extra servers than RR, thus being more appealing for the IaaS provider. The
use of optimization makes this number even lower (Pdif), while simultaneously
improving application-related characteristics.

These benefits in terms of number of active servers translate immediately
into lower power requirements for servers. But optimization is focused on com-
munications, and benefits are also expected in terms of reduction of the power
required for switching. We have used the energy models described previously to
measure power requirements, separately for servers/switches, and total. Results
are summarized in Table 4. We see that RR requires more power than FF for
servers (globally it uses more servers) but less for switches (makes better use of
the network, because individual applications are allocated in fewer servers, and
the upper-tier switches are used less). Using optimization we are able to improve
both figures and, therefore, the total power required by the data center.

700 T. Lorido-Botran et al.

Table 3. Number of active servers in the data center used by the different VM place-
ment strategies

First fit Round Robin
Pmin Pactive Pactive-Pmin Pdif Pactive Pactive-Pmin Pdif

High
WO

1311
1461.20 150.20

33.40
1601.80 290.80

17.60
O 1427.80 116.80 1584.20 273.20

Medium
WO

871
988.20 117.20

22.00
1193.80 322.80

36.40
O 966.20 95.20 1157.40 286.40

Low
WO

429
492.00 63.00

9.40
605.20 176.20

21.20
O 482.40 53.40 584.00 155.00

Table 4. Energy consumption (in Watts) of physical servers and switches. O* values
represent the energy savings with respect to the WO approach.

First fit Round Robin
Eserver Eswitch Etotal Eserver Eswitch Etotal

High
WO 287532.5 30359.4 317891.9 307835.8 24397.9 332233.7

O* 4858.7 1322.8 6181.5 2547.7 1412.9 3960.6

Medium
WO 199533.5 22097.8 221631.2 229187.8 17927.0 247114.8

O* 3193.2 651.4 3844.6 5256.8 1587.5 6844.4

Low
WO 108183.5 13317.1 121500.6 124508.5 10942.6 135451.1

O* 1385.8 325.6 1711.5 3010.6 913.9 3924.5

7 Conclusions and Future Work

Throughout this paper we have demonstrated that a IaaS provider can improve
the VM placement policy in use by applying an optimization strategy, with
benefits not only for the provider but also for the user. And this optimization
can be done at a negligible cost: it is applied when allocating a new application,
and it takes a few seconds. Benefits for the provider are measured in terms of used
servers and switches, and immediately translate into power demands (resulting
in a greener use of the data center). Benefits for the applications are achieved
by reducing communication latencies.

This work can be improved in several aspects. One of them is taking into
account that providers usually over-subscribe resources: users rarely exploit the
100% of the assigned resources (including cores, memory, network bandwidth,
etc.) Therefore it is common practice to assign to a server “extra” slots. This
practice rarely affects the QoS perceived by users, although it has to be carefully
monitored in the rare event aggregated actual demands exceed server capac-
ity. VM migration is the common solution to this problem, but it does not
come for free: it affects QoS and network utilization. We plan to introduce over-
subscription and VM migration in our models and experiments.

Optimization of Application Placement 701

The elastic capacity of cloud environments allows the applications to dynam-
ically scale the acquired resources (the number of VMs in horizontal scaling)
depending on the input workload. Thus, the number of VMs will vary with time
and the infrastructure provider should be able to optimize not only the initial
placement, but also the addition of new VMs. We plan to adapt our proposal to
deal with auto-scalable applications.

Acknowledgments. This work has been partially supported by the Saiotek and
Research Groups 2013-2018 (IT-609-13) programs (Basque Government), TIN2013-
41272P and COMBIOMED network in computational biomedicine (Carlos III Health
Institute). Dr. Pascual is supported by a postdoctoral grant of the UPV/EHU. Mrs
Lorido-Botran is supported by a doctoral grant from the Basque Government. Prof.
Miguel-Alonso is a member of the HiPEAC European Network of Excellence.

References

1. Eucalyptus, http://www.eucalyptus.com/
2. IBM Workload Deployer,

http://www.ibm.com/software/products/us/en/workload-deployer
3. NetIQ PlateSpin Recon, https://www.netiq.com/products/recon/
4. OpenNebula, http://opennebula.org/
5. VMware Capacity Planner, http://www.vmware.com/products/capacity-planner/
6. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjec-

tive genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation
6(2), 182–197 (2002)

7. Fan, P., Chen, Z., Wang, J., Zheng, Z.: Online Optimization of VM Deployment
in IaaS Cloud, In: ICPADS. pp. 760–765 (2012)

8. Georgiou, S., Tsakalozos, K., Delis, A.: Exploiting Network-Topology Awareness
for VM Placement in IaaS Clouds, In: CGC. pp. 151–158 (2013)

9. Mann, V., Kumar, A., Dutta, P., Kalyanaraman, S.: VMFlow: leveraging vm
mobility to reduce network power costs in data centers. In: Domingo-Pascual,
J., Manzoni, P., Palazzo, S., Pont, A., Scoglio, C. (eds.) NETWORKING 2011,
Part I. LNCS, vol. 6640, pp. 198–211. Springer, Heidelberg (2011)

10. Meisner, D., Gold, B., Wenisch, T.: PowerNap: eliminating server idle power. ACM
SIGPLAN Notices 44(3), 205–216 (2009)

11. Meng, X., Pappas, V., Zhang, L.: Improving the Scalability of Data Center Net-
works with Traffic-aware Virtual Machine Placement. In: IEEE INFOCOM. pp.
1154–1162 (March, 2010)

12. Wo, T., Sun, Q., Li, B., Hu, C.: Overbooking-Based Resource Allocation in Virtu-
alized Data Center. In: ISORCW, pp. 142–149 (2012)

http://www.eucalyptus.com/
http://www.ibm.com/software/products/us/en/workload-deployer
https://www.netiq.com/products/recon/
http://opennebula.org/
http://www.vmware.com/products/capacity-planner/

GridVis: Visualisation of Island-Based Parallel
Genetic Algorithms

Evelyne Lutton1(B), Hugo Gilbert2, Waldo Cancino3, Benjamin Bach3,
Pierre Parrend4,5, and Pierre Collet4

1 INRA, UMR GMPA, 1 Av. Brétignières, 78850 Thiverval-Grignon, France
evelyne.lutton@grignon.inra.fr

2 ENSTA ParisTech, 828, Boulevard des Maréchaux, 91762 Palaiseau Cedex, France
hugo.gilbert@ensta-paristech.fr

3 INRIA Saclay-Ile-de-France, AVIZ team, Bâtiment 660, 91405 Orsay Cedex, France
waldo.cancino@gmail.com, benjamin.bach@inria.fr

4 ICube laboratory, Strasbourg University, and ECCE, CS-DC UNESCO UniTwin,
7, rue René Descartes, 67084 Strasbourg, France

pierre.collet@unistra.fr
5 Schiltigheim, ECAM Strasbourg-Europe 2, Rue de Madrid CS 20013, 67012,

Strasbourg Cedex, France
pierre.parrend@ecam-strasbourg.eu

Abstract. Island Model parallel genetic algorithms rely on various
migration models and their associated parameter settings. A fine under-
standing of how the islands interact and exchange informations is an
important issue for the design of efficient algorithms. This article presents
GridVis, an interactive tool for visualising the exchange of individuals
and the propagation of fitness values between islands. We performed sev-
eral experiments on a grid and on a cluster to evaluate GridVis’ ability
to visualise the activity of each machine and the communication flow
between machines. Experiments have been made on the optimisation of
a Weierstrass function using the EASEA language, with two schemes: a
scheme based on uniform islands and another based on specialised islands
(Exploitation, Exploration and Storage Islands).

Keywords: Parallel evolutionary algorithms · lsland model · Visualisa-
tion · EASEA · Grid model

1 Introduction

Island Models are a popular way to parallelise Evolutionary Algorithms: The
classical evolutionary model of a single population that performs a community
search on an unknown search space is replaced by a set of subpopulations, living
their own life in parallel on different machines. This scheme is another way to
control the balance between diversity preservation and focus of search:

This work has been funded by the French National Agency for research (ANR), under
the grant ANR-11-EMMA-0017, EASEA-Cloud Emergence project 2011, http://
www.agence-nationale-recherche.fr/

c© Springer-Verlag Berlin Heidelberg 2014
A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2014, LNCS 8602, pp. 702–713, 2014.
DOI: 10.1007/978-3-662-45523-4 57

http://www.agence-nationale-recherche.fr/
http://www.agence-nationale-recherche.fr/

GridVis: Visualisation of Island-Based Parallel Genetic Algorithms 703

• It has been proved that having multiple subpopulations helps to preserve
genetic diversity, since each island can potentially follow a different search
trajectory through the search space[1].

• Global search ability is maintained by periodically exchanging individuals
between machines in a process called migration.

Migration is thus an important component of islands models, which is controlled
by parameters, such as migration interval to set the number of generations
between two migrations, and migration size to define the number of migrat-
ing individuals. Due to these additional parameters, it is obvious that a careful
parameter setting is a condition to get efficient island models schemes. Theoret-
ical and experimental studies may help to find typical settings, however ad hoc
tuning remains the favourite method for addressing most of the real life opti-
misation problems. Visualisation of algorithmic behaviour is the approach that
becomes more and more popular for this purpose, as soon as it is able to provide
infomation in a condensed, visual, and easily interpretable way [2–4]. The visu-
alisation of evolutionary algorithms is now drawing more and more attention in
the community (see for instance the VizGec Workshop series at GECCO con-
ference1), and specialised visualisation tools are distributed for various purpose
(see Section 2).

In this paper, we present a visualisation tool specifically developed for island-
based evolutionary algorithms, called GridVis. Thanks to the EASEA language,
communications between machines are collected during execution into log files
local to each machine, then grouped, and visualised after execution as a heatmap
matrix. Various tools allow examining data at different scales with respect to
groups of machines, time or fitness of individual exchanged. Detailed views of
the activity of each machine (sending or receiving) are also available.

The remainder of this paper is organised as follows. Section 2 gives an overview
of visualisation challenges for evolutionary algorithms, with a focus on what is
specific to parallel evolutionary algorithms. Section 2 also presents the EASEA
language and its parallel implementation based on an Island Model. GridVis is
presented in Section 3, followed by an experimental analysis in Section 4. Results
of our experiments are discussed in Section 4.2. Section 5 concludes our work and
discusses future research directions.

2 Background

Visualising evolutionary algorithms (EA) is complex, since many different
scales and many different objects need to be visualised. Existing tools fall into
two major groups: a) off-line tools or post-mortem analysis, which try to give
an image as precise as possible of all the phenomena which occured during one
or several runs [5–8,8–10], and b) on-line tools, which are usually less complex
as they monitor what is currently happening during a run [11–15]. The follow-
ing issues are desirable objectives for EA visualisation [7,16–18], they consider
different levels:
1 http://www.vizgec.ex.ac.uk

http://www.vizgec.ex.ac.uk

704 E. Lutton et al.

– Individual level: How to visualise a solution to the problem: both genome
and phenotype? How to deal with problem dependent data?

– Population level: How to display statistics, convergence, loss of diversity, and
lineage of a good solution?

– Process level: How to highlight the effects of genetic operators and other
parameter settings?

– Output: How to visualise the result, particularly in non-standard EAs like
multi-objective or cooperative-coevolution EAs?

Visualising parallel and multi-population EAs is a topic which is explored
only to a limited extend in the literature so far. For instance, Pohlheim [4]
succinctely presents some tools to visualise sub populations and migration effects
as 2D coloured plot diagrams.

Stakes in visualising generic parallel processes are depicted in particular in
[19–21]. [20] underlines the importance of monitoring asynchronous, distributed
algorithms on multiple processors for detecting inconsistencies in the algorithms,
to get performance parameters and to develop a conceptual understanding of the
algorithm’s behaviour. Morrow and Gosh also highlight the computational cost
of such a visualisation system if used on-line. Brown et al. [21] report on dynamic
visualisations of parallel algorithms for a specific architecture (torus computers),
based on a language for encoding optimisation algorithms.

This topic is tightly bound with a broader related research topic: program
visualisation. [22], for instance, reports a survey (until 1993) and proposed a
taxonomy of program visualisation tools (visualisations for performance tuning,
debugging, teaching or understanding the behaviour of programs). A more recent
survey of 18 different algorithm visualisation systems [23] focusses on their use in
education. It seems clear that the use of a description language makes visualisa-
tions less dependent from architecture. GridVis has been developed in a similar
spirit, based on the EASEA language described hereafter.

EASEA (for EAsy Specification of Evolutionary Algorithms) [24,25] was
initially designed to assist users in producing an evolutionary algorithm from a
given problem description. It is based on a C-like language that contains code
for the genetic operators (crossover, mutation, initialisation and evaluation) and
the genome structure. These functions are written in a dedicated description file,
the .ez file. Out of them, EASEA generates a complete evolutionary algorithm
with potential parallelisation of evaluation over GPGPUs[26], or over a cluster
of heterogeneous machines, in the case of an island model. The generated source
file for the evolutionary algorithm is user-readable. It can be used as-is, or as a
primer, to be manually extended by an expert programmer.

The island model is an efficient and simple way to parallelise evolutionary
algorithms [27], because it often results in important speedup. In a cluster of
computers, every node, which can be seen as an island, runs a complete evolu-
tionary algorithm, which can be seen as an island. A migration mechanism allows
periodically exporting some individuals to the other nodes. EASEA implements
islands using

GridVis: Visualisation of Island-Based Parallel Genetic Algorithms 705

– exchanges between nodes limited by the migration interval, i.e. the migration
of one individual every n generations , and the migration size, the number
of individuals that migrate. This protocol sets up a very lightweight asyn-
chronous communication.

– a loosely connected model that is based on UDP, which allows parallelising
over neighbour or distant machines (cluster or grid computing).

Extensions of EASEA to grid and cloud computing are currently under devel-
opment through the EASEA-Cloud project2.

3 GridVis

GridVis has been developed in Java, to monitor how the islands communicate:
Which machines exchange individuals? When and how much individuals are
exchanged? How fit are they? Which machines are the central ones? Are there
clusters of exchange? We model the computer cluster that is running the island
model, as dynamic network with weighted edges (number and fitness of individu-
als) and use an adjacency matrix for visualization (Figure 1(a)). Each computer
in the cluster appears twice in the matrix, once as row and once as column.
Cells in the matrix show information about the exchange between computers
during evolution, for example, the amount of individuals exchanged (from row
to column). Similar to heat maps [28], exchange is mapped to darkness. Darker
cells indicate a higher exchange rate.

While matrix visualizations have recently been applied to dynamic networks
[29,30], heatmap visualisations have been used for many different purposes. For
evolutionary algorithms visualisation, they have been used for instance for facili-
tating the exploration and interpretation of Pareto fronts [31]. This visualization
scheme has been chosen for the following reasons:

– Visual simplicity : Brigthness and colour perception is pre-attentive, and clus-
ters of islands with high exchange rates appear close, due to row and column
reordering optimisation.

– Scalability : Matrices are well suited for visualising large networks (typi-
cal clusters contain about 100 machines) and with many relations between
machines (individuals are potentially exchanged between all machines) [32].

Figure 1 shows the GridVis display for a grid of 20 and 100 machines (islands),
respectively. The number of individuals sent during a time interval [tMIN , tMAX]
from machine i to machine j is given by the grey level of cell (i, j) (white cor-
responds to no exchange, black is the highest count). Machines are identified by
their names on row and columns. The time interval [tMIN , tMAX], which deter-
mines the shown exchanges in the matrix, can be dynamically modified using
sliders: independently for tMIN (Figure 1(b)) and tMAX (Figure 1(c,d)) and as

2 ANR-11-EMMA-0017, Emergence project 2011, http://www.agence-nationale-
recherche.fr/

http://www.agence-nationale-recherche.fr/
http://www.agence-nationale-recherche.fr/

706 E. Lutton et al.

Fig. 1. GridVis Interface visualisation of a grid with 20 machines, using a matrix
representation (a). User control is provided by (b) buttons to change the matrix row
and column order, and (c,d,e) the shown time interval.

a sliding interval using the bottom bar (Figure 1(e)). Numerical values (in ms
for the time) are given in the white frame above the heat map. The following
options can be activated on demand, using the buttons in Figure 1(b):

– Row and column reordering : Rows and columns can be ordered (i) lexically,
(ii) by time, or (iii) by similarity of activity. Lexical reordering consists in
ordering according to line and column labels. Figure 2(a) illustrates a lexical
reordering. The clusters (dark areas in the matrix), which appear using the
lexical ordering, indicate that the algorithm choses machines for exchanging
individuals, based on the machine’s name; nodes of the first cluster had
very different names from those of the second. Temporal reordering sorts
the machines according to when the first individual was sent (Figure 2(b)).
Similarity ordering tries to place machines (rows and columns) with similar
exchange behaviour, close together in order to make sub-clusters of machines
visually appearing as dark areas in the matrix. Our ordering optimisation
is done using a Traveling Salesman problem (TSP) resolver that takes the
number of exchanged individuals as similarity.

– Zoom: Individual machines can be selected to get a focussed view, which
shows the selected machines only, while using the entire space in the matrix.

– Grey level rescaling: each cell has a grey value computed by interpolation
between 0 and the maximal number of individuals exchanged in the current

GridVis: Visualisation of Island-Based Parallel Genetic Algorithms 707

(a) Lexical Reordering (b) Temporal Reordering

Fig. 2. Examples for row and column reordering strategies in GridVis. (a) Lexical
reordering: Here, individuals are almost exclusively exchanged between machines of
similar names. (b) Temporal Reordering: Here, after a period of exchange between
a group of machines (upper-left grey block), some machines worked alone at different
times (cells appearing as vertical bars). This effect is due to the grid middelware (Glite)
for which the choice of number of islands is controlled but not their synchronisation.

time interval. The grey values are dynamically rescaled when the time inter-
val is changed. The “global view” button cancels this rescaling so that grey
levels correspond to the absolute global count of each cell.

– Colour representation: The cell colour intensity still represents the number
of individuals exchanged, while a colour scale from blue via purple and beige
to orange (time coloring) represents the time at which the first individual
has been exchanged (tMIN is blue and tMAX is orange) (Figure 5(a)). Alter-
nately, the fitness of the exchanged individuals can be shown as a colour
ranging from yellow (low fitness) via orange to red (high fitness) (value
encoding). For each machine we indicate the average best fitness in the con-
sidered time interval on the matrix diagonal using that same colour encoding
(Figure 5(b)).

Detailed views on the exchange between each pair of machines are available
by clicking on the corresponding cell in the matrix. A bar chart as shown in
Figure 3(a), indicates when individuals have been exchanged in the considered
time interval (bars) and how fit they have been (colour and length of bars,
encoded redundantly). For example, machine j in Figure 3(c) received during
three periods, separated by interuptions. At the beginning of each period, many
individuals with high fitness are exchanged (red bars). Then rapidly the fitness
decreases (the aim is a minimisation of the fitness function). Each period corre-
sponds to the start of a new block of machines. It is obvious that after a while

708 E. Lutton et al.

(a) From i to j (b) Sent by i (c) Received by j

Fig. 3. Detailed views visualizing individuals exchanged between two machines, i and
j, over time (horizontal bar). Each vertical bar represents an individual, its position
on the black horizontal line corresponds to when he was exchanged, received or sent,
between tMIN and tMAX . The colours and widths of the bars corresponds to fitness
value (long and red is high, short and green is low).

the fitness of exchanged individuals rapidly reaches again the best so far global
fitness.

Likewise, clicking a machine’s label in the matrix columns, shows the same
chart indicating when and how much individuals the machine received from
the grid (Figure 3(c)). Clicking a machine’s name on a row shows what it sent
(Figure 3(b)).

4 Experimental Analysis

4.1 Setup

Experiments were run using EASEA [33]. The test case aims at minimising a
Weierstras test function with 10 variables. GridVis has been used to analyse two
sets of experiments:

1. EASEA-Grid experiments, performed on the Complex Systems Virtual Orga-
nization of the European Grid Infrastructure (EGI). Experiments have been
performed with 20 and 100 islands. Parameters are given in Table 1.

2. EASEA-Cluster experiments, performed on a 24-core machine. In this exper-
iment 15 specialized islands (Exploitation, Exploration and Storage Islands)
have been used, according to [24]. Table 2 displays the parameters of each
type of island.

For each island connection events have been logged (timestamp, source, des-
tination, individual to be transmitted and its fitness) for each sent/received
individual throughout the execution. At the end of each experiment, log-files
were collected and grouped in a single file to be displayed by GridVis.

4.2 Results

The EASEA-Grid experiments have been used to generate Figures 1 to 3, where
de-synchronisation effects have been made evident using a temporal reordering,
see figure 2(b). The second set of experiments is analysed below.

GridVis: Visualisation of Island-Based Parallel Genetic Algorithms 709

Table 1. Parameters for EASEA-Grid

Parameter 20-Islands 100-Islands

Nb of generations 1000 500
Population size 2048 512
Crossover probability 0.8 0.8
Mutation probability 0.3 0.3
Surviving parents 100% 100%
Surviving offspring 100% 100%
Elitism Strong Strong
Elite 1 1

Table 2. Parameters for EASEA-Cluster

Island type
Parameter Exploring Exploiting Storing

Nb of islands 10 4 1
Nb of generations 70 70 70
Population size 40 40 40
Mutation probability 0.8 0.7 0.3
Crossover probability 0.8 0.7 0.3
Surviving parents 100% 100% 100%
Surviving offspring 100% 100% 100%
Elitism Weak Strong Strong
Elite 0 1 1

A first global view has been generated for EASEA-cluster on Figure 4.
Machines 2930 to 2939 are exploring, machines 2940 to 2943 are exploiting, and
a single storing machine is used (number 2944). A temporal reordering shows the
three clusters (Figure 5(a)), and colour time and colour fitness views (Figures
5(a) and 5(b)) make the different roles of machines types clear.

The following exchange rules have been used (a) Exploring machines send
their individuals to every machine except the storing machine. (b) Exploiting
machines send their individuals to every machine except the exploring machines.
(c) The storing machine receives individuals but does not send any individuals.

Figure 5(a) shows a large cluster of machines (the 10 exploring machines),
related by blue cells. They communicate efficiently. The smaller cluster of exploit-
ing machines is in brown, which makes evident that exploiting machines have
been started after exploring machines. Figure 5(b) then shows that higher fitness
individuals are exchanged in the small cluster of exploiting machines (darker
cells), which is coherent with the respective role of exploring and exploiting
machines.

Now, let us examine the content of exchanges: as a machine always sends
its best individual, the fitness of this individual is an instantaneous image of
the state of the corresponding island. Exploring machines decrease their fitness
quickly at the beginning of the evolution and then stagnate (Figure 6(a)), while
exploiting machines improve their solutions later (figures 6(b) and 6(c)). This

710 E. Lutton et al.

Fig. 4. EASEA-cluster experiment : global view for the 15 machines

(a) Colour indicating time of interaction
(from purple to orange).

(b) Colour indicating fitness (from yel-
low to red)

Fig. 5. EASEA-cluster experiment results. Rows and columns are ordered according
to time.

(a) Exploring Sent (b) Exploiting Sent (c) Exploring Received

Fig. 6. EASEA-cluster experiments: Individuals sent by an exploiting machine (a),
sent (b) and received (c) by an exploring machine

GridVis: Visualisation of Island-Based Parallel Genetic Algorithms 711

fact can be verified on a view visualizing the end of the run (Figure 7): indi-
viduals that were sent by exploring machines are coloured red (indicating low
performance) while better individuals are manipulated by the exploitation clus-
ter. The role of the storing is to collect best results, it thus only receives dark
yellow coloured individuals.

Fig. 7. EASEA-cluster experiments: Fitness information about the exchanges, zoom.
Yellow areas correspond to better fitness (minisation aim).

5 Conclusions and Future Works

GridVis has proved to be a useful tool to understand the exchange of indivisuals
in a grid or on a cluster of machines, runnig an island-based model. The activity
of the machine is monitored and the time and quality of the exchanges are easily
visualized. The kind of representation that GridVis offers helps the user with char-
acterising a good launch on the grid, thus facilitates the parameters tuning task.

Future work will consider the development of GridVis for dynamic visusalisa-
tion, allowing on-line monitoring and parameter adjustments during execution.
The integration of GridVis into a development framework based on EASEA for
intensive computation purpose will also be considered (within the EASEA-Cloud
Emergence project).

References

1. Whitley, D., Rana, S., Heckendorn, R.B.: The island model genetic algorithm: On
separability, population size and convergence. Journal of Computing and Informa-
tion Technology 7, 33–48 (1999)

2. Lutton, E., Fekete, J.D.: Visual analytics of ea data. In: Genetic and Evolutionary
Computation Conference, GECCO 2011. Dublin, Ireland (2011) July 12–16 (2011)

712 E. Lutton et al.

3. Lutton, E., Tonda, A., Gaucel, S., Foucquier, J., Riaublanc, A., Perrot, N.: Food
model exploration through evolutionary optimization coupled with visualization:
application to the prediction of a milk gel structure. In: From Model Foods to Food
Models. DREAM Project’s International Conference (June 2013)

4. Pohlheim, H.: AG, D.: Understanding the Course and State of Evolutionary Opti-
mizations Using Visualization: Ten Years of Industry Experience with Evolutionary
Algorithms. Artificial Life 12, 217–227 (2006)

5. Spears, W.M.: An overview of multidimensional visualization techniques. In:
Collins, T.D. (ed) Evolutionary Computation Visualization Workshop. Orlando,
Florida, USA (1999)

6. Routen, T.: Techniques for the visualisation of genetic algorithms. The First IEEE
Conference on Evolutionary Computation. 2, 846–851 (1994)

7. Shine, W., Eick, C.: Visualizing the evolution of genetic algorithm search pro-
cesses. In: Proceedings of 1997 IEEE International Conference on Evolutionary
Computation, pp. 367–372, IEEE Press (1997)

8. Wu, A.S., Jong, K.A.D., Burke, D.S., Grefenstette, J.J., Ramsey, C.L.: Visual
analysis of evolutionary algorithms. In: Proceedings of the 1999 Conference on
Evolutionary Computation (CEC 1999). pp. 1419–1425, IEEE Press (1999)

9. Hart, E., Ross, P.: Gavel - a new tool for genetic algorithm visualization. IEEE
Trans. Evolutionary Computation 5(4), 335–348 (2001)

10. Mach, M., Zetakova, Z.: Visualising genetic algorithms: A way through the
Labyrinth of search space. In: Sincak, P. - Vascak, J. - Kvasnicka, V. - Pospichal, J.
(eds.) Intelligent Technologies - Theory and Applications. Amsterdam, pp. 279–285
IOS Press (2002)

11. Bedau, M.A., Joshi, S., Lillie, B.: Visualizing waves of evolutionary activity of alle-
les. In: Proceedings of the 1999 GECCO Workshop on Evolutionary Computation
Visualization, pp. 96–98 (1999)

12. Bullock, S., Bedau, M.A.: Exploring the dynamics of adaptation with evolutionary
activity plots. Artif. Life 12, 193–197 (2006)

13. Pohlheim, H.: Visualization of evolutionary algorithms - set of standard techniques
and multidimensional visualization. In: GECCO 1999 - Proceedings of the Genetic
and Evolutionary Computation Conference, San Francisco. CA. pp. 533–540 (1999)

14. Pohlheim, H.: Geatbx - genetic and evolutionary algorithm toolbox for matlab
http://www.geatbx.com/

15. Computer, A.K., Kerren, A.: Eavis: A visualization tool for evolutionary algo-
rithms. In: Proceedings of the IEEE Symposium on Visual Languages and Human-
Centric Computing. pp. 299–301 (VL/HCC 05 (2005)

16. Parmee, I., Abraham, J.: Supporting implicit learning via the visualisation of coga
multi-objective data. In: CEC2004, Congress on Evolutionary Computation, 19–23
June. Volume 1. pp. 395–402 (2004)

17. Collins, T.D.: In: Visualizing evolutionary computation, pp. 95–116. Springer-
Verlag New York Inc, New York, NY, USA (2003)

18. Daida, J., Hilss, A., Ward, D., Long, S.: Visualizing tree structures in genetic
programming. Genetic Programming and Evolvable Machines 6, 79–110 (2005)

19. Kohl, J., Casavant, T.: A software engineering, visualization methodology for paral-
lel processing systems. In: Proceedings., Sixteenth Annual International Computer
Software and Applications Conference, 1992. COMPSAC 1992. pp. 51–56 (1992)

20. Morrow, T.M., Ghosh, S.: Divide: Distributed visual display of the execution of
asynchronous, distributed algorithms on loosely-coupled parallel processors. In:
Proceedings Visualization 1993, pp. 166–173 IEEE Computer Society Press (1993)

http://www.geatbx.com/

GridVis: Visualisation of Island-Based Parallel Genetic Algorithms 713

21. Brown, J., Martin, P., Paku, N., Turner, G.: Visualisations of parallel algorithms
for reconfigurable torus computers. In: Proceedings 1998 Australasian Computer
Human Interaction Conference, 1998. pp. 152–159 (1998)

22. Price, B.A., Baecker, R., Small, I.S.: A principled taxonomy of software visualiza-
tion. J. Vis. Lang. Comput. 4(3), 211–266 (1993)

23. Urquiza-Fuentes, J., Velázquez-Iturbide, J.A.: A survey of successful evaluations
of program visualization and algorithm animation systems. Trans. Comput. Educ.
9(2) (June 2009) 9:1–9:21

24. Maitre, O., Krueger, F., Querry, S., Lachiche, N., Collet, P.: Easea: specification
and execution of evolutionary algorithms on gpgpu. Soft Computing 16(2), 261–
279 (2012)

25. Collet, P., Lutton, E., Schoenauer, M., Louchet, J.: Take it EASEA. In: Schoenauer,
M., Deb, K., Rudolf, G., Yao, X., Lutton, E., J.J., M., Schwefel, H.P., eds.: Parallel
Problem Solving from Nature - PPSN VI 6th International Conference, Paris,
France, Springer Verlag (September 16–20 2000) LNCS (1917)

26. Tsutsui, S., Collet, P.: Massively Parallel Evolutionary Computation on Gpgpus.
Natural Computing Series, Springer-Verlag New York Incorporated (2013)

27. Alba, E., Tomasini, M.: Parallelism and evolutionary algorithms. IEEE Transac-
tions on Evolutionary Computation 6(5), 443–462 (2002)

28. Wilkinson, L., Friendly, M.: The history of the cluster heat map. The American
Statistician 63(2), 179–184 (2009)

29. Brandes, U., Nick, B.: Asymmetric relations in longitudinal social networks. IEEE
Transactions on Visualization and Computer Graphics 17(12), 2283–2290 (2011)

30. Bach, B., Pietriga, E., Fekete, J.D.: Visualizing Dynamic Networks with Matrix
Cubes. In: SICCHI Conference on Human Factors in Computing Systems (CHI),
Toronto, Canada, ACM (April 2014)

31. Pryke, A., Mostaghim, S., Nazemi, A.: Heatmap visualization of population based
multi objective algorithms. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T.,
Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 361–375. Springer, Heidelberg
(2007)

32. Ghoniem, M., Fekete, J.D., Castagliola, P.: A comparison of the readability of
graphs using node-link and matrix-based representations. In: Proceedings of the
IEEE Symposium on Information Visualization. INFOVIS ’04, Washington, DC,
USA, IEEE Computer Society pp. 17–24 (2004)

33. Lutton, E., Collet, P., Louchet, J.: EASEA comparisons on test functions: Galib
versus eo. In: EA01 Conference on Artificial Evolution, Le Creusot, France
(October 2001)

Automated Framework for General-Purpose
Genetic Algorithms in FPGAs

Liucheng Guo1(B), David B. Thomas1, and Wayne Luk2

1 Department of EEE, Imperial College London, London, UK
{gl512,dt10}@ic.ac.uk

2 Department of Computing, Imperial College London, London, UK
w.luk@ic.ac.uk

Abstract. FPGA-based Genetic Algorithms (GAs) have been effective
for optimisation of many real-world applications, but require extensive
customisation of the hardware GA architecture. To promote these accel-
erated GAs to potential users without hardware design experience, this
paper proposes an automated framework for creating and executing
general-purpose GAs in FPGAs. The framework contains a scalable and
customisable hardware architecture, which provides a unified platform
for both binary and real-valued chromosomes. At compile-time, a user
only needs to provide a high-level specification of the target application,
without writing any hardware-specific code in low-level languages such
as VHDL or Verilog. At run-time, a user can tune application inputs and
GA parameters without time-consuming recompilation, in order to find a
good configuration for further GA executions. The framework is demon-
strated on a high performance FPGA platform to solve six problems and
benchmarks, including a locating problem and the NP-hard set covering
problem. Experiments show our custom GA is more flexible and easier
to use compared to existing FPGA-based GAs, and achieves an average
speed-up of 30 times compared to a multi-core CPU.

Keywords: Genetic Algorithm · FPGA · Automated Framework

1 Introduction

Genetic algorithms (GAs) are a class of optimisation technique, inspired by nat-
ural selection and genetics. GAs have been used to solve an extremely wide range
of problems where other methods experience difficulties, including combinatorial
optimisation and real-valued parameter estimation [4]. However, complex prob-
lems often require many generations to produce a satisfactory solution, meaning
CPU-based GAs are often too slow to handle them. CPU-based GAs are also not
suitable for many real-time applications due to the unacceptable latency [15].

In order to accelerate GAs, some researchers have adapted them to field pro-
grammable gate arrays (FPGAs) [13]. These FPGA-based GAs are shown to be
faster than CPU-based GAs in solving many real-world applications [10]. How-
ever, existing hardware GAs are mainly written in low-level hardware languages
c© Springer-Verlag Berlin Heidelberg 2014
A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2014, LNCS 8602, pp. 714–725, 2014.
DOI: 10.1007/978-3-662-45523-4 58

Automated Framework for General-Purpose Genetic Algorithms in FPGAs 715

like VHDL or Verilog, that require in-depth knowledge of FPGA architecture
and hardware programming. Another problem is that most existing FPGA-based
GAs only support one type of chromosome, either binary or real-valued, thus
the applicability is limited. To address these issues, this paper proposes an auto-
mated unified framework for FPGA-based GAs. The contributions are as follows:

– An automated framework for creating and executing general-purpose GAs in
FPGAs: based on user-defined high-level description of an application, the
low-level hardware design is generated automatically (section 3.1).

– A novel FPGA architecture for custom GAs: the design is both scalable
and customisable, providing a unified platform for both binary and real-
valued chromosomes, and also allowing a user to change the parallelism of
the architecture (section 3.2 and 3.3).

– A run-time tuning framework: GA parameters and application inputs are
changeable without time-consuming recompilation, thus a user is able to
tune GA parameters to improve solution quality for future executions with
different application parameters (section 4).

– A qualitative comparison of our custom GA with existing FPGA-based
designs, showing improved flexibility in hardware architecture and run-time
tuning, and increased ability to support complex applications (section 5).

– A quantitative comparison of the accelerated FPGA framework with multi-
core CPU, including all I/O and initialisation costs, showing an average
speed-up of 30 times while finding the same solutions for six different appli-
cations and benchmarks (section 6).

2 Background and Related Work

2.1 Genetic Algorithm

When solving a specific application, GA evolves a population of candidate solu-
tions called individuals towards a better fitness. Before using GA, a user needs to:
1) design the chromosome of an individual; and 2) define the fitness or evaluation
function to check the quality of the chromosome. A chromosome contains one
or more variables, and is commonly represented as a binary or real values [14].
When the variables are naturally quantized, binary encoding is used to represent
chromosomes (called binary GA); when they are continuous, it is more logical
to use real values (called real-valued or continuous GA) [12]. The encoding of
a chromosome also affects the methods selected for genetic operators, including
selection, crossover and mutation.

2.2 Reconfigurable Computing

Many applications have a requirement for high performance. Application-specific
integrated circuits (ASICs) are customised for high performance, but they are
not flexible after manufacture. Microprocessors provide high flexibility but the
performance is likely to be lower than ASICs. Recently, reconfigurable computing

716 L. Guo et al.

that involves FPGAs, combines the flexibility of microprocessors and efficiency
of ASICs. The FPGAs contain logic gates and small random-access memories,
called Block RAMs (BRAM), which can be configured for specific applications
during the compilation process, including synthesis, map, place and route.

However, unlike software, the compilation process is very time consuming
and often takes hours to complete, so it is not practical to frequently modify
hardware designs. Another big challenge is programmability of FPGAs, as an
algorithm needs to be written in low-level hardware languages like VHDL or Ver-
ilog, describing registers and logic gates. There are some high-level compilation
tools which can reduce the programming effort [7], but even with these tools,
it is still difficult for a user without hardware knowledge to create fast and effi-
cient FPGA designs. However, these tools can provide a good intermediate-level
target for customisable frameworks, such as our GA system.

2.3 Previous FPGA-Based GAs

GAs have been adapted to FPGAs for improved performance. Since the first
reported FPGA-based design [13], there have been many hardware GAs proven
to be effective in real-time applications [1,2,6,8–10,13,15]. There are two types of
FPGA-based GAs: the application-specific ones are tailored to one specific appli-
cation, with fixed chromosomes and specific genetic operators [6]; the general-
purpose ones can support a wide range of chromosomes and genetic operators for
different applications, which are the focus of this paper. For example, a general-
purpose GA engine is demonstrated in [10], which shows speed-ups of 5 times
over CPU for several GA benchmarks with only binary chromosomes.

However, these previous FPGA-based systems suffer from one or more lim-
itations: 1) a user needs significant hardware architecture knowledge to apply
an FPGA-based GA for an application; 2) the system usually supports only
one type of chromosome, which is not suitable for different applications; 3) it
is not easy to adjust the structure and resource usage, even for an expert, as
most of the GA structure is fixed; 4) modifying either GA parameters or appli-
cation parameters requires recompilation, which usually needs many hours to
complete. To address these issues, we propose an automated unified framework
for creating FPGA-based general-purpose GAs, which can be easily adapted for
new combinatorial or real-valued applications.

3 Automated Framework for General-Purpose GAs

In our framework, a general-purpose GA architecture can be combined with high-
level user-defined chromosome and fitness function, to produce a custom GA
executable in hardware, providing high performance while retaining functional
flexibility. A user without hardware design experience can easily create FPGA-
based GA for an application with binary or real-valued chromosomes, and change
both GA and application parameters at run-time without recompilation.

Automated Framework for General-Purpose Genetic Algorithms in FPGAs 717

Customisation
Engine

Compile-time
Spec.

Run-time
Param.

Software
Code

Hardware
Code

Custom GA
in FPGA

App
Spec.

App
Param.

GA
Param.

GA
Spec.

App
Param.

GA
Param.

SoftwareHardware

User
Input

R
A

M

Input Stream

Frame
-work

Fig. 1. Automated Framework

Population
initialisation

G. < Ng ?

Y

finish Np? N

Old
population

Termination
N

Chromosome
configuration

Y

Evaluation

New
individuals

Np

2*Ns

L

Ns

Selection

Mutation
CrossoverLs

NE

LE

G = Generation No.

Fig. 2. Custom GA

3.1 Automated Framework

Figure. 1 provides an overview of the proposed automated framework, show-
ing compile-time specification (Spec.) with software on the left, and run-time
parameters (Param.) with hardware on the right. The framework requires no
hardware programming from users, who only need to define the above high-level
inputs for application (App.) and GA. Then the customisation engine, written
in Python, automatically combines them and a number of existing files into: 1)
hardware code with the compile-time specification, and 2) software code with the
run-time parameters. The hardware code is then compiled by a high-level com-
pilation tool Maxcompiler to low-level hardware implementation. At run-time
the software transfers GA and application parameters to hardware, via input
streams and on-chip memories to FPGA.

3.2 FPGA-Based Custom GA

Our framework provides a scalable hardware architecture for FPGA-based GA
improved based on [6], which is called “custom GA” in this paper. Each custom
GA contains all the hardware and configuration data in order to solve instances
of a user’s problem. Once compiled, the custom GA can be executed repeat-
edly with different application parameters without recompilation, and allows
GA parameters, such as mutation rate and random seed, to be varied during
execution.

Our custom GA is functionally flexible and scalable, allowing a user to cus-
tomise the architecture for hardware resource constraints. In custom GA, the
steps of a typical GA are converted into hardware functional units, which are
fully pipelined and parallelised. The main units of a custom GA are shown in
Fig. 2, labelled by parameters described in Table 1 of section 4.

718 L. Guo et al.

Chromosome Configuration. A user needs to define the chromosome as an
individual in one population, which can be binary or real-valued. Our custom
GA provides different genetic operators for the selected chromosome type.

Population Initialisation. The initial population is important in GA, as it
may need many generations to produce high fitness individuals from low fitness
ones. In our custom GA, there are two approaches to generate initial population.
The first one is to use random numbers, which means the initial fitness depends
on the random seeds. The second approach is to load a population previously
generated by heuristics on a CPU, which is likely to mean a higher starting
fitness. It can be transferred to on-chip RAM before execution begins.

Fitness Evaluation. In the custom GA, there are parallel evaluation units
to reduce execution time. To simplify the hardware design effort, the fitness
function is written in a high-level description language according to simple rules,
described in section 4. Section 6 also gives some working examples for different
functions.

Selection, Crossover and Mutation (SCM). Selection, crossover and muta-
tion units in a custom GA are combined together into a SCM unit due to
their close data coupling, making it easier to instantiate replicates for spatial
parallelism. Our automated platform provides a extendable library containing
different methods of selection, crossover and mutation, allowing a user to cus-
tomise them for a specific application. As shown in Table 1, a user can choose
the selection method from roulette wheel and tournament selection. For binary
chromosomes, a user can select one-point or multi-point crossover to combine
different parts from parents, and then choose binary mutation inverting bits in a
chromosome. For real-valued chromosome, a user can select blending a crossover,
which generates a new value based on a linear mixture of two parents [12], and
use real-valued mutation to generate a random value in the range of variables.

It is usually necessary to tune crossover and mutation rates or types for
high convergence speed, but in most previous FPGA-based GAs the adjustment
requires hardware modification and recompilation, which takes many hours. In
contrast, our framework allows users to modify these rates and types at run-time
without recompilation (see the examples in section 6).

Random Number Generator. The random number generator plays an
important role in many units, including population initialisation and SCM units.
Currently the combined tausworthe generator [11], a simple but high-quality
pseudo-random number generator, is used in the custom GA. The random seeds
can be configured by users at run-time, to explore different number sequences.

3.3 Customisable Parallelism in Custom GA

Parallelism in architecture can reduce the execution time of GAs. As shown
in Fig. 2, the number of parallel evaluation units is controlled by NE , while

Automated Framework for General-Purpose Genetic Algorithms in FPGAs 719

Table 1. The Parameters of GA (C.T : compile-time, R.T : run-time)

C.T. NE num of evaluation units NS num of SCM units

Ng maximal generation Np population size
Rm mutation rate Tm mutation type (“binary”, “real-valued”)

R.T. Rc crossover rate Tc crossover type (“one-point”, “multi-point”,
Rs random seed “blending”)
Ip initial population Ts selection type (“roulette wheel”,“tournament”)

that of parallel SCM units is defined by NS . A user can adjust the amount
of parallelism by simply changing the two parameters in the input specification,
and the framework will automatically compile them to an appropriate hardware.

In Fig. 2, Np is the population size. If all the individuals in a population are
evaluated in the cycle after filling the pipelines, there will be NE = Np parallel
evaluation instances. The feedback latency will be L = LE + LS , which are
labelled on the left of Fig. 2. In this case, the resource usage will be very large
when Np is big. To solve this problem, we allow evaluation units to process a
population over n cycles after filling the pipeline. Therefore, NE is reduced to
Np/n, and the feedback latency for one generation will be L′ = LE +LS +n−1,
which slightly decreases the performance if (n− 1) is far smaller than LE +LS .

In the same way, we can also adjust NS to balance the resource usage of SCM
units with performance. By tuning NE and NS according to the complexity of the
evaluation and SCM units, our platform can support complex applications. An
example in section 6 shows how this flexibility affects resources and performance.

3.4 Compilation and Execution Reports

There are two reports automatically generated by the framework during com-
pilation and execution. The compilation report presents the results of hardware
implementation to the user, including overall resource usage, clock frequency
and errors. Errors may be related to the syntax of the input specification, or
due to resource exhaustion. Based on the report, the user can decide whether to
change NE or NS , depending on whether there are any free resources.

During execution, the FPGA will output the best fitness and solutions found
over an FPGA-to-CPU stream, making the current best solution immediately
available to software. The execution report shows how different configurations
and parameters affect performance. It is essentially the “answer” to the prob-
lem the user wants to solve, and also contains information suggesting the best
configuration for future executions of the problems with different parameters.

4 User Defined Input

When using the framework, users only needs to provide specifications and param-
eters for their applications and GA, as shown in Table 1. They are represented
in a high-level domain specific language, which uses a sub-set of C. We describe
the inputs in this section, and present examples in section 6.

720 L. Guo et al.

Application Specification. There are two compile-time sections in the appli-
cation specification: 1) CHROMOSOME, which describes the names and types
of the data elements making up an chromosome; 2) FITNESS, which describes
the fitness function used to evaluate individuals. The CHROMOSOME sec-
tions is declarative, describing data structures, while the FITNESS section
contains imperative code, which can combine input parameters and a chromo-
some to produce a fitness value.

The fitness function is expressed using a sub-set of C which can be auto-
matically compiled into a hardware implementation. The fitness function can
contain all standard arithmetic operators (add,mul, etc.) as well as mathemat-
ical functions such as sin, log and exp. All components of the chromosome and
application parameters are available as implicitly declared variables, which can
be read either directly or as array lookups, depending on their types. A user can
declare additional temporary variables within the fitness function of any type,
and convert expressions between types, for example from fixed-point (int/uint)
to floating-point (float/double). A user also can customise the width of an integer
for optimisation, for example, uint8 means unsigned 8-bit integer.

The fitness function can contain multiple statements, which are executed
sequentially. The statements can be simple assignment, if-else, or for-loops. Due
to the underlying compilation strategy, we require that for-loop bounds are stat-
ically determined, so that they can later be converted into a streaming represen-
tation. These restrictions mean that certain behaviour cannot be expressed, but
we show in section 6 that they can be used to capture various common problems.

Application Parameters. Most applications have input parameters passed to
the fitness function, which describe a specific instance of the problem, but in the
previous FPGA-based GAs, a user has to recompile the design to change them.
To save the long compilation time, our single custom GA can support all input
problems for an application by changing APP PARAM section at run-time.

GA Parameters. As seen from Table 1, there are two compile-time and nine
run-time parameters for GA. At compile-time, the user can balance the resource
usage of evaluation and SCM units, by changing NE and NS . At run-time,
Ng controls the number of generations generated, while Np controls the size
of one population. Ts, Tc and Tm can be configured for binary or real-valued
chromosomes. The framework can also try multiple combinations of run-time
parameters, for example trying a list of Rc and Rm to maximize the convergence
rate. Changing Ip is also useful if there is a good prior population. These GA
parameters can help a user to find a good configuration for a specific application,
but they all have sensible default values if a user does not specify them.

5 Qualitative Comparison

We compare the features of previous FPGA-based GAs and our framework in
Table 2 [10]. Our custom GA is more flexible and easier to use than the other
FPGA-based GAs, resulting in the following advantages:

Automated Framework for General-Purpose Genetic Algorithms in FPGAs 721

Table 2. Qualitative Comparisons of FPGA-based GAs (Chrome: Chromosome)

Year Chrome.
Run-time App. Parallel Initial App.

Platform
GA param. param. param. pop. level

[13] 1995 binary - fixed - rand low BORDG
[9] 1999 binary - fixed - rand low SFL
[1] 2001 binary - fixed - rand low AXB-MP3
[2] 2001 binary - fixed - rand low Xilinx V1000
[15] 2004 binary Np, Ng, Rc, Rm fixed - rand low PCI System
[8] 2009 binary Np fixed - rand low Virtex2 Pro
[10] 2010 binary Np, Ng, Rm,

Rc, Rs

fixed - rand, low Virtex2 Pro

ours 2013 binary, Np, Ng, Tm, Rm,
Ts, Rs, Tc, Rc, Ip

run NE , NS rand, high MAX3
real-valued -time Ip (V6-SXT475)

1. Our framework provides a unified platform for binary and real-valued chro-
mosomes with a flexible structure. There are nine parameters changeable at
run-time, including crossover and mutation rates (Rc, Rm), the population
size(Np), generation number (Ng), the random seed (Rs), in particular the
selection, crossover and mutation type (Ts, Tc, Tm), application parameters
and initial population (Ip), which are all run-time changeable only in our
framework. Specifically, the changeable application parameters make it pos-
sible to execute different inputs for an application without recompilation.
Some platforms also support several run-time parameters, but require the
user to have hardware knowledge to change them [10,15].

2. The framework allows a user to decide the number of parallel evaluation
(NE) and SCM units (NS) at a high level to balance the resource usage
with performance, without any manual modification of hardware code. Fur-
thermore, as described in section 3.3, the customisable parallelism makes it
possible to support complex applications.

3. The chromosome and fitness function of a new application is defined in a high
level description language, making it easy for a user to apply our custom GA,
without writing any low-level hardware code using VHDL or Verilog.

6 Experiments

We use our framework to solve six different applications, including a locating
problem, the NP-hard set covering problem and four benchmarks. We also show
the user’s inputs for binary and real-valued chromosomes. The custom GAs are
compared against multi-core CPU implementations based on an optimised ver-
sion of SGA [4]. The CPU-based GAs are executed on Dual 2.67GHZ Intel Xeon
X5650 (12 cores, 24 threads) with the POSIX threading library, and compiled
with Intel compiler at the highest optimisation level.

6.1 Locating Problem

The locating problem is to find an emergency response unit, which has the
best response time to reach any emergency that occurs in a city. Reference [12]

722 L. Guo et al.

Compile-time specification Run-time parameters

CHROMOSOME {float xf,yf;} APP PARAM{ int8 W[10][10] =

FITNESS { {{0,6,...} {4...}...};}
float cost = 0.0; GA PARAM{
for (int i = 0; i ≤ 9; i ++){ Ng = 1,000,000

for(int j = 0; j ≤ 9; j ++){ Np = 32

float xn = i + 0.5; Rc = 0.6, 0.5, ...

float yn = j + 0.5; Rm = 0.01, 0.02, ...

cost += W[i][j]*sqrt((xn - xf)* Rs = 0x1234, 0xffff

(xn - xf)+(yn - yf)*(yn - yf)); } Ts: "tournament selection"

} Tc: "blending crossover"

return cost; Tm: "real-valued mutation"

} Ip = {(3.1, 4.5),(2.3, 4.8)...}
GA PARAM{NE = 2;NS = 8;} }

Fig. 3. The User Input for Locating Problem

provides an complex example with a 10 × 10 km city divided into 100 sections.
The response unit can be put at any place in the city, so a solution (xf , yf) is a
floating point coordinate. The cost function is:

cost =
100∑
n=1

wn

√
(xn − xf)2 + (yn − yf)2 (1)

where (xn, yn) is the coordinate of the centre of square n and wn is emergency
frequency in square n.

We use real-valued chromosomes, and define high-level specification and
parameters in Fig. 3. In the left part showing compile-time specification, the chro-
mosome and application are defined according to the rules described in section
4. The number of parallel evaluation and SCM units can be changed via NE

and NS . As shown in Fig. 4, we can tune them for resource usage. For example,
we reduce NE of complex evaluation unit from 4 to 2, which slightly decrease
performance (5% slower) due to pipelined structure described in section 3.3.

The right part of Fig. 3 shows the run-time parameters, W array is defined
as the application parameters. By changing W , we can use the same custom
GA to solve multiple input problems without recompilation, which always needs
several hours to finish. Then we choose selection, crossover and mutation based
on chromosome type. Here we also define a series of run-time parameters to
tune convergence speed, the framework will try a full combination of them,
including lists of mutation rates (Rm), crossover rates (Rc), and random seeds
(Rs). The execution report helps user to find the best configuration for the
problem. To compare the execution time with multi-core CPU, we let custom
GA run 1,000,000 generations for different population size (Np). As shown in Fig.
5, our custom GA is 24 times faster than CPU. Although the initial compilation
of the custom GA is slow, future executions of the same GA with different
parameters require no compilation, and start evaluating immediately.

Automated Framework for General-Purpose Genetic Algorithms in FPGAs 723

Fig. 4. Resources for various NE and NS Fig. 5. The execution time for various Np

Compile-time specification Run-time parameters

CHROMOSOME { uintM suite; } APP PARAM{ int p = 2,

FITNESS{ uintN covs[M]={...},
uint cost = 0; uintN cov = 0; uint cost[M]={...} }
for (int i = 0; i ≤ M-1; i ++){ GA PARAM{

cov |= suite[i] ? covs[i]: 0; ...

cost += suite[i] ? costs[i] : 0; } Tc: "multi-point crossover"

uint covs n = countone (cov); Ts: "roulette wheel selection"

return (p * covs n - cost); Tm: "binary mutation"

} Ip = {0xffff, 0x1, ...}
uint6 countone(uintN cov) {...} }

Fig. 6. The User Inputs for Set Covering Problem

6.2 Set Covering Problem

The set covering problem (SCP) is a classic NP-hard combinatorial optimisation
problem, with many practical applications [5]. For example in hardware verifica-
tion, a suite with M programs can test or cover N functions, and every program
has a cost. The relation between them can be represented by an N ×M matrix.
The aim of the SCP is to find the lowest cost sub-suite of programs which tests
all N functions. For a candidate suite, the fitness is computed as:

Fitness = p× coverage(suite) − cost(suite) (2)

where p adjusts the fitness scale, and coverage represents how many functions
covered. As shown in Fig. 6, the chromosome can be designed as an m-bit binary,
the i-th bit of which means whether the i-th program exists in the suite. For
FITNESS section, we can define function like countone() to calculate the number
of 1. In run-time parameters, the coverage array (cov[M]), cost array (cost[M])
and p are supplied at run-time. We also choose different methods of selection,
crossover and mutation from the locating problem. We test an instance of Steiner
triple systems (STS27) , which is considered as a hard SCP with a matrix of
117×27 [3]. Our custom GA is 45 times faster than the CPU.

6.3 GA Benchmarks

To test the ability of dealing with numeric computation in our custom GA, we
use three GA benchmarks from [10], including binary F6 (BF6), binary F7 (BF7)

724 L. Guo et al.

Table 3. The GA Benchmarks [10][12]

Name Fitness function Parameters

BF6 4096 + {[(x2 + x) × cos(x)]/220} 0 <
= x <

= 65535
BF7 32768 + {56 × [x × sin(4x) + 1.25 × y × sin(2y)]} 0 ≤ x, y ≤ 255

2DS 65535 − 174 ×
(
150 + {∏2

k=1

∑5
i=1 i × cos[(i + 1) × xk + i]}

)
0 ≤ x1, x2 ≤ 255

F11 1 +
∑N

n=1 x
2
n/4000 −∏N

n=1 cos(xn) −10 ≤ xn ≤ 10.0

Table 4. Resources (Res.), Solution Quality and Speed-ups

App. Np NE NS Res.% Speed-up Quality Description

Locating 32 2 8 73.08 24 96% real-valued computation
STS27 128 16 16 65.12 45 100% discrete combinatorics
BF6 32 8 8 26.45 26 100%

numeric computationBF7 32 8 8 21.48 25 100%
2DS 32 8 8 68.89 31 100%
F11 32 8 8 60.05 27 100% real-valued computation
MEAN - - - 30 - -

and 2-D Shubert function (2DS), and one benchmark called F11 from [12]. As
shown in Table 3, these functions have one or more parameters.

6.4 Experiments Summary

Our platform can output the results from FPGA to CPU for comparison. As
shown in Table 4, our platform can effectively solve different applications with
an average speed up of 30 times, including discrete combinatorics, numeric and
real-valued computation. Our custom GA can find a location with 96% of best
fitness according to [12] for locating problem, and find the best solutions for all
other applications. The clock frequencies of the custom GA is set to a conser-
vative default value of 75MHz, so with longer compile times higher speed-ups
are possible. In the Table 4, the resource usages vary by the complexity of an
application, the number of evaluation units (NE) and SCM units (NS).

Reference [10] gives speed-ups of 5 times over BF6, BF7 and 2DS without
reporting exact execution time, so we cannot directly compare its performance
with ours. Although based on high-level inputs, our custom GA can still achieve
high performance while retaining flexibility, with parallelised and pipelined units.

7 Conclusion and Future Work

GAs are ideal candidates for FPGA acceleration due to their long execution
time. To provide an easy way for users to create and execute FPGA-based GAs
with binary or real-valued chromosomes, we have proposed and implemented an
automated unified framework for general-purpose GAs. The framework contains
a scalable and customisable custom GA, which allows a user to tune the resource

Automated Framework for General-Purpose Genetic Algorithms in FPGAs 725

usage, without directly modifying hardware design. At compile-time, a user just
needs to define a high-level specification of an application, including chromosome
and fitness function, without writing any hardware code using VHDL. At run-
time, the user can change GA and application parameters without waiting for
recompilation. When compared with existing FPGA-based GAs, our custom
GA has more architectural flexibility, and makes it much easier for users to
take advantage of FPGA acceleration. Compared with multi-core CPU over six
applications, the average speed-up of the custom GA is 30 times.

In the future, we will allow users to enhance the library in the proposed
framework to support more genetic operators. We will also improve the frame-
work by supporting variable length chromosomes, automatic parameter decision
and structure tuning due to the flexibility of FPGA platform.

References

1. Shackleford, B., Snider, G., Carter, R.: A high-performance, pipelined, FPGA-
based genetic algorithm machine. Genetic Programming and Evolvable Machines
2(1), 33–60 (2001)

2. Aporntewan, C., Chongstilivatana, P.: A hardware implementation of the compact
genetic algorithm. In: Proceedings of the 2001 Congress on Evolutionary Compu-
tation, vol. 1, pp. 624–629 (2001)

3. Plessl, C., Platzner, M.: Custom computing machines for the set covering prob-
lem. In: Proceedings of 10th IEEE Symposium on Field-Programmable Custom
Computing Machines, pp. 163–172 (2002)

4. Coley, D.A.: An introduction to genetic algorithms for scientists and engineers.
World Scientific Publishing, Singapore (2003)

5. Balas, E.: A class of location, distribution and scheduling problems: Modeling and
solution methods (1982)

6. Guo, L., Thomas, D., Luk, W.: Customisable architectures for the set covering
problem. In: Proceedings of International Symposium on Highly Efficient Acceler-
ators and Reconfigurable Technologies (HEART), pp. 69–74 (June 2013)

7. Maxeler Tech, Programming MPC Systems White Paper (2013)
8. Vavouas, M., Papadimitriou, K., Papaefstathiou, I.: High-speed FPGA-based

implementations of a genetic algorithm. In: Systems, Architectures, Modeling, and
Simulation, pp. 9–16 (2009)

9. Yoshida, N., Yasuoka, T.: Multi-GAP: parallel and distributed genetic algorithms
in VLSI. In: Proceedings of IEEE International Conference on Systems, Man, and
Cybernetics, vol. 5, pp. 571–576 (1999)

10. Fernando, P., Katkoori, S.: Customisable FPGA IP core implementation of a
general-purpose genetic algorithm engine. IEEE Transactions on Evolutionary
Computation 14(1), 133–149 (2010)

11. Ecuyer, P.L.: Tables of maximally equidistributed combined LFSR generators.
Mathematics of computation 68(225), 261–269 (1999)

12. Haupt, R.L., Haupt, S.E.: Practical genetic algorithms. John Wiley & Sons (2004)
13. Scott, S., Samal, A., Seth, S.: HGA: A hardware-based genetic algorithm. In:

ACM 3rd International Symposium on Field-Programmable Gate Arrays, pp. 53–
59 (1995)

14. Sivanandam, S.N., Deepa, S.N.: Introduction to genetic algorithms. Springer (2007)
15. Tang, W., Yip, L.: Hardware implementation of genetic algorithms using FPGA.

In: 47th IEEE Midwest Symposium on Circuits and Systems, pp. 549–552 (2004)

Unreliable Heterogeneous Workers
in a Pool-Based Evolutionary Algorithm

Mario Garćıa-Valdez1(B), Juan Julián Merelo Guervós2,
and Francisco Fernández de Vega3

1 Instituto Tecnológico de Tijuana, Tijuana, BC, Mexico
mario@tectijuana.edu.mx

2 Universidad de Granada, Granada, Spain
jmerelo@geneura.ugr.es

3 Grupo de Evolución Artificial, Universidad de Extremadura, Mérida, Spain
fcofdez@unex.es

Abstract. In this paper the effect of node unavailability in algorithms
using EvoSpace, a pool-based evolutionary algorithm, is assessed.
EvoSpace is a framework for developing evolutionary algorithms (EAs)
using heterogeneous and unreliable resources. It is based on Linda’s tuple
space coordination model. The core elements of EvoSpace are a central
repository for the evolving population and remote clients, here called
EvoWorkers, which pull random samples of the population to perform on
them the basic evolutionary processes (selection, variation and survival),
once the work is done, the modified sample is pushed back to the central
population. To address the problem of unreliable EvoWorkers, EvoSpace
uses a simple re-insertion algorithm using copies of samples stored in a
global queue which also prevents the starvation of the population pool.
Using a benchmark problem from the P-Peaks problem generator we have
compared two approaches: (i) the re-insertion of previous individuals at
the cost of keeping copies of each sample, and a common approach of
other pool based EAs, (ii) inserting randomly generated individuals. We
found that EvoSpace is fault tolerant to highly unreliable resources and
also that the re-insertion algorithm is only needed when the population
is near the point of starvation.

Keywords: Distributed evolutionary algorithms · Cloud computing

1 Introduction

Information technology has become ubiquitous in today’s world, sources of com-
puting power range from personal computers and smart-devices to massive data
centers. Users can now access vast computational resources available on the Inter-
net using diverse technologies, including cloud computing, peer-to-peer (P2P),
and http-based environments. This trend can favor Evolutionary Computation
(EC) algorithms as these can be designed as parallel, distributed, and asyn-
chronous systems. Several Evolutionary Algorithms (EA) have been proposed
c© Springer-Verlag Berlin Heidelberg 2014
A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2014, LNCS 8602, pp. 726–737, 2014.
DOI: 10.1007/978-3-662-45523-4 59

Unreliable Heterogeneous Workers in a Pool-Based Evolutionary Algorithm 727

that distribute the evolutionary process among heterogeneous devices, not only
among controlled nodes in a in-house cluster or grid but also in those out side
the data center, in users’ web browsers and smart phones or external cloud
based virtual machines. This reach out approach allows researchers the use of
low cost computational power that would not be available otherwise, but on the
other hand, have the challenge to manage heterogeneous unreliable computing
resources. Lost connections, low bandwidth communications, abandoned work,
security and privacy issues are all common in these settings.

In this paper the effect of node unavailability in algorithms using the
EvoSpace population storage is assessed. EvoSpace [8] is a framework to develop
evolutionary algorithms (EA) using heterogeneous and unreliable resources.
EvoSpace is based on Linda’s tuple space [9] coordination model, where each
node asynchronously pulls its work from a central shared memory. The core
elements of EvoSpace are a central repository for the evolving population and
remote clients here called EvoWorkers which pull random samples of the popu-
lation to perform on them the basic evolutionary processes (selection, variation
and survival), once the work is done, the modified sample is pushed back to the
central population. This model contrasts with the use of a global queue of tasks
and implementations of map-reduce algorithms, recently favored in other propos-
als [4,5,12]. Following the tuple space model, when individuals are pulled from
the EvoSpace container these are removed from it, so that no other EvoWorker
could work on them at same time. This design decision has several known bene-
fits relevant to concurrency control in distributed systems, and also is an effective
way of distributing the workload. Leaving a copy of the individual in the popula-
tion server free to be pulled by other EvoWorkers will result in redundant work
and this could be costly if the task at hand is time consuming. EvoWorkers are
expected to be unreliable, as they can loose a connection or are simply shut down
or removed from the client. When an EvoWorker is lost, so are the individuals
pulled from the repository. Depending on the type of algorithm been executed,
the lost of these samples could have a high cost. To address the problem of
unreliable EvoWorkers, EvoSpace uses a simple re-insertion algorithm that also
prevents the starvation of the population pool. Other pool based algorithms
normally use a random insertion technique, but we argue this could negatively
impact the outcome of the algorithm in some cases.

This work evaluates the effect of the re-insertion algorithm has on the total
running time and number of evaluations of a genetic algorithm. Using a bench-
mark problem from the P-Peaks problem generator, we compare both approaches:
(i) the re-insertion previous individuals at the cost of keeping copies of samples,
and (ii) inserting randomly generated individuals, with the sometimes beneficial
cost of adding diversity to the population. For this experiments we use the same
parameters used in an earlier work, in order to compare the performance of the
algorithm in similar conditions. EvoSpace was implemented as a web service on
the popular Heroku platform and EvoWorkers where simulated using PiCloud, a
scientific computing PaaS.

728 M. Garćıa-Valdez et al.

The remainder of the paper proceeds as follows. Section 2 reviews related
work. Afterwards, Section 3 briefly describes the proposed EvoSpace framework
and gives implementation details the re-insertion process. The experimental work
is presented in Section 4. Finally, a summary and concluding remarks are in
Section 5.

2 Related Work

Using available Internet resources for EC has been the focus of recent research
in the field. The use of volunteer computing using BOINC open source soft-
ware is used by Smaoui et al. [6] in this case BOINC uses redundancy to deal
with the volatility of nodes and unreliability of their results. In this work each
BOINC work unit consisted of a fitness evaluation task and multiple replicas
were produced and sent to different clients, later when outputs were received a
validation step ensured all outputs match. In case of a discrepancy or a time-out
from a client, a new job replica was created and sent to another client. The
main drawback of this approach was that the master-worker algorithm used was
synchronous, so the process had to wait for all jobs to continue to the next gener-
ation. Web browsers were used by Merelo et al. [11] using Javascript to implement
the algorithm, this has the advantage of not requiring the installation of addi-
tional software. In this work the server receives an Ajax request with the best
individual obtained from the local evolution in clients, and then responds with
additional parameters and the best individual in the population so far. If a client
is disconnected no special measures are taken. Several cloud-based EC solutions
are based on a global queue of tasks and a Map-Reduce implementation which
normally handles failures by the re-execution of tasks [4,5,12].

3 EvoSpace

EvoSpace [8] consists of two main components (see figure 1): (i) the EvoSpace
container that stores the evolving population and (ii) EvoWorkers, which exe-
cute the actual evolutionary process, while EvoSpace acts only as a population
repository. In a basic configuration, EvoWorkers pull a small random subset of
the population, and use it as the initial population for a local EA executed on
the client machine. Afterwards, the evolved population from each EvoWorker is
returned to the EvoSpace container. When individuals are pulled from the con-
tainer they remain in a phantom state, they cannot be pulled again but they are
not deleted. Only if and when the EvoWorker returns the replacement sample
phantoms are truly deleted. If the EvoSpace container is at risk of starvation
or optionally when a time-out occurs new phantom individuals are re-inserted
to the population and available again. This can be done because a copy of each
sample is stored in a priority queue used by EvoSpace to re-insert the sample to
the central population; similar to games where characters are respawned after
a certain time. In the experiments conducted in this work re-insertion occurs
when the population size is below a certain threshold. Figure 1 illustrates the
main components of EvoSpace.

Unreliable Heterogeneous Workers in a Pool-Based Evolutionary Algorithm 729

Fig. 1. Main components and dataflow within EvoSpace

3.1 Implementation

Populations of individuals are stored in-memory, using Redis, a key-value
database, which was chosen over a relational database system, or other non-
SQL alternatives, because it provides a hash based implementation of sets and
queues which are natural data structures for the EvoSpace model. The logic
of EvoSpace is implemented as a python module and exposed as a web ser-
vice using Cherrypy http library. The EvoSpace modules are available with a
Simplified BSD License from http://github.com/mariosky/EvoSpace.

3.2 Evospace as a Heroku Application

Heroku (http://heroku.com) is a multi-language PaaS, supporting among others
Ruby, Python and Java applications. The basic unit of composition on Heroku is
a lightweight container running a single user-specified process. These containers,
which they call dynos, can include web (only these can receive http requests) and
worker processes (including systems used for database and queuing, for instance).
These process types are the prototypes from which one or more dynos can be
instantiated; if the number of requests to the server increases more instances can
be assigned on-the-fly. In our case, our CherryPy web application server runs
in one web process, when the number of workers was increased we added more
dynos (instances) of the CherryPy process.

This model is very different from a VPS where users pay for the whole server;
in a process based model, users pay only for the processes they need; being a
freemium model means also that, if a minimum level of resources is not exceeded,
it can be used for free.

http://github.com/mariosky/EvoSpace
http://heroku.com

730 M. Garćıa-Valdez et al.

Once deployed the web process can be scaled up by assigning more dynos; in
our case and in the more demanding configurations of our experiments, the web
process was scaled to 20 dynos. Instructions and code for deployment is available
at http://www.evospace.org/software.html

3.3 Evoworkers as PiCloud Jobs

PiCloud is a Platform as a Service (PaaS), with deep Python integration; using
a library, Python functions are transparently uploaded to PiCLoud’s servers as
units of computational work they call jobs. Each job is added to a queue, and
when there is a core available, the job is assigned to it. Both Heroku and PiCloud
platforms are deployed on top of Amazon Web Services (AWS) infrastructure
in the US-EAST Region. This ensures minimal latency and a high bandwidth
communication between the services, and there is no charge for data transfer
costs between both services. For the experiments type c1 and c2 Real Time
workers where used. The code for the EvoWorkers implementation and exper-
iment data is publicly available from a github repository https://github.com/
mariosky/evoPar2014.

4 Experimental Work

4.1 Benchmark

The experiment reported here uses a multimodal problem generator. A P-Peaks
generator has been chosen because the problem (and the computing resources
needed for the search) can be appropriately scaled. Proposed by De Jong et al. in
[2] a P-Peaks instance is created by generating a set of P random N-bit strings,
which represent the location of the P peaks in the space. To evaluate an arbitrary
bit string x first locate the nearest peak (in Hamming space). Then the fitness of
the bit string is the number of bits the string has in common with that nearest
peak, divided by N. The optimum fitness for an individual is 1. This particular
problem generator is a generalization of the P-peak problems introduced in [3].

fP−PEAKS(x) =
1
N

P
max
i=1

{N − hamming(x, P eaki)} (1)

A large number of peaks induce a time-consuming algorithm, since evalu-
ating every string is computationally hard; this is convenient since to evaluate
these type of distributed evolutionary algorithms fitness computation has to be
significant with respect to network latency (otherwise, it would always be faster
to have a single-processor version). However according to Kennedy and Spears
[10] the length of the string being optimized has a greater effect in determining
how easy or hard is the problem. In their experiments an instance having P =
200 peaks and N = 100 bits per string is considered to produce a considerably
difficult problem.

http://www.evospace.org/software.html
https://github.com/mariosky/evoPar2014
https://github.com/mariosky/evoPar2014

Unreliable Heterogeneous Workers in a Pool-Based Evolutionary Algorithm 731

4.2 Experimental Set-Up

As EvoSpace is only the population store, EvoWorkers must implement the
genetic operators. The genetic algorithm executed by EvoWorkers has been
implemented using a modified DEAP (Distributed Evolutionary Algorithms in
Python) framework [7]. Is important to note that only the basic non-distributed
GA library was used. Three methods were added to the local algorithm:
getSample() and putBack(); and another for the initialization of the popu-
lation. The implementation of the local GA simply uses DEAPs methods; for
instance to generate the initial population, a local initialize() is called and
the population sent to EvoSpace.

The selection of parameters was based on those used in [1]: a tournament size
of 4 individuals, a crossover rate of 0.85 and a population of 512 individuals. In
[2] a mutation rate equal to the reciprocal of the chromosome length; is recom-
mended, as DEAP uses two parameters they were defined as follows, mutation
probability of 0.5 and an independent flip probability of 0.02. For EvoWorkers
the parameters were 128 worker generations for each sample, and a sample size of
16. The algorithm stops when reaching the optimum value, or when all workers
pulled 100 samples. To simulate unreliable workers each worker was assigned a
return sample probability. In the experiments the lower probability was a 30%
chance of an EvoWorker returning a sample or an EvoWorker failing 70% of the
time; other return sample probabilities where 50%, 70% and 90%. Experiments
where carried out for 4, 8 and 16 EvoWorkers. In a pool based asynchronous
GAs there is usually no need to wait for a workers job to start a new genera-
tion. Although supported by EvoSpace time outs were not chosen as triggers to
feed the population with new individuals, the population size was used instead.
We believe the population size is a better threshold as it is more critical to
the GA performance. In a previous work we found that when the population
remaining in the pool was near starvation, the time of completion was increased.
For these experiments, the insertion of individuals was triggered when less than
128 individuals remain in the population; the number of individuals feed to the
population was 128, or 8 samples when the re-insertion algorithm was used. A
summary of the setup is presented in Table 1.

4.3 Results

In this section, results from the experiments are discussed. Figure 2 shows the
time required to solution when using four EvoWorkers. For a population of 512
individuals and a sample size of 16, there is no difference in the time required
to solution for percentages of 50% and above. Both re-insertion algorithms had
comparable times. For 30 percent, both approaches had slight increase in time.
For 8 workers (see Fig. 3) there was marginal decrease in overall time; and
results where similar to those found in the experiments with 4 workers. Figure 4
shows results for 16 workers, when there was only a 30% chance of returning a
sample the rate of re-insertions was high, approximately once every 35 samples.
In this case, the insertion of random individuals resulted in a higher time to

732 M. Garćıa-Valdez et al.

Table 1. GA and EvoWorker parameters for experiments

GA Parameters

Tournament size 4

Crossover rate 0.85

Population Size 512

Mutation probability 0.5

Independent bit flip probability 0.02

EvoWorker Parameters

Sample Size 16

Generations 128

Other Parameters

PiCloud Worker Type Realtime

Number of Workers 4,8,16

Return Sample Probability 30%,50%,90%

Number of Executions 30

Fig. 2. Time required to solution, 4 Workers

solution. For these experiments when there is not a high rate of re-insertion,
both alternatives have similar results, but the re-insertion algorithm is better
for situations when there are many starvation conditions. It appears that the
insertion of random individuals is not detrimental when there are other evolved
individuals in the pool. But when the remaining pool almost consists of random
individuals, samples pulled by EvoWorkers need to start the search all over again.

Unreliable Heterogeneous Workers in a Pool-Based Evolutionary Algorithm 733

Fig. 3. Time required to solution, 8 Workers

Fig. 4. Time required to solution, 16 Workers

If not many samples are then returned to the pool, the work needed to reach an
optimum is increased. Figure 5 also shows the number of evaluations needed to
reach an optimum again for 16 workers. Figures 6 and 7 show the time required
to solution for 30 and 90 percent of returned samples. For 90% both algorithms
had similar speedups when incrementing the number of workers. The marginal
speedup obtained for these experiments is related to the population size, but
this parameter was not changed. For 30% there was practically no speedup at

734 M. Garćıa-Valdez et al.

Fig. 5. Number of evaluations needed to solution, 16 Workers

Fig. 6. Time required to solution, 90% of returned samples

all. The re-insert algorithm although not significant, had consistent decrease in
time.

Fitness by time was measured as the average from each consecutive sample
pulled by each worker. For each sample the average fitness was measured at
the start and at the end of the local evolution. Also the minimum and max-
imum fitness values at start and finish was recorded. Final fitness values are
shown in double width lines in figures. Readings used for these figures include all

Unreliable Heterogeneous Workers in a Pool-Based Evolutionary Algorithm 735

Fig. 7. Time required to solution, 30% of returned samples

Fig. 8. Fitness by Sample number, 30% of returned samples, 16 Workers, Random
Algorithm. For each sample the average fitness was measured at the start (green) and
at the end (blue) of the local evolution.

samples, including those that where not returned. Figure 8 shows fitness by time
for the random insertion algorithm, as expected initial fitness drops at certain
points, when random insertion occurs. Average final fitness is affected by ran-
dom insertions.Figure 9 shows results for the re-insertion algorithm, with more
characteristic curves for this type of algorithms.

736 M. Garćıa-Valdez et al.

Fig. 9. Fitness by Sample number, 30% of returned samples, 16 Workers, Re-Insert
Algorithm. For each sample the average fitness was measured at the start (green) and
at the end (blue) of the local evolution.

5 Conclusions and Further Work

The re-insertion algorithm proposed for EvoSpace is a viable alternative to deal
with a starving population in pool based GAs, and unreliable EvoWorkers. Using
a benchmark problem from the P-Peaks problem generator, the approach was
compared against the option of inserting randomly generated individuals. The
same parameters and computing resources were used when testing both algo-
rithms with better times reported when using the proposed technique. For exper-
iments where the population size is enough for the number of workers with their
sample sizes, plus a buffer to account for loss samples, then both algorithms
could be used. However for cases when the number of EvoWorkers is unknown
an hybrid approach could be used, insertion of random individuals to gradually
increase the population size, and a re-insertion queue to handle lost samples. Fur-
ther work could be focused on a hybrid approach, and also using heterogeneous
computing resources.

Acknowledgments. This paper has been funded in part by projects P08-TIC-03903
(Andalusian Regional Government), TIN2011-28627-C04-02 (Spanish Ministry of Sci-
ence and Innovation), project 83 (CANUBE) awarded by the CEI-BioTIC UGR.
Regional Government Junta de Extremadura, Consejera de Economı́a, Comercio e
Innovación and FEDER, project GRU10029.

Unreliable Heterogeneous Workers in a Pool-Based Evolutionary Algorithm 737

References

1. Alba, E., Nebro, A.J., Troya, J.M.: Heterogeneous Computing and Parallel Genetic
Algorithms. Journal of Parallel and Distributed Computing 62(9), 1362–1385
(2002)

2. De Jong, K.A., Potter, M.A., Spears, W.M.: Using problem generators to explore
the effects of epistasis. In: Bäck, T., (ed.) ICGA, pp. 338–345. Morgan Kaufmann
(1997)

3. De Jong, K.A., Spears, W.M.: An analysis of the interacting roles of population
size and crossover in genetic algorithms. In: Proceedings of the 1st Workshop on
Parallel Problem Solving from Nature, PPSN I, pp. 38–47. Springer, London (1991)

4. Di Martino, S., Ferrucci, F., Maggio, V., Sarro, F.: Towards migrating genetic
algorithms for test data generation to the cloud. In: Software Testing in the Cloud:
Perspectives on an Emerging Discipline., pp. 113–135. IGI Global (2013)

5. Fazenda, P., McDermott, J., O’Reilly, U.-M.: A library to run evolutionary algo-
rithms in the cloud using MapReduce. In: Di Chio, C., et al. (eds.) EvoApplications
2012. LNCS, vol. 7248, pp. 416–425. Springer, Heidelberg (2012)

6. Feki, M.S., Nguyen, V.H., Garbey, M.: Parallel genetic algorithm implementation
for boinc. In: Chapman, B.M., Desprez, F., Joubert, G.R., Lichnewsky, A., Peters,
F.J., Priol, T., (eds.) PARCO, vol. 19. Advances in Parallel Computing, pp. 212–
219. IOS Press (2009)

7. Fortin, F.-A., Rainville, F.-M.D., Gardner, M.-A., Parizeau, M., Gagné, C.: DEAP:
Evolutionary algorithms made easy. Journal of Machine Learning Research 13,
2171–2175 (2012)

8. Garćıa-Valdez, M., Trujillo, L., Fernández de Vega, F., Merelo Guervós, J.J.,
Olague, G.: EvoSpace: A Distributed Evolutionary Platform Based on the Tuple
Space Model. In: Esparcia-Alcázar, A.I. (ed.) EvoApplications 2013. LNCS, vol.
7835, pp. 499–508. Springer, Heidelberg (2013)

9. Gelernter, D.: Generative communication in linda. ACM Trans. Program. Lang.
Syst. 7(1), 80–112 (1985)

10. Kennedy, J., Spears, W.: Matching algorithms to problems: an experimental test of
the particle swarm and some genetic algorithms on the multimodal problem gen-
erator. In: The 1998 IEEE International Conference on Evolutionary Computation
Proceedings of the 1998 IEEE World Congress on Computational Intelligence, pp.
78–83 (May 1998)

11. Merelo-Guervos, J., Castillo, P., Laredo, J.L.J., Mora Garcia, A., Prieto, A.: Asyn-
chronous distributed genetic algorithms with Javascript and JSON. In: IEEE
Congress on Evolutionary Computation, CEC 2008 (IEEE World Congress on
Computational Intelligence), pp. 1372–1379 (June 2008)

12. Sherry, D., Veeramachaneni, K., McDermott, J., O’Reilly, U.-M.: Flex-GP: genetic
programming on the cloud. In: Di Chio, C., et al. (eds.) EvoApplications 2012.
LNCS, vol. 7248, pp. 477–486. Springer, Heidelberg (2012)

EvoRISK

Hyper-Heuristics for Online UAV Path Planning
Under Imperfect Information

Engin Akar1, Haluk Rahmi Topcuoglu1(B), and Murat Ermis2

1 Computer Engineering Department, Marmara University, 34722 Istanbul, Turkey
{eakar,haluk}@marmara.edu.tr

2 Industrial Engineering Department, Turkish Air Force Academy, Yesilyurt,
Istanbul, Turkey

m.ermis@hho.edu.tr

Abstract. Hyper-heuristic techniques are problem independent meta-
heuristics that automate the process of selecting a set of given low-level
heuristics. Online path planning in an uncertain or unknown environment
is one of the challenging problems for autonomous unmanned aerial vehi-
cles (UAVs). This paper presents a hyper-heuristic approach to develop
a 3-D online path planning for unmanned aerial vehicle (UAV) naviga-
tion under sensing uncertainty. The information regarding the state of a
UAV is obtained from on-board sensors during the execution of a navi-
gation plan. The trajectory of a UAV at each region is represented with
B-spline curves, which is constructed by a set of dynamic control points.
Experimental study performed on various terrains with different charac-
teristics validates the usage of hyper-heuristics for online path planning.
Our approach outperforms related work with respect to the quality of
solutions and the number of feasible solutions produced.

Keywords: Unmanned Aerial Vehicles · Trajectory design · Hyper-
heuristics

1 Introduction

High popularity and increasing application areas require more advanced systems
to be developed for Unmanned Aerial Vehicles (UAVs) to enhance success in their
missions. Utilization of UAVs in many unsafe operations has also yielded some
challenges such as autonomous control, efficient energy use, and communication.
A successful path planning algorithm that involves satisfying some constraints
while searching for the optimal length path is a necessary element for the auton-
omy of the air vehicles. In some cases like connection loss with ground station or
malfunction of link system, there may be limited information about environment
on hand.

The essential properties for motion planning are completeness, which means
that the algorithm returns a valid solution if one exists. In the path-planning
problem, an exponential growth in complexity exists in the dimension of configu-
ration space [1]. For this reason, heuristic techniques that produce near-optimal
or good results in reasonable times are more convenient to apply the problem.
c© Springer-Verlag Berlin Heidelberg 2014
A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2014, LNCS 8602, pp. 741–752, 2014.
DOI: 10.1007/978-3-662-45523-4 60

742 E. Akar et al.

A graph based search method is one of the popular approaches for path
planning problem. The A* algorithm which is a branch of graph based methods
is the most frequently used and well-known search procedure [2]. Application
of Delaunay triangulations is another procedure for trajectory planning. After
constructing the graph Dijkstra algorithm can be used to determine the optimal
path toward target point [3]. The environment can be modeled using the Voronoi
map and the optimum path can be obtained by a graph search technique like
Dijkstra algorithm [4]. The artificial potential field method is another widely
used procedure for autonomous vehicle motion planning [5].

Probabilistic roadmap approach is applicable to mobile agents for motion
and trajectory planning. A problem with this method in its basic form is that it
has many features, which have to be decided such as the way to sample the space
and the local planner to use [6]. Another efficient algorithm for path planning is
the Rapidly-Exploring Random Tree approach [7]. Various heuristic techniques
such as Ant Colony Algorithm, Particle Swarm Optimization (PSO), Genetic
Algorithms [8], and Differential Evolution (DE) are also proposed to get near-
optimal or good results.

In this study, we propose a hyper-heuristic based online path planner of a
UAV on 3-D terrains that are constructed by various terrain generator algo-
rithms. Since the information about environment is limited or uncertain, the
UAV scans a portion of the terrain within the range of its on-board sensors and it
generates a subpath that is represented by parametrized B-spline curves. Exper-
imental study by using terrains with different characteristics is conducted in
order to present effectiveness of our approach. The results of our hyper-heuristic
based solutions are compared with a GA-based reference study [8].

The rest of the paper is organized as follows. Section 2 gives brief informa-
tion on online path planning. The details of our hyper-heuristic approach are
presented in Section 3. Section 4 presents experimental evaluation of our hyper-
heuristic based solutions and the related work. Finally, results and conclusion
are summarized in Section 5.

2 Online Path Planning Problem

Generating a complete flight path before the mission starts is impossible when the
environment is completely unknown or limited information is available. Because,
there is no information about the environment in which the UAV flight takes place,
the sensors that are embedded on the aircraft is utilized to capture the terrain data
in the vicinity. The area that is visible by the UAV is considered as a spherical
region. First, this region is identified by calculating the borderlines of the sensor
vision. All the height map values that form the map in this limited area are checked.
If the distance between the point that UAV is located and the controlled point is
smaller than the sensor range, this point is assumed to be visible by the aircraft.

Figure 1 presents an illustration of how online path planning is performed in
a given region. First of all, a scan process for capturing the visual data of nearby
environment, which is limited with the range of the onboard sensors, is necessary

Hyper-Heuristics for Online UAV Path Planning 743

before the flight begins. Therefore, the area bordered with the quarter circle
(centered at top-left corner of the region) in Figure 1 is scanned. Then, path-
planning algorithm is executed to find a suitable path for each visible region.
Following the proper route is built, the aircraft starts to fly towards the border
of the currently visible region. When it gets close to the end of the generated
path, roughly when it reaches the three fourths of the subpath in our case, a new
scan operation is initiated to get a new set of surrounding data. Then, the path
for the newly captured area is generated. Generation of a new path has to be
performed while the aircraft moves from the scanning point to the last point of
the current path. This process is repeated until the target position is reached.
Thus the complete path is a combination of several smaller path segments.

Scanned Regions

3rd subpath

Scanning Point

Control Points
Interval for
determining the next
subpath

2nd subpath

g

Fig. 1. Online path planning in a region

2.1 Structure of a Subpath

Complex trajectories can be defined easily by means of B-spline curves since they
require the coordinate values of its control points [9]. In this study, an individual
is a potential solution, i.e., a subpath in the given region, which consists of control
points each represented with three floating-point numbers. Those floating point
values correspond to the x, y, and z coordinate values of the control points on the
3-D space. There exist a starting and ending point for each individual. At the
beginning of path planning, the initial position of the UAV is the starting point
of all individuals. The ending point is calculated during individual generation
process and may take different values so as to increase the feasibility and the
quality of the results. The direction of the UAV is determined by the ending
point of the path at each step. The ending point in a step is used as the starting
point of the individual in the next step. Before calculating the ending point, the
target point is checked if it is located in the sensor range of UAV. If it is visible
by the UAV, the ending point is selected as the target position of it.

The most straightforward way to select the end point for the individual at
any step is to find the intersection of the line extending between the current
position of UAV and target point, within the borders of the sensor scanned

744 E. Akar et al.

area. If the intersection point is not hindered by an obstacle, it may be accepted
as the last point of the current flight path. When an obstacle is come across,
neighborhood points are controlled repeatedly whether or not they are suitable
for UAV passage until the proper point is found. In order to provide the diversity
for individuals, different neighbor points may be assigned to different individuals
as end points, which helps to increase the feasibility rate in the population.

2.2 Constraints of the Problem

In this study, we consider the following constraints for online path planning:

– The flight path cannot be intersected with the underlying terrain. This is the
primary requirement for the flight path to be feasible. This constraint states
that any point on the path cannot be under the level of terrain surface.

– The flight path must lie through the area, which satisfies the minimum and
maximum flight height constraints of the vehicle.

– UAV maneuvers must be performed at an angle greater than the minimum
curvature radius determined in the flight envelope.

2.3 Evaluation Function

Constraints of a feasible UAV trajectory can be included in the evaluation func-
tion in the form of penalty values. We adapt the computation of the evaluation
function of a subpath given in [8], which consists of 8 terms.

f =
n∑

i=1

wifi (1)

Here, wi are the weights of each term and fi are function values related with
either constraints or objectives that are described below. The term f1 calculates
the number of discrete curve points located under the ground surface. All the
points that form the path are checked one by one, whether they are passing
through the terrain. First, elevation of the terrain at the position where the curve
point resides is calculated using the heightmap data. This value is compared with
the height value of the curve point. If the former value is higher, than the value
of this function is incremented. Since, this term reflects the feasibility of the
route, its value has to be zero.

The second term is used to calculate the distance penalty of the path, which
consists of two parts. The first one is relevant to the minimum (safety) distance
between the curve point and the terrain surface. Its purpose is to prevent the
UAV flying at a closer height than the allowed minimum distance. To obtain
this penalty value, distance of each curve point from the surface is calculated,
and difference between this distance value and the specified minimum distance
is computed. If the result is less than zero, a penalty value proportional to this
difference is added to it. Other consideration of term f2 is to check the maximum
distance of UAV flight path. This penalty value is calculated using the difference

Hyper-Heuristics for Online UAV Path Planning 745

between the height of each curve point and the maximum allowable height. This
term penalizes the paths that contain points located at higher altitudes than the
aircraft can technically fly.

The term f3 is used to check the minimum curvature radius penalty of the
path. This penalty value keeps the UAV acceleration in reasonable limits both
in horizontal and vertical directions. First, the angle between two line segments
for each successive curve points along the path line is calculated. Secondly, each
angle value is checked to see, if it is smaller than the minimum angle. If so, a value
proportional to the difference between the calculated angle and the specified
minimum angle is added to the result of this function. The term f4 is the function
to calculate length of the path line. The length of the flight path is calculated
by adding the distances between two successive curve points.

The term f5 is related with a potential field value between the starting and
the final target point. The term f6 calculates the distance between the last point
of current step and terrain surface so that UAV do not change its direction
abruptly, while moving in the next partial step. It helps maintaining feasibility
of the path. The term f7 penalizes the paths being trapped in local optima
and guides the aircraft to unexplored areas. The function f8 calculates another
potential field value in order to draw the aircraft toward the final target. If UAV
is away from the target, this function produces a constant value. If it gets closer,
the output of this term decreases in proportion to the distance between the
target and the last curve point of the current step.

Although the evaluation function for the reference study [8] is presented with
eight terms as explained above, we consider a more compact representation with
five terms where first four terms are same with f1, f2, f3, f4. In order to represent
the last four terms with a single function, we include a new term, f∗

5 , for guiding
the UAV to the target and keep the length as short as possible.

The term f∗
5 penalizes the control points that are far away from the straight

path between the starting and ending point in each path step. The straight path
is simply the line drawn from initial and final target points. If the calculated
curve points are far away from this path, the length of the produced path will
be longer. Obtaining the value of this term is achieved by calculating the distance
between each control point and the straight path line. A normalization process
is carried out to transform the values stated above into [0, 1] range. Since, this
is a minimization problem, weighted sum of the normalized values is inverted in
the fitness function given in Equation 1.

3 Hyper-Heuristic Based Online Path Planning

Hyper-heuristics are emerging meta-heuristic techniques for automating the pro-
cess of selecting, applying (or even generating) heuristics to solve hard combi-
natorial optimization problems [10]. A hyper-heuristic requires a set of low-level
heuristics and an objective function where it selects and/or adapts several low-
level heuristics during the search for the given combinatorial optimization. There-
fore, it operates on search space of heuristics rather than search space of solutions.
Hyper-heuristics have been successfully applied to large number of combinatorial

746 E. Akar et al.

optimization problems including personnel scheduling, timetabling, cutting stock
and inventory problems [10].

In this paper, we consider perturbative hyper-heuristics, which target to
improve quality of a candidate solution for the given problem through selecting
and applying low-level heuristics. Two separate components of a perturbative
hyper-heuristic technique are the i) heuristic selection mechanism, and the ii)
move acceptance criteria [11]. We present the details of selected methods for
the two components at the following two subsections, which is followed by the
details of low-level heuristics proposed for the UAV path planning problem.

3.1 Heuristic Selection Mechanisms

There are a large number of heuristic selection mechanisms proposed in the
literature, where we consider following five heuristics in this study.

– Simple Random (SR): In this mechanism, a low level heuristic is selected
randomly based on a uniform distribution and it is applied once [12].

– Greedy (GR): All low-level heuristics are applied to a candidate individual
and the heuristic that generates the best improved solution is selected [12].

– Random Descent (RD): It is a variant of the Simple Random case,
where each randomly selected heuristic is applied repeatedly until there is
no improvement in the solution [12].

– Choice Function (CF): This strategy presents a ranking mechanism for
low level heuristics [12]. The choice function evaluates an overall score of each
heuristic by combining the recent individual performance of the heuristic,
recent improvements for consecutive pairs of heuristics and the elapsed time
since the heuristic was last applied [12]. In this paper, we apply two types
of Choice Function strategy, which are the Straight Choice Function (SC)
and the Ranked Choice Function (RC). The former one selects and executes
the low level heuristic, which maximizes the choice function. The latter one
ranks low-level heuristics based on the choice function. For a portion of the
highest ranked heuristics (the best three heuristics in our study), it evaluates
change in the objective function; then, it selects the best one.

– Reinforcement Learning (RL): Machine learning techniques can be incor-
porated with hyper heuristics in order to improve the quality of heuristic selec-
tion process. A reinforcement learning system interacts with the environment
and changes its state with an action based on a defined utility scheme in order
to increase its reward [13]. In a reinforcement learning based hyper-heuristic,
a utility value is assigned for each low-level heuristic [14]. The heuristic selec-
tion phase selects a heuristic based on the utility values, which is followed by a
pre-specified reward or punishment process to update the utility value of the
selected.

The adaptation rate of low-level heuristics can be set with various strategies
(including additive, subtractive, divisional or root based ones), after a reward
or a punishment heuristic. Figure 2 shows the transitions between the solutions
types considered in our study. As an example, transition “2”represents a change

Hyper-Heuristics for Online UAV Path Planning 747

Infeasible
Solution

Feasible
Solution

1 4
5

2

3

Fig. 2. Utility adaptation operations

from an infeasible solution to a feasible solution after the heuristic applied. It
should be noted that there are two transitions between two infeasible solutions.
In transition “4”, feasibility of the solution does not change; however, the fitness
of new solution gets worse. On the other hand, fitness value is improved in
transition “5”, after the heuristic is applied.

Figure 3 demonstrates corresponding utility adaptation functions considered
for our RL-based hyper-heuristics. In these equations, u represents the utility
value for any low-level heuristic; k is a promotion variable for rewarding infeasible
to feasible conversion, which is equal to 2, 4 or 6 in our experiments. Similarly,
is a demotion variable for punishing the action that converts a feasible solution
to an infeasible one; and we consider three different values: 1,2 and 3. Finally,
n is the maximum utility value. When the utility value takes a value less than
the initial utility value or greater than maximum value, it is set to initial and
maximum values respectively. The acceptable interval for utility values is equal
to [1..n ∗ |LL|], where |LL| is the number of low-level heuristics considered and
n is an integer, which is equal to 3 in our experimental study.

1: (Infeasible to Infeasible)
2: (Infeasible to Feasible)
3: (Feasible to Infeasible)
4: (Feasible to Feasible)
5: (Feasible to Feasible)

2
uu =

kuu +=
)(usqrtu =

muu −=
1+= uu

Fig. 3. Utility adaptation functions of 5 transitions given in Fig. 2

3.2 Criteria for Move Acceptance

In this study, we consider four different move acceptance criteria, which are all
move (AM) [12], only improvement (OI) [12], improvement or equal (IE) [12]
and exponential Monte Carlo (MC) [15]. The AM case accepts all moves, the
OI case accepts only improving moves, and the IE move acceptance mechanism
rejects only the worsening moves. The MC strategy accepts all new solutions
with better or equal fitness value compared to previous one. Otherwise, a control
value is calculated with ez∗(fnew−fold) where z is a constant value (equal to 1 in
our computational experiments) for tuning the sensibility of acceptance, fnew
is the fitness function value for the new solution, and fold is the fitness value of

748 E. Akar et al.

the old solution. Then, a random number is generated between 0 and 1. If the
control value is greater than or equal to the random number, the new solution
is accepted; otherwise it is rejected.

3.3 Low-Level Heuristics

We utilize eight different low-level heuristics in our study, each of which performs
inserting a new control point to the B-spline curve, deleting or updating an
existing control point. The first six operations given below are based on heuristics
proposed in a recent study related with offline path planning [16].

• Delete Operation: In this heuristic, a randomly selected control point is
removed from the control point list. The heuristic does not perform any
operation, if it reaches minimum number of control points, which is equal to
3 in our computational experiments.

• Smart Delete Operation: It deletes the worst control point, where the
quality of each control point is computed by the aggregate cost of the related
curve segments. It targets to delete the control point, which has highest sub-
path length and the highest penalty values due to violating hard constraints.
It considers whether the minimum number of control points is achieved or
not for the operation.

• Insert Operation: A randomly generated point (located within the bor-
ders of current sensor scanned region) is added to the control point list.
If maximum number of control points is achieved, it does not perform any
operation.

• Smart Insert Operation: The curve segment that incurs highest cost is
determined; a new control point within the boundaries of the current seg-
ment is determined and added to the control point list. Like the basic insert
operation, it controls whether the maximum control point number is achieved
or not after the insertion.

• Update Operation: A randomly selected control point is replaced with
a randomly generated point located within the borders of current sensor
scanned region. It can be also applied for individuals having minimum num-
ber of control points.

• Smart Update Operation: The control point having the worst fitness
value is replaced with a better control point near the optimal path, i.e., the
straight line from the starting to the final point within the scanned region.

• Smooth Turn Operation: The aim of this operation is to prevent the UAV
maneuvering with an angle smaller than the minimum curvature angle, which
violates the constraint on minimum curvature radius. It helps to make the
path smoother and shorter, as well. The angle at each control point that
formed by the successive line segments points is calculated. If any angle is
smaller than the minimum turning angle, it is deleted from the control point
list (Figure 4.a).

• Shortcut Operation: It discovers and fixes the control point that crucially
deviates from the optimal path line that lies between the starting and final

Hyper-Heuristics for Online UAV Path Planning 749

CP0

CP1

CP2

CP3

CP4

CP0

CP1

CP2 CP3

CP4

Fig. 4. (a) Smooth turn operation and (b) Shortcut operation

points of the current path. First of all, the control point, which is farthest
from the optimal path, is determined by calculating the 3-D distance between
each control point and the optimal path. Then, the farthest one is moved to
a new point that is closer to the optimal path (Figure 4.b).

4 Experimental Study

In this study, all path planning algorithms are coded in C programming language
and experiments are conducted on an Intel Core 2 2.83 GHz machine running
Linux operating system. Terrains and 3D testbed for visualization are developed
with jMonkey Engine (JME), a Java API that contains several OpenGL based
libraries to design 3-D maps for video games. The terrain generator produces
height maps for different types of landscapes in different size and forms. The
characteristics of the terrain such as flatness or steepness are important for the
flight path planning. Therefore, to test the performance of our planner, two
types of terrains are considered by using the Hill Algorithm, rough and smooth
terrains. The size of terrains used in experiments has been adopted as 128x128.
Three different time limits (50, 100 and 200 ms) with four different sensor ranges
(16, 24, 32, and 40) on both rough and smooth terrains comprise 24 different
test scenarios for each start point and final point pair, where each test scenario
is run with 40 trials.

4.1 Pre-Experimentation for Reinforcement Learning

Selection of the most appropriate reinforcement learning (RL) parameters is
managed by performing a series of pre-experiments. The utility adaptation func-
tions listed in Figure 3 include two parameters to be determined: i) k for reward-
ing an action producing an infeasible solution from a feasible, and ii) m for
penalizing an action that results in a fitness worsening on a feasible solution.

After a set of experiments, it was observed that the two most frequent value
pairs for m and k are {m = 1, k = 2} and {m = 2, k = 8}. We select {m = 1, k = 2}
pair based on the results for two sensor ranges (32 and 40). Another set of pre-
experiments have been carried out to determine the proper values for initial and
maximum utility values, which are set with 12 and 24, respectively. In both sets
of experiments, a maximum 30 ms is allowed for generating the path for one

750 E. Akar et al.

segment. The size of the surrounding terrain has been chosen as 128x128 and
the values 32 and 40 are selected as the onboard sensor range, and each setting
has been executed 50 times.

4.2 Results and Discussions

In this section, we present performance comparison of our algorithms with a
GA-based reference study [8] for 3-D online path planning by using various
test scenarios. The reference study considers B-Spline curve formulation, and it
presents two types of crossover operators. Apart from the simple single-point
crossover operator, it applies an arithmetic crossover operator with a simple for-
mula to generate the coordinates of the new individual. On the other hand, the
reference study employs a non-uniform mutation procedure in which the coor-
dinates of randomly selected point are modified by multiplying with a constant
value, in addition to uniform mutation operator.

Table 1. Average fitness value and number of feasible solutions of algorithms on a
rough terrain with different sensor ranges

Average Fitness Value Feasible Solutions
Method 16 24 32 40 16 24 32 40

GA 0,0534807 0,0565428 0,0546188 0,0565076 39 40 44 50

RC-AM 0,0508404 0,0525642 0,0516142 0,0518952 50 50 50 50

RC-MC 0,0510116 0,0519878 0,0515696 0,0519768 50 49 50 50

RC-IE 0,0511904 0,0528832 0,0512026 0,0515864 48 49 50 50

RC-OI 0,0511343 0,0531817 0,0520564 0,0523565 49 50 50 50

The results in terms of average fitness value and number of feasible solu-
tions (out of 50 tests) for various sensor ranges on a given rough terrain with
time limit value of 100ms are listed in Table 1 for the GA-based reference work
and the Rank Choice (RC) cases. Although the other hyper-heuristic cases also
outperform the reference work, they are not included in the table due to space
limitations. The RC cases produce the best average results among all cases for
different sensor range values. The average fitness values generated by GA left
behind the hyper-heuristic methods. As can be expected, number of feasible solu-
tions increase with an increase in sensor range. Our hyper-heuristic techniques
provide feasible solutions for almost all of the cases.

Boxplot of hyper-heuristics and GA results are depicted in Figure 5 for the
case of 100ms time limit with the sensor range of 32. From this graph, it is
observed that most of the hyper-heuristic methods outperform the related work.
Specifically, Simple Random, Rank Choice and Reinforcement Learning cases
generate better results than the GA-based approach.

Another comparison criteria is the change of the fitness value for a given time
interval. Generally, the GA method produces slight improvements for the given
time intervals and keeps this improvement until the end of time limit. On the
other hand, the HH methods may improve the result in any interval; and, they

Hyper-Heuristics for Online UAV Path Planning 751

Fig. 5. Comparison of hyper-heuristics with GA on a rough terrain with sensor range
of 32

Fig. 6. Sample paths generated with RL-IE and RC-MC methods

produce significant improvements at the initial or earlier stages of each run. In
general, HH methods reach the best solution in less than 30 ms.

Finally, we present the result paths of our algorithms on a selected rough
terrain in Figure 6. Those paths were produced by the RL method with IE
strategy and the RC method with MC strategy, for different destination points.

5 Conclusions

In this paper, we present an online 3-D path planner for the navigation of
Unmanned Aerial Vehicles (UAVs) by using hyper-heuristics. Experimental study
performed on terrains with different characteristics validates the usage of

752 E. Akar et al.

hyper-heuristics for online UAV path planning problem, where our approach out-
performs related work with respect to quality of solutions and the number of fea-
sible solutions produced.

References

1. Frazzoli, E., Dahleh M., Feron E.: Real-Time Motion Planning for Agile
Autonomous Vehicles. In: American Control Conference, Arlington, Virginia,
pp. 1–48 (2001)

2. Qi, Z., Shao, Z., Ping, Y.S., Hiot, L.M., Leong, Y.K.: An Improved Heuristic Algo-
rithm for UAV Path Planning in 3D Environment. In: Second International Con-
ference on Intelligent Human-Machine Systems and Cybernetics, Nanjing, Jiangsu,
pp. 258–261 (2010)

3. Fu, X., Zhong, L., Gao, X.: Path planning for UAV in radar network area. In:
Second WRI Global Congress on Intelligent Systems, Wuhan, pp. 260–263 (2010)

4. Dong, H., Li, W., Zhu, J., Duan, S.: The Path Planning for Mobile Robot Based
on Voronoi Diagram. In: Third International Conference on Intelligent Networks
and Intelligent Systems, pp. 446–449 (2010)

5. Koren, Y., Borenstein, J.: Potential Field Methods and Their Inherent Limitations
for Mobile Robot Navigation. In: Proceedings of the IEEE Conference on Robotics
and Automation, Sacramento, California, pp. 1398–1404 (1991)

6. Geraerts, R., Overmars, M.H.: Sampling Techniques for Probabilistic Roadmap
Planners. Institute of information and computing sciences, Utrecht University.
Technical report, UU-CS-2003-041 (2003)

7. LaValle, S.M.: Rapidly-exploring Random Trees: A New Tool for Path Planning.
TR 98–11, Computer Science Dept., Iowa State University (1998)

8. Nikolos, I.K., Valavanis, K.P., Tsourveloudis, N.C., Kostaras, A.N.: Evolutionary
Algorithm based Offline/Online Path Planner for UAV Navigation. IEEE Transac-
tions on Systems, Man and Cybernetics - Part B: Cybernetics 33(6), 898–912 (2003)

9. Farin, G.: Curves and Surfaces for CAGD (Computer Aided Graphics and Design):
A Practical Guide, 5th edn. Morgan Kaufmann, San Francisco (2001)

10. Burke, E.K., Gendrau, M., Hyde, M., Kendall, G., Ochoa, G., Ozcan, E., Qu, R.:
Hyper-heuristics: A Survey of the State of the Art. Journal of Operational Research
Society (2013)

11. Ozcan, E., Bilgin, B., Korkmaz, E.E.: A Comprehensive Analysis of Hyper-
heuristics. Intelligent Data Analysis 12, 3–23 (2008)

12. Soubeiga, E.: Development and application of hyperheuristics to personnel schedul-
ing, PhD Thesis, School of Computer Science, University of Nottingham, UK
(2003)

13. Sutton, R.S., Barto, A.G.: Reinforcement learning: an introduction. The MIT Press
(1998)

14. Ozcan, E., Msr, M., Ochoa, G., Burke, E.K.: Reinforcement Learning an Great-
Deluge Hyper-heuristic for Examination Timetabling. International Journal of
Applied Metaheuristic Computing (IJAMC) 1, 39–59 (2010)

15. Ayob, M., Kendall, G.: A monte carlo hyper-heuristic to optimize component place-
ment sequencing for multi head placement machine. In: Proceedings of the Interna-
tional Conference on Intelligent Technologies (InTech 2003), pp. 132–141. Thailand
(2003)

16. Oz, I., Topcuoglu, H.R., Ermis, M.: A meta-heuristic based three-dimensional path
planning environment for unmanned aerial vehicles. Simulation 89(8), 903–920
(2013)

© Springer-Verlag Berlin Heidelberg 2014
A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2014, LNCS 8602, pp. 753–762, 2014.
DOI: 10.1007/978-3-662-45523-4_61

Searching for Risk in Large Complex Spaces

Kester Clegg and Rob Alexander()

University of York, York, U.K.
{kester.clegg,rob.alexander}@york.ac.uk

Abstract. ASHiCS (Automating the Search for Hazards in Complex Systems)
uses evolutionary search on air traffic control simulations to find scenario con-
figurations that generate high risk for a given air sector. Weighted heuristics are
able to focus on specific events, flight paths or aircraft so that the search can
effectively target incidents of interest. We describe how work on the character-
ization of our solution space suggests that destructive mutation operators per-
form badly in sensitive, high dimensional spaces. Finally, our work raises some
issues about using collective risk assessment to discover significant safety
events and whether the results are useful to safety analysts.

Keywords: Search · Risk · Safety · Air Traffic Control · Simulation · RAMS

1 Introduction and Background

With increasingly complex systems to manage, safety analysts are starting to express
concern that large complex systems are becoming too difficult to guarantee safety
when part of the system is changed or placed under stress. To help analysts discover
hazards within complex systems, the ASHiCS project (Automating the Search for
Hazards in Complex Systems) was set up to demonstrate a proof-of-concept tool that
would make use of evolutionary search heuristics and simulation to uncover hazards
(such as escalating levels of risk) within large complex systems that might otherwise
be missed using traditional manual safety analysis.

The combination of simulation and evolutionary search is hardly new; indeed, in
many instances of trying to search for novel physical solutions, a simulated environ-
ment is an essential part of the search process. Without a rapid build-and-test cycle in
virtual environments, it is unlikely that evolutionary search could have been applied
to many design problems [1] [2]. However, using search to manipulate simulations of
air traffic control (ATC) scenarios is relatively recent, with few practitioners. Part of
the reason for this is that the simulation environments are complex, often requiring
extensive domain knowledge to understand. Additionally only a small number of
fast-time ATC simulations tools are available to academic researchers.

Notwithstanding this, there is recent work in area, particularly by University of
New South Wales which has used what was termed the Computational Red Teaming
(CRT) Framework to identify patterns in arrival traffic and ground events that lead to
delays in dynamic continuous descent arrivals (CDA) scenarios [3]. More recently,
the same team has also started to use evolutionary search to look for risk [4] in ATC

754 K. Clegg and R. Alexander

scenarios, in particular looking at the contribution of air traffic controllers to in-
creased risk. ASHiCS differs in that we search if a specific configuration of the traf-
fic entering the airspace could lead to a hazardous situation by using risk instruments
to assess the degradation of safety barriers. Our project also investigates if the search
can discover whether the injection of a serious safety incident could overload the air
traffic controller (ATCo) workloads for a given traffic input, resulting in rising risk
and reduced safety margins.

2 The ASHiCS Search Harness

The ASHiCS search harness generates traffic inputs for the RAMS (Re-organized
ATC Mathematical Simulator) Plus air traffic control simulator1 and analyses the
output of each simulation. The RAMS Plus tool (from ISA Software) is used to per-
form airspace studies and features a capacity and workload simulator, a sector open-
ing hours simulator, a MESEC (multi-executive sector) simulator and a gate-to-gate
simulator. Air traffic is generated by specifying the characteristics of each aircraft
entering the sector, namely aircraft type, aircraft entry time, its entry and exit flight
level and the waypoints specifying its flight path and any level changes.

The traffic input files are created with restrictions on the distribution of aircraft to
predetermined flight paths and an enforcement of wake turbulence separation. Once
the input files have been created, a non-graphic version of RAMS Plus (i.e. a version
that runs without any visualization to speed up simulations) is executed and the out-
puts analyzed by heuristics in the ASHiCS software.

2.1 Experimental Set Up

The search context is limited to a single en-route air sector containing a number of
predetermined flight paths specified using waypoints. Scenarios use a sample size of
twenty aircraft whose start times are randomly generated over the span of one hour.
Aircraft “appear” outside the sector at cruise speed and do not deviate from their
flight path except to resolve a conflict.

The design of the sector is intended to represent two busy en-route flight paths that
run north-east to south-west and west to east (hereafter referred to as ns and ew).
Each flight path carries a single type of aircraft flying at their typical en-route alti-
tudes and the paths intersect obliquely at the center of the sector; however the flight
paths are vertically separated (FL330 and FL190 respectively) so that no conflicts
arise. One aircraft is selected at random from the FL330 flight path to undergo an
emergency cabin pressure loss event (referred to as CPLoss). This aircraft is assigned
a special profile that mimics an emergency descent to FL100. The descent may con-
flict directly with one or more designated flight paths. CPLoss maintains its planned
trajectory on its flight path after reaching FL100. There are also up to three other
flight paths (r2, r3 and r4, each at FL230) that intersect at different points in the

1 http://www.eurocontrol.int/eec/public/standard_page/WP_Fast_Time_Simulation_Tools.html

 Searching for Risk in Large Complex Spaces 755

sector. These paths carry just 25% of the traffic, and represent incidental traffic
crossing the sector. For ease of implementation, we assume the sector is controlled
by a single air traffic controller (ATCo) from FL100 to FL600 with a standard mini-
mum separation of 5nm. The aircraft types, flight paths and flight levels are shown in
Table 1:

Table 1. Types of aircraft, flight paths and levels

Aircraft type Flight path Flight level
A320 ns 330
DH8 ew, r4 230,190
B737 r2,r3,r4 230
C551 r2,r3,r4 230

Initial Seeding and Aircraft Distribution. The distribution of aircraft between each
flight path is decided at random, with the sole restriction that the ns flight path must
have at least one aircraft on it to represent CPLoss. The proportion of traffic between
the ns and ew flight paths and the lower level paths is split 75:25 in favor of the ns
and ew paths. The 25% of traffic on the low level flight paths is allocated one of the
r2, r3 or r4 flight paths at random. Aircraft may have their allotted start time adjusted
if they are close enough to another aircraft on the same flight path that they would
suffer wake turbulence (i.e. less than 120 seconds apart), in which case the following
aircraft is moved further back in time to enforce sufficient separation. If several air-
craft are initially bunched together, then those aircraft are forcibly separated. This
type of traffic configuration and subsequent separation does impinge on the search’s
ability to manipulate the start times of grouped aircraft, however tightly grouped air-
craft can represent a hazard in themselves as they leave fewer options for the resolu-
tion of conflicts. As this type of configuration does occur in real-world scenarios we
have not excluded it from the search.

Search Parameters. The ASHiCS search harness uses a population of 100 scenarios
per generation and typically runs for 300 generations. The search implements what is
sometimes termed a “near neighbor, random hill-climber” search. That is, individual
scenarios are selected and the aircraft start times are mutated within a set range (gen-
erally a few minutes either side of the previous entry time), ensuring that the random
sampling of the near neighborhood is constrained. Provided such mutations are not
too radical we should be guaranteed that a “near neighbor” of the original scenario is
created, as aircraft remain on their flight paths, relatively close to their previous start
times. However, to try and ensure that the search has not been unlucky in its initial
seeding of random samples (in what is a very large configuration space), we continue
to allow a proportion of each population to be generated entirely by random sampling.
The split in the population is dictated by a policy of elitism; the top twenty per cent of
a generation’s scenarios are each mutated to create three “near neighbor copies” and
carried over to the next generation. The remaining forty per cent of the population is
created from new random samples.

756 K. Clegg and R. Alexander

Evolutionary Strategy. The evolutionary strategy for ASHiCS is based primarily on
mutation rather than crossover or other combination methods. Our rationale for not
selecting crossover is that ‘destructive’ methods for good gene propagation fare less
well than methods that allow gradual changes to a phenotype’s fitness depending on
problem type [5]. Our choice of population size was partly dictated by the length of
time each simulation took, making a very large size impractical. However, despite
previous work that suggested large population sizes were essential for complex solu-
tion spaces [6] [7], there seems to be a consensus that a destructive means of combin-
ing chromosomes (such as crossover) requires larger sample sizes to work effectively
[1], whereas non-destructive mutation can work with smaller populations [8]. Our
domain may be particularly sensitive to a destructive type operator, as we feel it could
neither produce “near neighbor” hill-climbing to allow gradual improvements from an
initial starting point, nor would it be able to trace how a scenario could evolve from
one that was relatively low risk to one that contained gradually higher levels of risk2,
as the jumps in the search trajectory from a crossover operator are largely arbitrary.

Risk Model. The fitness function uses several outputs from RAMS Plus, including:
number of conflicts, number of resolutions, conflict separation percentage3, total task
workload (measured in seconds). Although we recognize that an airborne collision is
ultimately the worst possible outcome, using the barrier model from the IRP (Inte-
grated Risk Picture –jointly proposed safety model used by EUROCONTROL and the
FAA) [9] and ARMS (Aviation Risk Management Solutions [working group]) [10]
allows us to use precursor events to indicate if these barriers have started to deterio-
rate, increasing the likelihood that a significant safety event (SSE) will occur. Rather
than have our search algorithms look for very low frequency events such as air-borne
collision (which would represent sudden, huge step changes in severity), we measure
the degree of risk by grading the quality of safety barriers that should prevent an acci-
dent happening. Under the barrier model, barriers themselves may be composed of
multiple factors that degrade in different ways. For example, aircraft separation is an
important barrier that degrades by proximity, but not all loss of separation carries the
same degree of risk. By creating a “basket of risk measures” related to the states of
certain barriers and other indicators, the heuristics can make use of a smooth progres-
sive risk level assessment to direct the search.

Within these measures we also add weightings for specific items of interest. For
example, if we want to ensure the additional workload for CPLoss plays a part in our
final solution, we must weight conflicts and controller workload tasks associated with
CPLoss proportionally greater than those for other aircraft; otherwise scenarios con-
taining incidents elsewhere may outrank it.

2 We have not attempted to incorporate traceability into our search harness as yet, but the

choice of a non-destructive operator allows us to keep this as an option for future work.
3 Defined by RAMS Plus as the percentage of available separation, i.e. the “closest point of

approach (2D lat. / long.) divided by the largest separation value.” In other words, how close
two aircraft in conflict got before being resolved.

 Searching for Risk in Large Complex Spaces 757

However there are some issues when using a basket of risk measures to define an
objective function, which we believe would benefit from wider discussion within the
search community. These include:

• High collective risk may not result in discovering a specific event that exceeds
safety margins – “hoping” that a scenario with high risk levels will contain a rare
or unexpected incident does not appear to be a productive way to search.

• In large configuration spaces, the search can always manipulate inputs to generate
some level of risk. Directing the search towards specific targets can be a problem.

• Using a collective measure of risk in a large configuration space makes it difficult
to understand the context of the result – i.e. has the search found a unique configu-
ration of input variables that represent this risk, or are there many more variants to
discover?

We feel these questions pose generic problems to using search with composite fit-
ness functions in large systems (of systems), but they also raise issues about
using search for safety related topics such as risk, which is traditionally assessed
using quantifiable, probabilistic reasoning. While we can find hazardous scenarios
using search, we may not be able to quantify the result in any meaningful way. With-
out some characterization of the solution space (e.g. how many hazards does it con-
tain? What is the relationship between different solutions that have similar levels of
risk?), safety analysts may not find the results particularly useful.

3 Characterizing the Solution Space

We suspected that our search space was large even before we tried to calculate the
input permutations.4 Large search spaces are termed “high dimensionality” problems
when mutation can act on a large number of variables to affect the fitness outcome,
traditionally making it difficult to scale evolutionary search to complex design tasks.
High dimensionality also causes difficulty when trying to demonstrate that an optimal
solution has been found in a given search space [11] [12]. For most real-world prob-
lems, this sort of “proof” is impossible to achieve and most practitioners are content
to discover a solution which is “good enough”. However from a safety perspective it
is important to quantify risk to levels that are deemed acceptable to the regulatory
authorities, i.e. have we found a rare example of extreme risk, or are there many such
examples out there? If the latter can be demonstrated, then there may be a systemic
safety problem that needs to be addressed.

These questions are hard to answer unless quantitative descriptions of the solution
space can be given, something which is difficult to do with large solution spaces that

4 The size of the search space containing all possible permutations would make an exhaustive

search impossible (see appendix of the E.02.05-ASHiCS-D2.2-Method Description Technical
Report, available with several other reports from the project at http://ashics.blogspot.co.uk).

758 K. Clegg and R. Alexander

cannot be exhaustively searched. We became more concerned about this after we
noticed that the ranked fitness scores after several hundred generations contained
relatively few high scores in the population. It seemed that the average fitness of the
final generations was not being raised in the manner expected of evolutionary compu-
tation. This realization led us to try and find out what effect mutation was having on
the near neighbors of the fittest individuals.

4 Sensitivity Analysis

By keeping a record of the fitness score of near neighbors that are sampled as part of
the hill-climbing algorithm, we can find out how destructive or beneficial our muta-
tions are to each near neighbor of the original scenario. We had noticed that the
search often had long plateaus of high fitness (when the best of the previous genera-
tion is passed on unchanged to the subsequent generation), during which time it ap-
peared that no mutations of close, high scoring scenarios were able to improve on the
previous best fitness score. A sensitivity analysis enables us to compare different
mutation rates and see how the mutations were affecting the average.

If most mutations show a significant drop in fitness, it suggests that the original
scenario is on or near a peak of high fitness. However, if the summit is narrow and
the sides of the peak are steep, then sampling too far from the original will give a
rapid drop off in fitness and make it hard to for mutation to find the “sharp point” of
highest fitness. If we look at two plots showing a variance in the mutation range val-
ue, we can see a marked difference not only in the performance of the search, but also
in the effect of mutating copies of the best scenarios.

Fig. 1 shows a sensitivity analysis of run using a mutation range of 300 seconds
(i.e. the search can generate a new start time for each aircraft up to 5 minutes before
or after its original time). The plot shows fitness values (y axis) of the top ten scenar-
ios of each generation (divide by ten along the x axis to get the actual number of gen-
erations). Due to the policy of elitism, the top ten scenarios of a generation are likely
to have been generated from one of the top three in the previous generation. As the
evolutionary run progresses, we can see that the plateaus becoming longer (plateaus
represent no improvement on the previous generation’s best scenario) indicating that
the search is struggling to improve on the fittest individual. At the beginning of the
run, the distance between the fitness scores that the best of a generation and its mutat-
ed copies achieve are relatively close together, as we would typically expect from
near neighbor sampling of the search space. As the run progresses and higher fitness
scores are achieved by the best individual, the gap between the near neighbors and the
best individual starts to widen, to the point towards the end of the run where every
mutation seems to radically worsen the fitness score of the mutant copy. This type of
sensitivity pattern suggests the search landscape is composed of tall, narrow spikes, in
which a large mutation is likely to mean the individual is placed beyond the small
area of high fitness occupied by the original scenario.

 Searching for Risk in Large Complex Spaces 759

When we compare this to Fig. 2 which is the same in all respects other than having
a much reduced mutation range of 30 seconds (half a minute either side of the original
start time), it is immediately obvious that the smaller mutation range has produced a
much less destructive effect on the fitness of near neighbors. The overall perfor-
mance is improved, with a higher final fitness score for the best scenario (which
steadily improved over many generations) but also with better average fitness across
the population. The gap between the best and its near neighbors indicates that the
solution space is highly sensitive to mutation rates. Fig. 1 and Fig. 2 provide us with
an intuition of the search space; in that we can see small mutations enable the average
fitness of the population to improve, whereas large mutations appear destructive. But
how can we be sure that the best scenarios are being genuinely evolved and not

Fig. 1. Sensitivity analysis. Mutation range = 300s.

Fig. 2. Sensitivity analysis. Mutation range = 30s.

760 K. Clegg and R. Alexander

chosen from the randomly generated part of the population? By tagging the previous
index of selected scenarios, we were able to track a scenario’s previous ranking after
it had entered the top ten of a particular generation. If the evolutionary search is
working effectively, we would expect the proportion of high ranking scenarios com-
ing from the random sector of the population to decrease over time, as evolved sce-
narios raise their average fitness scores. Fig.3 and Fig. 4 show the lineage of the top
ten scenarios from each generation, using the same data as Fig. 1 and Fig. 2. As be-
fore, the scatter plots show a number of generations along the x axis, with the lineage
(i.e. previous ranking index) of the ten best in each generation on the y axis. Any

Fig. 3. Lineage of top 10 per generation. Mutation range = 300s. Individuals with an index (y-
axis) greater 60 come from random sampling.

Fig. 4. Lineage of top 10 per generation. Mutation range = 30s. Individuals with an index
(y-axis) greater 60 come from random sampling.

 Searching for Risk in Large Complex Spaces 761

scenario that comes from an index of over 60 (measured on the y-axis) has come from
the random part of the population. We can see that in the case of the poorly perform-
ing large mutation rate, the random part of the population continues to supply almost
equal numbers of scenarios to the top ten of every generation throughout the run.
Over generations there is little drop off in their numbers, which indicates the search is
both continuing to select scenarios from the random part of the population and failing
to improve them by mutation. Fig. 4 shows the same type of plot but for the smaller
mutation range. It shows how over time the search increasingly selects from mutated
scenarios, while the contribution from the random part of the population falls off rap-
idly and tails off to almost zero in the final stages. The combination of using a sensi-
tivity analysis and tracing the lineage of near neighbors gives us some confidence that
a non-destructive mutation operator outperforms setting the mutation operator to a
large range and offers evidence against the use of destructive operators such as cross-
over for this domain.

Observations. However, while we can make qualitative assessments of the solutions
discovered by looking at how sensitive the solution space is to mutation rates, we still
lack a concrete form of quantitative assessment of the area we are searching. That is
to say we cannot say whether the search would find many similar solutions or very
few.5 This is not usually an issue for research into search heuristics; however in the
case of searching for risk or safety related factors, it is important as the cost of dealing
with risk (usually through the implementation of safety barriers) is often worked out
by determining the cost of the outcome multiplied by the frequency of the event
occurring. As we are searching for rare events, it would be of interest to not only
discover instances of these, but to gain an approximate idea of their frequency for a
given configuration of air space. For example, at the intersection of flight paths there
may be many ways of producing a conflict between aircraft by adjusting their start
times, but while these solutions differ technically, in pragmatic terms the search is not
finding anything unique or unexpected. While we believe that evolutionary search
can be used to find high risk scenario configurations; there remain some questions
about the usefulness of using a collective assessment of risk when trying to qualita-
tively assess the search results. High collective risk levels may not point to a specific
event that exceeds safety margins. Therefore if we are interested in risk attached to a
specific incident, we must weight our heuristics accordingly.

5 Conclusions

In this paper we have described the evolutionary search used by ASHiCS to discover
high risk configurations of air sector traffic. We have provided arguments that show
the use of destructive operators are unlikely to be effective in the type of high dimen-
sional solution space represented by an air sector. The sensitivity analysis suggests
that the solution landscape is composed of steep-sided, narrow peaks of high fitness,

5 As each run takes around 26-30 hours (on a Windows 7 64-bit PC, Intel Core 2 Duo 3Ghz,

4GB RAM) it is difficult to generate meaningful statistics using many runs after debugging
and experimentation.

762 K. Clegg and R. Alexander

in which only very near neighbors are likely to result in a fitness improvement. We
believe this is an accurate characterization of the solution landscape, given that adjust-
ing the start times of aircraft by just a few minutes can make a difference to conflict
separation of several nautical miles. For our future work, we will increase the com-
plexity of our scenarios by adding thunderstorms represented by transient no-fly
zones whose speed, shape and direction are also configured by the search. Our aim
will be to target our heuristics towards the late resolution of conflicts caused by the
additional vectoring of aircraft to avoid the storm.

References

1. Koza, J., Keane, M., Streeter, M.: Evolving inventions. Scientific American, 52–59 (2003)
2. Fonlupt, C.: Book review: Genetic programming IV: Routine human competitive machine

intelligence. Genetic Programming and Evolvable Machines 6, 231–233 (2005)
3. Alam, S., Zhao, W., Tang, J.: Discovering Delay Patterns in Arrival Traffic with Dynamic

Continuous Descent Approaches using Co-Evolutionary Red Teaming. In: 9th ATM Sem-
inar, Berlin (2011)

4. Alam, S., Lokan, C., Abbass, H.: What can make an airspace unsafe? characterizing
collision risk using multi-objective optimization. In: IEEE Congress on Evolutionary
Computation (CEC), pp. 1–8 (2012)

5. White, D.R., Poulding, S.: A Rigorous Evaluation of Crossover and Mutation in Genetic
Programming. In: Vanneschi, L., Gustafson, S., Moraglio, A., De Falco, I., Ebner, M.
(eds.) EuroGP 2009. LNCS, vol. 5481, pp. 220–231. Springer, Heidelberg (2009)

6. Goldberg, D.: Genetic algorithms in search, optimization, and machine learning. Addison-
Wesley (1989)

7. De Jong, K., Spears, W.: An analysis of the interacting roles of population size and cross-
over in genetic algorithms. In: Lecture Notes in Computer Science. Springer Berlin /
Heidelberg pp. 38–47 (1991)

8. Lima, C., Goldberg, D., Sastry, K., Lobo, F.: Combining competent crossover and muta-
tion operators: A probabilistic model building approach. In Beyer, H.-G. (ed.): Proceed-
ings of the 2005 Conference on Genetic and evolutionary computation (GECCO 2005),
New York, pp. 735–742 (2005)

9. Perrin, E., Kirwan, B., Stroup, R.: A Systemic model of ATM Safety: the integrated risk
picture. In: 7th ATM Seminar, Barcelona (2007)

10. ARMS Working Group, 2007-2010: The ARMS Methodology for Operational Risk
Assessment in Aviation Organisations. (v 4.1, March 2010)

11. Beyer, K., Goldstein, J., Ramakrishnan, R., Shaft, U.: When Is Nearest Neighbor Meaning-
ful? In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp. 217–235.
Springer, Heidelberg (1998)

12. Merz, P., Freisleben, B.: On the effectiveness of evolutionary search in high-dimensional
NK-landscapes. In: IEEE World Congress on Computational Intelligence, Evolutionary
Computation Proceedings, pp. 741–745 (1998)

13. Anderson, D., Lin, X.: A collision risk model for a crossing track separation methodology.
Journal of Navigation 49(3), 337–349 (1996)

EvoROBOT

Speeding Up Online Evolution of Robotic
Controllers with Macro-neurons

Fernando Silva1,3(B), Lúıs Correia3, and Anders Lyhne Christensen1,2

1 Instituto de Telecomunicações, Lisbon, Portugal
fsilva@di.fc.ul.pt, anders.christensen@iscte.pt

2 Instituto Universitário de Lisboa (ISCTE-IUL), Lisbon, Portugal
3 LabMAg, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal

luis.correia@di.fc.ul.pt

Abstract. In this paper, we introduce a novel approach to the online evo-
lution of robotic controllers. We propose accelerating and scaling online
evolution to more complex tasks by giving the evolutionary process direct
access to behavioural building blocks prespecified in the neural architec-
ture as macro-neurons. During task execution, both the structure and the
parameters of macro-neurons and of the entire neural network are under
evolutionary control. We perform a series of simulation-based experiments
in which an e-puck-like robot must learn to solve a deceptive and dynamic
phototaxis task with three light sources. We show that: (i) evolution is able
to progressively complexify controllers by using the behavioural build-
ing blocks as a substrate, (ii) macro-neurons, either evolved or prepro-
grammed, enable a significant reduction in the adaptation time and the
synthesis of high performing solutions, and (iii) evolution is able to inhibit
the execution of detrimental task-unrelated behaviours and adapt non-
optimised macro-neurons.

Keywords: Online evolution · Evolutionary robotics · Artificial neural
network · Prespecified behaviours · Neuronal model

1 Introduction

Online evolution is a process of continuous adaptation that potentially gives
robots the capacity to respond to task changes and unforeseen circumstances by
modifying their behaviour. An evolutionary algorithm (EA) is executed on the
robots themselves while they perform their task. The main components of the
EA (evaluation, selection, and reproduction) are carried out autonomously by
the robots without any external supervision. This way, robots may be capable
of long-term self-adaptation in a completely autonomous manner.

The first example of online evolution in a real mobile robot was performed
by Floreano and Mondada [7]. The introduction of embodied evolution by Wat-
son et al. [16] followed, in which the use of multirobot systems was motivated
by the speed-up of evolution due to the inherent parallelism in groups of robots
that evolve together in the task environment. Over the past decade, different
c© Springer-Verlag Berlin Heidelberg 2014
A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2014, LNCS 8602, pp. 765–776, 2014.
DOI: 10.1007/978-3-662-45523-4 62

766 F. Silva et al.

approaches to online evolution have been proposed. Examples include the (μ+1)-
online EA of Haasdijk et al. [9], mEDEA by Bredeche et al. [1], and odNEAT
by Silva et al. [11]. Notwithstanding, there are still a number of fundamental
issues and technological challenges that must be addressed before online evolu-
tion becomes a viable approach to adaptation in real robots. The prohibitively
long time that the online evolutionary process requires and the fact that ER
techniques have not yet scaled to real-world tasks [4] are central impediments to
adoption.

In this paper, we introduce a novel approach to the online evolution of neu-
ral network-based robotic controllers. We propose the combined use of standard
neurons as elementary components, and higher level units that we shall refer
to as macro-neurons. The macro-neurons are behavioural building blocks, either
evolved or preprogrammed, that are integrated in the neural architecture before
the evolutionary process is conducted. During task execution, both the structure
and the parameters of macro-neurons and of the entire ANN are under evolu-
tionary control. In this way, evolution is able to continuously optimise and adapt
controllers by using the behavioural building blocks as a substrate.

Our proposed method contrasts with previous approaches in which: (i) ANN
outputs are used to execute one out of a finite set of predefined behaviours,
either evolved or preprogrammed [3,8,15], which may forestall the synthesis
of theoretically optimal controllers, or (ii) ANN-based controllers synthesised
through hierarchical decomposition of the task, and structured composition of
both evolved and preprogrammed behaviours [4,6,8], which require a substantial
amount of experimentation and human intervention. The viability of our method
is assessed through a set of simulation-based experiments in which an e-puck-like
robot [10] must perform a deceptive and dynamic phototaxis task with three light
sources. To the best of our knowledge, this is the first demonstration of unified
online evolution of the weights and the ANN topology, and higher level units
representing behaviours.

2 Background

In this section, we describe our proposed macro-neuron-based architecture, and
we introduce odNEAT, the online neuroevolution algorithm used in this study.

2.1 Specification of Macro-neurons

The main goal in using macro-neurons is to give online evolution behavioural
building blocks in order to: (i) synthesise increasingly more complex behaviours
by capitalising on the existing ones, both evolved and preprogrammed, and
(ii) adapt the structure and the parameters of existing solutions through evolu-
tion. Therefore, it is fundamental to specify the behavioural building blocks in
a way that enables the evolutionary process to optimise them.

Each macro-neuron M is defined as {Ic, Oc, F, P}, where Ic is the set of
input connections of M , Oc is the set of output connections, F is the function
computed by the macro-neuron, and P is the set of parameters of M subject to

Speeding Up Online Evolution of Robotic Controllers with Macro-neurons 767

I1 I2 I3

O1

H1

O2

H2

O1

H1

O2

H2

I1 I2 I3

O1 O2

I4

O3

(a) Evolved macro-neuron

PP1

I1 I2 I3

O1

PP2Parame te r

PriorityPriority

Activ. Activ.

I4

(b) Preprogrammed macro-
neurons

Fig. 1. Examples of the integration of different types of behavioural building blocks
in neural architectures. (a) An evolved ANN-based macro-neuron. (b) Two prepro-
grammed macro-neurons.

evolution. Each connection Ic,i ∈ Ic contains a weight wi ∈ w and transmits to
M an input value xi ∈ x. The computation of M is given by f(w, x) = y, where
y is the output vector of M . Each yj ∈ y is transmitted to other neurons via the
corresponding connection Oc,j ∈ Oc. Depending on the type of macro-neuron, P
refers to different elements. If M is a preprogrammed macro-neuron, P contains
the numerical parameters of the behaviour (see below). If M is an evolved ANN,
P refers to the connections and neurons that can be manipulated by evolution.

The construction and functioning of neural architectures using macro-neurons
is shown in Fig. 1. Figure 1a shows how a previously evolved ANN is trans-
lated to a macro-neuron. The connections from the macro-neuron to the output
neurons of the network enable evolution to arbitrate and shape the output val-
ues of different macro-neurons. Complementary, Fig. 1b illustrates how different
preprogrammed macro-neurons are specified. Each macro-neuron transmits two
values to each output neuron: (i) a priority value, which represents the effec-
tive need of the behaviour to execute at a given time, computed based on the
input values, and (ii) an activity value representing the signal to be sent to the
actuators controlled by the output neurons.

The goal of incorporating both priority and activity values in preprogrammed
macro-neurons is to add human knowledge to better resolve conflict situations
in which different preprogrammed macro-neurons compete for control [2]. In this
case, each output neuron considers the activity of the preprogrammed macro-
neuron with the highest priority. If no preprogrammed behaviour produces a
positive priority value, the output neuron performs the weighted sum of its
remaining inputs from standard neurons such as I4 in Fig. 1b.

An important feature of our approach is that macro-neurons are prespecified
in the neural architecture before the evolutionary process is conducted. During
task execution, online evolution is able to: (i) optimise the structure of evolved
macro-neurons and of the entire network by adding new neurons and new con-

768 F. Silva et al.

nections, and by adjusting the connection weights, (ii) adapt the parameters of
preprogrammed behaviours such as PP1 in Fig. 1b, and (iii) modulate the exe-
cution of macro-neurons by increasing or decreasing the strength of connections
such as those related to the priority and activity values. In this way, evolution
can, for instance, disable the execution of unnecessary macro-neurons. By com-
bining ANNs and prespecified macro-neurons, either evolved or preprogrammed,
we compound: (i) the ANNs’ flexibility, robustness, and tolerance to noise [7],
(ii) the benefits of each type of macro-neuron, which can be synthesised by
distinct evolutionary processes or hand-designed in order to shortcut complex
evolutionary processes, (iii) a higher level bootstrap process, which potentially
allows robots to adapt to complex and dynamic tasks in a timely manner.

2.2 odNEAT: An Online Neuroevolution Algorithm

NEAT [14] is a state-of-the-art neuroevolution method that evolves the weights
and the topology of ANNs. odNEAT [11] is an online, steady-state, decentralised
version of NEAT, originally designed for multirobot systems. odNEAT is used
in our study because it has shown to enable efficient online adaptation in single
robot domains [12]. As we conduct our experiments using one robot, we only
describe odNEAT’s features with respect to a single agent.

The robot is controlled by an ANN that represents a candidate solution to
the task, and maintains a virtual energy level representing its performance. The
fitness value is defined as the average of the energy level, sampled at regular
time intervals. The robot maintains a population of genomes, the direct genetic
encoding of ANNs, and their respective fitness scores in an internal repository.
The repository implements a niching scheme comprising speciation and fitness
sharing, which allows the robot to maintain a healthy diversity of candidate
solutions with different topologies.

In the original definition, odNEAT starts executing with a population of ran-
dom networks in which each input neuron is connected to every output neuron.
When the virtual energy level reaches zero, the current controller is considered
unfit for the task. A new genome representing a new controller is created by
choosing a parent species from the internal population, and selecting two par-
ents, each one via a tournament selection of size 2. Offspring is created through
crossover of the parents’ genomes and mutation of the new genome. Once the
genome is decoded into a new controller, it is guaranteed a minimum matura-
tion period α during which it controls the robot. Mutation is both structural
and parametric, as it adds new neurons and connections, and optimises exist-
ing parameters such as connection weights and neuron bias values. In this way,
odNEAT avoids a priori specification of the network topology and can evolve
an appropriate degree of complexity for the task.

3 Methods

In this section, we define our experimental methodology, including the robot
model, the deceptive phototaxis task, and the experimental setup.

Speeding Up Online Evolution of Robotic Controllers with Macro-neurons 769

3.1 Robot Model and Behavioural Control

We use JBotEvolver [5], an open-source, multirobot simulation platform and
neuroevolution framework for our experiments. The simulated robot is modelled
after the e-puck [10], a 75 mm in diameter, differential drive robot capable of
moving at a maximum speed of 13 cm/s. The robot is equipped with eight IR
sensors for obstacle detection. The IR sensors have a range of 25 cm.1 Each
IR sensor and each actuator is subject to noise, which is simulated by adding
a random Gaussian component within ±5% of the sensor saturation value or
of the maximum actuation value. The robot is also equipped with an internal
sensor that allows it to perceive its current virtual energy level.

During task execution, the robot is controlled by a discrete time recurrent
ANN synthesised by odNEAT. The ANN’s connection weights ∈ [-5,5] and the
activation function is the steepened sigmoid [14]. The inputs of the ANN are the
normalised readings from the sensors mentioned above. The input layer consists
of 17 neurons: (i) eight for wall detection, (ii) eight for light source detection, and
(iii) one neuron for the virtual energy level readings. The output layer contains
two neurons, one for setting the signed speed value of each wheel.

3.2 Deceptive Phototaxis

Phototaxis is a standard task in evolutionary robotics, in which robots have to
search for and move towards a light source. We study a deceptive and dynamic
version of the phototaxis task with three light sources. One source is beneficial
to the robot, one source is neutral, and the remaining source is detrimental. The
sources are static but they periodically switch their type causing, for instance,
the beneficial light source to become neutral or detrimental, and vice versa.

The task requires the robot to perform phototaxis when faced with the bene-
ficial light source, and to perform anti-phototaxis as the alternative action when
in close proximity to either the neutral or the detrimental light source. Deceptive-
ness is introduced by the fact that the three light sources are indistinguishable to
the robot’s light sensors. The robot must therefore discriminate between differ-
ent lights based on the temporal correlation between its energy sensor readings
and proximity to a given source.

The task environment is illustrated in Fig. 2. The robot operates in a square
arena surrounded by walls. The size of the arena is chosen to be 3 x 3 meters. The
arena contains four obstacles with dimensions 0.5 x 0.125 meters and one obstacle
with dimensions 0.125 x 0.5 meters. The obstacles are of the same material as
walls, and increase the difficulty of the task by reducing the area for navigation,
and ensuring that there is no straight path between different light sources. The
placement and size of the light sources is inspired in the experimental setup of
Sperati et al. [13]. The sources have a diameter of 0.32 meters and are positioned
symmetrically with respect to the centre of the arena. The distance between the
1 The original e-puck infrared range is 2-3 cm [10]. In real e-pucks, the liblrcom library,

available at http://www.e-puck.org, extends the range up to 25 cm.

http://www.e-puck.org

770 F. Silva et al.

Fig. 2. The task environment. The arena measures 3 x 3 meters. The dark areas denote
physical obstacles, while the white areas denote the arena surface on which the robot
can navigate. The circular areas represent the different sources.

light sources is set at 1.5 meters. The type of each light source is rotated every
five minutes of simulated time in a clockwise manner.

Initially, the robot is placed in a random position. During simulation, the
energy level E is updated every 100 ms according to the following equation:

ΔE

Δt
=

⎧⎪⎨
⎪⎩

Sr if Sr > 0.5 and near beneficial source
−(Sr + Ec) if near detrimental source
−Ec if near neutral source or not close to any source

(1)

where Sr is the maximum value of the readings from the light sensors, between
0 (no light) and 1 (brightest light), and Ec is a constant energy consumption
value of 0.5. Note that the robot is only rewarded if it is significantly close to
the beneficial source, i.e., if Sr > 0.5.

3.3 Experimental Setup

We conducted experiments using two types of macro-neurons: evolved ANNs
and preprogrammed behaviours. We synthesised three basic primitives of each
type: (i) a move forward behaviour, executed if there is no obstacle ahead of the
robot, (ii) a turn left behaviour and (iii) a turn right behaviour. The two ”turn”
behaviours enable turning in the respective direction if there is an obstacle in
sensor range. The move forward behaviour has access to the readings from the
robot’s three front sensors. The turn left and turn right behaviours process the
inputs from the three front-right sensors and three front-left sensors, respectively.
The macro-neurons are all fully-connected to the output neurons.

The evolved macro-neurons were synthesised using the offline NEAT algo-
rithm [14]. For obtaining each ANN, we conducted 30 independent runs. Each
run was performed using a population of 100 genomes and lasted 100 genera-
tions. The fitness score of each genome was averaged over 20 samples at each
evaluation. After the evolutionary process ended, we post-evaluated the highest
scoring controller of each run in 100 samples, and we selected the best controller

Speeding Up Online Evolution of Robotic Controllers with Macro-neurons 771

to form a macro-neuron. The ”turn” behaviours were evolved in a T-maze envi-
ronment. The move forward behaviour was evolved in a long corridor.

We developed three preprogrammed macro-neurons functionally similar to
the evolved ANNs. As described in Section 2.1, each of these macro-neurons
produces priority values and activity values. The move forward behaviour exe-
cutes with fixed priority p = 0.5 and transmits activity values a = 1.0 to each
output neuron, i.e., the robot moves at maximum speed. The turn left behaviour
produces a priority value p proportional to the distance of the closest obstacle
on the front-right side of the robot, and activity values aleft = 0 and aright = 0.1.
The turn right behaviour operates in a similar manner with respect to the obsta-
cles on the front-left side of the robot, and produces activity values aleft = 0 and
aright = 0.1. The priorities of the ”turn” behaviours permit a flexible behaviour
selection depending on the distance to obstacles, and the activity values enable
smooth turns while avoiding an obstacle. Each preprogrammed macro-neuron
executes for exectime control cycles of the robot.

Experimental Configuration. We conducted four sets of evolutionary exper-
iments to assess the performance levels of our approach. In the first set of exper-
iments, macro-neurons were not used and odNEAT relied on evolution alone.
To provide a meaningful and fair comparison of performance, we conducted a
series of preliminary tests to determine the best initial topology for evolution
alone. We seeded evolution with a fully-connected hidden layer, and we varied
the number of hidden neurons from 1 to 10. We consistently verified better per-
formance when evolution alone started without hidden neurons, i.e., with each
input neuron connected to every output neuron (ρ < 0.05, Mann-Whitney test).
In the second set of experiments, evolution was given access to the three prepro-
grammed macro-neurons. In the third set of experiments, evolution was seeded
with the three evolved macro-neurons. The topology and the connection weights
of evolved macro-neurons were also subject to evolution, allowing the behaviours
to be adapted during task execution. In the last set of experiments, we evaluated
an hybrid approach with access to the preprogrammed move forward behaviour
and to the evolved ”turn” behaviours.

For each experimental configuration, we performed 30 independent runs.
Each run lasted 100 hours of simulated time. The virtual energy level of the
robot was limited to the range [0,100] energy units. If the virtual energy level
reached zero, a new controller was generated and assigned the maximum energy
value of 100 units. Crossover was not used. Other parameters of odNEAT were
the same as in [11]. The parameter exectime of each preprogrammed macro-
neuron was initially set at 1 and subject to a Gaussian mutation with mean 0
and standard deviation of 1. During task execution, exectime was rounded to
the nearest integer value. Note that in the case of the ”turn” behaviours with
low exectime values, it is the consecutive execution of the behaviour while an
obstacle is in range that enables the robot to avoid the obstacles.

772 F. Silva et al.

4 Experimental Results

In this section, we present and discuss the experimental results. We use the
Mann-Whitney test to compute statistical significance of differences between sets
of results because it is a non-parametric test, and therefore no strong assumptions
need to be made about the underlying distributions.

We first compare the performance of the four neural architectures. We anal-
yse: (i) the number of evaluations, i.e., the number of controllers tested by the
robot before a solution to the task is found, (ii) the evaluation time elapsed
before the solution is synthesised, and (iii) the task performance in terms of
fitness score. Evaluation time is measured to complement the number of evalua-
tions. In odNEAT, controllers execute as long as they are able to solve the task,
and the duration of evaluations therefore tends to vary (see Sect. 2.2).

The distributions of the number of evaluations and of the evaluation time
are shown in Fig. 3. All runs produced controllers well adapted to the periodic
changes in the task requirements. The three neural architectures using macro-
neurons significantly outperform evolution alone as they require fewer evalua-
tions and shorter evaluation times to synthesise solutions for the task (ρ < 0.01,
Mann-Whitney). Differences in the number of evaluations and in the evaluation
time of architectures using macro-neurons are not significant (ρ ≥ 0.05).

The most efficient synthesis of controllers occurs when using the evolved
macro-neurons, which require an average of 57.60 evaluations and 1.78 hours
of evaluation time. Controllers using preprogrammed macro-neurons need 71.50
evaluations and have an evaluation time of 1.91 hours, and the hybrid setup
requires an average of 68.53 evaluations and 2.91 hours of evaluation time. Evo-
lution alone requires 201.60 evaluations and 9.50 hours of simulated time. Over-
all, the results support the conclusion that online evolution can be significantly
accelerated by using prespecified behavioural building blocks. Macro-neurons
speed up online evolution substantially by reducing the number of evaluations
between 69% and 71%, and the evaluation time between 53% and 80%.

0

100

200

300

400

500

600

700

800

900

evo alone evol macro prog macro hybrid macro

D
is

tri
bu

tio
n

of
 e

va
lu

at
io

ns

Distribution of evaluations - deceptive phototaxis

(a) Number of evaluations

0

5

10

15

20

evo alone evol macro prog macro hybrid macro

D
is

tr
ib

ut
io

n
of

 e
va

lu
at

io
n

tim
e

(h
ou

rs
)

Distribution of evaluation time - deceptive phototaxis

(b) Evaluation time

Fig. 3. Distribution of: (a) the number of evaluations necessary to synthesise a solution
to the task, and (b) duration of the evaluation period. Outliers above 20 hours in (b)
are not shown for better reading of the plot. The missing values are 20.20, 26.96, 54.67,
and 77.59 hours, all with respect to evolution alone.

Speeding Up Online Evolution of Robotic Controllers with Macro-neurons 773

An analysis of the fitness scores of solutions to the task shows that the four
neural architectures provide comparable results, with a slight advantage in favour
of ANNs synthesised with access to the evolved macro-neurons. Controllers using
evolved macro-neurons have an average fitness score of 75.85. In the remaining
approaches, which include evolution alone, the average fitness score varies from
67.21 to 69.95. Differences in the fitness scores are not statistically significant
across all comparisons (ρ ≥ 0.05, Mann-Whitney). In this way, using macro-
neurons not only allows for a speed-up in the adaptation process, but also leads
to the synthesis of competitive and potentially superior performing solutions.

4.1 Dynamics of Neural Architectures

The results described above show that neural architectures using macro-neurons
enable a significantly faster adaptation process. In this section, we analyse the
topologies of networks evolved in the four experimental configurations in order
to determine differences in neural augmentation and dynamics.

The complexity of solutions that solve the task is listed in Table 1. Over-
all, evolution alone presents the least complex topologies. Despite solving the
task with less structure, the number of evaluations and evaluation time are
higher, as discussed in the previous section. Given the deceptiveness and com-
plexity of the task, the evolutionary process without access to macro-neurons dis-
plays significant difficulties in bootstrapping and finding functioning controllers.
Complementarily, ANNs with evolved macro-neurons present the most complex
topologies although they require fewer evaluations and shorter evaluation peri-
ods. Compared to evolution alone, evolved macro-neurons enable higher level
bootstrapping as ANNs are seeded with basic general competences for the task.
The new connections and new neurons added through evolution augment and
adjust both the ANN and the structure of the evolved macro-neurons. The capa-
bility to continuously evolve the macro-neurons is particularly important in the
case of online evolution as the evolutionary process is given a means to adapt
the prespecified behavioural building blocks to the task requirements, and to
synthesise more complex behaviours by capitalising on the existing ones.

Final solutions synthesised using preprogrammed macro-neurons are not sub-
stantially augmented in terms of neural complexity. The main source of opti-
misation was the mutation of the connection weights. Online evolution takes
advantage of the preprogrammed behaviours’ functionality and adjusts primar-
ily the way in which they are used in order to synthesise a solution to the task.
Evolution adapts the ANN by: (i) arbitrating the execution of different prepro-
grammed behaviours for navigation in the environment, and (ii) modulating the
excitatory and inhibitory signals of connections related to the operation of the
macro-neurons. For instance, when the robot finds the beneficial light source,
the programmed behaviours are often inhibited. The robot remains close to the
light source by moving around it until the type of the source is changed.

Complementarily, solutions using the preprogrammedmove forward behaviour
and the evolved ”turn” behaviours exhibit the two characteristics described above.
On one hand, evolvedmacro-neurons are adjusted and adapted.On the other hand,

774 F. Silva et al.

Table 1. Neural complexity of the final controllers. Initial complexity, and number of
neurons and connections added through evolution (average ± std. dev.)

Initial topology Structure added

Experimental configuration Neurons Connections Neurons Connections

Evolution alone 19 34 3.23 ± 0.43 6.60 ± 0.77
Evolved macro 39 69 5.80 ± 1.56 12.00 ± 3.16
Preprogrammed macro 22 45 0.17 ± 0.38 0.67 ± 0.84
Hybrid macro 34 60 2.59 ± 0.91 8.31 ± 1.56

evolution optimises when and how the preprogrammed macro-neuron is used in
order to maximise task performance.

4.2 Assessing the Robustness of Evolution

In our approach, evolved and preprogrammed behavioural building blocks are
prespecified in the neural architecture. In this section, we assess if the online
adaptation process is able to inhibit or adapt task-unrelated or non-optimised
macro-neurons. We setup two series of experiments, each composed by 30 inde-
pendent runs. In the first set of experiments, ANNs are initialised with the three
evolved macro-neurons and a do not move preprogrammed macro-neuron. The
preprogrammed macro-neuron continuously produces a priority value p = 1.0
and an activity value a = 0 to each output neuron, therefore indicating that
the most important action is always for the robot not to move. In the sec-
ond set of experiments, neural architectures are initialised only with the three
navigation-related evolved macro-neurons. Part of the structure of the evolved
macro-neurons is ablated, making them less optimised or even unsuited for the
task. Before online evolution is conducted, each connection weight of the evolved
macro-neurons is reset to 0 with probability prob = 0.25, sampled from a uni-
form distribution. The goal of the experiment is to analyse the potential costs
and the adaptability of online evolution when given access to incomplete and
non-optimised macro-neurons.

Table 2 summarises the results of the robustness experiments. Results show
that evolution is able to successfully overcome the presence of task-unrelated
or non-optimised macro-neurons, either evolved or preprogrammed. In the two
setups, solutions are synthesised faster than by evolution alone with respect to
the number of evaluations and to the evaluation time (ρ < 0.01, Mann-Whitney).
In the experimental setup with the do not move behaviour, the macro-neuron
is preprogrammed and therefore its structure is not subject to optimisation.
Evolution is obliged to perform a finer-grain adjustment of connection weights
in order to inhibit the outputs of the detrimental macro-neuron, hence the higher
number of evaluations and the longer evaluation time.

In the experimental setup using the partially ablated evolved macro-neurons,
evolution produces solutions faster but with lower performance when compared
to the non-ablated counterparts. In general terms, the ablated macro-neurons
cause unadapted solutions to fail rapidly during task execution, hence the low

Speeding Up Online Evolution of Robotic Controllers with Macro-neurons 775

Table 2. Comparison of results across different experimental configurations. The table
lists the average values of each experimental configuration.

Experimental configuration Evaluations Eval. time (hours) Fitness score

Evolution alone 201.60 9.50 67.21
Evolved macro 57.60 1.78 75.85
Evolved + do not move macro 73.17 3.13 75.32
Ablated evolved macro 77.33 1.59 69.00

evaluation time. The structure and the parameters of the ablated macro-neurons
and of the entire ANN are then progressively optimised until a solution capable
of solving the task is synthesised. However, as the ablated evolved macro-neurons
are less optimised, the solutions generally yield lower performance levels.

5 Conclusions

In this paper, we introduced a novel approach to the online evolution of robotic
controllers. We give evolution direct access to behavioural building blocks pre-
specified in the neural architecture as macro-neurons. The structure and the
parameters of macro-neurons are under evolutionary control, and they are opti-
mised together with the ANN’s weights and topology in a unified manner.

We showed that macro-neurons significantly outperform evolution alone as
they enable a substantial reduction in the adaptation time, and the synthe-
sis of high performing solutions. We also showed that distinct types of macro-
neurons allow the evolution of solutions in different ways. When using evolved
macro-neurons, both the macro-neurons and the entire ANN are progressively
augmented and adjusted in order to adapt the building blocks to the task require-
ments. When using preprogrammed macro-neurons, evolution adds significantly
less structure to the ANN. The evolutionary process adapts the ANNs by arbi-
trating the execution of the preprogrammed behaviours, and modulating the
input and output signals of the macro-neurons. To conclude, we have also shown
that online evolution can successfully: (i) inhibit the execution of detrimental
behaviours, and (ii) adapt non-optimised macro-neurons.

The immediate follow-up work includes extending our approach to multirobot
systems that exchange solutions to the task [11], in order to potentially facilitate
online evolution for real-world complex tasks.

Acknowledgments. This work was partially supported by the Fundação para a Ciência
e a Tecnologia under the grants SFRH/BD/89573/2012, EXPL/EEI-AUT/0329/2013,
PEst-OE/EEI/LA0008/2013, and PEst-OE/EEI/UI0434/2011.

References

1. Bredeche, N., Montanier, J.M., Liu, W., Winfield, A.F.: Environment-driven dis-
tributed evolutionary adaptation in a population of autonomous robotic agents.
Mathematical andComputerModelling ofDynamical Systems18(1), 101–129 (2012)

776 F. Silva et al.

2. Correia, L., Steiger-Garção, A.: A useful autonomous vehicle with a hierarchi-
cal behavior control. In: Morán, F., Moreno, A., Merelo, J.J., Chacón, P. (eds.)
Advances in Artificial Life. LNCS, vol. 929, pp. 625–639. Springer, Heidelberg (1995)

3. Duarte, M., Oliveira, S., Christensen, A.L.: Automatic Synthesis of Controllers for
Real Robots Based on Preprogrammed Behaviors. In: Ziemke, T., Balkenius, C., Hal-
lam, J. (eds.) SAB 2012. LNCS, vol. 7426, pp. 249–258. Springer, Heidelberg (2012)

4. Duarte, M., Oliveira, S., Christensen, A.L.: Hierarchical evolution of robotic con-
trollers for complex tasks. In: IEEE International Conference on Development and
Learning and Epigenetic Robotics, pp. 1–6. IEEE Press, Piscataway (2012)

5. Duarte, M., Silva, F., Rodrigues, T., Oliveira, S.M., Christensen, A.L.: JBotE-
volver: A Versatile Simulation Platform for Evolutionary Robotics. In: 14th Inter-
national Conference on the Synthesis and Simulation of Living Systems, pp. 210–
211. MIT Press, Cambridge (2014)

6. Fernandez-Leon, J.A., Acosta, G.G., Mayosky, M.A.: Behavioral control through
evolutionary neurocontrollers for autonomous mobile robot navigation. Robotics
and Autonomous Systems 57(4), 411–419 (2009)

7. Floreano, D., Mondada, F.: Automatic creation of an autonomous agent: Genetic
evolution of a neural-network driven robot. In: 3rd International Conference on
Simulation of Adaptive Behavior, pp. 421–430. MIT Press, Cambridge (1994)

8. Godzik, N., Schoenauer, M., Sebag, M.: Evolving Symbolic Controllers. In: Raidl,
G.R., Cagnoni, S., Cardalda, J.J.R., Corne, D.W., Gottlieb, J., Guillot, A., Hart,
E., Johnson, C.G., Marchiori, E., Meyer, J.-A., Middendorf, M. (eds.) EvoIASP
2003, EvoWorkshops 2003, EvoSTIM 2003, EvoROB/EvoRobot 2003, EvoCOP
2003, EvoBIO 2003, and EvoMUSART 2003. LNCS, vol. 2611, pp. 638–650.
Springer, Heidelberg (2003)

9. Haasdijk, E., Eiben, A., Karafotias, G.: On-line evolution of robot controllers by an
encapsulated evolution strategy. In: IEEE Congress on Evolutionary Computation,
pp. 1–7. IEEE Press, Piscataway (2010)

10. Mondada, F., Bonani, M., Raemy, X., Pugh, J., Cianci, C., Klaptocz, A.,
Magnenat, S., Zufferey, J., Floreano, D., Martinoli, A.: The e-puck, a robot
designed for education in engineering. In: 9th Conference on Autonomous Robot
Systems and Competitions, pp. 59–65. IPCB, Castelo Branco (2009)

11. Silva, F., Urbano, P., Oliveira, S., Christensen, A.L.: odNEAT: An algorithm for
distributed online, onboard evolution of robot behaviours. In: 13th International
Conference on Simulation & Synthesis of Living Systems, pp. 251–258. MIT Press,
Cambridge (2012)

12. Silva, F., Urbano, P., Christensen, A.L.: Adaptation of Robot Behaviour through
Online Evolution and Neuromodulated Learning. In: Pavón, J., Duque-Méndez,
N.D., Fuentes-Fernández, R. (eds.) IBERAMIA 2012. LNCS, vol. 7637, pp. 300–
309. Springer, Heidelberg (2012)

13. Sperati, V., Trianni, V., Nolfi, S.: Self-organised path formation in a swarm of
robots. Swarm Intelligence 5(2), 97–119 (2011)

14. Stanley, K., Miikkulainen, R.: Evolving neural networks through augmenting
topologies. Evolutionary Computation 10(2), 99–127 (2002)

15. Urzelai, J., Floreano, D., Dorigo, M., Colombetti, M.: Incremental robot shaping.
Connection Science 10(3–4), 341–360 (1998)

16. Watson, R., Ficici, S., Pollack, J.: Embodied evolution: Distributing an evolution-
ary algorithm in a population of robots. Robotics and Autonomous Systems 39(1),
1–18 (2002)

HyperNEAT Versus RL PoWER for Online Gait
Learning in Modular Robots

Massimiliano D’Angelo1, Berend Weel2(B), and A.E. Eiben2

1 University La Sapienza, Rome, Italy
maxxi.d.angelo@gmail.com

2 VU University Amsterdam, Amsterdam, The Netherlands
{b.weel,a.e.eiben}@vu.nl

Abstract. This paper addresses a principal problem of in vivo evolution
of modular multi-cellular robots, where robot ‘babies’ can be produced
with arbitrary shapes and sizes. In such a system we need a generic
learning mechanism that enables newborn morphologies to obtain a suit-
able gait quickly after ‘birth’. In this study we investigate and compare
the reinforcement learning method RL PoWeR with HyperNEAT. We
conduct simulation experiments using robot morphologies with different
size and complexity. The experiments give insights into the differences in
solution quality and algorithm efficiency, suggesting that reinforcement
learning is the preferred option for this online learning problem.

Keywords: Embodied artificial evolution · Modular robots · Artificial
life · Online gait learning · Reinforcement learning · HyperNEAT

1 Introduction

The work described in this paper forms a stepping stone towards the grand
vision of embodied artificial evolution (EAE) as outlined in [7]. The essence
of this vision is to construct physical systems that undergo evolution ‘in the
wild’, i.e. not in a virtual world inside a computer. There are various possible
approaches towards this goal including chemical and biological ones. The one
behind this study is based on using a mechatronical substrate, that is, robots.

In general, there are two principal forces behind evolution: selection and
reproduction. Selection –at least environmental, objective-free selection– is ‘for
free’ in the real world. Therefore, the main challenge for EAE is reproduction,
i.e., the creation of tangible physical artifacts with the ability to reproduce.
In our case, this means the need for self-reproducing robots. The approach we
follow to this end is based on modular robotics with robotic building blocks
capable of autonomous locomotion and aggregation into complex ‘multicellular’
structures in 3D. In this system evolution will not take place in the morphological
space of these pre-engineered modules, but in the morphological space of the
multicellular organisms. From the perspective of the multicellular robot bodies

c© Springer-Verlag Berlin Heidelberg 2014
A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2014, LNCS 8602, pp. 777–788, 2014.
DOI: 10.1007/978-3-662-45523-4 63

778 M. D’Angelo et al.

the basic robots are merely raw material whose physical properties do not change
over time.1

In [6] a conceptual framework for systems where robot morphologies and
controllers can evolve in real-time and real-space is presented. This framework,
dubbed the Triangle of Life, describes a life cycle that does not run from birth to
death, but from conception (being conceived) to conception (conceiving one or
more children) and it is repeated over and over again, thus creating consecutive
generations of ‘robot children’. The Triangle of Life consists of 3 stages, Birth,
Infancy, and Mature Life, cf. Fig. 1.

Fig. 1. The Triangle of Life. The pivotal
moments that span the triangle and sepa-
rate the 3 stages are: 1) Conception: A new
genome is activated, construction of a new
organism starts. 2) Delivery: Construction
of the new organism is completed. 3) Fer-
tility: The organism becomes ready to con-
ceive offspring.

In this paper we address a funda-
mental problem in the Infancy stage.
This stage starts when the morpho-
genesis of a new robot organism is
completed and the ‘baby robot’ is
delivered. As explained in [6], the
body (morphological structure) and
the mind (controller) of such a new
organism will unlikely fit each other
well. Therefore the new organism
needs some fine tuning.This problem –
the Control Your Own Body (CYOB)
problem– is inherent to evolutionary
ALife systems where both bodies and
minds undergo changes during repro-
duction.

The work described here addresses
the general CYOB problem in a sim-
plified form, by reducing it to gait
learning. In the modular robots approach the challenge is to find a method
that can learn gaits for all different morphologies that can be created with the
given modules and can do this quickly. The problem is highly nontrivial, since
a modular robot organism has many degrees of freedom, which leads to a very
large search space of possible gaits. Furthermore, this learning process must take
place on-the-fly, during the real operational period of the robot organisms. The
off-line approach, where a good controller is developed (evolved, learned, hand-
coded, etc.) before the robot is deployed is not applicable here, because the life
cycle of the Triangle is running in a hands-free mode without being paused for
intervention by the experimenter.

In our previous work [5] we have applied a reinforcement learning algorithm
PoWeR described by Kober and Peters [14] to solve the CYOB problem and
investigated the effects of the shape and size of robot organisms on the perfor-
mance of the learning method. In this paper we employ an evolutionary approach
HyperNEAT [4] that has a good reputation for this type of tasks and compare

1 Nevertheless, evolving the controllers of these elementary robot modules during the
operational period is possible.

HyperNEAT Versus RL PoWER for Online Gait Learning 779

it with PoWeR. Similarly to [5] we use the learning algorithms with parameter
values as recommended by the authors. The grand evolutionary process of the
Triangle of Life is not investigated here; it only forms the background context
that raises the CYOB problem.

The specific research questions our experiments will try to answer are the
following:

1. How do the two approaches compare in terms of the quality of the learned
gaits?

2. How do the two approaches compare in terms of the speed of learning?

2 Related Work

The design of locomotion for modular robotics is a difficult problem. As explained
by Spröwitz: Locomotion requires the creation of rhythmic patterns which satisfy
multiple constraints: generating forward motion, without falling over, with low
energy, possibly coping with different environments, hardware failures, changes
in the environment and/or of the organism [18].

One of the earliest types is gait control tables as in, for instance, [1] and
[19]. A gait control table consist of rows of actuator commands with one col-
umn for each actuator, each row also has a condition for the transition to the
next row.A second major avenue of research is that of neural networks (NN).
In particular for locomotion of robot organisms HyperNEAT is used extensively
with several studies showing that HyperNEAT is capable of creating efficient
gaits for robots [4,9,20]. HyperNEAT is discussed in more detail in Section
3. Another successful approach that has received much attention is based on
Central Pattern Generators (CPG). CPGs model neural circuitry found in ver-
tebrates which output cyclic patterns without requiring a cyclic input [11]. Each
actuator in a robot organism is controlled by the output of a CPG, furthermore
the CPGs are connected through certain variables which allows them to synchro-
nise and maintain a certain phase difference pattern. Although sensory input is
not strictly needed for CPG’s, it can be incorporated to shape the locomotion
pattern to allow for turning and modulating the speed. This technique has been
shown to produce well performing and stable gaits on both non-modular robots
[2,18] and modular multi-robot organisms [12,13]. Last, a technique based on
artificial hormones has been investigated for the locomotion of modular robot
organisms. In this technique artificial hormones are created within robot modules
as a response to sensory inputs. These hormones can interact with each other,
diffuse to neighbouring modules and act upon output hormones. These output
hormones are then used to drive the actuators [10,17]. Furthermore, some tech-
niques in the field of gait learning employ reinforcement learning algorithms, the
specific approaches used can range from Temporal Difference Learning (TDL) to
Expectation-Maximization (EM). In TDL one seeks to minimize an error func-
tion between estimated and empirical results of a controller, in EM controller
parameters are estimated in order to maximize the reward gained using it. These
algorithms have been used on modular, e.g. [3] and non modular robots, e.g. [16].

780 M. D’Angelo et al.

Although there is extensive previous work on this issue, we must stress that,
of the techniques described above, only the techniques described in [3], [12] and
[18] were actually tested on multiple shapes.

3 Experimental Setup

Our primary goal is to compare the reinforcement learning (RL) approach RL
PoWER to the population based neural network approach HyperNEAT. Similar
to the work in [5] we test both algorithms in various organism morphologies set
in a simple environment. These tests are done in simulation using the Webots
symulator by Cyberbotics. We use the same adapted YaMoR module [15] as the
building blocks for the organisms. The environment for the experiments is an
infinite plane, free of obstacles to avoid any extra complexity and the need for
supervision. Each experiment starts with the organism lying completely flat at
the plane origin.

Nine different robot organisms with different sizes and complexity are defined
to examine the generality and scalability of the algorithms. Size and complex-
ity are measured by the number of modules and by the number of extremi-
ties, respectively. The experiments are conducted with three complexity levels:
organisms with two extremities (I-shape), three extremities (T-shape), and four
extremities (H-shape). Each shape is then constructed in three sizes: 7, 11 and
15 modules. A screenshot of the shapes with 7 modules can be seen in Fig. 2,
the 11 and 15 module shapes are created by adding modules to the extremities.

(a) Organism I-7 (b) Organism T-7 (c) Organism H-7

Fig. 2. Robot organisms of size 7

RL PoWeR. We use the RL PoWeR reinforcement learning algorithm described
by Kober and Peters [14] to optimise the parameters of a set of cyclic splines,
called a policy. In such a policy each spline specifies the angular positions of one
of the actuator over time. The use of a set of cyclic splines as the representation
was taken from [16].

A cyclic spline is a mathematical function that can be defined using a set
of n control points. Each control point is defined by (ti, αi) where ti represents
time and αi the corresponding value. ti ∈ [0, 1] is defined as

ti =
i

n − 1
, ∀i = 0, . . . , (n − 1) (1)

HyperNEAT Versus RL PoWER for Online Gait Learning 781

and αi ∈ [0, 1] is freely defined, except that the last value is enforced to be equal
to the first, i.e. α0 = αn. These control points are then used for cyclic spline
interpolation using the GSL library. Using GSL it is possible to query a spline
for a different number of points than it was defined with, enabling comparison
between splines defined with a different number of parameters.

The algorithm starts by creating the initial policy π0 with as many splines as
there are robots (actuators). The algorithm initialises these splines with n values
of 0.5 and then adding Gaussian noise. This initial policy is then evaluated after
which it is adapted. This adapted controller is evaluated and adapted again until
the stopping condition is reached.

Adaptation is done in two steps which are always applied: Exploitation and
Exploration. In the exploitation step, the current splines α̂ are optimized based
on the outcome of previous controllers, this generates a new set of splines.

α̂i+1 = α̂i +

∑k
j=1 Δ̂αi,jRj∑k

j=1 Rj

(2)

where Δ̂αi,j represents the difference between the parameters of the i-th policy
and j-th policy belonging to a ranking of the best k policies seen so far and Rj

its reward. In the exploration phase policies are adapted by applying Gaussian
perturbation to the newly generated policy.

α̂′
i+1 = α̂i+1 + ε̂i+1, ε̂i+1 ∼ N (

0, σ2
)

(3)

where α̂i+1 are the parameters after the exploitation step, α̂′
i+1 the parameters

after the exploration step and ε̂i+1 values drawn from a Gaussian distribution
with mean 0 and variance σ2.

Each controller is evaluated for 23.76 seconds (1,485 time steps) after being
used for a recovery period of 3.168 seconds (198 time steps) in order to reduce
evaluation noisiness as in [8]. The reward R awarded to a controller i is calculated
as follows:

Ri =

⎛
⎝100

√
Δ2

x + Δ2
y

Δt

⎞
⎠

6

(4)

where Δx and Δy is the displacement over the x and y axes measured in meters
and Δt the time spent in evaluation, as in [16].

The algorithm operating parameters used for the variance and its decay factor
are the same as in [16] whereas the others were chosen by hand, without further
tuning. Based on our earlier experience, the total number of fitness evaluations
was set at 400 and the experiment was repeated for 30 times with organism with
different random seeds. An overview of the parameters and the values used in
the experiments are described in Table 1.

HyperNEAT. HyperNEAT is a neuroevolutionary method which evolves a
neural network connectivity pattern by using a generative encoding called a
CPPN. A CPPN is a network of mathematical functions like Sine, Cosine,

782 M. D’Angelo et al.

Gaussian or Sigmoid, such a network is queried to obtain link weight between
nodes of a fixed topology neural network called substrate. An initial population
of 25 CPPNs is randomly generated and each CPPN is queried to obtain a con-
nective pattern for an user defined substrate, the resulting neural network is then
evaluated. After having carried out the evaluations the initial population is parti-
tioned into species, within each species the best CPPNs are selected and allowed
to mate with their fellows in order to create the next generation. The substrate
used in our experiments defines a closed-loop gait and is composed of three layers:
input, hidden and output layer. Each layer is a m×n matrix of neural nodes and
its size is calculated as m = (OrganismSizex ∗ 2)−1, n = (OrganismSizey ∗ 2)
where OrganismSizex and OrganismSizey are the sizes of the organism respec-
tively on the x and y axes measured by the number of modules and the extra
column is used for additional user defined inputs. The input layer is fed the angu-
lar position of each module servo at the previous time step together with a sine
wave function value s defined as s = sin (ωt) where ω represents the maximal
angular velocity of the modules servo and t the current time. The output layer
produces the angular positions of each module servo for the current time step.
The input and output signals are opportunely scaled to and from the interval
[−1,+1].

The controller is evaluated for 23.76 seconds (1,485 time steps) with a recov-
ery time between successive evaluations of 3.168 seconds (198 time steps). These
times were chosen because they are multiples of the sine wave period and were
found to produce better results and avoid organism flipping because of too harsh
transitions between gaits.

Table 1. Experiment Parameters

Parameter Value
Common Parameters
Recovery Steps 198
Evaluation Steps 1,485
HyperNEAT Parameters
Population Size 25
Generations 16 or 400
RL PoWER Parameters
Evaluations 400
Variance 0.008
Variance Decay 0.98
Ranking Size 10
Start Parameters 2
End Parameters 100

The fitness of each controller Fi

is calculated as in the original experi-
ment [4] and is defined as

Fi = 2(Δ2
x+Δ2

y) (5)

where Δx and Δy is the displacement
over the x and y axes measured in
meters. Note that although the fitness
function defined for both methods are
different we present our results with a
neutral measurement: the speed of the
organism in m/s. The fitness function
in our view is an integral part of the
method and since we use these meth-
ods off-the-shelf we also use the fitness
function defined in the original paper.

To make fair comparisons between RL PoWeR and HyperNEAT, the search
efforts must be kept equal. The logical way of achieving this is to use the same
number of fitness evaluations which was 400 for RL PoWeR. Working with pop-
ulations of size 25, this implies 16 generations for HyperNEAT. Intuitively, this
is a rather small number to get ‘decent’ evolutionary development. Therefore, we

HyperNEAT Versus RL PoWER for Online Gait Learning 783

0 100 200 300 400
0

0.05

0.1

0.15

0.2

0.25

0.3

Evaluations

S
pe

ed
 (

m
/s

)

(a) I-7 RL 400

0 100 200 300 400
0

0.05

0.1

0.15

0.2

0.25

0.3

Evaluations

S
pe

ed
 (

m
/s

)

(b) I-7 HN 400

0 2000 4000 6000 8000 10000
0

0.05

0.1

0.15

0.2

0.25

0.3

Evaluations

S
pe

ed
 (

m
/s

)

(c) I-7 HN 10,000

0 100 200 300 400
0

0.05

0.1

0.15

0.2

0.25

0.3

Evaluations

S
pe

ed
 (

m
/s

)

(d) I-11 RL 400

0 100 200 300 400
0

0.05

0.1

0.15

0.2

0.25

0.3

Evaluations

S
pe

ed
 (

m
/s

)

(e) I-11 HN 400

0 2000 4000 6000 8000 10000
0

0.05

0.1

0.15

0.2

0.25

0.3

Evaluations

S
pe

ed
 (

m
/s

)

(f) I-11 HN 10,000

0 100 200 300 400
0

0.05

0.1

0.15

0.2

0.25

0.3

Evaluations

S
pe

ed
 (

m
/s

)

(g) I-15 RL 400

0 100 200 300 400
0

0.05

0.1

0.15

0.2

0.25

0.3

Evaluations

S
pe

ed
 (

m
/s

)

(h) I-15 HN 400

0 2000 4000 6000 8000 10000
0

0.05

0.1

0.15

0.2

0.25

0.3

Evaluations

S
pe

ed
 (

m
/s

)

(i) I-15 HN 10,000

Fig. 3. Controller performance of RL PoWeR (RL) and HyperNEAT (HN) for the I
shape (I-7, I-11, I-15). The x axis represents time measured by the number of evalu-
ations, the y axis shows performance measured by the average speed attained (m/s).
The top curve (blue) shows the best single run out of the 30 for RL PoWeR and the
HyperNEAT run with 400 evaluations. For HyperNEAT with 10,000 evaluations the
top curve shows only the best individuals per generation. The lower curve (red) shows
the median speed over 30 runs.

also try another policy, keeping the number of generations equal. This means 400
generations, hence 400 · 25 = 10.000 fitness evaluations. Note, that the progress
curves plotting fitness in time for RL PoWeR are converging after 400 evalua-
tions, thus the values for 10,000 are the same.

4 Experimental Results

The performance of the algorithms is exhibited in Figures 3, 4 and 5 for the I, T
and H shape respectively. Each Figure contains 9 plots that show two curves: the
lower curve (red in colour prints) displays the median speed of the controllers

784 M. D’Angelo et al.

0 100 200 300 400
0

0.05

0.1

0.15

0.2

0.25

0.3

Evaluations

S
pe

ed
 (

m
/s

)

(a) T-7 RL 400

0 100 200 300 400
0

0.05

0.1

0.15

0.2

0.25

0.3

Evaluations

S
pe

ed
 (

m
/s

)

(b) T-7 HN 400

0 2000 4000 6000 8000 10000
0

0.05

0.1

0.15

0.2

0.25

0.3

Evaluations

S
pe

ed
 (

m
/s

)

(c) T-7 HN 10,000

0 100 200 300 400
0

0.05

0.1

0.15

0.2

0.25

0.3

Evaluations

S
pe

ed
 (

m
/s

)

(d) T-11 RL 400

0 100 200 300 400
0

0.05

0.1

0.15

0.2

0.25

0.3

Evaluations

S
pe

ed
 (

m
/s

)

(e) T-11 HN 400

0 2000 4000 6000 8000 10000
0

0.05

0.1

0.15

0.2

0.25

0.3

Evaluations

S
pe

ed
 (

m
/s

)

(f) T-11 HN 10,000

0 100 200 300 400
0

0.05

0.1

0.15

0.2

0.25

0.3

Evaluations

S
pe

ed
 (

m
/s

)

(g) T-15 RL 400

0 100 200 300 400
0

0.05

0.1

0.15

0.2

0.25

0.3

Evaluations

S
pe

ed
 (

m
/s

)

(h) T-15 HN 400

0 2000 4000 6000 8000 10000
0

0.05

0.1

0.15

0.2

0.25

0.3

Evaluations

S
pe

ed
 (

m
/s

)

(i) T-15 HN 10,000

Fig. 4. Controller performance of RL PoWeR (RL) and HyperNEAT (HN) for the
T shape (T-7, T-11, T-15). The x axis represents time measured by the number of
evaluations, the y axis shows evaluation performance measured by the average speed
attained (m/s). The top curve (blue) shows the best single run out of the 30 for RL
PoWeR and the HyperNEAT run with 400 evaluations. For HyperNEAT with 10,000
evaluations the top curve shows only the best individuals per generation. The lower
curve (red) shows the median speed over 30 runs.

over 30 runs, the top curve (blue in colour) displays the achieved speeds during
the best run. To improve readability the top curve for HyperNEAT with 10,000
fitness evaluations only shows the performance of the best individual of each
generation. The best runs were selected by the performance at the end of the
experiment.

Similarly to our previous research we can see that RL PoWeR manages to
reach quite a good performance in both the median and best cases with all
shapes and sizes we tested. The algorithm converges within 400 evaluations and
has a quite stable performance between consecutive trials, i.e. controllers or gaits.
Having stable performance through consecutive controllers is an important trait

HyperNEAT Versus RL PoWER for Online Gait Learning 785

0 100 200 300 400
0

0.05

0.1

0.15

0.2

0.25

0.3

Evaluations

S
pe

ed
 (

m
/s

)

(a) H-7 RL

0 100 200 300 400
0

0.05

0.1

0.15

0.2

0.25

0.3

Evaluations

S
pe

ed
 (

m
/s

)

(b) H-7 HN 400

0 2000 4000 6000 8000 10000
0

0.05

0.1

0.15

0.2

0.25

0.3

Evaluations

S
pe

ed
 (

m
/s

)

(c) H-7 HN 10,000

0 100 200 300 400
0

0.05

0.1

0.15

0.2

0.25

0.3

Evaluations

S
pe

ed
 (

m
/s

)

(d) H-11 RL

0 100 200 300 400
0

0.05

0.1

0.15

0.2

0.25

0.3

Evaluations

S
pe

ed
 (

m
/s

)

(e) H-11 HN 400

0 2000 4000 6000 8000 10000
0

0.05

0.1

0.15

0.2

0.25

0.3

Evaluations

S
pe

ed
 (

m
/s

)

(f) H-11 HN 10,000

0 100 200 300 400
0

0.05

0.1

0.15

0.2

0.25

0.3

Evaluations

S
pe

ed
 (

m
/s

)

(g) H-15 RL

0 100 200 300 400
0

0.05

0.1

0.15

0.2

0.25

0.3

Evaluations

S
pe

ed
 (

m
/s

)

(h) H-15 HN 400

0 2000 4000 6000 8000 10000
0

0.05

0.1

0.15

0.2

0.25

0.3

Evaluations

S
pe

ed
 (

m
/s

)

(i) H-15 HN 10,000

Fig. 5. Controller performance of RL PoWeR (RL) and HyperNEAT (HN) for the
H shape (H-7, H-11, H-15). The x axis represents time measured by the number of
evaluations, the y axis shows evaluation performance measured by the average speed
attained (m/s). The top curve (blue) shows the best single run out of the 30 for RL
PoWeR and the HyperNEAT run with 400 evaluations. For HyperNEAT with 10,000
evaluations the top curve shows only the best individuals per generation. The lower
curve (red) shows the median speed over 30 runs.

for online learning, where task performance counts from the beginning. A large
difference in performance between consecutive gaits implies that poor solutions
are being tested as well, and this is clearly disadvantageous for the overall task
performance.

The performance of HyperNEAT is quite poor compared to RL PoWeR when
using 400 evaluations: even the best controllers in the best run do not reach to
the performance of the best run of RL PoWeR in many shapes. 400 evaluations
with 25 individuals translates to only 16 generations which is apparently not
sufficient. The graphs with 400 evaluations of HyperNEAT also indicate quite
large differences in performance of consecutive controllers which is detrimental

786 M. D’Angelo et al.

Table 2. The table shows the difference in median performance between of RL PoWeR
after 400 evaluations and HyperNEAT after 10,000 evaluations. The results of a stu-
dent’s t-test between these median performances showed the difference is significant,
the corresponding p values are smaller than 0.01 for each of these tests.

I T H

7 0.10 0.04 0.02
11 0.09 0.05 0.04
15 0.10 0.06 0.02

to the overall performance of the multicellular robot. Running HyperNEAT for
10,000 evaluations, which is 400 generations, leads to much better performance,
whereas this is not the case for RL PoWeR (plots omitted here). With 10,000
evaluations the best controllers of the best runs of HyperNEAT now sometimes
outperform the best controllers by RL PoWeR. The median performance however
is still not as good as that of RL PoWeR.

Table 2 shows the difference between the median performance of RL PoWeR
after 400 evaluations and HyperNEAT after 10,000. The median performance of
RL PoWeR is significantly higher in all cases with a p value smaller than 0.01.
This is mainly due to the larger difference in the performance of consecutive
controllers with HyperNEAT. This is not surprising, since HyperNEAT works
with populations of 25, which means that it does 25 evaluations before applying
selection. This causes a more explorative behaviour where several poor solutions
are tested too.

Regarding the influence of different body shapes and sizes, we observed the
following. The difference in performance is more pronounced for the I shape
than for the T and H shapes. The I shape with RL PoWER has 0.90 - 0.10
m/s higher mean performance than HyperNEAT, which is around 30%-34% of
the maximum speed achieved by all controllers (the best performance measured
was 0.2946 m/s in a run of HyperNEAT I-15). For the T shape the difference
in performance is around 0.05 m/s which is roughly 13%-20% of the maximum
speed achieved by all controllers. Both these differences are therefore not only
statistically significant, but also meaningful. The difference in performance for
the H shape is statistically significant, but less pronounced with 7%-13% of the
maximum speed.

Considering the speed of learning we can see that RL PoWeR is much faster in
reaching a good performance than HyperNEAT. Although the best performance
of HyperNEAT with 10,000 evaluations eventually reaches similar performance
to RL PoWeR, it uses 25 times as much search effort to this. Even then the
median fitness is not much better than that of RL PoWeR at the end of 10,000
evaluations.

5 Conclusions

In this paper we addressed the Control Your Own Body problem of in vivo evolu-
tion of modular multi-cellular robots, where robot ‘babies’ can be produced with

HyperNEAT Versus RL PoWER for Online Gait Learning 787

arbitrary shapes and sizes. The problem arises in systems where both morpholo-
gies and controllers undergo evolution, such as, for instance our Triangle of Life
framework, because newly created robot organisms can have bodies and controllers
that do not fit well. Therefore, every ‘baby robot’ needs to learn to control its own
body quickly by an online learning method, without grace period.

In this study we reduced this to a gait learning problem and investigated two
possible learning approaches: The reinforcement learning algorithm RL PoWeR
and the neuro-evolutionary approach HyperNEAT. We took ’off-the-shelf’ imple-
mentations of these algorithms and conducted simulation experiments on a prede-
fined testbed of robot morphologies with 3 different sizes and 3 levels of complexity.

Regarding the quality of learned gaits we have found that RL PoWeR –that
iterates only one single solution– reaches quite reasonable speeds in the median
case and good speeds in the best case. HyperNEAT on the other hand seems encum-
bered by the population of 25 and cannot equal the performance of RL PoWeR
within 400 evaluations. After 10,000 evaluations there are some runs that are able
to outperform RL PoWeR when looking at the best controller of the best run.
However, the median is still much lower than RL PoWeR, because HyperNEAT
does more exploration than RL PoWeR, which leads to a larger difference in per-
formance between consecutive controllers. This leads to a lower overall task per-
formance, which is undesirable in online learning.

With regards to the speed of the algorithms, we can see that RL PoWeR is
much faster in achieving a high performance than HyperNEAT. Surprisingly this
quick convergence does not seem to come at the cost of solution quality as one
would expect. To conclude, the main finding of our research is that the RL PoWeR
algorithm is the preferable over HyperNEAT for on-line learning.

Further work will be carried out along several lines. First we want to tune the
parameters for both the RL PoWER and HyperNEAT algorithms on this problem
to improve their performances. Furthermore we will investigate the algorithms
stability with regards to failed modules and other disasters. Finally, we would like
to validate these results by replicating the experiments using real hardware.

References

1. Bongard, J., Zykov, V., Lipson, H.: Resilient machines through continuous self-
modeling. Science 314(5802), 1118–1121 (2006)

2. Christensen, D.J., Larsen, J.C., Støy, K.: Fault-tolerant gait learning and morphol-
ogy optimization of a polymorphic walking robot. Evolving Systems (2013)

3. Christensen, D.J., Schultz, U.P., Støy, K.: A distributed andmorphology-
independent strategy for adaptive locomotion inself-reconfigurable modular robots.
Robotics and Autonomous Systems 61(9),1021–1035 (2013)

4. Clune, J., Beckmann, B.E., Ofria, C., Pennock, R.T.: Evolving coordinated
quadruped gaits with the HyperNEAT generative encoding. In: IEEE Congress
on Evolutionary Computation (CEC) 2009, pp. 2764–2771. IEEE Press (2009)

5. D’Angelo, M., Weel, B., Eiben, A.E.: Online Gait Learning for Modular Robots
with Arbitrary Shapes and Sizes. In: Dediu, A.-H., Mart́ın-Vide, C., Truthe, B.,
Vega-Rodŕıguez, M.A. (eds.) TPNC 2013. LNCS, vol. 8273, pp. 45–56. Springer,
Heidelberg (2013)

788 M. D’Angelo et al.

6. Eiben, A.E., Bredeche, N., Hoogendoorn, M., Stradner, J., Timmis, J., Tyrrell,
A., Winfield, A, et al.: The triangle of life: Evolving robots in real-time and real-
space. In: Lió, P., Miglino, O., Nicosia, G., Nolfi, S., Pavone, M. (eds.) Advances
in Artificial Life, (ECAL) 2013, pp. 1056–1063. MIT Press (2013)

7. Eiben, A.E., Kernbach, S., Haasdijk, E.: Embodied artificial evolution. Evolution-
ary Intelligence 5(4), 261–272 (2012)

8. Haasdijk, E., Eiben, A.E., Karafotias, G.: On-line evolution of robot controllers by
an encapsulated evolution strategy. In: IEEE Congress on Evolutionary Computa-
tion (CEC) 2010, pp. 1–7. IEEE Press (2010)

9. Haasdijk, E., Rusu, A.A., Eiben, A.E.: HyperNEAT for Locomotion Control in
Modular Robots. In: Tempesti, G., Tyrrell, A.M., Miller, J.F. (eds.) ICES 2010.
LNCS, vol. 6274, pp. 169–180. Springer, Heidelberg (2010)

10. Hamann, H., Stradner, J., Schmickl, T., Crailsheim, K.: A hormone-based con-
troller for evolutionary multi-modular robotics: From single modules to gait learn-
ing. In: IEEE Congress on Evolutionary Computation (CEC) 2010, pp. 1–8. IEEE
Press (2010)

11. Ijspeert, A.J.: Central pattern generators for locomotion control in animals and
robots: A review. Neural Networks 21(4), 642–653 (2008)

12. Kamimura, A., Kurokawa, H., Yoshida, E., Murata, S., Tomita, K., Kokaji, S.:
Automatic locomotion design and experiments for a modular robotic system.
IEEE/ASME Transactions on Mechatronics 10(3), 314–325 (2005)

13. Kamimura, A., Kurokawa, H., Yoshida, E., Tomita, K., Kokaji, S., Murata, S.:
Distributed adaptive locomotion by a modular robotic system, M-TRAN II. In:
Proceedings of 2004 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS) 2004, vol. 3, pp. 2370–2377. IEEE Press (2004)

14. Kober, J., Peters, J.: Learning motor primitives for robotics. In: IEEE International
Conference on Robotics and Automation (ICRA) 2009, pp. 2112–2118. IEEE Press
(2009)

15. Möckel, R., Jaquier, C., Drapel, K., Dittrich, E., Upegui, A., Ijspeert, A.: YaMoR
and Bluemove - an autonomous modular robot with Bluetooth interface for explor-
ing adaptive locomotion. In: Tokhi, M.O., Virk, G., Hossain, M.A. (eds.) Pro-
ceedings of the 8th International Conference on Climbing and Walking Robots
(CLAWAR) 2005, pp. 685–692. Springer (2006)

16. Shen, H., Yosinski, J., Kormushev, P., Caldwell, D.G., Lipson, H.: Learning fast
quadruped robot gaits with the RL PoWER spline parameterization. Cybernetics
and Information Technologies 12(3), 66–75 (2012)

17. Shen, W.M., Salemi, B., Will, P.: Hormones for self-reconfigurable robots. In: Pag-
ello, E., et al. (eds.) Proceedings of the 6th International Conference on Intelligent
Autonomous Systems (IAS-6), pp. 918–925. IOS Press (2000)

18. Spröwitz, A., Moeckel, R., Maye, J., Ijspeert, A.J.: Learning to move in modular
robots using central pattern generators and online optimization. The International
Journal of Robotics Research 27(3–4), 423–443 (2008)

19. Yim, M.: A reconfigurable modular robot with many modes of locomotion. In:
Proceedings of International Conference on Advanced Mechatronics, pp. 283–288.
Japan Society of Mechanical Engineers, Tokio (1993)

20. Yosinski, J., Clune, J., Hidalgo, D., Nguyen, S., Zagal, J., Lipson, H.: Evolving
robot gaits in hardware: the HyperNEAT generative encoding vs. parameter opti-
mization. In: Lenaerts, T., Giacobini, M., Bersini, H., Bourgine, P., Dorigo, M.,
Doursat, R. (eds.) Advances in Artificial Life, (ECAL) 2011, pp. 890–897. MIT
Press (2011)

What You Choose to See Is What You Get:
An Experiment with Learnt Sensory Modulation

in a Robotic Foraging Task

Tiago Rodrigues(B), Miguel Duarte, Sancho Oliveira,
and Anders Lyhne Christensen

Instituto de Telecomunicações & Instituto Universitário de Lisboa (ISCTE-IUL),
Lisbon, Portugal

{tiago luis rodrigues,miguel duarte,

sancho.oliveira,anders.christensen}@iscte.pt

Abstract. In evolutionary robotics, the mapping from raw sensory input
to neural network input is typically decided by the experimenter or
encoded in the genome. Either way, the mapping remains fixed through-
out a robot’s lifetime. Inspired by biological sensory organs and the mam-
malian brain’s capacity for selective attention, we evaluate an alternative
approach in which a robot has active, real-time control over the mapping
from sensory input to neural network input. We augment the neural con-
trollers with additional output neurons that control key sensory parame-
ters and evolve solutions for a single-robot foraging task. The results show
that the capacity to control the mapping from raw input to neural network
input is exploited by evolution and leads to novel solutions with higher fit-
ness compared to traditional approaches.

Keywords: Evolutionary robotics, dynamic sensors, sensor evolution,
genome-encoding

1 Introduction

Nature provides different ways in which animals can change the way they per-
ceive their surrounding environment. On the one hand, the raw input can be
changed physically at different sensory organs: the diameter of pupils in mam-
malian eyes changes in order to adjust to varying degrees of luminance [10] or
based on the interestingness of the subject [11], and certain mammals, such as
cats and dogs, are able to pinpoint the source of a sound by rotating each ear
individually [25]. On the other hand, the brain is able to focus on specific sensory
stimuli and disregard others, a process known as selective attention [9].

In evolutionary robotics (ER), artificial neural networks (ANN) are often
used as robotic controllers [20] because of their capacity to tolerate noise [12] such
as that introduced by imperfections in sensors and actuators. These controllers
are, however, extremely simplified models of a real brain, and usually contain less
than a thousand neurons. While humans have sensory organs and brain areas
c© Springer-Verlag Berlin Heidelberg 2014
A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2014, LNCS 8602, pp. 789–801, 2014.
DOI: 10.1007/978-3-662-45523-4 64

790 T. Rodrigues et al.

that filter and process stimuli before they reach our consciousness, a typical
ANN used in ER is too simple for such a process to take place. The curse of
dimensionality [5] prevents the use of ANNs with a high degree of complexity,
since each additional parameter adds another dimension to the search space. The
computational resources required to evolve ANN with complexities that match
biological neural networks are not yet available.

In ANN-based ER, the raw sensory inputs are mapped to neural network
inputs. The neural network receives inputs mapped to a particular interval, such
as [0, 1]. For simple binary sensors like a bumper, the input could be 0 if the
bumper is not pressed, and 1 if the bumper is pressed. For more complex sensors
that potentially measure continuous quantities, such as an accelerometer or a
light level sensor, the optimal mapping might not be obvious and is typically
chosen arbitrarily by the experimenter. If the robot has to perform a task in
dark environments, it might be beneficial to choose a low maximum range of
a light sensor or to use a non-linear mapping. In this way, the network could
perceive small variations in luminance.

Inputs from sensors that provide multidimensional data, such as laser scan-
ners and cameras, cannot be fed directly to a neural network. The sensory input,
such as a depth map or an image, must first be preprocessed and compressed
into a vector with relatively few elements. In [1], for instance, the authors evolve
behavioral control for two s-bots [18] to self-assemble. The s-bot is equipped
with an omnidirectional camera, and the authors divide its field-of-view into
eight non-overlapping cones covering 45◦ each. The distance to the closest col-
ored object is estimated for each cone and linearly mapped to a neural network
input.

In this paper, we propose an approach in which a neural controller has con-
trol over the mapping from sensory input to neural input during task execu-
tion. The controller is given real-time, direct control over key sensory mapping
parameters, namely range and opening angle. We use a foraging task, in which
a robot must forage as many preys as possible within a certain amount of time.
Our results show that giving a neural controller the capacity to change how it
perceives the world improves performance, not only when compared to the tra-
ditional approach where the parameters of the sensors are determined a priori
by the experimenter, but also when parameters of the sensors are encoded in the
controller’s genome and therefore are under evolutionary control.

2 Related Work

While many ER studies focus on synthesizing control logic through evolutionary
processes [17,20], a substantial amount of work has been devoted to the study
of evolutionary processes applied to sensor and morphology optimization. In
particular, researchers have experimented with evolving the number, type and
position of sensors [3,14–16,21], as well as the sensors’ parameters, such as range
and opening angle [3,15,21,27].

Balakrishnan and Honavar [3] experimented with putting the range and
placement of the sensors under evolutionary control using genome encoding,

What You Choose to See Is What You Get 791

and compared the results to experiments in which the sensors were fixed a pri-
ori. They obtained better results with genome encoding and concluded that
the evolution of placement and range of the sensors can lead to more efficient
and sometimes counter-intuitive sensor placements. Mark et al. [15] evolved the
sensors’ opening angle on robots with (i) a fixed number of sensors, and with
(ii) a varying number of sensors. They observed that robots with fewer sensors
achieved lower fitness scores. In the setup where evolution could add sensors, the
authors found that solutions tended to use a large number of sensors. Parker and
Nathan [21] co-evolved both the sensor morphology (number of sensors and their
placement) and the controller for a hexapod robot. A genetic algorithm was used
to optimize a set of control rules and the number of sensors (ultraviolet, infrared
and tactile), their placement, and their range. The robot had to explore the
environment and find a source of ultraviolet light, while simultaneously avoiding
obstacles. Although the authors evolved successful solutions, they found that the
evolutionary process consistently ignored infrared sensors and used only tactile
and ultraviolet sensors.

Several studies have been conducted in which both the controller and the
morphology of the whole robot are optimized by an evolutionary process. These
approaches attempt to more accurately mimic how evolution operates in nature,
by simultaneously evolving an organism’s physical properties and its “brain”.
Lipson and Pollack [13] demonstrated the evolution of morphology and con-
troller of simple robots that were then fabricated using rapid manufacturing
technology. The robots were composed of simple physical building blocks (bars
and actuators) and neural building blocks (neurons and synapses), and the goal
was to achieve locomotion. Lund et al. [14] studied the concept of true evolvable
hardware that consists of evolving the number and position of the sensors, body
size, wheel radius, wheel base, and motor time constant, which they call the body
plan, using a simple direct encoding of the physical expressions in the genome.
In a different study, Auerbach and Bongard [2] co-evolved both the control and
morphology, and they were able to synthesize robots that successfully achieved
locomotion. Robots evolved in simple environments displayed significantly more
mechanical degrees of freedom on average, than those evolved in more complex
environments.

Our approach, although related to the studies discussed above, does not fall
into any of these categories. Our controllers can actively change how the world is
perceived, but this process is not achieved by modifying the number or position of
sensors. While previous studies have shown how controllers can change and adapt
to an environment through online evolution [8,24], lifetime learning [7,19], and
neuromodulation [23], such changes take place over long time scales because they
rely on modifications to synaptic weights and sometimes even to the topology
of the neural network [22]. Contrarily, in our approach, controllers can actively
change sensor parameters from one control cycle to the next, without modifying
synaptic connections or the controller’s topology. As we demonstrate in this
paper, evolution can exploit the ability to modify how the robot senses the
world. As a result, solutions that are able to actively control the mapping from

792 T. Rodrigues et al.

sensory input to neural network input are found to be fitter and less complex
than solutions for which the mapping is fixed throughout the robot’s lifetime.

3 Methodology

We study an architecture in which controllers are able to change the mapping
from sensory input to neural network input in real-time, depending on the robot’s
internal and external stimulus. We refer to sensors whose parameters are con-
trolled by the network in this way as dynamic sensors. The neural controller is
augmented with an additional output neuron for each sensor parameter it can
modify. An example of such a network can be seen in Figure 1.

Mapping

Modifiers

Right

Wheel

Speed

Prey

Actuator

Output neurons

Hidden neurons

Input neurons Sensors

Left

Wheel

Speed

Sensor

Worldd

α

I1 I2 I3 I4

O3O2 O4O1

H1 H5

O5

Fig. 1. An example of a neural controller with dynamic sensors. The network is able to
control two parameters α and d, which respectively determine the opening angle and
the range of four sensors used in the mapping from raw input to neural network input.

We use a foraging task for our experiments: a circular robot with a diameter
of 7.5 cm must locate and consume as many preys as possible during its lifetime.
The robot has four prey sensors distributed evenly around its circular body. The
physical range of the prey sensors is 3 m and their opening angle is 90◦. In a
typical ER setup, the activation of an input neuron, i, for a prey sensor would
be inversely proportional to the distance, dp, to the closest prey detected by the
corresponding sensor, for instance:

What You Choose to See Is What You Get 793

i =
range − dp

range
(1)

where the range is the maximum physical range of the sensor.
In this study, the neural controllers can change the upper limit of the opening

angle and the range used for the mapping from 0 and up to the sensor’s maximum
physical limit. We scale the activation of the output neurons ([0, 1]) controlling
a mapping parameter (O4 and O5 in Figure 1) to the sensor’s range, and use
the resulting value as the upper limit when computing the activation of input
neurons. Any prey detected by the sensor outside of the range or opening angle
set by the controller, is ignored. In this way, the controller can effectively limit
the sensory inputs that it receives.

We use a pair of output neurons to determine the parameters for all four
prey sensors. The mapping from sensory input (distance) to neural network
input is always linear and the controller can only decide on the upper limits for
the sensors’ range and their opening angle. The controller’s capacity to change
the sensory mapping could, however, easily be extended to allow for individual
sensor control, and for more flexibility in terms of the mapping function used.

For our experiments we use JBotEvolver [26], an open source, multirobot
simulation platform, and neuroevolution framework. JBotEvolver, the configu-
ration files, and experimental results can be found at: http://biomechineslab.
com/dynmic.

4 Experimental Setup

The foraging task is conducted in an 8x8 m arena surrounded by walls. At the
beginning of each experiment, the robot is placed in the center of the arena. A
total of 35 preys are placed at random locations drawn from a uniform distribu-
tion. The robot can consume the preys by moving within a distance of 15 cm and
activating its prey actuator. Once a prey is consumed, a new prey is created and
placed at a random location. The number of preys present in the environment
is thus kept constant during an experiment.

The robot is equipped with three actuators and eight sensors. The actuators
are composed of two wheels that enable the robot to move at a maximum speed
of 10 cm/s, and the prey actuator that enables the robot to consume preys.
The sensors are composed of four prey sensors and four wall sensors, distributed
evenly around the chassis of the robot. The sensors have a maximum opening
angle of 90◦. The maximum range is 3 m for the prey sensors and 0.5 m for the
wall sensors. The robot model used in this study is not based on any existing
physical robot, and our experiments were conducted exclusively in simulation.
However, the prey sensors could be implemented based on a complex, multidi-
mensional sensor, such as the omni-directional camera used by the foot-bot [6],
while the wall sensors could be implemented using simple infrared or ultrasonic
sensors.

http://biomechineslab.com/dynmic
http://biomechineslab.com/dynmic

794 T. Rodrigues et al.

If the prey sensors cannot detect any prey within their current range and
opening angle, the readings are set to 0. Otherwise the readings are mapped
linearly to the ANN inputs based on the distance to the closest prey according
to equation (1). For the wall sensors, we use a traditional, linear mapping from
raw input to neural network input: the robot has no control over the mapping
parameters.

The robot is controlled by a continuous time recurrent neural network [4]
with a reactive layer of input neurons, one layer of hidden neurons, and one
layer of output neurons. The input layer is fully connected to the hidden layer,
which, in turn, is fully connected to the output layer. The input layer has one
neuron for each sensor and the output layer has one neuron for each actuator. In
our experiments, the robot was able to set both the opening angle and the range
of the prey sensors from zero up to their maximum values (90◦ and 3 m, respec-
tively) at any time. These parameters are controlled by two additional outputs
in the neural network. The neurons in the hidden layer are fully connected and
governed by the following equation:

τi
dHi

dt
= −Hi +

8∑
j=1

ωjiIi +
5∑

k=1

ωkiZ(Hk + βk) (2)

where τi is the decay constant, Hi is the neuron’s state, ωji the strength of the
synaptic connection from neuron j to neuron i, β the bias terms, and Z(x) =
(1 + e−x)−1 is the sigmoid function. β, τ , and ωji are genetically controlled
network parameters. The possible ranges of these parameters are: β ∈ [−10, 10],
τ ∈ [0.1, 32] and ωji ∈ [−10, 10]. Circuits are integrated using the forward Euler
method with an integration step-size of 0.2 and cell potentials are set to 0 when
the network is initialized.

Each generation is composed of 100 genomes, and each genome corresponds
to an ANN with the topology described above. The fitness of a genome is sam-
pled 10 times and the mean fitness is used for selection. Each sample lasts 3, 000
time steps, which is equivalent to 300 seconds. After all the genomes have been
evaluated, an elitist approach is used: the top five genomes are chosen to pop-
ulate the next generation. Each of the top five genomes becomes the parent
of 19 offspring. An offspring is created by applying a Gaussian noise (mean:
0,st.˜dev.: 1) to each gene with a probably of 10%. The 95 mutated offspring
and the original five genomes constitute the next generation.

In order to evaluate the controllers, we used the following fitness function:

F (i) = φi + Ψi − Θi (3)

Ψ(i) =
time-steps∑

s=1

(
1.5 m − Cs

1.5 m
· 5 · 10−6

)
(4)

Θ(i) =
time-steps∑

s=1

⎧⎨
⎩

10−6 if colliding with wall

0 otherwise
(5)

What You Choose to See Is What You Get 795

where φi is the number of preys foraged, and Cs is the distance of the robot
to the closest prey. The number of preys foraged is the dominant component of
the fitness function, while Ψ(i) was used for bootstrapping (the term creates a
gradient from the robot to the closest prey), and Θ(i) was used to prevent the
robot from colliding with walls.

We ran a total of 30 evolutionary runs, each lasting 1, 000 generations. After
the evolutionary runs had finished, we conducted a post-evaluation with a total of
100 samples of the genome that had obtained the highest fitness in each run. We
ran additional experiments to obtain a basis for comparison: (i) a classic setup,
where the robot’s sensor parameters are fixed, and (ii) a setup, in which the sen-
sor parameters are genome-encoded and therefore under evolutionary control. In
the setup with genome-encoded parameters, we added two extra parameters to
the existing genome that defined the parameters of the prey sensors, one con-
trols the range and another controls the opening angle. These parameters were
subject to mutation over the course of the evolutionary process. For the three
setups, we conducted experiments with a varying number of hidden neurons.
The hidden neurons ranged from three to ten in order to assess the impact of
network complexity on performance and behavior.

5 Results and Discussion

In this section, we present the results of experiments conducted in the three
setups: the dynamic sensors setup, the genome-encoded sensors setup, and the
fixed sensors setup. The section is divided in three subsections: performance
analysis, behavior analysis, and genome complexity analysis.

5.1 Performance

The distribution of fitness scores from the best controllers of the three experimen-
tal setups can be seen in Figure 2. We compare the dynamic sensors (three hid-
den neurons) with the fixed sensors and the genome-encoded sensors (six hidden
neurons). We chose these network topologies since they displayed the best per-
formance out of all the network configurations tested (from three to ten hidden
neurons). The controllers evolved in the dynamic sensors setup achieved a mean
fitness of 25.06 ± 2.27, while in the fixed sensors setup, the controllers achieved
a mean fitness of 23.35 ± 1.07, and in the genome-encoded setup, the controllers
achieved a mean fitness of 23.40 ± 0.88. The fitness corresponds approximately
to the number of preys foraged, which amount to 25.00 ± 2.29, 23.27 ± 1.07,
and 23.33±0.897, respectively. Controllers in the dynamic sensors setup outper-
formed both those envolved in the fixed sensors setup and in the genome-encoded
sensors setup (Mann-Whitney U, p < 0.05), and had a mean fitness 7% higher
than the highest scoring controllers in the other two setups.

In Figure 3, we have plotted the fitness trajectories of best controllers in
each setup (left), as well as the mean and standard deviation for the controllers
in the dynamic sensors setup and the fixed sensors setup (right). The results

796 T. Rodrigues et al.

 20

 21

 22

 23

 24

 25

 26

 27

 28

 29

Dynamic Fixed Genome

Fi
tn

es
s

Fig. 2. Distribution of fitness scores achieved by the best controller in 30 evolutionary
runs conducted in each of the setups. Each box comprises observations ranging from
the first to the third quartile. The median is indicated by a bar, dividing the box into
the upper and lower part. The whiskers extend to the farthest data points that are
within 1.5 times the interquartile range.

 0
 5

 10
 15
 20
 25
 30
 35

 0 200 400 600 800 1000

Fi
tn

es
s

Generation

Best Run

Dynamic Sensors
Genome Sensors

Fixed Sensors
0
5

10
15
20
25
30
35

0 200 400 600 800 1000

Fi
tn

es
s

Generation

Mean Fitness Score

Fixed Sensors
Dynamic Sensors

Fig. 3. Left: Fitness trajectories of the highest scoring controllers in each generation
for each setup. Right: mean fitness score and standard deviation in each generation for
the dynamic sensors setup and the fixed sensors setup.

show that the dynamic sensors setup evolved the controllers with the highest
fitness from the 45th generation onward. However, if we compare the mean fitness
trajectories, controllers in the dynamic sensors setup have a lower mean fitness
than the fixed sensors controllers until the 400th generation. Thereafter, the
controllers in the dynamic sensors setup achieve higher fitness scores. The results
also show that the dynamic sensors setup yields a higher standard deviation than
the fixed sensors setup, which is due to the wide variety of behaviors that are
possible in the dynamic sensors setup.

What You Choose to See Is What You Get 797

In the following section, we analyze the evolved behaviors in order to deter-
mine the reason for the higher performance displayed by the controllers with
dynamic sensors.

5.2 Behavior

We performed an analysis of the solutions evolved in the fixed sensors setup and
in the genome-encoded setup and found them to be similar. If the robot stops
perceiving a prey with its front sensor while moving toward it, the robot turns
on the spot until the prey is detected by the front sensor again. The robot’s
front sensor would, however, often have more than one prey in its field-of-view,
and whenever the robot would lose sight of the closest prey, another prey would
immediately be detected by the robot’s front prey sensor. As a result the robot
would not turn on the spot to locate the closer prey, but instead head toward a
new prey detected by its front prey sensor.

We analyzed the final sensor parameters of the 30 genome-encoded sen-
sors experiments after evolution had finished, and observed a mean range of
1.95 m ± 0.23 m, and a mean opening angle of 73◦ ± 16◦. In most of the runs,
relatively large values for the sensor parameters (close to the maximum in many
cases) were evolved.

The controllers evolved in the dynamic sensors setup displayed a number of
new, interesting solutions in which the capacity to change the sensory mapping
parameters was exploited. The best controller sets the opening angle to the

 0

 0.5

 1

 1.5

 2

0 10 20 30

D
is

ta
nc

e
(m

et
er

s)

Time (seconds)

distance to prey
sensor range

Fig. 4. Comparison between the robot’s distance to prey and the sensors’ range in a
30-second window, from an experiment with the best controller evolved in the dynamic
sensors setup. From 20 s to 30 s, the controller displayed a wider variation of the
sensor’s range. This pattern of behavior occurred whenever the robot was sensing two
preys: one with the front prey sensor, and one with the right prey sensor.

798 T. Rodrigues et al.

T = 40

target prey

1 m

α = 90◦, d = 2.0 m T = 55

target prey

α = 77◦, d = 1.4 m

target prey

T = 85 α = 22◦, d = 0.8 m

target prey

T = 100 α = 59◦, d = 0.3 m

Fig. 5. An example of a foraging behavior with dynamic sensors. Screenshots at
timestep T from the same simulation with α and d denoting the opening angle and
the range set by the controller. The robot initially uses a long range in order to locate
a prey. As the robot starts to move, it begins to adjust both the range and the open-
ing angle of the prey sensors in order to orient itself toward the prey. As the robot
approaches, it decreases the opening angle and the range of the sensors until it is close
enough to consume the prey.

maximum value of 90◦ when no prey is detected, and reduces the range as the
robot moves closer to a prey. We found that the mean difference between the
range of the sensor and the distance to the closest prey in the best controller
of the dynamic sensors setup was 11.2 cm, which is only 4% of the maximum
physical range of the sensor (see Figure 4). Out of the 30 evolutionary runs,
18 evolved this behavior. In six of the runs, the controllers reduce both the
opening angle and the range of the sensor as the robot moves toward the prey.
An example of this behavior can be seen in Figure 5. A different evolutionary run
produced a behavior that chooses either a backwards movement or a forwards
movement, but always with a fixed opening angle of the sensor 90◦. When the
robot moves backwards toward a prey, it uses a fixed long range. When the robot

What You Choose to See Is What You Get 799

moves forwards toward a prey, it reduces the sensor range as it gets closer. The
solutions evolved in the remaining runs displayed oscillatory behaviors, in which
the opening angle and range increase and decrease in cyclic patterns when preys
are detected.

5.3 Complexity

For the dynamic sensors setup, we used three hidden neurons but the ANN needs
two additional output neurons in order to control the range and opening angle
of the sensors. In terms of complexity, the two additional neurons add six more
connections to the neural network (two for every hidden neuron), resulting in a
total of 59 alleles.

We found that controllers with six hidden neurons displayed the highest
performances in both the fixed sensors setup and in the genome-encoded sensors
setup. The resulting genomes had respectively 117 alleles and 119 alleles. Of
the topologies evaluated in the dynamic sensors setup, we found that controllers
with only three hidden neurons displayed the highest performance, which are
encoded by genomes with only 59 alleles. The controllers evolved in the dynamic
sensors setup thus not only displayed a higher performance but also achieved
the highest performance using a simpler solution in terms of genome length.

6 Conclusions

In this paper, we showed how giving a robot the capacity to dynamically change
parameters of its sensors can be beneficial not only in terms of the performance
of evolved solutions, but also in terms of solution complexity. We gave the con-
troller access to certain sensor parameters, namely the range and opening angle,
which the controller was able to change during task execution. The controllers
evolved in our experiments were able to outperform both an approach in which
the parameters of the sensors were fixed, and an approach in which the sensor
parameters were encoded in the genome and subject to evolution.

Giving controllers the capacity to actively control the sensory input to neu-
ral network input mapping is fundamentally different from approaches in which
sensor parameters are genome-encoded and from approaches in which the robot
morphology is under evolutionary control. A controller that has active control
over sensory parameters can change the way in which the world is perceived by
the robot and essentially limit what it senses. The approach could be extended
to other sensors and parameters. In our experiments, only the input mapping
for the prey sensors was dynamically changed by the controller. However, multi-
ple sensors could potentially be controlled simultaneously by including additional
outputs in the network. In particular, we believe that letting a controller actively
modify the mapping from sensory input to neural network input has significant
potential for sensors that provide multidimensional inputs such as laser scanners
and cameras. The inputs from such sensors must undergo significant preprocess-
ing and compression before they can be fed to a neural controller. It is unlikely

800 T. Rodrigues et al.

that an optimal, static mapping exists in many cases, and in our ongoing work,
we are studying the impact of giving controllers greater control over the mapping
of complex sensory inputs.

Acknowledgments. This work was supported by Fundação para a Ciência a Tecnolo-
gia (FCT) under the grants, SFRH/BD/76438/2011, PEst-OE/EEI/LA0008/2013, and
EXPL/EEI-AUT/0329/2013.

References

1. Ampatzis, C., Tuci, E., Trianni, V., Christensen, A.L., Dorigo, M.: Evolving
self-assembly in autonomous homogeneous robots: experiments with two physical
robots. Artificial Life 15(4), 465–484 (2009)

2. Auerbach, J.E., Bongard, J.C.: On the relationship between environmental and
mechanical complexity in evolved robots. In: International Conference on Artificial
Life (ALIFE), pp. 309–316. MIT Press, Cambridge (2012)

3. Balakrishnan, K., Honavar, V.: On sensor evolution in robotics. In: Annual Con-
ference on Genetic Programming, pp. 455–460. MIT Press, Cambridge (1996)

4. Beer, R.D., Gallagher, J.C.: Evolving dynamical neural networks for adaptive
behavior. Adaptive Behavior 1, 91–122 (1992)

5. Bellman, R.: Dynamic Programming, 1st edn. Princeton University Press, Prince-
ton (1957)

6. Dorigo, M., Floreano, D., Gambardella, L.M., Mondada, F., Nolfi, S., Baaboura,
T., Birattari, M., Bonani, M., Brambilla, M., Brutschy, A., et al.: Swarmanoid: a
novel concept for the study of heterogeneous robotic swarms. IEEE Robotics &
Automation Magazine 20(4), 60–71 (2013)

7. Floreano, D., Dürr, P., Mattiussi, C.: Neuroevolution: from architectures to learn-
ing. Evolutionary Intelligence 1(1), 47–62 (2008)

8. Floreano, D., Mondada, F.: Evolutionary neurocontrollers for autonomous mobile
robots. Neural Networks 11(7–8), 1461–1478 (1998)

9. Fries, P., Reynolds, J.H., Rorie, A.E., Desimone, R.: Modulation of oscillatory
neuronal synchronization by selective visual attention. Science 291(5508), 1560–
1563 (2001)

10. Groot, S.G.D., Gebhard, J.W.: Pupil size as determined by adapting luminance.
Journal of the Optical Society of America 42(7), 492–495 (1952)

11. Hess, E.H., Polt, J.M.: Pupil size as related to interest value of visual stimuli.
Science 132(3423), 349–350 (1960)

12. Kam-Chuen, J., Giles, C., Horne, B.: An analysis of noise in recurrent neural
networks: convergence and generalization. IEEE Transactions on Neural Networks
7(6), 1424–1438 (1996)

13. Lipson, H., Pollack, J.B.: Automatic design and manufacture of robotic lifeforms.
Nature 406(6799), 974–978 (2000)

14. Lund, H., Hallam, J., Lee, W.-P.: Evolving robot morphology. In: IEEE Interna-
tional Conference on Evolutionary Computation, pp. 197–202. IEEE Press, Piscat-
away (1997)

15. Mark, A., Mark, R., Polani, D., Uthmann, T.: A framework for sensor evolution
in a population of braitenberg vehicle-like agents. In: International Conference on
Artificial Life (ALIFE), pp. 428–432. MIT Press, Cambridge (1998)

What You Choose to See Is What You Get 801

16. Mautner, C., Belew, R.K.: Evolving robot morphology and control. Artificial Life
and Robotics 4(3), 130–136 (2000)

17. Meyer, J.-A., Husbands, P., Harvey, I.: Evolutionary robotics: A survey of appli-
cations and problems. In: 1st European Workshop on Evolutionary Robotics
(EvoRobot), pp. 1–21. Springer, Berlin (1998)

18. Mondada, F., Guignard, A., Bonani, M., Bär, D., Lauria, M., Floreano, D.: Swarm-
bot: From concept to implementation. In: IEEE/RSJ International Conference on
Intelligent Robots and Systems, pp. 1626–1631. IEEE Press, Piscataway (2003)

19. Nolfi, S., Floreano, D.: Learning and evolution. Autonomous Robots 7(1), 89–113
(1999)

20. Nolfi, S., Floreano, D.: Evolutionary robotics: The biology, intelligence, and tech-
nology of self-organizing machines. MIT Press, Cambridge (2000)

21. Parker, G., Nathan, P.: Concurrently evolving sensor morphology and control for a
hexapod robot. In: IEEE Congress on Evolutionary Computation (CEC), pp. 1–6.
IEEE Press, Piscataway (2010)

22. Silva, F., Urbano, P., Oliveira, S., Christensen, A.L.: odNEAT: An algorithm for
distributed online, onboard evolution of robot behaviours. In: International Con-
ference on Simulation and Synthesis of Living Systems (ALIFE), pp. 251–258. MIT
Press, Cambridge (2012)

23. Soltoggio, A., Bullinaria, J.A., Mattiussi, C., Dürr, P., Floreano, D.: Evolution-
ary advantages of neuromodulated plasticity in dynamic, reward-based scenarios.
In: International Conference on the Simulation and Synthesis of Living Systems
(ALIFE), pp. 569–576. MIT Press, Cambridge (2008)

24. Watson, R., Ficici, S., Pollack, J.: Embodied evolution: Embodying an evolutionary
algorithm in a population of robots. In: IEEE Congress on Evolutionary Compu-
tation (CEC), pp. 335–342. IEEE Press, Piscataway (1999)

25. Young, E.D., Rice, J.J., Tong, S.C.: Effects of pinna position on head-related trans-
fer functions in the cat. Journal of the Acoustical Society of America 99(5), 3064–
3076 (1996)

26. Duarte, M., Sliva, F., Rodrigues, T., Oliveria, S.M., Christensen, A.L.: JBotE-
volver: A Versatile Simulation Platform for Evolutionary Robotics. Proceedings of
the International Conference on the Synthesis and Simulation of Living System
(ALIFE), pp. 210–211. MIT Press, Cambridge, MA (2014)

27. Zhang, Y., Martinoli, A., Antonsson, E.K.: Evolutionary design of a collective
sensory system. In: AAAI Spring Symposium on Computational Synthesis, pp.
283–290. MIT Press, Cambridge (2003)

EvoSTOC

Co-evolution of Sensory System and Signal
Processing for Optimal Wing Shape Control

Olga Smalikho1(B) and Markus Olhofer2

1 Technische Universität Darmstadt, Darmstadt, Germany
Olga.Smalikho@rtr.tu-darmstadt.de

2 Honda Research Institute Europe, Offenbach, Germany
Markus.Olhofer@honda-ri.de

Abstract. This paper demonstrates the applicability of evolutionary
computation methods to co-evolve a sensor morphology and a suitable
control structure to optimally adjust a virtual adaptive wing structure.
In contrast to approaches in which the structure of a sensor configuration
is fixed early in the design stages, we target the simultaneous generation
of information acquisition and information processing based on the opti-
mization of a target function. We consider two aspects as main advan-
tages. First the ability to generate optimal environmental sensors in the
sense that the control structure can optimally utilize the information pro-
vided and secondly the abdication of detailed prior knowledge about the
problem at hand. In this work we investigate the expected high correla-
tion between the sensor morphology and the signal processing structures
as well the quantity and quality of the information gathered from the
environment.

Keywords: Co-evolution · Neural network · Robust optimization

1 Introduction

Adaptive systems consist of sensors as well as actuators which allow the improve-
ment of systems in reaction to changes in their environment according to a pre-
defined quality measure. The design of such systems is usually driven by the
utilization of prior knowledge of the problem at hand in order to generate an
effective sensory system which is able to provide all relevant information about
the environmental conditions as well as actuator configurations which can gen-
erate suitable reactions to improve the system’s performance. After the deter-
mination of the sensor and actuator configuration a suitable control structure
which processes information from the environment to effective actuator signals
is generated. This procedure requires a detailed understanding of all phenomena
which influence the behavior of the system. One reason is the necessity of know-
ing what information about the environment is important in order to place the
right sensors at the right place. To acquire this knowledge a priori is challenging
for a wide variety of tasks. Furthermore, the determination of an optimal over-
all system is expected to be challenging due to strong interaction between the
c© Springer-Verlag Berlin Heidelberg 2014
A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2014, LNCS 8602, pp. 805–816, 2014.
DOI: 10.1007/978-3-662-45523-4 65

806 O. Smalikho and M. Olhofer

sensor and actuator configuration with the control system. Therefore it is nec-
essary to solve two tasks. The first is to determine the optimal control structure
for the provided information by sensors, and secondly to determine information
which optimally suits the control system. In this research we demonstrate the
simultaneous evolutionary design of sensor configuration and control structure
for the example of a virtual adaptive wing configuration. Based on the evolved
designs we investigate the influence of the sensory input dimensionality on the
overall system quality. In detail we analyze the trade off between more detailed
information which requires the generation of a more complex information pro-
cessing system and a low dimensional sensory input which is able to acquire
a reduced set of environmental information, however requiring a simpler and
easier to generate control structure. We demonstrate that both factors are in a
trade off relation. Furthermore we invest the co-evolution process of both units
and demonstrate the high dependency between sensor and control structure. A
variety of similar approaches for the evolutionary design of sensor and actuator
configurations have been investigated in the field of evolutionary robotics. Early
work in the field of automatic design of a systems by body-brain co-evolution has
been reported by Sims [1]. He demonstrated the evolutionary development of the
morphology of virtual creatures in a physical simulation fulfilling simple loco-
motion tasks starting from simple building blocks without any prior knowledge.
Parker and Nathan [2] research the design of sensor morphology and controller
for a simulated hexapod robot. For this purpose the type of sensors, the head-
ing angle and the range of the sensors as well as the rules for the controller
are co-evolved. This method enables the system to extract information from the
environment which is relevant to complete a given task by configuring a minimal
controller and number of sensors to increase the system’s overall efficiency. Buga-
jska and Schutz [3] co-evolved the shape and strategies in the design of Micro
Air Vehicles (MAV). The target, similar to Parker and Nathan, was to find a
minimal sensor suite and reactive strategies for navigation and collision avoid-
ance tasks. Sugiura et al. also proposed a system that automatically designs the
sensor morphology of an autonomous robot with two kinds of adaptation: onto-
genetic and phylo-genetic adaptation[4]. Also Auerbach and Bongard [5] have
made extensive research in the field of co-evolution of morphology and control
in evolutionary robotics. In their work they implement a growth mechanism to
create robots using compositional pattern-producing networks and demonstrate
that the concurrent development of the morphological and controller structures
of the simulated adaptive robots can give an advantage for the final system
performance, compared to the approaches with separate design strategies.

Compared with the reviewed research in evolutionary robotics, we utilize the
co-evolution of morphology and information processing structure for the optimal
control of an adaptive wing shape. Although the generation of optimal control
for adaptive wings is not in the main focus of our research we argue that this
problem is a suitable test bed for the research on evolutionary design of adaptive
systems. Aerodynamic problems are characterized by highly complex interactions
between flow body and flow field which is in most cases difficult to understand

Co-evolution of Sensory System and Signal Processing 807

in detail. Due to this manual design is generally challenging to achieve. However
excellent tools are available for their simulation and the evaluation. In this work
we demonstrate that evolutionary methods are able to generate systems which
can optimally adapt to environmental conditions, while at the same time we tar-
get shedding some light on the precise synchronization of system parts during
the developmental process. In comparison to the research [2],[3],[4] we changed
the environmental settings randomly in each generation of the evolutionary pro-
cess and thus obtained a robust adaptive system, able to react during random
environmental changes. The target for the development of the adaptive wing is
the reduction of the drag the airfoil generates while still creating a minimum
of lift. Environmental changes are realized by changes in the angle of attack of
the airflow across a wide range. A detailed description of the adaptive wing and
the experimental conditions is given in section 2. In section 3 we summarize
results of standard design optimization tasks for non-adaptive airfoils in order
to generate a baseline for the comparison of the quality achieved by the adaptive
system. An airfoil design optimization for a certain number of the fixed environ-
mental conditions, represented in section 3, shows maximal controller potentials
for these environmental conditions. In Section 4 we describe the experiments we
performed, present results of the experiments and analyze the development pro-
cess realized. Finally we conclude the paper by a summary of the main findings
and an outlook of further work.

2 Framework for Morphology-Controller Co-evolution

In our work we implemented a system, consisting of virtual sensors, actuators
and a signal processing structure. The signal processing structure controls the
adaptive system under changing environmental conditions by generating actua-
tor signals based on sensor signals derived from the environment. The target has
been to achieve a system behavior which reduces the airfoil’s drag, calculated in
a CFD (computational fluid dynamics) simulation of the resulting airfoil shape
while maintaining specified lift value. The actuator signals correspond to changes
of the NURBS [6] control points and define the current airfoil shape. The virtual
sensors of the system have been defined as pressure sensors, at a given position
on the airfoil surface. The values of the virtual sensors correspond to the surface
pressure calculated in the CFD simulation and therefore depend on the blade’s
surface, the angle of attack and the speed of the air flow etc. Fig. 1 (a) shows
the described relations between the single parts of the test-framework. With the
described setup an adaptive behavior can be realized by the actuators in reaction
to the change of the environmental conditions. Furthermore a variable number of
sensors or actuators can be easily realized. The described setup serves as a test
framework for the simulation of the interactions between control structure and
morphology during the operation of the control structure as well during their
evolutionary development.

In our work we implemented the two dimensional airfoil by a non-uniform
rational B-splines (NURBS) as shown in Fig. 1 (b). The shape of the NURBS

808 O. Smalikho and M. Olhofer

Sensors

Controller

Actuators

Airfoil shape

Environmental
conditions

Fig. 1. (a) Adaptive airfoil framework, (b) Example of the airfoil created with NURBS.
Airfoil in white, defined by the initial positions of the spline control points. The airfoil
shape change (in gray) results from the movements of C2 and CN .

curve and with that the shape of the resulting wing profile is determined by the
set of spline control points. The splines, defined by its control points Cn, result
into a unique two dimensional airfoil shape. By moving the control points in
the two dimensional space, a shape change of the airfoil can be achieved. For
the simulation of the aerodynamic airfoil characteristics and pressure distribu-
tion we used the computational fluid dynamic solver Xfoil1 because of its high
speed which is decisive for optimization tasks (less than 5 seconds). Xfoil cal-
culates different aerodynamic characteristics for the given airfoil geometry and
environmental configurations, e.g. angle of attack, Reynolds number etc. In the
simulation we change the angle of attack as a variable input of the system in
order to generate variations of the airfoil environment. The Reynolds number
has been fixed during the optimization(Re = 107). To simulate the sensors we
used the distribution of the pressure coefficient over the airfoil surface. The pres-
sure coefficient Cp [7] is defined as a relative pressure throughout a flow field
in fluid dynamics. In comparison to a gauge pressure value at the point on the
airfoil, the pressure coefficient is dimensionless and independent from effects of
the density and speed of the air. We used Xfoil to calculate the profile of the
pressure coefficients Cp at 160 points on the airfoil surface. A sensor placed on
the airfoil returns a sensor value corresponding to the pressure coefficient at the
airfoil surface.

2.1 Controller

The control system is realized by Parker and Nathan [2] as well as Bugajska
and Schutz [3] as a reactive system that uses “if...then” rules to control a simu-
lated robot. Haller, Ijspeert and Floreano [8] implemented a controller inspired
from the central pattern generators underlying locomotion in animals. In com-
parison to these approaches we use biologically inspired feed forward neural
networks (FFNN). The task of the neural controller is to reduce the drag of the
adaptive airfoil system by morphing the airfoil surface. For the implementation
the SHARK2, open-source C++ machine learning library is used. The neural
1 http://web.mit.edu/drela/Public/web/xfoil/
2 http://image.diku.dk/shark/

http://web.mit.edu/drela/Public/web/xfoil/
http://image.diku.dk/shark/

Co-evolution of Sensory System and Signal Processing 809

network we implemented consists of one input layer, a single hidden layer with
sigmoidal activation function and one output layer with a linear activation func-
tion. In Fig. 2 a schematic overview of the overall system is given.

Fig. 2. Schematic view of the overall control structure

3 Baseline Optimization

The target of the baseline optimization has been to find shapes for the airfoils
with minimal drag in order to generate a baseline which allows the evaluation
of the blade shapes generated by the adaptive system. A second reason for the
experiments was to investigate the influence of the number of spline control
points on the optimization behavior. To determine the maximal achievable qual-
ity of the airfoils conventional evolutionary design optimization was performed.
We used a CMA-ES(4,8) strategy with standard population size [9] to find the
optimal shapes of the airfoil for the individual angles of attack with lift con-
straint. Minimal lift constraint has been set to a lift coefficient of NACA 2410
airfoil, Cmin

l = CNACA2410
l . NACA airfoils are the aircraft wing shapes, devel-

oped by the National Advisory Committee for Aeronautics in 1948 [10] and
define since that time a set of standard airfoil shapes. Fig. 3.a) shows the result
of the design optimization with fixed number of spline control points, Cp = 6.
The maximal thickness of the airfoil was set to the maximal thickness of the
NACA 2410 airfoil which is equal to 10% of the chord. For a set of 5 angles of
attack the optimal airfoil shapes have been determined experimentally with the
resulting drag and lift coefficients given in Table 1. We found specialized solu-
tions for each angle of attack, which have significantly lower drag and higher lift
than a single NACA 2410 airfoil being rather robust for wide range of different
angles of attack.

The results of the optimization runs can be seen as the maximal achiev-
able performance for the given settings and therefore form the baseline for the
evaluation of all further experiments. From here on we concentrate on the sensor-
controller optimisation. In a first set of experiments we investigate the influence
of the number of spline control points on the optimization results. In the design
optimization runs with only 3 variable control points per airfoil we observe a
very high improvement of the blade quality in an early phase of the optimiza-
tion, however with a low final quality. With a higher number of spline control
points the airfoil quality improves slower, but the final quality of the airfoil is
significantly improved.

810 O. Smalikho and M. Olhofer

0 0.2 0.4 0.6 0.8 1

−0.06
−0.04
−0.02

0

0.02
0.04
0.06
0.08

0.1
0.12
0.14 α1= 1

α2= 2
α3= 3
α4= 4
α5= 5 s

0 100 200
3

4

5

6

7

8

9

10*10-3

3 Control points

6 Control points

12 Control points

Fi
tn

es
s v

al
ue

x

y

(a) (b)
Generations

Fig. 3. (a) Optimized airfoil shapes, (b) Averaged quality history of CMA optimisation
runs for different number of spline control points. Angle of attack was set to 3◦, slightly
different start airfoils were used in all 5 of the otherwise identical simulations which
were used for averaging.

Table 1. Best baseline performance with 6 spline control points, compared with NACA
2410 airfoil

α, degree Copt
d 10−3 Copt

l CNACA2410
d 10−3 CNACA2410

l

1◦ 3.091 0.401 4.950 0.355
2◦ 3.192 0.497 5.070 0.467
3◦ 3.391 0.617 5.390 0.576
4◦ 3.434 0.845 5.910 0.686
5◦ 3.860 0.931 6.140 0.791

4 Robust Sensor-Controller Optimization

We implemented the optimization of sensor positions on the airfoil surface and
the optimization of neural network weights. We realized the proposed opti-
mization task with a standard Evolution Strategy (ES), developed by Bienert,
Rechenberg and Schwefel as well as with a CMA Evolution Strategy [11], [9].
We achieved significantly better results with a standard ES(50,200) with two
different self adapted step sizes, for sensor positions and neural network weights
adaptation. Detailed results are given in section 4.2.

4.1 System Performance Evaluation

The task for the controller is the improve the airfoil drag after a variation of the
inflow angle. Therefore the drag coefficient of the airfoil before any modifications
took place C1

d is evaluated and after the modification of the airfoil blade C2
d . The

ratio of these two values shows if the neural network outputs realizing an actuator
adjustment, perform well and reduce the airfoil drag. The total fitness of the
individual has been defined as the sum of the drag coefficient value ratios summed

Co-evolution of Sensory System and Signal Processing 811

Control
 points

NURBS
 spline

Fig. 4. Overview of the system evaluation

over the set of different angles of attack given in the experimental setup. Fig. 4
shows the structural diagram of individual evaluation. Optimization starts with
randomly initiated sensor positions between 0 (trailing edge, wing upper-side)
and 2 (trailing edge, wing under-side) and neural network weights, uniformly
randomly initialized between -0.01 and 0.01. The trailing edge is defined as rear
edge, where the airflow split by the leading edge rejoins [7]. After the change of
the angle of attack we evaluated 3 cycles of geometry change in order to let the
system convert to a final state. The main reason is that the system goes through
a set of partial update steps until the optimal geometry is reached. After the first
update the adjusted geometry is therefore likely to be influenced by the shape
in the previous step as visible in the final results. The final fitness value for
the individual is calculated as the sum of drag value ratios over all tree steps of
spline control point adjustments for a single angle of attack and additionally over
a cascade of different angles of attack, which however stayed the same during the
first experiment. In the second experiment, in each generation a set of angles of
attack have been randomly changed between 2◦ and 4◦. The random change was
introduced to avoid that only shape transitions which are predefined by the set
of given inflow angles are possible. As mentioned, the size of the controller was
defined by the number of neurons in the input layer which is equal to the number
of sensors, the number of neurons in the output layer equal to the number of
actuators and a fixed number of 20 hidden neurons.

4.2 Robust Optimization Results

Fig. 5 shows the filtered fitness curves of the robust optimization described in
section 4.1 averaged over 10 runs. The fitness function was defined as following:

812 O. Smalikho and M. Olhofer

Fitness(Individual) =

∑N
α=1

∑M
i=1

Cd(α,changed airfoil)
Cd(α,unchanged airfoil)

N ∗ M
(1)

where M is a number of controller actions for the same angle of attack (M = 3)
,α is the angle of attack, N is the total number of angles of attack applied and
the individual has been evaluated on, Cd is the drag coefficient. The number of

0 50 150 250 350 450
0.95

0.96

0.97

0.98

0.99

1

1.01

1 sensor
2 sensors
3 sensors

3 sensors

1 sensor

15 sensors

5 sensors

2 sensors

15 sensors
5 sensors

Generations

Fi
tn

es
s v

al
ue

0.8

0.85

0.9

0.95

1

0
5
10
15
20
25

1 2 3 5 7 10 15

1 2 3 5 7 10 15

Number of sensors

Number of sensors

Fi
tn

es
s v

al
ue

Fa
ilu

re
 ra

te
, %

(a)

(b)

(c)

Fig. 5. (a) Robust optimization results filtered with moving average over 10 genera-
tions. Fitness curves has been averaged over 10 runs with different starting parameters.
(b) Box plot of the optimization runs for each number of sensors, (c) Percentage of
the cases in which controller lead to a failure performance, for scenario of 10 random
angles of attack between 1◦ and 7◦.

optimization parameters results from the size of system controller (number of
neurons in a hidden layer), the number of sensors and actuators (control points
of the spline). The total number of parameter is

NParam = Ni ∗ Nh + (Ni + Nh) ∗ No + Nh + No + Ni + Ns (2)

where Ni is the number of sensors, Nh the number of neurons in the hidden layer
(was fixed to Nh = 20), No is the number of actuators (was fixed to No = 6)
and Ns is the number of optimization step-sizes (Ns = 2). As an example, for
the system, using 5 sensors, we need to optimize 283 parameters.

The results show that the system development progress depends on the num-
ber of sensors. For the systems, using between 1 and 5 sensors, we observed a

Co-evolution of Sensory System and Signal Processing 813

clear trend of averaged performance improvement with an enlargement of the
sensory system (see Fig. 5 (a) and (b)). Starting with 7 sensors the averaged
performance does not improve. Additionally in Fig.5 (c) we see, that on average
the failure of controller actions, defined as an action, that lead to an invalid
solution, increases gradually for the systems with more than 5 sensors,although
the maximal achievable quality given in Fig. 5 (b) is better with a larger sensor
number.

100 300 500 700 900
0

0.2

0.4

0.6
0.8

1

1.2

1.4

1.6
1.8

2

s1

s2

s3

Sensor 1

s1

s3

Sensor 2
Sensor 3

Generations

Po
si

tio
n

of
 se

ns
or

s

100 300 500 700 900
0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

Fi
tn

es
s v

al
ue

Generations

s

s2

s3

s

s2

s3

1

C1 C2 C3 C4 C5 C6

C1 C2 C3 C4 C5 C6

NN Outputs, Actuators

NN Outputs, Actuators

1

N
N

 In
pu

ts
, S

en
so

rs
N

N
 In

pu
ts

, S
en

so
rs

(a)

(b)

(c)

(d)

Fig. 6. (a) Development of the position of the sensors during the optimization (b)
Optimization of the robust system, using 3 sensors. Evaluation on the random angles
of attack between 1◦ and 5◦, Hinton diagrams of the neural controller of the system at
generation 800 (c) and 900 (d).

An example of the dynamics of the concurrent sensor-controller adjustment
during the optimization experiment is given in Fig. 6. As mentioned, we use
single hidden layer, consisting of 20 neurons with sigmoid activation function.
To investigate the internal functionality of the neural network as a controller,
we visualize converted network connections between sensors and actuators of the
adaptive airfoil, omitting the non-linearity of the hidden layer. The connection
strengths between neurons have been calculated as following:

Sio =

∑j=Nh

j=1 WijVjo

Nh
(3)

814 O. Smalikho and M. Olhofer

The variable Sio is the converted connection strength between input i and
output o, Nh is the number of neurons in a hidden layer, W and V - input and
output weights of the neural network. Fig. 6 (c) and (d) show corresponding
diagrams of the neural strengths of the system at the 800th and 900th gen-
eration. For visualizing of the converted neural connection strengths a Hinton
diagrams has been used [12]. The size of the boxes corresponds to the value of
the connection strength. The boxes color (gray and black) represents positive or
negative sign of the connection strength respectively. The values of the connec-
tion strengths lie between zero (no box) and one (box of maximum size). In Fig.
6 (b) we see a significant performance improvement at the generation 900. Fig. 6
(a) shows the development of the sensory system configuration. Sensor 3 changes
its position gradually at around the 900th generation. The corresponding change
in a controller system can be observed in Fig. 6 (c) and (d). Compared with the
controller at generation 800, we can see a significant change of the controller
connection strengths at generation 900 for the first and the third sensor. The
connections of the second sensor stay nearly constant. Regarding Fig. 6 (a), (b),
(c) and (d), a precise sensor-controller adjustment takes place. This results show
that the development of the signal measurement and signal processing modules
are tightly coupled and precisely coordinated.

0 5 10 15 20 25
0

Drag reduction ratio
Angle of attack

4

2

350

100

D
ra

g
re

du
ct

io
n,

 %

(a) (b)

0.4 0.5 0.6 0.7 0.8 0.9 1
3

3.5

4

4.5

5

5.5

6

6.5

6 5
7*10

−3 Baseline
System with optimized
sensor-controller
configuration

NACA 2410

1° 2°
3°

5°
4°

Lift coefficient

D
ra

g
co

ef
fic

ie
nt

2.9°
3° 3.5°

3.6°3.7°

2°
2.1°

1° 2°
3° 4°

5°A
ng

le
 o

f a
tta

ck

Time steps

Fig. 7. (a) Percentage of the airfoil drag reduction for a scenario of 7 angles of attack
between 2◦ and 4◦, using 7 sensors. (b) Comparison of the robust system performance
given in Fig.7 (a) with baseline design optimization in Fig. 3 (a), Tab. 1 and NACA
2410.

Finally we analyzed the results of the robust sensor-controller optimization
in Fig. 5. The performance of the optimized system with 7 sensors was again
evaluated this time with a set of 7 randomly chosen angles. The result is illus-
trated in) Fig. 7 (a). As mentioned, the controller adjusts the actuators for the

Co-evolution of Sensory System and Signal Processing 815

current angle of attack in 3 steps. We observe the drag reduction after almost
each controller action. The highest drag reduction takes place in the first of 3
controller actions for the same angle of attack. For example the drag reduction
for the angles of attack of 3.5◦ and 3.6◦ was above 50% through the first con-
troller adjustment. The fitness value of the system in Fig. 7 (a) is equal to 0.85.
Fig. 7 (b) shows a final comparison of the airfoils resulting from a concurrent
sensor-controller development, from the standard design optimization and the
NACA 2410 airfoil. We observed, that on the test scenario the system with a
concurrently optimized sensor and controller configuration does not perform as
well as the individual design optimization with respect to a drag, but performs
better than NACA 2410 airfoil. Regarding the lift coefficient, the co-evolved sys-
tem creates higher lift than the profiles of baseline optimization and NACA 2410
for the same angles of attack.

5 Conclusions

This work investigates the generation of an adaptive system realized by an adap-
tive wing. The system consists of a sensor and actuator configuration as well as
a related control structure. The target for the adaptive wing is the minimization
of the airfoil drag while the angle in which the air is approaching the airfoil is
changed randomly. Sensors as well as the control structure of the adaptive wing
design are defined during an evolutionary process, resulting in a concurrent and
coordinated development of the overall system. The experimental results demon-
strate the expected high correlation between the development of the sensory sys-
tem and the control systems. Furthermore we observe a strong influence of the
number of the environmental sensors, which is related to the amount of infor-
mation which is available to the control structure, and the final performance
of the system. On the one hand the system needs sufficient sensory information
defined by the number and position of the sensors for an optimal control strategy
in the randomly changing environment. On the other hand the achieved quality
of the optimized solution degenerates with very high numbers of optimization
parameters, which are determined by the complexity of the control structure
which in turn is defined by the number of sensory inputs. Both aspects can be
observed in the experimental results. A small number of sensors results in simple
and low dimensional control structures which converge quickly in the evolution-
ary process to a local optimum, yet they have an overall low quality measured
by a high drag value due to insufficient sensory information. In the case of a
high dimensional sensory input of the system we observe low convergence speed
toward an optimum due to the high dimensional optimization problem or even
an early convergence to local optima. These results suggest the existence of an
optimal number of system parameters for the evolutionary design process. Unfor-
tunately neither the optimal dimensionality of the sensory input nor the optimal
number of optimization parameter is known for the problem at hand. Further-
more it is likely that the optimal number of parameters depend on the progress
of the optimization process. These findings suggest the necessity of a variable

816 O. Smalikho and M. Olhofer

number of free parameters in the system, which is addressed in future work by
the realization of a growth process during the evolutionary design process.

Acknowledgments. The authors gratefully acknowledge the support of Giles Endi-
cott and Bernhard Sendhoff and the financial support from Honda Research Institute
Europe GmbH.

References

1. Sims, K.: Evolving virtual creatures. In: The 21st Annual Conference, pp. 15–22.
ACM Press, New York (1994)

2. Parker, G., Nathan, P.: Co-evolution of sensor morphology and control on a simu-
lated legged robot. In: International Symposium on Computational Intelligence in
Robotics and Automation, CIRA 2007, pp. 516–521 (2007)

3. Bugajska, M.D., Schultz, A.C.: Coevolution of form and function in the design
of micro air vehicles. In: Evolvable Hardware, 154–166. IEEE Computer Society
(2002)

4. Sugiura, K., Akahane, M., Shiose, T., Shimohara, K., Katai, O.: Exploiting interac-
tion between sensory morphology and learning. In: 2005 IEEE International Con-
ference on Systems, Man and Cybernetics, vol. 1., pp. 883–888 (2005)

5. Auerbach, J., Bongard, J.: 12th International Conference on the Synthesis and
Simulation of Living Systems (ALife XII) (August 2010)

6. Farin, G.E.: NURBS: From Projective Geometry to Practical Use, 2nd edn. A. K.
Peters Ltd., Natick (1999)

7. Anderson, J.: Fundamentals of Aerodynamics. Anderson series, McGraw-Hill Edu-
cation (2011)

8. von Haller, B., Ijspeert, A.J., Floreano, D.: Co-evolution of Structures and Con-
trollers for Neubot Underwater Modular Robots. In: Capcarrère, M.S., Freitas,
A.A., Bentley, P.J., Johnson, C.G., Timmis, J. (eds.) ECAL 2005. LNCS (LNAI),
vol. 3630, pp. 189–199. Springer, Heidelberg (2005)

9. Hansen, N.: The CMA Evolution Strategy: A Comparing Review (2006)
10. Jacobs, E.N., Ward, K.E., Pinkerton, R.M.: The characteristics of 78 related airfoil

sections from tests in the variable density wind tunnel. Technical Report 460 (1948)
11. Rechenberg, I.: Evolutionsstrategie 1994. Frommann, Stuttgart (1994) Fit via Evo-

lutionsstrategie, Routine von Volker Tuerck vorhanden (1994)
12. Bremner, F., Gotts, S., Denham, D.: Hinton diagrams: Viewing connection

strengths in neural networks, vol. 26, pp. 215–218. Springer (1994)

Infeasibility Driven Evolutionary Algorithm
with Feed-forward Prediction Strategy

for Dynamic Constrained Optimization Problems

Patryk Filipiak(B) and Piotr Lipinski

Computational Intelligence Research Group, Institute of Computer Science,
University of Wroclaw, Wroclaw, Poland

{patryk.filipiak,lipinski}@ii.uni.wroc.pl

Abstract. This paper proposes a modification of Infeasibility Driven
Evolutionary Algorithm that applies the anticipation mechanism follow-
ing Feed-forward Prediction Strategy. The presented approach allows
reacting on environmental changes more rapidly by directing some indi-
viduals into the areas of most probable occurrences of future optima. Also
a novel population segmentation on exploring, exploiting and anticipat-
ing fractions is introduced to assure a better diversification of individuals
and thus improve the ability to track moving optima. The experiments
performed on the popular benchmarks confirmed the significant improve-
ment in Dynamic Constrained Optimization Problems when using the
proposed approach.

1 Introduction

Numerous optimization problems are dynamic in the sense that their objective
functions change as time goes by, thus making them difficult to solve. However,
recent advances in Computational Intelligence allowed to address Dynamic Opti-
mization Problems (DOPs) with the heuristic approach. The spectrum of Evo-
lutionary Algorithms (EAs) applicable for DOPs has grown significantly within
the last few years [2,6,7,10–13,15]. Unlike the classical EAs, they are able to
track moving optima and simultaneously explore the search space looking for the
newly appearing optima by either introducing or maintaining diversity within a
population [10,13,15] or forecasting future promising regions based on the past
observations [6,7,12].

Dynamic Constrained Optimization Problems (DCOPs) were defined in [8]
as a subclass of DOPs aimed at finding such x(t) ∈ Rd for each t > 0 that satisfies

x(t) = arg min{F (t)(x) : x ∈ Rd ∧ g
(t)
j (x) ≤ 0, for j = 1, 2, . . . ,m},

where F (t) is the objective function and g
(t)
j are the constraint functions. Although

lately some EAs for DCOPs were proposed [6,13], Yang et al. [15] identified “a
clear gap of studies on constrained and dynamic constrained problems”.

Infeasibility Driven EA (IDEA) [14] is one of the algorithms assuring a supe-
rior constraint handling by promoting infeasible solutions in order to localize
c© Springer-Verlag Berlin Heidelberg 2014
A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2014, LNCS 8602, pp. 817–828, 2014.
DOI: 10.1007/978-3-662-45523-4 66

818 P. Filipiak and P. Lipinski

optima on constraint boundaries. Moreover, it is stated in [13] that even though
IDEA was originally proposed for Stationary Optimization Problems (SOPs), it
has also the ability to deal with some DOPs.

The contribution of this paper is the proposed modification of IDEA named
IDEA-FPS. It utilizes the anticipation mechanism that predicts future optima
locations based on past observations by following Feed-forward Prediction Strat-
egy (FPS) [7], i.e. it keeps the track of best individuals from past generations and
makes predictions about most probable locations of future optima. As the antic-
ipation mechanism the AutoRegressive Integrated Moving Average (ARIMA)
model [1] is applied. Also a novel population segmentation into exploring, exploit-
ing and anticipating fractions is proposed to assure a better diversification of
individuals and thus improve the ability to track moving optima.

The experiments performed on the popular DCOP benchmarks [5,9] con-
firmed that IDEA-FPS significantly outperformed IDEA in most of the cases,
especially in rapidly changing environments.

2 Infeasibility Driven Evolutionary Algorithm

IDEA [14] was originally proposed to address stationary constrained optimiza-
tion problems. It maintains a certain fraction of “good” yet infeasible solutions
within a population in order to improve an exploration of areas near constraint
boundaries. Formally, IDEA evaluates each individual under the two criteria.
One criterion is simply an objective function. Another criterion, called violation
measure, determines to what extent a given solution violates the constraints.
Thus IDEA essentially reformulates a single-objective problem into a multi-
objective one, so that any two individuals can no longer be compared according
to their fitness. Instead, the ranking based on non-dominated sorting procedure
with crowding distance metric (as a tie-breaking rule) is performed as in NSGA-
II [3]. It is important to note that crowding distance promotes individuals located
in less crowded areas hence it introduces diversity within a population.

Let M > 0 be the size of the population P . The main loop of IDEA (presented
in Algorithm 1) begins with the random initialization of P then runs Ngen > 0
iterations, each of which starts with the (re-)evaluation of P .

The heart of IDEA is Sub-IDEA step (Algorithm 2) which essentially runs
the entire “evolutionary engine” of the algorithm. It consists of Nsub > 0 itera-
tions of tournament selection, simulated binary crossover (SBX) and polynomial
mutation [14]. As the output Sub-IDEA returns the set C consisting of M off-
springs. In order not to confuse iterations of Sub-IDEA step with iterations of
the main loop, the former ones will be referred to as subiterations.

The key aspect of IDEA is the reduction step. As it is seen in Algorithm 3,
the union set of parents P and children C is firstly split into two subsets (Sfeas

and Sinfeas) based on the feasibility of individuals. Then, both these subsets
are ranked separately according to the mentioned NSGA-II ranking. The top
Mfeas > 0 individuals among Sfeas and the top Minfeas > 0 individuals among
Sinfeas (such that M = Mfeas +Minfeas) are chosen to form the new generation

IDEA with Feed-forward Prediction Strategy for DCOPs 819

Algorithm 1. Main loop of IDEA.
P1 = RandomPopulation()
for t = 1 → Ngen do

Evaluation(Pt)
Ct = Sub-IDEA(P ′

t)
P ′′
t = IDEA-Reduction(P ′

t ∪ Ct)
end for

Algorithm 2. Sub-IDEA step.
P1 = P
Evaluation(P1)
for t = 1 → Nsub do

P ′
t = Selection(Pt)

Ct = Crossover(P ′
t)

C′′
t = Mutation(C′

t)
Pt+1 = IDEA-Reduction(Pt ∪ C′′

t)
end for
Return PNsub

Algorithm 3. IDEA-Reduction of a union P ∪C (where P are parents and C are
children), producing an output population P ′ consisting of M > 0 individuals.

Minfeas = sizeinfeas · M
Mfeas = M − Minfeas

(Sfeas, Sinfeas) = Split(P ∪ C)
Rank(Sfeas)
Rank(Sinfeas)
P ′ = Sfeas(1 : Mfeas) + Sinfeas(1 : Minfeas)

P ′. This sort of a separation is intended to promote the infeasible individuals
located near constraint boundaries which otherwise could be eliminated by the
feasible ones due to their superiority in violation measure.

3 Feed-forward Prediction Strategy

The Feed-forward Prediction Strategy (FPS) was proposed in [7] as an antic-
ipation mechanism used by Dynamic Queuing Multi-Objective Optimizer (D-
QMOO). It assumes that the changes of spatial optima locations in a search
space at the consecutive time steps form a pattern that can be fitted with an
AutoRegressive (AR) model. As a result, the locations of future optima can be
anticipated using this model.

For all time steps t ∈ N+, let x∗
t ∈ Rn be the argument minimizing F (t),

i.e. the location of optimum of F (t). Let {Xt}t∈N+ be the n-dimensional time
series of such optima locations, i.e. X1 = x∗

1, X2 = x∗
2, . . . Obviously, the exact

values of x∗
t aren’t known. Instead, an individual p∗

t ∈ Rn with the highest
fitness among all specimens in a population Pt at time step t is used as the

820 P. Filipiak and P. Lipinski

best available approximation of x∗
t . As a result, the accuracy of a prediction

model is highly dependent on the efficiency of the EA used. It means that the
closer a population can get to the actual optimum at each time step, the more
exact locations of future optima can be anticipated. On the other hand, the
less effectively EA performs at localizing current optima, the more erroneous
anticipations it obtains in return.

It is crucial that models like AR require some Ntrain > 0 initial steps for
collecting the data and auto-tunning the parameters before they can be used.
Thus, any EA would perform equivalently, either with or without using the
prediction mechanism, during the initial time steps t = 1, . . . , Ntrain

4 IDEA-FPS

IDEA-FPS is the proposed modification of IDEA that utilizes the ARIMA-based
anticipation mechanism following FPS and introduces the novel population seg-
mentation. Apart from maintaining a small fraction of infeasible individuals, as
IDEA does, IDEA-FPS performs the repeatable injections of individuals located
in the proximity of the anticipated future optima. Also the injections of random
immigrants are performed in order to introduce diversity within the population.

A detailed description of IDEA-FPS is given in the following subsections.

4.1 Anticipation Mechanism

The original FPS presented in the previous section was based on the simple AR
model. It was parametrized with only a single positive integer p determining
the order of autoregression. In IDEA-FPS, the AR model is extended into the
more general ARIMA [1] model that often guarantees more accurate forecasts
yet requires 3 non-negative integer parameters (p, d, q), where p and q are the
orders of autoregression and moving average (respectively) while d is the number
of differentiations of consecutive elements. Naturally, AR(p) is equivalent to
ARIMA(p, 0, 0) for all p > 0.

A selection of proper values of p, d, q is crucial for balancing an anticipa-
tion accuracy and a computational cost. Typically, the greater values of p and
q are used, the more accurate forecasts are obtained and the more computation
time is needed. However, it is suggested in [1] that ARIMA(p, d, q) typically pro-
duces sufficiently accurate forecasts when using the parameters p, d, q ∈ {0, 1, 2}
which practically narrows down the spectrum of ARIMA models to 24 variants
(excluding cases where p = q = 0).

4.2 Population Segmentation

IDEA-FPS retains the feasibility-based population segmentation from IDEA.
Simultaneously, it introduces the additional role-based segmentation on: explor-
ing fraction, exploiting fraction and anticipating fraction. Any individual from
a given role-based fraction is of course either feasible or infeasible. Similarly,

IDEA with Feed-forward Prediction Strategy for DCOPs 821

any individual from a given feasibility-based fraction must also belong to either
exploring, exploiting or anticipating fraction.

Exploring fraction is built up entirely with random immigrants that are uni-
formly distributed in the search space. Their randomness prevents a population
from trapping into local optima and introduces diversity required for tracking
changes in the landscape. Anticipating fraction is a group of individuals gathered
in the nearest proximity of the predicted location of a future optimum. Providing
that a forecast obtained with an anticipation model is accurate, these individu-
als would become the most contributing ones just after the next environmental
change. Exploiting fraction in turn is formed with offsprings of both exploring
and anticipating individuals from previous generations. It is responsible for a
fine-grained search in the areas recognized as promising by the other fractions
and for decreasing violation measure of infeasible individuals.

4.3 Algorithm

A pseudo-code of IDEA-FPS is given in Algorithm 4. It begins with a random
initialization of M > 0 individuals x1, . . . , xM ∈ Rd and the empty time series
{Xt}t∈N. Each iteration t = 1, . . . , Ngen starts with an evaluation of a population
Pt, i.e. a computation of fitness and violation measures. Later on, a new exploring
fraction comprising of sizeexplore · M random immigrants (where sizeexplore ∈
{0%, . . . , 100%}) is injected into Pt. These immigrants replace worst feasible
individuals in Pt. If the size of an exploring fraction is greater than the size
of a feasible fraction, then also worst infeasible ones are replaced. Note that
such replacement strategy promotes infeasible solutions which is one of the key
aspects of IDEA as it was mentioned before.

Algorithm 4. Pseudo-code of IDEA-FPS.
X0 = (∅)
P1 = RandomPopulation()
for t = 1 → Ngen do

Evaluation(Pt)
P ′
t = InjectExploringFraction(Pt, sizeexplore)

Ct = Sub-IDEA(P ′
t)

P ′′
t = IDEA-Reduction(P ′

t ∪ Ct, sizeinfeas)
p∗
t = BestIndividual(P ′′

t)
Xt = (Xt−1, {p∗

t })
if t ≤ Ntrain then

Pt+1 = P ′′
t

else
p̃∗
t+1 = NextBestIndividualAnticipation(Xt, ARIMA(p, d, q))

Φt+1 = AnticipatingFractionDistribution(p̃∗
t+1, t)

Pt+1 = InjectAnticipatingFraction(P ′′
t ,Φt+1, sizeanticip)

end if
end for

822 P. Filipiak and P. Lipinski

After invoking standard Sub-IDEA and IDEA-Reduction steps, a best-of-
population individual p∗

t is selected, i.e. a feasible individual with the highest
fitness or (if a feasible fraction is empty) the one with the lowest violation mea-
sure. A vector p∗

t ∈ Rd is then stored in {Xt} as the best approximation of an
optimum location at time step t.

For t = 1, . . . , Ntrain the anticipation mechanism of IDEA-FPS is inactive
since best individuals from these generations are used for training the ARIMA
model. During this initial period IDEA-FPS behaves like the original IDEA
extended with random immigrants injections.

When the condition t > Ntrain is finally satisfied, ARIMA(p, d, q) model
is applied to {Xt} in order to obtain a forecast concerning the next optimum
location p̃∗

t+1.
As a result, the new anticipation fraction is created out of random individuals

located in the proximity of p̃∗
t+1. Virtually any continuous probability distribu-

tion function can be applied for that purpose. In this paper anticipation frac-
tions are drawn with a d-dimensional Gaussian distribution N (p̃∗

t+1, σ
2
t) where

σt = (σt,1, σt,2, . . . , σt,d) ∈ Rd with σt,i = (xmax
i − xmin

i)/100t for i = 1, . . . , d
and xmin

i ≤ xmax
i .

At the end of the main loop, these new individuals replace worst feasible
solutions (and worst infeasible ones if necessary) just like in the case of exploring
fraction.

5 Experiments

IDEA-FPS with various ARIMA(p, d, q) models and possible sizes of exploring,
exploiting and anticipating fractions was tested on the popular DCOP bench-
marks then compared with IDEA.

5.1 Benchmarks

The experiments were performed on the three following benchmarks.

Benchmarks g24 [9] Minimize the function

(a) g24 1
F (t)(x) = −

[
sin

(
kπt +

π

2

)
· x1 + x2

]
,

(b) g24 2
F (t)(x) = − [p1(t) · x1 + p2(t) · x2] ,

p1(t) =
{

sin
(

kπt
2 + π

2

)
, t | 2

p1(t − 1), t � 2
, p2(t) =

{
p2(max{0, t − 1}), t | 2
sin

(
kπ(t−1)

2 + π
2

)
, t � 2

subject to

g1(x) = 2x4
1 − 8x3

1 + 8x2
1 − x2 + 2 ≥ 0,

g2(x) = 4x4
1 − 32x3

1 + 88x2
1 − 96x1 − x2 + 36 ≥ 0,

where x = (x1, x2) ∈ [0, 3] × [0, 4], t ∈ N+ and 0 ≤ k ≤ 2.

IDEA with Feed-forward Prediction Strategy for DCOPs 823

Modified FDA1 [5,6] Minimize the function

F (t)(x) = 1 −
√

x1

1 +
∑n

i=2

(
xi − sin

(
πt
4

))2
subject to

gj(x) =
3[x2 − 1

2 (αj + βj)]2

2(αj − βj)2
− x1 +

1
4

≥ 0,

αj = sin
(

π(j + 1)
4

)
, βj = sin

(
π(j + 1)

4

)
, j ∈ {1, 2, 3, 4}.

where x = (x1, x2) ∈ [0, 1] × [−1, 1] and t ∈ N+.

5.2 Performance Measures

An overall efficiency of the analyzed algorithms was assessed with a frequently
used offline performance measure [10] whereas an accuracy of the anticipation
models — with a metric called Akaike Information Criterion (AIC) [1].

AIC(L, r) is defined as −2 ln L + 2r, where L is the maximized likelihood
for the estimated model and r is the number of input parameters of this model
(in the case of ARIMA(p, d, q), r = p + q + 1). Note that AIC allows for both
computing the expected information loss when using a given anticipation model
and in the same time it penalizes a use of too many input parameters which
could result in an increase of the computational cost. Thus, it is desirable to
always pick ARIMA model with the lowest AIC.

5.3 Setup

In all the experiments a population of 25 individuals was used which is considered
a middle-sized population for DCOPs in the literature [10,11]. The crossover and
the mutation probability were set to 0.9 and 0.1 (respectively) as suggested in
[13]. Violation measure (being the second objective) was defined as the Euclidean
distance to the nearest feasible individual.

Each experiment lasted for Ngen = 100 generations containing a fixed number
of Nsub > 0 subiterations (the exact value of Nsub differs in particular cases).
The initial Ntrain = 10 generations were used for training an anticipation model.

All combinations among {0%, 10%, 20%, . . . , 100%} of a population size were
considered for both exploring and ancitipating fractions. Note that IDEA is
a special case of IDEA-FPS with both fraction sizes set to 0% while IDEA-
FPS with exploring fraction size = 100% and anticipating fraction size = 0%
is indeed the original IDEA with the full re-initialization of a population after
each environmental change. For simplicity, the latter case will be referred to as
IDEA with restart.

Each output presented further in this section is averaged over 50 independent
runs with the same input parameters.

824 P. Filipiak and P. Lipinski

5.4 Discussion

Prediction model fitting comprises of setting up an optimal input parameters for
a given prediction model. Table 1 summarizes the results of applying ARIMA(p,
d, q) with p, d, q ∈ {0, 1, 2} (excluding p = q = 0) to IDEA-FPS, tested in
benchmarks g24 1, g24 2 and modified FDA1. Results are arranged by AIC.
In either case, ARIMA(2, 0, 2) gave best results according to AIC. However,
ARIMA(2, 1, 2) resulted in slightly better scores on offline performance in g24 1
and modified FDA1 being nearly as good when comparing AIC. Generally, mod-
els with p = 2 together with zero or one differentiation d performed better than
the remaining ones. On the other hand, ARIMA(0, d, q) models turned out to be
the least effective in both criteria, especially when d = 2. This means that select-
ing a proper value of p played the most important role in fitting the model. A use
of non-zero q parameter also had a positive influence although less significant.

Population segmentation affects explicitly the behavior of a whole population.
At the first glance an equal-sized segmentation may seem most fair in general.
Nevertheless, it is seen in Algorithm 4 that the exploring and anticipating frac-
tions can actually overlap (which gives a large spectrum of contrintuitive possible
segmentations) since they are iteratively re-established with consecutive injec-
tions of new individuals into the population. In other words, each of the two
procedures, i.e. InjectExploringFraction at the beginning of a generation and
InjectAnticipatingFraction at the end of it (providing that t > Ntrain), results
in a replacement of up to 100% candidate solutions with the new ones.

Table 2 presents offline performances of IDEA-FPS (with Nsub = 2) obtained
in 11 × 11 = 121 combinations of sizeexplore and sizeanticip both in {0%, 10%,
20%, . . . , 100%}. The top three outputs for each benchmark are underlined. It
is evident from Table 2 that the rate of exploration had a significant impact on
the overall performance of IDEA-FPS in all the analyzed benchmark problems.

Table 1. Partial ranking of ARIMA(p, d, q) with p, d, q ∈ {0, 1, 2} (excluding p = q = 0)
applied for IDEA-FPS, tested in g24 1, g24 2 and modified FDA1 ; arranged by AIC

g24 1 g24 2 modified FDA1

ARIMA offline ARIMA offline ARIMA offline
pos. model perform. AIC model perform. AIC model perform. AIC

1. (2, 0, 2) -3.796 3.8 (2, 0, 2) -1.262 122.0 (2, 0, 2) 0.0615 -44.3
2. (2, 1, 2) -3.826 7.0 (2, 0, 0) -1.276 142.1 (2, 1, 2) 0.0678 -36.4
3. (1, 0, 1) -3.793 7.2 (2, 0, 1) -1.262 145.6 (2, 0, 1) 0.0638 21.5
4. (1, 0, 2) -3.812 7.3 (2, 1, 1) -1.237 148.9 (2, 1, 1) 0.0689 25.5
5. (2, 0, 1) -3.788 10.9 (2, 1, 2) -1.238 149.7 (2, 2, 2) 0.0686 46.8
...

...
...

...
...

...
...

...
...

...
22. (2, 2, 0) -3.713 84.2 (2, 2, 0) -1.120 221.4 (1, 2, 0) 0.0758 111.6
23. (1, 2, 0) -3.726 93.7 (0, 2, 1) -1.093 221.4 (0, 2, 2) 0.0679 113.7
24. (0, 2, 1) -3.649 120.5 (1, 2, 0) -1.092 255.8 (0, 2, 1) 0.0736 118.0

IDEA with Feed-forward Prediction Strategy for DCOPs 825

Particularly, it turned out that the cases with sizeexplore = 0% performed the
least effective every time. On the other hand, the best offline performances were
obtained for 50% ≤ sizeexplore ≤ 70%. Clearly, also the application of an antic-
ipation mechanism noticeably influenced the offline performances. It was espe-
cially visible after switching from sizeanticip = 0% to 10% ≤ sizeanticip ≤ 30%.

Table 2. Offline performance of IDEA-FPS with Ngen = 100, Nsub = 2 and various
sizeexplore and sizeanticip. The top three results for each benchmark are underlined.

sizeexplore
sizeanticip 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

g24 1

0% -3.303 -3.382 -3.451 -3.507 -3.530 -3.571 -3.635 -3.658 -3.473 -3.488 -3.476
10% -3.324 -3.397 -3.505 -3.570 -3.642 -3.715 -3.743 -3.799 -3.494 -3.489 -3.481
20% -3.355 -3.458 -3.565 -3.604 -3.692 -3.729 -3.738 -3.766 -3.505 -3.507 -3.482
30% -3.375 -3.478 -3.577 -3.619 -3.717 -3.747 -3.740 -3.774 -3.491 -3.496 -3.487
40% -3.383 -3.483 -3.633 -3.647 -3.696 -3.732 -3.727 -3.740 -3.494 -3.490 -3.477
50% -3.332 -3.454 -3.639 -3.654 -3.743 -3.761 -3.716 -3.743 -3.498 -3.502 -3.478
60% -3.251 -3.522 -3.639 -3.680 -3.673 -3.740 -3.752 -3.740 -3.488 -3.494 -3.481
70% -3.294 -3.522 -3.656 -3.669 -3.731 -3.710 -3.747 -3.736 -3.483 -3.487 -3.475
80% -3.330 -3.665 -3.654 -3.683 -3.691 -3.726 -3.715 -3.732 -3.469 -3.481 -3.492
90% -3.379 -3.621 -3.695 -3.688 -3.709 -3.722 -3.733 -3.739 -3.725 -3.487 -3.482
100% -3.336 -3.597 -3.686 -3.708 -3.738 -3.708 -3.755 -3.740 -3.743 -3.727 -3.491

g24 2

0% -0.551 -0.672 -0.848 -0.915 -0.997 -1.053 -1.097 -1.132 -1.154 -1.171 -1.191
10% -0.880 -0.996 -1.086 -1.131 -1.159 -1.197 -1.222 -1.234 -1.152 -1.163 -1.193
20% -0.971 -1.050 -1.146 -1.168 -1.199 -1.213 -1.241 -1.251 -1.151 -1.169 -1.188
30% -0.986 -1.096 -1.164 -1.177 -1.216 -1.228 -1.238 -1.245 -1.157 -1.165 -1.184
40% -1.039 -1.092 -1.168 -1.184 -1.207 -1.222 -1.230 -1.239 -1.151 -1.158 -1.187
50% -1.021 -1.109 -1.181 -1.209 -1.220 -1.227 -1.230 -1.236 -1.150 -1.172 -1.184
60% -1.034 -1.127 -1.180 -1.180 -1.232 -1.236 -1.252 -1.232 -1.153 -1.167 -1.185
70% -1.037 -1.102 -1.184 -1.200 -1.227 -1.251 -1.238 -1.232 -1.161 -1.163 -1.189
80% -1.062 -1.129 -1.191 -1.229 -1.225 -1.234 -1.236 -1.241 -1.177 -1.193 -1.188
90% -1.080 -1.110 -1.197 -1.229 -1.214 -1.238 -1.253 -1.250 -1.249 -1.191 -1.192
100% -1.052 -1.136 -1.186 -1.216 -1.236 -1.224 -1.266 -1.257 -1.258 -1.256 -1.185

modified FDA1

0% 0.149 0.129 0.121 0.114 0.102 0.099 0.089 0.082 0.108 0.107 0.124
10% 0.159 0.131 0.115 0.104 0.091 0.082 0.069 0.062 0.095 0.098 0.123
20% 0.164 0.137 0.112 0.099 0.084 0.072 0.069 0.071 0.093 0.098 0.124
30% 0.167 0.136 0.106 0.092 0.075 0.063 0.066 0.068 0.092 0.096 0.125
40% 0.164 0.127 0.091 0.080 0.072 0.071 0.074 0.065 0.093 0.097 0.124
50% 0.164 0.119 0.089 0.076 0.070 0.072 0.071 0.072 0.093 0.097 0.125
60% 0.153 0.111 0.084 0.078 0.079 0.073 0.072 0.070 0.092 0.097 0.125
70% 0.149 0.097 0.080 0.081 0.076 0.069 0.070 0.071 0.091 0.095 0.123
80% 0.140 0.102 0.092 0.083 0.077 0.072 0.070 0.067 0.092 0.097 0.124
90% 0.153 0.101 0.089 0.080 0.076 0.075 0.068 0.071 0.076 0.097 0.124
100% 0.178 0.108 0.090 0.077 0.082 0.073 0.071 0.071 0.074 0.081 0.125

826 P. Filipiak and P. Lipinski

Table 3. Comparison of offline performances for Nsub = 1, . . . , 6 and evaluations of
best feasible individuals during a sample run of IDEA-FPS vs. IDEA and IDEA with
restart, tested in g24 1, g24 2 and modified FDA1

Offline performance for Evaluation of best feasible
Nsub = 1, . . . , 6 individual during a sample run.

g24 1

1 2 3 4 5 6
−4

−3.9

−3.8

−3.7

−3.6

−3.5

−3.4

−3.3

−3.2

number of subiterations

of
fli

ne
 p

er
fo

rm
an

ce

IDEA
IDEA with restart
IDEA−FPS

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
−6

−4

−2

0

generation number

m
in

 e
va

l.

IDEA

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
−6

−4

−2

0

generation number

m
in

 e
va

l.

IDEA with restart

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
−6

−4

−2

0

generation number

m
in

 e
va

l.

IDEA−FPS

g24 2

1 2 3 4 5 6
−1.4

−1.3

−1.2

−1.1

−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

number of subiterations

of
fli

ne
 p

er
fo

rm
an

ce

IDEA
IDEA with restart
IDEA−FPS

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
−4

−2

0

2

generation number

m
in

 e
va

l.

IDEA

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
−4

−2

0

2

generation number

m
in

 e
va

l.

IDEA with restart

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
−4

−2

0

2

generation number

m
in

 e
va

l.

IDEA−FPS

modified FDA1

1 2 3 4 5 6
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

number of subiterations

of
fli

ne
 p

er
fo

rm
an

ce

IDEA
IDEA with restart
IDEA−FPS

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

0

0.1

0.2

0.3

0.4

generation number

m
in

 e
va

l.

IDEA

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

0

0.1

0.2

0.3

0.4

generation number

m
in

 e
va

l.

IDEA with restart

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

0

0.1

0.2

0.3

0.4

generation number

m
in

 e
va

l.

IDEA−FPS

IDEA with Feed-forward Prediction Strategy for DCOPs 827

Only in benchmark g24 2 best results were obtained when the size of antici-
pating fraction approached the level of sizeanticip ≥ 90%. However, in g24 2
global optima tend to jump outside the feasible region which make them less
predictable and thus harder to trace.

Number of subiterations is what essentially distinguishes DOPs from iterated
SOPs. Table 3 (left column) illustrates the impact of a number of subiterations
Nsub on the offline performance of IDEA, IDEA with restart and IDEA-FPS.
It is clearly seen that the increase of Nsub has relatively low influence on the
performance of IDEA. Only in g24 2 the scores improved significantly as Nsub

increased, however the pace of the observed improvement was still considerably
slow comparing to IDEA with restart and IDEA-FPS.

Surprisingly large improvement was achieved by IDEA with restart. Within 5
subiterations it nearly approached the level of performance of IDEA-FPS which
may lead to the conclusion that the main drawback of IDEA applied for DCOPs
is a tendency to get stuck in local optima.

IDEA-FPS outperformed the other two approaches in all the analyzed cases.
It is particularly visible for Nsub = 2, 3 and 4. Injections of exploring and antic-
ipating fractions clearly helped to alleviate the stagnation problem. It is also
demonstrated in Table 3 (right column) at the sample runs of the examined
algorithms. Periodical fluctuations of best feasible individuals that are visible on
the plots relate to rapid reactivity to the environmental changes in g24 1 and
g24 2 whereas the distorted irregular variations indicate losing track of global
optima. On the other hand, modified FDA1 is designed in such manner that the
ideal run would result in the straight line at the 0 level. Thus, each deviation
towards positive values visible on the plots signifies slow reaction to the envi-
ronmental changes. Note that IDEA with restart hardly approached the 0 level.
This implies that global optima in modified FDA1 are evidently less accessible
by purely random individuals then in g24 1 and g24 2. However, an anticipation
mechanism of IDEA-FPS allowed for handling well with these difficulties.

Statistical significance of the presented outputs was verified with Wilcoxon test
as advised in [4] since nonparametrical test require no assumptions that could be
violated when comparing EAs (e.g. independence, normality and homoscedas-
ticity). The pairwise statistical tests confirmed that IDEA-FPS outperformed
both IDEA and IDEA with restart at the level of significance α > 10−8.

6 Conclusions and Future Work

In this paper a modification of IDEA with an application of the anticipation
mechanism following FPS aimed at DCOPs was discussed. In the proposed algo-
rithm (IDEA-FPS) the AR model originally suggested by Hatzakis and Wallace
was extended to the more general ARIMA model to obtain more accurate pre-
dictions of future optima locations. Also a novel population segmentation was
proposed to introduce diversity of individuals thus improve the tracking of mov-
ing optima.

828 P. Filipiak and P. Lipinski

Experiments concerning the number of subiterations confirmed that IDEA-
FPS significantly outperformed IDEA in rapidly changing environments yet in
the cases with Nsub ≥ 5 it was also reasonable to simply use IDEA with restart.

Future works on the performance of IDEA-FPS in handling DCOPs with
dynamic constraints are planned in the nearest future. It is also tempting to
verify the applicability of other anticipation mechanisms to EAs for DOPs.

References

1. Box, G.E.P., Jenkins, G.M., Reinsel, G.C.: Time series analysis: forecasting and
control. Wiley.com (2013)

2. Branke, J.: Evolutionary optimization in dynamic environments. Kluwer Academic
Publishers (2001)

3. Deb, K., Pratap, A., Agarwal, A., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. on Evol. Comput. 6, 182–197 (2002)

4. Derrac, J., Garćıa, S., Molina, D., Herrera, F.: A practical tutorial on the use of
nonparametric statistical tests as a methodology for comparing evolutionary and
swarm intelligence algorithms. Swarm and Evolutionary Comput. 1, 3–18 (2011)

5. Farina, M., Deb, K., Amato, P.: Dynamic Multiobjective Optimization Problems:
Test Cases, Approximations and Applications. IEEE Trans. on Evolutionary Com-
put. 8(5), 425–442 (2004)

6. Filipiak, P., Michalak, K., Lipinski, P.: Infeasibility Driven Evolutionary Algorithm
with ARIMA-Based Prediction Mechanism. In: Yin, H., Wang, W., Rayward-Smith,
V. (eds.) IDEAL 2011. LNCS, vol. 6936, pp. 345–352. Springer, Heidelberg (2011)

7. Hatzakis, I., Wallace, D.: Dynamic multi-objective optimization with evolutionary
algorithms: A forward-looking approach. In: Proc. of the 8th Annual Conf. on
Genetic and Evolutionary Computation (GECCO 2006), pp. 1201–1208 (2006)

8. Liang, J.J., Runarsson, T.P., Mezura-Montes, E., Clerc, M., Suganthan, P., Coello
Coello, C.A., Deb, K.: Problem definitions and evaluation criteria for the CEC
2006 special session on constrained real-parameter optimization. Nangyang Tech-
nological University, Singapore, Tech, Rep. (2006)

9. Nguyen, T., Yao, X.: Benchmarking and solving dynamic constrained problems. In:
Proc. of the IEEE Congress on Evolutionary Comput., pp. 690–697 (CEC 2009)

10. Nguyen, T., Yao, X.: Continuous dynamic constrained optimisation - the chal-
lenges. IEEE Trans. on Evolutionary Comput. (2012) (accepted paper)

11. Nguyen, T., Yao, X.: Solving dynamic constrained optimisation problems using
repair methods. IEEE Trans. on Evolutionary Comput. (2013) (submitted paper)

12. Simões, A., Costa, E.: Evolutionary Algorithms for Dynamic Environments: Pre-
diction Using Linear Regression and Markov Chains. In: Rudolph, G., Jansen, T.,
Lucas, S., Poloni, C., Beume, N. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 306–315.
Springer, Heidelberg (2008)

13. Singh, H.K., Isaacs, A., Nguyen, T.T., Ray, T., Yao, X.: Performance of infeasibility
driven evolutionary algorithm (IDEA) on constrained dynamic single objective
optimization problems. In: Proc. of the IEEE Congress on Evolutionary Comput.
(CEC 2009), pp. 3127–3134 (2009)

14. Singh, H.K., Isaacs, A., Ray, T., Smith, W.: Infeasibility driven evolutionary algo-
rithm for constrained optimization. In: Constraint Handling in Evolutionary Opti-
mization. Studies in Comput. Intelligence, pp. 145–165 (2009)

15. Yang, S., Yao, X. (eds.): Evolutionary Computation for Dynamic Optimization
Problems. Studies in Comput. Intelligence, vol. 490. Springer (2013)

Identifying the Robust Number of Intelligent
Autonomous Vehicles in Container Terminals

Shayan Kavakeb(B), Trung Thanh Nguyen, Zaili Yang, and Ian Jenkinson

Liverpool Logistics Offshore and Marine Research Institute (LOOM),
School of Engineering, Technology and Maritime Operations,
Liverpool John Moores University, L3 3AF Merseyside, UK

S.Kavakeb@2011.ljmu.ac.uk,

{T.T.Nguyen,Z.Yang,I.D.Jenkinson}@ljmu.ac.uk

Abstract. The purpose of this research is to provide an improved Evo-
lutionary Algorithm (EA) in combination with Monte Carlo Simula-
tion (MCS) to identify the robust number of a new type of intelligent
vehicles in container terminals. This type of vehicles, named Intelligent
Autonomous Vehicles (IAVs), has been developed in a European project.
This research extends our previous study on combining MCS with EAs.
This paper has three main contributions: first, it proposes a dynamic
strategy to adjust the number of samples used by MCS to improve the
performance of the EA; second, it incorporates different robustness mea-
sures into the EA to produce different robust solutions depending on
user requirements; and third, it investigates the relation between differ-
ent robust solutions using statistical analyses to provide insights into
what would be the most appropriate robust solutions for port operators.
These contributions have been verified using empirical experiments.

1 Introduction

The purpose of this research is to identify the robust number of Intelligent
Autonomous Vehicles (IAVs) in Container Terminals (CTs)1. IAVs belong to
a new type of intelligent vehicles developed in a European project named Intelli-
gent Transportation for Dynamic Environment (InTraDE). This is an advanced
type of automated vehicles that are able to offer more flexibility than the tradi-
tional automated guided vehicles used in ports.

This research is based on our previous research in [4] where we attempted to
use an EA to identify the robust number of vehicles in any type of environments
where vehicles must shuttle between pickup and delivery points to transport
goods. Examples are manufacturing factories, warehouses, and CTs.

In [4], we considered uncertainties in the travel time of vehicles as a major
source of uncertainties that has a significant impact on the optimal number
of vehicles. Such uncertainties may arise from any breakdowns, collisions, or
1 Note that this research can be applied to identifying the robust fleet size for any

type of vehicle in any environment with similar properties.

c© Springer-Verlag Berlin Heidelberg 2014
A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2014, LNCS 8602, pp. 829–840, 2014.
DOI: 10.1007/978-3-662-45523-4 67

830 S. Kavakeb et al.

deadlocks. In [4], we developed an evolutionary algorithm combined with the
Monte Carlo Simulation (MCS), named FSEA, to identify the optimal number
of vehicles that is robust to the changes in travel time of vehicles. Each solution
of FSEA represents a particular number of vehicles and the sequence of jobs
(with expected duration) that these vehicles need to carry out. To encapsulate
uncertainties, whenever FSEA evaluates a particular solution, we use MCS to
generate n replications of this solution, of which in each replication some possi-
ble uncertainties (e.g. vehicle failures) may occur. Results of n replications are
then combined using an aggregation function to produce fitness of individuals. In
[4], we adopted the aggregation function commonly used in robust optimisation:
averaging the fitness values over all replications. However, just taking the aver-
age might not produce the most appropriate robust solution for some specific
scenarios. For instance, if the worst case scenario is desired, the worst fitness
value received out of n replications should be considered the fitness of individ-
uals. Now, the challenge is how different robust solutions can be produced and
then be compared to identify the most appropriate one. More importantly, the
process of Monte Carlo sampling is very time consuming. As a result, when being
combined with an EA, an MCS will significantly decrease the performance of the
EA in terms of computational time. We also observed this behaviour in FSEA
in [4]. Therefore, the second challenge in this research is how to improve the
performance of an EA when being combined with an MCS.

This research contributes to answering the above questions by proposing some
extensions on FSEA. Firstly, to improve performance of combining MCS with
EAs, we reduce the number of samples on poor solutions and use more samples
on high quality solutions. This can help to reduce the number of samples and
improve performance of FSEA significantly. Secondly, we incorporate different
aggregation functions in MCS to produce different robust solutions. We then
statistically compare those robust solutions to identify the most appropriate
robust solutions for port operators.

1.1 Related Literature

Fleet sizing problem (FSP) is one of important design problems in CTs [8,9].
However, it has not received enough attention from the research community.
Below is a brief review of research on the FSP in CTs.

The FSP of AGVs was modelled in [10] as a minimum flow problem. They
solved this minimum flow problem using a strongly polynomial time algorithm.
That research was followed in [11] where an integer programming model was
proposed for the fleet sizing of automatic lifting vehicles. The problem was solved
using CPLEX commercial solver and validated by conducting a simulation study.
In [7], a two-phase algorithm to tackle the problem of fleet sizing and routing of
vehicles in Busan port was proposed. In the phase one, the authors determined
a lower bound for the required vehicles. In the phase two, using a tabu search
algorithm, they checked if there are routes for those lower-bound number of
vehicles to do jobs within a given makespan. If such routes are available the fleet

Identifying the Robust Number of IAVs in CTs 831

size is optimum; otherwise they increase the number of vehicles by one and solve
the routing problem until the optimal fleet size is found.

Real applications of optimisation problems usually have uncertain elements
[1], [3], [5,6] . This is also the case with the FSP in CTs. However, none of the
above research considers any uncertainty. This creates an important gap in fleet
sizing research. In this research, we are trying to bridge this gap by producing
a range of robust solutions using an EA.

2 IAVs in Container Terminals

This section first explains the transportation tasks in CTs with the IAVs. It then
explains an existing approach to model the fleet sizing problem in CTs.

Transportation Tasks in Container Terminals with IAVs. CTs consist of
quay side areas where vessels are berthed and stack areas where containers are
stacked. A number of quay cranes (QCs) are assigned to vessels to discharge/load
containers from/to the vessels. The process of discharging and loading can be
greatly facilitated if an IAV is used thanks to its special feature: when being
combined with a special table-like frame (to store containers) called a "cassette",
an IAV can pickup and drop off a container by itself without having to wait for
a crane. This way, we can minimise the waiting time of both cranes and vehicles.
In a discharging task, a QC discharges a container from a vessel and then put
containers on top of an empty cassette which acts as a buffer of containers. An
IAV then can come and collect the loaded cassette and transport it to the storage
area. A number of stack cranes (SCs) are assigned to the storage area to stack
and unstack containers. The IAV can drop off the loaded cassettes next to a
SC and travel back to the QCs for the next discharging tasks. The SC then can
come to pickup the container from the cassette and stack it. Once the discharging
tasks finishes, the loading tasks starts, i.e. the containers are transported from
the stack area to the quay side area. The loading task is similar to the discharging
task but in an opposite direction.

Time Window. A time window is a duration between the time that a container
is available (release time) and the latest time (due time) that a container must
be collected from the cassettes to not cause any delay to QCs.

Containers should be collected from the buffer (i.e. cassettes) within their
time windows. To find the possible collection times for a container, we discretized
the time window of the container into a number of possible pickup times [11].

A Graph Model for the Fleet Sizing Problem. In [11], the fleet sizing
problem in CTs (FSP-CTs) was modelled as a directed graph. This graph shows
how containers are collected by vehicles and whether any pair of containers are
compatible, i.e. the two containers can be collected sequentially by the same vehi-
cle. Each node in the graph represents a possible pickup time of a container.The

832 S. Kavakeb et al.

graph has also two more nodes, namely the sink and the source nodes. The
source is the starting point of all directed paths and the sink is the terminal of
all directed paths.

A path from the source node to the sink node is a sequence of containers to
be collected by one IAV. The aim is to identify the minimum number of paths
covering all the containers. This is equivalent to the minimum number of IAVs.
Note that there are two constraints that must be taken into account: 1) each
container must be only in one path i.e. it can be collected by just one vehicle;
2) in each path, containers can have only one node i.e. each container can be
picked up just once. Fig. 1 shows the graph model for an FSP-CT example.
In this example, three containers must be collected. Containers 1 and 3 have
two possible pickup times and container 2 has only one pickup time. Node j11
corresponds to container 1 at the first pickup time and node j12 corresponds to
container 1 at the second pickup time. Similarly, container 3 has two nodes in
the graph model, j31 and j32 and container 2 has one node, j21. One solution
with two IAVs is shown in this figure. In the solution, containers 1 and 3 are
assigned to IAV 1 and container 2 is assigned to IAV 2.

Fig. 1. This figure shows a solution for an FSP-CT with three containers. Containers
1 and 3 have two possible pickup times. Container 2 has only one pickup time. Each
node corresponds to one possible pickup time of one container (e.g. container 1 can be
picked up at either j11 or j12). In this solution, all the three containers are assigned to
two IAVs. Containers 1 and 3 are assigned to IAV 1. Container 2 is assigned to IAV 2.

3 An Evolutionary Algorithm to Identify the Robust
Number of IAVs

This section briefly explains an evolutionary algorithm, named FSEA, that we
developed in [4] to identify the robust number of vehicles. The figures and pseudo-
codes in this section are adopted from [4].

Representation. To solve the FSP-CTs by FSEA, we represented a chromo-
some by a string of pairs of containers: {¡x1, y1¿; ¡x2, y2¿; ...; ¡xn, yn¿} where
for each pair ¡xi, yi¿, xi is the pickup time of container i and yi represents the

Identifying the Robust Number of IAVs in CTs 833

next container that must be done by the same IAV after container i. Sequences
of containers that are assigned to the IAVs can be extracted from this string.

Recombination. To reduce the number of IAVs in individuals, we developed a
recombination-based heuristic operator. This operator can decrease the number
of IAVs one by one by moving all containers to be done by one selected IAV,
named IAV delete, to the list of containers to be done by other IAVs. By removing
all the containers to be done IAV delete, this IAV can be eliminated from the
list of IAVs i.e. the number of IAVs would be decreased by one. Fig. 2 shows an
example of how the heuristic can reduce the number of IAVs.

Fig. 2. In this example, the heuristic moves node j41 from vehicle 3 to the sequence
of containers of IAV 2. By this movement, the number of IAVs decreased from three
to two.

Mutation. Wealsodevelopedamutation operator similar to the idea of theheuris-
tic. The mutation, however, moves containers between all the IAVs except
IAV delete, in ahope that it creates some space to insert containers from IAV delete.
Fig. 3 shows how the mutation can help the heuristic to eliminate IAV delete.

Evaluation of Individuals. This subsection explains the Monte Carlo Simu-
lation (MCS) approach in FSEA to evaluate fitness of individuals.

In the static case, i.e. no uncertainty, the total number of IAVs (i.e. the num-
ber of paths in the graph model of the FSP-CTs) can be considered the fitness
of individuals. In uncertain cases, however, such evaluation may not be totally
realistic. It is seen that two individuals can have the same number of IAVs but
with different schedules, i.e. sequences of containers are different for the same
number of IAVs. Those schedules may behave differently when uncertainties
are introduced to the system. To evaluate the robustness of individuals under
uncertainties we measured the robustness of the schedule associated with each

834 S. Kavakeb et al.

Fig. 3. In this example, if container 3 is moved from IAV 2 to IAV 1, container 4 can
be moved by the heuristic from IAV delete to IAV 2. The mutation can move container
3 from IAV 2 to IAV 1 to open up a position for container 4 in IAV 2.

individual. To do so, we developed an MCS which simulates possible uncertain-
ties that may occur to the schedule of an individual. MCS works by estimating
failures for the IAVs based on the given failure rates (Algorithm 1).

Algorithm 1. EstimateFailures(λ, MTTR, makespan)
1: F := 0

2: t := 0

3: while t < makespan /*makespan is the due time of the last container*/

4: Generate a random exponential value te using the parameter λ
5: tf := te + t
6: tr := tf + MTTR /*MTTR is the mean time to repair of IAVs*/

7: if tf < makespan
8: F := F ∪ {< tf , tr >}
9: t := tr
10: return F

where λ is the failure rate of IAVs.

Failures may happen to IAVs and hinder them from transporting their assigned
containers. As a result, available IAVs, i.e. the ones that are not in failures, must
cover containers of the IAVs that are in failures. If no IAV can cover those con-
tainers, additional IAVs must be added to transport the uncovered containers. The
total number of additional vehicles is used to measure the robustness of individ-
uals. The higher the number of additional IAVs, the less robust a schedule. MCS
replicates n samples of each individual and evaluates the robustness of the sched-
ule of that individual over the n samples. An average of the total number of IAVs

Identifying the Robust Number of IAVs in CTs 835

over n replications is considered the fitness of an individual. This MCS is extended
in this research and it is discussed in Section 4.

4 Extensions on FSEA

This section first explains a new dynamic sampling strategy to improve the
performance of FSEA. It then discusses the proposed approach to aggregate
results of the samples in MCS to produce different robust solutions.

A New Dynamic Sampling Strategy. As mentioned in Section 3, in FSEA
the robustness of individuals are evaluated using MCS. In FSEA, we applied
the same number of samples to all individuals, regardless of whether the quality
of individuals is good or poor. The higher the number of samples, the more
accurate the robustness evaluation of individuals. Evaluating the robustness of
poor individuals as accurately as good individuals may not be totally efficient,
because those poor individuals would be eliminated in the process of evolution.
Therefore, it is a waste of resources. If those poor solutions can be identified and
the algorithm spends less time on them, performance of the algorithm can be
improved significantly. It is obvious that at the earlier generations the quality
of solutions are poor and in the later generations, the quality of solutions are
increased. So, we can use a dynamic strategy to adjust the number of samples
along with the increase in the generations. In this paper, this dynamic strategy
will be integrated in a new algorithm named improved FSEA (iFSEA).

iFSEA considers fewer number of samples at the earlier generations and it
increases the number of samples step by step during the evolution. The pseudo-
code for this is shown in Algorithm 2. In this algorithm, an initial number of
replications is set as n0. After g generations it increases the number of repli-
cations by s. The number of replications will be increased until it reaches the
maximum number samples, n. From that point to the end of the evolution, the
number of replications will be kept as n.

Extension on MCS (eMCS). As recalled in Section 3, individuals are eval-
uated using MCS. MCS evaluates the robustness of individuals by estimating
the possible failures of IAVs. MCS in each replication estimates the number of
IAVs including the additional IAVs needed to cover failures in each individual.
An average of n replications in MCS is considered the fitness of an individual.

In this research, we extend MCS, named eMCS, by considering robustness
measures not only an average but also the maximum, minimum, and the most
frequently occurred (mode) values of the fleet size as observed out of n replica-
tions. Each of those robustness measures can drive the EA to find a different
robust solution and hence may be applicable to different scenarios. By using the
maximum function, we turn the problem into a minimax problem which looks
for the best solution in the worst case scenarios. Specifically, using the Maxi-
mum function, our iFSEA will try to minimise the largest fleet size that we can

836 S. Kavakeb et al.

observe when applying eMCS with uncertainties to each individual. For a formal
description of minimax problems and their applications in robust optimisation
readers are referred to [1].

Algorithm 2. NumberOfReplication(s, g, n, repNo, genCounter)
1: if genCounter % g == 0

2: if repNo + s > n
3: return n
4: repNo := repNo + s
5: return repNo
6: else

7: return repNo

where genCounter is the current generation of iFSEA, g is the generations interval to
increase the number of replications, s is the step to increase the number of replications,
n is the maximum number of replications and repNo is the number of replications.

Similarly, by using the mode and minimum functions, iFSEA will try to
minimise the most frequently occurred fleet size and the smallest fleet size,
respectively, that eMCS observes for each individual under uncertainty. The
pseudo-codes for eMCS and iFSEA are in Algorithms 3 and 4 respectively.

5 Experimental Results

This section first compares performance of FSEA and iFSEA. It then statistically
compares the robust solutions of iFSEA to identify the most appropriate robust
solution for port operators.

Test Cases and Parameter Settings. We selected one European CT as the
case study. All settings are from real-world data of this terminal. To create the
test cases, we varied the number of QCs and size of buffer. The number of QCs
varies from one to three because in this CT at most three QCs can work on
one vessel simultaneously. The size of buffer (number of cassettes) under the
cranes is varied from 0 to 10. The number of containers to be discharged is 100.
In this CT, six stack cranes (SCs) are available and we assume that containers
are divided evenly between those SCs. The distances between QCs and SCs are
taken from real-world data2. The speed of IAVs is considered 4 m/s for empty
IAVs and 2 m/s for loaded IAVs. The actual failure rate and mean time to repair
(MTTR) for IAVs are not available yet. As a result, we use the same failure rate
and MTTR in [2] which are 1.0×10−3 failures/sec and 500 sec, respectively. The
parameter settings for FSEA and iFSEA are shown in table 1.
2 Due to confidential agreements, we cannot reveal the actual distances.

Identifying the Robust Number of IAVs in CTs 837

Algorithm 3. eMCS (aggregType)
1: Identify FS, the number of IAVs in the given individual

2: DF := 0

3: FSL := 0 /*FSL is a list of additional IAVs*/

4: repNo := NumberOfReplication ()

5: for j from 1 to repNo
6: UC := 0 /*UC is the list of uncovered containers*/

7: AV := 0 /*AV is the number of additional vehicles*/

8: for i from 1 to FS
9: DF := EstimateFailures ()

10: Identify uncovered containers of IAV i based on DF and add

them to UC
11: for i from 1 to len gth(UC)

12: if container UC[i] can be covered by an available IAV k
13: Assign container UC[i] to IAV k
14: else

15: AV := AV + 1

16: Assign container UC[i] to the new added IAV

17: FSL:=FSL ∪ {FS + AV }
18: switch (aggregType)
19: case Max:

20: return the maximum of FSL
21: case Min:

22: return the minimum of FSL
23: case Avg:

24: return the average of FSL
25: case Mode:

26: return the most frequent element of FSL

where DF={¡tf , tr¿, tf is the time of failure and tr is the time of repair} and repNo
is the number of replications.

Performance of iFSEA Compared with FSEA. One of the purposes of
proposing iFSEA is to improve the computational time of FSEA without decreas-
ing the quality of solutions. To compare quality of solutions of the two algo-
rithms, we applied FSEA and iFSEA to the same test cases. We then used
Mann-Whitney to see whether results of the two algorithms are significantly
different. The significance level is 95%.

The results showed that there is no significant difference between the solu-
tions of iFSEA and FSEA. The p-values of the statistical analysis are 0.24, 0.48,
0.68 for the test cases of 1, 2, and 3 QCs, respectively. The results show consider-
able high p-values and it confirms that the quality of solutions is not deteriorated
in iFSEA.

Fig. 4 shows differences between the process time of FSEA and iFSEA. It
shows that iFSEA in all the cases could solve the problem considerably faster
than FSEA.

838 S. Kavakeb et al.

Algorithm 4. iFSEA(popSize, m)
1: Initialize population Pt

2: Evaluate population Pt by eMCS ()

3: for genCounter from 1 to m /*m is the maximum generations*/

4: Select elements from Pt to copy into Pt+1

5: for i from 1 to popSize /*popSize is the size of the population*/

6: Apply the mutation operator to individual i

7: Apply the heuristic operator to individual i
8: Evaluate new population Pt+1 by eMCS ()

9: Pt := Pt+1

10: return the best individual

Table 1. Parameters setting for FSEA and iFSEA

iFSEA iFSEA & FSEA
Parameter n0 s g n m popSize λ(failure/sec) MTTR(s) other parameters

value 60 20 10 100 100 15 1.0×10−3 500 the same as [4]

Comparison Between Robust Solutions. Results of applying iFSEA to
the test cases using different aggregation approaches (e.g. Min, Max, Avg, and
Mode) are shown in table 2. Note that a higher number of IAVs may increase
productivity under uncertainties, however, it can be expensive to deploy too
many IAVs. Therefore, the port operators need an accurate comparison between
the robust approaches and based on that they can carefully select the most
appropriate robust solution. As a result, we compared the robust approaches
using the Mann-Whitney test to provide a tool that can help port operators to
identify the most appropriate robust solution.

Table 2. Different robust numbers of IAVs using different aggregation functions

buff. size 1 QC 2 QCs 3 QCs
Min Max Mode Avg Min Max Mode Avg Min Max Mode Avg

0 7 10 9 8.96 13 17 15 15.55 19 23 21 21.81
1 6 9 8 8.27 12 17 14 14.64 17 22 19 20.25
2 6 9 8 7.51 11 15 13 13.64 15 20 18 18.16
3 6 9 8 7.87 10 14 12 12.32 13 17 15 15.02
4 5 8 7 6.00 9 12 10 10.29 12 17 15 15.49
5 5 8 7 6.76 9 12 11 11.00 12 15 13 13.51
6 5 8 7 6.75 9 11 11 10.85 12 15 14 16.69
7 5 7 7 6.87 9 11 11 10.79 11 14 13 12.53
8 5 7 7 6.67 9 11 10 10.00 10 13 12 11.76
9 5 7 6 6.55 8 9 9 9.44 9 11 10 10.30
10 5 7 5 6.00 8 9 9 9.18 9 11 10 9.00

Identifying the Robust Number of IAVs in CTs 839

Fig. 4. Results show that in all of the cases iFSEA could solve the problems signifi-
cantly faster than FSEA

Table 3. Mann-Whitney comparisons of iFSEA using different aggregation functions.
The sign “+” or "-" means there is or there is no significant difference, respectively.

Aggre. func. 1QC 2 QCs 3 QCs
sig. diff. p-value sig. diff. p-value sig. diff. p-value

Min vs Max + 0.0017 + 0.0354 - 0.0538
Min vs Avg + 0.0011 + 0.0098 - 0.0790
Min vs Mod + 0.0470 - 0.1252 - 0.1705
Max vs Min + 0.0017 + 0.0354 - 0.0538
Max vs Avg + 0.0409 - 0.2452 - 0.3347
Max vs Mod - 0.3589 - 0.3347 - 0.2883
Avg vs Min + 0.0011 + 0.0098 - 0.0790
Avg vs Max + 0.0409 - 0.2452 - 0.3347
Avg vs Mod - 0.6410 - 0.5130 - 0.3589
Mod vs Min + 0.0470 - 0.1252 - 0.1705
Mod vs Max - 0.3589 - 0.3347 - 0.2883
Mod vs Avg - 0.6410 - 0.5130 - 0.3589

Table 3 shows which aggregation functions are significantly different from
results of the other aggregation functions. For instance, with 1 QC, results of
Min are significantly different with the results of Max, Avg, and Mode with the
p-values equal 0.0017, 0.0011, and 0.0470, respectively. In contrast, in this case,
results of Avg and Max are not significantly different with the p-value equals
0.0409.

The port operators can look at the results of tables 2 and 3 to select the
most appropriate number of IAVs. For example, in the case of 1 QCs, Min is not
a reasonable choice, because Min is significantly different with Mode and Avg.
This means that in a majority of cases the number of IAVs achieved by Min is
not enough. In contrast, if the port operators want to be on the safe side, Max is
a good option for them. This is because, Max is not significantly different with
Mode, meaning that the worst case is also likely the most frequently occurred
case. In additions, even though results of Max and Avg in this case are signifi-
cantly different, the p-value for this case is not considerably high. As a result,
for the case with 1 QCs, Max is a reasonable choice.

840 S. Kavakeb et al.

6 Conclusion

This paper extends our previous research in [4]. In this paper, we developed
an evolutionary algorithm combined with the Monte Carlo simulation (FSEA),
to identify the robust number of a new type of IAVs in CTs. This paper has
the following contributions: 1) it improves performance of the algorithm in [4]
by proposing a new dynamic sampling strategy; 2) it proposes four different
extensions on Monte Carlo simulation to produce different robust solutions; 3)
it statistically evaluates the robust solutions to identify the most appropriate
robust solution for port operators.

Acknowledgments. This work was supported by a European project named Intelli-
gent Transportation for Dynamic Environment (InTraDE).

References

1. Beyer, H.G., Sendhoff, B.: Robust optimization-a comprehensive survey. Computer
methods in applied mechanics and engineering 196(33), 3190–3218 (2007)

2. Farling, B., Mosier, C., Mahmoodi, F.: Analysis of automated guided vehicle con-
figurations in flexible manufacturing systems. International Journal of Production
Research 39(18), 4239–4260 (2001)

3. Jin, Y., Branke, J.: Evolutionary optimization in uncertain environments-a survey.
IEEE Transactions on Evolutionary Computation 9(3), 303–317 (2005)

4. Kavakeb, S., Nguyen, T.T.: Identifying the robust number of vehicles in container
terminal. Submitted to IEEE Computational Intelligence Magazine (2014)

5. Nguyen, T.T.: Continuous Dynamic Optimisation Using Evolutionary Algorithms.
Ph.D. thesis, School of Computer Science, University of Birmingham. http://
etheses.bham.ac.uk/1296 (January 2011)

6. Nguyen, T.T., Yang, S., Branke, J.: Evolutionary dynamic optimization: A survey
of the state of the art. Swarm and Evolutionary Computation 6, 1–24 (2012)

7. Pyung Hoi, K., Woon Seek, L., Dong Won, J.: Fleet sizing and vehicle routing
for container transportation in a static environment. OR Spectrum 26(2), 193–209
(2004)

8. Stahlbock, R.: Vob, S.: Operations research at container terminals: a literature
update. OR Spectrum 30(1), 1–52 (2008)

9. Steenken, D., Vob, S., Stahlbock, R.: Container terminal operation and operations
research - a classification and literature review. OR Spectrum 26(1), 3–49 (2004)

10. Vis, I.F.A., Koster, R.D., Roodbergen, K.J., Peeters, L.W.P.: Determination of
the number of automated guided vehicles required at a semi-automated container
terminal. The JORS 52(4), 409–417 (2001)

11. Vis, I.F.A., De Koster, R.M.B.M., Savelsbergh, M.W.P.: Minimum vehicle fleet
size under time-window constraints at a container terminal. Transportation Science
39(2), 249–260 (2005)

http://etheses.bham.ac.uk/1296
http://etheses.bham.ac.uk/1296

© Springer-Verlag Berlin Heidelberg 2014
A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2014, LNCS 8602, pp. 841–852, 2014.
DOI: 10.1007/978-3-662-45523-4_68

A Multi-objective Evolutionary Approach
for Cloud Service Provider Selection Problems

with Dynamic Demands

Hsin-Kai Chen, Cheng-Yuan Lin, and Jian-Hung Chen()

Dept of Computer Science and Information Engineering,
Chung-Hua University, Hsin-Chu, Taiwan

jh.chen@ieee.org

Abstract. This paper describes a multi-objective evolutionary approach for
solving cloud computing service provider selection problems with dynamic de-
mands. In this investigated problem, not only the service purchase costs and
transmission costs of service providers are different, but the demands of service
requests also change over the given periods. The objective of this problem is to
select a number of cloud service provider while optimizing the total service dis-
tance, the total number of serviced demand points, the total service purchase
costs, and total transmission costs simultaneously in the given continuous time
periods. A multi-objective genetic approach with a seeding mechanism is pro-
posed to solve the investigated problems. Four trail benchmark problems are
designed and solved using the proposed multi-objective evolutionary algorithm.
The results indicate that the proposed approach is capable of obtaining a num-
ber of non-dominated solutions for decision makers.

Keywords: Cloud computing · Multi-objective optimization · Dynamic optimi-
zation · Evolutionary algorithms

1 Introduction

With the rapid development of computing hardware, high-speed network, web pro-
gramming, distributed and parallel computing, and other storage technologies, cloud
computing has recently emerged as an effective reuse paradigm, where hardware
computing power, software functionality, and other computing resources are delivered
as integrated services through Internet [1]. There are many global and local commer-
cial cloud service providers, offering various kinds of delivered services such as
Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS) and Software-as-a-
Service (SaaS). Recently, the advantages and features of cloud services has arisen the
interests of digital entertainment/media/content suppliers to integrate cloud computing
services into their content delivery networks [2].

Consider a national-wide area with a number of service request points, the requests
at each point usually changes in time; and within this area, a number of cloud service
providers with different locations and pricing options of services are available for

842 H.-K. Chen et al.

chosen. From the point view of digital entertainment/media content suppliers, it is an
important issue to select suitable cloud computing service providers, which can deliv-
er their contents to massive customers rapidly and smoothly. Therefore, maximizing
some expected Quality-of-Service (QoS) indictors and minimizing services related
costs are crucial considerations for decision makers. As a result, considering the re-
quirements of content supplier and the conditions of cloud service providers, we for-
mulated such problems to multi-objective dynamic p-median problems in this paper.

The classical p-median problem consists of selecting p facilities in a given space
which minimizes the total costs of serving m demand points at a time. P-median prob-
lem is prominent combinatorial optimization NP-hard problem in location science and
cluster analysis [3-9]. Many exact and heuristic approaches have been proposed for
solving p-median problems [3][8][9]. In traditional approaches, the planning of ser-
vice facility centers usually considers the demand of consumers as constant values.
However, it is not true in the real world applications, because the demands of con-
sumers may change by environments and time. The dynamic p-median problem is
applicable to all situations modeled by the standard p-median problem whenever de-
mand changes over time in a predictable way.

In this paper, a multi-objective p-median model with dynamic demands which op-
timizes the total QoS distance, the total number of serviced demand points, the total
service purchase costs, and the total network transmission costs is investigated. Con-
sidering four different geographical features, we propose an efficient approach based
on genetic algorithms for content providers to determine the selection of service pro-
viders in different periods and satisfying the dynamic demands of customers. The
proposed approach can also provide decision-makers a set of non-dominated solutions
for the selection processes.

This paper is organized as follows: Section 2 describes the investigated dynamic
p-median problem and multi-objective optimization. Section 3 describes the mathe-
matical model of the investigated problem. Section 4 presents the proposed multi-
objective genetic algorithm MOGA for solving investigated problems. Section 5 gives
the experimental results and analysis of the proposed algorithm. Section 6 concludes
our paper.

2 Related Work

2.1 P-median Problems

The classical p-median problem consists of locating p facilities (medians) in a given
space (e.g. Euclidean space) which minimizes the total costs of serving m demand
points, where the pair-wise cost of servicing each point from all facilities is given.
Each demand point is only served by a single facility and services to demand points
are not combinable [3-10].

Exact methods for solving p-median problems include linear programming ap-
proaches, dual-based algorithms. However, these exact methods suffer from the curse
of dimensionality since the computation costs of calculating all demand points' expec-
tations over all possible future combinations increases exponentially in the number of

 A Multi-objective Evolutionary Approach 843

demand points. Many heuristic approaches have been proposed to solve p-median
problems, including greedy heuristic, variable neighbor decomposition search, coop-
erative parallel variable neighborhood search, and Lagrangian-surrogate heuristic.
Modern meta-heuristics have been applied to solve p-median problems as well [8],
such as tabu search approaches, simulated annealing approaches and genetic algo-
rithms approaches.

Recently, considering the real-world conditions, various models of p-median prob-
lems are proposed in the literature, including stochastic p-median problems, progres-
sive p-median problems [3], dynamic p-median problems, and bi-objective p-median
problems [9].

2.2 Multi-objective Evolutionary Optimization

Assume the multi-objective functions are to be minimized. Mathematically, MOOPs
can be represented as the following vector mathematical programming problems

)},(...,),(),({)(21 YFYFYFYFMinimize i= (1)

where Y denotes a solution and fi(Y) is generally a nonlinear objective function. Pareto
dominance relationship and some related terminologies are introduced below. When
the following inequalities hold between two solutions Y1 and Y2, Y2 is a non-
dominated solution and is said to dominate Y1 (Y2  Y1):

).()(:)()(: 2121 YFYFjYFYFi jjii >∃∧>∀ (2)

When the following inequality hold between two solutions Y1 and Y2, Y2 is said to
weakly dominate Y1 (Y2  Y1):

).()(: 21 YFYFi ii ≥∀

 (3)

A feasible solution Y * is said to be a Pareto-optimal solution if and only if there
does not exist a feasible solution Y where Y dominates Y *, and the corresponding
vector of Pareto-optimal solutions is called Pareto-optimal front.

By making use of Pareto dominance relationship, multi-objective evolutionary algo-
rithms (MOEAs) are capable of performing the fitness assignment of multiple objec-
tives without using relative preferences of multiple objectives. Thus, all the objective
functions can be optimized simultaneously. As a result, MOEA seems to be an alterna-
tive approach to solving the investigated service provider selection problems on the
assumption that no prior preference and domain knowledge is available [10-11].

3 Cloud Service Selection Problems with Dynamic Demands

In this paper, the investigated dynamic service provider selection problem (DSPSP) is
to select p service providers from n service providers in each season, in order to satis-
fy the dynamic demands of m service requests from end-users. The following condi-
tions are assumed in this problem:

844 H.-K. Chen et al.

1) Each service provider has different pricing options for purchasing services and
network transmission.

2) Although contents can be deliver to anywhere though internet, end-users still
expects no delays during network transmission. Therefore, each service provid-
er has a pre-assumed maximum QoS distance.

3) The number of demand points that a service provider can service is unlimited.

4) The Euclidean distance is used to calculate the distances between demand
points and points of service provider.

5) Each demand point can only serviced by a nearest point of service provider
within the maximum QoS distance.

6) In order to satisfying the dynamic demands, content supplier may select p dif-
ferent service providers in the next following season.

The investigated problem can be formulated to multi-objective p-median problems
with dynamic demands. The objectives of DSPSP are while optimizing four compet-
ing objective functions: the total QoS distance, the total number of serviced demand
points, the total service purchase costs, and the total network transmission costs.

3.1 Problem Notations

i , j：i∈{1,2,3,…m}, j∈{1,2,3,…,n}.
m：The total number of demand points.
n：The total number of service provider points for selection.
Li：The index of demand points, Li = i.
Sj：The index of the service provider points. Service providers points usually co-
locate with some demand points, therefore Sj∈{L1,L2,…Lm}.
Dj：The maximum QoS distance of the service provider point j.
T：The total service periods.
tj：The time period that the service provider Sj served, 0=t1<t2<…<tp<tp+1<T.
dij：The distance between Li and Sj.
mdij：The nearest distance of the demand point Li between the nearest service provid-
er point, mdij=min{dij}.
wi(t)：The demanding function of the demand points Li at time t, 0 ≤ t<T.
wij：The total demanding amount of the demand point Li from time tj to time tj+1,

()
+

=
1

.
j

j

t

t

iij dttww

Aj：The network transmission cost of the service provider point Sj per demand unit.
Cj：The monthly service purchase cost of the service provider point Sj.
Xi： The serviced index of the demand point Li. If the demand point service Li is ser-
viced within the maximum QoS distance of a provider point, then Xi = 1, otherwise Xi

= 0.

 A Multi-objective Evolutionary Approach 845

Zj： The selection index of the service provider point Sj. If the service provider point
Sj is chosen and serves demand points in the specific time period, then Zj = 1, other-
wise Zj = 0.

3.2 Problem Objectives

1. Minimization of QoS distance
2. In the classical p-median problem, the demands in each demands points are usually

considered to a constant. However, considering the real-world applications, de-
mands are known to be changed dynamically. Given the demanding function of
each demand points, the QoS distance of each demand to its nearest service pro-
vider points can be expressed as follows:

.
1 1

1 jiij

n

j

m

i
ij ZXmdwFMinimize ×××=

= =
 (4)

3. Minimization of network transmission cost

Considering the cloud computing environments, the costs of network transmissions
between service provider points and demand points are not fixed. Given the network
transmission cost of each service point per time unit, the transmission costs of each
facility can be expressed as follows:

.
1 1

2 jij

n

j

m

i
ij ZXAwFMinimize ×××=

= =
 (5)

4. Minimization of service purchase cost

In additional to the network transmission cost, the service purchase cost on a spe-
cific service provider point is also an important factor for content suppliers, because
the service cost in different service provider point are different. Given the service
purchase cost for each service provider points, the total service purchase costs of se-
lected service provider points can be expressed as follows:

.
1

3 
=

×=
n

j
jj ZCFMinimize (6)

5. Maximum of total number of serviced demand points

Because different service providers has different QoS distance, therefore the num-
ber of demand points that a service provider points may serviced could be different.
Given the maximum QoS distance of each service provider, the number of serviced
demand points can be calculated as follows:

.
1

4 
=

=
m

i
iXFMaximize (7)

846 H.-K. Chen et al.

3.3 An Illustrative Example

An example is given here to explain our mathematical formation. Assumed that a content
supplier plans to select three service provider points (p=3) from six providers (n=6) with-
in twelve months (T=12), in order to service ten demanding points (m=10). The maxi-
mum QoS Dj is 3 for all the service provider points. The coordination, demanding
function of demand points, the service purchase costs and transmission costs of service
provider points are listed in Table 1. Assumed a selection plan for four seasons is deter-
mined (as shown in Table 2), three service provider S2, S3, S6 are select in the first sea-
son, and finally three service provider S1, S3, S5 are select in the fourth season.

Take the selection plan of Season 4 for example, the total amount of each demand
points during Season 4 can be calculated, as shown in Table 3. The distance of each
demand point to different service provider points can be calculated, as shown in Table
4. The demand points with Dj are marked as bold. Hereafter, according to all the ta-
bles, the objective functions in Season 4 can be calculated, F1 = 10.12242, F2 =
1507.5, F3 = 1650, F4 = 8.

Table 1. The information of demand and service points Li ,Sj

Li Sj coord. wi(t) Aj Cj

L1 S1 (1,8) 10+6t 1 500

L2 S2 (2,5) 3+4t 1 700

L3 (0,9) 16+2t 1

L4 (10,2) 25+3t 1

L5 S3 (4,5) 50-2t 1 700

L6 S4 (3,7) 99-3t 1 450

L7 S5 (12,3) 6+7t 1 450

L8 (6,16) 24+4t 1

L9 (2,10) 10+10t 1

L10 S6 (8,4) 5+5t 1 500

Table 2. representation of four selection plan for four seasons

SEASON 1 SEASON 2 SEASON 3 SEASON 4

2, 6, 3 3, 6, 4 5, 4, 3 3, 1, 5

Table 3. The total amount of demands in season 4, according to the selection plan

 t = 0~3 t = 3~6 t = 6~9 t = 9~12

L1 57 111 165 219

L2 27 63 99 135

L3 57 75 93 111

L4 88.5 115.5 142.5 169.5

L5 141 123 105 87

L6 283.5 256.5 229.5 202.5

L7 49.5 112.5 175.5 238.5

L8 90 126 162 198

L9 75 165 255 345

L10 37.5 82.5 127.5 172.5

 A Multi-objective Evolutionary Approach 847

Table 4. The distance of each demand point to selected service provider points in quarther 4

 S3(=L5) S1(=L1) S5(=L7)

L1 4.24264 0 12.083

L2 2 3.16228 10.198

L3 5.65685 1.41421 13.4164

L4 6.7082 10.8167 2.23607

L5 0 4.24264 8.24621

L6 2.23607 2.23607 9.84886

L7 8.24621 12.083 0

L8 11.1803 9.43398 14.3178

L9 5.38516 2.23607 12.2066

L10 4.12311 8.06226 4.12311

4 The Proposed Multi-objective Genetic Algorithm

In this section, the proposed multi-objective genetic algorithm to find a selection plan
within four seasons for DSPSP is described.

4.1 Chromosome Representation

A chromosome has gene information for solving the problem in DSPSP. In the pro-
posed approach, each chromosome of has p genes. When a season is finished, the
non-dominated solutions will be selected as seed chromosomes for the initial popula-
tion of the next season. The chromosome can be regarded as a selection plan for a
season.

4.2 Fitness Assignment

We use a generalized Pareto-based scale-independent fitness function (GPSIFF) con-
sidering the quantitative fitness values in Pareto space for both dominated and non-
dominated individuals [10]. GPSIFF makes the best use of Pareto dominance relation-
ship to evaluate individuals using a single measure of performance. The used GPSIFF
is briefly described below. Let the fitness value of an individual Y be a tournament-
like score obtained from all participant individuals by the following function:

() .cNqNpXF +−= , (8)

where Np is the number of individuals which can be dominated by the individual
Y, and Nq is the number of individuals which can dominate the individual Y in the
objective space. Generally, a constant c can be optionally added in the fitness function
to make fitness values positive. c is usually set to the number of all participant indi-
viduals.

848 H.-K. Chen et al.

4.3 Procedure of MOGA

The procedure of MOGA is written as follows:

Input: population size Npop, recombination probability pc, mutation probability pm,
the number of maximum generations Gmax. Current Season Index q=1.
Output: The optimum solutions ever found in P.
Step 1: Initialization Randomly generate chromosomes to fill in the population P until

Npop individuals are reached. Each chromosome is consists of p genes for a
season.

Step 2: Evaluation For each individual in the population, compute all objective func-
tion values F1, F2, F3.and F4.

Step 3: Fitness Assignment Assign each individual a fitness value by using the equa-
tion (8) GPSIFF.

Step 4: Selection Select Npop individuals from the population to form a new popula-
tion using the binary tournament selection without replacement,.

Step 5: Recombination Perform the uniform crossover operation with a recombination
probability pc.

Step 6: One Point Mutation Apply the one point mutation operators to each gene with
a mutation probability pm. If the mutated gene is duplicated with other genes
in the same chromosome, mutate the gene again.

Step 7: Termination test If the maximum generations have reached, store all the
non-dominated solutions in season q, and then go to Step 8. Otherwise, go to
Step 2.

Step 8: Seeding q=q+1. If q>4, stop the algorithm. Otherwise, select and copy non-
dominated solutions to the initial population of the next season. If the number
of non-dominated solutions is greater than the population size Npop, random-
ly delete solutions until the population size is equal to Npop. Then, go to
Step 1.

5 Result and Discussions

5.1 Simulation Environment and Parameter Settings

In this paper, four benchmarks are designed for experiments, as shown in Fig. 1. Each
problem has different distribution of demand points on different grid sizes, described
as follows:

 Circle: 100 demand points and 36 service providers on a 18*18 grid. The
number of providers to be chosen p=10, and the maximum QoS distance
Dj=2.2.

 Rectangle: Square with empty space. 100 demand points and 36 service pro-
viders on a 16*16 grid. The number of providers to be chosen p=10, and the
maximum QoS distance Dj=3.

 A Multi-objective Evolutionary Approach 849

 Square: 100 demand points and 36 service providers on a 110*110 grid. The
number of providers to be chosen p=10, and the maximum QoS distance
Dj=10.

 Triangle: 100 demand points and 36 service providers on a 14*14 grid. The
number of providers to be chosen p=10, and the maximum QoS distance Dj=2.

Ten service providers will be select for each season. The total number of season is
4. The parameter settings of MOGA are listed as follows: population size Npop=100,
recombination probability pc=0.9, mutation probability pm=0.1, the number of maxi-
mum generations Gmax=100. Fifteen independent runs are conducted for each
problem.

5.2 Discussions

For each benchmarks, 30 independent runs are conducted using MOGA with seeding
mechanism and MOGA without mechanism. Figure 2-5 use boxplot to depict the
values F1 of non-dominated solutions in solving the circle benchmark at different
seasons. From these figures, it shows that seeding mechanism can help MOGA ob-
tains better solutions and converge faster. Figure 5-8 use boxplot to depict the values
of F1, F2, F3, and F4 of non-dominated solutions in solving the circle benchmark at the
Season 4. Figure 9-12 use boxplot to depict the values of F1, F2, F3, and F4 of non-
dominated solutions in solving the Rectangle benchmark at the Season 4. Due to the
page limit, the results of Square and Triangle are not shown in this paper. The results
indicate that the proposed MOGA is capable of solving DSPSP and optimize four
objectives simultaneously, considering different geographic distribution of demand
points.

Fig. 1. Distributions of demand points in
four benchmark problems

Fig. 2. F1 of non-dominated solutions for circle
benchmark in Season 1

850 H.-K. Chen et al.

Fig. 3. F1 for circle benchmark in Season 2 Fig. 4. F1 for circle benchmark in Season 3

Fig. 5. F1 for circle benchmark in Season 4 Fig. 6. F2 for circle benchmark in Season 4

Fig. 7. F3 for circle benchmark in Season 4 Fig. 8. F4 for Rectangle benchmark in
Season 4

 A Multi-objective Evolutionary Approach 851

Fig. 9. F1 for Rectangle benchmark in
Season 4

Fig. 10. F2 for Rectangle benchmark in
Season 4

Fig. 11. F3 for Rectangle benchmark in
Season 4

Fig. 12. F4 for Rectangle benchmark in
Season 4

6 Conclusions

In this paper, a multi-objective evolutionary approach is proposed to solve dynamic
service provider selection problems. Experimental results demonstrated the proposed
approach is capable of optimizing the QoS distance, the total network transmission
cost, the total service purchase cost, and the total number of demands points simulta-
neously. Moreover, the proposed approach can provide mission planers a set of non-
dominated solutions for construction plan of service facilities. Our future work is to
apply our approach in solving some real cases.

References

1. Foster, I., Zhao, Y., Raicu, I., Lu, S.: Cloud Computing and Grid Computing 360-Degree
Compared. In: Proceeding of Grid Computing Environments Workshop, GCE 2008,
pp. 1–10, November 12–16 (2008)

2. Li, Y., Shen, Y., Liu, Y.: Utilizing Content Delivery Network in Cloud Computing. In:
Proceeding of 2012 International Conference on Computational Problem-Solving (ICCP),
pp. 137–143 (October 2012)

852 H.-K. Chen et al.

3. Drezner, Z.: Dynamic Facility Location: The Progressive p-median Problem. Location
Science 3(1), 1–7 (1995)

4. Own, S.H., Daskin, M.S.: Strategic Facility Location: A Review. European Journal of
Operational Research 111, 423–447 (1998)

5. Wesolowsky, G.O.: Dynamic Facility Location. Management Science 19(11), 1241–1248
(1973)

6. Wesolowsky, G.O., Truscott, W.G.: The Multiperiod Location-Allocation Problem with
Relocation of Facilities. Management Science 22(1), 57–65 (1975)

7. Francisco, S.D.G., Maria, E.C.: A Heuristic Approach for the Discrete Dynamic Location
Problem. Location Science 6, 211–223 (1998)

8. Pullan, W.: A population based hybrid metaheuristic for the p-median problem. In: Pro-
ceedings of IEEE Congress on Evolutionary Computation, pp. 75–82 (June 2008)

9. Arroyo, J.E.C., dos Santos Soares, M., dos Santos, P.M.: A GRASP heuristic with
Path-Relinking for a bi-objective p-median problem. In: Proceedings of 10th International
Conference on Hybrid Intelligent Systems (HIS), pp. 97–102 (August 2010)

10. Ho, S.-Y., Shu, L.-S., Chen, J.-H.: Intelligent Evolutionary Algorithms for Large Parame-
ter Optimization Problems. IEEE Transaction on Evolutionary Computation 8(6), 522–541
(2004)

11. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study
and the strengthen Pareto approach. IEEE Transaction on Evolutionary Computation 3(4),
257–271 (1999)

An Object-Oriented Library in JavaScript
to Build Modular and Flexible

Cross-Platform Evolutionary Algorithms

Vı́ctor M. Rivas1(B), Juan Julián Merelo Guervós2, Gustavo Romero López2,
Maribel Arenas-Garćıa2, and Antonio M. Mora2

1 Universidad de Jaén, Jaén, Spain
vrivas@ujaen.es

http://vrivas.es/
2 Universidad de Granada, Granada, Spain

Abstract. This paper introduces jsEO, a new evolutionary computation
library that is executed in web browsers, as it is written in Javascript.
The library allows the rapid development of evolutionary algorithm, and
makes easier the collaboration between different clients by means of indi-
viduals stored in a web server. In this work, jsEO has been tested against
two simple problems, such as the Royal Road function and a 128-terms
equation, and analysing how many machines and evaluations it yields.
This paper attempts to reproduce results of older papers using modern
browsers and all kind of devices that, nowadays, have JavaScript inte-
grated in the browser, and is a complete rewrite of the code using the
popular MooTools library. Results show that the system makes easier
the development of evolutionary algorithms, suited for different chro-
mosomes representations and problems, that can be simultaneously exe-
cuted in many different operating systems and web browsers, sharing the
best solutions previously found.

Keywords: Web browser-based computation · Javascript library ·
Asynchronous communication · Cross-platform evolutionary algorithms

1 Introduction and State of the Art

The Javascript language [1] was introduced in Netscape Navigator in 1995 and
quickly adopted by other web browsers. It soon became a standard proposed by
ECMA International in 1997, with the name of ECMAScript. This interpreted
language gives web navigators (and in fact, many other applications relying on
web engines, like email clients, and lately, since the introduction of node.js, any
application) the power to perform any computation apart from the needed to
render HTML code. Despite being a language initially designed to operate over
the Document Object Model (DOM) of a web page, nowadays it has become the
most popular language, due mainly to the fact that, using node.js, you need
only one language to create a whole rich internet client-server application.
c© Springer-Verlag Berlin Heidelberg 2014
A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2014, LNCS 8602, pp. 853–862, 2014.
DOI: 10.1007/978-3-662-45523-4 69

854 V.M. Rivas et al.

Javascript offers some good features that can be used for evolutionary com-
putation. First one is related to the interpreter itself, as most applications nowa-
days run into web browsers; this gives Javascript the opportunity to build web
applications that incorporate evolutionary solutions as desktop ones can do.
Furthermore, as browsers can be found in most operating systems and devices
(from expensive computers to cheap smartphones and tablets), cross-platform
interoperability can be yielded with minimum or not effort at all. The second
one concerns the intrinsic communicative nature of browsers, i.e., that they are
mainly designed to act as clients that send and receives data from web servers.
This makes easier the task of running any kind of algorithms in a collaborative
way, using many and different hardware and software platforms.

The communicative aspect of web browsers turn them into the clients of
application–level networks (ALNs), which are configured as a set of clients/servers
(servents). Browser based computation can be then considered as belonging to the
so called volunteer computing [2,3] where volunteer users lend their CPU cycles
by means of a downloadable application, and a distributed computation network
providing ad hoc computational power is established. SETI@Home is the most
well-known ALN, being quite successful [4], it was able to create a virtual com-
puter that processed a high amount of teraflops. Some companies related to volun-
teer computing, such as Popular Power and others [5], did some experimentation
with Java based clients, but none has had commercial success. Volunteer comput-
ing has been previously used in evolutionary computation, using frameworks such
as DREAM [6], which includes a Java-based virtual machine; peer to peer (P2P)
examples also exist, as GOLEM@Home, and G2-P2P [7], in an attempt to avoid
bottlenecks produced by the servers.

Usability is also a key feature of these ALN, i.e., its simplicity of use that
turns to be the best way to obtain the participation of as many users as possible.
In this sense, the use of browsers has many advantages. For instance, users do
not have to download any special application (even being a simple screen-saver,
as is needed in BOINC, the successor to SETI@Home). Furthermore, users, no
matter their technical knowledge, are used to deal with browser interface, i.e,
links, forms, layouts, or timeouts. In this sense, using the browser to run this kind
of applications do not differ from the way people currently read the newspaper
or do the shopping.

In order to create a metacomputer, the existence of an interpreted language
in the client like Javascript is only a part of the solution. The other part consists
on having an easy, effective way to send and retrieve information from the server
in a seamless way. There exist some techniques that allow this kind of commu-
nication: AJAX (Asynchronous JavaScript and XML [8]), AJAJ (Asynchronous
JavaScript and JSON), and remoting using applets or embedded objects. Cur-
rently, AJAX and AJAJ are widely used since they can be natively executed by
web browsers without using external plugins. As can be seen, they only differ in
the way the communication is serialized, as AJAX uses XML[9] to encode both
request parameters and data being retrieved, while AJAJ uses JSON.

An Object-Oriented Library in JavaScript to Build Modular 855

Both AJAX and AJAJ work using the same basis: an XmlHttpRequest object
is created containing a request to the server, and a reference to a callback func-
tion. As the request is being processed, it generates a series of events that can
be asynchronously handled by the callback function, which can also access the
data returned by the server. Both AJAX and AJAJ provide the ways to use the
browser for APLs that create distributed computing systems, since this request-
response iterative process does not need to interact with humans, as usually hap-
pens in any others distributed computing application. In fact, it even allows to
control these APLs from the server with any programming language. Of course,
it can also be combined with other distributed programming frameworks, as
OSGiLiath [10], a service oriented architecture for evolutionary algorithms.

This paper presents performance measurements on the jsEO (JavaScript
Evolving Objects, pronounce it yi-see-oh) system, which uses PHP (on the server)
and JavaScript on the client. Evolutionary computation, being population based
method, is suited for this kind of distributed environment since computation can
be distributed among nodes. This can be done both distributing different data
portions to every node, or distributing the number of individuals and allowing
migration [11]. In the case of jsEO, the genetic algorithm is carried out on the
clients, with the server used for interchange of individuals among them. A sim-
ilar approach was used in [12] as a proof of concept, but without establishing
an object-oriented hierarchy, so that new evolutionary algorithms, operators,
and/or problems could be developed in an easy, and modular way.

In this work, we have performed some experiments in which clients donate
computing power by just loading a web page to find out what kind of perfor-
mance we can expect from this kind of setup, from the number of machines
available to the number of evaluations each one of them usually performs; the
results demonstrate this kind of setup is ready to take more computing-intensive
experiments without the need of an expensive server or cluster setup.

The rest of the paper is organized as follows: the jsEO library is described
next; methodology and experimental setup can be read in section 3, while exper-
iments and results are shown in section 4; finally, discussion, along with future
lines work, are exposed in section 5.

2 The jsEO Library

In order to provide a modular, flexible, and object-oriented library, jsEO has
been programmed in JavaScript language, making use of the inheritance provided
by the MooTools framework, available from http://mootools.net. Following the
evolving objects methodology, and in the same fashion as pre-existing libraries
like EO (written in C++) [13] and JEO (written in Java) [14], jsEO is based on
the key point that any object that can be attached some kind of fitness value is
a potential candidate for evolution. The jsEO library can de downloaded from
anonymo.us/url and it is being developed under the GNU GPLv2 license.

The main advantage of JavaScript is that its virtual machine is included in
most (if not all) web browsers. This allows programs written in this language

http://mootools.net
anonymo.us/url

856 V.M. Rivas et al.

to be executed in billions of computers and other devices like smartphones and
tablets. JavaScript was initially designed to operate on the Document Object
Model (DOM) browsers generate for every web page they load; thus, content,
structure and format style can be dynamically changed while a web page is being
visited; however, nowadays the JavaScript standard (ECMAscript) is imple-
mented in many different environments, from standalone interpreters to systems
such as the NoSQL database CouchDB.

On the other hand, the main drawbacks of JavaScript arise from the fact
that it is interpreted, not compiled, (i.e., slower than desired), it has no access
to every resource of the device (e.g. file systems, memory, or output devices),
and that its execution can be stopped by web-browsers if it is consuming too
many resources; in fact, most browsers put a limit to continuous execution of
scripts and will issue a warning if that happens, as was noted by [15].

Fig. 1 shows the class diagram of the library. As can be seen, there exist some
abstract class which define the general structure of any evolutionary solution
to a given problem. Main class is jsEO, which represents any object to which a
fitness can be assigned, and, consequently, that can be compared with any other.
Starting from jsEO class, class jsEOIndividual can be derived representing any
object that contains a chromosome and, therefore, can be evaluated by means
of a fitness function. A jsEOPopulation is an aggregation of individuals; it can
be used to add, replace or remove individuals, can be sorted, and can be also
asked to return a subset of individuals.

In order to build algorithms, operators have to be defined. Any operator
inherits from jsEOOperator, gets a population as input parameter, and returns
a population; thus, it is designed for both operators affecting only one individual
and operators acting over a whole population.

Once defined the initial core set of abstract classes (except for jsEOPopu-
lation), concrete classes has been derived in order to implement the Standard
Genetic Algorithm (jsEOGA). This algorithm uses the tournament selector to
create sub-populations to which mutator and crossover operators can be applied
so that they are made to evolve.

Two special operators have been implemented in order to solve problems
in a cooperative environment. The first one, jsEOSendIndividual, is intended
to send the chromosome and fitness of the best individual to a server where
it is stored in case it is best solution found up to the moment. The second
one, jsEOGetIndividual, makes exactly the opposite: it asks the server for the
individual being stored and includes it as a new individual in the population. The
communication between the client and the server is done using AJAX technology,
and made in an asynchronous way when sending the individual to the server, but
in a synchronous way in the case of the jsEOGetIndividual. Currently, the server
has been programmed in PHP and stores data in a row file, in order to ease the
implementation on anyone’s server. Every synchronized problem executed with
jsEO has to be assigned a unique identifier so that the server can discriminate
every task when receiving and sending individuals to the clients.

An Object-Oriented Library in JavaScript to Build Modular 857

Fig. 1. Class diagram of jsEO. The core package includes some abstract classes (jsEO,
jsEOIndividual, jsEOAlgorithm, and jsEOOperator) that make easier to develop new
evolutionary algorithms by means of inheritance.

3 Methodology and Experimental Setup

The experiments designed to test jsEO include two problems, being the first the
256-bit Royal Road function, while the second is solving a 128-terms equation. In
others words, the first one is related to a bit-string chromosome problem, while
the second deals with vector of floats. Both problems have been executed as syn-
chronized tasks, and are available at anonymo.us/url. Currently, synchronizing
is quite constrained since it is done by means of AJAX connections to a server,
without allowing to perform requests from pages hosted on a different one.

Asking for collaboration to run the experiments was done publishing some
messages in social nets as Facebook and Twitter, as well as sending an email
to a group of about 70 computer-scientist professionals. The user who wanted
to participate in the experiments only had to load in his/her browser a web
file containing a brief description of the problem and the Javascript library, and
the chosen problem was automatically executed. Users were able to select the
problem they wanted to execute, to execute it as many time as desired, to change
the problem at any moment, and, of course, to stop the execution by closing the
browser or loading a new web page.

In order to execute every problem, two new classes were derived from class
jsEOGA, the first one to deal with bit-string chromosomes, the second one to
make evolve vector of floats. The jsEOGA is a steady state algorithm, with

anonymo.us/url

858 V.M. Rivas et al.

rank-based selection, and elimination of the worst individuals after joining the
current population of every generation with the new individuals created by
means of operators. The algorithm stopped after a given number of generations
(table 1 shows the parameters used), and incorporated operators for crossover
and mutation. In the case of real problem, mutation changes values for new ran-
dom ones. After every generation, best individual was sent to the server. On the
other hand, requesting an individual to the server was done randomly accord-
ing to the application rate of the corresponding jsEOGetIndividual operator.
Finally, two different evaluation functions were used, one per problem. In the
case of 256-bit Royal Road function, the fitness corresponds to the number of
”1111” or ”0000” sequences found in the 256-length bit-string. In the case of
128-terms equation, the fitness was the inverse of the value obtained when eval-
uating a linear equation with 128 real values in the range (−10, 10) composing
every chromosome. The exact solution is the one containing the terms that can
be downloaded from anonymo.us/url.

Since both problems have been executed in a synchronous way, the best
solution can be found in the server, but also in many clients as this individual
is sent to the browser as soon as the jsEOGetInvididual operator is selected to
operate.

Table 1. Parameters used to run the experiments, as in[12]

Parameter Value

Population size 500
Tournament size 2
Number of generations 50
Operator crossover rate 0.73
Operator mutation rate 0.18
Operator requesting individual rate 0.09
Number of genes affected by mutation 1%
Individuals replaced in every generation 50%
Range for new random real values
(only for the 128-term equation problem) (−10, 10)

4 Experimental Results

After two days of volunteers executing the algorithms, some results can be drawn
gathering data from the web server log file (in this case, Apache log). The log
file has been analysed using the free version of WebLog Expert application1, and
the well-known Webalizer application2.
1 WebLog Expert can be obtained from http://www.weblogexpert.com/
2 Webalize can be obtained from http://www.webalizer.com

anonymo.us/url
http://www.weblogexpert.com/
http://www.webalizer.com

An Object-Oriented Library in JavaScript to Build Modular 859

From a potential target of users of more than 500 people, the 128-terms
equation has been executed 304 times by 231 different visitors, while the 256-bit
Royal Road function has been executed 359 times by 279 visitors. Most of this
visits (i.e., executions) were done along a period of approximately 24 hours, but
no references about time consumed by every execution have been registered. The
algorithms have been executed in up to 128 different combinations of web browser
and operating system, any of them in many different versions. As shown in figures
2 and 3, Web browser include Safari, Firefox, Chrome, Internet Explorer, and
native browsers for smartphones and tablets; while operating systems include
Windows, Linux, MacOS, and Android.

Fig. 2. Summary of browsers used to run the experiments. For any of the browsers,
many different versions have been used. For instance, up to 4 different versions of
Internet Explorer were found.

As can be seen in table 1, population was composed by 500 individuals, and
50% were replaced in every generation, this means that in every execution 13, 000
individuals were evaluated. Consequently, the currently available solutions in the
server have been found after 3, 952, 000 evaluations in the case of the 128-terms
equation, and 4, 667, 000 evaluations for the 256-bit Royal Road function. The
solution found for the bit-string problems is composed by 176 characters ”0”,
and 80 characters ”1”, being its fitness 232. For the real codified problem, the
solution yields a fitness of 300, 909.09, which corresponds to a value of 3.32E−06
when evaluating the equation being solved.

With respect to execution times, some conclusions can be drawn from log files
as in every generation the best element has been sent to the server. This way,
execution times can be estimated as 50 individuals are sent (one per generation):
the fist individual is sent as soon as the first generation is evaluated, and the
last one is sent once the new generation has been formed. For 256-bit Royal
Road function, the average time required by clients is 97.73 ± 316.21 seconds.
Nevertheless, 84% of executions end in less than 60 seconds. With respect to
128-terms equations, results can not be taken into account as we really think

860 V.M. Rivas et al.

Fig. 3. Set of operating systems that have been used by users visiting the pages con-
taining the experiments. The figures corresponding to Windows include 8 different
versions, including the one for phones.

they are wrong. This is probably due to the long string received by the server
(containing 128 float numbers), that makes log lines difficult to handle. For
instance, according to log file processing, 50% of executions lasted more than
25.9 minutes. In fact, only 23% of the executions would have taken less than
10 minutes to be done. This do not match with some a-posteriori monitored
executions, where the time needed to perform the entire algorithm was always
between 2 and 7 minutes for different navigators and operating systems.

5 Conclusions, Discussion and Future Work

In this paper we have proved that, without an expensive or far-fetched setup,
volunteer computation can achieve high performance, equivalent, at most, to
several computers of average performance. The code used to perform the exper-
iment is publicly available and is modular so that creating different experiments
is just a matter of writing a new JavaScript fitness function and tuning the GA
parameters accordingly.

The experiments have proved that there is a good amount of computational
power that can be easily tapped and used for evolutionary computation exper-
iments, however, the nature of jsEO constrains also the way users donate com-
puting power, as well as the number of clients available for an experiment. In
this paper we have found some figures, which will undoubtedly vary for other
experiments; however, the general shape of the curves will probably be the same,
following a very steep decrease from the maximum values obtained.

The GA, being asynchronous, faces some problems that have not been tackled
in this paper. What is the best approach to preserve diversity? To generate a new
population in each client, and receive immigrants as soon as possible, which are
incorporated into the population? Or is it better to create new client populations
based on existing populations? What is really the algorithmic contribution of new

An Object-Oriented Library in JavaScript to Build Modular 861

clients? These issues will be explored as future work. We will also measure the
limits of this technology, and test the impact of servers of varying performance
and workload on overall performance. Eventually, we will also try to perform a
sneaky experiment, to check what kind of performance can be expected in that
kind of setups.

Acknowledgments. This research has been partially supported by the Spanish Min-
istry of Science and Innovation through the ANYSELF project, code TIN2011-28627-
C04-02. The authors would also like to thank the FEDER of European Union for
financial support via project Sistema de Informacin y Prediccin de bajo coste y aut-
nomo para conocer el Estado de las Carreteras en tiempo real mediante dispositivos
distribuidos (SIPEsCa) of the Programa Operativo FEDER de Andaluca 2007-2013.
We also thank all Agency of Public Works of Andalusia Regional Government staff and
researchers for their dedication and professionalism.

References

1. Dionisio, J.D., Toal, R.: Programming With Javascript: Algorithms And Applica-
tions For Desktop And Mobile Browsers. Jones & Bartlett Learning (2011)

2. Sarmenta, L.F.G., Hirano, S.: Bayanihan: building and studying Web-based volun-
teer computing systems using Java. Future Generation Computer Systems 15(5–6),
675–686 (1999)

3. Anderson, D.P., Korpela, E., Walton, R.: High-performance task distribution for
volunteer computing. In: E-SCIENCE 2005: Proceedings of the First International
Conference on e-Science and Grid Computing, pp. 196–203. IEEE Computer Soci-
ety, Washington (2005)

4. Anderson, D.P., Cobb, J., Korpela, E., Lebofsky, M., Werthimer, D.: SETI@home:
an experiment in public-resource computing. Commun. ACM 45(11), 56–61 (2002)

5. Cappello, P., Mourloukos, D.: A scalable, robust network for parallel computing.
In: JGI 2001: Proceedings of the 2001 joint ACM-ISCOPE conference on Java
Grande, pp. 78–86. ACM Press, New York (2001)

6. Arenas,M.,Collet, P., Eiben,A.E., Jelasity,M.,Merelo, J.J., Paechter, B., Preuß,M.,
Schoenauer,M.:AFramework forDistributedEvolutionaryAlgorithms. In:Guervós,
J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P.
(eds.) PPSN 2002. LNCS, vol. 2439, p. 665. Springer, Heidelberg (2002)

7. Mason, R., Kelly, W.: G2–P2P: a fully decentralised fault-tolerant cycle-stealing
framework. In: ACSW Frontiers 2005: Proceedings of the 2005 Australasian work-
shop on Grid computing and e-research, pp. 33–39. Australian Computer Society
Inc., Darlinghurst (2005)

8. Brinzarea, B., Dari, C.: AJAX and PHP: Building Modern Web Applications, 2
edn. Packt Publishing (2010)

9. Goldberg, K.H.: XML. Peachpit Press (2009)
10. Garćıa-Sánchez, P.: J. González, Pedro A. Castillo, Maribel Garćıa Arenas, and

Juan Julián Merelo Guervós. Service oriented evolutionary algorithms. Soft Com-
put. 17(6), 1059–1075 (2013)

11. Cantú-Paz, E.: Migration policies, selection pressure, and parallel evolutionary
algorithms. Journal of Heuristics 7(4), 311–334 (2001)

862 V.M. Rivas et al.

12. Merelo, J.J., Castillo, P.A., Laredo, J.L.J., Mora, A., Prieto, A.: Asynchronous
distributed genetic algorithms with JavaScript and JSON. In: WCCI 2008 Pro-
ceedings, pp. 1372–1379. IEEE Press (2008)

13. Merelo-Guervós,J.-J.,Arenas,M.G.,Carpio,J.,Castillo,P.,Rivas,V.M.,Romero,G.,
Schoenauer, M.: Evolving objects. In: Wang, P.P. (ed.) Proc. JCIS 2000 (Joint Con-
ference on Information Sciences), vol. I, pp. 1083–1086 (2000) ISBN: 0-9643456-9-2

14. Arenas, M.G., Foucart, L., Merelo-Guervós, J.-J., Castillo, P.A.: JEO: a framework
for Evolving Objects in Java. In: Actas Jornadas de Paralelismo, pp. 185–191.
UPV, Universidad Politécnica de Valencia (2001). http://geneura.ugr.es/pub/
papers/jornadas2001.pdf

15. Merelo, J.J., Garćıa, A.M., Laredo, J.L.J., Lupión, J., Tricas, F.: Browser-
based distributed evolutionary computation: performance and scaling behavior.
In: GECCO 2007: Proceedings of the 2007 GECCO Conference Companion on
Genetic and Evolutionary Computation, pp. 2851–2858. ACM Press, New York
(2007)

http://geneura.ugr.es/pub/papers/jornadas2001.pdf
http://geneura.ugr.es/pub/papers/jornadas2001.pdf

EvoBIO

What Do We Learn from Network-Based
Analysis of Genome-Wide Association Data?

Marzieh Ayati1(B), Sinan Erten1, and Mehmet Koyutürk1,2

1 Department of Electrical Engineering and Computer Science, Case Western
Reserve University, 10900 Euclid Ave., Cleveland OH 44106, United States

mxa401@case.edu
2 Center for Proteomics and Bioinformatics, Case Western Reserve University,

10900 Euclid Ave., Cleveland OH 44106, United States

Abstract. Network based analyses are commonly used as powerful tools
to interpret the findings of genome-wide association studies (GWAS) in a
functional context. In particular, identification of disease-associated func-
tional modules, i.e., highly connected protein-protein interaction (PPI)
subnetworks with high aggregate disease association, are shown to be
promising in uncovering the functional relationships among genes and
proteins associated with diseases. An important issue in this regard is
the scoring of subnetworks by integrating two quantities that are not
readily compatible: disease association of individual gene products and
network connectivity among proteins. Current scoring schemes either
disregard the level of connectivity and focus on the aggregate disease
association of connected proteins or use a linear combination of these
two quantities. However, such scoring schemes may produce arbitrarily
large subnetworks which are often not statistically significant, or require
tuning of parameters that are used to weigh the contributions of network
connectivity and disease association. Here, we propose a parameter-free
scoring scheme that aims to score subnetworks by assessing the disease
association of pairwise interactions and incorporating the statistical sig-
nificance of network connectivity and disease association. We test the
proposed scoring scheme on a GWAS dataset for type II diabetes (T2D).
Our results suggest that subnetworks identified by commonly used meth-
ods may fail tests of statistical significance after correction for multiple
hypothesis testing. In contrast, the proposed scoring scheme yields highly
significant subnetworks, which contain biologically relevant proteins that
cannot be identified by analysis of genome-wide association data alone.

1 Introduction

In recent years, there has been an explosion in genome-wide association studies
(GWAS) of complex diseases [6,22]. These studies have revealed many genetic vari-
ants conferring susceptibility to disease. However, GWAS have so far explained a
small fraction of the heritability of common diseases and provided limited insights
into their molecular mechanisms. A commonly cited reason underlying the limita-
tions of GWAS is the complex nature of diseases, i.e., the interplay among multiple
genetic variants in driving disease phenotype [17]. Therefore, many computational
c© Springer-Verlag Berlin Heidelberg 2014
A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2014, LNCS 8602, pp. 865–876, 2014.
DOI: 10.1007/978-3-662-45523-4 70

866 M. Ayati et al.

methods have been developed to integrate the outcome of GWAS and with other
biological data, such as pathways, annotations, and networks, to provide a func-
tional context for the disease association of multiple genetic variants [3,11] and
the identification of epistatic interactions [21].

Among computational methods that aim to identify multiple genetic variants
associated with diseases, identification of disease-associated functional modules
has been commonly used as a powerful tool to gain insights into the systems
biology of disease mechanisms [11]. In this application, an important challenge
is to define a scoring function that will accurately assess the relevance of a given
subnetwork in terms of functional modularity (network connectivity) and disease
association. While scoring subnetworks, many of the existing methods ignore the
degree of network connectivity and score connected subnetworks of the human
PPI network using an aggregate of the disease association of comprising gene
products [10,11]. Alternately, some methods incorporate network connectivity by
using a linear combination of this aggregate score and the density of the induced
subnetwork, using a free parameter to adjust the relative contributions of disease
association and network connectivity [15,26]. Subsequently, they identify high-
scoring subnetworks using various algorithmic techniques [10,15] and empirically
assess the significance of these subnetworks based on permutation tests [3].

Scoring schemes that are based on an aggregate of individual disease associa-
tion scores are highly influenced by subnetwork size. Indeed, Baranzini et al. [3]
systematically show that, if correction for multiple hypothesis testing is handled
properly, such scoring schemes do not yield statistically significant subnetworks
for many diseases. Scoring schemes that incorporate the degree of network con-
nectivity, on the other hand, require tuning of a free parameter to adjust the
relative contributions of disease association and network connectivity, making it
difficult to apply these algorithms to cases where no training data is available.

In this paper, we propose a scoring scheme that (i) integrates disease associ-
ation and network connectivity in a parameter-free fashion and (ii) incorporates
an approximation of the statistical significance of this integrated score. The key
idea of the proposed method is to assess the disease association of each inter-
action in the network and account for the background disease association as an
approximation to statistical significance. In this respect, the proposed approach
may be thought of a generalization of Newman’s [5] measure of modularity, which
was developed for community detection in networks.

We test the proposed scoring scheme on a GWAS dataset for type II diabetes
(T2D) and compare its performance with two most commonly used scoring meth-
ods. Our results show that subnetworks that are scored highly by the proposed
scoring scheme are more likely to be statistically significant as compared to those
that are scored high by the other two scoring schemes. We also assess the biological
relevance of identified subnetworks in terms of their inclusion of known disease-
related proteins that do not exhibit significant disease association based on indi-
vidual analysis of GWAS data. Our results suggest that the proposed scheme yields
parsimonious subnetworks that contain known proteins, as well as those that are
not individually significant, but are candidates for further investigation.

What Do We Learn from Network-Based Analysis 867

2 Methods

The input to the problem of identifying disease-associated functional modules
(DAFM) is a graph G = (V,E,w) that represents the human PPI network. Here,
V denotes the set of proteins, E denotes the set of pairwise interactions between
these proteins, and w : E → R denotes edge weights, where w(u, v) represents the
likelihood that proteins u, v ∈ V interact. The likelihood scores for interactions
are usually computed by integrating the outcome of several experimental and
computational methods for detecting and predicting protein-protein interactions.
In this paper, we use an online tool, MAGNET [13], to score the interactions.
Besides the network, we are given a genome-wide association (GWAS) dataset.

Here, our focus is not on assessing the disease association of each variant.
We rather assume that the statistical significance of the association of each
locus cwith the disease is given as a p-value. From these significance values, we
compute the association score r(v) of each gene coding for a protein v, by taking
the -log of the most significant p-value of the variants that lie within the region of
interest for that gene. The objective of the disease-associated functional module
(DAFM) identification problem is to identify PPI subnetworks such that:

– the subnetwork is enriched in proteins that are associated with the disease,
– the proteins in the subnetwork are functionally associated with each other.

Consideration of these two criteria together enables identification of functionally
modular processes that are associated with the disease. An important challenge
in this regard is to develop scoring schemes that can achieve a reasonable balance
between these two criteria so that the subnetworks that are assigned statistically
significant scores are those that are biologically most meaningful and useful.

2.1 Scoring Subnetworks

In this section, we describe the three scoring schemes that are used in our exper-
imental studies. These scoring schemes are illustrated in Fig. 1. Two of these
schemes are based on existing methods for the identification of active subnet-
works using gene expression data, and these methods are commonly used in
integrating GWAS outcome with PPI networks. The third is a novel scoring
method that is based on a measure of modularity in networks [18].
Node-Based Scoring: A popular method for scoring subnetworks is imple-
mented in JactiveModules [10], a Cytoscape plug-in for the identification of
“active subnetworks”. Since this scoring scheme is based on aggregation of the
individual disease association scores of the proteins composing the subnetwork,
we refer to it as Node-Based scoring. Under this scheme, the connectivity of
the subnetwork is imposed as a qualitative constraint to ensure that the proteins
in the subnetwork are functionally related. However, the degree of connectivity,
hence the degree of functional association among the proteins, is not quantified.
Linear Combination of Node and Edge Scores: Disease association and
the degree of connectivity in the network are two criteria that are not readily

868 M. Ayati et al.

Fig. 1. Illustration of existing and proposed scoring schemes for quantifying the disease
association of protein subnetworks: (a) Node-Based scoring, (b) Linear Combina-

tion of node scores and edge scores, (c) the proposed Modularity-Based (MoBaS)

scoring scheme. For each method, the score of subnetwork is computed as an aggregate
of all quantities in the figure.

comparable. Ma et al. [15] propose a scoring scheme that is based on the Linear

Combination of node scores and edge weights. This approach has been shown
to be more effective than Node-Based scoring in the context of identifying
”active subnetworks” [15]. However, to the best of our knowledge, it has not
found application in the identification of disease-associated subnetworks based
on GWAS outcome. An important drawback of this approach is its dependence
on a tunable parameter that adjusts the relative weights of node scores and edge
weights.
Modularity Based Scoring (MoBaS): The objective in any pattern discovery
problem for biological applications is to discover patterns that are statistically
significant. To this end, it is important to note that “high scoring” does not
necessarily mean statistically significant and a scoring scheme should not be
overly conservative or overly relaxed, since a conservative scoring scheme may
not produce any non-trivial high-scoring patterns and a relaxed scoring scheme
may produce high scoring patterns that are not significant. Here, we argue (and
show in Section 3) that both Node-Based and Linear-Combination based
scoring schemes are overly relaxed in that they can lead to the identification of
very large subnetworks that will achieve high scores just because of their size,
since these scoring schemes do not explicitly penalize for the inclusion of more
proteins in the subnetwork.

We here propose a novel scoring scheme that integrates degree of network
connectivity with disease association in a parameter-free manner by assessing the
disease association of each pair of proteins (a potential interaction) in the net-
work. Further, building on Newman’s [18] measure of modularity for community
detection in networks, the proposed scoring scheme incorporates an approxi-
mation of statistical significance into the scoring of subnetworks by taking into
account the background disease association scores.

We define the disease association of a pair of proteins u, v ∈ V as follows:

suv =
{

w(u, v)r(u)r(v) if uv ∈ E
0 otherwise

Recall that ru indicates the likelihood that protein u is associated with the
disease of interest. Therefore, suv provides a measure of the disease association
of the interaction between u and v with the disease;

What Do We Learn from Network-Based Analysis 869

We then define the disease association score of a given subnetwork Q ⊆ V as
follows:

σM (Q) =
∑

u,v∈Q

suv − r̂ur̂v,

where r̂u and r̂v respectively denote the “background” disease association scores
for proteins u and v. We compute these background scores empirically for each
protein. For this purpose, we randomize the original GWAS data by permuting
the labels of the samples to break the relationship between the genotype and
phenotype, while preserving the distribution of genotypes for each locus. We
repeat the permutation multiple (N) times such that the number of samples
derived from the distribution is sufficiently large and the computation is feasible
(we use N = 100 in our experiments). In other words, the disease association of
subnetwork Q ⊆ V is defined as the linear combination of the differences between
the observed and background disease association scores of all potential pairwise
interactions in the subnetwork. Note that, it is assumed that an interaction
exists between every pair of proteins in the background, therefore any pair of
proteins in the subnetwork that do not interact with each other are penalized
by a factor of the multiplication of their background association scores. For this
reason, groups of proteins that induce a heavily connected subgraph in the PPI
network are favored by this scoring scheme.

2.2 Searching for High Scoring Subnetworks

Subnetwork search queries with combinatorial objective functions often lead to
NP-hard problems. For this reason, existing methods for identifying disease-
associated functional modules use approximation algorithms or heuristics, such
as greedy algorithms, simulated annealing [10], genetic algorithms [15], or linear
programming based on a continuous approximation [26]. Since our focus here is
on the development of a sound scoring function, the algorithm we use to search
for high scoring subnetworks should be compatible with those implemented by
existing methods, so that the scoring functions can be compared without any
algorithmic bias. Here, for simplicity, we implement a greedy algorithm as well.

2.3 Assessment of Statistical Significance

The proposed scoring scheme approximates the statistical significance of sub-
networks by accounting for the background distribution of disease association.
However, the distributions used in this approximation do not take into account
multiple hypothesis testing, since each subnetwork is scored independently. Fur-
thermore, only sample means are incorporated in the scoring function, which
may not account for the variability in the distributions of network connectivity
and disease association. Consequently, high-scoring modules identified using the
proposed scoring scheme are not necessarily significant. For this reason, for all
the three scoring schemes that are considered, we assess the statistical signif-
icance of all identified subnetworks using empirical distributions generated by
running the algorithm on multiple randomized datasets.

870 M. Ayati et al.

We generate the randomized datasets using two different approaches:

1. Random permutation of the phenotypes of samples, with a view to testing
the hypothesis that the the high score of each identified subnetwork arises
from the correlations between genotype and phenotype.

2. Random permutation of the PPI network, with a view to testing the hypoth-
esis that each high-scoring subnetwork are composed of functionally associ-
ated proteins.

Observe that, since the number of hypotheses being tested is equal to the num-
ber of potential connected subnetworks of the PPI network, multiple hypothesis
testing poses an important challenge in evaluating the significance of identified
subnetworks. We tackle this challenge by using the ranking of subnetworks iden-
tified on random datasets to generate a null distribution for each subnetwork
based on its rank on the original dataset. Namely, for the subnetwork that has
the ith highest score on the original dataset, we test the hypothesis that the
algorithm could discover at least i subnetworks with higher or equal score even
if the phenotypes and the interactions in the network were assigned at random.
We refer to this measure of significance as the q-value of the subnetwork.

3 Results

In this section,wefirst describe thedatasets used in our experiments. Subsequently,
we investigate the statistical significance of the subnetworks identified by the pro-
posed scoring scheme, as well as those identified by aggregation of node scores
(Node-Based) and linear combination of node and edge scores (Linear
Combination). We assess the biological relevance of the identified subnetworks
using a literature-driven list of genes and processes that have been reported to be
associated with T2D. We also perform pathway enrichment analysis to identify
the biological processes and pathways potentially associated with T2D. Finally,
we investigate the biological relevance of the ”novel genes” identified by the scor-
ing gene, namely those that are not known to be associated by the disease, do not
show significant disease association according to GWAS data, but are recruited in
the significant subnetworks identified by the proposed scoring scheme.

3.1 Datasets and Preprocessing

GWAS dataset: To evaluate the performance of the proposed method, we use
a Type 2 Diabetes (T2D) case-control dataset, obtained from Wellcome Trust
Case-Control Consortium (WTCCC) [6]. The T2D data contains SNP microar-
ray data for 500000 SNPs on 1999 case and 1504 control samples (1958 British
Birth Cohort). For this dataset, we use the genotype calls provided by WTCCC,
which were obtained by using CHIAMO.SNPs with > 10% missing genotypes
are excluded from the analyses.

Association analysis for individual SNPs: We compute the statistical sig-
nificance of the association of each SNP with T2D using PLINK[20], a well-
established toolkit for whole-genome association analysis.

What Do We Learn from Network-Based Analysis 871

SNP-gene mapping and association analysis for individual genes: To compute
the disease-association for individual genes, we map SNPs to genes by defining
the region of interest (ROI) for a gene as the genomic region that extends from
20kb upstream to 20kb downstream of the coding region for that gene. We
compute the disease association of each gene as the minimum of the p-values
of the SNPs in the region of interest for that gene, that is the p-value of the
most significant SNP associated with the gene. We log-transform these values to
obtain a disease association score for each gene.

Protein-protein interaction (PPI) dataset:We use a comprehensive human PPI
network downloaded from NCBI Entrez Gene Database [16]. This database inte-
grates interaction data from several PPI databases, including HPRD, BioGrid,
and BIND. The PPI network contains 56110 interactions among 7692 proteins.
We assess the reliability of each interaction in this dataset using MAGNET [13],
a web service that uses logistic regression to assign reliability scores to PPIs.

Genes reported to be associated with T2D: In order to assess the biological rele-
vance of identified subnetworks, we use a manually curated database of genes that
are reported to be associated with T2D in the literature [12]. This list contains 286
genes. We also use a second database that is generated by using seven independent
computational disease gene prioritization methods [23], namely GeneSeeker [8],
POCUS [25], G2D [19], PROSPECTR [1], eVOC annotation [24], DGP [14] and
SUSPECTS [2].

Pathway enrichment analysis:We also evaluate the subnetworks that are found
to be significantly associated with T2D using pathway enrichment analysis. For
this purpose, we use Ingenuity Pathway Analysis (IPA), a commercial software
that uses a manually curated and highly reliable database of pathway associations
to perform pathway enrichment analysis.

3.2 Significance of Identified Subnetworks

Inthissection,weinvestigatethestatisticalsignificanceofthesubnetworksidentified
by each scoring scheme. For this purpose, we compare the scores of highest-scoring
subnetworks identifiedontheWTCCCdatasetwith thatof thehighest-scoring sub-
networks identified on 100 randomized datasets in which (i) the sample phenotypes
arepermuted,(ii)PPIsarerandomlypermutedwhilepreservingthenumberofinter-
actions for each protein. The results of this analysis are shown in Fig. 2.

The null distribution displayed in Fig. 2 is precisely the distribution used to
compute the q-values of each identified subnetworks, as described in Section 2.3.

As seen in top row of Fig. 2, the nine highest scoring subnetworks identified
using MoBaS have scores at least one standard deviation above the mean of the
top subnetworks identified on randomized datasets. At a q-value threshold of 0.05,
two of these subnetworks are detected to be statistically significant. In contrast,
all subnetworks identified by Linear Combination and Node-Based scoring
are within one standard deviation of the average score of the top subnetworks
identified on randomized datasets. In other words, when the existing genotype-
phenotype relationship in the dataset is broken via randomization of samples,

872 M. Ayati et al.

Permuted Genotypes:

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

Rank

S
c
o
r
e

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

Rank

S
c
o
r
e

0 2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

70

80

90

100

Rank

S
c
o
r
e

Permuted PPI Network:

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

Rank

S
c
o
r
e

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

8

9

10

Rank

S
c
o
r
e

0 2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

70

80

90

100

Rank

S
c
o
r
e

Fig. 2. Statistical significance of high-scoring subnetworks identified using Node-

Based scoring (first column), Linear Combination of node scores and edge scores (sec-
ond column), and Modularity-Based (MoBaS) scoring (third column). The highest
scoring 20 subnetworks identified using each scoring scheme are shown. The x-axis shows
the rank of each subnetwork according to their score, the y-axis shows its score. The blue
curve shows the scores of the subnetworks identified on the WTCCC-T2D dataset. For
each i on the x-axis, the red (green) curve and error bar in the first (second) row show
the distribution of the scores of i highest scoring subnetworks in 100 datasets obtained
by permuting the genotypes of the samples (permuting the interactions in the PPI net-
works while preserving node degrees).

Linear Combination and Node-Based can still detect subnetworks that score
high. The respective q-values are shown in Table 1.

Table 1. Statistical significance(q-value) of top two subnetworks identified using each
scoring scheme according to the permuted genotype and PPI for WTCCC-T2D

Scoring method Size q-value in q-value in
permuted genotype permuted PPI networks

Node-Based
187 0.37 0.45
190 0.70 0.92

Linear Combination
41 0.46 0.09
17 0.79 0.52

MoBaS
14 0.04 < 0.01
14 0.05 < 0.01

Weobservea similarpatternwhenwecompare the subnetworks identifiedonthe
original data to those identified on randomly permuted PPI networks.
Baranzini et al. [3] also investigate this issue systematically on a number of com-
plex diseases and show that, while the subnetworks identified by jActiveModules
(Node-Based scoring) on somediseases (includingmultiple sclerosis and rheuma-
toidarthritis)aresignificant,manysubnetworksthatareidentifiedforotherdiseases

What Do We Learn from Network-Based Analysis 873

(a)
Gene p-value

MED17 7.88E-08

MED31 0.0001

POU2F1 0.0002

CDK8 0.0021

ESR1 0.0039

HNF4A 0.0043

BARD1 0.0141

BRCA1 0.0216

MED9 0.0358

MED25 0.0445

MED1 0.0552

MED10 0.0896

MED23 0.0970

MED19 0.3629

(b)
Gene p-value

MCC 0.0013

STRN3 0.0015

TRAF3IP3 0.0017

FAM40A 0.0020

CTTNBP2NL 0.0042

STK25 0.01041

FGFR1OP2 0.01574

CTTNBP2 0.0230

STK24 0.03524

PPP2R1A 0.0609

PDCD10 0.0657

PPP2CA 0.1232

STRN 0.1642

STRN4 0.1934

MED17

CDK8

ESR1

BRCA1

BARD1

POU2F1

MED25

MED10

MED9

MED31
MED1

HNF4A

MED19

MED23

MCC

FAM40A

STRN3

TRAF3IP3

FGFR1OP2

PDCD10

STK25

STK24

CTTNBP2NL

PPP2R1A

PPP2CA

CTTNBP2

STRN

STRN4

Fig. 3. Two subnetworks that are found to be significantly associated with T2D. The
size of each node indicates the significance of the association of the corresponding protein
with T2D (rv). The diamond nodes are those previously reported to be associated with
T2D in the literature [12]. The intensity of purple coloring in the nodes indicates the
number of computational disease gene prioritization methods [23] that identified the
respective gene to be associated with T2D. The individual p-values of each gene in the
subnetwork are shown in the table left of the subnetwork. The genes with insignificant
p-value (p > 0.05) that are known to be related to T2D are highlighted in yellow. The
genes with insignificant p-value and are not reported to be related to T2D are highlighted
in orange. These genes can be candidates for further investigation.

874 M. Ayati et al.

are not, including those for T2D. Our results stand as a reproduction of these
results and suggest that the proposed modularity-based scoring scheme does not
suffer from this problem.

To choose significant subnetworks for further investigation, we require statisti-
cal significance in terms of both disease association and network connectivity. For
this purpose, we compute the q-value of each subnetwork as the maximum of its q-
values with respect to permuted genotype and permuted PPI. Consequently, only
the two subnetworks identified by the proposed method are deemed statistically
significant at a false discovery rate of q < 0.05.

3.3 Biological Relevance

In this section, we investigate the biological relevance of the two statistically
significant subnetworks (q < 0.05) identified by the proposed method. These two
subnetworks are shown in Fig. 3. According to Ingenuity Pathway Analysis (IPA)
software, the top subnetwork (Fig. 3(a)) is significantly enriched inEstrogenRecep-
torSignaling (p < 3.42E−12)andGlucocorticoidReceptorSignaling (p < 1.19E−
3). The second subnetwork (Fig. 3(b)) is significantly enriched in Wnt/β-catenin
Signaling (p < 0.01) and Cell Cycle Regulation by BTG Family Proteins (p <
2.2E − 4).

The association between a region of the estrogen receptor-α (ESR1) gene and
T2D is reported in the literature [9]. Although the p-value of its association with
T2D according to GWAS data before correction for multiple hypotheses is mod-
erate (p < 0.003), this gene appears in the most significant subnetwork identified
by the proposed algorithm. This subnetwork is significantly enriched in Estro-
gen receptor signaling pathway, which is known to play a crucial role on insulin
resistance syndrome [7]. Glucocorticoid excess in vivo has been shown to cause
decreased insulin sensitivity and insulin receptor binding in target tissues [4]. The
first subnetwork is also enriched in Glucocorticoid Receptor Signaling. As shown
in Fig. 3(a), this subnetwork contains nine subunit of mediator complex which has
an important role in regulating lipid metabolism linked to major human diseases
including type 2 diabetes [27].

The second subnetwork is enriched in Wnt/β-catenin Signalling, which is a
well-known pathway related to T2D. STRN, STRN4 and PPP2CA are previously
reported to be associated with T2D, but do not have significant p-value accord-
ing to the association analysis for individual variants (respectively 0.16, 0.19 and
0.12 before correction for multiple hypothesis testing). The subnetwork discovered
using the proposed scoring scheme reveals the involvement of these genes in T2D-
related processes, demonstrating that network analysis can provide information
beyond what can be detected by GWAS data alone.

4 Conclusion

In this paper, with a view to facilitating the identification of disease-associated
functional modules, we propose a novel methodology for scoring PPI subnetworks

What Do We Learn from Network-Based Analysis 875

in terms of their association with a complex disease of interest and their network
connectivity. Our experimental studies show that objective criteria for scoring
subnetworks have to be selected carefully to ensure that the algorithms can detect
parsimonious subnetworks that are statistically significant. In particular, we show
that, with a carefully designed scoring scheme, network analysis can extract
knowledge from GWAS data beyond the scope of the data itself. Namely, the sub-
networks identified by the proposed method contain genes that do not exhibit
significant association with the disease based on analysis of GWAS data, but are
known to have mechanistic role in the disease. Furthermore, the subnetworks iden-
tified by the proposed method include genes that are not yet reported to have a
role in the disease, are not detected to be significant by GWAS, but have molecular
functions that indicate potential involvement in the disease.

The method presented in this paper focuses on a single network pattern: dense
subgraphs of thePPI network.However, investigation of different network patterns
may provide additional insights on the relationships between different disease-
associated genes and molecular mechanisms of these associations. The results
reported here are limited to a single disease (T2D) based on a single large scale
GWAS. In future work, application of the proposed method to various diseases
and reproducibility analyses based on data from multiple cohorts will be crucial
in establishing the generalizability of these promising results. The source code of
MoBaS is freely available at http://compbio.case.edu/mobas/.

Acknowledgments. We would like to thank Thomas LaFramboise, Yu Liu, Pamela
Clark, and Mark Chance for useful discussions. This work was supported in part by US
National Science Foundation (NSF) award CCF-0953195 and US National Institutes of
Health (NIH) award R01-LM011247. This study makes use of data generated by the Well-
come Trust Case-Control Consortium. A full list of the investigators who contributed to
the generation of the data is available from www.wtccc.org.uk. Funding for the project
was provided by the Wellcome Trust under award 076113 and 085475.

References

1. Adie, E.A., Adams, R.R., et al.: Speeding disease gene discovery by sequence based
candidate prioritization. BMC Bioinformatics, 6 (2005)

2. Adie, E.A., Adams, R.R., et al.: SUSPECTS: enabling fast and effective prioritiza-
tion of positional candidates. Bioinformatics, 22 (2006)

3. Baranzini, S.E., Galwey, N.W., Wang, J., Khankhanian, P., et al.: Pathway and
network-based analysis of genome-wide association studies in multiple sclerosis.
Hum. Mol. Genet. 18, 2078–2090 (2009)

4. Obberghen, E.V., Grunfeld, C., Baird, K., Kahn, C.R.: Glucocorticoid-induced
insulin resistance in vitro: Evidence for both receptor and postreceptor defects.
Endocrinology 109, 1723–1730 (1981)

5. Clauset, A., Newman, M.E.J., Moore, C.: Finding community structure in very large
networks. Phys. Rev, E 70 (2004)

6. W. T. C. C. Consortium: Genome-wide association study of 14,000 cases of seven
common diseases and 3,000 shared controls. Nature 447, 661–678 (2007)

http://compbio.case.edu/mobas/
www.wtccc.org.uk

876 M. Ayati et al.

7. Deng, J.Y., Hsieh, P.S., Huang, J.P., et al.: Activation of estrogen receptor is crucial
for resveratrol-stimulating muscular glucose uptake via both insulin-dependent and
-independent pathways. Diabetes 57, 1814–1823 (2008)

8. Driel, M.A., Cuelenaere, K., Kemmeren, P.P., et al.: GeneSeeker: extraction and
integration of human disease-related information from web-based genetic databases.
Nucleic Acids Res., 33 (2005)

9. Gallagher, C.J., Langerfeld, C.D., Gordon, C.J., et al.: Association of the estrogen
receptor-gene with the metabolic syndrome and its component traits in african-
american families. Diabetes 56, 2135–2141 (2007)

10. Ideker, T., Ozier, O., Schwikowski, B., Siegel, A.F.: Discovering regulatory and sig-
nalling circuits in molecular interaction networks. Bioinformatics 18, 233–240 (2002)

11. Jia, P., Zheng, S., Long, J., Zheng, W., Zhao, Z.: dmGWAS: dense module searching
for genome-wide association studies in protein-protein interaction networks. Bioin-
formatics 27, 95–102 (2011)

12. Lim, J., Hong, K., Jin, H., Kim, Y., Park, H., Oh, B.: Type 2 diabetes genetic associ-
ation database manually curated for the study design and odds ratio. BMC Medical
Informatics and Decision Making (2010)

13. Linderman, G.C., Chance, M.R., Bebek, Gurkan.: MicroArray Gene expression and
Network Evaluation Toolkit. Nucl. Acids Res., MAGNET (2012)

14. Lopez-Bigas, N., Ouzounis, C.A.: Genome-wide identification of genes likely to be
involved in human genetic disease. Nucleic Acids Res., 32 (2004)

15. Ma, H., Schadt, E., Kaplan, L.M., Zhao, H.: COSINE: COndition-SpecIfic sub-
NEtwork identification using a global optimization method. Bioinformatics (2011)

16. Maglott, D., Ostell, J., Pruitt, K.D., Tatusova, T.: Entrez gene: gene-centered infor-
mation at NCBI. Nucl. Acids Res., 35 (2007)

17. Moore, J.H., Asselbergs, F.W., Williams, S.M.: Bioinformatics challenges for
genome-wide association studies. Bioinformatics 26(4), 445–455 (2010)

18. Newman, M.E.J.: Fast algorithm for detecting community structure in networks.
Phys. Rev, E 69(066133) (2004)

19. Perez-Iratxeta, C., Wjst, M., Bork, P., Andrade, M.A.: G2D: a tool for mining genes
associated with disease. BMC Genet., 6 (2005)

20. Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., et al.: PLINK: a tool set for
whole-genome association and population-based linkage analyses. American Journal
of Human Genetics 81, 559–575 (2007)

21. Ritchie, M.D.: Using biological knowledge to uncover the mystery in the search for
epistasis in genome-wide association studies. Annals of Human Genetics 75(1), 172–
182 (2011)

22. Scott, L.J.: A Genome-Wide Association Study of Type 2 Diabetes in Finns Detects
Multiple Susceptibility Variants. Science 316(5829), 1341–1345 (2007)

23. Tiffin, N., Adie, E., Turner, F., et al.: Computational disease gene identification: a
concert of methods prioritizes type 2 diabetes and obesity candidate genes. Nucleic
Acids Res. (2006)

24. Tiffin, N., Kelso, J.F., et al.: Integration of text- and data-mining using ontologies
successfully selects disease gene candidates. Nucleic Acids Res., 33 (2005)

25. Turner, F.S., Clutterbuck, D.R., Semple, C.A.: POCUS: mining genomic sequence
annotation to predict disease genes. Genome Biol., 4 (2003)

26. Xia, Y., Wang, Y.: Condition specific subnetwork identification using an optimiza-
tion model. In: Proceedings of The Second International Symposium on Optimiza-
tion and Systems Biology, pp. 333–340 (2008)

27. Zhang, Y., Zhao, X., Yang, F.: The mediator complex and lipid metabolism. Journal
of Biochemical and Pharmacological Research 1, 51–55 (2013)

© Springer-Verlag Berlin Heidelberg 2014
A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2014, LNCS 8602, pp. 877–889, 2014.
DOI: 10.1007/978-3-662-45523-4_71

Benefits of Accurate Imputations in GWAS

Shefali S. Verma1, Peggy Peissig2, Deanna Cross2, Carol Waudby2,
Murray Brilliant2, Catherine A. McCarty3, and Marylyn D. Ritchie1()

1 Center for Systems Genomics, The Pennsylvania State University,
University Park, PA 16802, USA

szs14@psu.edu, marylyn.ritchie@psu.edu
2 The Marshfield Clinic, Marshfield, WI, USA

Peissig.peggy@securityhealth.org, deanna.cross@unthsc.edu,
{waudby.carol,brilliant.murray}@mcrf.mfldclin.edu

3 Essentia Institute of Rural Health, Duluth, MN, USA
CMcCarty@eirh.org

Abstract. Imputation methods have been suggested as an efficient way to in-
crease both utility and coverage in genome-wide association studies, especially
when combining data generated from different genotyping arrays. We aim to
demonstrate that imputation results are extremely accurate and the association
analysis from imputed data does not over-inflate the results. Instead imputation
leads to an increase in the power of the dataset without introducing any system-
atic biases. The majority of common variants can be imputed with very high ac-

curacy (r2>0.9) and we validated the accuracy of imputations by comparing
actual genotypes from low-throughput genotyping assays against imputed geno-
types. Imputation was performed using IMPUTE2 and the 1000 Genomes cos-
mopolitan reference panel, which results in about 38 million SNPs. After quality
control and filtering we performed case-control associations with 3,159,556
markers. We show a comparison of results from genotyped and imputed data
and also determine how accurate ancestry is determined by imputations.

Keywords: Imputations · Genome wide association studies · Cataract · Type
2 diabetes · PhenX · 1000 Genomes

1 Introduction

Genome-wide association studies have become the most common study design to
look for regions of the genome t h a t lead to susceptibility for common, complex
traits [1]. Through the evolution of GWAS, we have identified many regions of
the genome that are associated with one or more traits as described by the NHGRI
GWAS Catalog [1]; we have determined that a genome-wide statistical signifi-
cance p-value threshold of p< 5x10-8 is important to control type I error inflation
[2]; replication has become a gold standard to determine the validity of any associa-
tion result [3]; and we have realized that the effect sizes observed are quite small
and thus in many cases very large sample sizes are necessary to detect associations
[4]. Due to this evolution, much work has been done to combine data from GWAS

878 S.S. Verma et al.

sometimes using the same genotyping technology on different study populations,
but more often different genotyping platforms as well. The resultant combined/or
meta-analyzed data is riddled with many SNPs that are unobserved in one or
more studies, and thus the intersection of overlapping SNPs is often a small subset
of the whole. However, unobserved genotypes from low-density data can be in-
ferred using imputations [5]. These imputed data can be used as a proxy to com-
bine data from different genotyping platforms in a joint analysis or meta-analysis.

In addition, these inferred genotypes are often used to test association with disease
that cannot be found by genotyping alone due to poor capture of low-density regions in
the original genotype array data. We used data from the Marshfield Personalized Medi-
cine Research Project Biobank (PMRP) and linked Electronic Health Record [1] to
perform genome-wide imputations and subsequently perform association analysis on
genotyped and imputed data to answer two questions: 1) Is the quality of the imputation
data comparable to data generated by one or more genotyping platforms 2) Does the
imputation provide additional robustness for the detection of disease association signals.

2 Methods

2.1 Subjects and Genotyping

The Marshfield PMRP is a population-based biobank with ~20,000 subjects, aged 18
years and older, enrolled in the Marshfield Clinic healthcare system in central Wiscon-
sin [1]. DNA, plasma, and serum samples are collected at the time the enrollee com-
pletes a written informed consent document, with allowance for ongoing access to the
linked electronic health records (EHR). PMRP participants also complete question-
naires, including responses regarding smoking history, occupation, physical activity,
diet, and a variety of other PhenX measures [6]. The eMERGE network and the Center
for Inherited Disease Research (CIDR) at Johns Hopkins University performed the gen-
otyping of the Marshfield PMRP samples using the Illumina Human660W-Quadv1, a
platform with total of 560,635 SNPs and 96,731 intensity-only probes. Bead Studio
version 3.3.7 was used by CIDR for the genotyping calls. For quality control and data
cleaning, the eMERGE quality control (QC) pipeline developed by the eMERGE Ge-
nomics Working Group [7] was used. We extracted 4,193 Marshfield samples from
eMERGE phase I dataset on which initial QC was already performed and this dataset
contained 558,980 markers. Any SNPs from this subset with a minor allele frequency >
5%, SNP call rate > 99%, sample call rate > 99% were used in further analyses. After
QC and allele frequency filtering using PLINK [8], a total of 498,195 SNPs were used
for imputation in this study.

The molecular fingerprint [8], [9] dataset was a set of 36 SNPs generated on a geno-
typing panel developed and implemented on the Sequenom platform. This panel was
developed as a quality analysis (QA) /QC panel for PMRP and contained at least one
polymorphism on every chromosome, inclusion in this panel included at least two in-
stances of disease associated SNPs and a minor allele frequency in the European popu-
lation of 20%. The whole phenome [9] dataset was also developed on the Sequenom
platform and included 15 SNPs. The phenome panel includes candidate SNPs that have
a lower MAF in the Caucasian population and is a small panel of candidate genes – not
genome-wide, selected for a known associations with one or more phenotypes.

 Benefits of Accurate Imputations in GWAS 879

2.2 Methods of Imputation

Genotype imputation is the process of inferring unobserved genotypes in a study sample
based on the haplotypes observed in a more densely genotyped reference sample of
similar genetic background. After performing the above mentioned quality control pro-
cedures and generating a filtered dataset, we used imputation software to impute our
data to fill in as many SNPs from the 1000 Genomes dataset as possible.

Fig. 1. Representing 6MB segments with 250KB overlap

We performed pre-phasing and imputations using SHAPEIT version 2.r644
(SHAPEIT2) [10] and IMPUTE2[11] software (version 2.3.0) respectively. We based
our imputations on the 1000 Genomes Reference Panel Release from March 2012,
which includes 1,092 samples across 14 different human populations. IMPUTE2 is a
flexible and computationally non- extensive approach as it accounts for certainty in
phasing by iterating the steps of imputation in Markov chain Monte Carlo (MCMC)
framework and thus separating phasing and imputation steps. For accurate imputations,
study and reference panel allele calls need to be on the same physical strand of DNA
relative to the human genome reference sequence (“reference”). For strand alignment,
we used SHAPEIT2 to check strands and then PLINK to flip strands for markers that
are not on same strand as reference (“+” strand). Phasing and imputation were per-
formed as one process in many previous studies, but more recently, the alternative ap-
proach of “pre-phasing” has been suggested as a way to maintain imputation accuracy
while minimizing computation time, as available reference panels increase in number
and in size [12],[13]. Pre-phasing involves phasing the diploid study data prior to imputa-
tion and is suggested by mostly any pairing of phasing and imputation software.

The computational arguments for pre-phasing are that (1) imputing into pre-phased
haplotypes is much faster than imputing into unphased genotypes and (2) pre-phased
data facilitates future updates to imputation, as improved reference panels become
available [14]. Although pre-phasing may introduce a small loss of accuracy, due to
the lack of incorporating haplotype uncertainty information into the imputation step,
the advantages appear to outweigh the disadvantages for most GWAS studies [7]. For
phasing, we divided the complete dataset by chromosomes, but we imputed each
chromosome in segments so as to improve accuracy over short genomic intervals and
also expedite the process by parallelizing jobs over many multi-core computer clus-
ters. We created 6 MB segments over the length of each chromosome as it appears on
the reference panel and also segments overlapping the centromere or the terminal
ends were then merged into the segments upstream of them (Figure 1). Thus, chromo-
somes 1-22 were divided into a total of 441 segments for imputations. We used the

880 S.S. Verma et al.

IMPUTE2 recommended default buffer size of 250kb for imputations. Imputation
jobs were run in parallel on a computer cluster with eight nodes at 40GB of memory.
Due to the input of pre-phased haplotypes, the computation time required to impute
most segments is approximately one hour or less whereas phasing took about approx-
imately 3 hours. After imputations were complete, all segments were joined together
and files were converted to PLINK format by calling genotypes at a probability of
90% for further analysis.

2.3 Phenotyping

All patients were diagnosed for either cataract and/or type 2 diabetes separately in the
Marshfield PMRP dataset using electronic phenotyping algorithms. The NHGRI
funded eMERGE network (Electronic Medical Records and Genomics) implemented
an electronic phenotype algorithm to select cataract cases and controls [6]. Cataracts
as a condition were selected by Marshfield Clinic as its primary eMERGE phenotype,
and the algorithm, which uses diagnostic and procedure codes, was developed by the
Marshfield Clinic Personalized Medicine Research Project (PMRP) investigators [6].
Cases and controls had to meet the following inclusion criteria: Cases- aged 50 years
and older at the time of diagnosis or surgery, and Controls – ages 50 years or older at
the time of most recent eye exam and had an eye exam in the previous five years.
Controls had no diagnostic codes for cataract or evidence of cataract surgery. Cases
were identified as “surgical” or “diagnosis only”. Surgical cases had undergone a
cataract extraction in at least one eye. Diagnosis only cases were required to have
either cataract diagnoses on 2 or more dates, or have 1 diagnosis date and NLP/OCR
find 1 or more inclusion cataract terms.

Similarly, type 2 diabetes (T2D) patients were also diagnosed by their records from
EHR, using an algorithm developed by eMERGE [15]. Expert clinicians experienced
with T2D diagnosis carefully designed our algorithm. T2D cases were defined as
having the following in their EMR: a T2D ICD-9 medical billing code, information
about insulin medication, abnormal glucose or HbA1c levels, or more than two diag-
noses of T2D by a clinician. All T2D cases with an ICD-9 code for T1D were re-
moved from further analyses. All control subjects had to have at least 2 clinical visits,
at least one blood glucose measurement, normal blood glucose or HbA1c levels, no
ICD-9 codes for T2D or any related condition, no history of being on insulin or any
diabetes related medication, and no family history of T1D or T2D.

We combined both of these phenotypes and generated a new phenotype “Cataract
in Type 2 Diabetes” where cases are defined as people with both cataract and type 2
diabetes, controls are people with either one disease or neither and all others were set
to missing. We have 740 cases, 3193 controls, and 260 samples with missing values.

2.4 AssociationAnalysis

Imputed genotypes can be used in many ways for downstream analyses and one
such application is to perform association tests. The goal of this analysis is to

 Benefits of Accurate Imputations in GWAS 881

demonstrate what, if anything, we gain by using imputed data as opposed to only
using genotyped data. Case and control status were set using binary encoding
(cases=1, control=0) and hence we ran logistic regression using PLINK [16] to test
for genetic association in cataract in type 2 diabetes patients. Logistic regression is
one of the most standard approaches for association analysis in GWAS. To over-
come the risk of population stratification, we adjusted our analysis for first three
principal components using SNPrelate [17]. We performed the same analysis in
both genotyped and imputed data so as to compare the results.

3 Results

3.1 Imputation Accuracy

In our study, we validated the accuracy of imputation using two strategies: (1)
comparing genotype data from two different genotyping assays (molecular fin-
gerprinting and whole phenome) and (2) performing masked analysis (described
more below). Molecular fingerprinting data consists of 36 SNPs and whole
phenome consists of 15 SNPs. Each of these genotyping panels was performed
on these samples for other association studies; however these data provide an
excellent opportunity to validate the imputation based on the GWAS data. We
estimated imputation accuracy based on 4,145 and 4,148 out of total 4,193
GWAS samples genotyped from fingerprinting and whole phenome sets, respec-
tively. We compared imputed results with these genotype results by doing con-
cordance checks between the two datasets. Table 1 shows the concordance rate
for two groupings of chromosomes between imputed data and either molecular
fingerprinting or whole phenome data. The comparisons show that the imputed
genotypes are highly accurate with an average of 98.8% concordance (median
99.7%). In fact, all chromosomes had greater than 97% concordance with the
exception of chromosome 20 (79.7%) for the molecular fingerprinting.

Table 1. Concordance Rates with Imputed Data

Chromosome Whole Phenome Molecular Fingerprint

 Median Average Median Average

Chr 1 - Chr 10 0.998 0.994 0.997 0.9962

Chr 11 - Chr 22 0.998 0.994 0.996 0.975

Total 0.998 0.994 0.997 0.985

IMPUTE2 provides a statistical information metric (“info”) whose value ranges

from 0 to 1, where 1 means no uncertainty in imputed genotypes. So we used
"info" metric to account for uncertainty and show distributions of all imputed

882 S.S. Verma et al.

SNPs and their accuracy, w
imputed SNPs. Figure 2
a dashed line indicating a
in the field) and Figure 3
and minor allele frequenc
SNPs in each MAF bin (0.

Fig. 2. Summaries of quality
imputed SNPs. Showing the
the “info” quality metric,
lines at info 0.3 and 0.7.

Another commonly used

hide) a subset of the SNPs
SNPs pretending they were
the observed actual genoty
likely imputed genotype, y
(2) the estimated allelic do
type of masked analysis is
removed from imputation i
the imputation input. Figur
SNPs binned according to M
graph shows all SNPs with
is the number of SNPs per M
bin that pass the filter of
of imputation by the fra
(“info”>0.8). Imputation qu

we plotted a summary of imputation quality metrics of
shows the distribution of the “info” quality metric, w
potential 0.3 threshold value (a standard threshold u
summarizes the relationship between the “info” sc

cy (MAF). The secondary axis indicates the count
.01 intervals).

y metrics at all
e distribution of
with a dashed

Fig. 3. Summarizes the relationship betw
the “info” score and MAF. The second
axis indicates the count of SNPs in e
MAF bin (0.01 intervals).

d approach to asses imputation quality is to “mask”
genotyped in the study data and then impute these mas

e unobserved so as to compare these imputed genotype
ypes. The comparison can be made to either (1) the m
yielding a somewhat coarse concordance measure and
osage, yielding a more granular correlation measure. T
s generated from each IMPUTE2 run: each study SNP
in a leave-one-out fashion, imputed, and then compared
re 4 represents the concordance and dosage r2 for mas
MAF in the observed study genotypes (0.01 intervals). T
an info score >0.8. On the secondary y-axes, “SNP cou
MAF bin; "% SNP from bin" is the fraction of SNPs in
“info”≥ 0.8. Here we are trying to illustrate the qua

action of imputed SNPs passing a given quality fi
uality is quite high in most MAF bins > 0.05.

f all
with
used
core
t of

ween
dary
each

(or
ked
s to

most
d/or
This
P is
d to
ked

This
unt”
the

ality
ilter

 Benefits of Accurate Imputations in GWAS 883

Fig. 4. Quality metrics for all masked SNPs grouped into MAF bins at 0.01 intervals. These
plots excludes SNPs with "info" <0.8. On the secondary y-axes, "SNP-count" is the number of
SNPs per MAF bin. "%SNP from bin" is the fraction of SNPs in the bin that pass the filter of
"info" >=0.8. Note the lower bound of y-axis is >0 for each panel.

3.2 Comparison of Association Results Using Genotyped and Imputed Data

Sample Relatedness. GWAS genotype data was filtered at 99% sample and marker
call rate and also all markers with MAF <5% were dropped. Imputed data was filtered
at same thresholds with addition filter of info score >0.7 so as eliminate error rate due
to imputation. Sample relatedness was evaluated using SNPrelate [17]. A total of 721
individuals were removed after identity- by-descent (IBD) estimation (Figure 4 shows
IBD plot for all samples) to create a dataset of unrelated individuals for association
analysis. Thus, we have 3,611 total samples: 635 cases, 2743 controls, and 233 miss-
ing a phenotype.

Population Structure. For accurate imputations, it is important that the samples from
imputed data cluster closely to the reference panel. We performed Principal Compo-
nent Analysis (PCA) as it has been reliably proven to detect differences between pop-
ulations [18]. We used a kinship coefficient threshold of 0.125 to identify clusters of
closer relatives, and we retained only one subject from each relative cluster. Using R
package snpRelate, we calculated 32 principal components (PCs). Principal compo-
nents were constructed to represent axes of genetic variation across all samples in
unrelated adults and pediatric datasets that were LD pruned and also included very
common autosomal SNPs (MAF > 5%). Figure 6 shows plot of first two PCs of all
non-related samples colored by self-reported ethnicity. Marshfield data is predomi-
nantly European descent and we can clearly distinguish that all European samples
cluster on same axes. PC1 and PC2 explain only about 0.3% of total variance.

884 S.S. Verma et al.

Fig. 5. Principal components analysis (PCA) for all
unduplicated samples using autosomal SNPs with
missing call rate < 5% and minor allele frequency >
5% that were pruned for both long and short range
linkage disequilibrium (n=65355 SNPs). Color-
coding indicates self- identified ethnicity.

Fig. 6. Relatedness inference from IBD
estimates. Estimates of the IBD
coefficents, k0 and k1 are used to infer
relatedness. Each point is for a pair of
samples and the diagonal line is k0+k1=1.

Association Analysis Results. We performed genome-wide discovery analysis
using logistic regression to test the relationship between each SNP and our pheno-
type following QC and filtering. To minimize the effect of population stratifica-
tion, we performed the genome-wide association analysis adjusting for first three
PCs. A total of 497,799 tests were performed using PLINK’s logistic regression
method. After the adjustment by the first three principal components, the λgc of
the genome-wide association results is 1.0092 representing very minimal differ-
ences in underlying population structure between cases and controls. Figure 7
represents quantile-quantile plot for this analysis and Figure 8 depicts the distribu-
tion of -log10P-value along all chromosomes in the genotyped data and Table 3
provides list of best signals. The same QC and filtering was performed in the
imputed dataset. Association analysis was performed using logistic regression
assuming an additive model on a total of 3,159,555 SNPs. After correcting for
three principal components in this dataset as well Cataract in T2D imputed data
had an inflation factor of 1.00812 (Q-Q plot shows in Figure 9). In both cases, the
quantile-quantile (QQ) plot of the observed P values revealed a good overall fit
with the null distribution. Similarly, Figure 10 shows the Manhattan plot of the
genome-wide P values of association from imputed data. Taken together, these

 Benefits of Accurate Imputations in GWAS 885

results clearly indicate that the final association results from our genome-wide
discovery analysis are free of inflation effect due to population stratification.
Lowest adjusted P-value seen in this case is very similar to genotyped resulted
p-value (2.98e-06). Table 4 reports the results for the top 10 most associated SNPs.
Our analyses for this paper are not focused much on the discussion of results,
instead we want to make clear point that accurate imputation do not create any
differential biases and results are not inflated.

Fig. 7. Q-Q plot Fig. 8. Manhattan plot with blue line at
1.0e-05 and red line at 1.0e-8 genome wide
significance

Table 2. Results for significantly associated SNPs (genotyped data) and the genes that the
markers are present in, this table also provides information on left and right flanking genes

CHR SNP UNADJ GC GENE LEFT GENE RIGHT GENE

7 rs963829 4.91E-06 5.42E-06 N/A STK31 NPY

6 rs10155709 5.21E-06 5.75E-06 AKAP12 LOC442270 ZBTB2

10 rs4332462 7.56E-06 8.32E-06 N/A GHITM LOC642934

9 rs7865126 8.22E-06 9.04E-06 FAM29A SCARNA8 ADFP

6 rs2983526 1.20E-05 1.32E-05 PDE10A C6orf118 LOC10013218

7 rs13245518 1.63E-05 1.79E-05 N/A STK31 NPY

2 rs2304429 2.01E-05 2.19E-05 DNMT3A LOC729734 LOC10013151

10 rs7903146 2.05E-05 2.23E-05 TCF7L2 LOC143188 hCG_1776259

6 rs844157 2.47E-05 2.69E-05 PDE10A C6orf118 LOC10013218

3 rs9851100 3.01E-05 3.28E-05 LEPREL1 TP63 LOC391603

886 S.S. Verma et al.

Fig. 9. A. Q-Q pl

Table 3. Results for signific
markers is present in, this tab

CHR SNP UN

7 rs2813829 2

7 rs2158342 3

6 rs1474718 3

6 rs10155709 4

7 rs963829 5

1 rs4332462 7

1 rs8044538 8

9 rs7865126 9

7 rs156288 9

7 rs156286 9

4 Discussion

The main goals of this pap
derstand how robust asso
genotype data alone. Accu
checks with low-throughpu
cordance; we can say tha
address the question of uti
2 Diabetes association resu

lot Fig. 10. Manhattan plot with blue line
1.0e-05 and red line at 1.0e-8 genome w
significance

antly associated SNPs (imputed data) and the genes that
le also provide information on left and right flanking gene

NADJ GC GENE LEFT GENE RIGHT

GENE

2.64E-06 2.90E-06 N/A STK31 NPY

3.19E-06 3.49E-06 N/A STK31 NPY

3.97E-06 4.34E-06 AKAP12 LOC442270 ZBTB2

4.73E-06 5.16E-06 AKAP12 LOC442270 ZBTB2

5.17E-06 5.65E-06 N/A STK31 NPY

7.74E-06 8.42E-06 N/A GHITM LOC6429

8.60E-06 9.35E-06 N/A C16orf47 LOC4415

9.02E-06 9.80E-06 FAM29A SCARNA8 ADFP

9.11E-06 9.90E-06 N/A STK31 NPY

9.12E-06 9.91E-06 N/A STK31 NPY

per are to evaluate the accuracy of imputation and to
ciation tests are using imputed data above and beyo
uracy of imputation was determined using concorda
ut genotype data and with an average of over 99% c

at imputations using IMPUTE2 are highly accurate.
lity in association analysis, we used the Cataract in T

ults to see coverage of the genome in imputed data ver

e at
wide

the
s

934

506

un-
ond

ance
con-

To
ype
rsus

 Benefits of Accurate Imputations in GWAS 887

genotyped data. We were able to replicate association signals on Chromosome 6
and 7 (rs10155709 and rs963829 respectively). Figures 11 and 12 represent a close-
up of the association signal at these two loci. These figures show p-values across
these two replicated markers for the genotype and imputed SNPs plotted using
LocusZoom[19].

The focal SNP in both cases is plotted as a purple diamond and all other data
points are colored according to their r2 with the SNP of focus. We thus identified
these two loci associated with cataract in type 2 diabetes at P<10-6. The P-value
improvements were very marginal from genotyped to imputed data but these results
clearly shows that imputation of genotype data using 1000 Genomes reference pan-
el captures a lot more variants of low and rare frequencies as well. This can also be
depicted using Phenogram plot [20] as shown in Figure 13 which is representing just
the markers that were not genotyped but are covered on genome from imputation.
Each black line represents an imputed marker and white space denotes low cover-
age area. We can clearly see that imputation capture a good amount of genotypes.

Fig. 11. Chr6 Locuszoom regional plots for association results from - genotyped and imputed
data. The focal SNP is plotted as a purple diamond and all other data points are colored ac-

cording to their r2 with the SNP of focus.

Fig. 12. Chr 7 Locuszoom regional plots for association results from genotyped and imput-
ed data. The focal SNP is plotted as a purple diamond and all other data points are colored
according to their r2 with the SNP of focus.

888 S.S. Verma et al.

In summary, imputation based on GWAS genotype data and the 1000 Genomes
cosmopolitan reference panel using IMPUTE2 is highly accurate with respect to
actual genotype data and can be extremely useful for genome-wide association stud-
ies. These techniques continue to be refined and perfected as we learn more about
genome structure and human variation. When combining GWAS datasets for meta-
analysis or joint analysis, imputation is a robust technique that should be employed.

Fig. 13. Phenogram plot representing coverage of genotypes from imputed data (markers not
found in genotyped data). Each black line represents an imputed marker and white space
denotes low coverage area. ChrX was not imputed so that is left as blank.

References

1. Hindorff, L.A., Sethupathy, P., Junkins, H.A., Ramos, E.M., Mehta, J.P., Collins, F.S.,
Manolio, T.A.: Potential Etiologic and Functional Implications of Genome-wide Associa-
tion Loci for Human Diseases and Traits. Proceedings of the National Academy of Scienc-
es of the United States of America 106, 9362–9367

2. Dudbridge, F., Gusnanto, A.: Estimation of Significance Thresholds for Genomewide As-
sociation Scans. Genetic Epidemiology 32, 227–234

3. Chanock, S.J., Manolio, T., Boehnke, M., Boerwinkle, E., Hunter, D.J., Thomas, G.,
Hirschhorn, J.N., et al.: Replicating Genotype-phenotype Associations. Nature 447,
655–660

 Benefits of Accurate Imputations in GWAS 889

4. Stranger, B.E., Stahl, E.A., Raj, T.: Progress and Promise of Genome-Wide Association
Studies for Human Complex Trait Genetics. Genetics 187, 367–383

5. Evangelou, E., John P.A.: Ioannidis: Meta-analysis Methods for Genome-wide Association
Studies and Beyond. Nature Reviews Genetics 14, 379–389

6. McCarty, C.A., Wilke, R.A., Giampietro P.F., Wesbrook S.D., Caldwell, M.D.: Marshfield
Clinic Personalized Medicine Research Project (PMRP): design, methods and recruitment
for a large population-based biobank. Personalized Medicine 2, 49–79

7. Turner, S., Armstrong, L.L., Bradford, Y., Carlson, C.S., Crawford, D.C., Crenshaw, A.T.,
de Andrade, M., et al.: Quality Control Procedures for Genome-wide Association Studies.
Current Protocols in Human 68, 1.19.1–1.19.18

8. Cross, D.S., Ivacic, L.C., McCarty, C.A.: Development of a Fingerprinting Panel Using
Medically Relevant Polymorphisms. BMC Medical Genomics 2, 17

9. Cross, D.S., Ivacic, L.C., Stefanski, E.L., McCarty, C.A.: Population Based Allele Fre-
quencies of Disease Associated Polymorphisms in the Personalized Medicine Research
Project. BMC Genetics 11, 51

10. Olivier, D., Marchini, J., Zagury, J.-F.: A Linear Complexity Phasing Method for Thou-
sands of Genomes. Nature Methods 9, 179–181

11. Marchini, J., Howie, B., Myers, S., McVean, G., Donnelly, P.: A New Multipoint Method
for Genome-wide Association Studies by Imputation of Genotypes. Nature Genetics 39,
906–913

12. Frazer, K.A., Ballinger, D.G., Cox, D.R., Hinds, D.A., Stuve, L.L., Gibbs, R.A.,
Belmont, J.W., et al.: A Second Generation Human Haplotype Map of over 3.1 Million
SNPs. Nature 449, 851–861

13. Howie, B., Fuchsberger, C., Stephens, M., Marchini, J., Abecasis, G.R.: Fast and Accurate
Genotype Imputation in Genome-wide Association Studies through Pre-phasing. Nature
Genetics 44, 955–959

14. Altshuler, D.M., Gibbs, R.A., Peltonen, L., Altshuler, D.M., Gibbs, R.A., Peltonen, L.,
Dermitzakis, E., et al.: Integrating Common and Rare Genetic Variation in Diverse Human
Populations. Nature 467, 52–58

15. Kho, A.N., Hayes, M.G., Rasmussen-Torvik, L., Pacheco, J.A., Thompson, W.K.,
Armstrong, L.L., Denny, J.C., et al.: Use of Diverse Electronic Medical Record Systems to
Identify Genetic Risk for Type 2 Diabetes Within a Genome-wide Association Study.
Journal of the American Medical Informatics Association: JAMIA 19, 212–218

16. Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Manuel, A.R.F., Bender, D., Maller,
J., et al.: PLINK: a Tool Set for Whole-genome Association and Population-based Linkage
Analyses. American Journal of Human Genetics 81, 559–575

17. Zheng, X., Levine, D., Shen, J., Gogarten, S.M., Laurie, C., Weir, B.S.: A High-
performance Computing Toolset for Relatedness and Principal Component Analysis of
SNP Data. Bioinformatics 28, 3326–3328

18. Novembre, J., Stephens, M.: Interpreting principal component analyses of spatial popula-
tion genetic variation. Nat. Genetics 40, 646–649

19. Pruim, R.J., Welch, R.P., Sanna, S., Teslovich, T.M., Chines, P.S., Gliedt, T.P.,
Boehnke, M., Abecasis, G.R., Willer, C.J.: LocusZoom: Regional Visualization of Ge-
nome-wide Association Scan Results. Bioinformatics 26, 2336–2337

20. Pendergrass, S.A., Dudek, S.M., Crawford, D.C., Ritchie, M.D.: Visually Integrating and
Exploring High Throughput Phenome-Wide Association Study (PheWAS) Results Using
PheWAS-View. BioData Mining 5, 5

© Springer-Verlag Berlin Heidelberg 2014
A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2014, LNCS 8602, pp. 890–901, 2014.
DOI: 10.1007/978-3-662-45523-4_72

Genotype Correlation Analysis Reveals
Pathway-Based Functional Disequilibrium

and Potential Epistasis in the Human Interactome

William S. Bush1() and Jonathan L. Haines2

1 Center for Human Genetics Research, Department of Biomedical Informatics,
Vanderbilt University, Nashville, TN, USA
william.s.bush@vanderbilt.edu

2 Institute for Computational Biology, Department of Epidemiology and Biostatistics,
Case Western Reserve University, Cleveland, OH, USA

jonathan.haines@case.edu

Abstract. Epistasis is thought to be a pervasive part of complex phenotypes due
to the dynamics and complexity of biological systems, and a further understand-
ing of epistasis in the context of biological pathways may provide insight into
the etiology of complex disease. In this study, we use genotype data from
the International HapMap Project to characterize the functional dependencies
between alleles in the human interactome as defined by KEGG pathways.
We performed chi-square tests to identify non-independence between function-
ally-related SNP pairs within parental Caucasian and Yoruba samples. We fur-
ther refine this list by testing for skewed transmission of pseudo-haplotypes to
offspring using a haplotype-based TDT test. From these analyses, we identify
pathways enriched for functional disequilibrium, and a set of 863 SNP pairs
(representing 453 gene pairs) showing consistent non-independence and trans-
mission distortion. These results represent gene pairs with strong evidence of
epistasis within the context of a biological function.

1 Introduction

In 1912, William Bateson first coined the term epistasis, (from the Greek for standing
upon) when he observed an allele at one locus masking the effect of an allele at a
second, independent locus [1]. Bateson's concept has also been described as biologi-
cal epistasis, similar to a biochemist’s observation that variation in the physical inter-
action of biomolecules affects a phenotype [2, 3]. Several years later, R.A. Fisher
also used the term epistasis in a statistical context, observing multi-allelic segregation
patterns that can be mathematically described as a deviation from additivity in a linear
model of genotypes [4]. Given the complexities of known biological pathways that
involve numerous inter-molecular interactions, epistasis is presumed to be ubiquitous
both statistically and biologically [3]. This belief is driven largely by the notion that
networks of gene regulation and protein-protein interaction have a functional endpoint

 Genotype Correlation Analysis Reveals Pathway-Based Functional Disequilibrium 891

that may be influenced by the simultaneous presence of multiple variants in those
genes [3, 5]. Epistasis has been well-documented in model organisms, and was
discovered early in the field of genetics. In 1918, Lancefield described a two-locus
inheritance pattern for the forked bristle phenotype in Drosophila [6]. A year later,
Bridges reported statistical epistasis in Drosophila eye color, where combinations of
several different alleles Mendelize with various eye color phenotypes [7]. These al-
leles influence a biochemical pathway controlling eye pigmentation that was de-
scribed many years later [8]. More recently, studies of mouse and rat chromosome
substitution strains revealed substantial epistasis in over 140 quantitative trait loci [9].
But outside the exploration of these model systems, the concept of epistasis was
largely ignored in the field of human genetics. Over the last fifteen years, however,
the concept has resurged as the study of common complex human phenotypes has
become more prominent.

Epistasis is an attractive concept for complex traits because techniques used to
characterize strong single-gene effects (such as linkage analysis) typically fail to con-
sistently identify genomic regions that explain variation in complex traits. Twin stud-
ies and family-based segregation analysis establish heritable genetic components to
these traits, yet the source of genetic trait variation often remains unknown. One
potential source of the unexplained heritability is that a larger proportion of trait var-
iation is due to epistasis -- combinations of genotypes at multiple loci -- rather than
single independent loci [10]. Epistasis also fits well with the general notion that com-
plex traits have complex underlying genetic etiologies.

Statistically, the concept of epistasis analysis is very similar in theory to haplotype
analysis. Genetically, a haplotype occurs when loci in close physical proximity are
linked by a stretch of chromosome and are thus often inherited together. When this
occurs in a large population, these loci are said to be in linkage disequilibrium, and
the alleles of these loci form haplotypes. Because these linked alleles have a high
likelihood of being inherited together in the population, the genotypes of these loci
are correlated, or alternatively their genotypes are non-independent.

It is also possible that there is correlation between genotypes of loci that are not
physically linked on the chromosome. This phenomenon is sometimes referred to as
gametic phase disequilibrium, as the alleles non-randomly segregate within gametes,
but are not physically tethered on the chromosomes [11]. Even though alleles are not
linked physically, they may still be linked on some higher biological level that causes
the occurrence of the genotypes to be non-independent in the population, presumably
by some function that confers a change in evolutionary fitness. We loosely define this
phenomenon as functional disequilibrium, and the alleles of these functionally linked
loci form a functional psuedo-haplotype.

The work of the International HapMap Project has characterized patterns of link-
age disequilibrium among common SNPs in multiple human sub-populations. These
patterns are useful for gene mapping studies to determine which portions chromosome
(and marker loci) are typically co-inherited within a population, and thus reducing the

892 W.S. Bush and J.L. Haines

number of genetic markers needed to effectively capture common variation in the
genome. Also, the patterns of linkage disequilibrium established for a population
identify haplotypes that can be tested for association with disease phenotypes or other
traits. From a broader perspective, the HapMap provides an overview of the structur-
al interdependencies of the human genome, which has given insight into various basic
human genetics questions regarding recombination rates [12], segregation distortion
[13], genomic regions of selection [14], and even mate choice [15].

Similarly, patterns of functional disequilibrium may exist in human populations
that encapsulate common genetic variation into functional (rather than structural)
units. These patterns may provide insight into previously unknown interdependencies
in biochemical pathways, such as gene expression patterns that detrimentally or bene-
ficially alter pathway kinetics or function. Characterizing functional disequilibrium
also builds a better understanding of the general genetic variation in the interactome,
and could lead to a new understanding of the biochemistry of these systems.

Functional disequilibrium should also have consequences for disease etiology. Bi-
ological pathways likely have distinct genetic architectures that influence overall
function, and some genetic architectures may alter susceptibility to disease. Also,
alterations in pathway function may influence how environmental exposures are pro-
cessed, leading to increased or decreased risk of disease upon exposure, such as with
nicotine metabolism and lung cancer [16].

As such, a catalog of pathway-based pseudo-haplotypes would be an excellent re-
source for conducting candidate epistasis studies using genome-wide association data.
With these goals in mind, in this work we investigate the presence of functional dise-
quilibrium, observed as correlated genotypes in non-linked SNPs, among a set of core
biological pathways from the Kyoto Encyclopedia of Genes and Genomes (KEGG)
database.

2 Methods

2.1 Data

For this study, we used publicly available Single Nucleotide Polymorphisms (SNPs)
from the Hapmap Phase III dataset. 1,403,896 SNPs genotyped in 57 trios from Utah
(Centre d'Etude du Polymorphisme Humain (CEPH) Collection) and 1,484,416 SNPs
genotyped in 54 trios from the Yoruba population of Ibadan, Nigeria.

2.2 Domain Knowledge

The Kyoto Encyclopedia of Genes and Genomes [17-19] [accessed 4/27/2009] con-
tains 203 metabolic and regulatory pathways. 183 of these pathways, containing
mappings to human genes and of manageable size, were used as gene groups encom-
passing 4,826 unique genes. Entrez-gene IDs from the KEGG database were mapped

 Genotype Correlation Analysis Reveals Pathway-Based Functional Disequilibrium 893

to Ensembl gene IDs using the Ensembl database [20]. From these gene groups,
2,096,620 unique gene pairs were constructed by forming all possible pairs of genes
within each gene group. Using the Ensembl Variation database, SNPs residing within
the Ensembl gene physical (base-pair) start and end were mapped. SNP pairs were
created by forming all possible combinations of two SNPs across the two genes. Pairs
of SNPs that fall within the same gene, or within 500 KB of each other on the same
chromosome were excluded from this analysis as genotypes of these SNPs may be
non-independent due to linkage disequilibrium. Two-SNP models were generated
using the Biofilter procedure outlined in [21].

2.3 Statistical Analysis

The non-independence of genotypes for each SNP pair was assessed within each
dataset using a chi-square test of independence. The chi-square test compares the
observed frequency of a genotype combination to the frequency expected if the geno-
types are independent. Analysis was conducted using an internally developed C++
program incorporated into the Biofilter framework. Internal software was validated
with STATA 10.1.

SNP pairs with genotypes that are non-independent were further analyzed. SNP pairs
with a minor allele frequency < 0.10 were excluded from further analysis. We did not
filter SNPs based on Hardy-Weinberg Equilibrium tests because unviable or lethal
combinations of SNPs could appear out of Hardy-Weinberg Equilibrium if analyzed
alone. For the remaining SNP pairs, r2 correlation coefficients were computed using
PLINK software [22, 23]. Using the haplotype transmission disequilibrium test imple-
mented in PLINK, the co-transmission of SNP pairs within CEU and YRI trios was
assessed. This test uses a chi-square statistic to measure multi-locus segregation distor-
tion. In this application, the test determines if pathway-based pseudo-haplotypes
observed in the parent generation are significantly over- or under-transmitted to off-
spring in the population, based on the parental haplotype frequencies.

3 Results

3.1 Analysis Overview

To investigate the presence of functional disequilibrium in the human genome,
we used a bioinformatics approach to group genes together by functional relation-
ships. 183 pathways from the KEGG database were used to group genes by
function, and these gene groups were used to construct SNP pairs that exclude
haplotype effects (the SNPs must be > 500 KB apart). Pathway-based SNP pairs
were evaluated in the HapMap phase III dataset for Yoruba (YRI) and Caucasian
(CEU) populations.

As an initial screen, unrelated individuals (parents) were extracted from the
YRI (n=108) and CEU (n=114) datasets and a chi-square test of independence was

894 W.S. Bush and J.L. Haines

conducted to assess the correlation between the genotypes of each pathway-based
SNP pair. SNP pairs with chi-square statistics > 9.487 (α = 0.05, df = 4) were carried
forward to the next phase of analysis. To provide additional evidence of functional
disequilibrium between the SNP pairs identified in the screen, we conducted a
transmission disequilibrium test (TDT) to determine if there was non-independent
transmission of pseudo-haplotypes (pathway-based genotype combinations) to off-
spring in the sample. Because we are testing transmission of the pseudo-haplotype,
this test is independent of the chi-square test used in the initial screen.

Using these analyses, we present pathways potentially enriched for non-
independent genotypes in both populations, pathway-based pseudo-haplotypes that
show distorted transmission, and an overall collection of gene pairs showing evidence
of functional disequilibrium.

3.2 Initial Screen

In the initial screen phase, we evaluated roughly 428 million CEU SNP pairs and 479
million YRI SNP pairs generated from gene combinations found in KEGG pathways.
The overall significance rate for the screen was 0.0284 for CEU and 0.0303 for YRI.
Both the peptidoglycan biosynthesis (CEU 0.25, YRI 0.15) and atrazine degradation
(CEU 0.16, YRI 0.04) pathways had high proportions of significant results, however
these two pathways contained relatively few SNP pairs (903 and 2437 respectively).
Nearly all of the pathways with high proportions of significant results in the screen
were metabolic rather than regulatory pathways. In fact, several large regulatory
pathway groups, such as “Pathways in cancer” (CEU 0.0045, YRI 0.0053), axon
guidance (CEU 0.0116, YRI 0.0148), tight junction (CEU 0.0145, YRI 0.0186), and
focal adhesion (CEU 0.011, YRI 0.0063) had a very low proportion of significant
results.

In this screening phase of the analysis, we used a liberal significance threshold
(α = 0.05). Corrections for multiple hypothesis testing in this setting are difficult due
to the correlation between tests; we therefore rely on a two-phase design where results
from the initial screen are validated using an independent approach.

3.3 Confirmation

We exploit a unique property of genetic data to conduct a confirmatory analysis;
based on Mendel’s law of independent assortment, the transmission of two alleles at
unlinked loci should be independent. If the potential functional SNP pairs discovered
in our screening analysis are transmitted together more or less often than expected by
chance, this could further indicate a functional relationship between the loci. Using
the full set of 57 CEU trios and 54 YRI trios, we assessed transmission distortion
using the haplotype-based TDT for all significant SNP pairs identified in the
screening phase. Of the 40,312,276 tests conducted, the TDT identified 1,698,521
(4.21%) significantly distorted haplotype transmissions in CEU. For the YRI
samples, 50,175,211 of 2,187,530 (4.36%) tests were significant. The proportion of
significant tests by pathway is shown in figure 1.

 Genotype Correlation Analysis Reveals Pathway-Based Functional Disequilibrium 895

Fig. 1. Distributions of Significant Haplotype TDT. YRI in red, CEU in blue.

896 W.S. Bush and J.L. Haines

3.4 Gene-Gene Pairings with Putative Epistasis

From the results of our genotypic non-independence and pseudo-haplotype transmis-
sion tests, we compiled a list of SNP-SNP and subsequent gene-gene pairs that
indicate putative epistasis. These SNP-SNP pairs had correlated genotypes and sig-
nificant pseudo-haplotype TDT statistics in both CEU and YRI samples. The most
compelling results are SNP pairs that were correlated in both samples, and also whose
haplotypes were identical and similarly distorted in the TDT statistics. 863 of these
cases were detected. Of these, 763 SNP pairs contained two intronic SNPs, 98 SNP
pairs contained only one intronic SNP (others were coding, within a splice site, or
within the 3' or 5' UTR), and only 2 SNP pairs contained two non-intronic SNPs. The
two non-intronic SNP pairs are shown in table 1.

Table 1. Two non-intronic SNP pairs showing strong evidence of probable epistasis within
biological pathways (pathway 1: Phospatidylinositol signaling, Pathway 2: Olfactory
transduction)

SNP Pair
Gene
Pair

SNP
Type

CEU
Freq

YRI
Freq

CEU
X2

YRI
X2

Hap-
lotype

CEU
TDT

YRI
TDT Path

rs1053454
rs749338

PIP4K2A
ITPR3

3'
SYN

0.41
0.44

0.12
0.10

0.036 0.032
C
T

0.026 0.026 1

rs2900373
rs6679056

OR13C9
OR10R2

NON
NON

0.19
0.41

0.33
0.50

0.014 0.044
A
A

0.029 0.029 2

The distribution of gene pairs exhibiting putative epistasis by pathway is shown in
figure 2. A database of all significant results from the confirmation phase of this
study is also available upon request.

4 Discussion

In this work, we illustrate how a bioinformatics analysis of population-based genetic
data can reveal allelic dependencies between genes of biochemical pathways. Just as
the physical structure of the chromosome gives rise to correlations among genotypes
called linkage disequilibrium, the structure of biochemical systems can likewise give
rise to correlations among genotypes that presumably alter offspring viability or
evolutionary fitness in some way, a phenomenon we loosely phrase functional
disequilibrium. Gene pairs that contain SNPs exhibiting functional disequilibrium are
potentially indicative of epistasis in relation to some phenotype.

The results of the initial screen seem to indicate that a higher degree of functional
disequilibrium is present in more purely metabolic pathways. Despite this
observation, the strongest and most consistent examples of functional disequilibrium
occur mostly in regulatory and signaling pathways. Interestingly, pathways with high
numbers of implicated gene pairs are heavily involved in nervous signal transduction,
such as tight junction, chemokine signaling, and Wnt signaling and general nerve cell
function, such as focal adhesion, axon guidance, and regulation of actin cytoskeleton.
Several neurological phenotype pathways are well represented in this respect also,
such as Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease.
Genotypic dependencies among the elements of these disease related pathways should
be further investigated, and may lead to new insights into population level risk for
these conditions, and for general neurological development.

 Genotype Correlation Analysis Reveals Pathway-Based Functional Disequilibrium 897

Fig. 2. Distribution of gene-pairs exhibiting strong evidence of epistasis across both CEU and
YRI populations, listed by biological pathway

898 W.S. Bush and J.L. H

A specific compelling ex
tween rs1053454, a SN
phosphatidylinositol-5-phos
rs749338, a synonymous S
(ITPR3). These genes fu
(KO:04070), a signal tran
functions, including neurotr
These two SNPs have non-i
uals (CEU p = 0.0366, YR
SNPs is significantly and c
YRI samples (CEU hap-TD

Figure 3 illustrates the b
phatidylinositol signaling
inositol 5-phosphate to 1-
then converted to Inositol
(PLC). IP3 then binds to
release. Phosphatidylinosit
development[24].

Fig. 3. Putative epistasis in th
KO:004070)

There are several import
databases that could be use
because it is a well-establis
ry pathways. Other source

Haines

xample from this study is the functional disequilibrium
P located in the 3’ untranslated region of the
sphate 4-kinase type II alpha gene (PIP4K2A)
NP in the inositol 1,4-5-triphosphate receptor type 3 g
unction in the phosphatidyinositol signaling pathw
nsduction mechanism involved in multiple physiolog
ransmitter release and other aspects of the nervous syste
independent genotypes in CEU and YRI unrelated indiv
RI p = 0.0323), and the "CT" pseudo-haplotype of th
consistently over-transmitted to offspring in both CEU
DT = 0.026, YRI hap-TDT = 0.026).

iochemical relationships between these two genes in ph
pathway. PIP4K2A converts 1-Phosphatidyl-1D-m

-Phosphatidyl-D-myo-inositol 4,5-bisphosphate, which
l 1,4,5-trisphosphate (IP3) by phospholipase C enzym

the IP3 receptor (IP3R) to activate downstream calci
tol signaling has been implicated in neuronal function

he Phosphatidylinositol Signaling pathway (Adapted from KE

tant limitations to this work. There are numerous pathw
ed for this type of analysis. We chose the KEGG datab
shed and supported collection of biochemical and regula
s of functional information that relate genes could be u

be-
1-

and
gene
way
ical
em.
vid-
hese
and

hos-
myo-
h is
mes
ium
and

EGG

way
base
ato-

used

 Genotype Correlation Analysis Reveals Pathway-Based Functional Disequilibrium 899

as well, and will be explored in future research. We elected to use the phase III
Hapmap data only because this data is the most recent large scale collection of geno-
types from multiple ethnicities. Using the full collection of Hapmap SNPs was logis-
tically and computationally prohibitive for this work, but is also an area of future
research.

The chi-square test of independence is not appropriate for contingency tables with
fewer than 5 observations per cell -- a Fisher's exact test should be used in these cases.
The computational complexity of a 3x3 Fisher's exact test calculation precluded us
from conducting that calculation in these experiments, and instead we filtered the
significant results from the chi-square test by minor allele frequency to limit this bias.
The haplotype transmission disequilibrium test implemented in PLINK software was
intended for true haplotypes of SNPs in linkage disequilibrium on the same chromo-
some, and performs an expectation maximization (EM) procedure to estimate the
chromosomal phase of the haplotypes. When performing the EM procedure on geno-
types across chromosomes, the phased haplotype distribution should very closely
match the observed multi-locus genotype distribution, and when compared for ran-
domly selected example SNPs they match well. It notable, however, that we are em-
ploying this test outside its original design, and the phasing procedure may slightly
alter the distribution of transmitted and untransmitted pseudo-haplotypes. Further-
more, it is extremely difficult to assess the false positive rate for this study. Linkage
disequilibrium, for example among 10 SNPs of gene 1 and 7 SNPs of gene 2, causes
correlations between the tests statistics of all SNP combinations spanning gene1 and
gene2.

Finally, for simplicity, we are using the Ensembl definition of a gene region (3' to
5' untranslated region), which does not include upstream or downstream regulatory
elements. It is likely that these regulatory elements also contain variants that in com-
bination alter pathway function. These combinations of variants would not be detect-
ed in this analysis due to our myopic gene definition.

This work is an initial first step in cataloging correlated collections of functionally
related genetic variations in multiple human populations. Future directions include
expanding the datasets to include all 11 populations in the Hapmap data, expanding
the bioinformatics stores to include protein-protein interaction databases and protein
family information, and further refining the statistical analysis of non-independence
by conducting multi-locus Hardy-Weinberg Equilibrium tests. Correlated pairs of
genetic variants could further be annotated to include evolutionary conservation in-
formation, potential gene-based function (such as presence in or near a regulatory
sites), and local linkage disequilibrium data. Stored in a public database system, these
results could provide insight into new biochemical or regulatory mechanisms, and
would provide a set of potential ethnic specific differences in pathway dynamics and
function.

Acknoweldgements. This work was supported by National Institutes of Health grants
AG19085, AG27944, NS32830, and NS49477.

900 W.S. Bush and J.L. Haines

References

1. Bateson, W.: Mendel’s Principles of Heredity. Cambridge University Press, Cambridge
(1909)

2. Moore, J.H., Williams, S.M.: Traversing the conceptual divide between biological and sta-
tistical epistasis: systems biology and a more modern synthesis. Bioessays 27, 637 (2005)

3. Moore, J.H.: The ubiquitous nature of epistasis in determining susceptibility to common
human diseases. Hum. Hered. 56, 73 (2003)

4. Fisher, R.A.: Transactions of the Royal Society of Edinburgh 52, 399 (1918)
5. Moore, J.H., Williams, S.M.: Bioessays 27, 637 (2005)
6. Lancefield, D.E.: An autosomal bristle modifier affecting a sex-linked character. American

Naturalist 52, 462 (1918)
7. Bridges, C.B.: Specific modifiers of eosin eye color in Drosophila melanogaster. J. Exper-

imental Zoology 28, 337 (1919)
8. Lloyd, V., Ramaswami, M., Kramer, H.: Not just pretty eyes: Drosophila eye-colour muta-

tions and lysosomal delivery. Trends Cell Biol. 8, 257 (1998)
9. Shao, H., Burrage, L.C., Sinasac, D.S., Hill, A.E., Ernest, S.R., O’Brien, W., Courtland,

H.W., Jepsen, K.J., Kirby, A., Kulbokas, E.J., Daly, M.J., Broman, K.W., Lander, E.S.,
Nadeau, J.H.: Genetic architechture of complex traits: large phenotypic effects and perva-
sive epistasis. Proc. Natl. Acad. Sci. USA 105(50), 19910–19914 (2008)

10. Cordell, H.J.: Detecting gene-gene interactions that underlie dieseases. Nat. Rev. Genet
(2009)

11. Wang, X., Elston, R.C., Zhu, X.: The meaning of interaction. Human Heredity 70, 269
(2010)

12. Frazer, K.A., et al.: A second generation human haplotype map of over 3.1 million SNPs.
Nature 449, 851 (2007)

13. Zollner, S., Wen, X., Hanchard, N.A., Herbert, M.A., Ober, C., Pritchard, J.K.: Evidence
for extensive transmission distortion in the human genome. Am. J. Hum. Genet. 74, 62
(2004)

14. Sabeti, P.C., Varily, P., Fry, B., Lohmueller, J., Hostetter, E., Cotsapas, C., Xie, X., Byrne,
E.H., McCarroll, S.A., Gaudet, R., Schaffner, S.F., Lander, E.S.: the International HapMap
Consortium, Genome-wide detection and characterization of positive selection in human
populations. Nature 449, 913 (2007)

15. Chaix, R., Cao, C., Donnelly, P.: Is mate choice in human MHC-depedent? PLoS. Genet.
4, e1000184 (2008)

16. Derby, K.S., Cuthrell, K., Caberto, C., Carmella, S.G., Franke, A.A., Hecht, S.S., Murphy,
S.E., Le Marchand, L.: Nicotine metabolism in three ethnic/racial groups with different
risks of lung cancer. Cancer Epidemiol. Biomarkers Prev. 17, 3526 (2008)

17. Kanehisa, M., Goto, S.: KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids
Res. 28, 27 (2000)

18. Kanehisa, M., Goto, S., Hattori, M., Aoki-Kinoshita, K.F., Itoh, M., Kawashima, S.,
Katayama, T., Araki, M., Hirakawa, M.: From genomics to chemical genomics: new de-
velopments in KEGG Nucleic Acids Res. 34, D354 (2006)

19. Kanehisa, M., Araki, M., Goto, S., Hattori, M., Hirakawa, M., Itoh, M., Katayama, T.,
Kawashima, S., Okuda., S., Tokimatsu, T., Yamanishi, Y.: KEGG for linking genomes to
life and the envrionment. Nucleic Acids Res. 36, D480 (2008)

20. Flicek, P., et al.: Ensembl 2008. Nucleic Acids Res. 36, D707 (2008)

 Genotype Correlation Analysis Reveals Pathway-Based Functional Disequilibrium 901

21. Bush, W.S., Dudek, S.M., Ritchie, M.D.: Biofilter: a knowledge-integration system for
the multi-locus analysis of genome-wide association studies. In: Pac. Symp. Biocomput.,
p. 368 (2009)

22. Purcell, S.: PLINK 1.01. Ref Type: Computer Program
23. Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferrieira, M.A.R., Bender, D.,

Maller, J., Sklar, P., de Bakker, P.I.W., Daly, M.J., Sham, P.C.: PLINK: a tool set for
whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81,
559 (2007)

24. Kim, D., Jun, K.S., Lee, S.B., Kang, N., Min, D.S., Kim, Y., Ryu, S.H., Suh, P., Shin, H.:
Phospholipase C isozymes selectively couple to specific neurotransmitter receptors. Nature
389, 290 (1997)

© Springer-Verlag Berlin Heidelberg 2014
A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2014, LNCS 8602, pp. 902–914, 2014.
DOI: 10.1007/978-3-662-45523-4_73

Determining Positions Associated with Drug Resistance
on HIV-1 Proteins: A Computational Approach

Gonzalo Nápoles(), Isel Grau, Ricardo Pérez-García, and Rafael Bello

Universidad Central “Marta Abreu” de Las Villas, Santa Clara, Cuba
{gnapoles,igrau,ricardop,rbellop}@uclv.edu.cu

Abstract. The computational modeling of HIV-1proteins has become a useful
framework allowing understanding the virus behavior (e.g. mutational patterns,
replication process or resistance mechanism). For instance, predicting the drug
resistance from genotype means to solve a complicated sequence classification
problem. In such kind of problems proper feature selection could be essential to
increase the classifiers performance. Several sequence positions that have been
previously associated with resistance are known, although we believe that other
positions could be discovered. More explicitly, we observed that using positions
reported in the literature for the reverse transcriptase protein, the final decision
system exhibited inconsistent mutations. However, finding a minimal subset of
features characterizing the whole sequence involve a challenging combinatorial
problem. This research proposes a model based on Variable Mesh Optimization
and Rough Sets Theory for computing those sequence positions associated with
resistance, leading to more consistent decision systems. Finally, our model is
validated across eleven well-known reverse transcriptase inhibitors.

Keywords: Human Immunodeficiency Virus · Sequence Classification Problem ·
Drug Resistance · Variable Mesh Optimization · Rough Sets Theory

1 Introduction

More than 20 antiretroviral (ARV) drugs have been licensed to inhibit the function of
essential proteins for the HIV life cycle: the protease, the integrase and the reverse
transcriptase. For example, the nucleoside/nucleotide reverse transcriptase inhibitors
are DNA chain terminators competing with endogenous deoxy-nucleotide triphospates
for incorporation into a growing viral DNA chain [1], therefore causing the sequence
termination. However, the high rate of replication combined with the high mutability
of the virus leads to the rapid emergence of drug-resistant strains undermining the
efforts to stop the AIDS pandemic [2]. Although individuals are usually infected with
only a single or few original clones, around 10ଵ଴ new virions are produced each day
in untreated patients which results in innumerable virus variations, frequently called a
quasispecies [3]. For this reason understanding the behavior of this complex retrovirus
is decisive for designing more effective therapies. Here machine learning or statistical
approaches could be reasonably convenient, complementing the biological knowledge
obtained from experimental and clinical assays.

 Determining Positions Associated with Drug Resistance on HIV-1 Proteins 903

Predicting the phenotype resistance to a target drug from the genotype information
means to solve a sequence classification problem, which has been addressed by using
several machine learning algorithms, such as: artificial neural networks, decision trees,
support vector machines, among other techniques [4-8]. Recently, in reference [9] the
authors introduced a model based on Fuzzy Cognitive Maps (FCM) for characterizing
the influence of sequence sites over the phenotype resistance. Although this research
was primarily focused on the causality interpretation, the authors observed that this
model reported promising classification accuracies. Inspired by this result, in [10] was
performed a study that concluded the superiority of FCM against other approaches for
predicting the drug resistance / susceptibility of new mutations. But unexpectedly the
global classification rate notably decreased for three classes (susceptible, intermediate
and resistant). So, which was the cause of this undesirable behavior?

We suppose that this result is a direct consequence of the feature selection used for
reducing the map dimensionality. More explicitly, primary positions associated with
resistance were taken from [11-13] by using a biological perspective (positions having
high mutability rate). Such features are able to differentiate between susceptible and
resistant mutations, but they are not able to efficiently distinguish a resistant mutation
from another mutation having intermediate resistance. As a result, the final decision
systems computed by using this feature selection showed high inconsistency rate. It
means that positions biologically relevant for the classification problems using three
classes were omitted, negatively affecting the model accuracy.

 However, selecting the set of sequence positions having lowest cardinality that en-
sures proper consistency involves a difficult combinatorial problem. This paper pre-
sents a novel model based on Variable Mesh Optimization (VMO) and Rough Sets
Theory (RST) to find positions related with resistance on HIV-1 proteins. More spe-
cifically, this research is focused on the reverse transcriptase protein since it has been
less studied and it is more difficult to handle. Before doing so, in next section the
operators of the VMO metaheuristic are described. Section 3 introduces the proposed
algorithm for computing more accurate feature selections by using a new RST-based
measure and the selected optimizer. After that, the proposal is validated across eleven
well-known reverse transcriptase datasets, whereas in Section 5 comments and future
research directions are provided as final contribution of this paper.

2 Variable Mesh Optimization

The VMO metaheuristic is a population-based search method which was designed for
solving both discrete and continuous optimization problems [14, 15]. The artificial
population is organized as a mesh of nodes, that is, a collection of potential solutions
which are normally generated using a random method. During the search process the
mesh dynamically expands and contracts itself, moving through the solution space. It
involves two stages: the first one is oriented to the generation of new nodes towards
local and global optima, and also towards external nodes; whereas the second phase is
oriented to the mesh contraction where only best solutions are selected as survivors of
the immediate population. For better understanding, next we detail the basic operators
describing the discrete VMO, considering a minimization approach.

904 G. Nápoles et al.

Step 1) Generating the initial mesh: A common procedure on the population-
based metaheuristics is related to the initialization of the artificial agents. Without loss
of generality, the population initialization at the beginning of the algorithm execution
may be grouped into two major categories: approaches based on pseudo-solutions and
random methods. The first approach uses knowledge related to partial solutions, or
approximations generated by a simpler algorithm. When this kind of information is
not available, then agents are computed by using a random method. The present paper
adopts this strategy for generating ௞ܰ initial nodes, which are uniformly distributed on
the definition range ሾܽ௜, ܾ௜ሿ for each variable. The parameter ௞ܰ regulates the minimal
mesh size, that is, the number of solutions that should be preserved at the cycle ݇ ൅ 1,
after applying the mesh contraction (or clearing) procedure.

Step 2) Nodes generation towards local optima [14]: This step is related to the
mesh expansion process, and its goal is to generate nodes on the neighborhoods of
local optima found during the search. For each mesh node ݊, its ܭ-nearest neighbor
nodes are computed (e.g. using the Hamming distance) and the best solution ݌ on this
neighborhood is selected (taking into account the fitness value) as a local optimum
with respect to its ܭ closest nodes. Hence, a new node ݊כ arises somewhere between ݊ and ݌. The proximity of the newly generated node ݊כ to the current node ݊ or to the
local optimum ݌ is subject to a factor ߤ which is calculated based on the fitness of
both nodes ݊ and ݌, as following equation (1) shows. In this formulation an objective
function ݂: ܴ஽ ՜ ሾ0, 1ሿ is used to compute the quality of the nodes. Notice that values
closest to zero represent high quality solutions. Each component of the node ݊כ will
take either the value of solution ݊ or ݌. This process is regulated according to the next
stochastic rule: “if ܷ݂݊݅݉ݎ݋ሺ0,1ሻ ൏ ,௜ሺ݊ߤ כሻ then ݊௜݌ ൌ ௜݌ else ݊௜כ ൌ ݊௜”. ߤ௜ሺ݊, ሻ݌ ൌ 1 െ 0.5 ݂ሺ݌ሻ݂ሺ݊ሻ (1)

Step 3) Nodes generation towards the global optimum [14]: Here the idea is
similar to the semantic of the previous Step 2, but now the threshold ߤ is calculated
taking into account another component: the global best node of the mesh (݃) found so
far by the algorithm at the current cycle. From the optimization point of view, the goal
of this step is to generate new solutions using the information of the mesh, that is, the
knowledge of whole population about the fitness landscape. This knowledge allows
accelerating the convergence rate, and therefore the global performance. The value
assigned to each dimension of the new node ݊כ is defined through the next stochastic
rule: “if ܷ݂݊݅݉ݎ݋ሺ0,1ሻ ൏ ,௜ሺ݊ߤ ݃ሻ then ݊௜כ ൌ ݃௜else ݊௜כ ൌ ݊௜”. Following equation (2)
shows how to calculate this threshold using the fitness value of each node. Note that
steps related to the generation of new mesh nodes (Step 2 and 3) guarantee a suitable
equilibrium between exploration and exploitation of the solution space. However,
only using information of optimal solutions the algorithm may prematurely converge
to suboptimal solutions, decreasing the metaheuristic performance.

,௜ሺ݊ߤ ݃ሻ ൌ 1 െ 0.5 ݂ሺ݃ሻ݂ሺ݊ሻ (2)

 Determining Positions Associated with Drug Resistance on HIV-1 Proteins 905

Fig. 1. Mesh expansion during steps 2 and 3 of the VMO metaheuristic: a) nodes generation
towards local optima, and b) nodes generation towards the global optimum

Step 4) Mesh expansion [14]: In order to complete the expansion stage, the mesh
is stretched from its outer nodes, i.e. using nodes located on the frontier of the current
mesh at the k-cycle. The frontier is composed by those nodes having lowest norm
(called internal nodes), and by those which greater norm (called external nodes). Here
a factor ߸௜௞ is calculated at each cycle, to ensure that the mesh expansion declines all
over the search process. The semantic of this procedure is based on the next rule: “if ܷ݂݊݅݉ݎ݋ሺ0,1ሻ ൏ ߸௜௞ then ݊௜כ ൌ ௜ݎ else ݊௜כ ൌ ݁௜”, where ݎ௜ denotes a random state for
the ݅th dimension, and ݁ is a node belonging to the mesh frontier (including internal
as well as external solutions). The Equation (3) shows how to compute the factor ߸௜௞,
where ܨ௞ is the number of evaluations computed at the ݇th cycle, ܨ௠௔௫ refers to the
number of evaluations allowed for the algorithm execution, whereas ߪ௜଴ represents the
initial displacement for each dimension and ߪ௜ଵ is its final value.

 ߸௜௞ ൌ ሺߪ௜଴ െ ௜ଵሻߪ כ ௠௔௫ܨ െ ௠௔௫ܨ௞ܨ ൅ ௜ଵ (3)ߪ

Step 5) Mesh contraction [14]: It selects those nodes of the current mesh that will

be used as the survivors of the immediate population. Although it is often desirable to
select nodes with the best evaluation, it is recommended to apply a clearing procedure
to increase the diversity among the nodes. In this paper we use a very simple clearing
operator: if two nodes have the same genome (and therefore the same fitness value)
then the repeated solution will be replaced by a mutation of the global best individual
found so far. For simplicity the number of mutation point is automatically estimated
as ݉ ൌ is the dimensionality of the optimization problem. Notice that ܦ where ,10/ܦ
other alternatives may be adopted, although for a discrete search space is preferable to
exploit optimal solutions. After that, all nodes are evaluated and those having lowest
value will be selected as members of the next mesh. Generally speaking, the VMO
metaheuristic has demonstrated to be quite efficient to find minimal reducts in feature
selection tasks [14]. That is why we believe that VMO is an apt optimizer to locate the
sequence sites associated with drug resistance on HIV proteins.

(Step 2)

Neighborhood ݊
(Step 2) ݌ כ݊

(Step 3)

כ݊݊
݃

906 G. Nápoles et al.

3 Feature Selection on the Reverse Transcriptase Protein

The present section is oriented to establish the methodology concerning to the feature
selection on the HIV-1 reverse transcriptase protein. To do that, we first introduce
some basic aspects related to the Rough Set Theory, which plays an important role on
the evaluation function that should be optimized. One of the advantages of using this
theory for analyzing data is that it is based solely on the original data and does not
require any external information. On the other hand, the optimization phase is focused
on selecting those sequence positions strongly related with resistance. It means to
solve, by using the VMO metaheuristic, a challenging combinatorial problem having 2ଶ଴ଵ െ 1 possible states, given that the reverse transcriptase mutations primarily occur
between site 40 and 240. We also present a more competent measure for quantifying
the degree of consistency resulting from the future selection at each stage, therefore
increasing the accuracy of the proposed methodology.

3.1 Rough Set Theory for Analyzing Inconsistent Information

The Rough Sets Theory (RST) is a suitable technique for modeling uncertainty arising
from inconsistency [16]. It uses a pair of approximations to describe a set, which are
based exclusively on the original data and does not require any external knowledge.
More explicitly, let us suppose an information system ܵ ൌ ሺܷ, -ሻ, where ܷ is a nonܣ
empty finite set of objects called the Universe, whereas ܣ is a non-empty finite set of
attributes. So, a decision system is any information system expressed as ܵܦ ൌ ሺܷ, ܣ ݀ ሼ݀ሽሻ, where׫ ב is the decision attribute. Following equations (4) and (5) show the ܣ
formalization of the lower and upper approximation for a set ܺ ك ܷ and a subset of
attributes ܤ ك ݔ ሿ஻ denotes the set of inseparable objects associated toݔHere ሾ .ܣ
(equivalence class) according to the inseparability relation ܤ. The objects in ܺכܤ are
categorically members of ܺ, while the objects in ܺכܤ are possibly members of the set ܺ. Notice that this model does not consider any tolerance of errors.
ܺכܤ ൌ ሼݔ א ܷ ׷ ሾݔሿ஻ ك ܺሽ (4)
ܺכܤ ൌ ሼݔ א ܷ ׷ ሾݔሿ஻ ת ܺ ് ሽ (5)׎

On the basis of the relation of inseparability, the consistency of the decision system
can be analyzed. When two inseparable objects belong to different classes of decision,
the decision system is said to be inconsistent, otherwise it is consistent. For example,
let the partition ܻ ൌ ሼ ଵܻ, ଶܻ, . . . , ௠ܻሽ of the universe ܷ according to the values of the
decision feature ݀, where the subsets ௜ܻ are called class of decision. Next equation (6)
shows the formulation of the coefficient Υ஻ሺܻሻ called quality of classification, which
expresses the relative percentage of objects that can be correctly classified using the
inseparability relation ܤ. If Υ஻ሺܻሻ ൌ 1 then the decision system is consistent, hence
that there is not any pair of objects in ܷ that is inseparable and that belong to different
classes. If Υ஻ሺܻሻ ൏ 1 then the decision system is inconsistent, and the computed value
is precisely that, which indicates the degree of consistency. This measure has been
successfully used as a heuristic value in feature selection tasks.

 Determining Positions Associated with Drug Resistance on HIV-1 Proteins 907

Υ஻ሺܻሻ ൌ ෍|כܤ ௜ܻ|௠
௜ୀଵ |ܷ|൘ (6)

However, this measure could be improved. Frequently the available HIV datasets
are strongly imbalanced, meaning that the number of resistant mutations is notably
greater than the number of susceptible mutations. For such cases the coefficient Υ஻ሺܻሻ
could report misleading results. For better understanding of this affirmation, let us
consider a decision system having 180 resistant mutations and only 17 susceptible. As
well, expect that |כܤ ଴ܻ| ൌ 0 and |כܤ ଵܻ| ൌ 178, where ଴ܻ denotes the set of susceptible
objects, whereas ଵܻ is the set of resistant instances. According to the equation (6) the
degree of consistency Υ஻ሺܻሻ ൎ 0.9, but it is easy to perceive that only the resistant
cases will be correctly classified. For this reason, this paper introduces a new measure
called imbalanced classification quality (see next equation). It attempts computing the
consistency degree for datasets having high ratio between classes.
 Υ஻ᇱ ሺܻሻ ൌ 1݉ ෍ כܤ| ௜ܻ|| ௜ܻ|௠

௜ୀଵ , | ௜ܻ| ് 0 (7)

Notice that the coefficient Υ஻ᇱ ሺܻሻ is very restrictive since it requires proper balance
between the cardinality of the lower approximations. This aspect is often desirable for
computing high-quality feature selections. It improves the quality of the knowledge-
discovery process, which uses this decision system as a learning set, particularly in
the construction of classifiers [17]. Following section provides a complete description
of the optimization methodology, being able to discover the sequence sites associated
with resistance on the HIV-1 reverse transcriptase protein.

3.2 Feature Selection Using VMO and RST

The purpose of the learning algorithm is to generate binary nodes through the discrete
VMO metaheuristic defined in previous Section 2. Each node or solution ݊ א ሼ0,1ሽ஽
denotes a ܦ-dimensional point on the search space, assuming that ܦ is the number of
positions unfolding the reverse transcriptase sequence (ܦ ൌ |ܣ| ൌ 201). Thus, the ݅th
position of each node is related to the presence or absence of the ݅th attribute into the
decision system. More specifically, if ݊௜ ൌ 1 then the ݅th attribute should be retained
into the decision system as a member of the subset ܤ. If ݊௜ ൌ 0 then the ݅th sequence
position should be excluded from the decision system analysis.

In brief, the number of objects belonging to the set ܤ depends on the active sites,
that is to say |ܤ| ൌ |݊|, where 1 ൑ |݊| ൑ :It attempts to answer a simple question .|ܣ|
is the ݅th sequence position directly associated with the drug resistance target? At the
beginning, the learning algorithm uses random nodes, which are generated without
preliminary knowledge about the solution search space. This population is iteratively
improved using the VMO rules, until the maximal number of generations is reached.
At the end, the best sampled solution is returned. But a crucial aspect should still be
solved: how to measure the node’s quality? Equation (8) shows the objective function
used in this paper, considering a minimization approach.

908 G. Nápoles et al.

 ݂ሺ݊ሻ ൌ ߶ଵሺ1 െ Υ஻೙ᇱ ሺܻሻሻ ൅ ߶ଶሺ|ܤ௡|/ܦሻ (8)

The above objective function has two components: the first factor is oriented to

guarantee high level of consistency over the decision system, whereas the second one
is focused on reducing the number of active attributes. In this formulation ݊ denotes a
mesh node, ܤ௡ is the set of sequence positions associated to active components of the
current solution ݊, whereas ܦ ൌ represents the number of possible positions that |ܣ|
could be included into the feature selection. An important aspect in this equation is
that we use the imbalanced classification quality Υ஻೙ᇱ ሺܻሻ, instead of using the standard
classification quality Υ஻ሺܻሻ. It increases precision of the final feature selection leading
to high-quality decision systems. Additionally, we introduce two new parameters 0 ൏ ߶ଵ, ߶ଶ ൏ 1 for controlling the importance that experts confer to the imbalanced
classification quality Υ஻೙ᇱ ሺܻሻ regarding the number of selected features.

For the proposed problem we strongly suggest that ߶ଵ ൐ ߶ଶ since the consistency
degree of the decision system is a central aspect in classification tasks. Hence, the aim
of this learning methodology is to minimize the number of attributes describing the
whole protein, but always preserving the knowledge. The objective function ݂ሺ. ሻ gets
its optimal value when a minimal subset of attributes ܤᇱ is found, and the imbalanced
classification quality is equal to 1. It means that the optimal value for the objective
function is equal to ߶ଶ |ᇱܤ| 201⁄ . The closest to ߶ଶ |ᇱܤ| 201⁄ the heuristic value, the
more desirable the feature selection associated to the node. Following we conducted
some experiments across eleven well-known reverse transcriptase inhibitors, showing
the reliability of the proposed model in feature selection tasks.

4 Experimental Framework and Simulations

In order to validate the proposal we used 11 reverse transcriptase datasets taken from
Stanford Drug Resistance Database [18]. These datasets are grouped into two kinds of
reverse transcriptase drugs: nucleoside/nucleotide and non-nucleoside inhibitors. The
nucleoside/nucleotide drugs are: Lamivudine (3TC), Abacavir (ABC), Zidovudine
(AZT), Stavudine (D4T), Zalcitabine (DDC), Didanosine (DDI), Emtricitabine (FTC)
and Tenofovir (TDF); whereas nonnucleoside are: Delavirdine (DLV), Efavirenz
(EFV) and Nevirapine (NVP). Before presenting the experimentation framework we
introduce a characterization of the inconsistency features of selected datasets, once
the feature selection adopted from literature [11-13] is completed.

It should be mentioned that datasets correspond to Antivirogram™ assay but only
taking into account the classification problem using three classes. Besides, the reverse
transcriptase mutations are often characterized by deletions and insertions resulting in
non-homogeneous instances. In order to cope with this situation some methods have
been proposed. For example, in [19] the authors introduce a new learning algorithm
called Dynamic Backpropagation Through Time which was specifically designed for
training Recurrent Neural Networks using variable length instances. But in all the
experiments performed next we ignore mutations having more than an amino acid at a
sequence position (i.e. only regular instances were considered).

 Determining Positions Associated with Drug Resistance on HIV-1 Proteins 909

Table 1. Characterization of reverse transcriptase datasets resulting after applying the feature
selection adopted from the literature (taking into account both classification problems)

 Taking into account two classes Taking into account three classes

Drug #S #R Υ஻ሺܻሻ Υ஻ᇱ ሺܻሻ #S #I #R Υ஻ሺܻሻ Υ஻ᇱ ሺܻሻ

3TC 18 173 0.9842 0.9415 18 18 155 0.9319 0.9229

ABC 11 43 1.0000 1.0000 11 22 21 1.0000 1.0000

AZT 14 95 0.9724 0.9537 14 21 74 0.7339 0.7250

D4T 29 22 1.0000 1.0000 29 13 9 1.0000 1.0000

DDC 13 14 0.9259 0.9258 13 7 7 0.9259 0.9267

DDI 19 20 0.9487 0.9486 19 10 10 0.6666 0.7403

FTC 4 51 1.0000 1.0000 4 0 51 1.0000 1.0000

TDF 13 10 1.0000 1.0000 10 3 6 0.8947 0.9111

DLV 16 141 0.9044 0.6697 16 32 109 0.6114 0.5179

EFV 11 130 0.9858 0.9506 11 37 93 0.7801 0.7699

NVP 21 182 0.9043 0.5872 21 15 173 0.7129 0.4443

From the above results we can notice that both RST-based measures decreased for

datasets using three classes. It suggests that the biological positions reported in the
literature are insufficient for characterizing the sequence from the computational point
of view. For better understanding, let us analyze the dataset EFV after applying the
feature selection described above, considering three classes (susceptible, intermediate
and resistant). As a result, the reduced dataset has 60 objects having identical genome
but associated to different resistance level. For example, the sequence “VALKNVVN
YYGHFM” will be classified as resistant and intermediate at the same time, which
evidently is a critical inconsistency that affects the overall performance of machine
learning classifiers. This unfavorable behavior is also observed in remaining datasets,
mainly associated to highly resistant and intermediate mutations.

The goal of this research is to find a feature selection involving a minimal number
of positions ensuring proper consistency. The parameter settings used in this paper is
detailed as follow: the number of initial nodes at each cycle is set to 50, the maximum
mesh size is ܰ ൌ 200, the number of closest neighbors is ܭ ൌ 3, whereas the number
of iterations adopted for the algorithm execution is set to 400. In addition, the factor
controlling the relative importance of the system consistency is ߶ଵ ൌ 0.8, whereas the
weight associated to the node’s norm is ߶ଶ ൌ 1 െ ߶ଵ ൌ 0.2. The reader should notice
that the proposed methodology is mainly oriented to preserve the system knowledge,
although it also tries to reduce the number of selected features.

Figures 2-9 show the list of positions found by the proposal for nucleoside/ nucleo-
tide drugs. Due to the stochastic nature involving our model, the optimization phase is
performed 30 times for each dataset, and then the best sample is assumed (i.e. the
node with lowest norm and also best RST-based measure, having high similarity re-
garding the sites determined in clinical or experimental studies). Besides, we report
mutations that take place in such positions, taking into account datasets information.

910 G. Nápoles et al.

Towards this objective, each amino acid sequence is compared with the sequence of a
wild-type subtype B laboratory strain, and then the differences between each position
reported in datasets and the wild-type sequence are computed.

 K T A D Q P M K L

65 69 98 123 151 157 184 219 228

 R
 N

D
N
K
G
A
I

 S
 G

 E
 N
 S

 M A V
I

 N
 Q

 R
 E
 T

 H
 R
 F

Fig. 2. Mutations observed in sites found as relevant to Lamivudine (3TC), regarding a wild-
type laboratory strain. Bold sequence sites denote new positions discovered by the algorithm.

K K R D I M L K

65 70 83 123 135 184 210 219

R

R
G
E

 K E
 N

 M
 V
 T
 L

V

W N
 Q
 R
 E
 T

Fig. 3. Mutations observed in sites found as relevant to Abacavir (ABC), regarding a wild-type
laboratory strain. Bold sequence sites denote new positions discovered by the algorithm.

 A D K V K I D G R T

62 67 102 118 122 135 177 190 211 215

 V

N
G
E

 Q
 R
 M

 I E
 Q
 P

 M
 V
 T
 L

N
E
G

 A
 S
 E

 K
 S
 D
 G

 Y
 F
 I
 E

Fig. 4. Mutations observed in sites found as relevant to Zidovudine (AZT), regarding a wild-
type laboratory strain. Bold sequence sites denote new positions discovered by the algorithm.

 E D F M E T

44 67 77 184 203 215

 D

 N
 G

 L V
I

 K Y
 F
 I

Fig. 5. Mutations observed in sites found as relevant to Stavudine (D4T), regarding a wild-type
laboratory strain. Bold sequence sites denote new positions discovered by the algorithm.

 Determining Positions Associated with Drug Resistance on HIV-1 Proteins 911

 F R T M I L

 77 83 139 184 202 210

 L K R V V W

Fig. 6. Mutations observed in sites found as relevant to Zalcitabine (DDC), regarding a wild-
type laboratory strain. Bold sequence sites denote new positions discovered by the algorithm.

 T V A K V M I L

 69 75 98 102 179 184 202 228

 K
N
D

 I G

S

 Q D
 I

V
I

V H
 R

Fig. 7. Mutations observed in sites found as relevant to Didanosine (DDI), regarding a wild-
type laboratory strain. Bold sequence sites denote new positions discovered by the algorithm.

I K K A Y T M Q

63 64 70 98 115 165 184 207

K

R
H

R G
S

 F A V
I

 D
 E

Fig. 8. Mutations observed in sites found as relevant to Emtricitabine (FTC), regarding a wild-
type laboratory strain. Bold sequence sites denote new positions discovered by the algorithm.

 D F Q G H R H

 67 77 174 190 208 211 221

 G
N

L R A

Y K
 T
 A

 Y

Fig. 9. Mutations observed in sites found as relevant to Tenofovir (TDF), regarding a wild-type
laboratory strain. Bold sequence sites denote new positions discovered by the algorithm.

In the above figures plain-text positions denote sequence sites known to contribute
to resistance to the target drug. In contrast, bold positions denote new sequence sites
found by the proposed algorithm that have been previously associated with resistance
to other drugs but not to the explored inhibitor, or they are not frequently considered
into the scientific literature [11-13]. It is important to remark that reported positions
induce a perfect partition of resistance classes (i.e. the quality of classification is equal
to one). It means that the resulting decision system has accurate consistency, which is
a desirable feature in prediction tasks. Also the norm of the optimal solutions (number
of sequence position associated with drug resistance) is considerably lower than other
computational approaches. On the other hand, it is fair to mention that in our research
many mutations having deletions or insertions were omitted.

Let us to examine, as an example, discovered positions for Abacavir. For this drug
only 8 sequence sites were associated with resistance: 65, 70, 83, 123, 135, 184, 210,

912 G. Nápoles et al.

and 219. Sites 65, 70, 184, 210, and 219 were confirmed by different mutation panels,
but in the literature positions 83, 123 and 135 are rarely considered. Such positions are
usually mutated in other HIV subtypes [12, 20, 21] and hence they should be carefully
examined. While reference [20] catalogues sites 35, 83, 122, 123, 135, 200 and 211 as
non-resistance polymorphic, Kantor and Katzenstein [21] confirmed that mutations at
these positions (in particular 43 and 211) may play an essential role in drug resistance
evolution and increase viral fitness. It actually confirms the reliability of the proposed
model, although deeper biological analysis is still required. Next Table 2 portrays such
sequence positions found as relevant to non-nucleoside drugs.

Table 2. Positions found by the proposed methodology as relevant to non-nucleoside drugs

Drug List of mutations for sites selected by the model as significant for each drug

DLV 98, 101, 103, 106, 108, 135, 138, 142, 162, 173, 178, 179, 181, 188, 190, 196, 219, 225

EFV 60, 98, 100, 101, 102, 103, 106, 123, 157, 178, 181, 184, 188, 190, 208, 230, 236

NVP 65, 69, 100, 101, 103, 106, 122, 123, 138, 178, 179, 181, 188, 190, 215, 230, 236

It should be mentioned that computed positions are not unique, since the convexity

of the evaluation function (8) leads to a strong multimodal problem where numerous
global optima exist. More explicitly, the model is capable to find several nodes with
lowest norm inducing a proper consistency over datasets. Conversely, interesting it is
the fact that some unconsidered positions (e.g. 135, 157 or 179) are always found as
relevant to nucleoside/nucleotide drugs. It suggests that newly discovered positions
are important to the HIV-1 resistance mechanism. What is more, the authors of this
research believe that detected mutations in such positions (in combination to other
accessory mutations) are responsible to the resistance dissimilarity on non-susceptible
sequences. This hypothesis is a result of the characterization of reduced datasets: only
using biological evidence we detected inconsistent patterns associated to intermediate
and resistant mutations (see Table 1). But using the computational information these
contradictions were removed leading to high-quality datasets.

5 Conclusions

Determining the sequence positions associated with drug resistance on HIV proteins
is a decisive task to understand the complex behavior of this retrovirus. Many of these
positions have been experimentally determined (e.g. from clinical assays), however,
this knowledge is not conclusive. Being more precise, in this paper we demonstrated
that reduced reverse transcriptase datasets, resulting from primarily sites suggested by
biological studies, show inconsistency. It suggests that these positions can distinguish
between susceptible and resistant mutations, but they do not efficiently discriminate a
resistant mutation from another having intermediate resistance.

Based on these considerations this paper proposed a supervised algorithm to find a
more complete characterization of the reverse transcriptase sequence. With this goal
in mind we used a relatively new metaheuristic called Variable Mesh Optimization as

 Determining Positions Associated with Drug Resistance on HIV-1 Proteins 913

discrete optimizer. As well we adopted some elements from the Rough Sets Theory to
compute the quality of the generated nodes. Simulations results were promising since
the proposed methodology confirmed well-known positions, and also found new sites
which are rarely associated with drug resistance. Of course, discovered sites should be
rigorously studied via biological experiments, although they are a tangible start-point
to develop more effective reverse transcriptase inhibitors. Future work will be focused
on computing more descriptive patterns from reported positions.

References

1. Tang, M.W., Shafer, W.R.: HIV-1 Antiretroviral Resistance – Scientific Principles and
Clinical Applications. Drugs. 72(9), 1–25 (2012)

2. Kierczak, M., et al.: A Rough Set-Based Model of HIV-1 Reverse Transcriptase
Resistome. Bioinformatics and Biology Insights. 3, 109–127 (2009)

3. Perelson, A.S., et al.: HIV-1 dynamics in vivo: virions clearance in vivo, infected cell life-
span, and viral generation time. Science. 271(5255), 1582–1586 (1996)

4. Beerenwinkel, N., et al.: Computational methods for the design of effective therapies
against drug resistant HIV strains. Bioinformatics. 21, 3943–3950 (2005)

5. Rhee, S.Y., et al.: Genotypic predictors of human immunodeciency virus type 1 drug re-
sistance. PNAS. 103, 17355–17360 (2006)

6. Woods, M., Carpenter, G.A.: Neural Network and Bioinformatic Methods for Predicting
HIV-1 Protease Inhibitor Resistance. Technical Report 02215 (2007)

7. Saigo, H., Uno, T., Tsuda, K.: Mining complex genotypic features for predicting HIV-1
drug resistance. Bioinformatics. 23, 2455–2462 (2007)

8. Bonet, I., Arencibia, J., Pupo, M., Rodriguez, A., García, M.M., Grau, R.: Multi-Classifier
Based on Hard Instances – New Method for Prediction of Human Immunodeficiency Virus
Drug Resistance. Current Topics in Medicinal Chemistry. 13, 685–695 (2013)

9. Nápoles, G., Grau, I., Bello, R., Grau, R.: Two-steps learning of Fuzzy Cognitive Maps for
prediction and knowledge discovering on the HIV-1 drug resistance. Expert Systems with
Applications. 41, 821–830 (2014)

10. Grau, I., Nápoles, G., García, M.M.: Predicting HIV-1 Protease and Reverse Transcriptase
Drug Resistance Using Fuzzy Cognitive Maps. In: Ruiz-Shulcloper, J., Sanniti di Baja, G.
(eds.) CIARP 2013, Part II. LNCS, vol. 8259, pp. 190–197. Springer, Heidelberg (2013)

11. Shafer, R.W.: Genotipic testing for Human Immodeficiency Virus type 1 drg resistance.
Clinical Microbiology Reviews. 15(2), 247–277 (2002)

12. Cane, P., Green, P., Fearnhill, E., et al.: Identification of accessory mutations associated
with high-level resistance in HIV-1 reverse transcriptase. AIDS. 21(4), 447–455 (2007)

13. Johnson, V.A., Calvez, V., Günthard, H.F., et al.: Update of the Drug Resistance Muta-
tions in HIV-1. Topics in HIV Medicine. 21(1), 6–14 (2013)

14. Bello, R., Puris, A., Falcón, R., Gómez, Y.: Feature Selection through Dynamic Mesh Op-
timization. In: Ruiz-Shulcloper, J., Kropatsch, W.G. (eds.) CIARP 2008. LNCS, vol. 5197,
pp. 348–355. Springer, Heidelberg (2008)

15. Puris, A., Bello, R., Molina, D., Herrera, F.: Variable mesh optimization for continuous
optimization problems. Soft Computing. 16, 512–525 (2012)

16. Pawlak, Z.: Rough sets. Int. J. of Information and Computer Sciences. 11, 341–356 (1982)
17. Bello, R., Verdegay, J.L.: Rough sets in the Soft Computing environment. Information

Science. 212, 1–14 (2012)

914 G. Nápoles et al.

18. Rhee, S.Y., et al.: Human immunodeciency virus reverse transcriptase and protease se-
quence database. Nucleic Acids Research. 31, 298–303 (2003)

19. Grau, I., Nápoles, G., Bonet, I., García, M.M.: Backpropagation Through Time Algorithm
for training Recurrent Neural Networks using variable length instances. Computación y
Sistemas. 17(1), 15–24 (2013)

20. Kearney, M., Palmer, S., Maldarelli, F., et al.: Frequent polymorphism at drug resistance
sites in HIV-1 protease and reverse transcriptase. AIDS. 22(4), 497–501 (2008)

21. Kantor, R., Katzenstein, D.: Drug resistance in non-subtype B HIV-1. Journal on Clinical
Virology. 29(3), 152–159 (2004)

GPMS: A Genetic Programming Based
Approach to Multiple Alignment of Liquid
Chromatography-Mass Spectrometry Data

Soha Ahmed1(B), Mengjie Zhang1, and Lifeng Peng2

1 School of Engineering and Computer Science, Wellington, New Zealand
{soha.ahmed,mengjie.zhang}@ecs.vuw.ac.nz

2 Victoria University of Wellington, 600, Wellington 6140, New Zealand
lifeng.peng@vuw.ac.nz

Abstract. Alignment of samples from Liquid chromatography-mass
spectrometry (LC-MS) measurements has a significant role in the detec-
tion of biomarkers and in metabolomic studies.The machine drift causes
differences between LC-MS measurements, and an accurate alignment
of the shifts introduced to the same peptide or metabolite is needed. In
this paper, we propose the use of genetic programming (GP) for multiple
alignment of LC-MS data. The proposed approach consists of two main
phases. The first phase is the peak matching where the peaks from dif-
ferent LC-MS maps (peak lists) are matched to allow the calculation of
the retention time deviation. The second phase is to use GP for multiple
alignment of the peak lists with respect to a reference. In this paper, GP
is designed to perform multiple-output regression by using a special node
in the tree which divides the output of the tree into multiple outputs.
Finally, the peaks that show the maximum correlation after dewarping
the retention times are selected to form a consensus aligned map.The pro-
posed approach is tested on one proteomics and two metabolomics LC-
MS datasets with different number of samples. The method is compared
to several benchmark methods and the results show that the proposed
approach outperforms these methods in three fractions of the protoemics
dataset and the metabolomics dataset with a larger number of maps.
Moreover, the results on the rest of the datasets are highly competitive
with the other methods.

1 Background

LC-MS is commonly applied to both proteomic and metabolomic experiments.
In LC-MS proteomics analysis, the sample is subjected to proteolytic digestion
which results in a mixture of peptides. The resulting fraction of peptides mixture
is then separated by liquid chromatography [1]. The peptides are then eluted at
different retention times and detected by the mass spectrometer after ionization
based on their mass to charge ratios [2]. Therefore, the resulting spectrum is a 3D
map, called LC-MS map, which consists of mass to charge ratio (m/z), retention
time (RT) and ion intensity count (Int). LC-MS can be used for providing quan-
titative and qualitative information about the proteins in a biological sample
c© Springer-Verlag Berlin Heidelberg 2014
A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2014, LNCS 8602, pp. 915–927, 2014.
DOI: 10.1007/978-3-662-45523-4 74

916 S. Ahmed et al.

[2]. Such information is useful in several applications including system biology,
functional genomics and biomarker detection. For these applications to be suc-
cessful, ideally the m/z and RT of the same molecule at different spectra among
the LC-MS replicate runs detected in the same LC-MS platform should be the
same. However, this is not always the case. In particular, there is a large shift
and sometimes distortion in RT between different runs [2]. In addition, the m/z
values show smaller distortion which introduces ambiguity in peak matching in
comparative analyses. Moreover, the variations in RT may show non-linear devi-
ations and can be greater than predicted [1]. Therefore, an effective algorithm
is required to address two main tasks, the first is to match the peaks arising
from the same peptides at different runs within certain m/z and RT windows
and the second is to find the correct transformation of the RTs in order to make
comparison [3] between the intensity values effectively.

The methods for alignment of LC-MS spectra can be classified into two
groups. The first group is the raw-based methods, which select the set of sig-
nificant peaks from raw data and use these peaks as a reference for aligning
the data. These methods can avoid the errors due to feature detection but they
have high computational cost [4]. The second group is the peak-based methods
where the alignment is done after extracting features and grouping correspond-
ing features (peaks) from different LC-MS runs [2]. However, feature extraction
and centroidization can introduce some errors [4]. Therefore, the quality of the
alignment algorithm will depend mainly on the quality of these preprocessing
paradigms.

Examples of raw-based methods include the hidden Markov Models (HMMs)
approach presented in [5], where the alignment of RT and the normalization of
the peak intensities were done at the same time. HMMs were used to represent
the correct retention times and the parameters of the model were estimated using
the maximum likelihood estimation. A star-wise manner alignment of either raw
or feature maps was depicted in [1] in the open source platform OpenMS. In
the first phase, features were matched together using pose clustering followed by
linear regression to correct the retention time distortion. In the second phase,
the dewarped maps were combined into a consensus map by using the nearest
neighbor search. The RANdom SAmple Consensus (RANSAC) algorithm was
used in the MZmine2 [6] framework to find features that fit a non-linear model
within a user supplied m/z and RT tolerances. A locally-weighted scatter plot
smoothing regression method was used on all the points obtained from RANSAC.
Genetic algorithms were used in [7] to predict the RT dewarping function.

Most of these approaches for alignment of LC-MS data focus on solving the
pairwise alignment problem, which produces somehow suboptimal results for
multiple alignment problems.

Genetic programming (GP) is an evolutionary algorithm which solves a given
problem by automatically evolving computer programs (functions) [8]. Initially,
GP starts with random programs which are then modified using different genetic
operators such as crossover and mutation based on Darwin evolution theory [8].
GP has been successfully used for alignment and forecasting of time series data

GPMS: A GP Based Approach to Multiple Alignment of LC-MS Data 917

[9] and achieved good results. In particular, GP is well known for symbolic
regression which provides great potential for aligning LC-MS data. However,
GP has not been used for the alignment of LC-MS datasets.

1.1 Goals

The overall goal of this study is to develop a GP based method for multiple
alignment of LC-MS peak maps which can correct the distortion of RT in multi-
ple maps simultaneously. The proposed method is composed of two main phases,
the first is to match the peaks across multiple maps and the second is to find
the best dewarping function for the RT of the matched peaks. The method is
tested on one protoemics dataset and two metabolomics datasets and compared
against five benchmark algorithms. Specifically we will perform the following:

– develop an appropriate peak matching approach across multiple LC-MS
maps with different number of peaks;

– design a GP method to perform multiple-output regression;
– model the terminal set of GP to perform multiple regression simultaneously;

and
– investigate whether the new GP method outperforms the conventional align-

ment methods on these datasets.

1.2 Organisation

The rest of the paper is organised as follows. Section 2 describes the pro-
posed approach and the new GP method. The experimental design, the datasets
description and preprocessing are presented in Section 3. Section 4 reports the
experimental results along with the discussions. The conclusions and future work
are presented in Section 5.

2 The Alignment Approach

The objective of the alignment of LC-MS maps (we refer to each sample or run
as a map) is to produce a consensus map which contains matching peaks of the
same molecules from each map after transformation of RTs. In other words, the
aim is to produce peak lists which have similar m/z and RT values in order to
perform comparison of intensity values effectively.

The alignment approach proposed here works with peak data which has a
much smaller amount of data than the raw maps. Therefore, it can be used to
develop faster dewarping techniques. Figure 1 shows the overview of the pro-
posed alignment approach which starts with taking the peak lists as inputs. The
main aim of alignment is to find the possible transformations that maps the RT
points of one map (reference map) (r1, r2, ..., rn) to the corresponding points of
the other maps (m1,m2, ...,mx). To achieve this objective, the most matched
partners must be detected by the peak matching approach which is used as an
intermediate step to allow GP to search for the optimal transformation. The
peak lists which have different number of peaks are passed to the peak matching

918 S. Ahmed et al.

Input Peak Lists
(different sizes)

Peak Matching * *

MinD

Matched Peak
list (same
size)

Multiple
regression via

GP

Corrected Peak Lists

m/z, RT

(m/z1±m/z, RT1±RT)

(m/zn±m/z, RTn±RT)

(m/z2±m/z, RT2±RT)

……

1D

2D

nD

.

.

.

4

- + *
1RT

9
2RT 9RT3

Special

Fig. 1. Overview of the alignment approach

phase to detect the matched peak lists between the reference map and the other
maps ((r1,m1), (r2,m2)....(rn,mn)).

For pairwise alignment, GP can be used directly to evolve the transformation
function. However, the multiple alignment of multiple maps requires a different
structure of the evolved programs of GP to determine the transformation of the
multiple maps. Therefore, a new GP multi-branch tree approach is developed
for correcting RTs of multiple maps simultaneously. Finally, GP outputs the
corrected peak lists. The two phases of the alignment approach are described
below. For presentation convenience, the new approach is called GPMS.

2.1 Peak Matching

The first phase of the approach is to identify the significant matching peaks
across all maps. The criteria for peak matching is the distance between the m/z
and RT the reference map and the other maps. The procedure for peak matching
is as follows:

1. Randomly select a map from the dataset as a reference map R = (r1, r2, ..., rn).

2. For each peak (m/zi, RTi, Inti) in the reference map, find the list of peaks in
the next map M = (m1,m2, ...,mn) within a predefined m/z (m/zi ± εm/z)
and RT (RTi ± εRT) tolerances and with the same charge.

3. Select the nearest neighbor (1-NN) peak from the list of peaks in the current
map with respect to m/z, RT and Int, and add the two peaks as significant
peaks of the reference and current maps into the consensus map. The distance
between the peaks is measured using the Euclidean distance between m/z,
RT and Int. More weight is given to m/z due to the fact that RT and Int

GPMS: A GP Based Approach to Multiple Alignment of LC-MS Data 919

are much more tolerable than m/z. The Euclidean distance is given by:

ED =
√

(W 2
1 ∗ (Rm/z − Mm/z)2 + W 2

2 ∗ (RRT − MRT)2 + W 2
3 ∗ (RInt − MInt)2)

where ED is the Euclidean distance between the two peaks of the reference
(R) and the current (M) maps and W1 =0.7, W2=0.2 and W3=0.1.

4. Mark the selected peak on the current map as a processed peak so that it
will not be selected again as a nearest neighbor to another peak.

5. Repeat step 2- 4 on all the maps until all the peaks in all maps are processed.
If there is no corresponding peak found in half of the maps, all significant
peaks related to this peak are removed from the significant peak lists.

After identifying the matching peaks across all maps, the list of matching pairs
is passed to GP to correct the RT values.

2.2 GP Multi-Branch Regression for Multiple Alignment

Unlike most of the previous RT alignment algorithms, our GP method cor-
rects RTs of all maps simultaneously. The main advantage of this regression GP
technique is that it can work efficiently. Another advantage is not having the
requirement of a specific gold standard reference map for alignment of the rest
of the maps. In other words, any map can be selected as a reference to align the
rest of the maps. In this approach, we use the tree-based GP [10] for this task
but we modified the tree structure as multi-branch tree. In the multi-branch
GP approach, each individual is composed of several branches and each branch
is responsible for evolving a part of the solution [10,11]. The final solution is
integrating all these partial solutions through a special node which represents
the root node [12,13]. The number of children of the special node is equal to the
number of maps to be aligned. The children of the root node are the functions.
The function node can also take other function nodes as its children. The termi-
nal nodes of each branch are the RTs of a specific map and a random constant.
The same branch cannot contain RTs from different maps. The structure of the
multiple-output regression tree is shown in Figure 2.

In the rest of the section, we will describe terminal set, function set and the
fitness function of the new GP method.

2.3 Terminal and Function Sets

An LC-MS sample is a 3D map composed of the m/z values, RTs and the
intensity counts (Ints). The objective here is to correct the RTs of all maps
to the corresponding RTs of the reference map. Therefore, the terminal set is
composed of the RTs of N maps. We consider each input to GP as N RTs
dimensions (equal to number of maps). For example, if we have three maps,
each input to the terminal set is composed of three RT variables. We also used
a random generated constant in the range of [-10,10] in the terminal set. Hence,
our terminal set is composed of RTs values of all maps and random constants
values. The function set used for this problem is F = {+,−,×,%, cos}, where

920 S. Ahmed et al.

Special
Node

O1 O2 O3 On..........

Output

Random
Constant

Branch_1

RTs of
 Sample_2

........
........

.....

RTs of
 Sample_1 Random

Constant
Random
Constant

+

*

RTs of
 Sample_1

-

%
Branch_2

Branch_n

RTs of
 Sample_n

Random
Constant

+

Fig. 2. Tree structure in the Multiple Alignment GP

% is the protected division operator which returns zero if the division is by zero.
The aim of using cos operator is to evolve non-linear function for prediction and
regression of the complex RTs deviations. The outputs (Oi) of each map are
collected by the special node which is the root of the tree.

2.4 Fitness Function

For function approximation tasks, the performance can be measured as an error
between the predicted and the real target values. As we have multiple outputs,
each output corresponds to RTs of one map in the dataset, we calculate the sum
of errors between the multiple outputs (which are the estimated outputs of the
genetic programs) and the reference map output. The root mean square error
(RMSE) is used as a fitness function. Thus the GP framework is to minimize
the fitness so that the generated programs lead to minimum error between the
RTs to be predicted. The RMSE fitness function is given by:

RMSE =

√∑N
i=1

∑M
j=1(RTij − R̂T ij)2

N

where N and M are the number of maps and the number of RTs to be corrected
in each map respectively. RTij is the ith real RT value of the jth map while R̂T ij

is the ith estimated RT value of the jth map by the GP program.

3 Experimental Design

3.1 Data Sets

We tested the proposed approach on one proteomics dataset (P1) and two
metabolomics datasets (M1, M2) obtained from the Open Proteomics Database

GPMS: A GP Based Approach to Multiple Alignment of LC-MS Data 921

(OPD) [14] and Lange et al. [1]. Dataset P1 contains two LC-MS runs with
six different fractions and it originates from an E.coli sample. For this dataset
each fraction is composed of pairs of LC-MS runs. The dataset was analyzed
using LC/MS/MS with an ESI ion trap mass spectrometer (ThermoFinnigan
Dexa XP Plus). It was exported into mzXML centroided mode and prepro-
cessed using TOPP tools [15] to produce the peak lists which consist of the m/z,
RT, intensity values and ignoring the charge states. The numbers of peaks in
each fraction run were between 400 to 5800. A partial ground truth was pro-
duced using the first fraction of the dataset by linking the LC-MS spectra to
the MS/MS of the SEQUEST search. More details about the steps for datasets
preparation, analysis, preprocessing and parameters optimisation can be found
in [1]. For the two metabolomics datasets, Arabidopsis thaliana leaf tissues were
analyzed using two different LC-MS setups. An API QSTAR Pulsar i (Applied
Biosystems/MDS Sciex) was used to produce 44 spectra for the M1 dataset and
a MicrOTOF-Q (Bruker Daltonics) to produce 24 spectra for the M2 dataset.
Peak extraction was done using XCMS software [16] resulting in 4000 to 17600
peaks in each spectrum. The ground truth was generated in the same study by
selecting the high confident peaks. Those were the peaks found in more than
four runs, having the same RT and also showing a high correlation in their peak
shapes.

3.2 Genetic Operators and Parameters

The initial populations of GP are generated using the ramped half-and-half
method. Each population consists of 1000 individuals in order to reduce the early
convergence probability. The tournament selection method is used to select the
individuals which can perform well for reproducing the new generations. The
size of the tournament is set to 5. The standard crossover and mutation are used
here with ratios of 80%, 19% respectively. Elitism is also used with a ratio of 1%.
The depth of each individual is kept between 2 and 8. Each evolutionary process
stops at the maximum generation 30 unless a perfect error of zero is found. The
process is repeated for 30 independent runs. The random seed for each of the
30 runs in each set of experiments are all different. The peak matching phase
parameters are as follows: the m/z tolerance and RT tolerance are set to 1.5, 100
respectively for dataset P1 for all the fractions. For datasets M1, M2 the m/z
tolerance and RT tolerance are set to 0.011, 20 respectively for both of them.
Those parameters were selected after several tuning and they achieved the best
results for our method. The GP implementation used in our experiments is the
Evolutionary Computing Java-based (ECJ) package [17]. Table 1 describes the
run time parameters used in the experiments.

3.3 Benchmark Algorithms

We compared our approach with previous published results of five publicly avail-
able benchmark algorithms for alignment of LC-MS maps which are: msInspect
[18], MZmine [19], SpecArray [20], XAlign [21] and XCMS [16]. msInspect [18]
works in a star-wise manner which aligns all maps with respect to a specific

922 S. Ahmed et al.

Table 1. GP run time parameters

Parameter Value
Initialization method Ramped Half-and Half
Initial tree Depth 2
Maximum tree depth 8
Generations 30
Mutation probability 19%
Crossover Rate 80%
Elitisim 1%
Population Size 1000
Selection type Tournament
Tournament Size 5
m/z tolerance 1.5, 0.011,0.011 for P1, M1, M2 respectively
RT tolerance before correction 100, 20, 20 for P1, M1, M2 respectively

reference map, which is the map with minimum number of peaks. The process
starts with the selection of the most intense peak within a certain RT toler-
ance and the removal of the rest of the peaks. After that, pairing the remaining
peaks with peaks of similar m/z is performed. Smoothing spline regression is
used for dewarping and finally divisive clustering is used to obtain the consen-
sus map. The main disadvantage of this approach is the removal of less intense
peaks which might cause the loss of many important peaks. MZmine [19] works
by scoring the similarity of all features against a master list and if the score is
“good enough” the feature is assigned to the best matched row. MZmine does
not perform any transformation of RT. SpecArray [20] schema works as pair-
wise alignment and combine the pairwise aligned maps into a consensus map
until all maps are aligned. SpecArray is not applicable to a dataset with a big
number of maps. XAlign [21] also works in a star-wise manner and selects the
most intense peaks within a user defined m/z and RT tolerance, the map with
the minimum difference to the average RTs is chosen as a reference map. After
dewarping the RT, the features with high correlation coefficient are selected to
form the consensus map. XCMS [16] works as a multiple alignment approach
where peak matching is performed in the first phase by using a fixed interval bin
and using kernel density estimation to determine the distribution of the features.
Boundaries of regions with features that have similar RTs are selected. Finally
non-linear regression is used to correct RTs.

3.4 Performance Evaluation

The performance of the proposed approach is measured through the precision
(PR) and recall (RE) measures. Precision is the probability that a found item
is relevant, which is in our case the percentage of the correctly aligned peaks
among all the peaks aligned by the approach.

PR =
Number of correctly aligned peaks

Total number of peaks aligned

Whereas, recall is the probability that a relevant item is found (the percentage
of the correctly aligned peaks among the peaks in the ground truth [22]).

RE =
Number of correctly aligned peaks

Total number of peaks in the ground truth

GPMS: A GP Based Approach to Multiple Alignment of LC-MS Data 923

The harmonic mean of the precision and recall is measured through the F-
measure [22].

F-measure =
2*PR*RE
PR+RE

Precision and recall of alignment were calculated using the evaluation script
provided by Lang et al. [1].

4 Results and Discussions

4.1 Effectiveness Performance

GPMS is initially tested for the pairwise alignment on P1 which is available
in six different fractions. P1 shows a large deviation in RT values which is a
challenge for the alignment tool to correct the RT. Tables 2 and 3 show the
results of the five conventional approaches compared to our approach notated as
GPMS. As shown in Tables 2 and 3, GPMS achieved much better performance
than msInspect and SpecArray in all the three datasets. GPMS outperformed
all other methods in three fractions of P1. For the first fraction (00), the mean
of the 30 runs of GPMS is better than msInspect by 44 % in terms of precision,
30% in terms of recall and 38% in terms of F-measure. For the other approaches
GPMS improves the precision by 1-25%, the recall and F-measure by 1-21%.
For fraction (20), GPMS achieves similar performance as XCMS and has the
third rank after MZmine and XAlign. GPMS performs better than msInspect,
SpecArray and XCMS for fraction 40. Furthermore, our new method is the third
best after MZmine and XAlign for the same fraction. For fractions (60) and (100),
GPMS outperforms all other methods in terms of precision (which reaches 1.00
for fraction (100)) and F-measure. The proposed method has the best recall in
fraction (60) while in fraction (100) it has the third best recall after Xalign and
XCMS. Finally for fraction (40), the performance of GPMS was slightly better
to XCMS and it is the second best after MZmine. In general, for P1 the proposed
method outperforms the other methods in three fractions, the second best in two
fractions and third best in one fraction.

For datasets M1 and M2 which contain 44 and 24 maps respectively, the
challenge for the alignment approach on these complex metabolomics datasets
is to assign the most suitable matches and to correct the RT distortion across
multiple maps. SpecArray did not manage to produce any results for these com-
plex alignment tasks. As shown in Table 3, GPMS appears to be more powerful
in aligning a large number of maps as in the dataset M1 (44 maps). For M1,
it has better performance than other methods by 1-31% in terms of precision
and 2- 49% with respect to F-measure. This suggests that the proposed method
can be more powerful for multiple map alignment. The performance of GPMS
outperforms msInspect in terms of precision by 41.87%, XCMS by 1% and it is
equal to XCMS for M2. In terms of recall, it is much better than msInspect and
SpecArray. GPMS is better than msInspect by 53% and it outperforms SpecAr-
ray which did not manage to achieve results in terms of F-measure. Overall, the

924 S. Ahmed et al.

Table 2. Proteomics dataset P1 alignment results

Fraction Measure msInspect MZmine SpecArray XAlign XCMS GPMS
Min Max Mean ±St.Dev.

00
Precision 0.38 0.81 0.61 0.82 0.58 0.82 0.83 0.83±0.003
Recall 0.52 0.75 0.61 0.82 0.62 0.82 0.83 0.82±0.004

F-measure 0.44 0.78 0.61 0.82 0.60 0.82 0.83 0.82±0.004

20
Precision 0.45 0.88 0.62 0.85 0.80 0.80 0.82 0.81±0.0100
Recall 0.56 0.87 0.62 0.85 0.81 0.80 0.80 0.80±0.0000

F-measure 0.50 0.87 0.62 0.85 0.80 0.80 0.81 0.81±0.0060

40
Precision 0.48 0.90 0.75 0.87 0.80 0.83 0.84 0.84±0.002
Recall 0.63 0.87 0.75 0.87 0.81 0.81 0.81 0.81±0.0

F-measure 0.54 0.88 0.75 0.87 0.80 0.82 0.82 0.82±0.003

60
Precision 0.54 0.84 0.71 0.87 0.75 0.91 0.91 0.91±0.000
Recall 0.73 0.79 0.71 0.87 0.78 0.92 0.92 0.92±0.000

F-measure 0.62 0.81 0.71 0.87 0.76 0.91 0.91 0.91±0.005

80
Precision 0.57 0.94 0.74 0.90 0.88 0.90 0.90 0.90±0.000
Recall 0.70 0.92 0.74 0.90 0.89 0.89 0.89 0.89±0.0000

F-measure 0.63 0.93 0.74 0.90 0.88 0.90 0.90 0.90±0.0040

100
Precision 0.56 0.92 0.77 0.96 0.96 1.00 1.00 1.00±0.000
Recall 0.82 0.94 0.77 0.96 0.96 0.94 0.94 0.94±0.000

F-measure 0.67 0.93 0.77 0.96 0.96 0.97 0.97 0.97±0.000

Table 3. Metabolomics datasets M1 and M2 alignment results

Fraction Measure msInspect MZmine SpecArray XAlign XCMS GPMS
Min Max Mean ±St.Dev.

M1

Precision 0.46 0.74 - 0.70 0.70 0.77 0.77 0.77±0.003
Recall 0.27 0.89 - 0.88 0.94 0.89 0.91 0.9±0.004

F-measure 0.34 0.81 - 0.78 0.80 0.83 0.83 0.83±0.001

M2

Precision 0.47 0.84 - 0.79 0.78 0.79 0.79 0.79±0.001
Recall 0.23 0.98 - 0.93 0.98 0.90 0.90 0.90±0.000

F-measure 0.31 0.90 - 0.85 0.87 0.84 0.84 0.84±0.001

performance of GPMS is the second best with respect to precision, third best
with respect to recall and F-measure in M2. In general, GPMS is among the top
two methods or even performs best (00, 60, 100 of P1, M1).

4.2 Efficiency Performance

Another comparison is done in terms of the run time of each of the methods and
the results are shown in Table 4. For all the datasets, GPMS average run time
is much better than all other approaches. The computational cost (in terms of
time) of GPMS is more lower than the rest of methods, which represents another
advantage of GPMS. For all the datasets, GPMS improves the efficiency by an
order of magnitude than the rest of the methods except for XCMS. GPMS is
also more efficient than XCMS in terms of computational time for P1 and M2.
Moreover, the efficiency of GPMS for M2 in one of the runs is also better than
XCMS.

Table 4. Comparison of run time of GPMS with other approaches (in seconds)

Dataset msInspect MZmine SpecArray XAlign XCMS GPMS
Min Max Mean ±St.Dev.

P1 60 40.2 111 69 54 4.1 9.8 6.1±1.20

M1 720 1200 - 3060 54 36.34 64.92 64.92±4.97

M2 2160 2640 - 2100 348 81.10 94.20 87.37±3.23

GPMS: A GP Based Approach to Multiple Alignment of LC-MS Data 925

(SPE T0 (- (- T1 9.05) (cos T1)))

Input Output
T0 T1 T0 T1

1263.95 1271.96 1263.95 1263.89
1307.84 1315.58 1307.84 1307.09
1708.72 1717.28 1708.72 1708.10

(a)

(SPE T0 (+ T1 17.56))

Input Output
T0 T1 T0 T1

182.95 165.425 182.95 182.98
111.45 94.12 111.45 111.68
455.08 438.12 455.08 455.68

(b)

Fig. 3. (a) An evolved model for fraction (00) with some examples of inputs and outputs
of the model. (b) An evolved model for fraction (100).

4.3 Interpretation of the Evolved Regression Models

Some examples of the evolved regression models are shown below:
Figure 3 shows some examples of the evolved models for fractions (00) and

(100). SPE refers to the special node which is the root node collecting the
multiple outputs of the tree. T0 refers to the RTs of the first map while T1 refers
to the RTs of the second map. The first map (T0) is selected as the reference
map in which the RTs of both maps should be corrected according to it. The
dewarping functions of both inputs are determined simultaneously through the
multiple branches. As shown in Figure 3 (a), GP managed to determine the
correct amount of shift for the RTs of the second map (T1) through a non linear
dewarping model in the second branch of the tree. The RTs of first map (T0) (the
first branch of the tree) is kept the same as it has been selected as the reference
map. Some examples are shown in the same figure where the inputs to the models
and the mapped outputs after correction shows that GP has successfully aligned
the maps with respect to the reference map. The evolved model for fraction
(100) is shown in Figure 3 (b) where the GP dewarping function has managed
to correct the distortion of RTs through a linear function. Examples of inputs
and outputs of fraction (100) are also shown in Figure 3 (b).

5 Conclusions and Future Works

In this paper, we propose a new method for multiple alignment of LC-MS peak
data. The proposed method has two phases. In the first phase, the partner peaks
across multiple maps are detected in order to form the matched peak lists. In
the second phase, the matched peak lists are passed to GP to perform the cor-
rection of RTs of all maps simultaneously. The new GP approach is depicted
by dividing the tree into multiple branches, in which each branch produces the
output dewarping function of each map with respect to the reference map. The
proposed GP-based method (GPMS) was tested on one protoemics dataset of
six different fractions and two metabolomics datasets. The results show that
GPMS achieves better precision, recall and F-measure than five other LC-MS
benchmark alignment methods for three fractions of the protoemics dataset and

926 S. Ahmed et al.

one metabolomic dataset which has larger number of maps. This suggests that
GPMS is more powerful in multiple alignment of LC-MS data. The proposed
method also shows very competitive results in the rest of the datasets. GPMS
in general is always either the best or among the two top methods for these
datasets. Furthermore, the proposed GP method is much more efficient in terms
of computational time than the benchmark methods.

Although very preliminary, this paper represents the first work of GP for
multiple alignment of LC-MS data, and the competitive results of the proposed
method encourages us to do further investigation in this direction in the future.

For future works, we will consider merging a clustering scheme to the first
phase of the approach. This will relate to another interesting but challenging
research direction, i.e. using GP for peak matching through a clustering approach
which can match the partner peaks better.

References

1. Lange, E., Gröpl, C., Schulz-Trieglaff, O., Leinenbach, A., Huber, C.G., Reinert,
K.: A geometric approach for the alignment of liquid chromatography-mass spec-
trometry data. Bioinformatics 23(13), 273–281 (2007)

2. Vandenbogaert, M., Li-Thiao-Te, S., Kaltenbach, H., Zhang, R., Aittokallio, T.,
Schwikowski, B.: Alignment of LC-MS images, with applications to biomarker dis-
covery and protein identification. Proteomics 8(4), 650–672 (2008)

3. Lange, E., Tautenhahn, R., Neumann, S., Gropl, C.: Critical assessment of align-
ment procedures for LC-MS proteomics and metabolomics measurements. BMC
Bioinformatics 9(1), 375–394 (2008)

4. Heidi Vhmaa, Ville R. Koskinen, W.H.: PolyAlign: A versatile LC-MS data align-
ment tool for landmark-selected and automated use. International Journal of Pro-
teomics, pp. 1–10 (2011)

5. Listgarten, J., Neal, R., Roweis, S., Wong, P., Emili, A.: Difference detection in
LC-MS data for protein biomarker discovery. Bioinformatics 23(2), 198–204 (2007)

6. Pluskal, T., Castillo, S., Villar-Briones, A., Oresic, M.: MZmine 2: Modular frame-
work for processing, visualizing, and analyzing mass spectrometry-based molecular
profile data. BMC Bioinformatics 11, 395 (2010)

7. Palmblad, M., Mills, D.J., Bindschedler, L.V., Cramer, R.: Chromatographic Align-
ment of LC-MS and LC-MS/MS Datasets by Genetic Algorithm Feature Extrac-
tion. Journal of the American Society for Mass Spectrometry 18(10), 1835–1843
(2007)

8. Poli, R., Langdon, W.B., McPhee, N.F.: A field guide to genetic programming.
Lulu Enterprises, UK Ltd. (2008)

9. Ahalpara, D.P.: Improved forecasting of time series data of real system using
genetic programming. In: Proceedings of the 12th Annual Conference on Genetic
and Evolutionary Computation, GECCO 2010, pp. 977–978. ACM, New York
(2010)

10. Smart, W.D., Zhang, M.: Probability based genetic programming for multiclass
object classification. In: Proceedings of the 8th Pacific Rim International Confer-
ence on Artificial Intelligence, pp. 251–261 (2004)

11. Rodŕıguez-Vázquez, K., Oliver-Morales, C.: Multi-branches Genetic Programming
as a Tool for Function Approximation. In: Deb, K., Tari, Z. (eds.) GECCO 2004.
LNCS, vol. 3103, pp. 719–721. Springer, Heidelberg (2004)

GPMS: A GP Based Approach to Multiple Alignment of LC-MS Data 927

12. Zhang, Y., Zhang, M.: A multiple-output program tree structure in genetic pro-
gramming. In: Proceedings of The Second Asian-Pacific Workshop on Genetic Pro-
gramming, pp. 1–12 (2004)

13. Defoin Platel, M., Vérel, S., Clergue, M., Chami, M.: Density Estimation with
Genetic Programming for Inverse Problem Solving. In: Ebner, M., O’Neill, M.,
Ekárt, A., Vanneschi, L., Esparcia-Alcázar, A.I. (eds.) EuroGP 2007. LNCS, vol.
4445, pp. 45–54. Springer, Heidelberg (2007)

14. Prince, J., Carlson, M., Lu, R., Marcotte, E.: The need for a public proteomics
repository. Nat. Biotechnol. 22, 471–472 (2004)

15. Kohlbacher, O., Reinert, K., Gropl, C., Lange, E., Pfeifer, N., Schulz-Trieglaff, O.,
Sturm, M.: TOPP-the OpenMS proteomics pipeline. Bioinformatics 23(2), 191–
197 (2007)

16. Smith, C., Want, E., O’Maille, G., Abagyan, R., Siuzdak, G.: XCMS: processing
mass spectrometry data for metabolite profiling using nonlinear peak alignment,
matching, and identification. Anal. Chem. 78(3), 779–787 (2006)

17. White, D.R.: Software review: the ECJ toolkit, 65–67 (2012)
18. Bellew, M., Coram, M., Fitzgibbon, M., Igra, M., Randolph, T., Wang, P., May,

D., Eng, J., Fang, R., Lin, C., Chen, J., Goodlett, D., Whiteaker, J., Paulovich,
A., McIntosh, M.: A suite of algorithms for the comprehensive analysis of complex
protein mixtures using high-resolution LC-MS. Bioinformatics 22(15), 1902–1909
(2006)

19. Katajamaa, M., Miettinen, J., Oresic, M.: MZmine: Toolbox for processing and
visualization of mass spectrometry based molecular profile data. Bioinformatics
22, 634–636 (2006)

20. Li, X., Yi, E., Kemp, C., Zhang, H., Aebersold, R.: A software suite for the gen-
eration and comparison of peptide arrays from sets of data collected by Liquid
Chromatography-Mass Spectrometry. Molecular & Cellular Proteomics: MCP 4(9),
1328–1340 (2005)

21. Zhang, X., Asara, J., Adamec, J., Ouzzani, M., Elmagarmid, A.: Data pre-
processing in liquid chromatography/mass spectrometry-based proteomics. Bioin-
formatics 21(21), 4054–4059 (2005)

22. Voss, B., Hanselmann, M., Renard, B., Lindner, M., Kthe, U., Kirchner, M., Ham-
precht, F.: Sima: simultaneous multiple alignment of lc/ms peak lists. Bioinfor-
matics 27(7), 987–993 (2011)

© Springer-Verlag Berlin Heidelberg 2014
A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2014, LNCS 8602, pp. 928–938, 2014.
DOI: 10.1007/978-3-662-45523-4_75

An Integrated Analysis of Genome-Wide
DNA Methylation and Genetic Variants

Underlying Etoposide-Induced Cytotoxicity
in European and African Populations

Ruowang Li, Dokyoon Kim, Scott M. Dudek, and Marylyn D. Ritchie()

Center for Systems Genomics, 512 Wartik, The Pennsylvania State University,
University Park, PA, 16802, USA

{rvl5032,duk27,sud23,mdr23}@psu.edu

Abstract. Genetic variations among individuals account for a large portion of
variability in drug response. The underlying mechanism of the variability is still
not known, but it is expected to comprise of a wide range of genetic factors that
interact and communicate with each other. Here, we present an integrated
genome-wide approach to uncover the interactions among genetic factors that
can explain some of the inter-individual variation in drug response. The Interna-
tional HapMap consortium generated genotyping data on human
lymphoblastoid cell lines of (Center d’Etude du Polymorphisme Humain popu-
lation - CEU) European descent and (Yoruba population - YRI) African
descent. Using genome-wide analysis, Huang et al. identified SNPs that are as-
sociated with etoposide, a chemotherapeutic drug, response on the cell lines.
Using the same lymphoblastoid cell lines, Fraser et al. generated genome-wide
methylation profiles for gene promoter regions. We evaluated associations
between candidate SNPs generated by Huang et al and genome-wide methyla-
tion sites. The analysis identified a set of methylation sites that are associated
with etoposide related SNPs. Using the set of methylation sites and the candi-
date SNPs, we built an integrated model to explain etoposide response observed
in CEU and YRI cell lines. This integrated method can be extended to combine
any number of genomics data types to explain many phenotypes of interest.

1 Introduction

Genome-wide analysis is a step forward from candidate gene based approaches be-
cause it reduces biases associated with candidates’ selections. While candidate gene
approaches have successfully identified genes involved in cellular mechanisms of
drugs, they failed to uncover interactive relationships among the genetic factors that
may be explaining much of the variations in drug effects. The cellular susceptibility of
the drug is potentially affected by multiple genetic components through non-linear
interactions among the components. However, due to the exponential increases of
computational calculations when modeling interactive relationships, most research
have been focused on finding linear models associated with drug response [1–5]. To
uncover the unsolved variances, we propose an integrated genome-wide analysis that

Integrated Analysis of Genome-Wide DNA Methylation and Genetic Variants 929

identifies interactions among genetic factors from multiple types of genomic data to
model the drug response.

The International HapMap Consortium genotyped cell lines of various population
groups including trios of European descent (CEU) and Yoruba descent (YRI) [6].
Because these cell lines are publicly available, they have also been used to study
methylation patterns at gene promoter regions [7]. Together, genotype variations and
methylation levels enable us to study the relationship between these genetic compo-
nents and drug responses. Previously, through genome-wide analysis, Huang et al.
have identified a set of genetic variants that are associated with chemotherapeutic
drug induced cytotoxicity in CEU and YRI cell lines, respectively [5]. We used the set
of SNPs as dependent variables and methylation levels as independent variables and
applied regression models for each unique SNP-methylation combination. We identi-
fied SNPs that are correlated with methylation levels, or methylation quantitative trait
loci (mQTLs), across the genome using publicly available genome-wide methylation
data, generated on the same cell lines [7]. Together, using the genetic variants and
correlated methylation levels at gene promoters, we found interactive genetic models
that can explain a portion of variability in chemotherapeutic drug response in CEU
and YRI cell lines. The integrative models achieved higher explanatory power of drug
response in these cell lines than previously published linear models.

Etoposide is a topoisomerase II inhibitor [8] and is used in treatment of cancers in-
cluding testicular cancer, lung cancer, germinal cancer, endometrial carcinoma, and
Kaposi’s sarcoma. Treatment with etoposide can lead to severe side effects such as
fatigue, bone marrow suppression, diarrhea and acute promyelocytic leukemia [9–11].
Thus, our goal is to identify SNPs and methylation interactions that can best explain
the differential etoposide responses in CEU and YRI cell lines. This result paves the
way for better understanding of genetic components involved in drug responses,
which is a necessary step towards personalized drug prescription for cancer patients.

2 Methods

2.1 Genetic Variants Correlated with Etoposide IC50

Huang et al. have identified sets of SNPs that are associated with etoposide IC50 in
CEU and YRI population, respectively. The inhibition of cell line growth is measured
as IC50, which is the drug concentration required to stop cell growth by 50%. The
method for identifying the SNPs is as follows. A total of 87 and 89 cell lines from
HapMap CEU and YRI populations, respectively, were exposed to increasing concen-
trations of etoposide. SNP genotypes were obtained from the International Hapmap
website (HapMap.org) (release 21). Genotyping errors and extreme outliers were
removed and only SNPs within 10kb up or downstream of a gene were retained.
Quantitative transmission disequilibrium test (QTDT) analysis was performed on
Box-Cox transformed IC50 values and filtered SNPs with sex as a covariate. Using p <
0.0001 as threshold for significance, 122 and 51 SNPs were significantly associated
with etoposide IC50 in CEU and YRI, respectively [5]. The associated SNPs were
used for subsequent downstream analysis.

930 R. Li et al.

2.2 Candidate SNPs and Methylation Levels Association

Gene promoter regions methylation data were generated by Fraser et al. [7]. The data
was downloaded from Gene Expression Omnibus database, accession number
[GSE27146]. A total of 84 CEU and all (89) YRI cell lines that were tested for
etoposide response were used to measure promoter region methylation levels. Over
all, methylation levels at 27,578 CpG sites near transcription start sites were measured
using the quantitative BeadChip assay (Illumina, San Diego, CA, USA). Several
steps, which are described in detail in Fraser et al. [7]. were taken to account for the
background noise. Briefly, first, the average background intensity was subtracted
from the raw intensity to adjust for sample variations. Then, to minimize batch effects
of different arrays, background adjusted raw data were quantile normalized [7].

Regression models were used to test for possible candidate SNPs and methylation
level association. Significant CEU and YRI SNPs were tested for their association
with methylation in the same respective population. To remove the effect of gender,
sex was used as a covariate in the regression model. Using a p-value cut off of 0.0003,
1109 methylation-SNP pairs were significantly associated for CEU and 270 methyla-
tion-SNP pairs were significant for YRI, of which 385 and 176 methylation sites were
unique, respectively.

2.3 Interactive Model of SNPs and Methylation Levels to Predict Etoposide
IC50

The Analysis Tool for Heritable and Environmental Network Associations
(ATHENA) is a multifunctional software package that provides machine learning
tools to analyze genomics data. The software has been extensively tested and applied
in simulation data and real world data with great success [12–15]. The software and
its modeling processes have been described previously [16]. Briefly, we used an evo-
lutionary algorithm, grammatical evolution neural network (GENN), to optimize arti-
ficial neural networks (ANNs), which are used to model etoposide drug response. The
evolution process initiates a set of random models and these random models compete
with each other through generations. The “fittest” models, or the models that maxim-
ize desired target function, can exchange components of themselves. Through trans-
ferring of the components, some models may acquire beneficial components and
eventually take over the population pool. This evolution process mimics natural selec-
tion where the “fittest model” will survive at the end of evolution. The algorithm is
described below.

Step 1: The data is divided into five parts for five cross validations with 4/5 for
training and 1/5 for testing.

Step 2: Under population size constraint, a random population of models (ANNs) is
generated.

Step 3: All models are evaluated with training data. The models with highest fit-
ness are selected for crossover, mutation, reproduction and migration.

Step 4: Step 3 is repeated for a set number of generations. During this time, new
random models are being constantly added into the population to diversify the search
space.

Integrated Analysis of Genome-Wide DNA Methylation and Genetic Variants 931

Step 5: The best solution at the final generation is tested on the testing data and
saved

Step 6: Steps 2-5 are repeated for each cross validation
Step 7: SNPs and methylation probes that appear in at least 3 out 5 cross valida-

tion models are saved as consistent variables
Step 8: All consistent variables will be modeled over the entire dataset and results

in a final model
The fitness of the model aims to measure how well the model can explain the

etoposide drug response, a continuous value. We used R-squared as our fitness metric
to represent the percentage of drug response explained by the model. The drug re-
sponse predicted by the model is scaled using the sigmoid function so that the value is
between 0 and 1. As a result, we also scaled the original drug response to be between
0 and 1 using min-max scaling, where ܰܦ ݀݁ݖ݈݅ܽ݉ݎ݋௜ ൌ ௜ܦ െ minሺܦሻmaxሺܦሻ െ minሺܦሻ ሺ1ሻ

And the R2 is calculated as: ܴଶ ൌ ∑ ሺܦ௣௥௘ௗ௜௖௧ ௜ െ ഥሻଶ௡௜ܦ ∑ ሺܦ௜ െ ഥሻଶ௡௜ܦ ሺ2ሻ

 D௜ ൌ ݁ݏ݊݋݌ݏ݁ݎ ݃ݑݎ݀ ݂݋ ݁ݑ݈ܽݒ ݄ݐ݅ ݄݁ݐ

The final model is an artificial neural network (ANN). ANNs are widely used in

data mining field to predict desired outcome. ANNs consist of nodes of input and an
output. Each input node is associated with a weight and the weight is generally deter-
mined through back-propagation [17]. ANNs can have multiple layers, which make it
possible for input nodes to have interactive relationships among themselves. Tradi-
tionally, the structure of the network and the input variables need to be defined before
optimizing the network. However, this is not the case for genetic analysis because
neither the fitness landscape nor the correct variables are known. Evolutionary algo-
rithms can eliminate this deficiency as the network structure and correct variables are
evolved automatically, driven by the data [18].

If the variables in the model contain missing values, the samples contain missing
values will be removed for that evaluation. To eliminate sample loss, missing values
in the SNP genotype data were replaced with 0, making the particular SNP homozy-
gous for its corresponding sample. For 84 CEU samples, there were 176 missing val-
ues within 122 SNPs; and for 89 YRI samples there were 86 missing values within 51
SNPs. The replacement represents less than 2% of the data.

932 R. Li et al.

3 Results

To ensure validity of the result, each analysis was repeated with a different random
seed and GENN population size (Table 1).

Table 1. GENN parameter settings

Parameter Sample analysis
Number of processors 16

20000
2000

40
0.9

0.01
Random 1/Random 2

16
3000
2000

40
0.9

0.01
Random 3/Random 4

Population size/ processor
Number of generations
Number of migrations
Crossover probability
Mutation probability
Random seed

Using GENN to identify the most informative SNPs to predict etoposide response,

the analysis resulted in several SNPs that consistently appeared in different cross vali-
dations with different random seeds and population sizes (Table 2). Each cross valida-
tion returned a SNP interaction model that was found to be the best for a subset of cell
lines. SNPs that appeared in three out of five cross validations were considered to be
interesting.

Table 2. Associated SNPs and methylation in the best model

Probe name Population Chromosome Host gene ID
rs647955 YRI Chr1 C1QB
rs2605593 YRI Chr11 C11orf75
rs6944165 YRI Chr7 LOC647017
rs16905691 YRI Chr10 PCDH15
cg21931212 YRI Chr12 C12orf57
rs403029 CEU Chr10 GATA3
rs1884679 CEU Chr14 SLC24A4
rs2607839 CEU Chr10 GRID1
rs9299075 CEU Chr9 PTPRD

For YRI, the interesting SNPs were rs4770877, rs9730073, rs16905691,

rs12113878, and rs9507577. We then integrated SNPs and methylation data so that
we could explore interactions between SNPs and methylation levels. Using the same
criteria, we identified SNPs rs647955, rs2605593, rs6944165, rs16905691 and meth-
ylation probe cg21931212 were consistently associated with etoposide. Sex was in-
cluded as an input variable, but it was not incorporated in the fittest model. When we

Integrated Analysis o

analyzed all of the consis
rs2605593, rs9730073, rs1
the final model. The r-squa
model can explain around
model outperformed previo
Figure 1 shows the interact
tion.

Fig. 1. Final model of SNPs a
multiplication between consta

We did not identify an
population. For SNPs on
rs9299075 showed consiste
the consistent variables as i
all four SNPs. The r-square
model can explain 46% et
shows the SNPs interaction

of Genome-Wide DNA Methylation and Genetic Variants

stent SNPs and methylation probes together, rs6479
2113878, rs16905691, and cg21931212 were selected
re for the final model was R2 = 53.75%, indicating that
54% etoposide IC50 variations in the YRI population. O

ous linear SNPs model, which attained a R2 around 40%
ion model between SNPs and methylation for YRI popu

and methylation interactions to predict etoposide IC50 in YRI (
ant and variable, PADD: additive node, PSUB: subtractive nod

ny consistent SNPs and methylation interactions in C
nly interactions, rs403029, rs1884679, rs2607839,
ent association with etoposide IC50. We again used all
input to train the final model and the final model inclu
e for the final model was R2 = 46.16%, indicating that
toposide IC50 variations in the CEU population. Figur

n model to explain etoposide IC50 in CEU.

933

955,
d in
the

Our
%5.
ula-

(w:
de)

CEU
and
l of

uded
the

re 2

934 R. Li et al.

Fig. 2. Final model of SNPs
between constant and variable
plicative node)

4 Conclusion and

In this study, we explored
and methylation levels to m
The integrated genome-wid
types of genomics data and
sources. Due to the small s
proof-of-concept or pilot p
will evaluate alternative dat
build meta-dimensional mo

Etoposide is a widely us
cancer, endometrial carcino
severe side effects for the p
the drug is a crucial step
patients’ genetic makeup. G

interactions to predict etoposide IC50 in CEU (w: multiplica
, PADD: additive node, PSUB: subtractive node, PMULT: mu

Discussion

interaction relationships among SNPs and between SN
model etoposide IC50 on HapMap CEU and YRI cell lin
de approach demonstrated the ability to combine multi
d identify interactive relationships within and between d
sample size in this study, the results should be viewed a
project for this type of data integration. Future directi
ta fusion techniques with ATHENA on multi-omics dat

odels.
sed cancer drug for testicular cancer, lung cancer, germi
oma, and Kaposi’s sarcoma. However, the drug also
patients [9–11]. Better understanding of the mechanism
towards personalized prescription of the drug based

Genetic variations are the most fundamental and the m

ation
ulti-

NPs
nes.
iple
data
as a
ions
a to

inal
has

m of
d on
most

Integrated Analysis of Genome-Wide DNA Methylation and Genetic Variants 935

widely studied genetic factor in relation to the drug response, as Huang et al. previ-
ously reported that a group of SNPs were correlated with etoposide IC50 in CEU and
YRI population. Using the correlated SNPs, they built a linear additive model to ex-
plain the variability of IC50 in the two populations. Stemming from their multi-genic
model, it is logical to hypothesize that etoposide’s cellular mechanism could also be
comprised of interactive relationship among SNPs. Recent study also suggested that
phenotype associated SNPs tend to fall into function-associated regions [19]. Methyl-
ation pattern is an important marker for DNA regulatory functions and this led us to
explore the interactive relationships between SNPs and methylation levels. Using
SNPs and correlated methylation levels, we were able to identify several SNPs and
methylation sites that consistently appeared in our models. We applied GENN on
these consistent variables to build a final model for each population. For YRI popula-
tion, we built an interactive model between SNPs and methylation and achieved a R2
of 54%, exceeding models that only examined linear additive relationships between
SNPs. For CEU population, we only identified consistent interactive SNPs variables.
Our interaction model with four SNPs resulted in a R2 of 46%, slightly lower than
previously reported R2 of 55%; potentially due to less number of variables in our
model. Based on these results, our genome-wide integrative analysis identified novel
interaction relationships between SNPs and methylation sites. This approach can be
extended to integrate any number of genomics data to predict or classify a wide range
of phenotypes of interest.

Modeling genetic interactions is a complex task, especially when there are a large
number of variables. Models produced by GENN are dependent on parameter settings,
but they generally contained around ten variables. Evaluating all possible combinations
of interactions is impossible given the current computational power, so GENN uses a
guided random search to make the search more feasible. In addition, there is variability
between samples partitioned in each cross validation. As a result, the fittest model in
each cross validations may suffer from inadequate modeling and may not be applicable
to other subsets of data. Thus, we utilized a strict requirement to minimize this bias by
only keeping variables that appeared in at least 3 out of 5 cross validations, ensuring that
the true signal is strong and applicable to different subsets of the data. The trade off of
this approach is increased number of false negatives. This is evident when we evaluated
SNPs and methylation interactions in CEU population. Because there is a higher num-
ber of SNPs and correlated methylation probes in CEU compared to YRI population, the
search space exponentially increased. As a result, when modeling interactions between
SNPs and methylation, there were many SNPs and methylation probes that appeared in
2 out of 5 cross validations, but none appeared in at least 3. We could potentially miss
some true signals by employing a strict consistency requirement, but we are also more
confident about our true signals. For YRI population, our final interactive model of
SNPs and methylation resulted in a R2 of 54%, exceeding the previously reported 40%
identified in linear model [5].

One should be aware that the interactive relationships produced by GENN are only
statistical relationships. Our model uncovered potential genetic variants and methyla-
tion sites that could be further validated by functional studies. Some of the genetic
variants are unknown but others are found to be relevant through literature search.
Genetic variant of rs647955 is located in the C1QB gene. C1QB is known to be in-
volved in systemic lupus erythematosus, an autoimmune disease20. The function of

936 R. Li et al.

variant rs9730073 is not known, but it was also selected by Huang et al. as one of the
final four SNPs used in their linear model for YRI. SNP rs12113878 is located within
KLRG2 gene. KLRG2 gene has been found to be associated with prostate cancer
aggressiveness and is expressed on subsets of NK/T cells21. Interestingly,
rs16905691 is associated with the PCDH15 gene, which is also expressed on NK/T
cells. NK/T cells are known to play a key role in defense against tumor develop-
ment22. Methylation probe cg21931212 lies in C12orf57 gene, which has no known
functions. However, recent genome-wide studies have identified the gene to be asso-
ciated with brain and vision development [23,24]. CEU model SNPs rs9299075 and
rs1884679 are located in genes PTPRD and SLC24A4, respectively and both are as-
sociated with tumor suppression and identification [25,26]. Many of our modeled
genetic variants are associated with cancer and development, which is related to
etoposide’s drug mechanism. Further study is needed to confirm these relationships.

There are limitations to this study that warrants more future studies on the subject.
The study separately analyzed etoposide’s response on CEU and YRI cell lines. Previ-
ous report has shown that the two cell lines behaved similarly under etoposide [5]. Fu-
ture analysis plan should include combining the two populations with race adjustment in
order to find generalizable models across different cell lines, which will also greatly
increase sample size and thus statistical power. It is also known that some of the model
SNPs and methylations have linkage disequilibrium (LD) or correlation with each other.
Exploring these related genetic factors could reveal more insights on etoposide re-
sponse. eQTL analysis using gene expressions generated on the HapMap cell lines has
also shown significant associations with various chemotherapeutic drug responses [4,5].
It would be interesting to integrate gene expression data as well as methylation data to
model the etoposide response in future analysis. Lastly, the method for imputing miss-
ing SNPs could incorporate LD information in the future. However, the result in this
study should not be affected because less than 2% of the data was missing.

The ultimate goal of this study is to identify potential models that can explain
etoposide drug or toxicity response in order to better prescribe treatments to patients
and improve clinical knowledge of the treatment. The integrated analysis used in this
study has shown that it can identify novel interactions among genetic factors. This
approach can also be applied to uncover genetic factors underlying a wide range of
other phenotype and diseases.

Acknowledgment. This work was supported by the following grants: NSF Graduate Fellowship
via DGE1255832, the PGRN-Statistical Analysis Resource via HL065962, and LM010040.

References

1. Huang, R.S., Duan, S., Kistner, E.O., Hartford, C.M., Dolan, M.E.: Genetic variants
associated with carboplatin-induced cytotoxicity in cell lines derived from Africans. Mol.
Cancer Ther. 7, 3038–3046 (2008)

2. Huang, R.S., et al.: Genetic variants contributing to daunorubicin-induced cytotoxicity.
Cancer Res. 68, 3161–3168 (2008)

Integrated Analysis of Genome-Wide DNA Methylation and Genetic Variants 937

3. Huang, R.S., et al.: Identification of genetic variants contributing to cisplatin-induced cyto-
toxicity by use of a genomewide approach. Am. J. Hum. Genet. 81, 427–437 (2007)

4. Gamazon, E.R., Huang, R.S., Cox, N.J., Dolan, M.E.: Chemotherapeutic drug susceptibil-
ity associated SNPs are enriched in expression quantitative trait loci. Proc. Natl. Acad. Sci.
U. S. A. 107, 9287–9292 (2010)

5. Huang, R.S., et al.: A genome-wide approach to identify genetic variants that contribute to
etoposide-induced cytotoxicity. Proc. Natl. Acad. Sci. U. S. A. 104, 9758–9763 (2007)

6. The International HapMap Consortium: A haplotype map of the human genome. Nature
437, 1299–13320 (2005)

7. Fraser, H.B., Lam, L.L., Neumann, S.M., Kobor, M.S.: Population-specificity of human
DNA methylation. Genome Biol. 13, R8 (2012)

8. Sinha, B.K., Haim, N., Dusre, L., Kerrigan, D., Pommier, Y.: DNA strand breaks produced
by etoposide (VP-16,213) in sensitive and resistant human breast tumor cells: implications
for the mechanism of action. Cancer Res. 48, 5096–5100 (1988)

9. Mistry, A.R., et al.: DNA topoisomerase II in therapy-related acute promyelocytic leuke-
mia. N. Engl. J. Med. 352, 1529–1538 (2005)

10. Ratain, M.J., et al.: Acute nonlymphocytic leukemia following etoposide and cisplatin
combination chemotherapy for advanced non-small-cell carcinoma of the lung. Blood 70,
1412–1417 (1987)

11. Thomson.Micromedex. Drug Inf. Heal. Care Prof. 24th edn. vol. 1, p. 1326 (2004)
12. Holzinger, E., Buchanan, C.: Initialization Parameter Sweep in ATHENA: Optimizing

Neural Networks for Detecting Gene-Gene Interactions in the Presence of Small Main Ef-
fects. In: Proc. 12th …, pp. 203–210 (2010).
doi:10.1145/1830483.1830519.Initialization

13. Holzinger, E.R., Dudek, S.M., Torstenson, E.C., Ritchie, M.D.: ATHENA Optimization:
The Effect of Initial Parameter Settings across Different Genetic Models, pp. 48–58
 (2011)

14. Turner, S.D., Dudek, S.M., Ritchie, M.D.: ATHENA: A knowledge-based hybrid
backpropagation-grammatical evolution neural network algorithm for discovering epistasis
among quantitative trait Loci. BioData Min. 3, 5 (2010)

15. Holzinger, E.R., et al:. Comparison of Methods for Meta-dimensional Data Analysis Using
in Silico and Biological Data Sets, pp. 134–143

16. Holzinger, E.R., et al.: ATHENA: a tool for meta-dimensional analysis applied to geno-
types and gene expression data to predict HDL cholesterol levels. In: Pac. Symp.
Biocomput., pp. 385–96 (2013).
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=35
87764&tool=pmcentrez&rendertype=abstract

17. Skapura, D.M.: Building neural networks (1995).
http://dl.acm.org/citation.cfm?id=217718

18. Koza, J.R., Rice, J.P.: Genetic generation of both the weights and architecture for a neural
network. In: IJCNN 1991, Seattle Int. Jt. Conf. Neural Networks ii, pp. 397–404. IEEE
(1991)

19. Dunham, I., et al.: An integrated encyclopedia of DNA elements in the human genome.
Nature 489, 57–74 (2012)

20. Westra, H.-J., et al.: Systematic identification of trans eQTLs as putative drivers of known
disease associations. Nat. Genet. 45, 1238–1243 (2013)

21. Liu, X., et al.: Fine-mapping of prostate cancer aggressiveness loci on chromosome 7q22-
35. Prostate 71, 682–689 (2011)

938 R. Li et al.

22. Rouget-Quermalet, V., et al.: Protocadherin 15 (PCDH15): a new secreted isoform and a
potential marker for NK/T cell lymphomas. Oncogene 25, 2807–2811 (2006)

23. Salih, M.A., et al.: A newly recognized autosomal recessive syndrome affecting neurologic
function and vision. Am. J. Med. Genet. A 161, 1207–1213 (2013)

24. Akizu, N., et al.: Whole-exome sequencing identifies mutated c12orf57 in recessive corpus
callosum hypoplasia. Am. J. Hum. Genet. 92, 392–400 (2013)

25. Jiang, Y., et al.: Germline PTPRD Mutations in Ewing Sarcoma: Biologic and Clinical
Implications. Oncotarget 4, 884–889 (2013)

26. Shah, S.P., et al.: Mutational evolution in a lobular breast tumour profiled at single nucleo-
tide resolution. Nature 461, 809–813 (2009)

© Springer-Verlag Berlin Heidelberg 2014
A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2014, LNCS 8602, pp. 939–951, 2014.
DOI: 10.1007/978-3-662-45523-4_76

Replication of SCN5A Associations
with Electrocardiographic Traits in African Americans

from Clinical and Epidemiologic Studies

Janina M. Jeff1, Kristin Brown-Gentry2, Robert Goodloe2, Marylyn D. Ritchie10,
Joshua C. Denny4, Abel N. Kho5, Loren L. Armstrong6, Bob McClellan Jr.2,

Ping Mayo2, Melissa Allen2, Hailing Jin2, Niloufar B. Gillani2,
Nathalie Schnetz-Boutaud2, Holli H. Dilks2, Melissa A. Basford7,

Jennifer A. Pacheco8, Gail P. Jarvik11, Rex L. Chisholm8, Dan M. Roden3,7,9,
M. Geoffrey Hayes6, and Dana C. Crawford2()

1 Charles Bronfman Institute for Personalized Medicine,
Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA

janina.jeff@mssm.edu
2 Center for Human Genetics Research, Vanderbilt University, Nashville, TN, 37232, USA
kristin.gentry@healthspring.com, robert.goodloe@gmail.com,

{bob.mcclellan,hailing.jin,nila.gillani,
Nathalie.boutaud,holli.h.dilks,dana.c.crawford}@vanderbilt.edu,

pxm304@case.edu, mjallentn@hotmail.com
3 Department of Medicine, Division of Clinical Pharmacology,

Vanderbilt University, Nashville, TN, 37232, USA
4 Department of Biomedical Informatics, Vanderbilt University, Nashville, TN, 37232, USA

josh.denny@vanderbilt.edu
5 Division of General Internal Medicine,

Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
a-kho@northwestern.edu

6 Division of Endocrinology, Metabolism, and Molecular Medicine,
Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA

{loren-armstrong,ghayes}@northwestern.edu
7 Office of Personalized Medicine, Vanderbilt University, Nashville, TN, 37232, USA

melissa.basford@vanderbilt.edu
8 Center for Genetic Medicine, Northwestern University Feinberg School of Medicine,

Chicago, IL, 60611, USA
{japacheco,r-chisholm}@northwestern.edu

9 Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA
dan.roden@vanderbilt.edu

10 Department of Biochemistry and Molecular Biology, Penn State University,
University Park, PA, 16802, USA
marylyn.ritchie@psu.edu

11 University of Washington Medical Center, Seattle, WA, 98195, USA
gjarvik@medicine.washington.edu

Abstract. The NAv1.5 sodium channel α subunit is the predominant α-subunit
expressed in the heart and is associated with cardiac arrhythmias. We tested
five previously identified SCN5A variants (rs7374138, rs7637849, rs7637849,

940 J.M. Jeff et al.

rs7629265, and rs11129796) for an association with PR interval and QRS
duration in two unique study populations: the Third National Health and Nutri-
tion Examination Survey (NHANES III, n= 552) accessed by the Epidemiolog-
ic Architecture for Genes Linked to Environment (EAGLE) and a combined
dataset (n= 455) from two biobanks linked to electronic medical records from
Vanderbilt University (BioVU) and Northwestern University (NUgene) as part
of the electronic Medical Records & Genomics (eMERGE) network. A meta-
analysis including all three study populations (n~4,000) suggests that eight
SCN5A associations were significant for both QRS duration and PR interval
(p<5.0E-3) with little evidence for heterogeneity across the study populations.
These results suggest that published SCN5A associations replicate across differ-
ent study designs in a meta-analysis and represent an important first step in
utility of multiple study designs for genetic studies and the identifica-
tion/characterization of genetic variants associated with ECG traits in African-
descent populations.

Keywords: Electrocardiographic traits · African Americans · Genetic associa-
tion study · Electronic medical records · eMERGE · Epidemiology · NHANES

1 Introduction

A necessary step to establish a robust genotype-phenotype relationship in the litera-
ture is statistical replication. There are multiple challenges with replication studies,
one of which is the phenotypic heterogeneity that exists between the original study
and the replication study population(s). Although the use of quantitative traits or in-
termediate phenotypes for both the discovery and replication study can alleviate some
of the expected phenotypic heterogeneity observed for complex diseases, between
study differences may not be eliminated. Therefore, it is ideal to include multiple
independent studies to confirm a robust genotype-phenotype association.

The quantitative traits examined here are derived from electrocardiograms (ECGs).
The ECG is a useful tool in assessing electrical conduction in the heart, and perturba-
tions in the ECG are routinely used to diagnose cardiac arrhythmias, myocardial in-
farction, pericarditis, and other cardiac abnormalities by measuring and recording the
electrical activity of the heart [1]. The ECG begins with the P wave that occurs during
atrial depolarization, and represents the electrical impulse from the sinoatrial (SA)
node towards the atrioventricular (AV) node that then spreads to the left and right
atrium. The PR interval is the time the electrical impulse takes to go to the sinus node
to the AV node then to the ventricles (lower chambers of the heart). It is measured
from the P wave to the start of the QRS complex. The QRS marks the start of depolar-
ization of the ventricles, and the ST segment represents the ventricle once they have
fully depolarized. After depolarization, the left and right ventricles repolarize, repre-
sented as the T wave on the ECG. The QT interval represents the time it takes the
ventricles to depolarize and repolarize and is measured in the ECG from the start of
the QRS complex to the end of the T wave. In this study, we evaluate the associations
with PR interval (representing atrioventricular conduction) and QRS duration (repre-
senting intraventricular conduction).

Slower cardiac conduction is thought to contribute to cardiac arrhythmias [2]. The
PR interval is influenced primarily by body mass index, increased age, and height.

 Replication of SCN5A Associations with Electrocardiographic Traits 941

QRS duration is influenced sex and somewhat by body mass index and height [3].
Clinical factors, such as hypertension, cardiac disease, and medications, in addition to
genetic factors, can also cause abnormal electrical activity in the heart. Heritability
studies suggest that >35% of the variation in ECG traits can be explained by genetics
[4-6]. Several genetic association studies of ECG traits have been focused on genes
that encode for proteins in voltage-gated ion channels [6-12]. The NAv1.5 sodium
channel α subunit is the predominant α-subunit expressed in myocytes and is encoded
by the SCN5A gene, located on chromosome 3 [11,13]. Genetic association studies
have identified variants in the SCN5A gene that are associated with long QT syn-
drome and Brugada syndrome [14-17]. Common variants in SCN5A that are associat-
ed with longer QRS are also associated with atrial fibrillation [18]. These associations
have been reported to explain ~2% of the variation of ECG traits [19].

There have been several candidate gene studies performed in African Americans
for SCN5A and ECG traits [19-21]. Although there are few genome-wide association
studies in African descent populations for ECG traits, there have been at least three
GWAS or fine-mapping studies on various ECG traits in African Americans [22-24].
These studies typically include African Americans ascertained from epidemiological
longitudinal studies focused on cardiovascular diseases (CVD). In the present study
we sought to replicate previously reported associations in SCN5A in two study popu-
lations of African Americans: the Third National Health and Nutrition Survey
(NHANES III, n= 552) and a combined dataset (n= 455) from two biobanks linked to
electronic medical records from Vanderbilt University (BioVU) and Northwestern
University (NUgene) as part of the Electronic Medical Records and Genomics
(eMERGE) network.

2 Methods

2.1 Study Populations and ECG Measurements

African Americans from two study populations were used for the present study (Table
1): the Third National Health and Nutrition Examination Survey (NHANES III) and
participants from two biobanks, the Vanderbilt Genome-Electronic Records (VGER)
and the Northwestern biobank (NUgene) as part of the eMERGE network [31]. All
ECG traits followed a normal distribution and participants with QRS duration >120
m/sec were excluded from all analyses [32].

NHANES III was conducted from 1988-1994 as a complex survey that
over-sampled minorities, the young, and the elderly [33]. Biospecimens for DNA
extraction were collected in phase 2 of NHANES III (1991-1994). All NHANES
participants were interviewed for demographic, socioeconomic, dietary, and health-
related data. Additionally, all NHANES study participants undergo a detailed medi-
cal examination at a central location known as the Mobile Examination Center
(MEC). Electrocardiograms (ECGs) were recorded on adult (40 years of age or
greater) men and women in the mobile examination center (MEC) using a standard
12-lead resting ECG [33]. ECGs were recorded using the Marquette MAC 12 (Mar-
quette Medical Systems, Inc, Milwaukee, Wisconsin) (U.S. DHHS, 1996). NHANES

942 J.M. Jeff et al.

III 12-lead ECG data were recorded with eight independent components of the 12
standard leads simultaneously. ECG data were also sampled at 250 samples per se-
cond per channel, giving the availability of multiple simultaneous ECG leads for
analysis. This study was limited to self-identified non-Hispanic blacks (referred to
here as African Americans) in NHANES III with normal ECG measurements. All
procedures were approved by the CDC Ethics Review Board and written informed
consent was obtained from all participants. Because no identifying information was
accessed by the investigators, Vanderbilt University’s Institutional Review Board
determined that this study met the criteria of “non-human subjects.”

VGER and NUgene are study sites of the National Human Genome Research Insti-
tute’s electronic MEdical Records and GEnomics (eMERGE) Network [31]. The
Vanderbilt study site (VGER) accesses BioVU, which is a collection of DNA samples
extracted from discarded blood samples collected for routine clinical care linked to
de-identified electronic medical records (EMRs) [34]. The Northwestern biobank,
NUgene, combines DNA samples from consented participants with an enrollment
questionnaire and longitudinal data from the EMR [31]. Study individuals from both
sites were identified using a previously validated algorithm that used ECGs, laborato-
ry data, medication exposures, and natural language processing of clinical notes [35].
Study participants included in this study had a normal ECG without evidence of car-
diac disease (or abnormal ECG) before or within one month following the ECG,
without concurrent use of medications that interfere with QRS duration, and who did
not have abnormal electrolyte values at the time of the ECG. All ECGs had normal
Bazett’s corrected QT intervals (<450ms), heart rates (between 50-100 bpm), and
QRS duration (65-120 ms). All participants were African American indicated by
either observer reported (VGER) or self-reported (NUgene) ancestry. Both biobanks
were approved by Institutional Review Boards at their respective sites.

2.2 Genotyping and Statistical Analysis

DNA was extracted from crude cell lysates from lymphoblastoid cell lines established
for NHANES III participants aged 12 over [36]. We chose five SNPs that were signif-
icant at p 1.0E-4 from the original study [19] for genotyping in NHANES III. All
genotyping was performed in the Center for Human Genetics Research DNA Re-
sources Core using either Sequenom’s iPLEX Gold assay on the MassARRAY plat-
form (San Diego, CA) or Illumina’s BeadXpress. All genotype data reported here
passed CDC quality control (QC) metrics and are available for secondary analysis
through CDC. All statistical analyses in NHANES III were performed using the Sta-
tistical Analysis Software (SAS v.9.2; SAS Institute, Cary, NC) either locally or via
the Analytic Data Research by Email (ANDRE) portal of the CDC Research Data
Center (RDC) in Hyattsville, MD.

Genotyping for VGER and NUgene was performed by the Center for Inherited
Disease Research (CIDR) and the Broad Institute. All individuals that met the inclu-
sion criteria (n = 501) were genotyped for >1.1 million SNPs using the Illumina 1M
BeadChip at the Broad Institute. Data were cleaned by the eMERGE QC pipeline
[37]. There were 46 individuals that did not meet the QC thresholds and were re-
moved from further analysis.

 Replication of SCN5A Associations with Electrocardiographic Traits 943

Table 1. Population characteristics. *Original Study data represent data from the Jackson
Heart Study abstracted from Jeff et al 2011 [19]. Mean and standard deviation was calculated
for ECG traits, age, and sex for African Americans from the epidemiologic (NHANES III) and
clinic-based (VGER/NUgene) study populations. Analysis of variance statistical test was
performed to determine significant differences across study populations (bolded italicized data
denote p<0.001 for all tests).

Trait Original Study

(n= 3,054)*

NHANES III

(n= 552)

eMERGE

(n = 455)

Mean SD Mean SD Mean SD

Age

(yrs)

56.5 ±11.73 53.9 ±11.61 46 ±15

Sex

(% female)

62% n/a 67% n/a 77% n/a

Body mass index

(BMI)

not reported 29 ±6 34 ±10

Type 2

diabetes (%)

19% n/a 8% n/a 20% n/a

PR interval

(msec)

171.6 ±33.02 164.6 ±25.56 159 ±21

QRS

duration (msec)

92.3 ±10.12 95.5 ±10.90 82 ±8

Using standard linear regression, assuming an additive model, we tested each SNP

for an association with PR interval and QRS duration. We did not test SCN5A variants
with heart rate and QT interval since these SNPs were not associated with these traits
in the original analysis [19]. All tests were limited to African Americans and adjusted
for age and sex. We declared significance at p<0.05 uncorrected for multiple testing.
Using a fixed-effects inverse-variance weighted approach, we performed a meta-
analysis using the effect sizes, standard errors, and p-values from each study popula-
tions using METAL [38]. Pairwise FST was calculated between the original study and
each study population using the Platform for the Analysis, Translation, and Organiza-
tion of large-scale data (PLATO) [39] (Table 2).

3 Results

We abstracted data from the previously published Jackson Heart Study [19] referred
to here as the “original study” for comparison with our population-based (NHANES
III) and clinical (eMERGE) collections. We compared the three study populations
and observed differences across study populations for age, sex, and ECG measure-
ments (Table 1). On average, eMERGE (46 years) and NHANES III (54 years) par-
ticipants were younger compared with the original study (57 years). Both eMERGE

944 J.M. Jeff et al.

and NHANES III had more female participants (77% and 67%, respectively) com-
pared with the original study (62%; Table 1). Additionally, the measurements QRS
duration and PR interval in eMERGE were shorter compared to the other studies,
which is a reflection of the more stringent selection criteria within eMERGE to select
subjects without any prior heart disease or abnormalities on their ECG.

To further characterize similarities and differences between the original study and
the other two study populations, we first calculated the minor allele frequency and
compared these estimates across study populations. Though not statistically signifi-
cant, NHANES III had a lower minor allele frequency for SCN5A rs7374138 (0.15)
and rs11129796 (0.08) compared with the original study and eMERGE (Table 2). To
further characterize study population differences at these loci, we calculated FST using
the Weir and Cockerham algorithm [25] between the original study and each study
site separately for each SNP (Table 2). The fixation index FST is a measure of popula-
tion differentiation, and an F statistic >0.15 is indicative as a significant difference
between populations. As might be expected, there were no significant differences
between studies for any of the SNPs tested at this stringent threshold for population
differentiation (FST<0.019, Table 2).

Table 2. Comparison of minor allele frequencies across studies. *Original Study data
represent data from the Jackson Heart Study abstracted from Jeff et al 2011 [19]. We
calculated three-way FST for all SCN5A SNPs to test for differences between study populations.
Abbreviations: minor allele (MA) and minor allele frequency (MAF).

SNP MA Original

Study*

(n= 3,054)

NHANES III

(n =552)

eMERGE

(n= 455)

MAF MAF FST MAF FST

rs7374138 G 0.23 0.15 <0.0001 0.23 <0.0001

rs7637849 A 0.19 0.20 0.014 0.20 <0.0001

rs11129796 T 0.15 0.08 0.019 0.11 0.005

rs7629265 T 0.08 0.09 <0.0001 0.08 <0.0001

rs6768664 G 0.36 0.36 <0.0001 0.38 <0.0001

We performed single SNP tests of association for SCN5A SNPs identified in the

original study with PR interval and QRS duration in eMERGE and NHANES III [19].
There were no significant associations (p<0.05) observed between SCN5A SNPs for
any ECG traits in African Americans from NHANES III (Table 3, Figure). Three
SNPs (rs7374138, rs7629265, and rs6768664) have a consistent direction of effect
compared to the original study, despite not being statistically significant for PR inter-
val. Likewise for QRS duration three SNPs (rs7637849, rs7374138, and rs6768664)
have a consistent direction of effect compared to the original study in NHANES III.

 Replication of SCN5A Associations with Electrocardiographic Traits 945

To better understand the impact SCN5A variation has on these ECG traits, we per-
formed a meta-analysis using the effect estimates from all three study populations
(Table 3). All SCN5A SNPs were significant (p<0.05) and the direction of effect was
consistent with the original study for PR interval. For QRS duration, all SCN5A SNPs
have a consistent direction of effect; however, rs7629265 and rs6768664 did not meet
our liberal significance threshold in NHANES III samples (Table 3). In NHANES III,
having two copies of the risk allele “T” for rs7629265 increased QRS duration,
whereas in both the original study and in eMERGE; having two copies of the “T”
allele decreased the QRS duration.

In contrast, having two copies of the risk allele “G” at rs6768664 is associated with
increased QRS duration in both the original study and NHANES III but with de-
creased QRS duration in eMERGE samples.

4 Discussion

In the present study we replicate and or generalize previously identified SCN5A asso-
ciations in African Americans ascertained from clinical and population-based collec-
tions. Associated variants in the clinical-based study population, eMERGE, had a
consistent direction of effect with previous studies in African Americans for four of
the five SNPs between the two traits. However, in African Americans from the US
population-based cohort, NHANES III, several associations had opposing direction of
effects, and none of the SNPs tested reached our liberal significance threshold
(p=0.05) for any ECG trait.

Here we tested five SNPs: rs7374138, rs11129796, rs7637849, rs7629265, and
rs6768664, all located in various SCN5A introns. Consistent with published data,
three of the five tested SNPs are specific to African-descent populations and are mon-
omorphic or rare in European and Asian-descent populations [19,20,22,24,26]. While
there is not a direct biological correlation with the role intronic SNPs have on protein
function, intronic regions are known to play an important role in splicing, which could
possibly affect protein function. Previous studies report that in African-descent popu-
lations one SNP, rs7629265, is in high linkage disequilibrium (LD, r2 = 0.87) with
coding non-synonymous variant, rs7626962 (S1103Y), and has been consistently
associated with long QT syndrome [26]. This SNP is associated with PR interval in
the combined analysis and is not associated with QRS duration, which is also con-
sistent with the literature [19] (Table 3).

We did not test all SCN5A SNPs reported in the literature; as a consequence, there
are several important associations we did not test. In spite of this, there are several
trends we observed that are consistent with previous studies which suggest testing
more SNPs in these regions will likely yield the same results [19,22,24]. Another
limitation to this study is sample size. Compared to the previous reports for SCN5A,
both eMERGE and NHANES III were limited in sample size: n= 455 and n=520,
respectively. However, despite this limitation we were able to observe a consistent

946 J.M. Jeff et al.

direction of effect compared to original reports for most SCN5A SNPs in African
Americans from eMERGE.

In addition to small sample size, differences in study population may explain the
lack of replication in NHANES III African Americans. Indeed, there are several simi-
larities and differences across study populations. We sought to replicate associations
originally detected in African Americans from the Jackson Heart Study (JHS). The
Jackson Heart Study is a longitudinal study collected with the primary objective to
identify and explain the disparity of cardiovascular diseases in African Americans
[27-29]. As a result, the JHS has more samples with in-depth phenotype information
for cardiovascular diseases and related traits compared to the other studies and can
possibly include individuals with CVD. Another difference between the NHANES III
population compared to the other study populations could be explained by geography.
Unlike NHANES III, which is representative of the US population, the JHS is limited
to African Americans from the southeastern United States. Similarly, most samples
from eMERGE are limited to African Americans that visit the clinic or hospital in the
Nashville metropolitan areas, also in the southeastern United States. The prevalence
of CVD and related environmental risk factors are disproportionately higher in the
southeastern US, which likely makes up majority of the eMERGE samples tested here
and all of the JHS samples [30]. Lack of replication in NHANES III might be ex-
plained by this difference. Another possibility could be the time in which the study
was conducted. Both eMERGE and JHS samples were collected fairly recently (in the
past 10 years) compared to NHANES III, which was collected over 20 years ago.
There are several environmental factors that have changed since then, such as diet,
that might be interacting with these SNPs and thus have an impact on our study and
explain our failure to replicate in NHANES III. Other non-genetic risk factors such as
age, sex, type 2 diabetes mellitus (T2DM) status, and BMI are associated with ECG
traits [3]. Indeed, we did observe significant differences across study populations for
age, sex and BMI (Table 1). Study individuals from eMERGE were more likely to be
female and were significantly younger compared to the original study and NHANES
III. Also, eMERGE study individuals had a higher mean BMI and higher proportion
of T2DM cases compared with NHANES III. It is possible that associations between
SCN5A and ECG traits are modified by environmental factors (such as poor diet and
BMI). Additional analyses are needed to statistically assess the impact of gene-
environment interactions on this complex trait.

Perhaps the main reason for lack of replication in NHANES III is phenotype defi-
nition. It is important to note that despite small sample sizes in the replication cohorts,
SCN5A associations have a much more consistent direction of effect in eMERGE than
do the NHANES III samples compared to the original study (Table 3). One of the
main goals of the eMERGE consortium was to successfully replicate GWAS associa-
tions in clinical populations, thus accurately identifying phenotypes from electronic
medical record (EMR) data was critical. As previously mentioned, eMERGE study
participants are limited to ECG measurements in normal range without any evidence
of pre-existing heart conditions, laboratory values, or medications that may alter their

 Replication o

ECG results. The algorithm
predictive value of 97% at
stringent phenotype definit
III, and both had longer PR
1). The broad phenotype
NHANES III and thus expl
nal study also had a broad p
given the large sample size,

Despite these study pop
cant at p<0.05 after meta-a
of heterogeneity suggested
analysis. Overall, our data
interval in African Americ
lights the challenge of cond
tiple study populations with
of particular important in
where study design and phe
for greater power.

Fig. 1. Association results for
association for five previously
(blue). The direction of effe
p-value is plotted in the y-axis
met our liberal significance thr

of SCN5A Associations with Electrocardiographic Traits

m was validated by blinded physician review with a posit
both eMERGE sites participating in this study [18]. T

ion was not used in either the original study or NHAN
R interval and QRS duration compared to eMERGE (Ta

definition might have resulted in a loss of power
lain why SCN5A variants did not replicate. While the or
phenotype definition, the loss of power is not as signific
, which is almost seven times larger than NHANES III.
ulation differences, most tests of association were sign

analysis for both PR interval and QRS duration. And, te
little detectable differences across the studies in this me
validate SCN5A associations with QRS duration and

cans by meta-analysis. Most importantly, this work hi
ducting and interpreting genetic association studies in m
h differing ascertainment strategies. This latter finding
this era of meta-analysis of genetic association stud

enotypic precision are traded in favor of larger sample si

r SCN5A SNPs by study site. We performed single SNP test
 identified SCN5A SNPs with PR interval (red) and QRS dura
ect is indicated by the direction of the arrow and the –
s. SNPs are sorted based on location on chromosome 3. SNPs
reshold p<0.05 are above the line.

947

tive
This
NES
able
r in
rigi-
cant

nifi-
ests
eta-
PR

igh-
mul-
g is
dies
izes

ts of
ation
–log
that

948 J.M. Jeff et al.

Table 3. Association results across three independent African American study populations
and meta-analysis results across all study populations. For each test of association, SNP rs
number, coded allele (CA), beta, and p-value are given. For the meta-analysis, the Q p-value is
also given. *Original Study data represent data from the Jackson Heart Study abstracted from
Jeff et al 2011[19].

SNP CA

Original study

(n = 3,054)

NHANES III

(n = 552)

eMERGE

(n = 455)

Meta Analysis

(n~4,000)

β

(p)

β

(p)

β

(p)

β

(p)

Q

P

PR Interval

rs7374138 G -4.00

(2.4E-5)

-1.65

(0.40)

-1.94

(0.21)

-3.17

(2.2E-5)

0.37

rs11129796 T -3.50

(2.4E-4)

0.12

(0.96)

-3.89

(0.05)

-3.14

(1.0E-4)

0.36

rs7637849 A -4.20

(2.3E-5)

0.11

(0.96)

-3.11

(0.04)

-3.11

(2.0E-4)

0.17

rs7629265 T -7.80

(2.4E-7)

-4.13

(0.17)

-4.00

(0.08)

-6.32

(5.3E-8)

0.30

rs6768664 G 3.00

(2.4E-4)

0.16

(0.92)

0.16

(0.90)

1.80

(5.0E-3)

0.13

QRS duration

rs7374138 G -1.30

(6.2E-6)

-0.70

(0.41)

-1.15

(0.07)

-1.22

(1.0E-3)

0.79

rs11129796 T -1.10

(2.5E-3)

0.09

(0.94)

-1.40

(0.11)

-1.03

(1.0E-3)

0.52

rs7637849 A -0.76

(1.2E-2)

-0.39

(0.66)

-1.55

(0.02)

-0.85

(1.3E-6)

0.48

rs7629265 T -1.50

(1.8E-3)

1.07

(0.82)

-2.08

(0.03)

-0.15

(0.77)

0.01

rs6768664 G 0.67

(9.5E-3)

1.93

(0.73)

-0.20

(0.71)

0.21

(0.45)

0.11

Acknowledgements. This work was supported by NIH U01HG004798 and its ARRA supple-
ments (EAGLE) as well as U01HG004609 (Northwestern University as part of eMERGE);
U01HG04603 (Vanderbilt University as part of eMERGE, also serving as the Administrative
Coordinating Center). Portions of the dataset(s) used for the analyses described were obtained
from Vanderbilt University Medical Center’s BioVU, which is supported by institutional fund-
ing and by the Vanderbilt CTSA grant UL1 TR000445 from NCATS/NIH. The Vanderbilt
University Center for Human Genetics Research, Computational Genomics Core provided
computational and/or analytical support for this work. The findings and conclusions in this
report are those of the authors and do not necessarily represent the views of the Centers for
Disease Control and Prevention.

 Replication of SCN5A Associations with Electrocardiographic Traits 949

References

1. Chizner, M.A.: Clinical Cardiology Made Ridiculously Simple. MedMaster, Miami (2004)
2. Capone, R.J., Pawitan, Y., el-Sherif, N., Geraci, T.S., Handshaw, K., Morganroth, J.,

Schlant, R.C., Waldo, A.L.: Events in the cardiac arrhythmia suppression trial: baseline pre-
dictors of mortality in placebo-treated patients. J. Am. Coll. Cardiol. 18, 1434–1438 (1991)

3. Ramirez, A.H., Schildcrout, J.S., Blakemore, D.L., Masys, D.R., Pulley, J.M.,
Basford, M.A., Roden, D.M., Denny, J.C.: Modulators of normal electrocardiographic in-
tervals identified in a large electronic medical record. Heart Rhythm 8, 271–277 (2011)

4. Akylbekova, E.L., Crow, R.S., Johnson, W.D., Buxbaum, S.G., Njemanze, S., Fox, E.,
Sarpong, D.F., Taylor, H.A., Newton-Cheh, C.: Clinical correlates and heritability of QT
interval duration in blacks: the Jackson Heart Study. Circ. Arrhythm. Electrophysiol. 2,
427–432 (2009)

5. Friedlander, Y., Siscovick, D.S., Weinmann, S., Austin, M.A., Psaty, B.M., Lemaitre, R.N.,
Arbogast, P., Raghunathan, T.E., Cobb, L.A.: Family history as a risk factor for primary car-
diac arrest. Circulation 97, 155–160 (1998)

6. George Jr., A.L.: Inherited disorders of voltage-gated sodium channels. J. Clin. Invest.
115, 1990–1999 (2005)

7. George Jr., A.L., Varkony, T.A., Drabkin, H.A., Han, J., Knops, J.F., Finley, W.H.,
Brown, G.B., Ward, D.C., Haas, M.: Assignment of the human heart tetrodotoxin-resistant
voltage-gated Na+ channel alpha-subunit gene (SCN5A) to band 3p21. Cytogenet Cell
Genet. 68, 67–70 (1995)

8. Gouas, L., Nicaud, V., Berthet, M., Forhan, A., Tiret, L., Balkau, B., Guicheney, P.,
D.E.S.I.R. Study Group: Association of KCNQ1, KCNE1, KCNH2 and SCN5A polymor-
phisms with QTc interval length in a healthy population. Eur. J. Hum. Genet. 13,
1213–1222 (2005)

9. Newton-Cheh, C., Eijgelsheim, M., Rice, K.M., de Bakker, P.I., Yin, X., Estrada, K.,
Bis, J.C., Marciante, K., Rivadeneira, F., Noseworthy, P.A., Sotoodehnia, N., Smith, N.L.,
Rotter, J.I., Kors, J.A., Witteman, J.C., Hofman, A., Heckbert, S.R., O’Donnell, C.J.,
Uitterlinden, A.G., Psaty, B.M., Lumley, T., Larson, M.G., Stricker, B.H.: Common
variants at ten loci influence QT interval duration in the QTGEN Study. Nat. Genet. 41,
399–406 (2009)

10. Lai, L.P., Deng, C.L., Moss, A.J., Kass, R.S., Liang, C.S.: Polymorphism of the gene
encoding a human minimal potassium ion channel (minK). Gene 151, 339–340 (1994)

11. Gellens, M.E., George Jr., A.L., Chen, L.Q., Chahine, M., Horn, R., Barchi, R.L.,
Kallen, R.G.: Primary structure and functional expression of the human cardiac
tetrodotoxin-insensitive voltage-dependent sodium channel. Proc. Natl. Acad. Sci. USA
89, 554–558 (1992)

12. Abriel, H., Kass, R.S.: Regulation of the voltage-gated cardiac sodium channel Nav1.5 by
interacting proteins. Trends Cardiovasc. Med. 15, 35–40 (2005)

13. George Jr., A.L., Iyer, G.S., Kleinfield, R., Kallen, R.G., Barchi, R.L.: Genomic organiza-
tion of the human skeletal muscle sodium channel gene. Genomics 15, 598–606 (1993)

14. Wang, Q., Shen, J., Li, Z., Timothy, K., Vincent, G.M., Priori, S.G., Schwartz, P.J.,
Keating, M.T.: Cardiac sodium channel mutations in patients with long QT syndrome, an
inherited cardiac arrhythmia. Hum. Mol. Genet. 4, 1603–1607 (1994)

15. Bezzina, C., Veldkamp, M.W., van den Berg, M.P., Postma, A.V., Rook, M.B., Viersma,
J.W., van Langen, I.M., Tan-Sindhunata, G., Bink-Boelkens, M.T., van Der Hout, A.H.,
Mannens, M.M., Wilde, A.A.: A single Na(+) channel mutation causing both long-QT and
Brugada syndromes. Circ. Res. 85, 1206–1213 (1999)

950 J.M. Jeff et al.

16. Schott, J.J., Alshinawi, C., Kyndt, F., Probst, V., Hoorntje, T.M., Hulsbeek, M.,
Wilde, A.A., Escande, D., Mannens, M.M., Le Marec, H.: Cardiac conduction defects
associate with mutations in SCN5A. Nat. Genetics. 23, 20–21 (1999)

17. Wang, Q., Shen, J., Splawski, I., Atkinson, D., Li, Z., Robinson, J.L., Moss, A.J.,
Towbin, J.A., Keating, M.T.: SCN5A mutations associated with an inherited cardiac
arrhythmia, long QT syndrome. Cell 80, 805–811 (1995)

18. Ritchie, M.D., Denny, J.C., Zuvich, R.L., Crawford, D.C., Schildcrout, J.S., Bastarache, L.,
Ramirez, A.H., Mosley, J.D., Pulley, J.M., Basford, M.A., Bradford, Y., Rasmussen, L.V.,
Pathak, J., Chute, C.G., Kullo, I.J., McCarty, C.A., Chisholm, R.L., Kho, A.N., Carlson, C.S.,
Larson, E.B., Jarvik, G.P., Sotoodehnia, N., Cohorts for Heart and Aging Research in
Genomic Epidemiology (CHARGE) QRS Group, Manolio, T.A., Li, R., Masys, D.R.,
Haines, J.L., Roden, D.M.: Genome- and phenome-wide analyses of cardiac conduction iden-
tifies markers of arrhythmia risk. Circulation 127, 1377–1385 (2013)

19. Jeff, J.M., Brown-Gentry, K., Buxbaum, S.G., Sarpong, D.F., Taylor, H.A., George, A.L.,
Roden, D.M., Crawford, D.C.: SCN5A Variation is Associated with Electrocardiographic
Traits in the Jackson Heart Study. Circ. Cardiovasc. Genet. 4, 139–144 (2011)

20. Burke, A., Creighton, W., Mont, E., Li, L., Hogan, S., Kutys, R., Fowler, D., Virmani, R.:
Role of SCN5A Y1102 polymorphism in sudden cardiac death in blacks. Circulation 112,
798–802 (2005)

21. Plant, L.D., Bowers, P.N., Liu, Q., Morgan, T., Zhang, T., State, M.W., Chen, W.,
Kittles, R.A., Goldstein, S.A.: A common cardiac sodium channel variant associated with
sudden infant death in African Americans, SCN5A S1103Y. J. Clin. Invest. 116, 430–435
(2006)

22. Smith, J.G., Magnani, J.W., Palmer, C., Meng, Y.A., Soliman, E.Z., Musani, S.K.,
Kerr, K.F., Schnabel, R.B., Lubitz, S.A., Sotoodehnia, N., Redline, S., Pfeufer, A.,
Muller, M., Evans, D.S., Nalls, M.A., Liu, Y., Newman, A.B., Zonderman, A.B.,
Evans, M.K., Deo, R., Ellinor, P.T., Paltoo, D.N., Newton-Cheh, C., Beonjamin, E.J.,
Mehra, R., Alonso, A., Heckbert, S.R., Fox, E.R.: Candidate-gene Association Resource
(CARe) Consortium: Genome-wide association studies of the PR interval in African
Americans. PLoS Genet. 7, e1001304 (2011)

23. Butler, A.M., Yin, X., Evans, D.S., Nalls, M.A., Smith, E.N., Tanaka, T., Li, G.,
Buxbaum, S.G., Whitsel, E.A., Alonso, A., Arking, D.E., Benjamin, E.J., Berenson, G.S.,
Bis, J.C., Chen, W., Deo, R., Ellinor, P.T., Heckbert, S.R., Heiss, G., Hsueh, W.C.,
Keating, B.J., Kerr, K.F., Li, Y., Limacher, M.C., Liu, Y., Lubitz, S.A., Marciante, K.D.,
Mehra, R., Meng, Y.A., Newman, A.B., Newton-Cheh, C., North, K.E., Palmer, C.D.,
Psaty, B.M., Quibrera, P.M., Redline, S., Reiner, A.P., Rotter, J.I., Schnabel, R.B.,
Schork, N.J., Singleton, A.B., Smith, J.G., Soliman, E.Z., Srinivasan, S.R., Zhang, Z.M.,
Zonderman, A.B., Ferrucci, L., Murray, S.S., Evans, M.K., Sotoodehnia, N., Magnani, J.W.,
Avery, C.L.: Novel Loci Associated with PR Interval in a Genome-Wide Association Study
of Ten African American Cohorts. Circ. Cardiovasc. Genet. 5, 639–646 (2012)

24. Avery, C.L., Sethupathy, P., Buyske, S., He, Q., Lin, D.Y., Arking, D.E., Carty, C.L.,
Duggan, D., Fesinmeyer, M.D., Hindorff, L.A., Jeff, J.M., Klein, L., Patton, K.K.,
Peters, U., Shohet, R.V., Sotoodehnia, N., Yong, A.M., Kooperberg, C., Haiman, C.A.,
Mohlke, K.L., Whitsel, E.A., North, K.E.: Fine-Mapping and Initial Characterization of
QT Interval Loci in African Americans. PLoS Genet. 8, e1002870 (2012)

25. Weir, B.S., Cockerham, C.C.: Estimating F- Statistics for the Analysis of Population Struc-
ture. Evolution 38, 1358–1370 (1984)

 Replication of SCN5A Associations with Electrocardiographic Traits 951

26. Splawski, I., Timothy, K.W., Tateyama, M., Clancy, C.E., Malhotra, A., Beggs, A.H.,
Cappuccio, F.P., Sgnella, G.A., Kass, R.S., Keating, M.T.: Variant of SCN5A sodium
channel implicated in risk of cardiac arrhythmia. Science 297, 1333–1336 (2002)

27. Sempos, C.T., Bild, D.E., Manolio, T.A.: Overview of the Jackson Heart Study: a study
of cardiovascular diseases in African American men and women. Am. J. Med. Sci. 317,
142–146 (1999)

28. Wilson, J.G., Rotimi, C.N., Ekunwe, L., Royal, C.D., Crump, M.E., Wyatt, S.B.,
Steffes, M.W., Adeyemo, A., Zhou, J., Taylor Jr., H.A., Jaquish, C.: Study design for
genetic analysis in the Jackson Heart Study. Ethn. Dis. 15, S6–37 (2005)

29. Wyatt, S.B., Diekelmann, N., Henderson, F., Andrew, M.E., Billingsley, G., Felder, S.H.,
Fugua, S., Jackson, P.B.: A community-driven model of research participation: the Jackson
Heart Study Participant Recruitment and Retention Study. Ethn. Dis. 13, 438–455 (2003)

30. Crook, E.D., Taylor, H.: Traditional and nontraditional risk factors for cardiovascular and
renal disease in African Americans (Part 2): a project of the Jackson Heart Study investiga-
tors. Am. J. Med. Sci. 325, 305–306 (2003)

31. McCarty, C.A., Chisholm, R.L., Chute, C.G., Kullo, I.J., Jarvik, G.P., Larson, E.B., Li, R.,
Masys, D.R., Ritchie, M.D., Roden, D.M., Struewing, J.P., Wolf, W.A.: eMERGE Team:
The eMERGE Network: a consortium of biorepositories linked to electronic medical rec-
ords data for conducting genomic studies. BMC Med. Genomics. 4, 13 (2011)

32. Jeff, J.M., Ritchie, M.D., Denny, J.C., Kho, A.N., Ramirez, A.H., Crosslin, D., Armstrong,
L., Basford, M.A., Wolf, W.A., Pacheco, J.A., Chisholm, R.L., Roden, D.M., Hayes, M.G.,
Crawford, D.C.: Generalization of Variants Identified by Genome-Wide Association Studies
for Electrocardiographic Traits in African Americans. Ann. Hum. Genet. 77, 321–332 (2013)

33. National Center for Health Statistics, Centers for Disease Control and Prevention. Plan and
operation of the Third National Health and Nutrition Examination Survey, 1988-1994. Vital
Health Stat 1 (1994)

34. Roden, D.M., Pulley, J.M., Basford, M.A., Bernard, G.R., Clayton, E.W., Balser, J.R.,
Masys, D.R.: Development of a large-scale de-identified DNA biobank to enable personal-
ized medicine. Clin. Pharmacol. Ther. 84, 362–369 (2008)

35. Denny, J.C., Ritchie, M.D., Crawford, D.C., Schildcrout, J.S., Ramirez, A.H., Pulley, J.M.,
Basford, M.A., Masys, D.R., Haines, J.L., Roden, D.M.: Identification of genomic predic-
tors of atrioventricular conduction: using electronic medical records as a tool for genome
science. Circulation 122, 2016–2021 (2010)

36. Steinberg, K.K., Sanderlin, K.C., Ou, C.Y., Hannon, W.H., McQuillan, G.M.: Sampson
EJ: DNA banking in epidemiologic studies. Epidemiol. Rev. 19, 156–162 (1997)

37. Zuvich, R.L., Armstrong, L.L., Bielinski, S.J., Bradford, Y., Carlson, C.S., Crawford, D.C.,
Crenshaw, A.T., de Andrade, M., Doheny, K.F., Haines, J.L., Hayes, M.G., Jarvik, G.P.,
Jiang, L., Kullo, I.J., Li, R., Ling, H., Manolio, T.A., Matsumoto, M.E., McCarty, C.A.,
McDavid, A.N., Mirel, D.B., Olson, L.M., Paschall, J.E., Pugh, E.W., Rasmussen, L.V.,
Rasmussen-Torvik, L.J., Turner, S.D., Wilke, R.A., Ritchie, M.D.: Pitfalls of merging
GWAS data: lessons learned in the eMERGE network and quality control procedures to
maintain high data quality. Genet. Epidemiol. 35, 887–898 (2011)

38. Willer, C.J., Li, Y., Abecasis, G.R.: METAL: fast and efficient meta-analysis of
genomewide association scans. Bioinformatics 26, 2190–2191 (2010)

39. Grady, B.J., Torstenson, E., Dudek, S.M., Giles, J., Sexton, D., Ritchie, M.D.: Finding
unique filter sets in plato: a precursor to efficient interaction analysis in gwas data. In: Pac.
Symp. Biocomput., pp. 315–326 (2010)

General Track

An Effective Nurse Scheduling by a Parameter
Free Cooperative GA

Makoto Ohki(B) and Satoru Kishida

Graduate School of Engineering, Division of Information and Electronics,
Tottori University, 101, 4 Koyama-Nishi, Tottori, Tottori 680-8552, Japan

{mohki,kishida}@ele.tottori-u.ac.jp
http://www.ele.tottori-u.ac.jp/japanese/labo/denji/

Abstract. This paper describes a technique of penaltyweight adjustment
for the Cooperative Genetic Algorithm applied to the nurse scheduling
problem. In this algorithm, coefficients and thresholds for each penalty
function are automatically optimized. Therefore, this technique provides
a parameter free algorithm of nurse scheduling. The nurse scheduling is
very complex task, because many requirements must be considered. These
requirements are implemented by a set of penalty function in this research.
In real hospital, several changes of the schedule often happen. Such changes
of the shift schedule yields various inconveniences, for example, imbalance
of the number of the holidays and the number of the attendance. Such
inconvenience causes the fall of the nursing level of the nurse organization.
Reoptimization of the schedule including the changes is very hard task and
requires very long computing time. We consider that this problem is caused
by the solution space havingmany localminima.Wepropose a technique to
adjust penalty weights and thresholds through the optimization to escape
from the local minima.

1 Introduction

General hospital consists of several departments such as the internal medicine
department and the pediatrics department. In each department, about fifteen to
thirty nursing staffs belong. A chief nurse of the department makes a shift sched-
ule of all nurses in her/his department every month. The chief nurse considers
more than fifteen requirements for the scheduling. Such the schedule arrange-
ment, in other words, nurse scheduling, is very complex task. In our investigation,
a veteran chief nurse even spends one or two weeks for the nurse scheduling by
hand. This means a great loss of work force and time. Therefore, computer soft-
ware for the nurse scheduling has recently come to be required at the general
hospitals [2–6,8–17,19,21]. In the early study [2], the nurse scheduling problem
defined as a descrete planning problem is solved by using Hopfield-type neu-
ral network. Berrada et al. [3] have proposed a technique to define the nurse
scheduling problem as a multi-objective problem and to solve it by using sim-
ple optimizing algorithm. The technique by Takabe et al. [4] provides a simple
editing tool and simple GA for the nurse scheduling under Visual Basic environ-
ment. There are several techniques [5,9,16,21] to make an user modify or select
c© Springer-Verlag Berlin Heidelberg 2014
A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2014, LNCS 8602, pp. 955–966, 2014.
DOI: 10.1007/978-3-662-45523-4 77

956 M. Ohki and S. Kishida

the nurse schedule in the middle or the final stage of the optimization. Burke
et al. apply a memetic approach to the nurse scheduling problem [6,12,14,19].
Croce et al. [25] proposes a variable neiborhood search technique for the nurse
scheduling. However, the scheduling problem defined in this manuscript is too
easy. And the technique is applied to a private hospital in Italy. Real problem
of the nurse scheduling in the general hospital is not so easy and very hard to
solve.

Some of these techniques are implemented in commercial nurse scheduling
software. However, the evaluation technique does not fit to the shift system
of our country. Moreover, such a commercial software has not been utilized in
most hospitals in fact, because a schedule given by the commercial software is
unsatisfactory. Therefore, we have defined the evaluation technique of the nurse
schedule [18,20,22].

We have discussed a case that the nurse schedule has been changed in the
past weeks of the current month [25]. Such changes yields various inconveniences,
for example, imbalance of the number of holidays and attendances. Such an
inconvenience causes the fall of the nursing level of the whole nurse organization.
Therefore, the inconvenience should be eliminated to make a better schedule. By
considering the change of the shift schedule whenever one week passes, the shift
schedule is reoptimized in remaining weeks of the current month.

The shift schedule generated by such the commercial software is unsatisfac-
tory. And, many interactions to readjust the schedule are also very complex for
the end user. In fact, the nurse schedule is still made by hand of the chief nurse
in many general hospitals in our country. The optimization algorithm of such
the commercial software is still poor, and moreover, the schedule provided by
such the software is hard to revise too. The operation of the software is very
complex for end users too, because there are many parameters to be defined by
the end users.

In this paper, we discuss about generation and optimization of the nurse
schedule by using the Cooperative Genetic Algorithm (CGA) [18]. CGA is a
kind of Genetic Algorithm (GA) [1], and a powerful optimizing algorithm for
such a combinatorial optimization problem. In the standard GA[1], individu-
als compete each other and superior individuals are preserved. On the other
hand, individuals cooperate each other and the optimization of whole popula-
tion progresses in CGA. The conventional CGA optimizes the nurse schedule
only by using crossover operator, because the crossover has been considered as
the only one operation which keeps consistency of relation between chromosomes
in the CGA, where the consistency means the numbers of nurses at each shift
in this case. Then we have proposed effective mutation operators keeping such
the consistency for the CGA [18,20,22]. These mutation operators are activated
depending on the optimization speed.

Burke et al. [7] also define a technique to evaluate the nurse schedule. How-
ever, the evaluation technique does not fit to a shift system of our country. There-
fore, we have defined the evaluation technique of the nurse schedule[18,23,24]. In
the real case, there are some cases that nurses come to their office on a different

An Effective Nurse Scheduling by a Parameter Free Cooperative GA 957

day from the original schedule because of circumstances of other nurse or an
emergency. We have discussed such a case that the nurse schedule has been
changed in the past weeks of the current month [20,22]. By such the changes,
various inconveniences occur, for example, imbalance of the number of holidays
and attendances. Such an inconvenience causes the fall of the nursing level of
the whole nurse organization. Therefore, such inconvenience should be dissolved
to form a better schedule. By considering the change of the shift schedule when-
ever one week passes, the shift schedule is reoptimized in remaining weeks of the
current month.

Reoptimization of the schedule including such the changes is very hard task
even by parallel computing techniques [23,24] and then requires very long com-
puting time. We consider that this complexity is caused by that there are many
local minima in the solution space of the nurse scheduling problem. If the opti-
mization is caught in the region of the local minimum, some penalty functions
stagnate decreasing as still giving greater value. Valley of the local minimum
upheaves by increasing weight of such the penalty function. And then, the search-
ing point of the optimization escapes from the local minimum region. We pro-
pose a technique adjusting the penalty weights through the optimization when
the concerned penalty functions stagnate decreasing. By means of the penalty
adjustment, CGA effectively searches the solution space. The optimization fin-
ishes in the one-tenth computation time by the conventional technique [22–24].
In addition, a technique of a self adjustment of several parameters, thresholds,
of the penalty adjustment technique. By means of this technique, the end user
is freed from the onerous task for the definition of various parameters.

2 Genetic Coding of the Nurse Schedule

In CGA for the nurse scheduling, an individual and its group, or the population,
are defined shown in Fig.1. The individual chromosome consists of the series of
the shift symbols. The shift series consists of 28 fields, since one month includes
four weeks in the practical case. The X-th individual expresses one-month sched-
ule of the X-th nurse. In this technique, two or more individuals does not include
identical nurse’s schedule. In other words, the population expresses the whole
schedule of the concerned nurse organization.

3 Basic Algorithm of CGA for Nurse Scheduling

The basic algorithm of the CGA is shown in Fig.2 ([18,20,22]). CGA applies
the crossover operator to the population and searches so that a penalty of the
whole population becomes small. The crossover operator selects a pair of parent
individual from the population. Two child pairs are reconstituted by the two-
point crossover. Taking back these child pairs to the original position of the
parents, a temporal population is reconstituted. The temporal population is
evaluated by the total penalty function E. These procedures are applied to one

958 M. Ohki and S. Kishida

D h H S M H D Dnurse X

individual

population

D S

S M

h

D

M

D

H

h

S

D D

D D h

h

M

M S

D D M S

M S Hh

S h H M

S R D H

nurse A

M D h H S M H D D

nurse B

nurse X

nurse V

nurse W

M

2 3 4 5 27 28 29 301

duty schedule for one month

Fig. 1. The X-th individual coded into chromosome denotes one month shift schedule
of the X-th nurse. The population includes one month schedules of all nurses. The
symbols, D, S, M, h and H, denotes a daytime shift, a semi-night shift, midnight shift,
holiday and requested holiday respectively.

hundred parent pairs selected from the population. A population giving the best
performance is selected for the next generation.

Since the nurse scheduling problem is particularly difficult to solve, the
optimization, which perform the crossover operator only, often stagnates. The
crossover operator is superior in ability to local search, but is inferior to global
search. When the optimization stagnates for long generation cycles, it is effec-
tive to forcibly give small change to the population. Therefore we have proposed
a mutation operator activated depending on the optimization speed [22]. The
optimization speed VE(g) at the g-th generation is defined as follows,

Ng = g − gprim, (1)

AE(g) =
1

Ng

Ng−1∑
h=0

E(g − h), (2)

VE(g) = AE(g − 1) − AE(g), (3)

where gprim denotes the generation cycle when the mutation is activated previ-
ously. We define two parameters, a guard interval Gg and a speed thleshold εE
[22]. The guard interval is to prevent the activation of the mutation operator for
Gg generation cycles after the last activation. The speed threshold is a parame-
ter to detect activation timing. When the optimization speed become less than
εE , the mutation operator activates. The mutation operator randomly selects
the day and selects two individuals. One of two giving big value of F1 is selected
in the roulette sellection manner. Another one is randomly selected. And then,
these selected shifts are replaced each other. The mutation operator is activated
depending on the optimization speed.

An Effective Nurse Scheduling by a Parameter Free Cooperative GA 959

D S

S M

1 2

h

D

M

D

3 4

nurse A

nurse B

S

D D

D D

h

M

M

D M S

M S h

26 27 28

h h M

H D h

M h D Hnurse C S h D

nurse Y

nurse Z

date

D S h M D M S

M h D H S h D

crossover

D S

h

M D M S

M h

D

H S h D

D S

h M

D M S

M h

D H

S h D

tow-point crossover

Each pair is taken back to

the original position of

their parents and whole

population is performed.

select two individuals

parent pair

child pair 1

child pair 2

This procedure is repeated for

100 parent pairs. One pair

giving best performance is

selected for the next generation.

Fig. 2. One generation cycle by the crossover operator

The speed threshold εE is initialized to 1. We define a counter variable caccept
which denotes the number of which the total penalty E is decresed in the previous
mutation interval. When the mutation is activated under the following condition,

Ng < GM ∧ caccept = 0, (4)

the speed threshold εE decreases as follows,

εE := 0.9εE . (5)

When the mutation is activated under the following condition,

Ng = GM ∧ caccept = 0, (6)

the speed threshold εE increases as follows,

εE := 1.1εE . (7)

Otherwise, the speed threshold εE does not change.
We also have proposed a mutation operator activated periodically in GM

generation cycles[23]. The periodic mutation is advantage on the point that
fewer parameter is required to define itself.

4 Evaluation of Nurse Schedule

The chief nurse must consider many requirements for the nurse scheduling. For
example, meeting, training and requested holiday must be accepted, where we
assume that all the requested holidays have been confirmed by the chief nurse.
The semi-night shifts and the midnight shifts should be impartially arranged to
all nurses. And arrangement of six or more consecutive days is prohibited. We

960 M. Ohki and S. Kishida

have summarized all the requirements into the 13 penalty functions [23,24]. The
outline of these penalties are descrived in this paper.

We define the following three penalties concerning on the shift pattern. To
evaluate the work loard of each nurse i, we define a penalty function F1i for
three consecutive days of shift content. It is not preferable for the night shifts
to be assigned to some nurse intensively. To suppress this undesirable situation,
we define a penalty function F2i to prohibit the X night shift or more for the
consecutive Y days. In some hospitals, there are some cases to prohibit a specific
shift pattern. If the shift pattern starting from the j-th day of the i-th nurse is
prohibited, the penalty f3ij is assigned to 1. We define a penalty function F3i,
equal to the sum total of f3ij from j = 1 to j = D, to implement such the
prohibition, where D denotes the number of days of the current month.

We define the following three penalties conserning on the impartiality of the
shift and the holliday. The number of the shifts should be impartially assigned
to all nurses. A total nursing level falls, if many shifts are concentrated to par-
ticular nurses. We define penalty functions F4i, F5i to suppress unevenness of
the number of shifts among nurses. The functions F4i and F5i are concerning
the numbers of holidays and nught shifts respectivery of the i-th nurse. If the
shifts are assigned to particular nurses on many consecutive days, total nursing
level falls. We define a penalty function F6i to restrain assignment of the shift
on many consecutive shift days of the i-th nurse.

We define the following three penalties conserning on the nursing level. In
our algorithm, the number of nurses in each working hours is preserved in any
case. However, if new face nurses are intensively assigned on a particular working
hours, the nursing level falls. The expert or more skilled nurses should be assigned
for keeping nursing level. We define penalty functions F7j , F8j and F9j to evaluate
the nursing level on the day time shift, the semi-night shift and the midnight
shift respectively.

We define the following three penalties conserning on the nurse combination.
The chief nurse also considers affinity between the nurses. Because of bad affinity
between a certain nurses assigned to in the same time, there is the case that the
nursing level deteriorates remarkably. To restrain such the unfavorable affinity,
we define a penalty function F10j . In the midnight shift, the number of assigned
nurses is small. If the most of the nurses assigned to the midnight shift are new
face, the nursing level at the midnight shift falls remarkably To restrain such the
unfavorable situation, we define a penalty function F11j . In general, one or more
expert or more skilled nurses should be assigned to the daytime shift and the
midnight shift. To restrain such an unfavorable situation, we define a penalty
function F12j .

At the real hospital, the shift schedule which optimized before the beginning
of the current month is often changed day by day. Such changes of the schedule
leads to the falls of the nursing level. To restrain such an unfavorable situation,
we reoptimize the shift schedule of the remainder of the current month. On the
other hand, with considering the circumstances of the nurses, the shift schedule
should not be changed as much as possible. We define a penalty function F13 for

An Effective Nurse Scheduling by a Parameter Free Cooperative GA 961

reoptimizing the shift schedule while having such a dilemma as shown in Fig.3.
The penalty function F13 performs the difference between the original schedule
and the newly optimized schedule of the remainder of the current month.

1st week 2nd week 3rd week 4th week

original schedule

3rd week 4th week 1st week 2nd week

next monthcurrent month

newly optimized

schedule

new penalty about

defference F 13

current month

Fig. 3. ermission of the change of the schedule in the past two weeks. The red triangle
denotes the schedule change.

Finaly, we perform the shift schedule by the following total penalty function,

E =
M∑
i=1

6∑
k=1

hkFki +
D∑

j=1

12∑
k=7

hkFkj + h13F13, (8)

where hk (k = 1, 2, · · · , 13) denote penalty weights and defined as 1 as a default
value.

5 Penalty Adjustment

Reoptimization of the schedule including such the changes is very hard task
even by parallel computing techniques ([23,24]) and then requires very long
computing time. We consider that this complexity is caused by that there are
many local minima in the solution space. If the optimization is caught in the
region of the local minimum, some penalty functions stagnate decreasing as still
greater value. To escape from the local minimum area, deforming the solution
space is effective.

The shape of the solution space is defined by the penalty function E. By
changing the penalty weights,hk, the shape of the solution space is also deformed.
Valley of the local minimum upheaves by increasing weight of a penalty function
which stagnates to decrease. And then, the searching point of the optimization
moves from the local minimum region. We propose a technique adjusting penalty
weight through the optimization when the concerned penalty function stagnate
decreasing. We call this technique the Penalty Adjustment (PA). PA is inserted

962 M. Ohki and S. Kishida

START

CM =NM ?
Y

N

mutation

operator

N

Y

crossover operator

initialize

END

PA

?0% M =∨< Ggv EE ε

)13,,2,1(1:

,0:,

L==

=++

kh
NC

k

gM

++
++

gN
g ,

20

13 penalty coefficients

PA

Ftv ε≤)(2

22 : hh ⋅=α

Y

N

Ftv ε≤)(13

1313 : hh ⋅=α

Y

N

Ftv ε≤)(1

11 : hh ⋅=α

Y

N

(a) (b)

Fig. 4. Optimization flow with the penalty adjustment. (a) whole flow and (b) Primitive
operation of the penalty adjustment.

right after the crossover operator as shown in Figure 4 (a) and (b). In this figure,
CM denotes a counter that counts the number of mutation.

Initially, all the penalty weiths h1—h13 are initialized to 1 as a default value.
The decreasing speed, vk(g), of the k-th penalty function, Fk, at the generation
cycle g is calculated in PA by the following equations,

Ak(g) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
Ng

Ng−1∑
h=0

M∑
i=1

Fki(g − h) (k ≤ 6),

1
Ng

Ng−1∑
h=0

D∑
j=1

Fkj(g − h) (k > 6),

(9)

vk(g) = Ak(g − 1) − Ak(g). (10)

As shown in Figure 4 (b),when the decreasing speed of the k-th penalty function,
vk, becomes less than or equal to a penalty threshold εk, the penalty coefficient
hk is increased by multiplying with a parameter α. The values of α is defined
as 1.01. When the mutation is activated, all the penalty weights h1—h13 are
initialized to 1 again.

The penalty threshold εk is initialized to 1. We define a counter variable
ckmodify which denotes the number of which the penalty weight hk is increased
in the previous mutation interval. When the mutation is activated under the
following condition,

ckmodify > 0 ∧ caccept = 0, (11)

the penalty threshold εk decreases as follows,

εk := 0.9εk. (12)

An Effective Nurse Scheduling by a Parameter Free Cooperative GA 963

When the mutation is activated under the following condition,

ckmodify = 0 ∧ caccept = 0, (13)

the penalty threshold εk increases as follows,

εk := 1.1εk. (14)

Otherwise, the penalty threshold εk does not change.

6 Practical Experiment

We have tried computational experiment of the nurse scheduling based on the
practical situation. In this experiment, the number of the nurses is defined to
twenty-three. The shift schedule sufficiently optimized has been announced at
the beginning of the current month, and now assume that at two weeks after.
We suppose here that there have been several changes in the schedule in the past
two weeks. The CGA reoptimizes the shift schedule for the coming four weeks.
The schedule on the first two weeks of the objective period has been already
announced at the beginning of the current month.

In order to compare exactly, we have tried to optimize the ten times under
each condition. Figures 5 (a)—(c) show optimization progresses by using the

165

167

169

171

173

175

177

179

181

183

185

0 200000 400000 600000 800000 1000000

P
e
n

a
lt

y

F
u

n
c
ti

o
n

 E

generation cycle g

165

167

169

171

173

175

177

179

181

183

185

0 200000 400000 600000 800000 1000000

P
e
n

a
lt

y

F
u

n
c
ti

o
n

 E

generation cycle g

(a) (b)

165

167

169

171

173

175

177

179

181

183

185

0 200000 400000 600000 800000 1000000

P
e
n

a
lt

y

F

u
n

c
ti

o
n

 E

generation cycle g

(c)

Fig. 5. Optimization progresses. (a) denotes optimization progressions by the periodic
mutation operator, (b) denotes optimization progressions by PA with the constant
thresholds, εE = 0.01 and εk = 0.001 (PA1) and (c) denotes optimization progressions
by PA with modification of the speed and the penalty thresholds(PA2).

964 M. Ohki and S. Kishida

periodic mutation operator, PA with constant thresholds (PA1) and PA with
modification of the speed threshold εE and the penalty thresholds εk (PA2).
In one trial, the optimization is executed for NM = 500 mutation cycles. The
mutation period GM and the guard interval Gg are defined as 2000 generation
cycles and 100 generation cycles respectively. The condition of these parameters
provides the best result when using the periodic mutation operator. By means
of PA, the optimization finishes in about one-tenth generation cycles by the
periodic mutation.

167

168

169

170

171

172

173

174

175

GM PA1 PA2

P
e
n

a
lt

y

F
u

n
c
ti

o
n

 E

max

min

ave

167

168

169

170

171

172

173

174

175

GM PA1 PA2

P
e
n

a
lt

y

F
u

n
c
ti

o
n

 E

max

min

ave

(a) (b)

Fig. 6. Comparison of the final value of the total penalty function E.”GM” denotes
the result given by using the periodic mutation operator. (a) denotes the results after
the mutation activates NM = 500 and (b) denotes the results after the optimization is
executed for 1, 000, 000 generation cycles.

(a) (b)

Fig. 7. (a) Progress of the speed and the penalty thresholds and (b) progress of the
the penalty coefficients. The vertical axes is defined as the logarithmic axes.

Fig.6 shows comparison of the maximum, the average and the minimum value
of the ten results under each technique. Compared to the periodic mutation
operator, PA is slightly worse. On the other hand, when the optimization is
executed for one million generation cycles, PA provieds pretty good results as
shown in Fig.6 (b).

Finally, Fig.7 (a) and (b) show an example of the progress of the speed and
the penalty thresholds and the progress. The penalty functions that correspond

An Effective Nurse Scheduling by a Parameter Free Cooperative GA 965

to the threshold has been growing without bounds converge to zero at an early
stage of the optimization. Threshold that has declined endlessly is εE . This
means that the optimization stagnates during the mutation cycle.

7 Conclusion

This paper has proposed the technique of the nurse scheduling by using CGA.
We have discussed the case that the nurse schedule has been changed in the
past weeks. To reoptimize the changed schedule, we have defined a penalty func-
tion performing the difference between the original schedule and the optimizing
schedule. The reoptimization of the nurse schedule becomes very complex prob-
lem. Therefore we need new techniques to search for good schedule effectively.
We have proposed a technique adjusting the penalty weights depending on the
optimization progress, PA. This technique is implemented with the mutation
depending on the optimization speed. By means of PA, the optimization finishes
within one-tenth generation cycles by the conventional periodic mutation tech-
nique.When the PA is applied to the optimization for one million generation
cycles, the splended schedules have been obtained. Thus, the effectiveness of PA
is confirmed. In addition, a technique of self adjustment of the speed and the
penalty thresholds. By means of this technique, the end user has been freed from
the onerous task for the definition of various parameters.

Acknowledgments. This research work has been supported by Tottori University
Electronic Display Research Center (TEDREC).

Dr.Ohki would like to thank to cats Civita, Blacky, Blanc and Caramel gave his the
healing daily life.

References

1. Goldberg, D.E.: Genetic Algorithm in Search, Optimization and Machine Learning.
Addison-Wesley, New York (1989)

2. Goto, T., Aze, H., Yamagishi, M., Hirota, M., Fujii, S.: Application of GA, Neural
Network and AI to Planning Problems. NHK Technical report, No.144, pp. 78–85
(1993)

3. Berrada, I., Ferland, J.A., Michelon, P.: A Multi-objective Approach to Nurse
Scheduling with both Hard and Soft Constraints. Socio-Econ. Plann. Sci. 30(3),
183–193 (1996)

4. Takaba, M., Maeda, H., Sakaba, N.: Development of a Nurse Scheduling System
by a Genetic Algothm. In: Proc. of 18th JCMI (1998)

5. Ikegami, A.: Algorithms for Nurse Scheduling. In: Proc. of 11th Intelligent System
Symposium, pp. 477–480 (2001)

6. Burke, E.K., Cowling, P.: A Memetic Approach to the Nurse Rostering Problem.
Applied Intelligence 15, 199–214 (2001)

7. Burke, E.K., De Causmaecker, P., Petrovic, S., Berghe, G.V.: Fitness Evaluation
for Nurse Scheduling Problems. In: Proc. of the 2001 Congress on Evolutionary
Computation (2001)

966 M. Ohki and S. Kishida

8. Kawanaka, H., Yamamoto, K., Yoshikawa, T., Shinogi, T., Tsuruoka, S.: Automatic
Generation of Nurse Scheduling Table Using Genetic Algorithm. Trans. on IEE
Japan 122-C(6), 1023–1032 (2002)

9. Inoue, T., Furuhashi, T., Maeda, H., Takabane, M.: A Study on Interactive Nurse
Scheduling Support System Using Bacterial Evolutionary Algorithm Enegine.
Trans. on IEE Japan 122-C(10), 1803–1811 (2002)

10. Itoga, T., Taniguchi, N., Hoshino, Y., Kamei, K.: An Improvement on Search
Efficiency of Cooperative GA and Application on Nurse Scheduling Problem. In:
Proc. of 12th Intelligent System Symposium, pp. 146–149 (2003)

11. Cheang, B., Li, H., Lim, A., Rodrigues, B.: Nurse Rostering Problems - a biblio-
graphic survey. Europiean Journal of Operational Research 151, 447–460 (2003)

12. Burke, E.K., De Causmaecker, P., Berghe, G.V., Lnadeghem, H.: The State of the
Art of Nurse Rostering. Journal of Scheduling 7, 441–499 (2004)

13. Ernst, A.T., Jiang, H., Krishnamoorthy, M., Owens, B., Sier, D.: An Anno-
tated Bibliography of Personnel Scheduling and Rostering. Annals of Operations
Research 127, 21–144 (2004)

14. Burke, E.K., De Causmaecker, P., Berge, G.V.: Novel Meta-Heuristic Approaches
to Nurse Rostering Problems in Belgian Hospitals. In: Leung, J. (ed.) Handbook
of Scheduling Algorithms, Models and Performance Analysis (2004)

15. Li, J., Aickelin, U.: The Application of Bayesian Optimization and Classifier Sys-
tems in Nurse Scheduling. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-
Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P.
(eds.) PPSN 2004. LNCS, vol. 3242, pp. 581–590. Springer, Heidelberg (2004)

16. Bard, J.F., Purnomo, H.W.: Preference Scheduling for Nurses using Column Gen-
eration. Europiean Journal of Operational Research 164, 510–534 (2005)

17. Özcan, E.: Memetic Algorithms for Nurse Rostering. In: Yolum, I., Güngör, T.,
Gürgen, F., Özturan, C. (eds.) ISCIS 2005. LNCS, vol. 3733, pp. 482–492. Springer,
Heidelberg (2005)

18. Ohki, M., Morimoto, A., Miyake, K.: Nurse Scheduling by Using Cooperative GA
with Efficient Mutation and Mountain-Climbing Operators. In: 3rd Int. IEEE Con-
ference Intelligent Systems, pp. 164–169 (2006)

19. Burke, E.K., De Causmaecker, P., Petrovic, S., Berge, G.V.: Metaheuristics for
Handling Time Interval Coverage Constraints in Nurse Scheduling. Applied Arti-
ficial Intelligence 20(3) (2006)

20. Ohki, M., Uneme, S., Hayashi, S., Ohkita, M.: Effective Genetic Operators of Coop-
erative Genetic Algorithm for Nurse Scheduling. In: 4th Int. INSTICC Conference
on Informatics in Control, Automation and Robotics, pp. 347–350 (2007)

21. Bard, J.F., Purnomo, H.W.: Cyclic Preference Scheduling of Nurses Using a
Lagrangian-Based Heuristic. Journal of Scheduling 10, 5–23 (2007)

22. Uneme, S., Kawano, H., Ohki, M.: Nurse Scheduling by Cooperative GA with Vari-
able Mutation Operator. In: Proc. of 10th ICEIS, INSTICC, pp. 249–252 (2008)

23. Ohki, M., Uneme, S., Kawano, H.: Effective Mutation Operator and Parallel Pro-
cessing for Nurse Scheduling. Studies in Computational Intelligence 299, 229–242
(2010). doi:10.1007/978-3-642-13428-9 10

24. Ohki, M.: Effective Mutation Operator for Nurse Scheduling by Cooperative GA
and Its Parallel Processing. In: Proc. of 19th Int. ACM Workshop on Parallel
Architectures and Bioinspired Algorithms, pp. 1–8 (2010)

25. Ohki, M., Kinjo, H.: gPenalty Weight Adjustment in Cooperative GA for Nurse
Scheduling. In: Proc. of IEEE 2011 Third World Congress on Nature and Bio-
logically Inspired Computing, pp.76–81. IEEE Catalog Number: CFP1195H-CDR
(2011) ISBN: 978-1-4577-1123-7

http://dx.doi.org/10.1007/978-3-642-13428-9_10

Author Index

Agapitos, Alexandros 215
Ahmed, Soha 915
Akar, Engin 741
Alba, Enrique 678
Aleotti, Jacopo 489
Alexander, Rob 753
Allen, Melissa 939
Allerding, Florian 153
Alves, Maria João 627
Antonakopoulos, Konstantinos 101
Armstrong, Loren L. 939
Ayati, Marzieh 865

Bach, Benjamin 702
Bacher, Christopher 553
Bardow, André 177
Basford, Melissa A. 939
Baños, Raul 653
Bello, Rafael 902
Berrocal-Plaza, Víctor 63
Botta, Marco 526
Bouvry, Pascal 39, 565
Brabazon, Anthony 215, 251, 288
Brilliant, Murray 877
Brown-Gentry, Kristin 939
Burelli, Paolo 361
Burgess, Stuart 189
Bush, William S. 890

Cagnoni, Stefano 489
Camacho, David 337
Can, Ahmet Burak 3
Cancino, Waldo 702
Caraffini, Fabio 615
Carmona Cortes, Omar Andrés 227
Carrasqueira, Pedro 627
Castillo, Pedro A. 313, 374, 411
Cauwet, Marie-Liesse 603
Cavagnino, Davide 526
Chen, Hsin-Kai 841
Chen, Jian-Hung 841
Chillarige, Raghavendra Rao 579
Chisholm, Rex L. 939

Christensen, Anders Lyhne 765, 789
Cioppa, Antonio Della 75
Clegg, Kester 753
Collet, Pierre 702
Correia, Luís 765
Cotta, Carlos 665
Crawford, Dana C. 939
Cross, Deanna 877

Dahlskog, Steve 325
Dai, Yan 476
D’Andreagiovanni, Fabio 15
D’Angelo, Massimiliano 777
Danoy, Grégoire 565
De Falco, Ivanoe 51, 75, 538
Denny, Joshua C. 939
Deshpande, Bharat 639
Dilks, Holli H. 939
Dorronsoro, Bernabé 39
Duarte, Miguel 789
Dudek, Scott M. 928

Eiben, A.E. 777
Ermis, Murat 741
Erten, Sinan 865
Evins, Ralph 189

Fernandes, Carlos M. 665
Fernández-Ares, Antonio 374, 411
Fernández de Vega, Francisco 726
Filipiak, Patryk 817
Flórez-Revuelta, Francisco 439
Folino, Gianluigi 86
Fu, Wenlong 451

Gaiser-Porter, Jürgen 227
García-Arenas, Maribel 374, 853
García-Sánchez, Pablo 374, 411
García-Valdez, Mario 726
Gaudesi, Marco 425
Gholaminezhad, Iman 591
Gil, Consolación 653
Gilbert, Hugo 702

Gillani, Niloufar B. 939
Gómez-Pulido, Juan A. 27
González-Pardo, Antonio 337
González, Jesús 411
Goodloe, Robert 939
Gote, Paritosh 639
Grau, Isel 902
Guo, Liucheng 714

Haines, Jonathan L. 890
Hayes, M. Geoffrey 939
Henggeler Antunes, Carlos 627
Heywood, Malcolm I. 203

Iacca, Giovanni 591, 615

Jacquin, Sophie 165
Jarvik, Gail P. 939
Jaśkowski, Wojciech 301
Jeff, Janina M. 939
Jenihhin, Maksim 425
Jenkinson, Ian 829
Jin, Hailing 939
Johnston, Mark 451
Joshi, Ramprasad 639
Jourdan, Laetitia 165

Kampouridis, Michael 276
Kavakeb, Shayan 829
Kawulok, Michal 514
Kho, Abel N. 939
Kim, Dokyoon 928
Kishida, Satoru 955
Koyutürk, Mehmet 865
Krenek, Thorsten 553
Krolikowski, Jonatan 15

Lanza-Gutiérrez, Jose M. 27
Laredo, Juan L.J. 665
Laskowski, Eryk 51
Li, Ruowang 928
Liberatore, Federico 313
Lin, Cheng-Yuan 841
Lipinski, Piotr 125, 288, 817
Liskowski, Paweł 301
Loginov, Alexander 203
Lorido-Botran, Tania 690
Lozano, Jose Antonio 690

Lucas, Simon M. 349
Luk, Wayne 714
Lukoseviciute, Kristina 239
Luna, Francisco 678
Lutton, Evelyne 702

Magnusson, Lars Vidar 464
Maisto, Domenico 75
Mauser, Ingo 153
Mayo, Ping 939
McCarty, Catherine A. 877
McClellan Jr., Bob 939
McDermott, James 215
Merelo Guervós, Juan Julián 313, 374, 411,

665, 726, 853
Micconi, Giorgio 489
Michalak, Krzysztof 264
Miguel-Alonso, Jose 690
Mora, Antonio M. 313, 374, 411, 853
Morelli, Gianluigi 565

Nadimpalli, Vijaya Lakshmi V. 579
Nalepa, Jakub 514
Nápoles, Gonzalo 902
Nebel, Jean-Christophe 439
Neri, Ferrante 615
Nguyen, Su 501
Nguyen, Trung Thanh 829
Nichele, Stefano 113
Nicolau, Miguel 251

Ohki, Makoto 955
Olejnik, Richard 51
Olhofer, Markus 805
Oliveira, Sancho 789
Olsson, Roland 464
O’Neill, Michael 215, 251
Ortega, Julio 653
Otero, Fernando E.B. 276

Pacheco, Jennifer A. 939
Palero, Fernando 337
Palivonaite, Rita 239
Parrend, Pierre 702
Pascual, Jose Antonio 690
Pedemonte, Martín 678
Peissig, Peggy 877
Peng, Lifeng 915

968 Author Index

Pérez-García, Ricardo 902
Pérez, Diego 349
Pisani, Francesco S. 86
Piyatumrong, Apivadee 39
Pomponiu, Victor 526
Preuss, Mike 177, 361
Pulaj, Jonad 15

Ragulskis, Minvydas 239
Raidl, Günther R. 553
Raik, Jaan 425
Rau-Chaplin, Andrew 227
Ritchie, Marylyn D. 877, 928, 939
Rivas, Víctor M. 853
Roden, Dan M. 939
Rodrigues, Tiago 789
Romero López, Gustavo 853
Rosa, Agostinho C. 665
Rudolph, Günter 177
Ruiz, Patricia 39

Samothrakis, Spyridon 349
Sanchez, Ernesto 425
Sánchez-Pérez, Juan M. 63
Scafuri, Umberto 51, 75
Schaefer, Robert 138
Schmeck, Hartmut 153
Schnetz-Boutaud, Nathalie 939
Sen, Sevil 3
Silva, Fernando 765
Smalikho, Olga 805
Smołka, Maciej 138
Squillero, Giovanni 425
St-Pierre, David L. 386

Stathakis, Apostolos 565
Suganthan, Ponnuthurai Nagaratnam 615
Szubert, Marcin 301

Tahta, Ugur Eray 3
Talbi, El-Ghazali 39, 165, 565
Tarantino, Ernesto 51, 75
Teytaud, Olivier 386
Thomas, David B. 714
Tihhomirov, Valentin 425
Togelius, Julian 325
Topcuoglu, Haluk Rahmi 741
Tsang, Jeffrey 399
Tudruj, Marek 51
Tufte, Gunnar 113

Ubar, Raimund 425
Ugolotti, Roberto 489

Vaidyanathan, Ravi 189
Vega-Rodríguez, Miguel A. 27, 63
Verma, Shefali S. 877
Voll, Philip 177

Wankar, Rajeev 579
Waudby, Carol 877
Weel, Berend 777
Wilson, Duane 227
Wold, Håkon Hjelde 113

Xue, Bing 476, 501

Yang, Zaili 829

Zhang, Mengjie 451, 476, 501, 915

Author Index 969

	Volume Editors
	Preface
	Organization
	Contents
	EvoCOMNET

	Evolving a Trust Model for Peer-to-Peer Networks Using Genetic Programming
	1 Introduction
	2 Related Work
	3 The Model
	3.1 Feature Sets and Operators
	3.2 Fitness Function

	4 Experiments and Analysis
	4.1 Simulation Module
	4.2 GP Module
	4.3 The Problem
	4.4 Experiments

	5 Conclusion
	References

	A Hybrid Primal Heuristic for Robust Multiperiod Network Design
	1 Introduction
	2 Capacitated Network Design
	3 Multiband-Robust Multiperiod Network Design
	3.1 A Robust Optimization Model for Traffic-Uncertain Multiperiod Network Design

	4 A Hybrid Primal Heuristic for the Rob-MP-CNDP
	5 Experimental Results
	6 Conclusion and Future Work
	References

	A Trajectory-Based Heuristic to Solve a Three-Objective Optimization Problem for Wireless Sensor Network Deployment
	1 Introduction
	2 A Realistic Approach for the Relay Node Placement Problem
	3 Multiobjective Optimization: The Algorithms Used
	4 Experimental Methodology
	5 Final Remarks
	References

	Optimizing AEDB Broadcasting Protocol with Parallel Multi-objective Cooperative Coevolutionary NSGA-II
	1 Introduction
	2 Related Work
	3 AEDB Protocol Optimisation
	3.1 Problem Description

	4 Cooperative Coevolutionary NSGA-II
	5 Experimental Analysis
	6 Results
	7 Conclusions and Future Work
	References

	Improving Extremal Optimization in Load Balancing by Local Search
	1 Introduction
	2 Related Works
	3 Extremal Optimization Algorithm Principles
	3.1 Extremal Optimization With Guided State Changes

	4 Load Balancing Based on Extremal Optimization
	4.1 Detection of Load Imbalance
	4.2 Correction of Load Imbalance
	4.3 Guided Target Node Selection for State Changes

	5 Experimental Results
	5.1 Performance of the Presented Algorithms
	5.2 The Algorithm Parameter Setting

	6 Conclusions
	References

	Studying the Reporting Cells Planning with the Non-dominated Sorting Genetic Algorithm II
	1 Introduction
	2 Related Work
	3 Reporting Cells Planning Problem
	4 Multiobjective Optimization
	4.1 Hypervolume: IH(A)
	4.2 The Non-dominated Sorting Genetic Algorithm II

	5 Experimental Results
	5.1 Comparison with Other Works

	6 Conclusion and Future Work
	References

	Impact of the Topology on the Performance of Distributed Differential Evolution
	1 Introduction
	2 State of the Art
	3 The Distributed Model
	4 Experiments
	4.1 Statistical Analysis
	4.2 Behavior of the Topologies

	5 Conclusions and Future Works
	References

	Modeling the Offloading of Different Types of Mobile Applications by Using Evolutionary Algorithms
	1 Introduction
	2 Background: A GP-based Framework to Perform the Offloading of Mobile Applications
	2.1 Fitness, Terminals and Functions

	3 The Mobile and Cloud Simulator
	4 Generating Artificial Datasets for Different Kinds of Applications
	5 Experimental Section
	5.1 Performance Analysis
	5.2 Analyzing the Models

	6 Conclusions and Future Work
	References

	EvoCOMPLEX

	Common Developmental Genomes Revisited -- Evolution Through Adaptation
	1 Introduction
	2 The Developmental Model
	2.1 The L-system for the First Chromosome
	2.2 The L-system for the Second Chromosome
	2.3 The Genetic Algorithm for Common Genetic Representation

	3 Emergent Dynamics in Artificial Systems
	4 Experimental Setup
	4.1 Fitness Assignment Scheme
	4.2 Studying the Dynamic Behavior
	4.3 First Problem Definition
	4.4 Second Problem Definition

	5 Results
	6 Conclusion
	References

	Investigation of Genome Parameters and Sub-transitions to Guide Evolution of Artificial Cellular Organisms
	1 Introduction
	2 Motivation and Background
	3 Evolution and Development
	3.1 Cellular Developmental Model
	3.2 Quantification of P Phenotypes
	3.3 Evolution of Genom me Information

	4 Lambda Genome Parameter
	4.1 Genome Parameter Sub-transitions

	5 Experimental Setup
	6 Genome Parameter to Guide Evolution
	7 Genotype Sub-transitions
	8 Conclusion
	References

	Training Complex Decision Support Systems with Differential Evolution Enhanced by Locally Linear Embedding
	1 Introduction
	2 Locally Linear Embedding in the Search Space
	3 Differential Evolution Enhanced by Locally Linear Embeddings
	3.1 Search Space and Population Reduction
	3.2 Reduced Population Evaluation
	3.3 Search Space and Population Restoring

	4 Experimental Evaluation on Popular Benchmark Functions
	5 Practical Evaluation on a Decision Support System
	6 Conclusions
	References

	A Memetic Framework for Solving Difficult Inverse Problems
	1 Motivation
	2 HMS Architecture
	2.1 HMS Agent Types
	2.2 Population Structure

	3 Sample Implementation
	4 Benchmark Tests
	5 Conclusions
	References

	EvoENERGY

	Customizable Energy Management in Smart Buildings Using Evolutionary Algorithms
	1 Introduction and Scenario
	2 Energy Management and Problem Definition
	3 Organic Smart Home
	4 Sub-problem Based Optimization by Evolutionary Algorithms
	5 Simulation and Results
	6 Conclusions and Outlook
	References

	Dynamic Programming Based Metaheuristic for Energy Planning Problems
	1 Introduction
	2 Hydro-Scheduling Problem Description
	3 DYNAMOP
	3.1 Representation
	3.2 Crossover
	3.3 Mutations

	4 Experimental Protocol
	4.1 A Basic Genetic Algorithm for Comparison
	4.2 Cases of Study
	4.3 Parameter Setting

	5 Results
	5.1 First Case: Simple Hydro System
	5.2 Second Case: Multi-reservoirs Hydro System

	6 Conclusion
	References

	Looking for Alternatives: Optimization of Energy Supply Systems without Superstructure
	1 Introduction
	2 Test Case
	3 Superstructure-Free Synthesis Methodology
	4 Shortcode and Distance Measure
	5 MILP Solving and Evolutionary Approaches
	6 Experimental Comparison
	7 Conclusions
	References

	Multi-material Compositional Pattern-Producing Networks for Form Optimisation
	1 Introduction
	1.1 Engineering Form Optimisation
	1.2 Form Representation
	1.3 Application to the Energy Field

	2 Form Generation Method
	2.1 Compositional Pattern Producing Networks (CPPNs)
	2.2 NeuroEvolution of Augmenting Topologies (NEAT)
	2.3 Implementation

	3 Multi-material Formulation
	3.1 New Development
	3.2 Objective Functions

	4 Results
	4.1 Two Materials
	4.2 Continuously-Variable Material

	5 Conclusions
	References

	EvoFIN

	On Evolving Multi-agent FX Traders
	1 Introduction
	2 The FXGP Algorithm Overview
	3 Multi-agent FXGP
	3.1 simple FXGP
	3.2 Constructing FXGP Teams

	4 Experimental Setup
	4.1 Source Data
	4.2 Parameterization

	5 Results
	6 Conclusion
	References

	Geometric Semantic Genetic Programming for Financial Data
	1 Introduction
	2 Related Work
	3 GP, GSGP, and Variations
	3.1 GSGP
	3.2 Novel GSGP Variations
	3.3 Standard GP

	4 Experiments and Results
	4.1 Trading Strategy
	4.2 Experimental Setup
	4.3 Results

	5 Discussion
	6 Conclusions and Future Work
	References

	On PBIL, DE and PSO for Optimization of Reinsurance Contracts
	1 Introduction
	2 The Reinsurance Contract Placement Problem
	3 Evolutionary/Swarm Algorithms
	3.1 Differential Evolution
	3.2 Particle Swarm Optimization
	3.3 Population-Based Incremental Learning

	4 Experimental Results
	4.1 Quality Analysis
	4.2 Performance

	5 Conclusions
	References

	Algebraic Level-Set Approach for the Segmentation of Financial Time Series
	1 Introduction
	2 Preliminaries
	3 The Construction of the Segmentation Algorithm
	3.1 Time Series Prediction Procedure
	3.2 Combinatorial Aspects of the Segmentation Algorithm

	4 Computational Experiments with Financial Time Series
	5 Conclusions
	References

	Dynamic Index Trading Using a Gene Regulatory Network Model
	1 Introduction
	2 Artificial Gene Regulatory Model
	2.1 Background
	2.2 The Model

	3 Index Trading
	3.1 Methodology
	3.2 Datasets
	3.3 Data Preprocessing
	3.4 Technical Indicators

	4 Setup and Results
	4.1 Encoding
	4.2 Evolutionary Setup
	4.3 Evaluation
	4.4 Results and Analysis

	5 Conclusion
	References

	Analysis of Dynamic Properties of Stock Market Trading Experts Optimized with an Evolutionary Algorithm
	1 Introduction
	2 Dynamic Optimization of Trading Experts
	3 Analysis of Trading Rules Usage
	4 Conclusion
	References

	A Comparative Study on the Use of Classification Algorithms in Financial Forecasting
	1 Introduction
	2 Problem Description
	2.1 Financial Forecasting
	2.2 The Classification Problem

	3 Research Goals
	4 Data Preparation
	5 Algorithms
	5.1 EDDIE
	5.2 Unordered cAnt-MinerPB
	5.3 C4.5 (J48)
	5.4 RIPPER (JRip)

	6 Results
	7 Conclusion
	References

	Pattern Mining in Ultra-High Frequency Order Books with Self-Organizing Maps
	1 Introduction
	2 Order Book Data
	3 Order Book Shape
	4 Discovering Shape Patterns
	5 Frequent Order Book Patterns
	6 Transitions Between Order Book Patterns
	7 Summary of Experiments
	8 Conclusions and Perspectives
	References

	EvoGAMES

	Multi-Criteria Comparison of Coevolution and Temporal Difference Learning on Othello
	1 Introduction
	2 Othello
	2.1 Game Rules Description
	2.2 Weighted Piece Counter (WPC) Strategy Representation

	3 Coevolutionary Learning
	4 Temporal Difference Learning
	5 Experimental Setup and Parameters Tuning
	5.1 Temporal Difference Learning
	5.2 Coevolution

	6 Comparison of Coevolution and Temporal Difference Learning
	6.1 Single-Criteria Comparison
	6.2 Multi-Criteria Comparison with Performance Profiles
	6.3 Discussion

	7 Strategies Comparison
	8 Conclusions
	References

	Evolving Evil: Optimizing Flocking Strategies Through Genetic Algorithms for the Ghost Team in the Game of Ms. Pac-Man
	1 Introduction
	2 Ms. Pac-Man. The Game and the Problem
	3 Background and State of the Art
	4 Ghost Team AI: Evolutionary Flocking
	4.1 Generalized Flocking Strategies
	4.2 Devising Optimized Flocking Strategies by Means of GAs

	5 Experiments and Results
	6 Conclusions and Future Work
	References

	Procedural Content Generation Using Patterns as Objectives
	1 Introduction
	1.1 Background
	1.2 Examples of Patterns

	2 Rationale
	2.1 Representation
	2.2 Evolutionary Algorithm
	2.3 Fitness Function

	3 Results and Evaluation
	3.1 Finding Patterns

	4 Expressive Range
	5 Discussion
	6 Conclusion
	References

	Micro and Macro Lemmings Simulations Based on Ants Colonies
	1 Introduction
	2 The Lemmings Video Game
	3 The ACO Approach for the Lemmings Video Game
	4 The Micro and Macro Lemmings Simulations
	5 Experimental Results
	6 Conclusions
	References

	Fast Evolutionary Adaptation for Monte Carlo Tree Search
	1 Introduction
	2 Related Research
	3 Fast Evolutionary MCTS
	3.1 Biasing Rollouts

	4 Test Problems
	4.1 Mountain Car
	4.2 Space Invaders

	5 Conclusions
	References

	Automatic Camera Control: A Dynamic Multi-Objective Perspective
	1 Introduction
	2 Related Work
	3 Multi-Objective Camera Optimisation
	4 Case Study
	4.1 Optimal Solution Difference Estimation
	4.2 Static and Follow Shot Comparison
	4.3 Front Approximation Distance Comparison

	5 Conclusion
	References

	Co-Evolutionary Optimization of Autonomous Agents in a Real-Time Strategy Game
	1 Introduction
	2 State of the Art
	3 Cooperative and Competitive Evolution: Co-Bots
	3.1 Previous Knowledge vs Auto-Generated Knowledge
	3.2 Fitness Functions
	3.3 Fitness Based in Area

	4 Experiments and Results
	5 Conclusions and Future Work
	References

	Sharing Information in Adversarial Bandit
	1 Introduction
	2 Problem Statement
	2.1 Nash Equilibrium
	2.2 Generic Bandit Algorithm
	2.3 Problem Statement

	3 Selection Policies and Updating Rules
	3.1 EXP3
	3.2 TEXP3
	3.3 Structured EXP3

	4 Theoretical Evaluation
	5 Experiments
	5.1 Artificial Experiments
	5.2 Urban Rivals

	6 Conclusion
	References

	The Structure of a Probabilistic 1-State Transducer Representation for Prisoner's Dilemma
	1 Introduction
	2 Background
	3 Methodology
	4 Results
	4.1 Parameter Distance vs. Minimum Fingerprint Distance
	4.2 Hierarchical Clustering
	4.3 Curvature of the Parameter Space
	4.4 Multidimensional Scaling
	4.5 Colouring Scheme
	4.6 The Principal Components of the Space

	5 Discussion and Conclusions
	References

	Tree Depth Influence in Genetic Programming for Generation of Competitive Agents for RTS Games
	1 Introduction
	2 State of the Art
	3 Proposed Agent
	4 Experimental Setup
	5 Results
	6 Conclusions
	References

	EvoHOT

	Diagnostic Test Generation for Statistical Bug Localization Using Evolutionary Computation
	1 Introduction
	2 Overview of Related Works
	3 Statistical Bug Localization with zamiaCAD
	4 Diagnostic Metrics for Statistical Bug Localization
	4.1 Cause-Effect Relationships Between Errors and Test Results
	4.2 Ranking of Suspected Bug Candidates
	4.3 Statistical Assessment of Diagnostic Capability with WHATIF Method
	4.4 GENERIC Coverage-Based Approach to Assessment of Diagnostic Resolution

	5 Evolutionary Diagnostic Test Pattern Generation
	5.1 Evolutionary Optimizer μGP
	5.2 Evolutionary Diagnostic Test Set Generation Flow

	6 Experimental Results
	7 Conclusions
	References

	EvoIASP

	Evolutionary Algorithm for Dense Pixel Matching in Presence of Distortions
	1 Introduction
	2 Related Work
	3 Bio-inspired Algorithm
	4 Evolutionary Proposal
	4.1 Individual's Representation
	4.2 Fitness
	4.3 Initialisation
	4.4 Selection of Parents
	4.5 Crossover
	4.6 Mutation

	5 Experimentation
	6 Conclusion
	References

	Is a Single Image Sufficient for Evolving Edge Features by Genetic Programming?
	1 Introduction
	2 Background
	2.1 Gaussian-Based Edge Detection
	2.2 Related Work to GP for Edge Detection

	3 Gaussian-Based GP System
	3.1 Terminals Based on Gaussian Models
	3.2 Function Set
	3.3 Fitness Function
	3.4 Combinations of Results From Single Training Images

	4 Experiment Design
	5 Results and Discussion
	5.1 Overall Results
	5.2 Visual Results
	5.3 Further Discussion

	6 Conclusions
	References

	Improving Graph-Based Image Segmentation Using Automatic Programming
	1 Introduction
	2 Background
	2.1 Automatic Design of Algorithms Through Evolution (ADATE)
	2.2 Graph-Based Image Segmentation

	3 Experiments
	3.1 The Implementation of the Original Algorithm
	3.2 The Training and Test Images
	3.3 Measuring the Accuracy of Generated Programs
	3.4 Selecting the Constant Values

	4 Results
	4.1 The Improved Algorithm
	4.2 Comparison of the Segmentation Quality
	4.3 Algorithm Benchmarks

	5 Conclusions
	References

	New Representations in PSO for Feature Construction in Classification
	1 Introduction
	1.1 Goals

	2 Background
	2.1 Particle Swarm Optimisation (PSO)
	2.2 Related Work on Feature Construction
	2.3 PSO for Feature Manipulation

	3 Proposed Approaches
	3.1 Pair Representation
	3.2 Array Representation
	3.3 Pesuode Code of the Proposed Approaches

	4 Design of Experiments
	5 Results and Discussions
	5.1 Results of the PSOFCPair
	5.2 Results of PSOFCArry
	5.3 Further Comparisons

	6 Conclusion and Future Work
	References

	GPU-Based Point Cloud Recognition Using Evolutionary Algorithms
	1 Introduction
	2 Theoretical Background
	3 FPFH
	4 Evolutionary Implementation
	4.1 Fitness Function
	4.2 GPU Implementation

	5 Results
	5.1 Error vs Fitness
	5.2 Time Comparison
	5.3 Noise and Occlusions
	5.4 Object Recognition

	6 Conclusions
	References

	A New Binary Particle Swarm Optimisation Algorithm for Feature Selection
	1 Introduction
	1.1 Goals

	2 Proposed Approach
	2.1 PBPSOfs for Feature Selection

	3 Experiment Design
	3.1 Benchmark Techniques
	3.2 Datasets and Parameter Settings

	4 Results and Discussions
	4.1 Results of PBPSOfs and BPSOfs in Testing Process
	4.2 Results of PBPSOfs and BPSOfs in Training Process
	4.3 Analysis on Computational Time

	5 Conclusions and Future Work
	References

	Adaptive Genetic Algorithm to Select Training Data for Support Vector Machines
	1 Introduction and Related Work
	2 Adaptive Genetic Algorithm
	2.1 Algorithm Outline
	2.2 Adaptive Multi-Parent Crossover
	2.3 New Distance Metric Between Individuals

	3 Experimental Results
	3.1 Sensitivity Analysis on Method Components

	4 Conclusions and Future Work
	References

	Automatic Selection of GA Parameters for Fragile Watermarking
	1 Introduction
	2 GA-Based Watermarking Schemes
	3 The Watermarking Algorithm
	4 Experimental Results
	4.1 Convergence Ability
	4.2 Image Quality
	4.3 Crossover Probability
	4.4 Mutation Probability
	4.5 Sensitivity to Modifications

	5 Discussion and Conclusions
	References

	Classification of Potential Multiple Sclerosis Lesions Through Automatic Knowledge Extraction by Means of Differential Evolution
	1 Introduction
	2 The Rule Extractor: DEREx
	3 Experiments
	4 The Advantage of DEREx: The IF-THEN Rules
	5 Comparison Between Extracted Knowledge and Experts' Knowledge
	6 Conclusions and Future Work
	References

	EvoINDUSTRY

	Reducing the Number of Simulations in Operation Strategy Optimization for Hybrid Electric Vehicles
	1 Introduction
	2 Related Work
	3 Used Metaheuristics
	4 Employed Post-Processing Techniques
	5 Regression Models as Approximative Fitness Functions
	6 A Two-Phase Optimization Approach
	7 Experimental Results and Discussion
	8 Conclusion and Future Work
	References

	Hybridisation Schemes for Communication Satellite Payload Configuration Optimisation
	1 Introduction
	2 Related Works
	3 Problem Description
	4 Proposed Methodology
	4.1 The Local Search Algorithm
	4.2 The Cellular Genetic Algorithm
	4.3 The First Hybrid (LSM)
	4.4 The Second Hybrid (LSMExB)
	4.5 Third Hybrid (LSMExP)

	5 Experimental Results
	5.1 Experimental Setup
	5.2 Numerical Results

	6 Conclusions and Perspectives
	References

	EvoNUM

	A Novel Genetic Algorithmic Approach for Computing Real Roots of a Nonlinear Equation
	1 Introduction
	2 Pre-processing Algorithm to Fix the Length of Chromosome (
	3 Post-processor
	4 Addressing a Function Possessing Multiple Roots
	5 General Algorithm for Function with Known Points of Discontinuity and with Multiple Roots
	6 Numerical Experiments
	6.1 Pre-processing – Fixing the LC
	6.2 Post-processing
	6.3 Comparison Between Conventional GA and Proposed Method for

	7 Conclusion
	References

	A Multi-Objective Relative Clustering Genetic Algorithm with Adaptive Local/Global Search Based on Genetic Relatedness
	1 Introduction
	2 Relative Clustering Genetic Algorithm with Adaptive Local/Global Search
	3 Numerical Results
	4 Conclusion
	References

	Noisy Optimization: Convergence with a Fixed Number of Resamplings
	1 Introduction
	1.1 Convergence Rates: Log-Linear Convergence and Log-log Convergence
	1.2 Additive Noise Model
	1.3 Multiplicative Noise Model
	1.4 A More General Noise Model

	2 Theoretical Analysis
	2.1 Preliminary: Noise-Free Case
	2.2 Noisy Case

	3 Experiments: How to Choose the Right Number of Resampling?
	4 Conclusion
	References

	A Differential Evolution Framework with Ensemble of Parameters and Strategies and Pool of Local Search Algorithms
	1 Introduction
	2 Ensemble of Parameters and Strategies Differential Evolution Empowered by Local Search
	3 Numerical Results
	4 Conclusions
	References

	An Improved Multiobjective Electromagnetism-like Mechanism Algorithm
	1 Introduction
	2 Fundamental Concepts of Multiobjective Optimization
	3 Multiobjective Electromagnetism-like Mechanism
	3.1 MOEM Algorithm
	3.2 EMOEM Algorithm

	4 Performance Metrics
	5 Experimentation
	5.1 Comparative Analysis of EMOEM and MOEM

	6 Conclusions and Future Work
	References

	Objective Dimension and Problem Structurein Multiobjective Optimization Problems
	1 Introduction
	1.1 Moraglio et al.'s Geometric View of Variation Operators
	1.2 A Similar View for Selection Operators
	1.3 Discovery of the Power Law

	2 The Structure of the Explored Search Space
	2.1 The Search Space
	2.2 The Partial Order
	2.3 The Graph
	2.4 The Properties of and G Relevant to the Search Space Structure

	3 Choosing V to Minimize Intersection Without Bridges
	4 Degree Distribution in a Graph with No Bridges
	5 Computational Experiments and Results
	6 Conclusions and Future Work
	References

	EvoPAR

	Hybrid MPI/OpenMP Parallel Evolutionary Algorithms for Vehicle Routing Problems
	1 Introduction
	2 The Vehicle Routing Problem with Time Windows
	3 Algorithms
	3.1 The Multi-Temperature Simulated Annealing (MT-SA)
	3.2 Parallelization of MT-SA

	4 Empirical Analysis
	4.1 Test Problems and Parameter Settings
	4.2 Results and Discussion

	5 Conclusions
	References

	Dynamic and Partially Connected Ring Topologies for Evolutionary Algorithms with Structured Populations
	1 Introduction
	2 Background Review
	3 Partially Connected Ring Topologies
	4 Test Set and Results
	5 Conclusions and Future Work
	References

	Systolic Genetic Search for Software Engineering: The Test Suite Minimization Case
	1 Introduction
	2 Related Work
	3 Test Suite Minimization Problem
	4 Systolic Genetic Search
	4.1 SGSB: A Systolic Genetic Search Algorithm
	4.2 A SGS for the TSMP
	4.3 A GPU-Based Implementation of SGS

	5 Experimental Results
	5.1 TSMP Instances
	5.2 Algorithms
	5.3 Parameters Setting and Test Environment
	5.4 Experimental Analysis: Numerical Performance
	5.5 Experimental Analysis: Parallel Performance

	6 Conclusions and Future Work
	References

	Optimization of Application Placement Towards a Greener Cloud Infrastructure
	1 Introduction
	2 Related Work
	3 Application, Data Center and Power Models
	3.1 Modeling Applications
	3.2 Describing the Data Center Structure
	3.3 Modeling Power Requirements

	4 Topology-Aware Optimization
	4.1 Problem Definition
	4.2 Multi-objective Optimization with NSGA-II

	5 Experimental Framework
	6 Analysis of Results
	6.1 Application-Related Metrics
	6.2 Data Center-Related Metrics

	7 Conclusions and Future Work
	References

	GridVis: Visualisation of Island-Based Parallel Genetic Algorithms
	1 Introduction
	2 Background
	3 GridVis
	4 Experimental Analysis
	4.1 Setup
	4.2 Results

	5 Conclusions and Future Works
	References

	Automated Framework for General-Purpose Genetic Algorithms in FPGAs
	1 Introduction
	2 Background and Related Work
	2.1 Genetic Algorithm
	2.2 Reconfigurable Computing
	2.3 Previous FPGA-Based GAs

	3 Automated Framework for General-Purpose GAs
	3.1 Automated Framework
	3.2 FPGA-Based Custom GA
	3.3 Customisable Parallelism in Custom GA
	3.4 Compilation and Execution Reports

	4 User Defined Input
	5 Qualitative Comparison
	6 Experiments
	6.1 Locating Problem
	6.2 Set Covering Problem
	6.3 GA Benchmarks
	6.4 Experiments Summary

	7 Conclusion and Future Work
	References

	Unreliable Heterogeneous Workers in a Pool-Based Evolutionary Algorithm
	1 Introduction
	2 Related Work
	3 EvoSpace
	3.1 Implementation
	3.2 Evospace as a Heroku Application
	3.3 Evoworkers as PiCloud Jobs

	4 Experimental Work
	4.1 Benchmark
	4.2 Experimental Set-Up
	4.3 Results

	5 Conclusions and Further Work
	References

	EvoRISK

	Hyper-Heuristics for Online UAV Path Planning Under Imperfect Information
	1 Introduction
	2 Online Path Planning Problem
	2.1 Structure of a Subpath
	2.2 Constraints of the Problem
	2.3 Evaluation Function

	3 Hyper-Heuristic Based Online Path Planning
	3.1 Heuristic Selection Mechanisms
	3.2 Criteria for Move Acceptance
	3.3 Low-Level Heuristics

	4 Experimental Study
	4.1 Pre-Experimentation for Reinforcement Learning
	4.2 Results and Discussions

	5 Conclusions
	References

	Searching for Risk in Large Complex Spaces
	1 Introduction and Background
	2 The ASHiCS Search Harness
	2.1 Experimental Set Up

	3 Characterizing the Solution Space
	4 Sensitivity Analysis
	5 Conclusions
	References

	EvoROBOT

	Speeding Up Online Evolution of Robotic Controllers with Macro-neurons
	1 Introduction
	2 Background
	2.1 Specification of Macro-neurons
	2.2 odNEAT: An Online Neuroevolution Algorithm

	3 Methods
	3.1 Robot Model and Behavioural Control
	3.2 Deceptive Phototaxis
	3.3 Experimental Setup

	4 Experimental Results
	4.1 Dynamics of Neural Architectures
	4.2 Assessing the Robustness of Evolution

	5 Conclusions
	References

	HyperNEAT Versus RL PoWER for Online Gait Learning in Modular Robots
	1 Introduction
	2 Related Work
	3 Experimental Setup
	4 Experimental Results
	5 Conclusions
	References

	What You Choose to See Is What You Get: An Experiment with Learnt Sensory Modulation in a Robotic Foraging Task
	1 Introduction
	2 Related Work
	3 Methodology
	4 Experimental Setup
	5 Results and Discussion
	5.1 Performance
	5.2 Behavior
	5.3 Complexity

	6 Conclusions
	References

	EvoSTOC

	Co-evolution of Sensory System and Signal Processing for Optimal Wing Shape Control
	1 Introduction
	2 Framework for Morphology-Controller Co-evolution
	2.1 Controller

	3 Baseline Optimization
	4 Robust Sensor-Controller Optimization
	4.1 System Performance Evaluation
	4.2 Robust Optimization Results

	5 Conclusions
	References

	Infeasibility Driven Evolutionary Algorithm with Feed-forward Prediction Strategy for Dynamic Constrained Optimization Problems
	1 Introduction
	2 Infeasibility Driven Evolutionary Algorithm
	3 Feed-forward Prediction Strategy
	4 IDEA-FPS
	4.1 Anticipation Mechanism
	4.2 Population Segmentation
	4.3 Algorithm

	5 Experiments
	5.1 Benchmarks
	5.2 Performance Measures
	5.3 Setup
	5.4 Discussion

	6 Conclusions and Future Work
	References

	Identifying the Robust Number of Intelligent Autonomous Vehicles in Container Terminals
	1 Introduction
	1.1 Related Literature

	2 IAVs in Container Terminals
	3 An Evolutionary Algorithm to Identify the Robust Number of IAVs
	4 Extensions on FSEA
	5 Experimental Results
	6 Conclusion
	References

	A Multi-objective Evolutionary Approach for Cloud Service Provider Selection Problems with Dynamic Demands
	1 Introduction
	2 Related Work
	2.1 P-median Problems
	2.2 Multi-objective Evolutionary Optimization

	3 Cloud Service Selection Problems with Dynamic Demands
	3.1 Problem Notations
	3.2 Problem Objectives
	3.3 An Illustrative Example

	4 The Proposed Multi-objective Genetic Algorithm
	4.1 Chromosome Representation
	4.2 Fitness Assignment
	4.3 Procedure of MOGA

	5 Result and Discussions
	5.1 Simulation Environment and Parameter Settings
	5.2 Discussions

	6 Conclusions
	References

	An Object-Oriented Library in JavaScript to Build Modular and Flexible Cross-Platform Evolutionary Algorithms
	1 Introduction and State of the Art
	2 The jsEO Library
	3 Methodology and Experimental Setup
	4 Experimental Results
	5 Conclusions, Discussion and Future Work
	References

	EvoBIO

	What Do We Learn from Network-Based Analysis of Genome-Wide Association Data?
	1 Introduction
	2 Methods
	2.1 Scoring Subnetworks
	2.2 Searching for High Scoring Subnetworks
	2.3 Assessment of Statistical Significance

	3 Results
	3.1 Datasets and Preprocessing
	3.2 Significance of Identified Subnetworks
	3.3 Biological Relevance

	4 Conclusion
	References

	Benefits of Accurate Imputations in GWAS
	1 Introduction
	2 Methods
	2.1 Subjects and Genotyping
	2.2 Methods of Imputation
	2.3 Phenotyping
	2.4 AssociationAnalysis

	3 Results
	3.1 Imputation Accuracy
	3.2 Comparison of Association Results Using Genotyped and Imputed Data

	4 Discussion
	References

	Genotype Correlation Analysis Reveals Pathway-Based Functional Disequilibrium and Potential Epistasis in the Human Interactome
	1 Introduction
	2 Methods
	2.1 Data
	2.2 Domain Knowledge
	2.3 Statistical Analysis

	3 Results
	3.1 Analysis Overview
	3.2 Initial Screen
	3.3 Confirmation
	3.4 Gene-Gene Pairings with Putative Epistasis

	4 Discussion
	References

	Determining Positions Associated with Drug Resistance on HIV-1 Proteins: A Computational Approach
	1 Introduction
	2 Variable Mesh Optimization
	3 Feature Selection on the Reverse Transcriptase Protein
	3.1 Rough Set Theory for Analyzing Inconsistent Information
	3.2 Feature Selection Using VMO and RST

	4 Experimental Framework and Simulations
	5 Conclusions
	References

	GPMS: A Genetic Programming Based Approach to Multiple Alignment of Liquid Chromatography-Mass Spectrometry Data
	1 Background
	1.1 Goals
	1.2 Organisation

	2 The Alignment Approach
	2.1 Peak Matching
	2.2 GP Multi-Branch Regression for Multiple Alignment
	2.3 Terminal and Function Sets
	2.4 Fitness Function

	3 Experimental Design
	3.1 Data Sets
	3.2 Genetic Operators and Parameters
	3.3 Benchmark Algorithms
	3.4 Performance Evaluation

	4 Results and Discussions
	4.1 Effectiveness Performance
	4.2 Efficiency Performance
	4.3 Interpretation of the Evolved Regression Models

	5 Conclusions and Future Works
	References

	An Integrated Analysis of Genome-Wide DNA Methylation and Genetic Variants Underlying Etoposide-Induced Cytotoxicity in European and African Populations
	1 Introduction
	2 Methods
	2.1 Genetic Variants Correlated with Etoposide IC50
	2.2 Candidate SNPs and Methylation Levels Association
	2.3 Interactive Model of SNPs and Methylation Levels to Predict Etoposide IC50

	3 Results
	4 Conclusion and Discussion
	References

	Replication of SCN5A Associations
with Electrocardiographic Traits in African Americans
from Clinical and Epidemiologic Studies

	1 Introduction
	2 Methods
	2.1 Study Populations and ECG Measurements
	2.2 Genotyping and Statistical Analysis

	3 Results
	4 Discussion
	References

	General Track

	An Effective Nurse Scheduling by a Parameter Free Cooperative GA
	1 Introduction
	2 Genetic Coding of the Nurse Schedule
	3 Basic Algorithm of CGA for Nurse Scheduling
	4 Evaluation of Nurse Schedule
	5 Penalty Adjustment
	6 Practical Experiment
	7 Conclusion
	References

	Author Index

